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Quantum Simulation of Enzyme Catalysis

by

Nicholas Boekelheide

In Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Abstract

Separating the dynamics of variables that evolve on di↵erent timescales is a com-

mon assumption in exploring complex systems, and a great deal of progress has

been made in understanding chemical systems by treating independently the fast

processes of an activated chemical species from the slower processes that proceed

activation. Protein motion underlies all biocatalytic reactions, and understand-

ing the nature of this motion is central to understanding how enzymes catalyze

reactions with such specificity and such rate enhancement. This understanding is

challenged by evidence of breakdowns in the separability of timescales of dynam-

ics in the active site form motions of the solvating protein. Quantum simulation

methods that bridge these timescales by simultaneously evolving quantum and

classical degrees of freedom provide an important method on which to explore this

breakdown. In the following dissertation, three problems of enzyme catalysis are

explored through quantum simulation.

In Chapter 1, we address the role of protein motion in enzyme catalysis. By

quantifying and distinguishing between statistical and dynamical correlations in

catalysis by dihydrofolate reductase, we are able to define hierarchies of motion

in enzyme catalysis and confirm that nanometer-scale protein fluctuations statis-

tically gate the barrier for the intrinsic reaction are not dynamically correlated

during the intrinsic reaction event. The manuscript associated with this study is

published in PNAS, 108, 16159 (2011).
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In Chapter 2, we explore the mechanistic origin of temperature independent

kinetic isotope e↵ects in enzyme catalysis. By enabling the characterization of the

ensemble of reactive paths, quantum simulations reveal transient compression of

the donor and acceptor atoms that is independent of the mass of the transferred

hydride, thus strengthening the mechanistic interpretation of this general feature

of enzyme catalysis.

Chapter 3 explores the nature of protein motion in lactate dehydrogenase. The

mechanism and energetics captured in simulations is shown to depend on treatment

of the potential energy in the active site. A method is established to explore the

nature of coupling between protein motion and the dynamics of the active site in

the context of previous results.



vi

Contents

1 Dynamics and Dissipation in Enzyme Catalysis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Ring polymer molecular dynamics . . . . . . . . . . . . . . 11

1.4.3 Calculating the statistical correlation functions, cij . . . . . 11

1.4.4 The transition path ensemble . . . . . . . . . . . . . . . . . 12

2 Quantum Simulation of Temperature Independent Kinetic Iso-

tope E↵ects in Enzyme Catalysis 18

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Ring polymer molecular dynamics . . . . . . . . . . . . . . 20

2.2.2 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 RPMD rates and KIEs . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Mass dependence of organization of the enzyme . . . . . . . 30

2.3.3 Temperature dependence of classical barrier position . . . . 32

2.3.4 Dynamical correlations . . . . . . . . . . . . . . . . . . . . . 33

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36



vii

3 Promoting Modes in Lactate Dehydrogenase 44

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Ring polymer molecular dynamics . . . . . . . . . . . . . . 46

3.2.2 Calculation details . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A Appendix 1: Supplemental Information for Chapter 1 61

A.1 Potential Energy Surface . . . . . . . . . . . . . . . . . . . . . . . . 61

A.2 Calculation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.3 Free Energy Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.4 The Dividing Surface Ensemble . . . . . . . . . . . . . . . . . . . . 65

A.5 Calculation of the Transmission Coe�cient . . . . . . . . . . . . . 66

A.6 Additional Measures of Dynamical Correlations . . . . . . . . . . . 67

B Appendix 2: Supplemental Information for Chapter 2 80

B.1 Potential Energy Surface . . . . . . . . . . . . . . . . . . . . . . . . 80

C Appendix 3: Supplemental Information for Chapter 3 83



viii

List of Figures

1.1 The hydride transfer reaction catalyzed by DHFR . . . . . . . . . 3

1.2 Statistical and dynamical correlations among enzyme motions dur-

ing the intrinsic reaction . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Dynamical correlation measures . . . . . . . . . . . . . . . . . . . . 7

1.4 Minimum free energy pathways and the mean pathway of the reac-

tive trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The independence of the RMPD with the choice of dividing surface 21

2.2 Temperature dependence of simulated and experimental KIEs . . . 30

2.3 Donor-acceptor distance in the equilibrium ensembles and during

the intrinsic reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 The temperature dependent shift in classical reaction barrier position 32

2.5 Dynamical correlations among enzyme motions during the intrinsic

reaction involving hydrogen at 300K . . . . . . . . . . . . . . . . . 33

2.6 Nuclear quantum e↵ects at the transition state . . . . . . . . . . . 35

3.1 The crystal structure of human heart lactate dehydrogenase isozyme 45

3.2 The QM region of the LDH system . . . . . . . . . . . . . . . . . . 47

3.3 FE surface ⇥P and ⇥H using the AM1 QM/MM potential . . . . . 52

3.4 AM1 and AM1-SRP energies of the training set used for SRP opti-

mization plotted versus MP2 energies . . . . . . . . . . . . . . . . 53

3.5 FE surface ⇥P and ⇥H using the AM1-SRP QM/MM potential . . 54

3.6 The 1D FE profile along ⇥HP . . . . . . . . . . . . . . . . . . . . . 54



ix

A.1 The active site region of the DHFR enzyme . . . . . . . . . . . . . 69

A.2 The quantized and classical free energy profiles for the reaction . . 70

A.3 Covariance and dynamical correlation amongst all atoms . . . . . . 70

A.4 Alternative measures of the dynamical correlation . . . . . . . . . 71

A.5 The measure of temporally non-local dynamical correlations . . . . 72

A.6 Other measures of dynamical correlations . . . . . . . . . . . . . . 73

A.7 Modifications to the GROMOS 43A1 united atom forcefield . . . . 74

A.8 Tests of the degree to which the weak harmonic restraints impact

the dynamics of the reactive trajectories . . . . . . . . . . . . . . . 75

A.9 Free energy profiles obtained with and without swapping of config-

urations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B.1 dij for all temperatures and masses . . . . . . . . . . . . . . . . . . 81



x

List of Tables

2.1 Enzymes exhibiting temperature independent kinetic isotope e↵ects 20

2.2 Hydride transfer rates and terms for each temperature and mass . 29

A.1 The umbrella sampling parameters . . . . . . . . . . . . . . . . . . 76

B.1 The umbrella sampling parameters . . . . . . . . . . . . . . . . . . 82

C.1 Semi-empirical parameters from AM1 and AM1-SRP data sets . . 83

C.2 The umbrella sampling parameters for 1D sampling with AM1-SRP

QM potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



1

Chapter 1

Dynamics and Dissipation in Enzyme

Catalysis

We use quantized molecular dynamics simulations to characterize the role of en-

zyme vibrations in facilitating dihydrofolate reductase hydride transfer. By sam-

pling the full ensemble of reactive trajectories, we are able to quantify and distin-

guish between statistical and dynamical correlations in the enzyme motion. We

demonstrate the existence of non-equilibrium dynamical coupling between protein

residues and the hydride tunneling reaction, and we characterize the spatial and

temporal extent of these dynamical e↵ects. Unlike statistical correlations, which

give rise to nanometer-scale coupling between distal protein residues and the in-

trinsic reaction, dynamical correlations vanish at distances beyond 4-6 Å from the

transferring hydride. This work suggests a minimal role for non-local vibrational

dynamics in enzyme catalysis, and it supports a model in which nanometer-scale

protein fluctuations statistically modulate—or gate—the barrier for the intrinsic

reaction.

1.1 Introduction

Protein motions are central to enzyme catalysis, with conformational changes on

the micro- and milli-second timescale well-established to govern progress along the

catalytic cycle [1, 2]. Less is known about the role of faster, atomic-scale fluctua-
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tions that occur in the protein environment of the active site. The textbook view of

enzyme-catalyzed reaction mechanisms neglects the functional role of such fluctua-

tions and describes a static protein environment that both sca↵olds the active site

region and reduces the reaction barrier [3]. This view has grown controversial amid

evidence that active site chemistry is coupled to motions in the enzyme [4, 5, 6],

and it has been explicitly challenged by recent proposals that enzyme-catalyzed re-

actions are driven by vibrational excitations that channel energy into the intrinsic

reaction coordinate [7, 8] or promote reactive tunneling [9, 10]. In the following, we

combine quantized molecular dynamics and rare-event sampling methods to reveal

the mechanism by which protein motions couple to reactive tunneling in dihydro-

folate reductase and to clarify the role of non-equilibrium vibrational dynamics in

enzyme catalysis.

Manifestations of enzyme motion include both statistical and dynamical cor-

relations. Statistical correlations are properties of the equilibrium ensemble and

describe, for example, the degree to which fluctuations in the spatial position of

one atom are influenced by fluctuations in another; these correlations govern the

free energy (FE) landscape and determine the transition state theory kinetics of

the system [6]. Dynamical correlations are properties of the time-evolution of

the system and describe coupling between inertial atomic motions, as in a collec-

tive vibrational mode. Compelling evidence for long-ranged (i.e., nanometer-scale)

networks of statistical correlations in enzymes emerges from genomic analysis [11],

molecular dynamics simulations [11, 12, 13], and kinetic studies of double-mutant

enzymes [14, 15]. But the role of dynamical correlations in enzyme catalysis re-

mains unresolved [16, 4, 5, 7], with experimental and theoretical results suggesting

that the intrinsic reaction is activated by vibrational modes involving the enzyme

active site [9, 17, 18] and more distant protein residues [19, 7, 8]. The degree to

which enzyme-catalyzed reactions are coupled to the surrounding protein environ-

ment, and the lengthscales and timescales over which such couplings persist, are

central questions in the understanding, regulation, and de novo design of biological

catalysts [20].
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Figure 1.1: The hydride transfer reaction catalyzed by DHFR. (A) The active site
with the hydride (green) shown in the ring-polymer representation of the quantized
MD and the donor and acceptor C atoms in purple. (B) The quantized free
energy profile for the reaction. (C) The time-dependent transmission coe�cient
corresponding to the dividing surface at �(x) = �4.8 kcal/mol.

Escherichia coli dihydrofolate reductase (DHFR) is an extensively studied pro-

totype for protein motions in enzyme catalysis. It catalyzes reduction of the 7,8-

dihydrofolate (DHF) substrate via hydride transfer from the nicotinamide adenine

dinucleotide phosphate (NADPH) cofactor (Figure 1.1A). We investigate this in-

trinsic reaction using ring polymer molecular dynamics (RPMD) [21, 22], a re-

cently developed path-integral method that enables inclusion of nuclear quantiza-

tion e↵ects, such as the zero-point energy and tunneling, in the dynamics of the

transferring hydride. RPMD simulations with over 14,000 atoms are performed

using explicit solvent and using an empirical valence bond (EVB) potential to de-

scribe the potential energy surface for the transferring hydride; the EVB potential
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Figure 1.2: Statistical and dynamical correlations among enzyme motions during
the intrinsic reaction. (A) (Upper triangles) The covariance cij among position
fluctuations in DHFR, plotted for the reactant, dividing surface, and product
regions. Protein residues are indexed according to PDB 1RX2; substrate and
cofactor regions are indicated by the hydride acceptor A and donor D atoms,
respectively. (Lower triangles) The di↵erence with respect to the plot for the reac-
tant basin. (B-D) The dynamical correlation measure dij(t) for (B) the donor and
acceptor atom pair, (C) the substrate-based C7 and acceptor atom pair, and (D)
the cofactor-based CN3 and donor atom pair. Results for additional atom pairs
are presented in Figure A.8. (E) (Upper triangle) The integrated dynamical cor-
relation measure dij , indexed as in (A). Significant dynamical correlations appear
primarily in the substrate and cofactor regions, which are enlarged in the lower
triangle.

is obtained from an e↵ective Hamiltonian matrix, with diagonal elements (Vr(x)

and Vp(x)) corresponding to the potential energy for the reactant and product

bonding connectivities and with the constant o↵-diagonal matrix element fit to

the experimental rate [23, 11]. The vector x includes the position of the quan-

tized hydride and all classical nuclei in the system. The thermal reaction rate

is calculated from the product of the Boltzmann-weighted activation FE and the

reaction transmission coe�cient [22], both of which are calculated in terms of the

dividing surface �(x) = �4.8 kcal/mol where �(x) = Vr(x)� Vp(x). The FE sur-
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face F (�) is obtained using over 120 ns of RPMD sampling (Figure 1.1B), and

the transmission coe�cient is obtained from over 5000 RPMD trajectories that

are released from the Boltzmann distribution constrained to the dividing surface

(Figure 1.1C). In contrast to mixed quantum-classical and transition state theory

methods, RPMD yields reaction rates and mechanisms that are formally indepen-

dent of the choice of dividing surface or any other reaction coordinate assumption

[22]. Furthermore, the RPMD method enables generation of the ensemble of reac-

tive, quantized molecular dynamics trajectories, which is essential for the following

analysis of dynamical correlations. Calculation details, including a description of

the rare-event sampling methodology used to generate the unbiased ensemble of

reactive trajectories [24, 25], are provided in below.

1.2 Results and Discussion

The time-dependence of the transmission coe�cient in Figure 1.1C confirms that

reactive trajectories commit to the reactant or product basins within 25 fs. The

near-unity value of this transmission coe�cient at long times indicates that re-

crossing of the dividing surface in reactive trajectories is a modest e↵ect, although

it is fully accounted for in this study, and it confirms that the collective variable

�(x) provides a good measure of progress along the intrinsic reaction. We find that

quantization of the hydride lowers the FE barrier by approximately 3.5 kcal/mol

(Figure A.5), in agreement with earlier work [26, 27].

Statistical correlations among the protein and enzyme active site coordinates

are shown in Figure 1.2A. The normalized covariance among atom position fluc-

tuations, cij = Cij/(CiiCjj)1/2 such that

Cij = h(xi � hxii) · (xj � hxji)i , (1.1)

is plotted for the Boltzmann distribution in the reactant, dividing surface, and

product regions. The figure shows correlations among the protein ↵-carbons and

the heavy atoms of the substrate and cofactor; the corresponding all-atom corre-
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lation plots are provided in Figure A.6. As has been previously emphasized [11],

structural fluctuations in the active site and distal protein residues are richly cor-

related within each region, which contributes to non-additive e↵ects in the kinetics

of DHFR mutants [28, 14]. Furthermore, the network of correlations varies among

the three ensembles, indicating that fluctuations in distal protein residues respond

to the adiabatic progress of the hydride from reactant to product. However, these

time-averaged quantities do not address the role of dynamical correlations between

the transferring hydride and its environment, which depend on the hierarchy of

timescales for motion in the system.

To characterize dynamical correlations in the intrinsic reaction, we introduce a

measure of velocity cross-correlations in the reactive trajectories,

dij(t) = Dij(t)/(Dii(t)Djj(t))1/2 such that

Dij (t) = hvi · vjit . (1.2)

Here, h...it denotes an average over the non-equilibrium ensemble of phase-space

points that lie on reactive trajectories which crossed the dividing surface some

time t earlier and subsequently terminate in the product basin. This quantity,

which vanishes for the equilibrium ensemble, reports on the degree to which atoms

move in concert during the intrinsic reaction step. Figure 1.2B-D show dij(t) for

several atomic pairs in the active site. Negative dynamical correlations are seen

between the donor and acceptor C atoms (Figure 1.2B), which move in opposite

directions (first approaching each other, then moving apart) during the hydride

transfer. Similarly, positive correlations are seen between atom pairs on the cofac-

tor (Figure 1.2C) and on the substrate (Figure 1.2D) which move in concert as the

hydride is transferred. In each case, the primary features of the correlation decay

within ⌧ = 100 fs.

Figure 1.2E summarizes the extent of dynamical correlations throughout the

enzyme system in terms of dij =
R ⌧
�⌧ dij(t)dt. Only atoms in the substrate and co-

factor regions (Figure 1.2E, lower triangle) and a small number of protein atoms in
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Figure 1.3: The dynamical correlation measure f ⇠
i (t), plotted for (A) the donor

atom, (B) the acceptor atom, and (C) the side-chain O atom in the Y100 residue of
the active site. (D) The size and color of atoms in the active site region are scaled
according to the integrated dynamical correlation measure, fi. (E) (main panel)
The integrated dynamical correlation measure, fi, as a function of the distance of
atom i from the midpoint of the donor and acceptor atoms. (inset) The statistical
correlation measure, c̄i, is similarly presented. Atoms corresponding to the protein
side chains, the protein backbone, and the substrate/cofactor regions are indicated
by color. Values presented in part A are in units of nm/ps, and values in parts D
and E are normalized to a maximum of unity. The estimated error in part E is
smaller than the dot size.

the active site region exhibit appreciable signal. The same conclusions are reached

upon integrating the absolute value of the dij(t) (Figure A.7), emphasizing that

this lack of signal in the protein residues is not simply due to the time integration.

Instead, Figure 1.2E reveals that the dynamical correlations between distal protein

residues and the intrinsic reaction do not exist on any timescale. We also provide

measures for dynamical correlations among perpendicular motions (Figure A.9)
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and for dynamical correlations that are non-local in time (Figure A.8), but the fol-

lowing conclusion is unchanged. The extensive network of statistical correlations

(Figure 1.2A) is neither indicative of, nor accompanied by, an extensive network

of dynamical correlations during the intrinsic reaction (Figure 1.2E).

A combined measure of the dynamical correlation between a given atom and

the intrinsic reaction event can be obtained from the non-equilibrium ensemble

average of velocities in the reactive trajectories. Specifically, we consider f ⇠
i (t) =D

v⇠i ·��(x)
E

t
, where ⇠ 2 {x, y, z} indicates the component of the velocity, the filter

��(x) =
�
�̄� |�(x)|

�
/�̄ selects configurations in the region of the dividing surface,

and �̄ = 177 kcal/mol is the average magnitude of �(x) in the reactant and product

regions. Each component of fi(t) vanishes trivially at equilibrium. Figure 1.3A-

C presents the measure for various atoms in the active site region. The donor

and acceptor C atoms (Figure 1.3A and B) are both strongly correlated with the

dynamics of the intrinsic reaction, whereas the O atom in the Y100 residue of the

active site (Figure 1.3C) reveals smaller, but non-zero, signatures of dynamical

correlation. Figure 1.3D presents fi =
R ⌧
�⌧ |fi(t)|

2dt for each atom, summarizing

the degree to which all atoms in the active site exhibit dynamical correlations,

and Figure 1.3E compares the correlation lengthscales in the enzyme. The main

panel in Figure 1.3E presents fi as a function of the distance of heavy atoms from

the midpoint of the hydride donor and acceptor, and the inset similarly presents

the distance dependence of the statistical correlation measure c̄i = (ciµ + ci⌫)/2,

where cij is defined previously and where indices µ and ⌫ label the donor and

acceptor carbon atoms, respectively. Whereas the statistical correlations reach the

nanometer lengthscale and involve the protein environment, dynamical correlations

are extremely local in nature and primarily confined to the enzyme substrate and

cofactor.

Figure 1.4 illustrates that dynamical correlations in the intrinsic reaction are

limited by disparities in the relative timescales for enzyme motion. The figure

presents two-dimensional projections of the FE surface, F (�,⇥↵), where ↵ 2 {1, 2},

⇥1(x) is the distance between hydride donor and acceptor atoms, and ⇥2(x) is the
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Figure 1.4: Minimum free energy pathways (s, white) and the mean pathway of the
reactive trajectories (�, magenta) overlay two-dimensional projections of the free
energy landscape, F (�,⇥↵). (A) F (�,⇥1), where ⇥1 is the distance between the
hydride donor and acceptor atoms. (B) F (�,⇥2), where ⇥2 is the distance between
side-chain atoms I14 C� and Y100 O in the active site residues. The non-zero slope
in s and � indicates statistical and dynamical correlations, respectively.

separation between active site protein atoms I14 C� and Y100 O (side chain).

Overlaid on the surfaces are the minimum FE pathway between the reactant and

product basins, s, and the time-parameterized pathway followed by the ensemble

of reactive trajectories, � = (h�(x)it , h⇥↵(x)it). Non-zero slope in s indicates

statistical correlation of⇥↵ with �, whereas the same feature in � indicates that the

dynamics of ⇥↵ and � are dynamically correlated. Figure 1.4A confirms that the
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donor-acceptor distance is both statistically and dynamically correlated with the

intrinsic reaction. In contrast, Figure 1.4B reveals significant statistical correlation

between ⇥2 and the intrinsic reaction, but the reactive trajectories traverse the

dividing surface region on a timescale that is too fast to dynamically couple to the

protein coordinate.

1.3 Concluding Remarks

The results presented here complement previous theoretical e↵orts to illuminate

the role of protein motions in enzyme catalysis. For example, Neria and Karplus

[29] used transmission coe�cient calculations and constrained MD trajectories to

determine that the protein environment in triosephosphate isomerase (TIM) is

essentially rigid (i.e., dynamically unresponsive) on the timescale of the intrin-

sic reaction dynamics; this finding is consistent with the lack of long-lengthscale

dynamical correlations found in the current study. Furthermore, Pu et al. [30]

and Cui and Karplus [31] both demonstrated that quasi-classical tunneling co-

e�cients for hydrogen transfer evaluated at instantaneous enzyme configurations

in the transition state region fluctuate significantly with donor-acceptor motions

and other local active-site vibrations, which is likely consistent with the direct

observation of short-lengthscale dynamical correlations reported here. However,

by using quantized MD to sample the ensemble of reactive trajectories in DHFR

catalysis and to perform non-equilibrium ensemble averages that directly probe

dynamical correlation, we provide a framework for strengthening and generalizing

these earlier analyses. In particular, the current approach avoids transition state

theory approximations by providing a rigorous statistical mechanical treatment

of the ensemble of reactive trajectories, it allows for the natural characterization

of lengthscales and timescales over which dynamical correlations persist, and it

seamlessly incorporates dynamical e↵ects due to both nuclear quantization and

trajectory recrossing. We expect that the techniques developed here to prove use-

ful in future studies of dynamics in other enzymes, which will be necessary to
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confirm the generality of the conclusions drawn here.

1.4 Methods

1.4.1 Calculation details

All simulations are performed using a modified version of the Gromacs-4.0.7 molec-

ular dynamics package [32]. Further calculation details regarding the potential

energy surface, the system initialization and equilibration protocol, free-energy

sampling, and dividing surface sampling are provided in Appendix A.

1.4.2 Ring polymer molecular dynamics

The RPMD equations of motion [21] used to simulate the dynamics of DHFR are

q̈j =
1

nmn

⇥
kn(qj+1 + qj�1 � 2qj)�r

qjU(qj ,Q1, . . . ,QN )
⇤
,

j = 1, ..., n (1.3)

Q̈k =� 1

nMk

nX

j=1

r
QkU(qj ,Q1, . . . ,QN ), k = 1, ..., N (1.4)

where U(q,Q1, . . . ,QN ) is the potential energy function for the system, n = 32

is the number of ring polymer beads used to quantize the hydride, qj and mn are

the position and mass of the jth ring polymer bead, and q0 = qn. Similarly, N is

the number of classical nuclei in the system, and Qk and Mk are the position and

mass of the kth classical atom, respectively. The inter-bead force constant is kn =

mHn
2/(�h̄)2, where mH = 1.008 amu is the mass of the hydride and � = (kBT )�1

is the reciprocal temperature; a temperature of T = 300 K is used throughout the

study. For dynamical trajectories, RPMD prescribes that mn = mH/n.

1.4.3 Calculating the statistical correlation functions, cij

In Figure 1.3A, equilibrium ensemble averages are presented for the system in

the reactant region, the dividing surface region, and the product region. These
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ensemble averages are strictly defined using

hAi�⇤ =

Z �⇤+��

�⇤���
d�0P (�0)

Z
dq1 . . .

Z
dqn

Z
dQ1 . . .

Z
dQN

⇥ �(�0 � �(x))A(q
1

, . . . ,q
n

,Q1, . . . ,QN ), (1.5)

where P (�) = exp(��F (�))/
R
d�0exp(��F (�0)), and F (�) is calculated using

umbrella sampling, as described in the SI. For the ensembles in the reactant,

dividing surface, and product regions, we employ �⇤ = -181 kcal/mol, -7 kcal/mol,

and 169 kcal/mol, respectively, and �� = 2.5 kcal/mol.

1.4.4 The transition path ensemble

Reactive trajectories are generated through forward- and backward-integration of

initial configurations drawn from the dividing surface ensemble with initial veloci-

ties drawn from the Maxwell-Boltzmann distribution. Reactive trajectories corre-

spond to those for which forward- and backward-integrated half-trajectories ter-

minate on opposite sides of the dividing surface. From the 10,500 half-trajectories

that are initialized on the dividing surface (i.e., 5,250 possible reactive trajecto-

ries), over 3,000 reactive RPMD trajectories are obtained. For analysis purposes,

the integration of these reactive trajectories was continued for a total length of

one ps in both the forward and backward trajectories.

The reactive trajectories that are initialized from the equilibrium Boltzmann

distribution on the dividing surface must be reweighted to obtain the unbiased

ensemble of reactive trajectories (i.e., the transition path ensemble) [25, 33, 24].

A weighting term is applied to each trajectory ↵, correctly accounting for the

recrossing and for the fact that the trajectories are performed in the microcanonical

ensemble [24],

w↵ =

 
X

intersections i

����̇i

���
�1
!�1

(1.6)

where the sum includes all instances in which trajectory ↵ crosses the dividing

surface, and �̇i is the velocity in the collective variable at crossing event i. We



13

find that the relative statistical weight of all reactive trajectories that recross the

dividing surface is 1.6%, emphasizing that recrossing does not play a large role in

the current study.
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Chapter 2

Quantum Simulation of Temperature

Independent Kinetic Isotope E↵ects in

Enzyme Catalysis

A temperature independent kinetic isotope e↵ect (KIE) of hydrogen transfer is

feature of many wild type enzymes functioning at their optimal conditions on

their natural substrates, yet this phenomenon is not predicted by simple reaction

rate models. Here, we use ring polymer molecular dynamics to demonstrate tem-

perature independent KIEs in the dihydrofolate reductase system and reveal that

compression of the hydride donor and acceptor atoms during the reaction event

leads to transient configurations for hydride transfer that are mass independent.

2.1 Introduction

A broad range of biologically relevant reactions involve the transfer of a hydro-

gen, either as a hydrogen atom, a proton, or a hydride. Studies of the kinetic

isotope e↵ect (KIE)—the decrease in the intrinsic reaction rate constant when a

light isotope is substituted for a heavy one—of such reactions holds much promise

in understanding the catalytic e�ciency of enzymes and how it is influenced by

factors such as quantum mechanical tunneling, protein motion, and mutation. A

growing number of KIE studies reveal a feature of enzyme catalyzed hydrogen
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transfer: wild-type enzymes functioning on their natural substrate in their opti-

mal temperature range exhibit temperature independent KIEs. Examples of such

temperature independence are summarized in Table 2.1. This temperature in-

dependence challenges interpretation of reaction rates based on rate models that

simply include zero point energy and tunneling corrections [1].

Model rate theories that predict temperature independent KIEs have been de-

veloped [2, 3, 4]. The mechanistic interpretation of such temperature independence

is that organization of the enzyme preceeds hydrogen transfer to an extent that

is independent of hydrogen mass. This organization gives rise to an Arrhenius

activation energy that is independent of mass; the magnitude of the KIE is due

to mass dependent di↵erences in tunneling from the ground state. Alternatively,

simulations based on the variational transition state theory (VTST) method [5]

have shown that temperature independent KIEs arise due to a temperature de-

pendent change in the classical dividing surface position. In these simulations, the

Arrhenius activation energy is mass independent due to changes in the quantum

e↵ects of barrier crossing with temperature which cancel most of mass dependent

di↵erence in activation energy due to zero-point energy.

We explore these two mechanisms using ring polymer molecular dynamics

(RPMD) [6] to simulate hydride transfer catalyzed by Escherichia coli dihydrofo-

late reductase. RMPD is a path-integral method that enables inclusion of nuclear

quantization e↵ects, such as the zero-point energy and tunneling, in the dynam-

ics of the transferring hydride and yields reaction rates and mechanisms that are

formally independent of the choice of dividing surface (Figure 2.1) or any other

reaction coordinate assumption . The RPMD method enables generation of the

ensemble of reactive, quantized molecular dynamics trajectories, which is essential

for the following analysis of dynamical correlations. In this current study, RPMD

is used to directly simulate hydride transfer catalyzed by dihydrofolate reductase

over a range of temperatures with the three isotopes of hydrogen. These simula-

tions, which reproduce the weak temperature dependence of experimental kinetic

isotope e↵ects of DHFR catalysis, allow for the analysis of the RPMD reactive
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Enzyme H/D KIE Temperature range (K)

DHFR 3.5 278-318

tDHFR 4 298-338

TSOX 7 278-308

TMADH 7 278-298

MADH 17 278-313

AcCoA-DS 23 278-303

ThyS 7 278-313

SLO 81 283-323

tADH 3.2 303-338

Table 2.1: Enzymes exhibiting temperature independent KIEs on their natural sub-
strate and conditions. DHFR, dihydrofolate reductase [7]; tDHFR, thermophilic
alcohol dehydrogenase [8]; TSOX, sarcosine oxidase [9]; TMADH, trimethylamine
dehydrogenase [10]; MADH, methylamine dehydrogenase [3]; AcCoA-DS, AcCoA
desaturase [11]; ThyS, thymidylate synthase [12, 13]; SLO, soybean lipoxygenase
[14]; tADH, thermophilic alcohol dehydrogenase [15, 16].

trajectories to elucidate the mechanistic origins of temperature independent KIEs.

2.2 Methods

2.2.1 Ring polymer molecular dynamics

The RPMD equations of motion for a system with a quantized hydride of mass m

and N classical particles are [17, 18]

v̇(↵) = !2
n

⇣
q(↵+1) + q(↵�1) � 2q(↵)

⌘
� 1

m
r

q

(↵)Uext

⇣
q(↵),Q1, . . . ,QN

⌘
(2.1)

and

V̇j = � 1

nMj

nX

↵=1

r
QjUext

⇣
q(↵),Q1, . . . ,QN

⌘
, (2.2)

where q(↵) and v(↵) are the position and velocity vectors of the ↵th ring polymer

bead, Qj and Vj are the position and velocity of the jth classical particle with cor-



21

-0.20 -0.15 -0.10 -0.05 0.00
0.1

1

10

-15 -10 -5 0 5 10

ѣ
kTST
kRPMD

Ѥ (kcal/mol) чH (Å)

N�
N�
Ѥ�
 �
��
��
�N
FD
O�P

RO
�

Figure 2.1: RPMD rates are independent of the choice of dividing surface. Here,
the rate of hydride transfer catalyzed by DHFR is calculated using two collective
variable definitions of the dividing surface, � and ⇥H, described in the text, at
three values for each coordinate. The ratio with respect to the dividing surface
� = �2.8 kcal/mol is shown for each term in the RPMD rate—the transmission
coe�cient  (red) and the TST rate (green)–and the RPMD rate (blue). The
independence of the RPMD rate is achieved as the larger TST rate is o↵set by a
higher degree of recrossing.

responding mass Mj , and n is the number of imaginary time ring-polymer beads.

The intra-bead harmonic frequency is !n = n
�h̄ where � is the reciprocal temper-

ature. Uext

�
q(↵),Q1, . . . ,QN

�
is the potential energy function of the system, and

q(0) = q(n). Equations 2.1 and 2.2 generate classical dynamics that we employ as

a model for the real-time dynamics of the system [19]. In the limit of large n, these

time-reversible dynamics preserve the exact Boltzmann distribution [20, 21, 22].

As in classical formulations of the thermal rate constant [23, 24, 25], the RPMD

rate equation can be written as [26, 27]

kRPMD = lim
t!1

 (t) kTST. (2.3)

Here, kTST is the transition state theory (TST) approximation for the rate for

a diving surface � (x) = �‡, where vector x is the position the system including

the positions of beads of the quantized hydride and the positions of all classical
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nuclei. The prefactor  is the transmission coe�cient that accounts for recrossing of

trajectories through the dividing surface. As is the case for both exact classical and

exact quantum dynamics, the RPMDmethod yields reaction rates and mechanisms

that are independent of the choice of the dividing surface [26, 27, 28].

The TST rate in Equation 2.3 is calculated using [29, 30, 31, 32]

kTST = (2⇡�)�1/2 hg�i‡
e���F(�‡)

R �‡

�1d�e���F (�)
. (2.4)

Here, F (�) is the free energy (FE) along � such that

e���F (�0) =
h� (� (x)� �0)i
h� (� (x)� �r)i

, (2.5)

where �r is a reference point in the reactant region, and [29, 33]

g� (x) =

"
dX

i=1

1

mi

✓
@� (x)

@xi

◆2
#1/2

, (2.6)

where xi 2 {x} indicates either a ring-polymer bead or classical particle degree of

freedom, mi is the corresponding mass, and d is the total number of degrees of

freedom in the system. In Equation 2.5, h· · · i denotes the equilibrium ensemble

average

h· · · i =
R
dx

R
dv e��Hn(x,v) (· · · )R

dx
R
dv e��Hn(x,v)

, (2.7)

and h· · · i‡ in Equation 2.4 denotes the average in the transition-state constrained

ensemble

h· · · i‡ =
R
dx

R
dv e��Hn(x,v) (· · · ) �

�
� (x)� �‡�

R
dx

R
dv e��Hn(x,v)� (� (x)� �‡) .

(2.8)

Here,

Hn (x,v) =
NX

j=1

1

2
MjV

2
j +

nX

↵=1

1

2
mb

⇣
v(↵)

⌘2
+ Un (x) , (2.9)

where mb is the Parrinello-Rahman mass [21], v =
�
v(1), . . . ,v(n),V1, . . . ,VN

 
,
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and

Un (x) =
1

n

nX

↵=1

1

2
m!2

n

⇣
q(↵) � q(↵�1)

⌘2
+

1

n

nX

↵=1

Uext(x
(↵)) (2.10)

is the full potential energy function for the RPMD system where

x(↵) ⌘ (q(↵),Q1, . . . ,QN ) is used to indicate the position of ring polymer bead

↵ and the full set of classical nuclei.

The transmission coe�cient in Equation 2.3 is obtained from the flux-side

correlation function [26, 27],

 (t) =

D
�̇0h

�
� (xt)� �‡�

E

‡D
�̇0h

⇣
�̇0

⌘E

‡

(2.11)

by releasing trajectories from the transition-state constrained ensemble. Here, h

is the Heaviside function, �̇0 is the time derivative of � upon initialization of the

RPMD trajectory from the dividing surface with initial velocities sampled from

the Maxwell-Boltzmann distribution, and xt is the time-evolved position of the

system along the RPMD trajectory.

2.2.2 Calculation details

RPMD simulations of DHFR were performed using a modified version of the

Gromacs-4.5.5 molecular dynamics package [34] at three temperatures spanning

the range of experimental KIEs: 280, 300, and 320K. At each temperature, the

reaction was simulated with the mass of the transferring hydride at each of the

three isotopes of hydrogen.

The full potential energy function for the RPMD system is described using the

empirical valence bond (EVB) method [35, 36],

Uext(x
(↵)) =

1

2

⇣
Vr(x

(↵)) + Vp(x
(↵))

⌘

� 1

2

q�
Vr(x(↵))� Vp(x(↵))

�2
+ 4V 2

12. (2.12)

The terms Vr(x(↵)) and Vp(x(↵)) are the molecular mechanics potential energy
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functions for the system with the hydride covalently bonded to the donor and ac-

ceptor atoms based on previously described [37] modified version of the GROMOS

43A1 united atom forcefield [38], with modifications described in Appendix B. The

constant V12 =13.4 kcal/mol is fit to the Eyring equation for the experimental rate

of the intrinsic reaction [39], and the product state potential Vp(x(j)) includes a

constant shift of �12 = +101.9 kcal/mol to match the experimental driving force

for the intrinsic reaction [39].

System preparation

The system is initialized and equilibrated at each temperature following a previ-

ously described protocol [37]. The system is initialized from the DHFR crystal

structure in the active configuration (PDB code: 1RX2) [40]. Crystallographic

2-mercaptoethanol and manganese ions are removed; crystallographic waters are

not. The amine side chain of Q102 is rotated 180 degrees to correctly coordinate

the adenine moiety of the cofactor [41]. To be consistent with the observed hy-

drogen bonding networks in the crystal structure, histidine residues 45, 124, and

149 are protonated at nitrogen ND1, histidine residues 114 and 141 are protonated

at nitrogen NE2, and both DHFR cysteine residues are in their protonated form

[36]. The enzyme is explicitly solvated using 4,122 SPC/E rigid water molecules

[42] in a truncated octahedral simulation cell with constant volume and periodic

boundary conditions. The periodic image distance for the cell is 57.686 Å. Twelve

Na+ ions are included for charge neutrality. The full system includes N =14,080

classical nuclei.

From the initial geometry of the crystal structure, the system is equilibrated

on the reactant potential energy surface Vr using classical MD. In a series of three

equilibration steps, MD trajectories of length 10 ps in time are performed with

progressively weaker harmonic restraints between the heavy atom positions and

the crystal structure; the restraint force constants for the three equilibration runs

are 100, 50, and 25 kcal mol�1Å�2, respectively, and the runs are performed in the

NVT ensemble using Berendsen thermostat with a coupling constant of 0.01 ps
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[43]. After initial equilibration to the reactants basin, the system is equilibrated

on the full potential energy surface (Equation A.1) for an additional 100 ps of

classical MD. Finally, the ring polymer representation for the quantized hydride

was introduced at the geometry of the relaxed classical system and equilibrated

for an additional 1 ps using RPMD with velocities resampled from the Maxwell-

Boltzmann distribution every 100 fs.

RPMD simulations

In all simulations, the RPMD equations of motion are evolved using the velocity

Verlet algorithm [44]. As in previous RPMD simulations, each timestep involves

separate coordinate updates for forces arising from the external potential and for

exact evolution of the purely harmonic portion of the ring-polymer potentials [6].

The hydride is quantized with n = 32 beads for each of the three masses.

Reaction progress is characterized by the collective variable � � ⌘ � (xc) =

Vr (xc) � Vp (xc), where xc ⌘ (qc,Q1, . . . ,QN ), qc =
Pn

↵=1 q
(↵)/n is the ring

polymer centroid with mass mc = m, and Vr and Vp are defined above.

The RPMD reaction rate is calculated from the product of the TST rate and

the transmission coe�cient (Equation 2.3). The FE profiles that appear in the

TST rate expression (Equation 2.4) are obtained using umbrella sampling along �

and the weighted histogram analysis method (WHAM) [45]. The umbrella sam-

pling method [46] is used to e�ciently sample this collective variable between the

reactant and product basins. Independent RPMD sampling trajectories are per-

formed using biased potentials of the form

Un (x) +
1

2
kl (� (xc)� �l)

2 , l = 1, . . . , 25, (2.13)

where the {kl} and {�l} are listed in Table B.1.

For the RPMD trajectories used to sample the FE profile, to diminish the

separation of timescales for the motion of the ring polymer and the rest of the

system the mass of the ring polymer centroid is m =12 amu, and the masses of the
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harmonic internal modes of the ring polymer are scaled so each mode has a period

of 8 fs. Changing these parameters does not a↵ect the ensemble of configurations

that are sampled in the calculation of the FE profile; it merely allows for the sam-

pling trajectories to be performed with a larger simulation time-step (1.0 fs) than

is used in the dynamical trajectories. Furthermore, unlike the RPMD dynamical

trajectories in which the long-range electrostatic contributions are updated every

time-step, we use twin-ranged cut-o↵s [38] in the FE sampling trajectories such

that non-bonding interactions beyond 9 Å are updated every 5 fs. Sampling trajec-

tories are performed at constant temperature by resampling the particle velocities

from the Maxwell-Boltzmann distribution every 1.3 ps.

For each temperature and mass, the sampling trajectories are initialized in or-

der of increasing �l, as follows. The first sampling trajectory (l = 1) was initialized

from the equilibrated system in the reactant basin. After 25 ps of simulation, the

configuration from this first sampling trajectory was used to initialize the second

sampling trajectory (l = 2). After 25 ps of simulation, the configuration from

the second trajectory was used to initialize the third sampling trajectory (l = 3),

and so on. After initialization, each window was run for 2 ns. The full initial-

ization protocol was repeated five times for each window giving a total of 10 ns

sampled for each value of l. In order to better converge the kTST term, windows

between reactants and products were repeated an additional 5 times, giving a total

of 20 ns sampled for windows of l < 18. The weighted histogram analysis method

(WHAM) [45] is used to calculate the unbiased FE profile F (�) from the set of

sampling trajectories.

Equilibrium averages

Equilibrium ensemble averages are presented for the system in the reactant region,

the dividing surface region, and the product region. These ensemble averages are
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strictly defined using

hAi�⇤ =

Z �⇤+��

�⇤���
d�0P (�0)

Z
dq1 . . .

Z
dqn

Z
dQ1 . . .

Z
dQN

⇥ �(�0 � �(x))A(x)), (2.14)

where P (�) = exp(��F (�))/
R
d�0exp(��F (�0)), and F (�) is calculated using um-

brella sampling, as described above. Similarly, equilibrium ensemble distributions

are presented for each of the three regions. These distributions are defined using

P�⇤(A) =

Z �⇤+��

�⇤���
d�0P (�0)

Z
dq1 . . .

Z
dqn

Z
dQ1 . . .

Z
dQN

⇥ �(�0 � �(x))�(A�A(x))). (2.15)

For the ensembles in the reactant, dividing surface, and product regions, we employ

�⇤ = -141 kcal/mol, -2.5 kcal/mol, and 162 kcal/mol, respectively, and �� = 2.5

kcal/mol.

The dividing surface ensemble

Boltzmann-weighted sampling on the reaction dividing surface is performed with

constrained molecular dynamics using the RATTLE algorithm [47]. The exist-

ing implementation of RATTLE in Gromacs-4.5.5 is modified to constrain both

classical MD and RPMD with respect to the collective variable � (xc). To re-

move the hard-constraint bias from the ensemble of configurations that is sampled

in the constrained dynamics [48, 49], each sampled configuration is weighted by

[H (xc)]�1/2, where

H (xc) = (mc)
�1 |r

q

c� (xc)|2 +
NX

k=1

M�1
k |r

Qk� (xc)|2 . (2.16)

For each temperature and mass, 1008 independent RPMD trajectories are run

with the dividing surface constraint. These constrained trajectories are initialized

from configurations near the dividing surface obtained in the umbrella sampling
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trajectories that are restrained to the dividing surface region using Equation 2.13,

and they are performed at constant temperature by resampling velocities from the

Maxwell-Boltzmann distribution every 1.3 ps. Following an initial equilibration of

10 ps, each of the constrained trajectories is run for 20 ps, and dividing surface

configurations are sampled every 4 ps. As with the umbrella sampling trajectories,

the constrained dynamics are run with a timestep of 1 fs enabled by scaling masses

of the harmonic internal modes of the ring polymer so each mode has a period of

8 fs.

RPMD transition path ensemble

As we have done previously [37, 50], we analyze the transition path ensemble [51]

for the RPMD trajectories in this study. Reactive trajectories are generating by

forward and backward integration of initial configurations drawn from the dividing

surface ensemble with initial velocities drawn from the MB distribution. Reactive

trajectories correspond to those for which the forward and backward integrated

half-trajectories terminate on opposite sides of the diving surface. The reactive

trajectory, being initialized on the dividing surface must be reweighed to obtain

the unbiased transition path ensemble [32, 52]. A weighting term w↵ is applied to

each trajectory, correctly accounting for recording and for the fact that individual

trajectories are performed in the microcanonical ensemble. This term is given by

w↵ =

 
X

i

����̇ (x)
���
�1
!�1

, (2.17)

where the sum includes all instances in which trajectory ↵ crosses the diving

surface, and �̇ (x) is the velocity of the collective variable at recrossing event i.

The reweighhting has a minor e↵ect on the non-equilibrium averages if the reactive

trajectories initialized from the dividing surface exhibit few recrossings, as is the

case here. Non-equilibrium averages over the RPMD transition path ensemble are

calculated by aligning reactive trajectories at time 0, defined as the moment in

time when the trajectories are released from the dividing surface.
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T (K) Mass �‡ (kcal/mol) kTST (s�1)  kRPMD (s�1)

280 H -2.6 1100 ± 100 0.808 ± 0.004 900 ± 100

280 D -2.1 200 ± 20 0.872 ± 0.007 170 ± 20

280 T -2.0 110 ± 10 0.881 ± 0.006 100 ± 10

300 H -2.8 3800 ± 400 0.826 ± 0.008 3100 ± 400

300 D -2.2 750 ± 80 0.874 ± 0.006 660 ± 80

300 T -2.1 360 ± 20 0.884 ± 0.005 320 ± 20

320 H -2.9 5400 ± 100 0.832 ± 0.008 4500 ± 100

320 D -2.2 1200 ± 100 0.877 ± 0.005 1100 ± 100

320 T -2.1 710 ± 80 0.888 ± 0.003 630 ± 80

Table 2.2: Hydride transfer rates and terms for each temperature and mass.

2.3 Results

2.3.1 RPMD rates and KIEs

Figure 2.1 demonstrates the independence of the RPMD rate with regards to

mechanistic choices of reaction coordinate and dividing surface. The rate of hy-

dride transfer was calculated using three values of the energy gap coordinate �

(-13.4 kcal/mol, -2.8 kcal/mol, and 7.6 kcal/mol) and three values of the hydride

coordinate ⇥H (-0.168 Å, -0.100 Å, and -0.043 Å) which describes motion of the

hydride between the donor and acceptor carbons using

⇥H = |QD � qc|� |QA � qc| (2.18)

where QD and QA are the position vectors for the donor and acceptor carbons,

respectively. The transition state theory rate is overestimated by shifting the

dividing surface away from � = -2.8 kcal/mol or by defining the dividing surface

on the more-local hydride coordinate. Figure 2.1 demonstrates that overestimation

is compensated for by the transmission coe�cient providing the dividing surface

independence of the RPMD rate.
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Figure 2.2: Simulated (open circles) and experimental KIEs for the intrinsic reac-
tion. *—Experimental KIEs from [7]

Kinetic isotope e↵ects for the RPMD system are calculated using (L/�)KIE =

kLRPMD/k
�
RPMD where L/� is H/D, H/T or D/T. These KIEs qualitatively repro-

duce the magnitudes and small temperature dependence of experimental KIEs

(Figure 2.2). Here, the dividing surface for each temperature and mass was deter-

mined by the maximum value of � on the FE profile from a harmonic fit in the

transition state region. These values (�‡), as well as the rates (kRPMD and kTST)

and the transmission coe�cient () are presented for each temperature and mass

in Table 2.2. Arrhenius plots for the calculated KIEs are shown with experimental

intrinsic reaction rates [7].

2.3.2 Mass dependence of organization of the enzyme

The minimum distance of approach between the hydride-transfer donor and accep-

tor atoms is used to report on enzyme organization accompanying hydride transfer.
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Figure 2.3: Donor-acceptor distance in the equilibrium ensemble and during the in-
trinsic reaction (A) The equilibrium probability distributions of the donor-acceptor
distance is shown in the reactant (light grey), the product (dark grey), and the
transition state (blue) regions for the hydrogen reaction at 300 K. The equilibrium
probability distributions in the transition state region are shown for deuterium
(red) and tritium (green). (B) The time-dependent distribution of donor-acceptor
distances in the non-equilibrium ensemble of reactive trajectories for each mass at
300 K is shown for hydrogen (blue), deuterium (red) and tritium (blue). The me-
dian value of these distributions is in bold, and contours representing 68% and 95%
are shown. (C-E) The time-dependent distribution of donor-acceptor distances in
the non-equilibrium ensemble of reactive trajectories is shown from -0.1 to 0.1 ps
(vertical dashed lines in B) for each of the three temperatures 280 K (dashed), 300
K (solid), and 320K (dotted) for each of the masses, hydrogen (C), deuterium (D),
and tritium (E).

Donor-acceptor distance sampling is considered in the equilibrium ensemble and

the ensemble of reactive trajectories. Figure 2.3A shows the Boltzmann weighted

equilibrium distribution of donor-acceptor distances in the reactant, product and

transition state ensembles. The reaction proceeds via compression from 3.5 Å to

2.9 Å in the donor-acceptor distance coordinate. The distribution in the tran-

sition state is remarkably independent of hydride mass. The nature of how this
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compression is sampled is explored by looking at the distribution of donor acceptor

distances in the ensemble of reactive trajectories. The narrow distribution at the

transition state quickly relaxes to distributions consistent with the reactant and

product basins within 150 fs. Similar to the equilibrium distributions, the distribu-

tion in the ensemble of reactive trajectories is mass independent and temperature

independent (2.3C-E).

2.3.3 Temperature dependence of classical barrier position

To compare to previous VTST studies [5], The temperature dependent shift in

classical barrier observed in previous VTSTS studies was estimated by considering

the temperature dependence of classical barrier position on the same coordinate,

⇥H (Equation 2.18) was estimated by considering the free energy profile for tritium

transfer. Figure 2.4 shows a shift of 0.013 ± 0.002 Å on ⇥H towards products for

the system at 320 K compared to 280 K.
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Figure 2.4: The temperature dependent shift in classical reaction barrier position
on the hydride coordinate ⇥H is estimated by considering the FE profile on ⇥H

for tritium transfer. At 320 K, the FE barrier is shifted towards products in
comparison to 280 K (inset). Barrier position (arrows) is determined using a
harmonic fit to the barrier region; errors are estimated by fitting five data blocks.
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2.3.4 Dynamical correlations

Dynamical correlations in the intrinsic reaction are characterized following pre-

viously developed measures of dynamical correlation [37]. A measure of velocity

cross-correlations in the reactive trajectories is introduced,

dij(t) = Dij(t)/(hDiii hDjji)1/2 such that

Dij (t) = hvi · vjit (2.19)

and

hDiii = hvi · vii . (2.20)
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Figure 2.5: Dynamical correlations among enzyme motions during the intrinsic
reaction involving hydrogen at 300K. (A) (Upper triangle) The integrated dynam-
ical correlation measure dij . Protein residues are indexed according to PDB 1RX2;
substrate and cofactor regions are indicated by the hydride acceptor A and donor
D atoms, respectively. Significant dynamical correlations appear primarily in the
substrate and cofactor regions, which are enlarged in the lower triangle. (D) The
color of atoms in the active site region are scaled according to the diagonal of the
integrated dynamical correlation measure, dii. (C) The diagonal of the integrated
dynamical correlation measure, dii, as a function of the distance of atom i from the
midpoint of the donor and acceptor atoms. Atoms corresponding to the protein
side chains, the protein backbone, and the substrate/cofactor regions are indicated
by color.
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Here, h...it denotes an average over the non-equilibrium ensemble of phase-space

points that lie on reactive trajectories which crossed the dividing surface some time

t earlier and subsequently terminate in the product basin, and h...i denotes the

equilibrium average. dij(t), which vanishes for the equilibrium ensemble, reports

on the degree to which atoms move in concert during the intrinsic reaction step.

Figure 2.5 summarizes the extent of dynamical correlations throughout the

enzyme system in terms of dij =
R ⌧
�⌧ dij(t)dt. Negative dynamical correlations are

seen between the donor and acceptor carbon atoms (Figure 2.5A), which move in

opposite directions (first approaching each other, then moving apart) during the

hydride transfer. Similarly, positive correlations are seen between atom pairs on the

cofactor and on the substrate which move in concert as the hydride is transferred.

Figure 2.5A is reproduced for all masses and temperatures in Figure B.1 Diagonal

terms dii report on the degree to which the velocity of an individual atom deviates

from equilibrium during the transient reaction event. Fig 2.5B shows the active

site color coded by the value of the diagonal term dii for each atom. Figure 2.5C

correlates the diagonal terms with distance from the active site. Previous results

are reconfirmed: Atom pairs that that are dynamically correlated and atoms that

undergo significant deviations from their equilibrium behavior are highly localized

to the active site [37].

Transition state tunneling

Tunneling through the transition state along the donor-acceptor coordinate is char-

acterized using the connection between RPMD and semiclassical instanton theory

[53, 54] and recognizing that an extended configuration of the ring polymer at the

dividing surface indicates that the system is in a tunneling regime. The radius of

gyration

R2
g =

1

n

nX

↵=1

���q(↵) � qc
���
2

(2.21)
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is used to characterize this extension. We define a measure of extension along the

donor-acceptor coordinate as

�
RDA

g

�2
=

1

n

nX

↵=1

⇣
q
(↵)
DA � qcDA

⌘2
, (2.22)

where q
(↵)
DA is the scalar projection of the ↵th bead onto the vector connecting the

donor and acceptor carbons. To characterize extension or compression transverse

to the donor-acceptor coordinate, we define

⇣
R?

g

⌘2
=

R2
g �

�
RDA

g

�2

2
. (2.23)

We consider

rDA
g (t) =

3
D�

RDA
g

�2E

t⌦
R2

g

↵
�R

(2.24)
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Figure 2.6: Nuclear quantum e↵ects at the transition state for each of the three
masses at 300 K are characterized by considering transition state tunneling along
donor-acceptor bond and constriction in transverse coordinates using the radius
of gyration based measures rDA

g and r?g . (A) The time evolution of rDA
g and r?g

in the ensemble of reactive trajectories. (B-D) The distribution of rDA
g and r?g in

the ensemble of reactive trajectories at t=0 for hydrogen (A), deuterium (B), and
tritium (C).
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and

r?g (t) =
3
D�

R?
g

�2E

t⌦
R2

g

↵
�R

(2.25)

to characterize deviations from the equilibrium ensemble of these values in the

ensemble of reactive trajectories. Here, �R is the average over the reactants basin.

Fig 2.6A-D shows significant extension of the ring polymer along the donor-

acceptor coordinate during the intrinsic reaction event and quick collapse away

from the barrier (Fig 2.6A). These deviations increase with decreasing mass. There

is no extension or compression in coordinates transverse to the donor-acceptor

coordinate, suggesting that constriction of the hydrogen in these coordinates is

unlikely to play a role in determining the KIE.

2.4 Conclusion

Quantized molecular dynamics simulations qualitatively reproduce the experimen-

tally observed small temperature dependence of the KIE of hydride transfer cat-

alyzed by dihydrofolate reductase (Figure 2.2). These simulations reveal that or-

ganization of the enzyme prior to hydride transfer gives rise to compressed donor-

acceptor distances that are independent of mass (Figure 2.3), and that this com-

pression gates tunneling in hydride transfer (Figure 2.6). These results confirm

the mechanism predicted by model rate equations [2, 3, 4]. These simulations also

reveal a temperature dependent shift in the classical barrier to hydride transfer

(Figure 2.4) confirming the mechanism of previous simulation studies based on

the VTST method [5]. Taken together, these results reconcile these two mecha-

nisms by revealing that they are not necessarily mutually exclusive. This study

demonstrates the strength of RPMD as a quantum simulation method that en-

ables the calculation of reaction rates without prior assumptions of the underlying

mechanism.
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Chapter 3

Promoting Modes in Lactate Dehydrogenase

3.1 Introduction

Lactate dehydrogenase (LDH) catalyzes the reversible transfer of a hydride and

proton to pyruvate to produce lactate. This reaction controls levels of cellular

pyruvate when oxygen is in limited supply. Isozymes of LDH exhibit di↵erent

kinetic parameters that fine-tune the regulation of cellular pyruvate to meet the

particular metabolic needs of a cell. Understanding the mechanistic origin of the

di↵erences in kinetic properties between LDH isozymes motivated one of the first

applications of transition path sampling (TPS) in enzyme catalysis [1, 2, 3, 4].

Intriguingly, the ensemble of reactive trajectories determined in these studies re-

vealed spatially extensive, sub-picosecond motion in the protein that couples to

active site compression during the reaction event (Figure 3.1).

We will explore the nature of this compressive mode in the context of dynamics

and dissipation during the transient reaction event [5] by determining the degree

to which this mode appears in dynamical and statistical correlations along the

reaction path. Here, we use RPMD free energy sampling trajectories to explore

the degree to which the potential energy surface used to describe the active site

determines the reaction mechanism and energetics [6].
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Figure 3.1: The crystal structure of human heart lactate dehydrogenase isozyme
which catalyzes the conversion of pyruvate to lactate by transferring a proton
from hisidine 193 and a hydride from NAPH to pyruvate (inset). The reported
compressive mode [3] includes residues under the magenta arrow. (Protein Data
Bank structure 1I0Z [7]).

3.2 Methods

3.2.1 Ring polymer molecular dynamics

The RPMD equations of motion for the LDH holoenzyme with a quantized proton

and a hydride of masses m and with N classical particles are [8, 9]
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where q
(↵)
P , v(↵)

P , q(↵)
H and v

(↵)
H are the position and velocity vectors of the ↵th

proton (P) and hydride (H) ring polymer bead, Qj and Vj are the position and
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velocity of the jth classical particle with corresponding mass Mj , and n is the num-

ber of imaginary time ring-polymer beads. The intra-bead harmonic frequency is

!n = n
�h̄ where � is the reciprocal temperature. Uext

⇣
q
(↵)
P ,q

(↵)
H ,Q1, . . . ,QN

⌘
is

the potential energy function of the system, q(0)
P = q

(n)
P , and q

(0)
H = q

(n)
H . Equa-

tions 3.1, 3.2 and 3.3 generate classical dynamics that we employ as a model for

the real-time dynamics of the system [10]. In the limit of large n, these dynamics

preserve the exact Boltzmann distribution [11, 12, 13].

3.2.2 Calculation details

Quantum mechanical/classical mechanics potential energy function

A quantum mechanical/classical mechanical (QM/MM) potential energy func-

tion [14] is used to describe Uext appearing in Equations 3.1, 3.2 and 3.3. The

QM/MM potential is obtained by dividing the system into two regions: A quantum

mechanical (QM) subregion whose potential is calculated using a QM Hamiltonian,

and a molecular mechanical (MM) region system comprised of the remaining atoms

whose potential is calculated using a MM force field. Interactions across the two

regions are treated using the electrostatic embedding method [14] with link-atom

hydrogens capping the covalent bonds that cross the QM/MM boundary [15]. In

the LDH system, the QM region (Figure 3.2) is composed of 39 atoms in the active

site including the nicotinamide ring of NADH, the pyruvate molecule, the imia-

zole ring and �-carbon of histidine-193, and two link-atom hydrogens attached to

the N1-nitrogen in the nicotinamide ring and the �-carbon of histidine 193. The

CHARMM27 MM force field [16] with CMAP dihedral cross-term corrections [17]

is used for the MM region. Two semi-empirical QM methods are used for the

QM region: The AM1 Hamiltonian [18] and a semi-empirical method based on

the AM1 Hamiltonian reparameterized to reproduce higher level electronic struc-

ture energies for the QM region in the LDH system. This reparameterization is

described below.
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Figure 3.2: The QM region of the LDH system is made up of 39 atoms contained
in the dashed line. Active site residues which stabilize the pyruvate and histidine
groups are shown.

System preparation

The system is initialized from the crystal structure of human heart L-LDHmonomer

complexed with NADH and oxamate [7] (Protein Data Bank structure 1I0Z). Crys-

talographic waters are kept in the structure, and the active-site bound oxamate

molecule is made a pyruvate molecule by changing the amino group to a methyl

group. Following previous studies [2], the dimer-binding loop (residues 1-19) is

omitted to reduce the simulation cell size. Based on observed hydrogen bond-

ing networks in the crystal structure, histidine residue 156 is protonated at the

ND1-nitrogen, histidine residues 67, 181, 186, 231, and 271 are protonated at the

NE2-nitrogen, and active-site histidine residue 193 is protonated at both ND1-

and NE2-nitrogens. The enzyme is explicitly solvated using 16,931 TIP3P wa-

ter molecules [19] with Lennard-Jones parameters on water hydrogens following

CHARMM convention [16] in a truncated octahedral simulation cell with constant

volume and periodic boundary conditions. The periodic image distance for the cell

is 90Å. Six Na+ ions are included for charge neutrality. The full system includes

55,766 classical nuclei.

From the initial geometry of the solvated crystal structure, the system is equili-

brated on an MM potential energy surface with the QM region frozen. Non-bonded
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interactions between the MM region and the frozen QM region in this equilibration

potential energy surface are determined by assigning charges and Lennard-Jones

terms to the atoms in the QM region from analogous atoms in the CHARMM27

force field. In a series of three equilibration steps, MD trajectories of length 10 ps

in time are performed with progressively weaker harmonic restraints between the

heavy atom positions and the crystal structure; the restraint force constants for

the three equilibration runs are 100, 50, and 25 kcal mol�1 Å�2, respectively, and

the runs are performed in the NVT ensemble using a Berendsen thermostat with

coupling constant of 0.01 ps [20]. After initial equilibration with the QM region

frozen, the system is equilibrated on the full QM/MM potential energy surface

using the AM1 Hamiltonian for the QM region for an additional 100 ps of classical

MD. Finally, the ring polymer representation of the quantized proton and hydride

is introduced and equilibrated for an additional 1 ps using RPMD velocities RPMD

with velocities resampled from the Maxwell-Boltzmann distribution every 0.1 ps.

RPMD simulations

The RPMD equations of motion are evolved using the velocity Verlet algorithm [21].

As in previous RPMD simulations, each timestep involves separate coordinate up-

dates for forces arising from the external potential and for exact evolution of the

purely harmonic portion of the ring-polymer potentials [22]. The proton and hy-

dride are quantized with n = 32 beads.

Proton and hydride transfer are characterized by the collective variables ⇥P

and ⇥H, respectively, which are defined as

⇥P = |QDP
� qc

P|� |QAP
� qc

P| (3.4)

and

⇥H = |QDH
� qc

H|� |QAH
� qc

H| , (3.5)

where QDP
and QAP

are the position vectors of the proton donor and acceptor

atoms, respectively, and qc
P =

Pn
↵=1 q

(↵)
P /n is the centroid of the proton ring
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polymer, and QDH
, QAH

, and qc
H are similarly defined for the hydride.

Two-dimensional free energy profiles on⇥P and⇥H are obtained using umbrella

sampling [23] and the weighted histogram analysis method (WHAM) [24]. The

umbrella-sampling biasing potentials have the form

1

2
k (⇥P (xc)�⇥lP)

2 +
1

2
k (⇥H (xc)�⇥lH)

2 , lP = 1, . . . , 14; lH = 1, . . . , 14,

(3.6)

where the force constant k has a value of 180 kcal mol�1Å�2, and the ⇥lP and ⇥lH

are both evenly spaced from -1.3 to 1.3 Å.

For the RPMD trajectories used to sample the FE profile, to diminish the sep-

aration of timescales for the motion of the ring polymer and the rest of the system

the mass of the ring polymer centroid is m =12 amu, and the masses of the har-

monic internal modes of the ring polymer are scaled so each mode has a period of 8

fs. Changing these parameters does not a↵ect the ensemble of configurations that

are sampled in the calculation of the FE profile; it merely allows for the sampling

trajectories to be performed with a larger simulation time-step (0.001 ps) than

would be possible using physical masses. Furthermore, the long-range electro-

static contributions are updated every time-step, and we use twin-ranged cut-o↵s

[25] in the FE sampling trajectories such that non-bonding interactions beyond

10 Å are updated every 5 fs. Sampling trajectories are performed at constant

temperature by resampling the particle velocities from the Maxwell-Boltzmann

distribution every 1.3 ps.

Umbrella sampling trajectories were initialized from the reactants in order of

increasing lP and lH as follows. The first sampling trajectory (lP = 1, lH = 1)

was initialized from the RPMD equilibrated system in the reactant basin. After

5 ps of simulation, the configuration from this first sampling trajectory was used

to initialize the next set of sampling trajectories (lP = 1, lH = 2), (lP = 2, lH =

1), and (lP = 2, lH = 2). After 5 ps of simulation, the configurations from this

set were used to initialize the third set of sampling trajectories and so on. After

initialization, each window was run for 500 ps for a total of 95 ns simulation time.
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WHAM was used to calculate the unbiased 2D FE surface from this set of sampling

trajectories.

Specific reaction parameter semi-empirical Hamiltonian

A specific reaction parameter (SRP) Hamiltonian was developed. Following the

SRP approach [26], the QM region is treated by a semi-empirical model that is

specifically parameterized to reproduce DFT or ab initio energies. Specifically, the

parameter set of the AM1 Hamiltonian is optimized such that the resultant semi-

empirical QM/MM potential reproduces the QM/MM potential with the energy

of the QM region calculated using second order Møller-Plesset perturbation theory

(MP2) [27] using the 6-31G** basis set [28]. The choice of this higher order method

and basis set is based on previously reported results [6].

MP2 QM/MM calculations were done using the QM/MM implementation in

Gromacs-4.5.5 [29] interfaced with the ORCA 2.9 electronic structure package [30].

Semi-empiricla QM/MM calculations were done using the QM/MM implementa-

tion in Gromacs-4.5.5 [29] interfaced with the MOPAC semi-empirical quantum

chemistry package [31]

MP2 calculations were done on a set of configurations of the LDH system

generated as follows: An initial configuration was selected from configurations

generated using FE sampling described above. From this initial configuration a

set of minimized configurations was generated by freezing atoms further than 10

Å away from the QM region, and constraining ⇥P and ⇥H to a set of specific

values. Minimization was done on the AM1 QM/MM potential energy surface

using steepest descent. The constrained values of ⇥P and ⇥H were selected to

grid the configuration space spanned by ⇥P and ⇥H. Specifically, these values

were evenly spaced by 0.3 Å from -1.5 to 1.5 Å with additional grid points at

±1.8 Å with the other coordinate spanning -0.9 to 0.9 Å. The largest discrepancy

between the AM1 and PM2 energies for the QM subsystem is observed in the box

spanned by -0.5 to 0.5 Å in each coordinate [6], so 0.1 Å grid was used in this box.

This method gives a total of 261 grid points for each initial configuration selected
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from FE sampling. Seven initial configurations were used to give a total of 1827

configurations parameter optimization.

In order to better capture the specific interactions of bond making and breaking

that are required for the reaction, the AM1 parameter set was expanded. Four

new parameter sets were added such that the AM1 parameters for each donor

and acceptor atom were uniquely optimized. The expanded AM1 parameter set

includes 164 free parameters. A sequential constrained optimization scheme was

performed following a previously described SRP protocol [32]. (1) The one-center

energies (Uss and Upp) and resonance integrals (�s and �p) were optimized. (2)

Next, the ↵ parameters in the core-repulsion function were added, followed by (3)

the orbital exponents (⇣s and ⇣p), then (4) the one-center two-electron repulsion

integrals (Gss, Gsp, Gpp, Gpp0 and Hsp), and finally the full set of parameters

including the Gaussian core repulsion function parameters L, M , and K. To avoid

large changes in parameter values during optimization, constraints were put on the

parameters as follows: For atoms H, C, N and O, all parameters were constrained

to be within 15% the of the original AM1 value. For the additional donor and

acceptor atom parameters, all parameters except L, M , and K were constrained

to be within 20% of the original, and L, M , and K were allowed to vary up to

25%. The constrained optimization was done using the non-linear least squares

solver included in the Intel MKL library.

3.3 Results and Discussion

The two dimensional FE surface on ⇥P and ⇥H calculated using the AM1 semi-

empirical QM/MM potential energy surface surface shows two reaction channels–

the H+/H� channel with H+-transfer followed by H�-transfer and the H�/H+

channel with H�-transfer followed by H+-transfer. The H+/H� channel slightly

favored, but both channels give a barrier over 50 kcal/mol. The reaction on this

potential is endergonic by 30 kcal/mol. These values are inconsistent with exper-

imental measurements with a barrier of ⇠14 kcal/mol [33, 34, 35] and near-zero
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Figure 3.3: The FE surface on ⇥P and ⇥H calculated using the AM1 potential.

driving force.

The semi-empirical AM1-SRP potential reproduces MP2 energies with a stan-

dard deviation of 1 kcal/mol in contrast to the 12 kcal/mol of the AM1 poten-

tial 3.4. The two dimensional FE surface on ⇥P and ⇥H calculated using the

AM1-SRP semi-empirical QM/MM potential energy surface (Figure 3.5). This

FE surface shows a single concerted reaction channel, reproducing the mechanistic

dependence on QM potential previously reported using AM1 and MP2 potential

energy surfaces [6].

One dimensional free energy sampling was done along this channel on the

coordinate ⇥HP = 1
2 (⇥P +⇥H). 1D sampling trajectories were initialized from

configurations from the 2D FE sampling trajectories along the line ⇥P = ⇥H.

Twenty-five umbrella sampling trajectories with 1D biasing potentials Table C.2

were run for 1 ns each, and WHAM was used to calculate the unbiased 1D FE

profile (Figure 3.6). The FE barrier on the AM1-SRP potential energy surface is

16 kcal/mole, and the driving force is 1.6 kcal/mol.
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3.4 Conclusion

The semi-empirical AM1-SRP QM/MM potential provides forces and energies that

are consistent with the higher level MP2 QM/MM potential it was optimized to

reproduce yet is fast enough to sample dynamical trajectories. The FE barrier

for the reaction on this potential is 16 kcal/mol which compares favorably with

experimental rates–more favorably than the barrier of 50 kcal/mol calculated using

the AM1 potential, which has been used in previous studies [2, 3, 4]. This study

has provided a potential on which to explore the nature of the correlation between

protein motions and motions in the active site.
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Appendix A

Appendix 1: Supplemental Information for

Chapter 1

A.1 Potential Energy Surface

The potential energy surface for the hydride transfer reaction in DHFR is described

using the EVB method [1, 2],

U(x(j)) =
1

2

⇣
Vr(x

(j)) + Vp(x
(j))

⌘

� 1

2

q�
Vr(x(j))� Vp(x(j))

�2
+ 4V 2

12. (A.1)

As in Chapter 1, the notation x(j) ⌘ (qj ,Q1, . . . ,QN ) is used to indicate the

position of ring polymer bead j and the full set of classical nuclei. The terms

Vr(x(j)) and Vp(x(j)) are the molecular mechanics potential energy functions for

the system with the hydride covalently bonded to the donor and acceptor atoms,

respectively. The constant V12 =30.6 kcal/mol is fit to the experimental rate

for the intrinsic reaction [3], and the product state potential Vp(x(j)) includes a

constant shift of �12 = +101.9 kcal/mol to match the experimental driving force

for the intrinsic reaction [3]. The di↵erence in the value for �12 used here versus

in Ref. [1] is due to di↵erent treatments of the atom-exclusions in the calculation

of long-range electrostatic contributions.

Calculation of Vr(x(j)) and Vp(x(j)) is performed using a modified version of
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the GROMOS 43A1 united atom forcefield [4]. These modifications, which again

follow previous work [1, 5], are described in Figure A.2. A cuto↵ distance of 15 Å

is applied to short-ranged non-bonding interactions, and electrostatic interactions

beyond 9 Å are calculated using the particle mesh Ewald technique [6]. The bond-

lengths for all non-transferring hydrogen atoms in the system are constrained using

the SHAKE algorithm [7].

To avoid sampling configurations of the enzyme that are not relevant to the

intrinsic reaction, weak harmonic restraints were introduced between the simulated

enzyme and the reference crystal structure [8]. To avoid substrate dissociation

during the long equilibrium sampling trajectories, weak harmonic restraints (k =

0.15 kcal mol�1Å�2) are applied to the heavy atoms in the glutamate moiety of

the substrate and to the ↵-carbons of the neighboring ↵-helix segment composed

of residues 26 to 35; to prevent large-scale conformation rearrangements in DHFR

[9], weak harmonic restraints (k = 0.001 kcal mol�1Å�2) are applied to all other

heavy atoms in the enzyme. Figure A.3 demonstrates that these restraints do

not measurably a↵ect the reactive trajectories used in our analysis of dynamical

correlations.

A.2 Calculation Details

We initialize and equilibrate the system using the protocol described in Ref. [1].

The system is initialized from the DHFR crystal structure in the active configura-

tion (PDB code: 1RX2) [8]. Crystallographic 2-mercaptoethanol and manganese

ions are removed; crystallographic waters are not. The amine side chain of Q102

is rotated 180 degrees to correctly coordinate the adenine moiety of the cofac-

tor [10]. To be consistent with the observed hydrogen bonding networks in the

crystal structure, histidine residues 45, 124, and 149 are protonated at nitrogen

ND1, histidine residues 114 and 141 are protonated at nitrogen NE2, and both

DHFR cysteine residues are in their protonated form [1]. The enzyme is explicitly

solvated using 4,122 SPC/E rigid water molecules [11] in a truncated octahedral
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simulation cell with constant volume and periodic boundary conditions. The pe-

riodic image distance for the cell is 57.686 Å. Twelve Na+ ions are included for

charge neutrality. The full system includes N =14,080 classical nuclei.

All RPMD and classical MD trajectories are numerically integrated using the

leap-frog integrator implemented in Gromacs-4.0.7. The simultaneous positions

and velocities for each integration time-step in the trajectories are stored for anal-

ysis. Unless otherwise stated, the RPMD equations of motion are integrated using

a time-step of 0.025 fs and classical MD trajectories are integrated using a time-

step of 1 fs. The classical MD trajectories are used only for the initial equilibration

of the system and for additional results presented here in the SI; all data presented

in Chapter 1 are obtained using the quantized RPMD trajectories. Throughout

the text, standard error estimates are calculated from five block-averages of the

data.

From the initial geometry of the crystal structure, the system is equilibrated

on the reactant potential energy surface Vr using classical MD. In a series of three

equilibration steps, MD trajectories of length 10 ps in time are performed with

progressively weaker harmonic restraints between the heavy atom positions and

the crystal structure; the restraint force constants for the three equilibration runs

are 100, 50, and 25 kcal mol�1Å�2, respectively, and the runs are performed in the

NVT ensemble using Berendsen thermostat with a coupling constant of 0.01 ps

[12]. After initial equilibration to the reactants basin, the system is equilibrated

on the full potential energy surface (Equation A.1) for an additional 100 ps of

classical MD. Finally, the ring polymer representation for the quantized hydride

was introduced at the geometry of the relaxed classical system and equilibrated

for an additional 1 ps using RPMD with the Berendsen thermostat.

A.3 Free Energy Sampling

The free energy (FE) profile in Figure 1.1 is calculated as a function of the col-

lective variable � (xc) ⌘ Vr (xc) � Vp (xc), where xc ⌘ (qc,Q1, . . . ,QN ), and



63

qc =
Pn

j=1 qj/n is the ring polymer centroid of mass mc = nmn. The umbrella

sampling method [13] is used to e�ciently sample this collective variable between

the reactant and product basins. Independent RPMD sampling trajectories are

performed using biasing potentials of the form

nX

j=1

h
VEVB(x

(j))
i
+

1

2
kl (� (xc)� �l)

2 , l = 1, . . . , 20, (A.2)

where the {kl} and {�l} are listed in Table A.1.

For the RPMD trajectories used to sample the FE profile, a ring polymer bead

mass of mn =12/n amu was used to diminish the separation of timescales for the

motion of the ring polymer and the rest of the system. Changing this parameter

does not a↵ect the ensemble of configurations that are sampled in the calculation of

the FE profile; it merely allows for the sampling trajectories to be performed with

a larger simulation time-step (0.1 fs) than is used in the dynamical trajectories.

Furthermore, unlike the RPMD dynamical trajectories in which the long-range

electrostatic contributions are updated every time-step, we use twin-ranged cut-

o↵s [4] in the FE sampling trajectories such that non-bonding interactions beyond

9 Å are only updated every 5 fs. Sampling trajectories are performed at constant

temperature using the velocity rescaling thermostat [14] with a relaxation time of

0.05 ps.

The sampling trajectories are initialized in order of increasing �l, as follows.

The first sampling trajectory (l = 1) was initialized from the equilibrated system

in the reactant basin. After 25 ps of simulation, the configuration from this first

sampling trajectory was used to initialize the second sampling trajectory (l = 2).

After 25 ps of simulation, the configuration from the second trajectory was used

to initialize the third sampling trajectory (l = 3), and so on. A total simulation

length of 6 ns is sampled for each value of l, and the weighted histogram analysis

method (WHAM) [15] is used to calculate the unbiased FE profile F (�) from the

set of sampling trajectories.

To improve the overlap of the trajectories in coordinates other than � (xc), we
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follow the swapping procedure described by Warshel and coworkers [16]. Config-

urations are swapped between neighboring values of windows every 100 ps, and

the first 25 ps after a swap are discarded. Comparing results obtained with and

without the use of this swapping protocol, we found no significant di↵erence in

the calculated free energy profile (Figure A.4). Each sampling trajectory for the

calculation of the FE profile without swapping was also of length 6 ns in time.

In addition to calculating the quantized FE profile using the RPMD sampling

trajectories, we repeat the sampling protocol with classical MD trajectories to

obtain the classical FE profile for the intrinsic reaction. Figure A.5A compares

these two results; the results for the quantized system are identical to those from

Figure 1.1B.

For the calculation of equilibrium ensemble averages, the configurations of the

enzyme are aligned to remove overall translational and orientational di↵usion. As

in previous studies [1], this is done using the following iterative protocol. In a first

step, all configurations in the ensemble are aligned to the crystal structure, and

the atom positions of the aligned structure are averaged. In a second step, all of

the configurations in the ensemble are aligned to the average structure from the

first step. In all cases, the RMSD between the average structures of subsequent

iterations converged to within 10�7 Å in less than 20 iterations.

A.4 The Dividing Surface Ensemble

Boltzmann-weighted sampling on the reaction dividing surface (� (xc) = -4.8 kcal/mol)

is performed with constrained molecular dynamics using the SHAKE algorithm [7].

The existing implementation of SHAKE in Gromacs-4.0.7 is modified to constrain

both classical MD and RPMD with respect to the collective variable � (xc). To

remove the hard-constraint bias from the ensemble of configurations that is sam-

pled in the constrained dynamics [17, 18], each sampled configuration is weighted
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by [H (xc)]�1/2, where

H (xc) = (mc)
�1 |r

q

c� (xc)|2 +
NX

k=1

M�1
k |r

Qk� (xc)|2 . (A.3)

Seven long, independent RPMD trajectories are run with the dividing surface

constraint. These constrained trajectories are initialized from configurations ob-

tained in the umbrella sampling trajectories that are restrained to the dividing

surface region using Equation A.2, and they are performed at constant temper-

ature using the velocity rescaling thermostat [14] with a relaxation time of 0.05

ps. Following an initial equilibration of 25 ps, each of the constrained trajecto-

ries is run for 1 ns, and dividing surface configurations are sampled every 4 ps.

As with the umbrella sampling trajectories, the constrained dynamics utilize a

ring-polymer bead mass of mn =12/n amu to enable a time-step of 0.1 fs.

To eliminate the e↵ects of overall translational and rotational di↵usion from

the analysis of the reactive trajectories, the phase-space points for the reactive

trajectories are aligned at t = 0 (i.e., the point of initial release from the dividing

surface). This is done exactly as in the calculation of equilibrium averages. Using

the ensemble of configurations corresponding to reactive trajectories at t = 0,

the rotation and translation for each particular trajectory is determined. This

translation and rotation is applied to the configuration of each time-step in the

trajectory, and only the rotation is applied to the velocities at each time-step in

the trajectory.

A.5 Calculation of the Transmission Coe�cient

Using a dividing surface of � (xc) = �‡, the time-dependent transmission coe�cient

for the reaction is [19, 20, 21, 22]

(t) =

D
�̇(xc(0), ẋc(0)) ✓

�
� (xc(t))� �‡�

E

�‡D
�̇(xc(0), ẋc(0)) ✓

⇣
�̇ (xc(0), ẋc(0))

⌘E

�‡

(A.4)
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where h. . .i�‡ denotes the Boltzmann-weighted distribution of configurations on

the dividing surface, and ✓(x) is the Heaviside function. The transmission coef-

ficient is evaluated by initializing RPMD trajectories from configurations (xc(0))

on the dividing surface with velocities (ẋc(0)) drawn from the Maxwell-Boltzmann

distribution. These initial configurations are then correlated with the configura-

tions (xc(t)) reached by the unconstrained RPMD trajectories after evolving the

dynamics in the NVE ensemble for time t.

In the current study, each sampled configuration on the dividing surface is

used to generate three unconstrained RPMD trajectories that are evolved both

forward and backwards in time for 100 fs, such that 10,500 half-trajectories are

released from the dividing surface. The initial velocities for each trajectory are

drawn independently; these time-zero velocities, the time-zero positions, and the

corresponding time-zero forces at the initial positions are used to initialize the

leap-frog integrator.

In addition to calculating the transmission coe�cient for the quantized hydride

transfer using RPMD, we repeat the protocol with classical MD trajectories to ob-

tain the classical transmission coe�cient. Figure A.5B compares these two results;

the results for the quantized system are identical to those from Figure 1.1C.

A.6 Additional Measures of Dynamical Correlations

To confirm that Figure 1.2, which considers only heavy atom positions, did not

neglect important dynamical correlations, we include the corresponding plots with

all atoms for the enzyme included (Figure A.6). To examine the robustness of

our conclusions about dynamical correlations in the system, we present various

alternative measures of dynamical correlations in Figures A.7, A.8, and A.9. Fig-

ure A.7 presents alternative methods for analyzing the dynamical correlation mea-

sure dij(t). In Figure A.8, we present a measure of dynamical correlations that are
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non-local in time,

d�t
ij (t) =

hvi(t) · vj(t+�t)it�
h|vi(t)|2it h|vj(t+�t)|2it

�1/2 � hvi(t) · vj(t+�t)i
(h|vi|2i h|vj |2i)1/2

, (A.5)

where h...it and h...i are defined as in Chapter 1. In Figure A.9, we present a mea-

sure of dynamical correlations between perpendicular components of the velocity,

d?,⇠1,⇠2
ij (t) =

D?,⇠1,⇠2
ij (t)

⇣
D?,⇠1,⇠1

ii (t)D?,⇠2,⇠2
jj (t)

⌘1/2 , (A.6)

where

D?,⇠1,⇠2
ij (t) =

D⇣
v̄⇠1i (t)�

D
v̄⇠1i

E⌘⇣
v̄⇠2j (t)�

D
v̄⇠2j

E⌘E

t
(A.7)

and where v̄i = (v̄1i , v̄
2
i , v̄

3
i ) is the absolute velocity vector in Cartesian coordinates.

As for the measures presented in Chapter 1, dynamical correlations are found to

be localized in the substrate and cofactor regions, with only weak signatures in

the protein residues surrounding the active site.
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Figure A.1: The active site region of the DHFR enzyme, with the transferring
hydride (green) in the reactant state, the donor and acceptor carbon atoms in
purple, and relevant protein residues in gold.
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Figure A.2: (A) The quantized and classical free energy profiles for the reac-
tion. (B) The quantized and classical time-dependent transmission coe�cient cor-
responding to the dividing surface at �(x) = �4.8 kcal/mol.
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Figure A.3: (A) (upper triangles) The covariance cij among position fluctuations in
DHFR, plotted for the reactant, dividing surface, and product regions. All atoms
are indexed according to PDB 1RX2. (lower triangles) The di↵erence with respect
to the plot for the reactant basin. (B) (upper triangle) The integrated dynamical
correlation measure dij , indexed as in (A). (lower triangle) The substrate and
cofactor regions are enlarged. Dynamical correlations between atom-pairs that
share a holonomic constraint are excluded from part B. Comparison of the current
figure (which includes all atoms) with Figure 1.2 (which includes only heavy atoms)
leaves the conclusions from Chapter 1 unchanged.
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Figure A.4: Alternative measures of the dynamical correlation. (A) The integrated
dynamical correlation measure dij =

R ⌧
�⌧dt dij(t), reproduced from Figure 1.2E.

(B) Including only the forward-integrated time,
R ⌧
0 dt dij(t). (C) Including only

the backward-integrated time, dij =
R 0
�⌧dt dij(t). (D) Including the integrated

absolute value,
R ⌧
�⌧ dt |dij(t)|. In all cases, ⌧ = 100 fs.
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Figure A.5: (A-H) The measure of temporally non-local dynamical correlations,
d�t
ij (t), plotted at various separation times �t and for various atom pairs, including

(A) the donor and acceptor atom pair, (B) the substrate-based C7 and the acceptor
atom pair, (C) the cofactor-based CN4 and donor atom pair, (D) the active site-
based protein atoms that define the distance ⇥2 in Figure 1.4B, (E) the active
site based backbone I4 O and the acceptor atom pair, (F) the active site based
backbone I4 O and the donor atom pair, (G) the active site based backbone G95
C↵ and the acceptor atom pair, and (H) the active site based backbone G95 C↵

and the donor atom pair. Two curves (red and blue) are plotted, since d�t
ij (t) is

not symmetric with respect to atom indices i and j for non-zero �t. At right, the
integrated measure d�t

ij =
R ⌧
�⌧dt d

�t
ij (t) for each lag time, plotted as a function of

the protein ↵-carbon atoms and the heavy atoms of the substrate and cofactor, as
in Figure 1.2E. In all cases, ⌧ = 100 fs. At far right, the same integrated measure
is replotted, only displaying data points for which the magnitude of the integrated
measure exceeds twice the estimated standard error.
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Figure A.6: The measure of dynamical correlations between perpendicular
components of the velocity, d?,⇠1,⇠2

ij (t). (A) The integrated measure d?ij =
P3

⇠1,⇠2=1

R ⌧
�⌧dt d

?,⇠1,⇠2
ij (t) that includes all components. (B) The integrated mea-

sure d?ij =
P3

⇠

R ⌧
�⌧dt d

?,⇠,⇠
ij (t) that includes only diagonal components. (C) The

integrated measure d?ij =
P3

⇠1 6=⇠2=1

R ⌧
�⌧dt d

?,⇠1,⇠2
ij (t) that includes only o↵-diagonal

components. In all cases, ⌧ = 100 fs, and the integrated measures are plotted as a
function of the protein ↵-carbon atoms and the heavy atoms of the substrate and
cofactor, as in Figure 1.2E.
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Figure A.7: Modifications to the GROMOS 43A1 united atom forcefield only in-
volve the DHF+, THF, NADP+, and NADPH species. The resulting potential
energy surface is as close as possible to that used in earlier studies of statistical
correlation in DHFR hydride transfer catalysis [1]. Only parameters that di↵er
from the GROMOS forcefield are indicated; parameters shown for DHF+ di↵er
with respect to those for DHF. In red, the atomic charges for DHF+ are shown.
In black, the bond-type (bold) and angle-type (italics) indices for the GROMOS
forcefield are shown. Explicit representations are used for the transferring hy-
dride (H�) in the THF and NADPH species, the pro-S hydrogen atom (Ho) in
the NADPH and NADP+ species, and the proton (H+) attached to the nearest
neighbor of the donor carbon. Firstly, we describe the treatment of H�. The trans-
ferring hydride interacts with the donor and acceptor carbons via Morse potentials
MR and MP, respectively [1]. Following GROMOS convention, non-bonding in-
teractions are excluded between H� and its 1st-, 2nd- and 3rd-nearest neighbors,
defined in terms of bonding connectivity. Additionally, non-bonding interactions
between H� and the Ho, donor, and acceptor atoms are excluded, regardless of the
local bonding environment of the H� atom. Secondly, we describe the treatment of
Ho. The bond length for Ho is constrained to a fixed value of 1.09 Å, and planarity
of Ho with respect to the nicotinamide ring in NADP+ is enforced using the planar
improper dihedral angle potential in GROMOS. As for the hydride, non-bonding
interactions are excluded between Ho and its 1st-, 2nd- and 3rd-nearest neighbors.
Thirdly, we describe the treatment of H+. Nonbonding interactions are excluded
between H+ and its 1st- and 2nd- nearest neighbors; 3rd-nearest neighbor nonbond-
ing interactions are treated through using a 1-4 potential. For the LJ interactions
involving these explicit hydrogen atoms, H+ is treated using the parameters for
a charged hydrogen, and both Ho and H� are treated using the parameters for
a hydrogen bound to a carbon. For the LJ interactions involving the donor and
acceptor, these atoms are treated using the parameters for a bare carbon atom.
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Figure A.8: Tests of the degree to which the weak harmonic restraints impact the
dynamics of the reactive trajectories. (A) Comparison of two trajectories that are
initialized from the same positions and velocities on the dividing surface, which
are calculated with (red) and without (black) the weak restraints. Trajectories
are evolved for a total of 200 fs and are viewed in the plane of the donor-acceptor
distance (⇥1 (xc)) and the reaction progress variable (� (xc)). (B) In red, the mean
pathway from the ensemble of 750 reactive trajectories, � = (h� (xc)it , h⇥1 (xc)it),
calculated for trajectories obtained with the weak restraints. In black, the mean
pathway from the ensemble of 750 trajectories that are initialized from the same
phase-space points but which do not include the weak restraints. (C) (pper tri-
angle) The dynamical correlation measure drestij , calculated from an ensemble of
750 reactive trajectories using the weak harmonic restraints; this quantity is iden-
tical to the that reported in Figure 1.2E, except that fewer trajectories are used
here. (lower triangle) The di↵erence between drestij and dunrestij , which is calculated
from the ensemble of 750 trajectories that are initialized from the same phase-space
points but which do not include the weak restraints. For all three tests, the impact
of the weak restraints on the dynamics of the reactive trajectories is undetectable.
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Figure A.9: Free energy profiles obtained with (red) and without (blue) swap-
ping of configurations from neighboring 6 ns sampling trajectories in the WHAM
calculation.
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l �l kl

1 -188.7 0.002

2 -154.0 0.002

3 -120.0 0.002

4 -87.1 0.002

5 -57.4 0.004

6 -56.1 0.002

7 -35.8 0.004

8 -18.3 0.004

9 -17.8 0.008

10 -6.4 0.008

11 1.4 0.004

12 1.5 0.008

13 4.3 0.006

14 14.2 0.004

15 23.3 0.002

16 34.2 0.004

17 57.9 0.002

18 95.8 0.002

19 135.7 0.002

20 170.0 0.000

Table A.1: The umbrella sampling parameters {�l} and {kl} in units of kcal/mol
and mol/kcal, respectively.
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Appendix B

Appendix 2: Supplemental Information for

Chapter 2

B.1 Potential Energy Surface

The potential energy surface used in simulations of kinetic isotope e↵ects is the

same as that described above (Equation A.7) with a parameterization term to

correct for overestimation of the kinetic isotope e↵ect (At 280 K, kH/kT = 40±3,

compared to an experimental value of 6.1) . To correct this overestimation, the

curvature of the Morse potentials used in the study in Chapter A.7 were scaled by

a parameter � such that

VM

�
rH,D/A, �↵, De, r0

�
= De

⇣
1� e��↵(r�r0)

⌘2
, (B.1)

where rH,D/A is distance between the hydride and the donor or acceptor carbon,

�↵ is scaled decay constant for the Morse potential, De is the dissociation energy

of the bond, and r0 is the equilibrium bond length. Here, for the donor carbon,

↵ = 1.785 A�1, De = 103 kcal/mol, and r0 = 1.09 A; for the acceptor carbon, ↵

= 1.758 A�1, De = 103 kcal/mol, and r0 = 1.09 A. � has a value of 0.5 for both

donor and acceptor carbons. The potential energy function was reparameterized

to reproduce the H/T kinetic isotope e↵ect at 280 K. The same potential energy

function was used for each mass and temperature simulation.
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Figure B.1: The dij matrix is presented as in Figure 2.5 in the main text for each
of the simulations.
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l �l kl

1 -141.245 0.0015

2 -116.972 0.0017

3 -93.900 0.0020

4 -72.250 0.0025

5 -53.342 0.0031

6 -36.848 0.0039

7 -25.951 0.0048

8 -18.137 0.0058

9 -12.316 0.0070

10 -8.016 0.0083

11 -4.841 0.0100

12 -2.631 0.0122

13 -1.684 0.0130

14 -0.925 0.0132

15 0.042 0.0105

16 2.259 0.0086

17 5.900 0.0071

18 11.066 0.0058

19 18.477 0.0046

20 29.542 0.0036

21 47.697 0.0027

22 69.746 0.0020

23 96.196 0.0016

24 125.000 0.0013

25 154.964 0.0013

Table B.1: The umbrella sampling parameters {�l} and {kl} in units of kcal/mol
and mol/kcal, respectively.
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Appendix C

Appendix 3: Supplemental Information for

Chapter 3

Table C.1: Semi-empirical parameters from AM1 and reparam-

eterized values AM1-SRP for the eight atom types defined

here.

Hydrogen

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -11.3964270 -10.9728011 -0.4236259

�s (eV) -6.1737870 -6.2208155 0.0470285

⇣s (eV) 1.1880780 1.1880780 0.0000000

↵ (Å�1) 2.8823240 2.8770609 0.0052631

Gss (eV) 12.8480000 13.4647988 -0.6167988

K1 (eV) 0.1227960 0.1376800 -0.0148840

L1 (1/Å2) 5.0000000 5.0606517 -0.0606517

M1 (Å) 1.2000000 1.1597789 0.0402211

K2 (eV) 0.0050900 0.0043265 0.0007635

L2 (1/Å2) 5.0000000 4.9968359 0.0031641

M2 (Å) 1.8000000 1.7820358 0.0179642

K3 (eV) -0.0183360 -0.0191089 0.0007729

L3 (1/Å2) 2.0000000 2.0316003 -0.0316003

M3 (Å) 2.1000000 1.8595325 0.2404675

Carbon

Continued on next page
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Table C.1 – Continued from previous page

Parameter (Units) AM1 AM1-SPR �

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -52.0286580 -48.7063335 -3.3223245

Upp (eV) -39.6142390 -41.4299458 1.8157068

�s (eV) -15.7157830 -16.0743327 0.3585497

�p (eV) -7.7192830 -7.8428796 0.1235966

⇣s (eV) 1.8086650 1.8086650 0.0000000

⇣p (eV) 1.6851160 1.6851160 0.0000000

↵ (Å�1) 2.6482740 2.6827466 -0.0344726

Gss (eV) 12.2300000 10.7562544 1.4737456

Gsp (eV) 11.4700000 11.9872691 -0.5172691

Gpp (eV) 11.0800000 11.8931729 -0.8131729

Gpp0 (eV) 9.8400000 10.7471996 -0.9071996

Hsp (eV) 2.4300000 2.4514667 -0.0214667

K1 (eV) 0.0113550 0.0099602 0.0013948

L1 (1/Å2) 5.0000000 4.9981346 0.0018654

M1 (Å) 1.6000000 1.5852376 0.0147624

K2 (eV) 0.0459240 0.0396675 0.0062565

L2 (1/Å2) 5.0000000 5.0009459 -0.0009459

M2 (Å) 1.8500000 1.8541506 -0.0041506

K3 (eV) -0.0200610 -0.0225580 0.0024970

L3 (1/Å2) 5.0000000 5.0107397 -0.0107397

M3 (Å) 2.0500000 1.9965302 0.0534698

K4 (eV) -0.0012600 -0.0010710 -0.0001890

L4 (1/Å2) 5.0000000 4.9966202 0.0033798

M4 (Å) 2.6500000 2.6125005 0.0374995

Nitrogen

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -71.8600000 -71.9816390 0.1216390

Upp (eV) -57.1675810 -57.6291203 0.4615393

�s (eV) -20.2991100 -20.4073334 0.1082234

�p (eV) -18.2386660 -18.0860754 -0.1525906

⇣s (eV) 2.3154100 2.3154100 0.0000000

⇣p (eV) 2.1579400 2.1579400 0.0000000

↵ (Å�1) 2.9472860 2.5182816 0.4290044

Continued on next page
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Parameter (Units) AM1 AM1-SPR �

Gss (eV) 13.5900000 13.6468825 -0.0568825

Gsp (eV) 12.6600000 12.4115008 0.2484992

Gpp (eV) 12.9800000 12.8976040 0.0823960

Gpp0 (eV) 11.5900000 11.3749638 0.2150362

Hsp (eV) 3.1400000 3.1449539 -0.0049539

K1 (eV) 0.0252510 0.0260333 -0.0007823

L1 (1/Å2) 5.0000000 4.9967258 0.0032742

M1 (Å) 1.5000000 1.5403256 -0.0403256

K2 (eV) 0.0289530 0.0332843 -0.0043313

L2 (1/Å2) 5.0000000 4.9912738 0.0087262

M2 (Å) 2.1000000 2.1030025 -0.0030025

K3 (eV) -0.0058060 -0.0049351 -0.0008709

L3 (1/Å2) 2.0000000 2.0223028 -0.0223028

M3 (Å) 2.4000000 2.2711710 0.1288290

Oxygen

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -97.8300000 -97.5085847 -0.3214153

Upp (eV) -78.2623800 -80.2223761 1.9599961

�s (eV) -29.2727730 -29.5107658 0.2379928

�p (eV) -29.2727730 -29.4773322 0.2045592

⇣s (eV) 3.1080320 3.1080320 0.0000000

⇣p (eV) 2.5240390 2.5240390 0.0000000

↵ (Å�1) 4.4553710 4.7567420 -0.3013710

Gss (eV) 15.4200000 14.0270027 1.3929973

Gsp (eV) 14.4800000 13.9863945 0.4936055

Gpp (eV) 14.5200000 15.3378125 -0.8178125

Gpp0 (eV) 12.9800000 13.2040980 -0.2240980

Hsp (eV) 3.9400000 4.0224664 -0.0824664

K1 (eV) 0.2809620 0.2388177 0.0421443

L1 (1/Å2) 5.0000000 5.0085567 -0.0085567

M1 (Å) 0.8479180 0.7207303 0.1271877

K2 (eV) 0.0814300 0.0809051 0.0005249

L2 (1/Å2) 7.0000000 7.0047673 -0.0047673

M2 (Å) 1.4450710 1.5517439 -0.1066729

Continued on next page
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Parameter (Units) AM1 AM1-SPR �

NADPH-C2

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -52.0286580 -58.5735761 6.5449181

Upp (eV) -39.6142390 -39.0487175 -0.5655215

�s (eV) -15.7157830 -16.4489775 0.7331945

�p (eV) -7.7192830 -9.2631396 1.5438566

⇣s (eV) 1.8086650 1.8086650 0.0000000

⇣p (eV) 1.6851160 1.6851160 0.0000000

↵ (Å�1) 2.6482740 2.8222911 -0.1740171

Gss (eV) 12.2300000 12.2550814 -0.0250814

Gsp (eV) 11.4700000 11.4903395 -0.0203395

Gpp (eV) 11.0800000 11.1693256 -0.0893256

Gpp0 (eV) 9.8400000 9.6962720 0.1437280

Hsp (eV) 2.4300000 2.4435628 -0.0135628

K1 (eV) 0.0113550 0.0141867 -0.0028317

L1 (1/Å2) 5.0000000 5.0045311 -0.0045311

M1 (Å) 1.6000000 1.5394964 0.0605036

K2 (eV) 0.0459240 0.0572678 -0.0113438

L2 (1/Å2) 5.0000000 5.0235534 -0.0235534

M2 (Å) 1.8500000 1.5368198 0.3131802

K3 (eV) -0.0200610 -0.0250762 0.0050152

L3 (1/Å2) 5.0000000 4.9807597 0.0192403

M3 (Å) 2.0500000 2.4772702 -0.4272702

K4 (eV) -0.0012600 -0.0015750 0.0003150

L4 (1/Å2) 5.0000000 5.0039299 -0.0039299

M4 (Å) 2.6500000 2.5936848 0.0563152

PYR-C2

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -52.0286580 -56.0388083 4.0101503

Upp (eV) -39.6142390 -39.8722743 0.2580353

�s (eV) -15.7157830 -18.8116388 3.0958558

�p (eV) -7.7192830 -7.4432109 -0.2760721

⇣s (eV) 1.8086650 1.8086650 0.0000000

⇣p (eV) 1.6851160 1.6851160 0.0000000

Continued on next page
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Parameter (Units) AM1 AM1-SPR �

↵ (Å�1) 2.6482740 3.1779288 -0.5296548

Gss (eV) 12.2300000 12.1294519 0.1005481

Gsp (eV) 11.4700000 11.7926331 -0.3226331

Gpp (eV) 11.0800000 11.9203871 -0.8403871

Gpp0 (eV) 9.8400000 9.3157590 0.5242410

Hsp (eV) 2.4300000 2.4242747 0.0057253

K1 (eV) 0.0113550 0.0141927 -0.0028377

L1 (1/Å2) 5.0000000 5.0103654 -0.0103654

M1 (Å) 1.6000000 1.6339995 -0.0339995

K2 (eV) 0.0459240 0.0574002 -0.0114762

L2 (1/Å2) 5.0000000 5.0174729 -0.0174729

M2 (Å) 1.8500000 1.6575542 0.1924458

K3 (eV) -0.0200610 -0.0185708 -0.0014902

L3 (1/Å2) 5.0000000 5.0032824 -0.0032824

M3 (Å) 2.0500000 2.3024310 -0.2524310

K4 (eV) -0.0012600 -0.0009520 -0.0003080

L4 (1/Å2) 5.0000000 5.0009864 -0.0009864

M4 (Å) 2.6500000 2.6114740 0.0385260

H193-NE2

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -71.8600000 -73.6506122 1.7906122

Upp (eV) -57.1675810 -62.2984508 5.1308698

�s (eV) -20.2991100 -16.4664572 -3.8326528

�p (eV) -18.2386660 -21.5738169 3.3351509

⇣s (eV) 2.3154100 2.3154100 0.0000000

⇣p (eV) 2.1579400 2.1579400 0.0000000

↵ (Å�1) 2.9472860 3.5367432 -0.5894572

Gss (eV) 13.5900000 12.6784647 0.9115353

Gsp (eV) 12.6600000 12.0158734 0.6441266

Gpp (eV) 12.9800000 13.4771467 -0.4971467

Gpp0 (eV) 11.5900000 12.5467074 -0.9567074

Hsp (eV) 3.1400000 3.2468168 -0.1068168

K1 (eV) 0.0252510 0.0262784 -0.0010274

L1 (1/Å2) 5.0000000 5.0512371 -0.0512371

Continued on next page
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Parameter (Units) AM1 AM1-SPR �

M1 (Å) 1.5000000 1.3934498 0.1065502

K2 (eV) 0.0289530 0.0217147 0.0072383

L2 (1/Å2) 5.0000000 5.0319955 -0.0319955

M2 (Å) 2.1000000 1.9177053 0.1822947

K3 (eV) -0.0058060 -0.0072575 0.0014515

L3 (1/Å2) 2.0000000 1.9586210 0.0413790

M3 (Å) 2.4000000 2.5254478 -0.1254478

PYR-Keto oxygen

Parameter (Units) AM1 AM1-SPR �

Uss (eV) -97.8300000 -103.1104107 5.2804107

Upp (eV) -78.2623800 -85.7841018 7.5217218

�s (eV) -29.2727730 -29.8132437 0.5404707

�p (eV) -29.2727730 -34.6978950 5.4251220

⇣s (eV) 3.1080320 3.1080320 0.0000000

⇣p (eV) 2.5240390 2.5240390 0.0000000

↵ (Å�1) 4.4553710 4.5774400 -0.1220690

Gss (eV) 15.4200000 14.6050578 0.8149422

Gsp (eV) 14.4800000 14.1945053 0.2854947

Gpp (eV) 14.5200000 14.7352569 -0.2152569

Gpp0 (eV) 12.9800000 13.7832290 -0.8032290

Hsp (eV) 3.9400000 3.9843247 -0.0443247

K1 (eV) 0.2809620 0.2107215 0.0702405

L1 (1/Å2) 5.0000000 5.0466690 -0.0466690

M1 (Å) 0.8479180 0.8772223 -0.0293043

K2 (eV) 0.0814300 0.0610725 0.0203575

L2 (1/Å2) 7.0000000 6.8445047 0.1554953

M2 (Å) 1.4450710 1.5552077 -0.1101367
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l ⇥HP,l kl

1 -2.08 70.0

2 -1.94 51.3

3 -1.74 42.3

4 -1.46 29.3

5 -1.21 41.4

6 -0.89 32.6

7 -0.64 36.7

8 -0.45 43.2

9 -0.19 41.2

10 -0.24 77.6

11 -0.15 89.7

12 -0.06 101.6

13 -0.01 163.5

14 0.03 113.8

15 0.01 63.0

16 0.16 59.1

17 0.26 47.5

18 0.47 47.3

19 0.50 23.5

20 1.03 45.4

21 1.24 34.3

22 1.54 37.3

23 1.71 63.7

24 1.88 59.3

25 2.03 73.4

Table C.2: The umbrella sampling parameters {⇥HP,l} and {kl} in units of Å and
kcal mol�1 Å�2, respectively.


