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Abstract

We classify the genuine ordinary mod p representations of the metaplectic group S̃L2(F ),

where F is a p-adic field, and compute its genuine mod p spherical and Iwahori Hecke al-

gebras. The motivation is an interest in a possible correspondence between genuine mod

p representations of S̃L2(F ) and mod p representations of the dual group PGL2(F ), so we

also compare the two Hecke algebras to the mod p spherical and Iwahori Hecke algebras of

PGL2(F ). We show that the genuine mod p spherical Hecke algebra of S̃L2(F ) is isomorphic

to the mod p spherical Hecke algebra of PGL2(F ), and that one can choose an isomorphism

which is compatible with a natural, though partial, correspondence of unramified ordinary

representations via the Hecke action on their spherical vectors. We then show that the gen-

uine mod p Iwahori Hecke algebra of S̃L2(F ) is a subquotient of the mod p Iwahori Hecke

algebra of PGL2(F ), but that the two algebras are not isomorphic. This is in contrast to the

situation in characteristic 0, where by work of Savin one can recover the local Shimura corre-

spondence for representations generated by their Iwahori fixed vectors from an isomorphism

of Iwahori Hecke algebras.
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Introduction

0.1 Summary of results

The work of this thesis concerns mod p representation theory; that is, the representations are

of p-adic groups, and the coefficient field is F̄p. The main subject is the mod p representation

theory of the metaplectic group S̃L2(F ), which is the nontrivial central extension of SL2(F )

by {±1}.

The first chapter contains preliminaries: definitions, well-known results, and some cal-

culations to be used in later chapters. The goal of the second chapter is a classification

of the genuine ordinary representations of S̃L2(F ). A genuine representation of S̃L2(F ) is

one which does not factor through a representation of SL2(F ), and we define an ordinary

representation to be a subquotient of a parabolically induced representation. In fact, we

show that all of the parabolically induced representations of S̃L2(F ) are irreducible and

inequivalent.

Let F be a p-adic field with residue field k = F̄q. In the following theorem and results

following from it in later chapters, we assume that q ≡ 1 (mod 4). With respect to a choice

of an additive character of F×, we define (§ 2.3.3) a basic unramified genuine character 1̃ of

the metaplectic torus T̃ .

Theorem A (Theorem 2.3.5 (1), (2)). 1. The irreducible smooth, genuine, ordinary mod

p representations of S̃L2(F ) are all those of the form I(χ̃) := Ind
S̃L2(F )

B̃
χ̃, where Ind is

the smooth induction functor and χ̃ is an arbitrary genuine character of T̃ (F ) (defined

with respect to a fixed additive character of F ).
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2. The dimension of HomS̃L2(F )(I(χ̃), I(χ̃′)) is 1 if χ̃ = χ̃′ and is 0 otherwise, so I(χ̃) ∼=

I(χ̃′) if and only if χ̃ = χ̃′.

In addition, we find the invariants of these representations under the compact open sub-

groups K∗, I∗, and I(1)∗ of S̃L2(F ). These subgroups are certain lifts to G̃ of, respectively,

the maximal compact subgroup K = SL2(OF ), the Iwahori subgroup I, and the pro-p-

Iwahori subgroup I(1) in SL2(F ).

Theorem B (Theorem 2.3.5 (3), (4)). Let I(χ̃) be a genuine ordinary representation of

S̃L2(F ).

1. The I(1)∗-invariant space I(χ̃)I(1)∗ is of dimension 2 over F̄p.

2. If the restriction of χ̃ to T̃ ∩K∗ is not equal to 1̃, then I(χ̃) has no nontrivial I∗- or

K∗-invariants. If χ̃
∣∣
T̃∩K∗ = 1̃, i.e., if χ̃ is unramified, then I(χ̃)I

∗
= I(χ̃)I(1)∗ (and so

is 2-dimensional), and I(χ̃)K
∗

is 1-dimensional.

The third chapter is a study of the genuine mod p spherical Hecke algebraHε
p(S̃L2(F ), K∗)

of S̃L2(F ). The results are:

Theorem C (Theorem 3.4.7). 1. There exists an explicit algebra isomorphism

Hε
p(S̃L2(F ), K∗)→ Hp(PGL2(F ), KG)

inducing a bijection (which depends on the additive character ψ) of those irreducible

genuine unramified ordinary representations of S̃L2(F ) associated to characters differ-

ent from the sign character, with the irreducible unramified ordinary representations of

PGL2(F ).

2. When a genuine character χ̃ = χ · γψ is defined with respect to a fixed choice of ψ

(as in § 2.3.3) and χ is a smooth unramified character of F× such that χ2 6= 1, the

irreducible unramified ordinary representation I(χ̃) of S̃L2(F ) corresponds under the

bijection to the irreducible unramified ordinary representation I(χ⊗χ−1) of PGL2(F ).

I(1̃) corresponds to the trivial representation of PGL2(F ).
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3. The dependence of the bijection on ψ is as follows. For a ∈ F×/(F×)2, let χa denote the

quadratic character of F× given by the Hilbert symbol (−, a)F . If I(χ⊗χ−1) corresponds

to I(χ̃) when the bijection is defined with respect to a nontrivial additive character ψ,

then I(χ ⊗ χ−1) corresponds to I(χa · χ̃) when the bijection is defined with respect to

the character ψa : x 7→ ψ(ax).

To prove Theorem C (1), we show that the mod p Satake isomorphism for unramified

reductive groups can be adapted to define a Satake isomorphism of Hε
p(S̃L2(F ), K∗) with a

subalgebra of the genuine mod p spherical Hecke algebra of the torus T̃ . Both the spherical

Hecke algebra of T̃ and the Satake map can be explicitly described, allowing us to find

the action of Hε
p(S̃L2(F ), K∗) on the K∗-invariant subspaces of the unramified ordinary

representations of S̃L2(F ). We use these spherical Hecke module structures to define the

bijection of Theorem C (2) between the unramified ordinary representations of S̃L2(F ) and

of PGL2(F ) which are associated to characters χ 6= sgn of F×.

In the fourth chapter, we compute a presentation for the genuine mod p Iwahori Hecke

algebra of S̃L2(F ):

Theorem D (Theorem 4.3.7). The genuine mod p Iwahori Hecke algebra of S̃L2(F ) has the

following presentation as a noncommutative polynomial algebra:

Hε
p(S̃L2(F ), I∗) = F̄p〈x, y〉/(x2 + x, y2).

We then compare this algebra to the mod p Iwahori Hecke algebra of PGL2(F ) computed

by Barthel and Livné [3]. The motivation is to understand whether the partial correspon-

dence of unramified prinicipal series representations between S̃L2(F ) and PGL2(F ) can be

extended in a natural way, e.g., via a map of Hecke modules, to representations which are

generated by their Iwahori-fixed vectors. In characteristic 0, Savin [23] proved that the gen-

uine Iwahori Hecke algebra of a covering group is isomorphic to the Iwahori Hecke algebra

of its reductive dual group and that this induces an equivalence of categories of represen-

tations generated by their Iwahori-fixed vectors. However, we show that there is no such

3



isomorphism for the mod p genuine Iwahori Hecke algebra of S̃L2(F ) and the mod p Iwahori

Hecke algebra of PGL2(F ):

Theorem E (Corollary 4.3.8). The genuine Iwahori Hecke algebra Hε
p(S̃L2(F ), I∗) is not

isomorphic to Hp(PGL2(F ), IG). In fact, their abelianizations are not isomorphic.

Finally, we note the genuine mod p Iwahori Hecke algebra is a subquotient of the mod

p Iwahori Hecke algebra of PGL2(F ), namely a quotient of the image of the mod p Iwahori

Hecke algebra of SL2(F ) by the square of one of its two generators.

0.2 Perspective

These results are motivated by an interest in the mod p analogue of the local Shimura

correspondence, and in particular aim towards an explicit understanding of the relation-

ship between mod p representations of the metaplectic group S̃L2(F ) and of its dual group

PGL2(F ).

The global Shimura correspondence, which relates cusp forms of weight k+ 1
2

to those of

weight 2k, was given a representation-theoretic interpretation by Waldspurger and others. In

this formulation, which made it possible to use the Weil representation to relate Fourier co-

efficients to twists of L-values, a genuine automorphic representation of S̃L2(A) corresponds

to an automorphic representation of PGL2(A) (satisfying some local conditions). Locally at

p, this becomes a correspondence between genuine irreducible representations of S̃L(F ) and

irreducible representations of PGL2(F ), where F is a finite extension of Qp. This, the local

Shimura correspondence, is usually described in terms of theta lifting via the Weil represen-

tation. An alternative interpretation by Savin [22] views the correspondence, in the classical

case as well as more generally, as an isomorphism between the genuine Iwahori Hecke algebra

of a metaplectic group and the usual Iwahori Hecke algebra of its dual group.

The work in this thesis uses Savin’s point of view to relate the mod p representations of

S̃L2(F ) and PGL2(F ) via their Hecke algebras. The strategy is to analyze the F̄p-valued

Hecke algebras of the two groups, and precisely understand what the modules over the Hecke
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algebras of S̃L2(F ) may say about its mod p representations. The results of Chapter 3 show

that the picture given by the mod p spherical Hecke algebras is quite similar to what is seen

in characteristic 0: though we cannot translate the isomorphism of spherical Hecke algebras

into a natural correspondence of all unramified ordinary representations, we can define a

bijection which is compatible with the Hecke isomorphism for all but one representation on

each side. On the other hand, the results of Chapter 4 show that the situation is quite

different for the Iwahori Hecke algebra.

In future work, we hope to see how the failure of isomorphism of Hecke algebras appears in

the relationship between representations of S̃L2(F ) and of PGL2(F ) which are generated by

Iwahori-fixed vectors. And as there are many genuine mod p representations of S̃L2(F ) which

do not have Iwahori-fixed vectors, the spherical and Iwahori Hecke algebras considered in this

thesis cannot be expected to give the full picture. However, since every mod p representation

of a pro-p group has an invariant vector, it will be interesting to compare the genuine pro-p

Iwahori Hecke algebra of S̃L2(F ) with the pro-p Iwahori Hecke algebra of PGL2(F ). We

outline some further questions for future work in the final section of Chapter 4.
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Chapter 1

Basic constructions and known results

The first section of this chapter reviews the structure of GL2(F ) and SL2(F ) when F is a

p-adic field, and then gives a concrete description of the nontrivial degree-2 central extension

S̃L2(F ) of SL2(F ). The second section of the chapter is devoted to describing the Bruhat-

Tits tree of SL2(F ) and actions of SL2(F ) and PGL2(F ) on it. The tree will be very useful

in later calculations, as SL2(F ) and PGL2(F ) act on parts of it exactly as they do on their

double cosets with respect to certain compact open subgroups.

Notation

Let F denote a finite extension of Qp, OF the ring of integers in F , π a fixed uniformizer

of OF , v the discrete valuation on F normalized so that v(π) = 1, and k the residue field

of OF . The order of k will be denoted by q. In this chapter alone, we will make an effort

to distinguish between a group scheme and its F -points: the name of a group scheme, for

example SL2, will be written in boldface, while its F -points will be written in plain type, e.g.,

SL2(F ). As SL2 and GL2 are mentioned equally often in this chapter, their full names will

be written out, but the reader should note that SL2(F ) (respectively, SL2) will be denoted

by G (respectively, G) in later chapters.

In this chapter, a tilde over the name of a group denotes the metaplectic double cover of

that group: for example, S̃L2(F ) is the twofold metaplectic cover of SL2(F ). Note in some

references, such as [11], this cover is represented by ŜL2(F ) or by SL2(F ) while S̃L2(F )
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denotes the universal central extension of SL2(F ) by K2.

1.1 Structure of GL2 and SL2: Root data and distin-

guished elements

1.1.1 Root datum of SL2

Let T be the split maximal torus of SL2. The character group X∗(T) of T is isomorphic to

Z via the map χ :

 x 0

0 x−1

 7→ xk

 7→ k ∈ Z,

and the cocharacter group X∗(T) is also isomorphic to Z via

x 7→
 xk 0

0 x−k

 7→ k ∈ Z.

The natural pairing X∗(T)×X∗(T)→ Z is just multiplication: if k ∈ X∗(T ) and ` ∈ X∗(T ),

then 〈k, `〉(x) = xk` for all x ∈ F×.

Let t =

 t 0

0 t−1

 ∈ T(F ). The Lie algebra of SL2 is the trace-0 subspace of the

matrix algebra M2, and the adjoint action of t on decomposes into (1) the trivial action

on the diagonal, (2) the character x 7→ x2 on the subspace

 0 ∗

0 0

 ⊂ M2, and (3) the

character x 7→ x−2 on the subspace

 0 0

∗ 0

 . Hence the roots of (SL2,T) are {2k : k ∈ Z},

and we choose α = 2 to be the positive simple root. The corresponding Borel subgroup B,

which is the stabilizer of the space

 0 ∗

0 0

 on which the conjugation action of T is

given by α, is realized as the subgroup of upper triangular matrices, and U denotes the

unipotent radical of B. The Weyl group W of (G,T) is {1, w} ∼= Z/2Z, where w is the

7



reflection w(k) = −k, so the isomorphism X∗(T) ∼= X∗(T) determined by the pairing is

clearly compatible with the action of W .

The coroot dual to α is α∨ = 1, which is the cocharacter sending t 7→

 t 0

0 t−1

 . Let

X∗(T)+ := {k ∈ X∗(T) : k ≥ 0} be the set of dominant cocharacters, i.e., those whose inner

product with α, i.e. k · 2, is nonnegative, and let X∗(T)− := {k ∈ X∗(T) : k ≤ 0} be the

set of antidominant cocharacters, i.e., those whose inner product k · 2 with α is nonpositive.

Fix a uniformizer π of F , and note that Z ∼= T (F )/T (OF ) via k 7→

 πk 0

0 π−k

. Then the

composite map λ 7→ T (F )/T (OF ) given by

t 7→
 tk 0

0 t−k

 7→
 πk 0

0 π−k



is an isomorphism as well. Let α0 =

 π−1 0

0 π

; then in particular

X∗(T) ∼= 〈α0〉 ⊂ T (F )/T (OF ),

where the brackets denote the cyclic subgroup, and the antidominant cocharacters correspond

to the nonnegative powers of α0.

1.1.2 Root data of GL2 and PGL2

Let TG denote the maximal split torus in GL2. We associate a root datum (X,Φ, X∨,Φ∨)

to the pair (GL2,TG) as follows.

The group X of algebraic characters of TG corresponds to the group of F -algebra ho-

momorphisms F [x, x−1] → F [y1, y
−1
1 , y2, y

−1
2 ]. Each such homomorphism is described by

a pair of integers (m1,m2) such that x 7→ ym1
1 ym2

2 , and distinct pairs of integers, includ-

ing pairs containing the same integers in the opposite order, determine distinct F -algebra

maps. Hence X ∼= Z2. The group X∨ of algebraic cocharacters of TG corresponds to the
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group of F -algebra homomorphisms F [y1, y
−1
1 , y2, y

−1
2 ] → F [x, x−1], and each such homo-

morphism is determined by the images of y1 and y2. These must be invertible in F [x, x−1]

and so y1 7→ xm1 , y2 7→ xm2 . Again each distinct pair of integers (m1,m2) determines

a different F -algebra map, so X∨ ∼= Z2 as well. X and X∨ are dual via the pairing

〈x, y〉 = (m1,m2) · (k1, k2) = m1k1 +m2k2.

We now describe the root system Φ ⊂ X and coroots Φ∨ ⊂ X∨ of GL2 with respect to

TG. The Lie algebra of GL2 is the matrix algebra M2, and the adjoint representation of

GL2 is the conjugation action on M2. Restricting Ad to TG, the action is

Ad

 t1 0

0 t2

 ·
 e f

g h

 =

 e t1
t2
f

t2
t1
g h

 ,

so an algebraic character α of T gives the adjoint action of T on a nontrivial subspace of g

if and only if α is one of the following: α = 1, i.e., α = (0, 0) in Z2 (so gα = T ), α = t1/t2,

i.e. α = (1,−1) in Z2 (so gα is the set of matrices with zero entries except in the top right

corner), or α = t2/t1, i.e. α = (−1, 1) (so gα is the set of matrices with zero entries except

in the lower left corner). Thus, taking these characters and excluding the trivial character,

Φ(GL2,TG) = {(1,−1), (−1, 1)}.

Starting with α = (−1, 1), we have ker(α) = {diagonal matrices (t1, t2) such that t2/t1 =

1}, which is equal to the center Z(GL2). Z(GL2) is connected, so Tα = Z(GL2) and

Zα = ZGL2(Z) = GL2. Then α∨ is the cocharacter Gm → T which, over F , sends t ∈ Gm

to the diagonal matrix (t, t−1) ∈ SL2(F ) and then (via Φα) to the same diagonal matrix

(t, t−1) ∈ GL2(F ). This composition corresponds to (1,−1) ∈ Z2 in the parametrization

of X∨ used above. The coroot dual to α is defined to satisfy 〈α, α∨〉 = 2, so we multiply

(1,−1) by -1 to get α∨ = (−1, 1). As for the coroot corresponding to the root (1,−1), the

calculation is identical and gives the result (1,−1) ∈ X∨.

Let w be the Weyl element of GL2 considered as an element of GL2(F ): w =

 0 1

1 0

 .

Let NTG be the normalizer of TG in G. Then NTG acts on X by conjugation, and since

T is commutative, the Weyl group W0 := NTG/TG also acts on X by conjugation. Noting
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that NTG is the disjoint union of TG with the set of antidiagonal elements of G, that is,

NTG = TG q wTG, we have W0 = {1, w}. The nontrivial element of the Weyl group can be

interpreted as the reflection through the hyperplane orthogonal to the opposite roots in Φ;

it permutes the two roots.

Let Φ+ be a choice of a positive root, say Φ+ = (1,−1). This choice corresponds to the

selection of B = Lie(TG) ⊕ g(1,−1), which is the group of upper triangular matrices, as the

preferred Borel subgroup.

Let W = NTG(F )/TG(OF ). Using the decomposition

NTG = TG q wTG,

we write TG(F )/TG(OF ) q wTG(F )/TG(OF ) = Λ×W0, where Λ = TG(F )/TG(OF ). As was

true for SL2(F ), there is a canonical isomorphism

Λ ∼= X∨ : Λ ∼= (F ∗/O×F )2 ∼= Z2

via the map  x 0

0 y

 7→ (vp(x), vp(y)).

The nontrivial element w ∈ W0 acts on Λ by x 0

0 y

 7→ w

 x 0

0 y

w =

 y 0

0 x


and on Xv ∼= Z2 by permuting the two coordinates, so the isomorphism Λ ∼= Z2 is compatible

with the action of W0.

To compute the root datum of PGL2, note that the characters of the torus of PGL2 are

those characters of TG which appear in the diagonal of Z×Z, while the cocharacters of the

torus of PGL2 are those of the form (n,−n) in Z × Z. Hence the root datum of PGL2 is

the one obtained from the root datum of SL2 by switching X with X∨ and Φ with Φ∨; that
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is, SL2 and PGL2 have dual root systems.

1.1.3 Decompositions in SL2(F ) and GL2(F )

We review the notation used by Barthel-Livné, Breuil, and Abdellatif to describe decompo-

sitions of GL2(F ) and SL2(F ). In GL2(F ), define the following elements:

α :=

 1 0

0 π

 , β :=

 0 1

π 0

 , w :=

 0 1

1 0

 .

Also put

z(π) :=

 π 0

0 π

 ∈ Z(GL2),

and note that β = αw and β2 = z(π).

In SL2(F ), we define the analogous elements, some of which have appeared already:

α0 :=

 π−1 0

0 π

 , β0 :=

 0 π

−π−1 0

 , s :=

 0 −1

1 0

 .

Every maximal compact subgroup of GL2(F ) is conjugate to KG := GL2(OF ), while

the maximal compact subgroups of SL2(F ) lie in two distinct conjugacy classes: one which

is represented by K := SL2(OF ), and the other by K ′ := αK0α
−1. The existence of two

non-conjugate maximal compacts has nontrivial consequences for the representation theory

of SL2(F ), but in this work we will only consider K.

The Cartan decomposition of GL2(F ) is the disjoint union

GL2(F ) = qn∈NKGZα
nKG. (1.1)

Likewise, there is a Cartan decomposition of SL2(F ) relative to each of its two representative

maximal compacts:

SL2(F ) = qn∈NKαn0K = qn∈NKα−n0 , (1.2)

11



SL2(F ) = qn∈NK ′αn0K ′ = qn∈NK ′α−n0 K ′ (1.3)

Let IG denote the standard Iwahori subgroup in GL2(F ), which consists of those elements

whose reduction mod π is upper triangular in GL2(k). It is compact and open in GL2(F ).

Denote IG∩SL2(F ) by I; this is the standard Iwahori subgroup of SL2(F ). From the Bruhat

decomposition G(k) = B(k)qB(k)WB(k) of the groups G = GL2 and SL2 over the residue

field, we obtain the following decompositions of GL2(F ) and SL2(F ) with respect to their

Iwahori subgroups:

GL2(F ) = qn∈Z IGZαnIG qn∈Z IGZβαnIG (1.4)

and

SL2(F ) = qn∈Z Iαn0I qn∈Z Iβ0α
n
0I. (1.5)

Moreover, we have two decompositions of the Iwahori subgroup itself, both valid in

GL2(F ) and in SL2(F ). Recall that U denotes the upper triangular unipotent subgroup,

and let U ′ denote the lower triangular unipotent subgroup.

IG = (U ∩ IG)(TG ∩ IG)(U ′ ∩ IG) = (U ′ ∩ IG)(T ∩ I)(U ∩ IG). (1.6)

Intersecting with SL2(F ), we get the analogous decompositions of I.

When H is any compact open subgroup of G = GL2(F ), PGL2(F ), or SL2(F ) (or later,

of the cover of such a group) and x ∈ G, define the volume of a double coset HxH to be the

index

vol(HxH) = [H : H ∩ xHx−1].

We record here a list of single-coset decompositions and volumes of certain I-double cosets

in SL2(F ) which will be needed in Chapter 4. Each calculation is an application of one of

the two Iwahori decompositions (1.6) in SL2(F ).

Lemma 1.1.1. For ` > 0,
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1. Iα−`0 I =

I

 π` 0

0 π−`

 I =
∐

0≤v(y)≤2`−1
or y=0

I

 π` 0

0 π−`

 1 0

yπ 1

 ,

and vol(Iα−`0 I) = q2`.

2. Iα`0I =

I

 π−` 0

0 π`

 I =
∐

0≤v(x)≤2`−1
or x=0

I

 π−` 0

0 π`

 1 x

0 1


and vol(Iα`0I) = q2`.

3. Isα−`0 I =

I

 0 −1

1 0

 π` 0

0 π−`

 I =
∐

0≤v(y)≤2`−2
or y=0

I

 0 −1

1 0

 π` 0

0 π−`

 1 0

yπ 1

 ,

and vol(Isα−`0 I) = q2`−1.

4. Isα`0I =

I

 0 −1

1 0

 π−` 0

0 π`

 I =
∐

0≤v(x)≤2`
or x=0

I

 0 −1

1 0

 π−` 0

0 π`

 1 x

0 1

 ,

and vol(Isα`0I) = q2`+1.

5. IsI =

I

 0 −1

1 0

 I =
∐

v(x)=0
or x=0

I

 0 −1

1 0

 1 x

0 1

 ,
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and vol(IsI) = q.

Proof. In the following calculations, x and y denote arbitrary elements of OF and a denotes

an arbitrary element of O×F .

1. We use the first Iwahori decomposition, and calculate:

•

 π` 0

0 π−`

 1 x

0 1

 =

 1 xπ2`

0 1

 π` 0

0 π−`

 ∈ I
 π` 0

0 π−`

 .

•

 π` 0

0 π−`

 a 0

0 a−1

 =

 a 0

0 a−1

 π` 0

0 π−`

 ∈ I
 π` 0

0 π−`


•

 π` 0

0 π−`

 1 0

yπ 1

 =

 1 0

yπ1−2` 1

 π` 0

0 π−`

 .

The element

 1 0

yπ1−2` 1

 is in I ⇐⇒ v(y) ≥ 2`, so vol(Iα−`0 I) = q2`.

2. We use the second Iwahori decomposition, and calculate:

•

 π−` 0

0 π`

 1 0

yπ 1

 =

 1 0

yπ2`+1 1

 π−` 0

0 π`

 ∈ I
 π−` 0

0 π`

 .

•

 π−` 0

0 π`

 a 0

0 a−1

 =

 a 0

0 a−1

 π−` 0

0 π`

 ∈ I
 π−` 0

0 π`


•

 π−` 0

0 π`

 1 x

0 1

 =

 1 xπ−2`

0 1

 π−` 0

0 π`



The element

 1 xπ−2`

0 1

 is in I ⇐⇒ v(x) ≥ 2`, so vol(Iα`0I) = q2`.

3. We use the first Iwahori decomposition.

•

 0 −1

1 0

 π` 0

0 π−`

 1 x

0 1

 =

 0 −1

1 0

 1 xπ2`

0 1

 π` 0

0 π−`


=

 1 0

−xπ2` 1

 0 −1

1 0

 π` 0

0 π−`

 ∈ I
 0 −1

1 0

 π` 0

0 π−`


14



•

 0 −1

1 0

 π` 0

0 π−`

 a 0

0 a−1

 =

 a−1 0

0 a

 0 −1

1 0

 π` 0

0 π−`


∈ I

 0 −1

1 0

 π` 0

0 π−`


•

 0 −1

1 0

 π` 0

0 π−`

 1 0

yπ 1

 =

 0 −1

1 0

 1 0

yπ1−2` 1

 π` 0

0 π−`


=

 1 −yπ1−2`

0 1

 0 −1

1 0

 π` 0

0 π−`

 ,

and the element

 1 −yπ1−2`

0 1

 is in I ⇐⇒ v(y) ≥ 2`− 1, so vol(Isα−`0 I) = q2`−1.

4. We use the second Iwahori decomposition, and calculate:

•

 0 −1

1 0

 π−` 0

0 π`

 1 0

yπ 1

 =

 0 −1

0 1

 1 0

yπ2`+1 1

 π−` 0

0 π`


=

 1 −yπ2`+1

0 1

 0 −1

1 0

 π−` 0

0 π`

 ∈ I
 0 −1

1 0

 π−` 0

0 π`

 .

•

 0 −1

1 0

 π−` 0

0 π`

 a 0

0 a−1

 =

 a−1 0

0 a

 0 −1

1 0

 π−` 0

0 π`


∈ I

 0 −1

1 0

 π−` 0

0 π`


•

 0 −1

1 0

 π−` 0

0 π`

 1 x

0 1

 =

 0 −1

1 0

 1 xπ−2`

0 1

 π−` 0

0 π`


=

 1 0

−xπ2` 1

 0 −1

1 0

 π−` 0

0 π`

 ,

and the element

 1 0

−xπ2` 1

 is in I ⇐⇒ v(x) ≥ 2`+ 1, so vol(Isα`0I) = 2`+ 1.

5. We use the second Iwahori decomposition, and calculate
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•

 0 −1

1 0

 1 0

yπ 1

 =

 1 −yπ

0 1

 ∈ I
 0 −1

1 0


•

 0 −1

1 0

 a 0

0 a−1

 =

 a−1 0

0 a

 0 −1

1 0

 ∈ I
 0 −1

1 0

 ,

•

 0 −1

1 0

 1 x

0 1

 =

 1 0

x 1

 0 −1

1 0

 ,

and the element

 1 0

x 1

 is in I ⇐⇒ v(x) ≥ 1, so vol(IsI) = q.

Finally, for future reference we note some results of Iwahori and Matsumoto on decom-

positions of products of I-double cosets:

Lemma 1.1.2 ( [15] Prop. 2.8). 1. If ` and m are either both ≥ 0 or both ≤ 0, we have

Iα`0Iα
m
0 I = Iα`+m0 I.

2. IsIsI = I q IsI,

3. Isα−1
0 Isα−1

0 I = I q Isα−1
0 I.

1.2 Definition of the metaplectic cover of SL2(F )

There are several ways to construct a nontrivial twofold cover of SL2(F ). We will follow

Deligne [10] and Savin [23] and define S̃L2(F ) to be the group generated by

{e+(a), e−(a), h(a)}a∈F× ,

where
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Definition 1.2.1. 1. e+(a) :=

 1 a

0 1

 , 1

 and e−(a) :=

 1 0

a 1

 , 1

 for a ∈

F .

In particular, S̃L2(F ) contains the following elements:

w(a) := e+(a)e−(−a−1)e+(a) =

 0 a

−a−1 0

 , 1


for all a ∈ F×.

The following two elements of G̃L2(F ) will be used to define generators h(a) of the

torus of S̃L2(F ):

• d1(a) :=

 a 0

0 1

 , 1

 for a ∈ F×,

• d2(a) := w(1)d1(a)w(1)−1 =

 0 1

−1 0

 , 1

·
 a 0

0 1

 , 1

·
 0 −1

1 0

 , 1

 =

 1 0

0 a

 , (−1, a)


for a ∈ F×.

2. Then the torus T̃ ⊂ S̃L2(F ) is defined to be the subgroup generated by the following

elements:

h(a) := d1(a−1)d2(a) = w(a−1)w(1)−1 =

 a−1 0

0 a

 , (−1, a)


for a ∈ F×.

We can also view S̃L2(F ) as the group with underlying set SL2(F ) × {±1} and multi-
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plication

(g1, ζ1)(g2, ζ2) = (g1g2, ζ1ζ2σ(g1, g2)),

where σ(g1, g2) is a certain 2-cocycle on SL2(F ) with values in {±1}. Kubota [18] showed

that one can define the multiplication in S̃L2(F ) with the following cocycle:

σ(g1, g2) =

(
X(g1g2)

X(g1)
,
X(g1g2)

X(g2)

)
F

, (1.7)

where

X

 a b

c d

 =

c if c 6= 0,

d if c = 0.

,

and (, )F is the Hilbert symbol on F .

Remark 1.2.2. In fact, the Kubota coycle σ given in (1.7) is simplified from the one written

down by Kubota in [18]; see, e.g., [19] § 3 for (1.7).

Thanks to our standing assumption that p > 2, the extension S̃L2(F ) of SL2(F ) defined

by the cocycle σ of (1.7) splits over the maximal compact subgroup K of SL2(F ). The

splitting is effected by the preferred section

g 7→ (g, θ(g)),

where we define

θ

 a b

c d

 =

(c, d)F if cd 6= 0 and c is not a unit,

1 otherwise.

(1.8)

We note that the generators e+(a) and e−(a) defined in (1.2.1) are the lifts of

 1 a

0 1


and of

 1 0

a 1

, respectively, by g 7→ (g, θ(g)), and that d1 is the lift of

 a 0

0 1

 by an

extension of the preferred section to GL2(F ).
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The subgroup generated by {h(a) : a ∈ O×F } is denoted by T̃ (OF ); the extension splits

over T (OF ), since the Hilbert symbol on F is unramified. Let K∗ denote the image of K in

S̃L2(F ) under the preferred section, and let K̃ denote the full preimage of K in the covering

group. Then the image of T (OF ) in S̃L2(F ) under the section is T̃ ∩K∗.

The splitting of the extension over K is also compatible with the canonical splitting over

the upper and lower unipotent subgroups U, U ′ of SL2(F ); we define U∗ to be the image

of the upper triangular unipotent group in S̃L2(F ), and note that U∗ is the subgroup of

S̃L2(F ) generated by {e+(a) : a ∈ F}. Likewise U∗ is the subgroup of S̃L2(F ) generated by

{e−(a) : a ∈ F}. We denote the common lift of U ∩K by (U ∩K)∗, and note that this is the

same as U∗ ∩K∗ (and likewise for U ′).

The extension does not split over the diagonal torus T of SL2(F ). For a, b ∈ F×, we

have

h(ab) = (1, (a, b)F ) · h(a)h(b).

Note that T̃ (F ) contains the element (1,−1), since F contains a unit u such that (π, u)F =

−1, and

h(u−1π−1)h(u)h(π) = h(u−1π−1)h(uπ)(u, π)F = h(1)(u−1π−1, uπ)F (u, π)F

= (1, (u, π)2
F (u, u)F (π, π)F (u, π)F = (1, (u, π)F ) = (1,−1),

but that (1,−1) /∈ T̃ ∩K∗.

Definition 1.2.3. Define Λ to be the subgroup of T̃ (F ) generated by

h(π) =

 π−1 0

0 π

 , (−1, π)F

 ,

and define Λ̃ := Λ× (1,−1).

We set down some notation for the sign of h(π)n, n ∈ Z. Note that when the order of the

residue field q = |k| is congruent to 1 (mod 4), then −1 ∈ F×, so (−1, π)F = (π, π)F = 1.
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Thus when q ≡ 1 (mod 4), we have Λ = 〈αn0 〉 × {1}. Otherwise, the sign of h(π)n depends

on the class of n (mod 4):

h(πm)h(πn) =

h(πm+n) if 2|m or 2|n,

(1, (−1, π)F )h(πm+n) otherwise.

By induction, we get

h(π)k =

h(πk) if k ≡ 0 or 1 (mod 4)

(1, (−1, π)F )h(πk) if k ≡ 2 or 3 (mod 4).

Hence

h(π)n =




 π−n 0

0 πn

 , 1

 if n ≡ 0 or 3 (mod 4)


 π−n 0

0 πn

 , (−1, π)F

 if n ≡ 1 or 2 (mod 4).

Definition 1.2.4. For convenience in future formulae, let φ(n) denote the sign of h(π)n.

Concretely,

φ(n) =


1 for all n if q ≡ 1 (mod 4),

−1 if q ≡ 3 (mod 4) and n ≡ 1 or 2 (mod 4)

1 if q ≡ 3 (mod 4) and n ≡ 3 or 4 (mod 4).

The Cartan decomposition (1.2) of SL2(F ) implies that we can choose representatives

for K∗ \ S̃L2(F )/K∗ which lie in Λ̃. We will show in Chapter 3 that in fact Λ̃ forms a set of

representatives for the K∗-double cosets in S̃L2(F ).

Next, in preparation for lifting the decomposition (1.5) to the covering group, we describe

the normalizer of T̃ ∩K∗ in S̃L2(F ).

Let W0 denote the finite Weyl group of S̃L2(F ), i.e., the subgroup generated by w(1),
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whose elements are

{w(1)0 = h(1) =

 1 0

0 1

 , 1

 , w(1) =

 0 −1

1 0

 , 1

 ,

w(1)2 = h(−1) =

 −1 0

0 −1

 , 1

 , w(1)3 = w(−1) =

 0 1

−1 0

 , 1

}.
Lemma 1.2.5. The normalizer of T̃ ∩K∗ in S̃L2(F ) is equal to T̃ q T̃w(1).

Proof. If (g, ζ) ∈ NS̃L2(F )(T̃ (OF )), then given t ∈ O×F ,

(g, ζ)

 t 0

0 t−1

 , 1

 (g, ζ)−1 =

 r 0

0 r−1

 , 1



for some r ∈ O×F . In particular, g ∈ NSL2(F )(T (OF )) = T q Ts. Let g =

 a 0

0 a−1

 ∈ T ,

and let η ∈ {±1} satisfy (g, ζ) = h(a−1) · (1, η). That is, η is defined by ζ = η · (−1, a)F . We

have h(a−1)−1 = h(a) · (1, (−1, a)F ), so

(g, ζ)−1 = h(a) · (1, η(−1, a)F ) =

 a−1 0

0 a

 , η

 .
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Then (g, ζ)

 t 0

0 t−1

 , 1

 (g, ζ)−1 =

 a 0

0 a−1

 , ζ

 t 0

0 t−1

 , 1

 a−1 0

0 a

 , ζ(−1, a)F


= ((1, η)h(a−1)h(t−1) · (1, ζ)h(a)

= (1, ζη(a, t)F )h(a−1t−1)h(a)

= (1, ζη(a, t)F (at, a)F )h(t−1)

= (1, (−1, a)F (a, t)F (a, a)F (t, a)F )h(t−1)

=
(
1, (−1, a)F (a, t)2

F (a, a)F
)
h(t−1)

=
(
1, (−1, a)2

F

)
h(t−1) = h(t−1).

So for any a ∈ F× and η ∈ {±1}, h(a) · (1, η) is in the normalizer of T̃ (OF ).

Next, suppose g ∈ Ts, so that (g, ζ) = (1, η) · w(a) = (1, η)h(a)w(1) for some η ∈ {±1}

and some a ∈ F×. Then (g, ζ)−1 = ((1, η)h(a)w(1))−1 = w(−1)h(a−1) (1, η(−1, a)F ) , so

(g, ζ)

 t 0

0 t−1

 , 1

 (g, ζ)−1 = (1, η)h(a)w(1) · h(t−1) · w(−1)h(a−1) (1, η(−1, a)F ) .

(1.9)

Calculating with the Kubota cocycle, we get w(1)h(t−1)w(−1) = h(t), so (1.9) is equal to

(
1, η2(−1, a)F

)
h(a)h(t))h(a−1)

=
(
1, (−1, a)F (a, t−1)F

)
h(at)h(a−1)

=
(
1, (−1, a)F (a, t−1)F (at, a−1)F

)
h(t)

=
(
1, (−1, a)2

F (a, t)2
F

)
h(t)

= h(t) ∈ T̃ (OF ).
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Hence

NS̃L2(F )(T̃ ∩K
∗) = T̃ q T̃w(1).

We have shown that the normalizer of T̃ ∩K∗ in S̃L2(F ) is equal to the inverse image in

S̃L2(F ) of the normalizer N of T (OF ) in SL2(F ), and we denote it NS̃L2(F )(T̃ ∩K
∗) by Ñ .

Since the Iwahori subgroup I ⊂ SL2(F ) is contained in K, its image in S̃L2(F ) under the

preferred section (1.8) is contained in K∗, and we denote it by I∗. The main significance of

Ñ to us will be that one can choose representatives of I∗-double cosets in S̃L2(F ) to lie in Ñ .

In Chapter 4 we will show that in fact Λ̃nW0 is a set of representatives for I∗ \ S̃L2(F )/I∗.

Finally, we note that since the splitting of the extension over K is compatible with that

over the unipotent subgroups of SL2(F ), the two Iwahori decompositions of I∗ lift to the

covering group:

I∗ = (U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗ = (U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗. (1.10)

These decompositions will be crucial in Chapter 4, when we will need to find single I∗-coset

decompositions of products of I∗-double cosets lifting those given in of Lemma 1.1.1.

1.2.1 Norms and the Hilbert symbol on F

This section contains several results which will be needed in calculations with the cocycle.

Namely, we will show that since p > 2, then the Hilbert symbol is unramified, i.e. trivial on

O×F ×O
×
F ; that given a uniformizer π of F , there is a unit u ∈ O×F such that (u, π)F = −1;

and that the norms from the quadratic extension F (
√
π) have index 2 in O×F .

Given any degree-n extension of p-adic fields F ′/F such that F contains n n-th roots of

unity, let NF ′/F denote the norm map F ′× → F . Recall that by local class field theory we

have a symbol (, )F on F× × F× such that ( [24], XIV Prop. 7):

1. (aa′, b)F = (a, b)F (a′, b)F
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2. (a, bb′)F = (a, b)F (a, b′)F

3. (a, b)F = 1 ⇐⇒ b ∈ NF ′/F (F ′).

4. (a,−a)F = (a, 1 − a)F = 1, and in general if a ∈ F ∗, b ∈ F , and bn − a 6= 0, then

(a, bn − a) = 1.

5. (a, b)F (b, a)F = 1.

6. If (a, b)F = 1 for all b ∈ F×, then a ∈ (F×)n.

So in particular, the degree-2 Hilbert symbol on F is symmetric, multiplicative in each entry,

and has the property that (a2, b)F = 1 for all a, b ∈ F×.

Recall our assumption that p 6= 2; hence the extension F (
√
a)/F is at most tamely

ramified for all a ∈ F×. Then ( [24] XIV § 3) if a, b ∈ F×, a formula for (a, b)F is given by

the tame symbol

(a, b)F =

(
(−1)v(a)v(b)

av(b)

bv(a)

) q−1
2

,

where the term inside the parentheses is considered to be in the residue field k of F . In

particular, if b is a unit, then

(a, b)F =
(
bv(a)

)− q−1
2
,

and if π is a uniformizer of F , then

(π, π)F = (−1)
q−1
2 =

−1 if q − 1 ≡ 2 (mod 4)

1 if q − 1 ≡ 0 (mod 4).

Other important cases for our applications are: if a and b are both units, then

(a, b)F = 1,
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and if π is a uniformizer of OF and b is a unit, then

(b, π)F =
(
b
) q−1

2 .

So if q ≡ 1 (mod 4), then −1 is a square in k, and so

(−1, π)F =
(
−1
) q−1

2 = 1.

Using multiplicativity of the symbol, we get

(π, π)F = (−1, π)F =

−1 if q ≡ 3 (mod 4)

1 if q ≡ 1 (mod 4).

Finally, it will be important to know that given a fixed uniformizer π of OF ,

{u ∈ O×F : (u, π)F = 1}

is an index-2 subgroup of O×F . This is because, by a quick argument in group cohomology,

we have the following equality for any finite cyclic extension E/F of local fields:

[O×F : NE/F (O×E)] = e(E/F ),

where e(E/F ) is the ramification index of the extension. In particular, when E = F (
√
π)

for π a uniformizer of F , then e(E/F ) = 2 thanks to our standing assumption that 2 6= p.

And of course if u ∈ O×F is a norm from F (
√
π), then it is the norm of an element of O×E .

So the norms are of index 2 in O×F .

1.2.2 Topology of the cover

It will be very important to know that the covering group is locally compact and totally

disconnected.
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As is any p-adic Lie group, SL2(F ) is locally compact and totally disconnected (an “`-

group” in the terminology of Bernstein-Zelevinsky [4]), so has a neighborhood basis at 1 of

open compact subgroups.

This structure transfers without trouble to the covering group. By construction, the

cocycle σ : G×G→ {±1} is continuous with respect to the usual topology on SL2(F ), and

by the results of the previous section, the extension splits over the open compact subgroup

K ⊂ G. The subgroup K contains a neighborhood basis {Kn : n ∈ N} of open compacts at

1, and we define the set of images of the Kn under the splitting to be a neighborhood basis

of (1, 1) in G̃. Let the topology on G̃ be the one generated by this neighborhood basis. Then

G̃ is a Hausdorff `-group, and the projection p : G̃→ G is continuous and open.

1.3 The tree of SL2(F )

Many of the calculations in this work become easier when phrased in terms of the action of

SL2(F ) on its Bruhat-Tits building, which is a q+1-regular tree. Though the tree is a special

case of a Bruhat-Tits building and many results about it can be generalized for unramified

connected reductive groups, it is enough here to give the following concrete description. A

reference for this section is [25].

A lattice in F ⊕ F is a finite-type OF -module whose F -span is equal to F ⊕ F . Every

such OF -module is free, so after fixing a basis for OF ⊕ OF ⊂ F ⊕ F to correspond to the

2-by-2 identity matrix, any other lattice can be specified by a nonsingular 2-by-2 matrix with

entries in F . A homothety of a lattice is a scaling of both basis vectors by the same factor,

i.e., a transformation by a scalar 2-by-2 matrix. Homothety is an equivalence relation on the

lattices in F ⊕ F , so we can consider a set of vertices Ver(X) indexed by their homothety

classes, i.e., by the elements of PGL2(F ).

Thanks to the Cartan decomposition of GL2(F ), any two elements [L], [L′] of PGL2(F ) ∼=

GL2(F )/Z have representatives L := a1e1 ⊕ a2e2, L′ := b1e1 ⊕ b2e2 such that b1 = πna1 and

b2 = πma2 for some n ≤ m ∈ Z. The difference m − n is independent of the choice

of representatives, so we can define two vertices [L], [L′] ∈ Ver(X) to be adjacent, i.e.,
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connected by an edge, if and only if m − n = 1. Equivalently, two vertices are adjacent if

they can be represented by lattices L and L′ such that L′/L ∼= OF/πOF = k. Let Ed(X)

be the set of oriented edges generated by this principle. More generally, define the distance

between any two vertices [L], [L′] to be the integer m − n. One can show that the graph

(Ver(X),Ed(X)) is a tree, each of whose vertices have degree |P1(k)| = q + 1.

We fix a standard apartment, or infinite path, in X, which will parametrize the diagonal

part of the group action. Let v0 denote the identity vertex, corresponding to the homothety

class of the lattice OF ⊕OF ⊂ F ⊕ F . Also recall the elements

α =

 1 0

0 π

 ∈ GL2(F ) and α0 =

 π−1 0

0 π

 ∈ SL2(F ).

Let vn := αn · v0; then {vn : n ∈ Z} is the standard apartment in X. Its intermediate edges

are numbered accordingly: let en,n±1 be the oriented edge originating at vn and terminating

at vn±1.

Let KG denote the maximal compact subgroup GL2(OF ) ⊂ GL2(F ). Clearly GL2(F )

acts on Ver(X) on the left; equally clearly this action is transitive and the stabilizer of v0

is KGZ, so Ver(X) ∼= GL2(F )/KGZ as a left GL2(F )-set. In fact, Ver(X) is a transitive

and faithful PGL2(F )-set. In particular, with the labelling conventions of Figure 1.1, which

represents a portion of the tree of Q3, the action of α on v0 is to move a vertex up once along

the leftmost upwards edge emerging from it. The action of α−1 on v0 is one downward move

along the leftmost downward edge.

The action of SL2(F ) on Ver(X) is not transitive: it has two orbits, corresponding to

the two conjugacy classes of maximal compact subgroups in SL2(F ). One of these classes

is represented by K = SL2(OF ), the stabilizer of v0, while the other class is represented by

the stabilizer of v1, which is K ′ := αKα−1. Since the difference of valuation between the

two nonzero entries of any diagonal element of SL2(F ) is even; the orbit of v0 is the set of

all vertices at even distance from v0, while the orbit of v1 is the set of all vertices at odd

distance from v0. The diagonal part of the action of SL2(F ) on Ver(X)/K is parametrized
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Figure 1.1

by powers of α0, which is equivalent to α2 modulo the center of GL2(F ); the element α0

sends v0 to v2. In Figure 1.1, the vertices of the standard apartment are shaded according to

their parity: the gray dots are those which lie in the orbit of v0 under the action of SL2(F ).

Note that the action of GL2(F ) is isometric, and that an oriented edge is fixed by g ∈

GL2(F ) when g fixes both the origin and the vertex. A generalized Iwahori subgroup of

GL2(F ) is the pointwise stabilizer of any two adjacent vertices; the standard Iwahori subgroup

is the one which fixes both v0 and v1:

IG := GL2(OF ) ∩ αGL2(OF )α−1 =
{ a b

cπ d

 : a, b, c, d ∈ OF , ad− bc 6= 0
}
,

i.e. IG is the pointwise stabilizer of e0,1 and of e1,0. (The coset

IG

 0 1

π 0

 IG
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Figure 1.2

is the setwise stabilizer of e0,1.) As the action of GL2(F ) is transitive on edges as well, we have

Ed(X) ∼= GL2(F )/IGZ as a left G-set. Figure 1.2 shows a portion of the tree of SL2(Q3)

with gray arrows representing the oriented edges in the I-orbit of α · e0,1, and black arrows

representing the I-orbit of α−1 · e0,1. We define the direction of all of these arrows to be

upward, and extend to put a compatible notion of direction on all oriented edges of the tree.

Furthermore, we say that e1,2 is the leftmost emerging from v1, and extend this to a notion

of “right” and “left” turns by labelling turns from the “upward” point of view. (This notion

of direction is not particularly standard and certainly not canonical, but will be convenient

and harmless to use here.)

The action of SL2(F ) on Ed(X) again has two orbits: one consisting of the edges which

originate at even distance from v0 and the other of edges originating at odd distance from v0.

Hence the action of SL2(F ) is transitive on non-oriented edges, but not on oriented edges.

One immediate and very useful consequence of the GL2(F )-set isomorphisms Ver(X) ∼=

GL2(F )/KGZ and Ed(X) ∼= GL2(F )/IGZ is that two elements of GL2(F ) are in the same
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left KGZ-coset (respectively, left IGZ-coset) if and only if they send v0 (resp., e0,1) to the

same vertex (resp., oriented edge) of X. Of course this holds for elements of SL2(F ) as well.

Due to the Cartan decomposition (1.1), the KG-orbit of the standard vertex vn is the

circle Cn of vertices at radius n from v0. The K-orbit of v2n is likewise all of C2n. The

actions of KG and K on the tree should be thought of as analogous to the rotation action

of the maximal compact SO(2) ⊂ SL2(R) on the symmetric space of SL2(R).

The n-th congruence subgroup

KG,n := {k ∈ KG : k ≡ 1 (mod πn)} ⊂ KG

fixes all the vertices which are either on Cn or enclosed by it; if m > n, then the orbit of

vm under Kn is the subset of Cm consisting of all vertices from which a path to v0 passes

through vn.

In particular, if Un :=

 1 πnOF
0 1

 ∈ U with n ≥ 0, then u ∈ Un fixes Cn and all

vertices enclosed by it. On the other hand, if n < 0, then u ∈ Un fixes all vertices in the

Km-orbit of vm (for all m ≥ n), while for m < n the Un orbit of vm is the set of all vertices at

distance m− n from vn and for which the path to vn does not pass through vn+1. In Figure

1.3, the vertices which are in the U -orbit of v0 (and which are on or enclosed by C6) are

marked with gray squares.

Working in PGL2(F ), consider the intersection

KGZα
nKG ∩ αmZU,

where U is the full upper triangular unipotent subgroup. For future reference, we count the

size of this intersection.
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Lemma 1.3.1. For m > 0, (αmU · v0) ∩ Cn 6= ∅ only if |n| = 2`+m for some ` ≥ 0, and

|(αmU · v0) ∩ C2`+m| =

1 if ` = 0

q`−1(q − 1) if ` ≥ 1.

Hence

|KGZα
nKG ∩ αmUZ| =


0 if |n| 6= 2`+m for all ` > 0

1 if |n| = m

q`−1(q − 1) if |n| = 2`+m with ` ≥ 1.

(1.11)
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and in SL2(F ), we have

|Kαn0K ∩ αm0 U | =


0 if |n| < m

1 if |n| = m

q`−1(q − 1) if |n| = `+m with ` ≥ 1.

(1.12)

Proof. Given k1, k2 ∈ KG, we have k2α
nk1 · v0 = k2α

n · v0 = k2 · vn ∈ Cn, and conversely for

any v ∈ Cn there exists k2 ∈ KG such that k2vn = v. By GL2(F )-equivariance of the action,

then, an element of αmU is also in KGα
nKG if and only if it sends v0 to a vertex in Cn.

Consider an element

u =

 1 aπk

0 1

 ∈ U
where a ∈ O×F and k ∈ Z, and more generally let Uk denote the subset of U whose upper-right

entry has valuation exactly k. If k ≥ 0, then u ∈ KG, so αmu · v0 = αm · v0 = vm. If k < 0,

then u · v0 is one of the q|k| − 1 vertices which sit at distance |k| from v|k| and are neither

equal to v0 nor have a path back to v0 which meets an edge of the standard apartment. As

a ranges over O×F and k < 0 stays fixed, the vertices u · v0 are distributed as follows: q − 1

of them are in C2, and for each j (1 ≤ j ≤ |k|), qj−1(q − 1) of them are in C2j.

Suppose we take ` < k and consider the orbit of v0 under the subset U` of elements whose

upper-right entry has valuation exactly `. Then U` · v0 ∩ Uk · v0 = Uk · v0, i.e. for j ≤ |k|,

the intersection of U` · v0 with C2j is equal to that of Uk · v0 with C2j. Hence for each j ≥ 1

the intersection of the full U -orbit U · v0 with C2j consists of qj−1(q − 1) vertices, and the

intersection of U · v0 with C2j−1 is empty.

Now apply αm to an element of U · v0: if u · v0 ∈ C2j, then αmu · v0 ∈ C2j+m, and distinct

vertices of C2j are sent to distinct vertices in C2j+m since m > 0. Thus we get qj−1(q − 1)

points in αmU ∩ C2j+m. This suffices to prove the first part of the lemma. Then (1.11) and

(1.12) follow from the action of PGL2(F ) and SL2(F ), respectively, on the tree, noting that

α0 has the same action on v0 as α2.
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This calculation will be used in Chapter 4 to describe the image of the Satake transform.
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Chapter 2

Genuine ordinary representations of
S̃L2(F )

2.1 Summary

2.1.1 Abstract of the chapter

The main result of this chapter is a classification of the irreducible subquotients of the genuine

mod p representations of S̃L2(F ) which are induced from the Borel subgroup B̃. Such

representations are called ordinary mod p representations of S̃L2(F ). Under the simplifying

assumption that q ≡ 1 (mod 4), we show that all genuine ordinary representations are

induced from genuine characters of the torus T̃ , which are classified up to dependence on

an additive character ψ of F ; that they are all irreducible; and that inductions of distinct

characters are inequivalent. We also compute the spaces of spherical, Iwahori-fixed, and

pro-p-Iwahori-fixed vectors.

2.1.2 Main results

The chapter begins with a review of the smooth and compact induction functors for rep-

resentations of a locally compact, totally disconnected group over an arbitary coefficient

field. Among other background information, this preliminary section sets up notation for

the Frobenuis reciprocity maps which will be used frequently in this chapter and later ones.
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Next it is shown that every character of B̃ factors through a character of T̃ , and the

genuine characters of T̃ are classified. Moreover, as an easy but crucial point, it is checked

that S̃L2(F ) has no nontrivial characters, and in particular has no genuine characters.

As a first step in the classification of the ordinary representations, we analyze the B̃-

module structure of representations induced from characters of B̃:

Proposition 2.1.1. Let F be a p-adic field with residue field of order q ≡ 1 (mod 4). Let

χ̃ be the inflation to B̃ of a smooth genuine character of T̃ (F ). As a B̃-module, I(χ̃) has

the character χ̃ as a quotient, and the kernel of this quotient map is an irreducible, smooth,

genuine B̃-module. The sequence does not split, so I(χ̃) is an indecomposable B̃-module of

length 2.

The B̃-module structure together with Frobenius reciprocity implies the first part of the

main result:

Theorem A (Theorem 2.3.5 (1), (2)). 1. The irreducible smooth, genuine, ordinary mod

p representations of S̃L2(F ) are exactly those of the form I(χ̃) := Ind
S̃L2(F )

B̃
χ̃, where

Ind is the smooth induction functor and χ̃ is an arbitrary genuine character of T̃ (F )

(defined with respect to a fixed additive character of F ).

2. The dimension of HomS̃L2(F )(I(χ̃), I(χ̃′)) is 1 if χ̃ = χ̃′ and is 0 otherwise, so I(χ̃) ∼=

I(χ̃′) if and only if χ̃ = χ̃′.

Making use of various decompositions of S̃L2(F ) relative to the compact open subgroups

K∗, I∗, and I(1)∗, we find the dimensions of invariant subspaces. Then:

Theorem B (Theorem 2.3.5 (3), (4)). 1. The I(1)∗-invariant space I(χ̃)I(1)∗ is of dimen-

sion 2 over F̄p for all χ̃.

2. If the restriction of χ̃ to T̃ ∩K∗ is not equal to 1̃, then I(χ̃) has no nontrivial I∗- or

K∗-invariants. If χ̃
∣∣
T̃∩K∗ = 1̃, i.e., when χ̃ is unramified, then I(χ̃)I

∗
= I(χ̃)I(1)∗ (and

so is 2-dimensional), and I(χ̃)K
∗

is 1-dimensional.
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The chapter ends with a summary of Barthel and Livné’s classification of the mod p

unramified principal series representations of PGL2(F ). In Chapter 3, we compute the

genuine spherical mod p Hecke algebra of G̃ in order to describe the relationship between

those representations of PGL2(F ) and the unramified genuine ordinary representations of

S̃L2(F ).

2.2 Preliminaries: Smooth and compact induction

In this first section, let G denote a Hausdorff locally compact, totally disconnected (LCTD)

topological group (for example, a p-adic reductive or metaplectic group), and let (π, V ) be a

smooth representation of G on a vector space V over a field E. The definitions and results

in this section hold for any field E, though in practice they may be modified slightly (e.g. by

normalization) depending on the characteristic of E. The exposition of this section mainly

follows that of [26] § I.5.

Let H be a subgroup of G. Restriction of π from G to H makes (π
∣∣
H
, V ) into a smooth

H-representation, since StabH(v) = StabG(v) ∩ H is open in H for each v. The functor of

induction from H to G should be defined so as to be adjoint to the functor of restriction.

One can define a right adjoint functor, smooth induction, whenever H is a closed subgroup

of G, and a subfunctor, compact induction, which is also a left adjoint when H is also an

open subgroup of G; these two functors agree when H \G is compact.

Let (σ,W ) denote a smooth representation of H on an E-vector space. The prototypical

induction of (σ,W ) to a representation of G has the underlying vector space

{f : G→ W
∣∣f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G},

together with the right-translation action of G. Depending on H, it is desirable to put one

or two extra conditions on the functions in the underlying space.

1. Smooth induction. The space of functions above does not give a smooth represen-

tation of G in most cases, so the first desirable condition to put on the {f : G→ W}
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is one which picks out the maximal smooth subrepresentation of the prototype. When

H is a closed subgroup of G, the smooth induction of (σ,W ) is the space

IndGH(σ) ={f : G→ W
∣∣f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G, and ∃ an open

compact subgroup K0 ⊂ G such that f(gk) = f(g) for all g ∈ G, k ∈ K0}

with the right-translation action of G.

Proposition 2.2.1 (Smooth Frobenius reciprocity). ( [26] I.5.7.(i)) When G is a

LCTD topological group and H ⊂ G is a closed subgroup, then the smooth induction

IndGH is a right adjoint to the restriction map π 7→ π
∣∣
H

. In other words, whenever

(π, V ) is a smooth representation of G and (σ,W ) is a smooth representation of H,

there is a natural isomorphism

HomG(π, IndGH(σ))→ HomH(π
∣∣
H
, σ).

Proof. Let

Φ : HomG(π, IndGH(σ))→ HomH(π
∣∣
H
, σ)

be the map sending

φ 7→ Φ(φ) := (v 7→ φ(v)(1)) .

Then Φ(φ) is an H-equivariant homomorphism V → W :

Φ(φ)(h · v) := φ(h · v)(1) = φ(v)(h) = h · (φ(v)(1)) = h · Φ(φ)(v)

since φ is G-equivariant. And Φ is injective, since if Φ(φ) = 0, then φ(v)(1) = 0 for all

v, which implies that (g · φ)(v)(1) = φ(v)(g) = 0 for all v, g, so φ = 0. Finally, Φ is

surjective, since if ϕ ∈ HomH(π
∣∣
H
, σ) sends v 7→ ϕ(v), then ϕ is the image under Φ of

the map φ : V → IndGH(σ) which is defined by

φ(v)(1) = ϕ(v).
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To see that this φ really is an element of HomG(π, IndGH(σ)), let g, g′ ∈ G and note

that

φ(g · v)(g′) = ϕ(g′g · v) = φ(v)(g′g) = (g · φ(v))(g′),

so v 7→ φ(v) is G-equivariant. Moreover, given any v ∈ V , smoothness of φ implies

that StabG(v) is open in G; since G is locally profinite, we can choose a compact open

subgroup K0 ⊂ StabG(V ). Then for all h ∈ H, k ∈ K0, and g ∈ G, we have

(hgk · φ)(v)(1) = ϕ(hgk · v) = ϕ(hg · v) = h · ϕ(g · v) = h · φ(v)(g),

so φ(v) ∈ IndGH(σ).

2. Induction with compact support. When H is an open subgroup of an LCTD

group G, then H is of course also closed (as it is the complement in G of the union

of its nontrivial cosets, each of which is open), so the above definition of IndGH(σ) still

makes sense. But we also get a left adjoint to restriction by defining the induction with

compact support, or compact induction, of (σ,W ) to be the space

indGH(σ) = {f ∈ IndGH(σ)
∣∣ Supp(f) is compact in G}

with the right-translation of G.

Proposition 2.2.2 (Compact Frobenius reciprocity). ( [26] I.5.7.(ii)) Keep the no-

tation of the previous proposition, but now suppose that H is an open subgroup of the

LCTD group G. Then the compact induction indGH is a left adjoint to the restriction

functor: that is, whenever (π, V ) is a smooth representation of G and (σ,W ) is a

smooth representation of H, there is a natural isomorphism

HomG(indGH (σ), π)→ HomH(σ, π
∣∣
H

).
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Proof. Given w ∈ W , define the function

fw :=

g 7→
σ(g)w if g ∈ H

0 if g /∈ H

 ,

and let G act on {fw : w ∈ W} by

g · fw(g′) := fw(g′g) =

σ(g′g)w if g′ ∈ Hg−1

0 if g′ /∈ Hg−1.

Then the set {fw : w ∈ W} generates indGH(σ) as a G-representation; concretely, if

f ∈ indGH(σ), then

f =
∑

g∈H\G

g−1ff(g).

Define a map Φc : HomG(indGH(σ), π)→ HomH(σ, π
∣∣H) by setting

φ 7→ Φc(φ) := (w 7→ φ(fw))

and extending by G-linearity. Then for all h, h′ ∈ H,

Φc(φ)(h · w)(h′) = φ(fh·w)(h′) = (h · φ)(fw)(h′) = (h · Φc(φ))(h′),

so Φc does indeed have image in HomH(σ, π
∣∣
H

).

The map Φc is injective, since

Φc(φ)(w) = 0 for all w ∈ W =⇒ φ(fw) = 0 for all w ∈ W =⇒ φ = 0.

And it is surjective, since given ϕ ∈ HomH(σ, π
∣∣
H

), the map

fw 7→ ϕ(w)
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extends to a G-equivariant homomorphism indGH(σ)→ π.

In summary, the two isomorphisms of E-vector spaces above are given by the following

formulae:

1. Smooth Frobenius reciprocity. When H ⊂ G is closed, we have an isomorphism

Φ : HomG(π, IndGH(σ))→ HomH(π
∣∣
H
, σ)

defined by

(φ : v 7→ f) 7→
(
ϕ : v 7→ f(1)

)
(
φ : v 7→ (g 7→ ϕ(g · v))

)
← [ (ϕ : v 7→ w)

2. Compact Frobenius reciprocity. When H ⊂ G is open, we have an isomorphism

Φc : HomG(indGH(σ), π)→ HomH(σ, π
∣∣
H

)

defined by

(φ : f 7→ v) 7→
(
ϕ : w 7→ φ(fw)

)(
f 7→

∑
g∈H\G

π(g−1)ϕ(f(g))
)
←[ (ϕ : w 7→ v) .

When G is a p-adic reductive group, H is a parabolic subgroup, and (σ,W ) is a smooth

representation of H, then IndGH(σ) = indGH(σ). This is a special case of the following:

Lemma 2.2.3. If H ⊂ G is an open subgroup, H \ G is compact, and (σ,W ) is a smooth

representation of H, then the two functors are equal.

Proof. For any closed H and smooth representation (σ,W ) of H, consider the support of

f ∈ IndGH(σ) in H \ G. Since f is locally constant, its support is both closed and open in
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H \G. If H is open and H \G is itself compact, then the support of f ∈ IndGH(σ) is compact

in H \G, hence is compact in G.

Note that the lemma applies equally well to a metaplectic cover G̃ of a reductive group

G and a subgroup H̃ ⊂ G̃ which is the full preimage of a parabolic subgroup H ⊂ G.

In order to classify the principal series representations of G̃ = S̃L2(F ), it will be important

to understand the B̃-module decomposition of the smooth induction IndG̃
B̃

(σ) after restriction

to B̃. The following statement of the Mackey decomposition theorem is true for an arbitrary

LCTD group G and any coefficient field:

Lemma 2.2.4. ( [26] §I.5.5) Let H, K be two closed subgroups of a LCTD group G such

that the double cosets HgK, g ∈ G, are both open and closed. Let g(H) denote the set

{gHg−1 : g ∈ G}, and given a smooth right H-module σ, let g(σ) denote the representation

of g(H) defined by

g(σ)(ghg−1) = σ(g).

Then

IndGH (σ)
∣∣
K
∼=
∏
HgK

IndKK∩g(H)

(
g(σ)

∣∣
K∩g(H)

)
and

indGH (σ)
∣∣
K
∼=
⊕
HgK

ind
K∩g(H)
K

(
g(σ)

∣∣
K∩g(H)

)
.

The Iwasawa decomposition SL2(F ) = BK lifts to give

S̃L2(F ) = B̃K∗,

in which both B̃ and K∗ are closed subgroups of G̃. Since there is only one double class,

the Mackey decomposition says that if σ is a smooth representation of B̃, then there is a

K∗-equivariant isomorphism

Ind G̃
B̃

(σ)
∣∣
K∗
∼= Ind G̃

K∗(σ)
∣∣
K∗
∼= IndK

∗

B̃∩K∗
(
σ
∣∣
B̃∩K∗

)
,
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while if τ is a smooth representation of K∗, then there is a B̃-equivariant isomorphism

ind B̃
K∗(τ)

∣∣
B̃
∼= indB̃

B̃∩K∗(τ).

Furthermore, returning to the general case of an LCTD group G, if H is a closed subgroup

of G and K is an open compact subgroup, then the Mackey decomposition implies that for

a smooth representation (σ,W ) of H,

(IndG
Hσ)K ∼=

∏
HgK

WH∩g(K)

and

(indG
Hσ)K ∼=

⊕
HgK

WH∩g(K).

In particular, considering G̃ = S̃L2(F ), the closed subgroup B̃, the open compact sub-

group K∗, and a smooth representation (σ,W ) of B̃, then

(IndG
B̃
σ)K

∗ ∼= W B̃∩K∗ .

Remark 2.2.5. While the functor of invariants under a compact subgroup is exact on rep-

resentations of p-adic groups in characteristic 0 or ` 6= p, this is no longer necessarily true

when the coefficient field has characteristic p (cf. [2]).

2.3 Classification of the genuine ordinary representa-

tions of S̃L2(F )

2.3.1 A note on terminology

The goal of this section is to classify the irreducible subquotients of smooth genuine represen-

tations of G̃ := S̃L2(F ) which are induced from genuine representations of the Borel subgroup

B̃. As this kind of representation tends to be characterized in different ways depending on
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the characteristic of the coefficient field, we briefly explain the choice of terminology.

We will call a representation ordinary if it is a subquotient of a representation induced

from B̃. We do not require ordinary representations to be irreducible (though it turns out

that all of the mod p ordinary representations of S̃L2(F ) are irreducible). The term appears

in work of Barthel-Livné, e.g., [3], Breuil, and Herzig on mod p and p-adic representations,

and refers to the fact that the 2-dimensional representation of Gal(Q̄p/Qp) associated to an

ordinary elliptic curve defined over Qp has image in the Borel subgroup.

In the study of mod p representations of p-adic GLn ( [2], [3], [6], [7], [13]), SL2, and

rank-1 unitary groups ( [1]), there is a dichotomy between the ordinary representations and

the supersingular ones, which can be read off from parametrization of mod p representations

by eigenvalues of the generators of a generalized spherical Hecke algebra: The supersingular

representations are those on which these generators act by 0. However, in this work we will

only consider the spherical Hecke algebra of G̃ with respect to the trivial representation of

K∗, so we have to defer the question of this dichotomy to future work.

2.3.2 Abelianization of B̃ and of G̃

From now on, G stands for SL2(F ) and G̃ stands for S̃L2(F ).

The torus T̃ (F ) of G̃ is commutative, though the extension does not split over it. The

next lemma shows that T̃ (F ) is the abelianization of B̃, while the abelianization of G̃ is

trivial. Hence a 1-dimensional representation of B̃ is just the inflation of a representation of

T̃ by the trivial action on B̃/T̃ = U∗, and every 1-dimensional representation of G̃ is trivial.

Lemma 2.3.1. G̃ is equal to its commutator subgroup [G̃, G̃], while [B̃, B̃] = U∗.

Proof. It is well known that [SL2(E), SL2(E)] = SL2(E) whenever E is a field of cardinality

> 3 (cf. [1] § 3.3.1). This implies that for each g ∈ G, there is some ζ ∈ {±1} such that

(g, ζ) ∈ [G̃, G̃]. So to show that [S̃L2(F ), S̃L2(F )] = S̃L2(F ) we only need to prove that

(1,−1) is generated by commutators.
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Let

(g1, ζ1) =

 y 0

0 y−1

 , ζ1

 , (g2, ζ2) =

 1 x
y2−1

0 1

 , ζ2

 ,

(g3, ζ3) =

 y−1 0

0 y

 , ζ3

 , (g4, ζ4) =

 1 0

0 x
y2−1

 , ζ4

 ,

where x is any element of F×, y ∈ F× \ {±1}, and the ζi are any elements of µ2. Then

σ(g1, g
−1
1 ) = (y, y)F so (g1, ζ1)−1 = (g−1

1 , ζ1(y, y)F ),

σ(g2, g
−1
2 ) = 1 so (g2, ζ2)−1 = (g−1

2 , ζ2),

σ(g3, g
−1
3 ) = (y, y)F so (g3, ζ3)−1 = (g−1

3 , ζ3(y, y)F ),

σ(g4, g
−1
4 ) =

(
x

y2 − 1
,
−x

y2 − 1

)
F

= 1 so (g4, ζ4)−1 = (g−1
4 , ζ4).

Commutators of these elements generate all nontrivial members of U∗ and U ′∗:

[(g1, ζ1), (g2, ζ2)] =

 1 x

0 1

 , ζ2
1ζ

2
2 (y, y)Fσ(g1, g2)σ(g1g2, g

−1
1 )σ(g1g2g

−1
1 , g−1

2 )


=

 1 x

0 1

 , (y, y)F (1, y)F (y, y)F (1, 1)F


=

 1 x

0 1

 , 1


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[(g3, ζ3), (g4, ζ4)] =

 1 0

x 1

 , ζ2
3ζ

2
4 (y, y)Fσ(g3, g4)σ(g3g4, g

−1
3 )σ(g3g4g

−1
3 , g−1

4 )


=

 1 0

x 1

 , (y, y)F

(
x

y2 − 1
, y

)
F

(
y,

xy

y2 − 1

)
F

(
y2 − 1,−(y2 − 1)

)
F


=

 1 0

x 1

 , 1

 .

These elements generate all those of the form a 0

0 a−1

 , (−1, a)F

 ∈ T̃ ,
since

w(1) =

 1 −1

0 1

 , 1

 1 0

1 1

 , 1

 1 −1

0 1

 , 1

 ∈ U∗U ′∗U∗
and a 0

0 a−1

 , (−1, a)F

 =

 1 a

0 1

 , 1

 1 0

−a−1 1

 , 1

 1 a

0 1

 , 1

w(1).

Now choose u ∈ O×F such that (u, π)F = −1. We have both

 u 0

0 u−1

 , (−1, u)F

 π 0

0 uπ−1

 , (−1, π)F

 =

 uπ 0

0 (uπ)−1

 , (−1, uπ)F (u, π)F

 ∈ [G̃, G̃]
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and uπ 0

0 (uπ)−1

 , (−1, uπ)

−1

=

 (uπ)−1 0

0 uπ

 , (−1, uπ)F (uπ, uπ)F

 ∈ [G̃, G̃],

so  uπ 0

0 (uπ)−1

 , (−1, uπ)F (u, π)F

 (uπ)−1 0

0 uπ

 , (−1, uπ)F (uπ, uπ)F



=

 1 0

0 1

 , (u, π)F

 = (1,−1) ∈ [G̃, G̃].

To show that [B̃, B̃] = U∗, we need only recall that B̃ = T̃U∗ and check that T̃ normalizes

U∗. Conjugating an element of U∗ by an element of T̃ , we get

 t 0

0 t−1

 , ζ

 1 x

0 1

 , 1

 t 0

0 t−1

 , ζ

−1

=

 t 0

0 t−1

 , ζ

 1 x

0 1

 , 1

 t−1 0

0 t

 , ζ(t, t)F


=

 t tx

0 t−1

 , ζ

 t−1 0

0 t

 , ζ(t, t)F


=

 1 t2x

0 1

 , ζ2(t, t)2
F


=

 1 t2x

0 1

 , 1

 ∈ U∗.
Hence any commutator in B̃ can be written as a product of elements in U∗.
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2.3.3 Genuine characters of T̃

A smooth character of T̃ which is trivial on {(1,±1)} is just a smooth character χ : F× → F̄×p :

χ

 a 0

0 a−1

 , ζ

 = χ(a).

However, we interested in the characters of T̃ which are nontrivial on µ2. These, the

genuine characters of T̃ , are described in terms of a certain basic character χψ which depends

on the choice of a nontrivial additive character ψ of F. Let γ be the Weil index of a quadratic

form over F ; in fact γ is a function on the Witt groupW (F ) of equivalence classes of quadratic

forms over F . As in [21], let γ define a map from the group of additive characters of F into

the group of 8th roots of unity in C, and for a ∈ F× let

γ(a, ψ) :=
γ(ψa)

γ(ψ)
,

where ψa is the character x 7→ ψ(ax). The key properties of this map, proved by Rao in [21],

are the following: for fixed ψ 6= 1 and arbitrary a, b ∈ F×, we have

1. γ(ab2, ψ) = γ(a, ψ),

2. γ(ab, ψ) = (a, b)Fγ(a, ψ)γ(b, ψ),

3. γ(a, ψb) = (a, b)Fγ(a, ψ),

4. γ(a, ψ)2 = (a, a)F ,

5. γ(a, ψ)4 = 1,

and, after fixing ψ ∈ F̂ , every genuine character of the group

F ε = {(a, ζ) : a ∈ F×, ζ ∈ µ2, (a, ζ) · (b, η) = (ab, ζη(a, b)F )}

is of the form χ · γ(−, ψ) for some character χ of F×.
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Since F ε above is isomorphic to T̃ by construction, we can view γ(−, ψ) as a character of

T̃ ⊂ G̃. Thus, after fixing ψ, every genuine smooth F̄×p character of T̃ is equal to χ·γ(−, ψ) for

some smooth F̄×p -valued character χ. In the following, denote this character by χ̃, suppressing

ψ from the notation but recalling that a choice has been made. At the end of the section we

will comment on the effect of varying ψ.

The Hilbert symbol on F is unramified since we assume p 6= 2, so when χ is any unramified

character of F×, then the restriction of χ̃ to (T̃ (F ) ∩K∗)× {±1} has the property that

χ̃(h(a), ζ) = ζ

for all a ∈ O×F . Conversely, we say that a genuine character of G̃ is unramified if it is equal

to χ̃ for some unramified character χ of F×. In particular, with respect to a given choice of

ψ, the representation 1̃ is just γ(−, ψ).

The unramified genuine characters of T̃ are exactly the ones which are equal to 1̃ on the

subgroup (T̃ ∩ K∗) × {±1}; any such smooth character is the product of 1̃ with a smooth

character of the lattice Λ, and so is determined by its value on h(π).

2.3.4 Genuine ordinary representations: B̃-module structure

All representations in the following are taken to be smooth, even if this is not specifically

mentioned. The genuine ordinary representations of G̃ are smooth inductions from B̃ to G̃

of genuine characters of T̃ . Let χ̃ denote an arbitrary genuine character in the following, and

let the name of a character of T̃ (θ̃, χ̃, etc.) also denote its inflation to B̃. Let Vχ̃ denote

the 1-dimensional F̄p-vector space on which B̃ acts by χ̃.

Following the strategy of [8] and [1], we begin by studying the induced representations

I(χ̃) := IndG̃
B̃
χ̃ as B̃-modules. The result is the following:

Proposition 2.3.2. Assume that q ≡ 1 (mod 4). Let χ̃ be the inflation to B̃ of a smooth

genuine character of T̃ (F ). As a B̃-module, I(χ̃) has the character χ̃ as a quotient, and the

kernel of this quotient map is an irreducible, smooth, genuine B̃-module. The sequence does
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not split, so I(χ̃) is an indecomposable B̃-module of length 2.

Remark 2.3.3. The proof that ker(I(χ̃) → χ̃) is irreducible is essentially by the method

of [8] (§ 9.7) and [1] (Prop. 3.4.4). This is reasonable since it mainly relies on general

properties of locally profinite groups, which G̃ inherits from G; one just has to be careful that

the necessary decompositions lift to the covering group. The assumption on q simplifies the

calculations but is probably possible to remove by careful checking.

Proof of Proposition 2.3.2. Let φ : I(χ̃)→ χ̃ send f 7→ f((1, 1)); this is a surjective map of

B̃-modules, so to prove that I(χ̃) is of length 2 as a B̃-module, we need to prove that ker(χ̃)

is an irreducible B̃-module. The strategy of [1] Prop. 3.4.4 is to give a model of ker(φ) on the

space of smooth, compactly supported functions U → F̄p and then to prove that this model

is irreducible; we will do the same here, showing that U can be replaced by the canonical

lift U∗ ⊂ G̃ of U .

Since the (refined) Bruhat decomposition in SL2(F ) lifts to

G̃ = B̃ q B̃wU∗,

a function f ∈ I(χ̃) is in ker(φ) if and only if it is supported on B̃wU∗. Following [1], we

adapt a lemma of Bushnell-Henniart ( [8] Lemma § 9.3) to show that the support of such an

f is actually contained in B̃wU∗0 for some compact open subgroup U0 ⊂ U .

Lemma 2.3.4. A function f ∈ I(χ̃) is in ker(φ) if and only if there is a compact open

subgroup U0 ⊂ U such that the support of f is contained in B̃wU∗0 .

Proof. Since f is a smooth function on G̃, there exists some compact open subgroup H ⊂ G̃

such that f(g) = f(gh) for all g ∈ G̃, h ∈ H. In particular, if f ∈ ker(φ), then

f(bh) = f(b) = 0

for all b ∈ B̃. As a compact open subgroup of G̃, H must be contained in one of the maximal

compactsK∗×µ2 orK∗0×µ2 of G̃. Say thatH ⊂ K∗×µ2; the situation for the other conjugacy
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class of maximal compacts is identical. Then there exists some m ≥ 1 such that either

K∗m ⊂ H or (1,−1)K∗m ⊂ H, where Km ⊂ K is the principal congruence subgroup of level

m. By restriction of the Iwahori decomposition, we have Km = (Km∩U)(Km∩T )(Km∩U ′),

so B̃(1,±1)K∗m = B̃(K∗m ∩ U ′∗). Hence there exists an m ≥ 1 such that

f

b
 1 0

y 1

 , 1

 = 0

for all b ∈ B̃ and all y ∈ πmOF . Similarly to the identity given in the proof of [8] 9.3 Lemma

for GL2(F ), we have for y 6= 0:

 1 0

y 1

 , 1

 =

 1 y−1

0 1

 , 1

 y−1 0

0 y

 , 1

 0 −1

1 0

 , 1

 1 y−1

0 1

 , 1


∈ B̃w

 1 y−1

0 1

 , 1



Hence f = 0 on B̃w

 1 x

0 1

 , 1

 when v(x) ≤ −m. Let

U0 =
{ 1 x

0 1

 : v(x) ≥ −m+ 1
}

;

then U0 is a compact open subgroup of U , so U∗0 is a compact open subgroup of U∗, and f

is supported on B̃wU∗0 .

Define a map

Ψ : f 7→ (u 7→ f(wu))

for u ∈ U∗, f ∈ I(χ̃). Then Ψ(f) is a smooth function U∗ → Vχ̃ ∼= F̄p. If f ∈ ker(φ),

then thanks to the lemma Ψ(f) is compactly supported on U∗, so is in the set C∞c (U∗) of

compactly supported smooth functions U∗ → F̄p. Give C∞c (U∗) the following right action of
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B̃ (which factors through B):

 a c

0 a−1

 , ζ

 · ϕ
 1 y

0 1

 , 1

 = ϕ

 1 a−2y + a−1c

0 1

 , 1


for ϕ ∈ C∞c (U∗). Note that if b1, b2 ∈ B̃, then (b1b2) · ϕ = b2(b1 · φ). Consider the

representation

C∞c (U∗)⊗ χ̃−1;

since χ̃ is a genuine character, this is a genuine representation of B̃. In order to show that

ker(φ) is an irreducible B̃-module, we’ll show that Ψ gives a F̄p[B̃]-linear isomorphism of

ker(φ) with C∞c (U∗)⊗ χ̃−1, and that the latter is irreducible.

To see that Ψ is an isomorphism of vector spaces, define the following map:

Φ : C∞c (U∗)→ ker(φ), ϕ 7→

g 7→
χ̃(b)ϕ(u) if g = bwu ∈ B̃wU∗

0 if g ∈ B̃

 .

By construction, Φ(ϕ) ∈ ker(φ), and Φ is the inverse of Ψ: if f ∈ ker(φ), then

Φ(Ψ(f)) = Φ(u 7→ f(wu)) =

g 7→
χ̃(b)f(wu) if g = bwu ∈ B̃wU∗

0 if g ∈ B̃

 = f,

while if ϕ ∈ C∞c (U∗), then

Ψ(Φ(ϕ)) = Ψ

g 7→
χ̃(b)ϕ(u) if g = bwu ∈ B̃wU∗

0 if g ∈ B̃

 = (u 7→ ϕ(u)) = ϕ.

Given b =

 a c

0 a−1

 , ζ

 ∈ B̃, g ∈ G̃, and f ∈ ker(φ), we have (b · f)(g) = f(gb); if

51



g ∈ B̃, then f(gb) = 0, while if g = b′w

 1 y

0 1

 , 1

 ∈ B̃wU∗, then

gb = b′

 0 −a−1

a a−1y + c

 , ζ

 = b′

 a−1 0

0 a

 , ζ

w

 1 a−2y + a−1c

0 1

 , 1


so

f(gb) = χ̃

b′
 a−1 0

0 a

 , ζ

 · f
w
 1 a−2y + a−1c

0 1

 , 1

 ,

which, since

 a−1 −c

0 a

 , ζ

 =

 a c

0 a−1

 , ζ

−1

when q ≡ 1 (mod 4), is equal to

χ̃(b′)χ̃−1(b) · f

w
 1 a−2y + a−1c

0 1

 , 1

 .
Then

Ψ(b · f)

 1 y

0 1

 , 1

 = χ̃−1(b) · f

w
 1 a−2y + a−1c

0 1

 , 1

 ,
while

(b · (Ψ(f)))

 1 y

0 1

 , 1

 = f

w
 1 a−2y + a−1c

0 1

 , 1

 .
Hence Ψ is a B̃-isomorphism ker(φ)→ C∞c (U∗).

Now we prove that C∞c (U∗) is an irreducible representation of B̃. Let ϕ 6= 0 ∈ C∞c (U∗),

and let U∗0 ⊂ U∗ be a compact open subgroup which contains the support of ϕ. We want to

show that ϕ generates all of C∞c (U∗) under the action of B̃. (This argument is exactly as in [1]

for SL2(F ), since the extension splits over U and C∞c (U∗) factors through a representation

of B.)

View ϕ as an element of C∞c (U∗0 ) by restriction, and consider the representation of B̃
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on the cyclic subspace of C∞c (U∗0 ) generated by ϕ. In particular, consider the restriction

of this representation to U∗0 ⊂ B̃. Since U∗0 is a pro-p group, C∞c (U∗0 ) contains a nonzero

U∗0 -invariant vector. Any U∗0 -invariant function ψ ∈ C∞c (U∗0 ) must satisfy

ψ

 1 x

0 1

 , 1

 = ψ((1, 1))

for all

 1 x

0 1

 , 1

 ∈ U∗0 , hence is a multiple of the characteristic function 1U∗0 ; thus

1U∗0 ∈ C
∞
c (U∗0 ). Furthermore, for n ≥ 0, let

U∗n :=
{
h(π)n

 1 x

0 1

 , 1

h(π)−n =

 1 xπ−2n

0 1

 , 1

 :

 1 x

0 1

 , 1

 ∈ U∗0}.
Then each U∗n is a pro-p group contained in U∗, so by same argument as for U∗0 , the subspace

of C∞c (U∗) generated (under the action of B̃) by ϕ must contain 1U∗n for each n ≥ 0. The

collection {U∗n}n≥0 is a neighborhood basis of open compacts for U∗ at the identity, so the

collection of characteristic functions

{
1U∗n·u : u ∈ U∗, n ≥ 0

}
generates C∞c (U∗) as a vector space. And under the action of B̃ on 1U∗n ∈ 〈ϕ〉 ⊂ C∞c (U∗),

we have  1 x

0 1

 , 1

−1

· 1∗Un

 1 y

0 1

 , 1



= 1U∗n

 1 y − x

0 1

 , 1

 = 1U∗nu

 1 y

0 1

 , 1



for u =

 1 x

0 1

 , 1

 and

 1 y

0 1

 , 1

 both in U∗. Thus C∞c (U∗) is a smooth
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irreducible representation of B̃, and C∞c (U∗) ⊗ χ̃−1 is a smooth, irreducible, genuine repre-

sentation of B̃.

Suppose that I(χ̃) is a decomposable B̃-module, i.e. suppose there is a B̃-equivariant

splitting of the exact sequence

1 // ker(φ) // I(χ̃)
φ // χ̃ // 1

Let f ∈ I(χ̃) be the image of some nonzero vector v ∈ Vχ̃ under this splitting. Then for all

b ∈ B̃, g ∈ G̃, we have

f(gb) = χ̃(b)f(g),

so the cyclic subspace of I(χ̃) generated by f is stable by B̃. We will now show that in fact

it is stable under the action of G̃.

Since χ̃ is trivial on U∗, we have u ·f = f for all u ∈ U∗. As shown in the proof of Lemma

2.3.4, f is fixed by

(U ′∗ ∩K∗m) =
{ 1 0

πmx 1

 , 1

 : x ∈ OF
}

for some m ≥ 1. And if u′ =

 1 0

x 1

 , 1

 ∈ U ′∗, then u′ can be written as a product of

elements of T̃ and (U ′∗ ∩K∗m): let k > 0 be large enough so that xπ2k ∈ πmOF , and check

that

h(π)k

 1 0

xπ2k 1

 , 1

h(π)−k =

 1 0

x 1

 , (x, πk)2
F

 = u′.

So if u′ ∈ U ′∗,

(u′ · f) = (h(π)kh(π)−kf) = f,
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i.e. f is fixed by U ′∗. And since w(1) ∈ U∗U ′∗U∗, namely

w(1) =

 1 −1

0 1

 , 1

 1 0

1 1

 , 1

 1 −1

0 1

 , 1

 ,

the refined Bruhat decomposition shows that the cyclic subspace of I(χ̃) generated by f is

in fact G̃-stable.

Thus 〈f〉 is a one-dimensional genuine representation of G̃. But since [G̃, G̃] = G̃, every

one-dimensional representation is trivial and so cannot be genuine. Hence the exact sequence

does not split for any smooth genuine character χ̃.

2.3.5 Classification of genuine ordinary mod p representations

Using the proposition of the previous section, we can classify the smooth, genuine, ordinary

representations. We have shown that I(χ̃) has length 2 as a B̃-module and has a unique

1-dimensional quotient which is a genuine representation of B̃. So if I(χ̃) is a reducible G̃-

representation, then its length as a G̃-module is exactly 2, and it has a unique 1-dimensional

subquotient which restricts to a genuine representation of B̃. But this is a contradiction:

the only 1-dimensional representation of G̃ is the trivial character, which cannot restrict to

a genuine representation of B̃. Hence I(χ̃) is irreducible for each χ̃.

The remaining question is when I(χ̃) ∼= I(χ̃′). If these two principal series representations

are isomorphic, then

dim HomG̃(I(χ̃), I(χ̃′)) ≥ 1,

so by smooth Frobenius reciprocity,

dim HomB̃(I(χ̃)
∣∣
B̃
, χ̃′) ≥ 1.

But as a B̃-module, I(χ̃) contains has only one 1-dimensional subquotient, which is χ̃ itself

and occurs with multiplicity 1. So the space of B̃-homomorphisms is 1-dimensional if χ̃ = χ̃′

and 0-dimensional otherwise, showing that I(χ) ∼= I(χ′) as G̃-modules if and only if χ = χ′.
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Next, we will describe the I(1)∗, I∗, and K∗-invariants of I(χ). The K∗-invariants will be

useful in future exploration of the genuine spherical Hecke algebra and its modules, since the

K∗-invariant subspace of a genuine representation gives a module over the genuine spherical

Hecke algebra. Likewise, the I∗-invariants are of interest in applications of the result of

Chapter 4, as the I∗-invariant subspace of a genuine representation of G̃ which is generated

by its I∗-invariants gives a module over the genuine Iwahori Hecke algebra. It will turn out

that I(χ̃) has nontrivial I∗- and K∗-invariants if and only if χ̃ is unramified.

Since (1,−1) ∈ B̃, the decomposition G = BI(1)qBβ0I(1) lifts to G̃:

G̃ = B̃I(1)∗ q B̃

 0 −π−1

π 0

 , 1

 I(1)∗,

and so an I(1)∗-invariant vector in I(χ̃) is determined (as a function G̃→ F̄p) by its values

on (1, 1) and

 0 −π−1

π 0

 , 1

. These values are independent for a given function,

so the I(1)∗-invariants of I(χ̃) are 2-dimensional for each χ̃. Let {f1, f2} be the basis for

I(1)∗ determined by the coset representatives (1, 1) and

 0 −π−1

π 0

 , 1

 respectively.

Thanks to this decomposition into double cosets as B̃ \ S̃L2(F )/I(1)∗, the S̃L2(F )-translates

of the I(1)∗-invariants generate the whole representation.

Now we can use this to find the I∗-invariants. The decomposition I = T (OF )I(1) in G

lifts to G̃ since it lives in K; hence

I∗ = (T̃ ∩K∗)I(1)∗,

so if i ∈ I∗, then i = h(a) · i0 for some a ∈ O×F and some i0 ∈ I(1)∗. If a vector f ∈ I(χ) is to

be I∗-invariant, then it is certainly I(1)∗-invariant, so it is G̃-generated by the functions f1

and f2. An element i = h(a) · i0 ∈ I∗ sends f1 to h(a) · f1 = χ̃(h(a)) · f1, while sending f2 to

h(a) · f2 = χ̃(a−1) · f2. Since this action preserves the decomposition of I(χ̃)I(1)∗ , a function

f is I∗-invariant if and only if its f1-component and f2-component are each I∗-invariant, if
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and only if χ̃(h(a)) = χ̃(h(a−1)) = 1 for all a ∈ O×F . Hence I(χ̃)I
∗

= I(χ)I(1)∗ if χ̃ is an

unramified genuine character, and I(χ̃) has no I∗-invariants otherwise.

Note also that (as in [19] Lemma 6.3), thanks to the decomposition G̃ = U∗T̃K∗, the

map I(χ̃)→ χ̃ defined by f 7→ f((1, 1)) gives an isomorphism from I(χ̃)K
∗

to χ̃T̃∩K
∗
. Since

χ̃ is a 1-dimensional representation of T̃ , its T̃ ∩K∗-invariant space is 1-dimensional if χ̃ is

unramified and 0-dimensional otherwise.

These results are summarized in the following theorem:

Theorem 2.3.5. Let F be a p-adic field with residue field of order q ≡ 1 (mod 4).

1. The smooth, genuine, ordinary mod p representations of S̃L2(F ) are all those of the

form I(χ̃) := Ind
S̃L2(F )

B̃
χ̃, where Ind is the smooth induction functor and χ̃ is an arbi-

trary genuine character of T̃ (F ) (defined with respect to a fixed additive character of

F ).

2. The dimension of HomS̃L2(F )(I(χ̃), I(χ̃′)) is 1 if χ̃ = χ̃′ and is 0 otherwise, so I(χ̃) ∼=

I(χ̃′) only if χ̃ = χ̃′.

3. The I(1)∗-invariant space I(χ̃)I(1)∗ is of dimension 2 over F̄p.

4. If χ̃ is not unramified, then I(χ̃) has no nontrivial I∗- or K∗-invariants. If χ̃ is

unramified, then I(χ̃)I
∗

= I(χ̃)I(1)∗, so is 2-dimensional, and I(χ̃)K
∗

is 1-dimensional.

2.4 Unramified principal series of PGL2(F )

The unramified principal series representations of PGL2(F ) are just those of GL2(F ) with

trivial central character, so can be extracted from Barthel and Livné’s classification in [2].

The (smooth) unramified principal series representations of GL2(F ) with trivial central char-

acter are exactly those of form B(χ) := indGB(χ ⊗ χ−1) where χ : F× → F̄×p is a smooth

character, and B(χ) is irreducible if and only if χ = χ−1. Hence the irreducible unramified

principal series representations of PGL2(F ) are indexed by the unramified F̄×p -characters of
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F× such that χ(π)2 6= 1. The remaining unramified characters are the trivial character 1 and

the sign character sgn (which sends x ∈ F× to (−1)val(x)), and their induced representations

B(1) and B(sgn) are isomorphic. Decomposing B(1), we get two more irreducible unramified

representations of PGL2(F ), namely the trivial representation 1 and the infinite-dimensional

Steinberg representation St = Ind(1⊗ 1)/1.

Barthel and Livné also study the I- and K-invariants of the unramified principal series

in [3]: if χ2 6= 1, then dimF̄pB(χ)I = 2 and dimF̄pB(χ)K = 1. The Steinberg representation

has a 1-dimensional I-invariant subspace and has no K-invariants ( [3] Prop. 32), while 1 is

of course equal to its I- and K-invariants.
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Chapter 3

The genuine spherical Hecke algebra

3.1 Summary

3.1.1 Abstract of the chapter

In this chapter, we show that the genuine spherical mod p Hecke algebra of G̃ is a polynomial

algebra in one variable over F̄p, and we find an explicit generator. Next, we recall that the

spherical mod p Hecke algebra of PGL2(F ) is also a polynomial algebra in one variable

over F̄p, so the two algebras are abstractly isomorphic. Then we demonstrate that a certain

explicit isomorphism between the mod p spherical Hecke algebras gives a bijection between

the unramified genuine ordinary representations of G̃ (except for the one induced from the

sign character) and the unramified principal series representations of PGL2(F ), and that this

is a natural correspondence in the sense that corresponding representations have isomorphic

Hecke module structures on their spherical vectors. This bijection agrees with the one defined

by theta correspondence for unramified principal series representations in characteristic 0,

including its dependence on the choice of an additive character of F .

3.1.2 Main results

The first section introduces some notation and then reviews the Satake isomorphism in

various settings, since we will define a version of it to compute the genuine mod p spherical

Hecke algebra Hε
p(G̃,K

∗) of G̃. In the second section, we show that the mod p Satake
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isomorphism for reductive groups can be adapted to prove that Hε
p(G̃,K

∗) is a polynomial

algebra in one variable, isomorphic to a certain subalgebra of the genuine spherical Hecke

algebra of the torus T̃ .

Theorem (3.4.1). Define a map

S : Hε
p(G̃,K

∗)→ Hε
p(T̃ , T̃ ∩K∗)

by

f 7→

t 7→ ∑
u∈U∗/(U∗∩K∗)

f(tu)

 .

Then S is injective and gives an algebra isomorphism

S : Hε
p(G̃,K

∗)→ Hε,−
p (T̃ , T̃ ∩K∗),

where Hε,−
p (T̃ , T̃ ∩K∗) is the antidominant submonoid of Hε

p(T̃ , T̃ ∩K∗).

We also note that Hε
p(G̃,K

∗) is isomorphic to the group algebra F̄p[X−∗ (T )] of the an-

tidominant coweights of SL2(F ). Thanks to a result of Barthel-Livné, this is enough to show

that Hε
p(G̃,K

∗) is abstractly isomorphic to the spherical Hecke algebra of PGL2(F ) with

respect to the trivial representation of KG (Lemma 3.4.6).

We calculate the spherical Hecke module structure of the K∗- and KG- invariants of the

unramified ordinary representations of, respectively, S̃L2(F ) and PGL2(F ) (Lemma 3.4.4)

and use the results to define a bijection of principal series representations induced from

unramified characters χ 6= sgn. This bijection is shown to be compatible with the most

obvious choice of concrete isomorphism between the spherical Hecke algebras. The results

of the second half of the chapter are summarized in the following:

Theorem C (Theorem 3.4.7). 1. The F̄p-linear map Hε
p(G̃,K

∗) → Hp(PGL2(F ), KG)

defined by t 7→ t1 is an algebra isomorphism. Furthermore, it induces a bijection (which

depends on the additive character ψ) of irreducible unramified ordinary representations

associated to characters χ of F× such that χ2 6= sgn.
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2. When χ̃ = χ · γψ is defined with respect to a fixed choice of ψ (as in §2.3.3) and χ

is a smooth unramified character of F× such that χ2 6= 1, the irreducible unramified

ordinary representation I(χ̃) of G̃ corresponds under the bijection to the irreducible

ordinary representation I(χ⊗ χ−1) of PGL2(F ).

3. The dependence of the bijection on ψ is as follows. For a ∈ F×/(F×)2, let χa denote the

quadratic character of F× given by the Hilbert symbol (−, a)F . If I(χ⊗χ−1) corresponds

to I(χ̃) when the bijection is defined with respect to a nontrivial additive character ψ,

then I(χ ⊗ χ−1) corresponds to I(χa · χ̃) when the bijection is defined with respect to

the character ψa : x 7→ ψ(ax).

3.1.3 Review of related results in characteristic 0

For context, we mention that the main theorem of [22] implies the existence of an isomor-

phism between the center of the genuine C-valued Iwahori Hecke algebra Hε
C(G̃, I∗) and the

center of the C-valued Iwahori Hecke algebra of PGL2(F ). Note that Savin’s results are

more general, but we specialize them to the pair (G̃, PGL2(F )) in this discussion. We give

a full statement and further discussion of Savin’s isomorphism of Iwahori Hecke algebras in

§4.1.3.

The center of Hε
C(G̃, I∗) is the isomorphic image of the genuine C-valued spherical

Hecke algebra under the composition of a Satake isomorphism with a Bernstein isomor-

phism, and likewise the center of the Iwahori Hecke algebra HC(PGL2(F ), IG) is the iso-

morphic image of the spherical C-valued Hecke algebra of PGL2(F ). Hence Savin’s ex-

plicit isomorphism of Iwahori Hecke algebras Hε
C(G̃, I∗) ∼= HC also gives an isomorphism

Hε
C(G̃,K∗) ∼= HC(PGL2(F ), KG).

This induced map of spherical Hecke algebras, viewed via the Satake isomorphism as a

map of Weyl orbits in the group algebras of the respective cocharacter lattice, sends the

Weyl orbit of the dominant coroot of SL2(F ) to the Weyl orbit of the dominant coroot of

PGL2(F ). As noted in [23] (p. 20), one gets a bijection between subquotients of unramified

principal series representations (over C) associated to a given unramified C-valued character
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χ of F×. Over C, the unramified principal series representation I(χ̃) is isomorphic to I(χw)

for w in the Weyl group of S̃L2(F ), so the W -invariance of the image of the Satake map is

crucial for the existence of the bijection.

Over F̄p, we have seen (cf. Theorem A) that, for fixed choice of an additive character ψ,

the ordinary representations associated to distinct F̄p characters χ, χ′ of F× are irreducible

and nonisomorphic. Away from those χ such that χ2 = 1, we have the same result ( [2],

Thm.25 ) for the mod p principal series representations of PGL2(F ). Hence Weyl invariance

no longer plays a role in the mod p setting, and in fact the image of our Satake map is not

W -invariant.

In the next sections, we give a more detailed review of Satake isomorphisms in different

settings.

3.2 Preliminaries

3.2.1 Notation and definitions

Let G = SL2(F ), G̃ = S̃L2(F ), and K = SL2(OF ). Let K∗ be the image of K in G̃ under

the preferred section θ defined in (ref to ch.1), and recall that K ∼= K∗ since the extension

splits over K.

The rest of this section sets down notation for the spherical mod p Hecke algebras of G̃

and of T̃ .

Definition 3.1.

1. Define Hp(G̃,K
∗) to be the algebra of K∗-biinvariant, smooth, compactly supported

F̄p-valued functions on G̃. The product of two functions f1, f2 in Hε
p(G̃,K

∗) is their

convolution f1 ∗ f2, defined by

(f1 ∗ f2)(g′) :=
∑

g∈G̃/K∗

f1(g′g) · f2(g−1).
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2. Let Hε
p(G̃,K

∗) denote the subset of Hp(G̃,K
∗) consisting of genuine functions, i.e.,

define

Hε
p(G̃,K

∗) :=
{
f ∈ Hp(G̃,K

∗) : f(g(1, ζ)) = ζf(g) for all g ∈ G̃, ζ ∈ {±1}
}
.

The convolution of two genuine functions in Hp(G̃,K
∗) is again a genuine function, so

Hε
p(G̃,K

∗) is an algebra under the convolution product.

Since K∗ is a compact open subgroup of G̃, the Frobenius reciprocity map (Prop. 2.2.1)

is an F̄p-algebra isomorphism

Hp(G̃,K
∗)→ EndG̃(indG̃K∗1K∗),

where 1K∗ is the trivial representation of K∗ and indG̃K∗ is the functor of compact

induction Rep(K∗)→ Rep(G̃).

3. Denote the endomorphism algebra EndG̃(indG̃K∗1K∗) by Hp(G̃,K
∗), and let Hε

p(G̃,K
∗)

denote the subalgebra of Hp(G̃,K
∗) which is the image under Frobenius reciprocity of

the genuine subalgebra Hε
p(G̃,K

∗). In particular, Frobenius reciprocity is an isomor-

phism of Hε
p(G̃,K

∗) with Hε
p(G̃,K

∗).

The isomorphic algebras Hε
p(G̃,K

∗) and Hε
p(G̃,K

∗) will both be called the genuine

mod p spherical Hecke algebra of G̃, and we will work in one or the other as context

requires.

We make the analogous definitions for the torus T̃ of G̃ and its compact open subgroup

T̃ ∩K∗.

Definition 3.2.

1. Let Hp(T̃ , T̃ ∩ K∗) denote the algebra of compactly supported functions f : T̃ → F̄p
which are invariant under multiplication by (T̃ ∩K∗); note that since T̃ is abelian, left-

and right-(T̃ ∩K∗)-invariance are equivalent. The algebra product in Hp(T̃ , T̃ ∩K∗)
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is the convolution

(f1 ∗ f2)(t′) =
∑

t∈T̃ /(T̃∩K∗)

f1(t′t)f2(t−1).

2. Let Hε
p(T̃ , T̃ ∩K∗) denote the subalgebra of genuine functions in Hp(T̃ , T̃ ∩K∗).

3. Since T̃ ∩K∗ is a compact open subgroup of T̃ , Frobenius reciprocity gives an isomor-

phism of Hp(T̃ , T̃ ∩ K∗) with EndT̃ (indT̃
T̃∩K∗1T̃∩K∗), where indT̃

T̃∩K∗ is the functor of

compact induction Rep(T̃ ∩K∗)→ Rep(T̃ ).

Denote EndT̃ (indT̃
T̃∩K∗1T̃∩K∗) by Hp(T̃ , T̃ ∩ K∗) and let Hε

p(T̃ , T̃ ∩ K∗) denote the

injective image under Frobenius reciprocity of Hε(T̃ , T̃ ∩K∗) in Hp(T̃ , T̃ ∩K∗.)

The genuine mod p spherical Hecke algebra of T̃ is defined to be either one of Hε(T̃ , T̃ ∩

K∗) or Hε
p(T̃ , T̃ ∩ K∗), depending on the context. We will usually omit the modifier

“mod p,” but unless otherwise specified, the coefficient field should be assumed to be

F̄p.

Finally, we define the antidominant submonoid of Hε
p(T̃ , T̃ ∩K∗). In preparation, recall

from §1.1.1 that we have a canonical (up to choice of a uniformizer π of F) isomorphism

between the cocharacter group X∗(T ) and T (F )/T (OF ), where T is the diagonal torus

of SL2(F ), and this isomorphism sends a cocharacter λ ∈ X∗(T ) to the class of λ(π) in

T/T (OF ). The antidominant coroot (−1, 1) is sent to the class modulo T (OF ) of

α0 :=

 π−1 0

0 π

 ,

while the dominant coroot (1,−1) is sent to α−1
0 . Moreover we identified T/T (OF ) with Λ,

the one-parameter subgroup of T̃ /(T̃ ∩K∗) generated by the class modulo T̃ ∩K∗ of

h(π) :=

 π−1 0

0 π

 , (−1, π)F

 ,

by identifying the class of α0 modulo T (OF ) with the class of h(π) modulo T̃ ∩K∗. Accord-
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ingly, we will say that a class of T̃ modulo T̃ ∩ K∗ is antidominant if it is represented by

h(π)k for some k ≥ 0, and dominant if it is represented by h(π)k for some k ≤ 0.

Definition 3.3. Define H−p (T̃ , T̃ ∩K∗) to be the submonoid of Hp(T̃ , T̃ ∩K∗) consisting of

functions which are supported only on antidominant classes of T̃ /(T̃ ∩K∗).

The aim of this chapter is to describe the structure of the genuine spherical Hecke algebra

Hε
p(G̃,K

∗) and then to use it to relate certain unramified representations of G̃ to those of

SL2(F ). To explain how this has been done in similar settings, we review three known

versions of the Satake map: for split reductive groups and then for their metaplectic covers

when the coefficient field is C, and for unramified reductive groups when the coefficient field

is F̄p.

3.2.2 The classical Satake isomorphism for split groups

In this expository section, we break from the convention of the main text and take all

representations over C. All representations are still assumed to be smooth. The main

reference for this section is [9].

Let G be a reductive algebraic group which splits over a nonarchimedean local field

F , and let G = G(F ). Such a G has a hyperspecial maximal compact K, meaning that

K ∼= G(OF ) for a smooth integral model model G of G.

More generally, one can take G to be unramified over F , meaning that it has a minimal

parabolic subgroup B defined over F and a maximal compact subgroup K such that G(F ) =

B(F )K(F ) (i.e., G has an Iwasawa decomposition over F ). Note that while not every

unramified reductive group has a hyperspecial maximal compact (since not every such group

has a smooth model over OF ), it is true that if G is defined over a global field, then it has a

smooth integral model at almost every place.

Let (σ, V ) be an irreducible representation of K. The spherical Hecke algebra of G with
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respect to σ is the C-algebra of functions

H(G,K, σ) = {f : G→ EndCV : f(k1gk2) = σ(k1) ◦ f(g) ◦ σ(k2) ∀ ki ∈ K, g ∈ G }

which are compactly supported mod K on the left, on which multiplication is given by

convolution and G acts by translation on the right. Although it is easy to give a C-vector

space basis for H(G,K, σ) using a Cartan decomposition of G, its algebra structure (e.g., its

generators, relations, and properties such as commutativity and semisimplicity) is generally

less clear. The Satake isomorphism transfers these questions to the group algebra of the

cocharacter group of a maximal torus in G, or equivalently to the spherical Hecke algebra of

a maximal torus, where the structure is much easier to see.

Let Ψ = (X∗(T ),Φ, X∗(T ),Φ∨) denote the root datum attached to the pair (G, T ): here

X∗(T ) is the character group of T , X∗(T ) is the cocharacter group, and Φ and Φ∨ are the

sets of roots and coroots respectively. Also let W denote the Weyl group of (G, T ). Then

the dual group G∨ (which comes with a maximal torus T∨ ⊂ G∨) to G is the connected

reductive group such that the root system of (G∨, T∨) is Ψ∨ = (X∗(T ),Φ∨, X∗(T ),Φ). (The

justification for calling this the “dual group” in this situation is essentially the second state-

ment of the Satake isomorphism below, which will relate characters of the Hecke algebra of

G to representations of G∨.) In particular, T∨ is the maximal torus in G∨ whose character

group is X∗(T ) and whose cocharacter group is X∗(T ), and W again acts on both of these

groups. Here is the simplest statement of the Satake isomorphism theorem:

Theorem 3.2.1 (Satake isomorphism for split groups). Let G be a split reductive group over

a local field F , and let T be a split maximal torus of G and K = G(OF ). Then there is a

canonical isomorphism between the spherical Hecke algebra H(G,K) and C[T∨]W .

The W -action on C[T∨] is worth a quick note. The group algebra C[T∨] is canonically

isomorphic to the ring of regular functions on the character group of T∨: given an element

f ∈ C[T∨], f acts on C× by χ(f)
∣∣
Vχ

where χ ∈ Hom(T∨,C×) is any character. Since
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End(Vχ) ∼= C, we can define a map C[T∨]→ Reg(Hom(T∨,C×)) by:

f 7→ (χ 7→ πχ(f) ∈ C) ,

where Reg(Hom(T∨,C×)) is the ring of regular functions on the space of algebraic homo-

morphisms. Hence the W -action on C[T∨] is given by the usual action of W on X∗(T ).

With a bit more work, we can reformulate the isomorphism to replace C[T∨]W with the

group of unramified complex characters of T , as follows. IdentifyX∗(T ) with HomF−alg.gp.(Gm, T )

so that if φ ∈ X∗(T ), then the corresponding element φ′ ∈ HomF−alg.gp.(Gm, T ) is the map

such that for all t ∈ F , λ ∈ X∗(T ),

λ(φ′(t)) = t〈φ,λ〉.

(From now on, we will just call φ′ by φ, and consider X∗(T ) to be the cocharacter group of

T as an algebraic group, though we will also use the fact that it is the Z-dual of X∗(T ).)

From that point of view, we have an isomorphism X∗(S) ∼= T (F )/T (OF ) which identifies the

element φ ∈ X∗(T ) = HomZ(X∗(T ),Z) with the class modulo T (OF ) of elements t ∈ T (F )

such that

〈φ, λ〉 := φ(λ) = vF (λ(t)).

The algebraic characters λ ∈ X∗(T ) are polynomial functions on T , and {λ ∈ X∗(T )}

is a basis for the F -algebra of polynomial functions on T . T is exactly the spectrum of the

algebra of polynomials defined on it, so T = Spec(F [X∗(T )]).

We now have a convenient way of describing the points of T under an extension K of k:

if K is a commutative k-algebra, then the K-points of T are

T (K) = Homk−alg.gp.(K,T ) = Homk−algebra.(k[X∗(T )], K×) ∼= HomZ(X∗(T ), K×).

Since X∗(T ) is the Z-dual of X∗(T ), HomZ(X∗(T ), K×) ∼= X∗(T )⊗Z K
×. In particular, the
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k-points of T are X∗(T )⊗Z k
×, which indeed is isomorphic to (k×)rk(T ) ∼= T.

Let Λ(T ) = T (F )/T (OF ). Then Λ(T ) = X∗(T ), and the group of unramified characters

of T is Hom(X∗(T ),C×). Now let S = Spec(C[X∗(T )]), a complex torus. We have

X∗(S) ∼= X∗(T )

and

S(C) ∼= Hom(X∗(S),C×) ∼= Hom(X∗(T ),C×) ∼= {unram. chars. of T}.

So given a split torus T , we have the following recipe for a complex algebraic group S which

parametrizes unramified characters of T (in the sense that its group of C-points is isomorphic

to the group of unramified characters): Let S be the complex torus whose character group is

the same as the cocharacter group of S, and vice versa. The definition of the dual group to

a split reductive group grows from this idea. In particular, the group of unramified complex

characters of SL2(F ) is isomorphic to the W -invariants of the complex group algebra of the

torus (over C) of PGL2, and vice versa.

The Satake transform. One can again reformulate the theorem in a way which is less

convenient to state but whichgives an explicit isomorphism. Let G be a split connected

reductive group with a hyperspecial maximal compact K, Borel subgroup B such that G =

BK and T ⊂ B for T a maximal split torus of G. Let H(T, T (OF )) denote the algebra

of T (OF )-biinvariant, compactly supported smooth functions on T . Let du be the Haar

measure on the unipotent radical U of B, normalized so that
∫
U∩K du = 1. Finally, let

δ : T → F× be the determinant of the action of T (F ) on Lie(U). In the split case, this is the

modular character of the standard Borel containing the chosen split maximal torus. Then:

Theorem 3.2.2 (Satake isomorphism, [9] Thm. 4.1 ). The map

H(G,K)→ H(T, T (OF ))
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defined by

f 7→
(
u 7→ δ(u)1/2

∫
U

f(tu) du

)
is an injective homomorphism of algebras, and its image is exactly H(T, T (OF ))W .

In fact, as in [12], one can replace C with Z in the definition of the spherical Hecke

algebras of G and T . Then the transform goes through as written, except that since

δ(µ(π))1/2 ∈ Z[q±1/2], the image of S is in Z[q±1/2], and we need to adjoin q±1/2 before

getting an isomorphism

S : H(G,K)⊗ Z[q±1/2]→ (H(T,o T )⊗ Z[q±1/2])W ∼= R(Ĝ)⊗ Z[q±1/2],

where R(Ĝ) is the representation ring of Ĝ. (This is because the irreducible representations

of Ĝ are parametrized by their highest-weight vectors, which are W -orbits of characters of

T∨.)

This formula cannot be reduced mod p as it stands, since it contains the inverse of q.

However, this problem can be avoided by omitting the modular character δ, if one forfeits

W -invariance of the image. As it turns out, this is unproblematic, as explained in the

introduction to [14], and reduction mod p gives the statement of Herzig’s mod p Satake

isomorphism in the case where V is the trivial representation of K. (However, there are

some extra difficulties when considering nontrivial representations of K.)

Application in characteristic 0: unramified principal series representations. The

Satake transform gives an isomorphism between the spherical Hecke algebra of G and the

group of unramified characters of T via H(T, T (OF ))W , or C[T∨]W . Now we tie this to

the larger representation theory of G and its dual group Ĝ. Given an unramified character

χ of T , inflate χ to a character of B and then induce to G to form the principal series

representation I(χ).

Proposition 3.2.3 ( [5]). 1. I(χ) ∼= I(χ′) if and only if χ′ = χw for some w ∈ W .

2. I(χ)K is 1-dimensional if χ is unramified, and 0 if χ is ramified.
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Let (I(χ), Vχ) be a principal series representation of G, and identify it with the W -orbit

of χ. If and only if χ is unramified, the K-invariant subspace is 1-dimensional, so V K
χ is a

1-dimensional H(G,K)-module, i.e. the W -orbit of a character of H(G,K). Precomposing

with the Satake isomorphism, we can view this as a character of C[T∨]W . And

Hom(C[T∨],C×) ∼= Hom(X∗(T∨),C×) ∼= T∨(C),

so a character of C[T∨]W matches up uniquely with a C-point of T∨/W .

Note that this matching works for any unramified representation of G, so more generally

let s(π) be the semisimple conjugacy class of Ĝ, or Satake parameter, associated to an

unramified π.

Proposition 3.2.4 ( [12], Prop. 6.4). The map π → s(π) gives a bijection between the set of

isomorphism classes of unramified irreducible representations of G and the set of semisimple

conjugacy classes in G.

In particular, if the spherical Hecke algebras of two such groups are isomorphic, then

transfer of characters from the spherical Hecke algebra of one group to the other induces a

bijection of unramified principal series representations.

3.2.3 The Satake isomorphism for the metaplectic group in char-

acteristic 0

This section is again expository, and again takes place in characteristic 0. The Satake

transform in characteristic 0 can be defined similarly for a metaplectic group, and gives an

isomorphism of the (appropriately defined) spherical Hecke algebra with the Weyl-invariants

of the group algebra of the (again, appropriately defined) coweight lattice. The main point

is to choose these two definitions carefully. The following results are due to Kazhdan and

Patterson ( [16], [17]) in the case of GLn, and were studied by McNamara [19] for metaplectic

covers of split reductive groups.
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Let G be a split reductive group over F , and suppose that G has a hyperspecial maximal

compact subgroup K = G(OF ) where G is a smooth group scheme over OF . Let B be a

Borel subgroup of G and T ⊂ B a maximal split torus; let B = B(F ) and T = T(F ). Let

G̃ be the central extension of G by µn and assume that 2n
∣∣(q − 1). The extension splits

(non-canonically) over K; let K∗ denote some choice of lifting of K to G̃ which is compatible

with the canonical lifting of the unipotent radical U ⊂ B to U∗ ⊂ G̃.

Define the antigenuine spherical Hecke algebra Hε(G̃,K∗) to be the algebra of K∗-bi-

invariant smooth, compactly supported, antigenuine functions f : G̃ → C. The algebra

product is convolution with respect to a Haar measure on G̃ which is normalized so that

vol(K × µn) = 1. Then ( [19], Thm. 9.2) the support of H(G̃,K∗) is µnK
∗HK∗, where H is

the centralizer in T̃ of T̃ ∩K∗. Note that H is a maximal abelian subgroup of T̃ , as proved

in [19] Lem. 5.3. When n = 2 and G = SL2, we have H = T̃ and µ2 ⊂ T̃ , so the support of

Hε(G̃,K) is K∗T̃K∗.

Let Y be the group of cocharacters of T, viewed as a subgroup of T via λ 7→ λ(π). Recall

that, thanks to the commutator formula in T̃ when G is a split group, the extension splits

trivially over Y when 2n
∣∣(q − 1). Let s : Y ⊂ G̃ denote such a splitting. Define

Λ = {λ ∈ Y : s(λ(π)) ∈ H},

and let C[Λ] denote the group algebra of Λ. Denote the modular quasicharacter of B̃ by δ.

Theorem 3.2.5 ( [19], Thm. 10.4). Define the Satake map S : Hε(G̃,K)→ C[Λ] as follows:

(Sf)(λ) = δ1/2(λ(π))

∫
U∗
f(λ(π)u) du,

where du is a Haar measure on G̃ such that vol(K × µn) = 1.

Then S is an injective homomorphism, and gives an algebra isomorphism

Hε(G̃,K)→ C[Λ]W .
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To define a Satake transform on the mod p spherical Hecke algebra of S̃L2(F ), we will

need to combine these modifications to the reductive case with some modifications to the

characteristic-0 case. We now move back to characteristic p to explain what has been done

for reductive groups in that setting.

3.2.4 The Satake isomorphism for unramified reductive groups in

characteristic p

Herzig [14] has defined a Satake transform in characteristic p and shown that it is an isomor-

phism of every spherical Hecke algebra of an unramified connected reductive group with the

group algebra of its antidominant coweights. Herzig considers spherical Hecke algebras with

respect to all irreducible representations of the maximal compact K; if one is only interested

in the spherical Hecke algebra with respect to the trivial representation of K, as is the case

for us in the rest of this chapter, then the result can be deduced from a renormalized version

of the integral Satake isomorphism mentioned in §3.2.2. However, we state Herzig’s result

in full.

The setting is as follows. G is an unramified connected reductive group over F with

Iwasawa decomposition G(F ) = BK, and T is a maximal torus such that B = T n U . Let

(π, V ) be an irreducible representation of K. The spherical Hecke algebra of G with respect

to V has the following two equivalent definitions:

HG(V ) = EndF̄pG

(
ind

G(F )
K V

)
,

where ind
G(F )
K V~r is the compact induction, i.e., the space

I(K,G, V ) = {f : G→ V~r : f(kg) = π(k)f(g)∀k ∈ K, g ∈ G}

where f is locally constant and compactly supported mod K on the left, and with the
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right-translation action of G;

HG(V ) = {f : G→ EndF̄pV : f(k1gk2) = π(k1)f(g)π(k2) for all k1, k2 ∈ K, g ∈ G}

where f is compactly supported and the F̄p-algebra structure is given by convolution. The

two algebras HG(V ) and HG(V ) are isomorphic by compact Frobenius reciprocity.

Let k denote the residue field of F , and let U(k) denote the image of U(OF ) in G(k).

When V is an irreducible representation of K, then the U(k)-invariant subspace of V~r is a

one-dimensional representation of T (k), and the Hecke algebra of T (k) with respect to this

representation is defined to be

HT (V U(k)) = {f : T (F )→ EndF̄p(V
U(k)) ∼= F̄p : f(k1gk2) = f(g)∀ki ∈ T (OF ), g ∈ T (F )}.

Given an irreducible representation (π, V ) of G(k), let HT−(V U(k)) be the subalgebra of

HT (V U(k)) in which all functions are supported on T−.

Theorem 3.2.6 ( [14] Thm. 1.2). Suppose that V is an irreducible representation of G(k)

over F̄p. Then the map

S : HG(V )→ HT (V U)

given by

f 7→

t 7→ ∑
u∈U(F )/U(OF )

f(tu)
∣∣
V
U(k)
~r


is an injective F̄p-algebra homomorphism with image HT−(V U(k)).

Note that the image of the transform is isomorphic, via evaluation of coweights on a

uniformizer of OF , to the group algebra F̄p[X−∗ (S)], where S the maximal F -split torus in

G which is normalized by T .
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3.3 F̄p-vector space structure of Hε
p(G̃,K

∗)

We now begin to describe the structure of the genuine mod p spherical Hecke algebra

Hε
p(G̃,K

∗) defined in §3.2.1.

3.3.1 Support of the genuine spherical Hecke algebra

The goal of this section is to prove the following proposition:

Proposition 3.3.1. Every element of S̃L2(F ) is contained in the support of a function

belonging to the genuine spherical Hecke algebra Hε
p(S̃L2(F ), K∗).

Remark 3.3.2. The statement of Proposition 3.3.1 is well-known for the C-valued spherical

Hecke algebra of G̃; for example, see [19], Thm. 9.2 for a more general statement which

reduces to Proposition 3.3.1 in the case G = SL2, n = 2. The proof in the context of

C-valued functions remains valid for F̄p-valued functions, but for completeness we give an

elementary argument for G̃ = S̃L2(F ).

We first reduce the proof of Proposition 3.3.1 to showing thatK∗h(π)nK∗ 6= K∗h(π)n(1,−1)K∗

for all n ≥ 0.

Lemma 3.3.3. For each n ∈ Z, there is a genuine function supported on

K∗h(π)nK∗
⋃

K∗h(π)n(1,−1)K∗

if and only if K∗h(π)nK∗ 6= K∗h(π)n(1,−1)K∗. In particular, if K∗h(π)nK∗ 6= K∗h(π)n(1,−1)K∗,

then the function

1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗

is in Hε
p(G̃,K

∗).

Proof of Lemma 3.3.3. If K∗h(π)kK∗ = K∗h(π)k(1, ζ)K∗ for some n ∈ Z, then there exist

k1, k2 ∈ K∗ for which h(π)n(1,−1) = k1h(π)nk2. Then a genuine function f must satisfy

−f(h(π)n) = f(h(π)n(1,−1)) = f(k1h(π)nk2) = f(h(π)n),
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so f(h(π)n) = 0. Hence f(g) = 0 for all g ∈ K∗h(π)nK∗
⋃
K∗h(π)n(1,−1)K∗ if the union is

not disjoint.

Conversely, if K∗h(π)nK∗ ∩K∗h(π)n(1,−1)K∗ = ∅, then the function

1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗

is in Hε
p(G̃,K

∗) and is supported on K∗h(π)nK∗ ∩K∗h(π)n(1,−1)K∗.

Lifting the Cartan decompositions (1.2) to G̃, we can write G̃ as a union over K∗-double

cosets in the following ways:

G̃ =
∐
n≥0

 ⋃
ζ∈{±1}

K∗h(π)n(1, ζ)K∗

 =
∐
n≤0

 ⋃
ζ∈{±1}

K∗h(π)n(1, ζ)K∗

 (3.1)

Hence every element of G̃ is contained in K∗h(π)nK∗∪K∗h(π)n(1,−1)K∗ for some n ≥ 0.

So if K∗h(π)nK∗ 6= K∗h(π)n(1,−1)K∗ for all n ≥ 0, then Lemma 3.3.3 shows that every

element of G̃ is contained in the support of a genuine function.

Proof of Proposition 3.3.1. By the discussion following the proof of Lemma 3.3.3, it is enough

to show that K∗h(π)nK∗ 6= K∗h(π)nK∗ for all n ≥ 0. As it is no harder to show this for

arbitrary n ∈ Z, we will prove:

Claim. For each n ∈ Z, K∗h(π)nK∗ 6= K∗h(π)n(1,−1)K∗.

Proof of Claim. Since (1,−1) /∈ K∗, the claim is clear for n = 0. Suppose thatK∗h(π)nK∗ =

K∗h(π)n(1,−1)K∗ for some n ∈ Z, n 6= 0. Then h(π)n(1,−1) ∈ K∗h(π)nK∗, so there exist

k1, k2 ∈ K such that

(k1, θ(k1))h(π)n(k2, θ(k2))−1 = h(π)n(1,−1);
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or equivalently, such that

(k1, θ(k1))h(π)n = h(π)n(1,−1)(k2, θ(k2)). (3.2)

Recall from (ch. 1. ref) that φ(n) ∈ {±1} is defined by

h(π)n = (αn0 , φ(n)),

and write k1 =

 a b

c d

 and k2 =

 e f

g h

. In terms of these matrix entries, the equality

(3.2) can be rewritten as

 aπ−n bπn

cπ−n dπn

 , θ(k1) · φ(n) · σ(k1, α
n
0 )

 =

 eπ−n fπ−n

gπn hπn

 , θ(k2) · (−φ(n)) · σ(αn0 , k2)

 ,

(3.3)

where θ is the map G → {±1} defined in (1.8). Equality of the SL2(F )-parts implies that

a = e, bπ2n = f , c = gπ2n, and d = h. Applying the formula for θ, we have

θ(k1) =

(gπ2n, d)F = (g, d)F if 0 < |gπ2n|F < 1,

1 otherwise.

(3.4)

Since n 6= 0 and g ∈ OF , gπ2n is never a unit, so the first case of (3.4) occurs if and only if

g = 0. Applying θ to k2, we get

θ(k2) =

(g, d)F if 0 < |g|F < 1,

1 otherwise .

(3.5)

It is now clear that θ(k1) = θ(k2) whenever g /∈ O×F .

In fact, θ(k1) = θ(k2) when g ∈ O×F as well; we prove this now. Suppose that g ∈ O×F .

As c is in OF , g = cπ−2n /∈ O×F whenever n < 0, so we may assume that n > 0. Then
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v(c) = v(gπ2n) = 2n > 0, and considering det(k1) = ad− bc = ad− bgπ2n = 1, we have

0 = v(ad− bgπ2n)

if and only if v(ad) = 0. Since a, d are both in OF , v(ad) = 0 if and only if a, d are both in

O×F . Then, since the Hilbert symbol on F is unramified and g, d ∈ O×F , we have

θ(k1) = (g, d)F = 1,

and θ(k2) = 1 by definition. Thus θ(k1) = θ(k2) for all values of g ∈ OF .

Next we show that the values of the cocycle σ agree on the two sides of (3.3). On the

right-hand side, we have

σ(αn0 , k2) =

(πn, g)F = (πn, cπ−2n)F = (πn, c)F if c 6= 0,

(πn, h)F = (πn, d)F if c = 0,

(3.6)

which is exactly the value of σ(k1, α
n
0 ) on the left-hand side.

If the two sides of the equation (3.3) have equal projections to G, then their projections

to {±1} are, respectively,

θ(k1) · φ(n) · σ(k1, α
n
0 ) (3.7)

and

θ(k2) · (−φ(n)) · σ(αn0 , k2). (3.8)

Since θ(k1) = θ(k2) and σ(k1, α
n
0 ) = σ(αn0 , k2), we have

θ(k2) · (−φ(n)) · σ(αn0 , k2) = −θ(k1) · φ(n) · σ(k1, α
n
0 ),

and so (3.7) 6= (3.8). Hence there do not exist k1, k2 which satisfy the equation (3.3), implying

that h(π)n(1,−1) /∈ K∗h(π)nK∗. We conclude that K∗h(π)n(1,−1)K∗ and K∗h(π)nK∗ are

disjoint.
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The statement of Proposition 3.3.1 now follows from Lemma 3.3.3 and the Cartan de-

composition (3.1).

3.3.2 Vector space bases for Hε
p(G̃,K

∗) and Hε
p(G̃,K

∗)

In this section, we use Proposition 3.3.1 and the Cartan decomposition of G̃ to give an

F̄p-vector space basis for Hε
p(G̃,K

∗), and then apply the Frobenius reciprocity map to get a

F̄p-vector space basis for Hε
p(G̃,K

∗). The result is:

Lemma 3.3.4. 1. For n ≥ 0, let

tn =
1

2

(
1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗

)
.

Then {tn}n≥0 is an F̄p-vector space basis for Hε
p(G̃,K

∗).

2. For n ≥ 0, let Tn be the element of EndG̃(ind G̃K∗1K∗) which is determined by

Tn(1K∗) = tn.

Then {Tn}n≥0 is a F̄p-vector space basis for Hε
p(G̃,K

∗).

Proof. 1. While proving Proposition 3.3.1, we showed in particular that K∗h(π)nK∗ 6=

K∗h(π)n(1,−1)K∗ for all n ≥ 0. Then by the last statement of Lemma 3.3.3, we have

1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗ ∈ Hε
p(G̃,K

∗),

so also tn ∈ Hε
p(G̃,K

∗). Since the proof of Proposition 3.3.1 shows that all of the unions

are disjoint in the Cartan decomposition (3.1), we have

G̃ =
∐
n≥0

ζ∈{±1}

K∗h(π)n(1, ζ)K∗.
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The disjointness of the union implies that the set {tn}n≥0 is linearly independent over

F̄p, and its exhaustion of G̃ implies that every g ∈ G̃ is contained in

K∗h(π)nK∗ qK∗h(π)n(1,−1)K∗

for some n ≥ 0. ByK∗-biinvariance, an arbitrary function f ∈ Hε
p(G̃,K

∗) is determined

by its values on the set of representatives {h(π)n, h(π)n(1,−1)}n≥0 of K∗ \ G̃/K∗, and

since f is genuine it is in fact determined by its values on {h(π)n}n≥0. Hence f can be

written as a linear combination

f =
∑
n≥0

an
1

2

(
1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗

)
,

where an = 0 for almost all n since f is compactly supported. Thus the linearly

independent set {tn}n≥0 also generates Hε
p(G̃,K

∗) as an F̄p-vector space.

2. We can obtain a basis for Hε
p(G̃,K

∗) as a vector space over F̄p by applying compact

Frobenius reciprocity to the basis {tn}n≥0 for Hε
p(G̃,K

∗). Denote the image of tn in

Hε
p(S̃L2(F ), K∗) by Tn. Using the explicit description of Frobenius reciprocity from

(2.2.2), we see that Tn ∈ EndG̃indG̃K∗1K∗ sends f ∈ indG̃K∗1K∗ to

(
g′ 7→

∑
g∈S′

tn
(
g′ · g−1

)
f(g)

)
∈ indS̃L2

K∗ 1K∗ , (3.9)

where S ′ is any set of left coset representatives for K∗ in G̃.

Given any such set S ′, the set of characteristic functions {1K∗g}g∈S′ forms a basis for

indS̃L2
K∗ 1K∗ as a vector space. Thus the characteristic function 1K∗ generates indG̃K∗1K∗

under the right-translation action of G̃. Since Tn ∈ EndG̃(indG̃K∗1K∗) and in particular

is G̃-equivariant, Tn is determined by its value on 1K∗ . Applying the formula (3.9)

with f = 1K∗ ,

Tn(1K∗) =

(
g′ 7→

∑
g∈S′

tn
(
g′ · g−1

)
1K∗(g)

)
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= (g′ 7→ tn (g′)) = tn.

Hence a vector space basis for Hε
p(G̃,K

∗) is given by {Tn}n≥0 where Tn is determined

by Tn(1K∗) = tn.

One could directly compute relations between the vector space generators tn (respectively,

Tn) to find a presentation for Hε
p(G̃,K

∗) (respectively, forHε
p(G̃,K

∗)) as an algebra. However,

it will be easier and more illuminating to describe of the genuine spherical Hecke algebra of G̃

in terms of that of the torus T̃ . In the next section, we will explicitly describe Hε
p(T̃ , T̃ ∩K∗)

and its antidominant submonoid Hε,+
p (T̃ , T̃ ∩ K∗), and in §3.4 we prove that Hε

p(G̃,K
∗) is

isomorphic to Hε,−
p (G̃,K∗).

3.3.3 The genuine spherical Hecke algebra of T̃

In this section we check that that the genuine spherical Hecke algebra of the torus T̃ is a

polynomial algebra in one variable, and we give a concrete description algebra generator:

Lemma 3.3.5. The function

τ1 :=
1

2

(
1K∗h(π)K∗ − 1K∗h(π)(1,−1)K∗

)
belongs to Hε

p(T̃ , T̃ ∩K∗), and in fact we have an isomorphism of F̄p-algebras

Hε
p(T̃ , T̃ ∩K∗) ∼= F̄p[τ±1

1 ].

We have a similarly concrete presentation for the antidominant submonoid Hε,−
p (T̃ , T̃ ∩

K∗):

Lemma 3.3.6. Let τ1 be the function defined in Lemma 3.3.5. Then τ1 also belongs to

Hε,−
p (T̃ , T̃ ∩K∗), and we have an isomorphism of F̄p-algebras

Hε,−
p (T̃ , T̃ ∩K∗) ∼= F̄p[τ1].
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Proof of Lemma 3.3.5. We have the decomposition

T̃ =
∐
n∈Z

ζ∈{±1}

(T̃ ∩K∗)h(π)n(1, ζ),

so a vector space basis for Hε
p(T̃ , T̃ ∩K∗) is given by

{
τn :=

1

2

(
1(T̃∩K∗)h(π)n − 1(T̃∩K∗)h(π)n(1,−1)

)}
n∈Z

.

For a ∈ O×F , n ∈ Z, we have the formula (cf. §1.2)

h(a)h(π)n =

 a 0

0 a−1

 , 1

 ·
 π−n 0

0 πn

 , φ(n)


=

 aπ−n 0

0 a−1πn

 , (a, πn)Fφ(n)

 .

Hence for k ∈ Z, a ∈ O×F , ζ ∈ {±1},

τn

 aπ−k 0

0 a−1πk

 , ζ

 =


1
2

if k = n and ζ = φ(n)(a, πn)F

−1
2

if k = n and ζ = −φ(n)(a, πn)F

0 if k 6= n.

(3.10)

For each pair n, m ≥ 0, the convolution τn ∗ τm is genuine and T̃ ∩ K∗-invariant, so is

determined by its values on {h(π)k}k∈Z. To find relations among the elements of the vector

space basis {τn}n∈Z, we compute the value of a convolution τn ∗ τm on an arbitrary T̃ ∩K∗-
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coset representative h(π)k.

(τn ∗ τm)(h(π)k) =
∑

t∈T̃ /(T̃∩K∗)

τn(h(π)kt) τm(t−1)

=
∑

j∈Z, ζ∈{±1}

τn(h(π)kh(π)j(1, ζ)) τm((h(π)−j(1, ζ)).

The summand τn(h(π)kh(π)j(1, ζ)) τm((h(π)−j(1, ζ)) is nonzero only if k+j = n and m = −j,

so (τn ∗ τm)(h(π)k) = 0 unless k = n+m.

When k = n+m, we are left with the summands indexed by j = n, ζ ∈ {±1}:

(τn ∗ τm)(h(π)n+m) =
∑

ζ∈{±1}

τn(h(π)n(1, ζ)) τm((h(π)m(1, ζ))

=
1

4
(τn(h(π)n)τm(h(π)m) + τn(h(π)n(1,−1))τm(h(π)m(1,−1)))

=
1

4

(
12 + (−1)2

)
=

1

2
.

So, since τn ∗ τm is genuine and T̃ ∩K∗-invariant, we have for all t ∈ T̃ ,

τn ∗ τm(t) =


1
2
ζ if t ∈ K∗h(π)n+m(1, ζ)K∗

0 otherwise

= τn+m(t).

In particular,

τn ∗ τ0 = τ0 ∗ τn = τn

for all n ∈ Z, so τ0 = 1
2

(
1K∗ − 1K∗(1,−1)

)
is the identity element of the algebra Hε

p(T̃ , T̃ ∩K∗).

And

τn ∗ τ−n = τ0,
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so

τ−1
n = τ−n

for each n ∈ Z. Hence for each n ∈ Z we have

τn = τn1 , (3.11)

and so

Hε
p(T̃ , T̃ ∩K∗) ∼= F̄p[τ1, τ−1] = F̄p[τ±1

1 ], (3.12)

as desired.

Proof of Lemma 3.3.6. The class of h(π)n modulo T̃ ∩K∗ is identified with the cocharacter

(−n, n), which is antidominant if and only if n ≥ 0. Hence

τ1 =
1

2

(
1K∗h(π)K∗ − 1K∗h(π)(1,−1)K∗

)
is supported on an antidominant class in T̃ /(T̃ ∩K∗). By (3.11), as n runs over the nonneg-

ative integers, the powers

τn1 = τn

run over the basis elements of Hε
p(T̃ , T̃ ∩K∗) which are supported on antidominant classes.

Hence the isomorphism (3.12) given in Lemma 3.3.5 restricts to an isomorphism of F̄p-

algebras

Hε
p(T̃ , T̃ ∩K∗) ∼= F̄p[τ1].

Remark 3.3.7. The map τn 7→ (α∨)n is an isomorphism

Hε
p(T̃ , T̃ ∩K∗) ∼= F̄p[X∗(T )],

where T is the diagonal torus of SL2(F ). Restricting the map to {τn}n≥0, we also get an
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isomorphism of Hε,−
p (T̃ , T̃ ∩K∗) with the submonoid of F[X∗(T )] generated by antidominant

cocharacters:

Hε,−
p (T̃ , T̃ ∩K∗) ∼= F[X−∗ (T )].

3.4 Isomorphisms of spherical mod p Hecke algebras

In this section, we define a Satake transform S : Hε
p(G̃,K

∗) → Hε(T̃ , T̃ ∩ K∗) and prove

that it is an isomorphism of Hε
p(G̃,K

∗) with the antidominant submonoid Hε,−(T̃ , T̃ ∩K∗)

of Hε
p(T̃ , T̃ ∩K∗).

3.4.1 The mod p Satake isomorphism for S̃L2(F )

Before stating the theorem, we recall from §1.2 that the extension defining G̃ is canonically

split over the unipotent subgroup U , and that a preferred section g 7→ (g, θ(t)) was chosen

so that the extension splits over the maximal compact subgroup K of G. Furthermore, these

two splittings are compatible on the intersection (U ∩ K). We let U∗ (respectively, K∗)

denote the image of U (resp., K) in G̃ under the canonical (resp., preferred) section, and

define (U ∩ K)∗ to be the image of U ∩ K in G̃ under either one of the two sections. In

particular, (U ∩K)∗ = U∗ ∩K∗.

Theorem 3.4.1. Define a map

S : Hε
p(G̃,K

∗)→ Hε
p(T̃ , T̃ ∩K∗)

by

f 7→

t 7→ ∑
u∈U∗/(U∗∩K∗)

f(tu)

 .

Then S is injective and gives an algebra isomorphism

S : Hε
p(G̃,K

∗)→ Hε,−
p (T̃ , T̃ ∩K∗),
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Remark 3.4.2. The proof closely follows that of the main theorem of [14], which in the case

of the spherical Hecke algebra with respect to the trivial representation of K∗ (the only case

we consider here) also follows the classical proof in most ways. The vanishing outside the

antidominant range is a particularity of the mod p situation.

When extending Herzig’s argument from the case of a reductive group to that of the

covering group G̃ = S̃L2(F ), the main additional point is to check that no extraneous signs

are introduced by the Satake transform or by convolution products in the genuine spherical

Hecke algebras.

Proof of Theorem 3.4.1. The proof is in four steps.

1. We first verify that S defines a F̄p-linear map of Hε
p(G̃,K

∗) into Hε
p(T̃ , T̃ ∩K∗).

Let f ∈ Hε
p(G̃,K

∗). By Lemma 3.3.4,

f =
∑
n≥0

antn

where tn is the vector space basis element defined in Lemma 3.3.4 and an ∈ F̄p with

an = 0 for almost all n. Furthermore, since K∗ is a compact open subgroup of G̃, each

K∗-double coset K∗h(π)n(1, ζ)K∗ in G̃ is a finite union of left K∗-cosets. Thus f is

supported on a finite number of representatives of G̃/K∗. By the Iwasawa decomposi-

tion

G̃ = B̃K∗,

we can choose representatives of G̃/K∗ to lie in B̃/(B̃ ∩K∗), so f(b) = 0 for all but

finitely many representatives b of B̃/(B̃ ∩K∗). We also have the decomposition

B̃ = T̃U∗,

so f(tu) = 0 for all but finitely many representatives t of T̃ /(T̃ ∩ K∗) when u runs

over U∗/(U ∩ K)∗. Furthermore, when t ∈ T̃ is fixed, we have f(tu) = 0 for all but

finitely many representatives u of U∗/(U ∩K)∗. Hence the support of S(f) is finite in
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T̃ /T̃ (OF ), and if a representative t ∈ T̃ /(T̃ ∩K)∗ is in the support of S, then S(f)(t) is

given by a finite sum of values f(tu) ∈ F̄p. Thus S(f) ∈ Hp(T̃ , T̃ ∩K∗), and S defines

a map of F̄p-vector spaces.

Since f is a genuine function on G̃, we have

S(f)(t(1, ζ)) =
∑

u∈U∗/(U∩K)∗

f(t(1, ζ)u) =
∑

u∈U∗/(U∩K)∗

ζf(tu) = ζS(f)(t),

so S(f) is in the genuine subalgebra Hε
p(T̃ , T̃ ∩K∗) of Hp(T̃ , T̃ ∩K∗).

2. Next we check that S is a homomorphism of algebras.

Let f1, f2 ∈ Hε
p(G̃,K

∗) and t ∈ T̃ . Then [S(f1) ∗ S(f2)](t) =

=
∑

t′∈T̃ /(T̃∩K∗)

 ∑
u′∈U∗/(U∗∩K∗)

f1(tt′u′)

 ∑
u∈U∗/(U∗∩K∗)

f2(t′−1u)


=

∑
t′∈T̃ /(T̃∩K∗)

∑
u′∈U∗/(U∗∩K∗)

∑
u∈U∗/(U∗∩K∗)

f1(tt′u′)f2(t′−1u).

On the other hand,

S(f1 ∗ f2)(t) =
∑

u∈U∗/(U∩K)∗

∑
G̃/K∗

f1(tug)f2(g−1).

Since G̃ = B̃K we can choose representatives for G̃/K∗ in

B̃/(B̃ ∩K∗) = (T̃ /(T̃ ∩K∗))(U∗/(U∗ ∩K∗)).
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Thus S(f1 ∗ f2)(t)v =

=
∑

u∈U∗/(U∗∩K∗)

∑
b∈B̃/(B̃∩K∗)

f1(tub)f(b−1)

=
∑

u∈U∗/(U∗∩K∗)

∑
t′∈T̃ /(T̃∩K∗)

∑
u′∈U∗/(U∗∩K∗)

f1(tut′u′)f2(u′−1t′−1)

As T̃ normalizes U∗, we have t′−1ut′u′ ∈ U∗, so can substitute u′ 7→ t′−1ut′u′. Then

u′−1t′−1 = [(t′−1ut′)u′]−1t′−1u 7→ u′−1t′−1u, and we can replace the above sum with the

following:

=
∑

t′∈T̃ /(T̃∩K∗)

∑
u′∈U∗/(U∗∩K∗)

∑
u∈U∗/(U∗∩K∗)

f1(tt′u′)f2(u′−1t′−1u).

And finally, substitute t′u′−1t′−1u 7→ u:

=
∑

t′∈T̃ /(T̃∩K∗)

∑
u′∈U∗/(U∗∩K∗)

∑
u∈U∗/(U∗∩K∗)

f1(tt′u′)f2(t′−1u),

which is equal to [S(f1) ∗ S(f2)](t), so S is a homomorphism.

3. The next step is to compute the transforms of the F̄p-basis elements {tn}n≥0 of Hε
p(G̃,K

∗).

Let n ≥ 0, and let tn be the vector space basis element of Hε
p(G̃,K

∗) defined in

Lemma 3.3.4. The transform S(tn) is a genuine T̃ ∩K∗-invariant function on T̃ , so it

is determined by its values on {h(π)m}m∈Z. We calculate

S(tn)(h(π)m) =
∑

u∈U∗/(U∩K)∗

tn(h(π)mu)

=
1

2

∑
u∈U∗/(U∩K)∗

(
1K∗h(π)nK∗(h(π)mu)− 1K∗h(π)n(1,−1)K∗(h(π)mu)

)
.
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Now we need to know how the value of

1K∗h(π)nK∗ − 1K∗h(π)n(1,−1)K∗

on h(π)mu varies with u. In fact, the value is either always nonnegative or always

nonpositive as u runs over U∗, and we can calculate it:

Lemma 3.4.3. Let n ≥ 0, m ∈ Z. If u ∈ U∗ and

h(π)mu ∈ K∗h(π)nK∗ qK∗h(π)n(1,−1)K∗,

then (
1K∗h(π)nK∗(h(π)mu)− 1K∗h(π)n(1,−1)K∗(h(π)mu)

)
= φ(n)φ(m).

Proof of Lemma 3.4.3. Recall from §1.2 that the projection of u to {±1} is equal to 1

for all u ∈ U∗, while the projection of u to G is equal to

 1 x

0 1

 for some x ∈ F .

So, given u ∈ U∗, we can write the product h(π)mu as

 π−m 0

0 πm

 , φ(m)

 1 x

0 1

 , 1


=

 π−m xπ−m

0 πm

 , φ(m)σ

 π−m 0

0 πm

 ,

 1 x

0 1


=

 π−m xπm

0 πm

 , φ(m)(1, πm)F


=

 π−m xπ−m

0 πm

 , φ(m)

 .

Hence the projection of h(π)mu to {±1} is equal to φ(m) for all u ∈ U∗. Suppose that
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for some particular pair u ∈ U∗, ζ ∈ {±1} we have

h(π)mu ∈ K∗h(π)n(1, ζ)K∗.

Then 1K∗h(π)nK∗(h(π)mu)− 1K∗h(π)n(1,−1)K∗(h(π)mu) = φ(m)φ(n).

If u′ is another element of U∗ such that h(π)mu′ ∈ K∗h(π)n(1, ζ)K∗qK∗h(π)n(1,−ζ)K∗,

then u−1u′ ∈ (U ∩K)∗, so the K∗- double cosets represented by h(π)mu and h(π)mu′

are in fact equal. This proves the lemma.

A summand of Stn(h(π)m(1, ζ)) =

∑
u∈U∗/(U∗∩K∗)

1

2

(
1K∗h(π)nK∗(h(π)mu)− 1K∗h(π)n(1,−1)K∗(h(π)mu)

)
is nonzero if and only if the projection of h(π)mu to SL2(F ) is contained in αm0 U ∩

Kαn0K, so by Lemma 3.4.3, the value of the sum over U∗/(U∗ ∩K∗) is equal to

1

2
φ(n)φ(m)|αm0 U ∩Kαn0K|. (3.13)

When m > 0, then by (1.12) of Lemma 1.3.1, we have

|αm0 U ∩Kαn0K| =


0 if n < m

1 if n = m

q`−1(q − 1) if n = `+m with ` ≥ 1.

So Stn(h(π)n) ≡ 0 (mod p) unless m = n or m = n − 1. We calculate φ(n)2 = 1 and

φ(n)φ(n− 1) = (−1)n
q−1
2 . Thus

Stn(h(π)n) =
1

2
φ(n)2 ≡ 1

2
(mod p) (3.14)
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while

Stn(h(π)n−1) =
1

2
(q − 1)φ(n)φ(n− 1)

1

2
(−1)n

q−1
2 ≡ 1

2
(−1)1+n q−1

2 (mod p). (3.15)

This completes the calculation for m ≥ 0.

Now we show that Stn(h(π)m) vanishes (mod p) for all m < 0. Note that

 π−m 0

0 πm

 , φ(m)

 1 x

0 1

 , 1

 =

 1 xπ−2m

0 1

 , 1

 π−m 0

0 πm

 , φ(m)

 ,

and when m < 0, the U∗-factor on the left is in U∩K∗ whenever v(x) ≥ 2m. Then, since

tn is U ∩K∗-invariant, the transform Stn(h(π)m) is equal to [U(πOF ) : U(π−2mOF )] =

q−2m−1 times a sum over U∗/(U ∩K)∗:

∑
u∈U∗/(U∩K)∗

tn (h(π)mu) =
∑

u∈U∗/h(π)m(U∩K∗)h(π)

tn (uh(π)m)

= [U(πOF ) : U(π−2m)]
∑

u′∈U∗/(U∩K)∗

tn(u′h(π)m)

= q−2m−1
∑

u′∈U∗/(U∩K)∗

tn(u′h(π)m)

≡ 0 (mod p) for all m < 0.

Combining the vanishing on {h(π)m}m<0 with the values (3.14) and (3.15) gives the

following formula:

Stn =

τ0 if n = 0

τn + (−1)1+n q−1
2 τn−1 if n > 0.

(3.16)
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In particular,

St1 =

τ1 − τ0 if q ≡ 1 (mod 4)

τ1 + τ0 if q ≡ 3 (mod 4).

4. Finally, we use the results of step (3) to show that the image of S is equal to Hε,−
p (T̃ , T̃∩

K∗), and that it is an injective map.

Every f ∈ Hε
p(G̃,K

∗) is a linear combination of the basis elements {tn}n≥0, and we

showed in step (2) that S is a homomorphism, so the vanishing of S(tn) on h(π)m for

m < 0 is enough to show that the image of S is contained in Hε,−(T̃ , T̃ ∩ K∗). And

the algebra generator τ1 ∈ Hε,−(T̃ , T̃ ∩K∗) is in the image of S, in particular equal to

S(t1 + t0) = τ1 − τ0 + τ0 if q ≡ 1 (mod 4),

S(t1 − t0) = τ1 + τ0 − τ0 if q ≡ 3 (mod 4),

so S is onto Hε,−(T̃ , T̃ ∩K∗).

Suppose S(f) = 0 for some f =
∑
cntn ∈ Hε

p(G̃,K
∗), where n ≥ 0 and cn = 0 for

almost all n. Then

0 =
∑

cn(Stn) =

c0τ0 +
∑

n≥1 cn(τn − τn−1) if q ≡ 1 (mod 4)

c0τ0 +
∑

n≥1 cn(τn + (−1)ψ(n)τn−1) if q ≡ 3 (mod 4).

As {τn}n≥0 is linearly independent over F̄p, so are

{τn − τn−1, τ0}n≥1 and {τn + (−1)n+1τn−1, τ0}n≥1,

so we have cn = 0 for all n. Hence f = 0, showing that S is injective.

This concludes the proof of Theorem 3.4.1.
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As a consequence, we find the following generator for Hε
p(G̃,K

∗) as a polynomial algebra

in one variable over F̄p: t1 + t0 if q ≡ 1 (mod 4)

t1 − t0 if q ≡ 3 (mod 4).

3.4.2 Action of Hε
p(G̃,K

∗) on spherical vectors

We work out the action ofHε,−(T̃ , T̃∩K∗) ∼= Hε
p(G̃,K

∗) on a spherical vector in an unramified

genuine ordinary representation. The result is the following:

Lemma 3.4.4. Fix a nontrivial additive character ψ of F , and let χ be a smooth unramified

character of F×. Let χ̃ be the genuine character of T̃ defined with respect to ψ in §2.3.3,

and let I(χ̃) be the unramified ordinary representation induced from χ̃. Then the K∗-fixed

subspace I(χ̃)K
∗

is isomorphic to χ̃−1 = (χ · γψ)−1 as a right Hε,−(T̃ , T̃ ∩K∗) module.

Before giving the proof of Lemma 3.4.4, we briefly explain how the genuine spherical

Hecke algebra acts on the spherical vectors of a general smooth representation of G̃. Let

(π, V ) be a smooth representation of G̃ such that V K∗ 6= 0. Then V K∗ is a Hε
p(G̃,K

∗)-

module:

V K∗ ∼= HomK∗(1K∗ , π) ∼= HomG̃(indG̃K∗1K∗ , π)

where the second isomorphism is Frobenius reciprocity for compact induction. The image of

v ∈ V K∗ in HomG̃(indG̃K∗1K∗ , π) is the map

Φv : indG̃K∗1K∗ → π

which sends 1K∗ 7→ v, and hence (by G̃-equivariance) sends

1K∗g−1 7→ π(g) · v.

The effect of an element T ∈ Hε
p(G̃,K

∗) is to precompose Φv with the image of T in
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Hε
p(G̃,K

∗) ∼= EndG̃(indG̃K∗1K∗):

(Φv · T )(1K∗) = Φv(T (1K∗)).

Hence V K∗ is a right Hε
p(G̃,K

∗)-module.

Proof of Lemma 3.4.4. Let χ be an unramified character of F×, and let I(χ̃) be the induced

ordinary representation. Then, as shown in Theorem B, I(χ̃)K
∗

is 1-dimensional. Since

G̃ = U∗T̃K∗ and I(χ) is trivial on U∗, we have an isomorphism of F̄p[T̃ ]-modules

I(χ̃)K
∗ ∼= I(χ)T̃∩K

∗

given by f 7→ f((1, 1)), where f is any nontrivial function in I(χ̃)K
∗
.

Fix v = f((1, 1)) 6= 0 ∈ I(χ̃)K
∗
. Then

(v · τ1)(1T̃∩K∗) = (v · τ1)(1T̃∩K∗) (3.17)

=
1

2
Φv

(
1T̃∩K∗h(π) − 1T̃∩K∗h(π)(1,−1)

)
=

1

2

(
χ̃(h(π)−1) · v − χ̃(h(π)−1(1,−1)) · v

)
=

1

2

(
χ̃(h(π)−1) · v + χ̃(h(π)−1) · v

)
= χ̃−1(h(π)) · v

= χ(π) · γψ(π)v,

where ψ is the additive character of F with respect to which the genuine characters of T̃ are

defined. So for fixed ψ, I(χ̃)T̃∩K
∗ ∼= (χ · γψ)−1 as a right Hε,−

p (T̃ , T̃ ∩K∗)-module.

3.4.3 Comparison with the spherical Hecke algebra of PGL2(F )

The spherical Hecke algebra of PGL2(F ) with respect to the trivial representation was

shown by Barthel and Livné to be a polynomial algebra in one variable. Recall that α =
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 1 0

0 π

 ∈ GL2(F ).

Proposition 3.4.5 ( [3], Prop. 4). Let t be the element of

Hp(GL2(F ), KGZ) ∼= EndGL2(F )(ind
GL2(F )
KGZ

1)

defined by

t : 1KGZ 7→ 1KGZαKG .

Then H(GL2(F ), KGZ) ∼= F̄p[t].

Hence we immediately have:

Proposition 3.4.6. The genuine spherical Hecke algebra Hε
p(G̃,K

∗) of G̃ is abstractly iso-

morphic to the spherical Hecke algebra of PGL2(F ).

In fact, we can choose an isomorphism which induces a bijection of unramified ordinary

representations on each side, except for I( ˜sgn) on the G̃ side, and which is compatible with

the bijection between unramified ordinary representations and characters of the spherical

Hecke algebras:

Theorem 3.4.7. The F̄p-linear map Hε
p(G̃,K

∗) → Hp(PGL2(F ), KG) defined by t 7→ t1 is

an algebra isomorphism. Furthermore, it induces a bijection (which depends on the addi-

tive character ψ) of irreducible unramified ordinary representations on each side, except for

I( ˜sgn). This bijection is compatible with the correspondence of unramified ordinary repre-

sentations to characters of the spherical Hecke algebra.

Remark 3.4.8. Of course, the bijection can be completed by matching I( ˜sgn) on the G̃ side

with the Steinberg representation St on the PGL2(F ) side, and it may be that this can be

made natural in another way (e.g., from a matching of Iwahori Hecke module structure).

However, as St has no KG-fixed vectors, we cannot bring it into the correspondence via the

spherical Hecke algebra.
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Proof. By the mod p Satake isomorphism for the reductive group PGL2(F ), we have

Hp(PGL2, KG) ∼= H−p (TG, TG(OF )) ∼= F̄p[X−G,∗(TG)],

where XG,∗(TG) is the cocharacter lattice of (PGL2(F ), XG,∗) and X−G,∗(TG) is the antidom-

inant submonoid generated by α. The preimage of α in Hp(PGL2, KG) is the element

1 + t, so 1 + t is a generator of Hp(PGL2, KG) as an algebra. Hence the F̄p-linear map

Hε
p(G̃,K

∗)→ Hp(PGL2(F ), KG) defined by t 7→ t1 is an algebra isomorphism.

Next we construct a bijection between irreducible unramified principal series representa-

tions of G̃ and of PGL2(F ) which are associated to characters χ of F× such that χ2 6= 1.

The bijection is defined via the action of Hp(PGL2(F ), KG) on the F̄p-span of a spherical

vector in an unramified principal series representation I(χ ⊗ χ−1) of PGL2(F ), which we

now calculate.

Let Φv ∈ HomTG(indTGTG(OF )1TG(OF ), I(χ ⊗ χ−1)) be the TG-equivariant map defined by

1TG(OF ) 7→ v. Then

(v · t)
(
1TG(OF )

)
= Φv

(
1TG(OF )α

)
(3.18)

= Φv

(
1TG(OF )α

)
= Φv

(
α−1 · 1TG(OF )

)
= I(χ⊗ χ−1)(α−1)v

= χ(π)v

so I(χ⊗ χ−1)KG ∼= χ−1 as a H(PGL2, KG)-module.

As I(χ̃) and I(χ⊗ χ−1) are both irreducible for χ2 6= 1 and I(χ̃) 6∼= I(χ̃′), I(χ⊗ χ−1) 6∼=

I(χ′ ⊗ χ′−1) if χ2 6= 1,χ′2 6= 1, and χ 6= χ′, the map RepG̃ → RepPGL2(F ) which identifies

I(χ̃) with I(χ⊗ χ−1) is a bijection of unramified principal series representations associated

to characters χ of F such that χ2 6= 1. Moreover, as the calculations (3.17), (3.18) show, this

bijection is compatible with the isomorphism t ↔ τ1 of the spherical Hecke algebras (for a
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fixed choice of ψ).

Finally, we describe the dependence on ψ in the bijection. Let a ∈ F×/(F×)2, and define

ψa to be the character x 7→ ψ(ax) of F . Then by Property (3) of the Weil index given in

§2.3.3, we have

γ(x, ψa) = (x, a)Fγ(x, ψ).

Let χa denote the quadratic character (−, a)F of F×. Then if I(χ ⊗ χ−1) corresponds to

I(χ̃) = I(χ · γ(−, ψ)) under the bijection defined in this section with respect to ψ, then

I(χ⊗ χ−1) corresponds to χa · I(χ̃) under the bijection defined with respect to ψa.

Remark 3.4.9. On unramified ordinary representations not associated to sgn, the bijection

between unramified principal series representations agrees with that defined by theta corre-

spondence in characteristic 0, including the its dependence on an additive character ψ of

F .

3.4.4 Comments on χ2 = 1

Recall from §2.4 that I(1⊗ 1) ∼= I(sgn⊗ sgn) as representations of PGL2(F ), and that this

representation is reducible with the trivial representation 1 as a subrepresentation and the

Steinberg representation St as a quotient. On the other hand, I(1̃) and I(s̃gn) are distinct

and irreducible representations of S̃L2(F ). The K∗-invariants of I(1̃) and of I( ˜sgn) and the

KG-invariants of 1 are all 1-dimensional, and the calculations of their spherical Hecke module

structure go through as in (3.4.4) and in (3.18), respectively, for χ2 6= 1. Thus the bijection

for χ2 6= 1 extends naturally to χ = 1, identifying I(1̃) with the trivial representation of

PGL2(F ). However, since (St)KG = 0, we cannot expect to identify St with an unramified

principal series representation of G̃ via the action of the spherical Hecke algebras.

On the other hand, (St)IG is 1-dimensional, so it is a nontrivial right module for the

Iwahori Hecke algebra H(PGL2, IG). This is a reason for the comparison of H(PGL2, IG)

with the genuine Iwahori Hecke algebra Hε(S̃L2(F ), I∗) in the next chapter.
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Chapter 4

The genuine Iwahori Hecke algebra

4.1 Summary

4.1.1 Abstract of the chapter

The goal of this chapter is to give a presentation for the genuine mod p Iwahori Hecke

algebra of G̃, and then to show that this algebra is not isomorphic to the mod p Iwahori

Hecke algebra of PGL2(F ) computed by Barthel and Livné.

This is in contrast to the situation in characteristic 0, where Savin ( [22], [23]) has

shown that if H̃ is the n-fold metaplectic cover (with p 6 |n) of a simply laced Chevalley

group H, then the genuine Iwahori Hecke algebra of H̃ is isomorphic to the Iwahori Hecke

algebra of a dual group to H. When H = SL2(F ), the dual group to H is PGL2(F ), and

Savin’s isomorphism induces an equivalence of categories between genuine representations

of H̃ which are generated by their I∗-fixed vectors, and representations of the dual group

which are generated by their Iwahori-fixed vectors.

The motivation for comparing Hε
p(G̃, I

∗) to Hp(PGL2(F ), IG) was to eventually define

a correspondence between mod p representations of G̃ and of PGL2(F ) in cases which are

not addressed by the spherical Hecke algebra isomorphism of Chapter 3 (alternatively, to

explain why no natural one should exist in some cases). Though the two algebras are not

isomorphic, we relate some elements of Hp(PGL2(F ), IG) to elements of Hp(PGL2(F ), IG)

using the tree of SL2(F ).
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4.1.2 Main results

There is quite a lot of notation to set up, most of which is done in the first section. We

define a graph ∆ in analogy with the tree of SL2(F ), explain how its edges identify with

I∗-double cosets in G̃, and define a F̄p-vector space basis for G̃ in bijection with the edges

of a “positive half” of ∆.

Next, we review some results of Savin and Iwahori-Matsumoto for use in calculating rela-

tions between the vector space basis operators and compute some I∗-double coset identities

in G̃. The results are used to show the main result: for certain operators x := T 1
0,−1 and

y := T 0
2,1 ∈ Hε(G̃, I∗), we have

Proposition 4.1.1. The following is a complete list of positive powers of x := T 1
0,−1 and

y := T 0
2,1: for k ≥ 1,

1. xk = (−1)k−1T 1
0,−1 = (−1)k−1x,

2. yk =

T
0
2,1 if k = 1

0 if k ≥ 2,

3. (xy)k = T−k2k,2k+1,

4. (yx)k = (−1)k
q−1
2 T k−2k,−2k+1,

5. y(xy)k = T−k2k+2,2k+1

6. x(yx)k = (−1)k
q−1
2 T k+1
−2k,−2k−1.

Moreover we can show that these products are linearly independent and span Hε
p(G̃, I

∗) as

a F̄p-algebra. Thus x = T 1
0,−1 and y = T 0

2,1 generate Hε(G̃, I∗), and we show that the algebra

has the following presentation as a noncommutative polynomial algebra:

Theorem D (Theorem 4.3.7).

Hε(G̃, I∗) = F̄p〈x, y〉/(x2 + x, y2).
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We compare this algebra to a known presentation for Hp(PGL2(F ), IG):

Proposition 4.1.2 ( [3], Prop. 7). The mod p Iwahori Hecke algebra of PGL2(F ) has the

noncommutative presentation

H(PGL2, IG) ∼= F̄p〈a, b〉/{a2 − 1, bab+ b}.

Comparing the number of F̄p-characters on each side, we get

Theorem E (Corollary 4.3.8). Hε
p(G̃, I

∗) is not isomorphic to Hp(PGL2(F ), IG). Indeed,

their abelianizations are not isomorphic.

However, using the graph ∆ we can identify x ∈ Hε
p(G̃, I

∗) with ba ∈ Hp(PGL2(F ), IG)

and y with ab. The subalgebra of Hp(PGL2(F ), IG) generated by ba and ab is the image of

the embedding of the Iwahori Hecke algebraHp(G, I) of SL2(F ) inHp(PGL2(F ), IG). Hence

we interpret the identification of x with ba and y with ab as an identification of Hε
p(G̃, I

∗)

with the quotient of Hp(G, I) by the square of one its two generators, namely the one which

maps to ab in when Hp(G, I) embeds in Hp(PGL2(F ), IG).

4.1.3 Savin’s isomorphism in characteristic 0

As already mentioned, the motivation for the work of this chapter is a theorem of Savin

which recasts the correspondence between certain C-representations of a metaplectic group

with certain C-representations of a reductive group as an isomorphism between their Iwahori

Hecke algebras. The main result is:

Theorem 4.1.3 (( [23], Thm. 7.8). Let n be an integer and p a prime not dividing n. Let

Zn be the n-torsion subgroup in the center of a simply laced Chevalley group G over a p-adic

field F which contains n n-th roots of unity, and let G̃ be the central extension of G by the

n-th rooths of unity. Then the genuine Iwahori Hecke algebra of G̃ is isomorphic to the

Iwahori Hecke algebra of Gn(F ), where Gn is the algebraic group isomorphic to G/Zn.
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By a theorem of Borel, in characteristic 0 the functor of Iwahori-invariant vectors is an

equivalence of categories

RepI(G)→Mod(H(G, I)),

where RepI(G) is the category of smooth representations of a reductive group G which are

generated by their Iwahori-fixed vectors, and Mod(H(G, I)) is the category of right modules

over the Iwahori Hecke algebra. Savin notes that the same result holds for a metaplectic

group G̃ when the adjective “genuine” is applied both to the representations and to the

Hecke algebra. Hence the isomorphism of Theorem 4.1.3 induces an equivalence of categories

between RepI(Gn) and RepεI∗(G̃).

Remark 4.1.4. To our knowledge, there is no analogue of Borel’s theorem for mod p repre-

sentations of metaplectic groups; even if the genuine mod p Iwahori Hecke algebra of G̃ had

been found to be isomorphic to the mod p Iwahori Hecke algebra of G, we would not have

been able conclude equivalence of the categories of mod p representations. The relationship

between the mod p representations of a metaplectic group and the modules over its Hecke

algebras is an interesting point which we hope to explore in future work.

4.2 A presentation for Hε
p(S̃L2(F ), I∗)

Let R = Z or R = F̄p. Define HR(G̃, I∗) to be the algebra of functions

{
f : G̃→ R : f(i1gi2) = f(g) for all g ∈ G̃, ij ∈ I∗ and f is compactly supported

}
,

where the product on HR(G̃, I∗) is given by convolution. Let Hε
R(G̃, I∗) ⊂ Hε

R(G̃, I∗) be

the subalgebra of genuine functions, i.e., of those f such that f(g(1, ζ)) = ζf(g) for all

g ∈ G̃ and ζ ∈ {±1}. The algebra HR(G̃, I∗) is isomorphic to the full Iwahori Hecke

algebra HR(G̃, I∗) := EndR[G̃](indG̃I∗) by compact Frobenius reciprocity; explicitly, a function
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ψ ∈ H(G̃, I∗) maps to the endomorphism of indG̃I∗(1I∗) which sends f ∈ indG̃I∗1I∗ to

(
g′ 7→

∑
g∈S′

ψ(g′g−1)f(g)

)
∈ indG̃I∗1I∗ ,

where S ′ is any set of left coset representatives for I∗ in G̃. We define the genuine Iwahori

Hecke algebra to the image of Hε
R(G̃, I∗) in Hp(G̃, I

∗) under Frobenius reciprocity.

4.2.1 A vector space basis for Hε
R(S̃L2(F ), I∗), R = F̄p or R = Z

Recall that the finite Weyl group W0 of G̃ is generated by

w(1) =

 0 −1

1 0

 , 1

 ,

and that W0 is the homomorphic image of the finite Weyl group of G = SL2(F ) under

the section which splits the cover over K. Also recall that Λ = T (F )/T (OF ) is isomorphic

to the cocharacter group of G by evaluation on the uniformizer π; the analogue for the

covering group G̃ is Λ∗ = T̃ (F )/(T̃ ∩ K∗), which we will identify with the subgroup of T̃

generated by (1,−1) and h(π) =

 π−1 0

0 π

 , (−1, π)

 . and let Λ̃ = Λ∗ × {(1,±1)}.

Then T̃ = Λ̃× (T̃ ∩K∗).

The affine Weyl group of G̃ is the semidirect product Λ̃ nW0, which we denote by W .

Note that W is contained in the normalizer of T̃ ∩ K∗ in G̃, which was calculated to be

T̃ q T̃w(1) in § 2.2. The projection of W to G is equal to the semidirect product of Λ with

the finite Weyl group of G, which is a system of representatives for I \G/I. Hence

G̃ = I∗WI∗,

so we can choose representatives in W for the I∗-double cosets in G̃.

In order to relate our presentation for Hε
p(G̃, I

∗) to the Barthel-Livné presentation for
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H(PGL2, IG), we will choose representatives for I∗ \ G̃/I∗ whose SL2(F )-parts agree (after

a dilation by a factor of 2 on the diagonal part) with their representatives modulo the center

of GL2(F ). Recall the following elements of GL2(F ):

• α =

 1 0

0 π

,

• β =

 0 1

π 0

,

• z(x) =

 x 0

0 x

 for x ∈ F×,

• γ =

 1 0

0 −1

 ,

Barthel and Livné take the following set of representatives for IGZG \ GL2(F )/IG ( [3],

Lemma 5):

{αn, βαn}n∈Z.

Then they choose the vector space basis

{1IGZGα−nIG , 1IGZGβα−n}n∈Z

for the convolution algebra Hp(GL2(F ), IGZG), and define Tn,n+1 (respectively, Tn+1,n) to be

the image in H(GL2(F ), IGZG) of 1IGZGα−nIG (respectively, 1IGZGβα−nIG) under Frobenius

reciprocity. Then {Tn,n±1}n∈Z} is a vector space basis forH(GL2(F ), IGZG). After computing

relations between these basis elements, Barthel and Livné give the following presentation for

Hp(GL2(F ), IGZG) = Hp(PGL2(F ), IG):

Proposition 4.2.1 ( [3], Prop. 9). Hp(GL2(F ), IGZG) is (non-commutatively) presented by

Hp(GL2(F ), IGZG) ∼= F̄p[T1,0, T1,2]/(T 2
1,0 − 1, T1,2T1,0, T1,2 + T1,2).
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.

Hence Hp(PGL2(F ), IG) is generated as an algebra by the operators T1,0 and T1,2, which

correspond, respectively, to the characteristic functions 1IGZGβIG and 1IGZGα−1IG . The oper-

ators T1,0 and T1,2 can be interpreted as PGL2(F )- equivariant correspondences on Edo(X),

where X is the tree of SL2(F ): T1,0 sends the unit edge e0,1 to e1,0, while T1,2 sends e0,1 to

the IG-orbit of e1,2. (See § 1.3 for a picture of the tree and more details of the IG-action on

its edges.)

Recall that we have defined the following elements of G = SL2(F ):

• α0 =

 π−1 0

0 π

 ,

• s =

 0 −1

1 0

.

• β0 = α0s =

 0 −π−1

π 0

 .

Then

α0 = z(π−1)α2, β0 = α0s = γ−1z(π−1)αβ, αk0s = γ−1z(π−k)α2k−1β,

and

α−1
0 = z(π)α−2, (αk0s)

−1 = γz(πk−1)βα−(2k−1).

Under the projection G̃→ G we have

h(π)−k(1,±1) 7→ α−k0 , w(1)(1,±1) 7→ s, and (h(π)kw(1))−1(1,±1) = w(−1)h(π)−k(1,±1) 7→ (αk0s)
−1.

Define

Sζ = {h(π)−k(1, ζ), w(−1)h(π)−k(1, ζ)}k∈Z,ζ∈{±1},

and let S = S+qS−. We will check that S is a set of representatives for I∗ \ G̃/I∗, and then
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explain how to associate the double cosets {I∗gI∗ : g ∈ S} to sums of edges on a disjoint

union of copies of the tree X.

Since Λ nW0 is a set of representatives for I \ G/I and S = (Λ nW0) × {(1,±1)} as a

set, we only need to check that I∗gI∗ 6= I∗g(1,−1)I∗ for all g ∈ S. If this is not the case for

some g, then

g(1,−1) ∈ I∗gI∗ ⊂ K∗gK∗.

But K∗h(π)kK∗ 6= K∗h(π)k(1,−1)K∗ for all k ∈ Z, so the inclusion is impossible both for

g = h(π)−k and (since w(−1)−1 = w(1) ∈ K∗) for w(−1)h(π)−k. Hence the set {1I∗gI∗ : g ∈

S} is an F̄p-vector space basis for Hp(G̃, I
∗), and the set of genuine functions

{1I∗h(π)−kI∗ − 1I∗h(π)−kI∗ , 1I∗w(−1)h(π)−kI∗ − 1I∗w(−1)h(π)−k(1,−1)I∗}

forms a vector space basis for Hε(G̃, I∗).

Next, we associate these basis elements to sums of edges of a graph. Let ∆ denote the

disjoint union

∆ = qk,ζ∈
Z×±

Xk,η,

where each Xk,η
∼= X is preserved by the usual action of PGL2(F ). Fix a unit vertex vk,η0

and standard apartment vk,ηn = αnvk,η0 in each Xk,η, and give ∆ an action of GL2(F ) by

letting the central element z(x) ∈ ZG send the unit vertex vk,η0 ∈ Xk,η to the unit vertex

vk−1,η ∈ Xk−1,η and defining its effect on the rest of Xk,η by PGL2(F )-equivariance. The

action of TG(OF ) is trivial. Then the action of GL2(F ) on the oriented edges of ∆ has two

orbits: the set of oriented edges of ∆+ = qk∈ZXk,+, and of ∆− = qk∈ZXk,−. Let e0,+
0,1 be the

unit edge of X0,+. The orbit of e0,+
0,1 under SL2(F ) is the set of edges {ek,+2k,2k±1}k∈Z. Finally,

let (1,−1)vk,ηn = vk,−ηn for all k, n ∈ Z.

In Barthel and Livné’s notation, the (characteristic function of the) left coset IGZGα
−n

is identified with the edge αne0,1 = en,n+1 of the standard apartment of X, while the left

coset IGZGβα
−nIG is identified with αnβ−1e0,1 = αnβe0,1 = en+1,n. These left cosets are

identified, respectively, with the edges e0,+
n,n+1 and e0,+

n+1 of X0,+ ⊂ ∆. Identify the left cosets
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{I∗g : g ∈ S ′} with edges of ∆ as follows:

• h(π)k(1, ζ) = (αk0, ζφ(k)), so h(π)k(1, ζ)e0,+
0,1 = (z(π)kα−2k, ζφ(k))e0,+

0,1 ↔ e−k,ζ2k,2k+1, which

is identified with I∗h(π)−k(1, ζ).

• h(π)kw(1)(1, ζ) = (αk0s, ζφ(k)), so h(π)kw(1)(1, ζ)e0,+
0,1 = (z(π)k−1βα−(2k−1), ζφ(k))e0,+

0,1 ↔

e
−(k−1),ζ
2k,2k−1 , which is identified with I∗w(−1)h(π)−k(1, ζ).

Let S ′ be a set of representatives for the left I∗-cosets in G̃ such that S ⊂ S ′, and for

g ∈ S ′ define Sg = {g′ ∈ S : I∗g′ ⊂ I∗gI∗} so that

I∗gI∗ =
∐
g′∈Sg

I∗g′.

Identify the double coset I∗gI∗ with the sum of those edges associated to I∗g′ for g′ ∈ Sg.

Then as k ranges over Z, each non-oriented edge of ∆ is identified with exactly one left

I∗-coset of G′. If I∗g is identified with ek,ηn,m, then let φk,ηn,m denote the sum of edges identified

with I∗gI∗.

Finally, if w ∈ S+, let T kn,m denote the image of tw := 1
2

(
1I∗wI∗ − 1I∗w(1,−1)I∗

)
in

Hε
R(G̃, I∗) under Frobenius reciprocity. Then the set of all such T kn,m forms a vector space

basis for Hε
R(G̃, I∗). The labeling conventions for generators of Hε

p(G̃, I
∗) are summarized in

the following definition:

Definition 4.2.2. For k ∈ Z,

1. The function th(π)−k ∈ Hε
p(G̃, I

∗) corresponds by Frobenius reciprocity to the operator

T−k2k,2k+1 ∈ Hε
p(G̃, I

∗).

2. The function tw(−1)h(π)−k ∈ Hε
p(G̃, I

∗) corresponds by Frobenius reciprocity to the oper-

ator T
−(k−1)
2k,2k−1 ∈ Hε

p(G̃, I
∗).

Remark 4.2.3. Note that the labeling convention defines a bijection, via

tw ↔ T kn,m,
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between S+ and the set of triples

{(−k, 2k, 2k + 1), (−k, 2k, 2k − 1)}k∈Z.

Since {tw : w ∈ S+} forms a F̄p-vector space basis for Hε
p(G̃, I

∗), the set

{T−k2k,2k+1, T
−k
2k,2k−1}k∈Z

forms a F̄p-vector space for Hε
p(G̃, I

∗).

Remark 4.2.4. Of course, the labeling system for the basic operators T kn,m is redundant:

the corresponding basis element of Hε
p(G̃, I

∗) can be recovered from any two of k, n, m. We

originally included the superscript as an error check when calculating in GL2(F ), and retain

it here as a way of distinguishing our operators from Barthel-Livné’s while also emphasizing

their relationship. We hope that the superscript will not be confused with an exponent, and

will always use parentheses when writing powers of the T kn,m.

4.2.2 Effect of basic operators on the unit edge of ∆

Any two G̃-equivariant endomorphisms of indG̃I∗1I∗ are equal if and only if they agree on the

characteristic function 1I∗ ; equivalently, under the identification of the previous section, if

they agree on the unit edge e0,+
0,1 . In preparation for the calculation of relations between the

basic operators T kn,m, we note the effect of T kn,m on e0,+
0,1 and on 1I∗ .

Lemma 4.2.5. If T kn,m is the image of tw under Frobenius reciprocity, then

T kn,m(1I∗) = tw.

Equivalently, under our identification between I∗-double cosets and edges of ∆, we may write

T kn,m(e0,+
0,1 ) =

1

2

(
φk,+n,m − φk,−n,m

)
.
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Proof. By Frobenius reciprocity,

T kn,m(1I∗) =

(
g′ 7→

∑
g∈S

tw(g′g−1) · 1I∗(g)

)

=

g′ 7→ tw(g′) =


1
2
ζ if g′ ∈ I∗w(1, ζ)I∗

0 if not


= tw.

Recall that the unit edge e0,+
0,1 is identified with the coset I∗ and with its characteristic

function 1I∗ , while the function tw is identified with the linear combination 1
2

(
φk,+n,m − φk,−n,m

)
of edges of ∆. Hence we also have

T kn,m(e0,+
0,1 ) =

1

2

(
φk,+n,m − φk,−n,m

)
.

We will move freely between the two points of view depending on the context.

4.2.3 Products in Hε
R(G̃, I∗) and in Hε

R(G̃, I∗)

The product in Hε
R(G̃, I∗) is easy to describe: an element T ∈ Hε

R(G̃, I∗) is an R[G̃]-

equivariant endomorphism of indG̃I∗(1I∗). Hence if T, T ′ ∈ Hε
R(G̃, I∗), the product T · T ′

is the composite endomorphism T ◦ T ′ of indG̃I∗(1I∗).

Since it will sometimes be more convenient to compute products in the convolution

algebra Hε
R(G̃, I∗), we give an explicit formula for the convolution of two basic genuine

functions tw, tw′ . Recall that for w ∈ S+, we have defined

tw =
1

2

(
1I∗wI∗ − 1I∗w(1,−1)I∗

)
.
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Lemma 4.2.6. Let w, w′ ∈ S+. Then

tw′ · tw =
∑

w′′∈S+

(cw
′′

w,w′ − cw
′′

w(1,−1),w′) · tw′′ ,

where

cw
′′

w(1,ζ),w′ = |I∗ \ I∗w−1(1, ζ)I∗w′′ ∩ I∗w′I∗|.

Proof. The standard convolution product on HR(G̃, I∗) is given, on characteristic functions

of I∗-double cosets with representatives in W , by

1I∗w′I∗ · 1I∗wI∗ =
∑
w′′∈W

cw
′′

w,w′1I∗w′′I∗ ,

where cw
′′

w,w′ := |I∗ \ I∗w−1I∗w′′ ∩ I∗w′I∗|. Note that the index cw
′′

w,w′ is nonzero in Z if and

only if I∗w′′I∗ ⊂ I∗wI∗w′I∗. Since I∗w(1,−1)I∗w′(1,−1)I∗ = I∗wI∗w′I∗, we have

cw
′′

w(1,−1),w′(1,−1) = cw
′′

w,w′ ,

and since I∗wI∗w(1,−1)I∗ = I∗w(1,−1)I∗w′I∗,

cw
′′

w(1,−1),w′ = cw
′′

w,w′(1,−1).

Then 1I∗w′I∗ · 1I∗wI∗ = 1I∗w′(1,−1)I∗ · 1I∗w(1,−1)I∗ and 1I∗w′I∗ · 1I∗w(1,−1)I∗ = 1I∗w′(1,−1)I∗ ·

1I∗wI∗ , so

tw′ · tw =
1

4
(1I∗w′I∗ · 1I∗wI∗ − 1I∗w′I∗ · 1I∗w(1,−1)I∗

− 1I∗w′(1,−1)I∗ · 1I∗wI∗ + 1I∗w′(1,−1)I∗ · 1I∗w(1,−1)I∗)

=
1

2

(
1I∗w′I∗ · 1I∗wI∗ − 1I∗w′I∗ · 1I∗w(1,−1)I∗

)
.
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By definition of the convolution product in HR(G̃, I∗), this is equal to

1

2

( ∑
w′′∈W

cw
′′

w,w′ 1I∗w′′I∗ −
∑
w′′∈W

cw
′′

w(1,−1),w′ 1I∗w′′I∗

)

=
∑

w′′∈S+

1

2
(cw

′′

w,w′ − cw
′′

w(1,−1),w′)
(
1I∗w′′I∗ − 1I∗w′′(1,−1)I∗

)
,

which by definition of tw′′ is equal to

∑
w′′∈S+

(cw
′′

w,w′ − cw
′′

w(1,−1),w′) · tw′′ .

4.2.4 Double-coset decompositions in S̃L2(F )

Recall the Iwahori decompositions of I ⊂ G from (1.6):

I = (U ∩ I)T (OF )(U ′ ∩ I) = (U ′ ∩ I)T (OF )(U ∩ I),

where U is upper triangular unipotent subgroup of G and U ′ is the lower triangular unipotent

subgroup. The extension defining G̃ is split over I since I ⊂ K, so the Iwahori decompositions

lift to G̃:

I∗ = (U ∩ I)∗(T̃ ∩K∗)(U ′ ∩ I)∗ (first Iwahori decomposition in G̃);

I∗ = (U ′ ∩ I)∗(T̃ ∩K∗)(U ∩ I)∗ (second Iwahori decomposition in G̃)

Note that the preferred section θ is trivial on U ′ as well as on U , so both (U ∩ I)∗ and

(U ′ ∩ I)∗ are contained in G× {1}.

Lemma 4.2.7. The following commutation relations hold in G̃.

1. For k > 0, (U ′ ∩ I)∗h(π)−k ( h(π)−k(U ′ ∩ I)∗;
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2. for k < 0, h(π)−k(U ′ ∩ I)∗ ( (U ′ ∩ I)∗h(π)−k;

3. for k > 0, h(π)−k(U ∩ I)∗ ( (U ∩ I)∗h(π)−k;

4. for k < 0, (U ∩ I)∗h(π)−k ( h(π)−k(U ∩ I)∗;

5. (U ′ ∩ I)∗w(−1) ( w(−1)(U ∩ I)∗;

6. w(−1)(U ′ ∩ I)∗ ( (U ∩ I)∗w(−1);

7. for k > 0, (U ∩ I)∗w(−1)h(π)−k ( w(−1)h(π)−k(U ′ ∩ I)∗;

8. for k > 0, w(−1)h(π)−k(U ∩ I)∗ ( (U ′ ∩ I)∗w(−1)h(π)−k;

9. for k ∈ Z, w(−1)h(π)−kw(−1)h(π)−k = (−1, (πk, πk)F );

10. for k ∈ Z and a ∈ O×F , h(π)−kh(a) = h(a)h(π)−k;

11. for k ∈ Z, w(−1)h(π)kw(−1) = h(π)k(−1, (−1)k( q−1
2

)).

Proof.

(1) and (2) follow from the calculation

 πk 0

0 π−k

 , φ(−k)

 ·
 1 0

yπ 1

 , 1


=

 πk 0

yπ1−k π−k

 , φ(−k) ·
(
yπ, πk

)
F


=

 1 0

yπ1−2k 1

 , 1

 ·
 πk 0

0 π−k

 , φ(−k)

 .
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(3) and (4) follow from the calculation

 πk 0

0 π−k

 , φ(−k)

 ·
 1 x

0 1

 , 1


=

 πk xπk

0 π−k

 , φ(−k)


=

 1 xπ2k

0 1

 , 1

 ·
 πk 0

0 π−k

 , φ(−k)


(5) follows from

w(−1)

 1 x

0 1

 , 1

 =

 0 1

−1 −x

 , 1

 =

 1 0

−x 1

 , 1

w(−1).

(6) follows from

w(−1)

 1 0

yπ 1

 , 1

 =

 yπ 1

−1 0

 , 1

 =

 1 −yπ

0 1

 , 1

w(−1).

(7) follows from

 1 x

0 1

 , 1

w(−1)h(π)−k

=

 −xπk π−k

−πk 0

 , φ(−k)(−1, πk)F


=

 0 π−k

−πk 0

 , φ(−k)(−1, πk)F

 ·
 1 0

−xπ2k 1

 , 1


= w(−1)h(π)−k

 1 0

−xπ2k 1

 , 1

 .
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(8) follows from

w(−1)h(π)−k

 1 x

0 1

 , 1


=

 0 π−k

−πk −xπk

 , φ(−k)(−1, πk)F


=

 1 0

−xπ2k 1

 , 1

 ·
 0 π−k

−πk 0

 , φ(−k)(−1, πk)F


=

 1 0

−xπ2k 1

 , 1

w(−1)h(π)−k.

(9) follows from the calculation

w(−1)h(π)−kw(−1)h(π)−k =

 −1 0

0 −1

 , φ(−k)2(−1, πk)2
F (πk, πk)F


=

 −1 0

0 −1

 , (πk, πk)F

 .

(10) is true since T̃ is abelian.
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(11) follows from the calculation w(−1)h(π)kw(−1) =

 0 1

−1 0

 , 1

 π−k 0

0 πk

 , φ(k)

 0 1

−1 0

 , 1


=

 0 πk

−π−k 0

 , φ(k)(−1, πk)F

 0 1

−1 0

 , 1


=

 −πk 0

0 −π−k

 , φ(k)(−1, πk)F


=

 −1 0

0 −1

 , 1

 πk 0

0 π−k

 , φ(k)


=

 −1 0

0 −1

 , φ(k)φ(−k)

h(π)−k

= (−1, (−1)k( q−1
2

))h(π)−k.

Next, we find I∗-double coset decompositions in G̃ of the following products, using the

commutation relations of Lemma 4.2.7 and Iwahori-Matsumoto’s I−double coset decompo-

sitions in G from (1.1.2):

Lemma 4.2.8. 1. If k and j are both ≥ 0, or if k and j are both ≤ 0, then

I∗h(π)−kI∗h(π)−jI∗ = I∗h(π)−(k+j)I∗.

2. I∗w(−1)I∗w(−1)h(π)−1I∗ = I∗h(π)−1I∗.

3. I∗w(−1)h(π)−1I∗w(−1)I∗ = I∗h(π)(1, (−1)
q−1
2 )I∗.

4. For k > 0, I∗w(−1)h(π)−1I∗h(π)−kI∗ = I∗w(−1)h(π)−(k+1)I∗.

5. For k < 0, I∗w(−1)I∗h(π)−kI∗ = I∗w(−1)h(π)−kI∗.
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6. I∗w(−1)I∗w(−1)I∗ = I∗ q I∗w(−1)I∗.

7. I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗ =

I∗(1, (−1)
q−1
2 )q I∗w(−1)h(π)−1I∗ q I∗w(−1)h(π)−1(1,−1)I∗.

Proof. 1. First suppose k, j are both ≥ 0. By the first Iwahori decomposition in G̃,

I∗h(π)−kI∗h(π)−jI∗ = I∗h(π)−k(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗h(π)−jI∗.

By (3) and (10) of Lemma 4.2.7,

I∗h(π)−k(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗h(π)−jI∗ ⊂ I∗h(π)−k(U ′ ∩ I)∗h(π)−jI∗,

and by (1) of Lemma 4.2.7,

I∗h(π)−k(U ′ ∩ I)∗h(π)−jI∗ ⊂ I∗h(π)−kh(π)−jI∗ = I∗h(π)−(k+j)I∗.

Conversely, I∗h(π)−(k+j)I∗ ⊂ I∗h(π)−kI∗h(π)−jI∗.

When k, j are both ≤ 0, we use the second Iwahori decomposition in G̃:

I∗h(π)−kI∗h(π)−jI∗ = I∗h(π)−k(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗h(π)−jI∗.

By (2) and (10) of Lemma 4.2.7,

I∗h(π)−k(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗h(π)−jI∗ ⊂ I∗h(π)−k(U ∩ I)∗h(π)−jI∗,

and by (4) of Lemma 4.2.7,

I∗h(π)−k(U ∩ I)∗h(π)−jI∗ ⊂ I∗h(π)−kh(π)−jI∗ = I∗h(π)−(k+j)I∗.
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Again we have the reverse inclusion I∗h(π)−(k+j)I∗ ⊂ I∗h(π)−kI∗h(π)−jI∗.

2. By the second Iwahori decomposition in G̃,

I∗w(−1)I∗w(−1)h(π)−1I∗ = I∗w(−1)(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗w(−1)h(π)−1I∗.

By (6) and (10) of Lemma 4.2.7,

I∗w(−1)(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗w(−1)h(π)−1I∗ ⊂ I∗w(−1)(U ∩ I)∗w(−1)h(π)−1I∗,

and by (7) of Lemma 4.2.7,

I∗w(−1)(U ∩ I)∗w(−1)h(π)−1I∗ ⊂ I∗w(−1)2h(π)−1I∗ = I∗h(π)−1I∗.

Conversely,

I∗h(π)−1I∗ = I∗w(−1)2h(π)−1I∗ ⊂ I∗w(−1)I∗w(−1)h(π)−1I∗.

3. By the first Iwahori decomposition in G̃,

I∗w(−1)h(π)−1I∗w(−1)I∗ = I∗w(−1)h(π)−1(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗w(−1)I∗.

By (8) and (10) of Lemma 4.2.7,

I∗w(−1)h(π)−1(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗w(−1)I∗ ⊂ I∗w(−1)h(π)−1(U ′ ∩ I)∗w(−1)I∗,

and by (5) of Lemma 4.2.7,

I∗w(−1)h(π)−1(U ′ ∩ I)∗w(−1)I∗ ⊂ I∗w(−1)h(π)−1w(−1)I∗.
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The reverse inclusion I∗w(−1)h(π)−1w(−1)I∗ ⊂ I∗w(−1)h(π)−1I∗w(−1)I∗ is clear, so

I∗w(−1)h(π)−1w(−1)I∗ = I∗w(−1)h(π)−1I∗w(−1)I∗,

and by (11) of Lemma 4.2.7,

I∗w(−1)h(π)−1w(−1)I∗ = I∗h(π)(1, (−1)
q−1
2 )I∗.

4. By the first Iwahori decomposition in G̃,

I∗w(−1)h(π)−1I∗h(π)−kI∗ = I∗w(−1)h(π)−1(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗h(π)−kI∗.

By (8) and (10) of Lemma 4.2.7,

I∗w(−1)h(π)−1(U ∩ I)∗(T̃ ∩ I∗)(U ′ ∩ I)∗h(π)−kI∗ ⊂ I∗w(−1)h(π)−1(U ′ ∩ I)∗h(π)−kI∗,

and by (1) of Lemma 4.2.7,

I∗w(−1)h(π)−1(U ′ ∩ I)∗h(π)−kI∗ ⊂ I∗w(−1)h(π)−1h(π)−kI∗ = I∗w(−1)h(π)−(k+1)I∗.

Conversely, I∗w(−1)h(π)−(k+1)I∗ ⊂ I∗w(−1)h(π)−1I∗h(π)−kI∗.

5. By the second Iwahori decomposition in G̃,

I∗w(−1)I∗h(π)−kI∗ = I∗w(−1)(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗h(π)−kI∗.

By (6) of Lemma 4.2.7,

I∗w(−1)(U ′ ∩ I)∗(T̃ ∩ I∗)(U ∩ I)∗h(π)−kI∗ ⊂ I∗w(−1)(T̃ ∩ I∗)(U ∩ I)∗h(π)−kI∗,
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and by (4) and (10) of Lemma 4.2.7,

I∗w(−1)(T̃ ∩ I∗)(U ∩ I)∗h(π)−kI∗ ⊂ I∗w(−1)h(π)−kI∗.

Conversely, I∗w(−1)h(π)−kI∗ ⊂ I∗w(−1)I∗h(π)−kI∗.

6. Since the extension defining G̃ is split over K and we have both I∗ ⊂ K∗ and w(−1) ∈

K∗, the product I∗w(−1)I∗w(−1)I∗ is equal to θ(Pr(I∗w(−1)I∗w(−1)I∗)) where θ is

our preferred section G→ G∗.

We have Pr(I∗w(−1)I∗w(−1)I∗) = IsIsI. By (1.1.2),

IsIsI = I q IsI,

so I∗w(−1)I∗w(−1)I∗ = θ(I)q θ(IsI) = I∗ q I∗(−1, 1)w(−1)I∗. = I∗ q I∗w(−1)I∗.

7. The projection of the product I∗w(−1)h(π)−1I∗w(−1)h(π)∗I∗ to G is

Pr(I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗) = Isα−1
0 Isα−1

0 I.

By (1.1.2),

Isα−1
0 Isα−1

0 I = I q Isα−1
0 I.

If w′ ∈ S satisfies I∗w′I∗ ⊂ I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗, then Pr(w′) = 1 or

Pr(w′) = −sα−1
0 , and hence w′ = (1,±1) or w′ = w(−1)h(π)−1(1,±1). So to prove

the statement, it suffices to show that I∗w′I∗ ⊂ I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗ when

w′ = (1, (−1)
q−1
2 ), when w′ = w(−1)h(π)−1, and when w′ = w(−1)h(π)−1(1,−1), but

not when w = (1, (−1)1+ q−1
2 ).
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We have

h(π)w(1) =

 π−1 0

0 π

 , φ(1)

 0 −1

1 0

 , 1

 =

 0 −π−1

π 0

 , φ(1)


=

 −1 0

0 −1

 , φ(1)φ(−1)(−1,−π)F

 0 π−1

−π 0

 , φ(−1)


= (−1, φ(1)φ(−1)) · w(−1)h(π)−1

= (−1, (−1)
q−1
2 ) · w(−1)h(π)−1.

So, working over Z, we have c
(1,ζ)

w(−1)h(π)−1,w(−1)h(π)−1 =

2 · |I∗ \ I∗h(π)w(1)I∗(1, ζ) ∩ I∗w(−1)h(π)−1I∗|

= 2 · |I∗ \ I∗w(−1)h(π)−1(1, ζ(−1)
q−1
2 )I∗ ∩ I∗w(−1)h(π)−1I∗|.

When ζ(−1)
q−1
2 = 1, the intersection I∗w(−1)h(π)−1(1, ζ(−1)

q−1
2 )I∗∩I∗w(−1)h(π)−1I∗

is equal to I∗w(−1)h(π)−1I∗, and when ζ(−1)
q−1
2 = −1, the intersection is empty.

Hence

c
(1,ζ)

w(−1)h(π)−1,w(−1)h(π)−1 =

2 · volG̃(I∗w(−1)h(π)−1I∗) if ζ = (−1)
q−1
2

0 if ζ = (−1)1+ q−1
2 .

(4.1)

In particular, I∗(1, ζ)I∗ ⊂ I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗ when ζ = (−1)
q−1
2 but not

when ζ = (−1)1+ q−1
2 .

It is shown in the proof of Lemma 4.3.5 that I∗w(−1)h(π)−1I∗ and I∗w(−1)h(π)−1(1,−1)I∗

are contained in I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗.
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4.3 A presentation for Hε(S̃L2(F ), I∗)

In this section we compute relations between elements of the vector space basis given in §4.2.

Before doing so, we collect some useful facts about convolution products in Iwahori Hecke

algebras.

In [15], Iwahori and Matsumoto prove the following results for Chevalley groups:

Proposition 4.3.1. Let G be a Chevalley group over a p-adic field F with residue field of

order q and uniformizer π, TG a torus of G, R the root system of G with respect to TG, and

I an Iwahori subgroup of G. Let λ denote the length function on the extended Weyl group of

G with respect to TG. For x ∈ G, let vol(IxI) = [I : I ∩ x−1Ix]. Then

1. ( [15], p. 44) Then the map HZ(G, I)→ Z defined by

∑
w

dw · IwI →
∑
w

dw · vol(IwI)

(where w runs over the extended Weyl group of G and dw ∈ Z such that dw = 0 for

almost all w), is a surjective ring homomorphism.

2. ( [15], Prop. 3.2) For w in the extended Weyl group of G,

vol(w) = qλ(w).

Let Pr : G̃→ G denote the projection (g, ζ) 7→ g. The following lemma is an adaptation

to our situation of an observation by Savin in the proof of [23], Prop. 6.1.

Lemma 4.3.2. Normalize the volumes of the I∗-double cosets in G̃ by setting volG̃(I∗) =

1
2
, so that volG̃(Pr−1(I)) = 1, and normalize the volumes of I-double cosets in G so that

volG(I) = 1. If w is an element of W = Λ̃ nW0, then volG̃(I∗wI∗) = 1
2
volG(I Pr(w) I).

Proof. Since volG̃(Pr−1(I)) = 1 = volG(I), we have

volG̃(Pr−1(I Pr(w) I)) = ·volG(I Pr(w) I).
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The inverse image Pr−1(I Pr(w) I) is equal to the union

I∗wI∗ ∪ I∗w(1,−1)I∗,

which was shown in §4.2 to be disjoint for each w ∈ W . Since (1,−1) is central in G̃, we

have

volG̃(I∗wI∗) = volG̃(I∗w(1,−1)I∗),

so

volG̃(Pr−1(I Pr(w) I)) = 2 · volG̃(I∗wI∗).

Thus

volG̃(I∗wI∗) =
1

2
volG(I Pr(w) I).

For an element w ∈ W , define the Weyl length λ(w) of w to be λ(Pr(w)). Then

qλ(w) = volG(I Pr(w) I) = 2 · volG̃(I∗wI∗),

where the first equality is by Proposition 4.3.1 (2) and the second is by Lemma 4.3.2.

Lemma 4.3.3. The map Hε
Z(G̃, I∗)→ Z defined by

∑
w∈S+

dw tw 7→
∑
w∈S+

2 · dw volG̃(I∗wI∗)

(where dw ∈ Z, dw = 0 for almost all w ∈ S+) is a ring homomorphism.

Recall that the volumes of the double cosets IwI were calculated in Lemma 1.1.1 for

certain elements w of the affine Weyl group of SL2(F ). For convenience, the results are

listed again here: For k > 0,

1. vol(Iα−k0 I) = q2k.
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2. vol(Iαk0I) = q2k

3. vol(I(−s)α−k0 I) = q2k−1

4. vol(I(−s)αk0I) = q2k+1

5. vol(IsI) = q.

We now state the key proposition of this section.

Proposition 4.3.4. The following is a complete list of positive powers of x := T 1
0,−1 and

y := T 0
2,1. For k ≥ 1,

1. xk = (−1)k−1T 1
0,−1 = (−1)k−1x,

2. yk =

T
0
2,1 if k = 1

0 if k ≥ 2,

3. (xy)k = T−k2k,2k+1,

4. (yx)k = (−1)k
q−1
2 T k−2k,−2k+1,

5. y(xy)k = T−k2k+2,2k+1

6. x(yx)k = (−1)k
q−1
2 T k+1
−2k,−2k−1.

Proof. 1. T 1
0,−1 is the image of tw(−1) under Frobenius reciprocity, so we calculate the

convolution product

tw(−1) · tw(−1) =
∑

w′′∈S+

(
cw
′′

w(−1),w(−1) − cw
′′

w(−1)(1,−1),w(−1)

)
· tw′′ ,

working with Z-coefficients until the last step of the calculation. The coefficient

cw
′′

w(−1)(1,ζ),w(−1) := |I∗ \ I∗w(1)(1, ζ)I∗w′′ ∩ I∗w(−1)I∗|
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is nonzero in Z if and only if I∗w′′I∗ ⊂ I∗w(−1)(1, ζ)I∗w(−1)I∗. By Lemma 4.2.8 (6)

we have

I∗w(−1)I∗w(−1)I∗ = I∗ q I∗w(−1)I∗. (4.2)

Multiplying both sides of (4.2) by (1,−1) preserves disjointness of the union, so

I∗w(−1)(1,−1)I∗w(−1)I∗ = I∗(1,−1)q I∗w(−1)(1,−1)I∗.

Hence cw
′′

w(−1),w(−1) 6= 0 only if w′′ = (1, 1) or w′′ = w(−1), and cw
′′

w(−1)(1,−1),w(−1) = 0 for

all w′′ ∈ S+.

Since both w(−1) ∈ K∗ and I∗ ⊂ K∗, the index

c
(1,1)
w(−1),w(−1) = |I∗ \ I∗w(1)I∗|

is equal to the index c1
s,s of I = Pr(I∗) in IsIsI = Pr(I∗w(−1)I∗w(−1)I∗), and

c
w(−1)
w(−1),w(−1) = |I∗ \ I∗w(1)I∗w(−1) ∩ I∗w(−1)I∗|

is equal to the index css,s of IsI = Pr(I∗w(−1)I∗) in IsIsI = Pr(I∗w(−1)I∗w(−1)I∗).

The coefficient c1
s,s is easily calculated:

c1
s,s = |I \ IsI| = volG(IsI) = q,

with the last equality from Lemma 1.1.1.

We calculate css,s by applying volG to both sides of the equation

1IsI · 1IsI = c1
s,s1I + css,s1IsI .

Recall from Proposition 4.3.1 (1) that the map defined by 1IwI 7→ volG(IwI) is a ring
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homomorphism HZ(G, I)→ Z. By Lemma 1.1.1, volG(IsI) = q, so

volG(IsIsI) = volG(IsI)2 = q2,

while

c1
s,svolG(I) + css,svolG(IsI) = c1

s,s + css,sq = q(1 + css,s).

Hence q2 = q(1 + css,s), which implies css,s = q − 1.

Thus, over Z, we have

c
(1,1)
w(−1),w(−1) = c1

s,s = q

and

c
w(−1)
w(−1),w(−1) = css,s = q − 1

so

tw(−1) · tw(−1) = qt(1,1) + (q − 1)tw(−1) ≡ −tw(−1) (mod p).

Hence T 1
0,−1 ◦ T 1

0,−1(e0,+
0,1 ) = −T 1

0,−1(e0,+
0,1 ) over F̄p, so

T 1
0,−1 · T 1

0,−1 = −T 1
0,−1

in Hε
p(G̃, I

∗). Letting x = T 1
0,−1, we have xk = (−1)k−1x for k > 0.

2. T 0
2,1 is the image of tw(−1)h(π)−1 under Frobenius reciprocity, so we calculate

tw(−1)h(π)−1 · tw(−1)h(π)−1 =

∑
w′′∈S+

(
cw
′′

w(−1)h(π)−1,w(−1)h(π)−1 − cw
′′

w(−1)h(π)−1(1,−1),w(−1)h(π)−1

)
· tw′′ .

We have shown that I∗w(−1)h(π)−1I∗w(−1)h(π)−1I∗ is contained in

I∗(1, (−1)
q−1
2 )q I∗w(−1)h(π)−1 q I∗w(−1)h(π)−1(1,−1),
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so cw
′′

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 6= 0 for at least one ζ ∈ {±1} only if w′′ = (1, 1) or

w′′ = w(−1)h(π)−1. The calculations for w′′ = (1, 1) are easy to complete: we showed

in (4.1) that

c
(1,ζ)

w(−1)h(π)−1,w(−1)h(π)−1 =

2 · volG̃(I∗w(−1)h(π)−1I∗) if ζ = (−1)
q−1
2

0 if ζ = (−1)1+ q−1
2 .

Note that c
(1,ζ)

w(−1)h(π)−1,w(−1)h(π)−1 = c
(1,1)

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 , so it only remains to com-

pute the volume in the case ζ = (−1)
q−1
2 . By Proposition 4.3.2,

2 · volG̃(I∗w(−1)h(π)−1I∗) = volG(I Pr(w(−1)h(π)−1) I) = volG(Isα−1
0 I).

By Part (3) of Lemma 1.1.1 with ` = 1,

volG(Isα−1
0 I) = q.

Hence the coefficients for w′′ = (1, 1), ζ ∈ {±1} are

c
(1,1)

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 =

q if ζ = (−1)
q−1
2

0 if ζ = (−1)1+ q−1
2 .

Now we turn to the calculation of the coefficients c
w(−1)h(π)−1

w(−1)h(π−1)(1,ζ),w(−1)h(π)−1 , ζ ∈ {±1}.

Since the calculation is rather involved, we state it as a lemma and warn that several

sub-lemmata are contained within.

Lemma 4.3.5.

c
w(−1)h(π)−1

w(−1)h(π−1),w(−1)h(π)−1 = c
w(−1)h(π)−1

w(−1)h(π−1)(1,−1)),w(−1)h(π)−1 =
q − 1

2
.
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Proof. By definition, c
w(−1)h(π)−1

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 =

∣∣I∗ \ I∗h(π)w(1)I∗ ∩ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ)
∣∣. (4.3)

We first identify those g ∈ G such that

(g, δ)−1 ∈ I∗h(π)w(1)I∗ ∩ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ)

for some δ, ζ ∈ {±1}. We have the projections

Pr(I∗h(π)w(1)I∗) = Iα0sI,

Pr(I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ)) = I(−s)α−1
0 Iα0s,

so if (g, δ) ∈ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ) ∩ I∗h(π)w(1)I∗ for some δ, ζ ∈ {±1},

g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0s.

Conversely, if g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0s, then

(g, δ)−1 ∈ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ) ∩ I∗h(π)w(1)I∗

for some δ, ζ ∈ {±1}.

We pause the proof of Lemma 4.3.5 to prove an auxiliary statement.

Lemma 4.3.6. Those g ∈ G which satisfy

g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0s (4.4)
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are exactly those which, modulo I on the left, are of the form

g =

 a uπ−1

bπ2 d

 (4.5)

with a, u, and d ∈ O×F and b ∈ OF .

Proof. In the proof of [19] Thm. 12.3 (3’), McNamara asserts:

Claim 1. Those h ∈ SL2(F ) such that

h−1 ∈ Iα0I ∩ Isα−1
0 Iα0

are exactly those which, modulo I on the left, are of the form

h =

 bπ2 d

a uπ−1

 (4.6)

with a, d, and u ∈ O×F and b ∈ OF .

For completeness, we prove Claim 1 here, together with an additional statement:

Claim 2. If h−1 ∈ SL2(F ) is in the intersection Iα0I ∩ Isα−1
0 Iα0, then there is a

representative

 j k

` m

 ∈ I such that v(k) = 1 and

h−1 ∈ Iα0

 j k

` m

 .

Proof of Claims 1 and 2. If h−1 ∈ Isα−1
0 Iα0, then modulo I on the left,

h−1 =

 0 −π−1

π 0

 a b

c d

 π−1 0

0 π

 =

 −cπ−2 −d

a bπ2

 (4.7)
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with

 a b

c d

 ∈ I. If also h−1 ∈ Iα0I, then (again modulo I on the left)

h−1 =

 π−1 0

0 π

 j k

` m

 =

 jπ−1 kπ−1

`π mπ



where

 j k

` m

 ∈ I. By definition of I, we must have v(a) = v(d) = v(j) = v(m) =

0, v(b) ≥ 0, v(k) ≥ 0, v(c) ≥ 1, and v(`) ≥ 1. In particular, v(jπ−1) = −1 and

v(`π) ≥ 2.

Let

 t x

y z

 be an arbitrary element of I. Then v(t) = v(y) = 0, v(x) ≥ 0, v(z) ≥ 1.

Consider the valuation of the upper-left entry of the product t x

y z

 jπ−1 kπ−1

`π mπ

 =

 tjπ−1 + x`π tkπ−1 + xmπ

yjπ−1 + z`π ykπ−1 + zmπ

 .

Since v(x`π) ≥ 2 while v(tjπ−1) = −1, we have v(tjπ−1 + x`π) = −1. Hence the

valuation of the upper-left entry of h−1 is invariant under left multiplication by I. So

v(−cπ−2) = v(jπ−1) = −1, i.e., c = uπ for some u ∈ O×F . We conclude that every

h ∈ G such that h−1 ∈ Iα0I ∩ Isα−1
0 Iα0 is of the form (4.6), proving one direction of

Claim 1.

On the other hand, suppose that h is of form (4.6), i.e., suppose that h =

 bπ2 d

−a −uπ−1

 ∈
G with a, u, d ∈ O×F and b ∈ OF . Then det(h) = ad−ubπ = 1, so i :=

 a b

uπ d

 ∈ G,

and the assumptions on v(a), v(b), v(u) and v(d) imply that i ∈ I. The inverse of h

is h−1 =

 −uπ−1 −d

a bπ2

, and the second equality of (4.7) (taking c = uπ) implies

that h−1 = sα−1
0 iα0 ∈ Isα−1

0 Iα0. To finish the proof of Claim 1, we have to show
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that h−1 is equivalent under multiplication by I on the left to an element of Iα0I.

Let i′ :=

 j k

` m

 denote an arbitrary element of I, i.e., assume v(j) = v(m) = 0,

v(k) ≥ 0, v(`) ≥ 1, and jm− k` = 1, and consider the product

α0i
′h =

 jπ−1 kπ−1

`π mπ

 bπ2 d

−a −uπ−1

 =

 bjπ − akπ−1 djπ−1 − kuπ−2

b`π3 − amπ d`π −mu

 .

(4.8)

If (4.8) is in I for some j, k, `, m such that i′ ∈ I, then h−1 ∈ Iα0I as desired.

We now show that such j, k, `, m exist, and furthermore that we must have v(k) = 1.

• (Upper-left entry of (4.8).) Since v(b) ≥ 0, we have v(bjπ) = v(b) + 1 ≥ 1 when

v(j) = 0, and since v(a) = 0, we have v(akπ−1) = v(k)− 1 ≥ −1. Thus

v(jbπ − akπ−1) ≥ min(v(b) + 1, v(k)− 1)

when v(j) = 0. Since v(b) + 1 ≥ 1, then under the condition that v(j) = 0, we

have v(jbπ − akπ−1) = 0 if and only if v(k) = 1.

• (Upper-right entry of (4.8).) Recall that v(d) = v(u) = 0 and, due to the conclu-

sion from the upper-left entry of (4.8), we assume that v(k) = 1. Write k = k0π

where k0 ∈ O×F . Then

djπ−1 − ukπ−2 = (dj − uk0)π−1,

so v(djπ−1 − ukπ−2) = v(dj − uk0)− 1. When v(j) = 0, we have

v(dj − uk0) ≥ 0,

and can get the desired bound

v(dj − uk0) ≥ 1
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by requiring that j = (γπ + uk0)/d for some γ ∈ OF .

• (Lower-left entry of (4.8).) Since v(b) ≥ 0, whenever v(`) ≥ 1 we have v(b`π3) ≥

4, and since v(a) = 0, whenever v(m) = 0 we have v(amπ) = 1. Hence v(b`π3 −

amπ) = 1 whenever v(`) ≥ 1 and v(m) = 0.

• (Lower-right entry of (4.8).) Since v(d) = v(u) = 0, whenever v(`) ≥ 1 we have

v(d`π) ≥ 2, and whenever v(m) = 0 we have v(mu) = 0. Hence v(d`π −mu) = 0

whenever v(`) ≥ 1 and v(m) = 0.

• (Determinant.) Finally, we show that the conditions we have imposed so far are

compatible with the condition that jm− k` = 1. Suppose that v(j) = v(m) = 0,

v(`) ≥ 0, k = k0π for some k0 ∈ O×F , and j = (γπ + uk0)/d for some γ ∈ OF .

Then

jm− k` =
(mγ
d
− `k0

)
π +

muk0

d
,

where muk0/d ∈ O×F and the coefficient of π is in OF . Hence jm− k` = 1 if and

only if both
muk0

d
= 1 and

mγ

d
= `k0. (4.9)

It is easy to satisfy the conditions of (4.9): for example, fix ` and m and take

k0 = d/mu; then γ = d2`/m2u ∈ OF .

We have shown that if i′ =

 j k

` m

 is any element of I such that v(k) = 1, then

i′′ := α0i
′h ∈ I.

Then h−1 = i′′−1α0i
′ ∈ Iα0I, and moreover

h−1 ∈ Iα0

 j k

` m


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for an element

 j k

` m

 ∈ I such that v(k) = 1.

We conclude that if h is of the form (4.6), then h−1 ∈ Iα0I ∩ Isα−1Iα0, proving Claim

1. Now if h−1 ∈ Iα0I ∩ Isα−1
0 Iα0, then h is of form (4.6), so the half of the proof of

Claim 1 proceeding from that assumption shows that

h−1 ∈ Iα0

 j k

` m



for some

 j k

` m

 such that v(k) = 1. This proves Claim 2.

We now turn to the proof of Lemma 4.3.6. Suppose that g ∈ G is of the form (4.5).

Then

sg =

 0 −1

1 0

 a uπ−1

bπ2 d

 =

 −bπ2 −d

a uπ−1

 ,

which is of the form (4.6) in Claim 1. Hence, by Claim 1,

(sg)−1 ∈ Iα0I ∩ Isα−1
0 Iα0,

so by Claim 2, there is moreover an element

 j k

` m

 ∈ I such that v(k) = 1 and

(sg)−1 ∈ Iα0

 j k

` m

 .

Then

g−1 ∈ Iα0

 j k

` m

 s = Iα0s(−s)

 j k

` m

 s = Iα0s

 j `

k m

 ,
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and since v(k) = 1, we have

 j `

k m

 ∈ I. Hence

g−1 ∈ Iα0sI.

And since (sg)−1 ∈ Isα−1
0 Iα0 as well, we have

g−1 ∈ Isα−1
0 Iα0s = I(−s)α−1

0 Iα0s,

so

g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0,

which proves one direction of Lemma 4.3.6.

Conversely, suppose that g ∈ G satisfies g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0s. Then, since

α0s = sα−1
0 , taking ` = 1 in Part (3) of Lemma (cite ch. 1 decomps) we get the left

coset decomposition

Iα0sI =
∐

y∈O×F ∪{0}

Iα0s

 1 0

yπ 1

 .

Hence

g−1 ∈ Iα0s

 1 0

yπ 1


for some y ∈ O×F ∪ {0}. Then

(sg)−1 ∈ Iα0s

 1 0

yπ 1

 s = Iα0

 −1 −yπ

0 −1

 ⊂ Iα0I.

And g−1 ∈ I(−s)α−1
0 Iα0s implies that

(sg)−1 ∈ I(−s)α−1
0 Iα0,
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so we have

(sg)−1 ∈ Iα0I ∩ I(−s)α−1
0 Iα0.

Then by Claim 1, up to multiplication by I on the left we have

sg =

 bπ2 d

a uπ−1


for some a, d, u ∈ O×F and b ∈ OF . Then, again up to multiplication by I on the left,

g = −s

 bπ2 d

a uπ−1

 =

 a uπ−1

−bπ2 −d

 ,

which is of the desired form (4.5). This completes the proof of Lemma 4.3.6.

We now return to the proof of Lemma 4.3.5. By Lemma 4.3.6, the g ∈ G such that

g−1 ∈ Iα0sI ∩ I(−s)α−1
0 Iα0s are exactly those of the form

g =

 a uπ−1

bπ2 d


for some a, d, u ∈ O×F and b ∈ OF .

Next, fixing g =

 a uπ−1

bπ2 d

 with a, d, u ∈ O×F and b ∈ OF , we identify δ and

ζ ∈ {±1} such that

(g, δ)−1 ∈ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ) ∩ I∗h(π)w(1)I∗.
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Define the following elements of I∗:

i1 =

 u−1 0

−dπ u

 , (u, π)F

 ,

i2 =

 1 0

−au−1π 1

 , 1

 ,

i3 =

 d −b

−uπ a

 , (a, π)F

 .

Then (using the fact that det(g) = ad − ubπ = 1, as well as the fact that the Hilbert

symbol on F is unramified) we calculate i1(g, δ)i2 =

 u−1 0

−dπ u

 , (u, π)F

 a uπ−1

bπ2 d

 , δ

 1 0

−au−1π 1

 , 1



=




 u−1a π−1

−π 0

 , δ(u, π)F (d, bπ)F



 1 0

−au−1π 1

 , 1

 if b 6= 0


 u−1a π−1

−π 0

 , δ(u, π)F (d, π)F



 1 0

−au−1π 1

 , 1

 if b = 0

=




 0 π−1

−π 0

 , δ(u, π)F (d, bπ)F

 if b 6= 0


 0 π−1

−π 0

 , δ(u, π)F (d, π)F

 if b = 0

=

w(−1)h(π)−1(1, δ(−ud, π)F (d, b)F ) if b 6= 0,

w(−1)h(π)−1(1, δ(−ud, π)F ) if b = 0.
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Thus

(g, δ) ∈

I
∗w(−1)h(π)−1(1, δ(−ud, π)F (d, b)F )I∗ if b 6= 0

I∗w(−1)h(π)−1(1, δ(−ud, π)F )I∗ if b = 0.

(4.10)

We have

(g, δ)−1 =

(g−1, δ(bπ2,−bπ2)F ) = (g−1, δ) if b 6= 0

(g−1, δ(d, a)F ) = δ(g−1, 1) if b = 0,

so (g, δ)−1w(−1)h(π)−1i3 =

 d −uπ−1

−bπ2 a

 , δ

 0 π−1

−π 0

 , (−1, π)F

 d −b

−uπ a

 , (a, π)F



=




 u dπ−1

−aπ −bπ

 , δ(a, bπ)F



 d −b

−uπ a

 , (a, π)F

 if b 6= 0,


 u dπ−1

−aπ −bπ

 , δ(a, π)F



 d −b

−uπ a

 , (a, π)F

 if b = 0

=




 0 π−1

−π 0

 , δ(a, b)F

 if b 6= 0


 0 π−1

−π 0

 , δ

 if b = 0

=

w(−1)h(π)−1(1, δ(−1, π)F (a, b)F ) if b 6= 0

w(−1)h(π)−1(1, δ(−1, π)F ) if b = 0.

Thus

(g, δ)−1w(−1)h(π)−1 ∈

I
∗w(−1)h(π)−1(1, δ(−1, π)F (a, b)F )I∗ if b 6= 0

I∗w(−1)h(π)−1(1, δ(−1, π)F I
∗ if b = 0.

(4.11)
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Hence, by (4.10) and (4.11), we have tw(−1)h(π)−1(1,−1)(g, δ) tw(−1)h(π)−1((g, δ)−1w(−1)h(π)−1) =

δ(−ud, π)F (d, b)F · δ(−1, π)F (a, b)F = (ud, π)F (ad, b)F if b 6= 0,

δ(−ud, π)F · δ(−1, π)F = (ud, π)F if b = 0.

(4.12)

The value of c
w(−1)h(π)−1

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 is equal to the volume of the union of left I∗-

cosets represented by those (g, δ) ∈ G̃ such that g =

 a uπ−1

bπ2 d

 with a, d, u ∈ O×F

and b ∈ OF and such that the value of (4.12) is equal to ζ. We will now show that

c
w(−1)h(π)−1

w(−1)h(π)−1,w(−1)h(π)−1 = c
w(−1)h(π)−1

w(−1)h(π)−1(1,−1),w(−1)h(π)−1 ,

i.e., that (4.12) takes the two values ±1 on equal volumes in G̃.

Fix b ∈ OF , and note that if b 6= 0, then for any a, d ∈ O×F we have

(ad, b)F = (ad, πv(b))F =

1 if 2
∣∣b

(ad, π)F if 2 6
∣∣b.

Hence the value of (4.12) depends on a, u, d, and b as follows:

(4.12) =


(ud, π)F if b 6= 0 and 2

∣∣b
(ua, π)F if b 6= 0 and 2 6

∣∣b
(ud, π)F if b = 0.

Note that, when b ∈ OF is fixed, we have the freedom to choose any two of a, d,

u ∈ O×F to define

g =

 a uπ−1

bπ2 d

 .

Hence as a, u, and d run over O×F such that this g is in G for the fixed choice of b,
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the first argument of the Hilbert symbol in (4.12) (corresponding to the valuation of

b) runs uniformly over O×F . Then, since

{x ∈ O×F : (x, π)F = 1}

has index 2 in O×F , the value of (4.12) is equal to 1 on half of the total volume of the

union of left I∗-cosets represented by (g, δ) with g =

 a uπ−1

bπ2 d

 ∈ G (with fixed

b ∈ OF and with a, d, u ∈ O×F ), and is equal to −1 on the other half. Since this holds

for each b ∈ OF , we conclude that

c
w(−1)h(π)−1

w(−1)h(π)−1,w(−1)h(π)−1 = c
w(−1)h(π)−1

w(−1)h(π)−1(1,−1),w(−1)h(π)−1 .

Since the two coefficients are equal, for each ζ ∈ {±1} we have

|I∗ \ I∗h(π)w(1)I∗ ∩ I∗w(−1)h(π)−1I∗h(π)w(1)(1, ζ)| = 1

2
|I \ Iα0sI ∩ Isα−1

0 Iα0s|,

so to finish the calculation it suffices to show that

|I \ Iα0sI ∩ Isα−1
0 Iα0s| = q − 1.

Consider the convolution product

1Isα−1
0 I · 1Isα−1

0 I = c1
sα−1

0 ,sα−1
0

1I + c
sα−1

0

sα−1
0 ,sα−1

0

1Isα−1
0 I (4.13)

in HZ(G, I), and note that

c1
sα−1

0 ,sα−1
0

= |I \ Iα0sI ∩ Isα−1
0 I| = |I \ Isα−1

0 I| = volG(Isα−1
0 I),

c
sα−1

0

sα−1
0 ,sα−1

0

= |I \ Iα0sI ∩ Isα−1
0 Iα0s|,
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Applying the ring homomorphism volG : HZ(G, I)→ Z to both sides of (4.13), we have

(
volG(Isα−1

0 I)
)2

= c1
sα−1

0 ,sα−1
0

volG(I) + c
sα−1

0

sα−1
0 ,sα−1

0

volG(Isα−1
0 I). (4.14)

By Part (3) of Lemma (cite ch. 1 volume calcs) with ` = 1, we have volG(Isα−1
0 I) = q

while volG(I) = 1, so the equation (4.14) becomes

q2 = q(1 + c
sα−1

0

sα−1
0 ,sα−1

0

).

Thus

c
sα−1

0

sα−1
0 ,sα−1

0

= q − 1,

so

c
w(−1)h(π)−1

w(−1)h(π)−1(1,ζ),w(−1)h(π)−1 =
q − 1

2

for each ζ ∈ {±1}. This concludes the lemma.

We now return to the calculation of the convolution product tw(−1)h(π)−1 · tw(−1)h(π)−1 :

tw(−1)h(π)−1 ·tw(−1)h(π)−1 =(
c

(1,1)

w(−1)h(π)−1,w(−1)h(π)−1 − c(1,1)

w(−1)h(π)−1(1,−1),w(−1)h(π)−1

)
t(1,1)

+
(
c
w(−1)h(π)−1

w(−1)h(π)−1,w(−1)h(π)−1 − cw(−1)h(π)−1

w(−1)h(π)−1(1,−1),w(−1)h(π)−1

)
tw(−1)h(π)−1

=
(

(−1)
q−1
2 q
)
t(1,1) +

(
q − 1

2
− q − 1

2

)
tw(−1)h(π)−1 .

=
(

(−1)
q−1
2 q
)
t(1,1) ≡ 0 (mod p).

Thus the product tw(−1)h(π)−1 · tw(−1)h(π)−1 is equal to 0 in Hε
p(G̃, I

∗); equivalently,

T 0
2,1 ◦ T 0

2,1(e0,+
0,1 ) = 0 over F̄p. Hence T 0

2,1 · T 0
2,1 = 0 in Hε

p(G̃, I
∗).

137



3. We first show that xy = T 1
0,−1 ◦ T 0

2,1 = T−1
2,3 . The corresponding convolution product is

tw(−1) · tw(−1)h(π)−1 =
∑

w′′∈S+

(
cw
′′

w(−1),w(−1)h(π)−1 − cw
′′

w(−1)(1,−1),w(−1)h(π)−1

)
· tw′′ .

By Lemma 4.2.8 (2),

I∗w(−1)I∗w(−1)h(π)−1I∗ = I∗h(π)−1I∗,

so for w′′ ∈ S+, we have

cw
′′

w(−1)(1,ζ),w(−1)h(π)−1 =

1 if ζ = 1 and w′′ = h(π)−1

0 otherwise.

Thus

tw(−1) · tw(−1)h(π)−1 = th(π)−1 ,

and th(π)−1 corresponds by Frobenius reciprocity to T−1
2,3 .

Now we show that (xy)k = (T−1
2,3 )k = T−k2k,2k+1 for all k ≥ 1. The base case k = 1 is done;

suppose that for some k ≥ 1 we have (xy)k = T−k2k,2k+1, and consider T−k2k,2k+1 ◦T
−1
2,3 . The

corresponding product in Hε
p(G̃, I

∗) is

th(π)−k · th(π)−1 =
∑

w′′∈S+

(
cw
′′

h(π)−k,h(π)−1 − cw
′′

h(π)−k(1,−1),h(π)−1

)
· tw′′ .

By Lemma 4.2.8 (1),

I∗h(π)−kI∗h(π)−1I∗ = I∗h(π)−(k+1)I∗,
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so for w′′ ∈ S+,

cw
′′

h(π)−k(1,ζ),h(π)−1 =

1 if ζ = 1 and w′′ = h(π)−(k+1)

0 otherwise.

Thus

th(π)−k · th(π)−1 = th(π)−(k+1) ,

which implies that

T−k2k,2k+1 ◦ T
−1
2,3 = T

−(k+1)
2(k+1),2(k+1)+1

in Hε
p(G̃, I

∗). So by induction,

(xy)k = (T−1
2,3 )k = T−k2k,2k+1

for all k ≥ 1.

4. We will first show that yx = T 0
2,1 ◦ T 1

0,−1 = (−1)
q−1
2 T 1
−2,−1. Calculating in Hε

p(G̃, I
∗),

tw(−1)h(π)−1 · tw(−1) =
∑

w′′∈S+

(
cw
′′

w(−1)h(π)−1,w(−1) − cw
′′

w(−1)h(π)−1(1,−1),w(−1)

)
tw′′ .

By Lemma 4.2.8 (3),

I∗w(−1)h(π)−1w(−1)I∗ = I∗h(π)(1, (−1)
q−1
2 )I∗.

Hence for w′′ ∈ S+,

cw
′′

w(−1)h(π)−1(1,ζ),w(−1) =

1 if ζ = (−1)
q−1
2 and w′′ = h(π)

0 otherwise.

Then

tw(−1)h(π)−1 · tw(−1) = (−1)
q−1
2 th(π), (4.15)
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which implies, via Frobenius reciprocity, that in Hε
p(G̃, I

∗) we have

T 0
2,1 ◦ T 1

0,−1 = (−1)
q−1
2 T 1
−2,−1.

Next we show that T k−2k,−2k+1 ◦ T 1
−2,−1 = T k+1

−2(k+1),−2(k+1)+1 for all k ≥ 1. The relevant

convolution product is

th(π)k · th(π) =
∑

w′′∈S+

(
cw
′′

w(−1),w(−1)h(π)−1 − cw
′′

w(−1)(1,−1),w(−1)h(π)−1

)
· tw′′ .

By Lemma 4.2.8 (1), I∗h(π)kI∗h(π)I∗ = I∗h(π)k+1I∗, so for w′′ ∈ S+,

cw
′′

h(π)k(1,ζ),h(π) =

1 if ζ = 1 and w′′ = h(π)k+1

0 otherwise.

Hence

th(π)k · th(π) = th(π)k+1 ,

which implies that

T k−2k,−2k+1 ◦ T 1
−2,−1 = T k+1

−2(k+1),−2(k+1)+1

for all k ≥ 1. By induction on k,

(T 1
−2,−1)k = T k−2,−1 (4.16)

for all k ≥ 1.

Now, by (4.15) and then (4.16),

(yx)k = (−1)k
q−1
2 (T 1

−2,−1)k = (−1)k
q−1
2 T k−2k,−2k+1.

5. By Prop. 4.3.4 (3) above, y(xy)k = T 0
2,1 ◦ T−k2k,2k+1 for all k ≥ 1. We calculate the
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corresponding product in Hε
p(G̃, I

∗):

tw(−1)h(π)−1 · th(π)−k =
∑

w′′∈S+

(
cw
′′

w(−1)h(π)−1,h(π)−k − c
w′′

w(−1)h(π)−1(1,−1),h(π)−k

)
· tw′′ .

By Lemma 4.2.8 (4),

I∗w(−1)h(π)−1I∗w(−k)I∗ = I∗w(−1)h(π)−(k+1),

so

cw
′′

w(−1)h(π)−1(1,ζ),h(π)−k =

1 if ζ = 1 and w′′ = h(π)−(k+1)

0 otherwise,

which gives the result

tw(−1)h(π)−1 · th(π)−k = tw(−1)h(π)−(k+1) . (4.17)

Applying Frobenius reciprocity to both sides of (4.17), we get

T 0
2,1 ◦ T−k2k,2k+1 = T−k2k+2,2k+1,

so y(xy)k = T−k2k+2,2k+1 as desired.

6. By Prop. 4.3.4 (4) above,

x(yx)k = T 1
0,−1 ◦ (−1)k

q−1
2 T k−2k,−2k+1 = (−1)k

q−1
2

(
T 1

0,−1 ◦ T k−2k,−2k+1

)
.

We compute the convolution product in Hε
p(G̃, I

∗) which corresponds to T 1
0,−1◦T k−2k,−2k+1:

tw(−1) ◦ th(π)k =
∑

w′′∈S+

(
cw
′′

w(−1),h(π)k − c
w′′

w(−1)(1,−1),h(π)k

)
· tw′′ .
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Since k > 0, Lemma 4.2.8 (5) gives

I∗w(−1)I∗h(π)kI∗ = I∗w(−1)h(π)kI∗,

so for w′′ ∈ S+,

cw
′′

w(−1)(1,ζ),h(π)k =

1 if ζ = 1 and w′′ = w(−1)h(π)k

0 otherwise.

Thus

tw(−1) ◦ th(π)k = tw(−1)h(π)k ,

which implies by Frobenius reciprocity that

T 1
0,−1 ◦ T k−2k,−2k+1 = T k+1

−2k,−2k−1.

Hence

x(yx)k = (−1)k
q−1
2

(
T 1

0,−1 ◦ T k−2k,−2k+1

)
= (−1)k

q−1
2 T k+1
−2k,−2k−1.

Theorem 4.3.7. The genuine mod p Iwahori Hecke algebra Hε
p(G̃, I

∗) is generated by x :=

T 1
0,−1 and y := T 0

2,1, and the algebra has the following presentation as a noncommutative

polynomial algebra:

Hε
p(G̃, I

∗) ∼= F̄p〈x, y〉/(x2 + x, y2). (4.18)

Proof. Consider the F̄p-linear homomorphism

F̄p〈x, y〉 → Hε
p(G̃, I

∗) (4.19)

defined by

x 7→ T 1
0,−1, y 7→ T 0

2,1.
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Since (T 1
0,−1)2 = −T 1

0,−1 by Proposition 4.3.4 (1) and (T 0
2,1)2 = 0 by Proposition 4.3.4 (2),

the map (4.19) factors through the relations x2 + x and y2. We now show that the induced

map

Ω : F̄p〈x, y〉/(x2 + x, y2)→ Hε
p(G̃, I

∗)

is an F̄p-algebra isomorphism.

An F̄p-vector space basis for F̄p〈x, y〉/(x2 + x, y2) is given by the set

A = {1, x, y, (xy)k, (yx)k, x(yx)k, y(xy)k}k≥1.

On the other hand, a F̄p-vector space basis for Hε
p(G̃, I

∗) is given (cf. Remark 4.2.3) by the

set

B = {T−k2k,2k+1, T
−k
2k,2k−1}k∈Z.

Proposition 4.3.4 demonstrates that the following elements of Hε
p(G̃, I

∗) are collinear with

distinct basis elements T `m,n ∈ B:

{
1, T 1

0,−1, T
0
2,1, (T

1
0,−1◦T 0

2,1)k, (T 0
2,1◦T 1

0,−1)k, T 0
2,1◦(T 1

0,−1◦T 0
2,1)k, T 1

0,−1◦(T 0
2,1◦T 1

0,−1)k
}
k≥1

(4.20)

and that each basis element T `m,n ∈ B is collinear with exactly one element of (4.20). So

Hε
p(G̃, I

∗) is generated as an F̄p-algebra by T 1
0,−1 and T 0

2,1, and the map x 7→ T 1
0,−1, y 7→ T 0

2,1

is a bijection between the vector space basis A of F̄p〈x, y〉/(x2 + x, y2) and the vector space

basis B of Hε
p(G̃, I

∗). Hence Ω is a bijective map of F̄p-vector spaces. Since Ω was also an F̄p-

algebra homomorphism by construction, we conclude that Ω is an F̄p-algebra isomorphism.

Thus Hε
p(G̃, I

∗) has the presentation

F̄p〈x, y〉/(x2 + x, y2)

as a noncommutative polynomial algebra over F̄p.

Corollary 4.3.8. The genuine mod p Iwahori Hecke algebra Hε
p(S̃L2(F ), I∗) is not isomor-
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phic to the mod p Iwahori Hecke algebra Hp(PGL2(F ), IG).

Proof. If the two algebras are isomorphic, then they must have equal numbers of F̄p-characters.

However, we will show thatHε
p(G̃, I

∗) has only two distinct F̄p-characters whileHp(PGL2(F ), IG)

has four.

We have the following presentations for the two algebras:

Hε
p(S̃L2(F ), I∗) ∼= F̄p〈x, y〉/(x2 + x, y2) (Theorem 4.3.7)

Hp(PGL2(F ), IG) ∼= F̄p〈a, b〉/(a2 − 1, bab+ b) ( [3] Prop. 7, cf. Proposition 4.2.1)

Consider an F̄p-character of Hε
p(G̃, I

∗), by which we mean an F̄p-linear homomorphism χ :

F̄p〈x, y〉/(x2 + x, y2)→ F̄p. Such a map is determined by its values on x and y, which must

satisfy

χ(y)2 = χ(y2) = χ(0) = 0 (4.21)

and

χ(x)2 = χ(x2) = χ(−x) = −χ(x). (4.22)

From (4.21) we deduce χ(y) = 0, and from (4.22) we deduce that χ(x) is a root of the

polynomial z2 + z = z(z + 1), hence χ(x) = 0 or χ(x) = −1. So Hε
p(G̃, I

∗) has two F̄p-

characters,

χ0,0 : x 7→ 0, y 7→ 0, and

χ−1,0 : x 7→ −1, y 7→ 0.

We will call χ0,0 the trivial character and χ−1,0 the sign character of Hε
p(G̃, I

∗).

On the other hand, consider an F̄p-linear homomorphism χ : F̄p〈a, b〉/(a2 − 1, bab+ b)→

F̄p. Such a map must satisfy

χ(a)2 − 1 = χ(a2 − 1) = 0, (4.23)
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χ(b)2χ(a) + χ(b) = χ(b)χ(a)χ(b) + χ(b) = χ(bab+ b) = 0. (4.24)

By (4.23), we must have χ(a) = 1 or χ(a) = −1. If χ(a) = 1, (4.24) implies that

χ(b)2 + χ(b) = 0,

so χ(b) is a root of z(z + 1) and hence χ(b) = 0 or χ(b) = −1. If χ(a) = −1, then (4.24)

implies that

−χ(b)2 + χ(b) = 0,

so χ(b) is a root of z(1 − z) and hence χ(b) = 0 or χ(b) = 1. Conversely, each of the four

possibilities we have listed does define a F̄p-character of Hp(PGL2(F ), IG). We label them

as follows:

χ1,0 : a 7→ 1, b 7→ 0,

χ1,−1 : a 7→ 1, b 7→ −1,

χ−1,0 : a 7→ −1, b 7→ 0, and

χ−1,−1 : a 7→ −1, b 7→ −1.

Since Hε
p(G̃, I

∗) has only two distinct F̄p-characters while Hp(PGL2(F ), IG) has four, we

conclude that the two algebras are not isomorphic.

4.4 Comparison of Hε(S̃L2(F ), I∗) with other Iwahori

Hecke algebras

Though the two algebras are not isomorphic, we can describe some relationships between

Hε
p(G̃, I

∗) and Hp(PGL2, IG).

Calculating inH(PGL2(F ), IG), we have ab = T1,0◦T1,2 = T2,1 and ba = T1,2◦T1,0 = T0,−1.

Hence there is a natural identification, in terms of correspondences on the tree of SL2, of the

generators x and y of Hε(G̃, I∗) with these elements of Hp(PGL2(F ), IG). Identify x = T 1
0,−1
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with ba = T1,0 and y = T 0
2,1 with ab = T2,1; if we try to extend this to a map of Hε

p(G̃, I
∗) into

Hp(PGL2(F ), IG), the result is well-defined on the one-parameter subalgebras of Hε
p(G̃, I

∗)

generated by x, by xy, and by yx, but not on the one-parameter subalgebra generated by

y, since y2 = 0 but (ab)2 = −ab 6= 0. So Hε
p(G̃, I

∗) is the quotient of the subalgebra of

Hp(PGL2(F ), IG) generated by 〈ab, ba〉 by the relation (ab)2 = 0, and in particular it is a

subquotient of Hp(PGL2(F ), IG).

Note that the subalgebra of Hp(PGL2(F ), IG) generated by 〈ab, ba〉 is just the Iwahori

Hecke algebra of G = SL2(F ) in terms of Barthel-Livné generators: it is the algebra of opera-

tors corresponding to edges of the tree which originate at vertices lying at even distances from

the base vertex, with composition relations calculated as in H(GL2(F )). Hence it is natural

to identify Hε
p(G̃, I

∗) with the quotient of Hp(G, I) by the square of one of its generators, in

particular the one sent to ab = T1,0 when Hp(G, IG) embeds in Hp(PGL2(F ), IG).

4.5 Further questions

We emphasize the fact that Theorem 4.3.4 and Corollary 4.3.8 give a picture quite different

from the one in characteristic 0, where the two algebras are isomorphic. This section lists

some questions for future work; their answers should help explain the impact of Corollary

4.3.8 on the mod p representation theory of G̃.

The first question concerns the relationship between Hε
p(G̃, I

∗) and Hε
p(G̃,K

∗). Ollivier

[20] has shown the compatibility of the Satake and Bernstein maps for split reductive groups

mod p. In that situation the Bernstein map gives an explicit isomorphism of the group algebra

of the dominant cocharacters with the center of the Iwahori Hecke algebra, so the spherical

Hecke algebra embeds as the center of the Iwahori Hecke algebra. It will be interesting to

know whether Hε
p(G̃,K

∗) embeds in Hε
p(G̃, I

∗), and if so whether its image is central.

Related to the spherical Hecke algebra, we would like to know whether the partial bi-

jection of unramified principal series representations can be completed in a natural way

by identifying the representation I(s̃gn) of G̃ with the Steinberg representation St via the

actions of Hε
p(G̃, I

∗) and of Hp(PGL2(F ), IG), respectively, on their Iwahori-fixed vectors.
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Likewise, we can ask whether the partial bijection we have defined using the spherical Hecke

algebra can also be defined in terms of actions of the Iwahori Hecke algebras on Iwahori-fixed

vectors.

More generally, it is not known whether the functor of I∗-invariants gives an equivalence

of categories, a bijection, or neither between the category of smooth irreducible genuine mod

p representations of G̃ generated by their I∗-fixed vectors and the category of simple modules

over the genuine Iwahori Hecke algebra of G̃.

The previous question becomes particularly interesting when I∗ is replaced by its pro-p

subgroup I(1)∗. Since every mod p representation of a p-adic group has a vector fixed by its

pro-p-Iwahori subgroup, one expects modules over the pro-p Iwahori Hecke algebra to give

the most complete information about the mod p representation theory. As a starting point,

one can ask for a presentation of the genuine pro-p Iwahori Hecke algebra of G̃ and whether

the genuine Iwahori Hecke algebra embeds in it.
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