
Signal Transduction with Hybridization Chain Reactions

Thesis by

Jonathan Ben-Zion Sternberg

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 22nd, 2013)



ii

c© 2013

Jonathan Ben-Zion Sternberg

All Rights Reserved



iii

Acknowledgements

I would like to thank my advisor, Professor Niles Pierce, for enlightening scientific conver-

sations, as well as for providing me with the intellectual community, resources, and most

importantly, freedom necessary to carry out the exciting work presented in this thesis. I

would also like to thank the great group of people I have had the luck to know during

my time in the Pierce Lab. Thank you, Dr. Victor Beck, Ma’ayan Schwarzkopf, Dr. Jeff

Vieregg, Dr. Tobias Heinen, Lisa Hochrein, Dr. Harry Choi, and the rest of the lab mem-

bers. You have all helped me in a variety of ways. For help with proofreading my thesis, I

thank Melinda Kirk.

I would also like to thank the wonderful committee members with whom I have had the

luck to work. Thank you, Professor David Tirrell, Professor Scott Fraser, and Professor

Michael Elowitz; your insights and support throughout these last few years have been

instrumental.

I owe a great deal of thanks to my family as well. Mom and Dad (Ima and Aba), if it were

not for your continuous love and support for more than three decades, I would not be

where I am today. Thank you for instilling in me the values that allowed me to pursue

scientific work at Caltech and the motivation to work hard and to strive to achieve my

personal best. My brother, Ariel, thank you for your love and support, and for being the

amazing friend that you are to me.

Last, but not least, I would like to thank my wife. Kayla, my dear, thank you for

believing in me, for standing by me, and for being the wonderful, warm, and caring person

that you are. Thank you for being my best friend (and writing editor) for the last 11 years

of my life. Most importantly, thank you for giving me the two most beautiful gifts a



iv

person can ask for: the gift of being loved by another, and the gift of children. Liam and

Rafael, you have given me the most meaningful moments of my life. Debbie, Jeff, Sarah,

Dan, and Avi, I could not have asked for a warmer, more supporting family than the one I

have had the luck to acquire by marriage. I love you all.



v

Abstract

Some of the most exciting developments in the field of nucleic acid engineering include

the utilization of synthetic nucleic acid molecular devices as gene regulators, as disease

marker detectors, and most recently, as therapeutic agents. The common thread between

these technologies is their reliance on the detection of specific nucleic acid input markers

to generate some desirable output, such as a change in the copy number of an mRNA (for

gene regulation), a change in the emitted light intensity (for some diagnostics), and a change

in cell state within an organism (for therapeutics). The research presented in this thesis

likewise focuses on engineering molecular tools that detect specific nucleic acid inputs, and

respond with useful outputs.

Four contributions to the field of nucleic acid engineering are presented: (1) the con-

struction of a single nucleotide polymorphism (SNP) detector based on the mechanism of

hybridization chain reaction (HCR); (2) the utilization of a single-stranded oligonucleotide

molecular Scavenger as a means of enhancing HCR selectivity; (3) the implementation of

Quenched HCR, a technique that facilitates transduction of a nucleic acid chemical input

into an optical (light) output, and (4) the engineering of conditional probes that function as

sequence transducers, receiving target signal as input and providing a sequence of choice as

output. These programmable molecular systems are conceptually well-suited for performing

wash-free, highly selective rapid genotyping and expression profiling in vitro, in situ, and

potentially in living cells.
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Chapter 1

Introduction

Breakthroughs in the field of nucleic acid engineering over the last two decades include in

vitro genotyping technologies [1–3], antisense translation inhibition [4–6], and gene therapy

[7–9]. Recently, dynamic nucleic acid systems engineering has been demonstrated with the

implementation of DNA walkers that traverse space in a programmed manner [10–12], self-

assembly reactions, in which predefined structures self-assemble from nucleic acid strands

[13, 14], and triggered self-assembly reactions, in which the presence of a specific molecule

is required to initiate a molecular self-assembly reaction [11, 15, 16].

To date, few dynamic nucleic acid systems have been developed into useful technolo-

gies. Nonetheless, the technologies into which such systems have been integrated, such as

molecular-beacon-based real-time PCR, and RNA genotyping in zebrafish [17, 18], suggest

that dynamic nucleic acid systems are likely to find increasing application.

Dirks and Pierce introduced the hybridization chain reaction (HCR) mechanism in

2004 [15], demonstrating that metastable nucleic acid molecules can be engineered to self-

assemble into polymers in the presence of a nucleic acid trigger, i.e., a target sequence of

choice. This isothermal, enzyme-free triggered polymerization technology has found wide

use; examples include multiplexed imaging of mRNA expression in zebrafish [18], miRNA

detection on a graphene oxide surface [19], and highly sensitive DNA detection via forma-

tion of DNAzyme nanowires [20]. This thesis focuses on engineering molecular nucleic acid

tools that operate in concert with HCR. These nucleic acid tools selectively detect RNA

in bulk, and could potentially be employed in genotyping applications in situ and in living

cells, as well as in diagnostic applications.
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Owing mostly to advances in genomics [21–25], the field of diagnostics has undergone

a shift from the macro to the micro. Indeed, clinicians who have formerly had to rely

on gross physical changes in patients (e.g., reported symptoms, changes in appearance,

cell morphology changes as revealed in biopsies and, more recently, MRI) to diagnose dis-

eases, are transitioning to tools that enable molecular-driven diagnoses [26–31]. Molecular

diagnostic tools could revolutionize the practice of medicine by: (1) replacing traditional

diagnostic techniques that rely on cell culture and therefore often require weeks [32] with

techniques that provide answers within hours or even less [33], (2) reducing the adverse

health effects associated with current diagnostic methods [32, 34–37], and (3) minimizing

expenditure associated with incorrect diagnosis [38].

The field of molecular diagnostics holds much promise, but it also poses an array of chal-

lenges. For a molecular diagnostic technique to find mass appeal, it must be (1) fast, (2)

cheap, (3) easy to use, (4) portable, (5) robust, (6) selective (i.e., not yield false positives),

(7) sensitive (i.e., not yield false negatives), and (8) suitable to interaction with biological

specimens.

A technology that addresses all of these challenges is not presently available. Real-time

reverse-transcription PCR (qRT-PCR), for example, relies on an expensive machine and

requires technical expertise and clean RNA samples containing neither DNA nor nucleases

[39]. Hence, qRT-PCR does not fully satisfy criteria 2–5. Similarly, nucleic acid sequencing

technologies are slow, expensive, technically challenging, and unsuitable for point-of-care

diagnostics (due to their dependence on large machines). Sequencing technologies, there-

fore, do not fully satisfy criteria 1–4 [40, 41]. By comparison, the tools described in this

thesis (HCR, Scavenger, Quenched HCR, and Conditional Probe) satisfy criteria 1–6 and

could potentially satisfy criteria 7–8 as well.

In Chapter 2, we provide two additional contributions to HCR. First, we demonstrate

that in addition to being an isothermal, enzyme-free method of nucleic acid detection,

HCR is also highly selective. Second, we demonstrate that Scavenger, a single-stranded

oligonucleotide, enhances HCR’s selectivity by competitively inhibiting off-target triggering

of HCR. We demonstrate that Scavenger improves the selectivity of HCR in a variety of
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cases, including the (G→A) substitution, which is the hardest SNP to detect in RNA-RNA

hybridization reactions [42, 43]. To the best of our knowledge, selective detection of the

G→A SNP, solely via a hybridization-based detection scheme in which both the target and

the detector are RNA oligonucleotides, has not been accomplished previously.

In Chapter 3 we demonstrate that Quenched HCR is an effective method of transducing

hybridization reactions to light emissions. Because HCR polymer formation is transduced

to light, cumbersome gel assays, which have been our primary means of monitoring HCR

in vitro reactions to date, can be replaced with real-time bulk fluorescence assays [44].

Lastly, in Chapter 4 we describe conditional probes that execute the logical operation:

if target sequence A is present, expose target sequence B. In contrast to the transducer of

Seelig et al. [45], our Conditional Probe is unimolecular, remains bound to target, and can

therefore provide spatial information in situ [18] as well as in substrate-based assays. Our

conditional probes are conceptually similar to those of Shimron et al. [20]; used in combi-

nation with Quenched HCR, we achieve discrimination ratios up to an order of magnitude

higher than those previously demonstrated.

Taken together, the tools discussed in this thesis have the potential to form a fast,

portable, easy-to-use diagnostic framework. Further, these tools could form the basis for

new wash-free methods for expression profiling in bulk samples, in fixed biological samples,

and possibly within living cells.
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24–9 (2008).

[36] Alonso-Mart́ınez, J. L., Sánchez, F. J. A. & Echezarreta, M. a. U. Delay and misdiag-

nosis in sub-massive and non-massive acute pulmonary embolism. European Journal

of Internal Medicine 21, 278–82 (2010).

[37] Newman-Toker, D. E. & Pronovost, P. J. Diagnostic errors–the next frontier for patient

safety. JAMA : The Journal of the American Medical Association 301, 1060–2 (2009).

[38] Vakil, N., Rhew, D., Soll, A. & Ofman, J. J. The cost-effectiveness of diagnostic

testing strategies for Helicobacter pylori. The American Journal of Gastroenterology

95, 1691–8 (2000).

[39] Bustin, S. A. & Nolan, T. Pitfalls of quantitative real-time reverse-transcription poly-

merase chain reaction. Journal of Biomolecular Techniques : JBT 15, 155–66 (2004).

[40] Metzker, M. L. Sequencing technologies - the next generation. Nature Reviews Genetics

11, 31–46 (2010).

[41] Kircher, M. & Kelso, J. High-throughput DNA sequencing–concepts and limitations.

BioEssays 32, 524–36 (2010).

[42] Serra, M. J. & Turner, D. H. Predicting thermodynamic properties of RNA. Methods

in Enzymology 259, 242–61 (1995).



8

[43] Mathews, D. H., Sabina, J., Zuker, M. & Turner, D. H. Expanded sequence depen-

dence of thermodynamic parameters improves prediction of RNA secondary structure.

Journal of Molecular Biology 288, 911–40 (1999).

[44] Chang, B.-Y. Smartphone-based Chemistry Instrumentation: Digitization of Colori-

metric Measurements. Bulletin of the Korean Chemical Society 33, 549–552 (2012).

[45] Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic

circuits. Science 314, 1585–8 (2006).



9

Chapter 2

Isothermal Enzyme-Free Detection
of SNPs via Hybridization Chain
Reaction

2.1 Introduction

Single nucleotide polymorphisms (SNPs) are associated with cancer [1–5], meningitis [6, 7],

hepatitis C [8], and a variety of other diseases. SNPs confer antibiotic resistance [9, 10]

and can be used as pharmacogenetic [11–14] and forensic markers [15]. Owing to their

importance as disease markers, a plethora of techniques for SNP detection have been de-

veloped [16–20]. Yet, due to limitations in speed, cost, ease of use, portability, robustness,

selectivity, or sensitivity, SNP detection technologies have mostly not been integrated into

the clinic [23], with the exception of real-time PCR, which has recently found minimal use

at the clinic [21, 22].

High-throughput, next-generation sequencing technologies [24], for example, rely on

large, expensive instrumentation whose use in a point-of-care setup is not currently practi-

cal. Similarly, microarray data analysis requires a large machine and relies on costly chips

that render this technique cost-prohibitive for non-high-throughput applications. Moreover,

microarrays have limited selectivity, as they often contain probes that hybridize to multi-

ple genes [25], and limited sensitivity, as they do not reliably detect low-abundance genes

[25, 26].

In contrast to microarrays, real-time reverse-transcription PCR (qRT-PCR) reliably dis-
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criminates between SNPs [17], and can detect single copy mRNAs [27]. For these reasons,

the use of qRT-PCR as a clinical diagnostic has increased in the last decade. At the same

time, qRT-PCR has some shortcomings. First, its high sensitivity can be a hindrance,

as even trace amounts of genetic DNA are amplified, thus providing false positives [28].

Similarly, sample impurities, as well as amplicon and target secondary structure can re-

sult in false negatives [29, 30]. Moreover, to detect and quantify mRNA, qRT-PCR relies

on a proxy (cDNA) that is generated by Reverse Transcriptase. The use of this enzyme

introduces three additional limitations to qRT-PCR: (1) due to variance in secondary struc-

tures in various RNA targets as well as in PCR primers, the formation of cDNA from an

RNA template does not follow a fixed mathematical transformation, thus rendering qRT-

PCR non-quantitative; (2) qRT-PCR is limited to locations and conditions that ensure the

stability of Reverse Transcriptase; and (3) the optical signal created during qRT-PCR is

physically separated from RNA, such that this technique offers no spatial information con-

cerning the transcript whose presence and quantity the technique gauges. Lastly, qRT-PCR

relies on a thermocycler, which in turn limits both the speed of the method and the use of

this method in point-of-care setups.

Another technique commonly used to detect SNPs involves the use of molecular beacons

[31]. While molecular beacons selectively detect SNPs [16, 17], their sensitivity is limited,

as the maximum ratio of beacons that can be hybridized to targets is 1:1.

A technique that was demonstrated to achieve both high specificity and high sensitivity

utilizes nicking enzymes in order to obtain signal amplification (NESA) [32]. However,

to achieve detection independently of target sequence, the recognition site of the nicking

enzyme is introduced to the target sequence via Rolling Circle Amplification. This, in turn,

requires DNA ligase, DNA polymerase, and a heat block, in addition to a nicking enzyme

and other PCR reagents. The use of multiple enzymes limits this detection technique both

in buffer constitution and in permissible temperatures. Additionally, this detection scheme

can only be employed where the enzymes’ stability is maintained.

This chapter assesses the merits of SNP detection via Hybridization Chain Reaction

(HCR) [33] as an alternative to, or supplemental tool to be used with, the aformentioned
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techniques.

2.2 Detection of SNPs with Hybridization Chain Reaction

In a Hybridization Chain Reaction (HCR) [33], nucleic acid hairpins (h1 and h2) undergo

isothermal, non-enzymatic self-assembly into polymers in the presence of target (T), a

nucleic acid sequence with which the hairpins are designed to hybridize (Figure 2.1). HCR

is initiated by a toehold-mediated branch migration of h1 in the presence of T, and it

proceeds by an alternating addition of h2 and h1 to the living end of polymer (Figure 2.1,

panel A). Due to the high energy of an h1·h2 intermediate, both hairpin species maintain

their metastable hairpin conformation in the absence of T [34].

HCR is therefore characterized by polymers in the presence of T and monomers in the

absence of T. While this duality of states was demonstrated by Dirks and Pierce in 2004 [33],

neither the selectivity of HCR nor kinetic control over the rate of HCR polymerization were

previously addressed. Our studies focused on the detection of single nucleotide polymor-

phisms (SNPs), so as to demonstrate HCR selectivity in the presence of mutations that are

expected to be the hardest to detect, due to small ∆∆G values between the detector-target

energetics and the detector-off-target energetics [35]. As demonstrated in this chapter, the

detection of SNPs requires fine control over the kinetics of HCR.
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Figure 2.1: SNP detection. (A) In the presence of an oligonucleotide (T) that is comple-
mentary to the toehold and half of the stem of hairpin 1 (h1), the metastable hairpins form
polymers. (B) In the presence of target (T′) that has a single mismatch (illustrated in
green) with respect to T, the hairpins retain their closed structure. (C) Gel electrophoresis
of HCR-mediated SNP detection. The hairpins polymerize in the presence of T (lane 2),
but remain closed in the absence of T, as well as in the presence of T′. h1 is illustrated in
solid lines (toehold and loop) and dashed lines (stem), and is shown in duplex with T along
the sequence window at which these two strands are expected to hybridize.
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2.3 Kinetic Control of HCR via ∆G Tuning

Because the nucleic acids utilized in HCR are metastable, the fraction of hairpins predicted

to form polymers at thermodynamic equilibrium is essentially independent of target (either

cognate or SNP) [34]. For this reason, HCR-mediated SNP discrimination at thermody-

namic equilibrium is not predicted to be feasible. Hence, we proceed to check the feasibility

of pre-equilibrium SNP detection.

We recall that HCR is initiated by the formation of either a T·h1 or a T′·h1 duplex.

Once a duplex is formed, however, the rate at which hairpins are incorporated into living

polymers in the subsequent steps of HCR in a T-containing test tube is about equal to the

rate at which hairpins are incorporated into polymers in a T′-containing test tube. Hence,

the rate of formation of T·h1 and T′·h1 at short times, i.e., while the majority of T′ remains

undetected, is expected to govern the duration of time during which SNP discrimination

is expected to be near its optimum1. Once this time frame has passed, a non-marginal

fraction of the T′ targets have turned into T′·h1 duplexes, and conversion (the fraction of

hairpins that are assembled into polymers out of total hairpins) in a T′-test tube begins

to approach the conversion that occurs in a T-test tube. In other words, discrimination is

lost as test tubes transition from the short time scale that characterizes T polymerization

to the long time scale that characterizes T′ polymerization.

Even though SNP discrimination is a transient phenomenon, we can control when SNP

discrimination begins to appear (as HCR polymers in a T-containing test tube generate

signal above background), and when discrimination is lost (as T′ polymerization approaches

T polymerization). In practice, polymerization in the absence of targets also contributes to

loss of discrimination, however, target-free polymerization occurs in a longer time scale than

that of T′-triggered polymerization. Controlling HCR kinetics is achieved via a principle

that we refer to as ∆G tuning.

In 2009 Zhang et al. demonstrated that for short toeholds, the rate of toehold-mediated

branch migration varies exponentially with the ∆G of toehold hybridization: k ∼ e−
∆G
RT [36].

Accordingly, we employ the engineering principle of ∆G tuning as a means of controlling the

1The energetics of T·h1 formation are predicted to have less favorable energetics than all subsequent
hairpin addition steps in HCR, because the initial step yields one less base-stack than subsequent steps.
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rate of formation of HCR polymers; the more favorable the ∆G per polymerization step, the

faster HCR proceeds, and the earlier SNP discrimination is both obtained, as T-containing

test tube polymers become detectable, and lost, as T′-containing test tube polymers are

formed. The selectivity of SNP discrimination is expected to depend on ∆∆G: the difference

in free energy between T·h1 formation and T′·h1 formation. The energetics of addition of h1

to polymers that end with h2 depends on the energetics of h1 addition to T, since the main

difference between these hybridization reactions is the formation of one extra base-stack in

the former. Hence, tuning the energetics of h1 addition to T, results in a similar tuning of

h1 addition to polymers that end with h2. Our ∆G tuning approach, therefore, focused on

the free-energy of addition of h1 to T, and of h2 to T·h1. On a molecular level, ∆G tuning

is obtained by controlling the nucleotide make-up of the toeholds of the two hairpins and/or

their lengths (Figure 2.2).
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2.4 Experimental Verification of Kinetic Control of HCR

To validate SNP detection via HCR, three different HCR systems were designed [37] accord-

ing to the ∆G tuning principle, and their conversion as a function of time was monitored

in the presence of T, T′, and T′′ (perfect target, a target that differs from T by an SNP,

and a target that differs from T by two nucleotide substitutions, respectively). The HCR

systems were designed to have characteristic time constants of discrimination of ∼10 hours,

∼1 hour and a few minutes (and are thus labeled slow, medium, and fast, respectively) in

test tubes containing 1µM of each molecule. As the data presented in Figure 2.2 shows,

∆G tuning of hairpin toeholds appears to be a viable way of controlling the characteristic

time constant of discrimination. Our results indicate that HCR systems can be designed to

discriminate between T and T′ at a time scale of choice.

In addition to discriminating SNPs in a time scale of choice, the fast system is expected

to lose its discrimination between T and T′′ faster than the medium speed system, which, in

turn, is expected to lose its discrimination between T and T′′ faster than the slow system.

This expectation is supported by the data in Figure 2.2.

Further, the extent to which hairpins maintain their metastable structure (i.e., avoid

polymerization) in the absence of target is assumed to depend on the ∆G of addition of

the toehold of h1 to its reverse complement (loop of h2); the more negative the ∆G of

hybridization between h1’s toehold and h2’s loop, the faster the rate of an h1-h2 formation,

and the more target-free polymers are observed. As can be seen in lane 16 of the bottom

panel of Figure 2.2, the data is in agreement with this hypothesis as well.
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Figure 2.2: Kinetic discrimination of SNPs via HCR at a time scale of choice. The con-
version of three HCR systems (labeled slow, medium, and fast, denoting systems that were
designed to optimize SNP detection at the time scale of ∼10 hours, ∼1 hour, and minutes,
respectively) is monitored as a function of time. The fraction of hairpins that are assembled
into polymers increases as a function of time with either T, T′, or T′′ (a target that com-
plements h1, an off-target that has an SNP when hybridized to h1, and an off-target that
has two substitutions when hybridized to h1), as well as in a target-free manner. The right
panel illustrates the target-nucleotides with which h1 of each of the three hairpins systems
hybridizes. The red system is HCRslow; the toehold and loop of its h1 constituent are illus-
trated in solid red and its stem portion is illustrated with a dashed red line. HCRmedium and
HCRfast appear in orange and green, respectively. The numbers that appear next to the
toehold and loop domains of each of the three systems’ h1, are NUPACK [37–40]-calculated
∆G values (in units of kcal/mol) of duplex formation between the 4-nt toehold sequence and
its reverse complement, and between the 4-nt loop sequence and its reverse complement.



17

2.5 Effect of Mutation Location on SNP Discrimination

In the previous section, we verified that HCR discriminates between SNPs pre-equilibrium.

Next, we propose a set of experiments to address the question of where an HCR system

should hybridize with a T/T′ target pair to achieve an optimal discrimination ratio. We

recall that HCR is initiated with a toehold-mediated branch migration of h1 in the presence

of T or some off-target. Since branch migration is initiated at the toehold of h1 and is

terminated in the stem portion of h1 that is closest to h1’s loop, the location along h1 at

which the branch has to migrate through an SNP could possibly affect the discrimination

ratio that the HCR detector achieves.

The following set of experiments was conducted in order to address this question. We

designed two seed sequences lacking secondary structure2 and containing nucleotide trip-

licate sequences that repeat themselves four times in the target set (Figure 2.3). Both of

these seed sequences were mutated to eight daughter sequences that lack secondary struc-

ture and vary from their respective parent seed sequence by an SNP. The SNP type, e.g.,

C→G in panel A, Figure 2.3, as well as the nearest neighbors [41] of each of the SNP loci,

were conserved in four data sets that were produced from two seed sequences and sixteen

daughter sequences. We then analyzed conversion as a function of mutation location at

different time points.

The results of this study (Figure 2.3) suggest that SNPs located in the first half (with

respect to toehold) of the stem of h1 provide discrimination ratios that are as good as, or

better than, those obtained by SNPs located at either the toehold of h1 or the second half

of the stem of h1. Hence, we tend to favor positioning the mutation in the first half of the

stem (relative to the toehold) in an effort to increase the initial chances of success when

designing new highly selective HCR systems.

2Seed sequences as well as mutated sequences were designed to be secondary-structure free so as to not
skew the results of this study in favor of mutations that reside in locations along the target-set that are rich
in secondary structure, as such locations are expected to form kinetic traps to the branch migration that h1
undergoes.
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Figure 2.3: Effect of mutation location on SNP discrimination. Seeking to determine the
location(s) that optimize discrimination, HCR systems were fixed (one system was incubated
with the targets that appear in panels A and B, and a different HCR system was incubated
with the targets that appear in panels C and D); the SNP type, e.g., C→G in panel A, as
well as the nearest neighbors of the SNP were, likewise, kept fixed in each of the four panels.
The target sequences with which h1 toeholds hybridize are denoted in black lines. SNPs
located in the first half (with respect to toehold) of the stem of h1 provide discrimination
ratios that are as good as, or better, than those obtained by SNPs located in either the
toehold of h1 or the second half of the stem of h1. For example, the data collected from
T′4 in panel A reveals that a C→G mutation with nearest neighbors A/A should not be
placed too near the loop of h1.
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2.6 Detection of SNP Cancer Markers

We now turn to the challenge of obtaining high levels of discrimination for an arbitrary SNP

after the passage of a time period of choice, focusing on SNP cancer markers. To this end,

we engineered HCR systems to detect three common SNP cancer markers, without placing

any requirements on either the sequences of these targets or their secondary structures.

Specifically, HCR systems were designed to detect the pervasive cancer markers BRAF

1799T→A [42–48]3, JAK2 1849G→T [2, 49, 50]4 and PTEN 388C→G [51, 52]5. Further,

to demonstrate that high discrimination ratios can be obtained at a time scale of choice in

a hairpin concentration of choice, we engineered the HCR systems to reach high levels of

discrimination after a 1-hour incubation period at 37◦C of 1µM hairpins with 1µM targets.

Three phenomena are highlighted in the results of this set of experiments (Figure 2.4).

First, high selectivity is obtained for each of the three cancer markers. Second, false nega-

tives are avoided by generating two distinct fluorescent signals for the wild-type and mutant

sequences. Third, the use of spectrally distinct fluorophores facilitates the use of multiple

HCR systems in a single test tube.

3These publications suggest that ∼50% of melanoma patients carry a mutation in their BRAF gene, and
among these BRAF mutations, ∼80-90% are the BRAF 1799T→A single nucleotide polymorphism.

4These publications suggest that above ∼90% of polycythemia vera patients, ∼50% of essential throm-
bocythemia patients, and ∼50% of primary myelofibrosis patients have the JAK2 1849G→T mutation. In
some occasions these disorders develop into malignant cancers.

5These publications suggest that ∼20% of ovarian cancer patients have some mutation in their PTEN
gene, and among these mutations, ∼6% are PTEN 388C→G.
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Figure 2.4: Detection of SNP cancer markers. For each of three RNA cancer markers,
SNP detection is obtained with two hairpin systems; one is designed to polymerize in the
presence of the mutant but not in the wild-type form of the gene, and the other is designed
to polymerize in the presence of the wild-type version of the gene but not in the presence of
the mutant form of the gene. We denote HCR systems with a superscript that defines the
nucleotide that h1 contains at the SNP locus. For example, to detect the cancer marker in
the BRAF T→A SNP (TA), HU is utilized. High selectivity is obtained in each of the three
cancer markers. False negatives are avoided by generating two distinct fluorescent signals,
one for the wild-type marker of the gene, and another for the cancer marker. Lastly, 2-color
multiplexing is successfully achieved.
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2.7 Improving HCR Discrimination with Scavenger

The discrimination ratios obtained with HCR-mediated SNP detection depend on ∆∆G of

the first step of HCR (the free-energy difference between T·h1 and T′·h1). We therefore

expect that HCR will provide poor discrimination ratios in the presence of SNPs that provide

small ∆∆G values. Among such SNPs, the hardest to detect in RNA-RNA hybridization

is G→A because the detector-target (h1U·TA) energetics are almost isoenergetic to the

detecor-off-target (h1U·TG) energetics [41, 53], thereby leading to poor discrimination ratios

in the absence of Scavenger (Figure 2.5, compare lanes 2 and 3).

We wish to establish HCR as a tool that obtains high discrimination ratios for all possible

SNPs. To achieve this goal, we introduce Scavenger as a competitive inhibitor of the nearly

isoenergetic off-target. Scavenger is a single-stranded oligonucleotide that hybridizes with

T′ and has an SNP when hybridized to T (Figure 2.5, panels A and B, respectively). The

energetics and concentration of Scavenger are tuned such that it preferentially forms a

duplex with T′ (T′·S) relatively to duplex T·S. Hence, when Scavenger and HCR are mixed

together, polymerization with T′ is impeded relative to polymerization with T.

This conceptual approach is especially compelling in the case of the most-challenging

SNP: G→A. For this case, HU has poor selectivity when T ≡ TA and T′ ≡ TG, because

h1U·TG is nearly isoenergetic to h1U·TA thereby yielding a small ∆∆G. By contrast, Scav-

enger (SC) binds strongly to TG but rejects TA, yielding a typical SNP ∆∆G. Hence,

crucially, Scavenger can be selective for T′ even though HCR is not selective for T, thereby

yielding HCR selectivity via competitive inhibition.

To demonstrate the utility of Scavenger, we begin with the difficult G→A substitution.

HCR provides little to no selectivity for the G→A substitution (Figure 2.5, compare lanes

2–3). When the same HCR system is incubated with Scavenger, however, high discrimi-

nation is obtained (Figure 2.5, lanes 4–5). To the best of our knowledge, highly selective

detection of the G→A SNP in an RNA-RNA hybridization assay has not been previously

demonstrated.

To establish the generality of Scavenger, we sought to demonstrate its utility in improv-

ing discrimination with additional SNP constitutions. To this end, HCR systems designed
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Figure 2.5: Scavenger- and HCR-mediated SNP detection. (A, B) Scavenger is a single-
stranded oligonucleotide that complements T′ and has an SNP with T. The energetics
of Scavenger are chosen such that Scavenger equilibrium tends toward duplex formation
in the presence of T′, but Scavenger remains mostly unhybridized in the presence of T.
(C) The hardest SNP to detect in RNA-RNA hybridization is G→A, since the detector-
target (HU·TA) energetics are almost isoenergetic to the energetics of the detector-off-target
(HU·TG), thereby leading to diminished discrimination ratios in the absence of Scavenger
(lanes 2 and 3, respectively). The presence of Scavenger dramatically improves discrimina-
tion (lanes 4 and 5).

to detect the BRAF T→A, JAK2 G→T and PTEN C→G cancer markers were tested in

the presence of their respective targets, i.e., the mutated states of the genes, as well as

in the presence of all three other nucleotide variants in the naturally occurring SNP site.

Incubating each of six different HCR systems with four different target sequences (lanes 2–5

in Figure 2.6) yielded five additional cases (denoted by red numbers in Figure 2.6) in which

we sought to improve discrimination. Scavenger was successfully employed in all of these

cases (green numbers in Figure 2.6).
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Figure 2.6: Generality of Scavenger- and HCR-mediated selectivity. HCR systems designed
to detect the mutated forms of BRAF T→A, JAK2 G→T and PTEN C→G were incubated
in the presence of their cognate targets, as well as in the presence of all other three SNP
variants at the cancer mutation position. In all cases (marked in red numbers) where a
selectivity improvement in the performance of HCR was sought, an appropriate Scavenger
was designed and successfully implemented (lanes 6–9 in panels I–III). Discrimination im-
provement in the presence of Scavenger requires that undesired polymerization (numbered,
in red) is reduced to a minimum, and desired polymerization (denoted in green checkmarks)
is maintained. Amongst the six cases in which discrimination was improved in this figure,
five are novel, since panel I lane 4 was demonstrated in Figure 2.5.
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2.8 SNP Profiling via HCR Multiplexing

In Section 2.6 we demonstrated that multiplexing with two HCR systems in a single test

tube is feasible. Since the ability to multiplex more than two genes at once is highly useful

in a variety of applications including pathogenic bacteria genotyping [9, 16] and pathogenic

virus genotyping [54], we sought to expand 2-color multiplexing to 4-color multiplexing.

Accordingly, we proceed to demonstrate highly selective SNP profiling of four target se-

quences that vary from each other by an SNP (Figure 2.7). To this end, four HCR systems,

each labeled with a different fluorophore, were mixed in a single test tube. In each of the

four target sequences that were tested (Figure 2.7), only one HCR system formed the ma-

jority of the polymers observed in the test tube. Thus, an arbitrary nucleotide identity was

selectively determined using four HCR systems in a single test tube. False negatives were

avoided by generating a different signal for each of the four possible nucleotide identities.

In order to obtain optimal results from SNP profiling, i.e., reduce incorrect signal as

much as possible, the kinetic behavior of the various HCR systems ought to be controlled

by tuning either ∆G (Section 2.3) or the concentration of the various HCR systems. Since

a concentration change is both easier to implement and more economical than a redesign

of a fluorescently labeled HCR system, we adopt that approach preferentially when tuning

multiple HCR systems to work at the same time point. Using the four HCR systems that

are presented in Figure 2.7, we found it useful to increase the concentration of HC and HG

2× with respect to HA and HU. We increased the concentration of HC so as to inhibit

HU from forming polymers with TG via G·U wobble pair formation. We increased the

concentration of HG as it was relatively slow to polymerize compared to the other HCR

systems. A further requirement of HCR multiplexing is that the HCR systems not share

too much sequence space with each other, since this leads to mixed, multi-fluorophore-

containing, polymers. Figure 2.7 depicts the sequence windows that were detected by each

of the four HCR systems.

Lastly, we note that the use of multiple HCR systems in a single test tube results in

a situation in which the HCR system that hybridizes with the target variant most readily

(due to energetics or concentration advantage) scavenges the target and, hence, prevents
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other HCR systems from hybridizing with the target. As a result, test tubes containing

multiple HCR systems can exhibit higher discrimination ratios than test tubes containing

a single HCR system (lanes 4 and 8 vs. 7, Figure 2.7). Multiplexing, therefore, provides a

form of selective target scavenging, which results in increased selectivity.

2.9 Detection of SNPs in Long RNA

Highly selective HCR was experimentally demonstrated with a variety of short RNA targets

throughout this chapter. While short RNA provides a proof-of-concept that HCR selectively

discriminates between SNPs, it is desirable that similar selectivity be demonstrated with

long RNA targets which may be found in complex biological samples such as blood and

saliva. To demonstrate SNP detection in the presence of long RNA, an 872-nt transcript,

consisting primarily of the d2EGFP sequence, as well as a C→G SNP-variant of this tran-

script, were in vitro transcribed. Following purification of the transcription reactions, each

of the two transcripts was incubated with a Cy3-modified HCR system that is designed to

detect the original transcript, as well as with a Cy5-modified HCR system that is designed

to detect the mutated variant of the transcript. As is shown in Figure 2.8, SNP detection

was successfully demonstrated with these two long RNA strands.
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Figure 2.7: SNP profiling via HCR multiplexing. Each of four distinct targets triggers the
polymer formation of its complementary HCR system but not of other HCR systems. The
undesired polymerization that occurs in an HU+TG test tube (lane 7) is reduced in an
HU+HC+TG test tube, because the target TG is scavenged by the HCR system with which
TG is designed to interact (HC, lane 8). The sequence variance between the four targets
that were used in this study is marked in orange. The sequence window with which each of
the four HCR systems is designed to hybridize is marked with a solid line (toehold of h1)
and a dashed line (stem of h1).
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Figure 2.8: Detection of a C→G SNP in long RNA. A transcript of 872-nt consisting
primarily of the sequence of d2EGFP gene, as well as a C→G SNP variant of it were
incubated with a Cy3-modified HCR system that is designed to detect the unmodified
transcript, and a Cy5-modified HCR system that is designed to detect the SNP variant of
the transcript. High selectivity was obtained for both target variants.



28

2.10 Conclusion

We demonstrated that HCR can selectively detect single nucleotide polymorphisms. Fur-

ther, we demonstrated that for the most challenging SNPs, HCR yields increased discrimi-

nation ratios with the use of either Scavenger strands or HCR multiplexing. Throughout the

studies we conducted, all SNP targets we tested were selectively discriminated from their

non-SNP-containing analogues. We therefore expect that HCR can be used as a selective

SNP detector for all SNPs. We have also shown that SNPs can be detected quickly; a time

frame of 6 minutes was demonstrated in Figure 2.2, and we presume that detection in the

time frame of seconds is achievable as well. While we have not been able to establish SNP

detection in target concentrations that fall below ∼50nM, we expect that supplementary

technologies and instrumentation will improve this sensitivity limit. Overall, HCR provides

highly-selective, isothermal, enzyme-free, rapid SNP detection—characteristics that estab-

lish HCR as a promising candidate for molecular diagnostic and genotyping applications.
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Chapter 3

Transducing Sequence to Light
with Quenched HCR

3.1 Introduction

Molecular beacons [1] are nucleic acid sequences that fold into a toehold-free hairpin struc-

ture. Upon hybridization with a target of choice via their loop domain, molecular beacons

undergo a conformational change that disrupts the integrity of their stem. As the 5′-end

of molecular beacons is conjugated to a fluorophore and their 3′-end is conjugated to a

quencher, hybridization to target disrupts their fluorophore-quencher FRET pair. This, in

turn, leads to an increase in emitted fluorescence. Because molecular beacons directly hy-

bridize with nucleic acid targets and offer high sequence selectivity, they have found broad

use in biological applications. Some examples include SNP detection in homogenous so-

lution [2], in situ RNA imaging [3], and dynamic monitoring of RNA in live cells [4–6].

While the isothermal, direct mode of target detection provided by molecular beacons has

facilitated their broad use, the fact that a maximum of one molecular beacon can hybridize

with a target site has limited their sensitivity to the nanomolar scale [7].

One way to overcome this sensitivity limit is to enrich the number of targets via the use

of PCR. An increasing number of target sites is generated through the amplification cycles

of PCR, and, as a result, an increase in fluorescence is recorded in real time, resulting

in one variant of real-time PCR [8]. Real-time PCR can also be used to detect RNA

targets (following a reverse transcription step) in a reaction known as “real-time reverse
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transcription PCR (qRT-PCR).” Since qRT-PCR is both sensitive and semi-quantitative1,

it has recently found some diagnostic use. At the same time, the sensitivity improvement

seen with qRT-PCR requires the use of a thermocycler. Large, expensive, and in need of

continuous electricity supply, thermocyclers limit the use of qRT-PCR as a point-of-care

diagnostic on the one hand, and render qRT-PCR unsuitable for both in situ and live cell

applications on the other hand.

In an attempt to capture the isothermal mode of detection offered by molecular beacons

while simultaneously achieving target amplification, Li et al. developed the Nicking Enzyme

Signal Amplification (NESA) method and obtained ∼6.2pM sensitivity [9]. At the same

time, to create the recognition sequence2 required by the nicking enzyme with a target

of choice, the authors incorporated heat inactivation steps into their protocol, thus re-

introducing the dependence on a thermocycler. As NESA requires both a thermocycler and

enzymes (DNA ligase and DNA polymerase), NESA’s limitations in a point-of-care setup

are similar to those faced by qRT-PCR.

In this chapter, we explore Quenched HCR as a new method for nucleic acid detection

in bulk. We recall from Section 2.2 that HCR entails the self-assembly of hairpins into

polymers in the presence of a target sequence with which the hairpins are designed to

hybridize [10]. To date, all applications in which direct readout of HCR polymers was

sought required either gel analysis [10], immobilization to surfaces [11], or tethering to

immobilized RNA in situ followed by a wash [12]. Here, we discuss Quenched HCR, as the

first wash-free method for HCR readout in bulk. Quenched HCR combines some of the

positive attributes of molecular beacons with those of qRT-PCR. like molecular beacons,

Quenched HCR offers an isothermal, non-enzymatic mode of detection. Like qRT-PCR,

Quenched HCR provides signal amplification, though not to the same extent. For these

reasons, we propose that Quenched HCR may be integrated into in vitro applications, e.g.,

diagnostics, and expression profiling in a lysate, in situ applications, e.g., HCR-ISH [12],

1A comparison of the fluorescent signal generated by a transcript of interest (via the transcript’s cDNA
proxy) and analogous fluorescent signals generated by multiple housekeeping genes, provides quantitative
ratios.

2Li et al. proposed Rolling Circle Amplification (RCA) as a method of transducing between a target
sequence of choice and the recognition sequence required by a nicking enzyme of choice. By introducing
RCA to their method, the authors were able to reach fM sensitivity.
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and possibly, live cell applications, e.g., cell sorting.

3.2 Design of 2-Hairpin and 4-Hairpin Quenched HCR

We sought to design Quenched HCR systems that polymerize in the time scale of dozens of

minutes or more so as to allow Quenched HCR optical measurement from ∼t0 and onwards.

Accordingly, DNA hairpins composed of toehold/loop sizes of 6-nt, and stem sizes of 18–

19-nt were designed. The domain sizes and sequence compositions of hairpins were chosen

such that the free energy [13, 14] of the hairpins’ stems is ≥25 kcal/mol, and the free energy

of their toehold and loop domains is 7–10.5 kcal/mol3.

The design of Quenched HCR systems necessitates consideration of the distance between

the fluorophore and quencher. This distance, which is mostly controlled by the ∆G4 between

the fluorophore and quencher, and the length and flexibility of the linkers used to conjugate

these two moieties, ought to be within the range of quenching in the hairpin conformation

and mostly out of the range of quenching in the polymer conformation. Hence, we required

that the quencher be placed in the 5′-end or 3′-end of h1 (in accordance with IDT’s catalog

orders), and that the fluorophore be placed across from the quencher (internally, between

the toehold and the stem domains, as is illustrated in Figure 3.1, panels A, B).

The combination of these design criteria, for the relatively small-toehold systems we fo-

cused on, suggests that the use of 4-hairpin-periodicity Quenched HCR (Figure 3.1, panel A)

is preferable to the use of 2-hairpin-periodicity Quenched HCR (Figure 3.1, panel B). In 4-

hairpin-periodicity Quenched HCR, the distance between the fluorophore and the quencher

in the polymer conformation is increased via the insertion of “insulating,” unlabeled hair-

pins between every dually labeled hairpin and its nearest neighbor on the same side of

the double-helix HCR polymers. In 2-hairpin Quenched HCR, the distance between the

3NUPACK calculations were based on parameters that were obtained by SantaLucia et al. [14]. Calcula-
tions did not account for the ∆G contribution of fluorophore-quencher modifications. Toehold and loop free
energy calculations utilized the sequences of these domains and their reverse DNA complements, without
considering the nearest neighbors of these two domains. Lastly, the free energy range of 7–10.5 kcal/mol
characterizes elongation steps of the HCR reaction, but does not characterize the free energy of T·h1 for-
mation from T and h1, since this free energy value is derived from the addition of an DNA h1 to an RNA
target.

4Differences in ∆∆G between hairpins that are modified with fluorophore-quencher pairs and their un-
modified analogues are expected, and may require different stem dimensions for the dually modified hairpins
than for the unmodified hairpin analogues.
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fluorophore and quencher within the polymer can be too small (Figure 3.1 panel B). With

internally labeled 2-hairpin Quenched HCR (Figure 3.1 panel C), however, the distance be-

tween the quencher and the fluorophore within the polymer is predicted to be large enough

to facilitate the use of small DNA hairpins of toehold / loop sizes of 6-nt, and stem sizes of

18–19-nt. Internally-labeled 2-hairpin Quenched HCR was not studied here, because inter-

nally labeled hairpins are difficult to synthesize. We note that quenching distance drops as

1
R6 , where R is the distance between the fluorophore and quencher [15], and for our choice

of quenchers, the distance in which the quencher is at ∼50% efficiency is reported to be

between 3–7nm by the manufacturer (IDT) [16].

Lastly, two fluorophore-quencher pairs with minimal cross-talk were chosen so as to allow

for multiplexing. As Integrated DNA Technologies (IDT) offer a limited set of five different

internal fluorophore modifications (6-FAMK, Fluorescein, Cy3, TAMRA and Cy5), the

maximum number of spectrally distinct Quenched HCR systems (known to be sufficiently

resistant to photobleaching) that we could test was two. Accordingly, Cy3 and Cy5 were

chosen as the fluorophores with which to label the Quenched HCR systems.

3.3 Analysis of 2-Hairpin and 4-Hairpin Quenched HCR

To demonstrate the feasibility of Quenched HCR without placing any requirements on the

sequences of the Quenched HCR systems, the mutated states of three of the most-commonly

occurring SNPs in cancer were chosen as targets: BRAF T→A, JAK2 G→T, and PTEN

C→G, denoted by T1, T2, and T3, respectively.

4-hairpin-periodicity and 2-hairpin-periodicity DNA-based Quenched HCR systems (Fig-

ure 3.1, panel A and B, respectively) were designed according to the specifications outlined

in Section 3.2. Both the 4-hairpin-periodicity and the 2-hairpin-periodicity Quenched HCR

systems utilize the same dually labeled h1 that hybridizes with target. They differ from

each other, however, in the loop of h2, which contains a reverse-complement sequence for h1

in the 2-hairpin-periodicity system, but does not contain a reverse-complement sequence to

h1’s toehold in 4-hairpin-periodicity system. The 4-hairpin-periodicity system also utilizes

two additional hairpins (h3 and h4).
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Figure 3.1: (A) 4-hairpin-periodicity Quenched-HCR. Hairpins labeled with a fluorophore-
quencher pair are integrated into an HCR polymer that has a period of 4 hairpins, i.e., one
fluorophore-quencher-labeled hairpin is integrated into HCR per every 4 hairpins of which
the HCR polymer consists. Upon integration into polymers, the fluorophore-quencher-
labeled hairpin undergoes a conformational change that pulls the fluorophore-quencher pair
apart, thus resulting in an increase in the emitted light. (B) 2-hairpin-periodicity HCR is
predicted to yield a short fluorophore-quencher distance in HCR polymers thus maintaining
the quencher at above 50% efficiency when hairpins of toehold / loop sizes of 6-nt, and stem
sizes of 18–19-nt are used. (C) Internally-labeled 2-hairpin-periodicity Quenched HCR is
predicted to yield long fluorophore-quencher distances even when small hairpins are used.
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To analyze Quenched HCR, we designed 2-hairpin-periodicity and 4-hairpin-periodicity

Quenched HCR systems that detect cancer markers BRAF T→A, JAK2 G→T, and PTEN

C→G (Section 2.6). We denote these targets as T1, T2, and T3, respectively, the 2-hairpin-

periodicity Quenched HCR systems that detect them as P1, P2, and P3, respectively, and

the 4-hairpin-periodicity Quenched HCR that detect the targets as Q1, Q2, and Q3, re-

spectively. As demonstrated in Figure 3.2, 4-hairpin-periodicity Quenched HCR systems

were successfully designed for all three targets. Among the 2-hairpin-periodicity Quenched

HCR systems that were tested, P3 and P2 were successfully implemented, with the for-

mer performing better. As expected (Section 3.2), 4-hairpin-periodicity Quenched HCR

outperformed 2-hairpin-periodicity Quenched HCR.

In addition to engineering 4-hairpin Quenched HCR in a long time scale, focusing on

monitoring the kinetic performance of Quenched HCR starting at ∼t0, we also designed a

fast Quenched HCR system (Figure B.4). Guided by the ∆G tuning principle (Section 2.3),

fast Quenched HCR utilized hairpins of toehold / loop sizes of 10-nt, and stem sizes of 26-nt.

Since 10-nt toeholds were used in this instance, as opposed to the 6-nt toeholds utilized in

Figure 3.2, fast Quenched HCR utilized 2-hairpin periodicity (Figure 3.1, panel B). Lastly,

we note that an RNA-based 4-hairpin periodicity Quenched HCR was also designed, and

successfully implemented (Appendix B.3).

3.4 Multiplexing Quenched HCR

The utilization of fluorophores that emit at different wavelengths allows for multiplexed gene

detection in a single test tube. To demonstrate this, two test tube compositions (T2 + Q2

+ Q3, and T3 + Q2 + Q3) are analyzed in this section; additional conditions are presented

in Figure B.1. The total fluorescence traces generated from this study demonstrate that

multiplex Quenched HCR performs well: both test tubes produce monotonically increasing

optical trace for the Quenched HCR system that they are expected to turn ‘on,’ but not

for the Quenched HCR system that should be kept ‘off’ (Figure 3.3).

We note that, in addition to the shapes of the curves, the intersections with the y-axis
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Figure 3.2: Each of three RNA targets (Tx) was incubated with a DNA end-labeled 2-
hairpin-periodicity Quenched HCR system (Px), as well as with a 4-hairpin-periodicity
Quenched HCR (Qx). Total fluorescence as a function of time was recorded on a real-time
PCR machine. Plotted data represent mean and standard deviation for two experiments.
Samples from the first experiment were analyzed on a 10% TBE native gel. (A) Target T1

is the mutated state of the BRAF T→A cancer marker; Quenched HCR systems P1 are
Q1 are Cy5-labeled. (B) Target T2 is the mutated state of the JAK2 G→T cancer marker;
Quenched HCR systems P2 and Q2 are Cy3-labeled. (C) Target T3 is the mutated state of
the PTEN C→G cancer marker; Quenched HCR systems P3 and Q3 are Cy5-labeled.
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and 675-690nm emission filter. Plotted data represent mean and standard deviation of two
experiments, normalized by the maximum mean value in each channel.

provide some indication5 of the extent to which the dually labeled hairpin is quenched,

where the closer the intersection is to zero, the more quenched the dually labeled hairpin.

With respect to this, we note that the Cy5-labeled system that detects T3 appears more

quenched than the Cy3-labeled system that detects T2. This agrees with the data collected

in the single-channel experiments (Figure 3.2).

5The exact interpretation of the intersect with the y-axis is the ratio between total signal that is ob-
served in a test tube in the first measurement of the time-course and the highest fluorescence measurement
throughout the experiment.



43

3.5 Conclusion

Quenched HCR using DNA or RNA hairpins (Figure B.3) was demonstrated to selectively

detect RNA targets. Quenched HCR can be parallelized when used in vitro; in our experi-

ments we analyzed as many as 36 test tubes at the same time, but the upper limit, which

depends on the optical device used, is significantly higher.

In its basic in vitro implementation, HCR requires the use of an additional assay to

determine the extent to which polymers are present in solution. Traditionally, this assay

takes the form of gel electrophoresis.

Quenched HCR has solved, or ameliorated, four problems that pertain to gel analysis

of HCR. First, single-time-point monitoring of HCR polymers, as provided by gel analysis,

can be replaced with continuous monitoring of the polymerization signal. Second, the

time (normally ∼ 30 minutes or more) that elapses between an HCR reaction and the

completion of both the gel run and the gel imaging has been effectively reduced to zero.

Third, the materials, chemical waste, and costs associated with running a gel have also been

dramatically reduced. Fourth, the challenge of quantifying often blurred bands from the

background of a gel, which is not transparent through a large portion of the visible light

spectrum, has been eliminated, and instead, an instrument that monitors fluorescence is

required [17].

In addition to in vitro applications e.g., diagnostics and wash-free expression profiling in

lysate, Quenched HCR may prove useful in situ and in live cells, as it provides a wash-free

approach to mapping genetic expression.
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Chapter 4

Sequence Transduction with
Conditional Probes

4.1 Introduction

As was discussed in Chapter 2, HCR is a fast, enzyme-free, isothermal, selective nucleic

acid detector. While these properties suggest that HCR could be used as a diagnostic, the

dependence of HCR on a gel-based [1], or immobilization-based assay [2] for purposes of

differentiating between HCR polymers and hairpin-monomers diminishes the utility of HCR

in some diagnostic settings.

In Chapter 3 we discussed Quenched HCR, which was developed to eliminate HCR’s

dependence on gel electrophoresis. Quenched HCR is a technique that measures fluorescent

signal as a proxy for polymer formation, thus eliminating the loss of time and reagents

associated with running gel electrophoresis. While Quenched HCR maintains many of

the positive attributes of HCR, Quenched HCR also poses non-trivial synthesis challenges.

Specifically, the dually labeled molecules that Quenched HCR requires are costly and time-

consuming to generate.

There is, therefore, a need for a molecule that hybridizes with both a target sequence

of choice and Quenched HCR. A transducer molecule of this nature would allow for the

detection of a target of choice using Quenched HCR without the need to design, synthesize,

and run quality control experiments on Quenched HCR systems every time the detection

of a new gene is sought.

For wash-free applications of the kind discussed in this chapter, as well as in Chapter 3,
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the transducer must be conditional, that is, the transducer should only expose an initiator

sequence for the cognate Quenched HCR, or other triggered hybridization system of choice,

if target is present. An unconditional probe, by comparison, would trigger the formation of

Quenched HCR independent of the absence/presence of target, thus removing the diagnostic

capability of Quenched HCR. Since the probe design discussed in this chapter is conditional,

we refer to it as “Conditional Probe,” or “CP.”

Conditional Probe executes molecular logic similar to that of molecular beacons. Molec-

ular beacons are nucleic acids that assume a stem-loop structure in the absence of target,

but lose the integrity of their stems in the presence of target (Figure 4.1 panel A) [3].

Molecular beacons can therefore be viewed as conditional probes that undergo a triggered

reaction wherein their stem-sequestered sequences turn into single-stranded sequences only

in the presence of target. Hence, these molecules carry out the following logic operation:

in the presence of sequence A, expose sequence space B. Although molecular beacons are

inherently conditional sequence transducers, they have found very limited use as such, and

instead have been used primarily as fluorescent reporters1. The design of CP is inspired by

molecular beacons. Unlike molecular beacons that transduce sequence A-to-light, however,

we propose to engineer CPs to transduce sequence A-to-sequence B.

Upon hybridization with a target, via the CP loop, the stem of CP is disrupted, exposing

single stranded tails that can serve as initiators for other reactions. For our purposes, the

motif we wish to turn ‘on’ in the presence of target and CP is Quenched HCR.

Other groups have utilized sequence transducers. Seelig et al. [4], for example, have

implemented a sequence transducer based on strand displacement reactions using duplexes.

Special care is required when duplex molecular motifs are introduced to biological samples,

since an excess of one strand over the other can lead to false positives. With Seelig’s

sequence transducer, the output sequence is released upon detection of the input sequence.

By comparison, the unimolecular CP studied here remains bound to target, and is thus

suitable for in situ applications and for substrate-based assays.

Wilner’s and Ellington’s groups have used unimolecular sequence transducers that as-

1Since molecular beacons are dually labeled with a fluorophore and a quencher on the 5′-end and 3′-end
of their stems, respectively, the target-mediated stem disruption that molecular beacons undergo results in
a measurable increase of fluorescent signal.
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Figure 4.1: (A) Molecular beacons are toehold-free hairpins that are composed of ∼18–
30-nt loop domains and ∼5–7-nt stem domains. Molecular beacons are covalently linked
to a fluorophore on their 5′-end and to a quencher on their 3′-end. In the presence of
target, quenching is disrupted, and a sequence that is orthogonal to that of the target is
exposed [3]. (B) Adaptation of the sequence-transduction capability of molecular beacons to
Conditional Probe involved an enlargement of the stem domain, in addition to omission of
the fluorophore and quencher modifications. Sequence domain a* is exposed in the presence
of target sequence b*. (C) Only in the presence of both target and CP, Quenched HCR is
triggered.
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sume a hairpin structure that is similar to that of molecular beacons. Wilner’s group has

used sequence transducers to form DNAzyme nanowires [5, 6], and Ellington’s group has

used sequence transducers for DNA catalytic circuits2 [7].

4.2 Design of Conditional Probes

As discussed in Section 4.1, CP is a molecular motif designed to carry out the following op-

eration: if sequence A is present, expose sequence B. To test this molecular logic, we sought

to utilize CP as a sequence transducer between Quenched HCR and targets orthogonal to

the sequence of Quenched HCR. Specifically, our objective was to trigger Quenched HCR

systems that were already in our possession, thus refraining from introducing any size or

sequence restrictions to either CP or Quenched HCR.

The Quenched HCR systems that were chosen for our studies (Section 4.3) are Q2 and

Q3, which were discussed in Chapter 3. Because these Quenched HCR systems consist

of 6-nt toehold domains and 18–19-bp stem domains, triggering with a full-sized reverse

complement sequence requires a CP with a 24–25-nt tail (Figure 4.1, panels B and C).

To ensure that CP stems are sufficiently open in the presence of targets so as to expose

a sequence of 24–25-nt, our CPs feature a combined toehold+stem length of 24–25-nt. We

devised three test cases for Q2 and three test cases for Q3 (Section 4.3). To trigger Q2,

CPs composed of stem-toehold domain sizes of 25-0-nt, 20-5-nt and 15-10-nt were utilized.

To trigger Q3 CPs composed of stem-toehold domain sizes of 24-0-nt, 19-5-nt and 14-10-nt

were used.

The main difference between these CPs is the extent to which their stems are expected

to be open during hybridization with target and, hence, the speed with which Quenched

HCR is expected to proceed. The longer the toehold, the more favorable the free energy

of the reaction T·CP + h1 → T·CP·h1 is, and hence, the faster Quenched HCR polymer-

ization is expected to initiate. At the same time, the longer the toehold, the more the

undesired reaction of Quenched HCR polymerization is expected to occur in the presence

2It may be that the sequence transducer used by Ellington’s group is leaky, i.e., not conditional, since
no data is provided for test tubes that contain the sequence transducer as well as the DNA circuit, but are
absent of target.
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of only Conditional Probe, i.e., without target. Hence, Conditional Probe stems cannot be

arbitrarily short.

Our molecular designs focused on DNA-based conditional probes, due to their resistance

to degradation and low cost, and RNA-based targets, due to their biological interest.

4.3 Experimental Verification of Conditional Probe Function

To verify the utility of the CP designs discussed in Section 4.2, Quenched HCR systems were

incubated in the presence of either CP (to test for undesired triggering of Quenched HCR),

or CP and target, at 25◦C. The Quenched HCR systems utilized here are Q2 and Q3, which

are the better performing DNA-based Quenched HCR systems from Section 3.3. For each

of these Quenched HCR systems, we sought to engineer a CP that can trigger Quenched

HCR when in the presence of two orthogonal targets. For this purpose, T1 and T3 served

as orthogonal targets for Q2, and T1 and T2 served as orthogonal targets for Q3. CP1,2

and CP3,2 were utilized to trigger Q2 in the presence of T1 and T3, respectively. Similarly,

CP1,3 and CP2,3 were utilized to trigger Q3 in the presence of T1 and T2 respectively.

As mentioned in Section 4.2, CPs of three varieties were tested: long stem and no

toehold, middle stem and middle toehold, and lastly, short stem, and long toehold. Each

of CP1,2, CP3,2, CP1,3, and CP2,3 was tested with all three of these varieties. Hence, a

total of 12 CPs were analyzed. To distinguish between the three varieties of CPs, we affix

the letters L, M, or S, which stand for long, medium, or short stem length, to each of the

conditional probes that appear in Figure 4.2.

Conditional probes function in a desirable manner only when they contain a toehold

(Figure 4.2). When toehold-containing conditional probes are utilized, Quenched HCR

systems remain mostly dark when in the presence of only CP, but they undergo dark-to-

light transformation when in the presence of both CP and T, as desired. This observation

suggests that if the CP stem is too long, the CP does not sufficiently expose the HCR

initiator upon target binding.
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Figure 4.2: Sequence transduction with conditional probes. Cancer markers BRAF T→A,
JAK2 G→T, and PTEN C→G, denoted by T1, T2, and T3, respectively, are orthogonal
to each other. In Chapter 3, it was demonstrated that these target sequences selectively
trigger Quenched HCR systems Q1, Q2, and Q3. Here, Quenched HCR systems Q2 and
Q3 are triggered by target sequences that are orthogonal to their own in the presence of
relevant toehold-containing conditional probes. Conditional probes (CPs) are marked with
superscript indices that denote the target entity and the Quenched HCR system between
which the CPs mediate. L, M, and S denote long, medium, and short CP stem lengths.
Plotted data represent mean and standard deviation of two experiments. Traces for CP(L)
are not included in the time course data, since CP(L) data very closely matched background
data in all experiments. Intended CP secondary structure is illustrated at the right side of
each panel.
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4.4 Multiplexing via Conditional Probe and Quenched HCR

In Section 4.3, it was demonstrated that CP is an effective sequence transducer between a

target of choice and a Quenched HCR system of choice. Next, we wished to demonstrate

that CP allows for target detection in multiplex. To demonstrate multiplexing, Q2 and Q3

were used as the Quenched HCR systems to be triggered by the orthogonal target sequences

T1 and T4. Q2, Q3, and T1 are the same sequences utilized throughout Chapter 3 and 4. T4

is a short RNA sequence of the destabilized, enhanced, green fluorescent gene (d2EGFP).

The fluorescent traces shown in Figure 4.3, panels A and B indicate that CP and

Quenched HCR can be multiplexed. The gel analysis in Figure 4.3, done upon comple-

tion of the real-time fluorescence measurements (of the first of two experiments), provides

further indication that CP and Quenched HCR can be used in multiplex. Specifically, Q3

provides the majority of signal in lane 1, Q2 provides the majority of signal in lane 2, and

both Q2 and Q3 provide signal in lane 3, as desired.

4.5 Detection of Long RNA

In Section 4.3 it was demonstrated that CP allows for selective triggering of Quenched HCR

in the presence of short RNA targets that are orthogonal to Quenched HCR. As a follow-up

to this study, we sought to initiate Quenched HCR using the same conditional probes, but

for long RNA targets rather than short RNA targets.

To test the performance of CP with long RNA, a transcript of 1213-nt consisting pri-

marily of a (C→G) variant of the PTEN gene was transcribed in vitro using T7 polymerase.

Subsequently, this transcript was incubated at 25◦C with Q2, and with either CP3,2(M) or

CP3,2(S) (Section 4.3). As is demonstrated in Figure 4.4, CP successfully detects long RNA

targets.

4.6 Conclusion

In Chapter 3 we demonstrated that Quenched HCR undergoes a dark-to-light transition in

the presence of a target of choice. Since Quenched HCR hybridizes to targets, its sequence



53

T1+CP1,3(S)+Q3+CP4,2(S)+Q2

T4+CP4,2(S)+Q2+CP1,3(S)+Q3

T1+CP1,3(S)+Q3+T4+CP4,2(S)+Q2

!"

#!!"

$!!!"

$#!!"

%!!!"

%#!!"

&!!!"

&#!!"

!" %" '" (" )" $!" $%" $'"

!"
#$

%&
'(
&)

(&
*+,

%-
./
%,
%0
*#
).
/'
1*

2.3&*+4$#%'1*

Q
2 +Q

3

T1
+Q

3

T4
+Q

2

T1
+C

P
1,

3 (S
)+

Q
3 +C

P
4,

2 (S
)+

Q
2

T4
+C

P
4,

2 (S
)+

Q
2 +C

P
1,

3 (S
)+

Q
3

T1
+C

P
1,

3 (S
)+

Q
3 +T

4 +C
P

4,
2 (S

)+
Q

2

1 2 3

2) Signal corresponds with the blue curve in panel B

3) Signal corresponds with both of the aforementioned signals

BA CCy5 channel (collects Q3) Cy3 channel (collects Q2)

Only complete triplets 
are designed to trigger 
Quenched HCR

!"

#!"

$!!"

$#!"

%!!"

%#!"

&!!"

&#!"

'!!"

'#!"

#!!"

!" %" '" (" )" $!" $%" $'"
!"
#$

%&
'(
&)

(&
*+,

%-
./
%,
%0
*#
).
/'
1*

2.3&*+4$#%'1* 1) Signal corresponds with the orange curve in panel A

Figure 4.3: Conditional Probe Multiplexing. (A, B) Target sequences T1 and T4 are orthog-
onal to 4-hairpin Quenched HCR systems Q2 and Q3. Conditional Probe CP1,3(S) triggers
Q3 only in the presence of T1, as can be shown by the blue and green curves in panel A.
Similarly, CP4,2(S) triggers Q2 in the presence of T4. Plotted data represent mean and
standard deviation of two experiments. We recall from Chapter 3 that Q2 self-assembles
into polymers to some extent even in the absence of a complementary target. (C) Native
gel analysis proceeded real-time PCR fluorescence measurements of the first experiment,
and is in agreement with the total fluorescence traces.

!"

#!!"

$!!"

%!!"

&!!"

'!!"

(!!"

)!!"

*!!"

!" $" &" (" *" #!" #$" #&"

!"
#$

%&
'(
&)

(&
*+,

%-
./
%,
%0
*#
).
/'
1*

2.3&*+4$#%'1*

""+%,-./0$"

""+%,-./12,3./0$"

""+%,-./12,4./0$"

T3 (lo
ng)+Q

2

N/R N/R T3 (lo
ng)+CP3

,2 (M
)+Q

2

T3 (lo
ng)+CP3

,2 (S)+Q
2

T3(long)+Q2

T3(long)+CP3,2(M)+Q2 

T3(long)+CP3,2(S)+Q2

CP3,2(M) CP3,2(S)

20 20

5

22

15 15

10

22

Quenched hairpin signal
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CP3,2(M) and, to a lesser extent, in the presence of CP3,2(S). Plotted data represent mean
and standard deviation of two experiments.
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largely depends on the sequence of the target. Hence, any new target one wishes to detect

requires the design, synthesis, and characterization of a new Quenched HCR system. Due

to synthesis and purification challenges, the preparation of dually labeled DNA is much

slower and significantly more costly than the preparation of unmodified DNA. Moreover,

in vitro characterization of Quenched HCR is time-consuming, and cell characterization of

Quenched HCR is highly time-consuming. This fact should be taken into consideration

since we predict that Quenched HCR will be used in cells.

To lessen the time and cost limitations associated with the iterative design and charac-

terization of Quenched HCR, we engineered conditional probes: hairpins whose stems open

when their loop hybridizes with a target of choice. Since a CP contains a stem sequence

that is not dependent on CP’s loop sequence, Quenched HCR systems that are mixed with

conditional probes can detect target sequences that are orthogonal to their own sequences.

The requirement of having to design, synthesize, and characterize a new Quenched HCR

system (that consists of 2-hairpins at a minimum, of which at least one is dually labeled)

for every new target sequence is, therefore, replaced with the requirement of having to

design, synthesize, and characterize one unmodified CP. We expect that the latter will

often be a more convenient approach for users of Quenched HCR. The ability to design

and verify conditional probes, rather than new Quenched HCR systems, could be of high

value in genotyping applications in which multiple sequence windows along a single gene

are detected.

Conditional probes could also potentially be used to initiate HCR that is fluorescently

labeled, but not quenched, thus reducing the amount of time required for HCR in situ

hybridization protocols by eliminating the need to wash out unused probes [2]. Additionally,

CPs could trigger a variety of DNA circuits [5–7]. Lastly, we expect that the CP design

process will benefit from the fact that a CP’s stem design can be achieved, almost entirely,

without having to take into consideration the target sequence. When Quenched HCR

hybridizes directly with target, i.e., without the use of conditional probes, the length of

Quenched HCR’s hairpin stems is dependent on the G/C content of the target. When

Quenched HCR hybridizes with Conditional Probe, however, the stem lengths of Quenched
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HCR hairpins cease to depend on the sequence of the target.
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Appendix A

Appendix to Chapter 2

A.1 Methods

A.1.1 Preparation of Oligonucleotides

All oligonucleotides used in Chapter 2 were synthesized by Integrated DNA Technologies

(Coralville, Iowa) and were either HPLC-purified by IDT, or purified using a denaturing

PAGE gel in our lab. Some of the hairpins underwent fluorophore labeling in our lab accord-

ing to Life Technologies’ “Amine-Reactive-Probes” protocol. These hairpins are denoted

with parentheses around the fluorophore moiety in Tables A.1–A.9.

A.1.2 Test Tube Preparation

All oligonucleotides were stored at -20◦C and brought to room temperature prior to the ini-

tiation of the experiment. Extinction-coefficient-based quantification of nucleic acid species

was carried out on a spectrophotometer prior to each experiment. Following quantification,

all of the nucleic acid strands, apart from long RNA of d2EGFP in Figure 2.8, under-

went snap-cooling, which involves a 95◦C incubation for 90 seconds, immediately followed

by incubation on ice for 30 seconds, followed by an additional 15 minutes, or more, of

equilibration at room temperature.

In reactions that contained either scavengers or multiple HCR systems, non-target

reagents were expelled onto the sides of the test tube to ensure that all strands can ex-

perience ‘first contact’ with targets at the same time. Reaction tubes contained strands at

1µM concentration, but for three exceptions: 1) Scavengers were utilized in 2µM; 2) the



59

experiment presented in Section 2.8 contained 2µM of each hairpin of HCR systems HC and

HG; and 3) the experiment presented in Section 2.9 utilized 0.715µM targets. Test tubes

contained 1× PKR buffer (20mM HEPES pH 7.5, 4mM MgCl2, 100mM KCl). HCR reac-

tions were carried out at 37◦C for 1 hour, other than the reaction that involved detection

of long RNA (Section 2.9), which was carried out for 18 hours and 23 minutes. Following

incubation at 37◦C, 5× loading buffer (50% glycerol, 1xPKR) was added to each reaction

mixture, or a fraction of it, and the resulting mixture was run (150V) on a 10 % native

TBE gel (Bio-Rad, Hercules, CA).

A.1.3 Imaging

Imaging of all hairpins, other than those which were conjugated to Alexa750, was carried out

on an FLA-5100 laser scanner (Fujifilm, Stamford, CT). Unmodified hairpins were stained

with SYBR Gold according to manufacturer directions and were imaged using a 473 nm laser

and a 530nm ± 10 band-pass filter. Fluorescently-labeled hairpins were excited with either

473, 532, or 635 nm lasers, and their emission was collected using an appropriate choice

of 530 ±10 nm or 570 ± 10 nm band-pass filters or a 665 nm long-pass filter. Imaging of

Alexa750-modified hairpins was carried out on Li-Cor’s (Lincoln, NE) Odyssey machine,

which utilizes a 785nm laser and collects emission above 810nm. When Odyssey-rendered

images were superimposed with FLA-5100 images (Figure 2.7 and left panel of Figure 2.4),

the TurboReg plugin of Image J was utilized.
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A.2 Strand Sequences

Expected RNA strand from T7 in vitro transcription of d2EGFP C→G; SNP is marked in red
GGGAGACCCAAGCUGGCUAGCAUGGUGAGCAAGGGCGAGGAGCUGUUCACCG
GGGUGGUGCCCAUCCUGGUCGAGCUGGACGGCGACGUAAACGGCCACAAGUU
CAGCGUGUCCGGCGAGGGCGAGGGCGAUGCCACCUACGGCAAGCUGACCGUG
AAGUUCAUCUGCACCACCGGCAAGCUGCCCGUGCCCUGGCCCACCCUCGUGAC
CACCCUGACCUACGGCGUGCAGUGCUUCAGCCGCUACCCCGACCACAUGAAGC
AGCACGACUUCUUCAAGUCCGCCAUGCCCGAAGGCUACGUCCAGGAGCGCAC
CAUCUUCUUCAAGGACGACGGCAACUACAAGACCCGCGCCGAGGUGAAGUUC
GAGGGCGACACCCUGGUGAACCGCAUCGAGCUGAAGGGCAUCGACUUCAAGG
AGGACGGCAACAUCCUGGGGCACAAGCUGGAGUACAACUACAACAGCCACAA
CGUCUAUAUCAUGGCCGACAAGCAGAAGAAUGGCAUCAAGGUGAACUUCAAG
AUCCGCCACAACAUCGAGGACGGCAGCGUGCAGCUCGCCGACCACUACCAGC
AGAACACCCCCAUCGGCGACGGCCCCGUGCUGCUGCCCGACAACCACUACCUG
AGCACCCAGUCCGCCCUGAGCAAAGACCCCAACGAGAAGCGCGAUCACAUGG
UCCUGCUGGAGUUCGUGACCGCCGCCGGGAUCACUCUCGGCAUGGACGAGCU
GUACAAGAAGCUUAGCCAUGGCUUCCCGCCGGAGGUGGAGGAGCAGGAUGAU
GGCACGCUGCCCAUGUCUUGUGCCCAGGAGAGCGGGAUGGACCGUCACCCUG
CAGCCUGUGCUUCUGCUAGGAUCAAUGUGUAGCUUAA
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Table A.1: Strands Utilized in Figure 2.1

Material Name # (nt) Sequence (5′ to 3′) Stock #
RNA h1 36 CAGUUCCUCCCUUUCCAGGAAACUGGAAAGGGAGGA 285
RNA h2 36 CUGGAAAGGGAGGAACUGUCCUCCCUUUCCAGUUUC 286
RNA T 26 CUGUAAAGCUGGAAAGGGAGGAACUG 193
RNA T′ 26 CUGUAAAGCUGGAAAGGGACGAACUG 194

Table A.2: Strands Utilized in Figure 2.2

Material Name # (nt) Sequence (5′ to 3′) Stock #
RNA h1 slow 36 GAUUUCUCUGUAGCUAGAGACUUCUAGCUACAGAGA 281
RNA h2 slow 36 UCUAGCUACAGAGAAAUCUCUCUGUAGCUAGAAGUC 282
RNA h1 medium 36 UCUCUGUAGCUAGACCAACAAAUUGGUCUAGCUACA 500
RNA h2 medium 36 UUGGUCUAGCUACAGAGAUGUAGCUAGACCAAUUUG 501
RNA h1 fast 36 CAGAGAAAUCUCGACAGAUCGAGAUUUCUCUGUAGC 518
RNA h2 fast 36 UCUGUCGAGAUUUCUCUGGCUACAGAGAAAUCUCGA 519
RNA T 36 GAUUUUGGUCUAGCUACAGAGAAAUCUCGAUGGAGU 277
RNA T′ 36 GAUUUUGGUCUAGCUACAGUGAAAUCUCGAUGGAGU 278
RNA T′′ 36 GAUUUUGGUCUAGCAACAGUGAAAUCUCGAUGGAGU 504

Table A.3: Strands Utilized in Figure 2.3

Material Name Panel # (nt) Sequence (5′ to 3′) Stock #
RNA h1 A, B 36 CACCACACCACACGGAGACGUGUGGUGUGGUGUGUG 314
RNA h2 A, B 36 UCUCCGUGUGGUGUGGUGCACACACCACACCACACG 315
RNA T A, B 18 CACACACCACACCACACG 316
RNA T′1 A 18 CAGACACCACACCACACG 317
RNA T′2 A 18 CACAGACCACACCACACG 318
RNA T′3 A 18 CACACACCAGACCACACG 319
RNA T′4 A 18 CACACACCACACCAGACG 320
RNA T′1 B 18 CATACACCACACCACACG 328
RNA T′2 B 18 CACAUACCACACCACACG 329
RNA T′3 B 18 CACACACCAUACCACACG 330
RNA T′4 B 18 CACACACCACACCAUACG 331
RNA h1 C, D 36 CUGACUUGACUGACUACUGUCAGUCAAGUCAGGUCA 364
RNA h2 C, D 36 AGUAGUCAGUCAAGUCAGUGACCUGACUUGACUGAC 365
RNA T C, D 18 UGACCUGACUUGACUGAC 363
RNA T′1 C 18 UUACCUGACUUGACUGAC 366
RNA T′2 C 18 UGACCUUACUUGACUGAC 367
RNA T′3 C 18 UGACCUGACUUUACUGAC 368
RNA T′4 C 18 UGACCUGACUUGACUUAC 369
RNA T′1 D 18 UGACCUGACUUGACUAAC 410
RNA T′2 D 18 UGACCUGACUUAACUGAC 411
RNA T′3 D 18 UGACCUAACUUGACUGAC 412
RNA T′4 D 18 UAACCUGACUUGACUGAC 413



62

Table A.4: Strands Utilized in Figure 2.4

Material Name Panel # (nt) Sequence (5′ to 3′) Stock #

RNA h1 (HU) left 36 CAGAGAAAUCUCGACAAUUCGAGAUUUCUCUGUAGC 449
RNA h2 (HU) left 36 AUUGUCGAGAUUUCUCUGGCUACAGAGAAAUCUCGA/iSp9//3AmMO/(Alexa750) 450*
RNA h1 (HA) left 36 UCACUGUAGCUAGACCAACAAAUUGGUCUAGCUACA/iSp9//3AlexF546N/ 435
RNA h2 (HA) left 36 UUGGUCUAGCUACAGUGAUGUAGCUAGACCAAUUUG 225
RNA TA left 36 GAUUUUGGUCUAGCUACAGAGAAAUCUCGAUGGAGU 277
RNA TU left 36 GAUUUUGGUCUAGCUACAGUGAAAUCUCGAUGGAGU 278
RNA h1 (HA) middle 36 UCCACAGAAACAUACUCCUCUUGGAGUAUGUUUCUG 423
RNA h2 (HA) middle 36 /5Alex647N//iSp9/GGAGUAUGUUUCUGUGGACAGAAACAUACUCCAAGA 424
RNA h1 (HC) middle 38 GUAUGUGUCUGUGGAAGAAUCCACAGACACAUACUCCA 447
RNA h2 (HC) middle 38 UUCUUCCACAGACACAUACUGGAGUAUGUGUCUGUGGA/iSp9//3AmMO/(Alexa532) 461*
RNA TU middle 36 UUGGUUUUAAAUUAUGGAGUAUGUUUCUGUGGAGAC 269
RNA TG middle 36 UUGGUUUUAAAUUAUGGAGUAUGUGUCUGUGGAGAC 270
RNA h1 (HC) right 36 GAGGAACUGGUGUAAACAUACACCAGUUCCUCCCUU 489
RNA h2 (HC) right 36 UGUUUACACCAGUUCCUCAAGGGAGGAACUGGUGUA/iSp9//3AmMO/(Cy5) 490*
RNA h1 (HG) right 36 CAGUUCGUCCCUUUCCAGGAAACUGGAAAGGGACGA/iSp9//3Cy3Sp/ 295
RNA h2 (HG) right 36 CUGGAAAGGGACGAACUGUCGUCCCUUUCCAGUUUC 264
RNA TC right 36 CUGUAAAGCUGGAAAGGGACGAACUGGUGUAAUGAU 487
RNA TG right 36 CUGUAAAGCUGGAAAGGGAGGAACUGGUGUAAUGAU 488

Table A.5: Strands Utilized in Figure 2.5.

Material Name # (nt) Sequence (5′ to 3′) Stock #
RNA h1 36 UCUCUGUAGCUAGACCAACAAAUUGGUCUAGCUACA 500
RNA h2 36 UUGGUCUAGCUACAGAGAUGUAGCUAGACCAAUUUG 501
RNA TA 26 GAUUUUGGUCUAGCUACAGAGAAAUC 189
RNA TG 26 GAUUUUGGUCUAGCUACAGGGAAAUC 371
RNA SC 11 UUUCCCUGUAG 389
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Table A.6: Strands Utilized in Figure 2.6.

Material Name Panel # (nt) Sequence (5′ to 3′) Stock #
RNA h1 1 36 UCUCUGUAGCUAGACCAACAAAUUGGUCUAGCUACA 191
RNA h2 1 36 UUGGUCUAGCUACAGAGAUGUAGCUAGACCAAUUUG 192
RNA h1 2 36 UCACUGUAGCUAGACCAACAAAUUGGUCUAGCUACA 502
RNA h2 2 36 UUGGUCUAGCUACAGUGAUGUAGCUAGACCAAUUUG 503
RNA TA 1, 2 26 GAUUUUGGUCUAGCUACAGAGAAAUC 189
RNA TC 1, 2 26 GAUUUUGGUCUAGCUACAGCGAAAUC 370
RNA TG 1, 2 26 GAUUUUGGUCUAGCUACAGGGAAAUC 371
RNA TU 1, 2 26 GAUUUUGGUCUAGCUACAGAGAAAUC 190
RNA SA 1 12 AUUUCACUGUAG 496
RNA SC 1, 2 11 UUUCCCUGUAG 389
RNA SU 2 12 AUUUCUCUGUAG 499
RNA h1 3 36 UCCACAGAAACAUACUCCUCUUGGAGUAUGUUUCUG 423
RNA h2 3 36 GGAGUAUGUUUCUGUGGACAGAAACAUACUCCAAGA 509
RNA h1 4 38 GUAUGUGUCUGUGGAAGAAUCCACAGACACAUACUCUA 521
RNA h2 5 38 UUCUUCCACAGACACAUACUGGAGUAUGUGUCUGUGGA 448
RNA TA 3, 4 36 UUGGUUUUAAAUUAUGGAGUAUGUAUCUGUGGAGAC 497
RNA TC 3, 4 36 UUGGUUUUAAAUUAUGGAGUAUGUCUCUGUGGAGAC 498
RNA TG 3, 4 36 UUGGUUUUAAAUUAUGGAGUAUGUGUCUGUGGAGAC 270
RNA TU 3, 4 36 UUGGUUUUAAAUUAUGGAGUAUGUUUCUGUGGAGAC 269
RNA SU 3 12 ACAGAUACAUAC 512
RNA SC 3 11 CAGACACAUAC 513
RNA h1 5 36 CAGUUCCUCCCUUUCCAGGAAACUGGAAAGGGAGGA 285
RNA h2 5 36 CUGGAAAGGGAGGAACUGUCCUCCCUUUCCAGUUUC 286
RNA h1 6 36 CAGUUCGUCCCUUUCCAGGAAACUGGAAAGGGACGA 287
RNA h2 6 36 CUGGAAAGGGACGAACUGUCGUCCCUUUCCAGUUUC 288
RNA TA 5, 6 26 CUGUAAAGCUGGAAAGGGAAGAACUG 374
RNA TC 5, 6 26 CUGUAAAGCUGGAAAGGGACGAACUG 194
RNA TG 5, 6 26 CUGUAAAGCUGGAAAGGGAGGAACUG 193
RNA TU 5, 6 26 CUGUAAAGCUGGAAAGGGAUGAACUG 375

Table A.7: Strands Utilized in Figure 2.7

Material Name # (nt) Sequence (5′ to 3′) Stock #

RNA h1 (HA) 36 /5Alex750N//iSp9/AAGGGAUGAACUGGUCAUCCAGUUCAUCCCUUUCCA 492
RNA h2 (HA) 36 AUGACCAGUUCAUCCCUUUGGAAAGGGAUGAACUGG 493
RNA h1 (HC) 36 GAGGAACUGGUGUAAACAUACACCAGUUCCUCCCUU 489
RNA h2 (HC) 36 UGUUUACACCAGUUCCUCAAGGGAGGAACUGGUGUA/iSp9//3AmMO/(Cy5) 517*
RNA h1 (HG) 36 CAGUUCGUCCCUUUCCAGGAAACUGGAAAGGGACGA/iSp9//3Cy3Sp/ 295
RNA h2 (HG) 36 CUGGAAAGGGACGAACUGUCGUCCCUUUCCAGUUUC 264
RNA h1 (HU) 38 CACUAGUUCUUCCCUUUCCUCAAGGAAAGGGAAGAACU/iSp9//3AmMO/(Alexa488) 516*
RNA h2 (HU) 38 GGAAAGGGAAGAACUAGUGAGUUCUUCCCUUUCCUUGA 486
RNA TA 36 CUGUAAAGCUGGAAAGGGAAGAACUGGUGUAAUGAU 484
RNA TC 36 CUGUAAAGCUGGAAAGGGACGAACUGGUGUAAUGAU 487
RNA TG 36 CUGUAAAGCUGGAAAGGGAGGAACUGGUGUAAUGAU 488
RNA TU 36 CUGUAAAGCUGGAAAGGGAUGAACUGGUGUAAUGAU 491

Table A.8: Strands Utilized in Figure 2.8.

Material Name # (nt) Sequence (5′ to 3′) Stock #
RNA h1 36 AGCUGACCCUGAAGGACACUUCAGGGUCAGCUUGCC 441
RNA h2 36 UGUCCU/iCy3/UCAGGGUCAGCUGGCAAGCUGACCCUGAAG 442
RNA h1 36 ACCGUGAAGUUCAUAACCAUGAACUUCACGGUCAGC 432
RNA h2 36 GGUUAUGAACUUCACGGUGCUGACCGUGAAGUUCAU/iSp9//3Cy5Sp/ 433
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Appendix B

Appendix to Chapter 3

B.1 Methods

B.1.1 Preparation of Oligonucleotides

With the exception of one strand (#359* from Table B.2)1, all oligonucleotides used in

Chapter 3 were synthesized and HPLC-purified by Integrated DNA Technologies (Coralville,

Iowa).

B.1.2 Experimental Procedure

Oligonucleotides were stored at -20◦C and brought to room-temperature prior to the initi-

ation of the experiment. Extinction-coefficient-based quantification of nucleic acid species

was carried out on a spectrophotometer prior to each experiment. Following quantifica-

tion, all of the nucleic acid strands underwent snap-cooling, a process that involves 95◦C

incubation for 90 seconds, immediately followed by 30 seconds of incubation on ice and

an additional 15 minutes, or more, equilibration at room temperature. The hairpins were

snap-cooled in 1× PKR buffer (20mM HEPES pH 7.5, 4mM MgCl2, 100mM KCl).

In the experiments presented in Chapter 3, all strands were in 1µM final concentration,

with the exception of the RNA-based Quenched HCR studies, which utilized 0.8µM final

concentration of each strand. The final volume in the sensitivity-studies was 5µL; the final

volume in the multiplexing studies as well as in the RNA-based Quenched HCR studies was

1Strand 359* was ligated using NEB’s RNA ligase I ligation protocol; upon completion of the ligation
reaction, this strand was ethanol-precipitated.
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10µL; the final volume in all other studies in Chapter 3 was 8µL.

All non-target nucleic acid strands were expelled onto the sides of the test tube to ensure

that all strands experience ‘first contact’ with target at the same time. Reagent mixing

entailed rapid test tube flicking, followed by brief centrifugation. Once in a homogenous

mixture, the test tubes were placed in Bio-Rad’s CFX-96 Real-Time PCR machine, and

incubated at 25◦C. Quenched HCR reactions were run for 12 hours, with the exception of

the RNA-based Quenched HCR study described in Section B.4, which was run for 2 hours.

During HCR reactions, the lid covering the test tubes was maintained at 105◦C.

Following the optical recording of Quenched HCR, test tubes were removed from the

real-time PCR machine and analyzed on a gel. To this end, 5× loading buffer (50% glycerol,

1×PKR) was added to each test tube. The resulting mixtures were run (150V) on a 10%

native TBE gel (Bio-Rad, Hercules, CA).

All figures presented in Chapter 3, other than Figure 3.32, provide background-subtracted

data. Background is defined as the average of three, or four, measurements that took place

prior to the addition of test tubes to the real-time PCR machine.

2Multiplexing Figure 3.3 contains background-subtracted data, normalized to the maximum recorded in
each of the two channels.
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B.2 Background-subtracted Data of Quenched HCR Multi-

plexing

In this section we provide additional data (Figure B.1) for Quenched HCR multiplexing. In

Figure 3.3 we provided normalized fluorescence data for two test tubes: the test tube con-

taining T2+Q2+Q3 and the test tube containing T3+Q2+Q3. Here, we provide background-

subtracted data for the same two test tubes, in addition to data for the test tube containing

T1+T2+Q2+Q3. The term “background” is defined in Section B.1. Plotted data represent

mean and standard deviation of two experiments.
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Figure B.1: Background-subtracted data of multiplexing with Quenched HCR. Cy3-labeled
Quenched HCR system designed to detect JAK2 G→T cancer marker, and Cy5-labeled
Quenched HCR system designed to detect PTEN C→G cancer marker were mixed with a
JAK2 G→T-containing test tube, a PTEN C→G-containing test tube, and a test tube con-
taining both of these cancer markers. Plotted data represent mean and standard deviation
of two experiments.
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B.3 Sensitivity of Quenched HCR

To demonstrate the sensitivity of Quenched HCR, 1µM, 100nM, and 10nM T3 were each

incubated with Q3 (B.2). Sensitivity of up to and including 100nM was repeatedly obtained.

At 10nM T3, some experiments provided fluorescent signal which was within a standard

deviation of the background traces.
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Figure B.2: Sensitivity of detection of PTEN C→G gene marker (T3) via 4-hairpin-
periodicity Quenched HCR (Q3). Plotted data represent mean and standard deviation of
three experiments. 100nM sensitivity was obtained in all three experiments; 10nM target,
however, was within the error of background in some experimental runs.
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B.4 RNA-based Quenched HCR

In addition to testing a variety of DNA-based Quenched HCR systems, we also wanted to

demonstrate that Quenched HCR can be obtained with an RNA-based, 4-hairpin-periodicity

Quenched HCR system. This system consists of domain sizes that are equal to most of the

HCR systems that were used in Chapter 2, specifically, 4-nt toehold, 14-nt stem, and 4-nt

loop. The fluorescence curves that were produced with this system are shown in figure B.3.
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Figure B.3: Detection of an RNA target with an RNA-based Quenched HCR. 4-hairpin-
periodicity RNA-based Quenched HCR was incubated with an RNA target (blue curve),
as well as without a target (red curve). Target-free fluorescent trace remains almost flat
throughout the experiment. Target-containing fluorescent trace is monotonically increasing
throughout the experiment.

B.5 Fast Target Detection with Quenched HCR

Fluorescent traces that demonstrate successful implementation of Quenched HCR are de-

scribed in Section 3.3, Figure 3.2. Since we sought to monitor the polymerization of

Quenched HCR from ∼t0, we engineered the systems described in Section 3.3 to have

long polymerization time scales. All three Quenched HCR systems included in Figure

3.2 exhibit monotonically increasing fluorescent signal throughout the 12 hours in which

Quenched HCR was monitored.
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Figure B.4: 2-hairpin-periodicity Quenched HCR exhibits fast polymerization when in the
presence of T3, as desired. Plotted data represent mean and standard deviation of two
experiments. The engineering of fast-to-polymerize Quenched HCR systems employed the
∆G tuning principle, which predicts that the more negative the value of ∆G of addition of
hairpin toehold domains to their reverse-complements, as can be calculated using thermo-
dynamic principles, the faster the formation of HCR polymers. Details about this principle
are presented in Section 2.3.

Here, we demonstrate that Quenched HCR systems can also undergo fast polymeriza-

tion. To design a fast-to-polymerize Quenched HCR system, we implemented ∆G tuning,

which is described in Section 2.3. As demonstrated in Figure B.4, we were able to engineer

a Quenched HCR system (F3) that reaches a maximum fluorescence signal in ∼1 hour.

The steepness of the curve around the first time point demonstrates that the majority of

polymerization occurrs in the first few minutes of the reaction. F3 and F3+T3 do not in-

tersect with the y-axis at the same value due to a short time interval, ∼2 minutes, between

mixing the reaction tubes and the first measurement on the real-time PCR machine. This

fast-to-polymerize Quenched HCR system entailed long-toehold hairpins and, hence, was

realized in 2-hairpin-periodicity (Figure 3.1).
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B.6 Strand Sequences

Table B.1: Strands Utilized in Chapter 3

Material Name # (nt) Sequence (5′ to 3′) Stock #
DNA h1 (P1, Q1) 50 /5IAbRQ/GCTACAGAGAAATCTCGATATGAGGATCGAGATTTCTCTGTAGC/iCy5/TAGACC 582
DNA h2 (Q1) 50 CCTCAT ATCGAGATTTCTCTGTAGCCCAGATGCTACAGAGAAATCTCGAT 532
DNA h3 (Q1) 50 GCTACAGAGAAATCTCGATTACTCCATCGAGATTTCTCTGTAGC ATCTGG 533
DNA h4 (Q1) 50 GGAGTAATCGAGATTTCTCTGTAGCGGTCTAGCTACAGAGAAATCTCGAT 534
DNA “h2” (P1) 50 CCTCATATCGAGATTTCTCTGTAGCGGTCTAGCTACAGAGAAATCTCGAT 535
DNA h1 (P2, Q2) 50 /5IABkFQ/AGTATGTTTCTGTGGAGACTGACGTGTCTCCACAGAAACATACT/iCy3/CCATAA 536
DNA h2 (Q2) 50 ACGTCAGTCTCCACAGAAACATACTAATACCAGTATGTTTCTGTGGAGAC 537
DNA h3 (Q2) 50 AGTATGTTTCTGTGGAGACACAGCAGTCTCCACAGAAACATACTGGTATT 538
DNA h4 (Q2) 50 TGCTGTGTCTCCACAGAAACATACTTTATGGAGTATGTTTCTGTGGAGAC 539
DNA “h2” (P2) 50 ACGTCAGTCTCCACAGAAACATACTTTATGGAGTATGTTTCTGTGGAGAC 540
DNA h1 (P3, Q3) 48 /5IAbRQ/GAAAGGGAGGAACTGGTGTGCAGTCACCAGTTCCTCCCTTTC/iCy5/CAGCTT 541
DNA h2 (Q3) 48 ACTGCACACCAGTTCCTCCCTTTCTTCCTCGAAAGGGAGGAACTGGTG 542
DNA h3 (Q3) 48 GAAAGGGAGGAACTGGTGACGACACACCAGTTCCTCCCTTTCGAGGAA 543
DNA h4 (Q3) 48 TGTCGTCACCAGTTCCTCCCTTTCAAGCTGGAAAGGGAGGAACTGGTG 544
DNA “h2” (P3) 48 ACTGCACACCAGTTCCTCCCTTTCAAGCTGGAAAGGGAGGAACTGGTG 545
DNA h1 fast (Q3) 72 /5IAbRQ/GGAAAGGGAGGAACTGGTGTAATGATCACTAGTACAATCATTACACCAGTTCCTCCCTTTCC/i5-TAMK/AGCTTTACAG 556
DNA h2 fast (Q3) 72 TGTACTAGTGATCATTACACCAGTTCCTCCCTTTCCCTGTAAAGCTGGAAAGGGAGGAACTGGTGTAATGAT 557
RNA T1 36 GAUUUUGGUCUAGCUACAGAGAAAUCUCGAUGGAGU 277
RNA T2 36 UUGGUUUUAAAUUAUGGAGUAUGUUUCUGUGGAGAC 269
RNA T3 36 CUGUAAAGCUGGAAAGGGAGGAACUGGUGUAAUGAU 488

Table B.2: Additional Strands Utilized in Appendix B

Material Name # (nt) Sequence (5′ to 3′) Stock #
DNA h1 fast (F3) 72 /5IAbRQ/GGAAAGGGAGGAACTGGTGTAATGATCACTAGTACAATCATTACACCAGTTCCTCCCTTTCC/i5-TAMK/AGCTTTACAG 556
DNA h2 fast (F3) 72 TGTACTAGTGATCATTACACCAGTTCCTCCCTTTCCCTGTAAAGCTGGAAAGGGAGGAACTGGTGTAATGAT 557
RNA h1 36 GAACCCUUCUUAUGUCUGCAUAAGAAGGGUUCUGCU B3
RNA h2 36 CAGACAUAAGAAGGGUUCUCGUGAACCCUUCUUAUG 305
RNA h3 36 /5IAbRQ/GAACCCUUCUUAUGAGACCAUAAGAAGGGUU/iCy5/CACGA 359*
RNA h4 36 GUCUCAUAAGAAGGGUUCAGCAGAACCCUUCUUAUG 307
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Appendix C

Appendix to Chapter 4

C.1 Methods

Test tubes in Chapter 4 contained a final volume of 8µM, consisting of 1µM of each strand

in 1 × PKR, with the exception of the long RNA target PTEN C→G, which was utilized in

Section 4.5, and was at a final concentration of 0.9375µM. Long RNA of PTEN C→G was

not snap-cooled. Other than the presence of conditional probes in Chapter 4, the methods

followed in this chapter are identical to the methods that are described in Section B.1.

C.2 Strand Sequences

Expected RNA strand from T7 in vitro transcription of PTEN C→G; SNP is makred in red
AUGACAGCCAUCAUCAAAGAGAUCGUUAGCAGAAACAAAAGGAGAUAUCAAG
AGGAUGGAUUCGACUUAGACUUGACCUAUAUUUAUCCAAACAUUAUUGCUAU
GGGAUUUCCUGCAGAAAGACUUGAAGGCGUAUACAGGAACAAUAUUGAUGAU
GUAGUAAGGUUUUUGGAUUCAAAGCAUAAAAACCAUUACAAGAUAUACAAUC
UUUGUGCUGAAAGACAUUAUGACACCGCCAAAUUUAAUUGCAGAGUUGCACA
AUAUCCUUUUGAAGACCAUAACCCACCACAGCUAGAACUUAUCAAACCCUUUU
GUGAAGAUCUUGACCAAUGGCUAAGUGAAGAUGACAAUCAUGUUGCAGCAAU
UCACUGUAAAGCUGGAAAGGGAGGGAACUGGUGUAAUGAUAUGUGCAUAUUU
AUUACAUCGGGGCAAAUUUUUAAAGGCACAAGAGGCCCUAGAUUUCUAUGGG
GAAGUAAGGACCAGAGACAAAAAGGGAGUAACUAUUCCCAGUCAGAGGCGCU
AUGUGUAUUAUUAUAGCUACCUGUUAAAGAAUCAUCUGGAUUAUAGACCAGU
GGCACUGUUGUUUCACAAGAUGAUGUUUGAAACUAUUCCAAUGUUCAGUGGC
GGAACUUGCAAUCCUCAGUUUGUGGUCUGCCAGCUAAAGGUGAAGAUAUAUU
CCUCCAAUUCAGGACCCACACGACGGGAAGACAAGUUCAUGUACUUUGAGUU
CCCUCAGCCGUUACCUGUGUGUGGUGAUAUCAAAGUAGAGUUCUUCCACAAA
CAGAACAAGAUGCUAAAAAAGGACAAAAUGUUUCACUUUUGGGUAAAUACAU
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UCUUCAUACCAGGACCAGAGGAAACCUCAGAAAAAGUAGAAAAUGGAAGUCU
AUGUGAUCAAGAAAUCGAUAGCAUUUGCAGUAUAGAGCGUGCAGAUAAUGAC
AAGGAAUAUCUAGUACUUACUUUAACAAAAAAUGAUCUUGACAAAGCAAAUA
AAGACAAAGCCAACCGAUACUUUUCUCCAAAUUUUAAGGUGAAGCUGUACUU
CACAAAAACAGUAGAGGAGCCGUCAAAUCCAGAGGCUAGCAGUUCAACUUCU
GUAACACCAGAUGUUAGUGACAAUGAACCUGAUCAUUAUAGAUAUUCUGACA
CCACUGACUCUGAUCCAGAGAAUGAACCUUUUGAUGAAGAUCAGCAUACACA
AAUUACAAAAGUCUGA

Table C.1: Strands Utilized in Chapter 4

Material Name # (nt) Sequence (5′ to 3′) Stock #
DNA h1 (Q1) 50 /5IABkFQ/GCTACAGAGAAATCTCGATATGAGGATCGAGATTTCTCTGTAGC/i6-FAMK/TAGACC 531
DNA h2 (Q1) 50 CCTCAT ATCGAGATTTCTCTGTAGCCCAGATGCTACAGAGAAATCTCGAT 532
DNA h3 (Q1) 50 GCTACAGAGAAATCTCGATTACTCCATCGAGATTTCTCTGTAGC ATCTGG 533
DNA h4 (Q1) 50 GGAGTAATCGAGATTTCTCTGTAGCGGTCTAGCTACAGAGAAATCTCGAT 534
DNA h1 (Q2) 50 /5IABkFQ/AGTATGTTTCTGTGGAGACTGACGTGTCTCCACAGAAACATACT/iCy3/ CCATAA 536
DNA h2 (Q2) 50 ACGTCAGTCTCCACAGAAACATACTAATACCAGTATGTTTCTGTGGAGAC 537
DNA h3 (Q2) 50 AGTATGTTTCTGTGGAGACACAGCAGTCTCCACAGAAACATACTGGTATT 538
DNA h4 (Q2) 50 TGCTGTGTCTCCACAGAAACATACTTTATGGAGTATGTTTCTGTGGAGAC 539
DNA h1 (Q3) 48 /5IAbRQ/GAAAGGGAGGAACTGGTGTGCAGTCACCAGTTCCTCCCTTTC/iCy5/CAGCTT 541
DNA h2 (Q3) 48 ACTGCACACCAGTTCCTCCCTTTCTTCCTCGAAAGGGAGGAACTGGTG 542
DNA h3 (Q3) 48 GAAAGGGAGGAACTGGTGACGACACACCAGTTCCTCCCTTTCGAGGAA 543
DNA h4 (Q3) 48 TGTCGTCACCAGTTCCTCCCTTTCAAGCTGGAAAGGGAGGAACTGGTG 544
RNA T1 36 GAUUUUGGUCUAGCUACAGAGAAAUCUCGAUGGAGU 277
RNA T2 36 UUGGUUUUAAAUUAUGGAGUAUGUUUCUGUGGAGAC 269
RNA T3 36 CUGUAAAGCUGGAAAGGGAGGAACUGGUGUAAUGAU 488
RNA T4 31 CAAGCUGACCCUGAAGUUCAUCUGCACCACC 173
DNA CP1,2(L) 74 GTCTCCACAGAAACATACTCCATAATTTCTCTGTAGCTAGACCAAAATCTTATGGAGTATGTTTCTGTGGAGAC 564
DNA CP1,2(M) 69 CACAGAAACATACTCCATAATTTCTCTGTAGCTAGACCAAAATCTTATGGAGTATGTTTCTGTGGAGAC 565
DNA CP1,2(S) 64 AAACATACTCCATAATTTCTCTGTAGCTAGACCAAAATCTTATGGAGTATGTTTCTGTGGAGAC 566
DNA CP3,2(L) 72 GTCTCCACAGAAACATACTCCATAATTACACCAGTTCCTCCCTTTCCTTATGGAGTATGTTTCTGTGGAGAC 573
DNA CP3,2(M) 67 CACAGAAACATACTCCATAATTACACCAGTTCCTCCCTTTCCTTATGGAGTATGTTTCTGTGGAGAC 574
DNA CP3,2(S) 62 AAACATACTCCATAATTACACCAGTTCCTCCCTTTCCTTATGGAGTATGTTTCTGTGGAGAC 575
DNA CP1,3(L) 72 CACCAGTTCCTCCCTTTCCAGCTTTTTCTCTGTAGCTAGACCAAAATCAAGCTGGAAAGGGAGGAACTGGTG 546
DNA CP1,3(M) 67 GTTCCTCCCTTTCCAGCTTTTTCTCTGTAGCTAGACCAAAATCAAGCTGGAAAGGGAGGAACTGGTG 547
DNA CP1,3(S) 62 TCCCTTTCCAGCTTTTTCTCTGTAGCTAGACCAAAATCAAGCTGGAAAGGGAGGAACTGGTG 548
DNA CP2,3(L) 67 CACCAGTTCCTCCCTTTCCAGCTTCTCCACAGAAACATACTCCAAGCTGGAAAGGGAGGAACTGGTG 549
DNA CP2,3(M) 62 GTTCCTCCCTTTCCAGCTTCTCCACAGAAACATACTCCAAGCTGGAAAGGGAGGAACTGGTG 550
DNA CP2,3(S) 57 TCCCTTTCCAGCTTCTCCACAGAAACATACTCCAAGCTGGAAAGGGAGGAACTGGTG 551
DNA CP4,2(S) 71 AAACATACTCCATAAGGTGGTGCAGATGAACTTCAGGGTCAGCTTGTTATGGAGTATGTTTCTGTGGAGAC 581
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