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Appendix B 

Protein-Signaling Networks from Single-cell Fluctuations and 

Information Theory Profiling 

 

B.1. Introduction  
Protein-signaling pathways play important roles in tissue processes ranging from 

tumorigenesis to wound healing1-5. Elucidation of these signaling pathways is challenging, 

in large part, because of the heterogeneous nature of tissues6. Such heterogeneity makes it 

difficult to separate cell-autonomous alterations in function from alterations that are 

triggered via paracrine signaling, and it can mask the cellular origins of paracrine signaling. 

Intracellular signaling pathways can be resolved via multiplex protein measurements at the 

single-cell level7. For secreted protein signaling, there are additional experimental 

challenges. Intracellular staining flow cytometry (ICS-FC) requires the use of protein 

transport inhibitors which can influence the measurements8. In addition, the largest number 

of cytokines simultaneously assayed in single-cells by ICS-FC is only 59. Finally, certain 

biological perturbations, such as the influence of one cell on another, are difficult to 

decipher using ICS-FC. Other methods, such as multiplex fluorospot assays10, have even 

more significant limitations. 

We describe here an experimental/theoretical approach designed to unravel the 

coordinated relationships between secreted proteins, and to understand how molecular and 

cellular perturbations can influence those relationships. Our starting points are single, 

lipopolysaccharide (LPS)-stimulated, human macrophage cells11. LPS stimulation activates 

the Toll-like Receptor-4 (TLR-4), and emulates the innate immune response to Gram-

negative bacteria. We characterize the secretome, at the single-cell level, through the use of 

a microchip platform in which single, stimulated macrophage cells are isolated into 3 

nanoliter (nl) volume microchambers, with ~1000 microchambers per chip. Each 

microchamber permits duplicate assays for each of a dozen proteins that are secreted over 

the course of a several-hour incubation period following cell stimulation. The barcode 

assays are developed using detection antibodies and fluorescent labels, and then converted 

into numbers of molecules detected. We demonstrate that the observed spread in protein 
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levels is dominated by the cellular behaviors (the biological fluctuations), rather than the 

experimental error. These fluctuations are utilized to compute a covariance matrix linking 

the different proteins. This matrix is analyzed at both coarse and fine levels to extract the 

protein-protein interactions. We demonstrate that our system has the stability properties 

requisite for the application of a quantitative version of a Le Chatelier-like principle, which 

permits a description of the response of the system to a perturbation. This is a prediction in 

the strict thermodynamic sense. The fluctuations, as assessed from the multiplexed protein 

assays from unperturbed single-cells, are used to predict the results when the cells are 

perturbed by the presence of other cells, or through molecular (antibody) perturbations. 

 

B.2. EXPERIMENTAL METHODS 

B.2.1. Microchip fabrication.   

The SCBCs were assembled from a DNA barcode microarray glass slide and a 

PDMS slab containing a microfluidic circuit12,13. The DNA barcode array was created with 

microchannel-guided flow patterning technique13. Each barcode was comprised of thirteen 

stripes of uniquely designed ssDNA molecules. PDMS microfluidic chip was fabricated 

using a two-layer soft lithography approach14. The control layer was molded from a SU8 

2010 negative photoresist (~20 µm in thickness) silicon master using a mixture of GE RTV 

615 PDMS prepolymer part A and part B (5:1). The flow layer was fabricated by spin-

casting the pre-polymer of GE RTV 615 PDMS part A and part B (20:1) onto a SPR 220 

positive photoresist master at ~2000 rpm for 1minute. The SPR 220 mold was ~18 mm in 

height after rounding via thermal treatment. The control layer PDMS chip was then 

carefully aligned and placed onto the flow layer, which was still situated on its silicon 

master mold, and an additional 60 min thermal treatment at 80 °C was performed to enable 

bonding. Afterward, this two-layer PDMS chip was cut off and access holes drilled. In 

order to improve the biocompatibility of PDMS, we performed a solvent extraction step, 

which removes uncrosslinked oligomers, solvent and residues of the curing agent through 

serial extractions/washes of PDMS with several solvents15,16.  We noticed that this step 

significantly improves the biocompatibility and the reproducible protein detection. Finally, 

the microfluidic-containing PDMS slab was thermally bonded onto the barcode-patterned 

glass slide to give a fully assembled microchip.  
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B.2.2. Preparation of barcode arrays  

The barcode array initially consists of 13 uniquely designed DNA strands labeled in 

order as A through M. Prior to loading cells, a cocktail containing all capture antibodies 

conjugated to different complementary DNA strands (A’-L’) is flowed through the 

chambers, thus transforming, via DNA-hybridization, the DNA barcode into an antibody 

array. These dozen proteins that comprised the panel used here were encoded by the DNA 

strands A through L, respectively. Calibration and cross-reactivity curves for each protein 

assay are in Fig. B.2., The DNA oligomer sequences and the antibody pairs used are listed 

in Table B.1. and Table B.2.   

 

Fig. B.1. Design of integrated microchip for single-cell protein secretome analysis. 
(A) CAD design of a microchip in which flow channels are shown in red and the control 
channels are shown in green. (B) Schematic drawing of cells loaded in the 
microchambers and compartmentalized with the valves pressurized. (C) Schematic 
illustration of the antibody barcode array used for multiplexed immunoassay of single-
cell secreted proteins. 
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Fig. B.2. Cross-reactivity check and calibration curves. (A) Scanned image showing 
cross-reactivity check for all 12 proteins. The green bars represent the reference stripe, 
sequence M. Each protein can be readily identified by its distance from the reference. In 
each channel, a standard protein (indicated on the left) was added to the buffer solution 
and assayed using the DEAL barcode method. For GMCSF, MIF, IFN-γ, IL-10, MMP9, 
and TNF-α, biotin-labeled 2° anti IL-2 antibody conjugated to DNA sequence A’ was 
used as a control. (B) Quantitation of fluorescence intensity vs. concentration for all 12 
proteins. Error bars: 1SD. The variability (defined as the standard deviation divided by 
the average in percentage) is less than 10% for the signals in detectable range. 
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Table B.1. Sequences and terminal functionalization of oligonucleotides*. 
Name            Sequence 

A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 

A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 

B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 

D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 

E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 

E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 

F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 

F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 

G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 

I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 

J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 

J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 

K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

 

* All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and 

purified via high-performance liquid chromatography (HPLC).  
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B.2.3. Culture and stimulation of THP-1 cells.  

We cultured human monocyte THP-1 cells (clone TIB 202) in RPMI-1640 (ATCC) 

medium supplemented with 10% fetal bovine serum and 10 µM 2-mercaptoethanol. Cells 

grown close to the maximum density (0.8×106 cells/mL) were chosen for the experiment. 

Cells were first treated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 12 

hours during which a characteristic morphological change was noticed as an indication of 

the induction to the macrophages. Cells were washed with fresh media and re-suspended in 

media with PMA (100 ng/mL) and lipopolysaccharide (LPS, 200 ng/mL) at 

0.5×106 cells/mL for the further differentiation and the TLR-4 activation.  

 

B.2.4. On-chip secretion profiling 

Prior to loading cells on chip, the DNA barcode array was transformed into an 

antibody microarray through the following steps. First, 1% bovine serum albumin (BSA) in 

phosphate buffered saline (PBS) was flowed and dead-end filled into the chip to block non-

specific binding. Second, a 200 ml cocktail containing all 12 DNA-antibody conjugates at 

1.25 µg/mL in 1% BSA/PBS buffer was flowed through all microfluidic channels for a 

period of 1 h. Then, 100 ml of fresh buffer was flowed into the device to replace DNA 

conjugated primary antibody solutions. The chip is then ready for use. Cells stimulated 

Table B.2. Summary of antibodies used for macrophage experiments 

DNA 
label primary antibody (vendor) secondary antibody (vendor) 

A’ mouse anti-hu IL-2 (BD Biosciences) biotin-labeled mouse anti-hu IL-2 (BD Biosciences) 

B’ mouse anti-hu MCP-1 (eBioscience) biotin-labeled armenian hamster anti-hu MCP-1 
(eBioscience ) 

C’ rat anti-hu IL-6 (eBioscience ) biotin-labeled rat anti-hu IL-6 (eBioscience ) 

D’ rat anti-hu GMCSF (Biolegend ) biotin-labeled rat anti-hu GMCSF (Biolegend ) 

E’ goat anti-hu MIF(R&D systems) biotin-labeled goat anti-hu MIF(R&D systems) 

F’ mouse anti-hu IFN-  (eBioscience) biotin-labeled mouse anti-hu IFN-  (eBioscience) 

G’ mouse anti-hu VEGF (R&D systems) biotin-labeled goat anti-hu VEGF (R&D systems) 

H’ mouse anti-hu IL-1β (eBioscience) biotin-labeled mouse anti-hu IL-1β  (eBioscience) 

I’ rat anti-hu IL-10 (eBioscience) biotin-labeled rat anti-hu IL-10 (eBioscience) 

J’ mouse anti-hu IL-8 (R&D systems) biotin-labeled mouse anti-hu IL-8 (R&D systems) 

K’ mouse anti-hu MMP9 (R&D systems) biotin-labeled goat anti-hu MMP9 (R&D systems) 

L’ mouse anti-hu TNF-α (eBioscience) biotin-labeled mouse anti-hu TNF-α (eBioscience) 
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with PMA/LPS were loaded into the SCBC chip within 10 min in order to minimize pre-

loading secretion. Then, the pneumatic valves were pressed down by applying 15-20 psi 

constant pressure to divide 80 microfluidic channels into 960 isolated microchambers. 

Next, the cells in every microchamber were imaged under a Nikon LV100 microscope and 

their numbers were counted. Afterwards the chip was placed in a cell incubator (~37 °C and 

5% CO2) for 24 hours to perform on chip secretion. The chip was removed from the 

incubator and a 200 ml cocktail containing all detection antibodies (each at 0.5 µg/mL 

concentration) tagged with biotin flowed through the microchannels by releasing the 

valves. Then, 200 µl of the fluorescent probe solution (1 µg/ml Cy5-labeled streptavidin 

and 25 nM Cy3-labeled M’ ssDNA) was flowed through to complete the immuno-

sandwich assay. Finally, the PDMS slab was peeled off and the microarray slide was rinsed 

with 1×PBS, 0.5×PBS and DI water twice, sequentially, and spin-dried.   

 

B.2.5. Bulk secretion profiling  

Bulk measurements on the same panel of secreted proteins as were assessed within 

the SCBC microchambers were also carried out for the THP-1 cells with no stimulation, 

PMA stimulation, and PMA+LPS stimulation. Cells were cultured at 0.3×106 cells/mL, a 

comparable density to a single-cell in a chamber. The media were collected after 24 hours 

and the secreted proteins were detected as described below. For the PMA+LPS stimulation 

condition, the media were collected at multiple time points (2, 4, 6, 8, and 10 hours) for the 

time-dependent analysis as well. For the bulk test, SCBC chip was utilized without using 

valves for the microchannel to microchamber conversion. The same conditions as for the 

on-chip secretion profiling were applied except for the cell incubation step. Instead, the 

collected media was introduced to the channel sets and incubated for 3 hours in the 

incubator. 

 

 
B.2.6. Quantification and statistics.   

All the barcode array slides used for quantification were scanned using an Axon GenePix 

4400a two-color laser microarray scanner at the same instrumental settings—50% and 15% 
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for the laser power of 635 nm and 532 nm, respectively. Optical gains are 500 and 450 for 

635 nm and 532 nm fluorescence signals, respectively. The brightness and contrast were set 

at 90 and 93. The averaged fluorescence intensities for all barcodes in each chamber were 

obtained and matched to the cell number by custom-developed MATLAB (the mathworks, 

Natick, MA) codes. Heat maps were generated using cluster 3.0 and java treeview 

(http://rana.lbl.gov/eisensoftware.htm).  

 

B.2.7. Data Analysis: Conversion to the number of molecules  

The collected raw data is based on the fluorescence. In order to convert the 

fluorescence to the number of protein molecules, we used the calibration curves (Fig. 3.2.). 

We used the four parameter logistic model which is commonly used for fitting ELISA 

calibration curve. The fitting parameters can be found from the Table 3.3.  

 

 

 

 

 

B.2.8. Signal-to-noise calculations  

Since the signal range highly depends on the activities of the antibodies as well as 

the cell biology, it is required to decide if the signal is real and reliable. Certain assayed 

1 2
2

01 ( / ) p
A Ay A
x x
−

= +
+

Table 3.3. Parameters utilized for the protein assay calibration curve 
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proteins were identified as positively detected from single-cells based upon signal-to-noise 

ratio (S/N), which was measured as follows: For each microchamber, the averaged 

fluorescence from the two barcode stripes used to capture and detect a given protein and  

the averaged fluorescence from the barcode stripes designed to capture and detect IL-2 

were obtained. The ratio of the averaged values over all single-cell experiments (specific 

protein to IL-2) yields a S/N value. An S/N of 4 was utilized as a minimum for positive 

detection. Eight secreted proteins were thus identified from the single-cell measurements.  

Those proteins were (with S/N included in the parenthesis after the protein name): MCP-1 

(4.65), MIF (1381.13), IFN-γ (4.33), VEGF (77.32), IL-1β (94.70), IL-8 (2622.40), MMP9 

(119.50), and TNF-α (410.74). 

 

B.2.9 Analysis of experimental and biological variation from SCBC-based single-cell 

measurement   

One of the major characteristics of SCBC analysis is the heterogeneous cellular 

behavior at single-cell level. The experimental variation of the SCBC platform which 

reflects the system error as well as the biological variation due to the cellular heterogeneity 

is contributing to the fluctuation of the total signal. Thus, we need to check if the 

heterogeneous signal responses are from the cells or the device itself.  

 The experimental error mainly includes the variation from non-uniform DNA barcode  

patterns and the variation due to the randomly distributed cell location in the chamber. The 

former one can be estimated by the histogram of the fluorescence intensity from the 

calibration experiment with recombinant proteins. Since the recombinant protein has fixed 

concentration over the entire channel, it represents a uniform protein level without any 

heterogeneity and location dependence. As a result, the distribution of the fluorescence 

intensity of a specific recombinant reflects the detection profile of the DNA barcode. 

 Fig. B.3.A shows a representative histogram of signal derived from recombinant MIF 

 protein at 5 ng/ml. The histogram shows a nice Gaussian distribution with a coefficient of 

variation (CV) around 7%. In the calibration experiment, basically the intensities of all the 

recombinant proteins at detectable concentrations follow a Gaussian distribution with CVs 

typically lower than 10%. 
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The cell location is another important factor for the system error. Even though the 

chamber size is small, it is still big for a single-cell. So the protein signal is dependent on 

diffusion and that is why the cell location can be a source of the variation. In order to 

minimize this effect, we utilized two sets of barcodes in a chamber and used the averaged 

signal intensity from two barcodes as the final signal value. However, the barcode close to 

the cell will undergo a higher local protein concentration than its counterpart and the 

different intensities of two sets of barcodes are amplified during the long incubation time. 

The diffusion process will lead the system close to the equilibrium but the cell that keeps 

secreting proteins with different kinetics makes it difficult for the chamber to reach its full 

equilibrium. In that sense, the randomly located cells can add an extra uncertainty to the 

SCBC system.  
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 Because it is difficult to isolate the system error (especially for the cell-location 

effect) from the heterogeneous cell response experimentally, we performed a Monte 

Carlo simulation by R (R Foundation for Statistical Computing, version 2.10.1). First of 

all, we investigate the case of MIF as a representative case. We assumed one chamber has 

 

Fig. B.3. Experimental and simulation results for extracting the experimental error 

contribution to the SCBC protein assays. (A) Representative histogram of signal 

measured from individual barcode stripes for assaying a 5 ng/ml solution of 

recombinant MIF protein, representing a Gaussian distribution with a coefficient of 

variation (CV) near 7%. (B) Monte Carlo simulated barcode intensity (corresponding to 

MIF) versus cell location in three single-cell chambers. Yellow dots represent cell 

locations, and the brightness of the red stripes reflects the simulated signal level. The 

cell-location effect is minimized by averaging the signals from both barcodes. (C) 

Histogram from simulations of 5000 single-cell experiments. For this simulation, the 

diffusion equation was solved with a randomly located, continuously secreting cell. The 

histogram represents the averaged intensities over both barcodes, and includes the 

experimentally determined barcode variability. 
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two sets of 13 barcodes such that all of them have MIF antibodies. By randomly 

positioning a cell with a fixed protein secretion rate and getting the protein concentration 

at specific barcode positions, we can find out what is the variation that purely depends on 

the cell location and barcode non-uniformity. The total amount of secreted MIF during 24 

hours was estimated based on our experimental result. The secretion rate was 4.84 pg/mL 

per min from the SCBC (used for the simulation) and 11 pg/mL per min from the bulk 

condition. The corresponding secretion rate of a single-cell, back-calculated based on the 

chamber and cell size (10µm3), was 0.065 nM/min. Values of parameters used in 

simulation can be found from Table B.4. 5000 data sets for the protein concentration 

distributions from randomly located single-cell were generated by solving a diffusion 

equation with a custom made MATLAB code and the results were analyzed with R. The 

parameters used in the simulation are exactly the same as our experimental environment. 

The chamber is 2000 µm in length and 100 µm in width with two sets of DNA barcodes 

M-A and A-M from left to right. Each barcode is 20 µm in width with 50 µm in pitch 

(30µm gap between barcodes). The detection variation of the MIF protein due to the 

DNA uniformity obtained from the histogram of the calibration data set was incorporated 

to the analysis. Fig. B.3.C shows the histogram of the average fluorescence intensity 

from DNA sequence E (corresponding to MIF in the actual experiment) for 5000 single-

cell cases. For the barcode variability, the actual value of 7.3% was used. The final 

system error was 5.1% which is a lot smaller than the assay error from the experimental 

data sets, 55.2 %. 

 

In order to think of the worst case, we used the barcode variability of 10% for the 

rest of the analysis. If the cell-location effect is significant, we are supposed to see different 

Table B.4. Values of parameters used in simulation 
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errors on different barcode positions. Fig. B.4. illustrate the histograms of average 

intensities from multiple barcode locations. The blue curves are line profiles of Gaussian 

distribution fitted with the mean and the standard deviation obtained from the 

corresponding simulation. The nice fitting between the Gaussian curves and the histogram 

indicates that the average intensity per chamber follows a Gaussian distribution with a 

predictable mean and CV. The CVs from this simulation represent the distribution of our 

measurements for single-cell chambers without considering the cellular heterogeneity, i.e. 

the system error. The experimental CVs for different barcode locations based on the system 

error were quite similar to one another (~ 7%).    

 

We can define CVsystem as the system error estimated by the simulation. We can also  

calculate the assay error from our experimental data set such that CVassay refers to the total 

CV of our experimental data. Consequently, the biological variation for single-cell 

experiment can be quantitatively estimated by the formula below: 

 2/1biological
2

system
2

assay )( CVCVCV +=

 

Fig. B.4. Simulated histograms of average intensity from multiple DNA barcode 
locations. The signal intensities for 5000 single-cell data sets were obtained by solving a 
diffusion equation for a randomly located cell. For the barcode variability, the value of 
10% was used. The blue curves are the Gaussian fitting of the histogram with sample 
mean and sample standard deviation from the simulation. 
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 An estimation of biological variations of proteins for different barcode locations are  

shown in Table B.5. It can be noticed that the biological variation is dominant in the total 

error of the assay. This analysis verifies that the signal fluctuation that we can see from the 

single-cell experiment is a good representation for the single-cell heterogeneity rather than 

the systemic error from our platform. 

 

B.2.10 Signal-to-noise calculations and experimental error 

An Axon GenePix 4400A scanner coupled with a custom algorithm was used to 

quantify the fluorescence intensities of each protein from each microchamber (Fig 1B). 

Certain proteins were positively detected based upon signal-to-noise (S/N) > 4. S/N was 

calculated as follows. Each protein was measured twice per microchamber. The averaged 

fluorescence values from the two barcode stripes for all proteins were used as signals from 

each chamber. The ratio of the averaged signal over all single-cell experiments for a 

specific protein to IL-2 yields a S/N. The following eight proteins were detected (S/N is 

indicated after the protein name): MCP-1 (4.7), MIF (1380), IFN-g (4.3), VEGF (77), IL-

1b (95), IL-8 (2620), MMP9 (120), and TNF-a (411).  

Macrophages are highly responsive to their environment, and so experimental 

conditions can influence macrophage behavior. Thus, we sought confirmation that our 

protocols could lead to reproducible results. We executed identical sets of experiments on 

different SCBCs, and showed that the distributions of the unambiguously detected proteins 

Table B.5. The coefficients of variation for each of the assayed proteins from 
single-cell experiments. The experimental CVs are estimated from the Monte Carlo 
simulations. The biological CVs, which clearly dominate the experiment, are 
calculated from .  
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were effectively identical (p-value > 0.25). The results presented here do depend on the 

amount of PMA or LPS used and, to a lesser extent, the passage number of THP-1 cells. In 

addition, a solvent extraction of the PDMS improves the SCBC biocompatibility and the 

assay reproducibility15.  

Levels of proteins secreted from single-cells can exhibit a variability that reflects 

the stochastic nature of biology17 and, in fact, represents the biological fluctuations. The 

SCBC experimental error must be compared against the measured variations for extracting 

the true macrophage fluctuations. One contribution to the experimental error arises from 

the variability of the flow-patterned antibody barcodes. We characterized that variability 

via protein assays executed within a complex biological environment (serum), and within 

the microchambers of an SCBC, but using cocktails spiked with known quantities of 

standard proteins. In both cases, we found a variability of < 10%18 and Fig. B.2.), 

depending upon the protein. Averaging the two identical protein assays per microchamber 

lowers the variability within a microchamber by a factor of 2½. A second experimental 

error arises from the competition between protein capture by surface-bound antibody, and 

protein diffusion. When a cell is proximal to a barcode, that barcode may exhibit a higher 

signal intensity than the more distant barcode. A Monte Carlo calculation allowed for an 

estimation of the total system error by simulating the location-dependent experimental 

variation. Using MIF as a representative protein for the simulation (it has a barcode 

variability of 7.3%; Fig. B.3.A) the experimental error of the system is estimated to be 

5.1% (Fig. B.3.B, C). For the worst case of a 10% barcode variability, the total 

experimental error is estimated to be ~7% (Table B.5. and Fig. B.4.). Based upon these 

results, we can calculate the biological coefficient of variation ( ) from 

, where  is the measured spread in secretion 

levels for a given protein across all measurements for a given number of cells. For IL-8, the 

biological CV was only ~2-fold larger than the experimental CV, but for the other 7 

detected proteins, the biological CV was 7-50× larger than the experimental CV (Table 

B.5.). Thus, the fluctuation extracted from our single-cell experiments reflects the cellular 

behaviors.  

The individual protein assays were evaluated for cross-reactivity and calibrated using 

standard proteins (Fig. B.2.). Calibration curves were fitted by a four parameter logistic 

biologicalCV

2/1
biological
2

system
2

assay )( CVCVCV += assayCV
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model19. The SCBC assay sensitivities are comparable to commercial ELISAs (e.g., a few 

measured limits-of-detection are MIF ~100 pg/ml, IL-8 ~50 pg/ml, IL- 

1b~20 pg/ml, and VEGF ~2.5 pg/ml), with each exhibiting a ~103 linear detection range. 

The SCBC barcode assay results can be translated into numbers of detected molecules 

using the molecular weight of the standard proteins and the microchamber volume (Fig. 

B.2.). This quantitative representation of the data is used for the calculations described 

below. However, the standard proteins may differ from the proteins secreted by the 

macrophages (for example, glycosylation patterns may vary). Such variations can translate 

into differences in molecular weight, as well as differences in assay sensitivity. 

The experimental results, presented as the number of cells per experiment, are 

shown in the heat maps of Fig. B.5. 

 

 

 

Fig. B.5. Protein secretion heat maps for different colony sizes of LPS-stimulated 
macrophages. Each row represents one microchamber assay, and each column 
represents protein level, as measured in copy numbers of each protein. The zero cell heat 
map is the background signal. Signals are decreased and amplified 10× for * and **, 
respectively. 
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B.3. THEORETICAL METHODS 

B.3.1. The fluctuations in the secretome  

The calibrated experimental data can be organized into digital tables of twelve 

columns, each representing a different protein, with different tables representing different 

numbers of cells in the microchamber. For a given table, each row represents the copy 

numbers of the twelve proteins for a single-cell, or small cell colony. For a given table, if 

the number of measurements is large enough, we can bin the data for each individual 

protein into a histogram with each bin representing a defined range of measured levels 

(Fig. B.6.). With even more measurements one could generate joint distributions between 

two proteins, etc. However, we first confine our attention to the individual protein 

histograms because they provide a natural meeting place for experiment and theory. The 

theoretical prediction is made by seeking that distribution of copy numbers that is of 

maximal entropy, meaning that the distribution is as uniform as possible subject to a given 

mean number of copies20-23. As described in detail in the Supplement, We use the 

distribution of maximal physical entropy. This means that at the very global maximum of 

the entropy, the probabilities of the different proteins are not equal. Rather, as in any multi-

component system at thermal equilibrium, each protein will be present in proportion to its 

partition function 24 where the partition function is the effective thermodynamic weight of a 

species at thermal equilibrium. We show below that in our system there is a network 

structure that imposes (at least) two overriding constraints that preclude the system from 

being in thermal equilibrium. 
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B.3.2. Theoretical approach 

The essence of our approach is to regard the system, a single-cell (or a small 

colony), as not being in an equilibrium state because it is under the action of constraints. 

When the constraints are present the system is in that state of equilibrium that is possible 

under the constraints. This allows us to derive a quantitative version of the principle of Le 

Chatelier. Thereby we can quantitatively predict the response of the system to a (small) 

perturbation. Early on mathematical biologists expressed caution about the application of 

the Le Chatelier’s principle to biological systems25. It is possible to directly use the 

measured experimental results to validate our point of view. The qualitative reasoning is 

straightforward and so we give it here. It is valid to apply the principle of Le Chatelier 

when the system is in a stable equilibrium. When is the system in a stable equilibrium? – 

when, under a small perturbation, it returns to its equilibrium state. Here we simply state 

that if the observed fluctuations in protein copy number are about a stable state then we can 

apply the principle of Le Chatelier. The stability of the state is decided by the experimental 

measurements. Both the notion of stability and the response to perturbations, as quantified 

in the principle of Le Chatelier, require that the departure from equilibrium be small. 

Neither textbook equilibrium thermodynamics applied to a macroscopic system nor the 

 

Fig. B.6. Fluctuations in the numbers of secreted IL-8 proteins, for all single-cell 
experiments. The fit to the theoretical distribution is shown as the continuous curve. 
Even for one cell there can be deviations from the bell-shaped theoretical functional 
form in the higher tail of the histogram due to autocrine signaling. 
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extended theory used here to describe one or a few cells implies that under a ‘large’ 

perturbation it should be possible to displace a cell to a new stable state that is distinct from 

its unperturbed state. For a single-cell or small cell colony, the experiments reveal that cell-

cell perturbations are indeed small. For larger cell colonies the statistics are not secure 

enough to make a clear-cut statement. We have, however, numerical indications that the 

unperturbed state of the single-cell is possibly unstable in the presence of many other cells. 

 

B.3.3. Theory of fluctuations  

We begin by considering a compartment containing a single-cell secreting different 

proteins. For different compartments the experiment shows a possibly different number of 

secreted proteins of a given type. We denote the experimentally measured copy number of 

protein i in a given microchamber by . We impose the constraints that the distribution 

for each protein is characterized by the mean number of its molecules. Then the 

distribution,  of copy number fluctuations of a protein i that is of maximal physical 

entropy (= the distribution at physical equilibrium subject to constraints), is derived in 

Supplement, Eq. S2. It is a bell-shaped function of  with a single maximum. 

In seeking the maximum of the entropy we require that the energy is conserved. 

This constraint is imposed by the method discussed in Supplement. This method introduces 

parameters into the distribution. b is determined by the constraint of conservation of energy 

and, as usual, is related to the temperature T as where k is Boltzmann’s constant. 

The are analogs of the chemical potentials as introduced in the thermodynamics of 

systems of more than one component. Here, however, we are dealing with many replicas of 

a single-cell isolated within a microchamber. Even though we deal with just a single-cell, 

the  will be shown in Eq. 1 below to also play the role of potentials. This means, for 

example, that the mean copy number  of protein i increases when its potential  is 

increased. The mean number, , is the average computed over the 

distribution. In operational terms this is an average computed over the different 

microchamber assays of protein i. We take it that the copy number distribution is 

normalized meaning that . 

Ni

P(Ni )
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µi 's
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We next discuss the effect of perturbations on the distribution for a single-cell in the 

compartment. The regime of small perturbations is one in which the distribution, although 

perhaps distorted from a simple bell-shaped curve, still exhibits only a single maximum. 

The signature of large perturbations is that secondary maxima appear. When these become 

dominant a new state of the cell is prevailing. 

To theoretically characterize the response of the cellular secretion to a perturbation 

we compute first the change in the distribution for the special case in which a perturbation 

changes the potential of protein i from , where is a small increment. We 

show (Eq. A2 in 3.6.3) that, to first-order in the change of the potential, the distribution 

changes by . The result for has two immediate 

implications. One is that a perturbation will distort the shape of the distribution of the copy 

numbers of a given protein. Specifically, the change is proportional to the unperturbed 

distribution but its magnitude is weighted by the factor  so as to favor higher 

values of protein numbers. Thus, it is the high-end tail of the distribution that is most 

strongly influenced by the perturbation (see Fig. B.6., for example).  

The other immediate implication of the change in the distribution is that the mean 

values will change. Specifically the updated mean value of the copy number of protein i 

when we change from  is . A technical 

point is that because the distribution needs to be normalized we must have . 

Using the result above that the change  in the distribution is proportional to the 

unperturbed distribution and the normalization we arrive at the explicit result for the 

change in the mean copy number under a small disturbance. 

  (1) 

This equality states that because the variance is positive, a change in the mean copy number 

of protein i when its own potential is changed from  is always in the same 

direction (positive or negative) as  itself. It is in this sense that we refer to as the 

potential of protein i.  

µi  to µi+δµi δµi

δP Ni( ) = β Ni − Ni( )P Ni( )δµi δP(
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µi  to µi+δµi Ni + δNi = Ni P Ni( ) + δP Ni( )"# $%i∑

δP Ni( ) = 0i∑

δP Ni( )
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The key point that carries into the general case, is that, to linear order in the 

perturbation, the change in the mean number of proteins due to a perturbation can be 

computed as an average over the unperturbed distribution of copy numbers. The change in 

the mean is the variance of the distribution of fluctuations. Therefore, the lesser are the 

fluctuations (i.e., the narrower is the histogram), the more resilient to change is the 

distribution. As an example, IL-8 (Fig. B.6.) will be shown to be a very strongly coupled 

protein. IL-8 also has a particularly large variance as compared to the other proteins. 

Therefore there is some perturbation via autocrine signaling as seen in the hump in the 

higher tail of the histogram. 

 

B.3.4. A quantitative Le Chatelier equation   

With good measurement statistics one can examine the histogram for a joint 

distribution of two proteins and verify that pairs of proteins are correlated. Therefore the 

mean value (and other averages) of a protein i will change when protein j is perturbed. In 

the linear regime the result (see B.6.4.)  is 

 (2) 

where the covariance is computed over the unperturbed distribution. Eq. 2 is valid in the 

linear regime of small perturbations, and indicates that the contributions of different 

perturbations add up. The covariance matrix , whose elements are 

, is what is called in matrix algebra a positive matrix26. The 

implications of positivity are explored in B.6.5. 

We prove in the B.6.4 that Eq. 2 is a quantitative statement of the principle of Le 

Chatelier in the meaning that a response to a perturbation changes the system in the 

direction of restoring a stable equilibrium. This is the analog of the observation that when 

we add energy (i.e., heat the system) the temperature goes up (rather than down). By 

equilibrium we mean a state of maximal entropy subject to the current value of all the 

constraints operating on the system. A system can therefore be maintained at equilibrium 

by imposing constraints such as keeping a gas under higher pressure at a fraction of the 

available volume of a cylinder. When these constraints are changed the system can move to 

a new equilibrium. 

δNi = β Ni − Ni( ) N j − N j( )$
%&

'
()j∑ δµ j
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The covariance matrix is used in statistics as input in such methods of data analysis 

as principal component analysis27,28. We emphasize that for us the covariance matrix is 

derived by physical considerations leading to Eq. 2. We can thereby state that  is 

quantitatively the change in the number of copies of protein i when protein j is perturbed. 

Note that while the covariance is a positive matrix, individual off-diagonal elements can be 

negative signifying inhibition. The covariance matrix in digital form is provided in Table 

B.6. 

  

 

To summarize, the result for the distribution of protein copy numbers for the 

strongly interacting protein IL-8 (Fig. B.6.) has just one maximum. The noticeable 

deviations in the tail of the distribution are likely due to autocrine signaling, because the 

correlation of IL-8 with itself is only comparable in magnitude to the correlation of MIF 

with itself.  Those two correlations are larger than any other variance or covariance. As 

discussed below, IL-8 is also strongly correlated with other proteins. For n≥3 cells in the 

microchamber, there is numerical evidence for a second maximum in the distribution of IL-

8 fluctuations. For other proteins, six or more cells per chamber are required before a 

second maximum is resolved.   

ΣΣij

Table B.6. Digital representation of the covariance matrix for 1 cell measurements 
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We can draw two conclusions from the fit of Fig. B.6., between observed 

fluctuations and the theoretical result. First, the experimental distribution has but one 

maximum, and so the state is stable. Second, the theory accounts for the shape of the 

experimental distribution. This implies that we have correctly identified the important 

constraints on the system. Therefore we have Eq. 1 for the change of the distribution and 

hence Eq. 2 as the quantitative statement of the Le Chatelier’s theorem. If there are 

additional constraints one can still derive a quantitative Le Chatelier’s theorem but there 

will be additional terms beyond those shown explicitly in Eq. 2. We reiterate that Eq. 2 is 

the covariance computed from the experiments for an unperturbed cell. In our work below 

we use Eq. 2 to predict the effect of perturbation.  

 

B.4. Results and Discussion 

B.4.1. Computing the covariance matrix  

The single-cell data (the heat map of Fig. B.5.) can be regarded as a rectangular 

matrix X where each row is a separate measurement and each column contains the copy 

number of a particular protein. For our convenience we mean center each column. When 

the number of measurements (= number of rows of X) is not small (and is ≥ than the 

number of columns) the covariance matrix can be immediately computed as 

 where k runs over all measurements, k =1,2,..,K. By construction of 

the matrix X, the matrix element  is the number recorded in the k’th measurement for 

protein i minus the mean number  for that protein. We divide  by the number, K, 

of measurements so that the covariance is the mean value. The covariance is a product of 

the measured numbers, so the coefficient of variation of the covariance is, for small 

variations, twice the coefficient of variation of the measurements. An upper estimate, see 

Table B.5. and Fig. B.6., is 14% when the covariance is computed from the fluorescence 

intensities. The conversion from the fluorescence intensity to the number of molecules does 

not change the coefficient of variation when we are in the linear regime of the calibration 

curve, see Fig. B.2.. However at very low or high intensities the calibration curve is non-

linear, so that small changes in fluorescence intensity are amplified to larger differences in 

the number of molecules, and thus large values of the variance. Out of K = 129 single-cell 

ΣΣij = XkiXkjk = 1
K∑ K

Xki

Ni XTX
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experiments, we therefore eliminated four outliers. These corresponded to one instance 

each for which the fluorescence levels of TNF-α, IL-1β, MIF or IL-6 were very high. We 

thus used K = 125 values to compute the covariance matrix. The elimination of these four 

outliers brings the error of reading the number of molecules to be more comparable to the 

error in reading the fluorescence intensity. 

 

B.4.2. The network  

We analyze the covariance matrix in two stages. The first stage yields a quick (but 

correct and reliable) ‘global’ summary of the network, meaning which protein is coupled 

with which other proteins. There is finer structure, discussed below, that is not resolved in 

this first stage. To obtain the global network we begin by noting that the covariance matrix 

is symmetrical so that protein i is correlated with protein j just as much as protein j is 

correlated with protein i, . This means that although both positive and inhibitory 

couplings can be extracted from the network, the direction of those coupling (i.e. protein i 

inhibits protein j, rather than vice-versa) is not resolved. The results for the overall network 

are shown in Fig. B.7. Panel A is the raw data for plotting the network and panel B is the 

network itself. The protein most strongly coupled to all others is MIF, and it is primarily 

anti-correlated with the other proteins. Next in strength of coupling is IL-8. Note that the 

symmetry between any two proteins is limited; proteins 1 and 2 may be coupled to each 

other, but protein 1 may be coupled to protein 3, while proteins 2 and 3 are uncorrelated. 

Mathematically this is possible because the total coupling strength of protein i, sum of  

over all j, can be quite different from the total coupling strength of protein j that is given as 

the sum of  over all possible proteins i. 

ΣΣij = ΣΣ ji

ΣΣij

ΣΣ ji
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The covariance matrix shows the quantitative extent to which the fluctuations in 

any two proteins i and j are covarying. As discussed, about 14% of the value is due to 

noise. In the network we want to compare the relative importance of the covariance of 

proteins i and j to the covariance of proteins l and m. We take it that the covariance of 

proteins l and m should not be regarded as comparable to the covariance of i and j when the 

measured covariance of l and m is below the uncertainty due to noise of the covariance of i 

and j. We construct a graphical global summary of the interaction network by retaining 

only those proteins that are covarying with one or more other proteins above the noise level 

of the highest covarying pair of proteins. Below we discuss the components of the 

covariance matrix. Thereby we will have a measure of uncertainty for the entire matrix. It 

turns out that the criterion we use above is consistent with this measure. 

 The largest covariance, 4×1011 is between MIF and IL-8. This sets a boundary of 6×1010 on 

 the covariances of pairs that we show as connected in the network. The large and positive 

magnitude of the covariance of MIF and IL-8 is shown as a double headed arrow. The 

arrow is double headed to denote the joint activation of one by the other. In the diagram, 

 

Fig. B.7. The summary network derived from the information theory treatment of 
the data. (A) It is these interdependencies, as revealed by the columns of the covariance 
matrix that provide the prediction of the connectivity in the network (part B). Shown are 
the columns for the two most connected proteins, MIF and IL-8. The entries are the 
covariances of the indicated protein with the other proteins listed in the abscissa. Self-
correlations are not shown. (B) The protein correlation network hypothesis. The 
thickness of an arrow is an indication of correlation strength. Arrows indicate a positive 
correlation; bars indicate inhibition. 
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inhibition is indicated, as usual, by a bar at the end of the connector. The dashed line 

correlations of MIF with IFN-g is of magnitude 2×1010, and so may be corrupted by noise. 

The dashed line correlations between MIF and both MCP-1 and IL-1b are even weaker 

(about 1010). The more refined analysis presented in Fig. 6 shows, however, that these two 

correlations are likely real and above the noise level. 

 Macrophages are an important source of IL-8 and MIF29-31, and IL-8 is secreted  

by the macrophages without LPS stimulation, while MIF is secreted upon LPS stimulation 

(Fig. B.8.A). Our derived network model indicates the MIF is inhibited by IL-8, and MIF, 

in turn, inhibits 3 other proteins, including TNF-a, while it promotes the production of IL-

1b. These predictions are consistent with the time-dependent measurements of secreted 

proteins (Fig B.8.B). From those measurements, we find that the levels of three proteins 

(MIF, TNF-a, and IL-1b) that are secreted upon LPS stimulation, exhibit fluctuations over 

time. The MIF and TNF-a temporal fluctuations are anti-correlated, consistent with the 

network hypothesis. A detailed elucidation of the underlying mechanism for these 

dynamics will require additional experiments. However, it is encouraging that a network 

hypothesis derived from single-time-point, single-cell data does provide consistent insight 

into the dynamical responses of the macrophages to stimulation.  
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Fig. B.8. PMA and LPS activation and kinetics of protein secretion from activated 
macrophage cells. (A) Bulk secretion profiles from THP-1 cells under different 
conditions. PMA treatment induces THP-1 cells to macrophages and LPS treatment 
emulates innate immune responses against Gram-negative bacteria (B) Quantitation of 
bulk secretion intensities for the eight selected proteins over 24 hours. The samples were 
collected at 2, 4, 6, 8, 10, and 24 hours after incubation of PMA/LPS treated cells. The 
cell density was 0.3×106 cells/mL, which is a comparable density to a single-cell in a 
chamber of SCBC device. Note that the secretion levels of TNF-α and MIF are 
oscillatory and anti-correlated.  (C) MIF secretion rate based on the assumption of linear 
time dependence from (B). The secretion rate from the bulk experiment is about 11 
pg/mL per min which is about two-fold higher than the single-cell secretion data from 
the SCBC device (4.84 pg/mL per min).    



 

 

119 

B.4.3. The composite networks  

In the second stage in our analysis of the covariance matrix we aim to show a more 

resolved structure and thereby note features that are glossed over in the global network of 

Fig. B.7.B. We will show that there are several independent networks operating together to 

globally represent Fig. B.7.B. The detailed analysis also provides a more robust error 

estimate. To resolve independent inherent structures within the covariance matrix we 

consider what is known in matrix algebra as the spectral representation (See B.6.6. and 

B.6.7 for more details). Technically this is a ranking of the eigenvectors as also carried out 

in principal component analysis. We suggest, however, that for our system specifically this 

ranking allows an examination of tiers in the cell-cell signaling. The tiers are independent, 

meaning that they govern independent fluctuations. The proteins that are members of a 

given tier respond collectively to a perturbation. 

The spectral theorem26 allows us to rank the contributions according to the 

decreasing magnitude of the eigenvalues. At the bottom are the smallest eigenvalues and 

these are attributed to experimental noise rather than to real biological information. For the 

single-cell in the compartment we find, as expected for the linear regime, that the dominant 

eigenvectors are each localized around a particular protein. As shown in Fig. B.9., the two 

largest are localized on MIF and IL-8. The leading eigenvalue = tier 1, is only about 30% 

bigger than the second one, m =2. The third eigenvalues (not shown) is smaller by almost 

two orders of magnitude. Fig. B.10. is a plot on a logarithmic scale of all non-zero 

eigenvalues. There are only two eigenvectors that, judging by the value of their 

corresponding eigenvalues, are definitely above the noise. 
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In drawing Fig. B.8.B we could not state definitely that the correlations of MIF 

with IFN-g, MCP-1 and IL-1b, are above the noise level. The more refined spectral 

analysis shows that all these correlations are clearly evident in the second tier (Fig. B.9.) 

and so are secure. The Fig. B.9. results are the fluctuations measured for one cell 

experiments. See Fig. B.11. for similar results but for n =3 cells per microchamber.  

 

 

 

Fig. B.9. Protein-protein interactions via the quantitative Le Chatelier’s theorem. 
Shown is the covariance matrix as a heat map for the single-cell, n=1 data (left) and 
the resolution of the matrix into the two most important tiers (right). Note the strong 
correlation of MIF and of IL-8 with the other proteins. Red implies inhibition and blue 
implies activation. The range is [-4e+11, 4e+11] for the covariance matrix shown in 
the left panel. This range is chosen to attenuate the high reading of the self-
correlations in the covariance matrix. This heat map also provides a graphic 
representation of the protein interaction network. The ranges shown on the right-hand 
side are, respectively, top [-1.5e12, 1.5e12] and bottom [-2.9e10, 2.9e10]. 
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B.4.4. The number-based network  

The network presented in Fig. B.8. and Fig. B.9. is based upon experimental 

measurements in which raw fluorescence intensities are converted into numbers of 

 

Fig. B.10. The dependence of the dominant eigenvalues of the covariance matrix on 
the number of cells in the sample. The result for n = 0, the background, is included to 
show the influence of the noise. The dashed lines, the fifth and higher eigenvalues are 
more corrupted by noise. 

 

 

Fig. B.11.  Heat map of the covariance matrix (left) and of the contributions to the 
first two tiers of the network (right) for measurements on chambers containing 3 
cells. Similar to the single-cell case (Fig. B.9.), the entries in the tiers are scaled by the 
size of the eigenvalues. See the spectral representation of the covariance matrix, Eq. 
S11. The plot at left is the covariance matrix computed from the observed fluctuations in 
the 3-cell data. The color code is -8e+10 (red) to 0 (white) to +8e+10 (blue). The range 
is fixed so as to attenuate the effect of the self-terms in the covariance matrix. For tier 1 
and tier 2, the ranges are [-4.3e-12, 4.3e+12] and [-7e+10,7e+10], respectively. Note 
that when the numbers of cells per chamber increases, anti-correlations can get washed 
out. 
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molecules. We do this conversion because it is the numbers of molecules that are secreted 

by the cells, or to which the cells respond, that ultimately reflects the true biology. 

However, this conversion seemingly introduces an additional source of noise, especially 

when the measured fluorescence intensity is away from the linear regime of the calibration 

curves. However, this conversion yields an accurate reflection of the true measurements, 

and the accruing benefit is worthwhile. Specifically, the number of secreted proteins is 

independent of the very complicated experimental response function that depends upon the 

fluorescence detection methods, the various capture and detection antibodies used, and the 

fluorescence vs. concentration profiles that characterize calibration assays. We are thus 

able to apply the fundamental theory to quantitative molecular measurements, and so the 

resultant network is a more secure representation of the true cell biology, even if the 

accompanying experimental uncertainties are large relative to what would be estimated 

from pure fluorescence measurements.  

 

B.4.5. Antibody perturbations  

We performed an inter-cellular signaling perturbation study by adding neutralizing 

antibodies to eliminate specific secreted cytokines. For these experiments, 4 groups of 

microchambers within each SCBC chip were operated independently. Three neutralizing 

antibodies (anti-VEGF, anti-IL-8, and anti-TNF-a) were added to the cells, with one 

antibody per microchamber group. A control experiment was performed without any 

neutralizing antibody. As shown in Fig. B.12., the removal of IL-8 markedly increased the 

production MIF, slightly increased IL-1b and slightly decreased TNF-a. The results are in 

agreement with the network hypothesis, Fig. B.7.B.  

 Using the theorem of Le Chatelier we quantitatively predict the effect of the antibody  

perturbations using Eq. 2. Here, the input for the prediction is the covariance matrix for the 

unperturbed cells. To compute the predicted mean number of protein i after an antibody for 

protein j is applied we need to know the change in chemical potential of protein j. We take 

it that an antibody for a protein lowers its chemical potential. We determine the magnitude 

of that reduction by requiring that the decrease in the copy number of the directly perturbed 

protein is reproduced. Additional details are provided in 3.6.9. The quality of the prediction 

in the perturbation experiments of IL-8 and VEGF is excellent, as shown in Fig. B.12. The 
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prediction of the results for the perturbation by anti-TNF-a is not in accord, likely because 

the change in the mean copy number of the proteins is smaller by about an order of 

magnitude, and so is close to the noise level.  

 

 

B.5. Conclusions 
The multiplexed measurements of secreted proteins by single-cells and defined, few 

cell colonies provide a unique opportunity to capture the fluctuations of individual cells. An 

information theoretic, maximal entropy analysis can be applied to reproduce the observed 

fluctuations in the levels of the different assayed proteins. The theoretical analysis can also 

account for why for some proteins exhibit broad fluctuations, while others exhibit narrow 

fluctuations. The experimental approach permits observations of the covariance in the 

fluctuations of different proteins, and how those fluctuations evolve as a single-cell is 

 

Fig. B.12. Perturbation of protein networks using neutralizing antibodies. The 

measured change in the mean number of eight proteins is compared against the 

predicted change, as computed from the fluctuations observed in the unperturbed single-

cell data.   
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perturbed by the presence of 1,2,3, etc., other cells. Again, with the information theory, 

these covariances can be analyzed to extract hypotheses about the network of interacting 

proteins. Measuring the role of antibodies for specific proteins provides a test of that 

network hypothesis, and demonstrates that the theory is able to quantitatively predict the 

results of the molecular perturbation experiments using only data obtained for the 

unperturbed cells. This demonstration of the Le Chatelier’s principle, appears to be general, 

and we are currently exploring how it can be applied towards understanding the role of 

other perturbations (such as hypoxia, genetic modifications, etc.). The long-term goal is to 

extend this approach toward understanding the various protein-signaling networks that 

operate within complex microenvironments, such as tumors.  

 

B.6. Supplement: Details in Theoretical Methods 

B.6.1. Introduction to theoretical supplementary methods 

We show how to characterize protein-protein interactions. Specifically we show (i) 

that the different tiers of a signaling network can be quantitatively determined from the 

measured fluctuations in the concentrations of signaling proteins and (ii) that the measured 

fluctuations in the concentrations of signaling proteins for the unperturbed cell can be used 

to predict the effect of introducing perturbations such as neutralizing antibodies. The 

approach is developed from an information theoretic perspective and it is related to the 

specification of the direction of change when a system responds to a perturbation, known as 

the principle of Le Chatelier. The corresponding result here is that we predict the sequence 

of tiers in the network, see Fig. B.7. of the article. In addition we specify which signaling 

proteins are at a given tier of the network and their mutual influence including inhibition, 

see Fig. B.9. of the article. Experimental measurements of the fluctuation of concentrations 

in samples with nanoliter volume containing n cells, n = 0,1,2,... , see Fig. S8 below, are 

used to validate the signaling protein network. Finally we use the protein-protein 

interaction as determined for the unperturbed cell to quantitatively predict, Fig. B.12. of the 

article, the effect of perturbations. 

The approach we propose provides an analog and an extension of the statement that 

heat is transferred from a warmer to a colder body. We can understand this statement as a 
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statement about the direction of a process between two equilibrium states, meaning that it is 

a static principle. We can also think of it as a statement about the dynamics, meaning that it 

specifies the rate of change. We will here develop the formalism for the static 

interpretation. The explicit introduction of time is possible and we have the required 

formalism at hand but it requires a more elaborate theoretical foundation and so will be 

given elsewhere. 

 

B.6.2. The ensemble: basis for making predictions 

The system we consider is many independent replicas of a compartment containing 

a single-cell in a nutrient solution at thermal equilibrium. Because the system is not large, 

different replicas of it can differ in the number, , of secreted proteins of kind i. We seek 

to represent these fluctuations by taking the different replicas as different samples from an 

ensemble of single-cell compartments where the mean number  of proteins of kind i 

over the ensemble is given. Another given quantity is the energy, (and volume that we do 

not indicate explicitly). We now seek the most probable distribution of protein numbers in 

different compartments. The solution is well known because if many compartments are 

measured then the required distribution is the one whose entropy is maximal. In textbooks 

of statistical mechanics this search for the most probable distribution is sometime called the 

Boltzmann approach. It is possible to show32  that this approach does not require the system 

to be macroscopic in size. It is sufficient if we measure enough replicas so that the 

distribution of proteins does not significantly change as we add more measurements. If 

each replica is macroscopic the fluctuations will be small and rare. Repeated measurements 

will give the same results. If each replica is small we can observe the fluctuations, which is 

the experiment described in the main text. 

The key point is that even if the fluctuations are not small it is possible to make 

predictions. We discuss three types of predictions in the paper, with more details given in 

this section of Supplement. We predict the distribution of fluctuations, we predict the tiers 

in the network and, in particular and as shown in Fig. B.12., we predict the response of a 

system to a perturbation. For these first and last predictions, we compare directly with 

iN

iN
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experimental results. We emphasize that the prediction is made strictly independently of 

the experiment to which it is compared.  

The probability of a system in a particular composition can be shown to be given by 

 (S1) 

This straightforward result is perhaps misleading in its simplicity. It is most directly 

derived by the method of Lagrange undetermined multipliers. The numerical value of these 

multipliers is determined at the final stage by imposing the condition that the distribution 

(Eq. S1) reproduces the given values of the means. There are as many multipliers as 

conditions. 

 β is the Lagrange multiplier that is determined by the mean value of the energy and,  

as usual, is related to the temperature T as where k is Boltzmann’s constant. The 

 are the chemical potentials as introduced in the thermodynamics of systems of more 

than one component24,33. The Lagrange multipliers that correspond to the given (mean) 

number of species i are known as the Planck potentials and denoted as . It is often more 

convenient to work with . If our system were macroscopic in size we would 

call  ‘the chemical potential of protein i’. For convenience we retain the designation 

‘potential’ because, as we shall show,  retains essential properties of the chemical 

potential even when fluctuations are finite.   is a function of all the Lagrange multipliers 

and its role is to insure that the sum of the probability over all possible compositions yields 

one.  

There are at least two points where important details are not revealed by the 

notation used in Eq.  S1. Both are relevant in what follows. First is the condition that the 

numerical values of the chemical potentials are determined by the given mean numbers, the 

, of the proteins. Strictly speaking, we should write the chemical potentials as 

functions of the . The other point arises when we want to treat the actual numbers 

 of the different proteins as continuous variables. This is needed, for example, to 

compute averages, normalize the distribution (Eq. S1), etc. The integration for each protein 
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is over  where N!, the factorial of N, arises to account for the Gibb’s paradox. 

Therefore, as a function of the continuous variable N the distribution for, say, one protein is  

 (S2) 

Here Q is the factor that arises by summing over all the internal states of the protein 

that are occupied at the temperature T. This result is used in the main text to fit the 

observed distribution for a single protein (Fig. B.6.). 

 

B.6.3. Fluctuations describe the response to small perturbations. 

We show that by measuring the fluctuations in the unperturbed system we can 

predict how the system responds to small perturbations33. Proof: Say that we make a small 

change in the value of the chemical potential  from its current equilibrium value to some 

new value . We do so isothermally. This change in mi potentially changes the 

equilibrium mean concentration of all species from  to , for all j. To compute 

the change in concentrations we need to consider the change in the ensemble as represented 

by Eq. S1. In the algebraic developments in Eq. S4 below we make use of the definition of 

the mean concentration  

 
(S3) 

The summation in Eq. S3 is over all the possible compositions, each weighted by its 

probability  computed as the distribution of maximal entropy. The same 

meaning for the summation is used also in Eq. S4 below. We denote this averaging by an 

over bar. From Eq. S1, the variation of the distribution that occurs when a particular 

chemical potential is changed by a small amount is 

. Note that it is in using this lowest term in the 

Taylor series that we assume that the change is small. It follows that on the average the 

proteins respond to the change as: 
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 (S4) 

Note that the conservation of normalization implies that the average change in the 

probability must be zero,  and we have used this result in the 

derivation above. In the last line in Eq. S4 we have avoided writing the summation over all 

compositions by the use of the over bar to designate an average over the probability 

, which is the notation introduced in Eq. S3. 

 Taylor theorem states that, in the leading order, the change of a function is the sum of  

the changes. Therefore the expression for an isothermal variation in all the chemical 

potentials leads to a change of the distribution of the form:  

 (S5) 

The summation in Eq. S5 is an ordinary sum over the finite number S of signaling 

proteins, . Then we have the general equation of change that is an extended 

form of Eq. S4 valid for all possible small isothermal changes in the chemical potentials 

 (S6) 

 

B.6.4. The principle of Le Chatelier 

The principle in its simplistic statement claims that the system responds to a 

perturbation in a direction that restores equilibrium. For example, when the temperature of 

a heat bath is increased the mean energy of an immersed system goes up so that the 

distribution remains canonical. The proof for our case starts from Eq. S3. When the 

chemical potential of protein i is changed, for an ensemble at maximal entropy the mean 

value of protein j changes by 
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 (S7) 

where, as emphasized in Eq. S3, the distribution  is not arbitrary but is the one 

of maximal entropy as exhibited in Eq. S1. Eq. S4 is recovered when the derivative in Eq. 

S7 is evaluated. The reader may feel that this is a triviality but it is not without meaning. 

What we have proven is that computing a small change in the distribution  

when a particular chemical potential is changed from the value  to a new value  

is the same as computing the derivative of the distribution  at the point where 

the value of the chemical potential is . Then the change in the distribution is 

. Of course, this is what differential calculus is about. Yet the 

result is not pure mathematics. It shows that the new distribution is a distribution of 

maximal entropy of the functional form Eq. S1 as otherwise the result will not hold. It says 

that a small change in the chemical potential , and no other change, leads to a new 

distribution which is also one of maximal entropy. 

Typically we do not see the theorem of Le Chatelier stated as in Eq. S6. This is 

because of the practical point that the number fluctuations are typically not easy to observe 

in a macroscopic system. Here however we deal with secretion of proteins by a single-cell 

and, as shown in the main text and particularly in the histogram in Fig. 3.6., the distribution 

is clearly observed and the covariance can be computed from the experimental data as long 

as that the number of replicas is not small. 

 

B.6.5. The equation for the direction of change 

The (symmetric) square matrix  is the covariance matrix of 

the (equilibrium) fluctuations in the (equilibrium) concentrations, the . It is an 

equilibrium average because, as explicitly shown in Eq. S4, it is an expectation over the 

equilibrium distribution as given in Eq. S3. The covariance matrix has the dimensions of S 

by S where S is the number of signaling molecules that take part. In practice we have to 
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compromise on this definition meaning that S is the number of signaling molecules that can 

be detected. If an important protein is not detected then the network that we infer will be 

incomplete.  

A covariance matrix can be shown to be a non-negative matrix, also called 

semipositive definite, meaning that its eigenvalues are zero or positive. If the 

concentrations of the signaling proteins can in principle be varied independently, which is 

definitely not necessarily the case, then the covariance matrix  is a 

positive matrix with positive eigenvalues. We will discuss below why it will often be the 

case that for reasons of both principle and practice (e.g., experimental noise) there will be 

eigenvalues that are effectively zero. In that case, technically, the covariance matrix is 

positive semidefinite34. 

Eq. S6 specifies how the concentration of the j’th signaling molecule varies when 

the i’th chemical potential is changed. In general the correlation coefficient 

 between the signaling molecules i and j can be either positive or 

negative. Therefore, in general the change  is not necessarily of the same 

direction for all proteins j. This obvious result will be important for us below. Using the 

observation that the covariance matrix is semipositive definite, it is however possible to 

determine the direction of change by first diagonalizing the covariance matrix. This means 

that we can determine S distinct linear combinations of signaling molecules, where (a) each 

such set of molecules changes in a given direction and (b) we can order the different sets in 

terms of the extent of their response such that the first set is the most changing, the second 

set changes to a lesser extent, etc. In the time-dependent formalism, not presented here, we 

can outright say that the first set is the fastest changing and therefore it is the first to 

change. Then there follow changes in the second set, etc. It is clearly our intention to 

identify each set of signaling molecules as the set of molecules in a given tier in the 

network. 
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B.6.6. Tiers of the network are eigenvectors of the correlation matrix 

Our next purpose is to define the tiers of the network. The set of proteins that 

participate in the m’th tier is determined as follows. Let  designate the m’th eigenvector 

of the covariance matrix where the eigenvectors are listed in order of decreasing magnitude 

of the corresponding eigenvalue. The largest eigenvalue is m =1. Each eigenvector  is a 

(column) vector of S components and it is determined by the matrix equation 

 (S8) 

where  is the S by S symmetric covariance matrix whose elements are 

 and we explicitly indicated that the eigenvalues are positive or 

zero but not negative (which defines a positive semidefinite matrix). The eigenvectors of 

the symmetric covariance matrix are orthogonal to one another and can be chosen to be 

normalized 

 (S9) 

Here the superscript T designates the transpose so that is a row vector and Eq. S9 is the 

scalar product. 

For each value of the number of cells, n, in the compartment the eigenvalues are 

arranged in the order of decreasing magnitude the largest eigenvalue being labeled as m =1 

and the smallest as m =12. See Fig. B.10. for the dependence of the largest eigenvalues vs. 

cell number. 

 

B.6.7. The spectral representation of the covariance matrix 

Fig. B.9. shows the covariance matrix computed for experiments with one cell in 

the compartment. Also shown in Fig. B.9. is the resolution of the covariance matrix into 

tiers defined as follows. From each eigenvector we can define an S by S symmetric 

matrix as follows 
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 (S10) 

The spectral theorem (10) is the result that the covariance matrix can be resolved into 

tiers as 

 (S11) 

The eigenvalues  are arranged in a decreasing order so that each subsequent tier makes 

a smaller contribution. The very dominant contribution is from m =1 The leading 

eigenvalue = tier 1, is only about 30% bigger than the second one, m =2. The third 

eigenvalue is smaller by almost two orders of magnitude. Fig. B.10. is a plot on a 

logarithmic scale of all non-zero eigenvalues. There are only two eigenvectors that, judging 

by the value of their corresponding eigenvalues are definitely above the noise. The 

dominant (m=1) and the m = 2 eigenvectors for 1 cell measurements are shown in Fig. B.9. 

and for three cells in Fig. B.11. 

 

B.6.8. The role of the number of cells in the sample 

It was possible to make repeated measurements of the protein concentrations for 

different values of the number of cells in the sample. In this section we argue that the 

direction of increasing n can be semi-quantitatively regarded as a direction of increasing 

time. Therefore by examining how the eigenvectors of the covariance matrix change with n 

we have an independent determination of the direction of the dynamic response of the 

system. 

Fig. B.10. shows are the largest eigenvalues for n = 0, 1, 2, 3 and 4 cells. To 

interpret Fig. B.10. within the point of view as used in this paper we argue as follows. A 

single-cell secretes a number of different signaling proteins and therefore even the data 

measured for a single-cell can show the role of protein-protein interactions. If two cells are 

in the sample these interactions increase in importance. If we think of n as a measure of 

concentrations of proteins then  but to compute the covariance we need to divide by 

the number of protein molecules. So for both paracrine and endocrine signaling we expect 

T
m m m= ⋅P S S
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the covariance to increase with n. When n becomes high there may be three or more cells 

interacting and the simple considerations break down. 

 

B.6.9. Antibody perturbations 

Fig. B.12. shows a quantitative comparison of the measured results as compared to 

the purely theoretical prediction when neutralizing antibodies for specific proteins are 

added. We emphasize that it is a prediction because the results shown are based on using 

Eq. S4 that we repeat here:  

 

The addition of a neutralizing antibody for protein i means that is negative. We 

emphasize that the experimental results shown in Fig. B.12. are for single-cells in the 

compartment. This means, see Fig. B.10. that the largest eigenvalue, , of the 

covariance matrix is large indeed. Then, from Eq. S11, the contribution from the first tier 

dominates. It is the two proteins in this tier that are shown in the panel. There are bigger 

discrepancies between theory and experiment for tiers 2 or 3 for which the experimental 

signal is weak. 
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