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Abstract 

 This thesis presents the development of chip-based technology for informative in 

vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in 

the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on 

microarrays composed of nucleic acid encoded peptide major histocompatibility 

complexes (p/MHC), and the experimental and theoretical methods to detect and analyze 

secreted proteins from single or few cells.  

  

Secondly, a novel portable platform for imaging of cellular metabolism with radio 

probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” 

(RIMChip), combined with a beta-particle imaging camera, is developed to visualize the 

uptake of radio probes in a small number of cells. Due to its sophisticated design, 

RIMChip allows robust and user-friendly execution of sensitive and quantitative radio 

assays. The performance of this platform is validated with adherent and suspension 

cancer cell lines. This platform is then applied to study the metabolic response of cancer 

cells under the treatment of drugs. Both cases of mouse lymphoma and human 

glioblastoma cell lines, the metabolic responses to the drug exposures are observed 

within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with 

changes in receptor tyrosine kinase signaling.   

  

The last parts of this thesis present summaries of ongoing projects: development 

of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of 

glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET 
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imaging, the one-bead-one-compound combinatorial library method is used, coupled 

with iterative screening. The performance of the agent is quantitatively validated with 

cell-based fluorescent assays. In the case of monitoring the metabolism of primary 

glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of 

oncoprotein, or were treated with different kinds of drugs to study the metabolic 

heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug 

treatments, respectively.  
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1 

Chapter 1 

Introduction 

  

1.1. Cell Sorting in Cancer Research 

Cancer is a heterogeneous complex system often composed of different clonal cell 

subpopulations1. Increasing reports of intratumor heterogeneity and its augmentation for 

the selective pressure of tumor microenvironment, and recent achievements in cancer 

therapeutics requires the investigation and tracking of the subpopulations of cancer cells2. 

Hence, it is important to develop a multiplex and high-throughput technology for sorting 

cells to diminish the heterogeneity of cancer cells.   

As the current state of the art, fluorescent activated cell sorting (FACS) has been 

widely used since its invention in early 1970s3 due to its multiplexity and ability to sort 

small subpopulations (cells with frequency around 0.03%). However, its sorting speed 

cannot be over one million cells per hour, and it requires expensive instrumentation as 

well as a well-trained operator. Furthermore, rare cells, such as circulating tumor cells, 

cannot be sorted by FACS because of their extremely low frequency.    

  With the recent advance in microfluidics technology, powerful techniques have 

been developed to overcome the limitation of FACS.  High-throughput cell sorting has 

been achieved by Wolff and co-workers, who described the ‘on-chip’ system allowing 

sorting of 12,000 cells per second at 100-fold enrichment4, and by Simmonet and 

Groisman, whose microfluidic system is reported to sort 17,000 cells per second at 83-

fold enrichment with 40% of recovery5. In the case of rare cells, Toner and co-workers 
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have managed to sort circulating tumor cells from peripheral blood by using a 

microfluidic chip with a large number of microposts6.   

 

1.2. Proteomics for Cancer Diagnosis 

In contrast to DNA, which is subject to one major form of modification as 

methylation, proteins can be altered in many ways after their translation, such as by 

phosphorylation, acetylation, and glycosylation, which can bring a functional shift that 

potentially affects disease development, progression and response to clinical therapies. 

Therefore, a pressing need exists for improved and innovative technologies to profile 

oncoproteins for better understanding and treatment of cancer.    

Conventionally, there are two approaches to proteomics for cancer diagnosis. 

Serum-based proteomics has been focused on for its non-invasiveness and opportunity to 

reduce time for assaying. As in the case of pancreatic cancer, with antibody arrays, 

signatures of sera distinguish cancer patients from healthy controls7. Serum proteomics is 

also used in monitoring breast cancer patients to detect early local recurrence or 

metastatic deposits8. In addition to the serum-based proteomics, tissue-based proteomics 

gives opportunities to improve diagnostic sensitivity and disease classification. As 

Kashani-Sabet and co-workers reported, tissue proteomics through 

immunohistochemistry using five markers increases the sensitivity and specificity of the 

assay to 91% and 95%, respectively, for the diagnosis of melanoma9. In the case of lung 

cancer, Ring et al. described a five-marker diagnostic assay that distinguishes 

adenocarcinoma from squamous cell carcinoma10.     
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1.3. Metabolomics for Cancer Diagnosis 

Besides the abnormal expression and post-modification of oncoproteins, cancer 

cells can be identified for their specific profiles of metabolites associated with the 

alteration of a particular metabolic pathway11. In the case of the breast cancer, compared 

with healthy tissue or benign tumors, breast biopsy samples shows reliably elevated total 

choline-containing compounds (tCho), low glycerophosphocoline and low gluce through 

NMR studies12,13. Similar to breast cancer, prostate cancer represents particular metabolic 

profile, especially high level of tCho, phosphocholine, lactate and alanine14.    

 

As a form of in vivo metabolomics, positron emission tomography (PET) imaging 

has been widely used in clinics to diagnose cancer before the introduction of 

metabolomics. Glucose, among many others, is the most important metabolite in PET 

imaging due to the “Warburg effect”15, the phenomenon in cancer cells that cellular 

energy is generated through aerobic glycolysis instead of mitochondrial oxidative 

 

Fig. 1.1. Diagnosis of breast cancer with metabolites. (Top) Breast tumor 
with corresponding Cho peak. (Bottom) Benign tissue without Cho peak. 
Adapted from Clin. Cancer Res. (2009) 
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phosphorylation. Although the exact mechanism is not yet well understood at present, 

most cancer cells uptake a high level of glucose compared with their normal counterpart, 

and their glucose uptake can be visualized by the measurement of radioactivity from 

fluorodeoxyglucose (FDG), a radioactive glucose analog16.  

 

1.4. Thesis Overview 

This thesis presents the development of biotechnologies for in vitro cancer 

diagnostics. In Chapter 2, I will introduce my contribution to the development of cell 

sorting technology based on DNA-encoded p/MHC complexes for antigen-specific T 

cells. Through the development of genetic engineering, T cells are able to recognize cells 

presenting particular antigens, including cancer-specific antigens. Exploiting this 

characteristic of T cells selecting target populations of cells, researchers has been 

developed a new way of cancer treatment, so called T cell immunotherapy. By the 

injection of engineered and activated cancer-specific T cells to patients, the regression of 

tumor has been reported in subsets of patients with metastatic cancers. However, it was 

not easy to characterize the antigen-specific T cells during the treatment due to their small 

populations. To achieve highly multiplexed T cell detection, Chapter 2 will introduce the 

technique named as “Nucleic Acid Cell Sorting (NACS)”. By employing p/MHC tetramers 

site-specifically conjugated with single-stranded DNA oligomers (ssDNA), specific target T 

cells from cellular suspensions can be captured and immobilized via hybridization to a 

complementary-printed substrate. The immobilization of T cells is optimized by engineering 

streptavidin to have cysteine residue at a specific site for the formation of ssDNA-p/MHC 

tetramer guaranteeing the superiority of NACS over conventional spotted arrays. With 

restriction enzymes and sophisticatedly designed ssDNA, the selective release of sorted T 
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cells is also investigated. Finally, the capability of NACS as a clinical application is studied 

by monitoring a cancer-specific T cell population from a melanoma patient undergoing T cell 

immunotherapy. Chapter 2 has been taken in part from J. Am. Chem. Soc., 2009, 131(28), 

9695–9703. 

In order to clinical treatments for cancer cells, it is highly important to understand 

their protein-protein signaling network. With the development of single-cell barcode chip 

(SCBC), the measurement of multiple proteins in single-cells became available, but more 

studies were needed for the quantitative understanding of protein-protein network to 

predict the effect of perturbation, especially induced by targeted cancer therapy. In 

Chapter 2, I will also explain briefly about my contribution to develop experimental and 

theoretical methods for measuring protein secretion level of single or few cells and 

analyzing the results quantitatively. As a model system, mimicking innate immune 

response of human macrophages to Gram-negative bacteria, macrophages stimulated with 

lipopolysaccharide are employed. The secreted proteins are measured with SCBC to 

generate a covariance matrix for the analysis through a quantitative version of Le 

Chartelier principle, derived from information theory. Importantly, through the 

quantitative analysis, it is possible to rank the contributions of proteins to the entire 

network as well as to generate the diagram of protein-protein correlation network. Lastly, 

without actual experiments, the role of perturbation in the network can be theoretically 

predictable from the fluctuation of protein secretions. This prediction is then validated 

with the experiments with cells treated neutralizing antibodies to eliminate the secretion 

of certain proteins, which shows great accordance with the experimental result. Chapter 2 

has also been taken in part from Biophys. J., 2011, 100(10), 2378-2386. 
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In addition to proteins, metabolites can be used to diagnose cancer. Due to their 

high proliferation rate, in general, cancer cells uptake huge amount of glucose compared 

to their normal counterpart. For the monitoring of metabolites in small number of cells, in 

Chapter 3, a new platform, composed of a beta-particle camera and a microfluidic chip, 

will be introduced. The microfluidic chip, so called “Radiopharmaceutical Imaging 

Chip(RIMChip)” is sophisticatedly designed for the visualization of radio probes inside 

of cells with a small sample size (10 to 100 cells). The performance of RIMChip is 

validated with the uptake of [F-18]fluorodeoxyglucose (FDG), a glucose analog, in 

adherent and suspension cell lines. This chip is then utilized to study the response 

kinetics of lymphoma and glioblastoma cell lines under gemcitabine and erlotinib 

treatment, respectively. Within short time (~ 1 hour), the decrease of FDG uptake in 

those treated cells is observed, correlated to the arrest of cell-cycle (gemcitabine 

treatment to lymphoma cells) or the decreased signaling in epidermal growth factor 

receptor (EGFR) pathway (erlotinib treatment to glioblastoma cells) confirmed by 

separate cell-based assays. Chapter 3 has been taken in part from J. Nucl. Med., 2013, in 

press. By applying technique, clinical researches have been also proceeding to 

understand the glycolytic metabolism in primary glioblastoma cells. The results of 

ongoing study, imaging of glucose uptake in glioblastoma cells according to their 

expression level of oncoprotein (EGFRvIII) or in gliolastoma cells under different types 

of drug treatments, are briefly presented in Chapter 5.  

   

Chapter 4 describes the ongoing project to develop novel agents for in vivo 

imaging of c-MET, a receptor tyrosine kinase largely amplified in prostate cancer cells. 



 

 

7 

The protein-catalyzed capture agents, PCCs, are synthesized from artificial amino acids 

by iteratively screening one-bead-one-compound combinatorial library method. 

Compared to commercial antibodies, PCC is inexpensive and stable for long-term storage 

at room temperature. The 1st generation of PCC for c-MET is developed and its 

performance is validated with cell-based fluorescent imaging assays for the quantitative 

comparison with commercial anti c-MET antibody.   

 

Lastely, for reference, J. Am. Chem. Soc., 2009, 131(28), 9695–9703 and Biophys. J., 

2011, 100(10), 2378-2386 are added as Appendix A and B.   
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Chapter 2 

Quantifying the performance of a new T cell sorting technique, and the 

preparation of reagents for quantitative analysis of proteins from 

macrophages  

 

2.1. Introduction 

In this chapter, I will briefly present the background of two projects in which I 

took participation at the early years of my graduate studies and give explanations about 

my contribution on each projects: the quantification of a novel sorting method for tumor 

antigen specific T cells and the preparation of reagents for the quantitative analysis of 

protein signaling network in macrophages.  

 

T cells, which play a central role in an adaptive immune response, recognize 

different antigens via the interaction between T cell receptor (TCR) and antigenic 

peptides bound to Major Histocompatibility Complex (p/MHC) on the surface of antigen 

presenting cells (APC). In order to detect antigen-specific T cells, four enzymatically 

biotinylated p/MHC monomers are coupled with a streptavidin molecule primed by 

chromophore to form a p/MHC tetramer, and the tetramer enables its counter part T cell 

to be detected via flow cytometry1. 

 The p/MHC tetramer based flow cytometry has inevitable restrictions. At first, 

each antigen-specificity requires unique optical dye molecule having little spectral 

overlap with others. Secondly, the existence of detection limit in flow cytometry, serial 
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flow cytometry detection for multiplexing study is restricted by the sample size. Due to 

the existence of diverse optical characters in each cell population, moreover, the matter of 

compensation always follows. Although researchers used polychromatic flow cytometry 

utilizing quantum dots to resolve those problems2-4, high cost, long sample preparation 

time, and complex color compensation still hinder further study. 

To avoid such problems, several researchers have reported antigen-specific cell 

sorting by microarrays, which is contains directly printed p/MHC tetramers on a 

supporting substrates5-8. When a population of cells is applied on the array, only target 

antigen-specific T cells bind to the region having p/MHC tetramers. Because this method 

uses the location of p/MHC tetramers to separate a target antigen-specific T cell from the 

variety of other cells instead of the chromophore’s emission spectrum, multiplexing is 

only restricted the number of reagent able to fit on a substrate. 

In order to increase the capture efficiency, orientation of p/MHC tetramer should 

be preserved in a way to react approaching cells and the tetramer must not be denatured 

through the microarray fabrication. Analogous protein arrays, made via antibody 

adsorption to unmodified and derivatized surfaces, have shown that the adsorbed 

antibodies could fully react because of surface-induced effects such as protein 

denaturation and orientational change to inactive. As the result, amount of functional 

antibody is decreased, immobilization occurs heterogeneously, and required 

concentrations of antibody is increased to compensate for the protein loss9-11. To avoid 

these problems, several mild chemistries have been studied for protein immobilization12-

18, but often the surface that meets the demands of application requires a high level of 
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technical expertise and/or is limited in accessibility. Therefore, the development of a new 

technology to fabricate p/MHC array in an easy way is important.   

 

In Heath lab, a new p/MHC arrays conjugated with nucleic acid for multiplexed 

antigen-specific lymphocytes sorting is developed. Instead of direct printing, each 

specific p/MHC tetramer is conjugated to unique sequence of ssDNA designed to be 

orthogonal to other sequences. On the glass surface where the complementary DNA 

sequences are printed, the ssDNA-p/MHC tetramer conjugates are self-assembled by 

DNA hybridization, then used as a p/MHC array to sort mixed population of antigen-

specific T cells (Fig. 2.1.). This method is called “Nucleic Acid Cell Sorting (NACS).”  

Because NACS employs DNA as a linkage molecule, fabrication of p/MHC arrays is 

simple and highly modular19-22. Traditional DNA microarray technologies are also 

available to make cDNA glass substrates. In order to produce ssDNA-p/MHC tetramer 

 
Fig. 2.1. Self-assembled ssDNA-p/MHC tetramer arrays for multiplexed sorting 

of antigen-specific cells. ssDNA-encoded p/MHC tetramers are produced by coupling 

ssDNA site-specifically to SAC prior to exposure to molar excess of biotinylated 

p/MHC monomers.  p/MHC tetramer arrays are formed by pooling ssDNA-p/MHC 

tetramers of select specificity and hybridization to a complementary printed ssDNA 

microarray. T cells expressing the cognate TCR are detected by binding to the surface 

confined tetramer.   
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conjugates having maximum capacity to immobilize cells, cysteine-engineered SA (SAC) 

is used a scaffold. NACS arrays have better performance than traditional p/MHC arrays 

made by direct printing, and the specificity, multiplexing and sensitivity of NACS are 

studied. Selective detachment after sell sorting by NACS and its application to primary 

human T cells is also introduced. The detailed results are shown in Appendix A, as well 

as in J. Am. Chem. Soc., 2009, 131(28), 9695–9703.  

 

Protein-signaling pathways play important roles in tissue processes ranging from 

tumorigenesis to wound healing. Elucidation of these signaling pathways is challenging, in 

large part23-27, because of the heterogeneous nature of tissues4. Such heterogeneity makes it 

difficult to separate cell-autonomous alterations in function from alterations that are 

triggered via paracrine signaling, and it can mask the cellular origins of paracrine signaling. 

Intracellular signaling pathways can be resolved via multiplex protein measurements at the 

single-cell level28. For secreted protein signaling, there are additional experimental 

challenges. Intracellular staining flow cytometry (ICS-FC) requires the use of protein 

transport inhibitors which can influence the measurements3. In addition, the largest number 

of cytokines simultaneously assayed in single-cells by ICS-FC is only 52. Finally, certain 

biological perturbations, such as the influence of one cell on another, are difficult to 

decipher using ICS-FC. Other methods, such as multiplex fluorospot assays23-27,29, have 

even more significant limitations. 

In Heath lab, an experimental/theoretical approach designed to unravel the 

coordinated relationships between secreted proteins, and to understand how molecular and 

cellular perturbations can influence those relationships. The starting points are single, 
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lipopolysaccharide (LPS)-stimulated, human macrophage cells4,30. LPS stimulation 

activates the Toll-like Receptor-4 (TLR-4), and emulates the innate immune response to 

Gram-negative bacteria. We characterize the secretome, at the single-cell level, through the 

use of a microchip platform in which single, stimulated macrophage cells are isolated into 3 

nanoliter (nl) volume microchambers, with ~1000 microchambers per chip. Each 

microchamber permits duplicate assays for each of a dozen proteins that are secreted over 

the course of a several-hour incubation period following cell stimulation. The barcode 

assays are developed using detection antibodies and fluorescent labels, and then converted 

into numbers of molecules detected (Fig. 2.2.).  We demonstrate that the observed spread 

in protein levels is dominated by the cellular behaviors (the biological fluctuations), rather 

than the experimental error. These fluctuations are utilized to compute a covariance matrix 

linking the different proteins. This matrix is analyzed at both coarse and fine levels to 

extract the protein-protein interactions. We demonstrate that our system has the stability 

properties requisite for the application of a quantitative version of a Le Chatelier-like 

principle, which permits a description of the response of the system to a perturbation. This 

is a prediction in the strict thermodynamic sense. The fluctuations, as assessed from the 

multiplexed protein assays from unperturbed single-cells, are used to predict the results 

when the cells are perturbed by the presence of other cells, or through molecular (antibody) 

perturbations. The detailed results are shown in Appendix B, as well as in Biophys. J., 

2011, 100(10), 2378-2386. 
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2.2. Experimental Methods  

2.2.1. Microarray fabrication for T cell sorting 

All DNAs were acquired from IDT. By the facility at the Institute for Systems 

Biology (ISB, Seattle), DNA strands were printed on amine coated glass slides (GAPSII, 

Corning) in the way to form 12x12 arrays having alternative rows of A, B, and C spots 

with a SMPXB15 pin (Arrayit). Sequence of each strand and its counterparts is written at 

the following Table 2.1. 

 

Fig. 2.2. Design of integrated microchip for single-cell protein secretome analysis. 
(A) CAD design of a microchip in which flow channels are shown in red and the control 
channels are shown in green. (B) Schematic drawing of cells loaded in the 
microchambers and compartmentalized with the valves pressurized. (C) Schematic 
illustration of the antibody barcode array used for multiplexed immunoassay of single-
cell secreted proteins. 
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2.2.2. Synthesis of DNA-SAC conjugates 

In order to express SAC, pET-3a plasmid, as a kind gift from Takeshi Sano 

(Harvard Medical School), was used. SAC was expressed according to the previously 

published protocol31, and buffer exchanged to PBS with 5 mM Tris(2-carboxyethyl) 

phosphine hydrochloride (Solulink), using zeba desalting columns (Pierce). MHPH (3-N-

Maleimido-6-hydraziniumpyridine hydrochloride, Solulink) was added to SAC at a molar 

excess of 300:1. Meanwhile, SFB (Succinimidyl 4-formylbenzamide, Solulink) in DMF 

was added to 5’ aminated DNA oligos at a molar excess of 40:1. In order to finish 

reactions, these mixtures were incubated at room temperature (RT) for 3-4 hours. Then, 

Table 2.1.  Orthogonal DNA sequences for spatial encoding of p/MHC tetramers  
 

Name    Sequence*
 

A            5’ - AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA AAA AAA AAA AAT  

       CCT GGA GCT AAG TCC GTA AAA AAA AAA AAA A 

A’           5' - NH2- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT 

B            5' - AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA AAA AAA AAA AGC  

       CTC ATT GAA TCA TGC CTA AAA AAA AAA AAA A 

B’           5' - NH2- AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC 

C            5' - AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA AAA AAA AAA AGC  

        ACT CGT CTA CTA TCG CTA AAA AAA AAA AAA A 

C’          5' - NH2- AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC 

	
  
*  All sequences to be conjugated to SAC (A’, B’, C’) were designed with a polyA 
linker followed by a 20mer hybridization region.  The 5’ amine is required for the 
attachment of the hetero-bifunctional maleimide derivative MHPH.  Sequences 
printed on glass substrates (A, B, C) were designed with two hybridization regions 
separated by polyAs.  This was designed to facilitate electrostatic adsorption to 
amine glass substrates.   
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both mixture were buffer exchanged to pH 6.0 buffer solution (50 mM sodium citrate, 

150 mM NaCl), and SFB-conjugated DNA oligos were added to MHPH-conjugated SAC 

at a molar excess of 20:1, and incubated overnight at RT. With Phamacia Superdex 200 

gel filtration column at 0.5 ml/min isocratic flow of PBS, SAC-DNA oligo conjugates 

was purified, and concentrated by 10K mwco concentration filters (Millipore). 

 

2.2.3. Preparation of T cells 

In order to make Jurkata-MART-1 cells, MSGV1-F5AfT2AB retroviral vector 

expressing the F5 MART-1 TCR, obtained from Steven A. Rosenberg and Richard 

Morgan (Surgery Branch, National Cancer Institute Bethesda, MD), was used to infect 

Jurkat cells. Cells were culture with RPMI 1640 (ATCC) supplemented with 10% Fetal 

Bovine Serum (ATCC).  

 

2.2.4. Sorting cells with NACS and conventional microarrays 

The HLA-A*0201 restricted MHC class I monomers loaded with MART-126-35 

(ELAGIGILTV) were made in house with previous published protocols32, and lipophilic 

cell membrane staining dyes DiO, DiD, and DiL were obtained from Invitrogen.      

To prevent non-specific cell binding, 1mg/ml PEG-NHS ester (Sunbio) in PBS 

was applied on microarray slides for 2 hours at RT. p/MHC monomers were combined in 

a 4:1 molar excess with ssDNA-SAC at 37oC for 20 min to form ssDNA-p/MHC 

tetramers. With the tetramers in 200µl media, DNA microarrays was hybridized for 1 

hour at 37oC, and washed with 3% FBS in PBS. T cells (106 cells/ml) were incubated on 

the array for 30 min at 37oC, and washed with the same media.  
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To compare the performance of sorting with conventional microarray techniques, 

SuperEpoxy(covalent) and SuperProtein(hydrophobic) slides were obtained from Arrayit, 

GAPSII(electrostatic) slide was purchased from Corning, and Hydrogel(hydrophilic) 

slide was acquired from Xantec. According to manufacturer’s protocol, fluorescent 

MART-1 tetramers were immobilized on each slide, and the result was analyzed with 

ImageJ and Origin. All cell capture images were obtained by bright filed (Nikon Eclipse 

TE2000) and/or confocal microscopy (Nikon E800).  

 

2.2.5. Microchip fabrication.   

The Single-cell barcode chips (SCBC) were assembled from a DNA barcode 

microarray glass slide and a PDMS slab containing a microfluidic circuit22,33. The DNA 

barcode array was created with microchannel-guided flow patterning technique33. Each 

barcode was comprised of thirteen stripes of uniquely designed ssDNA molecules. PDMS 

microfluidic chip was fabricated using a two-layer soft lithography approach34. The control 

layer was molded from a SU8 2010 negative photoresist (~ 20 µm in thickness) silicon 

master using a mixture of GE RTV 615 PDMS prepolymer part A and part B (5:1). The 

flow layer was fabricated by spin-casting the pre-polymer of GE RTV 615 PDMS part A 

and part B (20:1) onto a SPR 220 positive photoresist master at ~2000 rpm for 1minute. 

The SPR 220 mold was ~ 18 mm in height after rounding via thermal treatment. The 

control layer PDMS chip was then carefully aligned and placed onto the flow layer, which 

was still situated on its silicon master mold, and an additional 60 min thermal treatment at 

80 °C was performed to enable bonding. Afterward, this two-layer PDMS chip was cut off 

and access holes drilled. In order to improve the biocompatibility of PDMS, we performed 
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a solvent extraction step, which removes uncrosslinked oligomers, solvent and residues of 

the curing agent through serial extractions/washes of PDMS with several solvents35,36.  We 

noticed that this step significantly improves the biocompatibility and the reproducible 

protein detection. Finally, the microfluidic-containing PDMS slab was thermally bonded 

onto the barcode-patterned glass slide to give a fully assembled microchip.  

 

2.2.6. Preparation of barcode arrays 

The barcode array initially consists of 13 uniquely designed DNA strands labeled in 

order as A through M. Prior to loading cells, a cocktail containing all capture antibodies 

conjugated to different complementary DNA strands (A’-L’) is flowed through the 

chambers, thus transforming, via DNA hybridization, the DNA barcode into an antibody 

array. These dozen proteins that comprised the panel used here were encoded by the DNA 

strands A through L, respectively. The DNA oligomer sequences and the antibody pairs 

used are listed in Table 2.2. and Table 2.3. DNA-encoded antibodies were synthesized as 

previously described18 and quantified with BCA kit (Pierce) according to the 

manufacturer’s guide. 
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Table 2.2. Sequences and terminal functionalization of oligonucleotides*. 
Name            Sequence 

A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 

A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 

B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 

D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 

E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 

E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 

F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 

F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 

G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 

I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 

J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 

J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 

K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

 

* All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and 

purified via high-performance liquid chromatography (HPLC).  
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2.3. Results and Discussions 

2.3.1. Comparison between NACS and conventional protein microarray 

For the comparison study between NACS and conventional microarrays based on 

direct protein spotting method, I chose various substrates to cover different spectrum of 

commonly used strategies (covalent, electrostatic, hydrophobic, and hydrophilic 

adsorption) for protein immobilization. According to manufacturer’s instruction, serial 

dilutions of MART-1 SA-PE tetramer (HLA-A2.1 MHC molecules loading melanoma 

epitope MART-126-35) were directly printed. Onto these microarray, Jurkata-MART-1 T cells 

(Jurkat cells transduced with the F5 MART-1 TCR37 specific for peptide epitope MART-

126-35) were applied. Collected images of immobilized cells on the various substrates (Fig. 

2.3.a) and quantified analysis (Fig. 2.3.b) were obtained. 

Table 2.3. Summary of antibodies used for macrophage experiments 

DNA 
label primary antibody (vendor) secondary antibody (vendor) 

A’ mouse anti-hu IL-2 (BD Biosciences) biotin-labeled mouse anti-hu IL-2 (BD Biosciences) 

B’ mouse anti-hu MCP-1 (eBioscience) biotin-labeled armenian hamster anti-hu MCP-1 
(eBioscience ) 

C’ rat anti-hu IL-6 (eBioscience ) biotin-labeled rat anti-hu IL-6 (eBioscience ) 

D’ rat anti-hu GMCSF (Biolegend ) biotin-labeled rat anti-hu GMCSF (Biolegend ) 

E’ goat anti-hu MIF(R&D systems) biotin-labeled goat anti-hu MIF(R&D systems) 

F’ mouse anti-hu IFN- 𝛾  (eBioscience) biotin-labeled mouse anti-hu IFN-𝛾 (eBioscience) 

G’ mouse anti-hu VEGF (R&D systems) biotin-labeled goat anti-hu VEGF (R&D systems) 

H’ mouse anti-hu IL-1β (eBioscience) biotin-labeled mouse anti-hu IL-1β  (eBioscience) 

I’ rat anti-hu IL-10 (eBioscience) biotin-labeled rat anti-hu IL-10 (eBioscience) 

J’ mouse anti-hu IL-8 (R&D systems) biotin-labeled mouse anti-hu IL-8 (R&D systems) 

K’ mouse anti-hu MMP9 (R&D systems) biotin-labeled goat anti-hu MMP9 (R&D systems) 

L’ mouse anti-hu TNF-α (eBioscience) biotin-labeled mouse anti-hu TNF-α (eBioscience) 
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Compared to conventional microarrays with identical concentration of p/MHC 

tetramers, NACS was superior. Electrostatic and hydrophilic immobilization have 

little/no captured T cells, and hydrophobic immobilization has huge noise. Even though 

covalent immobilization succeeded to capture T cells, it had intra-spot and inter-spot 

heterogeneity while NACS gave homogeneous result at the same concentration of 

tetramers. Furthermore, as shown in the quantified analysis, only with a fifth of materials 

required in covalent immobilization, NACS could capture equivalent T cell. (p/MHC 

monomer at half max ≡ K1/2 = 1.1ng for NACS and 5.7ng for covalent immobilization). 

Two factors can be reasons of superior capturing efficiency in NACS. At first, 

linked by DNA-cDNA hybridization, p/MHC tetramers of NACS have great orientational 

freedom while those of conventional microarrays hardly have other options except just 

 
 

Fig. 2.3. Comparison of NACS versus spotted p/MHC arrays. (a) Bright field and 
fluorescent images of Jurkata-MART-1 T cell capture on various model substrates. (b) 
Quantification of T cell capture efficiencies (Hydrophobic surface was excluded 
because signal:noise ≤ 1.)     
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absorbed on the surface. This may increase the density of functional p/MHC tetramers 

and result in reduced K1/2. Secondly, NACS does not disrupt hydration state of arrayed 

proteins, which can be modified during production and storage process of conventional 

protein microarray to decrease reproducibility11,16,21. Because p/MHC tetramer arrays are 

self-assembled in solution immediately prior to an experiment and only stable DNA 

oligos are printed on the surface when the chip is stored, NACS may shows intra-spot and 

inter-spot homogeneity and guarantee the array reproducibility.  

 

2.3.2. Preparation of DNA-encoded antibodies 

In the case of  protein measurement with SCBC, all the DNA-encoded antibodies 

should be quantified with BCA kit and calibrated with recombinant proteins before using 

in on-chip experiment. Their cross-reactivity also must be checked. Without using valves 

of SCBC, I verified the DNA conjugated antibodies (Fig. 2.4.a), and made calibration 

curves of each of them with serial dilutions of recombinant solutions (Fig. 2.4.b.). The 

four parameter logistic model is used for fitting the calibration curve, resulting in the 

fitting parameters in Table 2.4. 
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Table 2.4. Parameters utilized for the protein assay calibration curve 

 

 

Fig. 2.4. Cross-reactivity check and calibration curves. (A) Scanned image showing 
cross-reactivity check for all 12 proteins. The green bars represent the reference stripe, 
sequence M. Each protein can be readily identified by its distance from the reference. In 
each channel, a standard protein (indicated on the left) was added to the buffer solution 
and assayed using the DEAL barcode method. For GMCSF, MIF, IFN-γ, IL-10, MMP9, 
and TNF-α, biotin-labeled 2° anti IL-2 antibody conjugated to DNA sequence A’ was 
used as a control. (B) Quantitation of fluorescence intensity vs. concentration for all 12 
proteins. Error bars: 1SD. The variability (defined as the standard deviation divided by 
the average in percentage) is less than 10% for the signals in detectable range. 
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2.4. Conclusions 

By the comparison with the commercial microarrays, I showed the superiority of 

NACS platform that can be inexpensively made by traditional DNA printing 

technologies. Also, I presented the calibration curves of DNA-encoded antibodies, which 

is essential for the further experiments with SCBC to analyze the protein-protein network 

in macrophages quantitatively and to predict the role of perturbations.   
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Chapter 3 

Fast Metabolic Response to Drug Intervention through Analysis on a 

Miniaturized, Highly Integrated Molecular Imaging System  

 

3.1. Introduction 

In vivo molecular imaging assays, employing a variety of probes of specific 

biological processes, have been developed for positron emission tomography (PET).  The 

most common probe in patients care and research is the glucose analog, 2-deoxy-2-

[18F]fluoro-deoxy-D-glucose ([18F]FDG) for imaging and measuring rates of glycolysis. In 

cancer patients, [18F]FDG assays are used for diagnosis and assessing therapeutic 

responses1. Around 3,000 molecular imaging probes for PET have been reported for 

various metabolic and other processes associated with disease states1.  

In vitro metabolic assays using radio-labeled probes have been adapted to 96-well 

plates and microchip formats2.  We explore here the use of such assays for quantitating the 

kinetics of cellular responses to targeted drugs.  We first introduce a microfluidic chip 

design (the RIMChip) that couples to a beta-particle imaging camera2-4 to form the 

betabox.  The betabox is designed for the quantitative analysis of the metabolic response of 

small numbers of cells to pharmaceuticals.  Most assay steps are similar to those of 

standard 96-well plate radioassays, but require far fewer cells, permit quantitation of signal 

per cell, and utilize live cells.  The platform is validated on various adherent and 

suspension cancer cells.  We characterize the influence of the monocarboxylate transporter 

(MCT1) protein, as well as a glycolytic inhibitor, on [18F]FDG uptake in isogenic 

liposarcoma cells.  Using different liposarcoma cells, we investigate the influence of 
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deoxycytidine kinase (dCK)5 on the uptake of the deoxycytidine analog molecular imaging 

probe [18F]-FAC6.     

We then explore how certain cancer cell lines respond to two mechanistically 

distinct targeted inhibitors.  We quantitate the response kinetics of liposarcoma cells to 

gemcitabine7 by correlating cell-cycle arrest with [18F]FDG uptake.  We then quantitate the 

kinetic response of model glioblastoma multiforme (GBM) cancer cells to an epidermal 

growth factor receptor (EGFR) inhibitor, by correlating changes in [18F]FDG uptake with 

the levels of phosphoproteins associated with EGFR signaling.  Glucose consumption 

consistently provides a rapid (~ 30 min.) indicator of positive therapeutic response, and the 

betabox platform provides a simple tool for quantitating those kinetics. 

 

3.2. Experimental Methods 

3.2.1. RIMChip design concepts  

The RIMChip design has 5 microchannels for executing 5 distinct assay conditions.  

Each microchannel has 4 microchambers in which the assays are executed, and so a single 

assay condition is repeated four times.  Several key features are designed into each 

microchannel to ease the execution of processes such as imaging, cell loading, and reagent 

flushing and delivery.   First, the spatial resolution of the beta camera is 600 µm, and 

nearest edges of neighboring microchambers are separated by 800 µm to avoid signal 

overlap (Fig. 3.1.).  Second, the microchannels are designed so that cells are only captured 

within the microchambers.  An individual cell chamber contains a 7×3 waffle-structured 

array of 200 µm deep microwells, separated by 30 µm thick walls. This structure is 
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designed to minimize the shear stress exerted onto cells that are attached to the bottom of 

microwells when flushing through new medium or reagents. This waffle design also helps 

maintain the rigidity of the bottom surface.  Third, this bottom surface is only 50 µm thick 

due to the constraint that the assay sensitivity depends upon the proximity of the cells to the 

camera.  This thin-floored PDMS chip provides a ~130% increase in collected signal over a 

common glass microscope coverslip. It also means that cells that do get trapped in places 

away from the microchambers do not provide detectable signal during an assay, since those 

cells will have up to 1 mm of PDMS separating them and the beta camera.  Fourth, the 

microchannel inlet is designed to avoid clogging of the channels by either bubbles, clumps 

of cells, or other debris, and for ease of use.  The microchannel inlets accommodate a 20-

200 µl pipette tip so that standard microwell procedures may be used. The bubble depletion 

chamber has a volume of 0.95 µl, and successfully removes any bubbles that are introduced 

in the micropipetting steps.   The bubble depletion volume is followed by a filtering area of 

posts that have a tailored depth of between 25 and 35 µm.  This dimension is customized 

for specific cell-types. In this study, we designed a 32 µm gap for liposarcoma cell lines 

and the U87 isogenic cell lines, and 20 µm gap for all suspended cells (which have a 

smaller cell size). The filter design also significantly enhances the hydrodynamic resistance 

of a channel and prevents backflow at the completion of solution injection.  This means 

that cell loading uniformity is significantly increased.   The outlet volume of the microchip 

holds all of the overflow from a given micropipetting step, and that overflow is removed 

using a micropipette.  The microchamber area of the RIMChip area has a 1 cm × 1 cm 

footprint, and which is designed to match the beta-particle camera.  
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3.2.2. RIMChip fabrication  

The microchip is fabricated from multiple layers of the elastomer 

polydimethylsiloxane (PDMS) using standard soft lithography methods as previously 

described3. PDMS is air permeable, which is helpful for both removing bubbles through the 

bubble depletion chamber, and also for assisting in on-chip cell incubation.  The filter layer 

was patterned on a 4” silicon wafer, using negative photoresist SU8 2025 (Microchem). On 

the same wafer, the fabrication of a layer of SU8 2100 generated the microchannel features 

that mate to the filters. This layer has a depth of 200 µm, which is also the microchannel 

depth.  This ensures a sufficient nutrition supply to allow several hours of on-chip cell 

incubation. The cell chamber features were patterned using SU8 2025 on a separate wafer. 

Those two masters were used to mold the PDMS. Precure PDMS mixture at the ratio of 5:1 

 
Figure 4.2. Fabrication of the RIMChip. The chip made by PDMS is composed by 
a top layer PDMS replica sealed with a bottom layer PDMS replica. Those two 
replicas were fabricated on two separated molds made by photolithography. The top 
PDMS contains most of features of a final RIMChip, except walls of cell capture 
chambers in the bottom PDMS. 
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was poured onto the master with the microchannel and filter layers, and baked at 80 °C for 

1 h to cure the PDMS (top PDMS in Fig. 3.1.). Meanwhile another PDMS precure mixture 

at the ratio of 20:1 was molded on to the second master. This PDMS replica was peeled off 

from this master, flipped and laid flat on a clean wafer (bottom PDMS in Fig. 3.1.). The top 

PDMS and the bottom PDMS layers were then trimmed and punched with appropriate inlet 

and outlet holes at 1.5 mm and 5 mm diameters, respectively, and then aligned and mated. 

The microchip was baked at 80 °C overnight to seal the PDMS layers. Finally, the entire 

microchannel was filled with PBS solution through dead-end filling by exerting 3 psi N2 

pressure in a tubing connected to the microchip 

 

3.2.3. The beta-particle camera (Betabox) 

The Betabox is a direct detection beta-particle detection camera utilizing a 13.5 x 

13.5 mm2 active area position sensitive avalanche photodiode (PSAPD) (Radiation 

Monitoring Devices). The five outputs of the PSAPD first pass through CR-110 charge 

sensitive preamplifiers and then shaping amplifiers with a 200 ns shaping time. The shaped 

sum signal then passes to a threshold comparator which produces event trigger pulses to 

four sample and hold (S/H) circuits (53ns acquisition time, 6𝜇s hold time) to initiate an 

analog to digital conversion of the positioning channels using a simultaneous sampling data 

acquisition system (DAQ) (National Instruments PCI-6143).  

 

3.2.4. Cell sample preparation, viability, and cell-cycle assays  

Liposarcoma cell lines LPS1 and LPS2 with dCK- and MCT1-knockdown, 

respectively, were derived from patient samples. Lentiviral-based, shRNA-mediated 
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knockdown of MCT1 and dCK were described in the previous literature8, The murine 

leukemic lines (L1210 wt and L1210-10K)9 were a kind gift from Charles Dumontet 

(Université Claude Bernard Lyon I, Lyon, France)10. The human lymphoma line CEM was 

purchased from ATCC (#CCL-119) and the sub-line, CEM-dCK negative, was generated 

via selection with ara-C11 and was a gift of Margaret Black (Washington State University). 

A human leukemia T cell line (Jurkat T) was purchased from ATCC.  The human 

glioblastoma cell line U87 EGFRvIII/PTEN were prepared as described12. The 

LIVE/DEAD® Viability/Cytotoxicity Kit (Invitrogen) was used to distinguish live cells 

from dead cells. For the cell-cycle assay, 2x106 cells were collected and washed with PBS.  

DNA content was determined through staining with 50 µg/mL Propidium Iodide (Sigma) 

for L1210 cells or BrdU kit (R&D Systems) for U87 EGFRvIII/PTEN cells. Data were 

acquired on 4 and 5-laser LSRII cytometers (BD Biosciences) and analyzed as previously 

described13. 

 

3.2.5. Betabox radioassay 

Each RIMChip assay relies on the use of a pipettor for fluidic control. To replace a 

solution in microchannels, we always flow a solution from inlets and remove the excess at 

the outlets using a 100 µl pipettor. For adherent cells, the cells were prepared with 

fibronectin surface coating.  Immediately before cell loading, the outlets were drained of 

solution. Cells at a concentration of 3×106 were injected into the microchip from inlets by 

pressing a pipettor for 5 sec to sufficiently cover all microchannels with cells. Then the 

outlets were refilled with cell culture medium to prevent the connected microchannels dried 

up owing to evaporation during incubation in a CO2 incubator at 37 °C for 4 h.  After 
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incubation, the microchannels were flushed 2× with flowing ~20 µl PBS using the same 

pipettor, each time for 30 sec, to flush out any residual glucose. About 10 µl 18F-FDG or 

18F-FAC in PBS was loaded into the microchannels by pressing the pipettor for 15 sec. The 

whole microchip was then incubated for 30 min in a CO2 incubator at 37 °C.  It was the 

flushed 2× with flowing ~20 µl PBS using the same pipettor. The cells in the microchip 

were then for imaging by the beta-box.   

For on-chip treatment of cells, we introduced the cells onto the RIMChip 4 h prior 

to the radioassay. 5mM 2-deoxyglucose (2DG), 10 µM gemcitabine, or 5µM erlotinib, in 

RPMI 1640 or DMEM medium supplemented with 10% FBS was then added to the 

microchannels by pipetting, and incubated with cells for 2 hours or designated periods for 

kinetic study. Drug molecules were removed from the microchannels using two PBS 

flushing steps. Immediately following, 1 mCi activity of 18F-FDG in PBS was introduced 

into the microchambers. One microchannel was loaded with cells, but not treated with 

gemcitabine.  This provided a control assay.  The signal from this control was converted 

into activity/cell, and then used for normalization of the similarly converted signal from the 

drug-treated cells. 

The imaging acquisition time depends on the activity of radioactive probe used for 

radioassay, with other experimental conditions set. We used 1mCi activity of 18F-FDG for 

tests on both adherent and suspended cells, with a fixed incubation time of 30 min. The 

imaging acquisition time was set for 5 min. We also explored lowering the dosage of 18F-

FAC to 10 µCi/ml for suspended cells, and using an acquisition time of 10 min. Even with 

such low activity, the radioassay on our platform is still able to differentiate leukemic lines 

L1210 and its dCK knockdown line.  
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3.2.6. Off-chip radioassay 

In parallel with betabox radioassay, off-chip radioassays were performed for each 

cell sample. Liposarcoma cells were detached from a Petri dish and transferred to a 12 well 

plate, with each well containing ~104 cells. The poly-D-lysine coated plates were then 

placed in a CO2 incubator at 37 °C for 4 h to allow for cell attachment to well plate bottom. 

10 µCi 18F-FDG or 18F-FAC was added to each well, followed by 30 minute incubation.  

Subsequently each well was washed by PBS twice. The cells were then lysed, and the cell 

lysates were transferred to plastic vials. The radioactivity of each cell sample was measured 

using a well-type γ-counter (1480 Wizard 3; Perkin Elmer).  

 

3.2.7. Phosphoprotein assay 

Confluent Petri dishes containing 5×106 cells were prepared.  Lysis buffer (Cell 

Signaling) with protease inhibitor (Roche) and phosphatase inhibitor (Sigma), was prepared 

according to the manufacturer’s instructions. Following cell lysis, protein concentrations of 

cell lysates were quantified with a BCA kit (Pierce). A panel of phosphoproteins from the 

lysates were assayed using a multiplex antibody array14 and sandwich-type enzyme-linked 

immunoassays (ELISAs).  All proteins in the panel were measured simultaneously from 

each sample.  

 

3.2.8. Data processing 

The radioimage was segmented into 20 rectangular regions of interest (ROIs), each 

of which overlaps a cell chamber and contains > 95% of the beta-particle counts from that 
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cell chamber. Beta-particle counts of each ROI were quantitated by a custom-written 

MATLAB program written. The background level was defined from the averaged beta-

particle counts from 4 ROIs that covered the 4 cell capture chambers in a microchannel that 

was not loaded with any cells.  For facilitation of cell counting, we stained cells with 

nuclear dye Hoechst 33342 to visualize each cell under a fluorescence microscope. A script 

written in ImageJ was used to automate cell counting. Radioactivity of each ROI was 

normalized by its cell number, and statistics for a given assay condition were calculated 

from the 4 repeat assays within a given microchannel. We limited comparisons of absolute 

beta-particle counting results across different experimental conditions to only those assays 

that were executed on the same RIMChip. To compare the results between RIMChips, we 

choose one of five microchannels in each RIMChip, and repeat the same experiment across 

all RIMChips. The radioactivity of other microchannels was normalized to that of the 

reference microchannel. This meant that we did not need to account for the changing 

radioactivity from the 18F-labeled radiopharmaceutical imaging probe. 

 

3.3. Results  

3.3.1. Design of RIMChip and cell loading 

Each RIMChip (Fig. 3.2.) permits 4 repeats of 5 independent assays.  Each assay 

microchannel inlet contains a bubble depletion chamber and a debris-trapping filter (Fig. 

3.1., Fig. 3.2. A and B).  These permit the use of standard micropipetting for cell and 

reagent introduction.  The 50 µm separation between the cell capture chamber floors and 

the camera yields an 11-fold increase in signal level relative to previous designs2, which 

used a microscope cover slip as the chamber floor.  Fibronectin coating of the 
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microchannel surfaces promoted attachment and spreading of the adherent cells (Fig. 3.3.), 

but did not influence the uniformity of cell loading or the [18F]FDG uptake (Fig. 3.3. and 

Fig. 3.4.).  Suspension cells were found to attach to the untreated hydrophobic PDMS 

surface. (Fig. 3.5.) 

Cells were counted within each cell capture chamber (Fig. 3.2.C), before and after 

the radioassay, to permit per cell quantitation of the radioassay results.  Cell loading and 

[18F]FDG uptake exhibited ~8% variations across the different cell capture chambers 

associated with a single microchannel.  For T cell assays (Fig. 3.2.E), chambers with ~ 70-

110 cells exhibited a ~30-fold higher signal than control chambers with zero cells.  
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Figure 3.2. The RIMChip design, operation, and betabox performance.  (A) Each 
RIMChip microchannel represents a separate assay condition, and permits four repeats 
per condition. A bubble depletion chamber and post filter is incorporated at each 
microchannel inlet. (B) Drawings (not to scale) and (C) photos of a cell capture 
chamber.  A cell suspension is injected through the inlets.  Adherent cells attach to the 
bottom of the fibronectin-treated microwells. The waffle-structured walls provide 
structural integrity, and prevent the cells from being disturbed by flowing solutions.  (D) 
Photograph of a RIMChip and a sample betabox radioassay revealing signal from a 4 
microchamber microchannel. (E) Statistics of cell loading (shown at two stages of a 
betabox assay) and statistics of the radioassay signal, averaged over the cells with 
chambers (S) and those without (N).  The bar heights and uncertainties are calculated 
using the 4 cell capture chambers associated with a given microchannel.  
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Figure 3.4. Effect of surface coating on cell number in microchambers.  3 different 
channels were coated with 1:100 Matrigel, 1:200 Matrigel and fibronectin, respectively. 
LS060208 cells were injected into each of those channels and incubated for 4 h before 
cell counting. 

Figure 3.3. Distribution of adherent (liposarcoma) cells within fibronectin-coated cell 
chambers within channel.  The bar graph presents cell loading results within the separate 
microchambers that comprise a single channel.  The images show that liposarcoma cells 
were surface adherent after 4 hours of incubation. Nuclear (fluorescent) staining facilitates 
cell number counting.  
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Figure 3.5. Effect of fibronectin coating on 
18
F-FDG uptake by liposarcoma cells. 

(a) Channel 1, 2, 3, 4 have been coated with fibronectin for 4 days, 3 day, 2 days, and 
1 day, respectively. Channel 5 was not coated with fibronectin. Then cells were loaded 
to the chambers of each channel and fed with 

18
F-FDG following the same procedure 

as described elsewhere. No significant differences from channel 1 to channel 5 are 
observed. In channel 5, half of cells were lost after the completion of whole procedure. 
Cells were not spreading out on an uncoated surface. (b) Effect of fibronectin 
concentration for coating on uptake of 

18
F-FDG. The initial concentration is 1 mg/ml 

which is diluted 2 times, 3 times and 4 times, respectively. Cells do not demonstrate 
significant difference with respect to 

18
F-FDG uptake except in the cell chambers 

coated with the highest concentration of fibronectin.  
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3.3.2. Validation of RIMChip  

We executed proof-of-principle betabox radioassays in which the glycolytic or 

nucleoside salvage pathways were genetically or molecularly manipulated in isogenic 

adherent liposarcoma cell lines (Fig. 3.6.).  We altered monocarboxylate transporter 1 

(MCT-1) levels via stable expression of shRNA, and examined the resulting changes in 

[18F]FDG uptake (Fig. 3.6.A).  In these cells, MCT-1 enhances glycolytic flux, so 

knockdown of MCT1 should result in reduction of [18F]FDG uptake.  The RIMChip assays 

detected a 35% relative decrease in [18F]FDG uptake between Scr and DMCT-1 cells.  The 

conventional assays  revealed a 12.5% reduction (Fig. 3.6.A). Introduction of the glycolytic 

inhibitor 2-deoxy-glucose (2DG) resulted in a stronger (3-10 fold) repression of [18F]FDG 

uptake, as recorded in the RIMChip assay and bulk assays, respectively (Fig. 3.6.B).   

Certain liposarcomas exhibit nucleoside salvage activity, which can be imaged 

using the nucleoside analog 1-(2’-deoxy-2’[18F]fluoroarabinofuranosyl) cytosine 

([18F]FAC)8.  [18F]FAC is a substrate for enzyme dCK, and so dCK knockdown should 

exhibit decreased [18F]FAC uptake.  The third betabox validation study supported this 

hypothesis (Fig. 3.6.C).   
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3.3.3. Kinetic study of drug response with RIMChip  

The betabox was also used for interrogating the kinetics of cellular responses to 

targeted therapies.  All time points in a given kinetics run are imaged simultaneously, for 

easy comparisons.  The influence of gemcitabine on L1210-wt leukemia cells was first 

studied.  Gemcitabine is an anti-cancer pro-drug nucleoside analogue that will impede the 

cell-cycle in dCK positive tumors9.  Since glucose metabolism can help fuel the cell-cycle, 

we reasoned that gemcitabine treatment could influence both [18F]FDG uptake and the cell-

cycle.  Indeed [18F]FDG uptake decreases upon cell exposure to gemcitabine, with first- 

 

Figure 3.6. Validations of the RIMChip via genetic and molecular manipulation of 
glycolytic flux and nucleoside salvage activity in betabox assays, with comparisons 
against standard assays. (A) [18F]FDG uptake betabox radioassays of wild-type LPS2 
cells (Scr) (grey bars) and MCT1 knockdown LPS2 cells (DMCT-1).  The betabox data 
uncertainties reflect the statistics from 16 microchambers (8 microchambers from two 
RIMChips) of measurements for each cell line.  The b camera image is of one such 
assay; the middle row is a 0-cell control. (B) [18F]FDG assay on the same cells showing 
the influence of the glycolytic inhibitor 2DG. (C) [18F]FAC uptake betabox radioassays 
on wild-type and dCK-1 knockout LPS1 cells.  Microchambers containing the dCK-1 
knockout cells are in rows 2 and 4 from the top, row 5 is a control.  The error bars 
represent the standard error of the mean.  P-values:  * = 0.5;  **= 0.01; *** = 0.001.   
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order kinetics and a half-life (τ1/2) of ~30 minutes cell-cycle arrest exhibits similar kinetics 

(τ1/2 ~50 minutes), and lags about 25 minutes behind changes in [18F]FDG uptake. (Fig. 

3.7.A).   

A second class of targeted drugs is aimed at blocking growth factor signaling of 

receptor tyrosine kinases (RTKs). For example, the ATP-competitive EGFR tyrosine 

kinase inhibitor erlotinib blocks wild-type and mutant EGFR (EGFRvIII) signaling, 

inhibiting the phosphorylation of kinases that represent downstream effectors of EGFR15,16 

and thus inhibiting the growth of PTEN-expressing glioblastomas12.  An activated growth 

factor signaling pathway implies energy flux through that pathway, so we reasoned that 

inhibiting that pathway would likely reduce cellular glucose consumption. Thus, we treated 

EGFRvIII and PTEN-expressing model glioblastoma multiforme (GBM) cell lines with 

erlotinib, and measured [18F]FDG uptake kinetics, plus the levels of a panel of 

phosphoproteins that are downstream effectors of EGFR (Fig. 3.7.B and Fig. 3.8.). The full 

panel of assayed proteins is provided as Table 3.1..  Again, [18F]FDG uptake drops sharply 

within 30 min, but the kinetics yield behavior reminiscent of a damped oscillator.  

Interestingly, this oscillatory behavior is reflected in the changing levels of the assayed 

phosphoproteins. The protein phosphorylated-AMP activated protein kinase (p-Ampkα) 

functions as an energy regulator within the cell17.  Its level appears to initially oscillate out 

of phase with [18F]FDG uptake, implying a compensatory mechanism for loss of glucose 

consumption. The levels of p-EGFR, p-Erk and p-mTOR oscillate mostly in phase with 

each other, and are partially synchronized with changes in [18F]FDG uptake.  The 

amplitude of the changing levels of a given phosphoprotein may reflect its proximity to 

EGFR in the RTK signaling pathway.  For example, p-EGFR itself exhibits the largest 
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amplitude response, with p-mTOR exhibiting the weakest response.  Over the course of the 

4-hour drug treatment window, the cell-cycle was relatively unaffected. 

 

 

 

Figure 3.7. Betabox assays, correlated with other functional assays, for gauging the 
response of cancer cells to targeted drugs. For these plots, the y-axis is % of the initial 
level (defined at the time =0 point) to allow for all data to be co-represented on the same 
plots.  (A) The kinetics of [18F]FDG uptake and cell-cycle arrest (measured using flow 
cytometry) following gemcitabine treatment of L1210-wt leukemia cells. The solid lines 
are first-order kinetic fits.  (B) The kinetics of [18F]FDG uptake compared with the 
dynamics of phospho-protein levels within the RTK signaling pathway of U87 
EGFRvIII PTEN GBM cells upon erlotinib treatment. The lines connecting the data 
points are to guide the reader.  Error bars indicate average values from three repeat 
assays.  
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Figure 3.8. The kinetics of glucose consumption rate and protein level upon 
Erlotinib treatment. Each protein is measured and converted to the percentage of the 
measured level at time 0. Glucose consumption rate has been calculated from 

18
F-FDG 

uptake rate. Error bars indicate fluctuations of three repeats. 

Table 3.1. List of antibodies used for GBM cell proteomic assay  
DNA label Antibody (ventor: clone) Source 

D 
mouse anti-hu phospho-EGFR R&D Y1068 

biotin-labeled goat anti-hu EGFR R&D BAF231 

E anti-hu phospho-Ampka kit R&D DYC 3528 

F anti-hu p53 kit R&D DYC 1746 

G anti-hu Bcl2 kit R&D DYC 827B 

I anti-hu phospho-mTOR kit R&D DYC 1665 

K anti-hu phoshpo-ERK kit R&D DYC 1018B 

L anti-hu phospho-Akt1 kit R&D DYC 2289 
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3.4. Discussions 

The comparisons of Fig. 3.6. between the betabox assays and the 12-well plate 

(bulk) assays reveal qualitative, but not fully quantitative agreement between the two 

approaches.  A concern might be that since the RIMChip assays a relatively small number 

of cells, the corresponding statistical spread of results would be significantly larger than for 

the bulk assays.  However, this spread, which should scale as the square root of the 

numbers of cells, is not large.  For the comparisons of Fig 3.6., 4 microchannels × 4 

microchambers per channel × 100 cells per microchamber yields a 2.5% error, relative to 

an expected ~0.5% error for a (~50,000 cells) bulk assay.  Cell counting errors for the 

RIMChip assays may add a few additional percent, as will the experimental errors in 

manipulating the cells for the bulk assay.  Small variations in the 50 µm thick PDMS 

membrane separating the cells from the camera can also contribute a few percent error.  

However, given that the two techniques have independent sources of error, and that the 

RIMChip assays for ~50-fold fewer cell numbers, the agreement between the two 

techniques is good.  There is a flow cytometry-based assay that utilizes a fluorophore-

labeled [18F]FDG analogue, but recent literature18 has called into question the validity of 

that assay, and so we did not compare against it here.   

 The kinetic responses recorded in Fig. 3.7. reveal that the [18F]FDG RIMChip assay  

provides a rapid (< 1 hour) tool for detecting the response of small cell numbers to a 

therapy.  However, the assays also reveal different response kinetics for the different cell 

lines and drugs.  An exact resolution of such responses can be accomplished by either 

capturing the dynamic trajectories of individual cells19, or the fluctuations of the functional 

proteins at the single-cell level20.  Obviously, the RIMChip assay does not resolve such 
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trajectories of fluctuations, but the cited literature can provide some insight into the 

observed responses.  For example, the first-order relaxation kinetics observed for the 

response of the L1210 leukemia cells to gemcitabine exposure is consistent with a 

transition between two distinct, steady state descriptions of those cells.  An alternative 

explanation, which we can rule out by our observations, is that gemicitabine exposure 

killed a fraction of the cells.  No dead cells were detected during the course of the 

experiment.  The oscillatory dynamics observed for the erlotinib treated GBM cells imply 

that there are competing networks that influence the kinetics.  The overall result may be the 

same-i.e., the cells are switching between two states, but that is not as clear from our data.  

Again, however, no dead cells were detected during the course of the experiments. 

 

3.5. Conclusions 

The betabox platform, comprised of a microfluidic chip (the RIMChip) mated to a 

beta-particle imaging camera, enables robust, user-friendly execution of sensitive and 

quantitative cell-based radioassays.  Each radioassay requires ~100 cells.  Betabox 

radioassays provide a useful and rapid screening platform for investigating the response of 

various cell lines to mechanistically distinct, targeted drugs.  The betabox platform 

provides a rapid screening tool for a variety of drug/cell line combinations, as well as a 

powerful tool for mechanistic investigations.  
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Chapter 4 

Development and characterization of the capture agents library targeting 

c-MET for in vivo cancer imaging 

 
4.1. Introduction  

As I mentioned in the previous chapter, positron emission tomography (PET) 

enables imaging of biological process in noninvasive and quantitative way1, it is requested 

to develop new radio probes visualizing specific biomarkers, especially cancer markers to 

diagnose and stage the disease and guide therapeutic decisions2. For example, [4-

18F]fluorobenzaldehyde-conjugated aminooxy-protein scaffolds are used to detect tumoral 

Her2 expression3, and [18F]fluoroestradiol is used to stratify breast cancer patients by 

measuring estrogen receptor expression4,5. However, radio probes able to image-specific 

surface markers for cancer cells are still lacking.  

Hepatocyte growth factor receptor (HGFR/c-MET) is a receptor tyrosine kinase 

whose expression has been shown to be associated with tumor invasion and metastasis.  

Since its discovery in mid-1980s6, many reports elucidate that c-MET can be a cancer 

marker as well as a target of cancer therapy due to its high expression level in various 

tumors, such as lung, kidney, colon, gastric, thyroid, pancreas and prostate cancers7-9. As 

shown in Fig.4.1.10, numerous oncogenic pathways are engaged downstream of c-MET, 

which may lend to multiple strategies for therapeutic inhibition. As recent clinical studies 

reported c-MET antibody improved the overall survival when it was treated to well 

stratified cancer patients, targeting c-MET shows promising prospect11.          
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In this chapter summarizing the current work, I present a novel library of capture 

agents synthesized from artificial amino acids to recognize extracellular domain of c-MET 

for avoiding disadvantages of antibodies, such as high cost, batch to batch variation and 

instability for long-term storage12,13. Researchers reported that these protein-catalyzed 

capture agents (PCC) could be synthesized for recognizing their specific target 

biomolecules, bCAII and Akt1, with high affinity compared to the commercialized 

antibody counterpart, and with solid stability for long-term storage at room temperature. 

Since it is also possible to synthesize the capture agents in bulk size by using standard 

solid-phase method, their production costs also have room to lower upon the demand12,13. 

 

 

 

 

 

Fig. 4.6. c-MET pathway, adapted from Br. J. 

Cancer (2007) 
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4.2. Experimental Methods 

4.2.1. Synthesis of PCC for c-MET 

Multiligand protein-catalyzed capture agents (PCC) library can be generated by 

using in situ click chemistry, as shown in Fig. 4.2. Detailed synthetic method is explained 

in the previous paper12,13. In short, capture agents were generated by iteratively screening 

one-bead-one-compound (OBOC) peptide library on TentaGel beads against recombinant 

human c-MET extracellular domain (R&D Systems). The target protein was exploited to 

promote click reactions between individual azide- and alkyne-functionalized library 

elements, first to produce biligands and second to produce triligand candidates. At each 

screening stage, beads were selected both for binding to the target and evolution of a 

triazole-linked product. To remove beads that are prone to non-selective binding, an anti-

screen was performed against human serum and detected via a labeled anti-human serum 

antibody. Only the peptides passing though both of positive and negative selections were 

employed as triligand c-MET capture agents.    
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Once several candidates were found, these triligand c-MET capture agents were 

prepared in bulk quantities by using solid-phase synthesis of the individual ligands 

followed by copper(I)-catalyzed ligation of azide and terminal alkyne14. Final products 

were purified by HPLC and characterized by mass spectrometry. 

 

4.2.2. Functionalization of capture agents. 

To work as in vivo imaging probes, the capture agents synthesized as above were 

labeled with a radioactive atom. However, it is not practical to characterize the radio-

labeled capture agents at the beginning, because their short life time limits available time 

for experiments and their radioactivity demands extra safety and special equipment for 

handling and visualizing. Hence, the characterization of capture agents was achieved with 

dye-labeled materials, and the fluorescent signals from the capture agents were quantified 

 

Fig. 4.7. Scheme of capture agent synthesis by in-situ click chemistry, 
adapted from Angew. Chem. Int. Ed. (2009).  
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first. Only candidates showing superior performance to the commercialized c-MET 

antibody was selected for the next step, the labeling with a radioactive atom.  

As a dye molecule, fluorescein isothiocyanate (FITC) was used for its ease of 

functionalization. The N-terminus of the capture agent was labeled with FITC (AnaSpec) 

as a final step in its solid-phase synthesis. The reaction proceeded as follows Fig. 4.3. 

 

 

For the radio-labeling of capture agents, 4-[18F]fluorobenzaldehyde was synthesized 

first, ([18F]FB-CHO), then it was conjugated with the N-terminus of the capture agent as 

shown in Fig. 4.4. as described in the literature15. After the synthesis, the product was 

rapidly purified by HPLC and its radioactivity was measured with a gamma counter.     

 

 

 

 

Fig. 4.8. Scheme of FITC labeling, provided by the manufacturer.  

 

Fig. 4.9. Scheme of 18F labeling, presented in J. Nucl. Med. (2004) 
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4.2.3. Preparation of cells 

In order to verify the binding capacity of capture agents, human prostatic carcinoma 

cell lines, PC3, DU145, LNCaP and 22Rv1 cells, were purchased from ATCC as described 

in the literature16. All cell lines were cultured in RPMI medium 1640, supplemented with 

10% FBS and 1% pen/strep solution, in a 37 °C incubator.  

Also, HGF, the ligand of c-MET, was added to cells in c-MET inhibition 

experiment to check that synthetic capture agents actually bind to c-MET to form a 

competitive relationship with the original ligand, HGF. In this case, just before the harvest 

of cells, cells were treated with recombinant HGF (Sigma) at the concentration of 25ng/ml 

for 15 min at the cell incubator as suggested in a previous work17.  

 

4.2.4. Confocal experiment for 3D imaging of live cells incubated with capture agents 

Synthetic capture agents must bind to the extracellular domain of c-MET for 

working as imaging probes. In order to confirm the binding site, c-MET expressing cells 

were incubated with FITC-conjugated capture agents to be analyzed with a confocal 

microscope. As a control, cells were also incubated with a commercial FITC labeled 

antibody for the visualization, and the 3D images from both conditions were compared 

with ImageJ (NIH).    

The detailed procedure will be as follows: 100,000 cells were seeded into each well 

of microwell slides with 2ml of cell culture media 24 hour before the imaging experiment. 

On the next day, cell culture media was aspirated, and cells were stained with 100µl of cell 

culture media containing different concentration of dye-conjugated capture agent or 
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antibody for 1 hour at cell incubator to find an optimal condition. After washing with cell 

culture media twice, cells were on top of LSM510 microscope (Zeiss) for imaging.  

 

4.2.5. Flow cytometry for the quantification of binding affinity 

Flow cytometry is a powerful tool to compare the interactions between ligands and 

receptors on the surface of cells as well as to find an optimal concentration of materials for 

staining18. To quantify the binding capacity of capture agents to c-MET on the surface of 

cells, the fluorescence intensity of cells incubated with FITC-labeled capture agents were 

analyzed with a flow cytometer by following procedures:  

Cells were harvested and aliquoted into 1.7ml falcon tubes at the volume of 100µl 

having 10million/ml concentration in 1% BSA-PBS. In order to make calibration curves, 

each aliquot was treated with serial dilutions of FITC-conjugated capture agents and 

antibody, as a control, for 1hr on ice. After the treatment, by using a centrifuge, cells were 

washed and re-suspended into 0.5ml of 1% BSA-PBS. Data was obtained and analyzed 

with FACSCalibur (BD bioscience) and Flow Jo (Tree Star), respectively.    

 

4.2.6. In vitro radioassay with RIMChip 

In order to do an in vitro radioassay, RIMChip was fabricated with PDMS material 

as explained at the previous Chapter 3. Cells were prepared at 3×106 cells per ml and 

injected into the RIMChip. Cell numbers were counted on an optical microscope. For the 

HGF inhibition studies, 25ng/ml of HGF in RPMI 1640, supplemented with 10% FBS, was 

added to the cells for 15 min. 100 µCi of radio-labeled capture agents were pipetted into the 

RIMChip microchannels, and the RIMChip were then incubated for 1 hour at cell culture 
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incubator and flushed with PBS twice. Finally, a betabox having beta camera was 

assembled for the measurement of radioactivity.  

 

4.2.7. In vivo treatment and imaging with microPET/CT 

To demonstrate the PCC work as imaging probes, in vivo experiment with mice is 

required. All animal studies will be done according to the guideline of the office of 

laboratory animal resources at Caltech. SCID mice will be injected with 1 million PC3 

cells, and tumors will be allowed to grow for one week. Mice will be killed after imaging 

on day 14 for biodistribution studies.  For imaging, mice will be injected with 100 µCi of 

radio-labeled capture agents. Data will be obtained in a dynamic scan for 1.5 hours after the 

probe administration by using Siemens Preclinical Solutions microPET focus 220 and a 

MicroCAT II CT instrument as described previously2.  

 

4.3.  Results and Discussion 

4.3.1. Synthesis of capture agents for c-MET  

IN-CT-1025, the triligand capture agent against c-MET, was discovered and 

synthesized by Indi Molecular in Culver City, CA (data unpublished, Fig. 4.5). 

 

 

Fig. 4.5. Molecular structure of the 1st generation capture agent for 
targeting human c-MET, conjugated with FITC, IN-CT-1025. 
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4.3.2. Cell-based fluorescence imaging assays 

 In order to find the best positive and negative controls for the cell-based assays, the 

 expression level of c-MET in four prostate cancer cell lines, PC3, DU145, LNCaP and 

22Rv1, was first examined by Western blot with lysates of those cell lines as shown in Fig. 

4.6.A, which is accordance with the previous literature17. To check the affinity of IN-CT-

1025 to c-MET on the surface of prostate cancer cells, with a confocal microscope, we did 

a proof-of-concept experiment by measuring fluorescent signals from four kinds of living 

prostate cancer cell lines applied with IN-CT-1025. As presented in Fig. 4.6.B, the 

fluorescent signals were comparable with the result from Western blot, which indicates that 

IN-CT-1025 is able to recognize the target protein, c-MET, at the extracellular domain of 

cell membrane.   

 

 

 

Fig. 4.6.  Expression level of c-MET in different prostate cancer cell lines. (A) 
The result of Western blot with lysates of prostate cancer cell lines. (B) The 
result of confocal microscopy experiments with live prostate cancer cell lines 
applied to IN-CT-1025.  
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After visualizing the binding of IN-CT-1025to cells, its affinity to prostate cancer 

cells was quantitatively measured with a flow cytometer. By titrating the concentration of 

IN-CT-1025 with 1 million PC3 and 22Rv1 cells as positive and negative controls, the 

mean fluorescent signals from each sample were obtained to make a plot as shown in Fig. 

4.7. A commercial c-MET antibody (eBioscience) was also applied to cells for the 

comparison, but we could not explore the region of high concentration of antibody (more 

than 375nM) due to its high cost. 

 

 The data was fitted with Hill function which gives the dissociation constant, Kd, of  

IN-CT-1025 with PC3 cells to be 3.36µM while Kd of IN-CT-1025 with 22rv1 cells is 

6.23µM. Interestingly, compared to the dynamic range of the commercial antibody, 30 

(11.84 to 0.39), IN-CT-1025 showed much wider dynamic range of about 2,800 (592.7 to 

 

Fig. 4.7. Result of titration experiment with IN-CT-1025. With flow 
cytometry, the binding affinity of IN-CT-1025 to PC3 cells and 22Rv1 cells, 
employed as positive and negative controls, was measured. Commercial anti 
c-MET antibody were also applied to cells for the comparison.    
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0.21), which implies that IN-CT-1025 can work as a better imaging probe to distinguish c-

MET positive and negative cells than antibodies.   

 

4.4. Conclusions and Future Directions 

As written above, c-MET is highly overexpressed in cancer patients. Having a 

specific imaging probe to this cancer marker, diagnosis and/or staging of cancer will be 

more accurate and lead to more rapid therapeutic decision making. With the first-

generation protein-catalyzed capture agent, IN-CT-1025, we checked the possibility of 

PCC as an in vivo imaging probe by measuring its binding affinity to prostate cancer cells 

through cell-based fluorescent imaging assays. Compared to a commercialized c-MET 

antibody, IN-CT-1025 is shown to be a better agent to discriminate c-MET positive and 

negative cells due to its wide dynamic range. With this PCC, we will examine its capacity 

to work as an in vivo imaging probe by using an in vitro radio assay with RIMChip and 

Betabox as described in the previous Chapter 3, which will be then followed by the in vivo 

experiments with mice imaging on micro PET/CT.      
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Chapter 5 

Imaging of glycolytic metabolism in primary glioblastoma cells with 

RIMChip 

 

5.1. Introduction 

Glioblastoma(GBM) is one of the most common brain tumors1. It is composed of 

heterogeneous subpopulations of phenotypically distinctive tumor that express different 

level of oncogenes such as epidermal growth factor receptor variant III (EGFRvIII)2. GBM 

is also remarkably resistant to targeted therapies, including EGFR inhibitors despite 

frequent expression of EGFRvIII. Previous works have presented a number of important 

mechanisms underlying resistance3,4, but the contribution of cellular heterogeneity to 

resistance is not well understood.  

In spite of cellular heterogeneity, some solid tumors exhibit hallmarks of 

homogeneous systems. For example, Lander’s group has reported that luminal, basal, and 

stem-cell phenotypes purified from a breast tumor can, over time, regenerate the 

characteristic cellular heterogeneity (the phenotypic equilibrium) of the original tumor5. 

This behavior, in turn, has consequences for therapeutic resistance6.   

In this chapter summarizing the current work, I will introduce the preliminary 

results showing the heterogeneous glucose metabolism in cancer cells and the possibility of 

RIMChip as a screening tool for drug treatments. We begin with a patient-derived, primary 

glioblastoma cell line (GBM39)7, which has heterogeneous EGFRvIII expression. By 

examining the glycolytic activity of cells according to their expression level of EGFRvIII, 
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we expect to see the relationship between gluocose metabolism and EGFR signaling 

pathway.  

 Also, we will explore the possibility of RIMChip platform as a drug screening tool 

 by applying EGFR+ subpopulations of GBM39 cells undergoing different types of drugs.  

 

5.2. Experimental Methods 

5.2.1. Preparation of cells 

Primary glioblastoma cells, GBM39 cells, were cultured to form neurospheres in 

DMEM F-12 (Invitrogen) supplemented with 2% of B27 (GIBCO), 1% of Glutamax 

(GIBCO), 1% of PSQ (GIBCO), 20 ng/mL of EGF (Sigma), 20 ng/mL of FGF (Sigma) and 

1µg/mL of Heparin (Sigma). Every 3 days, growth factors were added to the cell culture 

media, and the growth media was changed every 2 weeks. In the case of ERZ cells, 

GBM39 cells having the resistance to erlotininb, neurospheres were cultured in the growth 

media having 5 µM of erlotinib (Chemietek) to maintain the resistance.   

In order to make a single-cell suspension, neurospheres were collected by the 

centrifugation at 400 g for 4 min. These neurospheres were then re-suspended in 3mL of 

TriplE (Invitrogen) for 5 min at cell incubator, followed by the addition of the growth 

media to neutralize TriplE. This solution was spined down again, and the single-cell 

suspension was obtained after the discard of supernatant followed by the resuspension of 

cell pellet into the growth media.   
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5.2.2. Cell sorting  

In order to study the glycolytic metabolism along with the expression level of 

EGFRvIII in glioblastoma cells, single-cell suspension of GBM39 cells were prepared. 

Cells were washed with cold PBS followed by the resuspension to 20 million/mL in FACS 

buffer, PBS supplemented with 2% of FBS. After the removal of 20uL cell solution for the 

negative control, EGFRvIII antibody was added to the single-cell suspension to be reacted 

with cells for 20 min on ice. Cells were washed twice with ice-cold PBS, and re-suspended 

in FACS buffer containing secondary Anti-Mouse 488 (Jackson Immunolabs) for tagging 

with chromophore. After the incubation for 20 min on ice, cells were washed with ice-cold 

PBS twice, followed by the resuspension into Sorting Buffer, PBS supplemented with 0.5% 

FBS, at the concentration of 20 million/mL. According to their fluorescent signals, cells 

were sorted by a flow cytometer. 

 In order to measure the effect of drug treatment to metabolism of the EGFR+   

subpopulation of GBM39 cells, the single-cell suspension was applied to the magnetic 

beads conjugated with EGFR antibody. After the sorting, cells were released and placed in 

a laminin coated cell culture petri for overnight to eliminate dead cells floating among 

growth media instead of binding to the laminin coated surface.  

 

5.2.3. In vitro radio assay with RIMChip 

The detailed procedure to fabricate RIMChip is introduced in Chapter 3. Cells at a 

concentration of 3×106 were injected into the microchip from inlets by pressing a pipettor 

for 5 sec to sufficiently cover all microchannels with cells followed by the incubation in a 

CO2 incubator at 37 °C for 4 h.  After incubation, the microchannels were flushed 2× with 
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flowing ~ 20 µl PBS using the same pipettor, each time for 30 sec, to flush out any residual 

glucose. About 10 µl 18F-FDG in PBS was loaded into the microchannels by pressing the 

pipettor for 15 sec. The whole microchip was then incubated for 30 min in a CO2 incubator 

at 37 °C.  It was the flushed 2× with flowing ~ 20 µl PBS using the same pipettor. The cells 

in the microchip were then for imaging by the beta-box.   

For the imaging of glycolytic metabolism in cells under drug treatment, we 

introduced CC214, U012610, or the combination of CC214 and 5 µM erlotinib, to EGFR+ 

GBM39 cells 24 hour prior to the experiment. The remaining procedure was the same as 

above.  

 

5.3. Results and Discussion 

5.3.1. Imaging of glycolytic metabolism in glioblastoma cells according to their 

expression level of EGFRvIII 

In order to study the glycolytic metabolism in the subpopulation of glioblastoma 

cells, we first did RIMChip experiment to image [18F]FDG uptake in EGFRvIII+ and 

EGFRvIII- GBM39 cells based on the hypothesis that EGFRvIII+ cells, compared with 

EGFRvIII- cells, would show higher uptake of [18F]FDG due to their uncontrolled active 

signaling. ERZ cells, GBM39 cells evolved to have erlotinib resistance during the 

treatment of the drug, were also studied to investigate the effect of erlotininb resistance as 

shown in Fig. 5.1.  
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As I expected, EGFRvIII+ subpopulation showed two times higher uptake of 

[18F]FDG than EGFRvIII- counterpart. Interestingly, ERZ cells which rarely express 

EGFRvIII- on their cellular membrane consumed 20% more [18F]FDG than EGFRvIII- 

subpopulation, which might be related with the evolution of bypass signaling pathway 

leading to the resistance to the inhibition of EGFR caused by erlotininb treatment.  

 
5.3.2. Imaging of glycolytic metabolism in glioblastoma cells under drug treatment 

As mentioned in Chapter 3, RIMChip can work as a rapid screening tool for drug 

treatments. Here we confirm the capability of RIMChip again with EGFR+ subpopulation 

of GBM cells undergoing different types of treatment: mTOR inhibition by CC2148, MEK 

inhibition by U01269 and the dual inhibition of mTOR and MEK by the combinatorial 

treatment with CC214 and U0126.   

 

Fig. 5.10. The relation between [18F]FDG uptake and the expression level 
of EGFRvIII in GBM39 cells.   
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 As shown in Fig. 5.2., [18F]FDG uptake is decreased with the inhibition of mTOR  

by CC214, which can be explained by the diminished activation of glucose transporter at 

the downstream of mTOR signaling pathway10. The increased  [18F]FDG uptake was 

observed with the treatment of U0126, MEK inhibitor, which may be related with the 

interrupted activity of mitochondria as described in literature11.  

 

5.4. Conclusions and Future Directions 

 By using RIMChip platform, we observed the heterogeneity of energy metabolism  

in tumor cells with the imaging of glycolytic metabolism in the subpopulations of primary 

glioblastoma cells sorted by the expression level of oncoprotein, EGFRvIII. Also, we 

confirm the capability of RIMChip as a drug screening tool with the preliminary results of 

primary glioblastoma cells under treatment of different kinds of drugs. Combined with 

 

Fig. 5.11. The relation between [18F]FDG uptake and the drug treatment to 
EGFR+ subpopulations of GBM39 cells C represents CC214, U represents 
U0126 and C+U represents the combinatorial treatment with CC214 and 
U0126. 
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further study of drug kinetics, with this platform, it would be possible to screen drugs 

rapidly with low requirement of biopsy samples.  
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Appendix A 

Modular nucleic acid assembled p/MHC microarrays for multiplexed 

sorting of antigen-specific T cells 

 

A.1. Introduction 

T cells, which play a central role in an adaptive immune response, recognize 

different antigens via T cell receptor (TCR) generated by gene rearrangement and 

secondary modification. When a naive T cell triggered through the interaction between 

TCR and its matching antigenic peptides bound to Major Histocompatibility Complex 

(p/MHC) on the surface of antigen presenting cells (APC), it begins to proliferate rapidly 

and form a large population of matured effector cells to defend the host. Even though the 

pathogen is cleared, some portion of activated cells survives and transforms into memory 

cell able to give the host a quick immune response toward the previously faced pathogen. 

As the result, each individual has his/her own T cell repertoire showing immune response 

toward self and foreign antigens. To detect and characterize these T cell populations, 

consequently, has fundamental and clinical importance.   

 

In order to detect antigen-specific T cells, soluble p/MHC tetramer has been 

developed. Four enzymatically biotinylated p/MHC monomers are coupled with a 

streptavidin molecule primed by chromophore to form a p/MHC tetramer, and the 

tetramer enables its counter part T cell to be detected via flow cytometry1. Because the 

p/MHC tetramer uses choromophore for its detection, however, this method has 

inevitable restrictions. At first, each antigen-specificity requires unique optical dye 
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molecule having little spectral overlap with others. Secondly, the existence of detection 

limit in flow cytometry, serial flow cytometry detection for multiplexing study is 

restricted by the sample size. Due to the existence of diverse optical characters in each 

cell population, moreover, the matter of compensation always follows. Although 

researchers used polychromatic flow cytometry utilizing quantum dots to resolve those 

problems2,3, high cost, long sample preparation time, and complex color compensation 

still hinder further study. 

 

To avoid such problems, several researchers have reported antigen-specific cell 

sorting by microarrays, which is contains directly printed p/MHC tetramers on a 

supporting substrates4-7. When a population of cells is applied on the array, only target 

antigen-specific T cells bind to the region having p/MHC tetramers. After that, the 

captured cells are observed by a microscopy. Because this method uses the location of 

p/MHC tetramers to separate a target antigen-specific T cell from the variety of other 

cells instead of chromophore’s emission spectrum, multiplexing is only restricted the 

number of reagent able to fit on a substrate. 

 

In order to increase the capture efficiency, orientation of p/MHC tetramer should 

be preserved in a way to react approaching cells and the tetramer must not be denatured 

through the microarray fabrication. Analogous protein arrays, made via antibody 

adsorption to unmodified and derivatized surfaces, have shown that the adsorbed 

antibodies could fully react because of surface-induced effects such as protein 

denaturation and orientational change to inactive. As the result, amount of functional 
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antibody is decreased, immobilization occurs heterogeneously, and required 

concentrations of antibody is increased to compensate for the protein loss8-10. To avoid 

these problems, several mild chemistries have been studied for protein immobilization11-

17, but often the surface that meets the demands of application requires a high level of 

technical expertise and/or is limited in accessibility. Therefore, the development of a new 

technology to fabricate p/MHC array in an easy way is important.   

 

Here I introduce a new p/MHC arrays conjugated with nucleic acid for 

multiplexed antigen-specific lymphocytes sorting. Instead of direct printing, each specific 

p/MHC tetramer is conjugated to unique sequence of ssDNA designed to be orthogonal 

to other sequences. On the glass surface where the complementary DNA sequences are 

printed, the ssDNA-p/MHC tetramer conjugates are self-assembled by DNA 

hybridization, then used as a p/MHC array to sort mixed population of antigen-specific T 

 
Fig. A.1. Self-assembled ssDNA-p/MHC tetramer arrays for multiplexed sorting 

of antigen-specific cells. ssDNA-encoded p/MHC tetramers are produced by coupling 

ssDNA site-specifically to SAC prior to exposure to molar excess of biotinylated 

p/MHC monomers.  p/MHC tetramer arrays are formed by pooling ssDNA-p/MHC 

tetramers of select specificity and hybridization to a complementary-printed ssDNA 

microarray. T cells expressing the cognate TCR are detected by binding to the surface. 

confined tetramer.   
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cells (Fig. A.1.). This method is called “Nucleic Acid Cell Sorting (NACS).”  Because 

NACS employs DNA as a linkage molecule, fabrication of p/MHC arrays is simple and 

highly modular18-21. Traditional DNA microarray technologies are also available to make 

cDNA glass substrates. In order to produce ssDNA-p/MHC tetramer conjugates having 

maximum capacity to immobilize cells, cysteine-engineered SA (SAC) is used a scaffold. 

NACS arrays have better performance than traditional p/MHC arrays made by direct 

printing, and the specificity, multiplexing and sensitivity of NACS are studied. Selective 

detachment after sell sorting by NACS is also illustrated, and its application to primary 

human T cells is introduced.   

 

A.2. Experimental Methods  

A.2.1. Microarray fabrication 

All DNAs were acquired from IDT. By the facility at the Institute for Systems 

Biology (ISB, Seattle), DNA strands were printed on amine coated glass slides (GAPSII, 

Corning) in the way to form 12x12 arrays having alternative rows of A, B, and C, or 

AEcoRI and BBamHI spots with a SMPXB15 pin (Arrayit). Sequence of each strand and its 

counterparts is written at the following Table A.1. 
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A.2.2. Synthesis of DNA-SAC conjugates 

In order to express SAC, pET-3a plasmid, as a kind gift from Takeshi Sano 

(Harvard Medical School), was used. SAC was expressed according to the previously 

published protocol22, and buffer exchanged to PBS with 5mM Tris(2-carboxyethyl) 

phosphine hydrochloride (Solulink), using zeba desalting columns (Pierce). MHPH (3-N-

Table 2.1.  Orthogonal DNA sequences for spatial encoding of p/MHC tetramers  
 

Name    Sequence*
 

A            5’ - AAA AAA AAA AAA AAT CCT GGA GCT AAG TCC GTA AAA AAA AAA AAT  

       CCT GGA GCT AAG TCC GTA AAA AAA AAA AAA A 

A’           5' - NH2- AAA AAA AAA ATA CGG ACT TAG CTC CAG GAT 

B            5' - AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA AAA AAA AAA AGC  

       CTC ATT GAA TCA TGC CTA AAA AAA AAA AAA A 

B’           5' - NH2- AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC 

C            5' - AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA AAA AAA AAA AGC  

        ACT CGT CTA CTA TCG CTA AAA AAA AAA AAA A 

C’          5' - NH2- AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC 

AEcoRI     5’ - AAA AAA AAA AAA GAG CTA AGT CCG TAG AAT TCA AAA AAA AAA GAG  

       CTA AGT CCG TAG AAT TCA AAA AAA AAA AAA 

AEcoRI’    5’ - NH2 – AAA AAA AAA AGA ATT CTA CGG ACT TAG CTC CAG GAT 

BBamHI 5’ - AAA AAA AAA AAA TTG AAT CAT GCC TAG GAT CCA AAA AAA AAA TTG          

                    AAT CAT GCC TAG GAT CCA AAA AAA AAA AAA 

BBamHI’   5’- NH2 – AAA AAA AAA AGG ATC CTA GGC ATG ATT CAA TGA GGC 

	
  
*  All sequences to be conjugated to SAC (A’, B’, C’, AEcoRI’, and BBamHI’) were 
designed with a polyA linker followed by a 20mer hybridization region.  The 5’ 
amine is required for the attachment of the hetero-bifunctional maleimide derivative 
MHPH.  Sequences printed on glass substrates (A, B, C, AEcoRI, and BBamHI) were 
designed with two hybridization regions separated by polyAs.  This was designed to 
facilitate electrostatic adsorption to amine glass substrates.   
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Maleimido-6-hydraziniumpyridine hydrochloride, Solulink) was added to SAC at a molar 

excess of 300:1. Meanwhile, SFB (Succinimidyl 4-formylbenzamide, Solulink) in DMF 

was added to 5’ aminated DNA oligos at a molar excess of 40:1. In order to finish 

reactions, these mixtures were incubated at room temperature (RT) for 3-4 hours. Then, 

both mixture were buffer exchanged to pH 6.0 buffer solution (50mM sodium citrate, 

150mM NaCl), and SFB-conjugated DNA oligos were added to MHPH-conjugated SAC 

at a molar excess of 20:1, and incubated overnight at RT. With Phamacia Superdex 200 

gel filtration column at 0.5ml/min isocratic flow of PBS, SAC-DNA oligo conjugates was 

purified, and concentrated by 10K mwco concentration filters (Millipore). 

 

A.2.3. Preparation of T cells 

The cDNA from alpha and beta chains of TCR specific for tyrosinase368-376 was 

obtained from Michael I. Nishimura (Medical University of South Carolina, Charleston, 

SC). These alpha and beta chain were cloned into a lentiviral vector having transgenes 

linked by a 2A self-cleaving sequence as written23. Supernatant from the lentiviral vector 

was concentrated and applied to infect Jurkat cells to generate Jurkata-Tyro cells. In order 

to make Jurkata-MART-1 cells, MSGV1-F5AfT2AB retroviral vector expressing the F5 

MART-1 TCR, obtained from Steven A. Rosenberg and Richard Morgan (Surgery 

Branch, National Cancer Institute Bethesda, MD), was used to infect Jurkat cells.  For 

generating primary human T lymphocytes expressing the F5 MART-1 TCR, the same 

vector was applied to PBMCs from leukapheresis. Prior to the infection, PBMCs were 

activated with 50ng/ml of OKT3 (muromonab anti-human CD3 antibody, Ortho-Biotech, 

Bridgewater, NJ) and 300 U/ml of IL-2 (adesleukin, Novartis, Emeryville, CA) for 48 
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hours. Then, on the retronectin-coated wells (Takara Bio Inc., Japan) containing MSGV1-

F5AfT2AB retroviral vector, activated PBMC in RPMI with 5% human AB serum 

supplemented by 300 IU of IL-2 were added and incubated at 37oC for overnight.  On the 

next day, a second set of pre-coated retronectin retroviral vector tissue culture plate was 

used to transfer the activated PBMC and incubated at 37oC for overnight. Subsequently, 

with the same media as above, cells were washed and re-suspended. In RPMI 

supplemented with 10% human AB serum and 1% penicillin, streptomycin, and 

amphotericin (Omega Scientific), frozen leukapheresis fractions from patients NRA11 

and NRA 13 (UCLA IRB#03-12-023) were thawed and incubated overnight. Then using 

an AutoMACS machine according to the manufacturer’s instructions, CD8+ enrichment 

(anti-CD8 microbeads, Miltenyi Biotech) was done. Following separation, the cells were 

cultured at in RPMI-humanAB media containing 30 U IL2/mL. 

 

A.2.4. Sorting cells 

The HLA-A*0201 restricted MHC class I monomers loaded with tyrosinase369-

377 (YMDGTMSQV) and MART-126-35 (ELAGIGILTV) were made in house with 

previous published protocols24.   A2.1-restricted EBV BMLF1259-267 (GLCTLVAML), 

CMV pp65495-503 (NLVPMVATV), murine H-2Kb/-OVA257-264 (SIINFEKL), and 

murine H-2Db/-gp10025-33 (KVPRNQDWL) as well as all fluorescent HLA-A*0201 

tetramers were purchased from Beckman Coulter, and lipophilic cell membrane staining 

dyes DiO, DiD, and DiL were obtained from Invitrogen.      
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To prevent non-specific cell binding, 1mg/ml PEG-NHS ester (Sunbio) in PBS 

was applied on microarray slides for 2 hours at RT. p/MHC monomers were combined in 

a 4:1 molar excess with ssDNA-SAC at 37oC for 20 min to form ssDNA-p/MHC 

tetramers. With the tetramers in 200µl media, DNA microarrays was hybridized for 1 

hour at 37oC, and washed with 3% FBS in PBS. T cells (106 cells/ml) were incubated on 

the array for 30 min at 37oC, and washed with the same media.  

 

In the comparative study, SuperEpoxy(covalent) and SuperProtein(hydrophobic) 

slides were obtained from Arrayit, GAPSII(electrostatic) slide was purchased from 

Corning, and Hydrogel(hydrophilic) slide was acquired from Xantec. According to 

manufacturer’s protocol, fluorescent MART-1 tetramers were immobilized on each slide, 

and the result was analyzed with ImageJ and Origin.  

 

Staining p/MHC tetramer after T cell capture was done with adding fluorescent 

cDNA (Cy5-A’ and Cy3-B). For selective T cell release, EcoRI, BamHI or DNase in 

RPMI media was applied onto the immobilized cells for 1-2 hours at 37oC. Two restrict 

enzymes were purchased from NEbiolabs, and DNase was obtained from Sigma. All cell 

capture images were obtained by bright filed (Nikon Eclipse TE2000) and/or confocal 

microscopy (Nikon E800).  
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A.3. Results and Discussions 

A.3.1. Design of ssDNA-p/MHC tetramers 

Mostly used reagent to assemble p/MHC monomer into tetramers is SA-

phycobiliprotein (PE or APC) conjugates, which is linked via chemical cross-linking. 

However, we could not use them, because their functional groups for attaching ssDNA 

are modified during the conjugation. Unmodified SA was not the best choice because its 

functional groups close to the biotin binding sites prohibit the access of biotin as 

published25,26. We solve the problem with employing a mutant SA, having additional 

cysteine residue at the carboxy-terminus, which was first introduced by Ramachandiran 

and co-workers25. Because native SA has no cysteine residue, the reacting site can be 

restricted at the end of carboxy-terminus27, far from biotin binding pocket, when 

cysteine-maleimide conjugation was applied.  

In order to compare the ability of biotin binding between SA-ssDNA conjugate 

and SAC-ssDNA conjugate, 2-(4'-Hydroxyazobenzene) benzoic acid (HABA)28 was 

used. Because it is a molecular mimic of biotin with distinct optical density coefficients 

dependent on whether biotin is bound to SA or not, the biotin binding capacity is verified 

through absorption spectra. The result of HABA absorption spectra showed the binding 

capacity of SAC-ssDNA conjugate is 3.7 while that of native SA-ssDNA is 2.9.  When 

these conjugates were applied to capture 4 different monoclonal T cells, the difference of 

binding capacity was signified. NACS p/MHC tetramers assembled by SAC-ssDNA 

conjugates immobilized T cells with a high efficiency, while SA-ssDNA conjugates 

coupled with p/MHC showed little cells capture (Fig. A.2.). Therefore, all NACS 

tetramers as follow were assembled by SAC-ssDNA.    
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A.3.2. Comparison between NACS and conventional protein microarray 

For comparison study between NACS and conventional microarrays based on 

direct protein spotting method, we chose various substrates to cover different spectrum of 

commonly used strategies (covalent, electrostatic, hydrophobic, and hydrophilic 

adsorption) for protein immobilization. According to manufacturer’s instruction, serial 

dilutions of MART-1 SA-PE tetramer (HLA-A2.1 MHC molecules loading melanoma 

epitope MART-126-35) were directly printed. Onto these microarray, Jurkata-MART-1 T cells 

(Jurkat cells transduced with the F5 MART-1 TCR29 specific for peptide epitope MART-

126-35) were applied. Collected images of immobilized cells on the various substrates (Fig. 

A.3.a) and quantified analysis (Fig. A.3.b) were obtained. 

 

Fig. A.2. T cell capture efficiency is optimal when utilizing ssDNA-SAC conjugates 
to generate NACS p/MHC tetramers. (a) ssDNA-p/MHC constructs derived from 
native SA were used to sort 4 different human/murine transgenic T cell populations. The 
T cell capture efficiencies were highly varied amongst the four T cell populations. (b) 
ssDNA-p/MHC tetramers derived from ssDNA-SAC conjugates were used to sort the 
four T cell populations. The resulting cell capture efficiencies were markedly improved 
over native SA-oligo conjugates, demonstrating that SAC is necessary for the 
production of high affinity ssDNA-p/MHC tetramers.   
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Compared to conventional microarrays with identical concentration of p/MHC 

tetramers, NACS was superior. Electrostatic and hydrophilic immobilization have 

little/no captured T cells, and hydrophobic immobilization has huge noise. Even though 

covalent immobilization succeeded to capture T cells, it had intra-spot and inter-spot 

heterogeneity while NACS gave homogeneous result at the same concentration of 

tetramers. Furthermore, as shown in the quantified analysis, only with a fifth of materials 

required in covalent immobilization, NACS could capture equivalent T cell. (p/MHC 

monomer at half max ≡ K1/2 = 1.1ng for NACS and 5.7ng for covalent immobilization). 

 

Two factors can be reasons of superior capturing efficiency in NACS. At first, 

linked by DNA-cDNA hybridization, p/MHC tetramers of NACS have great orientational 

freedom while those of conventional microarrays hardly have other options except just 

absorbed on the surface. This may increase the density of functional p/MHC tetramers 

 
 

Fig. A.3. Comparison of NACS versus spotted p/MHC arrays. (a) Bright field and 
fluorescent images of Jurkata-MART-1 T cell capture on various model substrates. (b) 
Quantification of T cell capture efficiencies. (Hydrophobic surface was excluded because 
signal:noise ≤ 1.)     
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and result in reduced K1/2. Secondly, NACS does not disrupt hydration state of arrayed 

proteins, which can be modified during production and storage process of conventional 

protein microarray to decrease reproducibility11,16,21. Because p/MHC tetramer arrays are 

self-assembled in solution immediately prior to an experiment and only stable DNA 

oligos are printed on the surface when the chip is stored, NACS may shows intra-spot and 

inter-spot homogeneity and guarantee the array reproducibility.  

 

A.3.3. Specificity of NACS and its detection limit 

In order to study the specificity of NACS, SAC-ssDNA p/MHC tetramer (human 

HLA-A*0201 MHC molecules loaded with melanoma antigen peptide epitope 

tyrosinase368-376 with pendant DNA sequence A’) was applied to a DNA microarray 

made with the complementary strand A and two other orthogonal strand B and C. Then, 

Jurkatα-Tyr cells (human T leukemia cell line transduced with a TCR specific for 

tyrosinase368-376)30  were applied to the array. T cells were immobilized only on A 

spots hybridized appropriate p/MHC, not B or C spots (Fig. A.4.a), and the mean binding 

number of Jurkatα-Tyr cells calculated from three spots was ~1486 ± 62. When a 1:1 

mixture of Jurkatα-MART-1 and Jurkatα-Tyr cells pre-stained with lipophilic dyes (green and 

red respectively) was applied to the array, those cells were captured into alternating 

columns and few cells were localized to spot C. The average number of captured cell was 

a factor of two less than that of homogeneous sorting. (661 ± 19 T cells/spot) (Fig. 

A.4.b). In order to find the detection limit of NACS, populations of Jurkatα-Tyr were 

spiked at 10%, 1%, and 0.1% into wild Jurkat T cells and sorted. The number of captured 

cells per spot was analyzed, which shows linear correlation with the fractional 
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composition of Jurkatα-Tyr cells in the mixture (Fig A.4.c). The limit of detection is around 

1 in 1000 cells, and non-specific binding between wild Jurkat T cells and the array was 

always constant.   

 

 

 

 

 
 
Fig. A.4. Nucleic acid cell sorting of antigen-specific T cells. (a) Tyrosinase p/MHC tetramer 
conjugated to ssDNA sequence A’ was hybridized to an array printed with DNA complement 
strand A and non-complement strands B and C (dashed circles).  Jurkata-Tyr cells were localized 
to spot A only. (b) A prestained 1:1 mixture of Jurkata-MART-1 (green) and Jurkata-Tyr (red) cells 
was selectively sorted to MART-1 and tyrosinase p/MHC spots.  No T cells were detected on 
spot C.  The right two panels are representative images of spots A and B. (c) Jurkata-Tyr cells 
(red) were serially diluted in wild-type (WT) Jurkat cells (green) and sorted by NACS (left 
panels).  The average number of Jurkata-Tyr cells and WT Jurkat cells per dilution per spot was 
plotted in a histogram (right panel).     
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A.3.4. Selective release of immobilized T cells with restriction endonucleases 

After immobilization of cells, immunohistochemistry(IHC), fluorescent in situ 

hybridization(FISH), and cytokine secretion assays were traditionally performed4,6. In 

order to study functional status of captured cells through mRNA or TCR, however, 

selective release of cell is required for eliminating the interference of back ground noise. 

Contrast to the conventional protein arrays made by direct printing, NACS can employ 

DNA sequence having unique cleavage site by restriction enzyme to selectively release 

captured cells (Fig. A.5.a).  Before the specific release by restriction enzyme, Jurkata-

MART-1 and Jurkata-Tyr cells prestained by lipophilic dyes (red and green, respectively) 

were immobilized on a NACS array employed by DNA stands AEcoRI and BBamHI (Fig. 

A.5.bi). Then BamHI was applied on the array for 1 hour to cleave BBamHI strands. 

Meanwhile, on a separate but identical array, EcoRI was applied to cleave AEcoRI strands 

at the same condition. In each case, selective release was observed (Fig. A.5.bii and biii). 

When a complementary restrict endonuclease was applied on those arrays, remaining 

cells were released (Fig. A.5.biv). Of course, non-selective release was achieved in a 

single step with an addition of DNase (data not shown).     
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A.3.4. Sorting of TCR-engineered and endogenous primary human T cells by NACS 

Recently, generating a huge number of tumor antigen-specific T cells and 

developing a therapy using those cells in patients with melanoma and other cancers have 

been reported31,32. In the study, T cells of patients was collected and engineered with a 

TCR against a target cancer antigen to get rid of tumor cells. In order to verify its clinical 

relevance, detecting TCR-engineered human lymphocytes is important, and it is achieved 

by NACS in this study. Via leukapheresis, human peripheral blood mononuclear cells 

(PMBCs) containing CD8+ cells of patients were extracted, and those cells were 

expanded and transduced with a retrovirus vector containing the F5 MART-1 TCR. Then, 

the cells were applied on a NACS array containing MART-1 and Cytomegalovirus (CMV) 

 
 
Fig. A.5. Programmed release of captured T cells by endonuclease cleavage.  (a) DNA 
microarrays were printed with orthogonal sequences containing EcoRI and BamHI restriction sites.  
(b) Fluorescent images of Jurkata-MART-1 (red) and Jurkata-Tyro (green) cells captured on p/MHC array 
(i) and after treatment with BamHI (ii) or EcoRI (iii).  Only cells localized to DNA spots containing 
the target restriction sequence were released.  A second round of enzymatic treatment released the 
remaining bound cells (iv, image representative of BamHI to EcoRI cleavage). 
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pp65495-503/HLA-A2.1 p/MHC tetramers. Only on the MART-1 spots, transduced T cells 

were captured. On the array, the antigen-specific sorting was validated again via antigen- 

specific staining with fluorescent MART-1 and CMV p/MHC tetramers (red and blue, 

respectively) (Fig. A.6.a) 

 

Because there are huge number of T cells expressing different monoclonal or 

polyclonal TCR, detection of specific primary human T cell isolated from peripheral 

blood is much more difficult than cultured cell lines. Also, these T cells have endogenous 

expression level of TCR. In order to show that the specificity, multiplexing, and 

sensitivity of NACS can be equally applied to endogenous primary human T cells as like 

to cultured cell lines, frozen leukapheresis samples form patient NRA13 was studied. 

These cells were CD8+ enriched and applied to a CMV and Epstein-Barr virus (EBV 

BMLR1259-267/HLA-A2.1) p/MHC array. Only on the EBV spots, T cells were 

immobilized, and the result of flow cytometry showed ~5% of NRA13 CD8+ cells were 

EBV-specific, but ~0% of them were CMV-specific.  

 

Multiplexed detection was also available. When a 1:1 mixture of EBV-specific 

and CMV-specific CD8+ T cells, produced by combining NRA 13 lymphocytes with 

CMV-specific T cells from NRA11, was applied on a NACS array and stained with 

fluorescent p/MHC tetramer, immobilized cells showed appropriate color of fluorescence 

(Fig. A.6.b). In order to verify the detection limit, serial dilutions of EBV-specific T cell 

mixtures (~0.4%, ~0.2% and ~0.1% by FACS) were applied on NACS array, and the 

result demonstrated the resolution can be lowered at 0.1% (Fig. A.6.c).   
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Fig. A.6. NACS sorting of endogenous primary human T cells specific for Epstein-Barr 
virus and Cytomegalovirus.  (a) CD8+ T cells from patient NRA 13 were captured on EBV 
BMLF1 p/MHC spots and no T cells were captured on CMV pp65 spots (left panel).  The right 
two panels are representative images after the cells were stained with fluorescent EBV BMLF1 
(blue) and CMV pp65 p/MHC tetramers (red). (b) T cells detected from a 1:1 mixture of 
NRA11 and NRA 13 (left panel) were verified to be specific for EBV BMLF1 and CMV pp65 
(right panels). (c) Mixtures of ~0.4%, 0.2% and 0.1% EBV BMLF1-specific T cell populations 
(upper panels) were detected via NACS (bottom panels).   Populations of EBV BMLF1-
specific T cells (red arrow) were detected that decreased in proportion to the dilution ratio.  The 
number of non-specific cells (black arrow) was constant throughout all dilutions. 
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A.4. Conclusions 

We showed the NACS platform is efficient, facile, and modular on-chip strategy 

for the immobilization of antigen-specific T cells. Because the DNA-printed glass 

substrate can be easily made by traditional DNA printing technologies, NACS is also 

inexpensive. Streptavidin-cysteine conjugated with single stranded-DNA is rationally 

designed to bind any family of proteins or small molecules labeled with biotin, therefore, 

the application of NACS can be extended to other capture agents, such as biotinylated 

antibodies.  

 
A.5. References 
 
1. Altman, J. D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 

274, 94–96 (1996). 

2. McLaughlin, B. E. et al. Nine-color flow cytometry for accurate measurement of T 

cell subsets and cytokine responses. Part II: Panel performance across different 

instrument platforms. Cytometry A 73, 411–420 (2008). 

3. Chattopadhyay, P. K. et al. Quantum dot semiconductor nanocrystals for 

immunophenotyping by polychromatic flow cytometry. Nature Publishing Group 

12, 972–977 (2006). 

4. Chen, D. S. et al. Marked differences in human melanoma antigen-specific T cell 

responsiveness after vaccination using a functional microarray. PLoS Med. 2, e265 

(2005). 

5. Soen, Y., Chen, D. S., Kraft, D. L., Davis, M. M. & Brown, P. O. Detection and 

characterization of cellular immune responses using peptide-MHC microarrays. 

PLoS Biol 1, E65 (2003). 

6. Stone, J. D., Demkowicz, W. E. & Stern, L. J. HLA-restricted epitope 

identification and detection of functional T cell responses by using MHC-peptide 

and costimulatory microarrays. P Natl Acad Sci USA 102, 3744–3749 (2005). 

7. Deviren, G., Gupta, K., Paulaitis, M. E. & Schneck, J. P. Detection of antigen-



 

 

89 

specific T cells on p/MHC microarrays. J. Mol. Recognit. 20, 32–38 (2007). 

8. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel 

detection and quantitation of specific proteins and antibodies in complex solutions. 

Genome Biol. 2, RESEARCH0004 (2001). 

9. Butler, J. E. et al. The physical and functional behavior of capture antibodies 

adsorbed on polystyrene. J. Immunol. Methods 150, 77–90 (1992). 

10. Butler, J. E. et al. The immunochemistry of sandwich ELISAs--VI. Greater than 

90% of monoclonal and 75% of polyclonal anti-fluorescyl capture antibodies 

(CAbs) are denatured by passive adsorption. Mol. Immunol. 30, 1165–1175 

(1993). 

11. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-

throughput function determination. Science 289, 1760–1763 (2000). 

12. Lesaicherre, M.-L., Lue, R. Y. P., Chen, G. Y. J., Zhu, Q. & Yao, S. Q. Intein-

mediated biotinylation of proteins and its application in a protein microarray. J. 

Am. Chem. Soc. 124, 8768–8769 (2002). 

13. Peluso, P. et al. Optimizing antibody immobilization strategies for the construction 

of protein microarrays. Anal. Biochem. 312, 113–124 (2003). 

14. Kwon, Y., Han, Z., Karatan, E., Mrksich, M. & Kay, B. K. Antibody arrays 

prepared by cutinase-mediated immobilization on self-assembled monolayers. 

Anal. Chem. 76, 5713–5720 (2004). 

15. Arenkov, P. et al. Protein microchips: use for immunoassay and enzymatic 

reactions. Anal. Biochem. 278, 123–131 (2000). 

16. Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. 

Nat Mater 3, 58–64 (2004). 

17. Bailey, R. C., Kwong, G. A., Radu, C. G., Witte, O. N. & Heath, J. R. DNA-

encoded antibody libraries: a unified platform for multiplexed cell sorting and 

detection of genes and proteins. J. Am. Chem. Soc. 129, 1959–1967 (2007). 

18. Boozer, C. et al. DNA directed protein immobilization on mixed 

ssDNA/oligo(ethylene glycol) self-assembled monolayers for sensitive biosensors. 

Anal. Chem. 76, 6967–6972 (2004). 

19. Niemeyer, C. M. Functional devices from DNA and proteins. Nano Today 2, 42–



 

 

90 

52 (2007). 

20. Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R. & Francis, M. B. 

Programmable cell adhesion encoded by DNA hybridization. Angew Chem Int Ed 

Engl 45, 896–901 (2006). 

21. Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in 

microliter quantities of blood. Nat Biotechnol 26, 1373–1378 (2008). 

22. SANO, T. & Cantor, C. R. Expression of a cloned streptavidin gene in Escherichia 

coli. P Natl Acad Sci USA 87, 142–146 (1990). 

23. Szymczak, A. L. et al. Correction of multi-gene deficiency in vivo using a single 

‘self-cleaving’ 2A peptide-based retroviral vector. Nat Biotechnol 22, 589–594 

(2004). 

24. Garboczi, D. N., Hung, D. T. & Wiley, D. C. HLA-A2-peptide complexes: 

refolding and crystallization of molecules expressed in Escherichia coli and 

complexed with single antigenic peptides. P Natl Acad Sci USA 89, 3429–3433 

(1992). 

25. Ramachandiran, V. et al. A robust method for production of MHC tetramers with 

small molecule fluorophores. J. Immunol. Methods 319, 13–20 (2007). 

26. Cameron, T. O., Cochran, J. R., Yassine-Diab, B., Sékaly, R. P. & Stern, L. J. 

Cutting edge: detection of antigen-specific CD4+ T cells by HLA-DR1 oligomers 

is dependent on the T cell activation state. J Immunol 166, 741–745 (2001). 

27. Reznik, G. O., Vajda, S., Cantor, C. R. & SANO, T. A streptavidin mutant useful 

for directed immobilization on solid surfaces. Bioconjug. Chem. 12, 1000–1004 

(2001). 

28. Green, N. M. in Methods in Enzymology 18, 418–424 (Elsevier, 1970). 

29. Johnson, L. A. et al. Gene transfer of tumor-reactive TCR confers both high 

avidity and tumor reactivity to nonreactive peripheral blood mononuclear cells and 

tumor-infiltrating lymphocytes. J Immunol 177, 6548–6559 (2006). 

30. Nishimura, M. I. et al. MHC class I-restricted recognition of a melanoma antigen 

by a human CD4+ tumor infiltrating lymphocyte. Cancer Res 59, 6230–6238 

(1999). 

31. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically 



 

 

91 

engineered lymphocytes. Science 314, 126–129 (2006). 

32. Schumacher, T. N. M. T-cell-receptor gene therapy. Nat Rev Immunol 2, 512–519 

(2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

92 

Appendix B 

Protein-Signaling Networks from Single-cell Fluctuations and 

Information Theory Profiling 

 

B.1. Introduction  
Protein-signaling pathways play important roles in tissue processes ranging from 

tumorigenesis to wound healing1-5. Elucidation of these signaling pathways is challenging, 

in large part, because of the heterogeneous nature of tissues6. Such heterogeneity makes it 

difficult to separate cell-autonomous alterations in function from alterations that are 

triggered via paracrine signaling, and it can mask the cellular origins of paracrine signaling. 

Intracellular signaling pathways can be resolved via multiplex protein measurements at the 

single-cell level7. For secreted protein signaling, there are additional experimental 

challenges. Intracellular staining flow cytometry (ICS-FC) requires the use of protein 

transport inhibitors which can influence the measurements8. In addition, the largest number 

of cytokines simultaneously assayed in single-cells by ICS-FC is only 59. Finally, certain 

biological perturbations, such as the influence of one cell on another, are difficult to 

decipher using ICS-FC. Other methods, such as multiplex fluorospot assays10, have even 

more significant limitations. 

We describe here an experimental/theoretical approach designed to unravel the 

coordinated relationships between secreted proteins, and to understand how molecular and 

cellular perturbations can influence those relationships. Our starting points are single, 

lipopolysaccharide (LPS)-stimulated, human macrophage cells11. LPS stimulation activates 

the Toll-like Receptor-4 (TLR-4), and emulates the innate immune response to Gram-

negative bacteria. We characterize the secretome, at the single-cell level, through the use of 

a microchip platform in which single, stimulated macrophage cells are isolated into 3 

nanoliter (nl) volume microchambers, with ~1000 microchambers per chip. Each 

microchamber permits duplicate assays for each of a dozen proteins that are secreted over 

the course of a several-hour incubation period following cell stimulation. The barcode 

assays are developed using detection antibodies and fluorescent labels, and then converted 

into numbers of molecules detected. We demonstrate that the observed spread in protein 



 

 

93 

levels is dominated by the cellular behaviors (the biological fluctuations), rather than the 

experimental error. These fluctuations are utilized to compute a covariance matrix linking 

the different proteins. This matrix is analyzed at both coarse and fine levels to extract the 

protein-protein interactions. We demonstrate that our system has the stability properties 

requisite for the application of a quantitative version of a Le Chatelier-like principle, which 

permits a description of the response of the system to a perturbation. This is a prediction in 

the strict thermodynamic sense. The fluctuations, as assessed from the multiplexed protein 

assays from unperturbed single-cells, are used to predict the results when the cells are 

perturbed by the presence of other cells, or through molecular (antibody) perturbations. 

 

B.2. EXPERIMENTAL METHODS 

B.2.1. Microchip fabrication.   

The SCBCs were assembled from a DNA barcode microarray glass slide and a 

PDMS slab containing a microfluidic circuit12,13. The DNA barcode array was created with 

microchannel-guided flow patterning technique13. Each barcode was comprised of thirteen 

stripes of uniquely designed ssDNA molecules. PDMS microfluidic chip was fabricated 

using a two-layer soft lithography approach14. The control layer was molded from a SU8 

2010 negative photoresist (~20 µm in thickness) silicon master using a mixture of GE RTV 

615 PDMS prepolymer part A and part B (5:1). The flow layer was fabricated by spin-

casting the pre-polymer of GE RTV 615 PDMS part A and part B (20:1) onto a SPR 220 

positive photoresist master at ~2000 rpm for 1minute. The SPR 220 mold was ~18 mm in 

height after rounding via thermal treatment. The control layer PDMS chip was then 

carefully aligned and placed onto the flow layer, which was still situated on its silicon 

master mold, and an additional 60 min thermal treatment at 80 °C was performed to enable 

bonding. Afterward, this two-layer PDMS chip was cut off and access holes drilled. In 

order to improve the biocompatibility of PDMS, we performed a solvent extraction step, 

which removes uncrosslinked oligomers, solvent and residues of the curing agent through 

serial extractions/washes of PDMS with several solvents15,16.  We noticed that this step 

significantly improves the biocompatibility and the reproducible protein detection. Finally, 

the microfluidic-containing PDMS slab was thermally bonded onto the barcode-patterned 

glass slide to give a fully assembled microchip.  
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B.2.2. Preparation of barcode arrays  

The barcode array initially consists of 13 uniquely designed DNA strands labeled in 

order as A through M. Prior to loading cells, a cocktail containing all capture antibodies 

conjugated to different complementary DNA strands (A’-L’) is flowed through the 

chambers, thus transforming, via DNA-hybridization, the DNA barcode into an antibody 

array. These dozen proteins that comprised the panel used here were encoded by the DNA 

strands A through L, respectively. Calibration and cross-reactivity curves for each protein 

assay are in Fig. B.2., The DNA oligomer sequences and the antibody pairs used are listed 

in Table B.1. and Table B.2.   

 

Fig. B.1. Design of integrated microchip for single-cell protein secretome analysis. 
(A) CAD design of a microchip in which flow channels are shown in red and the control 
channels are shown in green. (B) Schematic drawing of cells loaded in the 
microchambers and compartmentalized with the valves pressurized. (C) Schematic 
illustration of the antibody barcode array used for multiplexed immunoassay of single-
cell secreted proteins. 
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Fig. B.2. Cross-reactivity check and calibration curves. (A) Scanned image showing 
cross-reactivity check for all 12 proteins. The green bars represent the reference stripe, 
sequence M. Each protein can be readily identified by its distance from the reference. In 
each channel, a standard protein (indicated on the left) was added to the buffer solution 
and assayed using the DEAL barcode method. For GMCSF, MIF, IFN-γ, IL-10, MMP9, 
and TNF-α, biotin-labeled 2° anti IL-2 antibody conjugated to DNA sequence A’ was 
used as a control. (B) Quantitation of fluorescence intensity vs. concentration for all 12 
proteins. Error bars: 1SD. The variability (defined as the standard deviation divided by 
the average in percentage) is less than 10% for the signals in detectable range. 
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Table B.1. Sequences and terminal functionalization of oligonucleotides*. 
Name            Sequence 

A 5'- AAA AAA AAA AAA AGT CCT CGC TTC GTC TAT GAG-3' 

A' 5' NH3-AAA AAA AAA ACT CAT AGA CGA AGC GAG GAC-3' 

B 5'-AAA AAA AAA AAA AGC CTC ATT GAA TCA TGC CTA -3' 

B' 5' NH3-AAA AAA AAA ATA GGC ATG ATT CAA TGA GGC -3' 

C 5'- AAA AAA AAA AAA AGC ACT CGT CTA CTA TCG CTA -3' 

C' 5' NH3-AAA AAA AAA ATA GCG ATA GTA GAC GAG TGC -3' 

D 5'-AAA AAA AAA AAA AAT GGT CGA GAT GTC AGA GTA -3' 

D' 5' NH3-AAA AAA AAA ATA CTC TGA CAT CTC GAC CAT -3' 

E 5'-AAA AAA AAA AAA AAT GTG AAG TGG CAG TAT CTA -3' 

E' 5' NH3-AAA AAA AAA ATA GAT ACT GCC ACT TCA CAT -3' 

F 5'-AAA AAA AAA AAA AAT CAG GTA AGG TTC ACG GTA -3' 

F' 5' NH3-AAA AAA AAA ATA CCG TGA ACC TTA CCT GAT -3' 

G 5'-AAA AAA AAA AGA GTA GCC TTC CCG AGC ATT-3' 

G' 5' NH3-AAA AAA AAA AAA TGC TCG GGA AGG CTA CTC-3' 

H 5'-AAA AAA AAA AAT TGA CCA AAC TGC GGT GCG-3' 

H' 5' NH3-AAA AAA AAA ACG CAC CGC AGT TTG GTC AAT-3' 

I 5'-AAA AAA AAA ATG CCC TAT TGT TGC GTC GGA-3' 

I' 5' NH3-AAA AAA AAA ATC CGA CGC AAC AAT AGG GCA-3' 

J 5'-AAA AAA AAA ATC TTC TAG TTG TCG AGC AGG-3' 

J' 5' NH3-AAA AAA AAA ACC TGC TCG ACA ACT AGA AGA-3' 

K 5'-AAA AAA AAA ATA ATC TAA TTC TGG TCG CGG-3' 

K' 5' NH3-AAA AAA AAA ACC GCG ACC AGA ATT AGA TTA-3' 

L 5'-AAA AAA AAA AGT GAT TAA GTC TGC TTC GGC-3' 

L' 5' NH3-AAA AAA AAA AGC CGA AGC AGA CTT AAT CAC-3' 

M 5'-AAA AAA AAA AGT CGA GGA TTC TGA ACC TGT-3' 

M' 5' Cy3-AAA AAA AAA AAC AGG TTC AGA ATC CTC GAC-3' 

 

* All oligonucleotides were synthesized by Integrated DNA Technology (IDT) and 

purified via high-performance liquid chromatography (HPLC).  
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B.2.3. Culture and stimulation of THP-1 cells.  

We cultured human monocyte THP-1 cells (clone TIB 202) in RPMI-1640 (ATCC) 

medium supplemented with 10% fetal bovine serum and 10 µM 2-mercaptoethanol. Cells 

grown close to the maximum density (0.8×106 cells/mL) were chosen for the experiment. 

Cells were first treated with 100 ng/mL phorbol 12-myristate 13-acetate (PMA) for 12 

hours during which a characteristic morphological change was noticed as an indication of 

the induction to the macrophages. Cells were washed with fresh media and re-suspended in 

media with PMA (100 ng/mL) and lipopolysaccharide (LPS, 200 ng/mL) at 

0.5×106 cells/mL for the further differentiation and the TLR-4 activation.  

 

B.2.4. On-chip secretion profiling 

Prior to loading cells on chip, the DNA barcode array was transformed into an 

antibody microarray through the following steps. First, 1% bovine serum albumin (BSA) in 

phosphate buffered saline (PBS) was flowed and dead-end filled into the chip to block non-

specific binding. Second, a 200 ml cocktail containing all 12 DNA-antibody conjugates at 

1.25 µg/mL in 1% BSA/PBS buffer was flowed through all microfluidic channels for a 

period of 1 h. Then, 100 ml of fresh buffer was flowed into the device to replace DNA 

conjugated primary antibody solutions. The chip is then ready for use. Cells stimulated 

Table B.2. Summary of antibodies used for macrophage experiments 

DNA 
label primary antibody (vendor) secondary antibody (vendor) 

A’ mouse anti-hu IL-2 (BD Biosciences) biotin-labeled mouse anti-hu IL-2 (BD Biosciences) 

B’ mouse anti-hu MCP-1 (eBioscience) biotin-labeled armenian hamster anti-hu MCP-1 
(eBioscience ) 

C’ rat anti-hu IL-6 (eBioscience ) biotin-labeled rat anti-hu IL-6 (eBioscience ) 

D’ rat anti-hu GMCSF (Biolegend ) biotin-labeled rat anti-hu GMCSF (Biolegend ) 

E’ goat anti-hu MIF(R&D systems) biotin-labeled goat anti-hu MIF(R&D systems) 

F’ mouse anti-hu IFN-� (eBioscience) biotin-labeled mouse anti-hu IFN-� (eBioscience) 

G’ mouse anti-hu VEGF (R&D systems) biotin-labeled goat anti-hu VEGF (R&D systems) 

H’ mouse anti-hu IL-1β (eBioscience) biotin-labeled mouse anti-hu IL-1β  (eBioscience) 

I’ rat anti-hu IL-10 (eBioscience) biotin-labeled rat anti-hu IL-10 (eBioscience) 

J’ mouse anti-hu IL-8 (R&D systems) biotin-labeled mouse anti-hu IL-8 (R&D systems) 

K’ mouse anti-hu MMP9 (R&D systems) biotin-labeled goat anti-hu MMP9 (R&D systems) 

L’ mouse anti-hu TNF-α (eBioscience) biotin-labeled mouse anti-hu TNF-α (eBioscience) 
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with PMA/LPS were loaded into the SCBC chip within 10 min in order to minimize pre-

loading secretion. Then, the pneumatic valves were pressed down by applying 15-20 psi 

constant pressure to divide 80 microfluidic channels into 960 isolated microchambers. 

Next, the cells in every microchamber were imaged under a Nikon LV100 microscope and 

their numbers were counted. Afterwards the chip was placed in a cell incubator (~37 °C and 

5% CO2) for 24 hours to perform on chip secretion. The chip was removed from the 

incubator and a 200 ml cocktail containing all detection antibodies (each at 0.5 µg/mL 

concentration) tagged with biotin flowed through the microchannels by releasing the 

valves. Then, 200 µl of the fluorescent probe solution (1 µg/ml Cy5-labeled streptavidin 

and 25 nM Cy3-labeled M’ ssDNA) was flowed through to complete the immuno-

sandwich assay. Finally, the PDMS slab was peeled off and the microarray slide was rinsed 

with 1×PBS, 0.5×PBS and DI water twice, sequentially, and spin-dried.   

 

B.2.5. Bulk secretion profiling  

Bulk measurements on the same panel of secreted proteins as were assessed within 

the SCBC microchambers were also carried out for the THP-1 cells with no stimulation, 

PMA stimulation, and PMA+LPS stimulation. Cells were cultured at 0.3×106 cells/mL, a 

comparable density to a single-cell in a chamber. The media were collected after 24 hours 

and the secreted proteins were detected as described below. For the PMA+LPS stimulation 

condition, the media were collected at multiple time points (2, 4, 6, 8, and 10 hours) for the 

time-dependent analysis as well. For the bulk test, SCBC chip was utilized without using 

valves for the microchannel to microchamber conversion. The same conditions as for the 

on-chip secretion profiling were applied except for the cell incubation step. Instead, the 

collected media was introduced to the channel sets and incubated for 3 hours in the 

incubator. 

 

 
B.2.6. Quantification and statistics.   

All the barcode array slides used for quantification were scanned using an Axon GenePix 

4400a two-color laser microarray scanner at the same instrumental settings—50% and 15% 
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for the laser power of 635 nm and 532 nm, respectively. Optical gains are 500 and 450 for 

635 nm and 532 nm fluorescence signals, respectively. The brightness and contrast were set 

at 90 and 93. The averaged fluorescence intensities for all barcodes in each chamber were 

obtained and matched to the cell number by custom-developed MATLAB (the mathworks, 

Natick, MA) codes. Heat maps were generated using cluster 3.0 and java treeview 

(http://rana.lbl.gov/eisensoftware.htm).  

 

B.2.7. Data Analysis: Conversion to the number of molecules  

The collected raw data is based on the fluorescence. In order to convert the 

fluorescence to the number of protein molecules, we used the calibration curves (Fig. 3.2.). 

We used the four parameter logistic model which is commonly used for fitting ELISA 

calibration curve. The fitting parameters can be found from the Table 3.3.  

 

 

 

 

 

B.2.8. Signal-to-noise calculations  

Since the signal range highly depends on the activities of the antibodies as well as 

the cell biology, it is required to decide if the signal is real and reliable. Certain assayed 
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Table 3.3. Parameters utilized for the protein assay calibration curve 
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proteins were identified as positively detected from single-cells based upon signal-to-noise 

ratio (S/N), which was measured as follows: For each microchamber, the averaged 

fluorescence from the two barcode stripes used to capture and detect a given protein and  

the averaged fluorescence from the barcode stripes designed to capture and detect IL-2 

were obtained. The ratio of the averaged values over all single-cell experiments (specific 

protein to IL-2) yields a S/N value. An S/N of 4 was utilized as a minimum for positive 

detection. Eight secreted proteins were thus identified from the single-cell measurements.  

Those proteins were (with S/N included in the parenthesis after the protein name): MCP-1 

(4.65), MIF (1381.13), IFN-γ (4.33), VEGF (77.32), IL-1β (94.70), IL-8 (2622.40), MMP9 

(119.50), and TNF-α (410.74). 

 

B.2.9 Analysis of experimental and biological variation from SCBC-based single-cell 

measurement   

One of the major characteristics of SCBC analysis is the heterogeneous cellular 

behavior at single-cell level. The experimental variation of the SCBC platform which 

reflects the system error as well as the biological variation due to the cellular heterogeneity 

is contributing to the fluctuation of the total signal. Thus, we need to check if the 

heterogeneous signal responses are from the cells or the device itself.  

 The experimental error mainly includes the variation from non-uniform DNA barcode  

patterns and the variation due to the randomly distributed cell location in the chamber. The 

former one can be estimated by the histogram of the fluorescence intensity from the 

calibration experiment with recombinant proteins. Since the recombinant protein has fixed 

concentration over the entire channel, it represents a uniform protein level without any 

heterogeneity and location dependence. As a result, the distribution of the fluorescence 

intensity of a specific recombinant reflects the detection profile of the DNA barcode. 

 Fig. B.3.A shows a representative histogram of signal derived from recombinant MIF 

 protein at 5 ng/ml. The histogram shows a nice Gaussian distribution with a coefficient of 

variation (CV) around 7%. In the calibration experiment, basically the intensities of all the 

recombinant proteins at detectable concentrations follow a Gaussian distribution with CVs 

typically lower than 10%. 
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The cell location is another important factor for the system error. Even though the 

chamber size is small, it is still big for a single-cell. So the protein signal is dependent on 

diffusion and that is why the cell location can be a source of the variation. In order to 

minimize this effect, we utilized two sets of barcodes in a chamber and used the averaged 

signal intensity from two barcodes as the final signal value. However, the barcode close to 

the cell will undergo a higher local protein concentration than its counterpart and the 

different intensities of two sets of barcodes are amplified during the long incubation time. 

The diffusion process will lead the system close to the equilibrium but the cell that keeps 

secreting proteins with different kinetics makes it difficult for the chamber to reach its full 

equilibrium. In that sense, the randomly located cells can add an extra uncertainty to the 

SCBC system.  
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 Because it is difficult to isolate the system error (especially for the cell-location 

effect) from the heterogeneous cell response experimentally, we performed a Monte 

Carlo simulation by R (R Foundation for Statistical Computing, version 2.10.1). First of 

all, we investigate the case of MIF as a representative case. We assumed one chamber has 

 

Fig. B.3. Experimental and simulation results for extracting the experimental error 

contribution to the SCBC protein assays. (A) Representative histogram of signal 

measured from individual barcode stripes for assaying a 5 ng/ml solution of 

recombinant MIF protein, representing a Gaussian distribution with a coefficient of 

variation (CV) near 7%. (B) Monte Carlo simulated barcode intensity (corresponding to 

MIF) versus cell location in three single-cell chambers. Yellow dots represent cell 

locations, and the brightness of the red stripes reflects the simulated signal level. The 

cell-location effect is minimized by averaging the signals from both barcodes. (C) 

Histogram from simulations of 5000 single-cell experiments. For this simulation, the 

diffusion equation was solved with a randomly located, continuously secreting cell. The 

histogram represents the averaged intensities over both barcodes, and includes the 

experimentally determined barcode variability. 
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two sets of 13 barcodes such that all of them have MIF antibodies. By randomly 

positioning a cell with a fixed protein secretion rate and getting the protein concentration 

at specific barcode positions, we can find out what is the variation that purely depends on 

the cell location and barcode non-uniformity. The total amount of secreted MIF during 24 

hours was estimated based on our experimental result. The secretion rate was 4.84 pg/mL 

per min from the SCBC (used for the simulation) and 11 pg/mL per min from the bulk 

condition. The corresponding secretion rate of a single-cell, back-calculated based on the 

chamber and cell size (10µm3), was 0.065 nM/min. Values of parameters used in 

simulation can be found from Table B.4. 5000 data sets for the protein concentration 

distributions from randomly located single-cell were generated by solving a diffusion 

equation with a custom made MATLAB code and the results were analyzed with R. The 

parameters used in the simulation are exactly the same as our experimental environment. 

The chamber is 2000 µm in length and 100 µm in width with two sets of DNA barcodes 

M-A and A-M from left to right. Each barcode is 20 µm in width with 50 µm in pitch 

(30µm gap between barcodes). The detection variation of the MIF protein due to the 

DNA uniformity obtained from the histogram of the calibration data set was incorporated 

to the analysis. Fig. B.3.C shows the histogram of the average fluorescence intensity 

from DNA sequence E (corresponding to MIF in the actual experiment) for 5000 single-

cell cases. For the barcode variability, the actual value of 7.3% was used. The final 

system error was 5.1% which is a lot smaller than the assay error from the experimental 

data sets, 55.2 %. 

 

In order to think of the worst case, we used the barcode variability of 10% for the 

rest of the analysis. If the cell-location effect is significant, we are supposed to see different 

Table B.4. Values of parameters used in simulation 
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errors on different barcode positions. Fig. B.4. illustrate the histograms of average 

intensities from multiple barcode locations. The blue curves are line profiles of Gaussian 

distribution fitted with the mean and the standard deviation obtained from the 

corresponding simulation. The nice fitting between the Gaussian curves and the histogram 

indicates that the average intensity per chamber follows a Gaussian distribution with a 

predictable mean and CV. The CVs from this simulation represent the distribution of our 

measurements for single-cell chambers without considering the cellular heterogeneity, i.e. 

the system error. The experimental CVs for different barcode locations based on the system 

error were quite similar to one another (~ 7%).    

 

We can define CVsystem as the system error estimated by the simulation. We can also  

calculate the assay error from our experimental data set such that CVassay refers to the total 

CV of our experimental data. Consequently, the biological variation for single-cell 

experiment can be quantitatively estimated by the formula below: 

 2/1biological
2

system
2

assay )( CVCVCV +=

 

Fig. B.4. Simulated histograms of average intensity from multiple DNA barcode 
locations. The signal intensities for 5000 single-cell data sets were obtained by solving a 
diffusion equation for a randomly located cell. For the barcode variability, the value of 
10% was used. The blue curves are the Gaussian fitting of the histogram with sample 
mean and sample standard deviation from the simulation. 
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 An estimation of biological variations of proteins for different barcode locations are  

shown in Table B.5. It can be noticed that the biological variation is dominant in the total 

error of the assay. This analysis verifies that the signal fluctuation that we can see from the 

single-cell experiment is a good representation for the single-cell heterogeneity rather than 

the systemic error from our platform. 

 

B.2.10 Signal-to-noise calculations and experimental error 

An Axon GenePix 4400A scanner coupled with a custom algorithm was used to 

quantify the fluorescence intensities of each protein from each microchamber (Fig 1B). 

Certain proteins were positively detected based upon signal-to-noise (S/N) > 4. S/N was 

calculated as follows. Each protein was measured twice per microchamber. The averaged 

fluorescence values from the two barcode stripes for all proteins were used as signals from 

each chamber. The ratio of the averaged signal over all single-cell experiments for a 

specific protein to IL-2 yields a S/N. The following eight proteins were detected (S/N is 

indicated after the protein name): MCP-1 (4.7), MIF (1380), IFN-g (4.3), VEGF (77), IL-

1b (95), IL-8 (2620), MMP9 (120), and TNF-a (411).  

Macrophages are highly responsive to their environment, and so experimental 

conditions can influence macrophage behavior. Thus, we sought confirmation that our 

protocols could lead to reproducible results. We executed identical sets of experiments on 

different SCBCs, and showed that the distributions of the unambiguously detected proteins 

Table B.5. The coefficients of variation for each of the assayed proteins from 
single-cell experiments. The experimental CVs are estimated from the Monte Carlo 
simulations. The biological CVs, which clearly dominate the experiment, are 
calculated from .  
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were effectively identical (p-value > 0.25). The results presented here do depend on the 

amount of PMA or LPS used and, to a lesser extent, the passage number of THP-1 cells. In 

addition, a solvent extraction of the PDMS improves the SCBC biocompatibility and the 

assay reproducibility15.  

Levels of proteins secreted from single-cells can exhibit a variability that reflects 

the stochastic nature of biology17 and, in fact, represents the biological fluctuations. The 

SCBC experimental error must be compared against the measured variations for extracting 

the true macrophage fluctuations. One contribution to the experimental error arises from 

the variability of the flow-patterned antibody barcodes. We characterized that variability 

via protein assays executed within a complex biological environment (serum), and within 

the microchambers of an SCBC, but using cocktails spiked with known quantities of 

standard proteins. In both cases, we found a variability of < 10%18 and Fig. B.2.), 

depending upon the protein. Averaging the two identical protein assays per microchamber 

lowers the variability within a microchamber by a factor of 2½. A second experimental 

error arises from the competition between protein capture by surface-bound antibody, and 

protein diffusion. When a cell is proximal to a barcode, that barcode may exhibit a higher 

signal intensity than the more distant barcode. A Monte Carlo calculation allowed for an 

estimation of the total system error by simulating the location-dependent experimental 

variation. Using MIF as a representative protein for the simulation (it has a barcode 

variability of 7.3%; Fig. B.3.A) the experimental error of the system is estimated to be 

5.1% (Fig. B.3.B, C). For the worst case of a 10% barcode variability, the total 

experimental error is estimated to be ~7% (Table B.5. and Fig. B.4.). Based upon these 

results, we can calculate the biological coefficient of variation ( ) from 

, where  is the measured spread in secretion 

levels for a given protein across all measurements for a given number of cells. For IL-8, the 

biological CV was only ~2-fold larger than the experimental CV, but for the other 7 

detected proteins, the biological CV was 7-50× larger than the experimental CV (Table 

B.5.). Thus, the fluctuation extracted from our single-cell experiments reflects the cellular 

behaviors.  

The individual protein assays were evaluated for cross-reactivity and calibrated using 

standard proteins (Fig. B.2.). Calibration curves were fitted by a four parameter logistic 

biologicalCV

2/1
biological
2

system
2

assay )( CVCVCV += assayCV
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model19. The SCBC assay sensitivities are comparable to commercial ELISAs (e.g., a few 

measured limits-of-detection are MIF ~100 pg/ml, IL-8 ~50 pg/ml, IL- 

1b~20 pg/ml, and VEGF ~2.5 pg/ml), with each exhibiting a ~103 linear detection range. 

The SCBC barcode assay results can be translated into numbers of detected molecules 

using the molecular weight of the standard proteins and the microchamber volume (Fig. 

B.2.). This quantitative representation of the data is used for the calculations described 

below. However, the standard proteins may differ from the proteins secreted by the 

macrophages (for example, glycosylation patterns may vary). Such variations can translate 

into differences in molecular weight, as well as differences in assay sensitivity. 

The experimental results, presented as the number of cells per experiment, are 

shown in the heat maps of Fig. B.5. 

 

 

 

Fig. B.5. Protein secretion heat maps for different colony sizes of LPS-stimulated 
macrophages. Each row represents one microchamber assay, and each column 
represents protein level, as measured in copy numbers of each protein. The zero cell heat 
map is the background signal. Signals are decreased and amplified 10× for * and **, 
respectively. 
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B.3. THEORETICAL METHODS 

B.3.1. The fluctuations in the secretome  

The calibrated experimental data can be organized into digital tables of twelve 

columns, each representing a different protein, with different tables representing different 

numbers of cells in the microchamber. For a given table, each row represents the copy 

numbers of the twelve proteins for a single-cell, or small cell colony. For a given table, if 

the number of measurements is large enough, we can bin the data for each individual 

protein into a histogram with each bin representing a defined range of measured levels 

(Fig. B.6.). With even more measurements one could generate joint distributions between 

two proteins, etc. However, we first confine our attention to the individual protein 

histograms because they provide a natural meeting place for experiment and theory. The 

theoretical prediction is made by seeking that distribution of copy numbers that is of 

maximal entropy, meaning that the distribution is as uniform as possible subject to a given 

mean number of copies20-23. As described in detail in the Supplement, We use the 

distribution of maximal physical entropy. This means that at the very global maximum of 

the entropy, the probabilities of the different proteins are not equal. Rather, as in any multi-

component system at thermal equilibrium, each protein will be present in proportion to its 

partition function 24 where the partition function is the effective thermodynamic weight of a 

species at thermal equilibrium. We show below that in our system there is a network 

structure that imposes (at least) two overriding constraints that preclude the system from 

being in thermal equilibrium. 
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B.3.2. Theoretical approach 

The essence of our approach is to regard the system, a single-cell (or a small 

colony), as not being in an equilibrium state because it is under the action of constraints. 

When the constraints are present the system is in that state of equilibrium that is possible 

under the constraints. This allows us to derive a quantitative version of the principle of Le 

Chatelier. Thereby we can quantitatively predict the response of the system to a (small) 

perturbation. Early on mathematical biologists expressed caution about the application of 

the Le Chatelier’s principle to biological systems25. It is possible to directly use the 

measured experimental results to validate our point of view. The qualitative reasoning is 

straightforward and so we give it here. It is valid to apply the principle of Le Chatelier 

when the system is in a stable equilibrium. When is the system in a stable equilibrium? – 

when, under a small perturbation, it returns to its equilibrium state. Here we simply state 

that if the observed fluctuations in protein copy number are about a stable state then we can 

apply the principle of Le Chatelier. The stability of the state is decided by the experimental 

measurements. Both the notion of stability and the response to perturbations, as quantified 

in the principle of Le Chatelier, require that the departure from equilibrium be small. 

Neither textbook equilibrium thermodynamics applied to a macroscopic system nor the 

 

Fig. B.6. Fluctuations in the numbers of secreted IL-8 proteins, for all single-cell 
experiments. The fit to the theoretical distribution is shown as the continuous curve. 
Even for one cell there can be deviations from the bell-shaped theoretical functional 
form in the higher tail of the histogram due to autocrine signaling. 
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extended theory used here to describe one or a few cells implies that under a ‘large’ 

perturbation it should be possible to displace a cell to a new stable state that is distinct from 

its unperturbed state. For a single-cell or small cell colony, the experiments reveal that cell-

cell perturbations are indeed small. For larger cell colonies the statistics are not secure 

enough to make a clear-cut statement. We have, however, numerical indications that the 

unperturbed state of the single-cell is possibly unstable in the presence of many other cells. 

 

B.3.3. Theory of fluctuations  

We begin by considering a compartment containing a single-cell secreting different 

proteins. For different compartments the experiment shows a possibly different number of 

secreted proteins of a given type. We denote the experimentally measured copy number of 

protein i in a given microchamber by . We impose the constraints that the distribution 

for each protein is characterized by the mean number of its molecules. Then the 

distribution,  of copy number fluctuations of a protein i that is of maximal physical 

entropy (= the distribution at physical equilibrium subject to constraints), is derived in 

Supplement, Eq. S2. It is a bell-shaped function of  with a single maximum. 

In seeking the maximum of the entropy we require that the energy is conserved. 

This constraint is imposed by the method discussed in Supplement. This method introduces 

parameters into the distribution. b is determined by the constraint of conservation of energy 

and, as usual, is related to the temperature T as where k is Boltzmann’s constant. 

The are analogs of the chemical potentials as introduced in the thermodynamics of 

systems of more than one component. Here, however, we are dealing with many replicas of 

a single-cell isolated within a microchamber. Even though we deal with just a single-cell, 

the  will be shown in Eq. 1 below to also play the role of potentials. This means, for 

example, that the mean copy number  of protein i increases when its potential  is 

increased. The mean number, , is the average computed over the 

distribution. In operational terms this is an average computed over the different 

microchamber assays of protein i. We take it that the copy number distribution is 

normalized meaning that . 

Ni

P(Ni )
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We next discuss the effect of perturbations on the distribution for a single-cell in the 

compartment. The regime of small perturbations is one in which the distribution, although 

perhaps distorted from a simple bell-shaped curve, still exhibits only a single maximum. 

The signature of large perturbations is that secondary maxima appear. When these become 

dominant a new state of the cell is prevailing. 

To theoretically characterize the response of the cellular secretion to a perturbation 

we compute first the change in the distribution for the special case in which a perturbation 

changes the potential of protein i from , where is a small increment. We 

show (Eq. A2 in 3.6.3) that, to first-order in the change of the potential, the distribution 

changes by . The result for has two immediate 

implications. One is that a perturbation will distort the shape of the distribution of the copy 

numbers of a given protein. Specifically, the change is proportional to the unperturbed 

distribution but its magnitude is weighted by the factor  so as to favor higher 

values of protein numbers. Thus, it is the high-end tail of the distribution that is most 

strongly influenced by the perturbation (see Fig. B.6., for example).  

The other immediate implication of the change in the distribution is that the mean 

values will change. Specifically the updated mean value of the copy number of protein i 

when we change from  is . A technical 

point is that because the distribution needs to be normalized we must have . 

Using the result above that the change  in the distribution is proportional to the 

unperturbed distribution and the normalization we arrive at the explicit result for the 

change in the mean copy number under a small disturbance. 

  (1) 

This equality states that because the variance is positive, a change in the mean copy number 

of protein i when its own potential is changed from  is always in the same 

direction (positive or negative) as  itself. It is in this sense that we refer to as the 

potential of protein i.  

µi  to µi+δµi δµi
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The key point that carries into the general case, is that, to linear order in the 

perturbation, the change in the mean number of proteins due to a perturbation can be 

computed as an average over the unperturbed distribution of copy numbers. The change in 

the mean is the variance of the distribution of fluctuations. Therefore, the lesser are the 

fluctuations (i.e., the narrower is the histogram), the more resilient to change is the 

distribution. As an example, IL-8 (Fig. B.6.) will be shown to be a very strongly coupled 

protein. IL-8 also has a particularly large variance as compared to the other proteins. 

Therefore there is some perturbation via autocrine signaling as seen in the hump in the 

higher tail of the histogram. 

 

B.3.4. A quantitative Le Chatelier equation   

With good measurement statistics one can examine the histogram for a joint 

distribution of two proteins and verify that pairs of proteins are correlated. Therefore the 

mean value (and other averages) of a protein i will change when protein j is perturbed. In 

the linear regime the result (see B.6.4.)  is 

 (2) 

where the covariance is computed over the unperturbed distribution. Eq. 2 is valid in the 

linear regime of small perturbations, and indicates that the contributions of different 

perturbations add up. The covariance matrix , whose elements are 

, is what is called in matrix algebra a positive matrix26. The 

implications of positivity are explored in B.6.5. 

We prove in the B.6.4 that Eq. 2 is a quantitative statement of the principle of Le 

Chatelier in the meaning that a response to a perturbation changes the system in the 

direction of restoring a stable equilibrium. This is the analog of the observation that when 

we add energy (i.e., heat the system) the temperature goes up (rather than down). By 

equilibrium we mean a state of maximal entropy subject to the current value of all the 

constraints operating on the system. A system can therefore be maintained at equilibrium 

by imposing constraints such as keeping a gas under higher pressure at a fraction of the 

available volume of a cylinder. When these constraints are changed the system can move to 

a new equilibrium. 

δNi = β Ni − Ni( ) N j − N j( )$
%&

'
()j∑ δµ j

Σ

Σij = N j − N j( ) Ni − Ni( )
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The covariance matrix is used in statistics as input in such methods of data analysis 

as principal component analysis27,28. We emphasize that for us the covariance matrix is 

derived by physical considerations leading to Eq. 2. We can thereby state that  is 

quantitatively the change in the number of copies of protein i when protein j is perturbed. 

Note that while the covariance is a positive matrix, individual off-diagonal elements can be 

negative signifying inhibition. The covariance matrix in digital form is provided in Table 

B.6. 

  

 

To summarize, the result for the distribution of protein copy numbers for the 

strongly interacting protein IL-8 (Fig. B.6.) has just one maximum. The noticeable 

deviations in the tail of the distribution are likely due to autocrine signaling, because the 

correlation of IL-8 with itself is only comparable in magnitude to the correlation of MIF 

with itself.  Those two correlations are larger than any other variance or covariance. As 

discussed below, IL-8 is also strongly correlated with other proteins. For n≥3 cells in the 

microchamber, there is numerical evidence for a second maximum in the distribution of IL-

8 fluctuations. For other proteins, six or more cells per chamber are required before a 

second maximum is resolved.   

Σij

Table B.6. Digital representation of the covariance matrix for 1 cell measurements 
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We can draw two conclusions from the fit of Fig. B.6., between observed 

fluctuations and the theoretical result. First, the experimental distribution has but one 

maximum, and so the state is stable. Second, the theory accounts for the shape of the 

experimental distribution. This implies that we have correctly identified the important 

constraints on the system. Therefore we have Eq. 1 for the change of the distribution and 

hence Eq. 2 as the quantitative statement of the Le Chatelier’s theorem. If there are 

additional constraints one can still derive a quantitative Le Chatelier’s theorem but there 

will be additional terms beyond those shown explicitly in Eq. 2. We reiterate that Eq. 2 is 

the covariance computed from the experiments for an unperturbed cell. In our work below 

we use Eq. 2 to predict the effect of perturbation.  

 

B.4. Results and Discussion 

B.4.1. Computing the covariance matrix  

The single-cell data (the heat map of Fig. B.5.) can be regarded as a rectangular 

matrix X where each row is a separate measurement and each column contains the copy 

number of a particular protein. For our convenience we mean center each column. When 

the number of measurements (= number of rows of X) is not small (and is ≥ than the 

number of columns) the covariance matrix can be immediately computed as 

 where k runs over all measurements, k =1,2,..,K. By construction of 

the matrix X, the matrix element  is the number recorded in the k’th measurement for 

protein i minus the mean number  for that protein. We divide  by the number, K, 

of measurements so that the covariance is the mean value. The covariance is a product of 

the measured numbers, so the coefficient of variation of the covariance is, for small 

variations, twice the coefficient of variation of the measurements. An upper estimate, see 

Table B.5. and Fig. B.6., is 14% when the covariance is computed from the fluorescence 

intensities. The conversion from the fluorescence intensity to the number of molecules does 

not change the coefficient of variation when we are in the linear regime of the calibration 

curve, see Fig. B.2.. However at very low or high intensities the calibration curve is non-

linear, so that small changes in fluorescence intensity are amplified to larger differences in 

the number of molecules, and thus large values of the variance. Out of K = 129 single-cell 

Σij = XkiXkjk = 1
K∑ K

Xki

Ni XTX
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experiments, we therefore eliminated four outliers. These corresponded to one instance 

each for which the fluorescence levels of TNF-α, IL-1β, MIF or IL-6 were very high. We 

thus used K = 125 values to compute the covariance matrix. The elimination of these four 

outliers brings the error of reading the number of molecules to be more comparable to the 

error in reading the fluorescence intensity. 

 

B.4.2. The network  

We analyze the covariance matrix in two stages. The first stage yields a quick (but 

correct and reliable) ‘global’ summary of the network, meaning which protein is coupled 

with which other proteins. There is finer structure, discussed below, that is not resolved in 

this first stage. To obtain the global network we begin by noting that the covariance matrix 

is symmetrical so that protein i is correlated with protein j just as much as protein j is 

correlated with protein i, . This means that although both positive and inhibitory 

couplings can be extracted from the network, the direction of those coupling (i.e. protein i 

inhibits protein j, rather than vice-versa) is not resolved. The results for the overall network 

are shown in Fig. B.7. Panel A is the raw data for plotting the network and panel B is the 

network itself. The protein most strongly coupled to all others is MIF, and it is primarily 

anti-correlated with the other proteins. Next in strength of coupling is IL-8. Note that the 

symmetry between any two proteins is limited; proteins 1 and 2 may be coupled to each 

other, but protein 1 may be coupled to protein 3, while proteins 2 and 3 are uncorrelated. 

Mathematically this is possible because the total coupling strength of protein i, sum of  

over all j, can be quite different from the total coupling strength of protein j that is given as 

the sum of  over all possible proteins i. 

Σij = Σ ji

Σij

Σ ji
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The covariance matrix shows the quantitative extent to which the fluctuations in 

any two proteins i and j are covarying. As discussed, about 14% of the value is due to 

noise. In the network we want to compare the relative importance of the covariance of 

proteins i and j to the covariance of proteins l and m. We take it that the covariance of 

proteins l and m should not be regarded as comparable to the covariance of i and j when the 

measured covariance of l and m is below the uncertainty due to noise of the covariance of i 

and j. We construct a graphical global summary of the interaction network by retaining 

only those proteins that are covarying with one or more other proteins above the noise level 

of the highest covarying pair of proteins. Below we discuss the components of the 

covariance matrix. Thereby we will have a measure of uncertainty for the entire matrix. It 

turns out that the criterion we use above is consistent with this measure. 

 The largest covariance, 4×1011 is between MIF and IL-8. This sets a boundary of 6×1010 on 

 the covariances of pairs that we show as connected in the network. The large and positive 

magnitude of the covariance of MIF and IL-8 is shown as a double headed arrow. The 

arrow is double headed to denote the joint activation of one by the other. In the diagram, 

 

Fig. B.7. The summary network derived from the information theory treatment of 
the data. (A) It is these interdependencies, as revealed by the columns of the covariance 
matrix that provide the prediction of the connectivity in the network (part B). Shown are 
the columns for the two most connected proteins, MIF and IL-8. The entries are the 
covariances of the indicated protein with the other proteins listed in the abscissa. Self-
correlations are not shown. (B) The protein correlation network hypothesis. The 
thickness of an arrow is an indication of correlation strength. Arrows indicate a positive 
correlation; bars indicate inhibition. 
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inhibition is indicated, as usual, by a bar at the end of the connector. The dashed line 

correlations of MIF with IFN-g is of magnitude 2×1010, and so may be corrupted by noise. 

The dashed line correlations between MIF and both MCP-1 and IL-1b are even weaker 

(about 1010). The more refined analysis presented in Fig. 6 shows, however, that these two 

correlations are likely real and above the noise level. 

 Macrophages are an important source of IL-8 and MIF29-31, and IL-8 is secreted  

by the macrophages without LPS stimulation, while MIF is secreted upon LPS stimulation 

(Fig. B.8.A). Our derived network model indicates the MIF is inhibited by IL-8, and MIF, 

in turn, inhibits 3 other proteins, including TNF-a, while it promotes the production of IL-

1b. These predictions are consistent with the time-dependent measurements of secreted 

proteins (Fig B.8.B). From those measurements, we find that the levels of three proteins 

(MIF, TNF-a, and IL-1b) that are secreted upon LPS stimulation, exhibit fluctuations over 

time. The MIF and TNF-a temporal fluctuations are anti-correlated, consistent with the 

network hypothesis. A detailed elucidation of the underlying mechanism for these 

dynamics will require additional experiments. However, it is encouraging that a network 

hypothesis derived from single-time-point, single-cell data does provide consistent insight 

into the dynamical responses of the macrophages to stimulation.  
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Fig. B.8. PMA and LPS activation and kinetics of protein secretion from activated 
macrophage cells. (A) Bulk secretion profiles from THP-1 cells under different 
conditions. PMA treatment induces THP-1 cells to macrophages and LPS treatment 
emulates innate immune responses against Gram-negative bacteria (B) Quantitation of 
bulk secretion intensities for the eight selected proteins over 24 hours. The samples were 
collected at 2, 4, 6, 8, 10, and 24 hours after incubation of PMA/LPS treated cells. The 
cell density was 0.3×106 cells/mL, which is a comparable density to a single-cell in a 
chamber of SCBC device. Note that the secretion levels of TNF-α and MIF are 
oscillatory and anti-correlated.  (C) MIF secretion rate based on the assumption of linear 
time dependence from (B). The secretion rate from the bulk experiment is about 11 
pg/mL per min which is about two-fold higher than the single-cell secretion data from 
the SCBC device (4.84 pg/mL per min).    
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B.4.3. The composite networks  

In the second stage in our analysis of the covariance matrix we aim to show a more 

resolved structure and thereby note features that are glossed over in the global network of 

Fig. B.7.B. We will show that there are several independent networks operating together to 

globally represent Fig. B.7.B. The detailed analysis also provides a more robust error 

estimate. To resolve independent inherent structures within the covariance matrix we 

consider what is known in matrix algebra as the spectral representation (See B.6.6. and 

B.6.7 for more details). Technically this is a ranking of the eigenvectors as also carried out 

in principal component analysis. We suggest, however, that for our system specifically this 

ranking allows an examination of tiers in the cell-cell signaling. The tiers are independent, 

meaning that they govern independent fluctuations. The proteins that are members of a 

given tier respond collectively to a perturbation. 

The spectral theorem26 allows us to rank the contributions according to the 

decreasing magnitude of the eigenvalues. At the bottom are the smallest eigenvalues and 

these are attributed to experimental noise rather than to real biological information. For the 

single-cell in the compartment we find, as expected for the linear regime, that the dominant 

eigenvectors are each localized around a particular protein. As shown in Fig. B.9., the two 

largest are localized on MIF and IL-8. The leading eigenvalue = tier 1, is only about 30% 

bigger than the second one, m =2. The third eigenvalues (not shown) is smaller by almost 

two orders of magnitude. Fig. B.10. is a plot on a logarithmic scale of all non-zero 

eigenvalues. There are only two eigenvectors that, judging by the value of their 

corresponding eigenvalues, are definitely above the noise. 
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In drawing Fig. B.8.B we could not state definitely that the correlations of MIF 

with IFN-g, MCP-1 and IL-1b, are above the noise level. The more refined spectral 

analysis shows that all these correlations are clearly evident in the second tier (Fig. B.9.) 

and so are secure. The Fig. B.9. results are the fluctuations measured for one cell 

experiments. See Fig. B.11. for similar results but for n =3 cells per microchamber.  

 

 

 

Fig. B.9. Protein-protein interactions via the quantitative Le Chatelier’s theorem. 
Shown is the covariance matrix as a heat map for the single-cell, n=1 data (left) and 
the resolution of the matrix into the two most important tiers (right). Note the strong 
correlation of MIF and of IL-8 with the other proteins. Red implies inhibition and blue 
implies activation. The range is [-4e+11, 4e+11] for the covariance matrix shown in 
the left panel. This range is chosen to attenuate the high reading of the self-
correlations in the covariance matrix. This heat map also provides a graphic 
representation of the protein interaction network. The ranges shown on the right-hand 
side are, respectively, top [-1.5e12, 1.5e12] and bottom [-2.9e10, 2.9e10]. 
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B.4.4. The number-based network  

The network presented in Fig. B.8. and Fig. B.9. is based upon experimental 

measurements in which raw fluorescence intensities are converted into numbers of 

 

Fig. B.10. The dependence of the dominant eigenvalues of the covariance matrix on 
the number of cells in the sample. The result for n = 0, the background, is included to 
show the influence of the noise. The dashed lines, the fifth and higher eigenvalues are 
more corrupted by noise. 

 

 

Fig. B.11.  Heat map of the covariance matrix (left) and of the contributions to the 
first two tiers of the network (right) for measurements on chambers containing 3 
cells. Similar to the single-cell case (Fig. B.9.), the entries in the tiers are scaled by the 
size of the eigenvalues. See the spectral representation of the covariance matrix, Eq. 
S11. The plot at left is the covariance matrix computed from the observed fluctuations in 
the 3-cell data. The color code is -8e+10 (red) to 0 (white) to +8e+10 (blue). The range 
is fixed so as to attenuate the effect of the self-terms in the covariance matrix. For tier 1 
and tier 2, the ranges are [-4.3e-12, 4.3e+12] and [-7e+10,7e+10], respectively. Note 
that when the numbers of cells per chamber increases, anti-correlations can get washed 
out. 
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molecules. We do this conversion because it is the numbers of molecules that are secreted 

by the cells, or to which the cells respond, that ultimately reflects the true biology. 

However, this conversion seemingly introduces an additional source of noise, especially 

when the measured fluorescence intensity is away from the linear regime of the calibration 

curves. However, this conversion yields an accurate reflection of the true measurements, 

and the accruing benefit is worthwhile. Specifically, the number of secreted proteins is 

independent of the very complicated experimental response function that depends upon the 

fluorescence detection methods, the various capture and detection antibodies used, and the 

fluorescence vs. concentration profiles that characterize calibration assays. We are thus 

able to apply the fundamental theory to quantitative molecular measurements, and so the 

resultant network is a more secure representation of the true cell biology, even if the 

accompanying experimental uncertainties are large relative to what would be estimated 

from pure fluorescence measurements.  

 

B.4.5. Antibody perturbations  

We performed an inter-cellular signaling perturbation study by adding neutralizing 

antibodies to eliminate specific secreted cytokines. For these experiments, 4 groups of 

microchambers within each SCBC chip were operated independently. Three neutralizing 

antibodies (anti-VEGF, anti-IL-8, and anti-TNF-a) were added to the cells, with one 

antibody per microchamber group. A control experiment was performed without any 

neutralizing antibody. As shown in Fig. B.12., the removal of IL-8 markedly increased the 

production MIF, slightly increased IL-1b and slightly decreased TNF-a. The results are in 

agreement with the network hypothesis, Fig. B.7.B.  

 Using the theorem of Le Chatelier we quantitatively predict the effect of the antibody  

perturbations using Eq. 2. Here, the input for the prediction is the covariance matrix for the 

unperturbed cells. To compute the predicted mean number of protein i after an antibody for 

protein j is applied we need to know the change in chemical potential of protein j. We take 

it that an antibody for a protein lowers its chemical potential. We determine the magnitude 

of that reduction by requiring that the decrease in the copy number of the directly perturbed 

protein is reproduced. Additional details are provided in 3.6.9. The quality of the prediction 

in the perturbation experiments of IL-8 and VEGF is excellent, as shown in Fig. B.12. The 
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prediction of the results for the perturbation by anti-TNF-a is not in accord, likely because 

the change in the mean copy number of the proteins is smaller by about an order of 

magnitude, and so is close to the noise level.  

 

 

B.5. Conclusions 
The multiplexed measurements of secreted proteins by single-cells and defined, few 

cell colonies provide a unique opportunity to capture the fluctuations of individual cells. An 

information theoretic, maximal entropy analysis can be applied to reproduce the observed 

fluctuations in the levels of the different assayed proteins. The theoretical analysis can also 

account for why for some proteins exhibit broad fluctuations, while others exhibit narrow 

fluctuations. The experimental approach permits observations of the covariance in the 

fluctuations of different proteins, and how those fluctuations evolve as a single-cell is 

 

Fig. B.12. Perturbation of protein networks using neutralizing antibodies. The 

measured change in the mean number of eight proteins is compared against the 

predicted change, as computed from the fluctuations observed in the unperturbed single-

cell data.   
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perturbed by the presence of 1,2,3, etc., other cells. Again, with the information theory, 

these covariances can be analyzed to extract hypotheses about the network of interacting 

proteins. Measuring the role of antibodies for specific proteins provides a test of that 

network hypothesis, and demonstrates that the theory is able to quantitatively predict the 

results of the molecular perturbation experiments using only data obtained for the 

unperturbed cells. This demonstration of the Le Chatelier’s principle, appears to be general, 

and we are currently exploring how it can be applied towards understanding the role of 

other perturbations (such as hypoxia, genetic modifications, etc.). The long-term goal is to 

extend this approach toward understanding the various protein-signaling networks that 

operate within complex microenvironments, such as tumors.  

 

B.6. Supplement: Details in Theoretical Methods 

B.6.1. Introduction to theoretical supplementary methods 

We show how to characterize protein-protein interactions. Specifically we show (i) 

that the different tiers of a signaling network can be quantitatively determined from the 

measured fluctuations in the concentrations of signaling proteins and (ii) that the measured 

fluctuations in the concentrations of signaling proteins for the unperturbed cell can be used 

to predict the effect of introducing perturbations such as neutralizing antibodies. The 

approach is developed from an information theoretic perspective and it is related to the 

specification of the direction of change when a system responds to a perturbation, known as 

the principle of Le Chatelier. The corresponding result here is that we predict the sequence 

of tiers in the network, see Fig. B.7. of the article. In addition we specify which signaling 

proteins are at a given tier of the network and their mutual influence including inhibition, 

see Fig. B.9. of the article. Experimental measurements of the fluctuation of concentrations 

in samples with nanoliter volume containing n cells, n = 0,1,2,... , see Fig. S8 below, are 

used to validate the signaling protein network. Finally we use the protein-protein 

interaction as determined for the unperturbed cell to quantitatively predict, Fig. B.12. of the 

article, the effect of perturbations. 

The approach we propose provides an analog and an extension of the statement that 

heat is transferred from a warmer to a colder body. We can understand this statement as a 
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statement about the direction of a process between two equilibrium states, meaning that it is 

a static principle. We can also think of it as a statement about the dynamics, meaning that it 

specifies the rate of change. We will here develop the formalism for the static 

interpretation. The explicit introduction of time is possible and we have the required 

formalism at hand but it requires a more elaborate theoretical foundation and so will be 

given elsewhere. 

 

B.6.2. The ensemble: basis for making predictions 

The system we consider is many independent replicas of a compartment containing 

a single-cell in a nutrient solution at thermal equilibrium. Because the system is not large, 

different replicas of it can differ in the number, , of secreted proteins of kind i. We seek 

to represent these fluctuations by taking the different replicas as different samples from an 

ensemble of single-cell compartments where the mean number  of proteins of kind i 

over the ensemble is given. Another given quantity is the energy, (and volume that we do 

not indicate explicitly). We now seek the most probable distribution of protein numbers in 

different compartments. The solution is well known because if many compartments are 

measured then the required distribution is the one whose entropy is maximal. In textbooks 

of statistical mechanics this search for the most probable distribution is sometime called the 

Boltzmann approach. It is possible to show32  that this approach does not require the system 

to be macroscopic in size. It is sufficient if we measure enough replicas so that the 

distribution of proteins does not significantly change as we add more measurements. If 

each replica is macroscopic the fluctuations will be small and rare. Repeated measurements 

will give the same results. If each replica is small we can observe the fluctuations, which is 

the experiment described in the main text. 

The key point is that even if the fluctuations are not small it is possible to make 

predictions. We discuss three types of predictions in the paper, with more details given in 

this section of Supplement. We predict the distribution of fluctuations, we predict the tiers 

in the network and, in particular and as shown in Fig. B.12., we predict the response of a 

system to a perturbation. For these first and last predictions, we compare directly with 

iN

iN
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experimental results. We emphasize that the prediction is made strictly independently of 

the experiment to which it is compared.  

The probability of a system in a particular composition can be shown to be given by 

 (S1) 

This straightforward result is perhaps misleading in its simplicity. It is most directly 

derived by the method of Lagrange undetermined multipliers. The numerical value of these 

multipliers is determined at the final stage by imposing the condition that the distribution 

(Eq. S1) reproduces the given values of the means. There are as many multipliers as 

conditions. 

 β is the Lagrange multiplier that is determined by the mean value of the energy and,  

as usual, is related to the temperature T as where k is Boltzmann’s constant. The 

 are the chemical potentials as introduced in the thermodynamics of systems of more 

than one component24,33. The Lagrange multipliers that correspond to the given (mean) 

number of species i are known as the Planck potentials and denoted as . It is often more 

convenient to work with . If our system were macroscopic in size we would 

call  ‘the chemical potential of protein i’. For convenience we retain the designation 

‘potential’ because, as we shall show,  retains essential properties of the chemical 

potential even when fluctuations are finite.   is a function of all the Lagrange multipliers 

and its role is to insure that the sum of the probability over all possible compositions yields 

one.  

There are at least two points where important details are not revealed by the 

notation used in Eq.  S1. Both are relevant in what follows. First is the condition that the 

numerical values of the chemical potentials are determined by the given mean numbers, the 

, of the proteins. Strictly speaking, we should write the chemical potentials as 

functions of the . The other point arises when we want to treat the actual numbers 

 of the different proteins as continuous variables. This is needed, for example, to 

compute averages, normalize the distribution (Eq. S1), etc. The integration for each protein 

( ) ( ){ }1 2, ,.. exp i iiP N N N Eβ µ= − Ξ∑

1 kTβ =

'siµ

iα

,i i iµ α βµ=

iµ

iµ

Ξ
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is over  where N!, the factorial of N, arises to account for the Gibb’s paradox. 

Therefore, as a function of the continuous variable N the distribution for, say, one protein is  

 (S2) 

Here Q is the factor that arises by summing over all the internal states of the protein 

that are occupied at the temperature T. This result is used in the main text to fit the 

observed distribution for a single protein (Fig. B.6.). 

 

B.6.3. Fluctuations describe the response to small perturbations. 

We show that by measuring the fluctuations in the unperturbed system we can 

predict how the system responds to small perturbations33. Proof: Say that we make a small 

change in the value of the chemical potential  from its current equilibrium value to some 

new value . We do so isothermally. This change in mi potentially changes the 

equilibrium mean concentration of all species from  to , for all j. To compute 

the change in concentrations we need to consider the change in the ensemble as represented 

by Eq. S1. In the algebraic developments in Eq. S4 below we make use of the definition of 

the mean concentration  

 
(S3) 

The summation in Eq. S3 is over all the possible compositions, each weighted by its 

probability  computed as the distribution of maximal entropy. The same 

meaning for the summation is used also in Eq. S4 below. We denote this averaging by an 

over bar. From Eq. S1, the variation of the distribution that occurs when a particular 

chemical potential is changed by a small amount is 

. Note that it is in using this lowest term in the 

Taylor series that we assume that the change is small. It follows that on the average the 

proteins respond to the change as: 

!dN N

( )( ) ! exp( )NP N Q N Nβµ∝ −

iµ

i iµ δ µ+

jN j jN Nδ+

( )1 2, ,..j jN N P N N= ∑
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 (S4) 

Note that the conservation of normalization implies that the average change in the 

probability must be zero,  and we have used this result in the 

derivation above. In the last line in Eq. S4 we have avoided writing the summation over all 

compositions by the use of the over bar to designate an average over the probability 

, which is the notation introduced in Eq. S3. 

 Taylor theorem states that, in the leading order, the change of a function is the sum of  

the changes. Therefore the expression for an isothermal variation in all the chemical 

potentials leads to a change of the distribution of the form:  

 (S5) 

The summation in Eq. S5 is an ordinary sum over the finite number S of signaling 

proteins, . Then we have the general equation of change that is an extended 

form of Eq. S4 valid for all possible small isothermal changes in the chemical potentials 

 (S6) 

 

B.6.4. The principle of Le Chatelier 

The principle in its simplistic statement claims that the system responds to a 

perturbation in a direction that restores equilibrium. For example, when the temperature of 

a heat bath is increased the mean energy of an immersed system goes up so that the 

distribution remains canonical. The proof for our case starts from Eq. S3. When the 

chemical potential of protein i is changed, for an ensemble at maximal entropy the mean 

value of protein j changes by 
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 (S7) 

where, as emphasized in Eq. S3, the distribution  is not arbitrary but is the one 

of maximal entropy as exhibited in Eq. S1. Eq. S4 is recovered when the derivative in Eq. 

S7 is evaluated. The reader may feel that this is a triviality but it is not without meaning. 

What we have proven is that computing a small change in the distribution  

when a particular chemical potential is changed from the value  to a new value  

is the same as computing the derivative of the distribution  at the point where 

the value of the chemical potential is . Then the change in the distribution is 

. Of course, this is what differential calculus is about. Yet the 

result is not pure mathematics. It shows that the new distribution is a distribution of 

maximal entropy of the functional form Eq. S1 as otherwise the result will not hold. It says 

that a small change in the chemical potential , and no other change, leads to a new 

distribution which is also one of maximal entropy. 

Typically we do not see the theorem of Le Chatelier stated as in Eq. S6. This is 

because of the practical point that the number fluctuations are typically not easy to observe 

in a macroscopic system. Here however we deal with secretion of proteins by a single-cell 

and, as shown in the main text and particularly in the histogram in Fig. 3.6., the distribution 

is clearly observed and the covariance can be computed from the experimental data as long 

as that the number of replicas is not small. 

 

B.6.5. The equation for the direction of change 

The (symmetric) square matrix  is the covariance matrix of 

the (equilibrium) fluctuations in the (equilibrium) concentrations, the . It is an 

equilibrium average because, as explicitly shown in Eq. S4, it is an expectation over the 

equilibrium distribution as given in Eq. S3. The covariance matrix has the dimensions of S 

by S where S is the number of signaling molecules that take part. In practice we have to 
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compromise on this definition meaning that S is the number of signaling molecules that can 

be detected. If an important protein is not detected then the network that we infer will be 

incomplete.  

A covariance matrix can be shown to be a non-negative matrix, also called 

semipositive definite, meaning that its eigenvalues are zero or positive. If the 

concentrations of the signaling proteins can in principle be varied independently, which is 

definitely not necessarily the case, then the covariance matrix  is a 

positive matrix with positive eigenvalues. We will discuss below why it will often be the 

case that for reasons of both principle and practice (e.g., experimental noise) there will be 

eigenvalues that are effectively zero. In that case, technically, the covariance matrix is 

positive semidefinite34. 

Eq. S6 specifies how the concentration of the j’th signaling molecule varies when 

the i’th chemical potential is changed. In general the correlation coefficient 

 between the signaling molecules i and j can be either positive or 

negative. Therefore, in general the change  is not necessarily of the same 

direction for all proteins j. This obvious result will be important for us below. Using the 

observation that the covariance matrix is semipositive definite, it is however possible to 

determine the direction of change by first diagonalizing the covariance matrix. This means 

that we can determine S distinct linear combinations of signaling molecules, where (a) each 

such set of molecules changes in a given direction and (b) we can order the different sets in 

terms of the extent of their response such that the first set is the most changing, the second 

set changes to a lesser extent, etc. In the time-dependent formalism, not presented here, we 

can outright say that the first set is the fastest changing and therefore it is the first to 

change. Then there follow changes in the second set, etc. It is clearly our intention to 

identify each set of signaling molecules as the set of molecules in a given tier in the 

network. 

 

 

( )( )j j i iN N N N− −

( )( )j j i iN N N N− −
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B.6.6. Tiers of the network are eigenvectors of the correlation matrix 

Our next purpose is to define the tiers of the network. The set of proteins that 

participate in the m’th tier is determined as follows. Let  designate the m’th eigenvector 

of the covariance matrix where the eigenvectors are listed in order of decreasing magnitude 

of the corresponding eigenvalue. The largest eigenvalue is m =1. Each eigenvector  is a 

(column) vector of S components and it is determined by the matrix equation 

 (S8) 

where  is the S by S symmetric covariance matrix whose elements are 

 and we explicitly indicated that the eigenvalues are positive or 

zero but not negative (which defines a positive semidefinite matrix). The eigenvectors of 

the symmetric covariance matrix are orthogonal to one another and can be chosen to be 

normalized 

 (S9) 

Here the superscript T designates the transpose so that is a row vector and Eq. S9 is the 

scalar product. 

For each value of the number of cells, n, in the compartment the eigenvalues are 

arranged in the order of decreasing magnitude the largest eigenvalue being labeled as m =1 

and the smallest as m =12. See Fig. B.10. for the dependence of the largest eigenvalues vs. 

cell number. 

 

B.6.7. The spectral representation of the covariance matrix 

Fig. B.9. shows the covariance matrix computed for experiments with one cell in 

the compartment. Also shown in Fig. B.9. is the resolution of the covariance matrix into 

tiers defined as follows. From each eigenvector we can define an S by S symmetric 

matrix as follows 
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 (S10) 

The spectral theorem (10) is the result that the covariance matrix can be resolved into 

tiers as 

 (S11) 

The eigenvalues  are arranged in a decreasing order so that each subsequent tier makes 

a smaller contribution. The very dominant contribution is from m =1 The leading 

eigenvalue = tier 1, is only about 30% bigger than the second one, m =2. The third 

eigenvalue is smaller by almost two orders of magnitude. Fig. B.10. is a plot on a 

logarithmic scale of all non-zero eigenvalues. There are only two eigenvectors that, judging 

by the value of their corresponding eigenvalues are definitely above the noise. The 

dominant (m=1) and the m = 2 eigenvectors for 1 cell measurements are shown in Fig. B.9. 

and for three cells in Fig. B.11. 

 

B.6.8. The role of the number of cells in the sample 

It was possible to make repeated measurements of the protein concentrations for 

different values of the number of cells in the sample. In this section we argue that the 

direction of increasing n can be semi-quantitatively regarded as a direction of increasing 

time. Therefore by examining how the eigenvectors of the covariance matrix change with n 

we have an independent determination of the direction of the dynamic response of the 

system. 

Fig. B.10. shows are the largest eigenvalues for n = 0, 1, 2, 3 and 4 cells. To 

interpret Fig. B.10. within the point of view as used in this paper we argue as follows. A 

single-cell secretes a number of different signaling proteins and therefore even the data 

measured for a single-cell can show the role of protein-protein interactions. If two cells are 

in the sample these interactions increase in importance. If we think of n as a measure of 

concentrations of proteins then  but to compute the covariance we need to divide by 

the number of protein molecules. So for both paracrine and endocrine signaling we expect 

T
m m m= ⋅P S S
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the covariance to increase with n. When n becomes high there may be three or more cells 

interacting and the simple considerations break down. 

 

B.6.9. Antibody perturbations 

Fig. B.12. shows a quantitative comparison of the measured results as compared to 

the purely theoretical prediction when neutralizing antibodies for specific proteins are 

added. We emphasize that it is a prediction because the results shown are based on using 

Eq. S4 that we repeat here:  

 

The addition of a neutralizing antibody for protein i means that is negative. We 

emphasize that the experimental results shown in Fig. B.12. are for single-cells in the 

compartment. This means, see Fig. B.10. that the largest eigenvalue, , of the 

covariance matrix is large indeed. Then, from Eq. S11, the contribution from the first tier 

dominates. It is the two proteins in this tier that are shown in the panel. There are bigger 

discrepancies between theory and experiment for tiers 2 or 3 for which the experimental 

signal is weak. 
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