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Abstract

Flies are particularly adept at balancing the competing demands of delay tolerance,

performance, and robustness during �ight, which invites thoughtful examination of

their multimodal feedback architecture. This dissertation examines stabilization re-

quirements for inner-loop feedback strategies in the �apping �ight of Drosophila, the

fruit �y, against the backdrop of sensorimotor transformations present in the animal.

Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory

delay during �ight is still signi�cant on the timescale of body dynamics. I explored

the e�ect of sensor delay on �ight stability and performance for yaw turns using a

dynamically-scaled robot equipped with a real-time feedback system that performed

active turns in response to measured yaw torque. The results show a fundamental

tradeo� between sensor delay and permissible feedback gain, and suggest that fast

mechanosensory feedback provides a source of active damping that compliments that

contributed by passive e�ects. Presented in the context of these �ndings, a control

architecture whereby a haltere-mediated inner-loop proportional controller provides

damping for slower visually-mediated feedback is consistent with tethered-�ight mea-

surements, free-�ight observations, and engineering design principles.

Additionally, I investigated how �ies adjust stroke features to regulate and stabilize

level forward �ight. The results suggest that few changes to hovering kinematics

are actually required to meet steady-state lift and thrust requirements at di�erent

�ight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch

moment. This �nding is consistent with prior hypotheses and observations regarding

the relationship between body pitch and �ight speed in fruit �ies. The results also

show that the dynamics may be stabilized with additional pitch damping, but the
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magnitude of required damping increases with �ight speed. I posit that di�erences

in stroke deviation between the upstroke and downstroke might play a critical role

in this stabilization. Fast mechanosensory feedback of the pitch rate could enable

active damping, which would inherently exhibit gain scheduling with �ight speed if

pitch torque is regulated by adjusting stroke deviation. Such a control scheme would

provide an elegant solution for �ight stabilization across a wide range of �ight speeds.
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Chapter 1

Introduction

Just as the Wright brothers implemented controls to achieve stable airplane

�ight, �ying insects have evolved behavioral strategies that ensure recovery

from �ight disturbances.

�Leif Ristroph (2010)

The variety and complexity of aerial maneuvers of insects have fascinated biologists

and aerospace engineers, leading to a concerted e�ort to understand the aerodynamics

of �apping �ight as well as how the requisite forces and moments are generated and

controlled. Although the use of dynamically scaled robots and computational �uid

dynamics have led to an understanding of the unsteady mechanisms that explain

the elevated gross force production required for achieving su�cient lift (Ellington

et al., 1996; Dickinson et al., 1999; Sane, 2003; Maxworthy, 1981), the relationship

among sensory information processing, wing kinematic changes and aerodynamic force

modulations required for performing maneuvers and maintaining stable �ight remains

an active area of research (Dickinson, 2006; Sugiura and Dickinson, 2009; Wang et al.,

2008). The neuromuscular architecture of a �y's wing hinge is quite complicated, and

it enables the animal to generate a large range of di�erent stroke patterns during �ight

to meet these control demands (Balint and Dickinson, 2004; Wisser and Nachtigall,

1984). However, despite the large kinematic space a �y might use and the nonlinear

nature of their �ight dynamics, studies suggest that �ies utilize surprisingly simple

and elegant �ight control solutions.
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The advantages of a simpli�ed �ight control scheme are evident when considering

the temporal cost of increasingly complex computations and the performance con-

straints imposed by neural delays (Cowan et al., 2006; Elzinga et al., 2012). Feedback

delays can induce fundamental performance limits or even destabilize an otherwise

stable system (Aström and Murray, 2010). Neural processing delays may, therefore,

have a profound impact on the dynamics and control of biological systems. For ex-

ample, delay plays a crucial role in dictating constraints on the architecture of a

stabilizing controller in cockroach wall following behavior (Cowan et al., 2006). For

the �y, neural processing delays are substantial relative to the fast time scale of their

�ight dynamics (Taylor and Krapp, 2008; Fry et al., 2003). Researchers have high-

lighted the importance of passive stabilizing mechanisms in �apping �ight (Hesselberg

and Lehmann, 2007; Hedrick et al., 2009) which would not be subject to processing

delays, but active, sensory-based equilibrium re�exes in �ies are still prevalent and

compulsory for the robust �ight behavior for which �ies are so well known (Parsons

et al., 2010; Taylor and Krapp, 2008; Dickinson, 1999; Sherman and Dickinson, 2003).

The ability of �ies and other insects to navigate and �y stably in the presence of sig-

ni�cant feedback delays motivates an in-depth look at the in�uence these delays have

on system dynamics.

1.1 Sensorimotor transformations in �ight

Flies are endowed with a multitude of sensors to richly sample their environment and

allow for feedback during locomotion (Taylor and Krapp, 2008). Readily apparent

and perhaps the least understood in terms of their role in �ight control is the large

number of innervated hairs on the wings and elsewhere on the body which could serve

as air�ow sensors (Burrows, 1996). The wings also possess numerous campaniform

sensilla that may provide a measure of wing loading and have been shown to elicit

compensatory head movements (Hengstenberg, 1988). The antennae itself performs a

diverse number of functions including chemosensation, mechanosensation, thermosen-

sation, and, possibly most relevant to the discussion of �ight stabilization, airspeed
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detection (Burkhardt and Gewecke, 1965; Hollick, 1940; Fuller, 2011). Further, �ies

can actively position their antennae, leading to a sensor that is highly adaptive. An

auxiliary visual system of three single lens ocelli forms an under-focused image and

due to the large axonal diameter and wide receptive of ocellar interneurons in addition

to their triangular arrangement could act as a fast horizon detector (Krapp, 2009).

This dissertation will restrict its focus to a subset of the sensory systems available

to the �y which are widely studied, essential to �ight control, and that reside on

opposite ends of the sensorimotor delay spectrum: the visual system and the hal-

teres. The halteres serve a number of functions and will be discussed in more detail,

but, for for the sake of the current discussion, they can be considered to function

as vibrating gyroscopes that provide a measure of rotation rate (Pringle, 1948; Nal-

bach and Hengstenberg, 1994). A likely corollary to the disparity in sensorimotor

delay between the two systems is in the richness of information collected, due to the

computation time required for the reduction of information to behaviorally relevant

quantities. In this sense, the sensorimotor delays associated with the halteres and

with the visual system provide bounds on the important timescales and a contextual

backdrop for the analysis of the �y's �ight dynamics. The tradeo� between sensory

delay and information content is illustrated by the neural architecture for the haltere

and visual systems shown in Figure 1.1.

1.1.1 Visual system

Given the problems that processing delays pose and the high performance and robust

�ight behavior observed in �ies, it is of little surprise that �ies have a number of

evolutionary specializations that reduce sensorimotor latency. Features of the �y

visual system include an elevated �icker fusion frequency, approaching 300 Hz in some

cases (Autrum, 1958), as well as a unique neural superposition architecture that allows

for fast response sensitivity without the normally associated loss in spatial resolution

(Braitenberg, 1967). These factors make for one of the fastest visual systems in

the animal kingdom, yet, visual to motor delays are still roughly 30 ms in house
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(d)

(b)

(c)(a)

Figure 1.1: A comparison of the neuroanatomy of haltere and visual systems. (a)
Schematic (modi�ed from Krapp et al., 1998) and (b) confocal image (reproduced
from Williamson et al., 2010) of a horizontal section through the Drosophila visual
system. The retina (R) and the three visual neuropiles (lamina (L), medulla (M),
and lobula complex (LP and LO)) are shown. The lamina and medulla are connected
via the external chiasm (CHE) and the internal chiasm (CHI) resides between the
medulla and lobula Complex. (c) Schematic (reproduced from Trimarchi and Mur-
phey, 1997) and (d) image (reproduced from Chan and Dickinson, 1996) depicting the
monosynaptic connection of the haltere a�erent and the b1 (steering muscle) motor
neuron.
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�ies (Land and Collett, 1974) and 30-40 ms in Drosophila (Hardie and Raghu, 2001;

Heisenberg and Wolf, 1988; Roth et al., 2012), slower than the timescale of body

dynamics during rapid saccades and other �ight behaviors (Fry et al., 2003; Bender

and Dickinson, 2006a).

The biophysical process of phototransduction in photoreceptor cells that converts

photons into changes in membrane potential is one reason for the longer delay relative

to mechanosensory counterparts (Hardie and Raghu, 2001). Additionally, extracting

behaviorally relevant information requires processing which takes place in several dis-

tinct layers of neuropile in the visual system. There is a large body of literature

describing the behavioral and physiological responses of the dipteran visual system

(Götz, 1975; Egelhaaf and Borst, 1993; Krapp, 2000) as well as its anatomical and

functional organization (Strausfeld, 1984). A brief description is provide here. The

compound eye consists of a hexagonal lattice of roughly 700 ommatidia (Heisenberg

and Wolf, 1984), which are individual subunits containing photoreceptors. The retino-

topy of information collected from the photoreceptors is maintained through several

layers of neuropile as signals progress from the lamina to the medulla via the exter-

nal chiasm and then onto the lobula complex, which is composed of the lobula and

lobula plate (Krapp et al., 1998). A schematic is shown in Figure 1.1. Signals from

small-�eld elements are spatially integrated by lobula plate tangential cells (LPTCs),

a collection of about 60 visual interneurons (Hausen, 1993). The post synaptic targets

of the LPTCs are mostly descending neurons that project to various motor centers.

A sub-population LPTCs called the vertical system (VS) and horizontal system (HS)

cells, named for their directional sensitivity and morphological orientation, have no-

table responses to wide-�eld optic �ow and are thought to be important in optomotor

responses. The VS and HS cells integrate input received from local correlation-based

movement detectors, but a mapping of their receptive �elds shows a local motion

preference consistent with optic �ow �elds expected from particular self motion com-

ponents. The matched �lter hypothesis suggests that these visual interneurons are

optimally tuned to an optic �ow �eld generated by motion about a speci�c axis and

are therefore able to generate a response to rotations that is largely independent
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of translation (Krapp, 2000). Estimating translational egomotion quantities would

require some intrinsic assumptions about the average distance and distribution of ob-

jects in the environment (Fry et al., 2009; Taylor and Krapp, 2008), but an absolute

estimate of velocity may not be necessary for successful navigation and control tasks

such as approaching a post for landing (Van Breugel and Dickinson, 2012).

1.1.2 Halteres

The halteres, which are unique to dipterans, provide feedback on a much shorter

timescale than is possible with the visual system (Dickinson, 1999; Ristroph et al.,

2010; Bender and Dickinson, 2006a). In addition to providing timing input for syn-

chronous �ight control muscle (Heide, 1983; Dickinson and Tu, 1997), a subset of

mechanoreceptors at the base of the haltere are thought to encode rotation rate by

detecting strain induced by Coriolis forces. Low latency spike responses to mechanore-

ceptors (Fox and Daniel, 2008), and direct electrical synaptic input to steering motor

neurons from haltere a�erents bypassing the thoracic neuropile (Chan and Dickinson,

1996; Trimarchi and Murphey, 1997; Fayyazuddin and Dickinson, 1996), provide evi-

dence that the haltere-motor pathway is optimized for expediency. In Calliphora, the

total sensor-to-motor feedback delay is estimated to be approximately 3 ms (Mielke

and Heide, 1993; Fayyazuddin and Dickinson, 1996), or roughly 1/2 a wing stroke

period. Given that time constants on the order of 3 wing beats have been readily

observed in the yaw rate body dynamics of fruit �ies (Fry et al., 2003), such delays re-

main signi�cant and should be handled explicitly in any �ight control model (Aström

and Murray, 2010).

The importance of the halteres' role in �ight control was noted as early as the

18th century by Derham during ablation experiments in which he observed �ies were

no longer able to sustain stable �ight after the removal of the halteres (1714). The

halteres are small drumstick shaped organs that undergo large amplitude oscillations

in a single plane in opposing phase with the wings. They evolved from the hind wings,

and, despite their evolutionary derivation, serve no direct aerodynamic function. Der-
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ham originally postulated that �ies used their halteres much like a high-wire artist

would use a balancing pole. Given their mass and stalk length, the halteres would

be virtually useless in such a scenario (Pringle, 1948). With negligible contributions

to both aerodynamic force production and posturing, it's curious why the halteres

should have such a profound impact on �ight stability. It was Pringle who proposed

the modern explanation of the halteres' role in �ight stability. Pringle noted that

the halteres would be sensitive to Coriolis forces and thus were able measure rotation

rates, providing a vibrating gyroscope for the �y (1948). The large stroke amplitude,

increased stalk length, and a concentrated mass distribution at the end of the stalk

where the velocity is largest are all suggestive of a morphology that has evolved for

maximal sensitivity to such inertial forces. The Coriolis force is dependent on the

cross-product of the haltere's linear velocity and the angular velocity of the body,

meaning that strains at the haltere base would be induced both normal to the hal-

tere stroke plane and radially. The radial strains due to Coriolis forces would be

overwhelmed by the inertial forces generated from the normal haltere stroke, but the

strains normal to the stroke plane would be detectable with suitably tuned sensors.

Nalback simulated the normal component of Coriolis forces generated by rotations

through linear mechanical oscillations and con�rmed Pringle's assertion (1994). Sev-

eral arrays of mechanoreceptors at the base of the haltere are strain sensitive, of

which the dF2 �eld is both positioned correctly to measure strains normal to the

stroke plane and has been shown to make a monosynaptic connection with the �rst

basalare steering muscle (b1) motor neuron (Trimarchi and Murphey, 1997; Chan

and Dickinson, 1996; Fayyazuddin and Dickinson, 1996). Further, the timing of b1

muscle activation strongly in�uences cycle-by-cycle changes in wing kinematics (Tu

and Dickinson, 1994, 1996; Balint and Dickinson, 2004, 2001) and �ies exhibit robust

compensatory wing kinematic changes in response to mechanical rotations (Dickinson,

1999; Sherman and Dickinson, 2003). The low latency of the haltere feedback enables

hard-wired equilibrium re�exes that may provide aerodynamic damping through rota-

tion rate feedback (Elzinga et al., 2012). The idea that haltere feedback provides the

additional damping required to stabilize �ight is consistent with the observation that
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Figure 1.2: The halteres. (a) Diagram of the halteres and their position on the
thorax behind the wings (modi�ed from Bender and Dickinson, 2006a). (b) Coriolis
forces de�ect the haltere out of its stroke plane (modi�ed from Bender and Dickinson,
2006a). (c) Morphology of the haltere (modi�ed from Pringle, 1948) illustrating the
arrays of strain sensitive campaniform sensilla on the (i) ventral and (ii) dorsal sides
of the haltere.

adding a cotton thread to the abdomen restores stability after ablating the halteres

(Fraenkel, 1939), thus trading active damping for passive damping.

1.1.3 Multimodal sensory integration

In �ies, and other animals, feedback from numerous sensory modalities converge to

facilitate complex behaviors. Flies utilize multiple sensory systems not only to take

advantage of the di�erent types of sensory information available, but to complement

the response bandwidth associated with a given modality. For example, haltere a�er-

ents make connections to neck motor neurons and the head consequently shows robust

compensation to body rotations, indicating a gaze stabilization re�ex (Hengstenberg,

1988). This suggest that �ies utilize faster sensory systems to minimize retinal blur

and obtain better visually-based state estimates. This re�ex is not limited to haltere

feedback, however, as the compound eyes, ocelli, and halteres all contribute to com-



9

pensatory head movements (Hengstenberg, 1991). In addition to the haltere signals

in�uencing what the visual system sees through compensatory head movements, vi-

sual motion has been shown in blow�ies to in�uence the halteres through activation

of haltere control muscles (Chan et al., 1998). This suggests that visual input might

in�uence wing kinematics indirectly by co-opting the haltere re�ex, which would be

a convenient way to activate steering muscles in a manner appropriate for the phase

of the wing stroke. Other notable examples of sensory integration include the mod-

ulation of postsynaptic targets of the VS cells based on ocellar input (Parsons et al.,

2006) and the use of mechanosensory systems to aid the visual system during fast

maneuvers and disturbances, such as haltere feedback during saccades (Bender and

Dickinson, 2006a) and antennae-mediated feedback of airspeed changes during wind

gusts (Fuller, 2011). The large number of sensory inputs relative to the number of

�ight control muscles, the complex interconnection of the di�erent sensory feedback

loops and the disparate nature of processing timescales involved make the �y an in-

formative model for studying sensory fusion. For a more complete review of this topic

see Taylor and Krapp (2008) or Frye (2010).

1.1.4 Flight musculature

Flies have evolved an elegant �ight musculature organizational scheme where gross

force production and �ne dynamic control are separated into two functionally and

anatomically distinct muscle groups (Dickinson and Tu, 1997). Understanding this

organization provides insight into the strategies available for �ight control and the

actuator bandwidth constraints that the �y is subject to. The elevated power re-

quirement for �ight is generated by stretch activated asynchronous muscles running

dorso-ventrally (DVMs) and longitudinally (DLMs) that �ll most of the thoracic vol-

ume. These muscles do not insert into the wing base but instead induce small strains

in the thorax. The orthogonality of the DVMs and DLMs means that when one

set contracts, the resulting deformation of the thorax causes the other set to stretch

and subsequently contract, turning the thorax into a mechanical resonator (Dickinson,
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2006). Asynchronous muscle trades some sacroplasmic reticulum for myo�brils within

the �ber volume resulting in greater mechanical work output at the cost of response

time to neural activation, making these muscles ideal for power generation, but inca-

pable of performing wing stroke modulations on a time scale suitable for active �ight

control in insects (Josephson et al., 2000). The small strains in the thorax generated

by the indirect �ight muscles are translated into large sweeping motions of the wing

through the elaborate transmission system of the wing hinge. The precise control

over the wing stroke is left to the approximately 18 pairs of synchronous muscle that

insert directly on the elements of the wing hinge (Dickinson, 2006). Electrophysiolog-

ical and high-speed video recordings of tethered �ight in �ies have correlated changes

in wing kinematics with activity in these �steering� muscles (Balint and Dickinson,

2001, 2004; Tu and Dickinson, 1994, 1996). The three largest of these, b1, b2, and I1

(nomenclature from (Heide, 1983)) can explain a wide range of observed wing stroke

changes (Balint and Dickinson, 2001). Muscles can function in a variety mechanical

roles such as struts, springs, and dampers meaning that the steering muscles may

serve to modulate of the process dynamics of the wing hinge transmission system to

enact active control over the wing stroke (Dickinson et al., 2000). The b1 steering

muscle, for example, behaves as a variable sti�ness spring that can be controlled on

a stroke-by-stroke basis (Tu and Dickinson, 1994, 1996).

1.1.5 Responses to mechanical and visual stimuli in behaving

animals

The response of individual stroke features, most notably stroke amplitude and stroke

frequency, to a variety of visual and mechanical stimuli have been studied extensively

in tethered �ight (Frye and Gray, 2005). These quantities can be tracked with an

optical wing-beat analyzer which allows for a robust measure of behavioral output

without the labor intensive analysis of high-speed cine that was required prior to

the advent of modern high-speed video and automated machine-vision based track-

ing (Götz, 1987). This technique, as well as measuring yaw torque directly, in the
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presence of simulated motion led to extensive characterization of optomotor re�exes

in �ies (Heisenberg and Wolf, 1984). Optomotor re�exes can be generally thought

of as a steering response in the direction of wide-�eld visual motion. This steering

response manifests in the wingbeat analyzer as di�erences in wingstroke amplitude

between the left and right wing (∆WBA). Indeed recordings of steering muscle ac-

tivity showed changes in response to visual stimuli (Heide, 1983) which were later

shown to account for stroke amplitude changes (Balint and Dickinson, 2001). There

is a strong correlation between yaw torque and ∆WBA even though an analysis of

the aerodynamic forces generated from such a change in kinematics would not sug-

gest the relationship. Stereotyped and coordinated changes of multiple wingstroke

parameters allows ∆WBA to serve as proxy for yaw torque (Balint and Dickinson,

2004; Tammero et al., 2004).

Given the robust nature of multisensory feedback and multimodal integration, it

is di�cult to tease apart the mechanosensory response to rigid body rotations from

the visual response. Dickinson measured haltere-mediated compensatory re�exes by

tethering the animal in the center of an LED visual simulator mounted within an

actuated gimbal in an attempt to uncouple mechanical oscillations from the visual

surround (Dickinson, 1999). In follow-up experiments, Sherman compared haltere-

mediated responses to mechanical oscillations with visually-mediated responses to

wide-�eld oscillations of the visual display pattern (Sherman and Dickinson, 2003).

From these data (shown in Figure 1.3) in conjunction with an estimate of the calibra-

tion between yaw torque and ∆WBA (Tammero et al., 2004) we can infer a transfer

function between measured yaw rate and actuation torque for both the visual system

and the haltere system. This estimate will prove useful for the analysis in Chapter

2. Further, Sherman was able to show in a subsequent paper that it is appropriate

to superimpose haltere- and visually-mediated responses (Sherman and Dickinson,

2004).
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1.2 Kinematics and �apping wing aerodynamics

1.2.1 Wing kinematics

Fruit �ies sweep their wings back and forth at a high angle of attack, rapidly ro-

tating at the end of the upstroke and downstroke so that lift is produced during

both half-strokes (Zanker, 1990; Ellington, 1984b). The wingtip traces out a gentle

u-shape when projecting the trajectory onto a plane bisecting the thorax longitudi-

nally (Dickinson, 2006). The convention used in this dissertation follows after Sane

(2001) and describes the wing position as set of Euler angles de�ned in Figure 1.4.

The stroke angle (φ) describes the primary and back and forth motion. The devi-

ation angle (θ) describes the elevation of the wing out of the stroke plane. Finally,

the rotation angle (α) describes the spanwise pitch angle of the wing. In the crudest

description of the wing kinematics of a fruit �y, the stroke angle follows a triangle

wave with peak-to-peak amplitude of approximately 140 degrees, the deviation angle

is negligible, and the rotation angle follows a square wave which provides a 45 degree

angle of attack at mid-stroke. In reality the stroke angle is roughly in between a pure

sinusoid and triangle wave, the deviation angle is small throughout the stroke but has

signi�cant frequency content in the �rst two Fourier components, and the rotation

angle also has signi�cant frequency content at twice the wing beat frequency. Wing

kinematic descriptions based on stroboscopic photography and high-speed video are

given by Ellington (1984b), Zanker (1990), and Fry (2003). A more theoretical treat-

ment based on optimal kinematics for energy minimization is provided by Berman

and Wang (2007).

Numerous studies have been carried out to identify the changes in wing stroke

kinematics responsible for �ight stabilization, subtle course corrections, and active

maneuvers. Whereas changes in stroke amplitude and frequency have been corre-

lated with body forces and torques, the vast array of �ight maneuvers of which fruit

�ies are capable suggest these parameters alone are not enough to provide the nec-

essary control authority and a more detailed kinematic analysis is required. Access

to time resolved comprehensive kinematic variables is generally achieved through the
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labor intensive digitization of high speed video sequences and its precursor strobo-

scopic photography. Vogel made observations of tethered Drosophila in a wind tunnel

using stroboscopic photography, which pointed to kinematic parameters involved in

lift and thrust variation (1967). Advances in high-speed videography, including the

increased spatial and temporal resolution as well as mature methods for calibrating

multiple camera views have yielded more detailed descriptions of tree dimensional

wing kinematics (Fry et al., 2003). In larger �ies, Balint was able to describe several

stereotyped wing tip trajectories and attribute them to speci�c patterns of activity in

speci�c synchronous �ight control muscles, suggesting a coupling of several kinematic

variables during a �ight maneuver (2001; 2004). It remains unclear the degree to

which �ies have independent control over any speci�c kinematic parameter or even

which parameters are the most important from a controllability standpoint. Recently

developed machine-vision-based automated tracking systems designed for free �ight

allow for higher throughput in more naturalistic conditions and will hopefully serve

to elucidate these issues (Fontaine et al., 2009; Ristroph et al., 2009).

1.2.2 Measuring aerodynamic forces

Dynamically-scaled physical models, computational �uid dynamics (CFD), and quasi-

steady modeling have allowed researchers to assess the role of wingstroke parameters

in aerodynamic force production, either through the playing out of measured wing

kinematics or through the use of simpli�ed conceived kinematics designed to isolate

speci�c features (Ramamurti and Sandberg, 2007; Hesselberg and Lehmann, 2007;

Dickson et al., 2008, 2010; Cheng et al., 2010; Sane and Dickinson, 2001). Each

method for obtaining aerodynamic forces and moments from wing and body kine-

matics has inherent advantages and disadvantages (for reviews see Sane, 2003; Shyy

et al., 2010). Quasi-steady modeling assumes the instantaneous lift and drag forces

can be approximated by the steady-state forces acting on the wing with equiva-

lent velocity and angle of attack relative to the free stream. Often the quasi-steady

assumption is used in conjunction with blade-element theory to create models of
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�apping wing aerodynamics. Flapping �ight is inherently unsteady and the result-

ing unsteady mechanisms are essential to explaining how su�cient lift is generated

to maintain weight support (Ennos, 1989; Ellington, 1984a; Dickinson et al., 1999;

Ellington et al., 1996; Maxworthy, 1979, 1981). Flies, and many other insects, sweep

their wings at high angles of attack, developing a leading edge vortex (LEV). Whereas

in traditional steady-state theory this vortex would repeatedly develop, grow unsta-

ble and shed, leading to a stalling condition, the LEV is stabilized by axial �ow and

remains attached during the revolving stroke of a �y wing, thus enhancing force pro-

duction (Lentink and Dickinson, 2009; Dickinson et al., 1999; Ellington et al., 1996;

Maxworthy, 1981). Additionally, the wing repeatedly moves through its own wake

upon stroke reversal which implies that the animal could recover some of the energy

lost to the wake from the previous stroke (Dickinson et al., 1999). A number of other

unsteady phenomena, including added mass, rotational circulation, and the clap-and-

�ing, also contribute to the aerodynamic forces of �apping �ight (for review see Sane,

2003).

Despite the importance of unsteady mechanisms in insect �ight, quasi-steady

models still have utility. Quasi-steady-based models have high degree of �exibil-

ity are much less computationally intensive than 3D CFD-based models, allowing for

rapid exploration of the parameter space. Researchers have had success with aug-

menting quasi-steady-based expressions with empirically measured coe�cients from

dynamically-scaled models to capture some of unsteady e�ects (Dickson et al., 2008;

Faruque and Humbert, 2010a,b). Although such a technique masks the unsteady

features hidden within these coe�cients, these models perform reasonably well for

stroke-averaged simulations.

Dynamically-scaled models have proven useful for studying unsteady mechanisms

in insect �ight, but they are more di�cult to incorporate into simulations of the body

dynamics than numerical methods. Carrying out such experiments on a dynamically-

scaled model requires a special type of robotics, called captive trajectory systems.

Captive trajectory systems measure the applied forces on the object of interest, run

these forces through the equations of motion, and actuate the body appropriately
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in real-time under closed-loop conditions. For the study of �apping �ight, such a

system would entail measuring forces and moments on the airframe of a dynamically

scaled robot, integration of the rigid body equations of motion, and rotating and/or

translating the airframe, thus allowing the model to "�y itself" and provide an en-

vironment for the systematic study of free-�ight dynamics. In addition to providing

experimental �exibility, this method allows the inertia to be properly scaled for the

robot, which would not be readily achievable for a purely physical implementation.

1.3 Stroke-averaged models

Through the synthesis of time-resolved wing and body kinematics in both tethered

and free-�ight conditions (Fry et al., 2003; Ristroph et al., 2009; Zanker, 1990) and

the measurement of the corresponding aerodynamic forces and moments by means of

dynamically-scaled models, computational �uid dynamics, or quasi-steady estimates

(Ellington, 1984a; Sane, 2003; Ramamurti and Sandberg, 2007; Dickinson et al., 1999;

Cheng et al., 2010), researchers have constructed �ight dynamics models aimed at

understanding both the underlying passive dynamics of �apping �ight as well as the

requirements and strategies for stabilization and control (Cheng et al., 2011; Faruque

and Humbert, 2010a; Sun and Xiong, 2005; Gao et al., 2011; Sun and Wang, 2007;

Ristroph et al., 2010; Dickson et al., 2008; Cheng and Deng, 2011). The general

technique for composing such models is standard practice in the aircraft literature and

consists of measuring aerodynamic forces and moments in response to perturbations

about an equilibrium �ight condition to construct a matrix of stability derivatives

and subsequently determine the dynamic modes of the linearized system through its

eigenvalues (Etkin and Reid, 1998). A linearized state-space model of insect �ight

dynamics provides a convenient framework for addressing �ight control questions.

This approach was �rst used in the context of insect �ight for locusts where the

forces and moments were measured directly on a tethered animal and averaged over

the stroke period (Taylor, 2003). In later studies, stroke-averaged linear models were

derived from computational methods and dynamically-scaled physical models for bees,
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�ies, and moths, a few of which considered forward �ight (Epstein et al., 2007; Sun

and Wang, 2007) whereas the majority focused on hovering conditions (Faruque and

Humbert, 2010a; Sun and Xiong, 2005; Xiong and Sun, 2007; Gao et al., 2011; Cheng

and Deng, 2011). All of these models identi�ed at least one unstable mode, which

highlights the importance of feedback-based modulation of the wing kinematics to

achieve stable �ight.

1.3.1 Justi�cation

The periodic nature of �apping �ight leads to small �uctuations superimposed on a

course trajectory. Often the behavior of this course trajectory is of greater interest

and can be analyzed by treating the higher frequency forcing functions as their average

over the forcing period, an idea that is formalized in averaging theory (for a complete

treatment see Khalil, 1996). Several follow-up studies in insect �ight dynamics have

considered dynamics models that take into account the periodic nature of �ight forces

associated with �apping �ight (Taylor and Zbikowski, 2005; Wu and Sun, 2012),

but stroke-averaged models are still appropriate at the spatial and temporal scale

of Drosophila �ight dynamics (Dickson et al., 2010; Wu and Sun, 2012). Wu and

Sun (2012) performed a Floquet stability analysis on the �apping �ight dynamics

of the drone�y and showed that the results were in close agreement with a stroke-

averaged analysis. Dickson et al. (2010) performed system identi�cation tests with

a dynamically-scaled robot under captive trajectory that con�rmed that a linear

stroke-averaged model accurately captures the essential dynamics of the system on

timescales larger than several wing strokes (Dickson et al., 2010), the results of which

are provided in Figure 1.5. Averaging theory often takes advantage of a separation

of timescales between high frequency forcing and the relatively slow timescale of the

body dynamics. This makes sense from a linear systems perspective in that a low

bandwidth system would attenuate a high frequency input. Although linear systems

theory provides the proper intuition, the validity of averaging theory does not rely on

the linearity of the system (Khalil, 1996).
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Figure 1.5: Yaw velocity system response to asymmetric shifts in wing rotation angle
kinematics for a dynamically scaled robot in captive trajectory (data from Dickson
et al., 2010). (a) Response to sinusoidal inputs. (b) Bode plot. (c) Square wave
response.

1.3.2 Hovering yaw turns

During fast yaw turns, known as saccades, which are characteristic to �y �ight, inertia

was thought to dominate based on high-speed video of free �ight yaw turns and an

estimate of body damping using Stokes-law (Fry et al., 2003). This would mean

that the deceleration at the end of the turn would have to be generated actively from

changes in kinematics with little contribution from body drag. A number of kinematic

parameters have been studied as modes of generating yaw torque (Dickson et al.,

2010), but asymmetries in angle of attack between the two wings have accumulated

the most support in the literature (Ristroph et al., 2009, 2010; Dickson et al., 2010;

Humbert and Faruque, 2011). As was mentioned previously, there is a very strong

correlation between ∆WBA and yaw torque, but this is more of a testament to the

coordinated nature of changes among wing kinematic parameters than a suggestion

that ∆WBA generates yaw torque.

Researchers later observed that drag would not be limited to the body but would

be present on the wings as well. Further, the additional forces due to body motion
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were best interpreted separately from the forces generated by the wings during a

stroke. Under quasi-steady assumptions, this stroke-averaged yaw torque is expected

to be linear with respect to yaw rate (Hesselberg and Lehmann, 2007; Hedrick et al.,

2009). An asymmetry in drag between the left and right wings on both the upstroke

and the downstroke due to yaw rotations leads to quadratic terms that drop out and

a damping term that is linear in yaw rate. This result extends to the unsteady case as

shown by studies using dynamically-scaled robots (Dickson et al., 2010; Cheng et al.,

2010). Yaw damping due to the additional aerodynamic forces on wings from body

rotation is roughly two orders of magnitude larger than the damping due to just the

body. This led some researchers to posit that the angular deceleration phase of yaw

turns in �ying animals is entirely mediated by passive damping (Hedrick et al., 2009).

Dynamically-scaled robotic experiments and computational methods have shown that

aerodynamic damping in �apping �ight is indeed important to the dynamics of yaw

turns (Dickson et al., 2010; Cheng et al., 2010; Hesselberg and Lehmann, 2007),

but active changes in wing kinematics and feedback-based responses likely play an

important role as well.

1.3.3 Forward �ight

Previous researchers concluded that the regulation of forward �ight speed, a critical

task for successful navigation, was governed by a simple inverse relationship with body

pitch (Vogel, 1966). Free-�ight wind-tunnel experiments with Drosophila (David,

1978; Medici and Fry, 2012) as well as tethered force measurements indicating that

the animals will only alter the magnitude but not the elevation of their stroke-averaged

�ight force vector in response to longitudinal visual stimuli (Götz and Wandel, 1984),

provided evidence for this hypothesis. Further, stroke plane inclination does not

change signi�cantly in Drosophila with visual pattern motion (Götz and Wandel,

1984). Consequently, the �ight motor in �ies is often described as an actuator disk

with a �xed orientation with respect to the body. In this model, forces are redirected

by means of changes in body pitch, and force production is regulated by wingstroke
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amplitude and to a lesser degree, wingstroke frequency (Vogel, 1966, 1967; David,

1978; Lehmann and Dickinson, 1997; Götz et al., 1979). As it appears that the

underlying morphology is capable of much more complex patterns of wing motion,

researchers attributed the �xed inclination of the �ight force to the bene�ts of a simple

control scheme.

The means by which animals regulate and stabilize forward �ight via changes in

wing and body kinematics remains an active area of research (Sugiura and Dickinson,

2009; Xiong and Sun, 2007; Ristroph et al., 2011). Recent high-speed video analysis

of forward �ight sequences in fruit �ies has suggested that upstroke-to-downstroke

shifts in the spanwise rotation angle of the wing play an instrumental role in forward

propulsion (Ristroph et al., 2011). This theme was echoed in work on the dynamics

of backwards pitching maneuvers in hawkmoths (Cheng et al., 2011). Through a

variety of evidence in both tethered and freely �ying fruit �ies, previous experimenters

had concluded body attitude and a corresponding shift in the mean stroke position

were primarily responsible for dictating equilibrium �ight speed (Vogel, 1966; David,

1978; Götz and Wandel, 1984; Zanker, 1988). These two ideas are not necessarily

contradictory, but a more complete theoretical treatment might be helpful in forming

a consistent synthetic model.

1.4 Contributions

This thesis explores the relationship between active compensatory feedback and the

underlying passive �ight dynamics in Drosophila, the fruit �y, in light of the con-

straints imposed by sensorimotor delays and the sensory systems available to the �y.

The mathematical and experimental tractability of yaw turns during hovering, along

with the vast body of literature regarding visual- and mechanosensory-mediated re-

sponses to rotatory stimuli has made the study of wing kinematics governing such

maneuvers an excellent entry point into the problem (Ristroph et al., 2010; Fry et al.,

2003; Hedrick and Robinson, 2010; Iriarte-Díaz and Swartz, 2008) and is where Chap-

ter 2 begins. In Chapter 3, I move on to the study of forward �ight dynamics where
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general themes begin to emerge on the role of mechanosensory re�exes in the over-

all architecture of �ies' �ight control circuitry. This work is primarily based on two

journal articles and the speci�c contributions of my co-authors to these papers are

documented in the acknowledgments (Elzinga et al., 2012, In review).

1.4.1 The in�uence of sensory delay on the yaw dynamics of

�apping �ight

In Chapter 2, I explore the e�ect of feedback delay on the stability and performance

of a proportional yaw rate controller in the context of a stereotyped body saccade of

a fruit �y, in which the animal performs a rapid turn of approximately 90° in 50 to

100 ms (Tammero and Dickinson, 2002; Bender and Dickinson, 2006b). To perform

this analysis, we utilized a dynamically-scaled robotic model with captive trajectory

capability about the yaw axis. Yaw torque was controlled through a bilateral asym-

metry in angle of attack, which has been observed in yaw turns of real �ies and used

in previous studies (Bergou et al., 2009; Dickson et al., 2010). We studied step and

impulse responses in yaw velocity with the robot under proportional control for a

range of feedback delays similar in dimensionless timescale to those present in the

nervous system and compared these responses to stroke-averaged simulations. The

results demonstrate that proportional control decreases the system time constant by

adding an active damping component, but is constrained by a tradeo� between sensor

delay and permissible feedback gain. This suggests that the role of the haltere may

be to provide fast inner-loop feedback, resulting in additional active damping that

would allow the slower visual system to operate at higher gain with a faster response

for the same level of robustness. The experiments also provide evidence that the

large open-loop responses observed in tethered-�ight might not be an artifact of the

preparation, as previously suggested (Taylor et al., 2008), but are indeed what would

be required of a well-tuned �ight control system.
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1.4.2 Wing kinematics and the stabilization of longitudinal

forward �ight

In Chapter 3 I utilize a dynamically-scaled robotic model to explore the longitudi-

nal �ight dynamics for �ies in level forward �ight. We measured the �ight forces

and moments during constant translational velocity moves over a range of applicable

body pitch angles for a baseline set of hovering kinematics. These data allowed us to

construct models to assess �ight stability and determine the requisite trim forces, pro-

viding, to our knowledge, the most comprehensive characterization of forward �ight

dynamics in �ies to date. The nature of the force de�cit provides insight into the

changes in wing kinematics that may be utilized by the animals to achieve steady for-

ward �ight. We considered three di�erent deformations of hovering wing kinematics,

which were inspired by previous experimental studies and that result in the genera-

tion of a pitch moment: a shift in the mean stroke position, upstroke-to-downstroke

di�erences in wing rotation angle, and upstroke-to-downstroke di�erences in stroke

deviation (Vogel, 1967; Ristroph et al., 2011; Balint and Dickinson, 2004). The re-

sults suggest potential roles for each of the deformation modes in trimming �ight

forces and stabilizing the dynamics of level forward �ight in �ies. The mean stroke

position of the �apping wings is a likely candidate for trimming the pitch moment

at all speeds, whereas changes in the wing rotation angle are required only at high

speeds. This leads to a possible reconciliation of opposing hypotheses regarding the

mechanism for forward propulsion in �ies, which were proposed based on previous

tethered �ight experiments and recent free-�ight experiments. The results also show

that the dynamics may be stabilized with the addition of a pitch damper, but that

the magnitude of required damping increases with �ight speed. We posit that dif-

ferences in stroke deviation between the upstroke and downstroke, which is an often

neglected wing stroke parameter, might play a critical role in this stabilization. Fast

mechanosensory feedback of the pitch rate could enable active damping, which would

inherently exhibit gain scheduling with �ight speed if pitch torque is regulated by

adjusting stroke deviation. Such a control scheme would provide an elegant solution
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for �ight stabilization across a wide range of �ight speeds.
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Chapter 2

The in�uence of sensory delay on the

yaw dynamics of �apping �ight

Flapping-wing insects �y with unprecedented maneuverability and stability

compared with conventional aircraft.

�Bo Cheng (2011)

2.1 Summary

In closed-loop systems, sensor feedback delays may have disastrous implications for

performance and stability. Flies have evolved multiple specializations to reduce this

latency, but the fastest feedback during �ight involves a delay that is still signi�cant

on the timescale of body dynamics. We explored the e�ect of sensor delay on �ight

stability and performance for yaw turns using a dynamically scaled robotic model of

the fruit �y, Drosophila. The robot was equipped with a real-time feedback system

that performed active turns in response to measured torque about the functional yaw

axis. We performed system response experiments for a proportional controller in yaw

velocity for a range of feedback delays, similar in dimensionless timescale to those

experienced by a �y. The results show a fundamental tradeo� between sensor delay

and permissible feedback gain, and suggest that fast mechanosensory feedback in �ies,

and most likely in other insects, provides a source of active damping that compliments

that contributed by passive e�ects. Presented in the context of these �ndings, a
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control architecture whereby a haltere-mediated inner-loop proportional controller

provides damping for slower visually-mediated feedback is consistent with tethered-

�ight measurements, free-�ight observations, and engineering design principles.

2.2 Materials and methods

2.2.1 Robotic �y apparatus

Experiments were conducted in a 1m × 2.4m × 1.2m tank of mineral oil (Cheveron

Superla white oil; Chevron Texaco Corp. San Ramon CA, USA; density 880kg ·m−3,

kinematic viscosity 115 cSt at 25◦C) using a dynamically-scaled model of Drosophila

with hardware identical to the apparatus described previously (Dickson et al., 2010).

We will brie�y reiterate this description for convenience as well as highlight the

additional capabilities enabled by a software redesign. The robot consists of two

isometrically-scaled acrylic wings (length (R) = 230 mm, mean chord (c̄) = 65 mm,

width = 2.3 mm), each with three independently actuated degrees of freedom: stroke

angle (φ), deviation angle (θ), and rotation angle (α), as illustrated in Figure 2.1.

The stroke axes of the two wings were parallel and separated by 0.11 m. The wing

motor assemblies were attached to a common frame which was mounted on a shaft to

allow rotation about the functional yaw axis. A geometrically scaled body model was

not used because the damping due to the body is roughly two orders of magnitude

smaller than that of the �apping wings, and can be ignored for most studies (Hessel-

berg and Lehmann, 2007; Hedrick et al., 2009; Dickson et al., 2010). The stroke posi-

tion of each wing was controlled by a stepper motor (M-1715-1.5D, Schneider Electric

Motion, Marlborough, CT, USA) whereas the rotation and deviation positions were

controlled by digital servo motors (HSC-5996TG, Hitec RCD, Poway, CA, USA). The

yaw rotation of the airframe was actuated by a stepper motor (M-2218-3.0S, Schnei-

der Electric Motion, Marlborough, CT, USA). A torque sensor (TQ202-25Z, Omega

Engineering, Stamford, CT, USA; full scale range of 0.175 N-m, accuracy of 0.2 %

full scale output) mounted axially between the shaft and base plate measured yaw
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Figure 2.1: Experimental apparatus. Design drawing of the dynamically scaled
robotic model. Each wing has three degrees of freedom, stroke, deviation, and rota-
tion. Torque is measured where the base of the yaw rotation shaft meets the airframe.

torque in the body frame.

The robot was controlled using a PC running a hard real-time Linux kernel with

custom software written in Python and C. At each time step within a 3 kHz real-

time loop, torque generated by the aerodynamic forces on the wings was measured

and passed to a model of the �y's inertial dynamics and new wing kinematics were

generated based on a prescribed output-feedback controller. The state variables were

held in a bu�er in order to implement a virtual sensor delay. The model of the �y's

inertial dynamics is given by:

ψ̇ = ω, (2.1)
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Iω̇ = τmeas(t)− bω ≈ τmeas(t), (2.2)

where ψ is the heading angle, I is the moment of inertia about the yaw axis, ω is

the yaw velocity, τmeas is the yaw torque measured by the sensor, and b is a velocity-

dependent body damping term. This equation was integrated using the classical

Runge-Kutta method (Butcher, 2008) to set the yaw velocity and heading angle of

the system at each time step. For the experiments in this manuscript, the body

damping term was dropped for the same reason that a physical body model was not

used; the aerodynamic forces acting on �apping wings that provide damping during

yaw rotation dominate the e�ects of body drag (Hesselberg and Lehmann (2007)).

For appropriate dynamic scaling of this equation, we matched the Reynolds number

(Re), dimensionless yaw velocity (ω∗), and dimensionless moment of inertia (I∗).

These dimensionless quantities are de�ned by the following:

Re =
2RΦf c̄

ν
, (2.3)

ω∗ =
ω

f
, (2.4)

I∗ =
I

ρc̄5
, (2.5)

where R is the wing length, Φ is the (peak-to-peak) stroke amplitude, f is the �ap-

ping frequency, c̄ is the mean wing chord, ν is the kinematic viscosity, and ρ is the

density of the �uid. A �apping frequency of 0.167 Hz was used to yield a Re of 100,

consistent with �apping �ight in Drosophila (Lehmann and Dickinson, 1997). The

dimensionless moment of inertia about the functional yaw axis used in this study was

1.97 × 103, in agreement with those used in previous studies (Hedrick et al., 2009;

Dickson et al., 2010). This was calculated by modeling the �y as a cylinder inclined at

55°, corresponding to a hovering �ight posture. All subsequent values and equations

will appear in their dimensionless form.
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2.2.2 Wing kinematics

We used idealized Drosophila wing kinematics that utilize a di�erential angle of attack

control mode as described previously (Dickson et al., 2010). The linearity of additional

control modes studied in previous work allows us to perform these studies in the

context of just one mode and apply the results generally to a desired superposition

of control modes (Dickson et al., 2010). The kinematics consist of a nominal set

based on previous work (Berman and Wang, 2007), augmented with an asymmetry

parameter in right and left wing rotation angle as a means of generating yaw torque.

The stroke position, deviation, and rotation angle for the baseline kinematics are

given as follows:

φb(t) =
φ0

arcsin(kφ)
arcsin[kφ cos(2πft)], (2.6)

θb(t) = 0, (2.7)

αb(t) =
α0

tanh(kα)
tanh[kα sin(2πft)], (2.8)

where f is the �apping frequency, φ0 is the stroke amplitude, α0 the rotation ampli-

tude, and the parameters kφ and kα control the shape of the wing kinematics. Values

of kφ = 0.01 and kα = 1.5 were selected to produce waveforms that resemble an ideal-

ized version of the wing kinematics of Drosophila (Berman and Wang, 2007; Dickson

et al., 2010). Similarly, a value of φ0 = 70◦ was used to give a peak-to-peak stroke

amplitude of 140◦ and a value of α0 = 45◦ was used to give a 45◦ angle of attack at

mid-stroke. Because the yaw rotation axis is aligned with the stroke plane normal and

no deviation is considered, the geometric angle of attack is speci�ed by the rotation

angle with an appropriate o�set. The di�erential angle of attack mode deforms the

baseline rotation angles in the following manner, leaving the other degrees of freedom

unchanged:
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Downstroke
Left wing                         Right wing

Upstroke
Left wing                         Right wing

Figure 2.2: Pictorial representation of the wing kinematics, illustrating the asymmetry
in wing rotation angle consistent with the di�erential angle of attack deformation
mode described in (Dickson et al., 2010).

αL,R(t) = αb(t)± u, (2.9)

where u is the deformation parameter. A nonzero value for u introduces asymmetry

into the wing kinematics, as shown by example left and right wing tip trajectories in

Figure 2.2. For illustrative purposes, consider a baseline angle of attack at mid-stroke

of 45◦. A positive u would increase the rotation angle on the downstroke in the left

wing, reducing the angle of attack and consequently the drag force while having the

opposite e�ect on the right wing. This asymmetry would reverse on the upstroke,

resulting in a net yaw torque and inducing a turn to the right.

Feedback control was enabled by generating the kinematics from within the real-

time loop with a state dependent di�erential angle of attack deformation parameter.

We implemented a simple yaw rate proportional controller with a zero set point and

feedforward asymmetry, uff , by constructing u in the following manner:

u(t) = −kpω(t) + uff (t) (2.10)
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Figure 2.3: Sample data for a typical step response experiment. The kinematics
shown are the stroke angle (single black curve) and the left (red) and right (blue)
wing rotation angles. The commanded asymmetry in rotation angle is in red while
the actual asymmetry is in blue. The bottom panel is the corresponding yaw rate
response.

where kp is the proportional feedback gain and ω is the yaw rate. The e�ect of each

term in the controller is apparent in the sample step response shown in Figure 2.3.

When considering feedback with a �xed delay this becomes:

u(t) = −kpω(t− δ) + uff (t) (2.11)

where δ is the delay time. A morphological limit on the maximum asymmetry was

also considered, and manifested as a software limit on the maximum value of u.
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2.2.3 Stroke-averaged modeling

Simulations were carried out with code written in Python that utilized the SciPy

module (Jones et al., 2010) by considering the following stroke-averaged linear dy-

namics:

Iω̇ = τω + τu = −Cωω + Cuu(t), (2.12)

where τω and τu are the contributions to dimensionless torque from passive damping

and the asymmetry parameter, u, respectively; Cω is the damping coe�cient, and Cu

is the actuation coe�cient. The dimensionless damping coe�cient and dimensionless

actuation coe�cient were both experimentally determined by averaging yaw torque

over 5 identical wing strokes, as measured by the robotic �y apparatus, following a

similar procedure to that described previously (Dickson et al., 2010). These mea-

surements were performed with prescribed yaw velocity in the absence of the captive

trajectory system. The dimensionless damping coe�cient used was 7.47×102 and was

determined by a linear �t of the relationship between stroke-averaged yaw torque and

yaw rate for a �xed value of u. The dimensionless actuation coe�cient was 3.53×103

and was derived from the linear relationship between yaw torque and the actuation

parameter for a �xed yaw rate.

In addition to including the constraint on the maximum value of u, we also mod-

eled a saturation in the actuation torque, τu. Whereas the drag coe�cient for a

revolving wing in a Reynolds number regime near 100 is relatively linear with rota-

tion angles near 45◦, this approximation breaks down with signi�cant deviation in

rotation angle which spawns the saturation in the actuation torque. The saturation

was modeled with a hyperbolic tangent function with one experimentally determined

parameter, A:

τu =
1

A
tanh(Au)Cu. (2.13)

The experimental parameter had a value of A = 1.39, and was determined by least
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Morphological
limit

Saturation

Yaw dynamics

Figure 2.4: Block diagram model used for stroke-averaged simulations of a propor-
tional yaw rate controller. The model has set point of zero and a commanded asymme-
try input representing a motor command to the steering muscles. The two saturation
blocks are a morphological limit on the maximum asymmetry and a saturation in the
drag coe�cient approximated by a hyperbolic tangent function with one measured
parameter. Cu is the actuation coe�cient, Cω is the damping coe�cient, and u is the
asymmetry parameter. There is a �xed sensor delay, δ, in the feedback loop.

squares �t of Equation 2.13 to torque vs. u data for a �xed yaw velocity. The

dynamics in Equation 2.12 can be written as a transfer function and combined with

both the saturation in Equation 2.13 and the controller in Equation 2.11 to form a

block diagram model of the system used to perform the simulations as illustrated in

Figure 2.4.
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2.3 Results

2.3.1 Step responses in the undelayed system

The role of feedback gain in determining the system time constant was explored

through a series of yaw velocity step response experiments. The step was approxi-

mated by a steep ramp and hold of the feedforward command parameter, uff , with

the ramp width equal to 0.20 wing strokes and temporally centered on the de�ned

trial start time, t = 0. All trials were conducted in closed-loop with undelayed feed-

back and consisted of 5 wing beats that were bilaterally symmetric (i.e uff = 0) to

produce �uid conditions representative of hover, followed by 10 wing beats to measure

the system response to a change in the commanded input. Illustrative sample data

for these trials are shown in Figure 2.3. The controller gain, kp, was varied from 0.00

to 0.93. Higher gains were not possible because they would lead to wing kinematics

that were both biologically implausible and beyond the calibration limits of the servo

motors controlling rotation. A proportional controller leaves a steady-state error that

is gain dependent, meaning that using the same uff value across a range of gains

yields a di�erent steady-state velocity. Although the magnitude of the step change

in velocity would not a�ect the time constant for a linear system, we felt a more

relevant comparison was to choose uff for each trial in a manner that resulted in a

consistent steady-state yaw velocity of 27◦stroke−1, a conservative upper limit on the

peak speed during a saccade (Tammero and Dickinson, 2002; Fry et al., 2003).

Time series data for the yaw rate step responses of the robot are shown in Figure

2.5(a) and (b). The response is indicative of an approximately linear �rst-order

system, with higher frequency oscillations, due to torque peaks generated over each

half-stroke, superimposed on the response. We determined the time constant of each

response by a least squares �t of a �rst order response to the trace. Time constants for

each controller gain are plotted in Figure 2.5c with a comparison to model predictions.

The time constant decreased with gain at a diminishing rate, in close agreement with

model predictions.

High gain cases in which sub-wingstroke time constants were achieved, resulted in
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Figure 2.5: Step responses in yaw rate for a proportional controller in the absence of
sensor delay for a variety of gain values. Color corresponds to gain across all panels.
Time series data of the yaw velocity response (a) and the asymmetry parameter,
u (b), from the robotic model. (c) Time constant of the step response for a given
controller gain for the robot and for simulation data.
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angle of attack asymmetries (Figure 2.5b) that are much larger than those observed in

Drosophila during high-speed video sequences in free-�ight (Fry et al., 2003; Bergou

et al., 2009). We conducted a second set of step response experiments that were

more in line with observations of real �ies by imposing a 10◦ limit on the angle of

attack asymmetry. These data are shown along with their corresponding system time

constants in Figure 2.6. The morphological limit on the angle of attack asymmetry

reduced the impact of controller gain, producing an asymptotic �oor in the system

time constant.

2.3.2 Stability in the delayed system

To examine the destabilizing e�ect of sensor delay we conducted impulse response

experiments for four values of feedback delay, spanning the range of relevant delays

expected in a �y. The four feedback delays we considered were 0.5, 1, 5, and 10 wing

strokes, with the range of controller gains used for each delay chosen based on simu-

lation results. For each delay, we measured the response to a modi�ed impulse in uff

for a series of gains to determine the gain at which the system becomes unstable. The

modi�ed impulse consisted of a positive step in uff using the same approximation

for a step function as in the previous set of experiments, followed by a corresponding

negative step after a duration of 4.0 wing strokes. We �t a harmonic function with a

hyperbolic tangent amplitude-envelope to the yaw rate time series data following the

termination of the impulse by optimizing a least squares cost function. The asymp-

totic nature of the amplitude was used to determine the stability of each trajectory.

The time series data is shown for the 5 wing beat delay case in Figure 2.7a to il-

lustrate the method of �nding the gain value at the stability transition. The yaw

rate data display a characteristic oscillatory behavior with a period that is relatively

independent of gain. The amplitude of the oscillation decays to zero for stable cases

and grows toward a limit cycle for the unstable cases. The trials with other delays

yielded similar results with di�erent periods of oscillation and limit cycle amplitudes.

The stability transition gain is plotted in Figure 2.7b with a comparison to model
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Figure 2.6: Step responses in yaw rate for a proportional controller in the absence of
sensor delay with a morphological limit on the magnitude of the wing rotation angle
asymmetry for a variety of gain values. Color corresponds to gain across all panels.
Time series data of the yaw velocity response (a) and the asymmetry parameter,
u (b), from the robotic model. (c) Time constant of the step response for a given
controller gain for the robot and for simulation data.
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Figure 2.7: Response in yaw rate for a proportional controller with sensor delay to
a modi�ed impulse for a series of gains near the stability transition. (a) Time series
yaw rate data from the robotic model for the 5 wing stroke delay case. The curves
are colored in relation to the gain of the controller with higher gains corresponding
to darker colors. Corresponding amplitude envelopes computed using a least squares
�t over the analysis region (grey) are also plotted. (b) Stability transition gain for
the robot for four delays of interest (markers) and for the stroke-averaged simulation
model. The stability threshold given by Equation 2.18 is shown as a dashed line.

predictions. The results indicate a fundamental tradeo� in permissible gain and de-

lay for gains above a certain threshold. For gains below this threshold, the system

appears to be stable regardless of delay.

2.3.3 Step responses in the delayed system

Even at gains below the stability curve, sensor delay can have detrimental e�ects on

system performance. Following the same protocol as used in the step response ex-

periments for the undelayed system, we conducted trials with the same four feedback

delays of interest as the impulse response trials. The range of controller gains used

for each delay spanned the neighborhood of a critically damped response. The gain
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values were once again chosen based on simulation results. With su�cient feedback

gain, sensor delay introduces ringing in the step responses which is characteristic of

systems of second order and higher (see Figure 2.8a). Percent overshoot of the steady-

state yaw velocity was used as a performance metric and is plotted against controller

gain in Figure 2.8b for the 1 wing stroke delay case. The 5% overshoot gain was

estimated by spline interpolation of the overshoot curve and is shown as a function

of delay and compared to simulation results in Figure 2.8c. The gain-delay curve

exhibits a similar tradeo� as in the stability case, but without a gain threshold. For

large enough delay, the system appears underdamped even for an arbitrarily small

gain.

The data deviated noticeably from the stroke-averaged model predictions during

the initial overshoot. We attributed this discrepancy to the oscillation in yaw veloc-

ity at wing beat frequency that was superimposed on the largely second order step

response. The phase relationship of the wing beat frequency oscillation with the time

of the peak in the step response could cause a systematic overestimate or underesti-

mate, because phenomena within an individual stroke obviously cannot be resolved in

a stroke-averaged simulation. As a check of this hypothesis, we adjusted the phase of

the step change in the asymmetry parameter relative to the wing beat cycle to show

this could account for the observed variation and the dominant dynamics remained

unchanged.

2.4 Discussion

The results of this study highlight the importance of explicitly addressing the impact

of delay when modeling the �ight control system in Drosophila and other insects. De-

spite the open-loop yaw velocity dynamics being passively stable (Hedrick et al., 2009;

Dickson et al., 2010; Hesselberg and Lehmann, 2007; Cheng et al., 2010), time delays

consistent with those present in a �y's nervous system are su�cient to destabilize the

closed-loop system for high enough gain. This system instability was observed even

when only subjected to inherent process noise and not given a commanded input, uff
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Figure 2.8: Step response characteristics for a proportional yaw rate controller with
sensor delay for a series of gains near the critically damped condition. (a) Time series
yaw rate data from the robotic model for the 1 wing stroke delay case. The curves
are colored in relation to the gain of the controller with higher gains corresponding to
darker colors. (b) Percent overshoot as a function of gain for the robotic model (red
markers) and for the stroke-averaged simulation (black). (c) 5% overshoot gain for
the robot for four delays of interest (markers) and for the stroke-averaged simulation
model.
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(see Figure 2.9). Introducing proportional control reduces the system time constant

by adding an active damping component (Figure 2.5). For the undelayed case, this

e�ect is limited only by the saturation of the actuation torque and any morphological

limit on the asymmetry in angle of attack. For delayed feedback, the length of delay

places fundamental limits on the controller bandwidth and likewise on the permissi-

ble gain. Measured responses to a modi�ed impulse function provided a consistent

means of identifying the region of gain-delay space in which the system is stable. In

addition, these experiments revealed an asymptote in the gain-delay curve that pro-

vides a threshold below which the system is stable regardless of delay. However, even

if the system is stable, additional delay can accrue important performance de�cits.

Step responses in the delayed system with su�ciently high gain displayed undesirably

large amounts of overshoot and ringing, indicative of severely underdamped systems

of second-order or higher. For longer delays, this behavior was unavoidable even with

minimal feedback gain.

2.4.1 Active damping

Recent studies have suggested that the angular deceleration phase of yaw turns in

�ying animals is entirely mediated by passive damping (Hedrick et al., 2009). The

authors make the argument for passive deceleration based on a comparison of pub-

lished data to two separate hypotheses: a passively damped model and an active

model whereby asymmetric �apping generates constant braking torque. The passive

model predicts an exponential decay in yaw rate, similar to real trajectories, whereas

the active constant torque model predicts a linear decay. Dynamically-scaled robotic

experiments and computational methods have shown that aerodynamic damping in

�apping �ight is indeed important to the dynamics of yaw turns (Dickson et al.,

2010; Cheng et al., 2010; Hesselberg and Lehmann, 2007). In addition, these studies

showed that the resulting passive dynamics are approximately �rst-order and linear

in rotation rate, which would lead to the observed exponential decay. However, the

existence of strong compensatory re�exes in �ies that depend on the magnitude of



42

0 5 10 15 20 25 30 35
Time

(strokes)

− 40

− 30

− 20

− 10

0

10

20

30

40

Ya
w

ra
te

(d
eg

/s
tro

ke
)

Figure 2.9: Response in yaw rate to inherent process noise for a proportional controller
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the stimulus would suggest that these insects utilize active stabilization that may

be approximated by proportional feedback (Frye and Gray, 2005; Taylor and Krapp,

2008). As is evident from the time series step response data, as well as an analysis of

the stroke-averaged equations, a proportional feedback controller would also exhibit

exponential decay. Thus, the existence of an exponential decay in yaw rate cannot be

taken as evidence for the absence of active feedback. Consider the transfer function

for the closed loop dynamics of the linear stroke-averaged model under proportional

control, G(s):

G(s) =
kpCu

Is+ Cω + kpCu
=

kpCu

Is+ Ĉω
. (2.14)

The characteristic equation for the closed loop system has the same form as the

process dynamics with an e�ective damping of Ĉω = Cω +kpCu. In a stroke-averaged

sense, proportional feedback decreases the time constant of the system by providing

an active form of damping.

Flies, like most animals, use a combination of feedforward motor programs and

both neural and mechanical feedback during locomotion (Dickinson et al., 2000).

Given the relatively short time course associated with saccades, there is some ques-

tion as to whether or not the feedback component is involved at all during such

maneuvers (Bender and Dickinson, 2006a). Drosophila exhibit strong visual- and

haltere-mediated equilibrium re�exes to rotational stimuli (Dickinson, 1999; Ristroph

et al., 2010; Götz, 1968, 1975), providing some evidence for respective feedback cir-

cuits. However, such re�exes could be suppressed during voluntary maneuvers. Pre-

vious research on magnetically-tethered Drosophila, where the animal is allowed one

degree of freedom about the yaw axis, has suggested mechanosensory feedback from

the haltere in�uences a feedforward motor program in determining saccade dynamics

whereas visual feedback plays little or no role subsequent to the initiation (Bender

and Dickinson, 2006a). Researchers conducting free �ight studies of mechanically in-

duced yaw perturbations concluded the feedback signal from the haltere was used to

generate re�exive course corrections, but the animals did not use active braking dur-
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ing the perturbation nor at the termination of the compensatory maneuver (Ristroph

et al., 2010). In light of the potential implications of sensory delay on an actively

controlled deceleration, it may even seem prudent for animals to perform these fast

maneuvers in open-loop. However, feedback systems are ubiquitous across biological

systems and engineering applications alike, presumably because they provide robust-

ness to uncertainty. Whereas the term robustness has very speci�c connotations in

control systems, anecdotal observations of fruit �ies convey the general concept of

their ability to handle external perturbations, uncertain process dynamics, and in-

ternal asymmetries. Drosophila are able to regulate yaw torque with partial wing

ablations, arti�cially added wing mass, and many other manipulations (Bender and

Dickinson, 2006a). Further, the moment of inertia of a fruit �y may vary greatly

not only over their lifetime, but even during the course of the day given its hunger

state or gravidity. Such observations do not necessarily lead to any direct conclusions

about the role of feedback during rapid maneuvers, but the universal nature of feed-

back in these systems invites consideration of it at all timescales. We will attempt

to construct a simple feedback model of the visual and haltere systems that is con-

sistent with observations in behavioral studies of yaw dynamics and incorporates the

in�uence of sensor delay.

2.4.2 Active damping for delayed feedback

Proportional feedback with �nite sensor delay also provides active damping, with

the caveat that only su�ciently long timescales and su�ciently low gains are consid-

ered. Using a �rst order Pade approximation for delay yields the closed-loop transfer

function (Aström and Murray, 2010),

Gδ(s) =
kpCu(2 + sδ)

2(Cω + kpCu + Is) + s(Cω − kpCu + Is)δ
, (2.15)

providing valuable insight into the e�ect this delay has on the stroke-averaged dy-

namics. Such an approximation requires exercising some caution because it is valid

only at low frequencies relative to the inverse of the delay time. Higher order Pade
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approximations may be used to similar e�ect with more precision, but at the cost of

sensitivity to perturbations and loss of illustrative clarity. Solving for the pole loca-

tions of Gδ(s), Equation 2.15, gives analytical expressions for the stable and critical

gains, which demonstrate the tradeo� between gain and delay. Requiring the dis-

criminant of the characteristic equation to be zero provides the condition for critical

damping:

kcritical =
6I + Cωδ − 4

√
I(2I + Cωδ)

Cuδ
, (2.16)

Requiring the poles to reside in the left half plane yields the condition for stability:

kstable ≤
2I + Cωδ

Cuδ
. (2.17)

Equations 2.16 and 2.17 provide reasonable approximations of the experimentally

determined gain-delay curves. In the limiting case of zero delay, all timescales are

long relative to the delay, allowable gain goes to in�nity, and we recover the undelayed

closed-loop dynamics. Examining Equation 2.17 reveals the source of the stability

threshold in gain, leading to a su�cient condition for stability:

kp ≤
Cω
Cu

. (2.18)

The same asymptote appears to exist for critical damping, contrary to the experi-

mental results. However, this is an artifact from the breakdown in our approximation

for delay at long delays relative to the dynamics. To show that Equation 2.18 is still

relevant for the stable gain case, we consider the loop transfer function, L(s), with

the full expression for delay:

L(s) =
kpCue

−sδ

Is+ Cω
. (2.19)

We assess the stability of the closed-loop system by applying the Nyquist criterion.

With the condition on kp given by Equation 2.18, the H-in�nity norm is less than

one, which guarantees stability but is not particularly useful for most performance
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metrics. The stability threshold in gain, therefore, results from the strength of passive

damping relative to disturbances from a delayed control input.

On su�ciently long timescales relative to the delay, Equations 2.15-2.18 provide

a valid description of the dynamics and we may use them to compute an e�ective

damping similar to the undelayed case. The relevant term is the real part of complex

conjugate poles in Gδ(s), Equation 2.15, which gives the decay rate. Normalizing by

the moment of inertia gives the e�ective damping:

Ĉω =
2I + (Cω − kpCu)δ

2δ
, (2.20)

which is relevant for gains near kcritical. Shorter delay allows for larger e�ective

damping and a faster system response.

2.4.3 Performance limits

Time delays impose fundamental limits on the performance of the closed-loop system

which may be analyzed using the crossover frequency inequality (Aström and Murray,

2010):

− argPap(iωgc) ≤ π − φm +
ngcπ

2
= φl, (2.21)

where Pap(s) is the all pass system containing the non-minimum phase portion of the

loop transfer function; ωgc is the gain cross-over frequency; φm is the desired phase

margin; ngc is the slope of the gain curve at cross-over; and φl is admissible phase lag

in the minimum phase component of the dynamics. Decomposing Equation 2.19 and

applying Equation 2.21 we get the following condition on ωgc:

ωgc ≤
φl
δ
, (2.22)

meaning that time delay limits the maximum permissible cross-over frequency and

longer time delays impose more restrictive conditions. This results in an expression

for gain for a desired level of phase margin, kφm :
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kφm =

√
(π − φm + ngcπ

2
)2I2 + C2

ωδ
2

C2
uδ

2
. (2.23)

A large cross-over frequency is desirable both for controller tracking and load distur-

bance rejection at higher bandwidth and is facilitated by high gain. Longer delay

with the same amount of phase margin demands a lower cross-over frequency. Delay,

therefore, dictates the nature of the tradeo� between robustness and response time.

2.4.4 Visual and mechanosensory feedback integration

There is strong anatomical and physiological evidence that suggest the primary �ight

control sensors for detecting yaw rate in �ies, namely the vision system and the

halteres, have evolved under selective pressure to reduce latency (Braitenberg, 1967;

Trimarchi and Murphey, 1997; Fayyazuddin and Dickinson, 1996). This idea is consis-

tent with the tangible �tness associated with performance limits imposed by sensory

delays. The specializations in �ies' sensory systems may facilitate their high perfor-

mance behavior (Parsons et al., 2010). Tethered-�ight experiments o�er a method

to decouple and systematically measure visual and mechanical gain, but have often

been criticized for producing exaggerated responses compared to similar disturbances

in free-�ight (Taylor et al., 2008). We will look at the open loop responses to vi-

sual and mechanical yaw velocity stimuli in the context of our results and provide

a potential reconciliation of the observed open-loop responses with free-�ight yaw

dynamics.

Previous studies of tethered Drosophila measured bilateral di�erence in wing beat

amplitude (∆WBA) tuning curves independently for visual and mechanical yaw ve-

locity stimuli (Sherman and Dickinson, 2003). Using a calibration of ∆WBA to yaw

torque of 9.36 × 10−9NmV−1, estimated from data in another study using the same

wing beat analyzer instrument (Tammero et al., 2004), we obtain a crude estimate

for haltere and visual feedback gain. Direct torque measurements in response to vi-

sual stimuli performed in an earlier study provides some independent con�rmation of

this estimate (Blondeau and Heisenberg, 1982). For mechanical stimuli, yaw torque
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Figure 2.10: Estimated feedback gain and delay properties for Drosophila in relation
to theoretical stability and performance boundaries for proportional feedback from
the haltere. Data point (black) is estimated from published data (Sherman and
Dickinson, 2003; Tammero et al., 2004). Theoretical stability curve is shown in solid
red and the 60◦ ± 15◦ phase margin region computed from Equation 2.23 is shaded
in gray.

was approximately linear with yaw rate, with a slope consistent with a proportional

controller of kp = khaltere = 0.6. This estimate of gain comes from the nondimension-

alized slope of regressed mechanical response data (Sherman and Dickinson, 2003),

multiplied by the torque calibration constant and normalized by Cu. Given the esti-

mated feedback delay of the haltere, this gain is in close agreement with what would

be expected for a proportional controller conforming to traditional control systems

design criteria. The estimated haltere-based controller falls between the 75◦ and 45◦

phase margin lines, given by Equation 2.23, on our gain-delay plot in Figure 2.10.

With the longer delay associated with the visual system, one might expect the

gain to be much smaller in the visual system. However, over the region where the

visual response is proportional to the stimulus, the gain is actually much larger with

kp = kvisual = 12.2, which would be remarkably unstable according to our results.
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The important features of the visual response that this neglects is the roll-o� that

occurs at roughly ωc = 0.7 Hz and the in�uence of haltere feedback on the dynamics.

A better interpretation of a visually-mediated yaw controller is a low-pass �lter. We

estimate the controller transfer function to be:

Cvisual =
kvisualωc
s+ ωc

. (2.24)

For short delays, such as a feedback loop from the halteres, the permissible cross-

over frequency is larger than the process pole, meaning that large steady-state gain

and small tracking error over low frequencies can be achieved with a simple propor-

tional controller. For the visual system, the permissible cross-over frequency is smaller

than the process pole, which in this case necessitates the addition of a low frequency

pole. A low pass �lter provides the most basic implementation of this requirement.

If we consider the controller in Equation 2.24 applied to the passive dynamics, the

steady-state gain is too high and the resulting system is still unstable (See Figure

2.11). However, the haltere delay is small on the timescale of the visual system and

proportional feedback from the haltere would provide active damping. The plant dy-

namics to consider for the visual system would have an e�ective damping computed

from the estimated haltere gain and delay using Equation 2.20. The resulting system

is stabilized and has good performance characteristics.

Fast, unstable process poles require a higher cross-over frequency to control them.

Since the permissible cross-over frequency for the visual system is smaller than the

process pole, the process dynamics are required to be stable. The passive dynamics

in yaw velocity are already stable. Added e�ective damping from a haltere inner feed-

back loop is, therefore, not necessary for stability, but does allow the visual system

to operate at higher gain with faster response for the same level of robustness. It is

conceivable that �ies could have visually controlled stable yaw dynamics in the ab-

sence of halteres with either larger passive damping or lower visual gain. Hind wings

would presumably provide larger passive damping, whereas low latency rate sensors

provided by halteres would allow for a larger amount of active damping. The conser-
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Figure 2.11: Estimated feedback gain and delay properties for Drosophila in relation
to theoretical stability and performance boundaries for proportional feedback from
a visual feedback low-pass �lter with inner-loop haltere-mediated e�ective damping.
Data point (black) is estimated from published data (Sherman and Dickinson, 2003;
Tammero et al., 2004). Theoretical stability curve is shown in solid red and the 60◦±
15◦ phase margin region computed from Equation 2.23 is shaded in gray. The dashed
red line gives the stability curve for the visual feedback without active damping.
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vation of overall damping characteristics may very well have paved the way for the

evolution of the haltere from the hind wing. A yaw rate stabilization re�ex consisting

of an inner-loop proportional controller from haltere feedback that provides e�ective

damping for an outer-loop visual low-pass �lter is consistent with open-loop mea-

surements in tethered �ight and provides performance and robustness characteristics

expected by engineering design principles. In addition, the low cut-o� frequency of

the visual system, which is necessarily low due to the permissible cross-over frequency

resulting from the visual system delay, explains why visual responses during saccades

and other fast maneuvers are not prominent. A block diagram illustrating the control

architecture is shown in Figure 2.12. This provides some evidence that tethered �ight

responses might not be exaggerated, but are indeed what would be expected of an

open-loop response for a well-tuned �ight control system in contradiction to previous

arguments (Taylor et al., 2008). Flies possess delay tolerant passive �ight dynamics

and have additionally combated the e�ects of sensor delay through the evolution of

latency reducing specializations. Yet, because of absolute limits posed by neurobio-

logical constraints, sensor delay remains a pervasive in�uence on �ight dynamics and

constant limitation on �ight performance. These results lend themselves to applica-

tions in micro-air vehicle design as well as in developing a better understanding insect

�ight control strategies.
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Figure 2.12: Block diagram of proposed yaw rate control architecture in Drosophila,
given estimated feedback gain and delay properties for a visual feedback low-pass
�lter with inner-loop haltere-mediated active damping.
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Chapter 3

Wing kinematics and the stabilization

of longitudinal forward �ight

Flying insects perform impressive �ight maneuvers that remain unmatched

by micro-robotic systems.

�Chauncey Graetzel (2010)

3.1 Summary

The ability to regulate forward speed is an essential requirement for �ying animals.

Here, we use a dynamically-scaled robot to gain insight into how �apping insects ad-

just stroke features to regulate and stabilize level forward �ight. The results suggest

that few changes to hovering kinematics are actually required to meet steady-state lift

and thrust requirements at di�erent �ight speeds, and the primary driver of equilib-

rium velocity is the aerodynamic pitch moment. This �nding is consistent with prior

hypotheses and observations regarding the relationship between body pitch and �ight

speed in fruit �ies. The results suggest that a shift in the mean stroke position of

the �apping wings is a likely candidate for trimming the pitch moment at all speeds,

whereas changes in the wing rotation angle are required only at high speeds. The

results also show that the dynamics may be stabilized with the addition of a pitch

damper, but that the magnitude of required damping increases with �ight speed. We

posit that di�erences in stroke deviation between the upstroke and downstroke might
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play a critical role in this stabilization. Fast mechanosensory feedback of the pitch

rate could enable active damping, which would inherently exhibit gain scheduling

with �ight speed if pitch torque is regulated by adjusting stroke deviation. Such a

control scheme would provide an elegant solution for �ight stabilization across a wide

range of �ight speeds.

3.2 Materials and methods

3.2.1 Robotic �y apparatus

We conducted the experiments in a 1m× 2.4m× 1.2m tank of mineral oil (Cheveron

Superla white oil; Chevron Texaco Corp. San Ramon CA, USA; density 880 kg/m3,

kinematic viscosity 115 cSt at 25◦C) using a dynamically-scaled model of Drosophila

with similar hardware to the apparatus described previously (Dickson et al., 2010;

Elzinga et al., 2012). The robot consists of two isometrically scaled acrylic wings

(length (R) = 230 mm, mean chord (c̄) = 65 mm, width = 2.3 mm), each with

three independently actuated degrees of freedom: stroke angle (φ), deviation angle

(θ), and rotation angle (α), as illustrated in Figure 3.1(b) and following a standard

Euler angle convention for wing kinematics (Lehmann and Dickinson, 1997). The

stroke axes of the two wings were parallel and separated by 0.11 m. The stroke

position of each wing was controlled by a stepper motor using a microstepping driver

(M-1715-1.5D, IM483; Schneider Electric Motion, Marlborough, CT, USA) whereas

the rotation and deviation positions were controlled by digital servo motors (HSC-

5996TG, Hitec RCD, Poway, CA, USA). The wing motor assemblies were attached to

a common base plate. A 6-axis silicon strain-gauge-based transducer (Nano-43, ATI,

Apex, NC, USA) coupled the base plate with the pitch rotation stage and measured

forces and moments in the body frame, which were then transformed in software

to the center-of-mass coordinate system shown in Figure 3.1(c). The pitch rotation

of the airframe was actuated by a stepper motor (M-2218-3.0S, IM483; Schneider

Electric Motion, Marlborough, CT, USA). The location of the pitch axis was adjusted
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(a) (b)

Figure 3.1: Experimental apparatus. (a) Design drawing of the dynamically scaled
robotic model immersed in the mineral oil tow tank with a (b) detail view of the wing
motor assemblies. Each wing has three degrees of freedom, stroke (φ), deviation (δ),
and rotation (α). Forces and torques are measured where the base �xture that joins
the two wing motor assemblies meets the pitch rotation yoke.

relative to the hinge location to coincide with the center-of-mass of the virtual body. A

geometrically scaled body model was not used because the in�uence of the interaction

between the body and wings on the aerodynamic forces is relatively small and can

be ignored for most studies (Hesselberg and Lehmann, 2007; Dickson et al., 2010;

Hedrick et al., 2009). The entire apparatus was mounted on a linear translation stage

comprised of two linear rails driven by timing belts (Custom, Thomson Industries,

Inc., Radford, VA, USA), which were actuated with a single brushless servo-motor

(BM200E, Aerotech, Inc., Pittsburgh, PA, USA) (Figure 3.1(a)).

The robot was controlled using a PC running a hard real-time Linux kernel with

custom software written in Python and C. At each time step within a 3 kHz real-time

loop, forces and torques were measured, and the commanded positions for all of the

actuators were updated based on prescribed wing and body kinematics. To achieve

appropriate dynamic scaling of the wing and body motions, we matched the Reynolds
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Figure 3.2: Body-�xed, center-of-mass coordinate system used in de�ning the equa-
tions of motion, Equation 3.21, where the pitch angle (ξ) is measured relative to the
stroke plane at hover (de�ned as horizontal in the lab frame with the long axis of
the body pitched up at 62◦ relative to the stroke plane). δ is the body pitch angle
relative to the velocity vector, which is equivalent to ξ only in level forward �ight.
The positive direction is shown for axis tangential (normal) to the stroke plane, u
(w). For ξ and δ, counter-clockwise is positive.
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number (Re), dimensionless pitch velocity (ω∗), and the advance ratio (J) of the robot

to that of a fruit �y with a wing beat frequency of 200 Hz and mean wing chord (c̄)

of 0.76 mm. These dimensionless quantities are de�ned by the following:

Re =
2RΦf c̄

ν
, (3.1)

ω∗ =
ω

f
, (3.2)

J =
V

2RΦf
, (3.3)

where R is the wing length, Φ is the (peak-to-peak) stroke amplitude, f is the �apping

frequency, ν is the kinematic viscosity, ω is the angular velocity of the body, and

V is the velocity of the body. A robot �apping frequency of 0.179 Hz was used to

yield a Re of 114, consistent with �apping �ight in Drosophila (Lehmann & Dickinson

1997). The forces (F ) and torques (τ) measured by the robot were nondimensionalized

according to Equations 3.4 and3.5 (Fry et al. 2003; Dickson et al. 2010):

F ∗ =
F

ρf 2c̄4
, (3.4)

τ ∗ =
τ

ρf 2c̄5
, (3.5)

where ρ is the �uid density. The dimensionless forms of the remainder of terms to

appear in the dynamics are given in Equations 3.6 and 3.9:

m∗ =
m

ρc̄3
, (3.6)

I∗ =
I

ρc̄5
, (3.7)
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a∗ =
a

f 2c̄
, (3.8)

V ∗ =
V

fc̄
, (3.9)

where m is the mass, I is the moment of inertia, a is the linear acceleration, and the

asterisk indicates the corresponding dimensionless quantity. The dimensionless mass

(m∗) and moment of inertia (I∗) about the pitch axis used in this study were 1.93×103

and 1.74× 103, respectively, in agreement with those used in previous studies (Cheng

and Deng, 2011). This was calculated by modeling the �y as a cylinder with length

of 2.5 mm and mass of 1.0 mg. All subsequent values and equations will appear in

their appropriate dimensionless form as de�ned by Equations 3.1 and 3.9 with the

asterisk notation dropped unless noted explicitly otherwise.

3.2.2 Wing kinematics

We used idealized Drosophila wing kinematics consisting of a nominal set of hovering

kinematics based on previous work (Berman andWang, 2007), augmented with several

biologically plausible deformation modes which we have found, through quasi-steady

simulations, to generate pitch torque. The stroke position, deviation, and rotation

angle for the baseline kinematics are given as follows:

φb(t) =
φ0

arcsin(kφ)
arcsin[kφ cos(2πft)], (3.10)

θb(t) = 0, (3.11)

αb(t) =
α0

tanh(kα)
tanh[kα sin(2πft)], (3.12)

where φ0 is the stroke amplitude, α0 the rotation amplitude, and the parameters kφ

and kα control the shape of the wing kinematics. Values of kφ = 0.01 and kα = 1.5
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were selected to produce waveforms that resemble an idealized version of the wing

kinematics of Drosophila (Berman and Wang, 2007; Dickson et al., 2010). Similarly,

a value of φ0 = 70◦ was used to give a peak-to-peak stroke amplitude of 140◦ and a

value of α0 = 45◦ was used to give a 45◦ angle of attack at mid-stroke under hovering

conditions.

We considered three di�erent deformations of hovering wing kinematics: a shift

in the mean stroke position (mean stroke o�set mode), upstroke to downstroke di�er-

ences in wing rotation angle (wing rotation o�set mode), and upstroke to downstroke

di�erences in stroke deviation (di�erential deviation mode). The shift in mean stroke

position is accomplished by adding the deformation parameter to the stroke position,

Equation 3.10, yielding Equation 3.13,

φ(t) = φb(t) + ums, (3.13)

where ums is the deformation parameter. A positive ums shifts the mean stroke posi-

tion, and likewise the mean center of pressure, anterior to the center-of-mass, gener-

ating a positive pitch torque. An example trace of the wing kinematics illustrating a

nonzero value for ums is shown in Figure 3.9(a).

The wing rotation mode shifts the baseline rotation angles in the following manner,

leaving the other degrees of freedom unchanged:

α(t) = αb(t) + uwr, (3.14)

where uwr is the deformation parameter. A positive uwr lowers the angle of attack

on the upstroke, reducing drag while having the opposite e�ect on the downstroke.

Because the mean center of pressure is above the center-of-mass, this results in a

positive pitch torque. An example trace of the wing kinematics illustrating a nonzero

value for uwr is shown in Figure 3.9(a).

Di�erences between upstroke and downstroke deviation were modeled as sinusoidal

excursions from the stroke plane at wing beat frequency over each half stroke with

the maximum deviation occurring at mid-stroke. The di�erential deviation mode is
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described by Equation 3.15:

θ(t) = −1

2
udd sin(2πft)(1 + sgn[udd sin(2πft)]), (3.15)

where udd is the deformation parameter. Positive (negative) values of udd contribute

to a ventral deviation only on the upstroke (downstroke), reducing the mean moment

arm over the upstroke (downstroke) for the drag component of forces on the wings,

resulting in a net positive (negative) stroke-averaged pitch torque. An example trace

of the wing kinematics illustrating a nonzero value for udd is shown in Figure 3.9(a).

3.2.3 Aerodynamic force and moment measurements

Using the dynamically-scaled robotic �y apparatus, we measured the forces and mo-

ments generated during longitudinal �ight as a function of the state, x, and the

kinematic deformation, u, as de�ned by Equations 3.16-3.20:

x =


vu

vw

ω

ξ

 , (3.16)

δ = arctan(
vw
vu

), (3.17)

s =
√
v2u + v2w, (3.18)

v =

 vu

vw

 , (3.19)

u =


ums

uwr

udd

 , (3.20)
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ums uwr udd
minimum −22.2◦ −20.0◦ −20.0◦

maximum 18.8◦ 20.0◦ 20.0◦

Table 3.1: Range of kinematic deformation parameter values used in force and mo-
ment measurements

where vu is the body velocity tangential to the stroke plane, vw is the body velocity

normal to the stroke plane, ω and ξ are body pitch rate and body pitch, respectively,

relative to an inertial reference frame, s is the �ight speed (the Euclidean norm of v),

and δ is a convenience variable describing the slip angle (see Figure 3.2). The exper-

iments we conducted to systematically examine the parameter space were composed

of three general types: a variation of the kinematic deformation parameters while

the robot was stationary, pitch rotations at constant rotation rate for a �xed set of

wing kinematics at zero translational velocity, and constant velocity translations at

a constant body pitch relative to the velocity vector for a �xed set of wing kinemat-

ics. First, we performed the kinematic deformation mode experiments to measure

gn(u), gt(u), and N(u), the baseline subtracted aerodynamic force normal to the

stroke plane, tangential to the stroke plane, and the aerodynamic pitch moment re-

spectively, all as a function of the deformation parameters (ums, uwr, and udd). The

e�ects of each of these parameters were assumed to be additive and independent, a

reasonable assumption based on previous work (Dickson et al., 2010). Consequently,

we did not perform experiments involving combinations of the deformation modes.

Trials consisted of 6 wing strokes at 11 linearly spaced constant values of the de-

formation parameter for each of the three deformation modes. Based on the initial

results for the mean stroke o�set mode, an o�set of ums = −7.2◦ was included in

all subsequent experiments, which served to trim the nominal pitch moment gener-

ated by the baseline kinematics (Equations 3.10-3.12). For each mode, the minimum

and maximum values of the deformation parameter we considered spanned the range

where the pitch moment was approximately linear (see Table 3.1). Stroke-averaged

forces and moments were determined by averaging over the last three wing strokes of

the trial.
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To measure Cω, the pitch damping coe�cient, we conducted trials that consisted

of 2 wing strokes with the robot stationary, followed by a step change in the pitch

rotation rate, ω, that was held for 5 wing strokes. These trials were carried out for

13 linearly spaced constant values of ω over the range of −36 to 36◦stroke−1. The

stroke-averaged pitch torque was determined by averaging over the last three wing

strokes of the trial. We computed Cω from a least squares linear �t of the relationship

between stroke-averaged pitch torque and pitch rate with the sign convention that a

positive Cω is dissipative. We measured fn(δ, s), ft(δ, s), andM(δ, s), the aerodynamic

force normal to the stroke plane, tangential to the stroke plane, and the aerodynamic

pitch moment, respectively, as functions of the slip angle and velocity magnitude, by

conducting constant velocity translation experiments with the robot at a constant

body pitch relative to the velocity vector. The trials consisted of 5 wing strokes with

the robot stationary, followed by a step change in forward velocity that was held for

3 wing strokes. Longer �ight bouts were not possible because the robot traversed the

entire length of the tank during the three wing strokes when operating at the top of

the speed range. The velocities used in this study spanned a range of 0.1 to 1ms−1

in increments of 0.1ms−1 (The 0.0ms−1 case was accounted for in the deformation

mode experiments) when scaled for a fruit �y. The body pitch angle was rotated

relative to the forward velocity vector and the set of experiments was repeated in 5◦

increments over the full 360◦ range of relative angles for a total of 720 trials for each

set of wing kinematics considered. Stroke-averaged forces and torques were taken

from the last wing stroke of the trial. Example time series force and moment data for

a single wing stroke over a range of �ight speeds with δ = −15◦ and the corresponding

stroke-averaged values are shown in Figure 3.3(a) and (b).

3.2.4 Stroke-averaged modeling

The stroke-averaged longitudinal dynamics in the body frame are derived from the

Newton-Euler equation Murray et al. (1994) and are given by:
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Figure 3.3: Force and moment data withδ = −15◦over a range of �ight speeds.
(a)Time series force and moment data for single a wing stroke with time speci�ed in
strokes (t · f). Both raw and �ltered traces (4th order Butterworth, zero phase delay
�lter) are shown and are color coordinated by �ight speed with the corresponding
stroke-averaged values shown in (b). Filtered traces are shown for illustrative purposes
only as the stroke averaged values are computed directly from the raw force and
moment measurements.
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ẋ = h(x,u) =


1
m

(ft(δ, s) + gt(u))− sin(ξ)g − vwω
1
m

(fn(δ, s) + gn(u)) + cos(ξ)g − vuω
1
Iyy

(M(δ, s) +N(u)− Cωω

ω

 (3.21)

where Iyy is the moment of inertia about the pitch axis, and g is the acceleration

due to gravity. The aerodynamic forces and moments as a function of the state,

that is fn(δ, s), ft(δ, s), M(δ, s), and the term Cωω, were measured using the robotic

�y apparatus for the baseline wing kinematics (Equations 3.10-3.12) with a constant

o�set in the mean stroke position that balanced the pitch moment at hover. The

forces and moments that were functions of the deformation parameters (gn(u), gt(u),

and N(u)), which serve as control inputs, were assumed not to be a function of the

state, although we will explore in depth a noted and consequential exception for the

di�erential deviation mode.

We investigated the stability of the dynamics (Equation 3.21) using custom code

written in Python that utilized the SciPy module (Jones et al., 2010) by linearizing the

dynamics about a series of equilibrium (denoted with subscript e) operating points,

(xe, ue), for level forward �ight:

xe =


s cos(δ)

s sin(δ)

0

δ

 , h(xe,ue) =


0

0

0

0

 (3.22)

ż = Az +Bw, A =
∂h

∂x

∣∣∣∣
(xe,ue)

, B =
∂h

∂u

∣∣∣∣
(xe,ue)

, (3.23)

where z is the state (x − xe), w is the control input (u − ue), A is the linearized

dynamics matrix, B is linearized control matrix. Stability is determined by the real

part of the eigenvalues of A, where a strictly negative real part for all four eigenvalues

indicates an asymptotically stable system.
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3.3 Results

3.3.1 Measurement of the stroke-averaged drift dynamics

The aerodynamic forces and moments generated during longitudinal �ight as a func-

tion of the slip angle, δ, and the magnitude of translational velocity for a baseline

set of hovering wing kinematics are shown in pseudo color plots in Figure 3.4. These

functions, which represent fn(δ, s), ft(δ, s), and M(δ, s), were computed by �tting

tensor product splines to the measured robotic �y data (see Appendix A). Along

with the pitch damping coe�cient this measurement completes the experimentally

determined component of the description of the drift dynamics. When the stroke

plane was parallel to the velocity vector, i.e., δ = 0, both fn and ft had a negative

and approximately linear relationship with speed, indicating the presence of inherent

damping in �apping �ight to translational velocity perturbations, as has been noted

in previous studies (Cheng and Deng, 2011). Both of these force components behaved

as if they had a crude, but qualitatively expected, trigonometric relationship with δ

for a given speed. The aerodynamic moment results are consistent with what one

might expect from a drag force that is linear in velocity and acts on the average

center-of-pressure that resides above the center-of-mass, stemming from the similar

relationship for ft. Flies pitch forward (negative ξ by our convention) with increasing

velocity (David, 1978), placing them in a regime of the body pitch-moment function

that has positive slope. Perturbations in pitch angle would lead to pitch moments in

the same direction as the perturbation, leading to a potential instability. However,

the coupling of pitch angle and linear velocity gives rise to more interesting dynamics

that are not as straightforward and will be explored further.

The moment induced by pitch rotations was approximately linear with rotation

rate and independent of the translational body motion. In addition, pitch rotations

had a negligible impact on the forces normal and tangential to the stroke plane. We

measured the pitch damping coe�cient to be, Cω = 1.96 × 102, in agreement with

quasi-steady estimates in previous studies (Cheng et al., 2010). This is roughly a

quarter of the passive damping present in yaw rotations (Elzinga et al., 2012; Dickson
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Figure 3.4: Stroke-averaged force and moment maps as a function of δ and �ight speed,
shown as pseudo color plots for a baseline set of hovering kinematics (Equations 3.10-
3.12). The force normal to the stroke plane, (a), the force tangential to the stroke
plane, (b), and the pitch moment, (c), are all reported in their dimensionless form
with the sign convention de�ned in Figure 3.2.The body pitch and forward �ight
speed relationships, ξ = ψ1(s) and ξ = ψ2(s), shown in Figure 3.6 are superimposed
on all panels.
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et al., 2010). The contribution of body drag to the aerodynamic forces and moments

was modeled separately based on previous dynamically-scaled model experiments

(Dickson et al., 2008). In addition we considered tethered-�ight force measurements

of body drag in the literature (Vogel, 1966). We found the di�erence between these

measured forces and moments and those due to the components of the robot motor

assemblies to be two orders of magnitude smaller than the additional forces on the set

of �apping wings due to body motion. Thus, a separate model of the aerodynamic

forces on the body was not included in the analysis.

To explore the relationship among body pitch angle, forward �ight speed, and

their corresponding �ight force vector, we computed the compensatory forces and

moments required to trim level forward �ight (i.e., values of gn(u), gt(u), and N(u)

such that Equation 3.22 is satis�ed) over the relevant range of body pitch angles (0

to −60◦) and forward �ight speeds (0 to 6.6). These results are shown for constant

body pitch and constant �ight speed curves in Figure 3.5(a)-(c). In practice, the

requisite trim forces would need to be generated through the application of some

combination of kinematic deformation modes. Based on the observation that body

pitch and �ight speed are highly correlated in steady-state level forward �ight, we

narrowed the focus of our analysis to consider two di�erent relationships between

body pitch and forward �ight speed (Figure 3.6): one derived from published free-

�ight experiments in �ies, ξ = ψ1(s), and one computed from the body-�xed force

vector model posited in the literature, ξ = ψ2(s) (Vogel, 1966; David, 1978; Götz

and Wandel, 1984; Zanker, 1988). In the latter model, the inclination of the force

vector is �xed and adjustments in force could only be produced along the direction

normal to the stroke plane through stroke amplitude or frequency changes. For body

pitch-forward velocity pairs corresponding to both functions, the requisite changes

in force production are relatively small. We applied the compensatory forces gn(u),

gt(u) (shown in Figure 3.5(a)-(b)) to the hovering state force vector (ft(0, 0) = 0,

fn(0, 0) = mg) and plotted resulting force magnitude and orientation in Figure 3.7.

The largest force production requirement occurs at hover and subtly decreases with

forward speed before reaching a minima near s = 4.0. Only at higher speeds is
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there an increase in the force production requirement and a change in the ratio of

stroke-plane normal to stroke-plane tangential forces that would require signi�cant

changes to the wing kinematics. Equilibrium �ight speed is largely dictated by the

pitch moment, which means that control modes that a�ect the pitch moment without

a�ecting lift or thrust production may be important.

3.3.2 The role of pitch damping in �ight stabilization

We investigated the stability of the drift dynamics by linearizing about a series of

operating points for level forward �ight (Equation 3.22) and plotting the locus of

eigenvalues for the linearized dynamics matrix as the operating point varied with

�ight speed and the corresponding value of ξ that was given by ψ1(s), the experi-

mentally observed body pitch and velocity relationship (Figure 3.8(a)). In all but

the fastest �ight speeds, we found qualitatively similar natural modes throughout

the range of operating points, consisting of both a fast and a slow stable subsistence

mode, represented by the two negative real eigenvalues, and an unstable oscillatory

mode, represented by the complex conjugate pair of eigenvalues with a positive real

part. This is consistent with what has been previously reported in quasi-steady based

studies of hovering �ight (Cheng and Deng, 2011; Faruque and Humbert, 2010a). As

�ight speed increases, the complex eigenvalues move towards the real axis until a

break-in point is reached and the fast stable eigenvalue retreats further from the

imaginary axis.

Additional pitch damping may be implemented in our analysis by allowing Cω =

kCω0 (where Cω0 is the measured damping coe�cient and k > 1). With a su�ciently

high value of k, the system undergoes a supercritical Hopf bifurcation and is sta-

bilized (Figure 3.8(a)). This result shows that a pitch rate proportional controller,

which serves as a pitch damper, is su�cient to stabilize the longitudinal dynamics

during level forward �ight. Fast mechanosensory feedback of the pitch rate from

the halteres into a compensatory wing motor re�ex (Dickinson, 1999; Sherman and

Dickinson, 2003) would provide just such additional damping (Elzinga et al., 2012).
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Figure 3.5: Trim forces and moments corresponding to di�erent body pitch angles and
�ight speeds for level forward �ight and a baseline set of hovering wing kinematics,
(Equations 3.10-3.12). (a) Trim forces tangential to the stroke plane (abscissa) and
normal to the stroke plane (ordinate) for lines of constant body pitch with color
corresponding to the pitch angle and (b) for lines of constant �ight speed with color
corresponding to the �ight speed. (c) Pitch moment as a function of �ight speed with
lines of constant body pitch. Forces and moments in all panels are reported in their
dimensionless form with the sign convention de�ned in Figure 3.2. The body pitch
and forward �ight speed relationships, ξ = ψ1(s) and ξ = ψ2(s), shown in Figure 3.6
are superimposed on all panels.
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As �ight speed increases, the damping requirement for stability rises as well (Figure

3.8(b)), suggesting a control design that might bene�t from tuning controller gains as

a function of forward velocity. This notion is an example of a more general method

of nonlinear control system design referred to as gain scheduling (Khalil, 1996). The

results were similar when considering instead the velocity and body pitch pair given

by (s, ψ2(s)), but with a larger damping requirement at the high end of the �ight

speed range.

3.3.3 Stroke-averaged forces and moments for the deformation

modes

The stroke-averaged aerodynamic forces and moments as a function of the deformation

parameter for each of the three kinematic deformation modes are shown alongside

time series plots of their associated wing kinematic variables in Figure 3.9. Each

deformation mode generated a pitch moment that was approximately linear with
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Figure 3.8: Eigenvalues and stabilization damping for the linearized dynamics at
di�erent �ight speeds. (a) Eigenvalues (λi) of the linearized dynamics at di�erent
�ight speeds and pitch damping values. The body pitch used for each operating
point was a function of �ight speed as given by the observed relationship in free-
�ight, ξ = ψ1(s) (Figure 3.6, (David, 1978)). Color corresponds to the �ight speed
of each operating point. Grey lines depict the real and imaginary axes. The location
of an eigenvalue relative to the imaginary axis dictates the stability of the subspace
spanned by its corresponding eigenvector. The dotted line indicates a damping factor
of ζ = Re(λi)

|λi| = 0.60, which is a reference for the characterization of the dominant

poles of the system. (b) k, the pitch damping given as a multiple of the passive
damping, that stabilizes the dynamics as a function of �ight speed for both body
pitch and velocity relationships, ξ = ψ1(s) and ξ = ψ2(s), shown in Figure 3.6.
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respect to the deformation parameter over a signi�cant range within the morphological

bounds of their input. Because the parameterization of the input for each control

mode is somewhat arbitrary, comparing the slope of the response for each mode o�ers

little quantitative insight, but the mean stroke o�set mode did provide the largest

moment response over the extent of its linear range. Both the mean stroke o�set mode

and the di�erential deviation mode produced a pitch moment without signi�cantly

altering the �ight forces, whereas the wing rotation mode reduced the force component

normal to the stroke plane while contributing to the tangential force. This suggests

that the wing rotation mode could play a useful role in trimming �ight forces at higher

speeds where a change in the ratio of stroke-plane normal to stroke-plane tangential

force is required for the observed velocity and body pitch relationship.

We explored the state dependence of the pitch moment for the mean stroke o�set

mode and the di�erential deviation mode, the two modes that did not signi�cantly

a�ect the tangential and normal forces, to determine if there were any distinguish-

ing performance features. We conducted two additional constant velocity translation

experiments at incremented body pitch values for a set of wing kinematics with a

constant input for each of the deformation modes. The aerodynamic moment as a

function of δ and s was measured for each deformation mode case and, after sub-

tracting the baseline, yielded the pseudo color plots in Figure 3.10(a) and (b). As s

increased, the pitch moment response at the corresponding body pitch given by both

ψ1(s) and ψ2(s) was ampli�ed for the di�erential deviation mode, in contrast to the

mean stroke o�set mode which exhibits some variation but much less of a persistent

trend with increasing �ight speed (Figure 3.10(c)). This result suggests a possible

mechanism to cope with the velocity-dependent damping requirement if the di�eren-

tial deviation mode was used in realizing a pitch rate proportional controller which

stabilizes the longitudinal dynamics.
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3.4 Discussion

The results of this study indicate that equilibrium �ight speed is largely dictated

by the pitch moment. This implies �ies may employ control modes that a�ect the

pitch moment without a�ecting lift or thrust production, such as the mean-stroke

o�set control mode. At high speeds, both additional pitch torque and a �ight force

tilt are required, which implicates the wing rotation control mode. The results also

show that a pitch rate proportional controller, which serves as a pitch damper, is

su�cient to stabilize body pose during forward �ight. The damping requirement is

velocity dependent and increases with �ight speed. Fast mechanosensory feedback of

pitch rate from the halteres could enable active damping and would exhibit inherent

gain scheduling with �ight speed if the pitch torque was generated by the di�erential

deviation deformation mode. We hypothesize that di�erences between upstroke and

downstroke deviation likely play a critical role in �ight stabilization across a wide

range of �ight speeds. The roles suggested for each of the deformation modes in

trimming �ight forces and stabilizing the dynamics of level forward �ight in �ies are

summarized in Figure 3.11.

3.4.1 Interpreting the �ight force vector

Several experimental lines of evidence support the notion that �ies alter the magni-

tude, but not the direction, of their �ight force vector relative to their body orientation

and that body pitch is primarily responsible for controlling the direction of force out-

put. This phenomenon was observed in optomotor control experiments in tethered

Drosophila performed in still air (Götz and Wandel, 1984). In this model, the covari-

ance of force components would be achieved through stroke amplitude changes which

would increase the size of an actuator disk de�ned by the area swept out by the wings

during a stroke (Zanker, 1988; Ellington, 1984a). Stroke frequency also plays a role,

but is less variable on a wing stroke to wing stroke basis (Lehmann and Dickinson,

1997). The force vector would be tilted forward via body pitch to balance drag in

forward �ight and the magnitude of the force vector would increase with the secant of
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Figure 3.11: Illustrative summary of hypothesized wing kinematic changes associated
with trimming and stabilizing level forward �ight in �ies. The �ight force vector is
shown in black and compared to the �ight force vector for the hovering state (grey).
As �ight speed increases (shown from left to right) the animal pitches forward. At
low to mid speeds the pitch moment required to balance the moment due to body
motion is generated through shifting the force vector back by utilizing the mean
stroke o�set mode and the overall force production is slightly reduced with stroke
amplitude changes. At high speeds, the requisite additional pitch torque and tilting
of the force vector is accomplished through the wing rotation mode. Across all speeds,
active damping is achieved through proportional feedback of the pitch rate to torque
produced by means of the di�erential deviation mode. The pitch rotations indicated
by the colored arrows correspond to the like color changes in deviation of the wing
stroke.
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body pitch to maintain weight support. The interpretation of the �ight force vector

is straightforward in still air or when there is a clear separation between the source of

propulsion and the lift and drag producing surfaces, such as in a conventional aircraft.

The notion of a �ight force vector in forward �ight for an insect is complicated by

changes in airspeed and the associated additional forces acting on the wings due to

body motion, which are much more important than the parasitic drag on the body

itself. We de�ne the �ight force vector as the superposition of the compensatory trim

forces (gt(u), gn(u)) and the hovering state force vector (ft(0, 0), fn(0, 0)), as shown in

Figure 3.7. We interpret the state dependent forces that result in lift and drag forces

due to body motion as (ft(δ, s)− ft(0, 0), fn(δ, s)− fn(0, 0)).

The observation of the animal pitching its body forward as �ight speed increased

was noted by Vogel during tethered �ight experiments where he adjusted the airspeed

in a wind tunnel to achieve a thrust balance and determine the preferred airspeed of

the animal at a given body pitch orientation (Vogel, 1966). This relationship between

body pitch and �ight speed was measured in free �ight by David and con�rmed Vogel's

�ndings (David, 1978). The relationship was indeed qualitatively consistent with the

�xed force vector inclination observed by Götz, but the di�culties in de�ning the force

vector in the presence of a non-zero airspeed do not permit an explicit comparison.

David assumed that an increase in the force vector magnitude would be required

to yield weight support at the observed body pitch angle changes and computed

drag forces based on this assumption. Contrary to this intuition, our results suggest

that the vertical lift is enhanced from the body velocity and this is su�cient not

only to make up the de�cit resulting from forward pitching but to slightly reduce

the magnitude of the force requirement over the low-to-mid forward velocity range.

In many ways, this is not as surprising after considering the large instantaneous

forces produced tangentially to the stroke plane during hovering on the upstroke and

downstroke that are a wasted byproduct of su�cient lift production. We also note

that this is reminiscent of Pennycuick's prediction of a u-shaped relationship between

power and �ight speed (Pennycuick 1968). Whereas we did not observe an increase in

requisite force production to maintain weight support, a �xed inclination of the �ight



79

force vector does appear to be maintained at the body pitch and forward velocity

relationship observed in free �ight for �ight speeds of less than 4.0, as indicated by

negligible trim forces tangential to the stroke plane within this range (Figure 3.7).

3.4.2 On the role of shifts in the mean spanwise rotation angle

of the wing

Recent studies based on free-�ight observations and quasi-steady simulations have

suggested that the control of forward �ight speed in Drosophila is mediated by changes

in the mean spanwise rotation angle of the wing (Ristroph et al., 2011). This, along

with documented evidence of the involvement of bilateral asymmetries in this pa-

rameter during yaw turns and further support for the mechanism in hawkmoths,

provided the inspiration for the wing rotation deformation mode considered in this

study (Cheng et al., 2011; Fry et al., 2003; Hedrick et al., 2009; Bergou et al., 2009).

Our results suggest that in �ies this mechanism is most important for s > 4.0. The

highest speed trajectories observed by Ristroph and colleagues is near this transition,

but they noted the importance of the mean spanwise rotation angle at low speeds as

well. There are a few possible explanations for this discrepancy. Changes in body

pitch (which were not reported) would enter into the spanwise wing rotations recorded

in the lab frame coordinates used in their study. From an aerodynamic and modeling

perspective, the choice of coordinates in de�ning the wing kinematics is immaterial,

but it has important consequences in interpreting the animals' response. A second

possibility is a small disparity between the recorded sequences and true steady-state

level forward �ight conditions. In con�ned �ight arenas, there is a high probably of

maneuvering �ight bouts through the capture volume. Their analysis was limited to

accelerations of less than 0.15g, but this could still result in sizable excursions in the

state variables (Figure 3.5).

At higher �ight speeds our results suggest a forward tilt of the force vector is

required to trim the �ight forces associated with the observed free-�ight relationship

of body pitch and forward �ight speed, which could be achieved through the utilization
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of the wing rotation mode. Because this phenomenon was not observed for optomotor

control experiments in still air (Götz and Wandel, 1984), it is possible that the shift in

mean rotation angle at high speeds is a passive consequence of the deformable nature

of the wing hinge and the upstroke to downstroke di�erences in the local velocity �eld

during forward �ight. Another hypothesis is that such a mode is not activated until

the detection of a su�ciently high airspeed through another sensory modality.

3.4.3 Gain scheduling during active damping

Analysis of the longitudinal �ight dynamics of level forward �ight in �ies revealed

an unstable mode that persisted throughout the range of �ight speeds considered in

this study (Figure 3.8). The results show that the dynamics may be stabilized with

su�ciently high pitch damping at any given forward �ight speed. Additional damping

may be provided actively by a pitch rate proportional controller implemented via a

haltere-motor re�ex (Dickinson, 1999; Sherman and Dickinson, 2003; Elzinga et al.,

2012). Stabilization using fast inner-loop feedback would remove restrictions imposed

by right half planes poles (Aström and Murray, 2010) for a slower visually-mediated

outer-loop controller.

The stability result is, however, local to a neighborhood around the operating

point because the analysis was performed via linearization. We approach the nonlinear

dynamics by noting how the linearized dynamics change with the operating point: as

�ight speed increases, the damping requirement for stability also rises (Figure 3.8(b)).

We utilize the forward velocity magnitude as a scheduling variable and consider a

family of linear pitch rate proportional controllers parameterized by the magnitude

of forward velocity, a technique called gain scheduling (Khalil, 1996). The damping

term in Equation 3.21 becomes:

cω = (Cω0 − bCui), (3.24)

where Cui is the actuation coe�cient for a given deformation mode,
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Cui =
∂N

∂ui

∣∣∣∣
ui=0

, (3.25)

and b is the gain,

b =
Cω0

Cui
(1− k(s)). (3.26)

The damping multiple as a function of forward speed required for stability, k(s), is

shown in Figure 3.8(b). We assume the sensorimotor delay in the haltere circuit to

be low enough to allow for a su�cient level of active damping (Elzinga et al., 2012),

but delays in the measurement of the scheduling variable from other sensory modal-

ities used in modulating the feedback gain might be problematic. The animal could

utilize a constant gain strategy across all �ight speeds, corresponding to the peak

damping value, but overly damped dynamics at low speeds may have consequences

for maneuverability. To explore the consequences of a delayed measurement of the

scheduling variable we simulated the response of the �y to a 20 cm · s−1 horizontal

velocity perturbation and numerically solved the set of delayed di�erential equations

using software written in Python. The simulation code relied heavily on the Pyde-

lay package which implements an algorithm based on the Bogacki-Shampine method

(Flunkert and Schoell, 2009). We assumed the following form for the damping func-

tion:

k(s) = k0(s) + c

(
sup

0≤s≤6.6
k0(s)− k0(s)

)
, c ∈ [0, 1], (3.27)

which was deduced from the limiting cases of: 1) an in�nite delay, where accurate

information regarding the �ight speed cannot be garnered and the constant gain strat-

egy must be used, and 2) a zero delay, where k(s) = k0(s). Using this assumption,

we determined the damping multiple required to stabilize the dynamics as a function

of the �ight speed for a feedback gain which was modulated using a delayed estimate

of the forward velocity. The results are shown in Figure 3.12 for several delays rang-

ing from 1 to 10 wing strokes, which encompass the approximate visual-motor delay
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Figure 3.12: Pitch damping (given as a multiple of the passive damping) required
to stabilize the dynamics as a function of the �ight speed when tuning the feedback-
based damping using a delayed estimate of the forward velocity. Damping values were
determined through simulation of the delayed di�erential equations and by assuming
the same functional form for the damping-velocity relationship as determined in the
undelayed case. Dashed lines represent the stabilization damping for the undelayed
and the in�nite delay cases. The delay in measuring forward velocity, τd, is reported
in wing strokes.

of 7 wing strokes (Land and Collett, 1974; Roth et al., 2012). This suggests that

�ies would bene�t from using an actuation mode such as the di�erential deviation

mode for feedback-based pitch damping, which has greater authority at higher air-

speeds (Figure 3.10) without being subject to additional sensor delays. This provides

an elegant solution for �ight stabilization across a wide range of �ight speeds and

may be an example of a more general theme in �y �ight control where some of the

computational complexity is o�oaded to the mechanics as a way combating perfor-

mance limits imposed by sensory delays. We hope to explicitly test this hypothesis

in the future with measurements of time resolved wing kinematics during mechanical

perturbations performed on tethered �ies in a wind tunnel.
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Chapter 4

Conclusion

Insects were the �rst animals to evolve active �ight and remain unsur-

passed in many aspects of aerodynamic performance and maneuverability.

�Michael Dickinson (1999)

Flies are incredibly robust �iers. Whether they are subjected to wing damage, mid-

air collisions, or wind gusts on par with their top airspeed, �ies are able to sustain

stable �ight and still manage to do so despite a small computational budget and long

sensorimotor delays relative to their �ight dynamics. In principle, achieving high per-

formance in the presence of long delays would imply the need for high �delity forward

models. Reliance on the accuracy of such models would, however, lead to increased

fragility. Flies appear particularly adept at balancing the competing demands of delay

tolerance, performance, and robustness which invites thoughtful examination of their

multimodal feedback architecture. This dissertation examined stabilization require-

ments for inner-loop feedback strategies in �apping �ight for Drosophila against the

backdrop of sensorimotor transformations present in the animal. This was achieved

through experimental characterization of the passive �ight dynamics and changes

in wing kinematics using a dynamically-scaled robot along with subsequent analysis

within a control theoretic framework. Here we summarize the main results of this

thesis, develop some unifying conclusions about the role of mechanosensory feedback

in insect �ight control, and discuss future work to build upon these �ndings.



84

4.1 Summary of �ndings

In Chapter 2, we studied the dynamics of hovering yaw turns during �apping �ight

and the impact of sensory delays on the stability and performance of feedback re�exes

during a stereotyped body saccade for a fruit �y. To perform this analysis, we uti-

lized a dynamically-scaled robotic model with captive trajectory capability about the

yaw axis. Yaw torque was controlled through a deformation in the wing kinematics

which resulted in bilateral asymmetries in the angle of attack. System characteri-

zation experiments for a range of feedback delays similar in dimensionless timescale

to those present in the nervous system agreed with relatively simple stroke-averaged

models based on measurements of the passive dynamics and actuation torques gen-

erated by changes in wing kinematics. The simplicity of the stroke-averaged model

and its close agreement with captive trajectory experiments a�orded the opportunity

to gain fundamental insights through closed-form solutions. The results demonstrate

that a proportional controller decreases the system time constant by adding an ac-

tive damping component, but is constrained by a tradeo� between sensor delay and

permissible feedback gain. The open-loop yaw velocity dynamics are passively stable,

but time delays consistent with those present in a �y's nervous system are su�cient

to destabilize the closed-loop system for high enough gain. When considering the

�y's proportional response to wide-�eld visual motion during tethered �ight in iso-

lation, that is, only accounting for passive damping characteristics and neglecting

the high-frequency roll-o� of the visual response, the identi�ed controller is indeed

unstable given the long delay of the visual system. In addition to the importance of

the low-pass �lter characteristics of the visual system, this suggests that the role of

the haltere may be to provide fast inner-loop feedback, resulting in additional active

damping which would allow the slower visual system to operate at higher gain with

a faster response for the same level of robustness. A yaw rate stabilization re�ex

consisting of an inner-loop proportional controller from haltere feedback that pro-

vides additional damping for an outer-loop visual low-pass �lter is consistent with

open-loop measurements in tethered �ight and provides performance and robustness
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characteristics expected by engineering design principles. The low cut-o� frequency

of the visual system, which is necessarily low due to the permissible cross-over fre-

quency resulting from the visual system delay, explains why visual responses during

saccades and other fast maneuvers are not prominent. This analysis also provides

evidence that the large open-loop responses observed in tethered-�ight might not be

an artifact of the preparation, as previously suggested, but, in the proper context,

are the expected open-loop responses of a properly designed �ight control system.

In Chapter 3 we modi�ed the dynamically-scaled robotic apparatus to study how

�ies adjust stroke features to regulate and stabilize level forward �ight in the longitu-

dinal plane. The results suggest that few changes to hovering kinematics are necessary

to meet steady-state lift and thrust requirements at di�erent �ight speeds when fol-

lowing the experimentally observed relationship between body pitch and �ight speed.

The equilibrium �ight speed is instead largely dictated by the pitch moment which

implies �ies may employ control modes that a�ect the pitch moment without a�ecting

lift or thrust production, such as the mean-stroke o�set control mode. This �nding

is consistent with prior hypotheses based on tethered-�ight force measurements and

free-�ight observations. At higher speeds, however, force production tangential to the

stroke plane is required in addition to trimming the pitch moment, which implicates

the wing rotation control mode. The results also show that the dynamics may be

stabilized with the addition of a pitch damper, but that the magnitude of required

damping increases with �ight speed. We posit that di�erences in stroke deviation

between the upstroke and downstroke might play a signi�cant role in this stabiliza-

tion. Low latency mechanosensory feedback of the pitch rate from the halteres could

provide damping, which would inherently exhibit gain scheduling with �ight speed

if pitch torque is regulated by adjusting stroke deviation. Stroke deviation is a pa-

rameter that has largely been treated as insigni�cant in the literature, but changes

in stroke deviation have been correlated with steering muscle activation and utilizing

such a control scheme would provide an elegant solution for �ight stabilization across

a wide range of �ight speeds.

Visually guided �ight performance in �ies is limited by the permissible cross-
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over frequency arising from the long visuomotor delay, leading to constraints on the

underlying dynamics to ensure controllability. For hovering yaw dynamics, added

rotational damping was desirable and for longitudinal forward �ight it was required.

In both cases, hind wings would presumably provide larger passive damping, whereas

low latency rate sensors given by halteres would allow for a larger amount of active

damping. The conservation of overall damping characteristics may very well have

played a crucial role in the evolution of the haltere from the hind wing. Similarly,

sensory feedback-based linear damping is present in antennae-mediated responses to

airspeed changes. Dipteran �ight performance most likely bene�ts from this trading of

passive damping for fast mechanosensory feedback loops that provide active damping.

More generally, we see a hierarchical control structure emerge to balance performance

and robustness in response to signi�cant sensorimotor delays which persist, despite

numerous evolutionary specializations, due to neurobiological constraints.

4.2 Future directions

The characterization of �ight dynamics in Drosophila presented in this dissertation

will allow for a theoretical treatment of higher-level control strategies as well as place

task-level behavioral experiments in the proper context of the animal's underlying

�ight dynamics. A number of laboratories, including our own, are exploring this

topic in free-�ight using automated computer vision-based tracking at the level of

both body kinematics and wing kinematics to measure responses to both visual and

mechanical perturbations. Free-�ight experiments provide a more naturalistic setting

to explore these phenomena and understanding natural behavior is the end-game, but

tethered-�ight experiments still present an opportunity to isolate behavioral responses

for a particular modality in a more straight-forward manner. System identi�cation

experiments in tethered �ies subjected to mechanical oscillations, similar to Sherman

and Dickinson (2003), with subtle physical manipulations of the haltere end-knob

could serve to further elucidate the role of the haltere in providing additional damping.

Physical manipulations of the haltere have been performed before with some success,
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but manipulating the haltere gain without a�ecting critical resonant properties is not

trivial. The hypotheses put forth here regarding the role of several deformation modes

of the wing kinematics in stabilizing longitudinal forward �ight may be addressed in

tethered �ies enclosed in a low-speed wind tunnel using high-speed video to record

changes in wing kinematics. This apparatus would additionally require a motor-

controlled rotational degree of freedom to set the pitch angle as a function of airspeed

and provide a means to introduce mechanical perturbations. Finally, incorporating a

vertical degree of freedom into the robotic �y apparatus would complete its captive

trajectory capability in the longitudinal plane and would allow experiments to fully

validate stroke-averaged simulations far from equilibria. The ultimate goal in the

study insect �ight is to bridge multiple layers of analysis to understand how sensory

information is processed, how muscle activation leads to wing kinematic changes

through musculoskeletal mechanics, and how changes in wing and body kinematics

generate aerodynamic forces. As we make progress in these areas, we develop a better

understanding of insect �ight control strategies, gain insight into the neural basis of

behavior, and �nd inspiration for micro-air vehicle designs.
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Appendix A

Tensor product spline representation

of stroke-averaged force and moment

maps

The functions fn(δ, s), ft(δ, s), andM(δ, s), the aerodynamic force normal to the stroke

plane, tangential to the stroke plane, and the aerodynamic pitch moment respectively

as functions of the slip angle and velocity magnitude which were discussed in Chapter

3 were computed by �tting tensor product splines to the measured robotic �y data.

These tensor product surfaces were plotted in pseudo-color in Figure 3.4. Here we

report the spline coe�cients that approximate these functions and their standard

deviations which were derived through a bootstrapping procedure.

Consider two spline spaces:

S1 = Sd1,σ1 = span {ϕ1, . . . , ϕn1} , (A.1)

S2 = Sd2,σ2 = span {χ1, . . . , χn2} , (A.2)

where d is degree of the spline space, σ is the knot vector, and ϕ and χ are basis or

B-splines. The tensor product surface is given by:

f (x, y) =

n1∑
i=1

n2∑
j=1

cijϕi(x)χj(y), (A.3)

or written more compactly as
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f(x, y) = ϕ(x)TCχ(y). (A.4)

The coe�cients for computing fn(δ, s), ft(δ, s), and M(δ, s) from Equation A.4 are

given in Tables A.1-A.3 with d1 = d2 = 3 and the following knot vectors:

σ1 =

(
−π

2
,−π

2
,−π

2
,−π

2
,
3π

2
,
3π

2
,
3π

2
,
3π

2

)
, (A.5)

σ2 = (0, 0, 0, 0, smax, smax, smax, smax) , smax = 6.6. (A.6)

Ci1 Ci2 Ci3 Ci4
C1j −5.85× 102 ± 1.4 −3.55× 102 ± 3.9 −2.04× 102 ± 4.0 9.88× 101 ± 2.0
C2j −6.42× 102 ± 2.9 −1.01× 103 ± 9.0 −1.17× 103 ± 9.9 −1.74× 103 ± 4.9
C3j −5.59× 102 ± 2.9 −4.60× 102 ± 8.8 −1.38× 103 ± 9.8 −1.39× 103 ± 4.9
C4j −6.19× 102 ± 1.4 −3.94× 102 ± 3.7 −1.62× 102 ± 3.8 6.56× 101 ± 1.9

Table A.1: Coe�cients, Cij ± stdij, used in computing fn(δ, s) from Equation A.4

Ci1 Ci2 Ci3 Ci4
C1j 9.05× 101 ± 2.9 1.11× 102 ± 6.3 1.17× 102 ± 5.9 1.28× 102 ± 2.5
C2j 1.92× 101 ± 6.1 −6.57× 102 ± 15.2 −1.60× 103 ± 15.3 −2.70× 103 ± 7.0
C3j 1.02× 102 ± 6.1 9.19× 102 ± 15.3 1.70× 103 ± 15.9 3.02× 103 ± 7.1
C4j 5.07× 101 ± 2.8 −6.86× 101 ± 6.5 8.48× 101 ± 6.0 −1.28× 102 ± 2.5

Table A.2: Coe�cients, Cij ± stdij, used in computing ft(δ, s) from Equation A.4
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Ci1 Ci2 Ci3 Ci4
C1j −2.24× 102 ± 2.9 −2.23× 102 ± 6.7 −2.31× 102 ± 6.4 −2.55× 102 ± 2.9
C2j 9.52× 101 ± 6.1 1.06× 103 ± 15.7 2.20× 103 ± 17.0 2.77× 103 ± 8.0
C3j −3.27× 102 ± 6.0 −1.37× 103 ± 15.4 −2.33× 103 ± 16.6 −2.98× 103 ± 7.9
C4j 5.20× 101 ± 2.9 7.76× 101 ± 6.6 −6.74× 101 ± 6.4 4.69× 101 ± 2.8

Table A.3: Coe�cients, Cij ± stdij, used in computing M(δ, s) from Equation A.4


