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Abstract

Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented
by circuits of interacting biomolecules. Although these regulatory networks function determinis-
tically by executing specific programs in response to extracellular signals, molecular interactions
are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell
phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design
flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a
biological function by increasing the probability of survival of individual cells upon an abrupt change
in environmental conditions. Decades of extensive molecular and biochemical characterization have
revealed the connectivity and mechanisms that constitute regulatory networks. We are now con-
fronted with the challenge of integrating this information to link the structure of these circuits to
systems-level properties such as cellular decision making. To investigate cellular decision-making,
we used the well studied galactose gene-regulatory network in Saccharomyces cerevisiae. We ana-
lyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway
activity. We demonstrate that this bimodality in the pathway activity originates from two positive
feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells
in a mixed sugar environment, we observe that the bimodality in gene expression is a transient
phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior
to galactose metabolism can accelerate galactose consumption and provide a transient increase in
growth rate. Together these results provide important insights into strategies implemented by cells
that may have been evolutionary advantageous in competitive environments.
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Chapter 1

Introduction

Introduction

Biological systems exhibit remarkable phenotypic diversity. The myriad of phenotypes are achieved

through networks of interacting biomolecules that produce a rich repertoire of dynamical functions

at the cellular level. For example, these circuits have been shown to produce oscillations, excitability,

adaptive responses and bistability [1, 2, 3, 4]. Due to the discrete nature of molecular interactions, the

dynamic responses are inherently stochastic and display significant fluctuations in the concentrations

of components. Indeed, single microbial and eukaryotic cells can exhibit significant phenotypic

heterogeneity that does not stem from a genetic origin.

Although the inescapable noise in the levels and activities of biomolecules seems undesirable

for cells, previous studies have shown that phenotypic variability can be functionally beneficial in

specific environments. This bet-hedging phenomenon is characterized by more than one coexisting

phenotype in a uniform environment that provides a temporary disadvantage for the population

but can confer a long-term fitness advantage upon an abrupt environmental change [5]. In bacteria

for example, competence, sporulation, and persistence in response to high doses of antibiotics have

been shown to enhance population fitness by increasing the chance of survival upon a shift in the

environmental conditions [6, 7, 8]. In all of these cases, noise in the levels of critical regulatory

molecules influences a binary cellular decisions. Recently, yeast have also been shown to benefit

from bet-hedging strategies by diversifying the range of growth rates or displaying asymmetric
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growth behaviors in response to specific stress stimuli such as metal deprivation or heat [9, 10].

In several cases, the potential for significant phenotypic variability has been shown to arise

from the feedback structure of the regulatory network [11, 12, 13, 2]. Feedback loops are defined

as molecular interactions that link the output of a system back to the input [14]. These loops

ubiquitous regulatory features of biological networks and can significantly modulate the dynamics

and function of circuits. For example, negative feedback can quantitatively shape cellular responses

by enhancing the system’s response time, reducing phenotypic variability and generating transient

dynamic behaviors [15, 16, 17]. Positive feedback loops can provide signal amplification and induce

bistability if the positive feedback loop is coupled to a sufficiently ultrasensitive mechanism [4, 18, 19].

Natural biological circuits frequently contain many feedback loops and it is a challenging task to

disentangle the roles of individual loops and understand how their activities are coordinated in a

densely connected network [13].

In this work, we have explored the role of feedback loops, dynamics and biological function of

single-cell variability using the galactose gene-regulatory network (GAL) in Saccharomyces cere-

visiae (S. cerevisiae) as a model system. The galactose regulatory network is a very well analyzed

eukaryotic gene circuit that provides cells with the capability to metabolize the galactose as a car-

bon source. Extensive biochemical and molecular characterization has elucidated the key molecular

events that enable cells to turn this metabolic switch on and off in response to changes in environ-

mental signals. Here, we built upon this foundation to understand how these complex molecular

interactions can combine to produce system level properties. This gene regulatory network has two

interesting behaviors: single-cells can exhibit coexisting all-or-none network activity for intermediate

concentrations of galactose or combinations of glucose and galactose [19, 20, 18] and small variations

in concentration of galactose can generate a large fold change in the downstream enzyme levels,

referred to as ultrasensitivity. Our analysis of this system identified the mechanism that generates

the switch-like bistable response and revealed how this bimodal strategy can be advantageous for a

population of cells in a combinatorial environment.

In Chapter 2, we use a combination of experiments and computational modeling to analyze the
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roles of the feedback loops on the bimodal response of the GAL system. We demonstrate that two

positive feedback loops established by the bifunctional galatokinase and signal transducer Gal1p

and signal transducer Gal3p collaborate to induce bistability in the system. Our computational

analysis identifies molecular sequestration as a critical mechanism for generating the ultrasensitive

stage necessary for robust bistability in the system.

In Chapter 3, we probe how the GAL network integrates two signals of glucose and galactose to

generate a dynamic transcriptional response. By measuring single-cell dynamics over a long time

scale, we observe transient bimodality for conditions of similar concentrations of the two sugars. In

fact, after many cell generations, all cells in the population converge to a single monomodal on-state.

We construct a computational model that captures the structure of the network with two inputs.

Our analysis of the model reveals that the observed transient bimodality originates from bistability

that vanishes when glucose is depleted beyond a threshold. Sugar measurements indicate that the

delayed turn-on of the repressed subpopulation of cells occurs precisely when cells begin to consume

galactose following glucose depletion. The early activation of the GAL genes in a fraction of cells is

shown to reduce the transition time between carbon sources and provides a transient enhancement

of cellular growth rate. Our experiments also reveal a cost to constitutive GAL gene expression that

arises from a reduced glucose consumption rate, thus highlighting the intricate tradeoffs involved in

the timing of GAL gene induction.

In Chapter 4, we investigate the mapping between promoter sequence and expression level us-

ing the bidirectional GAL1-10 promoter. We construct a library of randomly mutated promoter

sequences and model the effects of these mutations with a statistical model to identify the relative

contributions of single nucleotides to the observed expression levels. By measuring the expression

levels of both directions of this bidirectional promoter, our results indicate that individual nucleotides

can differentially tune the promoter activity. Experimental characterization of critical nucleotides

displays a strong correlation with the model’s prediction, highlighting the predictive capabilities of

the model.

In Chapter 5, using a computational model of the GAL network, we analyze the roles of the feed-



4

back loops and sequestration on a set of phenotypes including bistability, ultrasensitivity, switching

threshold, dynamic range, response time and tunability.
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Chapter 2

Dual feedback loops established by
molecular sequestration generates
robust bimodal response

A version of this chapter has been published as [19].

Introduction

Cells are continuously faced with the challenge of sensing signals in their environment and eliciting

intracellular programs accordingly. While changes in some environmental cues engender graded and

proportional responses, others induce decisive action whereby a cell exhibits a binary (on or off)

phenotypic change. In the latter case, amplification of phenotypic heterogeneity may arise since

single cells in a population make individual decisions based on their perception of the environmental

stimulus, stochastic fluctuations in their molecular components, and memory of past conditions.

This thresholded cellular response can manifest as a bimodal distribution in network activity across

an isogenic cell population.

Feedback regulation, which links the output of a circuit back to its input, expands the set of

possible biological properties, including robustness to uncertainty [14] and can produce single cell

phenotypic heterogeneity in a uniform environment. Many features of individual positive and neg-

ative feedback loops have been elucidated, including enhancement of response time and reduction

of gene expression noise by negative autoregulation, and signal amplification and bistability using
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positive autoregulation [15, 16, 21, 13]. However, quantitative characterization of how multiple feed-

back pathways interact to regulate and fine-tune cellular decision-making presents many unresolved

challenges.

The galactose gene-regulatory network S. cerevisiae (GAL) contains numerous feedback path-

ways. Isogenic single cells respond heterogeneously to a range of galactose concentrations, which

manifests as a bimodal distribution of GAL gene expression across the cell population [18]. In con-

trast to a graded response, in which the mean of a unimodal distribution is continuously adjusted

as the input is modulated, variations in the concentration of galactose within a range shifts the

fraction of the cell population distributed between distinct metabolic states. Here, we focused on

how the multiple feedback loops in the system shape this bimodal cellular decision-making strategy

in response to galactose.

The GAL circuit consists of regulatory machinery (Gal2p, Gal3p, Gal80p, Gal4p) that dictates

network activity and a set of enzymes required for metabolizing galactose (Gal1p, Gal7p, Gal10p).

In the absence of galactose, GAL genes are repressed due to the sequestration of the potent tran-

scriptional activator Gal4p by the repressor Gal80p (Fig. 2.1). [22]. In the presence of galactose,

the membrane-bound permease transporter Gal2p significantly increases the rate of galactose up-

take from the extracellular environment [23]. Galactose and ATP-dependent activation of the signal

transducer Gal3p lead to repression of Gal80p by sequestration, thus liberating Gal4p [24]. The

galactokinase Gal1p catalyzes the first step in galactose metabolism by phosphorylating galactose

to form galactose 1-phosphate and has been shown to possess weak co-inducing functionality [25].

Galactose-dependent regulation of Gal2p, Gal3p and Gal80p form feedback loops because these

proteins modulate network activity and are themselves transcriptionally regulated by Gal4p [27].

Gal2p and Gal3p form positive feedback loops since up-regulation of their expression levels leads to

an increase in pathway activity, whereas Gal80p reduces pathway activity and thus forms a negative

feedback loop.

In addition to Gal2p, Gal3p and Gal80p, there is evidence to suggest that Gal1p has a regulatory

role beyond its vital enzymatic function for growth on galactose [28, 25, 29]. Gal1p is a close homolog
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Figure 2.1: The galactose gene-regulatory network in S. cerevisiae. The permease Gal2p facilitates
intracellular galactose transport. By binding to galactose, the signal transducer Gal3p becomes
highly activated to sequester the transcriptional repressor Gal80p. In the absence of galactose,
Gal3p can also inhibit Gal80p, presumably with lower affinity, leading to GAL gene induction [25].
Repression of Gal80p liberates the transcriptional activator Gal4p to up-regulate a set of target
enzymatic and regulatory genes. A series of enzymatic reactions (interactions inside box) transforms
galactose into glucose-6-phosphate for glycolysis through the activities of the galactokinase Gal1p,
transferase Gal7p, and epimerase Gal10p. The regulatory proteins Gal2p, Gal3p and Gal80p, form
positive, positive and negative feedback loops, respectively. Gal1p, a paralogue of Gal3p, has been
shown to possess bifunctional activities by sequestering Gal80p in the presence and absence of
galactose with different affinities, leading to GAL gene activation [25, 26]. GAL1 and GAL10 share
a bidirectional promoter (PGAL10-1).



8

of Gal3p and has been shown to interact with Gal80p with a weaker affinity than Gal3p [30, 31].

Furthermore, a GAL3 deletion strain was shown to induce GAL gene expression at a significantly

slower rate compared to wild-type whereas cells with combined GAL1 and GAL3 deletions fail to

activate their GAL pathway [32]. A recent study demonstrated that cells initially grown in galactose

and then transferred to glucose exhibit a faster induction response to a second galactose exposure

than cells grown only in glucose, and that Gal1p was critical for this decrease in response time [33].

Finally, galactose induction was shown to consist of two stages, the first of which is dominated by

rapid association of Gal3p to Gal80p and a delayed second stage consisting of dominance of the

Gal1p-Gal80p complex [34].

In this paper, we use a combination of experimental measurements and computational modeling

to demonstrate that the observed bimodality in the galactose metabolic pathway arises from an

underlying bistability in the system and that this bimodal response relies on the synergistic interplay

of the GAL1 and GAL3 feedback loops. These central mediators have unique mechanistic roles in

the GAL system since they both regulate circuit activity by competitive molecular sequestration

of Gal80p. While the bimodal response can be transformed into a graded response in the absence

of the individual GAL1 and GAL3 feedback loops, this only occurs in a specific parameter regime

in which the constitutive production rates of Gal1p and Gal3p are greater than a threshold. A

mathematical model recapitulates the experimental results and provides crucial insights about the

roles of the autoregulatory loops on bistability. More broadly, a simple mathematical model is used

to identify generalizable properties of positive feedback loops created by molecular sequestration

that implement robust switch-like responses.
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Results

History-dependent response indicates that bimodality arises from under-

lying bistability and Gal1p significantly enhances sensitivity to galactose

The presence of bimodality does not necessarily imply bistability since a bimodal distribution can

arise from stochastic effects [35, 36, 37]. Hysteresis is a characteristic feature of bistability, in

which the system jumps from one branch of stable steady-states to a different branch of steady-

states as a parameter is continuously increased, but jumps from the second branch of steady-states

back to the first branch at a different value of the parameter as it is continuously decreased. This

behavior stems from a difference in the local stability of multiple stable equilibria. To determine if

bimodality in the GAL system was linked to bistability, we checked for a history-dependent response,

which is an indicator of local equilibrium point stability. The bistable stochastic counterpart of a

deterministic bistable system may not exhibit hysteresis due to an insufficient time-scale separation

and a deterministic system can be bistable without displaying hysteresis [38, 39]. Here, we tested for

a stochastic system that exhibits hysteresis, which would be consistent with an underlying bistability

in a deterministic model of the system. Distinguishing whether bimodality arises from stochastic

interactions or a deterministic bistability provides critical information about the operation of the

system, including the types of molecular interactions that might be underlying this response and

suggests a mathematical modeling framework for studying this phenotype.

We investigated the GAL system’s history-dependent response by comparing the stability of

its high and low metabolic states as a function of galactose. To measure relative expression state

stability, we used flow cytometry to quantify the fluorescence distributions of a genome integrated

GAL10 promoter fusion to Venus (YFP) in wild-type (WT) single cells as an indicator of network

activity [40] (PGAL10Venus). The cells were grown first in the presence (EH) and absence (EL) of

2% galactose in 2% raffinose media. Cells from the two environments were then shifted to a second

set of environments containing a wide range of galactose concentrations.

A history-dependent response existed if cell populations grown in the two environments (EL
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Figure 2.2: History response experiment indicates that GAL bimodal response arises from underlying
bistability. (A) Conceptual diagram of the history response experiment in which the depth of the
potential wells (expression level vs. stability) can be controlled by a bifurcation parameter (galactose
concentration). In this experiment, isogenic cells were grown in two environments until steady-state,
EH and EL. In EH (2% galactose and 2% raffinose), the high expression state (H) has a lower potential
energy and is strongly favored whereas the low expression state (L) is favored in EL (2% raffinose).
Cells are then transferred from the two initial environments to a new set of environments (E1, . . . ,
En) containing a range of galactose concentrations. A history-dependent response was present if
cells from EH and EL were distributed differently between the high and low states for a range of
galactose concentrations after 30 hours of induction. (B) History-dependent response experiment
indicates that the GAL network is bistable. Experimental data showing history response region for
wild-type (WT) cells (top) following the experimental procedure outlined in A. Cells that do not
metabolize galactose (GAL1∆) also displayed a history-dependent response (bottom). Each data
point is the mean of the fraction of cells in the high expression state and the error bars represent
one standard deviation (n=3). Lines represent fitted Hill functions.
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and EH) had a different fraction of cells distributed between the high and low expression states in

a range of galactose concentrations after approximately 10 cell divisions post shift (30 hours). A

30-hour induction period was selected to allow a sufficient number of cell divisions for dilution of

the fluorescent reporter from EH cells (Section S2.1). Within a range of galactose concentrations,

cells from EL and EH were distributed differently between the high and low metabolic states (Fig.

2.2), revealing a history-dependent response and corroborating the existence of bistability.

To exclude the possibility that the difference in the thresholds of the dose responses was due to

variable consumption of galactose, the history-response experiment was performed using a GAL1

deletion strain that is incapable of metabolizing galactose (GAL1∆) [41]. The GAL1∆ strain was

used since cells with gene deletions for the transferase GAL7 and epimerase GAL10 are unable to

grow in the presence of galactose due to the toxic accumulation of phosphorylated galactose [42].

Investigation of history-dependence in the GAL1∆ strain revealed that its dose response threshold

was approximately twofold higher than WT, demonstrating that Gal1p significantly contributes to

galactose sensitivity. The GAL1∆ cells also exhibited a history-dependent difference in the galactose

threshold. However, the area separating the activation response curves for GAL1∆ was smaller than

WT, indicating a diminished history-dependent response. Taken together, these data corroborate

bistability as the source of bimodality in the response of the GAL network to galactose and strongly

suggest that Gal1p plays an important regulatory role in addition to its metabolic function.

Combined deletion of the GAL1 and GAL3 feedback loops produces a

graded response, demonstrating the unique role of Gal1p and Gal3p in

generating bistability

To further explore Gal1p as a regulatory component of the system and evaluate its role relative to

the other autoregulatory loops, we constructed a series of feedback loop deletions involving different

components of the system. To do so, we deleted the coding region of a given gene and integrated a

single copy of this gene regulated by an inducible TET promoter or a constitutive promoter. The

rate of production from the TET promoter could be adjusted by a doxycycline (dox) dependent



12

activation of rtTA, a reverse mutant of the transcription factor, TetR [43]. In this fashion, the

expression of the gene involved in the feedback loop can be decoupled from the activity of the

galactose pathway since the regulation of the constitutive or inducible promoter is external to the

GAL regulatory circuit.

In order to compare the operation of the WT system and the different feedback mutants on

equal footing, we selected the strength of constitutive expression of each gene by mapping it to the

corresponding WT expression levels using quantitative real-time PCR (qPCR) (Table 1 and Sup-

plementary Fig. 2.3). We also explored a range of TET promoter expression levels by scanning

different dox concentrations to investigate the relationship between constitutive expression of each

regulatory component and the steady-state dose response. The fluorescence distributions were clas-

sified as unimodal or bimodal using a Gaussian mixture model threshold (GMM) (see Materials and

methods).

Eliminating the GAL2 or GAL80 feedback loops did not abolish the GAL system’s bimodal

response (Fig. 3B-1 and B-2). Instead, bimodality persisted for a range of expression levels for

Gal2p and Gal80p (Supplementary Fig. 2.5B,C). Compared to WT, cells with a deleted GAL80

feedback loop (GAL80 ∆ fb) displayed bimodality for a larger number of galactose concentrations.

Contrary to a previous study [20], we observed that the GAL3 feedback loop was not necessary for

bimodality for WT expression levels of Gal3p (Fig. 3A-4 and Supplementary Fig. 2.2). However in

the GAL3∆ fb cells, the bimodal response could be transformed into a graded response by driving

the rate of constitutive Gal3p production beyond a critical threshold (Fig. 5B). We found that the

discrepancy with the previous study [20] can be explained by constitutive Gal3p expression above

this threshold (Section S2.2).

Since the GAL2, GAL3 and GAL80 feedback loops were not individually necessary for bimodal-

ity, we hypothesized that they either play compensatory roles or that bimodality relies on yet another

uncharacterized feedback loop. To address the possibility that the feedback loops had overlapping

or compensatory functions, we constructed combinations of feedback loop deletions of GAL2, GAL3

and GAL80 by constitutively expressing them from the ADH1, TET and STE5 promoters, respec-
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Figure 2.3: Double deletion of GAL1 and the GAL3 feedback loop abolishes bimodality. Repre-
sentative steady-state flow cytometry data of PGAL10Venus in wild-type (WT) and a set of single
and multiple feedback loop deletions induced with a range of galactose concentrations. Each black
circle indicates the mean of the distribution determined by a Gaussian mixture model (see Materials
and methods). Small random deviations were added to each galactose concentration to highlight
the spread of the fluorescence distributions. (A) Either the GAL1 or the GAL3 feedback loop is
required for bimodality. The wild-type (WT), GAL1 deletion (GAL1∆), GAL1 feedback deletion
(GAL1∆ fb) and GAL3 feedback deletion (GAL3∆ fb) strains displayed bimodality for at least one
galactose concentration. GAL1∆ fb and GAL3∆ fb were not induced with doxycycline (dox). Elim-
inating the GAL3 feedback loop in the absence of GAL1 (GAL1∆ GAL3∆ fb) produced a graded
response for the full range of galactose. (B) Bimodality was preserved for a series of feedback loop
disruptions. The single GAL2 (GAL2∆ fb) and GAL80 (GAL80∆ fb) loop deletions were induced
with 100 and 15 ng/ml dox, respectively. Bimodality persisted for a dual feedback loop disruption
of GAL2 and GAL3 (GAL1∆ fb GAL3∆ fb) and a triple feedback deletion of GAL2, GAL3 and
GAL80 (GAL2∆ fb GAL3∆ fb GAL80∆ fb). For these two strains, GAL2, GAL3 and GAL80 were
expressed from an ADH1, TET and STE5 promoter, respectively in the absence of dox. Deleting
the GAL2 (GAL1∆ GAL2∆ fb) and GAL80 (GAL1∆ GAL80∆ fb) feedback loops individually in
a strain lacking GAL1 preserved bimodality. GAL1∆ GAL2∆ fb and GAL1∆ GAL80∆ fb were
induced with 100 and 15 ng/ml dox, respectively.
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tively. Remarkably, bimodality was preserved in the absence of both the GAL2 and GAL3 feedback

loops (GAL2∆ fb GAL3∆ fb) and also in a triple feedback loop deletion strain of GAL2, GAL3 and

GAL80 (Fig. 3B-3 and B-4).

Therefore, combinations of GAL2, GAL3 and GAL80 feedback loops did not functionally overlap

to create bimodality. Since Gal1p regulates both sensitivity and memory of the GAL network to

galactose (Fig. 2.2), we explored the possibility that Gal1p could be an important component of the

system’s bimodality.

In contrast to Gal3p and Gal80p transcriptional regulation, Gal1p is tightly repressed in the

absence and strongly induced in the presence of galactose. As a consequence, matching the open

and closed loop production rates using the TET promoter was challenging. Similar to Gal3p,

Gal1p has been shown to activate GAL genes independently of galactose, and a sufficiently strong

constitutive Gal1p production rate could shift the operating point of the network [25]. We first

explored the lowest regime of Gal1p expression using a GAL1 gene deletion (GAL1∆) and bimodality

was detected in this strain for several galactose concentrations (Fig. 2.3A-2). The GAL1 feedback

loop deletion, PTETGAL1 (GAL1∆ fb) was also bimodal in the absence of dox for at least one

galactose concentration (Fig. 2.3A-3) but was graded in the presence of 10, 25, 50 and 100 ng/ml

doxycycline (Supplementary Fig. 2.4).

We examined the combined effect of removing the GAL2, GAL3 or GAL80 in a strain lacking

GAL1. As shown in Fig. 2.3B-5, B-6, the combined deletion of GAL1 and the GAL2 feedback loop

(GAL1∆ GAL2∆ fb) and dual deletion of GAL1 and the GAL80 feedback loop (GAL1∆ GAL80∆

fb) displayed bimodality for at least two galactose concentrations.

By stark contrast, the simultaneous deletion of GAL1 and the GAL3 feedback loop (GAL1∆

GAL3∆ fb) produced a graded response for the entire range of galactose (Fig. 2.3A-5). Remarkably,

this graded response persisted irrespective of the constitutive Gal3p production rate in contrast to

the single GAL3 feedback knockout that displayed bimodality for some range of constitutive Gal3p

levels (Supplementary Fig. 2.5A). These data provide further evidence that GAL1 is an active

regulatory component of the circuit and that the interplay between the GAL1 and GAL3 feedback
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loops is crucial for bimodality.

In addition to eliminating bimodality, our results revealed that removing GAL1 and the GAL3

feedback loop abolished ultrasensitivity in the dose-response to galactose, indicating a coupling be-

tween the mechanisms for ultrasensitivity and bistability in the GAL network. We found that the

Hill coefficient for PGAL10Venus in WT was approximately 3 whereas this same reporter exhib-

ited a Hill coefficient of approximately 1.3 in the absence of GAL1 and the GAL3 feedback loop

(GAL1∆ GAL3∆ fb) (Supplementary Fig. 2.5D). This link between ultrasensitivity and bimodality

may arise due to the necessity of ultrasensitivity for bistability [44].

Cooperative Gal4p interactions at the promoter level does not generate

bimodal response

Bimodality was not observed using the GAL3 and GAL80 promoters as reporters of GAL network

activity in WT for any concentration of galactose (Supplementary Fig. 2.1C). In contrast to the

GAL10 promoter, these promoters each contain a single GAL4 binding site. Multiple GAL4 binding

sites may augment the dynamic range of the reporter to provide a sufficient separation of the

high and low expression states or cooperativity of Gal4 proteins at the promoter level may be an

important parameter of the bimodal response. To test whether multiple GAL4 binding sites are

necessary for bimodality, a synthetic GAL promoter containing a single Gal4p binding site from

the GAL7 promoter driving the expression of a fluorescent reporter was constructed (see Materials

and methods). This reporter had minimal cooperativity and yet bimodality was detected for two

galactose concentrations at steady-state (Supplementary Fig. 2.6). These data demonstrate that

bimodality is not an exclusive property of promoters with multiple GAL4 binding sites but is instead

a property of the upstream regulatory network.
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Deterministic model of GAL network recapitulates experimental results

and provides insights into the roles of feedback loops

To further probe the roles of the feedback loops, we constructed an ordinary differential equation

(ODE) model of the system (Section S2.4) which takes into account the concentrations of Gal1p

(G1), Gal3p (G3), Gal4p (G4) and Gal80p (G80). Since Gal1p and Gal3p can function as co-

inducers of GAL gene expression independently of galactose, presumably with lower affinities than

the galactose bound forms, these different forms were not differentiated in the model [25].

Based on these assumptions (see Section S2.4 for a full description), the set of differential equa-

tions for G1, G3, G4 and G80 that model the interactions shown in Fig. 2.1 is given by

d[G1]
dt

= αgalε+
αG1[G4]3

[G4]3 +K3
G1

+ ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal +
αG3[G4]2

[G4]2 +K2
G3

+ δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αoG80 +
αG80[G4]2

[G42 +K2
G80

+ ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80].

Here, αgal represents galactose as a constant input rate. Parameters were approximated from ex-

perimental measurements and values from the literature (Section S2.5). Using these estimates, the

Hill coefficients for the feedback functions involving GAL1, GAL3 and GAL80 were set to 3, 2 and

2, respectively, but our conclusions were not sensitive to variations in these values. Models of the

individual GAL1, GAL3, GAL80 and combined GAL1 and GAL3 feedback knockouts (GAL1∆ fb,

GAL3∆ fb, GAL80∆ fb, GAL1∆ GAL3∆ fb, respectively) were constructed by modifying appro-

priate terms in the WT model (Section S2.6).

Bifurcation analysis of GAL model confirms that only the combined GAL1 and GAL3

feedback deletion eliminates bistability

At equilibrium, the concentration of Gal4p can be written as an eleventh-order polynomial as de-

scribed in Section S2.4. Similarly, the individual feedback deletion models for GAL1, GAL3 and
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GAL80 and combined GAL1, GAL3 were simplified to an eighth, ninth, ninth and sixth order

polynomials, respectively (Section S2.6). The roots of these polynomials include the equilibrium

concentrations of Gal4p, which represents the activity of the GAL network. All of the models had

the potential for bistability for some region of parameter space since the degrees of the polynomials

were larger than a quadratic. Indeed, models with individual feedback deletions were still capable

of bistability as a function of αgal (Fig. 2.4A-1, A-2, A-3 and A-4). By contrast, removing both the

GAL1 and GAL3 feedback loops abolished bistability for the entire range of αgal, consistent with

experimental data (Fig. 2.4A-5 and A-6).

GAL1 and GAL3 feedback loops combine synergistically to augment bistability

Using the model, we explored the effects of the GAL1 and GAL3 feedback loops on the range of αgal

for which the system exhibits bistability. We defined the hysteresis strength DH as the difference

between the bifurcation points of αgal as shown in Fig. 2.4A-1 (see Materials and methods). DH

represents the range of conditions in which the system exhibits bistability and thus the robustness

of bistability to parameter variations increases with DH . The GAL1 and GAL3 feedback deletion

models had approximately 48% and 31% DH compared to WT (Fig. 2.4B). By contrast, removing

the GAL80 feedback significantly increased DH to 166% compared to its WT value, indicating that

this negative autoregulatory loop undermines bistability.

The generality of these results and the dependence on parameters were explored by comparing the

DH of the WT and feedback deletions using randomly generated parameter sets. 10,000 parameter

sets were obtained by sampling a normal distribution with mean equal to the values of parameter

set I and coefficient of variation equal to 0.1. All parameters were varied except for the constitutive

production rates of Gal1p (αG1s), Gal3p (αG3s) and Gal80p (αG80s). This computation confirmed

that GAL80∆ fb had a larger DH compared to WT and that the WT exhibited a larger DH than

either of the GAL1∆ fb or GAL3∆ fb models for all parameter sets (Fig. 2.4C). These findings are

consistent with the experimental characterization of history-dependent response of the GAL1∆ strain

(Fig. 2.2B) and the data showing that range of galactose concentrations that produced bimodality
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was expanded in the absence of the GAL80 feedback loop (Fig. 2.3B-2).

In summary, collaboration between the GAL1 and GAL3 autoregulatory loops expands the

region of bistability across a broad region of parameter space, suggesting that this synergy between

dual positive feedback loops may be a consequence of the unique regulatory roles of Gal1p and Gal3p

in the GAL circuit. In addition, we found that GAL1∆ fb GAL3∆fb and GAL1∆ fb GAL3∆fb

were monostable for all 10,000 parameter sets, indicating that one of these autoregulatory loops is

necessary for generating bistability across a broad region of parameter space.

Recently, a two-stage galactose induction model has been proposed whereby the Gal3p-Gal80p

complex (C83) dominates initially and the Gal1p-Gal80 complex (C81) dominates at a later stage

[34]. To check the consequences of including this feature in our model, we scanned over a wide range

of parameters using the Latin hypercube sampling method [45] (Section S2.5) and identified sets of

parameters that qualitatively matched all of our data in addition to the dynamic ordering response

of C83 and C81 (Supplementary Fig. 2.7B,C). This new parameter set exhibited the same roles for

the GAL1 and GAL3 feedback loops in enhancing DH across a broad region of parameter space,

further illustrating the generality of our results (Supplementary Fig. 2.7D).

Constitutive production of Gal1p and Gal3p can abolish bimodality in the absence of

the individual GAL1 and GAL3 feedback loops

We next tested whether the model could predict and explain the disappearance of bimodality due

to high unregulated levels of Gal1p and Gal3p in the absence of their individual feedback loops

(Fig. 2.5, Supplementary Fig. 2.2 and Supplementary Fig. 2.4). The individual GAL1 and GAL3

feedback loop deletion models predicted the loss of bistability as the rates of constitutive production,

αG1s or αG3s, was increased (Fig. 2.5C,D). An increase in αG1s in the GAL1∆ fb model caused the

bistable region to contract and vanish at a critical value (αG1s = 4) (Fig. 2.5C). In the GAL3∆ fb

model, increasing αG3s caused the bistable region to shift to smaller values of αgal (Fig. 2.5D) and

eventually move out the positive orthant to negative values of αgal at a critical αG3s (αG3s = 1),

thus producing monostability for all physically realistic values of αgal.
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Figure 2.5: Model predicts that constitutive production of Gal1p or Gal3p above a threshold can
abolish bistability in the absence of the individual GAL1 or GAL3 feedback loops (matching exper-
imental data in Section S2.2, Supplementary Fig. 2.2 and Supplementary Fig. 2.4). (A) Critical
constitutive level of Gal1p in the absence of the GAL1 feedback loop produced a graded response.
Flow cytometry measurements of PGAL10Venus in a GAL1 feedback deletion strain (GAL1∆ fb).
In this strain, GAL1 was expressed from a TET promoter and induced with 100 ng/ml doxycycline
(dox), corresponding to approximately 20% of fully induced wild-type (WT) levels (Supplementary
Fig. 2.3A-1). (B) Critical level of Gal3p in the absence of the GAL3 feedback loop produced a
graded response. Flow cytometry measurements of the GAL3 feedback deletion strain (GAL3∆
fb). GAL3 was expressed from a TET promoter and induced with 10 ng/ml dox, corresponding to
approximately 63% of fully induced WT levels (Supplementary Fig. 2.3A-3). (C) In the GAL1∆ fb
model, increasing the constitutive production rate of Gal1p (αG1s) decreases the region of bistability
and causes bistability to vanish at a critical value (αG1s = 4 nM/min). Regions of bistability (red)
and monostability (blue) for different values of αG1s and αgal in GAL1∆ fb shows that the bistability
parameter region contracts and eventually vanishes with increasing αG1s. (D) In the GAL3∆ fb
model, increasing the constitutive production rate of Gal3p (αG3s) eliminates bistability by shifting
the bistable region to smaller αgal values. A critical threshold of αG3s (αG3s = 1 nM/min) causes
the bistable region to move out of the positive orthant, producing monostability for all physically
realistic αgal values. Regions of bistability (red) and monostability (blue) for different values of αG3s

and αgal. (E) The GAL1 feedback nonlinearity disappears with increasing αG3s in the GAL3∆ fb
model. The maximum difference in Gal1p steady-state concentration (G1e) was computed across
the full range of αgal for a series of αG3s values and represents the activity of the GAL1 feedback
loop. Above the critical αG3s threshold (dashed blue line), G1e does not change in response αgal,
indicating that the GAL1 autoregulatory loop is not active in this parameter regime.

Since Gal1p and Gal3p played an important role in generating bistability, we suspected that the

disappearance of bistable behavior for αG3s or αG1s exceeding critical values could be the result of

an indirect neutralization of the remaining loop. For example, it could be case that overexpression

of Gal3p in a GAL3 feedback deletion had the effect of neutralizing the GAL1 feedback loop.

The computational model afforded us the possibility of testing this hypothesis. For a given value

of αG3s, we defined the GAL1 feedback activity as the maximum change in steady-state Gal1p

concentration (G1e) across the full range of galactose (αgal = 0 − 2 nM/min). As shown in Fig.

2.5E, the GAL1 feedback was highly active for a range of αG3s values but abruptly approached zero

at a critical threshold of αG3s (dashed blue line). Therefore, increasing the constitutive production

rate of Gal3p was indeed equivalent to removing the GAL1 feedback since a sufficiently large αG3s

mapped the GAL1 feedback nonlinearity to a saturated (inactive) regime.

The insight generated by the model about the link between the constitutive production rates of

Gal1p or Gal3p and the loss of bistability suggested that the graded response observed in GAL3∆

fb (Fig. 2.5B) should be the result of overexpressing the Gal3 protein. To test this possibility, we
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compared the GAL3 mRNA expressed from the TET promoter to that of WT induced with 0.005%

and 0.05% galactose using qPCR. These data showed that the GAL3 mRNA level in GAL3∆ fb

induced with 10 ng/ml dox was overexpressed by 43% relative to WT induced with 0.05% galactose,

significantly higher than GAL3 mRNA levels for the bimodal range of WT and GAL3∆ fb (Sup-

plementary Fig. 2.3A-3). These results argue that in order to study the functional contribution of

feedback loops to a phenotype, the strength of constitutive expression needs to be carefully tuned

in order to recapitulate the physiological operating point(s) of the wild-type circuit.

Properties of positive feedback loops established by molecular sequestra-

tion

Sequestration binding affinity of an activator and repressor can tune the range of con-

ditions for bistability

To generalize our results further, we explored the principles by which the interactions of the positive

feedback loops mediated by Gal1p and Gal3p generate bistability. Characterizing the set of essential

molecular interactions that combine to generate bistability in the GAL system may be useful for

analyzing other natural switch-like biological networks and for constructing robust and tunable

bistable synthetic circuits. Gal1p and Gal3p competitively sequester a common protein, Gal80p.

Competitive binding interactions and molecular sequestration can produce ultrasensitivity, which

is crucial building block for a bistable system [46, 47, 48, 49]. Therefore, we suspected that the

competitive sequestration of Gal80p by Gal1p and Gal3p may constitute a critical feature of the

system.

To probe the functionalities provided by positive feedback loops linked to molecular sequestra-

tion, we examined a simple model of a single positive feedback loop that is implemented by an

activator x that can form an inactive complex with a transcriptional repressor z. In this circuit, z

transcriptionally represses the production of x and therefore a positive feedback loop is established

by inhibition of the transcriptional repressor using molecular sequestration (Supplementary Fig.

2.8A). We first examined the parameter dependence of this system in the absence of transcriptional
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cooperativity and found that this circuit could exhibit bistability depending on the value of the

binding affinity of the activator and repressor (Supplementary Fig. 2.8B). Therefore, modifying this

parameter is an alternative mechanism to induce bistability in the circuit without increasing the

cooperativity.

Building on these results, we next investigated the roles of double positive feedback loops con-

nected by molecular sequestration. We considered a three-state ODE model consisting of a tran-

scriptional repressor z that directly regulates two activators, x1 and x2 with Hill coefficients of 3

and 2, respectively. x1 and x2 can form inactive heterodimers with z and hence x1 and x2 compete

to bind z (Fig. 2.6A). In this model, the mechanisms of sequestration and positive feedback are

triggered by an input (u) that represents a basal production rate of x1 and x2. The system of

equations that model the interactions in Fig. 2.6A (see Section S2.7 for a full description) is

dx1

dt
= u+

α1K
3
1

K3
1 + z3

+ β1x1z − γ1x1,

dx2

dt
= u+

α2K
2
2

K2
2 + z2

+ β2x2z − γ2x2,

dz

dt
= αz + β1x1z + β2x2z − γzz.

In the double positive feedback case, bistability could be induced in this system by adjusting the

binding affinities KD1 and KD2 (which modify β1 and β2) as bifurcation parameters without changing

the cooperativity of the transcriptional regulation (Fig. 2.6B,C). Setting KD1 = KD2, we found that

the range of the input that produced bistability was inversely related to the magnitude of the binding

affinities (Fig. 2.6B). In addition, the range of the input that generated bistability was increased in

a system with two positive feedback loops compared to a single positive feedback loop for the set of

symmetrically varying KD1 and KD2 values (Fig. 2.6C).

To explore asymmetry in the binding affinities, DH was computed for a series of linearly spaced

KD1 and KD2 values within the range of 0.5-80 nM (Fig. 2.6D). The largest range of bistability

was obtained for the strongest binding affinities and DH decreased monotonically with increasing

KD1 or KD2. In addition, fixing one KD while varying the other (left column and bottom row)
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Figure 2.6: Molecular consequences of positive feedback loops established by molecular sequestration.
Sequestration binding affinities (KD1 and KD2) can tune the parameter region for bistability and the
addition of a second positive feedback loop can reduce the deactivation response time and augment
the range of conditions for bistability. (A) Circuit diagram for dual positive feedback loops mediated
by the activators, x1 and x2 coupled by molecular sequestration to a transcriptional repressor (z).
Transcriptional feedback regulation of x1 and x2 are modeled by Hill functions with Hill coefficients
of 3 and 2. The single positive feedback loop models were obtained by removing the appropriate
repression arrow from z to the promoter of x1 or x2 or equivalently, replacing the Hill functions with
a constant production rate, α1s or α2s. (B) Bifurcation diagrams relating the input to the steady-
state concentration of z (ze) reveal that symmetrically weakening the binding affinities shrinks
the region of bistability. (C) Parameter regions of bistability (red) and monostability (blue) for
different values of the input and symmetrically varying KD1, KD2 in the single and double feedback
loop models. (D) Range of bistability (DH) for a range of KD1 and KD2 values in the double
feedback loop system. (E) Relationship between DH and the deactivation response time measured
in cell-generations (see Section S2.7). For a constant nonzero DH, the dual feedback loop circuit
exhibited a faster deactivation response time compared to the either of the single positive feedback
loop models.
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did not decrease DH as significantly as symmetrically changing the two binding affinities together

(diagonal). These results suggest that asymmetry in the binding affinity strengths whereby one

activator interacts strongly and the other activator binds weakly to the same repressor can preserve

bistability over a wide range of values for the weaker KD, thus reducing the system’s sensitivity to

variations in this parameter.

Double positive feedback loops can produce larger range of bistability and a faster

dynamic response than a single feedback loop

We suspected that modulating the binding affinities to induce bistability may concurrently alter

other circuit functions such as the dynamic response time to a change in the input. To explore these

relationships, we measured the response times of the circuits to switch from the low→high state

(activation response time) and from the high→low state (deactivation response time). To do so, a

step function increase or decrease in the input was applied and the delay for the circuit to adapt to

this transition was quantified (see Section S2.7). The time required for an output species that was

transcriptionally repressed by z (representing a fluorescent reporter) to increase or decay to half its

maximum value was quantified in cell-generations.

In the double feedback loop system, the activation response time decreased with the strength

of the binding affinities whereas the deactivation response time had the opposing relationship and

increased with the strength of this binding affinities (Supplementary Fig. 2.8C,D). For a constant

nonzero DH, the dual feedback loop system could switch faster to the high state than either of the

single feedback loop models (Supplementary Fig. 2.8E). Since both the DH and the deactivation

response time are inversely related to KD1 and KD2, a tradeoff exists between increasing the range

of conditions for bistability and decreasing the deactivation response time (Fig. 2.6E). A compar-

ison of DH and the response times for the single and double feedback loop systems revealed that

dual feedback loops can produce a larger DH over a narrower range of deactivation response times

compared to the single feedback loop systems with Hill coefficients of 2 or 3. Taken together, the

dual feedback loop system can produce a larger range of bistability and exhibit a faster response
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time to abrupt changes in the environment compared to a single feedback loop system.

Discussion

A bimodal distribution of gene expression across a population of isogenic cells, which generates two

distinct cellular states, can produce significant cell-to-cell heterogeneity. This bimodality can also

lead to a switch-like response that filters out noise below a threshold and produces a large fold-

change in the system’s output if the input crosses this threshold [50]. In this work, we used the

GAL gene-regulatory circuit as a model system to dissect and analyze the origins of bimodality in a

natural biological network. We demonstrated that bistability underlies this bimodality and used a

combination of experiments and computational modeling to identify two key features that produce

bistability: (1) a threshold established by two positive feedback loops mediated by Gal1p and Gal3p

and (2) an ultrasensitive stage produced by competitive molecular sequestration of Gal80p by Gal1p

and Gal3p.

To unravel the molecular interactions critical for bistability in the GAL system, we performed

a comprehensive exploration of multiple feedback loops. Our investigations revealed that the GAL

bimodal response is remarkably robust to feedback loop perturbations. Indeed, individual elimina-

tion of the GAL1, GAL2, GAL3, and GAL80 feedback loops was insufficient to abolish bimodality.

Furthermore, bimodality persisted for multiple deletions of these loops and, surprisingly, only dis-

appeared in a double deletion of GAL1 and the GAL3 feedback loop. We therefore identified Gal1p

and Gal3p as central mediators of two synergistic positive feedback loops that generate bistability

in the GAL gene-regulatory network. Multiple positive feedback loops can facilitate the bistable be-

havior of a circuit by expanding the range of conditions for bistability, which improves the robustness

of bistability to parameter variations [50].

A previous study attributed bimodality in the GAL pathway to the activity of the GAL3 feedback

loop [20]. Here we demonstrate that cells with a deleted GAL3 feedback loop are still capable of

bimodality in their response to galactose for low levels of constitutive Gal3p expression. However,

we found experimentally that bimodality vanishes when Gal3p is expressed at high and unregulated
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levels. Our computational model explains this behavior by the loss of remaining GAL1 feedback

due to constitutive expression of Gal3p beyond a threshold. Interestingly, in this regime, the genetic

wiring of the GAL1 feedback loop is present, but the feedback loop was rendered inactive indirectly

by constitutive Gal3p expression above a threshold.

These results underscore the challenges inherent in the interpretation of feedback deletion ex-

periments in which the specific range of constitutive expression of the deleted link might become

an important determinant of the system’s properties and can mask the true functional roles of the

feedback pathway. These findings also argue that the complete interpretation of feedback knockouts

requires thorough investigation of active mechanisms and nonlinearities that are operational in a

given circuit, beyond static snapshots of the circuit’s topology as determined by genetics [51].

Stoichiometric binding interactions, for example, molecular sequestration of a repressor by an

activator or inhibition of an enzyme by a small molecule, can produce ultrasensitivity in biological

circuits [46, 47, 48, 49, 52]. Our computational model indicates that competitive molecular seques-

tration of Gal80p by Gal1p and Gal3p produces an ultrasensitive change in the concentration of

free Gal4p in response to a small variations in extracellular galactose and this ultrasensitivity does

not rely on cooperative binding of Gal4p to GAL promoters and/or oligomerization. These results

suggest that the stoichiometric inhibition of Gal80p by Gal1p and Gal3p is a crucial source of ultra-

sensitivity in the GAL network that sets the stage for a robust bistable response to galactose since

ultrasensitivity is required for bistability [53, 49].

Beyond the GAL system, we believe these results to be applicable to many bistable systems. We

used a simple computational model to explore the general mechanisms by which positive feedback

loops linked to competitive sequestration can produce ultrasensitivity and bistability. Using this

model, we found that the positive feedback and sequestration topology can be used to build a bistable

system in the absence of transcriptional cooperativity by adjusting the binding affinity parameter

between the activator and inhibitor. If bistability confers an fitness advantage, this parameter could

be adjusted through mutation of the protein-protein binding interface and may be more evolvable

than modifying the cooperativity of transcriptional regulation through oligomerization or multiple
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transcription factor binding sites. In addition, we identified a tradeoff between the range of bistability

and the deactivation response time of this circuit. In response to an abrupt change in the stimulus,

we found that a system with double positive feedback loops can switch faster to the low state

compared to the single feedback loop system for a fixed range of bistability, highlighting a novel

advantage of multiple positive feedback loops.

Positive feedback loops established by molecular sequestration may represent a general class of

systems for implementing robust switch-like cellular responses. For example, the conserved regula-

tory network that controls cell-differentiation in Drosophila consists of similar molecular mechanisms

to the GAL circuit including molecular sequestration and multiple feedback loops that implement

a switch-like developmental program [54, 55]. Activation of this cell-differentiation circuit relies on

molecular titration of a repressor, Extramacrochaetae (Emc) by the activators Daughterless (Da)

and the Achaete-Scute Complex (As-c). Da and As-c transcriptionally autoregulate and thus form

two positive feedback loops [56].

S. cerevisiae cells growing on galactose could benefit from bistability on a single-cell and popu-

lation level. A bistable circuit can produce a decisive response to a slow variation in the stimulus

[52]. This decoupling ensures that the abrupt change in the system’s output is not dependent on the

rate of change of the stimulus and is instead an intrinsic property of the circuit’s dynamical system.

In addition, bimodality due to an underlying bistability can produce stable lineages of cells with a

memory of previous environmental conditions. As a consequence of hysteresis, cells with a history

of the stimulus will respond differently to a second exposure due to a shift in the threshold of de-

activation. This epigenetic memory of previous environments can fine-tune the switching threshold

and provide an additional source of cell-to-cell heterogeneity in the perception of the stimulus.

There are also several potential advantages of bimodality at a population level. For example, sig-

nificant single-cell phenotypic variation, generated by bimodality, can serve as a bet-hedging strategy

for microbial populations in uncertain environments [7, 57]. Since S. cerervisiae grows poorly even

in the presence of high concentrations of galactose and risks accumulation of the toxic intermediate

galactose-1-phosphate, the bimodal response may serve as a population strategy to weigh the ener-
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getic costs and benefits of activating the GAL regulon [42]. Another intriguing possibility is whether

bimodality establishes a division-of-labor in which the high population metabolizes galactose and

produces a byproduct that is used by the low population [58].

Feedback loops are ubiquitous in biological systems, and dissecting their precise quantitative

roles is a crucial step for unraveling the organizational principles of cellular decision-making. While

a single transcriptional positive feedback loop can generate bistability with cooperativity and pre-

cise parameter tuning, this study suggests that a single noncooperative positive feedback loop with

sequestration can generate bistability and this bistability parameter region can be significantly aug-

mented by the addition of a second positive feedback loop. These insights will be essential for

pinpointing the operational principles of switch-like cellular responses, in addition to suggesting

rules for designing robust synthetic circuits.

Materials and Methods

Strains

All plasmids used in this study were derived from a set of yeast single integration vectors constructed

in the lab of Wendell Lim (UCSF). These vectors contain markers and targeting sequences for the

LEU2, HIS3, TRP1 and URA3 loci. These vectors were linearized for transformation by digesting

with PmeI and transformed using standard techniques. Promoters were cloned between the PspOMI

and XhoI restriction sites and coding sequences were inserted between the XhoI and BamHI sites.

These plasmids contained an ADH1 terminator downstream of BamHI site. All strains were haploid

with the exception of MA0182 and wild-type diploid [20]. In the haploid backgrounds, rtTA-M2 was

expressed from a medium strength variant of the TEF promoter, TEFm4 [43, 59]. Gene deletions

were verified using polymerase chain reaction. A functional test for constitutive PGAL10Venus ex-

pression in the absence of galactose was also used to verify successful deletion of GAL80. Strains

are listed in Table SII. The sequences for the GAL3, GAL10 and GAL80 promoters were 1017,

646 and 283 base pairs upstream of the start codons, respectively. The TET promoter consisted
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of a region of the CYC1 promoter and two TetR operator binding sites [60]. The synthetic single

GAL4 binding site promoter, PCYC1-G4BS, consisted of a binding site from the GAL7 promoter

(CGGACAACTGTTGACCG) upstream of the CYC1 core promoter.

Growth conditions and flow cytometry

Cells were grown in appropriate dropout media supplemented with 2% filter-sterilized raffinose at

30◦C. In 2% raffinose media supplemented with zero or small amounts of galactose, cell divisions

occurred approximately every three hours during exponential growth phase. Steady-state measure-

ments were performed after a 20 hour induction period. Cells were induced for 30 hours for hysteresis

experiments as explained in Section S2.1. OD600 (cell density) was maintained below 0.1 to prevent

significant changes in the galactose concentration for the duration of the experiment. Flow cytome-

try measurements were made using a MACSQuant VYB (Miltenyi Biotec) or LSRII analyzer (BD

Biosciences). For both instruments, a blue (488 nm) laser was used to excite YFP. Emission was

detected on the MACSQuant or LSRII using a 525/50 nm and 530/30 nm filter, respectively. At

least 10,000 cells were collected for each measurement.

Analysis of flow cytometry distributions

Bimodality classification

Flow cytometry distributions were analyzed using a Gaussian mixture model algorithm (GMM,

MATLAB) [61]. The GMM assumes that the data is a mixture distribution where the probability

density function is a linear combination with coefficients that sum to one (ξ1 + ξ2 = 1).

f(x) = ξ1N1 (µ1, σ1) + ξ2N2 (µ2, σ2) .
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The parameters for the GMM include the means, µ1, µ2, standard deviations, σ1, σ2 and mode

weights ξ1, ξ2. A distribution was categorized bimodal if the following conditions were true

|µ1 − µ2| > 2 max (σ1, σ2) ,

min (ξ1, ξ2) > 0.1.

Activation responses

Activation responses for bimodal transitions were analyzed using the fraction of high expressing cells

(FH). The threshold was set to the minimum separating the two local maxima. FH = nH
ntot

where

nH and nL are the number of high and low expressing cells, respectively (ntot = nH + nL). The

activation level for a graded response was quantified using the normalized mean fluorescence level

(MY),

MY =
(log10(Y)−min(log10(Y))

(max(log10(Y))−min(log10(Y))
.

Quantitative real-time PCR

Total RNA was isolated using a YeaStar RNA Kit (Zymo Research Corp.). Oligonucleotides for

quantitative real-time PCR (qPCR) were designed using Integrated DNA Technologies PrimeTime

qPCR assay. 500 nanograms total RNA was reverse-transcribed using the iScript cDNA synthesis

kit (Bio-Rad). The reaction mix contained 5 µl of SsoFast Probes SuperMix (Bio-Rad), 0.5 µl of

primer probe corresponding to 250 nM primers and 125 nM probe (20X stock) and 0.5 µl cDNA.

Three technical replicates for each sample were analyzed using the CFX96 real-time PCR machine

(Bio-Rad). Relative expression levels were determined by the 2(−∆∆Ct) method [62]. Each sample

was normalized by the Ct geometric mean for the reference genes, ACT1 and UBC6 [63].

Computational modeling

Code for mathematical modeling was written in MATLAB (Mathworks) and Mathematica (Wolfram

Research).
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Bifurcation points

We identified turning, fold and saddle-node bifurcation points that can create bistability by comput-

ing the values of αgal that caused a real eigenvalue of the Jacobian matrix to change from negative

to positive, producing a singular Jacobian matrix at the point where the real part of the eigenvalue

equaled zero. The bifurcation parameter (λ = αgal) appeared linearly in the polynomial equations

for the equilibrium concentrations of Gal4p. To satisfy the conditions of a singular Jacobian matrix

and equilibrium, there were two equations in two unknowns using the Gal4p polynomial (x = Gal4p)

f (x) + λg (x) = 0,

f ′ (x) + λg′ (x) = 0.

We solved the system of equations using the Sylvester resultant [64]. This resultant provides condi-

tions for the coefficients of two polynomials of a single variable to have a root in common. Sylvester

matrices A and B contained the coefficients of f , f ′ and g, g′, respectively. The dimensions of A

and B were (d1 + d2) x (d1 + d2) where d1, d2 are the degrees of highest polynomial of either f or

g and correspondingly f ′ or g′, respectively. The bifurcation points were computed by solving the

generalized eigenvalue problem (A+ λB)φ = 0.
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S2.1 Distinguishing dilution memory from a history-dependent response

YFP is highly stable and predominantly decreases through cell dilution [65]. As a consequence,

activation of PGAL10YFP is faster than deactivation, and distributions of cells from EH and EL will

inevitably differ until cells equilibrate to a new steady-state in the second set of environments (E1,

. . . , En). We estimated the amount of time and hence the number of cell divisions necessary to

distinguish dilution memory from a history-dependent response (Fig. 2.2).

In the presence of 2% galactose, the steady-state YFP fluorescence expressed from the GAL10

promoter was approximately 78% of YFP fluorescence expressed from the TDH3 promoter after aut-

ofluorescent background subtraction (Supplementary Fig. 2.1A). There are approximately 169,000

Tdh3 proteins present in glucose conditions in a haploid S. cerevisiae background [66], corresponding

to 131,820 Gal10 proteins (assuming promoter strength is proportional to the number of molecules).

Therefore, the concentration of Gal10p is 7.5 µM at full galactose induction [67]. As a lower bound,

we assumed that 150 molecules of YFP (8.6 nM) was indistinguishable from the autofluorescence

background using flow cytometry [68]. Therefore, the number of cell divisions required to dilute

YFP from full induction to background is log2(7.5)− log2(0.0086) = 9.8. In minimal dropout media

supplemented with 2% raffinose, cells doubled approximately every three hours during exponen-

tial phase, which corresponds to 30 hours to distinguish dilution memory from a history-dependent

response.

S2.2 Characterization of the GAL3 feedback loop on the bimodal re-

sponse

We found that bimodality persisted in the absence of the GAL3 feedback loop for a range of wild-

type (WT) GAL3 levels as shown in Fig. 2.3A-4. These results are different from a previous

study that attributed the observed bimodality of the GAL network to the activity of the GAL3

feedback loop [20]. This study used a diploid GAL3 feedback loop deletion strain where Gal3p was

constitutively expressed with a TET inducible promoter. Using fluorescent Gal3 fusion proteins,

the authors identified 50 ng/ml dox as equivalent to 80% of the WT GAL3 levels induced with 0.5%
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Supplementary Figure 2.1: Comparison of promoter strengths and ultrasensitivity. Venus (YFP)
fusions to the TDH3, GAL3, GAL10 and GAL80 promoters in a wild-type (WT) background
(PTDH3Venus, PGAL3Venus, PGAL10Venus and PGAL80Venus). (A) Comparison of GAL10 and
TDH3 promoter strengths. Promoter were compared after subtracting the corresponding autoflu-
oresence background (solid red and blue histograms). PGAL10Venus and PTDH3Venus were grown
separately in 2% raffinose + 2% galactose or 2% glucose. The autofluoresence background values
were obtained from a wild-type W303a strain lacking a fluorescent reporter grown separately in 2%
raffinose or 2% glucose media (dashed red and blue histograms) (B) Activation level represents the
fraction of high expressing cells for PGAL10 and the normalized mean of unimodal distributions for
PGAL3 and PGAL80 (MY, see Materials and methods). Lines are fits of the data to Hill functions
with Hill coefficients of 3.2, 2.2 and 2 for PGAL10, PGAL3 and PGAL80. Error bars represent one
standard deviation (n=3). (C) Representative flow cytometry distributions of Venus from PGAL3

and PGAL80 for a range of galactose concentrations at steady-state. Since the GAL3 and GAL80
promoters are weaker than the GAL10 promoter, the flow cytometry gain settings were increased
for these strains to detect the full expression range.
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galactose.

To further explore the roles of the GAL3 feedback loop on the bimodal response, we repeated

the experiments from Acar et al. using the MA0182 strain. Following the authors’ protocol, we

observed bimodality in PGAL1YFP expression after an induction of 27 hours for 0.004% galactose in

the absence of doxycycline (dox) (Supplementary Fig. 2.2A). A Gaussian mixture model (GMM) was

used to classify bimodality (see Materials and Methods). Using this criteria, these data showed the

GAL3 feedback loop was not necessary for bimodality for some range of GAL3 levels (Supplementary

Fig. 2.2B).

The galactose dose response was next measured for different GAL3 levels by inducing MA0182

with a range of galactose and dox concentrations (Supplementary Fig. 2.2A). These data showed

that MA0182 was bimodal for at least one galactose concentration between 0-25 ng/ml dox (Sup-

plementary Fig. 2.2B). However, bimodality was not detected for 50 ng/ml dox.

We compared GAL3 mRNA levels to WT GAL3 expression using quantitative real-time PCR

(qPCR). According to these results, 50 ng/ml dox corresponded to approximately 150% GAL3 levels

relative to WT induced with 0.5% galactose (Supplementary Fig. 2.2C). These results indicated

that WT GAL3 expression in MA0182 was between 0 ng/ml (36%) and approximately 35 ng/ml

dox (100%). Acar et al. stated that MA0182 displayed a graded response for 5-300% of GAL3 levels

with respect to WT. In our experiments, the lower bound for GAL3 levels in MA0182 was 36% of

maximal WT levels due to leakiness of the TET inducible promoter system.

In summary, MA0182 exhibited a bimodal response for a range of WT GAL3 expression levels

and was graded when Gal3p was overexpressed. This transformation of the GAL dose response from

bimodal to graded by tuning the concentration of Gal3p corroborates the importance of comparing

feedback loop knockouts at similar operating point(s) to fully understand the contribution of these

regulatory connections to a phenotype (Section S2.3) [69].
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Supplementary Figure 2.2: Experimental characterization of the diploid GAL3 feedback loop knock-
out strain MA0182 from [20]. (A) Flow cytometry histograms of YFP fluorescence for a range of
doxycycline (dox, horizontal axis) and galactose (percent, vertical axis) concentrations. (B) Rep-
resentation of flow cytometry distributions in (A) as bimodal (red) and unimodal (blue) classified
using a Gaussian mixture model (see Materials and methods). The concentrations of galactose that
yielded bimodal distributions shifted to lower galactose concentrations as the concentration of GAL3
was increased, qualitatively reflecting the decrease in the bistability region for the GAL3 feedback
deletion model (Fig. 2.5D). The dose response was graded for 50 ng/ml dox. The concentrations of
dox that map GAL3 levels in MA0182 to wild-type (WT) expression are indicated by a green line
(0-25 ng/ml dox). (C) Quantitative real-time PCR measurements comparing GAL3 mRNA levels
in MA0182 to a diploid WT. This WT strain was induced with 0% and 0.5% galactose and MA0182
was induced with 0, 25 and 50 ng/ml dox. In comparison to WT induced with 0.5% galactose, GAL3
levels in MA0182 were between 0 (36% with respect to wild-type) and approximately 35 ng/ml dox
(100% with respect to WT). Error bars represent one standard deviation (n=3).
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S2.3 Comparison of open and closed loop transcriptional circuits

In engineering, closed and open loop systems are frequently compared to determine the advantages

of feedback control on performance [14]. Similarly, in biology, a controlled comparison for open and

closed loop systems may provide insight about the role of a feedback loop [69]. One approach to

creating the open loop system is to delete the gene involved in the loop. However, deleting a gene

is an aggressive approach that may significantly shift the operating point of the circuit, making it

difficult to attribute the changes in phenotype to the function of the feedback loop. Deleting the

coding region of the gene involved in the loop and expressing this gene from a constitutive promoter

is a superior approach for evaluating the function of a feedback loop. The constitutive promoter

strength is an important parameter to adjust since a comparison of the open and closed loop systems

should be made in the neighborhood of the wild-type equilibrium point(s).

Consider a bistable transcriptional circuit modeled by an ordinary differential equation (ODE)

that has two stable steady-states for a specific range of an input parameter, u, dxdt = u+H(x, θ)−γx.

We are interested in the role of a positive feedback loop of protein, x. In the closed loop system

(wild-type), H(x, θ) represents transcriptional feedback regulation where

H(x, θ) =
αxn

xn +Kn
.

For u = u1, dx
dt = 0 ⇒ x = xei where i corresponds to the particular equilibrium point (i = 1, 2

within the bistable parameter regime). Given u = u1 in the bistable region, the open loop system

should be evaluated at αOL1 = H(xe1, θ)
∣∣
u=u1

and αOL2 = H(xe2, θ)
∣∣
u=u1

,

where αOL1 and αOL2 represents the constitutive (open-loop) production rates. Experimentally

mapping the open and closed loop production rates for a range of inputs, u = u1, . . . , un, may

be challenging due to a limited number of well-characterized constitutive promoters and restricted

dynamic ranges of inducible promoter systems. To circumvent this, an intermediate α′OL can be

chosen within the WT expression range
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α′OL ∈ [H(min(xei), θ), H(max(xei), θ)] for u1, . . . , un.

The caveat for this approximation is that α′OL produces a higher and/or lower open loop expression

level compared to WT for each value of u. Using this approach, it is therefore important to check

that the role of the feedback does not depend on the specific value α′OL by scanning several values

within WT range (Supplementary Fig. 2.2 and Supplementary Fig. 2.3).

S2.4 Model description and steady-state solution

An ODE model of the GAL gene-regulatory circuit was constructed based on the interactions shown

in Fig. 2.1. This model was able to provide explanations for experimental data and insights about

the interplay of feedback loops. We assumed the following:

• Intracellular galactose concentration is constant.

• Since the GAL2 feedback is not necessary for bimodality, Gal2p was not modeled for simplicity

(Fig. 2.3B-1).

• No distinction was made between Gal1p, Gal1p bound to galactose (Gal1p*) and Gal3p, Gal3

bound to galactose (Gal3p*) since both the galactose bound and unbound forms can function

as co-inducers of GAL gene expression, presumably with different affinities [25].

• We did not differentiate between nuclear and cytoplasmic partitioning of the GAL proteins

because this is a subject of debate [70, 71, 72].

• Dimerization of Gal4p and Gal80p was not modeled for simplicity [73, 74].

For constant galactose concentrations, conversion of Gal1p, Gal3p into Gal1p*, Gal3p* is a first order

reaction. This first order reaction was approximated as a zeroth order reaction using a constant input

rate (αgal). The protein concentrations of Gal1p (G1), Gal3p (G3), Gal4p (G4) and Gal80p (G80)

were modeled. The Hill coefficients for G1 (n1), G3 (n3) and G80 (n80) were estimated as 3, 2 and

2 based on experimental measurements (Supplementary Fig. 2.1B).
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Supplementary Figure 2.3: Quantitative real-time PCR (qPCR) comparing constitutive and wild-
type (WT) mRNA levels of GAL1 (A-1), GAL2 (A-2), GAL3 (A-3), GAL80 (A-4). The mRNA
expression level for each gene was compared to the corresponding expression level of this gene in
WT induced with 0.5% galactose. (A) Comparison of TET promoter and WT expression ranges.
GAL1 expressed from the TET promoter and induced with 0-100 ng/ml was within the range of
WT GAL1 expression. However, PTETGAL1 induced with 0 and 100 ng/ml dox was overexpressed
relative to WT induced with 0% and 0.005% galactose, respectively. PTETGAL2 induced with 100
ng/ml dox corresponded to 37% of saturated WT GAL2 levels. WT GAL3 levels corresponded to
0-20 ng/ml dox for GAL3 expressed from the TET promoter. However, PTETGAL3 induced with
10 ng/ml dox was overexpressed relative to 0.05% galactose. PTETGAL80 induced with 0-25 ng/ml
dox corresponded to WT GAL80 expression. (B) mRNA levels of GAL2 (B-1) and GAL80 (B-2)
regulated by the ADH1 and STE5 promoters. GAL2 and GAL80 levels were approximately 58%
and 20% of the corresponding gene in WT induced with 0.5% galactose, respectively. Error bars
represent one standard deviation (n=3).
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Based on these assumptions, the model that captures the set of critical molecular interactions for

bistability in the wild-type (WT) GAL network is

d[G1]
dt

= εαgal + αG1

(
[G4]n1

Kn1
G1 + [G4]n1

)
− kf81[G1][G80] + kr81[C81]− γG1[G1],

d[G3]
dt

= αgal + αG3

(
[G4]n3

Kn3
G3 + [G4]n3

)
− kf83[G3][G80] + kr83[C83]− γG3[G3],

d[G4]
dt

= αG4 − kf84[G4][G80] + kr84[C84]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]n80

Kn80
G80 + [G4]n80

)
− kf81[G1][G80] + kr81[C81]

− kf83[G3][G80] + kr83[C83]− kf84[G4][G80] + kr84[C84]− γG80[G80],

d[C81]
dt

= kf81[G1][G80]− kr81[C81]− γC81[C81],

d[C83]
dt

= kf83[G3][G80]− kr83[C83]− γC83[C83],

d[C84]
dt

= kf84[G4][G80]− kr84[C84]− γC84[C84].

Using the quasi-steady-state assumption, the concentrations of the complexes, Gal1p-Gal80p (C81),

Gal3p-Gal80p (C83) and Gal4p-Gal80p (C84) reached their respective equilibria significantly faster

the dynamics of G1, G3, G4 and G80 (d[C81]
dt = d[C83]

dt = d[C84]
dt = 0), yielding

[C81] =
kf81[G1][G80]
kr81 + γC81

, [C83] =
kf83[G3][G80]
kr83 + γC83

, [C84] =
kf84[G4][G80]
kr84 + γC84

.

This assumption was used to simplify the system of equations to the following four ODEs

d[G1]
dt

= αgalε+ αG1

(
[G4]n1

Kn1
G1[G4]n1

)
+ ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal + αG3

(
[G4]n3

Kn3
G3 + [G4]n3

)
+ δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]n80

Kn80
G80 + [G4]n80

)
+ ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80],
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where

ω =
kr81kf81

kr81 + γC81
− kf81, δ =

kr83kf83

kr83 + γC83
− kf83, β =

kr84kf84

kr84 + γC84
− kf84.

At steady-state, d[G1]
dt = d[G3]

dt = d[G4]
dt = d[G80]

dt = 0 and the equilibrium concentrations are

G1e =
−εαgal −HG1(G4e, θG1)

ωG80e − γG1
,

G3e =
−αgal −HG3(G4e, θG3)

δG80e − γG1
,

G80e =
−αG4 + γG4G4e

βG4e
,

where G1e,G3e,G4e and G80e are the equilibrium values of G1, G3, G80 and G4. G4e was deter-

mined by computing the roots of a eleventh order polynomial

a0 + a1G4e + · · ·+ a11G411
e = 0,

where the coefficients, ai, are functions of the model parameters. The GAL1, GAL3 and GAL80

feedback deletion models listed in Section S2.6 were solved by applying the same procedure. The

stability of the equilibrium points was determined by computing the eigenvalues of the Jacobian

matrix of the system of equations [14].
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Supplementary Figure 2.4: Experimental characterization of the GAL1 feedback loop knockout
strain (GAL1∆ fb). (A) Flow cytometry histograms of PGAL10Venus for a range of doxycycline
(dox, horizontal axis) and galactose (percent, vertical axis). (B) Representation of flow cytometry
data in A as bimodal (red) and unimodal (blue) determined by a Gaussian mixture model (see
Materials and methods). Bimodality was detected for 0 ng/ml dox and vanished for 10, 25 and 50
ng/ml dox.

S2.5 Estimation of model parameters

S2.5.1 Parameter set I

Parameters for the model were estimated from experimental measurements and previous studies

(Table SI). GAL1 and GAL10 share a bidirectional promoter (PGAL1-10). As a consequence, these

genes exhibit highly similar galactose induction responses. The GAL3 and GAL80 promoters each

have a single Gal4p binding site and are produced at a basal rate in the absence of galactose.

Multiple Gal4p binding sites in the GAL2, GAL7 and GAL1-10 promoters stabilize Gal80p dimers
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Supplementary Figure 2.5: Deletion of GAL1 and the GAL3 feedback loop (GAL1∆ GAL3∆ fb)
produced a graded response irrespective of the concentration of GAL3. Bimodality persists in
the absence of the individual GAL2 and GAL80 feedback loops for a wide range of constitu-
tive GAL2 and GAL80 levels. (A) Steady-state flow cytometry measurements of PGAL10Venus
in GAL1∆ GAL3∆ fb cells where GAL3 was expressed from a TET promoter induced with 5,
10, 15 and 20 ng/ml doxycycline (dox). These concentrations of dox correspond to wild-type
GAL3 levels (Supplementary Fig. 2.3A-3). These measurements were taken on an LSRII ana-
lyzer. (B) GAL2 feedback deletion (GAL2∆ fb) displayed bimodality in the absence of doxycycline
(dox). (C) GAL80 feedback deletion (GAL80∆ fb) exhibited bimodal distributions for 0 and 25
ng/ml dox. These concentrations of dox correspond to 40% and 100% of fully induced WT GAL80
mRNA levels, respectively. (D) Steady-state activation responses of PGAL10Venus in the WT and
GAL1∆ GAL3∆ fb. The Hill coefficient for the WT was approximately 3 whereas the Hill coefficient
for GAL1∆ GAL3∆ fb was approximately 1.3. Each data point for GAL1∆ GAL3∆ fb represents
the normalized mean of fluorescence (MY, see Materials and methods) and the error bars represent
one standard deviation (n=3). Each data point for the WT represents mean of the fraction cells in
the high expression state and the error bars represent one standard deviation (n=3).
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Supplementary Figure 2.6: GAL bimodal response does not require multiple GAL4 binding sites. A
synthetic GAL regulated promoter fusion to Venus with a single GAL4 binding site was bimodal for
two galactose concentrations at steady-state. Bimodality was determined using a Gaussian mixture
model (GMM, see Materials and methods). Black circles represent the means of the fluorescence
distributions.
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Supplementary Figure 2.7: Parameter set II captures dynamic interplay of Gal1p and Gal3p complex
with Gal80p (C81 and C83) and feedback loop knockout experimental results. (A) Parameter set I
indicates that the complex of Gal3p with Gal80p (C83) dominates transiently and at steady-state
compared to C81 (complex of Gal1p with Gal80p). (B) Random parameter sampling (see Materials
and Methods) was used to identify a new parameter set that exhibits transient dominance of the
C83 complex and steady-state dominance of the C81 complex. (C) Parameter set II qualitatively
matches the feedback loop knockout experimental data showing bistability in all feedback loop
deletions except the double deletion of GAL1 and the GAL3 feedback loop. (D) WT model exhibits
a larger range of bistability (DH) compared to the single positive feedback loop systems (GAL1 and
GAL3 ) across a broad region of parameter space (Cv = 0.1). Parameter sets I and II are listed in
Table SI.
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on DNA, augmenting the strength of repression and the maximum production rate [75]. As a result,

promoters with multiple Gal4p binding sites have a significantly larger dynamic range of expression.

Flow cytometry measurements of GAL3, GAL10 and GAL80 promoter fusions to Venus in

response to galactose were used to compare relative promoter strengths and cooperativity. The

GAL3 (PGAL3) and GAL80 (PGAL80) promoter fusions exhibited a graded response whereas the

GAL10 promoter fusion had a bimodal response as shown in Fig. 2.3A-1. The Hill coefficients for

the Gal4p dependent feedback terms were approximated by fitting the means of the graded response

distributions (MY as described in the Materials and methods) and the fraction of high expressing

cells for the bimodal response (PGAL10) to Hill functions.

A Hill function fit to the means of the distributions for PGAL3Venus and PGAL80Venus in response

to galactose generated Hill coefficients of 2.2 and 2. Gal4p binds to DNA as a dimer and has been

shown to interact cooperatively [73, 76]. Based on these results, we assumed that the Hill coefficients

for the GAL3 and GAL80 transcriptional feedback terms were two [73, 76].

Fitting the fraction of high expression cells for PGAL10 produced a Hill coefficient of approxi-

mately 3.2. The GAL1-10 promoter has four Gal4p binding sites which have been shown to increase

cooperativity. Therefore, we set the Hill coefficient of the GAL1 feedback to three [76]. We note

that the main conclusions about the roles of the GAL1, GAL3 and GAL80 feedback loops do not

change if the Hill coefficients of the feedback terms for Gal1p, Gal3p and Gal80p and are set to 4,

1, 1 or 3, 1, 1.

The constitutive and feedback production rates were approximated using the number of proteins

per cell [66]. Gal4p is weakly expressed and its constitutive production rate (αG4) was selected to

reflect this observation [77]. The mean expression levels for PGAL3Venus and PGAL80Venus were

similar in response to galactose as shown in Supplementary Fig. 2.1C. At saturation (0.1% galactose),

PGAL80Venus was approximately 15% higher than PGAL3Venus. The production rates, αG3, αG80,

αoG80, were chosen to have similar ratios to mirror the experimental measurements. Since Gal1p

has been shown to bind to Gal80p with lower affinity than Gal3p, a scaling factor of ε was used to

modify αgal [26, 32].
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Forward binding rates (kf83, kf81 and kf84) were estimated using the limits of diffusion. The

dissociation rates (kr83, kr81, kr84) were free parameters with the requirement that kr81 � kr83

[26, 32]. The protein concentrations of Gal1, Gal3, Gal4, Gal4 and the complexes C81, C83 and C84

were assumed to degrade linearly at approximately the rate of cell division.

S2.5.2 Parameter set II

To identify parameter sets that qualitatively matched the previously reported dynamic switch re-

sponse of Gal1p and Gal3p [34], 10,000 parameter sets were sampled uniformly in linear scale in the

22-dimensional parameter space, using the Latin hypercube sampling method [45]. The following

parameter ranges were used: 10-160 (nM min)−1 for the forward binding constants (kf81, kf83 and

kf84), 1-5000 min−1 for the dissociation constants (kf81, kf83 and kf84), 0.0035-0.06 min−1 for the

degradation rates (γG1, γG3, γG80, γG4, γC81, γC83 and γC84), 0.01-100 nM for the EC50 values

in the Hill functions (KG1, KG3 and KG80), 0.1-40 nM min−1 for αG1, 0.1-10 nM min−1 for αG3,

αoG80 and αG80, 0.1-5 nM min−1 for αG4 and 0.01-2 for ε. The constitutive rates for the feedback

knockouts were fixed at 0.1, 0.1 and 1.5 nM min−1 for αG1s, αG3s and αG80s, respectively. DH

was computed for each parameter set and for each of the five models (WT, GAL1∆ fb, GAL3∆

fb, GAL80∆ fb and GAL1∆ fb GAL3∆ fb). First, these parameter sets were filtered based on the

presence of bistability. Second, the subset of parameter sets that satisfied these constraints were

simulated and the relative concentrations of C81 and C83 were calculated at an initial (10 min)

and delayed (500 min) time point by simulation of the full WT model (7-state) before applying the

quasi-steady-state assumption.

S2.6 Feedback loop deletion models

The individual GAL1, GAL3, GAL80 and combined GAL1 and GAL3 feedback deletions were

obtained by replacing the appropriate Hill functions representing transcriptional regulation by Gal4p

with a constant or equivalently setting the appropriate thresholds in the Hill functions, KGx, x =

1, 3, 80 to zero. In the GAL80∆ fb model, the basal and constitutive production rate were lumped
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into one parameter, αG80s. The GAL1∆ GAL3∆ fb model was obtained from the GAL1∆ fb GAL3∆

fb model by setting αG1s = 0 and ε = 0. The set of ordinary differential equations to model the five

feedback loop knockout topologies are as follows.

S2.6.1 GAL1 feedback deletion (GAL1∆ fb)

d[G1]
dt

= εαgal + αG1s + ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal + αG3

(
[G4]2

K2
G3 + [G4]2

)
+ δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]2

K2
G80 + [G4]2

)
+ ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80],

S2.6.2 GAL3 feedback deletion (GAL3∆ fb)

d[G1]
dt

= εαgal + αG1

(
[G4]3

K3
G1 + [G4]3

)
+ ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal + αG3s + δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]2

K2
G80 + [G4]2

)
+ ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80],

S2.6.3 GAL80 feedback deletion (GAL80∆ fb)

d[G1]
dt

= εαgal + αG1

(
[G4]3

K3
G1 + [G4]3

)
+ ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal + αG3

(
[G4]2

K2
G3 + [G4]2

)
+ δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αG80s + ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80],
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S2.6.4 GAL1 and GAL3 feedback deletions (GAL1∆ fb GAL3∆ fb)

d[G1]
dt

= εαgal + αG1s + ω[G1][G80]− γG1[G1],

d[G3]
dt

= αgal + αG3s + δ[G3][G80]− γG3[G3],

d[G4]
dt

= αG4 + β[G80][G4]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]2

K2
G80 + [G4]2

)
+ ω[G1][G80] + δ[G3][G80] + β[G80][G4]− γG80[G80].

S2.7 General models of molecular sequestration with positive feedback

We constructed generalizable models of molecular sequestration and positive feedback to examine the

relationship between the binding affinity of the activator-repressor pair(s) and the system’s region

of bistability. We first explored the parameter dependence of a simple model of an activator x that

is regulated by a transcriptional repressor z with a Hill coefficient of 1 (noncooperative). In this

model, x can sequester z to form an inactive heterodimer, hence generating a positive feedback loop.

Next, we analyzed the steady-state and dynamic properties of systems with two activators, x1

and x2 that are each regulated by the transcriptional repressor z and can sequester z into two

inactive complexes (c1 and c2), thus forming one or two positive feedback loops. In these models,

the mechanisms of sequestration and positive feedback are triggered by an input (u) that represents

a basal production rate of x, x1 and x2.

S2.7.1 Model description for single noncooperative sequestration feedback loop

The three equations that implement a single noncooperative sequestration feedback loop (Supple-

mentary Fig. 2.8A,B) are
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dx

dt
= u+

αK

K + z
− kfxz + krc− γxx,

dc

dt
= kfxz − krc− γcc,

dz

dt
= αz − kfxz + krc− γzz.

Here, u represents the input. Assuming that dc
dt = 0 (quasi-steady-state approximation), the model

was reduced to

dx

dt
= u+

αK

K + z
+ βxz − γxx,

dz

dt
= αz + βxz − γzz,

where β = kf

(
kr

kr+γc
− 1
)

. The parameter values were set to αx = 5 nM min−1, αz = 10 nM min−1,

γx = γc = γz = 0.005 min−1, K = 100 nM, kf = 100 (nM min)−1. u and kr varied within the range

of 0.1-10 nM min−1 and 0.1-1000 min−1 (Supplementary Fig. 2.8B). Similar to the GAL model, a

bifurcation analysis was performed by computing the roots of the cubic polynomial in z.

S2.7.2 Model description for double sequestration linked feedback loops

The ODE model that represents a double sequestration linked feedback loop system shown in Fig.

2.6A consists of the following equations
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Supplementary Figure 2.8: Molecular sequestration can generate bistability without cooperativity.
Relationships between the binding affinities and activation or deactivation response times for the
dual feedback loop sequestration model. (A) Circuit topology consists of an activator x that can
form inactive heterodimers with a transcriptional repressor, z. z transcriptionally represses x with
a Hill coefficient of 1 (noncooperative). (B) Regions of bistability (red) and monostability (blue)
for a set of input and KD values (binding affinity of x to z). The region of bistability shrinks and
eventually disappears as the binding affinity decreases. Model equations and parameter values are
listed in Section S2.7. (C) Activation response times measured in cell-generations for the double
feedback loop sequestration model for different values of KD1 and KD2. (D) Deactivation response
times measured in cell-generations for the double feedback loop sequestration model for different
values of KD1 and KD2. (E) Relationship between activation response times and range of bistability
(DH) for the double positive feedback loop sequestration model for a set of KD1 and KD2 values.
For a fixed nonzero DH, the double positive feedback loop system could exhibit a faster activation
response compared to the single positive feedback loop models.
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dx1

dt
= u+

α1K
3
1

K3
1 + z3

− kf1x1z + kr1c1 − γ1x1,

dx2

dt
= u+

α2K
2
2

K2
2 + z2

− kf2x2z + kr2c2 − γ2x2,

dc1
dt

= kf1x1z − kr1c1 − γc1c1,

dc2
dt

= kf2x2z − kr2c2 − γc2c2,

dz

dt
= αz − kf1x1z + kr1c1 − kf2x2z + kr2c2 − γzz.

Here, u represents the input. Assuming the inactive complexes (c1 and c2) approach equilibrium

significantly faster than the other species (quasi-steady-state approximation), the system of equations

was reduced to

dx1

dt
= u+

α1K
3
1

K3
1 + z3

+ β1x1z − γ1x1,

dx2

dt
= u+

α2K
2
2

K2
2 + z2

+ β2x2z − γ2x2,

dz

dt
= αz + β1x1z + β2x2z − γzz,

where β1 = kf1

(
kr1

kr1+γc1
− 1
)

and β2 = kf2

(
kr2

kr2+γc2
− 1
)

.

The parameter values were set to α1 = α2 = 5 nM min−1, αz = 10 nM min−1, γ1 = γ2 = γc1 =

γc2 = γz = 0.005 min−1, K1 = K2 = 100 nM, kf1 = kf2 = 100 (nM min)−1. u, kr1 and kr2

were each varied over a range of values. The single feedback loop models referred to as the “single

nHill = 2” and the “single nHill = 3” were obtained by replacing the Hill functions by a constitutive

production rate, α1s or α2s. These parameters were set to α1s = 5 nM min−1, α2s = 5 nM min−1 or

α1s = 0.1 nM min−1, α2s = 0.1 nM min−1 for the activation or deactivation response time analysis

(see below). Similar to the GAL model, a bifurcation analysis was performed by calculating the

roots of polynomials in z. The dual, single nHill = 2 and single nHill = 3 models were simplified to

seventh, fifth and sixth order polynomials in z.
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Response time analysis

The activation and deactivation response times were computed by simulation of the full sequestration

models described above before applying the quasi-steady-state approximation (six-state ODE model

including an output species, y). Total simulation time was 5000 min. The equation for the output

species was

dy

dt
=

αyK
3
y

K3
y + z3

− γyy,

and the parameters equaled αy = 10 nM min−1, Ky = 100 nM, γy = 0.005 min−1.

Activation response times

For the activation time simulations, u = 0 for t ≤ 500 min and then u = 10 for t > 500 min. The

initial conditions approximated the steady-state concentrations for the low state where x1o = 0.005

nM, x2o = 0.01 nM, c1o = 0.12 nM, c2o = 2.4 nM, zo = 1998 nM and yo = 0.26 nM. The time

required for y (normalized between 0 and 1) to increase to half its maximum value was computed

for each set of KD1 and KD2 values. In the single feedback loop models, the constitutive production

rates of x1 or x2 (α1s or α2s) were set to 0.1 nM min−1 because this value approximated the Hill

functions at equilibrium for u = 0 .

Deactivation response times

For the deactivation time simulations, u = 10 for t ≤ 500 min and then u = 0 for t > 500 min. The

initial conditions approximated the steady-state concentrations for the high state where x1o = 1943

nM, x2o = 1891 nM, c1o = 993 nM, c2o = 966 nM, zo = 40.9 nM and yo = 1872 nM. The time

required for y (normalized between 0 and 1) to decay to half its maximum value was computed for

each set of KD1 and KD2 values. In the single feedback loop models, the constitutive production

rates of x1 or x2 (α1s or α2s) were set to 5 nM min−1 because this value approximated the Hill
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functions at equilibrium for u = 10.
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Strain name Genotype
Wild-type (WT) PGAL10Venus MATa leu2, trp1::TRP1-PGAL10Venus, ura3, ade2::ADE2, his3
GAL2∆ fb MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL2, ade2::ADE2, his3, GAL2∆::KAN
GAL3∆ fb MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL3, ade2::ADE2, his3, GAL3∆::KAN
GAL80∆ fb MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL80, ade2::ADE2, his3, GAL80∆::HPH
GAL2∆ fb GAL3∆ fb MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL3, ade2::ADE2, his3::HIS3-PADH1GAL2,
GAL3∆::KAN, GAL2∆::NAT

GAL2∆ fb GAL3∆ fb GAL80∆
fb

MATα ura3:URA3-PTETGAL3, leu2::LEU2-PSTE5GAL80,
ade2::ADE2-PGAL10Venus, trp1::TRP1-PADH1GAL2, his3::HIS3-
PTEFm4rtTA-M2, GAL3∆::KAN, GAL2∆::NAT, GAL80∆::HPH

GAL1∆† MATα leu2, trp1::TRP1-PGAL10Venus, ura3, ade2::ADE2, his3, GAL1∆
GAL1∆† fb MATα leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus, ura3,

ade2::ADE2, his3, GAL1∆
GAL1∆† GAL2∆ fb MATα leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL2, ade2::ADE2, his3, GAL2∆::NAT, GAL1∆
GAL1∆† GAL3∆ fb MATα leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL3, ade2::ADE2, his3, GAL3∆::KAN, GAL1∆
GAL1∆† GAL80∆ fb MATα leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL3, ade2::ADE2, his3, GAL80∆::HPH, GAL1∆
WT PGAL3Venus MATa leu2, trp1::TRP1-PGAL3Venus, ura3, ade2::ADE2, his3
WT PGAL80Venus MATa leu2, trp1::TRP1-PGAL80Venus, ura3, ade2::ADE2, his3
WT PTDH3Venus MATa leu2, trp1::TRP1-PTDH3Venus, ura3, ade2::ADE2, his3
WT PCYC1-G4BSVenus MATa leu2, trp1::TRP1-PCYC1-G4BSVenus, ura3, ade2::ADE2, his3
Wild-type diploid MATa/α leu2/leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-

PGAL10Venus/trp1, ura3/ura3, ade2::ADE2/ade2, his3/his3
MA0182∗ MATa/α, ura3/ura3::URA3-PTETO2GAL3, his3::HIS3/his3,

ade2::ADE2-PMYO2rtTA/ade2::ADE2-PGAL1YFP,
GAL3∆::KAN/GAL3∆::KAN

Supplementary Table II: Strains used in this study. All strains were W303. †Constructed using
CSY53 background described in [28]. ∗Strain described in [20].
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Chapter 3

Transient bistability generates
anticipatory and deferred
metabolic states

Introduction

To survive and reproduce, single microbial cells must integrate numerous extracellular signals to infer

the state of their environment and respond by adjusting intracellular regulatory programs. These

single-cell decisions have been shaped by evolution to weigh the costs and benefits of a particular

response. Cellular decision-making relies on current information about the environment and may also

reflect an anticipatory response to future changes in these conditions [78, 79]. Although suboptimal

in the present environment, preemptive actions may provide crucial benefits to populations of cells

upon a shift in the environmental state.

Single-cells deduce the state of their environment by interacting with extracellular signals. These

molecular interactions are governed by the inherent stochastic nature of chemical reactions and dif-

fusion, which can generate significant cell-to-cell variability across an isogenic population [36]. This

diversification of phenotypes can lead to distinct functional consequences for individual cells [57]. For

example, in response to an antibiotic stress, a fraction of Escherichia coli (E. coli) cells can survive

in a persistence state without acquiring genetic resistance to the drug [8]. Non-genetic phenotypic

heterogeneity such as persistence has been shown to confer crucial advantages for microorganisms

by reducing the variance in population fitness in a fluctuating environment over time [80, 5].
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In their natural environments, microbes grow on a variety of different carbon sources as opposed

to a single carbon substrate [81]. In cultures with two carbon sources, microbial cells exhibit a

diauxic or two-stage growth response in which the substrate that supports the highest growth rate

(typically glucose) is consumed before a less preferred sugar [82, 83]. These two growth phases are

separated by a delay of diminished growth referred to as the diauxic shift that involves induction of

the regulatory and enzymatic pathway for the second carbon source.

As a model system, we used the Saccharomyces cerevisiae (S. cerevisiae) galactose gene-regulatory

network (GAL) to explore how sugar deprived cells respond dynamically to a step input of glucose

and galactose. The GAL pathway is a well-characterized eukaryotic gene-regulatory circuit that

provides cells with the capability to metabolize galactose. This network includes a set of regulatory

genes for sensing and controlling gene expression (Gal2p, Gal3p, Gal80p, Gal4p) and a set of enzy-

matic genes (Gal1p, Gal7p, Gal10p) for transforming galactose into glucose-6-phosphate as an entry

point for glycolysis.

In the absence of galactose, the repressor Gal80p sequesters the transcriptional activator Gal4p

from the general transcriptional machinery by binding to activation domain of Gal4p. Galactose

enters the cell through the membrane-bound permease transporter Gal2p and activates the sig-

nal transducers Gal1p and Gal3p [23]. Upon activation by galactose and ATP, Gal1p and Gal3p

can sequester Gal80p, which relieves the repression of Gal4p thus leading to GAL gene induction

[24]. Gal1p is a bifunctional molecule and also performs the first step in galactose metabolism by

phosphorylating galactose [25].

The regulatory proteins, Gal1p, Gal2p, Gal3p and Gal80p are induced in the presence of galactose

by Gal4p, forming four feedback loops. These feedback loops have been shown to reduce gene

expression noise, enhance response time, generate bistability and modulate the system’s memory of

previous environments [19, 20, 84]. The potential for bistability in the GAL network is established

by the GAL1 and GAL3 feedback loops, which can produce two stable on and off-states in response

to a range of galactose levels [19, 18].

Glucose repression is a complex regulatory network that modifies the activity of the GAL pathway
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at both the transcriptional and post-transcriptional levels [83]. Transcriptional repression of the

GAL genes is mediated by a set of DNA binding proteins that recruit the global transcriptional

repression complex Cyc8-Tup1, which modifies the promoter state using multiple mechanisms such

as chromatin remodeling [85, 86, 87, 88, 89]. In response to galactose, the GAL promoters can

escape a repressed state by the liberation of Gal4p from Gal80p and inhibition of Cyc8-Tup1, which

then initiates an ordered recruitment of the SAGA complex and TBP [90]. A PHD domain protein,

Cti6p, has been shown to play an important role in overcoming the transcriptional repression of the

GAL1 promoter by Cyc8-Tup1 [91].

The bifunctional glucose kinase, Hxk2p, also has a critical role in glucose repression by regulating

the nuclear to cytoplasmic ratio of Mig1p by blocking phosphorylation through the Snf1 kinase [92,

93]. In addition, Hxk2p has a glucose-dependent nuclear localization and physically interacts with

Mig1p to regulate a set of target genes [94, 95, 96]. A previous study showed that the recruitment

of Cyc8-Tup1 to the GAL1 promoter, as opposed to the changes in the localization of Mig1, was

the dominant regulatory interaction that triggers repression of the GAL system [97].

In this work, we investigated the dynamics of the GAL network in single-cells in response to a

mixture of glucose and galactose. We found that similar concentrations of these sugars generated co-

existing on and off-subpopulations that persisted for many cell-generations and eventually converged

onto a single monomodal on-state. Even though a fraction of the cells are highly expressing the GAL

genes, our data indicate that glucose is fully consumed before galactose. We identify the mapping

between the population’s metabolic state and the dynamics of gene expression, which indicates that

the delayed activation precisely coincides with the metabolic shift from glucose to galactose. Using

a computational model, we show that the observed transient bimodality originates from bistabil-

ity that is eventually transformed into monostability when the concentration of glucose crosses a

bifurcation point. By modifying the timing of gene expression relative to glucose consumption,

we demonstrate that turning on the GAL genes many hours before they are required reduces the

amount of time required to transition between carbon sources and provides a transient enhancement

of fitness. However, our data demonstrates that constitutive GAL gene expression can reduce the
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glucose consumption rate. Based on this tradeoff and evidence that the two subpopulations grow

at different rates, we propose that the diversification of the population into two regulatory states

provides a beneficial bet-hedging strategy for the cell population.

Results

The GAL system exhibits a transient bimodal response to a step input of

similar concentrations of glucose and galactose

We explored the dynamic response of cells grown in rich media without any sugars to a mixture of

glucose and galactose. To investigate the gene expression dynamics over a long time scale, we used

automated flow cytometry to measure the single-cell fluorescence of a GAL10 promoter driving Venus

(YFP) approximately every 20 min for 14 hours (Fig. 3.1A) [Zuleta, I et al. 2013 In preparation].

For galactose concentrations significantly higher than glucose, the GAL genes turned on as a single

monomodal distribution. By contrast, the GAL pathway did not induce over the course of the

experiment for glucose concentrations significantly higher than galactose.

In response to similar concentrations of the two sugars, a fraction of the population turned on

the GAL genes whereas the remaining fraction of cells persisted in an off-state, producing a time-

dependent bimodality in the activity of the pathway across the population (Fig. 3.1A,B). Following

variable time delays, the repressed subpopulation decisively converged in a narrow window of time to

a monomodal on state. It should be noted that these synchronized single-cell dynamics are distinct

from stochastic switching between two phenotypic states over time [98, 99]. The time-dependent

bimodality was detected in over 35% of conditions tested, representing a significantly larger region

of parameter space than observed previously in the absence of glucose [19, 20].

To understand the relationships between initial concentration of the two inputs and the dynamic

features of the system, we quantified the response times, duration of bimodality and the fraction

of cells in the on-state. In conditions that produced a detectable early activated subpopulation,

glucose increased the response time of this cohort of cells whereas galactose decreased this response
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Figure 3.1: The galactose regulatory network in S. cerevisiae exhibited transient bimodality for
similar concentrations of glucose and galactose. (A) Single-cell fluorescence distributions of Venus
(YFP) driven by a GAL10 promoter in WT S. cerevisiae obtained using dynamic automated flow
cytometry [Zuleta, I et al. 2013 In preparation] in response to a step input of the two sugars. Dynam-
ics of pathway activation in single-cells across many combinations of the two sugar inputs (right).
Concentrations of galactose that significantly exceeded glucose produced monomodal induction and
concentrations of glucose significantly higher than galactose generated monomodal repression. Cells
exposed to similar concentrations of glucose and galactose displayed transient bimodality (diago-
nal). The delays between the first and second activation responses could be quantified for a subset
of conditions (pink). (B) Microscopy image showing bimodality following a 6 hr induction with
0.25% glucose + 0.5% galactose (top). Representative data highlighting the transient bimodality
phenotype (bottom). δg represents the time delay between the first activation and second activation
responses (see Materials and Methods) for conditions highlighted in A (pink). (C) Response time of
early activated subpopulation quantified using the half-max of the mean of high mode (see Materials
and Methods). (D) δg increased with glucose and was not significantly modified by the initial galac-
tose level (Supplementary Fig. 3.1A).(E) The fraction of cells in the early activated subpopulation
at the midpoint of the transient bimodal region increased with galactose and decreased with glucose
for a fixed concentration of galactose.
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time (Fig. 3.1C). The duration of transient bimodality δg was computed as the difference between

the half-max of the activated and repressed subpopulation using a Gaussian mixture model (GMM)

(see Materials and Methods). Our data demonstrated that δg increased with the initial glucose

concentration and was not significantly modified by the initial galactose concentration (Fig. 3.1D,

Supplementary Fig. 3.1A). Whereas the response time of the early cohort of cells was fine-tuned by

the initial sugar levels (Fig. 3.1C), δg was approximately linear with the initial glucose concentration

and increased by up to 500%. The total amount of time the system exhibited bimodality decreased

with galactose at low glucose levels by inducing the early activated subpopulation at earlier times

(Supplementary Fig. 3.1B).

To determine if δg was modulated by the current level of glucose, we measured δg as a function

of the initial cell density (No). By varying No, we could determine the relationship between the rate

of sugar consumption and δg. Our results indicated that No was inversely related to δg, suggesting

that the rate of glucose disappearance from the environment determines the timing of the delayed

activation (Supplementary Fig. 3.1C). Next, we compared conditions that received one initial step

of glucose to two step inputs separated by approximately 5 hours (Supplementary Fig. 3.1D). We

found that all conditions that received two step inputs of glucose exhibited a larger δg across different

glucose concentrations and initial cell densities (No) compared to conditions that received a single

step input. It should be noted that the second pulse of glucose did not double the observed δg. This

observation could be explained by a larger number of cells at the time of the second step of glucose

that leads to a faster glucose consumption rate. Intriguingly, these data indicate that activation of the

GAL pathway in the repressed subpopulation of cells is sensitive to the instantaneous concentration

of glucose and hence δg can be adjusted in real time.

We analyzed the fraction of on cells in the early activated subpopulation at the mid-point of the

transient bimodal region as a function of the sugars. The fraction of on cells significantly increased

with the initial concentration of galactose and was reduced by the initial glucose concentration at a

constant level of galactose (Fig. 3.1E). By contrast to δg, this quantity was not altered by a second

step input of glucose and therefore the fraction of on cells distributed between the on and off states
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Figure 3.2: Inhibition of galactose metabolism did not require transcriptional repression of the GAL
genes and the metabolic transition between carbon sources was tightly coupled to the dynamics of
gene expression. (A) Representative glucose and galactose concentrations for the GAL10 promoter
fusion strain. Glucose was depleted first before galactose was consumed. Lines represent fitted Hill
functions to the sugar data. The fraction of on cells increased immediately following the stimulus,
plateaued as cells were consuming glucose and increased to one as the cells were switching from
glucose to galactose. (B) Scatter plot of glucose concentrations and the fraction of cells in the on
state for the four major GAL enzymes. The fraction of on cells increased initially at a constant
glucose level, remained constant while glucose was being consumed and increased to one upon
glucose depletion. (C) Scatter plot of galactose concentrations and the fraction of cells in the high
population for the four GAL enzymes. The fraction of on cells increased at constant galactose level
and galactose was consumed when approximately 85% cells were in the on-state.

is not modulated by the instantaneous glucose concentration (Supplementary Fig. 3.1E).

The gene expression dynamics and the metabolic transition between car-

bon sources are tightly coupled processes

To discover the mapping between the gene-expression dynamics and the concentration of the sugars,

glucose and galactose were quantified (see Materials and Methods). For each sugar measurement, the

single-cell gene expression was quantified for the GAL1, GAL2, GAL7 and GAL10 promoters fusions

to Venus (Supplementary Fig. 3.2). These promoters exhibited similar dynamic profiles, indicating

that the GAL10 promoter was a reliable reporter of the network’s activity in these conditions. As

expected, our data demonstrated a sequential order of sugar utilization in which cells consumed

glucose first before starting to deplete galactose from the culture (Fig. 3.2A) [100]. Our results

showed that the initiation of galactose consumption was abrupt and switch-like following glucose

exhaustion, as opposed to a gradual decrease in the level of galactose as glucose vanished from the

culture.
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The fraction of on-cells increased immediately following the two sugar stimulus and plateaued

as the cells consumed glucose (Fig. 3.2A,B). The delayed activation response of the repressed

subpopulation occurred at the time of glucose depletion, which resulted in an increase in the fraction

of on-cells. We found that the consumption of galactose did not commence until approximately 85%

of cells were in the on-state (Fig. 3.2C). Together, these results showed a precise relationship

between the dynamics of gene expression and sugar metabolism. Indeed, both the regulation of gene

expression and galactose metabolism were orchestrated together and exhibited switch-like dynamics.

According to the two-sugar Monod model, the expression of genes required for the less preferred

substrate are repressed in the presence of the preferred carbon source, which blocks utilization of

the secondary sugar. Counter to this model, our data indicates that the inhibition of galactose

metabolism does not require transcriptional repression of the GAL genes. This absence of galactose

consumption in spite of a subpopulation of cells highly expressing the GAL genes indicates that there

is an unknown regulatory mechanism that blocks galactose metabolism. This observation is consis-

tent with a rapid inhibition of galactose consumption in response to a glucose pulse at a timescale

faster than can be explained by changes in the transcriptional state and sufficient degradation of

the GAL proteins [101].

To assess the contribution of galactose to cellular fitness in the presence of glucose, we measured

the sugars, growth and gene expression dynamics for a strain lacking the endogenous GAL4 gene and

expressing a DNA binding mutant of GAL4 (C14Y) that is unable to activate transcription of the

GAL genes [102] (Supplementary Fig. 3.3A). This mutant depleted glucose at a rate equivalent to

WT but was not able to consume galactose (Supplementary Fig. 3.3B,C). These data demonstrate

the quantitative enhancement of cellular fitness by galactose in the presence of glucose, hence re-

vealing the importance of secondary sugar metabolism in competitive environments (Supplementary

Fig. 3.3D).
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Constitutive GAL gene expression accelerates the transition between sugars and pro-

duces a fitness cost

Our data indicated that a high expression level of the GAL genes was not sufficient to initiate

galactose metabolism. To test whether the altering the gene expression state can modify the timing

of galactose metabolism in the presence of glucose, we fully induced the system in advance of the wild-

type by overexpressing Gal3p and monitored the dynamics of sugar consumption (Supplementary

Fig. 3.4A). In this strain, the endogenous GAL3 gene was deleted and Gal3p was expressed from

an inducible TET promoter that could be regulated by an aTc-responsive transcription factor rtTA

(GAL3∆ fb) [19, 43].

Constitutive GAL gene expression was not sufficient to abolish hierarchical sugar utilization. The

GAL3∆ fb strain exhibited an approximately 10% diminished rate of glucose consumption compared

to wild-type, indicating that constitutive GAL gene expression can have an inhibitory effect on

glucose metabolism (Supplementary Fig. 3.4B). By contrast, galactose metabolism was accelerated

in the mutant relative to WT (Supplementary Fig. 3.4C). These combined effects reduced the

metabolic delay by approximately 50% compared to WT (Supplementary Fig. 3.4D).

GAL3∆ fb displayed a reduced growth rate on galactose by up to 20% relative to WT (Sup-

plementary Fig. 3.4E, F). These data indicate that gratuitous expression of the GAL genes in

environments where these genes are not required yields a fitness cost when growing on galactose.

This diminished population fitness and rate of glucose consumption due to GAL gene overexpression

provides insights into the benefits of tightly regulating the expression of the GAL genes in response

to the availability of galactose in the environment.

Deterministic mathematical model of activation and repression in the GAL

system can recapitulate features of dynamics

To understand how the structure of the GAL network could generate the observed dynamics, we

constructed a mathematical model of this circuit that received an repression input from glucose and

an activation signal from galactose (see Section S3.1 for a detailed description of the model). This
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model included a signal transducer Gal1p (G1) that could inhibit the repressor Gal80p (G80) from

sequestering the transcriptional activator Gal4p (G4) in the presence of galactose thus leading to

GAL gene activation (Fig. 3.3A). A glucose-responsive repressor, R can be activated by the glucose

signal, which enables this species to transcriptionally repress the promoters of GAL1 and GAL4.

The model could recapitulate a region of bistability for similar concentrations of the two inputs,

which corresponds to the region of bimodality in the experiments (Fig. 3.3B). Removing the GAL80

feedback loop in the model augmented the percentage of conditions that produce bistability across

different values of the two inputs (Supplementary Fig. 3.5A). The model’s prediction qualitatively

matched the experimental data since removing the GAL80 feedback loop augmented the range of

bimodality (Supplementary Fig. 3.5B-D).

To probe the observed transient nature of the bimodality, we explored the relationship between

the hierarchical sugar consumption dynamics and the system’s bistability. At time zero, a step input

of the two sugars triggers bistability in the system (Fig. 3.3C). Over time, the glucose concentration

decays to a critical threshold corresponding to a bifurcation point that produces an abrupt trans-

formation of the system from bistable to monostable. Based on the model, the culture conditions

synchronize the cell population dynamics due to the bistable character of the system, which gen-

erates a precipitous transition of the repressed subpopulation to the on-state. Precise mechanistic

details of glucose repression of the GAL genes were not required to capture the transient bistability

phenomenon, suggesting that a general combination of activation and repression of a bistable system

can recapitulate the observed dynamics. Experimental characterization of δg in a set of mutants

revealed that this phenotype is modulated by many factors (Section S3.2, Supplementary Fig. 3.6A-

C). In particular, we found that δg can be significantly modified by perturbing the transcriptional

state of the GAL genes, suggesting that transcriptional regulation has a fundamental role in the

precise tuning of the duration of transient bimodality.

The model predicted that the duration of bimodality was inversely related to the current glucose

concentration because the system would be closer to the bifurcation point that transforms bistability

into a monostable on-state (Fig. 3.3C). We designed an experiment to test this trend predicted by
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Figure 3.3: Computational model of repression by glucose and activation by galactose recapitulates
transient bistable gene expression dynamics and predicts dynamic trends observed in the experimen-
tal data. (A) Schematic diagram showing the topology of the circuit in the model. Glucose activates
a repressor, R to R* that can transcriptionally repress the GAL genes by inhibiting the transcription
factor, Gal4p (G4) and the signal transducer, Gal1p (G1). Galactose activates G1 to G1*, which
enables G1* to sequester Gal80p (G80). This inhibition of G80 liberates G4 to transcriptionally
induce G1 and G80, forming a positive and negative feedback loop. (B) The model produces bista-
bility for range of similar concentrations of glucose and galactose (white), a monostable on-state for
high galactose concentrations (red) and a monostable off-state for high levels of glucose (blue). (C)
The transient bimodal response can be explained by an initial bistability in the system triggered by
a specific combination of the two inputs. Over time (right to left), glucose decays before galactose
is consumed. As a consequence, the system passes through a bistable regime for a range of glucose
levels and crosses a bifurcation point at a threshold concentration of glucose. For glucose concentra-
tions below this value, the system exhibits a monostable on-state. In the model, delayed step inputs
of galactose to a system that is consuming glucose (highlighted by the arrows) exhibits a shorter
duration of bistability (right). (D) Experimental design of delayed galactose pulse experiment to
test the prediction of the model. 0.1% glucose was added at time zero to conditions A-E and 0.1%
galactose was added over a range of times. (E) Mean expression level of a GAL10 promoter fusion to
Venus for the galactose pulse experiment (left). Arrows indicate the time when galactose was added
to the culture. The duration of bimodality was inversely related to the delay in the galactose input
(right). (F) The fraction of initial conditions (IC) and dominant eigenvalue decreases as a function
of glucose. Here, galactose = 150 nM. (G) Fraction of on-cells in the galactose pulse experiment
over time for condition A-E. Corroborating the model’s prediction, the response time of the fraction
of on-cells was inversely related to the delay in the galactose stimulus (right). Arrow bars indicate
1 s.d. from the mean of two replicates.

the model by applying a step input of 0.1% galactose at different times to a set of conditions that

had received 0.1% glucose from time zero. In condition A, both sugars were added simultaneously

at time zero (Fig. 3.3D). In conditions B-E, glucose was present from time zero and galactose was

added 3.1, 4.2, 5.3 and 6.3 hours following the glucose stimulus. As demonstrated in the model,

the transient bimodal region contracted with the increased delay in the galactose stimulus and was

graded for a sufficiently long delay in condition E (Fig. 3.3E, Supplementary Fig. 3.7).

We analyzed how the domain of attraction and the local stability of the high equilibrium points

change as function of the two inputs. The domain of attraction was determined by random sampling

of 5000 initial conditions using the Latin hypercube method and computing the fraction of these ini-

tial conditions that are absorbed by the high equilibrium state [45]. In the model, the concentration

of glucose was inversely related to the domain of attraction and the absolute value of the dominant

eigenvalue of the linearization of the high equilibrium state (Fig. 3.3F). Here, the dominant eigen-

value is defined as the eigenvalue with the smallest absolute value. By contrast, galactose increased
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the fraction of initial conditions that were assimilated by the high equilibrium point, reflecting the

experimental data (Supplementary Fig. 3.8A). Assuming that individual cells in a population have

distinct initial conditions that can map to disparate equilibrium states, these results predict a de-

crease in the response time of the fraction of on cells as glucose decays. To experimentally assess

this trend, we analyzed the response time of the fraction of cells in the on-state for conditions A-E

in the delayed galactose pulse experiment. Corroborating the results of the model, we found that

the time required for the cell population to reach 50% of cells in the on-state decreased with the

delay in the galactose stimulus (Fig. 3.3G).

To explore how a single cell could enter the repressed or activated states immediately following

the stimulus, we examined the model’s dynamics for time varying glucose and galactose concentra-

tions. In these simulations, the concentration of glucose is depleted first before galactose begins

to disappear. In response to a combination of the two inputs that generates bistability, our model

demonstrated that varying the initial ratio of repressors (R and G80) to activators (G1 and G4)

could generate an early or delayed activation of the system (Supplementary Fig. 3.8B). The deci-

sion of a single cell to occupy the high or low state immediately following the two input stimulus

was investigated experimentally in a panel of mutants (Section S3.1, Supplementary Fig. 3.6D).

The majority of these perturbations to the system modified the fraction of on-cells as a function

of glucose, indicating that transcriptional regulation has a critical role and that this phenotype is

controlled by a complex interplay of the regulatory machinery.

Anticipatory gene expression accelerates galactose metabolism and pro-

vides a transient increase in fitness

To investigate whether induction of the GAL genes many cell generations prior to galactose metabolism

provides a functional role in the mixed sugar environment, we measured the glucose and galactose

concentrations for the delayed galactose pulse experiment. Since the cells consume glucose first

before galactose, the presence of galactose should not benefit cells until glucose is fully consumed.

In this experiment, we could test whether the timing of GAL gene induction alters the profile of
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Figure 3.4: Delayed step inputs of 0.1% galactose following an initial step input of 0.1% glucose
produces delays in galactose metabolism and a transient decrease in growth rate. Arrows indicate the
time when galactose was added to the culture. (A) Glucose concentrations for each condition. Lines
represent fitted Hill functions to the sugar data. (B) Galactose concentrations for each condition.
(C) Fractional change in the half-max of the galactose concentrations for each condition relative to
A. (D) Normalized growth rates of conditions B-F compared to A (red line). Error bars represent
1 s.d. from the mean of two replicates.

sugar consumption and the cell population’s growth rate.

Our data demonstrated that glucose decayed at a similar rate across all conditions (Fig. 3.4A).

However, we observed increasing delays in the consumption of galactose with the delay in the galac-

tose stimulus (Fig. 3.4B,C). During the shift between carbon sources, we observed a transient growth

rate advantage of up to 25% between the condition that received galactose at time zero (A) and

following a 6.3 hour delay (E) (Fig. 3.4D, Supplementary Fig. 3.9). Taken together, these data

indicate turning on the GAL pathway in a fraction of cells in the population before these proteins

are used to metabolize galactose, leads to a faster consumption rate of galactose and a transient

growth rate advantage during the metabolic transition.

To control GAL gene expression independently of galactose, we tested a synthetic estradiol-

responsive Gal4 chimera to induce GAL gene expression at specific times in a strain lacking the

endogenous GAL4 gene [103]. In this experiment, each condition was induced with 0.1% glucose and

0.1% galactose from time zero and the GAL genes were turned on by applying a step input in estradiol
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at different times before the cells had depleted glucose from their environment (Supplementary Fig.

3.10A). Since the synthetic inducible system is not connected to the feedback structure of the natural

circuit, the gene expression was graded as opposed to bimodal.

Interestingly, our data showed that the delay in the activation of gene expression correlated

with a faster glucose consumption rate of up to approximately 15%, indicating that GAL gene

expression can inhibit glucose consumption (Supplementary Fig. 3.10B). Consistent with the results

of the galactose pulse experiment, we found that turning on the GAL genes at later times delayed

galactose metabolism (Supplementary Fig. 3.10C). These combined effects resulted in a significant

increase in the delay of the transition between carbon sources of up to approximately 22% comparing

condition E to A (Supplementary Fig. 3.10C). Together, these data highlight a potential tradeoff

involved in inducing the GAL genes before they are required that arises from the cost of a reduced

rate of glucose decay and the benefit of faster galactose consumption, which facilitates the transition

between carbon substrates. In addition, this experiment showed that the uncharacterized control

mechanism that enforces hierarchical sugar utilization does not arise from the natural regulation of

the circuit including the feedback loops, suggesting that this regulatory checkpoint may be upstream

at the level of the enzymes.

These two experiments revealed a delay on the timescale of hours for cells to start consuming

galactose from the time that the system was turned on by either galactose or estradiol. We found

that the duration of the delay in galactose consumption was augmented by turning the system on

closer to the point of glucose exhaustion and thus the time when these genes were required (Fig.

3.4B,C and Supplementary Fig. 3.10C). Presumably, this stalled metabolic state is partially due to

the time required for sufficient accumulation of the metabolic machinery including transporters and

enzymes for galactose utilization. However, these data cannot be entirely explained by the timing of

the buildup of necessary proteins since we observed a reverse trend in the gene expression response

time that decreased with the increase in the galactose stimulus (Fig. 3.3G).
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Cells in high subpopulation have a lower growth rate than cells in low subpopulation

In the transient bimodal regime, the low and high subpopulations were clearly distinguishable for

several hours. We assumed that the potential transitions between the two states were insignificant

since switching between states would yield intermediate fluorescence levels due to the gradual accu-

mulation or dilution of fluorescent protein. During this period, we computed the growth rate of the

individual subpopulations by quantifying the number of cells that accumulated in the low and high

modes over time using a thresholding method (see Materials and Methods). Our results showed

that the low subpopulation grew on average 15% faster than the high mode across a range of sugar

levels (Supplementary Fig. 3.11). This diminished growth rate could be explained a reduced glucose

consumption rate in the high mode compared to the low mode.

Discussion

Faced with uncertain and fluctuating environmental stimuli, single microbial cells sense and respond

to their current surroundings but can also anticipate a probable future shift in the environmental

state. These decision-making strategies can be a deciding factor in competitive environments by

providing crucial fitness advantages for microorganisms. We examined how single cells infer the

state of their environment and make decisions using a galactose metabolic gene-regulatory network

in response to a mixture of carbon sources.

Our dynamic measurements of the GAL system revealed that similar concentrations of glucose

and galactose produced two coexisting on and off gene expression states that persisted for a period

of time. Following variable delays, cells in the repressed subpopulation abruptly turned on the GAL

genes and therefore all cells eventually occupied the same monomodal steady-state. This transient

behavior is reminiscent of adaptive cellular stress responses that show significant disparities between

the system’s initial and long-term behavior [104].

In conditions that produced transient bimodality, the off population was responsive to the current

glucose level, but these cells were unaware of the presence of galactose and deferred a commitment
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to GAL gene activation over many cell-generations. This delayed decision-making strategy is similar

to the timing of developmental decisions such as the postponement of lineage selection by stem-

cells until appropriate signals are received and the delayed commitment to sporulation in B. subtilis

[105, 106].

In homeostatic cellular responses, the mean expression level of specific genes expressed uniformly

across the cell population are adjusted to be proportional to the strength of the input [107]. Here,

the composition of the sugar mixture adjusts the percentage of cells that induce the GAL genes many

hours before galactose is consumed. Although glucose is abundant in some conditions that generated

bimodality, a fraction of the population highly expresses the GAL genes many hours prior to the

forthcoming transition to galactose metabolism. Advanced preparation to changing conditions may

be a prevalent strategy in biological networks [78]. For example, anticipation of future environmental

changes has been suggested to determine growth rate in response to specific environmental cues and

may have provided critical fitness advantages for microorganisms during evolution [108].

Our systematic characterization of the GAL system in the mixed carbon source environment

revealed that there are two layers of regulation that repress galactose utilization in the presence

of glucose. The first is a set of mechanisms to repress GAL gene expression and the second is an

unknown inhibition of galactose metabolism that depends on the availability of glucose. Interest-

ingly, the release of metabolic inhibition displayed a similar switch-like dynamic response to the de-

repression of transcriptional regulation even though gene expression is decoupled from metabolism.

Constitutive GAL gene expression did not abolish the galactose metabolic repression but reduced

the time required to shift between carbon substrates. These data suggest that there is a feedback

interaction between the expression state of the pathway and the initiation of metabolism.

We identified a mapping between the single-cell gene expression state, concentrations of sugars

and the population’s growth rates. Our results revealed that glucose depletion, the onset of galac-

tose metabolism and the delayed gene activation response are tightly coupled dynamic processes.

We hypothesize that this coordinated timing is a consequence of a regulatory interconnection be-

tween these mechanisms. The ortholog of Gal80p (KlGal80p) in Kluyveromyces lactis and Gal80p
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in S. cerevisiae (ScGal80p) have been shown to inhibit galactokinase activity by interacting with

KlGal1p and ScGal1p [29, 109]. It would be interesting to explore whether the dual roles of Gal80p

in repressing the transcriptional regulation of the GAL genes and the production of galactose-1-

phosphate contributes to the tightly coupling in the observed dynamics of metabolism and gene

expression. A previous study showed that a deletion of HXK2 disrupts the hierarchical order of

glucose and galactose metabolism [110]. Our data demonstrated that cells deleted for this gene were

not able to induce the repressed subpopulation. Taken together, we hypothesize that Hxk2p is a

crucial player in linking the availability of glucose to the repression of galactose consumption and

timing of gene induction.

Turning on the GAL genes can generate an energetic cost and the intermediate galactose-1-

phosphate is toxic to cells [42, 111]. In addition, we found that the expression of GAL genes can

reduce the rate of glucose consumption. On the other hand, turning on the GAL genes just in

time for galactose metabolism can significantly augment the metabolic delay of the diauxic shift and

transiently decrease cellular fitness. Suboptimal strategies, such as enduring the costs of express-

ing a pathway when its not required, could be explained by the selection pressure of competitive

environments that reward fast cellular responses. For example, there is a fundamental tradeoff due

to thermodynamics between the total yield and the rate of production of ATP [112]. In competi-

tive conditions, a rapid rate of ATP production is advantageous even though the total efficiency is

reduced. In fact, S. cerevisiae uses fermentation as opposed to respiration even in the presence of

oxygen, suggesting that competition may have shaped the metabolic strategy of this organism [113].

The GAL bimodal population consists of a fraction of cells that endure the costs of highly express-

ing the GAL genes in the absence of galactose utilization and cells in the repressed subpopulation

that induce GAL gene expression just in time to transition to the secondary carbon source. We

propose that the transient bimodality balances the costs of activating the pathway with the benefits

of preparing in advance for a future change in glucose availability. Similar to the tradeoff between

efficiency and rate of ATP production, this preemptive strategy enabled a faster rate of galactose

consumption and a transient enhancement of fitness that may have provided evolutionary advantages
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for this organism.

Methods

Growth conditions and flow cytometry

Cells were grown in yeast peptone media for approximately 12-hours prior to induction with glucose

and galactose. Single-cell fluorescence was measured on an LSRII analyzer (BD Biosciences). A

blue (488 nm) laser was used to excite YFP and emission was detected using a 530/30 nm filter.

The number of cells quantified for each dynamic measurement ranged from approximately 1000 to

20,000. Strains used in this study are described in Supplementary Table .

Automated flow-cytometry measurements

A 500 µl culture volume was used in 96-well plate format for the automated flow cytometry measure-

ments. For each time point, 30µl was removed from the culture for measurement on the cytometer

and 30µl of fresh media containing the 1X concentration of glucose and galactose was used to main-

tain a constant culture volume.

Flask measurements

A 60 ml culture volume was used for the experiments in which the sugar concentrations were quan-

tified. Less than 5% of the total volume was removed over the course of the experiment to quantify

the single-cell fluorescence, sugar concentrations and OD. Cell mass (OD600) was measured on a

Nanodrop 2000c spectrophotometer (Thermo Scientific).

Quantitative analysis of gene expression dynamics

Flow cytometry distributions were analyzed using a Gaussian mixture model algorithm (GMM,

MATLAB) and classified as bimodal as described in [19]. The response time was defined as the time

to reach the half-max of the fraction of on-cells. The delay time δg was computed by subtracting

the half-max of the mean of the activated and repressed subpopulations. The fraction of on-cells

were quantified at the midpoint of the transient bimodal region.
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Sugar measurements

Glucose and galactose were measured using the Amplex Red glucose oxidase and galactose oxidase

kits (Molecular Probes, Life Technologies). A Tecan Safire plate reader (Tecan) was used to quantify

fluorescence and absorbance. The metabolic lag was determined by computing the difference between

the half-max of the galactose decay and the half-max of the glucose decay. In the galactose pulse and

estradiol experiments, the delay in galactose metabolism was computed by subtracting the half-max

of the galactose decay from the time in which glucose was fully consumed (the time in which the

derivative of glucose first crossed zero).

Computational modeling

Code for mathematical modeling was written in MATLAB (Mathworks) and Mathematica (Wol-

fram Research). The domain of attraction of the equilibrium points were determined by randomly

sampling 5000 initial conditions using the Latin Hypercube Method. We computed the fraction of

these initial conditions that were absorbed by the high equilibrium point.
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S3.1 Two sugar mathematical model

An ODE model of the GAL gene-regulatory circuit was constructed based on the GAL system. This

model was able to provide explanations for experimental data and insights about dynamics of the

system. We assumed the following:

• No distinction was made between Gal1p and Gal3p since these regulators have the same

mechanism for activating the GAL genes by sequestration of Gal80p [25]. Therefore, we

assumed in the model that these two species could be represented by one protein, Gal1p.

• Intracellular transport of glucose and galactose through the glucose hexose transporters and

Gal2p was not modeled for simplicity.

• Glucose repression of the GAL system could be modeled as a single repressor, R, that is

activated by glucose and then transcriptionally represses Gal4p and Gal1p.

• Dimerization of Gal4p and Gal80p was not modeled for simplicity [73, 74].

• We did not differentiate between nuclear and cytoplasmic partitioning of the GAL proteins

because this is a subject of debate [70, 71, 72].

The Hill coefficients for G1 (nG1, nR1), G4 (nR4) and G80 (n80) were estimated as 3, 2, 1 and 2.
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Based on these assumptions, the model that captures a set of molecular interactions for bistability

in the wild-type (WT) GAL network in the presence of glucose and galactose is

d[G1]
dt

= αo + αG1

(
[G4]n1

Kn1
G1 + [G4]n1

)(
KnR1
R1

KnR1
R1 + [Rs]nR1

)
− kfg[gal][G1] + krg[G1s]− γG1[G1],

d[G1s]
dt

= kfg[gal][G1]− krg[G1s]− kf81[G1s][G80] + kr81[C81]− γG1s[G1s],

d[R]
dt

= αR − kfR[glu][R] + krR[Rs]− γR[R],

d[Rs]
dt

= kfR[glu][R]− krR[Rs]− γRs[Rs],

d[G4]
dt

= αG4

(
KnR4
R4

KnR4
R4 + [Rs]nR4

)
− kf84[G4][G80] + kr84[C84]− γG4[G4],

d[G80]
dt

= αoG80 + αG80

(
[G4]n80

Kn80
G80 + [G4]n80

)
− kf81[G1s][G80] + kr81[C81]− kf84[G4][G80] + kr84[C84]− γG80[G80],

d[C81]
dt

= kf81[G1s][G80]− kr81[C81]− γC81[C81],

d[C84]
dt

= kf84[G4][G80]− kr84[C84]− γC84[C84].

Using the quasi-steady-state assumption, the concentrations of the complexes, G1-gal (G1s), R-glu

(Rs), Gal1p-Gal80p (C81) and Gal4p-Gal80p (C84) reached their respective equilibria significantly

faster the dynamics of G1, R, G4 and G80. This assumption was used to simplify the system of

equations to the following four ODEs

dG1
dt

= αo − γG1G1− kfgG1gal +
G1krgp3

p4 + p5R
+

αG1K
2
R1G43(

K2
R1 + R2p2

2

) (
K3
G1 + G43

) ,

dR
dt

= αR − γRR− kfRgluR + krRp2R,

dG80
dt

= αoG80 − γG80G80− p6G1G80
p4 + p5G80

+ p7G80G4 +
αG80G42

K2
R4 + G42 ,

dG4
dt

=
αG4KR4

KR4 + p2R
− γG4G4 + p8G80G4.

where p0 = kfs

γC81+krs
, p1 = kf84

γC84+kr84
, p3 = glukfR

γRs+krR
, p3 = kfggal, p4 = γG1s+krg, p5 = kf81−kr81p0,

p6 = kf81p3 + kr81p0p3, p7 = p1kr84 − kf84 and p8 = p1kr84 − kf84.

At steady-state, d[G1]
dt = d[R]

dt = d[G4]
dt = d[G80]

dt = 0 and we could solve for the equilibrium concen-

trations of G1, R and G4 in terms of G80. The equilibrium value of G80, G80e was determined by



81

computing the roots of a ninth order polynomial

a0 + a1G80e + · · ·+ a9G809
e = 0,

where the coefficients, ai, are functions of the model parameters. The GAL80 feedback deletion

model was solved by applying the same procedure. In this model, KR4 = 0 and G80e was determined

by computing the roots of a sixth order polynomial. The stability of the equilibrium points was

determined by computing the eigenvalues of the Jacobian matrix of the system of equations [14].

S3.2 Characterization of δg and fraction of on cells in a set of mutants

To gain mechanistic insight about the observed gene expression dynamics, we characterized a set

of mutants that modify the transcriptional state of the GAL promoters. For this experiment, we

started with similar cell densities for each mutant (OD600 ≈ 0.3). Our results showed that a deletion

of CTI6 significantly extended δg. Indeed, there were cells in the repressed subpopulation that never

turned on the GAL genes over a period of approximately 14 hours (Supplementary Fig. 3.6A-1).

These data suggests that the timing of the repressed state’s activation depends on the interplay of

CTI6, SAGA and Cyc8-Tup1 at the promoter-level. We also found that the percent of cells in the

off-state was significantly higher in the CTI6 ∆ strain compared to WT (Supplementary Fig. 3.6D).

We explored the dynamics of the system in a strain lacking the HXK2 gene. Interestingly, deletion

of the dominant glucose kinase, Hxk2, significantly extended δg compared to WT (Supplementary

Fig. 3.6A-2). Similar to the CTI6 ∆ cells, the repressed subpopulation did not switch to the on-

state during the course of the experiment. This mutant was particularly intriguing since it was the

only modification to the system that decoupled the fraction of on-cells and delay dynamics. Indeed,

there were a higher number of cells in the on-state but δg was augmented (Supplementary Fig.

3.6C, D). Previous results have shown that cells deleted for Hxk2p consume glucose and galactose

simultaneously [110]. Taken together, these results suggest that the glucose-dependent metabolic

inhibition of galactose metabolism and the transcriptional derepression are tightly coupled dynamic

processes.
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We next characterized the dynamics of a strain in which Gal80p was regulated by an inducible

TET promoter as opposed to its endogenous Gal4p-dependent promoter, therefore abolishing the

feedback regulation of this protein (GAL80∆ fb) [19]. In the presence of 19.7 ng/ml aTc, the

repressed subpopulation did not induce the GAL genes over the course of the experiment (Sup-

plementary Fig. 3.6A-3). These data demonstrate that a high concentration of Gal80p relative

to WT can block the repressed population from inducing the GAL genes at the appropriate time,

highlighting the sensitivity to disruptions in the regulation of this repressor.

Three mutants that displayed accelerated δg phenotypes compared to WT were identified. The

MIG1 binding site is degenerate and multiple different proteins can bind to the same sequence [114].

A gene deletion of MIG1 could therefore increase the probability that these alternative transcrip-

tional regulators bind to the putative MIG1 sites, thus potentially altering the expression levels of

target genes. To directly reduce the promoter-level repression without significantly perturbing pro-

moter occupancy, four point mutations were introduced into Mig1 (Mig14m) that have been shown

to reduce the affinity of Mig1 and the Cyc8-Tup1 complex [115, 97, 116]. This mutant exhibited a

reduced δg and a higher fraction of on-cells compared to WT (Supplementary Fig. 3.6B-1, C, D).

We examined the role of the Cyc8-Tup1 complex in the regulation of the transient bimodal

dynamics. Since a deletion the Cyc8-Tup1 complex has severe pleiotrophic effects, including floc-

culation, diploids were constructed that contain only one allele of CYC8 and TUP1 and therefore

half the dosage of this complex. We compared the dynamics of this mutant to a WT diploid and

observed a significantly smaller δg and larger fraction of on-cells compared to WT (Supplementary

Fig. 3.6B-2, C, D).

To measure the contribution of Gal80p-Gal4p sequestration on the dynamics of the system, the

affinity of Gal80p to Gal4p was reduced by mutating F856C and M861C in GAL4 [117]. Mutation

F856C reduces the affinity of Gal80 to Gal4 more significantly than mutation M861C. These two

mutants exhibited a significantly smaller δg than WT (Supplementary Fig. 3.6B-3,C). F856C had a

smaller δg compared to M861C, suggesting that the binding affinity of the Gal80p-Gal4p complex is

a crucial variable that controls the duration of bimodality. In addition, these two mutants exhibited
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a larger fraction of on-cells compared to WT (Supplementary Fig. 3.6D). Taken together, these

results suggest that the timing of the delay dynamics and the single-cell decision to occupy the low

or high state is strongly regulated at the promoter level.

We measured the growth rates of these strains to determine if the observed changes in the

system’s dynamics could be explained by alterations in the growth rates and therefore perhaps the

consumption rate of glucose. However, the changes in δg and the fraction of on-cells were significantly

greater than the variation in growth rates and were therefore dominated by the modifications to the

system’s regulation (Supplementary Fig. 3.12).
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Supplementary Figures
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Supplementary Figure 3.1: Duration of transient bimodality as a function of the two sugars. (A)
The amount of time the system exhibited bimodality was quantified by subtracting the half-max of
the activated and repressed subpopulations (δg) as a function of galactose for a set of glucose levels.
(B) Total amount of time the cell populations exhibited bimodality as a function of galactose for a
range of glucose levels. Representative dynamics of the fraction of on-cells for 0.125% glucose over
a range of galactose concentrations (right). The amount of time the system was bimodal increased
as a function of galactose for low concentrations of glucose by inducing a fraction of the population
at earlier times (arrow). (C) Means of the subpopulations over time quantified using a Gaussian
mixture model (GMM) for a combination of glucose and galactose for a range of initial cell densities
(No). No and the delay time are inversely related (right). (D) Two steps of glucose produces larger
δg. Representative data showing the means of the subpopulations that either received single step
of glucose (red circles) or two steps (blue squares). Comparison of δg across a range of initial cell
densities (No) for three glucose concentrations in conditions with a single or two steps of glucose
(right). Data point size is proportional to No. (E) Comparison of the fraction of on cells across a
range of No for three glucose concentrations for conditions with a single compared to two steps of
glucose. Data point size is proportional to No.
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Supplementary Figure 3.3: Consumption of galactose significantly enhances the growth rate of the
cell population. (A) Single-cell fluorescence distributions of a GAL10 promoter fusion to Venus in
WT and a strain expressing a Gal4 DNA binding mutant that is not able to induce the GAL genes
(Gal4 DBD*). (B) Glucose concentrations over time. Lines represent fitted Hill functions to the
sugar data. (C) Galactose concentrations over time. (D) Growth rates over time.
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Supplementary Figure 3.4: Constitutive expression of the GAL genes approximately 12 hours prior to
induction with glucose and galactose decreased the delay of the metabolic shift by 50% compared to
WT and generated a diminished growth rate while consuming galactose. (A) Single-cell fluorescence
of the GAL10 promoter in WT and the GAL3 feedback deletion strain (GAL3∆ fb) induced with 450
ng/ml aTc. (B) Glucose concentrations over time. Lines represent fitted Hill functions to the sugar
data. (C) Galactose concentrations over time. (D) Metabolic delay computed by subtracting the
half-max of the glucose and galactose concentrations. (E) Growth rates over time. (F) Relationship
between the concentration of galactose and the growth rate.
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fluorescence distributions shown in B (right). Red represents a bimodal distribution and blue de-
notes a monomodal distribution. (B) Topology of the GAL80∆ fb model (left). GMM classification
of bimodality for this mutant across the range of sugar levels (right).
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Supplementary Figure 3.6: Modulation of δg and the fraction of on cells in a series of mutants.
(A) Representative data of mutants that significantly extend δg. Gene deletions of CTI6 (A-1)
and HXK2 (A-2) that significantly increase δg in response to a step of 0.05% glucose and 0.13%
galactose. Feedback deletion of GAL80 disrupts delayed activation in response to a step of 0.06%
glucose and 0.5% galactose (A-3). (B) Representative data of mutants that significantly reduce δg.
Quadruple mutant of Mig1 (Mig14m) (B-1) (0.05% glucose + 0.13% galactose), halved dosage of
diploid Cyc8p-Tup1p compared to WT diploid (B-2) (0.05% glucose + 0.13% galactose) and point
mutants of Gal4p with reduced affinity to Gal80p significantly reduces δg (D-3) (0.08% glucose +
0.13% galactose). (C) Comparison of δg in response to a step of 0.13% galactose and a range of
glucose levels. Mutants with extended δg in A could not be quantified. (D) Fraction of on-cells for
the set of mutants at the midpoint of the transient bimodal region.
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Supplementary Figure 3.8: Model can recapitulate early and delayed activation responses and the
modulation of the fraction of on-cells in response to initial sugar concentrations. (A) For a con-
centration of the two inputs that generates bistability (glucose = 100 nM, galactose = 150 nM),
the model can recapitulate the early and delayed activation response by starting the system from
distinct initial conditions (IC). ICa has a low initial concentration of repressors (R and G80) whereas
ICr has a high initial concentration of repressors. Here, glucose disappears before galactose (inset).
(B) Galactose expands the basin of attraction of the high equilibrium state, qualitatively reflecting
the experimentally observed increase in the fraction of on-cells as a function of galactose.
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Supplementary Figure 3.9: Growth profiles of conditions A-E in the delayed galactose pulse exper-
iment. (A) Optical density 600 nm (OD600) over time. (B) Change in OD600 per unit time. (C)
Change in the log of OD600 per unit time. (D) Relationship between the glucose concentration and
the change in OD600 per unit time.
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Supplementary Figure 3.10: Early activation of the GAL genes using an estradiol-inducible Gal4
chimera prior to glucose depletion reduced the rate of glucose consumption and the amount of time to
consume galactose. (A) Experimental design in which conditions A-E received a step input of 0.1%
glucose + 0.1% galactose from time zero and the GAL genes were induced with 400 nM estradiol
at different times over the course of the experiment (top). Single-cell fluorescence distributions of a
GAL10 promoter fusion to Venus over time (bottom). (B) Glucose concentrations over time (left).
Normalized change in the half-max of glucose consumption relative to condition A (right). Lines
represent fitted Hill functions to the data. Dashed lines indicate the time when estradiol was added
to each culture. (C) Galactose concentrations over time. Fractional change in the half-max of the
galactose concentrations relative to condition A. (E) Relationship between galactose concentrations
and the mean expression levels for each condition.
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Strain name Genotype
Wild-type (WT) PGAL1Venus MATa leu2::LEU2, trp1::TRP1-PGAL1Venus, ura3::URA3, ade2::ADE2,

his3::HIS3
WT PGAL2Venus MATa leu2::LEU2, trp1::TRP1-PGAL1Venus, ura3::URA3, ade2::ADE2,

his3::HIS3
WT PGAL7Venus MATa leu2::LEU2, trp1::TRP1-PGAL7Venus, ura3::URA3, ade2::ADE2,

his3::HIS3
WT PGAL10Venus MATa leu2::LEU2, trp1::TRP1-PGAL10Venus, ura3::URA3,

ade2::ADE2, his3::HIS3
Gal4-C14Y PGAL10Venus MATa leu2::LEU2, trp1::TRP1-PGAL10Venus, ura3::URA3-PGAL4Gal4-

C14Y, ade2::ADE2, his3::HIS3, GAL4::HPH
Gal4-ER PGAL10Venus MATa leu2, trp1::TRP1-PGAL10Venus, ura3::URA3-PADH1GAL4DBD-

ER-MSN2AD, ade2::ADE2, his3, GAL4::HPH
HXK2 ∆ MATa leu2, trp1::TRP1-PGAL10Venus, ura3, ade2::ADE2, his3,

HXK2::NAT
CTI6 ∆ MATa leu2, trp1::TRP1-PGAL10Venus, ura3, ade2::ADE2, his3,

CTI6::NAT
Mig14m MATa leu2::LEU2-PMIG1MIG1-L490A, L493A, L496A, L498A,

trp1::TRP1-PGAL10Venus, ura3, ade2::ADE2, his3, MIG1::NAT
Gal4 F856C MATa leu2, trp1::TRP1-PGAL10Venus, ura3::URA3-PGAL4GAL4-

F856C, ade2::ADE2, his3, GAL4::HPH
Gal4 F861C MATa leu2, trp1::TRP1-PGAL10Venus, ura3::URA3-PGAL4GAL4-

F861C, ade2::ADE2, his3, GAL4::HPH
WT diploid MATa/α leu2/leu2, trp1::TRP1-PGAL1Venus/trp1, ura3/ura3::URA3,

ade2::ADE2/ade2, his3/his3
Cyc8-Tup1 (+/-) diploid MATa/α leu2/leu2, trp1::TRP1-PGAL1Venus/trp1, ura3/ura3::URA3,

ade2::ADE2/ade2, his3/his3, CYC8::NAT/CYC8, TUP1/TUP1::KAN
GAL3∆ fb∗ MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL3, ade2::ADE2, his3, GAL3∆::KAN
GAL80∆ fb∗ MATa leu2::LEU2-PTEFm4rtTA-M2, trp1::TRP1-PGAL10Venus,

ura3::URA3-PTETGAL80, ade2::ADE2, his3, GAL80∆::HPH

Supplementary Table I: Strains used in this study. All strains were W303. ∗Strain described in [19].
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Chapter 4

Inference of regulatory regions of a
promoter library using statistical
analysis

Introduction

Genetic regulation is a fundamental and ubiquitous mechanism for generating adaptive cellular

responses to changes in environment conditions. Genetic programs rely on promoter sequences to

map the activity states of a upstream regulators to the rate of gene expression of downstream targets.

Recently, the location of transcription factor binding sites have been extensively characterized across

many genomes [118, 119]. However, we do not yet quantitatively understand how multiple cis DNA

sequences combine to produce gene expression profiles. Due to the combinatorial complexity of

the upstream inputs and the potential time and context dependence of the response, a detailed

understanding of how promoters integrate these signals poses many challenges.

If the transcription factors are known, there are two rational approaches to characterize the

relationship between promoter sequence and transcription rate. Varying the composition, number

and spacing of binding sites in synthetic promoters has provided many insights about how these

variables can shape a transcriptional response [120, 121, 122]. Hypothesis-driven mutations or

deletions to specific regions of a natural promoter, referred to as “promoter bashing”, have revealed

the location and contributions of different regulatory elements [123, 124].

However, the rules identified in the context of synthetic promoters may not apply to the regulation
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of the genomic promoter due to numerous uncharacterized inputs to the promoter that do not

function in isolation. In addition, the comprehensive set of transcriptional regulators for a promoter

are frequently not known, especially in less studied model organisms. To address these challenges,

a random mutagenesis strategy can be used to analyze the quantitative contributions of regions of

a promoter sequence without prior information about the location and identity of cis regulatory

sequences. Recently, libraries of random promoter sequence variants have been used to elucidate

the relationship between the mean expression level and noise, and the arrangements of nucleosomes

[125, 126].

To quantitatively probe the relationship between DNA sequence and phenotype, we used the

bidirectional GAL1-10 promoter in Saccharomyces cerevisiae (S. cerevisiae) as a model system.

The galactose regulatory network in S. cerevisiae is a paradigm for eukaryotic gene regulation and

has provided many insights about how cells control a genetic program in response to environmental

signals. In S. cerevisiae, GAL1, GAL10 and GAL7, which perform the first three enzymatic steps

in galactose metabolism, constitute a gene cluster that has been evolutionarily conserved across

several related yeast species [127]. A previous study showed that this gene cluster does not provide

a fitness advantage for cells in specific environments tested thus far. However, the strong correlation

between GAL gene loss and gene clustering across many yeast species suggests that tightly coupled

genes may be easier to eliminate over evolution [128]. A bioinformatic comparison of the GAL1-10

promoter in S. cerevisiae to three related yeast species (S. paradoxus, S. mikatae and S. bayanus),

revealed a very high conservation of the GAL4 binding sites and TATA boxes [129]. Interestingly,

bidirectional gene expression has been shown to be a ubiquitous phenomenon in yeast and it is not

yet understood what features of promoters are important for coordination of gene expression in two

directions [128, 130, 131].

The transcriptional activator Gal4p remains bound to the GAL1-10 promoter in the presence

and absence of galactose. The GAL1-10 promoter is repressed in the absence of galactose due to

inhibition of the activation domain of Gal4p by the repressor Gal80p. The Cyc8-Tup1 complex is

also a dominant source of repression of this promoter and collaborates with a set of transcriptional
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Figure 4.1: The bidirectional GAL1 -GAL10 promoter (PGAL1−10) switches from a repressed to
an activated state in the presence of galactose. The general repression complex Cyc8-Tup1 is a
dominant source of active repression and remains tethered to the promoter by directly interacting
with a set of DNA binding repressors (R) including, for example, Mig1/2 and Nrg1/2. The repressor
Gal80p occludes the potent activation domain of the transcriptional activator, Gal4p in the absence
of galactose. The addition of galactose triggers the activation of the signal transducers, Gal1p and
Gal3p, which enables these proteins to sequester Gal80p. As a consequence, Gal4p is able to recruit
the pre-initiation complex including the Spt-Ada-Gcn5 acetyltransferase (SAGA) and the TATA
binding protein (TBP) leading to gene induction. The PHD domain protein, Cti6p, facilitates the
off → on transition by physically interacting with Cyc8-Tup1 and SAGA.

repressors including Mig1, Mig2, Nrg1 and Nrg2 to block gene expression [116, 85, 86]. The addi-

tion of galactose to cells triggers the activation of the signal transducers Gal1p and Gal3p, which

enables these proteins to sequester Gal80p. The liberation of the Gal4p activation domain leads to

the ordered assembly of the transcriptional pre-initation complex including Spt-Ada-Gcn5 acetyl-

transferase (SAGA) and the TATA binding protein (TBP) (Fig. 4.1). The Plant Homeo Domain

(PHD) protein Cti6p plays a critical role in facilitating the off to on transition of this promoter by

physically interacting with Cyc8-Tup1 and SAGA [91].

In S. cerevisiae, Gal4p induces transcription of the galactose transporter Gal2p, signal trans-

ducers Gal1p, Gal3p and the repressor Gal80p, thus forming four feedback loops. The two positive

feedback loops established by Gal1p and Gal3p have been shown to generate bistability, which can

lead to two coexisting high and low expression levels in a homogenous environment across a popu-

lation of cells [19]. This bimodality in gene expression has been observed for range of intermediate

galactose levels and for similar concentrations of glucose and galactose [18, 20].
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In this work, we propose a method to quantitatively analyze the contributions of individual

nucleotides to a phenotype using a combination of random mutagenesis and statistical modeling.

Statistical models have been used to identify the relationships between protein sequence, function

and stability, and have aided the field of protein engineering [132, 133]. Here, we use a regression

framework to map promoter sequence to phenotype. We explore the context dependence of single

nucleotides in non-repressive (galactose) and repressive bimodal (glucose + galactose) conditions.

In addition, we identify the sequence determinants of coordinated expression by comparing the ex-

pression of GAL1 and GAL10 using two fluorescent proteins in the same cell. Our models make

predictions about the relative importance of nucleotides in the sequence and suggest several unex-

plored regulatory regions of the promoter. This technique can be applied to any promoter to identify

de novo binding sites in vivo without a priori knowledge of the system. Furthermore, our method

can be used to quantitatively dissect the relative importance of individual nucleotides in a promoter

and does not require a large library size.

Results

Characterization of the library of sequence variants

To study the bidirectional expression of the GAL1-10 promoter, Venus (YFP) was expressed from

GAL10 and mCherry (RFP) was expressed from GAL1 (see Materials and Methods). We first

characterized the promoter strengths of GAL1 and GAL10 by separately expressing mCherry from

GAL10 and Venus from GAL1. By comparing the fluorescence of Venus and mCherry between the

two constructs, we determined that the GAL1 promoter is approximately 15% stronger than GAL10

at steady-state and has a ≈5 min faster response time (Fig. 4.2A,B). From these dynamic data, we

identified a delay of 41.8 min in the half-max of mCherry compared to the half-max of Venus and a

30% reduced brightness of mCherry compared to Venus in these conditions.

We used random mutagenesis to generate a library of 343 sequence variants of the bidirectional

promoter (see Materials and Methods). After sequencing, we determined the mean, minimum and
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Figure 4.2: The GAL1 promoter is stronger than the GAL10 promoter. Dynamic measurements
of the bidirectional PGAL1-10 promoter in the presence of 2% galactose. The two fluorescent pro-
teins (mCherry and Venus) were expressed separately from the GAL1 and GAL10 promoters for
comparison.

maximum number of mutations to be 10.4, 0 and 19. Mutations were distributed uniformly over

the promoter sequence with the exception of two regions of diminished mutation rates close to the

transcription start sites of GAL1 and GAL10 (Fig. 4.3).

The phenotypes of these mutants were measured over time in non-repressive conditions (0.25%

galactose) and following 5 hours of induction in repressive conditions in the presence of glucose

(0.25% glucose + 1% galactose) (Fig. 4.4). Most of the mutants exhibited wild-type expression

levels in the absence of glucose, suggesting that in these conditions mutations were nearly neutral

(Fig. 4.4A,B). In the presence glucose and galactose, we observed a bimodal distribution of gene

expression across the population of cells for the majority of mutants (Fig. 4.4C,D). The mean of

the high mode in repressive conditions displayed larger phenotypic variability compared to the mean

in the absence of glucose, indicating that mutations have a more significant effect on the promoter

activity in this condition (Fig. 4.4E,F).

The relationship between the number of mutants for each variant and the mean of the bimodal

distribution of gene expression in the presence of 0.25% glucose + 1% galactose was examined

for both directions (Fig. 4.5A,B). The majority of mutations reduced the mean expression level,

suggesting that mutations that produced a detectable change in phenotype either reduced activation

or increased repression. There were many sequences that displayed phenotypes similar to or higher

than wild type but contained a large number of mutations, indicating that this promoter could
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Figure 4.3: Sequence characterization of the library of 343 PGAL1-10 mutants. (A) Venus and
mCherry were expressed from the GAL10 and GAL1 promoters, respectively. (B) The number of
sequences with a specific mutations. Light blue denotes TATA boxes, gray indicates putative MIG1
binding sites and dark blue represents GAL4 binding sites. (C) Heat map of the library highlighting
the distribution of mutations. Black indicates a mutation at the specific position.

tolerate many mutations and maintain wild-type expression capabilities. Overall, increasing the

number of mutations produced phenotypes with lower mean expression levels.

Previous studies have identified a scaling relationship between the mean abundance and the

noise across many genes in yeast [134]. In our data, we determined how mutations in the promoter

sequence modify the relationship between the noise (coefficient of variation, CV) and the mean of

each mutant induced with 0.25% galactose at steady-state for the two directions (Fig. 4.6A,B). For

the majority of mutants, the CV and the mean were uncorrelated suggesting that some mutations

can independently adjust the noise and the mean. By contrast, in some mutants the CV was

inversely proportional to the mean for both GAL1 and GAL10, indicating that specific mutations

can simultaneously alter the noise and mean properties of this promoter.

Lasso regression provides insight about cis regulatory regions

To investigate how individual base pairs contribute to the observed variation in phenotypes, we

implemented least absolute shrinkage and selection operator regression (Lasso) [135]. Lasso re-

gression constrains the L1 norm of the regression coefficients to be less than a specified value (see
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Figure 4.4: Characterization of the PGAL1-10 mutant phenotypes. (A) Dynamic measurements
of the GAL10 promoter driving Venus induced with 0.25% galactose. For all subplots, the bold
colored line indicates the WT sequence. (B) Dynamic measurements of the the GAL10 promoter
driving mCherry induced with 0.25% galactose. (C) Single-cell distributions of PGAL1-10Venus
induced with 0.25% glucose + 1% galactose. (D) Single-cell distributions of PGAL1-10mCherry
induced with 0.25% glucose + 1% galactose. (E) Relationship between the mean induced with
0.25% galactose at steady-state in A and the mean of the high mode for the bimodal distributions
in C. (F) Relationship between the mean induced with 0.25% galactose at steady-state in B and
the mean of the high mode for the bimodal distributions in D. The mean of the high mode was
extracted using a Gaussian mixture model (GMM).
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Materials and Methods). This method is particularly useful for solving underdetermined problems

that involve many variables. The solutions of Lasso tend to be sparse and hence may produce a

more interpretable mapping between the dependent and independent variables. The regularization

coefficient was selected by identifying the value that produced the largest correlation between the

predicted and measured phenotypes using cross-validation. A representative correlation for the two

directions of the GAL1-10 promoter is shown in Fig. 4.7A,B.

We applied this method to the mean steady-state expression level of the mutant library in

non-repressive conditions. The largest regression coefficient for GAL10 (Venus) was at the precise

position of the TATA box (Fig. 4.7A). The weights on the edges of the four GAL4 sites were also

significant and suggested that the last and first base pairs of the third and fourth GAL4 binding

sites are the most important for this phenotype compared to the other regions of the GAL4 binding

sites. Gal4p recognizes the first and last three base pairs of the binding site CGG-(N)11-CCG,

corroborating this pattern observed in the regression coefficients [136]. The TATA box of GAL1

(mCherry) exhibited a moderately high weight and a similar pattern for the GAL4 binding sites,

indicating that the third and fourth sites are the most critical.

In repressive conditions (0.25% glucose + 1% galactose), we computed the regression coefficients

using the mean of the bimodal population and the mean of the high mode (Fig. 4.8B,C). The mean of

the bimodal population took into account the fraction of cells distributed between the two expression
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Figure 4.7: Relationship between model predictions and measured phenotypes for the library of
sequence variants. (A) Scatter plot of model predictions and experimentally measured mean of the
high mode in the presence of 0.25% glucose + 1% galactose for PGAL10Venus. (B) Scatter plot of
model predictions and actual mean of the high mode for PGAL1mCherry. ρ represents the correlation
coefficient.

states, which can be modulated by the initial cell density (Chapter 3). Similar to the non-repressive

conditions, the weight of the GAL10 TATA box was large for Venus. In this condition, the second,

third and fourth GAL4 binding sites were the most significant. PGAL1mCherry exhibited small

weight for the GAL1 TATA box and similar relative weights in the GAL4 binding sites compared

to the GAL10 direction. Interestingly, the second putative MIG1 binding site displayed a negative

regression coefficient for Venus and for the high mode of mCherry indicating that this base pair

contributes to activation as opposed to repression in this environment.

The results of the regression indicated that the TATA boxes for GAL1 and GAL10 are specific to

each gene and mutations in these regions do not significantly modify the more distant gene. Whereas

the GAL4 binding sites were significant for both Venus and mCherry, there were a number of base

pairs that were distinct between the two directions, suggesting that mutations in this bidirectional

promoter can yield distinct consequences for the two genes. In the presence of glucose, the dominant

weights were primarily clustered in the GAL4 binding sites and there were only a few nucleotides

with positive weights suggesting a potential repression site. Indeed, only the third putative MIG1

binding site had a small positive weight for mCherry using the mean of the high mode. Since
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Figure 4.8: Lasso regression coefficients using three different phenotypes. Light blue denotes TATA
boxes, gray indicates putative MIG1 binding sites and dark blue represents GAL4 binding sites.
(A) Regression coefficients (β) using the mean of PGAL10Venus (top) and PGAL1mCherry (bottom)
in the presence of 0.25% galactose at steady-state. (B) Regression coefficients using the mean of
the bimodal distribution of gene expression. To induce bimodality, cells were exposed to 0.25%
glucose + 1% galactose.(C) Regression coefficients using the mean of the high mode for a bimodal
distribution of gene expression. The mean of the high mode was computed using a Gaussian mixture
model (GMM).
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the repressive glucose signal did not yield dominant positive regression coefficients compared to

the condition lacking glucose, we hypothesize that repression of this promoter is implemented by

blocking GAL4 activation as opposed to harnessing active repression mechanisms implemented by

transcriptional repressors.

Experimental characterization of model predictions demonstrates strong

correlation

To test the model, site-directed mutagenesis was used to mutate specific nucleotides predicted to

alter the expression level of either GAL1 or GAL10. For each position, the wild-type sequence was

changed to the most frequently represented nucleotide in the library. These positions included the

GAL10 TATA box (T110C and T113C), GAL4 binding sites (G235A, C267T, C248T and C316A),

MIG1 binding site (G478T) and the putative GAL1 TATA box (A526C) [86].

As predicted, mutations to the GAL10 TATA box significantly reduced the expression level

of GAL10 by 95-100%. Interestingly, these mutations increased the expression level ofGAL1 by

up to 14%, suggesting that a disruption of the TATA box of the opposing promoter direction can

moderately enhance the rate of transcription (Fig. 4.9A,B). One potential explanation for these

data is that the two directions of the promoter compete for binding to TBP.

The mean of both GAL1 and GAL10 were significantly reduced for mutations in the GAL4

binding sites. Whereas positions 235 and 248 produced similar quantitative effects on mCherry and

Venus, nucleotides 267 and 316 reduced the mean of GAL1 by 60% and 69% compared to 47%

and 38% for GAL10. These data demonstrate that the two directions of the bidirectional promoter

can be differentially modulated by mutations in the regulatory regions. Our results showed that

the mutation to the experimentally characterized MIG1 binding site (478) increased the expression

level of mCherry by 24% and Venus by 12%. Finally, the mutation to the GAL1 TATA box (526)

decreased the expression level of mCherry by 66%.

We computed a strong correlation coefficient of 0.76 and 0.89 between the model predictions of

the mutant phenotypes and the experimental measurements for GAL1 and GAL10 (Fig. 4.9C,D).
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Figure 4.9: Experimental characterization of specific nucleotides predicted by the regression model
to modify the expression level. (A) Fractional change in the mean of the high mode induced with
1% galactose + 0.25% glucose for PGAL1mCherry for a set of mutations. (B) Fractional change in
the mean of the high mode induced with 1% galactose + 0.25% glucose for PGAL10Venus for a set of
mutations. (C) Relationship between the model predictions of the mutation and the experimentally
measured mean of PGAL1mCherry. (D) Relationship between the model predictions of the mutation
and the experimentally measured mean of PGAL10Venus. ρ denotes the correlation coefficient. Error
bars represent the mean of two independent replicates.

Together these data demonstrate that the regression model can accurately reveal the location of

dominant activation and repression regulatory regions in a promoter and predict the quantitative

effects of mutations to these cis regulatory sequences.

Rational methods to explore Gal4-dependent promoter regulation

To investigate the rules of GAL4 dependent gene regulation, we constructed a set of synthetic

promoters. These synthetic promoters were designed to test the effects of varying the distance

between binding sites, number of binding sites on the effective Hill coefficient of the dose response
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and to measure the in vivo strengths of the individual GAL4 binding sites in the bidirectional

GAL1-10 promoter for comparison with the random mutagenesis results.

Using the weak constitutive EAF1 promoter as a backbone, we positioned two strong GAL4

binding sites 400 base pairs (bp) upstream of the transcriptional start site and increased the number

of nucleotides separating these two sites from 0 to 16 in increments of two (Fig. 4.10A). The EAF1

promoter was used because its constitutive activity was not significantly altered in the presence

of glucose or galactose. Interestingly, the mean expression levels exhibited a sinusoidal trend with

respect to the distance between binding sites with peaks at 2 and 12 bp in both the absence and

presence of 2% galactose. Given that the there are approximately 10-10.5 bp per turn in the DNA

helix, two Gal4p dimers are on the same side of the double helix for the observed optimal spacing

of 2 and 14 bp. We hypothesize that a distance less than 2 bp produces steric hindrance leading to

destabilization of Gal4p from its binding site. Corroborating previous studies, these data suggest

that Gal4p molecules can interact synergistically to enhance gene expression [137, 31].

We next varied the number of GAL4 binding sites from 1-3 with a distance of 16 bp separat-

ing these sites and measured the corresponding galactose dose responses. Increasing the number of

binding sites produced an increase in the effective cooperativity of the dose response from approxi-

mately 1.25 to 2.2 (Fig. 4.10B), indicating that promoter level cooperativity can be augmented by

additional binding sites. Finally, we measured the in vivo strengths of the individual binding sites

from the GAL1-10 promoter as a comparison with the results of the random mutagenesis regression

analysis. Galactose induction of the the first and fourth binding sites did not produce a detectable

change in fluorescence whereas the second and third binding binding sites produced a large fold

change (Fig. 4.10C). These data demonstrate the ordering of strengths of these binding sites is

1 < 4 < 2 < 3 in an isolated synthetic promoter context.

Discussion

In this work, we demonstrated that the combination of random mutagenesis and regression analysis

can be used to build a detailed mapping of promoter sequence to phenotype. Regression analysis
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Figure 4.10: Rational methods to probe Gal4-dependent gene regulation. (A) Helical spacing of two
GAL4 binding sites in a synthetic promoter. The distance between two GAL4 sites was varied in 2
base pair (bp) steps from 0 to 16 bp upstream of the EAF1 promoter (top). Galactose dose responses
(left) and the relationship between the spacing of GAL4 binding sites and the mean expression levels
(right). (B) The cooperativity of the galactose dose response increases with the number of GAL4
binding sites. Lines represent fitted Hill functions to the data. (C) The four GAL4 binding sites in
PGAL1-10 vary significantly in strength in the context of the EAF1 promoter. Measurements were
taken after 6 hours.
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using regularization can solve underdetermined problems and thus circumvents the need for large

libraries of sequence variants. These methods can be used to identify sensitive and robust regions of

a promoter sequence, novel regulatory sites and does not require a priori knowledge of the regulatory

inputs. As long as the promoter exhibits sufficient phenotypic variation, this approach can be used

to discover cis sequence determinants for any phenotypic response.

Our model indicated that the GAL4 binding sites and TATA boxes were the dominant con-

tributing nucleotides in conditions with only an activation signal (galactose) and combinations of

activation and repression (glucose + galactose). Based on the similarity in the weights between these

two conditions, we propose that the main mechanism of repression involves inhibition of Gal4p as

opposed to active repression. Instead of functioning as a potent source of repression, we hypothesize

that repressors such as Mig1p fine tune the activity of the GAL1-10 promoter.

Mutation 316 in the fourth GAL4 binding site significantly reduced promoter activity. By

contrast, this binding site did not produce a detectable change in fluorescence in the synthetic

promoter context. These results indicate that the role of a binding site in the natural promoter can

be significantly different than in a synthetic promoter context. Previous studies have shown that

Gal4p dimers can interact cooperatively which provides an explanation for the observed difference

in in vivo activity of site four in the genomic and synthetic promoter [137].

Methods

Strains and constructs

The plasmid used in this study was derived from a set of yeast single integration vectors constructed

in the lab of Wendell Lim (UCSF). This vector contains a marker and targeting sequence for TRP1

locus and was linearized for transformation by digesting with PmeI. Promoters were cloned between

the PspOMI and XhoI restriction sites, Venus (YFP) between KpnI and PspOMI and mCherry

between XhoI and BamHI. These plasmids contained an ADH1 terminator downstream of BamHI

site. The strain background used in this study was W303a.
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Growth conditions and flow cytometry

Cells were grown in appropriate dropout media supplemented with 2% filter-sterilized raffinose at

30◦C. Flow cytometry measurements were made an LSRII analyzer (BD Biosciences) with a High

Throughput Sampler extension (HTS). A blue (488 nm) laser was used to excite Venus and the

emission was detected on the LSRII using a 530/30 nm filter. At least 10,000 cells were collected

for single measurement and between 1000-20,000 cells were collected for dynamics measurements.

Mutant library construction

The intergenic region between the GAL10 and GAL1 genes (668 bp) was cloned from the yeast

genome. We used the GeneMorph II Random Mutagenesis Kit (Stratagene) to generate mutations

in this promoter. Five successive rounds of mutagenesis were performed to increase the mutation

rate by transferring 1µl of the PCR reaction into a fresh PCR reaction.

Lasso regression

Given a set of input measurements x1,x2, . . . xp and an output measurement y, the lasso fits a linear

model ŷ = b0 + b1x1 + b2x2 + . . . bpxp. The parameters are identified by minimizing
∑N
i=1 (yi − ŷ)2

using the constraint
∑
j |bj | ≤ α. The parameter α can be tuned. For small α, some of the bj

parameters can be forced to zero. Cross-validation was used to identify the best value of α.
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