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Abstract

This thesis presents theories, analyses, and algorithms for detecting and estimating parameters of

geospatial events with today’s large, noisy sensor networks. A geospatial event is initiated by a

significant change in the state of points in a region in a 3-D space over an interval of time. After the

event is initiated it may change the state of points over larger regions and longer periods of time.

Networked sensing is a typical approach for geospatial event detection. In contrast to traditional

sensor networks comprised of a small number of high quality (and expensive) sensors, trends in

personal computing devices and consumer electronics have made it possible to build large, dense

networks at a low cost. The changes in sensor capability, network composition, and system con-

straints call for new models and algorithms suited to the opportunities and challenges of the new

generation of sensor networks.

This thesis offers a single unifying model and a Bayesian framework for analyzing different types

of geospatial events in such noisy sensor networks. It presents algorithms and theories for estimating

the speed and accuracy of detecting geospatial events as a function of parameters from both the

underlying geospatial system and the sensor network. Furthermore, the thesis addresses network

scalability issues by presenting rigorous scalable algorithms for data aggregation for detection. These

studies provide insights to the design of networked sensing systems for detecting geospatial events.

In addition to providing an overarching framework, this thesis presents theories and experimental

results for two very different geospatial problems: detecting earthquakes and hazardous radiation.

The general framework is applied to these specific problems, and predictions based on the theories

are validated against measurements of systems in the laboratory and in the field.
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Chapter 1

Introduction

This thesis presents theory, algorithms, simulations and experiments for detecting geospatial events

using dense networks of noisy sensors. A geospatial event is initiated by a significant change in the

state of points in a region in 3-D space over an interval of time. After the event is initiated, it

may change the state of points over larger regions and longer periods of time. An example of such

an event is an earthquake: it starts in a region of 3-D space (the hypocenter) in a relatively short

interval in time (milliseconds), and then seismic waves propagate across large regions (hundreds of

kilometers) over longer intervals of time (up to a few hundreds of seconds). Tsunamis, toxic plumes

from nuclear plants, hurricanes, and wildfires can also be represented as geospatial events. Early

detection of these events and accurate estimation of the event parameters, such as the magnitudes

of earthquakes, gives the public time to respond appropriately.

Deploying and managing a networked sensing system for detecting geospatial events is a global

challenge, for every continent has to deal with geospatial events. An analysis of the tradeoffs between

network parameters helps in determining the appropriate designs for different problems and budgets,

especially since many countries can benefit from rapid deployment of inexpensive sensors that are

managed through community participation. My hypothesis is that there is a uniform, overarching

framework for analyzing and designing a wide range of networks for responding to a large collection of

geospatial events. In this thesis, I present a framework for geospatial event detection and parameter

estimation, and I demonstrate that this common framework provides insights into designing networks

for specific problems.

1.1 Contributions

I provide analyses for general models of geospatial events, and, in addition, I present detailed results

for two specific problems: detecting earthquakes and hazardous radiation. Next, I briefly list my

contributions in theory and experimentation, and then describe the overall problem in some detail.
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Theory. I establish fundamental tradeoffs of detection and parameter estimation performance as

a function of sensor and event parameters. I also present new algorithms for improving detection

performance.

1. I present a general model of geospatial event detection. My contribution is the development

of a unifying framework for analyzing a variety of problems that appear to be very different

from each other. I use the framework for developing solutions to the problems of detecting

earthquakes and radiation hazards. (Sec. 1.2.1 and Sec. 1.3.1).

2. Early warning of hazards gives people and machines more time to respond. Waiting to acquire

more information about hazards that may be occurring allows more accuracy in determining

whether a hazard is present, and in estimating the parameters of the hazard. The tradeoff

between responding at a point in time or waiting to acquire more information is central to

geospatial detection problems. I present a detailed analysis of this tradeoff. (Sec. 2.1 and

Sec. 2.2).

3. Constraints, such as costs or location, may prevent the use of highly sensitive and accurate

sensors. I present bounds on the accuracy of detection and localization (estimating the initial

location) of geospatial events as a function of sensor and event parameters. These bounds

provide insight about the types of sensors, the noise they are exposed to, and density of

netowrk that are appropriate for an application. (Sec. 2.3 and Sec. 3.2.2).

4. Machine learning can reveal correlations among measurements of different sensors. Event

detection and parameter estimation accuracy can be improved by exploiting these correlations.

I present results that demonstrate the improvement obtained by using machine learning to

estimate the correlations, and using the estimated correlations to detect events. (Sec. 6.4).

Applications and Experiments. I present the following experimental studies that validate the

theoretical results and provide insight about intractable problems.

1. I used a laboratory testbed to measure the performance of a system that detects moving

radiation sources. I compared experimental results with those from a model. (Sec. 4.1)

2. Bayesian inference provides a flexible framework for estimating event parameters; however,

poor a priori estimates of parameters can only be overcome with extensive measurements. I

suggest a heuristic for constructing prior estimates for a class of problems, and I validate the

heuristic by comparing its results with measurements and simulations.

3. I used measurements of background radiation in a metropolitan region (downtown Sacramento,

CA) to develop a measurement-based simulation to determine the performance of a system
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with mobile sensors, such as police cars equipped with radiation sensors. I present results on

the performance of such systems.(Sec. 4.2).

4. Estimating the parameters of an event is particularly difficult when spatially separated events

occur almost concurrently. In such cases, many detection algorithms estimate parameters as-

suming a single event; parameters estimated in this way can be highly inaccurate. I present

a scalable particle filter approach that estimates the parameters of almost concurrent earth-

quakes. The performance of this approach is evaluated with records following the Tohoku

earthquake on March 11, 2011. (Chapter 5)

5. Machine learning to correlate measurements from sensors can help improve the signal to noise

ratio of a sensor network. I present extensive experimental results of such a method to im-

prove detection of a simulated virus outbreak in a real peer-to-peer network and detection of

earthquakes in three seismic networks. (Sec. 6.4.4).

1.2 Geospatial Events

Definition. A geospatial event is initiated by a significant change in the state of points in a region

in 3-D space over an interval of time. After the event is initiated it may change the state of points

over larger regions and longer periods of time.

In addition to the earthquake example described earlier, consider the example of radiation de-

tection. The problem of radiation detection may seem to fall completely outside of the framework

of state-changes propagating across regions over time. Consider a radiation source introduced into a

region at a point in time. Photons from the source travel at the speed of light in all directions, and

hence the impact of the event appears to be almost instantaneous. The true impact of the event is,

however, the absorbed dose over a period of time and not the instantaneous presence or absence of

a photon. The absorbed dose (or a rad measure) increases over time.

This thesis focuses on events that are initiated by rapid changes in state within restricted regions

and then propagate across larger regions. We study event propagation that can be accurately

described as locus of state changes propagating outwards from a contiguous region in space-time.

We do not consider events that are initiated by concurrent state changes over large regions. For

example, climate change is initiated by changes at multiple points across the globe. As this does not

fit the description of locus of state changes propagating from an interval in space-time, it is beyond

the scope of this thesis.

In addition, we restrict attention to events that propagate over space in a continuous manner,

as opposed to events that jump between non-contiguous regions. Events such as a cyber-attacks on

networks that may be manifested by concurrent attacks at arbitrary locations are not considered.
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Event detection. Whether a change in state of a region is significant and qualifies as an “event”

depends on the application. For example, minor movements within the earth are not events for

emergency first-responders, but still qualify as events for geophysicists. This thesis assumes that the

definition of what is significant is a given input parameter.

This thesis does not consider methods for predicting the onset of events; we restrict attention

to detecting the presence and behavior of events after they have been initiated. For example, the

thesis does not deal with methods to predict future earthquakes; we do, however, study methods to

estimate the future impact of earthquakes after they have started.

Event types. Most natural hazards can be represented as geospatial events. Hurricanes, earth-

quakes, and forest fires can be modeled, with some fidelity, as starting in some limited region and

propagating across larger regions over time in a continuous manner. A model of geospatial events

starting in a small region of space-time and expanding outwards is an approximation. For example,

the genesis of an earthquake is stress built up over years over large tectonic plate boundaries; how-

ever, for the purposes of responding to an earthquake, it may be represented as propagating from a

point in space-time.

In addition to natural hazards, some events caused by human action can also be modeled as

geospatial events. For example, the emission of toxic plumes from the site of an accident, or water

contamination from a factory can also be represented as geospatial events; however, events such as

disease outbreaks do not fall naturally within our framework because airplane travel can transport

germs across the globe, and diseases may appear to jump from one location to another.

1.2.1 Models of Geospatial Events

I next describe a simple model for geospatial events and then discuss its appropriateness and limi-

tations for different problem domains.

Event source assumption. A geospatial event is initiated in some region of space-time. A

common simplification is a point source model that assumes the event occurs at a single point,

specified by the space-time coordinates (x0, y0, z0, t0). For example, an earthquake starts at a point

in 3D space (x0, y0, z0) (the hypocenter) at an instant in time t0. Likewise, the model assumes that

a forest fire starts with a spark at a specific location and time.

Associated with the event initiation are parameters (in addition to location and time) that

describe the event. For example, the parameters that describe an earthquake include its magnitude;

the parameters for a toxic plume include the concentration and type of toxic material; and, the

parameters of a radiation hazard include the amount and type of radiation material and the shielding

around the material. Let M be the set of parameters that describe the event. Then, an event

initiation, for a point source, is described by the 5-tuple (M,x0, y0, z0, t0).
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Figure 1.1: Visualizing H(x, y, t) for a seismic event measured with a dense sensor network in Long
Beach, CA. The event initiated in the upward left direction and propagates diagonally to the lower
right corner. The different levels of impact experience at each geospatial point is color-coded for
ease of visualization. [Source: Dr. Rob Clayton]

Event manifestation function. The manifestation of a geospatial event at any space-time

point (x, y, z, t) is given by a vector H(x, y, z, t) of environmental factors such as temperature,

concentration of pollutants, and acceleration at point (x, y, z) in space at time t. The model of

propagation of geospatial activity is specified by a function f that gives the manifestation H of the

event at each point in space time, given an initiation (M,x0, y0, z0, t0) of a geospatial event:

H(x, y, z, t) = f(M,x0, y0, z0, t0, x, y, z, t) (1.1)

The behavior of a geospatial event, initiated by a point source, is captured by the function f .

Function f varies for different types of events. In the case of dispersion of a toxic plume, f describes

conditions such a wind patterns, humidity, and precipitation. As an illustration, Fig. 1.1 shows

a snapshot of vector H visualized during a seismic event measured by a dense network of seismic

sensors deployed at Long Beach, CA1.

The function f , for any realization of a propagating geospatial event, is drawn from a distribution

F . For example, the speed of seismic waves depends on the geological structure of the material

through which the waves propagate, and system designers may not know this structure precisely.

We assume that if f is unknown, then designers know the distribution from which f is drawn.

1Data from Dr. Rob Clayton: http://www.gps.caltech.edu/~clay/EQmovies/EQmovies.html

http://www.gps.caltech.edu/~clay/EQmovies/EQmovies.html
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Figure 1.2: Distribution and intensity of radiation fallout reading following the Fukushima event on
March 11, 2011. The map is created by air surveillance 1.5 month after the event [8].

1.2.2 Simple Event Models

Isotropic assumption. If the impact of the event is isotropic horizontally (invariant under

horizontal rotation) and independent of the vertical dimension, then the propagation function f can

be simplified to a function f ′ in which the locations of the source and impacted point are replaced

by the horizontal distance between them:

H(x, y, t) = f ′(M,d(x− x0, y − y0), t− t0)

where d(u, v) is the length of the 2-D vector (u, v).

Isotropic model is appropriate for some types of geospatial events. For example, signals (photons)

from an unshielded radiation source in a clutter-free environment are emitted equally in all directions.

In some applications, however, the event impact may propagate faster and with greater intensity in

some directions than in others. An example is the emission of toxic plumes where the density and

direction of the plume depend on wind speed. Another example is the radiation fallout following

the Fukushima event. As shown Fig. 1.2, the distribution and intensity of the fallout readings are

affected by wind and terrain (mountains). These complicating environmental factors are addressed

by the manifestation function f Eq. (1.1).

Most results presented in this thesis are based on the isotropic model. Although this model may
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not capture all the facets of a complex physical phenomenon, the results provide adequate accuracy

for many problems, as validated by experiments. Analysis of this simple model also serve to provide

insight into the interaction between parameters in geospatial event detection.

Space-time model. We first provide insight into the problem space by presenting a simple

problem. Consider a 1-D isotropic event model with the 1-D space dimension on the x-axis and time

t on the y-axis. Assuming that the event impact travels equally likely in all directions at speed v,

an event initiated at a point (x, t) in space time will propagate along the space filled between two

lines that resembles a cone with apex (x, t), where the boundary rays of the cone have an angle θ

and tanθ = v. The relationship is better visualized in the time-space plot in Fig. 1.3(a). In general,

the speed v of propagation is not constant, and variable speeds give rise to non-conic shapes such

as in Fig. 1.3(b).

In most cases, the impact of a geospatial event at a point in space continues for some time. For

example, shaking from an earthquake may continue for many seconds and even minutes. Likewise,

dangerous levels of radioactive material may remain at a point in space for days. Thus, the region

of impact of a geospatial event is represented by the points between two cones if the velocities of

arrival and departure of the impact are constant; more generally, the region of impact is represented

by the space-time points between two upwardly increasing shapes as shown in Fig. 1.3(c).

The magnitude of the impact of an event varies with time and distance from the initiation point.

In many cases, such as for earthquakes, the magnitude of the impact usually decreases with distance

from the initiation point. In other cases, for examples, forest fires, the intensity of the impact

may change with time and distance in complex ways. Fig. 1.3(d) represents a situation where the

intensity decreases with distance, with intensity shown by the color of the line.

There may be multiple events present. When multiple events occur close in space-time as shown

in Fig. 1.3(e), the impact of the collection of events at a point is, in general, a complex function of

the parameters of each of the events. This thesis at times uses a linear model that assumes that the

impact of multiple events at a point is the sum of the impact of each of the events at that point,

if each event was occurring independently. A linear model of impact is reasonable for detecting

radiation hazards because the photon flux due to multiple sources is the sum of the fluxes from each

source. Linear models may be inappropriate, however, for other applications such as earthquake

detection in which seismic waves interfere in complex ways.

Event sources may move. For example, a vehicle containing hazardous radiation may travel on

the roads. In such cases, the sensors detect a combination of signals from the same event. A moving

event source can be modeled, with some fidelity, as a sequence of sources moving along some path.

Fig. 1.3(f) shows the trajectory of a moving source and the wavefronts emanating from the source

at different times. These wavefronts interact in complex ways.
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9

1.3 Models of Modern Sensor Networks

With advances in sensing technology and personal computing device, more and more new types

of sensors are appearing in game consoles, cars, households, and smart phones. In comparison to

traditional sensors, these modern sensors are generally inexpensive and small in size. Many sensor

network projects are taking advantage of these alternative sensors for participatory community sens-

ing. One of the earliest of such projects is the US Geological Survey Did you feel it? program that

employs humans as sensors to construct surprisingly accurate shake-intensity maps from only sub-

jective human input [7]. The use of Twitter tweets for detecting trending events [85] and geospatial

events, such as earthquakes [79], have also been shown to be effective.

Challenges. There are three major challenges dealing with event detection using today’s sensor

networks.

1. Volume: A sensor network that employs smart phones or humans as sensors may include

millions of sensors. As the network size grows, methods designed for small networks need to

be replaced by scalable algorithms.

2. Noise: Inexpensive sensors are made possible with advances in sensing technology, e.g. $50

CO2 sensors for Arduino2, $40 standalone accelerometers3, and free make-shift geiger counter

that utilizes the camera on smart phones4. The level of noise, whether electronic or environ-

mental, that these low-cost sensors experience can be orders or magnitude greater than that

from high quality, and more expensive devices.

3. Tradeoffs: The design of geospatial sensor networks is a highly complex optimization problem.

The problem becomes even more difficult with increasing varieties of sensors, communication

mechanisms, and computing power.

1.3.1 Models of Sensors

We use a single model of sensors for different types of sensors and different types of applications.

Consider a sensor of type s that experiences a manifestation H at time t measures a value as(H)+ε,

where ε is a random noise variable with zero mean. The function as maps true values to measured

values. Ideally as is the identity function, and the sensor has zero noise. We discuss in later chapters

how the sensor quality affects the sensor measurement function as. Here we first describe how sensor

noise contributes to sensor errors as(H) + ε−H.

Sensor noise can be electronic or environmental ; and the resulting sensor errors can be categorized

into three types:

2http://sandboxelectronics.com/store/index.php?main_page=product_info&products_id=197
3http://www.phidgets.com/products.php?product_id=1053_0
4http://www.howtogeek.com/103184/your-android-phone-can-do-double-duty-as-a-geiger-counter

http://sandboxelectronics.com/store/index.php?main_page=product_info&products_id=197
http://www.phidgets.com/products.php?product_id=1053_0
http://www.howtogeek.com/103184/your-android-phone-can-do-double-duty-as-a-geiger-counter
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1. Detection error: Electronic and environmental noise both contribute to false sensor events.

For example, an accelerometer may detect an anomaly when a truck passes by. This is a valid

detection of a local anomaly; however, this anomaly is not a geospatial anomaly of interest.

This type of error is unavoidable with low quality sensors but can be made less frequent by

setting sensor detection parameters.

2. Location error: Sensors may not be equipped with high quality GPS, or the location of the

sensor may rely on self-reported information from sensor owners. These situations lead to error

in sensor location that complicates the detection and estimation process.

3. Timing error: The clocks in computing units and sensors in a network may not be perfectly

synchronized. The clock drift cause sensors to misreport the time at which an anomaly occurs.

This misreporting impacts system performance, as many detection and parameter estimation

algorithms require that the times of sensor measurements to have microsecond precision.

To illustrate the impact of timing and location error, Fig. 1.4(a) shows the difference between

the true impact of an event shown by the straight lines of a cone, and the measured impact shown

by the dots identifying anomalies detected by sensors. Some sensors may not detect anomalies and

the number of sensors near the source of the event may be small, and, as a consequence, the problem

of identifying the geospatial event from the sensor readings (i.e. identifying the lines of the cone

from the dots) can be difficult.

Let us represent errors in timestamps by a time interval [−e,+e], where the probability of errors

outside this interval are low. The timing error is represented by a band around the cone with

vertical thickness 2e, as shown in Fig. 1.4(b). In Fig. 1.4(c), sensor events that are true positives

are shown as green while false positive are shown as red; the figure shows the difficulty of achieving

high probabilities of true positives while ensuring low probabilities of false positives.

Communication model. Data from sensors can be streamed continuously to agents that fuse

sensor data. Systems that stream sensor data must have adequate bandwidth to handle the traffic.

In the situation when the bandwidth and power supply do not permit a streaming model, raw

sensor measurements can be compressed before they are sent. Compressive sensing is one of such

methods that compresses the measurements by taking advantage of signal redundancy [13]. The

original signal is then reconstructed at the server side. Such methods, however, require processing

power at the sensors. In this thesis, we consider a simpler approach: the sensors send event messages

to processing engines only when sensors detect events — local anomalies. An event message sent

by the sensor has bits that identify the anomaly, the timestamp of the anomaly, and, possibly,

measurements made during a short interval around the anomaly. The size and the frequency of

event messages play a crucial role in the cost of the system, and on its efficacy.
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Figure 1.4: Sensor detection models illustrated in 1D space-time plots, assuming an isotropic event
model. The event is modeled to initiate at a single point (x0, t0). The blue lines show the propagation
of event impact in space and time. True sensor detections are green. False sensor detections are red.
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1.4 Metrics for Performance Evaluation

Sensor networks for geospatial event detection have three main goals [47]:

1. Providing early warning so that people or machine components can react before a disaster hits;

for example alerting people about impending intensive shaking from earthquakes.

2. Providing continuing situational awareness as a disaster unfolds; for instance, giving first

responders information about which areas have been most badly damaged.

3. Providing data that is useful for scientific analysis, such as data about background radiation

measured in an area over time.

Performance evaluation of such a system are summarized as metrics for: (1) warning, (2) ongoing

situational awareness, or (3) science. The metrics for warning include the timeliness of the warning,

and the accuracy of the estimation of the magnitude of the impact at each location and time.

The metrics for ongoing situational awareness are similar, with the goal of detecting changes to an

unfolding situation. Usually, first responders react in minutes, during which an elevator can be slowed

down or a gas valve can be shut in seconds. Generally, constraints on the timeliness for situational

awareness are less acute than for early warning. Science applications have even fewer constraints

as it use data streams for data mining rather than event detection. For example, geologists are

interested in tiny earthquakes that are not felt by anybody; the detection and characterization of

such quakes can be carried out days after the event. In this thesis, we focus on applications dealing

with warning and situation awareness. The most important criteria for early warning applications

are timeliness and accuracy.

1.4.1 Timeliness

Warnings generated a short interval after the initiation of an event are based on data gathered over

short times, and hence are more likely to be erroneous. The system can associate probabilities with

warnings, generally giving higher probability warnings as time progresses. How fast the network can

declare detection with high probability depends on the network and event parameters, such as the

density of sensors, and the speed of the event propagation. It also depends on the data aggregation

algorithm.

Timely detection leads to faster warning. As an example, Fig. 1.3(b) shows an event detection

at a time τ . Alerts about the event are sent electronically to the impacted region, and as a first

approximation, we assume that alerts reach all points in the region after a delay of δ seconds. The

warning time for a point x in space is the delay between the instant (τ + δ) and the instant at which

dangerous intensities are experienced at point x. As shown in Fig. 1.3(b), some locations may have
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adequate warning while other locations do not. One of the metrics for evaluating the effectiveness

of system is the amount of area, or more appropriately, the fraction of the population in the region,

that gets adequate warning time.

1.4.2 Accuracy

The accuracy of both detection and parameter estimation are also affected by event and network

parameters. Next, we discuss issues that impact the accuracy and speed of geospatial event detection

in terms of simple geometrical concepts.

True positive and false negative. Intuitively from Fig. 1.5, a simple algorithm to detect

geospatial events is as follows: detect a geospatial event when the number of sensors reporting

events within a cone exceeds some multiple of the number of sensors that do not report events in

that cone. All possible values of (x, t) can be the location of the apex unless there is prior knowledge

on the event distribution. Fig. 1.5(a) shows two cones where the apex of each cone represents a true

geospatial event. All the sensors generate sensor events in one of the cones, and no sensors generate

events in the other cone. A geospatial event will be detected for the first cone — a true positive —

but not for the second — which would be a false negative.

False positive. False positives can occur when false sensor detections happen to align by chance.

Fig. 1.5(b) shows a false positive detection of a geospatial event because sensors generated detections

due to local noise in a cone. The rate of false positives increases with uncertainty about the propa-

gation of geospatial events, constraints on the speed of detection, and noise in sensors. Uncertainty

about propagation speed is represented by cones with greater thickness, as shown in Fig. 1.5(c).

Constraints on the speed of detection are represented by cones of shorter height, as the height of the

cone represents the time from event initiation to detection; the number of sensors that can produce

signals within a cone decreases with the height of the cone, and so detecting collections of true sensor

events from false sensor events gets more difficult.

The definition of false positive depends on the application. For example, the U.S. Geological

Survey reports many earthquakes that are too small to require a reaction. Warnings about such

events would be considered to be false by most people, who only want to be alerted when they

have to take action. How accurate the system can estimate these critical event parameters (e.g.

location, magnitude) to avoid false warnings depends on many factors. For example, an event that

propagates faster can be detected faster simply because the manifestation reaches more sensors in the

same amount of time in comparison to a slower event. The parameters of a faster events, however,

may not be estimated with the same accuracy as a slower event as shown in Fig. 1.5(c). These

simple geometric intuitions will be further validated and quantified in Sec. 2.3 and Sec. 3.2.2.
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1.5 Example Applications

This thesis explores the commonality underlying widely different types of geospatial events. In

particular, it studies two very different types of geospatial events in detail with the intent of both

identifying concepts common to most geospatial events, and also understanding the limits of these

general concepts. We study two problems in depth, rather than many problems shallowly, so that

we can better understand the subtleties of the problem-specific issues of events that fall within

the rubric of geospatial events. The two problems we explore are responding to earthquakes and

radiation emission.

These two events can be considered as extreme cases of the geospatial event models introduced in

Sec. 1.2.1. For example, the impact of radiation travels at the speed of light and is observed almost

immediately after initiation, whereas the impact from earthquake travels at the speeds similar to

that of the speed of sound. The same geospatial event detection model is used for both cases despite

the fact that the speeds of propagation for light and sound are very different.

1.5.1 Radiation

The threat of terrorists with improvised nuclear devices, and nuclear reactor accidents such as

Chernobyl and Fukushima have led to a great deal of research on radiation detection, including

research on learning techniques for fast classification at ports [3].

Challenges. There are three major challenges for radiation detection with networked sensors.

1. Noise: The environment is naturally abundant in NORM (naturally occurring radiation active

materials) sources, most of which are benign. Materials where NORM isotopes can be found

include dirt, air, tiles, pavements, cat litter, and patients treated with radioactive therapies.

NORM radiation can usually be distinguished from harmful ones (which emit gamma radiation)

by examining the signature (spectrum) with high quality spectrometers. Unfortunately, the

two types of radiation are indistinguishable with widely available inexpensive geiger counters

that only record photon counts.

2. Occlusion: The environment has objects that absorb radiation. If the source of radiation is

occluded from the sensors by objects, and the dimension and material of these objects are not

factored into the calculation, the detection and parameter estimation results will be impaired.

3. Distance: The radiation signal drops off faster than the square of distance between the source

and a sensor. This means detection is particularly difficult if no sensor is close to the source,

i.e. if the network is sparse.
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Previous work. The change in methods of terrorism and the emerging need of long term extensive

monitoring of radiation level calls for a change in design. Early work in the distributed sensor network

approach focuses on deploying sensors along streets. It has been found that with the same amount

of cost, the networked sensing approach not only outperforms large portal sensors, but also shows

improvements in combined signal-to-noise ratio and real-time detection [92] [48]. It has also been

found that decentralized computation is important for persistent remote sensing [11].

Many techniques were developed for the detection and parameter estimation with a group of

networked radiation sensors. The more popular ones are Sequential Probability Ratio Test (SPRT)

and Maximum Likelihood Estimator (MLE). SPRT uses a adaptive thresholding technique that com-

pares current measurements to previous baselines [49][74]. MLE method formulates the parameter

estimation task as a multi-dimensional optimization problem. The problems of local minima and

long search time with MLE are addressed by the mean-of-estimator method [76][21].

There exist several drawbacks to these classical methods, including discontinuous estimates, few

results on convergence, and the fact that no prior information is used (e.g. the positions of known

objects). Recent development of Bayesian methods address these issues [16], some supported by

extensive realistic simulations [87][57]. A pure Bayesian approach suffers in computational efficiency

when the parameters space is too large [58]. The problem is improved with a more efficient particle

filter sampling approach [77], but the growth problem is still not completely resolved.

Despite the above mentioned problems with both classical and Bayesian approaches, these meth-

ods perform reasonably well with a small network of sensors (< 10). However, earlier work does not

provide detailed analyses of system performance in terms of key network and event parameters, and

without this information it is difficult to predict system performance as the network grows in size.

Analysis using the general geospatial model. How does the problem of radiation detection

fit into the general models that were described? While a rigorous discussion will be provided later

in the thesis, we first offer an intuitive discussion here.

Consider that a sensor detects a local anomaly by measuring a change in photon flux. Because

photons strike a sensor in a Poisson manner, the time required for a sensor to detect the presence

of a source is the time required to detect an increase in the long-term background flux due to the

source. The time to detect an increase in flux depends on the amount of the increase. A smaller

increase in flux can only be detected after a longer time whereas a large increase can be detected

quickly. Because flux decreases as the inverse of the square of the distance from the source, the

time to detect a change increases at least as fast as the square of the distance to the source. The

representation in the simple 2-D model is shown in the Fig. 1.3(c).



17

1.5.2 Earthquake

Earthquakes are one of the the most devastating natural geospatial hazards in areas of frequent

seismic activity. Because a reliable precursor of earthquake has not been found, the importance of

robust earthquake early warning system (EEW) cannot be overstressed. The main purpose of an

EEW system is to provide realtime event estimates to the distant site before the strong shacking

(S-wave) arrives.

Challenges. Earthquake waves propagate in a very complex manner that depends on the depth

of the quake, the event magnitude, and earth structure. An important part in EEW application is

to determine the first P-wave arrival at each sensor; however, exact determination is difficult when

multiple aftershocks or multiple independent quakes are occurring simultaneously and the sensors

observe dependent and interfered measurements. The problem is even more difficult with less precise

and noisy sensors.

Previous work. There is a rich body of work on EEW applications regarding earthquakes.

An example is the Japanese seismic network, which consists of roughly 1,000 high precision sensors

throughout inland Japan (about 1 station every 400 km2). The current early warning system running

on the network uses a combination of classical methods with single or multiple station measurements

to rapidly estimate the location and magnitude of an earthquake after first local detection by a station

[43]. A second example is the California Integrated Seismic Network (CISN) that consists of about

350 sensors from Southern California Seismic Network (SCSN)5 and 412 sensors from Northern

California Seismic Network (NCSN)6. The EEW system running with CISN also includes several

classical methods. One of these is the τc − Pd approach, which estimates the S-wave magnitude

and peak ground velocity (PGV) with the P-wave pulse width (τc) and the peak initial 3-second

displacement amplitude (Pd) [88]. This method has been proven successful for real-time estimation

in a series of events [9].

In addition to classical methods, a Bayesian approach for EEW was introduced by Cua and

Heaton in 2005. The Virtual Seismologist project constructs the likelihood function based on six

channels of measured ground motion (maximum vertical acceleration, maximum horizontal acceler-

ations (2-axes), velocity, and displacement) [26][24]. Prior information, such as the identified fault

lines, can be easily incorporated into the calculation. A simple grid search method is used to com-

pute the posterior distribution. Another approach includes the development of PreSEIS by Bosë et

al. that uses a 2-layer feedforward neural network learned on historical data to estimate realtime

event parameters, including hypocenter location, moment magnitude, and the expansion of evolving

earthquake rupture [10]. PreSEIS has the advantage over classical methods in that they can han-

5http://www.scsn.org/seisstations.html
6http://www.ncedc.org/ncsn/

http://www.ncedc.org/ncsn/
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dle nonlinear and noisy data that is not well explained with existing models; however, as with all

learning approaches the performance is limited by the completeness of training data set.

All the previous work on EEW applications assumes constant access to accurate measurements

from each sensor (clean 3-axes acceleration or velocity). However, with lower quality sensors (to

meet cost constraint and to increase coverage), the sensor measurements are unreliable due to elec-

tronic or environment noise. For example, the sensor orientation may not be consistent through

the network, and instead of 3-axis accelerations, we may need to resort to use a single combined

acceleration measurement. The data can also be intermittent, depending on the cell or wireless

network availability. With these constraints, it is important to establish new models and develop

new algorithms that are scalable and noise-tolerant.

Participatory sensing. The intensity of shaking at a location during a seismic event depends not

only on the distance to the hypercenter, but also the local earth and building structures that are

difficult to capture in a generic model. A dense network allows for creating a high resolution intensity

map of shaking (“shake map”) that helps first responders assess the priority of emergency relief. The

data also helps scientists better understand the composition of substructures. An example of such

dense network is the temporary Long Beach dense network (Fig. 1.1), which consists of ∼5,000

sensors in 35 km2 7. During the six months of data collection, more than 200 small events (<M2.0)

were detected. This number is far greater than that reported by USGS.

Unfortunately, the long-term deployment of a dense network is infeasible due to the high cost

of traditional seismometers (∼$10,000). As a comparison, SCSN would need another 20,908,935

stations to reach the same density as the Long Beach network. As a result, alternative sensing

methods were developed. Did you feel it employs volunteers to rate the shaking they experience

during an event, and with the inputs, it is able to create surprisingly accurate shake maps [7].

Fig. 1.6 is an example of a shake map created for the 1994 M6.7 Northridge earthquake based from

2208 volunteer inputs8.

Other data collection methods exploit the wide availability of inexpensive accelerometers in

modern day consumer electronics. The iShake project uses smartphones as sensors for seismic

activity monitoring [33]. The Community Seismic Network includes standalone USB accelerometers

(“Phidget” sensor) in addition to smart phone sensors (“Android” sensor) [22]; the joint network

has reached over 200 sensors distributed across the greater Los Angeles area, and has been reliably

detecting all events of M2.0 and above reliably in Southern California since 2011.

Analysis using the general geospatial model. This thesis covers both high quality and low

quality sensor networks for earthquake detection. Although the sensor noise profiles are different, in

7http://www.gps.caltech.edu/~clay/EQmovies/EQmovies.html
8Figure source:http://pubs.usgs.gov/fs/fs030-01/

http://www.gps.caltech.edu/~clay/EQmovies/EQmovies.html
http://pubs.usgs.gov/fs/fs030-01/
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Figure 1.6: Did you feel it shake map created for the M6.7 Northridge earthquake on January 7,
1994 with 2208 independent inputs across 482 zip codes.

both cases, the P- and S-wave takes some finite amount of time to reach the network. In most of the

analyses, we assume a constant event propagation model such as the one illustrated in Fig. 1.3(a).

In the few cases where a more sophisticated speed model is available, a variable speed model, as

shown in Fig. 1.3(c), is used instead.

1.6 Chapter Organization

This thesis is organized to address the three key requirements of a system for event detection —

speed, accuracy, and scalability.

Speed. Determining whether an event has occurred is often the first step in event detection.

Rapid detection is of tremendous importance in some applications. For example, in earthquake

early warning systems, a few seconds of warning can prevent massive loss in lives and capital.

However, improvement in detection speed is directly related to increases in the number/quality of

sensors and/or sacrifices in detection accuracy. This tradeoff of system performance in terms of key

network and event parameters is studied in Chapter 2.
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Accuracy. From the time-series network observations, event parameters can be estimated. These

estimates have direct impact on choosing the right response to an event. For example, if the detected

radiation source is identified as benign, the system should not issue a warning. On the contrast, if

an area is expected to experience strong shaking based on the estimated intensity and hypocenter of

an earthquake, then a timely warning is crucial. The problem of parameter estimation is difficult in

the presence of noise, and is further complicated by unconstructed parameter space, traveling event

source, multiple event sources, and mobile sensors. Chapter 3, Chapter 4, and Chapter 5 discuss

how the quality of estimates can be improved under these complications.

Scalability. With the advancement of mobile technology and the decrease in price of sensing

devices, building a large scale dense sensor network is no longer impossible; however, such large noisy

networks call for updates in system design, both in terms of software architecture and algorithm

development. For example, it is infeasible to stream all the raw measurements to a centralized

fusion center due to the large volume of data, and the aggregation algorithms must take into account

the variability in sensor quality, installation method, and regional noise. Some of these issues are

addressed in Chapter 6 in terms of rapid detection.
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Chapter 2

Detection Time and Confidence
Tradeoffs

At any given instant during the unfolding of an event, accumulated data since the initiation of

the event to the current instant can be observed; a goal of the system is to use this accumulated

information to predict the future evolution of the event. As time progresses, the amount of observed

information about the event generally increases. One may thus reasonably expect that predictions

will become more accurate over time; however, faster response provides more time for people and

systems to respond, and as a result allows damages to be confined and minimized. Many geospatial

problems deal with the question: given observations up to a point in time, should systems initiate

responses or should they wait for more corroborating information?

Detection time and confidence tradeoffs. Several parameters play a role in the tradeoff

between detection time and confidence. Some of these parameters, such as environmental noise and

the event’s location and intensity, are not controllable. Parameters that can be controlled include

the number, quality, variety, and location of sensors. The optimal selection of these parameter

values under the constraint of limited resource (e.g. power, bandwidth) is a difficult non-convex

optimization problem.

Receiver Operating Characteristic curve. The key metric used in this chapter and throughout

the rest of the thesis is the Receiver Operating Characteristic (ROC) curve. ROC curve plots the

probability of true positives as a function of the probability of false positives. By tracing the points

on the curve, one can tradeoff true positive with false positive.

Chapter organization and contributions. This chapter presents the first thorough mathe-

matical analyses and Monte Carlo methods to help understand the fundamental tradeoffs between

detection time, the probabilities of false positives and true positives, system cost, numbers of sen-

sors, benefits of data fusion, and communication load. We begin with the analysis on the asymptotic

characterization of detecting a geospatial event with sensor networks, under the basis of no central-
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ized computation (and therefore no communication cost). This analysis serves as a lower bound on

the detection performance (Sec. 2.1). Better detection performance can be achieved by combining

realtime measurements from multiple sensors at a fusion center, though doing so increases the com-

munication overhead. Sec. 2.2 presents the first rigorous quantification of data fusion benefit in terms

of reduction in detection time. This analysis leads to a new detection bound for general geospatial

event detection with cooperating sensors, a detection bound that relates detection confidence to key

network parameters (Sec. 2.3).

The focus of this chapter is restricted to analyzing the problem of detection, i.e. determining

whether an event has occurred. The problem of estimating event related parameters, e.g. localiza-

tion, will be presented in later chapters.

2.1 Asymptotic Characterization

We first determine what a single sensor can detect and later consider what can be detected by col-

lections of cooperating sensors. We begin with a simple sensor that measures the raw manifestation

of the event. The system issues an alert exactly when the measurements collected in time t by the

(single) sensor exceeds some threshold value τ . The greater the value of τ , the lower the probability

of false positives, but also the lower the probability of true positives. By varying τ we can study the

tradeoff between the probabilities of false positives and true positives.

2.1.1 Definitions

We begin by comparing probabilities of the following two alternatives

1. No event has occurred in time T . The sensor observes only background noise of strength Γ.

2. An event of magnitude µ at distance r from the sensor has occurred in time T . The sensor

observes the event manifestation f(µ, r, T ), in addition to the background noise Γ.

If the system falsely declares detection in the first scenario, then we say there is a false positive.

If the system correctly detects in the second scenario, then it is a true positive. The strength of

the signal from the event depends on all the parameters mentioned, as well as the quality of the

sensor that is captured by the sensor detection function φ, i.e. sensor reports measurements given

by φ(f(µ, r, T )).

In our radiation example, event manifestation function f is the Poisson probability density

function where the number of events k (photon registered) depends on source strength µ, distance

to source r, observation time T , sensor sensitivity and dimension A, and the photon absorption rate

α.

f(µ, r, T ) = poisson(k;λ, T ) =
(λT )ke−(λT )

k!



23

where λ is the effective source strength measure at the sensor,

λ =
Aµe−αr

r2
(2.1)

Let pFP be the probability of a false positive; that is the probability of observing τ or more

photons from the background of intensity Γ in time t:

pFP =
∑
k≥τ

poisson(k; Γ, T ) (2.2)

Let pTP be the probability of a true positive; that is the probability of observing τ or more

photons from the combination of background and the source in time t:

pTP =
∑
k≥τ

poisson(k; Γ + λ, T ) (2.3)

2.1.2 Asymptotic Analysis

Intuition. We begin the analysis with some plots that provide insight to the problem. Fig. 2.1

are two ROC curves that plot Eq. (2.2) as a function of Eq. (2.3) by varying the threshold τ for

two fixed sets of T , Γ and λ. It is clear that the ROC curves improve (higher pTP for a fixed pFP )

with increasing observation time T — the time at which the system can use to decide whether a

source is present or not. The curves also show that moving the source further away from the sensor

or increasing the background intensity reduces the quality of the ROC curve. By selecting a fixed

pFP , we can re-plot Fig. 2.1 as a function of distance to the source r to reach a desired pTP , as

shown in Fig. 2.2. The figure shows the quadratic growth in detection time as the distance increases.

Asymptotic behavior. Next, we rigorously define the asymptotic relationships between pTP ,

pFP , T , λ, and Γ; these asymptotic relationships will give insight into how to design detection

systems.

A Poisson distribution can be approximated, with error low enough for our purposes, by a normal

distribution when the count of events k ≥ 10. Let µs and σs be the mean and standard deviation

of aggregated observations in time T when a source is present. Let µ0 and σ0 be the corresponding

values when the source is absent. We then have

µs = (λ+ Γ)T, σs =
√

(λ+ Γ)T

µ0 = ΓT, σ0 =
√

ΓT

Let bFP be the upper bound on the probability of false positives pFP . Let ZFP be a positive
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(a) λ = 2, Γ = 8 (b) λ = 32, Γ = 8

Figure 2.1: ROC curves of the probability of detection.

Figure 2.2: Time to detect as a function of distance. Γ = 8, µ = 200, pTP = 0.99.

real value such that the probability of values in a standard normal distribution exceeding ZFP is

bFP. Then

τ − µ0 = τ − ΓT ≥ ZFP σ0

For example, when bFP = 0.01 then ZFP = 2.33. Similarly, let bFN be the upper bound on the

probability of false negatives (i.e. 1-pTP), and let the probability of values in a standard normal

distribution being less than bFN be ZFN . Then

µs − τ = (λ+ Γ)T − τ ≥ ZFN σs

Consider the point on the ROC curve where ZFN = ZFP (i.e. 1-pTP = pFP), and let us call this
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value z. From the above equations we get

z =
λ
√
T√

Γ +
√
λ+ Γ

For the impact intensity λ much lower than the background intensity Γ:

λ� Γ : z ≈ λ
√
T

2
√

Γ
(2.4)

and for impact intensity λ much greater than the background intensity Γ:

λ� Γ : z ≈
√
λT (2.5)

Eq. (2.5) represents the case when the signal strength far exceeds noise. In such case, the

detection problem is trivial. We focus on the case when the signal strength is much weaker than

noise as shown in Eq. (2.4), and study how the network performance changes as the key parameters

change.

2.1.3 Interpretation

Substituting effective source strength at the sensor λ from Eq. (2.1) into Eq. (2.4) and rearranging,

we get the following relationship with respect to observation time T

µ

Γ
� eαrr2

A
: ⇒ T ≈ 4z2Γr4e2αr

A2µ2
(2.6)

We use this equation to analyze the following situations.

1. Increasing distance between sensors: When r is large, the time T to make a decision

increases more rapidly than the fourth power of r. For example, with A = 200, K = 3.2, and

r = 20 meters, then a 25% increase in r requires a 150% increase in T . Thus timely detection

forces dense deployments of sensors.

2. Reducing sensor sensitivity: If the sensor sensitivity A is halved and everything else re-

mains unchanged, then the time T to detection is quadrupled.

3. Increasing background noise: If the background intensity Γ is doubled, then the time to

make a decision is doubled as well, if other parameters remain unchanged; if we want to make

decisions just as quickly then A must increase by
√

2 or 1.4.

4. Increasing sensor density: Let D be the sensor density: it is the surveillance area divided

by the number of sensors. To a first approximation, sensor density is proportional to 1/r2
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Figure 2.3: Increasing the density of sensors improves detection. The graph compares detection
efficiency using nine sensors with that obtained using 16 sensors that are each 6x more sensitive,
under otherwise identical conditions.

where r is the average spacing between sensors laid in a grid. For large r we see that T

increases more rapidly than Γ/D2A2.

These analyses show that a dense network is required to rapidly detect a weak event. It should

be noted that with such a dense network, the probability that some sensors are near the event source

is high. This scenario is described by Eq. (2.5) as opposed to Eq. (2.4), and the detection problem

becomes much easier since observation time T is affected less by background noise Γ and sensor

sensitivity A.
µ

Γ
� eαrr2

A
: ⇒ T ≈ z2r2eαr

Aµ
(2.7)

Simulation results in Fig. 2.3 show how these parameters affect detection performance. A sparse

network (blue curve) can only detect with 0.3 confidence in T = 10 seconds, whereas a dense network

of roughly twice the sensor density and 6x times more sensitive (green curve) can detect with 0.92

confidence in the same amount of time. While this analysis focuses on the application of radiation,

the principles can be applied to a wide array of geospatial events as most events have similar

underlying behaviors. As the analysis suggests, inexpensive (noisier and less sensitive) sensors can

achieve the same performance as that of high quality ones by increasing the density. We will further

explore this idea in Chapter 6.

2.2 Combining Sensor Data

The asymptotic analysis presented in Sec. 2.1 is based on the assumption that all sensors are ho-

mogeneous and operate independently, i.e. there is no communication between sensors. In reality,
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single sensor detection performance is inhomogeneous and varies as a function of distance to the

event initiation. The network detection performance can be improved by combining real-time mea-

surements from sensors, although doing so increases the infrastructure cost as well as communication

cost, because it now requires data to be sent from the sensors to a centralized fusion center. Under-

standing the performance gain of data fusion is therefore critical in designing a real system for event

detection. This section quantifies the benefit of data fusion in terms of the reduction in detection

time.

2.2.1 Classical Statistics Analysis

We consider the problem of correctly detecting an event when one is present with a probability

of at least bTP, and falsely detecting an event when it is absent with probability of at most bFP.

In other words, bTP is the lower bound on the probability of a true positive pTP , and bFP is

the upper bound on the probability of a false positive pFP . We present analytical analyses for

two communication models: (a) when there is no communication between sensors and decision is

made independently (no fusion), and (b) when sensors communicate and a decision is made on the

combined measurements (fusion). Results from the two cases are then compared to get a quantified

measure of fusion benefit.

Preliminaries. The analyses use the following assumptions:

1. All sensors observe the same amount of time unvarying background noise Γ.

2. The event manifestation (photon emission) is isotropic.

3. There exists no obstacle between the event initiation (source) and the sensors.

4. The field either contains no or exactly one event (radiation source).

5. The network makes the decision on whether an event has occurred after observing for time T .

Detection test statistics. We adopt a simple threshold test statistics such that the null hypothesis

H0 is rejected if and only if some function of the sensors’ combined measurements exceeds a threshold.

Different functions and thresholds are used according to whether decisions are being made with or

without data fusion.

• No fusion: The null hypothesis is rejected if the measurement (photon count) from any sensor

exceeds (Γ +Kσnull), where K is a constant determined by the bounds on the probabilities of

true positives and false positives, bTP and bFP, with respectively.
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• With data fusion: The sensor measurement can be combined in many ways. We study one

of the approaches that the null hypothesis H0 is rejected if and only if any of the following

conditions described hold:

1. The measurement from any sensor exceeds (Γ + K1σnull), where K1 is a constant. This

corresponds to the no-fusion case, except that the threshold K1 is different from (and is

larger than) K. If the source is near a corner of the square, then the photon count for

the sensor at that corner is likely to exceed this threshold. If, however, the source is far

away from every corner, then this threshold is unlikely to be exceeded.

2. The average measurements of any pair of neighboring sensors exceeds (Γ+K2σnull), where

K2 is a constant. The reason for fusing data from adjacent pairs of sensors is to deal

with the possibility of a source being along an edge of the square, and near the middle of

the edge. For example, if the length of the square is 20 meters, and the source is midway

along an edge of the square then r2 is 100 for the two nearest sensors and is 500 for the

two farthest sensors, where r is the distance between the source and sensor.

3. The average measurements of any group of four neighboring sensors exceeds (Γ+K3σnull)

where K3 is a constant. This threshold deals with the possibility of a source near the

center of any square.

This design of detection statistics eventually leads to the development of the K-sigma algorithm

that will be introduced in Sec. 3.1.1. The values of K1, K2 and K3 are determined to satisfy the

given bounds on the true positive and false positive probabilities. Note that by setting K1 to K, and

K2 and K3 to infinity, the fusion case becomes identical to the no fusion case. As a result, we can

ensure that the fusion algorithm is at least as good as the independent algorithm; we will, however,

select the values of Ki so that the fusion algorithm can potentially outperform the independent

algorithm.

2.2.2 Quantifying Fusion Benefit

Metric. Before we can compare the detection performance for the two cases — fusion and no

fusion, we need to establish a metric for comparison. An ideal metric is time. More precisely, it is

the time to detect an event since initiation under the constraint that the system false positive rate

is bounded above, pFP ≤ bFP , and the system true positive rate is bounded below, pTP ≥ bTP .

Two sensors. Let us first consider a simple scenario with two sensors at a distance R apart.

Let G(µ, σ;n) and F (µ, σ;n) be the cumulative distribution and probability density functions for a

Poisson random variable k with parameter µ; G(µ, σ;n) is the probability of k ≤ n, and F (µ, σ;n)
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is the probability of k = n. Let Γ be the expected contribution from the background at a sensor in

time T . Because there are only two sensors, the test statistics described in Sec. 2.2.1 is modified.

Let k1 and k2 be the measurements observed in time T from sensor s1 and s2, and we say there is

a detection when

1. No fusion: the measurement (photon count) of any sensor exceeds a threshold Q = Γ+Kσnull,

i.e. (k1 ≥ Q) ∨ (k2 ≥ Q)

2. With data fusion: the measurement of any sensor exceeds a threshold Q1 or the sum of the

counts of the two sensors exceeds a threshold Q2, i.e. (k1 ≥ Q1)∨ (k2 ≥ Q1)∨ (k1 + k2 ≥ Q2).

Recall from Sec. 2.1 that the expected and standard deviation of sensor measurements when an

event is absent (µ0 and σ0) and when an event is present (µs and σs) are:

µs = (λ+ Γ)T, σs =
√

(λ+ Γ)T

µ0 = ΓT, σ0 =
√

ΓT

From these, we can define the probability of false positive pFP and true positive pTP as a

function of threshold Qi’s for the fusion and no fusion cases.

1. No fusion: A detection is made when (k1 ≥ Q) ∨ (k2 ≥ Q), therefore

pFP = 1−G(µ0, σ0;Q)2

pTP = 1−G(µs1, σs1;Q)G(µs2, σs2;Q) (2.8)

where µs1 and σs1 are the mean and standard deviation of the measurements observed at

sensor s1. µs1 = (λs1 + Γ)T and σs1 =
√

(λs1 + Γ)T . The same definition applies to µs2 and

σs2.

2. Fusion case: A detection is made when (k1 ≥ Q1)∨(k2 ≥ Q1)∨(k1 +k2 ≥ Q2). There are three

scenarios when this condition holds: (a) k1 ≥ Q1, or (b) (k1 < Q1)∧ (k2 ≥ min(Q1, Q2− k1)).

Since the two disjuncts are mutually exclusive their probabilities are summed:

pFP = (1−G(µ0, σ0;Q1)) +

∫ Q1

0

F (µ0, σ0;x1) (1−G(µ0; min[Q1, Q2 − x1]) dx1

pTP = (1−G(µs1, σs1;Q1)) +

∫ Q1

0

F (µs1, σs1;x1) (1−G(µs2, σs2; min[Q1, Q2 − x1]) dx1

Assuming that a source is placed anywhere on the straight line between sensor s1 and s2 with

uniform probability, by varying Qi’s, we can construct ROC curves for different detection time T .

Fig. 2.4 shows the ROC curves for no fusion and fusion algorithms at T = [3, 15, 50] seconds. The
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(a) T = 3 second

(b) T = 15 second

(c) T = 50 second

Figure 2.4: ROC curves with and without data fusion. Γ = 8T , Λ = 200T , R = 20. The detection
performance with data fusion clearly outperforms the one without data fusion, especially in the
lower pFP regime.
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Figure 2.5: pTP as a function of time with a fixed pFP = 0.01 using the optimal Q1 and Q2. The
amount of fusion benefit can be quantified as 4 seconds if the desired detection confidence is 0.99.

values of the thresholds with the fusion case, Q1 and Q2 can be optimized for each desired pFP and

pTP combination; however, these plots do not explore all possible combinations of [Q1, Q2]. The

suboptimal choice accounts for the crossover on the upper right corner in Fig. 2.4(a).

Fig. 2.4 shows that for all T , detection with fusion indeed outperforms the case with no fusion,

especially in the low false positive regime. Furthermore, these graphs can be replotted as a function

of detection time T by fixing a desired false positive value. The performance of no fusion and fusion

can then be measured in terms of the time required to reach a certain detection confidence (true

positive rate). An example is shown in Fig. 2.5, which shows that it takes ∼ 19 seconds and ∼ 23

seconds to reach pTP = 0.99 for the case of fusion and no fusion, respectively. In other words, the

benefit of data fusion under the constraints [pFP, pTP ] = [0.01, 0.99] can be quantified as 4 seconds,

i.e. we can detect 4 seconds faster if data can be combined at a centralized center.

Four Sensors. Extending the analysis from two sensors, we now consider the arrangement of four

sensors placed at each corner of a square field. An event (radiation source) can occur anywhere with

uniform probability inside the field. Although similar studies as the ones done with two sensors can

be carried out here, we resort to Monte Carlo simulation as the complexity of the exact analyses

grow exponentially with the number of sensors. Fig. 2.6 shows the detection capability of a four

sensors ensemble, with and without fusion, as a function of the source position. The vertical axis

is the logarithm of the detection variable K; a larger K implies that the event can be more easily

detected. As Fig. 2.6(a) and Fig. 2.6(b) suggest, an event is most difficult to detect when it is along

the edges and in the middle of the field where the combined signal-to-noise ratio is the lowest. The

increase in K along the edges in Fig. 2.6(b) demonstrates that by combining data from sensors,
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we can effectively reduce the detection time in an otherwise difficult to detect area with a sparse

network. In this particular setup, it gives approximately 10% improvement in detection time.

2.3 General Detection Bound

In Sec. 2.1 and Sec. 2.2, we study the performance tradeoffs of detection in sensor networks, assum-

ing raw floating point sensor observations of event impact are available. This corresponds to the

streaming communication model discussed in Sec. 1.3.1. This section extends the discussion from

the streaming model to a compressed model, such that the network makes decisions based on a set

of much compressed information, e.g. binary bits from sensors that indicate whether something

abnormal has been observed. We prove the detection bound of this model for a simple scenario.

2.3.1 Preliminaries

We assume a binary sensor detection model. The sensor observes the environment continuously but

only communicates a one-bit information together with a timestamp when an abnormal measurement

has been observed. The analysis is based on the following assumptions.

1. The event can be modeled as a point source with origin location x0 and start time t0

2. The event propagates through the network at a constant speed v.

3. The sensor response is homogeneous when there is no event, i.e. all sensors experience the

same amount of noise.

4. The sensor response is inhomogeneous when there is an event, i.e. the probability of detection

varies as a function of distance to the event.

5. Each sensor has an internal clock that may not be perfectly synchronized. The timing error

(difference between sensor’s clock and a global clock) can be modeled as a Gaussian random

variable N (0;σ).

6. The prior probability distribution is uniform, i.e. the event can start anywhere and anytime

in space-time.

7. All n sensors in the network are semi-randomly distributed (e.g. they do not all lie on a single

point or single line). The overall density d is uniform to a first approximation.

8. The event always occurs in the center of the network. Note that this is the optimal situation,

as the amount of observable signals is maximized. As a result, the analysis serves as an upper

bound on the system performance.
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(a) No fusion

(b) With fusion

Figure 2.6: Event detection capability for four sensors as a function of event location. The vertical
axis is the detection test statistics — larger value implies that it is easier to detect at that location.
Data fusion improves the detection time at locations along the edges of sensors and in the middle
of the field.
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Figure 2.7: Comparison of parametric detection attenuation model to the actual data collected for
two inexpensive vibrational sensors of different quality. The curves are constructed for the false
positive constraint of 0.01. The detection performance of the lower quality Android sensor drops
faster than that of Phidget. For both sensors, the parametric model closely captures the shape of
the attenuation.

2.3.2 Sensor Model

The sensor response under the binary detection model can be denoted as a binary random variable

X. X takes the value 1 (i.e. detects an anomaly) with different probabilities depending on whether

an event is present. Because the impact of event manifestation decreases as a function f of distance

to the event origin, the probability of detection when an event is present also varies for each sensor

as a function of distance.

Let φ(H) denotes the sensor true positive probability P [X = 1|E = 1] under a desired false

positive constraint for event H. Because the sensor sensitivity varies for different sensor type, φ(H)

also varies for different sensors and can be parametrized as a function of sensor and event quality

measure measures α and β, and distance to the event origin r.

φ(H) = α exp(−βr2) (2.9)

Fig. 2.7 compares this parametric model to experimental results for two types of vibrational

sensors of different quality — Phidget and Android. As expected, the detection probability φ(H)

decreases with distance r. In addition, a faster decrease is observed with the lower quality Android

sensor (the built-in 12-bit accelerometer in smart phones) than that with the higher quality Phidget

sensor (16-bit accelerometer). In both cases, the parametric model with properly selected α and β

closely captures the shape of probability attenuation.
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2.3.3 True Positive Bound

We present the following bound on the system detection performance.

Theorem 1. Under the aforementioned assumptions, and given a maximum allowable system wide

false positive rate of g, 0 ≤ g ≤ 1, the system’s true detection rate is bounded by the density of the

sensor distribution d, the length of the aggregation window time t, the speed of the event manifestation

v, and the uniform noise rate q

pTP ≥ 1− exp

−2

(
παd

β

(
1− e−βv

2t2
)
−

(
πv2t2dq + vt

√
− ln(g)dπ

2

))2

/πv2t2d

 (2.10)

Proof of Theorem 1. We begin the proof with analyzing pTP and pFP , given a simple detection

test statistic.

Simple test statistic. The system declares detection when the number of sensor detections

exceeds a certain threshold m within time t in an area of size πR2, R = vt, where v is the speed of

the event manifestation. This test statistic is equivalent to selecting an aggregation time window t

and aggregating all sensor detections in regions the event may have affected. As shown Sec. 2.2, the

exact analysis on detection performance is grossly complicated by the origin location of the event.

Here we focus on the optimal scenario, where the event origin is always in the center of the network

to get an upper bound on the system performance.

Probability of true positive. Recall that the sensors are distributed uniformly at a density d.

Let K be the random variable that indicates the number of sensor detections. The probability that

exactly k sensors detect the event in t is

P [K = k|E = 1] =
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj) (2.11)

where Fk is all the subset of size k of the set {1, 2, · · · , n}, n = πR2d. Ac is the complement of set

A. p is the sensor detection probability, p = P [d = 1|E = 1]. Recall that pi depends on the distance

ri to the event origin. The expected value of K can be computed as

E [K|E = 1] =

n∑
k=1

k P [K = k|E = 1] =

n∑
k=1

k
∑
A∈Fk

∏
i∈A

pi
∏
j∈Ac

(1− pj) (2.12)

Observe that Eq. (2.11) is aPoisson Binomial Distribution. Eq. (2.12) is then the mean of

distribution and can be simplified as the sum of pi for all sensor si. Given the parametrized model
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of pi as in Eq. (2.9), the expectation becomes

E [K|E = 1] =

n∑
i

pi =

∫ R

r=0

(2πrd)
(
αe−βr

2
)

dr =
παd

β

(
1− e−βR

2
)

The network declares a detection when K > m. From this test statistic we can compute the

system true positive rate as:

pTP = P [K ≥ m|E = 1]

=

n∑
K=m

∑
A∈FK

∏
i∈A

pi
∏
j∈Ac

(1− pj)

= 1− P [K < m|E = 1]

≥ 1− exp
(
−2(E [K|E = 1]−m)2/πR2d

)
(2.13)

for all positive m ≤ E [K|E = 1].

The inequality in Eq. (2.13) comes directly from the special case of the Chernoff/Hoeffding

bounds for the Poisson Binomial Distribution tail [30]. Because 0 ≤ pi ≤ 1, the denominator inside

the exponential is the number of expected sensors in the aggregation window. It is an upper bound,

as m is expected to be smaller than E [K|E = 1].

Probability of false positive. Similarly, we denote the sensor false detection as q, where

q = P [d = 1|E = 0]. The probability of receiving exactly k sensor detections within the same

amount of time from noise is

P [K = k|E = 0] =
∑
A∈Fk

∏
i∈A

qit
∏
j∈Ac

(1− qjt)

The analysis assumes that all sensors have the same background noise q, qi = q,∀i = 1, . . . , n.

The expected value K is simply the mean of a binomial distribution

E [K|E = 0] =

n∑
i

qi =

∫ R

r=0

(2πrd) q dr = πR2dq

Since the system declares detection when receiving K > m sensor detections, the probability of

false detection is

pFP = P [K ≥ m|E = 0]

≤ exp
(
−2(E [K|E = 0]−m)2/πR2d

)
= exp

(
−2
(
qdπR2 −m

)2
/πR2d

)
(2.14)
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for all positive m ≥ E [K|E = 0]. Here, again, Chernoff/Hoeffding bound is used to compute the

tail probability. It is a lower bound because m is expected to be larger than E [K|E = 0].

Selecting detection threshold. The upper bound of pFP in Eq. (2.14) is a function of detection

threshold m. By rearranging the equation, we can compute the minimum detection threshold to

ensure that a maximum tolerable false positive rate is not exceeded. Let this maximum pFP be g,

where 0 ≤ g ≤ 1. We have

pFP ≤ exp
(
−2
(
πR2dq −m

)2
/πR2d

)
= g

rearranging this to pull out m, we get

m =

{
πR2dq −R

√
− ln(g)dπ

2
, πR2dq +R

√
− ln(g)dπ

2

}

Because m ≥ E [K|E = 0] = πR2dq, we have

m = πR2dq +R

√
− ln(g)dπ

2
(2.15)

Plugging Eq. (2.15) into Eq. (2.13), and substituting R with vt we have the upper bound for the

probability of true positive.

pTP ≥ 1− exp
(
−2(E [K|E = 1]−m)2/πR2d

)
= 1− exp

−2

(
παd

β

(
1− e−βR

2
)
−

(
πR2dq +R

√
− ln(g)dπ

2

))2

/πR2d


= 1− exp

−2

(
παd

β

(
1− e−βv

2t2
)
−

(
πv2t2dq + vt

√
− ln(g)dπ

2

))2

/πv2t2d

 (2.16)

2.3.4 Optimal Integration Window Size

To get an idea of the bound, the theoretical pTP bound is plotted as a function of event speed

v (Fig. 2.8(a)) and as a function of aggregation time t (Fig. 2.8(b)), using a false positive bound

g = 1× 10−7, which is roughly equivalent to one false alarm a month. As expected from Fig. 2.8(a),

when the integration window size is kept constant, the event becomes easier to detect when the

signal spreads out more rapidly. However, the peak in Fig. 2.8(b) suggests that while keeping the

speed constant, there is an optimal integration window size, or in other words, an optimal area size

to be aggregated. This result may be counter intuitive, as having more information should always
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improve the detection performance. Indeed, this result is an artifact from ignoring the magnitude

parameter in the attenuation model.

The probability pi that a sensor si detects an event is determined by the manifestation of the

event φ(f) and noise qi.

P [X = 1|E = 1] = φ(f) + qi − φ(f)qi

φ(f) depends not only on the distance to the event but also on the magnitude of the event. For

a large event, the probability of an event detection is higher for larger window because the impact

propagates over a larger region. Likewise, the probability is higher for shorter window when the

magnitude is low because of the impact falls off and the difference between the impact and noise

cannot be differentiated. An optimal integration window size can be derived by optimizing Eq. (2.13)

for a specific sensor layout and magnitude. Since magnitude information cannot be assumed a priorly,

a good choice of window size is the one that optimizes Eq. (2.13) for the minimum magnitude one

wishes to detect.

2.4 Discussion

Geospatial events are complex phenomena. Detection performance of geospatial events is affected

by many variables. Besides the obvious parameters, such as the number and the quality of sensors,

other parameter variables include location of the sensors, sensor and server timing error, event

magnitude and location, and speed of the event’s manifestation. Depending on the event type, other

environmental variables, such as temperature, moisture, wind speed, man-made structures can also

play a crucial role. To capture all the complex interplays of variables in an analysis of detection

performance is impossible.

To acquire comprehensible results, the analyses included in this chapter made several assumptions

on sensor layout, and event location and magnitude. Some of these may be oversimplification;

for example the event does not always occur within the boundary of the network with a fixed

magnitude and speed. However, without such assumptions the analyses become far too complex

to be meaningful. Although theoretical results with these restrictions may be considered purely

academic, we argue that in terms of validation of intuitions and understanding performance tradeoff,

they provide very practical and valuable insights into the design of an event detection system.
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Figure 2.8: Theoretical network detection bound. (a) TPR lower bound as a function of event
propagation speed. R = 50, d = 0.006, q = 0.01. (b) TPR lower bound as a function of integration
window size. v = 5.5, d = 0.014 ≈ 100 sensors, q = 0.01.
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Chapter 3

Estimating the Parameters of
Geospatial Events

In many event detection problems (e.g. entry detection), the goal of the algorithm is to identify

whether an event has taken place. In such cases, a simple low pass filter that compares recent

observations to less recent ones may suffice to distinguish between the null hypothesis H0 and the

alternative H1. But for most warning applications for geospatial events, reliable rapid detection

depends on the system’s capability to correctly estimate event related parameters (e.g. origin lo-

cation and magnitude) in order to take proper actions. For example, a region should not receive a

warning for an earthquake that will not cause significant shaking in that region. Fast and accurate

estimation allows the community more time to respond.

Classical and Bayesian approaches. Most detection and parameter estimation algorithms can

be categorized into two approaches — classical and Bayesian. Classical approaches focus on deriving

estimates that best fit some parametric models of the events. Such approaches include inverse-law

inference [21, 71], Maximum Likelihood Estimator [39], 2-dimensional least squares fitting (LS) [44],

sequential probability testing (SPRT) [49, 75, 74, 73], optimized fitting through genetic algorithm

[80], and learning inverse relationship through neural network [10, 51]. These methods often produce

single point solutions without giving a well-defined measure of its quality. In addition, the estimates

are often discontinuous, because estimates from a previous time step do not affect the estimates at

a later time. There is also no natural way to incorporate prior knowledge about event parameters.

Bayesian approach, on the other hand, is a unifying approach that naturally incorporates prior

information to produce a probabilistic estimate. Some of these methods include Bayesian posterior

estimation [16, 87, 64, 25, 24], Bayesian estimation with classification [69], and Extended Kalman Fil-

ter and its variants [40]. Rather than a single point solution, Bayesian approach produces a posterior

probability distribution, and each estimate is associated with a confidence measure. Incorporation

of appropriate prior information also generally leads to better estimates and faster convergence time

with fewer observations.
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Bayesian prior selection. The accuracy of detection in a given time interval depends on prior

distributions of parameters. Prior distribution can be constructed from historical data. For example,

the distributions of hypocenters can be constructed based on known fault lines. However, selection

of appropriate priors is challenging when the distribution is unknown and/or the space is continuous

and unbounded. The former problem can usually be solved with a flat prior, but the latter requires

the distribution space to be truncated. An approach to resolve this issue as follows: Begin with

a flat prior h over a very large space, where the a priori probability of data outside the space is

extremely small. The posteriori probability will also be flat because the probability distribution

is spread over a large space. We use a maximum a posterior probability similar to a maximum

likelihood estimator, in the following way.

After data has arrived for some time t, we compute the posterior distribution f(t) and determine

the points of maximum a posterior. Now construct a new prior g(t), with probability distributed

around these points, and falling away, relatively rapidly, for points further away from the maximum

a posterior regions. The new prior will have a single peak or a few peaks, and will not be flat as h is.

Now continue with Bayesian computation, starting with the new prior, as additional data streams

in.

This idea is equivalent to the integrated approach that we present later, i.e. using a classical

maximum likelihood estimator after data arrives for time t, and then using the resulting estimate

to construct a prior for a Bayesian calculation that follows after time t. It is similar to the two-level

Bayesian inference described by MacKay, i.e. first select the most probable parameters for each

hypothesis model, then infer which model is most plausible given the data [61]. However, unlike

MacKay’s method, which still requires a finite number of candidate parameters to be computable,

our simplifying approach is efficient but may lead to inaccurate estimate for several reasons. For

example, the maximum likelihood estimator may be far from the true maximum likelihood region, or

the posterior distribution may not be smooth. We show empirically that for our class of geospatial

problems, this approach works well.

Contributions and chapter organization. This chapter presents a suite of classical (Sec. 3.1)

and Bayesian (Sec. 3.2) approaches on parameter estimation with two applications in mind — radi-

ation and earthquake. Some of these approaches have been considered by others in similar formula-

tions, but we further supply them with rigorous theoretical analyses (Sec. 3.2.2). Furthermore, we

address the difficult problem of prior selection and introduce an intuitive integrated algorithm that

combines the strengths of both classical and Bayesian approaches (Sec. 3.3). The effectiveness of

the algorithm is validated through extensive simulations, as well as testbed experiments (Sec. 3.3.1).

These results have appeared in the following conference proceedings [59, 56].
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3.1 Classical Algorithms

Classical algorithms often involve optimum fitting of observed data to a parametric model. These

techniques include back projection, triangulation, linear best fit, and maximum likelihood. This sec-

tion presents two classical algorithms tailored for the two applications — radiation and earthquake.

These algorithms are ideal candidates for the integrated algorithm that will be introduced later in

Sec. 3.3.

3.1.1 Radiation — Dynamic Sensor Grouping

Radiation sensors detect photons that travel at the speed of light and it is safe to assume that

there is no time difference between the start of the event t0 and the time when a sensor receives

the first measurement. In detecting a radiation source, the key parameters to estimate include

background noise level, source location, source intensity, the type of source, and the probability

that a source is present. Coarse estimates of these parameters can be obtained following the idea of

maximizing signal to noise ratio (SNR) through sensor grouping, as briefly introduced in Sec. 2.2.1.

The algorithm (denoted as the K-sigma algorithm) is derived from the following observations.

Dynamic sensor grouping. Since the SNR decreases as a function of the distance between a

sensor and a source, combining measurements by treating all sensors equally may decrease the overall

SNR [58] because some sensors are closer to the source and some sensors are further away. However,

if we can group the measurements in terms of distance to the source, then we are guaranteed to

maximize SNR. But how should sensors be grouped if the source location is unknown? We solve

this problem by exploring all reasonable sensor groupings by proximity using Delaunay triangulation

— an efficient technique from computational geometry that partitions a space into triangles, while

maximizing the minimum angle of the triangles [28]. Fig. 3.1 is an example of a triangulations done

with a network of nine sensors.

Estimating background radiation. With a sensor grouping, we estimate the background noise,

assuming that it is uniform within the region. The sensor’s flux drops off faster than 1/r2 due to

absorption of photons in the air, where r is the distance to the radiation source. As a result, sensors

far from a source receive negligible flux from a threat. We estimate the background flux throughout

the region by computing the average rate of photons received by these distant sensors. This can

be done by breaking the region up into quadrilateral cells (pairs of triangular cells that share a

common edge), where each cell is identified by the sensors at its four vertices. The total photon

count received in each cell is called its cell count. We use the cell with the lowest cell count, after

correction for order statistics, as the background rate estimate Γ for all sensors. This background

noise estimate is used when estimating other parameters.
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Figure 3.1: Snapshot of Delaunay triangulation as part of the kSigma routine. The partitioning
is used to compute the sensor groups for data aggregation. The triangulation can be efficiently
computed in real time.

Estimating whether a source is present. The relative source location in the sensor network

can be coarsely categorized as follows: the source is close to (a) one of the sensors, (b) an edge

between two sensors, (c) the center of a triangle, and (d) the center of a quadrilateral cell of sensors

as illustrated in Fig. 3.2. If a source is near the center of a cell, then the average counts measured by

the sensors at the four corners of the cell are likely to be higher than the counts from the background.

Likewise, if a source is very near a sensor then the photon count measured by that sensor is likely

to be higher than the count from the background. So, we estimate the average counts from each

single sensor, the pair of sensors along each edge, and the sensors at the corners of each triangle and

each cell. We compute the number of standard deviations, called kSigma values, of the measured

counts from the estimated counts if only the background were present; and we compute kSigma for

each and every group (singleton, edge, triangle, quad) in the field. Specifically we compute for each

group

kSigma =
Ng − Γ√

Γ
(3.1)

where Ng is the group’s aggregate radiation count in time T , and Γ is the estimated aggregate count

in the group from only the background in time T . The aggregate radiation count in a group is a

Poisson process whose standard deviation is
√

Γ. kSigma is thus the number of standard deviations

that the measured group count is from background noise.

The kSigma values are then corrected using order statistics to account for the bias in ordering

the groups by aggregate counts. The division factors used for correction are (for N = 9 sensors)

K1 = 1.01, K2 = 1.1, K3 = 1.3, K4 = 1.5

for singleton (K1), edge (K2), triangle (K3), and quad (K4). For example, if the aggregate counts

for a quad of sensors is 81, and the calculated background at each sensor is 9, then the uncorrected
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Figure 3.2: Examples of K-sigma grouping from the Delaunay triangulation with four possible source
positions relative to the sensor network illustrated.

kSigma for the group would be (81− 4× 9)/
√

9 = 15 and the corrected value would be 15/K4 = 10.

To estimate whether a source is present, we apply a threshold τ to the corrected kSigma values for

all the groups. The threshold is chosen to maximize the detection rate (or true positive rate) while

satisfying a constraint on the maximum false positive rate.

Estimating source intensity and location. Let x be a d-dimensional vector representing a point

in space. Consider an experiment conducted over an interval of duration T . Let Γ be the expected

number of photons due to background, and nj the number of photons measured at sensor j in this

interval. The flux at a point decreases roughly as the square of the distance, ignoring absorption in

the air. If there is a source with intensity µ present at location x, then λj(x), the number of photons

from the source at location x measured at sensor j in the interval T , is approximately

λ =
CµT

|Sj − x|2

where C is a constant of proportionality that depends on the sensitivity of the sensor.

If nj > Γ then the difference nj −Γ is attributed to a source of intensity µ(x) that can be at any

location x

nj − Γ = λj(x) =
Cµ(x)T

|Sj − x|2
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For convenience, we define effective source intensity as υj(x)

υj(x) = Cµ(x)T = (nj − Γ)|Sj − x|2

To estimate the source position, we make use of the sensor quad that exhibits the largest value

of kSigma. We compute υj(x) for all sensors j in this quad, for all locations x. The location that

is most consistent with the observed sensor readings is most likely to be the source location. To

quantify this, we compute a variance estimate

M(x) =

m∑
j=1

(υj(x)− υ(x))2

where m is the number of sensors and υ(x) is the average υj(x) for j ranging over the vertices of

the quad. We postulate that the likelihood of a source at a point x is inversely proportional to this

variance function M . The source location estimate x̂ is thus

x̂ = arg max
x

1

1 +M(x)

Once the source location has been determined, the estimation of its intensity µ̂ is straightforward:

it is derived using the distance of each sensor from the source and the elapsed time T .

µ̂ =
1

mCT

m∑
j=1

υj(x̂)

3.1.2 Seismology — Arrival Time Based Epicenter Estimation

Earthquake waves, unlike photons, travel at a finite speed of 3-8 km/sec. The delay between the

event start time t0 and the time at which a sensor detects a seismic wave is roughly linear with the

distance. This property leads to the design of a simple arrival time based algorithm to estimate the

earthquake epicenter.

Comparison to existing methods. Similar algorithms of varying complexity have been studied

in the seismology literature, such as the continuous least square method [71, 72] and adaptively

damped least square method [54]. However, the approach presented here is targeted for detecting

a wide range of geospatial events in dense noisy networks rather than professional networks, and is

designed to be fast, simple, scalable and tolerant to noise. To make such generalization possible, the

method makes a few simplifying assumptions. One of these is that the model ignores the vertical

coordinate of the event initiation location. It also assumes that the event propagation velocity is

time- and space-invarying. Both of these are coarse approximations to the actual phenomenon.
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A simple and fast algorithm. Let (x0, y0, t0) be the event origin point in the space-time

dimension. The time tj at which the event first reaches a sensor j at location (xj , yj) is tj =
dj
v + t0,

where dj is the distance of sensor j from the event origin, and v is the velocity of the propagation.

Therefore:

tj =

√
(xj − x0)2 + (yj − y0)2

v
+ t0

If sensor j generates a pick corresponding to observation of the event, let the time at which it

generates the pick be t̂j . The error ej in the time that sensor picks, according to this model is:

ej = t̂j − tj . Let z be the sum of error squared, z =
∑
j e

2
j . Our goal of this analysis is to compute

(x, y, t) to minimize z given the set (xj , yj , tj), j = 1, . . . , n of sensor measurements while discarding

outlier picks.

A local minimum of z is the solution to the nonlinear equations:

∑
j

(tj − dj
v − t)(xj − x0)

dj
= 0

∑
j

(tj − dj
v − t0)(yj − y0)

dj
= 0

where t = tj − dj
v .

Case Study - Japan seismic network. We analyze two independent events from publicly

available seismic data from Japan, one with an inland epicenter (Fig. 3.3(a) and Fig. 3.3(b)), the

other with an offshore epicenter (Fig. 3.3(c) and Fig. 3.3(d)). These high quality sensors are roughly

20 km apart. The parameters to be estimated are [lat, lon, speed, start time] = [x, y, v, t0]. As

demonstrated by the localization error plots, the simple algorithm performs fairly well in comparison

to official epicenter estimates determined by the Japan Meteorological Agency based on much more

sophisticated model.

Case Study - Community seismic network. The same algorithm is applied to community

sensors. Fig. 3.4(a) plots the 185 sensors from the Community Seismic Network in southern Califor-

nia and four events that were recorded between April and September 2012. Location estimation is

carried out immediately after detection with a slightly more sophisticated wave propagation model

suitable for southern California. The model produces arrival time for P-wave and S-wave using

distance and depth as input. Since the model can be stored as a table, lookup time is constant. The

parameters to be estimated are [lat, lon, depth, start time] = [x, y, z, t0]. The localization error with

respect to the epicenters determined by USGS are plotted in Fig. 3.4(b) as a function of time since

the event was detected.

Fig. 3.4(c) and Fig. 3.4(d) show the algorithm fit at 0 and 5 seconds after detection during the
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Figure 3.3: Validation of the simple arrival time algorithm with Japan seismic network. Blue dots
represent sensor locations. The black cross is the epicenter identified by JMA, whereas green crosses
are epicenters determined by the simple algorithm at each time step. The simple approach performs
fairly well with this high quality data set.

Yorba Linda2 event. It is clear that, even with the high level of sensor noise (premature picks,

continuous picking, and noisy picks), the simple algorithm is able to produce reasonable estimates

within a few seconds. It should be noted though that the estimates are expected to be worse for

events further away from the network because actual wave propagation is nonlinear with distance

along the surface of the globe; an example is the Devore event in Fig. 3.4(b).

3.2 Bayesian Algorithm

Bayesian approach has advantages over classical methods. For one thing, rather than a single point

estimate, it generates a posterior probability distribution that is useful in answering questions re-

garding how confident we are about the estimate and when the estimate will converges. Furthremore,

with appropriate prior distributions, the Bayesian approach converges more quickly.

This section presents the Bayesian approach using radiation estimation as an example. It then
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(a) Map of CSN sensors and the location of the four recorded events
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(b) Localization error for the four events.
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(c) Yorba linda2, 0 second after detection
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(d) Yorba linda2, 5 seconds after detection

Figure 3.4: Arrival time based parameter estimation with community sensors. (c) and (d) are fits
computed by the simple least square methods. Black dots indicate sensor picks ordered by the sensor
distance to the estimated epicenter. Red and blue dots are the expected P-wave and S-wave arrivals.
The plots indicate that the simple algorithm performs well even with noisy sensor data.
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continues to present a general performance analysis based on the Bayesian approach for all geospatial

events in terms of the speed and intensity of the event, and the number of sensors.

3.2.1 Bayesian Estimation Example

Bayesian algorithms compute an a posteriori probability distribution based on a given prior dis-

tribution and the likelihood values calculated from measurements. Here we elaborate these terms

using radiation estimation as an example.

Let θ be the vector of parameters that we want to estimate and z the network observations.

Assuming a prior distribution π0 for θ, the posterior distribution of θ is:

P (θ|z) =
P (z|θ)π0(θ)

P (z)
=

P (z|θ)π0(θ)∫
P (z|θ)π0(θ) dθ

(3.2)

where P (z|θ) = L(θ; z) is the likelihood of observing z = {z1, z2, ..., zm} photons at sensor j =

1, 2, ...,m in time interval [0, t]. Hereafter, we assume that the time interval t during which mea-

surements are made is the same for all sensors, and therefore omit t writing zj rather than zj(t). L

is found by the sensor measurement equation as:

L(θ; z) =

m∏
j=1

f(zj ; Λj(θ)) (3.3)

In the case of radiation detection, sensors measure the number of photons striking the sensors.

Photon emission is a Poisson process, therefore

f(zj ; Λj(θ)) =
Λzje−Λj

n!

is the Poisson probability mass function where Λ(θ) is the expected number of photons measured at

sensor j in time t. θ includes parameters such as source strength µ, source location D, and expected

number of photons Γ from the background in time t. The likelihood function can be modified to

incorporate additional information; for example photon energy [15].

In the scenario where the background noise is profiled beforehand, given the a priori probability

π0(θ) and the measured data n, the algorithm computes the a posteriori probability that a source of

intensity υ is located at position x. The posterior probability that a source is present is the summed

probability over all x and υ. If the algorithm must make a binary decision — a threat is present or

is not present — then it decides that a threat is present if the posterior probability that a source is

present exceeds a threshold where the threshold is determined by the tolerance for false positives.
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3.2.2 General Parameter Estimation Analysis

Radiation is a special case of geospatial event where the event signal reaches all the sensors almost

instantaneously. In this case, raw measurements are essential for parameter estimation. For most

geospatial events (e.g. earthquake, flood, air pollution) the signal travels at a finite speed and the

detection time difference between each sensor can be used to estimate the event parameters. The

heuristic described in Sec. 3.1.2 is one such example. With this property, the sensor-server commu-

nication can be reduced to one-bit information only when the sensor detects something abnormal.

This is extremely powerful for large scale community sensor networks when it is infeasible to stream

raw measurements from all the sensor at all times. More discussion on large scale network is included

in Chapter 6.

The same property can be applied to Bayesian estimation, that is, to compute the probability of

each possible estimate given a sequence of sensor detections and their timestamps. In this case, the

posterior probability distribution is affected by the speed of the event, the number of sensors, and

the timing errors within each sensor detection. In the following section we analyze and bound the

performance of Bayesian parameter estimation for general geospatial events.

3.2.2.1 Preliminaries

The following analysis is based on these assumptions

• The event can be modeled as a point source with origin location x0 and start time t0.

• The event propagates through the network at a constant speed v.

• The sensor timing error can be modeled as a 0-centered Gaussian random variable N (0;σ)

(note that, in reality, this is rarely the case for individual sensors).

• The prior probability distribution is uniform, i.e. the event can start anywhere in space-time.

• The n sensors in the network are semi-randomly distributed (e.g. they do not all lie on a single

point or single line).

• The magnitude of the event is large enough such that all sensors detect it with probability 1.0.

3.2.2.2 Estimate Expected Error

Given that an event has been detected, the posterior probability of event parameters can be computed

with a list of sensor detection data around the detection time. The Bayes posterior distribution of

the event origin (x) and origin time (t) is:

P [x, t|·] ∝
n∏
i=1

[1ipi + (1− 1i)(1− pi)]
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1i is the indicator function. 1i = 1 when sensor i at location si has at least one detection for the

event, propagating at speed v, in the time interval

[
t+
‖si − x‖

v
− k, t+

‖si − x‖
v

+ k

]

k is the window width. pi is the probability of detection for a sensor at distance ri from the event

H. pi = φ(H).

Assuming that the magnitude of the event is large enough, such that for all sensors, pi = 1,∀i =

1, . . . , n, and the detection threshold is high enough that there are no detections due to noise, we

have the following results for the variance of location and time estimates.

Theorem 2. Under the aforementioned assumptions, the expected error of the Bayesian posterior

estimates on event location xerr = |x−x0| and in event origin time estimate terr = |t−t0| is bounded

below in terms of sensor timing error (σ), number of sensors (n), and the speed the event travel at

(v).

E [xerr] ≥
σv

4

√
π

2n
(3.4)

E [terr] ≥
σ

4

√
π

2n
(3.5)

These results show that the quality of location estimate is influenced by timing error (E [xerr] ∝ σ)

and how fast the event travels (E [xerr] ∝ v). The same goes with the quality of time estimate

(E [terr] ∝ σ). Next we will prove these results by first statin the following lemma with its proof

included in the appendix.

Lemma 1. Let f(x) be the probability density function of a Gaussian distribution N (µ, σ2). Let

G(x) be the area under curve of f(x) in the interval [x− σ, x+ σ] then

G(x) =

∫ x+σ

x−σ
f(x) dx =

∫ x+σ

x−σ

1

σ
√

2π
e−(x−µ)2/2σ2

C e−(x−µ)2/2σ2

≤ G(x) ≤ C e−(x−µ)2/4σ2

where C = erf
(

1√
2

)
.

Proof of Theorem 2. If p̂ is the actual time when a sensor first detects the event and p is the times-

tamp it reports, then the timing error q = p − p̂ ∼ N (0;σ), assuming the error can be modeled

as Gaussian. Let k(·) be the time difference between p̂x0,t0 (expected sensor detection time for an
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event at (x0, t0)) and p̂x,t (expected sensor detection time for an event at (x, t))

k(x, t) = p̂x,t − p̂x0,t0 =
‖s− x‖ − ‖s− x0‖

v
+ (t− t0)

where s is the sensor location, and

0 ≤ |k| ≤ ‖x− x0‖
v

+ |t− t0| =
xerr
v

+ terr (3.6)

The upper bound on k comes from triangle inequality. The probability that p is the detection

time for an event (x, t) is the probability that q falls between the interval [k −mσ, k +mσ] which

is a window of arbitrary width 2mσ centered at k(·). For simplicity, assume m = 1 and call

this probability G(k). Since the likelihood P [·|x, t] is the probability that all sensor detections fall

within a 2σ window centered around its expected detection time for an event initiated at (x, t),

assuming a independent sensor, P [·|x, t] is the product of G(ki),∀i = 1, . . . , n. Assuming uniform

prior distribution, the posterior probability P [x, t|·] is then

P [x, t|·] =
P [·|x, t]P0 [x, t]∫

P [·|x, t]P0 [x, t] d(x, t)
=

1

S
P [·|x, t] =

1

S

n∏
i=1

G(ki)

Without loss of generality, let x0 = (0, 0, 0), t0 = 0, m = 1. Assuming the sensors are semi-

randomly placed, and observe that G(k) is monotonically decreasing for k ≥ 0, from Eq. (3.6) G(ki)

can be bounded below by G(k), where k =
(
|x|
v + |t|

)
≥ 0.

P [x, t|·] =
1

S

n∏
i=1

G(ki) ≥
1

S
[G(k)]

n ≥ 1

S
Cn exp

(
−nk

2

2σ2

)
(3.7)

The second inequality comes directly from the lower bound in Lemma 1, where C = erf
(

1√
2

)
. To

simplify the notation, denote x = |x| and t = |t|. S is the normalizing factor and can be computed

by integrating over all x ≥ 0 and t ≥ 0. Using the upper bound in Lemma 1 and substituting k,

S =

∫ ∞
0

∫ ∞
0

[G(k)]
n

dx dt

≤
∫ ∞

0

∫ ∞
0

Cn e−
nk2

4σ2 dx dt

= Cn
∫ ∞

0

∫ ∞
0

exp

(
− n

4σ2

(x
v

+ t
)2
)

dx dt

= Cn
∫ ∞

0

σv

√
π

n

(
1− erf

(√
nt

2σ

))
dt

= Cn
2σ2v

n
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Substituting S and k into Eq. (3.7), we get

P [x, t|·] ≥ n

2σ2v
exp

(
− n

2σ2

(x
v

+ t
)2
)

Given the posterior probability P [x, t|·] we can computed the expected error in location estimate.

E [x] =

∫ ∞
0

xP [x|·] dx

=

∫ ∞
0

x

(∫ ∞
0

P [x, t|·] dt

)
dx

≥ n

2σ2v

∫ ∞
0

x

[∫ ∞
0

exp

(
− n

2σ2

(x
v

+ t
)2
)

dt

]
dx

=
n

2σ2v

∫ ∞
0

x

(√
π

2n
σ

(
1− erf

[√
n

2

x

σv

]))
dx

=
n

2σ2v

√
π

2n
σ
σ2v2

2n

=
σv

4

√
π

2n

Similarly, the expected error in time estimate can be computed

E [t] =

∫ ∞
0

tP [t|·] dt

=

∫ ∞
0

t

(∫ ∞
0

P [x, t|·] dx

)
dt

≥ n

2σ2v

∫ ∞
0

t

[∫ ∞
0

exp

(
− n

2σ2

(x
v

+ t
)2
)

dx

]
dt

=
n

2σ2v

∫ ∞
0

t

(√
π

2n
σ

(
1− erf

[√
n

2

t

σ

]))
dt

=
n

2σ2v

√
π

2n
σv
σ2

2n

=
σ

4

√
π

2n

3.2.2.3 Simulation Validation

To quantify the impact of the event and network parameters on the Bayesian estimates, and to

evaluate the quality the bounds in Theorem 2, we run simulations with varying event propagation

speed v and varying sensor number n.

Varying event speed. We carry out simulations with n = 16 sensor uniformly distributed in a

100 x 100 km2 region. An event can initiate at any location at anytime. In each simulation run, the

error in Bayesian posterior estimate for event location |x − x0| and event starting time |t − t0| are
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Figure 3.5: Simulation results showing (a) E [xerr] and (b) E [terr] as a function of event speed v,
v = [0.5, 2.5, 5, 10, 20]. The results are compiled from 1,000 runs with 16 sensors placed uniformly
in a 100 x 100 km2 area. An event can initiate at any place and time. The lower bounds predicted
by Theorem 2 are plotted in dotted lines for reference.

computed. The same set of experiments are repeated for event speed v = [0.5, 2.5, 5, 10, 20] with two

values of timing error, σ = 0.2 and σ = 0.4. The average errors are shown in Fig. 3.5 as a function

of speed v. The lower bounds as derived in Theorem 2 are plotted as dotted line for reference. It

is to no surprise that the expected error in location estimate increases as v increase. It is also clear

that the bounds capture the relationship between parameters.

Varying network size. To evaluate how the network size affects the parameter estimation perfor-

mance, we repeat the experiments above, but with varying number of sensors, n = [4, 9, 16, 64, 256].

Again, each set of experiments is repeated with two values of timeing error, σ = 0.2 and σ = 0.4.

The average errors are shown in Fig. 3.6 as a function of network size n.

The results on expected estimate errors in Theorem 2 provide the lower bounds on the quality

of the Bayesian posterior estimate on event initiation location and time. The simulations suggest

that although the bounds may not be tight, they succeed in providing insights into how the event

and network specific variables influence the posterior distribution. In fact, it would be difficult to

acquire tighter bounds without stronger assumptions on the network layout.

3.3 Integrated Algorithm

The Bayesian approach suffers in computational efficiency when the prior distribution is too flat

and broad. This is common when there is little or no prior information about the parameters.

Empirically, the problem can be remedied by truncating the distribution, although an undesirable

side effect is slow convergence rate and/or poor estimates when the true values fall outside the prior

distribution. Can one do better than random guessing in this situation? We propose estimating the
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Figure 3.6: Simulation results showing E [xerr] and E [terr] as a function of network size n, n =
[4, 9, 16, 64, 256]. The results are compiled from 1,000 runs with the sensors placed uniformly in a
100 x 100 km2 area. An event can initiate at any place and time. The lower bounds predicted by
Theorem 2 are plotted in dotted lines for reference.

prior distribution with heuristics. This leads to an integrated approach that combines classical with

Bayesian algorithms.

Computation of the integrated algorithm is carried out in two steps — coarse estimation using

heurisitics and Bayesian update. The same technique can be applied to all estimation problems. In

the rest of the section we focus on the example of radiation detection.

We first use the K-sigma algorithm as described in Sec. 3.1.1 to estimate the background rate Γ,

the probability that an event source is present at a location x, for each x, and the event intensity

µ. These estimates are then used to construct the a priori distribution for Bayesian algorithm.

Results of K-sigma estimation reduce the range of values that need to be considered by the Bayesian

algorithm, and thus makes the Bayesian calculations tractable without truncating the priors. We

give results from several experiments evaluating the integrated heuristic in Sec. 3.3.1 .

3.3.1 Experiments

We test the three approaches to parameter estimation, i.e. classical, Bayesian, and integrated with

both simulated data as well as real measurements collected in a laboratory setting. The algorithm

performance is evaluated with the following two metrics.

1. The ROC (Receiver Operating Characteristic) curve that shows the relationship between false

positive rates (FPR) and true positive rates (TPR),

2. the DOCA (Distance Of the Closest Approach) curve that plots the probability of localizing

within a certain error measured by the distance between the true threat location and the

estimated location, and
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Figure 3.7: Simulation experiment setup. The circles mark the positions of the sensors. Simulated
sources are uniformly placed in this field at random.

3. the absolute difference between the estimated magnitude and true magnitude of the threat, if

one is present.

3.3.1.1 Simulation

We adopt simulation parameters based on measurements taken by a specific type of CdZnTe radiation

sensor.

Setup. We simulate a background of 48 counts per second (cps) and a source of 1200 cps at one

meter away. These values are based on measurements made with a real radiation sensors detecting

a 1mCi Cesium-137 source. The experiments are set in a 100 x 100 m2 field with nine sensors placed

in a grid formation, as shown in Fig. 3.7. 20,000 simulation runs were carried out for each ROC

curve, of which 10,000 were with a source randomly placed in the field and the other 10,000 without.

The data is processed at a one-second interval with the following four algorithms:

1. Bayesian algorithm with appropriate priors that is centered around the true parameter value

(bayes). This serves as the performance upper bound.

2. Integrated algorithm with the prior supplied by K-sigma algorithm (integrated)

3. Classical algorithm kSigma (K-sigma)

4. Bayesian algorithm with inappropriate priors that assume a source five times stronger than is

actually simulated (bayes 5x).

Detection probability and location estimates are recorded at T=9 and T=60 seconds. For

Bayesian prior, we assume a prior probability that a source is present of 0.1.
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Figure 3.8: ROC and DOCA curves measuring detection and localization performance at (a) T=9
second and (b) T=60 seconds that are compiled from 20,000 simulation runs. The algorithm outper-
forms both K-sigma and Bayesian algorithm with a poorly chosen prior (bayes(5x)). The integrated
performance approaches Bayesian algorithm with perfect prior (bayes) at T=60 seconds.

Results. We evaluate the algorithm performance using ROC and DOCA curves. The results

are plotted in Fig. 3.8. We use the Bayesian algorithm with good priors as the best achievable

performance upper bound. At T=9, the integrated algorithm has similar detection performance

as K-sigma; however, there is considerable improvement in localization performance, where the

integrated algorithm localizes to within 10m ∼40% of the time as opposed to 20% with K-sigma

only. At T=60, the gap in performance grows larger. The integrated algorithm performs nearly

as well as the upper bound both in detection and localization. In all the experiments, the Bayesian

algorithm with a inappropriate prior (bayes(5x)) performs much worse than all other algorithms.

These results show that the Bayesian algorithm generally takes much longer to overcome inappro-

priate priors, and in some cases where the prior distribution does not contain the real value, it never

converges at the correct value. In the absence of any information on an otherwise unbounded prior,

the integrated approach that combines the classical algorithm with a Bayesian one can outperform

a poorly chosen prior.
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Figure 3.9: Testbed setup in the laboratory. Six radiation sensors are placed in two arrays of three,
each circled in red.

Figure 3.10: Laboratory testbed schematic, showing the six radiation sensors (the grey boxes) and
the three source positions.

3.3.1.2 Testbed

Due to space, equipment, and safety limitation, we choose to conduct the experiments in a down-

scaled testbed environment.

Setup. We set up a laboratory testbed that consists of 6 radiation sensors arranged in a 3 x 2 grid,

as shown in Fig. 3.9. An exempt 9.5 µCi Cesium-137 source can be placed anywhere within or nearby

the grid. The spacings between sensors are chosen so that the setup will emulate the detection of

a 1 mCi source in a 30 x 20 m field. The schematic is shown in Fig. 3.10. This particular setup

is chosen based on on the number of sensors available, the type and strengths of sources, and the

amount of time we are able to access the equipment and space. With these constraints, only a small

number of representative experiments can be performed.

Experimental data are obtained for the three source positions in Fig. 3.10. Position 1 has the
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source placed at meter away from a sensor, at (x,y) coordinates (0,19). Position 2 is midway between

two sensors at (15,10). Position 3 is in the middle of four sensors at (7.5,10). For each position, we

run 100 experiments of 120 seconds each. From T=0-60 seconds, the source is completely shielded

and not detectable by the sensors. At T=60 seconds, the shielding is removed and the system

observes till T=120 seconds. The data is processed with the Bayesian algorithm with good priors

on the source and background strength. The prior probability that a source is present is set at 0.1,

and a detection threshold at 0.5. Localization is computed after a detection is made.

Testbed Results. Limited by the number of experiments that can be repeated within a reasonable

amount of time, the results are evaluated in terms of averaged detection confidence and localization

error over the time span, as shown in Fig. 3.11, instead of ROC and DOCA as used in Sec. 3.3.1.1.

The averaged time to detect varies for the three source positions, therefore the localization sequences

start at different times. In the first 60 seconds for all 100 runs, no false positives is generated. After

the source is unshielded at T=60, it is detected the fastest at Position 1 (∼ 5 sec), followed by

Position 2 (10 sec), and 3 (15 sec). This order is inverted in localization: the source is best localized

when it is at the center of sensors. This result is not surprising, as measurements from multiple

sensors improve target localization. In these experiments, the localization errors converge at about

1 meter. Also observe the dip in localization error for Position 1 at T = 65. This is the result

from high variance in error among the 100 runs, when localization is attempted with too few data

from a single sensor. These results serve to validate the effectiveness of the integrated approach on

detecting an static event with networked sensors.

3.4 Discussion

This chapter presents three approaches to parameter estimation for geospatial events, i.e. classical,

Bayesian, and integrated, using two event types — radiation and earthquake — as examples. Because

the former is a special case of geospatial event (event signal travels at the speed of light and reaches all

sensors simultaneously), raw measurements are required for locating the events (streaming mode).

General geospatial events, however, can be coarsely located with only the sensor detection time

information (compressed mode). We present both a classical optimization-based algorithm and a

Bayesian algorithm for the compressed model and prove a variance bound for the Bayesian estimate.

Failure point of the integrated algorithm. Bayesian approach has several advantages over

classical methods (heuristics), including producing smooth estimates that can be easily interpreted

as probability distribution, and utilizing prior information on the parameters. Unfortunately, its

performance suffers severely when the prior distribution is incorrect, e.g. too flat and broad or fails

to cover the true values. The integrated approach provides a solution by combining classical and
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Figure 3.11: Laboratory testbed results processed with the Bayesian algorithm with good priors.
The results are averaged over 100 test runs.

Bayesian method. Extensive experimentation both with simulated and real measurements were used

to validate this approach. While the idea is intuitive and empirically successful, because the priors

constructed from classical methods, further investigation is required to determine when it fails, i.e.

classical method produces priors far away from the true value.

Analysis on estimate with noise. To simplify the calculation, the theoretical analysis on the

quality of Bayesian estimates in Sec. 3.2.2 does not include environmental noise. In reality, sensors

are noisy regardless of how high the detection threshold is set. The same analysis in Sec. 3.2.2 can

be repeated with a noise term to approximate the effect of environmental noise.
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Parameter estimation in decentralized scheme. The algorithms and scenarios discussed in

this chapter assume centralized computation. Even the decentralized sensor computation briefly

discussed in Sec. 3.2.2 assumes the one-bit sensor detection message will be aggregated at the fusion

center. Under some network constraints, such as limited bandwidth and/or limited range, this

assumption may be violated. In this case, localized computation is necessary. Chapter 6 will discuss

how localized data fusion can be used to compute detection decision and parameter estimation in a

large network.
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Chapter 4

Mobile Sensors and Mobile Event
Sources

Chapter 3 presents three approaches (classical, Bayesian, integrated) to parameter estimation in a

traditional setting of sensor networks. In such a setting, both the sensors and events are considered

stationary, although the event’s manifestation propagates across space. The stationary assumption

is a good approximation in some situations, but not for others. For example, in a network that

includes cell phone as sensors, a non-negligible number of sensors may be moving during the onset

of an event. The event itself may be moving as well. The center of a hurricane can travel at up to

70 mph. Epicenters of large earthquakes are known to travel along a fault line. It is surprise that

performance of parameter estimation is affected by these dynamics.

Object tracking. Object tracking refers to estimating the location and other parameters of

moving objects. When the object’s motion is linear and sensor noise is Gaussian, which are the

assumptions made with missile tracking, the object location can be estimated using a Kalman filter.

Tracking objects with unpredictable movements is more complicated, and often admits no closed form

solution. In the field of computer vision, object tracking involves analyzing frame-by-frame images

from video, often using a combination of scene parsing and inference through a Hidden Markov Model

[89], and fusing data from one or more cameras. In the sensor network literature, object localization

has been done through a sequence of triangulations similar to the K-sigma algorithm in Sec. 3.1.1

[83, 18]; by combining binary sensor information that indicates whether the object is moving away

or towards each sensor [6]; and by organizing sensor nodes as trees to reduce communication cost

while triangulating [55], just to name a few. All of these approaches assume that the proximity

of the object to a sensor can be accurately approximated, or that the source has a very simple

motion (straight line on a street) [48]. In detecting an unknown geospatial event, however, because

the sensor can only measure the non-linear, time-varying event manifestation, the proximity of the

event to the sensor cannot be determined without knowing the intensity of the event, which is one

of the parameters that we are trying to estimate.
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Active detection. Active detection is made possible with mobile sensors, e.g. hand-held sensors

and sensor-equipped vehicles. In searching for an event source (e.g. radiation, chemical spill) in an

open field, real-time sensor redeployment can be done to maximize information gain (minimizing

entropy) [78]. In more complex terrains with many obstacles, such as in a city, active detection

is extremely challenging due to occlusion and space- and time-varying noise. Cheng et al. looked

at clustering local sensor data for detection with a network of taxi cabs equipped with radiation

sensors [20]. Hochbaum et al. employed a weighted concentrated alert approach in the same scenario

in order to optimize the detection rate while minimizing the false positive rate [41]. However, these

works were based on computer simulations, and not on measurements in the field. They also do not

provide adequate insight into tradeoffs between number of sensors, speed of sensor movement, and

detection time.

Sensor placement. In some situations, designers face the problem of optimally placing sensors

and selecting subsets of sensors for querying. For example, practitioners may want to place sensors

to monitor the radiation activity in a critical region. Under budget constraints (i.e. number of

sensors), the task can be formulated as an optimization problem. Except for a few special cases, the

problem is non-convex and the exact optimization is NP-complete. The earliest work on this topic is

the art-gallery problem that assumes each sensor has a fixed disc-like range. The strong assumption

transforms the placement problem into a coverage problem that can be approximated with a carefully

bounded divide-and-conquer strategy [42]. Other approaches try to relax the assumptions and solve

the combinatorial optimization problem with a stochastic search [91, 14]. However, it is difficult to

evaluate the quality of the results from these approximate approaches. A first rigorous result on this

subject was presented by Krause et al. in the work that proves a greedy approach to within (1-1/e)

of the optimum by exploiting the submodularity of mutual information [52].

If the goal is to place sensors to maximize detection speed and detection accuracy for a geospatial

event, then the problem has not been addressed by prior work for two reasons: (a) the sensors

measure a continuous manifestation of the event and the fixed radius range assumption does not

apply here, and (b) the metrics we want to optimize are the detection speed and accuracy that do

not translate directly to entropy or mutual information formulation.

Contributions and chapter organization. In this chapter, we explore event and sensor dynam-

ics, and analyze how the network performance changes with traveling sources of events (Sec. 4.1),

with mobile sensors (Sec. 4.2), and with customizable sensor placement configurations (Sec. 4.3).

As mentioned above, some of these aspects have been studied before, but in settings that cannot be

applied directly to detecting geospatial events in the field. This chapter presents rigorous problem

and algorithm formulations for geospatial event parameter estimation that are validated by testbed

experiments and/or extensive measurement-based simulations.
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4.1 Traveling Sources of Events

Geospatial events such as hurricane, earthquake, and radiation contamination are commonly modeled

as originated from point, static sources, although sources of these events can travel. Unfortunately,

most parameter estimation algorithms in literature do not address such dynamics. This section

describes how classical, Bayesian, and integrated algorithm can be modified to track a traveling

event.

4.1.1 Modified Algorithms

The three parameter estimation algorithms described in Chapter 3 — classical, Bayesian, integrated

— can be modified to address sensor or source mobility. Though in this study, the sensors are

assumed stationary for the ease of comparison.

Classical Algorithm. When the event source and sensors are stationary, measurements in the

distant past and the more recent past are equally useful; however, when the source or sensors are

allowed to move, then measurements in the distant past are less relevant. The modified K-sigma

algorithm gives higher weight to more recent measurements by aging the relative weights of mea-

surements exponentially with time. At a given elapsed time T , we compute an adjusted weighted

sum W of all measurements, as follows:

W =

T∑
t=0

n(t)e
t−T
T0 (4.1)

where T0 is a decay constant. If the rate of exponential decay is too large, then results suffer because

the usable level of measured data is too low. If the rate of decay is too low, then the results suffer

because the measurements do not reflect the prevailing sensor and source positions. The ideal value

of T0 is adjusted based on the estimated source and sensor speeds: the smaller the value, the more

sensitive the algorithm is to faster motion.

Bayesian Algorithm. Target motion can be modeled as a state transition prior P (θt|θt−1) that

is multiplied into the posterior, and used as the prior for the next Bayesian update step,

P (θt|zt−1) = P (θt|θt−1)P (θt−1|zt−1)

where z is the sensor observations.

This is a standard procedure in Kalman filter and Particle filter. In the application of robot

localization, missile tracking, and the tracking of an earthquake rupture along a fault line, the

motion transition model P (θt|θt−1) can be written down as a closed form expression in terms of
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θt−1. However, a natural motion model may not exist in the scenario where a radiation source is

carried by a human or a vehicle traveling in an open field. In this case, it is more suitable to adopt

a general motion model that assumes the event may move in any direction with equal probability in

the next time step. The resulting effect of this motion model is a smoothed posterior distribution

centered around the estimate of the previous time step ˆθt−1. That is

P (θt|θt−1) = K( ˆθt−1)

where K is the smoothing kernel (e.g. uniform, Gaussian). The hyperparameters of the kernel depend

on the speed of the target and the size of integration window, and can be adjusted dynamically.

With this random motion model, the prior for next iteration becomes:

P (θt|zt−1) = K( ˆθt−1)P (θt−1|zt−1)

Integrated Algorithm. The modified integrated algorithm uses the modified Bayesian algorithm

with the prior distribution constructed from estimates produced by the modified K-sigma algorithm

with aging. The composition of the two algorithms is the same as the stationary scenario described

in Sec. 3.3.

4.1.2 Simulation Results

We simulate a 10 mCi Cesium-137 source traveling in a straight line along two trajectories at a speed

of 0.5 m/s (a slow human walking speed) in a 3 x 3 sensor grid, as illustrated in Fig. 4.1. Results com-

piled from 100 runs for each trajectory are shown in Fig. 4.2. Results using the unmodified Bayesian

algorithm for the no-motion assumption are plotted for reference. For both types of trajectory, all

three modified algorithms — Bayesian with good priors, classical (K-sigma), and integrated— are

able to closely track a moderately strong source traveling at this slow speed. Moderate improvement

is also observed from the integrated algorithm compared to the pure parametric algorithm.

4.1.3 Testbed Results

Using the setup represented in Fig. 4.3, we conduct a set of experiments in which a 1 mCi source is

moved at a constant velocity equivalent to 0.5 m/s along Trajectory A or B. In Trajectory A, the

source moves down a straight path in the middle of the two array of three sensors. In Trajectory B,

the source moves in a line 1 meter from one array of sensors. At T = 0, the source starts moving

from 3.5 meters left to the grid. At approximately T = 70, the source reaches the end of the grid

and terminates the experiment. For each trajectory, 5 runs of 70 seconds each are recorded.
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Figure 4.1: Simulation experiment setup. The circles mark the positions of the sensors. A source
follows either the two trajectories across the sensor grid at a constant speed of 0.5 m/s.

Fig. 4.4 shows 3 snapshots of the posterior distribution of the integrated algorithm during one of

the runs along Trajectory B. The aggregated results for the two trajectories are shown in Fig. 4.5.

The horizontal axis marks the actual source location. The vertical axis shows the localization errors

at that location. For Trajectory A, three local minima at 0, 15, 30, occur when the source passes

through those corresponding sensor locations at 1 meter away. For Trajectory B, the fluctuations

are smaller because the source is further away from all sensors. In both setups, all three algorithms

demonstrate good capability of tracking a considerably weak 1mCi source. These results correspond

closely to those generated in simulation, and thus validate the feasibility of the algorithms in target

tracking. No clear comparison can be made among the three algorithms though, because of the

small number of trials (5 runs for each trajectory).

4.2 Mobile Sensors

Detecting a weak event with noisy sensors in a cluttered environment such as a city is very challeng-

ing. In the past, the problem has been studied in simulated scenarios where a few taxis equipped

with sensors are passively detecting a radiation source inside a city [20, 41]. In this study, we

present an active detection approach using sensors mounted in police patrol cars. Although the

results cannot be validated with actual deployment, the simulation is based on an extensive set of

real measurements collected in a city.
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(a) Trajectory A

(b) Trajectory B.

Figure 4.2: Simulated source tracking of a 10 mCi Cesium-137 source traveling at 0.5 m/s. The
averaged localization error over the total 200 seconds for all 100 runs is included in the parentheses
next to each algorithm label. All three modified algorithms are able to closely track a moving source.
The integrated algorithm shows moderate improvement over the classical method (K-sigma)

4.2.1 Local Fusion Detection Model

In the open field detection scenario, data from all sensors are considered together to make a detection

decision. Combining data from multiple sensors (“sensor data fusion”) improves the system-wide

detection performance as measured in terms of ROC curves. However, when the effect of the event

decreases too rapidly with distance, the improvement is limited [58][73], especially when the envi-

ronment is cluttered with objects that occlude the source from the sensors. When devising a system
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Figure 4.3: Laboratory testbed schematic, showing the six radiation sensors (the grey boxes) and
the three source positions.

(a) T = 0 (b) T = 35 (c) T = 70

Figure 4.4: Snapshots of the posterior distribution when running the integrated algorithm on one
of the runs. White dot: source, gray boxes: sensors, red: high source probability, blue: low source
probability.

for detecting a source on the streets in an urban area, the cost of fusion may exceed the benefit of it.

A different data processing model is therefore required, where only data from sensors in a relatively

small area is fused, e.g. K-sigma algorithm with dynamic grouping as introduced in Sec. 3.1.1. In

this study, we consider a scenario in which N patrol cars are seeking a radiation source placed at an

unknown location somewhere on one of the city streets. For simplicity, we focus on a local anomaly

detection scheme.

4.2.2 Sacramento City Radiation Map

To create a simulation environment as accurate as possible to reality, we acquire a large set of

background radiation data in the downtown Sacramento city that was collected by scientists from

Lawrence Livermore National Laboratory. This data set consists of measurements made over a 5-day

period of ∼ 6 hours on each day, measured by two large NaI scintillators placed in the rear of a

van. Each sensor measures 2x4x16 cm3 with an energy resolution of 6%. The van’s GPS position,



69

(a) Trajectory A.

(b) Trajectory B.

Figure 4.5: Testbed source tracking of a 1mCi Cesium-137 source traveling at 0.5 m/s along two
horizontal trajectories. The averaged position error over the total 70 seconds run for all five runs
is included in the parentheses next to each algorithm label. All three algorithms are able to closely
track a weak source as the simulations predict.

together with spectrum data, was recorded at one second intervals. The data covers about a 12x12

blocks area with multiple visits for each point (at least 5 times) at different time of the day. The data

from the two sensors were combined, cleaned and corrected for calibration errors. For our study, an

area of 5x5 blocks within the data set is selected. Inside this region, there are obvious fluctuations

of background noise, ranging from a minimum of 500 cps to a maximum of 1200 cps as visualized

in Fig. 4.6.
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(a) Background radiation measurements from the compelte data set

(b) Background radiation measurements in the 5 x 5 blocks are used in
the study

Figure 4.6: Sacramento background radiation data visualized in Google Earth. (a) Full set of 30
hour data. Lighter blue indicates higher noise. The sub-region used in this study is circled in red.
(b) The 5 x 5 blocks area that is used in the simulation study. All East-West streets are one-way as
marked by the arrows. All North-South streets are two-way
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4.2.3 Simulated Detection in a City

We simulate a set of sensors that travel the city streets at an arbitrary constant speed, respecting the

one-way system where present. For each simulation, a source of strength 1mCi is placed at random

somewhere along one of the streets, and at 4 meters from the center of the street. The intent is to

simulate a dirty bomb or a similar source placed, for example, in a backpack at the side of the street.

For ease of analysis, we assume an unshielded, isotropic radiation emission pattern. At T = 0, the

sensors (i.e. patrol cars) initially placed at random positions in the grid start moving at a constant

speed.

The simulated counts are based on the real noise profile of the Sacramento streets at a one-meter

resolution. A simple threshold on the K-sigma value is used to determine if the source is detected

by the sensor in question, and if so, the simulation run is terminated, and a record is made of the

elapsed time to detection t. We assume that if a patrol car detects the probable presence of a source,

then the officers in the car will search the nearby area and detect the source, with probability 1.0,

if a source is present.

When a sensor reaches a junction, a decision is made as to which street the sensor will start

moving along. The decision takes into account the one-way system, and we prevent sensor from

doubling back, unless that is the only option. Otherwise, the sensor’s new street was assigned at

random from the available (up to three) possibilities.

4.2.3.1 Optimizing Sensor Number and Speed

Fig. 4.7 shows the average elapsed time for varying number of sensors in search of a 1 mCi source.

Two curves are displayed: one where the sensors move at 10 m/s (∼22mph) and the other where

they move at 25 m/s (∼56mph). The improvement in detection time is marginal above half a dozen

or so sensors, and the speed of detection is faster when the sensors travel at the higher speed.

There is, however, a tradeoff between speed and detection rate: the faster the sensor moves,

the smaller the effective sensor integration window is [48], and the less likely that the source will

be detected. This is illustrated in Fig. 4.8, which shows, for a set of eight sensors, the average

detection time as a function of speed for sources of two strengths: 1 mCi and 0.1 mCi. We observe

that if the sensor speed is increased from 40 to 50 m/s, the time to detect a source increases.

Likewise, if the sensor speed is decreased from 20 to 10 m/s, the time to detect a source increases

again. In fact, the speed that minimizes detection time in both cases is around 25 m/s (∼56mph).

This observation suggests that in a situation where eight police patrol cars carrying detectors are

dispatched in response to a tip-off that a dirty bomb is located somewhere in the city region, they

should drive as fast as possible consistent with safety, up to a limit of 56mph, in order to detect the

bomb in the shortest possible time. They should not, however, go faster than 56 mph.
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Figure 4.7: Time to detect as a function of the number of sensors at two speeds. There’s only
marginal improvement for N ≥ 8.

Figure 4.8: Time to detect as a function of sensor speed using two different source strengths, for
N=8 sensors. There is an optimal speed at 25 m/s (56 mph) where the detection time is minimized.

In a further study, we examine the detection sensitivity as a function of the source position,

i.e. whereabouts in this 5x5 block city region are dirty bombs most likely to be detected quickly.

This study involved 1,000,000 separate simulation runs, each using 32 detectors traveling at 25 m/s

(an optimally realistic scenario). Detection times at each of the one-meter spaced grid positions

in the region are averaged to obtain a sensitivity map, shown in Fig. 4.9. In this map, the green

band alongside each street (colored blue through red showing background intensity of low to high)

indicates the sensitivity: the more intense the green is, the more sensitive the detection capability

if a source were placed at that location.

The result in Fig. 4.9 shows that the sensitivity of a particular point depends predominantly on

how often it is passed by, and not as much on the background level (given that the sensors are as
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Figure 4.9: Detection sensitivity map. The level of green indicates how long it will take for the
network to detect a 1mCi source placed at that point. This is shown alongside the background
radiation level (blue lowest, red highest) along each street. There is no clear correlation between the
background intensity and the detection sensitivity.

large as the ones in this data set). However, this may change when the target to detect is heavily

shielded (weaker) or when the sensors are less sensitive.

4.2.3.2 Game Theoretic Search in a City

The detection problem essentially becomes a search problem when the source is bright enough.

What then is the best strategy for patrol cars to use in order to foil a terrorist? A random traveling

strategy in which all exits from a junction are taken with equal probability is sub-optimal, as it leaves

some streets, such as those in the southeast corner of the city, relatively poorly covered; sensors pass

there infrequently simply because there are limited routes to get to those streets. We outline below

how to calculate an optimal strategy. We make the standard game theoretic assumption of rational

adversaries and compute a strategy that obtains the best outcome in the worst case.

Consider a graph in which each stretch of street, without turns, is modeled as an edge. Edges

are directed. A junction of streets is represented by a vertex. We want each meter of street to

be traveled with the same frequency, i.e., the time interval between repeated visits for each meter

segment of street should be the same. This is because if a street segment were not traveled for a
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long time then a terrorist would game the system by placing a threat on that segment. Likewise, if

streets were patrolled in a deterministic manner, such as first patrol East-West streets from North

to South, then the terrorist could estimate the instant in the patrolling schedule with the greatest

duration before the arrival of the next patrol car. Therefore, we use a probabilistic strategy in which

patrol cars make turns at junctions randomly, and where the probability of a given turn is specified.

A practical result of this strategy analysis will be instructions to patrol cars, for example “When

you come to the junction of Avenue X and Street Y traveling East, go North 60% of the time, South

10% of the time, make a U-turn 5% of the time, and keep going East the rest of the time”.

The analysis explores the flow of patrol cars on the city streets. Let flow[j, k] be the number of

patrol cars per hour that travel along street (edge) [j, k], i.e., the street from junction j to junction

k. For a two-way street between junctions j and k the total flow of patrol cars along the street is

the sum flow[j, k] + flow[k, j]. For each junction j, conservation of cars gives the equation:

∑
i

flow[i, j] =
∑
k

flow[j, k]

Our goal is to maximize the minimum flow amongst all the streets; this can be formulated as a

linear programming problem. We use a fast heuristic to solve this problem. Fig. 4.10 shows that the

heuristic increased the minimum flow rate from 0.45 cars per unit time to 0.71 cars per unit time.

4.3 Sensor Placement

Next, we study the problem of placing sensors in a fixed size field to optimize system detection

performance. The problem may appear similar to the coverage and monitoring problem, but the

objective is quite different: The coverage problem aims to detect an intruding target, assuming

each sensor has a fixed sensing region [37]. The monitoring problem maps out the environment by

optimizing mutual information [52]. The detection problem studied here optimizes the total true

positive rate over the whole field. This analysis can be extended to the detection of a wide range of

events.

4.3.1 Detection Function Definition

In many event detection scenarios, the ability of an individual sensor to make a correct detection

decision drops as the sensor moves away from the event. This behavior can be described with a

sensor detection characteristic function φ that is unique to the sensor type. φ denotes the detection

probability (true positive rate) as function of distance r to the anomaly, signal strength at the

sensor λ, background noise Γ, and desired sensor false positive rate fs. In the example of radiation

detection, using the Gaussian approximation for Poisson distribution, φ can be written down as the
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Figure 4.10: Street selection probabilities that minimize the range of traffic flows, as derived by an
approximating heuristic. The numbers adjacent to each street at each junction show the probability
that should be used when choosing that street when leaving the junction. With this strategy, the
minimum flow is increased from 0.45 cars/unit time to 0.71 cars/unit time.

following:

φ(λ,Γ) = sensor true positive rate

=
1

2
− 1

2
erf

[
ZTPR√

2

]
=

1

2

(
1 + erf

[√
2λ− 2

√
Γ · erfc[fs]

2
√

Γ + λ

])
(4.2)

The second equality comes from the tail of Gaussian distribution, thresholding at ZTPR (the

threshold that satisfies the false positive rate requirement). erfc is the complement of error function

erf . λ is a function of the absolute signal strength µ, the position of the source x, and the position

of the sensor s. Γ is a function of the sensor position s.

System false positive and true positive rate. We define that a system true positive occurs

when at least one sensor detects in the presence of a target and system false positive as when at

least one sensor detects when the target is absent. The system false positive rate fm can be defined
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in two ways:

1. per sensor: φ does’t change with n. ∀n, fs = fm.

2. per map: fs decrease as the number of sensors in the field increases since fm stays constant

for all n. fs is adjusted as a function of the total number of sensors n.

fs = 1− exp

[
ln (1− fm)

n

]
= 1− (1− fm)

1
n (4.3)

We denote φn as the per sensor true positive rate when there are a total of n sensors in the field

and define our objective detection function F as the sum of true positive rate at each possible source

location x over the whole map, while keeping the system false positive rate constant.

F = true positive rate over the whole field

=

∫
x

(
at least one sensor detects the target at x

)
dx

=

∫
x

(
1−

n∏
i=1

(1− φn(λ(x, si),Γ(si)))
)

dx (4.4)

4.3.2 Greedy Approximate Algorithm

Computation of a set of sensor location s = {s1, . . . , sn} that maximizes Eq. (4.4) is intractable.

Instead, we approximate the optimal solution using a greedy approach: the additional (n+1)th sensor

is placed so as to maximize Eq. (4.4), while fixing the n sensors that have been placed already. The

greedy approach is guaranteed to perform at least a fraction (1 − 1/e) of the optimal solution if

the target function is monotone and submodular, i.e. the function has diminishing returns. These

conditions are formally stated in [67] as shown below:

1. Monotonicity: A ⊆ A′ ⊆ V , F (A′) ≥ F (A)

2. Submodularity (diminishing returns): A ⊆ A′ ⊆ V and y ∈ V \ A′, F (A ∪ y) − F (A) ≥

F (A′ ∪ y)− F (A′)

We show that the greedy bound applies to the optimization of F by showing that F is monotone

and submodular.

Monotonicity. We first prove that the detection function F is monotone by showing F (n+ 1)−

F (n) ≥ 0,∀n ≥ 0. As a shorthand, we denote qni,x as the sensor i’s false negative rate for a target at

location x, qni,x = 1− φn(λ(x, si),Γ(si)). With Eq. (4.4), F (n+ 1)− F (n) can be expressed as
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F (n+ 1)− F (n) =

∫
x

(
1−

n+1∏
i=1

qn+1
i,x

)
dx−

∫
x

(
1−

n∏
i=1

qni,x

)
dx

=

∫
x

( n∏
i=1

qni,x −
n+1∏
i=1

qn+1
i,x

)
dx

=

∫
x

n∏
i=1

qni,x

(
1− qn+1

n+1,x

n∏
i=1

qn+1
i,x

qni,x

)
dx (4.5)

It is obvious that Eq. (4.5) ≥ 0 when using definition (1) of system false positive since qn+1
i,x = qni,x

and 0 ≤ qni,x ≤ 1. However, with definition (2) of system false positive, the inequality is less obvious.

Below we sketch a proof by induction using definition (2).

It is clear that F (1) − F (0) ≥ 0. Suppose that F (n + 1) − F (n) ≥ 0, we are required to show

that F (n+ 2)− F (n+ 1) ≥ 0 to complete the proof.

F (n+ 2)− F (n+ 1) =

∫
x

n+1∏
i=1

qn+1
i,x

(
1− qn+2

n+2,x

n+1∏
i=1

qn+2
i,x

qn+1
i,x

)
dx (4.6)

Observe that qni,x is monotonically increasing with respect to n since q′(n) ≥ 0 and
qn+1
i,x

qni,x
>

qn+2
i,x

qn+1
i,x

since q′′(n) ≤ 0 and 0 ≤ q(n) ≤ 1. It is not difficult to show that qn+2
i,x

(
qn+2
i,x

qn+1
i,x

)n+1

≥ qn+1
i,x

(
qn+1
i,x

qni,x

)n
by taking the logarithm of both sides and expanding the terms. This means that the term inside

the parentheses in Eq. (4.6) is greater than that in Eq. (4.5). Given this and qn+2
i,x

(
qn+2
i,x

qn+1
i,x

)n+1

≤ 1

and F (n+ 1)− F (n) ≥ 0, we have F (n+ 2)− F (n+ 1) ≥ 0. This proves that F is monotone.

Submodularity. Next we show that F is submodular by demonstrating that F (n+2)−F (n+1) ≥

F (n+1)−F (n). Following the proof of monotonicity, we know that
(

1− qn+1
n+1,x

∏n
i=1

qn+1
i,x

qni,x

)
increases

with n, so the marginal gain can be increasing. However, the ratio of the multiplier in Eq. (4.5)

and Eq. (4.6)
qn+1
i,x

qni,x
decreases faster with n (can be shown by taking the derivative of both sides

and expand the terms), so that the product of the two terms decreases with n. Hence we have

F (n+ 2)− F (n+ 1) ≥ F (n+ 1)− F (n).

With the proof of monotonicity and submodularity, we show that the greedy approach is guar-

anteed to produce a solution at least 63% as good as the optimal solution.

4.3.3 Results

The greedy approach on sensor placement for detection is validated with a simulated experiment

using radiation detection as an example. With the detection function F in Eq. (4.4) as the objective

function, we compute the placement of nine sensors in a field of 100x100 m2 with a desired false

positive rate fm = 0.01. The source used in the calculation is a 1 mCi Cesium-137 with an equivalent
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Figure 4.11: Greedy placement of nine sensors in a 100 x 100 m2 field of uniform background. The
greedy placement is not uniform.

source strength µ = 200 counts per second (cps) measured by a sensor at 1 meter distance. The

expected background is uniform across the field at 8 cps. The detection decision is made 60 seconds

after a source is randomly introduced to the field. We restrict the minimum distance between two

sensors to 10 meters and there are
(

112=121
N

)
possible ways to place N sensors.

Non-uniform placement. The placement result for nine sensors is shown in Fig. 4.11. The

marginal return for each additional sensor for up to 50 sensors is also plotted in Fig. 4.12. Note

that this configuration, perhaps surprisingly, is not uniform. This points out the major difference

between optimizing for detection and for coverage. The result is further supported by recent work

by Malik et al. , who prove via Bayesian N-ary hypothesis testing that, under certain conditions,

uniform sensor placement is suboptimal in maximizing detection performance [62] in terms of ROC

performance.

The performance of this layout (Fig. 4.11) is evaluated in simulations with the Bayesian algorithm

as described in Sec. 3.2.1, assuming that the prior on source strength is perfectly known. The

resulting ROC curve is compared to those acquired from a simple grid layout (Fig. 3.7), and to a

layout computed using entropy as the objective function [58]. As shown in Fig. 4.13, the layout in

Fig. 4.11 performs considerably better than the grid layout. There is also a slight improvement in

comparison to previous results that used entropy as objective function [58].
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Figure 4.12: Marginal benefit for each additional sensor that demonstrates the submodular property.

4.3.4 Long Observation Time and Varying Background

The sensor’s capability to make a correct decision (φ) improves as T , the amount of time allowed

before the decision is made. The objective function F therefore depends on T as well. Fig. 4.14

shows two results when we compute the placement using different sets of prior information. In

Fig. 4.14(a), the amount of time allowed for detection has been increased from 60 to 600 seconds.

The placement computed approaches a uniform grid layout. In Fig. 4.14(b), we introduced a non-

uniform background, modeled as a bivariate Gaussian distribution centered at coordinates (30,40),

where the highest expected count was three times (25 cps) that of the lowest count (8 cps). The

placement of sensors, taking into account this prior information, first covers the area with lower noise

variation before placing sensors in the noisier area. This result is not surprising, as the marginal

benefit of placing a sensor in an area of low SNR area is smaller than placing it in an area with high

SNR.

4.4 Discussion

Event detection in sensor networks is often treated as a static problem, i.e., both the sensors and

the events are stationary. In this chapter, we present three scenarios where dynamics are introduced

into the network, i.e., when the event/target is moving, when the sensors are moving, and when

the sensors are placed intelligently to maximize detection rate in a field. The results reported in

this chapter can be used to determine the optimum movement of mobile sensors to reduce detection

time.

The sensor characteristic function φ has the advantage that it is general enough to be modified

and applied to the detection of a wide range of geospatial events, in addition to that of detecting

radiation sources. However, this general approach has drawbacks compared with algorithms designed



80

Figure 4.13: ROC comparison of three configurations of 9 sensors for detection of a 1mCi source in
T=60 seconds. The greedy approach using F in Eq. (4.4) as objective function outperforms the grid
baseline and the baseline using entropy as objective.

(a) T=600 (b) Non-uniform background,

Figure 4.14: Different layouts are computed as being optimal when the prior information changes. (a)
Longer observation time. The sensor layout approaches uniform grid. (b) Non-uniform background
modeled as a bivariate Gaussian distribution. The sensors are first placed in high SNR area.

specifically for detecting radiation sources. For example, φ depends on the allowable observation

time T and the event intensity µ, which may not be known a priori. Though the placement results

are targeted for detection, it is possible that the study can be extended to study optimal placement

for parameter estimation as well.
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Chapter 5

Parameter Estimation with
Multiple Concurrent Events

Chapter 3 described algorithms for estimating parameters of geospatial events when the impact of

at most one event is manifested at a time. Estimating parameters is more difficult when multiple

events can unfold at the same time. The impact at a given location may be due to a single event or

due to multiple events; distinguishing the impact at that location from different events is difficult.

In fact, many existing parameter estimation methods fail in this case due to the assumption that

there is at most one event/target occurring at a time. We illustrate algorithms for this problem in

the context of two geospatial applications — radiation detection and earthquakes.

Radiation. NORM (naturally occurring radioactive material) sources of radiation are abundant

in the environment. NORM sources include cat litter, bricks, certain rocks and minerals, and

medical patients undergoing radiation treatment. Most NORM sources can be distinguished from

harmful ones with spectrometers; however, most inexpensive geiger counters do not distinguish

them accurately. To detect an actual threat with simple geiger counters in an environment rich

with NORM sources, the algorithm needs to be able to identify the presence of multiple sources and

estimate the intensity of each. An example of this problem is illustrated in Fig. 5.1, which plots the

background radiation level within a 5 x 5 blocks area in downtown Sacramento, CA. Each dot is a

reading from a geiger counter that repeatedly visited the area. Red and blue colors signify high and

low radiation readings respectively. From the plot, at least five hot spots can be identified, which,

in turn, correspond to five NORM sources.

Earthquake. After a major earthquake, multiple earthquakes can occur almost concurrently

at different locations. In this case, the surface waves measured by the ground sensors can be

contaminated by more than one source. If the detection algorithm assumes only one event, the

event intensity can be overestimated, which in turn leads to possible false warnings. This problem

is nicely illustrated with the analysis following the M9.0 Tohoku earthquake on March 11th, 2011
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Figure 5.1: Raw radiation measurements collected in downtown Sacramento. Red indicates high
radiation level and blue otherwise. There are multiple hot spots in the 5 x 5 blocks area, which may
correspond to five NORM sources. Ignoring these potential sources may lead to poor estimate of an
actual threat.

in Japan. The main earthquake was followed by a large number of aftershocks, which resulted in

70 early warnings generated in the first month after the main shock [1]. Among these, 63% of the

broadcasted warnings contained significant errors, such that the estimated magnitudes were at least

two orders of magnitude larger than the true value. Later analysis showed that 73% of the errors

could be attributed to the problem of poor parameter estimation for multiple concurrent events [1].

Fig. 5.2 shows an example of such an error recorded on March 15, 2011, just 4 days after the main

shock. Each dot represents one of the ∼1,000 stations in the Japan seismic network. Blue signifies a

low shaking level and red signifies large shaking. In this instance, roughly five simultaneous events

can be identified.

Contributions. This chapter presents a Bayesian algorithm for estimating the parameters of

concurrent geospatial events, implemented using particle filters. As particle filter approaches are

often computationally expensive, and warning applications for geospatial problems require rapid

results, this chapter presents a new heuristic for speeding-up particle filters. The heuristic is validated

against measurements made by the seismic network in Japan.
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Figure 5.2: An instance of network activity recorded by the Japan seismic network on March 15,
2011. Blue and red signifies low and strong shakings, respectively. About five simultaneous events
of different magnitudes can be identified from this instance.

5.1 Bayesian Formulation and MLE

The problem of continuous parameter estimation for multiple events has a natural Bayesian formu-

lation. Let θ be the vector of parameters that characterizes an event, and Θ be a set of events that

is parametrized by θ’s, Θ = {ø, {θ1}, . . . , {θ1, θ2, . . .}}. Suppose z1:t is the complete history of obser-

vations from all the sensors till the current time t; the posterior P (Θt|z1:t) reveals the distribution

of belief of current ongoing events at time t given the evidence and prior belief.

P (Θt|z1:t) =
P (zt|Θt) P (Θt|z1:t−1)

P (zt|z1:t−1)
(5.1)

where P (zt|Θt) is the likelihood function and is typically denoted as L, L(zt|Θt) = P (zt|Θt).

P (Θt|z1:t−1) is the updated prior at time t.

P (Θt|z1:t−1) =

∫
P (Θt|Θt−1)P (Θt−1|z1:t−1) dΘt−1

P (Θ0|z0) ≡ P (Θ0) is the prior distribution of Θ.

Under linear motion and Gaussian noise assumption, Eq. (5.1) can be solved optimally with a

Kalman Filter, as the posterior can be parametrized fully with a mean and covariance. Unfortunately,

in most applications, including radiation and earthquake detection, Eq. (5.1) does not have an

analytical solution. Sec. 5.2 will discuss several suboptimal approaches presented in [5].
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Another popular method for parameter estimation is the Maximum Likelihood Estimator (MLE).

Instead of computing the posterior distribution with full Bayesian formation, MLE searches for the

Θ̂ that maximizes the likelihood function and thus bypasses the need to define a prior P (Θ).

Θ̂ = arg max
Θ

P (zt|Θt)

While MLE is simple to apply in many applications where the model is well-defined, it is sus-

ceptible to spurious noises in the measurements, which causes the estimates to jump around the

parameter space between adjacent time steps. In this chapter, we focus on the Bayesian formulation

not only to avoid the this problem with MLE, but also to take advantage of prior information, such

as the number of events, to simplify the computation.

5.2 Particle Filter

As mentioned in Sec. 5.1, Eq. (5.1) does not, in general, have a closed-form solution. There exists

several suboptimal solutions to approximate the posterior distribution [5], one of which is to partition

the parameter space into cells. This approach, though simple to apply, suffers a few problems. First

of all, when the parameters are continuous and not sufficiently restricted, the grid method cannot

cover the complete parameter space because there can only be a finite number of cells. Secondly,

the cell approach uses a predefined cell size, and as a result, it requires a large number of cells to

achieve good coverage at a desired resolution.

Another solution is the Particle Filter (PF), which is a sequential Monte Carlo method that

approximates the posterior distribution with a set of weighted particles [29]. As the number of

particles goes to infinity, the solution from PF approaches the optimal solution. There is a rich

literature on PF and its variation, including [29],[5],[60] just to name a few. The basic procedure is

summarized here for reference.

Draw Sample. At the beginning of each update step, the value of each particle is drawn from an

important density (or proposal distribution) function q(Θi
t|Θi

t−1, zt). For i = 1, . . . , N

Θi
t ∼ q(Θi

t|Θi
t−1, zt)

The important density is often chosen to be the state transition prior P (Θi
t|Θi

t−1).

Weight update. PF approximates the posterior with a collection of weighted particles

P (Θt|z1:t) ≈
N∑
i=1

wit · δ(Θt −Θi
t) (5.2)
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where wit is the weight for particle i at time t. The sum of total weights are normalized to 1.

N∑
i=1

wit = 1

The weights for all particles are updated as new evidence zt comes in and renormalized at the

end of each update.

wit ∝ wit−1

L(zt|Θi
t)P (Θi

t|Θi
t−1)

q(Θi
t|Θi

t−1, zt)

where the proposal q(·) is the same important density used in the sampling stage. If it is chosen to

be the transition prior P (Θi
t|Θi

t−1), the terms cancel out in the right hand side, and the updated

weights are acquired by computing the likelihood of each particle, given the new evidence.

Resampling. Because the posterior is approximated with discrete particles, the system suffers

sample degeneracy after a few update iterations when the weight is concentrated on a very small

number of particles. The decrease in weight variance determines the degree of degeneracy that can

be approximated with N̂eff [5].

N̂eff =
1∑N

i=1(wit)
2

Small N̂eff indicates severe degeneracy, in which case resampling is required. Resampling essentially

eliminates particles with negligible weight by generating a new set of N equally weighted particles

according to current distribution P (Θt|z1:t). There exist many methods for sampling from a discrete

distribution, which we will not discuss here.

5.3 Approximate Algorithms

Particle filtering allows for solving the Bayesian inference problem when the exact inference is in-

tractable; however, for the estimates to approach the optimal solution, the number of particles

required must grow exponentially with the number of events. While it is possible to further re-

strict the number of events based on prior knowledge, this is still a challenging problem in terms of

computational efficiency. Can we sacrifice some accuracy in exchange for a more computationally

efficient approach? In this section we discuss a few heuristics within the context of two applications

— radiation and earthquake.

5.3.1 Radiation

If a radiation source can be parametrized as θ = [x y µ]T , where [x y] is the 2-dimensional coordinate,

and µ the source intensity, then Bayesian inference through particle filtering has shown success in the

presence of at most one source [77]. Since NORM radiation sources are abundant in the environment,
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the number of sources in an area is difficult to estimate a priori. This means that the size of the

state space (and the number of particles required) is extremely large if we directly apply Bayesian

inference through particle filtering.

Static network. If the sensor positions are fixed, heuristics such as the K-sigma method described

in Sec. 3.1.1 can be used to first estimate the number of sources (ñ). By adopting particle filtering

with varying n around ñ, and examining which n maximizes the posterior probability, given the

measurements z, we can estimate both the number of sources and the source parameters n̂, that is

arg max
|n−ñ|<d

P (n|z)

The posterior probability of n is

P(n|z) ∝ L(z|n)P0(n)

where P0(n) is the prior distribution of n and L(z|n) is the marginal likelihood

L(z|n) =

∫
L(z|n, θ)P0(θ|n)dθ

This technique is known as model selection. Morelande et al. have come up with similar approach

that shows good performance in simulation experiments for up to three sources [63].

Mobile network. Assuming that the sensors can actively search a field [77, 87] or simply move

in semi-random patterns as studied in Sec. 4.2, multiple sources can be discovered in a sequential

fashion, assuming at most one source at a time in each search session. This is due to a unique

property of radiation. Observe that the amount of signal measured by a sensor at distance r from

a source is λ and

λ =
Aµe−αr

r2

where A is the sensor’s sensitivity, µ is the source intensity, and α is the photon absorption rate in

air. Then the source signal drops off faster than 1/r2. Because most ambient sources are weak in

nature, only sensors close to a source will have non-negligible measurements due to the source.

As mobile sensors can move (arbitrarily) close to a source, we can get highly accurate estimates

even under the assumption of at most one source. After a source is discovered, the information

can be factored into the likelihood calculation in the subsequent searches for other sources. This

approximate approach grossly reduces the problem to a single source parameter estimation and has

demonstrated great success in simulation.
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5.3.2 Earthquake

Parameter estimation for earthquakes is, in some ways, more difficult than that for radiation because

of the nonlinearity in wave propagation. Fortunately, the number of near-concurrent earthquakes n

at any given time is exponentially small for large n (n > 3). Incorporating this information into the

prior probability distribution significantly reduces the size of the state space. In comparison, n can

be very large for radiation detection problems.

However, even with small n the state space may still be too large for real-time computation. For

example, with the simplifying assumption that an earthquake is characterized as a point source, an

event can be parameterized as θ = [x y D M t0]T , where [x y D]T is the [latitude, longitude, depth]

coordinate, M is the event magnitude, and t0 is the event starting time. This is a 5-dimensional

vector as opposed to the 3-dimensional vector in the radiation application. Suppose it requires

mk samples to correctly estimate the posterior distribution for k parameters, the difference in the

number of samples between the two applications will be (m5−m3)n. Even when m is small (m = 5),

it requires ≈ 1011 more samples in the earthquake estimation problem for n = 3.

A complete Bayesian analysis may be executable in reasonable time on a parallel supercomputer;

however, we present heuristics that incorporate spatiotemporal dynamics that enable particle filter

computation times to grow almost linearly with n. The heuristics are validated against measure-

ments. In the following section, we first describe a particle filter implementation for earthquakes,

and then present a rapid heuristic for estimating multiple events.

5.3.2.1 Particle Filter for Earthquake Estimation

In this section we discuss the practical implementation details about designing a real-time parameter

estimation system for multiple events using a particle filter. Complete pseudo code (Alg. 1) is

included in the end of section.

Designing the likelihood function. If prior distribution of the parameters can be computed

from historical data, the performance of particle filter for parameter estimation depends largely

upon the design of the likelihood function. While this may be a straightforward process for other

applications, e.g. radiation, it is nontrivial for a spatially and temporarily complex phenomenon such

as an earthquake. Cua et al. have proposed a likelihood function formulation that assumes accurate

measurements from all six channels of ground motion (maximum vertical acceleration, maximum

horizontal accelerations (2-axes), velocity, and displacement) [26][24]. Here, we assume the data to

be noisy and less reliable, and propose a likelihood function based on a single combined acceleration

and displacement measurement.

Let Amax be the maximum displacement measured by a seismometer during the onset of an

event; the earthquake P-wave and S-wave magnitude Mp and Ms can be expressed as a function of
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Figure 5.3: Illustrations of the parameters used in Sec. 5.3.2.1. tp and ts mark the arrival time of
the P-wave and S-wave since the start of the earthquake at t0, tp ≤ ts. P-wave usually has smaller
top acceleration (and displacement) compared to S-wave.

R the linear surface distance to the epicenter, D the depth of the hypocenter, and Amax.

0.72Mp = logAmax + 1.2 logR+ 5× 10−4R− 5.0× 10−3D + 0.46 (5.3)

0.87Ms = logAmax + logR+ 1.9× 10−3R− 5.0× 10−3D + 0.98 (5.4)

The relationship between the parameters is visualized in Fig. 5.3. These formulae were specifi-

cally tailored for the geological compositions in Japan [4]. The P-wave and S-wave magnitudes are

expressed in terms of the maximum displacement Amax rather than the maximum acceleration or

velocity because the displacement metric preserves energy better over long distance. The displace-

ment value A(t) observed at time t can be calculated in real-time, which involves twice integration

of the raw acceleration measurement k(t) [50].

A(t) = gn× [k(t) + h0 · k(t− 1) + h1 · k(t− 2)]− h2 ·A(t− 1)− h3 ·A(t− 2)

where the function gain gn and filter constants h0, h1, h2, h3 depend on the damping constant and

sampling period of the seismometer. For a JMA seismometer with a 0.55 damping constant and a

6 second sampling period,

gn = 0.0000248691025, h0 = 1.0, h1 = 1.0, h2 = −1.9889474, h3 = 0.9895828

Given Eq. (5.3) and Eq. (5.4), and that the displacement is log-normally distributed A ∼

lnN (µ, σ2), we propose the following likelihood function for a single station.

L(z|x, y,D,M, t0) =
exp

−(logAmax−logAexp)2

2σ2

Amax · σ
√

2π
(5.5)
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Here Aexp is the expected Amax and σ is the standard deviation of displacement measurement.

Depending on whether the station has observed the P-wave, the S-wave, or neither, the expected

maximum displacement and its standard deviation will be different. By rearranging Eq. (5.3) and

Eq. (5.4), we can compute Aexp and σ for the following three cases.

• Has not observed any wave:

logAexp = logAnoise, σ = σnoise

• Has observed P-wave:

logAexp = 0.72Mp − 1.2 logR− 5× 10−4R+ 5.0× 10−3D − 0.46, σ = σp

• Has observed S-wave:

logAexp = 0.87Ms − logR− 1.9× 10−3R+ 5.0× 10−3D − 0.98, σ = σs

Anoise and σnoise are the noise in displacement measurement due to recent environmental noise

and can be computed independently for each station by keeping a running window. σp and σs can

be precomputed using historical data. R is the distance between the location of the station and the

estimated epicenter.

The decision of which Aexp to compute for a station depends on whether the P-wave, the S-

wave, or neither has arrived at the station. Using a very simple linear speed model of seismic

wave one can compute the expected arrival time of the P-wave and S-wave (tp and ts) given the

relative location of the station to hypocenter (x, y,D). More sophisticated models that take into

consideration the earth’s structures also exist. In this study we adopt one of these models tailored

for Japan. Comparison between tp, ts, the current time t, and the event start time t0 gives direct

estimation of which Aexp to compute. Fig. 5.4 provides a illustrative summary of these design ideas.

This design of likelihood function is based on the maximum displacement Amax that the sensor

observes when in contact with a seismic wave. However, a sensor does not observe the maximum

displacement immediately after the wave arrives, but rather after a period of time. In this case, the

initial estimates will be highly incorrect using this likelihood function. A delay term α(·) can be

included to approximate the instantaneous displacement before the maximum is observed.

Aexp = α(t− t0 − tp)Amax, 0 ≤ α(·) ≤ 1

The likelihood L(·|·) is applied in each time step to update the weight of each particle. Assuming



90

log10 (Aexp ) = 0.87Ms - log10R - 1.9×10−3R + 5.0×10−3D - 0.98
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S-wave front 
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log10 (Aexp ) = 0.72Mp - 1.2log10R - 5×10−4R + 5×10−3D - 0.46

log(Aexp ) = log(Anoise )
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haven’t observed 
shaking 

Stations that 
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only the P-
wave  

Stations that 
have both P- 
and S-wave 

Figure 5.4: Illustrative summary of the design of a single station likelihood function. The expected
observation made by a station depends on whether it should have observed the P-wave, the S-wave,
or neither, given an hypocenter estimate.

that each station makes independent observations and the collection of observations from all stations

is z, the complete likelihood function becomes

L(z|x, y,D,M, t0) =

n∏
i=1

L(zi|x, y,D,M, t0) (5.6)

where n is the number of stations. Note that the independence assumption is a minor simplification,

given that nearby stations have correlated observation.

Ensuring good coverage of parameter space. Particles are initialized according to a prior

distribution on the parameters. Because we are approximating an unbounded and continuous 5-

dimensional space with a bounded and discrete one, care must be taken to ensure that the particles

have sufficient coverage and the number of particles required stays inbound. This is especially

important in the case of seismic application, as both the number of parameters and the values they

can take are large. One way to ensure particle diversity with a limited number of particles is to

adopt a Regularized Particle Filter (RPF) [5].

RPF differs from regular particle filters only in the resampling stage. Rather than sampling

from a discrete approximation of the posterior density P (·|z) as in Eq. (5.2), RPF samples from a
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Figure 5.5: Some popular smoothing kernels used in Regular.

continuous approximation [65]. More specifically, RPF draws samples from the approximation

P (θ|z) ≈
N∑
i=1

wi ·Kh(θ − θi)

where Kh(θ) = 1
hK(θ/h), h > 0 is the rescaled kernel density of K(·), h is the bandwidth, and wi

is the normalized weight for particle i. As a comparison, Kh(θ) is the Dirac delta function δ(θ)

in the regular particle filter. Special care is given to the design of kernels to minimize the error

between the approximated and the actual distributions. Under the assumption that all particles are

equally-weighted and that its density is Gaussian, the optimal kernel is the Epanechnikov kernel

[65].

Kopt(x) =


nx+2
2Cnx

(1− ‖x‖) ‖x‖ < 1

0 otherwise

(5.7)

where nx is the dimension of the parameter space, Cnx is the volume of the unit hypersphere in

Rnx . Fig. 5.5 lists a few popular kernels in the literature. The bandwidth vector h can be chosen

proportionally to the variance in the particle population by computing the Cholesky decomposition

of the empirical covariance matrix.

Efficient tracking of multiple events. We propose a simple heuristics to keep track of multiple

events. The heuristic has the desired property that the complexity grows linearly with the number

of the events.

As a first approximation, the heuristic initializes separate particle filters pf1(θ1), pf2(θ2), . . . for all

possible events, rather than keeping track of all events within one particle filter pf(Θ = {θ1, θ2, . . .}).

Each particle filter communicates its current estimate θ̂ at the end of each update step to all other
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particle filters. Specifically, each particle filter pfi computes the following posterior at time t

P (θti |z, {
ˆθt−1
j , j 6= i})

This approximation dramatically reduces the computations required to keep all event estimations up

to date. It is suboptimal, however, because all the particles from pf1, pf2, . . . combined only cover a

small fraction of the complete parameter space.

A new particle filter is initialized with a local detection. The threshold for local detection is set

high enough such that noisy detections are filtered out. The local detection decision can be made

with a simple low pass filter to identify transient changes, e.g., K-sigma (Sec. 3.1.1) or STA/LTA

(short term average over long term average). Because local detection can be due to an existing event

that is being tracked by another particle filter, it is necessary to condition new initialization on a

separate metric. A natural choice of metric is P
[
z|θ̂1, θ̂2, . . .

]
, i.e., the probability that the triggered

measurement is due to existing events. Computation of this metric can follow directly from the single

station likelihood calculation, as in Eq. (5.5); however, determining Aexp is nontrivial in this case,

as it involves computing the additive effect of the interference of multiple wavefronts. We propose

an alternative metric that allows for rapid computation; the metric is the probability of shaking due

to any of the existing events and threshold on the highest probability:

max
i

P
[
z|θ̂i

]
= max

i
L(z|θ̂i)

< τ, initialize new pf

≥ τ, do nothing

(5.8)

By tuning the threshold τ , we adjust how conservative the system is in declaring new events.

Selecting prior and the number of particles. Prior P (θ) determines how the particles are

initialized. A good prior encodes geographical information, such as the location of fault lines near

the station that first triggered, and the most common magnitudes generated at these fault lines.

This information can be compiled from historical earthquake catalogs for each station and used in

real time when initializing the RPF. If prior information is absent, then a flat prior can be used.

The problem of choosing the range of the prior goes hand in hand with selecting the number of

particles. A prior of large coverage may cause the initial estimates to be jittery because little

evidence were presented. Prior distributions that cover a small area may lead to slow convergence.

We evaluate these tradeoffs empirically to select the appropriate prior coverage and the suitable

number of particles.

Algorithm summary. Next we summarize this PF approach for the parameter estimation

problem for multiple seismic events.
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Algorithm 1: Regularized Particle Filter for multiple seismic event tracking

PF ← {}
Initialize thresholds τ , α
Initialize bandwidth vector h′ ∈ Rnx
while not end do

? Check for new event
Z ← list of station measurements that triggered
for z ∈ Z do

pr ← maxk L(z|θk)
if pr < τ then[
{θi, wi}Ni=1

]
← RPF

[
{θi, wi}Ni=1, z

]
for i = 1→ N do

Draw θi ∼ P (θ, z)
Assign weights based on prior and z, wi ∼ P (θ, z)

pf ←
[
{θi, wi}Ni=1, z

]
PF ← PF ∪ pf

? Update weight, resample if needed

for pf ∈ PF do
{θi, wi}Ni=1 ← pf
for i = 1→ N do

wi ← wiL(z|θi)[
{θi, wi}Ni=1

]
← NORMALIZE

[
{θi, wi}Ni=1

]
Compute N̂eff ← 1∑N

i=1 w
2
i

if N̂eff < α then[
{θi, wi}Ni=1

]
← RESAMPLE

[
{θi, wi}Ni=1, z

]
for i = 1→ N do

Draw ε ∼ K from the Epanechnikov Kernel
Compute weighted empirical covariance matrix Sk of {θi, wi}Ni=1

Compute lower triangle Dk = chol(Sk), DkD
T
k = Sk

θi ← θi + h′Dkε

? Check for termination
for pf ∈ PF do
{θi, wi}Ni=1 ← pf
if CONV ERGED

[
{θi, wi}Ni=1

]
then

PF = PF − pf
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5.3.2.2 Experiments and Case Studies

We validate the approximate PF approach empirically on the Japan seismic data set. The data set

contains one-month of continuous recordings from ∼200 JMA seismic stations in Japan following the

Tohoku M9.0 earthquake on March 11th, 2011. The raw data is first converted to SAC format1 and

compressed down to 1 Hz. Incomplete records are discarded. Parameter estimation is carried out as

described in Sec. 5.3.2.1, using a flat prior around the first triggered station and 1,000 particles for

each particle filter. Since a particle filter approach has rarely been applied to earthquake parameter

estimation, we first test the algorithm in the presence of a single major event. The performance of

algorithms for discerning and estimating multiple events are validated on two sets of two concurrent

events.

Tohoku M9.0 — Single Event. We test the performance of the particle filter approach on the

Tohoku M9.0 earthquake that occurred at 14:46:18, on March 11th, 2011. The first trigger occurs

at 14:46:47 at station location [38.4570, 141.3500], since which a particle filter of 1,000 particles is

initialized and estimates are produced at a one-second interval for the next 120 seconds. Particles

are visualized in Fig. 5.6 for the first 60 seconds since after the start. Fig. 5.6(a) shows the flat prior

used to initialize the particles at 14:46:48. The estimates mostly converge and stabilize in the first

30 seconds. This is better illustrated in Fig. 5.7, which compiles the error in parameter estimates

from 15 independent runs.

These results are compared against the event parameters determined by the Japan Meteorology

Agency (JMA) (marked as dotted lines in Fig. 5.7) and demonstrate, on average, good performance

for all parameters, although the variance between trials is not negligible in such a small number of

runs.

March 15, 2011 — Two Events. One of the many false warnings in the earthquake early

warning (EEW) record broadcasted by JMA happened at 1:36:26, on March 15, 2011. The warning

was given based on an estimated magnitude of M5.9 (Fig. 5.8), 21 seconds after first detection. Post

event analysis revealed that it was actually a M3.4 earthquake. Replay around this time shows that

at least two events ∼200 km apart occur within 15 seconds of each other, which may have confused

the EEW system. We ran the particle system algorithm during this period of time using 2,000

particles. Screenshots for one of the runs are shown in Fig. 5.9. The labeled times correspond to

seconds since first detection of the first event. While the algorithm is able to compute and determine

in real time that the two events did not originate from the same source, and converges within a couple

seconds on the estimates, the variance between runs are quite large, as shown from the compiled

results in Fig. 5.10.

1SAC format: http://www.iris.washington.edu/software/sac/manual/file_format.html

http://www.iris.washington.edu/software/sac/manual/file_format.html
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March 20, 2011 — Two Events. Another instance during which false warnings were issued

happened at 14:20:6, on March 20th, 2011. In this case, the EEW system estimated a magnitude

of M7.6, 6.6 seconds after initial detection. The magnitude was later corrected to M4.3. Again,

from replays of the records, the incorrect estimate can possibly be attributed to two events ∼150

km away from each other, occurring 5 seconds apart (Fig. 5.11). Fig. 5.12 and Fig. 5.13 show that

the particle filter algorithm is able to separate the two events and converges quickly in estimates for

the later event (Event B as labeled in Fig. 5.12), though it has more difficulty with the first event

(Event A). This is likely due to the lack of sensor density and that the event was weak and offshore.

5.4 Discussion

We discuss in this chapter a series of challenges and solutions regarding parameter estimation in the

presence of multiple geospatial events. We also present a particle filter based algorithm and approx-

imate implementation for earthquake classification. While this approach demonstrates promising

performance in initial case studies, there are several areas where it can be improved.

• The design of a likelihood function assumes that the sensors can be noisy and unreliable, and,

as a result, utilizes only the maximum displacement information. This design, while simple,

does not allow for easy incorporation of transient responses. Cua & Heaton, in [24], propose

a likelihood function that utilizes six channels of information, i.e. maximum acceleration in

x, y, z direction, velocity, and displacement. If high quality sensors are available, combining

this with the parametrized transient ground motion, as described in [26], may lead to better

estimation performance.

• The regularized particle filter approach circumvents the need for intensive computation that

traditional grid search requires for poorly-defined parameter space. However, selecting a good

prior and choosing a suitable number of particles are crucial for the performance. Some of the

slow convergence and high variance results in Sec. 5.3.2.2 may be attributed to lesser choices

in these parameters. As mentioned in Sec. 5.3.2.1, prior distribution can be acquired from

historical record. Alternatively, initial measurements can be used to construct such a prior as

with the integrated algorithm introduced in Chapter 3.

• The performance of parameter estimation for multiple seismic events is limited by how well one

can model the ground motion when multiple wavefronts collide. In the algorithm proposed

in Sec. 5.3.2.1, this problem is ignored. While the omission makes little difference in the

case studies where the events are far enough apart (> 100km), if we want to apply the same

technique to separate from the mainshock aftershocks that are close in time, then such a model

must be considered.
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• The approximate method is proposed with computational efficiency in mind, such that it scales

linearly with the number of events. However, for events very close together in time and space,

the performance may suffer, as only single point estimates from other events are used in the

update iteration. Given that the probability is extremely small for having more than two

events of independent sources occurring close in time and space (not including aftershocks), it

may be feasible to use a full scale particle filter with a maximum event number of two.

• While experiments in Sec. 5.3.2.2 utilize only ∼180 JMA stations in Japan, there are another

∼800 small-motion stations managed by the National Research Institute for Earth Science and

Disaster (NIED). These stations are less robust than the JMA ones, but are much greater in

number and coverage. As an example, Fig. 5.14 shows instantaneous accelerations measured by

the JMA stations and JMA+NIED stations combined. It is clear from the acceleration plot that

the combined network gives much more information and resolution about an event. It can be

expected that by including heterogenous stations in the computation, the quality of estimates

and the convergence rate can be improved. In addition, the integration is straightforward with

the Bayesian framework. We will study the problem of retrieving useful information from a

large number of lesser quality sensors in Chapter 6.
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Figure 5.6: Series of visualizations of 1,000 particles for single event estimation. Red and blue colors
represent high and low probability. The hypocenter determined by JMA is marked as a black cross.
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Figure 5.7: Tohoku M9.0 earthquake. Quality of parameter estimates as a function of time since
the event is detected by the first station. The results are compiled from 15 independent runs and
plotted using standard deviation as the error bar. The exact event parameters determined by JMA
are [latitude longitude depth magnitude t0] = [38.1 142.8 23.7 9.0 18.0]. These values are shown as
red dotted lines in the plots. The estimates from the PF approach compare well with the official
record.

(a) EEW location estimates (b) Real-time EEW record

Figure 5.8: Real time warnings issued by JMA at 1:36:05, on March 15, 2011. The magnitude
was over estimated by an order of 3, most likely because the two smaller events 14 seconds apart
were associated together. [Source: http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/

20110315013605/content/content_out.html].

http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110315013605/content/content_out.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110315013605/content/content_out.html
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Figure 5.9: 2,000 Particles visualized between 1:36:05 and 1:36:35 on March 15th, 2011. The labeled
time correspond to seconds elapsed since first detection. The two events are labeled in (d) for
references. Both events converge within a few seconds since first detections.
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Figure 5.10: Results compiled from 20 independent runs for the period 1:36:05-1:36:35 on March
15th, 2011. Events are labeled according to Fig. 5.9. Location estimates are within a reasonable
error range; however, the magnitudes are generally underestimated.

(a) EEW location estimates (b) Real-time EEW records

Figure 5.11: Real time warnings issued by JMA at 14:19:55, on March 20, 2011. The magnitude was
over estimated by and order of 3, most likely because the two small events that happened 5 seconds
apart were associated together. [Source: http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/

joho/20110320141959/content/content_out.html]

http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110320141959/content/content_out.html
http://www.seisvol.kishou.go.jp/eq/EEW/kaisetsu/joho/20110320141959/content/content_out.html
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Figure 5.12: 2,000 Particles visualized in the period between 14:19:55 - 14:20:25 on March 20th,
2011. The two events are labeled in figure (d) for references. Event B converges within a couple
seconds, whereas Event A takes much longer, most likely because it was much weaker and offshore.
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Figure 5.13: Results compiled from 20 independent runs in the period between 14:19:55 - 14:20:25
on March 15th, 2011. Post event estimates provided by JMA are marked in dotted lines. Location
estimates for event B agree well with the official catalog, but this is not quite the case for event A,
possibly because event A was weaker and occurred offshore.
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(a) JMA stations only

(b) JMA + NIED stations

Figure 5.14: Snapshot of accelerations measured by (a) JMA stations only and (b) JMA+NIED
stations at 1:36:26 on March 11 2011. There are ∼200 JMA stations and ∼800 NIED stations in
Japan. Clearly, the combined network yields much richer information and better resolution for the
observation of an event.
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Chapter 6

Scalable Detection in Large Noisy
Sensor Networks

The use of sensors in personal consumer devices has reduced the price of sensors to the point where

networks of thousands and even millions of sensors are feasible. Dense networks of crowd sourcing

sensors enable geospatial phenomena, such as earthquakes, to be monitored at a finer resolution

than that by traditional sparse networks of high quality sensors [33, 23, 22]. The drawback is

that these inexpensive sensors, limited by their costs, produce lower quality data. An important

question to consider when designing a crowd-sourced networked sensing system is ”can quantity

compensate for quality?” In this chapter, we address this questions by exploring different data

aggregation techniques for improving detection performance in large noisy networks. We start by

giving examples of large-scale community-based participatory networks.

Participatory sensing. Examples of participatory sensor networks include accelerometers and

GPS devices in taxi cabs for pothole detection [32] and road conditions [90], and for inferring collec-

tive daily life patterns in big cities [36]. Another example is the iShake project that employs smart

phones as sensors to monitor the response in the event of an earthquake [2]. The Quake-Catcher

Network (QCN) is a similar project that uses standalone MEMS devices for quick deployment after

a major earthquake [23]. Most of these applications crowdsource a large amount of data through

inexpensive sensors to improve environmental awareness, and to model changes that aid in scientific

studies, e.g. develop a map of road conditions. In this chapter, we focus instead on a more rarely

visited facet of participatory sensing; we study algorithms that warn about events, such as virus

outbreaks [81] and earthquakes [84].

Community Seismic Network. A motivating example for this study is the Community Seismic

Network (CSN) 1. This project takes advantage of inexpensive standalone USB and smart phone

accelerometers to build a large community sensor network in southern California. As of November

1http://csn.caltech.edu

http://csn.caltech.edu
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Figure 6.1: CSN clients map captured on November 26, 2012. Each box consists at least one CSN
sensor. There are, on average, 250 sensors active in the whole southern California area at any given
time.

2012, there are, on average, 250 stations active at any given time. Fig. 6.1 shows a real-time

sensor distribution captured on November 26, 2012. Acceleration is measured at each sensor and

“abnormal” activities are communicated to distributed cloud servers for processing. Since September

2011, the network has detected all 14 seismic events of M3.0 and above.

Challenges. Working with networks of massive size and scale is challenging for several reasons.

• Electronic noise: Sensors that can be widely distributed tend to trade precision for price. For

example, the GPS location provided by a smart phone will not be as accurate as that provided

by most standalone GPS devices. Sensors of lower quality have higher inherent electronic noise

that yields lower quality data.

• Ambient noise: Such large numbers of geo-spatially dispersed sensors cannot be handled by

a few professionals; instead community participation must be called into action. If the sensors

are managed by untrained volunteers, depending on the installation method, the level of noise

to which the sensor is exposed may vary drastically. For example, an accelerometer installed

on an unstable table top in a household with small children will have very different noise profile

than a professional seismometer sitting in a vault 10 feet underground.

• Data processing: The network infrastructure and algorithms need to handle continuous data

processing from a massive number of heterogeneous sensors. In addition, community sensor

networks may experience large fluctuations in sensor number and settings at any given time.

For example, sensors inside a smart phone will report a different location if the user is moving.

It may also be taken off the network any time when the phone is turned off.
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Contributions and chapter organization. The system infrastructure and the algorithms

running on it must be robust to all three challenges. In the rest of this chapter, we address these

issues with a focus on detection, using the example of an existing community sensor network — CSN.

We begin with the introduction of a scalable sensing model that will be used throughout the chapter

(Sec. 6.1). We then describe, in the order of increasing complexity, intuitive aggregation algorithms

for processing geospatial time-series data with the goal of improving detection performance (Sec. 6.2).

Lastly, we show that by establishing the link between improved detection and existing sparsity-

inducing optimization routines, we can construct a linear transformation for detection that exploits

sensor correlation. This study leads to learning algorithms that outperforms several state-of-the-art

algorithms (Sec. 6.4).

6.1 Sensing Model

Depending on the system architecture design, there are, in general, two types of sensing models —

streaming and compressed. The two models were briefly introduced in Sec. 1.3.1. Here we give a

formal definition.

6.1.1 Streaming — Centralized Detection Model

Each sensor i monitors the environment continuously and reports its observation yi to a fusion

center.

yi = xi + εi

xi is the uncorrupted event signal observed by sensor i. Let E be a random variable that takes the

value 1 if there is an event and 0 otherwise; we assume that

xi ∈

{R
+,R−} E = 1

{0} E = 0

The electronic noise and ambient noise of a sensor i are modeled as a single noise term εi ∼ N (0, σ2).

This is a simplification, as εi is time and environment dependent. Without loss of generality, we can

further assume that all sensors experience the same amount of noise εi = ε,∀i = 1, . . . , p

6.1.2 Compressed — Distributed Detection Model

In a massive sensor network, it is infeasible for two reasons for each sensor to constantly stream raw

measurements to the fusion center. First of all, data streaming draws a significant amount of power.

If the sensor is contained in a mobile device such as a smart phone, then it is unreasonable to leave
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the volunteer with a drained battery within a few hours. Second, and more importantly, processing

continuous raw measurements from a massive number of sensors puts tremendous demands on the

fusion center and its network capacity. With these constraints, it is advantageous to distribute the

computation from the fusion center to each sensor such that the sensors only communicate with

the fusion center when something abnormal occurs (an anomaly). The process for determining

abnormality is usually referred to as anomaly detection or picking, and has been studied in previous

work such as [68] and [34]. We model the resulting data stream as the following under this operation

mode:

Let xi be the uncorrupted binary variable that indicates whether a sensor i detects during an

event between t− 1 and t.

xi =

1, E = 1

0, E = 0

At time t, sensor i does local computation to determine the value of a binary random variable

yi that indicates whether something abnormal has happened.

yi =

xi with probability 1− π

1− xi with probability π,

Here the electronic and ambient noise are now modeled as a binary channel noise π, i.e. a random

bit flip incurred with probability π. Systems in which sensor errors are asymmetric, e.g., where the

probability of a false positive is higher than that of a false negative, may give better results. The

theory developed here can be extended for that case in a straightforward way.

In this model, sensors only communicate to the fusion center when yi = 1. At time t, the fusion

center observes a vector yt = [yt1, y
t
2, . . . , y

t
p]
T ∈ {0, 1}p, yti = 1 if a message from sensor i is received

between time t− 1 and t. We will use this model for the rest of the chapter.

6.2 Cell-Based Data Aggregation

Detection of complex geospatial events is difficult with community sensors. Aside from the challenges

mentioned in the beginning of this chapter, the event signal can be so weak that both single sensor

statistics (i.e. maxi yi > τ) and naive network aggregation (i.e.
∑
i yi > τ) fail to separate it from

background noise. The signal-to-noise (SNR) ratio can be improved by grouping sensors that are

spatially close and performing detection test on the aggregated data within each group. The amount

of improvement in detection performance can be visualized with a simple example.

Suppose there are 100 sensors distributed uniformly in 10 cells. We assume that all sensors in
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Figure 6.2: Illustration of simple data aggregation to improve detection performance. Both single
cell and cell-based regional aggregation algorithm improve detection performance over single sensor
statistics and networkwide total aggregation when observing a weak event that is only observable in
part of the network.

the same cell observe the same background noise and the same event signal, i.e. the sensor readings

can be treated as independently identically distributed random variable. Now suppose a weak event

that is only observable in 2 out of 10 cells. Fig. 6.2 shows that while the null hypothesis H0 and

the alternative H1 are inseparable using single sensor statistics (Fig. 6.2(a)) and the network-wise

naive aggregation (Fig. 6.2(b)), it is more separable with the single cell-based data aggregation

(Fig. 6.2(c)). A very simple way to implement the cell-based aggregation method is to partition the

space into non-overlapping cells and identify for each sensor which cell it belongs to. This can be

done efficiently with libraries such as the geocell library as described in [70].

6.3 Exploiting Spatial and Temporal Correlations

The single cell-based aggregation algorithm may not be the optimal detection strategy. For example,

in the application of seismic detection, depending on the hypocenter location relative to the network,

the seismic wave may affect more than one cell at a time. In such a scenario, the SNR can be further

improved by aggregating data from the right groups of cells that tend to experience the first shakings
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together (“co-activated”). Using the same example as in Sec. 6.2, Fig. 6.2(d) shows that combining

data from two cells further increase the separability betweenH0 andH1. The choice of cell groupings

may require human insights on the spatial and temporal relationship of the phenomenon, or can be

learned from data, as we will discuss in the next section. Here, let us assume that the phenomenon

is well characterized and we will show how detection performance is improved by exploiting this

knowledge.

6.3.1 Cell-Based Regional Data Aggregation

A geospatial event can be very coarsely modeled as an isotropic point source event that travels in

all directions at a constant speed. With this assumption in mind, we can break down the detection

problem into a few case scenarios in terms of how the manifestation of the event comes into contact

with the identified clusters of sensors. By exploiting sensor co-activation patterns in these scenarios,

one can design a more efficient on-line event detection algorithm.

Continuing with the earthquake detection example, Fig. 6.3 shows three such possible cases after

we pre-gridded the area into cells — (a) the epicenter is inside the cluster, (b) the epicenter is

diagonally away from the cluster, and (c) the epicenter is on the side and away from the cluster. In

each of these cases, regions of different sizes and shapes will be activated in different sequences during

an event. While it is computationally nontrivial to partition a 2-dimensional space into arbitrary

regions, there exists libraries that compute these geospatial regions efficiently [70].

We denote a collection of sensors in each cell-based region as c. A sensor i is in a region (or

cluster) c if i ∈ c. Note that each sensor can belong to more than one region. The test computes

the ratio of likelihood for the two hypothesis: a) that there is an event (E = 1), and b) that there

is no event (E = 0). Assuming the distributed detection model described in Sec. 6.1, we perform

following test for each region c
Binomial(k; |c|, E = 1)

Binomial(k; |c|, E = 0)
≥ τ (6.1)

where k = ‖y(1c)‖0, 1c is the support for cluster c. τ is the decision threshold chosen to satisfy

a constraint on the system false positive rate. If the inequality holds for any cluster c, the system

declares detection.

In a simulation setting, we compute the system-wide detection performance for each of the scenar-

ios illustrated in Fig. 6.3 (shaded in different colors) with either 20 Phidgets (16-bit accelerometer)

or 2000 Androids (12-bit accelerometer), distributed according to the population density in the area.

The regions, in terms of activation sequence, are identified a priori using a geocell library [70]. A

region consists of multiple nearby geocells. Each geocell is ≈ 10 × 10 km2 in size, which is approx-

imately how far the shock wave travels in two seconds. We can then assume that all sensors in the

same region have roughly the same SNR and model them as independently identically distributed
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random variables. In each time step of two seconds, we perform hypothesis testing on each of the

regions and compute the system-wide ROC curves. We compare this algorithm to a naive network-

wide aggregation scheme, which performs the same test as in Eq. (6.1) with c being the region that

includes all geocells.

6.3.2 Simulation Experiments

We collect 1000 sets of simulated measurements from 2000 Androids (lower quality sensors) and 20

Phidgets (higher quality sensors) separately during a M5.5 event within 60 km of downtown Los

Angeles. During a period of T = 0 − 10 seconds after the event occurs, we perform the cell-based

regional aggregation algorithm on each two-second interval. The results are compared to the naive

networkwide aggregation algorithm discussed above.

Fig. 6.4(a) shows an example of how ROC curves of 2000 Androids evolve in time for the corner

case illustrated in Fig. 6.3(b). We slice the surface of this figure at the false alarm rate of 1 per year

and retrieve the detection rate as a function of time. The results in Fig. 6.4(b) and Fig. 6.4(c) show

that cell-based regional aggregation reaches 0.99 true positive rate on average six seconds faster than

the naive network aggregation for both Android and Phidget sensors.

The improvement in detection time clearly highlights the benefit of selective regional data ag-

gregation. It also showcases the tradeoffs between delayed decision making and gain in detection

confidence. In the case with 2,000 Androids (Fig. 6.4(b)), we can initiate alarm at T=2 seconds that

allows us to give tens of seconds of early warning to surrounding cities, such as Santa Barbara, CA

or San Diego, CA, but with only 20% confidence. Or we can wait till T=10 second or after to issue

the alarm with ∼ 100% confidence.

With the strong assumptions on simple geometry about a highly complex geospatial event such as

earthquake, this study serves to provide insights on how intelligent grouping of correlated sensors can

improve detection performance. We will further explore in the next section how these correlations

can be constructed automatically without domain expertise about the phenomenon.

6.4 Learning Sensor Correlations for Detection

In Sec. 6.2 and Sec. 6.3, we considered different methods for reliable detection of geospatial events

in large community sensor networks and showed that, while the signal to noise ratio may be small in

the network as a whole, by organizing the correlated sensors into groups and comparing the linear

combination of sensor data in each group, we can improve detection performance. Next, we formalize

the idea that the signals can be concentrated via grouping, and present a class of algorithms that

learn from historic or simulated data how to form such groups to guarantee improved detection.
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(a) Central Model (b) Corner Model

(c) Side Model

Figure 6.3: Regions of different sizes and shapes are activated in different sequences for each of the
three scenarios. The rainbow-colored rings indicate the order of activation. Red: first. Purple: last.
Hypothesis testing on aggregated measurements within each region improves detection performance
in comparison to naive network aggregation.
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(a) Surface plot of ROC curves as a function of observation time for the
corner scenario with 2000 Androids.
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(c) 20 Phidgets

Figure 6.4: Detection of a M5.5 event with (b) 2,000 Androids and (c) 20 Phidgets in the three
scenarios illustrated in Fig. 6.3. The detection rate (true positive rate) is computed to guarantee at
most one false alarm per year at the system-wide level. Results computed using the geocell-based
association algorithm are compared to those using the naive network-wide aggregation algorithm.
Setting a desired detection rate at 0.99, it is clear that by exploiting the prior knowledge on sensor
correlations, we can, on average, detect 6 seconds faster.
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6.4.1 Sparsifying Basis

As a review, a basis can be viewed as a transformation that maps the original signal into a different

coordinate system by multiplying the signal matrix with a basis matrix. Intuitively speaking, if a

transformed signal is “simpler” in this new coordinate system (i.e. has fewer non-zeros terms which

means the original signal can be represented with fewer components than its original dimension),

then we say the signal is sparsifiable and the basis is sparsifying. More concretely, if x is the signal

vector, and B is a sparsifying basis, we have ||BTx||0 � ||x||0.

One way to construct a sparisifying basis is through hierarchical clustering [82, 53]; when two

smaller clusters cl, cr are merged into a new cluster in the clustering process, a basis element bi is

created by taking the unit vector defined over cl and cr

bi ∝
(

1

|cl|
1cl −

1

|cr|
1cr

)
(6.2)

where 1c is the support for cluster c. p− 1 basis elements are created in this way with p− 1 merges

during the hierarchical clustering process. The pth basis element is defined by the equivalence of a

global average.

bp =
1
√
p
1p

All the column basis elements b1,b2, . . . ,bp form an orthonormal matrix. This haar wavelet-like

basis is shown to be sparsifying for event signals generated according to a latent tree model [82]. It

was further shown that the sparsification leads to improved detection under weak signal and strong

noise for both tree-structured [82] and graph-structured activation patterns [53] such that the null

hypothesis H0 is better separable from the alternative H1 with high probability as the number of

sensor p goes to infinity.

The link between sparsity and improved detection was further strengthened in [35] when Faulkner

et al. introduced the “sparsification ratio” ||x||0
||BTx||0 and showed how it affects asymptotic detection

performance. The next section develops upon this idea to explore other possible sparsifying bases.

6.4.2 Learning Sparsifying Basis

Results in [35] show that if an event is “sparsifiable”, then it is possible to construct a linear transfor-

mation matrix B that projects the original measurements onto a simpler (“sparser”) representation

in a different coordinate system that better separates H0 and H1, even in the presence of strong

noise. The haar wavelet is an example of such a sparsifying basis, assuming that the data has

certain structured dependencies. For other types of data, can we still construct similar sparsifying

bases? More importantly, can we learn such bases from data without imposing assumptions on data

dependencies?
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Figure 6.5: Smooth `1 approximation functions used in ICA with the linear `1 penalty function
plotted in blue solid line.

Let B be an orthonormal matrix and x a vector of uncorrupted binary activations, Theorem 1 in

[34] states that the sparsification ratio ||x||0
||BTx||0 directly impacts the amount of separation between

H0 and H1. In fact, given that ||x||0 is fixed, the two hypotheses are maximally separated when the

transformed ||BTx||0 is minimized. In other words, we can construct the optimal basis by solving

the following optimization problem:

arg min
B

||BTX||0, subject to BBT = I (6.3)

where X is a matrix that contains binary observations x as its columns and || · ||0 is the sum of

non-zero elements in the matrix.

However, direct minimization of ||BTX||0 is NP-hard in general [27] and the `0-norm is often

relaxed and replaced with the continuous `1-norm [17], which is also a common sparsity measure.

The optimization task in Eq. (6.3) can then be approximated as

arg min
B

||BTX||1, subject to BBT = I (6.4)

where || · ||1 is the maximum absolute column sum of the matrix.

Direct approximation. Eq. (6.4) can be directly approximated by Independent Component

Analysis (ICA), which solves the following optimization problem

arg min
B

G(BTX), subject to BBT = I (6.5)

where G is a nonlinear convex smooth approximation to the `1 penalty function, e.g. log cosh(x),

− exp(−x2/2), and x4 [46]. Fig. 6.5 illustrates these functions in relation to the linear penalty

function.
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Eq. (6.5) can be solved with stochastic gradient algorithm by taking the derivative of G. However

this approach is often slow and requires fine tuning; this leads to the development of “FastICA”,

an efficient fixed-point algorithm. Implementation details of FastICA and in-depth analysis can be

found in [46]. Let g = G′, the one unit algorithm for FastICA is given in Alg. 2 for completeness.

Algorithm 2: ICA one-unit solution

b← random unit vector
while b not converged do

b← E
[
xg(bTx)

]
− E

[
g′(bTx)

]
x;

b← b/ ‖b‖;

There exists two variations of FastICA, both of which use Alg. 2 as subroutine. The deflationary

orthogonalization greedily finds and fixes one component bi at a time. The symmetric orthogo-

nalization finds all components bi,∀i = 1, . . . , p and orthogonalizes all of them at the end of each

iteration [45]. While the symmetric approach utilizes parallelization and is multitudes faster than

deflationary approach, the latter gives much better results empirically.

Noise-tolerant relaxed approximation. Ideally, we want to learn from noise-free observations

X. However, training data constructed from real-world measurements often contain noise or outliers,

and, instead, we are forced to train with Y, which is the observation matrix X corrupted with noise.

In such cases, optimizing BTY as in ICA may lead to the discovery of false correlations. Alternatively,

we introduce a latent sparse matrix Z and relax the problem in Eq. (6.4) to the following formulation:

arg min
B,Z

‖Y −BZ‖2F − λ‖Z‖1, subject to BBT = I (6.6)

where || · ||F is the Frobenius norm or the squared root of the sum of element-wise squares.

Z can be viewed as the underlying sparse data representation in the transform domain. In other

words Z = BTX. With this insight, Eq. (6.6) essentially balances the difference between Y and X

and the sparsity of Z via tuning of the sparsity penalty constant λ, providing resilience to noise.

Although Eq. (6.6) is non-convex, fixing either B or Z makes the objective function with respect

to the other convex. The objective can then be solved in an iterative two-step convex optimization

process — Orthogonal Procrustes [38] and LASSO with orthonormal design [12]. The two-step

procedure is given in Alg. 3 for reference. The formulation of Eq. (6.6) and the solution in Alg. 3

is equivalent to Sparse Latent Semantic Analysis (SLSA) [19], which was introduced for applications

involving topic models. Here we adopt the name for consistency.

6.4.3 Implementation Issues

In this section, we describe practical issues necessary for using a sparsifying basis for event detection

in real-world sensor networks.
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Algorithm 3: SLSA two-step convex optimization procedure

Step 1: Orthogonal Procrustes
Fix Z, solve minB ||Y −BZ||2F , : BBT = I
M ← YZT ;

M = UΣV T ;
B← UV ;

Step 2: LASSO with orthonormal design
Fix B, solve minZ ‖Y −BZ‖2F + λ‖Z‖1
K ← ZTY;
Z← sign(K)×max(|K| − λ);

Basis learning with insufficient training data. Learning a basis for p sensors requires at

least p measurements of the network. If this is not available (e.g. a seismic network with 1,000

sensors may not yet have observed 1000 earthquakes), then simulations provide a practical way to

supplement real data. One advantage of using simulations in this way is that while simulations may

be slow and computationally intensive, the learned basis produces a fast and efficient detection rule.

In Sec. 6.4.4, we empirically assess the amount of data required to train a good basis and present

two case studies using only data generated from simulations.

Selecting the detection threshold. An event is reported whenever |bTi y| ≥ τ for any non-

constant bi ∈ B. The threshold τ is typically chosen as a value that satisfies constraints on the false

positive rate during cross validation with the historical data of event observations. This approach

does not rely on positive training examples, and so a threshold τ can be learned using only the noise

profile of each sensor. Suppose sensors i = 1, 2, . . . , p have binary error rates π1, . . . , πp, we have

E
[
|bTy|

]
=
∑p
i biπi. Given that the basis is orthonormal, under H0, Hoeffding’s Inequality states

that

P
[
|bTy| > τ

]
≤ exp

(
−2
(
τ − E

[
|bTy|

])2)
.

By setting the right hand side to a false positive rate constraint, we can easily derive a threshold

that satisfies the system requirement. In particular, in order to ensure that |bTy| ≤ τ for all b ∈ B

(i.e., no false alarm happens) with probability at least 1− δ, it suffices to choose

τ = max
b∈B

E
[
|bTy|

]
+

√
1

2
log

p

δ
.

This approach is similar in flavor to the threshold selection method in [34].

6.4.4 Experiments

We empirically evaluate the detection performance of the three sparsifying bases: SLSA, ICA, and

hierarchical wavelets (haar) trained and tested on both simulated and real measurements in different
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domains. The experimental setup is summarized here.

Baseline algorithms. We compare against

• avg: network-wide average, 1/p
∑p
i yi;

• max: single sensor maximum, maxi yi;

• SS-k: scan statistics that aggregates the k-nearest neighbors for each sensor [66];

• SS-r: scan statistics that aggregates all sensors within a radius r for each sensor [66].

Evaluation data sets. The data sets include

• Synthetic data from latent tree model, 1296 nodes;

• Gnutella P2P network: 1769 nodes;

• Japan seismic network: 721 nodes;

• CSN seismic network: 128 nodes;

• Long Beach seismic network: 1,000 nodes.

Evaluation metrics and goals. We adopt two metrics in the evaluation of detection performance:

• AUCf : measures the area-under-curve (AUC) in the Receiver Operating Characteristic (ROC)

curve only for false positive rates between 0 and f, f ≤ 1. The integral AUCf takes values

in [0, f ] and is normalized to 1 for simplicity. E.g. AUC0.05 = 0.8 shows that the detection

performance reaches 80% of the optimal under the false positive constraint of five false alarms

in 100 tests.

• Detection time: the time it takes for the test statistics to exceed a threshold that is selected

to satisfy a certain system false positive requirement.

6.4.4.1 Synthetic Network

We generate samples from the latent tree model for network activation as described in [35]. The

tree contains p = 1296 leaf nodes with degree d = 6 and depth L = 4. We choose the sparsifying

parameters α = 0.5 and β = 0.95 so that that the expected number of total activations ||x||0 <
√
p.

Of the three bases, haar is constructed from the known tree model whereas ICA and SLSA are

trained with 20,000 samples drawn from the model. The bases are tested on 20,000 separate samples

corrupted with Gaussian or binary channel noise.

Fig. 6.6 shows that all three bases outperform the naive baselines under both Gaussian and

binary noise. Note that, perhaps surprisingly, both the learned ICA and SLSA outperform haar even

though the latter is constructed from the known latent tree model.

Next we study how the network size and the number of training samples affect the quality of

learned basis and detection performance.
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Figure 6.6: Comparing the three bases — SLSA, ICA, haar to baselines — global average (and
single max in (a) and (b)) on a synthetic data set generated from the latent tree model. The first
and second row evaluate two different false positive constraints. The learned bases significantly
outperform the baselines under strong noise.

Increasing network size. We perform basis learning with subsets of the network, using p =

[36, 72, 108, 216, 432, 648, 864, 1080, 1296] sensors and n = 20000 training samples. Fig. 6.7 shows

that the detection performance of the learned bases grows more than five times faster than the

baseline. Note that haar is now learned from data; this accounts for the slight inferior performance

compared to that in Fig. 6.6.

Increasing number of training samples. With the network size fixed, we learn the bases

for increasing numbers of training samples n = [20, 100, 200, 1000, 2000, 4000, 10000, 15000]. Fig. 6.8

shows that haar outperforms at smaller training size since it assumes a simple hierarchical structure.

It also shows that it takes only 2,000 samples for ICA and SLSA to achieve the same detection

performance as using all 20,000 samples.

Training time. Fig. 6.9 plots the time it takes to train the three bases in the above experiments.

ICA takes roughly 5-10 times longer to train than SLSA.
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Figure 6.7: Detection performance as a function of network size p =
[36, 72, 108, 216, 432, 648, 864, 1080, 1296] using all 20,000 training samples. (a) and (b) show
that the detection performance of the learned bases grows more than 5x faster than the baseline.

6.4.4.2 Gnutella P2P Network

Our next set of experiments is on simulated virus outbreaks on a peer-to-peer network. We obtain a

snapshot of the Gnutella P2P file sharing network2 through the Stanford Network Analysis Project

(SNAP). 1769 nodes of the highest degree of connectivity were selected from this network for the

experiment. Fig. 6.10 visualizes part of this sub network. We simulate 40,000 outbreak events

– “cascades” – that mimic virus outbreaks on this directed network. We adopt the independent

cascade model, where a starting node is picked at random, and whenever a node r is infected, a

connected node w is infected with decreasing probability as a function of distance to r.

Here haar is constructed as a spanning tree wavelet basis, assuming known network structure

[53] using Wilson’s uniform spanning tree (UST) sampling method on a directed graph via random

walk [86]. We also apply baseline SS-k is for reference. k is selected based on the prior knowledge

that in the cascade model on average between 10 and 30 nodes are activated in each event.

Fig. 6.11(a) and Fig. 6.11(b) compare the detection performance evaluated on 40,000 testing

samples. Both SLSA and ICA demonstrate superior detection performance compared to the state of

the art algorithms that use additional prior knowledge of the network.

6.4.4.3 Japan Seismic Network

Next we turn to perhaps one of the most robust and long-running sensor networks in the world –

the Japan seismic network. We obtain 48-hour, 150 GB of recordings from 721 Hi-net seismometers

(locations shown in Fig. 6.12(a)) for the dates March 18 and 19, 2011, just one week after the

Tohoku M9.0 earthquake on March 11, 2011. On both days, over 1,000 events that ranged from

2http://snap.stanford.edu/data/p2p-Gnutella05.html

http://snap.stanford.edu/data/p2p-Gnutella05.html
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Figure 6.8: Detection performance as a function of training data size. (a) and (b) show that it only
takes approximately 2,000 samples for both ICA and SLSA to achieve the same performance as using
all 20,000 samples.
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Figure 6.9: Training time comparison. On average, ICA takes 2-10 times longer to train than SLSA

in both experiments with network size and with training sample size.

M1.0 - M6.0 were recorded in the the Japan Meteorology Agency catalog3. Many events triggered

clustered activations as observed in Fig. 6.12(b).

For all 1795 events recorded on March 18, 2011, 10 snapshots of network activations at a two-

second period were taken after the first detection at each event to construct the training data set of

[p x n] = [721 x 17950]. The learned bases are tested on the first one-second data of the 1324 events

recorded on March 19, 2011. We added binary noise of different error rate to control the problem

complexity.

For the comparison with the SS-r baseline, the aggregation distance r is selected to be 20km

which is roughly the distance covered by the seismic waves in a 2-second period. Fig. 6.13 presents

3http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en

http://www.hinet.bosai.go.jp/REGS/JMA/?LANG=en
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Figure 6.10: Visualization of ∼ 1/10 the total network with a sample activation pattern colored.
Blue: first infected node, Red: nodes subsequently infected through the cascade.
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(b) Binary noise

Figure 6.11: Experiment with Gnutella P2P network. (a) and (b) show that the learned bases achieve
and exceed the state of the art algorithms that use additional prior knowledge of the network.

the performance in detecting within two seconds of event arrival under a very small false positive

constraint of 0.001. Of the three learned bases, both ICA and SLSA show significant gain in detec-

tion power, whereas haar has no improvement over the avg baseline. Perhaps surprisingly, SS-r20

performs very poorly in comparison. An explanation is that most of the events during this period

originated from the ocean and affected an array of stations along the coast. However, this pattern is

not captured by the fixed radius subset scan construction. This explanation is supported by the plot

of four prominent basis elements from ICA in Fig. 6.12(c). This example demonstrates the limited

detection capability of subset scan for unknown patterns, and the power of learning-based detection

algorithms such as ICA and SLSA.
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(a) 721 Hi-net stations in Japan (b) Clustered activations are frequent in the period of the
experiment.

basis 8

basis 5

basis 3

basis 4

(c) Four prominent ICA basis

Figure 6.12: Japan’s seismic network. The 721 Hi-net stations in (a) frequently exhibit localized
activation patterns as circled in (b), which plots raw accelerations (red: large shaking, blue: small
shaking). The learned bases are able to capture these nonlinear patterns with basis elements such
as the ones in (c).
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Figure 6.13: Japan data detection results. The learned bases demonstarte 2x better detection
performance compared to the baselines, while algorithms with hard-coded patterns, such as SS-r20,
fail to perform well.

6.4.4.4 Dense and Participatory Seismic Networks

Lastly, we return to our motivating examples of dense participatory sensor networks, using two

real-world dense seismic networks in Southern California as examples. We show that bases can be

learned using earthquake simulators to generate the binary activation patterns for training and select

detection thresholds based on a sensor noise profile, as discussed in Sec. 6.4.3. Given the shortage

of testing data – only a small number of events have been recorded by these networks, not enough

to reliably compute AUC scores – the detection performance is evaluated in terms of detection time

as described in the beginning of this section. This measure of time is critical to many applications;

sub-second savings may prevent a huge loss of capital and lives.

Generating training data. To generate training data, we use a basic earthquake simulator.

First, a prior distribution of seismic events in Southern California is constructed from a list of historic

earthquakes (Fig. 6.14) compiled from the USGS database4. Training data is generated by randomly

sampling a hypocenter from this distribution, and then simulating sensor detections. Time sequences

of sensor activations are generated from a model based on the speed of seismic waves and distance to

the hypocenter. This model is simplistic, but it executes quickly. An activation probability similar

to that in [56] is used to simulate signal attenuation for unreliable noisy sensors.

Community Seismic Network. We simulate network activation snapshots for 128 Community

Seismic Network [22] sensors based on 1000 random simulations as described above. The algorithms

are evaluated with four recent events recorded by the actual network, as shown inFig. 6.15(a).

Fig. 6.15(b) shows that the learned bases generally achieve faster detection than do other algorithms,

4http://earthquake.usgs.gov/earthquakes/eqarchives/epic/

http://earthquake.usgs.gov/earthquakes/eqarchives/epic/
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Figure 6.14: Quakes in southern California since 1973

e.g. 8 seconds faster in detecting the Beverly Hills event. Note that ICA performs better than SLSA,

as simulations are noise-free.

Long Beach Array. The Long Beach network consists of approximately 5000 sensors that cover

an area of 5 x 7 km2. The network was deployed for six months during the first half of 2011 to

provide detailed images of the Signal Hill Oil Field in Long Beach, California. During the deployment

period, a total number of five detectable earthquakes were recorded by the network, as shown in

Fig. 6.16(a). Fig. 1.1 is a visualization of one of these events.

We take a subset of 1,000 sensors and train the sparsifying bases with 2,000 simulated events.

The results in Fig. 6.16(b) show that the learned bases detect on average 0.1 second faster, especially

for the more difficult events that are smaller and further away. This saving in time is significant,

considering that it takes only about one second for the quake to travel through the network and

only 0.5 seconds for the network to be saturated with signals.

6.5 Discussion

The problem of detection in sensor networks has been widely studied in many application domains;

however, little work has been done in the setting of large, dense noisy networks that are feasible

with the advance of powerful mobile computing and sensing devices. In this chapter, we explore

the simple idea that grouping data from highly correlated sensors improves the signal to noise

ratio (and thus detection performance). We also present several scalable algorithms of increasing

complexity for efficient grouping that either exploits prior knowledge of the event type or learns
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(b) Detection time comparison

Figure 6.15: CSN network. (a) plots the layout of 128 sensors and epicenter of four recorded events.
(b) The learned bases detect on average several seconds faster than the baselines under the constraint
of, at most, one false alarm per year.
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(a) Sensors and events layout
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(b) Detection time comparison

Figure 6.16: Long Beach array. (a) shows the layout of 1,000 stations and five recorded events. (b)
Under the constraint of, at most, one false alarm per year, the learned bases detect on average 0.1
seconds faster than the baselines, which is significant considering it only takes one second for the
seismic wave to travel through the network and only 0.5 seconds for the network to be saturated
with signals.
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patterns from historic of simulated data. Rigorous analyses of these algorithms are given in terms

of both theoretical and experimental performance.

While these algorithms outperform state-of-the art baselines in many real world applications up

to thousands of sensors, they, however, only approximate the optimal solution. One can envision

other algorithms that approximate the same solution but scale even better. A future work would

be to study these algorithms and their relationship to each other. To take it even further, a future

research direction would be to establish the limit of detectability in massive noisy networks, much

like the Shannon’s Theorem on coding theory.
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Chapter 7

Conclusions

This chapter summarizes the contributions of the thesis and discusses possible directions for future

work on sensor networks for geospatial event detection.

7.1 Summary

Advances in low-cost sensor hardware and infrastructure are making it possible to deploy large

dense sensor networks that could rapidly detect important geospatial events such as earthquakes and

hazardous radiation. In this thesis, I have presented methodologies for implementing and evaluating

dense noisy networks for event detection in terms of speed and accuracy.

In a general sense, several parameters influence the speed and reliability of detection, including

the number and quality of sensors; communication capabilities between each sensor and a central

server; and the speed and magnitude of event propagation. Motivated by early warning applications,

I considered how rapidly and reliably events can be detected when all measurements are available at

the server (the centralized setting), and when only binary messages may be sent to the server (the

decentralized setting). I provided asymptotic and theoretical analyses that quantify and bound the

detection performance in terms of key network and event parameters.

To ensure detection accuracy, I presented a unifying Bayesian framework for estimating event

critical parameters (location, starting time, magnitude) under several event and network configura-

tions, taking into accounts possible network and event dynamics. These dynamics range from the

most common scenario with stationary event and stationary sensors to variations including traveling

events, mobile sensors, and multiple events. To solve the common problem of selecting priors when

the event parameters are continuous and unbounded, I introduced an integrated Bayesian approach

that constructs the priors from classical estimates. The effectiveness of the algorithms was validated

through extensive experimentation with simulated and real measurements. These studies serve to

provide a unifying tool for solving the parameter estimation problem of geospatial event under most

circumstances.
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The recent development of participatory networks that consist of sensor-equipped devices oper-

ated by the public leads to the discussion of scalability. I studied the detection problem in massive,

noisy, participatory networks and presented several scalable geospatial data aggregation algorithms

of increasing complexity based on a distributed detection scheme. I showed how learning correlations

among sensors at the network layer can improve upon standard techniques for spatial aggregation.

Practical issues are discussed, and the approach is demonstrated on four real-world networks. This

study demonstrates the great potential of machine learning for revealing hidden patterns among

sensors that are often not well captured by models. It also opens up possible future directions for

parameter estimation research.

7.2 Future Work

7.2.1 Richer Event Model

Point source assumption. All studies presented in this thesis follow the point source assumption;

that is, the event initiates at a single point in space and time. This assumption not only simplifies

the event model but is also an appropriate approximation for some event types, e.g. a dirty bomb

scenario. However, in some applications this may be an over simplification. For example, the

air pollution caused by traffic often does not originate from a single point, but from a line along

the highway; the rupture of an earthquake is frequently caused by fracture propagation along a

fault plane. In both cases, the event is better modeled as a line rather than a single point. A richer

geometric model of event initiation (e.g. line, rectangle) can be easily incorporated into the Bayesian

framework with only slight increase in computational load. However, the design of the likelihood

function relies on a more complicated model of event manifestation H. How to correctly model this

function H for different events is the biggest challenge.

Additive intensity assumption. Without much modification to existing models, event initiation

can also be modeled as a collection point sources, or point cloud. A point cloud model assumes that

independent events can occur closely in space-time. It is an example of the multiple event model that

we discussed in Chapter 5. A major challenge with this model is to correctly compute the additive

impact intensity at a point in space and time from multiple point initiations. For some events, such

as radiation, the additive intensity is simply the summation of expected intensities from all point

initiations. For other event types, such as earthquakes, the effective additive intensity is not always

the direct summation, but is the result of complex interference from multiple wavefronts. A good

understanding of the interactions between multiple events’ manifestations is critical for estimating

event parameters both for the multiple event case and for the point cloud model.
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7.2.2 Analytics

Mixed sensor data fusion. While traditional sensor networks are mostly homogeneous (i.e.

consist of only one type of sensor), the new generation of sensor networks are often heterogeneous

(i.e. consist of more than one type of sensor). As an example, the Community Seismic Network

(CSN) 1 employs two types of sensors: the 16-bit USB standalone accelerometer Phidget and the

12-bit smartphone built-in accelerometer Android. It is no surprise that during an event, the Phidget

sensors produce more accurate measurements than those from the Android sensors. The varying

quality of different types of sensors should be taken into consideration when their measurements are

combined at a fusion center. The difference in reliability exists not only between different types of

sensors, but also among the same sensor type due to environmental noise. An accelerometer placed

on a desk experiences on average more variation in ambient noise than one that is secured on the

concrete floor in a basement. The sensor reliability can be computed by asking the question: “What

is the probability that sensor s measures an acceleration Y given that there is and is not an event”.

This is equivalent to computing the conditional probability P [y = Y |E = 0] and P [y = Y |E = 1].

This reliability measure can change with the time of the day/month/season. It requires further work

to properly incorporate this measure into the Bayesian calculation to account for different sensor

quality.

Machine learning for parameter estimation. It was shown in Sec. 6.4 that sensor correlations

can be learned from historical data to improve detection performance. In fact, learning from such

data can reveal many details on the physics of the event manifestation, details that are often not

well captured by models. The improvement in system performance with machine learning is not

limited to detection. The work on PreSEIS by Bosë et al. shows that a neural network trained

with historical recordings can successfully estimate earthquake parameters such as hypocenter and

moment magnitude in real time [10]. Other existing techniques that may achieve similar results

include support vector machine, deep learning, . . . , etc.. These types of model-free, non-parametric

techniques have great potentials in learning the highly complex patterns of geospatial events that

are difficult to model. The questions that remain are whether a technique can be generalized for

other types of events and how to construct the training data set for a rare event.

7.2.3 Data privacy

As more and more networks employ human and/or smartphones as sensors, the privacy issue becomes

increasingly more important. As a motivating example of data privacy, Fig. 7.1 reveals two plots

showing the same type of accelerometer placed at two different locations — (a) office and (b)

1CSN: http://csn.caltech.edu/

http://csn.caltech.edu/
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residence. From the aggregated measurements, the sensor owner’s daily activity pattern is easily

visible. For example, from Fig. 7.1(b), one can easily assess that the probability is very low for

someone to be at home between 9am - 1pm on a Tuesday.

As we collect and publish sensor network data for scientific and educational purpose, it is of great

importance to make sure that no one can piece together such sensitive information about sensor

owners. It is also important to ensure that useful information can be derived from the published

data set. To achieve a balance between useful information and data privacy, we may only want to

publish randomized or aggregated data. For example, the published lat-lon sensor locations can be

slightly corrupted with zero-mean Gaussian noise such that the exact location is only accurate to a

certain resolution. This idea is currently implemented on the CSN’s sensor activity map such that

the activities from two houses on the same block cannot be distinguished by a map viewer.

A more rigorous approach to this problem is differential privacy. Here, the goal is to maximize

the accuracy of certain queries from data while minimizing the chances of identifying individual

records. The core concept of differential privacy is ε-differential privacy, which tradeoffs utility and

privacy via the ε term. More discussions on ε-differential privacy, as well as other variations of

differential privacy, can be found in [31] and many other previous work in the literature.
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(a) Office sensor
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(b) Residential sensor

Figure 7.1: These graphs show the average number of picks at different times of day, and on different
days of the week for an office and a residential sensor. The sensor measurements clearly reveal the
activity patterns of the sensor owner
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Appendix A

A.1 Proof of Lemma 1

Proof. Let F (x) be the cumulative density function of a Gaussian distribution N (µ, σ2). Without

loss of generality, let µ = 0, then G(x) becomes

G(x) =

∫ x+σ

x−σ
f(x) dx

= F (x+ σ)− F (x− σ)

=
1

2

[
erf

(
x+ σ√

2σ2

)
− erf

(
x− σ√

2σ2

)]

Lower bound. We first prove the lower bound. Let L(x) be the lower bound

L(x) = erf

(
1√
2

)
e−

x2

2σ2

Let H(x) be the difference between G(x) and the lower bound L(x)

H(x) =
1

2

[
erf

(
x+ σ√

2σ2

)
− erf

(
x− σ√

2σ2

)]
− erf

(
1√
2

)
e−

x2

2σ2

Because both G(x) and L(x) are symmetric around 0, it suffices to show that H(x) ≥ 0,∀x ≥ 0 for

the lower bound to hold. To show this, we first check the value of H(x) when x is at the extreme.

When x = 0, we have

H(0) =
1

2

[
erf

(
1√
2

)
− erf

(
−1√

2

)]
− erf

(
1√
2

)
= erf

(
1√
2

)
− erf

(
1√
2

)
= 0 (A.1)

and when x =∞, we have

H(∞) =
1

2
[erf (∞)− erf (∞)]− 0 = 0 (A.2)
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Using the FindRoot command in Mathematica we can confirm that

H(x) 6= 0,∀0 < x <∞ (A.3)

Given that H(x) is smooth and continuous (i.e. H(x) is differentiable everywhere) and H(x) does

not cross 0 for all 0 < x <∞, if H(x) is increasing just after x moves away from 0, i.e. if H(x) > 0

for 0 < x� 1, then we have H(x) ≥ 0,∀x ≥ 0. To show this, we take the derivative of H(x)

H ′(x) =
−1

σ
√

2πe
e−

x2

2σ2

(
ex/σ − e−x/σ

)
+

x

σ2
erf

(
1√
2

)
e−

x2

2σ2

= e−
x2

2σ2

[
−1

σ
√

2πe

(
ex/σ − e−x/σ

)
+

x

σ2
erf

(
1√
2

)]

Let the term inside the bracket be h(x). Since e−
x2

2σ2 ≥ 0, we only need to show that h(x) is positive

when 0 < x� 1 for the statement that H(x) is positive when 0 < x� 1 to be true. We do this by

linearizing h(x) around 0 to get the linearized ¯h(x)

¯h(x) = h′(0)x =

 −2

σ2
√

2πe
+
erf

(
1√
2

)
σ2

x

=
x

σ2

(
erf

(
1√
2

)
− 2√

2πe

)
≈ 1.1663

σ2
x

It is clear that ¯h(x) > 0 when 0 < x� 1. It follows that H(x) > 0 when 0 < x� 1. Given this and

that H(x) is continuous and smooth, with Eq. (A.1), Eq. (A.2) and Eq. (A.3), we have G(x) > L(x).

This concludes the proof for lower bound.

Upper bound. Next we prove the upper bound in a similar way. Let U(x) be the upper bound,

U(x) = erf

(
1√
2

)
e−

x2

4σ2

Let H(x) be the difference between G(x) and the upper bound U(x)

H(x) = erf

(
1√
2

)
e−

x2

4σ2 − 1

2

[
erf

(
x+ σ√

2σ2

)
− erf

(
x− σ√

2σ2

)]

Because both G(x) and U(x) are symmetric around 0, it suffices to show that H(x) ≥ 0,∀x ≥ 0 for

the lower bound to hold. To show this, we first check the value of H(x) when x is at the extreme.
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When x = 0, we have

H(0) = erf

(
1√
2

)
− 1

2

[
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and when x =∞, we have

H(∞) = 0− 1

2
[erf (∞)− erf (∞)] = 0 (A.5)

Using the FindRoot command in Mathematica we can confirm that

H(x) 6= 0,∀0 < x <∞ (A.6)

Given that H(x) is smooth and continuous (i.e. H(x) is differentiable everywhere) and H(x) does

not cross 0, for all 0 < x <∞, if H(x) is increasing just after x moves away from 0, i.e. if H(x) > 0

when 0 < x� 1, then we have H(x) ≥ 0,∀x ≥ 0. To show this, we take the derivative of H(x)

H ′(x) = − x
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(A.7)

Let the term inside the bracket be h(x). Since e−
x2

4σ2 ≥ 0, we only need to show that h(x) is positive

for 0 < x� 1. We do this by linearizing h(x) around 0 to get the linearized ¯h(x)

¯h(x) = h′(0)x =

−erf
(

1√
2

)
2σ2

+
2

σ2
√

2πe

x

=
x

2σ2

(
4√
2πe
− erf

(
1√
2

))
≈ 0.142597

σ2
x (A.8)

It is clear that ¯h(x) > 0 when 0 < x� 1. It follows that H(x) > 0 when 0 < x� 1. Given this and

that H(x) is continuous and smooth, with Eq. (A.4), Eq. (A.5) and Eq. (A.6), we have U(x) > G(x).

This concludes the proof for the upper bound. Fig. A.1 visualizes the lower bound and upper bound

with respect to the exact value as a function of x.
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Figure A.1: Visualization of Lemma 1 with µ = 0 and σ = 1.
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estimations of southern California earthquakes using PreSEIS. Seismological Research Letters,

80(5):748–754, 2009.

[52] A Krause, A Singh, and C Guestrin. Near-optimal sensor placements in Gaussian processes:

Theory, efficient algorithms and empirical studies. The Journal of Machine Learning Research,

2008.

[53] Akshay Krishnamurthy, James Sharpnack, and Aarti Singh. Detecting Activations over Graphs

using Spanning Tree Wavelet Bases. arXiv.org, stat.ML, June 2012.

[54] Barry R Lienert, E Berg, and L Neil Frazer. HYPOCENTER: An earthquake location method

using centered, scaled, and adaptively damped least squares. Bulletin of the Seismological

Society of America, 1986.

[55] Chih-Yu Lin, Wen-Chih Peng, and Yu-Chee Tseng. Efficient in-network moving object tracking

in wireless sensor networks. IEEE Transactions on Mobile Computing, 5(8):1044–1056, August

2006.

[56] Annie Liu, Michael Olson, Julian Bunn, and K. Mani Chandy. Towards a discipline of geospatial

distributed event based systems. In DEBS ’12: Proceedings of the 6th ACM International

Conference on Distributed Event-Based Systems, July 2012.

[57] Annie H. Liu. Simulation and implementation of distributed sensor network for radiation de-

tection. Master’s thesis, California Institute of Technology.

[58] Annie H. Liu, Julian Bunn, and K. Mani Chandy. An analysis of data fusion for radiation detec-

tion and localization. In Proceedings of the 13th Conference on Information Fusion (FUSION),

pages 1–8, 2010.



143

[59] Annie H. Liu, Julian Bunn, and K. Mani Chandy. Sensor networks for the detection and tracking

of radiation and other threats in cities. In Proceedings of the 10th International Conference on

Information Processing in Sensor Networks (IPSN), pages 1–12, 2011.

[60] Jun S. Liu and Rong Chen. Sequential monte carlo methods for dynamic systems. Journal of

the American Statistical Association, 93:1032–1044, 1998.

[61] David J C MacKay. Bayesian methods for adaptive models . PhD thesis, California Institute

of Technology, 1992.

[62] Waseem A Malik, Nuno C Martins, and Ananthram Swami. Optimal sensor placement for

intruder detection: New design principles. In Communication, Control, and Computing (Aller-

ton), 2011 49th Annual Allerton Conference on, pages 1537–1543, 2011.

[63] M Morelande, B Ristic, and A Gunatilaka. Detection and parameter estimation of multiple

radioactive sources. In 10th International Conference on Information Fusion, pages 1–7, 2007.

[64] M Morelande and A Skvortsov. Radiation field estimation using a gaussian mixture. Interna-

tional Conference on Information Fusion, 2009.
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