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AMS

“[...] the method of choice for fabric studies in tuffs”
— Ellwood, B., MacDonald, J., & Wolff, W. (1991)

“[...] also has its drawbacks”
— Seaman, S., & Williams, M. (1992)
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Abstract

Plate tectonics shapes our dynamic planet through the creation and destruction of litho-

sphere.  This work focuses on increasing our understanding of the processes at convergent 

and divergent boundaries through geologic and geophysical observations at modern plate 

boundaries.  Recent work had shown that the subducting slab in central Mexico is most 

likely the flattest on Earth, yet there was no consensus about what caused it to originate.  The 

first chapter of this thesis sets out to systematically test all previously proposed mechanisms 

for slab flattening on the Mexican case.  What we have discovered is that there is only one 

model for which we can find no contradictory evidence.  The lack of applicability of the stan-

dard mechanisms used to explain flat subduction in the Mexican example led us to question 

their applications globally.  The second chapter expands the search for a cause of flat subduc-

tion, in both space and time.  We focus on the historical record of flat slabs in South America 

and look for a correlation between the shallowing and steepening of slab segments with rela-

tion to the inferred thickness of the subducting oceanic crust.  Using plate reconstructions 

and the assumption that a crustal anomaly formed on a spreading ridge will produce two 

conjugate features, we recreate the history of subduction along the South American margin 

and find that there is no correlation between the subduction of a bathymetric highs and shal-

low subduction.  These studies have proven that a subducting crustal anomaly is neither a 

sufficient or necessary condition of flat slab subduction.  The final chapter in this thesis looks 

at the divergent plate boundary in the Gulf of California.  Through geologic reconnaissance 

mapping and an intensive paleomagnetic sampling campaign, we try to constrain the loca-

tion and orientation of a widespread volcanic marker unit, the Tuff of San Felipe.  Although 
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the resolution of the applied magnetic susceptibility technique proved inadequate to contain 

the direction of the pyroclastic flow with high precision, we have been able to detect the 

tectonic rotation of coherent blocks as well as rotation within blocks.
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Introduction
Plate boundaries create dramatic physiography and are the location of the driving forces of 

plate tectonics.  This thesis uses geologic and geophysical data to shed light on the processes 

at two types of plate boundaries.  Part I of this thesis looks at causes of change in subduction 

zone geometry.  Part II of this thesis is a detailed paleomagnetic and rock magnetic study of 

an important volcanic unit used to constrain rifting in the Gulf of California.

Part I of this thesis consists of two chapters that explore the causes for shallow and flat 

subduction.  Shallow subduction occurs at 10% of global subduction zones.  Many hypoth-

eses have been proposed to try and explain the changes that we observe in the geometry of 

the subducting slabs at subduction zones.  The age of the subducting plate, mantle wind, 

mantle wedge suction, and overthrusting of the upper plate have all been put forth as causes 

for shallow subduction.  The most common explanation for shallow subduction is the buoy-

ant impactor hypothesis.  This hypothesis draws a correlation between the subduction of a 

bathymetric anomaly or zone of thickened oceanic crust and zones of shallow subduction.  

Chapter 1 focused on the flat slab in central Mexico, which cannot be explained by the buoy-

ant impactor hypothesis.  We systematically investigate all previously proposed causes for flat 

subduction in Mexico.  Of all the proposed mechanisms for flat slabs in Mexico, the only one 

that we cannot falsify is the hydration hypothesis.  We believe that hydration of the mantle 

wedge has lowered its viscosity and can explain the geometry of the subducting slab and the 

decoupling of the two plates along the horizontal interface. Chapter 2 takes a more global 

look at the buoyant impactor hypothesis of shallow subduction.  We find that this hypothesis 

is not universally applicable.  There are subduction zones where bathymetric anomalies sub-

duct without changing the geometry of the down-going plate and there are locations where 
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there is a flat or shallow slab that does not have an associated subducting bathymetric anom-

aly.  We have determined that there is no spatial correlation between bathymetric anomalies 

and flat slabs.  We have extended our investigation of the bathymetric anomaly hypothesis 

back in time by using plate reconstructions to track conjugate bathymetric features is both 

space and time relative to the historic flat slabs of South America.  We again find that there 

is no direct correlation between the subduction of a bathymetric anomaly and zones of flat 

subduction.  Our reconstruction of conjugate features in the Pacific basin also reveals that 

the conjugate to the Marquesas plateau was previously mislocated.  The Peruvian flat slab 

extends well beyond the width of the subducting Nazca ridge, which is proposed as its cause.  

The conjugate to the Marquesas was proposed as a cause of increased buoyancy that could 

support the northern extent of the Peruvian flat slab.  Our reconstructions are robust and are 

able to predict the location of observable bathymetric features and show that the conjugate to 

the Marquesas is not located near the Peruvian flat slab.

Part II of this thesis tests a new approach for locating piercing points to aid in the identifi-

cation and measurement of fault offset in the Gulf of California extensional province.  Half 

of the displacement expected from the rifting of Baja California from mainland Mexico 

has yet to be identified in the field.  The magnitude and timing of displacement within the 

Gulf of California itself has been well documented; however, the paleogeographic location 

of Isla Angel de la Guarda is not well constrained.  We have intensively sampled a regionally 

extensive volcanic deposit, the Tuff of San Felipe, for paleomagnetic analysis.  Anisotropy of 

magnetic susceptibility (AMS) measurements were made on all samples collected, in order to 

define the flow direction of the pyroclastic density current and identify regions of coherent 

flow that could then be used to constrain the offset of the unit.  Our sampling on the island 
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was spatially and stratigraphically extensive in order to capture the full three-dimensional na-

ture of the flow.  Our results show that AMS is not an appropriate tool for recognizing small-

scale coherent flow.  The AMS fabric is highly sensitive to the local conditions at the point 

of deposition and does not aid in the recognition of coherent flow patterns.  Extensive rock 

magnetic experiments constrain the magnetic mineralogy and grain size and indicate that 

there is no significant variation that can explain the deviations we observe in the AMS fabric.  

Our paleomagnetic measurements reveal a rotation within the tuff, and several hypotheses 

are put forth toward explaining it.
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Part I
Plate Tectonic Constraints on Flat Subduction
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Abstract

Central Mexico is the site of an enigmatic zone of flat subduction.  The general geometry 

of the subducting slab has been known for some time and is characterized by a horizontal 

zone bounded on either side by two moderately dipping sections.   We systematically evalu-

ate proposed hypotheses for shallow subduction in Mexico based on the spatial and temporal 

evidence, and we find no simple or obvious explanation for the shallow subduction in Mexi-

co. We are unable to locate an oceanic lithosphere impactor, or the conjugate of an impactor, 

that is most often called upon to explain shallow subduction zones as in South America, Ja-

pan, and Laramide deformation in the US.  The only bathymetric feature that is of the right 

age and in the correct position on the conjugate plate is a set of unnamed seamounts that are 

too small to have a significant effect on the buoyancy of the slab. The only candidate that we 

cannot dismiss is a change in the dynamics of subduction through a change in wedge viscos-

ity, possibly caused by water brought in by the slab. The incoming plate adjacent to the flat 

subduction is anomalously rough, providing a possible source for water to enter the slab.

Introduction

The major driving force of plate motion is slab buoyancy and the pull of subducting slabs 

descending into the mantle (Billen and Hirth, 2007; Chapple and Tullis, 1977; Forsyth and 

Uyeda, 1975).  However, the current understanding of the initiation of subduction zones and 

the balance of forces controlling the 3D geometry and evolution of a subducting slab is not 

well understood (Billen, 2008).  The angle of subduction influences the overall state of stress 

in the overriding slab, the resulting mode of deformation, and the location and type of arc 
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volcanism.

Shallow or flat subduction occurs in 10% of the subduction zones present today (van 

Hunen et al., 2002). The global variation of slab dips is shown in Figure 1.  Present day zones 

of shallow subduction include the Nankai trough of Japan, northern and southern Peru, 

Central Chile, East Aleutians in Alaska, and Mexico.  A number of these are coincident with 

oceanic impactors, anomalously thick crust in the form of an aseismic ridge or plateau, that 

are presumed to be the cause of the shallow geometry. The Chilean flat slab coincides with 

the subduction of the Juan-Fernandez ridge (Anderson et al., 2007; Kay and Abbruzzi, 1996; 

Pilger, 1981). The Peruvian flat slab is a combination of two adjacent flat segments resulting 

from subduction of the Nazca ridge and the Inca plateau (Gutscher et al., 1999b).  There is 

a possible flat slab segment in Ecuador that correlates with the subduction of the Carnegie 

Ridge (Gutscher et al., 1999a).  Oceanic lithosphere of the Caribbean oceanic plateau might 

be causing a flat slab in northwestern Columbia (Gutscher et al., 2000a).  Subduction of 

the Cocos ridge has led to a flat slab in Costa Rica (Protti et al., 1995; Sak et al., 2009), and 

the Yakutat terrane is subducting in the zone of the East Aleutian flat slab (Brocher et al., 

1994; Fuis et al., 2008).  The flat slab of southwestern Japan has been linked to subduction 

of the Izu Bonin arc and the Palau-Kyushu ridge (Gutscher et al., 2000b), and  western New 

Guinea has a flat segment linked to subduction of the Euripik ridge (Gutscher et al., 2000b).   

In northern Chile, the current dip of the slab is not flat but is actively flattening due to the 

subduction of the Iquique Ridge (Espurt et al., 2008).

However, in two cases there is no obvious impactor associated with the flat subduction. In 

the Cascadia subduction zone, for example, there is no evidence for thickened crust subduct-

ing along the shallow dipping Washington segment (Gutscher et al., 2000c).  The flat slab in 
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Mexico has been attributed to the Tehuantepec ridge (Gutscher et al., 2000c), however the 

Tehuantepec ridge is being subducted at a point where the slab is dipping at 30 degrees and 

appears to have little effect on the angle.  In locations where an impactor has been identified, 

the spatial correlation between the impactor and zone of shallow subduction does not hold 

up when looked at in detail.  In the Nankai trough for example, the  Palau-Kyushu ridge is 

entering the trench at the southern limit of the shallow zone. Figure 2 shows the anticorrela-

tion between the shallow zone and where ridges are subducting.  The fact that the impactor 

and zone of shallow subduction do not align suggest that it is not the buoyancy of the ridge 

itself that is holding up the slab but a dynamic process that continues to operate in the wake 

trailing the impacting ridge.

As shown in Figure 3, there are also cases where apparent buoyant impactors have little to 

no effect on the geometry of the subducting slab.  The Emperor seamounts are subducting 

at the Kurile trench, the Ogasawara plateau, Magellan seamounts, and Caroline ridge are all 

subducting at the Mariana trench, the Ozbourn-Louisville seamounts are subducting at the 

Kermadec trench, and the Chile rise is subducting at the Peru-Chile trench.   These are just a 

sample of the largest thickness anomalies that are subducting without shallowing the dip of 

the downgoing slab.  

Current state of subduction in central Mexico

The central Mexico subduction zone is of particular interest because it does not have an 

impacting ridge yet is one of the shallowest slabs that has been measured.  Understanding 

the flat slab in Mexico is key to reevaluating the proposed mechanisms for shallow slabs 
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around the globe.   Along the western Mexico margin, the Cocos plate is subducting under 

the North America plate at a rate varying between 4.7 and 6.8 cm/yr (Demets et al., 1994).  

As shown in Figure 4,  the subducted slab is shown by receiver function analysis to transi-

tion from a normal dip at the trench to sub-horizontal at 80 km from the trench (Kim et al., 

2010; Pardo and Suárez, 1995; Pérez-Campos et al., 2008; Suárez et al., 1999). The horizon-

tal slab persists to 250 km from the trench where it descends into the mantle with a 75° dip 

and is recognizable in tomographic images to a depth of 500 km (Husker and Davis, 2009; 

Kim et al., 2010; Pérez-Campos et al., 2008). An ultra low velocity layer, approximately 3 

km thick is imaged on top of the slab from the trench through the horizontal section. The 

overriding plate appears to be in an overall state of extension rather than compression (Singh 

and Pardo, 1993) which is counterintuitive when considering the compressive forces associ-

ated with the subduction collision and the traction of an underplated slab (De Franco et al., 

2007; Keppie, 2009; Moran-Zenteno et al., 2007; Nieto-Samaniego et al., 2006).  

The Trans Mexican Volcanic Belt (TMVB) has embayments along the landward projec-

tion of the Rivera, Orozoco, and Clipperton fracture zones suggesting that the Cocos plate is 

being further divided into smaller plates by tearing of the slab (Blatter et al., 2007; Menard, 

1978).  The breakup of the Cocos plate allows the smaller fragments to rollback faster and 

results in the along trench dip variation (Billen, 2008).

History of subduction in Mexico

The western Mexican margin has been a subduction margin for the past 160 Myr (Keppie, 

2004; Solari et al., 2007). The Sierra Madre Occidental, the subduction-related arc of west-
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ern Mexico, initiated in the Jurassic and contains a continuous record of subduction related 

magmatism from the Cretaceous and throughout the Cenozoic.  The area has undergone 

moderate compressional deformation that correlates in time with Laramide deformation 

further north.  Extension began in the early Eocene and continued through the Oligocene.  

Associated with the extension is an ignimbrite flareup that signals slab rollback or detach-

ment of the slab (Ferrari et al., 2007).   All of this early extension occurred while the margin 

was still under the compressive forces of subduction.

The details of the assembly of southwestern Mexico are complicated, but there are some 

aspects that can constrain the evolution of the slab geometry.  The extent and migration 

of Cenozoic volcanism is related to the location of the subducted slab.  Age data from the 

North American Volcanic Database (Navdat) and Moran-Zenteno et al. (2007) are plotted 

in Figure 5 against distance from the paleotrench to show the space and time evolution of 

subduction related magmatic activity.   At 20 Ma the locus of subduction magmatism jumps 

200 km inland from the trench.  At 10 Ma a rollback phase starts as the volcanism migrates 

toward the trench. 

The migration of the arc needs to be viewed in relation to the reorganization of the oceanic 

plates offshore, namely the ridge jumps at 25, 12.5-11, and 6.5-3.5 Ma (Klitgord and Mam-

merickx, 1982; Mammerickx and Klitgord, 1982; Moran-Zenteno et al., 2007).  The south-

ern Mexican margin has undergone a major reshaping in Tertiary time (Moran-Zenteno et 

al., 1996).  The truncation of structural trends in addition to the juxtaposition of the mod-

ern  trench and the Paleogene batholith suggests subsequent forearc removal (Karig, 1978; 

Moran-Zenteno et al., 2007; MoranZenteno et al., 1996; Schaaf et al., 1995).  The Chortis 

block is often assumed to be the missing forearc, though this correlation is just as often called 
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into question (Keppie and Moran-Zenteno, 2005; Moran-Zenteno et al., 2009; Ortega-

Gutierrez et al., 2007; Ortega-Obregon et al., 2008).  Recent studies evaluating the multiple 

reconstructions proposed for the Chortis block do not find much evidence to support the 

hypothesis that it represents the missing forearc and prefer a model of wholesale subduction 

erosion (Keppie, 2009). 

Proposed causes of zones of shallow subduction

There are several factors that affect the geometry of subduction zones.  A rapid convergence 

rate, trench-ward absolute motion of the upper plate, subduction of thickened oceanic crust, 

and young oceanic lithosphere are four factors that lead to shallowing of subducting plates 

(Cross and Pilger, 1982) .  These factors are discussed specifically for Mexico.

Tehuantepec Ridge

The southern Mexico subduction zone near the Isthmus of Tehuantepec, exhibits all of 

the four factors that would lead to a shallow slab geometry as described by Cross and Pilger 

(1982): the convergence rate of the Cocos and North American plates is rapid (approximate-

ly 6 cm/yr); the North American plate is overriding the Cocos plate in an absolute motion 

reference frame; the Tehuantepec ridge is currently being subducted; and the subducting 

lithosphere has been younger than 10Ma for the past 40Ma (Cross and Pilger, 1982; Müller 

et al., 2008).  These factors predict that  the subducted Cocos plate in this region should have 

a very shallow dip, but it actually has a moderate dip of 30 degrees.

One of the most obvious positive seafloor anomalies on the Cocos plate is the Tehuante-
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pec Ridge.  The ridge is a compression structure that stretches for more than 200 kilometers 

along the Clipperton fracture zone.  The ridge marks the boundary of oceanic lithosphere 

that is on average 7 million years younger and 800 meters shallower to the north (Manea et 

al., 2005).  The ridge itself has a maximum relief of roughly 1 kilometer relative to the sea-

floor to the north and is on average 10 km wide.  Assuming the Tehuantepec Ridge is simply 

a kilometer increase in oceanic crust; the resultant buoyancy increase is only 0.12% (see Fig-

ure 6).  The Tehuantepec Ridge is thought to have formed as a transform fault on the Gua-

dalupe plate at 15-20 Ma, in addition it is currently encountering the trench at the transition 

zone of shallow to steep subduction and has no historic or kinematic link to the current zone 

of flat subduction (Manea et al., 2005).  The Tehuantepec ridge has a trend perpendicular to 

the trench which reduces the effect of any positive buoyancy (Martinod et al., 2005).  The 

Tehuantepec ridge impacts in the wrong place (500km to the southeast of the zone of flat 

subduction) and has no history of lateral movement along the trench (Manea et al., 2005).

Seamounts

There is a seamount chain on the Pacific plate (Moonless Mountains) between the Murray 

and Clarion fracture zones that may have had a correlative chain, the Chumbia seamount 

ridge, on the now subducted Farallon plate (Keppie and Moran-Zenteno, 2005).  The sea-

mounts in this chain do not have flexural or gravity moats around them, indicating that they 

were formed on or very near the spreading ridge (Watts and Ribe, 1984).  The lithosphere 

that surrounds the Moonless Mountains is roughly 40 million years old (Müller et al., 2008).  

When the Cocos plate started to shallow 30 million years ago, as evidenced by migration 

of volcanism, the lithosphere at the trench was 10 million years old (Müller et al., 2008) 
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and would be neutrally buoyant.  If a corollary to the Moonless Mountains did exist on the 

Cocos plate, it is of the right age to contribute to the flattening of the slab, however, recon-

structions based on the rotation poles and error analysis of Doubrovine and Tarduno (2008) 

(see Figure 7) show that the Moonless mountains mirror image would intersect the Mexican 

margin further to the north than the extent of the zone of shallow subduction, and hence is 

not likely the cause of it.

 By using the stage rotations of Doubrovine and Tarduno (2008), a conjugate to the cur-

rent Mexican margin can be rotated to indicate the area of the Pacific plate that corresponds 

to the area on the Farallon plate that subducted at 30Ma when the slab shallowed.  As shown 

in Figure 8, this rotation reveals a set of small unnamed seamounts that would have intersect-

ed the margin around the latitude of Acapulco and can be correlated in space and time to the 

flat segment of the slab.  The buoyancy of these seamounts alone is insufficient to cause a flat 

slab (Cloos, 1993).  We can use a simplified geometry to estimate the volumetric differences 

and resulting changes in buoyancy due to various forms of thickened oceanic lithosphere.  

From global bathymetry data we extract a representative width and height of the given 

bathymetric anomaly then calculate the volume assuming  a conical shape for a seamount 

or a triangular prism for an aseismic ridge.  The estimated increase in crustal volume is then 

normalized by the aerial extent of the feature in order to compare thickening per unit area. 

Using this method the unnamed mountains are approximately 10% of the crustal volume 

increase associated with the Nazca or Juan Fernandez ridge. 

Age of the subducting plate

One of the predictions of plate tectonics is that the angle of subduction is a function of the 
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age of the subducting plate, because as a plate ages it cools and increases in density (Billen 

and Hirth, 2007; Parsons and Sclater, 1977) .  The relationship between age and density is 

clearly seen in the half space cooling models of Figure 6. However, when the angle of sub-

duction and the age of actual subduction zones are analyzed, the correlation is quite weak 

(Cruciani et al., 2005; Jarrard, 1986).  This is evident in the case of central Mexico, where 

the Cocos plate exhibits steep subduction in the north where the subducting oceanic litho-

sphere is younger than the lithosphere of  the flat segment to the south (Müller et al., 2008; 

Pardo and Suárez, 1993; Pardo and Suárez, 1995) (see Figure 4).

It is possible for an ephemeral spreading center to have existed between the Farallon and 

an unknown microplate.  If this failed ridge was near the trench it could produce very young 

and buoyant lithosphere that would decrease the angle of subduction. This hypothetical ridge 

would be entirely contained within subducted Farallon plate, and the evidence for it com-

pletely subducted.   Although the tectonic plates in the area underwent frequent reorganiza-

tion around the time of the slab shallowing there is no evidence for such a spreading ridge in 

the geologic or geochemical record of the upper plate. 

Hydrothermal alteration

Age alone may not be the sole cause for the angle of the Cocos slab, but could be a major 

component. The seafloor on both sides of the spreading ridge in the zone of flat subduction 

is extremely rough.  The area is the site of numerous fracture zones and failed rifting events.  

One of the mapped failed rifts on the Pacific plate was dredged as part of the Ocean Drilling 

Project and the recovered sample contained serpentinite (Lonsdale, 2005).  The alteration 

or serpentinization of the oceanic lithosphere causes a decrease in the average density of the 
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lithosphere and could increase the buoyancy of the slab, causing it to go flat.  Hydrothermal 

alteration will likely increase with increased fracturing, although we have no way of knowing 

the fracture density of the plate that subducted at 20Ma given the fact that fracture caus-

ing events such as ridge jumps and forearc bulges are not necessarily recorded symmetrically 

about the new spreading center.  The bending of the Cocos plate preferentially induces the 

reactivation of faults and fractures, creating a horst and graben structure (Aubouin et al., 

1982; Grevemeyer et al., 2005; Ruff, 1989).  The faulting of the lithosphere allows water to 

penetrate into the young warm slab and alter the density.  This is a process that occurs at all 

subduction zones, however, due to the consistently young lithosphere subducting in this area 

the higher temperature of the slab will increase hydrothermal alteration independent of the 

degree of fracturing.  Altering the top 5 km of the mantle lithosphere by 15% serpentiniza-

tion doubles the length of time for which a slab is neutrally buoyant (see Figure 6).  Recent 

geophysical studies in Mexico have determined that there is a hydrous layer at the plate 

interface (Kim et al., 2010).  Remobilization of fluids entrained with the downgoing slab by 

serpentinization may be the source of these hydrous phases.  

Slab detachment and flexure

Tomographic images reveal the foundering segments of the Farallon slab beneath North 

America.  The tomographic model of Gorbatov and Fukao (2005) reveals a southward propa-

gating tear in the slab at 600 km depth that is a result of the differential motion between the 

Cocos and subducted Farallon plates.  They speculate that the tear and differential rotation 

buckles the Cocos plate and caused uplift of the slab in the region of the TMVB, producing 

the flat slab geometry.  There are also large discrepancies between tomographic models of the 
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region.  The more detailed tomographic model of Husker and Davis (2009) places the trun-

cated edge of the slab roughly 500 km to the south of where Gorbatov and Fukao locate it, 

which makes the uplift mechanism less likely . Other tomographic models locate a shallower 

gap in the slab under northern Central America (Rogers et al., 2002) , and it is not clear how 

truncation of the slab at a depth of 300 km beneath Guatemala, Honduras, and Nicaragua 

would relate to the model of Gorbatov and Fukao.

Chortis Block

The origin and location of the Chortis block (present day Nicaragua) through time is 

highly debated.  One reconstruction places the Chortis block along the Acapulco trench at 

50 Ma (Pindell et al., 1988; Ross and Scotese, 1988).  The block then migrates to the east 

with the Farallon-North America-Caribbean triple junction which changes the margin from 

a North American-Caribbean to North American-Farallon plate boundary (MoranZenteno 

et al., 1996). The change in the plate pair exposes the southern Mexican margin to the faster 

Farallon-North America convergence rate, which may lead to the flattening of the slab, 

though it is unclear why the margin to the north with the same convergence rate would 

not also be flat.   Other studies (Keppie, 2009; Keppie and Moran-Zenteno, 2005) propose 

models for the evolution of the Chortis block that make it unrelated to the flat slab in central 

Mexico.   It is unlikely that the Chortis block is the cause of the flat slab, yet the knowledge 

of its location through time is needed for a complete model of the area.

Continental root

Slab suction is an important force influencing the geometry at subduction zones.  Viscously 
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driven flow of the asthenosphere by the downgoing slab creates a zone of negative pressure 

in the mantle wedge (Tovish et al., 1978).  The suction force alone may not provide enough 

lift to drive slabs flat but may prove more effective when combined with excessively buoy-

ant lithosphere in the form of an oceanic plateau (van Hunen et al., 2004).  The suction 

force in the mantle wedge can be greatly increased by a continental root that penetrates the 

asthenosphere (O’Driscoll et al., 2009).  The crustal root blocks flow perpendicular to the 

trench resulting in a higher negative pressure in the space between the trench and the root 

that can assist in pulling up the slab. This mechanism is proposed as a contributing factor 

for the Laramide, and has been suggested for central Mexico because the elevated TMVB 

may indicate the presence of the a crustal root (Urrutia-Fucugauchi and Flores-Ruiz, 1996) 

. However, as shown in Pérez-Campos et al. (2008), the crust under the TMVB is only 45 

km thick and hence there is no deep crustal root.

Hydration of the mantle wedge

The viscosity of the mantle wedge can be decreased by the addition of fluids released from 

the slab, this low viscosity wedge or channel can change the dip of the downgoing slab and 

has been modeled to create flat lying slabs as observed in Mexico (Manea and Gurnis, 2007).  

There is some evidence in the attenuation study of Chen and Clayton (2009) that zones of 

low Q in the mantle wedge may be due to fluids from the slab.  Geochemical studies of the 

TMVB show that the sub-arc mantle is highly heterogeneous and have found locations with 

a magmatic water content in excess of 8 wt% (Blatter and Carmichael, 1998; Johnson et al., 

2009). We know that excess hydration can cause a slab to flatten, however, the cause of excess 

water in the Mexican subduction zone has yet to be explained.  Tectonic erosion is one way 
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to subduct large amounts of water laden sediments (Dominguez et al., 2000).  In Mexico 

there is evidence for extreme tectonic erosion, namely, the entire Oligocene forearc is missing 

and the associated batholith is sitting adjacent to the modern trench (Keppie et al., 2009a; 

Keppie et al., 2009b; Moran-Zenteno et al., 2007). The juxtaposition of the Oligocene arc 

with the modern trench and the truncation of other structural features reveals how much of 

the Mexican margin has been lost to tectonic erosion.

Seamounts may not have enough positive buoyancy to flatten the slab, but they do cre-

ate a long lived period of subducting extreme relief that could lead to a prolonged period of 

subduction erosion (von Huene and Scholl, 1991).  The subduction on individual seamounts 

has been shown through analog models to cause erosion of the overriding plate (Dominguez 

et al., 1998; Dominguez et al., 2000).  The unnamed mountains range in age from roughly 

35 to 25 Ma and stretch across 500 kilometers (see Figure 8).  The convergence rate along the 

Middle America Trench varies widely though averaging in space and time the margin would 

be continually impacted for a span of 6 Ma assuming a perfect mirroring of the unnamed 

mountains (Doubrovine and Tarduno, 2008; Müller et al., 2008).  The erosion of the mar-

gin corresponds with a 29 to 19 Ma gap in arc magmatism (Keppie et al., 2009b).  Recent 

numerical modeling has shown the rapid removal of large blocks of continental forearc as one 

possible mode of subduction erosion that shaped the Mexican margin (Keppie et al., 2009a).   

The eroded forearc would be highly fractured in this catastrophic event leading to an increase 

in pore space for fluids to be entrained with the downgoing plate.  Modeling indicates that 

the eroded material could be underplated or transported deep into the mantle (Keppie et al., 

2009a).  The low viscosity channel that forms from the subducted material and fluid would 

also decouple the upper and lower plates and cause the lack of compression that we see in 
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Mexico.

Discussion

Looking for a single cause of flat slab subduction, reveals the complexity and multifaceted 

nature of subduction zone dynamics.  Single trench correlations quickly break down when 

extended to the global scale.  The often called upon correlation between the location of flat 

slabs and the presence of a subducting aseismic ridge or plateau is quite strong, however this 

does not imply direct causation.  Most flat slabs have an associated subducting ridge, but not 

all subducting ridges produce flat slabs.   The fact that the correlation between ridges and 

shallow zones is not one to one means that it is not likely the sole cause of flat subduction.  

We have shown, adding a second variable, in this case age, we are able to explain some of the 

zones where a ridge is subducting yet fails to produce a shallow slab segment (see Figure 9).  

This is just one example of the need for a comprehensive evaluation of the parameters that 

influence the dip of subducting plates.  One proposed cause of the Laramide flat slab is the 

subduction of a conjugate oceanic plateau to the Shatsky Rise, though as we have shown, 

subduction of thickened oceanic lithosphere is neither a sufficient or necessary condition 

for shallow subduction.   We find hydration of the mantle wedge to be the only mechanism 

that there is no evidence against causing the flat slab in Mexico.  Further study of the fluid 

budget of the downgoing slab and the change in mantle viscosity with the addition of fluids 

is needed to evaluate hydration as the cause of the Mexican flat slab and possibly the key 

mechanism for shallow slabs worldwide.
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Conclusions 

Subducting buoyant ridges, seamounts, and plateaus do not directly cause flat slabs but are 

rather a catalyst of other dynamic mantle processes.  Determining the combination of forces 

that lead to flat slabs in important not only for our understanding of the current zones of 

flat subduction but also the geologic history of western North America and inferred periods 

of flat subduction in the past. The geometry that we see in the present day Mexican flat slab 

appears to be the result of the dynamic response of subduction to hydration of the mantle 

wedge that occurred thirty million years ago.  The direct evidence for the flattening mecha-

nism has long been destroyed, and the is no suitable impactor on the conjugate plate. Hy-

dration of the mantle wedge is the only feasible mechanism to change the slab geometry in 

Mexico, although the process is not completely understood.  The cause of the intense sub-

duction erosion that leads to the hydration has yet to be identified, yet appears to be the only 

viable explanation to explain the geometry of both the slab and the margin. 
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Figure Captions

Figure 1

Map of the Pacific seafloor showing the dip of the shallow (less than 125km depth) portion 

of subducting slabs (Lallemand et al., 2005), and subducting bathymetric highs that have 

been correlated with zones of shallow subduction (white crosshatched pattern). 

Figure 2

Detail view of the shallow slab segment of Japan.  Dashed red lines are 20km contour lines 

of slab depth from model of Hayes et al. (2009).  Colored dots are slab dip from Lallemand 

et al. (2005). The shallow segment appears to correlate with the subduction of the Shikoku 

basin rather than the two ridges that flank it.

Figure 3

Map of the Pacific seafloor with labeled lithosphere anomalies (white crosshatched regions) 

that are subducting with no apparent effect on slab dip. Colored dots are slab dip from Lal-

lemand et al. (2005).

Figure 4

Combined receiver function and tomographic image from the MASE transect modified 

from Pérez-Campos et al. (2008). Vertical axis is kilometers below sea level, horzontal axis is 

distance along the MASE transect.  The location map of Mexico shows the relative location 

of the MASE transect (black  dots) to the TMVB (gray area), offshore bathymetric features, 

and the dip of the subducted Cocos plate in 20 km contours (Hayes et al., 2009). Plate 

boundaries from Bird (2003).

Figure 5

Distance of arc magmatism from the trench through time.   The blue line is an 0.2 Myr 
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moving average of the distance from the trench.  There is a distinct change in the location of 

the arc starting at 25 Ma that shows the location of active volcanism migrating northward 

away from the trench then starts a rollback to the south.  The inset map shows the extent 

of the data used (crosses) and the dotted line approximating the trench .  Data are from the 

North American Volcanic Database and Moran-Zenteno et al.  (2007).  

Figure 6

Average buoyancy at a given age of the crustal columns for four possible types of oceanic 

lithosphere subducted under Mexico calculated using half space cooling model (Turcotte and 

Schubert, 2002).  Red dotted line is the density of asthenosphere for reference.  The modeled 

lithosphere will resist subduction until it crosses above the asthenosphere line.

The 5Ma time slice of  the four models of oceanic lithosphere used in calculating the den-

sity variation with age are shown . The models include unaltered normal oceanic lithosphere, 

1km of uncompensated thickening to represent the Tehuantepec Ridge, 15% serpentiniza-

tion if the upper 5km of the oceanic mantle lithosphere, and a 5km isostatic compensated 

thickening of the oceanic crust to represent seamounts formed on a spreading ridge

Figure 7

A tectonic reconstruction of the Moonless Mountains at 30Ma.  Panel A depicts the cur-

rent location of the Moonless Mountains as red triangles.  Blue Triangles show the recon-

structed location relative to North America of the hypothetical correlative chain of sea-

mounts on the Farallon plate at 30 Ma in a fixed North America reference frame.  Light blue 

areas are the error ellipses of the rotations given by Doubrovine and Tarduno (2008). Panel 

B shows the bathymetry of the area around the moonless mountains and the location of 

the representative bathymetric profile shown to the right.  Panel C is a representative profile 
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along the dashed line in panel B.  Vertical axis is kilometers below sea level, vertical exaggera-

tion is 100 times.

Figure 8

Panel A shows the Mexican coastline transformed by the rotations of Doubrovine and 

Tarduno (2008) to show the area of the Pacific plate that is the corrolary to the oceanic 

lithosphere that was subducting along the southern Mexican margin at 30Ma.  The yellow 

stars are the current and  rotated location of Acapulco for reference.  There is a small chain of 

seamounts near what would have been the latitude of Acapulco.  The dashed red line is the 

total 95% confidence area of the error ellipses associated with the rotated points of the coast 

(solid red line). Panel B shows the bathymetry of the area around the unnamed seamounts 

and the location of the representative  bathymetric profile.  Panel C is a representative profile 

along the dashed line in panel B.  Vertical axis is kilometers below sea level, vertical exaggera-

tion is 100 times.

Figure 9

Map of the Pacific seafloor age (Müller et al., 2008), shallow slab segment dips (Lallemand 

et al., 2005), and subducting bathymetric highs (crosshatched pattern).  Not all bathymetric 

highs are correlated with a zone of shallow subduction.  Although there is no direct correla-

tion between the age of the subducting lithosphere and the dip of the slab there appears to 

be a maximum plate age past which the slab cannot support a flat segment.  This explains the 

subduction of ridges that do not form a shallow slab in the western Pacific. 
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Figure 1.	 Map of Pacific Basin slab dip
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Figure 2.	 Detail view of the shallow slab segment of Japan
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Figure 3.	 Pacific Basin bathymetric anomalies
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Figure 4.	 Geometry of the subducting slab
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Figure 5.	 Spatial evolution of TMVB volcanism since 90 Ma
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Figure 6.	 Buoyancy calculations 
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Figure 7.	  Reconstruction of the Moonless Mountains
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Figure 8.	  Reconstruction of the Mexican coastline
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Figure 9.	 Slab dip, plate age, and bathymetric highs
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The lack of correlation between flat slabs and 
bathymetric impactors in South America

Originally published in: 

Skinner, S. M., & Clayton, R. W. (2013). The lack of correlation between flat slabs and 

bathymetric impactors in South America. Earth and Planetary Science Letters, 371–372(0), 1-5. 

doi: http://dx.doi.org/10.1016/j.epsl.2013.04.013

Chapter 2



44

Abstract

Flat slab subduction has been attributed to various causes including mantle wedge dynam-

ics, overriding by the upper plate, age of the subducting plate, and subduction of anoma-

lously thick oceanic crust. One often favored explanation for flat slabs is the subduction of 

buoyant features on the oceanic plate in the form of an aseismic-ridge or oceanic plateau.  

We show through plate tectonic reconstructions of the Marquesas, Tuamotu, and Austral 

plateau, assuming that features on the conjugate plate can be used as proxies for subducted 

bathymetric anomalies, that there is very little correlation between the subduction of such 

anomalies and historic zones of flat subduction in South America. It is apparent that subduc-

tion of a bathymetric anomaly need not lead to a flat slab and not all flat slabs are associated 

with the subduction of a bathymetric anomaly.

Introduction

Approximately 10 percent of present day subduction zones are considered to have flat slabs, 

which means that their dip angle beyond the seismogenic zone is very shallow (Gutscher et 

al., 2000). This phenomenon has been shown to exist in the geologic record where cycles of 

alternating flat and normal-dip subduction are proposed (DeCelles et al., 2009; James and 

Sacks, 1999; Ramos and Folguera, 2009).  Thickened oceanic crust, overriding of the up-

per plate, and mantle wedge suction are some of the proposed causes of shallow slabs (van 

Hunen et al., 2004).  Perhaps the most frequently invoked explanation for these zones of flat 

to shallow subduction is excess positive buoyancy related to what we refer to as an impactor, 

the subduction of a bathymetric anomaly due to locally thickened oceanic crust (Anderson 



45
et al., 2007; Cross and Pilger, 1982; Gutscher et al., 1999; Gutscher et al., 2000; Liu et al., 

2010; Livaccari et al., 1981; Nur and Ben-Avraham, 1983; Pilger, 1981; Saleeby, 2003). 

The argument for impactors as the cause of flat slabs is based on visual correlation between 

subducting features and shallow slabs. One of the clearest examples of this is the subduction 

of the Juan Fernandez Ridge where flat subduction is occurring in central Chile (Anderson et 

al., 2007) (Label 12 in Figure 1).  

However, the actual increase in buoyancy due to thickening of the oceanic crust in the 

form of a seamount or oceanic plateau is generally quite small, and decreases rapidly with 

age of the plate (Cloos, 1993).  Other geologic processes such as serpentinization of oceanic 

mantle lithosphere can create a buoyancy anomaly exceeding that due to thickening of the 

crust in the form of seamounts, but the overall buoyancy increase remains small (Kopp et al., 

2004; Skinner and Clayton, 2011). Geodynamic investigations of the effects of subduction 

of thick crust (Gerya et al., 2009; van Hunen et al., 2004) indicate that a buoyant impactor 

is not a sufficient explanation for zones of flat subduction.

Tracking conjugate features

To investigate the correlation of impactors and flat slabs in the past we look for time and 

space coincidence of these phenomena by plate tectonic reconstructions.  There are several 

island-chains and plateaus on the Pacific plate, and if we assume that these were formed at 

the East Pacific Rise (EPR) and hence likely had a conjugate on the Farallon (Nazca) Plate 

(Gutscher et al., 1999), then we can model the time and space interactions of these features 

with the trench.  We reconstruct a set of bathymetric anomalies that mirror the Marquesas, 
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Tuamotu, and Austral seamounts/plateaus.  We use the EarthByte plate model (Müller et 

al., 2008) to reconstruct Pacific plate features to the time and location of their formation on 

the Pacific-Farallon/Nazca spreading ridge.  We then create a feature at the ancient spread-

ing ridge and track its location relative to South America forward in time as it moves as part 

of the subducting plate.  See supplementary Figure1 for more details of the reconstructions.  

For times older than chron 21 there are no isochrons preserved on the Nazca plate and we 

must assume symmetric spreading (Seton et al., 2012), in addition any subducted ridge 

jumps also introduce uncertainty into the reconstructions. Note that the observed ridge 

jumps in the eastern Pacific are younger than the features we are reconstructing and do not 

affect our locations based on finite rotations (Cande and Haxby, 1991). 

We have confidence in our rotation model and methods based on the agreement of the lo-

cation of our hypothetical conjugates with observable bathymetric features shown in supple-

mentary Figure 3 and the ability of our reconstructed conjugates to predict the location of 

observed magnetic isochrons (Figure 2).  Our method of reconstruction is an improvement 

over past studies because we use global plate circuits that allow us to constrain positions 

relative to South America through time.  Additionally the rotation models that we use cover 

a longer span of time than those used previously and provide finite rotations for a larger 

number of isochrons, which means the size and orientation of conjugate bathymetric features 

can evolve based on plate motions instead of being predefined.  We have tested the plate 

rotation model used in our reconstructions (Müller et al., 2008) against four other published 

rotation models (Mayes et al., 1990; Pardo-Casas and Molnar, 1987; Pilger, 1981; Tebbens 

and Cande, 1997).  See supplementary Tables 1 and 2 for the rotations used.  Supplementary 

Figure 2 shows the close agreement between these models in reconstructing chrons 10 and 
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13.  Note that our reconstruction of the Inca Plateau is 600 kilometers east of the original lo-

cation proposed by Gutscher et al. (1999).  We believe that our reconstructions, that use data 

from both sides of the spreading ridge, do a better job predicting the location of observable 

features.  A key feature that cannot be accounted for by the half-stage rotation model used in 

previous reconstructions is the observed asymmetry in spreading along the East Pacific Rise 

(Müller et al., 2008).

In order to visualize the spatial and temporal relations between our conjugate features and 

the proposed historic zones of flat subduction, we track points along the centerline of the 

bathymetric anomalies and calculate the distance from each flat slab.  The proximity of the 

subducting feature is plotted in Figure 3, together with a gray box that represents the spatial 

and temporal extent of the flat slab as reported by Ramos and Folguera (2009). For one of 

our conjugate features to be considered as a cause for the flat slab we expect it to intersect 

the target region near the onset of shallow subduction. The results for each slab are discussed 

below:

Carnegie Slab (3Ma to Present)

Although the Carnegie slab is a very small target, we track several impactors that arrive at 

the trench well before the development of the flat slab.  The lithosphere currently subducting 

here is related to Nazca-Cocos spreading that started after  26 Ma and Pacific-Nazca conju-

gates are not applicable to this flat slab at this point.

Peruvian Slab (11 Ma to 0 Ma)

The Peruvian slab has numerous impactors that reach well into the target zone and can be 
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considered as possible causes of the flat slab.  The issue with the Peruvian slab, however, is 

that there have been impactors for the twenty million years preceding the present day flat 

slab.  If this portion of the South American margin has been consistently seeing bathymetric 

highs subduct it cannot be the subducting bathymetric high itself that supports the flatten-

ing of the slab. As shown in Figure 2, our reconstruction of the conjugate to the Marquesas 

Plateau is 600 kilometers to the east of the location of Gutscher et al. (1999).  This makes it 

less likely to be the direct cause of the flat slab in Peru.

Altiplano Slab (40-32 Ma to 27-18 Ma)

The Altiplano slab appears to be anti-correlated with impactors.  This portion of the 

margin has seen numerous impactors but they all postdate the flattening of the slab, and the 

majority of them arrive once the slab has resumed a steep geometry. 

Puna Slab (18 Ma to 12 Ma)

The short lived Puna flat slab has no impactors at the onset, but again there are impactors 

that occur once the slab has ceased to be flat.  The impactors that hit after the flat slab are on 

the larger end of what we have measured, so we cannot use the size of imapactor to explain 

why some have an effect while others do not.

Pampean Slab (12 Ma to Present)

The Pampean slab has a several impactors once the slab has gone flat.  This flat slab is cur-

rently explained by the subduction of the Juan Fernandez Ridge, however, this small discon-

tinuous chain of volcanoes was not formed on a spreading ridge so we have no way to con-
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strain the size, shape, or extent of any portion of it that has already been subducted.

Payenia Slab (13 Ma to 5 Ma)

From our analysis there are no conjugate impactors that can be associated with the Payenia 

flat slab.

Discussion

We have looked at the correlations between flat slabs and impactors more closely with a 

detailed global data set and have found that the correlations are not as strong as previously 

thought. In some cases show there is no apparent correlation. Figure 1 represents our assess-

ment of the buoyancy hypothesis at subduction zones around the globe based on the visual 

correlation of a subducting bathymetric anomaly and a change in slab geometry, as defined 

by Slab 1.0 (Hayes et al., 2012).  Each numbered circle is discussed in the following section.  

In South America, the along trench width of the Peruvian flat slab is five times greater than 

the width of the Nazca Ridge which leads us to question the buoyancy of the impactor as the 

direct cause of the flat slab.  While the Carnegie Ridge (8 in Figure 1), Nazca Ridge (10), and 

Juan Fernandez Ridge (12) coincide with flat flabs, the Iquique Ridge (11) subducts without 

producing a flat slab and based on our reconstruction of the Inca Plateau there is no subduct-

ing anomaly to support the northern Peruvian flat slab (9).  In Cascadia (6) and Mexico (7), 

we have shallow slabs but no indication of an impactor offshore.  The Emperor Seamounts 

(4), Magellan Seamounts (3), Roo Rise (15), and Louisville Ridge (13) all subduct with no 

apparent change in the geometry of the associated subducting slab.  Japan presents some 
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of the best evidence against the buoyancy hypothesis, namely that the shallow slab is anti-

correlated with the downgoing bathymetric ridges.  The shallow segment of the Nankai 

subduction zone is centered over the Shikoku basin (2), not the subducting Palau-Kyushu 

or Izu-Bonin ridges (1).  Two extreme examples of locations where buoyancy has changed 

the subduction zone geometry are the Ontong Java Plateau (14), where the largest igneous 

province (Neal et al., 1997) has caused a reversal of subduction, and the moderately sized yet 

anomalously thick Yakutat terrane (5) that has impeded subduction in Alaska (Christeson et 

al., 2010; Gulick et al., 2007).  

The recent compilation of the history of flat slabs in South America through time as de-

fined by Ramos and Folguera (2009) allows us to extend the comparison of impactors and 

flat slabs back in time in this region. This compilation, plus the fact that this margin only 

involves two plates for most of its length and history, make this an excellent test of the im-

pactor hypothesis.  The present plate geometry in this region has been stable since the 23 Ma 

creation of the Nazca and Cocos Plates from the Farallon plate (Lonsdale, 2005).  We rec-

ognize that there are more detailed descriptions of the  temporal variations in slab geometry 

for portions of the South American margin (Kay and Coira, 2009).  Our analysis focuses on 

a more general binary system that classifies a slab as normal or flat.  The variation in location 

and timing of flat slabs as proposed by different authors (Kay and Coira, 2009; Ramos and 

Folguera, 2009) is less than the discrepancies we find between our reconstructions and target 

zones and hence does not affect our interpretations.

On the whole the subduction system in South America does not support the hypothesis 

that flat slabs are solely caused by subducted bathymetric anomalies. The present day connec-

tion of the Pampean slab with the Juan Fernandez Ridge, the Peruvian slab with the Nazca 
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Ridge, and the Carnegie slab with the Carnegie Ridge are the only examples where there is a 

correlation, out of 15 cases. We argue against these as the cause of the flat slabs based on the 

fact that the Nazca Ridge is not as wide as the flat slab it creates and that the Juan Fernandez 

Ridge is a discontinuous structure and neither has large anomalous buoyancy.

We find that there is not a very good correlation between possible subducting anomalies in 

the past and inferred periods of flat or shallow subducting along the South American margin.  

The lack of a correlation between subducting anomalies and flat slabs in both the past and 

present implies that it cannot be the direct cause of flat slab subduction.  If we look at the 

present-day spatially correlated flat slabs and subducting anomalies we can see that the flat 

slabs are not confined to the location of the subducting anomaly, which further casts doubt 

on the anomaly as the direct cause.  We envision a change in mantle dynamics induced by 

the subducting anomaly as one possible explanation for flat slabs that persist in the wake of a 

subducting anomaly. This does not rely on the buoyancy of the subducting anomaly itself.  

Based on our analysis of the flat subduction in central Mexico (Skinner and Clayton, 2011) 

we prefer a model of mantle hydration to induce shallow and flat slabs(Billen and Gurnis, 

2001; Manea and Gurnis, 2007).  The hydration process may be aided by subduction erosion 

brought on by the subducting of a bathymetric high in addition to highly altered and hy-

drated crust or mantle. There is evidence for the hydration process in Mexico in the form of 

a low viscosity layer that decouples the flat slab and the overriding crust (Kim et al., 2010).  

Additional evidence for hydration includes mantle xenoliths found in Mexico with water 

content in excess of 8 wt% (Blatter and Carmichael, 1998). 

It appears that there is likely not a single cause of flat slabs. Over geologic time, the mantle 

can become transiently heterogeneous and it is these anomalies that lead to the diversity of 
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subduction zone geometries that we observe today. The suggestion of orogenic cycles (De-

Celles et al., 2009) may be a controlling process, with impactors only having an effect if the 

subduction is in the part of its cycle where the slab was shallowing. This could explain why in 

the present day, some zones are unaffected by impactors.

Conclusions

Our plate tectonic reconstructions of the South American margin and potential conjugate 

bathymetric anomalies when paired with the history of flat slabs compiled by Ramos and 

Folguera (2009) shows that there is no clear link between a subducting anomaly and zones 

of flat subduction.  We have shown previously that the correlation between current flat slabs 

and subducting crustal anomalies does not exist and therefore buoyant bathymetric anoma-

lies cannot be the sole cause of flat slabs.  With this series of reconstructions we have shown 

that the correlation between bathymetric anomalies and flat slabs did not exist in the past 

and that the Inca Plateau was mislocated.
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Figure Captions
Figure 1

Map of slab dip for subduction zones around the Pacific basin.  Data for subduction zone 

geometry are from Hayes et al. (2012). Numbered circles represent our interpretation of the 

validity of the buoyancy hypothesis at each location where we have data constraining changes 

in the geometry of the subducted slab. Circles are colored red where there is a subducting 

bathymetric anomaly but no associated flat slab, yellow where there is a flat slab without any 

apparent subducting bathymetric anomaly, and green where a change in the geometry of the 

subducting slab and a bathymetric anomaly are coincident.  See text for discussion of num-

bered circles.

Figure 2

Map of present day South America showing the location of our reconstructed magnetic 

isochrons.  .   Black dashed lines are 20km slab depth contours from Hayes et al. (2012).  

Magnetic isochrons are from Cande et al. (1989) , with relevant chrons labeled.  Colored 

circles on the Pacific plate are construction points along magnetic isochrons and are used 

to reconstruct the location of conjugate features on the Nazca plate.  The inset map shows 

the Marquesas plateau at a larger scale to make the relationship between the plateau and 

magnetic isochrons clear. The stippled feature is the MM2 reconstruction from figure 2A of 

Gutscher et al. (1999).  Note that our reconstruction of the isochrons that bound the Mar-

quesas plateau require a 600 kilometer eastward shift of the Inca plateau.
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Figure 3

Location of Pacific - Farallon/Nazca conjugate features relative to a given flat slab.  We 

have placed points along Pacific plate bathymetric highs, and created conjugate features us-

ing standard plate reconstruction techniques and the rotation model of Müller et al. (2008). 

A plot for each flat slab shows the proximity of a reconstructed point on the bathymetric 

anomaly to that flat slab, plotted as a function of time. The thickness of the line scales with 

the crustal volume in a 100 by 200 kilometer box around the Pacific plate conjugate point. 

The grey box represents the spatial and temporal extent of the flat slab from Ramos and Fol-

guera (2009).  We expect impactors to pass through this target zone if the buoyancy hypoth-

esis is the cause of the flat slab.  The map shows the location of the flat slabs along the South 

American margin (Ramos and Folguera, 2009). The black triangles are the point from which 

our distances are calculated. See Supplementary Table 3 for information about the conjugate 

points.
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Figure 1.	 Map of circum-Pacific subduction zone slab dip
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Figure 2.	 Map of South America and conjugate features
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Figure 3.	 Location of conjugate features relative to a given flat slab
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Supplementary Material
Supplementary Figure 1: Conjugate reconstructions

Panel a shows our 92 starting points on the Pacific. The color of the circle is used to match 

a starting point to a path in Figure 3.  The size of the circle is relative to the crustal volume in 

a 100 km by 200 km swath centered on the starting point.  Panel b shows the location of our 

starting points relative to Pacific bathymetry.  Panel c shows our method of distance calcula-

tion used in Figure 3.  Starting from the reconstucted conjugate point we rotate the point 

back in time in million year increments.  We calculate a linear distance between each recon-

structed point(orange circle) and the center of the flat slab (black triangle). 

Supplementary Figure 2: Agreement of Reconstructions

This map of the Nazca Plate shows the Pacific points of Figure 2 rotated by five different 

rotation models .  We find that all models do an equally good job of predicting the location 

of magnetic isochrons as identified by Cande et al. (1989).

Supplementary Figure 3: Agreement of conjugate features

Map of present day South America depicting the agreement of our proposed conjugates 

with actual bathymetric features.  The yellow lines are a mirror image of 1km contours of 

modern bathymetry on the Pacific plate.  The purple lines are 1km contours of modern 

Nazca Plate bathymetry.  Our proposed conjugates match well with the actual bathymetry.  

Our reconstruction of the Inca Plateau, however, is ~600 km to the east of the original loca-

tion proposed by Gutscher et al. 1999.
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Supplementary Figure 4: Agreement of fracture zones

This map shows syntheic fracture zones produced by the rotation model used in our 

reconstructions (Müller et al., 2008) in red and fracture zones as mapped by Matthews et 

al. (2011) in black.  While it is unlikely that any model will be able to reproduce all of the 

complexities of fracture zones, we believe that this model does an excellent job at reprducing 

the large scale obervable trends.
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Figure S–1.	 Conjugate reconstructions
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Figure S–2.	 Agreement of reconstructions
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Figure S–3.	 Agreement of conjugate features
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Figure S–4.	 Agreement of fracture zones
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Chron Latitude Longitude Angle Source
13 68.71 -108.18 -49.44 (Müller et al., 2008)
13 69.85 -106.13 -49.54 (Pardo-Casas and Molnar, 1987)
13 69.04 -104.34 -49.63 (Mayes et al., 1990)
13 69.74 -105.82 -49.24 (Tebbens and Cande, 1997)
13 67.1 -102.4 -49.7 (Pilger, 1981)
10 67.01 -102.46 -43.14 (Müller et al., 2008)
10 67.34 -100.08 -43.77 (Pardo-Casas and Molnar, 1987)
10 66.2 -98.41 -44.05 (Mayes et al., 1990) 
10 66.91 -98.3 -43.64 (Tebbens and Cande, 1997)

Table 1.	 Poles of rotation for the Nazca plate relative to the Pacific plate used to test 

reconstructions of magnetic isochrons.
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Nazca/Farallon - South America Pacific- South America
Age (Ma) Latitude Longitude Angle Latitude Longitude Angle

1 -65.60 78.57 0.79 54.68 -79.97 0.69
2 -63.16 76.35 1.52 57.21 -77.37 1.44
3 62.58 -102.48 -2.28 57.94 -77.99 2.16
4 62.58 -99.95 -3.08 58.23 -79.94 2.82
5 62.56 -98.41 -3.88 58.40 -81.25 3.48
6 64.03 -98.60 -4.82 58.60 -82.11 4.14
7 64.34 -98.66 -5.82 59.44 -82.19 4.74
8 64.57 -98.67 -6.81 60.09 -82.30 5.34
9 64.68 -98.64 -7.81 60.67 -82.38 5.94
10 64.50 -98.21 -8.82 61.55 -82.60 6.52
11 64.25 -96.92 -9.86 62.66 -83.67 7.05
12 64.11 -96.34 -10.86 63.97 -83.70 7.58
13 64.10 -95.60 -11.89 65.02 -84.13 8.08
14 64.12 -94.86 -12.93 65.93 -84.69 8.57
15 64.14 -94.20 -13.97 66.74 -85.24 9.06
16 62.52 -93.88 -15.06 67.47 -85.77 9.55
17 61.12 -93.57 -16.16 68.14 -86.28 10.04
18 60.02 -93.26 -17.34 68.64 -86.92 10.44
19 59.15 -92.95 -18.61 69.02 -87.67 10.78
20 58.40 -92.59 -19.88 69.41 -88.61 11.10
21 59.16 -93.20 -21.14 69.53 -89.12 11.48
22 59.99 -93.89 -22.38 69.59 -89.53 11.86
23 60.73 -94.54 -23.64 69.65 -89.94 12.24
24 61.67 -96.53 -24.56 69.70 -90.34 12.63
25 62.57 -98.59 -25.36 69.56 -90.72 13.15
26 63.39 -100.60 -26.16 69.41 -91.23 13.67
27 64.20 -102.62 -27.00 69.16 -91.84 14.18
28 64.93 -104.89 -27.85 68.80 -91.95 14.67
29 65.49 -107.29 -28.71 68.54 -91.60 15.19
30 65.95 -109.69 -29.57 68.32 -91.13 15.71

Table 2.	 Poles of rotation for the Pacific and Nazca plates relative to the South Ameri-

ca plate used in the reconstruction and tracking of conjugate features.
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Nazca/Farallon - South America Pacific- South America
Age (Ma) Latitude Longitude Angle Latitude Longitude Angle

31 66.33 -112.02 -30.44 68.11 -90.73 16.23
32 66.66 -114.29 -31.32 67.91 -90.39 16.75
33 66.92 -116.48 -32.20 67.73 -90.11 17.28
34 67.82 -119.85 -32.69 67.54 -87.92 17.77
35 68.51 -123.49 -33.21 67.49 -84.97 18.23
36 69.10 -127.23 -33.75 67.39 -82.23 18.70
37 69.59 -131.04 -34.31 67.23 -79.67 19.18
38 69.97 -134.88 -34.90 67.04 -77.32 19.67
39 70.25 -138.71 -35.46 66.86 -75.20 20.21
40 70.42 -142.51 -36.00 66.69 -73.30 20.79
41 70.58 -146.13 -36.90 66.49 -72.22 21.28
42 70.66 -149.60 -37.86 66.30 -71.30 21.76
43 70.80 -153.12 -38.91 65.97 -70.90 22.16
44 71.02 -156.70 -40.08 65.52 -71.11 22.44
45 71.23 -159.95 -41.23 65.26 -71.53 22.72
46 71.37 -163.08 -42.39 65.01 -71.96 23.00
47 71.35 -166.21 -43.60 64.57 -72.08 23.29
48 71.25 -169.36 -44.84 64.03 -72.15 23.56
49 71.21 -173.79 -45.93 63.24 -72.73 23.74
50 71.06 -177.97 -47.05 62.46 -73.29 23.93
51 70.84 178.11 -48.19 61.69 -73.84 24.12
52 70.60 174.43 -49.31 61.06 -74.60 24.32
53 70.29 170.95 -50.37 60.52 -75.43 24.60
54 69.66 167.67 -51.42 59.69 -75.85 25.05
55 68.90 164.68 -52.47 58.80 -76.18 25.58
56 68.15 162.15 -53.50 57.98 -76.54 26.12
57 67.62 161.04 -54.02 57.47 -77.10 26.68
58 67.09 160.00 -54.55 56.97 -77.64 27.24
59 66.57 159.04 -55.08 56.50 -78.15 27.80
60 66.05 158.15 -55.61 56.05 -78.64 28.37
61 65.53 157.32 -56.15 55.62 -79.12 28.93
62 64.93 156.69 -56.67 55.20 -79.33 29.58
63 64.33 156.13 -57.19 54.80 -79.52 30.23
64 63.65 155.89 -58.09 53.82 -79.08 30.71

Table  2 continued
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Nazca/Farallon - South America Pacific- South America
Age (Ma) Latitude Longitude Angle Latitude Longitude Angle

65 62.99 155.71 -59.05 52.79 -78.63 31.18
66 62.39 155.50 -59.98 51.88 -78.32 31.65
67 61.86 155.25 -60.86 51.11 -78.19 32.10
68 61.35 155.05 -61.79 50.34 -78.06 32.55
69 60.84 154.94 -62.82 49.52 -77.88 33.01
70 60.35 154.83 -63.85 48.72 -77.74 33.48
71 59.87 154.74 -64.88 47.95 -77.62 33.96
72 59.48 154.59 -65.99 47.14 -77.61 34.34
73 59.22 154.36 -67.19 46.28 -77.74 34.56
74 58.96 154.21 -68.27 45.62 -77.84 34.85
75 58.71 154.17 -69.16 45.25 -77.86 35.21
76 58.37 154.09 -70.06 44.83 -77.93 35.66
77 57.87 154.06 -70.74 44.64 -77.99 36.38
78 57.33 154.07 -71.33 44.57 -78.03 37.18
79 56.80 154.09 -71.91 44.52 -78.08 37.99
80 56.31 154.09 -72.40 44.61 -78.21 38.79

Table 2 continued
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Point Latitude 1 Longitude 1 Age (Ma) Volume (km3) Latitude 2 Longitude 2
1 -6.30 -142.53 60.72 1,896.87 2.07 -65.81
2 -6.83 -141.92 57.63 2,143.89 1.06 -67.33
3 -7.36 -141.31 54.98 2,474.92 -0.02 -68.80
4 -7.89 -140.70 54.20 4,506.24 -0.76 -68.92
5 -8.42 -140.08 52.91 5,118.10 -1.66 -69.51
6 -8.95 -139.47 51.24 4,610.92 -2.70 -70.44
7 -9.47 -138.86 50.71 4,527.80 -3.33 -70.27
8 -10.00 -138.25 48.74 4,410.06 -4.47 -71.42
9 -10.53 -137.63 47.69 3,406.44 -5.30 -71.77
10 -11.06 -137.02 46.86 3,339.93 -6.08 -72.12
11 -12.55 -151.84 90.20 311.42 -0.24 -52.67
12 -12.98 -151.15 87.24 867.60 -0.84 -54.29
13 -13.40 -150.46 84.52 1,971.65 -1.45 -55.69
14 -13.83 -149.77 83.65 3,063.49 -1.97 -55.69
15 -14.25 -149.08 65.43 3,372.65 -5.33 -68.74
16 -14.68 -148.39 64.07 4,516.95 -5.96 -68.96
17 -15.10 -147.71 62.27 5,970.24 -6.68 -69.46
18 -15.53 -147.02 61.99 7,391.30 -7.12 -68.95
19 -15.95 -146.33 59.63 8,192.43 -7.94 -69.81
20 -16.38 -145.64 53.99 8,276.48 -9.73 -73.17
21 -16.80 -144.95 52.95 7,528.97 -10.49 -73.33
22 -17.23 -144.26 51.17 6,676.92 -11.54 -74.08
23 -17.65 -143.57 50.44 5,924.89 -12.16 -73.95
24 -18.08 -142.88 49.73 5,120.90 -12.77 -73.79
25 -18.51 -142.20 47.70 4,416.13 -13.92 -74.74
26 -18.93 -141.51 45.59 4,467.57 -15.22 -76.46
27 -19.36 -140.82 44.04 3,500.96 -16.26 -77.50
28 -19.78 -140.13 42.56 3,400.41 -17.27 -78.44
29 -20.20 -139.44 40.97 4,396.92 -18.33 -79.50
30 -20.51 -138.71 39.66 4,620.93 -19.07 -80.06
31 -20.77 -137.94 39.41 4,176.71 -19.24 -79.47

Table 3.	 The starting points on the Pacific plate (Latitude1, Longitude1), seafloor age,  

crustal volume in a swath centered on the starting point, and our reconstructed conjugate 

point on the Nazca plate (Latitude2, Longitude2).
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Point Latitude 1 Longitude 1 Age (Ma) Volume (km3) Latitude 2 Longitude 2
32 -21.04 -137.18 38.74 4,293.07 -19.55 -79.22
33 -21.30 -136.41 30.90 4,371.58 -23.02 -86.12
34 -21.56 -135.65 30.51 4,202.19 -23.26 -85.84
35 -21.83 -134.88 29.90 4,666.64 -23.63 -85.88
36 -22.09 -134.12 28.84 4,791.35 -24.26 -86.55
37 -22.36 -133.35 28.14 4,048.29 -24.68 -86.72
38 -22.62 -132.59 27.70 4,337.69 -24.96 -86.51
39 -22.89 -131.82 26.15 4,328.27 -25.86 -87.89
40 -23.15 -131.06 25.06 4,632.29 -26.50 -88.62
41 -23.42 -130.29 24.64 4,742.64 -26.78 -88.39
42 -23.68 -129.53 24.30 4,816.57 -27.01 -88.04
43 -15.78 -140.66 44.74 7,521.73 -12.38 -77.30
44 -16.06 -139.92 43.51 6,392.49 -13.12 -77.98
45 -16.38 -139.17 42.65 5,453.62 -13.70 -78.21
46 -16.69 -138.42 41.20 5,428.23 -14.58 -79.12
47 -17.01 -137.68 40.31 4,691.05 -15.17 -79.37
48 -17.32 -136.93 37.01 4,368.34 -16.57 -81.51
49 -17.64 -136.19 35.74 4,503.07 -17.17 -81.80
50 -17.96 -135.44 35.45 3,848.80 -17.38 -81.24
51 -18.27 -134.70 34.57 3,859.25 -17.81 -81.18
52 -18.59 -133.95 34.24 4,053.60 -18.03 -80.66
53 -18.90 -133.21 33.15 3,776.03 -18.52 -80.77
54 -19.22 -132.46 31.71 3,292.75 -19.42 -81.91
55 -19.54 -131.72 30.50 3,427.94 -20.20 -82.77
56 -19.85 -130.97 29.72 3,424.29 -20.73 -83.04
57 -20.17 -130.23 28.55 3,199.58 -21.48 -83.85
58 -17.21 -153.38 87.22 2,713.57 -4.85 -56.85
59 -17.57 -152.66 86.81 3,462.03 -5.30 -56.47
60 -17.94 -151.94 83.98 4,228.75 -5.94 -57.76
61 -18.30 -151.22 83.20 3,778.29 -6.42 -57.64
62 -18.67 -150.50 80.54 4,296.81 -7.20 -58.95
63 -19.04 -149.78 75.74 4,449.34 -8.32 -61.84
64 -19.40 -149.05 70.66 3,250.28 -9.55 -64.90
65 -19.77 -148.33 68.12 2,212.25 -10.36 -66.06
66 -20.14 -147.61 66.35 1,807.90 -11.01 -66.53

Table 3 continued



74

Point Latitude 1 Longitude 1 Age (Ma) Volume (km3) Latitude 2 Longitude 2
67 -20.50 -146.89 63.21 1,509.98 -11.88 -67.83
68 -20.87 -146.17 61.90 1,614.69 -12.44 -67.95
69 -21.01 -155.29 89.66 1,124.26 -8.26 -57.39
70 -21.38 -154.57 88.38 1,339.42 -8.80 -57.58
71 -21.74 -153.84 87.88 1,465.25 -9.27 -57.26
72 -22.11 -153.12 86.30 1,772.32 -9.83 -57.62
73 -22.48 -152.40 85.17 1,732.23 -10.34 -57.69
74 -22.84 -151.68 84.09 1,732.48 -10.84 -57.70
75 -23.21 -150.96 83.12 1,596.97 -11.34 -57.68
76 -23.57 -150.23 78.37 1,244.54 -12.43 -60.44
77 -23.94 -149.51 77.58 1,868.85 -12.94 -60.34
78 -24.31 -148.79 72.84 1,882.21 -14.07 -63.05
79 -24.67 -148.07 69.95 3,268.23 -14.93 -64.41
80 -25.04 -147.35 68.98 2,755.02 -15.46 -64.42
81 -25.40 -146.62 60.46 4,580.50 -17.24 -69.05
82 -25.77 -145.90 58.72 4,748.05 -17.88 -69.40
83 -26.14 -145.18 56.25 4,079.82 -18.64 -70.18
84 -26.50 -144.46 54.10 3,879.73 -19.66 -70.93
85 -26.87 -143.74 49.80 4,638.09 -21.55 -73.10
86 -27.23 -143.02 48.71 4,960.79 -22.22 -73.06
87 -27.60 -142.29 48.09 3,962.24 -22.71 -72.71
88 -27.97 -141.57 45.53 3,253.91 -24.10 -74.60
89 -28.33 -140.85 43.03 3,112.10 -25.51 -76.48
90 -28.70 -140.13 40.01 3,037.82 -27.19 -78.83
91 -29.06 -139.41 38.52 2,380.76 -27.91 -79.12
92 -29.43 -138.68 37.72 2,487.10 -28.37 -78.89

Table 3 continued
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Appendix I
This appendix summarizes two important tests of the buoyant impactor hypothesis that 

were not included in the published papers.  

A set of paired maps is presented for Mexico, South America, and Japan.  The top image in 

each pair is a shaded relief map of the seafloor that can be used to detect subducting crustal 

anomalies. The lower image is a map of free-air gravity anomalies that is useful for detecting 

density anomalies in the oceanic plate.  The red triangles are locations of Holocene volcanoes.  

The thin black lines are 20 km depth contours to the top of the subducting slab.

The maps of Mexico demonstrate a complete lack of offshore bathymetric or gravity 

anomalies to account for the zone of flat subduction.  The maps of Japan show that the zone 

of shallow subduction is centered over the Shikoku basin, and is anti-correlated with the 

Palau-Kyushu ridge and Izu-Bonin arc.  The bathymetric map of South America reveals sev-

eral bathymetric anomalies.  These most notable feature in this set of maps is that the Nazca 

ridge, which is easily identified in the bathymetric map, is absent from the gravity map.  The 

lack of a gravity anomaly associated with the Nazca ridge implies that the feature is compen-

sated by a dense root, which negates any positive buoyancy due to thickening of the oceanic 

crust. 

If the cause of flat subduction is the positive buoyancy of bathymetric anomalies, then we 

expect a correlation between the volume of buoyant material subducting and the resulting 

modification of the subduction zone geometry. We have devised a “subduction number” to 

test this theory. Using global bathymetry we calculate the volume of additional crust associ-

ated with a bathymetric feature relative to surrounding seafloor. We then divide this addi-

tional volume by the areal extent of the feature to get the average thickening associated with 
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the feature. The average thickening is multiplied by the length of contact between the trench 

and anomaly to give us the subduction number. Intuition tells us that a larger subduction 

number will indicate a greater influence on the subduction geometry. Assuming a feature of 

constant thickness, an anomaly will have a greater impact when the zone of contact is longer. 

A longer contact length results in a larger subduction number.

We have plotted the subduction number for eighteen bathymetric anomalies that are vis-

ible today. Marked with a yellow circle are features that have been associated with zones of 

shallow subduction, are the conjugate of a feature proposed to have caused a flat slab, or 

have clogged a trench. The Ontong-Java Plateau has a large subduction number which is 

expected based on its great trench modification, however, the Magellan Seamounts have the 

largest subduction number and have no apparent effect on the slab geometry. There is no 

clear divide between the anomalies that create flat slabs and those that do not. The lack of 

any clustering of the shallow subduction zones tells us that the buoyancy from a bathymetric 

high is not a sufficient condition for predicting a shallow slab.
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Figure 10.	 Mexico bathymetry/gravity
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Figure 11.	 Japan bathymetry/gravity
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Figure 12.	 South America bathymetry/gravity
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Part II
Paleomagnetic Constraints on Rifting



Chapter 3
Paleomagnetic studies of the Tuff of San Fe-

lipe on Isla Angel de La Guarda, Baja Califor-
nia, Mexico
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Abstract

Due to its widespread areal extent, the Tuff of San Felipe provides an important datum for 

reconstructing the rifting process that separated Baja California from the North American 

plate following the eruption of the tuff.  We have located outcrops of this tuff on Isla Angel 

de la Guarda, in the Gulf of California, and report results from geological field mapping and 

detailed paleomagnetic and rock magnetic analyses, in an effort to use coherent flow of the 

tuff as a piercing point to constrain fault offsets. These experiments have both characterized 

the magnetic mineralogy of the tuff in this new location, and constrained the depositional 

flow directions.  We have determined that the tuff flowed across the island towards the south-

west; however, it appears from the high variability in the principal axes of the anisotropy of 

magnetic susceptibility that the shear exerted on the grains as they were deposited was insuf-

ficient to produce a strong lineation fabric, precluding its utility for recognizing channelized 

flow.  However, characteristic remanence directions isolated by principal component analysis 

reveal vertical-axis rotations of the magnetic remanence vector within the tuff.

Introduction

Rifting of the Baja California Peninsula from the North American plate, and its transfer to 

the Pacific plate, has been studied extensively over the past few decades in order to provide 

constraints on the kinematics and dynamics of the rifting process. Studies have focused on 

the seismically defined structure of the northern Gulf of California and the location of rifting 

through time (Aragon-Arreola and Martin-Barajas, 2007), motion at the southern end of the 
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Baja California peninsula (Fletcher et al., 2007; Fletcher and Munguia, 2000),  extensional 

structures along the eastern margin of the Baja California peninsula (Lewis and Stock, 1998a; 

Nagy, 2000; Nagy et al., 1999), and field mapping of correlative units in Sonora (Bennett, 

2013; Oskin and Stock, 2003; Vidal Solano et al., 2008).  The Pacific-North America plate 

boundary in the Gulf of California varies from sea floor spreading in the southernmost ex-

tensional basins of the Gulf to distributed continental extension in the Mexicali and Imperial 

valleys at the northern end of the Gulf of California. 

Global plate circuit reconstructions that compare the relative motion of the Pacific and 

North America plates since 11 Ma imply ~ 634 km of displacement between the Pacific and 

North American plates (Oskin and Stock, 2003; Oskin et al., 2001; Stock, 2007).  Geologic 

mapping and reconstructions based on the correlation of rock units between the Baja Cali-

fornia peninsula, the Sonoran coast, and islands in the Gulf demonstrate that since ~6 Ma 

there has been ~ 300 km of relative motion accommodated by faults within the Gulf  (Oskin 

and Stock, 2003) .  The remaining unaccounted motion suggests that ~300 km of displace-

ment has occurred outside of the Gulf before 6 Ma. Previous workers have suggested that this 

missing plate motion might have been accommodated by faults on the Pacific coast of the 

Baja California Peninsula,  or in some form of distributed deformation in locations that have 

yet to be mapped in detail such as Coastal Sonora (Dixon et al., 2000; Fletcher et al., 2007; 

Fletcher and Munguia, 2000; Marsaglia, 2004; Michaud et al., 2004).

Northern Baja California, Western Sonora, and numerous islands in the Gulf contain a 

series of Miocene volcanic deposits that have been key to reconstructing deformation and ex-

tension in the Gulf of California rift zone.  Of these units, the Tuff of San Felipe is the most 

widespread, and records a distinctive geomagnetic excursion that aids in its unique identifica-
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tion with paleomagnetic techniques (Figure 1) (Lewis and Stock, 1998b; Stock et al., 1999).  

It has proven invaluable in reconstructing Isla Tiburon to its counterpart on the Baja Califor-

nia Peninsula (Oskin et al., 2001), and constraining the opening of the northern Gulf.  Work 

on locations in the Sierra Libre of Sonora (Vidal-Solano et al., 2005; Vidal Solano et al., 

2008) is aimed at locating some of the slip deficit.  Work on Isla Angel de la Guarda (Martin-

Barajas et al., 2008; Stock et al., 2008) and various mesas around Cataviña (Olguin-Villa, 

2010) on the Baja California Peninsula is aimed at placing tighter constraints on the location 

of offsets due to the rifting process and strike slip plate boundary motions.

The main motivation of this study was to locate and identify positively outcrops of the Tuff 

of San Felipe, and to use anisotropy of magnetic susceptibility (AMS) to identify the pattern 

of emplacement with the possibility of detecting channelized flows that could improve offset 

measurements (Hinz et al., 2009; Lease et al., 2009).  In order to understand the AMS fabric 

in a petrologic sense, exhaustive rock magnetic experiments were performed.

Field expeditions and sample collection

The Tuff of San Felipe was first positively identified on Isla Angel de la Guarda by a field 

team in 2007 (Martin-Barajas et al., 2008; Stock et al., 2008). Isla Angel de la Guarda is an 

uninhabited island, part of the Islas del Golfo biological reserve, 75 km long by 20 km wide, 

located 30 km from the eastern coast of the Baja California Peninsula (29.3° N, 113.4° W).

In 2009 a team went on a reconnaissance sampling trip to Isla Angel de la Guarda.  By 

using satellite images, we chose target localities where we thought we would most likely 

encounter additional outcrops of the Tuff of San Felipe.  During several cross-island hikes 
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and strategic boat landings, we collected 5 oriented block samples for paleomagnetic analysis, 

from 5 sites within a unit lithologically similar to the Tuff of San Felipe, the identity of which 

we confirm below.

In 2010, a field team did similar reconnaissance sampling of mesas on the Baja California 

Peninsula in the area surrounding Cataviña to follow up on a 2008 expedition that identi-

fied the Tuff of San Felipe in this region.  Again using remote sensing to guide our sampling, 

we proposed 50 target locations where there were indications of a tuff resembling the Tuff of 

San Felipe.  Some locations turned out to be mesas capped by basalt flows and in one case by 

a limestone.  Due to these remotely misidentified outcrops and vehicle limitations, we were 

only able to sample 12 locations for paleomagnetic analysis.

In 2011, a team was tasked with further sampling the known extent of the Tuff of San Fe-

lipe on Isla Angel de la Guarda to test the utility of AMS as a tool for identifying channelized 

flows that could then be used as piercing points to determine fault offsets and to help locate 

the source vent.  The motivation of the sample collection pattern was to constrain the three-

dimensional flow field with spatially and stratigraphically dense samples (Figure 2).  We col-

lected over 362 oriented paleomagnetic cores from 44 sites in addition to 14 oriented block 

samples.  One individual tilted block, roughly 200 meters in diameter, capped by the Tuff of 

San Felipe, produced six paleomagnetic sample sites distributed around its perimeter.

Field identification of the Tuff of San Felipe is complicated due to the lateral variations in 

appearance and the incorporation of the underlying substrate.  Correlations of the Tuff of 

San Felipe are based on geochronology, petrology, and most often the unique paleomagnetic 

signature (Stock et al., 1999).  The Tuff of San Felipe records a low inclination and southwest 

declination due to a geomagnetic excursion (Bennett, 2013; Lewis and Stock, 1998b).  This 
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magnetic signature (Declination 212.4°, Inclination -3.0°), in the type locality established by 

Bennett (2013), is an essential way to identify the Tuff of San Felipe for further study.  The 

thickness of the tuff varies widely. On the island it has a maximum thickness of 12 meters, 

while exposures up to 180 meters thick can be found in near-vent facies of coastal Baja 

California (Stock et al., 1999).  The tuff is characterized by 3%-15% phenocrysts, with alkali 

feldspar being the most abundant (Stock et al., 1999).  A lack of biotite, however, is prob-

ably the most helpful mineralogical constraint in the field.  Lithic fragments constitute up to 

3% of the tuff (Stock et al., 1999).  40Ar/39Ar analysis of alkali feldspars indicate an age of 

12.6 Ma (Stock et al., 1999).  Geochemical analysis shows ~75% SiO2, indicating a rhyolitic 

composition (Stock et al., 1999; Vidal-Solano et al., 2005).

Geologic setting

Previous studies of the geology of Isla Angel de la Guarda include the 1:250,000 scale 

reconnaissance map of all of the state of Baja California (the northern half of the peninsula) 

compiled by Gastil et al. (1975) and lithologic mapping from air photos with ground truth-

ing in 20 coastal locations by Delgado-Argote (2000).  We have compiled a geologic map of 

the Los Machos region (29.63° N, 113.43° W) of the island focused on the Tuff of San Felipe 

and the units directly above and below it (Figure 3).

The stratigraphy in the Los Machos area targeted in this study is as follows.  Dacite lavas 

form the base of the section relative to this investigation.  The dacite is overlain deposition-

ally by a volcaniclastic conglomerate.  The base of the conglomerate is clast-supported with 

poorly sorted sub-angular clasts ranging in size from pebble to cobble.  The conglomerate 
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unit grades up into a matrix-supported deposit with concentrated lenses of pebbles.  The Tuff 

of San Felipe sits depositionally on top of the volcaniclastic conglomerate, with a maximum 

thickness exposed on the island of ~ 12 meters.  The top of the fluvial unit does not appear to 

be altered by the emplacement of the tuff, however, samples were not collected below the tuff 

so this cannot be confirmed with a baked contact test.  On the island, the tuff is of moderate 

grade (Branney and Kokelaar, 1992) having both welded and unwelded zones.  There is no 

macroscopic eutaxitic foliation, lithophysae, or rheomorphic structures as are common in the 

tuff in other localities where it is thicker (Oskin and Stock, 2003; Stock et al., 1999).  The 

tuff on the island also differs from other exposures in that it is phenocryst poor < 10% and 

lacks a basal vitrophyre. The base of the tuff is a 0.8 meter thick white, poorly-welded pyro-

clastic-density current deposit with ~1% pebble-sized angular lithic fragments.  This grades 

upward into a 1.3 meter thick very pale orange to grayish orange deposit, accompanied by an 

increase in the size and abundance (~3%) of the lithic fragments. The degree of welding then 

increases upward in the tuff, and the color changes to light brown.  There is then a 6 meter 

thick strongly welded zone that is blackish red to light purple. Above this zone, there is a ~ 

1 meter thick welded moderate brown zone that grades upward into a ~1 meter thick un-

welded moderate yellowish brown friable zone.  In most of the locations where it is exposed 

the unwelded friable zone of the tuff forms the caprock of the mesa.  In a few areas there is a 

clast-supported volcaniclastic conglomerate, up to six meters thick, preserved above the tuff. 

A two-meter thick cap of vesicular basalt forms the top of the mesa in a few locations (Figure 

3), and preserves the easily erodible conglomerate.

The tuff is exposed across a series of moderately-tilted, westward-dipping blocks.  A series 

of roughly north-striking, high-angle normal faults displaces it with an east side down sense 
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of motion.  We hypothesize a low-angle structure, which predates the high-angle faults, that 

cuts out the lower volcaniclastic conglomerate and puts the tuff in fault contact with the 

dacite lavas (Figure 4; Appendix II).  This low angle structure is also well exposed in an area 

where it places tuff on tuff, resulting in an unknown thickness of missing section (Figure 5).  

This structure could produce erroneous stratigraphic locations for the collected samples, if 

this apparent cooling boundary has had translational motion that cuts out section.

Methods

Measurement of the characteristic paleomagnetic remanence direction (ChRM) is the most 

expedient and cost effective method of confirming a lithologic unit characterized by an un-

usual magnetic direction, such as the Tuff of San Felipe.  In addition to the simple diagnostic 

utility of measuring the ChRM, we can use the paleomagnetic measurements and an unde-

formed reference site (Bennett, 2013) to detect tectonic motion about a vertical axis (Lewis 

and Stock, 1998b).  AMS is a relatively rapid but most importantly nondestructive method 

of measuring the magnetic fabric of a rock.  In order to interpret the petrologic or tectonic 

origin of the magnetic fabric, the magnetic mineralogy of the sample must be well charac-

terized.  We have performed exhaustive rockmagnetic experiments to determine the mag-

netic mineralogy of our samples.  We have utilized techniques that exploit the characteristic 

responses of magnetization and susceptibility as a function of field strength, temperature, and 

frequency to determine the chemical nature and grain size of the magnetic minerals present 

in our samples.  
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Sample collection and preparation

Spatially oriented samples were collected either as oriented, hand-size blocks or as 2.5-cm-

diameter core samples drilled with a modified chain-saw motor fitted with a non-magnetic 

diamond-tipped bit.  Cooling and lubrication for the field drilling process were provided by 

sea water.  Cores were oriented in the field with a Pomeroy™ orienting fixture.  For redun-

dancy, both a magnetic compass and sun compass were used, when possible, using stan-

dard techniques.  All core measurements were taken with respect to magnetic north.  Block 

samples were oriented by drawing a strike line and an orthogonal line in the dip direction on 

an exposed planar surface. The dip of the surface was measured with an inclinometer and the 

strike direction was again recorded with a magnetic compass and a sun compass, when pos-

sible.  Care was taken to avoid obvious lightning strikes by examining each sampling site for 

local magnetic anomalies with the compass of a pocket transit.  Tilt corrections were deter-

mined using the basal contact of the tuff or from the foliation.  All bedding measurements 

were taken with respect to geographic north on a magnetic compass set to a declination of 

13°.  When possible, the stratigraphic height of cores was measured.  Measurements were 

transformed into the magnetic north coordinate system for data processing. All stratigraphic 

height measurements reported are meters above the base of the tuff.  Where the base of the 

tuff was exposed, the height of the core was directly measured.  In locations where the base 

of the tuff was not exposed, we used the red to purple color change (Figure 5a) of the densely 

welded section of the tuff as a datum 4 meters above the base of the tuff (as measured at site 

2) and measurements were made relative to that level. Block samples were cored at the Cali-

fornia Institute of Technology on a drill press fitted with a non-magnetic diamond-tipped 

coring bit.  Following this, the field positions were reoriented in space using a sand box, and 
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the 2.5 cm cores were reoriented to the same convention used for the samples drilled in the 

field.

Cores were cut into 2.2 cm long specimens to produce an aspect ratio that minimizes the 

influence of the shape anisotropy of the specimen itself (Porath et al., 1966). Cores produced 

between one and six specimens suitable for AMS measurement.  The diameter and length 

of each specimen were measured with a set of digital calipers.  A digital balance was used to 

measure the mass of each specimen.  Specimens were cut in half for paleomagnetic rema-

nence measurements.

AMS (Anisotropy of Magnetic Susceptibility)

Magnetic susceptibility is an intrinsic property of all materials independent of whether they 

are diamagnetic, paramagnetic, or ferromagnetic.  Volumetric magnetic susceptibility (K) is 

a dimensionless (in SI units) constant of a material that relates the strength of an induced 

magnetization (M) [A/m] to an applied magnetic field (H) [A/m].  Susceptibility is a func-

tion of the magnitude of the applied field, frequency of the applied field, temperature of 

the sample, orientation of the sample with respect to the applied field, and the composition 

of the sample.  If the induced magnetization varies as a function of the orientation of the 

applied field the material possesses anisotropic magnetic susceptibility.  AMS is a symmetric 

second rank tensor that can be represented as a triaxial ellipsoid with the principal axes K1 

(max), K2 (intermediate), and K3 (minimum) corresponding to the three eigenvectors of the 

AMS tensor.

All specimens discussed here were measured on the AGICO MFK1-FA at the California 

Institute of Technology using the Windows-based software SAFYR4W version 4.0.4.  Mea-
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surements were made at room temperature with an applied field intensity of 200 A/m at a 

frequency of 976 Hz.  At these settings the instrument has a field homogeneity of 0.5%, 

sensitivity of 2x10-8, and an accuracy of 0.1% (AGICO, 2009).  Before measuring samples, 

the coils were allowed to stabilize for ten minutes, a standard was measured to calibrate the 

instrument, and a holder correction was measured.  The measurement process involves plac-

ing the specimen in the rotating holder in 3 orthogonal positions.  The susceptibility is mea-

sured while rotating the specimen about the three orthogonal axes.  A final measurement of 

the bulk susceptibility is made without rotating the specimen. Before and after each insertion 

of the specimen into the coils, the empty coils are measured.

Paleomagnetic remanence 

Components of the characteristic remanent magnetization (ChRM) were measured by 

incrementally erasing the natural remanent magnetization (NRM) of a specimen though 

low-temperature cycling, alternating field (AF), or thermal demagnetization.  The progressive 

destruction of overprinting magnetic vectors reveals components with progressively higher 

coercivity or Curie temperature eventually revealing the most resistant, stable magnetization, 

most likely recorded when the rock was formed.

All remanence measurements were made at the California Institute of Technology on one 

of two 2G Enterprises™ SQuID magnetometer using the RAPID consortium automatic 

sample changer (Kirschvink et al., 2008), housed in a magnetically –shielded room (one of 

µ-metal, and the other of soft steel as described by Scott and Frohlich (1985)).   After mea-

suring AMS on all of the specimens, one specimen was selected from each core and cut into 

two smaller specimens. For both of these, demagnetization started with measurements of 
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the NRM followed by two low-temperature thermal-cycling steps.  These involved immer-

sion and thermal equilibration to 77K in liquid nitrogen for ~15 minutes.  The samples were 

warmed back to room temperature before being measured.  This cycling below the Verwey 

transition (~120K) removes overprints from multi-domain magnetite (Özdemir et al., 2002; 

Ozima et al., 1964; Schmidt, 1993).  Half of each split specimen was then demagnetized 

using progressive 3-axis AF demagnetization, while the other half was treated with low-field 

AF followed by thermal techniques. The AF demagnetization was carried out at steps of 1 

mT from 1 to 10 mT, 2 mT from 10 to 50 mT, and 5 mT from 50 to 100 mT, using wave-

forms synthesized by a digital/analogue conversion system (Wack and Gilder, 2012).  Ther-

mal demagnetization began with a low-AF cleaning in steps of 1 mT from 1 to 6 mT, largely 

to remove any effects from undetected lightning strikes or accidental exposure to moderate 

fields during sampling and laboratory preparation. The specimens were heated in magneti-

cally shielded computer-controlled ovens (residual fields <10 nT) under a gentle flow of N2 

gas to minimize oxidation, in 20°C steps from 60°C to 700°C.  The step size was reduced 

to 10°C from 560°C to 600°C, near the Curie temperature of magnetite ~585°C. Principal 

component analysis was done using the techniques of Kirschvink (1980) as implemented by 

Jones (2002).

Rockmag

For the AF demagnetized sub-sample, rock magnetic experiments aimed at determining 

the coercivity distribution of grains holding the NRM, compared with the total population 

of magnetic carriers in the rock, were carried out at the California Institute of Technology 

using the 2G™ SQuID magnetometer following the RAPID consortium protocol of Kirsch-
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vink et al. (2008).  The acquisition and demagnetization of the NRM, anhysteretic remanent 

magnetization (ARM), isothermal remanent magnetization (IRM), and backfield IRM allow 

us to calculate several ratios that are diagnostic of grain size and magnetic mineralogy.  The 

Lowrie-Fuller test compares the AF demagnetization of an ARM to that of an IRM (Lowrie 

and Fuller, 1971; Xu and Dunlop, 1995).  A median destructive field (MDF) of the ARM 

that is greater than the MDF of IRM is indicative of single domain magnetite and an MDF 

of ARM less than the MDF of IRM indicates multi-domain magnetite.  The ratio of the 

demagnetization of the NRM or ARM to the demagnetization of the IRM is a measure of 

the efficiency of the magnetization and informs us of the mechanism imparting the ChRM 

(Cisowski et al., 1990; Fuller et al., 2002).  The intersection of the IRM acquisition and 

IRM demagnetization curves gives us information about the interacting fields in the sample 

(Cisowski, 1981).

Specifically, the coercivity distribution of grains that held the NRM of samples was deter-

mined by the progressive, 3-axis AF demagnetization in 44 steps, in peak fields of up to 110 

mT.  Next, the coercivity distribution of the ferromagnetic minerals present (irrespective of 

whether or not they recorded part of the NRM) was determined by comparing magnetiza-

tions gained/lost with the techniques of ARM and IRM. An ARM acquisition experiment 

(to measure ARM susceptibility) was conducted first on the samples in a peak axial AF field 

of 100 mT, in 11 steps with a DC biasing field from 0 to 1 mT.  To determine the ARM 

coercivity spectrum the peak ARM was then erased by a series of 20 log-distributed AF steps 

in the axial direction up to 300 mT, the limit of the axial AF coil.  To measure the IRM 

coercivity spectrum below 100 mT, the samples were next given a 100 mT isothermal rema-

nent magnetization (IRM) in the positive axial direction and then erased by AF demagnetiza-
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tion in the same step sequence used for the ARM.  To extend this to higher field levels, IRM 

acquisition series was imparted progressively using the same log-distributed series up to 870 

mT, the limit of the pulse magnetizer.  This saturation isothermal remanent magnetization 

(SIRM) was then erased by axial AF demagnetization to a peak field of 300 mT.  Finally, 

the back-field IRM properties were measured by giving the samples a single IRM pulse of 

870mT in the positive axial direction, followed by opposing this with progressively increas-

ing IRM pulses in the negative direction in steps up to 750 mT.  This series involved ap-

proximately 180 discrete remanence measurements per sample and was run on a suite of 32 

samples.

Thermal susceptibility

The variation of magnetic susceptibility as a function of temperature provides another diag-

nostic tool for determining and characterizing magnetic mineralogy.  The Verwey transition, 

a large increase in susceptibility above ~120K, associated with the change from monoclinic to 

cubic symmetry, is indicative of magnetite.  The Morin transition of hematite shows a large 

increase in susceptibility above ~262K, due to a canting in the antiferromagnetic alignment 

of Bohr magnetons.  The Hopkinson peak, an increase in susceptibility below the Curie 

temperature, is more pronounced in single and pseudo-single-domain (PSD) grains than in 

multidomain grains.  Thermal variation of susceptibility also allows calculation of the Curie 

temperature of a sample.

Thermal variation of magnetic susceptibility curves were measured at the California Insti-

tute of Technology using an AGICO MFK1_FA Kappabridge with a CS4 high temperature 

furnace and a CSL low temperature cryostat controlled by the SUFYTE5W software version 
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5.0.1.  Samples were initially crushed with a Plattner’s mortar and pestle, made from hard-

ened alloy tool steel.  The sample was then reduced to a fine powder using an agate mortar 

and pestle.  Samples of approximately 0.3 grams were weighed out and placed in a quartz 

glass tube with a platinum thermocouple.  Low temperature measurements were made first 

to avoid high temperature alteration of the samples.  The samples were then placed in the 

cryostat apparatus and cooled to -194°C by slowly adding liquid nitrogen to the cryostat 

jacket.  Once the samples reached the desired temperature the liquid nitrogen was expelled 

with high pressure argon gas.  The samples were continuously measured as they warmed back 

to room temperature through the automated insertion and removal of the apparatus into the 

measurement coils.  High-temperature measurements were made from room temperature to 

700°C (heating curve).  Samples were heated at a rate of 6.5°C per minute and held at the 

maximum temperature for five minutes.  The samples were then cooled back down to room 

temperature as additional measurements were made (cooling curve). An inert atmosphere is 

provided by a 100 ml/minute flow of argon into the quartz glass test tube. 

Emplacement temperature

The temperature of emplacement of a pyroclastic density current deposit will decrease radi-

ally as a function of distance from the source.  The ability to measure this for different out-

crops of the Tuff of San Felipe would place another constraint on the paleogeography and the 

magnitude of tectonic offsets.  Hrouda et al. (2003) developed a method for determining this 

temperature that is based on the observation that the cooling and heating curves of a thermal 

susceptibility measurement are usually quite different; however, when the sample is reheated 

to the same temperature, the heating curve follows the cooling curve of the previous experi-
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ment.  If a sample is progressively cycled to higher temperatures, the temperature at which 

the heating and cooling curves begin to diverge should indicate the temperature that the rock 

cooled from in nature or the highest temperature of alteration that it has experienced.

We used this technique to estimate emplacement temperatures on selected samples of the 

Tuff of San Felipe.  Emplacement temperatures were estimated by cycling samples through 

heating and cooling cycles to progressively higher maximum temperatures.  A standard 

thermal susceptibility powdered sample of 0.3 grams was loaded into the CS4 furnace.  The 

sample was initially heated to 100 °C and then heated in 75 °C increments up to a maximum 

of 700°C.  The A40 alteration index of Hrouda (2003) is used to quantify the deviation of 

the heating and cooling curves at 40°C. 

Vibrating sample magnetometer (VSM) hysteresis

Hysteresis loops are the standard method for determining the grain size and composition of 

magnetic particles (Day et al., 1977).   Four parameters can be used to summarize a hyster-

esis loop: saturation remanent magnetization (Mr), saturation magnetization (Ms), coercivity 

(Hc), and coercivity of remanence (Hcr).  The ratios of Mr/Ms and Hcr/Hc are diagnostic of 

domain state.

Hysteresis loops were measured at the Institute for Rock Magnetism at the University of 

Minnesota using a Princeton Measurements Corporation vibrating sample magnetometer.    

Room temperature measurements were measured on standard 2.3 cm cylindrical specimens 

as well as on smaller sample chips.  The samples were securely attached to a vibrating sample 

holder and centered within the pickup coils.  Hysteresis loops were measured in a maximum 

field of 1.5 T in increments of 0.01 T.  Measurements made with an averaging time of one 
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second produced an excellent signal to noise ratio.  Backfield coercivity measurements were 

also made.

VSM magnetization as a function of temperature

Magnetization as a function of temperature is the standard method of determining Curie 

temperatures for paleomagnetic samples. 

Temperature dependent magnetization was measured at the Institute for Rock Magne-

tism at the University of Minnesota using a Princeton Measurements Corporation vibrating 

sample magnetometer with a high-temperature furnace assembly.  A millimeter sized sample 

chip was attached to a sample holder using a ceramic cement, attached to the vibration head, 

and lowered into the furnace that was already centered on the pickup coils.  Samples were 

heated to 1000 K in a helium atmosphere and an applied field of 1.5 T. 

Frequency dependence of susceptibility

The measured magnetic susceptibility of a sample depends on the timescale of observation.  

The frequency of an applied field can be used as proxy for the relaxation time of a magnetic 

particle (Butler, 1992; Tauxe et al., 2010).  Superparamagnetic particles can be detected by 

measuring the magnetic susceptibility of a specimen at a range of frequencies since the sus-

ceptibility of superparamagnetic particles decreases with increasing frequency (Carter-Stiglitz 

et al., 2006).

The frequency dependence of susceptibility was measured at the Institute for Rock Magne-

tism at the University of Minnesota using a Magnon GmbH variable frequency susceptibility 

bridge. Specimens were measured in a 300 A/m field at 100, 200, 500, 1000, 2000, 5000, 

and 10000 Hz.  The measurement protocol was to select a frequency, measure the empty 
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chamber, place the specimen on the plunger and lower it into the coils, measure the suscep-

tibility with the specimen present, remove the sample and measure the empty chamber for a 

second time.

Magnetic Properties Measurement System (MPMS)

The size and composition of magnetic particles determine their magnetic response to 

frequency, field, and temperature.  A magnetic property measurement system (MPMS) is 

designed to make high fidelity measurements of a samples magnetization while varying the 

temperature and applied field.  

Two sets of experiments were run at the Institute for Rock Magnetism at the University 

of Minnesota using a Quantum Design MPMS, following the protocol of Moskowitz et al. 

(1993).  The first experiment imparted an IRM on the sample at 300 K and then measured 

the magnetization as the sample was cooled to 2 K in zero field.  An IRM was given to the 

sample at 2 K and the magnetization was measured as the sample was rewarmed to 300 K in 

zero field.  The second experiment measured the susceptibility of the sample while varying 

temperature from 2 – 300 K at seven different frequencies (1, 3, 10, 30, 100, 300, 1000 Hz).  

Samples were prepared as rock chips or powers contained in gelcaps.  The sample was fixed 

inside a plastic drinking straw that was then attached to a sample rod that was lowered into 

the MPSM through an airlock.  

FORCs

Classical hysteresis loops measure the bulk response of a sample to an applied field.  First-

order reversal curves (FORCs) probe the inside of a hysteresis loop revealing information 
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about the distribution of characteristics of particles within a sample (Mayergoyz, 1986; Pike 

et al., 1999; Roberts et al., 2000).  FORCs are measured by first saturating the sample in a 

positive field.   The applied field is then reduced to a given reversal field (Ha) and the magne-

tization of the sample is measured as the field (Hb) is ramped back up to the saturating field.  

This process is repeated for progressively lower reversal fields.  The end result of these mea-

surements is the magnetization as a function of applied field, M(Ha,Hb).  The FORC distri-

bution is defined as the mixed second derivative of this magnetization (Pike et al., 1999).  A 

FORC diagram transforms the data into a new set of coordinates with Hc on the x-axis and 

Hu on the y-axis, where 2Hc=Hb-Ha and 2Hu=Ha+Hb.  In this new coordinate space the 

x-axis is equivalent to coercivity and the y-axis is a measure of interaction between particles.

FORCs were measured for several samples at the Institute for Rock Magnetism at the 

University of Minnesota using a Princeton Measurements VSM.  Measurements were made 

on both standard 2.5 cm cylindrical specimens and specimen chips.  Samples were saturated 

with a 1.5 T field.  Measurements were made with Hu varying from -0.1 to 0.1 T and Hc 

varying from 0 to 0.1 T.  FORC data was processed with the FORCinel software of Harrison 

and Feinberg (2008).

Anisotropy of Anhysteretic Remanent Magnetization 

While AMS provides a relatively quick and nondestructive method to measure and describe 

the magnetic fabric of a specimen, it uses susceptibility which is a property of all materials.  

Therefore, the AMS of a specimen is the result of the average susceptibility of all mineral 

constituents of the specimen.  One way to isolate the magnetic fabric due to only the fer-

romagnetic minerals is to measure the anisotropy of anhysteretic remanent magnetization 
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(AARM) (Jackson, 1991; Jackson and Tauxe, 1991; Potter, 2004).

AARM was measured on nine specimens at the Institute for Rock Magnetism at the Uni-

versity of Minnesota using a 2G SQuID magnetometer and an ASC Scientific static alternat-

ing field demagnetizer.  Each specimen was manually AF demagnetized along three orthogo-

nal axes.  The demagnetized specimen was measured manually on the SRM in six directions.  

An ARM was given to the specimen along one axis in a peak alternating field of 0.2 T with a 

0.005 T biasing field along the axis.  The specimen was measured on the SRM in six direc-

tions.  The specimen was then AF demagnetized along the axis that was previously given an 

ARM.  This process was repeated for between six and ten axes of the specimen.

Thermal enhancement of AMS

The samples of TSF have an average percent anisotropy of 4%.  This weak anisotropy can 

cause transposition of the measured susceptibility axes and can increase the uncertainty, both 

of which make it more difficult to identify the principal directions and corresponding petro-

fabric.  In order to combat this issue, we have experimented with the thermal enhancement 

of susceptibility (Borradaile and Lagroix, 2000; Jeleńska and Ka̧działko-Hofmokl, 1990).  

Heating a sample increases the bulk susceptibility by the growth of iron oxides (Dunlop, 

1974).  If this new mineral growth occurs in void spaces or as an overgrowth on already pres-

ent phases, the original anisotropy will be retained and increased.

Two 2.5 cm cores were drilled from an oriented block sample.  Each core was cut into 7 

specimens 2.2 cm long.   The AMS of samples was measured in a 200 A/m field with the 

spinning mode of the AGICO MFK1-FA Kappabridge.  An initial measurement was made 

at the standard frequency of 976 Hz.  This measurement was duplicated to test the reproduc-
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ibility of the measurements.  Two more measurements were made at 3,904 Hz and 15,616 

Hz.  The specimens were then left to rest for twelve hours in a μ-metal cylinder inside of 

the μ-metal shielded room.  After the 12 hours in near zero field, the specimens were again 

measured at the three different frequencies.  The specimens were then immersed in liquid 

nitrogen for 30 minutes in the μ-metal shielded room and warmed back to room tempera-

ture.  From this step onward the AMS after each treatment was only measured at a frequency 

of 976 Hz.  A second low-temperature step was performed on all of the samples during 

which two of the specimens were measured while still frozen at -196°C.  The specimens were 

given a low alternating field demagnetization of 2.3, 4.6, and 6.9 mT.   The specimens were 

then heated in a shielded oven in an air atmosphere to 50°C for one hour, 90°C for one hour, 

and 115°C for one hour.  After these initial thermal steps the specimens were split into two 

groups, one that continued the heating process in air and the other in a controlled nitrogen 

atmosphere.  The specimens were then heated for 30 minutes to temperatures of 150°C, 

220°C, 260°C, 300°C, 400°C, 470°C, 540°C, 610°C, 680°C, and 700°C.

Data Analysis

AMS

The samples show anisotropy typical for a welded tuff (Ellwood, 1982; Hillhouse and 

Wells, 1991; Knight et al., 1986; MacDonald and Palmer, 1990; Palmer et al., 1996; Palmer 

et al., 1991; Seaman et al., 1991; Thomas et al., 1992).  The anisotropy of all measured 

specimens ranges from 0.7 – 7.3% with a mean of 4% and a standard deviation of 1.7%.  

Such a weak anisotropy is not unusual for a tuff that does not exhibit a macroscopic fabric.  
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The AMS tensors of the samples exhibit a well-defined foliation and a more poorly defined 

lineation.  Almost all of the samples lie in the oblate sector of a Flinn diagram (Flinn, 1962) 

(Figure 6).  There is only one specimen that exhibits a relatively large degree of anisotropy 

and has a prolate shape.

The mean susceptibility (in 10-6 SI) ranges from 374 – 7949 with an average of 2764 ± 

1613 (1σ). The mean susceptibility does not correlate with the density of the specimens, 

which is assumed to be due to differential compaction of the tuff (Figure 7).  Assuming the 

magnetic particles were uniformly distributed in the pyroclastic flow, the compaction pro-

cess would increase the volume fraction of high susceptibility particles and consequently the 

mean susceptibility.  The fact that mean susceptibility and specimen density are not correlat-

ed tells us that either the fraction of high susceptibility particles varies for other reasons such 

as differing composition, varying concentration of lithic clasts, or that the welding process is 

not effective at concentrating magnetic minerals.

There is no strong correlation between the mean susceptibility and the size of the error 

ellipses on individual AMS axes, which means the errors are not due to the measurement of 

weak samples. The sites show both well-defined tri-axial and girdle distributions of K2 and 

K3.  There is no clear correlation between the mean Jelinek anisotropy factor (Jelinek, 1981) 

and the clustering of K1 and K3.  The lack of a correlation between the degree of anisotropy 

and the precision of the K1 axis indicates that the variations in the lineation direction are not 

an artifact of measuring samples with a low degree of anisotropy. The overall weakly-defined 

lineation and large variation in the declination of K1 within a single site indicate poor align-

ment of the magnetic grains.

The flow direction, as defined by the plunge direction of the K3 axis and by the azimuth 



105
180 degrees away from the K1 axis, is consistent for the vast majority of sites (Figure 8).  The 

general flow direction defined by the AMS fabric for all sites is to the South – Southwest, 

although there is significant variation between sites.  Notably, the small tilted block, contain-

ing sites 1 through 6, contains the largest variation in flow directions.

Thermal enhancement

The thermal enhancement experiment proved unsuccessful in providing tighter constraints 

on the principal axes of the AMS fabric.  While the treatments increased the degree of anisot-

ropy in all specimens, the magnitude of the change was not uniform (Figure 9).  The thermal 

treatments produced a clockwise rotation of the declination of K1 (Figure 10).  The angular 

dispersion of the declinations did not improve with progressive heating.  The bulk suscepti-

bility shows some very interesting variation with differing treatments (Figure 11).  It decreas-

es with increasing frequency, indicating a superparamagnetic component (Carter-Stiglitz et 

al., 2006).   The duplicate measurements at frequency 1 are almost indistinguishable.  Rest-

ing the samples in zero field decreases the susceptibility.  There is a large increase in suscepti-

bility after the specimens have been cooled to 77 Kelvin and warmed back to room tempera-

ture.  The susceptibility remains elevated when the specimens are measured while still frozen.  

While the decrease in susceptibility with frequency indicates very small superparamagnetic 

grains, the increase in susceptibility with low-temperature cycling indicates the presence of 

larger multi-domain grains (Özdemir et al., 2002; Ozima et al., 1964; Schmidt, 1993).

After a low-AF treatment the susceptibility returns to the pre low-temperature cycle val-

ues.  Once the samples have been heated above the Curie temperature of magnetite, the bulk 

susceptibility drops off rapidly. The decrease in susceptibility past the magnetite Curie tem-
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perature is puzzling.  Demagnetization should not permanently alter the bulk susceptibility 

unless there is alteration or creation of new phases, such as titanomagnetite from magnetite 

(Jackson et al., 1998).  The susceptibility altering does not appear to be influenced by heating 

in the presence of air or a controlled nitrogen atmosphere.   

Remanence

Thermal and AF demagnetization techniques produce mean tilt corrected directions of 

ChRM that are statistically indistinguishable (Figure 12). AF demagnetization results in 

Fisher mean declination of 235.5 and an inclination of -5.3 with an α95 of 4.7.  Thermal 

demagnetization results in a Fisher mean declination of 232.9 and an inclination of -6.8 with 

an α95 of 4.7.  This consistency between the two methods allows us to use the much faster 

and less user-intensive AF demagnetization procedures for the bulk of our samples.

The samples show clear demagnetization paths that cleanly head toward the origin (Figure 

13). The specimens show consistent demagnetization patterns with a few exceptions.  Most 

specimens lose the bulk of their magnetization around 580°C, the Curie temperature of mag-

netite (Figure 14).  Some specimens start to demagnetize at lower temperatures, most likely 

indicating a higher titanium content (titanomagnetite).  A few specimens retain up to 10% 

of their magnetization past 600°C indicating the presence of an antiferromagnetic phase like 

hematite.  One specimen from site 3 shows an increase in magnetization most likely due to 

the removal of an overprint that is anti-parallel to the ChRM.  Most specimens demagnetize 

in the range of 10s of mT, indicating magnetite (Figure 15).  Five specimens (2a, 2r, 5k, 24e, 

31e) retain more than 25% of their initial magnetization at a field of 90mT indicating a high 

coercivity phase such as hematite, or perhaps elongate magnetite needles exsolved within 
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feldspars.

Rockmag

The Lowrie-Fuller test shows that most samples have a median destructive field (MDF) of 

SIRM greater than the MDF of ARM, indicating single domain particles (Figure 16).  The 

shape of the demagnetization curves are more often S-shaped than exponential, indicating a 

pseudo-single-domain grain size (Dunlop and Özdemir, 2001).  The crossover in the IRM 

plot, correlative to the coercivity of remanence, is in the range of 20-30 mT, again indicat-

ing magnetite (Cisowski, 1981) (Figure 17).  The crossover does not always occur at half of 

the SIRM indicating that there is interaction of the magnetic particles (Cisowski, 1981). The 

backfield IRMs are all in the range of 30mT, also consistent with the coercivity of magnetite 

(Dunlop and Özdemir, 2001) (Figure 18).

Thermal susceptibility 

All of the thermal susceptibility curves (Figure 19) indicate that the dominant magnetic 

phase is magnetite.  There is a peak near the 120K Verwey transition of magnetite and a 

Hopkinson peak followed by a sharp decrease in susceptibility near the 580°C Curie temper-

ature of magnetite.  Most samples exhibit a type three relationship where the cooling curve is 

much lower than the heating curve but of a similar shape, caused by an unknown alteration 

of the magnetic phases (Hrouda, 2003).  Some samples show a type two relationship, where 

the cooling curve is higher than the heating curve indicating the production of magnetite 

from less magnetic phases (Hrouda, 1994).  A few samples produce a cooling curve of a dif-

ferent shape than the heating curve (Figure 20).   This indicates the creation of two separate 
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phases, perhaps with different concentrations of titanium. 

Emplacement temperature

Repeated heating experiments on six samples gave inconclusive results, partially hampered 

by a software error that halted the measurement procedure.  The largest A40 anomaly that 

we have measured is 15% and indicates a temperature of 700°C (Figure 21).  This anomaly 

is nowhere near the 500% anomaly that Hrouda et al. (2003) observed when they first 

described the technique.  Most of the variation seen is only on the order of a few percent, in-

sufficient to constrain the emplacement temperature of the tuff.  However, we can determine 

from these experiments that the tuff has not undergone significant thermal alteration. 

Hysteresis

Plotting the results of all measured hysteresis loops on a Day plot (Dunlop, 2002), the ratio 

of coercivity of remanence to coercivity versus the ratio of saturation remanent magnetiza-

tion to saturation magnetization, indicates that all our samples are in the (PSD) grain region 

(Figure 22).  This result can mean either that our samples are actually in the PSD size range 

or that we have a population of multidomain and a population of single-domain grains and 

what we have measured is a mixing line of the two populations.  The shape of the hysteresis 

loops, relatively steep and narrow without constriction near the origin, indicate PSD grains 

(Roberts et al., 1995; Tauxe et al., 1996).  The largest variation that we observe between 

samples is in the paramagnetic component (Figure 23).  Large variations in the paramagnetic 

content of the matrix can be a contributing factor to the variations that we measure in the 

AMS ellipsoid (Richter and van der Pluijm, 1994).
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VSM thermal

The majority of samples examined for the variation of magnetization at high temperature 

show a clear magnetite signal with a Curie temperature of 850 K (Figure 24).  Ssample 6g 

shows evidence of a secondary component of hematite with a Curie temperature of 950 K 

(Figure 24).  Some samples show a slight change in slope around 550 K, possibly indicating a 

phase with an increased titanium content.

Frequency dependence of susceptibility

All 88 specimens measured show a clear decrease in susceptibility with increasing frequency 

of the applied field (Figure 25).  This behavior is a clear sign of the presence of a superpara-

magnetic fraction of grains in the sample (Carter-Stiglitz et al., 2006).

MPMS

The results from the room temperature SIRM remanence on cooling and low-temperature 

SIRM remanence on warming show three different patterns. One pattern shows a minor 

change in moment at 120K, the Verwey transition in magnetite (Figure 26).  Another pat-

tern has a larger change in remanence at 100K, a possible depression of the Verwey transition 

due to non-stoichiometric magnetite or the partial oxidation to maghemite (Kosterov, 2002).  

The final pattern has the 100K transition as well as a change in remanence at 160K of un-

known origin.

The experiments of the frequency and temperature dependence of susceptibility confirm 

that the major magnetic phase in the samples is magnetite.  The peak of in-phase susceptibil-

ity at 120K and the peak of out-of-phase susceptibility at 50K are diagnostic of magnetite 

(Figure 27).  The MPMS experiments also show a frequency dependence of susceptibility, 
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indicating the presence of superparamagnetic grains.  

FORCs

In FORC distribution space, a ridge along the Hu=0 axis indicates uniaxial non-interacting 

single-domain particles, a ridge along the Ha=0 axis indicates multidomain particles, while 

dispersion about the Hu=0 axis indicates interaction of single-domain particles or pseudo-

single-domain particles (Carvallo et al., 2003; Dunlop et al., 1990; Harrison and Feinberg, 

2008; Heslop and Muxworthy, 2005; Muxworthy and Williams, 2005; Muxworthy et al., 

2005; Pike et al., 1999; Pike et al., 2001; Roberts et al., 2000).  All of the samples exhibit 

pseudo-single-domain behavior or are a mixture of interacting single-domain particles and 

multidomain particles (Figure 28).

AARM

The degree of anisotropy of the ARM varies from 4 – 19% with a mostly oblate fabric 

(Figure 29).  While the AARM produces the same northeast – southwest oriented fabric as 

the AMS, the bearing of motion implied by the inclination of K3 is in the opposite direction. 

Although the mean plunge of the K3 axes suggests flow directed to the northwest, the error 

ellipses are quite large and do not exclude flow to the southeast.  The error ellipses around 

K3 range from 5 – 37 degrees while the error ellipses around K1 range from 17 – 70 degrees.  

The AARM fabric is consistent with the AMS fabric, but needs measurements in more direc-

tions to be statistically significant.
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Discussion

The results of exhaustive rock magnetic experiments indicate that the main carrier of the 

magnetization, in the Tuff of San Felipe on Isla Angel de la Guarda, is titanomagnetite with 

a pseudo-single-domain grain size.  Some samples contain minor components of a higher 

coercivity phase such as hematite and larger multidomain grains.   Pseudo-single-domain 

titanomagnetite allows the interpretation of the AMS fabric as a normal fabric.  The agree-

ment of the AARM fabric with the AMS fabric also gives us confidence that we do not have a 

reverse fabric.

The excellent agreement between the mean direction produced by the paired AF and ther-

mal demagnetization of split test specimens justifies our use of AF demagnetization.  From 

AF demagnetization of additional samples, we can calculate the rotation of coherent blocks 

relative to a stable Tuff of San Felipe reference site on the Baja California Peninsula defined 

by Bennett (2013).  Individual measured rotations vary from the reference site by 20 degrees 

counterclockwise to 62 degrees clockwise, with an average rotation of 34 degrees in a clock-

wise direction (Figure 30).

The azimuth of the K3 axis defines a general flow direction to the south-southwest, al-

though there is large scatter even within the directions given by cores at an individual site.  

We can try and correct for the scatter in the AMS principal axis at individual sites by per-

forming a vertical axis rotation correction (Hillhouse and Wells, 1991).  Using the rotations 

determined for each specimen to correct for the rotation of the remanent magnetization, we 

rotated the three AMS axis into a tectonic reference frame (Figure 31).  The tectonic correc-

tion factor does not dramatically reduce the scatter at individual sites (Figure 32), though 
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the mean declinations of the principal AMS axes are slightly enhanced (Figure 33).  We have 

also performed an inclination correction, relative to the reference site, about a horizontal axis 

perpendicular to the trend of the K3 axis.  This correction also fails to reduce the intra-site 

scatter of the principal AMS axes.  If the scatter in the AMS is the result of post-depositional 

rotations, the vertical axis rotation correction based on the Tuff of San Felipe reference vector 

direction should greatly reduce the scatter.  Because this correction has failed to reduce the 

scatter we can conclude it is not due to a structural rotation of the blocks.  The most likely 

remaining explanation for the dispersion in the AMS axes is turbulent flow of the ignimbrite 

during deposition.  Non-laminar flow during deposition reduces the alignment of the long 

axes of the magnetic grains which could account for the weak lineation fabric that we have 

measured as well as the dispersion that we observe at individual sites.  Because the AMS fab-

ric is so sensitive to the local conditions around the location of deposition, it is not a useful 

tool for recognizing small-scale coherent flow.  Our sampling on the 200 meter wide tilted 

block poses a significant challenge when trying to determine coherent flow simply on the 

scale of tens of meters.

The small tilted block was sampled intensely due to the fact that it was interpreted in the 

field to be a single coherent block that was accessible from all directions.  These samples 

produced the most directional scatter in ChRM of all our locations.  The exhaustive rock 

magnetic experiments were designed to find a mineralogical explanation for the dispersion 

in the AMS fabrics here; however, we found no significant difference in the mineralogy of 

the specimens to account for the significant variation we observe.  Additionally, there are 

no observed rheomorphic textures in the field and we do not find a correlation between the 

density of the specimens, a proxy for degree of welding, or the degree of anisotropy and the 



113
anomalous directions of the K1 and K3 axes.  We have, however, found a correlation between 

the approximate stratigraphic height of a specimen and a rotation in the remanence direction 

(Figure 34).  In order to test the strength of this correlation, we performed a test to deter-

mine whether or not the Fisher means of the upper and lower specimens at site 2, which cov-

ers the entire stratigraphy on the tilted block, were statistically distinct (Fisher et al., 1987).  

The Fisher mean direction of the site 2 specimens in the lower four meters of the section is 

statistically different from the mean of the specimens found above four meters, at the 99.95 

confidence level (N=28 and N=19, χ2=2.56x10-34).  Therefore, the rotation of the top of the 

unit relative to the bottom is a real signal.  

Possible causes for this change in remanence direction were examined.  We have ruled 

out misorientation of the cores due to a spurious local magnetic field by checking all of our 

magnetic compass measurements against the corresponding sun compass measurements.  The 

average difference between the strike as measured by the sun compass and the magnetic com-

pass is less than three degrees.  We have also checked the least squares analysis of the demag-

netization data and find no reason to doubt our fitting procedure; we have an average maxi-

mum angular deviation (MAD values) of 1.8 degrees and the Fisher means from a thermal 

demagnetization dataset are indistinguishable from that of the AF demagnetized dataset.

Having ruled out sampling and processing artefacts, we are left to determine a physical 

explanation for the rotation of the magnetic remanence within the unit.  There are four pos-

sible physical ways to explain the rotation we observe: 1) the Earth’s magnetic field may have 

shifted while the tuff was cooling, 2) the tuff deformed ductilely after it had cooled below its 

Curie temperature, 3) alteration of the tuff by devitrification of vapor phase alteration has 

given the upper section of the tuff a chemical remanent magnetization (CRM) at a time after 
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deposition when the Earth’s magnetic field has shifted, or 4) a low-angle fault or slump has 

rotated the top of the unit.

The Earth’s magnetic field has been shown to change at a rate of up to 1° per week during 

a reversal (Bogue and Glen, 2010).  In order to record the 27° magnetic remanence rotation 

that we observe, the top of the tuff would have to have cooled below the Curie temperature 

of magnetite 189 days after the base.  Such a temporal cooling differential is not expected 

for a single 12 meter ignimbrite deposit (Keating, 2005; Wallace et al., 2003).  Numerical 

modeling indicates that the entire deposit would have cooled below the curie temperature of 

magnetite within seven months (Riehle et al., 1995). In addition, this would not produce the 

rotation pattern that we observe.  If the Earth’s magnetic field were to change while the tuff 

was cooling, it is the middle of the unit that will cool the most slowly and thus record a dif-

ferent remanent magnetization vector.  Variation in the Earth’s magnetic field cannot explain 

the changing ChRM that we observe.

The minimum temperature for welding in a rhyolitic tuff has been estimated to be between 

500°C and 625°C (Sheridan and Wang, 2005), however, this temperature can also exceed 

900°C at high water content and low lithostatic pressure (Grunder et al., 2005).  If we use 

the conservative estimate of 500°C, there is only an 85°C window where the remanence 

vector will be locked into the magnetic mineralogy and welding can continue. The lack of 

rheomorphic deformation in the outcrops of the tuff in this location cast doubt on the idea 

of ductile deformation post emplacement.

Devitrification and vapor-phase alteration have been show to produce magnetite (Stimac 

et al., 1996), however, we do not see any significant variation in the magnetic mineralogy or 

grain size.  This requires the post-depositional chemical precipitation of magnetic phases of 
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the same composition and size as those produced through magmatic processes.  The loca-

tion of the zone of alteration would have to be highly localized.  There is no apparent dif-

ference between the cores in the rotated section and the outcrops on the rest of the island.  

Experimental results have shown that magnetite precipitates with its easy axis aligned with 

the applied field (Pick and Tauxe, 1991). This makes the prediction that the ChRM due to a 

magnetite chemical remanent magnetization (CRM) will align with the K1 axis of the AMS 

ellipsoid.  A test of the correlation between the ChRM declination and the AMS lineation di-

rection casts doubt on the idea that we have measured a CRM (Figure 35).  A Fuller test also 

shows that we have measured a TRM (Figure 36) (Cisowski et al., 1990; Fuller et al., 1988; 

Fuller et al., 2002).

We have not recognized a low-angle structure in the outcrops where we observe the rota-

tion of remanence.  However, elsewhere on the island, we have mapped a low-angle planar 

feature within the tuff (Appendix II).  However, this model has another problem, since where 

we have sampled across the mapped low-angle structure, we do not see any vertical-axis rota-

tion (Figure 37). For the low-angle fault model to hold true, this structure would have to be 

moving independently from the one observed in the other outcrops, or it may have some 

structural variability.

Conclusion

We have determined through extensive rock magnetic studies that the main magnetic car-

rier in the Tuff of San Felipe on Isla Angel de la Guarda is pseudo-single-domain magnetite.  

This fact allows us to interpret the principal axes of the AMS fabric in terms of an emplace-
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ment flow direction.  We have determined that the Tuff of San Felipe flowed across Isla Angel 

de la Guarda from the northeast to southwest.  An average of 30° of clockwise vertical-axis 

rotation of the Tuff of San Felipe outcrops has been determined by comparing the character-

istic remanent magnetization on the island to a stable reference site on the Baja California 

peninsula. We have attempted to reduce the scatter in the AMS measurements by correcting 

the principal axes directions for vertical-axis tectonic evidenced by the rotation of the rema-

nent magnetization.  This tectonic correction failed to improve the clustering of the princi-

pal AMS axes and suggests that the observed scatter in the AMS measurements is a primary 

feature of turbulent flow at the time of deposition.  The deflection of AMS axes by highly lo-

calized processes limits its function as a method of recognizing offset channelized flow.  Our 

thorough magnetic sampling has revealed previously unrecognized, rotations within the tuff.  

Though not definitive, the current best explanation for the differential rotation is a low-angle 

structure. Our work provides testable hypothesis and a direction for future work elucidating 

the cause of the observed rotation. 
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Figure 1

Regional map showing locations of Tuff of San Felipe outcrops.  Black diamonds are sam-

ples studied by previous authors.  Red squares are samples collected near Cataviña.  Green 

triangles are samples collected on Isla Angel de la Guarda.

Figure 2

Paleomagnetic sample locations on Isla Angel de la Guarda.

Figure 3

Geologic map of the Los Machos area.  A key relationship to note is the nature of the 

contact between the Tuff of San Felipe and lower units.  The tuff sits depositionally on the 

conglomerate but is in possible fault contact with the dacite lavas.

Figure 4

Fault contact, small-scale view.  Panel A shows a possibly sheared fine-grained zone between 

two welded zones of the tuff. Panel B shows an upper welded zone of the tuff in contact with 

the dacite lavas.

Figure 5

Proposed fault contact, large-scale view. Possible fault trace marked by yellow arrows. Panel 

A shows the location where the planar structure was originally identified as a cooling feature.  

Panel B shows the location where the planar feature was first recognized to have motion 

Figure Captions
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across it due to the presence of a damage zone and missing stratigraphy.  Person is 1.5 meters 

for scale. The red arrow points to the red to purple change in the welded zone that was used 

as a datum (4 meters) for stratigraphic height measurements when the base of the tuff was 

not exposed.

Figure 6

Flinn and Jelinek plots.  Panel A is a Flinn plot showing the relationship between the 

foliation and lineation fabrics.  The 1:1 line divides the space into prolate (cigar shaped) and 

oblate (pancake shaped) domains.  Most of the samples have an oblate fabric.  Panel B is a 

Jelinek plot of the shape parameter (T) versus the Jelinek degree of anisotropy (Pj).  Most 

of the samples have a positive shape parameter indicating an oblate fabric.  As the samples 

become more anisotropic the oblate fabric is accentuated. 

Figure 7

Specimen density versus mean susceptibility.  There is no clear correlation between the 

specimen density (a proxy for welding) and the mean susceptibility.  Compaction welding 

should increase the quantity of magnetic minerals in a given volume.  We see no correlation 

and conclude that the magnetic minerals must not have been evenly distributed in the origi-

nal deposit.

Figure 8

AMS flow field.  This map shows azimuth of the minimum (blue lines) and maximum (red 

lines) axes of the AMS ellipsoids of all specimens.  The flow azimuth can be interpreted as 
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along the trend defined by the maximum axis K1 (lineation) and in the direction of the trend 

of the minimum axis K3 (foliation).

Figure 9

Thermal enhancement effects on degree of anisotropy. The degree of anisotropy is increase 

by the thermal treatments, however, the changes are not uniform across all specimens. Each 

color represents one core drilled from a single block sample. The square symbol is the speci-

men heated in a nitrogen atmosphere.

Figure 10

Thermal enhancement of the K1 declination.  The thermal treatments produce a clockwise 

rotation of the maximum axis.  The thermal treatments fail to reduce the spread in declina-

tion, in fact, the dispersion increases. Each color represents one core drilled from a single 

block sample. The square symbol is the specimen heated in a nitrogen atmosphere.

Figure 11

Thermal enhancement of bulk susceptibility.  The bulk susceptibility shows a varied re-

sponse to the treatments.  We can see a frequency dependence indicating superparamagnetic 

grains.  The duplicated measurements agree very well giving us confidence that the changes 

we are seeing are not instrument noise.  Low-temperature cycling produces an increase in 

bulk susceptibility.  The bulk susceptibility drops off once the specimen is heated past the 

Curie temperature of magnetite.  Each color represents one core drilled from a single block 

sample. The square symbol is the specimen heated in a nitrogen atmosphere.
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Figure 12

Fisher means of AF and thermal demagnetization.  A lower hemisphere equal-area stereonet 

plot of the characteristic remanent magnetization of split samples determined by thermal de-

magnetization (red squares) and AF demagnetization (blue circles).  The Fisher mean of each 

dataset is marked with a blue star (AF) or a red star (thermal).

Figure 13

Orthographic demagnetization plots.  A sample of representative demagnetization dia-

grams.  While the thermal demagnetization diagrams are noisier than the AF, both head 

towards the origin and produce excellent fits.

Figure 14

Thermal J/Jo. Magnetization relative to the NRM as a function of thermal cleaning tem-

perature.  Most of the specimens demagnetize in the range of 585°C, the Curie temperature 

of magnetite.  Demagnetization at lower temperatures indicates an increasing titanium con-

tent.  

Figure 15

AF J/Jo.  Magnetization relative to NRM as a function of the AF demagnetizing field.  

Most samples have demagnetized by 40 mT, indicating magnetite.  A few samples contain a 

hematite component and do not demagnetize fully even at 90 mT.
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Figure 16

Lowrie-Fuller test.  Figure A shows an exponential curve indicating a multidomain re-

sponse yet the median destructive field (MDF) of ARM is higher than the MDF of IRM 

indicating a single-domain response.  Figure B shows an s-shaped curve indicating single-

domain particles and the MDF of IRM is higher than the MDF of ARM, indicating multi-

domain particles.  These plots confirm the pseudo-single-domain nature of our samples.  

Figure 17

IRM crossover.  This plot shows the acquisition and AF demagnetization of an IRM.  The 

fact that the point where the two curves cross deviates from half of the SIRM indicates that 

there are interactions between the magnetic particles.

Figure 18

Backfield IRM.  The point where the backfield IRM crosses the x-axis indicates the coerciv-

ity. In this case a value of 30 mT is indicative of magnetite.  The magnetization level where 

the curves turn horizontal can also determine the SIRM.

Figure 19

 Two representative plots of the thermal variation of susceptibility.   Red lines indicate 

susceptibility measured on warming, blue lines are susceptibility measured on cooling.  The 

Verwey transition at -153°C and a Hopkinson peak at 585°C indicate magnetite.  
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Figure 20

Abnormal thermal variation of susceptibility.  One of a few specimens that show the 

creation of two separate phases upon cooling.  Two possible explanations for this pattern are 

the oxidation of magnetite to maghemite due to insufficient argon flow or the exsolution of 

titanomagnetite.

Figure 21

Paleotemperature estimates.  Panel A shows the raw progressive heating and cooling curves. 

Panel B shows the susceptibility at 40°C measured on the heating (red star) and cooling curve 

(blue circle) of each temperature cycle.  Panel C shows the A40 index, the difference between 

the heating and cooling susceptibility measured at 40°C.  A large increase in the A40 index 

indicates that the sample has been heated beyond temperatures that it experienced in-situ. 

Figure 22

Day plot.  The day plot can be used to determine the grain size based on the ratio of 

hysteresis parameters.   The different boundaries correspond to those determined by Day 

(thin lines) and Dunlop (thick lines).  All of the specimens plot in the pseudo-single-domain 

range.

Figure 23

Hysteresis loops.  Two examples of representative hysteresis loops.  The red lines are the 

raw measurements of moment.  The blue lines are corrected for the paramagnetic slope at 

high fields.  There is a large difference in the paramagnetic component in these two samples, 
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which could provide an explanation for the scatter in the AMS data.

Figure 24

Magnetization as a function of temperature.   Panel A shows a cooling curve above the 

heating curve.  Panel B shows a cooling curve below the heating curve, in addition to changes 

in magnetization at 950 K.

Figure 25

Frequency dependent susceptibility.  This plot shows a clear decrease in the susceptibility 

with increasing frequency of the applied field.  This is a clear indication of superparamagnetic 

grains.

Figure 26

Low-temperature magnetization cycling.  The left column shows the magnetization as a 

function of temperature for both a room temperature SIRM on cooling (black squares) and a 

low-temperature SIRM on warming (red squares).  The right column shows the derivative of 

the magnetization, which emphasizes the changes in slope around the Verwey transition.

Figure 27

Susceptibility as a function of temperature and frequency.  The in-phase component shows 

a peak at the magnetite Verwey transition.  The out-of-phase component of susceptibility has 

a peak at 50K, diagnostic of magnetite.
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Figure 28

Forc Diagrams.  A representative sampling of FORC distribution diagrams showing the 

multidomain and pseudo-single-domain nature of the sasmples.

Figure 29

AARM. Flinn and Jelinek plots show the shape and degree of anisotropy of the samples.  A 

lower-hemishpere equal area stereonet shows the K1 (red) and K3 (blue) axes of the AARM 

ellipsoid.  The rose diagram shows the azimuthal distribution of the K1 (red) and K3 (blue) 

axes.  The inclination of the K3 axes indicated flow to the northeast.

Figure 30

ChRM rotation.  Maps showing the mean characteristic remanent magnetization declina-

tion (white arrow) for all specimens relative to the reference site declination (black arrow).  

The red arrows indicate the α95 confidence limits on the mean direction. The amount of 

rotation across the island is highly variable.

Figure 31

Tectonic correction of flow directions.  The K1 and K3 declinations of the AMS ellipsoid 

are rotated by the angle between the TSF reference declination and the ChRM of the speci-

men.  The tectonic correction does not reduce the scatter.

Figure 32

Tectonic correction of foliation.  This map shows the vertical-axis rotation correction ap-
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plied to K3 relative to the uncorrected K3.  The correction does not reduce the scatter in the 

directions at individual sites.

Figure 33

Tectonic correction for all sites.  Lower-hemisphere equal-area stereonets showing the 

ChRM vectors and the AMS axes for all sites.  A red symbol indicates a point on the upper 

hemisphere.  Rose diagrams showing the azimuthal distribution of the ChRM and the AMS 

principal axes.  We can see that the tectonic vertical-axis rotation correction does not remove 

all of the scatter in the AMS directions,

Figure 34

Stratigraphic ChRM rotation.  This plot shows the ChRM of all specimens relative to their 

stratigraphic height.  There is a clear clockwise rotation of the ChRM with increasing strati-

graphic height in some locations.  The colored symbols represent the six sites on the little 

mesa.  The black symbols are all other sites on the island.  Site 2 (yellow) samples the greatest 

stratigraphic range and clearly shows a statistically significant change in mean direction.

Figure 35

AMS lineation versus ChRM declination.  Theory predicts that a magnetite CRM will 

produce an AMS fabric with the maximum axis aligned with the applied field at the time of 

formation.  Our data from site 2 does not fall on the 1:1 line and implies that we have not 

measured a CRM.
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Figure 36

A Fuller plot showing the relationship between the ARM (red circles), NRM (blue 

squares), and IRM coercivity spectra.  TRMs have been shown to plot along the 1:100 line.  

One of our samples has an elevated NRM moment but matches the other samples in ARM 

space, most likely due to an IRM overprint from lightning.

Figure 37

Faulted stratigraphic ChRM rotation.  This plot shows the lack of rotation of the ChRM 

across a known (blue) and inferred (red) fault cutting through the tuff.
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Figure 1.	 Tuff of San Felipe outcrops
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Figure 2.	 Paleomagnetic sampling sites
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Figure 3.	 Geologic map
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Figure 4.	 Close-up of fault contacts
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Figure 5.	 Outcrop scale fault contacts
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Figure 7.	 Sample density vs mean susceptibility
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Figure 9.	 Thermal enhancement effects on degree of anisotropy
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Figure 10.	 Thermal enhancement of the K1 declination
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Figure 11.	 Thermal enhancement of bulk susceptibility
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Figure 13.	 Orthographic demagnetization plots.  
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Figure 14.	 Thermal J/Jo
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Figure 22.	 Day plot
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Figure 23.	 Hysteresis loops
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Figure 24.	 Magnetization as a function of temperature
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Figure 26.	 Low-temperature magnetization cycling
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Figure 27.	 Susceptibility as a function of temperature and frequency
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Figure 30.	 ChRM rotation
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Appendix II
This appendix summarizes the evidence for a low-angle structure with motion across it.  

We have observed a planar low-angle structure within the tuff.  In some outcrops this feature 

resembles a cooling break while in others it has features that indicate motion.  Regardless 

of the nature of this structure, its occurrence is highly variable.  Not all outcrops of the tuff 

show evidence of a cooling break, and not all outcrops where we have identified the break 

have clear indication of motion. Without further study, we cannot determine the exact na-

ture of this structure.  Sampling of the fracture filling material is needed to determine if it is 

cataclastic (gouge) or a chemical precipitate (caliche).  Baked contact tests across this struc-

ture will give us information about the temperature gradient across the boundary.

Figure 1

Here we can see a planar feature, confined within the tuff, cutting down through the sec-

tion.  Note the distance between the grey to red transition and the planar feature.  There is a 

possibly sheared fine grained layer that varies in size with a maximum thickness of 5 inches. 

(29.2694 N, 113.3951 W)

Figure 2

This photo shows what was originally identified as a cooling boundary, but is now inter-

preted as part of the low-angle structure.  Motion may have localized along a prexisting cool-

ing boundary. (29.2704 N, 113.3934 W)

Figure 3



178
These photos show a section of the tuff that is ~150 meters away from the locations shown 

in Figures 1 and 2.  Panel A shows the lateral continuity of the section.  Panel B is a zoomed 

in view of the same section and shows that there if no sub-horizontal feature cutting through 

this outcrop.   This section shows no evidence of a cooling boundary. (29.2703 N, 113.3955 

W)

Figure 4

This photo shows brecciation along the interface shown in Figure 1.  The breccia includes 

clasts from the tuff above and below the contact. (29.2694 N, 113.3951 W)

Figure 5

This photo shows a welded upper layer of the tuff in contact with the dacite lavas.  The 

contact between the units includes breccia from both the tuff and dacite.  There is no basal 

vitrophyre or other evidence of cooling at the contact.  The tuff is welded all the way to the 

contact. The dacite does not appear heavily thermally altered. (29.2665 N, 113.3969 W)

Figure 6

Panel A (29.2665 N, 113.3969 W) shows the comingling of breccia clasts from above and 

below the planar structure.  Panel B ( 29.2647 N, 113.4112 W) shows a depositional contact 

where there only clasts are blocks plucked from the underlying conglomerate. The circles 

direct the readers attention to the diagnotic clasts.

Figure 7
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Panel A shows the small tilted block.  The arrow marks the location of site 2.  Panel B is a 

close-up of site 2.  The exposed cliff-forming white base of the tuff does not appear to con-

tinue past the gully, indicated by the white arrow.  ( 29.2647 N, 113.4112 W)

Figure 8

Location map of the previous photos.  Scalebar is 600 meters.
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Figure 14.	 Possible fault

Figure 15.	 Possible cooling boundary
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Figure 16.	 Complete section
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Figure 17.	 Breccia within tuff

Figure 18.	 Brecciated contact
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Figure 19.	 Fault vs depositional contact
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Figure 20.	 Site 2
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Figure 21.	 Location map
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Paleomagnetic data tables and plots
Sample collection data

Core name (Sample), site latitude (Latitude), site longitude (Longitude), core plate strike 

relative to magnetic north (Dec), core plate dip using right-hand rule (Inc), sun compass 

declination (Sun), time of sun compass measurement in UTC (UTC), stratigraphic height of 

sample (Height), date of collection (Date).

AMS Results

Specimen name (Specimen), lineation (L), foliation (F), degree of anisotropy (Pj), maxi-

mum axis declination (D1), intermediate axis declination (D2), minimum axis declination 

(D3), maximum axis inclination (I1), intermediate axis inclination (I2), minimum axis in-

clination (I3), mean susceptibility in the order of 10-6 SI (Norm), all declination and inclina-

tion measurements in a tili-corrected geographic reference frame. See site figures for explana-

tion of how to interpret these values.

IRM Measurement History

IRM_VSM Low-T = room temperature hysteresis loops, IRM_Sartoris = sample mass, 

IRM_Magnon = frequency dependence of susceptibility, IRM_VSM High-T = magnetiza-

tion as a function of temperature, IRM_SRM  = AARM, IRM_MPSM-5S = magnetization 

as a function of temperature and thermal and frequency dependence of susceptibility.

ChRM Site Means

Site number (Site), site latitude (Latitude), site longitude (Longitude), Tilt corrected Fisher 
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mean declination (Dt), Tilt corrected Fisher mean inclination (It), cone of 95% confidence 

about the mean (Alpha95), Fisher precision parameter (Kappa), number of samples (N), 

Strike of bedding for tilt correction (Strike), Dip of bedding used for tilt correction, using 

right-hand rule (Dip), all declination and inclination measurements in a tili-corrected geo-

graphic reference frame.

AMS Site Means

Site number (Site), maximum axis declination (K1d), maximum axis inclination (K1i), first 

95% confidence angle of maximum axis (C1a), second 95% confidence angle of maximum 

axis (C1b) , intermediate axis declination (K2d), intermediate axis inclination (K2i), first 

95% confidence angle of intermediate axis (C2a), second 95% confidence angle of interme-

diate axis (C2b) , minimum axis declination (K3d), minimum axis inclination (K3i), first 

95% confidence angle of minimum axis (C3a), second 95% confidence angle of minimum 

axis (C3b), number of samples (N), all declination and inclination measurements in a tili-

corrected geographic reference frame.

ChRM and AMS by Site

The tilt corrected ChRM and three principal AMS axes are plotted on lower hemisphere 

equal area stereonets (red points indicate upper hemisphere) and on normalized rose dia-

grams.  For each specimen we have calculated the vertical axis rotation that aligns the ChRM 

with the reference declination of the Tuff of San Felipe.  We use this same rotation to per-

form a structural correction of the data.  The rotation corrected data are plotted on lower 

hemisphere equal area stereonets and on normalized rose diagrams. The number next to the 
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rose diagram indicates the number of specimens in the largest grouping. All declination and 

inclination measurements in geographic reference frame.  The flow direction can be inter-

preted as being 180° away from the declination of the K1 axis or in the direction of the K3 

axis declination.  The flow direction can be read directly from the tilt corrected rose diagrams 

of K1 and K3. Because our samples have a much stronger foliation we prefer the K3 declina-

tion as an indicator of flow direction, however, for most of our both methods produce similar 

results.  Site 1 for example, has a flow direction of 175° measured by either the K1 or K3 

declinations.

Mean ChRM

Fisher mean and 95% confidence cone of the ChRM for each site. All declination and 

inclination measurements in a tilt corrected geographic reference frame.
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Specimen_ID Instrument Name
IAG11-01B-2 IRM_VSM Low-T
IAG11-01B-2 IRM_VSM Low-T
IAG11-01B-2 IRM_Sartorius
IAG11-01B-2 IRM_Magnon
IAG11-01B-2 IRM_VSM Low-T
IAG11-01B-2 IRM_VSM Low-T
IAG11-01B-2 IRM_VSM Low-T
IAG11-01E-1 IRM_Sartorius
IAG11-01E-1 IRM_Sartorius
IAG11-01E-1 IRM_MPMS-5S (Old Blue)
IAG11-01E-1 IRM_VSM High-T
IAG11-01E-1 IRM_VSM High-T
IAG11-01E-2 IRM_Sartorius
IAG11-01E-2 IRM_VSM Low-T
IAG11-01E-2 IRM_VSM Low-T
IAG11-01E-2 IRM_Magnon
IAG11-01E-3 IRM_Sartorius
IAG11-01E-3 IRM_VSM High-T
IAG11-01E-3 IRM_VSM High-T
IAG11-01E-3 IRM_VSM High-T

IAG11-01E-3d IRM_Sartorius
IAG11-01E-3d IRM_VSM High-T
IAG11-01E-3d IRM_VSM High-T
IAG11-01E-3d IRM_VSM High-T
IAG11-01E-3d IRM_VSM High-T
IAG11-01E-4 IRM_VSM High-T
IAG11-01E-4 IRM_VSM High-T
IAG11-01E-4 IRM_VSM High-T
IAG11-01E-4 IRM_Sartorius

IAG11-01E-HT IRM_Sartorius
IAG11-01E-HT IRM_VSM High-T
IAG11-01E-HT IRM_VSM High-T
IAG11-01E-HT IRM_VSM High-T
IAG11-01Ed-2 IRM_Sartorius
IAG11-01Ed-2 IRM_VSM Low-T
IAG11-01Ed-2 IRM_VSM Low-T
IAG11-01Ed-2 IRM_Magnon
IAG11-01Ed-2 IRM_SRM
IAG11-01Ed-2 IRM_SRM

Specimen_ID Instrument Name
IAG11-01Ed-2 IRM_SRM
IAG11-01Ed-2 IRM_SRM
IAG11-01Ed-2 IRM_SRM
IAG11-01Ed-2 IRM_SRM
IAG11-01Ed-2 IRM_SRM
IAG11-02D-2 IRM_Sartorius
IAG11-02D-2 IRM_Magnon
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_SRM
IAG11-02D-2 IRM_VSM Low-T
IAG11-02D-2 IRM_VSM Low-T
IAG11-02D-2 IRM_VSM Low-T
IAG11-02F-2 IRM_VSM Low-T
IAG11-02F-2 IRM_VSM Low-T
IAG11-02F-2 IRM_Sartorius
IAG11-02F-2 IRM_Magnon
IAG11-02R-2 IRM_VSM Low-T
IAG11-02R-2 IRM_VSM Low-T
IAG11-02R-2 IRM_Sartorius
IAG11-02R-2 IRM_Magnon
IAG11-02R-2 IRM_VSM Low-T
IAG11-02U-1 IRM_Sartorius
IAG11-02U-1 IRM_MPMS-5S (Old Blue)
IAG11-02U-2 IRM_Sartorius
IAG11-02U-2 IRM_VSM Low-T
IAG11-02U-2 IRM_VSM Low-T
IAG11-02U-2 IRM_Magnon
IAG11-02Y-2 IRM_Sartorius
IAG11-02Y-2 IRM_Magnon
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM

Table 3.	 IRM Measurement History
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Specimen_ID Instrument Name
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_SRM
IAG11-02Y-2 IRM_VSM Low-T
IAG11-02Y-2 IRM_VSM Low-T
IAG11-02Y-2 IRM_SRM
IAG11-02Z-1 IRM_Sartorius
IAG11-02Z-1 IRM_MPMS-5S (Old Blue)
IAG11-02Z-2 IRM_Sartorius
IAG11-02Z-2 IRM_VSM Low-T
IAG11-02Z-2 IRM_VSM Low-T
IAG11-02Z-2 IRM_Magnon
IAG11-02Z-4 IRM_VSM High-T
IAG11-02Z-4 IRM_VSM High-T
IAG11-02Z-4 IRM_Sartorius
IAG11-02Z-4 IRM_VSM High-T

IAG11-02Z-HT IRM_Sartorius
IAG11-02Z-HT IRM_VSM High-T
IAG11-02Z-HT IRM_VSM High-T
IAG11-02Z-HT IRM_VSM High-T

IAG11-03B-2 IRM_Sartorius
IAG11-03B-2 IRM_Magnon
IAG11-03B-2 IRM_VSM Low-T
IAG11-03B-2 IRM_VSM Low-T
IAG11-03E-2 IRM_Sartorius
IAG11-03E-2 IRM_Magnon
IAG11-03E-2 IRM_VSM Low-T
IAG11-03E-2 IRM_VSM Low-T
IAG11-03F-1 IRM_Sartorius
IAG11-03F-1 IRM_MPMS-5S (Old Blue)
IAG11-03F-2 IRM_VSM Low-T
IAG11-03F-2 IRM_VSM Low-T
IAG11-03F-2 IRM_Sartorius
IAG11-03F-2 IRM_Magnon
IAG11-03F-2 IRM_SRM
IAG11-03F-2 IRM_SRM
IAG11-03F-2 IRM_SRM
IAG11-03F-2 IRM_SRM
IAG11-03F-2 IRM_SRM
IAG11-03F-2 IRM_SRM

Specimen_ID Instrument Name
IAG11-03F-2 IRM_SRM
IAG11-03F-4 IRM_Sartorius
IAG11-03F-5 IRM_VSM High-T
IAG11-03F-5 IRM_VSM High-T
IAG11-03F-5 IRM_VSM High-T
IAG11-03F-5 IRM_Sartorius
IAG11-03I-2 IRM_VSM Low-T
IAG11-03I-2 IRM_VSM Low-T
IAG11-03I-2 IRM_Sartorius
IAG11-03I-2 IRM_Magnon
IAG11-03N-1 IRM_Sartorius
IAG11-03N-1 IRM_Sartorius
IAG11-03N-1 IRM_MPMS-5S (Old Blue)
IAG11-03O-1 IRM_Sartorius
IAG11-03O-1 IRM_MPMS-5S (Old Blue)
IAG11-03O-2 IRM_VSM Low-T
IAG11-03O-2 IRM_VSM Low-T
IAG11-03O-2 IRM_Sartorius
IAG11-03O-2 IRM_Magnon
IAG11-03O-3 IRM_Sartorius
IAG11-03O-3 IRM_Sartorius
IAG11-03O-3 IRM_Sartorius
IAG11-03O-4 IRM_VSM High-T
IAG11-03O-4 IRM_VSM High-T
IAG11-03O-4 IRM_VSM High-T
IAG11-03O-4 IRM_VSM High-T
IAG11-03O-4 IRM_VSM High-T
IAG11-03O-4 IRM_Sartorius

IAG11-03O-HT IRM_Sartorius
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T
IAG11-03O-HT IRM_VSM High-T

IAG11-04B-1 IRM_Sartorius
IAG11-04B-1 IRM_MPMS-5S (Old Blue)
IAG11-04B-2 IRM_Sartorius
IAG11-04B-2 IRM_VSM Low-T
IAG11-04B-2 IRM_VSM Low-T
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Specimen_ID Instrument Name
IAG11-04B-2 IRM_Magnon
IAG11-04B-4 IRM_VSM High-T
IAG11-04B-4 IRM_VSM High-T
IAG11-04B-4 IRM_VSM High-T
IAG11-04B-4 IRM_Sartorius

IAG11-04B-HT IRM_Sartorius
IAG11-04B-HT IRM_VSM High-T
IAG11-04B-HT IRM_VSM High-T
IAG11-04B-HT IRM_VSM High-T
IAG11-04H-2 IRM_Sartorius
IAG11-04H-2 IRM_VSM Low-T
IAG11-04H-2 IRM_VSM Low-T
IAG11-04H-2 IRM_Magnon
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04H-2 IRM_SRM
IAG11-04I-2 IRM_Sartorius
IAG11-04I-2 IRM_VSM Low-T
IAG11-04I-2 IRM_VSM Low-T
IAG11-04I-2 IRM_Magnon
IAG11-04J-2 IRM_Sartorius
IAG11-04J-2 IRM_Magnon
IAG11-04J-2 IRM_VSM Low-T
IAG11-04J-2 IRM_VSM Low-T
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04J-2 IRM_SRM
IAG11-04K-1 IRM_Sartorius
IAG11-04K-1 IRM_Sartorius

Specimen_ID Instrument Name
IAG11-04K-1 IRM_MPMS-5S (Old Blue)
IAG11-04K-2 IRM_Sartorius
IAG11-04K-2 IRM_VSM Low-T
IAG11-04K-2 IRM_VSM Low-T
IAG11-04K-2 IRM_Magnon
IAG11-04K-3 IRM_Sartorius
IAG11-04K-3 IRM_Sartorius
IAG11-04K-4 IRM_VSM High-T
IAG11-04K-4 IRM_VSM High-T
IAG11-04K-4 IRM_Sartorius
IAG11-04K-4 IRM_VSM High-T

IAG11-04K-HT IRM_Sartorius
IAG11-04K-HT IRM_VSM High-T
IAG11-04K-HT IRM_VSM High-T
IAG11-04K-HT IRM_VSM High-T
IAG11-05H-2 IRM_Sartorius
IAG11-05H-2 IRM_Magnon
IAG11-05H-2 IRM_VSM Low-T
IAG11-05H-2 IRM_VSM Low-T
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05H-2 IRM_SRM
IAG11-05K-1 IRM_Sartorius
IAG11-05K-1 IRM_MPMS-5S (Old Blue)
IAG11-05K-2 IRM_Sartorius
IAG11-05K-2 IRM_VSM Low-T
IAG11-05K-2 IRM_VSM Low-T
IAG11-05K-2 IRM_Magnon
IAG11-05K-3 IRM_Sartorius
IAG11-05K-3 IRM_VSM High-T
IAG11-05K-3 IRM_VSM High-T
IAG11-05K-4 IRM_VSM High-T
IAG11-05K-4 IRM_VSM High-T
IAG11-05K-4 IRM_VSM High-T
IAG11-05K-4 IRM_Sartorius

IAG11-05K-HT IRM_Sartorius
IAG11-05K-HT IRM_VSM High-T
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Specimen_ID Instrument Name
IAG11-05K-HT IRM_VSM High-T
IAG11-05K-HT IRM_VSM High-T

IAG11-06F-1 IRM_Sartorius
IAG11-06F-1 IRM_MPMS-5S (Old Blue)
IAG11-06F-2 IRM_Sartorius
IAG11-06F-2 IRM_VSM Low-T
IAG11-06F-2 IRM_VSM Low-T
IAG11-06F-2 IRM_Magnon
IAG11-06F-3 IRM_VSM High-T
IAG11-06F-3 IRM_VSM High-T
IAG11-06F-3 IRM_Sartorius
IAG11-06G-1 IRM_Sartorius
IAG11-06G-1 IRM_MPMS-5S (Old Blue)
IAG11-06G-2 IRM_VSM Low-T
IAG11-06G-2 IRM_VSM Low-T
IAG11-06G-2 IRM_Sartorius
IAG11-06G-2 IRM_Magnon
IAG11-06G-3 IRM_Sartorius
IAG11-06G-3 IRM_VSM High-T
IAG11-06G-3 IRM_VSM High-T
IAG11-06G-3 IRM_MPMS-5S (Old Blue)
IAG11-06G-4 IRM_VSM High-T
IAG11-06G-4 IRM_VSM High-T
IAG11-06G-4 IRM_Sartorius

IAG11-06G-HT IRM_Sartorius
IAG11-06G-HT IRM_VSM High-T
IAG11-06G-HT IRM_VSM High-T
IAG11-06G-HT IRM_VSM High-T
IAG11-06H-2 IRM_Sartorius
IAG11-06H-2 IRM_VSM Low-T
IAG11-06H-2 IRM_VSM Low-T
IAG11-06H-2 IRM_Magnon
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-06H-2 IRM_SRM
IAG11-07G-2 IRM_Sartorius
IAG11-07G-2 IRM_Magnon

Specimen_ID Instrument Name
IAG11-07L-2 IRM_Sartorius
IAG11-07L-2 IRM_Magnon
IAG11-07L-4 IRM_VSM High-T
IAG11-07L-4 IRM_VSM High-T
IAG11-07L-4 IRM_VSM High-T
IAG11-07L-4 IRM_Sartorius
IAG11-07O-2 IRM_Sartorius
IAG11-07O-2 IRM_Magnon
IAG11-07Q-2 IRM_Sartorius
IAG11-07Q-2 IRM_Magnon
IAG11-08D-2 IRM_Sartorius
IAG11-08D-2 IRM_Magnon
IAG11-08D-2 IRM_VSM Low-T
IAG11-08D-2 IRM_VSM Low-T
IAG11-08D-2 IRM_VSM Low-T
IAG11-08F-2 IRM_Sartorius
IAG11-08F-2 IRM_Magnon
IAG11-08O-2 IRM_Sartorius
IAG11-08O-2 IRM_Magnon
IAG11-09G-2 IRM_Sartorius
IAG11-09G-2 IRM_Magnon
IAG11-10A-2 IRM_Sartorius
IAG11-10A-2 IRM_Magnon
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_SRM
IAG11-10N-2 IRM_Sartorius
IAG11-10N-2 IRM_Magnon
IAG11-10O-1 IRM_Sartorius
IAG11-10O-1 IRM_MPMS-5S (Old Blue)
IAG11-10O-1 IRM_VSM High-T
IAG11-10O-1 IRM_VSM High-T
IAG11-11F-2 IRM_Sartorius
IAG11-11F-2 IRM_Magnon
IAG11-11G-2 IRM_Sartorius
IAG11-11G-2 IRM_Magnon
IAG11-11M-2 IRM_Sartorius
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Specimen_ID Instrument Name
IAG11-11M-2 IRM_Magnon
IAG11-12J-2 IRM_Sartorius
IAG11-12J-2 IRM_Magnon

IAG11-12Jd-2 IRM_Sartorius
IAG11-12Jd-2 IRM_Magnon
IAG11-12K-2 IRM_Sartorius
IAG11-12K-2 IRM_Magnon
IAG11-13A-2 IRM_Sartorius
IAG11-13A-2 IRM_Magnon
IAG11-13F-2 IRM_Sartorius
IAG11-13F-2 IRM_Magnon
IAG11-14E-2 IRM_Sartorius
IAG11-14E-2 IRM_Magnon
IAG11-15B-2 IRM_Sartorius
IAG11-15B-2 IRM_Magnon
IAG11-15B-2 IRM_VSM Low-T
IAG11-15B-2 IRM_VSM Low-T
IAG11-15B-2 IRM_VSM Low-T
IAG11-16B-2 IRM_Sartorius
IAG11-16B-2 IRM_Magnon
IAG11-16D-2 IRM_Sartorius
IAG11-16D-2 IRM_Magnon
IAG11-16F-2 IRM_Sartorius
IAG11-16F-2 IRM_Magnon
IAG11-16I-2 IRM_Sartorius
IAG11-16I-2 IRM_Magnon
IAG11-17C-2 IRM_Sartorius
IAG11-17C-2 IRM_Magnon
IAG11-17E-2 IRM_Sartorius
IAG11-17E-2 IRM_Magnon
IAG11-17E-2 IRM_VSM Low-T
IAG11-17E-2 IRM_VSM Low-T
IAG11-17K-2 IRM_Sartorius
IAG11-17K-2 IRM_Magnon
IAG11-18G-2 IRM_Sartorius
IAG11-18G-2 IRM_Magnon
IAG11-19B-2 IRM_Sartorius
IAG11-19B-2 IRM_Magnon
IAG11-19F-2 IRM_Sartorius
IAG11-19F-2 IRM_Magnon
IAG11-19O-2 IRM_Sartorius

Specimen_ID Instrument Name
IAG11-19O-2 IRM_Magnon
IAG11-20H-2 IRM_Sartorius
IAG11-20H-2 IRM_Magnon
IAG11-20H-2 IRM_VSM Low-T
IAG11-20H-2 IRM_VSM Low-T
IAG11-20H-2 IRM_VSM Low-T
IAG11-20K-2 IRM_Sartorius
IAG11-20K-2 IRM_Magnon
IAG11-20O-2 IRM_Sartorius
IAG11-20O-2 IRM_Magnon
IAG11-21B-2 IRM_Magnon
IAG11-21B-2 IRM_Sartorius
IAG11-21D-2 IRM_Sartorius
IAG11-21D-2 IRM_Magnon
IAG11-22B-2 IRM_Sartorius
IAG11-22B-2 IRM_Magnon
IAG11-22G-2 IRM_Sartorius
IAG11-22G-2 IRM_Magnon
IAG11-23B-2 IRM_Sartorius
IAG11-23B-2 IRM_Magnon
IAG11-23E-2 IRM_Sartorius
IAG11-23E-2 IRM_Magnon
IAG11-23F-2 IRM_Sartorius
IAG11-23F-2 IRM_Magnon
IAG11-23F-4 IRM_Sartorius
IAG11-23F-4 IRM_VSM High-T
IAG11-23F-4 IRM_VSM High-T
IAG11-23F-4 IRM_VSM High-T
IAG11-23I-2 IRM_Sartorius
IAG11-23I-2 IRM_Sartorius
IAG11-23I-2 IRM_Magnon

IAG11-24Ai-2 IRM_Sartorius
IAG11-24Ai-2 IRM_Magnon
IAG11-24Ao-2 IRM_Sartorius
IAG11-24Ao-2 IRM_Magnon
IAG11-24D-2 IRM_Sartorius
IAG11-24D-2 IRM_Magnon
IAG11-27K-2 IRM_Magnon
IAG11-27K-2 IRM_Sartorius
IAG11-27L-2 IRM_Magnon
IAG11-27L-2 IRM_Sartorius
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Specimen_ID Instrument Name
IAG11-27Q-2 IRM_Magnon
IAG11-27Q-2 IRM_Sartorius
IAG11-28A-2 IRM_Magnon
IAG11-28A-2 IRM_Sartorius
IAG11-28A-4 IRM_Sartorius
IAG11-28A-4 IRM_VSM High-T
IAG11-28A-4 IRM_VSM High-T
IAG11-28A-4 IRM_VSM High-T
IAG11-28D-2 IRM_Magnon
IAG11-28D-2 IRM_Sartorius
IAG11-28H-2 IRM_Magnon
IAG11-28H-2 IRM_Sartorius
IAG11-28J-2 IRM_Magnon
IAG11-28J-2 IRM_Sartorius
IAG11-28L-2 IRM_Magnon
IAG11-28L-2 IRM_Sartorius
IAG11-29C-2 IRM_Magnon
IAG11-29C-2 IRM_Sartorius
IAG11-29D-2 IRM_Magnon
IAG11-29D-2 IRM_Sartorius
IAG11-29D-2 IRM_Sartorius
IAG11-29I-2 IRM_Magnon
IAG11-29I-2 IRM_Sartorius
IAG11-30C-2 IRM_Magnon
IAG11-30C-2 IRM_Sartorius
IAG11-30D-2 IRM_Magnon
IAG11-30D-2 IRM_Sartorius
IAG11-31A-2 IRM_Sartorius
IAG11-31A-2 IRM_Magnon
IAG11-31C-2 IRM_Sartorius
IAG11-31C-2 IRM_Magnon
IAG11-31F-2 IRM_Sartorius
IAG11-31F-2 IRM_Magnon
IAG11-31F-2 IRM_VSM Low-T
IAG11-31F-2 IRM_VSM Low-T
IAG11-31F-2 IRM_VSM Low-T
IAG11-32C-2 IRM_Sartorius
IAG11-32C-2 IRM_Magnon
IAG11-32C-2 IRM_Magnon
IAG11-32E-2 IRM_Sartorius
IAG11-32E-2 IRM_Magnon

Specimen_ID Instrument Name
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Table 4.	 ChRM Site Means
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Table 5.	 AMS Site Means
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Figure 22.	 ChRM and AMS by Site
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Figure 23.	 Mean ChRM


