
Viscoelastic Parameters 169 

 

Chapter 4 

Using Tidal Modulation of Ice Stream Motion to 

Constrain Viscoelastic Parameters in Situ 

A phase delay in the response of a body to an oscillatory load is potentially related to that 

body behaving as a viscoelastic material.  Geodetic studies of Rutford Ice Stream, 

Antarctica and Helheim Glacier, Greenland definitively show there is a significant phase 

lag between the tidally modulated surface motion of grounded ice and the peak ocean 

tides.  In this chapter, we present a preliminary modeling framework outlining the 

relationship between the rheological parameters of a viscoelastic ice stream and the 

expected phase delay in its response to an oscillatory forcing.  We then use these one- 

and two-dimensional results to suggest the configuration and requirements of a geodetic 

survey with the specific goal of constraining the viscoelastic parameters of in situ glacial 

ice. 

4.1 Introduction 

The previous two chapters demonstrated that ice streams are unlikely to transmit tidal 

stress through the bulk of the ice stream itself to the extreme distances seen 

observationally.  However, near to the grounding line, a tidal load can still be transmitted 

through the ice stream bulk.  And throughout the ice stream, the issue of the observed 

phase delay in the ice stream’s response to ocean tides remains.  As ice behaves as a 

viscoelastic material over tidal timescales (e.g., chapter 3 of this thesis), our expectation 

is that the near-grounding line behavior of an ice stream could provide a measurement of 

the viscoelastic parameters for in situ ice.  While such a measurement would necessarily 
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be convolved with other processes that are tied to the ocean tides, this chapter provides a 

“proof-of-concept” for using observed tidal phase lags to constrain viscoelastic properties 

for glacial ice. 

Our goal is to establish a methodology that uses the multiple timescales of the 

oscillatory tidal load in conjunction with the observed phase shift in tidal response to 

infer constraints on the ice stream’s viscoelastic parameters.  As most of the introductory 

material has already been covered in chapters 2 and 3, we address only the most salient 

points in this chapter’s introduction, and suggest that this chapter is best understood after 

reading the introductory material in these two earlier chapters.   

 High-rate continuous global positioning satellite (CGPS) observations of Rutford 

Ice Stream and Helheim Glacier indicate an appreciable phase shift between the ocean 

tides and the tidal perturbation in ice position (Gudmundsson, 2006; 2007; 2013; de Juan 

2009; 2010a/b; and de Juan-Verger 2011).  A zero degree phase shift corresponds to the 

case of the peak de-trended inland motion of the ice being synchronous with the high 

tide, with a positive phase lag indicating that the ground motion’s peak response is 

delayed relative to the tidal peak.  While our previous work suggests that the far-field 

observations of Rutford are probing a system other than the glacial rheology, the 

observations close to the grounding line of both Rutford Ice Stream and Helheim Glacier 

suggest that the phase lag is many tens of degrees.  Equally important is that the phase 

delay may increase as a function of distance inland of the grounding line, suggesting that 

there is a calculable phase velocity to the propagation of the ice’s response to the 

changing tides. 
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 A phase lag to an oscillatory response is a classic characteristic of a viscoelastic 

material when the stress relaxation timescale is within several orders of magnitude of the 

forcing frequency (e.g., Findley et al., 1976).  Given the forcing frequencies ranging from 

12 hours to 14 days for the major tidal constituents, we expect that a material relaxation 

time between ~ 102 and ~ 108 seconds (~ 2 minutes to ~ 76 years) will result in a 

measurable phase shift, with the strongest phase response occurring when the relaxation 

time is approximately the same order of magnitude as the forcing frequency.  This range 

matches the estimate of the linearized relaxation timescale for ice of approximately 102 to 

104 seconds (~ 2 minutes to ~ 3 hours), based on the experimental work of Jellinek and 

Brill (1956) and the model fitting of Reeh et al. (2003). 

 We explore the feasibility and data quality necessary to provide constraints on the 

rheology based solely on the measured phase shift to a tidal forcing. This chapter starts 

with an analysis of the complex moduli of three canonical one-dimensional linear 

viscoelastic models in shear, focusing on the expected phase shifts as a function of the 

material parameters.  We then investigate the phase response of nonlinear viscoelastic 

materials over a range of reasonable ice models for the nonlinear viscous deformation 

expected during steady-state tertiary creep.  We then present results from two-

dimensional finite element modeling exploring the spatial variability of a tidal phase shift 

and the role that model boundary conditions play in determining the spatial variation in 

any phase shift.  We use these model results to provide a test case for determining the 

viscoelastic properties of ice using data from Helheim Glacier (i.e., from de Juan, 2009; 

2010a/b; de Juan-Verger, 2011).  We close this chapter with a discussion of the expected 
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precision of the constraints on in situ viscoelastic parameters that tidal phase shift can 

provide and discuss factors necessary to select the ideal survey configuration and target. 

4.2 Phase Shift in Analytic Models  

Before exploring phase delay on a modeled outlet glacier, we first consider the behavior 

of three one-dimensional viscoelastic models—linear Maxwell, Kelvin, and Burgers—to 

an oscillatory forcing.  These three models are shown schematically in the previous 

section (in figure 3.1).  The Maxwell model is made up of a linear spring element and 

linear dashpot element in series, the Kelvin model is a linear spring and dashpot in 

parallel, and the Burgers model is a Maxwell element in series with a Kelvin element.  

The governing equations for these three models in shear are: 
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where 𝜇 is the shear modulus, 𝜂 is the viscosity, and, for the Burgers model, the 

subscripted 1 refers the Maxwell element and the subscripted 2 refers to the Kelvin 

element.  We now apply an oscillatory shear load of frequency 𝜔 constant amplitude 𝜏0: 

 𝜎 = 𝜏0𝑒𝑖𝜔𝑡 (4.2) 

We expect that the strain response will be oscillatory at the same frequency as the applied 

stress but shifted by a phase delay 𝛿, such that: 

 𝜀 = 𝜀0𝑒𝑖(𝜔𝑡+𝛿) = 𝜀∗𝑒𝑖𝜔𝑡 (4.3) 

Taking the ratio of strain to stress gives us the complex creep modulus, J*: 
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Table 4.1 shows relevant values of J1 and J2, taken from Findley et al. (1976).  We can 

also relate the phase shift to the components of J* using: 

 tan 𝛿 =
𝐽2
𝐽1

 (4.5) 

Lastly, we can define a natural timescale associated with each material model.  For a 

Maxwell material, the stress due to a constant strain will decay exponentially with time, 

as controlled by the relaxation time TMax.  For a Kelvin material, a constant stress will 

induce a creep strain that exponentially approaches the equivalent elastic strain.  The 

timescale of this creep is controlled by the retardation time, TKelv.  In the Burgers model, 

there is both a relaxation time TBurg1 and a retardation time TBurg2.  The values of these 

natural timescales are shown for each model in table 4.1. 

4.2.1 One-Dimensional Phase Shift 

We are now equipped to determine the expected phase shift for a given material model of 

ice for a forcing function of known frequency.  However, as there are two separate free 

parameters (the appropriate relaxation/retardation timescale and the forcing frequency), 

we again introduce the Deborah number, De: 

 𝐷𝑒 =
𝑇𝑅
𝑇𝐹

 (4.5) 

where the Deborah number is the ratio of a material’s relaxation time to the period of an 

applied forcing.  When De is large, the material behaves elastically, when De is small, the 

material behaves viscously, and when De is around one, the material behaves 

viscoelastically.  The Deborah number encapsulates the choice of the material parameters 



Viscoelastic Parameters 174 

 
(shear modulus and viscosity) and the forcing frequency, allowing us to calculate the 

phase shift with respect to a single nondimensional quantity.   

 Figure 4.1 shows the phase shift in the strain response to an oscillatory stress for 

the linear Maxwell, Kelvin, and Burgers models (assuming 𝜂1 = 𝜂2 = 𝜂 and 𝜇1 = 𝜇2 =

𝜇).  From this figure, we see that all the linear models predict a phase shift between 0 and 

90 degrees, with the Maxwell and Burgers models predicting the phase shift to increase at 

small De while the Kelvin model demonstrating a larger phase shift at large De.  All three 

models meet at a phase shift of 45 degrees, when 𝐷𝑒 ≈ 10−0.8 = 0.158. 

 As seen in the linear phase curves, the Maxwell and Burgers models act most 

similarly to the expected phase response, where a material that behaves more viscously 

than elastically will have a stronger out-of-phase displacement response than a 

comparatively more elastic model.  Thus, the Kelvin model, a representation of a solid 

material, is a poor model choice for phase shift in ice and will not be considered further.  

Second, while the trend in phase is distinct between the Maxwell and Burgers models, a 

large number of high quality data would be necessary to adequately distinguish between 

these two models.  As the constraining data in 𝛿 − 𝐷𝑒 space should only vary with tidal 

frequency, any rheological fitting would be based on, at best, a handful of observations 

with different De.  Thus, given the relative sparsity of our expected data and the fewer 

numbers of parameters, we choose to continue our investigation of ice rheology by 

assuming a Maxwell material for the ice response to a tidal load. 

4.2.1Phase Shift for a Nonlinear Maxwell Material 

The nonlinear viscosity of ice complicates the understanding of the phase shift in the 

oscillatory response of a one-dimensional nonlinear material model.  We explore the 
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phase shift in a nonlinear Maxwell model with the nonlinearity limited to the viscous 

component of deformation, such that the constitutive law is given by: 

 𝐴𝜎𝑛 +
�̇�
𝜇

= 𝜀̇ (4.6) 

where n is the power law exponent and A is the nonlinear viscosity coefficient.  Note that 

for these simple models, the temperature dependence of A is neglected.  The approach 

used in the previous section to calculate the phase shift 𝛿 becomes untenable for an 

oscillatory nonlinear model as the effective linear viscosity would necessarily oscillate 

with the forcing function amplitude, resulting in a time-dependence on the phase shift.  

Instead, we adopt a different method to finding the one-dimensional phase shift for our 

nonlinear Maxwell model. 

 First, we choose the periodicity of the stress forcing function to match that of the 

three major tidal constituents, rounded to the nearest integer hour: 12 hours for the 

semidiurnal tide, 24 hours for the diurnal tide, and 14 days for the fortnightly tide.  We 

then solve for the strain rate of each of these tides, as well as the linear combination of 

the three tides (a “combined tide” forcing), using equation 4.6.  The values of A and n 

used in this analysis match the values from the Glen and Goldsby rheological models for 

ice at 0°C in tertiary creep (Glen, 1955; 1958; Goldsby and Kohlstedt, 1997; 2001), and 𝜇 

from the canonical values of E and 𝜈 (Petrenko and Whitford, 2002).  As we are forcing 

our tides at a known period and the longer tides are integer multiples of the shorter tides, 

we can use a Fourier analysis to find the exact phase for the applied forcing functions.  

Lastly, shifting the phase of the strain rate by 90° gives us the phase delay in the modeled 

strain as the strain rate is the time derivative of strain. 
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 The phase shift values for the semidiurnal, diurnal, fortnightly, and combined 

tides are shown in figure 4.2 as functions of De and for a linear, Glen, and the two 

Goldsby rheologies.  For all the models, the expected phase shift trends are fairly similar, 

and the value of 𝛿 ranges from 0° to 90°.  At a given tidal frequency, the predicted phase 

shifts are independent of the material parameters.  A single forcing frequency will not 

perturb the amplitude of the forcing function, and thus will not change the effective 

viscosity of the material.  However, as highlighted in table 4.2, the combined tide does 

show a nonlinear effect on the phase of any given tidal constituent, such that some of the 

phase shifts are slightly elevated or depressed for a given De compared to the value for 

the individual tidal frequency.  The value of De for a given phase shift can vary by as 

much as a factor of two for the rheologies considered here.  With the stress-dependent 

rheology, the discrepancy between the phase shift when the model is forced with the 

individual tides compared to the combined tides is more severe the higher the power law 

exponent is. 

4.3 Two-Dimensional Finite Element Models 

Having established some intuition for the phase shift from our one-dimensional models, 

we now present results from a range of two-dimensional, nonlinear Maxwell finite 

element models exploring the phase shift of a higher dimension viscoelastic body to an 

oscillatory force.  First the variation in observable surface phase shift is categorized as a 

function of the modeled ice streams’ boundary conditions, the choice of rheology, and the 

spatial variability of the phase shift across the model’s profile.  Then, this model 

approach is validated using data from Helheim Glacier to estimate viscoelastic 
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parameters for ice.  Such parameters are found to be within a range compatible with 

laboratory values for ice viscoelasticity. 

4.3.1 Methodology 

As with our earlier models, we use the PyLith software package (as described in section 

1.4) for our finite element modeling.  The model geometry is a simplified version of the 

lower portion of Helheim Glacier (750 meters thick and six kilometers wide).  We 

explore two different model boundary conditions in our analysis, as are shown in figure 

4.3.  First is the case of an outlet glacier that is stuck to its bed, such that the controlling 

dimension is the ice thickness.  This model is equivalent to the “frozen bed” model from 

chapter 2.  Second is a two-dimensional outlet glacier that is stuck to its lateral margins.  

For each of models, we apply the tide as an oscillatory traction boundary condition along 

one edge of the model domain.  As discussed above, we choose to model a single tidal 

frequency at a time, rather than combining tides of multiple frequencies.   

4.3.2 Numerical Results 

Figures 4.4 and 4.5 show the behavior of the phase for our basal and side-wall models, 

respectively, as a function of De.  In figure 4.3, our models show the phase at the 

grounding line and at locations one, two, and three kilometers inland, while figure 4.5 

includes the grounding line and locations five, ten, fifteen, and twenty kilometers inland.  

The difference in length-scale is needed because the side-wall models have a larger decay 

length-scale, Ltr, than the basal models.  In each figure, we include model results for a 

linear viscoelastic model (shown in blue) and nonlinear viscoelastic models (other colors) 

forced at multiple tidal frequencies.  For the basal model, the only nonlinear model 

considered has a power law exponent of n=3, while for the side-wall models, we also 
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consider n=1.8 and n=4.  These three power laws correspond to the rheologies associated 

with a Glen flow law (Glen, 1955; 1958), superplastic flow (Goldsby and Kohlstedt, 

1997; 2001), and climb-limited dislocation creep (Goldsby and Kohlstedt, 1997; 2001).  

Due to the exceedingly small stable timestep in the low-viscosity nonlinear models, the 

range of De explored is more limited than for the linear case. 

 For both model boundary conditions, the linear models demonstrate the 

arctangent form of the phase-Deborah number relationship produced analytically for a 

one-dimensional Maxwell material, with the phase ranging from zero degrees (elastic 

behavior) to ninety degrees (viscous behavior).  The change in the material behavior 

occurs over a range of about two and a half orders of magnitude—such that 10−2.5 <

𝐷𝑒 < 100.  However, unlike the one-dimensional case, in the region where the phase is 

neither zero nor ninety, the phase shows a dependence on distance from the grounding 

line, as demonstrated by the spread in phase values over the locations shown in figure 4.4 

and 4.5. 

 To better demonstrate this distance dependence, figures 4.6 and 4.7 show the 

phase shift of the centerline ice as a function of inland distance (note that the horizontal 

length-scale varies due to the difference in Ltr between the two models).  These two 

figures are remarkably similar, suggesting that the expected phase shift trend with inland 

distance, at least in a two-dimensional model, is not dependent on the absolute distance 

away from the grounding line but rather on the relative strength of the tidal signal.  

Appendix 4A shows the phase shift seen across the model domain for the side-wall 

models. 
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For each model, the nonlinear solutions are shifted to the left (i.e., towards lower 

De) compared to the corresponding linear viscoelastic model.  This behavior matches that 

of the one-dimensional solution.  As seen in both figures 4.3 and 4.4, the solutions for a 

given rheology at different tidal frequencies agree fairly well, confirming that the 

Deborah number is a controlling parameter of the phase shift.  Another implication of the 

dependence on De is that phase data collected for multiple tidal frequencies will provide 

multiple data points along the same curve, rather than each tidal frequency belonging to 

unique functions. 

 Unfortunately, the models presented here are insufficient to provide a well-

constrained fit to the arctangent form of the phase response of each model to the applied 

oscillatory loads.  In the case of the linear model, such a deficiency could be addressed 

through filling out the model space through additional modeling.  For the nonlinear 

scenarios, the finite element models for the lowest values of De are already on the verge 

of taking too long to run to be computationally viable.  These models currently take about 

one week per model, and are not easily parallelizable due to the sequential nature of 

timestepping.  Thus, every order of magnitude decrease in De would increase the run 

time by approximately an order of magnitude, as the stable timestep of the Maxwell 

rheology is small enough (compared to the forcing function) to require extensive 

calculations for even a single tidal cycle.  Thus, we suggest that extrapolating the linear 

trend onto the nonlinear data would provide an estimate for the nonlinear viscoelastic 

response at these lower values of De.  For the purposes of demonstration here, we assume 

that the phase varies linearly between the data points.  This approach is clearly 

inadequate, but as we lack the model results necessary for an accurate functional fit to the 
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phase points, such an approach is a practical alternative to a poorly constrained 

arctangent function. 

4.3.3 Application to Helheim Glacier Data 

We now present a simple test example of using ice stream phase data to provide 

constraints on the viscoelastic properties of ice.  For our purposes, we use calculated 

phase delays from Helheim Glacier (de Juan, 2009; 2010a/b; de Juan-Verger, 2011) as 

our dataset, even though the errors for the phases can quite substantial.  For each of the 

three surveys from de Juan-Verger, the data point closest to the grounding line is used to 

approximate the phase response at the grounding line, so that the distance dependence of 

the phase response can be negated.  While de Juan-Verger (2011) presents linear 

extrapolations of the phase measurements to the calving front of Helheim Glacier, we 

choose to use the closest data point rather than the extrapolated value due to the large 

data uncertainties influencing the linear fit.  For the three surveys, the phase differences 

are 27° ± 3°, 53° ± 15°, and 55° ± 15°.    

 Figure 4.8 shows the location of these phases on the basal model (panel A) and 

the side-wall model (panel B), with the values of the fitted effected viscosities listed in 

table 4.3.  The fits are relative to the linear model (blue) and the extrapolated nonlinear 

model for n=3 (red).  The extrapolated line is found by shifting the linear model by a 

constant offset until the new line matches the finite element values for the nonlinear 

phase shift.  The differences between the predicted values of the effective viscosities are 

minimal between the two models.  In all cases, TMax is on the order of 102 to 103 seconds 

(~2 to ~20 minutes), though the variation between the lowest and highest estimates 

differs by a factor of about 60.  Assuming a Young’s modulus of 9.33 GPa (Petrenko and 
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Whitford, 2002), the estimates of the ice viscosity from these Helheim Glacier phases 

data fall between 1.01e12 Pa ∙ s and 5.83e13 Pa ∙ s.  Considering the uncertainty in our 

model trend and the wide range in errors of the Helheim phase data, these values are 

remarkably close to the estimated linear viscosity value for ice of Jellinek and Brill 

(1956) of 1e12 Pa ∙ s to 1e14 Pa ∙ s for similar stresses. 

 In this brief demonstration, the distance dependence of the solution is not 

considered, as the phase data from Helheim Glacier is not constrained enough to 

adequately show a convincing distance dependence.  However, as our work demonstrates, 

the distance dependence of the phase is diagnostic of the ice’s material properties, such 

that if the phase data is accurate, the variation in phase with distance inland of the 

grounding line could potentially differentiate between rheologies (i.e., n could be fit, 

rather than assumed). 

4.4 Discussion  

While our model for constraining the viscoelasticity of in situ ice is fairly rudimentary, 

our ability to get close to the expected value of effective viscosity using a few, somewhat 

unconstrained data points and a suboptimal suite of models is encouraging.  In this 

section, we first focus on the expected accuracy of the material parameter estimates found 

by the approach outlined here.  We then provide a blueprint for an ideal survey to collect 

data necessary to constrain rheological parameters of ice streams, including a discussion 

of the characteristic of an outlet glacier that would make that glacier a prime survey 

target. 
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4.4.1 Data Constraints and Accuracy 

As only two data sets exist in the published literature quantifying the observed tidal phase 

shift from ice streams, quantifying the relative error within the current dataset is 

relatively straightforward.  Gudmundsson (2006; 2007; 2011) used the MATLAB script 

T_TIDE (Pawlowicz et al., 2002) to solve for the phase delays in the Rutford Ice Stream 

GPS records over a range of tidal frequencies to an accuracy of about +/- 8°.   

Gudmundsson’s GPS survey lasted for seven-weeks, providing several fortnightly 

periods and many dozens of diurnal and semidiurnal tidal periods.  De Juan-Verger 

(2011) estimated the phase delay in the Helheim Glacier GPS network for the 

semidiurnal tide.  The accuracy of the phase delay in those data ranged from +/- 3° to as 

much as +/- 90°.  The survey near the grounding line for Helheim Glacier only lasted for 

between 2 and 5 days, depending on the site location.   

The error in the estimated ice Maxwell time is directly related to the error in the 

phase estimate.  Due to the arctangent form of the phase as function of Deborah number, 

when the phase is close to either zero or ninety degrees, even a small error in the phase 

can result in several orders of magnitude in uncertainty in the estimated value of De.  

Conversely, when the measured phase is around 45°, the range in De for a given error in 

phase is small.  For example, there is less than one order of magnitude change in De for 

phase shifts ranging from 15° to 75°.  

 Recall that our two-dimensional models all have a phase shift bounded between 

0° and 90° relative to the forcing function.  In both the observations of Rutford Ice 

Stream (Gudmundsson, 2006; 2007; 2011) and the viscoelastic three-dimensional models 

presented earlier in chapter 3, the phase of ice response was greater than 90°.  Phases 
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greater than 90° cannot result from the two-dimensional models in this chapter but are 

seen in the three-dimensional viscoelastic models shown earlier in chapter 3.  Thus, our 

two-dimensional models are necessarily over-simplifications to the phase behavior of ice 

streams.  However, for a rough estimate of the viscoelastic properties, these two-

dimensional models provide a general constraint on the rheology.  A more accurate 

estimate of the viscoelastic material parameters would require the use of a three-

dimensional viscoelastic model specific to the target glacier. 

4.4.2 Survey Requirements 

As the number of studies demonstrating a tidal phase delay is limited to only a 

handful, the collection of more data would aid in the understanding of in situ ice 

rheology.  As such a study necessarily would focus on the surface response of a tidally-

forced ice stream, the survey would be geodetic in nature.  From our modeling, the most 

important phase constraint is the phase delay near the grounding line, where the stresses 

(and thus displacements) caused by the tides are at a maximum.  In the case of an ice 

stream primarily constrained by its lateral margins, our work in chapters 2 and 3 suggests 

that a geodetic survey should remain within three ice stream widths of the grounding line.  

Farther inland, the tidal forcing is expected to be at least two orders of magnitude smaller 

than at the grounding line, which is likely too small to be detectable above the 

background ice velocity.  Our modeling also suggests some lateral variation in the 

observable phase shift (see appendix 4A), especially for a nonlinear viscoelastic 

rheology.  Therefore, we suggest that a grid pattern of geodetic stations would be an ideal 

deployment, as both the lateral and inland variations in phase shift would be recorded.   
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As the fitting of the tidal amplitudes and phases has been shown to be fairly rough 

(at best within a few degrees), the positional accuracy of the GPS survey is not expected 

to be an important concern relative to the error in fitting the tidal phase.  Due to the 

rugged nature of the lowest reaches of many ice streams, deploying relatively 

inexpensive (perhaps even expendable) GPS stations is preferred as there is a nontrivial 

chance that any given station would be lost due to iceberg calving, crevassing, or some 

other potentially destructive ice process.  Due to the inherent instability of the ice, using 

geodetic satellite observations would seem like a good alternative to on-ice geodetic 

stations.  However, the repeat time between satellite orbits is probably too long to 

sufficiently resolve semidiurnal and, perhaps, the diurnal tides.   

Another consideration would be the duration of the survey.  Ideally, the survey 

would be as long as possible, as the longer the survey duration, the better the estimates of 

the periodicity and phase delay of the ice response would be.  While the difference in the 

size of the errors between Gudmundsson (2006; 2007; 2011) and de Juan-Verger (2011) 

is not due to the difference in survey duration alone, the shorter survey of de Juan-Verger 

certainly does not help estimate the phase.  Independent of the estimation errors, longer 

surveys provide the opportunity to use the longer period ocean tides as additional data 

points for fitting the phase in 𝛿 − 𝐷𝑒 space.  We recommend that a survey long enough to 

capture two full fortnightly periods would be a minimum survey duration for a 

rheologically motivated study.   

Given the high rate of ice motion in ice streams and outlet glaciers, a one-month 

timeframe puts a limit on how close stations could be placed to the grounding line 

without the ice carrying the station past the grounding during the course of the 
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observation period.  Assuming a maximum ice velocity of 11 km/yr (for Helheim 

Glacier, Thomas et al., 2000; Howat et al., 2005), the nearest to the calving front that a 

recording station for a month-long survey could safely be placed is about 850 meters 

inland.  For ice streams with an attached ice shelf, while the GPS station would not be 

lost if carried past the grounding line, the nature of the station’s phase response would 

necessarily change if the ice beneath it begins to float.  Such a dramatic change in ice 

behavior could greatly increase the difficulty in interpreting the ice properties from the 

phase data. 

Lastly, the methodology for determining viscoelastic properties discussed here 

only provides information about the relaxation time of the glacier, rather than an intrinsic 

value of either the effective viscosity or the Young’s modulus.  Recall that the viscosity 

for our test problem in section 4.3.3 could only be found by assuming the Young’s 

modulus matched the laboratory value (from Petrenko and Whitford, 2002).  However, as 

the density of ice is a well-constrained material property (e.g. Cuffey and Paterson, 

2011), the acoustic wave speed within an ice stream can provide a constraint on the value 

of Young’s modulus for ice independent of the phase delay.  Glacial seismicity happens 

regularly enough to be used as a reliable source of acoustic waves in outlet glaciers.  As a 

range of possible glacial earthquake sources have been suggested (e.g., Neave and 

Savage, 1970; VanWormer and Berg, 1973; Weaver and Malone, 1979; Wolf and Davis, 

1986; Qamar, 1988, Anandakrishnan and Bentley, 1993; Anandakrishnan and Alley, 

1997; Deichmann et al., 2000; Ekström et al., 2003; Stuart et al., 2005; Smith, 2006; 

O’Neel et al., 2007; Tsai and Ekström, 2007; Tsai et al., 2008), the best approach would 

be to have an array of seismic monitoring stations that could measure the relative arrival 
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time between stations of a wave, and thus estimate the wave speed independent of the 

source location.  From the wave speed, the average ice density could then be used to 

determine the ice’s elastic moduli.  Such a seismic array would not need to be placed 

close to the grounding line, and a wide coverage might even be ideal due to the increased 

travel times of various waves increasing the accuracy of estimating ice’s elastic 

parameters. 

4.4.3 Ideal Survey Targets 

Equally important as the survey configuration is the choice of glacier to target for a 

rheologically-motivated tidal phase study.  From our analysis of simple models, as well 

as the results presented earlier in chapters 2 and 3, we propose a series of criterion for 

selecting a glacier most likely to provide data of a high enough quality to constrain in situ 

viscoelastic parameters.  Such criteria include the type of glacier to study, the nature of 

the ocean-ice interaction, the geometric complexity of the target glacier, and the thermal 

characteristics of the glacier.  Each of these selection characteristics will be discussed 

separately. 

4.4.3.1 Glacier Type 

Glaciers exhibit a wide range of geometries, sliding velocities, boundary conditions, and 

ice properties.  Ice streams make a natural target for a tidal phase survey as these glacier 

have the benefits of being fast moving, of having large ice fluxes, and of all having 

continuous contact with the ocean.  The rapid ice velocity makes distinguishing between 

the secular flow rate and a tidally-perturbed signal more straightforward than for an 

equivalent slow moving glacier.  In cases where the rapid ice motion is due to low 

resistive stresses, we expect a larger region where the tidal perturbation is measurable 
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than for slower moving glaciers.  The large ice flux also ensures that the glacier is always 

in contact with the ocean, such that the tidal interaction does not “turn off” as a function 

of time.  Lastly, and perhaps most importantly, the surveys of Rutford Ice Stream and 

Helheim Glacier demonstrate that a phase lag on ice streams is measurable.  Such may 

not be the case for other types of tidewater glaciers, where the existence of a tidal 

perturbation to ice motion, let alone the existence of a phase lag in that perturbation is not 

yet established.   

4.4.3.2 Ocean-Ice Interaction 

From the observations summarized in the introduction of chapter 2, glaciers can be 

grouped into three categories based on the glacier’s response to a tidal perturbation: little 

to no tidal response, measurable perturbation in the ice stream’s displacement, and stick-

slip response to ocean tidal loading.  Clearly, given the need for a signal and the desire to 

avoid unnecessary complications, the ideal target glacier would, the ideal target glacier 

resides in the second category. Such glaciers are expected to show a perturbation in 

surface displacement that varies smoothly in response to a change in tidal amplitude. 

 Additionally, the presence of an ice shelf is a key consideration in determining the 

interaction between an ice stream and the ocean tide.  For a tidewater (i.e. shelf-free) 

glacier, the change in ocean tide acts only as a change in the water pressure acting on the 

glacier’s ocean-ward cliff.  For a glacier with an attached shelf or tongue, the rise and fall 

of the ice shelf introductions flexural stresses on the glacier in the first five to ten 

kilometers (i.e., ice thicknesses) of the grounding line (as demonstrated in chapter 2, 

appendix 2A and observations in table 2.1).  While our determination of the stress 

transmission length-scale of ice streams shows that the tidal stress can influence ice 
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stream motion farther inland than ice flexure will for a wide enough glacier, the added 

flexural stresses of an ice shelf will influence the value of the stress-dependent effective 

viscosity, complicating the determination of the ice viscosity.  The 2007-2008 data from 

de Juan-Verger’s (2011) study of Helheim Glacier demonstrates that an ice shelf is not a 

critical factor in determining the phase shift between an ice stream and the ocean tide, we 

suggest that a target glacier should not have an ice shelf.   

4.4.3.3 Geometric Complexity 

Glaciers span a wide range of morphologies, from being a single linear feature to being a 

meandering convergence zone of multiple glacial streams.  A prime target glacier would 

be nearly linear and sourced from a single region of ice.  From a geometric perspective, a 

complex flow field is expected to differ from our simple, linear models due to the 

geometry alone.  Additionally, if a glacier is made up of multiple ice sources coalescing 

into a single flow near to the grounding line, the possibility of rheological variations 

across its profile becomes greater.  Such lateral variations could influence the phase shift 

seen on the ice stream, such that the estimated viscoelastic parameters are representative 

of neither ice constituent but rather some bulk average.  While such a result is not wrong 

per se, the apparent viscoelastic parameters would be useful only to that one system and 

could not be used as a general measurement of in situ glacial ice rheology. 

 Glaciers also can be underlain by deformable till (soft bedded) or by 

undeformable rock (hard bedded).  The two-dimensional models in this chapter and the 

three-dimensional models in chapter 3 demonstrate that the choice of boundary condition 

acting on the glacier is important to determining the precise phase-shift due to the 

rheology.  While both soft and hard bedded glaciers are likely to have boundary-specific 
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modifications to the phase shift that need to be distinguished from rheological effects, the 

added material of the subglacial till in soft bedded glaciers presents an additional 

constitutive law necessary to understand any observed phase shift.  Thus, soft bedded 

glaciers are more complex than their hard bedded counter parts, leading us to suggest that 

an ideal test glacier would be hard bedded. 

4.4.3.4 Thermal Complexity 

Glaciers fall into two categories based on the nature of the temperature of the ice: 

isothermal warm glaciers and polythermal cold glaciers.  As discussed in chapter 3, the 

ice streams of Antarctica (and Greenland) are definitively polythermal, with basal 

temperatures as much as twenty degrees warmer than the surface temperatures.  Most 

other glaciers on Earth, by their nature of being much smaller, are isothermal, with the ice 

at the melting temperature throughout the glacier.  As ice viscosity is strongly 

temperature dependent (e.g., Nye, 1953; Jezek et al., 1985; Budd and Jacka, 1989; 

MacAyeal et al., 1996; 1998) and ice elasticity weakly temperature dependent (Jellinek 

and Brill, 1956), an ideal target glacier would be isothermal, where the confounding 

effects of temperature could be avoided. 

4.4.3.5 Ideal Target Selection 

Using the above criteria, we compile a list of ice streams in table 4.4 that would be 

potential targets for a rheologically-motivated GPS survey.  This table focuses on major 

ice streams and outlet glaciers in a range of environments, including: Bindschadler Ice 

Stream, Ekstrom Ice Shelf, Kamb Ice Stream, Pine Island Glacier, Thwaites Glacier, 

Whillans Ice Plain (Antarctica); Helheim, Kangerdlussuaq, Jakobshavn Isbrae glaciers 

(Greenland); Columbia and LeConte glaciers (Alaska).  Among these major ice streams, 
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there is not a single “perfect” target glacier.  The best targets are Columbia Glacier, 

Alaska and Helheim Glacier, Greenland due to confirmed tidal interactions, rapid ice 

motions, a lack of an ice shelf, and the confining nature of these fjord-bounded glaciers.   

Of special importance is that these ice streams have no ice shelves, as shelf-less 

glaciers have a much simpler tidal forcing configuration and thus a less involved 

calculation of the tidal phase.  An ice shelf adds the complications of ice flexure and 

grounding line migration to the tidal perturbation of ice velocities.  Detailed modeling 

work of the interplay between the grounding line and ice shelves demonstrates that the 

stress and deformations of glaciers near the grounding line are inexorably tied to these 

shelf behaviors (e.g., Schoof, 2007a/b; Goldberg et al., 2009; chapter 2 of this thesis).  

Ultimately, we suggest that the single strongest selection criterion should be the presence 

(or lack) of an ice shelf. 

4.5 Summary and Conclusions  

In this chapter, we outlined a methodology for inferring the viscoelastic properties of an 

ice stream from the phase shift in the ice stream’s response to the forcing of the ocean 

tides.  From our modeling, a phase delay is expected when the value of De falls between 

10-3 and 101.  While the models used here to calibrate the relationship between phase and 

rheology are simple two-dimensional models, our ability to use these models in 

conjunction with observations from Helheim Glacier to estimate a reasonable value of 

viscosity suggests that using the phase lag to invert for the in situ material properties of 

ice could produce meaningful results.  While more detailed analysis is beyond the scope 

of this work, we outline a potential observational campaign to constrain ice rheology.  

Lastly, while the previous two chapters discussed ways in which the tidal loading of ice 
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have been modeled inappropriately, this chapter highlights the potential use of the short-

timescale geodetic observation of ice stream’s response to ocean tides to constrain the 

viscoelastic properties of natural glacial ice. 
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 Variable Names Units 

A Viscoelasticity coefficient Pa-n s-1 
𝐷𝑒 Deborah number -- 
J* Complex creep modulus Pa-1 
J1 Real part of J* Pa-1 
J2 Imaginary part of J* Pa-1 
Ltr Transmission length-scale km 
n Power law exponent -- 

TF Forcing function period s 
TBurg1 Burgers relaxation time 

(Maxwell element) 
s 

TBurg2 Burgers retardation time (Kelvin 
element) 

s 

TKelv Kelvin retardation time s 
TMax Maxwell relaxation time s 

TR Relaxation time (general) s 
𝑡 Time s 
𝛿 Phase delay ° 
𝜀 Strain -- 
𝜀* Complex Strain -- 
𝜀0 Strain amplitude -- 
𝜂 Linear viscosity Pa s 
𝜂1 Maxwell element viscosity 

(Burgers body) 
Pa s 

𝜂2 Kelvin element viscosity 
(Burgers body) 

Pa s 

𝜇 Shear modulus Pa 
𝜇1 Maxwell element shear modulus 

(Burgers body) 
Pa 

𝜇2 Kelvin element shear modulus 
(Burgers body) 

Pa 

𝜈 Poisson’s ratio -- 
𝜎 Stress Pa 
𝜏0 Stress amplitude Pa 
𝜔 Frequency s-1 

" ̇ " Indicates time derivate  
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Figure 4.1: Diagram showing the phase delay in the response of a one dimensional 

Maxwell (blue), Kelvin (red), and Burgers (black) viscoelastic element, as a function of 

the Deborah time of that model.   

  

log10 De 
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Figure 4.2: Phase shift for linear and nonlinear Maxwell models over a range of forcing 

frequencies and rheologies.  Panel A shows results for the fortnightly tide (black), panel 

B the diurnal tide (blue), panel C (red), and panel D the combined tide (all three colors).  

In all cases, the lines represent increasing values of n from right to left.  Values in table 

4.2 are collected from figure 4.2D, and will aid in distinguishing the different behaviors 

of each tidal signal as part of the combined tide. 

  

De 
De 

De 
De 
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Figure 4.3:  Schematic diagrams of the two model configurations for our finite element 

models.  Panel A shows a vertical cross-sectional view of a model ice stream that is fixed 

at its bed.  Panel B shows a map view of an ice stream that is fixed on each lateral 

margin.  The arrows show the location of the applied tidal forcing function. 
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Figure 4.4: Modeled phase shift results for our models fixed at the bed (see figure 4.3A).  

The filled blue circles show the results for a linear Maxwell model, while the red circles 

and black squares show results for a nonlinear Maxwell model with n=3 forced by a 

semidiurnal and diurnal tide, respectively. 

log
10  De 
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Figure 4.5: Modeled phase shift results for our models fixed on the side walls (see figure 

4.3B).  The filled blue circles show the results for a linear Maxwell model, while all the 

open circles represent nonlinear models forced with a semidiurnal tide and all squares 

represent nonlinear models forced with a diurnal tide.  The colors correspond to a Glen 

rheology (pink, black, and orange), a Goldsby rheology with n=1.8 (light blue), and a 

Goldsby rheology with n=4 (red).  

log
10  De 
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Figure 4.6: Distance dependence of the phase shift for basally-locked models at a range 

of Deborah numbers.  The redder colors represent more elastic models (higher De) while 

the bluer colors represent more viscous models (lower De).  
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Figure 4.7: Distance dependence of the phase shift for laterally-locked models at a range 

of Deborah numbers.  The redder colors represent more elastic models (higher De) while 

the bluer colors represent more viscous models (lower De).  
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Figure 4.8: Fitting results for the data from Helheim Glacier (see section 4.3.3).  The 

blue line is a linear fit, while the red line is an extrapolated version of the Glen flow fit.  

Finite element model results are shown as open circles.  The data from Helheim Glacier 

are the solid black points, with error bars shown as the black lines.  The values of the fit 

are tabulated in table 4.3.  

Linear 

G
len 

log
10  De 

log
10  De 



Viscoelastic Parameters 201 

 

 J1 J2 Relaxation Time Retardation 
Time 

Maxwell 
1
𝜇

 
1
𝜂𝜔

 
𝜂
𝜇

 𝑁/𝐴 

Kelvin 
𝜇

𝜇2 + (𝜂𝜔)2 
𝜂𝜔

𝜇2 + (𝜂𝜔)2 𝑁/𝐴 
𝜂
𝜇

 

Burgers 
1
𝜇1

+
𝜇2

𝜇22 + (𝜂2𝜔)2 
1
𝜂1𝜔

+
𝜂2𝜔

𝜇22 + (𝜂2𝜔)2 𝑝1 ± �𝑝1 − 4𝑝2
2𝑝2

 
𝜂2
𝜇2 

 

Table 4.1: Complex creep modulus real (J1) and imaginary components (J2), material 

relaxation and retardation time (where applicable) for a Maxwell, Kelvin, and Burgers 

model in one dimension.  The placeholder variables used in the Burgers relaxation time 

correspond to: 𝑝1 = �𝜂1
𝜇1

+ 𝜂2
𝜇2
� and 𝑝2 = �𝜂1

𝜇1

𝜂2
𝜇2
�. 
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  15° 30° 45° 60° 75° 
 Semidiurnal −0.23 −0.56 −0.80 −1.04 −1.37 
𝑛 = 1 Diurnal −0.23 −0.56 −0.80 −1.04 −1.37 

 Fortnightly −0.23 −0.56 −0.80 −1.04 −1.37 
 Semidiurnal −0.36 −0.69 −0.93 −1.17 −1.50 
𝑛 = 1.8 Diurnal −0.26 −0.59 −0.83 −1.07 −1.40 
 Fortnightly −0.26 −0.59 −0.83 −1.07 −1.40 
 Semidiurnal −0.50 −0.82 −1.07 −1.31 −1.64 
𝑛 = 3 Diurnal −0.32 −0.66 −0.90 −1.13 −1.47 

 Fortnightly −0.29 −0.63 −0.85 −1.09 −1.43 
 Semidiurnal −0.59 −0.92 −1.16 −1.40 −1.73 
𝑛 = 4 Diurnal −0.39 −0.72 −0.96 −1.20 −1.53 

 Fortnightly −0.29 −0.63 −0.87 −1.10 −1.44 
Table 4.2: Logarithmic values of the Deborah number at a selection of phase shift values 

for the combined tidal solutions shown in figure 4.2D.  Note that the phase shift behaves 

the same for the tidal forcing frequencies with a value of 𝑛 = 1, and the value varies 

between the other solutions for nonlinear viscosity models. 
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 Linear Base Glen Base Linear Wall Glen Wall 
24 5.83 1.16 5.83 2.12 
27 5.07 1.01 5.07 1.84 
30 4.42 0.882 4.42 1.60 
38 3.13 0.625 3.13 1.14 
53 1.57 0.313 1.57 0.569 
68 0.624 0.125 0.624 0.227 
40 2.85 0.569 2.85 1.04 
55 1.73 0.285 1.73 0.519 
70 0.507 0.101 0.519 0.184 
Table 4.3: Summary of the effective viscosities calculated for the Helheim Glacier using 

data from de Juan-Verger (2011).  The columns correspond to the linear and Glen models 

for the basely-locked model (figure 3.8A) and the laterally-locked model (figure 3.8B).  

The data correspond to the data points from de Juan-Verger (2011) described in section 

4.3.3 in bold, with the upper and lower error bars calculated as well.  Each value is in 

terms of 1013 Pa ∙ s. 

  



Viscoelastic Parameters 204 

 

 

Ice 
V

elocity 

Tidal 
Interaction 

Ice Shelf 

G
eom

etry 

B
asal 

C
haracter 

Therm
al 

Profile 

Bindschadler 

Ice Stream 

300-
800 
m/yr 

Continuous 
Motion Yes Wide and flat Till Poly. 

Ekstrom Ice 

Shelf 
250+ 
m/yr 

None at 3 
km inland Yes Narrow and 

flat ? Poly. 

Kamb Ice 

Stream 
20-50 
m/yr 

Seismic 
evidence Yes Wide and flat Till Poly. 

Pine Island 

Glacier 
2 

km/yr 
None at 55 
km inland Yes Narrow and 

flat Till Poly. 

Thwaites 

Glacier 
2 

km/yr ? Yes Narrow and 
flat Till Poly. 

Rutford Ice 

Stream 

400-
700 
m/yr 

Continuous 
Motion Yes Narrow and 

flat Till Poly. 

Whillans Ice 

Plain 

300-
800 
m/yr 

Stick-slip Yes Wide and flat Till Poly. 

Kangerdlussuaq 5 
km/yr ? Variable Narrow and 

steep Rock Poly. 

Helheim 8-11 
km/yr 

Continuous 
Motion Variable Narrow and 

steep Rock Poly. 

Jakobshavn 

Isbrae 
4-8 

km/yr ? Yes 

Narrow and 
steep, 

tributary 
glaciers bend 

Rock Poly. 

Columbia 

Glacier 
2+ 

km/yr 
Continuous 

Motion No Narrow and 
flat Till ? 

LeConte Glacier 4+ 
km/yr 

Continuous 
Motion No 

Narrow and 
flat, with 

bend 
Rock ? 

Table 4.4: Summary of target glacier characteristics for a range of Antarctic, Greenland, 

and Alaskan glaciers.  The columns show the ice velocity, the tidal behavior, the presence 

of an ice shelf, a brief summary of the geometry, the nature of the ice stream’s bed, and 
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the temperature profile of the ice stream.  For temperature, poly. refers to polythermal 

glaciers.   References for most glaciers are summarized in chapter 1.  References for 

Thwaites, Columbia, and LeConte glaciers are: Krimmel and Vaughn, 1987; Walters and 

Dunlap, 1987; Walters, 1989; Humphrey et al., 1993; Meier et al., 1994; O’neel et al., 

2001; 2003; Rignot et al., 2002; Shepherd et al., 2002. 
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Appendix 4A: Spatial Distribution of Phase Shift  

This appendix lists nine figures demonstrating the spatial distribution of the value of 

phase shift in the laterally-locked models.  The first five figures (4A.1 to 4A.5) shows the 

phase shift for linear viscoelastic models at progressively smaller De.  The other four 

figures show model results for the nonlinear viscoelastic models with the smallest De 

(and thus the largest spatial variability).  Figures 4A.6 and 4A.7 show Glen model results, 

figure 4A.8 shows results for a Goldsby rheology with n=1.8, and figure 4A.9 shows 

phase shifts for a Goldsby rheology with n=4. 
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Figure 4A.1: Phase shift distribution for a linear viscoelastic model with De = 2.5e0 

Pa ∙ s. 
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Figure 4A.2: Phase shift distribution for a linear viscoelastic model with De = 2.5e-1 

Pa ∙ s. 
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Figure 4A.3: Phase shift distribution for a linear viscoelastic model with De = 2.5e-2 

Pa ∙ s. 
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Figure 4A.4: Phase shift distribution for a linear viscoelastic model with De = 2.5e-3 

Pa ∙ s. 
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Figure 4A.5: Phase shift distribution for a linear viscoelastic model with De = 2.5e-4 

Pa ∙ s. 
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Figure 4A.6: Phase shift distribution for a Glen viscoelastic model (n=3) with De =  

1.7e-1 Pa ∙ s. 
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Figure 4A.7: Phase shift distribution for a Glen viscoelastic model (n=3) with De =  

3.3e-2 Pa ∙ s. 
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Figure 4A.8: Phase shift distribution for a Goldsby viscoelastic model (n=1.8) with De =  

0.74e-1 Pa ∙ s. 
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Figure 4A.9: Phase shift distribution for a Goldsby viscoelastic model (n=4) with De =  

0.28e-1 Pa ∙ s. 
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