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Chapter 3 

Inhomogeneous Elasticity and Viscoelasticity: 

Effects on Stress-transmission in Ice Streams 

As demonstrated in the previous chapter, the geometry of a homogeneous elastic ice 

stream imposes a stringent restriction on the distance that ocean tidal loads can be 

transmitted inland of the grounding line.  However, ice streams are not uniform elastic 

bodies.  There are bulk material inhomogeneities due to enhanced shear in the marginal 

ice and vertical temperature gradients in the ice.  Additionally, ice deforms viscously 

over long timescales and preferential flow directions due to ice’s polycrystalline nature 

can align, resulting in anistropic deformation.  In this chapter, we first consider the effect 

of elastic inhomogeneity on the length-scale of the transmission of tidal stresses inland of 

the grounding line—specifically investigating an increase in the compliance of the ice 

stream’s lateral margins.  Increasing the marginal compliance reduces the stress 

supported by the ice stream’s sidewalls, resulting in an increase in the length-scale of 

stress-transmission.  We then explore the role of viscoelasticity in the deformation of the 

ice stream, in order to quantify the effect that viscoelasticity has on the inferred 

transmission length-scale of a tidal stress.  While we find that viscoelasticity plays an 

important role in determining the time delay between the peak tidal signal and peak 

surface motion of the grounded ice stream, the effect on the stress-transmission length-

scale is too minor to explain the long-distance observations from Bindschadler and 

Rutford Ice Streams.  Ultimately, we conclude that lacking a mechanism which 

essentially decouples an ice stream from its lateral margins, a process outside of the bulk 
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of the ice stream must be responsible for the large zone of tidal influence observed on 

some Antarctic ice streams. 

3.1 Introduction 

As alluded to at the end of chapter 2, representing ice as a homogeneous elastic body is 

not the most realistic rheological model for ice.  The choice of material model will 

directly affect the stress-transmission behavior in our ice stream models.  As the 

calculated stress-transmission length-scales in our three-dimensional ice stream models 

are too short to match the observations from Rutford and Bindschadler Ice Streams 

(Gudmundsson, 2007; 2008; 2011; Anandakrishnan et al., 2003), for a realistic 

rheological change to be significant, the new rheology must weaken the resistance of the 

ice stream’s lateral margins.  In this introductory section, we first describe several 

common inhomogenities in ice’s elastic behavior before introducing the range of 

viscoelastic constitutive laws used in glaciology to model ice deformation.  We consider 

inhomogeneity in elasticity created by the large-scale crevassing of an ice stream’s shear 

margins and what effect such marginal weakening has on the ice stream’s ability to 

transmit tidal loads.  We also consider the impact of incorporating a viscous component 

of ice deformation over the tidal timescales has on the extent of tidally induced 

deformation of an ice stream.  Given the independence of these two rheological 

considerations we discuss each separately.  This chapter closes with a discussion of both 

elastic and viscoelastic homogeneity as related to field observations from Antarctica. 

3.1.1 Elastic Rheological Effects 

The impacts of temperature, crystal fabric, and ice purity on the viscous deformation of 

ice are better constrained than their potential to modify the effective elastic moduli of ice.  
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While there is no reason to believe a priori that the same processes that alter viscous flow 

of ice will also alter the elastic response of ice, investigating these processes that 

influence ice viscosity does provide a touchstone for understanding the physical 

mechanisms behind potential elastic inhomogeneity.  For viscous flow, we focus on how 

three different processes impact the viscosity parameters: temperature-dependent 

viscosity, fabric-induced preferential viscous flow directions, and enhanced shear in ice 

stream margins.  For each process, we first summarize that process’s ability to perturb 

viscosity of ice then discuss that process’s potential to change the (elastic) compliance of 

ice. 

3.1.1.1 Temperature-Dependent Rheology 

The West Antarctic ice sheet and ice streams are polythermal glaciers, with temperatures 

ranging from the pressure melting point to as low as -50 °C (e.g., Gow et al., 1968; 

Engelhardt, 2004a, 2004b; Salamatin et al., 2008).  A bevy of field observations (e.g., 

Nye, 1953; Jezek et al., 1985, MacAyeal et al., 1996, 1998) and laboratory experiments 

(e.g., Budd and Jacka, 1989) show a clear temperature dependence in the viscosity 

coefficient of ice.  Following Cuffey and Paterson (2011), the temperature dependence of 

ice viscosity can be summarized by two different Arrhenius relationships: one for 

temperatures between 0 and -10 °C, and the other for temperatures colder than -10 °C.  

For reference, the viscosity coefficient, the nonlinear analog to viscosity, changes by 

about a factor of 10 between 0 and -10 °C.   The large change in the magnitude of ice’s 

viscous deformation with temperature implies that the viscosity coefficient in ice streams 

can be substantially varied as a function of ice stream depth. 
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 Jellinek and Brill (1956) find that the Young’s modulus of ice varies by about 

40% over a temperature range of -5 to -15 °C, though there is a large amount of 

variability in measured moduli.  The temperature dependence of elasticity is quite a bit 

smaller than that of viscosity for a given temperature profile.  As a demonstration of how 

negligible the temperature dependence of ice elasticity is, Jellinek and Brill construct a 

well-fit rheological model for ice using data from their creep relaxation experiments 

where only the viscous deformation of the ice is temperature dependent.  Of course, if the 

ice is heated to the point of melting, then the elastic strength of the ice will necessarily 

plummet; however, for our purposes we will assume that melting is negligible. 

3.1.1.2 Fabric Dependence 

Glacial ice, being polycrystalline, is known to be strongly anisotropic once creep 

establishes a preferred crystal orientation.  The direction of ice motion relative to the 

preferred crystalline glide direction dictates the deviation in observed strain rate from that 

of isotropic ice.  The anisotropy of a mature crystal fabric in ice can enhance the strain 

rate of ice in a “weak” orientation by up to 100 times that of ice in a “strong” orientation 

(Shoji and Langway; 1988).   

Such polycrystalline anisotropy also influences the elastic behavior of ice, as 

demonstrated through the measurement of seismic anisotropy in glacial ice by 

Blankenship and Bentley (1987).  They found that the variation in seismic P-wave speed 

in glacial ice is about 10%.  This change in wave speed corresponds to a variation in 

elastic moduli on the order of 20%.  Focusing on the slower-moving ice stream, 

Blankenship and Bentley suggested that a preferentially oriented ice fabric is the cause of 

the observed change in wave speed.  The faster-moving ice stream could conceivably 
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develop a stronger fabric that could result in an increased influence on the elasticity of 

ice. 

Laboratory results for anisotropy in the Young’s moduli of sea ice found a peak to 

peak variation between 10% and 41%, depending on the nature of the columnar 

crystallization (Nanthikesan and Sunder; 1995 and references therein).  While such 

laboratory results are not strictly usable to determine the behavior of glacial ice due to the 

presence of salt in the sea ice’s crystalline structure, all the studies presented here suggest 

that the variation in elastic moduli for polycrystalline ice, with a preferred crystal 

orientation relative to isotropic ice, is less than a factor of two. 

3.1.1.3 Enhanced Deformation in the Shear Margins 

In some cases, a single Glen-style viscous flow law is unable to explain observed viscous 

flow velocities in glaciers over long timescales.  Examples include the depth-variable age 

of ice in ice caps (Paterson, 1991), basal impurities in mountain glaciers (Dahl-Jensen 

and Gundestrup, 1987; Echelmeyer and Wang, 1987), and most importantly the highly 

strained ice in the shear margins of West Antarctic ice streams (Echelmeyer et al., 1994).  

These studies adopted an ad hoc spatially variable viscous enhancement factor to the 

strain rate, effectively reducing the viscosity in regions where the researchers observed 

rapid velocities.   

For the case of ice stream shear margins, this viscous enhancement can be as large 

as a factor of twelve.   In Echelmeyer et al.’s (1994) study of Whillans Ice Stream, the 

regions of viscous enhancement correspond to a “chaotic zone” of intense, irregular 

crevassing.  While these researchers did not physically model the interaction between the 

crevasses and the viscous flow of the ice stream, they point to the crevassing as an 
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indication of high shear strain, suggesting that a strain-weakening process (such as shear 

heating, their preferred hypothesis) could be the cause of the necessary enhancement to 

ice velocity.  Such an approach is equivalent to increasing the effective ice stream width. 

   As discussed earlier, the temperature dependence of ice elasticity is substantially 

smaller than that of ice viscosity, suggesting that shear heating is not a major player in 

potentially changing the elasticity of an ice stream’s margins.  However, the presence of 

crevasses (or more generally, cracks) within elastic bodies is known to influence the 

effective elastic moduli of the damaged body.  As demonstrated by Walsh (1965) for a 

penny-shaped crack, a reduction in the magnitude of the Young’s modulus of an elastic 

body can approximate the increased deformation of the body due to the presence of void 

space or frictional cracks. 

 The number of crevasses is difficult to accurately quantify as only surface 

crevasses are directly observable, making any attempt to create a “crevasse distribution” 

for a given glacier intractable from a remote sensing perspective.  Furthermore, small 

scale cracking in ice can be pervasive, rendering it impossible to calculate an effective 

rheology from an applied mechanics formulation such as Walsh (1965).  The limitations 

on the measurement of cracks in glacial ice suggests that using an empirical fit of damage 

parameters estimated from observations is the simplest method of finding the 

approximate magnitude of the enhancement in ice’s elastic response due to damage in the 

bulk of the ice. 

 Unfortunately, current measurement of the magnitude of the elastic response of 

ice streams is limited to GPS stations placed near to short-term perturbations to the 

background stressing of an ice stream.  Of most immediate relevance are the GPS surveys 
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of the ocean tidal loading of ice streams in Antarctica presented in Chapter 1.  However, 

with the exception of the surveys of Whillans Ice Plain by Winberry et al. (2009; 2011), 

these GPS surveys lack the spatial coverage to resolve the potential difference in 

displacement response of the shear margins versus the interior of the ice stream.  And, in 

the case of the Whillans Ice Plain, the stick-slip nature of the GPS data obscures any 

simple variation in the elastic response between the central and marginal ice.  The stick-

slip behavior, controlled by poorly understood basal friction properties of the ice plain, 

would necessarily be convolved with any increased effective compliance in the shear 

margins due to damage in the margins.  As such, we cannot rule out strain-weakening in 

the shear margins as a potentially important elastic inhomogeneity based on the current 

suite of field observations alone. 

3.1.2 Appropriateness of Viscoelasticity 

The analysis of ice motion is traditionally treated as a problem of viscous, rather than 

elastic, deformation (e.g., Cuffey and Paterson, 2011).  While the timescale in the 

standard ice problem is months and years rather than hours and days, the prevailing large-

scale deformation of ice is clearly viscous in nature.  As such, we now explore the 

possibility that the viscous component of deformation in ice streams is important at 

hourly to weekly timescales in the context of the transmission of tidal loads inland of an 

ice stream’s grounding line. 

 Recent research suggests that viscoelasticity is necessary to correctly model the 

tidal behavior of ice streams.  Gudmundsson (2007) and King et al. (2011) explicitly state 

that viscoelastic effects within the ice stream may play a role in the phase delay of the ice 

stream’s response to tidal loading.  Gudmundsson (2011) and Walker et al. (2012) carry 
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out two-dimensional flow-line models with viscoelastic rheologies and find that these 

models fit observations more satisfactorily than an equivalent elastic ice model.  Even 

though we have demonstrated that flow-line models fail to correctly predict the length-

scale of the transmission of tidal stresses, the flow-line models of Gudmundsson and 

Walker et al. suggest that viscoelasticity can play a role in the transmission of tidal 

stresses inland of the grounding line of an ice stream. 

 Additionally, rheological modeling of ice deformation in the laboratory suggests 

that ice behaves viscoelastically (e.g., Jellinek and Brill, 1956; Goldsby and Kohlstedt, 

1997; 2001; Morland, 2009; Riesen et al., 2010).  These studies focus on using 

viscoelastic fluid models to improve the mathematical representation of the three creep 

regimes of ice (primary, secondary, and tertiary creep).  As will be discussed in 

subsection 3.1.2.1, our choice of a Maxwell viscoelastic material model is a simpler 

rheology than those suggested by the aforementioned laboratory studies.  A Maxwell 

model captures the behavior most relevant to the tidal perturbation of ice stream flow.  

Following this discussion, section 3.1.2.2 outlines our expectations for the relative 

importance of the viscous and elastic deformations in our models at different timescales, 

using the Maxwell relaxation time as an intuitive metric. 

3.1.2.1 Simple Rheological Models for Viscoelasticity 

Multiple models for viscoelasticity exist, so we must contemplate the most appropriate 

model for ice.  We consider the three simple viscoelastic material models shown in figure 

3.1: the Maxwell, Kelvin-Voigt, and Burgers models.  We will choose to implement 

viscoelasticity in ice as an isotropic Maxwell model, which has the benefit of capturing 
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the most relevant characteristics of ice deformation while being simple enough to be well 

constrained using laboratory data. 

 A Maxwell viscoelastic model is comprised of a spring (elastic) element in series 

with a dashpot (viscous element).  The canonical one-dimensional form of a linear 

Maxwell element is given as: 

 𝜀̇ =
𝜎
𝜂

+
�̇�
𝐸

 (3.1) 

A Maxwell material represents a fluid, as a constant stress will converge to a constant 

strain-rate, and thus linear time-dependent deformation.  An advantage of the Maxwell 

model is that the elastic and viscous responses of the material are easily separable for 

problems with a characteristic stress as these responses are additive. 

 In contrast, the Kelvin-Voigt material is comprised of a spring element in parallel 

with a dashpot element.  Equation 3.2 shows the canonical form of a linear Kelvin-Voigt 

element: 

 𝜎 = 𝐸𝜀 + 𝜂𝜀̇ (3.2) 

At its core, the Kelvin-Voigt model is that of a deformable solid, as a constant stress will 

result in the time-dependent relaxation to a strain value of that of an equivalent elastic 

model.  And opposed to the Maxwell model, the Kelvin-Voigt model is easily separable 

into elastic and viscous portions for problems with a characteristic strain. 

 A third common viscoelastic rheology, the four element Burgers model, combines 

a Maxwell element in series with a Kelvin-Voigt element.  The one-dimensional 

constitutive law is given by: 

 𝜎 + �
𝜂1
𝐸1

+
𝜂1
𝐸2

+
𝜂2
𝐸2
� �̇� +

𝜂1𝜂2
𝐸1𝐸2

�̈� = 𝜂1𝜀̇ +
𝜂1𝜂2
𝐸2

𝜀̈ (3.3) 
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where the subscript 1 corresponds to the Maxwell element and the subscript 2 

corresponds to the Kelvin-Voigt element.  The defining characteristics of a Burgers 

model are that there is both an instantaneous and a long-term viscous response controlled 

by the Maxwell element, but that the transition between these two is smoothed due to the 

viscous deformation of the Kelvin-Voigt element (see figure 3.2). 

 Recalling that ice is best represented by a stress dependent viscous term, the 

gravitational stress driving the flow of the ice stream cannot be separated from the tidal 

perturbation of the stress field.  As this limitation requires that our ice model can flow 

under its own weight, a fluid model is required, thus ruling out the (solid) Kelvin-Voigt 

model as an appropriate ice model.   

From the published literature, ice is commonly modeled as a four element Burgers 

body with a nonlinear Maxwell body and a linear Kelvin-Voigt element (e.g., Jellinek 

and Brill, 1956; Reeh et al., 2003; Gudmundsson, 2007; Tsai et al., 2008).  However, we 

opt to use a Maxwell material for ice in our modeling for two reasons.  First, Reeh et al. 

(2003) demonstrates that the use of the simpler Maxwell rheology to fit tidal flexure data 

is only slightly worse than the fit using the Burgers rheology.  Second, the experimental 

data of Jellinek and Brill (1956) suggests that the retardation time in the Kelvin-Voigt 

element is on the order of 102 seconds.  As our tidal forcing acts on the timescale between 

104 and 106 seconds, the influence of the Kelvin-Voigt element will be negligible 

compared to the behavior of the Maxwell element (shown in figure 3.2).  Figure 3.2 

demonstrates that the Maxwell element captures the initial elastic response and the 

tertiary creep of ice, with only the transitional region being poorly fit.   Thus, we use the 

following nonlinear Maxwell material model for the viscoelasticity of ice: 
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 𝜀̇ = 𝐴𝜎𝑛 +
�̇�
𝐸

 (3.4) 

3.1.2.2 The Maxwell Relaxation Time 

 In a Maxwell viscoelastic model the relative importance of elastic and viscous 

deformation in the material is quantified by a Maxwell relaxation time, 𝑇𝑀𝑎𝑥: 

 𝑇𝑀𝑎𝑥 =
𝜂
𝐸

 (3.5) 

If 𝑇𝑀𝑎𝑥is large, the material will response elastically to an applied load.  If  𝑇𝑀𝑎𝑥 is small, 

then the material’s response to an applied load will be viscous in nature.  However, tidal 

loading is not a constant force but rather acts as a time-variable stress.  The dimensionless 

Deborah number, De, quantifies the relative importance of the viscous or elastic response 

to the timescale of the loading function and is given by: 

 𝐷𝑒 =
𝑇𝑀𝑎𝑥
𝑡𝑓

 (3.6) 

where 𝑡𝑓 is the period of the forcing function.  If De is small, then the material’s response 

will be primarily viscous; if De is large, then the response will be primarily elastic.   

 Given the stress dependence of the effective viscosity of ice, De is inexorably tied 

to the amplitude of the deviatoric stress in the material, and will vary with the magnitude 

of the stress field in the material.  As such, we define a transitional stress, 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠, to be 

where the material’s response changes from being primarily viscous to primarily elastic, 

though in the region of this transitional stress, both components of deformation are 

important.  𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 is defined as: 

 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 = �𝐴𝐸𝑡𝑓�
−1𝑛 (3.7) 
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Stresses higher than 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 denote a viscously dominated response, while an elastic 

response dominates when the stresses fall below 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠.  As the frequencies of the tidal 

components vary, there are separate transitional stress levels for the semi-diurnal, diurnal, 

and fortnightly tides.  Table 3.1 summarizes the expected transitional stresses using a 

value of A for T=0°C through T=-25°C and a value of n=3 (Cuffey and Paterson, 2011). 

𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 varies between a few and a few hundred kPa, which is the same order of 

magnitude as background driving stresses and the tidal stresses in our ice stream models.  

Thus, we expect there to be an even partitioning of stress and deformation between ice’s 

elasticity and viscosity.  The ice’s response is unlikely to be well approximated by either 

a purely elastic or a purely viscous model.  Reducing Young’s modulus (while holding 

the viscosity coefficient fixed) increases the transitional stress to a viscously dominated 

response.  Thus, invoking damage as a mechanism to increase the compliance in the ice 

margins may reduce the effective stress support of the margins in an elastic model.  

However, such a damage model implies that the viscoelastic response of the ice margins 

will be less pronounced than that of the central ice unless the effective viscosity of the 

lateral margins is reduced along with the Young’s modulus.  

3.2 Strain-Weakening in the Shear Margins 

From the previous discussion, only damage in the shear margins provides the potential 

for large-scale elastic decoupling of an ice stream from its lateral margins.  We begin 

with a continuum damage mechanics formulation to provide some physical basis for 

introducing an inhomogeneous Young’s modulus into our three-dimensional elastic 

models from chapter 2.  We investigate two different profiles for spatial variations in 

elasticity.  We then discuss the implications of increasing compliance in the shear 
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margins, comparing our results to observations of both tidal stress-transmission and 

damage estimates from Antarctica. 

3.2.1 Continuum Damage Mechanics Formulation 

As the theoretical and observational constraints suggest that the variability of ice stream 

elasticity with the temperature and fabric is limited to a factor of two at best, we focus 

solely on the effect of strain-weakening on the elastic moduli of ice.  To model the 

impact of individual crevasses is intractable due to the lack of a complete understanding 

of crevasse formation and distribution (e.g., Cuffey and Paterson, 2011), and the 

computational burden such a model would require when considering an ensemble of 

crevasses.  However, the finite element formulation allows for spatially variable material 

parameters.  Implementing a continuum damage mechanics approximation of the damage 

due to crevassing potentially allows our models to connect crevassing with the effective 

material moduli of the ice, without needing to explicitly model individual fractures. 

 To parameterize damage, we consider a parameter D such that  

 𝜀̇ = 𝐴 �
𝜎

1 − 𝐷
�
𝑛

 (3.8) 

is the modification of the viscous (Glen) flow law due to the presence of damage in the 

given viscous element of the model.  This formulation is equivalent to following 

Kachnov-Rabotonov theory (Kachanov, 1958, 1986; Rabotnov, 1968) with no evolution 

of D, a fair assumption over the short timescales in our problem.  The damage parameter 

D can take a value between 0 (no damage) to 1 (complete plastic failure of element), and 

can be interpreted of a fraction of volume in the problem that can no longer support a 

load due to the opening of void space in the damaged body (see figure 3.3).  This linear 
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damage mechanics formulation breaks down at large damages (D>~0.90), where a real 

body would lose coherence.  However, for small to moderate damages, a linear damage 

mechanics formulation provides a physical connection between fracture and a reduction 

in effective material parameters. 

 For the modification of elastic moduli, this form of continuum damage maps 

directly into the linear elastic constitutive equation (Chaboche 1977; Lemaitre and 

Chaboche, 1978) as: 

 𝜀 = �
𝜎

𝐸(1 −𝐷)� (3.9) 

If the two rheological models are connected as a Maxwell viscoelastic material, it follows 

directly from conservation of effective stress that the rheological model with damage 

looks similar to equations 3.8 and 3.9, except that the viscous response D1 may be 

different from the elastic response D2 

 𝜀̇ = 𝐴 �
𝜎

1 − 𝐷1
�
𝑛

+ �
�̇�

𝐸(1 − 𝐷2)� (3.10) 

The above equation only holds if the values of D are held constant through time.  Figure 

3.3 shows a schematic for such a viscoelastic damage formulation.  For the analysis in 

this chapter, we will only consider equation 3.9 (linear elasticity with damage).  

 A critical piece of information is the value of D that approximates the expected 

damage within an ice stream’s shear margin.  We begin by making the assumption that 

𝐷1 = 𝐷2 = 𝐷 as there are neither laboratory nor observational constraints on the effects 

of damage on ice elasticity.  The results from Echelmeyer et al.’s (1994) study on the 

viscous enhancement of ice stream flow are used to approximate the viscous D.  



Strain-Weakening and Viscoelasticity 111 

 
Following the derivation of Borstad et al. (2012), the relationship between D and the 

enhancement factor En of Echelmeyer et al. is: 

 𝐸𝑛 = (1 − 𝐷)−𝑛 (3.11) 

Using the peak enhancement factor of 12 from Echelmeyer et al. and the canonical n=3 

gives D=0.56, which corresponds to a reduction in Young’s modulus by about a factor of 

two.  Given our uncertainty in the relationship between the D values of viscous and 

elastic ice, we extend our search to include values of D that change the Young’s modulus 

by up to three orders of magnitude.  Albeit unphysical, this broad selection of values 

allows us to empirically derive a robust relationship between D and Ltr.  Based on 

estimates of damage necessary for crevassing, discussed in more detail later, we expect 

that the physical range of values for D are between 0.0 and about 0.6 (e.g., Borstad et al., 

2011). 

We must still decide how to distribute damage throughout an ice stream.  We 

begin with models that have a linearly varying value of D=0 at the margins to a 

predetermined D at the edge of the ice stream (“continuous margins”).  We use these 

models to explore a large range of effective Young’s modulus values in order to 

characterize the relationship between the length-scale for transmission of stress  Ltr and 

the relative magnitude of the reduction of Young’s modulus in the margins (as discussed 

in section 3.2.2).  We then move to models where there is a step-function transition from 

D=0 to D≠0 at a predetermined shear margin boundary (“discrete margins”).  Such 

models explore the importance of the size of a shear margin on the value of Ltr using a 

pattern of D meant to approximate that seen viscously in ice streams (see section 3.2.3).  

Figure 3.4 shows sample profiles for both types of models. 
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3.2.2 Continuous Margin Results 

Figure 3.3 shows a representative stress state from a model with a linear variation in 

Young’s modulus of one order of magnitude between the compliant margins and the 

more rigid central ice.  While the stress state is similar to that of the homogeneous 

elasticity model in figure 2.6, there are important differences when the elasticity is 

inhomogeneous.  First, Ltr is longer throughout the model with the compliant margin than 

in the homogeneous model.  In this specific model, the length-scale for the transmission 

of stress is about 1.6 times longer than that of a homogeneous model.  Note that the value 

of Ltr is constant across the profile of the model ice stream (save immediately near the 

grounding line), even though the Young’s modulus is not.  Second, the continuous 

margin model concentrates stress at the center of the ice stream, as is apparent most 

readily in the longitudinal normal stress component.  In this stress component, the stress 

is almost an order of magnitude higher in the central regions of the ice stream with the 

inhomogeneous elasticity than with the homogeneous Young’s modulus.  The potential 

for concentration of stress in the central portion of the ice is another example of a three-

dimensional effect that simple flow-line models miss. 

 We considered twelve models with varying values of E at the lateral margins and 

central ice, ranging from ice 1000 times more compliant in the center to ice 1000 times 

more rigid in the center.  For each of these models, figure 3.6 shows the trend of the 

change in Ltr compared to the homogeneous model as a function of the ratio of E between 

the central and marginal ice.  Thus, as marginal ice is made progressively more 

compliant, an applied load will decay over longer distances.  The converse is also true for 

situations where the marginal ice is more rigid than the central ice.  Finally, the power 
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law form of the relationship between Ltr and E implied an effect for increasing the 

compliance of the margins.  Over the range of models investigated here, the maximum 

increase in Ltr is a factor of about 4.2 when the margins are 1000 times more compliant 

than the central ice.  The change to Ltr depends not on the absolute values for E in the 

model, but rather only on the ratio of EH and EL.   

3.2.3 Discrete Margin Results 

Figure 3.7 shows a representative distribution of the six stress components for a model 

with discrete ice margins chosen to be one quarter of the ice stream width.  When 

compared to the homogeneous elastic model in figure 2.6, the stress state in the 

inhomogeneous model looks similar in general pattern to the homogeneous model, but 

there is a noticeable perturbation in stress state near the transition between compliant 

margins and rigid central ice.  In the inhomogeneous model, stress is concentrated in 

either the central ice (longitudinal normal stress, 𝜎𝑥𝑥) or the margins (the other five 

components).  Unlike the continuous margins models, Ltr is not constant across a 

transverse profile of the ice stream.  Additionally, values for Ltr in these discrete margin 

models are larger than that of the homogeneous elastic models, just as was seen earlier in 

the continuous margins models.  

To quantify the increase in Ltr due to the presence of compliant margins, we 

consider the vertically-averaged value of Ltr derived from the equivalent stress, rather 

than component by component.  Figure 3.8 illustrates the behavior of different margin 

widths and Ltr for two models with discrete margins one order of magnitude more 

compliant (EH/EL=10) than that the central ice.  The first panel (A) shows the results for 

an ice stream 10 kilometers wide and 1 kilometer thick, while the second panel (B) shows 
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the results for an ice stream 20 kilometers wide but otherwise identical.  Consider first the 

left-hand plots, which show the transmission length-scales for eleven models that have 

discrete margins making up from 0% to 100% of the ice stream width at intervals of 10%.  

Circles represent the locations of the transition between the marginal and central ice.  We 

note three features: 

1) The values of Ltr are identical for models with 0% and 100% compliant 

margin widths.  This result is expected as these models equivalent to 

uniform elasticity. 

2) The variation of Ltr across the ice stream’s profile (i.e., in the x-

direction) is strongly dependent on the model parameters, such as the 

relative size of the margins and the absolute width of the ice stream.  

Take, for example, the 50% margin width and the 80% margin width 

profiles in panel A.  In the former, Ltr peaks in the marginal ice near the 

transition between the two rheologies and is slightly decreased in the 

central ice.  In the latter, Ltr in the central ice is elevated compared to 

that of the margins.  Further, note that the profiles of Ltr between the 

two models are different. 

3) The largest value of Ltr occurs in the models that have margins that 

make up 50% of the ice stream half-width or 25% of the ice stream full-

width. As an aside, we note that this margin width is similar to the best-

fit marginal width found by Echelmeyer and others (1994) for viscous 

flow models of Kamb Ice Stream.  More work is necessary to determine 

if the similarity in peak margin width between elastic and viscous 
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models is coincidental or if this result suggests that our assumption that 

D1=D2=D is permissible. 

4) The discontinuities in the profiles of Ltr are due to the use of the 

equivalent stress to define the transmission length-scale.  This jump in 

Ltr is caused by: one, the equivalent stress depends on the longitudinal 

stress (𝜎𝑥𝑥); two, the longitudinal stress can be discontinuous across the 

jump in Young’s modulus.  The displacements are continuous across 

the discontinuities in Young’s modulus. 

The right-hand plots in figure 3.8 demonstrate the relationship between margin 

size and Ltr for a tidal forcing.  These plots show the average value of the Ltr (with error 

bars indicating 1 standard error of the mean) as a function of relative margin width.  As 

mentioned earlier, we find that the maximum increase in Ltr relative to the homogeneous 

elastic model occurs when the shear margins are one quarter of the ice stream width.  

However, due to the polynomial form of Ltr as a function of margin width, even a fairly 

small shear margin can increase Ltr by a factor of 2 to 3.  Additionally, the average value 

of Ltr shows only a minor dependence on the geometry of the ice stream, as demonstrated 

by the small difference in maximum value of Ltr between 10 and 20 kilometer wide 

models.   

3.2.4 Strain-Weakening Discussion 

The results of our models incorporating inhomogeneous elasticity in the shear margins 

demonstrate that the nature and variability of ice’s elastic moduli within the ice stream 

can have a profound effect on the transmission of a tidal load inland of the grounding 

line.  This connection between elastic moduli and stress-transmission exists even though 
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the transmission of stress in homogeneous elastic models is independent of the elastic 

moduli.  Thus, if the elastic moduli of ice vary across an ice stream, it is not sufficient to 

calculate effective elastic moduli for the entire ice stream as this cannot correctly model 

the stress-transmission.   

While the relative increase in Ltr in our models is only between 1 and 3 times the 

value of Ltr in our homogeneous models for values of strain-weakening D that match 

those seen viscously, this variability represents a difference in many tens of kilometers of 

stress-transmission—the very length-scale of tidal stress-transmission seen geodetically.  

To our knowledge, there currently are no observations of in situ ice elasticity that suggest 

there is a reduction in Young’s modulus within the shear margins of ice streams.  

However, simple models of ice fracture and crevassing suggest that an ice stream’s shear 

margins should be more compliant than the (relatively) undamaged central portions of the 

ice stream. 

As independent constraints on the variability of elasticity do not exist, our results 

from these inhomogeneous finite element models define the range of potential parameter 

space necessary to explain the observed tidal signal from the GPS stations on Rutford and 

Bindschadler Ice Streams, rather than test specific values.  Referring back the values of 

Ltr found in section 2.4 for the homogeneous elastic models, figure 3.9 shows that an 

increase in the range of 2.67 (fortnightly tide) to 3.32 (semidiurnal tide) for Rutford Ice 

Stream and about 4.40 (semidiurnal tide) for Bindschadler Ice Stream from the 

homogeneous elastic stress decay length would be close enough to explain the amplitudes 

of displacement seen in the GPS records.   
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We can create an empirical margin-width dependence from our 20-kilometer-

wide model, fitting the model results shown in figure 3.8B.  We fit the model results 

using a polynomial fit of degree four as this is the lowest degree polynomial that falls 

within one standard error of the mean for the average stress decay length increase values.  

We also impose the added constraints that the end points must have a value of relative 𝐿𝐿�𝑡𝑡𝑡𝑡 

equal to 1 as our shear margin results must necessarily converge to the homogeneous 

elastic solution when there is no variation in elastic moduli.   

We now use the marginal-compliance relationship from figure 3.6 to define the 

dependence of changes in Ltr on the relative value of E in the compliant margins.   

We use these two fits to create a map in margin-width vs. compliance space that allows 

for the model to match the observations (figure 3.9).  Figure 3.9 shows the range of 

margin-widths and reductions in Young’s modulus necessary to increase the overall value 

of Ltr by certain amounts.  Not surprisingly, the maximum increase to Ltr occurs when the 

shear margins are about 50% of the ice stream half-width (25% of the ice stream full-

width), and when the lateral margins are substantially more compliant than the central ice 

stream.  This plot also shows the three lines in margin size-compliance ratio space that 

would be sufficient to match the values of 𝐿𝐿𝑡𝑡𝑡𝑡 found for compliant margins models 

approximating Bindschadler and Rutford Ice Streams to the observations of the decay of 

tidally induced displacements.  In these cases, the minimum values of D are found to be: 

0.988 for the fortnightly Rutford tide, 0.996 for the semidiurnal Rutford tide, and 0.999 

for the semidiurnal Bindschadler tide.   

To add some physical meaning to these estimates of D, we compare these 

modeled values to the critical damage threshold values of D, commonly named DC, found 
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in the literature.  From laboratory experiments, DC has been approximated from between 

0.45-0.56 for ice (Pralong and Funk, 2005; Duddu and Waisman, 2012).  From analysis 

and numerical inverse modeling of a continuum damage mechanical viscous model of the 

Larsen B Ice Shelf collapse, Borstad et al. (2012) found the value of DC for calving to be 

0.6±0.1.  To compare DC with our model results, we must remember that the above 

values for DC are for nonlinear viscous flow, such that the “enhancement” value is 

governed by equation 3.11.  Thus, the corresponding enhancements are between about 6 

(for 0.45) and 37 (for 0.7) using the canonical power law exponent for Glen flow of n=3.  

Unfortunately, even our smallest necessary enhancement has a value of 467.7 (102.67, for 

the fortnightly tide on Rutford Ice Stream), strongly suggesting that the necessary 

damage to have marginal compliance be the sole explanation of our models and 

observations is too high to be physically reasonable.  The situation is exacerbated for 

other tidal periods, with the necessary enhancement being factors of ~2,000 and ~25,000.  

Thus, marginal compliance alone is insufficient to bring our modeled stress decay length-

scales into line with those found observationally from GPS stations on the Rutford and 

Bindschadler Ice Streams. 

3.3 Viscoelasticity 

As strain-weakening of the shear margins does not explain the difference between our 

modeling results and the long-distance stress-transmission observed on some Antarctic 

ice streams, we now investigate the potential for viscoelasticity to decouple the ice stream 

from its lateral margins and thus increase the transmission length-scale of a tidal load.  

Section 3.3 begins with a discussion of the modeling considerations necessary in a 

nonlinear viscoelastic model that are otherwise not present in a linear elastic finite 
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element model.  We then present results from two types of viscoelastic models: one set 

with a homogeneous viscosity coefficient (section 3.3.2) and another with a temperature-

dependent viscosity coefficient (section 3.3.3).  The final portion of this section relates 

our viscoelastic modeling to the observed stress-transmission length-scales from 

Antarctica. 

3.3.1 Viscoelastic Model Considerations  

Incorporating both viscoelasticity and nonlinearity into our constitutive law for ice 

introduces many additional modeling concerns in order to correctly study the link 

between ocean tides and ice stream motion.  The first change is that our model has stress-

dependent viscosity, and thus stresses within the ice stream other than the tidal loading 

can no longer be neglected, as was done for the linear elastic models.  Also, as viscous 

deformation is a time-dependent process, our viscoelastic models must explicitly account 

for the time-variability of our tidal loading condition.  We address both of these issues in 

turn. 

3.3.1.1 Nonlinearity and the Loss of Superposition 

In our linear elastic models, the principle of linear superposition allowed us to isolate 

tidally induced deformation from the background driving stresses in our models.  With 

the change to a nonlinear viscoelastic rheology, we must now consider the stress state of 

our model ice stream more carefully as we cannot simply neglect the non-tidal stresses 

when designing our models.  As the ice’s viscosity depends on the total deviatoric stress 

throughout the ice stream, the effective viscosity of the ice stream will be both spatially 

and temporally variable.  The total deviatoric stress necessarily includes the tidal and 

non-tidal deviatoric stresses.  To correctly account for the “true” value of viscosity, our 
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models must now incorporate the deviatoric component of the gravitationally-derived 

driving stress and the extensional stress balance at the interface between the ice stream 

end and the ocean.   

(1) Driving Stress in the Ice Stream 

All glaciers, by definition, flow under their own weights, as discussed earlier in section 

1.4.  As a reminder, the shear (deviatoric) stress induced in the direction of flow is 

commonly taken as (e.g., Cuffey and Paterson, 2011): 

 𝜏𝑏 = 𝜌𝑔𝐻 sin𝛼 (3.12) 

where 𝛼 is the surface slope of the glacier.  The basal slope of the glacier is, to first order, 

not important in determining the basal shear stress.   

Very shallow surface slopes, and thus low basal shear stress values, are 

characteristic of the Antarctic ice streams with long-distance stress-transmission.  Using 

estimates of ice stream basal stress from ice streams on the Siple Coast (~ 100 kPa, 

Cuffey and Paterson, 2011), we estimate a reasonable surface slope of about 0.57 

degrees.  While a stress of 100 kPa is small when compared to the hydrostatic pressure at 

the base of these ice sheets (which can be upwards of 10 MPa), this driving stress is still 

larger than the stress change due to a one meter oceanic tide.  Furthermore, this deviatoric 

stress value suggests that ice is about ten orders of magnitude more viscous at the ice 

stream’s base than at the surface due to the stress dependence of the effective viscosity! 

 For our models, we apply only the downhill (i.e., deviatoric) portion of the 

gravitational driving stress.  Figure 3.10 shows our approach schematically.  The 

modeled ice stream is assumed to have a constant surface slope of α and thickness H, 

such that our deviatoric gravitational vector is at an angle 𝛼 to the model’s horizontal 
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coordinate axis.  This modeling approach is a permissible simplification of an ice 

stream’s geometry as the basal slope does not strongly affect the induced shear stress at 

the base and the shallow surface slope means that the ice stream’s thickness would not 

change dramatically over the length-scale of the tidal stress-transmission.   In the finite 

element formulation, we apply the horizontal component of gravity, with a magnitude of 

𝑔ℎ𝑜𝑡𝑡𝑖𝑧 = 𝑔 sin𝛼, to our model as a time-constant acceleration acting on the entire ice 

body. 

 Neglecting the non-deviatoric component of gravity is convenient as the model 

viscosity is independent of the hydrostatic stress and additionally removes the need to 

apply a pre-stress to cancel out the compression due to “turning on” gravity at the initial 

timestep.  However, at the ends of the ice stream, the hydrostatic pressure for real ice 

streams is not balanced completely by the ocean tide.  The excess hydrostatic pressure 

acts as a force that “pulls” the ice stream in the direction of flow, which causes a 

deviatoric extensional stress on the edge of the ice stream (Cuffey and Paterson, 2011).  

We discuss this extensional stress next. 

(2) Ocean-Ice Interface 

At the downstream edge of an ice stream, the hydrostatic pressure due to a glacier’s 

weight is resisted primarily by the hydrostatic force of the ocean acting on the ice shelf.  

Due to the dependence of the effective viscosity on the deviatoric stress, any mismatch in 

hydrostatic pressures between the ice stream and the ocean will result in a deviatoric 

stress that reduces the ice stream’s viscosity near the grounding line.  This deviatoric 

stress is independent of any flexural stresses caused by a rising and falling ice shelf.   
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 In Appendix 3A, we consider the effects of these stresses on the viscoelasticity 

deformation of an ice stream.  There we show that any extensional or flexural stresses do 

not perturb the effective viscosity near the grounding line enough to cause significant 

variation in our model results from those following the much simpler tidal condition used 

in the elastic models.  Therefore, we model the ocean tidal perturbation in  ice stream 

velocity as an oscillatory normal stress acting at the ice stream’s grounding line—the 

same configuration as in our linear elastic models. 

3.3.1.2 Time-Dependent Behavior 

Deformation of a viscoelastic (or more generally, viscous) material will inherently be 

time-dependent.  Thus, our models must accurately resolve the time-dependent behavior 

our ice stream system.  Time-dependence enters our problem in two ways: the time-

varying nature of the forcing function, and the time-dependence of ice stream’s tidal 

response.   

(1) Time-Dependent Loading 

Oscillations of the ocean tides represent a time-dependent force on an ice stream.  While 

there are numerous tidal frequencies, we focus on the three largest tidal constituents 

acting on ice streams: the semidiurnal, diurnal, and fortnightly tides.  The GPS surveys of 

Anandakrishnan et al. (2003), Gudmundsson (2007; 2008; 2011), and Winberry et al. 

(2009; 2011) all use the GPS vertical deformation of a station placed on the (floating) ice 

shelf as a measurement of the ocean tides.  The observed ocean tidal amplitude displays a 

strong beat frequency (see figure 3.11).  To approximate the amplitude of the tidal 

component, we select the two largest semidiurnal and diurnal components, along with the 

fortnightly tide, from the FES2004 tidal model (Lyard et al., 2006) to create a synthetic 
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tidal signal.  The tidal data is then fit using a nonlinear least squares algorithm to find the 

amplitude and phase of these five tidal components in the data from the Ross and 

Weddell Seas (data courtesy of S. Anandakrishnan and H. Gudmundsson).  For reference, 

the Ross Sea abuts the ice streams of the Siple Coast, while Rutford Ice Stream flows into 

the Weddell Sea.  Table 3.2 summarizes the tidal amplitudes and phases from FES2004 

and the observational fits, while figure 3.11 shows the real and synthetic tides for the 

Ross and Weddell Seas. 

 The agreement between the tidal model and the observations is not strong, with 

only the semidiurnal and diurnal components in the Weddell Sea coming close to 

matching.  As the point of this section is not to analyze the difference between tidal data 

and tidal models but rather to approximate the tidal amplitudes for our model ice stream, 

we choose to use the floating ice GPS stations for constraining the tidal forcing function.  

These data demonstrate that: 

1) The semidiurnal tide is stronger (i.e., larger amplitude) than the diurnal tide 

which in turn is stronger than the fortnightly tide in the Weddell Sea results, 

but not in the Ross Sea results. 

2) The fortnightly tide, while not always of the smallest amplitude, is 

subordinate to the either the semidiurnal or diurnal tide, depending on which 

is the dominant tidal amplitude. 

3) The maximum tidal amplitude has a one to two meter amplitude in the two 

major Antarctic seas.  While amplitudes may be larger locally (e.g., 

Gudmundsson, 2007), we will use a one meter tide as our characteristic 

amplitude. 
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 We use three tidal constituents (i.e., the semidiurnal tide, the diurnal tide, the 

fortnightly tide) as forcing functions in our nonlinear viscoelastic finite element models.  

For simplicity, we approximate the tidal periods of these tidal constituents as 12 hours, 24 

hours, and 14 days, respectively.  As a reminder, the three tidal constituents cannot 

strictly be separated due to the nonlinearity in this viscous deformation.  However, 

modeling the response of our ice stream model to a single tidal component is more 

straightforward and provides an estimate of the expected change in stress-transmission as 

a function of the tidal forcing period. 

(2) Time-Dependent Stress and Displacement Fields 

A viscoelastic medium will experience a phase delay between an applied oscillatory load 

and the deformation response.  In the context of ice streams under tidal forcing, this 

phase delay is expressed as a time-lag in the peak stress and displacement perturbation of 

the ice stream.  In the GPS observations of Rutford Ice Stream (Gudmundsson 2007, 

2008, 2011), a phase shift is both observed and seen to vary with distance inland of the 

grounding line. 

 In our models, we need to differentiate between the effects of the oscillatory 

loading of the ocean tides and those of the static loading due to the gravitational driving 

stress in the ice stream.  To this end, we run models both with and without the oscillatory 

component of the tide.  We then subtract the non-oscillatory results from the tidally-

forced models.  Due to the nonlinear viscoelasticity, the resulting stress field is not 

strictly the ice stream’s response to the oscillatory loading, but rather the change in ice 

stream response due to the addition of the time-variable component of the tide.  As the 

oscillatory load is several orders smaller than the static loads for most ice streams, we 
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expect that the response to the variation in total deviatoric stress due to the tides will be 

approximately linear, and thus the above approach provides results that are close to the 

ice stream’s response to the ocean tides alone. 

3.3.1.3 Temperature-Dependent Viscosity 

As mentioned in section 3.1.1, the viscosity of ice is strongly temperature dependent 

(e.g., Cuffey and Paterson, 2011; and references therein), with ice having reduced 

viscosity at higher temperatures.  Numerous laboratory experiments and field 

observations show that this temperature dependence takes the form of an Arrhenius 

relationship in the viscosity coefficient A, with two distinct regimes depending on the 

proximity of the ice temperature to the pressure melting point of ice (Weertman, 1983; 

Hooke and Hanson, 1986; Paterson, 1994).  The temperature dependence of the viscosity 

coefficient, from Cuffey and Paterson (2011), is: 
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(3.13) 

where T is measured in Kelvins. 

Antarctic ice streams have been observed to have a strong temperature gradient 

from base to surface (e.g., Engelhardt et al., 1990; Engelhardt and Kamb, 1993; 1998; 

Engelhardt 2004a/b), with some ice stream beds being up to twenty degrees Kelvin 

warmer than  the ice stream’s surface.  This temperature range corresponds to a variation 

in the viscosity coefficient by almost a factor of 60.  Therefore, we impose a temperature 
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gradient in our models and use a temperature-dependent viscosity.  We adopt an 

empirical fit of temperature data from Whillans Ice Stream as the temperature profile in 

all our models.  The temperature gradient of such a temperature profile is defined by 

Engelhardt and Kamb (1993) as: 
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where = 𝑧/𝑙, 𝑙 = 2𝜅𝐻/𝑎, 𝑞𝑏 is the basal temperature gradient, a is the accumulation rate, 

u is the ice stream horizontal velocity, 𝜅 is the thermal diffusivity, H is the ice stream 

thickness, and 𝜆 is the temperature gradient in air.  All values of these parameters, save 

for model geometries, are taken from Engelhardt and Kamb (1993).  In solving for the 

temperature profile, we set the basal temperature equal to the pressure melting point of 

ice, -0.7 °C.  The results based on a homogeneous temperature field are discussed in 

section 3.3.2., while the temperature-dependent results are discussed in section 3.3.3 

3.3.1.4 Enhanced Flow in the Margins 

Observations suggest that enhanced viscous flow exists in the shear margins of ice 

streams, with the enhanced viscous deformation in the marginal ice being up to twelve 

times that expected for models using homogeneous laboratory values of ice viscosity 

(e.g., Dahl-Jensen and Gundestrup, 1987; Echelmeyer and Wang, 1987; Paterson, 1991; 

Echelmeyer et al., 1994).  From equations 3.9 through 3.11, we expect that marginal ice 

would need a reduction to the value of the nonlinear viscosity coefficient by a value of 

about 0.56 to produce such an enhanced flow.  As increasing the elastic compliance of 

the margins of a model ice stream resulted in an increase in the distance a tidal load can 

be transmitted inland of the grounding line, we expect that a reduction in viscosity would 

produce a similar increase in the stress-transmission length-scale. 
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 However, we do not specifically model possible enhancement in both the elastic 

and viscous deformation of the shear margins in this thesis.  The relative influence of 

damage on the elastic and viscous deformation is not known, making any assumption 

about the interaction of D and En difficult to justify.  For example, if D is assumed to be 

constant between the viscous and elastic enhancement, then the viscosity would 

decreased by (1 − 𝐷)𝑛−1 compared to the drop in elasticity of (1 − 𝐷).  The result is a 

decrease in the Maxwell time of the margins, meaning that the viscous response would be 

relatively more important.  However, if En is assumed to be constant between the viscous 

and elastic enhancement, then the Maxwell time is unaffected in the marginal ice, 

suggesting that viscoelastic deformation is no more important in the margins than in the 

central ice.  Finally, if the presence of crevassing has a larger effect on the elasticity 

relative to the viscosity, then the Maxwell time of the margins would be increased 

relative to the undamaged ice, suggesting that viscoelastic deformation would be most 

important in the undamaged portions of the ice stream.  A more complete understanding 

of the role of damage in influencing the viscoelastic deformation of ice is necessary to 

have a physically based model for viscoelastic damage in the shear margins.  While it is 

possible to approach the problem of viscoelastic damage in the same manner as we did 

for elastic damage, the increased computational time of the nonlinear viscoelastic models 

puts such an effort well beyond the scope of this chapter. 

3.3.2 Homogeneous Viscoelastic Modeling Results 

We describe results from three viscoelastic models using homogeneous viscosity 

(assuming 0 °C ice) and tidal frequencies corresponding to the semidiurnal, diurnal, and 

fortnightly ocean tides.  Recall that for each model, two versions are run: one with only 
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the background gravitational body force (“background model”) and a second with both 

the background force and the axial tidal load (“tidal model”).  Figure 3.12 shows a 

sample stress field for the basal profile of the semidiurnal tidal model at the peak tidal 

amplitude with the background model subtracted.  Qualitatively, the stress distribution 

for the viscoelasticity model is similar to that of the elastic model (figure 2.6), though 

there are clearly some differences in the shear margins of the ice stream.  The value of Ltr 

can be seen in multiple stress components and does not vary substantially between the 

different stress components.  As with the elastic model, tidal stress decays exponentially 

with distance inland, and while the peak normal stress occurs in the center of the ice 

stream, the decay length-scale Ltr is roughly constant across the ice stream’s profile.   

Figures 3.13 to 3.15 show the value of Ltr as a function of depth at the centerline 

of the ice stream for the models forced at the three tidal frequencies.  As seen in panels A, 

the stress-transmission length-scale does not vary greatly with depth for any of the 

models.  However, the value of Ltr varies with the period of the forcing frequency.  For 

the semidiurnal, diurnal, and fortnightly tides, the length-scales are 15.6 kilometers, 15.0 

kilometers, and 40.9 kilometers, respectively.  Ltr for the corresponding elastic model is 

12.2 km, meaning such viscoelastic values of Ltr correspond to 123%, 118%, and 335% 

of the elastic value.  Thus, using viscoelasticity does increase the extent of tidal stress-

transmission relative to the elastic model.   

 Another major change in the move from elasticity to viscoelasticity is that we 

must consider the time-history of the stress solution, not just the stress state at a single 

moment.  As a demonstration, figure 3.15 compares the value of 𝜎𝑦𝑦 at the base of the 

center of the model ice stream forced with the semidiurnal tide as a function of time at 
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several locations inland of the grounding line.  In addition to the decay of the stress 

amplitude with distance inland of the grounding line, there is a phase delay in the ice 

stream’s stress response to the tidal load that also varies with distance inland of the 

grounding line.  In order to find the correct amplitude and phase, we fit stress profiles 

along the modeled ice stream’s length with: 

 𝜎𝑦𝑦 = 𝐴 sin(𝜔𝑡 + 𝜑) (3.15) 

where 𝐴 is the stress amplitude, 𝜔 is the tidal frequency of the applied tide, and 𝜑 is the 

phase delay.  Panels B and C of figure 3.12 to 3.14 show the fitted amplitudes and phase 

delays for the centerline profiles over of the ice stream model over the first 100 

kilometers of the ice stream.  The dashed lines correspond to the 95% confidence 

intervals of the fits.  The slopes of the amplitude and phase are the values of the length-

scale for the decay of the tidal stress, Ltr, and the phase velocity, c, respectively.  Table 

6.3 summarizes the values of Ltr and c for the homogeneous models. 

The ice stream’s response to all three forcing frequencies displays a phase delay 

that increases with distance away from the grounding line, as seen in panel C.  However, 

the phase does not seem to correlate with Ltr in these models.  The phase velocities of the 

three tides are, in order of increasing tidal period, 4.6 m/s, 11.1 m/s, and 0.60 m/s.  The 

phase velocities are not monotonically increasing with tidal period as the fortnightly tide 

has a significantly longer tidal period than the shorter period tides, but not a significantly 

increased phase delay. 

3.3.3 Temperature-Dependent Viscosity Results 

For our temperature-dependent viscosity models, we present results for the isolated 

semidiurnal, diurnal, and fortnightly tidal components, as well as a single model that 
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forces the models with a combined tidal forcing function based on the amplitudes of the 

Weddel Sea’s tides (see Table 3.2).  Figures 3.17 to 3.20 show the values of Ltr, stress, 

and phase delay for the semidiurnal, diurnal, fortnightly, and combined tidal signal.   

As with the homogeneous viscosity model, all three viscoelastic models have 

larger values of Ltr than the homogeneous elastic model.  The fortnightly tide has a longer 

Ltr  than the other two tides while the diurnal tide in turn has a larger value of Ltr than the 

semidiurnal tide.  Additionally, the absolute amplitude of the change is less pronounced 

than in the homogeneous case, with the semidiurnal Ltr being 101% of the elastic case, 

the diurnal tide’s Ltr being about 102%, and the fortnightly tide’s Ltr being 145%.   

In all three cases, the phase delay at the grounding line is zero degrees, suggesting 

a purely elastic response.  The phase delay increases with inland distance, with the 

maximum phase delay reaching about 15 degrees for the semidiurnal tide, 90 degrees for 

the diurnal tide, and 270 degrees for the fortnightly tide.  Unlike the homogeneous model, 

the increase in the phase delay correlates with an increase in Ltr.  Such is a result is due to 

the increased average viscosity, and thus the value of Tmax, of the temperature-dependent 

ice stream relative to the homogeneous ice stream.  We discuss the phase response to the 

ocean tides further in chapter 4.  Finally, the phase velocities of the three tides are 1.8 

m/s, 1.7 m/s, and 0.94 m/s for the semidiurnal, diurnal, and fortnightly tides, respectively. 

3.3.4 Viscoelasticity Discussion 

Our primary interest in modeling viscoelasticity was to determine if stress-dependence of 

viscosity would result in a substantial decoupling of the ice stream from its lateral 

margins due to the higher stress concentration along the lateral margins.  Recalling our 

earlier comparisons to the estimated tidal stress decay over Bindschadler and Rutford Ice 
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Streams (figure 2.11), viscoelasticity would need to increase the value of Ltr by between a 

factor of two to five to match the field observations of Anandakrishanan et al. (2003) and 

Gudmundsson (2007; 2008; 2011).  While models with a homogeneous viscosity at long 

tidal periods have values of Ltr that fall into the range necessary to fit the Antarctic 

observations, incorporating a temperature-dependency to the viscosity severely 

diminishes the increase in Ltr relative to the elastic model.  For these temperature-

dependent models, the increase in Ltr is less than 50%—insufficient to match the 

observations. 

 The lack of a substantial increase in Ltr due to the ice viscosity calls into question 

our assumption that incorporating nonlinear viscoelasticity will substantially reduce the 

viscosity in the shear margins.  However, as figure 3.20 shows, the shear margins have a 

substantially reduced viscosity when compared to the central ice.  This viscosity contrast 

is found to be essentially independent of the tidal forcing, suggesting that the background 

flow, even for very low driving stresses, is large enough that the tidal forcing does not 

strongly perturb the effective ice viscosity.  As such, response of an ice stream to a tidal 

load can be approximated as a linear viscoelastic as long as the ice stream is modeled 

with a spatially variable effective linear viscosity.  Such a simplification allows the use of 

the principle of linear superposition and thus decouples the effects of the tides from any 

background stresses.  Clearly linear models are also less computationally expensive, 

allowing us to explore a wider range of model parameters. 

However, the large drop in viscosity in the shear margins fails to cause a 

substantial increase in Ltr.  The simplest explanation is that while the ice is less viscous in 

the shear margins, the overall value of the viscosity is too still large to promote 
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substantial viscous deformation.  When compared with approximations of linear ice 

viscosities, the smallest viscosities in our models are about two orders of magnitude 

larger than those found for the solid response of laboratory ice (e.g., 1e12 Pa·s, from 

Jellinek and Brill, 1956).  As the smallest Maxwell time for our modeled ice stream is 

about 104 seconds (~ 3 hours), the model ice stream responds primarily as an elastic 

material.  Only when the model is forced with long period oscillations (e.g., the 

fortnightly tide, with a period of ~ 106 seconds) does the viscoelasticity of the ice stream 

substantial influence the stress-transmission length-scale.  Such an explanation matches 

the modeling result that a temperature-dependent viscosity has a smaller impact on the 

transmission length-scale than the equivalent homogeneous model.  As our homogeneous 

model is calibrated to match ice at the melting point, the homogeneous model has an 

average effective viscosity that is about 30 times smaller than the average effective 

viscosity in the temperature-dependent model.  For the temperature-dependent models, 

the larger viscosity in the body causes the ice response to be more elastic in nature, 

explaining the diminished change in Ltr from the viscoelastic model. 

 Our results demonstrate that a viscoelastic ice stream will have a phase delay in 

the ice’s response to a tidal loading that is distance dependent, whereas a linear elastic ice 

stream will never have an induced tidal phase delay.  While our results are too limited to 

draw any sweeping conclusions about the interplay between the phase delay, tidal forcing 

frequency, and the effective viscosity of the ice, the results do suggest that a measureable 

phase delay in the tidal response can provide information about the viscoelastic behavior 

of the ice.  We explore this idea further in the next chapter. 
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3.4 Summary and Conclusions 

We explored changes in the overall state of stress in an ice stream due to two different 

rheological modifications to a homogeneous linear elastic rheology.  The goal was to 

determine if either an increased elastic compliance in the shear margins or nonlinear 

viscoelastic effects would decouple the ice stream from its lateral margins to such an 

extent as to explain the discrepancy between the short stress-transmission length-scales of 

our models with the large spatial extent of tidally perturbed surface displacement 

observations from some Antarctic ice streams.  We find that neither of these two 

rheological effects have sufficient input on estimates of Ltr to explain differences between 

our models and observations.     

The first portion of this chapter considered models using a linear continuum 

damage mechanics formulation of crevassing in the highly-deformed shear margins of ice 

streams to reduce the margins’ effective elasticity.  Our models demonstrated that the 

resulting inhomogeneity in ice elasticity causes a net increase in Ltr for a tidal load if the 

marginal ice is more compliant than the central ice.  While a perfect constraint on the 

damage in the ice stream margins is not well established, we assume that the upper bound 

on damage for ice calving is an approximate bound on the marginal damage.  Using this 

constraint, the magnitude of the damage necessary to rectify the observations and our 

model results must be unrealistically large. 

The second rheological consideration is the impact of incorporating a nonlinear 

viscoelastic constitutive law for ice instead of the linear elastic law used in chapter 2.  

The hypothesis was that the stress-dependent viscous component of the viscoelastic 

rheology would decouple the ice stream from surrounding ice by reducing the viscosity 
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of the shear margins due to the large shear stresses in these margins.  Our viscoelastic 

models demonstrated that generally, viscoelasticity increases Ltr and that the viscous 

response is stronger for longer period tidal forcings.  However, for a model incorporating 

the temperature dependence of the viscosity coefficient of the ice stream approximating 

the temperature profile of Antarctic ice streams, viscosity remains too large to increase 

the stress-transmission length-scale of tidal load by more than about 50% compared to 

the elastic model.  Ultimately, due to the low driving stresses that control the magnitude 

of the effective viscosity within the model ice stream, for the Antarctic ice streams of 

interest, viscoelasticity cannot increase Ltr enough to rectify the observations and the 

model results. 

 Figure 3.21, an updated version of figure 2.11, demonstrates graphically that the 

decay of displacements is still too severe to match the maximum observed displacement 

if the influence of physically reasonable damage or viscoelasticity is added to our models.  

Recall that for linear elasticity, an exponential decay of stress corresponds to an 

exponential decay of displacement with the same decay length-scale.  Thus, using a value 

of Ltr calculated from the tidal stress-transmission can be used to represent the decay of 

tidally induced displacements with distance inland of the grounding line.  For nonlinear 

viscoelastic models, as the total stress state is dominated by the elastically supported 

stresses it is still reasonable to approximate the displacement decay using the stress-

transmission length-scale.  The estimated Ltr for elastic model geometries approximating 

Bindschadler and Rutford Ice Streams are approximately 70 and 40 kilometers, 

respectively (GPS data reported in Anandakrishnan and others, 2003; Gudmundsson, 

2007 and was provided by S. Anandakrishnan and H. Gudmundsson).  The increase in 
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the stress-transmission length-scale is 60% for the maximum reasonable damage model.  

In our viscoelastic models, the increase in Ltr for the semidiurnal tidal forcing is about 1% 

while for the fortnightly forcing the increase in Ltr is about 45%.  Such values are 

insufficient to match the observed stress-transmission length-scales of 265 and 110 

kilometers, respectively for Bindschadler and Rutford Ice Streams. 

 The models presented here draw into question the hypothesis that the observed 

influence of ocean tides on ice stream motion occurs as elastic transmission through the 

bulk of the ice stream itself.  This result implies one of two possible conclusions: one, 

that there is a mechanism not explored here that almost completely decouples the ice 

stream from its shear margins, essentially reducing the lateral support of the ice stream to 

zero; or two, that a mechanism external to the ice stream bulk is necessary to explain the 

tidal component of ice stream motion.  The uniform flow-line models, which are the 

current state-of-the-art, implicitly assume the first, though we have demonstrated here 

that the ice streams considered here are not wide “enough” to neglect the resistance of the 

lateral margins.  Furthermore, even the very name of the shear margins implies that there 

must be an amount of lateral support sufficient to induce shear in the ice stream’s 

margins, making large-scale decoupling very unlikely.  

Thus, we conclude that a process external to the ice stream is the most likely 

mechanism for allowing the impact of ocean tidal loads to extend far inland of the 

grounding line.  While not explored in detail here, our preferred hypothesis is that the 

ocean tides perturb the nature of streaming through the subglacial hydrologic network.  

As the basal traction beneath these fast-moving ice streams must be small as to encourage 

sliding and as these Antarctic ice streams are underlain by water-logged tills (e.g., Alley 
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et al, 1986; Smith, 1997; Engelhardt and Kamb, 1998; Tulaczyk et al., 2000a; 

Adalgeirsdottir et al., 2008; Raymond Pralong and Gudmundsson, 2011), the fluid 

pressure within the subglacial till is likely sufficient to cause the till to deform plastically.  

Our hypothesis is that the change in ocean tidal height can move the onset of streaming, 

the transition from slow- to fast-moving ice at the upstream edge of the ice stream, inland 

and seaward over the course of a tidal cycle.  As demonstrated by figure 3.22, when the 

onset of streaming is pushed inland, the ice stream at a given point should increase 

velocity as a longer portion of the glacier is streaming.  The opposite is true when the 

onset of streaming moves towards the ocean.  Furthermore, as the magnitude of the fluid 

pressure perturbation due to the ocean tide should decay with distance inland of the 

grounding line, the effect is expect to be most pronounced near the grounding line.   

Perhaps this distance dependence on the subglacial tidal pressure could explain the phase 

delay between ocean amplitude and the ice stream’s response to changes in ocean tide. 

The distance the tidal pressure change travels could easily be farther inland than 

the 5 kilometers zone through which the grounding line moves due to the ocean tides 

(e.g., Stephenson, 1984; Rignot, 1998; Heinert and Riedel, 2007; Brunt et al., 2010).  As 

the water pressure within the basal till is not constrained by the ice stream’s width (the 

ice stream dimensions controlling Ltr) but rather by the hydraulic properties of the 

subglacial drainage network, such a pressure modulation could potentially reach farther 

inland than a tidal load acting through the bulk of the ice stream does.  However, any 

further discussion of such a process relies on quantifying the spatial extent that ocean 

tides are ‘felt’ through the subglacial hydrologic network, which is beyond the scope of 

this chapter.  
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 Variable Names Units 

A Viscosity coefficient Pa-n s-1 
a Accumulation rate kg/yr 
C Phase velocity m/s 
D Damage parameter -- 

DC Critical damage parameter -- 
D1 Viscous damage parameter -- 
D2 Elastic damage parameter -- 
De Deborah number -- 

E Young’s modulus Pa 
Eeff Effective Young’s modulus Pa 
EH Higher Young’s modulus Pa 
EL Lower Young’s modulus Pa 

En Enhancement factor == 
𝑔 Gravitational acceleration m s-2 

ghoriz Horizontal component of 
gravitation acceleration 

m s-2 

𝐻 Ice stream thickness m 
𝐻𝐼 Cliff height m 
𝐿𝐿𝑡𝑡𝑡𝑡 Stress-transmission length-scale km 
𝑙 Diffusion length-scale km 

N Stress exponent -- 
qb Basal temperature gradient °C/m 
T Temperature °C 

𝑇𝑚𝑎𝑥 Maxwell relaxation time s 
T Time s 
tf Forcing timescale s 
𝑢 Ice stream velocity m/s 
𝑥 Ice stream transverse coordinate km 
y Dimensionless depth -- 
Z Depth m 
𝛼 Surface slope ° 
𝜀 Strain -- 
𝜂 Viscosity Pa s 
𝜅 Thermal diffusivity m2 s 
𝜆 Temperature gradient in air °C/m 
𝜈 Poisson’s ratio -- 
𝜌 Ice density kg m-3 
𝜎 Stress Pa 
𝜎𝑖𝑗 Stress component Pa 

𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 Transitional stress Pa 
𝜏𝑏 Basal stress Pa 
𝜑 Phase delay ° 
𝜔 Forcing frequency s-1 

" � " Normalized quantity  
" � " Non-dimensionalized quantity  
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Figure 3.1: Schematic views of the one-dimensional Maxwell, Kelvin-Voigt, and 

Burgers viscoelastic models.  The models are made up of spring and dashpot elements, 

with the associated moduli shown next to each element.   
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Figure 3.2: Comparison of the response of a one-dimensional Maxwell (blue) and 

Burgers model (red).  In the upper panel, a constant stress is applied to the two materials, 

and the released at an arbitrary time.  The Burgers model has a tapered response due to 

the solid element, but converges on the Maxwell model’s response.  In the lower panel, 

the oscillatory response of a Maxwell material and the response of a Burgers material are 

plotted as a function of dimensionless time.  The Burgers model has a Kelvin-Voigt 

element that has a retardation time that is 100 times smaller than the relaxation time of 

the Maxwell material.  Such a model is a approximately what is expected for ice (e.g., 

Jellinek and Brill, 1956).  The oscillatory responses of the two rheologies are negligibly 

different.  
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Figure 3.3: Schematic of the continuum damage mechanics formulation.  The left panel 

shows the undamaged uniaxial strain of an elastic material.  The right panel shows the 

strain of a damaged version of the same uniaxial strain.  As the damage parameter in this 

example is chosen to be D=0.5, the total strain is twice the undamaged version, as the 

effective Young’s modulus of the damaged material is 𝐸𝑒𝑓𝑓 = (1 − 𝐷)𝐸 = 0.5𝐸.  
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Figure 3.4: Diagram of the elasticity and damage profiles used in our marginal analysis 

models.  The panel on the left shows the continuous margin model, while the right panel 

shows the discrete margin model.  In each panel, the damage parameter D is plotted in 

red while the effective Young’s modulus E is plotted in blue.  The profiles are constant 

with inland distance of the grounding line.  The grounding line is marked with arrows, as 

the grounding line is the location of the applied tidal forcing. 
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Figure 3.5: Representative stress state for a continuous margin model that has a one order 

of magnitude variation in Young’s modulus between the central (strong) ice and the 

marginal (weak) ice.  The transmission length-scale Ltr is shown on some of the stress 

components.  Note that near the grounding line, the stress is elevated, but that away from 

the grounding line, the value of Ltr is constant along the transverse profile of the ice 

stream. 
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Figure 3.6: Change in average Ltr increase for models with continuous margins as a 

function of relative Young’s moduli between the margins and central ice.  The relative 

values of central Young’s modulus, 𝐸𝐻, and marginal Young’s modulus, 𝐸𝐿, listed next to 

the corresponding data point.  Error bars represent one standard error of the mean.  The 

dashed line is a best-fit power law function.  The equation for the fit is: 𝐿𝐿�𝑡𝑡𝑡𝑡 = 0.699 ∗

1.790log (𝐸�) + 0.392, where 𝐸� is the ratio of the Young’s modulus in the central ice 

divided by the Young’s modulus of the lateral margins.   
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Figure 3.7: Representative stress distribution for a model with the same geometry as 

figures 2.6 and 3.5, but with ice margins that are one quarter of the ice stream’s total 

width.  These margins are a factor of 10 more compliant than the central ice.  A variable 

Ltr as a function of transverse location is highlighted in the  𝜎𝑥𝑥 component of stress. 
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Figure 3.8: The relationship between the marginal width and Ltr compared to a uniform 

model for discrete margins.  Top figures are for a model 10 kilometers wide, while 

bottom figures are for a model 20 kilometers wide.  Figures on the left show the 

transverse profile of Ltr, with select profiles dashed to aid with visibility.  Circles 

represent the location of the edge of the ice margins.  The models that have homogeneous 

elasticity (0% and 100% width shear margins) are plotted in red.  Figures on the right 

show the increase of the relative values of Ltr as a function of shear margin width.  The 

error bars indicate one standard error of the mean.  The fit for figure 3.8B, as described in 

the main test, is:  𝐿𝐿�𝑡𝑡𝑡𝑡 = 𝐿𝑡𝑟
𝐿𝑡𝑟,ℎ𝑜𝑚𝑜𝑔

= −11.94𝑥�4 + 25.45𝑥�3 − 23.14𝑥�2 + 9.64𝑥� + 1, where 𝑥� is 

the non-dimensional width of the marginal shear zone, ranging from 0 to 1.  

Transmission Length (km) 

Relative Increase in 𝐿𝐿𝑡𝑡𝑡𝑡 Relative Increase in 𝐿𝐿𝑡𝑡𝑡𝑡 

Transmission Length (km) 
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Figure 3.9: Young’s modulus and margin width space for the increase in Ltr for a discrete 

margin model relative to the homogeneous elastic model described in chapter 2.  The 

three bolded contours correspond to the conditions necessary to single-handedly explain 

the observations of the Rutford fortnightly tidal signal 4(2.67), the Rutford semidiurnal 

tidal signal (3.32), and the Bindschadler semidiurnal tide (4.40).  

Relative Value of Transmission Length-scale 𝐿𝐿𝑡𝑡𝑡𝑡 
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Figure 3.10: Conceptual and finite element model implementation of the gravitational 

driving stress.  While in the conceptual model, there is a surface slope 𝛼, this is 

approximated by applying the deviatoric (horizontal) component of the gravitational 

acceleration, with a magnitude of 𝑔 sin𝛼.  The finite element model also shows the two 

temperature profiles used in our viscoelastic models.  The red line is the homogeneous 

temperature profile at 0 °𝐶, while the blue curve is the temperature profile defined in 

equation 3.14.    
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Figure 3.11: Comparison of the global tidal model FES2004 (red) to a five-component fit 

of tide-height data (blue) from the Weddell and Ross Seas.  Tidal amplitudes and phases 

are listed in table 3.2.  
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Figure 3.12: Stress state at the base of a modeled ice stream ten kilometers wide, one 

kilometer thick, and forced by a semidiurnal one meter tide.  The stress values plotted are 

the “tidal” model with a “background” model subtracted, as discussed in section 3.3.4.  

The physical length of 𝐿𝐿𝑡𝑡𝑡𝑡 is drawn on the stress components where such a distance is 

easily seen. 
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Figure 3.13: Model results for a viscoelastic model with a uniform temperature profile 

that is forced by a semidiurnal tide.  Panel A shows the calculated values of 𝐿𝐿𝑡𝑡𝑡𝑡 for depth 

profiles of the stress.  The average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 15.63±0.04 km.  Panel B shows the 

value of the longitudinal normal stress (𝜎𝑦𝑦) as a function of horizontal coordinate.  Panel 

C shows the fitted phase shift 𝜑 as a function of horizontal coordinate.  In panels B and 

C, the dashed lines correspond to the 95% confidence interval values of the fit described 

in equation 3.15.  
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Figure 3.14: Model results for a homogeneous viscoelastic model forced by a diurnal 

tide.  The values in the three panels match the description in figure 3.13.  The average 

value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 15.04±0.04 km.   
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Figure 3.15: Model results for a homogeneous viscoelastic model forced by a fortnightly 

tide.  The values in the three panels match the description in figure 3.13. The average 

value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 40.87±0.47 km.   
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Figure 3.16: Model results and fits for locations on the model surface at the grounding 

line, and 5, 10, and 15 kilometers inland of the grounding line.  The model has a 

homogeneous viscoelastic rheology and is forced with a semidiurnal tide.  The blue lines 

are the model output, the solid red lines are the model fits using equation 3.15, and the 

dashed red lines are the 95% confidence intervals.  The tidal stress diminished with 

distance inland of the grounding line, and the phase of the stress becomes increasingly 

delayed relative to the forcing frequency, which has a phase of zero degrees. 
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Figure 3.17: Model results for a temperature-dependent viscoelastic model forced by a 

semidiurnal tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 12.81±0.001 km.    
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Figure 3.18: Model results for a temperature-dependent viscoelastic model forced by a 

diurnal tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 12.91±0.002 km.   
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Figure 3.19: Model results for a temperature-dependent viscoelastic model forced by a 

fortnightly tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 17.72±0.03 km.   
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Figure 3.20: Figure showing the basal effective viscosity of our semidiurnal models for 

the homogeneous viscosity model.  This figure demonstrates that the shear margins have 

substantially reduced viscosity relative to the central ice.  
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Figure 3.21: An updated version of figure 2.11 to reflect the added maximum effects of 

elastic damage in the shear margins (dashed) and temperature-dependent viscoelasticity 

(dotted).  The solid line shows the linear elastic solution.  The colors of the circles (data 

points) and lines refer to: blue, Rutford fortnightly tide; red, Rutford semidiurnal tide; 

black, Bindschadler semidiurnal tide.  The upper panel shows the normalized amplitude 

of each tidal signal, while the lower panel shows the true amplitude. 
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Figure 3.22: Schematic view of our hydrology hypothesis at a neutral, high, and low tidal 

amplitude, respectively.  The triangles represent GPS stations on the surface of the ice 

stream and ice shelf.  The brown layer represents the subglacial till.  The onset of 

streaming is shown as a vertical line, and should vary in position with changes in the 

ocean tidal amplitude.  Then the onset of streaming is farther inland, the GPS stations 

move faster relative to a neutral position as more of the ice is streaming.  Furthermore, 

when the onset of streaming is closer to the grounding line, the relative velocity of the 

GPS stations is smaller than at a neutral tide.  
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  Tidal Period E (GPa) 0°C -5°C -10°C -15°C -20°C -25°C 

S 10 31.06 49.89 81.33 104.99 138.89 184.50 
S 1 98.21 157.77 257.17 332.01 439.21 583.45 
D 10 21.96 35.28 57.51 74.24 98.21 130.46 
D 1 69.44 111.56 181.85 234.77 310.56 412.56 
F 10 5.87 9.43 15.37 19.84 26.25 34.87 
F 1 18.56 29.82 48.60 62.74 83.00 110.26 

Table 3.1: Transitional stresses 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 for a range of ice temperatures, tidal frequencies, 

and Young’s moduli.  The transitional stress is defined in equation 3.7 and related 

discussion is in section 3.1.2.2.  All values in table 3.1 are in kPa.  The tidal period 

category uses the following abbreviations: S for semidiurnal, D for diurnal, and F for 

fortnightly. 
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 Semidiurnal Diurnal Fortnightly 
 M2 S2/N2* K1 O1 Mf 
 Amp Phase Amp Phase Amp Phase Amp Phase Amp Phase 

Weddell 
Data 1.52 35 0.843 339 0.620 11 0.497 57 0.0652 66 

Weddell 
FES2004 1.30 59 0.886 92 0.419 62 0.405 56 0.0301 198 

Ross Data 0.105 325 0.119 108 0.587 274 0.432 348 0.0286 5 
Ross 

FES2004 0.012 30 0.028 352 0.367 316 0.261 295 0.0313 205 

Table 3.2: Observational and tidal model amplitudes (in meters) and phases (in degrees) 

for the Weddell and Ross Seas.  The flagged component of the semidiurnal tide is the 

only component that had a varying second-largest tidal component, with the S2 being 

subdominant in the Weddell Sea while the N2 being so in the Ross Sea.  Note that the 

agreement between the tidal model and the floating ice data is not great (see text for 

discussion). 
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Tidal Period Applied Force Viscosity Ltr (km) c (m/s) 

S Full Temp. 14.4 -- 
S Simple Temp. 12.8 1.8 
S Simple Homog. 15.6 4.6 
D Full Temp. 13.1 -- 
D Simple Temp. 12.9 1.7 
D Simple Homog. 15.0 11.1 
F Simple Temp. 17.7 0.94 
F Simple Homog. 40.9 0.60 

Table 3.3: Calculated values for the length-scale of stress-transmission in our viscoelastic 

models.  The tide column describes the forcing frequency of the applied ocean load.  The 

applied load defines the load as either the full tidal condition or the simple tidal condition 

(see Appendix 3A).  The viscosity column defines if the given model for nonlinear 

viscosity used a temperature-dependent viscosity or a homogeneous viscosity coefficient.  

The values of Ltr are quoted in kilometers.  The phase velocity, c, is the slope of the phase 

vs. distance plot, and is shown in units of m/s.  Note that no phase velocity is calculated 

for the “full” tidal forcing functions.  The tidal period category uses the following 

abbreviations: S for semidiurnal, D for diurnal, and F for fortnightly. 
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Appendix 3A: Full Tidal Loading vs. Partial Tidal Loading 

Following the rationale of Cuffey and Paterson, 2011 (and references therein), the stress 

balance for an ice stream/shelf system would involve balancing the hydrostatic pressure 

at the edge of the ice shelf and that of the ocean.  As the ice shelf is floating, there is a net 

“pull” on the ice stream due to the excess pressure in the ice shelf compared to that of the 

ocean.  As our viscosity is stress dependent, to be strictly accurate, we need to account 

for this end stress in our models to accurately model the viscous deformation in the ice 

stream.  However, as the problem is more numerically tractable with a simple oscillatory 

tidal condition based on our elastic loading condition, we compare the model output for 

these two tidal loads (called “full” and “simple,” respectively).  We find that having the 

more complex full tidal condition changes the length-scale for stress-transmission decay, 

LR, by only about 20%, far below the factor of 3-4 change necessary to match 

observations.  Thus, we use this as justification to use the more numerically favorable 

simple tidal condition.   

3A.1 Full Tidal Loading Condition 

In addition to the oscillatory load of the ocean tide, there are three major tidally-

important stresses that a full tidal loading condition needs to consider.  These stresses are 

incorporated into the balance of: the hydrostatic pressure of the flowing ice, the 

hydrostatic pressure of the static ocean water, and the flexural stress imposed on the 

grounding line due to the vertical motion of the ice shelf.  Figure 3A.1 shows a schematic 

picture of the interaction of these stresses on an ice stream at neutral, high, and low tides. 

 First consider that the hydrostatic pressure of the ice and the water.  For the ice, 

the value of the stress at a given depth is simply 𝜌𝐼𝑔(𝐻𝐼 − 𝑧).  For the water, we first use 
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the flotation condition at the grounding line to find that the water rises to a height of 

𝐻𝑇 = 𝐻𝐼�1 − 𝜌𝐼 𝜌𝑊� �, which in turn leads to the definition of the hydrostatic pressure at 

levels where water exists as: 𝜌𝑊𝑔(𝐻𝑇 − 𝑧).  However, this stress balance occurs at the 

edge of the ice shelf, not at the grounding line.   We make use of the assumption that the 

ice shelf behaves elastically, which, following the results from our two-dimensional shelf 

models in chapter 4, allows us to move this stress balance to the grounding line without 

any decay of these stress values. 

 To account for the bending stress from ice flexure, we use the same simple beam 

theory presented in Appendix 2A of chapter 2.  From this simple model for flexure, we 

expect that the flexural stress at the grounding line will be on the order of a few 100 kPa 

at a maximum (the exact value depends on the ice thickness and the geometry of the ice 

shelf).   

 The full load applied at the grounding line is the sum of these three stresses: the 

differential gravitational stress at the end of the ice stream, the flexural stress induced by 

the floating ice shelf, and the change in water weight due to the tide.  Figure 3A.1 shows 

a graphical representation of these tidal loads, while equation 3A.1 shows the total form 

of this loading: 

 

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = � −𝜌𝑖𝑔(𝐻𝑖 − 𝑧)  
−𝜌𝑖𝑔(𝐻𝑖 − 𝑧) + 𝜌𝑤𝑔(𝐻𝑡𝑡 − 𝑧)   

if 𝑧 > 𝐻𝑡𝑡
 if z ≤  𝐻𝑡𝑡

� + 

             𝐹𝑇𝑖𝑑𝑒(𝑡) ∗ �𝜎𝑓𝑙𝑒𝑥∆ℎ �𝑧 −
1
2
𝐻𝑖� + 𝜌𝑤𝑔∆ℎ� 

(3A.1) 

 where 𝐻𝑖 is the ice thickness, 𝐻𝑡𝑡 is the water level relative to the base of the ice stream, 

𝐹𝑇𝑖𝑑𝑒(𝑡) is a unit tidal forcing as a function of time, and 𝜎𝑓𝑙𝑒𝑥 is the maximum amplitude 

of flexure for a unit tide.  For a reasonable tidal loading, the maximum force comes from 
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the static “pull,” which is on the order of 1 MPa at the base of a one-kilometer-thick ice 

stream, while the flexural stress is a few 100 kPas and the tidal weight is a few 10 kPas.  

3A.2 Simple Tidal Loading Condition 

For our simple loading condition, we apply the variable portion of the ocean tidal load as 

a normal traction to the grounding line.  Mathematically, this condition is: 

 𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐹𝑇𝑖𝑑𝑒(𝑡) ∗ 𝜌𝑤𝑔∆ℎ  (3A.2) 

This is identical to the approach taken in our linear elastic model, save that the applied 

stress is time-variable. 

3A.3 Stress-transmission Comparison 

Figure 3A.2 shows a comparison between the tidally induced 𝜎𝑦𝑦 component of stress (as 

described in section 3.3.1) for a map view of the base of a model with our full (left) and 

simple (right) loading conditions taken at a peak in stress response.  We first note that 

overall, the stress field is remarkably similar between the full and simple loading 

conditions.  The only major difference occurs in the portion of the ice steam near the 

grounding line, where the full loading condition has elevated stress values than those of 

the simple loading model.  Such an increase in the value of the stress near the grounding 

line in the full model is not surprising as the value of the applied load is larger in this 

model than with the simple loading condition.   

However, beyond this point inland, the model stress states are nearly 

indistinguishable, suggesting strongly that neither the hydrostatic “pull” on the ice stream 

edge nor the flexural stress due to the ice shelf bending viscosity of the ice stream near 

the grounding line significantly enough to dramatically change the nature of the 

transmission of stress viscoelastically in the ice stream.  Such results are keeping with the 
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earlier observation and model results suggesting that tidal flexure is a stress that is only 

seen locally to the grounding line.  The similarity in the model results is reflected in the 

values of LR calculated between these two models, which fall within 20% of one another 

(see table 3.3). 

 As the difference between model results in this case is only on the order of 20%, 

we feel safe in neglecting the full tidal loading condition for our purposes.  In the current 

form of our problem, we are sensitive to changes in the value of LR that amount to a 

factor of 3-4, and thus 20% is far below the threshold of usefulness to justify the increase 

complexity (and thus computation time) of our models with the full loading condition. 
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Figure 3A.1: Schematic diagrams of the full tidal forcing condition at a neutral, high, and 

low tide.  The tidal stress will be the extensional/compressional stress due to the different 

in hydrostatic pressure at the edge of the ice shelf (shown in the graph on the right of the 

figure) and the flexural stresses due to the presence of the ice shelf.  HI is the distance 

between the surface of the ice shelf and the surface of the ocean. 
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Figure 3A.2: Comparison of the value of the longitudinal normal stress (𝜎𝑥𝑥) for the full 

tidal forcing condition (left) and the partial tidal forcing condition (right) at peak tidal 

amplitude.  The full condition has a higher normal stress at the grounding line and a 

slightly more rapid decay of the stress due to the inclusion of the flexural stress.  Once 

inland of the grounding line by five to ten kilometers, the stress-transmission length-

scales are comparable between the two forcing conditions. 
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