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ABSTRACT 

Glaciers are often assumed to deform only at slow (i.e., glacial) rates.  However, with the 

advent of high rate geodetic observations of ice motion, many of the intricacies of glacial 

deformation on hourly and daily timescales have been observed and quantified.  This thesis 

explores two such short timescale processes: the tidal perturbation of ice stream motion and 

the catastrophic drainage of supraglacial meltwater lakes.  Our investigation into the 

transmission length-scale of a tidal load represents the first study to explore the daily tidal 

influence on ice stream motion using three-dimensional models.  Our results demonstrate 

both that the implicit assumptions made in the standard two-dimensional flow-line models 

are inherently incorrect for many ice streams, and that the anomalously large spatial extent 

of the tidal influence seen on the motion of some glaciers cannot be explained, as 

previously thought, through the elastic or viscoelastic transmission of tidal loads through 

the bulk of the ice stream.  We then discuss how the phase delay between a tidal forcing 

and the ice stream’s displacement response can be used to constrain in situ viscoelastic 

properties of glacial ice.  Lastly, for the problem of supraglacial lake drainage, we present a 

methodology for implementing linear viscoelasticity into an existing model for lake 

drainage.  Our work finds that viscoelasticity is a second-order effect when trying to model 

the deformation of ice in response to a meltwater lake draining to a glacier’s bed.  The 

research in this thesis demonstrates that the first-order understanding of the short-timescale 

behavior of naturally occurring ice is incomplete, and works towards improving our 

fundamental understanding of ice behavior over the range of hours to days.  
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Chapter 1 

Thesis Introduction 

Sea level rise.  Tipping points.  Global warming.  Today, the field of glaciology is 

irrevocably linked to the study of climate change, from the ivory tower to the network 

news.  However, beyond attempts to quantify ice melting rates and predictions of the 

lifespans of dwindling glaciers, many aspects of the fundamental physics underlying the 

deformation of glaciers are poorly understood.  Computational modeling of the response 

of glaciers in Greenland and Antarctica to hydrologic forcing over a timescale shorter 

than one month is the focus of this thesis.  The results presented here are almost 

completely based on computational modeling but the goal is to explain several field 

observations of outlet glaciers and ice streams in the published literature.  The interaction 

between ocean tides and ice stream motion (chapters 2, 3, and 4) and the rapid drainage 

of supraglacial meltwater lakes are the two glacial processes on which this thesis focuses. 

 The introductory section describes the Earth’s cryosphere, focusing on the current 

scientific interest in glacier dynamics.  The next section outlines the classical treatment of 

ice dynamics—both for general ice masses and the specific case of ice streams.  The 

introduction then summarizes the current understanding of the interaction between the 

ocean tides and outlet glaciers, specifically over timescales shorter than a month.  The 

next section discusses observations of the tidal influence on outlet glaciers from 

Antarctica and Greenland.  The penultimate introductory section is a brief synopsis of the 
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finite element modeling methods used throughout this thesis.  Last is a short outline of 

the remainder of this thesis. 

1.1 The Cryosphere 

The term cryosphere refers to all frozen water on planet Earth.  While sea ice, river and 

lake ice, snow, and permafrost all belong to the cryosphere, glacial ice dominates the 

system.  A glacier refers to any mass of crystalline ice that both persists over the course 

of an entire year and is large enough to flow under its own weight.  The largest glaciers 

on the planet are the Antarctic and Greenland Ice Sheets, which together contain nearly 

85% of all the freshwater on the planet (e.g., SMIC Report, 1971; L’vovich, 1979; IPCC, 

1990; 1996; Van der Veen, 1999).   

 In the past few decades, the specter of global climate change has driven a renewed 

interest in the cryosphere, focusing on the fact that water in the cryosphere, primarily in 

the Greenland and Antarctic Ice Sheets, is equivalent to about 65 meters of sea level 

equivalent height (e.g., Cuffey and Paterson, 2010; Lythe et al., 2001; Bamber et al., 

2001; Meier et al., 2007; Dyurgerov and Meier, 2005).  As highlighted by the 

International Panel on Climate Change’s (IPCC’s) Fourth Assessment Report (2007), the 

lack of understanding of the interaction between the cryosphere and hydrosphere (i.e., ice 

sheets and the ocean) is a key piece of missing information that limits the believability of 

forward, predictive climate modeling.  Upwards of 60% of the ice leaving the Greenland 

Ice Sheet and upwards of 90% of the ice leaving the Antarctic Ice Sheet is carried 

through a limited number of fast moving outlet glaciers, thus understanding the dynamics 

of these outlet glaciers is critical to predicting future ice levels (e.g., Cuffey and Paterson, 

2010; Morgan et al., 1982; Bauer, 1961; Rignot and Kanagaratnam, 2006).  The focus of 
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the first two research chapters is the interaction of these outlet glaciers and the short-term 

ocean tides. 

 We use Cuffey and Paterson (2010) as the reference for defining the 

characteristics of outlet glaciers.  The technical definition of an outlet glacier is a fast-

moving region of ice bounded by visible rock; an ice stream is a fast-moving region of 

ice bounded only by slower-moving ice.  However following the convention of Cuffey 

and Paterson (2010), these terms are used interchangeably.  The distinction between 

outlet glaciers and ice streams is generally too strict for practical use as many glaciers 

transition between ice-ice and ice-rock boundaries over their lengths.  Note that while ice 

streams and outlet glaciers almost always flow into the ocean, the presence of a floating 

ice shelf or ice tongue is not a defining characteristic.  Figure 1.1 shows the locations of 

all the ice streams discussed in this thesis. 

As mentioned earlier, the majority of ice leaving the Greenland and Antarctic Ice 

Sheets travels through outlet glaciers.  Direct calving of icebergs and basal melt are two 

of the primary mechanisms for removal of ice mass (e.g., Jacobs et al, 1992; Vaughan 

and Doake, 1996; Reeh et al., 1999; Mote, 2003; Wild et al., 2003; Hanna et al., 2005; 

Box et al., 2006; Krinner et al., 2006; Rignot et al., 2008; Cuffey and Paterson, 2010).  

Calving occurs when fractures propagate through the ice thickness at the edge of a 

glacier, resulting in blocks of ice shearing off the main ice body.  Usually these new 

icebergs are carried out to sea, where they eventually melt.  Basal melting occurs due to 

frictional heating along the base of grounded ice, melting due to geothermal heat along 

the base (e.g., subglacial volcanism, such as in Iceland), and the melting of floating ice 

shelves due to warmer ocean water reaching the ice’s base. 
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Over long timescales, changes in the climate system can dramatically impact the 

response of ice streams to the conditions of the ocean.  Increased melting, both on-land 

and at the grounding line due to higher ocean temperatures, reduces ice in the ice stream 

system and lubricates the ice stream’s base, further increasing flow speeds.  The 

combination of increased flow speeds and increased basal melt can thin ice streams to the 

point that any attached ice shelf breaks up.  Ice shelf breakup in turn causes increased ice 

stream speeds due to the removal of the buttressing stress of the ice shelf, as was 

observed in the 1995 breakup of the Larsen A Ice Shelf and the 2002 breakup of the 

Larsen B Ice Shelf in Antarctica (Rott et al., 2002; De Angelis and Skvarca, 2003; Rignot 

et al., 2004, Scambos et al., 2004).  Thus, the long-term behavior (and future) of ice 

shelves is linked to the interaction, and potential feedback, between the cryosphere and 

the earth’s oceans. 

However, the loss of ice through outlet glaciers is not the only mechanism for 

removing mass from the Greenland and Antarctic Ice Sheets on yearly timescales.  

Surface melt accounts for about 40% of the ice lost from Greenland and about 10% of the 

ice lost from Antarctica each year (e.g., Box et al., 2006; Krinner et al., 2006; Cuffey and 

Paterson, 2010).  While this mass loss alone is significant, there is evidence from 

Greenland that supraglacial meltwater, should it reach the glacier’s bed, can increase ice 

flow rates (e.g., Zwally et al., 2002; Joughin et al., 2008).  The potential for such a 

feedback to cause a dramatic increase in the loss of ice mass with increasing temperatures 

(and thus melt rates) is not fully established, but modeling suggests that the effect can 

increase the mass-loss by upwards of a factor of two (Parizek and Alley, 2004).  
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 Ultimately, while this thesis is not a direct study of the interaction of the 

cryosphere and the global climate system, that connection is the background motivation 

of this work.  The hope is that the research presented here helps to elucidate some of the 

fundamentals of the response of ice to short timescale forcing.  Understanding the hourly 

and daily dynamics of outlet glaciers requires more study.  Through the investigation of 

tidal forcing of ice streams (chapters 2 to 4) and rapid drainage of supraglacial lakes 

(chapter 5), this thesis demonstrates some of the modeling concerns of processes that 

span the gap between very rapid (elastic) response on the order of days and more 

measured (viscous) response of ice streams on the order of years.  The remainder of this 

introduction focuses on background information related to tidal forcing of ice streams, 

while the introductory material for the lake drainage problem is deferred to chapter 5 as 

that background material is unrelated to the remainder of this thesis. 

1.2 Ice Stream Dynamics 

This section provides a brief summary of ice stream dynamics.  Information is presented 

from the introductory textbooks on glaciology by Van der Veen (1999) and Cuffey and 

Paterson (2010).  A discussion of the general deformation of ice sheets and other non-

streaming glaciers illustrates the unique nature of ice stream behavior.  A description of 

the general physics in the extreme cases of ice stream geometry follows. 

 Consider a cross-sectional view of an ice sheet, as is shown in figure 1.2.  The 

surface deformation at the location of a longitudinal cross section can be approximated 

by:  

 𝑢�⃗ = 𝑢�⃗ 𝑑 + 𝑢�⃗ 𝑏 (1.1) 
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where the total velocity vector 𝑢�⃗  is the additive sum of the internal deformation 𝑢�⃗ 𝑑 and 

the basal sliding 𝑢�⃗ 𝑏.   

In terms of internal deformation, we assume that glacier flow is driven by the 

weight of the ice itself, where the basal driving stress 𝜏𝑏 for a vertical profile of the ice is: 

 𝜏𝑏 = 𝜌𝑖𝑔𝐻 sin(𝛼) (1.2) 

where 𝜌𝑖 is the ice density, 𝑔 is gravitational acceleration, 𝐻 is the ice thickness, and 𝛼 is 

the surface slope.  Assuming that ice deforms viscously over most timescales, that 

viscous deformation can be expressed using a canonical Glen-style flow law (Glen, 1955; 

1958), and that glacier flow is laminar, we find that: 

 
𝑢�⃗ 𝑑 =

2𝐴𝐷
𝑛 + 1

(𝜏𝑏)𝑛𝐻 (1.3) 

The value for the stress exponent n is traditionally chosen to be equal to three based on 

laboratory stress-strain curves (e.g., Glen, 1955; 1958). 

To approximate basal sliding, we use the Weertman sliding law (Weertman, 1957; 

1964), which assumes that the ice/bed interface is smooth and lubricated, save for a set of 

cubic bumps located at a regular interval.  The resulting form of the sliding law, lumping 

many model parameters into the value 𝐴𝑊, is: 

 𝑢�⃗ 𝑏 = 𝐴𝑊𝜏𝑏
𝑛+1
2  (1.4) 

Such a sliding law is only applicable to glaciers that have a hard (i.e., rock) bed, as a soft, 

deformable till layer will behave differently.  Observationally, most ice sheets are both 

slow moving and poorly lubricated at their bed, and thus are dominated by the internal 

deformation of the ice body (Cuffey and Paterson, 2010).   

We are now equipped to comment on the dynamics of ice streams.  Unlike ice 

sheets proper, ice streams are characterized by rapid velocities (e.g., Mae, 1979; Alley et 
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al., 1986; Bindschadler et al, 1986; Blankenship et al., 1986; Bindschadler et al, 1987; 

Shabtaie and Bentley 1987; 1988; Engelhardt et al., 1990; Engelhardt and Harrison, 

1990; Alley and Whillans, 1991; Echelmeyer et al., 1991; Kamb, 1991; Echelmeyer et 

al., 1992; Iken et al., 1993; Funk et al., 1994; Clarke and Echelmeyer, 1996; Whillans and 

van der Veen, 1997; Sohn et al., 1998; van der Veen, 1999; Joughin et al, 2001; Kamb, 

2001; Raymond et al., 2001; Lȕthi et al., 2002; Thomas et al., 2003; Thomas, 2004; 

Joughin et al., 2004a/b; Cuffey and Paterson, 2010; many others).  Apart from their rapid 

motions, ice streams can be quite diverse in character.  On one end of the spectrum are 

the ice streams of the Siple Coast, Antarctica, or Rutford Ice Stream, which are 

characterized by very low surface slopes (and thus low driving stresses), heavily 

crevassed ice-ice lateral margins and a deformable till base.  These ice streams are also 

extraordinarily long, reaching lengths of at least a few hundred kilometers in some cases.  

On the other end of the ice stream spectrum are the outlet glaciers found in Greenland, 

such as Helheim and Jakobshavn Isbrae.  These ice streams are short, steep (high driving 

stress), and bounded by ice-rock margins along the confining fjords through which these 

outlet glaciers flow.  Figure 1.3 shows satellite imagery of the Siple Coast, Rutford Ice 

Stream and Helheim Glacier.  We discuss the dynamics of each separately as end-

member possibilities. 

The low driving stresses on the West Antarctica ice streams of the Siple Coast, as 

small as 20 kPa (Alley and Whillans, 1991), necessarily implies essentially zero basal 

tractions on these ice streams.  From equations 1.3 and 1.4, we see this means very small 

amounts of internal deformation and very little sliding along the ice-bed interface 

(assuming a Weertman sliding law).  Therefore, the observed rapid ice velocities must be 
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accounted for through deformation of the substrate beneath the ice streams.  Numerous 

studies suggest that there is both a well-hydrated till layer beneath the Siple Coast ice 

streams, and that this till layer readily deforms plastically (e.g., Alley et al, 1986; 

Engelhardt et al., 1990; Kamb, 1991; Engelhardt and Kamb, 1998; Tulaczyk et al, 1998; 

2000a/b; Kamb, 2001).  In this configuration, the primary resistance to the ice stream’s 

motion comes from the lateral margins of the ice streams, where the ice velocity rapidly 

falls by several orders of magnitude in the highly crevassed shear margins (Whillans et 

al., 1987; 1993; Whillans and van der Veen, 1993a/b). 

 Additionally, the ice streams of the Siple Coast are not flowing in a steady-state 

regime, as preserved paleo-glaciological features indicate different flow directions and 

orientations over the ice streams’ existences (e.g., Conway et al., 2002; Retzlaff and 

Bentle, 1993; Clarke et al., 2000; Fahnestock et al., 2000; Gades et al., 2000; Joughin et 

al., 2004c).  Furthermore, the velocity of ice streams can vary strongly over periods of 

centuries (Joughin et al., 2005).  Cuffey and Paterson (2010) describes three hypotheses 

for the mechanism behind these long-timescale flow variations as: changes in ice stream 

geometry (e.g., Jacobson and Raymond, 1998), variations in basal water pressure (e.g., 

Raymond, 2000), and basal freeze-on resulting in stream stagnation (e.g., Alley et al., 

1994; Tulaczyk et al., 2000b; Joughin et al., 2004b). 

The fjord-constrained ice streams of Greenland are altogether different, primarily 

as the basal driving stress can reach values of 300–420 kPa due to the steep surface 

slopes (e.g., Clarke and Echelmeyer, 1996; Echelmeyer et al., 1991; 1992; Cuffey and 

Paterson, 2010).  Estimates of Clarke and Echelmeyer (1996) suggest that frictional stress 

from the lateral margins balances between 10% and 50% of this driving stress, meaning 
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that the bed must support the remaining stress.  Furthermore, these glaciers are assumed 

to lack the soft till beds that are found beneath Antarctic ice streams due to these large 

basal driving stresses, flowing instead along the hard rock bases of fjords.  As there is no 

till layer to accommodate the driving stress, this stress partitioning necessary leads to 

internal deformation being more important to ice motion than basal sliding (compare 

equations 1.3 and 1.4 with a value of n=3).  This situation matches the modeling of 

Echelmeyer et al. (1991; 1992), which suggests that the internal deformation of 

Jakobshavn Isbrae is sufficiently large to explain the rapid ice velocity over most of the 

glacier, with basal sliding only necessary at the foot of the glacier where the driving 

stress drops due to shallower surface slopes.  Thus, unlike the case of the Antarctic ice 

streams, the base of outlet glaciers in Greenland is thought to provide the primary 

resistance to flow. 

1.3 Tidal Interaction with Grounded Ice 

Section 1.1 described how the long-term variability in the interaction between outlet 

glaciers and ocean tides can impact the motion of the ice streams.  Of course, the tides act 

on the solid earth in addition to the world’s oceans.  However, several factors argue 

against the importance of the earth tides in determining the tidal behavior of ice streams 

and outlet glaciers.  First, the amplitude of the semidiurnal and diurnal earth tides are 

small at high and low latitudes, theoretically reaching a value of zero at the north and 

south poles for an idealized spherical earth.  While such a simplification clearly does not 

hold for the real earth, studies of ocean and earth tides in Greenland and Antarctica 

suggest that the magnitude of the earth tide is at least an order of magnitude smaller than 

that of the ocean tides for these regions (e.g., Thiel et al., 1960; Zwally et al., 1983).  
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Second, the phase variation in the tidal response of many ice streams (as discussed below, 

e.g., Gudmundsson, 2006; 2007; de Juan, 2009; 2010a/b; de Juan Verger, 2011) suggests 

that the response is not caused by the earth tides, which acts roughly uniformly over the 

length-scales studied here (a few hundred kilometers).  Thus, from this point forward, any 

reference to the tides will implicitly mean the ocean tides, unless otherwise specified. 

Ocean tides obviously vary over timescales far shorter than those of sea level 

change, with the most relevant ocean tides being the semidiurnal, diurnal, and fortnightly 

tides.  These short-period ocean tides directly control the motion of ice streams, foremost 

through the flexing of the ice stream due to the rising and falling of an attached ice shelf 

with the ocean tide.  From surface observations, the spatial extent of ice flexure is limited 

to the first five to ten ice-thicknesses inland of the grounding line—the position where 

the ice stream transitions from floating to grounded ice (e.g., Rignot 1998a).  Tidal 

flexure has been used primarily to constrain rheological parameters of in situ ice 

(assuming elasticity and, more recently, linear viscoelasticity).  Such work derives values 

of Young modulus that are between three and ten times smaller from ice flexure than 

from laboratory experiments (e.g., Holdsworth, 1969; 1977; Lingle et al., 1981; 

Stephenson, 1984; Vaughan, 1994; 1995; Rignot 1996; 1998a/b; Reeh et al., 2000; 2003 

compared against Petrenko and Whitworth, 1999).  While useful for approximating 

rheological parameters, these flexure studies are essentially independent of the ocean 

tidal frequency, as these studies all focus on fitting the maximum tidal flexure amplitude 

and transmission. 

 A consequence of ice flexure during a tidal cycle is that the grounding line of an 

ice stream will necessarily move with the ocean tides, traveling further inland during high 
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tides and further seaward during low tides.  As the exact amount of such a motion is 

dependent upon the slope and character of the ground beneath the ice stream, such 

behavior is inherently difficult to model.  Observations from Antarctica (e.g., Rignot 

1998a) suggest that the extent of this grounding line zone is approximately five 

kilometers—a distance equivalent to the flexural wavelength of an ice stream. 

However, a more subtle interaction between the ocean tides and ice stream motion 

exists.  Over the past two decades, glaciologists have accumulated a critical mass of 

tidally relevant observations such that the character of the tidal interaction with the flow 

of ice streams, especially at different frequencies, can now be broadly characterized.  The 

next two subsections summarize such observational data, first from Antarctic ice streams 

and second from Greenland outlet glaciers. 

1.3.1 Antarctic Tidal Interactions 

Observations from Antarctica show tidally modulated surface displacements on some ice 

streams extend many tens of kilometers inland of the grounding line (see table 1.1 and 

associated references).  Three classes of observations probe the interaction between ocean 

tides and the motion of ice streams: 1) surface tilt of the ice stream as estimated by 

tiltmeters, interferometric synthetic aperture radar (InSAR) and altimetric surveys; 2) 

surface recordings of basal seismicity beneath ice streams; 3) surface motion of ice 

streams from global position system (GPS) surveys.  These observations can be used to 

identify which portion of an ice stream may be sensitive to tidal forcing (see table 1.1).  

Next is a summary of observations where the ocean tides do not have an impact on the 

motion of an ice stream far inland of the grounding line.  While this thesis focuses on the 

observations of long distance transmission of tidal stresses, the usual tidal response of ice 
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streams is that the ocean tides only influence the motion of ice close to the grounding 

line. 

Surface Tilt 

Surface tilt surveys quantify the maximum extent of tidal flexure of an ice body.  The 

location of the change in curvature in ice surface due to the flexure of the ice stream is 

defined as the hinge line.  The hinge line is found between five and ten kilometers inland 

for all ice streams in table 1.1 regardless of the specific method of determining hinge line 

location.  For comparison, the hinge line is farther inland than the physical ungrounding 

of the ice stream due to increased flotation at high tide, which extends about five 

kilometers as an upper boundary for stable tidal modulation (e.g., Rignot, 1998a). 

 Seismicity 

Seismic studies on several Siple Coast ice streams correlate fluctuations in basal 

seismicity to the semidiurnal and/or fortnightly ocean tides.  As these seismic triggers 

have been located at the base of the ice stream, there is probable cause to search for a link 

between the ocean tidal loading and the basal stress state in these ice streams.  The 

rationale is as follows: ice slides frictionally over its bed, triggering seismicity due to 

asperities at the ice-bed interface.  Changes in ocean tides can perturb the stress balance 

at the base of the ice stream by modifying the basal shear stress (e.g., Anandakrishnan et 

al., 1997; Bindschadler et al., 2003; Cuffey and Paterson, 2010).  The rate of seismicity 

should correlate positively with the rate of motion, meaning that as basal shear stress 

increases, so too should the ice velocity, and thus the seismicity at the ice-bed interface. 

The first suggestion of possible tidal variation in the observed seismicity beneath 

an ice stream came from Harrison et al. (1993).  Harrison et al. suggests that ocean tides 
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may influence seismicity on Whillans Ice Stream at a single station 300 kilometers away 

from the nearest grounding line through the subglacial hydrologic network.  This locale is 

somewhat anomalous in the observations of ocean tidal influence on ice streams due to its 

extreme distance inland of the grounding line.  We are hesitant to use this site as a robust 

marker of tidal influence for three reasons.   First, the authors note that the strain 

amplitudes are independent of the tidal amplitudes, a result unexpected for true tidal 

influence.  Second, the authors also point out that the tidally variable strain appears and 

disappears seasonally whereas the ocean tides obviously do not.  Third, the distance 

inland of this data point is in direct opposition to a limit set by the constraint provided by 

the geodetic survey of Winberry et al. (2009) described in section 2.2.3.  As a result, we 

note the potential for tidal signal described in Harrison et al. (1993) for completeness, but 

we do not use it as an observational constraint for the purposes of ground-truthing our 

model results. 

Observations from a three station seismic survey described in Anandakrishnan et 

al. (1997) limit the spatial extent of tidal sensitivity on Kamb Ice Stream to between 86 

kilometers and 126 kilometers inland from the grounding line.  The authors find that the 

frequency of subglacial seismic events correlates temporally with low tides within the 

nearby Ross Sea.  Figure 1.4 shows an adaptation of figure 4 of Anandakrishnan et al. 

(1997) for the purpose of describing the observation.  This figure shows the seismicity at 

a station 10 kilometers inland of the grounding line.  While the seismicity peaks do not 

correspond one-to-one with the diurnal low tides, all the spikes in seismicity fall at these 

times.  Of note is that the signal seems to be independent of the fortnightly variability in 

the tidal amplitude.  Finally, the authors note that the Kamb Ice Stream is likely devoid of 
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subglacial water in the region of tidal modulated icequakes (based on Rose, 1979; Atre 

and Bentley, 1993; Anandakrishnan and Alley, 1994), implying that the connection 

between the ocean tides and the basal seismicity is carried through the bulk of the ice 

stream rather than through the subglacial hydrologic network. 

Bindschadler et al. (2003) observed stick-slip generated seismicity on Whillans 

Ice Plain, a fact corroborated by the later studies of Wiens and other (2008) and Walter et 

al. (2011).   These latter two studies disagree on the location of the nucleation of the 

observed stick-slip events, locating the seismicity either 10 or 50 kilometers inland of the 

grounding line of Whillans Ice Plain.  In either case, stick-slip motion begins at an 

assumed asperity at the nucleation point and then propagates radially inland from there. 

Geodesy 

Temporally continuous GPS (CGPS) surveys on some Antarctic ice streams find surface 

velocities modulating at a variety of tidal frequencies.  Here, we review data from 

Rutford Ice Stream (Gudmundsson, 2006; 2007), Bindschadler Ice Stream 

(Anandakrishnan et al., 2003), and the Whillans Ice Plain/Ice Stream (Wiens et al., 2008; 

Winberry et al., 2009).  For Rutford and Bindschadler Ice Streams, the tidal influence 

manifests itself as a variable tidal displacement in the flow direction when the GPS signal 

is de-trended for the linear motion of the ice towards the grounding line.  On the Whillans  

Ice Plain and Ice Stream, the ocean tides modulate the timing of the onset of stick-slip 

motion, roughly in phase with the maxima and minima of the tides. 

 As the CGPS surveys are the most temporally-refined method of observing the 

tidally-induced motion of these ice streams, we focus on these data as our primary 

constraints.  As the ice streams are rapidly flowing, the GPS signal has a strong linear 
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trend associated with the background flow velocity, which over the timescales studied 

here is roughly constant.  By subtracting the background flow rate (i.e., the displacement 

due to the average ice flow), any remaining displacement signal must be due to other 

processes, the foremost of which is the influence of ocean tides.  Figure 1.5 shows such a 

process for a few selected GPS stations from the Whillans Ice Stream as a representative 

case (data provided by S. Anandakrishnan and H. Gudmundsson). 

All the studies discussed here involve GPS surveys with stations either placed 

linearly along the flow line of the ice stream (Rutford, Bindschadler, and Whillans Ice 

Streams) or in a grid across the ice stream (Whillans Ice Plain).  Thus, the relative 

amplitude of displacement due to the tidal load as a function of distance is fairly well 

constrained.  All the surface displacements corresponding to the tidal modulated motion 

decay with distance inland from the grounding line with decay length-scales (for an order 

of magnitude drop) on the range of 35 to 75 kilometers, as shown in figure 1.6 (data from 

Anandakrishnan et al., 2003; Gudmundsson, 2006; 2007).  For the ice streams in 

question, the maximum inland distances where a discernible tidal signal in the surface 

displacement is seen are: 40 kilometers inland of the grounding line for Rutford Ice 

Stream, 80 kilometers inland of the grounding line for Bindschadler Ice Stream, and from 

the spatial distribution of tidal-frequency stick-slip events, at least 100 kilometers inland 

of the nearest grounding line for the Whillans Ice Plain. 

An additional major constraint on the tidally-induced surface motion of these ice 

streams is the phase lag between the observed tidal displacement signal and the peak tidal 

amplitude.  As part of the aforementioned studies, at least one GPS station was placed on 

floating ice.  In each study, the vertical displacement of this floating station functionally 
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became the tidal record.  When the GPS records at the inland sites are de-trended to 

remove the background flow, we can measure an apparent phase-shift between the tidal 

frequencies seen in the floating tidal signal and the grounded surface displacement 

records.   

For Rutford Ice Stream, Gudmundsson (2006; 2007) demonstrates that there is a 

distance dependent phase lag in the signal, such that the phase of all tides (semidiurnal, 

diurnal, and fortnightly) increases with inland distance.  For reference, these studies 

define a zero-phase ice response as having the peak outboard de-trended ice motion 

contemporaneous with the high tide from the tide model T_Tides (Pawlowicz et al., 

2002).  Additionally, the phase is between 45 and 270 degrees behind the tidal signal, 

suggesting that the high tide corresponds roughly with the maximum (de-trended) inland 

displacement in the GPS records.  Additionally, a non-zero phase is seen even on the 

floating ice shelf, meaning that the motion of the glacier is never in-phase with the ocean 

tides.  From GPS data on Bindschadler Ice Stream, Anandakrishnan et al. (2003) found 

that the relative phase lag in the ice response to the diurnal tide grows from 1.1 ± 2 hrs 

(16.5 ± 30 degrees) at 40 kilometers inland to 3.1 ± 2 hrs (46.5 ± 30 degrees) at 80 

kilometers inland, similarly showing a distance dependence to the phase lag.  For the 

Whillans Ice Stream and Plane, the stick-slip motion of the ice makes determining a 

phase lag in the displacement signal untenable. 

Contrary Observations 

Not all Antarctic ice streams show measurable tidal modulation of surface displacements 

upstream of their hinge lines.  CGPS observations on Pine Island Glacier, for example, 

show no tidal variability in surface motion at stations 55, 111, 169, and 171 kilometers 
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inland of the grounding line (Scott et al., 2009).  Ekstrom Ice Shelf has an even tighter 

constraint on the spatial extent of tidal perturbations: CGPS recordings only one 

kilometer inland of the grounding line possess no measurable component of motion at 

tidal frequencies (Riedel et al., 1999; Heinert and Riedel, 2007).  As will be discussed in 

the next section the spatially-limited transmission of a tidal signal on these Antarctic ice 

streams is similar to outlet glaciers in Greenland. 

1.3.2 Greenland Tidal Interactions 

Direct observations of short-timescale tidal influence on the behavior of outlet glaciers in 

Greenland are more limited than those from Antarctica.  GPS studies investigating the 

floating portion of Kangerdlugssuaq and Helheim Glaciers reveal flow velocities that 

fluctuate with ocean tides (Hamilton et al., 2006; Davis et al., 2007; de Juan et al., 2009; 

2010a/b; de Juan Verger, 2011).  Of this work, the largest single GPS survey is the 

geodetic survey of Helheim Glacier from 2006–2009, comprised of 23 GPS stations 

arrayed over the length of Helheim Glacier (de Juan, 2009; 2010a/b; de Juan Verger, 

2011). 

 From the aforementioned geodetic survey, de Juan Verger (2011) was able to 

characterize the tidal interaction of Helheim glacier based on the admittance amplitude 

(relative magnitude of tidally-induced glacier displacement to the ocean tidal amplitude) 

and the phase lag between the GPS receivers on the lower portion of Helheim glacier and 

a tidal record from within the Sermilik Fjord (into which Helheim Glacier flows).  The 

admittance amplitude decays exponentially with distance inland from the glacier’s 

calving front with a phase lag of 0–4 hours (0–120 degrees).  For the purposes of this 

summary, we divide the survey into two portions: first, the 2006 records, where Helheim 
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Glacier had a floating ice tongue; and second, the 2007-2008 survey, where Helheim 

Glacier has no floating ice tongue.   

 During the 2006 survey when Helheim Glacier had a floating ice tongue, de Juan 

Verger (2011) reports that there is a tidal signal in the along-glacier, cross-glacier, and 

vertical directions.  In all cases, the signal decays exponentially with distance away from 

the glacier’s edge, with the cross-glacier and vertical components decaying over an e-

folding length of about 1.0 kilometers, while the along-glacier length-scale is about 2.3 

kilometers.  These distances translate to an order of magnitude drop in stress over a 

length of 3.7 kilometers and 8.5 kilometers, respectively.  For reference, the thickness of 

Helheim Glacier was approximately 750 meters during these surveys (de Juan Verger, 

2011). The de-trended response of Helheim Glacier to the semidiurnal ocean tides is out 

of phase, such that at high tide the de-trended position of Helheim Glacier is farther 

inland than at low tide.  However, there is additional lag between this response and the 

semidiurnal ocean tides, such that the peak glacier motion is delayed relative to the peak 

tidal amplitudes.  The best fit phase lag between the response of the along-glacier 

displacement and the tide gauge ranges between about 1 hour and 2 hours (30-60 

degrees), though a large error on some data points allows for a range that may extend 

between 0 and 4 hours (0–120 degrees).  The best fit values suggest an increase in phase 

lag with distance inland, but such a trend is dubious at best as the magnitude of the 

distance-variation falls below the errors of the fits. 

 For the grounded glacier surveys during 2007–2008, de Juan Verger (2011) 

reports that there is essentially no tidal signal in the cross-glacier and vertical directions, 

while the e-folding length-scale for the along-glacier admittance amplitude is around 4.2 
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kilometers for the two years.  This decay rate translates to an order of magnitude drop in 

amplitude over a distance of around 15.3 kilometers.  As in the 2006 survey, the response 

of Helheim Glacier is out of phase with the semidiurnal ocean tide, with the best fit phase 

lags falling between 2 and 3 hours (60–90 degrees) with errors ranging from 0 to 4 hours 

(0–120 degrees).  Similarly between surveys, there is a slight trend for increasing phase 

with the best fit phase values, but that this trend is well within the error of the 

observations.  However, the mean values of the best fit do seem to indicate that the 

grounded ice may have an increased phase lag compared to the floating ice. 

Apart from this work, the only other major observations of tidal forcing of 

Greenland outlet glaciers come from Jakobshavn Isbrae.  On Jakobshavn Isbrae, the 

lowest reaches of the ice stream are found to have a variable velocity at tidal frequencies 

(up to 35%, Echemeyer and Harrison, 1990; 1991), but that the tidal amplitude of this 

signal decays rapidly inland of the ice stream terminus, with a characteristic length-scale 

of a few ice-thicknesses (Podrasky et al., 2002; 2012).  Inland of this tidal signal there are 

variations in ice stream velocity, but Podrasky et al. (2012) accounts for these variations 

through seasonal melt rather than ocean tidal loading.  There is no discussion of the 

relative phase of the glacial motion compared to the ocean tidal signal for Jakobshavn 

Isbrae within these works. 

1.3.3 Observation Summary 

 To close our discussion of the observations of tidal influence on ice stream 

motion, we summarize the salient features of these tidal observations as: 

1) Not all ice streams exhibit tidally modulated surface motion far from the 

grounding line.  For example, Helheim Glacier has a tidal signal that is essentially 
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unseen beyond 14 kilometers inland of the calving front.  However, some 

Antarctic ice streams transmit tidal signals many 10’s of kilometers inland of the 

grounding line. 

2) Tidal influence on ice motion happens over multiple timescales, often at 

semidiurnal, diurnal, and fortnightly periods.  The ice stream seems to filter some 

of the tidal frequencies such that the de-trended GPS records do not exhibit many 

of the beat frequencies seen from the vertical component of GPS stations on 

floating ice. 

3) The time-domain phase of the ice stream response can vary with distance inland 

of the ice stream’s grounding line.  Such temporal lag likely provides information 

about the rheology of the material transmitting the tidal stress inland.  

Furthermore, the phase lag is different over the various tidal frequencies.  

4) Indirect measurement of ice stream motion, such as seismicity located at the ice 

stream’s bed, indicate that basal processes are important to determining the 

motion of a given ice stream.  However, the variability in seismicity on tidal 

periods implies that there is some connection between the tidal forcing on the ice 

stream and the frictional processes at the bed-ice interface. 

1.4 General Finite Element Methods 

Because we use finite element modeling throughout this thesis, we now depart from 

glaciology briefly to present a summary of the computational finite element methods 

here.  In the later chapters, we will discuss project-specific modeling finite element 

formulation and model configurations.  All of our finite element methods use the finite 

element analysis software PyLith (Williams et al., 2005; Williams, 2006; Aagaard et al., 
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2007; 2008; 2011). This open-source Lagrangian FEM code has been developed and 

extensively benchmarked in the crustal deformation community (available at 

www.geodynamics.org/pylith).   

PyLith solves the conservation of momentum equations with an associated 

rheological model.  As we assume a quasi-static formulation (i.e., all inertial terms are 

dropped), the governing equations are: 

 𝜎𝑖𝑗,𝑗 = 𝑓𝑖 in V 

𝜎𝑖𝑗𝑛𝑗 = 𝑇𝑖 on 𝑆𝑇 

𝑢𝑖 = 𝑢𝑖0 on 𝑆𝑈 

(1.5) 

where V is an arbitrary body with boundary condition surfaces 𝑆𝑇 and 𝑆𝑈.  On 𝑆𝑇, the 

traction σijnj equals the applied Neumann boundary condition Ti.  On 𝑆𝑈, the 

displacement ui is set equal to the applied Dirichlet boundary condition uj
0.   

PyLith solves these equations using a Galerkin formulation of the spatial equation 

and an unconditionally stable method of implicit timestepping (following the form of 

Bathe, 1995).  For model convergence, we select convergence tolerances in absolute and 

relative residual of the iterative solver from the PETSc library (Balay et. al, 1997; 

2012a/b) such that our model results are independent of the convergence tolerances to a 

factor of less than 1/1000%.  Such convergence tolerances are determined through trial-

and-error with our model accuracy criterion chosen to provide reliable results while 

minimizing the computational time of any given model.  

We construct our FEM meshes using the software Cubit 

(cubit.sandia.gov).  For our two-dimensional models, we use linear isoparametric 

triangular elements, while in our three-dimensional modeling we use linear isoparametric 
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quadrilateral or tetrahedral elements.  We manually refine our meshes near regions of 

applied stresses, changes in boundary conditions, and material property variations.  In 

such locations our mesh spacing can be as small as 1 meter, resulting in meshes with 

between 105 and 106 elements.  To ensure that our results are independent of our meshing 

scheme, we check all our results against meshes that are uniformly refined.  We only 

present results from meshes that have less than a 0.1% change in displacement, 1st strain 

invariant, and 2nd deviatoric stress invariant upon this refinement in our elastic models 

and less than 1% in our viscoelastic models.  We allow a greater error in our viscoelastic 

modeling as the computational time necessary for a 0.1% error is restrictively long. 

Our final modeling constraint is our choice of material rheology.  We begin with a 

linear, isotropic elastic model for ice in our models that takes the familiar form of 

Hooke’s Law in three dimensions: 

 𝑪𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇�𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘� (1.6) 

The choice of material moduli varies between our models; however, for all our models 

we assume that the Poisson’s ratio is well known for ice (and thus is fixed) when 

exploring the ranges in values of the other elastic moduli.  We also consider a Glen-style 

Maxwell viscoelastic rheology: 

 
𝜀̇ =

�̇�
𝐸

+ 𝐴𝜎𝑛 (1.7) 

As we vary the value of the viscosity coefficient A and the power law exponent n in our 

modeling, the selection of the precise values of these quantities will be discussed in each 

chapter separately.   
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1.5 Thesis Outline 

This thesis is divided into four sections summarizing the results from three separate 

research projects undertaken between 2009 and 2013.  In chapter 2, we test the common 

assumption that tidal loads are transmitted elastically through the bulk of ice streams to 

the long inland distances observed in Antarctica.  We find that the geometric constraints 

of the ice stream itself limit the transmission of a tidal stress to distances far shorter than 

seen observationally.  In chapter 3, we then explore the potential effect that including 

strain-weakened lateral margins and viscoelasticity in models has on the transmission 

length-scale. 

 Chapter 4 outlines a procedure for using geometrically simple finite element 

models and surface observations of tidally modulated glacier motion to constrain 

viscoelastic rheological parameters.  We also explore the type, quantity, and quality of 

surface observations needed to provide an accurate constraint on the in situ material 

properties for outlet glaciers.  We then provide a test example using GPS data from 

Helheim Glacier, Greenland. 

 Chapter 5 discusses our results from investigating the impact of viscoelastic 

deformation during transient drainage events of supraglacial lakes.  We present both 

semi-analytic linear viscoelastic and finite element nonlinear viscoelastic modeling, using 

as a constraint observations from a 2006 lake drainage event near Jakobshavn Isbrae, 

Greenland. 

 At the end of each chapter, we include a list of all variables specific to that 

chapter.  While many variables are shared between chapters, some variables have 

multiple definitions between chapters.  Following the variable list are the figures and 
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tables discussed in the main chapter.  The final portion of each chapter includes any 

associated appendices.  For appendices with figures and tables, these are presented at the 

end of that appendix.  Lastly, as many of the references are common between chapters, 

all references for the entire thesis are included at the end of the full document. 
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 Variable Names Units 

A Nonlinear viscosity coefficient Pa-n s-1 
𝐴𝐷 Ice deformation coefficient Pa-n 
𝐴𝑊 Basal sliding coefficient Pa-(n+1)/2 m 
𝑪𝑖𝑗𝑘𝑙 Elasticity tensor Pa 

E Young’s modulus Pa 
𝑓𝑖 Force vector N 
𝑔 Gravitational acceleration m s-2 
H Ice sheet thickness km 
𝑛 Power law exponent --  
𝑛𝑖 Normal vector -- 
𝑆𝑇 Traction boundary surface -- 
𝑆𝑈 Displacement boundary surface -- 
𝑇𝑖 Applied traction Pa 
𝑢�⃗  Velocity vector m/s 
𝑢�⃗ 𝑏 Basal sliding vector m 
𝑢�⃗ 𝑑 Internal deformation vector m 
𝑢𝑖 Displacement component m 
𝑢𝑖0 Applied displacement m 
𝑉 Model volume m3 
𝛼 Surface slope ° 
𝛿𝑖𝑗  Kronecker delta -- 
𝜀 Strain -- 
𝜆 1st Lamé constant Pa 
𝜇 2nd Lamé constant Pa 
𝜌 Ice density kg m-3 
𝜎 Stress Pa 
𝜏𝑏 Basal stress Pa 
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Figure 1.1: Location map of the ice streams discussed in this thesis.  Abbreviations are 

EIS: Ekstrom Ice Shelf; RIS: Rutford Ice Stream; PIG: Pine Island Glacier; MIS: Mercer 

Ice Stream; WIS: Whillans Ice Stream; WIP: Whillans Ice Plain; KIS: Kamb Ice Stream; 

BIS: Bindschadler Ice Stream; JI: Jakobshavn Isbrae; HG: Helheim Glacier KG: 

Kangerdlugssuaq Glacier.  Dashed outlines show the extent of glacial ice in both figures. 
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Figure 1.2: Schematic cross section of a simple ice sheet.  The surface slope is denoted 

by 𝛼, the ice thickness by H, and the basal driving stress by 𝜏𝑏.  Note that the surface 

slope is greatly exaggerated in this figure for emphasis.  The flow direction of the ice 

sheet is towards the right. 
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Figure 1.3: Satellite imagery of the specific ice streams discussed in this thesis.  Note 

that the location of each panel is shown in figure 1.1.  Imagery from the Siple Coast and 

Rutford Ice Stream are taken from the Atlas of the Cryosphere, a service provided by the 

National Snow and Ice Data Center (NSIDC).  The satellite image for Helheim Glacier is 

from the January 20th, 2006 “Picture of the Day” from the NASA Earth Observatory 

website.  The image uses data from Howat et al., 2005. 
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Figure 1.4: Seismicity on the Kamb Ice Stream, adapted from Anandakrishnan  et al. 

(1997).  The blue curve in the background shows the tidal signal from a tide meter, with 

the amplitude shown on the right side of the plot.  The red lines show the seismicity rate 

as a number of triggered events per hour.  Note that the peaks in seismic activity 

correspond to the peak tidal amplitudes. 
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Figure 1.5: Sample GPS records from station R+20 from Rutford Ice Stream (upper 

figures) and W4B from Whillans Ice Plain (lower figures) for surface displacement 

rotated into the primary flow direction.  The panels on the left show the raw GPS signal; 

note the strong linear trend in the GPS signal.  The GPS records with this linear trend 

removed are shown in the figures on the right.  For the Rutford Ice Stream, the tidal 

signal is shown as a sinusoidal variation in ice position.  For the Whillans Ice Plain, the 

tidal variability triggers stick-slip events in the displacement record.  Data is from H. 

Gudmundsson (Rutford) and S. Anandakrishnan (Whillans).  
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Figure 1.6: Amplitude of the tidal signal present in GPS stations on Rutford and 

Bindschadler Ice Streams as a function of distance inland from the grounding line.  The 

upper panel shows the normalized amplitudes of the signal, while the lower panel shows 

the true amplitudes of the three datasets.  The colors corresponds to: black-Bindschadler 

semidiurnal tidal amplitude, blue-Rutford fortnightly tidal amplitude, red-Rutford 

semidiurnal tidal amplitude. 

  

Bindschadler Semidiurnal 
Rutford Fortnightly 

Rutford Semidiurnal 
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 Tidal Stress Transmission  Ice Flexure 

Ice Stream Extent 

(km) 

Method  Extent 

(km) 

Method 

Bindschadler Ice Stream 80 + GPS displacement1  ~ 10 ICESat 

altimetry2 

Ekstrom Ice Shelf < 3 GPS displacement 3  ~ 5 Tilt3 

Kamb Ice Stream 85 + Seismicity4  ~ 10 ICESat 

altimetry 2 

Pine Island Glacier < 55 GPS displacement 5  ~ 5 SAR6 

Rutford Ice Stream 40 + GPS disp. 7,8  5 + Tilt9 

Whillans Ice Plain ~ 100 GPS (stick-slip)10,11 

Seismicity10,12 

 ~ 10 ICESat 

altimetry 2 

Whillans Ice Stream ~ 300 Seismicity13  N/A ICESat 

altimetry 2 

Kangerdlussuaq ? N/A  Var. N/A 

Helheim < 10 GPS disp.14,15,16,17  Var. N/A 

Jakobshavn Isbrae < 10 GPS disp.18,19  Var. N/A 

Table 1.1: Summary of the spatial extent of tidal stress transmission and ice flexure from 

ice streams across Antarctica and Greenland.  Superscript numbers denote the following 

references: 1-Anandakrishnan et al. (2003); 2-Brunt et al. (2010); 3-Heinert and Riedel 

(2007); 4-Anandakrishnan and Alley (1997); 5-Scott et al. (2009); 6-Rignot (1998); 7-

Gudmundsson (2006); 8-Gudmundsson (2007); 9-Stephenson (1984); 10-Weins et al. 

(2008); 11-Winberry et al. (2009); 12-Walter et al. (2011); 13-Harrison et al. (1993); 14-

de Juan (2009); 15-de Juan (2010a); 16-de Juan (2010b); 17-de Juan Verger (2011); 18-

Podrasky (2002); 19-Podrasky (2012).  The flexure of the Greenland outlet glaciers is 

listed as variable as the flexure depends strongly on the size of the floating ice shelf, 

which for these glaciers has changed dramatically over the past decade. 
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Chapter 2 

Transmission of Tidal Stresses by Ice Streams 

Geodetic surveys suggest that ocean tides can modulate the motion of Antarctic ice 

streams.  Data from Whillans Ice Plain, Rutford Ice Stream, and other Antarctic ice 

streams show periodicity in flow velocity at periods similar to those of ocean tides at 

geodetic stations many tens of kilometers inland from the grounding line.  These data 

suggest that ocean tidal stresses can perturb ice stream motion about an order of 

magnitude farther inland than tidal flexure of the ice stream alone.  Recent models 

exploring the role of tidal perturbations in basal shear stress are all two dimensional e.g., 

Anandakrishnan and Alley, 1997; Bindschadler et al., 2003; Gudmundsson, 2006, 2007, 

2011; Sergienko et al., 2009; Winberry et al., 2009; Walker et al., 2012), with the impact 

of the ice stream margins either ignored or parameterized.  In this chapter, we use two- 

and three-dimensional finite element modeling to investigate the transmission of tidal 

stresses in ice streams and the impact of considering more realistic, three-dimensional, 

ice stream geometries.  We demonstrate that the assumption that elastic tidal stresses in 

ice streams propagate large distances inland fails for channelized glaciers. The resistance 

at the ice stream margins causes an intrinsic, exponential decay in the tidal stress.  This 

stress decay occurs even with an unrealistic frictionless basal condition beneath the ice 

stream and even then, does not fit observations from the aforementioned Antarctic ice 

streams.     
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2.1 Introduction 

All ice streams respond to the daily fluctuations in ocean tidal height.  The spatial and 

temporal extent of this tidal response varies dramatically between ice streams, as 

demonstrated by surface observations discussed earlier in section 1.3.  At one extreme are 

the outlet glaciers of Greenland and some ice streams of Antarctica, which have only 

surface movement affected by the ocean tides over horizontal distance inland of the 

grounding line comparable to a few ice-thicknesses (1 ice-thickness ranges from 600 

meters to 2 kilometers for our purposes).  In constrast, many of the major ice streams of 

the Siple Coast (Whillans, Bindschadler, and Kamb Ice Streams) and the Rutford Ice 

Stream, exhibit surface motion influenced by tides many tens of ice-thicknesses inland of 

their respective grounding lines.  As this latter behavior is anomalous, these ice streams 

are the focus of this chapter. 

Many two-dimensional models are capable of reproducing the seemingly 

inordinate influence that the ocean tides have on the motion of some Antarctic ice 

streams (e.g., Anandakrishnan and Alley, 1997; Bindschadler et al., 2003; Gudmundsson, 

2006, 2007, 2011; Sergienko et al., 2009; Winberry et al., 2009; Walker et al., 2012).  

Given that the Maxwell relaxation time (𝑇𝑚𝑎𝑥𝑥) for ice is on the order of hours for tidal 

loads, these models call on either elastic or viscoelastic transmission of tidal loading 

stresses through the ice stream to drive the observed ice motions.  We discuss several 

representative published models with the aim of understanding the assumptions made 

about the upstream transmission of tidal stresses. 

A standard approximation for glacial flow is the flow-line model. A flow-line 

model is a two-dimensional representation of a vertical slice along the glacier’s flow-
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direction, with any resistive forces in the third dimension ignored.  The underlying 

assumption of such a formulation requires that only the conditions at the ice stream’s bed 

determine the sliding and flow behavior of the entire ice stream.  Such a model is only 

appropriate for ice “far” from the lateral margins of the ice stream.  The spatially-

averaged shear stress formulations of Bindschadler et al. (2003) and Winberry et al. 

(2009) use flow-line models to investigate the tidally-perturbed surface displacements of 

Rutford and Whillans Ice Streams.  These models assume that tidal stress is uniformly 

distributed over the entire ice stream and that the stress is completely supported by the ice 

stream’s base.  The result is a length-scale for the transmission of stress that depends 

completely on the length of the ice stream assumed in the problem. 

Finite element analysis in two-dimensions allows for flow-line models with 

increased complexity and realistic geometries.  An early example of this approach is the 

modeling of Anandakrishnan and Alley (1997), which assumes the ice stream behaves as 

a two-dimensional elastic body (in cross section) riding over a viscous bed.  

Anandakrishnan and Alley (1997) find that a stress applied at the grounding line decays 

exponentially with distance inland.   The decay of this “tidal” load is controlled primarily 

by the properties of the viscous till layer in this model, namely the ratio of effective 

viscosity of the till to the thickness of the till. 

Of the published modeling after Anandakrishnan and Alley (1997), the two most 

applicable models of tidal stress propagation are those of Gudmundsson (2011) and 

Walker et al. (2012).  Both are two-dimensional flow-line models incorporating nonlinear 

viscoelasticity and a nonlinear basal sliding law.  The response of the modeled ice stream 

is found to relate directly to the basal boundary condition.  This result is intuitive as any 
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resistance due to the lateral margins of the ice is neglected for a flow-line model, and thus 

the model ice stream’s response to a tidal load must be controlled by rheological 

character of the stream’s bed alone.  These models do not, however, demonstrate that the 

lateral resistance in these ice streams is indeed negligible. 

Sergienko et al. (2009) approximates an ice stream as a series of masses (blocks) 

connected elastically (by springs) and restrained laterally (by further springs), under the 

action of an applied shear along a frictional basal contact.  Unlike the flow-line models 

discussed previously, this spring-block model incorporates the lateral resistance of the ice 

margins.  In this model, Sergienko et al. (2009) note that a “tidal” load applied at one 

edge diminishes with distance from the loaded block, but this stress decay is not explored 

in any detail.  Intuitively, this transmission distance depends on the stiffness of the 

springs, both between the masses and as lateral restraints, as well as the magnitude of the 

basal friction imposed in the model.  However, there is no obvious relationship between a 

physical length-scale and the number of blocks and springs in the model, and it is not 

clear if the decay of the tidal stress is caused by marginal or basal resistance, or both. 

2.2 Methodology 

As our brief review of the published literature shows, there is a dearth of three-

dimensional ice stream models exploring the transmission of a tidal load inland of the 

grounding line that account for the resistance of the ice stream’s lateral margins.  To 

explore the role of an ice stream’s lateral margins, we present results from two- and 

three-dimensional elastic models that explore and quantify the role that the three-

dimensional ice stream geometry plays in controlling transmission of tidal stresses.  The 

opening portion of this methodology section describes the conceptual configuration of 
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our models, which are shown schematically in figure 2.1.  The methods section then 

closes with a brief description of the finite element modeling necessary to create these 

models.  

2.2.1 Model Descriptions 

We begin with a two-dimensional linear elastic flow-line model (figure 2.1A).  As with 

all flow-line models, the underlying assumption is that the ice stream is infinite and 

uniform in the third dimension, such that there effectively are no lateral margins to the ice 

stream.  These simplified models establish the expected “end-member” behavior of an 

elastic ice stream with extreme basal conditions of either a fully frozen (no-slip) bed or a 

freely sliding (no shear traction) bed.  Additionally, these two-dimensional models 

investigate the role played by an ice shelf as the intermediary between the ocean tides and 

the grounded ice stream (see Appendix 2A). 

Based on the insight gained from these two-dimensional models, we then move to 

our three-dimensional models (figure 2.1B), studying the impact of resistive shearing at 

the lateral margins of an ice stream on the upstream transmission of the applied tidal load.  

The ice stream is defined in these models as a block of ice “sliding” over a frictionless 

basal boundary with lateral margins consisting of two blocks of ice that are “frozen” to 

their beds.  Such models investigate the role that the overall geometry of the ice stream 

(i.e., ice stream width and thickness) has on the transmission of the stress inland of the 

grounding line.   

2.2.2 Model Construction 

We use the finite element software Pylith (Williams et al., 2005; Williams, 2006; 

Aagaard et al., 2007; 2008; 2011) and meshing software Cubit (cubit.sandia.gov) 
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for our computational modeling.  As the general finite element formulation has already 

been discussed section 1.5, we only describe the mesh geometries and boundary 

conditions used in our two- and three-dimensional models here. 

Our default two-dimensional model is two hundred kilometers long and one 

kilometer thick.   For all our modeling, if the model is long compared to the other 

dimension, the length is not a controlling parameter.  As the bottom corner of the axial 

forced edge is a location of stress concentration, we refine our mesh near this point to 

improve our model stability, resulting in a variable element length in the vertical and 

horizontal directions.  In our three-dimensional model, we apply the same mesh-

refinement scheme in the vertical and longitudinal direction; in the transverse direction, 

we refine the elements corresponding to the ice stream and then gradationally increase 

the element length away from the ice stream margin.  The extent of the non-sliding area 

is chosen to be large enough that changing its width does not impact the behavior of the 

ice stream proper. 

The basal boundary condition is either a Dirichlet condition with zero-

displacement in all directions (“frozen”) or a Robin condition with no vertical 

displacements and zero shear traction (“sliding”).  The tidal stress change is a normal 

force of magnitude equal to the hydrostatic pressure (𝜌𝜌𝑔𝑔∆ℎ where Δℎ is the amplitude of 

the tide).   For the two-dimensional models with an ice shelf, the tidal load acts normal to 

the base and vertical edge of the ice shelf.  For the two-dimensional models with no shelf 

and the three-dimensional models, the tidal load acts on the vertical edge of the ice 

stream at the grounding line.  In these latter models, neglecting the ice shelf is justifiable 

as the presence of a shelf only perturbs the stresses in the ice stream near the grounding 
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line, and our interest is in the stresses far inland of the grounding line.  See appendices 

2A and 2B for an extended discussion of the impact of the ice shelf on our models.  

Lastly, in these linear elastic models, it is not necessary to explicitly vary the loading 

through time, as our solutions must necessarily vary linearly with the magnitude of the 

applied load.   

Table 2.1 lists the default rheological parameters used in our finite element 

modeling presented in this chapter.  Note that while Young’s modulus is varied 

throughout many of our models, all quantities marked with a “+” are fixed throughout all 

the simulations.  Apart from linear elasticity, our most important rheological assumption 

is that the Poisson’s ratio, 𝜈, is well constrained by laboratory experiments (e.g., 

Gammon et al., 1983A; 1983B; Patrenko and Whitford, 2002).   

2.3 Results 

PyLith calculates the full stress and strain tensors, as well as displacement and velocity 

vectors, at every node of our model mesh.  As we ran close to two dozen models, we 

show only representative results in the main chapter (figures 2.2 to 2.7).  Tables 2.3 and 

2.4 list important quantities from all the models, while appendix 2C shows the stress and 

displacement profiles for all our two-dimensional models and appendix 2D shows the 

stress field for the three-dimensional models.  Note that while we model only physically-

representative geometries in our parameter exploration, in order to quantify the 

dependence of the model on Young’s modulus, we include models with Young’s moduli 

an order of magnitude larger and smaller than the value from Patrenko and Whitford 

(2002).  While such values may be unrealistic for ice, the wide range of values allows us 

to easily distinguish the effects of changing the elasticity of each model.   
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Lastly, to aid in comparing the stress magnitude between models, we define an 

equivalent stress, 𝜏𝑒𝑞, based on the Von Mises criterion.  𝜏𝑒𝑞 is defined in two and three 

dimensions as: 

 2D: 𝜏𝑒𝑞2 = 1
2
��𝛿𝛿𝑥𝑥𝑥𝑥 − 𝛿𝛿𝑦𝑦�

2
+ 𝛿𝛿𝑥𝑥𝑥𝑥2 + 𝛿𝛿𝑦𝑦2 + 6 ∗ 𝛿𝛿𝑥𝑥𝑦2� 

3D: 𝜏𝑒𝑞2 = 1
2
��𝛿𝛿𝑥𝑥𝑥𝑥 − 𝛿𝛿𝑦𝑦�

2
+ �𝛿𝛿𝑦𝑦 − 𝛿𝛿𝑧𝑧�

2
+(𝛿𝛿𝑥𝑥𝑥𝑥 − 𝛿𝛿𝑧𝑧)2 +

6�𝛿𝛿𝑥𝑥𝑧2 + 𝛿𝛿𝑥𝑥𝑦2 + 𝛿𝛿𝑦𝑧2�� 

(2.1A) 

 

(2.1B) 

2.3.1 Two-Dimensional Results 

The stress distributions from our two-dimensional models with free-sliding and frozen 

basal boundary conditions are shown in figures 2.2 and 2.3, respectively.  In both panels 

A and B of these figures, the left column plots the stress results for models including an 

ice shelf, while the right column plots results for models with only axial forcing.  In panel 

A, the figure shows superimposed longitudinal profiles of 𝜏𝑒𝑞 taken at depth intervals of 

10 meters.  In panel B, the logarithm of the absolute value of the three in-plain stress 

components is plotted for the entire two-dimensional model domain. 

 In most models, the magnitude of stress within our body decays exponentially 

with distance from the grounding line (at x=0).  Only in the model with a sliding bed and 

axial forcing (figure 2.2, right column) does the axial stress not decay with inland 

distance.  We define a stress-transmission length-scale, Ltr, as the distance inland of the 

grounding line over which the tidal stress drops by one order of magnitude.  Table 2.2 

summarizes Ltr for all stress components for the four models shown in figures 2.2 and 

2.3.   
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For both basal boundary conditions, the solution for the model with the ice shelf 

approaches the solution of the shelf-free model after about five ice-thicknesses.  For the 

free-sliding model, the flexural stresses also decay with distance inland of the grounding 

line, following the expected functional form of a sinusoid multiplied by an exponential 

function (e.g., Turcotte and Schubert, 2002).  The first wavelength of this sinusoid can be 

seen in figure 2.2A, with a zero crossing approximately two kilometers inland (i.e., left) 

of the grounding line.  Beyond approximately five kilometers inland of the grounding 

line, the two models behave identically.  For the model with a frozen bed (figure 2.3), 

flexural and axial stresses decay exponentially with distance inland of the grounding line 

with similar decay rates.  The influence of the ice shelf on the deformation near the 

grounding line is explored more fully in appendices 2A and 2B. 

Not surprisingly, the displacement field in our two-dimensional models mirrors 

the stress field, as figure 2.4 demonstrates for the ice shelf models.  Panel A shows the 

displacement results for the model with a sliding bed, while panel B shows the results for 

a model with a frozen bed.  In each panel, the mesh is warped by the displacement values 

exaggerated by a factor of 1000 for the sliding base model and 50,000 for the frozen base 

model.  This figure is useful to determine the general character of the displacement field, 

which also exhibits an exponential decay with distance inland of the grounding line.  

Linear elasticity predicates that the decay of displacements matching that of the stress.  

Thus, the same 𝐿𝐿𝑡𝑡𝑡𝑡 in tables 2.3 and 2.4 calculated for the stress also represents the 

behavior of the displacements.  
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2.3.2 Three-Dimensional Results 

Figure 2.5 shows the values of 𝜏𝑒𝑞 from a representative three-dimensional model that is 

one kilometer thick and ten kilometers wide.  Each line represents horizontal profiles 

taken at a ten meter depth interval and a transverse spacing of one kilometer.  The stress 

decays exponentially at approximately the same rate regardless of the Y or Z coordinates 

chosen.  Recall that the ice stream in our three-dimensional model slides frictionless 

along the bed; thus, the exponential decay of stress within the three-dimensional ice 

stream is clearly different from the constant stress behavior of our free-sliding two-

dimensional model.  The presence of the lateral margins of the ice stream alone induces 

an exponential decay of the stresses in the ice stream as a function of distance inland of 

the grounding line.   

Figure 2.6 shows the full basal stress field (i.e., the six independent stress 

components) of the representative three-dimensional model.  Only the longitudinal 

normal stresses (𝛿𝛿𝑥𝑥𝑥𝑥), transverse normal stresses (𝛿𝛿𝑦𝑦), and the shear due to the sidewalls 

(𝛿𝛿𝑥𝑥𝑦) are nonzero beyond a distance of a few kilometers from the forced edge.  The other 

stress components are direct consequences of stress concentration at the transition from 

no slip to sliding ice at the base, and decay rapidly with distance from both the margins 

and the grounding line.  Note that the lack of basal friction accounts for the lack of basal 

shear stresses (𝛿𝛿𝑦𝑧 and 𝛿𝛿𝑥𝑥𝑧). 

 Figure 2.7 shows a view of the three-dimensional mesh with a stream width of 

five kilometers, warped by the displacement vector magnitude multiplied by a factor of 

500,000.  The fixed basal condition beneath the lateral margins of the ice stream clearly 

has a strong influence on the displacement field, which follows a polynomial profile in 
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plan-view.  Such a displacement field is akin to the solution to for an elastic (Bernoulli-

Euler) beam under a constant pressure that is simply supported at both edges (e.g., 

Turcotte and Schubert, 2002).  Additionally, recall that the displacements in our three-

dimensional models decay exponentially with inland distance at the same rate that the 

stress signal decays due to the elastic rheology of the ice. 

2.4 Transmission of Tidal Stresses 

As seen in all models with either basal or lateral stress resistance, the tidal stresses decay 

exponentially with distance inland of the grounding line.  We use Ltr, the stress-

transmission length-scale, as a direct measure of the inland extent of tidal influence on 

the motion of an ice stream.  Throughout the remaining discussion in this chapter, we 

estimate Ltr using 𝜏𝑒𝑞 , as the value of Ltr calculated from the equivalent stress matches the 

longest Ltr derived from the individual stress components (see table 2.2).  Table 2.3 and 

2.4 show the value of Ltr for many different combinations of geometry and elastic moduli 

for the two- and three-dimensional models, respectively.  For the two-dimensional 

models, we vary h and E while for the three-dimensional models we vary h, w, and E.  

 Using the information found in tables 2.3 and 2.4, figures 2.8 and 2.9 show the 

full variability of our solutions with the geometric and rheological parameters in our 

models.  Increasing the size of the model domain (i.e., h and w) and the amplitude of the 

applied load increases the value of the stress, while displacements vary proportionally to 

the applied load and inversely to Young’s modulus.  However, only the geometric 

parameters determine the value of the stress decay (as evidenced by the constant value of 

Ltr for models of the same geometry).  For our two-dimensional model (with a frozen 
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bed), Ltr varies linearly with thickness.  For our three-dimensional model, Ltr increases 

nonlinearly with increasing thickness and width.   

We adopt an empirical functional form describing the relationship between 

stresses, displacements, and model parameters using the aforementioned model results.  

For the two-dimensional model, we find: 

 
𝛿𝛿(𝛿𝛿, 𝑧) = 𝛿𝛿�𝐺𝐿𝐿(ℎ, 𝑧) ∙ ∆ℎ���� ∙ 10

−𝑥𝑥 ℎ�
𝐿𝐿�𝑡𝑟 

𝑢(𝛿𝛿, 𝑧) = 𝑢�𝐺𝐿𝐿(ℎ, 𝑧) ∙
∆ℎ����

𝐸�
∙ 10

−𝑥𝑥 ℎ�
𝐿𝐿�𝑡𝑟 

(2.2) 

𝛿𝛿�𝐺𝐿𝐿 and 𝑢�𝐺𝐿𝐿 are, respectively, the centerline basal stress and surface displacement at the 

grounding line for reference model one kilometer thick with a one meter tidal load using 

the value of 9.33 GPa for E.  𝐿𝐿�𝑡𝑡𝑡𝑡 is the transmission length-scale for the reference model, 

𝐸� is the normalized Young’s modulus with respect to the canonical value, ℎ� is the 

normalized model thickness with respect to one kilometer, and ∆ℎ���� is the normalized tidal 

height with respect to a one meter tide.  Recall that as 𝜌𝜌 and 𝑔𝑔 are held constant, ∆ℎ���� 

really reflects a change in tidal load, and thus is a characteristic change in loading rather 

than a characteristic length-scale.  For the three-dimensional models, the empirical forms 

of stress and displacement are: 

 
𝛿𝛿(𝛿𝛿,𝑦, 𝑧) = 𝛿𝛿�𝐺𝐿𝐿(𝑦, 𝑧,ℎ,𝑤) ∙ ∆ℎ���� ∙ 10

−𝑥𝑥
𝐿𝐿�𝑡𝑟(ℎ,𝑤𝑤) 

𝑢(𝛿𝛿, 𝑦, 𝑧) = 𝑢�𝐺𝐿𝐿(𝑦, 𝑧,ℎ,𝑤) ∙
∆ℎ����

𝐸�
∙ 10

−𝑥𝑥
𝐿𝐿�𝑡𝑟(ℎ,𝑤𝑤) 

(2.3) 

These results indicate that the distribution of stresses depends only on model loading 

style and geometry, and are completely independent of the elastic properties of the 

model, assuming the Young’s modulus for the ice is homogenous.   
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From comparing the model results in table 2.4, a rough rule of thumb is that Ltr is 

between 1.2 and 1.5 times the width of the ice stream and only increases slightly with 

increasing ice stream thickness in our three-dimensional models.  Thus, tidal stresses at a 

distance inland of the grounding line equal to 2.5 times the ice stream width, there should 

be no tidal influence on the ice stream motion.  For our models of Bindschadler and 

Rutford Ice Streams, this rough rule of thumb suggests that the tidal influence should die 

out at 100 kilometers and 75 kilometers, respectively, (flagged models in Table 4; mesh 

sizes shown in figure 2.10).  However, figure 2.11 demonstrates that even this decay is 

too severe to match the maximum observed displacement at stations inland of the 

grounding line (GPS data reported in Anandakrishnan et al., 2003; Gudmundsson, 2007 

and provided by S. Anandakrishnan and H. Gudmundsson).   

 Note that for Bindschadler Ice Stream, the grounding line curls along the edge of 

the ice stream for almost 75 kilometers.  The modeled trend in figure 2.11 ignores this 

feature, which is a clear simplification of the model geometry.  From our simple models, 

we find that the effective ice stream width would have to be over 250 kilometers for the 

model decay rates to match the observations.  While a more representative geometry 

would result in a better approximation of the value of Ltr (a value that is likely different 

for the convergence zone of Bindschadler and MacAyeal Ice Streams and Bindschadler 

Ice Stream proper), our modeling suggests that an elastic model of Bindschadler Ice 

Stream cannot reproduce the decay length-scale observed by Anandakrishnan et al. 

(2003). 

Of course, real ice streams are neither frozen to nor sliding frictionlessly over 

their beds.  Frictional sliding plays a major role in determining the ice stream’s total flow 
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(e.g., Weertman, 1957; 1964; Engelhardt and Kamb, 1998; Hughes, 1998; Cuffey and 

Paterson, 2010).  The values of Ltr from our frozen bed two-dimensional models should 

be considered as a minimum value for frozen bed flow-line models, while our three-

dimensional models should be taken as maximum values as we assume frictionless 

sliding in our models.  As our three-dimensional models predict a tidal influence that 

decays too rapidly to match observations when the base is frictionless, we conclude that a 

homogenous elastic ice stream is not capable of transmitting tidal stresses the many tens 

of kilometers inland that have been observed. 

2.5 Discussion 

As our results, along with those of Sergienko et al. (2009) and Anandakrishnan and Alley 

(1997), predict an exponential decay of stress while many other researchers found no 

such exponential decay of a tidal load (e.g., Bindschadler et al., 2003; Gudmundsson, 

2011; Walker et al., 2012; Winberry et al., 2009), our discussion begins with this 

inconsistency in modeling results.  After establishing that exponential decay of a tidal 

load is the expected result, we then discuss how our modeling compares to, and in many 

cases, refutes the results of other published models.  Our discussion concludes by 

considering the shortcomings of our modeling as a motivation of chapter 3 of this thesis. 

2.5.1 Comparison to Previous Models 

St. Venant’s Principle states that the influence of an applied load on an elastic body is 

negligible at great distances away from the applied load (e.g., Goodier, 1942; 

Timoshenko and Goodier, 1982)  A clear extension of this principle is that an external 

load should decay rapidly when near a fixed edge.  For instance, Goodier (1942) 

demonstrates that an axially forced block, when restrained from below, has a stress field 
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that is only important local to the edge of the applied load.  Additionally, Goodier 

establishes the same conclusion when the block is fixed from both above and below.  

These two cases are identical to our two-dimensional model with a fixed base and the 

two-dimensional version (in map view) of our three-dimensional ice stream model, 

respectively.  Timoshenko and Goodier (1982) provide an explicit form of the stress 

solution for similar, albeit not identical, models.  In their article 24, Timoshenko and 

Goodier describe the expectation of exponential decay of stress with distance away from 

a point load applied to the opposite edges of a beam.   

Comparing our present results to those of Anandakrishnan and Alley (1997), our 

two-dimensional model results represent extremes of Anandakrishnan and Alley’s model.  

Our frozen bed model corresponds to Anandakrishnan’s and Alley’s model with either a 

zero-thickness viscous layer or an infinitely viscous (𝜂 ≈ ∞) layer.  Our sliding bed 

model corresponds to Anandakrishnan and Alley’s model with an infinitely weak (𝜂 ≈ 0) 

viscous layer.  Our models bracket those of Anandakrishnan and Alley where two-layer 

models have the additional free parameter of till viscosity.  Anandakrishnan and Alley’s 

models can either constrain the viscosity of the viscous till layer using the transmission 

length of stress, or constrain the transmission length of stress using the till viscosity, but 

not both simultaneously.  Additionally, the lack of lateral restraint in the model allows the 

physically unrealistic case of infinite stress-transmission.  The same issue is present in all 

the flow-line models, and as such, the two-dimensional assumption of negligible lateral 

resistance is not physically realistic for ice streams. 

Of all the published models, Sergienko et al. (2009) is the only study to explicitly 

account for lateral resistances.  Removing the basal drag condition from Sergienko et 
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al.’s model results in a one-dimensional approximation of our three-dimensional 

modeling.  However, the lack of a length-scale relationship for the elastic springs in 

Sergienko et al.’s model is a major deficiency in using the Sergienko et al.’s model to 

help constrain a stress-transmission length-scale.  As our finite element modeling shows, 

the presence of non-sliding lateral margins and a zero-sliding basal condition both result 

in exponential decay of a tidal load with distance inland of the grounding line.  Thus over 

the stick-slip cycle in Sergienko et al.’s paper, we expect that the stress-transmission 

would cycle between a thickness-controlled value when stuck and a width-controlled 

value when slipping. 

2.5.2 Model Shortcomings 

Our models are, by design, geometrically and rheologically simple.  Even in our simple 

box models, the stress supported by the lateral margins directly controls the transmission 

of a tidal load on ice streams.  Extending these results, models with a realistic geometry 

will vary substantially from the equivalent box model approximation only if the real ice 

stream’s width changes dramatically along the flow direction.  For channelized ice 

streams like Bindschalder and Rutford Ice Streams, the width of either ice stream does 

not change significantly through the region with CGPS observations (e.g., figure 2.10).  

For the Whillans Ice Plain, the extreme width of the unconfined ice plain (~ 100 

kilometers wide) suggests that our channelized three-dimensional model may not be a 

good representation of this one ice stream.    

To address the Whillans Ice Plain, we ran a constant-thickness model 

approximating the geometry of the ice plain, as shown in figure 2.13.  For this model, we 

selected the location of the non-streaming ice by using RadarSAT imagery (from 
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nsidc.org) to determine the location of shear margins, where the basal boundary 

condition was fixed in all directions.  The grounding line was matched to that found by 

Brunt et al. (2010), and an axial-only tidal load was applied normal to the entire length of 

the grounding line.  The model also included a portion of ice shelf solely to increase the 

rate of convergence of our model.  Having an explicit ice shelf in the model prevents the 

possibility of an unphysical buckling mode along the grounding line.  The rate of 

convergence is increased by several orders of magnitude while having no effect on the 

stress state within the grounded ice. 

As seen in figure 2.13, the stress decays exponentially with distance inland of the 

grounding line as expected from our other three-dimensional modeling.  Due to the 

variable position and angle of the grounding line, the reference-frame independent stress 

components are more characteristic of the stress state for this model, demonstrating that 

the general stress pattern follows that of the channelized ice stream models.  Shear 

stresses peak near the transition from stuck to sliding ice, as locally there are large shear 

stresses in the vertical direction.  Across the main body of the ice plain, the octahedral 

shear stress is dominated by shear along the horizontal plane.  The overall stress state is 

dominated by the normal component of the tidal load.  Ltr in this model ranges from 50 to 

125 kilometers, meaning that over the ice plain itself, tidal loading is fairly well 

transmitted over the ice plain.  Note that the magnitude of stress drops rapidly in Mercer 

and Whillans Ice Streams, with the decay rate controlled by the ice stream width, as 

expected.  In these cases, the values of Ltr are about 45 kilometers and 30 kilometers, 

respectively.  Thus, only in the case of a very wide, unconstrained ice stream, elastic 

stress may be transmitted far upstream; however, for ice streams with a more common 
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channel morphology, incorporating a more realistic model geometry is unlikely to have a 

major impact on the transmission of stress. 

The models presented thus far adopt a homogeneous linear elastic rheology, 

which is not the most realistic material model for ice.  In the next chapter, we discuss two 

modifications to the rheological model for ice streams: strain-weakening within the 

lateral shear margins of the ice stream and nonlinear viscoelastic rheology to account for 

the interplay of viscous and elastic deformation at short timescales. 

A final major simplification of our modeling is the lack of a frictional basal 

boundary.  Instead we explored either zero displacement or zero friction basal condition.  

Our free slip three-dimensional models and our two-dimensional frozen bed models 

bookend the expected behavior of a fractional bed and thus adding basal friction will 

cause the transmission length-scale of a tidal load to range from that controlled primarily 

by the ice stream width for low friction to that controlled primarily by the ice stream 

thickness for high friction.  As ice streams are wider than they are thick, we expect that 

friction hinders, rather than enhances, the transmission of a tidal stress.   

The exception to the frictional reduction of the transmission length-scale would 

be if the slow-moving ice that buttresses the ice stream on the sides slides frictionally 

instead of being fixed at the bed.  Should this be the case, the stress-transmission length-

scale for a given model will be larger than we predict here.  The overall effect would be 

equivalent to having a larger effective width of the ice stream.  In the case of Antarctica, 

the role of basal sliding in the ice stream itself, or for the slow-moving marginal ice, is 

negligible due to the small driving stress, as discussed in section 1.5.  We note that in the 

case of the ice-rock margins of the fjord-bounded Greenland outlet glaciers discussed in 
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chapter 1, the ice stream does slide along the lateral margins; however, the fairly rapid 

decay of tidal stresses with distance inland of the grounding line suggests the such an 

effect is limited at best. 

2.6 Summary and Conclusions 

The models presented here draw into question the hypothesis that the observed influence 

of ocean tides on ice stream motion occurs as elastic transmission through the bulk of the 

ice stream itself.  This result implies one of two possible conclusions: one, that there is a 

mechanism, not explored here, that almost completely decouples the ice stream from its 

shear margins, essentially reducing the lateral support of the ice stream to nearly zero; or 

two, that a mechanism external to the ice stream bulk is necessary to explain the tidal 

component of ice stream motion.  The uniform flow-line models which are the current 

state-of-the-art, implicitly assume the first.  Our models demonstrate that the ice streams 

considered here are not wide “enough” to neglect the resistance of the lateral margins.  

Furthermore, even the name “shear margins” implies that there is an amount of lateral 

support sufficient to induce shear in the ice stream’s margins, making large-scale 

decoupling improbable.  

We conclude that a mechanism external to the ice stream bulk underlies the 

transmission of ocean tidal loading far inland of the grounding line.  While not explored 

here, our preferred hypothesis is that the ocean tides perturb the stress balance at the ice-

bed interface through the subglacial hydrologic network.  Any further discussion of such 

a process relies on quantifying the spatial extent that ocean tides are ‘felt’ through the 

subglacial hydrologic network, which is beyond the scope of this paper. 
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 Variable Names Units 

E Young’s modulus Pa 
𝑔𝑔 Gravitational acceleration m s-2 
H Ice stream thickness m 
Δℎ Tide amplitude m 
𝐿𝐿𝑡𝑡𝑡𝑡 Stress-transmission length-scale km 
𝐿𝐿�𝑡𝑡𝑡𝑡 Reference stress-transmission 

length-scale 
km 

𝑇𝑚𝑎𝑥𝑥 Maxwell relaxation time S 
𝑢�𝐺𝐿𝐿 Centerline displacement 

magnitude at the grounding line 
cm 

𝑤 Ice stream width km 
𝜂 Viscosity Pa s 
𝜈 Poisson’s ratio -- 
𝜌𝜌 Ice density kg m-3 
𝛿𝛿𝑖𝑗 Stress component Pa 
𝛿𝛿�𝐺𝐿𝐿 Centerline stress magnitude at the 

grounding line 
Pa 

𝛿𝛿𝑡𝑡𝑖𝑑𝑒 Tidal stress Pa 
𝜏𝑒𝑞 Equivalent (Von Mises) stress Pa 

" � " Normalized quantity  
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Figure 2.1: Schematics of the models used in this chapter. Inset boxes show options used 

in each model. For the two-dimensional models, these options are either a fixed (𝑢𝑥𝑥 =

𝑢𝑦 = 𝑢𝑧 = 0) or sliding (𝑢𝑧 = 0) basal condition, and either a pure axial loading 

condition or a shelf model.  The three-dimensional model assumes a uniform, isotropic 

value for the Young’s modulus throughout the entire domain.  
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Figure 2.2: Distributions of stress for a two-dimensional model with frictionless basal 

sliding.  Panel A shows profiles of longitudinal 𝜏𝑒𝑞 profiles at a depth interval of 10 

meters, while panel B shows the 𝛿𝛿𝑥𝑥, 𝛿𝛿𝑦, and 𝜏𝑥𝑥𝑦 components of stress.  The left column 

for both panels shows a model with an ice shelf; the right column for both panels shows a 

model with no ice shelf and only an axial loading.  In these frictionless models, axial 

stress does not decay with distance and flexural stress rapidly decays near the grounding 

line.  𝐿𝐿𝑡𝑡𝑡𝑡 is the stress decay length, and is defined in the main text. 
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Figure 2.3: Stress distributions for a two-dimensional model with no basal sliding.  The 

panels are the same as in figure 2.2.  Stress at the grounding line is higher in the model 

with an ice shelf than without a shelf, but 𝐿𝐿𝑡𝑡𝑡𝑡 is the same between the two model setups. 
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Figure 2.4: Displacement fields for the two-dimensional models with attached shelves.  

The color shows the overall displacement magnitude, and the mesh is warped by the 

displacement multiplied, by a factor of 1000 for panel A and by a factor of 50,000 for 

panel B.  Panel A shows the results for the model with a sliding basal condition and panel 

B shows the results for the model with a fixed basal condition.  The high tide position 

corresponds to a shelf forcing of magnitude 𝛿𝛿𝑡𝑡𝑖𝑑𝑒 = 𝜌𝜌𝑔𝑔∆ℎ (inward traction) while the 

low tide position corresponds to a shelf forcing of magnitude of 𝛿𝛿𝑡𝑡𝑖𝑑𝑒 = −𝜌𝜌𝑔𝑔∆ℎ (outward 

traction. 
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Figure 2.5: Stacked equivalent stress (𝜏𝑒𝑞) profiles for three different locations in a 

three-dimensional model with uniform elasticity, a width of 10 kilometers, and a 

thickness of 1 kilometer.  The inset shows the locations of the three profiles in map view.  

For each location, 101 lines are stacked, taken at 10 meter depth intervals.  For the center 

and quarter lines, there is very little difference in stress value with depth, while for the 

edge of the ice stream, the stress value changes with depth by about an order of 

magnitude.  However, between all these profiles, 𝐿𝐿𝑡𝑡𝑡𝑡 is constant.   
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Figure 2.6: Representative stress distribution along the base of a three-dimensional 

model with homogenous elasticity, showing the six unique stress components.  The 

streaming portion of the model has a width of ten kilometers and a thickness of one 

kilometer.  𝐿𝐿𝑡𝑡𝑡𝑡 is drawn in the 𝛿𝛿𝑥𝑥𝑥𝑥, 𝛿𝛿𝑦𝑦, and 𝜏𝑥𝑥𝑦 components where it is easiest to 

observe. 

  

𝐿𝐿𝑡𝑡𝑡𝑡 𝐿𝐿𝑡𝑡𝑡𝑡 

𝐿𝐿𝑡𝑡𝑡𝑡 



Tidal Stresses in Ice Streams 59 

 

 

Figure 2.7: Three-dimensional displacement field for a high and a low tidal amplitude.  

The high tide corresponds to an applied traction of magnitude 𝛿𝛿𝑡𝑡𝑖𝑑𝑒 = 𝜌𝜌𝑔𝑔∆ℎ and the low 

tide corresponds to a traction of magnitude of 𝛿𝛿𝑡𝑡𝑖𝑑𝑒 = −𝜌𝜌𝑔𝑔∆ℎ.  The ice stream is 10 

kilometers wide, with the surface projection of the lateral margins draw in dashed black 

lines.     

10 km
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Figure 2.8: Trend in the two-dimensional models as function of Young’s modulus (E) 

and ice thickness (h).  The three figures plot the transmission length-scale (Ltr), centerline 

surface displacement above the grounding line, and the centerline equivalent stress at the 

surface above the grounding line.  The circles are the model results, while the colored 

contours at the bottom of each plot show the values of the quantity on the vertical axis. 
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Figure 2.9: Trend in the three-dimensional models as function of ice stream width (w) 

and ice thickness (h).  The three figures plot the transmission length-scale (Ltr), centerline 

surface displacement above the grounding line, and the centerline equivalent stress at the 

surface above the grounding line.  The circles are the model results, while the colored 

contours at the bottom of each plot show the values of the quantity on the vertical axis.   
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Figure 2.10: Comparison of our side-wall shear models with the real geometry of Rutford 

Ice Stream, and Bindschadler Ice Stream.  The arrow denotes the forced edge, the central 

region is the sliding portion of the model and the flanking regions are the fixed portions 

of the model.  Numerical values denote the length and width of the modeled ice stream.  

Background images from the NSIDC RAMP imagery database 

(http://nsidc.org/data/ramp/). 
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Figure 2.11: Diagram comparing GPS tidal displacement amplitudes to modeled 

displacement amplitudes.  Circles show the data taken from observation on Rutford and 

Bindschadler Ice Stream (Bindschadler data from figure 2 of Anandakrishnan et al., 

2003; Rutford data courtesy of H. Gudmundsson).  The error on the approximated tidal 

displacement amplitudes is two centimeters.  The slopes of the modeled surface 

displacements are taken from models approximating the Rutford Ice Stream and 

Bindschadler Ice Streams, as shown in table 2.4.  As in figure 1.6, the upper panel shows 

the normalized tidal amplitudes, while the lower panel shows the true amplitude values.  

Data errors: +/- 2 cm 

Bindschadler Semidiurnal 
Rutford Fortnightly 

Rutford Semidiurnal 
Data 

Model 
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Figure 2.12: Basal stress results from our Whillans Ice Plain model.  Panels A-C show 

equivalent stress, dilatation, and octahedral shear stress, respectively.  Panels D-G show 

vertical normal stress, side-wall shear stress, x-aligned basal shear stress, and y-aligned 

basal shear stress, respectively.  All panels are scaled to the same logarithmic scale, 

shown at the bottom of the figure.  The models are forced only along the grounding line, 

shown in the panels as the bolded black line. 
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Parameter Symbol Value 

Young’s Modulus E 9.33 GPa 

+Poisson’s Ratio ν 0.325 

*Shear Modulus G 3.52 GPa 

*Bulk Modulus K 8.90 GPa 

+Density (at 0 ⁰C) ρ 917 kg/m3 

+Viscosity coefficient A 5.86x10-6 MPa3/s 

+Stress exponent n 3 

Table 2.1: Elastic and viscous parameters used to define the ice properties in our finite 

element modeling.  Values of elastic parameters, except for density, are taken from 

Petrenko and Whitford (2002) using data from Gammon et al. (1983A; 1983B).  Viscous 

parameters are taken from Pateron (1997).  Parameters marked with an asterisk (*) denote 

quantities that are calculated from the other moduli and material properties.  Parameters 

marked with a plus (+) are fixed through all models. 
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Fixed Base Sliding Base 

Condition Component 𝐿𝐿𝑡𝑡𝑡𝑡  (km) St. Dev. Condition Comp. 𝐿𝐿𝑡𝑡𝑡𝑡  (km) St. Dev. 

Shelf X 2.586 0.004 Shelf X 1.304 9.049* 

 Y 2.619 0.095  Y 1.101 0.013 

 XY 2.590 0.015  XY 1.078 1.4e-5 

Axial Only X 2.517 0.023 Axial Only X ∞ N/A 

 Y 2.618 0.068  Y N/A N/A 

 XY 2.616 0.018  XY N/A N/A 

Table 2.2: Transmission length-scales (𝐿𝐿𝑡𝑡𝑡𝑡) for the two-dimensional models shown in 

figures 3 and 4.  See text for description of how the parameters are found.  All cases save 

the marked (*) case have very low standard deviations.  In the marked case, the standard 

deviation is large as the value of 𝛿𝛿𝑥𝑥 falls to zero near the middle of the ice stream 

vertically, making 𝐿𝐿𝑡𝑡𝑡𝑡vary dramatically near these locations.  Near the upper and lower 

portions of the ice stream, the stress decay for  𝛿𝛿𝑥𝑥 is more consistent with the values for 

the other stress components. 
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Model # Figure # h 

(km) 
E 

(GPa) 
Disp. @ GL 

(mm) 
Stress @ GL 

(kPa) 
𝐿𝐿𝑡𝑡𝑡𝑡    

(km) 
1 2.3 1 9.33 1.68 11.80 2.5 
2 2C.1 2 9.33 3.46 17.06 5.1 
3 2C.2 3 9.33 5.22 20.75 7.6 
4 2C.3 1 0.933 16.83 11.80 2.5 
5 2C.4 2 0.933 34.59 17.06 5.1 
6 2C.5 3 0.933 52.24 20.75 7.6 
7 2C.6 1 93.3 0.17 11.80 2.5 
8 2C.7 2 93.3 0.35 17.06 5.1 
9 2C.8 3 93.3 0.52 20.75 7.6 

Table 2.3: Model parameters and results from our two-dimensional models.  The 

displacement measurement is the magnitude of the modeled surface displacement vector 

above the grounding line (i.e., at x=0).  The stress value is the equivalent stress at the 

surface above the grounding line.  The transmission length-scale 𝐿𝐿𝑡𝑡𝑡𝑡 is the value found 

for the decay of the equivalent stress, which matches the value found using the surface 

displacement magnitude. 
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Model # Figure # h 

(km) 
w 

(km) 
E 

(GPa) 
Disp. @ 
GL (mm) 

Stress @ 
GL (kPa) 

 𝐿𝐿𝑡𝑡𝑡𝑡    
(km) 

1 2.6 1 10 9.33 6.13 6.779 12.2 
2 2D.1 2 10 9.33 7.64 7.349 12.7 
3 2D.2 3 10 9.33 8.81 7.453 12.7 
4 2D.3 1 14 9.33 8.29 6.817 13.6 
5 2D.4 2 14 9.33 10.04 7.500 15.0 
6 2D.5 3 14 9.33 11.22 7.585 17.5 
7 2D.6 1 20 9.33 11.55 6.845 18.4 
8 2D.7 2 20 9.33 13.68 7.439 19.6 
9 2D.8 3 20 9.33 14.94 7.775 24.6 

10 2D.9 1 10 0.933 61.30 6.790 25.6 
11 2D.10 1 10 93.3 0.61 4.778 26.7 
12* 2D.11 2 50 9.33 31.99 7.584 69.1 
13 2D.12 2 40 9.33 25.85 7.581 52.2 

14** 2D.13 2 30 9.33 19.75 7.577 38.2 
Table 2.4: Model parameters and results from our two-dimensional models.  The stress, 

displacement, and transmission length-scales are found in the same manner as discussed 

in the description of table 2.3. 
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Appendix 2A: Importance of the Ice Shelf 

As all of the ice streams that display far-field tidal effects have a connected ice shelf, we 

now consider the role that the ice shelf plays as the intermediary between the ocean tides 

and the grounded ice stream.  Recall the two-dimensional model results shown in figures 

2.2 and 2.3 for models both with and without an ice shelf.  For a given basal condition, 

any variation between the two model results must be due to the presence of the shelf 

alone.   

 For the model with a frozen base, the presence of an ice shelf has two effects.  

First, there is a perturbation to the stress field near the grounding line (about two 

kilometers inland at most), due to flexural stresses introduced by the ice shelf.  Second, 

the overall magnitude of stresses in the ice stream is elevated compared to models with 

only axial loading as there is an overall increase in the magnitude of the loading applied 

in the model.  This effect does not change Ltr.  Thus for ice with no basal sliding, 

including an ice shelf affects the magnitude, but not the nature of the stress field, far 

inland of the grounding line.  

For the two-dimensional model with basal sliding, stresses due to ice flexure 

decay to inconsequential levels 5-7 kilometers inland of the grounding line.  Beyond this 

point, the stress state of the ice stream is identical to the stress state for a model with axial 

loading only.  Thus, for an ice stream with no basal resistance, the ice shelf does not 

influence the modeled results farther inland than the first five to ten kilometers of 

grounded ice. 

 The general finding that flexural stresses only perturb the stress field near the 

grounding line is consistent with the observations of ice flexure transmission of ten 
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kilometers or less, as summarized in table 1.1.  Additionally, our constant loading shelf 

condition overestimates flexural stress by almost a factor of four compared to a more 

realistic floating condition (see appendix 2B).  This indicates that flexural stresses may 

decay to small values over a shorter distance than predicted here.  Our models reproduce 

the observation that the flexural stresses, as induced by the presence of an ice shelf, are 

not important far inland of the grounding line. 

The basal condition beneath the ice stream determines the influence of the ice 

shelf on the overall magnitude of the stress in the far-field ice stream.  As ice streams 

have little basal resistance, the finding that the overall stress magnitude is independent of 

the ice shelf outside of the flexure zone is applicable here.  Our interest is in the value of 

stresses many tens of kilometers inland of the grounding line, thus we can safely neglect 

the ice shelf in our models without changing the transmission of tidal, non-flexural 

stresses. 
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Appendix 2B: Flotation Condition for a One-Dimensional Ice 

Shelf 

As shown in figure 2.1, we apply two tractions to a model ice shelf to simulate the stress 

change on an ice shelf due to a change in tide height.  First, we consider the axial load of 

the tide on the ice shelf's edge.  A simple comparison is to look at the stress within an 

axial bar that is compressed axially with a constant stress.  Assume the bar to be fixed at 

the unforced end.  By the compatibility condition: 

 𝛿𝛿𝛿𝛿
𝛿𝛿𝛿𝛿� = 0 (2.B1) 

the stress and strain in such a model must be constant throughout the bar.  This 

corresponds to infinite stress-transmission. 

 Second, we model the ice shelf as a Bernoulli-Euler beam subjected to a 

distributed load, with this load coupled to the beam deflection by a flotation condition.  

This approach is similar to the methodology of Reeh et al. (2000).  The governing 

equation of such a model is: 

 
𝐸𝐼𝐼
𝛿𝛿4𝑤
𝛿𝛿𝛿𝛿4

= 𝜌𝜌𝑤𝑤𝑔𝑔(Δℎ − 𝑤) (2.B2) 

where 𝜌𝜌𝑤𝑤 is the density of water, g is gravitational acceleration, w is the (vertical) 

deflection of the beam, E is the Young’s modulus of ice, 𝐼𝐼 = �𝑤𝑤
12
� ∙ (ℎ)3 is the second 

moment of area for the ice shelf.   

The solutions of this equation for multiple ice shelf lengths are found and shown 

in figure 2.B1.  The primary result is that, for a one meter tide, a shelf of longer than five 

kilometers no longer influences the stresses at the grounding line, meaning that for our 
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purposes, we only need to consider a shelf of five kilometers length in our finite element 

modeling.   

 Additionally, we model a linearly thinning ice shelf (through the modification of 

I, using 𝐼𝐼 = �𝑤𝑤
12
� ∙ �[ℎ0 − (ℎ0 − ℎ1)] 𝑥𝑥

𝐿𝐿
�
3
 where the thickness linearly changes from ℎ0 to 

ℎ1) and find that this has only a small influence on the stress and deflection throughout 

the shelf. Thus these effects will not be considered further.   

Lastly, we model the results for a simpler, uncoupled stressing condition.  In 

figure 2.B1, the red dashed line corresponds to a constant loading function equal to 

𝜌𝜌𝑤𝑤𝑔𝑔Δℎ.  This simpler condition overestimates the stress and deflection over the model 

domain compared to the more correct flotation condition.  However, as the boundary 

condition does not depend on, and thus is decoupled from, the deflection w, we use this 

constant loading as our ice shelf boundary “pseudo-flotation” condition in our finite 

modeling. 
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Figure 2B1: Results of the one-dimensional flexural beam approximation of a floating ice 

shelf.  The upper figure shows the beam deflection while the lower section shows the 

stress at the upper edge of the beam.  See text for a description of the governing equations 

and boundary conditions for the models shown.   
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Appendix 2C: Two-Dimensional Model Results 

 Here, we present the complete summary of our model results for our “frozen bed” 

model, as demonstrated in figure 2.3.  We ran a total of nine models, investigating the 

dependence of the stress and displacement distributions on the ice thickness, h, and the 

ice’s elastic modulus, E.  Table 2.3 provides details to each model, including the values 

of h and E, as well as the values of basal stress and surface displacement at the grounding 

line (i.e., the maximum values), and the e-folding length of the stress and displacement 

decay.  Figures 2C.1 to 2C.8 demonstrate the stress and displacement distributions in 

each model not shown in the main paper, following the example set by figure 2.3.   
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Figure 2C.1: Stress and displacement fields for the two-dimensional frozen bed model 

with h=2 km and E=9.33 GPa. 



Tidal Stresses in Ice Streams 76 

 

 

Figure 2C.2: Stress and displacement fields for the two-dimensional frozen bed model 

with h=3km and E=9.33 GPa. 
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Figure 2C.3: Stress and displacement fields for the two-dimensional frozen bed model 

with h=1km and E=0.933 GPa. 
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Figure 2C.4: Stress and displacement fields for the two-dimensional frozen bed model 

with h=2km and E=0.933 GPa. 
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Figure 2C.5: Stress and displacement fields for the two-dimensional frozen bed model 

with h=3km and E=0.933 GPa. 
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Figure 2C.6: Stress and displacement fields for the two-dimensional frozen bed model 

with h=1km and E=93.3 GPa. 
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Figure 2C.7: Stress and displacement fields for the two-dimensional frozen bed model 

with h=2km and E=93.3 GPa. 
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Figure 2C.8: Stress and displacement fields for the two-dimensional frozen bed model 

with h=3km and E=93.3 GPa. 
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Appendix 2D: Three-Dimensional Model Results 

In this section, we present the results from our entire three-dimensional model suite.  In 

these models, we varied the ice thickness, h, the ice stream width, w, and the elastic 

modulus E.  We present a total of 14 model results.  The first nine models (figures 2.6 

and figures 2D.1 to 2D.8) explore the dependence of the results on the geometric 

parameters h and w.  Models 10 and 11 (figures 2D.9 and 2D.10) demonstrate the linear 

dependence of the model results on the elastic modulus.  Models 12 to 14 (figures 2D.11 

to 2D.13) represent the geometries of Bindschadler Ice Stream, Pine Island Glacier, and 

Rutford Ice Stream, respectively.  Due to the lack of GPS data from Pine Island Glacier, 

these model results are not compared to observations.  Table 2.4 summarizes the model 

parameters, as well as the output results of surface displacement and basal stress at the 

grounding line in the middle of the ice stream (the global maximum value), as well as the 

e-folding length in each model.  Figures 2D.1 to 2D.13 show the modeled stress 

distributions, following the example of figure 2.6 from the main body of this paper. 
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Figure 2D.1: Stress field for the three-dimensional model with h=2 km, w=10 km, and 

E=9.33 GPa. 
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Figure 2D.2: Stress field for the three-dimensional model with h=3 km, w=10 km, and 

E=9.33 GPa. 
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Figure 2D.3: Stress field for the three-dimensional model with h=1 km, w=14 km, and 

E=9.33 GPa.  
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Figure 2D.4: Stress field for the three-dimensional model with h=2 km, w=14 km, and 

E=9.33 GPa.  
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Figure 2D.5: Stress field for the three-dimensional model with h=3 km, w=14 km, and 

E=9.33 GPa.  
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Figure 2D.6: Stress field for the three-dimensional model with h=1 km, w=20 km, and 

E=9.33 GPa.  
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Figure 2D.7: Stress field for the three-dimensional model with h=2 km, w=20 km, and 

E=9.33 GPa.  
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Figure 2D.8: Stress field for the three-dimensional model with h=3 km, w=20 km, and 

E=9.33 GPa.  
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Figure 2D.9: Stress field for the three-dimensional model with h=1 km, w=10 km, and 

E=0.933 GPa. 
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Figure 2D.10: Stress field for the three-dimensional model with h=1 km, w=10 km, and 

E=93.3 GPa.  
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Figure 2D.11: Stress field for the three-dimensional model approximating Bindschadler 

Ice Stream, with h=2 km, w=50 km, and E=9.33 GPa.  
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Figure 2D.12: Stress field for the three-dimensional model approximating Pine Island 

Glacier, with h=2 km, w=40 km, and E=9.33 GPa. 
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Figure 2D.13: Stress field for the three-dimensional model approximating Rutford Ice 

Stream, with h=2 km, w=30 km, and E=9.33 GPa. 
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Chapter 3 

Inhomogeneous Elasticity and Viscoelasticity: 

Effects on Stress-transmission in Ice Streams 

As demonstrated in the previous chapter, the geometry of a homogeneous elastic ice 

stream imposes a stringent restriction on the distance that ocean tidal loads can be 

transmitted inland of the grounding line.  However, ice streams are not uniform elastic 

bodies.  There are bulk material inhomogeneities due to enhanced shear in the marginal 

ice and vertical temperature gradients in the ice.  Additionally, ice deforms viscously 

over long timescales and preferential flow directions due to ice’s polycrystalline nature 

can align, resulting in anistropic deformation.  In this chapter, we first consider the effect 

of elastic inhomogeneity on the length-scale of the transmission of tidal stresses inland of 

the grounding line—specifically investigating an increase in the compliance of the ice 

stream’s lateral margins.  Increasing the marginal compliance reduces the stress 

supported by the ice stream’s sidewalls, resulting in an increase in the length-scale of 

stress-transmission.  We then explore the role of viscoelasticity in the deformation of the 

ice stream, in order to quantify the effect that viscoelasticity has on the inferred 

transmission length-scale of a tidal stress.  While we find that viscoelasticity plays an 

important role in determining the time delay between the peak tidal signal and peak 

surface motion of the grounded ice stream, the effect on the stress-transmission length-

scale is too minor to explain the long-distance observations from Bindschadler and 

Rutford Ice Streams.  Ultimately, we conclude that lacking a mechanism which 

essentially decouples an ice stream from its lateral margins, a process outside of the bulk 
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of the ice stream must be responsible for the large zone of tidal influence observed on 

some Antarctic ice streams. 

3.1 Introduction 

As alluded to at the end of chapter 2, representing ice as a homogeneous elastic body is 

not the most realistic rheological model for ice.  The choice of material model will 

directly affect the stress-transmission behavior in our ice stream models.  As the 

calculated stress-transmission length-scales in our three-dimensional ice stream models 

are too short to match the observations from Rutford and Bindschadler Ice Streams 

(Gudmundsson, 2007; 2008; 2011; Anandakrishnan et al., 2003), for a realistic 

rheological change to be significant, the new rheology must weaken the resistance of the 

ice stream’s lateral margins.  In this introductory section, we first describe several 

common inhomogenities in ice’s elastic behavior before introducing the range of 

viscoelastic constitutive laws used in glaciology to model ice deformation.  We consider 

inhomogeneity in elasticity created by the large-scale crevassing of an ice stream’s shear 

margins and what effect such marginal weakening has on the ice stream’s ability to 

transmit tidal loads.  We also consider the impact of incorporating a viscous component 

of ice deformation over the tidal timescales has on the extent of tidally induced 

deformation of an ice stream.  Given the independence of these two rheological 

considerations we discuss each separately.  This chapter closes with a discussion of both 

elastic and viscoelastic homogeneity as related to field observations from Antarctica. 

3.1.1 Elastic Rheological Effects 

The impacts of temperature, crystal fabric, and ice purity on the viscous deformation of 

ice are better constrained than their potential to modify the effective elastic moduli of ice.  
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While there is no reason to believe a priori that the same processes that alter viscous flow 

of ice will also alter the elastic response of ice, investigating these processes that 

influence ice viscosity does provide a touchstone for understanding the physical 

mechanisms behind potential elastic inhomogeneity.  For viscous flow, we focus on how 

three different processes impact the viscosity parameters: temperature-dependent 

viscosity, fabric-induced preferential viscous flow directions, and enhanced shear in ice 

stream margins.  For each process, we first summarize that process’s ability to perturb 

viscosity of ice then discuss that process’s potential to change the (elastic) compliance of 

ice. 

3.1.1.1 Temperature-Dependent Rheology 

The West Antarctic ice sheet and ice streams are polythermal glaciers, with temperatures 

ranging from the pressure melting point to as low as -50 °C (e.g., Gow et al., 1968; 

Engelhardt, 2004a, 2004b; Salamatin et al., 2008).  A bevy of field observations (e.g., 

Nye, 1953; Jezek et al., 1985, MacAyeal et al., 1996, 1998) and laboratory experiments 

(e.g., Budd and Jacka, 1989) show a clear temperature dependence in the viscosity 

coefficient of ice.  Following Cuffey and Paterson (2011), the temperature dependence of 

ice viscosity can be summarized by two different Arrhenius relationships: one for 

temperatures between 0 and -10 °C, and the other for temperatures colder than -10 °C.  

For reference, the viscosity coefficient, the nonlinear analog to viscosity, changes by 

about a factor of 10 between 0 and -10 °C.   The large change in the magnitude of ice’s 

viscous deformation with temperature implies that the viscosity coefficient in ice streams 

can be substantially varied as a function of ice stream depth. 
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 Jellinek and Brill (1956) find that the Young’s modulus of ice varies by about 

40% over a temperature range of -5 to -15 °C, though there is a large amount of 

variability in measured moduli.  The temperature dependence of elasticity is quite a bit 

smaller than that of viscosity for a given temperature profile.  As a demonstration of how 

negligible the temperature dependence of ice elasticity is, Jellinek and Brill construct a 

well-fit rheological model for ice using data from their creep relaxation experiments 

where only the viscous deformation of the ice is temperature dependent.  Of course, if the 

ice is heated to the point of melting, then the elastic strength of the ice will necessarily 

plummet; however, for our purposes we will assume that melting is negligible. 

3.1.1.2 Fabric Dependence 

Glacial ice, being polycrystalline, is known to be strongly anisotropic once creep 

establishes a preferred crystal orientation.  The direction of ice motion relative to the 

preferred crystalline glide direction dictates the deviation in observed strain rate from that 

of isotropic ice.  The anisotropy of a mature crystal fabric in ice can enhance the strain 

rate of ice in a “weak” orientation by up to 100 times that of ice in a “strong” orientation 

(Shoji and Langway; 1988).   

Such polycrystalline anisotropy also influences the elastic behavior of ice, as 

demonstrated through the measurement of seismic anisotropy in glacial ice by 

Blankenship and Bentley (1987).  They found that the variation in seismic P-wave speed 

in glacial ice is about 10%.  This change in wave speed corresponds to a variation in 

elastic moduli on the order of 20%.  Focusing on the slower-moving ice stream, 

Blankenship and Bentley suggested that a preferentially oriented ice fabric is the cause of 

the observed change in wave speed.  The faster-moving ice stream could conceivably 
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develop a stronger fabric that could result in an increased influence on the elasticity of 

ice. 

Laboratory results for anisotropy in the Young’s moduli of sea ice found a peak to 

peak variation between 10% and 41%, depending on the nature of the columnar 

crystallization (Nanthikesan and Sunder; 1995 and references therein).  While such 

laboratory results are not strictly usable to determine the behavior of glacial ice due to the 

presence of salt in the sea ice’s crystalline structure, all the studies presented here suggest 

that the variation in elastic moduli for polycrystalline ice, with a preferred crystal 

orientation relative to isotropic ice, is less than a factor of two. 

3.1.1.3 Enhanced Deformation in the Shear Margins 

In some cases, a single Glen-style viscous flow law is unable to explain observed viscous 

flow velocities in glaciers over long timescales.  Examples include the depth-variable age 

of ice in ice caps (Paterson, 1991), basal impurities in mountain glaciers (Dahl-Jensen 

and Gundestrup, 1987; Echelmeyer and Wang, 1987), and most importantly the highly 

strained ice in the shear margins of West Antarctic ice streams (Echelmeyer et al., 1994).  

These studies adopted an ad hoc spatially variable viscous enhancement factor to the 

strain rate, effectively reducing the viscosity in regions where the researchers observed 

rapid velocities.   

For the case of ice stream shear margins, this viscous enhancement can be as large 

as a factor of twelve.   In Echelmeyer et al.’s (1994) study of Whillans Ice Stream, the 

regions of viscous enhancement correspond to a “chaotic zone” of intense, irregular 

crevassing.  While these researchers did not physically model the interaction between the 

crevasses and the viscous flow of the ice stream, they point to the crevassing as an 
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indication of high shear strain, suggesting that a strain-weakening process (such as shear 

heating, their preferred hypothesis) could be the cause of the necessary enhancement to 

ice velocity.  Such an approach is equivalent to increasing the effective ice stream width. 

   As discussed earlier, the temperature dependence of ice elasticity is substantially 

smaller than that of ice viscosity, suggesting that shear heating is not a major player in 

potentially changing the elasticity of an ice stream’s margins.  However, the presence of 

crevasses (or more generally, cracks) within elastic bodies is known to influence the 

effective elastic moduli of the damaged body.  As demonstrated by Walsh (1965) for a 

penny-shaped crack, a reduction in the magnitude of the Young’s modulus of an elastic 

body can approximate the increased deformation of the body due to the presence of void 

space or frictional cracks. 

 The number of crevasses is difficult to accurately quantify as only surface 

crevasses are directly observable, making any attempt to create a “crevasse distribution” 

for a given glacier intractable from a remote sensing perspective.  Furthermore, small 

scale cracking in ice can be pervasive, rendering it impossible to calculate an effective 

rheology from an applied mechanics formulation such as Walsh (1965).  The limitations 

on the measurement of cracks in glacial ice suggests that using an empirical fit of damage 

parameters estimated from observations is the simplest method of finding the 

approximate magnitude of the enhancement in ice’s elastic response due to damage in the 

bulk of the ice. 

 Unfortunately, current measurement of the magnitude of the elastic response of 

ice streams is limited to GPS stations placed near to short-term perturbations to the 

background stressing of an ice stream.  Of most immediate relevance are the GPS surveys 
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of the ocean tidal loading of ice streams in Antarctica presented in Chapter 1.  However, 

with the exception of the surveys of Whillans Ice Plain by Winberry et al. (2009; 2011), 

these GPS surveys lack the spatial coverage to resolve the potential difference in 

displacement response of the shear margins versus the interior of the ice stream.  And, in 

the case of the Whillans Ice Plain, the stick-slip nature of the GPS data obscures any 

simple variation in the elastic response between the central and marginal ice.  The stick-

slip behavior, controlled by poorly understood basal friction properties of the ice plain, 

would necessarily be convolved with any increased effective compliance in the shear 

margins due to damage in the margins.  As such, we cannot rule out strain-weakening in 

the shear margins as a potentially important elastic inhomogeneity based on the current 

suite of field observations alone. 

3.1.2 Appropriateness of Viscoelasticity 

The analysis of ice motion is traditionally treated as a problem of viscous, rather than 

elastic, deformation (e.g., Cuffey and Paterson, 2011).  While the timescale in the 

standard ice problem is months and years rather than hours and days, the prevailing large-

scale deformation of ice is clearly viscous in nature.  As such, we now explore the 

possibility that the viscous component of deformation in ice streams is important at 

hourly to weekly timescales in the context of the transmission of tidal loads inland of an 

ice stream’s grounding line. 

 Recent research suggests that viscoelasticity is necessary to correctly model the 

tidal behavior of ice streams.  Gudmundsson (2007) and King et al. (2011) explicitly state 

that viscoelastic effects within the ice stream may play a role in the phase delay of the ice 

stream’s response to tidal loading.  Gudmundsson (2011) and Walker et al. (2012) carry 



Strain-Weakening and Viscoelasticity 104 

 
out two-dimensional flow-line models with viscoelastic rheologies and find that these 

models fit observations more satisfactorily than an equivalent elastic ice model.  Even 

though we have demonstrated that flow-line models fail to correctly predict the length-

scale of the transmission of tidal stresses, the flow-line models of Gudmundsson and 

Walker et al. suggest that viscoelasticity can play a role in the transmission of tidal 

stresses inland of the grounding line of an ice stream. 

 Additionally, rheological modeling of ice deformation in the laboratory suggests 

that ice behaves viscoelastically (e.g., Jellinek and Brill, 1956; Goldsby and Kohlstedt, 

1997; 2001; Morland, 2009; Riesen et al., 2010).  These studies focus on using 

viscoelastic fluid models to improve the mathematical representation of the three creep 

regimes of ice (primary, secondary, and tertiary creep).  As will be discussed in 

subsection 3.1.2.1, our choice of a Maxwell viscoelastic material model is a simpler 

rheology than those suggested by the aforementioned laboratory studies.  A Maxwell 

model captures the behavior most relevant to the tidal perturbation of ice stream flow.  

Following this discussion, section 3.1.2.2 outlines our expectations for the relative 

importance of the viscous and elastic deformations in our models at different timescales, 

using the Maxwell relaxation time as an intuitive metric. 

3.1.2.1 Simple Rheological Models for Viscoelasticity 

Multiple models for viscoelasticity exist, so we must contemplate the most appropriate 

model for ice.  We consider the three simple viscoelastic material models shown in figure 

3.1: the Maxwell, Kelvin-Voigt, and Burgers models.  We will choose to implement 

viscoelasticity in ice as an isotropic Maxwell model, which has the benefit of capturing 
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the most relevant characteristics of ice deformation while being simple enough to be well 

constrained using laboratory data. 

 A Maxwell viscoelastic model is comprised of a spring (elastic) element in series 

with a dashpot (viscous element).  The canonical one-dimensional form of a linear 

Maxwell element is given as: 

 𝜀̇ =
𝜎
𝜂

+
�̇�
𝐸

 (3.1) 

A Maxwell material represents a fluid, as a constant stress will converge to a constant 

strain-rate, and thus linear time-dependent deformation.  An advantage of the Maxwell 

model is that the elastic and viscous responses of the material are easily separable for 

problems with a characteristic stress as these responses are additive. 

 In contrast, the Kelvin-Voigt material is comprised of a spring element in parallel 

with a dashpot element.  Equation 3.2 shows the canonical form of a linear Kelvin-Voigt 

element: 

 𝜎 = 𝐸𝜀 + 𝜂𝜀̇ (3.2) 

At its core, the Kelvin-Voigt model is that of a deformable solid, as a constant stress will 

result in the time-dependent relaxation to a strain value of that of an equivalent elastic 

model.  And opposed to the Maxwell model, the Kelvin-Voigt model is easily separable 

into elastic and viscous portions for problems with a characteristic strain. 

 A third common viscoelastic rheology, the four element Burgers model, combines 

a Maxwell element in series with a Kelvin-Voigt element.  The one-dimensional 

constitutive law is given by: 

 𝜎 + �
𝜂1
𝐸1

+
𝜂1
𝐸2

+
𝜂2
𝐸2
� �̇� +

𝜂1𝜂2
𝐸1𝐸2

�̈� = 𝜂1𝜀̇ +
𝜂1𝜂2
𝐸2

𝜀̈ (3.3) 
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where the subscript 1 corresponds to the Maxwell element and the subscript 2 

corresponds to the Kelvin-Voigt element.  The defining characteristics of a Burgers 

model are that there is both an instantaneous and a long-term viscous response controlled 

by the Maxwell element, but that the transition between these two is smoothed due to the 

viscous deformation of the Kelvin-Voigt element (see figure 3.2). 

 Recalling that ice is best represented by a stress dependent viscous term, the 

gravitational stress driving the flow of the ice stream cannot be separated from the tidal 

perturbation of the stress field.  As this limitation requires that our ice model can flow 

under its own weight, a fluid model is required, thus ruling out the (solid) Kelvin-Voigt 

model as an appropriate ice model.   

From the published literature, ice is commonly modeled as a four element Burgers 

body with a nonlinear Maxwell body and a linear Kelvin-Voigt element (e.g., Jellinek 

and Brill, 1956; Reeh et al., 2003; Gudmundsson, 2007; Tsai et al., 2008).  However, we 

opt to use a Maxwell material for ice in our modeling for two reasons.  First, Reeh et al. 

(2003) demonstrates that the use of the simpler Maxwell rheology to fit tidal flexure data 

is only slightly worse than the fit using the Burgers rheology.  Second, the experimental 

data of Jellinek and Brill (1956) suggests that the retardation time in the Kelvin-Voigt 

element is on the order of 102 seconds.  As our tidal forcing acts on the timescale between 

104 and 106 seconds, the influence of the Kelvin-Voigt element will be negligible 

compared to the behavior of the Maxwell element (shown in figure 3.2).  Figure 3.2 

demonstrates that the Maxwell element captures the initial elastic response and the 

tertiary creep of ice, with only the transitional region being poorly fit.   Thus, we use the 

following nonlinear Maxwell material model for the viscoelasticity of ice: 
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 𝜀̇ = 𝐴𝜎𝑛 +
�̇�
𝐸

 (3.4) 

3.1.2.2 The Maxwell Relaxation Time 

 In a Maxwell viscoelastic model the relative importance of elastic and viscous 

deformation in the material is quantified by a Maxwell relaxation time, 𝑇𝑀𝑎𝑥: 

 𝑇𝑀𝑎𝑥 =
𝜂
𝐸

 (3.5) 

If 𝑇𝑀𝑎𝑥is large, the material will response elastically to an applied load.  If  𝑇𝑀𝑎𝑥 is small, 

then the material’s response to an applied load will be viscous in nature.  However, tidal 

loading is not a constant force but rather acts as a time-variable stress.  The dimensionless 

Deborah number, De, quantifies the relative importance of the viscous or elastic response 

to the timescale of the loading function and is given by: 

 𝐷𝑒 =
𝑇𝑀𝑎𝑥
𝑡𝑓

 (3.6) 

where 𝑡𝑓 is the period of the forcing function.  If De is small, then the material’s response 

will be primarily viscous; if De is large, then the response will be primarily elastic.   

 Given the stress dependence of the effective viscosity of ice, De is inexorably tied 

to the amplitude of the deviatoric stress in the material, and will vary with the magnitude 

of the stress field in the material.  As such, we define a transitional stress, 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠, to be 

where the material’s response changes from being primarily viscous to primarily elastic, 

though in the region of this transitional stress, both components of deformation are 

important.  𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 is defined as: 

 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 = �𝐴𝐸𝑡𝑓�
−1𝑛 (3.7) 
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Stresses higher than 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 denote a viscously dominated response, while an elastic 

response dominates when the stresses fall below 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠.  As the frequencies of the tidal 

components vary, there are separate transitional stress levels for the semi-diurnal, diurnal, 

and fortnightly tides.  Table 3.1 summarizes the expected transitional stresses using a 

value of A for T=0°C through T=-25°C and a value of n=3 (Cuffey and Paterson, 2011). 

𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 varies between a few and a few hundred kPa, which is the same order of 

magnitude as background driving stresses and the tidal stresses in our ice stream models.  

Thus, we expect there to be an even partitioning of stress and deformation between ice’s 

elasticity and viscosity.  The ice’s response is unlikely to be well approximated by either 

a purely elastic or a purely viscous model.  Reducing Young’s modulus (while holding 

the viscosity coefficient fixed) increases the transitional stress to a viscously dominated 

response.  Thus, invoking damage as a mechanism to increase the compliance in the ice 

margins may reduce the effective stress support of the margins in an elastic model.  

However, such a damage model implies that the viscoelastic response of the ice margins 

will be less pronounced than that of the central ice unless the effective viscosity of the 

lateral margins is reduced along with the Young’s modulus.  

3.2 Strain-Weakening in the Shear Margins 

From the previous discussion, only damage in the shear margins provides the potential 

for large-scale elastic decoupling of an ice stream from its lateral margins.  We begin 

with a continuum damage mechanics formulation to provide some physical basis for 

introducing an inhomogeneous Young’s modulus into our three-dimensional elastic 

models from chapter 2.  We investigate two different profiles for spatial variations in 

elasticity.  We then discuss the implications of increasing compliance in the shear 
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margins, comparing our results to observations of both tidal stress-transmission and 

damage estimates from Antarctica. 

3.2.1 Continuum Damage Mechanics Formulation 

As the theoretical and observational constraints suggest that the variability of ice stream 

elasticity with the temperature and fabric is limited to a factor of two at best, we focus 

solely on the effect of strain-weakening on the elastic moduli of ice.  To model the 

impact of individual crevasses is intractable due to the lack of a complete understanding 

of crevasse formation and distribution (e.g., Cuffey and Paterson, 2011), and the 

computational burden such a model would require when considering an ensemble of 

crevasses.  However, the finite element formulation allows for spatially variable material 

parameters.  Implementing a continuum damage mechanics approximation of the damage 

due to crevassing potentially allows our models to connect crevassing with the effective 

material moduli of the ice, without needing to explicitly model individual fractures. 

 To parameterize damage, we consider a parameter D such that  

 𝜀̇ = 𝐴 �
𝜎

1 − 𝐷
�
𝑛

 (3.8) 

is the modification of the viscous (Glen) flow law due to the presence of damage in the 

given viscous element of the model.  This formulation is equivalent to following 

Kachnov-Rabotonov theory (Kachanov, 1958, 1986; Rabotnov, 1968) with no evolution 

of D, a fair assumption over the short timescales in our problem.  The damage parameter 

D can take a value between 0 (no damage) to 1 (complete plastic failure of element), and 

can be interpreted of a fraction of volume in the problem that can no longer support a 

load due to the opening of void space in the damaged body (see figure 3.3).  This linear 



Strain-Weakening and Viscoelasticity 110 

 
damage mechanics formulation breaks down at large damages (D>~0.90), where a real 

body would lose coherence.  However, for small to moderate damages, a linear damage 

mechanics formulation provides a physical connection between fracture and a reduction 

in effective material parameters. 

 For the modification of elastic moduli, this form of continuum damage maps 

directly into the linear elastic constitutive equation (Chaboche 1977; Lemaitre and 

Chaboche, 1978) as: 

 𝜀 = �
𝜎

𝐸(1 −𝐷)� (3.9) 

If the two rheological models are connected as a Maxwell viscoelastic material, it follows 

directly from conservation of effective stress that the rheological model with damage 

looks similar to equations 3.8 and 3.9, except that the viscous response D1 may be 

different from the elastic response D2 

 𝜀̇ = 𝐴 �
𝜎

1 − 𝐷1
�
𝑛

+ �
�̇�

𝐸(1 − 𝐷2)� (3.10) 

The above equation only holds if the values of D are held constant through time.  Figure 

3.3 shows a schematic for such a viscoelastic damage formulation.  For the analysis in 

this chapter, we will only consider equation 3.9 (linear elasticity with damage).  

 A critical piece of information is the value of D that approximates the expected 

damage within an ice stream’s shear margin.  We begin by making the assumption that 

𝐷1 = 𝐷2 = 𝐷 as there are neither laboratory nor observational constraints on the effects 

of damage on ice elasticity.  The results from Echelmeyer et al.’s (1994) study on the 

viscous enhancement of ice stream flow are used to approximate the viscous D.  
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Following the derivation of Borstad et al. (2012), the relationship between D and the 

enhancement factor En of Echelmeyer et al. is: 

 𝐸𝑛 = (1 − 𝐷)−𝑛 (3.11) 

Using the peak enhancement factor of 12 from Echelmeyer et al. and the canonical n=3 

gives D=0.56, which corresponds to a reduction in Young’s modulus by about a factor of 

two.  Given our uncertainty in the relationship between the D values of viscous and 

elastic ice, we extend our search to include values of D that change the Young’s modulus 

by up to three orders of magnitude.  Albeit unphysical, this broad selection of values 

allows us to empirically derive a robust relationship between D and Ltr.  Based on 

estimates of damage necessary for crevassing, discussed in more detail later, we expect 

that the physical range of values for D are between 0.0 and about 0.6 (e.g., Borstad et al., 

2011). 

We must still decide how to distribute damage throughout an ice stream.  We 

begin with models that have a linearly varying value of D=0 at the margins to a 

predetermined D at the edge of the ice stream (“continuous margins”).  We use these 

models to explore a large range of effective Young’s modulus values in order to 

characterize the relationship between the length-scale for transmission of stress  Ltr and 

the relative magnitude of the reduction of Young’s modulus in the margins (as discussed 

in section 3.2.2).  We then move to models where there is a step-function transition from 

D=0 to D≠0 at a predetermined shear margin boundary (“discrete margins”).  Such 

models explore the importance of the size of a shear margin on the value of Ltr using a 

pattern of D meant to approximate that seen viscously in ice streams (see section 3.2.3).  

Figure 3.4 shows sample profiles for both types of models. 
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3.2.2 Continuous Margin Results 

Figure 3.3 shows a representative stress state from a model with a linear variation in 

Young’s modulus of one order of magnitude between the compliant margins and the 

more rigid central ice.  While the stress state is similar to that of the homogeneous 

elasticity model in figure 2.6, there are important differences when the elasticity is 

inhomogeneous.  First, Ltr is longer throughout the model with the compliant margin than 

in the homogeneous model.  In this specific model, the length-scale for the transmission 

of stress is about 1.6 times longer than that of a homogeneous model.  Note that the value 

of Ltr is constant across the profile of the model ice stream (save immediately near the 

grounding line), even though the Young’s modulus is not.  Second, the continuous 

margin model concentrates stress at the center of the ice stream, as is apparent most 

readily in the longitudinal normal stress component.  In this stress component, the stress 

is almost an order of magnitude higher in the central regions of the ice stream with the 

inhomogeneous elasticity than with the homogeneous Young’s modulus.  The potential 

for concentration of stress in the central portion of the ice is another example of a three-

dimensional effect that simple flow-line models miss. 

 We considered twelve models with varying values of E at the lateral margins and 

central ice, ranging from ice 1000 times more compliant in the center to ice 1000 times 

more rigid in the center.  For each of these models, figure 3.6 shows the trend of the 

change in Ltr compared to the homogeneous model as a function of the ratio of E between 

the central and marginal ice.  Thus, as marginal ice is made progressively more 

compliant, an applied load will decay over longer distances.  The converse is also true for 

situations where the marginal ice is more rigid than the central ice.  Finally, the power 
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law form of the relationship between Ltr and E implied an effect for increasing the 

compliance of the margins.  Over the range of models investigated here, the maximum 

increase in Ltr is a factor of about 4.2 when the margins are 1000 times more compliant 

than the central ice.  The change to Ltr depends not on the absolute values for E in the 

model, but rather only on the ratio of EH and EL.   

3.2.3 Discrete Margin Results 

Figure 3.7 shows a representative distribution of the six stress components for a model 

with discrete ice margins chosen to be one quarter of the ice stream width.  When 

compared to the homogeneous elastic model in figure 2.6, the stress state in the 

inhomogeneous model looks similar in general pattern to the homogeneous model, but 

there is a noticeable perturbation in stress state near the transition between compliant 

margins and rigid central ice.  In the inhomogeneous model, stress is concentrated in 

either the central ice (longitudinal normal stress, 𝜎𝑥𝑥) or the margins (the other five 

components).  Unlike the continuous margins models, Ltr is not constant across a 

transverse profile of the ice stream.  Additionally, values for Ltr in these discrete margin 

models are larger than that of the homogeneous elastic models, just as was seen earlier in 

the continuous margins models.  

To quantify the increase in Ltr due to the presence of compliant margins, we 

consider the vertically-averaged value of Ltr derived from the equivalent stress, rather 

than component by component.  Figure 3.8 illustrates the behavior of different margin 

widths and Ltr for two models with discrete margins one order of magnitude more 

compliant (EH/EL=10) than that the central ice.  The first panel (A) shows the results for 

an ice stream 10 kilometers wide and 1 kilometer thick, while the second panel (B) shows 
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the results for an ice stream 20 kilometers wide but otherwise identical.  Consider first the 

left-hand plots, which show the transmission length-scales for eleven models that have 

discrete margins making up from 0% to 100% of the ice stream width at intervals of 10%.  

Circles represent the locations of the transition between the marginal and central ice.  We 

note three features: 

1) The values of Ltr are identical for models with 0% and 100% compliant 

margin widths.  This result is expected as these models equivalent to 

uniform elasticity. 

2) The variation of Ltr across the ice stream’s profile (i.e., in the x-

direction) is strongly dependent on the model parameters, such as the 

relative size of the margins and the absolute width of the ice stream.  

Take, for example, the 50% margin width and the 80% margin width 

profiles in panel A.  In the former, Ltr peaks in the marginal ice near the 

transition between the two rheologies and is slightly decreased in the 

central ice.  In the latter, Ltr in the central ice is elevated compared to 

that of the margins.  Further, note that the profiles of Ltr between the 

two models are different. 

3) The largest value of Ltr occurs in the models that have margins that 

make up 50% of the ice stream half-width or 25% of the ice stream full-

width. As an aside, we note that this margin width is similar to the best-

fit marginal width found by Echelmeyer and others (1994) for viscous 

flow models of Kamb Ice Stream.  More work is necessary to determine 

if the similarity in peak margin width between elastic and viscous 
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models is coincidental or if this result suggests that our assumption that 

D1=D2=D is permissible. 

4) The discontinuities in the profiles of Ltr are due to the use of the 

equivalent stress to define the transmission length-scale.  This jump in 

Ltr is caused by: one, the equivalent stress depends on the longitudinal 

stress (𝜎𝑥𝑥); two, the longitudinal stress can be discontinuous across the 

jump in Young’s modulus.  The displacements are continuous across 

the discontinuities in Young’s modulus. 

The right-hand plots in figure 3.8 demonstrate the relationship between margin 

size and Ltr for a tidal forcing.  These plots show the average value of the Ltr (with error 

bars indicating 1 standard error of the mean) as a function of relative margin width.  As 

mentioned earlier, we find that the maximum increase in Ltr relative to the homogeneous 

elastic model occurs when the shear margins are one quarter of the ice stream width.  

However, due to the polynomial form of Ltr as a function of margin width, even a fairly 

small shear margin can increase Ltr by a factor of 2 to 3.  Additionally, the average value 

of Ltr shows only a minor dependence on the geometry of the ice stream, as demonstrated 

by the small difference in maximum value of Ltr between 10 and 20 kilometer wide 

models.   

3.2.4 Strain-Weakening Discussion 

The results of our models incorporating inhomogeneous elasticity in the shear margins 

demonstrate that the nature and variability of ice’s elastic moduli within the ice stream 

can have a profound effect on the transmission of a tidal load inland of the grounding 

line.  This connection between elastic moduli and stress-transmission exists even though 
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the transmission of stress in homogeneous elastic models is independent of the elastic 

moduli.  Thus, if the elastic moduli of ice vary across an ice stream, it is not sufficient to 

calculate effective elastic moduli for the entire ice stream as this cannot correctly model 

the stress-transmission.   

While the relative increase in Ltr in our models is only between 1 and 3 times the 

value of Ltr in our homogeneous models for values of strain-weakening D that match 

those seen viscously, this variability represents a difference in many tens of kilometers of 

stress-transmission—the very length-scale of tidal stress-transmission seen geodetically.  

To our knowledge, there currently are no observations of in situ ice elasticity that suggest 

there is a reduction in Young’s modulus within the shear margins of ice streams.  

However, simple models of ice fracture and crevassing suggest that an ice stream’s shear 

margins should be more compliant than the (relatively) undamaged central portions of the 

ice stream. 

As independent constraints on the variability of elasticity do not exist, our results 

from these inhomogeneous finite element models define the range of potential parameter 

space necessary to explain the observed tidal signal from the GPS stations on Rutford and 

Bindschadler Ice Streams, rather than test specific values.  Referring back the values of 

Ltr found in section 2.4 for the homogeneous elastic models, figure 3.9 shows that an 

increase in the range of 2.67 (fortnightly tide) to 3.32 (semidiurnal tide) for Rutford Ice 

Stream and about 4.40 (semidiurnal tide) for Bindschadler Ice Stream from the 

homogeneous elastic stress decay length would be close enough to explain the amplitudes 

of displacement seen in the GPS records.   
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We can create an empirical margin-width dependence from our 20-kilometer-

wide model, fitting the model results shown in figure 3.8B.  We fit the model results 

using a polynomial fit of degree four as this is the lowest degree polynomial that falls 

within one standard error of the mean for the average stress decay length increase values.  

We also impose the added constraints that the end points must have a value of relative 𝐿𝐿�𝑡𝑡𝑡𝑡 

equal to 1 as our shear margin results must necessarily converge to the homogeneous 

elastic solution when there is no variation in elastic moduli.   

We now use the marginal-compliance relationship from figure 3.6 to define the 

dependence of changes in Ltr on the relative value of E in the compliant margins.   

We use these two fits to create a map in margin-width vs. compliance space that allows 

for the model to match the observations (figure 3.9).  Figure 3.9 shows the range of 

margin-widths and reductions in Young’s modulus necessary to increase the overall value 

of Ltr by certain amounts.  Not surprisingly, the maximum increase to Ltr occurs when the 

shear margins are about 50% of the ice stream half-width (25% of the ice stream full-

width), and when the lateral margins are substantially more compliant than the central ice 

stream.  This plot also shows the three lines in margin size-compliance ratio space that 

would be sufficient to match the values of 𝐿𝐿𝑡𝑡𝑡𝑡 found for compliant margins models 

approximating Bindschadler and Rutford Ice Streams to the observations of the decay of 

tidally induced displacements.  In these cases, the minimum values of D are found to be: 

0.988 for the fortnightly Rutford tide, 0.996 for the semidiurnal Rutford tide, and 0.999 

for the semidiurnal Bindschadler tide.   

To add some physical meaning to these estimates of D, we compare these 

modeled values to the critical damage threshold values of D, commonly named DC, found 
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in the literature.  From laboratory experiments, DC has been approximated from between 

0.45-0.56 for ice (Pralong and Funk, 2005; Duddu and Waisman, 2012).  From analysis 

and numerical inverse modeling of a continuum damage mechanical viscous model of the 

Larsen B Ice Shelf collapse, Borstad et al. (2012) found the value of DC for calving to be 

0.6±0.1.  To compare DC with our model results, we must remember that the above 

values for DC are for nonlinear viscous flow, such that the “enhancement” value is 

governed by equation 3.11.  Thus, the corresponding enhancements are between about 6 

(for 0.45) and 37 (for 0.7) using the canonical power law exponent for Glen flow of n=3.  

Unfortunately, even our smallest necessary enhancement has a value of 467.7 (102.67, for 

the fortnightly tide on Rutford Ice Stream), strongly suggesting that the necessary 

damage to have marginal compliance be the sole explanation of our models and 

observations is too high to be physically reasonable.  The situation is exacerbated for 

other tidal periods, with the necessary enhancement being factors of ~2,000 and ~25,000.  

Thus, marginal compliance alone is insufficient to bring our modeled stress decay length-

scales into line with those found observationally from GPS stations on the Rutford and 

Bindschadler Ice Streams. 

3.3 Viscoelasticity 

As strain-weakening of the shear margins does not explain the difference between our 

modeling results and the long-distance stress-transmission observed on some Antarctic 

ice streams, we now investigate the potential for viscoelasticity to decouple the ice stream 

from its lateral margins and thus increase the transmission length-scale of a tidal load.  

Section 3.3 begins with a discussion of the modeling considerations necessary in a 

nonlinear viscoelastic model that are otherwise not present in a linear elastic finite 
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element model.  We then present results from two types of viscoelastic models: one set 

with a homogeneous viscosity coefficient (section 3.3.2) and another with a temperature-

dependent viscosity coefficient (section 3.3.3).  The final portion of this section relates 

our viscoelastic modeling to the observed stress-transmission length-scales from 

Antarctica. 

3.3.1 Viscoelastic Model Considerations  

Incorporating both viscoelasticity and nonlinearity into our constitutive law for ice 

introduces many additional modeling concerns in order to correctly study the link 

between ocean tides and ice stream motion.  The first change is that our model has stress-

dependent viscosity, and thus stresses within the ice stream other than the tidal loading 

can no longer be neglected, as was done for the linear elastic models.  Also, as viscous 

deformation is a time-dependent process, our viscoelastic models must explicitly account 

for the time-variability of our tidal loading condition.  We address both of these issues in 

turn. 

3.3.1.1 Nonlinearity and the Loss of Superposition 

In our linear elastic models, the principle of linear superposition allowed us to isolate 

tidally induced deformation from the background driving stresses in our models.  With 

the change to a nonlinear viscoelastic rheology, we must now consider the stress state of 

our model ice stream more carefully as we cannot simply neglect the non-tidal stresses 

when designing our models.  As the ice’s viscosity depends on the total deviatoric stress 

throughout the ice stream, the effective viscosity of the ice stream will be both spatially 

and temporally variable.  The total deviatoric stress necessarily includes the tidal and 

non-tidal deviatoric stresses.  To correctly account for the “true” value of viscosity, our 
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models must now incorporate the deviatoric component of the gravitationally-derived 

driving stress and the extensional stress balance at the interface between the ice stream 

end and the ocean.   

(1) Driving Stress in the Ice Stream 

All glaciers, by definition, flow under their own weights, as discussed earlier in section 

1.4.  As a reminder, the shear (deviatoric) stress induced in the direction of flow is 

commonly taken as (e.g., Cuffey and Paterson, 2011): 

 𝜏𝑏 = 𝜌𝑔𝐻 sin𝛼 (3.12) 

where 𝛼 is the surface slope of the glacier.  The basal slope of the glacier is, to first order, 

not important in determining the basal shear stress.   

Very shallow surface slopes, and thus low basal shear stress values, are 

characteristic of the Antarctic ice streams with long-distance stress-transmission.  Using 

estimates of ice stream basal stress from ice streams on the Siple Coast (~ 100 kPa, 

Cuffey and Paterson, 2011), we estimate a reasonable surface slope of about 0.57 

degrees.  While a stress of 100 kPa is small when compared to the hydrostatic pressure at 

the base of these ice sheets (which can be upwards of 10 MPa), this driving stress is still 

larger than the stress change due to a one meter oceanic tide.  Furthermore, this deviatoric 

stress value suggests that ice is about ten orders of magnitude more viscous at the ice 

stream’s base than at the surface due to the stress dependence of the effective viscosity! 

 For our models, we apply only the downhill (i.e., deviatoric) portion of the 

gravitational driving stress.  Figure 3.10 shows our approach schematically.  The 

modeled ice stream is assumed to have a constant surface slope of α and thickness H, 

such that our deviatoric gravitational vector is at an angle 𝛼 to the model’s horizontal 
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coordinate axis.  This modeling approach is a permissible simplification of an ice 

stream’s geometry as the basal slope does not strongly affect the induced shear stress at 

the base and the shallow surface slope means that the ice stream’s thickness would not 

change dramatically over the length-scale of the tidal stress-transmission.   In the finite 

element formulation, we apply the horizontal component of gravity, with a magnitude of 

𝑔ℎ𝑜𝑡𝑡𝑖𝑧 = 𝑔 sin𝛼, to our model as a time-constant acceleration acting on the entire ice 

body. 

 Neglecting the non-deviatoric component of gravity is convenient as the model 

viscosity is independent of the hydrostatic stress and additionally removes the need to 

apply a pre-stress to cancel out the compression due to “turning on” gravity at the initial 

timestep.  However, at the ends of the ice stream, the hydrostatic pressure for real ice 

streams is not balanced completely by the ocean tide.  The excess hydrostatic pressure 

acts as a force that “pulls” the ice stream in the direction of flow, which causes a 

deviatoric extensional stress on the edge of the ice stream (Cuffey and Paterson, 2011).  

We discuss this extensional stress next. 

(2) Ocean-Ice Interface 

At the downstream edge of an ice stream, the hydrostatic pressure due to a glacier’s 

weight is resisted primarily by the hydrostatic force of the ocean acting on the ice shelf.  

Due to the dependence of the effective viscosity on the deviatoric stress, any mismatch in 

hydrostatic pressures between the ice stream and the ocean will result in a deviatoric 

stress that reduces the ice stream’s viscosity near the grounding line.  This deviatoric 

stress is independent of any flexural stresses caused by a rising and falling ice shelf.   
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 In Appendix 3A, we consider the effects of these stresses on the viscoelasticity 

deformation of an ice stream.  There we show that any extensional or flexural stresses do 

not perturb the effective viscosity near the grounding line enough to cause significant 

variation in our model results from those following the much simpler tidal condition used 

in the elastic models.  Therefore, we model the ocean tidal perturbation in  ice stream 

velocity as an oscillatory normal stress acting at the ice stream’s grounding line—the 

same configuration as in our linear elastic models. 

3.3.1.2 Time-Dependent Behavior 

Deformation of a viscoelastic (or more generally, viscous) material will inherently be 

time-dependent.  Thus, our models must accurately resolve the time-dependent behavior 

our ice stream system.  Time-dependence enters our problem in two ways: the time-

varying nature of the forcing function, and the time-dependence of ice stream’s tidal 

response.   

(1) Time-Dependent Loading 

Oscillations of the ocean tides represent a time-dependent force on an ice stream.  While 

there are numerous tidal frequencies, we focus on the three largest tidal constituents 

acting on ice streams: the semidiurnal, diurnal, and fortnightly tides.  The GPS surveys of 

Anandakrishnan et al. (2003), Gudmundsson (2007; 2008; 2011), and Winberry et al. 

(2009; 2011) all use the GPS vertical deformation of a station placed on the (floating) ice 

shelf as a measurement of the ocean tides.  The observed ocean tidal amplitude displays a 

strong beat frequency (see figure 3.11).  To approximate the amplitude of the tidal 

component, we select the two largest semidiurnal and diurnal components, along with the 

fortnightly tide, from the FES2004 tidal model (Lyard et al., 2006) to create a synthetic 
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tidal signal.  The tidal data is then fit using a nonlinear least squares algorithm to find the 

amplitude and phase of these five tidal components in the data from the Ross and 

Weddell Seas (data courtesy of S. Anandakrishnan and H. Gudmundsson).  For reference, 

the Ross Sea abuts the ice streams of the Siple Coast, while Rutford Ice Stream flows into 

the Weddell Sea.  Table 3.2 summarizes the tidal amplitudes and phases from FES2004 

and the observational fits, while figure 3.11 shows the real and synthetic tides for the 

Ross and Weddell Seas. 

 The agreement between the tidal model and the observations is not strong, with 

only the semidiurnal and diurnal components in the Weddell Sea coming close to 

matching.  As the point of this section is not to analyze the difference between tidal data 

and tidal models but rather to approximate the tidal amplitudes for our model ice stream, 

we choose to use the floating ice GPS stations for constraining the tidal forcing function.  

These data demonstrate that: 

1) The semidiurnal tide is stronger (i.e., larger amplitude) than the diurnal tide 

which in turn is stronger than the fortnightly tide in the Weddell Sea results, 

but not in the Ross Sea results. 

2) The fortnightly tide, while not always of the smallest amplitude, is 

subordinate to the either the semidiurnal or diurnal tide, depending on which 

is the dominant tidal amplitude. 

3) The maximum tidal amplitude has a one to two meter amplitude in the two 

major Antarctic seas.  While amplitudes may be larger locally (e.g., 

Gudmundsson, 2007), we will use a one meter tide as our characteristic 

amplitude. 
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 We use three tidal constituents (i.e., the semidiurnal tide, the diurnal tide, the 

fortnightly tide) as forcing functions in our nonlinear viscoelastic finite element models.  

For simplicity, we approximate the tidal periods of these tidal constituents as 12 hours, 24 

hours, and 14 days, respectively.  As a reminder, the three tidal constituents cannot 

strictly be separated due to the nonlinearity in this viscous deformation.  However, 

modeling the response of our ice stream model to a single tidal component is more 

straightforward and provides an estimate of the expected change in stress-transmission as 

a function of the tidal forcing period. 

(2) Time-Dependent Stress and Displacement Fields 

A viscoelastic medium will experience a phase delay between an applied oscillatory load 

and the deformation response.  In the context of ice streams under tidal forcing, this 

phase delay is expressed as a time-lag in the peak stress and displacement perturbation of 

the ice stream.  In the GPS observations of Rutford Ice Stream (Gudmundsson 2007, 

2008, 2011), a phase shift is both observed and seen to vary with distance inland of the 

grounding line. 

 In our models, we need to differentiate between the effects of the oscillatory 

loading of the ocean tides and those of the static loading due to the gravitational driving 

stress in the ice stream.  To this end, we run models both with and without the oscillatory 

component of the tide.  We then subtract the non-oscillatory results from the tidally-

forced models.  Due to the nonlinear viscoelasticity, the resulting stress field is not 

strictly the ice stream’s response to the oscillatory loading, but rather the change in ice 

stream response due to the addition of the time-variable component of the tide.  As the 

oscillatory load is several orders smaller than the static loads for most ice streams, we 
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expect that the response to the variation in total deviatoric stress due to the tides will be 

approximately linear, and thus the above approach provides results that are close to the 

ice stream’s response to the ocean tides alone. 

3.3.1.3 Temperature-Dependent Viscosity 

As mentioned in section 3.1.1, the viscosity of ice is strongly temperature dependent 

(e.g., Cuffey and Paterson, 2011; and references therein), with ice having reduced 

viscosity at higher temperatures.  Numerous laboratory experiments and field 

observations show that this temperature dependence takes the form of an Arrhenius 

relationship in the viscosity coefficient A, with two distinct regimes depending on the 

proximity of the ice temperature to the pressure melting point of ice (Weertman, 1983; 

Hooke and Hanson, 1986; Paterson, 1994).  The temperature dependence of the viscosity 

coefficient, from Cuffey and Paterson (2011), is: 
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(3.13) 

where T is measured in Kelvins. 

Antarctic ice streams have been observed to have a strong temperature gradient 

from base to surface (e.g., Engelhardt et al., 1990; Engelhardt and Kamb, 1993; 1998; 

Engelhardt 2004a/b), with some ice stream beds being up to twenty degrees Kelvin 

warmer than  the ice stream’s surface.  This temperature range corresponds to a variation 

in the viscosity coefficient by almost a factor of 60.  Therefore, we impose a temperature 
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gradient in our models and use a temperature-dependent viscosity.  We adopt an 

empirical fit of temperature data from Whillans Ice Stream as the temperature profile in 

all our models.  The temperature gradient of such a temperature profile is defined by 

Engelhardt and Kamb (1993) as: 

 
𝑑𝑇
𝑑𝑧

= 𝑞𝑏𝑒−𝑦
2 +

𝜆𝑎𝑢𝑙
𝜅

𝑒−𝑦2 � 𝑒−𝑡𝑡2𝑑𝑡
𝑦

0
 (3.14) 

where = 𝑧/𝑙, 𝑙 = 2𝜅𝐻/𝑎, 𝑞𝑏 is the basal temperature gradient, a is the accumulation rate, 

u is the ice stream horizontal velocity, 𝜅 is the thermal diffusivity, H is the ice stream 

thickness, and 𝜆 is the temperature gradient in air.  All values of these parameters, save 

for model geometries, are taken from Engelhardt and Kamb (1993).  In solving for the 

temperature profile, we set the basal temperature equal to the pressure melting point of 

ice, -0.7 °C.  The results based on a homogeneous temperature field are discussed in 

section 3.3.2., while the temperature-dependent results are discussed in section 3.3.3 

3.3.1.4 Enhanced Flow in the Margins 

Observations suggest that enhanced viscous flow exists in the shear margins of ice 

streams, with the enhanced viscous deformation in the marginal ice being up to twelve 

times that expected for models using homogeneous laboratory values of ice viscosity 

(e.g., Dahl-Jensen and Gundestrup, 1987; Echelmeyer and Wang, 1987; Paterson, 1991; 

Echelmeyer et al., 1994).  From equations 3.9 through 3.11, we expect that marginal ice 

would need a reduction to the value of the nonlinear viscosity coefficient by a value of 

about 0.56 to produce such an enhanced flow.  As increasing the elastic compliance of 

the margins of a model ice stream resulted in an increase in the distance a tidal load can 

be transmitted inland of the grounding line, we expect that a reduction in viscosity would 

produce a similar increase in the stress-transmission length-scale. 
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 However, we do not specifically model possible enhancement in both the elastic 

and viscous deformation of the shear margins in this thesis.  The relative influence of 

damage on the elastic and viscous deformation is not known, making any assumption 

about the interaction of D and En difficult to justify.  For example, if D is assumed to be 

constant between the viscous and elastic enhancement, then the viscosity would 

decreased by (1 − 𝐷)𝑛−1 compared to the drop in elasticity of (1 − 𝐷).  The result is a 

decrease in the Maxwell time of the margins, meaning that the viscous response would be 

relatively more important.  However, if En is assumed to be constant between the viscous 

and elastic enhancement, then the Maxwell time is unaffected in the marginal ice, 

suggesting that viscoelastic deformation is no more important in the margins than in the 

central ice.  Finally, if the presence of crevassing has a larger effect on the elasticity 

relative to the viscosity, then the Maxwell time of the margins would be increased 

relative to the undamaged ice, suggesting that viscoelastic deformation would be most 

important in the undamaged portions of the ice stream.  A more complete understanding 

of the role of damage in influencing the viscoelastic deformation of ice is necessary to 

have a physically based model for viscoelastic damage in the shear margins.  While it is 

possible to approach the problem of viscoelastic damage in the same manner as we did 

for elastic damage, the increased computational time of the nonlinear viscoelastic models 

puts such an effort well beyond the scope of this chapter. 

3.3.2 Homogeneous Viscoelastic Modeling Results 

We describe results from three viscoelastic models using homogeneous viscosity 

(assuming 0 °C ice) and tidal frequencies corresponding to the semidiurnal, diurnal, and 

fortnightly ocean tides.  Recall that for each model, two versions are run: one with only 
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the background gravitational body force (“background model”) and a second with both 

the background force and the axial tidal load (“tidal model”).  Figure 3.12 shows a 

sample stress field for the basal profile of the semidiurnal tidal model at the peak tidal 

amplitude with the background model subtracted.  Qualitatively, the stress distribution 

for the viscoelasticity model is similar to that of the elastic model (figure 2.6), though 

there are clearly some differences in the shear margins of the ice stream.  The value of Ltr 

can be seen in multiple stress components and does not vary substantially between the 

different stress components.  As with the elastic model, tidal stress decays exponentially 

with distance inland, and while the peak normal stress occurs in the center of the ice 

stream, the decay length-scale Ltr is roughly constant across the ice stream’s profile.   

Figures 3.13 to 3.15 show the value of Ltr as a function of depth at the centerline 

of the ice stream for the models forced at the three tidal frequencies.  As seen in panels A, 

the stress-transmission length-scale does not vary greatly with depth for any of the 

models.  However, the value of Ltr varies with the period of the forcing frequency.  For 

the semidiurnal, diurnal, and fortnightly tides, the length-scales are 15.6 kilometers, 15.0 

kilometers, and 40.9 kilometers, respectively.  Ltr for the corresponding elastic model is 

12.2 km, meaning such viscoelastic values of Ltr correspond to 123%, 118%, and 335% 

of the elastic value.  Thus, using viscoelasticity does increase the extent of tidal stress-

transmission relative to the elastic model.   

 Another major change in the move from elasticity to viscoelasticity is that we 

must consider the time-history of the stress solution, not just the stress state at a single 

moment.  As a demonstration, figure 3.15 compares the value of 𝜎𝑦𝑦 at the base of the 

center of the model ice stream forced with the semidiurnal tide as a function of time at 
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several locations inland of the grounding line.  In addition to the decay of the stress 

amplitude with distance inland of the grounding line, there is a phase delay in the ice 

stream’s stress response to the tidal load that also varies with distance inland of the 

grounding line.  In order to find the correct amplitude and phase, we fit stress profiles 

along the modeled ice stream’s length with: 

 𝜎𝑦𝑦 = 𝐴 sin(𝜔𝑡 + 𝜑) (3.15) 

where 𝐴 is the stress amplitude, 𝜔 is the tidal frequency of the applied tide, and 𝜑 is the 

phase delay.  Panels B and C of figure 3.12 to 3.14 show the fitted amplitudes and phase 

delays for the centerline profiles over of the ice stream model over the first 100 

kilometers of the ice stream.  The dashed lines correspond to the 95% confidence 

intervals of the fits.  The slopes of the amplitude and phase are the values of the length-

scale for the decay of the tidal stress, Ltr, and the phase velocity, c, respectively.  Table 

6.3 summarizes the values of Ltr and c for the homogeneous models. 

The ice stream’s response to all three forcing frequencies displays a phase delay 

that increases with distance away from the grounding line, as seen in panel C.  However, 

the phase does not seem to correlate with Ltr in these models.  The phase velocities of the 

three tides are, in order of increasing tidal period, 4.6 m/s, 11.1 m/s, and 0.60 m/s.  The 

phase velocities are not monotonically increasing with tidal period as the fortnightly tide 

has a significantly longer tidal period than the shorter period tides, but not a significantly 

increased phase delay. 

3.3.3 Temperature-Dependent Viscosity Results 

For our temperature-dependent viscosity models, we present results for the isolated 

semidiurnal, diurnal, and fortnightly tidal components, as well as a single model that 
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forces the models with a combined tidal forcing function based on the amplitudes of the 

Weddel Sea’s tides (see Table 3.2).  Figures 3.17 to 3.20 show the values of Ltr, stress, 

and phase delay for the semidiurnal, diurnal, fortnightly, and combined tidal signal.   

As with the homogeneous viscosity model, all three viscoelastic models have 

larger values of Ltr than the homogeneous elastic model.  The fortnightly tide has a longer 

Ltr  than the other two tides while the diurnal tide in turn has a larger value of Ltr than the 

semidiurnal tide.  Additionally, the absolute amplitude of the change is less pronounced 

than in the homogeneous case, with the semidiurnal Ltr being 101% of the elastic case, 

the diurnal tide’s Ltr being about 102%, and the fortnightly tide’s Ltr being 145%.   

In all three cases, the phase delay at the grounding line is zero degrees, suggesting 

a purely elastic response.  The phase delay increases with inland distance, with the 

maximum phase delay reaching about 15 degrees for the semidiurnal tide, 90 degrees for 

the diurnal tide, and 270 degrees for the fortnightly tide.  Unlike the homogeneous model, 

the increase in the phase delay correlates with an increase in Ltr.  Such is a result is due to 

the increased average viscosity, and thus the value of Tmax, of the temperature-dependent 

ice stream relative to the homogeneous ice stream.  We discuss the phase response to the 

ocean tides further in chapter 4.  Finally, the phase velocities of the three tides are 1.8 

m/s, 1.7 m/s, and 0.94 m/s for the semidiurnal, diurnal, and fortnightly tides, respectively. 

3.3.4 Viscoelasticity Discussion 

Our primary interest in modeling viscoelasticity was to determine if stress-dependence of 

viscosity would result in a substantial decoupling of the ice stream from its lateral 

margins due to the higher stress concentration along the lateral margins.  Recalling our 

earlier comparisons to the estimated tidal stress decay over Bindschadler and Rutford Ice 
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Streams (figure 2.11), viscoelasticity would need to increase the value of Ltr by between a 

factor of two to five to match the field observations of Anandakrishanan et al. (2003) and 

Gudmundsson (2007; 2008; 2011).  While models with a homogeneous viscosity at long 

tidal periods have values of Ltr that fall into the range necessary to fit the Antarctic 

observations, incorporating a temperature-dependency to the viscosity severely 

diminishes the increase in Ltr relative to the elastic model.  For these temperature-

dependent models, the increase in Ltr is less than 50%—insufficient to match the 

observations. 

 The lack of a substantial increase in Ltr due to the ice viscosity calls into question 

our assumption that incorporating nonlinear viscoelasticity will substantially reduce the 

viscosity in the shear margins.  However, as figure 3.20 shows, the shear margins have a 

substantially reduced viscosity when compared to the central ice.  This viscosity contrast 

is found to be essentially independent of the tidal forcing, suggesting that the background 

flow, even for very low driving stresses, is large enough that the tidal forcing does not 

strongly perturb the effective ice viscosity.  As such, response of an ice stream to a tidal 

load can be approximated as a linear viscoelastic as long as the ice stream is modeled 

with a spatially variable effective linear viscosity.  Such a simplification allows the use of 

the principle of linear superposition and thus decouples the effects of the tides from any 

background stresses.  Clearly linear models are also less computationally expensive, 

allowing us to explore a wider range of model parameters. 

However, the large drop in viscosity in the shear margins fails to cause a 

substantial increase in Ltr.  The simplest explanation is that while the ice is less viscous in 

the shear margins, the overall value of the viscosity is too still large to promote 
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substantial viscous deformation.  When compared with approximations of linear ice 

viscosities, the smallest viscosities in our models are about two orders of magnitude 

larger than those found for the solid response of laboratory ice (e.g., 1e12 Pa·s, from 

Jellinek and Brill, 1956).  As the smallest Maxwell time for our modeled ice stream is 

about 104 seconds (~ 3 hours), the model ice stream responds primarily as an elastic 

material.  Only when the model is forced with long period oscillations (e.g., the 

fortnightly tide, with a period of ~ 106 seconds) does the viscoelasticity of the ice stream 

substantial influence the stress-transmission length-scale.  Such an explanation matches 

the modeling result that a temperature-dependent viscosity has a smaller impact on the 

transmission length-scale than the equivalent homogeneous model.  As our homogeneous 

model is calibrated to match ice at the melting point, the homogeneous model has an 

average effective viscosity that is about 30 times smaller than the average effective 

viscosity in the temperature-dependent model.  For the temperature-dependent models, 

the larger viscosity in the body causes the ice response to be more elastic in nature, 

explaining the diminished change in Ltr from the viscoelastic model. 

 Our results demonstrate that a viscoelastic ice stream will have a phase delay in 

the ice’s response to a tidal loading that is distance dependent, whereas a linear elastic ice 

stream will never have an induced tidal phase delay.  While our results are too limited to 

draw any sweeping conclusions about the interplay between the phase delay, tidal forcing 

frequency, and the effective viscosity of the ice, the results do suggest that a measureable 

phase delay in the tidal response can provide information about the viscoelastic behavior 

of the ice.  We explore this idea further in the next chapter. 
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3.4 Summary and Conclusions 

We explored changes in the overall state of stress in an ice stream due to two different 

rheological modifications to a homogeneous linear elastic rheology.  The goal was to 

determine if either an increased elastic compliance in the shear margins or nonlinear 

viscoelastic effects would decouple the ice stream from its lateral margins to such an 

extent as to explain the discrepancy between the short stress-transmission length-scales of 

our models with the large spatial extent of tidally perturbed surface displacement 

observations from some Antarctic ice streams.  We find that neither of these two 

rheological effects have sufficient input on estimates of Ltr to explain differences between 

our models and observations.     

The first portion of this chapter considered models using a linear continuum 

damage mechanics formulation of crevassing in the highly-deformed shear margins of ice 

streams to reduce the margins’ effective elasticity.  Our models demonstrated that the 

resulting inhomogeneity in ice elasticity causes a net increase in Ltr for a tidal load if the 

marginal ice is more compliant than the central ice.  While a perfect constraint on the 

damage in the ice stream margins is not well established, we assume that the upper bound 

on damage for ice calving is an approximate bound on the marginal damage.  Using this 

constraint, the magnitude of the damage necessary to rectify the observations and our 

model results must be unrealistically large. 

The second rheological consideration is the impact of incorporating a nonlinear 

viscoelastic constitutive law for ice instead of the linear elastic law used in chapter 2.  

The hypothesis was that the stress-dependent viscous component of the viscoelastic 

rheology would decouple the ice stream from surrounding ice by reducing the viscosity 
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of the shear margins due to the large shear stresses in these margins.  Our viscoelastic 

models demonstrated that generally, viscoelasticity increases Ltr and that the viscous 

response is stronger for longer period tidal forcings.  However, for a model incorporating 

the temperature dependence of the viscosity coefficient of the ice stream approximating 

the temperature profile of Antarctic ice streams, viscosity remains too large to increase 

the stress-transmission length-scale of tidal load by more than about 50% compared to 

the elastic model.  Ultimately, due to the low driving stresses that control the magnitude 

of the effective viscosity within the model ice stream, for the Antarctic ice streams of 

interest, viscoelasticity cannot increase Ltr enough to rectify the observations and the 

model results. 

 Figure 3.21, an updated version of figure 2.11, demonstrates graphically that the 

decay of displacements is still too severe to match the maximum observed displacement 

if the influence of physically reasonable damage or viscoelasticity is added to our models.  

Recall that for linear elasticity, an exponential decay of stress corresponds to an 

exponential decay of displacement with the same decay length-scale.  Thus, using a value 

of Ltr calculated from the tidal stress-transmission can be used to represent the decay of 

tidally induced displacements with distance inland of the grounding line.  For nonlinear 

viscoelastic models, as the total stress state is dominated by the elastically supported 

stresses it is still reasonable to approximate the displacement decay using the stress-

transmission length-scale.  The estimated Ltr for elastic model geometries approximating 

Bindschadler and Rutford Ice Streams are approximately 70 and 40 kilometers, 

respectively (GPS data reported in Anandakrishnan and others, 2003; Gudmundsson, 

2007 and was provided by S. Anandakrishnan and H. Gudmundsson).  The increase in 
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the stress-transmission length-scale is 60% for the maximum reasonable damage model.  

In our viscoelastic models, the increase in Ltr for the semidiurnal tidal forcing is about 1% 

while for the fortnightly forcing the increase in Ltr is about 45%.  Such values are 

insufficient to match the observed stress-transmission length-scales of 265 and 110 

kilometers, respectively for Bindschadler and Rutford Ice Streams. 

 The models presented here draw into question the hypothesis that the observed 

influence of ocean tides on ice stream motion occurs as elastic transmission through the 

bulk of the ice stream itself.  This result implies one of two possible conclusions: one, 

that there is a mechanism not explored here that almost completely decouples the ice 

stream from its shear margins, essentially reducing the lateral support of the ice stream to 

zero; or two, that a mechanism external to the ice stream bulk is necessary to explain the 

tidal component of ice stream motion.  The uniform flow-line models, which are the 

current state-of-the-art, implicitly assume the first, though we have demonstrated here 

that the ice streams considered here are not wide “enough” to neglect the resistance of the 

lateral margins.  Furthermore, even the very name of the shear margins implies that there 

must be an amount of lateral support sufficient to induce shear in the ice stream’s 

margins, making large-scale decoupling very unlikely.  

Thus, we conclude that a process external to the ice stream is the most likely 

mechanism for allowing the impact of ocean tidal loads to extend far inland of the 

grounding line.  While not explored in detail here, our preferred hypothesis is that the 

ocean tides perturb the nature of streaming through the subglacial hydrologic network.  

As the basal traction beneath these fast-moving ice streams must be small as to encourage 

sliding and as these Antarctic ice streams are underlain by water-logged tills (e.g., Alley 
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et al, 1986; Smith, 1997; Engelhardt and Kamb, 1998; Tulaczyk et al., 2000a; 

Adalgeirsdottir et al., 2008; Raymond Pralong and Gudmundsson, 2011), the fluid 

pressure within the subglacial till is likely sufficient to cause the till to deform plastically.  

Our hypothesis is that the change in ocean tidal height can move the onset of streaming, 

the transition from slow- to fast-moving ice at the upstream edge of the ice stream, inland 

and seaward over the course of a tidal cycle.  As demonstrated by figure 3.22, when the 

onset of streaming is pushed inland, the ice stream at a given point should increase 

velocity as a longer portion of the glacier is streaming.  The opposite is true when the 

onset of streaming moves towards the ocean.  Furthermore, as the magnitude of the fluid 

pressure perturbation due to the ocean tide should decay with distance inland of the 

grounding line, the effect is expect to be most pronounced near the grounding line.   

Perhaps this distance dependence on the subglacial tidal pressure could explain the phase 

delay between ocean amplitude and the ice stream’s response to changes in ocean tide. 

The distance the tidal pressure change travels could easily be farther inland than 

the 5 kilometers zone through which the grounding line moves due to the ocean tides 

(e.g., Stephenson, 1984; Rignot, 1998; Heinert and Riedel, 2007; Brunt et al., 2010).  As 

the water pressure within the basal till is not constrained by the ice stream’s width (the 

ice stream dimensions controlling Ltr) but rather by the hydraulic properties of the 

subglacial drainage network, such a pressure modulation could potentially reach farther 

inland than a tidal load acting through the bulk of the ice stream does.  However, any 

further discussion of such a process relies on quantifying the spatial extent that ocean 

tides are ‘felt’ through the subglacial hydrologic network, which is beyond the scope of 

this chapter.  
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 Variable Names Units 

A Viscosity coefficient Pa-n s-1 
a Accumulation rate kg/yr 
C Phase velocity m/s 
D Damage parameter -- 

DC Critical damage parameter -- 
D1 Viscous damage parameter -- 
D2 Elastic damage parameter -- 
De Deborah number -- 

E Young’s modulus Pa 
Eeff Effective Young’s modulus Pa 
EH Higher Young’s modulus Pa 
EL Lower Young’s modulus Pa 

En Enhancement factor == 
𝑔 Gravitational acceleration m s-2 

ghoriz Horizontal component of 
gravitation acceleration 

m s-2 

𝐻 Ice stream thickness m 
𝐻𝐼 Cliff height m 
𝐿𝐿𝑡𝑡𝑡𝑡 Stress-transmission length-scale km 
𝑙 Diffusion length-scale km 

N Stress exponent -- 
qb Basal temperature gradient °C/m 
T Temperature °C 

𝑇𝑚𝑎𝑥 Maxwell relaxation time s 
T Time s 
tf Forcing timescale s 
𝑢 Ice stream velocity m/s 
𝑥 Ice stream transverse coordinate km 
y Dimensionless depth -- 
Z Depth m 
𝛼 Surface slope ° 
𝜀 Strain -- 
𝜂 Viscosity Pa s 
𝜅 Thermal diffusivity m2 s 
𝜆 Temperature gradient in air °C/m 
𝜈 Poisson’s ratio -- 
𝜌 Ice density kg m-3 
𝜎 Stress Pa 
𝜎𝑖𝑗 Stress component Pa 

𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 Transitional stress Pa 
𝜏𝑏 Basal stress Pa 
𝜑 Phase delay ° 
𝜔 Forcing frequency s-1 

" � " Normalized quantity  
" � " Non-dimensionalized quantity  
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Figure 3.1: Schematic views of the one-dimensional Maxwell, Kelvin-Voigt, and 

Burgers viscoelastic models.  The models are made up of spring and dashpot elements, 

with the associated moduli shown next to each element.   
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Figure 3.2: Comparison of the response of a one-dimensional Maxwell (blue) and 

Burgers model (red).  In the upper panel, a constant stress is applied to the two materials, 

and the released at an arbitrary time.  The Burgers model has a tapered response due to 

the solid element, but converges on the Maxwell model’s response.  In the lower panel, 

the oscillatory response of a Maxwell material and the response of a Burgers material are 

plotted as a function of dimensionless time.  The Burgers model has a Kelvin-Voigt 

element that has a retardation time that is 100 times smaller than the relaxation time of 

the Maxwell material.  Such a model is a approximately what is expected for ice (e.g., 

Jellinek and Brill, 1956).  The oscillatory responses of the two rheologies are negligibly 

different.  
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Figure 3.3: Schematic of the continuum damage mechanics formulation.  The left panel 

shows the undamaged uniaxial strain of an elastic material.  The right panel shows the 

strain of a damaged version of the same uniaxial strain.  As the damage parameter in this 

example is chosen to be D=0.5, the total strain is twice the undamaged version, as the 

effective Young’s modulus of the damaged material is 𝐸𝑒𝑓𝑓 = (1 − 𝐷)𝐸 = 0.5𝐸.  
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Figure 3.4: Diagram of the elasticity and damage profiles used in our marginal analysis 

models.  The panel on the left shows the continuous margin model, while the right panel 

shows the discrete margin model.  In each panel, the damage parameter D is plotted in 

red while the effective Young’s modulus E is plotted in blue.  The profiles are constant 

with inland distance of the grounding line.  The grounding line is marked with arrows, as 

the grounding line is the location of the applied tidal forcing. 
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Figure 3.5: Representative stress state for a continuous margin model that has a one order 

of magnitude variation in Young’s modulus between the central (strong) ice and the 

marginal (weak) ice.  The transmission length-scale Ltr is shown on some of the stress 

components.  Note that near the grounding line, the stress is elevated, but that away from 

the grounding line, the value of Ltr is constant along the transverse profile of the ice 

stream. 
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Figure 3.6: Change in average Ltr increase for models with continuous margins as a 

function of relative Young’s moduli between the margins and central ice.  The relative 

values of central Young’s modulus, 𝐸𝐻, and marginal Young’s modulus, 𝐸𝐿, listed next to 

the corresponding data point.  Error bars represent one standard error of the mean.  The 

dashed line is a best-fit power law function.  The equation for the fit is: 𝐿𝐿�𝑡𝑡𝑡𝑡 = 0.699 ∗

1.790log (𝐸�) + 0.392, where 𝐸� is the ratio of the Young’s modulus in the central ice 

divided by the Young’s modulus of the lateral margins.   

  

Relative Transmission Length 
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Figure 3.7: Representative stress distribution for a model with the same geometry as 

figures 2.6 and 3.5, but with ice margins that are one quarter of the ice stream’s total 

width.  These margins are a factor of 10 more compliant than the central ice.  A variable 

Ltr as a function of transverse location is highlighted in the  𝜎𝑥𝑥 component of stress. 

  

𝐿𝐿𝑡𝑡𝑡𝑡1 

𝐿𝐿𝑡𝑡𝑡𝑡2 
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Figure 3.8: The relationship between the marginal width and Ltr compared to a uniform 

model for discrete margins.  Top figures are for a model 10 kilometers wide, while 

bottom figures are for a model 20 kilometers wide.  Figures on the left show the 

transverse profile of Ltr, with select profiles dashed to aid with visibility.  Circles 

represent the location of the edge of the ice margins.  The models that have homogeneous 

elasticity (0% and 100% width shear margins) are plotted in red.  Figures on the right 

show the increase of the relative values of Ltr as a function of shear margin width.  The 

error bars indicate one standard error of the mean.  The fit for figure 3.8B, as described in 

the main test, is:  𝐿𝐿�𝑡𝑡𝑡𝑡 = 𝐿𝑡𝑟
𝐿𝑡𝑟,ℎ𝑜𝑚𝑜𝑔

= −11.94𝑥�4 + 25.45𝑥�3 − 23.14𝑥�2 + 9.64𝑥� + 1, where 𝑥� is 

the non-dimensional width of the marginal shear zone, ranging from 0 to 1.  

Transmission Length (km) 

Relative Increase in 𝐿𝐿𝑡𝑡𝑡𝑡 Relative Increase in 𝐿𝐿𝑡𝑡𝑡𝑡 

Transmission Length (km) 
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Figure 3.9: Young’s modulus and margin width space for the increase in Ltr for a discrete 

margin model relative to the homogeneous elastic model described in chapter 2.  The 

three bolded contours correspond to the conditions necessary to single-handedly explain 

the observations of the Rutford fortnightly tidal signal 4(2.67), the Rutford semidiurnal 

tidal signal (3.32), and the Bindschadler semidiurnal tide (4.40).  

Relative Value of Transmission Length-scale 𝐿𝐿𝑡𝑡𝑡𝑡 
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Figure 3.10: Conceptual and finite element model implementation of the gravitational 

driving stress.  While in the conceptual model, there is a surface slope 𝛼, this is 

approximated by applying the deviatoric (horizontal) component of the gravitational 

acceleration, with a magnitude of 𝑔 sin𝛼.  The finite element model also shows the two 

temperature profiles used in our viscoelastic models.  The red line is the homogeneous 

temperature profile at 0 °𝐶, while the blue curve is the temperature profile defined in 

equation 3.14.    
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Figure 3.11: Comparison of the global tidal model FES2004 (red) to a five-component fit 

of tide-height data (blue) from the Weddell and Ross Seas.  Tidal amplitudes and phases 

are listed in table 3.2.  
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Figure 3.12: Stress state at the base of a modeled ice stream ten kilometers wide, one 

kilometer thick, and forced by a semidiurnal one meter tide.  The stress values plotted are 

the “tidal” model with a “background” model subtracted, as discussed in section 3.3.4.  

The physical length of 𝐿𝐿𝑡𝑡𝑡𝑡 is drawn on the stress components where such a distance is 

easily seen. 

𝐿𝐿
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Figure 3.13: Model results for a viscoelastic model with a uniform temperature profile 

that is forced by a semidiurnal tide.  Panel A shows the calculated values of 𝐿𝐿𝑡𝑡𝑡𝑡 for depth 

profiles of the stress.  The average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 15.63±0.04 km.  Panel B shows the 

value of the longitudinal normal stress (𝜎𝑦𝑦) as a function of horizontal coordinate.  Panel 

C shows the fitted phase shift 𝜑 as a function of horizontal coordinate.  In panels B and 

C, the dashed lines correspond to the 95% confidence interval values of the fit described 

in equation 3.15.  

A
 

B
 C
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Figure 3.14: Model results for a homogeneous viscoelastic model forced by a diurnal 

tide.  The values in the three panels match the description in figure 3.13.  The average 

value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 15.04±0.04 km.   
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B
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Figure 3.15: Model results for a homogeneous viscoelastic model forced by a fortnightly 

tide.  The values in the three panels match the description in figure 3.13. The average 

value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 40.87±0.47 km.   
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B
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Figure 3.16: Model results and fits for locations on the model surface at the grounding 

line, and 5, 10, and 15 kilometers inland of the grounding line.  The model has a 

homogeneous viscoelastic rheology and is forced with a semidiurnal tide.  The blue lines 

are the model output, the solid red lines are the model fits using equation 3.15, and the 

dashed red lines are the 95% confidence intervals.  The tidal stress diminished with 

distance inland of the grounding line, and the phase of the stress becomes increasingly 

delayed relative to the forcing frequency, which has a phase of zero degrees. 
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Figure 3.17: Model results for a temperature-dependent viscoelastic model forced by a 

semidiurnal tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 12.81±0.001 km.    
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Figure 3.18: Model results for a temperature-dependent viscoelastic model forced by a 

diurnal tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 12.91±0.002 km.   
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Figure 3.19: Model results for a temperature-dependent viscoelastic model forced by a 

fortnightly tide.  The values in the three panels match the description in figure 3.13.  The 

average value of 𝐿𝐿𝑡𝑡𝑡𝑡 is 17.72±0.03 km.   
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Figure 3.20: Figure showing the basal effective viscosity of our semidiurnal models for 

the homogeneous viscosity model.  This figure demonstrates that the shear margins have 

substantially reduced viscosity relative to the central ice.  
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Figure 3.21: An updated version of figure 2.11 to reflect the added maximum effects of 

elastic damage in the shear margins (dashed) and temperature-dependent viscoelasticity 

(dotted).  The solid line shows the linear elastic solution.  The colors of the circles (data 

points) and lines refer to: blue, Rutford fortnightly tide; red, Rutford semidiurnal tide; 

black, Bindschadler semidiurnal tide.  The upper panel shows the normalized amplitude 

of each tidal signal, while the lower panel shows the true amplitude. 
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Figure 3.22: Schematic view of our hydrology hypothesis at a neutral, high, and low tidal 

amplitude, respectively.  The triangles represent GPS stations on the surface of the ice 

stream and ice shelf.  The brown layer represents the subglacial till.  The onset of 

streaming is shown as a vertical line, and should vary in position with changes in the 

ocean tidal amplitude.  Then the onset of streaming is farther inland, the GPS stations 

move faster relative to a neutral position as more of the ice is streaming.  Furthermore, 

when the onset of streaming is closer to the grounding line, the relative velocity of the 

GPS stations is smaller than at a neutral tide.  
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  Tidal Period E (GPa) 0°C -5°C -10°C -15°C -20°C -25°C 

S 10 31.06 49.89 81.33 104.99 138.89 184.50 
S 1 98.21 157.77 257.17 332.01 439.21 583.45 
D 10 21.96 35.28 57.51 74.24 98.21 130.46 
D 1 69.44 111.56 181.85 234.77 310.56 412.56 
F 10 5.87 9.43 15.37 19.84 26.25 34.87 
F 1 18.56 29.82 48.60 62.74 83.00 110.26 

Table 3.1: Transitional stresses 𝜎𝑡𝑡𝑡𝑡𝑎𝑛𝑠 for a range of ice temperatures, tidal frequencies, 

and Young’s moduli.  The transitional stress is defined in equation 3.7 and related 

discussion is in section 3.1.2.2.  All values in table 3.1 are in kPa.  The tidal period 

category uses the following abbreviations: S for semidiurnal, D for diurnal, and F for 

fortnightly. 
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 Semidiurnal Diurnal Fortnightly 
 M2 S2/N2* K1 O1 Mf 
 Amp Phase Amp Phase Amp Phase Amp Phase Amp Phase 

Weddell 
Data 1.52 35 0.843 339 0.620 11 0.497 57 0.0652 66 

Weddell 
FES2004 1.30 59 0.886 92 0.419 62 0.405 56 0.0301 198 

Ross Data 0.105 325 0.119 108 0.587 274 0.432 348 0.0286 5 
Ross 

FES2004 0.012 30 0.028 352 0.367 316 0.261 295 0.0313 205 

Table 3.2: Observational and tidal model amplitudes (in meters) and phases (in degrees) 

for the Weddell and Ross Seas.  The flagged component of the semidiurnal tide is the 

only component that had a varying second-largest tidal component, with the S2 being 

subdominant in the Weddell Sea while the N2 being so in the Ross Sea.  Note that the 

agreement between the tidal model and the floating ice data is not great (see text for 

discussion). 
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Tidal Period Applied Force Viscosity Ltr (km) c (m/s) 

S Full Temp. 14.4 -- 
S Simple Temp. 12.8 1.8 
S Simple Homog. 15.6 4.6 
D Full Temp. 13.1 -- 
D Simple Temp. 12.9 1.7 
D Simple Homog. 15.0 11.1 
F Simple Temp. 17.7 0.94 
F Simple Homog. 40.9 0.60 

Table 3.3: Calculated values for the length-scale of stress-transmission in our viscoelastic 

models.  The tide column describes the forcing frequency of the applied ocean load.  The 

applied load defines the load as either the full tidal condition or the simple tidal condition 

(see Appendix 3A).  The viscosity column defines if the given model for nonlinear 

viscosity used a temperature-dependent viscosity or a homogeneous viscosity coefficient.  

The values of Ltr are quoted in kilometers.  The phase velocity, c, is the slope of the phase 

vs. distance plot, and is shown in units of m/s.  Note that no phase velocity is calculated 

for the “full” tidal forcing functions.  The tidal period category uses the following 

abbreviations: S for semidiurnal, D for diurnal, and F for fortnightly. 
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Appendix 3A: Full Tidal Loading vs. Partial Tidal Loading 

Following the rationale of Cuffey and Paterson, 2011 (and references therein), the stress 

balance for an ice stream/shelf system would involve balancing the hydrostatic pressure 

at the edge of the ice shelf and that of the ocean.  As the ice shelf is floating, there is a net 

“pull” on the ice stream due to the excess pressure in the ice shelf compared to that of the 

ocean.  As our viscosity is stress dependent, to be strictly accurate, we need to account 

for this end stress in our models to accurately model the viscous deformation in the ice 

stream.  However, as the problem is more numerically tractable with a simple oscillatory 

tidal condition based on our elastic loading condition, we compare the model output for 

these two tidal loads (called “full” and “simple,” respectively).  We find that having the 

more complex full tidal condition changes the length-scale for stress-transmission decay, 

LR, by only about 20%, far below the factor of 3-4 change necessary to match 

observations.  Thus, we use this as justification to use the more numerically favorable 

simple tidal condition.   

3A.1 Full Tidal Loading Condition 

In addition to the oscillatory load of the ocean tide, there are three major tidally-

important stresses that a full tidal loading condition needs to consider.  These stresses are 

incorporated into the balance of: the hydrostatic pressure of the flowing ice, the 

hydrostatic pressure of the static ocean water, and the flexural stress imposed on the 

grounding line due to the vertical motion of the ice shelf.  Figure 3A.1 shows a schematic 

picture of the interaction of these stresses on an ice stream at neutral, high, and low tides. 

 First consider that the hydrostatic pressure of the ice and the water.  For the ice, 

the value of the stress at a given depth is simply 𝜌𝐼𝑔(𝐻𝐼 − 𝑧).  For the water, we first use 
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the flotation condition at the grounding line to find that the water rises to a height of 

𝐻𝑇 = 𝐻𝐼�1 − 𝜌𝐼 𝜌𝑊� �, which in turn leads to the definition of the hydrostatic pressure at 

levels where water exists as: 𝜌𝑊𝑔(𝐻𝑇 − 𝑧).  However, this stress balance occurs at the 

edge of the ice shelf, not at the grounding line.   We make use of the assumption that the 

ice shelf behaves elastically, which, following the results from our two-dimensional shelf 

models in chapter 4, allows us to move this stress balance to the grounding line without 

any decay of these stress values. 

 To account for the bending stress from ice flexure, we use the same simple beam 

theory presented in Appendix 2A of chapter 2.  From this simple model for flexure, we 

expect that the flexural stress at the grounding line will be on the order of a few 100 kPa 

at a maximum (the exact value depends on the ice thickness and the geometry of the ice 

shelf).   

 The full load applied at the grounding line is the sum of these three stresses: the 

differential gravitational stress at the end of the ice stream, the flexural stress induced by 

the floating ice shelf, and the change in water weight due to the tide.  Figure 3A.1 shows 

a graphical representation of these tidal loads, while equation 3A.1 shows the total form 

of this loading: 

 

𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = � −𝜌𝑖𝑔(𝐻𝑖 − 𝑧)  
−𝜌𝑖𝑔(𝐻𝑖 − 𝑧) + 𝜌𝑤𝑔(𝐻𝑡𝑡 − 𝑧)   

if 𝑧 > 𝐻𝑡𝑡
 if z ≤  𝐻𝑡𝑡

� + 

             𝐹𝑇𝑖𝑑𝑒(𝑡) ∗ �𝜎𝑓𝑙𝑒𝑥∆ℎ �𝑧 −
1
2
𝐻𝑖� + 𝜌𝑤𝑔∆ℎ� 

(3A.1) 

 where 𝐻𝑖 is the ice thickness, 𝐻𝑡𝑡 is the water level relative to the base of the ice stream, 

𝐹𝑇𝑖𝑑𝑒(𝑡) is a unit tidal forcing as a function of time, and 𝜎𝑓𝑙𝑒𝑥 is the maximum amplitude 

of flexure for a unit tide.  For a reasonable tidal loading, the maximum force comes from 
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the static “pull,” which is on the order of 1 MPa at the base of a one-kilometer-thick ice 

stream, while the flexural stress is a few 100 kPas and the tidal weight is a few 10 kPas.  

3A.2 Simple Tidal Loading Condition 

For our simple loading condition, we apply the variable portion of the ocean tidal load as 

a normal traction to the grounding line.  Mathematically, this condition is: 

 𝜎𝑎𝑝𝑝𝑙𝑖𝑒𝑑 = 𝐹𝑇𝑖𝑑𝑒(𝑡) ∗ 𝜌𝑤𝑔∆ℎ  (3A.2) 

This is identical to the approach taken in our linear elastic model, save that the applied 

stress is time-variable. 

3A.3 Stress-transmission Comparison 

Figure 3A.2 shows a comparison between the tidally induced 𝜎𝑦𝑦 component of stress (as 

described in section 3.3.1) for a map view of the base of a model with our full (left) and 

simple (right) loading conditions taken at a peak in stress response.  We first note that 

overall, the stress field is remarkably similar between the full and simple loading 

conditions.  The only major difference occurs in the portion of the ice steam near the 

grounding line, where the full loading condition has elevated stress values than those of 

the simple loading model.  Such an increase in the value of the stress near the grounding 

line in the full model is not surprising as the value of the applied load is larger in this 

model than with the simple loading condition.   

However, beyond this point inland, the model stress states are nearly 

indistinguishable, suggesting strongly that neither the hydrostatic “pull” on the ice stream 

edge nor the flexural stress due to the ice shelf bending viscosity of the ice stream near 

the grounding line significantly enough to dramatically change the nature of the 

transmission of stress viscoelastically in the ice stream.  Such results are keeping with the 
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earlier observation and model results suggesting that tidal flexure is a stress that is only 

seen locally to the grounding line.  The similarity in the model results is reflected in the 

values of LR calculated between these two models, which fall within 20% of one another 

(see table 3.3). 

 As the difference between model results in this case is only on the order of 20%, 

we feel safe in neglecting the full tidal loading condition for our purposes.  In the current 

form of our problem, we are sensitive to changes in the value of LR that amount to a 

factor of 3-4, and thus 20% is far below the threshold of usefulness to justify the increase 

complexity (and thus computation time) of our models with the full loading condition. 
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Figure 3A.1: Schematic diagrams of the full tidal forcing condition at a neutral, high, and 

low tide.  The tidal stress will be the extensional/compressional stress due to the different 

in hydrostatic pressure at the edge of the ice shelf (shown in the graph on the right of the 

figure) and the flexural stresses due to the presence of the ice shelf.  HI is the distance 

between the surface of the ice shelf and the surface of the ocean. 
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Figure 3A.2: Comparison of the value of the longitudinal normal stress (𝜎𝑥𝑥) for the full 

tidal forcing condition (left) and the partial tidal forcing condition (right) at peak tidal 

amplitude.  The full condition has a higher normal stress at the grounding line and a 

slightly more rapid decay of the stress due to the inclusion of the flexural stress.  Once 

inland of the grounding line by five to ten kilometers, the stress-transmission length-

scales are comparable between the two forcing conditions. 
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Chapter 4 

Using Tidal Modulation of Ice Stream Motion to 

Constrain Viscoelastic Parameters in Situ 

A phase delay in the response of a body to an oscillatory load is potentially related to that 

body behaving as a viscoelastic material.  Geodetic studies of Rutford Ice Stream, 

Antarctica and Helheim Glacier, Greenland definitively show there is a significant phase 

lag between the tidally modulated surface motion of grounded ice and the peak ocean 

tides.  In this chapter, we present a preliminary modeling framework outlining the 

relationship between the rheological parameters of a viscoelastic ice stream and the 

expected phase delay in its response to an oscillatory forcing.  We then use these one- 

and two-dimensional results to suggest the configuration and requirements of a geodetic 

survey with the specific goal of constraining the viscoelastic parameters of in situ glacial 

ice. 

4.1 Introduction 

The previous two chapters demonstrated that ice streams are unlikely to transmit tidal 

stress through the bulk of the ice stream itself to the extreme distances seen 

observationally.  However, near to the grounding line, a tidal load can still be transmitted 

through the ice stream bulk.  And throughout the ice stream, the issue of the observed 

phase delay in the ice stream’s response to ocean tides remains.  As ice behaves as a 

viscoelastic material over tidal timescales (e.g., chapter 3 of this thesis), our expectation 

is that the near-grounding line behavior of an ice stream could provide a measurement of 

the viscoelastic parameters for in situ ice.  While such a measurement would necessarily 
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be convolved with other processes that are tied to the ocean tides, this chapter provides a 

“proof-of-concept” for using observed tidal phase lags to constrain viscoelastic properties 

for glacial ice. 

Our goal is to establish a methodology that uses the multiple timescales of the 

oscillatory tidal load in conjunction with the observed phase shift in tidal response to 

infer constraints on the ice stream’s viscoelastic parameters.  As most of the introductory 

material has already been covered in chapters 2 and 3, we address only the most salient 

points in this chapter’s introduction, and suggest that this chapter is best understood after 

reading the introductory material in these two earlier chapters.   

 High-rate continuous global positioning satellite (CGPS) observations of Rutford 

Ice Stream and Helheim Glacier indicate an appreciable phase shift between the ocean 

tides and the tidal perturbation in ice position (Gudmundsson, 2006; 2007; 2013; de Juan 

2009; 2010a/b; and de Juan-Verger 2011).  A zero degree phase shift corresponds to the 

case of the peak de-trended inland motion of the ice being synchronous with the high 

tide, with a positive phase lag indicating that the ground motion’s peak response is 

delayed relative to the tidal peak.  While our previous work suggests that the far-field 

observations of Rutford are probing a system other than the glacial rheology, the 

observations close to the grounding line of both Rutford Ice Stream and Helheim Glacier 

suggest that the phase lag is many tens of degrees.  Equally important is that the phase 

delay may increase as a function of distance inland of the grounding line, suggesting that 

there is a calculable phase velocity to the propagation of the ice’s response to the 

changing tides. 
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 A phase lag to an oscillatory response is a classic characteristic of a viscoelastic 

material when the stress relaxation timescale is within several orders of magnitude of the 

forcing frequency (e.g., Findley et al., 1976).  Given the forcing frequencies ranging from 

12 hours to 14 days for the major tidal constituents, we expect that a material relaxation 

time between ~ 102 and ~ 108 seconds (~ 2 minutes to ~ 76 years) will result in a 

measurable phase shift, with the strongest phase response occurring when the relaxation 

time is approximately the same order of magnitude as the forcing frequency.  This range 

matches the estimate of the linearized relaxation timescale for ice of approximately 102 to 

104 seconds (~ 2 minutes to ~ 3 hours), based on the experimental work of Jellinek and 

Brill (1956) and the model fitting of Reeh et al. (2003). 

 We explore the feasibility and data quality necessary to provide constraints on the 

rheology based solely on the measured phase shift to a tidal forcing. This chapter starts 

with an analysis of the complex moduli of three canonical one-dimensional linear 

viscoelastic models in shear, focusing on the expected phase shifts as a function of the 

material parameters.  We then investigate the phase response of nonlinear viscoelastic 

materials over a range of reasonable ice models for the nonlinear viscous deformation 

expected during steady-state tertiary creep.  We then present results from two-

dimensional finite element modeling exploring the spatial variability of a tidal phase shift 

and the role that model boundary conditions play in determining the spatial variation in 

any phase shift.  We use these model results to provide a test case for determining the 

viscoelastic properties of ice using data from Helheim Glacier (i.e., from de Juan, 2009; 

2010a/b; de Juan-Verger, 2011).  We close this chapter with a discussion of the expected 
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precision of the constraints on in situ viscoelastic parameters that tidal phase shift can 

provide and discuss factors necessary to select the ideal survey configuration and target. 

4.2 Phase Shift in Analytic Models  

Before exploring phase delay on a modeled outlet glacier, we first consider the behavior 

of three one-dimensional viscoelastic models—linear Maxwell, Kelvin, and Burgers—to 

an oscillatory forcing.  These three models are shown schematically in the previous 

section (in figure 3.1).  The Maxwell model is made up of a linear spring element and 

linear dashpot element in series, the Kelvin model is a linear spring and dashpot in 

parallel, and the Burgers model is a Maxwell element in series with a Kelvin element.  

The governing equations for these three models in shear are: 

 −
𝜎
𝜇

+
�̇�
𝜂

= 𝜀̇ (4.1a) 

 𝜎 = 𝜇𝜀 + 𝜂𝜀̇ (4.1b) 

 𝜎 + �
𝜂1
𝜇1

+
𝜂1
𝜇2

+
𝜂2
𝜇2
� �̇� +

𝜂1𝜂2
𝜇1𝜇2

�̈� = 𝜂1𝜀̇ +
𝜂1𝜂2
𝜇2

𝜀̈ (4.1c) 

where 𝜇 is the shear modulus, 𝜂 is the viscosity, and, for the Burgers model, the 

subscripted 1 refers the Maxwell element and the subscripted 2 refers to the Kelvin 

element.  We now apply an oscillatory shear load of frequency 𝜔 constant amplitude 𝜏0: 

 𝜎 = 𝜏0𝑒𝑖𝜔𝑡 (4.2) 

We expect that the strain response will be oscillatory at the same frequency as the applied 

stress but shifted by a phase delay 𝛿, such that: 

 𝜀 = 𝜀0𝑒𝑖(𝜔𝑡+𝛿) = 𝜀∗𝑒𝑖𝜔𝑡 (4.3) 

Taking the ratio of strain to stress gives us the complex creep modulus, J*: 
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 𝐽∗ =
𝜀
𝜎

=
𝜀∗

𝜏0
=
𝜀0
𝜏0
𝑒𝑖𝛿 = 𝐽1 + 𝑖𝐽2 (4.4) 

Table 4.1 shows relevant values of J1 and J2, taken from Findley et al. (1976).  We can 

also relate the phase shift to the components of J* using: 

 tan 𝛿 =
𝐽2
𝐽1

 (4.5) 

Lastly, we can define a natural timescale associated with each material model.  For a 

Maxwell material, the stress due to a constant strain will decay exponentially with time, 

as controlled by the relaxation time TMax.  For a Kelvin material, a constant stress will 

induce a creep strain that exponentially approaches the equivalent elastic strain.  The 

timescale of this creep is controlled by the retardation time, TKelv.  In the Burgers model, 

there is both a relaxation time TBurg1 and a retardation time TBurg2.  The values of these 

natural timescales are shown for each model in table 4.1. 

4.2.1 One-Dimensional Phase Shift 

We are now equipped to determine the expected phase shift for a given material model of 

ice for a forcing function of known frequency.  However, as there are two separate free 

parameters (the appropriate relaxation/retardation timescale and the forcing frequency), 

we again introduce the Deborah number, De: 

 𝐷𝑒 =
𝑇𝑅
𝑇𝐹

 (4.5) 

where the Deborah number is the ratio of a material’s relaxation time to the period of an 

applied forcing.  When De is large, the material behaves elastically, when De is small, the 

material behaves viscously, and when De is around one, the material behaves 

viscoelastically.  The Deborah number encapsulates the choice of the material parameters 
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(shear modulus and viscosity) and the forcing frequency, allowing us to calculate the 

phase shift with respect to a single nondimensional quantity.   

 Figure 4.1 shows the phase shift in the strain response to an oscillatory stress for 

the linear Maxwell, Kelvin, and Burgers models (assuming 𝜂1 = 𝜂2 = 𝜂 and 𝜇1 = 𝜇2 =

𝜇).  From this figure, we see that all the linear models predict a phase shift between 0 and 

90 degrees, with the Maxwell and Burgers models predicting the phase shift to increase at 

small De while the Kelvin model demonstrating a larger phase shift at large De.  All three 

models meet at a phase shift of 45 degrees, when 𝐷𝑒 ≈ 10−0.8 = 0.158. 

 As seen in the linear phase curves, the Maxwell and Burgers models act most 

similarly to the expected phase response, where a material that behaves more viscously 

than elastically will have a stronger out-of-phase displacement response than a 

comparatively more elastic model.  Thus, the Kelvin model, a representation of a solid 

material, is a poor model choice for phase shift in ice and will not be considered further.  

Second, while the trend in phase is distinct between the Maxwell and Burgers models, a 

large number of high quality data would be necessary to adequately distinguish between 

these two models.  As the constraining data in 𝛿 − 𝐷𝑒 space should only vary with tidal 

frequency, any rheological fitting would be based on, at best, a handful of observations 

with different De.  Thus, given the relative sparsity of our expected data and the fewer 

numbers of parameters, we choose to continue our investigation of ice rheology by 

assuming a Maxwell material for the ice response to a tidal load. 

4.2.1Phase Shift for a Nonlinear Maxwell Material 

The nonlinear viscosity of ice complicates the understanding of the phase shift in the 

oscillatory response of a one-dimensional nonlinear material model.  We explore the 
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phase shift in a nonlinear Maxwell model with the nonlinearity limited to the viscous 

component of deformation, such that the constitutive law is given by: 

 𝐴𝜎𝑛 +
�̇�
𝜇

= 𝜀̇ (4.6) 

where n is the power law exponent and A is the nonlinear viscosity coefficient.  Note that 

for these simple models, the temperature dependence of A is neglected.  The approach 

used in the previous section to calculate the phase shift 𝛿 becomes untenable for an 

oscillatory nonlinear model as the effective linear viscosity would necessarily oscillate 

with the forcing function amplitude, resulting in a time-dependence on the phase shift.  

Instead, we adopt a different method to finding the one-dimensional phase shift for our 

nonlinear Maxwell model. 

 First, we choose the periodicity of the stress forcing function to match that of the 

three major tidal constituents, rounded to the nearest integer hour: 12 hours for the 

semidiurnal tide, 24 hours for the diurnal tide, and 14 days for the fortnightly tide.  We 

then solve for the strain rate of each of these tides, as well as the linear combination of 

the three tides (a “combined tide” forcing), using equation 4.6.  The values of A and n 

used in this analysis match the values from the Glen and Goldsby rheological models for 

ice at 0°C in tertiary creep (Glen, 1955; 1958; Goldsby and Kohlstedt, 1997; 2001), and 𝜇 

from the canonical values of E and 𝜈 (Petrenko and Whitford, 2002).  As we are forcing 

our tides at a known period and the longer tides are integer multiples of the shorter tides, 

we can use a Fourier analysis to find the exact phase for the applied forcing functions.  

Lastly, shifting the phase of the strain rate by 90° gives us the phase delay in the modeled 

strain as the strain rate is the time derivative of strain. 
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 The phase shift values for the semidiurnal, diurnal, fortnightly, and combined 

tides are shown in figure 4.2 as functions of De and for a linear, Glen, and the two 

Goldsby rheologies.  For all the models, the expected phase shift trends are fairly similar, 

and the value of 𝛿 ranges from 0° to 90°.  At a given tidal frequency, the predicted phase 

shifts are independent of the material parameters.  A single forcing frequency will not 

perturb the amplitude of the forcing function, and thus will not change the effective 

viscosity of the material.  However, as highlighted in table 4.2, the combined tide does 

show a nonlinear effect on the phase of any given tidal constituent, such that some of the 

phase shifts are slightly elevated or depressed for a given De compared to the value for 

the individual tidal frequency.  The value of De for a given phase shift can vary by as 

much as a factor of two for the rheologies considered here.  With the stress-dependent 

rheology, the discrepancy between the phase shift when the model is forced with the 

individual tides compared to the combined tides is more severe the higher the power law 

exponent is. 

4.3 Two-Dimensional Finite Element Models 

Having established some intuition for the phase shift from our one-dimensional models, 

we now present results from a range of two-dimensional, nonlinear Maxwell finite 

element models exploring the phase shift of a higher dimension viscoelastic body to an 

oscillatory force.  First the variation in observable surface phase shift is categorized as a 

function of the modeled ice streams’ boundary conditions, the choice of rheology, and the 

spatial variability of the phase shift across the model’s profile.  Then, this model 

approach is validated using data from Helheim Glacier to estimate viscoelastic 
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parameters for ice.  Such parameters are found to be within a range compatible with 

laboratory values for ice viscoelasticity. 

4.3.1 Methodology 

As with our earlier models, we use the PyLith software package (as described in section 

1.4) for our finite element modeling.  The model geometry is a simplified version of the 

lower portion of Helheim Glacier (750 meters thick and six kilometers wide).  We 

explore two different model boundary conditions in our analysis, as are shown in figure 

4.3.  First is the case of an outlet glacier that is stuck to its bed, such that the controlling 

dimension is the ice thickness.  This model is equivalent to the “frozen bed” model from 

chapter 2.  Second is a two-dimensional outlet glacier that is stuck to its lateral margins.  

For each of models, we apply the tide as an oscillatory traction boundary condition along 

one edge of the model domain.  As discussed above, we choose to model a single tidal 

frequency at a time, rather than combining tides of multiple frequencies.   

4.3.2 Numerical Results 

Figures 4.4 and 4.5 show the behavior of the phase for our basal and side-wall models, 

respectively, as a function of De.  In figure 4.3, our models show the phase at the 

grounding line and at locations one, two, and three kilometers inland, while figure 4.5 

includes the grounding line and locations five, ten, fifteen, and twenty kilometers inland.  

The difference in length-scale is needed because the side-wall models have a larger decay 

length-scale, Ltr, than the basal models.  In each figure, we include model results for a 

linear viscoelastic model (shown in blue) and nonlinear viscoelastic models (other colors) 

forced at multiple tidal frequencies.  For the basal model, the only nonlinear model 

considered has a power law exponent of n=3, while for the side-wall models, we also 
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consider n=1.8 and n=4.  These three power laws correspond to the rheologies associated 

with a Glen flow law (Glen, 1955; 1958), superplastic flow (Goldsby and Kohlstedt, 

1997; 2001), and climb-limited dislocation creep (Goldsby and Kohlstedt, 1997; 2001).  

Due to the exceedingly small stable timestep in the low-viscosity nonlinear models, the 

range of De explored is more limited than for the linear case. 

 For both model boundary conditions, the linear models demonstrate the 

arctangent form of the phase-Deborah number relationship produced analytically for a 

one-dimensional Maxwell material, with the phase ranging from zero degrees (elastic 

behavior) to ninety degrees (viscous behavior).  The change in the material behavior 

occurs over a range of about two and a half orders of magnitude—such that 10−2.5 <

𝐷𝑒 < 100.  However, unlike the one-dimensional case, in the region where the phase is 

neither zero nor ninety, the phase shows a dependence on distance from the grounding 

line, as demonstrated by the spread in phase values over the locations shown in figure 4.4 

and 4.5. 

 To better demonstrate this distance dependence, figures 4.6 and 4.7 show the 

phase shift of the centerline ice as a function of inland distance (note that the horizontal 

length-scale varies due to the difference in Ltr between the two models).  These two 

figures are remarkably similar, suggesting that the expected phase shift trend with inland 

distance, at least in a two-dimensional model, is not dependent on the absolute distance 

away from the grounding line but rather on the relative strength of the tidal signal.  

Appendix 4A shows the phase shift seen across the model domain for the side-wall 

models. 
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For each model, the nonlinear solutions are shifted to the left (i.e., towards lower 

De) compared to the corresponding linear viscoelastic model.  This behavior matches that 

of the one-dimensional solution.  As seen in both figures 4.3 and 4.4, the solutions for a 

given rheology at different tidal frequencies agree fairly well, confirming that the 

Deborah number is a controlling parameter of the phase shift.  Another implication of the 

dependence on De is that phase data collected for multiple tidal frequencies will provide 

multiple data points along the same curve, rather than each tidal frequency belonging to 

unique functions. 

 Unfortunately, the models presented here are insufficient to provide a well-

constrained fit to the arctangent form of the phase response of each model to the applied 

oscillatory loads.  In the case of the linear model, such a deficiency could be addressed 

through filling out the model space through additional modeling.  For the nonlinear 

scenarios, the finite element models for the lowest values of De are already on the verge 

of taking too long to run to be computationally viable.  These models currently take about 

one week per model, and are not easily parallelizable due to the sequential nature of 

timestepping.  Thus, every order of magnitude decrease in De would increase the run 

time by approximately an order of magnitude, as the stable timestep of the Maxwell 

rheology is small enough (compared to the forcing function) to require extensive 

calculations for even a single tidal cycle.  Thus, we suggest that extrapolating the linear 

trend onto the nonlinear data would provide an estimate for the nonlinear viscoelastic 

response at these lower values of De.  For the purposes of demonstration here, we assume 

that the phase varies linearly between the data points.  This approach is clearly 

inadequate, but as we lack the model results necessary for an accurate functional fit to the 
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phase points, such an approach is a practical alternative to a poorly constrained 

arctangent function. 

4.3.3 Application to Helheim Glacier Data 

We now present a simple test example of using ice stream phase data to provide 

constraints on the viscoelastic properties of ice.  For our purposes, we use calculated 

phase delays from Helheim Glacier (de Juan, 2009; 2010a/b; de Juan-Verger, 2011) as 

our dataset, even though the errors for the phases can quite substantial.  For each of the 

three surveys from de Juan-Verger, the data point closest to the grounding line is used to 

approximate the phase response at the grounding line, so that the distance dependence of 

the phase response can be negated.  While de Juan-Verger (2011) presents linear 

extrapolations of the phase measurements to the calving front of Helheim Glacier, we 

choose to use the closest data point rather than the extrapolated value due to the large 

data uncertainties influencing the linear fit.  For the three surveys, the phase differences 

are 27° ± 3°, 53° ± 15°, and 55° ± 15°.    

 Figure 4.8 shows the location of these phases on the basal model (panel A) and 

the side-wall model (panel B), with the values of the fitted effected viscosities listed in 

table 4.3.  The fits are relative to the linear model (blue) and the extrapolated nonlinear 

model for n=3 (red).  The extrapolated line is found by shifting the linear model by a 

constant offset until the new line matches the finite element values for the nonlinear 

phase shift.  The differences between the predicted values of the effective viscosities are 

minimal between the two models.  In all cases, TMax is on the order of 102 to 103 seconds 

(~2 to ~20 minutes), though the variation between the lowest and highest estimates 

differs by a factor of about 60.  Assuming a Young’s modulus of 9.33 GPa (Petrenko and 
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Whitford, 2002), the estimates of the ice viscosity from these Helheim Glacier phases 

data fall between 1.01e12 Pa ∙ s and 5.83e13 Pa ∙ s.  Considering the uncertainty in our 

model trend and the wide range in errors of the Helheim phase data, these values are 

remarkably close to the estimated linear viscosity value for ice of Jellinek and Brill 

(1956) of 1e12 Pa ∙ s to 1e14 Pa ∙ s for similar stresses. 

 In this brief demonstration, the distance dependence of the solution is not 

considered, as the phase data from Helheim Glacier is not constrained enough to 

adequately show a convincing distance dependence.  However, as our work demonstrates, 

the distance dependence of the phase is diagnostic of the ice’s material properties, such 

that if the phase data is accurate, the variation in phase with distance inland of the 

grounding line could potentially differentiate between rheologies (i.e., n could be fit, 

rather than assumed). 

4.4 Discussion  

While our model for constraining the viscoelasticity of in situ ice is fairly rudimentary, 

our ability to get close to the expected value of effective viscosity using a few, somewhat 

unconstrained data points and a suboptimal suite of models is encouraging.  In this 

section, we first focus on the expected accuracy of the material parameter estimates found 

by the approach outlined here.  We then provide a blueprint for an ideal survey to collect 

data necessary to constrain rheological parameters of ice streams, including a discussion 

of the characteristic of an outlet glacier that would make that glacier a prime survey 

target. 
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4.4.1 Data Constraints and Accuracy 

As only two data sets exist in the published literature quantifying the observed tidal phase 

shift from ice streams, quantifying the relative error within the current dataset is 

relatively straightforward.  Gudmundsson (2006; 2007; 2011) used the MATLAB script 

T_TIDE (Pawlowicz et al., 2002) to solve for the phase delays in the Rutford Ice Stream 

GPS records over a range of tidal frequencies to an accuracy of about +/- 8°.   

Gudmundsson’s GPS survey lasted for seven-weeks, providing several fortnightly 

periods and many dozens of diurnal and semidiurnal tidal periods.  De Juan-Verger 

(2011) estimated the phase delay in the Helheim Glacier GPS network for the 

semidiurnal tide.  The accuracy of the phase delay in those data ranged from +/- 3° to as 

much as +/- 90°.  The survey near the grounding line for Helheim Glacier only lasted for 

between 2 and 5 days, depending on the site location.   

The error in the estimated ice Maxwell time is directly related to the error in the 

phase estimate.  Due to the arctangent form of the phase as function of Deborah number, 

when the phase is close to either zero or ninety degrees, even a small error in the phase 

can result in several orders of magnitude in uncertainty in the estimated value of De.  

Conversely, when the measured phase is around 45°, the range in De for a given error in 

phase is small.  For example, there is less than one order of magnitude change in De for 

phase shifts ranging from 15° to 75°.  

 Recall that our two-dimensional models all have a phase shift bounded between 

0° and 90° relative to the forcing function.  In both the observations of Rutford Ice 

Stream (Gudmundsson, 2006; 2007; 2011) and the viscoelastic three-dimensional models 

presented earlier in chapter 3, the phase of ice response was greater than 90°.  Phases 
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greater than 90° cannot result from the two-dimensional models in this chapter but are 

seen in the three-dimensional viscoelastic models shown earlier in chapter 3.  Thus, our 

two-dimensional models are necessarily over-simplifications to the phase behavior of ice 

streams.  However, for a rough estimate of the viscoelastic properties, these two-

dimensional models provide a general constraint on the rheology.  A more accurate 

estimate of the viscoelastic material parameters would require the use of a three-

dimensional viscoelastic model specific to the target glacier. 

4.4.2 Survey Requirements 

As the number of studies demonstrating a tidal phase delay is limited to only a 

handful, the collection of more data would aid in the understanding of in situ ice 

rheology.  As such a study necessarily would focus on the surface response of a tidally-

forced ice stream, the survey would be geodetic in nature.  From our modeling, the most 

important phase constraint is the phase delay near the grounding line, where the stresses 

(and thus displacements) caused by the tides are at a maximum.  In the case of an ice 

stream primarily constrained by its lateral margins, our work in chapters 2 and 3 suggests 

that a geodetic survey should remain within three ice stream widths of the grounding line.  

Farther inland, the tidal forcing is expected to be at least two orders of magnitude smaller 

than at the grounding line, which is likely too small to be detectable above the 

background ice velocity.  Our modeling also suggests some lateral variation in the 

observable phase shift (see appendix 4A), especially for a nonlinear viscoelastic 

rheology.  Therefore, we suggest that a grid pattern of geodetic stations would be an ideal 

deployment, as both the lateral and inland variations in phase shift would be recorded.   
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As the fitting of the tidal amplitudes and phases has been shown to be fairly rough 

(at best within a few degrees), the positional accuracy of the GPS survey is not expected 

to be an important concern relative to the error in fitting the tidal phase.  Due to the 

rugged nature of the lowest reaches of many ice streams, deploying relatively 

inexpensive (perhaps even expendable) GPS stations is preferred as there is a nontrivial 

chance that any given station would be lost due to iceberg calving, crevassing, or some 

other potentially destructive ice process.  Due to the inherent instability of the ice, using 

geodetic satellite observations would seem like a good alternative to on-ice geodetic 

stations.  However, the repeat time between satellite orbits is probably too long to 

sufficiently resolve semidiurnal and, perhaps, the diurnal tides.   

Another consideration would be the duration of the survey.  Ideally, the survey 

would be as long as possible, as the longer the survey duration, the better the estimates of 

the periodicity and phase delay of the ice response would be.  While the difference in the 

size of the errors between Gudmundsson (2006; 2007; 2011) and de Juan-Verger (2011) 

is not due to the difference in survey duration alone, the shorter survey of de Juan-Verger 

certainly does not help estimate the phase.  Independent of the estimation errors, longer 

surveys provide the opportunity to use the longer period ocean tides as additional data 

points for fitting the phase in 𝛿 − 𝐷𝑒 space.  We recommend that a survey long enough to 

capture two full fortnightly periods would be a minimum survey duration for a 

rheologically motivated study.   

Given the high rate of ice motion in ice streams and outlet glaciers, a one-month 

timeframe puts a limit on how close stations could be placed to the grounding line 

without the ice carrying the station past the grounding during the course of the 
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observation period.  Assuming a maximum ice velocity of 11 km/yr (for Helheim 

Glacier, Thomas et al., 2000; Howat et al., 2005), the nearest to the calving front that a 

recording station for a month-long survey could safely be placed is about 850 meters 

inland.  For ice streams with an attached ice shelf, while the GPS station would not be 

lost if carried past the grounding line, the nature of the station’s phase response would 

necessarily change if the ice beneath it begins to float.  Such a dramatic change in ice 

behavior could greatly increase the difficulty in interpreting the ice properties from the 

phase data. 

Lastly, the methodology for determining viscoelastic properties discussed here 

only provides information about the relaxation time of the glacier, rather than an intrinsic 

value of either the effective viscosity or the Young’s modulus.  Recall that the viscosity 

for our test problem in section 4.3.3 could only be found by assuming the Young’s 

modulus matched the laboratory value (from Petrenko and Whitford, 2002).  However, as 

the density of ice is a well-constrained material property (e.g. Cuffey and Paterson, 

2011), the acoustic wave speed within an ice stream can provide a constraint on the value 

of Young’s modulus for ice independent of the phase delay.  Glacial seismicity happens 

regularly enough to be used as a reliable source of acoustic waves in outlet glaciers.  As a 

range of possible glacial earthquake sources have been suggested (e.g., Neave and 

Savage, 1970; VanWormer and Berg, 1973; Weaver and Malone, 1979; Wolf and Davis, 

1986; Qamar, 1988, Anandakrishnan and Bentley, 1993; Anandakrishnan and Alley, 

1997; Deichmann et al., 2000; Ekström et al., 2003; Stuart et al., 2005; Smith, 2006; 

O’Neel et al., 2007; Tsai and Ekström, 2007; Tsai et al., 2008), the best approach would 

be to have an array of seismic monitoring stations that could measure the relative arrival 
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time between stations of a wave, and thus estimate the wave speed independent of the 

source location.  From the wave speed, the average ice density could then be used to 

determine the ice’s elastic moduli.  Such a seismic array would not need to be placed 

close to the grounding line, and a wide coverage might even be ideal due to the increased 

travel times of various waves increasing the accuracy of estimating ice’s elastic 

parameters. 

4.4.3 Ideal Survey Targets 

Equally important as the survey configuration is the choice of glacier to target for a 

rheologically-motivated tidal phase study.  From our analysis of simple models, as well 

as the results presented earlier in chapters 2 and 3, we propose a series of criterion for 

selecting a glacier most likely to provide data of a high enough quality to constrain in situ 

viscoelastic parameters.  Such criteria include the type of glacier to study, the nature of 

the ocean-ice interaction, the geometric complexity of the target glacier, and the thermal 

characteristics of the glacier.  Each of these selection characteristics will be discussed 

separately. 

4.4.3.1 Glacier Type 

Glaciers exhibit a wide range of geometries, sliding velocities, boundary conditions, and 

ice properties.  Ice streams make a natural target for a tidal phase survey as these glacier 

have the benefits of being fast moving, of having large ice fluxes, and of all having 

continuous contact with the ocean.  The rapid ice velocity makes distinguishing between 

the secular flow rate and a tidally-perturbed signal more straightforward than for an 

equivalent slow moving glacier.  In cases where the rapid ice motion is due to low 

resistive stresses, we expect a larger region where the tidal perturbation is measurable 



Viscoelastic Parameters 187 

 
than for slower moving glaciers.  The large ice flux also ensures that the glacier is always 

in contact with the ocean, such that the tidal interaction does not “turn off” as a function 

of time.  Lastly, and perhaps most importantly, the surveys of Rutford Ice Stream and 

Helheim Glacier demonstrate that a phase lag on ice streams is measurable.  Such may 

not be the case for other types of tidewater glaciers, where the existence of a tidal 

perturbation to ice motion, let alone the existence of a phase lag in that perturbation is not 

yet established.   

4.4.3.2 Ocean-Ice Interaction 

From the observations summarized in the introduction of chapter 2, glaciers can be 

grouped into three categories based on the glacier’s response to a tidal perturbation: little 

to no tidal response, measurable perturbation in the ice stream’s displacement, and stick-

slip response to ocean tidal loading.  Clearly, given the need for a signal and the desire to 

avoid unnecessary complications, the ideal target glacier would, the ideal target glacier 

resides in the second category. Such glaciers are expected to show a perturbation in 

surface displacement that varies smoothly in response to a change in tidal amplitude. 

 Additionally, the presence of an ice shelf is a key consideration in determining the 

interaction between an ice stream and the ocean tide.  For a tidewater (i.e. shelf-free) 

glacier, the change in ocean tide acts only as a change in the water pressure acting on the 

glacier’s ocean-ward cliff.  For a glacier with an attached shelf or tongue, the rise and fall 

of the ice shelf introductions flexural stresses on the glacier in the first five to ten 

kilometers (i.e., ice thicknesses) of the grounding line (as demonstrated in chapter 2, 

appendix 2A and observations in table 2.1).  While our determination of the stress 

transmission length-scale of ice streams shows that the tidal stress can influence ice 
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stream motion farther inland than ice flexure will for a wide enough glacier, the added 

flexural stresses of an ice shelf will influence the value of the stress-dependent effective 

viscosity, complicating the determination of the ice viscosity.  The 2007-2008 data from 

de Juan-Verger’s (2011) study of Helheim Glacier demonstrates that an ice shelf is not a 

critical factor in determining the phase shift between an ice stream and the ocean tide, we 

suggest that a target glacier should not have an ice shelf.   

4.4.3.3 Geometric Complexity 

Glaciers span a wide range of morphologies, from being a single linear feature to being a 

meandering convergence zone of multiple glacial streams.  A prime target glacier would 

be nearly linear and sourced from a single region of ice.  From a geometric perspective, a 

complex flow field is expected to differ from our simple, linear models due to the 

geometry alone.  Additionally, if a glacier is made up of multiple ice sources coalescing 

into a single flow near to the grounding line, the possibility of rheological variations 

across its profile becomes greater.  Such lateral variations could influence the phase shift 

seen on the ice stream, such that the estimated viscoelastic parameters are representative 

of neither ice constituent but rather some bulk average.  While such a result is not wrong 

per se, the apparent viscoelastic parameters would be useful only to that one system and 

could not be used as a general measurement of in situ glacial ice rheology. 

 Glaciers also can be underlain by deformable till (soft bedded) or by 

undeformable rock (hard bedded).  The two-dimensional models in this chapter and the 

three-dimensional models in chapter 3 demonstrate that the choice of boundary condition 

acting on the glacier is important to determining the precise phase-shift due to the 

rheology.  While both soft and hard bedded glaciers are likely to have boundary-specific 
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modifications to the phase shift that need to be distinguished from rheological effects, the 

added material of the subglacial till in soft bedded glaciers presents an additional 

constitutive law necessary to understand any observed phase shift.  Thus, soft bedded 

glaciers are more complex than their hard bedded counter parts, leading us to suggest that 

an ideal test glacier would be hard bedded. 

4.4.3.4 Thermal Complexity 

Glaciers fall into two categories based on the nature of the temperature of the ice: 

isothermal warm glaciers and polythermal cold glaciers.  As discussed in chapter 3, the 

ice streams of Antarctica (and Greenland) are definitively polythermal, with basal 

temperatures as much as twenty degrees warmer than the surface temperatures.  Most 

other glaciers on Earth, by their nature of being much smaller, are isothermal, with the ice 

at the melting temperature throughout the glacier.  As ice viscosity is strongly 

temperature dependent (e.g., Nye, 1953; Jezek et al., 1985; Budd and Jacka, 1989; 

MacAyeal et al., 1996; 1998) and ice elasticity weakly temperature dependent (Jellinek 

and Brill, 1956), an ideal target glacier would be isothermal, where the confounding 

effects of temperature could be avoided. 

4.4.3.5 Ideal Target Selection 

Using the above criteria, we compile a list of ice streams in table 4.4 that would be 

potential targets for a rheologically-motivated GPS survey.  This table focuses on major 

ice streams and outlet glaciers in a range of environments, including: Bindschadler Ice 

Stream, Ekstrom Ice Shelf, Kamb Ice Stream, Pine Island Glacier, Thwaites Glacier, 

Whillans Ice Plain (Antarctica); Helheim, Kangerdlussuaq, Jakobshavn Isbrae glaciers 

(Greenland); Columbia and LeConte glaciers (Alaska).  Among these major ice streams, 
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there is not a single “perfect” target glacier.  The best targets are Columbia Glacier, 

Alaska and Helheim Glacier, Greenland due to confirmed tidal interactions, rapid ice 

motions, a lack of an ice shelf, and the confining nature of these fjord-bounded glaciers.   

Of special importance is that these ice streams have no ice shelves, as shelf-less 

glaciers have a much simpler tidal forcing configuration and thus a less involved 

calculation of the tidal phase.  An ice shelf adds the complications of ice flexure and 

grounding line migration to the tidal perturbation of ice velocities.  Detailed modeling 

work of the interplay between the grounding line and ice shelves demonstrates that the 

stress and deformations of glaciers near the grounding line are inexorably tied to these 

shelf behaviors (e.g., Schoof, 2007a/b; Goldberg et al., 2009; chapter 2 of this thesis).  

Ultimately, we suggest that the single strongest selection criterion should be the presence 

(or lack) of an ice shelf. 

4.5 Summary and Conclusions  

In this chapter, we outlined a methodology for inferring the viscoelastic properties of an 

ice stream from the phase shift in the ice stream’s response to the forcing of the ocean 

tides.  From our modeling, a phase delay is expected when the value of De falls between 

10-3 and 101.  While the models used here to calibrate the relationship between phase and 

rheology are simple two-dimensional models, our ability to use these models in 

conjunction with observations from Helheim Glacier to estimate a reasonable value of 

viscosity suggests that using the phase lag to invert for the in situ material properties of 

ice could produce meaningful results.  While more detailed analysis is beyond the scope 

of this work, we outline a potential observational campaign to constrain ice rheology.  

Lastly, while the previous two chapters discussed ways in which the tidal loading of ice 
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have been modeled inappropriately, this chapter highlights the potential use of the short-

timescale geodetic observation of ice stream’s response to ocean tides to constrain the 

viscoelastic properties of natural glacial ice. 
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 Variable Names Units 

A Viscoelasticity coefficient Pa-n s-1 
𝐷𝑒 Deborah number -- 
J* Complex creep modulus Pa-1 
J1 Real part of J* Pa-1 
J2 Imaginary part of J* Pa-1 
Ltr Transmission length-scale km 
n Power law exponent -- 

TF Forcing function period s 
TBurg1 Burgers relaxation time 

(Maxwell element) 
s 

TBurg2 Burgers retardation time (Kelvin 
element) 

s 

TKelv Kelvin retardation time s 
TMax Maxwell relaxation time s 

TR Relaxation time (general) s 
𝑡 Time s 
𝛿 Phase delay ° 
𝜀 Strain -- 
𝜀* Complex Strain -- 
𝜀0 Strain amplitude -- 
𝜂 Linear viscosity Pa s 
𝜂1 Maxwell element viscosity 

(Burgers body) 
Pa s 

𝜂2 Kelvin element viscosity 
(Burgers body) 

Pa s 

𝜇 Shear modulus Pa 
𝜇1 Maxwell element shear modulus 

(Burgers body) 
Pa 

𝜇2 Kelvin element shear modulus 
(Burgers body) 

Pa 

𝜈 Poisson’s ratio -- 
𝜎 Stress Pa 
𝜏0 Stress amplitude Pa 
𝜔 Frequency s-1 

" ̇ " Indicates time derivate  
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Figure 4.1: Diagram showing the phase delay in the response of a one dimensional 

Maxwell (blue), Kelvin (red), and Burgers (black) viscoelastic element, as a function of 

the Deborah time of that model.   

  

log10 De 
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Figure 4.2: Phase shift for linear and nonlinear Maxwell models over a range of forcing 

frequencies and rheologies.  Panel A shows results for the fortnightly tide (black), panel 

B the diurnal tide (blue), panel C (red), and panel D the combined tide (all three colors).  

In all cases, the lines represent increasing values of n from right to left.  Values in table 

4.2 are collected from figure 4.2D, and will aid in distinguishing the different behaviors 

of each tidal signal as part of the combined tide. 

  

De 
De 

De 
De 
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Figure 4.3:  Schematic diagrams of the two model configurations for our finite element 

models.  Panel A shows a vertical cross-sectional view of a model ice stream that is fixed 

at its bed.  Panel B shows a map view of an ice stream that is fixed on each lateral 

margin.  The arrows show the location of the applied tidal forcing function. 

  



Viscoelastic Parameters 196 

 

 

Figure 4.4: Modeled phase shift results for our models fixed at the bed (see figure 4.3A).  

The filled blue circles show the results for a linear Maxwell model, while the red circles 

and black squares show results for a nonlinear Maxwell model with n=3 forced by a 

semidiurnal and diurnal tide, respectively. 

log
10  De 
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Figure 4.5: Modeled phase shift results for our models fixed on the side walls (see figure 

4.3B).  The filled blue circles show the results for a linear Maxwell model, while all the 

open circles represent nonlinear models forced with a semidiurnal tide and all squares 

represent nonlinear models forced with a diurnal tide.  The colors correspond to a Glen 

rheology (pink, black, and orange), a Goldsby rheology with n=1.8 (light blue), and a 

Goldsby rheology with n=4 (red).  

log
10  De 
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Figure 4.6: Distance dependence of the phase shift for basally-locked models at a range 

of Deborah numbers.  The redder colors represent more elastic models (higher De) while 

the bluer colors represent more viscous models (lower De).  
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Figure 4.7: Distance dependence of the phase shift for laterally-locked models at a range 

of Deborah numbers.  The redder colors represent more elastic models (higher De) while 

the bluer colors represent more viscous models (lower De).  
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Figure 4.8: Fitting results for the data from Helheim Glacier (see section 4.3.3).  The 

blue line is a linear fit, while the red line is an extrapolated version of the Glen flow fit.  

Finite element model results are shown as open circles.  The data from Helheim Glacier 

are the solid black points, with error bars shown as the black lines.  The values of the fit 

are tabulated in table 4.3.  

Linear 

G
len 

log
10  De 

log
10  De 
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 J1 J2 Relaxation Time Retardation 
Time 

Maxwell 
1
𝜇

 
1
𝜂𝜔

 
𝜂
𝜇

 𝑁/𝐴 

Kelvin 
𝜇

𝜇2 + (𝜂𝜔)2 
𝜂𝜔

𝜇2 + (𝜂𝜔)2 𝑁/𝐴 
𝜂
𝜇

 

Burgers 
1
𝜇1

+
𝜇2

𝜇22 + (𝜂2𝜔)2 
1
𝜂1𝜔

+
𝜂2𝜔

𝜇22 + (𝜂2𝜔)2 𝑝1 ± �𝑝1 − 4𝑝2
2𝑝2

 
𝜂2
𝜇2 

 

Table 4.1: Complex creep modulus real (J1) and imaginary components (J2), material 

relaxation and retardation time (where applicable) for a Maxwell, Kelvin, and Burgers 

model in one dimension.  The placeholder variables used in the Burgers relaxation time 

correspond to: 𝑝1 = �𝜂1
𝜇1

+ 𝜂2
𝜇2
� and 𝑝2 = �𝜂1

𝜇1

𝜂2
𝜇2
�. 
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  15° 30° 45° 60° 75° 
 Semidiurnal −0.23 −0.56 −0.80 −1.04 −1.37 
𝑛 = 1 Diurnal −0.23 −0.56 −0.80 −1.04 −1.37 

 Fortnightly −0.23 −0.56 −0.80 −1.04 −1.37 
 Semidiurnal −0.36 −0.69 −0.93 −1.17 −1.50 
𝑛 = 1.8 Diurnal −0.26 −0.59 −0.83 −1.07 −1.40 
 Fortnightly −0.26 −0.59 −0.83 −1.07 −1.40 
 Semidiurnal −0.50 −0.82 −1.07 −1.31 −1.64 
𝑛 = 3 Diurnal −0.32 −0.66 −0.90 −1.13 −1.47 

 Fortnightly −0.29 −0.63 −0.85 −1.09 −1.43 
 Semidiurnal −0.59 −0.92 −1.16 −1.40 −1.73 
𝑛 = 4 Diurnal −0.39 −0.72 −0.96 −1.20 −1.53 

 Fortnightly −0.29 −0.63 −0.87 −1.10 −1.44 
Table 4.2: Logarithmic values of the Deborah number at a selection of phase shift values 

for the combined tidal solutions shown in figure 4.2D.  Note that the phase shift behaves 

the same for the tidal forcing frequencies with a value of 𝑛 = 1, and the value varies 

between the other solutions for nonlinear viscosity models. 
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 Linear Base Glen Base Linear Wall Glen Wall 
24 5.83 1.16 5.83 2.12 
27 5.07 1.01 5.07 1.84 
30 4.42 0.882 4.42 1.60 
38 3.13 0.625 3.13 1.14 
53 1.57 0.313 1.57 0.569 
68 0.624 0.125 0.624 0.227 
40 2.85 0.569 2.85 1.04 
55 1.73 0.285 1.73 0.519 
70 0.507 0.101 0.519 0.184 
Table 4.3: Summary of the effective viscosities calculated for the Helheim Glacier using 

data from de Juan-Verger (2011).  The columns correspond to the linear and Glen models 

for the basely-locked model (figure 3.8A) and the laterally-locked model (figure 3.8B).  

The data correspond to the data points from de Juan-Verger (2011) described in section 

4.3.3 in bold, with the upper and lower error bars calculated as well.  Each value is in 

terms of 1013 Pa ∙ s. 
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Ice 
V

elocity 

Tidal 
Interaction 

Ice Shelf 

G
eom

etry 

B
asal 

C
haracter 

Therm
al 

Profile 

Bindschadler 

Ice Stream 

300-
800 
m/yr 

Continuous 
Motion Yes Wide and flat Till Poly. 

Ekstrom Ice 

Shelf 
250+ 
m/yr 

None at 3 
km inland Yes Narrow and 

flat ? Poly. 

Kamb Ice 

Stream 
20-50 
m/yr 

Seismic 
evidence Yes Wide and flat Till Poly. 

Pine Island 

Glacier 
2 

km/yr 
None at 55 
km inland Yes Narrow and 

flat Till Poly. 

Thwaites 

Glacier 
2 

km/yr ? Yes Narrow and 
flat Till Poly. 

Rutford Ice 

Stream 

400-
700 
m/yr 

Continuous 
Motion Yes Narrow and 

flat Till Poly. 

Whillans Ice 

Plain 

300-
800 
m/yr 

Stick-slip Yes Wide and flat Till Poly. 

Kangerdlussuaq 5 
km/yr ? Variable Narrow and 

steep Rock Poly. 

Helheim 8-11 
km/yr 

Continuous 
Motion Variable Narrow and 

steep Rock Poly. 

Jakobshavn 

Isbrae 
4-8 

km/yr ? Yes 

Narrow and 
steep, 

tributary 
glaciers bend 

Rock Poly. 

Columbia 

Glacier 
2+ 

km/yr 
Continuous 

Motion No Narrow and 
flat Till ? 

LeConte Glacier 4+ 
km/yr 

Continuous 
Motion No 

Narrow and 
flat, with 

bend 
Rock ? 

Table 4.4: Summary of target glacier characteristics for a range of Antarctic, Greenland, 

and Alaskan glaciers.  The columns show the ice velocity, the tidal behavior, the presence 

of an ice shelf, a brief summary of the geometry, the nature of the ice stream’s bed, and 
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the temperature profile of the ice stream.  For temperature, poly. refers to polythermal 

glaciers.   References for most glaciers are summarized in chapter 1.  References for 

Thwaites, Columbia, and LeConte glaciers are: Krimmel and Vaughn, 1987; Walters and 

Dunlap, 1987; Walters, 1989; Humphrey et al., 1993; Meier et al., 1994; O’neel et al., 

2001; 2003; Rignot et al., 2002; Shepherd et al., 2002. 
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Appendix 4A: Spatial Distribution of Phase Shift  

This appendix lists nine figures demonstrating the spatial distribution of the value of 

phase shift in the laterally-locked models.  The first five figures (4A.1 to 4A.5) shows the 

phase shift for linear viscoelastic models at progressively smaller De.  The other four 

figures show model results for the nonlinear viscoelastic models with the smallest De 

(and thus the largest spatial variability).  Figures 4A.6 and 4A.7 show Glen model results, 

figure 4A.8 shows results for a Goldsby rheology with n=1.8, and figure 4A.9 shows 

phase shifts for a Goldsby rheology with n=4. 
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Figure 4A.1: Phase shift distribution for a linear viscoelastic model with De = 2.5e0 

Pa ∙ s. 
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Figure 4A.2: Phase shift distribution for a linear viscoelastic model with De = 2.5e-1 

Pa ∙ s. 
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Figure 4A.3: Phase shift distribution for a linear viscoelastic model with De = 2.5e-2 

Pa ∙ s. 
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Figure 4A.4: Phase shift distribution for a linear viscoelastic model with De = 2.5e-3 

Pa ∙ s. 
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Figure 4A.5: Phase shift distribution for a linear viscoelastic model with De = 2.5e-4 

Pa ∙ s. 
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Figure 4A.6: Phase shift distribution for a Glen viscoelastic model (n=3) with De =  

1.7e-1 Pa ∙ s. 

  



Viscoelastic Parameters 213 

 

 

Figure 4A.7: Phase shift distribution for a Glen viscoelastic model (n=3) with De =  

3.3e-2 Pa ∙ s. 
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Figure 4A.8: Phase shift distribution for a Goldsby viscoelastic model (n=1.8) with De =  

0.74e-1 Pa ∙ s. 
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Figure 4A.9: Phase shift distribution for a Goldsby viscoelastic model (n=4) with De =  

0.28e-1 Pa ∙ s. 
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Chapter 5 

Viscoelastic Effects during the Drainage of a 

Supraglacial Meltwater Lake 

Meltwater lakes are seasonal features on the surface of some glaciers, appearing when 

there is bountiful surface melting.  These lakes can reach several kilometers in diameter 

and can hold over one million cubic meters of water.  As observed by Das et al. (2008), 

once these lakes begin to drain to the glacier’s bed, they can drain completely over the 

course of a few hours.  During these drainage events, the drainage rates can rival that of 

major waterfalls.  In this work, we expand the turbulent hydraulic fracture model of Tsai 

and Rice (2010, 2012) to include ice viscoelasticity.  We first present a direct adaptation 

of Tsai and Rice’s semi-analytic model using an effective stress formulation for linear 

viscoelasticity (after Kojic and Bathe, 1987; Aagaard et al., 2011).  We then use finite 

element models to investigate the effects of applying a more appropriate nonlinear 

viscoelastic ice rheology for a stationary basal crack.  The solutions of the nonlinear 

models become increasingly similar to the linear solutions at long crack lengths, where 

the ice above the basal crack begins to behave in a beam-like manner.  By fitting our 

nonlinear solutions with equivalent linear solutions at multiple crack lengths, we define 

an evolution law for an effective linear viscosity approximating the nonlinear viscosity.  

The solution for such a “pseudo-nonlinear” viscoelastic model diverges strongly from the 

linear models at crack lengths longer than a few ice thicknesses.  However, while our 
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models over-predict the lake drainage rates compared to observations, the impact of 

viscoelasticity, linear or otherwise, is at best a few percent different from comparable 

elastic models for rapid drainage events of supraglacial lakes with a radius of a few 

kilometers. 

5.1 Introduction 

Summer meltwater lakes are ephemeral features on the surfaces of large glaciers and ice 

sheets.  While such lakes can grow to considerable size—up to three kilometers across 

and several meters deep (e.g., Das et al., 2008; Krawczynski et al., 2009)—once 

connected to the subglacial hydrologic network, these lakes can drain completely over the 

span of only a few hours.  As these lakes can hold millions of cubic meters of water, the 

draining lake water perturbs the movement of the overriding ice during and immediately 

following the pulse of water reaching the glacier’s base.  While the impact of a single 

lake drainage event is short-lived, research suggests that the combined effect of a full 

season of lake drainages can increase the overall flow rate of glacier and may be an 

important process on the Greenland Ice Sheet (Zwally et al., 2002; Parizek and Alley, 

2004; Bartholomew et al., 2011; Hoffman et al., 2011; Palmer et al., 2011).  The 

supraglacial lake drainage phenomenon provides a powerful natural laboratory for 

investigating the link between ice deformation and basal hydrology. 

 A dichotomy exists in the duration of supraglacial lake drainage events.  Based on 

field observations, the drainage can either occur slowly over many days (e.g., Raymond 

and Nolan, 2000) or can last only a few hours (e.g., Box and Ski, 2007; Das et al., 2008; 

Selmes et al., 2011).  These two types drainage event occur through distinct drainage 
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processes, such that there is not a continuum between fast and slow drainage events.  

Slow draining lakes use preexisting suprglacial hydrologic features (spillways, moulins, 

etc.) as pathways for water to reach the glacier’s bed and thus also use the subglacial 

hydrologic system.  Rapid drainage events, in contrast, commence when the weight of the 

supraglacial lakewater fractures the ice down to the glacier’s bed, creating a conduit that 

drains the entire lake’s volume to the bed in a few hours.  Such a process will overwhelm 

the preexisting subglacial hydrological network.   

This chapter focuses on modeling the transient behavior of the drained water upon 

reaching the bed of a glacier but before the fluid diffuses beneath the glacier to such an 

extent that the natural subglacial hydrologic network can accommodate the water.  For 

perspective, while we focus only on the rapid lake drainage events here, the occurrence of 

rapid lake drainage events are somewhat rare, ranging from less than 1% to 25% of all 

lake drainage events across Greenland, depending on the region studied (Selmes et al., 

2011).   

 The observation motivating this work is a meltwater lake drainage event observed 

by Dal et al. (2008) on the Greenland Ice Sheet near Jakobshavn Isbrae in July of 2006.  

This event represented the best observed event to date.  Over the month of July, a 

meltwater lake with a volume of about 4.4e7 m3 of water formed on the glacier’s surface.  

This lake proceeded to drain completely into the ice sheet in less than 1.5 hours, causing 

about a meter of uplift and lateral translation at a GPS monitoring station located 1.7 

kilometers away from the main drainage conduit.  Shortly after the lake finished draining, 

the displacement signal began to decay from its peak value and fell to a constant offset 

from the original position after about 2.5 hours.  Prior to drainage, a crack about 3 
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kilometers long and 0.5 meters wide appeared near the lake, suggesting that this crack 

may have triggered the drainage event by connecting the lake to the subglacial hydrologic 

network. 

 To date, the mathematical modeling of these drainage events is somewhat limited.  

Most models focus on the conditions necessary to drive a pulse of surface water to the 

bed of the ice sheet (e.g., Alley et al., 2005; Krawczynski et al., 2009) or the conditions 

within the supraglacial lake (e.g., Tedesco et al., 2012), rather than investigating the 

diffusion of the fluid beneath the ice sheet once the water reaches the bed.  Tsai and Rice 

(2010, 2012) model the drainage of the lake as a fluid-filled crack propagating 

horizontally along the base of an elastic ice sheet.  The models of Tsai and Rice predict 

that a sizeable basal crack (5-10 kilometers in length) is necessary to accommodate the 

draining water, but are unable to accurately match the magnitude of the observed surface 

displacement from Das et al. (2008). 

 While viscoelasticity has not been investigated for the lake drainage problem, the 

research discussed in the previous chapters suggests that viscoelasticity may be important 

during processes on hourly to weekly timescales.  For example, viscoelasticity has been 

cited as a necessity in the modeling of the tidal loading of Antarctic ice streams (e.g., 

Anandakrishnan and Alley, 1997; Gudmundsson 2006; 2007; 2011; Walker et al., 2012) 

and our own work has demonstrated that viscoelasticity is important for determining the 

timing of an ice stream’s response to a tidal load.  Despite the timescale for lake drainage 

being only about two hours, we find a Maxwell relaxation time of similar magnitude for 

our loading stresses of approximately 106 Pa (𝜏𝜏𝑚𝑚𝑎𝑥 = 𝜂𝑒𝑓𝑓
𝑉𝑉

≈ 102 − 103s).  As the 
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Maxwell relaxation time is within a few orders of magnitude of the duration of lake 

drainage events, we expect measureable viscoelastic effects during such drainage events. 

 We present results from both linear and nonlinear viscoelastic modeling of the 

drainage of a supraglacial lake, using the hydraulic crack propagation model of Tsai and 

Rice (2012) as the basis for our work.  We modify the model of Tsai and Rice (2012) 

using an effective stress formulation for linear viscoelasticity after Kojic and Bathe 

(1987) and Aagaard et al. (2011).  We then compare these linear results to equivalent 

finite element models using nonlinear viscoelasticity, finding that these nonlinear 

solutions can be approximated using a variable (effective) linear viscosity.  We end with 

a comparison of our model results to the field observations of the July 2006 lake drainage 

event observed by Das et al. (2008). 

5.2 Model Methodology  

This section discusses the model methodology used throughout this chapter.  The opening 

subsection begins with a discussion of the approach of Tsai and Rice (2010; 2012) for 

modeling the opening of a crack at the base of a glacier that is filled with a turbulent 

fluid.  Additionally, we highlight the modifications necessary to apply a linear 

viscoelastic rheology to the material surrounding the crack.  In the next subsection, we 

discuss the hybrid Chebyshev/series minimization method used to find our model 

solutions.  The methods section closes with a discussion of the finite element models 

used to explore the importance of using a nonlinear viscoelastic rheology for ice.  
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5.2.1 General Model for Turbulent Hydraulic Fracture 

We model the supraglacial lake drainage system as a two-dimensional water-filled crack 

of length 2L at the base of an impermeable viscoelastic (ice) body of thickness H above a 

similarly viscoelastic half-space, as shown in figure 5.1A.  The crack grows as a function 

of time, as long as the fluid pressure at the drainage conduit is greater than the hydrostatic 

overburden pressure in the basal conduit.  Our model unknowns are the crack opening 

(w), the excess fluid pressure compared to overburden pressure (p), and the fluid velocity 

(U) that satisfy the appropriate fluid flow, conservation, fracture, and rheological 

equations.  As previously mentioned, our methodology only varies from Tsai and Rice 

(2012) in our choice of rheology. 

 The Reynold’s number of the fluid flow in our model is Re ≈ 106𝑚𝑚−1 ∙ 𝐿, 

suggesting turbulent flow in cracks longer than ~ 10 cm.  As we expect a much longer 

basal crack, we adopt the turbulent flow model of Manning and Strickler (Manning, 

1891; Strickler, 1923; Strickler, 1981) using the Darcy-Weisbach friction factor of 

𝑓𝑓 = 𝑓𝑓0(𝑘 𝑤⁄ )1/3 where 𝑓𝑓0 is a reference value of f and k is the Nikuradse roughness 

height (Rubin and Atkinson, 2001; Gioia and Chakraborty, 2006; Tsai and Rice, 2010; 

2012).  The resulting fluid flow relationship is: 

 −
𝜕𝑃
𝑑𝑥

=

⎩
⎨

⎧−
𝑓𝑓0𝜌𝑈2

4
𝑘1/3

𝑤4 3⁄      for 𝑥 > 0

𝑓𝑓0𝜌𝑈2

4
𝑘1/3

𝑤4 3⁄         for 𝑥 < 0
 (5.1) 

where 𝜌 is the fluid density and x is the horizontal dimension.  The conservation of mass 

for an incompressible fluid, when applied within the basal crack, requires: 
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 𝜕𝑤𝑈
𝜕𝑡𝑡

+
𝜕𝑤
𝜕𝑡𝑡

= 0 (5.2) 

For the growth of our mode I crack, we assume the fracture criterion to be: 

 𝐾𝐼 = 𝐾𝐼𝐶 = 0 (5.3) 

Justification for setting the critical fracture intensity equal to zero is provided in Tsai and 

Rice (2010; 2012). 

 For our rheological law, we use the effective stress formulation for linear 

viscoelasticity (Kojic and Bathe,1987; and Aagaard et al., 2011; see Appendix 5A) to 

modify the elasticity equations of Erdogan et al. (1973).  This new viscoelastic 

rheological relationship is: 

 0 = −𝜎𝜎𝑋𝑍 = � ��
1

𝑠 − 𝑥
+ 𝑘11�

𝜕𝑢
𝜕𝑠

+ 𝑘12
𝜕𝑤
𝜕𝑠
� 𝑑𝑠

𝐿

−𝐿
 (5.4A) 

And 

 −4𝜋𝑝(𝑥)𝑆𝑆𝑉𝑉𝑉𝑉 = � �𝑘21
𝜕𝑢
𝜕𝑠

+ �
1

𝑠 − 𝑥
+ 𝑘22�

𝜕𝑤
𝜕𝑠
� 𝑑𝑠

𝐿

−𝐿
 (5.4B) 

where 𝜎𝜎𝑋𝑍 is the two-dimensional shear stress, 𝑆𝑆𝑉𝑉𝑉𝑉 is the vertical normal component of 

the consistent viscoelastic tangent compliance modulus (fully defined in appendix 5A), 

and the 𝑘𝑖𝑖𝑖𝑖’s are coefficients taken from Erdogan et al. (1973). 

 The initial and boundary conditions used to close these four equations are: 

 

𝑝(0, 𝑡𝑡) = 𝑝𝐼 

𝑤(𝐿, 𝑡𝑡) = 0 

𝑈(𝐿, 𝑡𝑡) = 𝑈𝑡𝑡𝑖𝑖𝑝 =
𝑑𝐿
𝑑𝑡𝑡

 

(5.5) 
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where 𝑝𝐼 is the inlet pressure at the conduit base and 𝑈𝑡𝑡𝑖𝑖𝑝 is the fluid velocity at the crack 

tip.  These three conditions ensure that the pressure at the center of the crack is held 

constant (and is assumed to be equal to the weight of the water in the conduit minus the 

ice overburden pressure), the crack is closed at and beyond the crack tip, and that the 

fluid motion at the crack tip is the same as the propagation velocity of the crack tip itself, 

such that there is always fluid in the crack tip region.  Later in this chapter, the value of 

the pressure at the crack center will be modified to reflect the variability of the inlet 

pressure as a function of conduit size and fluid height. 

5.2.2 Solution Method 

To solve the conservation equations, we use the hybrid Chebyshev/series-minimization 

scheme detailed in Tsai and Rice (2012).  First, the conservation equations are non-

dimensionalized using the relations shown in Table 5.1.  We then take �̂�(𝑥�, �̂�𝑡) and 𝑤�(𝑥�, �̂�𝑡) 

as: 

 

�̂�(𝑥�, �̂�𝑡)
𝐷

= �𝑎𝑘𝑝𝑘(𝑥�)
2𝑁

𝑘=0

= 𝑎0𝑝0(𝑥�) + �𝑎2𝑘−1[𝑐2𝑘−1 − |𝑥�|2𝑘−1]
𝑁

𝑘=1

 

+�𝑎2𝑘[𝑐2𝑘 − 𝑈2𝑘(𝑥�)]
𝑁

𝑘=1

 

(5.6) 

and 

 
𝑤�(𝑥�, �̂�𝑡)
𝐷

= �𝑎𝑘𝑤𝑘(𝑥�)
2𝑁

𝑘=0

= 𝑎0 �
1 − 𝑥�

2
�
6/7

+ �𝑎𝑘𝑤𝑘(𝑥�)
2𝑁

𝑘=1

 (5.7) 

where 𝑈2𝑘 are Chebyshev polynomials of the second kind; 𝑐𝑘 and D are fitted parameters 

such that 𝑤𝑘 and 𝑝𝑘 satisfy equations 5.3 and 5.4; and 𝑎𝑘 will be solved for later.  Note 
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that our formulation of viscoelasticity requires a modification to Tsai and Rice’s fitting 

method for the parameters 𝑐𝑘 and D.  To account for the time-variable effective Young’s 

modulus introduced by our viscoelasticity model, the force component 𝐹21 of equation 

7.100 in Erdogan et al. (1973) is set equal: 

 
𝐹21 = −𝜋

2
𝑝𝐼𝑆𝑆𝑉𝑉𝑉𝑉                                    dimensional 

𝐹�21 = −𝜋
2
�̂�𝑆𝑉𝑉𝑉𝑉                                non-dimensional 

(5.8) 

Propagating this change through all our equations, we now solve for the coefficients 𝑐𝑘 

and D and then combine equations 5.1 and 5.2 using an implicit (backwards Euler) 

scheme to approximate the time derivative of w, such that : 

 
−(∑ 𝑎𝑘𝑤𝑘𝑘 )10/3

𝑎04/3/7
𝜕(∑ 𝑎𝑘𝑝𝑘𝑘 )

𝜕𝑥�
�
𝑡𝑡1

= ��
∑ 𝑎𝑘𝑤𝑘𝑘 |𝑡𝑡1 − ∑ 𝑎𝑘𝑤𝑘𝑘 |𝑡𝑡0

�̂�𝑡1 − �̂�𝑡0

1

𝑥�
� (5.9) 

where t0 is the current timestep and t1 is the next timestep.  Note that the initial solution is 

found using the self-similar solution of Tsai and Rice (2010).  Equation 5.9 satisfies the 

fluid flow requirements within the crack as the crack lengthens as a function of time.  

This equation closes the system of equations necessary to solve for the coefficients 𝑎𝑘 

that minimize the error between the two sides of this equation, under the added constrain 

that 𝑤�(𝑥�, �̂�𝑡) must remain nonnegative.  A variable timestep is chosen to be equal to the 

time required for the crack length to change by 5%. 

To determine the impact of viscoelasticity on our model’s solution, we compare 

our viscoelastic results to those found using the purely elastic rheology of Tsai and Rice 

(2012).  We note that at each timestep, the value of SVE changes and thus the ratio of 

viscous to elastic deformation changes.  The variability in SVE implies that the final result 
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must be found by iteratively changing the crack length.  The derivation of SVE and its 

physical interpretation are discussed in appendix 5A. 

5.2.3 Nonlinear Viscoelasticity and Finite Element Implementation 

Ice is traditionally modeled using the nonlinear Glen flow equation (Glen, 1955; 1958) 

for viscous deformation, rather than the Newtonian fluid equation discussed and 

implemented above.  Unfortunately, though an equivalent stress form of a nonlinear 

viscoelastic material exists (e.g., Kojic and Bathe, 1987; Aagaard et al., 2011), such a 

formulation cannot be used to represent ice in our semi-analytic model as 𝑆𝑆𝑉𝑉𝑉𝑉 would be a 

function of p(x) and thus x.  The field equations from which we derive our equation 4 

require the separation of the material moduli from the spatial derivatives of the 

displacements (see Erdogan and Gupta, 1971), such that a problem with spatial variable 

moduli cannot be solved explicitly in our current framework.  Thus, we use to a finite 

element version of our analytic models to explore the impact of using a more physically 

representative nonlinear viscoelastic rheology for ice. 

We use the program PyLith for our finite element analysis (Williams et al., 2005; 

Williams, 2006; Aagaard et al., 2007; 2008).  Figure 5.1B shows a schematic of our finite 

element version of the lake drainage problem.  Only half of the crack (length-wise) is 

modeled due to the symmetry across the crack’s central axis.  The ice body has a domain 

above the crack of thickness H=1 km, a domain below the crack with a thickness much 

greater than H to approximate a half-space, and a region of uncracked ice at least 5L long.   

To define unique upper and lower surfaces of our crack, an offset ∆ℎ separates the two 

edges, where ∆ℎ ≪ 𝑤.  These models use a three-dimensional “pseudo-plane-strain” 
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mesh, where there is a finite thickness in the third dimension but the displacements in this 

direction are set equal to zero.  This approach is equivalent to assuming the problem is 

infinite in the third dimension.   

In our finite element analysis, we do not iteratively lengthen our crack, but instead 

use a crack of known length and a pressure distribution taken from our linear viscoelastic 

results to determine what the expected nonlinear viscoelastic crack opening would be.  

Thus, the fluid equations (equations 5.1 and 5.2) are not satisfied for this static finite 

element formulation of the viscoelastic model, as the value of w increases with time.  

However, where the viscous crack opening is small compared to the elastic crack 

opening, the effect on the overall surface deformation of not accounting for the time-

dependent viscous opening on the pressure distribution is negligible.  

The total model time is equal to the timestep in the linear viscoelastic model at the 

same crack length.  Note that while the timestep varies slightly with varying viscosity in 

the linear model, all timesteps are chosen from the model with 𝜂 = 1𝑒𝑒11 𝑃𝑎 ∙ 𝑠.  For the 

models shown here, the model-averaged error in the speed of crack propagation 

introduced by using the timestep calibrated to a single linear rheology can be as high as 

5%, with increasing errors for models with viscosities increasingly different from our 

reference model.  Such an error is deemed acceptable, as an iterative scheme coupling the 

fluid flow, mass conservation, and fracture equations to the finite element model output 

for a nonlinear rheological model is beyond the scope of this work. 

The applied boundary conditions in the finite element model are equivalent to 

those used in the analytic model with a few extra conditions where required by the finite 

element method.  Along the crack of length L, the pressure distribution 𝑝(𝑥 ≥ 0) from 
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the linear viscoelastic model of the same crack length is applied to both sides of our crack 

as a normal traction.  The nodes at (and beyond) the crack tip are held to have zero 

displacements in all directions.  We ensure the symmetry of our solution by fixing u 

along the nodes above and below the center of the crack.  The base of the half-space 

domain is held fixed, with zero displacements in all directions. 

5.3 Model Solutions 

In this section, we present solutions from our semi-analytic linear viscoelastic models and 

from our finite element nonlinear viscoelastic models.  The first subsection summarizes 

the linear viscoelastic model results, focusing on the relative importance of the viscous 

component of deformation over the evolution of the drainage crack.  The second portion 

of this section discusses the results of our nonlinear models, comparing these nonlinear 

results to the linear model output.  Lastly, the final subsection describes a method for 

approximating the nonlinear viscoelastic behavior of ice using a time-variable viscosity 

in our linear semi-analytic model. 

5.3.1 Linear Viscoelastic Results 

The motivation behind implementing a linear viscoelastic rheology is to quantify the 

variation between the viscoelastic and elastic solutions to our lake drainage model, and to 

determine if using a viscoelastic model is necessary to reproduce the Greenland 

observations.  Our model explored a range of viscosities between 𝜂 = 1𝑒𝑒12 Pa ∙ s and 

1𝑒𝑒11 Pa ∙ s, as these bracket the magnitude of the nonlinear crack openings discussed in 

the next section (5.3.2).  For comparison, such viscosities also match the range of 



Lake Drainage 229 

 

published linear viscosities for ice under similar strain-rates and stresses (e.g., Jellinek 

and Brill, 1956; Reeh et al., 2003).  Note that only the most representative model results 

are plotted here and that the figures discussed in this section also have results for our 

“pseudo-nonlinear” model, which will be discussed later in section 5.3.3. 

 Figure 5.2A shows the dimensionless pressure and crack opening at several crack 

lengths for the elastic and end-member viscoelastic models.  Only at the longest crack 

length (L/H=5) do any noticeable variations in pressure exist between the models, though 

even at L/H=5 the difference between models is modest.  For the dimensionless crack 

opening (figure 5.2B), there are substantial deviations between the elastic and 

viscoelastic solutions starting at a crack lengths of L/H>1, with even a slight variation as 

early as a crack length of  L/H=0.5. 

 These snapshots of 𝑤�  suggest that the viscous deformation becomes more 

important as the crack length increases.  To further explore this effect, figure 5.3A 

compares the time rate of change of the crack opening for a viscoelastic (𝜂 = 1𝑒𝑒12 𝑃𝑎 ∙

𝑠) and an elastic model and figure 5.3B shows the elastic and viscoelastic deformation for 

these models as functions of crack length.  Both the elastic and viscoelastic models 

predict increasing deformation rates with increasing crack length, but the viscoelastic 

model predicts a higher rate of deformation than is seen in the elastic model.  Thus, as the 

basal crack grows, there should be an increase in the relative amount of viscous crack 

opening. 

Lastly, the scaled velocity 𝜙 = 𝑈𝑇𝐼𝑃
𝑈𝑆

 increases at longer crack lengths compared to 

the expected rate from the 𝐿1/6 dependence of 𝑈𝑆𝑆 alone (see Figure 5.4).  At a crack 
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length of L/H=5, the value of the scaled velocity is about 6 times the scaled velocity at a 

crack length of L/H=0.02.  This strong dependence of 𝜙 on crack length was first 

reported by Tsai and Rice (2012). Our results demonstrate that viscoelasticity further 

increases the dependence of the scaled velocity on the crack length. Additionally, 

decreasing the viscosity in the viscoelastic model increases the value of 𝜙 at a given 

crack length.  The inset portion of figure 5.4 shows the expected variation between the 

viscoelastic and elastic solutions to longer crack lengths.  As with the crack opening, the 

relative difference between solutions increases over crack lengths of interest, though the 

relative crack velocity does asymptotically approach a constant value at very long and 

very short crack lengths.   

In summary, our linear viscoelastic models predict increased crack opening, crack 

opening rates, and crack propagation speeds than the elastic model.   The differences 

between the two rheologies become important at a crack length roughly equivalent to the 

ice sheet thickness, with viscoelasticity becoming increasingly important at longer cracks. 

5.3.2 Nonlinear Viscoelastic Results 

Having demonstrated that the viscoelastic solution deviates from the elastic solution, 

especially for crack lengths that approach and surpass the thickness of the upper ice layer, 

we now explore the importance of using a more physically representative stress-

dependent viscosity as the viscous portion of our ice rheology.  We compare the linear 

viscoelastic solutions just discussed to the solutions from our nonlinear viscoelastic finite 

element models, using a reference viscosity coefficient for our glacier corresponding to a 

uniform temperature of -5°C (taken from Cuffey and Paterson, 2010).  Recall our 
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nonlinear models do not change the pressure or crack length, but rather model a single 

chosen crack length and timespan equivalent to the linear viscoelastic model.  Thus, the 

greater the variation between the nonlinear and linear models, the more important using 

nonlinear viscoelasticity is to correctly model the ice deformation. 

 Figure 5.5 shows the nonlinear viscous crack opening at four different crack 

lengths (20 meters, 1 kilometer, 2 kilometers, and 3.333 kilometers) plotted against the 

linear viscous crack openings for a range of linear viscosities.  Two features are 

immediately apparent: the relative magnitude of the nonlinear model compared to the 

linear models varies in time, and the character of the nonlinear crack opening changes 

with increasing crack length.  This second feature is confirmed in the upper panels of 

figure 5.6, which show the normalized linear and nonlinear crack openings and the 

normalized pressure. The lower panels in figure 5.6 plot the effective viscosity of the 

upper and lower crack surfaces.  The effective viscosity is defined in appendix 5C. 

 As the crack grows longer, the magnitude of viscous deformation increases in 

relation to the magnitude of the elastic deformation, as is expected from our linear 

viscous elastic modeling.  Such a trend is shown in figure 5.7A.  Note that while the 

viscous deformation monotonically increases, the trend in the exact value is not constant.  

The relative viscous deformation grows very rapidly around L/H=0.02, slows at 

L/H≈0.025 and then speeds up after L/H≈1.  Figure 5.7B shows the relative viscous 

deformation in the upper crack edge compared to the lower crack edge.  With increasing 

crack length, the viscous deformation of the upper crack edge rapidly grows large enough 

to dominate the overall viscous crack opening signal.  The upward partitioning of the 
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viscous deformation is especially pronounced beyond L/H≈0.5, and is caused by the 

reduced effective viscosity in the upper body at longer crack lengths (see appendix 5C). 

From these features, the nonlinear crack growth is divided into three regimes as a 

function of L/H: a half-space regime for short cracks (L<< H), a beam-like regime for 

long cracks (L>H), and a transitional regime in between (L≈H).  The remainder of this 

section discusses each of these regimes in turn.  The transitional region is defined on the 

lower end by the location where the trend in 𝑤𝑉
𝑤𝐸

 changes slope (figure 5.7A) and on the 

upper end by the region where the normalized viscous deformation coincides with the 

normalized linear deformation (figure 5.6).  The domain of each regime is shown in 

figure 5.7. 

5.3.2.1 Half-Space Regime 

At the shortest crack length, the deformation within the finite-thickness upper ice layer 

and the lower half-space are effectively indistinguishable.  Using figure 5.6A as a 

representative model within this crack regime (appropriate as L is 20 times smaller than 

H), the nonlinear solution clearly deviates greatly from the linear solution.  The nonlinear 

model predicts that the viscous deformation should be more uniform along the crack 

length than in the linear model.  This is equally evident in figure 5.5A, where near the 

crack tip, the nonlinear solution predicts a deformation of similar magnitude to the linear 

model with a viscosity of 1𝑒𝑒11 𝑃𝑎 ∙ 𝑠, while near the crack center, the solution 

approaches that of a linear model with a viscosity of 1𝑒𝑒12 𝑃𝑎 ∙ 𝑠.  Additionally, a region 

of increased deformation exists at the crack tip, unlike the linear viscoelastic trend of 

monotonically reduced crack opening along the crack length. 
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 As seen in figure 5.6A, the effective viscosities in the upper and lower halves of 

the models are essentially the same.  As the effective viscosity is stress dependent, an 

equal effective viscosity implies that the stress induced by the fluid pressure in the crack 

is evenly partitioned between the upper and lower model regions.  As expected, the 

changes in effective viscosity along the length of the crack mirror the value of the fluid 

pressure in the crack, and the region of highest effective viscosity corresponds to the zero 

crossing of the relative pressure.  Near the crack tip, the large negative pressures (i.e., 

excess ice overburden pressure) cause a drop in the effective viscosity.  This reduced 

viscosity creates the region of increased deformation seen at the crack tip. 

 Finally, while the crack opening is equal in the upper and lower portions of the 

crack, the overall magnitude of the crack deformation at this short crack length is very 

small compared to the elastic deformation (figure 5.7).  In this half-space regime of crack 

growth, the relative viscous deformation is substantially less than 1% of the elastic 

opening.  Thus, for cracks short enough to be in the half-space regime, modeling 

viscoelasticity is unnecessary as the viscous deformation is trivial. 

5.3.2.2 Transitional Regime 

As the basal crack increases in length, the profile of the crack opening changes.  When 

the crack length approaches the ice thickness, the free surface begins to impact the 

deformation of the top edge of the crack.  Eventually, the nature of the crack opening 

transitions from the half-space regime discussed above to the beam-like regime that will 

be discussed in section 5.3.2.3.  Within the transitional regime between the half-space 

and beam-like regimes, the crack opening near the center of the crack (𝑥� ≈ 0) increases 
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relative to the crack opening near the crack tip.  In the normalized crack opening figures 

(upper panels of figure 5.6), such a trend manifests itself as a convergence towards the 

linear viscoelastic solution as the crack lengthens.  The solution completely transitions 

into the beam-like regime when the normalized difference (R2 value) between the linear 

and nonlinear crack openings drops below 10%. 

The explanation for the nonlinear model’s trend towards the linear solution with 

increased crack length, is tied to both the increasingly beam-like nature of the upper ice 

body and the larger magnitude of the crack opening for longer cracks.  The combined 

effect of these factors is that the effective viscosity within the upper body steadily 

decreases as the flexural (bending) stresses within the upper body become more 

pronounced.  This understanding is built upon five modeling results: 

1) As demonstrated in appendix 5B, the normalized bending shape of a 

beam is somewhat insensitive to the nature of an applied pressure 

distribution as long as the pressure is roughly the same near the free 

edge of the beam. 

2) In our nonlinear models with L/H>~1, the flexural stress (i.e., the stress 

proportional to 𝜕
2𝑤
𝑑𝑥2

) in the upper ice body is larger than the stress 

induced in the body by the applied pressure.  Furthermore, the opening 

increases faster than linearly with increasing crack length (figure 5.3), 

implying that this flexural stress becomes increasingly more dominant 

than the (roughly constant) applied pressure at larger crack lengths. 
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3) As the stress in the upper ice body is dominated by the flexural stress, 

the effective viscosity can be approximated by the flexural stresses 

independent of the applied pressure.  Such a result is seen in the bottom 

panels of figure 5.6, where the effective viscosity of the upper body 

(blue) diverges from the effective viscosity of the lower body (red) at 

increasing crack length. 

4) For L/H>~1, the flexural stress is close to uniform save near the middle 

of the beam, where the stress is low.  Therefore, the effective viscosity 

only changes significantly near the middle of the upper ice body, where 

the effective viscosity is high. 

5) As demonstrated in appendix 5B, the normalized bending profile of a 

beam is insensitive to changes in the material parameters near the 

middle of the beam.  Thus, the nonlinear crack model begins to behave 

more like the linear crack model as the crack grows longer. 

However, within the entire transitional regime, the viscous crack opening is less than 

10% of the elastic opening, suggesting that viscoelasticity is still somewhat negligible 

even as the upper ice body begins to act more beam-like. 

5.3.2.3 Beam-Like Regime 

Once the crack grows to L/H≈2, the normalized nonlinear viscous deformation is only 

slightly different from the linear viscoelastic deformation for the reasons discussed 

above.  However, while the normalized solution may be well approximated using a linear 

effective viscosity, the value of the nonlinear crack opening increases such that the 
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viscosity of an equivalent linear model drops with increasing crack length.  An 

appropriate equivalent effective viscosity, 𝜂�𝐷𝐷𝑓𝑓, for the nonlinear model at a given crack 

length is found by fitting the nonlinear solution to a series of linear viscoelastic models 

over a range of viscosities.  Figure 5.8 shows the trend in these equivalent effective 

viscosities, 𝜂�𝐷𝐷𝑓𝑓, as a function of crack length, for cracks within the beam-like regime.   

 As in the transitional regime, the reason for the decrease in 𝜂�𝐷𝐷𝑓𝑓 with crack length 

is the increased crack opening at longer crack lengths.  The larger crack opening leads to 

larger flexural stresses that in turn result in the reduced equivalent effective viscosity 

around the crack center and tip.  While the fitted value of 𝜂�𝐷𝐷𝑓𝑓 falls between the 

maximum and minimum values of effective viscosity in the material immediately above 

the crack, 𝜂�𝐷𝐷𝑓𝑓 does not correspond to any standard statistical measure of the effective 

viscosity.  Both the median and mean values of the effective viscosity overestimate the 

value of  𝜂�𝐷𝐷𝑓𝑓 for the corresponding linear viscoelastic model.  Thus, we rely on an 

empirical relationship for 𝜂�𝐷𝐷𝑓𝑓, finding that the evolution of 𝜂�𝐷𝐷𝑓𝑓 with crack length can 

be well fit using: 

 log10�𝜂�𝐷𝐷𝑓𝑓� = 12.72 − 0.37𝐿 (5.10) 

Lastly, the magnitude of the viscous deformation becomes a substantial fraction 

of the elastic deformation in the beam-like regime, reaching a 1:1 ratio between the 

viscous and elastic deformation at a crack length just over L/H≈5.  Thus, once the crack 

has grown to several times the ice thickness, the viscous deformation becomes as 

important as the elastic deformation.  For cracks of the length predicted by Tsai and Rice 
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(2010; 2012), the viscous deformation should surpasses the elastic deformation late in the 

crack evolution. 

5.3.3 “Pseudo-Nonlinear” Viscoelastic Results 

From the nonlinear results presented above, the nonlinear viscoelastic solution only 

varies significantly from the linear solution when the overall viscous deformation is 

negligible.  As such, the nonlinear viscoelastic deformation can be approximated by using 

the linear viscoelastic semi-analytic model with a time-varying (i.e., crack length 

dependent) equivalent effective viscosity.  The evolution of the equivalent effective 

viscosity is fit empirically using equation 5.10.  We call this model our “pseudo-

nonlinear” (PNL) model. 

 Returning to figures 5.2 to 5.4, the PNL solution is the black curve in all three 

figures.  As with the linear viscoelastic model, the PNL pressure solution, shown in 

figure 5.2A, only differs slightly from the other model pressure distributions, even at a 

crack length of L/H=5.  The total crack opening of the PNL model is smaller than that of 

the linear viscoelastic model with a viscosity of 1𝑒𝑒11 Pa ∙ s at crack lengths up to and 

including L/H=1 (figure 5.2B).  This result is expected as the equivalent effective 

viscosity in the PNL model is greater than that of the shown linear viscoelastic model at 

these crack lengths.  At L/H=5, the crack opening in the PNL model surpasses that of the 

linear model with a viscosity of 1𝑒𝑒11 Pa ∙ s, despite only having a lower effective 

viscosity at crack lengths greater than L/H=~4.7.  Such behavior is easily explained by 

the rapid change in 𝑑𝑤�𝑣
𝑑𝑡𝑡

 in figure 5.3A, as the decreasing effective viscosity at larger 

crack lengths further enhances the viscous opening rate beyond that seen in the linear 
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model.  Similarly, in figure 5.4, the scaled fluid velocity increases faster in the PNL 

model than in either the elastic or linear viscoelastic models.   

 Given the well-established nonlinearity of the viscous deformation of ice, our 

PNL model is the most physically representative model for crack propagation considered 

here.  However, a major assumption of the PNL approach is that the input pressure 

remains constant, as our empirical fit of the nonlinear effective viscosity (equation 5.10) 

holds only for a constant inlet pressure.  Calibrating an empirical fit that allows for 

variable pressure would necessitate knowing the pressure history, which would require a 

full crack evolution model to determine consistent values of crack opening, crack 

propagation velocity, and inlet pressure.  Such modeling is well beyond the scope of this 

work.  Thus, the PNL solution is presented as an indication of the expected results for a 

nonlinear viscoelastic model, but as will be discussed in the next section, the need for a 

variable inlet pressure when modeling the Greenland observations dictates our decision to 

directly compare only the observations to our the linear model results. 

5.4 Comparison to Observations 

The model results discussed in the previous sections demonstrate that viscoelasticity 

becomes increasingly important as the basal crack grows longer.  We now compare the 

linear model results to the observations of Das et al. (2008) to determine if viscoelasticity 

is an important consideration for realistic lake drainage problems.  First, we use our 

models to predict the drainage rate and volume of a theoretical supraglacial lake, 

comparing the drainage times of our models to observations of lake level height during 

the Greenland lake drainage event.  Second, we create a finite element model to 
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determine the expected surface deformation during and immediately following a lake 

drainage event, comparing our model results to a GPS station placed by Das et al. (2008) 

1.7 kilometers away from the drainage conduit during the Greenland event. 

5.4.1 Lake Drainage 

Das et al. (2008) observed a lake of volume 0.044 km3 of water drained from the surface 

completely in less than two hours.  We create a simple model for the volume in the lake, 

conduit, and crack system by assuming that the surface lake has a constant cross-sectional 

area of 5.6 km2 (as reported by Das et al. 2008), the basal crack volume is approximated 

as a cylinder of with height equal to an average crack opening, and the drainage conduit 

is an oblong cylinder of semi-major axes 𝑎 and 𝑢0 = 𝑎 𝑝𝐼
2𝑉𝑉

, and height H.  The resulting 

drained volume is: 

 
𝑉𝑑 = 𝑉𝑏 + 𝑉𝑐𝑐 ≈ 𝜋𝐿2𝑤𝑎𝐷𝐷𝐷𝐷 +

𝜋𝑎2𝐻𝑝𝐼
2𝐸𝐸

 
(5.11) 

This geometry is shown schematically in figure 5.9.  Two implicit assumptions of this 

model are that while the lake is draining, no water leaves the crack system and that there 

is a constant input pressure at the intersection of the drainage conduit and the basal crack 

during the initial drainage phase.  However, once the finite volume of the lake drains 

(𝑉𝑑 = 𝑉0), the water level in the conduit will begin to drop due to the conservation of 

volume in the conduit/crack system.  The height of the water level in the conduit system, 

𝐻𝑊, during the post-drainage phase is defined to be (after Tsai and Rice, 2010): 

 𝐻𝑊 = 𝐻 �
𝜌𝑖𝑖𝑐𝑐𝐷𝐷
𝜌

+
𝜌𝑖𝑖𝑐𝑐𝐷𝐷 − 𝜌

𝜌
𝜒𝑤� (5.12) 
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where 𝜒𝑤 is a constant between 0 and 1.  As the inlet pressure is linear with water level, 

we make the substitution: 

  𝑝𝐼 = 𝜒𝑤𝑝𝑠𝑡𝑡𝑎𝑡𝑡𝑖𝑖𝑐𝑐 (5.13) 

where 𝑝𝑠𝑡𝑡𝑎𝑡𝑡𝑖𝑖𝑐𝑐 is the overburden pressure of a static water column of height H.  The value 

of  𝜒𝑤 can now be found by substituting 𝑤𝑎𝐷𝐷𝐷𝐷 = 𝑤�𝑎𝑣𝑒𝑝𝐼𝐿
𝑉𝑉

, 𝑉𝑑 = 𝑉0, and equation 5.13 into 

equation 5.11, resulting in: 
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2  (5.14) 

In this form, the only quantity other than 𝜒𝑤 that is unknown is �𝑎
𝐿
�, the ratio of the 

conduit’s long axis to the length of the basal crack.  As discussed in Tsai and Rice (2010; 

2012), we expect �𝑎
𝐿
� to be between ~ 0.1 and 1.0.  As our bias is towards larger values of 

�𝑎
𝐿
� due to the sizable crack observed by Das et al. (2008), we impose a range of values 

for �𝑎
𝐿
� equal to 0.7, 0.8, 0.9, and 1.0, allowing us to solve explicitly for the drainage 

volume. 

Figure 5.10 shows the drainage volume, drainage rate, and crack opening for 

these four models.  The elastic model solution is shown in blue, while the solution to the 

linear viscoelastic model with a viscosity of 𝜂 = 1𝑒𝑒11 Pa ∙ s is in red.  As will be 

discussed later, this viscosity provides an overestimate of the viscous deformation for an 

equivalent PNL version of this analysis (see subsection 5.5.2). 

 From figure 5.10, our model predicts more rapid drainage than the Greenland 

observations suggest, with the total lake volume draining into the conduit in only ~ 0.32 
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hours.  As expected from this exceedingly short duration, the drainage rates are about 20 

times larger than the peak observed drainage rate of ~ 14,300 m3/s.  Note that this 

drainage rate is the linear drainage rate between the final two undrained lake level 

measurements of Das et al. (2008), assuming a constant lake area.  Additionally, varying 

the values of �𝑎
𝐿
� makes essentially no difference for the model’s solutions.  For example, 

the largest difference in drainage time is about 0.2% and the greatest difference in peak 

crack opening is about 2% between all values of �𝑎
𝐿
�.  This near-independence of the 

solution on �𝑎
𝐿
� implies that the basal crack volume, rather than the conduit’s volume, 

controls the total drainage volume, and that the dependence of 𝜒𝑤 on �𝑎
𝐿
� is minimal. 

 Comparing our elastic (blue lines) and viscoelastic models (red lines), the 

viscoelastic solution completely drains the supraglacial lake faster than the elastic 

solution, as expected from to the added viscous component of deformation.  The 

difference in drainage time between the solutions is 0.0065 hours (23.4 seconds), a 

difference of about 2%.  However, the difference in the modeled crack opening is more 

pronounced, with the viscoelastic solution predicting a crack opening about 9% larger 

than the elastic model.  Additionally, after the lake has finished draining, the difference in 

the modeled crack openings grows, reaching a difference of about 17% between 

rheologies two hours after the lake drainage began.  The exception to this trend is the 

brief period of time where elastic crack is growing while the viscoelastic crack is 

shrinking. Thus, the viscoelastic model predicts slightly faster lake drainage, a larger 

peak crack opening value, and larger crack openings during the post-drainage phase. 
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 To address our exceedingly rapid lake drainage, we now apply a correction for the 

fluid drag on the water falling through the vertical conduit.  Following appendix D of 

Tsai and Rice (2010), the conduit size dictates the turbulent loss of fluid pressure.  This 

effect is added to our models by introducing a correction factor 𝜒 to the pressure term, 

where 𝜒 is constant between 0 and 1 representing the fraction of total fluid overburden 

pressure transmitted to the basal crack.  The relationship between 𝜒, L, and a, taken from 

equation D12 of Tsai and Rice (2010), is: 

 𝜒 = �
�𝑎𝐿�

16 3⁄
�𝐿𝐻�

0.456 + �𝑎𝐿�
16 3⁄

�𝐿𝐻�
� (5.15) 

Note that this formulation of 𝜒 assumes only elastic deformation of the conduit, clearly a 

very relevant simplification given our interest in viscoelasticity.  The implications for 

viscoelastic deformation of the conduit are discussed later in section 5.5. 

 This correction is applied to the linear viscoelastic model by replacing 𝑝𝐼 with 

𝜒𝜒𝑤𝑝𝑠𝑡𝑡𝑎𝑡𝑡𝑖𝑖𝑐𝑐 and adding the constraint shown in equation 5.11.  As with the models 

without the fluid drag correction, we assume a value for �𝑎
𝐿
�, exploring a range of �𝑎

𝐿
� to 

find the value that best-fit the observed lake level data.  With the added fluid drag 

correction, the choice of �𝑎
𝐿
� now has a substantial effect on the model results.  Appendix 

5D discusses the importance of �𝑎
𝐿
� to greater detail.  Figure 5.11 shows the approximate 

lake levels, drainage rates, and crack openings for the elastic and linear viscoelastic 

(𝜂 = 1𝑒𝑒11 Pa ∙ s) models for our best-fit value of �𝑎
𝐿
� = 0.51. 
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 The first impact of conduit size is that the value of �𝑎
𝐿
� has a strong impact on the 

timing of the lake drainage event, unlike the model without a fluid drag correction.  

These models predict a much longer total drainage time than Das et al. (2008) observed, 

as the models do not completely drain the surface lake until about 40.5 hours after the 

crack begins forming.  However, recall that the drainage time estimated from the 

Greenland drainage event is based on the timing of the peak horizontal surface 

displacement (e.g., figure 2C of Das et al.).  Thus, while our best-fit model predicts the 

full drainage time to be just over 40 hours, the duration of the observable lake level 

change fits the lake level data of Das et al. (2008) closely (figure 5.11A).   The threshold 

for an observable change in lake level is five centimeters. 

Our modeling suggests there are three phases in the lake drainage process: a long 

initialization period of little to no observable lake level change, a rapid acceleration in the 

lake drainage rate until the lake drainage is complete, and then a decelerating phase of 

post-drainage crack growth.  The few lake level data points from the Greenland lake 

during the rapid drainage phase suggest that there may be an acceleration in the drainage 

rate until the drainage finishes.  However, our models predict a longer period of 

acceleration and a more rapid final drainage rate than are seen observationally.  The net 

result is that our best-fit model has observable rapid drainage for 1.8 hours, which falls 

into the range of potential drainage time seen by Das et al. (2008), as seen in figure 5.14. 

 Turning now to figure 5.11B, our drainage rates are about a factor of five larger 

than the rate estimated by linear interpolation between the data points of Das et al. 

(2008).  While our modeled rate is fast, the drainage rates are within an order of 
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magnitude of the observations, which is reasonably close considering the number of 

approximations going into our two-dimensional model and the sparsity of the lake level 

data from Das et al. (2008) during the rapid drainage phase.  However, our model does 

predict a constant acceleration of the drainage rate up until the lake has completely 

drained.  The observations are sparse enough to allow for either constant drainage 

acceleration throughout the entire drainage or a drop in the drainage rate near the end of 

the drainage process. 

 Lastly, the addition of fluid drag slightly reduces the maximum crack opening 

values.  The smaller crack openings result in longer drainage times before the complete 

drainage of the surface lake.  An increase in the total drainage time results in a longer 

basal crack.  The viscoelastic models systematically predict a larger deformation than the 

corresponding elastic model, with the difference in peak crack opening of about 10%.  

However, during the post-drainage phase, the difference between the elastic and 

viscoelastic crack openings increases to about 15%.  Such a drop in the relative crack 

opening in the post-drainage phase is opposite the trend seen in the models without fluid 

drag. 

5.4.2 Surface Deformation 

We now use our preferred model from figure 5.11 to estimate the expected surface 

motion at a point 1.7 kilometers away from the main drainage conduit—the location of 

the GPS station used by Das et al. (2008).  We model the surface uplift using an elastic 

finite element model rather than the analytic estimate for uplift used by Tsai and Rice 

(2010), as discussed in more detail in appendix 5E.  As will be shown, a basal crack can 
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create a substantial amount of horizontal motion at the theoretical GPS location.  As Tsai 

and Rice (2010) used the approximation that all the horizontal motion comes from the 

pressure within the conduit, such an analytic approximation is not valid. 

Figure 5.12 shows the model results, plotted against the surface motion data of 

Das et al. (2008).  To standardize the timing of our model results to the observations, we 

adopt the convention of Das et al. (2008) and assume that the surface lake finishes 

draining synchronously with the peak horizontal displacement.  The elastic crack model 

is shown with dashed lines, the viscoelastic model with solid lines, and the observations 

with bolded lines.  The blue, green, and black lines correspond to the horizontal 

displacement, vertical displacement, and crack opening, respectively. 

Table 5.2 summarizes many of the important model and observational quantities 

shown in figure 5.12.  The model under-predicts the value of the surface deformation at 

the GPS station by factors of 1.7 and 2.5 (vertical and horizontal) but predicts that the 

horizontal deformation should be a smaller percentage of the vertical deformation than is 

seen observationally.  Additionally, the models suggest that the peak ground motions are 

contemporaneous with the peak crack opening.  In the Greenland observations, there is a 

noticeable lag in the peak vertical motion after the peak horizontal motion.  For the decay 

of the displacements following peak ground motion, our models do a good job fitting the 

relative amplitude of the vertical displacement, but predict a stronger decay of the 

horizontal signal than in the observations.  Finally, from a qualitative perspective, our 

results are more peaked than the GPS observations, which have a more gradual evolution 

of the surface displacements. 
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We now consider the role that the crack length has in determining the relative 

horizontal and vertical displacements.  Figure 5.13A shows the model results normalized 

by the maximum magnitude of the crack opening, thus removing any influence of the 

changing inlet pressure on the displacement results.  The horizontal displacement has a 

natural high in the relative displacement amplitude, peaking when the crack is slightly 

longer than the distance from the conduit to the GPS location (~ 2.2 kilometers versus the 

GPS location at 1.7 kilometers).  This behavior is unlike that of the relative vertical 

displacement, which grows continuously with increasing crack length.  Thus, if the basal 

crack was allowed to grow with an infinite reservoir of water, there would be a drop in 

the horizontal displacement at any given point due to the geometric effect of the crack 

growing beneath and beyond that location.  In appendix 5E, the peak horizontal 

displacement clearly follows the crack tip, travelling laterally away from the crack’s 

center as the crack grows longer.   

The only reason this effect is not found in our model results is because the lake 

drains completely before the crack lengths grows long enough to express this trend in the 

horizontal displacements at the GPS location.  As shown in figure 5.13B, the value of the 

relative horizontal deformation coincidentally begins to drop around the same time that 

the surface lake finishes draining, masking most of this geometrically-controlled signal.  

However, the slight reduction in the slope near the peak of the horizontal deformation is 

due to the movement of the crack tip away from the GPS station. 
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5.5 Discussion 

We are now equipped to discuss two different consequences of our supraglacial lake 

drainage modeling.  First, our model results suggest a reinterpretation of the estimated 

duration of the lake drainage event from the observations of Das et al. (2008).  This 

discussion highlights two major discrepancies between our model results and the 

Greenland observations: the potential deceleration of the drainage rate just before the 

surface lake finishes draining, and the time delay between the observed vertical and 

horizontal displacement peaks.  Second, the general importance of viscoelasticity in 

correctly modeling the drainage of a supraglacial lake is addressed, with some of the 

remaining limitations of our model discussed. 

5.5.1 Re-Evaluating Lake Drainage Timing 

In Das et al. (2008), the authors estimate the total lake drainage duration based on the 

observed peak surface horizontal motion of their GPS station, which approximately 

matches a linear extrapolation of the final half-dozen lake level observations.  However, 

as discussed in subsection 5.4.2, the peak horizontal surface displacement is controlled by 

the crack length in addition to the crack opening (figure 5.13).  Such a relationship means 

that the horizontal displacement may be reflective of the crack’s geometry rather than the 

total crack opening (and thus lake level), and that the peak value may not correspond to 

the end of the surface lake drainage.  As the vertical surface displacements monotonically 

grow with crack length, we propose that using the peak vertical motion is a better 

estimate for the duration of the lake drainage event. 
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   Applying this new estimate of the rapid drainage duration to the data of Das et al. 

(2008), the duration of the rapid lake drainage would be closer to 1.6-1.8 hours rather 

than the suggested 1.4 (as shown in figure 5.14).  This new drainage time suggests that 

the lake is still draining when the monitoring station Hobo 1 is grounded.  As Hobo 1 was 

farther away from the drainage conduit and came to rest at a higher elevation than station 

Hobo 2, such a result could be explained by bathymetry (i.e., after about 17:15, the lake 

has drained below the level of ~ 5 meters, leaving Hobo 2 stranded on the ice’s surface 

while the lake is still draining elsewhere). 

 However, the two major discrepancies remain between our model results and the 

observations: first, our models suggest that the drainage rate accelerates until the 

supraglacial lake is fully drained while a constant or even reduced drainage rate is 

necessary to match the observed drainage duration; second, our models do not show a 

delay between the peak horizontal and vertical surface displacements, as is seen in the 

observations from Greenland. 

5.5.1.1 Drainage Deceleration 

Our models predict a continuous acceleration in the drainage rates until the surficial lake 

finishes draining, while the observations of Das et al. (2008), in conjunction with our 

drainage timing, do not support such a trend in drainage rate.  The simplest explanation 

for this discrepancy is that our models are systematically missing an important process 

near the end of the rapid lake drainage phase that reduces the final drainage rate.  As all 

the observational data shows, the rate of displacement slows before reaching the peak 

value for both the horizontal and vertical components, while our models only show this 
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behavior in the horizontal component (and is attributable to the geometry of the crack 

relative to the GPS station, see section 5.4.2).   

One potential process that our models miss is that the drainage conduit may act 

less like a drain (i.e., a completely submerged crack) and more like a moulin (i.e., water 

flowing into the crack from the side) as the lake level drops (shown conceptually in 

figure 5.15).  The net result of such a transformation would be a reduction in the drainage 

rate late in the rapid lake drainage phase.  Another possibility is that, for the observed 

lake drainage event, one of the two main drainage conduits stopped contributing to the 

lake drainage due to the falling lake level, resulting in a drop in the lake drainage rate.  

To test either hypothesis, a more detailed mapping of the supraglacial lake bed and/or 

knowing the spatial extent of the lake’s surface through the drainage event would be 

necessary. 

 5.5.1.2 Displacement Peak Timing 

Our models fail to reproduce the offset in the timing of the vertical and horizontal 

displacement peaks seen by Das et al. (2008).  One potential cause is that the draining 

surface lake is assumed to have a constant surface area.  Such an assumption is unlikely 

to be a good approximation for the geometry of a supraglacial lake.  A change in the 

lake’s cross-sectional area could be the cause of an apparent increased drainage rate as 

interpreted from the lake level data.   

In our models, the net result of assuming a shrinking cross-sectional area of the 

lake with depth will be an increased rate of change in surface elevation due solely to 

bathymetry, even with a constant change in lake volume.  As we fit our ideal model by 
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changing �𝑎
𝐿
� until the water level of the constant-surface-area lake matched the trend in 

the observed lake level, having a narrowing lake would cause us to select a value of �𝑎
𝐿
� 

that is too large.  Overestimating the size of the drainage conduit would lead to an 

elevated drainage rate and thus a shorter duration of the rapid drainage phase.  Figure 

5.16 shows schematically the effect of having a variable bathymetry on the observed lake 

level.   

Having a bathymetrically variable lake does not address the need for a constant or 

reduced drainage rate late in the drainage process, and actually makes this issue worse, if 

the lake’s surface area decreases as a function of depth.  Needing a reduced �𝑎
𝐿
� to 

explain the surface observations would increase the crack length at complete drainage.  

As seen in figure 5.13, a longer crack length would cause the horizontal deformation at 

the GPS station to peak earlier than the vertical deformation as is seen in Das et al.’s 

(2008) GPS observations.  However, as with the absolute drainage rates, a more detailed 

understanding of the bathymetry and drainage history of the supraglacial lake is 

necessary to test this hypothesis. 

5.5.2 Influence of Viscoelasticity 

A major goal of this research is to quantify the importance of using a viscoelastic 

rheology for ice to model the process of supraglacial lake drainage.  From our modeling, 

viscoelasticity has three major effects on our solutions to the lake drainage problem: 

predicting the secession of surface drainage sooner, a larger peak crack opening, and a 

larger post-drainage deformation than in an equivalent elastic model.   
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Unfortunately, the total drainage timing is not measurable from surface 

observations, as the surface deformation only reaches an observable level late in the 

drainage process when the drainage rates rapidly accelerate.  The duration of the rapid 

drainage phase, an easily measured time, is not strongly affected by the choice of 

rheology.  Similarly, the peak crack opening is not currently a measurable quantity.  

Thus, only the relative amplitude of the post-drainage deformation provides information 

that can constrain the importance of viscoelasticity.  However, as the difference between 

the viscoelastic and elastic models is expected to be about 10% for our model, this 

information alone is not sufficient to conclusively determine if viscoelasticity is 

necessary to match the observations.  

 Of course, the model results presented in section 5.4 are for a single linear 

viscosity and do not explore the full range of possible viscosities.  From the definition of 

the consistent tangent viscoelastic compliance modulus 𝑆𝑆𝑉𝑉𝑉𝑉 (equation 5A.4), reducing the 

model viscosity will likewise reduce 𝑆𝑆𝑉𝑉𝑉𝑉, resulting in increased crack opening at a given 

pressure.  A larger crack opening increases the crack propagation speed and drainage 

rate, reducing the crack length at, and thus the time until, the complete drainage of the 

surface lake.  The net result is that reducing the viscosity causes the viscoelastic solution 

to diverge more strongly from the elastic solution both in terms of drainage duration and 

deformation magnitude.  The opposite is true for increasing the viscosity, which causes 

the solution to behave more like the elastic solution. 

 However, as we previously stated, the viscous deformation is demonstrably 

nonlinear (e.g., Glen, 1955; 1958).  As shown by our constant inlet pressure PNL model 

(subsection 5.3.3), a nontrivial amount of viscous deformation will occur only when the 
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effective viscosity of the nonlinear model drops substantially during the beam-like phase 

(when the crack length is longer than the glacier thickness).  However, if the viscous 

crack opening becomes large, the lake will completely drain more rapidly than in the 

corresponding elastic model.  After this point, the crack deflates, reducing the flexural 

stresses that control the value of the effective viscosity, resulting in a larger viscosity and 

a smaller proportion of viscous deformation.  Thus, the nonlinear model should only vary 

significantly from the linear viscoelastic model during the period of rapid lake drainage, 

and only if the lake volume is sufficiently large to grow the basal crack longer than the 

glacier’s thickness.   

Additionally, as our cracks only grow elastically to between two and three 

kilometers before the surface lake finishes draining, using equation 5.10,  the effective 

viscosity in the PNL model should not drop below about 1𝑒𝑒11 Pa ∙ s, suggesting that the 

linear results from section 5.4 represent a maximum result for any possible nonlinear 

viscous deformation.  Thus, we must conclude that the effects of viscoelasticity on the 

drainage of a supraglacial lake are fairly minor (about 10% at most).  While such is 

difference is not trivial, the effects of the conduit size on the solution are demonstrably 

larger (see section 5.4 and appendix 5D).  We suggest that creating a physically-

consistent model for the drainage conduit’s evolution during the drainage process is more 

important to correctly model the lake drainage phenomenon than using either a linear or 

nonlinear viscoelastic rheology.  That being said, if there is an appreciable viscoelastic 

effect on the growth and size of the drainage conduit, then viscoelasticity could be 

necessary to correctly model supraglacial lake drainage, but such modeling is beyond the 

scope of this project. 
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5.6 Summary and Conclusions 

In this chapter, we presented a methodology for incorporating linear viscoelasticity into 

the semi-analytic model of Tsai and Rice (2010; 2012) for the growth of a subglacial 

crack filled with a turbulent fluid during the drainage of a supraglacial meltwater lake.  

From using finite element analysis to model an ice-appropriate nonlinear viscoelastic 

rheology, we found that we can approximate the behavior of the nonlinear model using a 

linear model with a time-varying effective viscosity, assuming that the inlet pressure is 

held constant.   

 Next, we applied two correction factors taken from Tsai and Rice (2010) to 

estimate the drainage history in our models, incorporating the effects of the finite volume 

of the surface lake and the reduction in inlet pressure due to drag on the fluid falling 

through the drainage conduit to better match the observations of a real supraglacial 

drainage event from Greenland (Das et al., 2008).  Our modeling suggests that the 

estimated drainage time from Das et al. (2008) may be too short.   More generally, our 

model results suggest that a viscoelastic rheology does not match the observations of Das 

et al. (2008) to a significantly greater extent than a linear elastic model does.  Using our 

general model results for linear and nonlinear viscosity, we propose that exploring the 

full range of reasonable viscous parameters will not increase the divergence of the 

viscoelastic model from the elastic model beyond what is shown here. 

 Another important result of this work is that the opening of a basal crack alone is 

sufficient to cause horizontal as well as vertical surface deformation.  This horizontal 

motion of a given point on the glacier’s surface is dependent on the relative positions of 
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the surface observation to the crack tip, with the horizontal displacement peaking when 

the crack tip is beneath the observation.  Thus, unlike the vertical deformation, which 

necessarily increases with increasing crack opening, the horizontal deformation at a 

single location can peak and decay even as the crack continues to grow.  This result 

provides a possible mechanism for explaining the observed difference in peak horizontal 

and vertical surface deformation seen by Das et al. (2008) during the Jakobshavn Isbrae 

lake drainage event. 

Thus, we conclude that both using linear and nonlinear viscoelasticity has, at best, 

a second-order effect on the modeling of the lake drainage process.  While the viscous 

component of deformation is not negligible (even reaching about 10% at times), our work 

suggests that several of the modeling assumptions have a larger impact on our model 

results.  Such factors include the lack a physically based evolution law for the drainage 

conduit, not knowing the bathymetry of the draining lake, and not having a good 

understanding of any possible changes to the drainage process when the surface lake 

drains to low water levels.  We suggest that the next step in better understanding and 

mathematically modeling the phenomenon of supraglacial lake drainage is to model the 

dynamic growth of the (vertical) drainage conduit, especially late in the lake drainage 

process. 
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 Variable Names Units 
A Conduit radius m 
𝑎𝑘 Fitted coefficient -- 

𝓒𝓒𝑽𝑽𝑽𝑽 Consistent viscoelastic tangent 
matrix 

Pa 

𝑐𝑘 Fitted coefficient -- 
D Fitted coefficient -- 
E Young’s modulus Pa 

𝐹21 Force in the 21 component N 
𝑓𝑓 Darcy-Wesibach friction factor -- 
𝑓𝑓𝑖𝑖 Force vector N 
𝑓𝑓0 Reference friction factor -- 
H Ice sheet thickness m 
∆ℎ FEM crack edge separation mm 
𝐾𝐼 Mode 1 fracture intensity Pa m1/2 
𝐾𝐼𝐶  Critical model 1 fracture intensity Pa m1/2 

K Nikuradse roughness height cm 
L Crack half-length km 
𝑛𝑖𝑖 Normal vector -- 
𝑝 Net fluid pressure Pa 
𝑝𝐼 Inlet pressure Pa 
Re Reynold’s number -- 
𝑆𝑆𝑇 Traction boundary surface -- 
𝑆𝑆𝑈 Displacement boundary surface -- 
𝑆𝑆𝑉𝑉𝑉𝑉  Consistent viscoelastic tangent 

compliance matrix 
Pa-1  

𝑇𝑇𝑖𝑖 Applied traction Pa 
𝑡𝑡 Time s 
𝑡𝑡0 Current timestep s 
𝑡𝑡1 Next timestep s 
𝑈 Fluid velocity m/s 

𝑈2𝑘 Chebyshev polynomial of the 
second kind 

-- 

𝑈𝑇𝐼𝑃𝑃 Crack tip velocity m/s 
𝑢 Displacement (horizontal) m 
𝑢𝑖𝑖 Displacement vector m 
𝑢𝑖𝑖0 Applied displacement m 
𝑉 Model volume m3 
𝑉𝑏 Basal crack volume m3 
𝑉𝑐𝑐 Drainage conduit volume m3 
𝑉𝑑 Volume of fluid drained m3 
𝑉0 Total lake volume m3 
𝑤 Crack opening (deflection) m 

𝑤𝐴𝑉𝑉𝑉𝑉 Average crack opening m 
𝑤𝑉𝑉 Elastic crack opening m 
𝑤𝑉𝑉 Viscous crack opening m 
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𝑥 Horizontal coordinate km 
𝛼𝛼 Timestepping coefficient -- 
𝜀𝜀 Strain -- 
𝜂 Linear viscosity Pa s 

𝜂𝐷𝐷𝑓𝑓 Effective viscosity Pa s 
𝜂�𝐷𝐷𝑓𝑓 Equivalent effective linear viscosity Pa s 

𝜈𝜈 Poisson’s ratio -- 
𝜉 Bimaterial interface coefficient -- 
𝜌 Fluid density kg m-3 
𝜎𝜎 Stress Pa 

𝜎𝜎𝑓𝑙𝑙𝐷𝐷𝑥 Flexural stress Pa 
𝜎𝜎𝑖𝑖𝑖𝑖 Stress tensor Pa 
𝜎𝜎𝑋𝑍 Two-dimensional shear stress Pa 
𝜏𝜏𝑚𝑚𝑎𝑥 Maxwell relaxation time s 

𝜙 Scaled velocity -- 
𝜒 Input pressure coefficient -- 
𝜒𝑤 Fluid drag correction factor -- 

^ Indicates dimensionless variable  
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Figure 5.1: Diagrams of the lake drainage models discussed in this paper.  Panel A is a 

schematic of the fluid-filled basal crack model used for our linear viscoelastic modeling.  

Panel B shows a schematic for the finite element modeling used for modeling nonlinear 

viscoelasticity.  The details of these models are discussed in the methodology section of 

the main text. 
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Figure 5.2: Snapshots of dimensionless pressure (panel A) and crack opening (panel B) 

for cracks with length L/H=0.02, 0.5, 1, and 5.  In all plots, there are curves representing 

the elastic solution, two linear viscoelastic solutions (𝜂 = 1011, 1012 Pa), and the pseudo-

nonlinear (PNL) solution.  In most of these plots, the four models have indistinguishable 

solutions. 
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Figure 5.3: Plots showing the evolution of dimensionless crack opening as a function of 

crack length.  The three curves plotted are the elastic solution, linear viscoelastic solution 

for 1012 Pa, and the pseudo-nonlinear solution.  Panel A shows the rate of change of the 

dimensionless crack opening, while Panel B shows the value of the dimensionless crack 

opening.  The circles represent the model output values, while the curves are polynomial 

fits to these data. 
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Figure 5.4: Plot of the scaled fluid velocity 𝜙 as a function of crack length for our elastic 

model, two linear viscoelastic models (𝜂 = 1 ∙ 1011, 5 ∙ 1011 Pa) and the pseudo-

nonlinear model.  The circles represent the model output values, while the curves are 

polynomial fits to these data.  The inset figure shows the extrapolation to large and small 

crack lengths for the phi values of the viscoelastic models relative to the elastic model.  

Note that the results for the elastic model differ in magnitude from those of Tsai and Rice 

(2012) as we choose to neglect the bimaterial interface coefficient 𝜉 in determining the 

value of 𝜙, unlike Tsai and Rice (2012).   
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Figure 5.5: Viscous deformation at four crack lengths (20 meters, 1 kilometer, 2 

kilometers, and 3.333 kilometers).  The four models plotted are the nonlinear finite 

element model results and 3 linear viscoelastic models for a range of viscosities (1e11, 

5e11, and 1e12 Pa∙s).  
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Figure 5.6: Plots showing the relationship between the normalized crack opening, 

normalized pressure, and effective viscosity.  Panels A to D correspond to the four crack 

lengths shown in figure 5.  In each panel, the upper plot has the normalized pressure (red) 

and crack opening for a linear viscoelastic (dashed blue) and nonlinear viscoelastic model 

(solid blue).  In the lower plot, the effective viscosities for the upper (blue) and lower 

(red) edges of the crack are shown for the nonlinear viscoelastic model.  The effective 

viscosity is calculated from the stress output of the finite element models.   
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Figure 5.7: Summary figure for our nonlinear viscoelastic finite element modeling, 

where each point represents a separate model result.  Panel A shows the relative 

magnitude of the viscous to elastic deformation, while Panel B shows the relative 

magnitude of the viscous deformation in the upper body compared to that of the lower 

body.  The lines connecting the points are added to aid in visualizing the trend in the data.  

The three regimes defined in the background of each panel are defined and discussed in 

the main body of the text. 

  



Lake Drainage 264 

 

 

Figure 5.8: Fit of the (linear) effective viscosities approximating the nonlinear solutions 

as a function of crack length.  See discussion in text for justification for fitting nonlinear 

model results with linear models.  The fitted line defines the trend in effective viscosity 

values used to create our pseudo-nonlinear viscoelastic model. 

  

Error Bars: ±1𝑒𝑒11 Pa ∙ s 
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Figure 5.9: Schematic diagram of the fluid volume system used in section 5.4 to 

approximate the total drained fluid volume.  The surface lake is assumed to have a 

constant surface area of 5.6 km2, meaning that the depth is assumed to be 7.9 meter.  The 

drainage conduit has is an ellipsoidal cylinder, with semi-major axes a  and 𝑢0.  Before 

drainage is complete, the height of the water level in the conduit is H, the thickness of the 

ice.  Once drainage finishes, the water level becomes 𝐻𝑤, as defined in equation 5.12.  

Finally, the basal crack is assumed to extend radially and to have a thickness of 𝑤𝑎𝐷𝐷𝐷𝐷, the 

average crack opening.  
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Figure 5.10: Plots of the drainage volume (A), drainage rate (B) and the average crack 

opening (C) for four models over a range of a/L values.  The drainage volume and crack 

openings are found explicitly from our models, while the drainage rate is the time 

derivative of the drainage volume.  The four model results are close enough to be 

indistinguishable from one another at the shown scale.  The red lines show the results for 

the viscoelastic models, while the blue lines show the elastic model outputs.  Note that 

while the models with different rheologies are not identical, the values all three 

parameters are similar between the two models. 
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Figure 5.11: Plots of the surface lake level (A), drainage rate (B) and the average crack 

opening (C) for our fluid drag model with a best-fit of a/L=0.51.  The crack openings are 

found explicitly from our models, while the surface lake level is calculated from the 

drainage volume assuming a constant lake surface area and the drainage rate is the time 

derivative of the drainage volume.  The red lines show the results for the viscoelastic 

models, while the blue lines show the elastic model outputs.  The circles are the lake level 

values taken from Das et al. (2008).  The observational drainage rates are calculated from 

the time derivative of these values, with the peak observation drainage rate being 14,300 

m3/s.  Note that the observational data have been shifted in time to overlie the model 

results. 

? 
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Figure 5.12: Observational and modeled surface deformation at a location 1.7 kilometers 

away from the main drainage conduit.  Fine lines represent the viscoelastic model results, 

dashed lines the elastic model results, and bolded lines the observations.  The line color 

corresponds to: blue, horizontal surface displacement; green, vertical surface 

displacement; black, crack opening (model only).  Note that the model results are shifted 

in time such that the peak in horizontal deformation is the common reference time 

between the observations and the model results (see discussion in the main text for a 

justification of this reference point).  
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Figure 5.13: Plots of the relative surface horizontal (blue) and vertical (green) surface 

displacements for our elastic (dashed) and viscoelastic (solid) models, with respect to 

crack length (A) and time of day (B, the same horizontal scale as in figure 5.12).  The 

relative surface displacement is the modeled surface displacement at a location 1.7 

kilometers away from the main drainage conduit, divided by the maximum basal crack 

opening value, thus removing influence of the changing pressure from the output.  The 

horizontal component shows a peak at about 2.2 kilometers/16.7 hours that is related only 

to the geometrical effect of the crack growing beneath the observational location.  Such a 

feature is not seen in the vertical component of the relative surface deformation. 

  



Lake Drainage 270 

 

 

Figure 5.14: Lake level and vertical GPS data reproduced from figure 2B of Das et al. 

(2008).  The red and blue squares are the observations of lake level from the two stations 

Hobo1 and Hobo2, while the thin black line is the vertical component of the GPS 

displacement, shifted to have a zero relative vertical offset at the start of the observational 

window shown in this figure.  The red star shows the timing of the drainage, as estimated 

by Das et al. (2008), while the green star shows our estimate of the drainage timing, 

which is coincident with the peak in the vertical GPS displacements.   
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Figure 5.15: Conceptual images of the two different drainage styles described in section 

5.5.1.1. The “drain-like” mode, on the left, is assumed to be the major drainage regime 

while the lake is at a high level. The “moulin-like” mode, on the right, is a potential style 

of low lake level drainage that would have a significantly reduced drainage rate, as is 

seen observationally when the lake is nearly completely drained. 
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Figure 5.16: Schematic diagrams of the effects that a variable cross-sectional area of the 

surface lake will have on lake level observations and the problems introduced in using 

these data as a model constraint.  The plot on the left assumes that there is a constant 

drainage rate of fluid into a conduit at the bottom the model lake.  For a constant area 

lake, the lake level falls linearly; however, if the lake’s area decreases with depth, the 

lake level fall seemingly accelerates late in the drainage process.  In the plot on the right, 

a theoretical assemblage of lake level data is shown, with two of our model curves shown 

schematically.  The model run with the “real” conduit size does not fit the lake level data, 

due to the possibility of a bathymetric effect on the lake level that is independent of the 

real drainage rate and conduit geometry. 
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Variable Name Dimensional Non-dimensional 
Position 𝑥 𝑥� = 𝑥/𝐿 
Pressure 𝑝 �̂� = 𝑝/𝑝𝐼 

Displacement 𝑢 
𝑤 

𝑢� = 𝑢𝐸𝐸′ /(𝑝𝐼𝐿) 
𝑤� = 𝑤𝐸𝐸′ /(𝑝𝐼𝐿) 

Fluid Velocity 𝑈 𝑈� = 𝑈𝑡𝑡𝑖𝑖𝑝 
Time 𝑡𝑡 �̂�𝑡 = 𝑡𝑡𝑈𝑡𝑡𝑖𝑖𝑝/𝐿 

Tangent Modulus 𝑆𝑆𝑉𝑉𝑉𝑉 �̂�𝑆𝑉𝑉𝑉𝑉 = 𝑆𝑆𝑉𝑉𝑉𝑉/𝐸𝐸′ 
Table 5.1: List of variables with dimensional and non-dimensional versions.  The 

constants used in the non-dimensionalization are L, crack length; 𝑝𝐼, input pressure; 

𝐸𝐸′ = 𝐸𝐸/(1 − 𝜐2), the plane-strain Young’s modulus; 𝑈𝑡𝑡𝑖𝑖𝑝 = 𝜙𝑈𝑠 = 𝜙�
𝑝𝐼
𝜌
�𝑝𝐼
𝑉𝑉′
�
2/3

�𝐿
𝑘
�
1/6

, 

the fluid velocity at the crack tip; 𝜙, the velocity scale constant; 𝜌, the fluid density; and 

𝑘, the Nikuradse roughness height 
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 Relative 
Peak 

Timing 
(hrs) 

Peak 
Timing 

Difference 
(%) 

Peak 
Magnitude 

(m) 

Tail 
Magnitude 

at 20:00 
(m) 

Relative 
Tail to 
Peak 
(%) 

Vertical to 
Horizontal 
Disp. (%) 

Crack 
Length 
at Peak 
(km) 

E, 
Horiz 0 0 0.29 0.055 19 

234 3.661 E, 
Vert. 0 0 0.68 0.32 47 

VE, 
Horiz 0 0 0.34 0.076 22 

206 3.476 VE, 
Vert 0 0 0.70 0.36 51 

Obs 
Horiz 0 0 0.84 0.30 35 

140 ? Obs 
Vert 0.26 11.4 1.18 0.56 47 

E, 
Crack  0 0 1.05 0.37 35 

n/a n/a VE, 
Crack 0 0 1.16 0.44 38 

Table 5.2: Quantities of interest shown in figure 5.12.  E refers to the elastic models, 

while VE refers to the viscoelastic models.  The relative peak timing is with respect to the 

observation and modeled horizontal displacement peak.  The tail value is taken at 20:00 

(20 hours), and is chosen to give a quantitative comparison of the drop in surface 

displacement at a time after the peak displacement.  The vertical to horizontal 

displacement percentage is the percentage of the peak vertical displacement compared the 

peak horizontal displacement.  Finally, the crack length at the peak is the length of the 

basal crack at the time of the peak displacement in that model.  The crack length for the 

observed lake drainage event is not known.  The crack rows at the bottom refer to the 

modeled crack opening for the elastic and viscoelastic models. 
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Appendix 5A: Effective Stress Formulation for Linear 

Viscoelasticity 

 Here we summarize the effective stress formulation for the deformation of a linear 

viscoelastic model.  To begin, imagine the stress-strain relationship for a theoretical 

linear Maxwell viscoelastic medium, with constant moduli, under the action of a constant 

stress 𝜎𝜎 that is, at some time t, removed.  From using the definition of a Maxwell 

material, we see immediately that the strain just before the stress is removed is: 

 𝜀𝜀 =
𝜎𝜎
𝐸𝐸

+
𝑡𝑡𝜎𝜎
𝜂

  (5A.1) 

In equation 5A.1, the first term represents the recoverable elastic strain, while the second 

term is the irrecoverable viscous strain.  Figure 5A.1 plots the trajectory of this 

relationship in stress-strain space through the entire stressing cycle.  At any given time, 

the change in strain as a function of stress for the entire cycle up can be represented by a 

line connecting the origin to the current location in stress-strain space.  We call the slope 

of this line 𝓒𝓒𝑽𝑽𝑽𝑽, the consistent viscoelastic tangent modulus.  We define 𝓒𝓒𝑽𝑽𝑽𝑽 to be: 

 𝓒𝓒𝑽𝑽𝑽𝑽 =
𝑑𝜎𝜎
𝑑𝜀𝜀

 (5A.2) 

Note that 𝓒𝓒𝑽𝑽𝑽𝑽 is dependent on the value of t and 𝜂, and at time 𝑡𝑡 = 0 it is equivalent to 

the Young’s modulus.  This approach is equivalent to using the viscoelastic 

correspondence principle (e.g., Findley et al., 2011). 

A brief summary of the derivation of 𝓒𝓒𝑽𝑽𝑽𝑽 from Aagaard et al. (2009) and Kojic and Bathe 

(1987) follows.  Next, we define the deviatoric stress and strain tensors in the following 

fashion: 
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 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝜎𝜎𝑖𝑖𝑖𝑖 − 𝑃𝛿𝛿𝑖𝑖𝑖𝑖 (5A.3) 

 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝜀𝜀𝑖𝑖𝑖𝑖 − 𝜃𝛿𝛿𝑖𝑖𝑖𝑖  (5A.4) 

Where S is the deviatoric stress tensor, σ is the stress tensor, P is the hydrostatic pressure, 

δ is the Kronecker Delta function, e is the deviatoric strain tensor, ε is the strain tensor, 

and θ is the dilatation.  We make the assumption that the volumetric strain is inelastic 

(i.e., that viscous body is incompressible), so that we can make the assertion that: 

 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑉𝑉𝑡𝑡+𝛥𝛥𝑡𝑡

1+ 𝜈𝑡𝑡+𝛥𝛥𝑡𝑡 ( �̅�𝑒𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝑃𝑃𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝐶𝑡𝑡+𝛥𝛥𝑡𝑡 )  (5A.5) 

 𝜎𝜎𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 =
𝐸𝐸𝑡𝑡+𝛥𝛥𝑡𝑡

1 − 2 𝜈𝜈𝑡𝑡+𝛥𝛥𝑡𝑡 ( 𝑒𝑒𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝑒𝑒𝑡𝑡ℎ𝑡𝑡+𝛥𝛥𝑡𝑡 ) (5A.6) 

Where: 

𝑆𝑆�𝑡𝑡+𝛥𝛥𝑡𝑡  is the deviatoric stress tensor defined by 𝑆𝑆�𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝜎𝜎𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 𝛿𝛿𝑖𝑖𝑖𝑖 

𝑒𝑒�𝑡𝑡+𝛥𝛥𝑡𝑡  is the deviatoric strain tensor defined by 𝑒𝑒�𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝜀𝜀𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 𝛿𝛿𝑖𝑖𝑖𝑖 

𝑒𝑒�𝑃𝑃𝑡𝑡+𝛥𝛥𝑡𝑡  is the plastic deviatoric strain tensor 

𝑒𝑒�𝐶𝑡𝑡+𝛥𝛥𝑡𝑡
 is the creep deviatoric strain tensor 

𝜎𝜎𝑚𝑚 
𝑡𝑡+𝛥𝛥𝑡𝑡 is the mean stress tensor defined by 𝜎𝜎𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝜎𝜎𝑖𝑖𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 3⁄  

𝜀𝜀𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡  is the mean strain tensor defined by 𝜀𝜀𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 3⁄  

𝐸𝐸 𝑡𝑡+𝛥𝛥𝑡𝑡 is the Young's modulus corresponding to temperature 𝑇𝑇𝑡𝑡+𝛥𝛥𝑡𝑡  

𝜈𝜈𝑡𝑡+𝛥𝛥𝑡𝑡  is the Poisson's ratio corresponding to temperature 𝑇𝑇𝑡𝑡+𝛥𝛥𝑡𝑡  

𝜀𝜀𝑡𝑡ℎ𝑡𝑡+𝛥𝛥𝑡𝑡  is the thermal strain 

𝑡𝑡 + 𝛥𝛥𝑡𝑡 means corresponding to time 𝑡𝑡 + 𝛥𝛥𝑡𝑡 
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Removing any thermal contribution from this problem and adding in the initial stress and 

strain states, we can rewrite (5A.5) and (5A.6) to: 

 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑉𝑉
1+𝜈

( �̅�𝑒𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝑃𝑃𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝐶𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝐼) + 𝑆𝑆̅𝐼   (5A.7) 

 𝜎𝜎𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 =
𝐸𝐸

1 − 2𝜈𝜈
( 𝑒𝑒𝑚𝑚𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝑒𝑒𝐼) + 𝜎𝜎𝑚𝑚𝐼  (5A.8) 

As εm is zero for creep and plasticity, σm can be found directly from equation (5A.8).  

Using a discrete timestep of Δ𝑡𝑡, equation (5A.7) can be rewritten as: 

 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑉𝑉
1+𝜈

( �̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 − 𝛥𝛥�̅�𝑒𝑃𝑃 − 𝛥𝛥�̅�𝑒𝐶) + 𝑆𝑆̅𝐼   (5A.9) 

Where: 

 �̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 = �̅�𝑒𝑡𝑡+𝛥𝛥𝑡𝑡 − �̅�𝑒𝑃𝑃𝑡𝑡 − �̅�𝑒𝐶𝑡𝑡 − �̅�𝑒𝐼   (5A.10) 

Thus, the problem has been reduced to determining the values of t+Δt𝑆𝑆̅, ΔeP, and ΔeC.  We 

now apply the implicit α-method of Bathe (1995).  First, the effective creep strain is 

written: 

 𝜟𝜟�̄�𝒆𝑪𝑪 ≡ �2
3
𝛥𝛥�̄�𝑒𝐶 ⋅ 𝛥𝛥�̄�𝑒𝐶    (5A.11) 

And the effective creep stress: 

 �̄�𝒕+𝜟𝜟𝒕 ≡ �3
2

𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 ⋅ 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡   (5A.12) 

The weighted effective stress is then defined to be: 

 
�̄�𝜎𝜏𝜏 = (1 − 𝛼𝛼) �̄�𝜎𝑡𝑡 + 𝛼𝛼 �̄�𝜎𝑡𝑡+𝛥𝛥𝑡𝑡

= (1 − 𝛼𝛼)�3
2

𝑆𝑆̅𝑡𝑡 ⋅ 𝑆𝑆̅𝑡𝑡 + 𝛼𝛼�3
2

𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 ⋅ 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡   (5A.13) 

Where α, a weighing factor, is between 0 and 1.  Note that if α is equal to 0, this implicit 

formulation reverts to an explicit formulation.  The α-method then allows us to write: 
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 𝜟𝜟�̄�𝒆𝑪𝑪 = 𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 𝑆𝑆̅𝜏𝜏   (5A.14) 

Where: 

 𝛾𝛾𝜏𝜏 =
3
2
𝛥𝛥�̄�𝑒𝐶

�̄�𝜎𝜏𝜏
 (5A.15) 

 𝑆𝑆̅𝜏𝜏 = (1 − 𝛼𝛼) 𝑆𝑆̅𝑡𝑡 + 𝛼𝛼 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡  (5A.16) 

The next step is to consider the creep rheology, which has the general form: 

 �̄�𝑒𝐶 = 𝑓𝑓1(�̄�𝜎)𝑓𝑓2(𝑡𝑡)𝑓𝑓3(𝑇𝑇)  (5A.17) 

Converting the power law rheology into the effective stress formulation, we get: 

 �̄�𝑒𝐶 = 𝑎0(�̄�𝜎)𝑎1(𝑡𝑡)𝑎2𝑓𝑓(𝑇𝑇)  (5A.18) 

To solve this material model, first equation (5A.17) is changed into a function of 

incremental creep strain: 

 𝜟𝜟�̄�𝒆𝑪𝑪 = 𝛥𝛥𝑡𝑡𝑓𝑓1( �̄�𝜎𝜏𝜏 )𝑓𝑓2̇(𝜏𝜏)𝑓𝑓3( 𝑇𝑇𝜏𝜏 )  (5A.19) 

where 𝑓𝑓2̇(𝜏𝜏)is the time derivative of f2 at weighted time τ and τT is the weighted 

temperature: 

 𝜏𝜏 = 𝑡𝑡 + 𝛼𝛼𝛥𝛥𝑡𝑡  (5A.20) 

  𝑇𝑇𝜏𝜏 = (1 − 𝛼𝛼) 𝑇𝑇𝜏𝜏 + 𝛼𝛼 𝑇𝑇𝑡𝑡+𝛥𝛥𝑡𝑡   (5A.21) 

Now it behooves us to reformulate our creep laws into more usable forms.  First, the 

invariants of the creep strain tensor and deviatoric stress tensors will be used in place of 

eC and σ, respectively.  Using the example of a triaxial creep experiment with a general 

nonlinear viscoelastic rheology, we get: 

 �̇�𝑒11𝐶 = 𝐴𝑉𝑉𝑒𝑒
−𝑄
𝑅𝑇(𝜎𝜎1 − 𝜎𝜎3)𝑛 = 𝐴𝑉𝑉𝑒𝑒

−𝑄
𝑅𝑇𝜎𝜎𝑑𝑛 (5A.22) 

In a triaxial experiment, the main stress components are 𝜎𝜎2 = 𝜎𝜎3 = 𝜎𝜎𝑐𝑐which is the 

confining pressure of the experiment.  Assuming that σ1 is the applied stress in the main 
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axial direction, the hydrostatic pressure can be defined to be: 

 𝑃 =
𝜎𝜎1 + 2𝜎𝜎𝑐𝑐

3
 (5A.23) 

And thus the deviatoric stresses are: 

 
𝑆𝑆1 =

2
3

(𝜎𝜎1 − 𝜎𝜎𝑐𝑐)

𝑆𝑆2 = 𝑆𝑆3 = −
1
3

(𝜎𝜎1 − 𝜎𝜎𝑐𝑐)
 (5A.24) 

As σc = σ3, we get: 

 
𝑆𝑆1 =

2
3
𝜎𝜎𝑑

𝑆𝑆2 = 𝑆𝑆3 = −
1
3
𝜎𝜎𝑑

 (5A.25) 

Assuming the material is incompressible and isotropic, the strain rates are: 

 
�̇�𝑒11𝐶 = �̇�𝑒11

�̇�𝑒22𝐶 = �̇�𝑒33𝐶 = −
1
2
�̇�𝑒11

 (5A.26) 

Thus the second deviatoric stress and strain-rate invariants are, respectively: 

 �𝐽𝐽′2 = �−𝑆𝑆1𝑆𝑆2 − 𝑆𝑆2𝑆𝑆3 − 𝑆𝑆1𝑆𝑆3 = 𝜎𝑑
√3

  (5A.27) 

Applying the definition 5A.27 to equation 5A.22, we get: 

 ��̇�′2𝐶 = 𝐴𝑉𝑉
√3

𝑛+1

2
𝑒𝑒−

𝑄
𝑅𝑇�𝐽𝐽′2

𝑛
  (5A.28) 

We can compact the constants, for example: 

 𝐴𝑇 = 𝐴𝑀𝑒𝑒
− 𝑄
𝑅𝑇 = 𝐴𝑉𝑉

√3
𝑛+1

2
𝑒𝑒−

𝑄
𝑅𝑇 (5A.29) 

However, the formulation of AT shown in 5A.29 is not, strictly speaking, constant as it 

depends of the value of the stress exponent n.  This can be avoided by introducing a 

reference stress and strain-rate 𝜎𝜎0and �̇�𝑒0such that the flow law, in terms of the second 
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invariants, becomes: 

 ��̇�′2𝐶

�̇�𝑒0
=
�𝐽𝐽′2
𝑆𝑆0

𝑛

 (5A.30) 

where 

 𝐴𝑇 =
�̇�𝑒0
𝑆𝑆0𝑛

 (5A.31) 

Thus the component form of 5A.27 can be rewritten, using 5A.29-5A.31, as: 

 �̇�𝑒𝑖𝑖𝑖𝑖𝐶 =
�̇�𝑒0�𝐽𝐽′2

𝑛−1
𝑆𝑆𝑖𝑖𝑖𝑖

𝑆𝑆0𝑛
 (5A.32) 

Now, using equation (5A.19), we can find the incremental strain of each rheological 

model: 

 
𝜟𝜟𝒆𝒆�𝑪𝑪 ≈

𝛥𝛥𝑡𝑡�̇�𝑒0� 𝐽𝐽′2𝜏𝜏 𝑛−1
𝑆𝑆̅

𝑆𝑆0𝑛

=
𝛥𝛥𝑡𝑡�̇�𝑒0 𝜎𝜎𝜏𝜏 𝑛−1𝑆𝑆̅

√3
𝑛−1

𝑆𝑆0𝑛

 (5A.33) 

From equation (5A.14) we can find the value of 𝛾𝛾𝜏𝜏 and from equation (5A.15) the value 

of 𝜟𝜟�̄�𝒆𝑪𝑪 in the following manner: 

 𝛾𝛾𝜏𝜏 =
�̇�𝑒0� 𝐽𝐽′2𝜏𝜏 𝑛−1

𝑆𝑆0𝑛
 (5A.34) 

 𝜟𝜟�̄�𝒆𝑪𝑪 ≈
2𝛥𝛥𝑡𝑡�̇�𝑒0 �̄�𝜎𝑛𝜏𝜏

√3
𝑛+1

𝑆𝑆0𝑛
 (5A.35) 

Plugging 5A.34, 5A.35, and 5A.16 into 5A.9 results in the following forms, assuming 

that the condition of �̄�𝑒𝑃𝑃𝑡𝑡𝛥𝛥𝑡𝑡 = 0(no plasticity) is enforced: 

 �̄�𝑆𝑡𝑡+Δ𝑡𝑡 =
1
𝑎𝑉𝑉

{�̅�𝑒′ − 𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 [(1 − 𝛼𝛼) �̄�𝑆𝑡𝑡 + 𝛼𝛼 �̄�𝑆𝑡𝑡+𝛥𝛥𝑡𝑡 ]} + 𝑆𝑆̅𝐼 (5A.36) 



Lake Drainage 281 

 

Where 

 𝑎𝑉𝑉 =
1 + 𝜈𝜈
𝐸𝐸

 (5A.37) 

Equation (5A.36) can be rewritten as: 

 𝑆𝑆̅𝑡𝑡+Δ𝑡𝑡 (𝑎𝑉𝑉 + 𝛼𝛼𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 ) = �̅�𝑒′′ − 𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 (1 − 𝛼𝛼) 𝑆𝑆̅𝑡𝑡 + 𝛼𝛼 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝑎𝑉𝑉𝑆𝑆̅𝐼 (5A.38) 

Taking the scalar inner product of 5A.38 results in the form: 

 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡 𝑎2 − 𝑏 + 𝑐 𝛾𝛾𝜏𝜏 − 𝑑2 𝛾𝛾2𝜏𝜏 = 𝐹 = 0  (5A.39) 

Where 

 

𝑎 = 𝑎𝑉𝑉 + 𝛼𝛼𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏

𝑏 = 1
2

�̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 ⋅ �̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝑎𝑉𝑉 �̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 ⋅ 𝑆𝑆̅𝐼 + 𝑎𝑉𝑉2𝐽𝐽2′𝐼

𝑐 = 𝛥𝛥𝑡𝑡(1 − 𝛼𝛼) �̅�𝑒′𝑡𝑡+𝛥𝛥𝑡𝑡 ⋅ 𝑆𝑆̅𝑡𝑡 + 𝛥𝛥𝑡𝑡(1 − 𝛼𝛼)𝑎𝑉𝑉 𝑆𝑆̅𝑡𝑡 ⋅ 𝑆𝑆̅𝐼

𝑑 = 𝛥𝛥𝑡𝑡(1 − 𝛼𝛼)� 𝐽𝐽′2𝑡𝑡

  (5A.40) 

5A.39 is solved by taking the derivative of 5A.39 with respect to � 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡 .  This results 

in a general answer, shown below as equations 5A.41 and 5A.42: 

 
𝛿𝛿𝐹

𝛿𝛿� 𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡
= 2𝑎2� 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿� 𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡
(2𝑎𝛼𝛼𝛥𝛥𝑡𝑡 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝑐 + 𝑑2)  (5A.41) 

  𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿� 𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡
=

�̇�𝐷0𝛼(𝑛−1)� 𝐽′2𝜏𝜏
𝑛−2

𝑆𝑆0
𝑛  (5A.42) 

Lastly, we need to compute the viscoelastic tangent material matrix, which relates stress 

to strain.  It is: 

 𝓒𝓒𝑽𝑽𝑽𝑽 = 𝛿𝛿 𝜎𝜎�⃗𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 �⃗�𝜀𝑡𝑡+𝛥𝛥𝑡𝑡   (5A.43) 

The stress vector is: 
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�⃗�𝜎𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝑃𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡   for 𝑖𝑖 = 1,2,3

�⃗�𝜎𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑆𝑆𝑖𝑖  𝑡𝑡+𝛥𝛥𝑡𝑡 for 𝑖𝑖 = 4,5,6
 (5A.44) 

And thus: 

  
𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉 = 𝐶𝐶𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 + 1

3
𝑉𝑉

1−2𝜈
  𝑖𝑖 ≤ 3, 𝑖𝑖 ≤ 3

𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉 = 𝐶𝐶𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷   otherwise
 (5A.45) 

To solve for 𝐶𝐶𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷: 

  𝐶𝐶𝑖𝑖𝑖𝑖𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝜀𝑗𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡
𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷𝑙𝑡𝑡+𝛥𝛥𝑡𝑡
𝛿𝛿 𝐷𝐷𝑙𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝜀𝑗𝑡𝑡+𝛥𝛥𝑡𝑡  (5A.46) 

We now solve each derivative term in 5A.46 separately, saving 𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡 for last.  By taking 

the derivative of equation 5A.10 with respect to 𝑒𝑒𝑙𝑙𝑡𝑡+𝛥𝛥𝑡𝑡 we find directly: 

  𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷𝑙𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝛿𝛿𝑘𝑙𝑙  (5A.47) 

And from equation 5A.4 we find: 

 
𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷𝑙𝑡𝑡+𝛥𝛥𝑡𝑡 = 1
3
�

2 −1 −1
−1 2 −1
−1 −1 2

� 𝑖𝑖 ≤ 𝑙, 𝑖𝑖 ≤ 3

= 𝛿𝛿𝑙𝑙𝑖𝑖  otherwise
  (5A.48) 

To solve for 𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝐷𝐷′𝑘𝑘𝑡𝑡+𝛥𝛥𝑡𝑡 it first becomes necessary to solve several other differentiations.  

First, rewrite equation 5A.38 as: 

 
𝐹 = 𝑆𝑆̅𝑡𝑡+Δ𝑡𝑡 (𝑎𝑉𝑉 + 𝛼𝛼𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 ) − �̅�𝑒′′𝑡𝑡+𝛥𝛥𝑡𝑡 + 𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 (1 − 𝛼𝛼) 𝑆𝑆̅𝑡𝑡 − 𝛼𝛼 𝑆𝑆̅𝑡𝑡+𝛥𝛥𝑡𝑡

+ 𝑎𝑉𝑉𝑆𝑆̅𝐼 = 0 
(5A.49) 

It follows directly that: 

 
𝛿𝛿𝐹

𝛿𝛿 𝑒𝑒′𝑘𝑡𝑡+𝛥𝛥𝑡𝑡 = −𝛿𝛿𝑖𝑖𝑘 (5A.50) 

And: 
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 𝛿𝛿𝐹
𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑎𝑉𝑉 + 𝛼𝛼𝛥𝛥𝑡𝑡 𝛾𝛾𝜏𝜏 + 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 𝛥𝛥𝑡𝑡[𝛼𝛼 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 + (1 − 𝛼𝛼) 𝑆𝑆𝑖𝑖𝑡𝑡 ]  (5A.51) 

To find 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 first we α-expand 𝛾𝛾𝜏𝜏 using equation 5A.34 

 𝛾𝛾𝜏𝜏 =
�̇�𝑒0
𝑆𝑆0𝑛

[𝛼𝛼� 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡 + � 𝐽𝐽′2𝑡𝑡 ]𝑛−1 (5A.52) 

Now product-rule expand 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 : 

 
𝛿𝛿� 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 =
𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿� 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿� 𝐽𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡  (5A.53) 

We know one set of derivatives from equation 5A.41.  The other derivative is: 

 
𝛿𝛿� 𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑊𝑖𝑖
𝑡𝑡+𝛥𝛥𝑡𝑡

2� 𝐽′2𝑡𝑡+𝛥𝛥𝑡𝑡
  (5A.54) 

Where 

 𝑊𝑖𝑖
𝑡𝑡+𝛥𝛥𝑡𝑡 = 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡   if1 ≤ 𝑖𝑖 ≤ 3

= 2 𝑆𝑆𝑖𝑖  𝑡𝑡+𝛥𝛥𝑡𝑡 otherwise
  (5A.56) 

Thus the solutions to 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 are: 

 𝛿𝛿 𝛾𝛾𝜏𝜏

𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 =
𝐷𝐷0̇𝛼(𝑛−1)� 𝐽′2𝜏𝜏

𝑛−2
𝑊𝑖𝑖

𝑡𝑡+𝛥𝛥𝑡𝑡

2� 𝐽′2𝑡𝑡+𝛿𝑡𝑡 𝑆𝑆0
𝑛

  (5A.57) 

Now combining 5A.51 with 5A.57 and 5A.50, and recalling the Euler chain rule shown 

below: 

 𝛿𝛿𝑥
𝛿𝛿𝑦

= −

𝛿𝛿𝑧
𝛿𝛿𝑦
𝛿𝛿𝑧
𝛿𝛿𝑥

 (5A.58) 

results in the following, using 𝑆𝑆𝑖𝑖𝜏𝜏 = 𝛼𝛼 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡 + (1 − 𝛼𝛼) 𝑆𝑆𝑖𝑖𝑡𝑡 : 
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𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝑒𝑒′𝑘𝑡𝑡+𝛥𝛥𝑡𝑡 =
𝛿𝛿𝑖𝑖𝑘

𝑎𝑉𝑉 + 𝛼𝛼𝛥𝛥𝑡𝑡

⎣
⎢
⎢
⎡
𝛾𝛾𝜏𝜏 +

𝑒𝑒0̇ 𝑆𝑆𝑖𝑖𝜏𝜏 (𝑛 − 1)� 𝐽𝐽′2𝜏𝜏 𝑛−2
𝑊𝑖𝑖

𝑡𝑡+𝛥𝛥𝑡𝑡

2� 𝐽𝐽′2𝑡𝑡+𝛿𝛿𝑡𝑡 𝑆𝑆0𝑛 ⎦
⎥
⎥
⎤
 

(5A.59) 

Now 𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉can be solved for: 

 

𝐶𝐶𝑖𝑖𝑖𝑖𝑉𝑉𝑉𝑉 =
1
3

𝐸𝐸
1 − 𝑒𝑒𝜈𝜈

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

+
1
3
𝛿𝛿 𝑆𝑆𝑖𝑖𝑡𝑡+𝛥𝛥𝑡𝑡

𝛿𝛿 𝑒𝑒′𝑘𝑡𝑡+𝛥𝛥𝑡𝑡

⎣
⎢
⎢
⎢
⎢
⎡

2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3⎦

⎥
⎥
⎥
⎥
⎤

 

(5A.60) 

Modifying equation 5A.60 to represent a plane-strain condition for two-dimensions, we 

find that the consistent viscoelastic tangent modulus is: 

 

𝓒𝓒𝑽𝑽𝑽𝑽 =
1
3
�

𝐸𝐸
1 − 2𝜈𝜈

� �
1 1 0
1 1 0
0 0 1

�

+
1
3
�

1 + 𝜈𝜈
𝐸𝐸

+
𝛼𝛼Δ𝑡𝑡
2𝜂

�
−1

�
2 −1 0
−1 2 0
0 0 3

� 

(5A.61) 

This definition of 𝓒𝓒𝑽𝑽𝑽𝑽 relies on the definition of the parameter 𝛼𝛼, which comes from the 

alpha-method of time discretization (Bathe, 1995).  For our purposes, 𝛼𝛼 will always be 

set to 1; this ensures that we are advancing the time step implicitly (such an 𝛼𝛼 value is 

consistent with the timestepping presented in equation 9). 



Lake Drainage 285 

 

 To match the rheological formulation shown in equation 5.4, we then convert 𝓒𝓒𝑽𝑽𝑽𝑽 

into the consistent viscoelastic tangent compliance modulus 𝑆𝑆𝑉𝑉𝑉𝑉 by taking the inverse of 

𝓒𝓒𝑽𝑽𝑽𝑽. Thus we get: 

 

𝑆𝑆𝑉𝑉𝑉𝑉 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡�𝛼𝛼Δ𝑡𝑡2𝜂 + 3 �1 − 𝜈𝜈

𝐸𝐸 �� �𝛼𝛼Δ𝑡𝑡2𝜂 + 1 + 𝜈𝜈
𝐸𝐸 �

𝛼𝛼Δ𝑡𝑡
𝜂 + 3

𝐸𝐸
−
�3𝜈𝜈
𝐸𝐸 + 𝛼𝛼Δ𝑡𝑡

2𝜂 � �
𝛼𝛼Δ𝑡𝑡
2𝜂 + 1 + 𝜈𝜈

𝐸𝐸 �

𝛼𝛼Δ𝑡𝑡
𝜂 + 3

𝐸𝐸
0

−
�3𝜈𝜈
𝐸𝐸 + 𝛼𝛼Δ𝑡𝑡

2𝜂 � �
𝛼𝛼Δ𝑡𝑡
2𝜂 + 1 + 𝜈𝜈

𝐸𝐸 �

𝛼𝛼Δ𝑡𝑡
𝜂 + 3

𝐸𝐸

�𝛼𝛼Δ𝑡𝑡2𝜂 + 3 �1 − 𝜈𝜈
𝐸𝐸 �� �𝛼𝛼Δ𝑡𝑡2𝜂 + 1 + 𝜈𝜈

𝐸𝐸 �

𝛼𝛼Δ𝑡𝑡
𝜂 + 3

𝐸𝐸
0

0 0
1 + 𝜈𝜈
𝐸𝐸

+
𝛼𝛼Δ𝑡𝑡
2𝜂 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(5A.62) 

For cases where the viscous deformation is negligible, 𝑆𝑆𝑉𝑉𝑉𝑉 simplifies to the standard 

elastic compliance matrix in two-dimensions. 
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 Variable Names (Appendix 5A) Units 
𝐴𝑉𝑉 Viscosity coefficient Pa-n s-1 
𝐴𝑀 Triaxial viscosity coefficient Pa-n s-1 
𝐴𝑇 Temperature-variable triaxial 

viscosity coefficient 
Pa-n s-1 

a Placeholder variable, see 5A.40 Pa-1 
𝑎𝑉𝑉 Placeholder variable, see 5A.37 Pa-1 

b Placeholder variable, see 5A.40 -- 
𝓒𝓒𝑽𝑽𝑽𝑽 Consistent viscoelastic tangent 

matrix 
Pa 

𝐶𝐶𝐷𝐷𝐷𝐷𝐷𝐷 Deviatoric consistent viscoelastic 
tangent matrix 

Pa 

c Placeholder variable, see 5A.40 Pa s 
d Placeholder variable, see 5A.40 Pa2 s2 
𝑒𝑒𝑖𝑖𝑖𝑖  Deviatoric strain tensor 

(component form) 
-- 

�̅�𝑒 Deviatoric strain tensor -- 
�̅�𝑒′ Deviatoric strain (elastic) -- 
�̅�𝑒𝐶  Deviatoric creep strain -- 
�̅�𝑒𝑃𝑃 Deviatoric plastic strain -- 

F Inner product of 5A.38 -- 
𝐽𝐽2′  Second deviatoric stress invariant Pa 
𝐿′̇ 2𝐶  Second deviatoric strain-rate 

invariant 
s-1 

𝑛 Power law exponent -- 
𝑃 Hydrostatic pressure Pa 
𝑄 Activation energy J 
R Universal gas constant J mol-1 K-1 
𝑆𝑆̅ Deviatoric stress tensor Pa 
𝑆𝑆𝑖𝑖𝑖𝑖 Deviatoric stress tensor 

(component form) 
Pa 

𝑆𝑆𝑉𝑉𝑉𝑉 Consistent viscoelastic 
compliance tangent matrix 

Pa-1 

T Temperature °C 
t Current time s 

𝑊𝑖𝑖 Placeholder variable, see 5A.56 Pa 
𝛼𝛼 Time-weighing factor -- 
𝛾𝛾 Creep strain increment Pa-1 s-1 
Δ𝑡𝑡 Timestep s 

Δ�̅�𝑒𝐶 Discrete deviatoric creep strain 
increment 

-- 

𝚫𝒆𝒆�𝑪𝑪 Effective creep strain -- 
Δ�̅�𝑒𝑃𝑃 Discrete deviatoric plastic strain 

increment 
-- 

𝛿𝛿 Kronecker delta function -- 
𝜀𝜀0̇ Reference strain rate (material) s-1 
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𝜀𝜀𝑖𝑖𝑖𝑖 Strain tensor (component form) -- 
𝜀𝜀𝑚𝑚 Mean strain tensor -- 
𝜀𝜀𝑡𝑡ℎ Thermal strain tensor -- 
𝜂 Linear viscosity Pa s 
𝜃 Dilatation -- 
𝝈� Effective creep stress -- 
𝜎𝜎𝑐𝑐 Triaxial confining stress Pa 
𝜎𝜎𝑑 Triaxial deviatoric stress Pa 
𝜎𝜎𝑖𝑖𝑖𝑖 Stress tensor (component form) Pa 
𝜎𝜎𝑚𝑚 Mean stress tensor Pa 

“ ̇ ” Indicates time derivative  
“ 𝐼” Indicates initial condition  

“ 𝑡𝑡 ” Indicates current timestep  
“𝑡𝑡+Δ𝑡𝑡 ” Indicates next timestep  

“ 𝜏𝜏 ” Indicates time-weighted version  
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Figure 5A.1: Schematic view demonstrating the effective stress formulation.  For a given 

(constant) stress state, the strain state moves instantaneously to an elastic configuration.  

Over time, the material evolves viscously to a new strain state.  The slope to this a given 

point along the viscous deformation path is the consistent tangent modulus discussed in 

Appendix A. 
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Appendix 5B: Expected Deformation of a 1D Inhomogeneous 

Bernoulli-Euler Beam 

To gain an understanding of the result of a stress-dependent viscosity within the beam-

like deformation regime, we model a one-dimensional Bernoulli-Euler beam with a raised 

Young’s modulus near the center of the beam.  We are justified in using the linear elastic 

solution to infer the behavior of the nonlinear viscoelastic solution as: 1) the nonlinear 

case converges to the linear solution in the beam-like regime; 2) a linear elastic solution 

can be connected to the appropriate linear viscoelastic solution through the 

correspondence principle (e.g., Findley at al., 2011).   

 The governing equation for a Bernoulli-Euler beam with inhomogeneous 

elasticity under the action of a distributed pressure is: 

 
𝜕2

𝜕𝑥2
�𝐸𝐸(𝑥)𝐼

𝜕2𝑤
𝜕𝑥2

� = 𝑝(𝑥) (5B.1) 

We impose a fixed (𝑤 = 𝜕𝑤
𝜕𝑥

= 0) condition on one end of the beam, and impost a sliding 

(𝜕𝑤
𝜕𝑥

= 𝜕3𝑤
𝜕𝑥3

= 0) condition on the other side.  

We begin by applying a constant pressure distribution to the series of elastic 

models summarized in table 5B.1, exploring the impact of the following three moduli 

profiles: 1) changes in the magnitude of the “peaked” modulus in the center of the beam; 

2) changes in the width of the this modulus peak; 3) changes in the modulus at the edge 

of the beam.  Figure 5B1.A shows the results for these models with a constant pressure, 

with the upper panel showing absolute deflection 𝑤, and the lower pattern showing the 

normalized value of deflection 𝑤/𝑤𝑚𝑚𝑎𝑥.  We see that while many of the models with 
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raised central Young’s modulus have reduced absolute deflection compared to the 

homogenous model, the value of the moduli at the ends of the beam have a much stronger 

impact on the overall deflection value.  To quantify the “closeness” of the two 

normalized profiles, we plot the R2 value of the normalized models compared to the 

linear model in figure B2.  The red circles correspond to the constant edges, while the 

blue circles correspond to models with linearly varying moduli in the edge of the beam.  

We see clearly that the variation from the homogeneous model is larger with edge 

variable elasticity, though we note that all the values fall beneath an R2 of 0.994, 

suggesting that the all models are very close to a linear solution with an appropriately 

chosen effective Young’s modulus. 

Of course, our pressure distribution is not constant in our problem, but changes 

along the crack profile.  To investigate the impact of a variable pressure distribution on 

the beam model results, we now run the same 18 models with a pressure distribution that 

varies linearly from −𝑝𝐼 to +𝑝𝐼 over the length of the beam.  These model results are 

shown in figure B1B and the R2 values are shown as X’s in figure B2.  We see 

immediately that the models with the variable pressure profile are closer to linear than 

those with the constant pressure distribution. 

Thus, we can use these linear elastic model results to approximate the expected 

linear viscoelastic response by replacing the Young’s modulus with the linear viscosity 

profile multiplied by the time over which the pressure is applied (𝐸𝐸(𝑥) → 𝜂(𝑥)Δ𝑡𝑡).  As a 

nonlinear viscoelastic model is equivalent to a linear model with a stress-dependent 

effective viscosity (e.g., see appendix 5A), we can use these one-dimensional models to 

predict the impact of having a centralized region of increased effective viscosity, as is 
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seen in the beam-like regime for our nonlinear viscoelastic models.  While we never 

expect the nonlinear solution to converge to the linear solution as long as there is a 

variation in the effective modulus, these results demonstrate that we can approximate our 

nonlinear model with a linear model with varying viscosity with a high degree of 

certainty. 
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Figure 5B.1: Figures showing the modeled beam deflection for a representative set of 

moduli profiles.  Panel A shows the results for a constant pressure distribution, while 

panel B shows the results for a linearly varying pressure distribution.  The upper plot in 

each panel is the absolute deflection, while the lower plot is the normalized deflection.  In 

all figures, the black line is the value for a homogenous model.  Model numbers 

correspond to the model names in table B1.  
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Figure 5B.2: R2 values comparing the normalized beam deflections for our 36 variable 

elasticity models to the homogeneous model.  The vertical axis is the R2 value, while the 

horizontal axis is the model number.  Symbols correspond to the loading condition 

(circles=constant, x’s=varying pressure), while the color corresponds to the edge 

condition (red=constant, blue=varying).  All values are very close to an R2 value of 1. 
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Name Peak Width 
% 

Peak 
Magnitude 

Edge Moduli R2 (1-18) R2 (19-36) 

Constant 0 Same Constant 1 
M1 10 1 order Constant 0.9998 1 
M2 20 1 order Constant 0.9990 1 
M3 40 1 order Constant 0.9959 0.9992 
M4 10 2 orders Constant 0.9997 1 
M5 20 2 orders Constant 0.9987 1 
M6 40 2 orders Constant 0.9944 0.9990 
M7 10 3 orders Constant 0.9997 1 
M8 20 3 orders Constant 0.9987 1 
M9 40 3 orders Constant 0.9942 0.9990 
M10 10 1 order Linear 0.9928 0.9910 
M11 20 1 order Linear 0.9925 0.9911 
M12 40 1 order Linear 0.9896 0.9899 
M13 10 2 orders Linear 0.9928 0.9910 
M14 20 2 orders Linear 0.9924 0.9912 
M15 40 2 orders Linear 0.9886 0.9898 
M16 10 3 orders Linear 0.9928 0.9910 
M17 20 3 orders Linear 0.9924 0.9912 
M18 40 3 orders Linear 0.9884 0.9898 

Models M19-M36 are the same as the above models with a variable applied pressure. 
Table 5B.1: Beam model elasticity profile parameters and R2 values for the 37 models 

run as part of Appendix B.  The peak width defines the percent of the overall peak length 

that has a raised moduli.  The peak magnitude column corresponds to the magnitude of 

the central modulus relative to the modulus at the edge of the beam.  The edge modulus 

describes the nature of the moduli near the beam edges.  The R2 value is defined in the 

text of Appendix B.  Note the models M19-M36 have the same values as the 

corresponding models M1-M18, but have a variable applied pressure profile rather than a 

constant pressure, as described in the main text of Appendix B. 
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Appendix 5C: Finite Element Output: Spatial Variability of 

Effective Viscosity 

In this appendix, we present figures of the full two-dimensional effective viscosity field 

for the nonlinear viscoelastic finite element models used to analyze the effect of 

nonlinearity (subsection 5.3.2).  We define the effective viscosity to be a stress-dependent 

modulus that linearized the viscous component of the material model, as shown below: 

 𝜂𝐷𝐷𝑓𝑓 =
1

𝐴𝜎𝜎𝐷𝐷𝑓𝑓𝑛−1
 (5C.1) 

The five figures correspond to crack lengths of twenty meters, one kilometer, two 

kilometers, three and a third kilometers, and five kilometers.  The twenty meter crack 

falls into the half-space deformation regime, the one kilometer crack is in the transitional 

regime, and the remaining models lie within the beam-like regime.  In all models, the 

black line indicates the location and length of the basal crack. 

 

  



Lake Drainage 296 

 

 

Figure 5C.1: Effective viscosity distribution for a crack 20 meters long. Note that the 

upper and lower edges of this figure do not correspond to the free surface and bottom of 

the mesh, respectively.  The boundaries are chosen arbitrarily to aid in view of the 

effective viscosity distribution. This crack length is in the half-space regime. 

  

20 meters 
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Figure 5C.2: Effective viscosity distribution for a crack one kilometer long.  This crack 

falls within the transitional regime.  Note the figure is rotated 90 degrees. 

  

1 kilom
eter 
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Figure 5C.3: Effective viscosity distribution for a crack two kilometers long.  This crack 

length lies right within the beam-like regime.  Note the figure is rotated 90 degrees. 

2 kilom
eters 
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Figure 5C.4: Effective viscosity distribution for a crack 3.333 kilometers long. This 

crack length lies within the beam-like regime.  Note the figure is rotated 90 degrees. 

3.333 kilom
eters 
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Figure 5C.5: Effective viscosity distribution for a crack five kilometers long. This crack 

length lies within the beam-like regime.  Note the figure is rotated 90 degrees. 

5 kilom
eters 
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Appendix 5D: Conduit Size 

In section 5.4, we demonstrate that we can fit the observations of Das et al. (2008) to 

within a factor of two of the observations; however, as part of this analysis, we need to 

make an assumption of the value of �𝑎
𝐿
�, the ratio of the conduit’s long axis to the basal 

crack length.  In this appendix, we discuss the impact of the choice of �𝑎
𝐿
� on our overall 

solution, and look how well our models predict the observed surficial crack. 

 We start by looking at the relationship of �𝑎
𝐿
� to the two correction factors 𝜒 and 

𝜒𝑤, as defined in equations 5.14 and 5.15.  Figure 5D.1 plots the value of these 

corrections factors, as well as the total correction to pressure, 𝜒 ∗ 𝜒𝑤, as functions of 

crack length for several assumed values of �𝑎
𝐿
�.   In this figure, we take the result from 

our elastic model for the value of crack opening and drainage volume used to determine 

these parameters; our choice here is arbitrary and the correction factors follow the same 

general trends independent of the model rheology. As the crack length increases, the 

value of 𝜒 increases asymptotically towards 1.  For 𝜒𝑤, the value is fixed at 1 until the 

lake completely drains into the conduit.  For some of the models, 𝜒𝑤 will jump above 1 at 

the onset of the post-drainage phase; this behavior is due to the model over-shooting the 

total drainage volume, which is then corrected at the next timestep.  After the lake 

completely drains, 𝜒𝑤 rapidly drops and asymptotically approaches 0.  From the 𝜒 ∗ 𝜒𝑤 

curve, we see that 𝜒𝑤 dominates the total value of the correction factor once in the post-

drainage phase.  For the varying values of �𝑎
𝐿
�, we see that decreasing the relative conduit 



Lake Drainage 302 

 

size delays the complete lake drainage.  The net result is that a smaller overall conduit 

will result for models with a smaller value of �𝑎
𝐿
�, despite the longer crack size L at 

drainage.   

Furthermore, reducing �𝑎
𝐿
� results in a reduced correction factor over the entire 

crack length.  Reducing the correction factor results in a smaller peak value of inlet 

pressure, 𝑝𝐼 , for a given model, which in turn reduces the value of the crack velocity, 

𝑈𝑡𝑡𝑖𝑖𝑝, as seen in figure 5D.2.  In this figure, we see that reducing the size of the conduit 

has the effect of reducing the overall crack propagation speed until the lake completely 

drains and the correction factor 𝜒𝑤 “turns on.”  Once 𝜒𝑤 is a non-one value, the crack 

velocities all follow the same evolution curve, essentially independent of the conduit size 

(the velocities vary by less than 1/10% between values of �𝑎
𝐿
�).  From this relationship, 

we can make the somewhat surprising statement that once the lake has completely 

drained, the geometry of the conduit does not influence the further evolution of the basal 

crack, even though the excess fluid pressure in the conduit is the driver of post-drainage 

crack growth. 

The net results of the variation of the correction factors and the crack propagation 

velocity with the selection of �𝑎
𝐿
� is summarized in figure 5D.3.  As with figure 5.10, this 

figure shows the drainage volume, drainage rate, and crack opening values as a function 

of time, though the models shown here have the fluid drag correction added.  As 

expected, we see that reducing the value of �𝑎
𝐿
� causes the duration of the total drainage 

cycle to increase and the drainage rate to drop due to the reduced crack propagation 
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velocity.  Furthermore, the total crack opening drops as the relative conduit size is 

reduced, due to the reduced magnitude of the correction factors.  Following this trend and 

running models at progressive smaller values of �𝑎
𝐿
� allowed us to find the best-fit model 

presented in figure 5.11, which has a value of �𝑎
𝐿
� = 0.51. 
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Figure 5D.1: Variation of the corrections factors 𝜒 and 𝜒𝑤 with the relative conduit size 

�𝑎
𝐿
�.  The dashed line shows 𝜒, the solid line 𝜒𝑤, and the red line the total correction 

factor 𝜒 ∙ 𝜒𝑤.  Curves for relative conduit lengths of 1.0, 0.9, 0.8, 0.7, 0.5, 0.3, and 0.1 are 

shown.  
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Figure 5D.2: Variation of the crack propagation speed, 𝑈𝑡𝑡𝑖𝑖𝑝, as a function of crack 

length, for a series of relative conduit lengths of �𝑎
𝐿
� equal to 1.0, 0.9, 0.8, 0.7, 0.5, 0.3, 

and 0.1.  Note that the curves all fall on the same line, controlled by the value of 𝜒𝑤 when 

the surficial lake has completely drained. 
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Figure 5D.3: Drainage volumes, drainage rates, and average crack openings for models 

with a range of �𝑎
𝐿
� values equal to 1.0, 0.9, 0.8, 0.7, for models with the fluid drag 

correction, as functions of times.  The red curves show the viscoelastic results, while the 

blue curves show the elastic results. 
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Appendix 5E: Finite Element Output: Surface Deformation 

Caused by Crack Opening 

In subsection 5.4.2, we found the surface deformation that occurs at a location equivalent 

to the GPS station of Das et al. (2008) by using a finite element model.  For these finite 

element models, we used the two-dimensional mesh geometry shown in figure 5E.1, 

which models only the glacier above the basal crack.  In this model, we only consider the 

surface deformation due to the presence of the basal crack, and neglect any surface 

deformation caused by the opening of the drainage conduit.  To represent the crack, the 

displacement profile from our analytic model (either the elastic or linear viscoelastic) is 

applied to the base of the model, with any displacement beyond the length of the crack 

set to zero.  In these models, the crack is stationary and the crack length does not evolve.   

As our assumption is that the vertical drainage conduit is a long, oblate cylinder 

(see figure 5.9), there must be three-dimensional effects that limit the horizontal motion 

of the ice at the conduit that are neglected in a two-dimensional model.  To bracket this 

three-dimensional effect, we ran models with two end-member conditions at the conduit.  

The first condition represents ice near the lateral ends of the conduit.  For this condition, 

we force the horizontal displacement to always be equal to zero (i.e., there is symmetry 

across the conduit).  The second condition represents ice near the lateral center of the 

conduit, where the ice on either side of the conduit is horizontally decoupled.  For this 

location, we allow the mesh at the conduit to deform freely.  The resulting difference in 

the displacements at the GPS location 1.7 kilometers away is small, with the peak 

horizontal and vertical deformations being less than a factor of two different for these 
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models, as demonstrated by the displacement profiles for the models shown in figures 

5E.2 and 5E.3.  The figures in the main paper (i.e., figures 5.12 and 5.13) show results 

from models assuming the GPS station is along the centerline of the conduit, as is the 

case in the survey of Das et al. (2008). 

Lastly, the ice in this model is assumed to be elastic.  For the models using the 

elastic crack opening to calculate surface displacement, such an assumption is consistent.  

However, this approach is clearly not self-consistent when the linear viscoelastic crack 

opening is used, as in this formulation the viscous and elastic crack opening are assumed 

to only act elastically on the deformation of the glacier (i.e., there is no time-dependent 

deformation in the glacier).  The assumption of elastic deformation is a necessary 

simplification, as to fully capture the viscous deformation of the glacier, the crack would 

have to be iteratively lengthened, an approach beyond the scope of this chapter.  Thus, 

the surface displacements for the viscoelastic model (such as are shown in figures 5.12 

and 5.13) are only approximately correct, and are underestimate of the total surface 

deformation.  However, using the relative magnitudes of the viscous and elastic crack 

openings as a guide (figure 5.7A), the expected error is about 10% at most, with shorter 

cracks having smaller errors than the longer cracks.  

Lastly, as we are using finite element analysis, we have the full displacement field 

over the entirety of our mesh, not just at the location of the GPS station.  Figures 5E.4 

and 5E.5 show snapshots of the deformation of the glacier at a series of timesteps used in 

subsection 5.4.2.  These figures provide a picture of the full deformation pattern due to 

the growth of a basal ice crack.   
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Figure 5E.1: Finite element model setup discussed in appendix 5E.  The right portion of 

the figure shows the mesh, with a defined crack length of L, the vertical conduit, and the 

GPS station location.  The two conduit conditions are shown in the left portion of the 

figure.  In each panel, the left portion shows the theoretical two-dimensional transect of 

the drainage conduit the finite element boundary condition shown on the right of the 

panel corresponds to.  
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Figure 5E.2: Horizontal and vertical surface deformation for models using the free 

conduit condition (blue) and the horizontally fixed conduit condition (dashed red).  The 

model shown here is for the elastic crack opening. 
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Figure 5E.3: Horizontal and vertical surface deformation for models using the free 

conduit condition (blue) and the horizontally fixed conduit condition (dashed red).  The 

model shown here is for the viscoelastic crack opening. 
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Figure 5E.4: Displacement fields with crack lengths of 2, 3, 4, and 5 kilometers for the 

finite element models described in subsection 5.4.2 with the elastic value of crack 

opening.  The upper figures are the horizontal displacements, while the lower figures are 

the vertical displacements.  The arrow shows the location of the point approximating the 

GPS station at 1.7 kilometers away from the crack center (left edge of the domain). 
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Figure 5E.5: Displacement fields with crack lengths of 2, 3, 4, and 5 kilometers for the 

finite element models described in subsection 5.4.2 with the viscoelastic value of crack 

opening.  The upper figures are the horizontal displacements, while the lower figures are 

the vertical displacements.  The arrow shows the location of the point approximating the 

GPS station at 1.7 kilometers away from the crack center (left edge of the domain). 
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Chapter 6 

Synopsis and Implications 

This final chapter provides a brief recapitulation of the findings detailed in chapters 2 

through 5.  While the conclusions of each chapter largely stand alone, we then close with 

a prospective on viscoelasticity in the context of the short-timescale behavior of ice. 

6.1 Synopsis 

In chapter 2, we used two-dimensional and three-dimensional models of elastic ice 

streams to quantify the spatial extent of an ice stream’s response to a tidal load.  Our 

results demonstrated that the geometry of the ice stream—specifically the dimension 

constrained by the choice of the boundary conditions—imposes a fundamental limit on 

inland transmission of tidal stresses.  For models approximating real ice streams, only in 

the singular case of Whillans Ice Plain does traction applied at the grounding line 

maintain sufficient amplitude over an inland distance large enough to match observations 

of tidal influence.  In all our models of more channelized ice streams, lateral margins 

limit the distance of stress transmission.  Thus, the inland propagation of a tidal signal is 

controlled primarily by the ice stream width.  In such cases, the modeled extent of the 

response to tidal forcing fails to match observations of tidal perturbations in ice motion. 

 In chapter 3, we explored two potential phenomena for decoupling an ice stream 

from its lateral margins: damage-related compliance of the shear margins, and a nonlinear 

viscoelastic constitutive law for glacier ice.  Using linear continuum damage mechanics 

to parameterize the influence of cracks, fractures, and crevasses on the effective ice 

elasticity, our modeling results demonstrated that spatially variable elasticity can increase 
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the length-scale for the transmission of a tidal load relative to a homogeneous elastic 

model.  We used our results to map the possible parameter space in terms of damage 

magnitude and margin size for a model with discrete “weakened” shear margins.  We 

found that the amount of damage necessary to increase the transmission length-scale in 

channelized ice streams to an extent large enough to match observations would 

effectively pulverize the ice margins completely.  Our nonlinear viscoelastic models 

showed a sizable decrease in the effective viscosity along the margins of the modeled ice 

stream relative to the central portions of the ice controlled by the gravitational stress 

acting on the ice.  However, the timescales and magnitudes of the tidal forcing were such 

that the ocean tide neither perturbs the ice’s viscosity profile substantially nor does the 

material shift into a viscously-dominated deformation regime.  A large discrepancy 

remains between the Antarctic observations and our model results even when the ice is 

modeled with a nonlinear, temperature-dependent viscoelastic rheology. 

 In chapter 4, we outlined a methodology to use the observed phase delay between 

the tidal forcing of an outlet glacier and that glacier’s displacement response to infer in 

situ viscoelastic material properties for ice.  Using the general arctangent form of the 

phase shift for a Maxwell viscoelastic material, we demonstrated the bounds that such 

simple two-dimensional models can provide using the GPS data of de Juan-Verger (2011) 

for Helheim glacier in Greenland as a sample dataset.  Additionally, we discussed the 

best ice streams and the potential survey requirements to collect ideal data for 

constraining rheological parameters for in situ glacial ice. 

 In chapter 5, we explored the importance of viscoelasticity during the rapid 

drainage of supraglacial lakes.  Our modeling demonstrated that there is a nontrivial, yet 
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second-order, effect of viscoelasticity during the opening of a subglacial drainage crack.  

Our model solutions allowed us to reinterpret some of the details of an earlier set of field 

observations for a supraglacial lake drainage event on Jakobshavn Isbrae.  However, we 

suggest that viscoelasticity is less important to understanding the physics of supraglacial 

lake drainage than the accurate observation of the surface lake bathymetry and a better 

understanding of the evolution of the vertical drainage conduit. 

6.2 The Importance of Ice Viscoelasticity 

A recurring theme throughout this thesis is the extent to which it is important to consider 

viscoelastic effects during ice deformation to correctly model short-timescale glacier 

processes.  A consideration of viscoelastic effects is relevant because the material 

properties of ice are such that the stress relaxation timescale of ice is similar to the 

timescale of the glacial phenomena explored here.  While our work is not the first to 

model the viscoelastic deformation of ice streams, our models do provide a test for 

determining the relative importance of ice viscoelasticity over hourly to weekly 

timescales.   

 In our tidally-loaded models, viscoelasticity has a negligible effect on the stress 

state, perturbing the transmission length-scale by about 1% and 2% for the semidiurnal 

and diurnal tidal frequencies, respectively.  For the fortnightly tide, incorporating 

viscoelasticity does increase the stress-transmission length-scale by about 45%, but even 

this increase is about an order of magnitude smaller than is necessary to match our model 

results to observations.  In all cases, however, viscoelastic models exhibit a noticeable 

time delay between the ocean tide and the ice stream’s response.  This delay grows with 

increasing distance inland of the grounding line.  For the lake drainage problem, 
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viscoelasticity increases the total crack opening value by about 10% late in the crack 

evolution, resulting in a difference in the total drainage time of about an hour (though the 

observable drainage duration is not strongly affected by using a viscoelastic model).  

Thus, at least for the problems investigated here, viscoelasticity expresses itself primarily 

as a change in the timing of the various forcing processes on our model glaciers relative 

to elastic models, rather than as a large change in the amplitude of the ice’s response to 

these external forces. 

 A practical concern is that the computational modeling of a nonlinear viscoelastic 

material is inherently difficult, especially when compared to an equivalent linear elastic 

version of the same problem.  Conceptually, external and internal forces and stresses due 

to processes other than the one of interest must be considered due to the nonlinearity, and 

can only be neglected after careful study.  Furthermore, there is practical concern that 

viscous problems take more computational time than elastic problems due to the time-

dependence of the solution.  When combined with the “convergence loop within a 

convergence loop” style of iterative solver standard in many nonlinear finite element 

solvers, the large computation demand for a nonlinear viscoelastic problem will 

necessarily limit the total number of models that can be run in given span of time.  For 

perspective, every elastic model from chapters 2 and 3 could have been run in the same 

period of time as a single nonlinear viscoelastic model forced at a fortnightly tidal period.  

Clearly, if viscoelasticity is not critical to the problem being investigated, using a linear 

elastic model is a powerful approximation to significantly reduce the computational time 

necessary to model a system. 
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 We have demonstrated that understanding both the stress transmission of a tidal 

load and of the drainage process of supraglacial lakes is incomplete.  While our modeling 

demonstrates that effects of viscoelasticity are not negligible for either phenomenon, 

more important questions remain to be answered before the second-order nature of 

viscoelasticity becomes a necessary addition to improving the accuracy of glacier models.  

The lack of a general mechanism for explaining the long-distance transmission of a tidal 

load severely hampers the believability of the current published models investigating the 

interactions between an ocean tide and ice stream motion.   

In the lake drainage problem, the evolution of the input pressure at the base of the 

drainage conduit is the most critical factor determining the growth size and duration of 

the basal drainage crack.  Modeling the formation and growth of the drainage conduit, as 

well as the inflow rates into such a conduit, are more important to determining the inlet 

pressure, and thus the overall crack evolution, than is viscoelasticity.  Thus, 

implementing viscoelasticity at the current stage of understanding in each of the glacial 

processes studied here is essentially fine-tuning an inherently oversimplified model 

missing physics essential to the problem. 

 Lastly, our introduction to this thesis framed this work in the larger context of 

using glaciological constraints on ice stream motion as input into climate models.  While 

the work presented here is clearly far removed from any sort of global climate model, the 

general conclusion from chapters 2 and 3 that the ice stream margins are critical to 

determining the spatial extent of tidal forcing on an ice stream is relevant.  That the shear 

margins impose a fixed length-scale on the transmission of a tidal load demonstrates that 

including the shear margins in a model is at least as important as correctly modeling the 
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basal sliding relationship.  Such a requirement implies the need to use three-dimensional 

models of ice streams.  However, our work demonstrates that, for short-timescale 

perturbations of ice stream motion, the magnitude of the tidal response is primarily 

elastic, though the timing of the ice response is controlled by viscoelasticity. 

6.3 Closing Thoughts 

This thesis represents an effort to quantify the short-timescale behavior of glacial ice in 

the context of tidal forcing and supraglacial lake drainage.  More generally, this work 

helps elucidate the important processes—both those constrained by geophysical modeling 

and those still conceptual—acting during the short-timescale deformation of ice.  Much 

of the work presented here involves determining if ice viscoelasticity is important to 

correctly modeling the physics of these processes.  Viscoelasticity is commonly cited as 

the “next step” in ice modeling; however the work here suggests that viscoelastic effects 

are of second order, and that there are still fundamental physical processes that are 

missing from the collective understanding of ice stream motion before viscoelasticity 

become truly necessary in glaciological models.   
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