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PREFACE 

Past workers in this group as well as in others have made considerable 

progress in the understanding and development of the ring-opening 

metathesis polymerization (ROMP) technique. Through these efforts, 

ROMP chemistry has become something of an organometallic success 

story. Extensive work was devoted to trying to identify the catalytically 

active species in classical reaction mixtures of early metal halides and 

alkyl aluminum compounds. Through this work, a mechanism involving 

the interconversion of metal carbenes and metallacyclobutanes was 

proposed. This preliminary work finally led to the isolation and 

characterization of stable metal carbene and metallacyclobutane 

complexes. As anticipated, these well-characterized complexes were 

shown to be active catalysts. In a select number of cases, these catalysts 

have been shown to catalyze the living polymerization of strained rings 

such as norbomene. The synthetic control offered by these living systems 

places them in a unique category of metal catalyzed reactions. To take full 

advantage of these new catalysts, two approaches should be explored. The 

first takes advantage of the unusual fact that all of the unsaturation present 

in the monomer is conserved in the polymer product. This makes ROMP 

techniques ideal for the synthesis of highly unsaturated, and fully 

conjugated polymers, which find uses in a variety of applications. This 

area is currently under intense investigation. The second aspect, which 

should lend itself to fruitful investigations, is expanding the utility of these 

catalysts through the living polymerization of monomers containing 

interesting functional groups. Polymer properties can be dramatically 
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altered by the incorporation of functional groups. It is this latter aspect 

which will be addressed in this work. 

After a general introduction to both the ring-opening metathesis 

reaction (Chapter 1) and the polymerization of fuctionalized monomers by 

transition metal catalysts (Chapter 2), the limits of the existing living 

ROMP catalysts with functionalized monomers are examined in Chapter 3. 

Because of the stringent limitations of these early metal catalysts, efforts 

were focused on catalysts based on ruthenium complexes. Although not 

living, and displaying unusually long induction periods, these catalysts 

show high promise for future investigations directed at the development of 

catalysts for the living polymerization of functionalized monomers. In an 

attempt to develop useful catalysts based on these ruthenium complexes, 

efforts to increase their initiation rates are presented in Chapter 4. This 

work eventually led to the discovery that these catalysts are highly active in 

aqueous solution, providing the opportunity to develop aqueous emulsion 

ROMP systems. Recycling the aqueous catalysts led to the discovery that 

the ruthenium complexes become more activated with use. Investigations 

of these recycled solutions uncovered new ruthenium-olefin complexes, 

which are implicated in the activation process. Although our original goal 

of developing living ROMP catalysts for the polymerization of fuctionalized 

monomers is yet to be realized, it is hoped that this work provides a 

foundation from which future investigations can be launched. 

In the last chapter, the ionophoric properties of the poly(7 -oxanobomene) 

materials is briefly discussed. Their limited use as acyclic host polymers 

led to investigations into the fabrication of ion-permeable membranes 

fashioned from these materials. 
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CHAPTER I 

AN INTRODUCTION TO RING-OPENING METATHESIS 

POLYMERIZATIONS 



2 

Abstract 

The ring-opening metathesis polymerization reaction is briefly reviewed. 

Special emphasis is placed on the recent development of metallacyclobutane 

and metal alkylidene complexes which catalyze the living polymerization of 

norbornene. The mechanistic features possessed by these catalysts, which 

lend them their living characteristics, are discussed. 
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The ring-opening metathesis polymerizationl (ROMP) was discovered 

during investigations of the Ziegler-Natta polymerization of strained cyclic 

olefins. Structural studies on the polymer obtained from a TiCl4/LiAlR4 

catalyzed polymerization of norbornene revealed an unexpected result.2 

Instead of obtaining the fully saturated polymer expected from a 

coordination-insertion mechanism, the product polymer still possessed 

carbon-carbon double bonds, indicating that the polymerization had 

occurred by some ring-opening process, the mechanism of which was still 

undefined (Equation 1 ). 

(1) 

Simultaneous with, but independent of, this polymerization work, 

several researchers were involved in the development of the olefin 

metathesis reaction.l.3 The general olefin metathesis reaction for acyclic 

olefins is shown in Scheme I. 

Scheme I: 

+ 
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Several years elaspsed before the connection between the unusual ring

opening polymerization process and the acyclic olefin metathesis reaction 

was discovered. This connection was made through the discovery that 

WC16/EtAlC12/EtOH (1/4/1) catalyzed both the ring-opening polymerization 

of cyclooctene4, and the metathesis of 2-pentene.5 Since this early period, 

many important discoveries have been made concerning the mechanism of 

the metathesis reaction.l,6 The current basic mechanism for olefin 

metathesis (both for cyclic and acyclic substrates) involves the 

interconversion of a metal carbene and a metallacyclobutane species.7 The 

formation of polymer results from the metathesis process when the two 

ends of the metathesized olefin remain connected together through an 

extemal ring system. The generic process for the propagation steps in the 

ring-opening metathesis polymerization of a cyclic olefin is shown below in 

Scheme II. 

The mechanism outlined here is kept rather general. The initiation 

process associated with the formation of the initial carbene or metallacycle 

species has been omitted. These metal alkylidene or metallacyclobutane 

species either can be generated in situ 8 (as in the case of equation 1 ), or 

may be preformed and used directly as the initiating agents (vide infra). 

Termination processes which result in either the deactivation of the active 

end-group or its cleavage from the growing polymer chain have also been 

omitted from this scheme. Finally, also absent are any chain transfer 

processes such as "back-biting" of the active end-group into the acyclic 

double bonds of the polymer chains. The deletion of these features from 

Scheme II is neither an oversight, nor an attempt to oversimplify the 

ROMP process, but rather, results from the almost total lack of information 

conceming these processes for all but a small number of well-characterized 
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systems. It must be emphasized that the current status quo is 

unacceptable. It is our understanding and eventual manipulation of 

initiation, termination and chain transfer processes that will be paramount 

in the development of the next generation of well-behaved catalyst systems. 

The basic mechanistic studies on the olefin metathesis reaction have 

provided the basis for the development of a number of sophisticated 

catalysts which are currently under study. Either of the two intermediates, 

metallacyclobutanes or metal alkylidenes, may act as the stable chain 

carrying species in the metathesis process. Indeed, examples of both types 

of complexes have been isolated and demonstrated to be active metathesis 

catalysts.9 Interest in metathesis polymerizations has recently intensified 

following the discovery that titanacene metallacyclobutane complexes 

catalyze the living polymerization of norbornene.lO Since this seminal 

discovery, several other living polymerization catalysts have now been 

reported (vide infra). 

A living system must be free of chain termination and chain transfer 

steps.ll In order to produce monodispersed polymers, certain additional 

criteria must be met: 1) The initiation rate must be equal to, or greater 

than, the propagation rate; 2) there must be only one propagating species 

in solution; and 3) except for the special case of a very slow 

depolymerization rate, the propagation steps must be irreversible. If all of 

the above criteria are met, then the system will be living and produce 

polymers whose molecular weights are characterized by a statistical 

Poisson distribution.l2 

"Classical" ROMP systems, typically composed of early metal halides 

such as WC16, and alkylating reagents such as diethylaluminum chloride, 

fail to meet nearly all of the above listed "living" criteria. The classical 
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systems are often plagued by one or more of the following limitations: 1) 

Facial back-biting steps;13 2) ill-defined termination steps;14 3) a variety of 

active propagating species present;15 and 4) slow generation of the active 

species relative to polymerization rates.l6 All of these factors broaden the 

molecular weight distribution of the polymers produced. Elimination of 

these detrimental features for the titanacene metallacyclobutane catalysts 

discussed below has resulted in living systems that produce monodispersed 

polymers. 

Thermolysis of I at 20 °C in the presence of norbornene affords the 

trisubstituted metallacyclobutane 1110,17 (Equation 2). 

(2) 

n 

When heated to 65 °C in the presence of excess norbornene, metallacycle II 

produces the desired ring opening metathesis polymer (Equation 3). 

m(b 
65 oc (3) 

Gel permeation chromatographic analysis (GPC) of the polymer 

produced by the reaction ofll with 100 equivalents ofnorbornene gives Mn = 

21000 (vs. polystyrene standards), and a polydispersity index (PDI = Mw!Mn) 

of 1.08. In addition, when the molecular weight of samples obtained at 
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intermediate conversions are plotted against % conversion, a linear plot is 

obtained. These results clearly indicate that this is truly a living 

polymerization. The stability of the titanacyclobutane end-group towards 

retrocleavage allows the polymerization to be stopped by cooling the reaction 

down, and restarted again by heating. The utility of the living 

titanacyclobutane-mediated polymerizations has been demonstrated not 

only for the synthesis of monodispersed polymers of controlled molecular 

weights,lO but for the synthesis of well-designed di- and triblock 

copolymers18 and in polymer end-capping processes19 as well. 

The choice of norbornene as a substrate for many of the living 

polymerization studies found in the literature is not coincidental. 

Norbornene is unique in that it possesses a very reactive strained double 

bond in the monomer, which is then converted into a sterically hindered 

unreactive double bond in the polymer. The ring strain of norbornene (27.2 

Kcal/mole) is important in driving the reaction in a forward direction by 

suppressing depolymerization through backbiting of the penultimate double 

bond in the polymer chain. In addition to this, chain transfer reactions 

resulting from backbiting into the other acyclic double bonds in the polymer 

backbone are inhibited by the steric bulk provided by the adjacent 

cyclopentane rings. The importance of these factors is illustrated by a 

comparison of the above norbornene polymerization with the 

polymerization of slightly strained ring systems. At high monomer 

concentrations metallacycle I is effective in catalyzing the polymerization of 

cyclopentene, cycloheptene and cyclooctene to produce good yields of the 

desired ring-opened polymer.20 In polymerizing these slightly strained 

monomers, however, the polydispersities of materials obtained are not as 

narrow as in the norbornene system (typical values range between 1.2 to 
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1.8). The broadened distributions observed in these polymerizations is 

ascribed to the introduction of a polymerization-depolymerization 

equilibrium into the system. This general broadening of the molecular 

weight distribution is anticipated by theoretical treatments, which predict a 

PDI = 2.0 for a reversible polymerization system that is allowed to reach 

equilibrium.21 As a further consequence of the equilibrium situation 

established for these slightly strained rings, the molecular weight of the 

polymers produced shows only a small dependence on reaction time or 

monomer concentration. 

Several other reports have recently appeared concerning living ROMP 

systems. Metallacycle complexes analogous to the titanium system can be 

prepared in approximately 30% yields from the reaction of 

Ta(CHtBu)(OR)3(THF)22 complexes (OR= 2,6-diisopropylphenoxide (DIPP), 

or 2,6-dimethylpheno:xide (DMP)) and norbomene at -30 °C (Equation 4).23 

X 
(R0)3Ta / 

I 

0 -30 oc (R0)3Ta~ (4) 

The DIPP tantalacyclobutane complexes have been shown to polymerize 

excess norbornene at 50 °C to yield pclymer with a molecular weight 

proportional to the amount of monomer employed. The polydispersities of 

the polymers obtained at complete monomer conversion are broad, typically 

in the range of 1.63 to 1.95.24 The GPC trace of the polymer obtained after 

only partial conversion of the monomer shows a bimodal distribution: a 

fraction with the expected molecular weight making up approximately 94% 

of the sample, and a fraction of relatively high molecular weight 
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comprising the other 6%. The lower molecular weight fraction obtained is 

essentially monodispersed (i.e., PDI= 1.04 at 75% monomer conversion). 

These data seem to indicate that a small amount of highly active impurity 

is present during the reaction. Possible explanations of the broad 

molecular weight distributions at complete monomer conversion include 

the decomposition of the metallacycle end-groups at low monomer 

concentrations, secondary metathesis of the double bonds in the polymer 

chain, or a greater weight contribution in the latter stages of the reaction by 

the polymer fraction produced by the highly active impurity present. 

Evidence for the occurrence of secondary metathesis includes a very slight 

change in the cis I trans double-bond ratio of the polymer in the absence of 

monomer. For example, when polymers containing metallacycle end

groups are left in solution, the cis content of the polymer changes slowly 

from approximately 45% to 35% after five days at room temperature. In 

addition, the tantalacycle catalyst is known to metathesize at least 100 

equivalents of cis-2-pentene.24 The DMP tantallacycles are active 

polymerization catalysts as well. They are, however, more reactive, and as 

a result, not as well-behaved as the DIPP derivatives. The polydispersity of 

the polymer prepared using 100 equivalents was measured to be 2.71. 

These tantallacycle complexes are quite reactive towards polar 

functional groups such as ketones and aldehydes. Two competetive 

reactions are observed when the tantallacycles are allowed to react with 

organic carbonyl groups. A Wittig type reaction via an incipient tantalum 

alkylidene is observed, along with a competitive direct insertion of the 

carbonyl into the tantallacycle to form an oxytantallacyclohexane complex 

(Equation 5).24 
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(5) 

Kinetic analysis of the DIPP tantallacyclobutane system shows, after an 

initiation period, the rate of polymerization to be zero order in monomer 

and first order in catalyst concentration, consistent with the mechanism 

proposed for the titanacycle systems. The kinetic parameters calculated for 

these two systems are remarkably similar with ~H = 24.9 Kcal/mol, ~S = 7.5 

eu, and ~G333 = 22.4 Kcal/mol for the tantallacycle polymerization, and ~H 

= 27.1 Kcal/mole, ~S = 9 eu, and ~G333 = 24 Kcal/mol for the titanacycle 

polymeriza tion.l 0 

As a complement to the stable metallacyclobutane catalysts, a series of 

stable alkylidene catalysts have been prepared and shown to be active, living 

polymerization catalysts. The complex W(CHtBu)(NAr)(QtBu)225 (Ar = 2,6-

diisopropylphenyl) (Ill) reacts with 50-200 equivalents of norbornene in 

toluene at 25 °C, followed by addition of benzaldehyde as an end-capping 

agent, and provides polymers in which the major component has a 

molecular weight proportional to the number of equivalents of norbornene 

consumed, with dispersities of approximately 1.05 (Equation 6). 

A 
' 

... (6) 
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Just as was observed in the tantallacyclobutane polymerizations above, a 

variable amount (10-20%) of high molecular weight polymer is also 

produced. Again, it is thought that the high molecular weight material 

forms via an extremely active, as yet unidentified, tungsten-carbene species 

that is formed during the polymerization process. The origin of these very 

active impurities is unknown. Because of the extreme moisture sensitivity 

of Ill, it was hypothesized that a hyperactive tungsten-oxo species could be 

formed from the reaction between III and trace amounts of water in the 

reaction mixture. However, in control experiments using known amounts 

of water, the opposite was found to be true. Trace amounts of water severely 

deactivate III, leading to the formation of low rather than high molecular 

weight materials.26 

Again, the living nature of this catalyst is attributed, in part, to its 

relative inactivity towards unactivated double bonds (i.e ., the internal 

olefins present in the polymer backbone). Exceedingly more active yet less 

selective catalysts can be synthesized by modification of the alkoxide ligands 

on the catalyst. Substitution of the t-butoxide ligands by -OC(CH3)2CF3 and

-OCCH3(CF3)2 ligands27,28 leads to increasingly more active catalysts (i .e., 

rapid polymerization of norbornene at -60 °C); however, the molecular 

weight of the polymer produced is independent of both the reaction time, as 

well as the equivalents of the monomer present.25 In addition, the 

polydispersities typically range from 1.62 to 2.23. This attenuation of the 

living behavior is attributed to both a slow initiation rate relative to 

propagation rate and to the introduction of the secondary metathesis 

manifold with the double bonds along the polymer chain. The secondary 

metathesis theory is bolstered by two additional observations. Unlike the t

butoxide catalyst, Ill, the catalysts containing the fluorinated alkoxides are 
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exceedingly active acyclic olefin metathesis catalysts (i.e., 1000 turnovers 

per minute of cis-2-pentene).28 In addition, the cis/trans double bond ratios 

in the polymers formed by the fluorinated catalysts are observed to change 

during the course of the polymerization. This change from the kinetically 

determined cis I trans ratio (approximately 100% cis) towards an 

equilibrium ratio (approximately 20% cis) is a clear indication of the 

presence of secondary metathesis.26 

Further synthetic utility can be introduced by changing the metal in the 

above alkylidene complexes from tungsten to molybdenum.29 Molybdenum, 

less oxophilic than tungsten, will tolerate monomers containing mildly 

reactive functionality such as esters for short periods of time without 

appreciable catalyst deactivation. This feature allows for the rapid 

polymerization of olefins containing esters. For example, the 

polymerization of endo,endo-5,6-dicarbomethoxynorbornene (DCNBE) with 

Mo(CHtBu)(NAr)(OtBu)2 (Ar = 2,6-diisopropylphenyl) (IV) has been 

reported to give the corresponding ring-opened polymer with molecular 

weights proportional to the equivalents of monomer used, and 

polydispersities ranging from 1.11 to 1.22.29 It was found that IV would 

tolerate app:roximately 100 equivalents of DCNBE for approximately 15 

minutes before deactivation became competitive.24,29 Additional work 

concerning the ROMP of functionalized olefins will be covered in later 

chapters. 

A variety of isolated pentacoordinate tungsten-carbene complexes are 

known to be active metathesis catalysts.30 At least one ofthese systems has 

been proposed to be living based primarily on 1 H NMR identification of the 

propagating alkylidene.31 To date, no investigation on the molecular 

weights and dispersity of the materials obtained has been reported which 
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can verify the "living" claim. The solution NMR studies do confirm the 

mechanism of the metathesis reaction, but do not insure that all of the 

requisite factors are met for a living system. 

W(CHtBu)(OCH2tBu)2Br231 (V) is a mildly active ROMP catalyst32 that 

can be further activated by the addition of Lewis acids such as GaBr3 to 

form highly active complexed (Va), and cationic (Vb) metathesis species33 

(Equation 7). 

RO. Br +GaBr3 '•. I ""zl 
w-=/' 

RO ....... I 
Br 

v 

_;~GaBra 

RO. Br 
'•. I ""zl 

w=/-' 
RO ....... I 

Br 
Va 

RO. +:d< '•. 
w- + GaBr4• (7) 

RO ....... I 
Br 

Vb 

As evidenced by 1H NMR, the activated catalyst mixture reacts with 

norbornene (or a series of methyl-substituted norbornenes) to be partially 

converted to a new car bene species. 31 From the ratio of product car bene 

and residual initiator carbene concentrations, it was estimated that the rate 

constant for propagation is at least 3 times that for initiation. This system 

suffers from several limitations. First, treatment with GaBr3 produces an 

equilibrium situation in which three species are present, all of which may 

possess their own intrinsic activities. Second, the rate of polymerization is 

measurably faster than the rate of initiation. And third, a substantial 

amount of secondary metathesis occurs, as was evidenced by changes in 

both the cis content of the polymer and head/tail ratio of the substituted 

carbenes when the catalyst was left in solution (120 min at 20 °C) after 

consumption of the monomer. 

An important extension of the W(CHtBu)(OCH2tBu)2Br2 I GaBq has 

recently been published,34 in which the conversion of the initiating metal-
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ca'rbene complex into the initial metallacyclobutane complex by the addition 

of a first equivalent of norbomene is directly observed at low temperature by 

1 H NMR. Subsequent orthogonal cleavage of the metallacyclobutane and its 

reformation by the addition of further equivalents of norbornene are also 

observed. The direct observation of these primary steps may lead to a better 

understanding of both the kinetic and thermodynamic factors operative 

during these propagating steps. 

The escalated development of living ROMP catalysts in recent years is 

evident from a chronological examination of the literature cited. Although 

metathesis polymerizations were discovered over a quarter century ago, the 

bulk of the literature concerning living systems comes from only the last 

two years. Clearly, this ground work should open the doors to a variety of 

specialized and innovative polymeric materials as the synthetic potential of 

these living systems is explored. Several issues still remain to be 

addressed. Of considerable interest, naturally, is the expansion of the 

domain of the living ROMP systems to include monomers other than 

norbornene. Although the polymerization of norbornene has provided a 

wealth of information used in guiding catalyst development efforts, 

poly(norbornene) is of little commercial interest. Several different areas are 

currently being examined. Many researchers would like to see the 

application of ROMP techniques extended to the synthesis of conducting 

polymers. Recently, some progress has been realized in adapting living 

polymerization techniques to monomers appropriate for this application. 

Another area of h igh industrial concern is the development of living 

catalyst systems that display tolerance towards reactive fuctional groups. 

Progress in this area would permit the synthesis of a host of new polymers, 

possessing unusual properties. 
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CHAPTER2 

THE POLYMERIZATION OF FUNCTIONALIZED MONOMERS 

BY TRANSITION METAL CATALYSTS: AN INTRODUCTION 



Abstract 

The polymerization of monomers possessing polar functional groups 

by transition metal catalysts is reviewed. The Ziegler-Natta 

polymerization of functionalized vinyl monomers possessing ether, ester, 

halogen and amine groups is generally accompanied by catalyst 

deactivation processes, which result in poor yields of polymer. In the 

successful systems, the mechanism of polymerization is often thought to 

be free radical or cationic, rather than the conventional coordination

insertion mechanism observed for vinyl hydrocarbons. Limited success 

in the ring-opening metathesis polymerization of cyclic olefins 

possessing anhydride, ester, cyanide and diimide derivatives has been 

reported using WCl6/AlEt2Cl, or WOCl4/SnMe4 as catalysts. Again, 

competitive catalyst deactivation reactions limit the polymer yields 

obtained. Far more efficient ring-opening metathesis polymerizations 

are realized using the Group VIII metal catalysts. Although not as 

active as their early metal counterparts, the late metal catalysts display 

superior tolerance to functional groups. Emulsion polymerizations are 

discussed, with an emphasis placed on aqueous transition-metal 

catalyzed diene polymerizations. 
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INTRODUCTION 

The controlled synthesis of specialized macromolecules is an extremely 

important area of polymer chemistry.l The chemical and physical properties 

of polymers can be modified by controlling the isomeric constitution, 

molecular weight and molecular weight distribution of the material.2 More 

dramatic control over these and other important properties can be obtained by 

the selective incorporation of functional groups within the polymer's 

structure.3 Permeability, compatibility, adhesion, solid-state morphology, 

solution rheology and glass transition and melt temperatures are all 

properties that can be influenced by the presence of functional groups.3A For 

these reasons, it is desirable to develop new methods for the seleCtive 

polymerization of functionalized monomers. In considering synthetic 

strategies for the formation of high polymers, it is ultimately more 

advantageous to develop chain polymerization techniques rather than step 

growth (condensation) techniques. This conclusion is a natural consequence 

of the idea that highly controlled systems will ultimately be living 

polymerization systemsS, which allow for the synthesis of specific molecular 

weight materials, di- and tri-block copolymers,6 and specifically end-capped 

materials.7 Of the three "conventional" chain polymerization techniques, 

radical, cationic and anionic, both cationic and anionic polymerizations can be 

rendered living under the appropriate reaction conditions.S Unfortunately, 

ionic polymerization techniques are among the least tolerant of monomers 

containing reactive functional groups.8 For example, monomers such as 

chloroprene, vinyl acetate, vinyl sulfonic acid, acrylic acid, allyl alcohol, and 

allyl acetate can be polymerized utilizing free radical techniques; however, all 

of these substrates are unreactive under cationic and anionic polymerization 
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conditions.8 Likewise, monomers such as isobutyl vinyl ether, methyl vinyl 

ketone 1-vinylpyrrolidone, and allyl chloride can be polymerized using either 

radical or cationic methods, but not by anionic methods. Although the 

radical polymerizations (and selected cationic polymerizations) of the above 

mentioned monomers do provide polymers, not one of them is living and it 

is exceedingly difficult to control the molecular weight, tacticity and, where 

applicable, the regioselectivity of the polymers produced. 9 

Within certain limitations, however, there has been considerable success 

In the living polymerization of polar monomers, either through the 

adaptation of reaction conditions or by developing altogether new synthetic 

methodologies. The synthesis of poly(methyl methacrylate) provides a 

beautiful illustration of this progress. Despite the fact that living anionic 

polymerization of butadiene and styrene has been carried out commercially 

for some time,lO commercial production of methacrylate polymers through 

anionic techniques is hampered by requisite low temperatures needed to 

maintain the living conditions.ll In an effort to address this need, a 

fundamentally new method termed "group-transfer polymerizations" 

(GTP) was developed for the living polymerization of acrylate monomers.l2 

Group-transfer polymerizations involve the catalyzed Michael addition of 

silyl ketene acetals to a,~-unsaturated esters13 (Scheme 1). 

GTP techniques allow for the synthesis of polymers of controlled size with 

molecular weights as high as 50,000-100,000 at ambient temperatures. 

Polydispersities for these materials are typically in the range of 1.05 to 1.3 

depending on the particular ester derivative employed.12 

Considering the above discussion, it would be desirable to develop 

additional alternative chain polymerization methods that will tolerate polar 

functionality incorporated into the monomers. Attractive possibilities 



include the adaptation of transition metal polymerization catalysts such as 

Ziegler-Natta or ring-opening metathesis catalysts to meet these stability 

requirements. Stabilizing the active end-group of the growing polymer chain, 

using a transition metal species, should have some unique advantages over 

"conventional" chain polymerization methods. In additio11 to modulating 

the reactivity of the polymer end-groups, the possibility of controlling the 

stereoselectivity of the polymerization could be realized by manipulating the 

nature of the metal center and/ or its ligand complement. 

Scheme 1: 

'r=<.OSiMe3 + 

OMe 

~iMe3 
0 0 

MeOVOMe 
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)-{OMe 
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,SiMe3 

0 0 
MeO+XOMe 

ZIEGLER-NATIA POLYMERIZATIONS OF FUNCTIONALIZED 

OLEFINS 

There have been several attempts to use Ziegler-Natta systems to 

polymerize polar monomers.l4 By and large, this has proved to be an elusive 

goal. The polar functional groups often react with and deactivate the catalyst 

systems. Because of this deactiv ation, yields of polymer are typically low and 

high catalyst-to-monomer ratios are required (values of 10 for 
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monomer I catalyst ratios have been reported). This deactivation process is 

epitomized by the use of esters or alcohols to deliberately poison or otherwise 

attenuate the activity of various catalyst systems. In general, the few systems 

that have been moderately sucessful at polymerizing functionalized olefins 

have often been shrouded in controversy. It is asserted that for most 

functionalized monomers, the Ziegler-Natta mixtures act to initiate 

polymerization not through the conventional coordination-insertion 

mechanism, but through cationic, anionic or radical mechanisms. This 

distinction is often difficult to demonstrate unequivocally. Typically 

arguments for or against a particular propagation mechanism are based either 

on copolymerization behaviors or on comparisons of the microstructure and 

physical properties of the polymer produced by the Ziegler-Natta system to 

the authentic polymers obtained by cationic, anionic or radical 

polymerization methods. For example, the polymerization of vinyl ethers by 

Al(i-Bu)3/THF /VCl3·AlCl3 (prepared by the reduction of 3 equivalents of 

VCl4 with one equivalent of AlEt3), has been reported15 (Equation 1). 

Al(i-bu)3trHFNCl3 ·AlC13 _, 
OR (Heterogeneous) 

R = Me, Et, n-Pr, i-Pr, n-Bu, 
i-Bu, t-Bu, neopentyl 

k'y1n 
OR 

(6-29%, R =Me) 

(1) 

The yields of polymer are quite low, with typical values in the range of 6-29% 

for the polymerization of methyl vinyl ether. Given the microstructure of 

the polymers obtained, the propagation mechanism proposed was not a 

Ziegler-Natta coordination-insertion mechanism, but rather, a cationic 

insertion mechanism. Additional support for a cationic mechanism comes 
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from the observation that in a copolymerization of alkyl vinyl ethers and 

ethylene, the rate of conversion of the vinyl ether increases in the order 

A1Et2Cl < AlEtCl2 < AlCl3, (in combination with Cp2TiCl2), whereas the 

ethylene conversion decreases simultaneously.l6 

One of the most thoroughly investigated functionalized monomers for 

Ziegler-Natta studies is vinyl chloride.l7 For many of the catalyst mixtures 

studied (AlR3 I TiCl3,l8 AlEt3 I Ti ( OBu)4 I epichloroh ydrin, 19 Al(i

Bu)2CliTi(OBu)4,20 AlEtCl2/Ti(OBu)4),21 the evidence points to a radical 

mechanism rather than a Ziegler-Natta coordination-insertion mechanism. 

In support of this conclusion, when vinyl chloride is copolymerized with 

vinyl acetate using VOCl3-Al(i-Bu)3, the copolymer's composition was 

characteristic of a radical polymerization.22 The monomer reactivity ratios23 

were measured to be knlk12 = 3.74 and k22lk21 = 0.033 (1 =vinyl chloride, 2 

=vinyl acetate), using the above Ziegler-Natta catalyst which compares closely 

with the reactivity ratios determined for a free radical process, k11 lk12 = 2.1 

and k22 I k21 = 0.3 . For certain catalyst systems a balance seems to exist 

between these two mechanisms, which under the appropriate circumstances 

can be shifted to favor one propagation mode over the other. For example, 

Al(i-Bu)3-VOCl3 with the Lewis base, ethyl acetate, produces poly( vinyl 

chloride) with the same kinetic and copolymer chracteristics as poly(vinyl 

chloride) produced from conventional radical methods.24 By switching from 

ethyl acetate to THF, the kinetics and copolymerization properties deviated 

substantially from the radical mode behavior, and it was therefore concluded 

that the propagation mode switched to a coordination-insertion mechanism 

(Scheme II).25 
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Another approach to shifting the mechanism from cationic to Ziegler

Natta is to attenuate the Lewis acidic character of the catalyst by replacing the 

halogen ligands with alkoxide ligands. For example, the VOCl3-AlEtCl2 

system can be replaced with VO(OEt)3-AlEt(OEt)Cl to select for the Ziegler-

Natta insertion mechanism.26 

These Ziegler-Natta catalyst systems can be sufficiently complex so as to 

allow for the simultaneous propagation by two different reaction 

mechanisms. For example, it can be observed that 4-methyl-1-pentene can be 

"copolymerized" with methyl methacrylate using AlEt3/VOCl3.27 Careful 

analysis, however, of the "copolymer" produced reveals it actually to be a 

mixture of homopolymers of the two components (Equation 2). 

(2) 



These results appear to indicate that the polymerization of the 

methacrylate monomers does not occur at the same site as does the a-olefin. 

The full mechanistic details elucidating these two pathways have not been 

worked out. It is known, however, that methyl methacrylate polymerized 

by a similar catalyst, AlEt2ClNCl4, gives a polymer having the the same 

characteristics as poly(methyl methacrylate) obtained by conventional 

radical methods.28 

To increase catalyst activities and polymer yields, a basic strategy has been to 

select functionalized monomers that resemble, as closely as possible, 

conventional a-olefins. This is generally accomplished by sequestering the 

functional groups far from the olefin center, increasing the steric 

encumbrance around the functional groups, and by reducing the Lewis 

basicity of the heteroatoms within the functional groups. These basic 

principles have been demonstrated for the polymerization of ro-amino-a

alkenes by TiCl3 ·AI Cl3 suspensions using monomer I ca tal ys t = 10 I 12 9 

(Equation 3). 

,rt-cH2 -j-nNR2 
TiCI3·AICl3 n R ~ Yi~ld 

~ 1 Me 0 (3) 
Suspension 3 Me 6 CH2 3 Et 8 tn 3 n-Pr 99 NR2 

When n=1, no polymer is obtained. When n=3, polymer is obtained, with 

variable yields, depending upon the R groups on the amine. When 

R=methyl, ethyl and n-propyl, the yields were 6, 8 and 99%, respectively. The 

general inactivity of these systems is illustrated by the N ,N-diethyl 
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polymerization, which required 240 hours at 60 °C to obtain an 8% yield of 

polymer. 

The later transition metals have also been used as Ziegler-Natta catalysts. 

These catalysts have been primarily based on the Group VIII metals Ni, Pd, 

Co, Ru and Rh.30 With a few exceptions, vinyl monomers are best 

polymerized by metals from the left side of the table, while diene monomers 

are more active with the metals from the right side of the table. (As a group, 

butadiene catalysts will be covered in a later section.) The lower oxophilicity 

of the later transition metals make them potentially interesting candidates for 

catalysts in the polymerization of fuctionalized monomers.30 A few examples 

will be presented here. As was the case for the early metal catalysts, the 

polymerization mechanism, which is operative when using Group VIII 

metals, is often a matter of debate. 

A radical propagation mechanism has also been proposed to explain the 

results obtained for the polymerization of vinyl monomers, using 

dichloro(dodeca-2,6,10-triene-1,12-diyl)ruthenium(IV) as a catalyst.31 This 

catalyst, in combination with triphenylphosphine, only gave yields of less 

than 2% of polymers of styrene, vinyl acetate and of ethyl vinyl ether. 

Acrylonitrile, methl vinyl ketone and vinyl chloride produced no polymers 

at all using this catalyst. On the other hand, methyl methacrylate could be 

polymerized with yields ranging between 20 and 78%, depending on 

temperature and the Ru/phosphine ratio. The tacticity of the poly(methyl 

methacrylate), and the copolymer composition data using a methyl 

methacrylate-sytrene monomer feed closely paralleled the results obtained 

using standard radical initiators at similar temperatures. 

The polymerization of vinyl monomers (acrylonitrile, methacrylonitrile, 

methyl acrylate) through a mechanism thought to be a coordination-



insertion pathway has been reported using the stable Ru hydride, 

H2Ru(PPh3)4, as a catalyst.32 Copolymerizations of acrylonitrile with 

methyl acrylate using this catalyst gave copolymers with compositions that 

varied considerably from the compositions obtained through free radical 

routes. Reactivity ratios ofkulk12 = 4.8 and k22ik21 = 0.1 (1= acrylonitrile, 2= 

methyl acrylate) were obtained using these catalysts. For free radical 

systems, the reactivity ratios for these monomers are approximately kulk12 

= k22ik21 = 1. 

The polymerization of vinyl monomers has been reported using isolated 

Fe and Co alkyl species.33 R2Fe(bipy)2 and RCo(bipy)2 (R =methyl, ethyl) 

have been shown to be mildly active towards the polymerization of olefins 

with large Afrey-Price "e-values" (i.e., relatively electronegative olefins).34 

Acrylonitrile (e value 1.20), methacrylonitrile (0.81), acrolein (0.73), methyl 

acrylate (0.60) and methyl methacrylate (0.40) are all active toward 

polymerization. Vinyl chloride (0.20), vinyl acetate (-0.22), styrene (-0.80) 

and isobutyl vinyl ether (-1.77) were all completely inactive with both of 

these catalysts. Typical polymerizations are done at room temperature for 

several days (3-12 days) in neat monomer. The yields of polymer vary 

between 12-73%, depending on the monomer and reaction times.35 

Unidentified catalyst deactivation processes seem to occur at a competitive 

rate during these reactions, eventually killing the catalyst. The polymers 

obtained for most of these monomers were random, seemingly implicating 

a radical polymerization mechansim. However, copolymerization studies 

using acrylonitrile and methyl methacrylate clearly indicate that neither a 

free radical nor an anionic mechanism is operative. Although no direct 

observation of alkyl insertion into a coordinated olefin was made, all kinetic 

data are consistent with this mechanism. 



Both the Fe and Co alkyl catalysts are limited in the types of functional 

groups utilized. Protic sources (alcohols, water, acids, etc.) react rapidly to 

protonate the alkyl group.36 Decomposition products from the vinyl 

chloride experiments appear in part to be Fe(bipy)2Cl2, indicating C-Cl 

cleavage pathways. The product obtained from the reaction with vinyl 

acetate (VAc) was characterized as Fe(bipy)(V Acb, with the VAc ligands 

acting as bidentate ligands through coordination of the CO groups.36 

RING-OPENING :METATHESIS POLYMERIZATIONS OF POlAR 

MONOMERS 

The commercial importance of bis-a;y-substituted molecules as well as 

functionalized polymers has provided the impetus for the development of 

catalysts for the metathesis of both functionalized cyclic and acyclic 

substrates.37 As in the Ziegler-Natta investigations, this work has met with 

mixed success. The results depend on both the catalyst and the nature of 

the functional groups being examined. Commonly, relatively unreactive 

groups such as esters are employed in these studies. Considering the 

number of metathesis catalysts known, surprisingly few are active when 

applied to functionalized substrates.38 For instance, for the homogeneous 

metathesis of acyclic, unsaturated esters, virtually no catalyst systems that 

do not contain WC16 have been reported.39 Of these known catalysts, the 

WCl6/Sn(CH3)4 system appears to be the most effective. Other combinations 

(such as WC16 in combination with organoaluminum compounds), which 

are highly active for the metathesis of normal olefins, are almost inactive 

for functionalized olefins. 40 The activity of all these catalysts for the 

metathesis of olefins bearing functional groups is several orders of 



31 

magnitude less than that observed for normal olefins.40 The circumvention 

of these limitations is often attempted by using large amounts of catalyst 

and by limiting the investigation to monomers containing deactivated 

functional groups. 

Attempts at the ring opening metathesis polymerization of exo-5-

norbornene-2,3-dicarboxylic anhydride has been reported on several 

occasions41 (Equation 4). 

0 

WCl6/AlMe2Cl 

70 °C, 17 Hours :z:n <10% (4) 

The yields in this reaction are quite low. In addition, the reaction 

conditions necessary (i.e., 70 °C, for 17 hours), are considerably more severe 

than would normally be used with the WCl5/AlMe2Cl catalyst system. As a 

comparison, norbornene can be polymerized in minutes at room 

temperature using this catalyst.42 The monomer used was the commercial 

Diels-Alder adduct (cyclopentadiene plus maleic anhydride), which is 

essentially pure endo-isomer (>99%). Monomer enriched in the exo-isomer 

(93%) can be obtained by running the Diels-Alder reaction under 

thermodynamically controlled conditions (i.e., 183 °C), and purifying it 

through fractional recrystallization.43 It was found that by using this exo

enriched monomer, the yields of polymer could be increased to 50-60%. 

This finding of the greater polymerizability of the exo-isomer is a recurring 

theme observed in the polymerization of substituted norbornene derivatives. 

Explanations for this reactivity difference will be discussed later. 
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The polymerization of 5-norbornene-2,3-maleimide derivatives was also 

examined using the WCl&'AlEt3Cl catalyst system.41 (Equation 5). 

0 

WClsf AlMe2Cl 

70 °C, 17 Hours :z:n 
I 

R 

R=H, 8% 
R= n-Pr, 7% 

(5) 

As can be seen, yields of these derivatives are also quite low. For both the 

anhydride and the maleimide reactions, the catalyst deactivation process 

that occurred remains undefined. The dependence of the catalyst's 

reactivity on functional groups utilized is illustrated by comparing these 

results with the results obtained in polymerization of methyl-5-norbomene-

2-carboxylate, where yields of 100% are reported using the WCl5/AlEt3 

catalyst system.41 

There has been at least one report of low yields of polymer produced from 

the ring-opening metathesis polymerization of the cyclic vinyl ethers 2,3-

dihydrofuran and 2,3,4,5-tetrahydro-oxepin-2-yl acetate, using both 

(CO)sCr=C(C6Hs)2 and CCO)sCr=C(OCH3)C5H5 catalyst systems44 

(Equations 6 and 7). 

~0~ (6) 
n 

(7) 
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The molecular weight of the product materials varied, depending on the 

catalyst used. The Casey carbene, (C0)5Cr=CCC6H5)2, produces medium 

molecular weight metathesis polymer (MW =30,000 relative to polystyrene), 

plus a small percentage of very high molecular material (MW = 400,000), 

formed from what is thought to be a competing cationic mechanism. The 

Fisher type carbene, (C0)5Cr=CCOCH3)C6H5, produces only low molecular-

weight oligomers (predominantly materials with a degree of polymerization 

4 and 5). Using the tungsten analogues, (C0)5 W = C ( C 6H 5)2 or 

(C0)5W=CCOCH3)C6H5, the assumed cationic mechanism is the only 

process observed, as evidenced by the formation of fully saturated polymers 

exclusively. Extending these catalysts to other heterocyclic rings proved 

unsuccessful. For example, the bulk polymerization reactions of 2,5-

dihydrofuran using any of the Group VI carbenes produced no polymeric 

materials. 

An important finding was reported in 1963, when it was discovered that 

RuCl3·nH20, OsCl3·nH20 and IrCl3·nH20 catalyzed the ring-opening 

metathesis polymerization of norbornene45 (Equation 8). 

CsH5Cl/EtOH ~n (8) 

It should be noted at this time that the metal salts utilized in these 

polymerizations were all commercial grade compounds. It is well known 

that the commercial grade RuCl3·3H20 is an extremely impure mixture of 

a variety of oxochloro, hydroxocholoro, monomeric and polymeric metal 

species in several different oxidation states.46 The average oxidation state 
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of commercial "ruthenium(III) chloride" is closer to four than it is to three. 

Nevertheless, from our experience, this observed polymerization chemistry 

is consistent from one source of ruthenium to another and therefore does 

not appear to depend upon the presence of a particular impurity (see 

Chapters 3 and 4 of this work). 

The reactivity order for these catalysts was found to be Ir3+ > Os3+ > Ru3+. 

For example, at 80 °C, the IrCl3·nH20 polymerized norbornene (73% yield) 

in 7 minutes, whereas the RuCl3·nH20 required 6 .5 hours. The overall 

activity of the Group VIII catalysts (ca. 50-60% yields in 6-10 hours at 80 °C) 

does not compare favorably with the WCl5 catalysts (ca. 100% yields in 

seconds at temperatures below room temperature). The real significance of 

these results however, is that these polymerizations were carried out in 

absolute ethanol. This fact provides a clear demonstration that these Group 

VIII catalysts display unusual stability towards reactive functional groups. 

As a follow-up to this work, the polymerizations of exo-2-norbornene-5-

carbinol and exo-5-norbornene-2-carboxylic acid were reported, using 

IrCl3·nH20 in absolute ethanol47 (Equation 9). 

d::tR IrCl3 

EtOH, 78 oc ~n 
R 

54.4% 
(for R = C02H) 

(9) 

The yields of polymer in these cases were moderate. Again, the exo

isomers were found to be far more reactive than the endo-isomers. (The 

endo-acid derivative gave no polymer (Equation 10), and the endo-carbinol 

gave a 25% yield under the same conditions cited above). 
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IrCl3 
No Reaction (10) 

EtOH 

The authors explained this reactivity difference by hypothesizing 

deactivation of the catalyst in the endo cases by chelation of the metal ion to 

the endo face of the monomer using the double bond and the functional 

group as the two bonding points. 

No direct proof of this deactivation mode has been reported. An alternative 

explanation for the endo I exo reactivity differences of substituted norbornene 

derivatives has been proposed by Castner and Calderon.43 Ring-opening 

metathesis of an endo,endo-norbornene derivative results in a polymer 

repeat unit that consists of a five-membered ring containing four 

substituents on the same face . This model suggests that steric restrictions 

caused by both eclipsing, and transannular interactions of these 

substituents disfavor polymer formation. 

vs. 
=yy= 
OJ..o~O 

en do exo 
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These Group VIII metal-catalyzed polymerizations can also be carried 

out in ethanol/benzene (10%) mixtures. It was reported, however, that at 

ethanol concentrations less than 6%, no polymerization occurs. The 

authors proposed that during the initiation step, the ethanol acts as a 

nucleophile attacking the bridgehead carbon of a 7t-coordinated norbornene 

monomer. (At that time, the carbene mechansim of olefin metathesis had 

not been fully established.) A full critical evaluation of this work is not 

possible. The authors do not discuss the catalyst concentration differences 

in the neat benzene reactions and the benzene/ethanol reactions. This may 

be an important factor, in that it is known that these Group VIII salts are 

extremely insoluble in neat benzene. Later workers showed that the alcohol 

may activate the Group VIII catalysts by acting as a reducing agent. 

Building on this discovery, the polymerization of methyl 5-norbornene-2-

carboxylate has been reported using IrCl3 under aqueous emulsion 

conditions48 (vide infra) (Equation 11 ). 

£t; IrCl3, Zn ~n (11) 
H20, SDS 

C02 Me C02 Me 

3% 

The actual active species in any of these Group VIII catalyzed 

polymerizations remains unknown. There is, however, good evidence that 

a lower oxidation Ir species may be involved in these reactions. It was 

discovered that in the absence of a reducing agent, no polymer is obtained. 

After 20 hours at 50 °C using the indicated reducing agents, the polymer 

yields obtained were as follows: 2.7% with SnCl2, 3.0% with powder zinc, 

9.9% with ethanol, and 37% with zinc/CH3C02H. It was postulated that the 



active metal species is an Irl+ complex formed from the reduction of Ir3+ in 

the presence of the cyclic olefin. Indeed, isolated Irl+ complexes such as 

[IrClCCsH12)h, and [IrCl(C6Hs)h are active toward the polymerization of 

norbornene.48b 

The importance of developing high-yield, selective polymerizations of 

functionalized monomers can be seen from an examination of the physical 

properties of polynorbornene materials possessing different functional 

groups. Shown in Table 1 are the T g values for several polynorbornene 

derivatives. As can be seen from this sampling, the physical properties of 

these ring-opened polymers can be adjusted over a wide range by varying 

the polar substituents in the polymer repeat units. A remarkable amount 

·of work still remains to be done before the realization of reliable, well

behaved methathesis catalysts for the routine ring-opening metathesis 

polymerization of functionalized olefins is achieved. 

EMULSION POLYMERIZATIONS 

Another important issue with respect to catalytic reactions is the stability of 

the catalyst to common impurities found in the reaction mixtures. This issue 

is particularly acute for catalysts based on organometallic complexes, which 

are typically highly intolerant of ubiquitous impurities such as air and 

water.SO The evolution of organometallic-based catalytic systems from 

research laboratories to full-scale, on-line industrial processes, has often been 

hampered by the sensitivity of the organometallic reagents.Sl In order to 

bring to fruition practical industrial processes based on transition metal 

catalysts, this issue of catalyst stability to air and water must be addressed. 

Although the catalyst sensitivity issue may appear unrelated to the 
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Polymer T~ (OC) 

~ - 10049 
n 

~n + 3549 

vn + 6241 

C02Me 

Vn + 11441 

CN 

):Cn > 25041 

H 

):en > 20041 

iPr 

):en + 23243 

Table 1. Various functionalized ROMP polymers and their T g values. 
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polymerization of functionalized olefins, there are common threads. The 

features of a catalyst that lend tolerance to functional groups are very often 

the same features that provide stability towards impurities such as oxygen 

and water. By pursuing solutions to one problem, it is therefore possible to 

address the other problem as well. The culmination of the pursuit for robust 

catalysts obviously would be the development of catalysts that are stable (and 

active) in aqueous solution. Applied to polymerization catalysts, such a 

breakthrough would permit the further development of new transition 

metal, catalyzed aqueous-emulsion polymerization systems. 

Emulsion polymerization refers to a unique process employed for some 

radical chain polymerizations.52 The standard aqueous-emulsion 

polymerization system is composed of a water-insoluble (or partially soluble) 

monomer, an emulsifier and a water-soluble initiator. One example of a 

commercial emulsion system is the formation of a styrene-butadiene latex 

rubber, using sodium dodecylsulfate as a surfactant for the two monomers, 

with a hydroperoxide-ferrous ion, redox system as the initiator.53 There are 

several distinct advantages in running a polymerization under aqueous 

emulsion conditions. The colloidal state of the product polymer often 

simplifies processing.54 Frequently the latex can be used directly in coatings, 

paints and film production, without further separations or purifications. The 

water acts as a heat-sink during the reaction, allowing for better control over 

the exothermicity of polymerization.SS Viscosity problems are eliminated 

when dealing with a colloidal suspension of polymer rather than the bulk 

polymer dissolved in solution or in the me1t.S6 In addition, there is an 

extremely important kinetic difference when operating under emulsion 

conditions.57 In a standard radical polymerization there is an inverse 
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relationship between the polymerization rate and the polymer's molecular 

weight58 (Equation 12). 

U= (12) 

In this equation, u is the kinetic chain length, and Rp is the rate of 

polymerization (Rp = kp[M](fkd[Il/kt)l/2). From a practical veiwpoint, this 

inverse relationship makes it extremely difficult to effect large changes in the 

molecular weight of the polymer. (In particular, the difficulty arises in trying 

to form high molecular weight polymer at rapid rates. Low molecular weight 

polymer can always be made by the incorporation of chain transfer agents.) 

The compartmentalization of the reaction under emulsion conditions acts to 

nullify the above inverse-rate relationship. This results in a situation 

wherein it is possible to simultaneously obtain high molecular weights and 

high polymerization rates. 

Although the exact details of the emulsion polymerization process can be 

complex, the basic features are outlined here. When a water-insoluble (or 

partially soluble) monomer is dispersed in water containing a surfactant 

above its critical micelle concentration (CMC), the monomer is distributed 

between the surfactant micelles (typical concentrations are ca. 1Q18 micelles 

per ml) and monomer droplets ( ca. 1011 per ml) . The monomer 

concentration within the micelles can commonly reach 5 M. At the onset of 

initiation, the water-soluble initiator migrates from the aqueous phase to the 

more abundant micelles containing the monomer. The micelles provide a 

location for the reaction between hydrophobic monomer and the hydrophilic 

initiator. Polymerization then takes place inside these micelles with 
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essentially one radical chain per micelle. Because of the micelle's small 

volume, entrance of a second radical leads to rapid termination. If the rate of 

production of free radicals at 50° c is about 1Q13 radicals/ml·sec,59 then there 

are approximately 100,000 micelles per radical produced in a second. 

Therefore, there exists a very low probability of a second radical entering an 

active micelle. The result is that polymerization takes place at a very high 

rate, while the termination rate is kept quite low, allowing the formation of 

very high molecular weight polymer. The product polymer exists as a 

surfactant stabilized colloidal suspension that is typically used as is without 

further processing. 

For obvious reasons, cationic and anionic polymerizations, as well as any 

other technique that propagates through water-sensitive intermediates, are 

not applicable to emulsion conditions. Currently, only radical emulsion 

processes are used commercially. This limitation has been one of the 

driving forces behind developing new emulsion systems. 

EMULSION POLYMERIZATIONS OF BUTADIENE CATAL 'YZED BY 

TRANSITION METAL COMPLEXES 

Of the three common metal-catalyzed polymerizations, Ziegler-Natta, 

ring-opening metathesis and diene polymerizations, the latter appears to 

possess the greatest stability towards protic sources. The polymerization of 

butadiene in polar solvents was first reported in 1961 using Rh3+ salts. 60 It 

was discovered that these polymerizations could be performed in aqueous 

solution with an added emulsifier (sodium dodecyl sulfate, for example) 

(Equation 13). 



42 

... ~ n 
(13) 

This Rh-catalyzed reaction is selective for the formation of highly 

crystalline trans-1,4-polybutadiene. The activity of the catalyst shows a 

marked dependence on the nature of the counter ions present. Using RhCl3 

in 95% ethanol, no polymer was obtained after 6 hours at 80 °C, whereas the 

nitrate salt displays a polymerization rate of 7 g polymer/g Rh under the 

same conditions. 

The following year, the emulsion polymerization of butadiene was 

reported using a number of transition metal catalysts in polar solvents. 51 It 

was found that the microstructure could be varied from all trans-1 ,4 

(>99.5%), to high cis-1,4 (88%), to high 1,2-insertion (>98%), depending on 

the metal catalyst employed. The metal used in this study included Rh3+, 

Rhl+, Pd2+, Ir3+, Ru3+ and Col+. Molecular weights varied greatly with 

choice of catalyst. For example, the Pd2+-catalyzed reactions produce short 

molecular weight oligomers CMn = 1000-1500), while the Col+ catalyst 

produces molecular weights of approximately 300,000. 

It was discovered that the addition of 1 ,3-cyclohexadiene to the Rh3+_ 

catalyzed reactions increased the rate of butadiene polymerization by over a 

factor of 20.62 Considering the reducing properties of 1 ,3-cyclohexadiene, 

this effect could be due to the reduction of Rh3+ to Rhl+ and stabilization of 

this low oxidation state by the butadiene type of ligands. With neat 1 ,3-

cyclohexadiene, Rh3+ is reduced to the metallic state. These emulsion 

polymerizations are sensitive to the presence of Lewis basic functional 
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groups. A stoichiometric amount of amine (based on Rh) is sufficient to 

inhibit polymerization completely. It was also discovered that styrene could 

be polymerized using the Rh3+ catalyst. However, the atactic nature of the 

polymer, along with the kinetic behavior of the reaction, indicated that a 

free radical process, rather than a Ziegler-Natta insertion mechanism, was 

operative. 

There have been suggestions in the literature that the mechanisms of 

these metal catalyzed reactions are, in fact, either cationic63 or free radical 

in nature.62 This assessment, however, is inconsistent with all of the facts. 

Cationic polymerizations do have a tendency to produce high trans-1 ,4 

polymer. For example, using a TiCl4/H20 catalyst, polymer containing 

approximately 75% trans-1,4 units is obtained. However, typical cationic 

polymerizations are generally carried out at low temperature (-78 °C is 

common), to reduce the amount of insoluble, cross-linked polymer obtained. 

In contrast, the Rh3+ systems are run between +50 and -t-80 °C, without 

appreciable cross-linking occurring. In some polymerizations there does 

seem to be a competitive free-radical process .64 This, however, was 

determined to be due to radical impurities in the surfactants used, and not 

due to a Rh-catalyzed reaction. In fact, Rh3+ was found to act as a free 

radical inhibitor for these reactions. Because of this, the free-radical 

mechanism was determined to be unimportant at high Rh3 + 

concentrations.65 In addition, common free-radical inhibitors do not 

quench the Rh3+ polymerizations. 61 All of these facts point strongly to a 

polymerization mechanism that is substantially different from a classical 

free-radical or cationic mechanism. 
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CHAPrER3 

THE RING-OPENING METATHESIS POLYMERIZATION 

OF 7-0XANORBORNENE DERIVATIVES 



Abstract 

The ring-opening metathesis polymerization of several 7-

oxanorbornene derivatives is reported using a number of catalysts. The 

catalysts investigated range from preformed early metal 

metallacyclobutane and carbene complexes to classical Group VIII 

ruthenium and osmium complexes. 

In general, the early transition-metal catalysts, react with, and are 

deactivated by, the 1,4-bridging epoxide present in this class of monomers. 

With WOCl4, direct evidence of the interaction of the 1 ,4-bridging epoxide 

moiety with the Lewis acidic metal center is observed. Limited success, 

however, in polymerizing these monomers is achieved using the 

preformed carbene catalysts, XV and XVI. Molecular weight 

investigations reveal these materials actually to be low molecular weight 

oligomers possessing broad polydispersities. It was discovered that by 

switching to ruthenium- and osmium-based catalysts, high yields of high 

molecular weight polymers could finally be obtained. 

The tolerance of the Group VIII catalysts to polar groups allows for the 

polymerization of a number of highly functionalized monomers. The 

chemical modification of these highly functionalized polymers is examined. 

The conversion of Poly XV into a fully conjugated polymer, Poly XV ox, by 

oxidation with DDQ, is reported. In addition, Poly XV can be reduced, then 

hydrolyzed, to form new water-soluble, synthetic polymers. 

The structural characterization of these polymers is reported. The 

cis I trans ratio of the metathesized double bonds along the parent polymer's 

backbone is determined using lH and 13C NMR. Polymers with cis contents 

from 95% to less than 5% have been prepared. No tacticity information is 
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obtained from the spectra of the unsaturated polymers. The determination 

of the tacticities of these polymers required elimination of their structural 

complexity by hydrogenating the double bonds along their backbone. The 

13C NMR spectra of the fully saturated polymers show resonances 

associated with two isomeric forms, which are ascribed to the two differing 

diad tacticities: isotactic and syndiotactic ring diads. Exact assignment of 

these two sets of resonances as the syndiotactic and isotactic diads required 

the resolution and polymerization of a chiral monomer, IV*. Using the 

relationship that exists between the HT and HH/Tr isomeric forms and the 

diad tacticity of a chiral polymer, (Poly IV*), the tacticities of these 7-

oxanorbornene polymers are assigned. This method shows most of these 

materials to be atactic, with the ruthenium catalysts displaying a slight 

bias towards isotactic diads. The synthesis and study of catalysts 

possessing chiral ligands, designed for the synthesis of high isotactic 

polymer, are reported. 
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INTRODUCTION 

As outlined in Chapter 1, a number of highly active, ring-opening · 

metathesis catalysts have recently been developedl. Interest in this 

unusual method of polymerization has intensified following the 

demonstration that several of these metal alkylidene2 and 

metallacylobutane3 complexes catalyze the living polymerization of strained 

olefins such as norbornene. The promotion of ROMP techniques from ill

defined classical systems to well-controlled living systems could reasonably 

be expected to open the doors to the synthesis of entire new classes of 

polymers. Realization of the full promise of ring-opening metathesis 

polymerizations as a viable synthetic technique, however, will require the 

resolution of several key issues. Above all, it must be demonstrated that 

controlled ROMP techniques may be applied successfully to monomers 

other than norbornene.4 Up to this point, the polymerization of norbornene 

has been instrumental in uncovering the guiding principles behind the 

development of well-controlled metathesis catalysts. The product of these 

studies, polynorbornene, however, is of limited commercial interest. Little 

can be accomplished with polynorbornene that cannot be accomplished at 

less expense with poly(butadiene-co-sytrene) rubber materials. 5 It is 

therefore essential, if ROMP techniques are to make an impact in the 

commercial market place, that a wide range of potential monomers be 

examined. A good example of the application of ROMP techniques to the 

synthesis of unusual polymers is in the preparation of conducting 

polymers.6 Ring-opening metathesis polymerizations are unique in that all 

of the unsaturation present in the monomers is conserved in the polymeric 

product. This feature makes ROMP techniques very attractive for the 
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preparation of highly unsaturated, and fully conjugated materials. For 

example, through the utilization of highly active tungsten alkylidene 

species, polyacetylene can be formed from the direct metathesis of 

cyclooctatetraene 7 (Equation 1 ). 

0 
R 

W=-' ~n (1) 

Another area of interest is the expansion of these highly active ROMP 

catalysts to the polymerization of functionalized monomers. 8 As outlined in 

Chapter 2, the presence of functional groups can dramatically change the 

properties of a polymer. Problems arise, however, in that :polar functional 

groups will often react with and deactivate transition metal catalysts. 9 The 

adaptation of highly active ROMP catalysts to the polymerization of 

fuctionalized monomers will be of key importance in future developments of 

this method. 

Our general goal in this work has been to examine closely the tolerance 

of existing ROMP catalysts toward functionalized monomers, and to apply 

this knowledge in the development of new, robust (but active), 

polymerization catalysts illtimately, it is hoped that this project will help 

lay the groundwork for the development of living ROMP catalysts that are 

compatible with a wide range of reactive functional groups. 

As a vehicle for this study, we elected to examine the ring-opening 

metathesis polymerization of 7 -oxabicyclo[2.2.1 ]hept-2-ene (7-

oxanorbornene) derivatives (Equation 2). 
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0 

0\ (2) 

The 7-oxanorbornene system is a particularly suitable class of monomers 

for this study for the following reasons. First, the 1 ,4-bridging epoxide is a 

very Lewis acid-sensitive functional group (vida infra). Studies using 7-

oxanorbornene derivatives should therefore provide a limiting threshold for 

a catalyst's compatibility with Lewis basic functional grou:ps (i.e., if a 

particular catalyst tolerates the 1 ,4-bridging epoxide, then it should tolerate 

a number of additional functional groups as well). Second, the Diels-Alder 

reaction that assembles the [2.2.1] bicyclic ring system is versatile, allowing 

for the eventual incorporation of a large number of pendant functional 

groups within the same basic monomer unit. And third, poly(ethenylidene

co-2,5-tetrahydrofuran) (poly(7-oxanorbornene)) materials resulting from 

the selective metathesis polymerization of the 7-oxanorbornene monomers 

are of keen interest, owing to the potential for inophoric activity in these 

materials. Molecular model studies indicate that these poly(7-

oxanorbornene) have the ability to form helical structures with all of the 

tetrahydrofuran oxygens facing into the interior of the helix (Figure 1 ). 
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Figure 1: Proposed helical binding cavity formed from Poly(7-
oxanorbornene). 

This unique helical conformation may allow these polymers, when in 

solution, to act as useful acyclic ionophores,l 0 much like their cyclic 

analogues, the crown ethers.ll Polymers possessing ionophoric properties 

of this type have applications in a number of areas. In addition to host

guest ion-binding applications in solution,lO,ll ionophoric polymers doped 

with various salts are of interest for use as solid electrolytes in battery 

applications.12 Finally, thin films composed of these poly(7-oxanorbomene) 

materials may possess oxygen-rich ionophoric channels that would enable 

them to act as ion-permeable synthetic membranes.13 
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RESULTS AND DISCUSSION 

A Monomer Synthesis 

In the synthesis of the first test substrates, the approach was to eliminate 

from the monomers all heteroatom functionalities, except for the 1,4-

bridging epoxide moiety. Once the stability of this group could be 

established under reaction conditions, other, potentially more reactive 

groups could be added systematically to the monomers . This approach 

permitted an examination of both the catalysts' compatibility with these 

added groups and the effects of the added functionalities on the properties of 

the polymers produced. 

The parent compound, 7 -oxabicyclo[2.2.1]hept-2-ene (7 -oxanorbornene), 

is synthesized through a Diels-Alder reaction between furan and ethylene 

at high pressure and temperature14 (118 atm., 155 °C, 16 hours) (Equation 

3). 

0 

0 + II 
0 

~ 6-10% (3) 

Both the aromatic nature of furan15 as well as the strain energy of the 

[2.2.1] bicyclic ring system,16 inhibit this reaction. The resulting low yields 

of the Diels-Alder product, ca. 6-10%, make the parent compound an 

impractical monomer for use in polymer synthesis. These limitations can 

be circumvented, however, by using activated dieneophiles in the Diels

Alder reaction. Members of the acrylate family can be successfully enlisted 

as activated dieneophiles in reactions with furan. Similarly, the otherwise 
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slow room-temperature reactions can be catalyzed using Lewis acidic 

metals such as Cu2+ and Zn2+ (Equation 4).17 

0 

0 + 

R 

I( 
R = C02Me, I 
R= C02H, II 

0 

~ 17-22% (4) 

R 
Endo/Exo = 3/1 

The endo I exo ratios are typically close to 311 for both derivatives. Reduction 

of I and/or II provides the corresponding alcohol, Ill, in good yields. The 

conversion of III to the relatively innocuous methyl ether, IV, can be 

accomplished through deprotonation and reaction of the resulting alkoxide 

with methyl iodide. The 5-methyl derivative, V, can be synthesized in 

approximately 40% yields through the reduction of the corresponding 

tosylate derivative. These reactions are summarized in Scheme I. 

Scheme 1: 

0 

0 

~ LAH 

C02R 
I or II 

~\\ 85% 
o l.N~ Y'\ 

~\\ ~--- _ CH20CH3 Y'\ 2. CH3l IV 

ill CH20H 

0 

~ LAH .. 

CH20Ts 

0 

(\\ 40% 

V'\CH3 v 
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An important entry into the 7 -oxanorbornene system is available through 

the Diels-Alder reaction of furan with maleic anhydride.18 This reaction 

proceeds smoothly at room temperature to provide good yields of the adduct 

(Equation 5). 

0 

0+ 
0 

~0 R.T. 
0 0 

~0 87% (5) Ether 
0 VI 

Unlike Diels-Alder reactions involving cyclopentadiene, this reaction 

proceeds under thermodynamic, rather than kinetic control, resulting in 

the formation of nearly 100% of the exo-isomer _19 When considering the 

observed ROMP reactivity differences between the endo- and exo- isomers of 

norbornene derivatives (see Chapter 2), this feature turned out to be an 

important, albeit unexpected, bonus. Anhydride VI can be cleanly reduced 

to the diol, VII (yields ca. 100%). Protection ofVII through methylation to 

produce the dimethoxymethyl derivative, VIII, or formation of the 

bis(trimethylsilyl) derivative, IX, can be accomplished in high yields 

(Scheme II). 

Scheme II: 

O OMe 
(WoMe 

0 0 

~0 
VI 

LAH 
O OH 

~OH 
VII 

VIII 
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TMS~ ~OTMS 

IX 
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Through the same route, using 2-methyl and 2-ethylfuran, the 

corresponding bridgehead 1-methyl and 1-ethyl derivatives of VIII are also 

readily synthesized. 

The furan-benzyne adduct, X, is commercially available.20 Activated 

acetylenes such as dimethyl (XI) and diethylacetylene-1 ,2-dicarboxylate 

(XII) can be used as dieneophiles in reactions with furan.21 Monomers 

such as X, XI and XII add additional unsaturation into the polymer, 

furnishing an opportunity to further modulate the properties of the 

resulting polymers. 

A compilation of the various 7 -oxanorbornene monomers used 

throughout this study is provided in Table 1. 



00 

0 0 0 0 0\ ~C~Me 0\ 0\ I C02H ID CH20H IV CH20CH3 

0 
0 0 

O CO..H O OH 0\CH ~0 (Jt'co2H ~OH v 3 VI VIa VII 

O OMe MM• MM• O OTMS ~OMe OMe OMe ~OTMS 
Me Et VIII vmm VIlle IX 

0:0 0 

~~Me 
C~Me X XI 

Table 1: Quick reference guide to the 7 -oxanorbornene mono~ers. 
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B. The Ring-Opening Metathesis Polymerization of 7-0xanorbornene 

Derivatives 

For the successful controlled ring-opening metathesis polymerization of 

the 7-oxanorbornene monomers, it is necessary to identify catalysts that 

will react preferentially with the olefin moiety of the monomer rather than 

with the 1,4-bridging epoxide (Equation 6). 

ROMP 

~ 0 (a) 

~ (6) 

Cationic 
~o1n (b) 

The 1 ,4-bridging epoxide functional group can be very Lewis acid

sensitive. For example, 7-oxanorbornanes can be polymerized through a 

cationic ring-opening mechansim22 (Equation 7). 

0 

(A Lewis Acid '(..£:::::::/o1n (7) 

This cationic ring opening of the 1 ,4-bridging epoxide can be carried out 

between -40° and +25°C with the aid of a number of Lewis acid catalysts 

such as, H+, FeCl3/SOCI2, BF3, PFs and SbCls/ethylene oxide. The driving 

force behind this reaction is the relief of ring strain in the bicyclic 

monomer, which is estimated to be 13.8 Kcal/mol for the parent 7-
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oxanorbornane.23 No cationic polymerization of 7-oxanorbomenes has been 

reported. For two reasons, however, the cationic opening of the 1,4-bridging 

epoxide in 7 -oxanorbornene would be expected to be even more favorable 

than in the saturated case. First, incorporation of the double bond in the 

[2.2.1] bicyclic ring system can be estimated to increase the ring strain of 7-

oxanorbornene by approximately 9.6 kcal/moL24 Second, the cationic 

opening of the 1 ,4-epoxide in the unsaturated molecule yields a stabilized 

allylic cation rather than a secondary carbocation as in the saturated case. 

0 0 

0:\ (A 
Ring Strain: 13.8 Kcal/mol 23.4 Kcal/mol 

In addition to cationic ring-opening processes, 7 -oxanorbornene 

derivatives are also subject to cationic rearrangements catalyzed by Lewis 

acids. For example, skeletal rearrangements involving [1 ,2] cationic shifts 

followed by the opening of the epoxy bridge have been observed to occur in 

the presence of Lewis acids under mild conditions25 (Equation 8). 

Bz H r1cte ow 
Cl Me 

20 Hrs, 25 °C (8) 
!2/AgOAc/aq. AcOH 

1. "Classical" Tungsten (VI) Metathesis Catalysts. 

Both components of the "classical" tungsten(VI) catalysts systems, the 

tungsten(VI) compound and the alkylating agent, possess Lewis acidic 
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properties. Nevertheless, systems comprised of WCl6/Sn(CH3)4, 

particularly WOCl4/Sn(CH3)4, are candidates for the polymerization of 

monomers containing functional groups. Both of these W(VI) systems have 

been demonstrated to be effective for the metathesis of substrates containing 

polar functional groups such as esters.8a,c,9 

When 20 equivalents of monomer VIII are allowed to react with a 1 :1 

mixture of WC16 and Sn(CH3)4 in chlorobenzene at room temperature, 

immediate decomposition of the monomer to unidentified, non-polymeric 

products is observed. The lH NMR of this reaction mixture shows multiple 

peaks comprising a continuous envelope from approximately 2 to 6.5 ppm. 

Not surprisingly, the Lewis acidity of the catalyst components appears to 

catalyze the decomposition of the bicyclic monomer. 

In an analogous reaction using WOCl4/Sn(CH3)4 (1 :2.2), the 

decomposition of VIII is measurably slower; again, however, no 

polymerization 1s observed. The imposition of extreme conditions on 

reaction mixtures containing these tungsten(VI) catalysts (90 ac for 70 

minutes) does not change the outcome; no polymeric products are obtained. 

Confirmation that reaction occurs instead between the W(VI) center and 

the 1 ,4-bridging epoxide, leading to the observed monomer decomposition, 

comes from the reaction of one equivalent of VIII with WOCl4 or 

WOCl4/Sn(CHa)4. Upon mixing, the initial lH NMR spectrum of VIII 

remains essentially unchanged except for the signal arising from the 

bridgehead protons, which exhibits substantial broadening (peak half

height width ca. 23Hz) and downfield shift from 5.0 to 5.95 ppm (Figure 2). 

Over the course of 20 minutes, further decomposition to unidentified 

products is observed. The ini tial changes include new olefin resonances 
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a. 

b. 

I . , I . I .I. 

8 7 6 5 4 3 2 l ppm 

Figure 2: 1 H NMR spectra (CsDsCl, 90 :MHz) of monomer VIII: (a) 
Before addition ofWOC4; and (b) after addition ofWOC4. 



65 

downfield from the monomer. It can be speculated that this signal is due to 

the substituted cyclohexene resulting from the opening of the 1 ,4-bridging 

epoxide. These initial spectra give way to a spectrum reminiscent of that 

observed in the WC16 reaction (i.e., a nearly continuous envelope of peaks 

from 2.0 to 6.5 ppm). Again, no polymer is formed, as evidenced by the 

absence of viscosity changes during the reaction, and no pentane-insoluble 

products are isolated through precipitation (vida infra). 'fhe initial 

changes in the NMR spectrum of VIII are ascribed to the coordination of 

the 1,4-bridging epoxide to the WOCl4, where dynamic effects account for 

the observed broadening of the signal. This adduct subsequently undergoes 

non-specific decompostion (Scheme III). 

Scheme III: 

0 

0:\ + 

Nonspecific 
Decomposition 

0 
II 

CI•••W'" Cl 
CI' "'"ci 

2. Titanocene Metallacyclobutanes. 

] 

Titanocene metallacyclobutanes obtained from the reaction of Tebbe 

reagent with olefins are attractive catalyst candidates because of their 
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demonstrated living characteristics in the polymerization of norbornene3a,b 

(Equation 9). 

Cp2Ti~ 
~n (9) 

For the further development of the polymerization chemistry of 

titanocene metallacyclobutanes, a key concern will be the tolerance of these 

catalysts toward polar functional groups. Titanacycles show a wide variety 

of reactivities with organic reagents, including methylene transfer to 

organic carbonyls (aldehydes, ketones and esters)26 (Equation 10), 

formation of enolates,26a,e,27 electron transfer from activated alkyl 

chlorides28 and insertion reactions with epoxides29 (Equation 11). 

0 

+~ 

0 
+ ~ 

r Cp2Ti=O 1 

Cp2Ti~ 
'o 

n 
+ (10) 

+ (11) 

The wide scope of the reactivity displayed by titanocene 

metallacyclobutanes defines narrow limits to the functionalized monomers 

appropriate for polymerization studies. 

The titanocene metallacyclobutane catalysts have additional features 

that may be of value in controlling the regiochemistry of the addition of non

symmetrically substituted monomers to the propagating polymer chain. 

The steric constraints placed on the metallacycles by the two 



cyclopentadienyl ligands could be used to direct the addition of monomers 

in a head-to-tail (HT), rather than a head-head/tail-tail (HH)/(TT) fashion. 

R 
(HT) 

R R R 
(HH) 

R 
(TT) 

Mastery over the regioselectivity of the polymerization process could have 

even broader implications. Once (HT) selectivity can be made to dominate 

the course of monomer addition, it would then be possible using chiral, 

resolved monomers to synthesize highly regular, isotactic polymers 

(Equation 12). This special relationship will be discussed in more detail in 

the polymer characterization section. 

0 

~ (12) 

R 

One equivalent of monomer VIII reacts cleanly with metallacycle XIII to 

give the new, expected metallacyle, XIV, in good yield (Equation 13). 

CPzTi~ + 

XIII 

/\..r':_Me 
~-OMe (13) 

The lH NMR spectrum of this compound is consistent with the spectrum 

of the similar metallacycle formed from the reaction of norbornene and 
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XIII. No evidence of any side reaction with either the 1,4-bridging epoxide 

or the methyl ethers could be detected. Assuming that the [2+2] 

cycloaddition reaction takes place exclusively through the exo-face of the 

monomer's double bond, only one isomer is possible for metallacycle XIV. 

(This assumption is consistent with what is observed in the analogous 

reaction using norbornene).30 However, when the nonsymmetric 5-methyl 

derivative, V, is reacted with XIII, four different isomers are possible. 

These metallacycle isomers result from the endo- and exo-methyl isomers 

(present in a 3:1 ratio in V) adding in both a syn and anti fashion to the 

titanium methylidene (Figure 3). 

0 

CpzT~Me 

0 

~\'"'Me 
CrzTi~ 

0 

Cp2T~ 

Me 

0 

Cp2~ 
Me 

Figure 3: The four possible isomeric metallacycles resulting from the 
addition of endo I exo-V to the titanium methylidene intermediate. · 

If either the exo- or the endo-methyl group is capable of directing the 

regiochemistry of the metallacycle formation, then the expected ratio of 

metallacycle isomers, 3:1 endo:exo (each with a 1:1 ratio of syn:anti), will be 

altered. This, however, is not the case. The lH NMR spectrum of the 

resultant mixture of isomers from this reaction shows four methyl groups, 

two endo-methyls (0.90 and 0.97 ppm) in a 1:1 ratio, and two exo-methyls 

(1.01 and 0.98 ppm), also in a 1:1 ratio. If steric interactions between the Cp 



ligands and the pendant methyl group are expected to be the basis for this 

regioselectivity, then this result is not surprising, in that the methyl group 

is well removed from the cyclopentadienylligands during the ring-forming 

step. Success in controlling the regiochemistry of addition will require 

moving the directing group closer to the cyclopentadienyl ligands. With 

this in mind, both the 1-methyl and 1 -ethyl-5,6-(dimethoxymethyl)-7-

oxanorbornene derivatives (VIIIm and VIlle, respectively) were 

synthesized. Reaction of VIIIm with metallacycle XIII gave two isomers 

in a 3:1 ratio, as evidenced by two sets of Cp resonances in the 1 H NMR 

spectrum (5.66, 5.26 ppm and 5.76, 5.18 ppm). As with all compounds 

derived from the anhydride adduct, VI, Vlllm and VIlle are both exo-

isomers. The two sets of Cp resonances are therefore assigned to the anti 

and syn metallacycles, respectively. When the same reaction is repeated 

using the larger bridgehead ethyl group as the steric controlling moiety, 

complete selectivity favoring the anti isomer is observed (Scheme IV). 

Scheme IV: 

+ 
/\~~Me 
~-OMe 

R 

(XIIIm) R = Me 3 1 
(XIII e ) R = Et Exclusive 

It is therefore concluded from this substituent study that if the steric 

constraints of the cyclopentadienyl ligands are to be used in controlling 
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selection of (HT) diads over (HH)/(TT) diads in subsequent polymerizations, 

then the controlling group must be larger than methyl, and must be placed 

in the bridgehead position in order to exert the necessary influence. 

When metallacycle XIV is allowed to react with excess olefin VIII at 

room temperature, no reaction takes place. Heating at 80 oc for four hours 

results in non-specific decomposition of the metallacycle, as evidenced by 

collapse of the two sharp Cp resonances at 5.64 and 5.20 ppm into a broad 

group of peaks from 5.5 to approximately 6.2 ppm. No polymeric materials 

are formed in association with the decompostion of the metallacycle. 

Neither does the excess olefin present appear to undergo any reaction at all 

during this heating process. Further studies utilizing nearly all of the 7-

oxanorbornene derivatives in reaction with XIV at various monomer to 

catalyst ratios and various reaction temperatures resulted in similar 

observations: non-specific decomposition of the metallacycle accompanied 

by a complete absence of polymer formation. In addition, the 7-

oxanorbornene derivatives V and VIII could not be polymerized using 

either metallacycle XIII, or the metallacycles derived from the reaction of 

titanocene methylidene with norbornene, and with 3,3-

dimethylcyclopropene. All three of these metallacycles are known to 

polymerize a variety of cyclic olefins. 3a,b ,31 

Scheme V shows the two decomposition pathways commonly observed 

for titanocene metallacycles. Carbene trapping experiments were 

performed in an attempt to determine if either of these two pathways are 

operative for the 7 -oxametallacycles. The inability of these metallacycles to 

initiate polymerizations could be the failure of the initial metallacycle to 

undergo favorable decomposition (path (b) in Scheme V). The possibility 

also exists that the excess 7 -oxanorbornene monomer present may not be 
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reactive enough to add to the new carbene formed along path (b) in Scheme 

v . 

Scheme V: 

a /\..r~Me [cp2Ti=CH2 ) + ~ OMe 

T~~\~;:.Me Cp~~ OMe 

a 
b 

! /\..r~Me ~OMe 

Polymer 

In order to probe the accessibility of these two pathways to the 7-

oxanorbornene metallacycles, carbonyl trapping experiments can be 

employed. Ketones are known to undergo rapid, Wittig-type methylene 

transfer reactions with the intermediate methylidene complexes in both 

pathways (a) and (b) to give oxo-titanocene polymers and the appropriate 

methylene compound. Using benzophenone, in addition to the oxo

titanocene, path (a) would yield 1,1-diphenylethylene, and path (b) would 

yield the other expected diphenyl substituted olefin. After 14 hours at 80 oc 
in the presence of excess benzophenone, metallacycle XIV decomposed 

completely. However, no titanocene-oxo compounds, nor either of the two 

methylene transfer products were detected. These data seem to indicate 

that whatever decomposition pathways may take place for these 

metallacycles, they do not include the intermediate methylidenes of either 
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path (a) or (b). Further support for this assumption comes from a second 

experiment in which the polymerization of norbornene (an olefin in which 

the polymerization parameters are well documented using other 

metallacycles) was attempted, using metallacycle XIV as the catalyst. 

After 6 hours at 80 °C, XIV with 25 equivalents of norbornene produced no 

polymeric material. This result again indicates that the absence of 

polymerization chemistry is associated with the failure of the 7-

oxanorbornene metallacycles to initiate by forming the required 

methylidene intermediates, not because of any inherent lack of reactivity in 

the 7 -oxanorbornene monomers themselves. 

Osborn's catalyst ((CH3)3CCH20)2WBr2CCHtBu) (XV), is one of a number 

of compounds containing the preformed neopentylidene ligand, which are 

known to catalyze acyclic olefin metathesis as well as the polymerization of 

cyclic olefins.32 As outlined in Chapter 1, this catalyst is used in 

conjunction with a Lewis-acid cocatalyst such as A1Br3 or GaBr3.33 It has 

been shown that the Lewis acid establishes an equilibrium in which it 

coordinates to, and then abstracts, a Br- ligand from the coordination 

sphere of the tungsten center. This bromide abstraction generates a four 

coordinate cationic tungsten neopentylidene, which is thought to be the true 

active catalytic species34 (Equation 14). 

RO Br~ ,. 
RO"' Vj- + GaBr3 

Br -
,..GaBr3 

RO Br~ ,. 
w

Ro"'• 
Br - Ro,+~ 

,.. w- + GaBr4· (14) 
RO I 

Br 
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Unfortunately, all of the 7-oxanorbornene monomers are completely 

incompatible with the Lewis-acid cocatalyst required for the activation of 

XV. For example, when one equivalent of monomer VIII is added to a 

benzene solution of GaBr3, immediate precipitation of the Lewis acid-base 

complex, XIII·GaBr3, is observed. It was discovered, however,during the 

course of these investigations that XV alone, without added cocatalyst, 

shows mild activity towards the polymerization of the 7-oxanorbornene 

monomers. 

When monomer VIII (0.8-1.5 M) is allowed to react overnight with XV 

(ca. 0.01 M) at room temperature, the solution slowly turns from yellow to 

dark greenish-blue (a color often associated with tungsten oxo-species) and 

becomes quite viscous. Addition of this solution to pentane results in the 

precipitation of an off-white polymeric material later identified as the 

expected ring-opened metathesis polymer (Equation 15). Discussion of the 

full characterization of all the 7 -oxanorbornene polymers will be deferred 

until Section C. 

O OMe 
\J:VoMe 

XV (No L.A.) 
10-20% (15) 

CsHs, RT, 24 H r s 
VIII 

13C NMR shows this polymer to have a 40:60 cis:trans ratio of double 

bonds along the polymer backbone. Molecular weight determinations by gel 

permeation chromatography (GPC) revealed this material to be a mixture 

of oligomers averaging between 7-9 repeat units in length. The 

polydispersity index (PDI), also calculated from GPC data, was 

approximately 1.80. In addition, the yields of polymeric material are quite 
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low, using XV as a catalyst. Typical yields are often in the range of 10-20%. 

These observations indicate that some type of side reaction is occurring, 

resulting in deactivation of the catalyst. NMR experiments using only a 

few equivalents of monomer were performed in an attempt to better 

elucidate this deactivation process. 

When 2-3 equivalents of monomer VIII are mixed with XV at -40 °C, no 

reaction is observed. The signal for the bridgehead protons, however, is 

considerably broadened (peak width at half-height > 14 Hz), while the 

remaining monomer signals remain quite sharp. (For example, the olefin 

proton signal in the same spectrum has a peak width at half-height of ca. 3 

Hz). This broadening of the bridgehead proton resonance is interpreted as 

signaling coordination of the bridgehead oxygen to the metal center. The 

full coordination sphere around the tungsten center remains unknown. 

Single crystal x-ray structures performed on the analogous tungsten 

carbene complex ((CH3)JCCH20)2WBr2CyCCH2hyH2) (XVa) reveal this 

complex (in the solid state) to be a hexacoordinate dimer held together via 

two tungsten-bromine bridging interactions.35 Furthemore, the structure 

of ((CH3)3CCH2)2WBr2CyCCH2)3yH2)-GaBr3 (XVb) also shows the tungsten 

to be hexacoordinate, possessing two bridging bromines between the 

gallium and tungsten centers. In solution, it is thought that X.Va becomes 

monomeric, and XVb ionizes to a cationic tungsten carbene and GaBr4-. It 

is known that XVa reacts with Lewis bases such as pyridine to form a 

hexacoordinate adduct.35 Considering these studies, it is proposed that 

monomer VIII forms a Lewis acid-base adduct with XV via the 1,4-

bridging epoxide in solution. 
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Upon warming from -40 °C, no reaction occurs until the temperature 

reaches ca. 0 °C. After approximately five minutes at this temperature, a 

new olefin resonance begins to appear downfield from the monomer at 6.11 

ppm. This new peak is ascribed to a side reaction as it does not correspond 

to any of the known ring-opened polymer resonances. The chemical shift of 

this resonance is, however, the same as the resonance observed during the 

initial decomposition of monomer VIII by WOCl4. This signal is ascribed to 

the substituted cyclohexene resulting from the opening of the 1 ,4-bridging 

epoxide. Upon continued warming to approximately 5 °C, polymerization 

begins, as evidenced by the appearance of resonances at 5. 7, 4 .5 and 2.3 

ppm. (The remaining polymer resonances are obscured by the monomer's 

signals). At this point in the reaction, less than 3% of the carbene proton 

signal at 11.0 ppm has disappeared. No new carbene peaks, nor peaks that 

can be associated with a metallacyclobutane, are observed. After 15 

minutes at 20 °C, approximately 25% of the carbene signal has disappeared. 

In addition, new resonances at 7.2 ppm begin to appear in the aromatic 

region of the spectrum, possibly indicating oxidation of the monomer to 

benzene. In subsequent experiments, it was found that warming above +40 

°C can cause wo metal to plate out of solution. The operative temperature 
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for this catalyst is therefore between +10° and +25 °C. At any temperature 

however, the deactivation reaction(s) proceed at an appreciable rate, thus 

limiting the polymer yield and molecular weight of the material produced. 

Because the polymerization occurs simultaneously with, or is preceded 

by, decomposition of the catalyst, it was critical to determine whether 

products such as metal-oxo species resulting from the side reactions with 

the 7 -oxanorbornene monomers are the true active species responsible for 

the observed polymerization. It was discovered, however, that norbornene 

readily polymerizes (albeit slowly), in the presence of catalyst XV at room 

temperature. The polymerization initiates immediately at room 

temperature, as evidenced by the presence of polynorbornene resonances 

and the initial disappearance of approximately 31% of the carbene signal. 

Unlike the 7-oxanorbornene reactions, no dramatic color changes, 

unidentified resonances in the aromatic or alkenyl regions of the spectrum, 

or any other signs of catalyst decomposition are observed. Once the initial 

norbornene is consumed (5 equivalents), subsequent additions of 

norbornene result in continued polymerization. The initial carbene signal 

progressively diminishes in intensity during this process. After 30 

minutes, 52% of the carbene has reacted, and after one hour, 86% has been 

consumed. No new carbene peaks can be detected. It appears from this 

study that XV is a mildly active ROMP catalyst without any added 

cocatalyst. 

Even at +25 °C, the rate ofpolymerization ofVIII is quite low. The initial 

rate of polymerization for a 1.0 M monomer solution is approximately 0.9 

equivalents/minute. As the catalyst is deactivated, this rate slowly 

decreases. After approximately 40 minutes at room temperature, no 

further polymerization can be detected. At this point, heating the solution 
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to 45 °C causes the rate of polymerization to increase to approximately 0.4 

equivalents/minute, before complete deactivation occurs. As mentioned 

previously, the addition of a Lewis-acid cocatalyst greatly increases the 

polymerization rate. However, because of the incompatibility of the 7-

oxanorbornene monomers with the very oxophilic aluminum and gallium 

cocatalysts used in the literature, other reagents were sought to fill this 

role. The strategy adopted was that of identifying Lewis acidic compounds, 

which are halophilic, but not oxophilic, in their reactivity. Two types of 

compounds were found that met this criterion. Silver salts, such as silver 

tetraphenylborate, and mercury salts, such as mercuric bromide, were 

found to augment the rate of polymerization, without their undergoing 

detectable side reactions themselves with the monomer. These activated 

catalyst mixtures display polymerization rates of approximately 50 

equivalents/minute. Furthermore, the yields of polymer can be increased 

from 10-20% to 70-80%, using either the XV/AgBPh4 or the XV/HgBr2 

systems. The HgBr2 cocatalyzed system is most active when run in THF, 

which increases the solubility of the cocatalyst. The coordinating solvent 

does not have a noticeable inhibitory effect on the polymerization reaction. 

Problems still persist with these cocatalyzed systems. Catalyst 

deactivation remains a competitive process, ultimately setting limits on the 

yields of polymer obtained. More troubling is the fact that the cationic 

tungsten species generated in these activated systems are extremely 

difficult to remove completely from the isolated polymer. In the absence of 

solvent, this catalyst residue reacts very rapidly with the unsaturated 

polymer product, rendering it highly cross-linked. 

Other 7-oxanorbornene monomers similar to VIII, containing either 

pendant alkyl groups or ether groups such as IV and V, can be polymerized 
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in the presence of XV. In general, these monomers show behavior similar 

to that of VIII, displaying the same catalyst deactivation processes, and 

hence, nearly the same yields (Equation 16). 

0 

0:\ 
R 

XV (No L.A.) ~n (16) 
CsHs, RT, 24 Hrs 

R 

Bridgehead substituents on the monomer seem to inhibit the 

polymerization. At temperatures up to +60 °C, no polymerization of Vlllm, 

containing the bridgehead methyl group, occurs, with XV as a catalyst. It 

is clear from the 1 H NMR of these reaction mixtures that the catalyst 

suffers decomposition at these temperatures, while the monomer remains 

unchanged. 

Utilizing more reactive monomers, i.e., monomers possessing higher 

ring-strain energies, results in higher polymer yields. For example, rapid 

polymerization of monomer X occurs at approximately 35 °C with XV as the 

catalyst (Equation 1 7). 

0 
~\~ 
~ 

XV n 80-90% (1 7) 
THF 

The best yields of Poly X are obtained when THF, rather than benzene, is 

used as solvent. The polymer precipitates out of either solvent as it is 

formed; higher molecular weight chains are obtained in THF, however, 

because of the polymer's enhanced solubility in that solvent. 
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4. Schrock's Catalyst ((CFa)2CIIaC0)2W(imido)(CHtBu). 

Schrock's catalyst, ((CF3)2CH3C0)2W(imido)(CHtBu) (imido = 2,6-

diisopropyl aniline) (XVI) is an exceedingly active metathesis catalyst.36 

For example, XVI will readily polymerize norbornene at -78 °C. When two 

equivalents of monomer V are added to a solution containing XV~ at -65 oc, 
the methylidene proton resonance is immediately shifted downfield by 

almost 0.5 ppm (8.84 to 9.31 ppm). The signal of a new carbene resulting 

from the metathesis of one equivalent of monomer should appecr as a 

doublet. The shifted carbene resonance, however, remains a singlet. This 

shift is interpreted as arising from coordination of the monomer to the 

catalyst center. Unlike the broadening of the bridgehead resonances 

observed in the complexation of these 7-oxanorbornene monomers with XV 

and WOCl4, no broadening is observed for any of the monomer signals in 

this system. It appears, therefore, that coordination of the monomer to XVI 

occurs through the double bond, rather than through the 1 ,4-bridging 

epoxide moiety. Upon warming to -50 °C, very slow polymerization of V is 

observed. At this point, very little of the catalyst is active. Only 4% of the 

initial carbene signal has disappeared, and no new carbene reso~ances are 

observed. After gradual warming to -40 °C over the course of approximately 

one hour, nearly all the monomer is polymerized, and approximately 84% 

of the original carbene has been consumed. The addition of more V results 

in further polymerization, although the rate falls off with time. Analogous 

results were obtained for the polymerization of VIII. The yields of Poly 

VIII are typically 25-35%. For both monomers, the rate of polymerization 

falls off with time, indicating the presence of a competitive deactivation 

process. By 1 H NMR, resonances at ca. 6.4 and 6.8 ppm, which are not 



associated with the ring-opened polymer, are observed to appear 

simultaneously during the polymerization of both V and VIII. Attempts at 

synthesizing polymer with a degree of polymerization greater than about 

100 have all failed. These deactivating side reactions, although not as 

pronounced as with catalyst XV, nevertheless place an effective ceiling on 

the molecular weight as well as on the yield of polymer one can obtain. 

The greater reactivity of catalyst XVI is illustrated by its ability to 

polymerize the bridgehead methyl monomer, Vlllm. Unlike VIII, which 

initiates polymerization with XVI at -55 °C, Vlllm does not begin to 

polymerize (at a very slow rate) until temperatures near -20 oc are reached. 

Appreciable rates of polymerization are not realized until the temperature 

is raised over 0 °C (Equation 18). 

0 O~e 
(WoMe 

Me 

XVI (18) 
>0 oc 

While compound compound XVI is an active polymerization catalyst for 

the 7-oxanorbornene monomers, these systems are not living, as evidenced 

by a measurably slow initiation rate relative to the propagation rate, and the 

presence of deactivating side reactions, which act to terminate the growing 

polymer chain. Because of these limitations, controlled block polymer 

synthesis cannot be accomplished using this catalyst. Random copolymers, 

however, of norbornene and VIII have been synthesized using catalyst 

XVI. When equimolar amounts (100 equivalents) of each monomer 

compete in the presence of XVI, copolymers containing approximately 65% 

norbornene and 35% VIII are obtained. The 13C NMR spectra of these 

copolymers indicate that they are randomly assembled (Equation 19). 
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In summary, tungsten catalysts XV and XVI polymerize 7-

oxanorbornene derivatives possessing alkyl or ether pendant functional 

groups . These catalysts are, however, subject to deactivating side 

reactions, 'Nhich appear to be associated with coordination, and opening of 

the 1 ,4-bridging epoxide moiety. Although modest stability towards a few 

polar functional groups has been observed here, other, more robust 

catalytic systems must be indentified. Beyond the 1 ,4-bridging epoxide, the 

functional groups investigated here have been extremely limited. The 

polymerization of monomers containing carbonyls, or protic sources such 

as alcohols, phenols, carboxylic acids and amines have been completely 

eliminated by these studies as candidates for these early transition-metal 

catalysts. To reach our ultimate goal of developing sturdy, living catalysts, 

focus must shift from the early metal systems to investigations aimed at the 

understanding and development of the later transition-metal catalysts. 

5. Group VIII Metal Catalysts. 

Group VIII metal compounds containing such metals as ruthenium, 

osmium and iridium are known to catalyze the ring-opening 

polymerization of cyclic olefins.37 These polymerizations are usually 

preceded by an initiation period of minutes, hours, or even days, depending 

upon the particular monomer, catalyst and reaction conditions employed. 

During this initiation period, it is believed that a small amount of metal 



82 

carbene is formed, which then reacts very rapidly with the cyclic olefin 

present. The exact nature of the initiation process that converts the metal 

complex precursor and the cyclic olefin to the active metal carbene, is not 

known. (In fact, the unstated assumption that these polymerizations occur 

through the metal carbene-metallacyclobutane interconversion mechanism 

has never been demonstrated.) Several proposals have been advanced in 

the literature concerning the basic steps associated with carbene formation. 

For example, a hydride mechanism has been proposed in which the 

initiating species is thought to be a small amount of metal hydride that 

inserts into an olefin.38 The metal-a complex thus produced then a

eliminates to form the metal alkylidene species (Scheme VI). 

Scheme VI: 
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An alternative proposal invokes the participation of a metal oxide, that 

undergoes a [2+2] cycloaddition reaction with the substrate olefin to form an 

intermediate metalloxatane.39 This metalloxatane then undergoes a retro 

[2+2] cycloaddition to form a metal carbene possessing an aldehyde end-
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group. Once formed, the metal carbene reacts very rapidly with the cyclic 

olefin present, producing the ring-opened polymer (Scheme VII). 

Scheme VII: 

0 
M 
II 
0 
+~ 

0 

1,:(.Q 

0 

Excess ~ 
Fast 

The stability of Group VIII complexes to polar functional groups in 

metathesis reactions is well documented (see Chapter 2). The fact that 

these complexes are much less oxophilic than their Group IV and V 

counterparts suggested that they might be excellent candidates for the 

polymerization of 7-oxanorbornene monomers. A comparison of the metal-

oxygen bonds in Ti-0 (156 Kcal/mol) and W-0 (160 Kcal/mol) to that ofRu-0 

(110 Kcal/mol) reveals a loss of nearly 30% of bond energy in the Group VIII 

case.40 This decrease in metal-oxygen bond strength aids in reducing the 

number of detrimental side reactions observed, by removing from these 

systems the large thermodynamic driving force leading to products 

containing metal-oxygen bonds. 
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As a general trend observed in the polymerization of norbornene 

derivatives, reactivity for the known Group VIII catalysts descends in the 

order Ir > Os > Ru. 37b,e As the ring strain of the 7 -oxanorbomene structure 

is somewhat less than norbornene, the highly active compound, 

IrCl3·nH20, was selected as the catalyst of choice. The results, however, 

were disappointing. When 50 equivalents of monomer VIII were heated to 

50 °C for up to three days with IrCl3·nH20, no reaction was observed. 

Subsequent to this initial trial, a number of Ir3+ and Irl+ compounds were 

examined; all failed to give polymer with any of the 7-oxanorbornene 

derivatives. No indications of any deactivation processes have been 

observed. The results were dramatically different, however, when the "less 

reactive" osmium and ruthenium complexes were utilized. 

When monomer VIII is allowed to react with RuCl3·nH20 at 50 °C in 

organic solvents, high conversion to the expected ring-opened polymer is 

observed (Equation 20). 

O OMe 

~OMe 
RuC13, 50 oc ~0 85% 

MeO OMe 

(20) 
C6H 5Cl!EtOH (5/1) 

For a 1 M solution of VIII , at 50 °C, the onset of polymerization is 

preceded by an initiation period lasting from 22 to 24 hours. Once initiated, 

the polymerization proceeds at the rate of 0.6 g polymer/hour·g catalyst. If 

however, rate calculations based on the molecular weight of the polymer 

produced as a function of time are performed (vide infra), it can be 

estimated that each active center is polymerizing at an average rate of 

approximately 750-1000 equivalents of monomer per minute. Thus, once 
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initiated, these ruthenium complexes can be quite active polymerization 

catalysts. 

In accordance with procedures outlined in the literature,37 these 

polymerizations were carried out either in absolute alcohol (methanol or 

ethanol), or in 10-20% alcohol/benzene mixtures. Depending upon the 

particular 7 -oxanorbornene monomer, the forming polymer may remain 

soluble in these organic solvents (VIII,V, norbornene), or it may precipitate 

(Ill, IV, VII, X, XI). 

Unlike the materials produced by the tungsten catalysts XV and XVI, 

the polymer formed using RuCl3 is high molecular weight material (Mw = 

338,000, Mn = 172,000, PDI = 1 .98). Figure 4 shows the results obtained from 

studies on the molecular weight of the polymer as a function of the number 

of equivalents of monomer used. From these data it can be clearly seen that 

these systems behave in a "classical" manner; i.e.,the molecular weight of 

the polymer is controlled by the rate of propagation relative to the rates of 

termination and chain transfer. This ratio is a fixed constant, and thus the 

molecular weight of the resulting polymer remains independent of the 

number of equivalents of monomer used. 

In the presence of the catalyst OsCl3·nH20, rate enhancement is even 

more pronounced; rates of 11.5 g polymerlhour·g catalyst were obtained, as 

compared to 0.6 g polymer/hour·g catalyst observed for RuCl3 at the same 

temperature. A 0.70 M solution of VIII in the presence of OsCl3·nH20 (0.12 

M) at 50 °C, yielded 87% of the desired polymer after 3.25 hours. The ring

opened polymer obtained from this catalyst was badly discolored, however, 

and largely insoluble. Furthermore, this highly active OsCl3 catalyst 

promoted a considerable amount of secondary chemistry on the 

unsaturated polymer, leading to highly cross-linked materials. Although 
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Figure 4: The molecular weight of Poly VIII obtained using RuCl3 
(0.063M in C6H5Cl/EtOH, 5/1), as a function of monomer concentration. 
(Reaction temperature, 50 °C). 



various reaction conditions were employed, none were identified that served 

to minimize these polymer degradation processes. This secondary 

chemistry limited the usefulness of the osmium complexes as catalysts for 

the 7 -oxanorbornenes. Further studies were therefore focused on the 

development of the ruthenium based catalysts. 

The ruthenium catalyzed system is clearly not living; consequently, 

studies directed at controlling the molecular weights of the product 

polymers were focused on the addition of chain termination, or chain 

transfer agents to the reaction mixture. For example, carbonyl compounds 

such as aldehydes, ketones and even esters, are known to undergo Wittig

type reactions with transition metal carbenes 26 (Equation 21 ). 

/Polym 
M=-"' + 

0 

A M=O + 
"---./ Polym r- (21) 

The efficiency of this reaction, for the tungsten and titanium catalysts, is 

reflected in the fact that it can be used to selectively end-cap the growing 

polymer chain. 41 In order to determine whether the putative intermediate 

ruthenium carbene species would undergo Wittig-type chemistry, a series 

of polymerizations were performed in the presence of varying amounts of 

acetone (Figure 5). As can be seen from these data, acetone has no effect 

whatsoever on the molecular weight of the product polymer, even when it is 

used as the neat solvent. It must therefore be concluded that the 

intermediate carbene does not engage in Wittig-type reactions. From the 

viewpoint of molecular weight control, this is interpreted as a negative 

result. On the other hand, it is a clear and unambiguous demonstration of 
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Figure 5: The molecular weight of Poly XI obtained using RuCls (0.23 M 
in C6Dsf(CDs)2CO), as a function of acetone concentration. (Reaction 
temperature, 40 °C). 
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the high tolerance which these ruthenium based catalysts display toward 

functional groups. 

Modest control over the molecular weight of the product polymer has 

been demonstrated through the addition of acyclic olefins to the reaction 

mixture. 42 In metathesis polymerizations, acyclic olefins can act as chain 

transfer agents by end-capping the growing polymer chain and forming a 

new metal carbene (Equation 22). 

/Polym \ 
1 
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When 2-hexene (cis I trans mixture) was added to the polymerization 

mixture, very high concentrations (relative to the monomer concentration) 

were necessary in order to exert even a slight effect on the molecular weight 

of the polymer formed (Figure 6). Surprisingly, concentrations of acyclic 

olefin nearly equal to the monomer concentration were required in order to 

begin reduce the molecular weight of the polymer. Even at a 1:1 ratio of 

acyclic to cyclic monomer, the molecular weight of the polymer was still 

quite high (Mn = 44,000). At acyclic/cyclic ratios much greater than 1.0, 

polymerization is inhibited. The identity of the end-groups could not be 

determined, even in the lowest molecular weight polymer obtained. Thus, 

no definitive proof exists at this juncture to show that the molecular weight 

reduction observed occurs via chain transfer through metathesis of the 

acyclic olefin. In an alternative explanation, the acyclic olefin may bind to 

the active catalyst, blocking coordination of cyclic monomer and thus 

retarding the rate of polymerization. Rates of other termination or chain 

transfer processes would then become more competitive,.with this inhibited 



-~ 150 
I = ~ 
~ 

~ -~ ..= 
~ 

100 
.... 
~ 

~ 
$.i = - • ::s 
~ 
~ 50 -Q • 
~ 

• 

0 
u.O 0.2 0.4 0.6 0.8 1.0 1.2 

Equivalents 2-Hexene 

Figure 6: The molecular weight of Poly VIII obtained using RuCl3 (0.10 
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rate of propagation, resulting in a reduced molecular weight. If, indeed, 

the molecular weight reduction is due to acyclic olefin metathesis, then the 

relative rates of cyclic/acyclic olefin metathesis can be estimated to be 

greater than 200/1 for the intermediate ruthenium carbenes. (If another 

mechanism is responsible, this number then becomes an upper limit to this 

ratio.) The value of this ratio assumes great importance in designing new 

living polymerization catalysts. In principle, this number should be as 

large as possible, in order to minimize backbiting reactions of the carbene 

along the unsaturated polymer backbone. As a general rule, good living 

polymerization catalysts should be poor acyclic olefin metathesis catalysts. 

The relative indifference of these ruthenium catalysts to acyclic double 

bonds make them attractive as candidates for future catalyst development 

studies. 

In an effort to better elucidate the mechanisms of initiation and 

propagation in these Group VIII metal-catalyzed polymerizations, 

approximately 30 different cationic, anionic and neutral ruthenium 

compounds, in oxidation states ranging from RuO to Ru6+, were examined. 

Some of these compounds are listed in Table 2. There is no special ranking 

implied by the sequence in which these complexes are listed. A discussion 

of the aqueous catalysts will be postponed until the next chapter. Table 2 

should not be considered an inclusive list of ruthenium catalysts. The 

breadth of complexes portrayed in this collection, illustrates the universal 

nature of this chemistry among these Group VIII metals. 

As mentioned previously, the initiating species is thought to be either a 

hydride or an oxide impurity that reacts with the cyclic olefin to form an 

active carbene. To investigate this possibility, several isolated ruthenium 

hydride and metal oxide complexes were examined. By and large, these 
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~R~u~co~nt~p~1e~x~~------~8o~lv~e~n~t~<s~~------------~C~o~nnn===e~n=m-
RuC13-nH20h E, M, CB/E, B/E, C, W Active 
RuCl3 (anhydrous)c E, W Active, (may be 

heterogeneous 
OsCl3.3H20 
K20S04 
CNH4)20sCl6 
IrCl3 
Ru(COD)e 
Cp2RU 
Ru02 

E, M, CB/E, B/E, Active 
!8-C-6/Md Inactive 
W Active 
CB/E, E, W Inactive 
E, CB/E, Active 
B,CB Inactive 
CB/E, E Insol. Inactive as a 

Ru03COH)2 18-C-6/Md 
Ru(Acac)3 E, M 
Ru Redf W 
[Ru(NH3)5Cl]Cl2 E , M, W 
[RuCNH3)50Ac]OAc2 W 
RuBr3 E, CB/E, B/E, W 
Cbipy)sRuCl2 E, W 
CbipyhRuCl2 E, W 
RuCNO)Cl3 W, E 
RuCNO)(N03)3 E, W 
cis(DMS0)4RuCl2 W 
cis(DMS0)4Ru(tos)2 W 
transCDMS0)4RuCl2 W 
CTHT)4RuCl2g W 
RuCH20)6(tos)2 E, M, W 
K2RuCl5 18-C-6/M, d W 
[(C6H6)RuC1]2 M, E, W 
RuHCl(PPh3)3 CB, H 
RuCl2CPPh3)3 CB/B 
Ru(TF A)h CB/E, B/E, E 
Ru3(COh2 CB 
RuCl2CC0)3 CB 
RuH2CCO)(PPh3)3 B 
RuH(TF A)( CO )(PPh3)2 B 
RuHCOAc)(PPh3)3 B 

heterogeneous cat. 
Active 
Active 
Active 
Active 
Active 
Active 
Inactive 
Inactive 
Inactive 
Inactive 
Active 
Active 
Active 
Active 
Active 
Active 
Active 
Active 
Active 
Active 
Inactive 
Inactive 
Inactive 
Inactive 
Inactive 

Table 2: Group VIII complexes examined for the polymerization of the 7-
oxanorbornene monomers. No ordering or ranking is implied. Notes: a) 
Solvents used. E=EtOH, M=MeOH, CB=C6H5Cl, B=C6H6, C=CHCl3, 
W=H20. Not necessarily a comprehensive list. b) Commercial RuCl3. c) 
Mixture of a- and I3-RuCl3. d) 18-Crown-6. e) Ru(COD) is an ill-defined Ru
cyclooctadiene polymer. f) Ru Red: [Ru(NH3)50Ru(NH3)40Ru(NH3)5]Cl6. 
g) THT = tetrahydrothiophene. h) Ru(TFA) is an ill-defined compound 
with the approximate composition: Ru2CCF3C02)4·3H20. 



93 

studies were not enlightening. No conclusive evidence was obtained that 

could bolster either the proposed metal hydride or the metal oxide initiation 

mechanisms. Although certain of the hydride and oxide complexes were 

shown to be active metathesis catalysts, none of these compounds 

demonstrated activity superior to that of the active metal complexes which 

do not possess these groups. Except in a few cases, a direct comparison of 

activities is not possible, because a truly homologous series of complexes is 

not available. Ligand complements and oxidation states, factors known to 

influence ROMP chemistry, vary widely among these investigated 

ruthenium complexes. Two examples are presented below. A full 

discussion concerning the initation process will be presented later in 

Chapter 4. 

If the initiation process involves the formation of a metal hydride, then 

catalyzing the reaction with a well-characterized ruthenium hydride 

should affect both the rate of initiation and the activity of the catalyst. The 

Ru2+ complex, RuCl2CPPh3)3 , is reportedly a moderately active ROMP 

catalyst.39 A comparison of the activity of this complex with its hydride 

analogue, RuHCl(PPh3)3, was performed. The activity of each of these 

catalysts under identical conditions is shown in Figure 7. As can be seen, 

the hydride complex actually shows slightly less activity than does the 

dichloride species. In addition, the molecular weights of the two polymers 

are almost identical. Both of these observations indicate that in this case, 

no special reactivity is associated with the presence of a preformed 

ruthenium hydride. 

It was found that the normally insoluble potassium salts of several 

anionic ruthenium complexes (K2Ru03(0H)243 and K2RuCl5, for example) 

could be used as active polymerization catalysts, when dissolved in organic 
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Figure 7: Comparison of the activities ofRuHCl(PPha)a (0.0194 Min 
C6DsCD and RuCl2CPPh3)s (0.0198 Min CsDsCD in the polymerization of 
VIII (0.787 M) at 58 °C. 
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solvents using 18-crown-6. 

polymerization catalyst towards monomer VIII (45% yield, 2 hours at 65 

°C). The molecular weight of the Poly VIII produced using this catalyst is 

approximately 94,000 (Mn), with a polydispersity of 1.95. Under the same 

conditions, K2RuCl5 containing no preformed oxide moiety, requires 

approximately eight times as long to initiate. Under these conditions, the 

ruthenium-oxide species seems to be more active than the RuCl5- species. 

In the proposed metal-oxide initiation mechanism, an aldehyde end-group 

is formed (Scheme VI). As evidenced by 1 H NMR and IR investigations of 

these reactions, however, no formation of organic aldehydes or carboxylic 

acid groups could be detected. Again, no conclusive evidence is available 

that implicates a metal oxide species in this initiation process. Later work 

revealed that under slightly different conditions, K2RuCl5 is a far more 

active catalytic species (see Chapter 4). 

The tolerance which these ruthenium catalysts display towards 

functional groups allows for the synthesis of a wide variety of new 

polymers. A few examples are presented here. 

Monomer XI, synthesized from the Diels-Alder reaction between furan 

and dimethylacetylene dicarboxylate,21 has been sucessfully polymerized 

using several of the ruthenium catalysts (Equation 23). 

0 
~\~C~Me 
~ C02 Me 

XI 

RuCl3 (23) 

Me02C C02Me 

Noteworthy in this reaction is the possibility of including the ester 

functionality as well as the added unsaturation in the resultant polymer. 

The effect which the character of the monomer (presumably ring strain) 



has on the initiation rate is illustrated by this polymerization. The 

reactivity of XI compared to VIII can be seen from an examination of their 

respective initiation rates. The initiation time for a 1 M solution of XI is 

typically 30-35 minutes, while VIII initiates under the same conditions in 

22-24 hours. The effect of monomer concentration on the initiation rate is 

illustrated in Figure 8. The initiation rate shows a strong monomer 

dependence at low monomer concentrations, culminating in saturation 

behavior at higher monomer concentrations. More qualitative monomer 

dependence studies show that the less reactive monomers, IV, VII and 

VIII, display the same general saturation behavior, but the extended 

reaction times required make accurate quantification difficult. 

The additional functionality, present in Poly XI, suggested a new handle 

through which to explore the feasibility of performing chemical 

modifications on these preformed polymers. The general target of first 

choice was a new route into useful water soluble polymers, 44 through the 

incorporation of carboxylic acid groups into these polymers. Commencing 

with the most obvious route, the anhydride derivative VI was hydrolyzed to 

the corresponding diacid, VIa. However, all attempts at polymerizing this 

diacid derivative with the Group VIII catalysts failed (Equation 24). 

O CO..,H 

~C02H Any Catalyst 
No Reaction (24) 

Accordingly, polymerization of the parent anhydride,VI, was attempted, 

again with negative results (Equation 25). 
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Figure 8: Initiation time (minutes) for the polymerization of XI, as a 
function of monomer concentration (mol/1). Catalyst: RuCl3 (1 00.6 mg/ml) 
in CD30D. Temperature: 55 °C. 



Any Catalyst 
No Reaction (25) 

In light of these discouraging results, attention was turned to 

hydrolyzing the dimethyl esters of the preformed Poly XI material, as an 

alternate means of providing the corresponding poly diacid. Warming the 

polymer under acidic conditions resulted, however, in its non-specific 

decomposition to a discolored, intractable material. Under basic aqueous 

conditions, Poly XI undergoes side reactions to a significant degree, which 

degrade the material, but do not appear to cross-link it or reduce its overall 

molecular weight. When Poly XI is placed in a 5% N aOH solution, the 

polymer slowly dissolves and the solution turns a deep red color. The 

material isolated from this reaction is a rust colored, partially water

soluble polymer, which shows an increased solubility in basic solution. 

This material can be reversibly dissolved and reprecipitated from aqueous 

solution by adjusting the pH from basic to acidic, and back to basic 

conditions. Both 1 H NMR and IR evidence indicates that the original Poly 

XI undergoes partial hydrolysis of the ester groups. Accompanying the 

desired hydrolysis are side reactions, which appear to include a ring

opening of the 2,5-dihydrofuran ring present in the polymer's repeat unit, 

as evidenced by a decrease in the intensity of the polymer's ether stretch at 

1240 cm-1. Consistent with the observations of both ring-opening and the 

color change from colorless to dark red, a partial deprotonation of the allylic 

proton is proposed (Scheme VIII). Deprotonation at the allylic carbon 

would lead to a carbanion delocalized over six carbon centers. Ring 
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opening of this delocalized anionic 2,5-dihydrofuran moiety would form a 

carbanion possessing at least one delocalized enolate anion resonance 

form. The enolate form of the deprotonated ring-opened polymer has four 

conjugated double bonds per repeat unit. The actual conjugation length 

along the backbone will depend, of course, on the degree of chain twisting 

caused by the pendant ester substituents. It is unknown whether the 

absorption shift to longer wavelength is due solely to the deprotonated 2,5-

dihydrofuran carbanion species, or whether this proposed ring-opened 

enolate structure contributes as well. 

The uncomplicated deprotonation of the allylic carbon can be 

accomplished by reacting Poly XI with NaH in dry THF. In the presence of 

N aH, a solution of Poly XI slowly turns dark red over the course of two 

hours. Treatment of this red solution with chlorotrimethylsilane (TMSCl) 

results in an immediate disappearance of the red color. The lH NMR 

CCDCl3) of the isolated polymer obtained from this treatment was 

unchanged except for a 17% decrease in the allylic proton signal at 5.42 

ppm, and the appearance of four distinct trimethylsilyl (TMS) resonances 

at 0.14, 0.10, 0.05 and 0.02 ppm. From the total integration of these four 

resonances, it can be calculated that 22%, or a little less than one in every 

four repeat units, were deprotonated. This value is within reasonable 

agreement with the observed decrease in the allylic proton signal. The 

extensive decomposition (ring-opening, etc.), which occurs during the 

aqueous NaOH reaction, does not occur under these conditions. 

In order to prepare the target diacid polymer, elimination of the allylic 

hydrogens was necessary. Protection of these positions by utilizing a 

dialkyl substituted bridgehead derivative proved unfeasible. Preliminary 

experiments using the bridgehead methyl derivative VIIIm revealed that 
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all of the ruthenium, and the more active osmium catalysts, are completely 

inert with respect to monomers substituted in this fashion (Equation 26). 

O OMe 

~OMe 
Any No Reaction (26) 

Gp VIII Cat. 

It was eventually found that the allylic hydrogens could be eliminated 

most efficiently in an indirect fashion, by eliminating the double bonds 

adjacent to them. Reduction of the double bonds in Poly XI was readily 

accomplished using p-toluenesulfonhydrazide (Equation 27). 

TosNHNH2 -fvovJ-H 1oo% (27) 
125 °C, 4 Hrs 

As evidenced by both 13C NMR (Figure 9) and lH NMR (Figure 10), virtually 

100% conversion to the fully saturated analogue Poly XIs, was effected 

using this homogeneous hydrogenation method. This polymer, with no 

double bonds (and hence no allylic hydrogens), could be routinely 

hydrolyzed in basic aqueous/THF solution to provide the partially 

hydrolyzed polymer (63% hydrolysis at room temperature in three hours) 

(Equation 28). 

NaOH, H20/THF 

R.T. 3 Hrs 
M~C 

(28) 
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1 90 150 110 70 30 

Figure 9: Comparison of 13C NMR spectra; (a) unsaturated Poly XI 
(CD2Cl2), and (b) saturated Poly XIs (CDCl3). 
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8 7 6 5 4 3 2 ppm 

Figure 10: Comparison of 1 H NMR spectra (CDCla) of saturated Poly XI 
(top) and unsaturated Poly XIs (bottom). 
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Longer reaction times and higher temperatures never produced fully 

hydrolyzed materials. 

The versatility afforded by a highly functionalized material such as Poly 

XI is exemplified not only by its ability to undergo reduction, but by the ease 

with which it is oxidized, as well. The added unsaturation of Poly XI 

provides an opportunity to form fully conjugated materials by oxidation of 

the allylic hydrogens. Fully conjugated materials such as Poly XI, 

containing the electron withdrawing ether and ester groups, are of interest 

for potential applications as "n-doped" electrical conducting materials. 6 In 

addition to modulating the band gap, the pendant ester groups provide a 

means for improving the solubility and tractability of these types of 

materials. The oxidation of Poly XI, (i.e., removal of the allylic hydrogens), 

by dichlorodicyanoquinone45 (DDQ) in dry THF at room temperature, is 

signaled by a color change of the polymer solution from colorless to red over 

the course of approximately two hours. The intensity of the color increases 

with reaction time, and the color shifts from red to a dark purple over the 

next 24 hours. The product polymer, Poly XIox, obtained from this reaction 

after workup, is a dark-red polymer displaying a slight solubility (ca. 0.5-1 % 

by weight) in CH2Cl2 and benzene. Through lH and 13C NMR analysis, 

Poly XIox has been characterized as the fully unsaturated polymer 

resulting from removal of the allylic protons (Equation 29). 

DDQ 
(29) 

THF, R.T. 

The 1 H NMR spectrum of Poly XI ox reveals a complete disappearance of 

the allylic hydrogen signal at 5.58 ppm, and a shift of the olefinic protons 
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from 5.92 ppm to a new, broad resonance between 7.7 and 6.3 ppm (Figure 

11). As further evidence for this assignment, the 13C NMR spectrum of this 

polymer shows the disappearance of the allylic carbon resonance at 86.36 

ppm (CD2Cl2). The two olefin resonances of the parent polymer,138.22 and 

131.79 ppm (CD2Cl2), are shifted to 143.16 and 139.26 ppm (CDCl3), and are 

augmented by two new resonances at 154.1 and 118.1 ppm. 

The efficiency of DDQ as an oxidizing agent for ROMP polymers of 

norbornene derivatives is normally quite poor.46 For the 7-oxanorbornene 

materials, however, activation of the allylic hydrogens by the a-oxygen 

makes DDQ an ideal oxidizing agent. Even more rapid oxidation by DDQ is 

observed in 7 -oxanorbornene polymers in which the abstracted hydrogens 

are benzylic rather than .allylic. 

Monomer X is rapidly polymerized in the presence of the ruthenium 

catalysts. As discussed earlier, short molecular weight oligomers obtained 

with catalyst XV are only slightly soluble. The higher molecular weight 

Poly X obtained using these ruthenium catalysts is completely insoluble. To 

solubilize, and hence, chemically modify Poly X, copolymerizations with 

other 7-oxanorbornene derivatives were investigated. It was found that in 

competition with VIII, the much more reactive X would homopolymerize, 

and precipitate, before substantial amounts of the less reactive monomer 

could be incorporated. By replacing VIII with XI, however, soluble 

copolymers containing X were synthesized. When equal amounts of X and 

XI are allowed to react with RuCl3, a soluble copolymer, Poly (X-co-XI), 

possessing approximately 76% of the diester monomer, is obtained 

(Equation 30). 
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Figure 11: Comparison of the lH NMR spectra (CDCla) of the allylic and 
olefinic region of Poly XI before treatment with DDQ (bottom), and Poly Xlox 
after treatment with DDQ (top). 
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(30) 

When Poly (X-co-XI) is allowed to react with DDQ, the solution turns red 

immediately, then black within 10 minutes, at room temperature. Unlike 

Poly Xlox, the resulting oxidized polymer obtained from this reaction is a 

black, completely intractable solid. 

When Poly Xlox is exposed to I2 vapors, the initial red polymer darkens, 

indicative of I2 uptake. Both the pristine Poly Xlox as well as the I2 treated 

material form extremely brittle films which have consistently cracked 

before conductivity measurements could be obtained. 

Reaction injection molding (RIM) reactors are typically two component 

systems, in which one or both of the components contain a catalyst (or 

cocatalyst), with no additional solvent present. The monomer and catalyst 

pairing is controlled in such a way so as to forestall any reaction from 

occurring until the two components are mixed. Once mixed (in a mold, for 

example), the two components are designed to react rapidly, and bulk 

polymerization ensues. Historically, RIM systems have been used in the 

formation of elastomeric polyurethanes.47 New ring-opening metathesis 

polymerization RIM systems have been introduced, using the two

component catalyst, WCl5/ AlR2Cl, to polymerize dicyclopentadiene into a 

highly cross-linked network48 (Figure 12). The utility of these existing 

systems is presently somewhat limited by the sensitivity of the catalyst 

components to ubiquitous impurities such as air and water. The 

demonstrated stability of the ruthenium catalysts may provide the 
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MOLD 
25 oc 

50-70 oc 
Polym. Exotherm. > 130 °C 

Component A: WC16, Phenol, Benzonitrile, DCPD 

Component B: AIEt2Cl, Di-n-butyl ether, DCPD 

Figure 12: Schematic diagram of ring-opening metathesis 
polymerization RIM process for the polymerization of dicyclopentadiene. 
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opportunity to synthesize functionalized RIM polymers under less 

restrictive conditions. RIM systems are bulk (solvent-free) polymerizations; 

thus, a polymerizable monomer that is also capable of acting as a solvent 

for RuCla is required. It was found that norbornene-5-methanol (NBOH) 

would dissolve small amounts of RuCla (solutions estimated to be less than 

1 X 1Q-3 Min Ru). Under these conditions, however, the bulk polymerization 

of NBOH is exceedingly slow. It was found, however, that when small 

amounts of monomer X (5-20%) are added, the bulk polymerization of 

NBOH proceeds at a rapid rate (Equation 31 ). 

Slow 

~ RuCla 

CH20H 
(31) 

Neat 
Fast 

The polymers obtained in this NBOHIX mixture are linear, noncross

linked, rubbery materials. To investigate whether cross-links could be 

incorporated into these ruthenium-catalyzed systems, the polymerization of 

DCPD was investigated. The endo-DCPD was found to be completely 

unreactive in reactions with the ruthenium catalysts (Equation 32). 

No Reaction (32) 
MeOH 
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The purified exo-isomer, however, polymerizes readily to provide nearly 

quantitative yields of the ring-opened polymer (Equation 33). 

(33) 
MeOH 

The reason for this reactivity difference is not readily apparent. It has 

been proposed that the endo-DCPD acts as a chelating group on the 

ruthenium centers, inhibiting further reaction of the meta1.49 

Ru 

.f~) \y 

It was found, however, that when monomers X or XI were added to the 

endo-DCPD polymerization reactions, homo-polymerization of the 7-

oxanorbornene monomers occurred, leaving the endo-DCPD untouched 

(Equation 34). 

~+ Ru Catalysts 

In contrast, copolymerization of the exo-DCPD monomer and XI 

proceeds smoothly. These results demonstrate that all of the ruthenium 

catalyst in the reaction mixture is not bound irreversibly by the endo-DCPD. 

Furthermore, the failure of the endo-DCPD to be incorporated into the 

growing polymer chain, after initation of the 7-oxanorbornene monomer, 
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indicates some inherent unreactivity associated with endo-DCPD, which 

appears unrelated to the proposed chelation effects. It has been suggested 

that the unreativity of endo-isomers is due to the higher energy of the 

polymer structure formed by placing all four ring substituents on the same 

side of the cyclopentane repeat units.50 Our results tend to support this 

argument rather than the chelation hypothesis. 

Other monomers containing additional pendant olefins have also failed 

to polymerize. For example, 5-vinyl-2-norbornene fails to polymerize using 

the ruthenium catalysts. This result, however, may be due to deactivation 

through chelation of the catalytic center by the monomer, as evidenced by 

the fact that cyclic monomers polymerize in the presence of a 1 :1 mixture of 

acyclic olefins (vide supra). In addition, unlike the endo-DCPD case, 

monomer XI fails to polymerize in the presence of 5-vinyl-2-norbornene. 

C. Polymer Characterization. 

A number of isomeric variants are possible for the poly(7 -oxanorbornene) 

materials reported here. During the polymerization of the 5,6-

symmetrically substituted monomers (VI, VII, VIII, XI, etc.) the 

metathesized double bonds can be formed in either a cis or a trans 

configuration. If no isomerization occurs during the retro [2+2] process, 

then the determination for the formation of a cis or a trans double bond is 

thought to depend on the relative stereochemistry of the metallacyclobutane 

formation step. A cisoid addition of the bicyclic monomer relative to 

polymer substituent on the carbene provides a cis-double bond; a transoid 

addition provides the trans-double bond (Scheme IX). 
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Scheme IX: 

p 

0 

+(Q 
p 0 

tdJ M~ 
Cis-Double Bond 

0 

... ... p-;:n 
Trans-Double Bond 

This selectivity, in turn, is thought to depend on the ligand environment 

of the metal. Ligands that possess a larger steric bulk relative to the 

polymer chain can act to block the underside of the carbene, forcing the 

higher energy cis conformation. 

Two additional isomeric forms are also possible: isotactic and 

syndiotactic ring diads. 

Isotactic 
(cis or trans) 

' H H 
Syndiotactic 
(cis or trans) 
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The relative stereochemistry of two successive rings (the tacticity) is 

determined by which side of the intermediate carbene the metallacycle 

formation occurs from. An isotactic diad results from two consecutive 

monomer additions from the same side of the carbene, while the 

syndiotactic diad results from additions to alternating sides of the carbene. 

For the non-symmetrically substituted monomers (III, IV, V, etc.), the 

polymer's isomeric constitution is compounded by the possibility of head-to-

tail (HT) and head-to-head/tail-to-tail (HH)/(TT) diad forms. 

R 
(HT) 

R R R 
(HH) (TT) 

R 

As a result of the many possible isomeric forms of poly(7-

oxanorbomene), and the current lack of highly stereospecific catalysts (vide 

infra), these materials are, in general, highly amorphous, low Tg 

materials. With two exceptions, none of the 7 -oxanorbornene polymers 

show signs of crystallinity. These two exceptions, Poly X and Poly XI, are 

similar in that irregularities that are due to endo-exo isomers at the 5,6-

positions have been eliminated by the additional unsaturation present in 

the 7-oxanorboma-2,5-dienyl type of structures. Poly XI displays a Trn at ca. 

175 °C, determined by differential scanning calorimetry (DSC) (Figure 13). 

Although Poly X gives the appearance of being partially crystalline, DSC 

reveals that decomposition occurs before melting (Figure 14). 

The molecular weights and polydispersities of the 7-oxanorbornene 

polymers reported here were determined by gel permeation 

chromatography (GPC). The molecular weights obtained through this 
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technique are calculated relative to polystyrene standards. A conversion 

factor that converts the relative molecular weights to actual molecular 

weights can be estimated by end-group analysis. A division factor of 2.3 

was calculated for the 7-oxanorbornene polymers by integration of the t

butyl end-group of the polymers obtained using the neopentylidene catalyst, 

XVI. This value gives good agreement with the accepted value of 2 for the 

structurally similar polymer of norbornene. The molecular weights and 

polydispersities of several 7-oxanorbornene polymers obtained using 

different catalysts are shown in Table 3 Although none of the 7-

oxanorbornene systems are living, the molecular weight can be controlled 

over a wide range by the choice of catalyst. For example, catalyst XV 

provides low molecular weight oligomers with an average degree of 

polymerization of 12-20, while some of the Group VIII catalysts provide 

materials with a degree of polymerization of over 5,000. 

The solubilities of the 7 -oxanorbornene materials vary, depending on 

both the nature of the pendant substituents, as well as the molecular 

weights. Polymers obtained from the dimethoxymethyl monomer, VIII, 

exhibit the greatest range of solubility. High molecular weight Poly VIII is 

soluble to greater than 15% in polar solvents (CH2Cl2, CHCl3, CH30H, 

CH3CH20H, CCH3)2CO, THF, etc.), and to a lesser extent (ca. 5%, depending 

on molecular weight), in non-polar solvents (CCl4, toluene, benzene). Non

solvents for Poly VIII include pentane and water. In polar solvents 

(CH30H, for example), the solubility of Poly VIII appears to be limited only 

by the resulting viscosity of the solution. At room temperature, solutions of 

Poly VIII above ca. 15% become viscous gels. Changing the pendant R 

groups from methoxy to hydroxyl, as in Poly VII, dramatically decreases 

the solubility. Poly VII will swell in polar solvents (including water), but 
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POLYMER QATALYST M:»::!X lQ:,a 1a Mn <XlQ:.al PDI:b 

Poly VIII XV (C6H6 or THF) 5.84 3.24 1.81 

Poly VIII XVI CC6H5CH3) 29.4 19.4 1.52 

Poly VIII RuCl3 CC6H&'Et0H) 338 172 1.96 

Poly VIII Ru(COD)c (C6H&'Et0H) 133 77.6 1.71 

Poly VIII OsCl3 (C6H&'Et0H) 416 214 1.94 

Poly VIII K2Ru03(0H)2(18-Crn-6) 183 94 1.95 

Poly VIII OsCl3 CCH30H) 965 792 1.22 

Poly VIII RuCl3 (EtOH) 1120 973 1.15 

Poly VIII Ru(TF A)d (C6H&'Et0H) 365 184 1.98 

Table 3: Molecular weights and polydispersities of various Poly(7-
oxanorbomenes). Notes: a) Molecular weights given relative to 
polystyrene standards. b) Polydispersity index (PDI) = Mw!Mn. c) 
Ru(COD) is an ill-defined Ru-cyclooctadiene complex with an average 
oxidation state near Ru2+. d) Ru(TFA) is an ill-defined compound with the 
approximate composition: Ru2CCF3C02)4·3H20. 
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will not form a true solution. This feature provides an efficient method for 

modulating the solubility properties of these materials, especially for 

applications in which insolubility is desirable. For example, copolymers of 

VIII and VII containing only a few percent of the hydroxyl monomer are 

almost completely insoluble. Replacement of the disubstituted monomers 

with the monosubstituted monomers also decreases the solubility. Poly IV, 

containing the mono-dimethoxymethyl substituent, displays a molecular 

weight-dependent solubility. Low molecular weight Poly IV obtained from 

catalyst XV is soluble in some polar solvents, while the high molecular 

weight materials obtained from the Group VIII catalysts, at best, only swell 

in polar solvents. 

The good solubility ofthe 7-oxanorbomene materials in general allowed, 

in most cases, for detailed structural characterization by both solution 1 H 

and 13C NMR techniques. The cis I trans double-bond ratios along the 

polymer backbone were obtained from a systematic comparison of the 

spectra from polymers synthesized by a number of different catalysts. To 

eliminate complications arising from possible HT and HH/TT isomeric 

diads, the symmetrically substituted Poly VIII was examined. The lH 

NMR spectra of Poly VIII, synthesized using three different catalysts, are 

shown in Figures 15, 16 and 17. The assignments of the cis and trans 

olefinic and allylic proton resonances were completed only after correlation 

with their assigned 13C NMR spectra. No information concerning the 

tacticity of any of the 7-oxanorborene polymers could be extracted from lH 

NMR data. 

13C NMR is far more useful in assigning the cis/trans ratio of the 7-

oxanorbornene polymers. Resonances arising from the carbons alpha to a 

double bond (the allylic carbons) are typically the best indicators of the cis or 
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Figure 15: lH NMR spectra (CDCla) of Poly VIII obtained using catalyst 
XV. Cis I trans double bond ratio ca. 42/58. 
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Figure 16: 1 H NMR spectra (CD2Cl2) of Poly VIII obtained using catalyst 
XVI. Cis I trans double bond ratio ca. 95/5. 
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Figure 17: lH NMR spectra (CDCla) of Poly VIll obtained using RuCla in 
C6HsfEtOH at 55 °C. Cis/trans double bond ratio ca. 5/95. 
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trans configuration of that bond, with a cis-double bond giving allylic peaks 

approximately 5 ppm upfield from that of the trans-double bond. 51 The 13C 

NMR spectra of the same three Poly VIII samples are shown in Figures 18, 

19 and 20. The allylic carbon (labeled C2) appears at 81.8 ppm for the trans

isomer and 77.3 ppm for the cis-isomer. The good resolution of these peaks 

provides the most reliable indicator of this isomeric ratio. Figure 21 

contrasts the 13C NMR spectra of two extreme cases: high cis polymer 

obtained using catalyst XVI, and high trans polymer obtained using 

RuCl3·nH20. Correlation of these carbon intensities back to the proton 

spectra (Figures 15, 16 and 17) permits olefinic and allylic proton 

assignments. 

The cis I trans ratios calculated from this 13C NMR analysis of Poly VIII 

samples, synthesized using a variety of catalysts, are shown in Table 4. As 

these data indicate, the cis-double bond content in these polymers can be 

adjusted from approximately 5% to greater than 95% by choice of the 

appropriate catalyst. The high cis selectivity observed using catalyst XVI,36 

and the high trans selectivity observed using the ruthenium-based 

systems52 are consistent with the results obtained for the polymerization of 

norbornene by these same catalysts. 

The olefinic carbon resonances (labeled C1 in Figures 18, 19 and 20), are 

not nearly as diagnostic. Further structural information is provided by the 

remaining ring carbon, (C3). This carbon appears to be sensitive to the 

configuration of the double bonds on either side of the ring in which it is 

contained. The four resonances observed for this carbon (see Figure 18) are 

assigned to the four possible combinations: cis-cis (cc) (48.3 ppm), cis-trans 

(ct) (47.9 ppm), trans-cis (tc) (47.5 ppm), and trans-trans (tt) (47.2 ppm). 
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Figure 18: 13C NMR spectra (CD2Cl2) of Poly Vlll obtained using 
catalyst XV. Cis I trans double bond ratio ca. 42/58. 
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Figure·t9: 13C NMR spectra (CD2Cl2) of high cis Poly VIII obtained 
using catalyst XVI. Cis I trans double bond ratio ca. 95/5. 
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Figure 20: 13C NMR spectra (CD2Cl2) of high trans Poly Vlll obtained 
using RuCla in CsHs/EtOH. Cis/trans double bond ratio ca. 5/95. 
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Figure 21: Comparison of13C NMR spectra (CD2Ch) of high cis and 
high trans Poly VIII. 
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Detailed analysis of the spectra obtained from the polymers of the non

symmetrically substituted monomers is far more difficult. With the 

symmetrically substituted monomers, there exists the possibility of four 

different isomeric diads (cis or trans double bonds, either in an isotactic or 

syndiotactic relationship). With the non-symmetric monomers, the 

number of isomeric diads increases to 32. In addition to the introduction of 

HT and HH/TT isomers, the non-symmetric monomers obtained from the 

furan-acrylate Diels-Alder adducts exist as 3:1 mixtures of endo to exo 

isomers. As a result of these added permutations, the spectra of these 

polymers are correspondingly complex. For example, the 13C NMR of Poly 

IV obtained using catalyst XV shows at least nine different resonances in 

the allylic carbon region of the spectrum (74 through 82 ppm). 

Neither the lH nor the 13C NMR spectra of the symmetrically substituted 

polymers (Poly VIII for example) appear to be sensitive to the different 

possible tacticities of these materials. Reduction of the double bonds with p

toluenesulfonhydrazide cleanly provides the expected saturated polymer.53 

The 13C NMR spectra of these saturated polymers now reflect the presence 

of different isomers. Figure 22 shows the 13C NMR spectra of unsaturated 

Poly VIII and the corresponding saturated polymer obtained upon 

reduction, Poly VIlis. In the case of saturated Poly VIlis (which cannot 

give HT, and HH/TT isomers), the only possibility for different isomers 

arises from differing tacticities of the diad pairs. Two types of diad pairs 

can exist along the polymer chain: meso (m), and racemic (r) diads. These 

diads, and their respective relationships to the isotactic and syndiotactic 

polymers, are illustrated in Scheme X. Note that the chirality of the 

adjacent allylic carbons along the chain determines whether the diads exist 

in a meso or racemic relationship. The chirality of these centers is fixed 
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Figure 22: Comparison of13C NMR spectra (top spectrum: CD2Cl2; 
bottom spectrum: CDCls) of unsaturated (top) and saturated (bottom) poly 
VIII. 
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before reduction of the double bonds and is not altered during this process. 

Therefore, the measured tacticity of the saturated polymer reflects the 

original tacticity of the unsaturated polymer. 

Figure 23 shows the 13C NMR spectra of two saturated Poly VIII 

polymers, one obtained using catalyst XVI and the other obtained with 

RuCl3. Each of the carbons labeled 1, 2 and 3 appear as two sets of 

resonances: 32.74, 81.16 and 46.2 ppm CCDCl3), and 31.90, 80.83 and 45.87 

ppm CCDCl3). The relative intensity of these two sets of resonances is 

observed to vary, depending on the catalyst initially used in the 

polymerization. Given that no other isomeric forms can exist for Poly 

VIlis, these two sets of resonances are assigned as the isotactic and 

syndiotactic ring diads. The polymer obtained using RuCl3 as a catalyst 

shows a 72% predominance of one type of diad over the other. In contrast, 

the polymer obtained using XVI appears to be almost atactic, i.e., 

approximately equal numbers of r and m diads, 45% and 55%. Given only 

this information, the unambiguious assignment of these two sets of 

resonances to either the r diad (syndiotactic polymer) or the m diad 

(isotactic polymer) is not possible. In order to make these assignments, the 

relationship between HT and HH!I'T isomers, and the known r and m diads 

that exist for polymers composed of resolved, asymmetric monomers, is 

enlisted. If a polymer is composed of resolved, chiral monomers, then an 

HT ring sequence corresponds to an isotactic diad, and a HH/TT series 

corresponds to a syndiotactic diad.54 This relationship is illustrated in 

Scheme XI for the polymer of resolved endo-(-)-5-methoxymethyl-7-

oxabicyclo[2.2.1]hept-2-ene, IV*. It must be emphasized that this special 

relationship between substitution isomers and tacticity exists only for 

polymers comprised of resolved monomers. 
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Figure 23: Comparison of 13C NMR spectra of saturated poly VIlis 
obtained using catalyst's XVI (top), and RuCI3 (bottom). 
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The resolution, and the absolute configuration of 7-oxanorbornene-2-

carboxylic acid have been reported.55 This resolution method, and further 

reduction to the 2-methoxymethyl deriviatve, IV* are illustrated in Scheme 

XII. In order to minimize the number of possible isomers, catalysts that 

select for either high cis or high trans polymer were employed in the 

polymerization of the resolved monomer. The catalyst RuCl3 was chosen 

for its tendency to give polymers with very high trans content, as well as for 

its apparent bias towards one of the two possible tacticities, evident in the 

13C NMR spectra of saturated Poly VIlis. Analysis of the olefinic region of 

the 13C NMR spectrum (the most diagnostic region for this type of 

isomerism), then provided the HT and HH/TT isomer ratios. The exact 

assignment of the HT and HH/TT olefinic resonances was based on 

comparisons with a published spectral analysis performed on the similarly 

substituted poly(5-methylnorbornene).54 Racemic Poly IV obtained using 

RuCl3 shows four peaks of nearly equal intensity in the olefinic region: 

133.6, 133.3, 129.8 and 129.1 ppm (CDCl3). Likewise, the spectrum of the 

high cis polymer obtained using catalyst XVI shows four peaks: 133.7, 

133.4, 129.8 and 129.1 ppm (CDCl3). By analogy with poly(5-

methylnorbornene), these signals may be assigned as the TH, TT, HH and 

HT resonances, respectively. In contrast, the spectrum of resolved Poly IV* 

obtained using RuCl3 shows a 4:1 ratio of the TH and HT signals over the 

TT and HH signals. In the chiral polymer, the HT and TH resonances 

correspond to the isotactic ring diads. From this information, the 

dominant set ofresonances observed at 81.16, 46.20 and 32.74 ppm in the 13C 

NMR spectrum of Poly VIlis obtained using RuCl3 can be assigned as the 

isotactic ring diads. The second set of resonances, appearing at 80.83, 45.87 

and 31.90 ppm are assigned to the syndiotactic diads. This assignment, 
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which associates the high trans-selective ruthenium catalysts with 

formation of the isotactic diads, is consistent with the polymerization 

literature of substituted norbornene derivatives.54 Table 4 details some of 

the tacticity data of Poly VIII obtained using several different catalysts. It 

can be concluded from these data that the existing catalysts tend to give 

poly(7-oxanorbomene) materials that are nearly atactic, with a slight bias 

towards isotactic materials in the case of the ruthenium catalysts. 

Studies directed at the regiochemistry of monomer addition to the 

carbene, as well as the subsequent decomposition of the metallacycle to a 

new carbene, provide some insights into the origins of the observed 

stereochemistry. Scheme XIII illustrates this process for the formation of 

both a cis- and a trans-double bond, upon cleavage of the intermediate 

metallacycle. This scheme is based on the hypothesis that formation of a 

cis- or a trans-double bond is wholly determined by the relative orientation 

of the incoming olefin to the polymer chain on the active metal carbene. 

This model assumes that none of the metallacycle bonds undergo rotation 

during either the bond-forming or bond-breaking steps. 

The tacticity of the polymer is dictated by the particular side of the 

carbene with which the incoming olefin reacts. If the olefin adds to the 

same side of the carbene as the previous monomer unit, an isotactic diad is 

produced. If the monomer adds to the opposite side relative to the last 

added monomer, then a syndiotactic diad is formed. This 7t-facial 

selectivity is, however, ultimately going to be determined by the side of the 

carbene that affords the open coordination site on the metal. Notice that 

formation of a cis- or a trans-double bond constitutes two different 

stereochemical pathways with respect to the location of the new, vacant 

coordination site r elative to the last one (Scheme XIII). Following 
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~atal~i ~Cis Douhl~ BQnds Iliad T~ii~ii: !rtml 
XVI 95 55/45 

K2Ru03(0H)2·18-Crown-6 62 

Ru Reda 44 

XV 42 

Ru(TFA)h 34 

RuCl3(EtOH) 34 

OsCl3 (C6H&'Et0H) 3) 

Ru(COD)c 18 50/50 

RuCl3(C6H&'Et0H)(75 °C) 12 

RuCl3(C6H&'Et0H)(50 °C) 3 28/72 

RuHClCPPh3)3 2 

Table 4: The cis double-bond content and ring diad tacticity of Poly VIII 
obtained using several catalysts. Notes: a) Ru Red: 
[Ru(NH3)sORu(NH3)40Ru(NH3)s]Cl6; b) Ru(TF A) is an ill-defined 
compound with the approximate composition: Ru2CCF3C02)4·3H20; c) 
Ru(COD) i s an ill-defined Ru-cyclooctadiene complex with an average 
oxidation state near Ru2+. 
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decomposition of the metallacycle to produce a cis-double bond, the 

enantiomer of the original carbene is formed (i.e., the new coordination site 

is now on the opposite side of the carbene); when decomposition occurs to 

produce a trans-double bond, the original carbene is reinstated (i.e., the 

new coordination site is on the same side of the carbene). From this 

analysis, it follows that polymers with a high cis content should be 

syndiotactic, and polymers with a high trans content should be isotactic. It 

must be emphasized that this scheme represents only the extreme, 

idealized case. Any rotation of the carbene ligand, or reorganization of the 

ligands on the metal center, will serve to racemize these intermediates. If 

the rate of polymerization is fast relative to the rate of ligand 

reorganization, then this cis/syndiotactic and trans/isotactic 

correspondence will be expected. If, however, these two rates become more 

competitive, or if the mechanism changes (for example, prior coordination 

of the incoming olefin before the metallacycle undergoes the retro [2+2] 

cycloaddition), then this stereochemical scheme will break down. The 

connection between cis I trans double-bond formation and tacticity has been 

studied in detail.56 Examination of the literature reveals that when a 

relationship does exist between cis and trans isomers of the double bonds 

and tacticity of the polymer, without exception, high cis polymers tend to be 

syndiotactic and high trans polymers tend to be isotactic. 

One attractive approach to the synthesis of stereoregular ROMP 

materials lies in the development of catalysts containing chiralligands. By 

the appropriate choice of chiral ligand, the two sides of the carbene could be 

rendered inequivalent, irrespective of the rate of ligand reorganization. 

This inequivalence should bias the process to select for reaction with one 

side of the carbene over the other, resulting in the formation of highly 
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isotactic polymer. As a test of this hypothesis, a 1 ,1'-binaphthol derivative 

of WOCl4 was synthesized, XVII (Equation 35). 

0 
II 

Cl '' ·;v'\.· "Cl + 
Cl Cl 

OH 
OH 5Days 

0 
0 .. " W-CI 
o' 'c1 

(35) 

XVII 

Although W(VI) catalysts have been shown to be inactive with the 7-

oxanorbornene monomers, stereochemical induction by the 1 ,1'-binaphthol 

ligands can be conviently tested with norbomene derivatives such as anti-7-

methylnorbornene. This monomer is particularly suitable in that the 13C 

NMR spectrum of its unsaturated polymer is sensitive to polymer tacticity, 

thereby eliminating the need for reduction of the polymer prior to structural 

characterization. Following literature procedures, a 51149 mixture of 

anti/syn-7-methylnorbornene was synthesized as shown in Scheme XJV.57 

As with other classical W(VI) catalysts, XVII requires a cocatalyst, such 

as Sn(CH3)4. Not surprisingly, in preliminary tests using norbornene, 

XVII/Sn(CH3)4 (1 :3) proved to be far less reactive than WOCl4/Sn(CH3)4. 

The unsubstituted catalyst is known to polymerize norbornene rapidly 

below room temperature. 58 In contrast, the XVII system consumed less 

than 5% of the norbomene after 15 minutes at +40 °C. Temperatures near 

+50 °C were required in order to achieve a rapid rate of polymerization (ca. 

50% conversion in 5 minutes). When 16 equivalents of the 51149 mixture of 

anti/syn 7-methylnorbornene were allowed to react with XVII/Sn(CH3)4 

(113), the anti-isomer was observed to polymerize slowly at 50 oc (87% 

conversion (anti-isomer) after 70 minutes) (Equation 36). 
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(36) 

In a control experiment using WOCl4/Sn(CH3)4, the syn-isomer was 

again observed to be inactive, while the anti-isomer was completely 

consumed in approximately 1 minute at 50 °C. Surprisingly, the 13C NMR 

spectra of the poly(7 -methylnorbornene) obtained from these two reactions 

showed only slight differences. The polymer obtained from the WOCl4 

reaction was measured to be 60% trans, while the XVII system gave a 4 7% 

trans polymer. From a detailed analysis of the fine structure, however, the 

tacticity of these two polymers appeared to be nearly identical. The trans

junctions in the WOCl4 polymer appear to be atactic, as evidenced by 

resonances of equal intensity at 51.53 and 51.33 ppm, corresponding to the 

allylic carbons of a trans-double bond, existing in an isotactic and 

syndiotactic relationship, respectively. On the other hand, the trans

junctions in the XVII polymer appear to exert about a 1 0% bias towards the 

isotactic diads. The cis-junctions in both the WOCl4 and XVII polymers 

appear to be highly syndiotactic. Clearly, little, if any, tacticity induction 

occurs by using the binaphthol ligand in this system. The explanation for 

this result remains unknown. It is possible that the binaphthol ligand does 

not lend significant steric bias to the reaction, or that the carbene lies along 

the pseudo C2 rotation axis, making each face of the carbene effectively 

equivalent. An alternative (and simple) explanation might be that the true, 

active catalytic species in these reaction mixtures do not involve the 

binaphthol ligand. This type of complication is indicative of "classical" 

metathesis systems in which only a small fraction of the metal centers is 
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actually activated. All efforts to convert XVII to a neopentylidene species 

similar to catalyst XV have failed. Problems arise in trying to alkylate 

XVII with neopentyl Grignard reagents. The binaphthol complex does not 

react with the Grigard reagents, even under conditions in which other, 

sterically hindered tungsten alkoxide complexes such as (2,6-

diphenylphenoxyhWCl4, react readily.59 The inert nature ofXVII towards 

alkylating agents, a necessary first step for carbene formation,l lends 

credence to the notion that the reactive polymerization species do not 

contain the binaphthol moiety. 
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CONCLUSION 

The ring-opening metathesis polymerization of several 7 -oxanorbornene 

derivatives has been reported using a number of catalysts. The catalysts 

investigated range from preformed early metal metallacyclobutane and 

carbene complexes to classical Group VIII ruthenium and osmium 

· complexes. 

In general, the early transition metal catalysts tend to become 

deactivated over the course of the polymerization, resulting in low yields of 

low molecular weight materials. Furthermore, the polydispersities of these 

materials are broad. Coordination of the monomer through the 1 ,4-

bridging epoxide was observed using WOCl4 and the carbene catalyst, XV. 

With WOCl4, subsequent decomposition, which is thought to be the cationic 

opening of the 1 ,4-bridging epoxide, is observed. The utility of early metal 

catalysts for these functionalized monomers is limited. Under certain 

conditions, it may be possible to obtain living polymerizations of some of 

these monomers using less Lewis acidic versions of XVI, possessing t

butoxy ligands, rather than the hexafluoro-t-butoxy ligands used in this 

study. 

In the case of the less oxophilic ruthenium and osmium complexes, good 

yields of the desired ROMP polymer are obtained. No indications of side 

reactions leading to catalyst deactivation are observed in these late metal 

systems. The tolerance which these ruthenium catalysts display towards 

polar substituents allows for the incorporation of a number of fuctional 

groups within the polymer structure. The versatility of this feature is 

illustrated by the facial polymerization of XI, and its subsequent 
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modification to both a fully conjugated polymer, and a fully saturated, 

water-soluble, poly diacid material. 

The unreactive nature of the ruthenium-based catalysts towards acyclic 

double bonds and polar functional groups makes them interesting 

candidates for future studies. An important future issue to address will be 

that of accelerating the initiation steps in these systems. Some preliminary 

work in this area is presented in Chapter 4. 

Structural characterization of these materials was accomplished using 

lH and 13C NMR. The lH and 13C NMR spectra of the unsaturated 

polymers were sensitive to the cis /trans configuration of the double bond. 

No fine structure indicating the polymer tacticity could be observed in these 

spectra. The assignment of the diad tacticities in these polymers required 

hydrogenation of the polymer to the fully saturated material. The 13C NMR 

spectra of these saturated polymers consisted of two sets of resonances 

arising from to the isotactic and syndiotactic ring diads. Exact assignment 

of the diad pairs as either syndiotactic or isotactic diads, required the 

synthesis and polymerization of a chiral monomer. Using the relationship 

that exists between the HT and HH!I'T isomeric forms and the diad tacticity 

of a chiral polymer, the tacticities of the 7-oxanorbornene polymers were 

determined. Using the present stable of catalysts, the cis-double bond 

content in these polymers can be varied from over 95%, down to less than 

5%. Similar control over the tacticity is yet to be realized. For specific 

applications in which the microstructure of the polymer is paramount 

(ionophoric applications, for example), the issue of control over tacticity 

must be addressed. Preliminary attempts at controlling the polymer 

tacticity by designing catalysts with chiralligands have not proven fruitful. 

Attempts at more sophisticated methods are in order. 
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EXPERIMENTAL 

General Procedures 

All manipulations involving air- and/ or moisture-sensitive compounds 

were carried out using standard high vacuum or Schlenk techniques. Argon 

was purified by passage through columns of BASF RS-11 (Chemlog) and 

Linde 4A molecular sieves. All weighing of air- and/ or moisture-sensitive 

compounds was performed in a Vacuum Atmosphere dry box under 

nitrogen. 1 H and 13C NMR spectra were recorded on a JEOL FX-90Q 

(89.6.MHz lH, 22.53 MHz 13C) and a JEOL GX-400 (399.65 MHz lH, 100.67 MHz 

13C). Chemical shifts are referenced to residual protons on the deuterated 

solvents. Analytical gas chromatographic analysis (VPC) was performed on a 

Shimadzu GC-Mini 2 flame-ionization instrument modified for capillary use 

(Column: 0.24 mm X 15m DBI) and equipped with a Hewlett-Packard Model 

339A integrator. Infrared spectra were aquired on a Shimadzu IR-435 

spectrometer. Samples were prepared by casting films on KBr windows. 

UV /vis spectra were acquired using a HP-8451A diode array spectrometer. 

Gel permeation chromatography (GPC) was performed utilizing Shodex 

KF-803, 804, 805 and 805.4 columns with CH2Cl2 or THF as a solvent. The 

polymer was detected with a Spectroflow variable wavelength, absorbance 

detector and a Knauer differential refractometer. Samples for analysis were 

prepared between 0.2 -0.4% by weight in CH2Cl2 (or THF). The molecular 

weights were referenced to narrow dispersity polystyrene samples 

(Polysciences) ranging from MW = 3550 to 1,300,000. 
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Thermal analysis was performed on a Perkin Elmer DSC-7, TGS-2 

thermogravimetric analyzer, and a 3600 data station. Scan rates are provided 

in the figures. 

2-Carbomethoxy-7 -oxabicyclo[2.2.1 ]hept-5-ene60 and 7 -oxabicyclo[2.2.1 ]hept-

5-ene-2-carboxylic acid61, Tebbe reagent,62 metallacycle XIII,63 catalyst 

XV,64 catalyst XVI,65 H2RuCCO)(PPh3)3,66 HRu(CO)(PPh3)3(CF3C02)67 were 

prepared according to published procedures. With the exception of 

hydroquinone (MCB Reagents), p-toluenesulfonyl chloride (EM Science), 

maleic anhydride (Mallinckrodt) and pyridine (JT Baker), all other organic 

chemicals were obtained from the Aldrich Chemical Company and, if not 

specified, used without further purification. RuHCl(PPh3)3, [Ru(NH3)sCl]Cl2, 

Ru3(C0)12, RuCI3·nH20 and RuBr3·nH20 were purchased from Strem. 

RuCl2CPPh3)3, (bipyhRuCl2 and Ru(NO)(N03)3 were purchased from 

Johnson-Matthey I AESAR. Ru(acac)3, and (RuCb(CObh were purchased 

from Aldrich Chemical Company. K2Ru04·H20 and K20s04·H20 were 

purchased from Alpha. CDCl3 was stored over 4A molecular sieves. CH2Cl2 

was dried over P205 and degassed on a vacuum line. Pentane was stirred 

over sulfuric acid, dried over calcium hydride, and vacuum-transferred from 

sodium benzophenone ketyl. Benzene, THF, diethyl ether, and toluene were 

vacuum-transferred from sodium benzophenone ketyl. 

Synthesis of Exo-7-0xabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic Anhydride 

(VI). Maleic anhydride (78.8 g, 0.803 mol) was dissolved in diethyl ether (600 

ml). To this solution, furan (54.7 g, 0.803 mol) was added and the resulting 

clear solution allowed to stir for three days, during which time the white 

crystalline product precipitated from solution. The precipitate was isolated by 

filtration, washed with cold diethyl ether and dried to yield the desired 
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product (101 g, 75.5%). 1H NMR (CDCl3, 90 MHz) 6.55 (1 H, s), 5.43 (1 H , s), 

3.19 (1 H, s) ppm. 

Synthesis of Exo-7-0xabicyclo[2.2.l]hept-2-ene-5,6-dicarbinol (VII). A 500 

ml, 3-neck flask was equipped with a pressure-equalizing dropping funnel, a 

water-cooled reflux condenser and an overhead stirrer. The reaction vessel is 

charged with LAH (2.8 g, 0.074 mol) in dry THF. Anhydride VI (10 g, 0.060 

mol) dissolved in dry THF (120 ml) is placed in the dropping funnel and 

added dropwise to the LAH suspension. The solution is then allowed to stir 

overnight. Water (3 ml), NaOH (3 ml, 15% solution), and water (9 ml) are 

then added slowly in sequence. The resulting white precipitate is filtered. 

The filtrate is concentrated (rotor-evaporated) and added to the white 

precipitate. This residue is placed in a Soxhlet extraction apparatus and 

extracted with methylene chloride for 2 days. The CH2Cl2 is removed (rotor-

evaporated) and the remaining viscous oil dried in vacuum to yield the 

desired product (9.5 g, 100%). The diol obtained here can be used as is for 

most synthetic purposes. Further purification can be accomplished using a 

Kugelrohr apparatus (B.P. 120-125 °C at 0.001 torr). lH NMR (CDCl3, 90 MHz) 

6.42 (1 H, s), 4.69 (1 H, s), 4.06 (1 H, bs), 3.78 (2 H, m), 1.93 (1 H, m) ppm. 

Synthesis of Exo-5,6-dimethoxyrnethyl-7-0xabicyclo[2.2.1]hept-2-ene (VIII). 

A 500 ml, 3-neck flask is equipped with a pressure-equalizing dropping 

funnel, a water-cooled reflux condenser and a magnetic stir bar. The reaction 

vessel is charged with NaH (10.68 g, 0.445 mol) in dry THF (250 ml). Diol VII 

(27.8 g, 0.178 mol) is dissolved in dry THF (50 ml) and added dropwise 

through the dropping funnel. After complete addition of the diol, the 

solution was stirred for an additional half-hour to insure complete reaction. 
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CH3I (101.1 g, 0.712 mol) is then added slowly through the dropping funnel. 

After complete addition of the CH3I, water is added dropwise until no further 

bubbling occurs. The reaction solution is then poured into diethyl ether (500 

ml) and filtered. The solvent is removed at reduced pressure to yield the 

desired product as a clear liquid (28.0 g, 85.6%). Further purification can be 

accomplished using a Kugelrohr apparatus (B.P. 60-65 °C at 0.001 torr). Dry 

VIII is obtained by vacuum distilling (Kugelrohr apparatus) off NaH. 1H 

NMR (CDCl3, 90 MHz) 6.33 (1 H, s), 4.30 (1 H, s), 3.43 (2 H, m), 3.30 (3 H, s), 1.90 

(1 H, s) ppm. 13c NMR (Proton Decoupled) (CDCl3, 22.53 MHz) 135.2, 80.18, 

71.8, 58.4, 39.6 ppm. Anal. Calcd for C1oH1603: C, 65.21; H, 8.75. Found: C, 

64.82; H, 8.51. 

Synthesis of Exo-5,6-Bis(Methyltrirnethylsilyl)-7-0xabicyclo[2.2.1]hept-2-ene 

(IX). Diol VII (2.3 g, 0.0147 mol) is dissolved in dry THF (25 ml). The resulting 

solution is then cooled to 0 °C. n-Butyl lithium (21.0 ml, 0.0336 mol, 1.6 M 

solution in hexane) is added slowly. After stirring 10-15 minutes at 0 °C, 

(CH3)3SiCl (4.28 g, 0.0394 mol) is added via syringe. The reaction mixture is 

allowed to stir for 2 hours after which it is filtered through celite and the 

solvent evaporated under reduced pressure. The resulting yellow solution is 

taken up in pentane (25 ml) and again filtered. The pentane is removed 

under reduced pressure leaving approximately 4 ml of a yellow liquid. This 

liquid containing the impure product is purified using a Kugelrohr apparatus 

(B.P. 100-110 °C at 0.001 torr). Obtained 2.80 g (63.4%) of the desired product. 

1H NMR (CDCl3, 90 MHz) 6.34 (1 H, s), 4.80 (1H, s), 3.73 (1 H, m), 3.49 (1 H, m), 

2.40 (1 H, m), 0.12 (9 H, s) ppm. 
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Synthesis of 7-0xabicyclo[2.2.l]hept-2-ene-5-carbinol (III). A 500 ml, 3-neck 

flask is equipped with a pressure-equalizing dropping funnel, a water-cooled 

reflux condenser and a magnetic stir bar. The reaction vessel is charged with 

LAH (2.0 g, 0.05 mol) in dry THF (200 ml). The methyl ester I (5.0 g, 0.03 mol) 

is dissolved in dry THF (SO ml) and added dropwise through the dropping 

funnel. The reaction is stirred overnight at room temperature. Water (2 ml), 

NaOH (2 ml, 15% solution) and water (6 ml) are added in sequence. The 

resulting white precipitate filtered and the filtrate concentrated under reduced 

pressure. The resulting residue is added to the white precipitate and the 

entire mass is extracted with CH2Cl2 for 24 hours. The CH2Cl2 is then 

removed under reduced pressure to yield the desired alcohol as a clear liquid 

(4.0 g, 100%). The alcohol obtained here can be used without further 

purification. 

Synthesis of Endo/Exo-5-Methylmethoxy-7-0xabicyclo[2.2.1]hept-2-ene (IV). 

This compound is synthesized in the same manner as the dimethoxymethyl 

derivative VIII presented above. Carbinol III (13.2 g, 0.105 mol) is reacted with 

NaH (3.8 g, 0.157 mol) and CH3I (14.85 g, 0.105 mol) to yield 12.4 g (67.3%) of 

the desired product. (B.P. 60-65 °C at 0.001 torr). 1 H NMR (CDCl3, 90 MHz) 

6.25 (m), 4.87 (m), 3.32 (s), 3.25 (s), 2.85 (m), 2.45 (m), 1.90 (m), 1.22 (m), 0.68 (m) 

ppm. 13c NMR (Proton decoupled) (C6D6, 22.53 MHz) 136.4, 135.9, 135.1, 

132.6, 79.6, 79.5, 78.2, 77.7, 76.0, 75.5, 58.4, 38.4, 28.4 ppm. 

Synthesis of 2,3-Dimethyl-7-0xabicyclo[2.2.1]heptadiene Dicarboxylate (XI). 

Furan (9.6 g, 0.14 mol) is stirred with dimethylacetylene dicarboxylate (20.0 g, 

0.14 mol) for two weeks to afford a near quantitative yield of the desired Diels

Alder adduct. The resulting adduct is purified using a flash chromatography 
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column (silica gel, 40 Jlm, 14 em X 5 em), using 10% ethyl acetate/benzene as 

the eluent. Crude XI (10 g) was chromatographed using the above conditions 

providing 9.2 g of pure XI (92% isolated yield). 1H NMR (CDCl3, 90 MHz) 7.23 

(1 H, s), 5.68 (1 H, s), 3.81 (3 H, s) ppm. 13c NMR (CDCl3, 22.53 MHz) 163.1, 

152.9, 143.1, 84.9, 53.2 ppm. BP 100-105 °C at 0.001 torr. 

Synthesis of 7-0xabicyclo[2.2.l]hept-2-ene-5-carbinol Tosylate Ester. 

Carbinol III (7.95 g, 0.063 mol) was dissolved in dry pyridine (20 ml) and tosyl 

chloride (20.0 g, 0.0714 mol) is added and the reaction mixture was allowed to 

stir for two hours. The resulting mixture was then poured over ice (200 g) 

and allowed to stir for an additional hour. The aqueous solution was then 

extracted with CH2Cl2. The organic fraction was sucessively washed with 

water, 5% HCl, and 5% NaHC03, then evaporated under reduced pressure to 

yield the desired product as a yellow oil. The tosylate derivative obtained 

here was used without further purification. 

Synthesis of 5-Methyl-7-0xabicyclo[2.2.l]hept-5-ene (V). A 500 ml, 3-neck 

flask was equipped with a pressure-equalizing dropping funnel, a water

cooled reflux condenser and a magnetic stir bar. The reaction vessel_ was 

charged with LAH (3.5 g) in dry ether (100 ml). The tosylate ester (from above) 

(27.0 g, 0.987 mol) dissolved in dry ether (100 ml) was added slowly through 

the dropping funnel. After addition was complete, the resulting solution was 

refluxed for three hours. After cooling the reaction solution, water (4 ml), 

NaOH (4 ml, 15% solution) and water (12 ml) were added in sequence. The 

precipitate obtained was filtered and the filtrate concentrated under reduced 

pressure. The remaining liquid (approximately 20 ml) was passed through a 

column containing Alumina (Nutral, I), using pet ether as the eluent. The 
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pet ether was distilled off and the remaining liquid washed with 5% N aHC03, 

and dried over Na2S04. The liquid was then distilled and the product 

fraction boiling at 125-130 °C was collected (4.27 g, 40%). 1H NMR (CDCl3, 90 

MHz) 6.30 (2 H, m), 4.74 (2 H, m), 2.05 (2 H, m), 1.12 (3 H, d (J=8.9 Hz)), 0.82 (3 

H, d (J=8.9 Hz)), 0.65 (1 H, m) ppm. 

Reaction of WOC4 and VIII. WOCl4 (51.0 mg, 0.149 mmol) is dissolved 

in C6D5Cl and Sn(CH3)4 (26.7 mg, 0.149 mmol) is added via syringe. The 

resulting mixture is allowed to react for 10 minutes at room temperature, 

during which time the solution's color changes from orange to brown. 

VIII (27.5 mg, 0.149 mmol) is then added via syringe, and the resulting 

solution is monitored using lH NMR. 

Metallacycle XIV. The metallacycles formed from the 7-oxanorbornene 

derivatives are all synthesized in a similar manner. A representative 

procedure is presented here. Metallacycle XIII (0.390 g, 1.57 mmol) is 

placed in a cold Schlenk tube under argon. Compound VIII (0.347 g, 1.88 

mmol) is dissolved in benzene (15 ml) and added to the metallacycle via 

cannula. The reaction mixture is kept at 5 °C for 20 minutes, then allowed 

to warm to room temperature over the course of one hour. The solvent is 

then removed under reduced pressure. The resulting residue is washed 

with cold pentane (1 0 ml), then recrystallized from diethyl ether (20 ml) at -

50 °C. The resulting red crystals are isolated and dried under vacuum to 

yield the desired product (0.331 g, 56%). lH NMR (90 MHz, C6D6) 5.68 (5H, 

s, Cp1), 5.23 (5H, s, Cp2), 4.50 (1H, s, bridgehead), 4.15 (1H, s, bridgehead), 

3.40 (2H, m, a-H), 3.31 (4H, m, CH20CH3), 3.21 (3H, s, CH20CH3), 3.12 (3H, 
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s, CH20CH3), 3.0 (1H, m, a-H), 2.20 (2H, m, endo-CHCH20CH3), 0.22 (1H, 

m, J3-H) ppm. 

Polymerizations Using Metallacycle XIV. All manipulations are carried 

out under dry, inert atmosphere. Metallacycle XIV (20 mg, 0.0810 mmol) is 

dissolved in 1.0 ml benzene. Monomer V (271.0 mg, 2.46 mmol) dissolved in 

1 .0 ml benzene is added to the catalyst solution via cannula. Octane (0.02 

ml) is added (via syringe) as an internal standard. The resulting reaction 

mixture is then heated to 65 °C. Progress is monitored for 24 hours by 

periodically removing aliquots for capilary GC analysis. After completion 

of the reaction, 1.0 ml acetone is added to reaction mixture, and the product 

polymer precipitated by cannulating into methanol. 

Polymerizations Using Catalyst XV. The 7 -oxanorbornene derivatives 

are all polymerized using the same generalized procedure. A 

representative reaction is presented here. All manipulations were 

performed under dry, inert atmosphere. Catalyst XV (0.87 mg, 0.148 mmol) 

is dissolved in benzene (1.0 ml). To this solution, olefin VIII (0.681 mg, 3. 7 

mmol, 25 eq) dissolved in benzene (1.0 ml) is a4ded slowly via cannula. 

Solution turns from yellow to blue-green over the first four hours. After 24 

hours, methanol (1 ml) is added to the reaction, and the resulting solution 

cannulated into 50 ml pentane. The polymeric precipitate is centrifuged, 

and the solvent decanted off. The crude poly VIII is dissolved in the 

minimum amount of CCl4 and precipitated again from pentane. All 

solvents are removed under reduced pressure to yield the expected white 

polymer (0.41 g, 59% yield). 
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Poly VIII. lH NMR (90 MHz, CDCl3) 5.72 (b, trans-Ha), 5.58 (b, cis-Ha), 

4.50 (b, cis-Hb), 4.22 (b, trans-Hb), 3.45 (b, CH20CH3), 3.34 (b, CH20CH3), 

2.25 (b, He) ppm. 13C NMR (Proton-decoupled) (CD2Cl2, 22.53 MHz) 133.2 

(olefin), 131.1 (olefin), 81.9 (trans-allylic), 77.1 (cis-allylic), 71.2 (CH20CH3), 

70.9 (CH20CH3), 70.3 (CH20CH3), 58.9 (CH20CH3), 48.5 (cc-CHCH20CH3), 

48.0 (ct-CHCH20CH3), 47.6 (tc-CHCH20CH3), 47.4 (tt-CHCH20CH3) ppm. 

IR (Thin film) 2890 (s), 1475 (m), 1460 (m), 1390 (m), 1190 (s), 1100 (vs), 1020 

(s), 963 (s) cm-1. 

Poly IV. lH NMR CCD2Cl2, 90 MHz) 5.70, 5.50, 4.70, 4.35, 4.05, 3.35, 3.30, 

2.58, 2.1 ppm. 13C NMR (Proton decoupled) CCD2Cl2, 22.53 MHz) 133.6, 

133.3, 132.9, 132.2, 129.7, 129.1, 81.8, 80.3, 79.1, 76.4, 74.6, 73.4, 72.7, 58.7, 

45.4, 43.2, 36.3, 35.8 ppm. IR (Thin film) 2890 (s), 1478 (m)~ 1450 (m), 1390 

(m), 1190 (m), 1110 (vs), 1020 (s) 963 (s) cm-1. 

Polymerizations Using Catalyst XV/HgBr2: All manipulations carried 

out under dry argon. Catalyst XV (31.9 mg, 0.543 mmol) and HgBr2 (113.7 

mg, 0.315 mmol, 5.8 equivalents) are dissolved in THF ( 1.0 ml). Monomer 

VIII (636.2 mg, 3.45 mmol, 63.5 equivalents) (2.22 M) is added via syringe at 

room temperature. Within a few minutes the solution begins to become 

viscous, and in one hour, it is completely gelled. At this time ethanol (1.0 

ml) is added, and the reaction stirred until all the polymer gel dissolves. 

The reaction solution is then cannulated into pentane. The polymeric 

precipitate is centrifuged, and the solvent decanted off. The crude poly VIII 

is dissolved in the minimum amount of CCl4 and precipitated again from 

pentane. All solvents are removed under reduced pressure to yield the 

expected polymer (0.4976 g, 78.2 yield). 
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Polymerizations Using Catalyst XVI. Catalyst XVI (20.0 mg, 0.0252 

,mmol) is dissolved in toluene (0.5 ml) and placed in a cold bath at -40 °C. 

Monomer VIII (232 mg, 1.26 mmol, 50 eq) is dissolved in toluene (0.50 ml), 

cooled to -40 °C and cannulated into the catalyst solution. Over the next two 

hours the solution is allowed to warm to 0 °C. After 4 hours total, acetone (2 

ml) is added and the solution allowed to warm to room temperature. The 

reaction mixture is then cannulated into pentane. The solvent is decanted 

off the polymeric material, and the polymer washed twice with pentane. 

The polymer is dissolved in the minimum amount of ethanol and 

precipitated by addition to pentane. The solvent is decanted off and the 

resulting polymer dried in vacuum to yield 112 mg (43% yield). 

Poly VIII (High cis). lH NMR (CDCl3, 90 MHz) 5.58 (b, cis-Ha), 4.58 (b, 

cis-Hb), 3.45 (b, CH20CH3), 3.34 (b, CH20CH3), 2.25 (b, He) ppm. 13C NMR 

(Proton-decoupled) (CD2Cl2, 22.53 MHz) 133.7 (olefin), 81.8 (trans-allylic), 

77.3 (cis-allylic), 71.0 (CH20CH3), 70.8 (CH20CH3), 70.6 (CH20CH3), 58.9 

(CH20CH3), 48.4 (cc-CHCH20CH3), 48.0 (ct-CHCH20CH3), 47.6 Ctc

CHCH20CH3), 47.2 (tt-CHCH20CH3) ppm. IR (Thin film) 2890 (s), 1475 (m), 

1460 (m), 1390 (m), 1190 (s), 1100 (vs), 1018 (s), 963 (w) 730 (m). Anal. Calcd 

for C1oH1603: C, 65.21; H, 8.75. Found: C, 62.42; H, 8.17. 

Copolymerization of VIII and Norbornene Using XVI: Catalyst XVI 

(30.0 mg, 0.0379 mmol) is dissolved in 1.0 ml C5H5Cl and the resulting 

solution cooled to -35 °C. To this solution, VIII (724.1 mg, 3.93 mmol) and 

norbomene ( 370.0 mg, 3.93 mmol) dissolved in C5H5Cl (1.0 ml) are added 

via cannula. After 2 hours at -35 °C, the reaction is warmed to 0 oc and 

allowed to stir for an additional 20 minutes. Acetone (3 ml) is added and the 

solution stirred for 5 minutes before precipitating the product polymer out 
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by addition to pentane. The polymer is dissolved in the minimum amount 

of CHCl3 and reprecipitated by addition to pentane. The solvent is decanted 

off and the resulting polymer dried in vacuum to yield 285.1 mg (26.1 %). 1H 

NMR (90 MHz, CDCl3) 5.5, 5.25, 4.45, 3.48, 3.30, 2.80, 1.80, 1.32, 0.90 ppm. 

13C NMR (Proton decoupled) (CD2Cb, 22.53 MHz) 137.96, 133.9, 129.19, 76.9, 

70.73, 70.24, 58.84, 47.76, 42.69, 38.63, 33.26, 29.76 ppm. 

Polymerizations of VIII Using RuC}a. The polymerizations utilizing all 

the ruthenium complexes are performed in a similar manner. A 

representative procedure is presented here. RuCl3 (27.0 mg, 0.103 mmol 

based on RuCl3·3H20) is dissolved in chlorobenzene (1.45 ml) and absolute 

ethanol (1.0 ml). Monomer VIII (0.80 ml, 5.04 mmol, 48.9 eq) is then added 

to the catalyst mixture via syringe. The solution is degassed under 

vacuum, then heated at 50 °C for 4 days. The resulting viscous mixture is 

added to ethanol (50 ml) and centrifuged. The solution is decanted away 

from any insoluble catalyst residue and the solvent removed under reduced 

pressure. The resulting polymer is dissolved in the minimum amount of 

CHCl3 and cannulated slowly into pentane. The solvent is decanted, and 

the polymer dried under vacuum to yield 684.0 mg (73.7% yield). 

Poly VIII (High trans). lH NMR (CDCl3, 90 MHz) 5.72 (b, Ha), 4.22 (b, 

Hb), 3.45 (b, CH20CH3), 3.34 (b, CH20CH3), 2.25 (b, He). 13 C NMR (Proton 

decoupled) (CD2Cl2, 22.53 MHz) 132. 2 (olefin), 81.9 (trans-allylic), 77.2 (cis

allylic), 71.0 (CH20CH3), 58.9 CCH20CH3), 48.4 Ccc-CHCH20CH3), 48.0 Cct

CHCH20CH3), 4 7. 7 Ctc-CHCH20CH3), 4 7.4 Ctt-CHCH20CH3) ppm. IR (Thin 

film) 2890 (s), 1475 (m), 1460 (m), 1390 (m), 1190 (s), 1100 (vs), 1018 (s), 963 (s). 
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Polymerization of XI Using RuCl3. RuCl3 (21 7.0 mg, 0.828 mmol) is 

dissolved in C6HsCl (13 ml) and ethanol (5 ml). To this solution monomer 

XI (7.22 g, 34.3 mmol) (1.43 M) is added and the solution degassed under 

vacuum. The reaction vessel is then heated to 55 ac for one hour, after 

which time the viscous solution is cooled and diluted with an additional 5 

ml CHCl3. The polymer is then precipitated out by addition to methanol. 

The polymer is redissolved in the minimum amount of CHCl3 and 

reprecipitated by addition to methanol. The methanol is decanted off and 

the product polymer dried under vacuum to yield 3. 7 g (51.2% yield). 1 H 

NMR CCDCl3, 90 MHz) 5.90 (b, olefin H), 5.45 (b, allylic H), 3. 72 (b, methyl 

ester). 13C NMR (Proton-decoupled) CCD2Cl2, 22.53 MHz) 162.78 (carboxylate 

C), 138.22 (olefin C), 131.79 (olefin C), 86.36 (allylic C), 52.69 ppm (methyl C). 

IR (Thin film): 3010 (w), 2950 (w), 1720 (vs), 1660 (m), 1440 (m) 1260 (vs), 1010 

(m), 980 (m), 920 (w) cm-1. 

Polymerization of VIII Using OsCIJ. OsCl3 (18.5 mg, 0.0624 mmol based 

on OsCl3·3H20) is dissolved in chlorobenzene (1.5 ml) and absolute ethanol 

(0.2 ml). Monomer VIII (533.6 mg, 2.90 mmol, 46 eq) (1. 70 M) is then added 

to the cat~lyst mixture via syringe. The solution is degassed under 

vacuum, then allowed to stir for 11 hours. The resulting viscous mixture is 

added to ethanol (20 ml) and centrifuged. The solution is decanted away 

from any insoluble catalyst residue and the polymer is precipitated by 

addition to pentane. The resulting polymer is dissolved in the minimum 

amount of CHCl3 and again cannulated slowly into pentane. The solvent is 

decanted, and the polymer dried under vacuum to yield 516.0 mg (96.6% 

yield). 
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Poly VIII. lH NMR (CDCl3, 90 MHz) 5.72 (b, Ha), 4.22 (b, Hb), 3.45 (b, 

CH20CH3), 3.34 (b, CH20CH3), 2.25 (b, He). 13 C NMR (Proton-decoupled) 

(CD2Cl2, 22.53 MHz) 132. 2 (olefin), 81.9 (trans-allylic), 77.2 (cis-allylic), 71.0 

CCH20CH3), 58.9 (CH20CH3), 48.4 (cc-CHCH20CH3), 48.0 (ct-CHCH20CH3), 

4 7. 7 (tc-CHCH20CH3), 4 7.4 (tt-CHCH20CH3) ppm. IR (Thin film) 2890 (s), 

1475 (m), 1460 (m), 1390 (m), 1190 (s), 1100 (vs), 1018 (s), 963 (s). 

Polymerization ofXI with Varying Amounts of Acetone. Four reaction 

tubes were prepared: (1) RuCl3 (31.0 mg), XI (234.6 mg), C6D6 (0.30 ml), 

EtOH (0.06 ml), (CD3)2CO (0.0 ml, 0.0%). (2) RuCl3 (42.0 mg), XI (315.6 mg), 

C6D6 (0.20 ml), EtOH (0.06 ml), (CD3)2CO (0.10 ml, 28.0%). (3) RuCl3 (36.1 

mg), XI (320.6 mg), C6D6 (0.12 ml), EtOH (0.06 ml), (CD3)2CO (0.18 ml, 

50.0%). (4) RuCl3 (20.0 mg), XI (285.4 mg), C6D6 (0.0 ml), EtOH (0.0 ml), 

(CD3)2CO (0.40 ml, 100.0%). Each reaction vessel is then heated to 50 °C, for 

30 minutes. The resulting Poly XI, is precipitated by addition of the 

reaction solutions to CH30H. Molecular weight information is obtained 

using GPC data collected on 0.2% polymer solutions in CH2Cl2. 

Hydrolysis of Poly XI Using H20/NaOH. Poly XI (0. 70 g) was placed in 

5% NaOH (20 ml), and warmed the resulting heterogeneous mixture to 40 

°C. After 20 minutes all of the polymer was observed to dissolve and the 

solution turned dark red. After 45 minutes, the solution was acidified with 

aq. HCl, and a rust colored polymer precipitated. 

Reaction of Poly XI with NaH. Poly XI (200 mg) is dissolved in 30 ml dry 

THF. To this solution, 200 mg NaH is added and the resulting slurry 

allowed to stir at room temperature for 3 hours. During this time, the 



158 

solution color turns dark red. The red polymer solution is removed from 

the excess NaH by cannula filtration. To this homogeneous solution, 

TMSCl (220 mg) is added and the solution immediately turned colorless. 

The solvent is removed under vacuum and the resulting polymer washed 

with methanol, and then dried under vacuum. lH NMR (CDCl3, 90 MHz) 

5.90 (b, olefin H), 5.45 (b, allylic H), 3.72 (b, methyl ester), 0.14 (TMS), 0 .10 

(TMS), 0 .05 (TMS), 0.02 ppm (TMS). 

Reduction of Poly XI using p-Toluenesulfonhydrazide. Poly XI (1.0 g) is 

suspended in p-xylene (50 ml). p-toluenesulfonhydrazide (5.5 g) added and 

the resulting slurry heated to 125 °C. At 80-90 °C evolution of gas CN2) is 

observed. During this process, the polymer never completely goes into 

solution. Heating is continued for 6 hours, after which time the solution is 

cooled and poured into pentane. The resulting residue is washed with 

methanol, and the saturated polymer, poly XIs, dried under vacuum. lH 

NMR (CDCl3, 90 MHz) 4 .2 (1 H), 3.6 (3 H), 3.0 (1 H), 1.75 (1 H) ppm. 13C 

NMR (Proton-decoupled) (CD2Cl2, 22.53 MHz) 171.62, 80.51, 51.95, 31.38, 

30.93 ppm. 

Hydrolysis of Poly XIs. Poly XIs (64.0 mg) is dissolved in a mixture of 5% 

NaOH (5 ml) and THF (1 ml) and allowed to stir at room temperature for 6 

hours. The solution is then acidified with aqueous HCl and allowed to 

stand as the hydrolyzed polymer slowly precipitates out. Solution is filtered, 

and the polymer washed with successive portions of water, then methanol, 

and dried under vacuum. lH NMR (DMSO-d6, 90 MHz) 12.2, 3.9, 3.6, 2.85, 

1.8 ppm. 
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Reaction of Poly XI with DDQ. Poly XI (300 mg) is dissolved in dry THF. 

To this solution, DDQ (390 mg, 1.2 equivalents) is added and the resulting 

solution allowed to stir at room temperature. After 5 days the deep purple 

solution is pumped down and the resulting purple-black polymer, poly 

Xlox, is dissolved in CH2Cl2. The insoluble hydroquinone residue is 

filtered off and the solvent removed under vacuum. lH NMR (CDCl3, 90 

MHz) 7.7 (broad), 3.9 ppm (broad). 13C NMR (Proton-decoupled) CCDCl3, 

22.53 MHz) 162.39, 143.16, 139.26, 118.1, 52.37 ppm. 

Monomer Dependence on Initiation Rate. The initiation time is defined 

as the time elapsed from initial heating of the reaction mixture until the 

first sign of polymer formation. The onset of polymerization can be detected 

in two ways. In solvents in which the polymer remains soluble (i.e., 

benzene/alcohol mixtures for XI, or neat alcohol for VIII), the onset of 

polymerization can be detected using 1 H NMR, typically by the appearance 

of of the olefin polymer resonances at 5.9 ppm (poly XI). In solvents in 

which the polymer is completely insoluble (i.e ., alcohol for XI, and water 

for VIII), the onset of polymerization can be defined as the first sign of 

precipitate detected visually. Standard solutions of RuCl3 (198.1 mg in 2.0 

ml CD30D), and monomer (4.938 g and enough C6D6/CD30D (511) to bring 

the total volume to 5.00 ml, 4.699 M). Eleven runs are prepared using 

varying amounts of monomer solution, and the appropriate amount of 

C6D61CD30D (511) added to keep the volumes constant. Before each run, a 

fixed amount of catalyst solution is rapidly added via syringe, the contents 

mixed, and the tube placed in the NMR probe at a preset temperature (55 

°C). The reaction is then monitored every fourteen seconds until polymer 

resonances are detected. 
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Copolymerization of X and XI. Ru(COD) (35.5 mg) is dissolved in C5H5Cl 

(4.0 ml) and ethanol (0.5 ml). To this solution, XI (1.0 g, 4.76 mmol), and X 

(0.69 g, 4.79 mmol) are added, the solution degassed under vacuum, and 

heated to 55 ac for 4 hours. To the resulting red gel, an additional 5 ml 

C5H5Cl is added, and the polymer precipitated by addition to methanol. The 

solid polymer is redissolved in CHC13, and reprecipitated from methanol. 

The solvent is decanted off, and the polymer dried under vacuum to yield 

1.57 g (92.9% yield) lH NMR (CDCl3, 90 MHz) 7.3, 5.9, 5.6, 5.5 and 3.75 ppm. 

13C NMR (Proton decoupled) (CDCl3, 22.53 MHz) 162.46, 140.95, 137.89, 

131.39, 128.02, 122.04, 85.71, 83.95 and 52.44 ppm. 

Hydrogenation of poly VITI Using p-Toluenesulfonhydrazide. Poly VIII 

(0.80 g) is dissolved in p-xylene (30 ml). To this homogeneous solution, p

toluenesulfonhydrazide (TSH) (4.63 g, 5.7 equivalents) is added and the 

resulting slurry heated. At 95 °C, all of the TSH goes into solution and gas 

evolution begins. Heating is continued for 3 hours at 110 °C, after which 

time the solution is cooled slightly and added slowly to :rapidly stirring 

pentane. The resulting orange precipitate is dissolved in 15 ml CHCl3, and 

the remaining white residue is discarded. To the CHC13 solution, silica gel 

(4 g) is added and the solvent removed under vacuum. The polymer, 

dispersed on silica gel, is loaded onto a flash chromotography column (6.5 

in. X 1.5 in.) in THF/ligroin (60/40). The column is then flushed with 

THF/ligroin (60/40) (1000 ml) to remove tosylate impurities. The saturated 

polymer, poly VIlis, is then eluted with neat THF (1500 ml), and the THF is 

removed under vacuum. If the THF used is stabilized with BHT, then the 

polymer obtained at this point contains the concentrated BHT. The BHT 



161 

can be removed by dissolving the mixture in CHC13 and precipitating the 

polymer by addition to pentane. The pentane is decanted off and the poly 

VIlis dried under vacuum to yield 731.7 g (91.4% yield). lH NMR CCDCl3, 

90 MHz) 3.65 (2H), 3.38 (4H), 3.30 (6H), 2.18 (2H), 1.70 (4H) ppm. 13C NMR 

(Proton-decoupled) (CDCl3, 22.53 MHz) 81.15, 80.83, 71.28, 58.67, 46.20, 45.87, 

32.74, 31.98 ppm. 

Synthesis of endo-(-)-5-methoxymethyl-7 -oxabicyclo[2.2.1]hept-2-ene, IV*. 

The resolution of 7 -oxabicyclo[2.2.1 ]hept-2-ene-2-carboxylic acid is 

accomplished using (R)-(+)-a-methylbenzylamine as discribed 1n 

literature.50 A 100 ml, 3-neck flask is equipped with a pressure-equalizing 

dropping funnel, a water-cooled reflux condenser and an overhead stirrer. 

The reaction vessel is charged with LAH (1 .2 g) in dry THF (25 ml). The 

resolved acid (3.86 g, 0.0275 mol) (91% optically pure,[a]n = -60.2°, literature, 

-66.4 °) dissolved in dry THF (50 ml) is placed in the dropping funnel and 

added dropwise to the LAH suspension. The solution is then allowed to stir 

overnight. Water (1.5 ml), NaOH (1.5 ml, 15% solution), and water (4.5 ml) 

are then added slowly in sequence. The resulting white precipitate is filtered. 

The filtrate is concentrated (rotor-evaporated) and added to the white 

precipitate. This residue is placed in a Soxhlet extraction apparatus and 

extracted with methylene chloride for 2 days. The CH2Cl2 is removed (rotor-

evaporated) and the remaining viscous oil dried in vacuum to yield the 

desired product (3.43 g, 98.8). The alcohol obtained in this fashion is carried 

through without further purification. A 100 ml, 3-neck flask is equipped with 

a pressure-equalizing dropping funnel, a water-cooled reflux condenser and a 

magnetic stir bar. The reaction vessel is charged with NaH (0.82 g) in dry THF 

(25 ml). The resolved alcohol (3.43 g, 0.0272 mol) is dissolved in dry THF (SO 
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ml) and added dropwise through the dropping funnel. After complete 

addition of the diol, the solution is stirred for an additional half hour to 

insure complete reaction. CH3I (8.7 g, 0.0613 mol) is then added slowly 

through the dropping funnel. After complete addition of the CH3I, water is 

added dropwise until no further bubbling occurs. The reaction solution is 

then poured into diethyl ether (200 ml) and filtered. The solvent is removed 

at reduced pressure to yield the desired product as a clear liquid (2.98 g, 71.1 %). 

Further purification can be accomplished using a Kugelrohr apparatus (B.P. 

60-65 °C at 0.001 torr). 1H NMR (CDCl3, 90 MHz) 6.30 (m), 4.90 (m), 3.35 (s), 

3.28 (s), 2.92 (m), 2.50 (m), 2.0 (m), 0.70 (m) ppm. 

Synthesis of (binaphthoDWOCl2. All manipulations are performed under 

a dry argon atmosphere. A 250 ml, 3-neck flask was equipped with a water 

cooled reflux condenser, a oil-bubbler and a magnetic stir-bar. The reaction 

vessel is charged with WOCl4 (2.026 g, 5.93 mmol). A CCl4 slurry of± 

binaphthol (1.698 g, 5.93 mmol) is added slowly via cannula. Upon addition, 

the orange WOCl4 solution turns dark purple. After complete addition, the 

solution is allowed to relux until no further HCl gas evolution is detected 

(ca. 7 days). During this reaction period, the atmosphere is periodically 

purged of HCl by drawing a vacuum over the cooled solvent, and/or by 

bubbling Ar vigorously through the solution. When no further HCl can be 

detected, the CC14 is removed under vacuum. 1 H NMR (CDCl3, 90 MHz) 

7.3-6.8 (m). 

Polymerization of 7-methylnorbornene Using 

(binaphthol)WOCl4/Sn(CH3)4. A Schlenk flask is charged with 

(binaphthol)WOCl4 (98.4 mg, 0.177 mmol) and dry benzene (5 ml) is added. 
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Sn(CH3)4 (0.10 ml, 129.1 mg, 0.723 mmol) is added via syringe and the reaction 

mixture allowed to stir at room temperature for 10 minutes. After this 

incubation period, 7-methylnorbornene (49/51, syn/anti) (1.032 g, 9.54 mmol) 

dissolved in 5.0 ml benzene is added slowly via cannula. The reaction 

mixture is heated to 50 °C for 2 hours. The polymer is precipitated from 

solution by slow addition of the reaction solution into methanol. The 

polymer is purified by dissolving it in the minimum amount of CHCl3 and 

reprecipitating it from rapidly stirred methanol. 1 H NMR (CDCI3, 90 MHz) 

5.25 (2 H), 2.3 (1 H), 1.8 (2 H), 1.3 (2 H), 0.95 (3 H) ppm. 13C NMR (Proton

decoupled) (CDCl3, 22.53 MHz) 133.99, 133.80, 133.54, 51.59, 51.33, 48.67, 

48.34, 47.95, 47.30, 46.39, 31.97, 31.71, 31.18, 16.69, 16.37, 16.04 ppm. 
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Abstract 

During attempts to minimize the initation times of the ruthenium

catalyzed polymerizations, it was unexpectedly found that these reactions 

are actually cocatalyzed by water. The observation that large excesses of 

water in the reaction mixture do not inhibit polymerization ultimately led to 

the finding that the 7-oxanorbornene monomers can be polymerized in 

aqueous solution to provide near quantitative yields of the desired ring

opened polymer. Furthermore, the molecular weight of the material 

increases by a factor of four, and the polydispersities decrease from nearly 2 

to 1.2 - 1.3 when these polymerizations are carried out in water. 

Using norbornene as the substrate, it was found that the ruthenium 

catalysts can be recycled with no detectable slowing in their initiation rates. 

When the Ru3+ catalyst solutions resulting from the polymerization of VIII 

are recycled, the catalyst actually becomes more active with use. Overall, 

rate enhancements of nearly 8000 are measured in going from organic 

solvents to these recycled aqueous solutions. Ru3+ solutions have been 

recycled with VIII up to 14 consecutive times, without a detectable decrease 

in their initation rates. During efforts to uncover the reasons for this 

enhanced activity, it was discovered that Ru2+ complexes are far more 

active than Ru3+. Furthermore, these Ru2+ complexes show similar 

increases in activity when they are recycled. When n equivalents of VIII 

are allowed to react with Ru(H20)6(tos)2 in D20, (n-1) equivalents ofVIII 

are polymerized, and conversion of the catalyst to the mono-olefin adduct 

Ru2+-VIII is observed. These olefin adducts display the same initiation 

times as do the recycled Ru3+ solutions. lH NMR investigations of the 

recycled Ru3+ solutions reveal that the same olefin complexes are formed. 
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The enhanced activity of these recycled solutions is ascribed to the reduction 

of Ru3+ to Ru2+, and the in situ formation of Ru2+-olefin adducts that lie 

along the reaction coordinate. A disproportionation of Ru3+ to form Ru2+ 

and Ru4+ is evidenced by the formation of Ru Red in reactions catalyzed by 

[Ru(NH3)5Cl]Cl2. 

The polymerization ofVI using these highly active aqueous ruthenium 

catalysts is reported. As this polymerization is performed in water, 

simultaneous hydrolysis of the anhydride moiety occurs, giving the poly 

diacid polymer, Poly VIa, as the final product. Hydrogenation of this 

material with hydrazine provides Poly VIas, a close structural analogue to 

known antitumor and antiviral polyanionic materials. 
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INTRODUCTION 

The Group VIII catalysts possess several characteristics that make 

them ideal candidates for further investigations regarding their potential 

as versatile living polymerization catalysts: 1) Demonstrated stability 

towards polar functional groups, which allows for the polymerization of a 

large number of monomers;! 2) The unreactive nature of the intermediate 

ruthenium carbene species towards acyclic double bonds, which suppress 

chain transfer through any backbiting mechanisms; and 3) Once the active 

catalyst centers are initiated, they can display high activities. As 

mentioned previously, the active centers possess turnover rates greater 

than 1000 equivalents of monomer per minute. The major problem, which 

limits the utility of these catalysts, is the exceedingly slow initiation step. 

Commonly, initiation periods of several hours or longer are often observed 

using these catalysts.2 Once a small amount of catalyst is initiated, 

however, polymerization proceeds at a rapid rate. To develop practical 

polymerization processes using these catalysts, it becomes necessary to find 

ways of spurring their initiation rates. Ultimately, for the development of 

second generation living systems, it will be necessary to increase the rate of 

initiation to values equal to, or greater than, the rate of propagation. 3 

There are several examples in the literature of transition-metal, 

catalyzed oligomerizations and polymerizations that require activation by a 

cocatalyst such as oxygen, alcohols, epoxides or water. The coupled 

product, ethyl trans-but-2-enyl sulphone, is formed from the PdCl2 

catalyzed reaction of ethylene and sulphur dioxide4 (Equation 1 ). 
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(1) 

The reaction is cocatalyzed by the addition of small amounts of water, as 

indicated by the fact that no reaction occurs under rigorously anhydrous 

conditions. Through a Wacker-type reaction with ethylene, the water is 

thought to promote the reduction of Pd2+ to Pd0, which is required in the 

catalytic cycle (Equation 2). 

CH3CHO + Pd0 + HCl (2) 

Similarly, in the dimerization of ethylene catalyzed by PdCl2 in 

chlorinated solvents, no reaction occurs in the absence of a pro tic source. 5 

Methanol, ethanol, isopropanol, t-butyl alcohol and water (0.02-0.10 M) all 

catalyze the dimerization in chloroform; the rate is essentially independent 

of the protic compound used (Equation 3). 

PdCl2, 50 oc CH2-CH2 ___ ____;;;.._ ____ _ 

CHCl3 (0.03M EtOH) ~+ 
52% 

F\ 
47% 

+ =v 
1% 

(3) 

However, when concentrations of alcohol in excess of 0.10 M (that is, > 

1:1 ratio of ROH:PdCl2) are used, catalyst deactivation occurs with 

formation of Pd metal. The alcohol is thought to assist in the decomposition 

of the initially formed [PdCl2(C2H4)]2 dimer to form the monomeric 
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PdCI2CC2H4) species, which then coordinate a second equivalent of ethylene, 

leading to coupling products. 

It is known that the addition of small amounts of water or oxygen 

activate certain Ziegler-Natta olefin polymerization systems. It was first 

reported that trace amounts of water added to the well-known 

Cp2TiCl2/Al(CH3)g system gave a dramatic increase in activity, and 

facilitated the regulation of the molecular weight of the product 

polyethylene.6 Later, especially powerful systems were obtained by the 

addition ofwater to the Cp2ZrR2/Al(CH3)3 system (activities as high as 2.5 X 

107 g PE/g Zr·Hr were observed).7 The role of water in these Ziegler-Natta 

systems has been linked to modification of the aluminum-alkyl component. 

When carefully measured aliquots of water are added to Al(CH3)3, an 

oligomeric compound, methyl aluminoxane, is formed. Typical repeat 

units in this oligomer contain aluminum atoms that still bear alkyl groups 

joined together by bridging oxygens. Combining preformed aluminoxanes 

with the transition-metal components produces Ziegler-Natta catalysts, 

which are the most active to date. 7 In all of these systems, water in excess 

of the prescribed amount quickly acts to deactivate the catalyst system.S For 

example, the TiCl4/ AlEt2Cl ethylene polymerization catalyst gives a 

maximum yield of polymer when 10 mole% of water (or oxygen) is added; 

higher mole percentages deactivate the catalyst.9 

No aluminum-free Ziegler-Natta polymerization systems have been thus 

far reported which are similarly activated by oxygen or water. One report of 

a Group VIII transition-metal Ziegler-Natta system activated by water also 

contains aluminum alkyls. Both the heterogeneous CoCl2-AlEt2Cl, and the 

homogeneous CoCl2-AlEt2Cl-pyridine catalysts used for the selective cis-1 ,4 

polymerization of butadiene are active only in the presence of small 
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amounts of water or oxygen.lO A 5-15 mole% of water or oxygen (based on 

AlEt2Cl) appears to be the optimum amount required for catalyst activity. 

Conclusive demonstration that the activation results from the reaction of 

water with the AlEt2Cl is provided by control experiments. Catalyst 

solutions prepared by pretreating the AlEt2Cl with water before addition of 

the CoCl2 show identical activities and selectivities as do those of catalyst 

solutions prepared from either the simultaneous mixing of all the 

components, or the prereaction of CoCl2 with water. In light of the recent 

studies on the formation and use of aluminoxanes (vide supra), it would 

appear that analogous chemistry is probably occurring in these Co/Al 

systems as well. 

"Classical" early metal ROMP catalysts can sometimes be activated 

through the addition of small amounts of anhydrous alcohols or oxygen. 

As with the Ziegler-Natta catalysts, a delicate balance between catalyst 

activation and deactivation exists in these systems as well. The 

WCl&'AlEtCl2 (1/4) catalyst mixture is known to be activated by the addition 

of exactly one equivalent of anhydrous ethanol based on tungsten.ll 

Catalyst deactivation rapidly ensues if more than one equivalent of the 

alcohol is used. (Following polymerization, these catalysts are routinely 

"killed" by the addition of alcohol.) The ethanol used must be rigorously 

dried as even trace amounts of water can catalytically deactivate the 

reaction mixture. The activation of WC16/Al(i-bu)3, through the addition of 

one equivalent of 2,4,6-trichlorophenol, has similarly been reported.12 An 

exact formula for the active species in these reactions remains elusive. The 

reaction of WC16 and alcohol is known to give a range of products, including 

CR0)3WCl2.l3 Indeed, several isolated metal-alkoxide complexes are known 

to be active catalysts.14 
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Molecular oxygen has also been implicated as an activator for a select 

group of ROMP catalysts. The W(O) complex, W(C0)3(mesitylene), 

combined with AlEtCl2 becomes a more active catalyst in the presence of 

small amounts of 02.l5 Similar 02 activation is seen with ReCl5/AlEt3.l6 

Optimum activity is achieved using 6-10 equivalents of 02 per Re center; at 

oxygen concentrations above this, the catalyst is deactivated. 

Two opposing schools of thought are found in the literature, concerning 

the activation of the Group VIII ROMP catalysts. The first proposal begins 

with Ru2+ compounds (Ru(PPh3)4Cl2, and RuCl2(Py)2(PPh3)2, for example), 

and oxidizes them to a higher oxidation state by means of molecular 

oxygen. In the alternative scenario, Ru3+ (or Ir3+) compounds are reduced 

to a lower oxidation state. It has been reported that the Ru2+ catalyst, 

RuCl2(Py)2(PPh3)2, polymerizes norbomene nearly 100 times faster if 02 is 

bubbled through the reaction mixturel 7 (Equation 4). 

~n + 0~ (4) 

ca. 10% 

The mechanism proposed (without any direct evidence) to account for this 

observation invokes a ruthenium oxide as the active species, which 

presumably undergoes a [2+2] cycloaddition with one equivalent of the 

olefin substrate to form an intermediate metallaoxetane. This intermediate 

then retrocleaves to provide a ruthenium carbene, which acts to initiate the 

polymerization. In addition to the observed polymerization, a small 

amount (approximately 10% conversion after 5 hours at 20 °C) of exo-2,3-

epoxynorbornene is also formed. The isolated epoxide is also reported to act 

as an activating reagent, with no need for additional oxygen. 
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In sharp contrast to these results, several reports have appeared in 

which Ru3+ complexes are activated by the addition of reducing agents. A 

number of reducing agents have been examined, including H2,18 Mg, Zn 

and SnCl2.l9 
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RESULTS AND DISCUSSION 

A Activiation ofRuthenium(ITn ROMP Catalysts. 

As mentioned in Chapter 3, the ruthenium-catalyzed 7-oxanorbornene 

polymerizations require a somewhat lengthy initiation period. Using 

RuCl3 as the catalyst, a 1M solution of monomer VIII in a C6H&'Et0H (5/1) 

at 50 °C typically requires an initiation period between 22 and 24 hours. 

During the course of these RuCl3 investigations, it was also noted that the 

initiation times as well as the polymer yields would vary substantially from 

run to run. The most glaringly inconsistent variable was the commercial 

RuCl3 catalyst, which is notorious for containing numerous impurities.20 

Runs utilizing the same stock of RuCl3, however, often showed differing 

(and lengthy) initiation periods. In addition, polymerizations using pure, 

well-characterized Ru3+ complexes CK2RuCls and [Ru(NH3)sCl]Cl2, etc.), 

still exhibited initiation periods as protracted as the commercial RuCl3. In 

an effort to increase the initiation step and improve polymer yields, more 

stringent (anaerobic and anhydrous) reaction conditions were employed. 

Standard Schlenk line techniques were used under dry argon. Benzene is 

distilled from sodium benzophenone ketyl prior to use. 'rhe substrate, 

monomer VIII, was vacuum-transferred from sodium hydride. Finally, 

the ethanol was azeotrope-distilled with benzene, followed by distillation 

from hot magnesium meta1.21 Under thet~e scrupulous conditions, 

however, the initiation times unexpectedly grew more protracted, rather 

than shorter, and several runs failed to give polymer altogether. After 

continued efforts failed to change these results, it became quite evident that 

water should be included, and not excluded from these reactions. These 

suspicions were confirmed when the anhydrous ethanol component was 
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replaced with wet ethanol, and the initiation rate showed a dramatic 

increase. A quantitative dependence of the initiation rate on water 

concentration is shown in Figure 1. From these studies, it can be clearly 

seen that water actually acts as a cocatalyst for these ROMP reactions. In 

order to minimize the time required for each run, the bulk of these 

quantitative kinetic runs was performed using the reactive monomer XI. It 

should be emphasized, however, that this water dependence is not unique to 

monomer XI; all the other 7-oxanorbornene monomers show the same 

dependence on their initiation rates. As can be seen from the shape of the 

curve in Figure 1, the initiation rate shows saturation behavior above 7-8% 

H20. This corresponds to approximately 125-200 equivalents of water per 

equivalent of ruthenium at the saturation point. A small, but reproducible, 

deuterium isotope effect of kHikn = 1.2 can be measured when CD30D/D20 

is substituted for CH30H/H20 in these systems22 (Figure 2). Without 

additional mechanistic information, however, full interpretation of this 

effect is not currently possible. A comparison of Figures 1 and 2 reveals 

differences in the initiation times for the blank (0% water) runs. This is to 

be expected if the amount of residual background water (i.e., the waters of 

hydration of RuCl3 anq residual water impurity in the methanol) differs in 

the two runs. As expected, regardless of the amount of water initially 

present, the two runs saturate to the same limiting initiation rate. 

Three important points can be made from these water-dependence 

studies: 1) The Ru3+ catalyzed ROMP reactions are cocatalyzed by water. 

2) This rate enhancement is not a protic- or polar-solvent effect, in that the 

uncatalyzed blank runs are performed in neat methanol. 3) Unlike nearly 

all other reactions cocatalyzed by alcohol, oxygen, or water, these reactions 
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Figure 1: The initiation time (minutes) for the polymerization of XI (1 .01 
M) with RuCl3 (0.081 M), as a function of water concentration in methanol 
at 55 °C. 
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Figure 2: The initiation time (minutes) for the polymerization ofXI 

(0.896 M) with RuCl3 (0.0867 M), as a function of water concentration for 
H20/CH30H and D20/CD30D cases at 55 °C. 
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are not deactivated by the presence of excess water (i.e., no decrease in 

initiation rates is observed, even when the water concentration approaches 

25%). This final observation culminated in the discovery that the 

polymerization of the 7 -oxanorbornene monomers proceeds rapidly in water 

alone to produce the desired ROMP polymer in nearly quantitative yields. 

The facility of this aqueous polymerization is illustrated by the fact that the 

initiation period of 22-24 hours, which monomer VIII requires in organic 

solvents, is decreased to only 30-35 minutes in aqueous solution. 

Table 1 shows the molecular weights and polydispersities for three 

samples of Poly VIII obtained using RuCl3 in C6H6/EtOH (5:1 ), neat 

ethanol, and water. As can be seen from these data, conducting the 

polymerization in protic solution increases the molecular weight by over a 

factor of 4 (Mw increases from 3.38 Xl05 to 1.34 X 106), and decreases the 

polydispersity from 1.98 to 1.23. This effect is particularly noteworthy in the 

case of water, where the reaction rapidly becomes heterogeneous as the 

polymer precipitates as it is formed. The formation of high molecular 

weight material under these conditions is highly unusual. In most 

polymerizations, low molecular weight materials result if the polymer 

tends to precipitate as it is formed. The difference in this case can be 

attributed to the solubility of the 7-oxanorbornene polymers in their 

respective monomers (i.e., Poly VIII can readily be dissolved in VIII). It is 

thought that after the initial Poly VIII precipitates, it begins very rapidly to 

incorporate monomer from the surrounding solution. The active polymer 

end-group then continues to propagate within the interior of the monomer

swelled polymer. 

It is also important to note that this polymerization constitutes a 

transition-metal, catalyzed carbon-carbon bond formation reaction, which 
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CATALYST SOLVENT Mw<Xl~}a Mn 000-3) PDI 

RuCl3·nH20 C6H6/'EtOH (5:1) 338 172 1.97 

OsCl3·nH20 C6H6/'EtOH (5:1) 416 214 1.94 

Ru(TFA)h C6H6/'EtOH (5:1) 365 184 1.98 

Ru(COD)c C6H6/'EtOH (5:1) 133 78 1.71 

RuCl3·nH20 H20 1340 1120 1.20 

RuCl3·nH20 H20!rriton X-100 987 876 1.13 

RuCl3·nH20 EtOH 1120 973 1.15 

Ru(H20)6(tos)2 H20 810 628 1.29 

K2RuCl5 H20 952 774 1.23 

Table 1: Molecular weights and polydispersities of Poly VIII prepared 
using a variety of catalysts and solvent systems. Notes: All runs at 55 °C. 
a) Relative to polystyrene standards. b) Ru(TF A) is an ill-defined 
compound with the approximate composition, Ru2CCF3C02)4·3H20. c) 
Ru(COD) is an ill-defined Ru2+-cyclooctadiene complex. 
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occurs in aqueous media. The fact that very high molecular weight 

materials form under these aqueous conditions indicates that if a 

termination reaction involving the hydrolysis of the carbon-metal bonds is 

occuring in either the metallacycle or metal carbene intermediates, it has a 

much slower rate (by several orders of magnitude) than the rate of 

propagation of the polymer. (From the average corrected degree of 

polymerization of the Poly VIII obtained from these aqueous reactions, it 

can be estimated that approximately 2,500-2,700 turnovers occur before each 

termination step). 

The formation of polymer possessing such narrow molecular weight 

distributions is unusual. Classical ROMP systems typically display 

molecular weight distributions of 2.0 or greater.23 Polymers with narrow 

molecular weight distributions are usually obtained from living 

polymerization systems.24 If these systems are living, active end-groups 

should be present in the polymers. Unfortunately, the very high molecular 

weights of these poly(7 -oxanorbornene) materials make it difficult to detect 

the end-groups with a high degree of certainty. Using lH and 13C NMR, 

infrared and UV/visible spectroscopy, no evidence of end-groups was 

detected. Experiments were performed, designed to determine whether the 

polymer formed under these aqueous conditions possesses active end

groups. The heterogeneous nature of this polymerization (i.e., polymer 

precipitation) lends some complication to this determination. Under argon, 

monomer VIII was polymerized in aqueous solution using K2RuCl5. The 

Poly VIII produced was removed from the catalyst solution and divided into 

two portions. The molecular weight of this initial polymer was determined 

using one portion (Mw = 8.3 X 105). The second polymer portion was 

dissolved in ethanol while under argon. A second aliquot of VIII was then 
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added to this polymer solution and the resulting mixture was heated to 55 

°C. Within 20 minutes, the viscosity of the solution had noticeably 

increased, indicating polymerization of the added VIII. After workup, 

however, the polymer obtained had essentially the same molecular weight 

as did the original polymer (Mw = 8.4 X 105). It must therefore be concluded 

that the second polymer was formed by free catalyst tha,t was included 

within the matrix of the original polymer, not through continued 

polymerization by active end-groups on the preformed polymer. This, and 

other negative results obtained during similar attempts to form block 

copolymers, strongly suggest that these polymers contain no active end

groups. In addition, molecular weight data accumulated over time on 

polymers formed, using differing number of equivalents, do not show a 

correlation between the molecular weight and the number of equivalents 

used. It must therefore be concluded that although narrow molecular 

weight materials are obtained in protic solvents, these ruthenium-catalyzed 

reactions are not living. The narrow distributions and high molecular 

weights in these systems are thus ascribed to a fortuitous lack of facile 

termination steps, and to the inactivity of the propagating carbene with 

respect to the acyclic double bonds, which esentially eliminates chain 

transfer steps. Once a chain is initiated in these aqueous systems, it 

continues to propagate at a rapid rate in polymer particles containing high 

concentrations of monomer, unchecked by either chain transfer or 

termination steps. 

With the one exception of high concentrations of strongly coordinating 

ligands, these aqueous metathesis polymerizations are fairly tolerant of 

additives in the solution. For example, in the presence of excess Cl- ligand 

(CsCl 0.15 M, 2 equivalents of Cl- based on Ru), the polymerization of VIII 
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proceeds with a normal initiation time to produce Poly VIII with a 

molecular weight equal to samples made in deionized water. The yield of 

polymer, however, is diminished from the near quantitative value obtained 

in deionized water, to only 34%. Salt concentrations much higher than this 

exert even more detrimental effects. If the Cl- ion concentration is 

increased to 0.45 M, no polymerization occurs. When studying various 

polymerization effects in solutions of increasing ionic strength, caution 

must be used, as there is a tendency for the partially water-soluble 

monomers to "salt out" of the aqueous solution. 

Two surfactants, one ionic, and one non-ionic, have been successfully 

utilized in conjunction with RuCl3. Triton X-100™, a non-ionic polyether 

surfactant (CMC = 0.29 mM), and sodium dodecyl sulfate (SDS) (CMC = 1-2 

mM) do not appear to deactivate the catalyst. Both surfactants appear to 

promote the formation of very high molecular weight materials possessing 

low polydispersities. Poly VIII synthesized in the presence of 0.25 M Triton 

X-100 displayed average molecular weights ofMw = 9.87 X 105 and Mn = 8.76 

X 105, with a PDI = 1.13. Poly VIII synthesized in the presence of SDS 

(0.16M) possessed an even higher molecular weight (Mw = 1.34 X 106), and a 

similar polydispersity. 

The pH of the reaction medium was found to exert a profound effect on 

the initiation rates. In general, these polymerizations a,re inhibited in 

environments of both low pH (ca. <3), and especially high pH (ca. >7). The 

optimum pH range, as evidenced by the shortest initiation periods, is 

between 4 and 5. In the presence of K2RuCls, monomer VIII (0.63 M) 

initiates in 243 ± 5 seconds at neutral pH. Under the same conditions, but 

at pH = 4.2 (5% H2P04-), initiation occurs in only 35 ± 5 seconds. With 

RuCl3, the initiation rate is increased by about 66%, by lowering the pH 
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from neutral to slightly acidc (pH = 5.3, HS04-/S042-). The most rapid 

catalyst deactivation occurs in basic solutions, which appear to promote 

detrimental redox reactions with the metal complexes. More exact 

quantitative data over a large pH range are difficult to obtain because of the 

ambiguity introduced when using solutions containing different ionic 

buffer components. It is possible, and indeed likely, that common buffer 

components such as acetate ion may coordinate to, or react with, the 

ruthenium centers, thereby altering their reactivity in ways not specifically 

related to pH. 

B. Aqueous Norbornene Polymerizations Initiated by the 7-

0xanorbornenes. 

The the ease with which these aqueous 7 -oxanorbomene polymerizations 

proceed is illustrated by comparison with the results obtained in parallel 

reactions with norbornene and norbornene derivatives. From a synthetic 

viewpoint, it was desirable to expand the versatility of these water-based 

emulsion reactions through the polymerization of other monomers. Unlike 

VIII, when norbomene is heated to 55 °C with RuCl3 in aqueous solution, 

no reaction occurs. Extending the reaction times to over one week and 

increasing the reaction temperatures to 75°C, do not alter these negative 

results (Equation 5). 

RuCl3 
No Reaction (5) 



190 

Obviously, the very poor solubility of norbornene in water contributes to 

this negative result. However, switching to norbornene derivatives 

substituted with water-solubilizing groups such as norbornene-5-methanol 

and 5-carbomethoxynorbornene still does not produce any polymer2 5 

(Equation 6). 

No Reaction (6) 

Only after the addition of the surfactant SDS was norbornene finally 

induced to polymerize, albeit excruciatingly slowly, and in low yields. After 

one week at 55 °C, in the presence ofSDS, a 16% yield ofpolynorbornene was 

obtained. Contrasting this result with VIII, which gives nearly 100% yields 

of polymer in 30-35 minutes, one can see the wide gulf that separates the 

aqueous reactivity of these two monomers. This reactivity difference can, 

however, be put to good use by introducing small amounts of VIII (ca. 5-

10%) as an initiator for the polymerization of norbornene in an aqueous 

solution. When norbornene is allowed to react with RuCl3 in an aqueous 

solution containing VIII (10% based on norbornene), polynorbornene is 

obtained in 50-60% yields (Equation 7). 

~+ 
O OMe 
~0Me ____ R_u_C~l3~~-

H20 
10% 

~n (7) 

According to the evidence provided by 1 H NMR, 13C NMR and IR, the 

polynorbornene obtained in this fashion contains no detectable amounts of 

incorporated VIII. It is therefore surmised that VIII is present only in 
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very small amounts as end-groups. Throughout these mixed monomer 

initiation systems, there appears to be an operable concentration range for 

the initiator, VIII. When the concentration ofVIII is too low, (ca. < 5%), no 

polymerization occurs; If the concentration is too high (ca. >10%), 

homopolymerization (in low yields) of VIII dominates the reaction. A two

phase emulsion model can be used to describe these systems. Monomer 

globules of norbornene comprise one phase, while the aqueous phase 

contains both the RuCl3 and VIII. Initiation occurs in the aqueous phase 

through reaction between the RuCl3 and VIII. The resulting Ru complex, 

rendered more lipophilic by the addition of VIII, migrates into the 

norbornene globules, where homopolymerization of norbornene the 

proceeds. As in any of these ROMP systems, if the concentration of VIII is 

too low, no initation occurs. If, however, the concentration of VIII is too 

high, then its homopolymerization in the aqueous phase is rapid, and the 

Poly VIII formed precipitates from solution before appreciable migration 

into the norbornene globules can occur. This model is in agreement with 

the observed reactivity differences between norbornene and the 7-

oxariorbornene monomers in aqueous solution. In aqueous competition 

experiments between VIII and norbornene (using SDS to minimize 

solubility effects), monomer VIII is found to be more reactive. A 

polymerization run with SDS using a 50/50 mixture of norbornene and 

VIII, gave a copolymer containing only 23% norbornene. This reactivity

ranking, VIII> norbornene, is the exact reverse of that observed using the 

same catalyst in organic solvents. (Copolymers obtained from 111 mixtures 

of norbornene/VIII in C6Hs/EtOH are typically richer in norbomene by 10-

15%). Solubility differences, even in the presence of a surfactant, cannot be 

ruled out as one way to account for these inverted reactivity ratios. An 
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alternative explanation, however, was suggested by later work in which, 

under these polar conditions, the 7 -oxanorbornenes were found to form 7t

complexes with the ruthenium centers far more readily than did the 

norbomene derivatives (vide infra). 

C. Recycling the Aqueous ROMP Catalysts. 

An important issue in any type of catalysis reaction is the degree of 

recyclability of the catalyst.26 This is particularly true of transition-metal 

catalyzed reactions in which a considerable amount of time and money may 

be expended in just the catalyst preparation alone.27 Unfortunately, the 

living preformed carbene and metallacycle catalysts discussed in Chapters 

1 and 3 , are not recyclable. Neither are the two component "classical" 

ROMP catalysts, such as WCl6/AlEt2Cl. It was felt, however, that these 

single component ruthenium catalysts may, in fact, be good candidates for 

recyclability studies. As a test case, the recyclability ofRu(H20)6(tos)2 (tos = 

p-toluenesulfonate)28 in the polymerization of norbornene was examined. 

In methanol, the initiation time for this very active catalyst (vide infra) is 55 

± 5 seconds at 50 °C. The polynorbornene produced precipitates as it is 

formed, leaving behind the used catalyst solution. This solution was cooled 

down, the polymer removed, and a second aliquot of monomer was added to 

the catalyst solution. Upon reheating, polymerization was again observed, 

with the same initiation time as the first run (47 ± 5 seconds). This 

indentical batch of catalyst was recycled four times without any detectable 

loss of activity (Figure 3). It appears from this study that these ruthenium 

based catalysts are truly recyclable. 
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Figure 3: The initiation times (seconds) for a series of norbornene 
(1.02M) polymerizations in CH30H, using recycled Ru(H20)s(tos)2 (0.021M) 
as the catalyst at 55 °C. 
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Unlike the red-black organic catalyst solutions of RuCl3, the aqueous 

solutions used in polymerizing the 7-oxanorbornenes undergo dramatic 

color changes during the course of the reaction. RuCl3 in either organic 

solvents or the initial aqueous solutions has a UVNis sl'ectrum, which 

displays a series of absorptions appearing as a broad envelope starting 

below 200 nm and tailing past 750 nm (Figure 4). During polymerizations of 

norbornene or 7-oxanorbornene derivatives in organic solvents, no major 

spectral changes are observed. When monomer VIII (1.26 M) is added to 

an aqueous solution of RuCl3, however, and warmed to 50 oc, an intense 

purple color appears just before the onset of polymerization (approximately 

30 minutes.) The visible spectrum of this solution has three major 

absorptions at 318, 488 and 561 nm (Figure 4). The formation of the purple 

complex(es) appears to be catalyzed by the 7-oxanorbornene monomer, with 

the rate of formation being dependent on the monomer's concentration. (No 

similar color changes result from heating aqueous solutions containing 

only RuCl3.) The simple monomeric aquochloro ruthenium(Ill) complexes 

all have shorter wavelength absorptions. CRuCl4CH20 )2-, Am ax = 269; 

RuCl3CH20)3, Amax = 322; RuCbCH20)4+, Amax = 376; RuClClf20)52+, Amax = 

456 nm.)29 Long wavelength absorptions are observed, however, for 

polynuclear ruthenium species. An intermediate purple ruthenium 

species, Amax = 563 nm, has been reported, which decomposes rapidly in 

acidic media.30 This complex was first proposed to be RuCOH)2Cl2CH20h, 

and was later characterized as the neutral aquochloro-analogue of Ru Red, 

[Ru302Cl6CH20)6] (Ru Purple).31 Based on its visible spectrum, the complex 

corresponding to the absorption at Amax = 561 nm is tentatively identified as 

Ru Purple. Separations on cation exchange columns confirm that it is the 

neutral complex. As expected from allusions in the literature to Ru 



195 

('.J 

.... 

~ 1 

190 :320 

• . .&) 

~I ..... 

I 
I .. /\ h 
\ l ........ .. . . _ _, 

\ . 
t- \~~\ 
t- I 

\, r-

o:s) 1 

190 828 
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Purple's instability in acidic media,30 the 561 nm absorption band 

disappears when these purple solutions are treated with 5% HCL 

Following the procedure outlined above for the norbornene 

polymerizations, the recyclability of these purple solutions resulting from 

the 7 -oxanorbomene polymerizations were examined. A 1.05 M solution of 

VIII gave an initial initiation time of 37.5 minutes at 55 °C. Following this 

initiation period, the forming Poly VIII rapidly precipitates from the purple 

aqueous solution. Recycling this solution led to some surprising results. 

The initiation time for the second run dropped from the original 37.5 

minutes down to 8.25 minutes. Recycling this catalyst solution once again, 

an initiation period of less than one minute was measured. By the fourth 

polymerization, the initiation time was reduced to only 10-12 seconds. 

When used in aqueous solution for the polymerization of VIII, these 

ruthenium catalysts actually become more active with use. This increase 

in initiation rate is shown graphically in Figure 5. "Used" RuClg solutions 

have been recycled up to 14 consecutive times without a detectable change in 

the initiation rate. Control experiments show that heating aqueous RuCl3 

solutions containing no monomer actually results in a slight deactivation of 

the catalyst. (On two occasions, preheated RuClg solutions failed to give any 

polymer at all.) Recycling the aqueous ruthenium catalysts results in a 

rate enhancement of nearly 8000 fold when compared with the initiation 

rates measured for the same polymerization in dry organic solvents.32 The 

molecular weight (Mw) of the polymer obtained from a series of 

polymerization runs using recycled Ru(H20)5(tos)2 is shown in Figure 6. 

These data indicate that the molecular weight remains constant over 

repeated recyclings of the catalyst solutions. The fact that the initiation rate 

increases without an attendant decrease in the molecular weight, is a clear 
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Figure 5: The initiation times (minutes) for a series of polymerizations of 
VIII (1.05M) in H20, using recycled RuCls (0.099M) as the catalyst at 55 oc. 
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Figure 6: The molecular weights (Mw) for a series of Poly VID samples 
obtained using recycled Ru(H20)s(tos)2 as the catalyst, in H20 at 55 °C. 
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indication that the propagation rate is still several orders of magnitude 

greater than these accelerated initiation rates. 

Although the initiation rate remains constant, the actual yield of 

polymer diminishes somewhat after repeated uses of the catalyst solution. 

This effect is presumably due to the continued loss of catalyst through 

inclusion in the product polymer, which is removed after every run. This 

raises an apparent contradiction: The physical loss of catalyst upon 

recycling affects the overall amount of polymer formed, but does not have 

any effect on the actual initiation time of the polymerization. Confirmation 

of an initiation rate independent of catalyst concentration was obtained 

through the appropriate kinetic runs. 

Using monomer XI, the initiation times were measured as a function of 

RuCl3 concentration at various fixed water levels (Figure 7). At low water 

concentrations (i.e., values less than the saturation level of 7-8% obtained 

from Figure 1), the rate of initiation increases with increasing Ru3+ 

concentration, until a maximum rate is obtained at 0.085 M. Increasing 

the concentration above this value actually has a deleterious effect on the 

rate (2.5% water curve in Figure 7). At water concentrations near the 

saturation value (5%), the same qualitative trend is seen; however, the 

effects are dampened considerably as evidenced by a decrease in the slope of 

the curve in both of the two regimes. At water concentrations above the 

saturation value (14.3%) the curve is becomes "flattened" in both regimes, 

exhibiting a rate essentially independent of the Ru3+ concentration. As 

these last data are collected above the water saturation concentration, this 

is tantamount to carrying out the reactions in pure water. It can also be 

seen from Figure 7 that the higher the water concentration, the faster the 
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Figure 7: The initiation time (minutes) for the polymerization of XI as a 
function ofRuCla concentration in CHaOHIH20 (% H20 = 2.5 (upper), 5.0 
(middle), and 14.3 (lower)) at 55 °C. 
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rate in all of the kinetic regimes. This factor acts as an offset, generating 

the family of curves displayed in Figure 7. 

The identification of the true active species in this complex aqueous 

mixture proved challenging. Cation exchange columns (Dowex 50X 2-400) 

provided evidence that the purple solution is actually comprised of several 

neutral and cationic species. (Anion exchange columns (Dowex 1X 2-400) 

showed no colored anionic components present in these reaction mixtures.) 

The neutral fraction isolated from the cation exchange column showed 

absorptions at 323 and 562 nm, which are assigned to RuCl3CH20h and 

Ru302Cl6CH20)6, respectively (vide supra). This neutral fraction typically 

gave initiation times with VIII between 4 and 5 minutes. Although more 

active than the original RuCl3 solutions, these mixtures did not contain the 

most active species. Later polymerizations using well-characterized Ru3+ 

compounds exhibited very similar initiation times (ca. 3 minutes for 

K2RuCl5). None of the isolated fractions were able to reproduce the 

ultrafast initiation rates seen in the bulk recycled solution, i.e., 10-12 

seconds. However, once the neutral purple fractions were recycled 

through a polymerization of VIII, they became activated and displayed 

these fast rates. It was noted that during these successive recycling 

experiments, the purple color slowly faded, leaving behind a yellow (ca. A. = 
291 nm), but extremely active solution. In order to further investigate the 

origin of this rate enhancement, which resulted from recycling the 

catalyst, a number of well-characterized, water-soluble ruthenium 

complexes in various oxidation states were examined. For example, two 

well-characterized Ru3+ complexes, K2RuCl5 and [Ru(NH3)5Cl]Cl2, were 

studied. In general, K2RuCl5 displays the same overall rate-enhancement 

behavior as does commercial RuCl3, i.e., increasing activity upon 
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successive recycling. Significant differences do exist, in that complexes 

comprised solely of Ru3+, such as K2RuCl5, are far more active in the initial 

runs than the commercial RuClg. These initial differences are, however, 

quickly equalized through the recycling process, after which both systems 

show the same limiting initiation rates (i.e., 10-12 seconds), regardless of 

the original source ofRu3+. This result strongly suggests that the observed 

polymerizations are due to chemistry of a Ru3+ species rather than some 

higher oxidation state impurity present in the RuClg. In the presence of 

K2RuCls (0.050 M) in H20, monomer VIII (0.50 M) displays an initial 

initiation time of approximately 3 minutes at 55 °C. Within the first minute 

of heating VIII with K2RuCls, the orange solution O ... max = 320 nm) tums 

dark red (UVNis spectrum shows long wavelength absorptions centered at 

approximately 520 nm). Control experiments show no color change when 

K2RuCls is heated in the absence of VIII. Following polymerization, the 

red color (A. = 520 nm) fades to yellow (the UV Nis spectrum shows a new 

absorption at A. = 293 and the original K2RuCls absorption at 320 nm). 

Addition of more monomer (as little as 0.5 equivalent) to this yellow solution 

at room temperature causes the solution to turn red (ca. A. = 500 nm) once 

again. Heating this red catalyst/monomer mixture results in 

polymerization in approximately 10 seconds. Again, after the 

polymerization is completed, this red intermediate fades, leaving a yellow 

solution. The UVNis spectrum clearly shows the new absorption at A.= 293 

nm increasing in intensity, and the K2RuCls absorption decreasing (A.= 320 

nm). lH NMR studies (400 MHz, D20) of these red solutions formed from 

K2RuCls and 0.5 equivalent of VIII showed all of the monomer peaks 

paramagnetically shifted downfield (~ave= +0.09 ppm), but no indication of 

any organic complex was detected. 
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Significant progress in uncovering the active species in these solutions 

was made when Ru2+, rather than Ru3+, species were examined. 

RuCH20)6(tos)2 (tos = p-toluenesulfonate) was deemed an interesting 

candidate both because of its substitutionally labile hexa-aquo coordination 

sphere, and because of the convenient NMR handle provided by the tosylate 

counterion. Polymerization studies of VIII using Ru(H20)5(tos)2 revealed 

this complex to be exceedingly active. At 55 °C, with VIII or XI, initiation 

is quite rapid, occurring in less than one minute. Even at room 

temperature, the initiation of these monomers can be rapid. As was 

observed in the Ru3+ polymerizations, the recycled Ru2+ solutions also show 

enhanced activities. At room temperature, VIII (0.504 M), in the presence 

of Ru(H20)6(tos)2 (0.0037 M) shows an initiation time of 147 ± 5 seconds. 

Following polymerization, the resulting catalyst solution is yellow (A.max = 

294 nm). Addition of a second aliquot of VIII produces polymer with an 

initiation time of less than one minute. The high reactivity of 

Ru(H20)6(tos)2 with these monomers, coupled with the heterogeneous 

nature of the emulsion polymerization, makes the rate acceleration that is 

due to recycling difficult to quantify in these cases. It was discovered, 

however, that Ru(H20)5(tos)2 in methanol polymerizes monomer IV at an 

acceptable rate. The effect of recycling on the activity of the 

Ru(H20)6(tos)2/IV polymerization is shown in Figure 8. Two points should 

be emphasized. First, Ru2+ complexes are far more active than Ru3+ 

complexes. Secondly, as in the case of Ru3+, the recycled Ru2+ catalysts 

become more active with use. This observation indicates that some other 

factor, in addition to reduction of Ru3+ to Ru2+, is occurring during this 

recycling process, which serves to activate these catalyst solutions. At 55 

°C, the recycled Ru(H20)5(tos)2 solutions show exactly the same initiation 
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Figure 8: The initiation times (seconds) for a series of polymerizations of 
IV (0.973 M) in H20 using recycled RuCH20)6(tos)2 as the catalyst at room 
temperature. 



times as the limiting initiation values observed, using the recycled Ru3+ 

catalysts. Just before the onset of polymerization in both the IV and VIII 

reactions, a red intermediate appears (A. = 285 and 411 nm), which 

subsequently vanishes during the polymerization. The visible spectrum of 

these extremely active yellow solutions (Amax = 294 nm) correlates well with 

the most active recycled Ru3+ solutions (Amax = 291 nm for the recycled 

RuCl3 solution and Amax = 293 nm for the recycled K2RuCl5 solutions). 

When VIII (0.032 M, 0.61 equivalent based on Ru2+) is allowed to react 

with Ru(H20)5(tos)2 (0.0414 M) at room temperature, no changes other than 

the slow disappearance of monomer are observed to occur by lH NMR (400 

MHz, D20). After 40 minutes, only peaks assigned to residual monomer 

can be detected. Removal of the tube from the NMR probe reveals the 

expected polymer, and a solution identical in color to the original Ru2+ 

complex. No resonances associated with any intermediate can be detected. 

If, however, higher monomer concentrations are used, (0.80 M) and the 

reaction is heated to 55 °C for one hour, the resulting solution after 

polymerization is yellow (Amax = 294 nm). By lH NMR (400 MHz, D20) 

(Figure 9), the clean conversion to a new compound, characterized as the 

1:1 Ru2+-VIII mono olefin adduct, is observed 33 (Equation 8).. 

O OMe 
n (WoMe :H:m+ 

(n-1) equiv. 

This Ru2+-VIII olefin adduct is characterized by an upfield shift of the 

olefinic proton signals from 6.25 to 5.08 ppm (~8 = -1.17 ppm), and a 

downfi.eld shift of the endo-proton signals from 1.77 to 2.54 ppm (~8 = +0.77 
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Figure 9: lH NMR (D20. 400 MHz) ofRu2+-VIII generated in situ during 
the polymerization of VIII using Ru(H20)s(tos)2. 
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ppm). This assignment is confirmed by 13C NMR, which reveals a shift of 

the olefinic carbons upfield from 135.16 to 84.61 ppm (~o = -50.55 ppm).34 

The complete chemical shift information is given in Table 2. 

When the olefin adduct, Ru2+. VIII, CA.max = 294 nm) is allowed to react 

with excess monomer, polymerization is observed to occur in just under 10 

seconds at 55 °C (Equation 9). 

O OMe 

\J:VoMe -.~m(9) 
MeO OMe 
10-12 Seconds 

This initiation time is equal to the same limiting initiation times that are 

observed during the recycled Ru3+ polymerizations. As with the other Ru3+ 

catalysts, a red intermediate (A.max = 411 nm) is observed just before the 

onset of polymerization. All attempts to observe this transient species by 

techniques other than visible spectroscopy have been unsuccessful. 1 H 

NMR at low temperatures (4.8 - 20.0 °C) of the reaction between Ru2+.VJII 

(0.0526 M) and VIII (0.0526 M, 1 equivalent) shows no indication of the 

formation of any intermediates before polymerization is observed 

(approximately 1 .5 hours at these temperatures and concentrations). This 

observation is consistent with the model in which only a very small amount 

of the Ru2+ is actually initiated and goes on to do the polymerization. 

The red intermediate (A.max = 411 nm) is more persistent when generated 

under an inert atmosphere (vide infra). Furthermore, in comparison with 

VIII, relatively long-lived red solutions can be generated during the 

polymerization of monomer IV with Ru(H20)G(tos)2 . When used in 

subsequent polymerizations, these red catalyst solutions are, by far, the 
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YIII 
lHNMR: Assignment Free Bound A8 (ppm) 

Olefin 6.28 (s) 5.08 (s) -1 .17 

Bridgehead 4.71 (s) 4.73 (s) +0.02 

Methylene 3.37 (m) 3.44 (m) +0.07 

Methyl ether 3.22 (s) 3.26 (s) +0.04 

EndoH 1.77 (m) 2.54 (m) +0.77 

13C NMR: Olefin 135.16 84.61 -50.55 

Bridgehead 80.18 77.20 -2.98 

Methylene 71 .80 71.49 -0.31 

Methyl ether 58.41 58.88 +0.47 

Me thine 39.57 42.63 +3.06 

Table 2: A comparison ofthe lH NMR (400 MHz, D20) and 13C NMR 
(Proton-decoupled) (22.53 MHz, D20) chemical shifts of free VIII vs. VIII 
coordinated to Ru2+(tos)2. 13C NMR ofthe olefin complex referenced to 
methyl signal of tosylate group: 21 .25 ppm. 



most active aqueous catalyst solutions yet discovered. At room 

temperature, using the pristine RuCH20)6(tos)2 catalyst, IV (0.973 M), the 

solution turns red concurrently with initiation in 9.25 minutes. Recycling 

this red intermediate solution results in the room-temperature 

polymerization of IV in just a few seconds. 

With the lH NMR and 13C NMR resonances for the 7-oxanorbornene 

Ru2+-olefin complexes confidently assigned, interpretation of the NMR data 

accumulated on the recycled Ru3+ systems became feasible. The 1 H NMR 

spectrum CD20) of the catalyst solution resulting from the polymerization of 

VIII with K2RuCl5, shows the same distinct olefin, bridgehead and endo

hydrogen resonances at 5.07, 4. 72 and 2.58 ppm, respectively, as those 

observed in the Ru2+-VIII complex. In addition, another set of resonances 

at 5.13, 4.75 and 2.45 ppm are also present. As Ru3+ is generally accepted 

as not forming stable olefin complexes,20 we assign these two sets of 

resonances to two Ru2+-olefin complexes that are generated in situ from 

Ru3+. It is assumed that these two olefin complexes differ from one another 

in their ligand environments (i.e., maybe differing numbers of Cl- and/or 

water ligands, or different geometric isomers). In an analogous fashion, 

the lH NMR spectrum CD20) of the catalyst solution obtained after 

polymerization of VIII with commercial RuCl3 shows two sets of 

resonances similar to those found using K2RuCl5. The in situ formation of 

Ru2+-olefin complexes in these catalysts solutions is corroborated by the 

appearance of new absorptions at A.= 290-295 nm, typical of Ru2+-olefin 

species.33 

The increased activity of these recycled Ru2+ and Ru3+ catalysts is 

attributed to: 1) The reduction ofthe Ru3+ to Ru2+ (when applicable); and 2) 

the in situ formation of Ru2+-olefin complexes, which lie along the reaction 
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coordinate leading to the active catalyst species. To date, no direct 

observation of the conversion of these olefin complexes to metal carbenes or 

metallacycles has been observed. The evidence that connects these olefin 

complexes to the observed polymerization chemistry is only circumstantial. 

Enhanced catalyst activity in recycled solutions is only realized under 

conditions in which the olefin complexes are generated. In recycled 

catalyst solutions in which no olefin complexes are formed, no enhanced 

activity is observed. These aqueous ROMP reactions that display enhanced 

activities seem to be the exception, rather than the rule. The only example 

of the former we have as yet uncovered is the Ru3+ or Ru2+ polymerizations 

of the 7-oxanorbornene monomers, VIII and IV, performed in aqueous 

solution. Examples of the latter showing no rate enhancement include the 

norbornene/Ru(H20)G(tos)2 polymerization cited earlier, and the aqueous 

polymerization of more reactive 7 -oxanorbornene monomers containing 

anhydride and maleimide functional groups (vide infra). In addition, no 

rate enhancement of recycled solutions has ever been observed for 

polymerizations run in organic solvents. This phenomenon currently 

appears to be unique to prescribed aqueous 7 -oxanorbornene reactions. 

D. The Formation and Reactivity of the Ru2+.VIII Olefin Adduct. 

The observed rate enhancement of the initiation process is not the result 

of general Ru2+-olefin complex formation, but is rather specific to the 

particular olefin bound. Cyclic olefin complexes, such as Ru(H20)5(2,5-

dihydrofuran)(tos)2, and acyclic olefin complexes, such as Ru(H20)5(allyl 

ethyl ether)(tos)2, and Ru(H20)5(diallyl ether)(tosh have been prepared.35 

All of these type of complexes, however, show inhibited rather than 
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enhanced initiation rates relative to the parent Ru(H20)5(tosh species. It is 

presumed that dissociation of the bound, spectator olefin must occur prior 

to formation of the 7 -oxanorbomene olefin complexes. 

Special kinetic factors appear to obtain, which allow for the formation of 

the Ru2+-VIII complex. At low olefin concentrations, there is a large olefin 

dependence on the initiation rate (Figure 10). In this kinetic regime no 

build-up of the olefin complex occurs. At higher olefin concentrations, 

formation of the olefin complex is observed in water. This formation is 

thought to be connected with the heterogeneous nature of these aqueous 

polymerizations. Under the same conditions, but using methanol as the 

solvent, the polymer remains in solution throughout the polymerization. 

In this case, however, no olefin adducts are observed. ln water, when 

polymer first forms, it precipiates out as a heterogeneous matrix, which 

fills the volume occupied by the solvent. The monomer, as well as 

unreacted metal salts, are concentrated within this matrix. At this point, it 

is thought that the rate of polymerization slows down, allowing for the 

build-up of the intermediate olefin adduct. This play-off between the rate of 

polymerization, and the rate of olefin complex formation, is critical in 

determining the yields of Ru2+-VIII. Conversion to Ru2+-VIII has been 

observed to vary from 100% down to ca. 30%, seemingly dependent on these 

competitive rates. Carrying out the polymerization at room temperature (to 

minimize the initial rate of polymerization), and then heating at 50 °C after 

the solid matrix has formed, provides near quantitative conversion of the 

Ru2+ to the olefin adduct. When the polymerization is run at higher 

temperatures (60 °C), the rate of polymerization is fast enough to consume 

too much of the monomer, precluding the quantitative formation of the 
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Figure 10: The initiation time (seconds) as a function of monomer 
concentration for the polymerization ofVIll using Ru(H20)s(tos)2 (0.011 M) 
inD20. 
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olefin adduct. For example, when 9 equivalents (based on Ru2+) ofVIII are 

allowed to react with RuCH20)6(tos)2 at 60 °C for 6 minutes, only 0.21 

equivalent of monomer remains, and a 42.1% conversion to the olefin 

adduct is observed (the rest of the monomer having been converted to 

polymer.) 

The formation of a heterogeneous matrix is not the only requirement for 

olefin adduct formation. Under conditions similar to those used for the 

formation of Ru2+-VIII, poly(norbornene) will precipiate (from methanol), 

and form a similar heterogeneous matrix. However, no analogous 

norbornene olefin adduct is ever observed to form under these, or any other 

conditions. (As a result, no enhanced activity is observed for these recycled 

solutions.) At least two factors may be involved to account for the 

differences observed between these two monomers under similar 

conditions. It may be that the rate of conversion of olefin adduct to the 

active species is much faster in the case of norbornene, so that no build-up 

of the olefin adduct is ever observed. Alternatively, monomer VIII may 

form olefin adducts more readily than norbornene. This could arise 

through stabilization of the complex by chelation of the ruthenium center, 

using the 1,4-bridging epoxide and the olefin moiety. 

.0 
Ru-' .. ' r"> .... ~ 

~H. y ·a 

Ru~ 

At least one iron-7-oxanorbornene olefin complex, Fe(C0)4(X) (X = 1,4-

epoxy-1 ,4-dihydronaphthalene), is known, which shows interaction 

between the 1 ,4-bridging epoxide and the carbon of the axial carbonyl ligand 
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on the iron.36 Currently, not enough data are available to determine the 

importance, if any, of these factors on olefin adduct formation. 

In the absence of a reducing agent, the reduction is thought to occur 

through a disproportionation process (Equation 10). 

+ (10) 

From the reduction potentials (Ru4+fRu3+,+0.49 V; and Ru3+fRu2+, -0.11 

V),37 the equilibrium amounts of Ru2+ and Ru4+ formed through the 

disproportionation of a 0.01 M Ru3+ solution, can be estimated to be on the 

order of 4 X 10-7 M. This low concentration of Ru2+ indicates that the 7-

oxanorbornene olefin may act to drive this equilbrium. In order to 

determine whether the proposed disproportionation is actually occurring 

during the initiation steps, a "Ru4+ trap" was incorporated into the system. 

It is known that Ru4+ generated in the presence of excess RuCNH3)53+ 

rapidly forms the mixed valent ruthenium-oxo trimer, Ruthenium Red, 

[Ru(NH3)50Ru(NH3)40Ru(NH3)5]6+ CA.rnax = 532 nm with Cl- counterions).38 

When VIII (0.4 7 M) is allowed to react with [Ru(NH3)Cl]2+ (0.065 M) CA.rnax = 

325 nm) at 60 °C in aqueous solution CD20) under ~rgon, an intense red 

color (A. = 535 nm) is noted after approximately 4.5 hours. The onset of 

polymerization occurs virtually simultaneously with this color change. 

The new visible absorption at 535 nm is assigned to Ru Red. Control 

experiments carried out show that Ru(NH3)5Cl2+ can be heated at 60 °C for 

more than 15 hours in the absence of olefin, with no formation of Ru Red. 

Polymerizations performed with this recycled, dark-red solution display 

initiation times of approximately 10-15 minutes. Regardless of the number 

of times the red solution is recycled, the ultrafast initiations seen above are 
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not reproduced. Consistent with the earlier analysis, no Ru2+-olefin 

complexes are observed to form, as evidenced by lH NMR (400 MHz, D20). 

Using the literature extinction coefficient for Ru Red, E = 21,000,31 it can be 

calculated from the intensity of the A. = 535 nm absorption that less than 1% 

of the Ru3+ is oxidized to Ru4+ (0.71% and 0.94% from runs one and two, 

respectively). This calculated value provides an upper limit to the amount 

of catalyst activated. 

A proposed mechanism for this disproportionation-initiation process is 

shown in Scheme I. This mechanism suggests that the disproportionation 

equilbrium is driven to the right by the reversible capture of Ru2+ by the 7-

oxanorbomene olefin. Once formed, the Ru4+ is trapped by the excess Ru3+, 

forming Ru Red, while the Ru2+-olefin complex goes on to initiate the 

polymerization. The coordination of the olefin to the Ru2+ center is thought 

to be reversible under these conditions because of the absence of any olefin 

complex at the conclusion of the reaction. The overall disproportionation 

equilibrium is, however, irreversible because of the formation of Ru Red. 

Alternatively, the mechanism could be written with the formation of an 

equilibrium amount of Ru3+-olefin complex, which then disproportionates 

with a second Ru3+ ion. This altemative mechanism is not considered as 

likely because it necessitates the invoking of a very unstable Ru3+-olefin 

complex. Beyond the fact that there are no known Ru3+-olefin complexes,20 

oxidation of Ru2+-VIII results in the immediate dissociation of the olefin 

ligand (vide infra). 

In the course of studying the RuCl3-catalyzed polymerizations of VIII, it 

was discovered that the reaction initiates and propagates with very 

comparable rates, regardless of whether it is conducted under an 

atmosphere of argon or an atmosphere of air. Furthermore, the recycled 
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RuCl3 solutions may be stored overnight under an atmosphere of air, 

without any appreciable loss of activity (i.e. initiation times may increase 

from the 10-12 second range to the 40-60 seconds range overnight). Storage 

over 24 hours tends to increase the initation times significantly (ca. 7 

minutes after 48 hours); however, once reused, these solutions again 

become activated, displaying accelerated initiation rates. At the time, the 

metal-oxo mechanism was under more serious consideration, and this 

result was therefore not too surprising. In retrospect, however, now that 

more credence is placed in the Ru2+ mechanism, this tolerance of oxygen is 

actually quite unexpected. In this regard, it is important to note that while 

these ruthenium catalysts will tolerate oxygen over the course of several 

successive polymerizations, they are not entirely inert towards it. Bubbling 

oxygen through an aqueous RuCl3 solution (0.01 M) containing VIII (1.05 

M) for 5 minutes at room temperature, followed by 15 minutes at 55 °C, 

results in the appearance of the purple solution (A. = 561 nm); however, no 

polymerization is observed. Clearly, high concentrations of oxygen 

deactivate the catalyst. The deleterious effects of 02 appear to be attenuated 

in the more reactive systems. Little oxygen dependence on either the 

initiation time, polymer yield, molecular weight or molecular weight 

distribution is observed for the polymerization of VIII or XI, using 

Ru(H20)s(tos)2 or RuCl3. The presence of oxygen becomes more critical 

when a less reactive monomer or catalyst is used. For example, using the 

relatively unreactive Ru(NH3)sC12+ as a catalyst, the molecular weight of 

Poly VIII is reduced by 26% (Mn = 213,000 vs. 158,000), and the 

polydispersity broadens by about 4% (2.70 vs. 2.80) when the reaction is run 

under an atmosphere of air. During the polymerization of unreactive 

monomers with slow initiation or propagation rates, the deactivation by 02 
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becomes a more competitive process. In examining the polymerization of 

the unreactive monomer, exo-N-methyl-7-oxanorbornene-2,3-dimaleimide, 

VIa, it was found that the yields could be improved from approximately 10-

20% under air, to nearly 100% by running under argon.39 

Notwithstanding this moderate sensitivity to oxygen, the recycled 

solutions from RuCl3, K2RuCl5 and RuCH20)5(tos)2 appear to be remarkably 

sturdy, maintaining their activity through numerous recycling steps, all 

performed under an atmosphere of air (over 14 recycling runs using 

RuCl3). Insight into the origin of this robust nature is derived from an 

examination of the cyclic voltammogram (CV) of Ru2+-VIII. The CV of 

Ru2+-VIII shows one irreversible Ru2+fRu3+ oxidation couple at 1.05 V 

versus SSCE (Figure 11). The 7t-backbonding afforded by the olefin ligand in 

this complex serves to stabilize the Ru2+ oxidation state by 1 .08 V, relative to 

the free Ru(H20)62+ ion in neutral solution.40 This stabilization accounts 

for the fact that aqueous solutions of Ru2+-VIII can be used and stored for 

short periods under air, with no appreciable loss of catalytic activity. 

E. The Role of Water in Ruthenium ROMP Reactions. 

As was seen in Figures 1 and 2, water acts as a cocatalyst during the 

initiation steps of ROMP reactions catalyzed by RuCl3. Judging by our work 

with several ruthenium catalysts, this appears to be a general phenomenon 

for Ru3+ complexes. In the case of reactions involving Ru2+ complexes, 

however, a different result is obtained. The initiation rates for 

polymerizations using Ru2+ as the catalyst are independent of water 

concentration, as can be seen in Figure 12 for the polymerization of XI (0.948 
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Figure 11: The cyclic voltammogram of: (a) Ru(H20)G(tos)2 in 0.10 M 
Li(CF3S03); and (b) Ru2+-VIfl in 0.10 M Li(CF3S03). Potentials are relative 
toSCE. 
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Figure 12: The initiation times (seconds) for the polymerization of XI 
(0.948 M), as a function of water concentration in methanol, using 
RuCH20)6(tos)2 (0.0068 M) at room temperature. 
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M) by Ru(H20)6(tos)2 (0.0068 M) at 27 °C. As is true for the Ru3+ systems, no 

deactivation or inhibition is observed at high water concentrations. 

A similar kinetic situation exists between these water-independent Ru2+ 

catalyzed systems, and the Ru3+ systems in the regime above the water

saturation limit. Both systems display initiation rates independent of the 

catalyst concentration (Figures 13 and 7, respectively). From the existing 

data, it is not possible to determine the exact role water plays in 

accelerating the rates of initiation in the Ru3+ systems. Nevertheless, it is 

postulated that the water serves in some capacity to facilitate the required 

reduction of Ru3+ to Ru2+. Once the Ru2+ is generated, analogous kinetic 

behavior is observed for both systems. 

F. Polymerizations Catalyzed Using the Preformed Olefin Adduct, Ru2+. 

VIII: 

The synthetic limits of aqueous, ruthenium catalyzed reactions can be 

considerably expanded by using the preformed olefin adduct, Ru2+-VJII, as 

a catalyst for the polymerization of select monomers that are normally 

reluctant to polymerize in aqueous solution. For examp~e, the aqueous 

polymerization of norbornene-5-methanol fails completely, using 

commercial RuCl3 and the surfactant, SDS. Using the more active 

catalysts, K2RuCls or Ru(H20)G(tos)2 along with SDS, low yields (10-15%) of 

the polymer can be obtained (Scheme II). If, however, Ru2+-VJII, 

generated in situ through the polymerization of VIII with. K2RuCls, is 

substituted as the catalyst, yields of over 90% of the desired ring-opened 

polymer are realized. Although Ru2+-VJII proved to be very effective in this 

case (and others to be discussed), it has not proved to be a panacea for 
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Figure 13: The initiation times (seconds) for the polymerization ofXI 
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initiating polymerizations in aqueous solution. Norbornene for example, 

fails to give polymer, using this catalyst. This result is undoubtedly due to 

the immiscibility of norbornene within the aqueous medium. This example 

underscores the importance of restricting these aqueous polymerizations to 

polar monomers. 

Water-soluble, polyanionic materials are an important class of synthetic 

polymers possessing numerous industrial and medical applications. 41 One 

example of this class is the 2 :1 copolymer produced from the free-radical 

polymerization of maleic anhydride : divinyl ether, DIVEMA42 (Scheme 

Ill). During polymerization, cyclization occurs to form both the five

membered tetrahydrofuran ring and the six-membered pyran ring. These 

rings are usually formed in nearly equal quantities. The polyanionic 

material resulting from hydrolysis and neutralization of the polyanhydride 

exhibits a wide range of interesting biological activities.42 It is an 

antitumor agent; it induces the formation of interferon; it has antiviral, 

antifungal and antibacterial activity; it is an anticoagulant and an anti

inflammatory agent; and it aids in the removal of plutonium from the liver. 

The copolymer is an immunostimulant, and appears to act by stimulating 

macrophage activity within the body. Despite this im:pressive list of 

biological activities, the advancement of these polyanionic materials in the 

medical research arena has been limited. This is due, in part, to the lack of 

selectivity involved in the synthesis of these compounds. In the free-radical 

process used to prepare these polyanionic materials, it is difficult to control 

either molecular weight or polydispersity. This lack of control is actually a 

pivotal issue, because the high molecular weight materials are toxic. 

Thus, not only are high molecular weight materials to be avoided, but 

samples possessing broad molecular weight distributions are equally 
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undersirable if they contain high molecular weight components. The free

radical synthesis provides little control over the regiochemistry of the 

cyclization steps, which leads to a random mixture of both five- and six

membered rings. In addition, the stereochemistry of the propagation steps 

cannot be controlled, which further complicates the composition, and thus 

the properties, of these materials. The reasons for developing polyanionic 

materials are abundant and pressing. The question is: Can new catalytic 

routes into polyanionic materials be envisioned, which would ultimately 

offer control over these key synthetic issues? In the context of this study, the 

question narrows and becomes: How can ROMP impact the synthesis of 

new, biologically interesting synthetic polymers? 

Using ROMP, the most direct route into structurally similar materials is 

through the direct polymerization of exo-7-oxanorbornene-2,3-dicarboxcylic 

acid, VIa, to provide an unsaturated, structural analogue to DIVEMA. 

Hydrogenation of Poly VIa would provide the fully saturated analogue 

(Scheme IV). 

Scheme IV: 

? 

? . 



Unfortunately, our previous efforts had shown the highly functionalized 

monomer, VIa, to be completely inactive towards polymerization, using any 

of the ruthenium catalysts in organic solvents. Unfortunately, negative 

results were also obtained using the very active K2RuCl5, Ru(H20)6(tos)2 

and Ru2+-VIII catalysts in aqueous solution, with either VIa, or its 

neutralized disodium salt, Na2VIa (Equation 11). 

Any Catalyst 
No Reaction (11) 

Retreating slightly, efforts were concentrated on polymerizing the 

anhydride, VI. Multiple attempts at polymerizing this monomer using 

ruthenium, osmium and iridium catalysts in organic solvents, all failed 

(Equation 12). 

Any Catalyst 
No Reaction (12) 

This result was particularly frustrating in light of the fact that the 

polymerization of an anhydride monomer, norbornene-2,3-dicarboxylic 

anhydride, had previously been demonstrated using WCl&'Sn(CH3)4.43 This 

catalyst mixture was found, however, to be completely deactivated by VI 

because of side reactions with the 1 ,4-bridging epoxide moiety (Chapter 3). 
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Good yields of the desired ROMP polymer were finally obtained when the 

highly active aqueous catalysts were employed. When VI is allowed to react 

with Ru(H20)5(tos)2 in aqueous solution at 55 oc, 10-15% yields of ROMP 

polymer are obtained. When carried out in water, simultaneous hydrolysis 

of the anhydride moiety occurs smoothly under the reaction conditions, 

providing the polydiacid material. When the preformed Ru2+-VIII olefin 

adduct is used as the catalyst, yields greater than 70% are obtained 

(Equation 13). 

~n 
H02C C02H 

YWd 
10-15% 

>70% 

(13) 

For polymerizations of VI, a general observation is that the faster the 

rate of initiation, the higher the yields of polymer obtained. Recall that 

repetition of the above polymerization procedure using any of the aqueous 

catalysts and the hydrolyzed diacid monomer, VIa, results in catalyst 

deactivation. Nevertheless, in the successful anhydride polymerizations, 

hydrolysis is occurring to produce the diacid, and yet the polymerization 

proceeds. This system appears to be governed by two competing rates: the 

rate of polymerization (comprised of both the initiation and propagation 

rates), and the rate of catalyst deactivation by the diacid moiety. At high 

carboxylate concentrations, as would be found in reactions starting with the 

diacid monomer, catalyst deactivation dominates. When the reaction is 

begun with the anhydride monomer, however, the concentration of diacid 

in the reaction mixture is quite low during the critical initiation stages of 
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the reaction, and as a result, polymerization proceeds before deactivation 

can occur. Using lH NMR spectroscopy, the rate of hydrolysis of the 

anhydride, VI, can be estimated under polymerization conditions (i.e., 

neutral water at 57 °C). Heating VI to 57 oc in D20 for 15 minutes results 

in approximately 35% hydrolysis of the material as evidenced by the 

appearance of a new bridgehead proton signal at 4.16 ppm (VI = 4.10 ppm), 

and a new endo-proton signal at 2.39 ppm (VI = 2.35 ppm), both of which 

are assigned to the diacid form of VI. Recycling of the catalyst solutions 

resulting from the anhydride polymerizations reveal the catalyst to be 

completely deactivated, indicating that the catalyst is slowly killed during 

these runs. 

It is postulated that the deactivation process occurring in these systems 

involves chelation of the Ru2+ ion by the diacid moiety. (The acidity of the 

medium does not appear to be the primary factor, as it was found that 

solutions with pH values between 4 and 5 display the fastest initiation 

times.) Although no direct observation of chelation by the diacid moiety has 

been made, there is indirect evidence from examination of the 

microstructure of Poly VIa, which indicates that major changes have been 

made to the coordination sphere of the propagating species in this system. 

The lH NMR spectrum of Poly VIa (90 MHz, 2% Na2C03 in D20, or CD30D) 

reveals a polymer with a cis I trans double bond ratio considerably different 

from the high trans content observed in all other polymers obtained using 

the ruthenium catalysts. From the olefin and allylic proton signals (trans: 

5.95 and 4. 72 ppm; and cis: 5.65 and 5.20 ppm, respectively) of Poly VIa 

prepared under these aqueous conditions, it is calculated that this polymer 

contains only 28% trans-double bonds. This number represents a nearly 

complete reversal when compared to the 80-95% trans materials, which are 
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consistently obtained with all the ruthenium catalysts. One possible 

explanation is that the propagating species is a Ru center, which is mono

chelated by one equivalent of the diacid VIa. 

If deactivation does occur by a simple chelation mechanism that blocks 

coordination sites required by the olefin, then the deactivated species may, 

in fact, be bis-chelated by two equivalents of the diacid. This deactivation 

process creates a situation in which the lability of the Ru2+ water ligands 

may actually be a drawback. It was discovered that the polymerization of 

VI is an isolated case in which the Ru3+ catalyst, K2RuCl5, actually 

performs better than the Ru2+ catalyst, RuCH20)6(tos)2. Virtually 

quantitative yields of Poly VIa can be obtained with K2RuCl5. It is thought 

that the excess Cl- ligands may inhibit chelating, and eventual 

deactivation, by the diacid monomer. 

In its pristine acidic form, the solubility of Poly VIa in methanol and 

basic aqueous media is limited only by the viscosity of the resulting solution. 

Poly VIa is insoluble in acidic media. The one exception to these general 

solubility guidelines is the solubility of the polymer in Na2EDTA solutions 

(ca. 0.10 M), where the pH is approximately 4.5. In neutral solution, the 

polymer does not form a true solution, but rather, highly viscous gels. This 

is actually a property peculiar to Poly VIa. Upon warming, Poly VIa 

present in amounts as low as 0.5 g will completely gel120 g water (i.e. 0.4-
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0 .5% solution). In comparison, poly(acrylic acid) requires concentrations 

as high as 7.5% before complete gelation occurs. This unusually high 

gelation level is attributed to interchain hydrogen bonding between the 

carboxylate hydrogens and the THF oxygens. This property is reminiscent 

of the high modulus materials formed from mixing poly(ethyene glycol) 

and poly(acrylic acid).44 The solubility and gel characteristics of Poly VIa 

can be tuned through the formation of copolymers with other 7-

oxanorbornene monomers. For instance, the solubility of Poly VIa in basic 

solution can be attenuated by the incorporation of small amounts of the the 

diol monomer, VII, while organic solubility can be increased by forming 

copolymers with VIII. Copolymers of VI can be readily formed with IV, 

VII and VIII. In some cases, a synergistic relationship exists between the 

monomers. For example, using K2RuCl5 in aqueous solution, the initiation 

time for VI alone is 15-20 minutes, and for VII alone is 5-7 minutes. By 

combining these two monomers in a 1:1 ratio, the initiation time is cut 

down to only 1-2 minutes. Copolymers produced in this fashion contain 

nearly equal amounts of both monomers (Equation 14). 

0 0 0 
~\..(""~H /\~9 
~OH+ ~O 

(14) 

In pursuit of the saturated analogues to the bioactive polymer, DIVEMA, 

hydrogenation of Poly VIa was investigated. The solubility limitations of 

Poly VIa in suitable solvents prevented the homogenous hydrogenation by 

p-toluenesulfonhydrazide, which was shown to be effective in reactions 

with Poly VIII. An in situ hydrogenation method, based on converting the 
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Ru2+ ROMP catalyst into a hydrogenation catalyst by addition of H2 to the 

reaction solution after polymerization, led only to polymer decomposition 

products. Limited success in hydrogenating these materials was obtained 

using Pd-C/H2. In neutral water at 95 °C, where gelation was a problem, 

only a 2-3% conversion to the saturated polymer was evidenced by new 

methylene signals at 1 . 75 ppm CCD30D), and a new methine signal at 4.2 

ppm. In basic solution (5% NaOH), the amount of hydrogenation was 

increased to 30-40%. No further changes in H2 pressure, temperature or 

reaction time served to increase substantially the degree of hydrogenation of 

the polymer. The hydrogenated material, Poly VIas, containing greater 

than 92% saturated bonds (Figure 14) was finally obtained, using hydrazine 

in water (with air as the oxidant) (Equation 15). 

~n >92% (15) 

Poly VIa is a highly amorphous polymer with a glass transition 

temperature well above room temperature. Decomposition is observed to 

occur before the T g transition is detected, at temperatures greater than 150 

oc. As a result, Poly VIa forms hard, transparent films which are slightly 

brittle. The flexibility and toughness of this material can be dramatically 

improved by forming the fully neutralized Poly K2 VIa material. On the 

other hand, Poly VIas has a subambient glass transition temperature, and 

as a result, is a soft, rubbery material at room temperature. 

Biological testing of these new polyanionic materials is still pending. 45 
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Figure 14. The lH NMR spectra (D20, 90 MHz) of(a) unsaturated Poly 
VIa; and (b) saturated Poly VIas.(* Denotes side bands. Resonance at 3.5 
ppm is due to residual hydrazine). 
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CONCLUSIONS 

The initiation process in Ru3+-catalyzed ring-opening metathesis 

polymerizations was found to be cocatalyzed by water. This rate 

enhancement is neither a protic nor a polar solvent effect, as evidenced by 

the fact that the blank, non-cocatalyzed reactions are run in absolute 

alcohol. The observation that large excesses of water do not have a 

detrimental effect on the reaction led to the discovery of completely aqueous 

ring-opening metathesis polymerizations that provide near quantitative 

yields of the desired polymer. The materials obtained under these aqueous 

conditions have molecular weights fourfold greater than materials 

synthesized in non-protic solvent, and the polydispersities drop from near 2 

to 1.2-1.3. 

The recyclability of these single-component ruthenium catalysts was 

examined. It was found that not only are the Ru2+ and Ru3+ catalysts 

recyclable, but they actually become more active with use. In an effort to 

understand this observed rate enhancement, a number of ruthenium 

complexes in varying oxidation states were examined. Through this work, 

it was discovered that Ru2+ complexes, notably RuCH20)6(tos)2, are far more 

active than the Ru3+ catalysts previously used. Like the Ru3+ systems, Ru2+ 

also become more active when used, and ultimately, display identical 

limiting initiation rates. lH and 13C NMR investigations using 

Ru(H20)5(tos)2 revealed the formation of a Ru2+-olefin complex, Ru2+-VIII, 

generated in situ during the recycling processes. Once identified, 

resonances corresponding to this same complex were observed in the 

recycled Ru3+ reactions. Polymerizations catalyzed by this olefin complex 

display the same limiting initiation times as do the recycled catalyst 
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solutions. The activity of these recycled catalyst solutions is ascribed to: 1) 

the reduction of Ru3+ to Ru2+; and 2) the in situ formation of Ru2+-olefin 

complexes that lie along the reaction coordinate. Direct observation, 

however, of the conversion of these olefin complexes to catalytically active 

species has not been accomplished. 

These highly active species have been utilized for the polymerization of 

functionalized ·monomers, which have been reluctant to polymerize under 

aqueous conditions. Quantitative yields of the polydiacid material, Poly 

VIa, are obtained from the ruthenium-catalyzed polymerization of 

anhydride VI. The polymerization is performed in aqueous solution, 

resulting in simultaneous hydrolysis of the anhydride moiety. 

Hydrogenation of this material provides the saturated poly-diacid, which is 

a close structural analogue to known antiviral and antitumor agents. 
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EXPERIMENTAL 

General Procedures 

All manipulations involving air and/ or moisture sensitive compounds 

were carried out using standard high vacuum or Schlenk techniques. Argon 

was purified by passage through columns of BASF RS-11 (Chemlog) and 

Linde 4A molecular sieves. All weighing of air- and/ or moisture-sensitive 

compounds was performed in a Vacuum Atmosphere dry box under 

nitrogen. 1H and 13c NMR spectra were recorded on a JEOL FX-90Q 

(89.6.MHz 1H, 22.53 MHz 13c) and a JEOL GX-400 (399.65 MHz 1H, 100.67 MHz 

13C). Chemical shifts are referenced to residual protons on the deuterated 

solvents. Infrared spectra were aquired on a Shimadzu IR-435 spectrometer. 

Samples were prepared by casting films on KBr windows. UV /vis spectra 

were aquired using a HP-8451A diode array spectrometer. 

Gel permeation chromatography (GPC) was performed utilizing Shodex 

KF-803, 804, 805 and 805.4 columns with CH2Cl2 or THF as a solvent. The 

polymer was detected with a Spectroflow variable wavelength absorbance 

detector and a Knauer differential refractometer. Samples for analysis were 

prepared between 0.2 -0.4% by weight in CH2Cl2 (or THF). The molecular 

weights were referenced to narrow-dispersity polystyrene samples 

(Polysciences) ranging from MW = 3550 to 1,300,000. 

Thermal analysis was performed on a Perkin Elmer DSC-7, TGS-2 

thermogravimetric analyzer, and a 3600 data station. Scan rates are provided 

in the figures. 

The 7-oxanorbornene monomers VII, VIII and XI were prepared as 

described in Chapter 3. Initial sample of Ru(H20)s(tos)2 was provided by 

Paul Bernhard. Later samples were prepared by Dominic McGrath, 
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California Institute of Technology. [Ru(NH3)5Cl]Cl2 was obtained from 

Strem. RuCl3·H20 was obtained from both Strem and the Aldrich 

Chemical Company. K2RuCl5 and (NH4)20sCl6 were obtained from 

Johnson-Matthey/AESAR. 

Water Concentration Dependence on Initiation Rates. The initiation 

time is defined as the time elapsed from the initial mixing and heating of 

the reaction mixture until the first sign of polymer formation. The onset of 

polymerization can be detected in two ways. In solvents in which the 

polymer remains soluble (i.e., benzene/alcohol mixtures for XI, or neat 

alcohol for VIII), the onset of polymerization can be detected using 1 H 

NMR, typically by the appearance of the olefin polymer resonances at 5 .9 

ppm (poly XI). In solvents in which the polymer is completely insoluble 

(i.e., alcohol for XI, and water for VIII), the onset of polymerization can be 

defined as the first sign of precipitate detected visually. Standard solutions 

of RuCl3 (102.1 mg/ml CH30H) and monomer XI (1.1224 g and enough 

CH30H to bring the total volume to 2.00 ml, 2.687 M) are prepared. Ten 

runs are prepared using fixed amounts of monomer (0.896 M), and varying 

amounts of H20, along with the appropriate amount of added CH30H to 

keep the volumes constant. Before each run, a fixed amount of catalyst 

solution is rapidly added via syringe, the contents mixed, and the tube 

placed in the oil bath at a preset temperature (55 °C). The reaction is then 

monitored visually until polymer precipitate is detected. The deuterium 

series was run using CD30D and D20 under identical conditions. 

Aqueous Polymerization of VIII Using RuCla. The procedure presented 

here is typical of all of the aqueous ruthenium-catalyzed reactions. 
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Reaction times will vary, however, depending on the oxidation state and 

ligand sphere of the metal center. A Schlenk flask is charged with RuCl3 

(7.0 mg, 0.0382 mmol, based on RuCla.3H20) and 3.0 ml distilled water. 

Monomer VIII (0.50 ml, 580 mg, 3 .15 mmol, 82 equivalents) is added via 

syringe and the solution degassed under vacuum. The solution is then 

heated to 55 °C. After 25 minutes the first polymer precipitate is noticed. 

Within two minutes, the solution is filled with polymer. The reaction is 

heated for a total of 40 minutes, after which it is cooled and the purple 

catalyst solution removed from the polymer via cannula. The polymer is 

then washed with 7-8, 10 ml portions of water. Further purification can be 

accomplished by dissolving the polymer in the minimum amount of 

ethanol, and precipitating it from a 1 M HCl solution. The polymer is 

washed with water (3 X 20 ml) and dried under vacuum to yield 5. 72 g of 

poly VIII (98.7% yield). lH NMR (CDCl3, 90 MHz) 5.72 (b, Ha), 4 .22 (b, Hb), 

3.45 (b, CH20CHa), 3.34 (b, CH20CH3), 2.25 (b, He). 13 C NMR (Proton

decoupled) (CD2Cl2, 22.53 MHz) 132. 2 (olefin), 81.9 (trans-allylic), 77.2 (cis

allylic), 71.0 (CH20CHa), 58.9 (CH20CH3), 48.4 (cc-CHCH20CH3), 48.0 (ct

CHCH20CHa), 47.7 (tc-CHCH20CHa), 47.4 (tt-CHCH20CH3) ppm. IR (Thin 

film) 2890 (s), 1475 (m), 1460 (m), 1390 (m), 1190 (s), 1100 (vs), 1018 (s), 963 (s). 

Polymerization of Norborn.ene in Aqueous Solution Using RuCJ.a. A 

Schlenk flask is charged with RuCl3 (58.2 mg, 0.22 mmol) and 3.0 ml H20. 

Norbomene (0.50 g, 5.31 mmol) is added and the solution degassed under 

vacuum. The reaction vessel is placed in an oil bath at 52 °C. No polymer 

was observed to form after one week. 
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Polymerization ofNorbornene in Aqueous SDS Solution Using RuCJ.a. A 

Schlenk tube is charged with RuClg (30 mg), SDS (100 mg) and 2.0 ml H20. 

Norbornene (205.2 mg, 2.18 mmol) is added and the solution is degassed 

under vacuum. The reaction vessel is placed in an oil bath at 55 °C for one 

week. The vessel is cooled and the solvent decanted off the polymer. The 

polymer is washed with water (6 X 20 ml), and ethanol (3 X 10 ml), and 

dried under vacuum to yield 0.033 g of polynorbornene (16% yield). 1 H NMR 

(CDClg, 90 MHz) 5.32, 2.4, 1.8, 1.35 ppm. 

Polymerization of Norbornene in Aqueous Solution Using 10% VIII and 

RuCla. A Schlenk flask is charged with RuClg (42.3 mg, 0.16 mmol) and 2.0 

m1 H20. Norbornene (322.5 mg, 3.42 mmol) and VIII (54 j.tl, 62.6 mg, 0.34 

mmol, 10% based on norbornene) are added and the solution degassed 

under vacuum. The reaction vessel is placed overnight in an oil bath at 52 

°C. The vessel is cooled and the solvent decanted off the polymer. The 

polymer is washed with water (6 X 20 ml), and ethanol (3 X 10 ml), and 

dried under vacuum to yield 175.1 mg (54.3% yield). By lH NMR, only 

resonances associated with polynorbornene are observed. lH NMR (CDClg, 

90 MHz) 5.32, 2.4, 1.8, 1.35 ppm. 

Recycling Ru(H20)s(tos)2fNorbornene Polymerization Solutions. A 0.45 

ml reaction tube is charged with Ru(H20)G(tos)2 (2.3 mg, 0.0042 mmol) and 

0.20 ml methanol. Norbornene (19.2 mg, 0.204 mmol) is added, and the 

reaction vessel placed in the oil bath at 60 °C. The reaction is then 

monitored visually until polymer precipitate is detected (55 seconds). The 

catalyst solution is carefully drawn off the polymer precipitate and added to 

a second reaction vessel previously charged with norbornene (18.7 mg). 
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This solution is then placed back into the oil bath and monitored for 

polymer formation (47 seconds). This recycling process is repeated a third 

and fourth time in an analogous fashion. 

Recycling RuCb'VIll Polymerization Solutions. A 0.45 ml reaction tube 

is charged with RuCla·3H20 (7.8 mg, 0.0297 mmol) (0.099 M) and 0.30 ml 

distilled water. VIII (50 J.ll, 58 mg, 0.32 mmol) (1.05 M) is added, and the 

reaction vessel placed in the oil bath at 55 °C. The reaction is then 

monitored visually until polymer precipitate is detected (37 .5 minutes). The 

catalyst solution is carefully drawn off the polymer precipitate and placed 

in a second 0.45 ml reaction vessel. Extra care must be taken to compress 

the polymer completely in order to recover all of the catalyst solution. A 

blunt, solid glass rod can be used for compressing the polymer. To the used 

catalyst solution, a second aliquot of monomer VIII (50 J.ll, 58 mg, 0.32 

mmol) is added, and the reaction vessel is then placed back ~nto the oil bath 

and monitored for polymer formation (8.25 minutes). After completion of 

this second polymerization, the catalyst solution is withdrawn with careful 

compression of the polymer as outlined above. A third aliquot ofVIII (50 J.ll, 

58 mg, 0.32 mmol) is added, and the reaction vessel returned to the oil bath. 

Polymer is observed to form in 54 seconds. In the fourth run, VIII (50 J.il, 58 

mg, 0.32 mmol), polymer is observed after only 12 seconds. This recycling 

process is repeated a total of ten times in an analogous fashion. 

Occasionally, during this recycling process it becomes necessary to add 

small portions of water, to makeup for losses accrued during the catalyst 

solution recovery process. At no time is more RuCla catalyst added. The 

initiation times for each run will vary slightly (usually shorter), depending 

on how long the solution is heated after polymer forms. In general, the 
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longer the polymer/catalyst solution is heated, the shorter the subsequent 

initiation time becomes. For example, the second run has been observed to 

display initiation times as short as 1-2 minutes, when the previous reaction 

solution was heated for approximately 1 hour after the formation of 

polymer. 

Recycling Ru(H20)s(tos)2/IV Polymerization Solutions. A 0.45 ml 

reaction tube is charged with RuCH20)6(tos)2 (1.2 mg, 0.0022 mmol, 0.0054 

M) and 0.40 ml D20. Monomer IV (50 ~1, 60 mg, 0.39 mmol, 0.97 M) is 

added via syringe, and the reaction vessel placed in the oil bath at 55 °C. 

The reaction is then monitored visually until polymer precipitate is detected 

(185 seconds). The catalyst solution is carefully drawn off the polymer 

precipitate and added to a second reaction vessel previously charged with 

IV (50 ~1, 60 mg, 0.39 mmol, 0.97 M). This solution is then ~laced back into 

the oil bath and monitored for polymer formation (37 seconds). This 

recycling process is repeated a third time in an analogous fashion. 

RuCla Concentration Dependence on the Initiation Rate. Standard 

solutions of RuCla (105.5 mg/ml CHaOH), and monomer XI (1.2244 g and 

enough CHaOH to bring the total volume to 2.00 ml, 2.913 M) are prepared. 

Ten runs are prepared using fixed amounts of monomer (1.09 M), and H20 

(2.5% by volume), along with the appropriate amount (depending on the 

amount of catalyst solution to be used) of CHaOH to keep the volumes 

constant. Before each run, a varying amount of standard catalyst solution 

is rapidly added via syringe, the contents mixed, and the tube placed in the 

oil bath at a preset temperature (57 °C). The reaction is then monitored 

visually until polymer precipitate is detected. In these ten runs, the 
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catalyst concentration is varied from 0.00506 M to 0.243 M. A second series 

of runs is performed in the same manner and concentration of XI (1.09 M), 

but uses 5% H20 in each run. Throughout ten runs, the catalyst 

concentration is varied from 0.00504 M to 0.232 M. A third series of runs is 

performed in the same manner and concentration of XI (1 .01 M), but uses 

14.3% H20 in each run. Throughout eight runs, the catalyst concentration 

is varied from 0.00577 M to 0.173 M. 

The in situ Formation ofRu2+.VIII During the Polymerization of VIII. 

An NMR tube is charged with Ru(H20)6(tos)2 (15,1 mg, 0.0274 mmol) and 

D20 (0.40 ml). Monomer VIII (50 ~1, 58 mg, 0.315 mmol, 11.5 equivalents) is 

added via syringe and the mixture kept at room temperature. During this 

time Poly VIII is observed to precipitate from solution. After 0.5 hour at 

room temperature, the tube is placed in an oil bath for :}..5 hours. The 

polymer is compressed, and the yellow solution drawn off via syringe. The 

1 H NMR of this solution reveals the quantitative conversion of 

Ru(H20)6(tos)2 into Ru2+-VIII. lH NMR (D20, 400 MHz) 7.50 (4H, d), 7.18 

(4H, d), 5.07 (2H, s), 4.73 (2H, s), 3.44 (4H, m), 3.26 (6H, s), 2.54 (2H, s), 2.21 

(6H, s) ppm. 13C NMR (D20, 100.67 MHz) 143.29, 140.18, 130.17, 126.07, 

84.61, 77 .2, 71.49, 58.88, 42.63, 21 .25 ppm (referenced to tosylate methyl peak 

at 21.25 ppm). UVNis: Arnax = 294 nm. 

The in situ Formation ofRu2+.VJII Using K2RuCl5. An NMR tube is 

charged with K2RuCI5 (12.0 mg, 0.0306 mmol) and 0.400 ml D20. Monomer 

VIII (50 J.Ll, 58 mg, 0.315 mmol, 11 .5 equivalents) is added via syringe and 

the tube immersed in an oil bath at 55 °C for 1.5 hours. Poly VIII is 

observed to form in 3-4 minutes. The polymer is then compressed and the 
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yellow catalyst solution is withdrawn via syringe. The 1 H NMR spectrum 

of this catalyst solution shows resonances corresponding to Ru2+ olefin 

adducts. lH NMR CD20, 400 MHz) free VIII: 6.28 (s), 4.71 (s), 3.36 (m), 3.22 

(s), 1.77 (m) ppm. Olefin Adduct(s): 5.12 (s), 5.07 (s), 4 .75 (s), 4.72 (s), 3.40 

(m), 2.55 (m) ppm. UVNis: Amax = 293 nm. 

Aqueous Polymerization of VIII Using [Ru(NHs)sCI]Cl2. All 

manipulations are carried out under an argon atmosphere. A Schlenk 

tube is charged with [Ru(NH3)5Cl]Cl2 (15.2 mg, 0.052 mmol) (0.065 M) and 

0.80 ml D20. The solution is vigorously degassed with Ar. Monomer VIII 

(60 ~1, 69.6 mg, 0.379 mmol, 0.47 M) is added via syringe and the reaction 

vessel is placed in an oil bath at 60 °C. After 4.5 hours the solution begins to 

turn from yellow to dark purple, and polymer is observed to form. The 

reaction vessel is removed from the bath, the polymer compressed and the 

catalyst solution removed via syringe. An aliquot of this solution is diluted 

with D20 and its UVNis spectrum measured. UVNis: A.= 328, 535 nm. 

1H NMR shows only free VIII:lH NMR CD20, 400 MHz) 6.28 (s), 4.71 (s), 3.36 

(m), 3.22 (s), 1.77 (m) ppm. 

Water Dependence on Initiation Rate Using Ru(H20)s(tos)2. Standard 

solutions of Ru(H20)6(tos)2 (17.0 mg, 0.0308 mmol) in 1.0 ml methanol 

(0.0306 M), and monomer XI (1.1957 g, 5.689 mmol) in 2.00 ml methanol are 

prepared. Eight runs are prepared using fixed amounts of monomer (0.948 

M), and varying amounts of H20, along with the appropriate amount of 

added CH30H to keep the volumes constant. Before each run, a fixed 

amount of catalyst solution (final concentration, 0.0068 M) is rapidly added 
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via syringe at room temperature. The reaction is then monitored visually 

until polymer precipitate is detected. 

Ru2+ Concentration Dependence on the Rate of Initiation. Standard 

solutions of Ru(H20)6(tos)2 (29.0 mg, 0.00526 mmol, in CH30H, 0.131 M), 

and monomer XI (0.4809 g, 2.288 mmol, and enough CH30H to bring the 

total volume to 2.00 ml, 2.29 M) are prepared. Seven runs are prepared 

using fixed amounts of monomer (1.14 M), along with the appropriate 

amount (depending on the amount of catalyst solution to be used) of CH30H 

to keep the volumes constant. Before each run, a varying amount of 

standard catalyst solution is rapidly added via syringe, the contents mixed 

at room temperature. The reaction is then monitored visually until 

polymer precipitate is detected. In these seven runs, the catalyst 

concentration is varied from 0.00325 M to 0.0657 M. 

Polymerization ofNorbornene-5-methanol Using Ru2+.VIIL A Schlenk 

tube is charged with K2RuCls (16.6 mg, 0.0423 mmol, 0.0423 M) and H20 (1.0 

ml). To this solution, monomer VIII (0.100 ml, 116 mg, 0.630 mmol) is 

added. The resulting solution is then placed in an oil bath at 55 °C for 2 

hours. The resulting poly VIII is compressed and the catalyst solution 

containing Ru2+-VIII is drawn off and placed in a new Schlenk tube. To 

this solution, SDS (50 mg) and norbornene-5-methanol (0.100 ml, 102.7 mg, 

0.827 mmol) are added and the reaction vessel placed in the oil bath for one 

hour. The polymer precipitate is isolated, washed with water (4 X 5 ml) and 

dried under vacuum to yield 95.2 mg of poly(norbornene-5-methanol) 

(92.7%). 
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Aqueous Polymerization of VI Using Ru2+. VIII. A Schlenk tube is 

charged with Ru(H20)5(tos)2 (15.5 mg, 0.0281 mmol, 0.0703 M) and H20 (0.40 

ml). To this solution, VIII (60 Jll, 69.6 mg, 0.378 mmol, 0.944 M) is added 

and the reaction allowed to stir for 30 minutes at room temperature. The 

reaction vessel is then placed in an oil bath at 60 °C for one hour. The poly 

VIII precipitate is compressed, and the catalyst solution drawn off and 

placed in another Schlenk tube. To this solution, an additional 0.6 ml of 

water and anhydride VI (253.0 mg, 1.52 mmol, 1.52 M) are added, and the 

reaction vessel heated to 60 °C. After one hour, the Schlenk tube is removed 

from the oil bath, and the poly VIa precipitated from 1 M HCl. The polymer 

is then purified by dissolving in basic solution, and reprecipitating it by 

slow addition into 1 M HCl. The acidic solution is decanted off, and the 

polymer dried under vacuum to yield 188.2 mg of poly VIa (74.4%). lH NMR 

(CDaOD, 90 MHz) 5.72 (trans-olefin H), 5.46 (cis-olefin H), 5.02 (allylic H), 

2.90 (methine H) ppm. 13 C NMR (Proton-decoupled) (CDaOD, 22.53 MHz) 

174.23 (carboxylate C), 133.09 (olefin C), 82.08 (trans-allylic C), 78.96 (cis

allylic C), 54.78 (methine C) ppm. 

Aqueous Polymerization of VI Using K2RuCl5. As a general rule, it is 

best to keep the monomer concentration high (between 1.5 and 2.0 M 

appears to be optimum), and the catalyst concentration between 0.005 - 0.01 

M. Using amounts of catalyst lower than 0.005 M gives low yields of 

polymer, and using catalyst concentrations higher than 0.010 M makes it 

difficult to remove all the catalyst from the polymer. A Schlenk flask is 

charged with K2RuCl5 (28.8 mg, 0.0733 mmol, 0.0105 M), anhydride VI (2.00 

g, 12.04 mmol, 1.72 M) and water (7.0 ml). The solution is degassed under 

vacuum and heated to 60 °C for 40 minutes. (Typically, after 25 minutes, 



the solution is too viscous to stir.) The solution is then cooled, and product 

polymer precipitated by slow addition to 1 M HCL The polymer can be 

further purified by dissolving it in basic solution (1-2% NaOH) and 

reprecipitating by slow addition into aqueous HCI, the acidic solution 

decanted off, the polymer washed with water (5 X 25 ml) and dried under 

vacuum to yield 2.0 g of Poly VIa (100% yield). 1H NMR (CDaOD, 90 MHz) 

5. 72 (trans-olefin H), 5.46 (cis-olefin H), 5 .02 (allylic H), 2.90 (me thine H) 

ppm. 13 C NMR (Proton-decoupled) (CDaOD, 22.53 MHz) 174.23 (carboxylate 

C), 133.09 (olefin C), 82.08 (trans-allylic C), 78.96 (cis-allylic C), 54.78 

(methine C) ppm. 

Hydrogenation of Poly VIa Using Hydrazine. A 100 ml, 3-neck flask is 

equipped with a reflux condenser, a gas inlet tube connected to an air line, 

and a magnetic stir bar. The reaction flask is charged with Poly VIa (892. 7 

mg) and 15 ml H20. Hydrazine hydrate, NH2NH2·H20 (2.0 ml, 99%, d = 1.02 

g/ml) is added. Fifteen minutes after the addition of the hydrazine, the 

polymer is completely dissolved in solution. Air is then vigorously bubbled 

through the solution for a total of 48 hours. This reactiol). time will vary 

depending on the rate of air flow. The extent of hydrogenation is 

periodically checked by 1 H NMR analysis on small aliquots removed from 

the reaction mixture. After sufficient hydrogenation is achieved, the 

polymer is recovered by evaporating the water and washing the residue in 

cold methanol. Integration of the residual olefinic proton signals at 5. 72 

and 5.46 ppm against the methine proton signals at 2.70 ppm provides the 

percent hydrogenation. For Poly VIas: 1H NMR (D20, 90 MHz) 3.98 (2H, 

methine with a-oxygen), 2. 70 (2H, methine with a-carboxylate group), 1.48 

(4H, methylene) ppm. 13 C NMR (Proton decoupled) (D20, 22.53 MHz) 180.14 
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(carboxylate C), 82.14 (methine C with ex-oxygen), 55.88 (methine C with ex

carboxylate), 31 .26 (methylene C) ppm. 
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CHAPTERS 

THE IONOPHORIC PROPERTIES OF POLY(7-0XANORBORNENES) 

I 
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Abstraet 

The ionophoric properties of the 7 -oxanorbornene polymers are reported. 

It was found that the unsaturated poly(7 -oxanorbornene) materials bind 

and phase transfer the larger planar aromatic dyes in which the aromatic 

portion is positively charged. Dyes with reversed polarity, i,e., planar 

aromatic anions, are not bound by these polymers. Poor discrimination is 

observed on comparison of differing isomeric forms of Poly VIII, obtained 

using different catalysts. It is argued that this lack of discrimination 

results from the inability, using the stable of existing catalysts, to prepare 

polymers of high isomeric purity. In solid/liquid extractions, these 

polymers are observed to bind Cs+, K+ and Na+, but not Li+. 

Although these materials display some ionophoric properties, their 

ability to act as host materials in any standard phase transfer or ion

binding applications is limited. This realization led to investigations into 

applications more suited to polymeric materials. In pursuit of this goal, 

membranes were fashioned from these poly(7 -oxanorbornene) materials, 

and the resultant permeability to ions studied. At low-concentration 

gradients, Poly VIII acts as a quasi-ideal cation membrane. From 

measured membrane potentials, cation transport numbers for K+, Na+ and 

Li+ (all Cl- salts) are calculated to be 0.84, 0.73 and 0.73, respectively. 

Copolymers of VIII and norbomene display the same behavior, yet the ideal 

regime is extended to much greater concentration gradients. 
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INTRODUCTION 

Since the mid 1960's, the host-guest field of chemistry has helped build 

the basis of our understanding underlying the fundamentals of molecular 

recognition and enzymatic catalysis.! Pederson's seminal work in 1967, 

which detailed the binding of cations by cyclic crown ethers, became a 

cornerstone of this new field.2 From these beginnings, a detailed 

understanding of the factors involved in the recognition and binding of 

small guest molecules by discrete host molecules has been steadily 

accumulating. To better model actual enzymatic systems,3 and to facilitate 

many of the future applications of these ionophoric systems, it would be 

desirable to synthesize high molecular weight polymers possessing these 

specialized ionophoric properties. For example, polymeric :phase-transfer 

agents could be designed with unusual selectivities.4 Iono:{>horic polymers 

could be used in filtration and separation technologies5. Membranes could 

be envisioned that would selectively permit the preferential transport of one 

type of ion over another. 6 Coating electrodes with this type of membrane 

could allow for the development of new, ion-selective electrodes.7 A goal in 

solid-state batteries is to develop ionophoric polymers that allow for high ion 

mobility when doped with ionic salts.8 These doped polymers would then be 

placed between two electrodes and would act as a solid-state electrolyte. For 

all of these potential applications, there are surprisingly few candidate 

ionophoric polymers. Those that do exist are often limited by either their 

physical properties, or a complicated and/or unreliable synthesis. In light 

of the status quo in this area, it would be advantageous to develop new 

materials that display ionophoric properties. 
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The complexation and phase-transfer of cations using polymeric 

materials has been studied since the late 1940's.9 Interestin~ly, the use of 

polyethyleneoxide (PEO ), or lower molecular weight polyethyleneglycols 

(PEG), as ion complexation materials, predates the discovery of crown 

ethers by over 20 years.lO The early work in this field concentrated on the 

development of gravimetric tests for the quantitative determination of high 

molecular weight PEG in solution by its precipitation with transition-metal 

salts.ll The polymer most often studied was PEO or PEO capped with 

carboxylate end-groups. This work, however, never seemed to gain wide 

popularity, and remained an active area of interest to only a small segment 

of the polymer community. After the discovery of crown ether complexes in 

the 1960's,2 a renewed interest was seen in the use of these PEO and glymes 

as ion-complexing agents.12 

Crystalline complexes of PEO with potassium,12,13 sodium13 and 

mercuric chloride14 have been reported. When methanol solutions 

containing sodium and potassium iodide or thiocyanate salts and PEO are 

evaporated, crystalline complexes possessing a stoichiometry of one metal 

ion per four polymer repeat units (CH2CH20) are formed.13 Using 

mercuric chloride, two types of crystalline complexes are observed to form: 

A 1:1 Hg2+ to repeat unit complex, and a 1:4 Hg2+ to repeat unit complex.l4 

The structures of both of these complexes have been solved using x-ray 

diffraction and infrared absorption methods.14a,b The binding capability of 

these polymers is surprisingly sensitive to the nature of the repeat 

sequence. For example, the related polymers, poly(formal),-(CH20)n-, and 

poly(oxetane), -(CH2CH2CH20)n-, do not form salt complexes.15 Unlike 

PEO, poly(propylene oxide), PPO, forms complexes with lithium and 

sodium, but not with potassium.15 
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The strong binding of ions exhibited by PEO may actually be 

counterproductive for some applications. In solid electrolytes and other 

membrane applications, ion mobility and amorphous morphology, rather 

than high binding constants, become the important issues.8 PEO doped 

with salts such as LiTf (Tf = CF3S03-) have been studied as solid electrolyte 

materials.15 The pristine polymer is approximately 80% crystalline with a 

melting point of 60 °C. The crystalline regions of some of the ion-doped 

polymers, however, melt above 200 °C.l3 This necessitates raising the 

temperature of the system considerably in order to achieve the requisite ion 

mobility. 

These PEO complexes are unique in their ability to act as hosts when 

their flexible polymer chains adopt specific binding conformations in the 

presence of ions. A more elaborate system of this type has been 

synthesized, which contains THF rings along the polymer backbone! 6 

(Figure 1). 

Figure 1: The threo and erythro configurations of poly(2,?
tetrahydrofuran). CPK models suggest that only the threo Isomer can adopt 
a helical conformation.l6 

Two isomers, the threo and erythro configurations, were synthesized. Of 

these two isomers, only the threo polymer showed ion-binding capabilities. 

CPK models suggest that the threo polymer can form helical structures 
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with the THF oxygens facing into the center, but because of steric 

interaction between the methine hydrogen atoms, the erythro polymer 

cannot. 

Another class of polymeric host systems has been devised, which does 

not rely on the interaction of the ions with specific conformations of the 

main polymer chain. Polymers in this class usually possess cyclic crown 

ether moieties linked to the polymer chain,l7· Some examples that fall into 

this class are shown in Figure 2. 

Figure 2: Polymeric ionophores possessing crown ether binding 
moieties. 

An important point concerning the relative binding ability of acyclic 

ionophores should be emphasized. As a general rule, acyclic ionophores 

are orders of magnitude less efficient in binding cations than their cyclic 

analogues.18 On going from cyclic 18-crown-6 to open-chain, but similarly 

hexadentate, pentaethylene glycol dimethyl ether (pentaglyme), an 

approximate 104 -fold decrease in binding constants is observed for 

complexation of K+ ions. A 103 -fold decrease is observed for Na+ binding,l9 
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For K+ (in MeOH): logK. = 2.2 log K. = 6.1 

Although not as pronounced, this general tendency is also observed fort

butylammonium as guest ion in cyclic crown ethers and their 

corresponding glyme analogues.20 

o o-cH 
~o._) 3 

This difference in complex stability that can result on ring closure of the 

host molecule is referred to as the "macrocyclic effect."19a,b,21 For some 

systems this effect has been explained in terms of entropy factors, which 

oppose complete enclosure of cations by acyclic ionophores.21 Studies on 

macrocyclic tetraamine and tetrasulfi.de systems revealed that 
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thermodynamic parameters (~H), coupled with ligand solvation effects, 

often go further in explaining the origin of the macrocyclic effect. 22 

As outlined in Chapter 3, molecular model studies indicate that the 

poly(7 -oxanorbornene) materials reported here have the potential ability to 

form helical structures, with all of the tetrahydrofuran oxygens facing into 

the interior of the helix (Figure 3). 

Figure 3: Proposed ion-binding cavity formed from a helical turn of 
poly(7 -oxanorbornene~. 

It must be emphasized that the helical conformation represented here is 

an idealized situation, and any actual ionophoric character possessed by 

these materials could also arise from a less ordered ensemble of possible 

conformations. The size and characteristics of the helix are dependent 

upon the isomeric constitution of the polymer. Combining the 

configuration (cis or trans) of the double bond with the isotactic and 

syndiotactic diads gives rise to four different isomeric forms of poly(7-

oxanorbornene): trans-syn, trans-iso, cis-syn and cis-iso. Polymer chains 
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fashioned from CPK models give some indication of the size and ease of 

helix formation for each of these combinations. These sizes (oxygen-to

oxygen diameters) are only estimates of the smallest turn a particular 

configuration will form. The flexible nature of these acyclic materials 

allows them to expand or contract the dimensions of their interior, oxygen

rich cavities. 

Isomeric Form 

Cis-isotactic: 

Trans-isotactic: 

Cis-syndiotactic: 

Trans-syndiotactic: 

Interior Diameter <A> 
9-10 

7-8 

No helix possible. 

7-8 

Repeat Units Per Turn. 

9-10 

6-7 

6-7 

Table 1: Estimated interior diameter (oxygen to oxygen distance) of the 
smallest helix structure formed from the isomeric forms of poly(7-
oxanorbornene). 

With the exception of the cis-syn combination, all three remaining 

isomeric forms display the potential helix formation with all of the THF 

oxygens facing into the interior of the helix. Based on these models, the two 

best helices result from the cis-iso and trans-syn combinations. The models 

indicate that the helical conformation is very sensitive to interruptions in 

the uniformity of the the polymer. For example, the helix formed from the 

cis-iso sequence is completely disrupted by switching one of the diads from 

the isotactic to a syndiotactic relationship. On the other hand, an isotactic 

polymer made up of alternating cis- and trans-double bonds forms a 

reasonably good helix. A syndiotactic polymer with alternating cis- and 
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RESUL'IS AND DISCUSSION 

The ionophoric properties of the poly(7-oxanorbornene) materials were 

examined both in solution, and in the solid state. In order to study the 

solution behavior, host-guest extraction studies were performed. The solid 

state ionophoric properties of these materials were investigated through the 

fabrication of ion-permeable membranes. 

Two types of solution phase complexation studies were performed using 

the 7 -oxanorbornene polymers: liquid/liquid extractions of ions from an 

aqueous into an organic layer, and solid/liquid extractions of normally 

insoluble salts into organic solvents. Using both of these techniques, it can 

be observed that these poly(7-oxanorbornene) materials do indeed behave as 

ionophoric materials. The surprising feature of these materials is the 

extent of their flexibility, as evidenced by the Wide range of cation sizes that 

are bound by these polymers. Cations as small as Na+ (crystal radius = 0.93 

A) and as large as Rhodamine 6G (ca. 13-15 A) have been bound by Poly 

VIII. Table 2 shows the qualitative results of aqueous/CCl4 extractions 

performed on a series of polyaromatic ionic dyes compari.pg 18-crown-6 

with Poly VIII obtained using catalyst XV (58% trans, unknown tacticity). 

In the absence of added polymer, all of these dyes are completely insoluble 

in CCl4. As can be seen from these data, Poly VIII functions as a 

complement to 18-crown-6. 18-Crown-6 binds dyes composed of small 

cations such as sodium and large anionic organic anions (methyl orange, 

Rose Bengal, etc), while Poly VIII is selective for the binding of dyes, which 

are composed of small anions (Cl-), and large planar aromatic cations such 

as Rhodamine 6G and Methylene Blue (MB). The ability of Poly VIII to 

phase-transfer ionic compounds into non-polar organic solvents appears to 
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Extraction Results 
Organic Dves Tvpe PolyVIll 18-Crown-6 

Methylene Blue Org+ Cl- Positive Negative 

Methyl Red Org+ Cl- Positive Negative 

Rhodamine B Org+ Cl- Positive Negative 

Rhodamine 6G Org+ Cl- Positive Negative 

Ethidium Bromide Org+ Cl- Positive Negative 

Methyl Orange Na+ Org- Negative Positive 

Rose Bengal Na+ Org- Negative Positive 

Eriochrome Black Na+ Org- Negative Positive 

Table 2: Aqueous/CCl4 Extractions of Polyaromatic Dyes using Poly VIII 
and 18-Crown-6. 
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be a host-guest phenomenon, rather than being attributable to a change in 

the polarity of the organic phase, caused by the polymer. Solubility control 

experiments using CCl,vTHF and CCl4fl'HFNIII mixtures were run with 

MB. CCl4 solutions containing 5 equivalents of THF (based on the number 

of THF rings present in Poly VIII) failed to solubilize the organic dye. 

Addition of monomer VIII to CCl4!rHF mixtures also failed to solubilize 

MB. 

Contrary to the results obtained using the unsaturated polymers, it was 

found that the fully saturated polymers do not bind any dyes, regardless of 

their polarities. Two explanations for this result are possible. An 

examination of CPK models show that in addition to the the THF oxygens, 

the interior of the helix is lined with the double bonds of the polymer's main 

chain. It is thought that these unsaturated moieties play a role in the 

binding through favorable 1t -stacking interactions with the aromatic 

groups of the guest dye molecules. Alternatively, the saturated polymers 

may simply adopt solution-phase structures, which do not permit binding 

to occur. 

Quantitative MB phase transfer experiments were performed using Poly 

VIII and Poly IV, both obtained from catalyst XV. These results are 

tabulated in Table 3. Included with these results are comparisons made to 

18-crown-6 and the potentially helical polymer, threo-poly(2,5-

tetrahydrofuran) (poly(THF)),16 The polymer/dye ratios presented in the 

last column of Table 3 represent the ion saturation values obtained with 

these polymers (i.e., increasing the MB concentration in the aqueous phase 

does not increase the amount of dye bound by the polymer). From an 

examination of these data, a few noteworthy points can be made. In 

comparing the binding values obtained using Poly VIII and Poly IV, the 
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Abs2mti2nh me;: Pol~ 
HQSt Solvent Befm:e After %MB'frans. me;: Dye 

Poly VIII CCl4 0.69 0.51 42.6% 641 
Poly VIII C6H6 0.69 0.19 71.3% 585 
Poly IV C6H6 0.19 0.09 49.4% 1450 
18-Crown-6 CC14 0.19 0.19 0.0% 
Poly(THF)a CHC13 83.0% 1700 

Notes: a) From Reference 16. b) The aqueous MB solutions were 
measured before and after extraction. 

Table 3: Phase transfer of Methylene Blue (MB) using Poly VIII, and 
Poly IV (both obtained from Catalyst XV), 18-Crown-6 and the helical threo
Poly(2,5-tetrahydrofuran)a (Poly(THF)). 

former appears to be 2.5 times more efficient at binding MB. The most 

obvious difference between the two host materials is that Poly VIII 

possesses the two methoxymethyl substituents per repeat unit, while Poly 

IV possesses only one. As was indicated earlier, substituents in the 3,4-

positions may, and undoubtably do, participate directly in the ion binding. 

As a secondary effect, ring substituents may also influence the binding by 

modulating the solubility of the polymers. Whereas Poly VIII displays good 

solubility in benzene, Poly IV is only partially soluble, much of the sample 

remaining as a swollen gel. (Solvents that are better for Poly IV, are also 

solvents for MB.) Along with solubility, ring substituents may affect 

binding by influencing the solution macrostructure of the host polymer. 

Polymers in poor solvents tend to exist in more closed spherical 

arrangements. These spheres may allow penetration of the ions only so far 



into their matrices. In very dense matrices, the surface sites may quickly 

saturate, preventing further ion binding. 

Table 4 shows the MB extraction results obtained using different 

isomeric forms of Poly VIII. 

me:Polvm/ 
ftostAgent %Cis Mn oo.Q:a> %MBTrans. me,: MB <X 10 :3.1 

Poly VIII 93 19.4 95.3 1.4 
Poly VIII 42 3.2 81.9 1.6 
Poly VIII 05 172.0 73.8 1.8 
18-Crown-6 0.0 

Table 4: Phase transfer of Methylene Blue into CCl4 using various 
isomeric forms of Poly VIII. All runs were performed using 20 mg Poly 
VIII in 2.0 ml CCl4 and 0.015 mg/ml MB. A comparison to 18-Crown-6 is 
provided. 

A modest improvement of 21% in binding efficiency is observed in going 

from high trans to high cis Poly VIII. This result, however, must be 

qualified. Currently, the exact relationship between binding ability and the 

isomeric constitution of the poly(7 -oxanorbornene) materials cannot be 

obtained unambiguously. The problem rests in the non-selective nature of 

the existing family of catalysts. Although catalysts are available that will 

select for over 95% cis-, or 95% trans-double bonds, which on the average 

usually provides sufficiently uniform polymer sequences to complete one 

turn of the helix, other variables are not held constant. Both the tactici ty 

and the molecular weight are catalyst dependent. Until catalysts are 

developed that can provide perfectly stereoregular polymers of controlled 
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molecular weight, the individual effects which each of these variables 

exerts on ion binding will remain unknown. This point underscores the 

need to develop new, more stereospecific catalysts, both for use in these, as 

well as in other transition metal catalyzed polymerizations. 

In the liquid/liquid extractions of ionic dyes, compounds comprised of 

small cations such as Na+ are not bound by the 7-oxanorbornene polymers. 

If, however, solid/liquid extractions are carried out using inorganic salts 

such as NaOH, binding is observed. This apparent contradiction is thought 

to arise from the different sizes of the counterions in each case. In typical 

cyclic host-guest complexes, both the top and bottom faces of the cation are 

exposed, and the anion is free to form tight ion pairs. In the complexes 

formed between these polymers and cations, the cations may be embedded 

deep within the polymeric matrix, precluding the formation of ion pairs 

with anything other than relatively small counterions. 

Solid/liquid extractions reveal binding efficiencies for the monobasic ions 

in the following descending order: 

Cs+ ,., K+ > Na+ >>> Li+ 

Cesium and potassium hydroxides dissolve more readily than does 

sodium hydroxide, while lithium salts do not dissolve at all. This 

preference for the larger ions is consistent with both the trends uncovered 

in liquid/liquid extractions and the conformational analysis of potential 

binding cavity sizes. 

Through both extraction techniques, the poly(7 -oxanorbornene) 

materials have demonstrated modest ionophoric properties. It must be 

concluded, however, that these ion-binding efficiencies do not approach 
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those necessary to compete successfully with discrete cyclic hosts in any 

standard phase transfer or ion-binding applications. Rather, attention 

should be turned to devising methods of exploiting the polymeric nature of 

these materials in applications where low molecular weight hosts are 

inappropriate. One area of potential application for polymeric ionophores is 

that of membrane studies. The design and fabrication of ion-permeable 

membranes that display selectivities in ion transport would be useful for 

many potential analytical and separation applications.5,6,7 

There are three general modes of ion transport across membranes, 

which have been identified in biological systems23 (Figure ~). The first is 

termed carrier transport, where ion transport is mediated by small carrier 

molecules that shuttle ions from one side of the membrane to the other.24 

Examples of natural carriers in this class include monensin,25 nigericin,26 

grisorixin,27 alborixin,28 and emericid.29 By fashioning liquid/liquid 

membranes (i.e., two aqueous phases in aU-tube, separated by an organic 

phase of greater density), synthetic host molecules such as cyclic crown 

complexes can be induced to transport ions in this fashion. 30 The second 

method of transport relies on ion-selective channels that span the width of 

the membrane, allowing ion migration to occur through an interior 

hydrophilic pathway.31 In biological systems, this is a broad class 

encompassing a number of intricate protein assemblies, including the H+, 

Na+, K+, and Ca+ active transport channels (positive ~G), which pump 

these ions against a gradient fueled by ATP-driven pumps.32,33 Examples 

of simpler passive transport channels (negative ~G) include gramicidin A, 

a pentadecapeptide composed of alternating D- and L-amino acids, which 

possesses a helical conformation. 34 To mediate ion transport, it is thought 

that gramicidin A dimerizes in an end-to-end fashion, forming an ion 
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Figure 4: Three common modes of transmembrane ion transport 
identified in biological systems: a) Carrier transport. b) Transmembrane 
channels. c) Nonspecific pores. (See text for complete discussion). 
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channel that spans the membrane. The third and final method involves 

molecules that act to disrupt the integrity of the membranous structure, 

forming openings that allow free flow of ions through, with no 

permselectivity. An example in this class would be the polyene antibiotic, 

amphotericin B. 32 

Following demonstration of their ionophoric properties, the 7-

oxanorbornene materials were tested as synthetic ion-permeable 

membranes using the apparatus shown in Figure 5. Solid films of polymer 

were cast on an inert gold grid (1 000 lines/inch) to thicknesses of 50-100 J.Lm. 

These polymer sheets were then sandwiched between the two concentration 

cells. The integrity of the membranes is tested by placing a dye solution 

(Methylene Blue) in one compartment and checking for any diffusion into 

the other compartment. By fixing the ion concentration on one side of the 

polymer and varying the concentration on the other, the membrane 

potential can be measured using two zeroed standard electrodes (SCE). If 

the polymer acts as an impermeable barrier, no potential will be registered. 

If, however, the membrane is permeable to the ions, a membrane potential 

will be observed. Diffusion potentials of this type obey Equation 1 :35 

Emem = (4 - t..) RT/F In C2f'C1 (1) 

where t+ and t_ are the cation and anion transport numbers,36 respectively, 

and C1 and C2 are the concentrations of ions on either side of the 

membrane. From the form of Equation 1, two limiting cases can be 

identified. If t+ is equal to 1.0 (i.e., the membrane acts as an ideal cation 

permeable membrane), then in the plot of Emem vs. ln C2/C1. a line with a 

positive slope of +59.2 mV (at 25 °C) will be obtained. Likewise, for an ideal 
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Polymer Membrane 
(on gold mesh) 

Figure 5: Ion concentration cells used to measure membrane potentials. 
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anion penneable membranet t_ = l.Ot and the slope of the curve will equal 

-59.2 mV. These two extremes define the boundary conditions between 

which all experimental values should fall. 

Films composed of Poly VIII do act as ion-permeable membranest as 

evidenced by the generation of a membrane potential when they are placed 

between ion solutions of differing concentrations. The membrane potential 

measured is dependent on the particular cation used. Figure 6 shows the 

experimental potential curves measured using KCl, NaCl and LiCl with a 

Poly VIII membrane. At low ion gradients, all three ions show a linear 

increase in potential with increasing ion gradients. The initial positive 

slope of these curves indicates that ion transport is dominated by the 

cations. From these initial slopes, cation transport numbers for K+, Na+ 

and Li+ (all Cl- salts) are calculated to be 0.84, 0.73 and 0.73, respectively. 

These results can be compared to results obtained using a polar but non

selective porous membrane, poly(vinylidene choride) (50 ~m) (Figure 7). As 

can be seen from these results, ion migration through this control 

membrane occurs with nearly equal cation and anion transport numbers 

(t+ = t_). 

Depending on the ide:ntity of the c~tion, a maximum membrane potential 

is reached, after which the slope becomes negative for increasing ion 

gradients. The maximum potentials for Li+, Na+ and K+ are 29, 43 and 68 

mV, respectively. Within the inverted regime, the cation transport 

numbers, t+, are reduced from 0.84 to 0.22 (forK+), and from 0.73 to 0.29 (for 

Li+). This observed change in the slope is attributed to a change in 

mechanism of ion transport. At low driving gradients, the membranes act 

as quasi-ideal cation membranes (i.e., high cation transport numbers). 

During this initial stage, cations migrate through the membrane 
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Figure 6. Membrane potential curves for the transport ofKCl, NaCl and 
LiCl through a poly VIII membrane at 25 °C. 
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Figure 7. Membrane potential curve for the transport of KCl through a 
porous poly(vinylidene chloride) membrane. Also shown for reference, is 
the potential curve obtained using poly VIII. 
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preferentially over anions, because of the stabilization the former can obtain 

through coordination with both the THF rings and methoxymethyl groups. 

Because of this increase in internal cation concentration, the membrane 

acquires a net positive charge (Donnan potential).37 As the external 

concentration is increased, the anions, driven by both their own 

concentration gradient and the newly established Donnan potential, 

migrate through the membrane, stabilized by the ion-pairing interactions 

with cations bound in the membrane. At high-concentration gradients, the 

anions become the dominant charge carriers, migrating through the 

membrane by a mechanism that is thought to involve hopping from fixed 

cationic site to cationic site. This results in a decrease in the membrane 

potential as t_ becomes a greater contributing factor. Although the carrier 

mechanism differs, this general inversion of the membrane potential curve 

at high concentration gradients is observed to occur i:r;1. ion-exchange 

membranes such as N afion. 38 

If this model is valid, then destabilizing the anions through structural 

modifications to the membranes should result in the obtainment of greater 

maximum potentials before breakdown occurs. Based o:p. the proposed 

model of anion migration, two mechanisms for anion destabilization within 

the membranes can be envisioned. First, the hopping distance could be 

increased by increasing the distance between cation binding sites, and 

second, the membrane could be rendered more hydrophobic. The latter 

modification is based on the assumption that the anions migrating though 

the membrane do so with their primary spheres of hydration intact. With 

these goals in mind, a copolymer of norbomene (65%) and VIII (35%) was 

synthesized and fashioned into membranes. The ion permeation results for 

this membrane using KCl are shown in Figure 8. As can be seen from 
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Figure 8. Membrane potential curve for the transport of KCI through 
membranes composed of poly VIII, and poly(norborene-co-VIII) (65/35). 
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these results, this membrane continues to behave ideally at much higher 

ion-concentration gradients. 

The exact morphological characteristics of 7 -oxanorbornene polymers 

that give rise to their ion permeable properties remain unclear. There 

appear to be oxygen rich regions within their matrices, which allow for the 

selective migration of cations over anions. It is, however, rather doubtful 

that these structures are actually the regular helical channels depicted in 

Figure 1. This initial analysis now appears overly optimistic. Poly VIII 

and Poly(norbornene-co-VIII) are highly amorphous materials, as 

evidenced by both the absence of Tm transitions in their DSC traces, and 

their highly elastic physical properties. A polymer possessing regular 

helical conformations, as depicted in Figure 3, would be expected to exhibit 

a more ordered morphology, and hence, a higher percentage of 

crystallinity. Ion migration through these membranes is therefore thought 

to occur through highly amorphous regions, possessing minimal order. 

Although amorphous materials may lack regular structures, such as 

oxygen-rich helices, the high flexibility inherent in their matrices favors 

good ion mobility. Materials possessing low Tg's are known to show 

enhanced ionic conductivities in solid electrolyte applications. 8 Ion 

migration through these membranes is therefore thought to occur through 

highly amorphous regions. Nevertheless, the 7 -oxanorbornene membranes 

are ion-permeable, and in addition, show selectivity in the transport of 

cations over anions. 

Concentration cells constructed with 7 -oxanorbornene membranes can 

maintain their diffusion potentials over extended periods of time. This 

observation indicates that the potentials are generated under low ionic flux 

conditions. This attribute is directly analogous to many biological 
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membranes used in signaling processes. For example, electrical signaling 

in squid axon involve changes in the available ionic concentration gradient 

by only 1 part in 10,000.39 Applications arising from passive transport 

materials such as the poly(7 -oxanorbornenes) should therefore focus on 

signaling, rather than on separation technologies. 
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CONCLUSIONS 

Abeit with high host/guest ratios, the 7 -oxanorbornene materials do act 

as ionophoric materials. Because of the adjustability of the binding cavities 

formed by the flexible polymer chains, cations of widely varying sizes can be 

complexed. Of particular interest is the observation that these materials 

complex large, organic dyes. This binding is specific for ionic dyes with the 

positive charge located on an aromatic moiety. Dyes possessing the 

reversed polarity are not bound. The binding of the positively charged dyes 

is thought to occur through interactions of the dye with the oxygens and 

double bonds of the polymer, as the fully saturated polymers do not act as 

hosts for these dyes. 

The important solution morphologies of the 7 -oxanorbor:p.ene polymers 

that give rise to these ionophoric properties is not known. Further 

advances in the use of 7 -oxnorbornene materials as ionophoric hosts will 

demand the development of catalysts that display greater selectivity in the 

synthesis of stereoregular polymers. Using the currently available 

catalysts, the cis I trans ratios, tacticities and molecular weights of these 

materials cannot be varied independently of one another. This limitation 

currently precludes detailed structure-binding studies. 

The use of 7 -oxanorbornene polymers as ionophoric materials can be 

extended to the solid phase as well, by fashioning membranes from these 

materials. By measuring the membrane potentials, it can be shown that 

Poly VIII and Poly(norbornene-co-VIII) act as quasi-ideal cation 

membranes for the transport ofK+, Na+ and Li+. 
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EXPERIMENTAL 

General Procedures 

All manipulations involving air- and/ or moisture-sensitive compounds 

were carried out using standard high-vacuum or Schlenk techniques. Argon 

was purified by passage through columns of BASF RS-11 (Chemlog) and 

Linde 4A molecular sieves. All weighing of air and/or moisture sensitive 

compounds was performed in a Vacuum Atmosphere dry box under 

nitrogen. 1 H and 13c NMR spectra were recorded on a JEOL FX-90Q 

(89.6.MHz 1H, 22.53 MHz 13C) and a JEOL GX-400 (399.65 MHz 1H, 100.67 MHz 

13C). Chemical shifts are referenced to residual protons on the deuterated 

solvents. UV /Visible measurements were performed using a Cary 219 

Spectrophotometer or HP-8451A diode array spectrometer. Fluoresence 

measurements were performed on a SLM Instruments Fluoresence 

Spectrophotometer. Membrane potentials were measu,red using the 

apparatus shown in Figure 5, equipped with an Orion 070101 pH meter and 

two Standard Calomel Electrodes (SCE). Gold mesh, 1000 lines/inch was 

obtained from Interconics Buckbee-Mears. 

The poly(7-oxanorbornene) materials were synthesized as outlined in 

Chapters 3 and 4 of this work. Organic dyes were purchased from the Aldrich 

Chemical Company and used without further purifiCation. 

General Aqueous/CCI4 Dye Extractions. Standard aqueous dye solutions 

were prepared and their concentrations determined by measuring their 

absorption spectra. Polymers were dissolved in either benzene or CCl4 (ca. 10-

20 mg polymer /ml). An aliquot of the dye solution was layered over the 

organic phase and shaken gently for a prescribed period of time, typically 5-10 
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minutes. (If shaken too vigorously, the polymer solutions easily form 

emulsions under these conditions). The layers are then separated and the 

absorbance of the aqueous phase is remeasured. 

General Liquid/Solid Extractions. An efficient "yes/no" screening test is 

employed to determine the presence of solubilized hydroxide salts in CHCl3. 

CHCl3 solutions are made up containing polymer (10-20 mg polymer/ml), 

and 1,3 dinitrobenzene (ca. 1 %), to be used as an indicator. To these 

solutions, one of the following solid salts is added; LiOH, NaOH, KOH or 

CsOH. If complexation occurs, the solution turns dark red-purple because 

of formation of the anionic Meisenheimer hydroxide/dinitrobenzene 

complex. The appropriate control experiments were run to eliminate the 

possibility of any spurious complexation results not mediated by the poly(7-

oxanorbornene) polymers. 

Membrane Potential Measurements. The apparatus shown in Figure 5 

equipped with a pH meter (Orion 070101) and two SHE is used. The 7-

oxanorbornene polymer is dissolved in THF (10-15% by weight). A square 

piece (ca. 0.5" X 0.5 ")of gold mesh (1000 lines/inch) is cut and placed over 

the side hole of one ion compartment. The polymer solution is then spread 

uniformly over the grid, forming a film 50-100 J..Lm thick, and the solvent is 

allowed to evaporate under a stream of nitrogen. The second ion 

compartment is then clamped in place. Deionized water is placed in both 

compartments. The integrity of the membrane is checked by adding 

Methylene Blue (an ionic compound possessing a cation too large to diffuse 

through the ion channels of the membrane), to one of the compartments 

and checking for any slow diffusion to the other side. Membranes are 
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typically monitored for 0.5 hour in this fashion. The two cm;npartments are 

then drained and refilled with standard salt solutions of equal 

concentration (0.50 mM). and the voltmeter zeroed. The membrane 

potential is then measured as the concentration of salt is then varied on one 

side (1.00. 2.50. 5.00. 10.0. 25.0. 50.0. 100.0 and 200.0 mM). while the 

concentration on the reference side remains fixed. 
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