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 Abstract 

 The universally conserved signal recognition particle (SRP) and SRP receptor (SR) 

mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique 

chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light 

harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and 

activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the 

GTPase cycle in each system adapts to its distinct substrate proteins have been unclear. Here, we 

show that interactions at the active site essential for GTPase activation in the chloroplast SRP 

and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic 

homologues, GTPase activation in the chloroplast SRP–SR complex contributes marginally to 

the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase 

activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast 

GTPases may forego the GTPase activation step as a key regulatory point. These features may 

reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein. 
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Introduction  

 Cotranslational protein targeting by the signal recognition particle (SRP) and the SRP 

receptor (SR) is a universally conserved pathway essential for the proper structure and function 

of the cell. Cytosolic SRP recognizes ribosomes translating SRP substrates and, via interactions 

with SR, delivers its cargo—the ribosome-nascent chain complexes—to the eukaryotic 

endoplasmic reticulum or the prokaryotic plasma membrane [1,2]. The functional core of SRP 

consists of a universally conserved SRP54 subunit, or Ffh in bacteria, and an SRP RNA[3]. 

SRP54 is comprised of three domains: (i) a methionine-rich M-domain, which provides the 

binding site for the substrate protein and the SRP RNA [4]; (ii) a GTPase G-domain that shares 

homology with the Ras-fold[5]; and (iii) an N-terminal N-domain that interacts with the 

ribosome [6,7]. Together the N- and G-domains comprise a structural and functional unit called 

the NG-domain. The SR (FtsY in bacteria) also contains an NG-domain highly homologous to 

that in SRP54. The GTP-dependent interaction between the NG-domains of SRP and SR guides 

the delivery of cargo to protein translocation machineries on the target membrane, and 

subsequent GTP hydrolysis in the complex drives the dissociation of SRP and SR, recycling 

them for additional rounds of protein targeting [8]. 

 A notable exception to this classic SRP pathway is provided by the chloroplast SRP 

(cpSRP) [9]. The cpSRP pathway still uses the conserved SRP54 and SR GTPases (called 

cpSRP54 and cpFtsY, respectively). However, cpSRP lacks the otherwise universally conserved 

SRP RNA and is instead a heterodimeric protein complex comprised of cpSRP54 and cpSRP43, 

a novel SRP subunit unique to the chloroplast of green plants [10-13]. The most significant 

difference between the cytosolic and chloroplast SRP pathways lies in the nature of their 

substrate proteins. The cytosolic SRP must recognize its cargos within a milieu of translating 
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ribosomes in the cytosol, based on signal sequences that differ widely in size, shape, and amino 

acid composition. In contrast, the cpSRP is dedicated primarily to the post-translational delivery 

of the light-harvesting chlorophyll a/b binding (LHC) family of proteins [14,15]. LHC proteins 

are synthesized in the cytosol and imported into the chloroplast stroma, where they are 

recognized and captured by the cpSRP [10]. Analogous to the cytosolic SRP pathway, the 

interaction of cpSRP with cpFtsY brings the LHC proteins to the Albino3 (Alb3) translocase on 

the thylakoid membrane, where the LHC proteins are integrated and assembled into light 

harvesting complexes [16]. 

 The similarities and differences between the cytosolic and chloroplast SRP pathways 

raise intriguing questions: How do the targeting machineries in each pathway meet the unique 

challenges posed by their substrate proteins, and what are the roles of the SRP and SR GTPases 

in this adaptation? Extensive work on the cytosolic SRP showed that during the SRP–FtsY 

interaction a series of discrete conformational changes provide multiple opportunities to exert 

regulation [17-21]. Assembly of a stable SRP·FtsY complex requires the formation of a transient 

“early” intermediate, which subsequently rearranges to a stable, “closed” complex. GTPase 

activation in the complex requires yet another rearrangement, the movement of the highly 

conserved insertion box domain (IBD) loops, which positions multiple catalytic residues adjacent 

to the bound GTP molecules and activates GTP hydrolysis [17]. Importantly, each GTPase 

rearrangement allows the SRP and FtsY to sense and respond to their biological cues. A correct 

cargo can accelerate the assembly of the SRP·FtsY complex while delaying its GTPase activation 

[19]. Delayed GTP hydrolysis provides an important time window for the targeting complex to 

search for the translocation machinery before GTP hydrolysis drives its irreversible disassembly. 

Once at the target membrane, the movement of the IBD loops, which mediates GTPase 
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activation, is crucial for driving the initiation of protein translocation [22]. Finally, the timing of 

GTP hydrolysis provides an important fidelity checkpoint: incorrect cargos, which fail to delay 

GTPase activation, could be more promptly rejected through premature GTP hydrolysis [19]. 

Thus, the uncoupling of complex assembly and GTPase activation steps in the bacterial SRP and 

FtsY is crucial for ensuring the efficiency and fidelity of cotranslational protein targeting. 

 On the other hand, the cpSRP handles substrate proteins of a completely different nature. 

The LHC family of proteins comprises 30–50% of the protein content in the thylakoid membrane 

and are likely the most abundant membrane proteins on earth. The sheer abundance and rapid 

turnover of these proteins demand a highly robust and efficient pathway for their targeting and 

integration. Compared to its cytosolic homologue, specific substrate selection is much easier to 

achieve in the cpSRP, as members of the LHC protein family are highly homologous and share a 

conserved sequence motif, L18, that is specifically recognized by the cpSRP. Consequently, 

many features have evolved in the cpSRP pathway that may represent adaptations to its unique 

substrate proteins. For example, cpSRP uses cpSRP43 to efficiently capture the LHC proteins 

[23] as well as to help localize the targeting complex to Alb3 on the thylakoid membrane [24]. 

Here we address this issue from a different perspective: what are the similarities and differences 

in the GTPase cycles of the chloroplast versus cytosolic SRP and SR? Are there distinct features 

of the cpSRP54 and cpFtsY GTPases that may reflect their adaptation to the cpSRP pathway? 

Using a combination of fluorescence and mutational analyses, we dissected the molecular steps 

during the interaction of cpSRP54 and cpFtsY and probed the role of the GTPase cycle in the 

targeting of LHCP. The results showed that, despite many similarities with their bacterial 

homologues, cpSRP54 and cpFtsY undergo a much more streamlined GTPase cycle in which the 
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complex formation and GTPase activation processes are highly coupled. These differences may 

have evolved to maximize the efficiency of targeting for the highly abundant LHC proteins. 
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Materials and Methods 

 Mutagenesis, Protein Expression and Purification. The bacterial expression plasmid 

for cpSRP54 was constructed by inserting the coding sequence of mature cpSRP54 from 

Arabidopsis thaliana between the NdeI and HindIII restriction sites in pET41(a) (Novagen). 

cpSRP54 was overexpressed in Escherichia coli Rosetta BL21 cells (Invitrogen) at 37 °C using 

0.5 mM IPTG (EMD Biosciences). cpSRP54 was purified by cation exchange chromatography 

in buffer A (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 5% glycerol), first using SP-Sepharose FF 

beads (GE Healthcare), followed by a MonoS HP column (GE Healthcare), both using a linear 

gradient of 150–600 mM NaCl. 

 The construct expressing mature cpFtsY fused to thioredoxin was a generous gift from R. 

Henry [25]. Thioredoxin-fused cpFtsY was overexpressed in Escherichia coli BL21-DE3* cells 

(Invitrogen) at 37 °C using 0.5 mM IPTG (EMD Biosciences). cpFtsY was first purified over 

Talon resin (Clonetech) in buffer B (50 mM KHEPES, pH 7.5, 150 mM NaCl, 1 mM PMSF) 

following manufacturer’s instructions. Following thrombin digestion to remove the thioredoxin 

tag, cpFtsY was further purified by anion exchange chromatography over a MonoQ column (GE 

Healthcare) in buffer C (50 mM Tris, pH 7.5, 50 mM NaCl, 1 mM EDTA, 2 mM DTT) using a 

linear gradient of 50–300 mM NaCl, as previously described [26]. 

 cpSRP54 and cpFtsY mutants were constructed using the QuikChange protocol 

(Stratagene) and were expressed and purified using the same procedures as those for the wild-

type cpSRP54, with the following exceptions. Cys-less and single cysteine mutants of cpFtsY 

were expressed in Escherichia coli BL21-DE3* cells (Invitrogen). Inclusion bodies containing 

mutant cpFtsY were solubilized using 8 M urea. Solubilized cpFtsY was refolded into the native 

structure by dialyzing in refolding buffer (100 mM Tris-HCl pH 8.0, 400 mM l-arginine, 5 mM 
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reduced glutathione, 0.5 mM oxidized glutathione, complete EDTA free protease inhibitor 

cocktail tablet). The refolded proteins were dialyzed in buffer A and purified by affinity 

chromatography using Ni-NTA (Qiagen) followed by anion exchange chromatography using 

MonoQ as described above for wild-type cpFtsY.  

 Fluorescence Labeling. For FRET experiments, single cysteine mutants were labeled 

with maleimide derivatives of coumarin N-(7-dimethylamino-4-methylcoumarin-3-yl)maleimide 

(DACM) and BODIPY-fluorescein-N-(2-aminoethyl)maleimide (BODIPY-FL) (Invitrogen). 

Proteins were dialyzed in labeling buffer (50 mM KHEPES, pH 7.5), 300 mM NaCl, 2 mM 

EDTA, and 10% glycerol) and treated with 2 mM TCEP at RT to reduce disulfide bonds. The 

labeling reaction was carried out with a 30-fold excess of dye over protein for 2 h at 4 °C and 

stopped by addition of 2 mM DTT. Acrylodan labeling was done similarly except that the 

labeling reaction was carried out for >12 h at 4 °C. The excess dye was removed by gel filtration 

using Sephadex G25 resin (Sigma-Aldrich). The absorbance of DACM, BODIPY-FL, and 

acrylodan (ε363 = 27�000 M–1 cm–1, ε504 = 79�000 M–1 cm–1, and ε391 = 20�000 M–1 cm–1, 

respectively) was used to determine the concentration of labeled protein. The labeling efficiency 

was typically over 80% for all the probes, and the background labeling estimated from cys-less 

or cys-lite constructs was less than 10%. 

 Fluorescence Measurement. All measurements were carried out at 25 °C in assay buffer 

(50 mM KHEPES pH 7.5, 150 mM KOAc, 2 mM Mg(OAc)2, 0.01% Nikkol, 10% glycerol) on a 

Fluorolog 3-22 spectrofluorometer (Jobin Yvon). For formation of the GTP-bound 

cpSRP54·cpFtsY complex, 2 mM GTP (Sigma-Aldrich) was used to ensure that both proteins 

were predominantly GTP-bound. The amount of GDP generated during the course of the 

experiment was minimal, as estimated from the GTPase rate constants. For complex formation 
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with 5′-guanylylimidodiphosphate (GMPPNP), 200 µM GMPPNP (Sigma-Aldrich) was used. 

For equilibrium or kinetic measurements using FRET, an excitation wavelength of 380 nm was 

used, and the donor fluorescence emission was monitored at 450 nm. The FRET efficiency was 

calculated as described [18]. For measurements using acrylodan-labeled cpSRP54, an excitation 

wavelength of 370 nm and an emission wavelength of 495 nm were used [19]. 

 Equilibrium titrations were carried out using a constant concentration of labeled protein 

and varying concentrations of the binding partner. The data were fit to eqs 1 or 2  

Fobs = F1 ×
[cpSRP54]+ [cpFtsY]+Kd − ([cpSRP54]+ [cpFtsY]+Kd)

2
− 4 × [cpSRP54][cpFtsY]

2 × [cpSRP54]
  (1) 

    Fobs = F1 ×
[cpSRP54]

Kd + [cpSRP54]
      (2) 

 where Fobs is the observed fluorescence at a particular protein concentration, F1 is the 

fluorescence with saturating protein, and Kd is the equilibrium dissociation constant of the 

complex. 

 The association rate constant (kon) for the cpSRP54·cpFtsY complex was measured using 

the stop-flow apparatus as described in ref [18]. For FRET, 0.5 µM DACM-labeled cpFtsY was 

mixed with 1–50 µM BODIPY-FL-labeled cpSRP54 in the presence of 2 mM GTP. For 

measurements based on acrylodan fluorescence, 0.5 µM acrylodan-labeled cpSRP54 was mixed 

with 1–50 µM wild-type cpFtsY. The observed rate constants (kobs) for each reaction were 

plotted against cpSRP54 or cpFtsY concentration, respectively, and fitted to a linear (eq 3) or 

hyperbolic function (eq 4)  

    kobsd = kon [protein] + koff      (3) 

   kobs = k1 ×
[protein]

Kd + [protein]
     (4) 
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in which kobs is observed rate of association at a particular protein concentration, kon (slope) is the 

association rate constant and koff,app (y-intercept) is the apparent dissociation rate constant, and k1 

and Kd are defined in Figure 2E. 

 The dissociation rate constant (koff) was determined by a pulse-chase experiment. 2 µM 

wild-type cpFtsY was incubated with 0.5 µM acrylodan-labeled cpSRP54(234C, A142W) for 10 

min to form the GTP-bound cpSRP54·cpFtsY complex and mixed with 200 mM EDTA or a 20-

fold excess of unlabeled cpSRP54 to drive disassociation of the complex. The time course for 

decrease in acrylodan fluorescence was fit to a single-exponential function to obtain the 

dissociation rate constant. Both the complex association and dissociation kinetics were measured 

on a Kintek stopped-flow apparatus.  

 GTPase Assays. All GTPase assays were performed at 25 °C in assay buffer as described 

previously [26]. GTP hydrolysis reactions were followed and analyzed as described in ref [27]. 

The reciprocally stimulated GTPase reaction between cpFtsY and cpSRP was measured in 

multiple-turnover experiments ([GTP] > [E]) with a small fixed amount of cpSRP54 (100 nM), 

varying concentrations of wild-type or mutant cpFtsY, and 100 µM GTP. The cpFtsY 

concentration dependence of the observed rate (kobs) was fit to eq 5 

      kobs = kcat ×
[cpFtsY]

Km + [cpFtsY]
       (5) 

in which kcat is the maximal rate constant with saturating cpFtsY and Km is the concentration of 

cpFtsY required to reach half saturation. Analogous setups were used when cpSRP54 mutants 

were tested, with the concentration of cpSRP54 being varied instead that of cpFtsY. 

 The affinity of mutant cpFtsY for cpSRP54 was determined using an inhibition assay that 

measures the ability of mutant cpFtsY to compete with wild-type cpFtsY and inhibits its 

interaction with cpSRP54, as described in Shan et al [17]. The data were fit to eq 6  
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   kobs = k0 ×
K i

[cpFtsY(mt)] +  K i
+ k1 ×

[cpFtsY(mt)]
[cpFtsY(mt)] +  K i

     (6) 

in which Ki is the inhibition constant, k0 is the rate constant of GTP hydrolysis in the absence of 

the inhibitor, and k1 is the rate constant of GTP hydrolysis from the cpSRP54·cpFtsY(mt) 

complex. At subsaturating concentrations of the wild-type cpFtsY (<Km), the value of Ki equals 

Kd, the dissociation constant of the cpSRP54·cpFtsY(mt) complex. Analogous setups and 

analyses were used when cpSRP54 mutants were tested.  

 Gel Filtration . Complex formation was carried out in column buffer [50 mM KHEPES, 

pH 7.5, 200 mM NaCl, 2 mM Mg(OAc)2, 2 mM DTT]. 10 µM of cpSRP54 was mixed with 10 

µM wild-type or mutant cpFtsY in the presence of 450 µM GMPPNP and incubated on ice for 10 

min before loading onto Superdex 200 (GE Healthcare). Reference runs of the individual 

proteins confirmed the identities of the peaks. 

 LHCP Integration Assay. The thylakoids were collected from chloroplasts of 9–12 day 

old pea seedlings (Laxton Progressive 9) hypotonically lysed in lysis buffer (10 mM KHEPES, 

pH 8.0, 10 mM MgCl2) for 10 min as described by Yuan et al. [28]. The stromal extract was 

removed, and the thylakoid pellet was resuspended in lysis buffer and washed twice in import 

buffer (50 mM KHEPES, pH 8.0, 330 mM sorbitol) containing 1 M KOAc to remove residual 

cpFtsY associated with the membrane. Thylakoids were resuspended in import buffer to a 

concentration of 1 mg chlorophyll/mL (1×). Each 150 µL light-harvesting chlorophyll a/b 

binding protein (LHCP) targeting/integration reaction contained 10 µL of in vitro translated 35S-

methionine-labeled LHCP, 50 µL of 1× salt-washed thylakoid, 50 mM GTP, 50 mM ATP, 0.5 

µM cpSRP54, and varying concentrations of cpFtsY. Analogous setups were used when 

cpSRP54 mutants were tested. The reactions were incubated at 25 °C for 10 min before being 

quenched on ice. The reaction mixtures were thermolysin-treated for 40 min and centrifuged to 
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remove any nonintegrated LHCP in the supernatant. The resulting pellets were resuspended in 2× 

SDS and analyzed by SDS-PAGE. The two lower bands that represent the protease-protected 

fragments of the integrated LHCP (25 and 18.5 kDa) were quantified using a Molecular 

Dynamics Storm 840 and ImageQuant software (GE Healthcare). 
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Results 

 Fluorescence Assays to Monitor the cpSRP54–cpFtsY Interaction. To directly 

visualize the interaction between cpSRP54 and cpFtsY in real time, we developed fluorescence-

based assays, which have been used in the bacterial SRP and other systems to elucidate key 

features of protein interaction mechanisms. To this end, we constructed cys-lite and cys-less 

versions of cpSRP54 and cpFtsY, respectively. cpSRP54 has a solvent exposed cysteine 198 

which can be mutated to serine to obtain cys-lite cpSRP54 without disrupting its interaction with 

cpFtsY (Figure 1.S1A); the remaining two cysteines in cpSRP54 are likely buried inside the 

folded protein, based on homology modeling with Ffh, and did not react significantly with 

fluorescent dyes in control experiments (Supplementary Figure 1.S1B). cpFtsY contains five 

native cysteines, all of which were replaced with serines. Cys-less cpFtsY was purified from 

inclusion bodies and refolded into the native structure. Refolded cys-less cpFtsY interacted with 

and stimulated cpSRP54’s GTPase activity with efficiencies within two-fold of that of wild-type 

cpFtsY (Supplementary Figure 1.S1C). 

 As the crystal structure of cpSRP54 or its complex with cpFtsY is not available, we 

constructed a homology model of the cpSRP54·cpFtsY complex based on superposition of the 

crystal structure of apo-cpFtsY onto that of T. aquaticus FtsY in complex with Ffh (Figure 

1.1A). On the basis of this model, single cysteines were introduced at solvent exposed positions 

and labeled with fluorescent dyes using thio-specific chemistry. In FRET experiments, a cysteine 

was engineered at residue 321 of cys-less cpFtsY and labeled with DACM as the donor 

fluorophore, and a cysteine was introduced at residue 234 of cys-lite cpSRP54 and labeled with 

BODIPY-FL as the acceptor dye (Figure 1.1A). Both probes are located at the N–G domain 

interface of the respective GTPases and are 30 Å apart as estimated from the homology model. 
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Significant FRET was observed upon assembly of the cpSRP54·cpFtsY complex in the presence 

of GTP (Figure 1.1B). At saturating protein concentrations and when complications from GTP 

hydrolysis were minimized (see below), the FRET efficiency in the cpSRP54·cpFtsY complex 

was 0.60 (Figure 1.2F). In addition, the cysteine at residue 234 of cys-lite cpSRP54 was labeled 

with an environmentally sensitive dye, acrylodan. Formation of the cpSRP54·cpFtsY complex 

with GTP induced a blue shift and a 30% increase in the fluorescence intensity of this dye 

(Figure 1.1C), providing an additional measurement of the cpSRP54–cpFtsY interaction. 

Fluorescently labeled cpSRP54 and cpFtsY interacted with and activated each other’s GTPase 

activity with rate constants within 2-fold of the wild-type proteins (Supplementary Figure 1.S1D 

and E). Further, both the FRET and fluorescence change of cpSRP54(234C)-acrylodan upon 

complex formation could be competed away by EDTA or unlabeled protein (Supplementary 

Figures 1.S2A and B). Thus, these fluorescence assays faithfully report on the kinetics and 

stability of the cpSRP54–cpFtsY interaction. 

 Two-Step Complex Assembly. Using the fluorescence assays, we characterized the 

kinetics and stability of the interaction between cpSRP54 and cpFtsY. These analyses, however, 

were complicated by the hydrolysis of GTP, which occurs quickly in the cpSRP54·cpFtsY 

complex and drives rapid disassembly of the GTPase complex. In the bacterial SRP and FtsY 

GTPases, this problem can be overcome by using the nonhydrolyzable GTP analogue GMPPNP, 

which provides a good mimic for GTP to support efficient assembly of a stable SRP·FtsY 

complex [18]. However as shown below (Figure 1.2F), GMPPNP does not provide an adequate 

mimic of GTP to support stable complex assembly between cpSRP54 and cpFtsY. To overcome 

this problem, we used the mutant GTPases, cpSRP54(A142W) or cpFtsY(A168W). The 

corresponding mutations in bacterial SRP and FtsY, Ffh(A144W) and FtsY(A335W), 
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respectively, specifically disrupted GTPase activation in the Ffh·FtsY complex without affecting 

rapid and stable complex assembly [17]. Similarly, both mutants in cpSRP54 and cpFtsY 

allowed a stable cpSRP54·cpFtsY complex to be efficiently assembled (Figures 1.3B and 1.4B), 

but specifically blocked GTP hydrolysis in the complex, and thus provided a reasonable estimate 

for the kinetic and thermodynamic stabilities of the wild-type cpSRP54·cpFtsY complex. 

 We determined the kinetics of complex assembly in the presence of GTP by following 

either the gain of FRET (Figure 1.2A) or the increase in fluorescence of acrylodan-labeled 

cpSRP54 (Figure 1.2B). Surprisingly, the complex assembly rate constant (kon) measured using 

FRET was over three-fold faster than that determined using cpSRP54(234C)-acrylodan (Figure 

1.2C). This difference was not caused by a larger deleterious effect of acrylodan labeling at 

cpSRP54(234C) on complex assembly, as cpSRP54(234C)-acrylodan exhibited comparable 

activity in the stimulated GTPase reaction to the cpSRP54 and cpFtsY labeled with the FRET 

dyes (compare Supplementary Figures 1.S1D and 1.S1E, ●). Instead, we reasoned that the 

difference in the observed complex assembly rates arises from the fact that the acrylodan probe 

reports on a local conformational change surrounding residue 234 that accompanies complex 

assembly, whereas FRET directly reports on approximation of distance between cpSRP54 and 

cpFtsY as soon as a complex is formed. This raised the possibility that assembly of the stable 

cpSRP54–cpFtsY complex occurs in two steps, with the initial formation of an intermediate 

detected by FRET followed by conformational rearrangement to form a more stable, final 

complex detected specifically by cpSRP54(234C)-acrylodan. 

 To provide additional evidence for this model, we analyzed the concentration dependence 

of the observed complex assembly rates using cpSRP54(234C)-acrylodan. If formation of a 

stable complex occurred in a single bimolecular association, then the observed complex 
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assembly rate constants should increase linearly with increasing protein concentration. In 

contrast, if additional steps were required for stable complex assembly, deviations from linearity 

would be expected. Indeed, the observed complex assembly rate constant exhibited a hyperbolic 

dependence on cpFtsY concentration and plateaued at 6 s–1 with saturating cpFtsY (Figure 1.2D). 

Control experiments showed that this plateau was unlikely to be caused by protein aggregation or 

inactivation at high concentrations (Supplementary Figure 1.S1E). These results are consistent 

with the formation of a transient intermediate with a Kd value of 30 µM during complex 

assembly (Figure 1.2E), such that complex formation is rate-limited by the bimolecular 

cpSRP54–cpFtsY association at low protein concentrations but becomes rate-limited by a 

unimolecular rearrangement from this intermediate at saturating protein concentrations. 

Together, these results strongly suggest that assembly of the cpSRP54·cpFtsY complex requires 

at least two steps. 

 We further determined the kinetic and thermodynamic stabilities of the cpSRP54·cpFtsY 

complex. The affinity of the cpSRP54·cpFtsY complex was measured by equilibrium titrations 

using mutant cpSRP54(A142W) or cpFtsY(A168W), as rapid GTP hydrolysis from the wild-type 

complex will artificially raise the observed equilibrium dissociation constant (Kd) (Figure 1.2F vs 

Supplementary Figure 1.S3A, ●). These analyses yielded a Kd value of 300–500 nM using both 

the FRET assay and acrylodan-labeled cpSRP54 (Figure 1.2F and Supplementary Figure 1.S3B 

and C). In addition, pulse-chase experiments gave a dissociation rate constant of 0.03 s–1 for the 

cpSRP54(A142W)·cpFtsY complex (Figure 1.2G). In conjunction with the association rate 

constant measured above (Figure 1.2C), this yielded a Kd value of 200 nM for this complex, 

consistent with the value determined from equilibrium titrations. 
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 IBD Loops Play Essential Roles in Both Complex Assembly and GTPase Activation. 

To probe the molecular determinants essential for the interaction between cpSRP54 and cpFtsY, 

we generated a collection of site-directed mutant GTPases that map to the putative interaction 

surface of cpSRP54 and cpFtsY based on structural homology, with an emphasis on the 

universally conserved IBD loops (Figure 1.1A, magenta, and Supplementary Tables 1.S1 and 

1.S2). Control experiments showed that the basal GTP binding and hydrolysis activity 

(Supplementary Tables 1.S3 and 1.S4, respectively) of the individual cpFtsY and cpSRP54 

mutants were comparable to that of the wild-type proteins, ensuring that defects did not arise 

from disruption of the global structure of the mutant proteins. We then screened the mutants by 

monitoring the reciprocally stimulated GTPase reaction between cpSRP54 and cpFtsY (Figures 

1.3A,B and 1.4A,B). As demonstrated above, the complex assembly rate constants measured 

directly using the fluorescence assays agreed well with the value of kcat/Km (3 × 105 M–1 s–1) in 

the stimulated GTPase reaction; further, dissociation of the GTP•cpSRP54·cpFtsY•GTP complex 

(0.030 s–1) is at least 20-fold slower than GTP hydrolysis from this complex (0.7 s–1). Both 

observations indicate that in the stimulated GTPase reaction the value of kcat/Km is rate-limited 

by, and hence reports on, the rate of assembly of a stable cpSRP54–cpFtsY complex, whereas the 

maximal rate constant kcat reports on either GTP hydrolysis from the complex or a rate-limiting 

rearrangement that activates the chemical step. 

 The vast majority of mutants exhibited defects in this reaction (Table 1.1 and 

Supplementary Tables 1.S1 and 1.S2). Among them, perturbations of the IBD loops produced 

the most deleterious effect on the reciprocally stimulated GTPase reaction between cpSRP54 and 

cpFtsY (Table 1.1), consistent with their high evolutionary conservation. Inspection of the 

concentration dependence of the stimulated GTPase reactions further suggested that the majority 
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of these mutants have defects in both the complex assembly and GTP hydrolysis steps. For 

example, the cpFtsY(A169W) and the corresponding cpSRP54(A143W) mutations not only 

reduced the GTPase rate from the complex by over 50-fold (Figures 1.3A and 1.4A and Table 

1.1, kcat), but a significantly higher concentration of mutant proteins were required to reach 

saturation (Figures 1.3A and 1.4A, insets and Table 1.1, Km). Only two mutations, 

cpFtsY(A168W) and cpSRP54(A142W), were exceptions: both mutants reduced the maximal 

rate of GTP hydrolysis by 15–50-fold (Figures 1.3B and 1.4B and Table 1.1, kcat), but saturation 

in GTPase rate could be reached at low protein concentrations, suggesting that efficient complex 

assembly could occur in these mutants (Figures 1.3B and 1.4B, insets, and Table 1.1, Km). 

 To further dissect the contribution of each residue to complex assembly and/or GTPase 

activation, we used a well-established inhibition assay (Figures 1.3C and 1.4C) [17]. For 

example, if a mutant cpFtsY could bind cpSRP54 but failed to efficiently hydrolyze GTP, then it 

would compete with wild-type cpFtsY in binding and inhibit its stimulated GTPase reaction with 

cpSRP54. Under subsaturating concentrations of the wild-type cpSRP54 and cpFtsY, the 

inhibition constant Ki obtained from this assay represents the dissociation constant between the 

mutant and its partner GTPase. In agreement with their kinetic parameters from the stimulated 

GTPase reactions, cpFtsY(A168W) and cpSRP54(A142W) exhibited strong competitive binding 

to their respective partner GTPases, with inhibition constants below 0.2 µM (Figures 1.3C and 

1.4C, open circles, and Table 1.1, Ki). In contrast, all the other deleterious mutations in the IBD 

loop severely impaired complex formation (Table 1.1). For example, cpFtsY(A169W) and 

cpSRP54(A143W) could not act as competitive inhibitors in the inhibition assay and exhibited Ki 

values over 50 µM (Figures 1.3C and 1.4C, ●). 
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 To independently corroborate the results from the inhibition assay, we used gel filtration 

and fluorescence analyses to independently evaluate the mutational effects on the stability and/or 

conformational changes of the complex. In gel filtration analyses, which qualitatively assess the 

ability of the mutant proteins to form a kinetically stable complex [29,30], cpSRP54(A142W) 

and cpFtsY(A168W) assembled complexes with efficiencies within two-fold of the wild-type 

proteins (Figures 1.3D and 1.4E, red vs black). On the other hand, all the other deleterious 

mutations in the IBD loops (residues D163, R166, A169 of cpFtsY and D137, R140, A143 of 

cpSRP54) showed no or little detectable complex formation (Figures 1.3D and 1.4E). Similarly, 

fluorescence assays showed that mutant cpSRP54(A142W) exhibited the same complex 

assembly rate constant as wild-type cpSPR54 (Figure 1.4D), and both cpSRP54(A142W) and 

cpFtsY(A168W) assembled stable complexes with their binding partners (Supplementary Figure 

S3B and C). In contrast, complex formation could not be detected for mutants cpSRP54(D137A) 

and cpSRP54(A169W) using the fluorescence assay (data not shown). Together, these results 

strongly suggest that the IBD loops, which provide key catalytic motifs for GTPase activation, 

are also intimately involved in the assembly of the cpSRP54–cpFtsY complex. 

 Two additional lines of evidence support this notion and showed that in the 

cpSRP54·cpFtsY complex interactions at the catalytic active site are tightly coupled to assembly 

of the GTPase complex. First, several mutations in the IBD loop of cpSRP54 caused extensive 

blue shift and increase in fluorescence intensity of the acrylodan labeled at cpSRP54(234C) 

compared to that of wild-type cpSRP54 (Figure 1.4F). This indicates that perturbation of the IBD 

loop effects a change in the local environment at the NG-domain interface of cpSRP54, a region 

critical for efficient complex assembly (Supplementary Table S1 and ref [30]). Second, 

replacement of the β,γ-bridging oxygen of GTP strongly reduced both the rate (data not shown) 
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and the stability of the complex (Figure 1.2F), and GMPPNP could not induce the change in the 

fluorescence of acrylodan-labeled cpSRP54(234C) upon complex formation (data not shown). 

Thus, interactions at sites critical for the chemical reaction are also integrally involved in the 

complex assembly process. 

 Defects in Complex Formation and GTPase Activation Block LHCP Targeting. To 

assess the contribution of the individual steps in cpSRP54 and cpFtsY’s GTPase cycle to the 

protein targeting reaction, we tested the effects of the mutant cpFtsY and cpSRP54 GTPases on 

the targeting and translocation of LHCP. The overall efficiency of LHCP targeting and 

integration was analyzed based on protease protection of LHCP upon its proper integration into 

salt-washed thylakoid membranes (see Materials and Methods). In vitro translocation reached 

completion after 10 min and the reaction saturated at cpFtsY concentrations above 150 nM 

(Supplementary Figures S5A and S5B, respectively). On the basis of these observations, a 

concentration of 500 nM and a time point of 10 min were used to test the effect of mutant 

proteins on the efficiency of the targeting reaction. 

 In general, a significant defect in LHCP integration was observed only with a >10-fold 

reduction in the individual steps of cpSRP54 and cpFtsY’s GTPase cycle (complex formation or 

GTPase activation). This is analogous to observations in the cotranslational protein targeting 

reaction carried out by bacterial SRP and FtsY [31] and suggests that the targeting of LHCP by 

cpSRP and cpFtsY is not the major rate-limiting step in the translocation/integration assay. 

Nevertheless, this assay revealed moderate to strong defects in LHCP integration for most of the 

mutant GTPases (Figures 1.5A,B and Supplementary Figure S5C). The two mutants that 

specifically block GTPase activation, cpSRP54(A142W) and cpFtsY(A168W), reduced 

translocation efficiency 2-fold (Figure 1.5A,B), suggesting that activated GTP hydrolysis in the 
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cpSRP54·cpFtsY complex is not crucial but does modulate the efficiency of the targeting 

reaction. In comparison, mutant GTPases that also impair complex assembly, such as 

cpFtsY(A169W) and cpSRP54(A143W), showed stronger defects in LHCP targeting and 

translocation (Figure 1.5A,B). The reduction in translocation efficiency of the various GTPase 

mutants correlated with their values of kcat/Km in the GTPase assay, an indicator for the 

efficiency of complex assembly (Figure 1.5C,D). Collectively, these results demonstrate that 

efficient assembly of the cpSRP54–cpFtsY complex is crucial for the targeting and integration of 

LHCP, whereas GTPase activation and/or GTP hydrolysis plays a modulatory role to help 

enhance the efficiency of targeting. 
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Discussion 

 The interaction between the SRP and SR GTPases delivers cargo proteins to a target 

membrane and hence plays a crucial role in the proper localization of membrane proteins. During 

the interaction of the bacterial SRP and SR, formation of a stable complex is a two-step process 

that requires initial formation of a transient “early” intermediate, followed by a slow 

rearrangement of this intermediate to a stable complex (Figure 1.6, black line, steps 1 and 2) 

[18]. Here, real-time fluorescence analyses strongly suggest that a two-step assembly process 

also occurs during the interaction between cpSRP54 and cpFtsY. First, the complex assembly 

rate constant measured by acrylodan, which detects a local rearrangement at the NG-domain 

interface accompanying complex formation, is significantly slower than that reported by the 

FRET probes, which are less sensitive to the conformational state of the complex. Further, the 

observed complex assembly rate constant exhibits a hyperbolic, instead of linear, dependence on 

protein concentration. Both observations are indicative of the presence of an intermediate during 

complex assembly (Figures 1.2F and 1.6, red lines). Compared to the bacterial SRP and FtsY, the 

assembly intermediate formed by the chloroplast GTPases is less stable (Kd  30 µM compared to 

4–8 µM in the bacterial complex [18]) but rearranges to the stable complex much faster (k1  6 s–1 

compared to 0.6–1 s–1 for the bacterial complex [18]) (Figure 1.6, red vs black lines, step 2). 

These observations suggest that the transient intermediate assembled by the chloroplast GTPases 

is more productive and possibly requires less extensive rearrangements to attain the final 

complex than their bacterial homologues. This is consistent with our previous observation that 

cpFtsY is preorganized into a conformation more conducive to stable complex assembly than the 

bacterial FtsY [26,32]. 
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 An important feature of the bacterial SRP system is that movement of the IBD loops, 

which activates GTP hydrolysis, can be conceptually and experimentally uncoupled from the 

rearrangements, in the rest of the protein, that mediate stable complex assembly [17,22]. 

Numerous mutations in the IBD loops result in specific inhibition of GTPase activation, without 

significantly disrupting formation of the complex [17]. Given these observations, it was 

surprising to find that the vast majority of mutations in the IBD loops of cpSRP54 and cpFtsY 

severely compromised assembly of the GTPase complex. This raises the possibility that in the 

cpSRP54·cpFtsY complex these two steps are more tightly coupled, as the catalytic active sites 

are also intimately involved in the assembly of the complex. Supporting this notion is the 

observation that conservative perturbations at the site of chemical transformation, such as 

replacement of the β, γ-bridging oxygen of GTP with −NH–, severely disrupted complex 

stability and assembly rate, in contrast to the bacterial SRP with which GMPPNP specifically 

inhibits GTP hydrolysis [31]. Further, mutations of the IBD loops induced large changes in the 

fluorescence of an acrylodan dye over 30 Å away at the NG-domain interface, suggesting that 

the GTPase active sites are intimately linked to sites crucial for complex assembly. Taken 

together, these observations suggest that during the interaction between cpSRP54 and cpFtsY the 

complex formation and GTPase activation steps are highly coupled, in contrast to the cytosolic 

SRP·FtsY complex in which these processes occur in two distinct molecular steps (Figure 1.6, 

step 3, black vs red lines). 

 What gives rise to this difference? To address this question, one might begin by reflecting 

on the role of the multiple conformational steps during the assembly and activation of the 

cytosolic SRP·FtsY complex. Uncoupling complex formation and GTPase activation allows each 

of these steps to provide an independent fidelity checkpoint, thus providing the SRP multiple 



 24

opportunities to reject the incorrect cargos [19]. This is crucial for the bacterial SRP to achieve a 

high fidelity of substrate selection, as it has to recognize highly divergent signal sequences and to 

distinguish between the correct and incorrect cargos based on subtle variations [20]. We 

speculate that the absence of a similar challenge in attaining specific substrate selection may 

underlie the different behavior of the chloroplast GTPases. In contrast to the cytosolic SRP, the 

cpSRP is primarily dedicated to a highly conserved LHC family of proteins, and the cpSRP43 

subunit can provide highly specific recognition of these substrates [14,15,23]. Although 

cpSRP54 also participates in the cotranslational targeting of several membrane proteins (such as 

D1 protein) [33], the number and diversity of these substrates are much more limited than those 

handled by the cytosolic SRP. It could therefore be envisioned that the chloroplast SRP system 

can afford to forego the GTPase activation step as an additional regulatory point. 

 Consistent with this notion, GTPase activation plays a less essential role in protein 

targeting by the cpSRP than the cytosolic SRP pathway. In the cytosolic SRP pathway, mutant 

GTPases that specifically block the activation of GTP hydrolysis severely inhibit protein 

targeting at late stages [31]. Thus, the molecular rearrangements that lead to GTPase activation, 

notably the movement of the IBD loops, play an essential role in the unloading of cargo from the 

SRP and the initiation of protein translocation. In contrast, mutations that specifically inhibit 

GTPase activation in the cpSRP54·cpFtsY complex resulted in only a 2-fold reduction in the 

targeting of LHCP. Although in previous reports, the observation that GMPPNP inhibited LHCP 

targeting has implicated a crucial role of GTP hydrolysis for LHCP targeting and integration 

[24,25], our findings here suggest that these defects could instead arise from the failure of 

GMPPNP to support efficient and stable cpSRP54–cpFtsY complex assembly. Indeed, mutant 

GTPases that impair complex assembly between cpSRP54 and cpFtsY led to much larger 
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deleterious effects on LHCP targeting, and the defects in their targeting efficiency correlated 

with their defects in complex assembly. Thus, GTPase activation or GTP hydrolysis plays a 

modulatory role in enhancing the targeting efficiency of LHCP but is not as crucial as is the case 

with the cytosolic SRP. The ability of cpSRP43 to directly interact with the Alb3 translocase and 

thus regulate substrate binding and release [24,34] might allow the cpSRP pathway to bypass the 

use of GTPase activation as a critical mechanism to drive the unloading of cargo from the 

cpSRP; this possibility remains to be tested. 

 Collectively, these results suggest a more streamlined cpSRP54–cpFtsY interaction cycle 

compared to their bacterial homologues (Figure 1.6), which might be a consequence of their 

adaptation to targeting a different set of substrate proteins. This pair of GTPases is primed to 

efficiently form a complex and to quickly turn over the complex (through rapid GTP hydrolysis), 

bypassing conformational steps that serve as important fidelity checkpoints in the bacterial SRP 

pathway. These features could allow the cpSRP pathway to cater to the LHC family of proteins, 

whose sequence conservation allows specific substrate selection to be more easily achieved, but 

whose high abundance demands a highly efficient targeting pathway with rapid turnover. In this 

light, one might further speculate that the complex series of dynamic conformational changes 

observed for the bacterial SRP·FtsY GTPase complex could be fine-tuned to allow efficient 

targeting only in response to the correct signal sequences while minimizing the targeting of 

empty ribosomes and incorrect cargo proteins. The divergent properties of the bacterial and 

chloroplast SRP and FtsY GTPases might reflect different mechanisms to achieve the balance 

between efficiency and selectivity as the two pathways adapt to distinct challenges posed by their 

substrate proteins. 
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Table 1.1 Summary of equilibrium and kinetic properties of cpSRP54 and cpFtsY IBD-loop 
mutants 
 

 

aValues in parenthesis are relative to that of the wild-type proteins, which is normalized to 1.  
ND, not determined. bApparent Kd values were obtained from equilibrium titrations using FRET 
in Figure 2F and Supplementary Figure S3. cApparent Kd values were obtained from equilibrium 
titrations using acrylodan-labeled cpSRP54 in Supplementary Figures S3. dKd obtained from 
koff/kon.

mutations kcat (min-1) Km (µM) kcat/Km (µM-1min-1) Ki (µM) Kd (µM) 

WT  27 ± 3             (1)a    1.6 ± 0.3      (1) 18 ± 3                (1)  0.80b 

A142W cpSRP54 

A168W cpFtsY 

  0.50 ± 0.34  (0.02) 

  1.8   ± 0.1    (0.07) 

   0.24 ± 0.17 (0.2) 

   0.27 ± 0.02 (0.2) 

  2.8 ± 1.7          (0.2) 

  6.8 ± 0.6          (0.4) 

0.11 ± 0.09 

0.23 ± 0.15 

0.44c, 0.16d 

0.523 

D137A cpSRP54 

D163A cpFtsY  

R140A cpSRP54 

R166A cpFtsY 

 

A143L cpSRP54 

A143W cpSRP54 

A169L cpFtsY 

A169W cpFtsY 

 

F165A cpFtsY 

A167W cpFtsY 

  1.0 ± 0.5      (0.04) 

  1.5 ± 0.4      (0.05) 

  3.4 ± 0.2      (0.1) 

  4.3 ± 0.8      (0.2) 

 

  0.23 ± 0.05 (0.008) 

  0.52 ± 0.07 (0.02) 

  0.32 ± 0.10 (0.01) 

  0.36 ± 0.15 (0.01) 

 

28 ± 3           (1) 

11                 (0.4) 
 

   5.1 ± 0.1      (3) 

   5.0 ± 0.1      (3) 

   6.3 ± 1.2      (4) 

   5.1 ± 1.7      (3) 

 

 20 ± 1          (13) 

 15 ± 7          (10) 

 15 ± 2          (10) 

 13 ± 5            (8) 

 

0.8 ± 0.3        (0.5) 

7.4                 (5) 
 

  0.19 ± 0.09     (0.01) 

  0.34 ± 0.06     (0.02) 

  0.54 ± 0.08     (0.03) 

  0.89 ± 0.18     (0.05) 

 

  0.012 ± 0.003 (0.001) 

  0.037 ± 0.012 (0.002) 

  0.031 ± 0.019 (0.002) 

  0.028 ± 0.001 (0.002) 

 

38 ± 10             (2) 

1.5                    (0.1) 
 

2.0 ± 1.3 

ND 

0.51 ± 0.20 

3.2 ± 1.4 

 

> 40 

> 40 

> 40 

> 40 

 

ND 

ND 
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Figure 1.1 Fluorescence assays to report on complex assembly between cpSRP54 and cpFtsY. 
(A) The positions of the FRET donor (yellow sphere) and acceptor (red sphere) probes in cpFtsY 
and cpSRP54, respectively, mapped onto a homology model of the complex generated by 
superimposing the crystal structure of cpFtsY (2OG2) onto that of the T. aquaticus Ffh·FtsY NG 
domain complex (1RJ9). The same residue in cpSRP54 was also used for labeling with 
acrylodan. The IBD loops in cpSRP54 and cpFtsY are highlighted in magenta. (B) Fluorescence 
emission spectra of donor-labeled cpFtsY (0.5 µM, green), acceptor-labeled cpSRP54 (2 µM, 
blue), and their complex formed with 2 mM GTP (red). (C) Fluorescence emission spectra of 
acrylodan-labeled cpSRP54(234C) in the absence (green) and presence (red) of cpFtsY (2 µM).
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Figure 1.2 Thermodynamic and kinetics for formation of the cpSRP54·cpFtsY complex. (A) 
Complex assembly between 0.5 µM cpFtsY(321C)-DACM and 2 µM cpSRP54(234C)-
BODIPY-FL, measured in a stopped-flow apparatus as described in Materials and Methods. 
Single-exponential fit of the data gave a kobs value of 1.53 s-1. (B) Complex assembly between 
0.5 µM cpSRP54(234C)-acrylodan and 2 µM cpFtsY, measured in a stopped-flow apparatus as 
described in Materials and Methods. Single-exponential fit of the data gave a kobs value of 1.02  
s-1. (C) Association rate constants for cpSRP54–cpFtsY complex formation with GTP measured 
by FRET (●) and acrylodan fluorescence (�). Linear fits of the data gave complex assembly rate 
constants (kon) of 5 × 105 and 1.57 × 105M-1s-1 with FRET and acrylodan fluorescence, 
respectively. (D) A hyperbolic dependence of complex assembly rate constants on cpFtsY 
concentration. The data were fit to eq 4 in the Materials and Methods, which gave a Kd 

value of 
30 µM and a rate constant of 6 s-1 at saturating cpFtsY. (E) A two-step schematic of cpSRP54–
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cpFtsY complex assembly. (F) Equilibrium titration of the cpSRP54·cpFtsY complex formed 
with GTP (●) or GMPPNP (�) measured by FRET. Complex formation with GTP was carried 
out using mutant cpFtsY(A168W) to minimize GTP hydrolysis. The data were fit to eq 2, which 
gave Kd values of 0.35 µM with GTP and 7 µM with GMPPNP. (G) Dissociation kinetics of the 
cpSRP54(234C, A142W)·cpFtsY complex, measured as described in the Materials and Methods. 
Single-exponential fit of the data gave an apparent dissociation rate constant of 0.038 s-1. After 
subtracting the GTP hydrolysis rate from this complex (0.008 s-1), the corrected dissociation rate 
constant was 0.030 s-1. 
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Figure 1.3 Effects of cpFtsY mutations on its stimulated GTPase reaction with cpSRP54. (A, B) 
The stimulated GTPase reactions of wild-type cpFtsY (�) and mutants cpFtsY(A169W) (part A, 
● and inset) and cpFtsY(A168W) (part B, ● and inset). (C) Inhibition assays for determining the 
affinities of mutants cpFtsY(A168W) (�) and cpFtsY(A169W) (●) for cpSRP54. The figures 
show representative data, and Table 1 summarizes the average values from two or more 
measurements. (D) Gel filtration analyses of stable complex formation of cpSRP54 with wild-
type cpFtsY (black) and mutants cpFtsY D163A (blue), R166A (green), A168W (red), A169L 
(magenta), and A169W (cyan). 
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Figure 1.4 Effects of cpSRP54 mutations on its stimulated GTPase reaction with cpFtsY. (A, B) 
The stimulated GTPase reactions of cpFtsY with wild-type cpSRP54 (�) and mutants 
cpSRP54(A143W) (part A, ● and inset) and cpSRP54(A142W) (part B, ● and inset). (C) 
Inhibition assays for determining the affinities of mutants cpSRP54(A142W) (�) and 
cpSRP54(A143W) (●) for cpFtsY. The figures show representative data, and Table 1 
summarizes the average values from two or more measurements. (D) Mutant cpSRP54(A142W) 
(�) exhibits the same GTP-dependent complex assembly kinetics as wild-type cpSRP54 (●), 
measured using acrylodan-labeled cpSRP54(234C) as described in the Materials and Methods. 
Linear fits of data gave complex formation rate constants of 1.9 × 105 and 2.3 × 105 M–1 s–1 for 
mutant and wild-type cpSRP54, respectively. (E) Gel filtration analyses of stable complex 
formation of cpFtsY with wild-type cpSRP54 (black) and mutants cpSRP54 D137A (blue), 
R140A (green), A142W (red), A143L (magenta), and A143W (cyan). (F) Fluorescence emission 
spectra of the acrylodan labeled at cpSRP54(234C) in the wild-type protein (black) compared 
with mutants cpSRP54 D137A (blue), A142W (red), and A143W (cyan).  
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Figure 1.5 Effect of mutant GTPases on the targeting and integration of LHCP into thylakoid 
membranes. LHCP-dp1 and -dp2 denote the two 18.5 and 21 kDa protease-protected fragments 
that represent LHCP successfully targeted and integrated into the thylakoid membrane. Pre-
LHCP was added to the reaction after the protease treatment and served as a loading control. (A, 
B) LHCP integration efficiency by the individual cpFtsY and cpSRP54 mutants, respectively. 
The top panels show representative data, and the lower panels show quantification of two or 
more measurements. All the data were normalized to that of the wild-type protein, which was set 
to 100%. (C, D) Correlation of the translocation defect of cpFtsY (part C) and cpSRP54 (part D) 
mutants with their kcat/Km values. 
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Figure 1.6 Free energy profile for the GTP-dependent binding and activation cycles between the 
SRP and SR GTPases from bacteria (black) or chloroplast (red). The values for the E. coli 
GTPases were obtained from refs [19] and [27]. A standard state of 1 µM was used. The 
activation free energies were calculated from the observed association and dissociation rate 
constants using ∆G‡ = –RT ln(kh/kBT), where R = 1.987 cal K–1 mol–1, Planck constant h = 1.58 
× 10–37 kcal s–1, Boltzmann constant kB = 3.3 × 10–27 kcal s, and T = 298 K. Equilibrium 
stabilities of complexes were calculated using ∆G = ∆G° – RT ln(K/K°). 
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Supplementary Tables and Figures 
 
Supplementary Table 1.S1 Summary of different classes of mutational effectsa  
 

Mutational Effect cpFtsY Mutants cpSRP54 Mutants Location 

I – Complex formation defective G288Wb G255W NG interface 
 

II – GTPase activation defective A168W 
 

A142W 
 

IBD loop 
 

III – Both steps defective N135A 
N135W 
D163A 
R166A 
A169L 
A169W 
 

 
Q109W 
D137A 
R140A 
A143L 
A143W 
G256W 

Dimer interface 
Dimer interface 
IBD loop 
IBD loop 
IBD loop 
IBD loop 
NG interface 

Neutral Mutations F165A 
A167W 
R220A 
G288A 
G289A 
G289W 
 

 
 
R193W 
 
 
 
Q109A 

IBD loop 
IBD loop 
Dimer interface 
NG interface 
NG interface 
NG interface 
Dimer interface 

 
aMutations of homologous residues in cpSRP54 and cpFtsY are presented in the same 
row, except for cpSRP54(Q109A).  
bkinetic parameters from Jaru-Ampornpan et al. [30]
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Supplementary Table 1.S2 Kinetic parameters of additional mutants outside of the IBD 
loop 
 

Mutants kcat (min-1) KM (µM) kcat/KM (µM-1min-1) 

WT 27 ± 3       (1) 1.6 ± 0.3 (1) 18 ± 3         (1) 
    
cpFtsY    
N135A 
N135W 
R220A 
G288A 
G289A 
G289W 

  5.9 ± 2.1 (0.2) 
  8.0 ± 1.2 (0.3) 
26             (1) 
23             (0.9) 
24 ± 1       (0.9) 
29 ± 9       (1) 

4.3 ± 0.9 (3) 
2.7 ± 0.9 (2) 
2.2          (1) 
1.1          (0.7) 
1.1 ± 0.2 (0.7) 
2.5 ± 1.2 (2) 

1.4 ± 0.2     (0.1) 
3.3 ± 1.2     (0.2) 
12               (0.6) 
22               (1) 
23 ± 3         (1) 
14 ± 10       (0.8) 

    
cpSRP54     
Q109A 
Q109W 
R193W 
G255Wa 
G256Wa 

16             (0.6) 
  7.7          (0.3) 
18             (0.7) 
38 ± 3       (1) 
  6.5 ± 0.2 (0.2) 

2.0          (1) 
4.2          (3) 
2.8          (2) 
41 ± 4     (26) 
33 ± 6     (21) 

8.2              (0.5) 
1.9              (0.1) 
6.3              (0.4) 
0.93 ± 0.15 (0.05) 
0.20 ± 0.03 (0.01) 

 

akcat and Km values for mutants that are severely compromised in complex formation are 
determined by extrapolation, as saturation of reaction was not reached up to 50 µM of 
mutant protein. 
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Supplementary Table 1.S3 Mant-GTP binding affinity to the individual mutant 
GTPases a 
 

 
 
 
 

 
aMant-GTP (Jena Bioscience) binding assay was performed as described in Jaru-
Ampornpan et al. [26].

GTPase constructs Kd (µM) 

cpFtsY  
WT   1.8 
D163A   1.2 
R166A   3.1 
A168W   3.1 
A169L   ND 
A169W   3.3 
G288W  0.92 
  
cpSRP54 
WT   6.7 
D137A   2.6 
R140A            58 
A142W   2.6 
A143L            68 
A143W   3.5 
G255W   8.2 
G256W            35 
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Supplementary Table 1.S4 Basal GTPase activity of cpFtsY mutants 
 

cpFtsY construct kcat (min-1) Km (µM) 

WT 
N135A 
N135W 
R166A 
D163A 
F165A 
A167W 
A168W 
A169L 
A169W 
R220A 
G288A 
G288W 
G289A 
G289W 

0.0039 ± 0.0009 
0.0077 ± 0.0022 
0.0020 ± 0.0002 
0.0028 ± 0.0003 
0.011 
0.0124 ± 0.0096 
0.0032 
0.0023 ± 0.0002 
0.0038 
0.0088 ± 0.0029 
0.0050 ± 0.0008 
0.0031 ± 0.0002 
0.0039 ± 0.0002 
0.0029 ± 0.0006 
0.0030 ± 0.0006 

1.1 ± 0.4 
0.34 ± 0.04 
1.3 ±1.1 
1.9 ± 0.1 
0.44 
1.2 ± 0.3 
1.9 
1.1 ± 0.6 
2.1 
1.9 ± 0.9 
1.6 ± 0.3 
0.58 ± 0.18 
0.34 ± 0.16 
0.71 ± 0.41 
0.40 ± 0.25 
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Supplementary Figure 1.S1 Cys-lite cpSRP54 and cys-less cpFtsY and their 
fluorescently labeled versions are enzymatically active.  All GTPase assays were 
performed as described in the Methods,.  cpSRP54(234C) refers to the cys-lite construct 
with a cysteine mutation at position 234 on cpSRP54.  cpFtsY(321C) refers to the cys-
less construct with a cysteine mutation at position 321 on cpFtsY.  (A) The reciprocally 
stimulated GTPase reaction of cpSRP54 WT (�) or cpSRP54 cys-lite (●) with cpFtsY. 
Fits of the data to Eq 5 gave kcat  values of 56 and 54 min-1, respectively.  (B) cpSRP54 
cys-lite and cpSRP54(C234) were labeled with BODIPY-FL for 2hrs and loaded on a 
10% SDS-PAGE gel. (C) The stimulated GTPase reaction of cpSRP54 with cpFtsY (�) 
or cys-less cpFtsY (●). Fits of the data to Eq 5 gave kcat values of 56 and 39 min-1, 
respectively.  (D) The stimulated GTPase reaction of cpFtsY with cpSRP54 (�), or of 
cpFtsY(321C)-DACM  with cpSRP54(234C)-BODIPY-FL (●).  Fits of the data to Eq 5 
gave kcat values of 39 and 20 min-1, respectively.  (E) The reciprocally stimulated GTPase 
reaction of cys-lite cpSRP54 (�) or cpSRP54(C234)-acrylodan (●) with cpFtsY, which 
gave kcat values of 51 and 43 min-1, respectively.   
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Supplementary Figure 1.S2 FRET and acrylodan fluorescence signals from 
cpSRP54•cpFtsY complex could be competed away by EDTA or unlabeled cpSRP54. 
(A) Fluorescence emission spectra of cpFtsY(321C)-DACM (0.5 µM) in the absence 
(green) and presence of 2 µM cpSRP54(234C)-BODIPY-FL, with (blue) or without (red) 
10 mM EDTA as the chase.  Complex assembly was carried out in 2 mM GTP. (B) 
Acrylodan fluorescence increase upon formation of the cpSRP54•cpFtsY complex (green 
vs. red) could be chased by a 20-fold excess of unlabeled cpSRP54 (blue). Complex 
formation was carried out using 0.5 µM cpSRP54(234C)-acrylodan, 2 µM cpFtsY, and 2 
mM GTP. 
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Supplementary Figure 1.S3 Equilibrium titrations of the cpSRP54•cpFtsY complex in 
GTP using different fluorescence assays.  (A) Complex assembly measured by FRET, 
using wildtype cpSRP54 and cpFtsY. (B) Complex assembly measured using 
cpSRP54(234C)-acrylodan and cpFtsY(A168W).  (C) Complex assembly measured using 
cpSRP54(234C, A142W)-acrylodan and cpFtsY. The data were fit to Eqs. 1 or 2 in the 
Methods, and the Kd values are reported in Table 1.1.
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Supplementary Figure 1.S4 Defects of additional cpSRP54 and cpFtsY IBD loop mutants in 
complex formation and GTPase activation, measured by the stimulated GTPase reaction.  (A, B) 
The stimulated GTPase reactions of wildtype cpSRP54 (�), and mutants cpSRP54(D137A) (part 
A, ●)  and cpSRP54(R140A) (part B, ●).  (C, D) The stimulated GTPase reactions of wildtype 
cpFtsY (�), and mutants cpFtsY(D163A) (part C, ●)  and cpFtsY(R166A) (part D, ●).  The 
figures show representative data, and Table 1.1 summarizes the average values from two or more 
measurements.
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Supplementary Figure 1.S5 The effects of additional cpSRP54 and cpFtsY mutations on LHCP 
targeting and integration.  (A,B) Time- (part A) and cpFtsY concentration- (part B) dependent 
targeting and translocation of LHCP, carried out as described in Methods. (C) Integration 
efficiencies of additional cpFtsY (black bars) and cpSRP54 (grey bars) mutants.  
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Chapter 2 

Mechanism of an ATP-Independent Protein 

Disaggregase. 

Part I. Structure of a Membrane Protein Aggregate 

Reveals a Mechanism of Recognition by Its Chaperone 

A version of this chapter has been published as 

Nguyen, T.X., Jaru-Ampornpan, P., Lam, V.Q., Cao, P., Piszkiewicz, S., Hess, S., and Shan, S. 
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Abstract 

 Protein aggregation is detrimental to the maintenance of proper protein homeostasis in all 

cells. To overcome this problem, cells have evolved a network of molecular chaperones to 

prevent protein aggregation and even reverse existing protein aggregates. The most extensively 

studied ‘disaggregase’ systems are ATP-driven macromolecular machines. Recently, we reported 

an alternative ‘disaggregase’ system, in which the 38-kDa subunit of chloroplast Signal 

Recognition Particle (cpSRP43) efficiently reverses the aggregation of its substrates, the light-

harvesting chlorophyll a/b-binding (LHC) proteins, in the absence of external energy input. To 

understand the molecular mechanism of this novel activity, here we used biophysical and 

biochemical methods to characterize the structure and nature of LHC protein aggregates. We 

show that LHC proteins form micellar, disc-shaped aggregates that are kinetically stable and 

detergent-resistant. Despite their non-amyloidal nature, the LHC aggregates have a defined 

global organization, displaying the chaperone recognition motif on their solvent-accessible 

surfaces. These findings suggest an attractive mechanism for recognition of the LHC aggregate 

by cpSRP43 and provide important constraints to define the capability of cpSRP43’s 

disaggregase activity. 
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Introduction 

 The proper folding of proteins into their native structures is essential for the function and 

survival of cells. However, environmental stress, molecular crowding, and potential exposure of 

hydrophobic regions of proteins during their biogenesis [1-3] pose challenges to protein folding 

in vivo. In this setting, improper intra- or intermolecular interactions can lead to the aggregation 

of proteins. Aggregate formation is detrimental to cells as it removes functional proteins [4]. 

Moreover, some aggregates, both amorphous ones and those that lead to highly ordered amyloid 

fibrils, are toxic to cells and have been implicated in a variety of protein folding diseases [5-7].  

 Cells have evolved elaborate mechanisms to overcome the problems associated with 

protein aggregation. A specialized class of molecular chaperones, the ‘disaggregases’, can 

perform the energetically uphill process of reversing protein aggregation. Thus far, studies of 

disaggregases have been dominated by the Clp/Hsp100 family of AAA+ ATPases (ATPases 

associated with various cellular activities), such as ClpB in prokaryotes and Hsp104 in yeasts [3]. 

Both are large hexameric rings (>500 kDa) powered by mechanical forces from ATP hydrolysis 

and require additional co-chaperones to efficiently disassemble a variety of protein aggregates 

[8,9]. The complexity of these disaggregase systems and the promiscuity in their substrate 

selection has made it difficult to pinpoint their molecular mechanisms of action. Further, AAA+-

disaggregase machines were only found in prokaryote and yeast, and no homologues have been 

identified in higher eukaryotes outside of plastids and mitochondria. It is conceivable that 

alternative mechanisms of disaggregation, such as the recently described Hsp110-70-40 system 

[10,11] could be used in higher eukaryotes. An understanding of alternative disaggregase 

systems can shed light on novel principles and mechanisms by which cellular chaperones 

overcome protein aggregates. 
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Previously, we identified an efficient disaggregase activity in the chloroplast Signal Recognition 

Particle 43 subunit (cpSRP43). This provides an example in which a relatively small protein 

scaffold (38 kDa) can recognize and disrupt large protein aggregates in an ATP-independent 

mechanism [12], in contrast to the Clp/Hsp100 family of disaggregases. cpSRP43 is part of the 

protein targeting machinery, the cpSRP, that mediates the delivery of the light-harvesting 

chlorophyll a/b-binding (LHC) family of proteins to the thylakoid membrane [13-15]. The most 

abundant member of the LHC family, LHCP, comprises ~30% of the proteins on the thylakoid 

membrane and is arguably the most abundant membrane protein on earth. The sheer abundance 

of these proteins and their highly hydrophobic nature demands highly effective chaperones that 

protect them from aggregation before arrival at the membrane. In the chloroplast stroma, this 

chaperone function is provided by cpSRP43, which effectively protects LHC proteins from 

aggregation and can even reverse preformed large LHC protein aggregates [12,16]. cpSRP43 

recognizes a highly-conserved 18-amino acid loop between the second and the third 

transmembrane (TM) domains of LHC proteins, termed L18 [17,18]. In previous work, we 

showed that the specific interaction of cpSRP43 with the L18 motif is crucial for the chaperone 

and disaggregase activity of cpSRP43 [12]. This and other observations led us to propose that, in 

the absence of external energy input, cpSRP43 uses specific binding energy with its substrate 

proteins to remodel and rescue LHC protein aggregation [12].  

 To gain insights into the molecular mechanism that underlies cpSRP43’s novel 

disaggregase activity, we need to first understand the nature of the LHC aggregate and identify 

the structural features that facilitate its disassembly by cpSRP43. To this end, we examined the 

nature and structure of the LHC aggregate using biophysical and biochemical techniques. We 

show that LHC proteins form disc-like particles with a relatively amorphous hydrophobic core, 
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but exhibit a defined interior/exterior organization in which the L18 recognition motif is 

displayed on the solvent-exposed surface. This suggests an attractive mechanism for cpSRP43 to 

recognize the LHC aggregates and thus initiate their disassembly. 
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Materials and Methods 

 Materials. LHCP, Lhcb5 and their mutants were purified under denaturing conditions as 

described [12], except that 6M GdmHCl was used instead of 8M urea for Lhcb5. Aβ4 and re-

crystallized thioflavin T (ThT) were generous gifts from Dr. J. W. Kelly. 1-anilino-8-naphthalene 

sulfonate (ANS) and bis-ANS were from Sigma and Invitrogen, respectively. n-dodecyl-N,N,-

dimethylamine-N-oxide (LDAO), n-dodecyl-β-D-maltopyranoside (DDM), n-octyl-β-D-

glucopyranoside (β-OG) and n-nonyl-β-D-glucopyranoside (BNG) were from Anatrace. Triton 

X-100 (TX-100) was from Sigma and sodium dodecyl sulfate (SDS) was from BioRad. Urea and 

GdmHCl were molecular biology grade from MP and Sigma, respectively. 1-oxyl-2,2,5,5-

tetramethylpyrroline-3-methyl methanethiosulfonate (MTSSL) was from Toronto Research 

Chemicals, N-ethyl-maleimide was from Sigma and N-(1-pyrene)-maleimide was from 

Invitrogen.  

 Light Scattering Assay. Light scattering experiments were performed as previously 

described [12]. For formation of aggregates (Figure 2.3, black), unfolded LHCP in 8 M urea was 

directly diluted into Buffer D (50 mM KHEPES pH 7.5, 200 mM NaCl) to the desired final 

concentration; the final concentration of urea was equalized among different samples. The CMC 

is obtained as the x-intercept from the linear fit of the data [19]. For serial dilution experiments 

(Figure 2.3, red), the sample at 1 µM LHCP was serially diluted (by two-fold) into fresh buffer D 

and allowed 10 min to equilibrate before taking measurement.  

 Transmission Electron Microscopy. LHCP aggregates were formed by diluting 

unfolded LHCP in 8 M urea into Buffer D to the final concentration of 2 µM. After incubation at 

25 °C for 5 minutes, the sample was diluted five-fold and immediately deposited onto a glow-

discharged 200-mesh Formvar grid (Ted Pella Inc., CA). After 45-second adsorption time, the 
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grid was washed in water and then stained with 1% uranyl acetate for 45 seconds. TEM images 

were obtained on a 120 kV Tecnai T12 electron microscope coupled with a CCD camera. The 

diameters of the particles were measured using ImageJ [20]. 

 Atomic Force Microscopy. 1 µM LHCP aggregate in Buffer D was deposited onto a 

freshly cleaved mica and incubated for 5 minutes at 25 °C to allow equilibration. The wafer was 

rinsed with Millipore water and dried under the weak flux of nitrogen. AFM images were taken 

immediately after the sample was prepared. A Digital Instrument Nanoscope IIIA AFM system 

in tapping mode was used throughout at ambient conditions. A sharp TESP tip (Veeco, CA) was 

used in the experiment. Typical values for the force constant, resonance frequency and tip radius 

were 42 N/m, 320 kHz, and 8 nm, respectively. Particle sizes were obtained by calculating the 

projected area of each particle at half maximal height onto the surface. This is because the 

apparent lateral size of surface features is usually overestimated due to the broadening effect of 

the AFM tip. The cross sectional area at half the maximum height provides a more realistic 

distribution of sizes of the particles. 

 Fluorescence. All fluorescence experiments were carried out in Buffer D using a 

Fluorolog 3-22 spectrofluorometer (Jobin Yvon). For bis-ANS experiments, 1 mM bis-ANS was 

added to Buffer D with or without 1 µM LHCP aggregate. The samples were excited at 395 nm 

and then scanned from 410 to 620 nm, with the excitation and emission band passes of 2 and 5 

mm, respectively. For ThT experiments, 20 mM re-crystallized ThT was added to Buffer D 

containing no aggregate, aggregates from 1 or 5 µM LHCP, or 15 µM freshly sonicated Aβ4 

amyloid. The samples were excited at 440 nm and then scanned from 470 to 570 nm, with the 

excitation and emission band passes of 3 and 7 mm, respectively. For comparison, ThT 

fluorescence from 1 and 5 µM unfolded LHCP in 8 M urea were measured.  
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 For pyrene excimer experiments, DTT-reduced single cysteine mutants of Lhcb5 in 6 M 

GdmHCl were labeled with a 30-fold molar excess of pyrene maleimide at room temperature in 

the dark for 2 hours. Excess pyrene was removed by gel filtration, and the efficiency of spin-

labeling (90-100%) was determined by LC-MSD 1100 series (Agilent Technologies, Santa 

Clara, CA). The samples were prepared by diluting pyrene-labeled Lhcb5 pairs into Buffer D for 

a final concentration of 1.5 µM for each variant. Spectra were obtained from excitation at 317 

nm and then scanned from 360 to 560 nm, with the excitation and emission band passes of 3 and 

6 mm, respectively. The amount of excimer fluorescence, indicated by a red shift to 445 nm, is 

normalized against the non-excited fluorescence signal at 376 nm. Statistically, when two 

variants A and B are mixed there is a population distribution of homo-pairs (e.g. 25% A-A and 

25% B-B) and hetero-pairs (50% A-B). The equation below corrects for the real hetero-pair 

excimer (FAB): 

   FAB = 2 x (FAB, app – 0.25FA – 0.25FB) 

where FAB, app is the apparent ratio of excimer fluorescence (I445/I376) between two pyrene-labeled 

variants, and FA and FB is the ratio of excimer fluorescence of each individual variants measured 

separately. 

 Sedimentation. Unfolded LHCP was diluted to 10 µM in Buffer D and incubated at 25 

°C for 5 minutes. Aggregation was complete, judged by the absence of LHCP in the supernatant 

after centrifugation at 13,000 rpm in a microfuge for 30 minutes. The pellet was dissolved with 

50 µl of detergent or chemical denaturants at different concentrations for 30 minutes at 25 °C. 

The mixtures were then spun at 13,000 rpm in a microfuge for 30 minutes, and soluble (S) and 

pellet (P) fractions were boiled and visualized by SDS-PAGE.  
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 SDS Solubility. For Figure 2.2B, the assay was performed as described for amyloid 

fibrils [21]. Briefly, aggregation of 10 µM LHCP in Buffer D preceded for 5 minutes at 25 °C. 

The mixture was then mixed with 2% SDS-PAGE loading buffer and either incubated at 25 °C 

or 100 °C for ten minutes prior to SDS-PAGE. Only the proteins that migrated into the resolving 

gel (e.g. solubilized portion) were visualized. 

 Spin Labeling and Electron Paramagnetic Resonance Measurements. Spin labeling 

reactions were performed in 6 M GdmHCl, 50 mM KHEPES, pH 7.5, and 2 mM EDTA. 

Reduced and degassed single cysteine mutants of Lhcb5 were labeled with a three- to five-fold 

molar excess of MTSSL at room temperature in the dark for 2-3 hours. Excess MTSSL was 

removed by gel filtration, and the efficiency of spin-labeling (80-100%) was determined by EPR 

using a TEMPO calibration curve according to manufacturer’s instructions (Bruker). EPR 

spectra were acquired using a 9.4-GHz (X-band) EMX EPR spectrometer (Bruker) equipped 

with an ER 4119HS cavity at 20-23 oC. To form the aggregate, the individual spin-labeled 

proteins in GdmHCl were diluted into Buffer D. The concentrations of the aggregate samples 

were 30-100 µM. Data acquisition was previously described [22]. 

 NEM Alkylation and MS Analysis. Cysteine mutants of Lhcb5 in 6 M GdmHCl were 

reduced with 2.5 mM TCEP at RT for 2 hours. Each mutant was diluted into Buffer D to a final 

concentration of 3.3 µM and incubated on ice for 10 minutes to form the aggregate, followed by 

the addition of 100 µM NEM. The reaction was quenched with 50 mM DTT at various time 

points, concentrated under vacuum, redissolved in 0.2% formic acid, and ca. 25 pmol protein 

was analyzed on an LC-MSD SL 1100 series (Agilent). The samples were chromatographed on a 

2.1 x 150 mm Zorbax 300SB-C3 column (Agilent) using a gradient consistent of 0.2% formic 

acid and 0.2% formic acid in acetonitrile (89.8%) and methanol (10%). Intact masses were 
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measured in the single quadrupole and quantified using the software ChemStation software 

(Agilent). Control experiments where different ratios of un-alkylated and alkylated proteins were 

mixed and subjected to MS analysis shows the quantification of the ratio of alkylated species to 

be reliable (Figure 2.6E). The reported accessibilities were calculated as a ratio of the alkylation 

of each cysteine mutant under aggregation Buffer D versus denaturing 6 M GdmHCl. 
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Results 

 LHCP Aggregates Contain Exposed Hydrophobic Grooves. To characterize the 

surface features of LHC protein aggregates, we used an established collection of small molecule 

dyes. Exposure of hydrophobic patches or crevices within aggregates can be probed by extrinsic 

fluorescent molecular dyes like ANS and bis-ANS [23,24]. We tested whether the aggregates of 

LHCP, the most abundant member of the LHC protein family, share this feature. Indeed, the 

fluorescence of both ANS (data not shown) and bis-ANS (Figure 2.1A) increased significantly in 

the presence of 1 µM LHCP aggregate, accompanied by a blue shift of the fluorescence emission 

spectra. These results strongly suggest that LHCP aggregates contain exposed hydrophobic 

micro-domains that allow the binding of these dyes, consistent with the highly hydrophobic 

nature of this protein. 

 We next used thioflavin T (ThT) to probe the structural organization of the LHCP 

aggregate. ThT is often used as a diagnostic for the formation of amyloid fibrils generated by 

amyloid-β(Aβ, α-synuclein, and other amyloidogenic proteins [25]. Similar to bis-ANS, the 

fluorescence of ThT exhibited a significant increase in intensity and a blue shift in spectrum in 

the presence of the LHCP aggregate (Figure 2.1B, blue lines). The extent of these fluorescence 

changes is comparable to that induced by mature amyloid fibrils generated by the Aβ1-40 peptide 

(Figure 2.1B, red vs. blue and Figure 2.1C). As microscopy analyses did not indicate fibril 

formation in the LHCP aggregate (see below), these results suggest that ThT is not highly 

specific for amyloid fibrils, consistent with recent work observing ThT fluorescence of non-

fibrillar aggregates of β-lactoglobulin and transthyretin [19,26]. Instead, this dye possibly binds 

to hydrophobic grooves that are often present in amyloid fibrils but can also be generated by 

other types of aggregates [27]. 
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 LHCP Forms Stable Aggregates. To probe the stability of the LHCP aggregate, we 

tested its solubility in various detergents, including LDAO, DDM, β-OG, BNG, and TX-100. By 

analyzing the amount of proteins in the soluble and insoluble fractions after medium-speed 

sedimentation (see Methods), we showed that none of these detergents were able to solubilize the 

LHCP aggregate at or above respective concentrations typically used for membrane protein 

solubilization (Figure 2.2A).  

 In addition, we tested the solubility of the LHCP aggregate in SDS using an established 

protocol for amyloid fibrils [21]. This assay evaluates solubility of the aggregate based on the 

mobility of the protein in SDS-PAGE after incubation with SDS-containing buffer at room 

temperature (see Methods). ‘SDS-insoluble’ amyloid fibrils or oligomeric protein aggregates 

cannot enter the resolving gel unless boiled [21]. LHCP aggregate showed significant resistance 

to 2% SDS in this procedure, as only 24% of the aggregates could be solubilized and migrated 

into the gel without boiling (Figure 2.2B, right panel). SDS could solubilize large LHCP 

aggregates only after extensive incubation and boiling of the sample (Figure 2.2B, left panel). 

Taken together, the detergent-resistance of the LHC protein aggregate suggests the presence of 

highly stable packing interactions within the aggregate that must be overcome by cpSRP43. 

 LHCP Forms Micellar, Disc-shaped Aggregates. Formation of large LHC aggregates 

can be monitored based on light scattering at 360 nm [12]. The scattering intensity increases 

linearly with LHCP concentration above ~100 nM (Figure 2.3, black), suggesting that aggregate 

formation was complete under these conditions. However, the linearity broke down at lower 

LHCP concentrations (Figure 2.3 and inset, black). This was not due to limitations in instrument 

sensitivity: when pre-formed LHCP aggregates were diluted, linearity in light scattering intensity 

was observed at all concentrations and extrapolated through zero (Figure 2.3 and inset, red). 
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These observations show that: (i) the LHCP aggregate is kinetically stable and virtually 

irreversible once it has formed; and (ii) formation of the LHCP aggregate requires a critical 

protein concentration, reminiscent of the critical micellar concentration during micelle formation. 

An analogous, ‘critical aggregate concentration’ of 125 nM was obtained for the LHCP 

aggregates from these data (see Methods). This micelle-like characteristic begins to suggest a 

globular morphology of the LHC aggregates. 

 To directly observe the global structure of LHC aggregates, we examined them using 

transmission electron microscopy (TEM) and atomic force microscopy (AFM). Negatively 

stained TEM images revealed LHCP aggregates to be circular particles (Figure 2.4A,B). 

Analysis of the size of these particles resulted in a distribution that fits well to a Gaussian 

function, with diameters of 12±2 nm (Figure 2.4C). Consistent with the EM images, AFM 

analysis also showed LHCP aggregates to be disc-shaped particles (Figure 2.5A,B) with mean 

areas of 214±94 nm2 (Figure 2.5C), or mean diameters of 16±5 nm, in good agreement with the 

EM measurements. Strikingly, the heights of the aggregates measured by AFM are ‘quantized’ 

and peaked at integrals of 0.7-0.8 nm (Figure 2.5D and inset). These results suggest that LHC 

proteins form disc-shaped aggregates with a height of 0.7-0.8 nm, and these discs can further 

stack upon one another. 

 The L18 Recognition Motif is Displayed on the Aggregate Surface. To probe the 

global structure of LHC aggregates at higher resolution, we engineered 30 single-cysteine 

mutations, which span every 5-10 residues throughout the entire protein sequence of Lhcb5 

(Figure 2.6A, blue). Lhcb5 is a close homologue of LHCP (Supplementary Figure 2.S1) that 

strongly depends on the cpSRP pathway for its biogenesis and whose aggregate is efficiently 

prevented and disassembled by cpSRP43 [12,28]. All single-cysteine mutants were able to form 
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light-scattering aggregates with the same extent and kinetics as wildtype Lhcb5, and thus can be 

used to probe the assembly of the wildtype aggregate (Figure 2.6B). 

 With each single-cysteine mutant, we used two independent methods to measure their 

relative positions on the LHC aggregate. In the first approach, we labeled each cysteine with the 

nitroxide spin probe MTSSL in 6M GdmHCl, allowed for aggregation in aqueous buffer, and 

used electron paramagnetic resonance (EPR) spectroscopy to investigate the local backbone 

mobility of each specific site in the aggregate. A probe buried inside the aggregate will engage in 

strong interactions and have more restricted motion than those on the solvent-exposed surface, 

and hence exhibit broader central linewidth (∆H) and hyperfine splitting (hfs) in the overall 

spectral width (Figure 2.6C, green versus red spectra). As a control, EPR measurements were 

carried out for each protein variant solubilized in 6M GdmHCl; all spin labels displayed similar, 

low values of ∆H under these conditions, indicating the high mobility of the residues in the 

unfolded protein (Figure 2.6C, black).  

 Upon formation of the aggregate, the spin probes in all the TMs, loop 1 (between TM1 

and TM2) and the C-terminus of Lhcb5 displayed high ∆H values and broad EPR spectra, 

suggesting that they are highly immobile and likely engaged in strong inter- or intramolecular 

interactions (Figure 2.6D, Supplementary Table 1 ∆H-1 values are plotted). In contrast, spin 

probes placed in the L18 motif and the N-terminus of TM3 are highly mobile, indicating that 

these regions are free from any extensive interactions in the aggregate and are likely solvent-

exposed (Figure 2.6D). In addition, spin labels at the N-terminus of Lhcb5 also displayed highly 

mobile spectra. 

 To independently probe the global architecture of LHC protein aggregates, we examined 

the susceptibility of the individual cysteine residues to alkylation with N-ethyl-maleimide 
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(NEM). The cysteine residues on the solvent-accessible surface of the aggregate will react 

rapidly and efficiently with NEM, whereas those buried within the aggregate will be alkylated 

much less efficiently (Figure 2.6F, green versus red curves). The efficiency of alkylation can be 

quantified by intact mass spectrometry and provides a direct measure for the solvent accessibility 

of individual residues in the LHC aggregate (Figure 2.6E). As a control for the intrinsic bias in 

the reactivity of cysteines at different positions, each single-cysteine mutant was solubilized in 

6M GdmHCl and tested in parallel experiments (Figure 2.6F, black).  

 In agreement with the results of EPR measurements, the residues within the TMs exhibit 

low efficiency of alkylation, ranging from 20-40%, in contrast to the almost complete alkylation 

of the respective cysteines under denaturing conditions (Figure 2.6G and Supplementary Table 

1). Residues in loop 1 and the C-terminus of the LHC protein exhibit slightly higher alkylation 

efficiency, 40-60%, indicating that these regions are partially buried in the aggregate but to a 

lesser extent than the TMs. In contrast, residues on the L18 loop and the N-terminal end of TM3 

proximal to L18 are almost completely alkylated (90-100%), suggesting that these sites are 

highly solvent accessible and presented on the exterior of the aggregate. Finally, residues in the 

N-terminus of Lhcb5 showed almost 100% reactivity, again demonstrating the exposure of this 

region on the aggregate surface. 

 Although the burial of TMs in the Lhcb5 aggregate is expected due to their hydrophobic 

nature, the low mobility and inaccessibility of loop 1 and the C-terminus of Lhcb5 were 

surprising. We therefore asked if the burial of these loop regions results from topological 

constraints imposed by the neighboring TMs, or from the inherent physicochemical property of 

the looping sequence. To address this question, we altered the location of L18 in Lhcb5 by either 

swapping it with loop 1 (TM1-L18-TM2-TM3) to construct the LoopSwap (LS) mutant, or with 
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the protein sequence C-terminal to TM3 (TM1-TM2-TM3-L18) to construct the Cterm mutant. 

The aggregate formed by both constructs can be rescued by cpSRP43 (Figure 2.7A), suggesting 

that cpSRP43, despite its specific interaction with L18, can tolerate variations in the remainder of 

its substrate’s sequence.  

 To probe the accessibility of individual motifs in the L18-swapped mutants, we probed 

the accessibility of engineered single cysteines in each domain by NEM alkylation. The 

alkylation efficiency of each motif in both L18-swapped mutants is similar to that of wildtype 

Lhcb5: the L18 motif is highly accessible and almost completely alkylated, whereas loop 1 and 

the C-terminus regions exhibit medium levels of alkylation (Figure 2.7B-D). These results 

indicate that the intrinsic properties of these sequences/domains determine their accessibility in 

the aggregate, and demonstrate that the L18 motif has a strong tendency to be displayed on the 

surface of protein aggregates.  

 LHC Aggregates Contain an Amorphous Hydrophobic Core. To determine whether 

the TMs of the LHC protein make specific intermolecular contacts in the buried core of the 

aggregate, we exploited the ability of pyrene labels to form excited-state dimers (excimers) when 

they are within 4–10 Å of each other. High pyrene excimer fluorescence reports on close 

proximity between specific sites within the aggregate. To this end, we mixed two proteins, each 

labeled with pyrene at a single cysteine residue, in all pair-wise combinations, allowed them to 

form the aggregates, and monitored for pyrene excimer fluorescence at 455 nm relative to the 

monomer fluorescence at 375 nm (see Methods). As a positive control, we used a double-

cysteine mutant V139C-L140C and labeled both positions with pyrene probes. The excimer ratio 

of this construct was high, ~0.8 (Figure 2.8A). As the negative control, pyrene labeled L180C 

was used (excimer ratio = 0.08; Figure 2.8A).  
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 Two important lessons were learned from the results of these measurements. First, many 

pyrene pairs exhibit excimer fluorescence intensities substantially above the background and 

above the other pyrene pairs, with excimer ratios of ≥ 0.30 for homo-pyrene pairs at multiple 

residues in TM1 (67, 72, 88, and 92) and for multiple hetero-pyrene pairs in all three TMs 

(Figure 2.8B). Second, these excimer fluorescence intensities were still modest, up to 0.36 

(Figure 2.8B). These values are far below the values of 0.6-0.8 expected for specifically 

interacting pairs that are always in close proximity. These data indicate that in the LHC 

aggregate, the TMs form extensive intermolecular contacts in its hydrophobic core, but these 

interactions are much less specific than those observed in amyloid fibrils [29].  

 Taken together, the results demonstrate that: (i) LHC proteins form highly stable, disc-

shaped aggregates; (ii) despite the possibly amorphous nature of the LHC aggregate core, it 

contains a defined global organization that can be reliably probed; and (iii) the L18 motif, among 

other regions of the LHC protein, is displayed on the surface of the aggregate and thus poised for 

interactions with cpSRP43 (Figure 2.9). These results suggest an attractive model in which 

cpSRP43 could recognize the L18 motif presented on the surface of the aggregate, providing a 

starting point for its action as a disaggregase. Further, the exposure of the N-terminus and the N-

terminal end of TM3 suggests additional potential interaction sites with cpSRP43 during 

aggregate recognition. 
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Discussion 

 The ability of cpSRP43 to prevent and reverse LHC protein aggregation demonstrates the 

diversity and capability of cellular chaperones and highlights a disaggregation mechanism that 

relies on binding interactions instead of external energy input. The robustness and simplicity of 

the cpSRP43-LHC disaggregase system provides an opportunity to unravel the mechanism by 

which a relatively small, ATP-independent chaperone can rescue insoluble protein aggregates. In 

this work, biophysical and biochemical analyses of the structure and energetics of the LHCP 

aggregate help define the capability of cpSRP43 as a protein disaggregase and suggest an 

attractive mechanism for how this chaperone recognizes the LHC protein aggregates to initiate 

the disaggregation reaction.  

 Using kinetic analyses, we previously showed that cpSRP43 can actively remodel and 

disassemble LHC aggregates [12]. To gauge the amount of energy cpSRP43 must overcome 

during disaggregation, here we examined the stability of the LHC aggregates. The results 

indicate that LHC aggregates are stable both kinetically and thermodynamically. First, extensive 

dilution of the aggregate did not lead to re-solubilization, suggesting that LHC aggregates, once 

formed, are kinetically stable. This is in contrast to the ‘salting out’ effect, in which protein 

precipitates are reversibly produced when the protein concentration exceeds the solubility limit 

[30]. Second, LHC aggregates are resistant to a variety of detergents, even up to 2% SDS, akin to 

highly stable fibrils and insoluble amyloid oligomers [31]. The stability of the LHC aggregate 

further supports the notion that its reversal requires the active participation of cpSRP43 to 

engage and disrupt the aggregate and showcases the capacity of this chaperone as a disaggregase.  

The morphology of the LHC aggregates bears resemblance to those of the soluble oligomeric 

intermediates that often precede amyloid fibril formation, which are disc-shaped, 9–25 nm in 
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diameter, and 2–3 nm in height [32,33]. Although earlier work tends to categorically describe 

these protein aggregates as ‘amorphous’, accumulating data suggest that there are nonetheless 

degrees of organization in some of these aggregates [34,35]. For instance, the folding 

intermediates of bovine growth hormone, phosphoglycerate kinase, P22 tailspike and coat 

proteins participate in specific intermolecular interactions in their aggregation pathways [36-38]. 

Likewise, although highly specific intermolecular interactions have not been detected in the LHC 

aggregates, more detailed analyses at the individual residue level provide convincing evidence 

that LHC aggregates have a defined ‘interior’ and ‘exterior’ that can be reliably probed, arguing 

against complete disorder in these aggregates.  

 What features of the LHC aggregate allow cpSRP43 to recognize it and initiate the 

disaggregation process? Answers to this question are central to understanding the mechanism of 

cpSRP43’s disaggregase activity. The results here strongly suggest that the formation of LHC 

aggregates is driven largely by hydrophobic collapse to bury its three TM domains. Importantly, 

we showed that the N-terminus of the LHC protein, the L18 motif, and the N-terminal segment 

of TM3 are displayed on the solvent-accessible surface when LHC proteins form aggregates. As 

the L18 motif is the primary recognition element for cpSRP43, its presentation on the exterior of 

the aggregate provides a very attractive mechanism by which cpSRP43 could recognize and 

anchor onto the aggregate to initiate the disassembly process (Figure 2.9). Conceivably, the N-

terminal fragment of TM3 proximal to the L18 motif could also contribute to this initial 

recognition, as previous work has detected crosslinks between cpSRP43 and residues at the N-

terminus of TM3 [39]. This and additional mutational studies suggest that TM3 is a likely 

candidate for cpSRP43 to initiate disruptions of the internal packing within the LHC aggregate 

(Jaru-Ampornpan et al., accompanying manuscript). 
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Further, the L18-swap experiments show that the L18 motif is a dominant sequence element that 

has a strong tendency to be displayed on the surface of a protein aggregate, likely due to its 

relatively polar amino acid composition and high propensity for disorder (Figure 2.7). 

Considering that cpSRP43 has co-evolved with and is dedicated to the chaperoning of the LHC 

family of proteins, it is intriguing that the latter evolved a polar L18 recognition motif and made 

it accessible even when they form aggregates, which would enable cpSRP43 to readily recognize 

the aggregated LHC proteins. Although the physiological significance of cpSRP43’s 

disaggregase activity remains to be directly established, this observation is consistent with the 

possibility that this activity is beneficial, as it would enable cpSRP43 to rescue aggregated, off-

pathway intermediates during the targeting or insertion of its substrate proteins [40].  

 The mechanism of aggregate recognition proposed here for cpSRP43 is distinct from 

those proposed for ClpB/Hsp104, where exposed patches enriched in charged and hydrophobic 

amino acids are recognized by the disaggregases [41,42]. It can be speculated that a generalized 

mode of substrate recognition is optimal for Hsp70 and/or the AAA+ disaggregases, which must 

handle a broad range of substrates. In contrast, dedication of cpSRP43 to the LHC family of 

proteins allows them to adopt a more specific and effective mechanism, in which an exposed 

polar motif is used for recognition and ultimately enables the chaperone to gain access to the 

hydrophobic core. This mechanism of aggregate recognition could explain analogous 

disaggregase systems reported previously, such as the Mitochondria Import Stimulation Factor 

(MSF), whose ability to rescue aggregated mitochondrial precursor proteins also depends on the 

basic mitochondrial signal sequence that is likely displayed on the aggregate surface [43,44]. 

On the other hand, the L18-swap experiments here and additional mutagenesis studies (Jaru-

Ampornpan et al., accompanying manuscript) strongly suggest that the interaction of cpSRP43 
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with the remainder of the LHC protein, apart from L18, is highly adaptable, as a wide range of 

unnatural substrates can be effectively bound, chaperoned, and rescued by cpSRP43. 

 In summary, in-depth characterization of the nature and structure of the LHC protein 

aggregate suggest an attractive mechanism for its recognition by cpSRP43, and provide 

important constraints for the capability and limitation cpSRP43’s disaggregase activity. In the 

accompanying paper (Jaru-Ampornpan et al., accompanying manuscript), the lessons learned 

from this work are leveraged against structure-function analyses to propose a multi-step 

mechanism for the disaggregase reaction mediated by cpSRP43. These results provide a 

foundation for understanding the molecular basis of ATP-independent disaggregase systems, and 

guide the engineering of specific chaperone-substrate interactions for aggregates of similar 

nature. 
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Figure 2.1 LHCP aggregates contain exposed hydrophobic surfaces as detected by small 
molecule dyes. (A) Fluorescence emission spectra of 1 mM bis-ANS with (blue) or without 
(black) 1 µM LHCP aggregate. (B) Fluorescence spectra of 20 mM ThT in the absence (black) 
and presence of 1 (light blue) or 5 (dark blue)µM LHCP aggregate, or 15 µM Aβ4 (red). (C) 
Quantification of the ThT fluorescence change at 484 nm per µM of protein (aggregate).
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Figure 2.2 LHCP aggregates are resistant to many detergents. (A) Sedimentation analysis of the 
ability of various detergents to resolubilize LHCP aggregates. CMC of LDAO, DDM, β-OG, 
BNG and TX-100 are 0.023%, 0.009%, 0.53%, 0.2% and 0.02%, respectively. P and S denote 
the pellet and soluble fractions, respectively. (B) SDS-solubility assay as described for amyloids 
[21] show partial solubility of LHCP aggregates in 2% SDS, right panel. The samples were 
directly loaded onto the gel and solubility was judged by the mobility of the protein into the 
resolving gel. Quantification using ImageJ revealed that 24% of the LHCP aggregates is soluble 
when the sample was not boiled (‘RT’), compared to 87% for the boiled sample (‘100 °C’). Left 
panel shows complete solubilization of LHCP by SDS (CMC 0.23%) after treatment as in (A). 
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Figure 2.3 LHCP forms aggregates after a critical concentration. Light scattering intensities 
during formation of the aggregate (black) are compared with those from serial dilution of 
preformed aggregates (red). The inset highlights the lag phase at low concentrations during 
formation of the aggregate. AU, arbitrary units.  
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Figure 2.4 TEM analysis of LHCP aggregates. (A) Large field view of a negatively stained TEM 
image of LHCP aggregates. (B) A zoomed-in image shows that LHCP aggregates are round 
particles. (C) Size distribution of the LHCP aggregates, measured from several independent 
experiments. The mean diameter is 12 ± 2 nm. 
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Figure 2.5 AFM analysis of LHCP aggregates. (A) Large field view of AFM topographic image 
showing well-separated LHCP aggregates. Large clusters are occasionally observed. The scale 
bar is 500 nm. (B) A zoomed-in region of the image reveals disc-shaped particles. The lines 
indicate particles whose heights were measured (red, blue, and green). The scale bar is 100 nm. 
(C) Size distribution of LHCP aggregates, measured from several regions on the surface. The red 
line is a Gaussian fit to the data, which gave a mean area of the particle of 214 nm2. (D) Height 
distribution of LHCP aggregates shows three populations of 0.8, 1.4, and 2.1 nm. The inset 
shows the height profiles for the representative particles indicated in B. Curves are vertically 
displaced for clarity. 
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Figure 2.6 Mapping the LHC aggregates reveals exposed motif. (A) Lhcb5 sequence, with 
residues mutated to cysteine in blue, the TMs underlined in green, and the L18 peptide 
underlined in red. (B) Light scattering from aggregates (A360) 5 min after dilution of each single-
cysteine mutant into Buffer D, final concentration, 1 µM Lhcb5 proteins. Values are relative to 
that of wild-type protein. rel A360, relative A360. (C) Representative EPR spectra of the spin 
probes placed at buried site L130C of TM2 (green), at exposed site L170C of L18 (red) upon 
Lhcb5 aggregation, and at L170C when Lhcb5 was solubilized in 6 M GdmHCl (black). a. u., 
arbitrary units. (D) Summary of the mobility of different residues in the Lhcb5 aggregate, 
reported in values of ∆H−1. Residues in the TMs are in green, L18 is in red, and the remainder 
of Lhcb5 is in black. (E) Control experiment shows that intact mass spectrometry can be used for 
the quantification of the efficiency of NEM alkylation. Wild-type Lhcb5, which contains one 
native cysteine (Cys-100), was reacted with NEM to completion in 6 M GdmHCl. Different 
known ratios of the NEM-modified Lhcb5 were mixed with unreacted protein and submitted for 
MS analysis. (F) Time courses for the alkylation reactions of representative cysteines at residues 
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L130C and L170C in Lhcb5 aggregates and at residue L170C when Lhcb5 was dissolved in 6 M 
GdmHCl. (G) Summary of NEM accessibility of the single-site cysteines in the Lhcb5 aggregate. 
The color scheme is the same as in D. 
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Figure 2.7 L18 has a strong tendency to be exposed on the surface of the aggregate. (A) The 
extent of wild-type and mutant Lhcb5 aggregates (1 µM) resolubilized by 10 (white), 20 (gray), 
and 40 (black) µM cpSRP43. The aggregates formed by L18-swapped mutants TM1-L18-TM2-
TM3 (LoopSwap (LS)) and TM1-TM2-TM3-L18 (C-terminal (Cterm)) can be rescued by 
cpSRP43, although the LoopSwap mutant required a higher concentration of cpSRP43. (B) NEM 
accessibility analysis of residues in the wild-type aggregates. Regions probed include the N 
terminus (G50C), TM1 (A80C), loop 1 (N120C), L18 (G162C), and C terminus (A230C). (C) 
and (D) NEM accessibility analysis of the same residues in the LoopSwap construct (C) and in 
the C-terminal construct (D). Error bars in all panels indicate S.D. 
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Figure 2.8 Analysis of pyrene excimer fluorescence reveals an amorphous aggregate core. (A) 
Representative pyrene spectra for the homo-pair L180C were recorded when it was solubilized in 
6 M GdmHCl (black trace). Pyrene-labeled homo-pair A67C and L180C after aggregate 
formation in Buffer D show excimer fluorescence (red and blue traces, respectively). Doubly 
pyrene-labeled Lhcb5 mutant V139C/L140C in Buffer D served as positive control for pyrene 
excimer fluorescence between residues in close proximity (orange trace). a.u., arbitrary units. (B) 
The chart lists pyrene excimer fluorescence (I445/I376) for all pairwise combinations (see 
“Experimental Procedures”); excimer fluorescence values between 0.21 and 0.29 are highlighted 
in yellow, and values ≥0.3 are in orange. 
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Figure 2.9 Model for the global organization of LHC proteins in the aggregate. L18 is in red, the 
TMs are in different shades of green, and the other looping sequences are in black. The shaded 
region depicts the buried core of the aggregate. For clarity, only one LHCP molecule in the 
aggregate is highlighted. 
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Supplementary Table 2.S1. Inverse central linewidth (∆H-1) and fraction alkylated by NEM of 
individual Lhcb5 cysteine mutants upon aggregate formation in Buffer D as graphed in Figures 
2.6C and 2.6E, respectively. 

Residue Fraction Alkylated ∆H-1 (Gauss-1) 

A10C 0.99 ± 0.02 0.342 

K20C 0.90 ± 0.02 0.223 

L30C 1.00 ± 0.00 0.250 

I40C 1.00 ± 0.00 ND 

G50C 0.88 ± 0.03 0.251 

G60C 0.94 ± 0.01 0.139 

Q70C 0.47 ± 0.02 0.123 

I75C 0.49 ± 0.07 0.118 

A80C 0.40 ± 0.01 ND 

A85C 0.51 ± 0.04 0.112 

P90C 0.29 ± 0.07 0.141 

C100 0.74 ± 0.09 0.209 

V105C 0.66 ± 0.00 ND 

G110C 0.44 ± 0.02 0.125 

N120C 0.60 ± 0.03 0.125 

L130C 0.25 ± 0.02 0.147 

V135C 0.22 ± 0.05 0.111 

L140C 0.30 ± 0.04 0.112 

T150C 0.66 ± 0.03 0.127 

H160C 1.00 ± 0.00 0.272 

D166C 0.87 ± 0.02 ND 

P167C 0.84 ± 0.01 ND 

L170C 0.96 ± 0.05 0.340 

L180C 0.90 ± 0.01 0.241 

A185C 0.95 ± 0.03 0.214 

L190C 0.48 ± 0.08 0.116 

M195C 0.19 ± 0.02 0.116 

I200C 0.22 ± 0.02 0.112 

V210C 0.81 ± 0.05 0.129 

P220C 0.57 ± 0.05 0.132 

A230C 0.58 ± 0.02 0.135 
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Supplementary Figure 2.S1 Sequence Alignment of LHCP and Lhcb5. Sequence alignment 
using Clustal Omega shows conservation in LHCP and Lhcb5 sequences; annotations “*”, “:” 
and “.” signify identical residues, conserved substitution and semi-conserved substitution, 
respectively. Color scheme of the amino acids are small (red), acidic (blue), basic (magenta) and 
others (green). Green bars above sequences represent transmembrane domains and red bars 
represent the L18 motif. BLAST analysis shows LHCP and Lhcb5 share 49% identical amino 
acids. 
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Chapter 3 

Mechanism of an ATP-Independent Protein 

Disaggregase. 

Part II. Distinct Molecular Interactions Drive Mult iple 

Steps during Aggregate Disassembly 

A version of this chapter has been published as 

Jaru-Ampornpan, P., Liang, F.C., Nisthal, A., Nguyen, T.X., Wang, P., Shen, K., Mayo, S.L., 

and Shan, S. (2013) J. Biol. Chem., 288 (19), 13431-45. 
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Abstract 

 The ability of molecular chaperones to overcome the misfolding and aggregation of 

proteins is essential for the maintenance of proper protein homeostasis in all cells. Thus far, the 

best studied disaggregase systems are the Clp/Hsp100 family of “ATPases associated with 

various cellular activities” (AAA+) ATPases, which use mechanical forces powered by ATP 

hydrolysis to remodel protein aggregates. An alternative system to disassemble large protein 

aggregates is provided by the 38-kDa subunit of the chloroplast signal recognition particle 

(cpSRP43), which uses binding energy with its substrate proteins to drive disaggregation. The 

mechanism of this novel chaperone remains unclear. Here, molecular genetics and structure-

activity analyses show that the action of cpSRP43 can be dissected into two steps with distinct 

molecular requirements: (i) initial recognition, during which cpSRP43 binds specifically to a 

recognition motif displayed on the surface of the aggregate; and (ii) aggregate remodeling, 

during which highly adaptable binding interactions of cpSRP43 with hydrophobic 

transmembrane domains of the substrate protein compete with the packing interactions within the 

aggregate. This establishes a useful framework to understand the molecular mechanism by which 

binding interactions from a molecular chaperone can be used to overcome protein aggregates in 

the absence of external energy input from ATP. 
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Introduction 

 Protein homeostasis is vital to all cells and requires the proper production, folding, 

localization, assembly and degradation of all cellular proteins [1]. Crucial to the maintenance of 

protein homeostasis is an elaborate network of ‘molecular chaperones’ [2-4], which prevents the 

misfolding and aggregation of proteins by protecting exposed hydrophobic residues in non-

native states or unstructured regions and, in some cases, actively promotes protein folding [2]. 

However, under stress conditions, the folding capacity of the chaperone network could be 

exceeded or impaired, leading to protein aggregation. A special set of chaperone machineries, the 

‘disaggregases’, plays a crucial role in rescuing these detrimental processes. The best-studied 

disaggregases belong to the Hsp100 family: Hsp104 in yeast and ClpB in bacteria [5]. Both are 

members of the ‘ATPases associated with various cellular activities’ (AAA+)4 superfamily that 

assemble into hexameric ring structures [5]. These disaggregases use repetitive ATPase cycles 

and, in collaboration with their co-chaperones, remodel large protein aggregates via translocation 

of the substrate protein through their central pores [6-8].  

 Despite the fascinating activity displayed by ClpB/Hsp104, their homologues have not 

been found beyond bacteria and yeast cells. Nevertheless, multiple lines of evidence indicate that 

maintenance of protein homeostasis in mammalian cells is critically dependent on cellular 

programs to overcome the deleterious effects of protein aggregation [9]. Recently, it was 

demonstrated that ATP-independent actions of the mammalian Hsp110 and small heat shock 

proteins can engage and facilitate the remodeling of protein aggregates in collaboration with 

Hsp70 and Hsp40 homologues [10,11]. These observations suggest that cells, especially higher 

eukaryotic cells, have evolved alternative strategies and mechanisms to rescue protein 

aggregates.  
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 Recently, we described a novel disaggregase system that operates independently of ATP: 

the 38-kDa subunit of the chloroplast Signal Recognition Particle (cpSRP43) [12]. The substrates 

of this chaperone belong to the light-harvesting chlorophyll a/b-binding (LHC) family of 

proteins, which are delivered by the cpSRP from the chloroplast stroma to the thylakoid 

membrane [13]. The most abundant member of this family, LHCP, comprises up to 50% of the 

protein content in the thylakoid membrane and is likely the most abundant membrane protein on 

earth [13,14]. LHC proteins contain three hydrophobic transmembrane (TM) helices, making 

them highly prone to aggregation as they traverse aqueous compartments in the cell [14,15]. 

Recently, we and others showed that the cpSRP43 subunit of cpSRP acts as an effective 

molecular chaperone for the LHC proteins [12,16]. Intriguingly, cpSRP43 also efficiently 

reverses the aggregation of LHC proteins without the requirements for ATP hydrolysis or co-

chaperones [12,16].  

 cpSRP43 provides a valuable example of a novel class of ATP-independent chaperones/ 

disaggregases that operates with energy derived solely from binding interactions with its 

substrate proteins. Understanding its mechanism of action will provide valuable insights into 

alternative principles and approaches that can be used to overcome protein aggregation 

problems. An increasing number of examples speaks to the generality of this phenomenon.  

Mitochondrial import stimulation factor (MSF) reverses the aggregation of mitochondrial 

precursor proteins and restores their import in an ATP-independent mode [17,18]. Small heat 

shock proteins play crucial roles in remodeling protein aggregates and facilitate their 

resolubilization by Hsp70/100 [10,19]. Cyclophilins reactivate the aggregates of adenosine 

kinase [20]. ATP-independent disaggregase activities have also been reported in nematode and 
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mammalian tissue [9,21,22]. However, the mechanism by which protein aggregates can be 

disassembled based solely on a chaperone’s substrate binding energy remains elusive.  

 Many questions arise in addressing these mechanisms. First, what are the precise binding 

interactions between cpSRP43 and its substrate proteins?  Previous work has demonstrated a 

specific interaction of cpSRP43 with a highly conserved 18-amino acid loop, L18, between TM2 

and TM3 of LHC proteins [23,24]. However, the ability of cpSRP43 to prevent LHC proteins 

from aggregation implies that it must also protect the hydrophobic TMs of the substrate protein. 

Consistent with this notion, the binding affinity between cpSRP43 and full-length LHCP is at 

least an order of magnitude higher than that for the L18 peptide [12,25]. Thus additional 

interactions most likely exist between LHCP and cpSRP43, but the nature of these interactions 

remains to be determined. Second, how does cpSRP43 use these binding interactions to effect the 

reversal of protein aggregation?  Previous kinetic analyses revealed that disaggregation is a 

cooperative process during which multiple cpSRP43 molecules recognize and actively remodel 

the LHCP aggregate [12]. However, how the recognition and remodeling of the protein 

aggregate was accomplished by cpSRP43 has been elusive.  

 By combining molecular genetics with kinetic and thermodynamic analysis, here we 

present evidence that the interaction of cpSRP43 with its substrate proteins is comprised of two 

components: sequence-specific recognition of the L18 motif and highly promiscuous interactions 

with hydrophobic TMs. These interactions enable distinct steps in the cpSRP43-mediated 

disaggregation of LHC proteins: initial recognition and subsequent remodeling and disruption of 

the aggregate. The balance of these binding interactions with the energetics of packing 

interactions within the aggregate dictates the efficiency of the disaggregation reaction. 
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Materials and Methods 

 Materials. To construct the LHCP TM mutants (Table 

sites was introduced into the expression plasmid encoding LHCP 

encoding TM1, TM2, or TM3. The sequences coding for the TMs were replaced with PCR 

fragments encoding alternative TMs using the corresponding restriction sites. TM deletion 

mutants and Lhcb5 cysteine mutants were constructed 

procedure (Stratagene). cpSRP43, LHCP and its variants were purified as described 

 Determination of Binding 

Substrates. Two independent methods were 

 

Kd
app for cpSRP43-substrate binding: (i) 

monitored by light scattering at 360 nm after a 10

varying concentrations of cpSRP43

concentration of LHCP except at very low concentrations (

substrates (% soluble) was analyzed as a function of cpSRP43 concentration.  The data were fit 

to eq 1, 

  

in which [L] is the LHC protein concentration and [43] is the cpSRP43 concentration. (ii) 

Fluorescence anisotropy, as described previously 

were conducted at room temperature using a Fluorolog 3

Fluorescein-labeled LHCP or its var

concentrations of cpSRP43. The samples were excited at 450 nm and the fluorescence anisotropy 

was recorded at 524 nm. The data were fit to equation 

 

To construct the LHCP TM mutants (Table 3.1), a pair of unique restriction 

sites was introduced into the expression plasmid encoding LHCP before and after the sequences 

encoding TM1, TM2, or TM3. The sequences coding for the TMs were replaced with PCR 

fragments encoding alternative TMs using the corresponding restriction sites. TM deletion 

cysteine mutants were constructed using the QuikChange mutagenesis 

procedure (Stratagene). cpSRP43, LHCP and its variants were purified as described 

inding Affinity between cpSRP43 and S

Two independent methods were used to determine the apparent dissociation constant 

substrate binding: (i) Prevention of LHCP aggregation by cpSRP43, 

monitored by light scattering at 360 nm after a 10-minute incubation of the substrate protein with 

of cpSRP43[12]. The light scattering is linearly proportional to the 

concentration of LHCP except at very low concentrations ([12] [26]). The percentage of soluble 

substrates (% soluble) was analyzed as a function of cpSRP43 concentration.  The data were fit 

  

in which [L] is the LHC protein concentration and [43] is the cpSRP43 concentration. (ii) 

luorescence anisotropy, as described previously [12]. Briefly, all anisotropy measurements 

were conducted at room temperature using a Fluorolog 3-22 spectrofluorometer (Jobin Yvon). 

labeled LHCP or its variants (50 nM) were diluted into buffer containing different 

concentrations of cpSRP43. The samples were excited at 450 nm and the fluorescence anisotropy 

was recorded at 524 nm. The data were fit to equation 2, 

 

1), a pair of unique restriction 

before and after the sequences 

encoding TM1, TM2, or TM3. The sequences coding for the TMs were replaced with PCR 

fragments encoding alternative TMs using the corresponding restriction sites. TM deletion 

using the QuikChange mutagenesis 

procedure (Stratagene). cpSRP43, LHCP and its variants were purified as described [12]. 

Soluble Protein 

used to determine the apparent dissociation constant 

revention of LHCP aggregation by cpSRP43, 

minute incubation of the substrate protein with 

. The light scattering is linearly proportional to the 

). The percentage of soluble 

substrates (% soluble) was analyzed as a function of cpSRP43 concentration.  The data were fit 

 (1)   

in which [L] is the LHC protein concentration and [43] is the cpSRP43 concentration. (ii) 

. Briefly, all anisotropy measurements 

22 spectrofluorometer (Jobin Yvon). 

diluted into buffer containing different 

concentrations of cpSRP43. The samples were excited at 450 nm and the fluorescence anisotropy 



  

in which Aobsd is the observed anisotropy value, 

is the total change in anisotropy, and 

measured by these two methods produced consistent results for the substrates

 Thermodynamic and 

Disaggregation reactions were performed as previously described 

aggregate formation was allowed t

observed light scattering intensity was normalized to that prior to the addition of cpSRP43.  The 

disaggregation time courses were fit to an exponential function 

    

in which A is the observed light scattering, 

extent of light scattering change, and

disaggregated (K) were calculated as [

of the value of K were fit to eq 4,

  

in which Kmax is the extent of disaggregation at saturating cpSRP43 concentration, 

concentration of cpSRP43 that enables 50% solubilizatio

coefficient.   

 Kinetic analysis was performed and analyzed as described previously 

forward rate disaggregation rate constant, 

the extent of disaggregation (K).  The cpSRP43 concentration dependence of the 

to eq 5, 

 

    

is the observed anisotropy value, A0 is the anisotropy value without cpSRP43, 

is the total change in anisotropy, and Kd is the equilibrium dissociation constant. The 

measured by these two methods produced consistent results for the substrates tested (Fig 2A).

Thermodynamic and Kinetic Analyses of cpSRP43-Mediated 

Disaggregation reactions were performed as previously described [12], with the exception that 

aggregate formation was allowed to proceed for 1 minute before the addition of cpSRP43.  The 

observed light scattering intensity was normalized to that prior to the addition of cpSRP43.  The 

disaggregation time courses were fit to an exponential function 3, 

               

is the observed light scattering, Af is the amount of light scattering at t 

extent of light scattering change, and kobsd is the observed rate constant. The fractions 

) were calculated as [�A/(�A+Af)].  The cpSRP43 concentration dependences 

,  

                 

is the extent of disaggregation at saturating cpSRP43 concentration, 

concentration of cpSRP43 that enables 50% solubilization of the aggregates, and 

Kinetic analysis was performed and analyzed as described previously [12]

forward rate disaggregation rate constant, kf, from the observed rate constants (

).  The cpSRP43 concentration dependence of the 
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 (2)  

is the anisotropy value without cpSRP43, ∆A 

is the equilibrium dissociation constant. The Kd values 

tested (Fig 2A). 

ediated Disaggregation. 

, with the exception that 

o proceed for 1 minute before the addition of cpSRP43.  The 

observed light scattering intensity was normalized to that prior to the addition of cpSRP43.  The 

    (3) 

is the amount of light scattering at t → ∞, �A is the 

is the observed rate constant. The fractions 

)].  The cpSRP43 concentration dependences 

 (4)  

is the extent of disaggregation at saturating cpSRP43 concentration, K1/2 is the 

n of the aggregates, and h is the Hill 

[12] to obtain the 

ants (kobsd, Eq 3) and 

).  The cpSRP43 concentration dependence of the kf values was fit 
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in which k0 is the rate of spontaneous LHCP disaggregation in the absence of the chaperone, 

〈Km〉 is the concentration of cpSRP43 required to achieve half maximal disaggregation rate, 

the Hill coefficient, and kmax 

concentration.  

 For some of the irreversible mutants (red, 

the kinetics showed detectable cooperative concentration dependences. Therefore, the data were 

fit to Michaelis-Menten equations (eqs 

  

  

Although direct evidence remains to be obtained, the following strongly suggest

formation of an initial recognition complex between cpSRP43 and LHCP aggregates is fast 

compared to subsequent remodeling and disassembly of the aggregate.  First, in all the binding 

experiments the cpSRP43-LHCP interaction is complete within the timescale of manual mixing 

(≤15 s), much faster than the overall disaggregation rates. Second, given an affinity of ~2 

for the cpSRP43–L18 motif interaction 

association rate constants (106–

complex would be in the range of 2 

reaction. Together, these observations s

aggregate is the rate-limiting step in the disaggregation reaction. Therefore, the cpSRP43 

 

             

is the rate of spontaneous LHCP disaggregation in the absence of the chaperone, 

is the concentration of cpSRP43 required to achieve half maximal disaggregation rate, 

max is the disaggregation rate constant at saturating cpSRP43 

For some of the irreversible mutants (red, Table 3.4), neither the reaction equilibrium 

detectable cooperative concentration dependences. Therefore, the data were 

Menten equations (eqs 6 and 7), 

                  

              

remains to be obtained, the following strongly suggest

formation of an initial recognition complex between cpSRP43 and LHCP aggregates is fast 

compared to subsequent remodeling and disassembly of the aggregate.  First, in all the binding 

LHCP interaction is complete within the timescale of manual mixing 

15 s), much faster than the overall disaggregation rates. Second, given an affinity of ~2 

L18 motif interaction [12,25] and the typical range of macromolecular 

–108 M-1s-1), the dissociation rate constant of the recognition 

complex would be in the range of 2 – 200 s-1, much faster than the overall disaggregation 

reaction. Together, these observations suggest that the remodeling and disassembly of the 

limiting step in the disaggregation reaction. Therefore, the cpSRP43 

 

 (5) 

is the rate of spontaneous LHCP disaggregation in the absence of the chaperone, 

is the concentration of cpSRP43 required to achieve half maximal disaggregation rate, h is 

is the disaggregation rate constant at saturating cpSRP43 

the reaction equilibrium nor 

detectable cooperative concentration dependences. Therefore, the data were 

 (6) 

 (7) 

remains to be obtained, the following strongly suggests that the 

formation of an initial recognition complex between cpSRP43 and LHCP aggregates is fast 

compared to subsequent remodeling and disassembly of the aggregate.  First, in all the binding 

LHCP interaction is complete within the timescale of manual mixing 

15 s), much faster than the overall disaggregation rates. Second, given an affinity of ~2 M 

ypical range of macromolecular 

), the dissociation rate constant of the recognition 

, much faster than the overall disaggregation 

uggest that the remodeling and disassembly of the 

limiting step in the disaggregation reaction. Therefore, the cpSRP43 



concentration required to achieve half of the maximal rate of disaggregation, 

empirical measure for the average binding affinity of cpSRP43 to the aggregate.

 Determination of the E

interactions that drive aggregate formation 

formed LHCP aggregates (10 M) were re

urea for 30 minutes at 25 °C.  The mixtures were centrifuged at 18,000 g for 30 minutes, and 

soluble (S) and pellet (P) fractions were visualized by SDS

Coomassie Blue-stained bands for the pellet and soluble fractions were quantified using ImageJ 

[27].  The data were fit to a two-state model (eq 

  

in which fraction soluble is calculated as [S/(S+P)], R is the gas constant, and T is temperature, 

U50 is the urea concentration to achieve 50% solublization, and 

 Mathematical Analyses. 

to identify a weighted linear combination of 

values in Table 4.  This was carried out by identifying the global minimum for the scoring 

function (eq 9):    

     

LHCP Scanning Mutagenesis –

mutagenesis, transformation, and plating, were performed on a Tecan Freedom EVO liquid
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mutagenesis, transformation, and plating, were performed on a Tecan Freedom EVO liquid-

handling robot (Nisthal and Mayo, manuscript in preparation). Constructs were sequence verified 

arrayed into master plates. These master plates served to inoculate 10 mL volumes of 

well plates. After overnight expression at 37 °C, the 
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the L18 motif was carried out using QuikChange mutagenesis (Stratagene). Single cysteine 

mutants of LHCP were analyzed using the light scattering assay as described in the section: 

Determination of binding affinity betw

 Plate-based Aggregation Prevention and Disaggregase Activity Assay. 

variants were normalized to 45 µ

handling robot. In the aggregation preve

ratio (15 µM) of traditionally purified cpSRP43 was already present in each reaction well. The 

reaction was followed by absorbance at 360 nm and allowed to proceed for at least 20 minutes. 

When measuring disaggregase activity, the cpSRP43 concentration was raised to a 1:6 molar 

ratio (30 µM) and added ~1 min after diluting the LHCP protein into aqueous buffer. Again, the 

reaction was followed for 20 minutes by measuring the absorbance at 360 nm. For b

assays, the first time point was measured ~5 min after mixing and the final time point was used 

for data analysis. Percent chaperone activity is defined as:

  

where the equimolar chaperone

chaperone conditions. Relative chaperone activity is then calculated by normalizing the percent 

chaperone activity to the wt LHCP value for each assay plate.

  

 

 

the L18 motif was carried out using QuikChange mutagenesis (Stratagene). Single cysteine 
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where the equimolar chaperoneA360 value can be substituted for the A360 

chaperone conditions. Relative chaperone activity is then calculated by normalizing the percent 

chaperone activity to the wt LHCP value for each assay plate. 
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Results 

 Bipartite Interactions of cpSRP43 with Soluble LHCP. To identify binding 

interactions of cpSRP43 with LHCP that are crucial to its chaperone and disaggregase activities, 

we performed exhaustive alanine scanning mutagenesis in LHCP and assayed the chaperone 

activity using automated protocols on a Tecan Freedom EVO liquid-handling robot (Nisthal & 

Mayo, manuscript in preparation). Residues in the conserved L18 sequence between TM2 and 

TM3 of LHCP were further mutated to glycine and lysine. We tested the mutational effects on 

cpSRP43’s interaction with LHCP by measuring the ability of cpSRP43 to (i) bind and thus 

prevent the aggregation of LHCP (Figures 3.1A,B and 3.1D,E); and (ii) reverse existing LHCP 

aggregates (Figure 3.1C and 3.1F). Most mutations outside the L18 region, a conserved 18 amino 

acid sequence, result in modest to marginal effects on both the prevention and disaggregation 

activities of cpSRP43 (Figure 3.1A-C). On the other hand, single mutations of every residue in 

an FDPLGL motif in L18 had large deleterious effects (Figure 3.1D-F), indicating that this motif 

plays a crucial role in the ability of cpSRP43 to bind and chaperone LHCP. In contrast, 

mutations in the remainder of the LHCP had modest to marginal effects (Figure 3.1D-F). An 

independent cysteine mutagenesis scan of the L18 sequence yielded the same results (Figure 

3.1G,H). These results extend previous studies [12,25] and together, they show that cpSRP43 

makes highly sequence-specific interactions with the XDPLGX motif in the L18 sequence. 

 The absence of significant defects resulting from point mutations of the remainder of 

LHCP (Figure 3.1A-C) suggests that the interactions of cpSRP43 with the TMs of LHCP are 

likely promiscuous. To provide independent evidence for this notion and to further probe the 

nature of cpSRP43’s interaction with the TMs of the substrate protein, we constructed LHCP 

variants in which the individual TMs are deleted or swapped. In addition, the TMs in LHCP were 
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replaced with those from unrelated membrane proteins, including the tail-anchored proteins 

SERP1, Sec61b, and cytochrome b5 (Table 3.1 for nomenclature and composition of all LHCP 

TM mutants used in this study). If the interactions of cpSRP43 with the TMs are sequence-

specific, these mutations should significantly reduce the ability of cpSRP43 to bind and 

chaperone LHCP [12]. On the other hand, if these interactions arise from generic hydrophobic 

interactions or backbone contacts, these TM replacements should not substantially disrupt the 

chaperone activity. We quantitatively measured the binding interactions of the TM mutants with 

cpSRP43 using two independent approaches: (i) The ability of cpSRP43 to bind and thus prevent 

the aggregation of LHC proteins, which provides a convenient measure for the apparent binding 

affinity ( Kd
app) between this chaperone and the soluble LHCP; (ii) Equilibrium titrations based on 

changes in the fluorescence anisotropy of fluorescein-labeled LHCP upon its binding to 

cpSRP43 [12]. The values of Kd
app obtained from the two assays were comparable with one 

another (Figure 3.2A and [12]).  

 All the LHCP TM mutants tested could be efficiently bound and protected from 

aggregation by cpSRP43 (Figure 3.2B-F), with efficiencies that differ no more than five-fold 

from wild-type LHCP. Some mutants, such as ∆TM3, SERP2 and Sec2, bound cpSRP43 with 

even higher affinity than wild-type LHCP and are hence more readily protected by this 

chaperone (Figure 3.2B-D, green). Collectively, all the TM replacement mutants exhibit 

moderate to high binding affinities for cpSRP43, which are 10–100 fold higher than that of 

cpSRP43 for the isolated L18 peptide [25]. This strongly suggests that the hydrophobic TMs 

contribute additional binding interactions with cpSRP43. Further, these interactions are fairly 

generic and highly adaptable, in contrast to the strictly sequence-specific interactions of the L18 
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motif. Finally, these results show that cpSRP43 can protect a variety of aggregation-prone 

proteins, as long as the L18 motif is present to provide specific recognition. 

 A Quantitative Framework to Analyze cpSRP43-Mediated Disassembly of LHC 

Aggregates. To understand how the binding interactions from cpSRP43 are used to drive the 

disassembly of LHC aggregates, it is crucial to establish a quantitative framework that describes 

the energetics of the individual steps of this reaction. The disaggregation reaction mediated by 

cpSRP43 can be studied under single turnover conditions [28], minimizing complications from 

multiple turnover and facilitating interpretation of data. Both the kinetics and equilibrium of this 

reaction exhibit saturable cooperative concentration dependences (Figure 3.3A,B; [12]), strongly 

suggesting that the reaction involves at least two steps: (i) a higher-order step dependent on 

cpSRP43 concentration, presumably the assembly of a ‘recognition complex’ between cpSRP43 

and the aggregate (Figure 3.3C, step 1); followed by (ii) a unimolecular step independent of 

chaperone concentration, presumably involving the remodeling and disruption of the aggregate 

to generate resolubilized LHC•cpSRP43 complexes (Figure 3.3C, step 2). Important parameters 

can be extracted from these data to empirically report on the energetics of these steps (Figure 3.3 

& Table 3.2). Assuming that the initial recognition step is fast compared to the subsequent 

remodeling steps (see Methods), the cpSRP43 concentration required to achieve half of the 

maximal disaggregation rate provides an empirical measure for the average binding affinity of 

cpSRP43 to the LHC aggregate (Figure 3.3A,C and Table 3.2, 〈Km〉). The Hill co-efficient, h, 

denotes the minimum number of cpSRP43 molecules that cooperatively act together to disrupt 

the aggregate (Figure 3.3C and Table 3.2). The maximal rate of disaggregation at saturating 

chaperone concentration, kmax, measures the energetic barrier for remodeling and disrupting the 

aggregate once the initial recognition complex is formed (Figure 3.3A,C and Table 3.2). In 
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equilibrium measurements, the fraction of LHC proteins resolubilized at saturating cpSRP43 

concentrations, Kmax, reports on the extent to which the interactions between LHC and cpSRP43 

overcome the forces that stabilize the aggregate. Finally, at a sub-saturating cpSRP43 

concentration, the observed kinetics and equilibrium of LHC resolubilization (kapp and Kapp, 

respectively) measures the overall barrier to reach the transition state and the final cpSRP43-

LHC complex, respectively. 

 To provide independent evidence that the disaggregation reaction can be experimentally 

dissected into distinct steps and to probe the molecular determinants that underlie each step, we 

characterized mutant cpSRP43 or LHC proteins that exhibit different defects in the 

disaggregation reaction. Below, we present evidence for two distinct classes of mutants that 

uncouple the initial recognition of the protein aggregate from its subsequent remodeling and 

solubilization, and for the distinct molecular determinants and interactions that underlie these 

steps.  

 Interaction with the L18 motif is essential for initial recognition of the aggregate. In 

the preceding paper [26], the results of both electron paramagnetic resonance (EPR) and 

chemical modification experiments showed that in LHC aggregates, the hydrophobic TMs are 

buried in the interior whereas the L18 motif is displayed on the exterior. These results suggest an 

attractive model in which cpSRP43 could recognize the L18 motif presented on the surface of 

the aggregate, initiating its action as a disaggregase. If this were the case, mutant LHC or 

cpSRP43s that specifically disrupt the L18-cpSRP43 interaction would impair the initial 

recognition of the aggregate, exhibiting defects in disaggregation at low chaperone 

concentrations. As binding is a higher-order process, the defects of these mutants could be 

overcome when a sufficiently high chaperone concentration is used to drive the initial binding. 
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To test this hypothesis, we examined how mutations in the L18 motif of LHC or in the L18-

binding sites of cpSRP43 affect the efficiency of disaggregation.  

 We identified two mutations in the L18 motif of Lhcb5 (a close homologue of LHCP), 

H160C and L170C, that weaken substrate binding with cpSRP43. Equilibrium binding assays 

showed that wild-type Lhcb5 binds tightly to cpSRP43, with aKd
app value of 10 nM, whereas 

mutants H160C and L170C exhibited weakened binding, with Kd
app

 values of 30 nM and 1.1 

mM, respectively (Figure 3.4A and Table 3.3). Reciprocally, mutation of Arg161 in cpSRP43 

(R161A), which provides an important hydrogen bond partner with L18 [25], significantly 

reduces the binding affinity of cpSRP43 to LHCP (Kd
app = 1.2 mM, compared to 138 nM with 

wild-type cpSRP43; [12]).  

 Consistent with defects in recognition of the LHCP aggregate, mutant cpSRP43-R161A 

exhibited severe defects in the reversal of LHCP aggregates at low chaperone concentrations 

(Figure 3.4B, magenta vs. black; Table 3.3, Kapp and kapp). However, when the concentration of 

the mutant chaperone was raised to compensate for the binding defect, cpSRP43-R161A could 

reverse LHCP aggregation. At saturating chaperone concentrations, close to 50% solubilization 

of the aggregate could be attained (Figure 3.4B, magenta and Table 3.3). Analogously, the 

aggregates formed by the Lhcb5 mutants, H160C and L170C, exhibited defects in the 

disaggregation reaction that can be rescued by higher cpSRP43 concentrations (Figure 3.4C,D 

and Table 3.3). At saturating chaperone concentrations, the equilibrium and kinetics of 

disaggregation with the mutant aggregates are within two-fold of those of wild-type Lhcb5 

(Figure 3.4C,D and Table 3.3). Finally, all three mutants exhibited much higher values of 〈Km〉 in 

the disaggregation reaction compared to the wild-type protein (Figure 3.4 and Table 3.3), which 

correlated with their reductions in substrate binding affinity (Figure 3.4A and [12]). Together, 
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these results showed that L18 binding is a key requirement for the initial recognition of the 

aggregate by cpSRP43; further, this recognition event can be uncoupled from the subsequent 

concentration-independent step(s) in the disaggregation reaction.  

 A Class of LHCP TM Mutants Specifically Blocks the Disaggregation Process. Since 

the LHCP TM mutants contain intact L18 motifs, they provide a collection of substrates to probe 

for additional molecular requirements that underlie cpSRP43’s disaggregase activity. 

Surprisingly, although all the TM mutants can be efficiently bound and prevented from 

aggregation by cpSRP43 (Figure 3.2), they exhibit striking differences in the thermodynamics 

and kinetics of the disaggregation reaction (Figure 3.5, and Table 3.4).  

 The aggregates formed by some of the TM mutants, notably those of ∆TM3, SERP2, 

Sec2 and Cyb2, showed disaggregation kinetics and efficiencies that are comparable to or even 

higher than that of wild-type LHCP (Figure 3.5A-H and Table 3.4, green). Notably, the 

aggregates formed by a group of mutants, especially 1-1-3, ∆TM2, 1-2-2, and 1-3-2, were 

virtually irreversible even when saturation in disaggregation rate constants has been reached at 

high cpSRP43 concentrations (Figure 3.5A-H and Table 3.4, red). To a lesser extent, mutants 1-

2-1 and ∆TM1 also exhibited significant reductions in the disaggregation rates even when 

saturation was reached at high cpSRP43 concentrations (Figure 3.5 E-H and Table 3.4). In the 

aggregate formed by all these mutants, the L18 motif is highly accessible and solvent-exposed 

(Figure 3.6A-C); this and the observation that saturation in disaggregation kinetics can be 

reached with these mutants indicate that their defects could not be accounted for by the inability 

of cpSRP43 to recognize the aggregate. In addition to substantial reductions in the maximal 

disaggregation rates, the disaggregation reaction of these mutants lost cooperative dependence on 

cpSRP43, further supporting a specific defect in the ability of cpSRP43 to remodel and 
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resolubilize the aggregate. Together, these results provide strong evidence for the presence of an 

additional ‘remodeling’ step in cpSRP43’s disaggregase mechanism, whose molecular 

requirements are distinct from the initial recognition step.  

 The Irreversible LHCP TM Mutants Form Ultra-stable Aggregates. Unlike the L18-

binding mutants, the irreversible LHCP TM mutants can bind reasonably well to cpSRP43. What 

caused their defects in disaggregation?  The results from chemical modification and EPR 

experiments showed that the TM segments are buried inside the aggregate and engage in strong 

interactions [26]. We hypothesized that the internal packing interactions within the aggregates 

are altered in these TM mutants, which could present higher barriers for cpSRP43 to remodel and 

disrupt the aggregate. To test this hypothesis, we probed the energetics of the packing 

interactions that stabilize the aggregate by quantitatively analyzing its solubility in chemical 

denaturants. Using the sedimentation assay, we showed that both guanidinium hydrochloride 

(GdmHCl) and urea could effectively solubilize the LHCP aggregate in a concentration-

dependent manner (Figure 3.7A). Quantification of the amount of solubilized LHCP as a 

function of urea concentration gave an aggregate solubilization curve analogous to protein 

unfolding curves (Figure 3.7B-E; [28]). Based on a two-state model, quantitative analyses of 

these data yielded information about the energetics of transfer of LHCP from urea to water 

(∆G°) and the urea concentration required to achieve 50% solubilization (Table 3.4, U50; see 

Methods). These parameters provide quantitative empirical measures of the energetics of the 

internal packing interactions that drive aggregate formation. 

 The aggregates formed by the LHCP TM mutants exhibited a wide range of stabilities, 

with U50
 values ranging from 2.5 to 5.7 M (Figure 3.7B-E and 3.Table 4). Notably, the four 

‘irreversible’ mutants that could bind cpSRP43 but whose aggregates could not be efficiently 
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resolubilized exhibited the highest U50
 values (4.7–5.7 M; Figure 3.7B-E and Table 3.4, red). In 

contrast, some of the mutant aggregates that are more readily re-solubilized by cpSRP43, such as 

∆TM3, displayed the lowest U50
 values (2.5–3.3 M; Figure 3.7B and Table 3.4, green). These 

results strongly suggest that the internal packing interactions within the aggregate provide a 

crucial barrier to the efficiency with which cpSRP43 can disrupt protein aggregates.  

 Linear Free Energy Analysis to Probe the Energetic Determinants of Disaggregation 

Efficiency. The collection of LHCP TM mutants, which display a wide range of disaggregation 

efficiencies and kinetics (Table 3.4), further allowed us to systematically probe the contributions 

of different molecular features and the nature of the rate-limiting remodeling complex (Figure 

3.3C, ‡) during the disaggregation reaction. To this end, we evaluated how the maximal rate of 

disaggregation (kmax) correlates with the two energetic parameters that were varied in this set of 

mutants: (i) the binding affinity between cpSRP43 and the solubilized LHCP (Kd
app), which 

ultimately drives the disaggregation reaction; and (ii) the energetics of packing interactions that 

drive aggregate formation (U50), which must be overcome by cpSRP43 during disaggregation. A 

strong correlation was found between the maximal disaggregation rate constant and a weighted 

combination of the U50 andKd
app values (Figure 3.8A, R2 = 0.96), but not with either of the 

parameters alone (data not shown). This correlation strongly suggests that once a recognition 

complex is formed, the competition between the packing interactions that stabilize the aggregate 

and additional binding interactions that cpSRP43 establishes with the TMs of LHCP dictates the 

resolubilization of the aggregate. Finally, two of the mutants, ∆TM1 and ∆TM3, exhibit 

significant deviations from this correlation (Figure 3.8A, blue), suggesting preferences in the 

disaggregation pathway by cpSRP43 that are not accounted for by these two parameters (see the 

Discussion). 
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 Analysis of the relationship between the equilibrium and rate constants of disaggregation 

provided further insights into the nature of the rate-limiting remodeling complex (Figure 3.3C, 

‡). At a subsaturating cpSRP43 concentration (chosen at 4 µM), the free energy barrier (∆∆G ~ 

ln Kapp) and the activation barrier (∆∆G‡ ~ ln kapp) of the disaggregation reaction showed an 

excellent linear correlation for the entire set of LHCP mutants (Figure 3.8B), giving a slope of 

=73 Analogous to the -value analysis of protein folding [28], this correlation could be used to 

infer the nature and structure of the transition state relative to the substrate (the LHCP aggregate) 

and the product (the solubilized LHCP•cpSRP43 complex) of the reaction. The observation of an 

-value that approaches unity implies a fairly late transition state and strongly suggests that, in 

the rate-limiting remodeling complex, a substantial fraction of packing interactions within the 

LHCP aggregate are disrupted and those with cpSRP43 are formed, albeit not to the same extent 

as those in the resolubilized cpSRP43-LHCP complex.   
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Discussion 

 cpSRP43 provides an example of a novel class of chaperones that can effect the reversal 

of insoluble protein aggregates based solely on ATP-independent binding interactions with its 

substrate protein. The simplicity of this system makes it an accessible model system to delineate 

the molecular mechanisms as well as the capability and limitations of ATP-independent 

disaggregases. Here, mutational analyses revealed distinct sets of binding interactions that this 

chaperone establishes with its substrate proteins. Further, molecular genetics combined with 

thermodynamic and kinetic analyses allowed us to dissect the molecular steps during the 

cpSRP43-mediated disaggregation reaction and revealed distinct molecular requirements and 

interactions that underlie each step. These results, combined with previous work [12,26], led us 

to propose a two-step working model for the action of cpSRP43 as a protein disaggregase 

(Figure 3.9A). 

 Bipartite interactions of cpSRP43 with substrate protein. Previous work has 

established a specific interaction of cpSRP43 with L18, a conserved and relatively hydrophilic 

segment between TM2 and TM3 of the LHC family of proteins [23-25]. The mutagenesis results 

here further demonstrated that this interaction is localized to the most conserved FDPLGL motif 

within L18, emphasizing the highly specific nature of this recognition. This is consistent with 

crystallographic observations in which DPLG was found to form a ‘turn’ that wraps around 

Tyr204 of cpSRP43, whereas the side chains in the remainder of the L18 peptide were not well 

resolved [25]. Nevertheless, the ability of cpSRP43 to protect LHC proteins from aggregation 

implies that additional interactions must exist between this chaperone and the hydrophobic TMs 

on its substrate proteins. Although the precise motif(s) that mediate these additional interactions 

remain to be determined, the results here demonstrate that cpSRP43’s interactions with the TMs 
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are highly promiscuous, enabling it to bind and chaperone a variety of substrate variants in which 

the TMs were removed or replaced. Some of the substrate variants could be bound and 

chaperoned by cpSRP43 even more effectively than wild-type LHCP. Together, these results 

establish two important components of cpSRP43’s binding interaction with substrate protein: 

highly specific recognition of the FDPLGL motif in the L18 segment, and generic hydrophobic 

interactions with the TMs of the substrate protein that are highly adaptable. As discussed below, 

these two sets of binding interactions contribute to distinct stages in cpSRP43’s action as a 

disaggregase. 

 Different binding interactions drive distinct stages of cpSRP43’s disaggregase 

activity .  

 1. Recognition of the aggregate (Figure 3.9A, step 1). To initiate the disaggregation 

reaction, cpSRP43 must first recognize and engage the LHC aggregates. Although additional 

interactions cannot be excluded, an attractive mechanism to drive this initial recognition is the 

binding of cpSRP43 to the L18 motif, which is displayed on the solvent-accessible exterior of the 

LHC aggregate (Figure 3.9A, step 1). In support of this model, mutant proteins that disrupt the 

interaction of cpSRP43 with the L18 motif exhibit defects in disaggregation at low cpSRP43 

concentrations and require much higher chaperone concentrations to reach saturation (Figure 

3.9B, ∆∆G1). Consistent with a specific defect of these mutants in a binding step, their defects 

could be overcome by increasing the chaperone concentration, such that the maximal rate and 

efficiency of the disaggregation reaction with these mutants are within two-fold of that of the 

wild-type protein (Figure 3.9B). 

 Intriguingly, the values of 〈Km〉, which provide a proxy for the binding of cpSRP43 to the 

LHCP aggregate, are considerably weaker than the binding of cpSRP43 to the L18 peptide [25] 
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and, with the exception of ∆TM1, vary from ~6 to 16 µM across the different TM mutants 

(Table 3.4, white and green). On the one hand, this variation is much smaller than the up to 50-

fold changes in the binding affinity between cpSRP43 and the soluble substrate protein (Table 

3.4, Kd
app), supporting the notion that interaction with the L18 motif is a major driving force for 

the initial recognition step and is less sensitive to variations in the TM segments of LHCP. On 

the other hand, such variation, though modest, could not be explained by the simplest model in 

which the recognition step is equivalent to interaction of cpSRP43 with an isolated L18 peptide. 

It is possible that the L18 motif is presented in different configurations on the aggregates formed 

by the different TM mutants, which could cause the observed variations. Consistent with this 

possibility, EPR experiments showed that in the aggregate, spin probes in the DPLG motif 

exhibit much lower mobility than the remainder of the L18 sequence [26], suggesting that this 

motif might contact the remainder of the aggregate and needs to undergo a rearrangement in 

order to interact with cpSRP43. Additional structural or sequence elements presented on the 

aggregate surface could also be recognized by cpSRP43. Consistent with this possibility, 

cpSRP43 crosslinks to residues at the N-terminus of TM3 [29]; this segment is also exposed on 

the surface of the LHC aggregate [26] and available for recognition by cpSRP43.  

 2. Remodeling and disruption of the aggregate (Figure 3.9A, step 2). The class of 

‘irreversible’ TM mutants (Table 3.4, red), which exhibits severe defects in maximal 

disaggregation rate constants (kmax), provides strong evidence for a distinct remodeling step in 

the disaggregation reaction (Figure 3.9A, step 2) that has different molecular and energetic 

requirements to the initial recognition step. As cpSRP43 effectively prevents the aggregation of 

these mutant LHCPs, the defects of these mutants in disaggregation are most likely kinetic, 

rather than thermodynamic in origin. Further, the observation that all the ‘irreversible’ mutants 
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form significantly more stable aggregates than wild-type LHCP (Figure 3.9C, ∆∆Gagg) strongly 

suggests that the packing interactions within the aggregate present a major barrier for 

disaggregation (Figure 3.9C, kmax’ >> kmax), and that these packing interactions need to be 

substantially disrupted in the rate-limiting remodeling complex (Figure 3.8A, species in bracket).  

 Additional insights into the remodeling step are provided by analyses of the entire series 

of TM mutants, which display a wide range of binding interactions with cpSRP43, packing 

interactions within the aggregate, and kinetics of disaggregation. In this series of mutants, the 

best predictor for disaggregation kinetics is provided by a combination of two energetic 

parameters: the packing interactions within the aggregate (U50) compensated by the available 

binding interactions between cpSRP43 and solubilized LHCP (Kd
app; Figure 3.8A). This 

correlation is striking, and implies that the transition state (or rate-limiting remodeling complex) 

for the disaggregation reaction involves substantial global disruption of the aggregate. Further, 

these disruptions are compensated by the establishment of additional binding interactions of 

cpSRP43 with the TMs of the dislodged LHCP molecules. A notable example of the latter is 

SERP2, which forms an aggregate with a U50 value comparable to wild-type LHCP, 1-3-3 or 

Cyb2, but displays the fastest disaggregation kinetics as cpSRP43 establishes the strongest 

binding interactions with this mutant. Together, these results strongly support the model that, 

once cpSRP43 recognizes and ‘latches’ onto the LHCP aggregate, the competition between its 

binding interactions with the TM segments of LHCP molecules and the packing interactions that 

stabilize the aggregate dictates the efficiency of the disaggregation process. 

  value analysis, which compares the extent to which mutations affect the barrier to 

reach the transition state vs. that to the resolubilized cpSRP43-LHCP complex, provided 

additional insights into the nature of the rate-limiting remodeling complex during the 
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disaggregation process. The value of 0.73 observed here rules out early ( ~ 0) transition 

states and suggests a fairly late structure for the rate-limiting remodeling intermediate [28], in 

which a substantial portion of the packing interactions within the LHCP aggregate is disrupted 

and significant binding interactions with cpSRP43 have been established. A slightly alternative 

model, which takes into account potential heterogeneity in the action of cpSRP43, is that 

cpSRP43 disrupts the packing interactions at certain parts of the aggregate more extensively than 

at others, giving rise to an value less than unity. As formation of the aggregate is a highly 

cooperative process [26], it is conceivable that extensive disruption at multiple parts of the LHC 

aggregate could lead to the collapse of the network of packing interactions that drive aggregate 

formation (Figure 3.9A), thus leading to its solubilization.  

 Perspective. The analyses here established two key requirements for how a chaperone 

can use binding interactions to reverse a protein aggregate. First, the chaperone must efficiently 

recognize and latch onto the target aggregate, through interactions with structural or sequence 

motifs displayed on the exterior of the aggregate. Second, the chaperone must effectively 

compete with and replace the internal packing interactions of the aggregate, by interacting with 

and protecting the segments of the substrate protein buried in the interior of the aggregate. 

Although the specifics of each system differ, these principles may be generalized to other ATP-

independent chaperones that participate in or facilitate protein disaggregation processes.  

 Nevertheless, these do not represent all the molecular features in the cpSRP43-mediated 

disaggregation reaction. Most notably, mutants ∆TM1 and ∆TM3 are clear outliers in the 

correlation analysis (Figure 3.8A, blue squares). These deviations imply that factors in addition 

to the two parameters explored here (U50 and Kd) contribute to the disaggregation reaction, and 

suggest preferred pathways in the action of cpSRP43. For example, ∆TM3 forms the loosest 
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aggregate and can bind cpSRP43 tightly, but its rate of disaggregation is significantly slower 

than that expected from these considerations. Coupled with the observation that N-terminal 

residues of TM3 are also highly accessible on the aggregate [26] and can contact cpSRP43 [29], 

this raises the intriguing possibility that cpSRP43 preferentially exerts its action on TM3 during 

the remodeling process to most effectively disrupt the aggregate. In contrast, ∆TM1 forms one of 

the tightest aggregates and has weaker binding interactions with cpSRP43, yet its maximal rate 

of disaggregation by cpSRP43 far exceeded what would be expected based on these parameters. 

This led us to speculate that TM1 is not a preferred site of action of cpSRP43 during the 

disaggregation process. Finally, despite these deviations, the aggregates formed by both of these 

mutants and by ‘hybrid’ substrates containing TMs from unrelated membrane proteins are 

efficiently reversed by cpSRP43, demonstrating the remarkable adaptability of this chaperone. 

 It is noteworthy to compare the mechanism of aggregate remodeling by cpSRP43 to that 

of the ClpB/Hsp104 disaggregases. Much of the insights into the action of ClpB/Hsp104 are 

based on analogy with the ClpAP/ClpXP proteases [8], which use cycles of ATP binding and 

hydrolysis to drive repetitive movements of the substrate binding loops, forcing the polypeptides 

through a constricted pore in the hexameric assembly and thus unfolding the substrate protein. 

By analogy, ClpB/Hsp104 could use ATPase cycles to drive translocation of a polypeptide, 

extracting it out of protein aggregates [30,31]. In this mechanism, each disaggregase machine 

can locally sever an aggregate without disrupting the remainder of the aggregate. This is 

consistent with the observation that local, rather than global, structure and stability near the 

recognition sites dictate the efficiency of ClpA/ClpX [32,33], and with the ability of Hsp104 to 

generate more amyloid fragments and thus promote amyloid propagation [34,35]. Although the 

precise molecular details remain to be elucidated, our results suggest that cpSRP43 acts globally, 
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rather than locally, on the protein aggregate. The rate-limiting step in the reaction pathway of 

cpSRP43 involves the generation of a late intermediate in which the packing interactions within 

the entire aggregate are extensively disrupted and which requires the cooperative action of 

multiple cpSRP43 molecules. Conceivably, in the absence of external energy input, individual 

cpSRP43 molecules cannot compete with the packing interactions inside the aggregate and 

extract a soluble LHC molecule from it. Instead, multiple chaperones collectively disrupt and 

collapse the entire aggregate (Figure 3.9A). The results here provide a valuable framework to 

probe the capability, effectiveness, and limitations of this alternative ATP-independent 

chaperone mechanism, and to understand the design principles by which binding energy can be 

used to overcome the problems of protein aggregation. 
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TABLE 3.1 Description of the LHCP TM mutants. 
 

 

Construct LHCP TM 

Replaced 

Replaced by 

TM from 

Sequence of the TM Replacement 

WT N/A N/A - 

∆TM1 TM1 - - 

∆TM2 TM2 - - 

∆TM3 TM3 - - 
    

1-1-3 TM2 LHCP TM1 PETFSKNRELEVIHSRWAMLGALGCVFPELLSRNG 

1-3-3 TM2 LHCP TM3 PEAFAELKVKELKNGRLAMFSMFGFFVQAI 

SERP2 TM2 SERP1 ASVGPWLLALFIFVVCGSAIF 

Sec2 TM2 Sec61b VPVLVMSLLFIASVFM 

Cyb2 TM2 Cytochrome b5 NSSWWTNWVIPAISALIVALMY 
    

1-2-1 TM3 LHCP TM1 PETFSKNRELEVIHSRWAMLGALGCVFPELLSRNG 

1-2-2 TM3 LHCP TM2 SILAIWATQVILMGAVEGYRIA 

SERP3 TM3 SERP1  ASVGPWLLALFIFVVCGSAIF 
    

1-3-2 
TM2,  

TM3 

LHCP TM3,  

LHCP TM2 

PEAFAELKVKELKNGRLAMFSMFGFFVQAI 

SILAIWATQVILMGAVEGYRIA 
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TABLE 3.2 Thermodynamic and kinetic parameters in the disaggregation reaction.  
 
 
Parameter 
 

 
Definition 

 
Assay 

 
Equation1 

〈〈〈〈Km〉〉〉〉 

 

cpSRP43 concentration that achieves 
half maximal rate of disaggregation 

Disaggregation 5 

h Hill coefficient Disaggregation 5 

kmax Maximal disaggregation rate constant at 
saturating cpSRP43 concentration 

Disaggregation 5 

Kmax Maximal fraction disaggregated at 
saturating cpSRP43 concentration 

Disaggregation 4 

kapp Rate constant of disaggregation at a 

sub-saturating cpSRP43 concentration 

Disaggregation 5 

Kapp Fraction disaggregated at a 

sub-saturating cpSRP43 concentration 

Disaggregation 4 

Kd
app Apparent dissociation constant of the 

soluble cpSRP43•LHCP complex 
1. Prevention of aggregation 

2. Fluorescence anisotropy 

1, 2 

U50 Urea concentration required for 50% 
re-solubilization of the aggregate 

Sedimentation 8 

 

1Reference to equations in Methods. 
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TABLE 3.3  Summary of the thermodynamic and kinetic parameters of the L18-binding 
mutants. 
 

Construct Kd
app (nM) 〈Km〉(µM) Kmax Kapp

4µM  kmax (s
-1) kapp

4µM  (s-1) 

cpSRP43 R161A  12001 >502 >0.402 0.02 N.D. N.D. 

       

Lhcb5    10     8.8 1.06 0.51  0.029 0.0042 

Lhcb5 H160C    30 64 0.85 0.12  0.025 0.0021 

Lhcb5 L170C 1100 >902 >0.352 0.03 >0.014 N.D. 
 
Values reported are from Figure 3.1. N.D. = not determined. 
1previously determined by fluorescence anisotropy [12]. 
2denotes the values at the highest cpSRP43 concentration used. 
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  TABLE 3.4  Summary of the thermodynamic and kinetic parameters of the LHCP TM mutants.  
 

Substrate( Kmax
 ( Kapp

4µM  <Km>(µM)( h( kmax(s
-1)( kapp

4µM  (s-1) Kd
app (nM) U50(M)( 

WT 0.98±0.02 0.70±0.05 

±03 

  8.8±4.1 2.9±0.5   0.049±0.005  0.0068±0.001   111±3 3.8±0.2 

1-3-3 1.01±0.04 0.72±0.08 

 

11.7±1.1 1.8±0.1   0.068±0.006  0.0090±0.001   144±34 3.7±0.1 

SERP3 1.19±0.10 0.33±0.03 

 

12.2±1.9 2.6±0.4   0.025±0.005  0.0021±0.0003   207±51 4.0±0.1 

1-2-1 0.95±0.01 0.08±0.01 

 

15.6±0.3 4.6±0.4 0.0099±0.002  0.0011±0.0001   234±16 4.4±0.3 

∆TM1 0.97±0.02 0.13±0.04 

 

42.5±15 1.6±0.5   0.053±0.021  0.0017±0.0002   413±76 4.7±0.0 

SERP2 1.05±0.03 0.96±0.04 

 

  8.5±1.3 2.3±0.2   0.25  ±0.04  0.042±0.009       9±5 3.5±0.1 

∆TM3 1.01±0.02 0.95±0.03 

 

  5.7±0.7 2.4±0.3   0.11  ±0.013  0.033±0.009     26±12 2.5±0.1 

Sec2 1.09±0.02 0.81±0.01 

 

  6.6±0.5 2.9±0.3   0.088±0.008  0.017±0.005     36±17 3.3±0.1 

Cyb2 1.12±0.11 0.66±0.04 

 

  6.8±0.4 3.6±0.5   0.056±0.004  0.0086±0.001     51±24 3.6±0.2 

∆TM2# 0.62    0.04       N.D. N/A   0.003 0.0004  216±88 5.7±0.1 

1-2-2# N.D.    0.03       N.D. N/A   0.006 0.0002  489±95 4.7±0.1 

1-3-2# N.D.    0.03       N.D. N/A   0.005 0.0003  456±206 4.8±0.1 

1-1-3# 0.56    0.02       N.D. N/A   0.003 0.0003  490±57 5.7±0.1 

 
N.D. =not determined. Values reported are average from two or more independent experiments ± standard 
deviation.  
# denotes mutants that are fit with the Michaelis-Menten equation (eqs 6 & 7 in Methods). kmax values 
were estimated for these mutants as the observed disaggregation rate constants reached saturation at the 
highest cpSRP43 concentrations. Accurate 〈Km〉 values could not be determined due to the extremely slow 
reaction of these mutants at low cpSRP43 concentrations, and are hence not reported. 
N/A = not applicable. 
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Figure 3.1 cpSRP43 makes highly sequence-specific interactions with the FDPLGL motif in the 
L18 sequence. A–F, alanine-scanning mutagenesis of the entire LHCP (A-C), and alanine-, 
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glycine-, and lysine-scanning mutagenesis within the L18 sequence of LHCP (D–F). The 
aggregation prevention activity of cpSRP43 was assayed at 1:1 (A and D) and 1:3 (B and E) 
molar ratios of LHCP to cpSRP43. aa, amino acids; mut, mutant. In C and F, the disaggregase 
activity was measured at 1:6 molar ratio of LHCP to cpSRP43. All assays were performed in 
384-well plates using a Tecan Freedom EVO liquid-handling robot, as described under 
“Experimental Procedures.” G and H, single-cysteine substitutions at individual residues in L18 
were tested for their ability to prevent the aggregation of LHCP (G) and to resolubilize existing 
LHCP aggregates (H). In G, a 1:1 ratio of cpSRP43 and LHCP was used. In H, a 5:1 ratio of 
cpSRP43 relative to LHCP (in aggregates) was used. 
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Figure 3.2 cpSRP43 can interact with a variet
to TM mutants as measured by changes in anisotropy. Fits of data gave 
∆TM3 and 713 nM for 1-2-2. For comparison, the 
26 and 489 nM, respectively (Table 
mutants as measured by the ability of cpSRP43 to prevent the aggregation of substrate proteins 
(see “Experimental Procedures”). Th
Procedures”) and gaveKd

app values that are summarized in Table 

cpSRP43 can interact with a variety of LHCP TM mutants. (A) Binding of cpSRP43 
to TM mutants as measured by changes in anisotropy. Fits of data gave Kd values of 22 nM for 

2. For comparison, the  values measured by light scattering were 
26 and 489 nM, respectively (Table 3.4). (B–E) Binding of cpSRP43 to LHCP and its TM 
mutants as measured by the ability of cpSRP43 to prevent the aggregation of substrate proteins 
(see “Experimental Procedures”). The data were fit to Equation 1 (see “Exp

values that are summarized in Table 3.4. (F) Summary of the 

 

 
inding of cpSRP43 

values of 22 nM for 
values measured by light scattering were 

inding of cpSRP43 to LHCP and its TM 
mutants as measured by the ability of cpSRP43 to prevent the aggregation of substrate proteins 

e data were fit to Equation 1 (see “Experimental 
ummary of the Kd

app 
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values of all the LHCP TM mutants characterized in this study. Values of Kd
app were determined 

by a combination of light scattering and fluorescence anisotropy assays. 
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Figure 3.3 Schematics depicting quantitative analysis of the cpSRP43-mediated disaggregation 
reaction. Concentration dependences of the kinetics (A) and equilibrium (B) of the cpSRP43-
mediated reversal of wild-type LHCP aggregate yield important parameters that report on the 
energetics of different steps of the disaggregation pathway (C).  



 

 

121

  
Figure 3.4 L18-binding mutants uncouple initial recognition of the aggregate from its 
subsequent solubilization. (A) Binding of cpSRP43 to wild-type Lhcb5 and L18 mutants H160C 
and H170C. The data were fit to Equation 1 (see “Experimental Procedures”) and gave Kd

app 
values of 10 nM for wild-type Lhcb5 (black), 30 nM for Lhcb5-H160C (blue), and 1.1 µM for 
Lhcb5-L160C (red). (B) Concentration dependences for the equilibrium of disaggregation of 
LHCP by wild-type cpSRP43 (black) or mutant cpSRP43(R161A) (magenta). (C and D) 
Chaperone concentration dependences for the equilibrium (C) and kinetics (D) of disaggregation 
of Lhcb5 (black), Lhcb5-H160C (blue), and Lhcb5-L170C (red) by wild-type cpSRP43. 
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Figure 3.5 LHCP TM mutants exhibit a wide range of disaggregation efficiencies. (A–H) 
Representative concentration dependences of the equilibrium (A, C, E, and G) and kinetics (B, 
D, F, and H) for disassembly of the aggregates formed by the LHCP TM mutants. The data for 
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wild-type LHCP (black) were shown as a reference of comparison in all four sets. The data in A, 
C, E, and G were fit to Equation 4 (black, blue, and green) or Equation 6 (red) to obtain Kmax 
values and extract Kapp

4µM  values at 4 µM cpSRP43. The data in B, D, F, and H were fit to 

Equation 5 (black, blue, and green) or Equation 7 (red) to obtain kmax, 〈〈〈〈Km〉〉〉〉, and h values and to 
extract kapp

4µM  values at 4 µM cpSRP43. All the thermodynamic and kinetic parameters were 

reported in Table 3.4. 
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Figure 3.6 Time courses for the alkylation reactions of cysteine residues in the L18 shows 
accessibility of WT (A) and mutant (B and C) LHC proteins. A–C, Lhcb5 L170C (A), ∆TM2 
G158C (B), and ∆TM3 G158C (C) were labeled with 30-fold excess N-ethyl-maleimide in 
denaturant guanidinium hydrochloride (GdmHCl), pH 7.5 (black traces) and in aqueous buffer, 
pH 7.5 (red traces), and the reactions were quenched at different time points with DTT and 
subjected to intact protein mass spectrometry as in the accompanying manuscript [26]. 
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Figure 3.7 The irreversible TM mutants form ultrastable aggregates. (A) Sedimentation analysis 
of the ability of guanidinium chloride (GdmHCl) and urea to resolubilize LHCP aggregates. M 
denotes the protein marker lane. (B–E) Urea solubilization curves of LHCP and its TM mutants. 
The data were fit to Equation 8 (see “Experimental Procedures”) and gave U50 values (Table 
3.4). 
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Figure 3.8 Linear free energy analysis of the cpSRP43-mediated disaggregation reaction. (A) 
The maximal disaggregation rate constant strongly correlates with a weighted combination of the 
U50 and Kd

app values. Values for the analysis are from Table 3.4. The black line represents a 
linear fit to the data (R2 = 0.96). ∆TM1 and ∆TM3 (blue) were marked as outliers and were not 
included in the correlation. (B) � value analysis of LHCP disaggregation. The values of Kapp and 
kapp were calculated from fits of disaggregation equilibrium and kinetic data to Equations 4 and 5 
(“Experimental Procedures”), respectively, and the concentration of cpSRP43 was chosen at 4 
mM. Linear fit of the data (black line, R2 = 0.98) gave a slope (� value) of 0.73. 
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Figure 3.9 A, Working model for cpSRP43-mediated disaggregation reaction. Step 1 depicts 
initial binding of cpSRP43 (magenta) to the LHCP aggregate (green), which occurs via 
recognition of the solvent-exposed L18 motif (red). Step 2 depicts the cooperative action of 
cpSRP43 molecules to compete with and disrupt the packing interactions between the LHCP TM 
segments within the aggregate, leading to its resolubilization. B and C, qualitative free energy 
diagrams summarizing the effects of the L18-binding mutants that disrupt the initial binding step 
(B) and the irreversible TM mutants that disrupt the remodeling step (C), as described under 
“Results.” The figures are not drawn to scale. 
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Chapter 4 

Mitigating Protein Aggregation: 

Towards the Application of cpSRP43 as a Versatile 

Chaperone for Membrane Protein Systems 
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Abstract 

 In recent biochemical studies, the chloroplast Signal Recognition Particle 43 (cpSRP43) 

has been shown to possess robust molecular chaperone activity in preventing and reversing the 

aggregation of its cognate substrate, the proteins belonging to a family of light-harvesting 

chlorophyll-a/b binding (LHC) proteins. Additionally, it has been hypothesized that cpSRP43’s 

chaperone function is rooted in its tight binding affinity to the recognition motif (L18) in LHCs 

that is specific, and additional hydrophobic contacts with the substrate that is more generic. Here, 

we show preliminary data to suggest that cpSRP43 chaperone activity can be extended to 

alternative substrates unrelated to the natural interaction. First, we show cpSRP43 in vitro can 

reverse the aggregation of LHC swap mutants where transmembrane segments of unrelated 

proteins have been swapped to replace that of wild-type LHC. Second, we show the potential of 

implementing the co-expression of cpSRP43 and “L18-tagging” as a strategy to improve the low 

yield of membrane proteins in the bacterial expression system. Lastly, we demonstrate that 

cpSRP43 inhibits the fibrillization of amyloid beta peptide (Aβ1-40). These results attest to 

cpSRP43’s potential as a molecular chaperone and provides the impetus for further engineering 

endeavors to address problems that stem from protein aggregation. 
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Introduction 

 The maintenance of functional proteins is handled by the protein homeostasis network 

that ensures the proper folding of proteins, traffics nascent proteins to their cellular destinations 

and clears them at the end of their life cycles [1,2]. The working of this network is essential for 

the survival of the cell. Failure at any step along the network not only deprives the cell of 

functional proteins, as proteins are misfolded in inactive conformations or mis-localized, but  

may also lead to cellular toxic protein aggregation. Protein misfolding and aggregation are 

associated with a wide spectrum of human diseases, most notably those of the amyloidosis 

family such as Alzheimer’s and Parkinson’s disease [3]. 

 Since its conceptualization in 1987 by R. John Ellis, the class of proteins known 

collectively as molecular chaperones has been shown to preempt and sometimes reverse the 

phenomenon of protein aggregation [1,4,5]. A particular subsection of this family has been found 

to traffic membrane proteins in their post-translational form [6-8]. These membrane proteins are 

often highly hydrophobic proteins that must traverse through an aqueous cytosol before arriving 

at their lipid environment. Throughout this process, the membrane proteins must be efficiently 

chaperoned to prevent the aberrant protein-protein interaction that leads to their aggregation. 

Examples of this class of multifunctional proteins that demonstrate the intimate link between 

molecular chaperone function and membrane protein biogenesis are found in the Hsp70 that 

facilitates the translocation of mitochondrial proteins [9,10], the components of the Guided Entry 

of Tail-anchored proteins (GET) pathway [11,12], and the chloroplast Signal Recognition 

Particle 43 (cpSRP43) that assists the import of thylakoid proteins [13,14].  

 Recently, we and others described a novel function of cpSRP43 as a chaperone that not 

only can prevent but also can reverse the aggregation of proteins without the external energy 
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input of ATP hydrolysis or co-chaperones [15,16]. Rather, the disaggregation mechanism of 

cpSRP43 relies on the intrinsic binding with its substrate, the light-harvesting chlorophyll a/b-

binding (LHC) family of proteins [17,18]. The LHC proteins are composed of three highly 

hydrophobic transmembrane (TM) domains, making them highly prone to aggregation and 

requiring a robust chaperone system during their transit through the aqueous compartment of the 

stroma before reaching the thylakoid membrane [19,20]. We have proposed that cpSRP43 

employs two modes of substrate binding to facilitate disaggregation reactions: (1) a sequence-

specific binding of the recognition motif composed of an 18 amino acid loop between TM2 and 

TM3 of LHC proteins, called L18 and (2) a more generic hydrophobic interaction with the TMs.  

 Previous results suggest that the generic hydrophobic interactions of cpSRP43 with the 

TMs of its substrate allows this interaction to be more adaptable [18]. This more adaptable 

interaction allows cpSRP43 to still disassemble substrates of LHC mutants that have their TMs 

swapped out and replaced with TMs of unrelated membrane proteins, including mammalian tail-

anchored proteins like the stress-associated endoplasmic reticulum protein 1 (SERP1), the 

protein transport protein Sec61 beta subunit (Sec61β) and cytochrome b5 [18]. With this insight, 

we wondered if we could harness the potential of this small chaperone to be engineered to handle 

a broader range of aggregation-prone protein substrates. By exploiting the simplicity of the 

single-component disaggregase and dualistic specificity and adaptability of the cpSRP43-LHC 

system, we can shed light on this model system that can guide the engineering of protein 

scaffolds that can target and remove a broad array of aggregates of interest [21,22]. Here we 

present two application cases that support the great bioengineering potential of cpSRP43 as a 

robust chaperone. In the first case, we show initial attempts at improving the yield of hard-to-

express proteins, specifically SERP1, by employing the strategy of cpSRP43 co-expression 
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coupled with “L18-tagging” of the protein of interest as a way to prevent the degradation of these 

unstable proteins during synthesis due to their aggregation propensity. In the second case, we 

show the capability of cpSRP43 to suppress the fibrillization of amyloid beta peptide (Aβ1-40), 

which is intimately linked with Alzheimer’s disease. 
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Materials and Methods 

 Materials. To construct the LHCP TM mutants (Table 1), a pair of unique restriction 

sites was introduced into the expression plasmid encoding LHCP ∆TM1 before and after the 

sequences encoding TM2 or TM3. The sequences coding for the TMs were replaced with PCR 

fragments encoding alternative TMs using the corresponding restriction sites. Truncated L18 

LHCP mutants, SERP1-L11 and SERP1-L18 were constructed using QuikChange PCR 

(Strategene). To construct the co-expression plasmid, the PCR fragments encoding for SERP1, 

SERP1-L11, or SERP1-L18 were introduced downstream of the cpSRP43 gene within the 

multiple cloning site of the vector pQE (Qiagen). cpSRP43, LHCP and its variants were purified 

as described [15]. Aβ4 and re-crystallized thioflavin T (ThT) were generous gifts from Dr. J. W. 

Kelly. Urea is from Sigma. 

 Light Scattering Assay. Light scattering experiments were performed as previously 

described [15]. For formation of aggregates (Figure 4.1, black), unfolded mutant substrate in 8 M 

urea was directly diluted into Buffer D (50 mM KHEPES pH 7.5, 200 mM NaCl) to 2 µM final 

concentration. Disaggregation reaction was initiated 60 s after substrate aggregation by addition 

of various concentrations of cpSRP43. Kinetic analysis was performed as described previously to 

obtain the forward disaggregation rate (Figure 4.1D) [15].  

 Preparation of Amyloid Beta Peptide (1-40). Lyophilized synthetic Aβ1-40 

(DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV) was a generous gift from 

the J. Kelly lab and monomerization of the peptide is as followed from protocol [23]. For each 

assay requiring Aβ1-40, 1 mg of the peptide was dissolved in 600 µL 1,1,1,3,3,3-hexafluoro-2-

propanol (HFIP, Sigma) and incubated at 25 °C for 2 h. HFIP was removed by blowing a gentle 

stream of argon over the solution, and the resulting film of peptide was dissolved in 5 mM NaOH 
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(500 µL) with 3.5 mM TCEP (Thermo Scientific) added and then sonicated for 2 h in ice-cold 

water bath. The resulting solution containing monomerized amyloid-β was first passed through a 

0.22-µm filter (Millipore) and then through a 10-kDa–cutoff Centricon filter (Millipore).  

 ThioflavinT (ThT) Fluorescence Assay. To detect formation of fibrils using ThT 

fluorescence, the monomerized Aβ1–40 was diluted 10 µM into 50 mM sodium phosphate buffer 

(150 mM NaCl, 3.5 mM TCEP, pH 7.4) containing 20 µM re-crystallized ThT, and aggregation 

was initiated with automatic 5-second shaking every 10 minutes at 37 °C in a 96-well microplate 

reader Flexstation 3 (Molecular Devices). Fluorescence readings were taken every 10 minutes 

with excitation wavelength 440 and emission wavelength 485. For experiments testing the effect 

of cpSRP43 on fibrillization, cpSRP43 was pre-incubated in the buffer in a 1:1 molar ratio. 

 Transmission Electron Microscopy. Aβ1-40 samples with and without cpSRP43 samples 

from the ThT assays were taken at t = 48 h, when ThT fluorescence has saturated, indicative of 

the formation of fibrils. 4 µL of samples of 10 µM Aβ1-40 were immediately deposited onto a 

glow-discharged 200-mesh Formvar grid (Ted Pella Inc., CA). After a 60-second adsorption 

time, the grid was washed in water twice and then stained with 1% uranyl acetate for 60 seconds. 

TEM images were obtained on a 120 kV Tecnai T12 electron microscope coupled with a CCD 

camera. The diameters of the particles were measured using ImageJ [24]. 
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Results 

 cpSRP43 Can Recognize and Rescue Aggregates of LHCP Mutants with TMs 

Swapped with that of Un-related Membrane Proteins. We first tested the capability of 

cpSRP43 to recognize and reverse the aggregation of LHCP mutants where the TMs have been 

swapped with those of unrelated membrane proteins. As a simple scaffold, we started with a 

mutant whose aggregates remain to be recognized and dismantled by cpSRP43, LHCP TM1 

deletion mutant (∆TM1) [25]. From ∆TM1, we replaced the remaining TM2 and TM3 with TMs 

of the tail-anchored proteins SERP1 (Serp), Sec61β (Sec) and cytochrome b5 (Cyb) to create a 

library of all nine possible permutations (See Table 4.1). Of the nine mutants cloned, eight were 

successfully expressed and purified from inclusion bodies. Of the eight mutants that we obtained, 

we subjected three to be extensively tested on their ability to be disaggregated by cpSRP43: 

Serp/Cyb, Cyb/Serp and Cyb/Sec, corresponding to TM2/TM3 swapping.  

 All three TM-swapped mutants aggregated upon dilution out of 8 M Urea and into 

aqueous buffer D and were, indeed, disaggregated by the addition of cpSRP43 in a concentration 

dependent manner (Figure 4.1 A-C). The extent of disaggregation is saturated with 1:5-molar 

excess of chaperone concentration, similar to that reported for wild-type LHCP disaggregation 

[15,18]. Interestingly, the rate of disaggregation at this cpSRP43 concentration for Cyb/Serp and 

Serp/Cyb is more than two-fold faster than that of wild-type LHCP, while the rate for Cyb/Sec 

aggregates is comparable to wild-type level (Figure 4.1D). This suggested that cpSRP43 is 

amendable to handling non-cognate protein aggregates by concurrently interacting with generic 

hydrophobic TMs and the sequence-specific recognition motif L18.  

 Decipher the Minimal Recognition Motif within L18 for Chaperone Activity. To 

further test the limit of cpSRP43 in handling alternative proteins, we asked if it would accept a 
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substrate that it has not encountered, mediated by the bipartite binding from the L18 motif 

engineered into the target protein and generic hydrophobic contacts with the TM available in the 

target. Given that only the FDPLGL motif in L18 is sensitive to mutations as assayed by 

cpSRP43 binding, we asked if we could “trim” down the recognition motif to minimize the 

effects of its insertion on the folding or function of the target protein [18]. To answer this 

question, we first deleted seven residues from the N-terminal end of L18 as it is farther away 

from the sensitive FDPLGL motif, constructing LHCP with only 11 residues left in the 

recognition motif (referred to as L11). The L11 LHCP mutant could be disaggregated by 

cpSRP43 to the same extent of that of wild-type (Figure 4.2). However, when one additional 

residue was trimmed from L11 either on the N- or C- terminal ends, the ability of cpSRP43 to 

rescue the aggregate was drastically reduced, re-solubilizing about 20% of the substrate proteins 

(Figure 4.2). With this result, we have demonstrated a “trimmed” L11 is the minimal recognition 

motif required for efficient cpSRP43 disaggregation.   

 Test whether cpSRP43 improves the yield, solubility or localization of membrane 

proteins in vivo. With the minimal recognition motif construct determined, we proceeded to 

construct SERP1-L11 and SERP1-L18, where the recognition motif L11 or L18 is engineered C-

terminal to the TM of SERP1. However, these mutant proteins were not successfully obtained 

due to low expression in E. coli, as the target protein SERP1 itself has low expression (Figure 

4.3, lanes 8 and 9). This is not surprising as the over-expression of membrane proteins often 

presents a daunting challenge due to their propensity for degradation by the cell during their 

expression. Degradation of these membrane proteins is attributed to their highly hydrophobic 

transmembrane domains that tend to misfold, mislocalize and/or aggregate [26-28]. One strategy 

to overcome the abysmal expression of membrane proteins has relied on co-expression with a 
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cognate chaperone that will stabilize the finicky membrane protein [29,30]. Using the same 

principle we wondered if we could engineer a non-cognate protein, like SERP1, that can be 

chaperoned by cpSRP43 and thus improve its yield by co-expression with cpSRP43. This 

strategy not only provides us with recombinant client proteins to test disaggregase activity of 

cpSRP43 towards alternative substrates, it also tests the ability of cpSRP43 to overcome the 

aggregation of target proteins in a cellular environment.  

 To test if the yield of the client proteins can be improved with co-expression with 

cpSRP43, we cloned in the genes for our client proteins down-stream of the genes encoding 

cpSRP43 in the pQE vector under the phage T5 promoter; previously, expression of cpSRP43 

has shown to be robust in this bacterial expression system [15]. Our preliminary experiments 

showed that the expression of SERP1 (~ 9 kDa protein) is significantly enhanced upon fusion 

with L18 or L11 and co-expressed with cpSRP43. Expression of the ~ 11 kDa fusion constructs 

His6-SERP1-L11 and His6-SERP1-L18 was markedly improved at both temperature conditions 

(25 and 37 °C) as detected from whole cell analysis of post-IPTG induction samples by Western 

blot with anti-His antibody (Figure 4.3, lanes 2,3 and 5,6).  

 cpSRP43 interferes with Aβ1-40 fibrillization in vitro. Another candidate for an 

alternative substrate for cpSRP43’s chaperone action is the 40 amino acid polypeptide fragment 

amyloid beta (Aβ1-40) whose aggregation is associated with Alzheimer’s disease. Although the 

question of which aggregate form is the toxic species in the pathology is still contested in the 

field, we wanted to see if cpSRP43 can interact with the hydrophobic polypeptide, as a 

preliminary test of the adaptability of this protein. First, we analyzed the effect of cpSRP43 on 

Aβ1-40 aggregation using a Thioflavin T (ThT) binding assay [31]. Purified Aβ1-40 peptide was 

incubated in the presence and absence of cpSRP43 and fibrillogenesis was monitored by 
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measuring ThT fluorescence emission at 485 nm (Figure 4.4A). In the absence of cpSRP43, we 

observed ThT-positive, β-sheet-rich Aβ1-40 aggregates after a lag phase of ~ 30 h, consistent with 

a nucleated polymerization mechanism and with previously published studies [23,31,32]. In 

contrast, formation of Aβ1-40 aggregates was suppressed in the presence of cpSRP43 (Figure 

4.4A). cpSRP43 at a molar ratio of 1:1 reduced the ThT fluorescence to ~ 10% compared to that 

in solvent alone. 

 Next, we investigated the effect of cpSRP43 on Aβ1-40 fibrillogenesis by negative-stain 

Electron Microscopy (EM). In the absence of cpSRP43, we observed formation of predominantly 

fibrillar Aβ1-40 structures with a diameter of ~10 nm and length of ~ 0.5-3 µm  (Figure 4.4B), 

supporting the results of the ThT assays and congruent with previously published works [33,34]. 

In contrast, an equimolar concentration of cpSRP43 relative to Aβ1-40 markedly reduced fibril 

assembly in favor of spherical protein aggregates with diameters less than ~ 20 nm (Figure 4.4C-

D). It appears that cpSRP efficiently prevents the amyloidogenesis of Aβ1-40 but stimulates the 

assembly of compact, spherical oligomers. It remains to be tested whether these oligomers are 

the neural toxic species or off-pathway, non-toxic oligomers that have been isolated in other 

cases [35,36]. 
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Discussion 

 These studies reveal that cpSRP43’s interaction with hydrophobic protein motifs is quite 

generic and can be used to disrupt a larger set of protein aggregates beyond LHC proteins, as 

long as the FDPLGL motif is present to allow this chaperone to recognize and engage the 

aggregate. In order to accommodate for this requirement we showed that the minimal motif for 

recognition could be trimmed down to 11 amino acids that still contained FDPLGL (Figure 4.2). 

Further truncation of this “L11” motif was not effective in the disaggregation mechanism, likely 

because a certain minimal length of peptide is needed to allow for the FDPLGL motif to escape 

the aggregate and be exposed for recognition by cpSRP43. On the other hand, we showed how 

cpSRP43 could accommodate mutant substrates by a more generic interaction with hydrophobic 

protein motifs, as TMs swapped from unrelated integral membrane proteins can still be 

disaggregated by cpSRP43 (Figure 4.1). This observation was the first implication for the high 

adaptability of cpSRP43 to be tailored as a molecular chaperone for alternative substrates. 

 We first tested the limits of cpSRP43’s chaperone capability by asking if it could improve 

the low expression of integral membrane proteins, like SERP1. A major factor that could 

contribute to this problem is overload on the chaperones and protein targeting machinery in the 

bacterial expression systems, which leads to the aggregation, misfolding and/or degradation of 

the expressed protein, as manifested by the induction of heat shock proteins and proteases upon 

membrane protein expression [37]. As a naturally evolved chaperone that assists in membrane 

protein targeting, cpSRP43 is uniquely suited to help overcome the problem of poorly expressed 

proteins by preventing the aggregation and degradation of these proteins. In support of this 

notion, our preliminary experiments showed that the expression of the membrane protein SERP1 

is significantly enhanced upon fusion with L18 or L11 and co-expression with cpSRP43 (Figure 
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4.3). It remains to be tested whether cpSRP43 helps maintain membrane proteins in translocation 

competent conformations and thus allows them to be more productively integrated into the 

membrane, but preliminary data from differential centrifugation shows SERP1-L18 and SERP1-

L11 is split between the insoluble and the bacterial membrane fraction when co-expressed with 

cpSRP43 (C. McAvoy, unpublished data). As proteins that are stable in a proper environment are 

less likely to be flagged for degradation, these initial findings suggest the ability of cpSRP43 to 

prevent membrane proteins from aggregating and thus escape the degradation pathway. 

 As another testament to the ability of cpSRP43 to bind generic hydrophobic protein 

segments, the interaction of the amyloid peptide Aβ1-40 with cpSRP43 was able to affect its 

aggregation trajectory. Strikingly, even without the L18 motif essential for disaggregation, 

cpSRP43 could interact non-specifically with the Aβ1-40 peptide to inhibit the formation of fibrils 

(Figure 4.4). Unlike the strategy of “tagging” proteins with the FDPLGL recognition motif to 

improve expression of membrane proteins, introduction of L11 or L18 into disease-related 

aggregation-prone proteins in biological systems is not a viable solution. However, this result 

highlights the adaptability of cpSRP43 for binding of generic hydrophobic motifs and 

demonstrates the feasibility of using engineering tools to evolve the highly module cpSRP43 to 

develop novel, high affinity binding scaffolds for disease-related targets.  Collectively, these 

results show the great potential of the LHC-cpSRP43 system to be manipulated and adapted to 

address the problems associated with protein aggregation. 
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TABLE 4.1 Sequence of TM  swap mutants. TM domains of SERP1, Sec61β, and cytochrome 

b5 are highlighted in cyan, yellow and magenta, respectively. L18 motif is in red. 

Replacement 
TM2/TM3 

Construct Sequence 

Serp/Serp 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L A S V G P 
W L L A L F I F V V C G S A I F G T P L G E V V D P L Y P G G S F D P 
L G L A D D L Q A S V G P W L L A L F I F V V C G S A I F V D G K G P 
L E N L A D H L A D P V N N N A W S Y A T N F V P G K 

Serp/Sec 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L A S V G P 
W L L A L F I F V V C G S A I F G T P L G E V V D P L Y P G G S F D P 
L G L A D D L Q V P V L V M S L L F I A S V F M V D G K G P L E N L A 
D H L A D P V N N N A W S Y A T N F V P G K 

Serp/Cyb 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L A S V G P 
W L L A L F I F V V C G S A I F G T P L G E V V D P L Y P G G S F D P 
L G L A D D L Q N S S W W T N W V I P A I S A L I V A L M Y R L Y V D 
G K G P L E N L A D H L A D P V N N N A W S Y A T N F V P G K 

Sec/Serp 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L V P V L 
V M S L L F I A S V F M L G T P L G E V V D P L Y P G G S F D P L G L 
A D D L Q A S V G P W L L A L F I F V V C G S A I F V D G K G P L E N 
L A D H L A D P V N N N A W S Y A T N F V P G K 

Sec/Sec 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L V P V L 
V M S L L F I A S V F M L G T P L G E V V D P L Y P G G S F D P L G L 
A D D L Q V P V L V M S L L F I A S V 

Sec/Cyb 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L V P V L V 
M S L L F I A S V F M L G T P L G E V V D P L Y P G G S F D P L G L A 
D D L Q N S S W W T N W V I P A I S A L I V A L M Y R L Y V D G K G P 
L E N L A D H L A D P V N N N A W S Y A T N F V P G K 

Cyb/Serp 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L N S S W W 
T N W V I P A I S A L I V A L M Y R L Y G T P L G E V V D P L Y P G G 
S F D P L G L A D D L Q A S V G P W L L A L F I F V V C G S A I F V D 
G K G P L E N L A D H L A D P V N N N A W S Y A T N F V P G K 

Cyb/Sec 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L N S S W W 
T N W V I P A I S A L I V A L M Y R L Y G T P L G E V V D P L Y P G G 
S F D P L G L A D D L Q V P V L V M S L L F I A S V F M V D G K G P L 
E N L A D H L A D P V N N N A W S Y A T N F V P G K 

Cyb/Cyb 

M R G S H H H H H H G S M R K S A T T K K V A S S G S P W Y G P D R V 
K Y L G P F S G E S P S Y L T G E F P G D Y G W D T A G L S A D V K F 
G E A V W F K A G S Q I F S E G G L D Y L G N P S L V H E L N S S W W 
T N W V I P A I S A L I V A L M Y R L Y G T P L G E V V D P L Y P G G 
S F D P L G L A D D L Q N S S W W T N W V I P A I S A L I V A L M Y R 
L Y V D G K G P L E N L A D H L A D P V N N N A W S Y A T N F V P G K  
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Figure 4.1 cpSRP43 can rescue LHC aggregates with TM swapped from unrelated membrane 
proteins. Disaggregation time courses with varying concentrations of cpSRP43 (2, 4, 6 and 10 
µM correspond to blue, violet, magenta and orange traces, respectively) for 2 µM substrates (A) 
Serp/Cyb (B) Cyb/Serp and (C) Cyb/Sec. Black trace is the aggregation kinetics of substrates 
without cpSRP43. (D) Comparison of TM mutant disaggregation rates at 10 µM cpSRP43 and 2 
µM substrate; WT here is the LHCP with TM1 deleted, which served as the general platform for 
the swapped transmembrane. 
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Figure 4.2 The minimal recognition motif within L18 can be reduced to 11 amino acid 
containing the essential FDPLGL motif. The amount of soluble wild-type LHCP (denoted 
VDPLYPGGSFDPLGLADD) is compared to the amount of soluble minimal recognition motif 
variants in the presence of 5 µM cpSRP43 (five-fold excess to aggregate substrate) in 
disaggregation assays. The minimal recognition motif (GSFDPLGLADD) is referred to as “L11” 
in the text. 
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Figure 4.3 Co-expression of cpSRP43 (**) improves the yield of L11
(*). Cells grown at 25 °C and 37 °C for 4 hours after IPGT induction were harvested, lysed with 
BugBuster and separated by SDS
anti-His antibody. cpSRP43, SERP1, SERP1
P is the pre-IPTG induction sample.

 
expression of cpSRP43 (**) improves the yield of L11- and L18

(*). Cells grown at 25 °C and 37 °C for 4 hours after IPGT induction were harvested, lysed with 
separated by SDS-PAGE, then transferred to nitrocellulose and 

cpSRP43, SERP1, SERP1-L11 and SERP1-L18 are N-terminally His
IPTG induction sample. 

 

and L18-fused SERP1 
(*). Cells grown at 25 °C and 37 °C for 4 hours after IPGT induction were harvested, lysed with 

nsferred to nitrocellulose and probed with an 
terminally His6-tagged. 
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Figure 4.4 cpSRP43 inhibits Aβ1-40 fibrillization. (A) Effect of cpSRP43 on Aβ1-40 (10 µM) 
fibrillogenesis with agitation at 37 °C as measured by thioflavin (ThT) fluorescence. Results 
represent means ± s.d. (n = 2). (B) Analysis of Aβ1-40 aggregation reaction by EM of sample in A 
taken at t = 50 h. (B-C) Analysis of cpSRP43-treated Aβ1-40 aggregation reaction where Aβ1-40 
was added into the solvent with cpSRP43 pre-incubated at molar ratio of 1:1 ratio. Samples taken 
at t = 50 h. 
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