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Abstract

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and
they are formed from the largest perturbations of the primordial matter power spectrum.
During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic
component is heated as it passes through accretion shocks. This process stabilizes when the
pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are use-
ful cosmological probes, because their formation progressively freezes out at the epoch when
dark energy begins to dominate the expansion and energy density of the universe. A diverse
set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters,
and this is useful for self-calibration. The distributions of these observables trace a cluster’s
dark matter halo, which represents more than 80% of the cluster’s gravitational potential.
One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized
intercluster medium blueshifts the cosmic microwave background via Compton scattering.
Great technical advances in the last several decades have made regular observation of the
SZFE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from
the construction of large-format camera arrays consisting of highly sensitive millimeter-wave
detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and
268 GHz radiation, located at one of the best observing sites in the world: the Caltech
Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original
spider web NTD bolometers used in an entire generation of ground-based, balloon-borne,
and satellite-borne millimeter wave instrumention. Over approximately six years, our group
at Caltech has developed a mature galaxy cluster observational program with Bolocam. This
thesis describes the construction of the instrument’s full cluster catalog: BOXSZ. Using this

catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in
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an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has
confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed
how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation.
Future Bolocam analysis efforts are set on resolving these discrepancies by approximating

cluster mass jointly with different observational probes.
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Chapter 1

Cosmology

Galaxy clusters are fascinating objects because they exhibit so many cosmological phenom-
ena. Following the Big Bang, quantum density flucutations seed the hierarchical accretion
of matter, which leads to all large-scale structure formation. Galaxy clusters are the most
massive end-products of this process, and their continued growth is prevented in the epoch
when dark energy drives the accelerated expansion of the universe. Dark matter comprises
more than 80% of the gravitationally bound cluster matter and dictates many of the physical
properties of galaxy clusters. This section gives an overview of the salient aspects of cluster

formation and the astrophysical processes which enable their observation.

1.1 To Make a Long Story Short...

In the first decades of the 20th century, Albert Einstein developed special relativity in re-
sponse to curious inconsistencies in Maxwell’s theory of electromagnetism in a given inertial
reference frame[80]. He discovered that these inconsistencies can be resolved by setting the
speed of light to be constant in all inertial reference frames and by treating time as a fourth
dimension to create a 4-dimensional “distance,” which is invariant with respect to a moving
reference frame. Einstein, however, was bothered by his formulation of special relativity
in that it did not adequately describe the equivalence of inertial mass and gravitational
mass. He therefore generalized Maxwell’s field equations to account for this via a curvature
of space-time, which makes gravity a local phenomenon. The Russian physicist, Alexander

Friedmann, discovered that the solution to Einstein’s field equations allowed for either ex-
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panding, contracting, or static space, and, by extension, universe[94]. Unsatisfied with this
answer, Einstein added the cosmological constant to the field equations in order to force the

universe into a static state:

1 811G
Ruy — §guyR -+ .(];U/A = c_4T/W7 (11)

where the curvature of space is introduced via R,,,, the Ricci curvature tensor, and R, the

2
scalar curvature. The stress-energy tensor, 7),,, represents matter and energy, which induces
the curvature on the left-hand side of the equation. The term g,, is the metric, which
characterizes the space-time parameters of a given reference frame. The G and ¢ terms are
the gravitational constant and the speed of light, respectively.

Although the initial observations confirming a non-static solution to Einstein’s field equa-
tions (i.e., an expanding universe) are often attributed to Edwin Hubble, it was, in fact, the
Belgian priest, Georges Lemaitre, who, as a graduate student in 1927, first proposed the
concept and derived “Hubble’s” law. In this work, he presented the first calculation of the
“Hubble” constant based on observational data[I55]. Lemaitre would eventually follow this
idea all the way to its origin, formulating a theory of the “primeval atom” [I56] which Fred
Hoyle mockingly dubbed: "The Big Bang.” Lemaitre also suggested that cosmic rays were
left over fossils from the initial explosion. While Lemaitre was on to the right idea, the lack
of alternative observational data led this idea to a dead end[l Einstein seemed resistant at
first to Lemaitre’s idea, but further observational studies conducted by Edwin Hubble in
1929 [123] confirmed of the expansion of the universe and led Einstein to recant and call his
cosmological constant kludge his “biggest blunder.”

Another major milestone in the theory of an expanding universe was made in 1948, when
Alpher et al. [7] noted that the relative observed abundances of light elements could be
explained via the mechanism of an expanding universe. This is known as Big-Bang nucle-
osynthesis (BBN). In 1965 Dicke et al. [67] continued the investigation into this theory and

considered the point at which an expanding universe would sufficiently cool to allow neutral

nterestingly, unambiguous observational evidence of the precise origin of cosmic rays has become avail-
able only very recently from observations using the VERITAS[I1] and Fermi [3] telescopes, which confirm
that cosmic ray particles originate from supernovae remnants.
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hydrogen to form (recombination). At this point, blackbody radiation would decouple and
provide an observable relic of the “primordial fireball.” Dicke initiated the development of
a telescope to search for the relic blackbody radiation of the recombination process. During
this process, however, he received a phone call from Arno Penzias and Robert Wilson about
a mysterious noise measured with their eponymous Dicke radiometer[293]. Dicke knew that
this was exactly the Cosmic Background Radiation (CMB) that he was searching for. While
the Penzias and Wilson result gives only one data point at 4 GHz, a 3 Kelvin blackbody
peaks at about 160 GHz. The COsmic Background Explorer (COBE), launched in 1989,
measured the full spectrum of the CMB at 34 equally-spaced frequencies, using the Far-
InfraRed Absolute Spectrophotometer (FIRAS). Mather et al. [I73] and Fixsen & Mather
[90] use this data to confirm the CMB as the most perfect black body ever measured in
nature—deviating by less than 50 parts per million from a perfect 2.725 £+ 0.001 K black
body between ~60-600 GHz | This result is consistent with the Big Bang model, because it
indicates that at some point the universe was dense enough to be filled uniformly with ther-
malized matter. As will soon be demonstrated, the CMB provides much more information
about the early universe than this.

If the universe began as a primordial fireball, there must have been a quantum mechanical
noise mechanism, which, at some point, broke the translational symmetry of matter to allow
structure formation. Andrei Sakharov [249] predicted in 1966 that adiabatic compression
would be opposed by the associated increase in the plasma pressure and generate acoustic
waves. The hot (compressed) regions and the cold (rarefied) regions would imprint them-
selves accordingly on the temperature of CMB. This concept was further developed in 1970
by Sunyaev & Zel’dovich [270] and independently by Peebles & Yu [215] in the same year.
After FIRAS’ liquid Helium supply ran out, COBE’s Differential Microwave Radiometer
(DMR) experiment continued to the map the sky for another three years at 31.5 GHz, 53
GHz, and 90 GHz. The differential measurement removed all common signal, and Bennett

et al. [22] confirmed 36 4+ 5uK temperature fluctuations when the maps were smoothed to 7

Fixsen et al. [0I] recently report an excess of tens of mK in the ~1-10 GHz region of the CMB spec-
trum using measurements from the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission
(ARCADE 2.) The physical origin of this radiation is still unknown (e.g., Ysard & Lagache [299], Holder
[120]).



6000 ————F—F——————— T
L \ Planck TT spectrum
5000 |
4000 [
= [
N
x I
3 3000 |
~
S I
2000 |
1000 |
O;:
o 80 f
X 40 B
= o
~  —40 E*
S :
< _80:
E N 1 N N s N 1 N N N N 1 N N N N 1 N N N -
500 1000 1500 2000 2500
¢

Figure 1.1 The temperature angular power spectrum of the CMB measured by Planck Col-
laboration et al. [226]. The red curve represents the best-fit spectrum to the data points,
using the standard cosmological model with cold dark matter and a cosmological constant
(ACDM), and is further described in the text. The bottom figure shows the residuals of the
data with the model. Figure taken from Planck Collaboration et al. [226].

(angular) degrees.

At recombination, fluctuations in the CMB will peak at half-wavelength harmonics of an
acoustic compression-rarefraction cycle. These are known as the acoustic peaks, and the scale
at which they occur is set by the speed of sound. The observed angular separation of two
points separated by a given physical scale, however, depends on the curvature of space and
distance through which the signal travels. Two CMB Balloon experiments, BOOMERANG
[63] and MAXIMA [110], unambiguously measured the position of the lowest-order acoustic
peak, and, by combining this with new measurements of the Hubble constant using the
Hubble Space Telescope (Freedman [93]), confirmed that space is flat to within a few percent.
The recent measurement of the CMB by the Planck Collaboration [226] is presented in
Figure [I.1 In combination with auxiliary cosmological data, Planck Collaboration et al.
[226] confirm that space is flat to less than seven tenths of a percentile. The CMB contains
much more information that is beyond the scope of this thesis, and for a well-presented

review of all of these processes, see Hu & Dodelson [122].
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At about the same time that the CMB community discovered that the universe is flat, two
teams, one led by Saul Perlmutter [217] and the other by Adam Riess and Brian Schmidt
[243] discovered that supernovae (with well-defined luminosities) are accelerating away at
a faster rate than expected. These observations can be made consistent with the observed
flatness of the universe by setting the cosmological constant term in Einstein’s field equations
to a non-zero value. Perhaps Einstein’s initial hunch was correct after all. The observed
expansion is driven by an unknown source of energy density, and it has therefore been named
dark energy. While a cosmological constant is the simplest model that consistently describes
all observations, it does not intrinsically emerge from current theory, and therefore several
alternative dark-energy models have been proposed (e.g. Copeland et al. [60], Gott & Slepian
[103]), which have yet to be confirmed.

While the precision to which scientists understand the origin and evolution of the uni-
verse is astounding, many questions remain. Why exactly is the universe flat? How can
temperature patches in the sky be in phase with each other when they should have no causal
relation due to the amount of time needed for this information to travel at such scales? Alan
Guth [108] proposed the theory of inflation in 1981 as a physical mechanism that consistently
describes these various observations. This theory maintains that shortly after the Big Bang,
there was a rapid period of expansion, which smoothed spatial curvature and provided a
mechanism for distant regions of the sky to be causally connected. Furthermore, inflation
provides the mechanism that gives rise to the quantum fluctuations, and it also accounts for
the curious fact that all the modes seem to have originated in phase with each other.

Inflation is the proposed mechanism that seeds the quantum fluctuations in the matter
density field and leads to all subsequent structure formation. The initial growth of these
density perturbations, however, is inhibited by radiation pressure in the high-density en-
vironment of the early stages of the universe. As photons redshift under expansion, the
radiation density falls more rapidly than the matter density, and when the universe is about
one hundred thousand years old, matter begins to dominate. Density perturbations start
to spend a larger fraction of time in a compressed versus rarefied state. When the universe
is about four hundred thousand years old, radiation decouples completely, and the speed

of sound plummets. Overdense regions will begin to collapse in on themselves when they
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reach the Jeans instability, i.e., when the enclosed matter no longer has sufficient time to
compressionally resist gravitational infall. The infalling matter is accelerated supersonically
to thousands of kilometers per second and undergoes an accretion shock. Subsequent ram
pressure converts most of the kinetic energy into thermal energy and mixes the phases of
the kinetic motion of the gas, via a process called violent relaxation, and homogenizes the
gas. A bound, virialized, system will stabilize to the state where the potential energy equals
twice the kinetic energy. Individual virialized systems continue to grow through hierarchical
structure formation both by the accretion of unbound matter, as well as merging with other
virialized systems.

Galaxy clusters represent the most massive structures to have virialized through the
hierarchical structure formation scenario. Their total mass can be between approximately
1013 and 10'® solar masses. It takes several Gigayears for a galaxy cluster to get so large,
and its continued growth is prevented as the universe accelerates its expansion in an epoch
dominated by dark energy. As the name implies, galaxy clusters contain large concentrations
of galaxies, the observation of which led to their initial discovery. The nomenclature is slightly
misrepresentative, considering that stars represent < 3% of all matter within a galaxy cluster.
Ionized gaseous normal matter, the intercluster medium (ICM), constitutes another ~17%,
and the remaining ~80% of the matter density is called dark matter, because it seems to
couple to normal matter gravitationally but otherwise emits no observational signal. Normal
matter is also commonly called baryonic matter, because it is composed primarily of neutrons
and protons.

Dark matter was proposed in the early 1930s to account for the fact that the observed
orbital velocities of stars in the Milky Way (Oort [208]) and of galaxies in the Coma cluster
(Zwicky [307]) implied a larger gravitational potential than could be observed. More recent
observations of supersonic galaxy cluster collisions, such as of the Bullet Cluster, indicate
that while baryonic matter will form a bow shock during such collisions, dark matter passes
through relatively undisturbed (Markevitch et al. [I68]). While the exact nature of dark mat-
ter is still unknown, observations support the idea that it is a non-relativisitc (cold), massive
particle which couples only gravitationally to both baryonic matter and itself. Physically-

motivated extensions to this basic dark matter model have been proposed, which predict
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weak non-gravitational coupling to baryonic matter (Jungman et al. [134], Bertone et al.
[27]). Detecting the signature of this coupling (either directly or indirectly) is an extremely
active area of research (e.g. Bernabei et al. [26], Ahmed et al. [4], Angloher et al. [9], Cholis
et al. [56]).

Cosmologists have now converged on a standard cosmological model, ACDM, which con-
tains four primary energy components: baryonic matter, cold dark matter, radiation, and
dark energy. The sum of this energy at all times implies a flat universal geometry. The
observable universe arose from a singularity, called the Big Bang, approximately 13.7 billion
years ago. This event was followed by a period of rapid expansion, known as inflation, fol-
lowed by a period of continued expansion and large-scale structure formation. At the present
time, ~5% of the energy in the universe is baryonic in nature, and ~ 25% of the energy in
the universe couples to baryonic matter solely through gravity. The remaining ~70% of
the energy density remains constant with volume, fueling the current epoch of accelerated
cosmic expansion. This model has withstood rigorous observational cross-examination, but
it leaves many open questions as to its physical origin.

Galaxy cluster formation is strongly affected by the nature of dark energy and dark
matter, and therefore it is a promising cosmological probe. The possible evolution of dark
energy as a function of time can be determined by measuring the number of clusters within
a certain mass range as a function of time (Hasselfield et al. [113], Benson et al. [25], Planck
Collaboration et al. [22§]). The radial scaling of an individual cluster’s mass concentration
can also give insight into the nature of dark matter (Spergel & Steinhardt [264], Peter et al.
[218]). For these to be viable cosmological methods, however, scientists must ensure that
measured observables accurately describe the total matter content.

The two cluster observables studied in this thesis are generated directly from the ICM.
The ICM is heated to millions of degrees Kelvin, primarily via shock-heating during the initial
accretion of matter. As a point of comparison, stars themselves are only several thousands of
Kelvin. High-velocity free electrons are deflected by the more massive protons and are slowed
via the emission of bremsstrahlung radiation, making galaxy clusters extremely luminous
~10% — 10%erg/s. A solar luminosity, in comparison, is about 4 x 103%erg/s and the typical

peak supernova luminosity is about 10*%erg/s.
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The ICM produces a second observable as free electrons distort the spectrum of the CMB
via Compton scattering. The exact spectral distortion of the CMB during this process was
calculated by two Russian scientists in the 1970s and is eponymously named the Sunyaev-
Zel'dovich effect (SZE) ([270} 271]). Under the appropriate conditions, cluster masses can
be derived from these observables by applying the equation of hydrostatic equilibrium to
the measured pressure profiles. The assumption of hydrostatic equilibrium, however, breaks
down for most cluster scenarios and alternative, more robust, mass proxies must be developed
and observationally confirmed. The calibration of cluster masses from the SZE signal for

cosmology is the topic of the analysis presented in this thesis.

1.2 Distance Measures

Distance is an important concept in cosmology. For a monotonically expanding universe,
distance also serves as the cosmological time piece. The dark energy equation of state, for
example, can be constrained by counting the number of clusters of a specific mass as a
function of distance. Given a particular cosmology, the general conditions in which clusters
form is also a function of distance. Furthermore, an accurate distance measure is needed
to obtain physical cluster properties from the measured flux of a given observable. The
concept of distance, however, is made ambiguous in an expanding reference frame, where
general relativity dictates that the distance that a photon travels between two points is not
the same as the final physical distance between those two points. Carroll [50] and Hogg
[119] give very good overviews of distance measures, and this section briefly introduces the
concepts that will become relevant later on.

From special relativity, the invariant distance measure between two points is given by:

ds* = Zgwdx“dx” = g da’dz”. (1.2)

w,v
Here, ;1 and v are indices representing a particlar dimension: either one of the three space
dimensions or the time dimension, which is converted to a distance by multiplying it by the

speed of light. Einstein’s summing convention is introduced in the last term, where repeated
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indices for a particular product represent a sum over all indices. The g, term is called the
metric, and it describes exactly how the four different dimensions should be combined to
form the invariant. A popular form of this term is the Minkowski metric, which describes

flat spacetime in the absence of matter:

1 0 0 O
0 -1 0 O
Guv = N = (13)
0 0 -1 0
0o 0 0 -1

The Robertson-Walker metric reformulates the invariant in equation for ACDM cos-
mology and accounts for an expanding reference frame. By multiplying the distance elements

by a scale parameter, a(t), and going into a spherical coordinate system, one obtains:
ds* = —dt* + a*(t) [dx® + Sp(x)d?], (1.4)

where dy is the comoving distance measure, which is normalized to remain constant for
any cosmological scenario. The curvature of space affects the non-radial components of the

invariant as:
sin(x), k=+1

Sk(x) = X k=0 (1.5)
sinh(y), k= -—1.
Where k£ = —1 corresponds to constant negative curvature (open) , k = 0, corresponds

to no curvature (flat), and £k = +1 corresponds to positive curvature (closed). In light of
overwhelming observational evidence discussed in the previous chapter, it is sufficient for the

present analysis to assume that space is flat, £ = 0, and Equation [1.4] simplifies to:
ds* = —dt* + a*(t) [dx* + x*d?] . (1.6)

The scale parameter can be reformulated using the Doppler redshift, z, of an observed
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signal emitted from a receding source:

iz . (1.7)

Most cosmological parameters with the subscript “0” refer to a parameter’s value in the
present time. Therefore, ag refers to the current scale of the universe. A good mnemonic for
remembering the redshift formula is by noting that the universe was half the current size at
z =1

This leads to the formula for the Hubble parameter, which describes the relative rate at

which, the universe is expanding as a function of redshift:
a(z)
H(z) = —= = HyE(2), (1.8)

where the overdot signifies the time derivative and Hy the Hubble constant. The Hubble
distance unit, Dpy, can be derived from the Hubble constant, first, by inverting it and

obtaining a unit of time (the Hubble time) and then multiplying this by the speed of light:

Using the framework of an expanding reference frame, the mechanism for this expan-
sion, which is derived from FEinstein’s field equations in Equation [1.1} is explored. Solving
Einstein’s field equations using the Roberston-Walker metric for a flat universe yields the

Friedmann equations, one of which is:

H(2)?* = (%) :%"@ (1.10)
pole) = pla) = 2GS BB (1.11)

&G G

where, in the last step, the equation is re-arranged to solve for p, the energy density, which
is equivalent to the critical density, p.(z), for a flat universe. This result demonstrates how
the relative rate of expansion scales with the local energy density. In the epoch relevant to

galaxy cluster formation, the evolution of the Hubble parameter, E(z), can be calculated by
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summing the relative energy densities of (total) matter, {2;, and dark energy, €2, in a flat
universe:
3
a
E(2)? :QM(1+z)3+QA:QMa—g+QA. (1.12)
Equation [1.12] explicitly demonstrates how each form of energy evolves differently: matter
dilutes with volume, and dark energy remains constant.

The comoving distance, D¢, can then be calculated by setting the geodesic in Equation

to null and integrating to find the expansion-invariant parameter, y:

0 = ds® = —dt* + a*dx* (1.13)
dt

/ /a2H (1.14)

De = DH/0 EL (1.15)

Luminosity distance then becomes the comoving distance, D¢, multiplied by the scale factor:
Dy = (14 2)D¢. (1.16)
The angular diameter distance, Dy, is the ratio of the physical transverse size corresponding

to an observed angular size in radians. For a flat universe:

D¢

Dy = )
A 1+ =2

(1.17)

A comoving volume can then be obtained from these distance measures and is extremely
important for cosmological surveys. The basic element is simple: multiply the comoving

differential area by the comoving thickness of the volume:

Dr(1 + 2)2D%dQdz
E(z) ’

dV, = D%dQdD, = (1.18)

where, in the right-hand side, the comoving parameters have been converted to physical

parameters using Equations [1.15] and [1.17]

What are the typical scales of these distance measurements? The work-horse distance
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unit in astronomy is the parsec, which is 3.086 x 10'8cm, or 3.26 light years. This is the
distance an object must be from the Earth for an observer to perceive it to shift by one
arcsecond as the Earth travels one AU perpendicular to the axis between the sun and the
object. A parsec is about 10,000 times the distance from the Sun to Neptune, the most
distant planet in the solar system, or, the approximate distance to our nearest star, Proxzima
Centauri. A galaxy is approximately tens of kpc in size, a galaxy cluster is about a Mpc,

and the observable universe is approximately 14 Gpc.

1.3 Structure Formation

This section provides a general overview of structure formation and the reader is referred
to Peebles [214], Peacock [213] for a more comprehensive introduction to the subject. The
growth of the initial density perturbations can, to first order, be treated as an ideal fluid. Let
0 represent the size of a density perturbation relative to a homogeneous background density,
Po:

S(x,t) = W. (1.19)

For the vanilla ACDM cosmology, ¢ is scale-independent, and this implies that the space and
time components can be solved independently. The spatial-dependence of the disturbance
can be expanded into plane waves, 0 o« exp(—ik - x), where k is a comoving wavevector. By
invoking the continuity equation (conservation of mass), the Euler equation (conservation
of momentum), and the Poisson equation, the time dependence of § can be formulated as a

familiar-looking second-order differential equation:

. i 2.2
5+2% =4 (47er0 - 0—2) : (1.20)
a a
where G is the gravitational constant and c¢; is the speed of sound (Peebles Equation 16.4,
Peacock Equation 15.21). The second term on the left-hand side is a friction-like term,
which prevents the growth of perturbations. The perturbation is allowed to grow via grav-

itational collapse when the term on the right-hand side is greater than zero, which is when
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its wavelength reaches the Jeans scale:

=\ M2
e () 1.21
A= (GP> (1.21)

The existence of massive neutrinos, which were first observed by Fukuda et al. [95] with
SuperKamiokande in 1998, and the possibility of warm dark matter complicate the situation
(Bond et al. [39]). Matter perturbations grow more slowly, since the Jeans scale of neutrinos
and warm dark matter remains significant after recombination (Bond & Szalay [40]). This
couples the spatial and time components, and the evolution of the particle fluid is deter-
mined from a set of coupled Boltzmann equations, which can only be traced via simulation
(Eisenstein & Hu [81]). The ansatz to Equation consists of both a growing mode and a

decaying mode with separable spatial and time-dependent components:
d(x,t) = A(x)D1(t) + B(x)Dso(t). (1.22)

Substituting Equation back into Equation and solving for D; in a flat universe

with a non-zero cosmological constant yields:

00 dz'(1+2")
H(Z) fz H3(2")
00 dz!(1+2')
Ho [] T3 ()

D1(Z) = (1.23)

where the term in the denominator is simply a normalization factor so D; =0 at 2 = 0. An

approximate solution to D;(z) follows from Lahav et al. [149], Lightman & Schechter [159]:

Di(2) ~ (1 + z)‘l%(z) {9(2)4/7 — Qal2) + [1 + Q(;)} {1 + QAﬂ()Z)} }_1 . (1.24)

Expressing density fluctuations, individual Fourier space gives:

Sk = / 5(x) exp(ik-x)dx. (1.25)

The power spectrum can then be obtained by taking the magnitude-squared of these fluctu-



ations.

P(k) = (|0*) (1.26)

If § is a Gaussian random field, then P(k) is a complete statistical description of the per-
turbation power spectrum. By smoothing these perturbations with the Fourier transform
of a spherical top-hat function, Wy(R), of a characteristic size, R, one can characterize the

magnitude of perturbations at different scales:

1

oh= (IM/MP) = s

/P(k)|Wk(R)|2d3k. (1.27)

The variance of the matter power spectrum, 0%, is a popular parameter to describe large-
scale structure formation, particularly for an 8h~! Mpc-sized top-hat, og. As o is a monotonic
function with M, it is often used as a proxy for M, particularly in non-observational work
since it can be made relatively independent of cosmology. The purest analytical method to
calculate the spectrum of density fluctuations, would be to start with a given P(k) (which
is measured beautifully from the CMB) and relate this to the present time using the matter

transfer function:
0(k,z)  6(0,z =00)

Tk, z) 3(k,z=00) 0(0,2)

(1.28)

If the growth of structure is scale-independent (T'(k,z) = T'(z)), the spatial component of

the growing mode can be related back to o as:

Dy (2)
D1(0)

G(2)

o(M,z)=0c(M,0)T(z) = o(M,0) T+ 260)

= (M, 0) (1.29)

and the growth function, G(2) o (1 + z)D;(z), is introduced in the right-hand equation.
For the present analysis, a local, cluster-based, empirical approximation for o(M, z) is
adopted from Stanek et al. [266]. Specifically, using the measured luminosities of galaxy

clusters, they calculate o(M,0) to be accurately described with the equation:
Ino = 8o+ s1In M + soIn M?, (1.30)

where [sg, s1, S2] = [0.468,0.267,0.0123] at €2, = 0.24. The normalization of ¢ is convention-
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Figure 1.2 Left: The growth of structure in the universe with redshift. Note the slowing
growth of structure as the universe expands. Right: The variance of the matter power
spectrum with redshift. The mass values, M, indicate the mean enclosed mass for a top-hat
of a particular size. The relative value of ¢ indicates the relative abundance of clustering of
a particular size.

ally scaled using og. There is plenty of uncertainty in what the exact value of oy is, partially
because our ability to accurately determine cluster mass is limited. The redshift-dependence

of the growth function and o is plotted in figure [1.2]

1.4 Mass Function

The growing perturbations collapse when their density contrast,0 = dp/p, exceeds a critical
threshold .. In 1974 Press & Schechter [238] hereafter PS] propose a simple method in
which to calculate the mass function, or, the number of clusters of a particular mass within
a particular volume. Starting with the variance of the matter power spectrum, o?(M, z),
PS estimate that the probability that a region of mass M exceeds the collapse threshold
at redshift z is erfc[d./v/20(M, z)]. The number density of such perturbations follows by

dividing by the mean comoving density of a characteristic background mass, M:

o QMpC’I"O 50
n(M,z) = i erfc {\/éa(M, 2)] : (1.31)
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The differential mass function then takes the form:

dn(M, z) _\/§QMpcro(50 52
dino' V7 M o P |72 (1.32)

The PS mass function, while qualitatively correct, disagrees in detail with the results

of N-body simulations. Specifically, the PS formula overestimates the abundance of haloes
near the characteristic mass M, and it underestimates the abundance in the high-mass tail.
Over the subsequent decades, this mass function has been tweaked by running more complex
simulations, for example, by allowing for elliptical collapse (Jenkins et al. [129]). Currently,
a commonly adopted form of the mass-function is the one proposed by Tinker et al. [273]

and depicted together with the PS mass function in figure [1.3}

dn(M, z) pP(2)dIno™!
d]]‘é = flo)Pm R (1.33)
where
flo)=A {(%) + 1] e (1.34)

and f(o) is the mass function. The variance in the matter power spectrum is again given
by o, p,,(z) represents the mean matter density at the redshift of the cluster, and dn/dM
represents the number of clusters per unit volume with masses between [M, M + dM] and
redshifts, [z, z 4+ dz]. The original simulations presented in Tinker et al. [273] suggest that
f(o) evolves with redshift, but in a follow-up study, Tinker et al. [274] dispute this result.
The present analysis will therefore assume that the mass function does not evolve with
redshift.

Using Equation for dV/dz, one obtains the expected number of halos contained

within a specific survey volume:

d*N _f(g)ﬁm(z)dlno_lﬂ
dMdz M dM  dz’

(1.35)

This formula will become particularly relevant in later chapters when I attempt to char-
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Figure 1.3 The Press & Schechter [238] mass function compared with the Tinker et al. [273]
mass function for an overdensity 400 times the matter denstiy at the observed redshift. M
is related to o using Equation via Stanek et al. [260].

acterize how our observed cluster sample compares with a given theoretical distribution of
cluster observables. Figure shows the redshift evolution of iso-mass contours. Note that
while the number density for clusters of a particular mass decreases with redshift, the number
of observable clusters of a particular mass remains relatively constant since the observable
volume also increases with redshift.

Throughout this analysis, I adhere to the convention of calculating cluster properties
within a constant, ra, the radius within which the mean cluster density is A times the
critical density, p.(z), of the universe at the redshift of the cluster. I also assume ACDM
cosmology, and set Hy = 70 km s~ *Mpc=t, Qy = 0.3, and Q, = 0.7.
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Figure 1.4 The Tinker et al. [273] mass function for an overdensity 400 times the matter
density at the observed redshift. The overall normalization is an arbitrary unit. Left: The
number of clusters per unit volume. Right: The total number of clusters within an observing
volume.
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Chapter 2

Galaxy Clusters

Galaxy clusters are complex structures with many degrees of freedom. This complexity brings
both a richness of information and built-in cross-checks. A detailed knowledge of cluster
astrophysics, however, is required to properly isolate these degrees of freedom. The most
relevant physical properties to this work are: size, mass, temperature, density, and pressure.
Cluster masses may be directly determined using gravitational lensing, or indirectly from
the ICM by applying hydrostatic or virial assumptions. As the assumption of hydrostatic
equilibrium generally fails for most galaxy clusters, scaling relations must be calibrated
between hydrostatic masses and observational mass proxies that are insensitive to a cluster’s
dynamical state. Clearly, linear perturbation theory breaks down at the cluster level, and
much of what scientists understand about cluster properties derives from complex N-body
hydrodynamic simulations. Bertschinger [29] presents a nice review of N-body simulations
for structure formation, although the review by Kravtsov & Borgani [145] is more up-to-date.
This chapter explores how simulations and observables fit together to give a full description

of the astrophysics of galaxy clusters.

2.1 Mass Profiles

Predicting the profiles of dark matter halos is non-trivial. Recall that kinetic energy is
acquired following the triggering of the Jeans instability. This occurs approximately when

the mean density is 200 times the critical density. The subsequent behavior of the two matter
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components, however, is quite differentﬂ Although a heating mechanism is absent for dark
matter, dark matter particle trajectories will still relax at a much slower rate through phase
mixing via gravitational coupling. The system relaxes when the centripetal motion of the
dark matter particles prevents further gravitational collapse.

The simulations performed by Navarro, Frenk, and White ([201, 202], NFW) set the stage
being the first to show that dark matter profiles have a universal radial scaling independent
of mass, the initial power spectrum, or cosmological parameters. The scaling is observed to
be self-similar when the radial parameter is normalized, such that the enclosed mass density
is a constant multiple, A, of the critical density at the given redshift: Ma = Ap.(2)(47/3)rL
(recall that p.(z) = 3H(2)?/87G). The NFW simulations characterize the mass profile using

a broken power law:
pNFW(T) _ dc
pe(2) (r/rs)(r+7s)?

With this model, there are only two free parameters: r,, the scale radius, and 7999, which

(2.1)

is a good approximation of the virial radius. The ratio of these two parameters gives the
concentration, ¢ = rqg/7s, and this sets: §. = 200¢*/3[In(1 + ¢) — ¢/(1 + ¢)]*. This radial
description of the dark matter halo is commonly adopted in current cluster mass estimation
analyses. Due to a combination of limited observational signal and instrumental limitations,
galaxy clusters are often only observed out to Ros09 and Rspp, and special considerations
must be made for these analyses. The NFW profile is plotted in Figure for a typical
concentration parameter of 4, with the positions of Rs509 andRs5qy indicated.

Several alternative models to the NFW model have been proposed. Navarro et al. [203],
for example, argue for a model in which the logarithmic slope varies continuously with radius:
p(r) o< exp(—Ar®). This model was originally proposed by Einasto [77],[78, [79] in the context
of the light and mass distribution of galaxies. Merritt et al. [I84] find that the rms scatter

could be reduced by up to a factor of 4 using the Einasto model instead of the NFW model.

'In this work, baryonic matter will be referred to as “ga,s” since stars and galaxies play only a minor role
in this process.
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Figure 2.1 The average enclosed density of a Navarro-Frenk-White[201, 202] profile for a
typical galaxy cluster with ¢ = 4. The positions of R5qp and Ras09 are indicated by the
dashed red lines and their values are given with respect to the virial radius.

2.2 X-ray Emission Due To Thermal Bremsstrahlung

The nature of X-ray detection provides both flux and spectral information, enabling the
measurement, of two independent observables: luminosity and temperature. Since all ob-
servations are 2D projections sourced by 3D physics, the electron densitiy, n., and X-ray
temperature, Tx, can be determined using either projection or deprojection techniques.
While the deprojection method can account for complex structure independent of a par-
ticular parameterization, it has yet to be confirmed whether this technique produces more
accurate (or even different) results. Temperature and electron density profiles will be key to
deriving hydrostatic mass esimates in Section [2.6.1.2] and the general techniques by which
they are measured is reviewed. Several groups have made hydrostatic mass estimates using
X-ray data, and any differences in their respective parameter estimation techniques will be
highlighted when relevant (Allen et al. [6], Arnaud et al. [13], Bonamente et al. [37], Vikhlinin
et al. [279], Pratt et al. [237]).
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2.2.1 Pressure Profiles

In order to parameterize cluster properties, one must first choose a model. Pressure profiles
can be constructed using X-ray measurements of electron density and temperature profiles.
Cavaliere & Fusco-Femiano [52] proposed one of the first and most widely adopted pressure

models, the isothermal S-model:

p(r) = o rf/org]?’ﬂ/?' (2.2)

It has since become clear that the S-model is insufficient in describing cluster properties at
both small and large radii. Pratt & Arnaud [234] and Pointecouteau et al. [231] made an
initial step to expand this model by fitting two separate S-models at the interior and exterior
radius. For obvious reasons, this is called the double S-model. Nagai et al. [I98] combine
X-ray data at small cluster radii with simulations at large cluster radii to demonstrate that

cluster properties are self-similar at R5q9 and can therefore be described with a generalized

NFW (GNFW) model:
P = s ?zma](ﬁ—”/“’ 23)

The Arnaud et al. [I5)GNFW parameter measurement of:

[Py, cs00, v, B, 7] = [8.403h7%,1.177,1.0510, 5.4905, 0.3081], (2.4)

is commonly used as a universal pressure profile, to help constrain observationally-derived
measurements and these parameters are also adopted for the present analysis. With major
quality improvements in SZE data over the last several years, the parameters of the GNFW
model have recently been constrained using SZE data as well (Planck Collaboration et al.

[230], Sayers et al. [256]).

2.2.2 X-ray Spectral Temperature

The typical temperatures of the galaxy clusters studied in this analysis are ~10 keV, or

~10% Kelvin. This is the temperature of the transition between “hard” and “soft” x-rays
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Figure 2.2 X-ray spectra for astronomical formations at different plasma temperatures
with major emission lines labelled. (Blue) The continuum contribution from thermal
bremsstrahlung, a.k.a. free-free, (green) recombination radiation with sharp ionization edges,
a.k.a. free-bound, (red) two-photon radiation associated with the “forbidden” 2s-1s transi-
tion (Spitzer & Greenstein [265]). Line emission is produced when electrons change quantum
energy levels, a.k.a. bound-bound. Note the dominance of the thermal bremsstrahlung con-
tribution for the hottest object. Image taken from Bohringer & Werner [35].

and approximately 1/50th the rest-mass of an electron. Figure demonstrates how at
these extremely high temperatures, most emission is sourced by thermal bremsstrahlung.

Spectroscopically measured cluster temperatures, Ty, are a key ingredient with which
hydrostatic masses and (to a much lesser extent) electron density profiles are derived. Several
sets of code have been developed to fit X-ray spectra (both line and continuum emission) in
order to measure temperature. The XSPEC codeﬂ is based on the MEKAL (Mewe-Kaastra-
Liedahl) Model ([186] 135, [158]) and is used for the X-ray measurements utilized in this
analysis. Of the hydrostatic mass estimates studies presently considered, Allen et al. [6]
fit their temperature spectra to a constant T, while the Pointecouteau et al. [231] and
Vikhlinin et al. [278] analyses use a higher-order temperature model.

As temperatures are known to fall with radius inside of galaxy clusters (e.g Pratt et al.

’http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
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[235], George et al. [97]), Mazzotta et al. [I79] examined the bias that might result by fitting
a three-dimensional emission-weighted temperature to a single projected spectroscopic tem-
perature. They conclude that, on average, the measured projected spectroscopic temperature
would always under-estimate the true three-dimensional emission-weighted temperature, and
in some cases by up to 80%! This is in part due to their observation that the spectroscopic
temperature is less sensitive to high-density regions, such as shocks fronts, compared to
emission weighted temperatures in simulations. This is definitely a source of concern, for
hydrostatic mass estimates which require a spatially-resolved temperature model for accu-
racy. Mazzotta et al. [I79] propose a spectroscopic-like temperature, which best reproduces

typical spectroscopic observations fit to a single temperature model using simulations:

I LD S Y
- fnzT—3/4dV - ZN pT73/4’

i=1Fiti

Tg (2.5)
where ¢ is the index of the individually simulated particles.

Mathiesen & Evrard [174] demonstrate that the best approximation of the total thermal
energy of a galaxy cluster is neither emission-weighted nor spectroscopic-like, but the mass-

weighted temperature, T),.,:

f nT'dV 1

Thw="+——+ — — T;. 2.6
[ nav N Z (26)

T is the direct average of the temperatures of individual mass particles, and this is also

the temperature-weighting for the SZE signal.

2.2.3 X-ray Surface Brightness and Gas Mass Estimation

Bremsstrahlung occurs in the ICM when free electrons are deflected by the Hydrogen nucleii.
Thermal X-ray emission is thus the product of both electron density, n., and proton density,
n,. For a fully ionized gas, n. = 1.21n,, and n, is therefore the physical property that can
be calculated most readily from X-ray surface brightness maps. Typical values of n. range

from 107 — 107! em ™2 from the cluster outskirts to the cool-core.
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White et al. [288] and Fabian et al. [86], 85] developed a commonly used technique to
measure gas density by deprojecting X-ray surface brightness maps into a series of nested
electron density shells. The contribution to the total flux from the temperature, 7'(z), and
electron density, n.(i), for each of these shells is then calculated. By assuming that T'(7)
and ne(i) are constant within concentric shells, the flux contribution from each shell will be

proportional to :
n.(i)’

4 D?

ne(i)*T(i)"

F(i) o S

A[Z,T(i), E] (2.7)

where A[Z(V),T(i), E] is the spectral emissivity/cooling function of the ICM and includes
all of the detailed astrophysics of the emission. The subsitution A oc T2 is made in the
right-hand equation and is a good approximation at the high temperatures of the ICM.
Equation is used to calculate luminosity, L, which is a physical property of the cluster
directly obtainable from the observable, flux F = L/(47D?).

Equation is inverted to obtain the gas density of individual shells, n(7), using the
measured luminosity. The gas mass density, p(i), is obtained from n(i) using the molecular
weight, o ~ 0.6, and the mass of a proton, M,. An approximation for 7(7) is needed in this
step, which can be solved for either entirely independently, using a single temperature model
for the entire cluster, or, in a more complex iterative fashion, by simultaneously fitting the
spectroscopic and luminosity data. Finally, with p(7) in hand, M, can be directly calculated

by integrating over the individual shells:
TA
Maas = 4 / p(r)yr?dr = 4wy p(i)ri Arg. (2.8)
0 i

Electron density profiles can also be determined by comparing the observed luminosity
maps with a projected model. Bonamente et al. [37] apply this method using a S-model to
model the gas distribution. The [-model is appealing, because its projected X-ray surface
brightness profile has an analytical form—with the downside that it does not model the
central regions of clusters accurately. BOS8 therefore excise the central 100 kpc data from
both the spatial and the spectral data. Pointecouteau et al. [231] calibrate masses using a
double f-model (with the option to all for a concentrated inner region). Vikhlinin et al.

[278] add several more degrees of freedom to their model and also adopt a three-dimensional
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parameterized temperature model, for a total of nine free parameters.

2.3 The Sunyaev-Zel’dovich Effect

When the first X-ray observations from galaxy clusters were made, Sunyaev & Zel’dovich
[270], 271] predicted that such a hot plasma would be able to inverse Compton scatter the
CMB, increasing its energy. This is the Sunyaev-Zel’dovich effect (SZE) and it turns out to
be very small. It therefore took several more decades after its initial prediction before the

SZFE could reliably be observed in individual clusters.

2.3.1 Theory

The CMB is an ensemble of photon states, whose spectral characteristics approximate an
almost perfect 2.725 Kelvin blackbody. When these photons pass through a hot, 10 keV,
electron gas, on average, they will scatter up to higher energies. These photon states might
be replenished by lower energy photons, which also scatter upwards. At about 219 GHz the
net photon gain in occupation number balances the net loss, resulting in a null signal. The

observed temperature of the CMB is thus altered:

TSZ = f(x)yTCMBa (29)
with
fla) = xZi i 1 —4. (2.10)

f(x) contains all the spectral information and is only a function of the Boltzmann ratio of
the CMB itself, * = hv/kgTeyp. Depending on the application, the relativistic motion
of the hot electrons and high peculiar velocities of the clusters with respect to the CMB
must be accounted for. At moderate observing frequencies and temperatures, relativistic
corrections to the SZE signal can be included by multiplying f(z) by the frequency and
electron-temperature dependent factor (1 + d(x,T,)) [296, 125, 206]. The specific temper-
ature and frequency dependencies of these relativistic corrections are quite complex, and

Chluba et al. [55] provide one of the more popular techniques with which to estimate the
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relativistic SZE signal and have publically released their C**+ code| Relativistic corrections
are generally < 10% for the cluster sample observed with Bolocam at 140 GHz and are
included only when physical quantities are derived from the Yy, signal.
The Compton parameter, y, represents the magnitude of the distortion and, in the non-
relativistic limit, encompasses all of the cluster information in the CMB distortion. This

term is directly proportional to the electron pressure, P, integrated along the line-of-sight:

y = (UT/meCZ)/Pdl, (2.11)

where o7 is the Thomson cross section, m, is the electron rest mass, and c is the speed of
light.

The SZE observable is often expressed using a volume integral:

Y, D% = (“—T) /PdV - Di/de, (2.12)

MeC?

where D, is the angular diameter distance of the source. This equation presents Ys; as a
cylindrical integral, although Ys is also presented using a spherical volume integral. As
the cylindrical form of Ysz requires no additional assumptions to be made in regards to is

line-of-sight extent, the cylindrical value is chosen for the present analysis.

2.3.2 Detecting the Sunyaev-Zel’dovich Effect

It took several years to detect the SZE after its initial prediction, owing to the fact that
it is much too dim for the sensitivities of the instrumentation of the time. The 168 GHz
peak signal is too low in energy to excite semi-conductor CCD technology, and it lies at
a relatively high frequency for typical radio coherent detection. Furthermore, atmospheric
water vapor is strongly absorbing in this regime and there are few places in the world with
the proper climate and facilities to perform these observations.

Throughout the seventies, several groups claimed detection of the SZE using coherent

detection with single dish radio telescopes (Pariiskii [211) 212], Gull & Northover [107]).

3http://www.cita.utoronto.ca/~jchluba/Science_Jens/SZpack/SZpack.html
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Figure 2.3 Approximate thermal SZE model spectrum for RXJ 1347.5, a.k.a. MACSJ 1347.5
(solid red line) with y = 5.5 x 107%, T, = 15 keV, and vpe. = 1000 km/s. Also shown are
the distorted spectra after the addition of non-thermal/relativistic corrections (dashed red
line), and kinetic SZE corrections (black line). Note how each correction element shifts the
nominal SZE null from 217 GHz. At such high cluster temperatures, the relativistic effects
are substantial in the spectral region with the SZE increment. The intensity of the kinetic
SZE component alone is also plotted (blue dashed line) and Z-Spec’s effective bandwidth
is depicted in the solid blue region. The atmospheric transmission for a preciptiable water
vapor column of 0.5 mm at Mauna Kea is shown in yellow. From this curve, it can be
seen how difficult it is to observe the SZE increment due to the high level of atmospheric
absorption. Figure taken from Zemcov et al. [300]. Bolocam data is used in this work to
provide both a spatial template for the Z-Spec analysis, and also to constrain the overall y
value serving as a spectral “lever arm” at 140 GHz.
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These results, however, were of low significance and often disputed, and it took approximately
until the end of the following decade for radio observing techniques to progress to the point
where SZE observations of galaxy clusters could be reliably reproduced (Birkinshaw et al.
[32, B1], Lake [150], Readhead et al. [240]). In the early nineties, the SZE started to be
observed with radio telescope arrays, such as the Ryle Telescope (Jones et al. [132]) and the
Owens Valley Radio Observatory (OVRO, Carlstrom et al. [48]), specifically configured with
shorter baselines, enabling better atmospheric removal and resolved mapping. More recently,
the Sunyaev-Zel’dovich Array (SZA, Muchovej et al. [196]) was specifically constructed to
observe the SZE and consists of eight 3.5m telescopes, which provide a 12" instantaneous field
of view. Six of the antennas are in a close-packed array to provide sensitivity at 2’ resolution,
and two outrigger antennas provide 0.3’ resolution to aid in the removal of point sources.
Coherent detectors were also launched in space, and operated in the highly successful COBE
(Boggess et al. [34]) and WMAP (Bennett et al. [23]) CMB satellite missions.

The SZE can also be detected by directly absorbing the radiation, using bolometers to
measure power. Bolometric observations of the SZE started in the early eighties, thanks to a
significant expansion of the infrared and submillimeter observational capabilities on Mauna
Kea. Meyer et al. [I87] performed bolometric observations of the SZE using the Infrared
Telescope Facility, and Chase et al. [53] attempted to measure the SZE increment using
the United Kingdom Infrared telescope. The Caltech Submillimeter Observatory (CSO) was
commissioned in 1986, and, with a 10.4 m primary, it is better suited to observe the SZE than
the existing infrared facilities. The Sunyaev-Zel’dovich Infrared Experiment (SuZIE) succes-
fully measured the SZE at the CSO in 1994 (Wilbanks et al. [291], Holzapfel et al. [121]),
fielding high-sensitivity neutron-transmutation-doped (NTD) bolometers (Palaio et al. [210]).
The camera contained three pairs of bolometers, sensitive to 142 GHz, 217 GHz, and 269
GHz, respectively. The first version of the camera used a solid sapphire substrate for the
absorber (Holzapfel et al. [I121]), and the second version upgraded to a new silicon-mesh
(spider-web) absorber (Bock et al. [33], Mauskopf et al. [I78]), making the detectors less
sensitive to cosmic rays. The NTD spider-web bolometers endured to have a great legacy

and were subsequently employed in many high-profile sub-millimeter experiments, such as:

Archeops (Benoit et al. [24]), Bolocam (Haig et al. [109]), BOOMERanG (de Bernardis et al.
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[63]), BLAST (Devlin et al. [66]), and Planck [222].

While these detectors have outstanding sensitivity, they are difficult to multiplex. There-
fore the bolometer of choice in current generation of SZE instruments, containing on the order
of 1000 detectors, is the transistion-edge sensor (TES). For a good review of TES detectors,
see Irwin & Hilton [124]. TES detectors can be multiplexed using either time-division mul-
tiplexing (Chervenak et al. [54], de Korte et al. [65]) or code-division multiplexing schemes
(Yoon et al. [298], Kiviranta et al. [I41]). TES detectors have been used in the Atacama
Pathfinder Experiment (APEX-SZ, Dobbs et al. [69]), the South-Pole Telscope (SPT, Ruhl
et al. [248]), its polarization-sensitive successor (SPTpol, Austermann et al. [I7]), the Ata-
cama Cosmology Telescope (ACT, Swetz et al. [272]), and its polarization-sensitive successor
(ACTpol, Niemack et al. [205]), and the Multiplexed SQUID/TES Array at Ninety Gigahertz
(MUSTANG, Dicker et al. [68]).

As submillimeter astronomical projects become more ambitious, there is a push to in-
crease the pixel count by more than an order of magnitude, which would require considerable
technological advancement. A promising new type of pair-breaking detector is the microwave
kinetic inductance detector (MKID, Day et al. [62]). This detector is highly multiplexable
and is the detecting element chosen for the Multiwavelength Submillimeter Inductance Cam-
era (MUSIC), which is currently being commissioned at the CSO (Golwala et al. [101]).
This camera is a pathfinder for the type of instrumentation that will be implemented for an

ambitious project currently under development, the Cerro Chajnantor Atacama Telescope

(CCAT, Woody et al. [294]).

2.4 Gravitational Lensing

According to the general theory of relativity, gravity attracts light much in the same way
as it attracts mass. A massive galaxy cluster positioned between an observer and a galaxy
will deflect the light like a lens, producing arcs and multiple images of the background
source. Strong lensing primarily uses the position and redshift of these sources to map the
mass distribution of the lensing object. This requires both high-resolution data as well as

high quality spectroscopic data. Weak lensing operates in the limit where the gravitational
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distortion is weak, producing a quadrupole distortion of the background galaxies. A thorough
review of the weak gravitational methodology is included in Bartelmann & Schneider [18].
This shear can be measured in a statistical sense to reconstruct a cluster’s mass profile, up
to a constant offset in mass known as the mass-sheet degeneracy. Umetsu et al. [276] break
this degeneracy by measuring the absolute magnification of the background galaxies via the
positional dependence of the surface density of these galaxies. While lensing gives a fully
nonbaryonic cluster mass estimation, cosmic web confusion can still introduce uncertainties
of up to 20% (Hoekstra [118]). Several different methods exist to reconstruct the mass profiles
both parameterically (e.g. Jullo et al. [I33], Merten et al. [I85]) and non-parametrically (e.g.
Coe et al. [57], Zitrin et al. [304]).

2.5 Richness Measures/Velocity Dispersion/Red Sequenc-
ing

One of the biggest ironies of the term “galaxy clusters” is that only a small portion of all of
the virialized matter is contained in stars. The motion of these stars, however, is dictated
by the gravitational potential and can be used to measure mass. Using the dispersion in
the redshift-determined velocities of individual galaxies, one can determine their line-of-
sight velocity, which is correlated with cluster mass. Zwicky [307] famously proposed the
existence of dark matter based on the measured velocity dispersion for the Coma cluster.
Inevitably, such high quality spectroscopic data is not available for most galaxy clusters, and
the application of this technique is limited.

Clusters can also be identified through their optical richness, or the number of galaxies
within a specified aperture and above a specified luminosity. One of the most popular
methods for cluster selection is the “red-sequence”, which identifies galaxies based on a linear
color-magnitude relation ([42, 99]). This method only requires photometric data at a few
selected wavelengths. Using the red-sequence, High et al. [I16] measure a correlation between
optical richness and cluster mass for Ygz-selected clusters in the South Pole Telescope survey,

although with a high degree of scatter (35%). Despite a large measured scatter, the red
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sequence is a promising technique for identifying and weighing high redshift clusters (Stanford

et al. [268]).

2.6 Cluster Mass Estimation

Less than 20% of the mass of a galaxy cluster is ordinary matter. Therefore, cluster mass
estimation is, to first order, dark matter estimation. The rich set of observables provided
by galaxy clusters is valuable in that it provides important cross-checks for a given observa-
tional probe’s mass estimate. The equation of hydrostatic equilibrium links pressure-derived
observables directly to the total cluster mass in the limit where the cluster is relaxed and
pressure is only sourced by the thermal motion of the ICM. Of these observables, X-ray
observations provide both spectroscopic and bolometric information, while the SZE surface
brightness does not dim with redshift. Gravitational lensing is insensitive to the detailed
astrophysical processes occuring inside of a galaxy cluster, but the necessary high-quality
data needed for these measurements is only available for a handful of clusters. Fully robust
mass estimation must integrate all of this information and develop a set of calibrated mass
proxy scaling relations that can be used on clusters where high-quality optical data is not

available.

2.6.1 Hydrostatic Equilibrium, Self-Similarity, and the Virial The-

orem

Following the Jeans instability, in contrast with dark matter, gas undergoes an accretion
shock, and further infalling gas is heated when it encounters this shock [28), [83] 44] 96, [T89].
These shocks source the entropy, which heats the clusters to several keV (where 1keV ~
1.16 x 10°K), and the gas rapidly relaxes to form an inter-cluster medium (ICM). The ICM
sources the two central observables to this thesis: X-ray emission via thermal bremsstrahlung
and the SZE.

While the underlying dark matter halo does not contribute any photons to the observ-

ables, its gravitational potential will affect the gas pressure and thereby boost the signal. A
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common idealization in fluid dynamics (e.g. galaxy clusters) is that the fluid is adiabatic and
in a state of equilibrium. This means that kinetic energy is not altered by such processes
as viscous heating, thermal conduction, or emission/absorption of radiation. In the adia-
batic regime, the equation of state has only one thermodynamic degree of freedom, pressure,
P = P(p), which is solely a function of density. This leads to the equation of hydrostatic
equilibrium (HSE), which is a restatement of the Archimedes Principal: The amount of force

on an object is equal to the weight of the mass that it has displaced:

VP=pg = —pVo (2.13)
dP dd
— = —p— 2.14
dr Par (2.14)

where in the second equation, spherical symmetry is assumed, and d®/dr can be calculated

using Newton’s field equations:

V20 = -V . g = 47Gp. (2.15)

Combining equations [2.14] with [2.15] and integrating once using the boundary condition:

dP(r — o0)/dr = 0 yields:

dP — GM(r)p

i 2.16
dr 72 ( )

By introducing the ideal gas law, P = p,T" into Equation [2.16] one finds the total mass scales

as:

(2.17)

M « BT |TRET
dlnr

The ideal gas law generally holds for high-temperature, low-pressure, monatomic gases, which
are typical conditions in the ICM. The HSE methodology can be applied to any observable
which measures pressure (i.e. X-ray or SZE).

A common assumption applied to galaxy clusters is that they are self-similar. Self-
similarity means that, for a particular normalization, all clusters, regardless of absolute size,

share similar behavior. Imposing self-similarity on Equation implies that dln P/dInra
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is universal for all clusters at the particular radius, ra. Equation then simplifies to:

T

M
Mo RT — Tox o Apt/3M33 (2.18)

P o M3 (2.19)

Kaiser [I36] was one of the first to verify this assumption using N-body simulations. Self-
similarity implies: (1) that the amplitude of the density fluctuations is a simple power-law,
o(k) oc k3™ and (2) that gravitational collapse, and the physical processes that produce
cluster observables, are scale-free. These assumptions leave two free cosmological parameter
dependencies: the normalization of the power spectrum, and its scale factor, n.

On the other hand, if clusters are not self-similar, then hydrostatic mass estimation must
start from either Equation [2.14] or Equation [2.17. This is precisely what is done to obtain
hydrostatic mass estimates from gas observables, described in further detail in Section [2.6.1]
As X-ray data provides an additional independent measurement compared to the SZE, it is
more broadly implemented for HSE mass estimation. To derive the X-ray-specific form of
the HSE equation, the ideal gas law will once again be inserted into Equation [2.16] This

time, however, self-similarity will not be invoked:

M(r) =

2
kTr (dlnpg allnT)7 (2.20)

_,uMpG dlnr  dlnr

where the subsititution p, = pn.M, has been made. With the X-ray temperature and
electron density profiles in hand, one can use Equation for massive, dynamically relaxed
galaxy clusters, where the pressure can be derived thermally from the ideal gas law. The
gas mass fraction, fgas, can then be calculated by dividing the mass calculated at a specific
radius, My, by Mys (which, recall, is determined by integrating n. over the volume of the
cluster). HSE cluster candidates are generally chosen at low redshifts to ensure high-quality
data and to remove any cosmological dependence that might bias the measurement.
Another approach for estimating mass is to integrate Equation [2.14] which simply restates

the virial theorem for an ideal gas:

2Ey,(r) — 3P (r)V = =U,(r), (2.21)
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where Fy,(r) is the total thermal energy of the system, P(r) the pressure, V' the enclosed
volume, and U,(r) the gravitational potential energy. The 3P(r)V term is added to the
traditional formulation of the virial theorem and represents the boundary condition of a
surface pressure component. In the absence of this component, this equation states that
the kinetic energy of a bound system is twice the gravitational potential and can be derived
from a time-averaged form of the Hamiltonian. The surface pressure term allows the kinetic
energy to build up a little more. Mroczkowski [192] develops this theory (see Mroczkowski
[193] for the inclusion of the surface pressure term) to apply to obtain cluster masses directly
using the SZE effect. This method imposes a strong assumption of how gas mass scales with

total mass, i.e., Pgas(7) = fgasProt(r), and therefore is not used directly in the present analysis.

2.6.1.1 Deviations from Hydrostatic Equilibrium

With the electron density and temperature models in hand, one can, in principle, calculate
hydrostatic masses using Equation Recall that the equation of hydrostatic equilibrium
simply demonstrates how pressure and gravity must balance in order to attain equilibrium.
If, however, there is a source of non-thermal pressure, equilibrium will be achieved with less
thermal pressure. Fortunately, some of these non-thermal sources of pressure, e.g. turbu-
lence and bulk flow, are inherently modeled in hydrodynamic simulations, which trace the
motion of gas. These simulations indicate an increasing level of non-thermal pressure at
large radii, up to 20-30% at cosmologically interesting radii, leading to an overall 10-15%
bias in hydrostatic mass estimates (Lau et al. [I53], Battaglia et al. [20, [19], Burns et al.
[47], Navarro et al. [201], Rasia et al. [239], Nagai et al. [200], Jeltema et al. [128]). Most
HSE mass measurements subsequently account for this bias in some form or another.

The assumption of adiabaticity can be broken by radiative cooling. Radiative cooling is
needed for all star formation and is believed to be the process which sets the entropy scale
for clusters (Peterson et al. [220], Peterson & Fabian [219], Voit [281], Borgani et al. [41]).
Protostellar collapse occurs when gas molecules cool via collisional transfer with dust grains,
which in turn radiatively cool the protostellar medium (Larson [152]). Most of the stellar
population in clusters is expected to have formed at high redshifts, z > 2 (Jimenez et al.

[130]), although it is still unclear what fraction of these stars are formed inside of the galaxy
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clusters themselves, versus having been acquired via accretion. Simulations by Conroy et al.
[59], however, suggest that accreted galaxies have their stellar fraction dispersed into the
low-luminosity intracluster light, instead of staying bound as a satellite galaxy or being
deposited in the brightest central galaxy.

The Lx — Tx relation was one of the first scaling relations to show deviations from
self-similarity, with the relation steepening for the lower mass clusters from the predicted
Lx o< T%. (Henry & Arnaud [114], White et al. [289], Markevitch et al. [167], Allen &
Fabian [B], Arnaud & Evrard [12], Finoguenov et al. [88, 89]). Bryan [43], Voit & Bryan
[282] and Voit et al. [283] argue that the observed deviation from self-similarity is due to
the cooling and condensation of gas accompanying star formation. X-ray radiative-cooling
models, however, indicate that radiative cooling alone would lead to a much higher than
optically-observed stellar mass (Lin et al. [160], Gonzalez et al. [L02]). To balance this, star-
formation could be slowed by supernova and AGN activity in the core cluster galaxies, which
eject high-entropy gas to the cluster outskirts (Markevitch et al. [167], De Grandi & Molendi
[64], Vikhlinin et al. [278]). Simulations by Nagai et al. [200] demonstrate this activity to be
centralized within cluster radii of about Rasg.

Mergers are probably the most obvious example of clusters departing from HSE. The
effect of merger activity on cluster observables has attracted a good amount of attention
recently (see Wik et al. [290], Nelson et al. [204], Krause et al. [144]). These simulations
demonstrate that the assumption that gas mass follows the iso-contours of the underlying
dark matter halo fails for disturbed clusters, while frictionless dark matter halos “slosh”
around the cluster core, out of phase with the baryonic matter (Ascasibar & Markevitch
[16], ZuHone et al. [306]). Molnar et al. [190] suggest that this might leave an observational
signature in the projected offset between the SZE and X-ray peaks of galaxy clusters.

Shock fronts provide additional non-thermal pressure, because they prevent the free mo-
tion of gas. The relative velocity of halo collisions can be measured from the shock Mach
numbers, and these collisions can be up to thousands of kilometers per second (Markevitch
& Vikhlinin [I69]). Several shock fronts have been identified in galaxy clusters—most no-
table, of course, is the X-ray image of the Bullet Cluster (Markevitch et al. [I68]). With
new high-resolution SZE cameras, such as MUSTANG, shock fronts have also been identified
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with the SZE (Korngut et al. [143]). In addition to shock fronts, simulations demonstrate
that residual bulk motion in the ICM could provide an additional non-negligible source of
non-thermal pressure support (Evrard [83], Dolag et al. [70], Lau et al. [I53]).

There is ample evidence demonstrating that galaxy clusters are not the smooth, spherical
objects that they are often modeled as. For example, mass accretion could be preferentially
aligned along collapsed filamentary structures, which remained like a Swiss cheese after
the initial collapse of the overdensities. Simulations by Battaglia et al. [19] indicate that
ellipticity is largest for clusters at z=1. This ellipticity is dominated by the dark matter
component, with gas distribution being significantly more spherical, leading to a potential
source of mass bias. A prolate cluster, with its major axis aligned along the line-of-sight, will
project a different signal than the same cluster with its major axis aligned in the plane of the
sky (Krause et al. [I144], Morandi et al. [191]). Furthermore, the specific shape of the mass
and gas profile matters at large radii, where the ICM can still contribute a significant amount
of SZE flux (Battaglia et al. [20], Lau et al. [I54]). Battaglia et al. [I9] notice a significant
asphericity in cluster gas that is not necessarily aligned with the dark matter halo, and this
will naturally bias mass estimations, which assume that the gas follows the dark matter
equipotential surfaces. Munoz-Cuartas et al. [195] simulate cluster halo asphericity and
notice that it increases with both mass and redshift. They measure the major-to-minor axis
ratio of their simulated cluster halos to be less than 0.5 at 0.3 r,;. for halo masses ~10 M.
On the observational side, Skielboe et al. [261] use a stacked sample of 1743 clusters from
the SDSS catalog [[] and measure a higher degree of optical dispersion for galaxies aligned
along the major axis of the central galaxy, with respect to those aligned along the minor
axis: Ao, /(0,) = 6% £ 2%. This they interpret to be the signature of a preferred prolate
cluster geometry based on the simulation results of Gottléber & Yepes [104].

Significant levels of gas clumping in the outskirts of galaxy clusters have been observed
using the Suzaku X-ray telescope, which has a factor of ten less background due to its low-
Earth orbit than the previous generation of X-ray telescopes. Measurements by Bautz et al.
[21] and Simionescu et al. [260] of this gas clumping indicate an excess of X-ray emission

than predicted from theory and simulations. These observations are supported by N-body

4For more details about the SDSS survey, see Appendix
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simulations, which indicate cold clumps of infalling gas, such as galaxies, through accretion

and merger activity. Nagai & Lau [199] parameterize this using a “clumping” factor:

Sx (1) o< (phs(r)) = C(r)(pgas(r))?, (2.22)
(Pl
C(r) = e > 1. (2.23)

Electron density profile measurements generally assume C(r) = 1, which would result in
overall biases of \/m in the density profiles. Note that the parameterization is more general
than “clumpiness,” for example, shock fronts would also result in C'(r) # 1. Numerous
groups (Buote & Humphrey [45], Khedekar et al. [140], Zhuravleva et al. [302]) are currently
investigating this phenomenon. As these observations are still recent, clumping is generally

not accounted for in hydrostatic mass corrections.

2.6.1.2 X-ray Hydrostatic Mass Measurements

The sample characteristics of four X-ray hydrostatic mass calibration studies will be reviewed
to the extent that they pertain to this work: Allen et al. [0, hereafter A08|, Bonamente et al.
[37, hereafter BO§|, Vikhlinin et al. [278], and Pointecouteau et al. [231I]. The information
presented below, together with the relevant scaling relations discussed in Section [2.6.3] is
summarized in Table 2.1]

A08 measure hydrostatic masses for a sample of 42 hot (kT > 5keV) X-ray luminous,
dynamically relaxed galaxy clusters between 0.05 < z < 1.1. These are the masses used to
calibrate the scaling relations in the M10 sample, and, by extension, this work. With weak
priors on cosmology, AO8 measure fy,s to be constant for all 42 clusters of their sample. They
measure fgas= 0.1104 £ 0.0016 at Ras00—a result supported by independent observational
analyses (Bonamente et al. [37], Zhang et al. [301], Mahdavi et al. [163]). A08 note that
the fzas measurements of a subsample of 6 low-redshift clusters is consistent with the entire
sample, and the additional rms scatter measured for the entire sample is approximately what
would be predicted from hydrodynamic simulations. AO8 conclude My, to be a low-scatter

universal proxy for the total cluster cluster mass, M;,;. The power of the A0S result is that
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M, can be directly obtained from Mg,,:

Meas(ra) AT Ape,(2)r

Mira) =% 00y~ 3

(2.24)

M10 use the AO8 measured fy,s value and add an additional ~8% systematic uncertainty to
the value to account for scatter in unrelaxed systems.

B08 measure hydrostatic masses using Chandra X-ray data for a sample of 38 clusters,
split evenly into a low redshift (z < 0.30) and a high redshift subset (0.30 < z < .90). The
measured M,,s spans approximately an order of magnitude from 10" to 10'* M. These
are the masses used to calibrate the BO8 SZE-X-ray scaling relation study, which shares
many properties in common with the BOXSZ sample. Similar to A0S, BO8 do not detect
any scaling of fys with mass or redshift. B08 include an additional 20% gaussian noise
to their M, values to account for systematic uncertainties. The dominant component of
this systematic uncertainty is from the estimated bias due to projection effects caused by
cluster asphericity. Cluster asphericity for the sample is characterized using the measured
projected ellipticity of the X-ray surface brightness maps. LaRoque et al. [I51] measure a
mean projected major-to-minor axis ratio of 0.79 for the BO8 sample, with an rms scatter
of 9%. They then use this as the hypothetical distribution for the line of sight ellipticty
of the clusters and calculate the rms scatter that the asphericity would produce under the
assumption of a spherical model—20%.

Vikhlinin et al. [278] measure hydrostatic masses using Chandra data for 13 low redshift,
relaxed galaxy clusters with temperatures ranging betwee 0.7 and 9 keV. They too measure
hydrostatic masses for a higher redshift 36-member cluster sample with 0.35 < z < 0.9, using
moderate cosmological priors. These mass calibrations are used in the work of Vikhlinin et al.
[278, 279].

Pointecouteau et al. [231] measure the hydrostatic masses for 10 clusters with z < 0.15.
These masses are used to calibrate the Arnaud et al. [L3] [14] scaling relations. Arnaud et al.
[15, hereafter A10] use 8 of these clusters together with an additional 12 clusters from the
REXCESS sample (Pratt et al. [237]) for hydrostatic mass calibration, although it appears

that the hydrostatic masses of the additional sample have not been published. These A10
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scaling relations, in turn, are used to calibrate the masses for the Planck Collaboration et al.
[224], 227] SZE results.
Arnaud et al. [I13], Pratt et al. [236], Vikhlinin et al. [279] and Pratt et al. [237] all

conclude that f,,s evolves with cluster mass:
fgas o< My, (2.25)

Specifically, V09 measure o = 0.13 4+ 0.02, and Pratt et al. [230] measure o« = 0.21 £ 0.03.
These results could possibly be reconciled with AO8 and BO8 if f,,s asymptotes to a constant
value for clusters with temperatures above 5 keV. Simulations give varying expectations for
whether fg,s evolves with mass or temperature. While some simulations, which include non-
thermal processes demonstrate fg.s to be constant (Eke et al. [82], Crain et al. [61], Fabjan
et al. [87]), others observe f,,s to evolve with mass and redshift (Kravtsov et al. [147], Stanek
et al. [267], Battaglia et al. [19]). The resolution of the uncertainty in the evolution of
feas With redshift and M, for high-mass clusters is a key priority in the field.

2.6.2 The Yy Mass Proxy

After observing fy.s to evolve with mass and redshift in their simulations [147], Kravtsov
et al. [I48] propose the X-ray analog of Ysz, Yx=CM_,Tx to be a more robust low-scatter

mass proxy, where,

or 1 10~°Mpc?
C= =1406 X ————
MeC? Paas/Ne % 104keVM,,’

(2.26)

or is the Thompson cross-section, and pgas/n. = 1.149m,, for a highly ionized gas. Yx is sug-
gested to be a lower-scatter mass proxy because the non-thermal scatter in Mg,,, and T'x are
expected to be anti-correlated. This can be understood in the sense that AGN activity in
the cluster core will eject baryons radially outwards, both heating the ICM and lowering the
relative baryon fraction. Motivated by these results, several observational studies have used
Yx as a default mass proxy (Vikhlinin et al. [279], Andersson et al. [§], Planck Collaboration

et al. [224], Lin et al. [I61]). The measured Yy scaling relation results are summarized in
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Table 2.1. X-ray mass calibration sample characteristics used by the various SZE studies.

Name Obs Scaling Relation o  Na (2) (Tw) Ms00

A08  CXO feas= 0.1105 £ 0.0005(r /r2500)0-214E0-022 0 42 035 ~7keV [~3,21.7]
A08C CXO faas= 0.113 & 0.003 0 6 <015 ~8keV [~5,10.1]
B08  CXO faas= 0.116 ... 38 0.30 ~7keV [2.0,16.2]
K06  ART N-body MspoocYx 0-581£0.009 0.071 16 0.3 - [0.4,13.0]
K06  ART N-body Misgooc MQ-35, %0028 0.107 16 0.3 -+ [0.4,13.0]
V09C  CXO Mso00¢ Y0%53i0<°4 0 17 <0.25 ~6keV [1.0,22.8]
A10  XMM Msgpoc Yro61£0:018 0.1 20 <0.15 ~4 keV [1.0, 8.4]

Note. — A compilation of the X-ray- and simulation-derived scaling relations adopted for the various

works discussed in the text. First column: The analysis from which these values where derived, where the
letter C indicates a low-redshift scaling relation for cosmological applications: (A08) Allen et al. [6], (B0O8)
Bonamente et al. [37], (K06) Kravtsov et al. [I48], (V09) Vikhlinin et al. [279]. Second column: The X-ray
observatory or the simlation code that was used to derive the scaling relations: (CXO) Chandra X-ray
observatory, (XMM) XMM-Newton X-ray observatory, (ART N-body) Adaptive Refinement Tree N-Body
hydro-dynamic code (Kravtsov et al. [I46].) Third column: The measured values for the given scaling
relation analysis. Fourth column: The measured intrinsic scatter for a given relation. Fifth column:
The number of clusters used to constrain the scaling relation. Sixth column: The median redshift for
the scaling relation. Seventh column: The median spectroscopic temperature measured for the sample.
Eighth column: The measured mass range for the given sample. Mass values for Allen et al. [6] obtained
from Mantz et al. [I66]. Mass values for Bonamente et al. [37] have been multiplied by a factor of two in
order to estimate the Msoo values for easier comparison with the other data sets.

Table 211
Lin et al. [I61] adopt the M — Y relation from V09 and apply it down to lower masses
and observe fg,s to scale with mass as o = 0.13 & 0.03 and they extend the fg,s model to

have redshift dependence:

fgas o< M (1+ 2)°, (2.27)

measuring ¢ = 0.41+0.04. If one takes the redshift evolution of Lin et al. [I61], and rescales
it to the Pratt et al. [236] o = 0.21 £ 0.03, one would obtain ¢ = 0.66.

2.6.3 X-Ray Mass Proxy Comparison

Rozo et al. [244, hereafter R12] have recently conducted an examination of the systematic
differences between the estimated X-ray masses for shared clusters between the V09, M10,
and P11 samples. The results of this analysis are show in Figure [2.4, The V09 and M10
samples share 16 clusters in common, V09 and P11 share 23 clusters in common, and P11
and M10 share 28 clusters in common. At low redshifts, there exists an approximate 10-15%

systematic offset in the mass estimates between the different groups. P11 systematically
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measure lower masses, M10 systematically measure higher masses, and the V09-measured
masses are somewhere in between. At higher redshifts, a systematic trend between the P11
and M10 samples can be identified for the 16 shared clusters with z > 0.13. R12 measure

the average mass difference to be 45%+5% for these clusters. Aside from the lack of shared
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Figure 2.4 A comparison between the differences of the derived mass estimates for individual
clusters in the (red) Mantz et al. [166, M10] and Vikhlinin et al. 279, V09], (blue) Planck
Collaboration et al. [224, P11-LS] and V09, and (green) P11-LS and M10 cluster samples.
P11-LS is abbreviated as P11 in the text. Filled symbols represent relaxed systems, and
open symbols represent disturbed systems; the degree of disturbedness is qualitatively de-
termined by the R12 authors. R12 divide the (P11-LS)-M10 analysis into a low-redshift and
a high-redshift component, demarcated by the vertical line. Means of the different cluster
samples are denoted by the horizontal lines, with the long dotted horizontal line denoting
zero difference. Figure from Rozo et al. [245].

hydrostatic cluster mass calibration estimates, the situation is further complicated, because
a bias in mass for a particular scaling relation will bias the overdensity radii (e.g. Rspp or
Ros00), which determines the aperture within which observables are generally measured.
After rescaling the measured Mg, values using the p,,s profile, reported in Piffaretti et al.

[221], R12 note that there is no systematic difference between the M,,; measurements of the
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Figure 2.5 Schematic demonstrating how a mass-dependency in fgas affects Mg, and
M, measurements. The overdensity radius Ra, for a given A is determined based on
where the mass profile intersects the 4/37R*Ap. black line. For a fiducial fyus= f,, this is
indicated at the intersection of the green dotted lines. When the fg,s model changes, so does
the over-density radius, as indicated by the blue curve. If one were to naively convert from
one fgas model to another without changing the integration radius, one would underestimate
the true bias, as indicated by the vertical difference between where the blue curve intersects
the blue and the green dotted lines.

various groups.

It is slightly more complicated to compare M;,; measurements acquired using different
feas models, because both the aperture and the systematic mass-proxy differences must be
accounted for. Figure demonstrates why one cannot naively compare two mass measure-
ments using different different fgs models. R12 provide a conversion formula that accounts
for aperture effects to compare mass estimates between different mass proxies, which is now
reviewed.

As M, estimates between different groups are consistent with each other, one can con-
clude that the discrepancies between M;,; estimates can be explained by different mass and
redshift dependencies of the adopted fy,s model. The discrepancy between the mass esti-

mates of two different analyses A and B is defined as the ratio of the M;,; estimates for a



particular cluster:

bap = (2.28)

Murap  Rig
Where in converting from M;,; to Ra, the same reference cosmology is assumed. This
assumption holds when comparing the P11 and M10 analyses, as they both use: Q, =
0.3, Qx = 0.7, and Hy = 70 km s~ Mpc=t. V09 use Qy; = 0.3, Qp = 0.7, and Hy =
72 km s~! Mpc~!, which would result in a constant offset of ~5% compared with the P11
and M10 samples.

By matching Mg,, measurements at the same physical radius between the two groups,
and assuming self-similarity (M o R} ), the effect that a systematically different fg,s value
has on M, (measured at different radii) can be characterized. First, equating Mqs g with

M 4 at the same Ra 4, and expressing the result in terms of M, and fgas, yields:

Mgas,B(@RA,A) = fgas,A<M> Z)Mtot,A = fgas,B(M7 Z>Mtot,A,B (FEA,A/RA,B)fy . (229)

This step can be visualized in Figure by collapsing a given M, profile onto M,,s and
then moving along the curve to match the other Mg, estimate. Inserting the calculated

R a/Ra,p ratio into Equation yields:

M, .y 3/(3—7) us 1.67
by = tot,A,A (fg 73) _ (fg_’B) , (2.30)

B Mtot,A,B B fgas,A fgas,A

where in the last step, the substitution v = 1.2 has been made, which R12 determine using
the Piffaretti et al. [221] pyqs profile. The result in Equation implies that aperture biases
will further increase the M, scaling with different f,,s assumptions. This additional bias
can be identified as the vertical difference between the intersection of the dotted green and
blue lines with the blue curve. If the f,,s assumptions between two groups are the same, of
course, byp = 1.

To summarize, R12 find that once aperture biases have been accounted for, M, measure-
ments between V09, P11, and M10 are consistent with each other. Therefore, the systematic
differences in the mass measurements between the different groups can be derived from the

equivalence of the My,s measurements and a known systematic difference in the fgus as-
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sumption. With a measured M, 4 for a given cluster and fgas 4 model, equation shows
how to predict the My, p estimate determined using an fy.s 3 model. Keep in mind that
systematic differences in M, A are measured at different Ra values since we want to keep
A the same between the two samples. Referring again to Figure 2.5] M;,; must be evaluated
as some point along the black dash-dotted line. This equation will be used later in Section

[4.6.1] when the Bolocam results are compared with other scaling relations analyses.

2.6.4 Gravitational Lensing Mass Estimates

Pressure-derived scaling relations are relatively low-scatter but are potentially biased. Be-
cause gravitational lensing is a measure of total mass, lensing data should ideally be able to
calibrate this bias. While several weak lensing studies have been conducted to characterize
the degree of X-ray hydrostatic bias, they do not all agree with each other (see, for example,
Applegate et al. [10] and Okabe et al. [207]).

Marrone et al. [I7I] and Marrone et al. [I72] measure the exponential scaling of the
SZE signal using both strong-lensing mass estimates and weak-lensing mass estimates, re-
spectively. Clusters were selected from the LoCuSS cluster catalog (see Appendix and
the SZE observations were performed using the Sunyaev-Zel’dovich Array (SZA) which was
introduced in Section [2.3.2] The Marrone et al. [I71] strong-lensing sample consists of 14
galaxy cluster with a median redshift, (z) = 0.222. Assuming a scaling of Mx o Yf, they
measure 3 = 0.47703 with an intrinsic scatter of 32 + 4% at a fixed physical integration
raduis of 350 kpc for their adopted cosmology. This is about 50-75% the size of Rasqg for
the clusters in their sample. This radius was primarily chosen because strong lensing is
mostly sensitive to the core regions of galaxy clusters. The Marrone et al. [172] weak-lensing
sample, in comparison, consists of 18 galaxy clusters from the LoCuSS sample with redshifts
between 0.15 < z < 0.3. Their results give an exponential scaling that steepens at smaller 74,
with 8 = [0.447017,0.4870:11,0.557015] at A = [500, 1000, 2500]—each one shallower than
self-similar, 8 = 3/5. They measure the intrinsic scatter to be approximately 20% + 10%,
which they suggest is so large due to variations in cluster morphology. At fixed Ys,per, they
measure the mass of the undisturbed cluster to exceed that of the disturbed clusters by

[41 4+ 6%, 28 £ 5%, 13 £ 6%, ] at A = [500, 1000, 2500], respectively.
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Chapter 3

Bolocam and Chandra Observations
of the BOXSZ Cluster Sample

Starting in 2011 I devoted myself full-time to Bolocam data analysis and I expanded the
suite of reduced Bolocam observations from 5 to 45 clusters. Following the Sayers et al. [255]
proof-of-methodology paper, our work entered an exciting period of scientific collaboration
and publication. With our large sample of reduced observations, we were able to explore
and reduce various systematic biases in the data caused by aggressive atmospheric filtering,

calibration uncertainties, and radio source contamination.

3.1 BOXSZ: The Bolocam X-ray/Sunyaev-Zel’dovich
Sample

The Bolocam X-Ray SZ (BOXSZ) sample is a compilation of 45 clusters, with existing
Chandra data, observed with Bolocam at 140 GHz (Glenn et al. [100], Haig et al. [109]).
Bolocam is a 144-element bolometric camera with a 58”7 FWHM PSF at the SZE-emission-
weighted band center of 140 GHz. This data was collected over five years (from Fall 2006 to
Spring 2012) in 14 different observing runs at the Caltech Submillimeter Observatory. The
relevant observational information is included in Table[3.1], and most of the cluster properties
relevant to this analysis are included in Table [3.3]

Bolocam is well-suited to observe intermediate redshift clusters, and therefore many of

the clusters in the BOXSZ sample were selected with redshifts between 0.3 < z < 0.6. In
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Table 3.1. Observational Parameters of the BOXSZ Sample.

Catalog ID RA DEC SZE S/N SZE RMS SZE tint
(J2000)  (J2000) (pkKcmp — arcmin)  (hours)
Abell 2204 16:32:47.2 +05:34:33 22.3 18.5 12.7
Abell 383 02:48:03.3 -03:31:46 9.6 18.9 24.3
Abell 209 01:31:53.1 -13:36:48 13.9 22.3 17.8
Abell 963 10:17:03.6 +39:02:52 8.3 35.7 11.0
Abell 1423 11:57:17.4 +433:36:40 5.8 31.7 11.5
Abell 2261 17:22:27.0 432:07:58 10.2 15.9 17.5
Abell 2219 16:40:20.3 +46:42:30 11.1 39.6 6.3
Abell 267 01:52:42.2 +01:00:30 9.6 23.0 20.7
RX J2129.64-0005 21:29:39.7 400:05:18 8.0 23.7 16.0
Abell 1835 14:01:01.9 4-02:52:40 15.7 16.2 14.0
Abell 697 08:42:57.6 +36:21:57 22.6 17.4 14.3
Abell 611 08:00:56.8 +36:03:26 10.8 25.0 18.7
MACS J2140.2-2339 21:40:15.1 -23:39:40 6.5 27.3 12.8
Abell S1063 22:48:44.8 -44:31:45 10.2 48.6 5.5
MACS J1931.8-2634 19:31:49.6 -26:34:34 10.1 28.7 7.5
MACS J1115.84+0129 11:15:51.9 +01:29:55 10.9 22.8 15.7
MACS J1532.8+3021 15:32:53.8 +30:20:59 8.0 22.3 14.8
Abell 370 02:39:53.2 -01:34:38 12.8 28.9 11.8
MACS J1720.2+3536 17:20:16.7 +35:36:23 10.6 23.5 16.8
Cl 0024417 00:26:35.8 +17:09:41 3.3 26.6 8.3
MACS J2211.7-0349 22:11:45.9 -03:49:42 14.7 38.6 6.5
MACS J0429.6-0253 04:29:36.0 -02:53:06 8.9 24.1 17.0
MACS J0416.1-2403 04:16:08.8 -24:04:14 8.5 29.3 7.8
MACS J0451.940006 04:51:54.7 +00:06:19 8.1 22.7 14.2
MACS J1206.2-0847 12:06:12.3 -08:48:06 21.7 24.9 11.3
MACS J0417.5-1154 04:17:34.3 -11:54:27 22.7 22.7 9.8
MACS J0329.6-0211 03:29:41.5 -02:11:46 12.1 22.5 10.3
MACS J1347.5-1144 13:47:30.8 -11:45:09 36.6 19.7 15.5
MACS J1311.0-0310 13:11:01.7 -03:10:40 9.6 22.5 14.2
MACS J2214.9-1359 22:14:57.3 -14:00:11 12.6 27.3 7.2
MACS J0257.1-2325 02:57:09.1 -23:26:04 10.1 39.0 5.0
MACS J0911.2+1746 09:11:10.9 +17:46:31 4.8 33.5 6.2
MACS J0454.1-0300 04:54:11.4 -03:00:51 24.3 18.2 14.5
MACS J1423.8+2404 14:23:47.9 +24:04:43 9.4 22.3 21.7
MACS J1149.5+2223 11:49:35.4 +22:24:04 17.4 24.0 17.7
MACS J0018.5+1626 00:18:33.4 +16:26:13 15.7 21.0 9.8
MACS JO717.5+43745 07:17:32.1 +437:45:21 21.3 29.4 12.5
MS 2053.7-0449  20:56:21.0 -04:37:49 5.1 18.0 18.7
MACS J0025.4-1222 00:25:29.9 -12:22:45 12.3 19.7 14.3
MACS J2129.4-0741 21:29:25.7 -07:41:31 15.2 21.3 13.2
MACS J0647.7+7015 06:47:49.7 +70:14:56 14.4 22.0 11.7
MACS J0744.8+3927 07:44:52.3 +39:27:27 13.3 20.6 16.3
MS 1054.4-0321 10:56:58.5 -03:37:34 17.4 13.9 18.3
RXJ 0152.7-1357  01:52:41.1 -13:58:07 10.2 23.4 9.3
CLJ 1226.9+3332 12:26:57.9 +33:32:49 13.0 22.9 11.8

Note. — BOXSZ observation data. Columns give the catalog and ID, X-ray centroid
coordinates (J2000), the peak SZE /N in the optimally filtered images (see Sayers et al.
[253] for details on how this was calculated), RMS noise level of the SZE images, and
the total Bolocam integration time.
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total, the BOXSZ sample spans from 0.15 < z < 0.9, with a median redshift of (z) = 0.42.
This redshift distribution is similar to the initial ground-based SZE-selected catalogs of both
the SPT, (z) = 0.57 (Song et al. [263]), and the Atacama Cosmology Telescope, (z) = 0.44
(Menanteau et al. [I82]). In contrast, the early Planck SZE catalog has a median redshift of
(z) = 0.15 (Planck Collaboration et al. [223]), while the recently released 2013 Planck SZE
catalog has a median redshift of (z) = 0.22 (Planck Collaboration et al. [228]). In addition
to redshift, many of the clusters in the BOXSZ sample were selected based on their higher-
than-average X-ray spectroscopic temperatures, Ty, given the expected correlation between
Tx and SZE brightness. A few clusters, however, were chosen due to their membership in
the CLASH and the MACS high redshift catalogs, and the BOXSZ sample includes both
the complete CLASH cluster catalog (Postman et al. [233]), and the complete MACS cluster
catalog of the 12 most luminous clusters with z > 0.50 (Ebeling et al. [71]). However, the
BOXSZ sample as a whole lacks a well-defined selection function. Therefore, selection effects
for the SZE scaling relations are modeled and explored in Section [4.3]

BOXSZ SZE data has already been used in several publications with Bolocam team
members as co-authors. T'wo results have come directly out of our data analysis procedure:
one on the calibration of millimeter-wave planetary fluxes (Sayers et al. [254]) and one on
radio source contamination in the SZE maps (Sayers et al. [257]). We observed two of the
Planck Early Release cluster candidates, PLCKESZ G115.71 and PLCKESZ G189.84, and
we confirmed the former to be a cluster (Sayers et al. [253]). Several studies use Bolocam data
to cross-calibrate mass estimates of other observable probes. Zitrin et al. [305] use Bolocam
data to calculate an upper-limit on a possibly lensed cluster by Abell 383. Umetsu et al. [277]
and Medezinski et al. [180] calibrate the mass profiles of MACSJ 1206.2 and MACSJ 0717.5,
respectively, using a combination of Bolocam SZE, X-ray and lensing data. Morandi et al.
[T91] perform a joint Bayesian analysis, using the same observables to constrain the triaxiality
and non-thermal pressure profile of Abell 1835. By combining Bolocam 140 GHz and 268
GHz data with OVRO/BIMA/SZA 90 GHz data, Mroczkowski et al. [194] find the best-fit
spectral model of MACSJ 0717.5 to prefer a kinetic SZE component by more than 20. Most
recently, Sayers et al. [250] characterize the average pressure profile of the sample, obtaining

results that suggest a shallower pressure profile at large radii than predicted by simulations.
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Figure 3.1 Redshift (left) and X-ray temperature (right) distributions for the BOXSZ cluster
sample. Black histograms depict the entire sample with the red line indicating the median
value. Green histograms depict the clusters with centroid shift parameters below w =
7.2 x 1072, which have therefore been classified to be the most relaxed. Blue histograms
depict the 23 lowest mass clusters of the sample, with Masoo< 3.03x 1014 M. Note that in the
left-hand plot the disturbed and relaxed samples are approximately uniformly distributed in
redshift. The high-mass and low-mass samples are also approximately uniformly distributed
in redshift, with three low-mass high-redshift outliers. In the right-hand plot, it can be
seen that there is almost no correlation between the disturbedness measure and the X-ray
temperature.

Some of the analyses are discussed in further detail in Chapter

3.2 BOXSZ X-ray Data and Mass Estimation

X-ray mass estimates are utilized both for the BOXSZ scaling relations and to define an
aperture within which to integrate the SZE signal. Of the 238 clusters in the Mantz et al.
[166], hereafter M10] sample, 32 clusters overlap with the BOXSZ sample, and 13 additional
clusters were added specifically to complete the X-ray observations for the BOXSZ catalog.
X-ray luminosities are measured between 0.1 and 2.0 keV and Mgy, values are calculated
using semi-analytical methods described in [165]. The XSPEC-MEKAL code is used to fit
to a single cluster temperature, excluding the core, between 0.15 and 1.0 Rsq.

The M, values for this work are directly calculated from Mg,,, using the Allen et al. [0
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hereafter A08] fgas calibration, with fgs= 0.1104, discussed in Section [2.6.1.2}

Meslra) _ 2o npe (. (3.)

Mt = ) 73

In deriving My, from M., an additional 8% global systematic gaussian uncertainty in fgas is
marginalized over. As the uncertainty in M,,; depends on the uncertainty in ra o Mtlf’,
the fractional error for the two measurements is approximately the same.

Centroid variance, wsgg, is an indicator of how much the body of a cluster is displaced
from its core. Mohr et al. [I88] first introduce this method to characterize local cluster
X-ray morphology. Specifically, the wsoy parameter measures the standard deviation of the
projected separation between the cluster X-ray peak and the surface brightness centroids
of a series of concentric apertures, from 0.05 Rsoo to Rs00, centered at the X-ray peak and
normalized to Rsgp. Using N-body simulations, Poole et al. [232] verify that wsg is an
extremely sensitive indicator of a cluster’s dynamical state. We have therefore adopted
wsoo as a measure of the dynamical state of the BOXSZ clusters. The wsog measurements
have been calculated using the method described in Maughan et al. [I77, [175] and are
presented in Table [3.3] The temperature and redshift distributions of the BOXSZ sample,

and their associated subsamples, split based on the median values of wsy and Mosg, are

plotted in Figure

3.3 Data Collection and Reduction

Bolocam data reduction is extensively explained in Sayers [252] and Sayers et al. [255]. The
general aspects of this process are reviewed below, including any pertinent changes, to the

extent that they provide a picture of the nature of the final data product.

3.3.1 Scan Pattern

Approximately 50-100 10-minute observations were performed for each BOXSZ cluster using
a lissajous scan pattern. This observing method enables 100% on-source observing efficiency.

The telescope is scanned in R.A. and Dec. with two asynchronous scan periods of 6.28
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Figure 3.2 Left: Typical lissajous scan pattern used to observe galaxy clusters with Bolo-
cam. Right: Integration time per pixel relative to the maximum integration time for
MACSJ 0454.1-0300. The red box denotes the region, 10'/side, over which the deconvo-
lution of the pipeline transfer function yields reliable results. Taken from Sayers et al. [255].

seconds and 8.89 seconds, each with an amplitude of 4 arcmin. The scan periods alternate
between R.A. and Dec. every other observation. The mean scan speed is approximately 4
arcmin per second, with a peak scan speed of about 6 arcmin per second while crossing the
cluster. The observing efficiency for a sample cluster and an image of the scan pattern are

displayed in Figure |3.2

3.3.2 Data Quality Cuts

Cuts to the data are performed based on the AC/DC characterization of individual bolometer
timestreams. The overall loading and calibration of the bolometers can be characterized by
the absolute, DC signal, and the imaging data lies in the AC signal, at frequencies higher
than the fundamental scan frequencies A sample diagnostic plot of this process for a single
observation is given in Figure [3.3] and an example of some of the cuts that are performed
on the data are given in the legend. The first and second values give the lower and upper
range of passing values, and the third item is the measurement for the particular observation.
This particular observation passed all of the displayed cuts, except for the median RMS AC
bolometer signal, which is measured to be 0.290 V. The time-ordered median DC voltage

across all bolometers is given in the upper plot. Due to the high emissivity of atmospheric



93

water vapor, the Bolocam bolometer-calibration is responsive to changes in the atmospheric
water vapor. However, because cluster observations can still be performed under a variety of
atmospheric conditions, stringent cuts are not placed on the absolute level of the DC signal.
The power spectral density (PSD) is given in the lower plot. Here, the given observation has
a noticeably higher level of low-frequency noise compared to the median, and therefore it is
cut. As a reference point, the bandwidth used for observations is between 250 mHz and 2 Hz.
The number of observations which are cut for a particular observating run is highly sensitive
to the overall observing conditions of the run. Generally, fewer than 20 observations are cut
for a “good” run.

Cuts are similarly performed on individual bolometer timestreams, averaged over all
observations, to identify if particular bolometers are not functioning properly for a given
run. Of the 144 bolometers that are read-out on the Bolocam 140 GHz focal plane, 6 are not
optically coupled (”dark”), and 24 are non-operational. Of the 114 operational bolometers,
up to 10 bolometers can be cut from a particular observing run depending on individual
bolometer performance. Because the bolometers are read out in six independent hextants,
this process also allows us to trouble-shoot if there are any electronic problems with the

read-out for a particular hextant.

3.3.3 Synchronization and Pointing Correction

Excessive pointing and timing uncertainty will effectively increase the beam FWHM, when
large amounts of data are coadded. Both effects are modeled and removed from the data.
The Bolocam data acquisition clock has a long time-scale drift and is actively synchronized to
the GPS-synchronized telescope on a nightly basis. Figure depicts how the timing offset
can change throughout the course of the night. The y-axis is in units of the 50Hz sample
rate. Therefore, a change in 50 units over the course of the night would cause an overall
shift of 1 second in synchronization. As the telescope scans approximately 4 arcminutes per
second, this offset could significantly smear if the beam if not accounted for. The data is
corrected using a simple linear time-drift model, which can be constructed from the timing
uncertainty indicated by the red line in Figure |3.4]

There are two stages to the pointing correction: one at the bolometer level and one at
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Figure 3.3 A sample diagnostic plot used to remove one of the RXJ 0451 (aka
MACSJ 0451.9+40006) observations from the final cluster coadds. From top to bottom: DC
signal in Volts, AC signal in Volts, and AC noise power spectral density in Volts/Hz'/? for
the October 2009 observing run. Red lines indicate the signal averaged over all observations
(including the 5-minute pointing observations), and the black lines represent a particular
observation which was cut from the final coadds. One can see that the sky noise for this
particular observation is rather severe.
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Figure 3.4 Sample diagnostic plot used to model the clock drift for each night of observation.
The y-axis is in units of the data sample rate: 1 unit represents 10 ms. The clock has drifted
a bit more than a second over the course of the night, and this is well-modeled by a linear
fit. Uncorrected, this would result in a systematic error on the pointing correction that is
time-dependent over the night. Given the scan speed, this error would be large compared to

the beam FWHM and effectively smear the FWHM for coadded observations.

the telescope level. Pointing models are constructed by performing two consecutive 5-minute
observations of stationary millimeter-bright point sources (generally quasars) approximately
once every fourth observation. The centroids of the pointing maps determine the position
of the center of the focal plane on the sky with respect to the telescope coordinates. The
relative positions of individual bolometers with respect to the center of the focal plane are
determined using beam maps of the nightly 20-minute observations of a calibration source:
either Uranus, Neptune, or a secondary calibrator given in Sandell [251]. Flux calibration is
discussed separately in Section [3.3.4

As Bolocam is mounted at the Cassegrain focus of the telescope, it must be dismounted
every time another instrument is scheduled to observe at that position. The mounting of
the warm optics has fairly loose tolerances, which results in slightly different optical path
for each mount/dismount cycle. This is accounted for by constructing pointing models for
each observation run relative to an ensemble average over many runs. In Figure|3.5] one can

observe that the overall trend in pointing has been that the beams of the bolometers in the
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Figure 3.5 Individual bolometer pointing corrections superimposed with the relative bolome-
ter positions on the Bolocam focal plane in units of the mean bolometer spacing for the
November 2006 observing run. Left: Bolometer position offsets magnified by a factor of
4. Black: the raw offsets. Red: the local trend in offsets, obtained by averaging over all
bolometers within 1.5 bolometer spacings of the given position. Right: the raw offsets over
all observing runs from November 2006 to October 2010. The bolometer positions are gen-
erally consistent from run-to-run, although the upper-right hextant appears to experience
more positional variation than the others.

upper right corner of the focal plane are shifted towards the center. Note that the trend is
magnified by a factor of four in the plot for visibility. The right-hand plot depicts the overall
trend of the pointing offsets through several different observing runs.

The second stage of pointing corrections occurs at the telescope stage. In general, these
are more significant than the focal plane pointing corrections. A sample nightly-pointing
diagnostic plot is given in Figure [3.6| and Figure [3.7| shows the positions of the pointing
sources for MACSJ 0744.8 over an entire observing run in 2009. Pointing generally does not
vary from night-to-night, and these diagnostics are solely performed as an additional quality
check. By far the largest systematic pointing offset is caused by offsets in the telescope and
source coordinates which vary telescope position. The left-hand plot of figure depicts a
relatively rare situation with a gross offset of approximately 30 arcseconds in the azimuthal
direction (which can also be identified in Figure [3.6). This is most likely due to an incorrect
telescope setting and, if left uncorrected, this offset would source a significant amount of

effective beam smearing. Fortunately, as can be seen in the right-hand plot of the same
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Figure 3.6 Diagnostic plot for the nightly pointing of MACSJ 0744.8 on the night of November
4th, 2009. (Left) elevation pointing offset, (right) azimuthal pointing offset, (black diamonds)
raw data, and (red diamonds) corrected data. Note the overall 30 arcsecond pointing offset in
azimuth. When corrected with the pointing model, the residuals drop to about 5 arcseconds.

figure, these pointing erors can be well-modeled and removed. These models are accurate to
~5 arcseconds, and this pointing uncertainty produces an effective broadening of the point-
spread function (PSF). Specifically, an effective PSF is determined by convolving Bolocam’s
nominal PSF, which has a full-width at half-maximum (FWHM) of 58 arcseconds, with a
two-dimensional Gaussian profile with ¢ = 5 arcsec. Fortunately, this broadening of the
PSF due to pointing uncertainty is small, and it does not have a significant impact on the

derived results (especially for resolved objects like galaxy clusters).

3.3.4 Flux Calibration

Flux calibration is performed with nightly 20-minute observations of Uranus and Neptune,
together with other secondary calibrators given in Sandell [251]. The absolute fluxes of
Uranus and Neptune, which are heated to about 110 Kelvin by the Sun, were determined
using the models of Griffin & Orton [106], rescaled based on an improved WMAP calibration
[209] 117, 286]. The WMAP measurements demonstrate the Wright [295]/Rudy et al. [247]
model to be systematically high by about 5-7%. The full methodology is described in detail
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Figure 3.9 Flux calibration (mV/Jy) for the October 2009 observation run as a function of
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Figure 3.10 Measured timestream noise PSD for a typical bolometer in mKcyg/ v/Hz. Black
line: raw data, where the fundamental lissajous scan frequencies can be seen above the
atmospheric noise. Red line: Noise PSD after removal of the instantaneous bolometric
response-weighted median across the FOV. The data are then high-pass filtered data at
250 mHz (green line). The spectral lines at high frequencies are due to the readout elec-
tronics, where there is very little astronomical signal. Dashed line: estimated atmospheric
background limited noise level (BLIP). More details can be found in Sayers et al. [255].

in Sayers et al. [254], and the final overall uncertainty on the Bolocam flux calibration is
approximately 5%.

Atmospheric loading decreases the bolometer resistance, and since the bolometers are bi-
ased with a constant current, this will also decrease the peak voltage response for a bolometer
to a given source. A sample flux calibration diagnostic plot is given in Figure [3.9, demon-

strating the linear relation between responsivity and median DC voltage.

3.3.5 Atmospheric Noise Removal/Transfer Function/Mapping

Atmospheric brightness fluctuations are removed from the data-streams of each detector by
first subtracting the response-weighted mean detector signal and then applying a 250 mHz
high-pass filter. The individual detector responses used in this process are determined at the
particular lissajous scan frequencies.This process removes some cluster signal and is weakly
dependent on cluster shape. The effect that this has on the data PSD can be seen in Figure
[B.10] The black line traces the raw bolometer PSD. The fundamental scan periods can be
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identified at 1/6.28 s = 160mHz and 1/8.89 s = 112mHz. The amplitude of the signal at
these frequencies is due to the changing loading due to the movement in elevation during
scanning. The red trace depicts the noise PSD, once the bolometer response-weighted median
is removed from the time stream. Finally, a 250 mHz HPF is applied to the time-ordered
data and the green trace depicts the fully-filtered PSD.

The pipeline transfer function must be determined in order to create an unbiased cluster
map, which can be directly compared to a given cluster model. The transfer function is
also used to compare model profiles directly to the processed data. As described in detail
in Sayers et al. [255], an iterative process is used to determine the signal transfer function
separately for each cluster. Each iteration involves processing a parametric model through
the data reduction pipeline, computing a signal transfer function by comparing the output
shape of this model to the input shape, fitting a parametric model to the data (convolved by
this transfer function), and then using this parametric fit for the input to the next iteration.
This process converges quickly—generally within two iterations. The azimuthally-averaged
transfer function for MS 0451.6-0305 is depicted in Figure [3.11} Because the model clusters
are, by design, not intended to fit small-scale modes, they have little signal in this regime,
and therefore the transfer function has a large degree of uncertainty for smale-scalle modes.
The transfer function is therefore set equal to one for modes smaller than 1.33 arcmin. For
large scale modes, there is very little Bolocam SZE signal, and the transfer function goes to
zero. In order to prevent significant amplification of large-scale noise, deconvolved images
are reduced to 10 x 10 arcminutes in size, compared with the processed images, which are

14 x 14 arcminutes in size.

3.4 Noise Characterization and Point Source Removal

The scaling relation analysis depends critically on accurate noise characterization. This is
because a misestimate of the noise will not only affect the derived uncertainty estimates, but
will also bias the determination of the best-fit scaling relation. The Bolocam SZE cluster
images contain noise from a variety of sources: atmospheric fluctuations, instrument noise,

flux calibration, primary CMB anisotropies, and emission from the non-uniform distribution
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Figure 3.11 The magnitude of the azimuthally-averaged transfer function for MS 0451.6-
0305 as a function of Fourier wavenumber v = 1/A. At large scales, the error bars are
good indicators of the rms azimuthal variation of the map. At small scales, however, the

cluster model has little signal/constraining power and the measurement noise increases due to

numerical uncertainty. The transfer function is therefore set equal to 1 at u > 0.75arcmin—!.

The full 2-dimensional transfer function is used for the Bolocam data analysis. More details
can be found in Sayers et al. [255].

of fore- and background galaxies. Section |3.5.1| reviews how additional uncertainties due to
the deconvolution of the signal transfer function are accounted for. Section characterizes
the uncertainties of the Ys, estimates that arise from the uncertainty in the overdensity
radius used for integration.

Noise realizations are created for each cluster by multiplying a randomly chosen subset
of half of the ~50-100 observations by —1 prior to coadding them together. A total of
1000 such jackknife noise realizations are created for each cluster. The noise realizations
contain no astronomical signal but retain the statistical properties of the atmospheric and
instrumental noise. To account for noise from primary CMB fluctuations and unresolved
galaxies, a random realization of the 140 GHz astronomical sky is added to each noise
realization, using the measured angular power spectrum from the SPT [I38, 241] under
the assumption that the fluctuations are Gaussian. The resulting noise realizations are
statistically indistinguishable from Bolocam maps of blankfields, thereby verifying that this
noise model provides an adequate description of the Bolocam data. These noise realizations

provide the basis to which all of the modeled astronomical noise, discussed below, is added.
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Dusty star-forming regions and radio-bright point sources will bias Y, measurements
low. Fortunately, the 140 GHz regime is located in a valley of low background contamination
between radio and thermal dust emission. The frequency dependence of the flux density, S,

for radio sources can be approximated as:

S, x v, (3.2)

where 0.5 < a < 1.4 for the BOXSZ sample. The flux density of dusty thermal sources can
be characterized with a gray-body spectrum (not quite in the Raleigh-Jeans limit), peaking
at 10’s of Kelvin,

S, x v, (3.3)

where typically alpha 2 2. Several of the clusters in the BOXSZ sample contain signal from
bright radio galaxies that are not accounted for in the SPT power spectrum. In particular,
the brightest cluster galaxy (BCG) is often a bright radio emitter, and this emission will
systematically reduce the magnitude of the SZE decrement towards the cluster.

A full description of the methodology in which we systematically characterize and sub-
tract the flux of these bright radio galaxies is given in Sayers et al. [257], and the general
procedure is described below. A total of 6 bright radio sources are detected in the Bolocam
140 GHz maps for the entire cluster sample. These maps are used to constrain the normal-
ization of a point-source template, centered on the coordinates of the detected radio source
in the 1.4 GHz NVSS radio survey [58], and the best-fit template is subsequently subtracted
from the data. In addition to this, NVSS-detected sources near the centers of 11 clusters in
the BOXSZ sample have extrapolated 140 GHz flux densities greater than 0.5 mJy. This is
the threshold found to produce more than a 1% bias in the SZE signal of the cluster, and
an effort is made to remove them from the cluster signal. All of the undetected sources are
subtracted using the extrapolated flux densities based on a combination of 1.4 GHz NVSS
and 30 GHz OVRO/BIMA/SZA measurements.

Furthermore, the uncertainties of these subtracted point sources are accounted for in the

estimated error of the Yg, parameters. This is performed by adding to each noise realization



64
introduced in Section the corresponding point-source template, multiplied by a random
value drawn from a Gaussian distribution. The standard deviation of the distribution is
equal to either the uncertainty on the normalization of the detected sources, or is based on

a fixed 30% uncertainty on the extrapolated flux density for the undetected radio sources.

3.5 Model Fitting

As described in Section |3.3.5], an unbiased image of a given cluster is obtained by deconvolving
the signal transfer function from the processed image. However, one subtlety in this process
is the fact that the DC component of the signal transfer function is equal to zero, which
means that the Bolocam data do not constrain the overall signal offset in the deconvolved
images. A parametric model is therefore used to constrain this signal offset. Specifically, a
signal offset is added to the deconvolved image, so that the average signal in the deconvolved
image at r > 7500/2 is equal to the average signal from the parametric model in the same
region. Although we have strived to make our SZE measurements as model-indepedent as
possible, constraining the overall signal offset of the deconvolved images does introduce some
model-dependence in the results (the computation of the signal transfer function introduces
an even smaller amount of model dependence, and this is described in Section .
Unprojected SZE signal can be modeled using the pressure profile models, which were
generally introduced in Section Arnaud et al. [I5, hereafter A10] measured a GNFW
model, which is commonly used in the field and is therefore it is also adopted for this analysis.

The A10 model is constrained with X-ray data below Rsoy and with simulations above:

M= s ?cor)a]“’”/a’ 34

where py is the pressure normalization, c is the concentration parameter that sets the radial
scale, and «, 3, and v are the power-law slopes at moderate, large, and small radii. In all
cases, the exponential parameters are set to the A10 values: [«,5,7v] = [1.05,5.49,0.31].
We allow pg to float in all cases and further generalize the fits to allow for ellipticity by

substituting r with /72 +72/(1 — €)2, where € is the ellipticity and 7; and 7y represent
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the major and minor axes, respectively. The elliptical generalization of equation |3.4] is
numerically integrated using equations and with the additional assumption that

the axis along the line of sight follows the relation:

2 2

_ /1 "3
s= L2 3.5
' \/2+2(1—e)2 (3:5)

Due to the variety of cluster morphologies and SZE signal-to-noise levels within the

BOXSZ sample, the number of free parameters needed to sufficiently describe the data varies
across the sample. All clusters are therefore fit to a set of four models, each with a different
number of free parameters, depending on whether ¢ and/or € are fixed in Equation to the
A10 values of ca19 = 1.18/7500 and €419 = 0. These various models are subsequently referred
to in terms of the number of their free parameters, (1, 2, 3 or 4), with: (1) ¢ and € are fixed,
(2) € is fixed, (3) c is fixed, and (4) both ¢ and € are allowed to float. Note that floating
the ellipticity of the 3- and 4-models introduces two additional free parameters: ellipticity
as well as the angle of inclination of the major axis.

All cluster fitting is performed by convolving the proposed cluster model with the signal

transfer function and minimizing the x? with respect to the processed data:

V= Z (moalel(z')a—'2 data(i))27

(3.6)
i
where index ¢ is summed over all map pixels and o; is the pixel variance determined from

the noise realizations.

3.5.1 Choosing a Minimal Model: The Simulated F-Test

In a general sense, the F-test is the standard statistic to test for the validity of adding an
additional parameter to a fit. This statistic calculates the difference between the chi-square
distributions for fits to models differing by one degree of freedom, normalized by the reduced

x? of the original model, and is given by Bevington & Robinson [30]:

o XMm) = xP(m+1) Ay
= et )N —m 1)~ 2 (3.7)
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where the values of y? are computed from Equation for both the model with m + 1
degrees of freedom (the candidate model with one additional free parameter) and the model
with m degrees of freedom (the original model).

The model fits to the maps assume a diagonal covariance matrix—implying that pixel-
to-pixel noise is uncorrelated. From Sayers et al. [255], we know that this is a good, but
not perfect, description of the data. While the assumption of a diagonal covariance matrix
is sufficient for model-fitting, the F-test is more sensitive to small-levels of covariance. This
covariance is accounted for by utilizing the 1000 noise realizations for each cluster to develop
the probability distribution, x?(m), for various degrees of freedom. First, the observed
XQBq distributions are calculated by fitting the Bolocam data, B, with each of the the four
different best-fit models, ¢, for each cluster. Here, ¢ € [1,2,3,4] represents the number of
free parameters of the model fit, which was introduced in Section [3.5] Similarly, the modeled
Xf,q distributions are calculated by adding a representative input model, p, to each of the
1000 noise realizations and fitting each one of these model+noise realizations with the ¢
model. Note that each Xqu represents a single data point, while each X;Z;q represents an entire
modeled x* distribution. For example, x3; represents the 1000-element y? distribution for an
input 1-model+noise realization fit with a 3-model. In contrast, y%, represents the observed
Bolocam data fit with a 3-model.

With this information, the modeled F-test is performed by comparing the different X2Bq
values for two different ¢ values with the difference of the X?)q distributions of these same ¢
values. The lower plot of figure depicts the differenced x3; — x%, and x%, — x5 distribu-
tions for Abell 1423, and the corresponding x%; — X%, and x%, — X%5 values are represented
by vertical lines. Since the additional free parameter represented by the scale radius, i.e., c,
is not completely described by the two additional free parameters in the ellipticity, i.e. €, the
2-model and the 3-model represent two independent branches of comparison for the F-test.
A hierarchical decision tree is therefore implemented to choose the minimal model for each

particular cluster. Starting with the 1-model and progressing towards the 4-model:

a. First, the model distribution, x12 — x11, is calculated. If xpo — x 1 is greater than 98%
of the model distribution, the 1-model is ruled out, and the process proceeds to step b.

Otherwise, the 1-model is determined to be a sufficient model for this branch, and the
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process continues with step c.

b. The x g2 — x4 value is compared with the y9o — Y24 distribution. If xgs — x4 is greater
than 98% of the differenced model distribution, the 4-model is chosen as the minimal
model, and the F-test procedure is finished. Otherwise, the 2-model is determined to be
a sufficient model that describes the data along this branch, and the process proceeds to
step c. We chose 98% as the cut-off value based on the expectation that one of the 45
BOXSZ clusters would fall outside of this range.

c. This is the second branch of the F-test, this time replacing the 2-model of steps a-b with
the 3-model. Again, if the 4-model is chosen along this branch, it represents the minimal

model, and the process is finished.
d. If both branches choose the 1-model, then the 1-model is chosen.
e. If only one branch chooses a 2- or a 3-model, then the higher order model is chosen.

f. If both branches choose either the 3-model or the 2-model, the 2-model is chosen, since

it has fewer free parameters.

Once a minimal model is selected for a given cluster, this model is used for all subsequent
analysis. The F-test chosen models are given in the last column of table [3.2l The largest
fraction of the BOXSZ cluster sample are best described using a 1-model, and this ends up
being 16 clusters. The higher-order 2-, 3-, and 4-models are selected for 10, 12, and 7 clusters
in the sample, respectively. In a later section, the effect that these different model fits have
on the observed scaling relations is explored.

The minimum model required to adequately describe each cluster is then used to de-
termine the signal offset in the deconvolved images. In order to aid the visualization, a
schematic of this process is given in figure[3.13] In each case, the noise-weighted mean signal
in the deconvolved image is computed in the region r > r509/2. The mean signal for the
minimum model required to describe the cluster is then computed in the same region using
the same weighting, and the offset between the two mean signal values is then added to the

deconvolved image. A range of radii were explored as possible cutoffs for the region used
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Figure 3.12 Example of the qu distribution for Abell 1423 used for the modeled F-test.
Upper: The red curves represent the 1-model x? PDF and CDF, under the assumption that
a diagonal noise covariance matrix fully describes the noise in the processed image. The
black line shows the 1-model x> CDF obtained from fits to the 1000 noise realizations. The
offset between the black and red CDFs is because a diagonal noise covariance matrix does
not perfectly describe the noise, and it motivates the use of empirically-derived CDF's based
on the noise realizations. Green lines represent the 2-model, and blue lines the 3-model
CDF's. The coloring for the vertical lines represents the observed XQBq values, with the same
coloring of model fit as with the modeled y? distributions. Lower: Histograms and CDFs of
the Ax? for the 2- and 3-model fits to the noise realizations. The PTE of the 3-model fit to
the data is less than 2%, and therefore the modeled F-test developed in this work indicates
that the 3-model is the best model that describes the data in the first step of the process.
The next step in the modeled F-test for this cluster would then be a comparison between
the 3- and 4-models.
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Figure 3.13 Schematic demonstrating how the signal offset for the SZE images is determined.
The large gray box on the left demonstrates the extent of a processed image (14 x 14 arcmin).
Prior to deconvolving the signal transfer function, the processed image is trimmed to 10 x
10 arcmin. The transfer function of the DC signal component is 0, and therefore the overall
signal offset of the deconvolved images is unconstrained by the data alone. Consequently,
the signal offset is determined by forcing the noise-weighted mean signal in the deconvolved
image outside of Rs09/2 to be equal to the mean signal from the minimal parametric model
fit to the cluster, using the same weighting in the same region (denoted in blue on the left-
hand figure). The region used to compute Y500 is denoted in red, and does not overlap with
the region used to constrain the signal offset. The right-hand figure shows a 14 arcmin one-
dimensional slice through a cartoon cluster, showing that the cluster SZE signal is non-zero
even at the edge of the image. The blue and red boxes indicate the approximate value of
the signal offset added to the deconvolved image.
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in the computation of the mean signal. This radius should be large enough so that the
region of the image used to compute the model offset is independent from the region used
to determine Ysz, thus minimizing the model-dependence of the Yy, estimates. However, at
larger radii the measurement noise on the mean signal increases quickly because the number
of map pixels included in the calculation drops. At Rsp0/2 the mean-signal measurement
noise is near its minimum, yet this radius is in general outside of the integration radius used
to compute Ysz, Ros00. For the BOXSZ sample, Rs0/2 varies from ~ 1 —4 arcminutes, with
a median of approximately 2.5 arcminutes.

The same process is then applied to each of the 1000 noise realizations for each cluster,
with the signal offset determined using the minimum-model fits to the model4noise real-

izations described above. Therefore, the uncertainty in the signal offset is fully included in

the ensemble of noise realizations. Figures [3.14] and [3.15] show thumbnails of the SZE fil-

tered and deconvolved maps for the entire data set, respectively. For the deconvolved maps,
the F-test determined offsets are included. The best-fit pressure profile parameters for the

BOXSZ sample are presented in Table [3.2]

3.5.2 Measured Ellipticity

Beyond being a mass proxy, several groups are interested in using SZE data to constrain
cluster triaxiality. To the extent that there is no selection bias in the line-of-sight extent
of galaxy clusters, the distribution of ellipticity can characterize the distribution of triaxial
structure in general (LaRoque et al. [I51]). Furthermore, ellipticity is a strong indicator of
an abnormal cluster morphology.

Figure depicts the measured BOXSZ ellipticity, given an assumed model and the F-
test results. 19 out of the 45 clusters (42%) prefer a free elliptical measurement parameter.
As expected, the signal-to-noise ratios of the measured ellipticities of the F-test sample
are significant with a median S/N 2> 4.0. While it cannot be assumed that the source of
the ellipticities are actual cluster SZE signal, many of the clusters with the most extreme
ellipticity measurements show signs of being exceptional.

The most extreme major-to-minor axis ratio measured for the BOXSZ sample is 4.8 +0.6,

for the cluster MACSJ 0911.2. While this cluster is not characterized as disturbed in [256],
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Figure 3.14 Thumbnails showing the S/N per beam in the processed SZE images for all
45 BOXSZ clusters. The images are 14 x 14 arcminutes in size. The color scale is linear
from S/N of —4 to S/N of 42 to allow an accurate visualization of the noise and low S/N
SZE decrements, and the color scale is quasi-logarithmic at lower and higher S/N values.
This logarithmic scale is required due to the large dynamic range of some images, due to
significant SZE decrements and/or bright point sources. Note that the point sources are
subtracted from the data prior to any estimation of Ys50p.
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Figure 3.15 Thumbnails showing the deconvolved SZE images of all 45 BOXSZ clusters.
Each image is 10 x 10 arcminutes in size. These images have been directly integrated to
obtain Y500, with the region enclosed by Ras00 shown as a dashed red line.
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Figure 3.16 The distribution of ellipticities for the BOXSZ cluster sample. Left: distribu-
tion of the measured 4-model (black), 3-model (green), and F-test (blue) ellipticities in the
BOXSZ sample. The bins of the 4-model distribution are shifted slightly for clarity. Right:
average signal-to-noise ratio of the measured ellipticities in the BOXSZ sample for fits to the
4-model (black crosses), 3-model (green squares), and F-test-selected models(blue circles).

it is one of the more interesting clusters in the Kartaltepe et al. [137] study of the MACS
high-redshift sample. Kartaltepe et al. [137] identify two sub-clusters for MACSJ 0911.2
approximately 1 Mpc apart, and the Bolocam-measured major-axis orientation of 83.2 +7.3
degrees West-of-North is similar to the axis between the two sub-clusters which Kartaltepe
et al. [I37] do not explicitly measure.

The next most elliptical cluster is MACSJ 0744.8 with a measured major-to-minor ratio
of 2.3 £0.4. This cluster is classified as disturbed in Sayers et al. [257], and there are no
known point sources immediately in its vicinity. Korngut et al. [143] have identified a shock
in the high-resolution MUSTANG SZE maps of this cluster and measure a Mach number of
1.2 £ 0.2, resulting from two clusters colliding with a relative speed of 1827175fkm/s. The
Bolocam-measured North-South elongation is similar in orientation to the one measured in
Korngut et al. [I43], although this correlation must be taken with caution, considering that
MUSTANG and Bolocam measure the SZE at extremely different scales. Kartaltepe et al.
[137] note a complex red-sequence galaxy surface density morphology exhibiting an elongated
double peak. This galaxy cluster has also been studied using strong lensing [303] 258]. Of
all the MACS high-redshift galaxy clusters studied in those works, MACSJ 0744.8 has the
least extension along the line-of-sight. One can visually identify that the major axes of the

mass and galaxy surface densities are orthogonal to both sets of SZE data. If the cluster is
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indeed post-merger, this would perhaps suggest that the Bolocam SZE signal is along the
major axis of the shock, as expected. However, considering that the X-ray surface brightness
does not exhibit any similar ellipticity to the SZE signal, this suggests the need for further
investigation of what could be the source of ellipticity.

As the most distant cluster in the BOXSZ sample (and also one of the hottest), it is no
surprise that CLJ 1226.9 stands out, with the third-highest measured ellipticity of 2.2 4+ 0.4.
Jee et al. [I127] cite this cluster to exhibit tension with the standard ACDM cosmological
model, due to being so massive and at such a high redshift. Nevertheless, the cluster is
not classified as disturbed based on the X-ray centroid shift parameter [177, 256]. A 0.08
mJy point source has been identified in the Bolocam data [257], although it is not removed,
because it is not expected to affect the integrated Ys, signal. CLJ 1226.0 is also studied
in Korngut et al. [143], where they note an SZE enhancement in the South-West region
of the cluster. This is in agreement with an X-ray-hot region and a lensing-identified sub
cluster 40”in the South-West region of the X-ray centroid [176, 126]. In contrast to the
case of MACSJ 0744.8, the Bolocam Ysz elongation is along the lensing mass major axis.
This would suggest that the merger is not causing a noticeable distortion of the large-scale

Ysz signal.

3.6 Choice of Integration Aperture

Scaling relations at different radii are not necessarily the same because halo concentration
is correlated tightly with formation epoch and is therefore dependent on the underlying
cosmology (Bond et al. 38, Bryan & Norman 44, Lemson & Kauffmann 157, Wechsler et al.
284) 285 Wetzel et al. 287, Jing et al. 131, Wu et al. 297). The choice of Rsp as an
integration aperture is popular because simulations indicate that this is the point at which
a given mass proxy is least affected by the non-thermal activity of the cluster core and the
observed clumping in the cluster outskirts (Evrard et al. [84]). Unfortunately, it is often
difficult to obtain reliable X-ray measurements out to this radius using XMM-Newton and
Chandra observations due to significant foreground dominating the dim cluster emission.

Consequently, many analyses involving X-ray data have chosen to instead use Ras00 (e.g.,
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Bonamente et al. 37).

For this analysis, A = 2500 is chosen primarily due to systematic uncertainties related
to the SZE data. In particular, the fractional noise on Ys; due to uncertainties in the signal
offset of the deconvolved images grows quickly with integration radius, increasing by approx-
imately a factor of two between Ras09 and Rsgg as depicted in Figure [3.17l Furthermore, a
few clusters in the BOXSZ sample have values of Rsgg larger than the 10" x 10" deconvolved
images. Although the choice of integration radius is not driven by considerations related
to the X-ray analysis, it should be noted that due to the rapid roll-off of X-ray surface
brightness beyond Ras09, the noise in the Chandra X-ray measurements is lower at Rasoo as
well.

One consequence of this choice of integration radius is that it is not significantly larger
than the Bolocam PSF, and therefore beam-smoothing effects can bias the Y5599 estimate.
Effectively, this implies that some of the SZE emission within Ry509 appears in the Bolocam
image outside of Rasq, due to beam smearing. To estimate this bias, Y500 is computed
using the minimal parametric model, determined in Section both before and after
convolution with the Bolocam PSF. The Bolocam-measured Ya500 value is then corrected by
the ratio of Y500 values, determined from the un-smoothed and beam-smoothed model for
each cluster. This beam-smoothing correction is generally < 10%, and anti-correlated with
mass due to the fact that more massive clusters tend to have larger Rasqo (see Figure .
Therefore, although this beam-smoothing bias is relatively minor, it is critical to correct for
this bias in order to obtain an accurate scaling relation due to its mass dependence.

The fractional bias due to beam smoothing is plotted in Figure together with rms
large-scale signal modeling uncertainty. The figure demonstrates how the beam-smoothing
bias and the rms uncertainty in the signal offset is minimized at integration radius of ~1.3'.
This is very close to the median of the Ro509 distribution but at the edge of the Rsyy dis-
tribution. The rms signal offset uncertainty is approximately 20% around the median of
Rs500 and is significantly larger than the simulated intrinsic scatter between Ysz as a func-
tion of M,,, such as is modeled in Nagai et al. [I98]. For this reason, we have chosen Ras509 as

the integration radius for the BOXSZ scaling relation analysis.
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Figure 3.17 Histograms, left axis: Distribution of the Rsp(red) and Ras00(black) values for
the BOXSZ cluster sample. (Magenta, dashed) 7 arcmin ensquared radial extent of the
BOXSZ maps, and (violet, dashed) 5 arcmin ensquared radial extent of the deconvolved
BOXSZ maps. Symbols, right axis: (green, triangles) The radial dependence of the sys-
tematic bias in YA due to the finite size of the Bolocam PSF. (Blue, squares) uncertainty
in YA as a function of integration radius due to uncertainties solely in the signal offset of
the deconvolved SZE image. As a point of reference, recall that there is an overall 5% flux
calibration uncertainty for the BOXSZ cluster sample.
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3.7 Yy, Estimation

The signal-offset-corrected deconvolved SZE images are directly integrated using Equation
to determine the best-fit value of Yg for each cluster, with the integration extended over
the solid angle within Ras500. In addition, the value of Ys is also computed for each of the
1000 noise realizations, and these values are then added to the best-fit value of Yy, to produce
a distribution of Ys; values based on the noise properties of each cluster. Figure [3.18 and
Equation demonstrate that an uncertainty in M,,; directly translates into an uncertainty
in the X-ray estimated ra. To account for the uncertainty in Ygz due to uncertainties in the
X-ray derived value of Rs509, the integration radius for each noise realization is randomly
drawn from the distribution of Rs509 values produced by the Monte-Carlo chains obtained
from the X-ray data discussed in Section [3.2] In contrast to the distribution of M, values,
which is log-Gaussian, the distribution of Ys; values is approximately Gaussian. The final
Ysz values are presented in Table [3.3] and the M, and Yas0o distributions are depicted in
Figure [3.19] Since the scaling relation formalism in Section assumes log-Gaussian error,
the effects of the Gaussian distribution of Yg; values are accounted for via simulation, which
is described in detail in Section [£.3] Note that all of the errors shown in any figures or
given in any tables throughout this manuscript are equal to the standard deviations of the
Ysz distributions for each cluster. The employed method to compute Yg, differs from the
parametric fitting methods used in other scaling relation analyses (e.g., Bonamente et al.
37, Marrone et al. (171, Planck Collaboration et al. 224 229, Andersson et al. [§, Marrone
et al. [I72)), as the directly detected signal is not parameterized. Parametric models are
solely used to determine the signal transfer function (which very weakly depends on cluster
shape), and to constrain the average signal in the deconvolved images in a region outside

the integration radius for Ys .
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Figure 3.18 Two-dimensional confidence intervals (68% outlined in red and 95% outlined
in blue), along with the one-dimensional marginalized PDFs for Ras00, Mas00, and Yasoo for
the cluster MACSJ 0416.1, a typical Bolocam cluster with z=0.42 and Msoo = 0.9 x 10%.
The red-line is a best-fit normal distribution drawn to help guide the eye. The mass values
are given on a logarithmic axis and Ys; values are given on a linear axis. Note that the
uncertainty in M, 2500, as discussed in Section derives from the uncertainty in fgqs 2500,
while the uncertainty in Mg, 2500 derives from the uncertainty in Rasg9, which is a function
of Mtot,25oo-
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Table 3.2: Best-Fit Cluster Pressure Profile Parameters for the BOXSZ cluster sample.
Catalog 1D ARA ADEC Po Ts € 0 x> DOF F
(arcmin) (arcmin) (10-'! =% (arcmin) (°E of N)
Abell 2204 0.424+0.05 -0.15+0.0723.7+ 3.7 4.3+0.40.26+0.06 82.6+ 7.21197.41117.0 4
Abell 383 -0.03+£0.05 -0.25+0.17 4.5+ 0.611.6+3.1 - 1156.21118.0 2
Abell 209 0.114+0.04 -0.16+£0.09 9.2+ 0.8 6.30.25+0.08 -18.44+ 8.81206.81118.0 3
Abell 963 0.17£0.06  0.13+0.1141.8£22.7 1.64+0.9 - 1179.91118.0 2
Abell 1423 -0.34+0.06 0.27+0.34 7.2+ 14 5.50.504+0.15 69.8411.21149.81118.0 3
Abell 2261 -0.46+£0.05 0.00£0.23 3.7+ 0.7 6.30.424+0.12 82.6+ 8.81111.81116.0 3
Abell 2219 -0.16+£0.08  0.2840.1413.4+ 1.7 6.7 - 1084.31120.0 1
Abell 267 -0.2740.04 0.22+0.15 7.9+ 1.3 4.7 - 1011.61119.0 1
RX J2129.6+0005 -0.25+0.06 0.27£0.14 6.4+ 1.0 4.80.45+0.12 17.6+10.01182.81118.0 3
Abell 1835 -0.13+£0.06  0.02+0.07 9.3+ 1.1 5.40.26+0.07 -15.6+10.0 967.1 946.0 3
Abell 697 -0.11£0.03 -0.23£0.05 9.1+ 0.6 5.50.37+0.04 -21.24+ 4.01284.21118.0 3
Abell 611 -0.02+0.04 -0.2840.15 8.4+ 1.1 4.0 - 1120.51120.0 1
MACS J2140.2-2339 0.01£0.06 -0.20£0.24 5.5+ 1.1 3.3 - 1124.81120.0 1
Abell S1063 0.35+0.10 0.21+£0.1315.6+ 1.8 5.0 - 1113.51120.0 1
MACS J1931.8-2634 -0.064+0.04 0.314+0.12 9.9+ 1.2 3.8 - 1180.41120.0 1
MACS J1115.840129 -0.044+0.06 0.604+0.13 4.5+ 0.8 6.64+1.60.30+£0.09 -0.04+ 9.81179.21117.0 4
MACS J1532.843021 0.06+0.04 0.03£0.15 6.3+ 1.1 3.7 - 1204.21120.0 1
Abell 370 0.04+0.04 -0.37£0.1010.0+ 1.1 3.8 - 1143.21120.0 1
MACS J1720.2+3536 -0.124+0.05 0.184+0.24 1.9+ 0.421.4+5.80.47+0.07 -82.11210.71117.0 4
Cl 0024417 1.00+0.05 -0.3940.37 4.4+ 1.8 2.7 - 1201.41120.0 1
MACS J2211.7-0349 0.05+0.07 0.15+0.0916.2+ 1.8 4.2 - 1153.01120.0 1
MACS J0429.6-0253  -0.31+0.06 -0.03£0.18 3.3+ 0.7 9.74+2.9 - 1168.41119.0 2
MACS J0416.1-2403 0.26+£0.08 0.31£0.14 9.6+ 1.3 3.2 996.5 948.0 1
MACS J0451.9+0006 0.024+0.04 0.064+0.13 7.7+ 1.1 2.8 - 1164.6 1120.0 1
MACS J1206.2-0847 0.14+£0.05 0.10+£0.06 12.6+ 0.9 4.0 - 1102.71120.0 1
MACS J0417.5-1154  -0.504+0.05 0.314+0.06 8.3+ 0.9 6.74+0.9 - 1165.81119.0 2
MACS J0329.6-0211  -0.254+0.05 -0.024+0.0911.0+ 1.3 2.90.40+0.10 -5.04+ 9.31212.51118.0 3
MACS J1347.5-1144 0.15+0.03 -0.11+£0.0336.3+ 5.4 2.440.20.19£0.05 -20.4+ 9.01073.21117.0 4
MACS J1311.0-0310 -0.45+0.04 0.11£0.15 2.9+ 0.7 5.7+1.7 - 1118.51119.0 2
MACS J2214.9-1359 -0.364+0.06 0.074+0.1012.9+ 1.5 3.20.39+0.10 14.24+ 9.01131.51115.0 3
MACS J0257.1-2325 -0.144+0.05 0.03+0.15 3.3+ 0.414.4+3.8 - 1062.91119.0 2
MACS J0911.2+1746 -0.704+0.06 -0.014+0.33 7.1+ 1.5 2.80.794+0.11 -83.24+ 7.61127.81118.0 3
MACS J0454.1-0300 0.24+0.03 0.13+0.07 8.0+ 1.1 4.240.30.26+£0.06 86.4+ 7.21188.81117.0 4
MACS J1423.842404 0.16+0.04 0.29+0.11 9.5+ 1.4 2.4 - 1052.61120.0 1
MACS J1149.5+2223 0.01+0.04 -0.164+0.07 5.8+ 0.9 5.9+1.40.244+0.06 -51.3+ 8.61119.61117.0 4
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Catalog 1D ARA ADEC Do Ts € 0 x? DOF F
(arcmin) (arcmin) (10-'! =) (arcmin) (°E of N)
MACS J0018.54+1626 0.314+0.05 0.074+0.10 5.6+ 0.8 5.5+1.1 s --- 1098.91119.0 2
MACS J0717.54+3745 0.104+0.10 -0.064+0.04 38.24+ 9.9 2.240.4 e -+ 1188.71119.0 2
MS 2053.7-0449 -0.58+0.03 0.10+0.24 5.1+ 14 1.8 s ---1205.91120.0 1
MACS J0025.4-1222 0.464+0.04 -0.25+0.09 9.1+ 1.0 2.4 cee -+ 1226.71120.0 1
MACS J2129.4-0741 0.15+0.04 0.12+£0.08 13.9£ 1.5 2.70.31+£0.09 65.84+ 8.51124.51118.0 3
MACS J0647.7+7015 -0.03+0.05 0.03+0.09 7.1+ 1.4 4.4+40.8 e -+ 1128.91119.0 2
MACS J0744.84-3927 0.01+0.05 0.04+0.06 10.9+ 1.0 2.560.56+0.09 -2.84+ 5.11265.21118.0 3
MS 1054.4-0321 -0.024+0.04 -0.02+0.09 5.7+ 1.4 3.7£0.7 ce --- 1086.11119.0 2
RXJ  0152.7-1357 -0.08+0.06  0.04+£0.12 2.0+ 0.4 8.3£2.70.36+0.09 8.4+ 8.11220.31117.0 4
CLJ 1226.9+3332  -0.11+0.08 0.21£0.1117.8+ 1.9 1.80.54£0.10 71.2+ 6.71293.21118.0 3
Note. — The third and fourth columns give the SZE centroid shift with respect to the X-ray

centroid, given in Table The fifth, sixth, seventh, and eighth columns give the amplitude,
scale radius, ellipticity, and orientation of the major elliptical axis, as defined for Equation [3.4]
There exists a degeneracy between the amplitude and scale radius, and the given error bars fully
marginalize over this degeneracy. The ninth, tenth and eleventh columns give the best-fit x?2,
the number of degrees of freedom of the GNFW profile fits, and the probability for the measured
x? to exceed the number of degrees of freedom. The final column gives the number of free

parameters as determined from the F-test.
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Table 3.3: Physical X-ray and SZE Parameters Measured in this Analysis.

Catalog ID z r2500 Mgas,2500 Miot,2500 kT Y500 Ws00
(Mpc) (10 Mg) (1014Mg)  (keV) (10710 ster) (1072)
Abell 2204 0.151 0.6270:05 0.447057 4.0070 %% 8.554+0.58  3.377059 0.13+0.04
Abell 383 0.188 0.447002 0.167052 1467522 5.36+0.19  1.707077 0.1940.03
Abell 209 0.206 0.537093 0.297054 2617591 8.23+0.66  2.347037 0.5040.17
Abell 963 0.206 0.5075:0% 0.25705% 2227089 6.08+0.30  0.5870-23 0.22+40.11
Abell 1423 0.213 0.4275:0% 0.147055 1.317035 5.75+40.59  0.817033 0.76+0.19
Abell 2261 0.224 0.6075:0% 0.4375:0% 387702 6.10+0.32  1.1470:30 0.8540.08
Abell 2219 0.228 0.7170-02 0.691509 6.297095 10.9040.53  3.6870%% 0.1840.13
Abell 267 0.230 0.4870-02 0.21%503 1.93702T 7.1340.71  0.857025 2.68+1.26
RX  J2129.6+0005 0.235 0.5215:0% 0.2715:08 2471039 6.3440.62  0.8470%2 0.5240.14
Abell 1835 0.253 0.65790% 0567907 5117989 9.00+0.25  1.75+0:3) 0.23+0.02
Abell 697 0.282 0.6470-07 0.54%509  4.907098 10.93+1.11  1.87703% 0.6040.45
Abell 611 0.288 0.4970-0% 0.2415:03 2.217035 6.854+0.34  0.627015 0.5640.10
MACS J2140.2-2339 0.313 0.4715:02 0.2275:02 1.987027 4674043  0.397011 0.3940.05
Abell  S1063 0.348 0.7575:0% 0947515 8577161 10.90+0.50  3.2915:63 0.7540.15
MACS J1931.8-2634 0.352 0.5770-02 0.42%007 3.8370%) 7474140  1.26703% 0.3540.09
MACS J1115.8+0129 0.355 0.5670 05 0.401507 3.657096 9.20+0.98  1.061539 0.27+0.05
MACS J1532.8+3021 0.363 0.557095 0.3819:0% 3.3970-2% 6.83+1.00  0.4419:12 0.2840.15
Abell 370 0.375 0487003 0.267007 2.35704F 7.34+0.52  0.861013 4.9042.00
MACS J1720.2+3536 0.387 0.497005 0.281503 2.547042 7.90+0.74  1.1470%3 0.24-+0.06
Cl 0024417 0.395 0.3015:03 0.06700) 0557013 5944087  0.127007 2.5340.41
MACS J2211.7-0349 0.396 0.667093 0.6919:18% 6.3071:9) 13.97+2.74  2.3510:33 0.88+0.13
MACS  J0429.6-0253 0.399 0.4770-0% 0.25%003 2.257035 8.33+1.58  0.78703; 0.39+0.07
MACS J0416.1-2403 0.420 0.5470-0% 0.38%015 3.40709% 8.2140.99  1.0070325 2.02+1.06
MACS  J0451.940006 0.430 0.43%5:0% 0.1975:05 1.77%55%  6.7040.99  0.4273%9 1.9340.80
MACS  J1206.2-0847 0.439 0.6475:93 0.6615:92 6.0070:95 10.71+£1.29  1.77+5:2} 0.72+40.11
MACS J0417.5-1154 0.443 0.70700% 0.881513 7.967139 9.49+1.12  2.6370% 3.0140.07
MACS  J0329.6-0211 0.450 0.4970-02 0.30%003 2.717039 6.3440.31  0.617059 1.40+0.26
MACS J1347.5-1144 0.451 0.717003 0.927510 8.377102 10.75+0.83  1.76701% 0.5940.04
MACS J1311.0-0310 0.494 0.43%5:02 0.21%5:02 1.93%528 6.0040.32  0.467359 0.2240.08
MACS J2214.9-1359 0.503 0.5270-03 0.38%505 3.46707% 9.65+0.78  1.067030 1.30+0.29
MACS J0257.1-2325 0.505 0.45700% 0.2375:03 2107039 9.90+0.90  0.957027 0.46+0.13
MACS  J0911.2+1746 0.505 0.4170:92 0.1715:9% 1597029 6.60+0.60  0.1919:03 0.89+0.64
MACS J0454.1-0300 0.538 0.5610:05 0.511007 4.59%07%  9.1540.49  0.8770 1) 2.2741.50
MACS  J1423.8+2404 0.543 0.447002 0.257003 2307037 6.92+0.32  0.337007 0.31£0.15
MACS J1149.5+2223 0.544 0.54700% 0.46750% 4167075 8.5040.57  1.097017 1.64+1.23
MACS J0018.5+1626 0.546 0.587003 0.547508 4.877082 9.1440.43  0.99701] 0.67+0.14
MACS J0717.5+3745 0.546 0.657003 0.771015 7.007105 11.8440.54  1.087032 2.55+1.26
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Catalog ID z r2500 Mgas,2500 Miot,2500 kT Y500 Ws00
(Mpc)  (10*Mg) (10'My) (keV) (10719 ster) (1072%)
MS 2053.7-0449  0.583 0.2870-02 0.071507 0.597015 4.4540.58  0.057005 1.02+0.31
MACS J0025.4-1222 0.584 0.4570-0% 0.267005 2.3870-5¢  6.4940.50  0.28706¢ 0.65+0.50
MACS J2129.4-0741 0.589 0.48+9:9% 0.33+9-05 3,03+9-% §5740.74  0.68701} 1.5140.69
MACS  J0647.7+7015 0.591 0.52+5:02 0.42+5-05 3.83%0-5% 11.5041.10  0.847014 0.6240.29
MACS J0744.8+3927 0.698 0.4970-0% 0.381007 3.50703% 8.084+0.44  0.297002 1.6040.11
MS 1054.4-0321  0.831 0.447055 0.347907 3.167071 11.98+1.44  0.301508 6.62-£2.47
RXJ  0152.7-1357  0.833 0.2210:05 0.04100% 0.371035 6.4840.90  0.137055 8.2241.02
CLJ  1226.9+3332 0.888 0.4270-05 0.317007 2.7710:3% 11.97+1.27  0.327058 0.95+0.31
Note. — The X-ray and SZE-derived properties used in the BOXSZ scaling relations

analysis and described in the text. The first three columns give the catalog, ID, and redshift.
The references for the individual cluster redshift measurements are given in Sayers et al. [256].
The fourth column gives Rasop followed by Mges2500, Miot2500 and KT, which are
calculated as described in Mantz et al. [166]. The Mgyqs2500 and Mo 2500 values were
calculated specifically for this analysis. The eighth column gives Ya509 as measured using
Bolocam. The last column gives the centroid shift parameter within Rsp9 and is also described

in the text.
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Figure 3.19 Masgo (left) and Yasoo (right) distributions for the BOXSZ cluster sample. Black
histograms depict the entire sample with the red line indicating the median value. Note
the logarithmic scaling of the x-axis. Green histograms depict the clusters with redshift
values below the median (z) = 0.42. Blue histograms depict the clusters with centroid shift
parameters below w = 7.2x 1072, which have therefore been classified to be the most relaxed.
Note the lack of significant bias in the distribution of morphological state and redshift with
cluster mass.
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Chapter 4

Bolocam Y q7-X-ray Scaling Relations

A precise understanding of how the SZE signal scales with cluster mass is needed in order
for galaxy clusters to be competitive cosmological probes. Any observed deviations from
self-similarity are interesting, because they indicate that the major physical processes within
galaxy clusters are not scale-free. This is well-known for smaller clusters; however, clusters
are expected to behave self-similarly above some mass scale, the precise value of which has
yet to be determined. Our results indicate an SZE-mass scaling significantly shallower than
self-similar, and significantly shallower than other SZE scaling relation results. This would
suggest one of three things for the clusters under investigation: (1) the SZE signal has a
weaker-than self-similar scaling with mass, (2) the mass proxy has a larger than unity scaling
with the true cluster mass, or (3) there is a mis-calibration in the estimated error for one
of both of the observables. Interestingly, the mass-proxy-independent Bolocam-SZE scaling
relations are consistent with other analyses (such as Bonamente et al. [37], Andersson et al.
[8], Planck Collaboration et al. [224]), these results are compiled in Table 4.3 and discussed
in detail in Section [4.6] after the BOXSZ results are presented. This is promising, since it
suggests that once the systematics between different X-ray mass proxies have been resolved,
the integrated SZE signal can serve as a low-scatter mass proxy in future cosmological

analyses.
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4.1 Scaling Relation Parameterization

The scale-free nature of gravitational collapse leads to the prediction that gas-derived cluster
observables scale in a self-similar fashion with total cluster mass. This can be reduced to a

linear relation when the cluster properties are recast in logarithmic form:

_E(Z)Mzs)oo}
m = logy | —F—— (4.1)
-E(Z)Mg)og
mso0 = logyg 0B, (4.2)
[ Lsoo
= 1 4.
: o810 _E(z)1044ergs—1] (4:3)
[T,
t =1 - 4.4
0810 _keV] (4.4)
y: = logy, [E(2)¥*10°C, kTe Myasos00] (4.5)
y = logiy [E(2)”*10*D?Yas00] , (4.6)
where the term
or 1 10~°Mpc?
Cx = =1.406 X ————— 4.7
X MeC? Pgas/MNe % 10MkeVM, (47)

normalizes Yx to Yas00, with o7 being the Thompson cross-section, m. and m,, the electron
and proton rest masses, respectively, and ¢ the speed of light. For a highly ionized gas,
Pgas/Ne = 1.149m,,. Using the logarithmic representations for the cluster observables, self-
similarity can be formulated as a linear relation between the proposed cluster properties, p

and ¢, as:

p =B+ B, (4.8)

As discussed in Section [2.6.1} Kaiser [I36] found that by including additional assumptions
of self-similarity to the HSE equation, cluster temperature should scale logarithmically with
cluster mass with ﬁi'm = 2/3. Extending this to the Ys; observable, which is a line-of-sight

integral of cluster pressure and (in the limit that M, scales the same as M) should scale
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y|m

with the product of mass and temperature: ;" = 5/3. I refer to this type of scaling as
HSE self-similar scaling and use it as a general standard of comparison.

Occasionally, the ensemble of fit parameters for a particular scaling relation will be re-
plq ﬁplq 2

ferred to as 0,4 = (By", B1 >0

ol q), where 022,‘ , 1s the Gaussian intrinsic scatter of the observable

p € [l,t,y] at a fixed q. Note the different integration apertures used for the X-ray scaling
relations, which are necessary, since the Mantz et al. [I66] hereafter M10] Rspo-derived scal-
ing relations will occassionally be utilized. When there is no explicit A subscript on m for
0", B1", and 6y, the integration aperture is assumed to be that of p.
The intrinsic scatter between different scaling relations might have covariance, for exam-
ple, as significant non-thermal pressure support will affect all of the ICM-derived observables

in some fashion. The symmetric covariance matrix can then be described as:

L prr pry
prry = | prr 1 pry | (4.9)

pry pry 1

where the [I,,y] indices have been captilized for clarity. Covariance is not explicitly mea-
sured for the observed BOXSZ scaling relations, but it is utilized when generating mock
sky realizations to characterize selection effects in Section [4.3, The off-diagonal elements of
prry are determined using a combination of empirical and simulated measurements. The
[ —t covariance is adopted from M10b: prr = 0.1. As we are not aware of any observed
constraints of pry and pry, the simulated results of Stanek et al. [267, hereafter S10] (par-
ticularly the “pre-heating” scenario) are used as a starting point from which to estimate our
fiducial X-ray-Ygsz covariance. The pry value is set to 0.6—which is the S10 simulated co-
variance between Y and a spectroscopic-like temperature. The situation with pry is slightly
more complicated. M10b measured p;r = 0.1, which is lower than the S10 value of 0.7. This
is due to the use of bolometric luminosity in S10 versus the use of soft-band [0.1 — 2.4] keV
luminosity of M10b. As this analysis uses values of [ calculated in an identical fashion to
M10b, pry is set to 0.1 under the assumption that ppy will be similar to prr. The selection
bias would increase the more tightly [ and y are correlated, since there is a strong selection

effect on [.
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Table 4.1. Scaling Relations for BOXSZ Cluster Sample.

0 o Bo o

Yas00 — Masoo  1.1620.12  -0.09+£0.03  0.1140.03
Yy — Masoo  1.4640.05 -0.5240.01  0.042£0.02
Yosoo — Yy 0.8440.07  0.33£0.03 0.09+£0.03
Tx — Masoo  0.45+0.05 -0.1840.01 0.062-0.01
Tx — Mspo  0.5020.05  0.8020.01 0.062:0.01
Lsoo — Msgo  1.0640.12  0.8740.03  0.1340.02

Note. — Corrected BOXSZ scaling relations pa-
rameters: slope (f;), intercept (fy), and intrinsic
scatter (o.) The small level of intrinsic scatter in
Oy masee 1S indicative of the high amount of correla-
tion between the two axes. Due to subtleties of the
selection function process, the Ys500-Yx was not cor-
rected for selection bias and the Yx-Mssq9 and T'x-
M50 relations adopt the T'x-Msgo selection function
correction.

The following sections will characterize the bias due to selection function effects and
fitting bias. Section explores possible biases due to the fitting method. Section
studies the selection function effects of the BOXSZ sample, and Section 4.4 explores modeling
bias and evolution of the scaling relations for physically distinct subsets of clusters. The
corrections to the BOXSZ scaling relations are given in Table[4.2) and the corrected relations

are given in Table

4.2 Fit Method and Characterization

The adopted fitting method must account for measurement error in all observables, and also
any additional intrinsic scatter that can arise through various physical processes (e.g., cluster
asphericity and non-thermal pressure support). Two different fitting methods that account
for measurement error in both the covariate (the x-axis) and the response (the y-axis) and

also fit for Gaussian intrinsic scatter in the response have been examined. The first is a
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generalized least squares method (GLS), described in [275], and the second is a Bayesian
fitting method, linmix,enE] (LME), described in [I39]. The particular biases of the two fitting
methods are examined using a proposed set of scaling relations (which includes Gaussian
intrinsic scatter) applied to the observed covariates of the BOXSZ sample. Measurement
noise is added to each mock observable, either Gaussian or, when available, directly sampled
from the noise realizations discussed in section [3.7 A scaling relation is then fit to these
mock observables, and the difference between the input and the best-fit scaling relations
gives an estimate of the fitting bias. The process is repeated for a variety of scaling relation
parameters. The bias is most sensitive to the intrinsic scatter parameter, and some of the
output values are shown in Figure 4.1}

The left-hand plot of Figure demonstrates that there is very little constraining power
for scatter less than 5%. This is due to the constraint that intrinsic scatter must be positive in
light of significant measurement noise. With an input intrinsic scatter above 10%, the LME
method with Gaussian noise approaches zero bias (the green dashed line). An interesting
observation is that if the noise realizations are sampled instead of assuming Gaussian noise,
there is a negative bias when the input intrinsic scatter is greater than ~0.05. As can be seen
in the righthand plot of Figure [4.1] the bias of the generalized least square method (GLS)
is always larger than that of the LME method for Gaussian noise. For the intrinsic scatter
values relevant to the BOXSZ 0,,,, relation, there is very little bias in the measured slope and
intercept of the fit. These two methods provide results that are negligibly different, given
the measurement uncertainty. The LME method, however, was ultimately chosen, because

it properly accounts for covariance between the various fit parameters.

4.3 Modeling the Selection Function

All of the clusters in the BOXSZ sample were selected based on the availability of Chandra
X-ray data. In addition to this, several other factors affected the selection process. First,

clusters were generally chosen to have high X-ray luminosities and spectroscopic tempera-

!The linmix_err IDL code can be downloaded at http://idlastro.gsfc.nasa.gov/ftp/pro/math/
linmix_err.pro.


http://idlastro.gsfc.nasa.gov/ftp/pro/math/linmix_err.pro
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Figure 4.1 The fitting method bias for the BOXSZ sample for various input levels of intrinsic
scatter, and a nominal slope and intercept of 1.2 and —0.08, respectively. The solid and
dashed lines represent sampling noise from either a Gaussian noise distribution or from the
noise realizations described in Section |3.7] respectively. The red and black lines represent the
GLS and LME fitting methods, respectively. The green line has a slope of one and indicates
where the measured intrinsic scatter matches the input intrinsic scatter. There is limited
constraining power in the measured intrinsic scatter for values less than ~ 8%. Above this
level, the LME fitting method has the least amount of measurement bias in intrinsic scatter
under the assumption of Gaussian noise.

tures, under the expectation that these X-ray observables would correlate with a bright SZE
signal. Second, moderate redshift clusters were generally selected to ensure that the cluster’s
Rs00 would be within the resulting 14'x14" Bolocam image. Finally, because there already
was a large degree of overlap with the MACS high redshift (z > 0.5) and CLASH samples
(which are discussed in Appendix , a few clusters were chosen to complete these catalogs.

Out of concern that selection effects would bias the results of the scaling relation, I
developed a method to characterize this selection function using the structure formation
theory reviewed in Section [1.4l Observers using pointed or serendipitous observations are
often in a position where they do not have a rigorously defined selection function; the selection
function characterization method described below should be generally applicable to these
types of samples as well.

First, mock sky realizations are generated by sampling the Tinker et al. [273] mass
function given in Equation for a grid of mass and redshift values. A conservative
mass range is chosen that adequately describes the BOXSZ sample: approximately 9 x 10'3

to 4 x 10 M, at Rsp0. It has been confirmed that the selection function characterization
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is insensitive to any extension of mass range or cluster density in the mock sky realizations.
The sum of all the grid points represents the total mean number of clusters in the parameter
range of interest. The Tinker et al. [273] mass function (Equation parameters given for
A = 300Q,,(2) ([A4,a,b,c] = [0.200,1.52,2.25,1.27]) were chosen, since these are the same
parameters used in the M10 analysis. Instead of generating a mock sky realization within the
specific solid angle observable with Bolocam (dV/dz), the sky is over-populated with enough
clusters in order not to introduce artificial selection effects. This ends up corresponding to
about 10 times the solid-angle observable with Bolocam and 40 times the solid angle was
ultimately chosen to reduce the noise in the measurement. The exact justification for this
approach is discussed in more detail later when the cluster selection process is described.

The process is randomized by assigning each grid point (representing a specific mass and
redshift range) to a probability-weighted segment in the interval [0.0, 1.0]. These probability
weights are determined from the mean number of clusters assigned to the particular grid
point by the Tinker mass function. The [0.0,1.0] interval is then then randomly sampled,
and when the segment assigned to a particular grid point is chosen, the mass and redshift
of that grid point is assigned to one cluster realization. The interval is repeatedly sampled
until the total number of clusters corresponds to the total mean number of clusters of the
proposed solid angle, which ends up being about 10° clusters. For each of the 45 clusters in
the BOXSZ sample, observables are then generated for all mock clusters within Az = +0.02
of the given BOXSZ cluster redshift. Next, Massyo values are generated from the value of
M09 for each mock cluster by directly sampling the observed Mas0g to Msgg ratio from the
MCMC chains generated in connection with the M10b analysis and discussed in section [3.7]

A set, O, of observable-mass scaling relations, is applied to the sampled mock cluster
masses to generate nominal [,t, and y observables. This process includes covariance between
the intrinsic scatter, prry, which is defined in Section 1.1 It is worth noting that while
© is the same for all of the clusters for a given realization of the selection function, the
M00-Masgo ratio is specific to each cluster under investigation. Initially, © is constructed
using the X-ray-only scaling relations from M10b and the uncorrected best-fit 6,,,.

With a full set of observables for each mock cluster in a particular redshift slice (Az =

+0.02) of a given BOXSZ cluster, the mock cluster that most closely matches the measured
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X-ray properties of the given BOXSZ cluster is selected according to:

(10 sims Ui sim» i sim Yi,sim) = max(exp((l; — Lsim)?/ (31)* + (ti — tsim)?/ (50)%)), (4.10)

where the subscript sim denotes the values for the mock clusters, and s; and s; denote the
measurement errors on [ and ¢ for the given BOXSZ cluster ¢. As many of the BOXSZ
clusters were selected in part, or entirely, due to their observed [ and ¢, this likelihood
function selects the mock clusters with the most similar values of these two observables.
Consequently, the underlying mass function is indirectly sampled, which in turn provides
the associated distribution of Yg; values for the given X-ray characteristics of the BOXSZ
selection. The true Ygz value for each selected mock cluster is then perturbed by one of
the 1000 noise realizations described in section 3.7 The above process is repeated for each
cluster 1000 times—generating 1000 sets of mock BOXSZ observables, or simBOXSZ.

The likelihood function justifies the choice to overpopulate the mass function. Given the
rarity of the high mass clusters in the BOXSZ sample, a realistically populated sky produces
a very small number of mock clusters from which to select possible counterparts to the true
BOXSZ clusters. The nature of the Eddington bias [76] is such that for a mass-dependent
observable with a large amount of scatter and a steeply falling mass function, a measurement
of this observable is more likely to be represented by a low-mass cluster that has an upwards
scattered value than a higher-mass cluster with the observed value lying directly on the given
scaling relation. As the lumininosity observables from the BOXSZ clusters have already been
measured, it is only desired to sample the underlying mass function. Without populating
the sky densely enough, ~10 skies, the mock luminosities selected from such a sample would
be, on average, lower and would not be representative, introducing an additional, unwanted
“selection” effect.

An example of the selection process is given in Figure [£.2] The figure depicts the distri-
bution of Lo versus Tx for one of the simBOXSZ realizations. The green arrows indicate
the position from the observed BOXSZ parameters to the output parameters for a single sim-
BOXSZ realization. Due to the increased density at the low-mass end of the mass function, it

is extremely likely to find a cluster in the simulation with the exact luminosity-temperature
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Figure 4.2 Figure depicting one iteration of the selection function simulation for a volume
of 10 observable skies. Black points represent the observed Lsoo/T500 values. The green
arrows point to the position of the simBOXSZ-selected counterparts for a single iteration
of the selection function method. The arrows point primarily in the temperature direction,
because the relative measurement uncertainty is larger in that direction. Also, there is more
variation for hotter, brighter clusters because the mass function is less dense in that region.
Averaged over all 1000 iterations, the simBOXSZ values of Lsoy and T599 match those of the
observed sample and the uncertainty in the measured scaling relations is plotted in Figure 4.6}
The size of these arrows decreases for 40 observable skies and changes the characterization
of the selection function to less than a fraction of a standard deviation.

parameters as the cluster under consideration. At the more massive end, the difference be-
tween the measured and mock parameters is generally within the measurement error. The
final cluster density was chosen at the point where increasing the density of clusters does
not change the results by more than ~10% of the measurement error, but is low enough to
maximize computational speed.

Scaling relations are then fit to each of the simBOXSZ, and the median fit parameters over
the 1000 simBOXSZ are computed. The median simBOXSZ scaling relation parameters are
then compared to the naive scaling relation fit to the true BOXSZ data. This entire selection
process is then iterated, perturbing the input © until the median fit parameters to the
simBOXSZ clusters matches the best fit parameters to the true BOXSZ data. Comparisons

between the BOXSZ and the simBOXSZ-measured 0;,,, 0y}, and 0, scaling relations are
shown in Figures [4.3] [£.4] and [£.5] respectively.
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Figure 4.3 Measured BOXSZ values of Myoo and Lsgg(black asterixes) together with one
simBOXSZ realization (green asterixes). The BOXSZ-observed, the simBOXSZ input, and
the median overall of the simBOXSZ measured output ¢;,, are represented by the dashed
black, solid red, and dashed green lines, respectively. 0y, experiences the strongest selection
effect, because it is the sole variable in the X-ray selection process for most of the clusters.

In Figure the observed and mock scaling relation parameters for the BOXSZ sample
together with their covariance are compared. The median simBOXSZ © is chosen to match
the naive best-fit to the true BOXSZ. Once input values of © to the simBOXSZ have con-
verged, so that the output values of © from the simBOXSZ match the best-fit parameters of
the true BOXSZ data, the values of © input to the simBOXSZ are perturbed around their
measurement uncertainties to observe the consequent effect on the output values of © from
the simBOXSZ fits.

The output ﬁg'm and /37 ™ bias is much smaller than the measurement error (i.e. the
median fit of the simBOXSZ closely matches the input value), while the intrinsic scatter
is biased lower by approximately half of a standard deviation. Referring back to Section
[4.2] the bias in intrinsic scatter is therefore almost entirely due to the limitations of the
employed fitting method. The selection function has very little impact on the corrected
results for two main reasons: first, the low intrinsic scatter of the signal with fixed cluster

mass reduces the overall level of Eddington bias. Second, the low amount of covariance
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Figure 4.5 Analogous to Figure but for Yaso0-Masoo
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Table 4.2. Scaling Relations Corrections for BOXSZ Cluster Sample.

0 Aﬁl ABO Ao

}/2500 - M2500 0.02 0.02 -0.02
Tx — Msoo -0.07 0.05 -0.01
Lsoo — Mse0 -0.12  0.03  0.02

Note. — The measure output mi-
nus the input scaling relation pa-
rameters for the simBOXSZ. While
selection effects can be identified
for the luminosity scaling relations,
Ys, suffers little selection bias.

between the luminosity and the SZE signal ensure very little cross-over selection effects
between the SZE and luminosity. Finally, lower mass clusters received longer integration
times, so the introduction of a Malmquist bias due to a hard flux cut-off (such as with a
survey of uniform depth) does not necessarily apply for the BOXSZ scaling relations. The

final corrections to the scaling relations are presented in Table

4.4 Physically Motivated 6,,, Consistency Checks

A range of consistency checks have been performed on the data not only to test the robustness
of the results, but also to search for possible physical effects that are not described by the
parameteriztion chosen for the scaling relations.

First, the redshift dependence on the derived 0, is considered by evenly splitting the
sample based on redshift and fitting each subset independently. The results are statistically
consistent with each other, indicating that there is no strong redshift dependence of the
results. Due to significant correlation between X-ray morphological state and redshift in the
BOXSZ cluster sample (almost all of the most disturbed systems are in the high-redshift
sub-sample), this test also demonstrates that the results do not depend strongly on cluster
morphology. Another important note is that since the physical value of Ra509 (in Mpc) is

relatively constant over the sample, splitting based on redshift also approximately splits the
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Figure 4.6 Distribution of output simBOXSZ 0y, O¢jm, and 6, measurements (black his-
tograms). The dashed blue lines indicate the value of the input scaling relations, and the
dashed red-lines indicate the observed BOXSZ values. The light gray shading represents the
68.2-percentile confidence region of the observed BOXSZ parameters, assuming Gaussian
noise. The dark gray region indicates the inner 68.2-percentile confidence region of the mea-
sured simBOXSZ relations. The covariance in the X-ray only scaling relations is due to the
non-zero intercept of the scaling relation, which correlates the slope with the intercept. Note
the similarity between the uncertainty due to the Gaussian fitting compared with directly
sampling the noise realizations.
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sample based on angular size. Therefore, there is also no evidence that the scaling relation
results depend on cluster angular size, indicating that the high-pass filtering (and consequent
deconvolution, including the signal offset estimation) does not have a significant effect on
our results.

The model-dependence of these results is also explored by repeating the measurements
of 0y, but instead of using the minimal model prescribed by the F-test, 0y, is fit to the
Y500 values derived from SZE maps, where both the transfer function and the signal offset
are determined with the 1-model. While the F-test selected the 1-model for only 16 of
the BOXSZ clusters, the corrected 1-model scaling relations are also consistent with the
F-test-derived values. This is a promising result in regards to pressure model-derived scaling
relations, such as those measured by the Planck Collaboration et al. [224].

Finally, the derived Ya509 values and their associated scaling relations are examined by
adopting the morphologically-dependent pressure profile parameters given in A10. These
results are indistinguishable from the results using the universal A10 profile to constrain the
large-scale contributions to Y500, further indicating that the results do not depend strongly

on the adopted parametric model to constrain the signal offset.

4.5 Scaling Relations Discussion

The results of the BOXSZ scaling relations analysis and presented in Table will now be
discussed. The general theory behind the measurement of these observables was discussed
in Section for T'x, Section for My,s, and Section for Ygz. Sections and
discuss the specific measurement techniques adopted for the BOXSZ analysis. Notably,
the fiducial integration radius for the BOXSZ Ysz, Myqs, and M, values is Ras09, while
the fiducial integration radius for the BOXSZ T is Rs09. Mo is evaluated using Myqs and

adopting a constant fys = 0.1104 value with an 8% global systematic gaussian uncertainty.

4.5.1 BOXSZ Tx‘Mmo and TX|M2500

As X-ray observables are derived from the physics of the ICM, their scaling relations are

expected to relate to the SZE ones more than any other observational probe. The BOXSZ
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Figure 4.7 Observed T'x- M5 scaling relations for the BOXSZ sample. The black data points
represent the measured parameter values. The solid red line respresents the uncorrected
best-fit to the data. The blue line represents the uncorrected best-fit to the data with a self-
similar slope. The green dashed line represents the scaling relations corrected for selection
function, and fitting bias effects with 1o and 20 confidence contours, depicted by the light
gray and dark gray shading, respectively. The T'x-Msq is presented mainly in the context
of interpreting the Ya500-Moas0o and Yospe-Yy results.

cluster sample can be considered, for the most part, a subset of the M10b sample, and
therefore the M10b measured X-ray scaling relations are expected to hold for the BOXSZ
sample as well. To best compare the X-ray to the SZE scaling relations, however, they should
represent the same cluster sample, and the cluster parameters should be measured within
the same integration aperture. To understand the sample selection effect, 0y, is measured
specifically for the BOXSZ subsample and is plotted in Figure [£.7] The red line indicates
the uncorrected fit, the blue line is the uncorrected fit to a self-similar slope of 2/3, and the
green line is the corrected fit with the 1o and 20 confidence intervals shown in light and dark
gray, respectively. The selection function makes the slope slightly shallower, indicating the
selection preference for hot, low-mass clusters. The corrected BOXSZ-measured 5;'"1: 0.50+
0.05 is consistent with the M10b-measured ﬁilm: 0.49 £ 0.04 for their full cluster sample.
Since the Tx values are the same, any variations in the slope of BOXSZ-measured

Otmasoo and Oy, scaling relations indicates a mass dependency in the concentration (7scqe/7200)
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Figure 4.8 Analogous to Figure [4.7| but for the 6y, scaling relations. The bias incurred by
the selection function is not explicitly measured for these scaling relations and the correction
to the 0y, fit, measured at Rsqp, is used instead.

of the clusters. For ease of calculation, Ty is always determined within the region [0.15, 1.0] R509 since
the measurements are negligibly different for T'x evaluated between [0.15,0.5]R5p0 (recall
that 0.5R500 %RQE,OO)EI The selection function process derives Ty directly from Mjzqy. Since
there is scatter between the ratio of Masoo and Msgy ratio for each individual cluster, the
T'x|Mas00 selection effect cannot be directly derived unless a specific Tx|Maspp scaling re-
lation is proposed and the implementation of this would be non-trivial. As there is no
observational evidence that the two values should behave differently, the T'x| M50 selection
correction is adopted for the T'x|Masoo relation. The BOXSZ-measured ﬁflmmo: 0.4540.05
is approximately 1-o shallower than the M10b Bilm value with the BOXSZ 0y),,5,, scaling
relation plotted in Figure Mg is only used in this section to identify the changes in the
Bi'm values when going from Rso to Raos00. any subsequent reference to the BOXSZ X-ray

scaling relations will imply M4 2500 and Mot 2500-

2M10 measure T[().1571.0]R500/T[0‘1570.5]R500 = 0.957 £ 0.009, this result is supported by Vikhlinin et al.
[279], who measure Tio.15-1.0] Rso0/ 170.15—0.5]Rs00 = 0-90754-0.00625T79.15—0.5] rse, With a 3% observed scatter
in the relation (plotted in Figure 6 of Section 4.1.1 in [279]).
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Figure 4.9 Analogous to Figure but for the Ya500-Yx scaling relations. Due to the uncer-
tainty in the covariance in the scatter between these two values, the relation is not corrected
for selection effects.

4.5.2 BOXSZ Yas00-Yy

As discussed in previous sections, Yy is predicted to be a good approximation for Ygz in the
limit where spectroscopic temperature is equivalent to mass-weighted temperature (Kravtsov
et al. [148]). Given the Rozo et al. [244] observation that M., and T'x observations between
different X-ray groups are consistent with each other, the 6, relation allows Yg; measure-
ments between different SZE groups to be compared independent of the choice of mass proxy.
This relation is not corrected for selection effects as the fiducial set of scaling relations, O,
does not account for selection effects for M., independent on M;,;. The BOXSZ measured

i’"yz:0.84 + 0.07 is shallower than unity and the 6, scaling relation is plotted in Figure

Ylya
4.9, This result is in agreement with other analyses (Bonamente et al. [37], Andersson et al.

[8], Planck Collaboration et al. [224]). The different analysis results are compiled in Table
and these results are compared in detail in Section
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Figure 4.10 Analogous to Figure but for the Ys500-Mas00 scaling relations.
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4.5.3 BOXSZ Y5500-Mas00

The SZE-mass scaling is a key ingredient for SZE-based cluster cosmology. The BOXSZ-
measured /Bflm: 1.16 £ 0.12 —over 40 shallower than the HSE self-similar slope of 5/3, and
the 6, relation is plotted in Figure . This result is now compared to 6,,,,, the X-ray
analog of 0,,,. An approximate 2-o deviation in 3} ™ from self-similarity can be identified
in the M10b-measured 4™ = 1.48 4+ 0.04. The BOXSZ-measured 8%"= 1.46 +0.05 is
consistent with these results, which is corrected using the 6y, selection correction. The final
approximate 20 deviation is given by the non-unity 5?1”%: 0.84 +£0.07 measurement which

could be due to non-self-similar scaling between the SZE and the X-ray pressure proxy.

4.6 Comparison with Previous Results

Table [4.3]lists some of the relevant characteristics and main results of the three main SZE-X-
ray scaling relation studies used for comparison with the BOXSZ scaling relations analysis:

Bonamente et al. [37, hereafter B08], Planck Collaboration et al. [224], hereafter P11], and
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Table 4.3. Sample Characteristics of Various X-ray and SZE Scaling Relations Analyses.

Name Instrum. Proxy B;m Oym ﬁ;ym J;yz N¢ Ms00
LZ:HZ:All 1014M@

This work Bolocam/CXO Mgqs 1.16£0.12 0.11£0.03 0.84£0.07 0.09+£0.03 22:23:45 [3.9,24.9

]
B08 CXO/0OB HSE 1.66 £0.20 e 22:16:38 ~[2.0,16.2]
All SPT Yx 1.67+0.29 0.09£0.05 0.90+£0.17 0.07£0.05 3:12:15 [3.5,11.8]
P11 Planck /XMM Yx 1.74£0.08 0.10£0.01 0.95+0.04 0.10+0.01 59: 3:62 [2.4,19.7]

Note. — A compilation of scaling relations from several SZE analyses discussed in the text
that have calibrated M;y,; using X-ray proxies. The first column indicates the particular SZE-
X-ray analysis. The second column indicates the instrument with which the data was taken.
(CXO) Chandra X-Ray Observatory (OB) OVRO/BIMA. In the second column from the
right right, HZ and LZ represent the number of clusters above and below the BOXSZ median
redshift of (z) = 0.42. In addition to the i’lm results, Bonamente et al. [37, B08] and Planck
Collaboration et al. [224, P11] measure 5?"”9‘”: 1.41 £ 0.13 and 1.39 + 0.06, respectively.

For Andersson et al. [8, All], the ﬁzl"m values are given for Y e, and the Bifly”” values
are given for Y.,. Despite the variety in 0y, relations, the 0, .. and 0, relations are
fairly consistent between the various SZE scaling relation studies. This is further supported
in light of the Rozo et al. [246] re-analysis of the Planck 0y)y, Telation, where they measure

ﬁzflyx =0.917£0.039. The B0O8 M35y values are approximated from the measured Masspg values
(solely for the purposes of a general comparison) by multiplying them by a factor of 2.

Andersson et al. [8, hereafter A11]. Direct comparison between these different scaling re-
lations, however, is made challenging in light of the differences in the adopted integration
apertures and X-ray mass proxies. Specifically, nearly every SZE scaling relations analysis
uses a different mass proxy, and these are known to suffer systematic effects, such as those
discussed in Section Therefore, the BOXSZ 3} ™ measurements will be compared
with the 5?1"%’” and Bf‘yz measurements of the other studies when available.

BO08 present some of the first observed Ygz| M,y scaling relations between OVRO/BIMA
SZE and Chandra X-ray observations within A = 2500. The B08 sample consists of 38
clusters with a median redshift of z = 0.30. The BO8 My5qo distribution spans approximately
an order of magnitude from 1.0 — 8.1 x 10 M. Of the three SZE cluster samples that are
considered here, this sample shares most in common with BOXSZ in terms of the physical
parameters of the cluster samples under investigation. In fact, BOXSZ shares 21 clusters
in common with the BO8 sample. In contrast to this analysis, the BO8 results are derived
from a joint analysis of the SZE and the X-ray data fit to a spherical S-model, the model
originally proposed by Cavaliere & Fusco-Femiano [52] and discussed in Section . The
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clusters are assumed to be isothermal and in HSE. B08 measure a (3} Imses— 1.41 4 0.13 and
i"m: 1.66 £ 0.20, and do not measure any scaling of fzas with mass or redshift.

Encouraged by the similarities between the two cluster samples, the BO8 and BOXSZ
measurements are directly compared. Figure confirms the high-degree of similarity
between the measured observables of the two samples. Using the hydrostatically-derived
BO8 M,y values, 0, is measured using the same fitting adopted for the current analysis.
Very similar values to the BOXSZ sample are derived: 6f|m: 1.1540.15, 6g|m: —0.1440.03,
and a oy),,= 0.1240.02. The original BO8 best-fit and the new best-fit are also overplotted. It
must be noted that the BO8 best-fit can be reproduced when fit with the method described
in B08. Specifically, as discussed in Section [2.6.1.2] the BO08 fitting method does not fit
for intrinsic scatter, but instead adds an additional 20% and 10% gaussian scatter to their
M, and Ygz values, respectively. As with the M, uncertainty, the 10% uncertainty in
Ysz is dominated by asphericity, the effect of which is approximated based on the measured
Ysz uncertainty of Abell 370 [I05]. The magnitude of this additional noise effectively de-
weights the BO8 mass values (i.e., adds intrinsic scatter in the mass direction), resulting in
a steeper slope.

The BOXSZ analysis has defined intrinsic scatter to be the additional amount of Gaussian
scatter that is required in the dependent variable to describe departure from a set of scaling
relations applied to the independent variable. Uncertainty in the asphericity is a source of
intrinsic scatter, and for that reason it was not explicitly accounted for in the statistical error
estimation. It is reasonable to assume, that due to the fact that BOXSZ is an exceptional
collection of some of the most massive clusters with median redshifts of z = 0.42, the intrinsic
scatter and systematic uncertainty on fg,s for these clusters might be a bit larger. Many of
these effects, however, such as asphericity and departures from hydrostatic equilibrium, are
most likely correlated for the two variables. A full consideration of these factors is outside
of the scope of the present analysis.

The importance of unaccounted levels of intrinsic scatter in M;,; and the possible mass
dependence of fy,s is now explored. As f,,s is expected to asymptote at large My, by
dropping lowest mass clusters, one might observe something closer to self-similarity. Figure

demonstrates that the incorporation of an additional element of intrinsic scatter in
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Figure 4.11 Comparison of the Bonamente et al. [37, BO8] and the BOXSZ scaling relations.
The red line is the best-fit to the BO8 values of Ys500 and Mss00 using the adopted fitting
formalism for the BOXSZ study but not corrected for selection effects, which are negligible.
This fit is quite different from the best-fit given in B0O8 (blue line) but is very similar to
the best-fit BOXSZ scaling relation (black line). The difference in the two fitting methods
can be explained by a net de-weighting of the BO8 mass measurements with an additional
gaussian scatter in M, to account for systematic uncertainties primarily associated with

cluster asphericity.
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the M, direction bumps the slope of the scaling relations up by approximately a standard
deviation. Furthermore, by dropping more of the lowest mass clusters, the measured relation
steepens. By including more intrinsic scatter in the M,;,; direction and by removing clusters
from the sample, however, also increases the error on the measurements making them less
significant. With all of these effects taken into account, the entire trend is consistent with the
original BOXSZ measured 3} fm value, and by adding an additional amount of intrinsic scatter
in the M,y direction, the results become consistent with other observed 6,,, measurements
after removing only 5 clusters. The comparison between the present and the B08 work
emphasizes the need for accurate systematic noise modeling.

A11 also measure scaling relations between Ygz measurements from the South Pole Tele-
scope (SPT) and Yx-derived Msg values using the V09 calibration. The sample consists of
15 SZE-flux selected clusters, with 0.29 < z < 1.08, within the SPT 178 deg? survey. The
nature of the SZE flux-limited selection of a deep (though relatively small) survey results in
a less massive cluster selection than the BOXSZ sample—all but one of the A1l clusters lie
below the BOXSZ median Mso = 9.1 x 10 M. A direct comparison is further hindered,
considering the A1l analysis uses Rsop instead of Rasp0. A1l measure Y m_ 1,67 + 0.29,
slightly shallower than their X-ray mass proxy’s measured 51“7" = 1.79 £ 0.15, which is
consistent with their measurement of 3y v — .90 £ 0.17 using a cylindrical Ysz, and is also
consistent with the BOXSZ result of 0.85 £ 0.07. While this measurement is very small in
itself, my intention is to point out that each group observes the same trend and this is an
important factor when attempting to explain the physical origin of the BOXSZ 3/ ™ devia-
tion and this is a point that must be addressed with further investigation. Although A1l do
not specifically measure 6y,,,,,,, they do measure 3,, . .= 1.79 £0.51, which again implies a
shallower than self-similar ¢y,,. A1l use the same LME method as the current analysis and
they do not marginalize over uncertainties in statistical error of M;,; and Ysz. Furthermore,
because V09 do not measure intrinsic scatter in their 6, ,, relation, there is no additional
systematic uncertainty included in their M,; estimation.

In contrast to the A11 sample, the P11 sample of the Planck Early Cluster Catalog has

slightly more clusters (62) than and a mass range (2 x 10 < Msqp < 2 x 10¥° M) similar to

the BOXSZ sample. The P11 sample differs from BOXSZ, primarily because it is weighted
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towards a much lower redshift: with 59 of the 62 clusters less than the median BOXSZ
redshift. The recent scaling relations derived in Planck Collaboration et al. [227] contain an
additional 9 confirmed clusters, but the overlap with the BOXSZ sample is the same as with
P11—7 clusters. Because the results from this slightly expanded sample are very similar to
P11, they will not be explicitly examined in this analysis. As in A11, P11 derive all cluster
parameters within Rsgo, and M, is obtained from the Yx proxy (specifically those derived
in A10) and measure 8= 1.72 +0.08, which is close to the to the measured 8%™= 1.79 of
their adopted, A10, mass calibration. P11 further measure Bi"lmg‘”: 1.36 £+ 0.07, which are
both consistent with the current analysis.

The measured BOXSZ £} fm slope is shallower than would be predicted from the adopted
X-ray-mass calibration’s derived 6%””'7”, indicating that mass calibration alone does not fully
explain the shallowness of the 5} "™ measurement. The data indicate a mass-dependent scaling
between Ysz and Yy, with 8/%*=0.84 & 0.07 . This is consistent with the two analyses
considered in this work, which have also performed a measurement of 6, . P11 measure
0.95+0.04, and A11 measure 0.904+0.17. Of note is the R12 re-analysis of the P11 data which
measures a shallower 5%’"‘%: 0.917 £ 0.039 using the same data presented in P11. R12 also
measure 37 lve using a subsample of the P11 data and Chandra X-ray data obtained from V09
(instead of Newton-XMM X-ray data) and obtain a similar result: 8= 0.916+0.032. The
consistency of these results suggests that ﬁf‘yz is slightly less than unity, likely indicating that

mass-weighted temperature does indeed scale differently with cluster mass than emission-

weighted temperature.

4.6.1 M;,; Rescaling

The similarities between the 0y, measurements at different integration apertures compared
with the differences between 0,,,, measurements between different groups encourages a closer
examination of the adopted Mg, mass proxy. While there is strong observational evidence
that fg.s evolves with mass in groups and low-mass clusters (Vikhlinin et al. [278], Gonzalez
et al. [I02], Sun et al. [269]), measurements do not clearly indicate how fy.s evolves for more
massive clusters—if at all (Allen et al. [6], Bonamente et al. [37], Zhang et al. [301], Mahdavi

et al. [163]). A recent study by Mahdavi et al. [I63] compares X-ray determined masses with
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weak lensing masses, indicating that Mg, is indeed a lower scatter mass proxy than Yx for
clusters with Tx> 3 keV. At radii fixed to the weak lensing R5qo, they measure a scatter of
15% £ 6% uing My, as a mass proxy, and 23% + 6% using Yy as a mass proxy .

Let us explore how the measured scaling relations change if we would have assumed
faas to have a mass and redshift dependency. Rozo et al. [245] note that if the Pratt et al.
[236] fgas mass dependency and the [I61] fyns redshift dependency is used, the P11- and
M10-measured M, values for clusters shared between the two analyses are consistent with
each other. Inserting these values into Equation , derived using the Rozo et al. [245]
methodology discussed in Section yields:

M 0.21
tot
fgas,Pll(M, Z) = 0.13 <1015M®> (1 + 2)0'667 (4'11)
—MMIO (fgas Pll(Mtotv Z) ) 1T ( Mtot )O.SB 1.10
M10|P11 Mp1y Jgas,A08 1015 M, ( ) ( )

Keep in mind that these values were calibrated using systems with much lower masses than
the BOXSZ clusters, and adopting them requires a potentially invalid extrapolation.

When comparing the scaling relations, one must also take into account that a systematic
difference in M, also shifts the Ra value, which therefore also systematically changes the
aperture within which a given observable X is integrated. This effect is demonstrated in
Figure 2.5] Let’s assume that X scales self-similarly with R with X o R® at a specified
RA. Since Racx Mi/ 3, the systematic difference in mass estimates, byp, that will affect
the measured observable X as bil/|3B' R12 find that for an A10 universal pressure profile,

Y oc R"®2 at Ry and thererefore the systematic difference in the Ygz-values would be:

bygzlp11 = b(J)\ZQfo\Pn- (4.13)

Using Equations and , the effects of a systematic mass difference bys10p11 and
bys, P11 Will now be examined for the BOXSZ sample. As the redshift scaling does not
dramatically affect the results, I only explore the effect of assuming that fy,s scales with
M, and set the (1+ 2)110 factor to unity. Keep in mind that R12 calculates these values at

Rs500 and therefore the results are not precise and indicate the need for further study. Figure
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Figure 4.13 The measured 3} fm slope as a function of the mass scaling of fgas, @, Where fgas0x

M¢g,. The black lines indicate the measured 3{ ™ and the uncertainty in their measurement.
The red and green dashed lines are approximate fits to lower-levels and higher-levels of
feas scaling with total cluster mass, respectively. In both cases, the slope steepens more than
expected from the Rozo et al. [245] method alone.

demonstrates the effect that the assumption of a different f,.s scaling with M, has
on the measured 3{ ™ relation. The black symbols and lines indicate the slope measured
as a function of the assumed scaling, a, where fgs= M,. One would naively expect a
(BY™~0.25) x 1.67 scaling in 8YI™ with the assumed bias, according to R12, although the
figure indicates a much steeper relation. This observation might be due to a combination
of factors, for example, the decrease in the the dynamic range of the masses might possibly
influence the measurement bias. A full exploration of the true measurement bias is beyond
the scope of this thesis, but Figure demonstrates how sensitive an application of this

bias would be.

4.6.2 Comparison with Simulations

Several different groups have simulated cluster-observable scaling relations and the general
consensus is that Ysz is a robust, low-scatter, self-similar, M,;,; proxy across a wide variety

of physical scenarios. A major impediment, however, in applying these results directly to the
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Summary of Simulated Scaling Relations Analyses. Part I.

Analysis/Code

Selected Scaling Relations

Kravtsov|[I48]/ART

16 clusters (Msgo = [0.5,13.0] 1014M)

A =500 Mtot|TX Mtot|Mg Mtot|YX Mt0t|YSZ
All 7, all clusters, CSF... 3 1.521 +0.062 0.921 +0.023 0.581 +0.009 0.585 4+ 0.010
o 0.195 0.107 0.071 0.067
All z, relaxed, CSF....... g 1.533£0.103 0.898 £0.051 0.579£0.012 0.564 £ 0.014
o 0.136 0.115 0.053 0.058
All z, unrelaxed, CSF....3; 1.553 £0.063 0.931 £0.029 0.589 4+ 0.010 0.600 £ 0.010
o 0.186 0.095 0.072 0.059
z =0, all clusters, CSF...5; 1.524 £0.070 0.917 4+ 0.028 0.583 £0.010 0.584 4+ 0.013
o 0.219 0.090 0.064 0.075
z = 0.6, all clusters, CSF..5; 1.590 £0.086 0.871 +0.033 0.571 £0.016 0.577 4+ 0.012
o 0.157 0.077 0.075 0.051
Nagai[198]/ART 11 clusters (Msgp = [0.5,13.0] 1014M,)
Ysz|Tx Ysz| M, Ysz| Mot
A=2500GO............ B 2.50+£0.17 1.64 £0.07 1.68 £0.07
o ~0.10 — 0.15
A=2500CSF........... 51 2.73+0.19 1.58 £0.05 1.774+0.09
o ~0.10 — 0.15
A=50GO............. 51 2.45+0.12 1.65 £ 0.08 1.66 = 0.09
1% ~0.10 — 0.15
A=500CSF............ f1 2.61+£0.17 1.60 £ 0.06 1.73 £0.08
o ~0.10 — 0.15
Note. — Simulated scaling relations from Kravtsov et al. [148] using the Eulerian N-body+gasdynamics

adaptive mesh refinement ART code. They explore only one physical scenario with cooling and star formation
(CSF), but they study the scaling relations at different redshifts and for relaxed and disturbed morphologies.
Nagai et al. [I98] use 11 of these clusters to study the dependence of the scaling relations with overdensity
radius, specifically modelling a gravity-only (GO) scenario for comparison. They do not give specific intrinsic
scatter measurements, but note that it is approximately 10-15% for all scenarios.
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Table 4.5. Summary of Simulated Scaling Relations Analyses. Part II.

Analysis/Code Selected Scaling Relations
Fabjan[87]/TreePM GADGET 140 clusters (Msoo = [0.3,30] 1014 M)
A = 500 Mtot‘me Mtot|Mg Mtot|YX
GOz=0 ...t g 1.517+£0.012 0.981£0.004 0.597 £ 0.003
o 0.079 0.056 0.107
CSFz=0 ......coviviiiiiinn g 1.615£0.016 0.929 £0.003 0.591 £0.003
o 0.069 0.042 0.084
GO z=0.50 ...t p1 1.534 £0.016 0.991 +£0.004 0.604 £ 0.003
o 0.087 0.047 0.111
CSFz=0.50 .....ocovvivnienn... g 1.640 £0.017 0.929 £0.003 0.596 £ 0.003
o 0.077 0.042 0.091
Fabjan[87]/TreePM GADGET 18 clusters (Mspo = [0.3,20] 10 M)
Mtot‘me Mt0t|Mg Mtot|YX
CSF+AGN z=0 ................ B1 1.730 0.81 0.54
Battaglia[I9)modified GADGET-2 100s of clusters (Msoo = [0.8,10] 10* M)
A - 500 YSZ‘MtOt
GOz=0 ....cocoiiiiiiiii B 1.64+£0.03
o 0.097 £0.001
CSFz=0 ....covviiiiiiiiann B 1.69+0.03
o 0.107£0.001
AGNz=0 ........coiiiiiiia.. pr 1.73+£0.03

o 0.130 £0.001

Note. — Fabjan et al. [87] GADGET code simulations of scaling relations. Note that
both M, and Y, are good mass proxies in gravity-only (GO) and cooling and star
formation (CSF) scenarios. The CSF scenario also includes Type-II supernova
feedback in the form of galactic winds. While the data for the smaller sample of
extended physical simulations is limited mostly to the plots, I have included the
numbers as presented in the text, where it is observed that fy,s oc 0.2 in the AGN
scenario. Battaglia et al. [I9] not a similarly strong steepening of the Ygz — My
slope with the inclusion of AGN feedback.
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Table 4.6. Summary of Simulated Scaling Relations Analyses. Part III.

Analysis/Code Selected Scaling Relations

Stanek [267] GADGET-2 5612 clusters (Msgo =~[0.3,10] 10" M)

A =200 me’Mtot Tsl’Mtot YSZ’Mtot
GOz=0 ............. £1 0.650 £0.002 0.576 £0.005 1.651 £ 0.003
o 0.102+£0.001 0.21940.002 0.123 £ 0.001
PHz=0 ............. 51 0.559£0.002 0.576 £0.002 1.825=+0.003

o 0.058 £0.002 0.069 =0.001 0.125 4= 0.002

Note. — Stanek et al. [267] scaling relations using the Millenium Gas
Simulations (Hartley et al. [I12].) In addition to the gravity-only (GO)
scenario, clusters are simulated are pre-heated (PH) with an entropy boost at
z = 4 to match empirical L, — T, relations. Note how preheating reduces the
intrinsic scatter in the temperature-mass relations and steepend the Yg,; —
M, slope.

present analysis is that they have often been limited in total volume, and therefore include
few, if any, extremely massive BOXSZ-like clusters. Kravtsov et al. [148 hereafter KOG
were some of the first to include non-thermal physics (cooling and star formation, CSF) in
hydrodynamic cluster simulations and measured fg.s to scale as M523, The K06 results that
are relevant to this thesis are presented in Table [£.4] All scenarios indicate a steeper-than-
self-similar Ysz - M, slope, mostly driven by the mass dependency of fys. Nagai [197,
hereafter NOG], extend the analysis for 11 of the K06 clusters, focusing primarily on the Ygz-
|Miot, Ysz|Mgqs, and Ysz |1, scaling relations. They simulate both a gravity-only (GO)
scenario, and one including CSF and the relevant results are also given in Table Due
to the small sample size, the error bars on the measured scaling relations are rather large,
but indicate a steepening of the Ygz| M, relation and a shallowing of the Ygz|M,,s relation
with respect to self-similarity. This effect is largest at A = 2500.

Fabjan et al. [87, hereafter F11] simulate a cluster sample that is quite a bit larger
and more massive than the NO6 sample: 140 of the simulated clusters have M;zy between
approximately 0.3 x 1014 M and 30 x 10*M,,. F11 perform N-body simulations under several
scenarios which can be generically lumped into three categories: GO, CSF, and CSF+AGN
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feedback. In contrast to the K06 and NO6 results, Ys, and M., mass proxies are robust
to cooling and star formation, scaling self-similarly, for different redshifts. F11 simulated
18 clusters under a larger variety of different physical scenarios. F11 note that Mgy, and
Tx are dependent on physical processes, particularly AGN feedback, within a cluster. The
presence of AGN feedback makes the M;,| M, scaling significantly shallower: from 1.0 to
0.8, and M;| T scaling relation steeper, from 1.5 to 1.73. Physically this relation results
as AGN activity lowers f,qs by blowing out gas from the cluster core and heating it in the
process. Interestingly, if one put these two relations together, one obtains a Ty, | Myqs slope
of 0.46—which implies 8Y™9** = 1.46. These results are supported by Battaglia et al. 19,
B12A], who simulate similar physical scenarios and have a similarly-sized cluster sample as
F11. The B12 study differs from F11 as it emphasizes the radial-dependence of non-thermal
pressure support. The relevant F11 and B12 results are given in Table 1.5

Stanek et al. [267, hereafter S10] derive observable-mass relations using both a GO sce-
nario, and a scenario in which the gas is preheated (PH) by adding a constant amount of
entropy to the simulations at z = 4, in order to match L, — T, observations at z = 0 [112].
The physics of their treatment is strikingly different from the CSF+AGN scenario, although
they are able to replicate many of the simulation and observation results in a rather simple
fashion. The S10 sample consists of over 4000 clusters for both scenarios—with approxi-
mately 10 halos above Msgy = 7 x 10'* (approximately the median of the BOXSZ sample).
The relevant S10 results are given in Table S10 observe fgas to scale quadratically with
Mo in their PH scenario as In fyas= $14 4+ a1 In My + a2 In(Mypy)*: with aq = 0.310 £ 0.009,
as = —0.661 £ 0.0061, and sy, a constant of proportionality. This relation approaches a
constant value for clusters with masses representative of the BOXSZ sample. S10 measure
PH BY™ of 1.825 & 0.003 to be significantly steeper than self-similar.

S10 also measure both T,,, and the spectroscopic-like temperature:

[n2TY*aVv

Ty= 4
T [n2TsAdy”

(4.14)

as originally defined in Section [2.2.2] which was proposed by Mazzotta et al. [I79] for sim-

ulations to accurately predict X-ray spectroscopic temperature measurements fit to a single
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projected temperature profile. Pre-heating effectively increases the sound speed and lowers
the Mach number of the infalling gas, smoothing the internal structure of galaxy clusters
[283]. Therefore, in contrast to the F11 results, the S10 T, is shown to be very sensitive to
gas physics. Only T, in the GO scenario is measured to be consistent with self-similarity.
T~ 0.576 £ 0.05 in both scenarios, and T,,= 0.559 4 0.002 in the PH scenario. Again, if
one combines this with an evolving f,.s, one obtains a result that would be consistent with
the M10 results.

Finally, we will consider the Krause et al. [144], hereafter K12] simulations, which specifi-
cally focus on measuring merger-induced deviations from self-similar Ysz|M,,; relation. The
K12 sample generally includes non-thermal physics and contains ~100 clusters with about
10 clusters distributed evenly in logarithmic space from 1013 < My < 101° M. K12 no-
tice a merger-induced shallowing of their Ygz|M;, scaling with ,Blylm: 1.556 4+ 0.014. This
shallowing is attributed to merger-induced events with 50% of the outliers in their sample,
undergoing a major merger in the last Gigayear. The slope, again, returns to a self-similar-
consistent value, Bi’lm: 1.637 £ 0.027, when restricted to clusters above 2 x 10'*M,,, which
indicate to be less susceptible to merger effects. Based on these results, merger activity
probably does not have much of an effect on the BOXSZ Ys; measurements.

These simulations, furthermore, make interesting predictions in regards to the intrinsic
scatter of cluster observables with mass. The general consensus is that Yy and Ysz are low-
scatter mass proxies, but there is ambiguity as to the degree to which fg.s scales with M, for
different mass ranges and different overdensities. F11 conclude that Yy and M, are both
low-scatter mass proxies. While they measure Yx to be less sensitive to cluster physics, they
note that M,,s has less intrinsic scatter under all physical scenarios, ~4-9%, compared with
the measured Yy |M,, scatter of ~6-12%. S10 measure scatter in Ty to be approximately a
factor of three larger, 0.21940.002, in the GO compared with the PH scenario. This confirms
their observation that pre-heating makes cluster properties more regular. S10 conclude Yg to
be a robust ~ 12 + 2% scatter mass-proxy for both of the simulated astrophysical scenarios.
Similarly, B12 note that AGN feedback and triaxiality bump the intrinsic scatter of the
Ysz| My relation from a fiducial value of 11% to 13% at z=0, and 15% at z=1. Further of
interest is that while S10 and F11 find the scatter in both M., Ysz, and Yx to be well-
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approximated as log-normal, B12 finds that Ys; scatter is best approximated with a normal
distribution. Furthermore, K12 note a positive skewness to the Ys; intrinsic scatter which
they ascribe to projection effects boosting the Ygz signal with respect to mass. This effect,
again, vanishes completely for the more massive, BOXSZ-like clusters of their sample.

In summary, the BOXSZ-measured 6, scaling relations do not appear to be consis-
tent with simulations. They could, however, be explained if we assume fg,s to scale with
M;,;, where a shallower than self-similar T,,, — M, slope and a steeper than self-similar
M gqs| Myor slope, particularly within Ras00, conspire together to make the 6, relation shal-
lower, where My, is used as a proxy for M;,. This effect could be partially alleviated by
dropping the lowest-mass clusters of the sample. Another explanation might be that the in-
trinsic scatter of the M,t|Myqs relation is larger than previously estimated. To resolve these
questions more observational work calibrating the intrinsic scatter of the M;u| M., relation
must be performed for a larger sample of massive clusters using different analysis techniques

so that we can determine the correct simulation scenario.

4.6.3 Cosmological Implications

If the scaling relations for extremely massive clusters do indeed depart from self-similarity,
this will significantly affect the inferred cosmology from cluster observations. New results
from the Planck Collaboration indicate tension between g measurements using the primary
CMB, og= 0.834 + 0.027,[226], hereafter P1I3CMB|, and og measured using mass measure-
ments of SZE-detected cluster counts, og= 0.77 & 0.02,[227, hereafter P13SZE|—with sev-
eral times fewer clusters being detected than predicted. Figure [4.14] compares the Planck
SZFE-detected cluster counts compared with those predicted from the Planck primary CMB
measurements. As the P13SZE sample is a highly massive sample with a large survey area,
the scaling relations should be sensitive to similar biases as the BOXSZ sample. Using the
BOXSZ 0,),, would then imply that P13SZE isn’t measuring fewer clusters than expected
for a given mass—but that a given cluster mass simply produces less SZE signal. The ef-
fect of a systematic under-estimate of the mass vs. observable relation is plotted on the
right-hand side of Figure [£.15] These results, from Vikhlinin et al. [280], demonstrate that

boosting the normalization of the mass vs. observable relation upwards by 9% shifts the
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Figure 4.14 Difference between the Planck Collaboration et al. [227] measured cluster counts
(red points with error bars) and the predicted Planck Collaboration et al. [226] cluster
counts based on CMB measurements (green dashed line). The solid blue line represents the
best model prediction while the dashed purple line is estimated from the Planck SZ power
spectrum. More detailed information is given in Planck Collaboration et al. [226], from
which the figure was taken.

og value upwards by approximately 0.025. Assuming the discrepancy between the CMB and
SZE cluster og measurements is due to mass bias, P13 find that this would imply an overall
mass bias of 45%—which is precisely the bias that R13 measure between the M10 and P11
samples for z > 0.13.

While highly suggestive, a simple swap of mass proxy is not enough to explain the discrep-
ancy as cluster-based cosmological results using these different mass proxies vary. Vikhlinin
et al. [280], for example, measure og= 0.813 £ 0.012 using Chandra-X-ray measurements
with masses also derived from the Yx-M;,; mass proxy. This is comparable to the M10
cluster-based cosmological analysis (one of the few to have used the Mg,,-M,, mass proxy)
who measure og= 0.82 + 0.05. Benson et al. [25], however, measure og= 0.773 + 0.088,
which is closer to the P13SZE results, using SZE-derived masses also calibrated with the
Yx-M,;,; mass proxy.

One must keep in mind that og and €2, constraints using cluster number counts are

degenerate, and one can only constrain the product: 0gQ3 . Accounting for this degeneracy,
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Figure 4.15 Left: The Planck Collaboration et al. [226] €2,,-0g likelihood measured using the
Planck-CMB anisotropy spectrum only (red), the Planck SZE cluster count mass esimates
together with BAO and BBN data (blue), and the combined Planck CMB and SZE analysis,
allowing the mass bias to float (black). The combined CMB+SZE analysis fits for a positive
bias in the cluster mass of approximately 40%. Figure from Planck Collaboration et al. [227].
Right: The measured likelihood of the €),,-03 degeneracy as measured using X-ray cluster
count mass estimates in Vikhlinin et al. [280] assuming a flat ACDM model. The dashed
contour shows the effect of adding boosting the mass vs. observable relation by the estimated
systematic error of 9%. Figure from Vikhlinin et al. [280]. The two sets of contours in both
plots trace the 68% and 95% confidence region.

all of the cluster cosmology analyses measure consistent values for the degenerate 2,-0g
parameter. Now considering the €2, measurements, we reference the WMAP-9 measurement
of Qy = 0.279 £+ 0.025, and the WMAP-9+BAO+SNe+SZE (ACT+SPT) measurement of
Qur = 0.286570 0098, This is comparable with the P13SZE measurement of Q,; = 0.29 4 0.02
whereas P13CMB measure one of the higher values of 3, = 0.3154+0.017. The Planck 055}
covariance for the P13CMB and P13SZE results is plotted in Figure [4.15 In contrast, M10
measure one of the lowest €2, = 0.23£0.04. Clearly, these various cosmological results vary
in more complex ways than can be explained by a simple scaling relation, and the possible

explanation for this deviation is an exciting new topic for future study.

4.7 Future Scaling Relations Work

In this work, I have presented measurements of the integrated Sunyaev-Zel’dovich effect
signal and studied how it scales with X-Ray determined cluster masses. I have sought

to account for many sources of bias within the limits of the Bolocam SZE data. With a
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proper exploration of the systematics, there is the possibilty that Ys; can be constrained
within Rs5qp, and this would give insight into the radial dependence of the observed deviation
from self-similarity in the 6,,, relations. Furthermore, it is interesting to explore the mass
calibration in itself. To this end, our work with the CLASH collaboration gives us access to
high quality weak- and strong-lensing measurements, with which we can calibrate the X-ray
data.

Another line of investigation that is currently in the works (mostly led by Seth Siegel and
Andisheh Mahdavi) is performing joint, multi-wavelength parametric deprojections. This has
the advantage over independent wavelength analyses in that it preserves correlations between
the different wavelength data sets.

In the future, we can also expect the quality of of the SZE data to improve. To this
end, the Multiwavelength Submillimeter Inductance Camera (MUSIC), which is currently
undergoing commissioning at the CSO, is a welcome technological step forward (Golwala
et al. [I01]). The camera has a larger focal plane than Bolocam, and it is simultaneously
sensitive to four different wavelengths. This would allow better atmospheric noise removal,
a better constraint of the large-scale Ys, signal, and better constraints of the non-thermal

kinetic SZE signal.
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Chapter 5

Other Recent Bolocam Results

In addition to leading the scaling relation analysis in Chapter [} I contributed to a range of
other results using the Bolocam SZE images. Many of these studies deserve special attention,
since they form the framework for research in the near future. What has made a particularly
strong impression on me is how much individual clusters can teach us about astrophysics

and cosmology.

5.1 SZE Pressure Profiles

The limited ability for most SZE data to constrain either large- or small-scale cluster prop-
erties implies that pressure models must then be employed to fully characterize this signal.
One of the most widely adopted pressure models, discussed in Section is the general-
ized NFW (GNFW) model (Nagai et al. [I98]) using the Arnaud et al. [15, A10] measured
GNFW parameters. The A10 model is employed as the default model in the recent Planck
SZFE analyses, but it is not ideal, since it is X-ray-derived within Rs5¢9 and simulation-derived
beyond. With recent advances in the quality of SZE data, several groups are starting to con-
strain SZE pressure profiles beyond Ryoy. Planck is able to constrain the pressure profiles for
low-redshift clusters in their sample, and their collaboration has recently published pressure
profile measurements for both an individual case study of the Coma cluster [225] as well as
for a large sample of 62 nearby massive clusters from the first 14 months of data [230]. In
both cases, the Planck data show significantly excess pressure (2 2-0) in the region from

Rs00 to 2 3X Rs09 compared with simulations. Similar measurements are also possible us-
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Figure 5.1 Joint GNFW fits, with four free parameters, to the BOXSZ-measured pressure
maps. From left to right: full, disturbed, and cool-core cluster sample pressure profile
measurements with the shaded 1-o confidence regions of the fits to the data. These profiles
are compared with the Arnaud et al. [I5] and the Planck Collaboration et al. [230] best-fit
GNFW models, which are depicted with solid and dashed lines, respectively. As the Planck
Collaboration et al. [230] does not explicitly fit a disturbed sample, the non-cool-core best
fit is given in the center plot. Figure taken from Sayers et al. [256].

ing Bolocam SZE data, and Sayers et al. [250] have jointly fit GNFW profiles to the entire
BOXSZ cluster sample, and also to cool-core and disturbed cluster sub-samples. The results
of this analysis are shown in Figure 5.1 While the BOXSZ pressure profile is systematically
higher than either the A10 or the Planck measured pressure profiles, all three measurements
are consistent with each other within 1-o. If this excess holds under further scrutiny, this
would have important implications for cluster cosmological analyses, which very often rely
on these models to model large-scale modes that are often filtered by either a telescope’s

PSF or in the process of removing astronomical and atmospheric noise from the data.

5.2 Abell 1835: A Case Study in Cluster Triaxiality

An exciting new direction that we hope to explore more intensely in the near future is to
constrain galaxy cluster halos in three spatial dimensions using a joint, multi-observational
approach. This type of analysis leverages the assets of each observational probe: lensing for
the overall mass, X-ray for the gas in the cluster core, and SZE for the gas in the cluster
outskirts. Morandi et al. [I91] perform a joint X-ray, strong lensing, and SZE analysis of
the galaxy cluster Abell 1835. The lensing data is used to construct the projected surface

mass distribution, X, and the gas data is used to constrain the 3D density and temperature
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properties of the cluster. Figure shows the observed data points together with the
projected best-fit model. As can be seen, the SZE data is extremely important to constrain
the cluster properties beyond 1 Mpc. One should keep in mind that had weak-lensing data
been available, this would also have extended beyond 1 Mpc. The lensing and gas data
are linked with a generalized HSE equation that includes a non-thermal component, which,

motivated by the simulation results of Shaw et al. [259], is modeled to scale as a power law

Pnt ( R ) "
= , 5.1
Ptot 5 RQOO ( )

where & and n are both free parameters constrained in the joint cluster fitting. The final

with radius:

Bayesian fit yields a measurement of n = 0.77 4 0.21, in agreement with the results from
Shaw et al. [259] of n = 0.80 4+ 0.25. Hereby, we are the first to constrain the non-thermal
pressure support out to the virial radius observationally. The measured normalization, { =
0.177 4+ 0.065, is approximately 2-0 less than that found in Shaw et al. [259]. The 3D mass
profile constrains the minor-to-major axis ratio to be 0.59 4 0.05 and the intermediate-to-
major axis ratio to be 0.71+0.08, with the major axis inclined to the line of sight at 18.3+5.2
degrees. As cluster asphericity and non-thermal pressure support are extremely important
for understanding cluster physics, this type of analysis is being extended to a larger sample of
galaxy clusters by a member of the Bolocam analysis team, Seth Siegel, and our collaborator,

Andisheh Mahdavi, using the Joint Analysis for Cluster Observations (JACO) software]]]

5.3 MACSJ 0717.5: A Case Study of the Kinetic SZE

MACSJ 0717.5 is the most massive and, thus far, the most interesting cluster in the BOXSZ
sample. It has the largest known Einstein radius of 6. ~ 55”[304]. Ma et al. [162] perform a
multiwavelength X-ray and optical analysis of the cluster and identify four distinct clusters
in a triple merger system, which are identified using the letters A-D in Figure [5.3 In
particular, Ma et al. [I62] measure system A to have an exceptionally high line-of-sight
velocity of 36007355km/s. Mroczkowski et al. [194] perform a joint X-ray/SZE analysis of
the MACSJ 0717.5 cluster using Chandra X-ray data, MUSTANG 90 GHz data, and Bolocam

"http://sfstar.sfsu.edu/cccp/ Mahdavi et al. [164].
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Figure 5.2 From top to bottom: Radially-averaged T, X-ray surface-brightness, ATy,, and
strong-lensing derived surface mass profiles of joint 3-dimensional fits (solid lines) to obser-
vational data (dots with error bars) of Abell 1835. The projected theoretical temperature
(open diamonds) is also given in the upper plot. ATy, is y expressed in units of temperature
and is presented convolved with the pipeline transfer function. Figure from Morandi et al.
[191].

data at both 140 GHz and 268 GHz. The 90 GHz, 140 GHz, and 268 GHz SZE data have
resolutions of 13", 58", and 31", respectively.

Temperature and electron density maps measured with the Chandra X-ray data are used
to construct pseudo-Y pressure profiles. The SZE data is plotted in Figure[5.3] together with
the pseudo-Y contours smoothed to the particular resolution of the SZE observation. One
can see how the SZE decrement is boosted at 140 GHz and suppressed at 268 GHz, as would
be expected due to the predicted kinetic SZE effect. The observed spectral dependence of the
SZFE signal is depicted in Figure 5.4, The magenta lines depict the best-fit level of the kinetic
SZE signal to the Bolocam 140GHz and 268 GHz data. For the B subcluster, the spectral
SZE fit which includes a kinetic component, is preferred by slightly over 2-o. Recently, the
Bolocam collaboration has obtained more observational data at 268 GHz, which is sensitive

enough to confirm or to rule out the kinetic contribution to the SZE signal.
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Figure 5.3 Pseudo-Compton Y maps constructed from Chandra X-ray data, smoothed to the
resolution of the particular SZE observation depicted. The circles labelled as A through D
are the four sub-halos identified in Ma et al. [I62]. Left: 3-0, 4-0, 5-0, and 6-0 confidence
contours of the 90 GHz MUSTANG data. Middle: 5-0, 10-0, 15-0, 20-0, and 25-0 confidence
contours of the Bolocam 140 GHz data. Right: 3-0, 4-0, and 5-0 confidence contours
of the Bolocam 268 GHz data. Figure from Mroczkowski et al. [I94], which includes more
information about the employed smoothing and transfer functions of the data in these figures.
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Figure 5.4 Left: 1-0 confidence contours of the best-fit SZE spectrum to the Bolocam data
(black points with error bars), both accounting for (cyan) and neglecting (red) the kinetic
SZE effect for the B subhalos. Magenta: The best-fit kinetic SZE contribution. The like-
lihood of the data in this region is < 2.1% for a cluster component velocity less than zero.
Right: Similar to the left-hand figure, but for region C, the likelihood of the data in this
region is < 15.7% for a cluster component velocity greater than zero. All flux densities are
calculated using parametric fits directly to the data. Figure from Mroczkowski et al. [194],
which includes more information, including non-parametric SZE flux density estimates.



123

—~ 0 112500
1 5 1

15
E 10 E T T T T I I T T I T T T T I E
< - ]
\% L i
-
S 101 - .
) F ]
n L N
© _
e 1013 Bl Weak and Strong Lensing (Subaru+HST) ||
© —— X-ray with HSE (JACO: Chandra+XMM) |3
L X-ray with HSE (Chandra) N
| -
Q B B SZE with virial theorem (Bolocam) 1
c 12
S 10
wn

5

S

=

=

| [
50 100 200 500 1000

Spherical radius, r[kpc]

Figure 5.5 Top Panel: Total mass profiles derived for MACSJ 1206.2 using various observa-
tional probes. Blue represents the joint weak- (Subaru) and strong- (HST) lensing measure-
ment, with the shading indicating the 1-o confidence region. The red lines contain the 1-o
confidence region of the best-fit X-ray mass profile, using the JACO software and combining
both Chandra and XMM-Newton observations. The orange line uses only Chandra data and
assumes an A10 pressure profile. The green square represents the Bolocam SZE-only mass
constraint on Ros0p and is in good agreement with the data. Bottom Panel: the difference
between the X-ray and lensing mass profiles for both X-ray fitting methods. As can be seen,
the X-ray systematically under-estimates the lensing mass. Figure from Umetsu et al. [277].

5.4 Multiwavelength Mass Calibration

Umetsu et al. 277, hereafter U12] and [I80, hereafter M13] perform an in-depth cross-
calibration of mass profile measurements using strong- and weak-lensing, X-ray, and SZE
observational probes for the galaxy clusters MACSJ 1206.2 and MACSJ 01717.5, respectively.
The Bolocam-measured SZE mass of MASCJ 1206.2 at Ras00 is consistent with the lensing
and X-ray masses. In U12, we identify large-scale structure running from the North-West to
the South-East region of MACSJ 1206.2 that, when removed, results in a very regular NF'W
mass profile. After removing the kinetic SZE contribution in MACSJ 0717.5 for the M13
analysis, we measure an SZE mass profile within 1Mpc/h, which is consistent with X-ray.

Both gas mass measurements are below the lensing mass and suggest deviations from HSE.
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Figure 5.6 Total mass profiles derived for MACSJ 0717.5 using various observational probes.
(Orange) Best-fit weak- and strong-lensing NFW profile. (Purple) Chandra-only mass profile
estimate. (Gray and Blue) Bolocam SZE mass profile with and without correcting the kinetic
SZE effect, respectively. The X-ray and the SZE data are largely consistent with each
other and systematically lower than the lensing profile. The fact that the non-kinetic SZE
corrected Bolocam mass profiles agree with the lensing data is purely a coincidence. Figure
from Medezinski et al. [180)].
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Appendix A

Galaxy Cluster Catalogs

Understanding the specifics of a particular cluster catalog aids in understanding the charac-
teristics of the clusters that they include. Some cluster catalogs have a well-defined cluster
selection process which allows for analytical modeling of selection function effects. For ob-
vious reasons, the first galaxy cluster surveys were compiled using optical observations.
However, after the X-ray ROSAT All-Sky Survey (RASS) catalog became available, which
includes many clusters at larger redshifts, X-ray has generally provided the basis for many

of the current cluster catalogs of all wavelengths.

A.1 Optical Catalogs: Abell, Zwicky, and SDSS

Optically-selected galaxy cluster catalog members generally lie at lower-redshifts and have
larger angular extents than their X-ray counterparts. George Abell [I] compiled the first
comprehensive catalog of galaxy clusters in 1958 while still a graduate student at Caltech.
He personally examined photographic plates taken with the Palomar Sky Survey to identify
clusters for his catalog. The original 1958 work contains 2,712 galaxy clusters, and this was
extended in 1989 to include the Southern sky, yielding a total of 4,073 galaxy clusters [2].
The Abell catalog has four main selection criteria: richness (~30 or more member galaxies
must be within a specfic magnitude range), compactness (~50 or more members must be
within approximately 1.5h~*Mpc, expressed in units of the modern-day physical distance
parameterization), redshift (0.02 < z < 0.20), and finally, clusters should be sufficiently

distant from the galactic plane to minimize contamination. Fritz Zwicky was also from
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Caltech and also compiled a galaxy cluster catalog between 1961 and 1968 from the Palomar
Sky Survey [308]. This catalog contains a total of 9,134 galaxy clusters. As Abell’s catalog
is more complete at the redshifts and luminosities of interest for cluster cosmology, it is
generally favored over Zwicky’s catalog.

The Sloan Digital Sky Survey (SDSS) is a more recent optical survey and has been
surveying the sky since 2000. The camera is a 120 Megapixel CCD camera with 1.5 deg?
field of view, and it is mounted on a 2.5m telescope at Apache Point Observatory in New
Mexico. It observes in five temporally alternating color bands (¢’, 7,4, 4/, and 2’), spanning
from optical to infrared. The instrument has undergone two major upgrades, and the sky
surveys are therefore split into three main catagories: SDSS-I (2000-2005), SDSS-IT (2005-
2008), and SDSS-IIT (2008-2014+4).

The maxBCG catalog (Koester et al. [142]) uses the initial SDSS-I data to identify 13,823
galaxy clusters between 0.1 < z < 0.3 in 7500 deg? of the sky using the red-sequence tech-
nique (Gladders & Yee [99]) and a likelihood function that includes the color and magnitude
properties of a typical brightest cluster galaxy (BCG). The GMBCG cluster catalog (Hao
et al. [111]) builds upon the MaxBCG catalog and identifies 55,424 galaxy clusters using the
red-sequence technique between 0.1 < z < 0.55 in the SDSS-II data release. The GMBBCG
catalog covers 8240 deg? of the sky and is considered to be volume-limited out to z = 0.4.

Looking toward the future, the Dark Enery Survey (DES) will map 5000 deg? of the
southern sky using five bandpass filters ranging from the visible to infrared (¢',r’,7',2',Y).
The camera is a 520 Megapixel CCD camera with a 3 deg? field of view. The camera is
mounted and operational on the Blanco 4m telescope in Chile, and the formal survey is
expected to start in the Fall of 2013. DES expects to identify more than 20,000 clusters out
to z 2 1 using the red sequencing technique (Sénchez & DES Collaboration [250], Flaugher
& DES Collaboration [92]).

A.2 X-ray Catalogs: RASS, MACS, and MCXC

The ROSAT All-Sky Survey (RASS) is special, because it is the only all-sky X-ray survey

to have ever been conducted and it is the basis of many other galaxy cluster catalogs. The
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ROSAT satellite was a joint German, British, and American mission, which launched in 1990
and observed for over eight years. The instrument is sensitive to energies between 0.1 and
2.4 keV, and clusters identified in this catalog are denoted with RXJ (ROSAT, X-ray, and
Julian).

Upon completion of the X-ray sky survey, several efforts were undertaken to identify
galaxy clusters in the survey. The Brightest Cluster Sample, including its extension (eBCS,
Ebeling et al. [73, [72]), contains over 300 confirmed galaxy clusters observed at decli-
nations > 0° and galactic lattitudes of |b] > 20°. It is estimated to be approximately
50% complete above ~ 2.9 x 10~ *2erg/s/cm?(0.1 — 2.4keV) and 90% complete above ~
4.4 x 1072erg/s/cm?(0.1 — 2.4keV). The ROSAT-ESO Flux Limited X-Ray Galaxy Clus-
ter Survey (REFLEX)(Bohringer et al. [36]), can be considered, in a sense, the south-
ern counterpart of BCS with slightly different selection criteria. REFLEX covers 4.24
steradians of the southern sky and includes 447 galaxy clusters down to a flux limit of
3 x 102erg/s/cm? (0.1 — 2.5keV). The sample includes X-ray properties and spectroscopic
redshift information and is described to be more than 90% complete.

The Massive Cluster Survey (MACS) builds off of the RASS and BCS catalogs, and
the selection methodology for this catalog is given in Ebeling et al. [74]. All clusters are
observable from Mauna Kea (—40° > § > 80°), and the initial cuts are based on X-ray
flux measurements greater than 1 x 107'%erg/s/cm? between 0.1-2.4 keV, and an X-ray
hardness ratio. Of the ~5000 sources that remain, the final list of over 100 clusters is
obtained through a rigorous vetting process, which includes visual inspection and follow-up
spectroscopic observation. As of this writing, the only subsamples of the MACS catalog
that have been published are the high-redshift sample (MACS-DIST'), which consists of 12
clusters above z > 0.5, Ebeling et al. [71], and the high-flux ratio sample (MACS-BRIGHT),
which consists of 34 clusters with nominal X-ray fluxes in excess of 2 x 10™2erg/s/cm?(0.1 —
2.4keV)(Ebeling et al. [75]). These samples, including the eBCS sample, are plotted in Figure
Al

The Meta-Catalog of X-Ray detected Clusters (MCXC) [221] arose in light of the various
disjoint X-ray catalogs and the need for a large of X-ray detected cluster sample for the

upcoming Planck satellite mission as possible. 1743 clusters were obtained by combining all
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Figure A.1 The L,-z distribution of of the eBCS (blue) and MACS (red) samples. Red
squares and red triangles indicate the MACS-BRIGHT and MACS-DIST samples, respec-
tively. EMSS (Gioia & Luppino [08]), WARPS (Perlman et al. [216]), and the 400 Square
Degree (Burenin et al. [46]) project are serendipous surveys (clusters obtained from pointed
observations), and therefore they are less complete and have lower flux limits than the com-
plete flux-limited samples, such as the MACS cluster sample. Figure taken from Ebeling

et al. [75].

publicly available catalogs based on the ROSAT All Sky Survey-based (NORAS, REFLEX,
BCS, SGP, NEP, MACS, and CIZA) cluster catalogs, and also serendipitious (160SD, 400SD,
SHARC, WARPS, and EMSS) cluster catalogs. Each cluster has a redshift and an estimated
Lsoo (0.1 — 2.4keV) and Msqy value. Mygo values are obtained either directly from Maughan
et al. [I77] for the MACS catalog, or indirectly by inserting the Lsoy value into the Arnaud
et al. [I5] measured M-L relationship. In the case where Msy is obtained from the M-L
relation, Lsgg is estimated in an iterative fashion with Mse (as it is weakly dependent on
Rs00). For a general idea on how the BOXSZ cluster sample is distributed relative to the
general cluster population, the BOXSZ sample clusters are marked in Figure where the
parameters are obtained from the MCXC catalog. While BOXSZ has very full coverage of
the most massive, high redshift clusters known (thanks to the complete MACS high-redshift
sample), the completeness of this coverage quickly tapers at low redshifts.

A new all-sky X-ray survey is scheduled to launch in 2014: the extended ROentgen
Survey with an Imaging Telescope Array (eROSITA). eROSITA will perform the second
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Figure A.2 Msp (upper) and Lsgy (lower) measurements given in the Meta-Catalogue of
X-ray detected Clusters (MCXC), Piffaretti et al. [221] (black dots), which includes almost
all of the confirmed X-ray detected galaxy clusters. While Msq, values for a small fraction of
the clusters, mostly the MACS cluster sample, are available, the bulk of the M5y, values are
estimated from the L-M relation given in Arnaud et al. [I5]. Intrinsic scatter is not included,
and therefore these values are more correlated than they would be if the parameters had
been measured using standard X-ray techniques. Overplotted are the BOXSZ cluster sample
(open green circles) and Planck Collaboration et al. [223] ESZ] early release cluster sample
(smaller, open red circles) but retaining the Lsoo and Msg given in the MCXC catalog. As
can be seen, the ESZ catalog covers a much lower redshift than the BOXSZ sample, and
there are quite a few X-ray luminous clusters that are undetected with the SZE.
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all-sky survey in the soft X-ray band (0.5-2.0 keV), and it will be the first ever hard X-ray
(2.0-10.0 keV) survey of the sky. The survey will take 4 years, and it will be 20 times more
sensitive than ROSAT. What is most amazing is that eROSITA will discover all massive
galaxy clusters away from the Galactic plane, which the team estimates to be between 50-
100 thousand galaxy clusters out to z > 1 (Merloni et al. [I83]).

X-ray selected cluster catalogs have also been derived for targeted observations at other
wavelengths. One such example is the Local Cluster Substructure Survey (LoCuSS,Smith
et al. [262]), which aims to calibrate masses across X-ray, SZE, and weak- and strong-lensing.
The original sample consisted of ~12 clusters, selected to be very bright (L,> 8 x 10*erg/s,
0.1-2.4 keV) and lie in a narrow redshift slice, 0.17 < z < 0.25, where gravitational lensing is
optimized. Ultimately, LoCuSS hopes to observe over 100 galaxy clusters. Okabe et al. [207]
perform a weak-lensing analysis on 30 clusters. Marrone et al. [I71] measure Ys scaling
relations using the Sunyaev-Zel’dovich Array (SZA) and strong-lensing measurement for
14 LoCuSS clusters, and Marrone et al. [I72] measure the Yg; weak-lensing mass scaling
relations with 18 LoCuSS clusters.

Accurate mass-profile calibration for a representative sample of clusters is one of the
primary goals of the Cluster Lensing And Supernova survey with Hubble (CLASH, Postman
et al. [233]). The catalog is built around a 524-orbit multi-cycle treasury Hubble Space
Telescope (HST) program observing a total of 25 galaxy clusters in 16 filters ranging from
IR to UV. Twenty clusters are X-ray-selected, and the remaining 5 clusters were chosen
specifically for being known strong lenses (Postman et al. [233]). Many of the clusters
were chosen to be massive and dynamically relaxed, with 16 clusters chosen from the Allen
et al. [6] sample of 20 clusters. The CLASH program’s scientific goals have compelled the
collaboration to calibrate their data using a wide variety of observational probes, including:
weak lensing, X-ray, and the SZE. All of the clusters have Tx > 5 keV and redshifts z ~ 0.2,
which is compatible with the cluster parameter region that Bolocam is senstive to. This
has led to a close Bolocam-CLASH collaborative effort, and the CLASH cluster catalog is
entirely contained with the BOXSZ sample.
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Figure A.3 Redshifts and Yx-based mass estimates for the SPT (Williamson et al. [292]),
ACT (Hasselfield et al. [I13]), and Planck (Planck Collaboration et al. [228]) cluster catalogs.
As can be seen for high-redshift clusters, detection is fairly independent with redshift. Figure
taken from Planck Collaboration et al. [22§].

A.3 SZE Catalogs: Planck, ACT, and SPT

We are positioned at an age where copious, high-quality SZE data are just beginning to come
available. Three main SZFE surveys have come online during the last several years: the South
Pole Telescope (SPT), the Atacama Cosmology Telescope (ACT), and the Planck satellite.
The resolution of the ground based instruments, similar to Bolocam, complement the spatial
coverage of Planck satellite observations. Mass estimates and redshift measurements for all
three of these SZE surveys is plotted in Figure [A.3]

The SPT SZE focal plane contains 960 detectors, formed out of six detector segments,
which are individually senstive to 100 GHz, 150 GHz, and 220 GHz, and each detector has a
FWHM PSF of 1.6’, 1.2, and 1.0’, respectively (Carlstrom et al. [49]). The first SPT survey
mapped 720 deg?, identified 224 cluster candidates, 158 of which were confirmed clusters,
and 138 of these were first detected with SPT (Reichardt et al. [242]). The median redshift
for the sample is (z) = 0.57, and it attains a survey depth of 18 pKcyp-arcmin. The final
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SPT survey has mapped 2500 deg? (Williamson et al. [292]) and has reached a comparable
depth to the first SPT survey, with a full list of cluster candidates and detected clusters yet
to be published.

ACT is a ground-based SZE survey instrument quite similar to SPT. It too has three
bands, 148 GHz, 218 GHz, and 277 GHz, with FWHM PSFs of 1.4/, 1.0’, and 0.9, respectively
(Swetz et al. [272]). ACT has surveyed approximately 1000 deg?, consisting of a 455 deg?
survey (36K deep, Marriage et al. [I70]), and a 504 deg? survey (~59uK deep, Hasselfield
et al. [I13]). The instrument has detected 91 optically confirmed clusters at a median
redshift of (z) = 0.44, and ~30 of these clusters are new discoveries. Both SPT and ACT
have undergone major upgrades in recent years and are currently undergoing ambitious
observation campaigns. We can expect these catalogs to grow several-fold in the coming
years.

The Planck satellite recently released its SZE-selected cluster catalog, covering an area of
~35,000 deg?, and containing 1227 cluster candidates, 683 of which were previously known
and 178 of which are new cluster detections, which have been confirmed Planck Collaboration
et al. [22§]. The 143 GHz band of the Planck satellite has a FWHM sensitivity of ~7'. Three
different algorithms were used for selection (Herranz et al. [115], Melin et al. [I81], Carvalho
et al. [51]) which utilize spectral information from all spectral bands of the Planck satellite,
from 100 GHz to 857 GHz, and all clusters with S/N> 4.5 were selected. The clusters have
a median redshift of (z) ~ 0.15, although there is significant coverage out to redshift 1.0.
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