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Abstract

Galaxy clusters are the largest gravitationally bound objects in the observable universe, and

they are formed from the largest perturbations of the primordial matter power spectrum.

During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic

component is heated as it passes through accretion shocks. This process stabilizes when the

pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are use-

ful cosmological probes, because their formation progressively freezes out at the epoch when

dark energy begins to dominate the expansion and energy density of the universe. A diverse

set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters,

and this is useful for self-calibration. The distributions of these observables trace a cluster’s

dark matter halo, which represents more than 80% of the cluster’s gravitational potential.

One such observable is the Sunyaev-Zel’dovich effect (SZE), which results when the ionized

intercluster medium blueshifts the cosmic microwave background via Compton scattering.

Great technical advances in the last several decades have made regular observation of the

SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from

the construction of large-format camera arrays consisting of highly sensitive millimeter-wave

detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and

268 GHz radiation, located at one of the best observing sites in the world: the Caltech

Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original

spider web NTD bolometers used in an entire generation of ground-based, balloon-borne,

and satellite-borne millimeter wave instrumention. Over approximately six years, our group

at Caltech has developed a mature galaxy cluster observational program with Bolocam. This

thesis describes the construction of the instrument’s full cluster catalog: BOXSZ. Using this

catalog, I have scaled the Bolocam SZE measurements with X-ray mass approximations in
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an effort to characterize the SZE signal as a viable mass probe for cosmology. This work has

confirmed the SZE to be a low-scatter tracer of cluster mass. The analysis has also revealed

how sensitive the SZE-mass scaling is to small biases in the adopted mass approximation.

Future Bolocam analysis efforts are set on resolving these discrepancies by approximating

cluster mass jointly with different observational probes.
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Chapter 1

Cosmology

Galaxy clusters are fascinating objects because they exhibit so many cosmological phenom-

ena. Following the Big Bang, quantum density flucutations seed the hierarchical accretion

of matter, which leads to all large-scale structure formation. Galaxy clusters are the most

massive end-products of this process, and their continued growth is prevented in the epoch

when dark energy drives the accelerated expansion of the universe. Dark matter comprises

more than 80% of the gravitationally bound cluster matter and dictates many of the physical

properties of galaxy clusters. This section gives an overview of the salient aspects of cluster

formation and the astrophysical processes which enable their observation.

1.1 To Make a Long Story Short...

In the first decades of the 20th century, Albert Einstein developed special relativity in re-

sponse to curious inconsistencies in Maxwell’s theory of electromagnetism in a given inertial

reference frame[80]. He discovered that these inconsistencies can be resolved by setting the

speed of light to be constant in all inertial reference frames and by treating time as a fourth

dimension to create a 4-dimensional “distance,” which is invariant with respect to a moving

reference frame. Einstein, however, was bothered by his formulation of special relativity

in that it did not adequately describe the equivalence of inertial mass and gravitational

mass. He therefore generalized Maxwell’s field equations to account for this via a curvature

of space-time, which makes gravity a local phenomenon. The Russian physicist, Alexander

Friedmann, discovered that the solution to Einstein’s field equations allowed for either ex-
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panding, contracting, or static space, and, by extension, universe[94]. Unsatisfied with this

answer, Einstein added the cosmological constant to the field equations in order to force the

universe into a static state:

Rµν −
1

2
gµνR + gµνΛ =

8πG

c4
Tµν , (1.1)

where the curvature of space is introduced via Rµν , the Ricci curvature tensor, and R, the

scalar curvature. The stress-energy tensor, Tµν , represents matter and energy, which induces

the curvature on the left-hand side of the equation. The term gµν is the metric, which

characterizes the space-time parameters of a given reference frame. The G and c terms are

the gravitational constant and the speed of light, respectively.

Although the initial observations confirming a non-static solution to Einstein’s field equa-

tions (i.e., an expanding universe) are often attributed to Edwin Hubble, it was, in fact, the

Belgian priest, Georges Lemaitre, who, as a graduate student in 1927, first proposed the

concept and derived “Hubble’s” law. In this work, he presented the first calculation of the

“Hubble” constant based on observational data[155]. Lemaitre would eventually follow this

idea all the way to its origin, formulating a theory of the “primeval atom”[156] which Fred

Hoyle mockingly dubbed: ”The Big Bang.” Lemaitre also suggested that cosmic rays were

left over fossils from the initial explosion. While Lemaitre was on to the right idea, the lack

of alternative observational data led this idea to a dead end.1 Einstein seemed resistant at

first to Lemaitre’s idea, but further observational studies conducted by Edwin Hubble in

1929 [123] confirmed of the expansion of the universe and led Einstein to recant and call his

cosmological constant kludge his “biggest blunder.”

Another major milestone in the theory of an expanding universe was made in 1948, when

Alpher et al. [7] noted that the relative observed abundances of light elements could be

explained via the mechanism of an expanding universe. This is known as Big-Bang nucle-

osynthesis (BBN). In 1965 Dicke et al. [67] continued the investigation into this theory and

considered the point at which an expanding universe would sufficiently cool to allow neutral

1Interestingly, unambiguous observational evidence of the precise origin of cosmic rays has become avail-
able only very recently from observations using the VERITAS[11] and Fermi [3] telescopes, which confirm
that cosmic ray particles originate from supernovae remnants.
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hydrogen to form (recombination). At this point, blackbody radiation would decouple and

provide an observable relic of the “primordial fireball.” Dicke initiated the development of

a telescope to search for the relic blackbody radiation of the recombination process. During

this process, however, he received a phone call from Arno Penzias and Robert Wilson about

a mysterious noise measured with their eponymous Dicke radiometer[293]. Dicke knew that

this was exactly the Cosmic Background Radiation (CMB) that he was searching for. While

the Penzias and Wilson result gives only one data point at 4 GHz, a 3 Kelvin blackbody

peaks at about 160 GHz. The COsmic Background Explorer (COBE), launched in 1989,

measured the full spectrum of the CMB at 34 equally-spaced frequencies, using the Far-

InfraRed Absolute Spectrophotometer (FIRAS). Mather et al. [173] and Fixsen & Mather

[90] use this data to confirm the CMB as the most perfect black body ever measured in

nature—deviating by less than 50 parts per million from a perfect 2.725 ± 0.001 K black

body between ∼60-600 GHz.2 This result is consistent with the Big Bang model, because it

indicates that at some point the universe was dense enough to be filled uniformly with ther-

malized matter. As will soon be demonstrated, the CMB provides much more information

about the early universe than this.

If the universe began as a primordial fireball, there must have been a quantum mechanical

noise mechanism, which, at some point, broke the translational symmetry of matter to allow

structure formation. Andrei Sakharov [249] predicted in 1966 that adiabatic compression

would be opposed by the associated increase in the plasma pressure and generate acoustic

waves. The hot (compressed) regions and the cold (rarefied) regions would imprint them-

selves accordingly on the temperature of CMB. This concept was further developed in 1970

by Sunyaev & Zel’dovich [270] and independently by Peebles & Yu [215] in the same year.

After FIRAS’ liquid Helium supply ran out, COBE’s Differential Microwave Radiometer

(DMR) experiment continued to the map the sky for another three years at 31.5 GHz, 53

GHz, and 90 GHz. The differential measurement removed all common signal, and Bennett

et al. [22] confirmed 36± 5µK temperature fluctuations when the maps were smoothed to 7

2Fixsen et al. [91] recently report an excess of tens of mK in the ∼1-10 GHz region of the CMB spec-
trum using measurements from the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission
(ARCADE 2.) The physical origin of this radiation is still unknown (e.g., Ysard & Lagache [299], Holder
[120]).
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Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ΛCDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ΛCDM Planck+WP+highL model, which is fitted to the TT data only.
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Figure 1.1 The temperature angular power spectrum of the CMB measured by Planck Col-
laboration et al. [226]. The red curve represents the best-fit spectrum to the data points,
using the standard cosmological model with cold dark matter and a cosmological constant
(ΛCDM), and is further described in the text. The bottom figure shows the residuals of the
data with the model. Figure taken from Planck Collaboration et al. [226].

(angular) degrees.

At recombination, fluctuations in the CMB will peak at half-wavelength harmonics of an

acoustic compression-rarefraction cycle. These are known as the acoustic peaks, and the scale

at which they occur is set by the speed of sound. The observed angular separation of two

points separated by a given physical scale, however, depends on the curvature of space and

distance through which the signal travels. Two CMB Balloon experiments, BOOMERANG

[63] and MAXIMA [110], unambiguously measured the position of the lowest-order acoustic

peak, and, by combining this with new measurements of the Hubble constant using the

Hubble Space Telescope (Freedman [93]), confirmed that space is flat to within a few percent.

The recent measurement of the CMB by the Planck Collaboration [226] is presented in

Figure 1.1. In combination with auxiliary cosmological data, Planck Collaboration et al.

[226] confirm that space is flat to less than seven tenths of a percentile. The CMB contains

much more information that is beyond the scope of this thesis, and for a well-presented

review of all of these processes, see Hu & Dodelson [122].
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At about the same time that the CMB community discovered that the universe is flat, two

teams, one led by Saul Perlmutter [217] and the other by Adam Riess and Brian Schmidt

[243] discovered that supernovae (with well-defined luminosities) are accelerating away at

a faster rate than expected. These observations can be made consistent with the observed

flatness of the universe by setting the cosmological constant term in Einstein’s field equations

1.1 to a non-zero value. Perhaps Einstein’s initial hunch was correct after all. The observed

expansion is driven by an unknown source of energy density, and it has therefore been named

dark energy. While a cosmological constant is the simplest model that consistently describes

all observations, it does not intrinsically emerge from current theory, and therefore several

alternative dark-energy models have been proposed (e.g. Copeland et al. [60], Gott & Slepian

[103]), which have yet to be confirmed.

While the precision to which scientists understand the origin and evolution of the uni-

verse is astounding, many questions remain. Why exactly is the universe flat? How can

temperature patches in the sky be in phase with each other when they should have no causal

relation due to the amount of time needed for this information to travel at such scales? Alan

Guth [108] proposed the theory of inflation in 1981 as a physical mechanism that consistently

describes these various observations. This theory maintains that shortly after the Big Bang,

there was a rapid period of expansion, which smoothed spatial curvature and provided a

mechanism for distant regions of the sky to be causally connected. Furthermore, inflation

provides the mechanism that gives rise to the quantum fluctuations, and it also accounts for

the curious fact that all the modes seem to have originated in phase with each other.

Inflation is the proposed mechanism that seeds the quantum fluctuations in the matter

density field and leads to all subsequent structure formation. The initial growth of these

density perturbations, however, is inhibited by radiation pressure in the high-density en-

vironment of the early stages of the universe. As photons redshift under expansion, the

radiation density falls more rapidly than the matter density, and when the universe is about

one hundred thousand years old, matter begins to dominate. Density perturbations start

to spend a larger fraction of time in a compressed versus rarefied state. When the universe

is about four hundred thousand years old, radiation decouples completely, and the speed

of sound plummets. Overdense regions will begin to collapse in on themselves when they
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reach the Jeans instability, i.e., when the enclosed matter no longer has sufficient time to

compressionally resist gravitational infall. The infalling matter is accelerated supersonically

to thousands of kilometers per second and undergoes an accretion shock. Subsequent ram

pressure converts most of the kinetic energy into thermal energy and mixes the phases of

the kinetic motion of the gas, via a process called violent relaxation, and homogenizes the

gas. A bound, virialized, system will stabilize to the state where the potential energy equals

twice the kinetic energy. Individual virialized systems continue to grow through hierarchical

structure formation both by the accretion of unbound matter, as well as merging with other

virialized systems.

Galaxy clusters represent the most massive structures to have virialized through the

hierarchical structure formation scenario. Their total mass can be between approximately

1013 and 1015 solar masses. It takes several Gigayears for a galaxy cluster to get so large,

and its continued growth is prevented as the universe accelerates its expansion in an epoch

dominated by dark energy. As the name implies, galaxy clusters contain large concentrations

of galaxies, the observation of which led to their initial discovery. The nomenclature is slightly

misrepresentative, considering that stars represent . 3% of all matter within a galaxy cluster.

Ionized gaseous normal matter, the intercluster medium (ICM), constitutes another ∼17%,

and the remaining ∼80% of the matter density is called dark matter, because it seems to

couple to normal matter gravitationally but otherwise emits no observational signal. Normal

matter is also commonly called baryonic matter, because it is composed primarily of neutrons

and protons.

Dark matter was proposed in the early 1930s to account for the fact that the observed

orbital velocities of stars in the Milky Way (Oort [208]) and of galaxies in the Coma cluster

(Zwicky [307]) implied a larger gravitational potential than could be observed. More recent

observations of supersonic galaxy cluster collisions, such as of the Bullet Cluster, indicate

that while baryonic matter will form a bow shock during such collisions, dark matter passes

through relatively undisturbed (Markevitch et al. [168]). While the exact nature of dark mat-

ter is still unknown, observations support the idea that it is a non-relativisitc (cold), massive

particle which couples only gravitationally to both baryonic matter and itself. Physically-

motivated extensions to this basic dark matter model have been proposed, which predict
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weak non-gravitational coupling to baryonic matter (Jungman et al. [134], Bertone et al.

[27]). Detecting the signature of this coupling (either directly or indirectly) is an extremely

active area of research (e.g. Bernabei et al. [26], Ahmed et al. [4], Angloher et al. [9], Cholis

et al. [56]).

Cosmologists have now converged on a standard cosmological model, ΛCDM, which con-

tains four primary energy components: baryonic matter, cold dark matter, radiation, and

dark energy. The sum of this energy at all times implies a flat universal geometry. The

observable universe arose from a singularity, called the Big Bang, approximately 13.7 billion

years ago. This event was followed by a period of rapid expansion, known as inflation, fol-

lowed by a period of continued expansion and large-scale structure formation. At the present

time, ∼5% of the energy in the universe is baryonic in nature, and ∼ 25% of the energy in

the universe couples to baryonic matter solely through gravity. The remaining ∼70% of

the energy density remains constant with volume, fueling the current epoch of accelerated

cosmic expansion. This model has withstood rigorous observational cross-examination, but

it leaves many open questions as to its physical origin.

Galaxy cluster formation is strongly affected by the nature of dark energy and dark

matter, and therefore it is a promising cosmological probe. The possible evolution of dark

energy as a function of time can be determined by measuring the number of clusters within

a certain mass range as a function of time (Hasselfield et al. [113], Benson et al. [25], Planck

Collaboration et al. [228]). The radial scaling of an individual cluster’s mass concentration

can also give insight into the nature of dark matter (Spergel & Steinhardt [264], Peter et al.

[218]). For these to be viable cosmological methods, however, scientists must ensure that

measured observables accurately describe the total matter content.

The two cluster observables studied in this thesis are generated directly from the ICM.

The ICM is heated to millions of degrees Kelvin, primarily via shock-heating during the initial

accretion of matter. As a point of comparison, stars themselves are only several thousands of

Kelvin. High-velocity free electrons are deflected by the more massive protons and are slowed

via the emission of bremsstrahlung radiation, making galaxy clusters extremely luminous

∼1043− 1045erg/s. A solar luminosity, in comparison, is about 4× 1033erg/s and the typical

peak supernova luminosity is about 1042erg/s.
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The ICM produces a second observable as free electrons distort the spectrum of the CMB

via Compton scattering. The exact spectral distortion of the CMB during this process was

calculated by two Russian scientists in the 1970s and is eponymously named the Sunyaev-

Zel’dovich effect (SZE) ([270, 271]). Under the appropriate conditions, cluster masses can

be derived from these observables by applying the equation of hydrostatic equilibrium to

the measured pressure profiles. The assumption of hydrostatic equilibrium, however, breaks

down for most cluster scenarios and alternative, more robust, mass proxies must be developed

and observationally confirmed. The calibration of cluster masses from the SZE signal for

cosmology is the topic of the analysis presented in this thesis.

1.2 Distance Measures

Distance is an important concept in cosmology. For a monotonically expanding universe,

distance also serves as the cosmological time piece. The dark energy equation of state, for

example, can be constrained by counting the number of clusters of a specific mass as a

function of distance. Given a particular cosmology, the general conditions in which clusters

form is also a function of distance. Furthermore, an accurate distance measure is needed

to obtain physical cluster properties from the measured flux of a given observable. The

concept of distance, however, is made ambiguous in an expanding reference frame, where

general relativity dictates that the distance that a photon travels between two points is not

the same as the final physical distance between those two points. Carroll [50] and Hogg

[119] give very good overviews of distance measures, and this section briefly introduces the

concepts that will become relevant later on.

From special relativity, the invariant distance measure between two points is given by:

ds2 =
∑

µ,ν

gµνdx
µdxν = gµνdx

µdxν . (1.2)

Here, µ and ν are indices representing a particlar dimension: either one of the three space

dimensions or the time dimension, which is converted to a distance by multiplying it by the

speed of light. Einstein’s summing convention is introduced in the last term, where repeated
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indices for a particular product represent a sum over all indices. The gµν term is called the

metric, and it describes exactly how the four different dimensions should be combined to

form the invariant. A popular form of this term is the Minkowski metric, which describes

flat spacetime in the absence of matter:

gµν = ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (1.3)

The Robertson-Walker metric reformulates the invariant in equation 1.2 for ΛCDM cos-

mology and accounts for an expanding reference frame. By multiplying the distance elements

by a scale parameter, a(t), and going into a spherical coordinate system, one obtains:

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ2
]
, (1.4)

where dχ is the comoving distance measure, which is normalized to remain constant for

any cosmological scenario. The curvature of space affects the non-radial components of the

invariant as:

Sk(χ) ≡





sin(χ), k = +1

χ, k = 0

sinh(χ), k = −1.

(1.5)

Where k = −1 corresponds to constant negative curvature (open) , k = 0, corresponds

to no curvature (flat), and k = +1 corresponds to positive curvature (closed). In light of

overwhelming observational evidence discussed in the previous chapter, it is sufficient for the

present analysis to assume that space is flat, k = 0, and Equation 1.4 simplifies to:

ds2 = −dt2 + a2(t)
[
dχ2 + χ2dΩ2

]
. (1.6)

The scale parameter can be reformulated using the Doppler redshift, z, of an observed
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signal emitted from a receding source:

a(z)

a0

=
1

1 + z
. (1.7)

Most cosmological parameters with the subscript “0” refer to a parameter’s value in the

present time. Therefore, a0 refers to the current scale of the universe. A good mnemonic for

remembering the redshift formula is by noting that the universe was half the current size at

z = 1.

This leads to the formula for the Hubble parameter, which describes the relative rate at

which, the universe is expanding as a function of redshift:

H(z) =
ȧ(z)

a(z)
= H0E(z), (1.8)

where the overdot signifies the time derivative and H0 the Hubble constant. The Hubble

distance unit, DH , can be derived from the Hubble constant, first, by inverting it and

obtaining a unit of time (the Hubble time) and then multiplying this by the speed of light:

DH ≡
c

H0

. (1.9)

Using the framework of an expanding reference frame, the mechanism for this expan-

sion, which is derived from Einstein’s field equations in Equation 1.1, is explored. Solving

Einstein’s field equations using the Roberston-Walker metric for a flat universe yields the

Friedmann equations, one of which is:

H(z)2 ≡
(
ȧ(z)

a(z)

)2

=
8πGρ(z)

3
(1.10)

ρc(z) ≡ ρ(z) =
3H(z)2

8πG
=

3H2
0E(z)2

8πG
, (1.11)

where, in the last step, the equation is re-arranged to solve for ρ, the energy density, which

is equivalent to the critical density, ρc(z), for a flat universe. This result demonstrates how

the relative rate of expansion scales with the local energy density. In the epoch relevant to

galaxy cluster formation, the evolution of the Hubble parameter, E(z), can be calculated by
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summing the relative energy densities of (total) matter, ΩM , and dark energy, ΩΛ in a flat

universe:

E(z)2 = ΩM(1 + z)3 + ΩΛ = ΩM
a3

0

a3
+ ΩΛ. (1.12)

Equation 1.12 explicitly demonstrates how each form of energy evolves differently: matter

dilutes with volume, and dark energy remains constant.

The comoving distance, DC , can then be calculated by setting the geodesic in Equation

1.6 to null and integrating to find the expansion-invariant parameter, χ:

0 = ds2 = −dt2 + a2dχ2 (1.13)

χ =

∫
dt

a
=

∫
da

a2H(a)
(1.14)

DC ≡ DH

∫ z

0

dz′

E(z′)
. (1.15)

Luminosity distance then becomes the comoving distance, DC , multiplied by the scale factor:

DL = (1 + z)DC . (1.16)

The angular diameter distance, DA, is the ratio of the physical transverse size corresponding

to an observed angular size in radians. For a flat universe:

DA =
DC

1 + z
. (1.17)

A comoving volume can then be obtained from these distance measures and is extremely

important for cosmological surveys. The basic element is simple: multiply the comoving

differential area by the comoving thickness of the volume:

dVc = D2
CdΩdDc =

DH(1 + z)2D2
AdΩdz

E(z)
, (1.18)

where, in the right-hand side, the comoving parameters have been converted to physical

parameters using Equations 1.15 and 1.17.

What are the typical scales of these distance measurements? The work-horse distance
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unit in astronomy is the parsec, which is 3.086 × 1018cm, or 3.26 light years. This is the

distance an object must be from the Earth for an observer to perceive it to shift by one

arcsecond as the Earth travels one AU perpendicular to the axis between the sun and the

object. A parsec is about 10,000 times the distance from the Sun to Neptune, the most

distant planet in the solar system, or, the approximate distance to our nearest star, Proxima

Centauri. A galaxy is approximately tens of kpc in size, a galaxy cluster is about a Mpc,

and the observable universe is approximately 14 Gpc.

1.3 Structure Formation

This section provides a general overview of structure formation and the reader is referred

to Peebles [214], Peacock [213] for a more comprehensive introduction to the subject. The

growth of the initial density perturbations can, to first order, be treated as an ideal fluid. Let

δ represent the size of a density perturbation relative to a homogeneous background density,

ρ0:

δ(x,t) =
ρ(x,t)− ρ0

ρ0

. (1.19)

For the vanilla ΛCDM cosmology, δ is scale-independent, and this implies that the space and

time components can be solved independently. The spatial-dependence of the disturbance

can be expanded into plane waves, δ ∝ exp(−ik · x), where k is a comoving wavevector. By

invoking the continuity equation (conservation of mass), the Euler equation (conservation

of momentum), and the Poisson equation, the time dependence of δ can be formulated as a

familiar-looking second-order differential equation:

δ̈ + 2
ȧ

a
δ̇ = δ

(
4πGρ0 −

c2
sk

2

a2

)
, (1.20)

where G is the gravitational constant and cs is the speed of sound (Peebles Equation 16.4,

Peacock Equation 15.21). The second term on the left-hand side is a friction-like term,

which prevents the growth of perturbations. The perturbation is allowed to grow via grav-

itational collapse when the term on the right-hand side is greater than zero, which is when
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its wavelength reaches the Jeans scale:

λJ = cs

(
π

Gρ

)1/2

. (1.21)

The existence of massive neutrinos, which were first observed by Fukuda et al. [95] with

SuperKamiokande in 1998, and the possibility of warm dark matter complicate the situation

(Bond et al. [39]). Matter perturbations grow more slowly, since the Jeans scale of neutrinos

and warm dark matter remains significant after recombination (Bond & Szalay [40]). This

couples the spatial and time components, and the evolution of the particle fluid is deter-

mined from a set of coupled Boltzmann equations, which can only be traced via simulation

(Eisenstein & Hu [81]). The ansatz to Equation 1.20 consists of both a growing mode and a

decaying mode with separable spatial and time-dependent components:

δ(x, t) = A(x)D1(t) +B(x)D2(t). (1.22)

Substituting Equation 1.22 back into Equation 1.20 and solving for D1 in a flat universe

with a non-zero cosmological constant yields:

D1(z) =
H(z)

H0

∫∞
z

dz′(1+z′)
H3(z′)∫∞

0
dz′(1+z′)
H3(z′)

, (1.23)

where the term in the denominator is simply a normalization factor so D1 = 0 at z = 0. An

approximate solution to D1(z) follows from Lahav et al. [149], Lightman & Schechter [159]:

D1(z) ≈ (1 + z)−1 5Ω(z)

2

{
Ω(z)4/7 − ΩΛ(z) +

[
1 +

Ω(z)

2

] [
1 +

ΩΛ(z)

70

]}−1

. (1.24)

Expressing density fluctuations, individual Fourier space gives:

δk(k) =

∫
δ(x) exp(ik·x)d3x. (1.25)

The power spectrum can then be obtained by taking the magnitude-squared of these fluctu-
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ations.

P (k) ≡ 〈|δk|2〉 (1.26)

If δ is a Gaussian random field, then P (k) is a complete statistical description of the per-

turbation power spectrum. By smoothing these perturbations with the Fourier transform

of a spherical top-hat function, Wk(R), of a characteristic size, R, one can characterize the

magnitude of perturbations at different scales:

σ2
R ≡ 〈|δM/M |2〉 =

1

(2π)3

∫
P (k)|Wk(R)|2d3k. (1.27)

The variance of the matter power spectrum, σ2
R, is a popular parameter to describe large-

scale structure formation, particularly for an 8h−1 Mpc-sized top-hat, σ8. As σ is a monotonic

function with M , it is often used as a proxy for M , particularly in non-observational work

since it can be made relatively independent of cosmology. The purest analytical method to

calculate the spectrum of density fluctuations, would be to start with a given P (k) (which

is measured beautifully from the CMB) and relate this to the present time using the matter

transfer function:

T (k, z) ≡ δ(k, z)

δ(k, z =∞)

δ(0, z =∞)

δ(0, z)
. (1.28)

If the growth of structure is scale-independent (T (k, z) = T (z)), the spatial component of

the growing mode can be related back to σ as:

σ(M, z) = σ(M, 0)T (z) = σ(M, 0)
D1(z)

D1(0)
= σ(M, 0)

G(z)

(1 + z)G(0)
, (1.29)

and the growth function, G(z) ∝ (1 + z)D1(z), is introduced in the right-hand equation.

For the present analysis, a local, cluster-based, empirical approximation for σ(M, z) is

adopted from Stanek et al. [266]. Specifically, using the measured luminosities of galaxy

clusters, they calculate σ(M, 0) to be accurately described with the equation:

lnσ = s0 + s1 lnM + s2 lnM2, (1.30)

where [s0, s1, s2] = [0.468, 0.267, 0.0123] at Ωm = 0.24. The normalization of σ is convention-
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Figure 1.2 Left: The growth of structure in the universe with redshift. Note the slowing
growth of structure as the universe expands. Right: The variance of the matter power
spectrum with redshift. The mass values, M , indicate the mean enclosed mass for a top-hat
of a particular size. The relative value of σ indicates the relative abundance of clustering of
a particular size.

ally scaled using σ8. There is plenty of uncertainty in what the exact value of σ8 is, partially

because our ability to accurately determine cluster mass is limited. The redshift-dependence

of the growth function and σ is plotted in figure 1.2.

1.4 Mass Function

The growing perturbations collapse when their density contrast,δ = δρ/ρ, exceeds a critical

threshold δc. In 1974 Press & Schechter [238, hereafter PS] propose a simple method in

which to calculate the mass function, or, the number of clusters of a particular mass within

a particular volume. Starting with the variance of the matter power spectrum, σ2(M, z),

PS estimate that the probability that a region of mass M exceeds the collapse threshold

at redshift z is erfc[δc/
√

2σ(M, z)]. The number density of such perturbations follows by

dividing by the mean comoving density of a characteristic background mass, M :

n(M, z) =
ΩMρcr0
M

erfc

[
δc√

2σ(M, z)

]
. (1.31)
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The differential mass function then takes the form:

dn(M, z)

d lnσ−1
=

√
2

π

ΩMρcr0
M

δc
σ

exp

[
− δ2

c

2σ2

]
. (1.32)

The PS mass function, while qualitatively correct, disagrees in detail with the results

of N-body simulations. Specifically, the PS formula overestimates the abundance of haloes

near the characteristic mass M, and it underestimates the abundance in the high-mass tail.

Over the subsequent decades, this mass function has been tweaked by running more complex

simulations, for example, by allowing for elliptical collapse (Jenkins et al. [129]). Currently,

a commonly adopted form of the mass-function is the one proposed by Tinker et al. [273]

and depicted together with the PS mass function in figure 1.3:

dn(M, z)

dM
= f(σ)

ρm(z)

M

d lnσ−1

dM
, (1.33)

where

f(σ) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

, (1.34)

and f(σ) is the mass function. The variance in the matter power spectrum is again given

by σ, ρm(z) represents the mean matter density at the redshift of the cluster, and dn/dM

represents the number of clusters per unit volume with masses between [M,M + dM ] and

redshifts, [z, z + dz]. The original simulations presented in Tinker et al. [273] suggest that

f(σ) evolves with redshift, but in a follow-up study, Tinker et al. [274] dispute this result.

The present analysis will therefore assume that the mass function does not evolve with

redshift.

Using Equation 1.18 for dV/dz, one obtains the expected number of halos contained

within a specific survey volume:

d2N

dMdz
= f(σ)

ρm(z)

M

d lnσ−1

dM

dV

dz
. (1.35)

This formula will become particularly relevant in later chapters when I attempt to char-
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Figure 1.3 The Press & Schechter [238] mass function compared with the Tinker et al. [273]
mass function for an overdensity 400 times the matter denstiy at the observed redshift. M
is related to σ using Equation 1.30 via Stanek et al. [266].

acterize how our observed cluster sample compares with a given theoretical distribution of

cluster observables. Figure 1.4 shows the redshift evolution of iso-mass contours. Note that

while the number density for clusters of a particular mass decreases with redshift, the number

of observable clusters of a particular mass remains relatively constant since the observable

volume also increases with redshift.

Throughout this analysis, I adhere to the convention of calculating cluster properties

within a constant, r∆, the radius within which the mean cluster density is ∆ times the

critical density, ρc(z), of the universe at the redshift of the cluster. I also assume ΛCDM

cosmology, and set H0 = 70 km s−1Mpc−1, ΩM = 0.3, and ΩΛ = 0.7.
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Figure 1.4 The Tinker et al. [273] mass function for an overdensity 400 times the matter
density at the observed redshift. The overall normalization is an arbitrary unit. Left: The
number of clusters per unit volume. Right: The total number of clusters within an observing
volume.
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Chapter 2

Galaxy Clusters

Galaxy clusters are complex structures with many degrees of freedom. This complexity brings

both a richness of information and built-in cross-checks. A detailed knowledge of cluster

astrophysics, however, is required to properly isolate these degrees of freedom. The most

relevant physical properties to this work are: size, mass, temperature, density, and pressure.

Cluster masses may be directly determined using gravitational lensing, or indirectly from

the ICM by applying hydrostatic or virial assumptions. As the assumption of hydrostatic

equilibrium generally fails for most galaxy clusters, scaling relations must be calibrated

between hydrostatic masses and observational mass proxies that are insensitive to a cluster’s

dynamical state. Clearly, linear perturbation theory breaks down at the cluster level, and

much of what scientists understand about cluster properties derives from complex N-body

hydrodynamic simulations. Bertschinger [29] presents a nice review of N-body simulations

for structure formation, although the review by Kravtsov & Borgani [145] is more up-to-date.

This chapter explores how simulations and observables fit together to give a full description

of the astrophysics of galaxy clusters.

2.1 Mass Profiles

Predicting the profiles of dark matter halos is non-trivial. Recall that kinetic energy is

acquired following the triggering of the Jeans instability. This occurs approximately when

the mean density is 200 times the critical density. The subsequent behavior of the two matter
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components, however, is quite different.1 Although a heating mechanism is absent for dark

matter, dark matter particle trajectories will still relax at a much slower rate through phase

mixing via gravitational coupling. The system relaxes when the centripetal motion of the

dark matter particles prevents further gravitational collapse.

The simulations performed by Navarro, Frenk, and White ([201, 202], NFW) set the stage

being the first to show that dark matter profiles have a universal radial scaling independent

of mass, the initial power spectrum, or cosmological parameters. The scaling is observed to

be self-similar when the radial parameter is normalized, such that the enclosed mass density

is a constant multiple, ∆, of the critical density at the given redshift: M∆ = ∆ρc(z)(4π/3)r3
∆

(recall that ρc(z) = 3H(z)2/8πG). The NFW simulations characterize the mass profile using

a broken power law:
ρNFW (r)

ρc(z)
=

δc
(r/rs)(r + rs)2

. (2.1)

With this model, there are only two free parameters: rs, the scale radius, and r200, which

is a good approximation of the virial radius. The ratio of these two parameters gives the

concentration, c = r200/rs, and this sets: δc = 200c3/3[ln(1 + c) − c/(1 + c)]3. This radial

description of the dark matter halo is commonly adopted in current cluster mass estimation

analyses. Due to a combination of limited observational signal and instrumental limitations,

galaxy clusters are often only observed out to R2500 and R500, and special considerations

must be made for these analyses. The NFW profile is plotted in Figure 2.1 for a typical

concentration parameter of 4, with the positions of R2500 andR500 indicated.

Several alternative models to the NFW model have been proposed. Navarro et al. [203],

for example, argue for a model in which the logarithmic slope varies continuously with radius:

ρ(r) ∝ exp(−Arα). This model was originally proposed by Einasto [77],[78, 79] in the context

of the light and mass distribution of galaxies. Merritt et al. [184] find that the rms scatter

could be reduced by up to a factor of 4 using the Einasto model instead of the NFW model.

1In this work, baryonic matter will be referred to as “ga,s” since stars and galaxies play only a minor role
in this process.
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Figure 2.1 The average enclosed density of a Navarro-Frenk-White[201, 202] profile for a
typical galaxy cluster with c = 4. The positions of R500 and R2500 are indicated by the
dashed red lines and their values are given with respect to the virial radius.

2.2 X-ray Emission Due To Thermal Bremsstrahlung

The nature of X-ray detection provides both flux and spectral information, enabling the

measurement of two independent observables: luminosity and temperature. Since all ob-

servations are 2D projections sourced by 3D physics, the electron densitiy, ne, and X-ray

temperature, TX , can be determined using either projection or deprojection techniques.

While the deprojection method can account for complex structure independent of a par-

ticular parameterization, it has yet to be confirmed whether this technique produces more

accurate (or even different) results. Temperature and electron density profiles will be key to

deriving hydrostatic mass esimates in Section 2.6.1.2, and the general techniques by which

they are measured is reviewed. Several groups have made hydrostatic mass estimates using

X-ray data, and any differences in their respective parameter estimation techniques will be

highlighted when relevant (Allen et al. [6], Arnaud et al. [13], Bonamente et al. [37], Vikhlinin

et al. [279], Pratt et al. [237]).
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2.2.1 Pressure Profiles

In order to parameterize cluster properties, one must first choose a model. Pressure profiles

can be constructed using X-ray measurements of electron density and temperature profiles.

Cavaliere & Fusco-Femiano [52] proposed one of the first and most widely adopted pressure

models, the isothermal β-model:

p(r) =
p0

[1 + r2/r2
c ]

3β/2
. (2.2)

It has since become clear that the β-model is insufficient in describing cluster properties at

both small and large radii. Pratt & Arnaud [234] and Pointecouteau et al. [231] made an

initial step to expand this model by fitting two separate β-models at the interior and exterior

radius. For obvious reasons, this is called the double β-model. Nagai et al. [198] combine

X-ray data at small cluster radii with simulations at large cluster radii to demonstrate that

cluster properties are self-similar at R500 and can therefore be described with a generalized

NFW (GNFW) model:

p(r) =
p0

(cr)γ [1 + (cr)α](β−γ)/α
. (2.3)

The Arnaud et al. [15]GNFW parameter measurement of:

[P0, c500, α, β, γ] = [8.403h
−3/2
70 , 1.177, 1.0510, 5.4905, 0.3081], (2.4)

is commonly used as a universal pressure profile, to help constrain observationally-derived

measurements and these parameters are also adopted for the present analysis. With major

quality improvements in SZE data over the last several years, the parameters of the GNFW

model have recently been constrained using SZE data as well (Planck Collaboration et al.

[230], Sayers et al. [256]).

2.2.2 X-ray Spectral Temperature

The typical temperatures of the galaxy clusters studied in this analysis are ∼10 keV, or

∼108 Kelvin. This is the temperature of the transition between “hard” and “soft” x-rays
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Fig. 6 X-ray spectra for solar abundance at different plasma temperatures. The continuum contributions
from bremsstrahlung (blue), recombination radiation, characterized by the sharp ionization edges (green),
and 2-photon radiation (red) are indicated. At the highest temperatures relevant for massive clusters of gal-
axies bremsstrahlung is the dominant radiation process (from the work described in Böhringer and Hensler
1989). The major emission lines in the panels for the higher temperatures relevant for galaxy clusters are
designated by the elements from which they originate (The labels Fe-L ans Si-L refer to transitions into the
L-shell in ions of Fe and Si, respectively, and two other lines with roman numbers carry the designation of
the ions from which they originate involving transitions within the L-shells

emission from bremsstrahlung, recombination and two-photon transitions. We clearly
see the increasing dominance of bremsstrahlung with increasing temperature, which
reflects the fact that fewer ions retain electrons and the plasma is almost completely
ionized at the higher temperatures.

3 The study of the thermal structure of the intracluster medium

We have seen in the previous section that the shape of the spectrum for a thermal
equilibrium plasma is determined by the plasma temperature and the elemental abun-
dances. This is therefore the basic information we derive from the spectral analysis
of the ICM radiation: a temperature measurement and a chemical analysis. We con-
sequently illustrate in this, and the next chapter, the scientific insights gained from
temperature measurements from the state-of-the-art spectral analysis, and in Sect. 5
the lessons learned from the chemical analysis of the ICM.

123

Figure 2.2 X-ray spectra for astronomical formations at different plasma temperatures
with major emission lines labelled. (Blue) The continuum contribution from thermal
bremsstrahlung, a.k.a. free-free, (green) recombination radiation with sharp ionization edges,
a.k.a. free-bound, (red) two-photon radiation associated with the “forbidden” 2s-1s transi-
tion (Spitzer & Greenstein [265]). Line emission is produced when electrons change quantum
energy levels, a.k.a. bound-bound. Note the dominance of the thermal bremsstrahlung con-
tribution for the hottest object. Image taken from Böhringer & Werner [35].

and approximately 1/50th the rest-mass of an electron. Figure 2.2 demonstrates how at

these extremely high temperatures, most emission is sourced by thermal bremsstrahlung.

Spectroscopically measured cluster temperatures, TX , are a key ingredient with which

hydrostatic masses and (to a much lesser extent) electron density profiles are derived. Several

sets of code have been developed to fit X-ray spectra (both line and continuum emission) in

order to measure temperature. The XSPEC code2 is based on the MEKAL (Mewe-Kaastra-

Liedahl) Model ([186, 135, 158]) and is used for the X-ray measurements utilized in this

analysis. Of the hydrostatic mass estimates studies presently considered, Allen et al. [6]

fit their temperature spectra to a constant TX , while the Pointecouteau et al. [231] and

Vikhlinin et al. [278] analyses use a higher-order temperature model.

As temperatures are known to fall with radius inside of galaxy clusters (e.g Pratt et al.

2http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
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[235], George et al. [97]), Mazzotta et al. [179] examined the bias that might result by fitting

a three-dimensional emission-weighted temperature to a single projected spectroscopic tem-

perature. They conclude that, on average, the measured projected spectroscopic temperature

would always under-estimate the true three-dimensional emission-weighted temperature, and

in some cases by up to 80%! This is in part due to their observation that the spectroscopic

temperature is less sensitive to high-density regions, such as shocks fronts, compared to

emission weighted temperatures in simulations. This is definitely a source of concern, for

hydrostatic mass estimates which require a spatially-resolved temperature model for accu-

racy. Mazzotta et al. [179] propose a spectroscopic-like temperature, which best reproduces

typical spectroscopic observations fit to a single temperature model using simulations:

Tsl =

∫
n2T 1/4dV∫
n2T−3/4dV

→
∑N

i=1 ρiT
1/4
i∑N

i=1 ρiT
−3/4
i

, (2.5)

where i is the index of the individually simulated particles.

Mathiesen & Evrard [174] demonstrate that the best approximation of the total thermal

energy of a galaxy cluster is neither emission-weighted nor spectroscopic-like, but the mass-

weighted temperature, Tmw:

Tmw =

∫
nTdV∫
ndV

→ 1

N

N∑

i=1

Ti. (2.6)

Tmw is the direct average of the temperatures of individual mass particles, and this is also

the temperature-weighting for the SZE signal.

2.2.3 X-ray Surface Brightness and Gas Mass Estimation

Bremsstrahlung occurs in the ICM when free electrons are deflected by the Hydrogen nucleii.

Thermal X-ray emission is thus the product of both electron density, ne, and proton density,

np. For a fully ionized gas, ne = 1.21np, and ne is therefore the physical property that can

be calculated most readily from X-ray surface brightness maps. Typical values of ne range

from 10−5 − 10−1 cm−3 from the cluster outskirts to the cool-core.
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White et al. [288] and Fabian et al. [86, 85] developed a commonly used technique to

measure gas density by deprojecting X-ray surface brightness maps into a series of nested

electron density shells. The contribution to the total flux from the temperature, T (i), and

electron density, ne(i), for each of these shells is then calculated. By assuming that T (i)

and ne(i) are constant within concentric shells, the flux contribution from each shell will be

proportional to :

F (i) ∝ ne(i)
2

4πD2
L

Λ[Z, T (i), E] ∝ ne(i)
2T (i)1/2

D2
L

, (2.7)

where Λ[Z(V ), T (i), E] is the spectral emissivity/cooling function of the ICM and includes

all of the detailed astrophysics of the emission. The subsitution Λ ∝ T 1/2 is made in the

right-hand equation and is a good approximation at the high temperatures of the ICM.

Equation 2.7 is used to calculate luminosity, L, which is a physical property of the cluster

directly obtainable from the observable, flux F = L/(4πD2
L).

Equation 2.7 is inverted to obtain the gas density of individual shells, n(i), using the

measured luminosity. The gas mass density, ρ(i), is obtained from n(i) using the molecular

weight, µ ≈ 0.6, and the mass of a proton, Mp. An approximation for T (i) is needed in this

step, which can be solved for either entirely independently, using a single temperature model

for the entire cluster, or, in a more complex iterative fashion, by simultaneously fitting the

spectroscopic and luminosity data. Finally, with ρ(i) in hand, Mgas can be directly calculated

by integrating over the individual shells:

Mgas = 4π

∫ r∆

0

ρ(r)r2dr = 4π
∑

i

ρ(i)r2
i∆ri. (2.8)

Electron density profiles can also be determined by comparing the observed luminosity

maps with a projected model. Bonamente et al. [37] apply this method using a β-model to

model the gas distribution. The β-model is appealing, because its projected X-ray surface

brightness profile has an analytical form—with the downside that it does not model the

central regions of clusters accurately. B08 therefore excise the central 100 kpc data from

both the spatial and the spectral data. Pointecouteau et al. [231] calibrate masses using a

double β-model (with the option to all for a concentrated inner region). Vikhlinin et al.

[278] add several more degrees of freedom to their model and also adopt a three-dimensional
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parameterized temperature model, for a total of nine free parameters.

2.3 The Sunyaev-Zel’dovich Effect

When the first X-ray observations from galaxy clusters were made, Sunyaev & Zel’dovich

[270, 271] predicted that such a hot plasma would be able to inverse Compton scatter the

CMB, increasing its energy. This is the Sunyaev-Zel’dovich effect (SZE) and it turns out to

be very small. It therefore took several more decades after its initial prediction before the

SZE could reliably be observed in individual clusters.

2.3.1 Theory

The CMB is an ensemble of photon states, whose spectral characteristics approximate an

almost perfect 2.725 Kelvin blackbody. When these photons pass through a hot, 10 keV,

electron gas, on average, they will scatter up to higher energies. These photon states might

be replenished by lower energy photons, which also scatter upwards. At about 219 GHz the

net photon gain in occupation number balances the net loss, resulting in a null signal. The

observed temperature of the CMB is thus altered:

TSZ = f(x)yTCMB, (2.9)

with

f(x) = x
ex + 1

ex − 1
− 4. (2.10)

f(x) contains all the spectral information and is only a function of the Boltzmann ratio of

the CMB itself, x = hν/kBTCMB. Depending on the application, the relativistic motion

of the hot electrons and high peculiar velocities of the clusters with respect to the CMB

must be accounted for. At moderate observing frequencies and temperatures, relativistic

corrections to the SZE signal can be included by multiplying f(x) by the frequency and

electron-temperature dependent factor (1 + δ(x, Te)) [296, 125, 206]. The specific temper-

ature and frequency dependencies of these relativistic corrections are quite complex, and

Chluba et al. [55] provide one of the more popular techniques with which to estimate the
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relativistic SZE signal and have publically released their C++ code.3 Relativistic corrections

are generally . 10% for the cluster sample observed with Bolocam at 140 GHz and are

included only when physical quantities are derived from the YSZ signal.

The Compton parameter, y, represents the magnitude of the distortion and, in the non-

relativistic limit, encompasses all of the cluster information in the CMB distortion. This

term is directly proportional to the electron pressure, P , integrated along the line-of-sight:

y = (σT/mec
2)

∫
Pdl, (2.11)

where σT is the Thomson cross section, me is the electron rest mass, and c is the speed of

light.

The SZE observable is often expressed using a volume integral:

YSZD
2
A =

(
σT
mec2

)∫
PdV = D2

A

∫
ydΩ, (2.12)

where DA is the angular diameter distance of the source. This equation presents YSZ as a

cylindrical integral, although YSZ is also presented using a spherical volume integral. As

the cylindrical form of YSZ requires no additional assumptions to be made in regards to is

line-of-sight extent, the cylindrical value is chosen for the present analysis.

2.3.2 Detecting the Sunyaev-Zel’dovich Effect

It took several years to detect the SZE after its initial prediction, owing to the fact that

it is much too dim for the sensitivities of the instrumentation of the time. The 168 GHz

peak signal is too low in energy to excite semi-conductor CCD technology, and it lies at

a relatively high frequency for typical radio coherent detection. Furthermore, atmospheric

water vapor is strongly absorbing in this regime and there are few places in the world with

the proper climate and facilities to perform these observations.

Throughout the seventies, several groups claimed detection of the SZE using coherent

detection with single dish radio telescopes (Pariiskii [211, 212], Gull & Northover [107]).

3http://www.cita.utoronto.ca/~jchluba/Science_Jens/SZpack/SZpack.html

http://www.cita.utoronto.ca/~jchluba/Science_Jens/SZpack/SZpack.html
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Figure 1. SZ effect from 30 to 1000 GHz. The pure thermal SZ effect with a
canonical null at ν0 = 217 GHz is shown as a solid red line, the thermal effect
including non-thermal corrections as a dashed red line, the kinetic effect for
a cluster velocity of vpec = +1000 km s−1 as a blue (short) dashed line, and
the sum of all three effects—which is the spectrum which would be observed
through the cluster—as the solid black line. Also shown are the atmospheric
transmittance spectrum for a precipitable water vapor column of 0.5 mm at
Mauna Kea in yellow (P. Ade 2007, private communication), and the effective
bandwidth of Z-Spec on the CSO in the solid blue region. Z-Spec’s spectral
range is well matched to span the null in the SZ effect.

models—usually ≈1000 km s−1—the ratio of the 217 GHz
kinetic SZ effect brightness and the peak increment brightness
due to the combined thermal and non-thermal effects is �10%.
Though faint, such levels can be reached with the current
generation of instruments (Benson et al. 2003).

As tSZ effect probes only the pressure of the ICM, the
rSZ corrections and kinetic SZ effect allow more detailed
studies of the ICM. However, due to degeneracies between the
tSZ spectrum and both the rSZ and kSZ spectra, it is often
difficult to disentangle all three components, even with multi-
band data. This is especially true in the presence of cluster
substructure. Though difficult to measure, the rSZ effect can be
used to study the temperature of the ICM, especially at the high
temperatures that are difficult to constrain with current X-ray
facilities, and at high redshifts where X-rays are attenuated by
cosmological dimming. For example, Prokhorov et al. (2011)
show that a comparison of SZ images at different frequencies can
allow measurements of the morphology of the temperatures in
ICMs through the changing emission from the rSZ corrections.
Although similarly difficult to measure, the kSZ effect can be
used to study cosmology by constraining the peculiar velocities
of clusters, and to study cluster astrophysics by constraining the
velocities of bulk flows within the cluster itself (see Birkinshaw
1999 for a comprehensive review). In addition, the kSZ and rSZ
signals can be used together to constrain complex temperature
and velocity substructures due to merging activity in clusters
(Diego et al. 2003; Koch & Jetzer 2004; Prokhorov et al. 2010).
In either case spectral information, preferably spanning the null
in the SZ effect, is key.

Z-Spec is a multi-channel spectrometer working in the
220 GHz atmospheric window with 160 independent spectral
channels running from 185 to 305 GHz (Bradford et al. 2004).
Z-Spec’s spectral range almost ideally spans the SZ effect null

and so provides a unique opportunity to measure the transi-
tional frequencies where the tSZ effect passes from a decrement
to an increment in surface brightness with high spectral res-
olution. In principle, such measurements can tightly constrain
the position of the SZ null as well as the presence of any fore-
ground or background emission via measurements of line emis-
sion. In this paper, we present millimeter (mm)/submillimeter
(sub-mm) Z-Spec measurements spanning the SZ null in the
massive, SZ-bright galaxy cluster RX J 1347.5−1145. Addi-
tional Bolocam (Haig et al. 2004) data are used to build a model
of the spatial shape of the SZ emission in the cluster, and to help
constrain the kSZ corrections in it. The paper is structured as fol-
lows: a description of the observations performed is presented in
Section 2, and the data analysis procedure is described in
Section 3. Sections 4 and 5 present the results and the simu-
lations required to interpret them, and finally a discussion of the
implications of this work, respectively.

2. OBSERVATIONS

Both Z-Spec and Bolocam observations are used in this work
and are detailed below. Though this paper primarily addresses
measurement of the spectral shape of the SZ effect with Z-Spec,
a spatial model of the cluster is necessary to interpret the spectral
measurement, for which we use the Bolocam maps. Bolocam
also adds a lower frequency datum with small uncertainties to
the SZ spectrum which is used in Section 4.3.

2.1. Z-Spec Observations

Descriptions of the instrumental design of Z-Spec and the
tests used to characterize its performance are described in, e.g.,
Bradford et al. (2004, 2009), and Naylor (2008); here we review
the details salient to this work. Z-Spec is a grating spectrometer
which disperses the input light across a linear array of 160
bolometers. The curved grating operates in a parallel plate
waveguide fed by a single-moded feed horn, which is coupled
to the telescope via specialized relay optics. As with all grating
spectrometers, the spectral range of the instrument is set by the
geometry of the input feed, grating, and detector elements; for
the Z-Spec configuration discussed in this work, the spectral
range is measured as 185 GHz � ν � 307 GHz. The resolving
power of the grating varies across the linear array, providing
single-pixel bandwidths of Δν = 500 MHz at the low-frequency
end of the range to Δν = 1200 MHz at the high-frequency end
with a mean value of Δν = 750 MHz. Measurements of the
spectral bandpass of each of the detectors on the ground and
measurements of line positions of bright astronomical sources
yield an uncertainty on the central bandpass of the detectors
less than 200 MHz. In order to achieve photon background
limited performance, the detectors, grating, and input feed horn
are housed in a cryostat and the entire assembly is cooled with
an adiabatic demagnetization refrigerator to between 60 and
85 mK. The detectors, which are designed and fabricated at JPL,
have noise equivalent powers of 4×10−18 W Hz−1/2 which make
them the most sensitive, lowest-background detectors used for
astrophysics to date.

Z-Spec has been operating as a PI instrument at the Cal-
tech Sub-millimeter Observatory (CSO) on Mauna Kea, Hawaii
since 2007. Z-Spec employs a chop and nod technique to remove
the in-band atmospheric emission, which is the largest source
of time-correlated noise in the system. Since it is not possible
to modulate the spectral response of the instrument, the chop-
ping secondary mirror of the telescope is used to provide on-sky

2

Figure 2.3 Approximate thermal SZE model spectrum for RXJ 1347.5, a.k.a. MACSJ 1347.5
(solid red line) with y = 5.5 × 10−4, Tx = 15 keV, and vpec = 1000 km/s. Also shown are
the distorted spectra after the addition of non-thermal/relativistic corrections (dashed red
line), and kinetic SZE corrections (black line). Note how each correction element shifts the
nominal SZE null from 217 GHz. At such high cluster temperatures, the relativistic effects
are substantial in the spectral region with the SZE increment. The intensity of the kinetic
SZE component alone is also plotted (blue dashed line) and Z-Spec’s effective bandwidth
is depicted in the solid blue region. The atmospheric transmission for a preciptiable water
vapor column of 0.5 mm at Mauna Kea is shown in yellow. From this curve, it can be
seen how difficult it is to observe the SZE increment due to the high level of atmospheric
absorption. Figure taken from Zemcov et al. [300]. Bolocam data is used in this work to
provide both a spatial template for the Z-Spec analysis, and also to constrain the overall y
value serving as a spectral “lever arm” at 140 GHz.



30

These results, however, were of low significance and often disputed, and it took approximately

until the end of the following decade for radio observing techniques to progress to the point

where SZE observations of galaxy clusters could be reliably reproduced (Birkinshaw et al.

[32, 31], Lake [150], Readhead et al. [240]). In the early nineties, the SZE started to be

observed with radio telescope arrays, such as the Ryle Telescope (Jones et al. [132]) and the

Owens Valley Radio Observatory (OVRO, Carlstrom et al. [48]), specifically configured with

shorter baselines, enabling better atmospheric removal and resolved mapping. More recently,

the Sunyaev-Zel’dovich Array (SZA, Muchovej et al. [196]) was specifically constructed to

observe the SZE and consists of eight 3.5m telescopes, which provide a 12′ instantaneous field

of view. Six of the antennas are in a close-packed array to provide sensitivity at 2′ resolution,

and two outrigger antennas provide 0.3′ resolution to aid in the removal of point sources.

Coherent detectors were also launched in space, and operated in the highly successful COBE

(Boggess et al. [34]) and WMAP (Bennett et al. [23]) CMB satellite missions.

The SZE can also be detected by directly absorbing the radiation, using bolometers to

measure power. Bolometric observations of the SZE started in the early eighties, thanks to a

significant expansion of the infrared and submillimeter observational capabilities on Mauna

Kea. Meyer et al. [187] performed bolometric observations of the SZE using the Infrared

Telescope Facility, and Chase et al. [53] attempted to measure the SZE increment using

the United Kingdom Infrared telescope. The Caltech Submillimeter Observatory (CSO) was

commissioned in 1986, and, with a 10.4 m primary, it is better suited to observe the SZE than

the existing infrared facilities. The Sunyaev-Zel’dovich Infrared Experiment (SuZIE) succes-

fully measured the SZE at the CSO in 1994 (Wilbanks et al. [291], Holzapfel et al. [121]),

fielding high-sensitivity neutron-transmutation-doped (NTD) bolometers (Palaio et al. [210]).

The camera contained three pairs of bolometers, sensitive to 142 GHz, 217 GHz, and 269

GHz, respectively. The first version of the camera used a solid sapphire substrate for the

absorber (Holzapfel et al. [121]), and the second version upgraded to a new silicon-mesh

(spider-web) absorber (Bock et al. [33], Mauskopf et al. [178]), making the detectors less

sensitive to cosmic rays. The NTD spider-web bolometers endured to have a great legacy

and were subsequently employed in many high-profile sub-millimeter experiments, such as:

Archeops (Benôıt et al. [24]), Bolocam (Haig et al. [109]), BOOMERanG (de Bernardis et al.



31

[63]), BLAST (Devlin et al. [66]), and Planck [222].

While these detectors have outstanding sensitivity, they are difficult to multiplex. There-

fore the bolometer of choice in current generation of SZE instruments, containing on the order

of 1000 detectors, is the transistion-edge sensor (TES). For a good review of TES detectors,

see Irwin & Hilton [124]. TES detectors can be multiplexed using either time-division mul-

tiplexing (Chervenak et al. [54], de Korte et al. [65]) or code-division multiplexing schemes

(Yoon et al. [298], Kiviranta et al. [141]). TES detectors have been used in the Atacama

Pathfinder Experiment (APEX-SZ, Dobbs et al. [69]), the South-Pole Telscope (SPT, Ruhl

et al. [248]), its polarization-sensitive successor (SPTpol, Austermann et al. [17]), the Ata-

cama Cosmology Telescope (ACT, Swetz et al. [272]), and its polarization-sensitive successor

(ACTpol, Niemack et al. [205]), and the Multiplexed SQUID/TES Array at Ninety Gigahertz

(MUSTANG, Dicker et al. [68]).

As submillimeter astronomical projects become more ambitious, there is a push to in-

crease the pixel count by more than an order of magnitude, which would require considerable

technological advancement. A promising new type of pair-breaking detector is the microwave

kinetic inductance detector (MKID, Day et al. [62]). This detector is highly multiplexable

and is the detecting element chosen for the Multiwavelength Submillimeter Inductance Cam-

era (MUSIC), which is currently being commissioned at the CSO (Golwala et al. [101]).

This camera is a pathfinder for the type of instrumentation that will be implemented for an

ambitious project currently under development, the Cerro Chajnantor Atacama Telescope

(CCAT, Woody et al. [294]).

2.4 Gravitational Lensing

According to the general theory of relativity, gravity attracts light much in the same way

as it attracts mass. A massive galaxy cluster positioned between an observer and a galaxy

will deflect the light like a lens, producing arcs and multiple images of the background

source. Strong lensing primarily uses the position and redshift of these sources to map the

mass distribution of the lensing object. This requires both high-resolution data as well as

high quality spectroscopic data. Weak lensing operates in the limit where the gravitational
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distortion is weak, producing a quadrupole distortion of the background galaxies. A thorough

review of the weak gravitational methodology is included in Bartelmann & Schneider [18].

This shear can be measured in a statistical sense to reconstruct a cluster’s mass profile, up

to a constant offset in mass known as the mass-sheet degeneracy. Umetsu et al. [276] break

this degeneracy by measuring the absolute magnification of the background galaxies via the

positional dependence of the surface density of these galaxies. While lensing gives a fully

nonbaryonic cluster mass estimation, cosmic web confusion can still introduce uncertainties

of up to 20% (Hoekstra [118]). Several different methods exist to reconstruct the mass profiles

both parameterically (e.g. Jullo et al. [133], Merten et al. [185]) and non-parametrically (e.g.

Coe et al. [57], Zitrin et al. [304]).

2.5 Richness Measures/Velocity Dispersion/Red Sequenc-

ing

One of the biggest ironies of the term “galaxy clusters” is that only a small portion of all of

the virialized matter is contained in stars. The motion of these stars, however, is dictated

by the gravitational potential and can be used to measure mass. Using the dispersion in

the redshift-determined velocities of individual galaxies, one can determine their line-of-

sight velocity, which is correlated with cluster mass. Zwicky [307] famously proposed the

existence of dark matter based on the measured velocity dispersion for the Coma cluster.

Inevitably, such high quality spectroscopic data is not available for most galaxy clusters, and

the application of this technique is limited.

Clusters can also be identified through their optical richness, or the number of galaxies

within a specified aperture and above a specified luminosity. One of the most popular

methods for cluster selection is the “red-sequence”, which identifies galaxies based on a linear

color-magnitude relation ([42, 99]). This method only requires photometric data at a few

selected wavelengths. Using the red-sequence, High et al. [116] measure a correlation between

optical richness and cluster mass for YSZ-selected clusters in the South Pole Telescope survey,

although with a high degree of scatter (35%). Despite a large measured scatter, the red
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sequence is a promising technique for identifying and weighing high redshift clusters (Stanford

et al. [268]).

2.6 Cluster Mass Estimation

Less than 20% of the mass of a galaxy cluster is ordinary matter. Therefore, cluster mass

estimation is, to first order, dark matter estimation. The rich set of observables provided

by galaxy clusters is valuable in that it provides important cross-checks for a given observa-

tional probe’s mass estimate. The equation of hydrostatic equilibrium links pressure-derived

observables directly to the total cluster mass in the limit where the cluster is relaxed and

pressure is only sourced by the thermal motion of the ICM. Of these observables, X-ray

observations provide both spectroscopic and bolometric information, while the SZE surface

brightness does not dim with redshift. Gravitational lensing is insensitive to the detailed

astrophysical processes occuring inside of a galaxy cluster, but the necessary high-quality

data needed for these measurements is only available for a handful of clusters. Fully robust

mass estimation must integrate all of this information and develop a set of calibrated mass

proxy scaling relations that can be used on clusters where high-quality optical data is not

available.

2.6.1 Hydrostatic Equilibrium, Self-Similarity, and the Virial The-

orem

Following the Jeans instability, in contrast with dark matter, gas undergoes an accretion

shock, and further infalling gas is heated when it encounters this shock [28, 83, 44, 96, 189].

These shocks source the entropy, which heats the clusters to several keV (where 1keV ≈
1.16× 107K), and the gas rapidly relaxes to form an inter-cluster medium (ICM). The ICM

sources the two central observables to this thesis: X-ray emission via thermal bremsstrahlung

and the SZE.

While the underlying dark matter halo does not contribute any photons to the observ-

ables, its gravitational potential will affect the gas pressure and thereby boost the signal. A
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common idealization in fluid dynamics (e.g. galaxy clusters) is that the fluid is adiabatic and

in a state of equilibrium. This means that kinetic energy is not altered by such processes

as viscous heating, thermal conduction, or emission/absorption of radiation. In the adia-

batic regime, the equation of state has only one thermodynamic degree of freedom, pressure,

P = P (ρ), which is solely a function of density. This leads to the equation of hydrostatic

equilibrium (HSE), which is a restatement of the Archimedes Principal: The amount of force

on an object is equal to the weight of the mass that it has displaced:

∇P = ρg = −ρ∇Φ (2.13)

dP

dr
= −ρdΦ

dr
, (2.14)

where in the second equation, spherical symmetry is assumed, and dΦ/dr can be calculated

using Newton’s field equations:

∇2Φ = −∇ · g = 4πGρ. (2.15)

Combining equations 2.14 with 2.15 and integrating once using the boundary condition:

dP (r →∞)/dr = 0 yields:
dP

dr
= −GM(r)ρg

r2
. (2.16)

By introducing the ideal gas law, P = ρgT into Equation 2.16, one finds the total mass scales

as:

M ∝ RT

[
d lnP

d ln r

]
. (2.17)

The ideal gas law generally holds for high-temperature, low-pressure, monatomic gases, which

are typical conditions in the ICM. The HSE methodology can be applied to any observable

which measures pressure (i.e. X-ray or SZE).

A common assumption applied to galaxy clusters is that they are self-similar. Self-

similarity means that, for a particular normalization, all clusters, regardless of absolute size,

share similar behavior. Imposing self-similarity on Equation 2.17 implies that d lnP/d ln r∆
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is universal for all clusters at the particular radius, r∆. Equation 2.17 then simplifies to:

M ∝ RT → T ∝ M

R
∝ ∆ρ1/3

cr M
2/3 (2.18)

P ∝ M5/3. (2.19)

Kaiser [136] was one of the first to verify this assumption using N-body simulations. Self-

similarity implies: (1) that the amplitude of the density fluctuations is a simple power-law,

σ(k) ∝ k3+n, and (2) that gravitational collapse, and the physical processes that produce

cluster observables, are scale-free. These assumptions leave two free cosmological parameter

dependencies: the normalization of the power spectrum, and its scale factor, n.

On the other hand, if clusters are not self-similar, then hydrostatic mass estimation must

start from either Equation 2.14 or Equation 2.17. This is precisely what is done to obtain

hydrostatic mass estimates from gas observables, described in further detail in Section 2.6.1.

As X-ray data provides an additional independent measurement compared to the SZE, it is

more broadly implemented for HSE mass estimation. To derive the X-ray-specific form of

the HSE equation, the ideal gas law will once again be inserted into Equation 2.16. This

time, however, self-similarity will not be invoked:

M(r) = − kTr2

µMpG

(
d ln ρg
d ln r

+
d lnT

d ln r

)
, (2.20)

where the subsititution ρg = µneMp has been made. With the X-ray temperature and

electron density profiles in hand, one can use Equation 2.20 for massive, dynamically relaxed

galaxy clusters, where the pressure can be derived thermally from the ideal gas law. The

gas mass fraction, fgas, can then be calculated by dividing the mass calculated at a specific

radius, Mtot, by Mgas (which, recall, is determined by integrating ne over the volume of the

cluster). HSE cluster candidates are generally chosen at low redshifts to ensure high-quality

data and to remove any cosmological dependence that might bias the measurement.

Another approach for estimating mass is to integrate Equation 2.14, which simply restates

the virial theorem for an ideal gas:

2Eth(r)− 3P (r)V = −Ug(r), (2.21)
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where Eth(r) is the total thermal energy of the system, P (r) the pressure, V the enclosed

volume, and Ug(r) the gravitational potential energy. The 3P (r)V term is added to the

traditional formulation of the virial theorem and represents the boundary condition of a

surface pressure component. In the absence of this component, this equation states that

the kinetic energy of a bound system is twice the gravitational potential and can be derived

from a time-averaged form of the Hamiltonian. The surface pressure term allows the kinetic

energy to build up a little more. Mroczkowski [192] develops this theory (see Mroczkowski

[193] for the inclusion of the surface pressure term) to apply to obtain cluster masses directly

using the SZE effect. This method imposes a strong assumption of how gas mass scales with

total mass, i.e., ρgas(r) = fgasρtot(r), and therefore is not used directly in the present analysis.

2.6.1.1 Deviations from Hydrostatic Equilibrium

With the electron density and temperature models in hand, one can, in principle, calculate

hydrostatic masses using Equation 2.20. Recall that the equation of hydrostatic equilibrium

simply demonstrates how pressure and gravity must balance in order to attain equilibrium.

If, however, there is a source of non-thermal pressure, equilibrium will be achieved with less

thermal pressure. Fortunately, some of these non-thermal sources of pressure, e.g. turbu-

lence and bulk flow, are inherently modeled in hydrodynamic simulations, which trace the

motion of gas. These simulations indicate an increasing level of non-thermal pressure at

large radii, up to 20-30% at cosmologically interesting radii, leading to an overall 10-15%

bias in hydrostatic mass estimates (Lau et al. [153], Battaglia et al. [20, 19], Burns et al.

[47], Navarro et al. [201], Rasia et al. [239], Nagai et al. [200], Jeltema et al. [128]). Most

HSE mass measurements subsequently account for this bias in some form or another.

The assumption of adiabaticity can be broken by radiative cooling. Radiative cooling is

needed for all star formation and is believed to be the process which sets the entropy scale

for clusters (Peterson et al. [220], Peterson & Fabian [219], Voit [281], Borgani et al. [41]).

Protostellar collapse occurs when gas molecules cool via collisional transfer with dust grains,

which in turn radiatively cool the protostellar medium (Larson [152]). Most of the stellar

population in clusters is expected to have formed at high redshifts, z > 2 (Jimenez et al.

[130]), although it is still unclear what fraction of these stars are formed inside of the galaxy
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clusters themselves, versus having been acquired via accretion. Simulations by Conroy et al.

[59], however, suggest that accreted galaxies have their stellar fraction dispersed into the

low-luminosity intracluster light, instead of staying bound as a satellite galaxy or being

deposited in the brightest central galaxy.

The LX − TX relation was one of the first scaling relations to show deviations from

self-similarity, with the relation steepening for the lower mass clusters from the predicted

LX ∝ T 2
X . (Henry & Arnaud [114], White et al. [289], Markevitch et al. [167], Allen &

Fabian [5], Arnaud & Evrard [12], Finoguenov et al. [88, 89]). Bryan [43], Voit & Bryan

[282] and Voit et al. [283] argue that the observed deviation from self-similarity is due to

the cooling and condensation of gas accompanying star formation. X-ray radiative-cooling

models, however, indicate that radiative cooling alone would lead to a much higher than

optically-observed stellar mass (Lin et al. [160], Gonzalez et al. [102]). To balance this, star-

formation could be slowed by supernova and AGN activity in the core cluster galaxies, which

eject high-entropy gas to the cluster outskirts (Markevitch et al. [167], De Grandi & Molendi

[64], Vikhlinin et al. [278]). Simulations by Nagai et al. [200] demonstrate this activity to be

centralized within cluster radii of about R2500.

Mergers are probably the most obvious example of clusters departing from HSE. The

effect of merger activity on cluster observables has attracted a good amount of attention

recently (see Wik et al. [290], Nelson et al. [204], Krause et al. [144]). These simulations

demonstrate that the assumption that gas mass follows the iso-contours of the underlying

dark matter halo fails for disturbed clusters, while frictionless dark matter halos “slosh”

around the cluster core, out of phase with the baryonic matter (Ascasibar & Markevitch

[16], ZuHone et al. [306]). Molnar et al. [190] suggest that this might leave an observational

signature in the projected offset between the SZE and X-ray peaks of galaxy clusters.

Shock fronts provide additional non-thermal pressure, because they prevent the free mo-

tion of gas. The relative velocity of halo collisions can be measured from the shock Mach

numbers, and these collisions can be up to thousands of kilometers per second (Markevitch

& Vikhlinin [169]). Several shock fronts have been identified in galaxy clusters—most no-

table, of course, is the X-ray image of the Bullet Cluster (Markevitch et al. [168]). With

new high-resolution SZE cameras, such as MUSTANG, shock fronts have also been identified
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with the SZE (Korngut et al. [143]). In addition to shock fronts, simulations demonstrate

that residual bulk motion in the ICM could provide an additional non-negligible source of

non-thermal pressure support (Evrard [83], Dolag et al. [70], Lau et al. [153]).

There is ample evidence demonstrating that galaxy clusters are not the smooth, spherical

objects that they are often modeled as. For example, mass accretion could be preferentially

aligned along collapsed filamentary structures, which remained like a Swiss cheese after

the initial collapse of the overdensities. Simulations by Battaglia et al. [19] indicate that

ellipticity is largest for clusters at z=1. This ellipticity is dominated by the dark matter

component, with gas distribution being significantly more spherical, leading to a potential

source of mass bias. A prolate cluster, with its major axis aligned along the line-of-sight, will

project a different signal than the same cluster with its major axis aligned in the plane of the

sky (Krause et al. [144], Morandi et al. [191]). Furthermore, the specific shape of the mass

and gas profile matters at large radii, where the ICM can still contribute a significant amount

of SZE flux (Battaglia et al. [20], Lau et al. [154]). Battaglia et al. [19] notice a significant

asphericity in cluster gas that is not necessarily aligned with the dark matter halo, and this

will naturally bias mass estimations, which assume that the gas follows the dark matter

equipotential surfaces. Muñoz-Cuartas et al. [195] simulate cluster halo asphericity and

notice that it increases with both mass and redshift. They measure the major-to-minor axis

ratio of their simulated cluster halos to be less than 0.5 at 0.3 rvir for halo masses ∼1015M�.

On the observational side, Skielboe et al. [261] use a stacked sample of 1743 clusters from

the SDSS catalog 4 and measure a higher degree of optical dispersion for galaxies aligned

along the major axis of the central galaxy, with respect to those aligned along the minor

axis: ∆σν/〈σν〉 = 6% ± 2%. This they interpret to be the signature of a preferred prolate

cluster geometry based on the simulation results of Gottlöber & Yepes [104].

Significant levels of gas clumping in the outskirts of galaxy clusters have been observed

using the Suzaku X-ray telescope, which has a factor of ten less background due to its low-

Earth orbit than the previous generation of X-ray telescopes. Measurements by Bautz et al.

[21] and Simionescu et al. [260] of this gas clumping indicate an excess of X-ray emission

than predicted from theory and simulations. These observations are supported by N-body

4For more details about the SDSS survey, see Appendix A.
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simulations, which indicate cold clumps of infalling gas, such as galaxies, through accretion

and merger activity. Nagai & Lau [199] parameterize this using a “clumping” factor:

SX(r) ∝ 〈ρ2
gas(r)〉 = C(r)〈ρgas(r)〉2, (2.22)

C(r) =
〈ρ2
gas〉

〈ρgas〉2
≥ 1. (2.23)

Electron density profile measurements generally assume C(r) = 1, which would result in

overall biases of
√
C(r) in the density profiles. Note that the parameterization is more general

than “clumpiness,” for example, shock fronts would also result in C(r) 6= 1. Numerous

groups (Buote & Humphrey [45], Khedekar et al. [140], Zhuravleva et al. [302]) are currently

investigating this phenomenon. As these observations are still recent, clumping is generally

not accounted for in hydrostatic mass corrections.

2.6.1.2 X-ray Hydrostatic Mass Measurements

The sample characteristics of four X-ray hydrostatic mass calibration studies will be reviewed

to the extent that they pertain to this work: Allen et al. [6, hereafter A08], Bonamente et al.

[37, hereafter B08], Vikhlinin et al. [278], and Pointecouteau et al. [231]. The information

presented below, together with the relevant scaling relations discussed in Section 2.6.3, is

summarized in Table 2.1.

A08 measure hydrostatic masses for a sample of 42 hot (kT > 5keV) X-ray luminous,

dynamically relaxed galaxy clusters between 0.05 < z < 1.1. These are the masses used to

calibrate the scaling relations in the M10 sample, and, by extension, this work. With weak

priors on cosmology, A08 measure fgas to be constant for all 42 clusters of their sample. They

measure fgas= 0.1104 ± 0.0016 at R2500—a result supported by independent observational

analyses (Bonamente et al. [37], Zhang et al. [301], Mahdavi et al. [163]). A08 note that

the fgas measurements of a subsample of 6 low-redshift clusters is consistent with the entire

sample, and the additional rms scatter measured for the entire sample is approximately what

would be predicted from hydrodynamic simulations. A08 conclude Mgas to be a low-scatter

universal proxy for the total cluster cluster mass, Mtot. The power of the A08 result is that
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Mtot can be directly obtained from Mgas:

M(r∆) =
Mgas(r∆)

fgas(r∆)
=

4π∆ρcr(z)r3
∆

3
. (2.24)

M10 use the A08 measured fgas value and add an additional ∼8% systematic uncertainty to

the value to account for scatter in unrelaxed systems.

B08 measure hydrostatic masses using Chandra X-ray data for a sample of 38 clusters,

split evenly into a low redshift (z < 0.30) and a high redshift subset (0.30 < z ≤ .90). The

measured Mgas spans approximately an order of magnitude from 1013 to 1014 M�. These

are the masses used to calibrate the B08 SZE-X-ray scaling relation study, which shares

many properties in common with the BOXSZ sample. Similar to A08, B08 do not detect

any scaling of fgas with mass or redshift. B08 include an additional 20% gaussian noise

to their Mtot values to account for systematic uncertainties. The dominant component of

this systematic uncertainty is from the estimated bias due to projection effects caused by

cluster asphericity. Cluster asphericity for the sample is characterized using the measured

projected ellipticity of the X-ray surface brightness maps. LaRoque et al. [151] measure a

mean projected major-to-minor axis ratio of 0.79 for the B08 sample, with an rms scatter

of 9%. They then use this as the hypothetical distribution for the line of sight ellipticty

of the clusters and calculate the rms scatter that the asphericity would produce under the

assumption of a spherical model—20%.

Vikhlinin et al. [278] measure hydrostatic masses using Chandra data for 13 low redshift,

relaxed galaxy clusters with temperatures ranging betwee 0.7 and 9 keV. They too measure

hydrostatic masses for a higher redshift 36-member cluster sample with 0.35 < z < 0.9, using

moderate cosmological priors. These mass calibrations are used in the work of Vikhlinin et al.

[278, 279].

Pointecouteau et al. [231] measure the hydrostatic masses for 10 clusters with z < 0.15.

These masses are used to calibrate the Arnaud et al. [13, 14] scaling relations. Arnaud et al.

[15, hereafter A10] use 8 of these clusters together with an additional 12 clusters from the

REXCESS sample (Pratt et al. [237]) for hydrostatic mass calibration, although it appears

that the hydrostatic masses of the additional sample have not been published. These A10
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scaling relations, in turn, are used to calibrate the masses for the Planck Collaboration et al.

[224, 227] SZE results.

Arnaud et al. [13], Pratt et al. [236], Vikhlinin et al. [279] and Pratt et al. [237] all

conclude that fgas evolves with cluster mass:

fgas ∝Mα
tot. (2.25)

Specifically, V09 measure α = 0.13 ± 0.02, and Pratt et al. [236] measure α = 0.21 ± 0.03.

These results could possibly be reconciled with A08 and B08 if fgas asymptotes to a constant

value for clusters with temperatures above 5 keV. Simulations give varying expectations for

whether fgas evolves with mass or temperature. While some simulations, which include non-

thermal processes demonstrate fgas to be constant (Eke et al. [82], Crain et al. [61], Fabjan

et al. [87]), others observe fgas to evolve with mass and redshift (Kravtsov et al. [147], Stanek

et al. [267], Battaglia et al. [19]). The resolution of the uncertainty in the evolution of

fgas with redshift and Mtot for high-mass clusters is a key priority in the field.

2.6.2 The YX Mass Proxy

After observing fgas to evolve with mass and redshift in their simulations [147], Kravtsov

et al. [148] propose the X-ray analog of YSZ , YX=CMgasTX to be a more robust low-scatter

mass proxy, where,

C =
σT
mec2

1

ρgas/ne
= 1.406× 10−5Mpc2

1014keVM�
, (2.26)

σT is the Thompson cross-section, and ρgas/ne = 1.149mp for a highly ionized gas. YX is sug-

gested to be a lower-scatter mass proxy because the non-thermal scatter in Mgas, and TX are

expected to be anti-correlated. This can be understood in the sense that AGN activity in

the cluster core will eject baryons radially outwards, both heating the ICM and lowering the

relative baryon fraction. Motivated by these results, several observational studies have used

YX as a default mass proxy (Vikhlinin et al. [279], Andersson et al. [8], Planck Collaboration

et al. [224], Lin et al. [161]). The measured YX scaling relation results are summarized in
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Table 2.1. X-ray mass calibration sample characteristics used by the various SZE studies.

Name Obs Scaling Relation σ Ncl 〈z〉 〈Tx〉 M500

A08 CXO fgas= 0.1105± 0.0005(r/r2500)0.214±0.022 0 42 0.35 ∼7 keV [∼3, 21.7]
A08C CXO fgas= 0.113± 0.003 0 6 < 0.15 ∼8 keV [∼5, 10.1]
B08 CXO fgas= 0.116 · · · 38 0.30 ∼7 keV [2.0, 16.2]
K06 ART N-body M500∝YX0.581±0.009 0.071 16 0.3 · · · [0.4, 13.0]

K06 ART N-body M500∝M0.921±0.023
g,500 0.107 16 0.3 · · · [0.4, 13.0]

V09C CXO M500∝ Y 0.53±0.04
X 0 17 < 0.25 ∼6 keV [1.0, 22.8]

A10 XMM M500∝ Y 0.561±0.018
X 0.1 20 < 0.15 ∼4 keV [1.0, 8.4]

Note. — A compilation of the X-ray- and simulation-derived scaling relations adopted for the various
works discussed in the text. First column: The analysis from which these values where derived, where the
letter C indicates a low-redshift scaling relation for cosmological applications: (A08) Allen et al. [6], (B08)
Bonamente et al. [37], (K06) Kravtsov et al. [148], (V09) Vikhlinin et al. [279]. Second column: The X-ray
observatory or the simlation code that was used to derive the scaling relations: (CXO) Chandra X-ray
observatory, (XMM) XMM-Newton X-ray observatory, (ART N-body) Adaptive Refinement Tree N-Body
hydro-dynamic code (Kravtsov et al. [146].) Third column: The measured values for the given scaling
relation analysis. Fourth column: The measured intrinsic scatter for a given relation. Fifth column:
The number of clusters used to constrain the scaling relation. Sixth column: The median redshift for
the scaling relation. Seventh column: The median spectroscopic temperature measured for the sample.
Eighth column: The measured mass range for the given sample. Mass values for Allen et al. [6] obtained
from Mantz et al. [166]. Mass values for Bonamente et al. [37] have been multiplied by a factor of two in
order to estimate the M500 values for easier comparison with the other data sets.

Table 2.1.

Lin et al. [161] adopt the M − YX relation from V09 and apply it down to lower masses

and observe fgas to scale with mass as α = 0.13 ± 0.03 and they extend the fgas model to

have redshift dependence:

fgas ∝Mα
tot(1 + z)ζ , (2.27)

measuring ζ = 0.41±0.04. If one takes the redshift evolution of Lin et al. [161], and rescales

it to the Pratt et al. [236] α = 0.21± 0.03, one would obtain ζ = 0.66.

2.6.3 X-Ray Mass Proxy Comparison

Rozo et al. [244, hereafter R12] have recently conducted an examination of the systematic

differences between the estimated X-ray masses for shared clusters between the V09, M10,

and P11 samples. The results of this analysis are show in Figure 2.4. The V09 and M10

samples share 16 clusters in common, V09 and P11 share 23 clusters in common, and P11

and M10 share 28 clusters in common. At low redshifts, there exists an approximate 10-15%

systematic offset in the mass estimates between the different groups. P11 systematically
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measure lower masses, M10 systematically measure higher masses, and the V09-measured

masses are somewhere in between. At higher redshifts, a systematic trend between the P11

and M10 samples can be identified for the 16 shared clusters with z > 0.13. R12 measure

the average mass difference to be 45%±5% for these clusters. Aside from the lack of shared
4 Rozo et al.
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Fig. 1.— Differences in M500 between clusters shared by the Vikhlinin et al. (2009a, V09), Mantz et al. (2010b, M10), and
Planck Collaboration (2011b, P11-LS) samples. Filled circles are relaxed/cool-core clusters, while open circles are non-relaxed or non
cool-core systems. The small horizontal lines along the y axis mark the average mass offset for each of the three cross-comparisons: M10–
V09 (solid red), (P11-LS)–V09 (dashed blue), (P11-LS)–M10 (dot-dashed green). For the (P11-LS)–M10 comparison, we show averages
computed separately for low and high redshift systems, split at z = 0.13 (vertical dotted line). The low and high redshift averages are
displaced on the left and right axes respectively. All averages are computed using only relaxed/cool-core systems. Clusters labeled are
discussed in § 3.1.2.

3.1. Mass Comparison

We begin by comparing the mass estimates for the sam-
ples of galaxy clusters. As discussed above, each group
calibrates mass-observable relations against hydrostatic
mass estimates of relaxed systems, then uses these cal-
ibrated observables to infer masses for the bulk of the
objects in their samples. It is important to keep in mind
that the list of galaxy clusters with direct hydrostatic
mass estimates is relatively small, and some calibration
clusters are yet published, so directly comparing the ac-
tual hydrostatic mass estimates of individual galaxy clus-
ters is difficult. Fortunately, comparing the masses de-
rived from observational proxies is sufficient for our pur-
poses. Indeed, consider two groups, A and B, that cali-
brate the mass observables relations, MA–XA and MB–
XB, using their hydrostatic mass estimates of relaxed
galaxy clusters. The observables XA and XB need not
be the same. By definition, the mass proxy M(X) for
each group is

lnMA≡〈lnM |XA〉 , (1)

lnMB≡〈lnM |XB〉 , (2)

where the average is computed over the calibration sets of
relaxed galaxy clusters by each group. It trivially follows
that the average mass offset 〈 lnMA(XA)− lnMB(XB) 〉
between samples A and B is an unbiased estimator of
the hydrostatic mass offset, so long as one only averages
over relaxed galaxy clusters. This restriction is there be-
cause the calibration of M(X) is done using only relaxed

galaxy clusters. Consequently, we interpret the mass off-
sets observed here as hydrostatic mass differences, even
though the mass estimates themselves come from mass–
observable relations. In Paper II, we will make use of the
mass offsets identified here when examining differences in
published scaling relations.
Figure 1 shows mass differences for clusters in common

between the M10–V09, (P11-LS)–V09, and (P11-LS)–
M10 sample pairs. Mean differences computed using only
relaxed/cool-core clusters (filled symbols) are listed in
Table 3 and shown by short lines in the figure. The (P11-
LS)–V09 and M10–V09 mass comparisons show mod-
est offsets of 〈∆ lnM〉 = −0.12 ± 0.02 and 〈∆ lnM〉 =
0.08± 0.02 respectively. The (P11-LS)–M10 mass offset
using cool-core systems only is 〈∆ lnM〉 = −0.35± 0.07,
but the individual cluster values are sensitive to red-
shift, with the largest discrepancies above z = 0.13.
Splitting the sample at z = 0.13, we find mean offsets
〈∆ lnM〉 = −0.16 ± 0.07 and 〈∆ lnM〉 = −0.48 ± 0.07
below and above this redshift, which we hereafter refer
to as low and high redshifts, respectively. These values
differ at the 3.2σ level.
While it would be useful to determine whether there

is relative evolution in the other pairings ((P11-LS)–V09
and M10–V09), the sample overlaps are too small to per-
form a conclusive test.
In Paper II, we note that the LX–M500 relation of

Pratt et al. (2009) relies on the hydrostatic mass esti-
mates of Pointecouteau et al. (2005). The latter work
has 5 clusters in common with V09. For this common set,

Figure 2.4 A comparison between the differences of the derived mass estimates for individual
clusters in the (red) Mantz et al. [166, M10] and Vikhlinin et al. [279, V09], (blue) Planck
Collaboration et al. [224, P11-LS] and V09, and (green) P11-LS and M10 cluster samples.
P11-LS is abbreviated as P11 in the text. Filled symbols represent relaxed systems, and
open symbols represent disturbed systems; the degree of disturbedness is qualitatively de-
termined by the R12 authors. R12 divide the (P11-LS)-M10 analysis into a low-redshift and
a high-redshift component, demarcated by the vertical line. Means of the different cluster
samples are denoted by the horizontal lines, with the long dotted horizontal line denoting
zero difference. Figure from Rozo et al. [245].

hydrostatic cluster mass calibration estimates, the situation is further complicated, because

a bias in mass for a particular scaling relation will bias the overdensity radii (e.g. R500 or

R2500), which determines the aperture within which observables are generally measured.

After rescaling the measured Mgas values using the ρgas profile, reported in Piffaretti et al.

[221], R12 note that there is no systematic difference between the Mgas measurements of the



44

Figure 2.5 Schematic demonstrating how a mass-dependency in fgas affects Mgas and
Mtot measurements. The overdensity radius R∆, for a given ∆ is determined based on
where the mass profile intersects the 4/3πR3∆ρc black line. For a fiducial fgas= fg, this is
indicated at the intersection of the green dotted lines. When the fgas model changes, so does
the over-density radius, as indicated by the blue curve. If one were to naively convert from
one fgas model to another without changing the integration radius, one would underestimate
the true bias, as indicated by the vertical difference between where the blue curve intersects
the blue and the green dotted lines.

various groups.

It is slightly more complicated to compare Mtot measurements acquired using different

fgas models, because both the aperture and the systematic mass-proxy differences must be

accounted for. Figure 2.5 demonstrates why one cannot naively compare two mass measure-

ments using different different fgas models. R12 provide a conversion formula that accounts

for aperture effects to compare mass estimates between different mass proxies, which is now

reviewed.

As Mgas estimates between different groups are consistent with each other, one can con-

clude that the discrepancies between Mtot estimates can be explained by different mass and

redshift dependencies of the adopted fgas model. The discrepancy between the mass esti-

mates of two different analyses A and B is defined as the ratio of the Mtot estimates for a
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particular cluster:

bAB =
Mtot,∆,A

Mtot,∆,B

=
R3

∆,A

R3
∆,B

. (2.28)

Where in converting from Mtot to R∆, the same reference cosmology is assumed. This

assumption holds when comparing the P11 and M10 analyses, as they both use: ΩM =

0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. V09 use ΩM = 0.3, ΩΛ = 0.7, and H0 =

72 km s−1 Mpc−1, which would result in a constant offset of ∼5% compared with the P11

and M10 samples.

By matching Mgas measurements at the same physical radius between the two groups,

and assuming self-similarity (M ∝ Rγ
∆), the effect that a systematically different fgas value

has on Mtot(measured at different radii) can be characterized. First, equating Mgas,B with

Mgas,A at the same R∆,A, and expressing the result in terms of Mtot and fgas, yields:

Mgas,B(@R∆,A) = fgas,A(M, z)Mtot,A = fgas,B(M, z)Mtot,∆,B (R∆,A/R∆,B)γ . (2.29)

This step can be visualized in Figure 2.5 by collapsing a given Mtot profile onto Mgas and

then moving along the curve to match the other Mgas estimate. Inserting the calculated

R∆,A/R∆,B ratio into Equation 2.28 yields:

bAB =
Mtot,∆,A

Mtot,∆,B

=

(
fgas,B
fgas,A

)3/(3−γ)

=

(
fgas,B
fgas,A

)1.67

, (2.30)

where in the last step, the substitution γ = 1.2 has been made, which R12 determine using

the Piffaretti et al. [221] ρgas profile. The result in Equation 2.30 implies that aperture biases

will further increase the Mtot scaling with different fgas assumptions. This additional bias

can be identified as the vertical difference between the intersection of the dotted green and

blue lines with the blue curve. If the fgas assumptions between two groups are the same, of

course, bAB = 1.

To summarize, R12 find that once aperture biases have been accounted for, Mgas measure-

ments between V09, P11, and M10 are consistent with each other. Therefore, the systematic

differences in the mass measurements between the different groups can be derived from the

equivalence of the Mgas measurements and a known systematic difference in the fgas as-
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sumption. With a measured Mtot,A for a given cluster and fgas,A model, equation 2.30 shows

how to predict the Mtot,B estimate determined using an fgas,B model. Keep in mind that

systematic differences in Mtot,∆ are measured at different R∆ values since we want to keep

∆ the same between the two samples. Referring again to Figure 2.5, Mtot must be evaluated

as some point along the black dash-dotted line. This equation will be used later in Section

4.6.1 when the Bolocam results are compared with other scaling relations analyses.

2.6.4 Gravitational Lensing Mass Estimates

Pressure-derived scaling relations are relatively low-scatter but are potentially biased. Be-

cause gravitational lensing is a measure of total mass, lensing data should ideally be able to

calibrate this bias. While several weak lensing studies have been conducted to characterize

the degree of X-ray hydrostatic bias, they do not all agree with each other (see, for example,

Applegate et al. [10] and Okabe et al. [207]).

Marrone et al. [171] and Marrone et al. [172] measure the exponential scaling of the

SZE signal using both strong-lensing mass estimates and weak-lensing mass estimates, re-

spectively. Clusters were selected from the LoCuSS cluster catalog (see Appendix A) and

the SZE observations were performed using the Sunyaev-Zel’dovich Array (SZA) which was

introduced in Section 2.3.2. The Marrone et al. [171] strong-lensing sample consists of 14

galaxy cluster with a median redshift, 〈z〉 = 0.222. Assuming a scaling of M∆ ∝ Y β
∆ , they

measure β = 0.47+0.24
−0.20 with an intrinsic scatter of 32 ± 4% at a fixed physical integration

raduis of 350 kpc for their adopted cosmology. This is about 50-75% the size of R2500 for

the clusters in their sample. This radius was primarily chosen because strong lensing is

mostly sensitive to the core regions of galaxy clusters. The Marrone et al. [172] weak-lensing

sample, in comparison, consists of 18 galaxy clusters from the LoCuSS sample with redshifts

between 0.15 < z < 0.3. Their results give an exponential scaling that steepens at smaller r∆,

with β =
[
0.44+0.12

−0.11, 0.48+0.11
−0.11, 0.55+0.14

−0.13

]
at ∆ = [500, 1000, 2500]—each one shallower than

self-similar, β = 3/5. They measure the intrinsic scatter to be approximately 20% ± 10%,

which they suggest is so large due to variations in cluster morphology. At fixed Yspher, they

measure the mass of the undisturbed cluster to exceed that of the disturbed clusters by

[41± 6%, 28± 5%, 13± 6%, ] at ∆ = [500, 1000, 2500], respectively.
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Chapter 3

Bolocam and Chandra Observations
of the BOXSZ Cluster Sample

Starting in 2011 I devoted myself full-time to Bolocam data analysis and I expanded the

suite of reduced Bolocam observations from 5 to 45 clusters. Following the Sayers et al. [255]

proof-of-methodology paper, our work entered an exciting period of scientific collaboration

and publication. With our large sample of reduced observations, we were able to explore

and reduce various systematic biases in the data caused by aggressive atmospheric filtering,

calibration uncertainties, and radio source contamination.

3.1 BOXSZ: The Bolocam X-ray/Sunyaev-Zel’dovich

Sample

The Bolocam X-Ray SZ (BOXSZ) sample is a compilation of 45 clusters, with existing

Chandra data, observed with Bolocam at 140 GHz (Glenn et al. [100], Haig et al. [109]).

Bolocam is a 144-element bolometric camera with a 58” FWHM PSF at the SZE-emission-

weighted band center of 140 GHz. This data was collected over five years (from Fall 2006 to

Spring 2012) in 14 different observing runs at the Caltech Submillimeter Observatory. The

relevant observational information is included in Table 3.1, and most of the cluster properties

relevant to this analysis are included in Table 3.3.

Bolocam is well-suited to observe intermediate redshift clusters, and therefore many of

the clusters in the BOXSZ sample were selected with redshifts between 0.3 . z . 0.6. In
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Table 3.1. Observational Parameters of the BOXSZ Sample.

Catalog ID RA DEC SZE S/N SZE RMS SZE tint

(J2000) (J2000) (µKCMB − arcmin) (hours)

Abell 2204 16:32:47.2 +05:34:33 22.3 18.5 12.7

Abell 383 02:48:03.3 -03:31:46 9.6 18.9 24.3

Abell 209 01:31:53.1 -13:36:48 13.9 22.3 17.8

Abell 963 10:17:03.6 +39:02:52 8.3 35.7 11.0

Abell 1423 11:57:17.4 +33:36:40 5.8 31.7 11.5

Abell 2261 17:22:27.0 +32:07:58 10.2 15.9 17.5

Abell 2219 16:40:20.3 +46:42:30 11.1 39.6 6.3

Abell 267 01:52:42.2 +01:00:30 9.6 23.0 20.7

RX J2129.6+0005 21:29:39.7 +00:05:18 8.0 23.7 16.0

Abell 1835 14:01:01.9 +02:52:40 15.7 16.2 14.0

Abell 697 08:42:57.6 +36:21:57 22.6 17.4 14.3

Abell 611 08:00:56.8 +36:03:26 10.8 25.0 18.7

MACS J2140.2-2339 21:40:15.1 -23:39:40 6.5 27.3 12.8

Abell S1063 22:48:44.8 -44:31:45 10.2 48.6 5.5

MACS J1931.8-2634 19:31:49.6 -26:34:34 10.1 28.7 7.5

MACS J1115.8+0129 11:15:51.9 +01:29:55 10.9 22.8 15.7

MACS J1532.8+3021 15:32:53.8 +30:20:59 8.0 22.3 14.8

Abell 370 02:39:53.2 -01:34:38 12.8 28.9 11.8

MACS J1720.2+3536 17:20:16.7 +35:36:23 10.6 23.5 16.8

Cl 0024+17 00:26:35.8 +17:09:41 3.3 26.6 8.3

MACS J2211.7-0349 22:11:45.9 -03:49:42 14.7 38.6 6.5

MACS J0429.6-0253 04:29:36.0 -02:53:06 8.9 24.1 17.0

MACS J0416.1-2403 04:16:08.8 -24:04:14 8.5 29.3 7.8

MACS J0451.9+0006 04:51:54.7 +00:06:19 8.1 22.7 14.2

MACS J1206.2-0847 12:06:12.3 -08:48:06 21.7 24.9 11.3

MACS J0417.5-1154 04:17:34.3 -11:54:27 22.7 22.7 9.8

MACS J0329.6-0211 03:29:41.5 -02:11:46 12.1 22.5 10.3

MACS J1347.5-1144 13:47:30.8 -11:45:09 36.6 19.7 15.5

MACS J1311.0-0310 13:11:01.7 -03:10:40 9.6 22.5 14.2

MACS J2214.9-1359 22:14:57.3 -14:00:11 12.6 27.3 7.2

MACS J0257.1-2325 02:57:09.1 -23:26:04 10.1 39.0 5.0

MACS J0911.2+1746 09:11:10.9 +17:46:31 4.8 33.5 6.2

MACS J0454.1-0300 04:54:11.4 -03:00:51 24.3 18.2 14.5

MACS J1423.8+2404 14:23:47.9 +24:04:43 9.4 22.3 21.7

MACS J1149.5+2223 11:49:35.4 +22:24:04 17.4 24.0 17.7

MACS J0018.5+1626 00:18:33.4 +16:26:13 15.7 21.0 9.8

MACS J0717.5+3745 07:17:32.1 +37:45:21 21.3 29.4 12.5

MS 2053.7-0449 20:56:21.0 -04:37:49 5.1 18.0 18.7

MACS J0025.4-1222 00:25:29.9 -12:22:45 12.3 19.7 14.3

MACS J2129.4-0741 21:29:25.7 -07:41:31 15.2 21.3 13.2

MACS J0647.7+7015 06:47:49.7 +70:14:56 14.4 22.0 11.7

MACS J0744.8+3927 07:44:52.3 +39:27:27 13.3 20.6 16.3

MS 1054.4-0321 10:56:58.5 -03:37:34 17.4 13.9 18.3

RXJ 0152.7-1357 01:52:41.1 -13:58:07 10.2 23.4 9.3

CLJ 1226.9+3332 12:26:57.9 +33:32:49 13.0 22.9 11.8

Note. — BOXSZ observation data. Columns give the catalog and ID, X-ray centroid
coordinates (J2000), the peak SZE /N in the optimally filtered images (see Sayers et al.
[253] for details on how this was calculated), RMS noise level of the SZE images, and
the total Bolocam integration time.
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total, the BOXSZ sample spans from 0.15 ≤ z ≤ 0.9, with a median redshift of 〈z〉 = 0.42.

This redshift distribution is similar to the initial ground-based SZE-selected catalogs of both

the SPT, 〈z〉 = 0.57 (Song et al. [263]), and the Atacama Cosmology Telescope, 〈z〉 = 0.44

(Menanteau et al. [182]). In contrast, the early Planck SZE catalog has a median redshift of

〈z〉 = 0.15 (Planck Collaboration et al. [223]), while the recently released 2013 Planck SZE

catalog has a median redshift of 〈z〉 = 0.22 (Planck Collaboration et al. [228]). In addition

to redshift, many of the clusters in the BOXSZ sample were selected based on their higher-

than-average X-ray spectroscopic temperatures, TX , given the expected correlation between

TX and SZE brightness. A few clusters, however, were chosen due to their membership in

the CLASH and the MACS high redshift catalogs, and the BOXSZ sample includes both

the complete CLASH cluster catalog (Postman et al. [233]), and the complete MACS cluster

catalog of the 12 most luminous clusters with z > 0.50 (Ebeling et al. [71]). However, the

BOXSZ sample as a whole lacks a well-defined selection function. Therefore, selection effects

for the SZE scaling relations are modeled and explored in Section 4.3.

BOXSZ SZE data has already been used in several publications with Bolocam team

members as co-authors. Two results have come directly out of our data analysis procedure:

one on the calibration of millimeter-wave planetary fluxes (Sayers et al. [254]) and one on

radio source contamination in the SZE maps (Sayers et al. [257]). We observed two of the

Planck Early Release cluster candidates, PLCKESZ G115.71 and PLCKESZ G189.84, and

we confirmed the former to be a cluster (Sayers et al. [253]). Several studies use Bolocam data

to cross-calibrate mass estimates of other observable probes. Zitrin et al. [305] use Bolocam

data to calculate an upper-limit on a possibly lensed cluster by Abell 383. Umetsu et al. [277]

and Medezinski et al. [180] calibrate the mass profiles of MACSJ 1206.2 and MACSJ 0717.5,

respectively, using a combination of Bolocam SZE, X-ray and lensing data. Morandi et al.

[191] perform a joint Bayesian analysis, using the same observables to constrain the triaxiality

and non-thermal pressure profile of Abell 1835. By combining Bolocam 140 GHz and 268

GHz data with OVRO/BIMA/SZA 90 GHz data, Mroczkowski et al. [194] find the best-fit

spectral model of MACSJ 0717.5 to prefer a kinetic SZE component by more than 2σ. Most

recently, Sayers et al. [256] characterize the average pressure profile of the sample, obtaining

results that suggest a shallower pressure profile at large radii than predicted by simulations.
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Figure 3.1 Redshift (left) and X-ray temperature (right) distributions for the BOXSZ cluster
sample. Black histograms depict the entire sample with the red line indicating the median
value. Green histograms depict the clusters with centroid shift parameters below w =
7.2 × 10−2, which have therefore been classified to be the most relaxed. Blue histograms
depict the 23 lowest mass clusters of the sample, with M2500< 3.03×1014M�. Note that in the
left-hand plot the disturbed and relaxed samples are approximately uniformly distributed in
redshift. The high-mass and low-mass samples are also approximately uniformly distributed
in redshift, with three low-mass high-redshift outliers. In the right-hand plot, it can be
seen that there is almost no correlation between the disturbedness measure and the X-ray
temperature.

Some of the analyses are discussed in further detail in Chapter 5.

3.2 BOXSZ X-ray Data and Mass Estimation

X-ray mass estimates are utilized both for the BOXSZ scaling relations and to define an

aperture within which to integrate the SZE signal. Of the 238 clusters in the Mantz et al.

[166, hereafter M10] sample, 32 clusters overlap with the BOXSZ sample, and 13 additional

clusters were added specifically to complete the X-ray observations for the BOXSZ catalog.

X-ray luminosities are measured between 0.1 and 2.0 keV and Mgas values are calculated

using semi-analytical methods described in [165]. The XSPEC-MEKAL code is used to fit

to a single cluster temperature, excluding the core, between 0.15 and 1.0 R500.

The Mtot values for this work are directly calculated from Mgas, using the Allen et al. [6,
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hereafter A08] fgas calibration, with fgas= 0.1104, discussed in Section 2.6.1.2:

Mtot(r∆) =
Mgas(r∆)

fgas(r∆)
=

4

3
π∆ρcr(z)r3

∆. (3.1)

In deriving Mtot from Mgas, an additional 8% global systematic gaussian uncertainty in fgas is

marginalized over. As the uncertainty in Mgas depends on the uncertainty in r∆ ∝ M
1/3
tot ,

the fractional error for the two measurements is approximately the same.

Centroid variance, w500, is an indicator of how much the body of a cluster is displaced

from its core. Mohr et al. [188] first introduce this method to characterize local cluster

X-ray morphology. Specifically, the w500 parameter measures the standard deviation of the

projected separation between the cluster X-ray peak and the surface brightness centroids

of a series of concentric apertures, from 0.05 R500 to R500, centered at the X-ray peak and

normalized to R500. Using N-body simulations, Poole et al. [232] verify that w500 is an

extremely sensitive indicator of a cluster’s dynamical state. We have therefore adopted

w500 as a measure of the dynamical state of the BOXSZ clusters. The w500 measurements

have been calculated using the method described in Maughan et al. [177, 175] and are

presented in Table 3.3. The temperature and redshift distributions of the BOXSZ sample,

and their associated subsamples, split based on the median values of w500 and M2500, are

plotted in Figure 3.1.

3.3 Data Collection and Reduction

Bolocam data reduction is extensively explained in Sayers [252] and Sayers et al. [255]. The

general aspects of this process are reviewed below, including any pertinent changes, to the

extent that they provide a picture of the nature of the final data product.

3.3.1 Scan Pattern

Approximately 50-100 10-minute observations were performed for each BOXSZ cluster using

a lissajous scan pattern. This observing method enables 100% on-source observing efficiency.

The telescope is scanned in R.A. and Dec. with two asynchronous scan periods of 6.28
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Cluster Observations

• all clusters observed using

lissajous scan pattern, period

of ≃ 6 sec in one direction,

≃ 9 sec in other direction

• need to scan telescope

quickly to modulate

cluster signal above 1/f

atmospheric noise

• also want to be on-source

100% of the time

SZ@Bonn July 15, 2009 Jack Sayers

3

TABLE 1
Cluster properties

target RA dec redshift Bolocam time (ksec) RMS (µKCMB) r500 (Mpc) Mgas,500 (M⊙)

Abell 697 08:42:58 +36:21:56 0.28 52 8.9 1.65± 0.09 19.6± 2.7× 1013

Abell 1835 14:01:02 +02:52:42 0.25 50 8.7 1.49± 0.06 14.1± 1.2× 1013

MS 0015.9+1609 00:18:34 +16:26:13 0.54 38 10.2 1.28± 0.08 17.5± 1.9× 1013

MS 0451.6-0305 04:54:11 -03:00:53 0.55 53 7.7 1.45± 0.12 15.6± 2.2× 1013

MS 1054.4-0321 10:56:59 -03:37:34 0.83 66 6.7 1.07± 0.13 11.5± 2.4× 1013

SDS1 02:18:00 -05:00:00 - 37 9.1 - -

Note. — A list of the clusters presented in this manuscript. From left to right the columns give the RA and dec of the cluster
in J2000 coordinates, the redshift of the cluster, the amount of Bolocam integration time, the median RMS per beam-smoothed
pixel in the Bolocam map, the radius of the cluster, and the mass of the cluster. The values for r500 and Mgas,500 were taken
from Mantz et al. (2010b) (Abell 697 and Abell 1835) and Ettori et al. (2009) (MS 0015.9+1609, MS 0451.6-0305, and MS
1054.4-0321)

Fig. 1.— Integration time per pixel, relative to the maximum
integration time, for MS 0451.6-0305. Our model fits include all of
the data within a circular region with a minimum integration time
of 25% of the peak integration time, which corresponds to 6 − 7
arcmin in radius. The red box, with 10 arcmin sides, denotes the
region used for deconvolution of the processing transfer function.
The minimum relative integration time within this region is also
> 25%.

virial radius lies within our map. Note that, throughout
this work, we assume a ΛCDM cosmology with Ωm = 0.3,
ΩΛ = 0.7, and H0 = 70 km/s/Mpc.

Abell 697: Abell 697 is a cluster undergoing a complex
merger event along the line of sight (Girardi et al.
2006).

Abell 1835: Abell 1835 is a relaxed cluster with
a strong cooling flow (Peterson et al. 2001;
Schmidt et al. 2001).

MS 0015.9+1609: MS 0015.9+1609 is a triaxial clus-
ter that is elongated along the line of sight and
has an anomalously high gas mass fraction of 27%
(Piffaretti et al. 2003).

MS 0451.6-0305: MS 0451.6-0305 is a cluster that
is not quite in gravitational equilibrium, with
a slightly elongated X-ray profile (Donahue et al.
2003).

MS 1054.4-0321: MS 1054.4-0321 is a cluster under-
going a merger, as evidenced by the presence
of two distinct sub-clumps in the X-ray image
(Jeltema et al. 2001; Jee et al. 2005).

SDS1: Our SDS1 map is centered in the middle of the
Subaru/XMM Deep Survey (SXDS) field. The
deep XMM-Newton survey of this field reveals only
3 clusters within our map, all near the edge, and
the largest of which has a virial mass of M200 =
0.8 × 1013 M⊙ (Finoguenov et al. 2010). There-
fore, SDS1 is approximately free of signal from the
SZ effect.

3. DATA REDUCTION

In general, our data reduction followed the procedure
described in Sayers et al. (2009, hereafter S09), with
some minor modifications. We briefly describe the tech-
niques below, along with the changes relative to S09.

3.1. Calibration

Bright quasars located near the clusters were observed
for 10 minutes once every ≃ 90 minutes in order to
determine the offset of our focal plane relative to the
telescope pointing coordinates. These observations were
used to construct a model of the pointing offset as a func-
tion of local coordinates (az,el), with a single model for
each cluster. The uncertainty in the pointing models is
. 5 arcsec. This pointing uncertainty is quasi-negligible
for Bolocam’s 58 arcsec FWHM beams, especially for
extended objects such as clusters. We made two 20-
minute-long observations each night of Uranus, Neptune,
or a source in Sandell (1994) for flux calibration. Using
the quiescent detector resistance as a proxy for detec-
tor responsivity and atmospheric transmission, we then
fit a single flux-calibration curve to the entire data set.
We estimate the uncertainty in our flux calibration to be
4.3%, with the following breakdown: 1.7% from the Rudy
temperature model of Mars scaled to measured WMAP
values (Halverson et al. 2009; Wright 1976; Griffin et al.
1986; Rudy et al. 1987; Muhleman and Berge 1991;
Hill et al. 2009), 1.5% in the Uranus/Neptune model ref-
erenced to Mars (Griffin and Orton 1993), 1.4% due to
variations in atmospheric opacity (S09), 3.1% due to un-
certainties in the solid angle of our point-spread function
(PSF) (S09), and 1.5% due to measurement uncertain-
ties (S09).

3.2. Atmospheric noise subtraction

Figure 3.2 Left: Typical lissajous scan pattern used to observe galaxy clusters with Bolo-
cam. Right: Integration time per pixel relative to the maximum integration time for
MACSJ 0454.1-0300. The red box denotes the region, 10′/side, over which the deconvo-
lution of the pipeline transfer function yields reliable results. Taken from Sayers et al. [255].

seconds and 8.89 seconds, each with an amplitude of 4 arcmin. The scan periods alternate

between R.A. and Dec. every other observation. The mean scan speed is approximately 4

arcmin per second, with a peak scan speed of about 6 arcmin per second while crossing the

cluster. The observing efficiency for a sample cluster and an image of the scan pattern are

displayed in Figure 3.2.

3.3.2 Data Quality Cuts

Cuts to the data are performed based on the AC/DC characterization of individual bolometer

timestreams. The overall loading and calibration of the bolometers can be characterized by

the absolute, DC signal, and the imaging data lies in the AC signal, at frequencies higher

than the fundamental scan frequencies A sample diagnostic plot of this process for a single

observation is given in Figure 3.3, and an example of some of the cuts that are performed

on the data are given in the legend. The first and second values give the lower and upper

range of passing values, and the third item is the measurement for the particular observation.

This particular observation passed all of the displayed cuts, except for the median RMS AC

bolometer signal, which is measured to be 0.290 V. The time-ordered median DC voltage

across all bolometers is given in the upper plot. Due to the high emissivity of atmospheric
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water vapor, the Bolocam bolometer-calibration is responsive to changes in the atmospheric

water vapor. However, because cluster observations can still be performed under a variety of

atmospheric conditions, stringent cuts are not placed on the absolute level of the DC signal.

The power spectral density (PSD) is given in the lower plot. Here, the given observation has

a noticeably higher level of low-frequency noise compared to the median, and therefore it is

cut. As a reference point, the bandwidth used for observations is between 250 mHz and 2 Hz.

The number of observations which are cut for a particular observating run is highly sensitive

to the overall observing conditions of the run. Generally, fewer than 20 observations are cut

for a “good” run.

Cuts are similarly performed on individual bolometer timestreams, averaged over all

observations, to identify if particular bolometers are not functioning properly for a given

run. Of the 144 bolometers that are read-out on the Bolocam 140 GHz focal plane, 6 are not

optically coupled (”dark”), and 24 are non-operational. Of the 114 operational bolometers,

up to 10 bolometers can be cut from a particular observing run depending on individual

bolometer performance. Because the bolometers are read out in six independent hextants,

this process also allows us to trouble-shoot if there are any electronic problems with the

read-out for a particular hextant.

3.3.3 Synchronization and Pointing Correction

Excessive pointing and timing uncertainty will effectively increase the beam FWHM, when

large amounts of data are coadded. Both effects are modeled and removed from the data.

The Bolocam data acquisition clock has a long time-scale drift and is actively synchronized to

the GPS-synchronized telescope on a nightly basis. Figure 3.4 depicts how the timing offset

can change throughout the course of the night. The y-axis is in units of the 50Hz sample

rate. Therefore, a change in 50 units over the course of the night would cause an overall

shift of 1 second in synchronization. As the telescope scans approximately 4 arcminutes per

second, this offset could significantly smear if the beam if not accounted for. The data is

corrected using a simple linear time-drift model, which can be constructed from the timing

uncertainty indicated by the red line in Figure 3.4.

There are two stages to the pointing correction: one at the bolometer level and one at
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Figure 3.3 A sample diagnostic plot used to remove one of the RXJ 0451 (aka
MACSJ 0451.9+0006) observations from the final cluster coadds. From top to bottom: DC
signal in Volts, AC signal in Volts, and AC noise power spectral density in Volts/Hz1/2 for
the October 2009 observing run. Red lines indicate the signal averaged over all observations
(including the 5-minute pointing observations), and the black lines represent a particular
observation which was cut from the final coadds. One can see that the sky noise for this
particular observation is rather severe.
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Figure 3.4 Sample diagnostic plot used to model the clock drift for each night of observation.
The y-axis is in units of the data sample rate: 1 unit represents 10 ms. The clock has drifted
a bit more than a second over the course of the night, and this is well-modeled by a linear
fit. Uncorrected, this would result in a systematic error on the pointing correction that is
time-dependent over the night. Given the scan speed, this error would be large compared to
the beam FWHM and effectively smear the FWHM for coadded observations.

the telescope level. Pointing models are constructed by performing two consecutive 5-minute

observations of stationary millimeter-bright point sources (generally quasars) approximately

once every fourth observation. The centroids of the pointing maps determine the position

of the center of the focal plane on the sky with respect to the telescope coordinates. The

relative positions of individual bolometers with respect to the center of the focal plane are

determined using beam maps of the nightly 20-minute observations of a calibration source:

either Uranus, Neptune, or a secondary calibrator given in Sandell [251]. Flux calibration is

discussed separately in Section 3.3.4.

As Bolocam is mounted at the Cassegrain focus of the telescope, it must be dismounted

every time another instrument is scheduled to observe at that position. The mounting of

the warm optics has fairly loose tolerances, which results in slightly different optical path

for each mount/dismount cycle. This is accounted for by constructing pointing models for

each observation run relative to an ensemble average over many runs. In Figure 3.5, one can

observe that the overall trend in pointing has been that the beams of the bolometers in the
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Figure 3.5 Individual bolometer pointing corrections superimposed with the relative bolome-
ter positions on the Bolocam focal plane in units of the mean bolometer spacing for the
November 2006 observing run. Left: Bolometer position offsets magnified by a factor of
4. Black: the raw offsets. Red: the local trend in offsets, obtained by averaging over all
bolometers within 1.5 bolometer spacings of the given position. Right: the raw offsets over
all observing runs from November 2006 to October 2010. The bolometer positions are gen-
erally consistent from run-to-run, although the upper-right hextant appears to experience
more positional variation than the others.

upper right corner of the focal plane are shifted towards the center. Note that the trend is

magnified by a factor of four in the plot for visibility. The right-hand plot depicts the overall

trend of the pointing offsets through several different observing runs.

The second stage of pointing corrections occurs at the telescope stage. In general, these

are more significant than the focal plane pointing corrections. A sample nightly-pointing

diagnostic plot is given in Figure 3.6 and Figure 3.7 shows the positions of the pointing

sources for MACSJ 0744.8 over an entire observing run in 2009. Pointing generally does not

vary from night-to-night, and these diagnostics are solely performed as an additional quality

check. By far the largest systematic pointing offset is caused by offsets in the telescope and

source coordinates which vary telescope position. The left-hand plot of figure 3.8 depicts a

relatively rare situation with a gross offset of approximately 30 arcseconds in the azimuthal

direction (which can also be identified in Figure 3.6). This is most likely due to an incorrect

telescope setting and, if left uncorrected, this offset would source a significant amount of

effective beam smearing. Fortunately, as can be seen in the right-hand plot of the same
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Figure 3.6 Diagnostic plot for the nightly pointing of MACSJ 0744.8 on the night of November
4th, 2009. (Left) elevation pointing offset, (right) azimuthal pointing offset, (black diamonds)
raw data, and (red diamonds) corrected data. Note the overall 30 arcsecond pointing offset in
azimuth. When corrected with the pointing model, the residuals drop to about 5 arcseconds.

figure, these pointing erors can be well-modeled and removed. These models are accurate to

∼5 arcseconds, and this pointing uncertainty produces an effective broadening of the point-

spread function (PSF). Specifically, an effective PSF is determined by convolving Bolocam’s

nominal PSF, which has a full-width at half-maximum (FWHM) of 58 arcseconds, with a

two-dimensional Gaussian profile with σ = 5 arcsec. Fortunately, this broadening of the

PSF due to pointing uncertainty is small, and it does not have a significant impact on the

derived results (especially for resolved objects like galaxy clusters).

3.3.4 Flux Calibration

Flux calibration is performed with nightly 20-minute observations of Uranus and Neptune,

together with other secondary calibrators given in Sandell [251]. The absolute fluxes of

Uranus and Neptune, which are heated to about 110 Kelvin by the Sun, were determined

using the models of Griffin & Orton [106], rescaled based on an improved WMAP calibration

[209, 117, 286]. The WMAP measurements demonstrate the Wright [295]/Rudy et al. [247]

model to be systematically high by about 5-7%. The full methodology is described in detail
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Figure 3.7 Telescope pointing for all of the observations of MACSJ 0744.8 and the associated
pointing sources. This data is used as the basis for the pointing corrections depicted in Figure
3.8.

Figure 3.8 (Left) Elevational- and (right) azimuthal-dependence of the observational point-
ing error for MACSJ 0744.8 in a 2009 observing run. Black lines depict the best-fit pointing
models. (Bottom panels) Histograms of the total number of observations at a particular ele-
vation, left, or azimuth, right. (Top panels) Elevation pointing offset either uncorrected, left,
or corrected, right, with the best-fit pointing models. (Middle panels) Azimuthal pointing
offset either uncorrected, left, or corrected, right, with the best-fit pointing models.
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Figure 3.9 Flux calibration (mV/Jy) for the October 2009 observation run as a function of
median DC bolometer voltage. For this particular run, we observed Uranus (red diamonds),
Neptune (green diamonds), and a secondary calibration source (blue diamonds) given in
Sandell [251] . The estimated flux is given in the legend, and the error bars are gener-
ally larger than 0.00 for sources with unknown flux. Note how both the responsivity and
voltage decrease with atmospheric loading, making the flux-calibration a linear function of
atmospheric loading.
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Fig. 2.— Timestream noise PSD for a typical Bolocam detec-
tor. The black curve shows the raw PSD recorded by the detector;
spectral lines at the fundamental scan frequencies are clearly seen
above the broadband atmospheric noise. The red curve shows the
noise PSD after subtracting the atmospheric noise using the aver-
age signal over the FOV. This timestream is then high-pass filtered
at 250 mHz to produce the green PSD. Note that there is very little
cluster signal above ≃ 2 Hz, where there are some spectral lines
due to the readout electronics. The dashed horizontal line provides
an estimate of the photon, or BLIP, noise.

The raw Bolocam timestreams are dominated by noise
sourced by fluctuations in the water vapor in the atmo-
sphere, which have a power spectrum that rises sharply
at low frequencies. In order to optimally subtract the
atmospheric noise, we have used a slightly modified ver-
sion of the average subtraction algorithm described in
Sayers et al. (2010, hereafter S10). We have modified
the S10 algorithm because these cluster data contain ad-
ditional atmospheric noise caused by the Lissajous scan
pattern. Since we are scanning the telescope parallel to
RA and dec, the airmass we are looking through is con-
stantly changing. As a result, our data contain a large
amount of atmospheric signal in narrow bands centered
on the two fundamental scan frequencies.
Following the algorithm in S10, we first create a tem-

plate of the atmosphere by averaging the signal from all
of our detectors at each time sample (i.e., the average
signal over the FOV). In S10, this template is subtracted
from each detector’s timestream after weighting it by the
relative gain of that detector, which is determined from
the correlation coefficient between the timestream and
the template. We use a single correlation coefficient for
each detector for each 10-minute-long observation. How-
ever, a significant fraction of the atmospheric noise at the
fundamental scan frequencies remains in the data after
application of the S10 algorithm, indicating that we have
slightly misestimated the correlation coefficients. There-
fore, we modified the S10 algorithm to compute the cor-
relation coefficients for the template based only on the
data within a narrow band centered on the two funda-
mental scan frequencies. The atmospheric noise power
in these narrow frequency bands is roughly an order of
magnitude above the broadband atmospheric noise at
nearby frequencies; consequently, the data in these nar-
row bands provide a high signal-to-noise estimate of each
detector’s response to atmospheric signal. The narrow-
band atmospheric noise features are completely removed
using this modified S10 algorithm, and the amount of
residual broadband atmospheric noise is slightly reduced
compared to the results from the original S10 algorithm.
After applying this average subtraction algorithm to

the timestream data, we then high-pass filter the data
according to

F = 1− 1

1 + (10f/f0−1)κ

with f0 = 250 mHz and κ = 8. The value of f0 was cho-
sen to maximize the spatially-extended S/N for the typ-
ical cluster in our sample based on tests with f0 varying
from 0 to 400 mHz, and the value of κ was chosen to pro-
duce a sharp cutoff with minimal ringing. Figure 2 shows
a typical pre and post-subtraction timestream noise PSD.

3.3. Transfer function of the atmospheric noise filtering

In addition to subtracting atmospheric noise, the FOV-
average subtraction and timestream high-pass filter also
remove some cluster signal. Since we use the data
timestreams to both determine the atmospheric fluctua-
tion template and the correlation coefficient of each de-
tector’s data timestream with the template, the FOV-
average subtraction acts on the data in a non-linear way.
Consequently, its impact on the data depends on the clus-
ter signal. As described below, we quantify the effects of
the FOV-average subtraction and the timestream high-
pass filter via simulation by processing a known cluster
image through our data-reduction pipeline. These sim-
ulations are computation-time intensive, and we find, in
practice (see Section 6.1), that the filtering is only mildly
dependent on the cluster signal. Thus, in the end, we
determine the effects of the filtering for a particular clus-
ter’s data set using the cluster model that best fits those
data. We use the term transfer function to describe the
effect of the filtering, although this terminology is not
rigorously correct because the filtering depends in the
cluster signal.
To compute the transfer function, we first insert a

simulated, beam-smoothed cluster profile into our data
timestreams by reverse mapping it using our pointing in-
formation. These data are then processed in an identical
way to the original data, and an output image, or map,
is produced. When processing the data-plus-simulated-
cluster timestreams we use the FOV-average subtraction
correlation coefficients that were determined for the orig-
inal data. This ensures that the simulated cluster is pro-
cessed in an identical way to the real cluster in our data.
In the limit that the best-fit cluster model is an accurate
description of the data, this process is rigorously correct.
The original data map is then subtracted from this data-
plus-simulated-cluster map to produce a noise-free image
of the processed cluster. In Figure 3, we show an example
cluster image, along with the noise-free processed image
of the same cluster. The Fourier transform of this pro-
cessed cluster image is divided by the Fourier transform
of the input cluster to determine how the cluster is fil-
tered as a function of 2-dimensional Fourier mode (i.e.,
what we term the transfer function, see Figure 4).
At small angular scales, there is very little signal in the

beam-smoothed input cluster, and numerical noise pre-
vents us from accurately characterizing the transfer func-
tion at these scales. The transfer function is expected to
be unity at small angular scales, and is asymptoting to
this value at the larger scales where we can accurately
characterize it. Therefore, we set the transfer function
to a value of 1 for u > 0.75 arcmin−1. Deconvolving the

Figure 3.10 Measured timestream noise PSD for a typical bolometer in mKCMB/
√

Hz. Black
line: raw data, where the fundamental lissajous scan frequencies can be seen above the
atmospheric noise. Red line: Noise PSD after removal of the instantaneous bolometric
response-weighted median across the FOV. The data are then high-pass filtered data at
250 mHz (green line). The spectral lines at high frequencies are due to the readout elec-
tronics, where there is very little astronomical signal. Dashed line: estimated atmospheric
background limited noise level (BLIP). More details can be found in Sayers et al. [255].

in Sayers et al. [254], and the final overall uncertainty on the Bolocam flux calibration is

approximately 5%.

Atmospheric loading decreases the bolometer resistance, and since the bolometers are bi-

ased with a constant current, this will also decrease the peak voltage response for a bolometer

to a given source. A sample flux calibration diagnostic plot is given in Figure 3.9, demon-

strating the linear relation between responsivity and median DC voltage.

3.3.5 Atmospheric Noise Removal/Transfer Function/Mapping

Atmospheric brightness fluctuations are removed from the data-streams of each detector by

first subtracting the response-weighted mean detector signal and then applying a 250 mHz

high-pass filter. The individual detector responses used in this process are determined at the

particular lissajous scan frequencies.This process removes some cluster signal and is weakly

dependent on cluster shape. The effect that this has on the data PSD can be seen in Figure

3.10. The black line traces the raw bolometer PSD. The fundamental scan periods can be
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identified at 1/6.28 s = 160mHz and 1/8.89 s = 112mHz. The amplitude of the signal at

these frequencies is due to the changing loading due to the movement in elevation during

scanning. The red trace depicts the noise PSD, once the bolometer response-weighted median

is removed from the time stream. Finally, a 250 mHz HPF is applied to the time-ordered

data and the green trace depicts the fully-filtered PSD.

The pipeline transfer function must be determined in order to create an unbiased cluster

map, which can be directly compared to a given cluster model. The transfer function is

also used to compare model profiles directly to the processed data. As described in detail

in Sayers et al. [255], an iterative process is used to determine the signal transfer function

separately for each cluster. Each iteration involves processing a parametric model through

the data reduction pipeline, computing a signal transfer function by comparing the output

shape of this model to the input shape, fitting a parametric model to the data (convolved by

this transfer function), and then using this parametric fit for the input to the next iteration.

This process converges quickly—generally within two iterations. The azimuthally-averaged

transfer function for MS 0451.6-0305 is depicted in Figure 3.11. Because the model clusters

are, by design, not intended to fit small-scale modes, they have little signal in this regime,

and therefore the transfer function has a large degree of uncertainty for smale-scalle modes.

The transfer function is therefore set equal to one for modes smaller than 1.33 arcmin. For

large scale modes, there is very little Bolocam SZE signal, and the transfer function goes to

zero. In order to prevent significant amplification of large-scale noise, deconvolved images

are reduced to 10 × 10 arcminutes in size, compared with the processed images, which are

14× 14 arcminutes in size.

3.4 Noise Characterization and Point Source Removal

The scaling relation analysis depends critically on accurate noise characterization. This is

because a misestimate of the noise will not only affect the derived uncertainty estimates, but

will also bias the determination of the best-fit scaling relation. The Bolocam SZE cluster

images contain noise from a variety of sources: atmospheric fluctuations, instrument noise,

flux calibration, primary CMB anisotropies, and emission from the non-uniform distribution
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Fig. 3.— Images of the best-fit spherical Nagai model for MS 0451.6-0305. The left image is the model and the right image is the model
after being processed through our data reduction pipeline, which high-pass filters the image in a complex way. This filtering significantly
reduces the peak decrement of the cluster and creates a ring of positive flux at r & 2 arcmin. Note that the processed image is not quite
azimuthally symmetric.

Fig. 4.— The magnitude of the transfer function for MS 0451.6-
0305 as a function of Fourier wavenumber u = 1/λ. At large
scales, or small u, the measurement error is negligible and the
error bars provide an indication of the azimuthal variation. At
u > 0.75 arcmin−1, the measurement error becomes non-negligible
and we set the transfer function equal to 1. Note that this az-
imuthally averaged transfer function is for display purposes only;
we have used the full two-dimensional transfer function throughout
our analysis.

processed cluster image using the transfer function (see
Section 5), which has been approximated as 1 at small
angular scales, produces an image that is slightly biased
compared to the input cluster. The residuals between
these two images are approximately white, with an RMS
of . 0.1 µKCMB. This transfer-function-induced bias is
negligible compared to our noise, which has an RMS of
≃ 10 µKCMB.
As noted above, the transfer function (weakly) de-

pends on the profile of the cluster; larger clusters are
more heavily filtered than smaller clusters. Therefore,
we determine a unique transfer function for each cluster
using the best-fit elliptical Nagai model for that clus-
ter (Nagai et al. 2007, hereafter N07). The details of
this fit are given in Section 4. Since the transfer func-
tion depends on the best-fit model, and vice versa, we
determine the best-fit model and transfer function in an
iterative way. Starting with a generic cluster profile, we

first determine a transfer function, and then fit an ellip-
tical Nagai model using this transfer function (i.e., the
Nagai model parameters are varied while the transfer
function is held fixed). This process is repeated, using
the best-fit model from the previous iteration to calculate
the transfer function, until the best-fit model parameters
stabilize. This process converges fairly quickly, usually
after a single iteration for the clusters in our sample.
The model dependence of the resulting transfer function
is quantified in Section 6.1.

3.4. Noise estimation

In order to accurately characterize the sensitivity of
our images, we compute our map-space noise directly
from the data via 1000 jackknife realizations of our clus-
ter images. In each realization, random subsets of half
of the ≃ 100 observations are multiplied by −1 prior to
adding them into the map. Each jackknife preserves the
noise properties of the map while removing all of the as-
tronomical signal, along with any possible fixed-pattern
or scan-synchronous noise due to the telescope scanning
motion4. Since these jackknife realizations remove all as-
tronomical signal, we estimate the amount of astronom-
ical noise in our images separately, as described below.
After normalizing the noise estimate of each map pixel
in each jackknife by the square root of the integration
time in that pixel, we construct a sensitivity histogram,
in µKCMB-s

1/2, from the ensemble of map pixels in all
1000 jackknifes. The width of this histogram provides an
accurate estimate of our map-space sensitivity (see Fig-
ure 5). We then assume that the noise covariance matrix
is diagonal5 and divide by the square root of the integra-
tion time in each map pixel to determine the noise RMS
in that pixel. This method is analogous to the one used
in S09, where it is described in more detail.
There is a non-negligible amount of noise in our

4 We show that there is no measurable fixed-pattern or scan-
synchronous noise in our data later in this section and in Sec-
tion 6.2.

5 This approximation is justified for our processed data maps in
Section 6.2. Note that the approximation fails for our deconvolved
images (see Section 5), which contain a non-negligible amount of
correlated noise. We describe how this correlated noise is accounted
for in our results in Section 5.

Figure 3.11 The magnitude of the azimuthally-averaged transfer function for MS 0451.6-
0305 as a function of Fourier wavenumber u = 1/λ. At large scales, the error bars are
good indicators of the rms azimuthal variation of the map. At small scales, however, the
cluster model has little signal/constraining power and the measurement noise increases due to
numerical uncertainty. The transfer function is therefore set equal to 1 at u > 0.75arcmin−1.
The full 2-dimensional transfer function is used for the Bolocam data analysis. More details
can be found in Sayers et al. [255].

of fore- and background galaxies. Section 3.5.1 reviews how additional uncertainties due to

the deconvolution of the signal transfer function are accounted for. Section 3.7 characterizes

the uncertainties of the YSZ estimates that arise from the uncertainty in the overdensity

radius used for integration.

Noise realizations are created for each cluster by multiplying a randomly chosen subset

of half of the ∼50-100 observations by −1 prior to coadding them together. A total of

1000 such jackknife noise realizations are created for each cluster. The noise realizations

contain no astronomical signal but retain the statistical properties of the atmospheric and

instrumental noise. To account for noise from primary CMB fluctuations and unresolved

galaxies, a random realization of the 140 GHz astronomical sky is added to each noise

realization, using the measured angular power spectrum from the SPT [138, 241] under

the assumption that the fluctuations are Gaussian. The resulting noise realizations are

statistically indistinguishable from Bolocam maps of blankfields, thereby verifying that this

noise model provides an adequate description of the Bolocam data. These noise realizations

provide the basis to which all of the modeled astronomical noise, discussed below, is added.
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Dusty star-forming regions and radio-bright point sources will bias YSZ measurements

low. Fortunately, the 140 GHz regime is located in a valley of low background contamination

between radio and thermal dust emission. The frequency dependence of the flux density, Sν ,

for radio sources can be approximated as:

Sν ∝ ν−α, (3.2)

where 0.5 . α . 1.4 for the BOXSZ sample. The flux density of dusty thermal sources can

be characterized with a gray-body spectrum (not quite in the Raleigh-Jeans limit), peaking

at 10’s of Kelvin,

Sν ∝ να, (3.3)

where typically alpha & 2. Several of the clusters in the BOXSZ sample contain signal from

bright radio galaxies that are not accounted for in the SPT power spectrum. In particular,

the brightest cluster galaxy (BCG) is often a bright radio emitter, and this emission will

systematically reduce the magnitude of the SZE decrement towards the cluster.

A full description of the methodology in which we systematically characterize and sub-

tract the flux of these bright radio galaxies is given in Sayers et al. [257], and the general

procedure is described below. A total of 6 bright radio sources are detected in the Bolocam

140 GHz maps for the entire cluster sample. These maps are used to constrain the normal-

ization of a point-source template, centered on the coordinates of the detected radio source

in the 1.4 GHz NVSS radio survey [58], and the best-fit template is subsequently subtracted

from the data. In addition to this, NVSS-detected sources near the centers of 11 clusters in

the BOXSZ sample have extrapolated 140 GHz flux densities greater than 0.5 mJy. This is

the threshold found to produce more than a 1% bias in the SZE signal of the cluster, and

an effort is made to remove them from the cluster signal. All of the undetected sources are

subtracted using the extrapolated flux densities based on a combination of 1.4 GHz NVSS

and 30 GHz OVRO/BIMA/SZA measurements.

Furthermore, the uncertainties of these subtracted point sources are accounted for in the

estimated error of the YSZ parameters. This is performed by adding to each noise realization
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introduced in Section 3.4 the corresponding point-source template, multiplied by a random

value drawn from a Gaussian distribution. The standard deviation of the distribution is

equal to either the uncertainty on the normalization of the detected sources, or is based on

a fixed 30% uncertainty on the extrapolated flux density for the undetected radio sources.

3.5 Model Fitting

As described in Section 3.3.5, an unbiased image of a given cluster is obtained by deconvolving

the signal transfer function from the processed image. However, one subtlety in this process

is the fact that the DC component of the signal transfer function is equal to zero, which

means that the Bolocam data do not constrain the overall signal offset in the deconvolved

images. A parametric model is therefore used to constrain this signal offset. Specifically, a

signal offset is added to the deconvolved image, so that the average signal in the deconvolved

image at r ≥ r500/2 is equal to the average signal from the parametric model in the same

region. Although we have strived to make our SZE measurements as model-indepedent as

possible, constraining the overall signal offset of the deconvolved images does introduce some

model-dependence in the results (the computation of the signal transfer function introduces

an even smaller amount of model dependence, and this is described in Section 3.3.5).

Unprojected SZE signal can be modeled using the pressure profile models, which were

generally introduced in Section 2.2.1. Arnaud et al. [15, hereafter A10] measured a GNFW

model, which is commonly used in the field and is therefore it is also adopted for this analysis.

The A10 model is constrained with X-ray data below R500 and with simulations above:

p(r) =
p0

(cr)γ [1 + (cr)α](β−γ)/α
, (3.4)

where p0 is the pressure normalization, c is the concentration parameter that sets the radial

scale, and α, β, and γ are the power-law slopes at moderate, large, and small radii. In all

cases, the exponential parameters are set to the A10 values: [α, β, γ] = [1.05, 5.49, 0.31].

We allow p0 to float in all cases and further generalize the fits to allow for ellipticity by

substituting r with
√
r2

1 + r2
2/(1− ε)2, where ε is the ellipticity and r1 and r2 represent
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the major and minor axes, respectively. The elliptical generalization of equation 3.4 is

numerically integrated using equations 2.11 and 2.12, with the additional assumption that

the axis along the line of sight follows the relation:

r3 ≡
√
r2

1

2
+

r2
2

2(1− ε)2
. (3.5)

Due to the variety of cluster morphologies and SZE signal-to-noise levels within the

BOXSZ sample, the number of free parameters needed to sufficiently describe the data varies

across the sample. All clusters are therefore fit to a set of four models, each with a different

number of free parameters, depending on whether c and/or ε are fixed in Equation 3.4 to the

A10 values of cA10 = 1.18/r500 and εA10 = 0. These various models are subsequently referred

to in terms of the number of their free parameters, (1, 2, 3 or 4), with: (1) c and ε are fixed,

(2) ε is fixed, (3) c is fixed, and (4) both c and ε are allowed to float. Note that floating

the ellipticity of the 3- and 4-models introduces two additional free parameters: ellipticity

as well as the angle of inclination of the major axis.

All cluster fitting is performed by convolving the proposed cluster model with the signal

transfer function and minimizing the χ2 with respect to the processed data:

χ2 =
∑

i

(model(i)− data(i))2

σ2
i

, (3.6)

where index i is summed over all map pixels and σi is the pixel variance determined from

the noise realizations.

3.5.1 Choosing a Minimal Model: The Simulated F-Test

In a general sense, the F-test is the standard statistic to test for the validity of adding an

additional parameter to a fit. This statistic calculates the difference between the chi-square

distributions for fits to models differing by one degree of freedom, normalized by the reduced

χ2 of the original model, and is given by Bevington & Robinson [30]:

Fχ =
χ2(m)− χ2(m+ 1)

χ2(m+ 1)/(N −m− 1)
=

∆χ2

χ2
ν

, (3.7)
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where the values of χ2 are computed from Equation 3.6 for both the model with m + 1

degrees of freedom (the candidate model with one additional free parameter) and the model

with m degrees of freedom (the original model).

The model fits to the maps assume a diagonal covariance matrix—implying that pixel-

to-pixel noise is uncorrelated. From Sayers et al. [255], we know that this is a good, but

not perfect, description of the data. While the assumption of a diagonal covariance matrix

is sufficient for model-fitting, the F-test is more sensitive to small-levels of covariance. This

covariance is accounted for by utilizing the 1000 noise realizations for each cluster to develop

the probability distribution, χ2(m), for various degrees of freedom. First, the observed

χ2
Bq distributions are calculated by fitting the Bolocam data, B, with each of the the four

different best-fit models, q, for each cluster. Here, q ∈ [1, 2, 3, 4] represents the number of

free parameters of the model fit, which was introduced in Section 3.5. Similarly, the modeled

χ2
pq distributions are calculated by adding a representative input model, p, to each of the

1000 noise realizations and fitting each one of these model+noise realizations with the q

model. Note that each χ2
Bq represents a single data point, while each χ2

pq represents an entire

modeled χ2 distribution. For example, χ2
13 represents the 1000-element χ2 distribution for an

input 1-model+noise realization fit with a 3-model. In contrast, χ2
B3 represents the observed

Bolocam data fit with a 3-model.

With this information, the modeled F-test is performed by comparing the different χ2
Bq

values for two different q values with the difference of the χ2
pq distributions of these same q

values. The lower plot of figure 3.12 depicts the differenced χ2
11−χ2

12 and χ2
11−χ2

13 distribu-

tions for Abell 1423, and the corresponding χ2
B1−χ2

B2 and χ2
B1−χ2

B3 values are represented

by vertical lines. Since the additional free parameter represented by the scale radius, i.e., c,

is not completely described by the two additional free parameters in the ellipticity, i.e. ε, the

2-model and the 3-model represent two independent branches of comparison for the F-test.

A hierarchical decision tree is therefore implemented to choose the minimal model for each

particular cluster. Starting with the 1-model and progressing towards the 4-model:

a. First, the model distribution, χ12 − χ11, is calculated. If χB2 − χB1 is greater than 98%

of the model distribution, the 1-model is ruled out, and the process proceeds to step b.

Otherwise, the 1-model is determined to be a sufficient model for this branch, and the
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process continues with step c.

b. The χB2− χB4 value is compared with the χ22− χ24 distribution. If χB2− χB4 is greater

than 98% of the differenced model distribution, the 4-model is chosen as the minimal

model, and the F-test procedure is finished. Otherwise, the 2-model is determined to be

a sufficient model that describes the data along this branch, and the process proceeds to

step c. We chose 98% as the cut-off value based on the expectation that one of the 45

BOXSZ clusters would fall outside of this range.

c. This is the second branch of the F-test, this time replacing the 2-model of steps a-b with

the 3-model. Again, if the 4-model is chosen along this branch, it represents the minimal

model, and the process is finished.

d. If both branches choose the 1-model, then the 1-model is chosen.

e. If only one branch chooses a 2- or a 3-model, then the higher order model is chosen.

f. If both branches choose either the 3-model or the 2-model, the 2-model is chosen, since

it has fewer free parameters.

Once a minimal model is selected for a given cluster, this model is used for all subsequent

analysis. The F-test chosen models are given in the last column of table 3.2. The largest

fraction of the BOXSZ cluster sample are best described using a 1-model, and this ends up

being 16 clusters. The higher-order 2-, 3-, and 4-models are selected for 10, 12, and 7 clusters

in the sample, respectively. In a later section, the effect that these different model fits have

on the observed scaling relations is explored.

The minimum model required to adequately describe each cluster is then used to de-

termine the signal offset in the deconvolved images. In order to aid the visualization, a

schematic of this process is given in figure 3.13. In each case, the noise-weighted mean signal

in the deconvolved image is computed in the region r ≥ r500/2. The mean signal for the

minimum model required to describe the cluster is then computed in the same region using

the same weighting, and the offset between the two mean signal values is then added to the

deconvolved image. A range of radii were explored as possible cutoffs for the region used
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1050 1100 1150 1200
χ2 for 1-, 2-, and 3-Model Fit 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
D

F

0

1

C
D

F

1-model ideal gaussian χ2

1-Model
2-Model
3-Model

0 5 10 15 20 25 30
Δχ2

0

100

200

300

400

# 
of

 n
oi

se
 r

ea
liz

at
io

ns

0

1

C
D

F
 o

f Δ
χ2

2-Model PTE 7.2
3-Model PTE 1.4

Figure 3.12 Example of the χ2
1q distribution for Abell 1423 used for the modeled F-test.

Upper: The red curves represent the 1-model χ2 PDF and CDF, under the assumption that
a diagonal noise covariance matrix fully describes the noise in the processed image. The
black line shows the 1-model χ2 CDF obtained from fits to the 1000 noise realizations. The
offset between the black and red CDFs is because a diagonal noise covariance matrix does
not perfectly describe the noise, and it motivates the use of empirically-derived CDFs based
on the noise realizations. Green lines represent the 2-model, and blue lines the 3-model
CDFs. The coloring for the vertical lines represents the observed χ2

Bq values, with the same
coloring of model fit as with the modeled χ2 distributions. Lower: Histograms and CDFs of
the ∆χ2 for the 2- and 3-model fits to the noise realizations. The PTE of the 3-model fit to
the data is less than 2%, and therefore the modeled F-test developed in this work indicates
that the 3-model is the best model that describes the data in the first step of the process.
The next step in the modeled F-test for this cluster would then be a comparison between
the 3- and 4-models.
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14’ x 14’ processed image

10’ x 10’ deconvolved image
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closed by 
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signal o�set 
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Figure 3.13 Schematic demonstrating how the signal offset for the SZE images is determined.
The large gray box on the left demonstrates the extent of a processed image (14×14 arcmin).
Prior to deconvolving the signal transfer function, the processed image is trimmed to 10 ×
10 arcmin. The transfer function of the DC signal component is 0, and therefore the overall
signal offset of the deconvolved images is unconstrained by the data alone. Consequently,
the signal offset is determined by forcing the noise-weighted mean signal in the deconvolved
image outside of R500/2 to be equal to the mean signal from the minimal parametric model
fit to the cluster, using the same weighting in the same region (denoted in blue on the left-
hand figure). The region used to compute Y2500 is denoted in red, and does not overlap with
the region used to constrain the signal offset. The right-hand figure shows a 14 arcmin one-
dimensional slice through a cartoon cluster, showing that the cluster SZE signal is non-zero
even at the edge of the image. The blue and red boxes indicate the approximate value of
the signal offset added to the deconvolved image.
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in the computation of the mean signal. This radius should be large enough so that the

region of the image used to compute the model offset is independent from the region used

to determine YSZ , thus minimizing the model-dependence of the YSZ estimates. However, at

larger radii the measurement noise on the mean signal increases quickly because the number

of map pixels included in the calculation drops. At R500/2 the mean-signal measurement

noise is near its minimum, yet this radius is in general outside of the integration radius used

to compute YSZ , R2500. For the BOXSZ sample, R500/2 varies from ' 1−4 arcminutes, with

a median of approximately 2.5 arcminutes.

The same process is then applied to each of the 1000 noise realizations for each cluster,

with the signal offset determined using the minimum-model fits to the model+noise real-

izations described above. Therefore, the uncertainty in the signal offset is fully included in

the ensemble of noise realizations. Figures 3.14 and 3.15 show thumbnails of the SZE fil-

tered and deconvolved maps for the entire data set, respectively. For the deconvolved maps,

the F-test determined offsets are included. The best-fit pressure profile parameters for the

BOXSZ sample are presented in Table 3.2.

3.5.2 Measured Ellipticity

Beyond being a mass proxy, several groups are interested in using SZE data to constrain

cluster triaxiality. To the extent that there is no selection bias in the line-of-sight extent

of galaxy clusters, the distribution of ellipticity can characterize the distribution of triaxial

structure in general (LaRoque et al. [151]). Furthermore, ellipticity is a strong indicator of

an abnormal cluster morphology.

Figure 3.16 depicts the measured BOXSZ ellipticity, given an assumed model and the F-

test results. 19 out of the 45 clusters (42%) prefer a free elliptical measurement parameter.

As expected, the signal-to-noise ratios of the measured ellipticities of the F-test sample

are significant with a median S/N & 4.0. While it cannot be assumed that the source of

the ellipticities are actual cluster SZE signal, many of the clusters with the most extreme

ellipticity measurements show signs of being exceptional.

The most extreme major-to-minor axis ratio measured for the BOXSZ sample is 4.8±0.6,

for the cluster MACSJ 0911.2. While this cluster is not characterized as disturbed in [256],
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Abell 2204

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 383

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 209

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 963

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 1423

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 2261

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 2219

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 267

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

RX J2129.6

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 1835

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 697

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 611

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MS 2137

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell S1063

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1931.8

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1115.8

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1532.9

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Abell 370

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1720.3

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

ZWCL 0024

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J2211.7

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0429.6

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0416.1

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0451.9

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1206.2

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0417.5

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0329.6

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1347.5
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MACS J1311.0
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S/N

MACS J2214.9

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0257.1

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0911.2

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0454.1

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1423.8

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J1149.5

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0018.5

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0717.5

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MS 2053

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0025.4

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J2129.4

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0647.7

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MACS J0744.8

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

MS 1054

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

CL J0152.7

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

CL J1226.9

-32 -16  -8  -4  -3  -2  -1   0   1   2   4   8  16
S/N

Figure 3.14 Thumbnails showing the S/N per beam in the processed SZE images for all
45 BOXSZ clusters. The images are 14 × 14 arcminutes in size. The color scale is linear
from S/N of −4 to S/N of +2 to allow an accurate visualization of the noise and low S/N
SZE decrements, and the color scale is quasi-logarithmic at lower and higher S/N values.
This logarithmic scale is required due to the large dynamic range of some images, due to
significant SZE decrements and/or bright point sources. Note that the point sources are
subtracted from the data prior to any estimation of Y2500.
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Abell 2204 Abell 383 Abell 209 Abell 963 Abell 1423 Abell 2261 Abell 2219

Abell 267 RX J2129.6 Abell 1835 Abell 697 Abell 611 MS 2137 Abell S1063

MACS J1931.8 MACS J1115.8 MACS J1532.9 Abell 370 MACS J1720.3 ZWCL 0024 MACS J2211.7

MACS J0429.6 MACS J0416.1 MACS J0451.9 MACS J1206.2 MACS J0417.5 MACS J0329.6 MACS J1347.5

MACS J1311.0 MACS J2214.9 MACS J0257.1 MACS J0911.2 MACS J0454.1 MACS J1423.8 MACS J1149.5

MACS J0018.5 MACS J0717.5 MS 2053 MACS J0025.4 MACS J2129.4 MACS J0647.7 MACS J0744.8

MS 1054 CL J0152.7 CL J1226.9

Figure 3.15 Thumbnails showing the deconvolved SZE images of all 45 BOXSZ clusters.
Each image is 10 × 10 arcminutes in size. These images have been directly integrated to
obtain Y2500, with the region enclosed by R2500 shown as a dashed red line.
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Figure 3.16 The distribution of ellipticities for the BOXSZ cluster sample. Left: distribu-
tion of the measured 4-model (black), 3-model (green), and F-test (blue) ellipticities in the
BOXSZ sample. The bins of the 4-model distribution are shifted slightly for clarity. Right:
average signal-to-noise ratio of the measured ellipticities in the BOXSZ sample for fits to the
4-model (black crosses), 3-model (green squares), and F-test-selected models(blue circles).

it is one of the more interesting clusters in the Kartaltepe et al. [137] study of the MACS

high-redshift sample. Kartaltepe et al. [137] identify two sub-clusters for MACSJ 0911.2

approximately 1 Mpc apart, and the Bolocam-measured major-axis orientation of 83.2± 7.3

degrees West-of-North is similar to the axis between the two sub-clusters which Kartaltepe

et al. [137] do not explicitly measure.

The next most elliptical cluster is MACSJ 0744.8 with a measured major-to-minor ratio

of 2.3 ± 0.4. This cluster is classified as disturbed in Sayers et al. [257], and there are no

known point sources immediately in its vicinity. Korngut et al. [143] have identified a shock

in the high-resolution MUSTANG SZE maps of this cluster and measure a Mach number of

1.2 ± 0.2, resulting from two clusters colliding with a relative speed of 1827+267
−195km/s. The

Bolocam-measured North-South elongation is similar in orientation to the one measured in

Korngut et al. [143], although this correlation must be taken with caution, considering that

MUSTANG and Bolocam measure the SZE at extremely different scales. Kartaltepe et al.

[137] note a complex red-sequence galaxy surface density morphology exhibiting an elongated

double peak. This galaxy cluster has also been studied using strong lensing [303, 258]. Of

all the MACS high-redshift galaxy clusters studied in those works, MACSJ 0744.8 has the

least extension along the line-of-sight. One can visually identify that the major axes of the

mass and galaxy surface densities are orthogonal to both sets of SZE data. If the cluster is
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indeed post-merger, this would perhaps suggest that the Bolocam SZE signal is along the

major axis of the shock, as expected. However, considering that the X-ray surface brightness

does not exhibit any similar ellipticity to the SZE signal, this suggests the need for further

investigation of what could be the source of ellipticity.

As the most distant cluster in the BOXSZ sample (and also one of the hottest), it is no

surprise that CLJ 1226.9 stands out, with the third-highest measured ellipticity of 2.2± 0.4.

Jee et al. [127] cite this cluster to exhibit tension with the standard ΛCDM cosmological

model, due to being so massive and at such a high redshift. Nevertheless, the cluster is

not classified as disturbed based on the X-ray centroid shift parameter [177, 256]. A 0.08

mJy point source has been identified in the Bolocam data [257], although it is not removed,

because it is not expected to affect the integrated YSZ signal. CLJ 1226.0 is also studied

in Korngut et al. [143], where they note an SZE enhancement in the South-West region

of the cluster. This is in agreement with an X-ray-hot region and a lensing-identified sub

cluster 40′′in the South-West region of the X-ray centroid [176, 126]. In contrast to the

case of MACSJ 0744.8, the Bolocam YSZ elongation is along the lensing mass major axis.

This would suggest that the merger is not causing a noticeable distortion of the large-scale

YSZ signal.

3.6 Choice of Integration Aperture

Scaling relations at different radii are not necessarily the same because halo concentration

is correlated tightly with formation epoch and is therefore dependent on the underlying

cosmology (Bond et al. 38, Bryan & Norman 44, Lemson & Kauffmann 157, Wechsler et al.

284, 285, Wetzel et al. 287, Jing et al. 131, Wu et al. 297). The choice of R500 as an

integration aperture is popular because simulations indicate that this is the point at which

a given mass proxy is least affected by the non-thermal activity of the cluster core and the

observed clumping in the cluster outskirts (Evrard et al. [84]). Unfortunately, it is often

difficult to obtain reliable X-ray measurements out to this radius using XMM-Newton and

Chandra observations due to significant foreground dominating the dim cluster emission.

Consequently, many analyses involving X-ray data have chosen to instead use R2500 (e.g.,
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Bonamente et al. 37).

For this analysis, ∆ = 2500 is chosen primarily due to systematic uncertainties related

to the SZE data. In particular, the fractional noise on YSZ due to uncertainties in the signal

offset of the deconvolved images grows quickly with integration radius, increasing by approx-

imately a factor of two between R2500 and R500 as depicted in Figure 3.17. Furthermore, a

few clusters in the BOXSZ sample have values of R500 larger than the 10′ × 10′ deconvolved

images. Although the choice of integration radius is not driven by considerations related

to the X-ray analysis, it should be noted that due to the rapid roll-off of X-ray surface

brightness beyond R2500, the noise in the Chandra X-ray measurements is lower at R2500 as

well.

One consequence of this choice of integration radius is that it is not significantly larger

than the Bolocam PSF, and therefore beam-smoothing effects can bias the Y2500 estimate.

Effectively, this implies that some of the SZE emission within R2500 appears in the Bolocam

image outside of R2500, due to beam smearing. To estimate this bias, Y2500 is computed

using the minimal parametric model, determined in Section 3.5.1, both before and after

convolution with the Bolocam PSF. The Bolocam-measured Y2500 value is then corrected by

the ratio of Y2500 values, determined from the un-smoothed and beam-smoothed model for

each cluster. This beam-smoothing correction is generally . 10%, and anti-correlated with

mass due to the fact that more massive clusters tend to have larger R2500 (see Figure 3.17).

Therefore, although this beam-smoothing bias is relatively minor, it is critical to correct for

this bias in order to obtain an accurate scaling relation due to its mass dependence.

The fractional bias due to beam smoothing is plotted in Figure 3.17 together with rms

large-scale signal modeling uncertainty. The figure demonstrates how the beam-smoothing

bias and the rms uncertainty in the signal offset is minimized at integration radius of ∼1.3′.

This is very close to the median of the R2500 distribution but at the edge of the R500 dis-

tribution. The rms signal offset uncertainty is approximately 20% around the median of

R500 and is significantly larger than the simulated intrinsic scatter between YSZ as a func-

tion of Mtot, such as is modeled in Nagai et al. [198]. For this reason, we have chosen R2500 as

the integration radius for the BOXSZ scaling relation analysis.
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Figure 3.17 Histograms, left axis: Distribution of the R500(red) and R2500(black) values for
the BOXSZ cluster sample. (Magenta, dashed) 7 arcmin ensquared radial extent of the
BOXSZ maps, and (violet, dashed) 5 arcmin ensquared radial extent of the deconvolved
BOXSZ maps. Symbols, right axis: (green, triangles) The radial dependence of the sys-
tematic bias in Y∆ due to the finite size of the Bolocam PSF. (Blue, squares) uncertainty
in Y∆ as a function of integration radius due to uncertainties solely in the signal offset of
the deconvolved SZE image. As a point of reference, recall that there is an overall 5% flux
calibration uncertainty for the BOXSZ cluster sample.
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3.7 YSZ Estimation

The signal-offset-corrected deconvolved SZE images are directly integrated using Equation

2.12 to determine the best-fit value of YSZ for each cluster, with the integration extended over

the solid angle within R2500. In addition, the value of YSZ is also computed for each of the

1000 noise realizations, and these values are then added to the best-fit value of YSZ to produce

a distribution of YSZ values based on the noise properties of each cluster. Figure 3.18 and

Equation 3.1 demonstrate that an uncertainty in Mtot directly translates into an uncertainty

in the X-ray estimated r∆. To account for the uncertainty in YSZ due to uncertainties in the

X-ray derived value of R2500, the integration radius for each noise realization is randomly

drawn from the distribution of R2500 values produced by the Monte-Carlo chains obtained

from the X-ray data discussed in Section 3.2. In contrast to the distribution of Mtot values,

which is log-Gaussian, the distribution of YSZ values is approximately Gaussian. The final

YSZ values are presented in Table 3.3, and the Mtot and Y2500 distributions are depicted in

Figure 3.19. Since the scaling relation formalism in Section 4.1 assumes log-Gaussian error,

the effects of the Gaussian distribution of YSZ values are accounted for via simulation, which

is described in detail in Section 4.3. Note that all of the errors shown in any figures or

given in any tables throughout this manuscript are equal to the standard deviations of the

YSZ distributions for each cluster. The employed method to compute YSZ differs from the

parametric fitting methods used in other scaling relation analyses (e.g., Bonamente et al.

37, Marrone et al. 171, Planck Collaboration et al. 224, 229, Andersson et al. 8, Marrone

et al. 172), as the directly detected signal is not parameterized. Parametric models are

solely used to determine the signal transfer function (which very weakly depends on cluster

shape), and to constrain the average signal in the deconvolved images in a region outside

the integration radius for YSZ .



78
macsj0416.1

 
 

 

 

 

 

 

 

  1.54   3.48   7.82
M

tot,2500
1014 M

SUN

   

     

  0.19

  0.54

  0.89

   

  0.19

  0.54

  0.89

 

 

 

 

 

 

 

  0.18   0.38   0.80
M

gas,2500
1014 M

SUN

   

   

 -0.74

 -0.42

 -0.10

 

 

 

 

 

 

  0.35   0.95   1.55
Y

2500
 10-10 steradians

   

Figure 3.18 Two-dimensional confidence intervals (68% outlined in red and 95% outlined
in blue), along with the one-dimensional marginalized PDFs for R2500, M2500, and Y2500 for
the cluster MACSJ 0416.1, a typical Bolocam cluster with z=0.42 and M500 = 0.9 × 1015.
The red-line is a best-fit normal distribution drawn to help guide the eye. The mass values
are given on a logarithmic axis and YSZ values are given on a linear axis. Note that the
uncertainty in Mtot,2500, as discussed in Section 3.2, derives from the uncertainty in fgas,2500,
while the uncertainty in Mgas,2500 derives from the uncertainty in R2500, which is a function
of Mtot,2500.
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Table 3.2: Best-Fit Cluster Pressure Profile Parameters for the BOXSZ cluster sample.

Catalog ID ∆RA ∆DEC p0 rs ε θ χ2 DOF F

(arcmin) (arcmin) (10−11 erg

cm3 ) (arcmin) (◦E of N)

Abell 2204 0.42±0.05 -0.15±0.07 23.7± 3.7 4.3±0.4 0.26±0.06 82.6± 7.2 1197.4 1117.0 4

Abell 383 -0.03±0.05 -0.25±0.17 4.5± 0.6 11.6±3.1 · · · · · · 1156.2 1118.0 2

Abell 209 0.11±0.04 -0.16±0.09 9.2± 0.8 6.3 0.25±0.08 -18.4± 8.8 1206.8 1118.0 3

Abell 963 0.17±0.06 0.13±0.11 41.8±22.7 1.6±0.9 · · · · · · 1179.9 1118.0 2

Abell 1423 -0.34±0.06 0.27±0.34 7.2± 1.4 5.5 0.50±0.15 69.8±11.2 1149.8 1118.0 3

Abell 2261 -0.46±0.05 0.00±0.23 3.7± 0.7 6.3 0.42±0.12 82.6± 8.8 1111.8 1116.0 3

Abell 2219 -0.16±0.08 0.28±0.14 13.4± 1.7 6.7 · · · · · · 1084.3 1120.0 1

Abell 267 -0.27±0.04 0.22±0.15 7.9± 1.3 4.7 · · · · · · 1011.6 1119.0 1

RX J2129.6+0005 -0.25±0.06 0.27±0.14 6.4± 1.0 4.8 0.45±0.12 17.6±10.0 1182.8 1118.0 3

Abell 1835 -0.13±0.06 0.02±0.07 9.3± 1.1 5.4 0.26±0.07 -15.6±10.0 967.1 946.0 3

Abell 697 -0.11±0.03 -0.23±0.05 9.1± 0.6 5.5 0.37±0.04 -21.2± 4.0 1284.2 1118.0 3

Abell 611 -0.02±0.04 -0.28±0.15 8.4± 1.1 4.0 · · · · · · 1120.5 1120.0 1

MACS J2140.2-2339 0.01±0.06 -0.20±0.24 5.5± 1.1 3.3 · · · · · · 1124.8 1120.0 1

Abell S1063 0.35±0.10 0.21±0.13 15.6± 1.8 5.0 · · · · · · 1113.5 1120.0 1

MACS J1931.8-2634 -0.06±0.04 0.31±0.12 9.9± 1.2 3.8 · · · · · · 1180.4 1120.0 1

MACS J1115.8+0129 -0.04±0.06 0.60±0.13 4.5± 0.8 6.6±1.6 0.30±0.09 -0.0± 9.8 1179.2 1117.0 4

MACS J1532.8+3021 0.06±0.04 0.03±0.15 6.3± 1.1 3.7 · · · · · · 1204.2 1120.0 1

Abell 370 0.04±0.04 -0.37±0.10 10.0± 1.1 3.8 · · · · · · 1143.2 1120.0 1

MACS J1720.2+3536 -0.12±0.05 0.18±0.24 1.9± 0.4 21.4±5.8 0.47±0.07 -82.1 1210.7 1117.0 4

Cl 0024+17 1.00±0.05 -0.39±0.37 4.4± 1.8 2.7 · · · · · · 1201.4 1120.0 1

MACS J2211.7-0349 0.05±0.07 0.15±0.09 16.2± 1.8 4.2 · · · · · · 1153.0 1120.0 1

MACS J0429.6-0253 -0.31±0.06 -0.03±0.18 3.3± 0.7 9.7±2.9 · · · · · · 1168.4 1119.0 2

MACS J0416.1-2403 0.26±0.08 0.31±0.14 9.6± 1.3 3.2 · · · · · · 996.5 948.0 1

MACS J0451.9+0006 0.02±0.04 0.06±0.13 7.7± 1.1 2.8 · · · · · · 1164.6 1120.0 1

MACS J1206.2-0847 0.14±0.05 0.10±0.06 12.6± 0.9 4.0 · · · · · · 1102.7 1120.0 1

MACS J0417.5-1154 -0.50±0.05 0.31±0.06 8.3± 0.9 6.7±0.9 · · · · · · 1165.8 1119.0 2

MACS J0329.6-0211 -0.25±0.05 -0.02±0.09 11.0± 1.3 2.9 0.40±0.10 -5.0± 9.3 1212.5 1118.0 3

MACS J1347.5-1144 0.15±0.03 -0.11±0.03 36.3± 5.4 2.4±0.2 0.19±0.05 -20.4± 9.0 1073.2 1117.0 4

MACS J1311.0-0310 -0.45±0.04 0.11±0.15 2.9± 0.7 5.7±1.7 · · · · · · 1118.5 1119.0 2

MACS J2214.9-1359 -0.36±0.06 0.07±0.10 12.9± 1.5 3.2 0.39±0.10 14.2± 9.0 1131.5 1115.0 3

MACS J0257.1-2325 -0.14±0.05 0.03±0.15 3.3± 0.4 14.4±3.8 · · · · · · 1062.9 1119.0 2

MACS J0911.2+1746 -0.70±0.06 -0.01±0.33 7.1± 1.5 2.8 0.79±0.11 -83.2± 7.6 1127.8 1118.0 3

MACS J0454.1-0300 0.24±0.03 0.13±0.07 8.0± 1.1 4.2±0.3 0.26±0.06 86.4± 7.2 1188.8 1117.0 4

MACS J1423.8+2404 0.16±0.04 0.29±0.11 9.5± 1.4 2.4 · · · · · · 1052.6 1120.0 1

MACS J1149.5+2223 0.01±0.04 -0.16±0.07 5.8± 0.9 5.9±1.4 0.24±0.06 -51.3± 8.6 1119.6 1117.0 4
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Catalog ID ∆RA ∆DEC p0 rs ε θ χ2 DOF F

(arcmin) (arcmin) (10−11 erg

cm3 ) (arcmin) (◦E of N)

MACS J0018.5+1626 0.31±0.05 0.07±0.10 5.6± 0.8 5.5±1.1 · · · · · · 1098.9 1119.0 2

MACS J0717.5+3745 0.10±0.10 -0.06±0.04 38.2± 9.9 2.2±0.4 · · · · · · 1188.7 1119.0 2

MS 2053.7-0449 -0.58±0.03 0.10±0.24 5.1± 1.4 1.8 · · · · · · 1205.9 1120.0 1

MACS J0025.4-1222 0.46±0.04 -0.25±0.09 9.1± 1.0 2.4 · · · · · · 1226.7 1120.0 1

MACS J2129.4-0741 0.15±0.04 0.12±0.08 13.9± 1.5 2.7 0.31±0.09 65.8± 8.5 1124.5 1118.0 3

MACS J0647.7+7015 -0.03±0.05 0.03±0.09 7.1± 1.4 4.4±0.8 · · · · · · 1128.9 1119.0 2

MACS J0744.8+3927 0.01±0.05 0.04±0.06 10.9± 1.0 2.5 0.56±0.09 -2.8± 5.1 1265.2 1118.0 3

MS 1054.4-0321 -0.02±0.04 -0.02±0.09 5.7± 1.4 3.7±0.7 · · · · · · 1086.1 1119.0 2

RXJ 0152.7-1357 -0.08±0.06 0.04±0.12 2.0± 0.4 8.3±2.7 0.36±0.09 8.4± 8.1 1220.3 1117.0 4

CLJ 1226.9+3332 -0.11±0.08 0.21±0.11 17.8± 1.9 1.8 0.54±0.10 71.2± 6.7 1293.2 1118.0 3

Note. — The third and fourth columns give the SZE centroid shift with respect to the X-ray

centroid, given in Table 3.1. The fifth, sixth, seventh, and eighth columns give the amplitude,

scale radius, ellipticity, and orientation of the major elliptical axis, as defined for Equation 3.4.

There exists a degeneracy between the amplitude and scale radius, and the given error bars fully

marginalize over this degeneracy. The ninth, tenth and eleventh columns give the best-fit χ2,

the number of degrees of freedom of the GNFW profile fits, and the probability for the measured

χ2 to exceed the number of degrees of freedom. The final column gives the number of free

parameters as determined from the F-test.
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Table 3.3: Physical X-ray and SZE Parameters Measured in this Analysis.

Catalog ID z r2500 Mgas,2500 Mtot,2500 kT Y2500 w500

(Mpc) (1014M�) (1014M�) (keV) (10−10 ster) (10−2)

Abell 2204 0.151 0.62+0.03
−0.03 0.44+0.07

−0.05 4.00+0.68
−0.51 8.55±0.58 3.37+0.59

−0.64 0.13±0.04

Abell 383 0.188 0.44+0.02
−0.03 0.16+0.02

−0.02 1.46+0.22
−0.24 5.36±0.19 1.70+0.47

−0.40 0.19±0.03

Abell 209 0.206 0.53+0.03
−0.03 0.29+0.04

−0.05 2.61+0.41
−0.47 8.23±0.66 2.34+0.37

−0.34 0.50±0.17

Abell 963 0.206 0.50+0.03
−0.02 0.25+0.03

−0.03 2.22+0.39
−0.30 6.08±0.30 0.58+0.25

−0.25 0.22±0.11

Abell 1423 0.213 0.42+0.03
−0.03 0.14+0.03

−0.02 1.31+0.29
−0.22 5.75±0.59 0.81+0.33

−0.31 0.76±0.19

Abell 2261 0.224 0.60+0.03
−0.03 0.43+0.05

−0.06 3.87+0.56
−0.58 6.10±0.32 1.14+0.30

−0.27 0.85±0.08

Abell 2219 0.228 0.71+0.04
−0.03 0.69+0.10

−0.08 6.29+1.08
−0.87 10.90±0.53 3.68+0.83

−0.81 0.18±0.13

Abell 267 0.230 0.48+0.02
−0.02 0.21+0.03

−0.02 1.93+0.27
−0.26 7.13±0.71 0.85+0.24

−0.20 2.68±1.26

RX J2129.6+0005 0.235 0.52+0.03
−0.02 0.27+0.04

−0.03 2.47+0.39
−0.33 6.34±0.62 0.84+0.22

−0.22 0.52±0.14

Abell 1835 0.253 0.65+0.03
−0.03 0.56+0.07

−0.05 5.11+0.80
−0.57 9.00±0.25 1.75+0.31

−0.29 0.23±0.02

Abell 697 0.282 0.64+0.04
−0.04 0.54+0.09

−0.08 4.90+0.96
−0.89 10.93±1.11 1.87+0.28

−0.26 0.60±0.45

Abell 611 0.288 0.49+0.02
−0.02 0.24+0.03

−0.02 2.21+0.35
−0.27 6.85±0.34 0.62+0.15

−0.14 0.56±0.10

MACS J2140.2-2339 0.313 0.47+0.02
−0.02 0.22+0.02

−0.02 1.98+0.27
−0.23 4.67±0.43 0.39+0.11

−0.11 0.39±0.05

Abell S1063 0.348 0.75+0.04
−0.04 0.94+0.15

−0.11 8.57+1.61
−1.28 10.90±0.50 3.29+0.63

−0.60 0.75±0.15

MACS J1931.8-2634 0.352 0.57+0.02
−0.02 0.42+0.05

−0.04 3.83+0.51
−0.44 7.47±1.40 1.26+0.21

−0.20 0.35±0.09

MACS J1115.8+0129 0.355 0.56+0.02
−0.02 0.40+0.04

−0.04 3.65+0.44
−0.46 9.20±0.98 1.06+0.30

−0.32 0.27±0.05

MACS J1532.8+3021 0.363 0.55+0.03
−0.02 0.38+0.05

−0.04 3.39+0.55
−0.39 6.83±1.00 0.44+0.15

−0.15 0.28±0.15

Abell 370 0.375 0.48+0.03
−0.03 0.26+0.04

−0.04 2.35+0.41
−0.47 7.34±0.52 0.86+0.15

−0.16 4.90±2.00

MACS J1720.2+3536 0.387 0.49+0.03
−0.02 0.28+0.04

−0.03 2.54+0.42
−0.33 7.90±0.74 1.14+0.62

−0.34 0.24±0.06

Cl 0024+17 0.395 0.30+0.02
−0.02 0.06+0.01

−0.01 0.55+0.13
−0.11 5.94±0.87 0.12+0.07

−0.07 2.53±0.41

MACS J2211.7-0349 0.396 0.66+0.03
−0.03 0.69+0.10

−0.08 6.30+1.01
−0.84 13.97±2.74 2.35+0.33

−0.33 0.88±0.13

MACS J0429.6-0253 0.399 0.47+0.02
−0.02 0.25+0.03

−0.03 2.25+0.35
−0.30 8.33±1.58 0.78+0.24

−0.20 0.39±0.07

MACS J0416.1-2403 0.420 0.54+0.05
−0.05 0.38+0.10

−0.10 3.40+0.95
−0.88 8.21±0.99 1.00+0.24

−0.20 2.02±1.06

MACS J0451.9+0006 0.430 0.43+0.04
−0.03 0.19+0.05

−0.04 1.77+0.53
−0.37 6.70±0.99 0.42+0.10

−0.09 1.93±0.80

MACS J1206.2-0847 0.439 0.64+0.03
−0.03 0.66+0.09

−0.07 6.00+0.98
−0.83 10.71±1.29 1.77+0.21

−0.21 0.72±0.11

MACS J0417.5-1154 0.443 0.70+0.04
−0.04 0.88+0.13

−0.12 7.96+1.40
−1.28 9.49±1.12 2.63+0.43

−0.44 3.01±0.07

MACS J0329.6-0211 0.450 0.49+0.02
−0.02 0.30+0.03

−0.03 2.71+0.39
−0.32 6.34±0.31 0.61+0.10

−0.09 1.40±0.26

MACS J1347.5-1144 0.451 0.71+0.03
−0.03 0.92+0.10

−0.10 8.37+1.12
−1.05 10.75±0.83 1.76+0.17

−0.16 0.59±0.04

MACS J1311.0-0310 0.494 0.43+0.02
−0.02 0.21+0.02

−0.02 1.93+0.28
−0.22 6.00±0.32 0.46+0.09

−0.09 0.22±0.08

MACS J2214.9-1359 0.503 0.52+0.03
−0.03 0.38+0.06

−0.05 3.46+0.70
−0.54 9.65±0.78 1.06+0.20

−0.20 1.30±0.29

MACS J0257.1-2325 0.505 0.45+0.03
−0.02 0.23+0.04

−0.03 2.10+0.40
−0.31 9.90±0.90 0.95+0.27

−0.21 0.46±0.13

MACS J0911.2+1746 0.505 0.41+0.02
−0.03 0.17+0.03

−0.03 1.59+0.29
−0.31 6.60±0.60 0.19+0.09

−0.08 0.89±0.64

MACS J0454.1-0300 0.538 0.56+0.03
−0.03 0.51+0.07

−0.06 4.59+0.79
−0.68 9.15±0.49 0.87+0.11

−0.10 2.27±1.50

MACS J1423.8+2404 0.543 0.44+0.02
−0.02 0.25+0.04

−0.03 2.30+0.39
−0.31 6.92±0.32 0.33+0.07

−0.08 0.31±0.15

MACS J1149.5+2223 0.544 0.54+0.03
−0.03 0.46+0.07

−0.06 4.16+0.78
−0.62 8.50±0.57 1.09+0.17

−0.17 1.64±1.23

MACS J0018.5+1626 0.546 0.58+0.03
−0.03 0.54+0.08

−0.07 4.87+0.82
−0.77 9.14±0.43 0.99+0.17

−0.14 0.67±0.14

MACS J0717.5+3745 0.546 0.65+0.03
−0.04 0.77+0.11

−0.10 7.00+1.14
−1.09 11.84±0.54 1.08+0.22

−0.20 2.55±1.26
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Catalog ID z r2500 Mgas,2500 Mtot,2500 kT Y2500 w500

(Mpc) (1014M�) (1014M�) (keV) (10−10 ster) (10−2)

MS 2053.7-0449 0.583 0.28+0.02
−0.02 0.07+0.02

−0.01 0.59+0.16
−0.12 4.45±0.58 0.05+0.03

−0.02 1.02±0.31

MACS J0025.4-1222 0.584 0.45+0.04
−0.03 0.26+0.06

−0.05 2.38+0.66
−0.50 6.49±0.50 0.28+0.06

−0.05 0.65±0.50

MACS J2129.4-0741 0.589 0.48+0.03
−0.02 0.33+0.05

−0.04 3.03+0.54
−0.43 8.57±0.74 0.68+0.11

−0.10 1.51±0.69

MACS J0647.7+7015 0.591 0.52+0.02
−0.03 0.42+0.05

−0.05 3.83+0.51
−0.54 11.50±1.10 0.84+0.14

−0.13 0.62±0.29

MACS J0744.8+3927 0.698 0.49+0.02
−0.02 0.38+0.05

−0.04 3.50+0.53
−0.46 8.08±0.44 0.29+0.05

−0.05 1.60±0.11

MS 1054.4-0321 0.831 0.44+0.03
−0.02 0.34+0.07

−0.04 3.16+0.71
−0.35 11.98±1.44 0.30+0.06

−0.05 6.62±2.47

RXJ 0152.7-1357 0.833 0.22+0.05
−0.03 0.04+0.03

−0.01 0.37+0.29
−0.12 6.48±0.90 0.13+0.06

−0.03 8.22±1.02

CLJ 1226.9+3332 0.888 0.42+0.02
−0.02 0.31+0.04

−0.04 2.77+0.45
−0.36 11.97±1.27 0.32+0.06

−0.05 0.95±0.31

Note. — The X-ray and SZE-derived properties used in the BOXSZ scaling relations

analysis and described in the text. The first three columns give the catalog, ID, and redshift.

The references for the individual cluster redshift measurements are given in Sayers et al. [256].

The fourth column gives R2500 followed by Mgas,2500, Mtot,2500 and kT , which are

calculated as described in Mantz et al. [166]. The Mgas,2500 and Mtot,2500 values were

calculated specifically for this analysis. The eighth column gives Y2500 as measured using

Bolocam. The last column gives the centroid shift parameter within R500 and is also described

in the text.
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Figure 3.19 M2500 (left) and Y2500 (right) distributions for the BOXSZ cluster sample. Black
histograms depict the entire sample with the red line indicating the median value. Note
the logarithmic scaling of the x-axis. Green histograms depict the clusters with redshift
values below the median 〈z〉 = 0.42. Blue histograms depict the clusters with centroid shift
parameters below w = 7.2×10−2, which have therefore been classified to be the most relaxed.
Note the lack of significant bias in the distribution of morphological state and redshift with
cluster mass.
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Chapter 4

Bolocam YSZ-X-ray Scaling Relations

A precise understanding of how the SZE signal scales with cluster mass is needed in order

for galaxy clusters to be competitive cosmological probes. Any observed deviations from

self-similarity are interesting, because they indicate that the major physical processes within

galaxy clusters are not scale-free. This is well-known for smaller clusters; however, clusters

are expected to behave self-similarly above some mass scale, the precise value of which has

yet to be determined. Our results indicate an SZE-mass scaling significantly shallower than

self-similar, and significantly shallower than other SZE scaling relation results. This would

suggest one of three things for the clusters under investigation: (1) the SZE signal has a

weaker-than self-similar scaling with mass, (2) the mass proxy has a larger than unity scaling

with the true cluster mass, or (3) there is a mis-calibration in the estimated error for one

of both of the observables. Interestingly, the mass-proxy-independent Bolocam-SZE scaling

relations are consistent with other analyses (such as Bonamente et al. [37], Andersson et al.

[8], Planck Collaboration et al. [224]), these results are compiled in Table 4.3 and discussed

in detail in Section 4.6 after the BOXSZ results are presented. This is promising, since it

suggests that once the systematics between different X-ray mass proxies have been resolved,

the integrated SZE signal can serve as a low-scatter mass proxy in future cosmological

analyses.
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4.1 Scaling Relation Parameterization

The scale-free nature of gravitational collapse leads to the prediction that gas-derived cluster

observables scale in a self-similar fashion with total cluster mass. This can be reduced to a

linear relation when the cluster properties are recast in logarithmic form:

m2500 ≡ log10

[
E(z)M2500

1014.5M�

]
(4.1)

m500 ≡ log10

[
E(z)M500

1015M�

]
(4.2)

l ≡ log10

[
L500

E(z)1044ergs−1

]
(4.3)

t ≡ log10

[
kTce

keV

]
(4.4)

yx ≡ log10

[
E(z)2/3104Cx kTce Mgas,2500

]
(4.5)

y ≡ log10

[
E(z)2/3104D2

AY2500

]
, (4.6)

where the term

CX =
σT
mec2

1

ρgas/ne
= 1.406× 10−5Mpc2

1014keVM�
(4.7)

normalizes YX to Y2500, with σT being the Thompson cross-section, me and mp, the electron

and proton rest masses, respectively, and c the speed of light. For a highly ionized gas,

ρgas/ne = 1.149mp. Using the logarithmic representations for the cluster observables, self-

similarity can be formulated as a linear relation between the proposed cluster properties, p

and q, as:

p = β
p|q
0 + β

p|q
1 q. (4.8)

As discussed in Section 2.6.1, Kaiser [136] found that by including additional assumptions

of self-similarity to the HSE equation, cluster temperature should scale logarithmically with

cluster mass with β
t|m
1 = 2/3. Extending this to the YSZ observable, which is a line-of-sight

integral of cluster pressure and (in the limit that Mgas scales the same as Mtot) should scale
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with the product of mass and temperature: β
y|m
1 = 5/3. I refer to this type of scaling as

HSE self-similar scaling and use it as a general standard of comparison.

Occasionally, the ensemble of fit parameters for a particular scaling relation will be re-

ferred to as θp|q = (β
p|q
0 , β

p|q
1 , σ2

p|q), where σ2
p|q is the Gaussian intrinsic scatter of the observable

p ∈ [l, t, y] at a fixed q. Note the different integration apertures used for the X-ray scaling

relations, which are necessary, since the Mantz et al. [166, hereafter M10] R500-derived scal-

ing relations will occassionally be utilized. When there is no explicit ∆ subscript on m for

βpm0 , βpm1 , and θp|m, the integration aperture is assumed to be that of p.

The intrinsic scatter between different scaling relations might have covariance, for exam-

ple, as significant non-thermal pressure support will affect all of the ICM-derived observables

in some fashion. The symmetric covariance matrix can then be described as:

ρLTY =




1 ρLT ρLY

ρLT 1 ρTY

ρLY ρTY 1


 , (4.9)

where the [l, t, y] indices have been captilized for clarity. Covariance is not explicitly mea-

sured for the observed BOXSZ scaling relations, but it is utilized when generating mock

sky realizations to characterize selection effects in Section 4.3. The off-diagonal elements of

ρLTY are determined using a combination of empirical and simulated measurements. The

l − t covariance is adopted from M10b: ρLT = 0.1. As we are not aware of any observed

constraints of ρLY and ρTY , the simulated results of Stanek et al. [267, hereafter S10] (par-

ticularly the “pre-heating” scenario) are used as a starting point from which to estimate our

fiducial X-ray-YSZ covariance. The ρTY value is set to 0.6—which is the S10 simulated co-

variance between Y and a spectroscopic-like temperature. The situation with ρLY is slightly

more complicated. M10b measured ρLT = 0.1, which is lower than the S10 value of 0.7. This

is due to the use of bolometric luminosity in S10 versus the use of soft-band [0.1− 2.4] keV

luminosity of M10b. As this analysis uses values of l calculated in an identical fashion to

M10b, ρLY is set to 0.1 under the assumption that ρLY will be similar to ρLT . The selection

bias would increase the more tightly l and y are correlated, since there is a strong selection

effect on l.
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Table 4.1. Scaling Relations for BOXSZ Cluster Sample.

θ β1 β0 σ

Y2500 −M2500 1.16±0.12 -0.09±0.03 0.11±0.03

YX −M2500 1.46±0.05 -0.52±0.01 0.04±0.02

Y2500 − YX 0.84±0.07 0.33±0.03 0.09±0.03

TX −M2500 0.45±0.05 -0.18±0.01 0.06±0.01

TX −M500 0.50±0.05 0.80±0.01 0.06±0.01

L500 −M500 1.06±0.12 0.87±0.03 0.13±0.02

Note. — Corrected BOXSZ scaling relations pa-
rameters: slope (β1), intercept (β0), and intrinsic
scatter (σ.) The small level of intrinsic scatter in
θyx|m2500 is indicative of the high amount of correla-
tion between the two axes. Due to subtleties of the
selection function process, the Y2500-YX was not cor-
rected for selection bias and the YX-M2500 and TX-
M2500 relations adopt the TX-M500 selection function
correction.

The following sections will characterize the bias due to selection function effects and

fitting bias. Section 4.2 explores possible biases due to the fitting method. Section 4.3

studies the selection function effects of the BOXSZ sample, and Section 4.4 explores modeling

bias and evolution of the scaling relations for physically distinct subsets of clusters. The

corrections to the BOXSZ scaling relations are given in Table 4.2, and the corrected relations

are given in Table 4.1.

4.2 Fit Method and Characterization

The adopted fitting method must account for measurement error in all observables, and also

any additional intrinsic scatter that can arise through various physical processes (e.g., cluster

asphericity and non-thermal pressure support). Two different fitting methods that account

for measurement error in both the covariate (the x-axis) and the response (the y-axis) and

also fit for Gaussian intrinsic scatter in the response have been examined. The first is a
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generalized least squares method (GLS), described in [275], and the second is a Bayesian

fitting method, linmix err1 (LME), described in [139]. The particular biases of the two fitting

methods are examined using a proposed set of scaling relations (which includes Gaussian

intrinsic scatter) applied to the observed covariates of the BOXSZ sample. Measurement

noise is added to each mock observable, either Gaussian or, when available, directly sampled

from the noise realizations discussed in section 3.7. A scaling relation is then fit to these

mock observables, and the difference between the input and the best-fit scaling relations

gives an estimate of the fitting bias. The process is repeated for a variety of scaling relation

parameters. The bias is most sensitive to the intrinsic scatter parameter, and some of the

output values are shown in Figure 4.1.

The left-hand plot of Figure 4.1 demonstrates that there is very little constraining power

for scatter less than 5%. This is due to the constraint that intrinsic scatter must be positive in

light of significant measurement noise. With an input intrinsic scatter above 10%, the LME

method with Gaussian noise approaches zero bias (the green dashed line). An interesting

observation is that if the noise realizations are sampled instead of assuming Gaussian noise,

there is a negative bias when the input intrinsic scatter is greater than ∼0.05. As can be seen

in the righthand plot of Figure 4.1, the bias of the generalized least square method (GLS)

is always larger than that of the LME method for Gaussian noise. For the intrinsic scatter

values relevant to the BOXSZ θy|m relation, there is very little bias in the measured slope and

intercept of the fit. These two methods provide results that are negligibly different, given

the measurement uncertainty. The LME method, however, was ultimately chosen, because

it properly accounts for covariance between the various fit parameters.

4.3 Modeling the Selection Function

All of the clusters in the BOXSZ sample were selected based on the availability of Chandra

X-ray data. In addition to this, several other factors affected the selection process. First,

clusters were generally chosen to have high X-ray luminosities and spectroscopic tempera-

1The linmix err IDL code can be downloaded at http://idlastro.gsfc.nasa.gov/ftp/pro/math/

linmix_err.pro.

http://idlastro.gsfc.nasa.gov/ftp/pro/math/linmix_err.pro
http://idlastro.gsfc.nasa.gov/ftp/pro/math/linmix_err.pro
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Figure 4.1 The fitting method bias for the BOXSZ sample for various input levels of intrinsic
scatter, and a nominal slope and intercept of 1.2 and −0.08, respectively. The solid and
dashed lines represent sampling noise from either a Gaussian noise distribution or from the
noise realizations described in Section 3.7, respectively. The red and black lines represent the
GLS and LME fitting methods, respectively. The green line has a slope of one and indicates
where the measured intrinsic scatter matches the input intrinsic scatter. There is limited
constraining power in the measured intrinsic scatter for values less than ∼ 8%. Above this
level, the LME fitting method has the least amount of measurement bias in intrinsic scatter
under the assumption of Gaussian noise.

tures, under the expectation that these X-ray observables would correlate with a bright SZE

signal. Second, moderate redshift clusters were generally selected to ensure that the cluster’s

R500 would be within the resulting 14′×14′ Bolocam image. Finally, because there already

was a large degree of overlap with the MACS high redshift (z > 0.5) and CLASH samples

(which are discussed in Appendix A), a few clusters were chosen to complete these catalogs.

Out of concern that selection effects would bias the results of the scaling relation, I

developed a method to characterize this selection function using the structure formation

theory reviewed in Section 1.4. Observers using pointed or serendipitous observations are

often in a position where they do not have a rigorously defined selection function; the selection

function characterization method described below should be generally applicable to these

types of samples as well.

First, mock sky realizations are generated by sampling the Tinker et al. [273] mass

function given in Equation 1.35 for a grid of mass and redshift values. A conservative

mass range is chosen that adequately describes the BOXSZ sample: approximately 9× 1013

to 4 × 1015M� at R500. It has been confirmed that the selection function characterization
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is insensitive to any extension of mass range or cluster density in the mock sky realizations.

The sum of all the grid points represents the total mean number of clusters in the parameter

range of interest. The Tinker et al. [273] mass function (Equation 1.34) parameters given for

∆ = 300Ωm(z) ([A, a, b, c] = [0.200, 1.52, 2.25, 1.27]) were chosen, since these are the same

parameters used in the M10 analysis. Instead of generating a mock sky realization within the

specific solid angle observable with Bolocam (dV/dz), the sky is over-populated with enough

clusters in order not to introduce artificial selection effects. This ends up corresponding to

about 10 times the solid-angle observable with Bolocam and 40 times the solid angle was

ultimately chosen to reduce the noise in the measurement. The exact justification for this

approach is discussed in more detail later when the cluster selection process is described.

The process is randomized by assigning each grid point (representing a specific mass and

redshift range) to a probability-weighted segment in the interval [0.0, 1.0]. These probability

weights are determined from the mean number of clusters assigned to the particular grid

point by the Tinker mass function. The [0.0, 1.0] interval is then then randomly sampled,

and when the segment assigned to a particular grid point is chosen, the mass and redshift

of that grid point is assigned to one cluster realization. The interval is repeatedly sampled

until the total number of clusters corresponds to the total mean number of clusters of the

proposed solid angle, which ends up being about 105 clusters. For each of the 45 clusters in

the BOXSZ sample, observables are then generated for all mock clusters within ∆z = ±0.02

of the given BOXSZ cluster redshift. Next, M2500 values are generated from the value of

M500 for each mock cluster by directly sampling the observed M2500 to M500 ratio from the

MCMC chains generated in connection with the M10b analysis and discussed in section 3.7.

A set, Θ, of observable-mass scaling relations, is applied to the sampled mock cluster

masses to generate nominal l,t, and y observables. This process includes covariance between

the intrinsic scatter, ρLTY , which is defined in Section 4.1. It is worth noting that while

Θ is the same for all of the clusters for a given realization of the selection function, the

M500-M2500 ratio is specific to each cluster under investigation. Initially, Θ is constructed

using the X-ray-only scaling relations from M10b and the uncorrected best-fit θy|m.

With a full set of observables for each mock cluster in a particular redshift slice (∆z =

±0.02) of a given BOXSZ cluster, the mock cluster that most closely matches the measured
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X-ray properties of the given BOXSZ cluster is selected according to:

[mi,sim, li,sim, ti,sim, yi,sim] = max(exp((li − lsim)2/(sl)
2 + (ti − tsim)2/(st)

2)), (4.10)

where the subscript sim denotes the values for the mock clusters, and sl and st denote the

measurement errors on l and t for the given BOXSZ cluster i. As many of the BOXSZ

clusters were selected in part, or entirely, due to their observed l and t, this likelihood

function selects the mock clusters with the most similar values of these two observables.

Consequently, the underlying mass function is indirectly sampled, which in turn provides

the associated distribution of YSZ values for the given X-ray characteristics of the BOXSZ

selection. The true YSZ value for each selected mock cluster is then perturbed by one of

the 1000 noise realizations described in section 3.7. The above process is repeated for each

cluster 1000 times—generating 1000 sets of mock BOXSZ observables, or simBOXSZ.

The likelihood function justifies the choice to overpopulate the mass function. Given the

rarity of the high mass clusters in the BOXSZ sample, a realistically populated sky produces

a very small number of mock clusters from which to select possible counterparts to the true

BOXSZ clusters. The nature of the Eddington bias [76] is such that for a mass-dependent

observable with a large amount of scatter and a steeply falling mass function, a measurement

of this observable is more likely to be represented by a low-mass cluster that has an upwards

scattered value than a higher-mass cluster with the observed value lying directly on the given

scaling relation. As the lumininosity observables from the BOXSZ clusters have already been

measured, it is only desired to sample the underlying mass function. Without populating

the sky densely enough, ∼10 skies, the mock luminosities selected from such a sample would

be, on average, lower and would not be representative, introducing an additional, unwanted

“selection” effect.

An example of the selection process is given in Figure 4.2. The figure depicts the distri-

bution of L500 versus TX for one of the simBOXSZ realizations. The green arrows indicate

the position from the observed BOXSZ parameters to the output parameters for a single sim-

BOXSZ realization. Due to the increased density at the low-mass end of the mass function, it

is extremely likely to find a cluster in the simulation with the exact luminosity-temperature
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Figure 4.2 Figure depicting one iteration of the selection function simulation for a volume
of 10 observable skies. Black points represent the observed L500/T500 values. The green
arrows point to the position of the simBOXSZ-selected counterparts for a single iteration
of the selection function method. The arrows point primarily in the temperature direction,
because the relative measurement uncertainty is larger in that direction. Also, there is more
variation for hotter, brighter clusters because the mass function is less dense in that region.
Averaged over all 1000 iterations, the simBOXSZ values of L500 and T500 match those of the
observed sample and the uncertainty in the measured scaling relations is plotted in Figure 4.6.
The size of these arrows decreases for 40 observable skies and changes the characterization
of the selection function to less than a fraction of a standard deviation.

parameters as the cluster under consideration. At the more massive end, the difference be-

tween the measured and mock parameters is generally within the measurement error. The

final cluster density was chosen at the point where increasing the density of clusters does

not change the results by more than ∼10% of the measurement error, but is low enough to

maximize computational speed.

Scaling relations are then fit to each of the simBOXSZ, and the median fit parameters over

the 1000 simBOXSZ are computed. The median simBOXSZ scaling relation parameters are

then compared to the naive scaling relation fit to the true BOXSZ data. This entire selection

process is then iterated, perturbing the input Θ until the median fit parameters to the

simBOXSZ clusters matches the best fit parameters to the true BOXSZ data. Comparisons

between the BOXSZ and the simBOXSZ-measured θl|m, θt|m, and θy|m scaling relations are

shown in Figures 4.3, 4.4, and 4.5, respectively.
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Figure 4.3 Measured BOXSZ values of M500 and L500(black asterixes) together with one
simBOXSZ realization (green asterixes). The BOXSZ-observed, the simBOXSZ input, and
the median overall of the simBOXSZ measured output θl|m are represented by the dashed
black, solid red, and dashed green lines, respectively. θl|m experiences the strongest selection
effect, because it is the sole variable in the X-ray selection process for most of the clusters.

In Figure 4.6 the observed and mock scaling relation parameters for the BOXSZ sample

together with their covariance are compared. The median simBOXSZ Θ is chosen to match

the naive best-fit to the true BOXSZ. Once input values of Θ to the simBOXSZ have con-

verged, so that the output values of Θ from the simBOXSZ match the best-fit parameters of

the true BOXSZ data, the values of Θ input to the simBOXSZ are perturbed around their

measurement uncertainties to observe the consequent effect on the output values of Θ from

the simBOXSZ fits.

The output β
y|m
0 and β

y|m
1 bias is much smaller than the measurement error (i.e. the

median fit of the simBOXSZ closely matches the input value), while the intrinsic scatter

is biased lower by approximately half of a standard deviation. Referring back to Section

4.2, the bias in intrinsic scatter is therefore almost entirely due to the limitations of the

employed fitting method. The selection function has very little impact on the corrected

results for two main reasons: first, the low intrinsic scatter of the signal with fixed cluster

mass reduces the overall level of Eddington bias. Second, the low amount of covariance
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Figure 4.4 Analogous to Figure 4.3 but for TX-M500

Figure 4.5 Analogous to Figure 4.3 but for Y2500-M2500
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Table 4.2. Scaling Relations Corrections for BOXSZ Cluster Sample.

θ ∆β1 ∆β0 ∆σ

Y2500 −M2500 0.02 0.02 -0.02
TX −M500 -0.07 0.05 -0.01
L500 −M500 -0.12 0.03 0.02

Note. — The measure output mi-
nus the input scaling relation pa-
rameters for the simBOXSZ. While
selection effects can be identified
for the luminosity scaling relations,
YSZ suffers little selection bias.

between the luminosity and the SZE signal ensure very little cross-over selection effects

between the SZE and luminosity. Finally, lower mass clusters received longer integration

times, so the introduction of a Malmquist bias due to a hard flux cut-off (such as with a

survey of uniform depth) does not necessarily apply for the BOXSZ scaling relations. The

final corrections to the scaling relations are presented in Table 4.2.

4.4 Physically Motivated θy|m Consistency Checks

A range of consistency checks have been performed on the data not only to test the robustness

of the results, but also to search for possible physical effects that are not described by the

parameteriztion chosen for the scaling relations.

First, the redshift dependence on the derived θy|m is considered by evenly splitting the

sample based on redshift and fitting each subset independently. The results are statistically

consistent with each other, indicating that there is no strong redshift dependence of the

results. Due to significant correlation between X-ray morphological state and redshift in the

BOXSZ cluster sample (almost all of the most disturbed systems are in the high-redshift

sub-sample), this test also demonstrates that the results do not depend strongly on cluster

morphology. Another important note is that since the physical value of R2500 (in Mpc) is

relatively constant over the sample, splitting based on redshift also approximately splits the
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Figure 4.6 Distribution of output simBOXSZ θl|m, θt|m, and θy|m measurements (black his-
tograms). The dashed blue lines indicate the value of the input scaling relations, and the
dashed red-lines indicate the observed BOXSZ values. The light gray shading represents the
68.2-percentile confidence region of the observed BOXSZ parameters, assuming Gaussian
noise. The dark gray region indicates the inner 68.2-percentile confidence region of the mea-
sured simBOXSZ relations. The covariance in the X-ray only scaling relations is due to the
non-zero intercept of the scaling relation, which correlates the slope with the intercept. Note
the similarity between the uncertainty due to the Gaussian fitting compared with directly
sampling the noise realizations.
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sample based on angular size. Therefore, there is also no evidence that the scaling relation

results depend on cluster angular size, indicating that the high-pass filtering (and consequent

deconvolution, including the signal offset estimation) does not have a significant effect on

our results.

The model-dependence of these results is also explored by repeating the measurements

of θy|m, but instead of using the minimal model prescribed by the F-test, θy|m is fit to the

Y2500 values derived from SZE maps, where both the transfer function and the signal offset

are determined with the 1-model. While the F-test selected the 1-model for only 16 of

the BOXSZ clusters, the corrected 1-model scaling relations are also consistent with the

F-test-derived values. This is a promising result in regards to pressure model-derived scaling

relations, such as those measured by the Planck Collaboration et al. [224].

Finally, the derived Y2500 values and their associated scaling relations are examined by

adopting the morphologically-dependent pressure profile parameters given in A10. These

results are indistinguishable from the results using the universal A10 profile to constrain the

large-scale contributions to Y2500, further indicating that the results do not depend strongly

on the adopted parametric model to constrain the signal offset.

4.5 Scaling Relations Discussion

The results of the BOXSZ scaling relations analysis and presented in Table 4.1 will now be

discussed. The general theory behind the measurement of these observables was discussed

in Section 2.2.2 for TX , Section 2.2.3 for Mgas, and Section 2.3.1 for YSZ . Sections 3.2 and

3.7 discuss the specific measurement techniques adopted for the BOXSZ analysis. Notably,

the fiducial integration radius for the BOXSZ YSZ , Mgas, and Mtot values is R2500, while

the fiducial integration radius for the BOXSZ TX is R500. Mtot is evaluated using Mgas and

adopting a constant fgas = 0.1104 value with an 8% global systematic gaussian uncertainty.

4.5.1 BOXSZ TX |M500 and TX |M2500

As X-ray observables are derived from the physics of the ICM, their scaling relations are

expected to relate to the SZE ones more than any other observational probe. The BOXSZ
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Figure 4.7 Observed TX-M500 scaling relations for the BOXSZ sample. The black data points
represent the measured parameter values. The solid red line respresents the uncorrected
best-fit to the data. The blue line represents the uncorrected best-fit to the data with a self-
similar slope. The green dashed line represents the scaling relations corrected for selection
function, and fitting bias effects with 1σ and 2σ confidence contours, depicted by the light
gray and dark gray shading, respectively. The TX-M500 is presented mainly in the context
of interpreting the Y2500-M2500 and Y2500-YX results.

cluster sample can be considered, for the most part, a subset of the M10b sample, and

therefore the M10b measured X-ray scaling relations are expected to hold for the BOXSZ

sample as well. To best compare the X-ray to the SZE scaling relations, however, they should

represent the same cluster sample, and the cluster parameters should be measured within

the same integration aperture. To understand the sample selection effect, θt|m is measured

specifically for the BOXSZ subsample and is plotted in Figure 4.7. The red line indicates

the uncorrected fit, the blue line is the uncorrected fit to a self-similar slope of 2/3, and the

green line is the corrected fit with the 1σ and 2σ confidence intervals shown in light and dark

gray, respectively. The selection function makes the slope slightly shallower, indicating the

selection preference for hot, low-mass clusters. The corrected BOXSZ-measured β
t|m
1 = 0.50±

0.05 is consistent with the M10b-measured β
t|m
1 = 0.49± 0.04 for their full cluster sample.

Since the TX values are the same, any variations in the slope of BOXSZ-measured

θt|m2500 and θt|m scaling relations indicates a mass dependency in the concentration (rscale/r200)



99

1 10
MTOT,2500[ 1014MSUNE(z)-1.00]

1010
kT

[k
eV

] 10

1 10
MTOT,2500[ 1014MSUNE(z)-1.00]

1 10

Figure 4.8 Analogous to Figure 4.7 but for the θt|m2500 scaling relations. The bias incurred by
the selection function is not explicitly measured for these scaling relations and the correction
to the θt|m fit, measured at R500, is used instead.

of the clusters. For ease of calculation, TX is always determined within the region [0.15, 1.0]R500 since

the measurements are negligibly different for TX evaluated between [0.15, 0.5]R500 (recall

that 0.5R500 ≈R2500).2 The selection function process derives TX directly from M500. Since

there is scatter between the ratio of M2500 and M500 ratio for each individual cluster, the

TX |M2500 selection effect cannot be directly derived unless a specific TX |M2500 scaling re-

lation is proposed and the implementation of this would be non-trivial. As there is no

observational evidence that the two values should behave differently, the TX |M500 selection

correction is adopted for the TX |M2500 relation. The BOXSZ-measured β
t|m2500

1 = 0.45± 0.05

is approximately 1-σ shallower than the M10b β
t|m
1 value with the BOXSZ θt|m2500 scaling

relation plotted in Figure 4.8. M500 is only used in this section to identify the changes in the

β
t|m
1 values when going from R500 to R2500. any subsequent reference to the BOXSZ X-ray

scaling relations will imply Mgas,2500 and Mtot,2500.

2M10 measure T[0.15−1.0]R500
/T[0.15−0.5]R500

= 0.957 ± 0.009, this result is supported by Vikhlinin et al.
[279], who measure T[0.15−1.0]R500

/T[0.15−0.5]R500
= 0.9075+0.00625T[0.15−0.5]R500

with a 3% observed scatter
in the relation (plotted in Figure 6 of Section 4.1.1 in [279]).
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Figure 4.9 Analogous to Figure 4.7 but for the Y2500-YX scaling relations. Due to the uncer-
tainty in the covariance in the scatter between these two values, the relation is not corrected
for selection effects.

4.5.2 BOXSZ Y2500-YX

As discussed in previous sections, YX is predicted to be a good approximation for YSZ in the

limit where spectroscopic temperature is equivalent to mass-weighted temperature (Kravtsov

et al. [148]). Given the Rozo et al. [244] observation that Mgas and TX observations between

different X-ray groups are consistent with each other, the θy|yx relation allows YSZ measure-

ments between different SZE groups to be compared independent of the choice of mass proxy.

This relation is not corrected for selection effects as the fiducial set of scaling relations, Θ,

does not account for selection effects for Mgas, independent on Mtot. The BOXSZ measured

β
y|yx
1 =0.84± 0.07 is shallower than unity and the θy|yx scaling relation is plotted in Figure

4.9. This result is in agreement with other analyses (Bonamente et al. [37], Andersson et al.

[8], Planck Collaboration et al. [224]). The different analysis results are compiled in Table

4.3 and these results are compared in detail in Section 4.6.
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Figure 4.10 Analogous to Figure 4.7 but for the Y2500-M2500 scaling relations.

4.5.3 BOXSZ Y2500-M2500

The SZE-mass scaling is a key ingredient for SZE-based cluster cosmology. The BOXSZ-

measured β
y|m
1 = 1.16± 0.12 —over 4σ shallower than the HSE self-similar slope of 5/3, and

the θy|m relation is plotted in Figure 4.10 . This result is now compared to θyx|m, the X-ray

analog of θy|m. An approximate 2-σ deviation in β
y|m
1 from self-similarity can be identified

in the M10b-measured β
yx|m500

1 = 1.48± 0.04. The BOXSZ-measured β
yx|m
1 = 1.46± 0.05 is

consistent with these results, which is corrected using the θt|m selection correction. The final

approximate 2σ deviation is given by the non-unity β
y|yx
1 = 0.84± 0.07 measurement which

could be due to non-self-similar scaling between the SZE and the X-ray pressure proxy.

4.6 Comparison with Previous Results

Table 4.3 lists some of the relevant characteristics and main results of the three main SZE-X-

ray scaling relation studies used for comparison with the BOXSZ scaling relations analysis:

Bonamente et al. [37, hereafter B08], Planck Collaboration et al. [224, hereafter P11], and
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Table 4.3. Sample Characteristics of Various X-ray and SZE Scaling Relations Analyses.

Name Instrum. Proxy β1
ym σym β1

yyx σ1
yyx Ncl M500

LZ:HZ:All 1014M�

This work Bolocam/CXO Mgas 1.16± 0.12 0.11± 0.03 0.84± 0.07 0.09± 0.03 22 : 23 : 45 [3.9, 24.9]
B08 CXO/OB HSE 1.66± 0.20 · · · 22 : 16 : 38 ∼ [2.0, 16.2]
A11 SPT YX 1.67± 0.29 0.09± 0.05 0.90± 0.17 0.07± 0.05 3 : 12 : 15 [3.5, 11.8]
P11 Planck/XMM YX 1.74± 0.08 0.10± 0.01 0.95± 0.04 0.10± 0.01 59 : 3 : 62 [2.4, 19.7]

Note. — A compilation of scaling relations from several SZE analyses discussed in the text
that have calibrated Mtot using X-ray proxies. The first column indicates the particular SZE-
X-ray analysis. The second column indicates the instrument with which the data was taken.
(CXO) Chandra X-Ray Observatory (OB) OVRO/BIMA. In the second column from the
right right, HZ and LZ represent the number of clusters above and below the BOXSZ median

redshift of 〈z〉 = 0.42. In addition to the β
y|m
1 results, Bonamente et al. [37, B08] and Planck

Collaboration et al. [224, P11] measure β
y|mgas

1 = 1.41 ± 0.13 and 1.39 ± 0.06, respectively.

For Andersson et al. [8, A11], the β
y|m
1 values are given for Yspher and the β

y|yx
1 values

are given for Ycyl. Despite the variety in θy|m relations, the θy|mgas
and θy|yx relations are

fairly consistent between the various SZE scaling relation studies. This is further supported
in light of the Rozo et al. [246] re-analysis of the Planck θy|yx relation, where they measure

β
y|yx
1 =0.917±0.039. The B08 M500 values are approximated from the measured M2500 values

(solely for the purposes of a general comparison) by multiplying them by a factor of 2.

Andersson et al. [8, hereafter A11]. Direct comparison between these different scaling re-

lations, however, is made challenging in light of the differences in the adopted integration

apertures and X-ray mass proxies. Specifically, nearly every SZE scaling relations analysis

uses a different mass proxy, and these are known to suffer systematic effects, such as those

discussed in Section 2.6.1.2. Therefore, the BOXSZ β
y|m
1 measurements will be compared

with the β
y|mgas

1 and β
y|yx
1 measurements of the other studies when available.

B08 present some of the first observed YSZ |Mtot scaling relations between OVRO/BIMA

SZE and Chandra X-ray observations within ∆ = 2500. The B08 sample consists of 38

clusters with a median redshift of z = 0.30. The B08 M2500 distribution spans approximately

an order of magnitude from 1.0− 8.1× 1014 M�. Of the three SZE cluster samples that are

considered here, this sample shares most in common with BOXSZ in terms of the physical

parameters of the cluster samples under investigation. In fact, BOXSZ shares 21 clusters

in common with the B08 sample. In contrast to this analysis, the B08 results are derived

from a joint analysis of the SZE and the X-ray data fit to a spherical β-model, the model

originally proposed by Cavaliere & Fusco-Femiano [52] and discussed in Section 2.2.1. The
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clusters are assumed to be isothermal and in HSE. B08 measure a β
y|mgas

1 = 1.41± 0.13 and

β
y|m
1 = 1.66± 0.20, and do not measure any scaling of fgas with mass or redshift.

Encouraged by the similarities between the two cluster samples, the B08 and BOXSZ

measurements are directly compared. Figure 4.11 confirms the high-degree of similarity

between the measured observables of the two samples. Using the hydrostatically-derived

B08 Mtot values, θy|m is measured using the same fitting adopted for the current analysis.

Very similar values to the BOXSZ sample are derived: β
y|m
1 = 1.15±0.15, β

y|m
0 = −0.14±0.03,

and a σy|m= 0.12±0.02. The original B08 best-fit and the new best-fit are also overplotted. It

must be noted that the B08 best-fit can be reproduced when fit with the method described

in B08. Specifically, as discussed in Section 2.6.1.2, the B08 fitting method does not fit

for intrinsic scatter, but instead adds an additional 20% and 10% gaussian scatter to their

Mtot and YSZ values, respectively. As with the Mtot uncertainty, the 10% uncertainty in

YSZ is dominated by asphericity, the effect of which is approximated based on the measured

YSZ uncertainty of Abell 370 [105]. The magnitude of this additional noise effectively de-

weights the B08 mass values (i.e., adds intrinsic scatter in the mass direction), resulting in

a steeper slope.

The BOXSZ analysis has defined intrinsic scatter to be the additional amount of Gaussian

scatter that is required in the dependent variable to describe departure from a set of scaling

relations applied to the independent variable. Uncertainty in the asphericity is a source of

intrinsic scatter, and for that reason it was not explicitly accounted for in the statistical error

estimation. It is reasonable to assume, that due to the fact that BOXSZ is an exceptional

collection of some of the most massive clusters with median redshifts of z = 0.42, the intrinsic

scatter and systematic uncertainty on fgas for these clusters might be a bit larger. Many of

these effects, however, such as asphericity and departures from hydrostatic equilibrium, are

most likely correlated for the two variables. A full consideration of these factors is outside

of the scope of the present analysis.

The importance of unaccounted levels of intrinsic scatter in Mtot and the possible mass

dependence of fgas is now explored. As fgas is expected to asymptote at large Mtot, by

dropping lowest mass clusters, one might observe something closer to self-similarity. Figure

4.12 demonstrates that the incorporation of an additional element of intrinsic scatter in
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Figure 4.11 Comparison of the Bonamente et al. [37, B08] and the BOXSZ scaling relations.
The red line is the best-fit to the B08 values of Y2500 and M2500 using the adopted fitting
formalism for the BOXSZ study but not corrected for selection effects, which are negligible.
This fit is quite different from the best-fit given in B08 (blue line) but is very similar to
the best-fit BOXSZ scaling relation (black line). The difference in the two fitting methods
can be explained by a net de-weighting of the B08 mass measurements with an additional
gaussian scatter in Mtot to account for systematic uncertainties primarily associated with
cluster asphericity.
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Figure 4.12 The effect that an additional amount of intrinsic scatter has when dropping the
lowest mass clusters on the BOXSZ θy|m slope. The shaded bands indicate the 68.2-percentile
confidence region.
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the Mtot direction bumps the slope of the scaling relations up by approximately a standard

deviation. Furthermore, by dropping more of the lowest mass clusters, the measured relation

steepens. By including more intrinsic scatter in the Mtot direction and by removing clusters

from the sample, however, also increases the error on the measurements making them less

significant. With all of these effects taken into account, the entire trend is consistent with the

original BOXSZ measured β
y|m
1 value, and by adding an additional amount of intrinsic scatter

in the Mtot direction, the results become consistent with other observed θy|m measurements

after removing only 5 clusters. The comparison between the present and the B08 work

emphasizes the need for accurate systematic noise modeling.

A11 also measure scaling relations between YSZ measurements from the South Pole Tele-

scope (SPT) and YX-derived M500 values using the V09 calibration. The sample consists of

15 SZE-flux selected clusters, with 0.29 < z < 1.08, within the SPT 178 deg2 survey. The

nature of the SZE flux-limited selection of a deep (though relatively small) survey results in

a less massive cluster selection than the BOXSZ sample—all but one of the A11 clusters lie

below the BOXSZ median M500 = 9.1 × 1014M�. A direct comparison is further hindered,

considering the A11 analysis uses R500 instead of R2500. A11 measure β
y|m
1 = 1.67 ± 0.29,

slightly shallower than their X-ray mass proxy’s measured β
yx|m
1 = 1.79 ± 0.15, which is

consistent with their measurement of β
y|yx
1 = 0.90± 0.17 using a cylindrical YSZ , and is also

consistent with the BOXSZ result of 0.85 ± 0.07. While this measurement is very small in

itself, my intention is to point out that each group observes the same trend and this is an

important factor when attempting to explain the physical origin of the BOXSZ β
y|m
1 devia-

tion and this is a point that must be addressed with further investigation. Although A11 do

not specifically measure θy|mgas , they do measure βmgas|t= 1.79± 0.51, which again implies a

shallower than self-similar θt|m. A11 use the same LME method as the current analysis and

they do not marginalize over uncertainties in statistical error of Mtot and YSZ . Furthermore,

because V09 do not measure intrinsic scatter in their θyx|m relation, there is no additional

systematic uncertainty included in their Mtot estimation.

In contrast to the A11 sample, the P11 sample of the Planck Early Cluster Catalog has

slightly more clusters (62) than and a mass range (2× 1014 < M500 < 2× 1015M�) similar to

the BOXSZ sample. The P11 sample differs from BOXSZ, primarily because it is weighted
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towards a much lower redshift: with 59 of the 62 clusters less than the median BOXSZ

redshift. The recent scaling relations derived in Planck Collaboration et al. [227] contain an

additional 9 confirmed clusters, but the overlap with the BOXSZ sample is the same as with

P11—7 clusters. Because the results from this slightly expanded sample are very similar to

P11, they will not be explicitly examined in this analysis. As in A11, P11 derive all cluster

parameters within R500, and Mtot is obtained from the YX proxy (specifically those derived

in A10) and measure β
y|m
1 = 1.72±0.08, which is close to the to the measured β

yx|m
1 = 1.79 of

their adopted, A10, mass calibration. P11 further measure β
y|mgas

1 = 1.36 ± 0.07, which are

both consistent with the current analysis.

The measured BOXSZ β
y|m
1 slope is shallower than would be predicted from the adopted

X-ray-mass calibration’s derived β
yx|m
1 , indicating that mass calibration alone does not fully

explain the shallowness of the β
y|m
1 measurement. The data indicate a mass-dependent scaling

between YSZ and YX , with β
y|yx
1 =0.84 ± 0.07 . This is consistent with the two analyses

considered in this work, which have also performed a measurement of θy|yx . P11 measure

0.95±0.04, and A11 measure 0.90±0.17. Of note is the R12 re-analysis of the P11 data which

measures a shallower β
y|yx
1 = 0.917 ± 0.039 using the same data presented in P11. R12 also

measure β
y|yx
1 using a subsample of the P11 data and Chandra X-ray data obtained from V09

(instead of Newton-XMM X-ray data) and obtain a similar result: β
y|yx
1 = 0.916±0.032. The

consistency of these results suggests that β
y|yx
1 is slightly less than unity, likely indicating that

mass-weighted temperature does indeed scale differently with cluster mass than emission-

weighted temperature.

4.6.1 Mtot Rescaling

The similarities between the θy|yx measurements at different integration apertures compared

with the differences between θy|m measurements between different groups encourages a closer

examination of the adopted Mgas mass proxy. While there is strong observational evidence

that fgas evolves with mass in groups and low-mass clusters (Vikhlinin et al. [278], Gonzalez

et al. [102], Sun et al. [269]), measurements do not clearly indicate how fgas evolves for more

massive clusters—if at all (Allen et al. [6], Bonamente et al. [37], Zhang et al. [301], Mahdavi

et al. [163]). A recent study by Mahdavi et al. [163] compares X-ray determined masses with
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weak lensing masses, indicating that Mgas is indeed a lower scatter mass proxy than YX for

clusters with TX> 3 keV. At radii fixed to the weak lensing R500, they measure a scatter of

15%± 6% uing Mgas as a mass proxy, and 23%± 6% using YX as a mass proxy .

Let us explore how the measured scaling relations change if we would have assumed

fgas to have a mass and redshift dependency. Rozo et al. [245] note that if the Pratt et al.

[236] fgas mass dependency and the [161] fgas redshift dependency is used, the P11- and

M10-measured Mtot values for clusters shared between the two analyses are consistent with

each other. Inserting these values into Equation 2.30, derived using the Rozo et al. [245]

methodology discussed in Section 2.6.3, yields:

fgas,P11(M, z) = 0.13

(
Mtot

1015M�

)0.21

(1 + z)0.66, (4.11)

bM10|P11 =
MM10

MP11

=

(
fgas,P11(Mtot, z)

fgas,A08

)1.67

= 1.31

(
Mtot

1015M�

)0.35

(1 + z)1.10. (4.12)

Keep in mind that these values were calibrated using systems with much lower masses than

the BOXSZ clusters, and adopting them requires a potentially invalid extrapolation.

When comparing the scaling relations, one must also take into account that a systematic

difference in Mtot also shifts the R∆ value, which therefore also systematically changes the

aperture within which a given observable X is integrated. This effect is demonstrated in

Figure 2.5. Let’s assume that X scales self-similarly with R with X ∝ Rε at a specified

R∆. Since R∆∝ M
1/3
∆ , the systematic difference in mass estimates, bA|B, that will affect

the measured observable X as b
ε/3
A|B. R12 find that for an A10 universal pressure profile,

Y ∝ R0.82 at R500 and thererefore the systematic difference in the YSZ-values would be:

bYSZ |P11 = b0.27
M10|P11. (4.13)

Using Equations 4.12 and 4.13, the effects of a systematic mass difference bM10|P11 and

bYSZ |P11 will now be examined for the BOXSZ sample. As the redshift scaling does not

dramatically affect the results, I only explore the effect of assuming that fgas scales with

Mtot and set the (1 + z)1.10 factor to unity. Keep in mind that R12 calculates these values at

R500 and therefore the results are not precise and indicate the need for further study. Figure
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Figure 4.13 The measured β
y|m
1 slope as a function of the mass scaling of fgas, α, where fgas∝

Mα
tot. The black lines indicate the measured β

y|m
1 and the uncertainty in their measurement.

The red and green dashed lines are approximate fits to lower-levels and higher-levels of
fgas scaling with total cluster mass, respectively. In both cases, the slope steepens more than
expected from the Rozo et al. [245] method alone.

4.13 demonstrates the effect that the assumption of a different fgas scaling with Mtot has

on the measured β
y|m
1 relation. The black symbols and lines indicate the slope measured

as a function of the assumed scaling, α, where fgas= Mα
tot. One would naively expect a

(β
y|m
1 −0.25) × 1.67 scaling in β

y|m
1 with the assumed bias, according to R12, although the

figure indicates a much steeper relation. This observation might be due to a combination

of factors, for example, the decrease in the the dynamic range of the masses might possibly

influence the measurement bias. A full exploration of the true measurement bias is beyond

the scope of this thesis, but Figure 4.13 demonstrates how sensitive an application of this

bias would be.

4.6.2 Comparison with Simulations

Several different groups have simulated cluster-observable scaling relations and the general

consensus is that YSZ is a robust, low-scatter, self-similar, Mtot proxy across a wide variety

of physical scenarios. A major impediment, however, in applying these results directly to the
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Table 4.4. Summary of Simulated Scaling Relations Analyses. Part I.

Analysis/Code Selected Scaling Relations

Kravtsov[148]/ART 16 clusters (M500 = [0.5, 13.0] 1014M�)

∆ = 500 Mtot|TX Mtot|Mg Mtot|YX Mtot|YSZ

All z, all clusters, CSF . . . β1 1.521± 0.062 0.921± 0.023 0.581± 0.009 0.585± 0.010
σ 0.195 0.107 0.071 0.067

All z, relaxed, CSF. . . . . . .β1 1.533± 0.103 0.898± 0.051 0.579± 0.012 0.564± 0.014
σ 0.136 0.115 0.053 0.058

All z, unrelaxed, CSF . . . . β1 1.553± 0.063 0.931± 0.029 0.589± 0.010 0.600± 0.010
σ 0.186 0.095 0.072 0.059

z = 0, all clusters, CSF. . .β1 1.524± 0.070 0.917± 0.028 0.583± 0.010 0.584± 0.013
σ 0.219 0.090 0.064 0.075

z = 0.6, all clusters, CSF..β1 1.590± 0.086 0.871± 0.033 0.571± 0.016 0.577± 0.012
σ 0.157 0.077 0.075 0.051

Nagai[198]/ART 11 clusters (M500 = [0.5, 13.0] 1014M�)

YSZ |TX YSZ |Mg YSZ |Mtot

∆ = 2500 GO . . . . . . . . . . . .β1 2.50± 0.17 1.64± 0.07 1.68± 0.07
σ · · · · · · ∼0.10− 0.15

∆ = 2500 CSF . . . . . . . . . . . β1 2.73± 0.19 1.58± 0.05 1.77± 0.09
σ · · · · · · ∼0.10− 0.15

∆ = 500 GO . . . . . . . . . . . . . β1 2.45± 0.12 1.65± 0.08 1.66± 0.09
σ · · · · · · ∼0.10− 0.15

∆ = 500 CSF . . . . . . . . . . . . β1 2.61± 0.17 1.60± 0.06 1.73± 0.08
σ · · · · · · ∼0.10− 0.15

Note. — Simulated scaling relations from Kravtsov et al. [148] using the Eulerian N -body+gasdynamics
adaptive mesh refinement ART code. They explore only one physical scenario with cooling and star formation
(CSF), but they study the scaling relations at different redshifts and for relaxed and disturbed morphologies.
Nagai et al. [198] use 11 of these clusters to study the dependence of the scaling relations with overdensity
radius, specifically modelling a gravity-only (GO) scenario for comparison. They do not give specific intrinsic
scatter measurements, but note that it is approximately 10-15% for all scenarios.
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Table 4.5. Summary of Simulated Scaling Relations Analyses. Part II.

Analysis/Code Selected Scaling Relations

Fabjan[87]/TreePM GADGET 140 clusters (M500 = [0.3, 30] 1014M�)

∆ = 500 Mtot|Tmw Mtot|Mg Mtot|YX

GO z=0 . . . . . . . . . . . . . . . . . . . . . . . β1 1.517± 0.012 0.981± 0.004 0.597± 0.003
σ 0.079 0.056 0.107

CSF z=0 . . . . . . . . . . . . . . . . . . . . . . .β1 1.615± 0.016 0.929± 0.003 0.591± 0.003
σ 0.069 0.042 0.084

GO z=0.50 . . . . . . . . . . . . . . . . . . . . .β1 1.534± 0.016 0.991± 0.004 0.604± 0.003
σ 0.087 0.047 0.111

CSF z=0.50 . . . . . . . . . . . . . . . . . . . .β1 1.640± 0.017 0.929± 0.003 0.596± 0.003
σ 0.077 0.042 0.091

Fabjan[87]/TreePM GADGET 18 clusters (M500 = [0.3, 20] 1014M�)

Mtot|Tmw Mtot|Mg Mtot|YX

CSF+AGN z=0 . . . . . . . . . . . . . . . .β1 1.730 0.81 0.54

Battaglia[19]modified GADGET-2 100s of clusters (M500 = [0.8, 10] 1014M�)

∆ = 500 YSZ |Mtot

GO z=0 . . . . . . . . . . . . . . . . . . . . . . . β1 1.64± 0.03
σ 0.097± 0.001

CSF z=0 . . . . . . . . . . . . . . . . . . . . . . .β1 1.69± 0.03
σ 0.107± 0.001

AGN z=0 . . . . . . . . . . . . . . . . . . . . . .β1 1.73± 0.03
σ 0.130± 0.001

Note. — Fabjan et al. [87] GADGET code simulations of scaling relations. Note that
both Mg and Yx are good mass proxies in gravity-only (GO) and cooling and star
formation (CSF) scenarios. The CSF scenario also includes Type-II supernova
feedback in the form of galactic winds. While the data for the smaller sample of
extended physical simulations is limited mostly to the plots, I have included the
numbers as presented in the text, where it is observed that fgas ∝ 0.2 in the AGN
scenario. Battaglia et al. [19] not a similarly strong steepening of the YSZ −Mtot

slope with the inclusion of AGN feedback.
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Table 4.6. Summary of Simulated Scaling Relations Analyses. Part III.

Analysis/Code Selected Scaling Relations

Stanek [267] GADGET-2 5612 clusters (M500 =∼[0.3, 10] 1014M�)

∆ = 200 Tmw|Mtot Tsl|Mtot YSZ |Mtot

GO z=0 . . . . . . . . . . . . .β1 0.650± 0.002 0.576± 0.005 1.651± 0.003
σ 0.102± 0.001 0.219± 0.002 0.123± 0.001

PH z=0 . . . . . . . . . . . . .β1 0.559± 0.002 0.576± 0.002 1.825± 0.003
σ 0.058± 0.002 0.069± 0.001 0.125± 0.002

Note. — Stanek et al. [267] scaling relations using the Millenium Gas
Simulations (Hartley et al. [112].) In addition to the gravity-only (GO)
scenario, clusters are simulated are pre-heated (PH) with an entropy boost at
z = 4 to match empirical Lx−Tx relations. Note how preheating reduces the
intrinsic scatter in the temperature-mass relations and steepend the YSZ −
Mtot slope.

present analysis is that they have often been limited in total volume, and therefore include

few, if any, extremely massive BOXSZ-like clusters. Kravtsov et al. [148, hereafter K06]

were some of the first to include non-thermal physics (cooling and star formation, CSF) in

hydrodynamic cluster simulations and measured fgas to scale as M0.2
500. The K06 results that

are relevant to this thesis are presented in Table 4.4. All scenarios indicate a steeper-than-

self-similar YSZ - Mtot slope, mostly driven by the mass dependency of fgas. Nagai [197,

hereafter N06], extend the analysis for 11 of the K06 clusters, focusing primarily on the YSZ-

|Mtot, YSZ |Mgas, and YSZ |Tmw scaling relations. They simulate both a gravity-only (GO)

scenario, and one including CSF and the relevant results are also given in Table 4.4. Due

to the small sample size, the error bars on the measured scaling relations are rather large,

but indicate a steepening of the YSZ |Mtot relation and a shallowing of the YSZ |Mgas relation

with respect to self-similarity. This effect is largest at ∆ = 2500.

Fabjan et al. [87, hereafter F11] simulate a cluster sample that is quite a bit larger

and more massive than the N06 sample: 140 of the simulated clusters have M500 between

approximately 0.3×1014M� and 30×1014M�. F11 perform N-body simulations under several

scenarios which can be generically lumped into three categories: GO, CSF, and CSF+AGN
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feedback. In contrast to the K06 and N06 results, YSZ and Mgas mass proxies are robust

to cooling and star formation, scaling self-similarly, for different redshifts. F11 simulated

18 clusters under a larger variety of different physical scenarios. F11 note that Mgas and

TX are dependent on physical processes, particularly AGN feedback, within a cluster. The

presence of AGN feedback makes the Mtot|Mgas scaling significantly shallower: from 1.0 to

0.8, and Mtot|Tmw scaling relation steeper, from 1.5 to 1.73. Physically this relation results

as AGN activity lowers fgas by blowing out gas from the cluster core and heating it in the

process. Interestingly, if one put these two relations together, one obtains a Tmw|Mgas slope

of 0.46—which implies β
y|mgas

1 = 1.46. These results are supported by Battaglia et al. [19,

B12A], who simulate similar physical scenarios and have a similarly-sized cluster sample as

F11. The B12 study differs from F11 as it emphasizes the radial-dependence of non-thermal

pressure support. The relevant F11 and B12 results are given in Table 4.5.

Stanek et al. [267, hereafter S10] derive observable-mass relations using both a GO sce-

nario, and a scenario in which the gas is preheated (PH) by adding a constant amount of

entropy to the simulations at z = 4, in order to match Lx − Tx observations at z = 0 [112].

The physics of their treatment is strikingly different from the CSF+AGN scenario, although

they are able to replicate many of the simulation and observation results in a rather simple

fashion. The S10 sample consists of over 4000 clusters for both scenarios—with approxi-

mately 10 halos above M500 = 7× 1014 (approximately the median of the BOXSZ sample).

The relevant S10 results are given in Table 4.6. S10 observe fgas to scale quadratically with

Mtot in their PH scenario as lnfgas= s14 +α1 lnMtot +α2 ln(Mtot)
2: with α1 = 0.310± 0.009,

α2 = −0.661 ± 0.0061, and s14 a constant of proportionality. This relation approaches a

constant value for clusters with masses representative of the BOXSZ sample. S10 measure

PH β
y|m
1 of 1.825± 0.003 to be significantly steeper than self-similar.

S10 also measure both Tmw and the spectroscopic-like temperature:

Tsl =

∫
n2T 1/4dV∫
n2T−3/4dV

, (4.14)

as originally defined in Section 2.2.2, which was proposed by Mazzotta et al. [179] for sim-

ulations to accurately predict X-ray spectroscopic temperature measurements fit to a single
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projected temperature profile. Pre-heating effectively increases the sound speed and lowers

the Mach number of the infalling gas, smoothing the internal structure of galaxy clusters

[283]. Therefore, in contrast to the F11 results, the S10 Tsl is shown to be very sensitive to

gas physics. Only Tmw in the GO scenario is measured to be consistent with self-similarity.

Tsl∼ 0.576 ± 0.05 in both scenarios, and Tmw= 0.559 ± 0.002 in the PH scenario. Again, if

one combines this with an evolving fgas, one obtains a result that would be consistent with

the M10 results.

Finally, we will consider the Krause et al. [144, hereafter K12] simulations, which specifi-

cally focus on measuring merger-induced deviations from self-similar YSZ |Mtot relation. The

K12 sample generally includes non-thermal physics and contains ∼100 clusters with about

10 clusters distributed evenly in logarithmic space from 1013 . M200 . 1015M�. K12 no-

tice a merger-induced shallowing of their YSZ |Mtot scaling with β
y|m
1 = 1.556 ± 0.014. This

shallowing is attributed to merger-induced events with 50% of the outliers in their sample,

undergoing a major merger in the last Gigayear. The slope, again, returns to a self-similar-

consistent value, β
y|m
1 = 1.637± 0.027, when restricted to clusters above 2× 1014M�, which

indicate to be less susceptible to merger effects. Based on these results, merger activity

probably does not have much of an effect on the BOXSZ YSZ measurements.

These simulations, furthermore, make interesting predictions in regards to the intrinsic

scatter of cluster observables with mass. The general consensus is that YX and YSZ are low-

scatter mass proxies, but there is ambiguity as to the degree to which fgas scales with Mtot for

different mass ranges and different overdensities. F11 conclude that YX and Mgas are both

low-scatter mass proxies. While they measure YX to be less sensitive to cluster physics, they

note that Mgas has less intrinsic scatter under all physical scenarios, ∼4-9%, compared with

the measured YX |Mtot scatter of ∼6-12%. S10 measure scatter in Tsl to be approximately a

factor of three larger, 0.219±0.002, in the GO compared with the PH scenario. This confirms

their observation that pre-heating makes cluster properties more regular. S10 conclude YSZ to

be a robust ∼ 12± 2% scatter mass-proxy for both of the simulated astrophysical scenarios.

Similarly, B12 note that AGN feedback and triaxiality bump the intrinsic scatter of the

YSZ |Mtot relation from a fiducial value of 11% to 13% at z=0, and 15% at z=1. Further of

interest is that while S10 and F11 find the scatter in both Mgas, YSZ , and YX to be well-
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approximated as log-normal, B12 finds that YSZ scatter is best approximated with a normal

distribution. Furthermore, K12 note a positive skewness to the YSZ intrinsic scatter which

they ascribe to projection effects boosting the YSZ signal with respect to mass. This effect,

again, vanishes completely for the more massive, BOXSZ-like clusters of their sample.

In summary, the BOXSZ-measured θy|m scaling relations do not appear to be consis-

tent with simulations. They could, however, be explained if we assume fgas to scale with

Mtot, where a shallower than self-similar Tmw −Mtot slope and a steeper than self-similar

Mgas|Mtot slope, particularly within R2500, conspire together to make the θy|m relation shal-

lower, where Mgas is used as a proxy for Mtot. This effect could be partially alleviated by

dropping the lowest-mass clusters of the sample. Another explanation might be that the in-

trinsic scatter of the Mtot|Mgas relation is larger than previously estimated. To resolve these

questions more observational work calibrating the intrinsic scatter of the Mtot|Mgas relation

must be performed for a larger sample of massive clusters using different analysis techniques

so that we can determine the correct simulation scenario.

4.6.3 Cosmological Implications

If the scaling relations for extremely massive clusters do indeed depart from self-similarity,

this will significantly affect the inferred cosmology from cluster observations. New results

from the Planck Collaboration indicate tension between σ8 measurements using the primary

CMB, σ8= 0.834 ± 0.027,[226, hereafter P13CMB], and σ8 measured using mass measure-

ments of SZE-detected cluster counts, σ8= 0.77 ± 0.02,[227, hereafter P13SZE]—with sev-

eral times fewer clusters being detected than predicted. Figure 4.14 compares the Planck

SZE-detected cluster counts compared with those predicted from the Planck primary CMB

measurements. As the P13SZE sample is a highly massive sample with a large survey area,

the scaling relations should be sensitive to similar biases as the BOXSZ sample. Using the

BOXSZ θy|m would then imply that P13SZE isn’t measuring fewer clusters than expected

for a given mass—but that a given cluster mass simply produces less SZE signal. The ef-

fect of a systematic under-estimate of the mass vs. observable relation is plotted on the

right-hand side of Figure 4.15. These results, from Vikhlinin et al. [280], demonstrate that

boosting the normalization of the mass vs. observable relation upwards by 9% shifts the



115

Planck Collaboration: Cosmology from SZ clusters counts

Table 2. Best-fit cosmological parameters for various combinations of data and analysis methods. Note that for the analysis using Watson et al.
mass function, or (1-b) in [0.7-1], the degeneracy line is different and thus the value of σ8(Ωm/0.27)0.3 is just illustrative

σ8(Ωm/0.27)0.3 Ωm σ8 1 − b

Planck SZ +BAO+BBN 0.782 ± 0.010 0.29 ± 0.02 0.77 ± 0.02 0.8
Planck SZ +HST+BBN 0.792 ± 0.012 0.28 ± 0.03 0.78 ± 0.03 0.8
MMF1 sample +BAO+BBN 0.800 ± 0.010 0.29 ± 0.02 0.78 ± 0.02 0.8
MMF3 S/N > 8 +BAO+BBN 0.785 ± 0.011 0.29 ± 0.02 0.77 ± 0.02 0.8
Planck SZ +BAO+BBN (MC completeness) 0.778 ± 0.010 0.30 ± 0.03 0.75 ± 0.02 0.8
Planck SZ +BAO+BBN (Watson et al. mass function) 0.802 ± 0.014 0.30 ± 0.01 0.77 ± 0.02 0.8
Planck SZ +BAO+BBN (1 − b in [0.7, 1.0]) 0.764 ± 0.025 0.29 ± 0.02 0.75 ± 0.03 [0.7,1]
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Fig. 7. Distribution in redshift for the clusters of the Planck cos-
mological sample. The observed number counts (red), are com-
pared to our best model prediction (blue). The dashed and dot-
dashed lines are the best models from the Planck SZ power spec-
trum and Planck CMB power spectrum fits, respectively. The
uncertainties on the observed counts, shown for illustration only,
are the standard deviation based on the observed counts, except
for empty bins where we show the inferred 84% upper limit
on the predicted counts assuming a Poissonian distribution. See
Sect. 6 for more discussion.

To investigate how robust our results are when changing our
priors, we repeat the analysis substituting the HST constraints
on H0 for the BAO results. Figure 6 (black contours) shows that
the main effect is to change the best-fit value of H0, leaving the
(Ωm, σ8) degeneracy almost identical.

5.2. Robustness to observational sample

To test the robustness of our results, we performed the same anal-
ysis with different sub-samples drawn from our cosmological
sample or from the PSZ, as described in Sect. 3, following that
section’s discussion of completeness. Figure 8 shows the likeli-
hood contours of the three samples (blue, MMF3 S/N > 8; red,
MMF3 S/N > 7; black, MMF1 S/N > 7) in the (Ωm, σ8) plane.
There is good agreement between the three samples. Obviously
the three samples are not independent, as many clusters are com-
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Fig. 8. 95% contours for different robustness tests: MMF3 with
S/N cut at 7 in red; MMF3 with S/N cut at 8 in blue; and MMF1
with S/N cut at 7 in black; and MMF3 with S/N cut at 7 but as-
suming the MC completeness in purple.

mon, but the noise estimates for MMF3 and MMF1 are different
leading to different selection functions. Table 2 summarizes the
best-fit values.

We perform the same analysis as on the baseline cosmologi-
cal sample (SZ+BAO+BBN), but assuming a different computa-
tion of the completeness function using the Monte Carlo method
described in Sect. 3. Figure 8 shows the change in the 2D like-
lihoods when the alternative approach is adopted. The Monte
Carlo estimation (in purple), being close to the analytic one,
gives constraints that are similar, but shifts the contour along
the (Ωm, σ8) degeneracy.

5.3. Robustness to cluster modelling

A key ingredient in the modelling of the number counts is the
mass function. Our main results adopt the Tinker et al. mass
function as the reference model. We use the Watson et al. mass
function to check for possible differences in our results due to
the most massive/extreme clusters. Figure 9 shows the 95% con-
tours when the different mass functions are assumed. The main
effect is a change in the slope of the degeneracy between Ωm and
σ8, moving the best-fit values by less than 1σ.

We also relax the assumption of standard evolution of the
scalings with redshift by allowing β to vary with a Gaussian prior
taken from Planck Collaboration X (2011), β = 0.66±0.5. Once
again, the contours move along the σ8–Ωm degeneracy direction
(shown in blue in Fig. 9).

8

Figure 4.14 Difference between the Planck Collaboration et al. [227] measured cluster counts
(red points with error bars) and the predicted Planck Collaboration et al. [226] cluster
counts based on CMB measurements (green dashed line). The solid blue line represents the
best model prediction while the dashed purple line is estimated from the Planck SZ power
spectrum. More detailed information is given in Planck Collaboration et al. [226], from
which the figure was taken.

σ8 value upwards by approximately 0.025. Assuming the discrepancy between the CMB and

SZE cluster σ8 measurements is due to mass bias, P13 find that this would imply an overall

mass bias of 45%—which is precisely the bias that R13 measure between the M10 and P11

samples for z > 0.13.

While highly suggestive, a simple swap of mass proxy is not enough to explain the discrep-

ancy as cluster-based cosmological results using these different mass proxies vary. Vikhlinin

et al. [280], for example, measure σ8= 0.813 ± 0.012 using Chandra-X-ray measurements

with masses also derived from the YX-Mtot mass proxy. This is comparable to the M10

cluster-based cosmological analysis (one of the few to have used the Mgas-Mtot mass proxy)

who measure σ8= 0.82 ± 0.05. Benson et al. [25], however, measure σ8= 0.773 ± 0.088,

which is closer to the P13SZE results, using SZE-derived masses also calibrated with the

YX-Mtot mass proxy.

One must keep in mind that σ8 and ΩM constraints using cluster number counts are

degenerate, and one can only constrain the product: σ8Ω∼0.3
M . Accounting for this degeneracy,
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Table 3. Constraints from clusters on σ8(Ωm/0.27)0.3.

Experiment CPPPa MaxBCGb ACTc SPT Planck SZ

Reference Vikhlinin et al. Rozo et al. Hasselfield et al. Reichardt et al. This work
Number of clusters 49+37 70810 15 100 189
Redshift range [0.025,0.25] and [0.35,0.9] [0.1,0.3] [0.2,1.5] [0.3,1.35] [0.0,0.99]
Median mass (1014h−1Msol) 2.5 1.5 3.2 3.3 6.0
Probe N(z,M) N(M) N(z,M) N(z,YX) N(z)
S/N cut 5 (N200 > 11) 5 5 7
Scaling YX–TX , Mgas N200–M200 several LX–M, YX YSZ–YX
σ8(Ωm/0.27)0.3 0.784 ± 0.027 0.806 ± 0.033 0.768 ± 0.025 0.767 ± 0.037 0.782 ± 0.010

a The degeneracy is σ8(Ωm/0.27)0.47.
b The degeneracy is σ8(Ωm/0.27)0.41.
c For ACT we choose the results assuming the universal pressure profile derived scaling law in this table (constraints with other scalings relations

are shown in Fig. 10).

the solid symbol and error bar. For SPT we show the “cluster-
only” constraints from Reichardt et al. (2012a). The two error
bars of the Planck SZ cluster red point indicate the statistical
and systematic (1 − b free in the range [0.7, 1.0]) error bars.
The figure thus shows good agreement amongst all cluster ob-
servations, whether in optical, X-rays, or SZ. Table 3 compares
the different data and assumptions of the different cluster-related
publications.

6.2. Consistency with the Planck y-map

In a companion paper (Planck Collaboration XXI 2013), we per-
formed an analysis of the SZ angular power spectrum derived
from the Planck y-map obtained with a dedicated component-
separation technique. For the first time, the power spectrum has
been measured at intermediate scales (50 ≤ ` ≤ 1000). The
same modelling as in Sect. 2 and Taburet et al. (2009, 2010)
has been used to derive best-fit values of Ωm and σ8, assum-
ing the universal pressure profile (Arnaud et al. 2010b), a bias
1−b = 0.8, and the best-fit values for other cosmological param-
eters from Planck Collaboration XVI (2013). The best model ob-
tained, shown in Fig. 7 as a dashed line, confirms the consistency
between the Planck SZ number counts and the signal observed
in the y-map.

6.3. Comparison with Planck primary CMB constraints

We now compare the Planck SZ cluster constraints to those from
the analysis of the primary CMB temperature anisotropies given
in Planck Collaboration XVI (2013). In that analysis σ8 is de-
rived from the standard six ΛCDM parameters.

The primary CMB constraints, in the (Ωm, σ8) plane, dif-
fer significantly from our constraints, in favouring higher val-
ues of each parameter, as seen in Fig. 11. This leads to a larger
number of predicted clusters than actually observed (see Fig. 7).
There is therefore some tension between the results from this
analysis and our own. Figure 10 illustrates this with a compar-
ison of three CMB analyses5 (Planck Collaboration XVI 2013;
Story et al. 2012; Hinshaw et al. 2012) with cluster constraints
in terms of σ8(Ωm/0.27)0.3.

5 For Planck CMB we derived the constraints from the chain corre-
sponding to column 1 of Table 2 of Planck Collaboration XVI (2013).
Note that the SPT results may be biased low by systematics, as dis-
cussed in the appendix of Planck Collaboration XVI (2013).
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Fig. 11. 2D Ωm–σ8 likelihood contours for the analysis with
Planck CMB only (red); Planck SZ + BAO + BBN (blue); and
the combined Planck CMB + SZ analysis where the bias (1 − b)
is a free parameter (black).

It is possible that the tension results from a combination of
some residual systematics with a substantial statistical fluctu-
ation. Enough tests and comparisons have been made on the
Planck data sets that it is plausible that at least one discrepancy
at the two or three sigma level will arise by chance. Nevertheless,
it is worth considering the implications of the discrepancy being
real.

As we have discussed, the modelling of the cluster gas
physics is the most important uncertainty in our analysis, in
particular the mass bias (1 − b) between the hydrostatic and
true masses. While we have argued that the preferred value is
(1 − b) ' 0.8, with a plausible range from 0.7 to 1, a signifi-
cantly lower value would substantially alleviate the tension be-
tween CMB and SZ constraints. Performing a joint analysis us-
ing the CMB likelihood presented in Planck Collaboration XV
(2013) and the cluster likelihood of this paper, we find (1 − b) =
0.55± 0.06 and the black contours shown in Fig. 11 (in that case
(1 − b) was sampled in the range [0.1,1.5]). Such a large bias
is difficult to reconcile with numerical simulations, and cluster
masses estimated from X-rays and from weak lensing do not typ-
ically show such large offsets. Some systematic discrepancies
in the relevant scaling relations were, however, identified and
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Fig. 3.— Constraints on the σ8 and ΩM parameters in a �at ΛCDM cosmol-
ogy from the total (both low and high-redshi�) cluster sample. �e inner solid
region corresponds to−2∆ ln L = 1 from the best-�t model (indicates the 68%
CL intervals for one interesting parameter, see footnote 13) and the solid con-
tour shows the one-parameter 95% CL region (−2∆ ln L = 4). �e dashed
contour shows how the inner solid con�dence region is modi�ed if the nor-
malization of the absolute cluster mass vs. observable relations is changed by+9% (our estimate of the systematic errors).
the relative number density of clusters near the high and low

mass ends of the sample. Since the volume is a fast-decreasing

function at low M’s, the V(M) variations are important. �e
most important parameter of the L −M relation in our case is
the power law slope, α (see eq. 20 in Paper II). Variations of α
within the errorbars (±0.14) of the best �t value lead to changes
in the derivedΩMh of±0.027. Adding this in quadrature to the
formal statistical errors quoted above, we obtain a total uncer-

tainty of ±0.035. We have veri�ed that other sources of sys-
tematics in the ΩMh determination are much less important
than those related to the L −M relation.
In principle, a non-zeromass of light neutrinos has some ef-

fect on the perturbation power spectrum at low redshi�s. We

checked, however, that their e�ect on the shape of the cluster
mass function is negligible for any ∑mν within the range al-
lowed by the CMB data (Komatsu et al. 2008). �erefore, neu-

trinos do not a�ect our results on ΩMh.
Our determination of ΩMh = 0.184 ± 0.035 compares well

with the previous measurements using cluster data and galaxy

power spectra. Of the previous cluster results especially note-

worthy is the work of Schuecker et al. (2003) whose constraints

are based not only on the shape of the mass function but also

on the clustering of low-z clusters. �eir value is ΩMh =
0.239 ± 0.056 (errors dominated by uncertainties in the con-
version of cluster X-ray luminosities into mass; this source of

uncertainty is avoided in our work by using high-quality X-

ray mass proxies). ΩMh is measured accurately also by galaxy
redshi� surveys. �e results from the 2dF and SDSS surveys

are ΩMh = 0.178± 0.016 and 0.223± 0.023, respectively (Cole
et al. 2005; Tegmark et al. 2004, —we rescaled to n = 0.95 their
best �t values reported for n = 1). �e individual errorbars
in galaxy survey results are smaller than those from the clus-

ter data; however, a recent work by Percival et al. (2007c) sug-

gests that the previous galaxy redshi� results may be a�ected
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Fig. 4.— Comparison with other σ8 measurements. Solid region is our 68%
CL region reproduced from Fig. 3 (this and all other con�dence regions corre-
spond to ∆χ2 = 1, see footnote 13 on page 7). Blue contours show theWMAP
3 and 5-year results from Spergel et al. (2007) and Dunkley et al. (2008) (dot-
ted and solid contours, respectively). For other measurements, we show the
general direction of degeneracy as a solid line and a 68% uncertainty in σ8 at a
representative value of ΩM . Filled circles show the weak lensing shear results
fromHoekstra et al. (2006) and Fu et al. (2008) (dashed and solid lines, respec-
tively). Open circle shows results from a cluster sample with galaxy dynamics
mass measurements (Rines et al. 2007). Finally, open square shows the results
from Reiprich & Böhringer (2002, approximately the lower bound of recently
published X-ray cluster measurements).

by scale-dependent biases on large scales. Indeed, there is a

tension between the SDSS and 2dF values at ≃ 90% CL and the
di�erence is comparable to the errorbars of our measurement.

�e cluster results can be improved in the future by extend-

ing the range of the mass function measurements. Not only

can this improve statistical errors in the mass function mea-

surements but it can also improve the accuracy of the L−M re-
lation, a signi�cant source of uncertainty in our case. We note

that it ismore advantageous to increase statistics in the high-M
range than to extend the mass function into the galaxy group

regime. In addition to greater reliability of the X-raymass esti-

mates in the high-M systems, the surveys become dominated
by cosmic variance approximately below the lower mass cut in

our sample (the cosmic variance is estimated in §7.1 of Paper II

using the prescription of Hu & Kravtsov 2003).

Combined with the HST prior on the Hubble constant, our

constraint on ΩMh becomes a measurement for the matter
density parameter, ΩM = 0.255 ± 0.043 (stat) ±0.037 (sys),
where systematic errors are also dominated by the slope of

the L − M relation. �is agrees within the errors with other

independent determinations, such as a combination of BAO

and CMB acoustic scales, ΩM = 0.256 ± 0.027 (Percival et al.
2007b), and a combination of gas fraction measurements in

massive clusters with the average baryon density from Big

Bang Nucleosynthesis, ΩM = 0.28 ± 0.06 (Allen et al. 2008).
It also agrees with another independent measurement based

on our data, ΩM = 0.30 ± 0.05 from evolution of the cluster
temperature function, see (§ 7 below).

6. CONSTRAINTS FROM THE NORMALIZATION OF

THE CLUSTER MASS FUNCTION: σ8 −ΩM

Figure 4.15 Left: The Planck Collaboration et al. [226] Ωm-σ8 likelihood measured using the
Planck -CMB anisotropy spectrum only (red), the Planck SZE cluster count mass esimates
together with BAO and BBN data (blue), and the combined Planck CMB and SZE analysis,
allowing the mass bias to float (black). The combined CMB+SZE analysis fits for a positive
bias in the cluster mass of approximately 40%. Figure from Planck Collaboration et al. [227].
Right: The measured likelihood of the Ωm-σ8 degeneracy as measured using X-ray cluster
count mass estimates in Vikhlinin et al. [280] assuming a flat ΛCDM model. The dashed
contour shows the effect of adding boosting the mass vs. observable relation by the estimated
systematic error of 9%. Figure from Vikhlinin et al. [280]. The two sets of contours in both
plots trace the 68% and 95% confidence region.

all of the cluster cosmology analyses measure consistent values for the degenerate ΩM -σ8

parameter. Now considering the ΩM measurements, we reference the WMAP-9 measurement

of ΩM = 0.279 ± 0.025, and the WMAP-9+BAO+SNe+SZE (ACT+SPT) measurement of

ΩM = 0.2865+0.0096
−0.0095. This is comparable with the P13SZE measurement of ΩM = 0.29± 0.02

whereas P13CMB measure one of the higher values of ΩM = 0.315±0.017. The Planck σ8Ω0.3
M

covariance for the P13CMB and P13SZE results is plotted in Figure 4.15. In contrast, M10

measure one of the lowest ΩM = 0.23± 0.04. Clearly, these various cosmological results vary

in more complex ways than can be explained by a simple scaling relation, and the possible

explanation for this deviation is an exciting new topic for future study.

4.7 Future Scaling Relations Work

In this work, I have presented measurements of the integrated Sunyaev-Zel’dovich effect

signal and studied how it scales with X-Ray determined cluster masses. I have sought

to account for many sources of bias within the limits of the Bolocam SZE data. With a
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proper exploration of the systematics, there is the possibilty that YSZ can be constrained

within R500, and this would give insight into the radial dependence of the observed deviation

from self-similarity in the θy|m relations. Furthermore, it is interesting to explore the mass

calibration in itself. To this end, our work with the CLASH collaboration gives us access to

high quality weak- and strong-lensing measurements, with which we can calibrate the X-ray

data.

Another line of investigation that is currently in the works (mostly led by Seth Siegel and

Andisheh Mahdavi) is performing joint, multi-wavelength parametric deprojections. This has

the advantage over independent wavelength analyses in that it preserves correlations between

the different wavelength data sets.

In the future, we can also expect the quality of of the SZE data to improve. To this

end, the Multiwavelength Submillimeter Inductance Camera (MUSIC), which is currently

undergoing commissioning at the CSO, is a welcome technological step forward (Golwala

et al. [101]). The camera has a larger focal plane than Bolocam, and it is simultaneously

sensitive to four different wavelengths. This would allow better atmospheric noise removal,

a better constraint of the large-scale YSZ signal, and better constraints of the non-thermal

kinetic SZE signal.
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Chapter 5

Other Recent Bolocam Results

In addition to leading the scaling relation analysis in Chapter 4, I contributed to a range of

other results using the Bolocam SZE images. Many of these studies deserve special attention,

since they form the framework for research in the near future. What has made a particularly

strong impression on me is how much individual clusters can teach us about astrophysics

and cosmology.

5.1 SZE Pressure Profiles

The limited ability for most SZE data to constrain either large- or small-scale cluster prop-

erties implies that pressure models must then be employed to fully characterize this signal.

One of the most widely adopted pressure models, discussed in Section 2.2.1, is the general-

ized NFW (GNFW) model (Nagai et al. [198]) using the Arnaud et al. [15, A10] measured

GNFW parameters. The A10 model is employed as the default model in the recent Planck

SZE analyses, but it is not ideal, since it is X-ray-derived within R500 and simulation-derived

beyond. With recent advances in the quality of SZE data, several groups are starting to con-

strain SZE pressure profiles beyond R500. Planck is able to constrain the pressure profiles for

low-redshift clusters in their sample, and their collaboration has recently published pressure

profile measurements for both an individual case study of the Coma cluster [225] as well as

for a large sample of 62 nearby massive clusters from the first 14 months of data [230]. In

both cases, the Planck data show significantly excess pressure (& 2-σ) in the region from

R500 to & 3×R500 compared with simulations. Similar measurements are also possible us-
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Fig. 7.— gNFW parameterized fits to the BoXSZ sample, varying four parameters of the gNFW model. From left to right the three plots
show the Bolocam fit to the full sample, disturbed subsample, and cool-core subsample as points with error bars and as shaded regions,
with the best-fit parameterizations given in A10 and P12 overlaid as thin and dashed lines (P12 did not fit a disturbed subsample, so we
overlay their non-cool-core fit in the center plot). The A10 fits relied on the REXCESS sample of 33 low-z clusters (z < 0.2) observed with
XMM-Newton within R500 and results from simulations outside R500. The P12 fits relied on a sample of 62 Planck selected clusters at
〈z〉 ≃ 0.15, and used XMM-Newton data to constrain the inner portion of the profile and Planck data to constrain the outer portion of the
profile. Our fits use Bolocam SZ data for a sample of 45 higher redshift clusters (0.15 ≤ z ≤ 0.89).

Fig. 8.— The ratio of our best-fit four-parameter gNFW fits to the best-fit four-parameter gNFW fits from A10 (left) and P12 (right).
In both cases the agreement is generally good in the regions that are well constrained by all three datasets (0.1R500 . R . 1.0R500).
However, the fit to the full BoXSZ sample shows hints of higher pressure than the A10 fit at both large and small radii, and hints of higher
pressure than the P12 fit at small radius.

tion17 (e.g., the cool-core profile from our analysis is in
good agreement with the cool-core profile of A10). We do
note that our disturbed and cool-core systems indicate
slight differences within 0.3R500 compared to the corre-
sponding results of A10, and our overall average profile
indicates slightly higher pressures at R . 0.1R500 and at
R & 1.0R500 compared to the results of A10. Our over-
all average profile also shows higher pressure at small
radii compared to the results of P12. Our results are
therefore more similar to simulation-derived results at
small radii, which also show higher pressures than found
by A10 and P12 (A10, Borgani et al. 2004; Nagai et al.
2007; Piffaretti & Valdarnini 2008, P12).
The overall good agreement between our best-fit

gNFW profiles and the results derived in previous anal-
yses provides further evidence that the average clus-
ter pressure profile is approximately universal (at least
within our measurement uncertainties on the average
profile, which are ≃ 10–20% inside R500). This is es-
pecially true given the large differences in the median

17 P12 only present results for cool-core and non-cool-core sub-
samples, and we therefore take their non-cool-core results to be
representative of disturbed systems.

redshifts (〈z〉 = 0.12, 0.15, and 0.42), median masses
(〈M500〉 = 3, 6, and 9 × 1014 M⊙) and data types (X-
ray/simulation, X-ray/SZ, SZ-only) for the A10, P12,
BoXSZ samples. As another consistency check between
our data and the results of A10 and P12, we fit each of
their best-fit gNFW models to our data, allowing only
the normalization to be a free parameter. Although the
fit quality is poor in both cases, we find normalizations
consistent with both results (7.82 compared to 8.40 for
the A10 fit and 6.54 compared to 6.41 for the P12 fit)18.
This implies that the average total pressure of our sam-
ple is consistent with the average total pressure found in
those analyses, further showing the approximate univer-
sality of cluster pressure profiles and the good agreement
between SZ and X-ray measurements of those profiles.
In addition, we note that two other analyses show good
agreement with the results of A10 (and consequently
our results as well). These analyses were performed by
Sun et al. (2011) using a set of 43 low redshift groups

18 Although these single-parameter gNFW fits do not suffer from
the same degeneracies seen in the multi-parameter fits, we still do
not include error estimates due to the fact that the fit quality is
poor.

Figure 5.1 Joint GNFW fits, with four free parameters, to the BOXSZ-measured pressure
maps. From left to right: full, disturbed, and cool-core cluster sample pressure profile
measurements with the shaded 1-σ confidence regions of the fits to the data. These profiles
are compared with the Arnaud et al. [15] and the Planck Collaboration et al. [230] best-fit
GNFW models, which are depicted with solid and dashed lines, respectively. As the Planck
Collaboration et al. [230] does not explicitly fit a disturbed sample, the non-cool-core best
fit is given in the center plot. Figure taken from Sayers et al. [256].

ing Bolocam SZE data, and Sayers et al. [256] have jointly fit GNFW profiles to the entire

BOXSZ cluster sample, and also to cool-core and disturbed cluster sub-samples. The results

of this analysis are shown in Figure 5.1. While the BOXSZ pressure profile is systematically

higher than either the A10 or the Planck measured pressure profiles, all three measurements

are consistent with each other within 1-σ. If this excess holds under further scrutiny, this

would have important implications for cluster cosmological analyses, which very often rely

on these models to model large-scale modes that are often filtered by either a telescope’s

PSF or in the process of removing astronomical and atmospheric noise from the data.

5.2 Abell 1835: A Case Study in Cluster Triaxiality

An exciting new direction that we hope to explore more intensely in the near future is to

constrain galaxy cluster halos in three spatial dimensions using a joint, multi-observational

approach. This type of analysis leverages the assets of each observational probe: lensing for

the overall mass, X-ray for the gas in the cluster core, and SZE for the gas in the cluster

outskirts. Morandi et al. [191] perform a joint X-ray, strong lensing, and SZE analysis of

the galaxy cluster Abell 1835. The lensing data is used to construct the projected surface

mass distribution, Σ, and the gas data is used to constrain the 3D density and temperature
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properties of the cluster. Figure 5.2 shows the observed data points together with the

projected best-fit model. As can be seen, the SZE data is extremely important to constrain

the cluster properties beyond 1 Mpc. One should keep in mind that had weak-lensing data

been available, this would also have extended beyond 1 Mpc. The lensing and gas data

are linked with a generalized HSE equation that includes a non-thermal component, which,

motivated by the simulation results of Shaw et al. [259], is modeled to scale as a power law

with radius:
Pnt
Ptot

= ξ

(
R

R200

)n
, (5.1)

where ξ and n are both free parameters constrained in the joint cluster fitting. The final

Bayesian fit yields a measurement of n = 0.77 ± 0.21, in agreement with the results from

Shaw et al. [259] of n = 0.80 ± 0.25. Hereby, we are the first to constrain the non-thermal

pressure support out to the virial radius observationally. The measured normalization, ξ =

0.177± 0.065, is approximately 2-σ less than that found in Shaw et al. [259]. The 3D mass

profile constrains the minor-to-major axis ratio to be 0.59 ± 0.05 and the intermediate-to-

major axis ratio to be 0.71±0.08, with the major axis inclined to the line of sight at 18.3±5.2

degrees. As cluster asphericity and non-thermal pressure support are extremely important

for understanding cluster physics, this type of analysis is being extended to a larger sample of

galaxy clusters by a member of the Bolocam analysis team, Seth Siegel, and our collaborator,

Andisheh Mahdavi, using the Joint Analysis for Cluster Observations (JACO) software.1

5.3 MACSJ 0717.5: A Case Study of the Kinetic SZE

MACSJ 0717.5 is the most massive and, thus far, the most interesting cluster in the BOXSZ

sample. It has the largest known Einstein radius of θe ≈ 55′′[304]. Ma et al. [162] perform a

multiwavelength X-ray and optical analysis of the cluster and identify four distinct clusters

in a triple merger system, which are identified using the letters A-D in Figure 5.3. In

particular, Ma et al. [162] measure system A to have an exceptionally high line-of-sight

velocity of 3600+252
−242km/s. Mroczkowski et al. [194] perform a joint X-ray/SZE analysis of

the MACSJ 0717.5 cluster using Chandra X-ray data, MUSTANG 90 GHz data, and Bolocam

1http://sfstar.sfsu.edu/cccp/ Mahdavi et al. [164].

http://sfstar.sfsu.edu/cccp/
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Figure 2. Example of the joint analysis of T , SX, �TSZ(ν) and 	. In the
upper panel, we display the two quantities from the X-ray analysis (equa-
tion 14): the observed spectral projected temperature T ∗

proj,m (large dots with
error bars) and the theoretical projected temperature Tproj,m (diamonds). We
also show the theoretical three-dimensional temperature (solid line), which
generates Tproj,m through convenient projection techniques. In the second
panel from the top, we display the two quantities from the X-ray brightness
analysis (equation 15): the observed and theoretical surface brightness pro-
files S∗

X (points with error bars) and SX (solid line), respectively. In the third
panel from the top, we display the two quantities from the SZ temperature
decrement analysis (equation 9): the observed SZ temperature decrement
profile (points with error bars) and the theoretical one �TSZ(ν) (solid line).
Both the observed and theoretical SZ temperature decrements are convolved
with the transfer function. Note that this filtering significantly reduces the
peak decrement of the cluster and creates a ring of positive flux at r ∼ 2
arcmin. In the lowest panel, we display the two quantities from the lensing
analysis (equation 17): the observed and theoretical surface mass profiles
	∗ (points with error bars) and 	 (solid line), respectively. Note that for the
surface brightness (surface mass) and SZ data, the one-dimensional profile
has been presented only for visualization purposes, with the fit applied to the
two-dimensional data. Moreover, for the surface brightness, we have plotted
data referring to the observation ID 6880. The virial radius corresponds to a
scalelength on the plane of the sky of ∼ηDM,aR200 ≈ 2240 kpc.

3.2 X-ray spatial and spectral analysis

We measure the gas density profile from the surface brightness re-
covered by a spatial analysis, and we infer the projected temperature
profile by analysing the spectral data.

The X-ray images were extracted from the level-2 event files
in the energy range (0.5–5.0 keV), corrected by the exposure
map to remove the vignetting effects. Point sources were then
masked and the images were rebinned by a factor of 4 (1 pixel =
1.968 arcsec).

We determined the centroid (xc, yc) of the surface brightness by
locating the position where the X and Y derivatives go to zero,
which is usually a robust and outlier-resistance approach. We have
checked that the X-ray emission is centred on the BCG; the distance
between the X-ray centroid and the BCG centre is �1.8 arcsec (the

uncertainty on this measure is comparable to the smoothing scale
applied to the X-ray image to determine the centroid).

The spectral analysis was performed by extracting the source
spectra in circular annuli of radius r∗

m around the X-ray surface
brightness centroid. We have selected n∗ = 8 annuli out to a maxi-
mum distance Rspec = 1095 kpc, according to the following criteria.
The number of net counts of photons from the source in the band
used for the spectral analysis is at least 2000 per annulus, which
corresponds to a fraction of the total counts always larger than 30
per cent. We used the CIAO specextract tool to extract the source
and background spectra and to construct the redistribution matrix
files (RMFs) and the ancillary response files (ARFs).

Each of the n∗ annuli have been analysed using the XSPEC package
(Arnaud 1996) by simultaneously fitting an absorbed optically thin
plasma emission model (the MEKAL model; Kaastra 1992; Liedahl,
Osterheld & Goldstein 1995) to the four observations. The fit is
performed in the energy range 0.6–7 keV by fixing the redshift at
z = 0.253, and the photoelectric absorption at the galactic value
(i.e. to the value inferred from radio H I maps). For each of the n∗

annuli, we grouped the photons into bins of 20 counts per energy
channel and we applied χ2-statistics. Thus, for each of the annuli,
the free parameters in the spectral analysis were the normalization
of the thermal spectrum Ki ∝ ∫

n2
e dV , the emission-weighted

temperature T ∗
proj,i , and the metallicity Zi.

The four observations were first analysed individually, to assess
the consistency of the data sets and to exclude any systematic effects
that could influence the combined analysis. Then, we proceeded
with the joint spectral analysis of the four data sets.

The background spectra have been extracted from regions of the
same exposure for the ACIS-I observations, for which we always
have some areas free from source emission. We have also checked
for systematic errors resulting from possible source contamination
of the background regions. Conversely, for the ACIS-S observation,
we have considered the ACIS-S3 chip only and we used the ACIS
blank-sky background files. We have extracted the blank-sky spec-
tra from the blank-field background data sets provided by the ACIS
calibration team in the same chip regions as the observed cluster
spectra. The blank-sky observations underwent a reduction proce-
dure comparable to the one applied to the cluster data, after being
reprojected on to the sky according to the observation aspect infor-
mation by using the reproject_events tool. Then, we scaled the
blank-sky spectrum level to the corresponding observational spec-
trum in the 9–12 keV interval, because in this band the Chandra
effective area is negligible and thus very little cluster emission is
expected. One of the advantages of this method is that the derived
ARFs and RMFs will be consistent for both the source and the
background spectrum. However, the background in the X-ray soft
band can vary in both time and space, so it is important to check
whether the background derived by the blank-sky data sets is con-
sistent with the real one. From this perspective, we have verified
that for the ACIS-I observations the two methods of background
subtraction provide very similar results for the fit parameters (e.g.
the temperature).

4 SZ DATA SE T A N D A NA LY S I S

The SZ data were collected using Bolocam in 2006, and they have
been presented previously in Sayers et al. (2011). Since that publi-
cation, these data have been reduced again using a slightly modified
reduction pipeline, which we briefly describe here. First, the flux
calibration model has been updated, based on recent Wilkinson
Microwave Anisotropy Probe (WMAP) results, as described in

C© 2012 The Authors, MNRAS 425, 2069–2082
Monthly Notices of the Royal Astronomical Society C© 2012 RAS

Figure 5.2 From top to bottom: Radially-averaged TX , X-ray surface-brightness, ∆Tsz, and
strong-lensing derived surface mass profiles of joint 3-dimensional fits (solid lines) to obser-
vational data (dots with error bars) of Abell 1835. The projected theoretical temperature
(open diamonds) is also given in the upper plot. ∆Tsz is y expressed in units of temperature
and is presented convolved with the pipeline transfer function. Figure from Morandi et al.
[191].

data at both 140 GHz and 268 GHz. The 90 GHz, 140 GHz, and 268 GHz SZE data have

resolutions of 13′′, 58′′, and 31′′, respectively.

Temperature and electron density maps measured with the Chandra X-ray data are used

to construct pseudo-Y pressure profiles. The SZE data is plotted in Figure 5.3, together with

the pseudo-Y contours smoothed to the particular resolution of the SZE observation. One

can see how the SZE decrement is boosted at 140 GHz and suppressed at 268 GHz, as would

be expected due to the predicted kinetic SZE effect. The observed spectral dependence of the

SZE signal is depicted in Figure 5.4. The magenta lines depict the best-fit level of the kinetic

SZE signal to the Bolocam 140GHz and 268 GHz data. For the B subcluster, the spectral

SZE fit which includes a kinetic component, is preferred by slightly over 2-σ. Recently, the

Bolocam collaboration has obtained more observational data at 268 GHz, which is sensitive

enough to confirm or to rule out the kinetic contribution to the SZE signal.
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Figure 5. Contours showing the SZE decrement (increment) for microwave observations below (above) ∼218 GHz. Each observation is overlaid on the X-ray
pseudo-Compton-y map smoothed to the resolution of the instrument (FWHM depicted in the lower left corner of each panel). The subcluster components identified
by Ma et al. (2009) are labeled as in Figure 1. Left: MUSTANG observation with point sources subtracted, overlaid on a 10′′ FWHM smoothed map. Decrement
contours are overlaid in blue at the 3σ , 4σ , 5σ , and 6σ levels. Note that the MUSTANG data overlaid are filtered with the instrument’s transfer function, while the
background image is simply smoothed to 10′′. Middle: decrement contours from the processed Bolocam 140 GHz data are overlaid in blue at 5σ , 10σ , 15σ , 20σ , and
25σ on the 58′′ FWHM smoothed pseudo-Compton-y map. We note that the data are significantly shifted toward subcluster B, which would be boosted by the kSZE
by ∼34% assuming that the optical velocity along the line of sight, vB ≈ 3200 km s−1 (Ma et al. 2009), is equal to the gas proper velocity. Right: increment contours
from the processed Bolocam 268 GHz observation, overlaid in red at 3σ , 4σ , and 5σ on the 31′′ FWHM smoothed pseudo-Compton-y map. The SZE increment favors
the massive component C, which would be boosted by the kSZE up to 10% assuming the optically determined velocity along the line of sight, vC ≈ −700 km s−1

(Ma et al. 2009). The total SZE from subcluster B would be suppressed up to ∼68% by the kSZE of this high-velocity component.

(A color version of this figure is available in the online journal.)

from the X-ray toward higher values, while the high luminosities
of the cooler, denser clumps would bias the X-ray spectroscopic
temperatures toward lower values.

Using the same X-ray data products used for the pseudo-
Compton-y map, we also produce maps of the entropy dis-
tribution in this cluster. We adopt the entropy parameter
K = kBTene

−2/3(keV cm2) commonly used in cluster astro-
physics (see, e.g., Cavagnolo et al. 2009). We approximate the
(pseudo-)density

ne ≈
√

4π (1 + z)3SX

�Λee(Te, Z)
, (4)

where � is that inferred from the SZE data. The maps in Figure 3
of the projected two-dimensional thermodynamic distribution
imply that the highest pressure, hottest, and most entropic region
is associated with the merger between C and D, while the
remnant core of subcluster B exhibits a local entropy minimum.
Here the high local pressure substructure of B is due to its
high density, suggesting that this component, which has a high
line-of-sight velocity, is relatively intact and has probably
approached or passed through the cluster with a high-impact
parameter.

4.2. Thermal SZE Analysis

Figure 5 shows the significance contours from each of our
SZE observations, overlaid on the X-ray pseudo-Compton-y
map smoothed to the resolution of each instrument.12 Quali-
tatively, the maps at 90 and 140 GHz agree with the X-ray-
derived pseudo-Compton-y maps. There are two small-scale

12 Figure 5 is included only to facilitate the qualitative cross-comparison of
our multi-wavelength SZE observations. These pseudo-Compton-y maps are
merely smoothed to each instrument’s resolution, and the transfer function is
not accounted for in the maps in Figure 5 in order to more accurately show the
underlying pseudo-Compton-y prediction. Figures 6 and 7 and the analysis in
Sections 4.2.1 and 4.2.2 do include the transfer function (i.e., the model there
is processed in the same way as the data).

pressure peaks that are co-spatial with the MUSTANG detec-
tions of pressure substructure, and the 140 GHz data and the
two-dimensional model (“the tSZE template”) broadly agree.
However, there are two main discrepancies: the MUSTANG
data show significant levels of substructure—particularly near
B—not predicted by the template, and the Bolocam 140 GHz
data are shifted ∼20′′ toward subcluster B. This shift is sig-
nificant and cannot be explained by pointing offsets; including
the 5′′ intrinsic uncertainty in the CSO pointing, the Bolocam
centroid is determined to 8′′ precision.

Looking at the 268 GHz Bolocam data (Figure 5, right),
we see a more profound disagreement than that seen in the
observations of the SZE decrement. The SZE increment from
subcluster C clearly dominates the data, while no flux from B
is apparent at S/N > 1. While the lack of agreement between
the MUSTANG 90 GHz detection of subcluster B and the non-
detection at 268 GHz could be explained by filtering effects and
the lower sensitivity in the 268 GHz Bolocam data, we note that
the discrepancy between the Bolocam decrement and increment
data cannot be explained by the effects of signal filtering due
to the atmospheric noise subtraction. The focal plane geometry,
scan pattern, and atmospheric noise subtraction are identical in
the Bolocam observations at both frequencies, and the effects of
signal filtering are relatively mild and approximately the same
at both frequencies. While the noise level is much higher in the
268 GHz observation than that in the 140 GHz observation, it is
also clear from the SZE observations alone that flux is missing
from component B at 268 GHz, while B is significantly brighter
at 140 GHz than the X-ray data indicate it should be.

The properties of the SZE features observed by MUSTANG
in MACS J0717.5+3745 are summarized in Table 1. In this
table, we provide the coordinates and integrated fluxes of the
SZE features in the MUSTANG observation. For these, we
use the primary MUSTANG map (Figure 2, upper panel),
the map with the foreground emission removed (“NW/SE src
sub”; Figure 2, lower panel), and a map with all radio sources

7

Figure 5.3 Pseudo-Compton Y maps constructed from Chandra X-ray data, smoothed to the
resolution of the particular SZE observation depicted. The circles labelled as A through D
are the four sub-halos identified in Ma et al. [162]. Left: 3-σ, 4-σ, 5-σ, and 6-σ confidence
contours of the 90 GHz MUSTANG data. Middle: 5-σ, 10-σ, 15-σ, 20-σ, and 25-σ confidence
contours of the Bolocam 140 GHz data. Right: 3-σ, 4-σ, and 5-σ confidence contours
of the Bolocam 268 GHz data. Figure from Mroczkowski et al. [194], which includes more
information about the employed smoothing and transfer functions of the data in these figures.
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Figure 10. Upper left: spectral sum of tSZE and kSZE flux densities for subcluster B, using the measurements obtained from the model fits to the Bolocam 140 and
268 GHz data (black points with error bars). The best-fit-combined SZE spectrum is plotted as a solid blue line, with 1σ errors displayed as the cyan region. SZE
spectral fits were obtained through a joint likelihood analysis for the Bolocam data including Chandra kBTe likelihood constraints. The kSZE contribution for the
best-fit velocity in Table 3 is plotted in magenta (solid line). A pure tSZE spectrum to the data is plotted in red (solid line, with dashed lines indicating the 68.3%
confidence interval). Spectra with vz � 0 have a probability of 2.1% given these data. Upper right: same as upper left, but using the flux density measured directly
(nonparametrically) at 140 and 268 GHz from the deconvolved data. Spectra with vz � 0 have a probability of 3.4% given these data. Lower left: same as upper right,
but for subcluster C. Spectra with vz � 0 have a probability of 15.7% given these data. Lower right: same as upper right, but for subcluster C. Spectra with vz � 0
have a probability of 19.3% given these data.

(A color version of this figure is available in the online journal.)

However, the synthesized beam in our CARMA/SZA 31 GHz
observations was over 2′, while we are fitting components at
the arcminute scale, and would thus make the results difficult to
compare directly.

Our measurements of the SZE spectra using 140 and 268 GHz
Bolocam data are sensitive to several possible systematic er-
rors, which we describe here. Errors due to the relative flux
calibration were included in our flux estimates. Since the re-
gions used in the analysis are 60′′ in diameter and the pointing
information in each data set is accurate to better than 5′′, this
result cannot be explained by pointing errors. We also consider
possible contamination from dusty, star-forming “submillime-
ter” galaxies (SMGs), which have been included in our noise
model in a statistical sense, though bright and/or lensed SMGs
could bias our measurements, particularly at higher frequencies.
The direction of the submillimeter contamination is key: devi-
ation from a purely tSZE spectrum from B requires a negative
flux density at both 140 and 268 GHz, so (positive) contami-
nation from SMGs would cause us to underestimate the kSZE
signal rather than overestimate it. The inferred large, negative
proper velocity of subcluster C could potentially be affected by
an SMG, but is nevertheless consistent with the optical veloc-
ity to better than 1σ . Importantly, submillimeter Herschel maps
show no indication of contamination at a significant level in
either region. The extended radio emission near C—too faint
at 90 GHz to be seen in the much more sensitive MUSTANG
observations—cannot explain the kSZE component of subclus-

ter C, nor can compact radio sources, constrained by the MUS-
TANG observation to beZ � 90 μJy beam−1 at 90 GHz. Finally,
temperature substructure due to clumping, merger activity, or the
remnant core in B could increase the variance in our estimates,
but since there is no way to constrain the size of this clumping
effect with these data, we defer to future work.

6. CONCLUSIONS

High-resolution, multi-wavelength observations of the SZE
are now beginning to offer measurements that are truly com-
plementary to X-ray and optical studies of the complicated
dynamics in galaxy clusters. Here we have presented sensi-
tive, subarcminute measurements from MUSTANG at 90 GHz
and from Bolocam at 140 and 268 GHz. We compared
these with lower resolution SZE observations obtained with
CARMA/SZA at 31 GHz. We also compared our SZE ob-
servations to the detailed lensing, optical dynamics, radio,
and our own results using Chandra X-ray data to build a
two-dimensional template for modeling the tSZE in this cluster.

The primary feature in MUSTANG’s high-pass-filtered,
high-resolution view of the cluster seems to be associated with
the merger activity between two subcluster components (C and
D in Figure 1). This feature is also strong in Bolocam’s 268 GHz,
31′′ resolution map of MACS J0717.5+3745 and is associated
with the hottest gas, which approaches ∼30 keV in spectral
fits to the Chandra X-ray data from that region of the sky.
The feature is bracketed by nonthermal, extended emission
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Figure 10. Upper left: spectral sum of tSZE and kSZE flux densities for subcluster B, using the measurements obtained from the model fits to the Bolocam 140 and
268 GHz data (black points with error bars). The best-fit-combined SZE spectrum is plotted as a solid blue line, with 1σ errors displayed as the cyan region. SZE
spectral fits were obtained through a joint likelihood analysis for the Bolocam data including Chandra kBTe likelihood constraints. The kSZE contribution for the
best-fit velocity in Table 3 is plotted in magenta (solid line). A pure tSZE spectrum to the data is plotted in red (solid line, with dashed lines indicating the 68.3%
confidence interval). Spectra with vz � 0 have a probability of 2.1% given these data. Upper right: same as upper left, but using the flux density measured directly
(nonparametrically) at 140 and 268 GHz from the deconvolved data. Spectra with vz � 0 have a probability of 3.4% given these data. Lower left: same as upper right,
but for subcluster C. Spectra with vz � 0 have a probability of 15.7% given these data. Lower right: same as upper right, but for subcluster C. Spectra with vz � 0
have a probability of 19.3% given these data.

(A color version of this figure is available in the online journal.)

However, the synthesized beam in our CARMA/SZA 31 GHz
observations was over 2′, while we are fitting components at
the arcminute scale, and would thus make the results difficult to
compare directly.

Our measurements of the SZE spectra using 140 and 268 GHz
Bolocam data are sensitive to several possible systematic er-
rors, which we describe here. Errors due to the relative flux
calibration were included in our flux estimates. Since the re-
gions used in the analysis are 60′′ in diameter and the pointing
information in each data set is accurate to better than 5′′, this
result cannot be explained by pointing errors. We also consider
possible contamination from dusty, star-forming “submillime-
ter” galaxies (SMGs), which have been included in our noise
model in a statistical sense, though bright and/or lensed SMGs
could bias our measurements, particularly at higher frequencies.
The direction of the submillimeter contamination is key: devi-
ation from a purely tSZE spectrum from B requires a negative
flux density at both 140 and 268 GHz, so (positive) contami-
nation from SMGs would cause us to underestimate the kSZE
signal rather than overestimate it. The inferred large, negative
proper velocity of subcluster C could potentially be affected by
an SMG, but is nevertheless consistent with the optical veloc-
ity to better than 1σ . Importantly, submillimeter Herschel maps
show no indication of contamination at a significant level in
either region. The extended radio emission near C—too faint
at 90 GHz to be seen in the much more sensitive MUSTANG
observations—cannot explain the kSZE component of subclus-

ter C, nor can compact radio sources, constrained by the MUS-
TANG observation to beZ � 90 μJy beam−1 at 90 GHz. Finally,
temperature substructure due to clumping, merger activity, or the
remnant core in B could increase the variance in our estimates,
but since there is no way to constrain the size of this clumping
effect with these data, we defer to future work.

6. CONCLUSIONS

High-resolution, multi-wavelength observations of the SZE
are now beginning to offer measurements that are truly com-
plementary to X-ray and optical studies of the complicated
dynamics in galaxy clusters. Here we have presented sensi-
tive, subarcminute measurements from MUSTANG at 90 GHz
and from Bolocam at 140 and 268 GHz. We compared
these with lower resolution SZE observations obtained with
CARMA/SZA at 31 GHz. We also compared our SZE ob-
servations to the detailed lensing, optical dynamics, radio,
and our own results using Chandra X-ray data to build a
two-dimensional template for modeling the tSZE in this cluster.

The primary feature in MUSTANG’s high-pass-filtered,
high-resolution view of the cluster seems to be associated with
the merger activity between two subcluster components (C and
D in Figure 1). This feature is also strong in Bolocam’s 268 GHz,
31′′ resolution map of MACS J0717.5+3745 and is associated
with the hottest gas, which approaches ∼30 keV in spectral
fits to the Chandra X-ray data from that region of the sky.
The feature is bracketed by nonthermal, extended emission

13

Figure 5.4 Left: 1-σ confidence contours of the best-fit SZE spectrum to the Bolocam data
(black points with error bars), both accounting for (cyan) and neglecting (red) the kinetic
SZE effect for the B subhalos. Magenta: The best-fit kinetic SZE contribution. The like-
lihood of the data in this region is < 2.1% for a cluster component velocity less than zero.
Right: Similar to the left-hand figure, but for region C, the likelihood of the data in this
region is < 15.7% for a cluster component velocity greater than zero. All flux densities are
calculated using parametric fits directly to the data. Figure from Mroczkowski et al. [194],
which includes more information, including non-parametric SZE flux density estimates.
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Figure 14. Integrated total mass profiles M(<r) as a function of spherical
radius r derived from various observational probes (top). The blue shaded
area shows the best-fit NFW model with 1σ uncertainty from the combined
weak- and strong-lensing measurements (Figures 6 and 7). The red solid
lines represent the X-ray-based NFW model (1σ confidence interval of the
fit) derived using the JACO software from a simultaneous fit to Chandra
and XMM-Newton observations. The enclosed masses based on Chandra data
alone (solid line with error bars, orange) are derived as described in the text,
assuming the parameterized pressure profile shape from Arnaud et al. (2010).
The green square marks the Bolocam SZE mass estimate at the lensing-derived
overdensity radius r2500. The bottom panel shows the X-ray-to-lensing mass
ratio MX(<r)/Mlens(<r) with 1σ uncertainty as a function of radius r. The
results are shown for both the Chandra-only and joint Chandra+XMM fits.

(A color version of this figure is available in the online journal.)

We perform a simultaneous fit to Chandra and XMM data sets
under the assumption that the intracluster gas is in hydrostatic
equilibrium (HSE) with the overall cluster potential of the NFW
form. The tool used for this analysis is Joint Analysis of Cluster
Observations (JACO; Mahdavi et al. 2007b); we refer the reader
to this paper for the details of the X-ray analysis procedure,
which we briefly summarize below.

We use Chandra ObsID 3277 and XMM-Newton observation
0502430401. We screen periods of flaring background accord-
ing to standard procedure, resulting in usable exposure times
of 23 ks and 26 ks, respectively. Appropriate co-added blank-
sky fields allow us to subtract particle background spectra for
both telescopes, and the residual (positive or negative) astro-
physical background is included and marginalized over in the
global cluster gas model. Spectra are extracted over seven an-
nular bins for both Chandra and XMM-Newton. The extracted
spectra extended out to a distance of 3.′7 (1.26 Mpc) and contain
an average of 1500 counts each.

The model for the gas density distribution is a single β-model
multiplied by a power law of slope γ :

ρg(r) = ρ0

( rc

r

)γ
(

1 +
r2

r2
c

)−3β/2

. (23)

The power-law component is required to capture the steep
increase of the density toward the center of the cluster; all
parameters of the gas distribution are fit to the data. The
metallicity is allowed to vary with radius as well, as are
the parameters of the NFW mass profile. Model spectra are
generated self-consistently in concentric spherical shells and
forward projected onto the annular sky regions matching the
extracted annuli. The resulting spectra are mixed using in-orbit
energy- and position-dependent PSFs for both Chandra and

Table 10
Comparison with X-Ray Cluster Mass Estimates

Data M2500 c2500 r2500 θEin
a

(1014 M�) (Mpc) (′′)

Chandra 4 ± 1 1.8 ± 1.5 0.6 ± 0.1 23
Chandra+XMM 4.5 ± 0.3 0.9 ± 0.3 0.58 ± 0.02 20
WL+SLb 4.9 ± 1.3 1.8 ± 0.3 0.60 ± 0.06 28

Notes. See for details Section 7.2. All quantities here are given in physical units
assuming the concordance ΛCDM cosmology (h = 0.7, Ωm = 0.3, ΩΛ = 0.7).
a Effective Einstein radius for a source at zs = 2.5 predicted by the model.
b Model 7 of Table 5 based on the full weak- and strong-lensing constraints.

XMM-Newton. Systematic calibration uncertainties between
Chandra and XMM-Newton spectra are taken into account by
adding a 4% error (a typical correction used in Mahdavi et al.
2008) in quadrature to each spectral bin used for the joint fits.
This brings the joint χ2 into the acceptable range (χ2 = 1603 for
1541 dof). An MCMC procedure is used to estimate errors on the
best-fit quantities. After marginalizing over all other parameters,
we measure a total mass M2500 = (4.45 ± 0.28) × 1014 M�,
a gas mass Mgas,2500 = (0.54 ± 0.02) × 1014 M�, an NFW
concentration parameter of c200 = 3.5 ± 0.5, an inner gas
density profile slope of 0.7 ± 0.03, and a central cooling time
of 2.1 ± 0.1 Gyr. In what follows, the examination of the X-ray
results is conservatively limited to r < 1 Mpc.

In Figure 14 we plot the resulting X-ray-based total mass
profile, M(<r), shown along with our NFW model from the
full-lensing analysis. The results of the NFW fit are also
reported in Table 10. This X-ray model yields a total mass of
MX = (4.6±0.2)×1014 M� at the lensing-derived overdensity
radius of r2500 ≈ 0.60 Mpc. This is in excellent agreement
with the lensing mass at the same radius, Mlens = (4.9 ±
0.9)×1014 M�, which corresponds to the X-ray-to-lensing mass
ratio, a2500 = MX(<r2500)/Mlens(<r2500) = 0.95+0.23

−0.25. The a2500
value obtained here is in good agreement with results from
mock observations of 20 ΛCDM clusters by Rasia et al. (2012):
a2500 = 0.94 ± 0.02. At this overdensity, no significant bias
was observed in detailed observational studies by Zhang et al.
(2008) and Mahdavi et al. (2008), who performed a systematic
comparison of weak-lensing and X-ray mass measurements
for sizable cluster samples. In the bottom panel of Figure 14,
we show the X-ray-to-lensing mass ratio aΔ as a function of
cluster radius, in the radial range where X-ray observations are
sufficiently sensitive. Overall, the mass ratio is consistent with
unity especially at r ∼ r2500.

Ebeling et al. (2009) obtained a hydrostatic mass estimate of
MX = (1.7 ± 0.1) × 1015 M� at r = 2.3 Mpc (their estimate
for r200) assuming an isothermal β-model with β = 0.57±0.02
and their estimated temperature kBT = 11.6 ± 0.7 keV in
the radial range [70, 1000] kpc (MX ∝ β1/2T ), which is
high but consistent within the errors with Mlens(<2.3 Mpc) =
(1.4 ± 0.3) × 1015 M� obtained with our best NFW model
based on the full-lensing analysis.

Our full-lensing results, when combined with X-ray gas mass
measurements (Mgas), yield a direct estimate for the cumulative
gas mass fraction, fgas(<r) ≡ Mgas(<r)/M(<r), free from
the HSE assumption. For this we use reduced Chandra X-ray
data presented in the Archive of Chandra Cluster Entropy
Profile Tables (ACCEPT; Cavagnolo et al. 2009). In Figure 15,
we plot our fgas measurements as a function of cluster radius.
We find a gas mass fraction of fgas(<r) = 13.7+4.5

−3.0% at a
radius of r = 1 Mpc ≈ 1.7 r2500(≈0.8 r500), a typical value

20

Figure 5.5 Top Panel: Total mass profiles derived for MACSJ 1206.2 using various observa-
tional probes. Blue represents the joint weak- (Subaru) and strong- (HST) lensing measure-
ment, with the shading indicating the 1-σ confidence region. The red lines contain the 1-σ
confidence region of the best-fit X-ray mass profile, using the JACO software and combining
both Chandra and XMM-Newton observations. The orange line uses only Chandra data and
assumes an A10 pressure profile. The green square represents the Bolocam SZE-only mass
constraint on R2500 and is in good agreement with the data. Bottom Panel: the difference
between the X-ray and lensing mass profiles for both X-ray fitting methods. As can be seen,
the X-ray systematically under-estimates the lensing mass. Figure from Umetsu et al. [277].

5.4 Multiwavelength Mass Calibration

Umetsu et al. [277, hereafter U12] and [180, hereafter M13] perform an in-depth cross-

calibration of mass profile measurements using strong- and weak-lensing, X-ray, and SZE

observational probes for the galaxy clusters MACSJ 1206.2 and MACSJ 01717.5, respectively.

The Bolocam-measured SZE mass of MASCJ 1206.2 at R2500 is consistent with the lensing

and X-ray masses. In U12, we identify large-scale structure running from the North-West to

the South-East region of MACSJ 1206.2 that, when removed, results in a very regular NFW

mass profile. After removing the kinetic SZE contribution in MACSJ 0717.5 for the M13

analysis, we measure an SZE mass profile within 1Mpc/h, which is consistent with X-ray.

Both gas mass measurements are below the lensing mass and suggest deviations from HSE.
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18 CLASH: MACSJ0717

Figure 14. X-ray map from XMM-Newton data in logarithmic
scale, smoothed to θFWHM = 0.5′, with 1.5σ contours with 2σ
intervals (solid black lines). Also overlaid are κ contours (solid
white lines) and galaxy density contour (dotted black line).

data allowing both the normalization and scale radius to
vary while using the best-fit slope parameters found by
Arnaud et al. (2010).

We compute the mass of MACSJ0717 from this gNFW
fit to the SZE data using the formalism described by
Mroczkowski (2011). In particular, we assume that
the cluster is spherical and in HSE, although we note
that neither of these assumptions are strictly valid for
MACSJ0717 due to its complex dynamical state. The
resulting SZE mass profile is shown in blue in Figure 15,
and we note that it is approximately ∼ 75% of our
lensing-derived mass profile. However, the SZE mass pro-
file is in reasonably good agreement with the X-ray de-
rived mass profile, which also assumed HSE. We therefore
conclude that the difference is due to the bias associated
with assuming HSE. For example, even for relaxed sys-
tems we expect the HSE-derived virial mass to be biased
approximately 10−20% low on-average compared to the
true virial mass due mainly to bulk motions in the gas
(Nagai et al. 2007; Rasia et al. 2004, 2012; Meneghetti
et al. 2010). Furthermore, in order to gauge the impact of
the kinetic SZE signal from subclump “B”, we also com-
puted an SZE mass profile without subtracting the ki-
netic SZE template (shown in gray in Figure 15). As ex-
pected, the difference between the two SZE mass profiles
is most significant in the inner regions of MACSJ0717
near the center of subclump “B”, where the corrected
mass is ∼ 50% lower than the uncorrected one, decreas-
ing to only . 15% difference at large radius.

9.4. Comparison with ΛCDM Predictions

After reliably estimating the mass of this cluster and its
surroundings in Sections 7 and 8 we are in the position to
address the probability of finding such a massive cluster
in our Universe via extreme value statistics (Mortonson
et al. 2011; Colombi et al. 2011; Waizmann et al. 2012b;
Hotchkiss 2011; Harrison & Coles 2012). In the work
of Waizmann et al. (2012b) several high-mass clusters
were examined (Abell 2163, Abell 370, RXJ 1347−1145
and 1E0657−558) and the cumulative probability func-

Figure 15. Integrated total mass profiles M3D(< r), derived from
an NFW fit to WL+SL mass reconstruction (orange), from the
SZE data after subtracting the best-fit kinetic SZE template found
by Mroczkowski et al. (2012) (blue) and from X-ray (magenta).
The SZE and X-ray fits are largely consistent with each other, but
systematically lower than the lensing derived mass profile at all
radii, presumably due to biases associated with the HSE assump-
tion used in deriving both the SZE and X-ray mass profiles. For
completeness, we also show the mass profile derived from the SZE
data without correcting for the kinetic SZE signal (gray).
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Figure 16. PDF of the maximum cluster mass expected to be
found in a survey with sky coverage of the MACS survey, AS =
22, 735 deg2, within the redshift interval 0.5 ≤ z ≤ 1.0. The red
vertical lines represent the 1, 2, 3σ upper confidence levels. The
blue circle denotes the measured lensing mass of MACSJ0717.

tion of finding such massive systems in their given survey
area was calculated using general extreme value statis-
tics. However, they found that none of those clusters
alone is in tension with ΛCDM. In another paper, Waiz-
mann et al. (2012c) test the probability of the extremely
large Einstein radius measured for MACSJ0717, previ-
ously estimated as θE = 55′′ (for z = 2.5, Zitrin et al.
2009a) within the standard ΛCDM cosmology. Although
they find this system not to be in tension with the

Figure 5.6 Total mass profiles derived for MACSJ 0717.5 using various observational probes.
(Orange) Best-fit weak- and strong-lensing NFW profile. (Purple) Chandra-only mass profile
estimate. (Gray and Blue) Bolocam SZE mass profile with and without correcting the kinetic
SZE effect, respectively. The X-ray and the SZE data are largely consistent with each
other and systematically lower than the lensing profile. The fact that the non-kinetic SZE
corrected Bolocam mass profiles agree with the lensing data is purely a coincidence. Figure
from Medezinski et al. [180].
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Appendix A

Galaxy Cluster Catalogs

Understanding the specifics of a particular cluster catalog aids in understanding the charac-

teristics of the clusters that they include. Some cluster catalogs have a well-defined cluster

selection process which allows for analytical modeling of selection function effects. For ob-

vious reasons, the first galaxy cluster surveys were compiled using optical observations.

However, after the X-ray ROSAT All-Sky Survey (RASS) catalog became available, which

includes many clusters at larger redshifts, X-ray has generally provided the basis for many

of the current cluster catalogs of all wavelengths.

A.1 Optical Catalogs: Abell, Zwicky, and SDSS

Optically-selected galaxy cluster catalog members generally lie at lower-redshifts and have

larger angular extents than their X-ray counterparts. George Abell [1] compiled the first

comprehensive catalog of galaxy clusters in 1958 while still a graduate student at Caltech.

He personally examined photographic plates taken with the Palomar Sky Survey to identify

clusters for his catalog. The original 1958 work contains 2,712 galaxy clusters, and this was

extended in 1989 to include the Southern sky, yielding a total of 4,073 galaxy clusters [2].

The Abell catalog has four main selection criteria: richness (∼30 or more member galaxies

must be within a specfic magnitude range), compactness (∼50 or more members must be

within approximately 1.5h−1Mpc, expressed in units of the modern-day physical distance

parameterization), redshift (0.02 < z < 0.20), and finally, clusters should be sufficiently

distant from the galactic plane to minimize contamination. Fritz Zwicky was also from
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Caltech and also compiled a galaxy cluster catalog between 1961 and 1968 from the Palomar

Sky Survey [308]. This catalog contains a total of 9,134 galaxy clusters. As Abell’s catalog

is more complete at the redshifts and luminosities of interest for cluster cosmology, it is

generally favored over Zwicky’s catalog.

The Sloan Digital Sky Survey (SDSS) is a more recent optical survey and has been

surveying the sky since 2000. The camera is a 120 Megapixel CCD camera with 1.5 deg2

field of view, and it is mounted on a 2.5m telescope at Apache Point Observatory in New

Mexico. It observes in five temporally alternating color bands (g′, r′, i′, u′, and z′), spanning

from optical to infrared. The instrument has undergone two major upgrades, and the sky

surveys are therefore split into three main catagories: SDSS-I (2000-2005), SDSS-II (2005-

2008), and SDSS-III (2008-2014+).

The maxBCG catalog (Koester et al. [142]) uses the initial SDSS-I data to identify 13,823

galaxy clusters between 0.1 < z < 0.3 in 7500 deg2 of the sky using the red-sequence tech-

nique (Gladders & Yee [99]) and a likelihood function that includes the color and magnitude

properties of a typical brightest cluster galaxy (BCG). The GMBCG cluster catalog (Hao

et al. [111]) builds upon the MaxBCG catalog and identifies 55,424 galaxy clusters using the

red-sequence technique between 0.1 < z < 0.55 in the SDSS-II data release. The GMBBCG

catalog covers 8240 deg2 of the sky and is considered to be volume-limited out to z = 0.4.

Looking toward the future, the Dark Enery Survey (DES) will map 5000 deg2 of the

southern sky using five bandpass filters ranging from the visible to infrared (g′, r′, i′, z′, Y ).

The camera is a 520 Megapixel CCD camera with a 3 deg2 field of view. The camera is

mounted and operational on the Blanco 4m telescope in Chile, and the formal survey is

expected to start in the Fall of 2013. DES expects to identify more than 20,000 clusters out

to z & 1 using the red sequencing technique (Sánchez & DES Collaboration [250], Flaugher

& DES Collaboration [92]).

A.2 X-ray Catalogs: RASS, MACS, and MCXC

The ROSAT All-Sky Survey (RASS) is special, because it is the only all-sky X-ray survey

to have ever been conducted and it is the basis of many other galaxy cluster catalogs. The
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ROSAT satellite was a joint German, British, and American mission, which launched in 1990

and observed for over eight years. The instrument is sensitive to energies between 0.1 and

2.4 keV, and clusters identified in this catalog are denoted with RXJ (ROSAT, X-ray, and

Julian).

Upon completion of the X-ray sky survey, several efforts were undertaken to identify

galaxy clusters in the survey. The Brightest Cluster Sample, including its extension (eBCS,

Ebeling et al. [73, 72]), contains over 300 confirmed galaxy clusters observed at decli-

nations > 0◦ and galactic lattitudes of |b| > 20◦. It is estimated to be approximately

50% complete above ∼ 2.9 × 10−12erg/s/cm2(0.1 − 2.4keV) and 90% complete above ∼
4.4 × 10−12erg/s/cm2(0.1 − 2.4keV). The ROSAT-ESO Flux Limited X-Ray Galaxy Clus-

ter Survey (REFLEX)(Böhringer et al. [36]), can be considered, in a sense, the south-

ern counterpart of BCS with slightly different selection criteria. REFLEX covers 4.24

steradians of the southern sky and includes 447 galaxy clusters down to a flux limit of

3 × 1012erg/s/cm2 (0.1 − 2.5keV). The sample includes X-ray properties and spectroscopic

redshift information and is described to be more than 90% complete.

The Massive Cluster Survey (MACS) builds off of the RASS and BCS catalogs, and

the selection methodology for this catalog is given in Ebeling et al. [74]. All clusters are

observable from Mauna Kea (−40◦ > δ > 80◦), and the initial cuts are based on X-ray

flux measurements greater than 1 × 10−12erg/s/cm2 between 0.1-2.4 keV, and an X-ray

hardness ratio. Of the ∼5000 sources that remain, the final list of over 100 clusters is

obtained through a rigorous vetting process, which includes visual inspection and follow-up

spectroscopic observation. As of this writing, the only subsamples of the MACS catalog

that have been published are the high-redshift sample (MACS-DIST), which consists of 12

clusters above z > 0.5, Ebeling et al. [71], and the high-flux ratio sample (MACS-BRIGHT),

which consists of 34 clusters with nominal X-ray fluxes in excess of 2×10−12erg/s/cm2(0.1−
2.4keV)(Ebeling et al. [75]). These samples, including the eBCS sample, are plotted in Figure

A.1.

The Meta-Catalog of X-Ray detected Clusters (MCXC) [221] arose in light of the various

disjoint X-ray catalogs and the need for a large of X-ray detected cluster sample for the

upcoming Planck satellite mission as possible. 1743 clusters were obtained by combining all
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Figure A.1 The Lx-z distribution of of the eBCS (blue) and MACS (red) samples. Red
squares and red triangles indicate the MACS-BRIGHT and MACS-DIST samples, respec-
tively. EMSS (Gioia & Luppino [98]), WARPS (Perlman et al. [216]), and the 400 Square
Degree (Burenin et al. [46]) project are serendipous surveys (clusters obtained from pointed
observations), and therefore they are less complete and have lower flux limits than the com-
plete flux-limited samples, such as the MACS cluster sample. Figure taken from Ebeling
et al. [75].

publicly available catalogs based on the ROSAT All Sky Survey-based (NORAS, REFLEX,

BCS, SGP, NEP, MACS, and CIZA) cluster catalogs, and also serendipitious (160SD, 400SD,

SHARC, WARPS, and EMSS) cluster catalogs. Each cluster has a redshift and an estimated

L500 (0.1− 2.4keV) and M500 value. M500 values are obtained either directly from Maughan

et al. [177] for the MACS catalog, or indirectly by inserting the L500 value into the Arnaud

et al. [15] measured M-L relationship. In the case where M500 is obtained from the M-L

relation, L500 is estimated in an iterative fashion with M500 (as it is weakly dependent on

R500). For a general idea on how the BOXSZ cluster sample is distributed relative to the

general cluster population, the BOXSZ sample clusters are marked in Figure A.2, where the

parameters are obtained from the MCXC catalog. While BOXSZ has very full coverage of

the most massive, high redshift clusters known (thanks to the complete MACS high-redshift

sample), the completeness of this coverage quickly tapers at low redshifts.

A new all-sky X-ray survey is scheduled to launch in 2014: the extended ROentgen

Survey with an Imaging Telescope Array (eROSITA). eROSITA will perform the second



129

0.0 0.2 0.4 0.6 0.8 1.0
Redshift

10-3

10-2

10-1

100

M
50

0
MCXC
Planck ESZ
Bolocam

0.0 0.2 0.4 0.6 0.8 1.0
Redshift

10-4

10-3

10-2

10-1

100

101

102

L
50

0 MCXC
Planck ESZ
Bolocam

Figure A.2 M500 (upper) and L500 (lower) measurements given in the Meta-Catalogue of
X-ray detected Clusters (MCXC), Piffaretti et al. [221] (black dots), which includes almost
all of the confirmed X-ray detected galaxy clusters. While M500 values for a small fraction of
the clusters, mostly the MACS cluster sample, are available, the bulk of the M500 values are
estimated from the L-M relation given in Arnaud et al. [15]. Intrinsic scatter is not included,
and therefore these values are more correlated than they would be if the parameters had
been measured using standard X-ray techniques. Overplotted are the BOXSZ cluster sample
(open green circles) and Planck Collaboration et al. [223, ESZ] early release cluster sample
(smaller, open red circles) but retaining the L500 and M500 given in the MCXC catalog. As
can be seen, the ESZ catalog covers a much lower redshift than the BOXSZ sample, and
there are quite a few X-ray luminous clusters that are undetected with the SZE.
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all-sky survey in the soft X-ray band (0.5-2.0 keV), and it will be the first ever hard X-ray

(2.0-10.0 keV) survey of the sky. The survey will take 4 years, and it will be 20 times more

sensitive than ROSAT. What is most amazing is that eROSITA will discover all massive

galaxy clusters away from the Galactic plane, which the team estimates to be between 50-

100 thousand galaxy clusters out to z ≥ 1 (Merloni et al. [183]).

X-ray selected cluster catalogs have also been derived for targeted observations at other

wavelengths. One such example is the Local Cluster Substructure Survey (LoCuSS,Smith

et al. [262]), which aims to calibrate masses across X-ray, SZE, and weak- and strong-lensing.

The original sample consisted of ∼12 clusters, selected to be very bright (Lx≥ 8× 1044erg/s,

0.1-2.4 keV) and lie in a narrow redshift slice, 0.17 ≤ z ≤ 0.25, where gravitational lensing is

optimized. Ultimately, LoCuSS hopes to observe over 100 galaxy clusters. Okabe et al. [207]

perform a weak-lensing analysis on 30 clusters. Marrone et al. [171] measure YSZ scaling

relations using the Sunyaev-Zel’dovich Array (SZA) and strong-lensing measurement for

14 LoCuSS clusters, and Marrone et al. [172] measure the YSZ weak-lensing mass scaling

relations with 18 LoCuSS clusters.

Accurate mass-profile calibration for a representative sample of clusters is one of the

primary goals of the Cluster Lensing And Supernova survey with Hubble (CLASH, Postman

et al. [233]). The catalog is built around a 524-orbit multi-cycle treasury Hubble Space

Telescope (HST) program observing a total of 25 galaxy clusters in 16 filters ranging from

IR to UV. Twenty clusters are X-ray-selected, and the remaining 5 clusters were chosen

specifically for being known strong lenses (Postman et al. [233]). Many of the clusters

were chosen to be massive and dynamically relaxed, with 16 clusters chosen from the Allen

et al. [6] sample of 20 clusters. The CLASH program’s scientific goals have compelled the

collaboration to calibrate their data using a wide variety of observational probes, including:

weak lensing, X-ray, and the SZE. All of the clusters have TX ≥ 5 keV and redshifts z ∼ 0.2,

which is compatible with the cluster parameter region that Bolocam is senstive to. This

has led to a close Bolocam-CLASH collaborative effort, and the CLASH cluster catalog is

entirely contained with the BOXSZ sample.
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Figure A.3 Redshifts and YX-based mass estimates for the SPT (Williamson et al. [292]),
ACT (Hasselfield et al. [113]), and Planck (Planck Collaboration et al. [228]) cluster catalogs.
As can be seen for high-redshift clusters, detection is fairly independent with redshift. Figure
taken from Planck Collaboration et al. [228].

A.3 SZE Catalogs: Planck, ACT, and SPT

We are positioned at an age where copious, high-quality SZE data are just beginning to come

available. Three main SZE surveys have come online during the last several years: the South

Pole Telescope (SPT), the Atacama Cosmology Telescope (ACT), and the Planck satellite.

The resolution of the ground based instruments, similar to Bolocam, complement the spatial

coverage of Planck satellite observations. Mass estimates and redshift measurements for all

three of these SZE surveys is plotted in Figure A.3.

The SPT SZE focal plane contains 960 detectors, formed out of six detector segments,

which are individually senstive to 100 GHz, 150 GHz, and 220 GHz, and each detector has a

FWHM PSF of 1.6′, 1.2′, and 1.0′, respectively (Carlstrom et al. [49]). The first SPT survey

mapped 720 deg2, identified 224 cluster candidates, 158 of which were confirmed clusters,

and 138 of these were first detected with SPT (Reichardt et al. [242]). The median redshift

for the sample is 〈z〉 = 0.57, and it attains a survey depth of 18 µKCMB-arcmin. The final
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SPT survey has mapped 2500 deg2 (Williamson et al. [292]) and has reached a comparable

depth to the first SPT survey, with a full list of cluster candidates and detected clusters yet

to be published.

ACT is a ground-based SZE survey instrument quite similar to SPT. It too has three

bands, 148 GHz, 218 GHz, and 277 GHz, with FWHM PSFs of 1.4′, 1.0′, and 0.9′, respectively

(Swetz et al. [272]). ACT has surveyed approximately 1000 deg2, consisting of a 455 deg2

survey (36µK deep, Marriage et al. [170]), and a 504 deg2 survey (∼59µK deep, Hasselfield

et al. [113]). The instrument has detected 91 optically confirmed clusters at a median

redshift of 〈z〉 = 0.44, and ∼30 of these clusters are new discoveries. Both SPT and ACT

have undergone major upgrades in recent years and are currently undergoing ambitious

observation campaigns. We can expect these catalogs to grow several-fold in the coming

years.

The Planck satellite recently released its SZE-selected cluster catalog, covering an area of

∼35, 000 deg2, and containing 1227 cluster candidates, 683 of which were previously known

and 178 of which are new cluster detections, which have been confirmed Planck Collaboration

et al. [228]. The 143 GHz band of the Planck satellite has a FWHM sensitivity of ∼7′. Three

different algorithms were used for selection (Herranz et al. [115], Melin et al. [181], Carvalho

et al. [51]) which utilize spectral information from all spectral bands of the Planck satellite,

from 100 GHz to 857 GHz, and all clusters with S/N> 4.5 were selected. The clusters have

a median redshift of 〈z〉 ≈ 0.15, although there is significant coverage out to redshift 1.0.
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