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ABSTRACT

Nuclear weak interaction rates, including electron and positron
emission rates, and continuum electron and positron capture rates, as
well as the associated v and V energy loss rates are calculated on a
detailed grid of temperature and density for the free nucleons and 226
nuclei with masses between A = 21 and 60. Gamow-Teller and Fermi discrete-
state transition matrix element systematics and the Gamow-Teller T< = T>
resonance transitions are discussed in depth and are implemented in the
stellar rate calculations. Results of the calculations are presented on
an abbreviated grid of temperature and density and comparison is made to
terrestrial weak transition rates where possible. Neutron shell blocking
of allowed electron capture on heavy nuclei during stellar core collapse
is discussed along with several unblocking mechanisms operative at high
temperature and density. The results of one-zone collapse calculations
are presented which suggest that the effect of neutron shell blocking is
to produce a larger core lepton fraction at neutrino trapping which leads

to a larger inner-core mass and hence a stronger post-bounce shock.
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I. INTRODUCTION

Weak interaction processes involving nuclei are important in many
phases of stellar evolution, stellar core collapse, and possibly ensuing
supernovae explosions. Cooling by URCA neutrino emission is sometimes
important for the determination of local temperature and density environ-
ments, which in turn influence subsequent evolution and nuclear burning
characteristics. Weak transitions between nuclei involving one, or
several, of electron or positron emission and electron or positron cap-
ture, can be important in determining the nucleosynthesis in any astro-
physical process, and are especially important in this regard at the
high temperatures and densities encountered in the stellar interior.

Past treatments of the stellar nuclear weak interaction rate problem
are reviewed and discussed at the beginning of chapters II (FEN I) and
III (F2N II). The work embodied in this thesis goes beyond previous
attempts at solution of the high temperature, high density nuclear weak
rate problem in that it includes, for the first time, a consistent

= 5 T> and T> - T<

systematic treatment of the T Gamow-Teller resonances,
as well as making use of a large amount of recent nuclear level and weak
matrix element data. The results of the calculations described here are
already finding use in studies of nucleosynthesis during stellar evolu-
tion and collapse (Thielemann and Arnett 1981, Weaver and Woosley 1981).
It is thus appropriate to give a very cursory overview of present ideas
on the late stages of stellar evolution and supernova formation, with a
commentary on where the most likely application of these nuclear weak
interaction rates may occur.

It is currently held that stars of less than about 8 M, and under-

going normal evolution will experience considerable mass loss through
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pulsation and winds and eventually become white dwarfs. Typical stars
between 8 and 70 M@ are thought to form unstable iron cores which
collapse to possibly form type II supernovae (hereafter SN II), leaving
behind a neutron star or black hole remnant (Wheeler 1981). The origin
of type I supernovae (hereafter SN I) is unclear, but is widely believed
to result from the thermonuclear explosion, and complete disruption of
either massive young stars (see e.g., Woosley et al. 1980), accreting
white dwarfs (see e.g., Nomoto 1980 and Arnett 1969), or old, abnormally
evolving stars (Wheeler 1978).

The supernovae observed in this and external galaxies are classi-
fied as either SN I or II by their spectra. SN II show roughly solar
abundances of hydrogen and heavy elements (cf. Kirshnmer et al. 1973),
have characteristic expansion velocities of 5000 km s_l, and absolute
magnitudes at peak brightness of between MV ~ =17 to MV ~ =19. The
light curves of SN II are consistent with a point explosion in a tenuous
red giant envelope, but the lack of homogeneity in these light curves
indicates a large range of possible envelope configurations. SN II are
seen principally in the spiral arms of galaxies and not seen in ellip-
ticals, indicating that their progenitors are likely massive, recently
formed population I stars (Wheeler 1981).

In contrast, SN I have hydrogen deficient spectra (cf. Kirschner et al.
1973, Kirshner and Oke 1975) and show a long exponentially decaying
light curve which probably occurs via the radiocactive decay of roughly
0.5-1 M of 56Ni (Axelrod 1980) injected during the supernova event.

SN I have peak absolute magnitudes of about MV =~ -18 and characteristic

expansion velocities of about 11,000 km/s. These supernovae occur in

galaxies of all morphological types and are not confined to spiral arms.



The evolution of the supposed massive progenitors of SN II has been
studied by Weaver and Woosley (1980), Arnett (1978), and Arnett (1980).
The core of the massive star is thought to pass sequentially through
hydrogen, helium, carbon/oxygen, neon, and silicon burning. The abundances
of the nuclear species and the temperatures in these various burning
phases are influenced by nuclear weak transition rates and by the asso-
ciated neutrino energy loss rates. Neutrino energy losses due to nuclear
weak processes are, for example, quite important during carbon and oxygen
burning, as pointed out by Woosley, Arnett, and Clayton (1972). Consider-
able neutronization is thought to occur even before the onset of silicon
burning. Weaver and Woosley (1979) have found that some of the electron
capture/positron emission transitions discussed in chapter II help make
3OSJ’. rather than 288i, the dominant Si isotope at the onset of silicon
burning with interesting modifications in the subsequent core evolution.

Electron capture on heavy nuclei during the collapse of the iromn
core of a massive star plays an important role in determining the outcome
of that collapse. Considerable controversy surrounds the rates of these
electron capture reactions (Bethe et al. 1979) at the very high densities
and temperatures characteristic of core collapse. Chapter V presents an
exposition of the neutron shell blocking of electron capture on heavy
nuclei. It is shown in that work that neutron shell blocking may result
in a considerable reduction of the overall neutronization rate in the
collapsing stellar core, with a concomitant increase in the inner-core
mass and hence a possibly larger post-bounce shock strength.

Though the influence of SN II on the overall chemical evolution of
the galaxy is not known, it seems clear that SN II are probably respons-

ible for most of the present oxygen abundance, as well as a good deal of



the explosive nucleosynthesis products. Many nuclei from carbon to the
iron-peak are, however, produced during the quasi-static presupernova
burning phases of stellar evolution and then ejected into the inter-
stellar medium in the supernova explosion (Arnett 1973, Arnett 1978,
Woosley and Weaver 1980). The relative abundances of nuclei produced

in these quasi-static burning phases frequently depend on stellar nuclear
weak transition rates at high temperature and density. What iron-peak
elements are ejected in SN II explosions depends sensitively on the

mass cut in the collapsing stellar core (Woosley and Weaver 1980) and
this, in turn, may depend on the blocking effect mentioned above.

It is widely believed that a good deal of the iron-peak nucleosyn-
thesis may have its origin in the thermonuclear explosion of stellar
cores associated with SN I (see Wheeler 1981 and references therein).

As pointed out above, SN I may result from a variety of proposed processes
which share certain characteristics. In particular, SN I may involve

the high temperature, high density combustion of carbon or oxygen.
Neutrino losses associated with the convective URCA process are import-
ant in determining the characteristic of this burning (Couch and Arnett
1973). 1In some of these models, collapse of the degenerate core may be
initiated by electron capture on intermediate mass nuclei before thermo-
nuclear runaway takes place (Couch and Arnett 1973; Wheeler, Buchler, and
Barkat 1973; Bruenn 1973; and Iben 1978). Certainly nuclear weak inter-
action rates help determine the elemental and isotopic abundances which
would result from the disruption of a large fraction of the mass of the
star.

Recent observations of the Cas A supernova remnant show knots of

what appear to be freshly synthesized heavy elements, mainly the products



of oxygen burning: O, Ne, Si, S, Ar, and Ca (see Wheeler 1981 and
references therein). Though it is not clear whether Cas A corresponds to
SN I or SN II (there was no recorded optical outburst) the evidence for
nucleosynthesis in supernovae is exciting. Other observations show en-
hanced abundances of oxygen burning products and silicon peak elements

in what are thought to be SN I remnants: SN 1006, Kepler, and Tycho.

I feel that the most immediate and fruitful applications of the
nuclear weak rates described in this thesis will be in nucleosynthesis
calculations in models of SN I, determination of presupernova evolution
characteristics and abundances in massive SN II progenitor stars, and in
pinning down the dynamics of the supernova mechanism.

Chapter II (FEN I) outlines the problems associated with the calcula-
tion of nuclear weak interaction rates in the stellar interior, including
the handling of large numbers of nuclear parent and daughter states, the
systematics of discrete-state-transition Gamow-Teller and Fermi matrix
elements, and the numerical problems inherent in treating an electron gas
of arbitrary degeneracy. The rate calculations described there are
particularly important in calculating neutronization and neutrino loss
characteristics of a massive presupernova star.

The discussion in chapter III (FEN II) extends the calculations de-
scribed in chapter II to include electron and positron emission and elec-
tron and positron capture rates, as well as the associated vV and V energy
loss rates, for the free nucleons and 226 nuclei between masses 20 and 60.
These calculations include the contribution of the Gamow-Teller resonances
which, as described in the text, have very different characteristics for
T< <% T> and T> == T< transitions. These resonance transitions and the

techniques used to implement them in the stellar rate calculations are



discussed.

The results of these calculations are discussed in chapter IV (FEN
III). The range of validity of these calculations is discussed and the
low temperature, low density rates are compared with tables of known
terrestrial weak decay rates. Abbreviated tables of the stellar rates
are presented.

The last chapter discusses the neutron shell blocking of electron
capture on heavy nuclei during stellar core collapse. This effect is
shown to have interesting consequences for the outcome of stellar core
collapse, as discussed above.

An appendix provides an outline of shell model calculations of
Gamow-Teller strength functions which serve to support the resonance

systematics discussed in chapter III.
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ABSTRACT

Astrophysical positron emission, continuum electron capture, and neutrino energy loss rates are
calculated for 2Al»»Mg, 3P %§i, 3'S3'P, 32§,32P, 35, 33P_ and ¥*Cl—3S. Measured nuclear
level information and matrix elements are used where available. Unmeasured matrix elements for
allowed transitions are assigned on the basis of simple shell model arguments and the results of de-
tailed large-scale shell model calculations by Wildenthal and his collaborators. The experimentally
determined matrix elements are found to dominate the rates over most of the range of temperatures
and densities considered. The uncertainties in the rates are estimated. Appropriate average matrix
elements for unmeasured Gamow-Teller transitions are estimated for use in other sd-shell nuclei.
The rates presented agree roughly with those of Hansen over a wide range of conditions, but
potentially important differences in the rates exist at temperatures and densities relevant for the
production and destruction of Al and for neutronization and neutrino loss in the late stages of
presupernova evolution.

Subject headings: neutrinos — nuclear reactions — stars:

1. INTRODUCTION

The problem of nuclear 8 decay in the stellar environment has been an active area of investigation for many years.
Cameron (1959) pointed out the importance of thermally populated excited states in enhancing weak decay rates,
while Bahcall (1961, 1962a, b, ¢, 1964) and Peterson and Bahcall (1963) outlined the role of continuum electron
capture and Pauli principle inhibition of phase-space, and the possibility of opening many otherwise unattainable
electron capture channels at high density. These and other effects which can make weak-interaction rates in the
stellar interior sensitive functions of temperature and density are briefly reviewed in § II. However, a continuing and
vexing problem in astrophysical weak decay rate calculations is the assignment of nuclear matrix elements and the
estimates of the uncertainties in the resulting stellar rates. Fowler and Hoyle (1964) calculated rates for a number of
weak decays of interest in the supernova problem. Hansen (1966) surveyed weak rates for many nuclei using
experimental information available at that time and an estimate for unknown matrix elements. Later, Mazurek er al.
(1974) used a similar technique, but took into account the limitation on the strength of the weak interaction arising
from the sum rule and applied it to the case of electron capture at high density. Iben (1978) studied Urca neutrino
losses under conditions found in the carbon-oxygen cores of intermediate-mass stars and calculated weak-interaction
rates involving a few excited states of parent and daughter nuclei in the mass range 21 <A <57. Takahashi and
Yamada (1969), Takahashi (1971), Takahashi, Yamada, and Kondoh (1973), Egawa, Koichi, and Yamada (1975),
and Takahashi, El Eid, and Hillebrandt (1978) have used the statistical treatment of the gross theory of B-decay to
treat high density electron capture and have estimated ground state rates for many unstable nuclei.

As the temperature rises, additional transitions from nuclear parent states contribute to decay rates, while, as the
density rises, electron capture transitions into additional nuclear daughter states also contribute. At the very high
temperatures and densities which obtain in the later stages of supernova core collapse (k7'>1 MeV and peak

'Supported in part by National Science Foundation grant PHY76-83685 at Caltech.
2Fannie and John Hertz Foundation Fellow.
3Present address.
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electron Fermi energies well above 10 MeV) many decay channels contribute to each decay, and a statistical
approach becomes possible. In this regime total Fermi and Gamow-Teller strengths, as well as their distribution with
daughter excitation energy, become necessary for calculation of detailed rates. However, the technique used by Bethe
et al. (1979) to treat weak-interaction transitions under these extreme conditions indicates that the dynamics of the
collapse phase may be relatively insensitive to the exact electron capture rates.

In contrast, in the regime of less extreme temperatures and densities encountered in the late stages of precollapse
evolution (core carbon-oxygen burning through hydrostatic silicon burning and the onset of collapse), and in the
explosive burning phases following collapse and bounce, detailed weak-interaction rates of high accuracy may be
quite important. The temperatures and densities most relevant to these environments are 0.1 < 7, <5 and 10° <p/p,
< 10°, corresponding to conditions from mild degeneracy up to Fermi energies near 5 MeV. The nuclei whose rates
are usually most important are those of intermediate mass (Weaver and Woosley 1979; Woosley, Amett, and
Clayton 1972). In the series of papers beginning with the present work, we propose to make weak-interaction rates
available for general astrophysical application for nuclei of the sd-shell (17 < A < 40) over a somewhat larger grid of
temperature (0.01 < T, < 10) and density (10 < p/p, < 10°).

The weak-interaction rates of the sd-shell nuclei at these intermediate temperatures and densities are particularly
sensitive to the detailed properties of the low-lying discrete states of parent and daughter nuclei. Fortunately, a large
body of experimental information concerning these nuclei has been accumulated in recent years (see the summaries
by Endt and van der Leun 1973, 1978). Supplementing this information with shell model calculations for some
unknown allowed transitions (shell model calculations are particularly effective for this mass range) and exploiting
the isospin purity and symmetry in these nuclei, reliable rates can be obtained and uncertainties caused by unknown
nuclear matrix elements can be estimated. We find that the experimentally determined matrix elements and the
Fermi transitions dominate the rates over most of the range of temperature and density considered, but it is
important to consider estimates of unmeasured Gamow-Teller matrix elements. We use three sources to assign these
matrix elements: (1) the results of the detailed large-scale shell model calculations of Wildenthal (1977, 1979) and
Chung (1976) where they are available;* (2) simple shell model arguments where they can be reliably applied; and (3)
an average Gamow-Teller matrix element characteristic of intermediate mass nuclei when a more accurate approach
is not available. The average Gamow-Teller matrix element is distilled from experimental results and shell model
calculations, and is designed to be applied in a survey of weak-interaction rates for sd-shell nuclei to identify those
cases for which the considerable effort of a detailed shell model calculation is most urgently needed. The matrix
element assignment procedure used here is described in detail in § III.

The recent discovery (Gray and Compston 1974; Lee and Papanastassiou 1974; Lee, Papanastassiou, and
Wasserburg 1976) of anomalous amounts of Mg in Allende inclusions has led to renewed interest in possible
mechanisms for the formation of its unstable progenitor *Al (e.g., Arnould, Hillebrandt, and Thielemann 1978;
Truran and Cameron 1978; Amnett and Wefel 1978). These considerations are complicated by the fact that the
Al—>2Mg B-decay rate (mean life 1.04 X 10° years in the laboratory) becomes a sensitive function of temperature
and density in the stellar interior. As a first application of our techniques, we present in § IV astrophysical decay
rates for 2Al— Mg of relevance to the problem of the Mg anomaly. In addition, since the 228 keV isomeric state
of %Al is not thermalized at low temperatures (Ward and Fowler 1979), we have separately tabulated continuum
electron capture and positron decay rates for the ground state and isomeric state systems. The simple structure of
%Al and Mg (ground states: two holes in the 1d5/2 shell) makes the shell model particularly appropriate for the
description of this decay.

The decay *P—3°Si is another example of one in which the shell model is most appropriate. This decay and the
decays 3'S—3P, 32§ ,%2p ¥§ %P and ¥Cl-3*S are particularly important (Weaver and Woosley 1979) for
determining properties of the evolving stellar core through core oxygen and silicon burning and up to core collapse
(Weaver, Woosley, and Zimmerman 1978). In particular, the electron capture and positron decay of these and other
nuclei result in considerable neutronization before core collapse even begins. In addition, in the precollapse
environment the neutrino energy loss associated with these decays may become competitive with neutrino losses due
to thermal processes. This is primarily due to the effect of the degenerate electron gas which inhibits electron-
positron pair creation and increases the plasma frequency, thereby restricting plasma decay to only the most
energetic photons. Conversely, the high electron density enhances nuclear continuum electron capture. The lowering
of the core temperature due to neutrino energy losses together with the hydrostatic neutronization influences the core
composition in nuclear statistical equilibrium during the collapse phase. Decay rates and neutrino loss rates for these
key nuclei are presented in § IV following the discussion of *Al—-*Mg.

“We have used expectation values of doubly reduced (in spin and isospin) S~decay operators from Wildenthal and Chung to calculate
weak transition matrix elements
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H. BETA DECAY IN THE STELLAR INTERIOR
The rate of weak decay from the ith state of the parent to the jth state of the daughter nucleus is given by

fij(Tl P UF)
Sy

where (ft),; is the comparative half-life, which is related to the allowed weak-interaction matrix elements by (Brown,
Chung, and Wildenthal 1978)

A,=In2 (1)

(log ft)gr=3.596 —log| Mc1|?, (22)
(log fr)p =3.791 —log| Mg|?, (2b)

where | Mgy |? and | Mg|? are the absolute squares of the Gamow-Teller and Fermi matrix elements, respectively. The
phase space integral f;; is given by an integral over total energy

5= fq.wz(q,—w)zG(tZ, w)(1—52)(1—S,)dw (3a)
1
for electron (upper signs) or positron (lower signs) emission, or by

ﬁj=fmw2(q,+w)’G(:z, w)S+(1—S,)dw (3b)

w

for continuum positron (lower signs) or electron (upper signs) capture. In equations (3a) and (3b), w is the total rest
mass and kinetic energy in units of m,c?, and

q9,=0./m c*=(M,—M,+E,—E,)/m,c? (3¢c)

is the B-decay total energy in units of m_c2. In equation (3c) M, is the nuclear mass of the parent and M, that of the
daughter, and E,, E, are the excitation energies of the nuclear states involved. We have calculated nuclear masses
from the tabulated atomic masses by subtracting the mass of the atomic electrons, neglecting atomic binding
energies. The w, is the capture threshold total energy, rest plus kinetic, in units m,c? for positron (or electron)
capture. If the corresponding electron emission (or positron emission) total energy is such that g,> — I, then w,=1,
while for g, < —1, w,=|q,|. §,,5_,S, are the positron, electron, and neutrino (or antineutrino) distribution
functions, respectively. Neglecting possible corrections due to the presence of bound electrons and the ions, these are
the Fermi-Dirac distribution functions. For electrons,

S_-(cxp( U;;]F)+l)_l, (4a)

where U=(w— 1)m_c? is the kinetic energy, U is the electron chemical potential, and Ug/kT is the degeneracy
parameter. In the positron distribution function S, , Uy is replaced by — Ug—2m_c2. The chemical potential Uf is
determined from the density p in g cm 2 by inverting the relation

1 (m,c

* (*(5_~5.)p?dp moles cm™? ab
P/ﬂ:‘ﬂz—NA _h_)j; (S5-—5.)p*dp moles cm™~, (4b)

where p, is the mean molecular weight per electron associated with nuclei in g mole™", N, is Avogadro’s number in
mole ™, p=(w2—1)!/2 is the electron or positron momentum in units of m,c, and the density of electron-positron
pairs has been removed by subtracting S, from S_. In Figure 1 it will bc noted that for low density and high
temperature Ug(e™ )= — Up(e*)= —m,czt —0.511 McV, while for any density and zero temperature

Ur(e™)={[1.02x107%(p/n,)**+1]"/* =1} x0.511 MeV

~0.5x10"%(p/p.)'*MeV  for p/p,=108. (4c)
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Note that the inclusion of these electron distribution functions results in the phase-space integrals f;; becoming
sensitive functions of temperature and density. For our calculations, inhibition of final neutrino phase space never
becomes important, so S,=0.

The remaining factor appearing in the phase space integral is

G(%Z,w)=(p/w)F(+Z,w). (52)
F(* Z,w) is the relativistic Coulomb barrier factor, given approximately by

2

T'(s+in) ) (5b)

F(xZ, w)=2(1+5)@pR)* ™ e po o

where s=[1—(aZ)?]'/2, Z is the nuclear charge, a the fine structure constant, R the nuclear radius=
2.908x 1073 A4'/2—2.4374-'/3 in electron Compton wavelengths (Gove and Martin 1971) with A the nuclear
mass number, = *aZw/p, and the upper signs are for electron emission and capture, while the lower signs are
for positron emission and capture. For emission processes Z is the nuclear charge of the daughter nucleus, while
for capture processes it is that of the parent nucleus. Note that in the nonrelativistic limit, w1, |9|>1 with
s=~1—3a?Z%=1 in our applications, one has

G_=2naZ|2npR|"“F =2na ZQaZR) "%, (5¢)

G,=G_exp—2x|7|. (59)
In the extreme relativistic limit p~w 1, |n|~aZ, one has
G_=(2pR) " “Z'expr|q|, (5e)

G,=G_exp—2z|n|=(2pR)~*Zexp—m|n|. (5D

In addition, the neutrino energy loss rate (in m,c? s~') associated with the transition from level i of the parent to
level j of the daughter is formed as in equation (1), except that the phase-space integral is replaced by

f,.,'-j:"‘w(q,-w)’c(:z,w)(l—sz)(l—s,)dw, (6a)

for electron (upper signs) or positron (lower signs) emission, and by

St [ W@t WP G (22, w)S=(1-S, )b, (6b)

for continuum positron (lower signs) or electron (upper signs) capture.

The phase-space integrals were performed numerically, and checked for electron and positron emission, at low
temperature and density against the tables of log f by Gove and Martin (1971). The definite integrals for the electron
and positron emission phase space factors were done by 64-point Gaussian quadrature. The integrands of the
electron and positron capture phase-space integrals are modulated strongly by the electron (or positron) distribution
function, so that the integrand has a characteristically slowly varying part and an exponentially decaying part,
corresponding to the shape of the Fermi-Dirac distribution function. The portion of the improper integrals
containing the slowly varying part of the integrand was done with 64-point Gaussian quadrature, and the exponential
tail was treated with 32-point Gauss-Laguerre quadrature. For each nucleus a table of phase-space factors for
position emission and electron capture as a function of g, was prepared at each temperature and density grid point,
and the f;; and f,, " were obtained by cubic spline interpolation in g,.

In summary, the weak decay rates of nuclei in the stellar environment become sensitive functions of temperature
and density through the influence of the lepton distribution functions on the phase-space integrals, and because
many decay channels open up due to thermal population of parent excited states and continuum electron capture at
high Fermi energy into daughter excited states.
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F16. 1.—Thermodynamic grid employed. The electron chemical potential Up in MeV is displayed as a function of temperature in
kelvins (logarithmic scale) for various values of log p/u, in moles cm~>. The temperature grid used in all calculations extended from 107
to 10'° K with 5 points per decade roughly uniformly distributed in log T. Density points were taken at each decade from log p/p,=1to0 9
with additional points inserted at log p/p,=6.5, 7.5, and 8.5 to improve the coverage in Ug. The curves not labeled correspond to log
e/p.=10, 2.0, 3.0, and 4.0, respectively. Note the approach to the nondegenerate limit Uz =0.511 MeV at sufficiently high temperature at
each density.

The temperature and density regime considered in the calculations is shown in Figure 1. We see that the energies,
spins, and parities for discrete states will be required for excitation energies up to several MeV in the parent and at
least 4 or 5 MeV in the daughter. Typically, we use all discrete states known up to even higher energies in parent and
daughter. All nuclear level information was taken from Endt and van der Leun (1978). We then require weak
interaction transition matrix elements connecting these states; their assignment is the subject of § III.

We have not considered the effects of bound state electron capture, which is unimportant over most of the range
of temperature and density considered, nor have we considered the screening of the nuclear charge by continuum
electrons, which has the effect of moving F(+ Z, w) toward unity and of modifying the energies of charged particles
in the plasma. This screening is a small effect over the range of temperature and density considered here (Takahashi,
El Eid, and Hillebrandt 1978). While the omission of these corrections is justified along the temperature-density track
of typical precollapse conditions (0.1<7,<5, 10°<p/p,<10°), screening corrections affect the rates at low
temperature and /or extremely high density.

It finally remains to sum over the parent and daughter states in order to find A, the destruction rate of the parent
or the production rate of the daughter due to the emission or capture process under consideration. The destruction
rate for the /th parent state is given by

A= EAU’ (7)
¥

where the sum is over all states of the daughter to which the parent state is linked by the emission or capture process.
The rate for destruction of the parent nucleus is then

A= PA,, ®)
i
where the sum is over all parent states, and the occupation index P; of state i is given for thermal equilibrium by

P,=(2J,+ 1)exp(—E,/kT) /G, (%)
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where J; is the spin of level i, and G is the nuclear partition function for the parent nucleus

G= 2 (2J;+ )exp(— E,/kT). (9b)
i

In our temperature range (7} < 10) the number of known discrete states is sufficient to yield an accurate value for G
without considering continuum contributions (Tubbs and Koonin 1979).
If one defines the production rate for the jth daughter state as

P 25 I (10a)

then it will be clear that the production of the daughter nucleus and the destruction of the parent nucleus can be
stated as

A=A, (10b)
J

We add a note of caution. In this paper we do not present the reverse reaction rates to the cases we have treated.
For example, we give **Cl—S, but not 3*$—3Cl. We point out that the ground state of 3*S decays by electron
emission to **Cl with maximum total energy equal to 0.679 MeV. Thus at low density and low temperature, our
tabulated results do not give the complete picture. In a later paper of this series this will be rectified. For the moment
we give the logarithm of the laboratory reverse rates due to electron emission. They are: —6.25 for 2P to 8§, —6.50
for **P to **S, and —7.04 for **S to ¥*CL These laboratory reverse rates will hold in stellar environments at low
density, p/p.< 105, and temperature, Ty < 1.

IOI. NUCLEAR MATRIX ELEMENTS

The comparative half-lives ( ft),; required in equation (1) are taken from laboratory measurements where they are
available. Since there has been a vast increase in the number of measured B-transitions in recent years, we have used
the latest tabulations of Endt and van der Leun (1978). In addition, we have used some unpublished measurements
by Wilson and Kavanagh (1978) for the decay *P—3°S. However, for many important transitions, particularly those
involving excited states of parent or daughter nucleus, no measurement is available, and fi-values for these
transitions must be assigned in another way. Only allowed transitions are considered in this work. Exploiting the
isospin symmetry of these sd-shell nuclei allows us to calculate unmeasured Fermi transition matrix elements with
great accuracy, and to extend the relevant set of “measured” matrix elements for a decay by considering transitions
measured in the appropriate mirror decay. The remaining unmeasured Gamow-Teller matrix elements are handled
in several different ways. Simple two-particle shell model approximations to the nuclear wave functions are used to
calculate Gamow-Teller matrix elements and appropriate sum rules. This calculation gives a good overview of the
Gamow-Teller strength and its distribution for the decays 26Al—»?Mg and **P—S. In addition, for some
transitions in these and the other decays considered, Wildenthal (1979) has provided us with Gamow-Teller matrix
elements calculated from the detailed wave functions of Chung (1976). For Gamow-Teller transitions not covered by
cither the two-particle approximation or Wildenthal’s calculations, we use an appropriate mean log ff, determined
from averages of experimentally determined Gamow-Teller matrix elements in the sd-shell and all of the available
Wildenthal calculations used for the six decays considered. The sensitivity of rates to uncertainties in the matrix
element assignments are estimated, as are uncertainties in the rates caused by unknown Gamow-Teller strength
which may lie beyond the last discrete levels considered in parent and daughter nucleus. The remainder of this
section will describe this matrix element assignment procedure, but briefly, we will find that the experimentally
determined transitions along with the Fermi and mirror decay matrix elements dominate the rates in most cases.
Even in regimes of temperature and density where the unmeasured Gamow-Teller transitions are important, we feel
that the rates are well determined. Regimes in which the uncertainty in matrix elements makes the rates uncertain
will be explicitly mentioned for each decay.

The isospin purity and symmetry of the nuclear energy levels in sd-shell nuclei allows considerable simplification
and accuracy in the assignment of some matrix elements. In particular, the Fermi matrix element depends only on
the nuclear isospin, 7, and its projection T,=(Z— N)/2 for the parent or daughter nucleus, and may be written for
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positron emission or electron capture as

1 ) 2
|Mg|?= YA g‘ ;} <%m'i§f~ ]ll/.'m:>|

=T(T+1)-T,(T,'- 1), an

where T, ' is the z projection of the parent isospin, [y;m,> is the initial parent state, |{,m, > the final daughter state,
and the matrix element is averaged over initial and summed over final nuclear spins. Note that the sum on nucleons
Zn7y " is the minus component of an isovector, spatial scalar operator T~ which commutes with the total isospin
T2, a good quantum number in these nuclei, implying the selection rules ATI=0; AJ=0; AT=0; T,/=T,— 1, which
have been applied in the second equality of equation (11). In 2A1—»*Mg Fermi transitions, for instance, | Mg|?=2,
and so from equation (2) log( ft)=3.49. This is very fast compared to the average Gamow-Teller matrix element
corresponding to about log fr=5.0 (see discussion later in this section). In addition, essentially all of this Fermi
strength is concentrated in the isobaric analog state. Fortunately, in this mass range (17 < 4 < 40) several analog
states occur within 5 MeV of the ground state and are accessible in the precollapse environment. For example,
several Fermi transitions can be seen for the decays Al—2Mg and *P—Si in Tables 1 and 2, respectively.

Isospin symmetry allows assignment of matrix elements for some unmeasured transitions in particular decays. If a
measured matrix element is available for a transition in the mirror system, then it can be taken over directly for the
appropriate transition in the original decay, after correcting for initial and final spin degeneracy. For example,
several matrix elements are measured in the ?Si—2Al decay; these can be taken over with spin degeneracy
corrections into the 26A1—»?*Mg decay, and are included in Table 1. The mirror systems of all six decays were
examined, and many important matrix elements were obtained in this way.

After the above procedure is completed, there are still many Gamow-Teller transitions without assigned matrix
elements. Since Gamow-Teller matrix elements are observed to vary over three or four orders of magnitude, it is
important to obtain a good handle on their behavior in this mass range. To this end we have used (1) results of the
large-scale shell model calculations of Wildenthal (1979), (2) a simple two-particle approximation to the nuclear wave
functions, and (3) averages based on shell model calculations and measured decays in the sd-shell. The two-particle
approximation was used for the decays *Al—?Mg and *P—*Si because the very simple shell model picture was
most appropriate there. '

The shell model indicates that the primary configuration of the 2Al ground state is one neutron hole and one
proton hole in a filled 145/2 shell, and of *Mg is two proton holes in the same shell. Similarly, the primary
configuration of the 3P ground state is one proton and one neutron outside a closed 145/2 shell, while for Si it is
two neutrons outside the same closed shell. This suggests that the low-lying states of these systems may be
predominantly described in terms of two-particle (two-hole) wave functions, where only the angular momenta of the
valence particles are coupled to give the total angular momentum. The possible values of J*; T (spin, parity; isospin)
are constructed for each two-particle .sd-shell configuration forming a “bank™ of states for each nucleus. Since the
low-lying states of these nuclei have well measured excitation energies and spins and parities, it is possible to identify
physical states with states in the J* bank, taking into account the energy orderings of the simple shell model
configurations. We note that the first 16 states of Al exhaust 13 of the 14 possible T=0 two-particle sd-shell states
and three of the expected low-lying T'=1 states, before a state of Al is encountered which cannot be understood in
this simple model. Similarly, in Mg the lowest 12 states are well accounted for; states 13 and 15 apparently have
large many-particle components, but states 14 and 16 match well the remaining 7=1 states in our Mg J* bank.
The first 14 states of 3°P exhaust 12 of the 14 possible T=0 two-particle states and two of the expected 7=1 states
before an obvious many-particle state is found. Similarly, in *Si the lowest 10 states are well accounted for, and four
others match up with the T=1 states remaining in the J* bank for *Si. The pure two-particle configuration
assignments are displayed for 2A1—?¢Mg in Table 1, and for *P—*Sj in Table 2, the notation being, e.g., for *Al,
55=p(1d5/2)n(1d5/2), 51= p(1d5/2)n(2s1/2), etc., where p denotes the proton configuration and n the neutron
configuration.

The weak interaction matrix elements are calculated using the assigned two-particle sd-shell wave functions. The
Fermi matrix element is done as above. The Gamow-Teller matrix element is given by

1 2
(Marl*= 57 EF <¢/m;|§f~'¢~|\hm;> , (12)
i m, m,
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LOG ft-VALUES FOR 2A1»%Mg
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TABLE 1-Continued
9 10 11 12 13 1L 15 16 22 a4 ANLG ANLG
2,072 2.365 2.545 2.661 2.739 2.913 3,07 5.159 3.719 3. 75 5.9184 6.3534
1 st s* 14 it 2t 3t 2*1 it 0*;1 1*1 1%;1
11 st 53 53 31 =51 33 51 =3 11 53 31
S k.s8
ML.o8
wk,28 Wk.TT wh,T7
PL.LE P 3.61 P 3.72
ML.e3 MLt ML.66 MLLUE MU.EZ MLl 4.66 M L4.90 L.63 M L,25 M L,25
Wkh,oo9s WL,o99 WwWS5,79 W 5.2 Wl.36 W 5.05
P 3.52 P 3.52 PL.s9 FP 3.47 P 3.52
ML, Mhiee ML,se MbLlie ML.eZ MLLlse ML.es PM3.45 ML.E3 M Lk.25 M L.25
W5.35 wWhae2 wlk,s0 W 6.81 W 6.35 W 5.18
P 3.30
M L.S8 M L.S8 ML.s8 P 5.k9 ML 75 ML.75
W 5.57 W L,90 W 5.2
P 3.55 P3.72
Mh.os ML.,98 MLL3 MLL3 MbL.os M L.58
P 3.41
MLE.3h ML M b.3k
P 3,61 P 5.2 P .57 P 3.37
MUL.ES MLEe MLEE MULE ML.EZ MLLe ML.66 ML.90O ML.B3 M L.25 ML4.25
WS5.25 Whos ws.72 W lk.e8 W E,20 W 5.31
P L,09
ML,os ML.98 ML.L3 MLL3 ML.og M k.58
P 3.69 P 3.69 P 3.31 P L.eg P 3.3k
MLeZ Mb.ee M. MLLe MU.EZ MLLUE ML.66 ML.9O MbL.,E3 M L.25 M L,25
WE,31 WS5.L3 WS,13 W 5.03 Wk, w 9.2
P 3.28
M L34k ML.3k M L.3h
P 3.99 3.69
M L.s8 M L.58 M L.58 Mk 75 ML,75
Wk, 79 W 9,65 W k.36
P 3.3k P 3.85 PL.22 P 3.79 P k.69
ML.EZ MLee ML.B6 MLUE ML.E3 ML.UE ML.EE ML.,90 ML.63 M Lk.25 M L.25
W 5.85 Ws5.88 We.12 W 6.06 W 7.60 WhL.78
. P 3. FP 3.L9
M L.B3 ML,79 ML.BZ HML,T9 ML,03 MbL,BZ ML,19 FM 3.4k M U4.70
P 3.91 P 3.7k FP 3.23
M L.83 ML.79 MbL.B3 ML.79 MLoO3 ML.83 ML.,70 FM 3.ke
3.29 3.29 3,12 3.20 3.29 3.0k 3.17 3.39 3.06 - 3.01 2.99

where o is the Pauli spin operator and the rest of the notation is as for the Fermi matrix element above (eq. [11]).
Since ¥y 7y "oy is a spatial vector and an isovector, we get the Gamow-Teller selection rules, AII=0; AT=0, =1,
no 0—0; AJ=0, + 1, no 0—0. Note that the Gamow-Teller operator has no dependence on the radial coordinate and
hence cannot change the orbital angular momentum of the decaying state. Making the two-particle approximation,
we find

1

|MGle'mT2 z|<\P;m_f|‘r|_0'|+fz_”z|‘Pi’"i>|2- (13)
m, m,

For example, in the transition of a (7=0,55) configuration in *Al to a (7T=1,55) configuration in Mg we can
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TABLE 2
LoG fi-VALUES ForR XP—%°Si

STATE P 1 2 3 L 5 6 T 8 9 10
ENERGY 0.0 0.6772 0.7080  1.Lsh 1.973 2.538 2.7232 2.8388 2.9378 3.0186
.T”;T 1+ °+; 1 1+ 2+ 3+ 5+ 24- 5+ 2+; 1 1*
He1 CONF 11 11 13 15 33 51 51 s5 13 53
EL.83 EF 3,49 EG6.18 S 3.99
+ P 3.30
1 0 071 11 M bl M L.61 M L,61
W 5.53 W 5.35 W3.71
p E 5.80 P 3.69 P 3.31 P 3.69 P L.69 FP 3.45
2 2.235% 2°;1 31 MbL.e2 MLu,g2 MLl HLEZ MLBES MLLe HLE3 M L.62
W L.83 W L,58 W 5.31 WS5.18 W 5.92 W 6.02
e PL.22 P 3,79
3 3.k987 271 33 M L.62 MbLog2 wMbLle HMLEZ ML.e3 ML.be ML.E3 M 5.00 ML.g2
B Y W 5.98 WS.10 Wk.69 W 6.95 WL, T3
& . P 3.91 P37
A sl 31 M L.83 ML.B3 ML.80 M L.80 ML.66 ML.B3
P 3.99
5 3.7879 071 33 ML.6l M k.61 M L.61
W 5.01 W lk,s8 W 5.53
" P 3,52 PL.69 P 3.52 P 3.31 P L.69
6 L,s092 27;1 51 M L.62 MUb.g2 MLLUE MU.EZ ML.EZS Mbhhe ML.E3 M 5.00 ML.62
W 5,33 W L4z Wwhe2 WE.T0 W 6.32 W 5.65
- P 3.55 P 3.37 P 3.5
7 L.8307 37;1 51 MLLZ MLo9s MUL.98 MLLZS ML9S HML.23
& P L.o9 P37
8 5.2306 37;1 53 MLbhs ML,og ML.98 MLLZ ML, ML.23
9  s.2795 LY1 = Pt i
= % ML.Ls MLAS M L.kS
10 53720 01 S5 MbL.6l M L.61 ' M k.61
WLz k.83 W 5.88

DESIGNATIONS FOR LOG ft-VALUES IN TABLES 1 AND 2: S = CALCULATED FROM ISOBARIC SYMMETRY; P = PURE TWO-PARTICLE GAMOW-
TELLER VALUE; M = MIXED TWO-PARTICLE GAMOW-TELLER VALUE + 0.5; W = CALCULATED FROM WILDENTHAL RESULTS; E = EXPERIMENTAL
VALUE; F = CALCULATED FERMI VALUE; EF = EXPERIMENTAL FERMI VALUE; FP = CALCULATED FERMI AND PURE G-T VALUE; FM = CALCU-
LATED FERMI AND MIXED G-T VALUE + 0.5. CONF = TWO-PARTICLE CONFIGURATION; ANLG = ANALOGUE STATE.

evaluate the isospin matrix element and, in spherical tensor notation, we find
1 1 = =
|Mcr|2‘m'5'2 S S (-) <myl—o, k40X |m,> - {m,|—0, *+0, ¥ [m;>. (14)

m, m; k

We have used the shorthand notation for the matrix elements
(’"1|°| * [m,; > -("f(jl’jz)(llll)(% %)”'/l‘-’l k"’l(jljz)(lllz)(;' ;)"’-’>' (15)

where j, is the initial j-shell angular momentum of particle one, j;" is the final j-shell angular momentum of particle
one, /, the corresponding orbital angular momentum, and 1/2 the spin, and similarly for particle two. Using the
Wigner-Eckart theorem, the above expression becomes, after some tedious angular momentum algebra,

(m_,lc,-"|m,-) _(_ ])l/2+mrfl,+j,+jl'+jz+l,+.r,
[6 (2+1) 24+1) 2i+1) 2ir+1)]"? (16)
F/EEE B AN T O 'R N
-m;, k m)|jyy + V)| 4 1
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A similar expression can be derived for {(m,|o,*|m;}, and the orthogonality property of the 3-j symbols exploited to
give equation (13) in terms of 6-j symbols which are easily evaluated. This calculation was carried out for allowed
transitions between all two-particle sd-shell configurations and all possible J* corresponding to those configurations.

Given the complicated nature of the expression for |Mgr|?, it is useful to check against an explicit calculation of
the two-particle sum rule. The sum rule is the total amount of Gamow-Teller strength available for an initial state
(Takahashi, Yamada, and Kondoh 1973), and is here given by summing over a complete set of final states in | Mgy |?
to yield

1 t
S.‘GT'-‘——2<4‘;"”J](ETN-0N) (ZTN-UN)I'Pi"':)- an
2J,+1 4 N I
Considering just the two valence nucleons results in the expression
S, OTm3y | ry + 17t |9, 0 + (Y 0 1Tt Tty ) 29T, (18)

where y,; * is the isospin part of the two-particle wave function, and =7 is spatial expectation value which can be
shown to be

1
B - 27,+1 Zim;|oyo,|ym; )

S+ D)+ + D) =Ji(Ji+])
221 +2)(2/2+2)

= =2 3 +Us D= ta(la D) [ 3 +AG+ D=1+ )] (19)

The strength due to the interaction with core nucleons in the above analysis is assumed to be at nuclear excitation
energies high enough to be irrelevant to the astrophysical rates. Since we have identified all of the two-particle
sd-shell states in, for instance, daughter Mg, each state of parent Al explicitly saturates the two-particle sum rule.
To the extent that the nuclear wave functions are well represented by the two-particle configurations, this sum rule
gives a rough idea of the total Gamow-Teller strength in the range of stellar energies to be expected for each state of
the parents ?Al and *P. The approximate validity of the two-particle assignments in these decays is demonstrated
by the way hindered values (unusually large fr values for allowed transitions) of the pure configuration matrix
elements track fairly well the hindered values of Wildenthal’s calculation (see below).

Configuration mixing resulting from the residual interaction between valence nucleons is an important aspect of
the wave functions of sd-shell nuclei. Its major effects will be to “smear out” the two-particle strength in parent and
daughter and to mix many-particle configurations into low-lying states, thus spreading the two-particle strength to
higher energies. In the two-particle picture, we treat the first effect by an averaging procedure: We completely mix
states of a given J," in the parent and completely mix states of a given J,* in the daughter, add up the pure
configuration strength for all the J, "—.J, * transitions, and divide by the total number of such transitions. Then each
such transition is assigned this average matrix element. This result is termed the mixed configuration matrix element
set. The effect on the rate of the distribution of Gamow-Teller strength can be tested by first computing the stellar
rate with the pure configuration set of matrix elements and then with the mixed configuration set. In both
calculations the measured, mirror-decay, and Fermi-transition log fr values were employed. We find that the rates
calculated in these two cases are substantially the same for the temperatures and densities considered here, indicating
that the stellar rates are relatively insensitive to the placement of the low-lying unmeasured Gamow-Teller strength in
the range of excitation energy covered in parent and daughter nuclei. However, the second effect of configuration
mixing, the admixture of high-lying configurations and the true many-body nature of the wave functions, results in a
decrease in Gamow-Teller matrix elements, especially at the higher excitation energies in parent and daughter. This
trend is seen in the results of the large-scale shell model calculations of Gamow-Teller matrix elements done by
Wildenthal, and is treated here by slowing down the mixed configuration transition rates by adding 0.5 in log fr.

Wildenthal’s calculations employ a full sd-shell basis and a realistic residual interaction. The wave functions are
then the result of an iterative calculation which fits the energies of 199 levels for nuclei between masses 18 and 24.
The results obtained for Gamow-Teller transitions in the sd-shell agree quite well with experiments where compari-
son is possible (Brown, Chung, and Wildenthal 1978). Matrix elements from these calculations were available for
many, but not all transitions in the decays considered. Where a calculated matrix element exists, two values are
provided: one corresponding to the value of the axial vector coupling constant C, relevant for free nucleon decay
(the so-called “free” value), and one corresponding to the value of C, renormalized by mesonic exchange currents
and the effects of truncation of the basis to just the sd-shell configurations. The latter result was obtained by fitting
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to measuared Gamow-Teller transitions in the sd-shell and hence is termed the “fit” value. The fit values are a better
representation of the matrix elements over the entire sd-shell, and in general the fit matrix elements are slightly
smaller (log ft is somewhat larger) than the corresponding free values. However, we have adopted the free values
because they seem to give slightly better agreement with experimentally measured matrix elements and with those
determined from mirror decays in the transitions considered.

Table 1 presents all the experimental, mirror symmetry, pure, mixed (plus 0.5) and free Wildenthal log fr values
used in the calculations for the *Al»>?*Mg decay. Table 2 presents the log fr values used for the states of lowest
excitation considered in the *P—3'Si decay. The actual calculations involved states up to 4.3 MeV in *P and up to
7.5 MeV in *Si. In these tables, entries with an E are experimentally observed, those with an S are observed in the
mirror decays, while entries with an F have a Fermi component. Also appearing in the tables are the log fr values
from the pure configuration, denoted by a P, and the mixed configuration, denoted by an M. The small and
vanishing pure configuration matrix elements are a result of /-forbiddenness and two-particle interference effects.
Where no entry denoted by P or M exists, the matrix element is zero in the two-particle model. Note that in the
26A]1—Mg decay the hindered transitions of Wildenthal roughly track the small matrix element transitions of the
two-particle approximation. This effect is not as pronounced in the 3°P—Si decay, probably due to less domination
by two-particle configurations in the actual nuclear wave functions. The numbers at the bottom of the tables are the
effective log fr corresponding to the two-particle Gamow-Teller sum rule for each of the parent states of Al and are
given by

log( ft),= —logz 1/(ft);=3.596—1logs,°T.

These numbers give an estimate of the total Gamow-Teller strength to be expected for each parent state. Finally, the
free Wildenthal log fr are denoted by W. All the decays considered in this paper have available roughly similar
numbers of log fr values calculated from the results of Wildenthal.

For #Al—%Mg the log fr calculated on the basis of the two-particle approximation do well in the two cases where
comparison with experiment is possible. The 4—1 transition (Table 1: state 4 of 26Al to state 1 of *Mg) is measured
in the mirror system and when corrected for spin-degeneracy factors yields log ft =4.01. (Hereafter we will just refer
to such a log fr value as “measured.”) This measured value is bracketed by the pure, log fr=3.63, and mixed (plus
0.5), log ft=4.58, results. The 6—1 transition is measured as log fr=4.29, and is approximated by the pure result as
log fr=3.87 and by the mixed (plus 0.5) result as log ft=4.58. In the 3*P—3°Si decay the 1—1 transition is measured
as log ft=4.83 and is approximated by the pure configuration result as log ft=23.30 and by the mixed configuration
(plus 0.5) result as log ft=4.61. The Wildenthal calculation gives log ft=5.34 (free) for this transition. The 12
transition in this decay is measured as log ft=>5.8, and is approximated by the pure result as log ft= co (zero matrix
element) and by the mixed (plus 0.5) result as log ft=4.89. Here the Wildenthal calculation gives log ft=4.83 (free)
and log fr=5.17 (fit). In general, the Wildenthal calculations agree very well with experimental data in the six decays
considered, and only very rarely differ by as much as an order of magnitude. For instance, the worst case occurs in
the decay *?S—%*P. The 1—1 transition is measured to be log fr=7.42 and is calculated by Wildenthal to be
log fi=4.90 (free) and log ft=5.43 (fit). However, the other measured transitions in this decay are reproduced very
well by Wildenthal’s results: transition 2—1 measured as log fr=4.74 (Wildenthal free log fr=4.68); transition 3—1
measured as log fr=>5.03 (Wildenthal free log fr=5.05); transition 4—1 measured as log fr=5.52 (Wildenthal free
log fr=5.78); transition 9—1 measured as log fr=5.01 (Wildenthal free log fr=5.06); transition 15— 1 measured as
log fi=4.97 (Wildenthal free log fr=4.65).

Finally, we distill from this information an average Gamow-Teller matrix element, appropriate for the sd-shell,
which is to be used for unmeasured Gamow-Teller transitions not covered by Wildenthal’s calculations or, in the
case of 2Al—-*Mg and ¥P—%8i, a two-particle calculation. Averages of all Wildenthal calculated matrix elements
used in the rate computations were taken for each of the six decays considered. The average Gamow-Teller log fr for
each decay is remarkably consistent: 25Al—»2*Mg (free log fr =4.80=0.4), >*P—%Si (free log ft=4.86 = 0.4), *?S—*P
(free log fi=4.78+0.5), *'S—P (free log fi=4.84+04), **S-P (free log ft=5.05+04), *Cl->»S (free log
Ji=4.93+0.4). The overall average for all Wildenthal calculated Gamow-Teller transitions is log fr (free)=4.86 0.5
and log fr (fit)=15.09+0.5. This mean includes roughly 400 matrix elements for transitions between states usually
lying at or below excitation energies of 6 MeV. An average of experimentally determined Gamow-Teller transitions
in the sd-shell taken from Endt and van der Leun (1978) gives log ft=4.8 +0.6. This average is taken only for decays
with large nuclear Q-values (=3 MeV), wherein many Gamow-Teller transitions could be sampled at excitation
energies near those required for parent state sum rule saturation. In light of these results, we choose
log ft=5.0 for use in otherwise undetermined Gamow-Teller transitions. This is to be compared with log f1=15.7 used
by Hansen (1966) in his survey of these nuclei which, though it looks much slower, makes little difference in the
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stellar rates except at the higher temperatures and densities due to the dominant role of more accurately determined
transitions. Qur best stellar rates are computed using, in order of priority, experimental matrix elements and those
determined by isospin symmetry (Fermi and mirror transitions), Gamow-Teller values from Wildenthal results,
two-particle Gamow-Teller calculations (mixed values plus 0.5), and finally the average Gamow-Teller value of
log ft=5.0. This order of priority reflects the associated rank of confidence in each type of matrix element
determination and, fortunately, also reflects in general the level of contribution of each type to the rates.

The contribution of each matrix element type to the rates and the sensitivity of these rates to errors in the matrix
elements are determined by assigning an uncertainty to each of the matrix element types. Experimentally determined
values are assigned a formal uncertainty of zero in log f7, as are those log fr values determined by isospin symmetry.
The Wildenthal and two-particle matrix elements are assigned an error of *=0.4 in log fr, reflecting the average
deviation of these numbers from experimentally determined values seen in these decays and in the rest of the sd-shell.
The average value of fr=10° used for the remaining undetermined Gamow-Teller transitions is taken to be uncertain
by a factor of 10 (21.0 in log f7). The values of log fr=4, 5, 6 correspond to fast, intermediate, and relatively
hindered Gamow-Teller matrix elements. This uncertainty is about twice the standard deviation for the average
Gamow-Teller transition. A rough rate uncertainty is estimated by the following scheme: The slowest rates are
computed using the assigned log fr values with their uncertainties added; likewise, the fastest rates are computed
using the assigned log fr values with their uncertainties subtracted. In addition, for the fastest rates, “continuum”
states are assigned at energies slightly beyond the last state of parent and daughter nucleus employed and each
transition into and out of these states is assigned log fr=3.5, enough strength to take account of possible undetected
high-lying Gamow-Teller strength. This latter computational device overestimates the uncertainty by oversaturating
the Gamow-Teller sum rule in many cases and by putting all of this strength at the lowest possible excitation energy.
The “rate uncertainty” A is then computed as the greater of the ratio of the fast rate to our best stellar rate and the
ratio of our best stellar rate to the slow rate at each temperature and density point. Log A is tabulated in the rate
tables, and shows for any temperature and density roughly which matrix element types contribute most to the rate
and how much the rate could change due to matrix element errors and undetected high-lying strength. Note that
where calculated or average-value Gamow-Teller transitions dominate the rate, A is a true measure of the matrix
element induced uncertainty only if many such matrix elements contribute to the rate. This is because the assigned
uncertainty in these cases reflects the standard deviation of a large ensemble of matrix elements, and any given
individual assignment may be in error by a considerably larger factor. However, where Gamow-Teller transitions are
important, many usually contribute, except at very low temperatures and high densities where a few Gamow-Teller
electron capture channels can contribute (e.g., the 1—6 and 1—10 transitions in Al—»*Mg have log ft=4.10 and
make the substantial contribution to the rate for p/p,.> 10° and T < 1; ¢f. § IV). In addition, the contribution of the
different matrix element types is checked by computing the rate first with just the experimental and mirror decays
and Fermi transitions, and then with the calculated Gamow-Teller transitions. Comparison of these rates gives a
clear indication of where in temperature and density each matrix element type dominates. Furthermore, examination
of the summations (10a) and (10b) term by term gives an explicit measure of the contributions of each individual
parent and daughter state. ’

In summary, we conclude that over most of the range of temperature and density considered the rates are
dominated by the most accurately determined matrix elements (experimental, Fermi, and mirror decays), and the
rates are fairly well determined even at the highest temperatures and densities where unmeasured Gamow-Teller
transitions dominate.

IV. APPLICATIONS AND DISCUSSION

In this section the stellar rates for the decays *Al—*Mg (Q,=3.494 MeV), ¥P-¥Si (0,=3.716 MeV), 3!'S-'P
(0, =4.884 MeV), 32S32P (Q,=—2221 MeV), ¥S3P (Q,=-0.760 MeV), and »*Cl-**S (Q,=
—0.678 MeV) are presented as functions of temperature and density. The first three columns of Tables 3, and 5-10,
give the temperature T,=T/10° K, the Brigg’s logarithm of p/p, where p is the density in g cm™?, and p, is the
mean molecular weight per electron in g mole~!, and the electron chemical potential Uy in MeV, calculated for a
perfect Fermi gas electron equation of state. Uy is the Fermi kinetic energy at high density. In the remaining columns
the tables present log B*, where B* designates positron emission rates (all rates in s~'); log e~ where ¢~ designates
the electron capture rate; log = where X is the total weak interaction rate=p8%+¢"; log A, where A is the
multiplicative uncertainty in X; and log », where » is the total neutrino energy loss rate in MeV s~! corresponding to
Z. The level of uncertainty in the neutrino energy loss rates can be gauged by log A for the associated weak decay
rate Z. A number of the decay rates are plotted in Figures 2 to 7.

At sufficiently high temperatures all parent 26Al states are in thermal equilibrium and the stellar rate is given by
equation (8) with statistical weighting factors (9). These rates are shown in Table 3. As we see in Figure 24, the
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Fi1G. 2.—(a) Positron emission rate for 2Al1»?**Mg with all
264 states assumed to be in thermal equilibrium. The values of
log B* from Table 3 are displayed for the temperature and
density grid of Fig. 1. The density dependence of positron emis-
sion is negligible in most cases of interest. The rate is dominated
by the changeover from the laboratory rate determined by the
ground state decay to the much faster decays accessible from the
metastable isomeric state at 0.228 MeV as it becomes thermally
populated. (b) Electron capture rate for 2Ag—2*Mg with all 2°Al
states assumed to be in thermal equilibrium. The values of log e~
from Table 3 are displayed as a function of temperature and
density. The dramatic increase of more than six orders of magni-
tude from log p/p,=6.0 to 6.5 at low temperature is due to the
opening up of fast (allowed) upward transitions from the parent
ground state (5*) as the electron chemical potential becomes
sufficiently large to overcome the energy interval. The equality of
the rates at different density points for high temperature is the
result of the similar behavior of Ug in Fig. 1. (¢) Total decay rate
(positron emission plus electron capture) for 2°Al—»?Mg assum-
ing all 2%Al states to be in thermal equilibrium. Log = from Table
3 is displayed as a function of temperature and density. Positron
emission dominates below about log p/u,.= 6.0, electron capture
above.
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positron emission rate is dominated by the very slow ground state transitions at low temperatures, but the much
faster decay from the isomeric state takes over quickly with increasing temperature above T,=0.1. This decay,
transition 2—1 in Table 1, is a Fermi transition with log fr=3.49. The large available decay phase space and small
log ft-vaiue of the isomeric state transition is difficult competition for other transitions to match. A rate based on the
ground state and the isomeric state alone would match our curve well until very high temperatures are reached. The
electron capture rate (Fig. 2b) is slower than the positron emission rate until log p/p.=6; above this value the
electron capture component dominates the total rate (Fig. 2¢). The electron capture rate for a given transition
generally tends to increase smoothly as the density of electrons at the nucleus and the phase space integral, equation
(3b), increase. The large increase in the 2°Al electron capture rate (Fig. 2b) from log p/p.=6.0 to 6.5 at low
temperature is due to the opening up of the intrinsically fast (log fr=~4.1) but energetically unfavorable upward
transitions from the ground state 1-6 and 1—10. Above log p/p,=6.0 the chemical potential Ur (cf. Fig. 1)
becomes large enough for the electrons in the tail of the Fermi-Dirac distribution to become sufficiently energetic to
overcome the threshold kinetic energy, which is 0.313 MeV for 1—6 and 0.895 MeV for 1—10. These values result
from subtracting the 2°A1-*Mg atomic Q-value, 4.005 MeV, from the excitation energies, 4.318 MeV for state 6 in
Mg and 4.900 MeV for state 10.

Although the Fermi transition from the 0.228 MeV isomeric state of 2Al dominates the equilibrium rate at even
moderate temperatures, communication between the isomeric state and the ground state by electromagnetic
transitions is poor, and at sufficiently low temperatures it is not a good assumption that this first excited state is in
thermal equilibrium with the ground state. Ward and Fowler (1979) estimate that the time required for the
0.228 MeV state to equilibrate exceeds its lifetime against positron emission for Ty <0.4. Therefore, we have
calculated positron emission and electron capture rates separately for the metastable state and those that communi-
cate with it (the mestastable state system 2°Al,) and the ground state and those that communicate with it (the
ground state system 2°Al_). Several states are members of both systems; the gamma-ray branching (Table 26.13 of
Endt and van der Leun (1978) has been used to make the fractional assignments of Table 4. Decay rates for the
ground state and isomeric state systems are given in Tables 54 and 5b.

We have seen that the weak destruction rate by electron capture and positron emission of Al becomes a sensitive
function of temperature and density varying over many orders of magnitude for the more extreme conditions. Since
the well studied isomeric state dominates at all but the highest temperatures considered, the positron emission rate
agrees well with that of Hansen (1966) until T, > 3, at which point the fast transitions (4—1,6—1, and 9—1 in Table
1) with log fr values given accurately by the mirror decays in 2°Si-?°Al, increase the rate by a factor of 2-3 faster
than Hansen’s rates. However, this increase falls within the factor of 5 fitting error quoted by Hansen. At T,=2, our
electron capture rate ranges from a factor of 6 slower than Hansen at p/u,.=10? (a value outside the range of

TABLE 4

RESOLUTION OF 2SAl STATES INTO GROUND STATE (*°Al,)
AND METASTABLE STATE (2%Al ) SYSTEMS

State E_(MeV) g m

Vnrsermsmes 0 1 0.

s vsmmranns 0.228 0 £

i N —— 0417 1. 0.

4oiiiiviiins 1.058 0. 1.

Sk e 1.759 0.98 0.02

B nigusinnng 1.851 0. Ls

Wsrantomtueatnin 2.069 1. 0.

8 s 2.070 0.23 0.77

| [T R 2.072 0. )
V0. cciiisvan 2.365 0.46 0.54
Llsosvsmvenss 2.545 0.49 0.51
12 cninivnsen 2.661 0.67 0.33
| [ e e 2.739 0. 1.
|- [RR— 2913 0.53 0.47
VS isaamiinm 3.074 0.20 0.80
16 rntentins 3.159 0.82 0.18
B s viavii 3.179 0.06 0.94
28 v sicmiss 3.745 0. 1.
ANLG ...... 5.918 0.5 0.5

ANLG ...... 6.353 0.5 0.5
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validity of Hansen’s fit to his calculated rates) to a factor of 6 faster at p/u, =10 cm™3. At higher temperatures our
electron capture rates are faster by factors of 5-100, as a result of the many relatively fast electron capture channels
which open up at higher temperatures and densities. (Note that in these cases the uncertainty in our rate is roughly a
factor of 3.) Any detailed calculation of the production and destruction of %Al in stellar environments should take
into account these results.

The remaining decays ¥P—Si, 3'S-*'P, 3252P, 33S 3P, and 3Cl—-3*S are most important in influencing
neutronization of the core material prior to and during the initial phase of silicon burning in massive stars preceding
the collapse which initiates the supernova event. In particular, Weaver, Woosley, and Zimmerman (1978) find that
the ratio of 8Si to 3°Si abundance at silicon ignition is determined partly by neutronization via these five decays,
which were chosen as being most important on the basis of the product of rate and abundance. In turn, the
composition of core and mantle material resulting from silicon burning depends on this ratio with interesting
consequences for subsequent nucleosynthesis.

We find that our overall weak destruction rates agree well with the Hansen parametrized fits (1966, p. A-41) in
most cases at low temperature and intermediate densities, but do differ significantly in some cases at temperatures
and densities relevant to the neutronization-nucleosynthesis problem, motivating our detailed tabulation of these
rates.

The decay **P—Si (Table 6) is similar to that of 2Al—»*Mg. There is a comparable Q,=3.72 MeV of available
phase space in the ground state to ground state transition, and there is an isomeric state at 680 keV in °P. In
contrast, the ground state to ground state transition 1—1 is relatively fast in this case (log ft =4.83). The fast Fermi
transition (2—1, log fr=3.49) from the isomeric state dominates the rates for temperatures higher than Ty~1. At still
higher temperatures the fast decay (10—1, log f1=3.99 from the mirror decay) becomes important. The positron
emission rate agrees with the Hansen fit to within a factor of 2. The electron capture rate, on the other hand, is
influenced partly by the relatively fast Gamow-Teller transitions at low excitation energy (1—2, 1-3, 32, 355,
and 3—6 of Table 2) and accessible at intermediate temperatures and densities, resulting in a rate 6 times faster than
Hansen at T, =2, p/u,= 10%. There is no dramatic density dependence due to upward transitions at low temperature
in this case (Fig. 3); they do not compete well with the fast energetically favored transitions. At higher temperatures
even faster Gamow-Teller channels open up at high density to give rates a factor of 4 to 40 times faster than
Hansen's. The concurrent uncertainty in our rates is a factor of 3 at T,=10, p/p,= 10%, showing that at even these
extreme conditions, transitions with experimental, mirror, and calculated Gamow-Teller log fr values make the major
contribution to the rate.
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FiG. 3.—Total decay rate for ®P—S;; log X from Table 6. The ground state decay is fairly rapid, and the enhancement due to
continuum electron capture at high densitics shows only the smooth increase of Uy with log p/p, (cf., Fig. I).
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The decay 3'S—3'P (Table 7) is a self-mirror system, with the result that all transitions along the diagonal (11,
2—2, 353, etc.) have fast Fermi components. With its Gamow-Teller component included, the ground state to
ground state transition has log fr=3.69 and Q,=4.88 MeV of available electron-capture phase space, yielding a very
fast rate even at low temperatures (Fig. 4). The first excited state in *'S lies at an excitation energy of 1.25 MeV, so
that the ground state transition dominates the low density rate at all but the highest temperatures considered.
However, at high temperature and density a large number of relatively fast Gamow-Teller electron capture channels
open up. For instance, the 1—15 decay has log fr=4.29; 1—-17, log ft =4.028; and 1—20, log fr =4.30 (all determined
from calculations of Wildenthal [1979]). The diagonal Fermi transitions dominate the positron emission rate with the
result that our 3'S—3'P rate agrees very well with that given by the parametrized fit of Hansen (1966). However, at
higher densities, where electron capture dominates the total weak destruction rate, our rates are somewhat faster than
those of Hansen. At To=2 and p/p,=10%, our rate is within a factor of 2 of the Hansen value, but at 7,= 10 and
p/p.=10° we are roughly 60 times faster, and at To=10 and p/p,=10° we are 4 times faster with an uncertainty of a
factor of 2.5.

The decay *?S—3?P (Table 8) is extremely slow at any but the highest temperatures and densities considered, but
as a result of the large abundance of 328 at the end of oxygen burning it becomes an important neutronizer. The slow
nature of the rate is a reflection of the fact that *2S is stable in the laboratory (Q,= —2.221 MeV) and of the very
small matrix element for the ground state to ground state transition (log fr=7.42). Furthermore, the first excited state
of 8 lies at 2.23 MeV, although the transition from this state to the ground state of 3P (2—1) has a somewhat
faster than average matrix element (log ft=4.74 as determined by mirror symmetry from the 32Cl—*2S positron
decay). At lower temperatures the positron emission rate is very slow, since there is no contribution from the ground
state, but a very steep temperature dependence develops as the first excited state begins to become populated around
Ty=13.0. This results in positron emission rates 100 times faster than Hansen’s at Ty =3. The electron capture rates at
intermediate temperatures and higher densities are influenced by several relatively fast Gamow-Teller transitions
upward from the ground state of *?Si (Fig. 5): tramsition 1—4, log fr=3.99; 1-9, log fi=4.20; 1-20,
log fr=4.17, all accessible for Fermi energies larger than 1 MeV; and finally, transition 1—25, log fr=3.56, accessible
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Fi1G. 4.—Total decay rate for *'S—*'P; log £ from Table 7. This self-mirror system is dominated by the large number of fast Fermi
transitions (cf., § III), and shows no dramatic temperature or density dependence. Electron capture dominates above log p/p,=6.0.

FiG. 5.—Total decay rate for 25-32P; log T from Table 8. since 2S is stable in the laboratory, the rate of this decay is very slow at
low .dcnsitiﬁ until the temperature is high enough for significant thermal population of parent excited states. However, at log p/u,=8.0,
Uy is large enough 1o allow upward transitions from the ground state, and a dramatic change in the low-temperature rate is observed.
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only for Fermi energies near 5 MeV (p/p.~10%). This structure contributes to our rates being 10 times faster than
Hansen’s at T,=2, p/u.=10% 10 times slower at p/p,=10% and the same temperature, and then, as the 1525
transition becomes accessible, 200 times faster at p/u,=10° At T,=10 and densities between p/p,=10° and 10°,
our rates are between a factor of 15 and 60 times faster than Hansen’s, with matrix element induced uncertainties
between factors of 2.5 and 5.

The decay **S—P (Table 9) is again characterized by a relatively slow rate and a large abundance of laboratory
stable *3S in the presupernova neutronization regime, but here the nuclear Q,-value is only —0.76 MeV. The ground
state to ground state decay is measured to have the relatively slow matrix element log fr=5.33. However, here the
first excited state of parent *S is at only 0.84]1 MeV and is accompanied by the relatively fast 2—1 transition of log
ft=4.44 (determined from the mirror positron decay **Ar—*Cl, and determined from calculations by Wildenthal to
be log ft=4.32). Again, the positron decay rate is very slow until the first excited state begins to become thermally
populated at around Ty,=0.5, at which point it rises steeply. This rate is much slower than Hansen’s until about
Ty~0.5-1, at which point it rises to become 100 times faster between Ty~2 and 6, and then begins to converge on
the Hansen rate at Ty=10 as the fast 2—1 decay becomes relatively less important than the Fermi and Gamow-
Teller transition from the analogue of the daughter ground state at 5.47 MeV (30—1, log fr=3.34.) The electron
capture rates are influenced by many average Gamow-Teller channels, with only a few fast channels available, and
these at only very high daughter excitation energy (19, log fi=4.17, 4.19 MeV excitation; 1—1, log fi=4.48, 4.86
MeV excitation). Consequently, our rates agree well with those of Hansen at Ty=2, and are faster by a factor of 5 at
Ty=10, where many unmeasured and uncalculated Gamow-Teller channels contribute; the factor of 5 reflects the
difference between Hansen's average log fr=5.7 and our average log fr=5.0, and at T,=10.0, p/pu,=10° for
instance, the uncertainty is about a factor of 7, reflecting the order of magnitude uncertainty assigned to the average
Gamow-Teller value. The total rate for the 3*S—P decay is shown in Figure 6.

Finally, the 3¥Cl—3S decay (Table 10) again reflects the slow decay of a relatively abundant laboratory-stable
species. Here the ground state to ground state matrix element is measured to be log fr=5.01 and the nuclear Q-value
is only —0.68 MeV. The first excited state of parent **Cl is at 1.219 MeV, and its population begins to affect the rate
at intermediate temperatures (Fig. 7). The transition from the first excited state to the ground state of S (2—1) is
determined from calculations by Wildenthal to be a very slow log fr=6.43, but the 2—2 transition is calculated to
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_ Fic. 6.—Total decay rate for *S—*P; log T from Table 9. As in Fig S, but in stable **S lower temperatures are required for
significant population of low-lying parent levels, and upward transitions from the ground state begin to be important for log p/p, 2 6.5.

FiG. 7.—Total decay rate for **Cl—*S; log  from Table 10. As in Figs. 5 and 6, excep! that still lower temperatures and densities are
sufficient to achieve a significant weak interaction rate for the decay of laboratory-stable **Cl.
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have log fr=4.46. The analog of the *S ground state lies at the very high excitation energy of 5.65 MeV and the
Fermi transition from this state (with an average Gamow-Teller component of log fr=5.0) has log fr=3.30. The
result is that the rates again exhibit a steep temperature dependence which tracks the Hansen parametrized fits well
for both positron emission and electron capture until relatively high temperatures. At a temperature of T9=10 and
p/p.= 10, our rates are a factor of 6 faster than Hansen’s, dropping to a factor of 3 faster at p/p =108, At the
most extreme temperature and density point considered (7=10 and p/p,=10%), our rates are almost six orders of
magnitude faster than Hansen’s, with a rate uncertainty well over an order of magnitude, indicating the importance
of unknown high lying Gamow-Teller strength at these conditions.

In conclusion, the nuclear weak interaction rates of the decays 2Al—+¥»Mg, ¥P—¥Si, *'S-3'P, 325%p,
3553 P, and ¥*Cl-»*S become sensitive functions of temperature and density in the stellar enviornment. These
rates are for the most part determined by experimentally measured matrix elements and matrix elements derived
from isospin symmetry, but where unmeasured Gamow-Teller transitions are important the rates can be computed
with some confidence utilizing the detailed shell model calculations and nuclear systematics considered here. Our
rates roughly agree with those of Hansen (1966) over a large range of conditions, but potentially important
differences in the rates exist at temperatures and densities relevant for the production and destruction of Al and for
the neutronization-neutrino loss problem of presupernova evolution. Uncertainties in the rates have been estimated
as a function of temperature and density, and the improved rates are presented in a form which should make them
convenient to incorporate into detailed nucleosynthesis calculations involving these key species.

We are grateful to professor B. H. Wildenthal for providing us with nuclear matrix elements derived from the
detailed nuclear shell model calculations into which he and his colleagues have put so much effort over the years, to
H. S. Wilson and R. W. Kavanagh for making available to us their unpublished log fr measurements, to S. E. Koonin
for helpful discussions on many aspects of the problem, and to S. E. Woosley and T. Weaver for many interesting
discussions o the effects of weak-interaction processes in the late stages of presupernova stellar evolution, and
especially for providing a list of the weak decays of great importance to the supernova problem.
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ABSTRACT

Astrophysical electron and positron emission, continuum
electron and positron capture rates as well as the associated
neutrino energy loss rates are calculated for free nucleons
and 226 nuclei with masses between A = 21 and 60. Measured
nuclear level information and matrix elements are used where
available. Unmeasured matrix elements for allowed transitions
are assigned as in Paper I. Simple shell model arguments are
used to estimate Gamow-Teller sum rules and collective state
resonance excitation energies. The discrete state contribu-
tion to the rates, dominated by experimental information and
the Fermi transitions, determines the nuclear rates in the
regime of temperatures and densities characteristic of the
hydrostatic phases of presupernova stellar evolution. At the
higher temperatures and densities characteristic of the super-
nova collapse phase, the nuclear rates are dominated by the
Fermi and the Gamow-Teller collective resonance contributions.
Also included is the important effect of neutron shell closure
blocking of electron capture on neutron-rich nuclei. Uncertain-
ties in the rate calculation are discussed. Reference is made
to other treatments of the problem. Results of the calculations
on a detailed temperature-density grid are available in computer

readable form on magnetic tape upon request to MJN.
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I. INTRODUCTION

The problem of nuclear beta decay in the stellar environment has
been discussed in Paper I of this series (Fuller, Fowler, and Newman
1980, hereafter referred to as F2N 1). In that work the positron emis-
sion, continuum electron capture and neutrino energy loss rates were

calculated for “CA1 — “Omg,%0p -30g; Slg - 3lp 525 . 52p 335, 535

and 3501 - 358. These rates are important in determining nucleosynthe-
sis, neutronization, and neutrino cooling during the phases of presuper-
nova evolution corresponding to core carbon, oxygen, and silicon burn-
ing. The temperatures and densities most relevant to these stellar
environments are 0.1 S T9 < 5 and 105 = p/pe < 109, encompassing condi-
tions from mild degeneracy up to electron Fermi energies near 5 MeV.

In this work the set of nuclei considered is extended to include
free neutrons and protons and 226 nuclei between mass 21 and 60 inclu-
sive. The present calculation includes positron emission, continuum
electron capture, electron emission, and continuum positron capture
rates, as well as v and V energy loss rates for all nuclei considered.
The reaction rates are calculated on an extended grid of temperatures
and densities: 0.0l < T, < 100 and 10 = p/u.e < 10'!. This extended
thermodynamic regime includes the conditions most appropriate for pre-
collapse hydrostatic stellar evolution as well as the extreme environ-
ment of stellar core collapse, wherein temperatures in excess of 1 MeV
and densities corresponding to electron Fermi energies near 25 MeV may
be encountered before neutrino trapping. In the case of precollapse
conditions, the nuclear weak interaction rates are dominated by dis-

crete transitions; whereas in the extreme temperature and density

environment of the stellar core collapse the rates are dominated by
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the collective Gamow-Teller resonances.

The discrete state calculations performed in this work proceed as
in FEN I. The procedure is very closely tied to experimentally meas-
ured nuclear properties. Measured nuclear energy levels, spins, and
parities are used to define the discrete states. Experimentally
measured weak matrix elements are used where available. Unknown Fermi
transitions can be calculated with precision (cf. F2N I). Unknown Gamow-
Teller transition matrix elements are assigned an average value appropriate
to this nuclear mass range [log ft=5.0, FEN I; Gleit, Tang, and Coryell
(1968)]. Forbidden transitions are neglected, but see Fuller (1981).

The work of Bethe, Brown, Applegate, and Lattimer (1979, hereafter
BBAL) points the way to solving the problem of extreme high density,
high temperature electron capture. In the present paper Gamow-Teller
collective state strengths and excitation energies are calculated based
on a simple shell model picture fashioned after the work of BBAL,
Klapdor (1976, 1979), and Gaarde and collaborators (Gaarde et al. 1972,
Gaarde et al. 1980), and guided by the growing volume of experimental
data from (p,n) and (t,SHe) reactions and conventional delayed proton,
neutron, and gamma decay experiments. Also included is the important
effect of neutron shell closure blocking of electron capture for
neutron-rich nuclei (Fuller 1981).

As the temperature and density rise in the collapsing stellar core,
parent nucleus excited states are thermally populated, and many other-
wise unattainable electron capture channels are opened among daughter
nucleus excited states due to the increasing electron Fermi energy.
Eventually the weak interaction rates are dominated by the Gamow-Teller

collective resonances as pointed out by BBAL. In the present paper the
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Gamow-Teller collective resonances in both parent and daughter are

treated as discrete states; one discrete resonance state in the daugh-

ter (parent) for each energy level considered in the parent (daughter)

nucleus. The energies of these discrete resonance states are estimated

using single particle energies from Seeger and Howard (1975), also Seeger

and Perisho (1967) and employing an average particle-hole repulsion energy

as in BBAL. The collective state transition matrix elements are estimated

with a simple shell model sum rule and subtraction of measured strength.
Since the Gamow-Teller resonances are approximated as discrete

states, the calculational apparatus employed in FEN I can be used di-

rectly. All of the equations governing the decay rate of nuclei in the

stellar environment derived in § II of FEN I apply here, with the ex-

ception that the occupation index Pi in Paper I, equation (9a) is

handled differently for resonance state transitions (see § V, this paper).
The importance of obtaining accurate nuclear weak rates during

both the hydrostatic phases of stellar evolution (Couch and Armett

1973; Woosley, Arnett, and Clayton 1972; Weaver and Woosley 1979) and

during the collapse phases is a well known problem. Neutronization

resulting from electron capture during the phases of stellar evolution

up through silicon burning has been treated statistically, utilizing

the relatively long time scales associated with the various burning

phases (Arnett 1977, 1980). Ultimately detailed neutronization, neutrino

loss rates, and nucleosynthesis yields during presupernova evolution

as well as the testing of statistical schemes require a detailed treat-

ment of weak interaction rates. Reliable electron capture rates are

required to compute the dynamics of the core infall epoch (Van Riper

and Lattimer 1981). The initiation of the collapse in electron-capture
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supernova depends on the detailed electron capture rates of inter-
mediate mass nuclei (Couch and Arnett 1967, Nomoto 1980). The very
high density electron capture rates determine to some extent the entro-
py and lepton -to -baryon ratio evolution in the collapsing stellar core,
and hence are required for an understanding of the explosion mechanism.
The rates calculated in this work are available in a detailed
temperature-density grid in computer readable form on magnetic tape
upon request to MIN, and will subsequently be published on an abbre-
viated temperature and density grid in the Astrophysical Journal Sup-
plement Series (Fuller, Fowler, and Newman 1981; hereafter FEN Ry
The remainder of the present paper {(hereafter F2N II) describes the
nuclear transition matrix element calculations, the uncertainties in

the rates, and the results for a few interesting nuclei as examples.

II. NUCLEAR MATRIX ELEMENTS
The rate of decay from the ith state of the parent nucleus to the

jth state of the daughter is given by

£, (T, 000 )

gy =in2 A(E)IJ—F (1)
The (ft)ij are the comparative half lives and are related to the allowed
weak interaction matrix elements by equations (I-2a) and (I-2b), where
equations denoted I are found in FEN I. The phase space factors fij
are given as integrals over the lepton distribution functions (T8
and (I-3b) and hence are sensitive functions of the temperature and
density in the stellar interior. Similar expressions hold for the
associated neutrino energy loss rates (I-6a) and (I-6b). The total

decay or neutrino energy loss rate for a nucleus in the star is given

by summing over all transitions between parent and daughter states.



43

The double sum over these discrete state transitions involves weighting
nuclear parent levels with a Boltzmann population factor, introducing
further temperature sensitivity in the total decay rate. To compute
the weak interaction rates for a parent-daughter nucleus pair, discrete
state excitation energies, spins, and parities are required for both
nuclei, as well as weak interaction transition amplitudes connecting
these states,

There has been a vast increase in the amount of measured nuclear
level information since the weak rate surveys of Hansen (1966) and
Mazurek, Truran, and Cameron (1974) were undertaken. In order to ex-
ploit these data and keep the rate calculations close to experiment,
measured nuclear level information is used wherever possible. Typi-
cally, about 20 discrete states are included in each nucleus; resonance
states will be discussed below. The nuclear level excitation energies,
spins, and parities are taken from the latest nuclear information
tabulations of Endt and wvan der Leun (1978) and Lederer et al. (1978)
where available. For some proton- or neutron-rich nuclei the measured
level information may be incomplete. In these cases, the nuclear level
data can be supplemented by adroit attention to valence neutron and
proton numbers and the shell model. For example, where excitation
energies are known, but spins and parities are lacking, a zero order
shell model for the valence nucleons can be used to generate a '"bank"
of J" values which can then be assigned to the experimental states as
needed. Where the measurement of spin for a given nuclear level is un-
certain and several values are possible, the largest value is chosen in
this work.

Finally, it is sometimes necessary to make estimates of excitation
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energies of levels as well as spins and parities. This is accom-
plished here by using nuclear level information from a well measured iso-
tope, isotone or isobar closer to the valley of beta-stability which has its
valence nucleons filling the same j-subshells as the unmeasured nucleus.
Further, the measured nucleus must be even-even, odd-odd, odd-even, or
even-odd, just as for the unmeasured nucleus. For instance in
33, ; . : - 50
1&5119’ no excitation energies, spins or parities are known. The
isotone ?gslg is used to supply the missing information. In very
neutron- or protomn-rich nuclei, not even the masses are known accu-
rately. In addition to the above techniques to £ill out the unknown
level information, theoretical nuclear mass values are taken from the
calculations of Mgller and Nix (1980) where necessary.

In principle, weak interaction matrix elements are required for
all transitions between parent and daughter states. Matrix elements
for forbidden transitions are not calculated in this work, since we
are mainly interested in the weak rates of intermediate mass nuclei in
temperature and density environments encountered during the collapse
before neutrino trapping sets in. In these conditions allowed transi-
tions and/or experimentally observed transitions, which may be forbid-
den, dominate the weak interaction rates. In the regime of stellar con-

1A g cm-s, Arnett (1977)]

ditions beyond neutrino trapping [p & 5 X 10
most of the transitions are at least partially blocked, the electron
captures go through hindered or forbidden transitions, and the bulk of
the neutronization is carried by electron capture on freeprotons (Arnett
1977, 1980; Fuller 1981). In this work then, only allowed transitions

between discrete states are considered except where rates for forbidden

or hindered transitions are known experimentally.
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The treatment of allowed matrix elements proceeds as in § III of
F2N I. Briefly, isospin symmetry is exploited to calculate accurately
the Fermi transition matrix element and the energies of the isobaric
analog states which carry this Fermi strength. Isospin symmetry is
also used to extend the set of measured log ft wvalues by extracting
matrix elements measured in the mirror system, corresponding to the
pair of nuclei of interest, after correcting for spin degeneracy
factors. After the Fermi and mirror transitions are included in the
calculation of a particular reaction, there are typically still many
unmeasured Gamow-Teller transitions which can contribute to the weak de-
cay rate. A mean log ft = 5.0 is taken for these transitions when allowed.
This mean reflects the general trend of Gamow-Teller matrix elements
in intermediate mass nuclei and is the result of an extensive survey
of measured and calculated values done in F2N I. As concluded in that
work, the experimental and calculated Gamow-Teller and Fermi transi-
tions serve to dominate weak decay calculations and yield a reliable
rate for well studied intermediate mass nuclei over most of the range
of temperature and density of interest in the hydrostatic phases of
stellar evolution. The extension of reliability of these rate calcu-
lations to the regime of extreme temperature and density requires a
knowledge of the beta-strength function over a iarge range of nuclear
excitation energy. In particular, the Gamow-Teller strength function
is needed as well as a way to handle large numbers of thermally popu-

lated isobaric analog states carrying Fermi strength.

III. FERMI AND GAMOW-TELLER COLLECTIVE MODES
The Gamow-Teller strength distribution has been a problem of in-

creasing concern to nuclear experimentalists because the details of this
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distribution are very sensitive to the central isovector spin and ten-
sor components of the nuclear force. However, an increasing amount of
experimental and theoretical lore points to the existence of a giant
Gamow-Teller resonance which contains much of the collective Gamow-
Teller strength in a broad peak (Goodman et al. 1980).

The Fermi transitions are illustrative of the resonance collective
lZ - NI/E)J

there corresponds a T~ isobaric analog state (IAS) in the T<-daughter

>
state phenomena. To each state of a T -parent nucleus (T

nucleus. These analog states can be generated by acting on the asso-

ciated parent states with the isospin raising or lowering operator

T, = :E Ti(n) (2)
n

given by a sum over nucleons. The selection rules for the Fermi oper-
ator are AT=0; AT =0; AT =0. This operator commutes with all parts of
"the nuclear Hamiltonian save the Coulomb force. As a result the analog
state is pushed up in excitation by the difference in Coulomb energy
between parent and daughter nuclei. Furthermore, the off-diagonal
matrix elements of the Coulomb interaction serve to mix the isospin
quantum number. In practice the resultant mixing is very small, iso-
spin is a good quantum number, and hence all of the Fermi strength is
concentrated in the analog states (Soper 1969, deShalit and Feshbach
197%4). There is, of course, no Fermi resonance for a transition from a
T<Lparent state to a T>-daughter state. The important point here is
that isospin is a good quantum number and the Fermi strength is narrowly
concentrated even though the isospin operator generates only an approx-

imate symmetry for the nuclear system.
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The situation for the Gamow-Teller operator and its associated
resonance is somewhat more involved, though qualitatively similar to
the Fermi isobaric analog problem. Consider again the decay of a T>
parent nucleus to states in the T< daughter, but now via the Gamow-

Teller operator,

6T = » 5(n) mx(n) (3)

n
given as a sum over nucleons. The Ty, and the T_ are the isospin rais-
ing and lowering operators for individual nucleons, and P is the Pauli
spin operator. Note that since GT is a spatial vector and an isovec-
tor, the Wigner-Eckart theorem implies the selection rules AT = O;

AT =0, ¥1, no 0 = 0; AT = 0, *1, no O » O. GT then connects to both
< >

T and T states and can change the spin of a nucleon but cannot change
either its orbital angular momentum or its principle quantum number

in allowed transitions. Like the Fermi operator GT does not commute

with the total nuclear Hamiltonian.

Unfortunately, the Gamow-Teller operator does not commute with the
strong spin-dependent parts of the nuclear interaction, whereas the
force responsible for isospin symmetry breaking is the relatively weak-
er electromagnetic interaction. As a result, the "isobaric state"
corresponding to the collective Gamow-Teller mode is expected to be
badly split among the nuclear daughter levels as compared to the Fermi
isobaric-analog state resonance.

The strictly nuclear part of the nucleon-nucleon potential can be
represented as a sum of central, tensor, and spin-orbit terms. For the
most general Hamiltonian invariant under rotations generated by total

spin (T =T + S) and isospin (?), we have the terms
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central _ _c el e & (T A S
H =W &V By Hg W Ty T Vo LB 2T ey TE) (%)
tensor t E * o = Ay ~ el >
H = (V + ¥ Ty ¢ 72)(3(01 r)(ce- r) - oq 02) (5)
Hspln orbit - (VSD " Vio ;1' :2) (f g) (8)

where all of the potentials, V, are functions of r and where

g = (;1-;é)/|;1-;é| is the normalized nucleon coordinate difference.
The coefficients are taken to be the sums of Yukawa potentials in the
usual phenomenological effective interaction studies (e.g., Austin 1980).
The strengths and ranges of these forces can be found from DWBA analyses
of scattering data as well as modeling nuclear spectra, though the
parameters of some forces are known better than others. In particular
V;, V;T, and V: are comparatively not well known, and these are just

the forces most responsible for shaping the Gamow-Teller strength

distribution (Halbleib and Sorensen 1967, Fujita and Ikeda 1965).

These forces not only introduce mixing among daughter states,
but also can produce particle-hole correlations in the parent nucleus
wave functions. The particle-hole forces in the spin-flip isospin-
flip mode (i.e., pn_l or p—ln) are determined by V;T. The studies by
Gaarde et _al, (1972) and Martinsen and Randrup (1972) show that the
effect of this force is to push the Gamow-Teller spin-flip mode
strength up in daughter excitation energy, while weakening the no-spin-
flip mode strength and spreading it out in excitation energy. This
will be developed in more detail below, where a simple shell model is
discussed,

As emphasized above, however, even though a nuclear symmetry is



Lo

only very approximate, it may still be a useful description of the
nucleus. In the case of the Fermi operator, the approximation of an
isospin-independent interaction insures concentration of all Fermi
strength in an isobaric analog state. In the Gamow-Teller case,
approximation of a spin and isospin independent nuclear force would
insure concentration of the GT-strength in an isobaric resonance
state. Specifically, an assumption of a spin and isospin independent
nuclear Hamiltonian would result in the Fermi and Gamow-Teller collec-
tive strengths being concentrated in a single degenerate daughter
nucleus eigenstate: the Wigner supermultiplet state. Gaponov and
Lyutostanskii (1974) have shown from a finite Fermi system model that
the degenerate supermultiplet state is split by V;T in such a manner
as to concentrate the Gamow-Teller strength in a collective state a
few MeV above the analog state in most intermediate mass nuclei. The
picture of the Gamow-Teller transition for the ground state of a T>L
nucleus to a T<—nuc1eus then, is that the collective GT strength is
contained in a broad peak centered well above the first amalog state,
with the no-spin-flip strengtﬁ relatively more spread out than the
concentrated spin-flip strength,

The growing volume of experimental -data seems to support this
conclusion for the T> = T< transitions of neutron-rich intermediate
mass nuclei, whereas the T< - T transition characteristics are much
different. The Gamow-Teller strength distribution can be examined
experimentally either in gamma-decay branching or in delayed neutron,
e.8., SlNa, and proton, e.g., 33Ar, experiments. The results are avail-
able as log ft values tabulated in Endt and van der Leun (1978) or

Lederer et al. (1980), as discussed above. The problem with these
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techniques is that there are no nuclei whose decays have a large enough
Q-value to reach the main part of the beta-strength in the daughter
nucleus. The 53Ar - 3301 positron-decay has a large Q-value (11.618
MeV) and even in this case only about 12% of the expected strength is
observed. This decay has been analyzed in terms of the simple shell
model by Klapdor (1976) in some detail and tends to confirm the trends
in the strength function mentioned above.

Another experimental technique which has met with some success
involves charged particle reactions to excite the IAS in a nucleus re-
sulting from electron-emission. The spin part of the electromagnetic M1
operator corresponds very closely to the Gamow-Teller operator and so
the M1 decay from the excited JAS populates the same states as would
the electron emission from the parent nucleus ground state. Gaarde et al.
(1972) have used l"SCa.(p,)’) to populate the IAS in lL98c corresponding to
the ground state of &9Ca, with results which confirm the theoretical
conclusion discussed above that the spin-flip strength is pushed up
and strengthened by V;}, while the no-spin-£flip strength is weakened
and spread out in daughter excitation energy.

By far, however, the most dramatic confirmation of the position
of the GT resonance comes from recent change-exchange experiments,
notably (p,n) and (3He,t). These reactions mimic electron emission
by creating a neutron-hole and proton-particle state in the residual
nucleus and hence are especially useful for studying T> - T< decays.
The advantage of this technique lies with the relative lack of Q-value
restrictions on the daughter excitation energy region explored, allow-

ing complete resolution of the high lying Gamow-Teller strength. The

s 3 ; :
incident proton or “He energy must be high enough to insure a
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predominantly direct component in the scattering amplitude. 1In this
case the scattering amplitude is related in the usual manner to the

DWBA T-matrix element, given by

c2 0 B AL RIS ™

= (¥ |5 Tl

where the Xp and X; are the appropriately advanced and retarded dis-
torted waves and (Yflnglwi) is the matrix element of the effective
nucleon-nucleon potential between initial and final nuclear wave func-
tions Yi and Yf (Austin 1980). Measuring the cross section for a
charge exchange reaction in the forward direction assures the dominance
of low-/, even partial waves which in turn determine, through the
selection rules, which part of the nuclear interaction contributes.

For example, in the (p,n) reaction, for relative s-wave scatter-
ing, isospin must change, and spin can change by O or 1 unit of angular

c
¢ o v" can then contribute, where V
ot T T

momentum. The interactions V:, A
is responsible for the "Fermi' transition to the IAS and where V;T is
predominantly responsible for the Gamow-Teller spin-flip and no-spin-
flip transitionms. V: is not as important, since this force is known

to be weak in the lower partial waves, dominating only for high momen-
tum transfer (Austin 1980). The IAS and the associated Fermi strength
were first discovered with the (p,n) reaction by Anderson and Wong
(1961), while the Gamow-Teller peak was unambiguously identified in the
9oZr(p,n)goNb experiment by Doering et al. (1975)., Bainum et al.
(1980), Goodman et al. (1980) and Sterrenburg et al. (1980).

90 90
n)

The results for the

zr(p, Nb experiment tend to confirm the

> < 5
overall features discussed above for the T~ — T transitions: a broad
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Gamow-Teller resonance lies roughly 5 MeV above the first IAS in 9ONb.
(Bainum_gg_gl. 1980). In general the results for 90Zr(p,n)gONb agree
well with a simple shell model prediction, though not all of the pre-
dicted strength is seen. Such charge exchange experiments have been
performed for other Zr isotopes with results in general similar to
the 902r(p,n)9ONb case but with details which change in a complicated
manner with increasing Zr mass number (Sterrenburg et al. 1980,
Galonsky 1980). The description of Gamow-Teller resonance behavior
for lighter nuclei is better understood as higher resolution (p,n)
experiments have been done, for example, in 26Mg(p,n)26A1 by Goodman
et al. (1980) and in LHBc‘-a(p,n)L”'D’SC by Anderson et al. (1980). The
simple-shell model systematics of Klapdor (1976) and others provides
the basis for a very simple, compelling explanation for the Gamow-
Teller resonance characteristics in this mass range for the T> — T<
transitions and will be discussed below.

The experimental observations are much less complete for the
Gamow-Teller resonance systematics in the T< - T> transitions, e.g.;
56Fe + a = 56Mn + V. The conventional measurements of log ft values
for discrete state transitions are hindered in the T< = T> direction
by the nuclear Q-values. The f>-daughter ground state usually lies
higher in energy than the T<-parent ground state by at least the
Coulomb energy difference, which is considerable in intermediate and
heavy mass nuclei. There are some lighter nuclei where weak transi-

>

= . <
tion matrix elements have been measured for T — T, but these measured

matrix elements do not exhaust the Gamow-Teller sum rule. The work of

Flynn et al. (1974) using the (t,SHe) reaction has identified

0" = 1" transitions in QBSi(t,BHe)EBAl and BBNi(t’SHe)SSCo, among
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others, which seem to be related to pieces of the giant MI-GT collec-
tive modes. A promising experimental technique which has so far not
been employed in searches for Gamow-Teller strength is the (n,p)
reaction. Though this reaction suffers in resolution (Brady and
Needham 1980), it has the advantage over (t,3He) in not being inhibited

strongly by Coulomb-barrier penetration.

Some indication of the Gamow-Teller resonance characteristics for
6Fe are given by the detailed shell model calculations of Bloom and
Fuller (1981). 1In that work, the Gamow-Teller strength for the Cre
(ground state) - 56Mn (continuum) is seen to lie in a broad peak cen—-

S

tered at 2.7 MeV in 56Mn, while the 56Fe(lst excited state) — SMn (con-

tinuum) is located in a broad feature at 4.6 MeV. This calculation is

56Fe Gamow-Teller

a good confirmation of the simple estimate of the
peak energy done by BBAL, and it appears that shell model systematics

suffice to predict the trend of strength and excitation energy for the
Gamow-Teller resonance in the T< -1 direction, which is just the iso-

spin change direction most important in neutronization and neutrino

loss processes in the late stages of stellar evolution.

IV. SHELL MODEL INTERPRETATION OF GT-RESONANCE CHARACTERISTICS

A shell-model description of nuclear beta decay processes based on
the ideas of Gaarde et al. (1972), Klapdor (1976) and BBAL is used in
the rate calculations presented in this work to give (1) an approximate
collective Gamow-Teller ground state sum rule, and (2) an approximate
daughter nucleus excitation energy for this collective state. The

Gamow-Teller resonance and its strength, together with the allowed
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discrete state transitions serve to outline the B-strength distribution

and provide a reliable weak interaction rate at high temperature and

density. The differing characteristics of the T< = T> and the T> i T<

Gamow-Teller strength functions emerge naturally from this procedure,
as do important predictions about the variation of collective state
strengths with increasing neutron richness.

Consider first the T< * T> Gamow-Teller strength distribution for

transitions from the ground state of an intermediate mass nucleus, e.g.,

33 )35

s(e”,v P. The contribution to the stellar rates from the collective

resonances for each of the parent excited states will be discussed below.

A possible zero-order shell model configuration for the ground state of

338, for example, is represented in Figure 1. The valence nucleons are

filling the sd-shell, the ld5/2 and 231/2 orbits are closed for both

protons and neutrons and there is one unpaired neutron in the 1d3/2 orbit.

The Gamow-Teller selection rules derived above allow both spin-flip and

no-spin-flip transition modes but it is clear from Figure 1 for this
< G 2 5 o

TS + T case (i.e., continuum electron capture or positron emission) that
the no-spin-flip transitions are not possible, while only one type of

spin-flip mode contributes, one of six 1d protons transforming into

5/2

one of three 1d neutron holes. In reality, the ground state nuclear

3/2

wave function for 335 will be an admixture of many such simple shell
model configurations since the residual nuclear forces polarize the

231/2—1d5/2 closed shells. The resulting holes in the 1d neutron

5/2

shell could allow a no-spin-flip transition of a 1d proton into a

5/2

14 neutron hole. However, in this work it is argued that the ground

5/2

state wave function is predominantly given by the zero-order model, the

more complicated configurations tending to be concentrated in highly
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excited states due to the substantial single particle energy differ-
ence penalty required to excite particles out of closed shells.
For the purposes of these stellar rate calculations it is sufficient

. ; 8 5 " v DO
to estimate the Gamow-Teller spin-flip mode excitation energy in P,
since as discussed above, experiment shows that the spin-flip mode is
relatively concentrated, the no-spin-flip mode being spread out in
daughter nucleus excitation energy when it can occur. The Gamow-Teller

collective spin-flip mode is given by

Wger = 3 (tlEr 11y af ajlu®s®)) (8)
13

where a; creates a neutron in single particle orbit i, aj destroys a
proton in single particle orbit j, and gs indicates ground state.
With a simple zero-order shell model like the one shown for 355 one
can solve for the collective state excitation energy relative to the
3P ground state. This collective spin-flip configuration (shown in
Fig. 2) differs from the 35? ground state by the excitation of a ld5/2
proton to the 2s

1/2 proton orbit. The equation for the collective

resonance energies E_ (= 1; 2, «+«) will be
{ea - & = En}w(n)(a b) + ZE (gb]Vph[Em)W(n)(Em) =0 (9)
Im

where Sa, in the case of 33P, is the single particle energy of the 251/2
proton orbit, Sb is the energy of the 1d5/2 proton orbit, Vph is the
component of the nucleon-nucleon force which acts in the particle-hole
channel, and the w(n)(a b) are the coefficients of the particle-hole

configurations in l¢) i.e., for some n

CGT’

9 ”( Sy aiaj> [(5p8%)y (10)
ij
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If there are n particles in the upper orbit of the final nucleus (e.g.,
P

ns = 2 protons in 231/2 in 33PSf indicates spin-flip) and if there are
. o3 sf
nﬁ holes in the lower orbit (e.g., nﬁ = 1 proton hole in ld5/2 in p° Yo

then the problem reduces to finding the eigenvectors and eigenvalues of
an nfnf X nf % matrix
p'h " "p'h ’

Although the residual force acting between nucleons is generally
attractive, in the particle-hole channel it is usually repulsive, as
can be seen by applying the Pandya relations (Schiffer and True 1976,
Koonin 1978). Further, as is implicit in the discussion of beta decay
in BBAL, this particle-hole repulsion energy is taken as constant in

this work, and in particular

(ablvph|2m> =~ ¥ (LL)

ph
If the sum on particle-hole pairs (a b) is taken over just the orbits

relevant for the spin-flip excitation (e.g., two 2Z2s

33Psf

1/2 proton particles

and one 1d proton hole in the case) and the equation (11)

5/ 2

approximation is employed, then equation (9) becomes

¥ - '
6(251/2) - s(1d5/2) -E |. ?; = % 1,. ?S
. . (12)
The eigenvalues of an nsné X n:ns matrix of 1's are zero and ngng, so

that the collective mode eigenstate is the coherent sum of the equally

weighted §™(a b)'s

|W>CGT = —1__2_2 a;aj t¢(33Pgs)> (15)
(npnh) 1]

corresponding to the excitation energy eigenvalue
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7.80 MeV.

This is similar to the calculation made in BBAL to arrive at the pre-
diction of An = 3 MeV in the 56Fe - 56Mn transition, which agrees very
well with the detailed shell model value of 2.7 MeV from Bloom and
Fuller (1981). 1In this work the value of ninﬁ . Vph for each nucleus
is approximated as 2.0 MeV (Bertsch 1980) and this agrees with the
shell model calculations and experimental data fairly well.

The total Gamow-Teller strength in the collective mode can be
estimated from equation (13). 1In principle, for a collective state
which corresponds to an eigenstate of the daughter nucleus, the total

Gamow-Teller strength from the ground state of the parent is defined

to be,
2 1 =
L e z E | Cogr megplemelym) 18
1 m m
ger ™%

In practice, and as experiment shows, the collective Gamow-Teller state
is split among many daughter nucleus eigenstates. In this case, the
collective strength is given as an incoherent sum of the strengths from
each daughter state. From the expression for the collective Gamow-
Teller wave function and from equation (15) it can be shown that the

incoherent strength is

ot of
2 _ p h sp|2
Mgr | —Z i + 1 ler'is (16)
if
where the sum is over initial orbits i, and final orbits f. The number
of particles in orbit i is n;, nﬁ is the number of holes in orbit £,

and Ejf + 1 is the degeneracy of the final orbit. IMngif is the single

particle Gamow-Teller matrix element connecting particle state i and



hole state f. |MSP for ji = j = %—and jf = p % %—is given by
/2 /2 1 |?
2 >
ol = 623, + 1) ; (17)
P PR

As shown in deShalit and Feshbach (1974), the six-j symbol is easily

evaluated to yield the table of ‘MGg|2 shown in Table 1. For instance,

the single particle matrix element table gives lMGglg = 12/7 for f7/2 *

£ In general for each particle orbit ji’ there are two possible

s/2°

final hole orbits, corresponding to no-spin-flip (nsf), Jg = 3ps and
spin-flip (sf), jf = ji i 1/2. The single valence particle orbit case

then gives, from equation (16),

nsf st
E sp|2
|MGT] = _.nst I GT nsf = IMGT sf (18)
23f + 1 EJf + 1

Note that the ratio nh/(Ejf+1) is the fractional number of holes avail-
able in the parent nucleus. For positron emission and electron capture
decay, each term in equation (18) is the number of protons in the va-
lence orbit times the fractional number of holes in the neutron orbit,
times the characteristic single particle matrix element. In the case
of electron emission or positron capture the roles of neutrons and pro-
tons are reversed.

An example of the application of the expression in equation (16)
is given by the zero-order shell model picture for 335 presented in
Figure 1. Consider first 38 ve)SS

S(e™, P. There are six valence pro-

tons in the 1d /

5/o orbit, and two in the 251/2 orbit. Deeper lying

proton orbits need not be considered, as these give zero beta strength;
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that is, all corresponding neutron orbits are filled (blocked), the
Gamow-Teller operator cannot change principal quantum number, and hence
cannot allow particle transitions between major shells. Likewise, the

no-spin-flip transition is not allowed for the six 1d5/2 protons in

33

S as there are no neutron holes in 1d Since the Gamow-Teller

5/e"

operator cannot change orbital angular momentum, the two protons in

251/2 can only transform into 2s neutron holes, of which there are

1/2

none in 55S. These two protons give zero beta strength. This is an

example of neutron blocking, which occurs whenever all final allowed

orbits for valence protons are completely filled by neutrons. A simi-

lar blocking can occur in electron emission or positron capture when

there are no allowed proton-hole slots for valence neutron transitions.
33

In the example of S, the only unblocked transition is for 1d5/2 pro-

tons transforming into neutron holes in the 1d

3/2 orbital, a spin-flip

transition. The single particle matrix element for ld5/2 = 1d3/2 is
lMZgle = 8/5, so that with np = 6 and nh/Ejf + 1 = 3/4 one has
IM:GTI2 =6+ 3/4 - 8/5 = 38/5 (19)

which, from equation (I-2a) gives log ft = 2.739. For the reverse

335

transition SSP(e_ ;;) , the spin-flip decay of six 1d neutrons to

5/2

four 1d5/2 proton holes contributes, as do two no-spin-flip transi-

neutrons into four 1d

tions: two 1d3/ proton holes, and two Z2s

2 3/2 1/2

neutrons in one 251/2 proton hole. Applying equation (16) and equation
(I-2a) gives a total IMGT|2 = 69/5 so that log ft = 2.456. This is
faster than the log ft = 2.739 for the positron emission, electron cap-
ture transitions because 53? is a neutron-rich nucleus and therefore

has more unblocked neutron particles than 555 has unblocked proton
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particles. In the case of large neutron excess, where both spin-flip
and no-spin-flip proton orbits corresponding to the filled or par-
tially filled neutron orbits are empty, then nﬁ/(Ejf+1) = 1, and equa-

tion (16) reduces to

l2

i sp|2 sp|2
Mg ji b e Merl inse]

1,

3« |n- z| (20)

1l

where N - Z is the difference in neutron and proton numbers for the
parent nucleus. With the use of the absolute value of N - Z, equation (20)
is generalized to the case of unblocked proton orbits for Z > N. This is

the expression for ]Mt = derived by Gapanov and Lyutostanskii (1974).

)
Equation (20) makes good physical sense, since it states that there are
|N - Zl completely unblocked nucleons, and since each free nucleon has an
unblocked Gamow-Teller matrix element |MGT|2=25, the total Gamow-Teller

strength is 3 - lN - Zl. Equation (I-11) for the Fermi transition

matrix element can be recast, using T; = (2 - N)/2 as

e | = v -z (21)

and again, since for a free nucleon |MF|2 = 1, equation (21) is easily
interpreted. The total beta strength possessed by a free nucleon
remains the same when placed in a nucleus and only blocking can make
this strength unavailable.

In comparing to the moment-method shell model calculations done by
Bloom and Fuller ( 1981) the zero-order shell model result of equation
(18) does quite well., The moment-method calculations for electron cap-

ture in “°Fe —» “OMn yields lMGTlgz 9.125 (log ft = 2.64) for the total

‘2

beta strength from the o" ground state of 56Fe, and lMGT = 9.656



61

(log ft = 2.61) from the o7 first excited state of 56Fe. The application

of equation (16) to the zero-order shell model ground configuration of

®re yields |m . |® = 72/7 = 10.29 (log £t = 2.58), which agrees well

with the moment-method shell model results. In the present paper the
strengths for collective state resonances corresponding to the excited
states of the parent nucleus are taken to be the same as for the ground
state, i.e., the zero-order shell model result, equation (16). This

conjecture will be discussed below, but note that it seems to be borme

56 60 60

out in the Fe results. For Fe-+ Mn the zero-order shell model

and equation (16) predict IMGTI2 = 48/7 = 6.86 (log ft = 2.76), whereas

Bloom and Fuller calculate |Mb |2 = 7.33 (log ft = 2.73) from the ground

T
state and |MGT|2 = 7.04 (log ft = 2.75) from the first excited state of

6OFe, and again good agreement obtains. In the case of electron cap-

ture in 6uFe =3 Gth the Bloom and Fuller result gives lMGTIE = 1.06

(log £t = 3.57) from the 6LLFe ground state and |M 12 = 1.05 (log ft =

GT

3.57) from the 6J+Fe first excited state. The present paper uses the
energy and ordering of the shell model orbits for protons and neutrons

given by Seeger and Howard (1975). The 1f neutron orbit is then

5/2

taken to lie lower than the 2p1/2 neutron orbit. Since there are 38

neutrons in SLLFe, in the zero-order shell model employed here, the 1f5/

6l Bl

neutron orbit is completely filled, the Fe = ~ Mn transition is

2

blocked, and the application of equation (16) yields |MGT|2 = 0. The

Bloom and Fuller strength result is small but not zero, corresponding to

the value of a typical Gamow-Teller transition which reflects the mix-

ing of configurations due to the residual nucleon-nucleon interaction.
sl 6L

The Bloom and Fuller Fe — ~ Mn strength is about a factor of 10 less

than equation (18) would predict were the 2p1/2 neutron orbit to lie
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lower in energy than the 1f5/2 neutral orbit in the zero-order model

employed here, opening neutron holes in the lf5/2 shell,

The 5h'Fe (SHe,t)SuCo experiment performed and analyzed by Gaarde
et al. (1980) also tends to confirm the validity of equation (16). A
two-particle shell model calculation of the total weak interaction
strength in the SLLFe = 5LLCO transition made by these authors yields
‘MGTle = 13.8 which agrees well with the total weak interaction
strength inferred from the 5uFe(S}le,t)al'Go experiment. In a zero-order
shell model picture of SMFe in which the valence fp-shell has 6 pro-
tons in the 1f7/2 proton orbit, and 8 neutrons in 1f7/2 nuetron orbit
equation (18) yields |MGT‘2 = 114/7 = 16.3 (note that Gaarde et al.
also quote lMche = 16.3 derived from an expression similar to
eq. [20]). The sum rule expression employed in the present paper and
given by equation (16) then seems to give good agreement with theoret-
ical and experimental results.

The simple shell model utilized in this work serves to provide a
weak interaction sum rule for T< =1 as outlined above and, in addi-
tion, gives a simple interpretation for the location of the T<- T>
Gamow-Teller resomance. In particular the shell model procedure pre-
dicts the daughter nucleus excitation energy of the Gamow-Teller
collective state resonance in T< =3 T> in terms of single particle energy
differences for spin-flip and an average particle-hole repulsion energy.
The accuracy of these predicted excitation energies will be examined
below, but first the application of the shell model to the character-
istics of the T — T< Gamow-Teller strength distribution must be

addressed.

= < < >
The T" T and T - T Gamow-Teller strength distributions differ
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markedly, as the experimental data and theoretical results outlined
previously indicate. The principal difference between these distri-
> < L. <
butions reflects the fact that in the T" — T transition both T and
> <
T  states in the T -daughter nucleus may be populated by the Gamow-
Teller operator. To understand how these differences arise in the
context of the simple shell model requires a discussion of the so-
called Ml-method for determining the resonance excitation energies for
< > > < L.
both T - T and T — T transitions.
> < P

Following Klapdor, the Ml-method for T" = T nuclear transitions
is best explained in terms of a doubly-magic, neutron-rich parent
nucleus. A schematic shell model diagram for such a nucleus is shown
in Figure 3a. In Figure 3b an excited configuration of this nucleus is

shown, wherein a neutron is promoted from a completely filled j = £ +

| =

single particle orbit to the higher-lying j = [ = % orbit. This

is the M1 excitation and the configuration in Figure 3b represents the
giant Ml-configuration. Another such giant Ml-configuration could be
constructed by promoting a proton in a single particle orbit up to its
unfilled spin-orbit partner. Such proton Ml-configurations will be
discussed below in connection with T< =¥ T> transitions of neutron rich
nuclei,

Returning to the neutron Ml-configuration in the doubly-magic
neutron-rich nucleus, note that the excitation energy of this configu-
ration relative to the Figure 3a ground state could be calculated via
an expression involving single particle energy differences and a
particle-hole repulsion as in equation (12). 1In this case the excita-
tion would amount to the difference in energy between the filled

j=12+ %—neutron orbital and its empty j = £ - %-spin-orbit partner,
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plus the particle-hole repulsion energy and a pairing energy if a neu-
tron pair must be broken in the excitation. Thus, the eXcitation
energy of this neutron Ml-configuration can be found in the T>:parent
nucleus and, furthermore, its isospin must be equal to T>.

The neutron Ml-configuration in Figure 3b can now be operated on

i 1
with the isospin raising operator T+ = 25 TI (in this work, Tg =" %

i

Tg = + %), where the sum on i is over all neutrons. The operator T
acting on a neutron creates a proton in the same orbit with a factor
1; hence acting on the Figure 3b configuration with T+ creates the

T = T> configuration mixture shown in Figure La, the cozfficients mul-
tiplying each component configuration following from the number of
neutrons in each orbit with appropriate normalization. (To is defined
such that ETO + 1= [N = ZI for the original T> nucleus shown in Fig.
3). The result shown in Figure 4a is the isobaric analog state
(IAS) in the T<idaughter corresponding to the neutron Ml-excitation in
the szparent. For very neutron-rich nuclei, where To is large but
with the j = £ - 1/2 orbit empty, the analog of the Ml-configuration
will clearly consist predominantly of the second of the two configura-
tions shown in Figure La.

The anti-isobaric-analog state (AIAS) corresponding to the M1-
analog in Figure 4a can be constructed from the same basis configura-
tions by using orthogonality. Interchanging the coefficients and re-
versing the sign between the configurations in Figure 4ta results in the
orthogonal AIAS configuration shown in Figure Lb, which must have iso-
spin T = T<. Because of the reversal of coefficients, the M1-AIAS will
be predominantly the first configuration in Figure 4b for very neutron-

rich nuclei.
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Note that the first, predominant configuration in the Figure 4b
M1-ATAS is just the spin-flip configuration generated from the T>-parent
ground state configuration, Figure 3a, by transforming a neutron with
= 14—1/2 into an empty proton orbit with j = [ -1/2. As discussed in
§ I1Ia, the experimental and theoretical results point to this spin-flip
configuration as the carrier of most of the relatively concentrated
Gamow-Teller strength. Therefore, for this doubly-magic neutron-rich
nucleus, the Gamow-Teller resonance could be expected to lie near the
excitation energy of the AIAS of the Ml-excitation, since for large TO
the M1-ATAS contains most of the spin-flip configuration.

The excitation energy of the M1-ATIAS can be estimated in the follow-
ing way. The excitation energy of the M1 configuration in the T>-parent
is calculated as previously discussed. The IAS of this Ml-excitation
in the T<-daughter has an excitation energy which is the energy of the
first analog state plus the Ml-excitation energy in the T>—parent. The
M1-ATAS differs from the M1-IAS only in total isospinj; other than that
both states contain the same configurations. In the absence of an
isospin-dependent residual interaction, the MI1-IAS and MI-ATIAS would
be degenerate in energy. In fact, the nucleon-nucleon force in equation
(4) contains a T, ' T, term and Lane (1962) has shown that this results
in an isospin potential, the Lane potential, which splits otherwise
identical states differing in isospin. The form of the Lane potential
used here is

V$(2T0+ 1)

_ B LB
V= = 5 I -z (22)

and the MI-ATAS lies lower than the MI1-IAS by the value of this

potential.
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To summarize the proposed method for finding the excitation energy
of the Gamow-Teller resonance in the T<idaughter, the T>;parent M1-
excitation energy is added to the first-IAS energy in the T<—daughter,
yielding the M1-IAS excitation energy, from which is subtracted the
Lane potential, to finally yield the excitation energy of the M1-AIAS
containing the greater part of the Gamow-Teller strength. As will be
made clear in the example below, this is not quite the procedure adopt-
ed for T> - T< transitions in this paper.

The method for computing the parameters of the T> - T< Gamow-
Teller resonance adopted later will, however, require the first analog
state excitation energy in the T< nucleus. The first analog state
energy is taken from experiment where available, or else calculated
using the parametrized formulae of Fowler and Woosley (1980). For a
nucleus with ZA protons, NA neutrons, and mass excess AMA, which has

an analog state in a nucleus with ZC protons, N_ neutrons, and mass

C

excess AMC, the expression for the analog state excitation energy EIAS

for Nc = ZC and ZA = ZC -1, NA = NC + 1

1.728(ZC -1)
3 — - . 5
Erag = 04, - MM, - 0.782h + . MeV (23)

where (S/S)e2 = 1.728 MeV-fermis and the nuclear radius R (for both
nuclei) is in fermis. Fowler and Woosley (1980) give R = 1.12 Al/3 +

0.78 fermis. This is the customary way to calculate E However,

IAS®

in some cases AMA is known for a proton-rich nucleus across the Z = N
line which can yield the energy of the T>~analog in the T<-nucleus.

In thi =
n is case NC > Zc and ZA NC + 1 so that

(W Mo+ 1) ~2,(2,~ 1))

o) - 0.86h - MeV (2k)

Erpg = AMA-AMC+ 0.7824 (zA-z
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For NC < zC and ZA = ZC + 1 the result is
1.728 ZC
Eigg = &M, = 8, %+ 0.7824 - ——F—— MeV (25)
and, finally, for NC < ZC and ZA = NC - 1 the result is
[zc(zc -1) - (NC - 1)(Nc ~2}1]
Eppg = &M, - AM, - 0.7824 (zC-zA)+o.864 = Mev  (26)

In the application of the Ml-method to the neutron-rich nucleus
discussed above, it was clear that most of the Gamow-Teller spin-flip
configuration was concentrated in the M1-AIAS. For less neutron-rich
nuclei, including many of those encountered in this survey, this is not
always the case and a significant portion of the spin-flip configuration
may be contained in the M1-TAS. The M1-IAS lies at a higher excitation
energy than the M1-ATAS and so the question of the splitting of the Gamow-
Teller strength between them is an important point to resolve in calcu-
lating the stellar rates.

The question of M1-IAS/M1-AIAS Gamow-Teller strength splitting in
T> - T< transitions is best illuminated with an example, ?gArIS = ?§0116'
This is a T> b T< transition corresponding to positron emission or
electron capture, and has a ground state to ground state nuclear mass
difference of 11.107 MeV, so that a considerable number of discrete
transitions from the 33Ar ground state have been measured.

The zero-order shell model ground state for 53Ar is shown in Figure
5. The proton Ml-excitation in 35Ar can be made by promoting a 1d5/2
proton up to the partially filled 1d5/2 proton orbit. If now the usual
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Ml-method is employed, the MI-IAS in 35C1 can be constructed by oper-

ating on the 33Ar proton Ml-excitation with T . This schematic diagram
for the MI-IAS is shown in Figure 6. Note that the first configuration
in the M1-IAS state in 53Cl corresponds to the spin-flip configuration
which can be made from the 33Ar ground state configuration by trans-
forming a 1c15/2 proton into a 1d3/2

M1-AIAS would consist of a mixture of the same configurations, but with

neutron., Of course the lower-lying

the coefficients interchanged and the relative signs reversed. The
33 33 < : i ;

Ar - ""Cl reaction is an example of one in which most of the Gamow-
Teller spin-flip strength is concentrated closer to the M1-IAS, rather
than to the M1-AIAS.

The equation (14) result can be used to estimate the excitation

energy of the ML-TAS and M1-AIAS in the following manner. First, the

; . .. 88 ’ :
proton Ml-excitation in Ar would have an excitation energy of

1,33
B (P he) = E(1d,7,)£(1dyyp) + AE o + 8E
- 73'6'5{/7é5 + 121/2 + 2.0 = 9.1717 MeV (27)
(33) (33)

where the difference in the proton single particle energies is taken

from the tabulation of Seeger and Howard (1975), the particle hole re-
1 = ; . ; £

pulsion energy, AEPh npnhvph’ is taken as 2.0 MeV and since a proton

pair is broken in the proton Ml-excitation energy, a pairing energy of

AEpair = 12/15&]"/2 is added (Klapdor 1976). Since the first analog state
i Ooel s known to lie at an excitation emergy of 5.54L MeV, the Ml-
IAS will have an excitation energy in ol oe EMI(SSCI) = 9.1717 +

S5.544 = 14,.715; whereas the M1-ATAS will lie at this excitation energy

less the value of the Lane potential in equation (22), or Eﬁ%AS =
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14715 - 22 [N - z| = 10.169 MeV. In the simple zero-order shell model
applied here, 756 of the Gamow-Teller spin-flip strength should be
carried by the M1-IAS, while the other 25% would be concentrated on
the M1-ATAS.

If the usual Ml-method were employed, all of the strength would be
lumped in a resonance near the M1-ATAS at 10.169 MeV excitation. The
application of the equation (16) sum rule to the ground state configu-
ration of “CAr (Fig. 5) yields |M§§ 2 = lsls = 9.8, ]ME;E 2 -8 =
L,2 and iMGTlE = 69/5 = 13.8. Since the Gamow-Teller resonance is
believed to be very broad, as discussed in the last sectiom, it would
be reasonable to expect a considerable amount of strength below the
resonance at 10.169 MeV. In contrast, only log(Z l/ft)—l = k.09
(IMGT]2 = 0.321) is measured from O to S.4U6 MeV excitation in 33¢1
and only log (Z 1/ft)'l = 3.h9 (IMGTl2 = 1.276) from 5.675 to 8.969
MeV (Endt and van der Leun 1978, Table 33.21). 1In other words, approx-
imately 12% of the total sum rule strength is located at excitation
energies less than 8.969 MeV. This is inconsistent with the broad
Gamow-Teller resonance being located near the ML1-ATAS and indicates
that the zero-order shell model is correct in predicting the Gamow-
Teller streﬁgth peak nearer the ML-IAS at 14,715 MeV.

The shell structure in the 33Ar = 3301 transition which results
in the Gamow-Teller strength being concentrated more on the M1-IAS
rather than the M1-ATAS is common to many of the T> = T< transitions
considered in this survey of weak rates. 1In light of this fact, the
following procedure is adopted here for computing the excitation energy

> < : : 5
of the Gamow-Teller resonance in all T = T transitions considered in

this work. First, a zero-order shell model diagram is constructed for
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the ground state of the T>Lparent. The appropriate Gamow-Teller spin-
flip configuration in the T<Ldaughter is constructed as outlined above.
The excitation energy of this spin-flip configuration relative to the
T<idaughter ground state is reckoned in the usual manner using equa-
tion (12), with the addition that in the case of ™ - 1" transitions,
the first analog state energy is added. The equation (16) sum rule
strength is computed for the T>;parent ground state, all discrete

state transition strength included in the stellar rate computation is
subtracted from the sum rule strength, and the remaining strength is
lumped into the Gamow-Teller resonance at the calculated energy.

The procedure for the 33Ar = 3501 transition is illustrative of
this process. The Gamow-Teller spin-flip configuration generated from
the 53Ar ground state is shown in the first configuration in Figure 6.
It differs from the zero-order 53Cl ground state by the excitation of

a 1d5/2 proton to the 1d3/2 proton orbit and a 2s neutron to the

1/2

, Deutron pair, and by

a particle-hole excitation energy, so that the modified equation (12)

ld3/2 neutron orbit, by the breaking of a 231/

result will be

33 .GT 33 .. sf
B(TC1T)=E(01%)=le (14, ) e (1d,,,) ) +[8(1d, /) € (2 /) ] +
B R ege™ oy
16.3 k.8
- = + 2.0 + 2.089 + 5.544
= 16.211 MeV (28)

where the Seeger and Howard (1975) single particle energies are used
along with the usual formula for the pairing enmergy, and the first

analog state energy, 5.544 MeV, is included.
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This is the procedure followed in this paper for all T> - T<
transitions. Adding in the energy of the first IAS yields an esti-
mated Gamow-Teller excitation energy which may be too high relative
to the values given by the Ml-method. The experimental evidence in
the 35Ar — 33C1 transition is that most of the Gamow-Teller strength
must lie well beyond 9 MeV, and as shown, the shell model estimate
predicts most of the strength near the ML-IAS at 14.7 MeV, and so the
F2N II method is still somewhat high compared to the Ml-method but is
not in disagreement with the limited experimental data which does not
reveal the full sum-rule strength. Additional experiments are needed.

Of course for T> =+ T< transitions in very proton or neutron-rich
nuclei, most of the Gamow-Teller spin-flip strength will lie closer to
the M1-AIAS state than the M1-IAS state, and the FEN I1 procedure will
be in greater disagreement with the Ml-method. In these cases the
FEN IT result will lie higher by the first IAS energy or more accu-
rately, by the Lane potential. From the discussion in the last sec-
tions it was clear that the Gamow-Teller strength is expected to lie
at excitation energies above the first TIAS in the T<ldaughter.

The %

Zr(p,n)gONb data obtained by Bainum et al. (1980) was dis-
cussed above in connection with the behavior of the strength distribu-
; . > < - T
tion in T = T transitions. These authors observe a broad T =L
Gamow-Teller spin-flip peak centered at 8.7 MeV in 90Nb, a few MeV
above the first IAS at 5.1 MeV and the T = 5 peak at 13.L MeV.
Several smaller Gamow-Teller non-spin-flip features were reported
below the main peaks. The application of the equation (16) sum rule

to the 90Zr ground state yields a total Gamow-Teller strength of

2
'MGTl = 30, yet Bainum et al. observe only 38% of this strength below
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20 MeV excitation. The remainder of the strength lies at very high
excitation energy as discussed in Bertsch (1981) and Bohr and Mottelson
(1981). The FEN II T + T resonance procedure would put this strength
at 11.85 MeV. The Ml-method places 53.3% of this strength at 8.938 MeV
and 5.3% at 14.493 MeV. The remainder, the non-spin-flip strength, is
spread over a large range in energy. It is clear in this case that both
methods of calculation are in error. However, the placing of the full
strength at a single resonance energy equal to 11.85 MeV compensates
approximately for the observed spread from 8.7 MeV to greater than 20 MeV.

In the very neutron or proton-rich T> > T< transitions in which the
FEN IT procedure places the strength too high, the first TIAS in the T<-
daughter will lie higher in excitation above the transitions available
(in T<) > Qn(’I‘>- T<)

to the T>-parent states, i.e., . In such cir-

E1as
cumstances the placement of the Gamow-Teller resonance in the T<—daughter
is not crucial; what is crucial is the strength within the range of the
nuclear Q-value, and the FEN II stellar rate computations attempt to

take this strength into account with discrete state transitions with

observed or calculated log ft values or with log ft = 5 assumed on
average for allowed transitions.
> < : ;
An example of a T = T transition treated in this survey in which
discrete state transition strength plays an important role is the posi-
A 26 26 ;
tron capture transition = Mg(T = 1) - “°AL(T = 0). Of course positron
capture is of little interest in the applications of our results. But
this example has experimental strength functions from the 26Mg(p,n)26Al
reaction studies. The zero-order shell model state for 26Mg consists
of a filled 1d5/2 neutron orbit and two holes in the 1d5/2 proton orbit,
and is shown in Figure 7a. Figure 7b shows the excited spin-flip con-

figuration in daughter 26Al,' wherein one of six 1d5/2 neutrons in 26Mg
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2
has transformed into any of four 1d3/2 proton holes. The 6Al zero-

order ground state configuration is shown in Figure 8 and it is clear
that the spin-flip configuration differs from it by the excitation of

an unpaired 1d proton to the 1d orbit. 1In accordance with the

5/2 3/2
2 > < A ; .
F'N IT resonance procedure for T — T transitions, the excitation

energy of the Gamow-Teller resonance in 26A1 is calculated as

26, .GT
E(T7A177) = [e(lds/g) = e(lds/e)]P + AEph + Erpq
= B I 27'3 + 2.0 + 0.228 = 7.730 MeV (29)
(26)
¢ . + ., 26
where EIAS = 0.228 MeV is the energy of the first O ; 1 state in ~— Al.

Note that 26A1 is relatively atypical in having such a low-lying analog
state.
The result obtained above in the F2N II resonance calculation for
26 26 ;
Mg — Al can be compared with the recent results of the

=6 n)26Al charge exchange experiment done by Goodman et al, (1980).

Mg (p,
Their Gamow-Teller strength distribution consists of three broad peaks.
The first of these peaks is resolved into three narrow peaks which
correspond to the three discrete J = 1" states in 26Al at 1.058, 1.851,
and 2.072 MeV excitation energy, respectively. The log £t and IMGTl2
for the transitions from the ground state of 26Mg to these three 26A1
states can be obtained from isospin symmetry from measurements made in

26 ... 26 2

the “7"Si = “"Al system (see discussion on p. 453 of F'N I). The other

broad peaks in the Goodman et al. spectrum occur at 5.0 and 10.6 MeV.
: 26 26 . :
In the stellar rate computations for ~ Mg — ~ Al in this work the

mirror transitions to the three discrete states are, or course, explic-

itly included. 1In accordance with the above procedure, the discrete
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strengthiis summed, subtracted from the equation (18) sum rule, and

the remaining strength placed at 7.73 MeV. This resonance then should
mock-up the two higher-lying strength peaks in the Goodman et al. spec-
trum. The rough energy centroid of the strength in these peaks is at
about 8 MeV, so the agreement with the F2N i T>--i T< resonance pro-
cedure is good. For T> - T< transitions in which the energy of the
first IAS is larger than in this case, the F2N I1 procedure will not
give such good agreement, but it is argued here that the discrete state
transitions will then determine the stellar rates.

It should be noted that the T<-ﬂ T> transitions can also be exam-
ined with the Ml-method. The procedure is to operate on the spin-flip
configuration in the T>Lparent with Ti to generate its analog in the
T<idaughter. T" operates on nuclei with N > Z and T  operates on
nuclei with Z > N. Orthogonality can be used to generate one or more
spin-flip-anti-analog states with T = T<. These anti-analog states
will contain most of the Ml-excitation configuration. The excitation
energy of the Ml-excitation and hence the anti-analog states can be
estimated by the usual techniques and then the Lane potential can be
added to yield the energy of the analog state. Subtraction of the
first analog state energy from the estimated spin-flip-analog energy
yields an estimate of the excitation of the spin-flip configuration in
the T>—daughter. The Ml-method for studying T< - T> transitions is
discussed in connection with (t,SHe) reactions by Flynn and Garrett
(1972). Though complicated, this method confirms and illuminates the
E e T> resonance procedure adopted in this rate survey.

To illustrate both the Ml-method and the FQN II technique for

: < >
treating T — T  transitions, consider the electron capture reaction
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56Fe - 56Mn at high electron Fermi-energies. The zero-order shell

model ground states for 56Fe(T = 2) and 56M’n(T = 3) are shown in Fig-
ures 9a and 9b. The 56Mn spin-flip configuration can be constructed
56

from the Fe ground state configuration by transforming one of six

1f7/2 protons into a neutron in the empty 1f neutron orbital. This

5/2
spin-flip configuration is shown in Figure 10.
Turning first to the Ml-method, the SGMn spin-flip configuration
can be operated on with T" in the usual manmer to yield the T>-spin—
flip analog state in 56Fe, shown in Figure 11, with the subscript 1
coefficients. Two T<ianti~analog states can now be constructed using
orthogonality. (In our example T> = 3, T< = 2). These states, desig-
nated Tf and Tfi are shown in Figure 11 with the appropriate coeffi-
cients multiplying the |1), |2), and |3) basis configurations. The
Tf spin-flip anti-analog state contains two-thirds of the proton Ml-

56Fe, the |l> configuration. The excitation energies of

excitation in
= <
the T+ and T- states can be estimated in the usual manner by comparing
the basis configurations to the 56Fe ground state configuration,
applying the modified equation (12) result, and weighting the energy
=
for each basis configuration by the appropriate coefficients in T-
& :
or T+.
Carrying out this procedure with the Seeger and Howard (1975)

single particle energies yields the following excitation energies for

the spin-flip anti-analog states:
E(Ti3
E(Tf3

> <
The T° spin-flip analog and the T+ anti-analog differ only in total

10.756 MeV

I

Il

10.037 MeV (30)
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isospin, since both states consist of the same three basis configura-
tions with coefficients of the same magnitude. As a result, these
states are separated by the value of the Lane potential, and thus the
excitation of the spin-flip analog is

50 X 6

=z— = 16.113 MeV. (31)

E(T”) = 10.756 +

.. 98
Subtracting the excitation energy of the first amalog state in Fe,

11.440 MeV, gives the energy of the 56Mn spin-flip configuration as

B(*m®f) = k675 Mev. (32)

The technique adopted in this paper for computing the parameters
]
of the Gamow-Teller resonance for T - T> transitions can now be ap-
. 56 56 . 2 :
plied to the ""Fe — " "Mn reaction. In the F'N II technique, as pre-
>
viously outlined, the spin-flip configuration in the T -daughter is
constructed and its excitation energy relative to the T>;daughter
ground state is estimated as in equation (12). The T spin-flip
5

configuration in Figure 10 differs from the 6Mn ground state, Figure

9b, by the excitation of a 2p3/2 neutron to the 1f neutron orbit,

s/2

with no nucleon pair broken, so that

E(SGMnSf) = [e(lfs/e) - 8(2p3/2)]n + AEph = 3,777 MeV (338)

where the Seeger and Howard (1980) single particle energies have been
used. The F2N IT spin-flip mode excitation energy differs from the
Ml-method result by about 0.9 MeV.

Part of this discrepancy results from the necessity of adding the
Lane potential to the excitation energy of Tf state in the Ml-method.
The T spin-flip analog configuration cannot be directly compared with

56 4 i ; : : :
the Fe ground state in estimating an excitation energy since these
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states differ in total isospin. The Lane potential is parametrized by
the strength of the V: component of the residual interaction, which
varies from nucleus to nucleus. On the other hand, some of the dis-
crepancy between the Ml-method and the FEN I1 technique is a result of
using the Seeger and Howard (1975) single particle energies which dif-
fer for protons and neutrons. To see the effect of this the calcula-
tions can be repeated with the Nilsson single particle energies (cf.
Hillman and Grover 1969, Table I) which are the same for protons and
neutrons. Repeating first the FEN II technique in equation (33) yields

sf)

B %) = 2,810 Hev (34)

for the spin-flip mode excitation in 56Mm.

The arguments of the Ml-method leading to equation (30) can be
repeated with the Nilsson single particle energies. 1In this case the
Tf and T‘-< spin-flip anti-analog states are found to be degenerate in

energy, with
E(Tﬁ = E(T-ﬁ = 7.876 MeV, (35)

Adding the Lane potential and then subtracting the first analog state

energy yields an estimate of the 56Mn spin-flip excitation energy of

B(°%mn®%) = 7.876 + ~505—g6 - 11.440 = 1.793 MeV. (36)

The results in equations (34) and (36) should, in principle, agree.
That they do not reflects the use of a particular value of the Lane
potential. If the Lane potential parameter were chosen as V:/E = 60,
which is common in many works (Klapdor 1976), then the Ml-method em-
ployed in equation (36) would give an estimated 6y spin-flip mode

excitation energy of 2.865 MeV, in good agreement with the FEN EE
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result (2.810 MeV) employing the Nilsson energies.

There is an alternative approach to the Ml-method for the 56Fe =

56Mn transition. The proton 1f7/2 =¥ 1f5/2 and neutron 1f7/2 =¥ lf5/2
Ml-excitations can be constructed and the resulting configurations can
be combined to yield a T< (T = 2) Ml-state in 56Fe, whose excitation
energy can be estimated in the standard manner. For reasons of sim-
plicity we neglect the Ml-excitation of the 2p5/2-neutrons in 56Fe to
the 2p1/2 state. AT (T = 3) state can be constructed from the Ml
basis states using orthogonality. The excitation energy of this state
will be the»T< Ml-state energy plus the Lane potential. Operating on
the T> Ml-state with T~ yields the T = 3 spin-flip configuration in
56Mn, with excitation emergy equal to the difference in energies of the
T> Ml-state and the first amalog state in 56Fe. For the proper choice
of the Lane potential parameter this method yields an estimate of the
56Mn spin-flip excitation energy in good agreement with the F2N IT re-
sult using the Nilsson energies (eq. [34]).

As discussed previously, the Bloom and Fuller (1981) shell model
calculation of the electron capture P-strength distribution for
56Fe b 56Mh yields a fairly broad distribution with a centroid at
2.7 MeV, which again is in reasonable agreement with the F2N I1 calcu-
lation. The resonance energies for the electron capture transitions

from the ground state of 6OFe is calculated as 2.0 MeV in 6OMn with

2
the F'N ITI technique. The Bloom and Fuller results for Gamow-Teller
strength centroid in 60Mn for this transition is 1.5 MeV and again
agrees well with the FEN II results.
< >
InT - T transitions in which several spin-flip transitions are

possible the above procedure is carried out for each spin-flip and
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>
several resonances may be placed in the T -daughter. In contrast, for
> < % % P 5
T - T transitions in which several spin-flip transitions are possible
the resulting resonance excitation energies are averaged and the total
sum rule strength lumped in a single resonance at this average excita-

; > < ;
tion energy. This procedure is justified for T — T transitions be-
>
cause a T -nucleus, which is neutron-rich enough to have several
possible spin-flip transitions, will have Gamow-Teller resonances at
<
high excitation energy in the T -daughter.
Finally, a few nuclear transitions in this work have possible

back-spin-flip transitions, for example, 1d3/2 =+ 1d5/2 in
30 = — 130, . . .

Al(e ve) Si. This Gamow-Teller transition strength is expected to
lie at low excitation energy (Klapdor 1976) and thus, as for the no-
spin-flip transitions, the discrete state transitions should include
most of this strength.

At this point a summary of the Gamow-Teller resonance procedure
employed in this work is in order. Typically, some twenty discrete

< >

nuclear levels are employed in the calculation for both T and T

; ; > <
nuclei. Gamow-Teller matrix elements for these T = T discrete state
transitions are assigned as in FQN I. A zero-order shell model diagram
. < >
is constructed for both T and T ground states, and equation (16) is

<
employed to give the total Gamow-Teller strength for the T ~— i and
> < —_ ;
T — T transitions. The discrete state transition strength from the
<, > <
ground state of the T (T”)-parent to all states of the T>(T )-daughter
is summed and subtracted from the sum rule result. This remaining
: : ; . >
Gamow-Teller strength is placed in a collective resonance in the T (T<j—
. &y B

daughter which connects to the T (T )-parent ground state. The excita-

tion energy of this resonance is chosen to be the excitation energy of
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the spin-flip mode in the T>(T<)—daughter. The spin-flip mode excita-
tion energy is calculated by the techniques discussed above, differing

< > <
for T - T and T> —= T transitions.

V. RESONANCE TRANSITIONS FOR EXCITED STATES

The previous discussion reviews the calculations used in this
work to estimate Fermi and Gamow-Teller sum rules and resonance exci-
tation energies for transitions from the ground states of the T and
f> nuclei. The rate calculations described in this paper use only
these ground-state resonance transitions; resonances corresponding to
all of the excited discrete states included in both T and T nuclei
are taken into account here through the use of a special occupation
index for ground-state # resonance-state transitions. The mathematical
manipulations involved in the use of this special occupation index are
based on reasonable assumptions about nuclear shell structure.

The basic T~ ==T> rate calculation problem is depicted in Figure

<

12. E™ and E> denote the discrete states in the T< and T> nuclei re-

spectively. These symbols will also be used to designate the energy

of these states., These discrete states represent those states included
in the rate calculation where excitation energies, spins and parities
are taken from experimental tabultaionms. R designates Gamow-Teller
resonances for each of the E- states, while the RS resonances corre-

>

spond to the E discrete states., In the T - T transition, the RS -

= S F
E” transitions contribute to the stellar rates through the thermal

population of the RS collective states. Likewise, in the reverse

=

& T< transition, the R

i — ES transitions contribute through the

thermal population of the R” collective states. It will be clear that
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the T< - T> and the T - T transitions are symmetrical. In what fol-
lows the T~ — T~ transitions are discussed in detail. Generalization
to T — T~ will be obvious.

The resonance problem is simplified by making two assumptions.
First, it is assumed here that on the average each ES and E discrete
state has a similar number of valence particles and holes in the same
single particle orbits as does the assigned shell model ground state
configuration. In this case, from equation (16) for the Gamow-Teller
sum rule, all g - ﬁ> transitions have equal strengths and all R~ = B
transitions have equal strengths. The second assumption made here is
that the excitation energies of the R<(R>) resonances scale just as do
their corresponding E>(E<) discrete states; for example, if the ground
state and first excited state in the T -nucleus differ by 0.847 MeV as
in SGFe, then the first two R~ resomances in the T>~nucleus, SGMn in
this example, differ in excitation energy by 0.847 MeV. 1In other words,
each ES - R> transitions has the same Q-value as does the ground-state
— resonance transition.

Similarly each RS - E> transition has the same Q-value as does the
resonance — ground state transition. Of course, the residual inter-
action will produce considerable configuration mixing and these assump-
tions of constant sum rule and transition Q-value will be only approxi-
mately valid. It is argued here, however, that the approximate
validity of these assumptions will serve to simulate the effect of
excited-discrete-state = collective-resonance transitions on the stel-
lar rates.

How valid are these assumptions? Weak rates are available only

for a few excited states of nuclei (isomers) and therefore comparison
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to theoretical shell model calculations must be made for most excited
states. The Bloom and Fuller (1981) moment calculations give a
|2

strength function centroid of 2.8 MeV and sum rule of lMGT = 9.04

for the 56Fe(ground state) - €\ tramsition. For 56Fe(first-excited—
state) — 56Mn transition, those authors calculate a strength centroid
of 4.3 MeV and a sum rule of \MGT‘E = 9.25. The agreement of the
ground state data with the F2N I1 resonance procedure is discussed
above, but note that since the first excited state of 56Fe(Jﬂ = 2+)
lies at an excitation energy of 0.847 MeV, the F2N II scaling assump-
‘tion would put the corresponding Gamow-Teller resonance at 3.777 +
0.847 = 4.624 MeV in “Mn with | | = 72/7 = 10.29. This is in good
agreement with the shell model calculation results. In general, the
differences in the shell model structure for each wave function will
tend to average out for at least the important low-lying discrete
states of the TS and T” nuclei, with the result that the Q-value and
sum rule strength scaling procedure used here will allow excited-
discrete-state =2 resonance-state transitions to be taken into account
with a special treatment of the occupation index for ground-state =
resonance transitions.

Consider first the E- — R” transitions; the transitionms, B E>,
which proceed through the thermal population of the states collectively
treated as a single resonance state are slightly more complicated and
will be discussed later. As illustrated in Figure 12 the discrete
states in the T -nucleus are designated by E? where 1 = 1, 2. . &
while the discrete states in the T>-nuc1eus are designated by E? where

j=1,2. . . . Since there is a one-to-one correspondence between

the resonance, in the T -nucleus and the E~ states, these resonances
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are designated by R? and similarly the resonances in the T -nucleus
are designated by Ri.
From equations (I-7) and (I-8) the overall transition rate from

T<—nuc1eus is

= < <
A= P 7 S 37
PP PRy (37)
where the occupation index, P?, is defined by
PY = 6y/6S = (235 + 1) emp(-Ey/kT)/CY (38)
and the partition function for the T<-nucleus is given by
¢S =265 =z (23° + 1) exp(-ES/kT). (39)
1 i L L
For the E< - R~ contribution to K< it is clear that
AT, =T, (40)
R By 240
J
If this contribution is designated by KER it follows that
=3 < w &
Agg = L By Ag, (k1)

i

which is completely general. If it is assumed, in addition, that all

of the A?i are identical as discussed previously and are equal, say, to

L

Ker as calculated from the Gamow-Teller matrix elements then
Rék o A:r E P? (h2)
But
B = (43)
i A

so that
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< g
AER = her * (bh)

In other words the contribution of the E< - K> transitions to the total

T< -~ T° transition rate can be calculated by including only the
< > o . 4 . <
E1 -+ R1 transition and setting the occupation index for the El state

in this transition equal to unity. The two basic assumptions made in
reaching this conclusion were discussed at the beginning of this sec-
tion. It will be immediately obvious that the errors arising from the
use of a finite number of discrete states are magnified by this proce-
dure especially at high temperature. Another source of error in the
calculations discussed here is the inclusion of the R™ collective
states in the calculation of G<. At low temperatures the small
Boltzmann factors for high lying states make these errors negligible;

whereas, at high temperatures (especially T, = 100), where the errors

9
in the calculation of G may be considerable, the stellar rates are
dominated by the resonance transitions and do not depend sensitively
on G.

Consider next the R< = E>

contribution to the transition rate
which will be designated by KEE' In these transitions only the R?

resonances in the T -nucleus take part and

< 5
B =k,
i i ii (k5)
so that
< 2
A = 5 P WY 2 Le
RE 5 "3 "33 Ve

If it is now assumed that all the X;} are identical and equal, say, to

<
Are then
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& _ p <
ARE - lre ? Pj :

(&7)

The calculation of the sum over j is now somewhat more subtle than in

equations (42) and (43). The P? are given by

P? = (2ij + 1) exp(-R?/kT)/G< i

(k8)

The complications involved in the multiplicity in spins (< 3) and the

corresponding statistical weight factors for R? resonances associated

with each E? state can be treated simply by replacing J; in equation

(48) with J?. In addition
el al -2 .
| L j il

One is free to set ET = 0 and thus

Pj = (2J? & 1) exp(-E?/kT) exp(-RT/kT)/G<

which in turn yields

exp(-RiykT)

<

<=
] c

£ P T (237 + 1) exp(-E/KT) .
j J J J

The sum over j will be recognized as G> and thus finally

JZ P<j = (& 16™) exp(—RT/kT)

and

€ AR g <
S Mo (g /™) exp(-Rl/kT) ;

(49)

(s0)

(51)

(52)

(53)
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<

In other words the contribution of the R e

— E7 transitions to the total

Y transition rate can be calculated by including only the rate
for the RT - Ei transition and setting the occupation index for

the RT resonance equal to the ratio of the partition function for the
T>—nuc1eus to that for the T -nucleus multiplied by the Boltzmann fac-
tor for the first resonance in the T -nucleus.

Throughout this paper we have referred to ground states whereas
the simple shell model gives a lower configuration which yields in
general a number of degenerate ground states. This point is partic-
ularly relevant to the choice of G> and G in equation (53). 1In prin-
ciple these G's should be calculated by summing over the states aris-
ing from the appropriate configurations. This was not done. In the
spirit of using experimental information as much as possible, the G's
in equation (53) were calculated using spins and energies of known
states. Since the ratio of G>7G< occurs in equation (53) the error
arising from this procedure is well within the other uncertainties
involved.

These occupation index manipulations allow the effect of all the
resonances to be taken into account by calculating only the ground-
state to resonance transition rate as a representative average value.
At very high temperatures where the F2N IT partition function calcula-
tion breaks down, the stellar rates will be almost completely dominated
by these resonance transtions. It is argued here that the F2N T2
occupation index manipulations allow reasonable estimates of the stel-
lar rates even at very high temperature, since the expressions for the
occupation indices for the resonances involve only ratios of partition

functions and, hence, errors in the partition functions will tend to
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cancel. There remains the question whether the matrix elements calcu-
lated for transitions involving the lowest shell model configurations
are representative for high excitations. In electron capture, for
example, neutron shell blocking will not be effective and matrix ele-
ments will increase but not by unreasonable factors except perhaps at
T9 = 100 where uncertainties of the order of a factor of two from this
and other causes must be admitted.

In generalizing to T> = T< transitions the counterpart of equation
(44) will be an identical statement equating the total rate to that
for the ground state — resonance rate. The counterpart of equation
(53) will contain (¢</@) exp(-R7/kT).

To each discrete state in a T -nucleus there corresponds a T>
analog state in the T<—nuc1eus. The discrete state & analog state
Fermi transitions precisely obey the Q-value scaling and constancy of
the sum rules which were approximations for the Gamow-Teller transi-
tions. Again, the deep similarity between the behavior of the Fermi
and Gamow-Teller analog resonances becomes apparent. It would be de-
sirable not to have to include in the stellar rate computations an
analog state for every ™ discrete state, and yet still include their
effect. The occupation index, partition function manipulations proceed
exactly as before and the analog states are handled just like the
Gamow-Teller resonances. The ground-state — first-isobaric-analog-
state tramsition is given an occupation index equal to unity, whereas
the thermally populated isobaric analog state in the T -nucleus which
transforms to the T -nucleus ground state is given an occupation index
equal to (¢7/cY) exP(-AiykT) where the G's are the respective nuclear
partition functions and AT = EIAS is the excitation energy of the first

isobaric analog state in the T nucleus. We show Af, A;,

<

< -
A3 O Aj in
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Figure 12. The individual transition rates corresponding to the K:;
and the Kzr will be equal and can be calculated from the appropriate

Fermi matrix element.

VI. DISCUSSION OF THE STELLAR RATES

The salient point of the F2N I discussion of stellar weak rates
was the close reliance of the calculations on experimental nuclear
data. In this paper the weak rate calculations have been extended to
include 226 nuclei up to mass 60 and free protons and neutrons;
further, these calculations have been performed on an extended temper-
ature and density grid. The larger variety of nuclei and the consid-
erably more extreme stellar conditions involved in the rate calcula-
tions of this paper require a far better coverage of the weak inter-
action strength distribution than in the F2N I calculations. In this
work the wvalidity of the rate calculations relies on the experimental
discrete states to reproduce the detailed, relatively low excitation
strength, and on at most a few Fermi and Gamow-Teller resonances to
yield the high excitation energy strength function characteristics so
important to the regime of extreme temperatures and demnsity. The last
section discussed the nuclear physics underlying the Fermi and Gamow-
Teller strength distribution in intermediate mass nuclei and on calcu-
lations of the Fermi and Gamow-Teller resonance excitation energies
and strengths used in the rate calculations presented here. The sensi-
tivity of the stellar weak rates to the parameters of the resonance
procedure presented in the last section must be tested, much as the
discrete-state transition matrix element assignment procedure intro-
duced in F°N I was tested in § IIT of that paper. It will be seen that
the resonance procedure used in these rate calculations is adequate in

most cases to assure accurate rates in extreme conditions. The central
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point of this paper is that the calculated stellar rates should be
valid at the lower temperatures and densities characteristic of hydro-
static stellar evolution because of the discrete state tramsitions,
while at the more extreme conditions the Gamow-Teller resonances and

Fermi analog transitions should adequately determine the rates.

a) The Temperature and Density Grid

The temperature and density grid on which the rate calculations
were performed consists of 143 points: for each of the temperatures
(T9 = 0.0L, Oul; 0.2, 0.%; 047; 10; Le5; 2.0, B.0; 5.0, 10.0, 30.0,
100.0) the rates are computed at the densities 1og(p/pe) = 1.0, 2.0,
3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0; where the notation fol-
lows FEN I. Note that this grid covers conditions from electron non-
degeneracy up to electron Fermi energies near 25 MeV. Neutrino trap-
ping and hence neutrino blocking of electron capture is expected to

X g o (Arnett 1977), while

set in for densities in excess of 101
many nuclei in nuclear statistical equilibrium at these conditions will
have allowed electron capture blocked. This means electron capture on
. v 11 -3 F
heavy nuclei at densities above p = 10 g cm  may not be very impor-
tant. Future calculations to extend the present work to nuclear masses
in the A = 61 to A = 70 range will be done on a grid of temperatures
—_— . . 12 -3

and densities which includes P = 10 g cm .

The temperature-density grid used in this work should be adequate
to cover most of the conditions of interest in stellar evolution. The
rate tables available on magnetic tape and printed in abbreviated form

: 2 : :
in F'N III are suitable for interpolation between temperature-density

points. The interpolation error in the detailed grid is probably
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comparable to the systematic errors due to the approximate nuclear
physics in the rate calculations. Note, however, that in this calcu-
lation screening effects are neglected (cf. F2N I, p. 451 for a dis-
cussion of the effects of screening). Continuum electron capture is
included in the calculation but bound state electron capture is not.

A discussion of this point and a table of terrestrial bound state
electron capture rates for the nuclei considered here are presented in
F2N III. That table also includes all known terrestrial weak decay
rates for the nuclei included in this survey.

At the lower temperatures and densities characteristic of the
hydrostatic phases of stellar evolutibn, the discrete state transitions
dominate the stellar electron-capture rates, but as the electron Fermi
energy rises above 5 MeV (p/ue 2 lO9 g cm—s) or when the temperatures
approach Ty = 10 (kT ~ 1 MeV), the dominant transitions involve the
Gamow-Teller and Fermi resonances. To illustrate this point, con-

26M

sider the electron capture rate of 2sAl(e-,ve) g. The F°N I and

2 : "

F'N II calculations contain the same discrete state information and the
; s 2 .

same Fermi transitions, but the F'N II calculations also have Gamow-

Teller resonances whose excitation energies and strengths are calcu-

lated with the procedure set down in Part IV of this paper. The

o S _
6Al(e 4 ve)EGMg rate is log € = -3,123 at Ty = 1.0, log (D/ue) =

5 2
in the F'N I calculation, while at the same temperature and density the

F2N II result is log & = -3.119, Clearly, in these typical carbon/

oxygen burning conditions the Fermi and discrete state transitions are

dominating the rate. For Ty = 0.01 and log(p/ue) = 9.0, the electron

Fermi energy is, using equation (I-kc), Up = 5.0 MeV, and so electrons

do not have quite enough energy to reach the Gamow-Teller resonance in
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2
6Mg at 11.408 MeV excitation which requires an electron energy equal

to 11.408 - L.0Ok = 7.40L4 MeV; consequently, the rates are again similar,
with log € = 0.271 for F°N I and log € = 0.282 for FON II.

The added effect of the Gamow-Teller resonance can be seen in the
electron capture rate 56Co(e-,ve)SGFe. The Gamow-Teller resonance lies
at 5.380 MeV excitation in 56Fe, while the Q, for the reaction is
-4.056, so that an electron inducing the 56Co(ground state) -

Fe(resonance state) transition must have total energy equal to at
least 5.380 - 4.056 = 1.324 MeV. At Tg = 0.01 and log(p/ue) = 7.0 the
total electron Fermi energy is 1.222 MeV, clearly not high enough to
reach the resonance and thus the FEN IT electron capture rate (log ¢ =
-4.545) should be dominated by the discrete state transitions. At the
same temperature and log(p/ue) = 8.0 the total electron Fermi energy
is 2.447 MeV and the Gamow-Teller resonance in 56Fe can be reached.

The 56Co(ground state) - 56Fe(resonance state) contribution to the
overall electron capture rate can be computed setting the occupation
index of the ground state equal to unity and employing the equation
(I-3b) phase space factor result for a degenerate electron gas to
yield log € (ground state - resonance) = -0.585. The FON II calcula-
tion yields log € = -0.540 for the overall 56Co electron capture rate,
and thus the resonance is beginning to dominate the overall transition
rate at this density. At Ty = 0.01 and log(p/ue) = 11 the total elec-
tron Fermi energy is 23.930 MeV and the resonance transition can be
expected to completely dominate the rate. Applying the equation (I-3b)
result yields log ¢ (ground state - resonance) = 5.168, while the full

FEN IT computation gives log g = 5.194 for the overall electron capture

rate and thus, indeed, the resonance transition dominates.
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Where thé resonances dominate, they make substantive differences
in the stellar weak rates. The above example is an indication of how
much faster the neutronization rate during stellar collapse/silicon
burning can be due to low-lying Gamow-Teller resonances, as first pointed
out by BBAL. On the other hand, blocked nuclei at these extreme condi-
tions have stellar weak rates characterized only by discrete state
Gamow-Teller and Fermi transitions, the lack of resonance transitions
implying a relatively less drastic increase in the rates as the tempera-
ture and density increase. Unblocking by configuration mixing, thermal
excitation and forbidden transitions is discussed by Fuller (1981).

In conclusion, it is clear that the nuclear physics which domi-
nates the rate calculations meshes well with the two regimes of stellar
conditions represented in the temperature-density grid used here. At
the lower temperatures and densities characteristic of the hydrostatic
phases of stellar evolution, very accurate stellar weak rates may be
required to determine the nucleosynthesis of nuclear species, the over-
all neutrino energy loss rates which may affect the temperature, and
the detailed lepton/baryon ratio which becomes very important going
into stellar collapse. In these conditions the F2N I1 rates are domi-
nated by discrete state Gamow-Teller and Fermi transitions which, as
pointed out abowve, are heavily reliant on the best experimental nuclear
information available and so serve accurately to determine the stellar
rates. In the extreme conditions encountered in the later phases of
silicon burning, and on into the collapse phase, overall neutronization
rates and neutrino production rates become the most interesting quanti-
ties. What is needed there are reliable estimates of the stellar rates

based on the total amount of Gamow-Teller strength and how much of it
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can be reached in a given nucleus at a given temperature and density.
The Gamow-Teller resonance procedure is designed to do this by approx-
imating the high-lying Gamow-Teller strength as one or two narrow

resonances,

b) Tests of the Gamow-Teller Resonance Procedure

In principle, of course, the most accurate stellar weak rate cal-
culations require a complete and detailed Gamow-Teller strength dis-
tribution in the daughter nucleus for each parent nucleus discrete
state. Section III of this paper discussed the underlying nuclear
physics of the Gamow-Teller strength distribution as well as how the
problem is handled in this calculation. In brief, as many discrete
states are included in each nucleus as possible in order to outline
accurately the Gamow-Teller distribution out to the excitation energy
of the last discrete state. The discrete state strength is summed
and subtracted from the zero-order shell model sum rule result, the
remaining strength is typically lumped in a discrete Gamow-Teller res-
onance state at an excitation energy calculated in accordance with the
procedure discussed in § III. At higher nuclear excitation energy the
state density is very large and as a result the Gamow-Teller strength
distribution is nearly continuous. How much error is being made in
these rate computations by approximating what is known experimentally
to be a broad strength distribution by one or two narrow resonances?

Specifically, there are two major worries regarding this resonance
procedure. The first is just how sensitive the rates are to the place-
ment of the strength-distribution centroid and to the total strength,

the second involves possible threshold effects. A single narrow
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resonance would not contribute to, say, an electron capture reaction
until the electron Fermi energy was sufficient to exceed the Q-value.
The danger is that the stellar rates might show an unphysical jump
just as the electron Fermi energy reaches the resonance Q-value. This
latter problem is expected to be ameliorated by three effects. First,
discrete state transitions serve to broaden the Gamow-Teller strength
distribution, as outlined above. Second, the high temperatures en-
countered in the typical stellar conditions where Gamow-Teller reso-
nances are important serve to thermally populate many parent states,
coupling into the calculation many more decay channels than just the
resonance transitions and, thus, helping to effectively smear out any
resonance threshold effects. Finally, and most important, these high
temperatures smear out the electron Fermi-Dirac distribution function,
increasing the length of the high energy exponential tail. Thus some
electrons will be energetic enough to reach the Gamow-Teller resonance
even though the electron Fermi energy has not reached the resonance
Q-value, serving to wash out a threshold effect.

To test the sensitivity of the stellar rates to the resonance pro-
cedure, the 56Fe(e',ve)56Mn reaction was examined in some detail,
This reaction is particularly appropriate to test, not only because the
nuclear physics underlying its resonance calculation was discussed at
length above, but because it is fairly representative of important
neutronization reactions in silicon burning, where the Gamow-Teller
resonances are becoming important. Briefly, in § III of this paper the
resonance calculations for the 56Fe(e-,ve)56Mn decay were discussed

with the result that the excitation energy of the Gamow-Teller resonance

in 56Mn was found to be at 3,777 MeV with a total strength of
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|MGT|2= 10.29 (log ft = 2.58). The Fermi and Gamow-Teller resonances
in 56Fe corresponding to the ground state of 58Mn were calculated to
be at 11.440 MeV and 24.719 MeV excitation respectively and thus are
not very important in the overall continuum electron capture reaction
at low temperature because they are not populated. The reaction rate
calculated by this standard technique is shown as a function of temp-
erature for various densities in Figure 13a.

The calculations of Bloom and Fuller (1981) give a detailed
strength distribution for the 56Fe (ground state) - 56Mn transition.
For purposes of testing, this detailed strength distribution is approx-
imated as four discrete resonances whose excitation energies and
strengths are reproduced in Table 2. Note that the total strength in
the L-resonance approximation is IMGT‘E = 9,036 (log ft = 2.64), or

56

13% less strength than the PN I pesult. The Fe(e_,ve)ssMn reac-

tion rate in the L-resonance approximation was calculated on the stand-
ard temperature-density grid and is shown as a function of temperature
for wvarious densities in Figure 13b.
; . 56 56 .
A detailed comparison of the Fe — ""Mn rates calculated with the
single resonance F2N II method and with the L-resonance approximation

to the Bloom and Fuller strength function serves to illustrate the

2
accuracy of the F'N IT calculations. First, the total electron-emission

o6

rate for ~Mn - 56Fe at very high temperature, T, = 100, differs in the

9
two calculations by just 13%, reflecting the uniform thermal population
of the Gamow-Teller resonances in 56Mn and the 13% difference in total
strength in the calculations.

56

56
The ground state to ground state nuclear mass difference for Fe—-""Mn

is -4.206 MeV. 1In the F2N IT calculation, then, the resonance Q-value
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is Qp = 3.777 + 4.206 = 7.983 MeV. That is, the total electron Fermi
energy must approach the value of QR before electron capture proceeds
predominantly through the Gamow-Teller resonance. At log(g/pe) = 9.0
the total electron Fermi energy is 5.182 MeV, while for log(gfue) = 10
it is 11.119 MeV and so the FEN i QR is reached somewhere between
these densities. Similarly, in the 4-resonance calculation the reso-
nance QR'S are 5.706 MeV, 6.706 MeV, 8.006 MeV, and 9.106 MeV, respec-
tively, and the total electron Fermi energy exceeds all these energies
in the range 9.0 < log(p/ue) < 10. 1In comparing Figure 13a with Fig-
ure 13b it is seen that the rates are identical at 1og(D/Me) = 9 and
11 and differ only 0.2 in the logarithm at 10g(Q/Me) = 10. No unphys-
ical threshold effects are evident. The F2N I1 single resonance pro-
cedure reproduces the 4-resonance approximated Bloom-Fuller strength
function quite well.

The majority of f> rates are not very sensitive to small
errors in the Gamow-Teller resonance placement, once the electron Fermi
energy is larger than QR' The T° - TS rates are even less sensitive to
the placement of the T<-resonance, but this is because the resonance

usually lies very high in the T<—daughter excitation energy.

c) Trends in Gamow-Teller Resonance Positions and Strengths

In undertaking this survey of 226 nuclei, some important trends in
Gamow-Teller peak energies and strengths have become apparent. Here
specific examples will be given for some iron group nuclei of impor-
tance in neutronization during silicon burning and the onset of core
collapse in supernovae models.

In general, as nuclei become more neutron rich, the Gamow-Teller
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T< = T resonance strength decreases due to increasing neutron block-
ing of allowed transitions. Accompanying this effect is a trend of
decreasing daughter resonance excitation energy due in part to the
smaller number of single particle excitations required to make the
spin-flip transition as neutron blocking is approached. The model in
which these effects were predicted was discussed in § TIT. In Table3
is listed the total Gamow-Teller strength and the excitation energy for
A = 56 isobars as calculated by the standard FEN II resonance proce-
dure. The general trends in strength and excitation energy of the
resonances is illustrated, though this A-chain is not carried out to
complete blocking.

Where the resonances excitation energies are the same in Table 3
the spin-flip configurations in the T>-daughters involve similar par-
ticle excitation and nucleon pair breaking. In the cases where the
T>-daughter resonance excitation energy is 2.0 MeV, the spin-£flip con-
figuration is coincident with the zero-order shell model configuration,
there are no single particle excitations required, the 2.0 MeV simply
reflecting the particle-hole repulsion energy. Though one could con-
clude from Table 3 that the resonance excitation energy decreases while
the strength weakens, it is clear that the QR for each reaction in-
creases on the average as blocking is approached. This effect was
briefly mentioned in § II and can be seen to aide the neutron blocking
at low temperature in lowering the electron capture rates as neutroni-

58
zation proceeds. In the two electron capture reactions 56V - 7°Ti and

56 5

Ti » Pgc the rates at Ty = 0.01 and log(Q/ue) = 11 (total electron

Fermi energy = 23.930 MeV) differ by almost a factor of 30. This is

due in part to the factor of 1.87 decrease in T< = T° Gamow-Teller
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strength betweén the two cases; but in the main the large decrease in
electron capture rate ongoing from 56V - 56Ti to 56Ti - 565c results
from the increase in Qn from 6.810 MeV in the former reaction to
16.251 MeV in the latter reaction.

The situation for the electron capture rates in Table 3 is much
different‘for the higher temperature case [T9 = 100, log(Q/ue) =11)].

The blocking and increasing QR effects on the rates are washed out at

these temperatures due to the thermal population of the analog and R

resonances in the parent nuclei. At 108(9/Me) = 11 and T9 = 0,01 the
electron capture rates for 56Ni = 5600 and 56Ti = 568c differ by a
factor of almost 300; whereas at the same density and T, = 100 the

rates differ by a little over a factor of 4. In neutron rich nuclei
as blocking is approached the T = T~ Gamow-Teller strength system-
atically decreases, but the T - 1< strength increases due to increas-
ing neutron richness, and at extremely high temperature this strength
becomes accessible to the T~ - T> electron capture reactions through
the thermal populations of the RS resonances.

Early in supernova core collapse, the overall neutronization should

be carried by electron capture on heavy nuclei, but as the mean nucleus

becomes more neutron rich and blocking sets in, an increasing share of
the neutronization will be carried by electron capture on free protons.
The Fermi matrix element for the free nucleon weak transition is

lMFle = 1, while the Gamow-Teller matrix element is ‘MGTle = 3. These
matrix elements imply, through equations (I-2a) and (I-2b), an overall
log ft = 3.035. The rates for the reactions p(e_,ve)n, n(e+,;é)p,
n(e” Gé)p and the associated neutrino energy loss rates were calculated

with the numerical techniques outlined in FEN I and are reproduced in
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this work with great accuracy on the standard F2N 1T temperature-
density grid. Note that the p(e’ ve)n decay is energetically forbid-
den. At extremely high ambient temperatures and correspondingly high
nuclear excitation energies, all nuclear states and configurations
become sparsely populated and shell structure blocking cannot occur.
As a consequence nucleons in nuclei act more and more like free nucle-
ons and in some limit it is possible to treat all protons and neutrons,
in and out of nuclei, as free particles in the sense that they have
maximum weak neutron matrix elements ‘MP\E = 1 and lMGT|2 = 3.

Although nuclei are still bound at T, = 100 (kT ~ 9 MeV) according to

3

Tubbs and Koonin (1979) we estimate that at this temperature the maxi-
mum sum rule limit is approached. Thus at T9 = 100 an upper limit on

transition rates can be calculated for electron capture and positron

emission by using
2 2
bel® =z | |® =32 (54)
and for electron emission and positron capture by using

12 = Jw P = o (55)

The electron-capture 56Ni = 5600 in Table 3 illustrates the approach to

these limits in the rates calculated in this paper. At (p/pe) = 1™

and T9 = 0.1 the ratio of the rate for this transition to that for

electron capture on the free proton is dex(5.234 - 4.409) = 6.68 from
Table 3. The ratio of the products of the appropriate coupling con-
stants times the matrix elements is (1.567 x 98/7)/ (1 + 1.567 X 3) =

3.77. Recall that [C(GT)/C(F)]2 = 1.567 from equation (I-2) and

[® = e8/7 for B + B 1n Owt - Fgo, his facter becones 6.79

L g By

when multiplied by the ratio of the Fermi functions =~ 1.80 for capture
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at high electron energy (Rose_gg_gl., 1955). The agreement is satis-
factory and the ratio ~ 7 is to be compared with the expected limit at
low temperature, high density namely (1.567 X 3 x 28)/(1 + 1.567 x 3) =
25,1« AE (p/He) = 16%" and T, = 100 the ratio of the rate for electron
capture on B o that o the proton is dex(6.181 - 4.982) = 15.81.
This is in reasonable agreement with the ratio of the matrix elements
we have used assuming that the space factors are the same except for
the ratio of the Fermi functions given above. 1In this case the expect-
ed limit at high temperature, high density is Z = 28. 1In other words,
the calculated values for the last entries in the grid exceed 50% of
the maximum sum rule limit. This is a very reasonable result. To
within a factor of two all neutrons and protons inside and out of nu-
clei can be treated as free particles in regard to the weak interaction

11

at high temperature, T, = 100 and high density (p/ue) ~ 107", Similar

2

analysis shows that at T, = 100 and low density the protons in 56Ni

8

have electron capture rates = 12% of that for free protons.

VII. CONCLUSION
Stellar electron and positron emission, continuum electron and

positron capture rates, and all associated neutrino energy loss have
been computed for 226 nuclei with masses between A = 21 and A = 60 as
well as for free nucleons. The Fermi and Gamow-Teller strength func-
tions are covered by discrete state transitions at low nuclear excita-
tion energies and by one or two narrow resonances, with the remainder
of the sum rule strength, at higher excitation energies. This gives an
accurate rate at the lower temperatures and densities characteristic of

the hydrostatic phases of stellar evolution where detailed rates are
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required for nucleosynthesis calculations and gives a good estimate of
the rates at the extreme temperatures and densities characteristic of
silicon burning and core collapse.

The uncertainties associated with the Gamow-Teller resonance cal-
culations were discussed in the last section where it was shown that
approximating the high excitation strength function as a single narrow
resonance does not result in any unphysical threshold effects and re-
produces quite well calculations with a broader, more realistic Gamow-
Teller strength distribution. The level of uncertainty associated with
this resonances procedure can be judged by the results presented in
§ vI.

The results of the calculations described here are available in
computer readable form on magnetic tape upon request to MIN. The
stellar rates will be presented in tables on a somewhat abbreviated
temperature-density grid in a forthcoming publication in the Astro-

physical Journal Supplement Series.
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TABLE 1

SINGLE PARTICLE GAMOW-TELLER MATRIX ELEMENTS

J.Nf 2+ 1f2 L - 1/2

j. + 1 29, = 1
L+ 1/2 — k.

3 i

2j. + 3 i
2_1/2 J1+1 ji+1
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TABLE 2

FOUR RESONANCE APPROXIMATIONS TO BLOOM AND FULLER

56Fe(g.s.) + “Mn GAMOW-TELLER STRENGTH FUNCTION
Excitation Energy Percent of Strength
in S6Mn(MeV) Total Strength in Each Resonance
IMGTIE log ft
1.5 35% 3.083 3.107
B8 25% 2,259 3.242
3.8 25% 2.259 3.242

4.9 15% 1.355 3,464
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Figure 1

The zero-order shell model orbit-occupation diagram for the ground
33
state configuration of ;4S;7 is shown. The closed proton and neutron

sp-shells (closed at 8 nucleons each) are shown at the bottom of the

diagram. Other closed orbits are denoted with circles.
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Figure 2

The zero-order shell model orbit-occupation diagram for the spin-
33
flip configuration in ;5P;g is shown. This configuration can be

generated from the Figure 1 diagram by transforming a ld5/ proton
2

into a hole in the ld3/ neutron orbit.
2
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Figure 3

(a) shows the zero-order ground state configuration diagram for
a neutron rich nucleus. (b) depicts an excited configuration for this
nucleus wherein a neutron is promoted from a j = & + % orbit to a

higher-lying, empty, j = & - % orbit.
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Figure 4a

The neutron M1l analog is shown for a neutron rich nucleus. This
configuration can be generated from the excited configuration in

Figure 3b by operating with T+.
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Figure 4b

The neutron M1 anti-analog corresponding to the M1l analog in

Figure 4a is shown. This configuration can be generated from that

in Figure 4a by noting that the anti-analog state must be identical

to the analog state in all quantum numbers save total isospin T. It

is therefore orthogonal to the Figure 4a configuration.



77

Q.

X
:

I
|
I
|
|
I

L 2

1
\/2T0 + 1

77

%

Fig. 4b

NEUTRON M1 ANTI-ANALOG



118

Figure 5

The zero-order orbit-occupation diagram for the ground state

33
configuration of j;gAr;s is shown. Notation is as in Figure 1. Note

33
that Ar is proton rich,
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Figure 6
23
The orbit-occupation diagram for the Cl proton M1 analog state,
33
which can be generated from the Figure 5, Ar ground state, configur-

ation by the promotion of a proton from ld5/ to ld3/ and the application
2 2

ok T s
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Figure 7

(a) The zero-order orbit-occupation diagram for the ground state

26
configuration of ;,Mgjy.

26
(b) The zero-order orbit-occupation diagram of the j;3Al;3 spin-

flip configuration generated from (a) by the transformation of a ld5/
i

neutron into a ld3/ proton hole.
2
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Figure 8

The zero-order orbit-occupation diagram for the ground state

26
configuration of ;3Al;3.
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Figure 9

56
(a) The Fe ground state configuration zero-order orbit-
26 30

occupation diagram. Note the closed proton and neutron sd and sp-shells
(closed at 20 nucleons each) indicated at the bottom of the diagram.
56

(b) The ,5Mn3; ground state configuration zero-order orbit-

occupation diagram.
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Figure 10

The zero-order orbit-occupation diagram for the spin-flip
56
configuration in Mn is shown. This configuration is generated

from that in Figure 9a by the transformation of a lf7/ proton
2

into a lf5/ neutron hole,
2
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Figure 11

This figure shows the zero-order orbit-occupation diagrams for

56
several states generated from the Mn spin-flip configuration by (a)

r 56

acting with T to give the T>—spin—flip—analog in Fe with indicated
coefficients o, B8, y for the |[1), |2), and |3) coefficients, respective-
ly; (b) and (c) are the Ti and Tfuspin—flip anti-analog states generated

from the configuration in (a) by orthogonality, with coefficients of the

{13 |2), and |3) configurations as indicated.
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Figure 12

A schematic representation of a typical excited state problem is
% < < : <
shown. Ej , Es , ... Ei are the discrete states of the T -nucleus.
> . . #
Eil » Eo 5 &ss Ej are the discrete states in the T -nucleus. A; , Ay ,
< > > > _—
4y Aj are the analogs of Ej , Es 4 «.. Ej . Transitions from the
<
discrete states of the T -nucleus to Gamow-Teller collective resonances
> > oo > o
(R s Bo 5 aas Ri ) in the T -nucleus, and the reverse transitions, are
shown with rates Aii = Aer' Similarly, transitions from the discrete
>
states of the T -nucleus to collective Gamow-Teller resonances in the
< < < < i P
T -noeleas (By 5 Ro s sws Rj ), and the reverse transitions are shown
; ; : e I
with rates Ajj = Kre' For clarity the Fermi transitions A Er between

<
E i Aj are not illustrated.
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Fig. 12
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Figure 13a

56 56
The total Fe » Mn weak transition rate is shown for the F2N II

single resonance approximation as a function of temperature T (K) for

the densities, log(p/ue) = 7, 8, 9, 10, 11.
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Figure 13b

56 56
The total Fe -+ Mn weak transition rate as shown in Figure 13a,

but now with the four-resonance approximation to the Bloom and Fuller
(1981) strength function, There is very little change in the overall

transition rate.
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IV. RESULTS OF THE STELLAR RATE

CALCULATIONS AND DISCUSSION
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ABSTRACT

Stellar electron and positron emission rates, and continuum
electron and positron capture rates as well as the associated
neutrino energy loss rates are tabulated for the free nucleons
and 226 nuclei with masses between A = 21 and 80. These rates
were calculated in accordance with the procedure described in
papers I and II of this series and are presented here in tabular
form on an abbreviated temperature and density grid. Results of
these calculations on a detailed temperature and density grid are
available in computer readable form on magnetic tape upon request
to MIN. The stellar weak rate calculation procedure is reviewed
and the results are discussed. Comparison of the stellar weak

rates to terrestrial decay rates are made where possible.

Subject headings:
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I. INTRODUCTION

In this work, electron and positron emission rates in stars, con-
tinuum electron and positron capture rates in stars and the associated
neutrino energy loss rates are tabulated for free protons and neutrons
as well as 226 nuclei with masses between A = 21 and 60. The rate com-
putations were performed following the procedures discussed in papers I
and II of this series (Fuller, Fowler and Newman 1980, hereafter F2N i i
and Fuller, Fowler, and Newman 1981, hereafter FON II). The previous
papers are concerned with the details of stellar weak rate calculations
and the nuclear physics of the Gamow-Teller strength distribution.

The purpose of this paper is to discuss the results of the stellar
rate computations in comparison with other work and with known terres-
trial decay rates, and to provide ready access to printed rates for
active investigations in the fields of stellar evolution and nucleosyn-
thesis. The rates presented here in tabular form are reproduced, by
necessity, on an abbreviated temperature and density grid which will
allow a fair estimate of stellar rates to be made for most astrophysical
environments. Where more accurate stellar rates are required, as in
stellar evolution and nucleosynthesis calculations, the reader is urged
to write to MIN and request the stellar rate magnetic tape. This tape
presents the computation results on a far more detailed temperature and
density grid in a computer readable form suitable for interpolation in
temperature and density.

The temperature and density grid employed in these calculations
covers conditions ranging from the relatively mild environments charac-

teristic of hydrostatic carbon and oxygen burning, through the more
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extreme conditions characteristic of silicon burning and the onset and
early stages of core collapse. The temperatures cover the range 0.01 =
T, < 100. (0.862 keV = kT =< 8.617 MeV) while the densities cover the
range 10 < p/p.e (g cm_s) = 1011; thus, the electron gas ranges from non-
degenerate to degenerate conditions, with electron Fermi energies
approaching 25 MeV for the highest densities.

The nuclear weak rates computed here are important in determining
the neutronization and neutrino energy loss rates during stellar evolu-
tion and collapse (Weaver and Woosley 1981, Arnett and Thielemann 1981).
The outcome of stellar core collapse and bounce calculations depends on
the previous neutronization history of the star and on electron capture
during the collapse phase (Van Riper and Lattimer 1981, Baym, Bethe, and
Brown 1981). Ultimately, the nuclear weak rates presented here will be
important in determinations of the nucleosynthesis yields of the elements
and their isotopes both during hydrostatic burning regimes and the sub-
sequent collapse and explosive burning phases.

The nuclei whose stellar weak rates are computed here range in
mass from A = 21 up to A = 60. These include many nuclei of astrophys-
ical interest in the stellar conditions discussed above. Subsequent
work will extend the rate survey presented here to include neutron-rich
nuclei in the A = 60 to A = 75 mass range for use in the supernova prob-
lem. Concomitant with this extension in mass range will come an exten-
sion in the density range to include p/pe = ].O12 g cm_3. Of interest
in the r-process and s-process are the weak transition rates of heavy
neutron-rich nuclei at temperatures and densities which are relatively

low compared to those encountered in the late stages of stellar evolu-

tion discussed above. In these less extreme conditions unmeasured
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forbidden transitions and bound electron capture may be important. The
reader is referred to Cosner and Truran (1981) for the most up-to-date

treatment of the problem.

I1I. REVIEW OF STELLAR RATE COMPUTATION PROCEDURE

The stellar rate computation problem is shown schematically in
Figure 1 for T< and T> nuclei. The T< = T> stellar transition rates
must be computed. Some twenty discrete states are typically included
in each nucleus for many of the cases considered here. The discrete
state excitation energies, spins, and parities are taken from the exper-
imental tabulations of Lederer et al. (1978) and Endt and van der Leun (1978)
wherever possible. Isospin symmetry is used to obtain excitation ener-
gies, spins, and parities in unmeasured nuclei whose mirror nuclei are
well studied. For very neutron-rich unmeasured nuclei, discrete state
energies, spins, and parities are inferred from isotopes with similar
shell structure. The discrete states in the T™ (T>3 nucleus are denoted
by B (E>3 in Figure 1, while the resonant states are denoted by RF:(R>).
The symbols also designate the energies of the discrete and resonant
states.

The weak transition rate from the ith state of the parent to the

jth state of the daughter nucleus is given by

}\ij = dn 2 ﬁr‘— (1)

where (ft),j is the comparative half-life, which is related to the
i
allowed weak-interaction matrix elements by equations (I-2a) and (I-2b)

(I and II denote equations in papers I and II of this series,



14

respectively). The fij(T’p’UF) are the phase space factors for either
electron or positron emission (eq. [I-3a]), continuum electron or posi-
tron capture (eq. [I-3b]), or the associated neutrino energy loss rates
for these processes (eqs. [I-6a] and [I-6b]).

In principle weak transition matrix elements are required between
all ES and E discrete states. Experimentally determined transition
matrix elements are employed where known, whether or not they correspond
to allowed transitions. Unmeasured Gamow-Teller allowed transitions are
assigned log ft = 5.0 (FEN I and Gleit, Tang, and Coryell 1968), unless
experiment gives an indication of log ft >> 5 despite satisfaction of
the allowed selection rules. Such cases of hindered allowed transitions
were assigned log ft = 99.9 where they might otherwise be important in
the determination of low temperature, low density rates. More discus-
sion of the low temperature, low density rates and the adjustment of
experimental log ft values follows in the next section. Fermi transi-
tions are assigned appropriate matrix elements according to equation
(I-11). Unmeasured forbidden transitions are neglected due to the dom-
inant effect of the large number of allowed transitions which contribute
in most stellar environments. Some log ft values between the parent
ground state and low-lying daughter states have been adjusted to repro-
duce measured laboratory decay rates using accurately computed f-values;
this procedure is discussed further in § III.

In order to simulate transitions into and from the continuum,
appropriately placed Gamow-Teller resonances are included in each stel-
lar weak rate calculation with the procedure discussed in FEN II. The
excitation energies of the Gamow-Teller resonances are calculated on

the basis of a simple shell model employing the tabulated single particle
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energies of Seeger and Howard (1975). The procedure for computing the
. : ; < > T> < 8%
resonance excitation energy differs for T + T  and -+ T~ transitions;
2 : ;
the reader is referred to §§ III and IV of F'N II for an exhaustive dis-
< =4 f> it ;
cussion. The sum rules for T = transitions are estimated by con-
structing a zero-order shell model configuration for the parent nucleus
ground state and applying equation (II-16). The observed discrete state
strength for transitions from the parent ground state is summed and sub-
tracted from the equation (II-16) sum rule strength. The remaining
strength is lumped into the ground-state g resonance-state transition.
Resonances corresponding to excited states are taken into account
here with a special treatment of the population index for ground state g
resonance transitions. This procedure is based on the assumptions of
constant Q-value and sum rule for each discrete-state - corresponding-
state transition and is discussed in detail in § V of F2N Ti- In
: : < = o & =
summary the contribution of the E~ - R~ transitions to the total T =+ T
< - ;
-+ RT transi-
1 1

state in this transi-

transition rate can be calculated by including only the E

=
i

tion equal to unity (cf. eqs. [II-43] and [II-L4]). The RS to E© tran-

tion and setting the occupation index for the E

sitions proceed through the thermal population of the R resonances. In

the special procedure used in this calculations, the contribution of the

< = o —
R~ > E° transitions to -the total T< - T> transition rate can be calcu-

lated by including only the RT = ET transition. In addition, the occu-

pation index for the R; state in this transition must be set equal to

P = (G>VG<) exp(-RT/kT) where G~ and G~ are the nuclear partition func-
tions at the ambient temperature for the TS and T> nuclei respectively
(cf. egs. [II-52] and [II-53]). The generalization for the contribution

=

of the E>'+ R< and R>A» E~ transitions to the total T>-+ T< transition
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rate is obvious.
Fermi transitions involving excited states in the f> nucleus ex-
plicitely obey the constant Q-value and sum rule assumptions discussed

above. Thus the contributions of these excited states plus that of the

ground state to the T>-+ T< rate can be taken into account by calculating
> < < . ’ <
E1 =* Al where A1 designates the analog state in the T nucleus corre-

sponding to the ground state of the T> nucleus. In addition the occupa-
tion index for the ET state in this transition must be set equal to
unity. In the T » T> transition the contribution of the analog states
can be calculated for AT - ET and setting the population index for the
AT state equal to P = (G>/G<) exp(-Ai/kT).

The total weak transition rate A is given by

A= P, A, (2)
ij 8 lJ

where the sum on i is over parent states, the sum on j is over daughter
states, and Pi is the occupation index defined by equation (I-9a), and

modified in the manner discussed above for transitions involving reson-
ances and analog states.

The phase space factors in equation (1) were computed numerically,
and checked for electron and positron emission, at low temperature and
density against the tables of log ft by Gove and Martin (1971). A num-
ber of low temperature high density and high temperature, low density
results were checked against easily performed analytic calculations.

The definite integrals for the electron and positron emission phase
space factors were done by 6l-point Gaussian quadrature. The integrands
of the electron and positron capture phase-space integrals are modulated

strongly by the electron or positron distribution function, so that the
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integrand has a characteristically slowly varying part and an exponen-
tially decaying part, corresponding to the shape of the Fermi-Dirac
distribution function. The portion of the improper integrals containing
the slowly varying part of the integrand was done with 64-point Gaussian
quadrature, and the exponential tail was treated with 32-point Gauss-
Laguerre quadrature. For each nuclear transition a table of appropriate
phase space factors as a function of q, (eq. [I-3c]) was prepared at
each temperature and density grid point and the fij and fzj (egs. [I—Sa]J
(1-3b], [I-6a], [I-6b]) were obtained by cubic spline interpolation in
q,- This procedure was checked for electron and positron capture in
non-degenerate conditions against the analytic phase factors in Fowler
and Hoyle (1964).

The free nucleons are unique "nuclei'" in that they have no excited
states. As a result the interpolation procedure described above for
calculating weak phase factors was not used; free nucleon phase space
factors were performed by direct numerical integration at each tempera-
ture and density point. The matrix elements for the free nucleon transi-
tions are ]MFIE = 1 (log ft = 3.791 from I-2b) and lMéTlg =3 (log ft =
3.596 - log 3 = 3,118 from I-2a) to give an overall log ft = 3.035.

(In FON I the value [GA/GV]2 = 1.567 was used and the half-life of the
neutron was taken to be 936 seconds). Nucleon recoil effects (forbidden
transitions) are small at the temperatures and densities considered here
and are therefore neglected. TFor a discussion of forbidden transitions

see Fuller (1981).

ITI. RESULTS AND DISCUSSION

In this section the results of the stellar weak interaction
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calculations are discussed. The terrestrial decay rates of the nuclear
species considered in this survey are tabulated in Table 1 based on ex-
perimental measurements when available. These rates can be compared with
the lowest temperature and density rates calculated in this work. The
stellar rates are tabulated on the very abbreviated temperature and dens-
ity grid shown in Table 2. As noted previously, the rates can be obtained

by request on a detailed grid of temperature and density on magnetic tape.

The stellar rate magnetic tape has electron and positron emission
rates, continuum electron and positron capture rates (in sec-l), and
the associated y and v energy loss rates (in MeV s-l) for the free nu-
cleons and 226 nuclei with masses between A = 21 and A = 60 on a
temperature-density grid which includes 0.01 < T9 < 100 and 10 =
p/ue (g cm_s) < 1011. In particular the rates are calculated at T9 =
0.01, G1, 0.2, 0.4 0.7, 1.0, 1.5, 2.0, 3.0; 5.0, 10.0, 30, aud 100 for
each density point at log (p/pe) = 1 to 11 by unit increment; thus there
are 143 Eemperature-density points at which are computed the rates in
sec-1 of the four weak processes and the sum of continuum electron cap-
ture plus positron emission, énd continuum positron capture plus elec-
tron emission. 1In addition the total v-energy loss rate and the total
v-energy loss rate in MeV . are given.

At higher temperatures or at higher densities nuclei are complete-
ly ionized in astrophysical environments and continuum electron capture
predominates over bound state electron capture. At low density inter-

mediate mass nuclei are thermally ionized in the range T, = 0.0l to 0.5,

9
at low temperature nuclei are completely pressure ionized due to the

combined effects of nuclear charge screening and continuum lowering.

At zero temperature, for example, 56Fe will become completely pressure
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ionized for p/p, 2 10t g cm™>. In general, whenever the density of con-
tinuum electrons is larger than the K-shell electron density at the
nucleus, then continuum electron capture dominates over bound state cap-
ture. In the low temperature-low density corner of the temperature-
density grid used here b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>