
Ghosts of Order on the Frontier of Chaos

Thesis by

Mark Muldoon

lu Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted May 30, 1989)

11

Then from the heart of the tempest Yahweh spoke and gave Job his an­
swer. He said:

Brace yourself like a fighter; now it is my turn to ask questions
and yours to inform me.

Where were you when I laid the earth's foundations?
Who decided the dimensions of it? Do you know?
Who laid its cornerstone wheu all the stars of morning were
singing with joy?

Who pent up the sea when it leapt tumultuous out of the womb,
when I wrapped it in a robe of mist and made black clouds its
swaddling bands?

Have you ever in your life given orders to the morning or sent
the dawn to its post?

Have you journeyed all the way to the sources of the sea, or
walked where the abyss is deepest?

Have you an inkling of the extent of the earth?
Which is the way to the home of the light and where does the
darkness dwell?

The Jerusalem Bible

There are seven or eight categories of phenomena in the world that are
worth talking about, and one of them is the weather. Any time you care
to get in your car and drive across the country and over the mountains,
come into our valley, cross Tinker Creek, drive up the road to the house,
walk across the yard, knock Oil the door and ask to come in and talk about
the weather, you'd be welcome.

Annie Dillard

Then we would write the beautiful letters of the alphabet, invented by
smart foreigners long ago to fool time and distance.

Grace Paley

Ill

Acknowledgements

I offer my thanks to my advisor, Anatole Katok, to my scientific correspondents,

Jim Meiss, Robert MacKay, and Rafael de Ia Llave, and to Steve Wiggins of Caltech;

without their many intellectual gifts I would have written a different, and lesser,

thesis.

More profoundly, I thank my friends, Susan Volman, Dave Wark, Dette Korber,

James Theiler, JoAnn Boyd, Paul Stolorz, Brian Warr, Chi-Bin Chien, Dawn Mered­

ith, J oel Morgan, Morgan Gopnik and Tom Bondy, and especially my mother and

sister, Lucille and Maureen Muldoon; without their love and encouragement I could

not have written a thesis at all.

Last, I thank Steve Frautschi for his patience and for providing me, through The

Mechanical Universe, with the most enjoyable summer job I have ever had. I also

gratefully acknowledge Caltech's Concurrent Computation Program, whose machines

both performed my calculations and typeset my thesis.

IV

Abstract

What kinds of motion can occur in classical mechanics? \Ve address this question

by lookiug at the structures traced out by trajectories in phase space; the most orderly,

completely integrable systems are characterized by phase trajectories confined to low­

dimensional, invariant tori. The KAM theory examines what happens to the tori when

an integrable system is subjected to a small perturbation and finds that, for small

enough perturbations, most of them survive.

The KAM theory is mute about the disrupted tori, but, for two-dimensional sys­

tems, Aubry and Mather discovered an astonishing picture: the broken tori are re­

placed by "cantori," tattered, Cantor-set remnants of the original invariant curves .

We seek to extend Aubry and Mather's picture to higher dimensional systems and

report two kinds of studies; both concern perturbations of a completely integrable,

four-dititensional symplectic map. In the first study we compute some numerical ap­

proximations to Birkhoff periodic orbits; sequences of such orbits should approximate

any higher dimensional analogs of the cautori. In the second study we prove converse

KAM theorems; that is, we use a combination of analytic arguments and rigorous,

machine-assisted computations to find perturbations so large that no KAM tori sur­

vive. We are able to show that the last few of our BirkhofT orbits exist in a regime

where there are no tori.

v

Contents

Acknowledgments

Abstract

Table of Contents

List of Figures

1 Introduction

1.1 Integrability and the KAM theorem

1.2 The Taylor-Chirikov standard map

2 Ghosts of Order

2 .1 Basic Notions and Notations

2 .1.1 spaces and m a ps

2 .1.2 a variational principle

2.1.3 area-preserving twist maps

2.2 Higher-dimensional analogs

2.2.1

2.2.2

2.2.3

2.2.4

the maps and orbits

shapes of orbits and Lyapunov exponents

non-existence of tori : a prelude

smoothness

iii

IV

v

Vlll

1

3

6

10

11

11

12

13

17

20

21

25

37

Vl

203 Hedlund's examples 0 40

3 The Frontier of Chaos 47

301 Converse KAM results on the cylinder 49

3ol.l definitions and a first criterion 0 49

301.2 Lipschitz cone families and their refinement 51

301.3 some new coordinates and two more criteria 57

301.4 non-existence for minimalists 60

302 Rigorous computing 0 63

30201 two reductions and a plan 63

30202 bounding images of prisms 65

30203 choices for the matrix A 69

303 On to higher dimension 0 72

30301 maps and tori 72

30302 Lipschitz cones: old formulae in new guises 73

30303 miuimalism revisited 75

303.4 global estimates: narrowing the cones 78

3.4 A converse KAM theorem 79

3.401 analytic preliminaries 79

3.402 the computations 80

3.403 results 81

3.4.4 using symmetry 82

A Approximate Numerical Methods 87

Aol Methods of minimizatio n 0 87

Ao2 Rational approximation of irrational vectors 89

Ao3 Lyapunov exponents 92

Vll

B Converse KAM Methods 94

B.1 What the program does 94

B.l.1 the map 95

B.1.2 sketch of a computation 95

B .l.3 using the program: a sample 96

B.2 Representation of data 99

B.2.1 numbers and arithmetic 99

B.2.2 intervals and expressions 100

D.2.3 pnsm.s 101

B.3 Algori tlnns . 102

B.3.1 special functions 103

B.3 .2 uniform cones and the starting point 106

B.3.3 bounding traces and eigenvalues 108

B.3.4 bounding the images of prisms 109

c Computer Programs 122

C .1 Arbitrary precision library 122

C.2 Source code 130

C .2 .1 special functions 130

C .2 .2 interval ari tluneiic 140

C.2.3 starting points and global bounds 145

C.2.4 control of the computation 158

C.2.5 the map 168

C.2.6 images of prisms 173

Vlll

List of Figures

1.1

1.2

1.3

2.1

2.2

2.3

2A

2.5

2.6

2.7

A system of two equally massive stars, m 1 and m2, and a test mass, m 3.

The phase space of a completely integrable system.

Orbits of the standard map for several sizes of the perturbation.

The cylinder and its coordinate system.

A twist map carries vertical lines to monotone curves.

The billiard ball dynamical system. [Birk27]

A cantorus for the standard map.

Contour maps of -l'~(:z:).

The Lyapunov exponents.

Birkhoff orbits for the trigonometric perturbation and the rotation vec-

2

4

9

11

14

15

17

22

26

tor {1432,1897}/2513. 27

2.8 ~fore Birkhoff orbits for the trigonometric perturbation and the rotation

vector {1432,1897}/2513. 28

2.9 Birkhoff 01·bits for the trigonometric perturbation and the rotation vee-

tor (377, 2330}/3770}. . 29

2.10 ~fore Birkhoff orbits fo r the trigonometric perturbation and the rotation

vector (377, 2330}/3770). 30

2.11 Birkhoff orbits for the polynomial perturbation and the rotation vector

{1432,1897}/2513. 31

lX

2.12 More Birkhoff orbits for the polynomial perturbation and the rotation

vector {14321 1897}/2513. 32

2 .13 Birkhoff orbits for the polynomial perturbation and the rotation vector

{377} 2330}/3770). 33

2.14 More Birkhoff orbits for the polynomial perturbation and the rotation

vector {377
1

2330}/3770). 34

2.15 Birkhoff orbits for the fast-Frocschte perturbation and the rotation vec-

tor {14321 1897}/2513 35

2 .16 .Afore Birkhoff orbits for the fast-Froeschle perturbation and the rotation

vector {14321 1897}/2513. . 36

2.17 Pairs (L, II AX II) . 39

2.18 Some minimizing periodic geodesics on the two dimensional torus. 43

2 .19 Some minimizing periodic geodesics for a Hedlund example on the three

dimensional torus.

2.20 The largest displacement between a point in a perturbed minimizing

state and the position it would occupy in the abscence of the pertur·ba-

tion.

2.21 A series of orbits whose rotation vectors approximate {3771 2330) /

. 44

45

3770. 46

3 .1 The space of near-integrable maps and the frontier of non-integability. 48

3.2 The cylinder and sevr.ral invariant circles. 50

3.3 A curve and its image 51

3.4 Numerical error may carry a point across an invariant circle. 52

3.5 If orbits with initial momentum less than p1 never rise above p = p 2

3.6

3.7

there is an invariant circle .

An invariant curve and with some Lips chitz cones.

Refining the cone family.

52

54

55

X

3.8 A piecewise constant cone family. 56

3.9 An invariant curve and some Lipschitz cones in the delay coordinate

system. 58

3.10 Rotational invariant circles must cross every vertical line. 64

3.11 Then-dimensional hypercube Qn is mapped to the prism by the matrix

P. 66

3.12 A prism, its image, and a prism bounding the image. 67

3.13 The bounding lemma applied to a lift of the circle map. 68

3.14 The fixed-form fattener applied to the tmage of a singular, vertical

pr~sm.

3.15 The column-rotor scheme applied to a narrow prism.

3.16 The system of prisms used to show Ec ~ 0.0276 .

3.17 Ec ~ 0.0274

3.18 Ec ~ 0.0272

3.19 Two symmetrically related states have the same action.

A.1 Several levels of the Farey tree.

A.2 The mediant operation which refines Farey triangles.

A.3 Five levels of the Farey triangulation.

70

71

83

84

85

86

90

91

92

1

Chapter 1

Introduction

There is a maxim which is often quoted, that "The same causes will
always produce the same effects." . . .

It follows from this, that if an event has occurred at a given time and
place it is possible for an event exactly similar to occur at any other time
and place.

There is another maxim which must not be confused with that quoted
at the beginning of this article, which asserts "That like causes produce
like effects."

This is only true when small variations in the intial circumstances
produce small variations in the final state of the system. In a great many
physical phenomena this condition is satisfied; but there are other cases
in which a small initial variation may produce a very great change in the
final state of the system, as when the displacement of the "points" causes
a railway train to run into another instead of keeping its proper course.

James Clerk Maxwell, 1877

Maxwell's warning, that like causes need not produce like effects, can apply to even

the simplest looking physical systems. Consider two equally massive stars bound in a

binary system. Their orbits both lie in the same plane and, in a suitable coordinate

system, their center of mass is at rest at the origin. If the orbits are nearly (but not

quite) circular the system will look like the one pictured in figure (1.1). Now imagine

adding a third body, a test mass so small that it does not disturb the motion of the

stars. Place the test mass at the origin and give it a velocity v0 normal to the plane

2

Figure 1.1: A system of two equally massive stars, m 1 and m 2 , and a test mass, m 3 ,

which travels on a line through the center of mass. [Moser73]

of the orbit. The test mass will bob up and down on the line through the origin and,

if the initial velocity, v0 , is near enough to the escape velocity, the subsequent motion

of the test particle will display a fantastically sensitive dependence on the value of v0 ;

by suitable choice of v0 one can arrange for test mass to begin in the orbital plane,

spend ~ s 1 periods of the binary system above the plane, pass through to spend ~ s 2

periods below, then ~ s 3 above ... and so on, producing a sequence,

where each s; is an integer counting the number of complete periods of the binary

which pass between visits by the test mass. The s; can be chosen completely inde­

pendently, subject only to the restriction s; > C for a constant C .

This system is described by Moser in [Moser73]. He b egins his study by drastically

· simplifying the problem; when t = 0 he notes the phase, 80 , of the binary orbit and

the speed, v0 , of the test mass, then asks for 81 and v1 , the corresponding phase and

speed at the instant when the t est particle first returns to the orbital plane. Certainly

3

they depend only on 80 and v0 , so he constructs some functions 8'(8,v) and v'(8,v)

such that

and v1 = v'(8o,vo),

then uses them to find a sequence,· · · (80 , v0), (81, v1) · ··,which captures the essential

features of the dynamics. Moser shows that the wild behaviour described above occurs

because the mapping,

(8' v) -t (8' (8' v)' v' (8' v))' (1.1)

behaves like the celebrated horseshoe example of Smale, [Smale65]. Smale constructed

the horseshoe by a process of abstraction; he began by trying to understand the

qualitative behaviour of a system of differential equations1 , but eventually pared away

most of the original problem, leaving a simple, illuminating model of the dynamics .

A detailed description of the horseshoe, along with a host of examples and criteria for

recognizing horseshoe-like behaviour, appear in [Wig88]; for us it will be enough to

recognize that complicated dynamics arise even in simple classical systems and that

these dynamics can be explained in terms of structures in the phase space. For the

rest of the thesis we will be concerned with a different relationship between structure

and dynamics; we will examine how the highly structured phase space of an orderly

classical system changes under perturbation.

1.1 Integrability and the KAM theorem

The most orderly of Hamiltonian systems are the completely integrable ones; these

systems have so many constants of the motion, (N for an N-degree-of-freedom sys­

tem,) that we can reformulate the problem in terms of action-angle variables2 (0, J),

1 Smale gives a non-technica l a ccount of all this in one of the papers collected in [Smale80).
2 We will use boldface symbols to denote n-dimensional objects, so that (J is in T" , the n ­

dimensional torus, p in R". We will write (Ji for the angular coordinate of the j th image of
some phase point, (00 , p 0) , a nd Xj (which is in ordinary type) for the real number tha t is the j th

4

Figure 1.2: The phase space of a completely integrable system. (Arn78]

so that the Hamiltonian, H(p, q), becomes a fuution of the actions alone. Then

Hamilton's equations are

J . •

() . • (1.2)

Figure (1.2) illustrates the structure of the phase space for a completely integrable,

2 degree-of-freedom system. Conservation of energy restricts the motion to a three­

dimensional energy surface, represented here as a solid torus. A phase trajectory

wiuds around on a two-dimensional torus, covering it densely unless w1 and w2 are

rationally dependent, that is, unless there are integers m 1 and m 2 such that

(1.3)

Tori for which (1.3) holds are called resonant and they are entirely covered by periodic

phase trajectories.

Figure (1.2) also illustrates a construction we will use throughout the thesis, the

Poincare surface of section. This technique reduces the continuous Hamiltonian flow,

(1.2), whose trajectories lie in a (2n - !)-dimensional energy surface, to a discrete­

time map, T, which acts on a (2n- 2)-dimensional surface. In figure (1.2), the surface

component of some :z: E R". Ocassionally we will need to express, "the kth coordinate of the jth
image of the phase point (Oo, Po)." ThaL will be written Bj,k ·

5

of section is g1ven by 61 = 0 and the map T carries a phase point, :v, to the next

point where :v' s trajectory intersects the surface. That is,

The structures of integrability leave a clear signature on the surface of section; all the

orbits ofT are confined to circles, so that the orbit of a typical point hops around its

circle, eventually filling it densely. Those circles that are cross sections of resonant

tori are covered by periodic orbits; if a circle arises from a torus obeying a relation

like (1.3), then the points on it are periodic with period m2 and hop m 1 times around

the circle before repeating.

This extremely regular structure has profound qualitative effects on the physics

of the motion; integrable systems are far from satisfying the ergodic hypothesis of

statistical mechanics. A phase trajectory, confined by conservation laws to an n­

dimensional submanifold of the (2n-1)-dimensional energy surface, does not even

come close to exploring the whole of energetically accessible phase space and so pre­

dictions based on the microcannonical ensemble, which gives equal weight to all points

with the same energy, will certainly be wrong. These remarks, along with the ev­

ident success· of statistical mechanics, suggest that complete integrability must be

rare, that most of the structure of integrability cannot survive perturbation. Indeed,

Fermi believed that the slightest perturbation would completely disrupt integrability,

[FPU55].

The fate of invariant tori is, however, much more complicated and wonderful; it

is the subject of the most spectacular theorem in Hamiltonian dynamics.

Theorem (Kolmogorov-Arnold-Moser)

If an unperturbed (completely integrable} system zs non-degenerate3 , then for suffi-

3 The non-degeneracy condition is that

I ow I I {)2

H
11 I det {)J = det {)J 2 ::f. 0,

6

ciently small conservative Hamiltonian perturbations, most non-resonant tori do not

vanish, but are only slightly deformed, so that in the phase space of the perturbed

system, too, there are invariant tori densely filled with phase curves winding around

them conditionally-periodically, with a number of independent frequencies equal to the

number of degrees of freedom . These invariant tori form a majority in the sense that

the measure of the complement of their union is small when the perturbation is small.

That is, most tori survive small perturbations! The statement above is taken from

textbook by Arnold, [Arn78]; His original proof appears in [Arn63] . Moser's book,

[Moser73], offers a readable account, and [Bost86] gives a recent review.

1.2 The Taylor-Chirikov standard map

We conclude our introduction with a brief review of an exhaustively studied example,

the Taylor-Chirikov standard map. It is a two-dimensional, area-preservmg map

acting on the set S1 x R = {(x,p)lx E [0 , 1), pER}.

k .
p' = p-- sm(27rx),

271"

x' x + p' mod 1. (1.4)

Chirikov [Chkv79] describes this example as a periodically-kicked rotor, sampled at

the frequency of the kicking; xis a normalized angle variable with p the corresponding

angular momentum. Chirikov's rotor receives periodic, impulsive blows whose size

and direction depend on the rotor's angular position at the moment the impulse is

delivered. For k = 0, the system is completely integrable; p is a constant of the

motion and the orbits are confined to one-dimensional curves .

Figure (1.3) shows the structure of the phase space for various values of the per­

turbation. Each panel shows the orbits of several points from the the set {(x,p)lx E

where H 0 (J) is the unperturbed Hamiltonian. It means that the wi(J) are independent as functions.

7

[0, 1), p E [0, 1)}. Here we will give a qualitative discussion of these pictures, at the

same time introducing ideas that we will study fully in later chapters. The series

begins in the top panel with a small perturbation; many orbits still seem to lie on or

between circles. The arcs in the corners of the picture, when associated by periodic

boundary conditions, form ovals encircling the fixed point z0 = (a:: = 0, p = 0) . The

ovals arise because z0 is an elliptic fixed point ; that is, the derivative of the map,

DT=

8a::' 8a::'

8a:: 8p

8p' 8p'
ax ap

is such that the matrix DTzo has its eigenvalues on the unit circle. Consequently,

points that start near z0 stay nearby and their orbits form the arcs. If we were t o

restrict our attention to this elliptic island we would find that it has much the same

structure as the whole phase space; the ovals would play the role of invariant circles

and between them would lie yet smaller elliptic islands. If we magnified one of those

islands . . . the structure goes on forever . There is also another fixed point, at z1 -

(a::= ~,p = 0), but it is hyperbolic; the matrix DTz1 has eigenvalues off the unit circle,

so almost e very orbit that begins near it eventually moves away with exponential

speed. Besides the fixed points, there are always at least two perio dic orbits for every

rational rotation number E . Chapter 2 gives a longer and more technical discussion of q

periodic orbits and also discusses some special sets, the cantori, which are, in a sense,

the ghosts of disrupted t ori. The chapter begins with a review of the two-dimensional

theory then shows some numerical work aimed at higher dimensional generalizations .

In the middle panel, many more elliptic islands are evident, as is a broad stochastic

layer, a region that no longer contains any invariant tori; the orbits in such a region

are quite complicated and chaotic, and are confined to a layer only because the phase

space is two-dimensional and thus the invariant circles divide phase space into two

disjoint pieces and so pairs of circles can trap even very chaotic orbits . In higher-

8

dimensional systems the tori have too low a dimension to isolate parts of the phase

space; points not actually contained in tori are free to diffuse throughout the whole

stochastic part of the phase space, though they do so only very slowly, in a process

called Arnold diffusion [Arn64,Nekh71] . Although we will not have much more to say

about Arnold diffusion, we will have cause to consider the topological consequences of

higher dimension; in both the remaining chapters we will find that topology prevents

us from proving results as strong as those available for two dimensional systems.

The final panel shows a perturbation large enough to guarantee very strong chaos;

k is so large that Mather, [Ma84], has shown analytically that no invariant circles (of

the type that wind all the way around the cylinder) remain. Numerical experiments

by Greene suggest that no circles exist for lkl > kc ::::::: 0 .971635406 . We leave this

subject for the moment, but Chapter 3 is entirely devoted to converse KAM results,

theorems that say, as Mather does, that for large enough perturbations, no tori exist

at all. There we will review Mather's work, as well as the computer-assisted arguments

of MacKay and Percival, then discuss higher-dimensional generalizations and show

some new results.

9

---- --·-. -·-----------------------

lc = 0.33

lc = 0.95

lc = 1.34

Figure 1.3: Orbits of the standard map for several slzes of the perturbation k . Each

panel shows 200 iterates from the orbits of 20 different initial conditions.

10

Chapter 2

Ghosts of Order

In this chapter we ask, "What becomes of invariant tori?" We have seen that the

phase space of completely integrable Hamiltonian systems is filled by such tori and

that the KAM theory assures us that some of them persist even in the face of small

perturbations . What becomes of the nonresonant tori for which KAM fails? In

general, one can't say. But for certain two-dimensional, area-preserving maps Mather

[Ma82a] and, independently, Aubry [Aub83a], demonstrated the existence of some

remarkable sets. They are reminiscent of invariant tori, but are not complete curves,

rather, they look like graphs supported above a Cantor set. Orbits on these "cantori"

are similar to rotation on an invariant torus; one may consider Mather's sets the

ghosts of destroyed invariant tori. Here we review the two-dimensional results, then

present some numerical investigations1 from an effort to find the higher-dimensional

analogs of Mather's sets. At the end of the chapter we discuss a topological obstacle

that prevents simple generalization of the Aubry-Mather theory.

1 Kook and Meiss, (KM88), have reported similar studies; J. Meiss has been especially helpful in
discussing this work.

11

p

8

Figure 2.1: The cylinder and its coordinate system.

2.1 Basic Notions and Notations

In this section we give careful definitions of the maps we will study, the spaces they

will act on, and the tools we will use to understand them. We will also review the

two-dimensional theory, describing cantori and explaining how to approximate them

by periodic orbits. In the course of the review we will introduce a variational principle

that will be the foundation of all our work .

2.1.1 spaces and maps

We will study maps based on the P oincare map of a near-integrable, action-angle

system and so they will act on the n-dimensional multi-annulus, An = Tn x R n,

where Tn is the n-torus and Rn is n-dimensional Euclidean space. To avoid having to

worry about factors of 27r, we will always normalize the angles, and so write points in

An as (8, p) where 8 = (81,02 • • • 8n) and the Oi are periodic coordinates with period

1.

The one-dimensional annulus, A = T x R, is conveniently represented as a cylinder

with coordinates as pictured in figure (2.1). Maps taking the cylinder to itself will

b e called T, or T£ if they depend on parameters; maps acting on A n for n > 1 will

be either for f£ · In all cases, our maps will be symplectic, that is, they will preserve

12

the standard symplectic form (see e.g. [Arn78,KB87]),
Tl

n = :Ld9i A dPi· (2.1)
j=l

For a map T on the cylinder, preservation of (2.1) means that T preserves area

and orientation and so is equivalent to Liouville's theorem about the preservation of

volume in phase space. For higher-dimensional systems, preservation of (2.1) also

implies preservation of volume, but is stronger.

We will often need to work with a lifting, F~, of a symplectic map, f~, to the

universal cover of An. This is essentially a version off~ extended periodically so that

it acts on the whole of Rn X Rn. Iff~ : An - An, f~(9, p) = (9'(9, p), p'(9, p))

then F~ acts on Rn x Rn, F~(:z:,p) = (:z:'(:z:,p),p'(:z:,p)), and agrees with f~ up to an

integer translation. That is, if f~(9o, Po) = (91l PI) and F~(:z:o = 9o, Po) = (:ell p!)

then

(2.2)

for some integer vector m E zn. Further,

The choice of a lift, F~, which comes down to the choice of m in (2.2) does not affect

any qualitative features of the dynamics. For example, a lift of the standard map is

p'

x'

p - ~ sin(2rrx),
27r

I
X +p,

which is just the same as (1.4) except that the position coordinate is no longer taken

mod 1. We will always use the convention that F~ : Rn X Rn is a liftoff~ : An - An.

2.1.2 a variational principle

The dynamics of an autonomous Hamiltonian system can be characterized with the

principle of least action; to specify a segment of a phase trajectory, 1(t) = (p(t) , q(t)),

13

one need only note the values of the position coordinates at the ends of the segment

and require that 1 be an extremal of the "reduced action" functional [Arn 78],

(2 .3)

In particular, one can get the momenta at the endpoints of the segment by taking

derivatives of S(q0 , ql);

as
Pt = -­

aqt
and

as
Po=---.

aqo

The analogous thing for a symplectic map F~ : Rn ---t Rn is an action-generating func­

tion, a function, H~: Rn X Rn ---t R, where H~ = H~(~, ~')is such that if FE(~0 , p 0) =

and
aH~

Po=--­
a~

(2.4)

The point of constructing a generating function is that it enables us to discuss dy­

namics entirely in terms of the position coordinates. In the next section we will

demonstrate the usefulness of variational arguments by reviewing the theory of area­

preserving twist maps of the cylinder. These maps get their name because of a geo­

metric property of their action; a C 1 map Tis twist if it carries every vertical line into

a monotone curve; see figure (2.2). More analytically, if T(O,p) = (O'(O,p),p'(O,p)) is

a symplectic map of the cylinder, then Tis a uniform, differentiable, twist map if

aO'
ap =I= o.

2.1.3 area-preserving twist maps

Here we will examine the kinds of orbits that can occur for an area-preserving twist

map. Since we will be wanting to make variational arguments, we require that,

in addition to being a twist map, T possess a generating function, h(x, x'). For

14

Figure 2.2: A twist map carries vertical lines to monotone curves.

convenience, we will work with a lift ofT, call it T, and will use coordinates in R x R

rather than on the cylinder. First we will use the generating function to construct

some periodic orbits.

A periodic orbit is characterized by its period and by the number of titnes it winds

around the cylinder before closing. Suppose we want an orbit that, in q steps, makes

p turns. Such an orbit would appear on the universal cover as a sequence of points

{· · · (xo,Po), (xl>Pt), · · · (xq-l,Pq-d, (xP, qp), · · ·} with Xj+q = Xj + p . We could seek

it by trying to find a sequence of position coordinates,

(2.5)

such that the function
q-1

Lp,q(X) = L h(xj, xi+t) (2.6)
j = O

was minimized. We will call such a sequence a p-q minimizing state. If we could find

one, then, automatically, we could compute the desired kind of periodic orbit . To see

how, consider the condition that (2 .6) be extremal:

8Lp,q 8h() 8h()
- !:!-- = £1 Xj,Xj+l + n Xj-l, Xj = 0
vXj vx vx'

for j = 0, 1, · · · , q - 1. (2.7)

We will call these the Euler-Lagrange equations. Now, if X were the projection of

some periodic orbit, we would be able to recover the missing momentum coordinates

in two ways; we could use either

or

15

r

Figure 2.3: The billiard ball dynamical system. [Birk27]

The condition (2. 7) is that these two be equal, so that if we can find a sequence like

(2.5) we have found the desired periodic orbit. Arguments like this were first made by

Birkhoff, who used them to construct periodic orbits for the map given by the motion

of a point particle in a convex, rigid walled box. This system can be reduced to an

area preserving twist map by considering the particle's collisions with the wall and

using coordinates given by a length, r measured along the perimeter of the domain,

and the variable u = -cos(8) where 8 is the angle the particle's path makes with

the tangent to the wall, see figure (2.3). In this system the generating function is

just the negative of the length of the path traced by the ball, and so the minimizing

periodic orbit with p = 2, q = 5 is just the orbit that corresponds to the longest

inscribed star. Besides the minimizing periodic orbit, there is another, a minimax

orbit. To see how this orbit arises take one point of the minimizing orbit and slide it

along the boundary, allowing the other points to shift so as to keep the total length

of the star as large as possible. At first the length must decrease; we have assumed

that the initial, undistorted star was the longest possible. Eventually, though, the

length of the distorted sta r will h ave to stop decreasing and begin to increase because

eventually the vertices will reach a configuration which is a cyclic permutation of the

original star. The configuration for which the length again b egins t o increase must

also be a stationary point of Lp,q ; it satisfies the Euler-Lagrange equa tions and so it

too corresponds to a genuine periodic orbit.

The action-minimizing p eriodic orbits, which are called Birkhoff orbits, are dis-

16

tinguished by the numbers p and q used in their construction. The rational number

£, which is the orbit's average angular speed, is called the rotation number of the
q

orbit. More generally, an orbit (x0 , p0), (x1 , pt), .. . on the universal cover is said to

have rotation number a: if
. Xn- Xo

a: = Inn .
n-+oo n

(2.8)

This limit does not always exist. Most of the points in the stochastic regions of the

standard map do not have well-defined rotation numbers , though all of the orbits

lying on invariant circles do; orbits on non-resonant circles have irrational a:.

Percival, who, in [Perc79], coined the term "cantorus," proposed that one might be

able to find orbits that had irrational rotation numbers, but did not lie on invariant

tori. Mather looked for Percival's quasiperiodic orbits and, in [Ma82a], succeeded

dramatically. He discovered whole, complicated sets of such orbits and revealed an

unexpected, rich structure in the phase space. Serge Aubry, a condensed matter

physicist who was investigating the ground states of certain one-dimensional m odels,

independently discovered the same structures, see e.g., [Aub83a,Aub83b].

We can construct one of Mather's sets by taking a limit of Birkhoff periodic

orbits. That is, we take a sequence of rational numbers {Po/ qo, ptf q1 · · ·} that has

au irrational w as a limit, construct both the corresponding Birkhoff orbits, and see

whether they accumulate on an interesting limit set . Katok, [Kat82], has shown that

they do. If there is an invariant circle with rotation number w, then the Birkholf

orbits accumulate on it. If there is no invariant circle, then the orbits accumulate on

a cantorus,2 a set that looks like an invariant circle with a countable set of holes cut

out of it, see figure (2.4).

The cantori have many properties reminiscent of irrational invariant circles; orbits

lying in the cantorus are dense and the motion on the cantorus, is, by a continuous

change of coordinate, equivalent to rotation by the angle w. Also, the cantorus has

2 The limit set may also include some points in the gaps of the cantorus; to get the true cantorus
one has to take a minimal (in the sense of ergodic theory) subset of the limit set .

17

0.0 ... --
' ...,
··~

\.-/

·•
0.5 1.0

Figure 2.4: A cantorus for the standard map. The vertical axis is measured in units

of y = p -
4
:_ sin(27rx) 1 where k = 1.001635 is the size of the perturbation and the

rotation number is~ ~l where 1 = ¥ is the golden mean. (MMP84]

the same kind of smoothness3 as an invariant circle. If (00 , p0) and (01 , pt) are any

two points from the cantorus then there is a constant L, independent of the Os, such

that

that is, the momenta are Lipschitz functions of the positions .

Katok's scheme for approximating the cantorus by a sequence of periodic orbits

is different from the approach first used by Mather, but it is much better suited to

numerical experiment; all computational investigations of cantori depend on approx-

imation by periodic orbits e.g. [MMP84,MP87,Grn79].

2.2 Higher-dimensional analogs

In this section we formulate the numerical investigations reported in the rest of the

chapter. Our studies are based OIL Katok and Bernstien's paper, [KB87] in which they

study certain n-dimensional symplectic maps generated by a function H.(~,~') and

prove the existence of action-minimizing periodic orbits. For these orbits, which are

3 A theorem of Birkholf states that the invariant circles are Lipschitz graphs.

18

defined by analogy with the Dirkhoff orbits on the cylinder, the role of the rational

rotation number P. is played by a rotation vector, .E. where q is the length of the orbit
q q

and p E zn, p = (p0 , p1 , .. . , Pn) gives the number of times the orbit winds around

each of the coordinate directions. 4 As above, each rational vector has a corresponding

type of p, q-minimizing state,

an action functional, Lp,q, some Euler-Lagrange equations,

q-1

L H~(xi, xi+1) (2 .9)
j=U

(2.10)

and at least one mmmuzmg periodic orbit . Katok and Bernstien's maps are small

perturbations of some completely integrable system whose unperturbed generating

function, H0 (x,x'), satisfies H 0 (x,x') = h(x'- x) where h(u) is strictly convex, i.e.,

the Hessian matrix of h,

cPh cPh
8u~ 8uo8u1 8uo8un-1

lJ2h
8 2 h 8 2 h

8u18uo 8ui
{)u2

(2.11)

8 2 h
8u,._ 18uo

is positive definite. This condition is a higher dimensional analog of the twist condi­

tion, but is not the only possible g~neralization; Herman, in (Herm88], gives another .

In the next section we will present some explicit 4-d symplectic maps and their gen-

erating functions and in section 2.2.2 we show some pictures of minimizing periodic

orbits and discuss how their shapes and stability depend on the size of the perturba-

tion.
4 For a two-dimensional Birkhoff periodic orbit, the rotation numbers E a nd ¥- both yield the

same minimizing periodic o rbit . T he corresponding statement need not be £rue in h1gher dimension;
the rotation vectors .E. and ~2 n eed not correspond to the same orbit. See section 2.3.

q q

19

The real question here is "Are there cantori in 4-d symplectic maps?" On the an­

alytic side, the answer seems to be "maybe." Katok and Bernstien are able to show

that if a sequence of rational rotation vectors {-!!.!!., £!., . .. } , Pi E zn, q E Z , con­
qu q1

verges to some irrational rotation vector, w = (w17 w2, · · · wn), then the corresponding

sequence of Birkhoff orbits also has a limit. Unfortunately their results on the prop­

erties of the limiting set are not as strong as those available for twist maps. They

cannot say what the limiting set looks like or much about the motion on it . They

are able to establish that the momenta should be Holder continuous functions of the

positions , but with index a=~' that is, if (00 , p 0) and (01 , p t) are points from this

limit set, then, except perhaps for a single isolated point,

(2 .12)

for some constant C, independent of the (Ji· We present some ambiguous numerical

investigations aimed at verifying or improving this smoothness estimate, but are

unable to report any definite results .

Finally, in section 2.3 we discuss a pathology foreseen by Hedlund. Hedlund's

examples complicate any discussion of the behaviour of very long orbits and are an

obstacle to both analytic and numerical investigation of higher-dimensional cantori.

These examples arise in the study of geodesics on tori, a problem related to ours by

the principle of least action. The pathology appears for very strongly curved metrics;

the corresponding regime for our problem is the realm of very strongly perturbed, far­

from-integrable motion. Since we will study only small perturbations of integrable

systems, we may hope to avoid Hedlund's pathology; in section 2.3, we report some

qualitative investigations indicating that, for our systems, it does not occur.

20

2.2.1 the maps and orbits

We follow [KB87] and study maps that are generated by functions of the form

H.(x, x') = h(x'- x)- ~~(x, x'), (2.13)

where h(x'- :c): Rn -t R, the unperturbed part of the generating function, satisfies

(2.11) and the perturbation '~(x, x') : Rn X Rn -t R, is a small, G2 function satisfying

'~(X+ m, x' + m) = ~(X' x') Vm E zn. We will study 4-d symplectic maps generated

by (2.13) with

Where

one of

'l,oly(X)

V(x) = or

VJJ(x)

with c(x) ~ {
if x mod 1 :S ~'

9- 48x + 72x2
- 32x3 if x mod 1 > ~ -

(2.14)

Call the firs t perturbation the trigonometric perturbation, the second the polynomial

perturbation5 and the third the fast-Froeschle. The constants Aftrig and Jl,fpoly are cho­

sen so that ma.x.,ETn JF(x)l = 1. \IJJ(x) is a polynomial approximation to a potential

originally introduced as a model of star m otion in elliptical galaxies [Fro71] . The real

Froeschle map has cosines where ours has c(x) and h as three independent constants,

5 The Xi appearing in the definition of V~oly are all taken mod 1.

21

one for each of the terms. Since its introduction the map has been popular as a model

for chaotic Hamiltonian dynamics e.g ., [Fro72,Fro73,KnBg85,KM88,MMS89].

All our examples use "standard-like" perturbations, ones where Ve(:e, :e') depends

on :e but not on its successor, :e'. We made this choice of perturbation because it

simplifies the map. Using (2.4) we obtain

2.2.2

p'(:e) p)

:c'(:c,p)

8V
p- E OX (:c),

8V
:C + p - E-(:e).

8:e

shapes of orbits and Lyapunov exponents

(2 .15)

Figures (2 .7) - (2.16) present several families of approximate Birkhoff orbits . Each

orbit is displayed as a pair of projections; one, on the left, is the projection into the

angular coordinates, the other, on the right, shows the momenta. Both projections

are computed from a p,q-periodic state that is an approximate solution to the Euler­

Lagrange equation (2.10) . The angular projection of a point :Cj is an ordered pair

(Oj,o, ei.d, with

Oj,i = Xj, i mod 1;

The horizontal is the 00 direction and the vertical the 01 ; both angles lie between 0.0

and 1.0. The momenta, which are calculated as

(2.16)

are arranged similarly; the horizontal is the p0 direction and the vertical the p 1 .

measures of quality

Beside each pair of projections appears the rotation vector, in the form (p0 , p1)/ q,

and two m easures of the quality of the orbit , shadow and grad size. The first of these

22

1.0 ',,,,
. 9 ' ',,,

' '' ' '
.8

• 7

.6

. 5

.4

.3

.2

. I

1.0

. 9

.8

·'
.6

.5

. 1

.3

.2

.I

I I

I I

I \

I I I

I \ / I

I

I

I '\
I I
I I

I I

II
I I
I \ J

I

\

I

I I

' -

0 o'-''"""'. '-, ~ z-'--',--'~. q--_~s--."'"s--."'",-L-_ a~-_ s~...J .. c

Figure 2.5 : Contour maps of - V:(:c) for the (a) trigonometric, (b) polynomial, and

(c) fast-Froeschle pertu1·bations. The contour interval is 0.1 and the contours corre­

sponding to negative values are dashed.

23

measures how closely our orbit, which has its momenta given by (2.16), approaches

the ideal

the value of shadow is

II (:z:j+l, Pi+d - F£(:z:j, Pi) II

VII :Z:j+l- :z:'(:z:j,pj) 11 2 + II Pi+l- p'(:z:j,pj) 11 2

1

L(xi+l,k - x'(:z:;, Pi)k)2 + (Pi+t,k- p'(:z:;, Pi)k)2
.

k=O

Most of the states displayed here have shadow ~ 10-6
. The other measure, grad size,

lS

[~~II a:::' liT
it is the norm of the gradient of the action functional, scaled by the length of the

state.

shapes

We display orbits for all three perturbations and for two rotation vectors, (1432,1897)

/2513 and (2330,377) /3770. The first is an approximation to an irrational vector

called the spiral mean, the second approximates Uo,/), where 1 is the golden mean.

Both approximations come from the Farey triangle scheme of Kim and Ostlund,

[Kim0st86], see appendix A for details.

For small E, the orbits are well distributed over the angular variables and the

momenta look as though they lie on a torus . With increasing perturbation the orbits

abruptly contract and concentrate along one-dimensional filaments. The system of

filaments depends on both the perturbation and the rotation vector; in figure (2 . 7b)

24

the (1432,1897)/2513 orbit has contracted onto a system of three curves, each of which

winds around the torus once in each angular direction; we will call these curves of

type (1,1). In figure (2 .12b) the same rotation vector and the polynomial perturbation

lead to a union of seven curves, each of type (0,1). On the other hand, this same

perturbation forces the (2330,377)/3770 state to concentrate along a single curve of

type (4,1).

Lyapunov exponents

The qualitative behaviour of the orbits is correlated with their stability properties .

The Lyapunov exponents measure the exponential rate of divergence of nearby tra­

jectories (see, e.g., [Osc68]) and, for a periodic orbit, are just the eigenvalues6 of

= DF()oDF()D·· · oDF() E, Zq-1 tPq-1 E, Zq-2 rPq- 2 C!!:, :co rPO (2.17)

where DF~.(:~:,p) is the Jacobian of the map. From 2.15 we can calculate

[~ tii] [I-~ -1]
~ ~ _82 l-:
ore op 8rc2 I

where I is the d-dimensional identity matrix and 82 V,./8x2 is the Hessian of the per­

turbation. Each of the D F~.(:~:; ,p;) is a real symplectic matrix and so the entire pro duct

is real and symplectic too. The eigenvalues of D F£~(:~:o,Po) thus occur in reciprocal pairs

(>.o, 1/ >.0) and (>.1, 1/ >.1) , [Arn78]; for the unperturbed map, all four are equal to

one. As the perturbation increases, both pairs leave the unit circle. At about the

same parameter value for which the first pair departs perceptibly from the circle, the

minimizing state contracts along the filaments . The eigenvector corresponding to the

largest exponent projects to a vector transverse t o the filam ents. For large enough

perturbation both pairs are non -zero and the distribution along the direction of the

6 The accurate, direct calculation of the matrix product in (2.17) is usually no t p ossible; see
appendix A for a discussion.

25

filaments is also Cantor-like. See figure (2.6) for the exponents of roost of the orbits

presented here.

The eigenvector corresponding to the largest exponent projects to a vector trans­

verse to the filaments.

2.2.3 non-existence of tori: a prelude

Notice that the very perturbed orbits look as though they are full of holes, as though

there are some parts of the torus they cannot visit. One might imagine that this

is just a consequence of the finite lengths of our orbits, that if we had orbits with

ten times as many points some of them would be bound to land in the holes. We

can show that, for sufficiently large perturbations, the holes are genuine; there are

neighborhoods that all minimizing Birkhoff orbits must avoid.

Suppose V.(x) is a C 2
, standard-like perturbation to the generating function

Ho(x, x') = ~II x' - X II · Suppose further that V.(x) has a minimum at x = Xmin·

Then there is an Ec, such that for c: > Ec, all minimizing states must avoid a region

containing Xmin·

Proof A globally m.ininimizing state, X, must be an extremum of Lp,q such that

every small, local, variation, Xi -t Xi + o increases the action. That means that X

must satisfy the Euler-Lagrange equations (2.10) and also that each matrix

82V 82 V 2-c:~(xi) - c: 8xu8x
1
(xi)

fP Lp,q
. 8x0

ax;
(2 .18)

-c: 82\1 (x·) 82V 2- c:~(xi) 8xo8xl ' 8x1

is positive definite. Because Xmin is a mi11imum, the eigenvalues, JLo(c:) :::; JL1(c:), of the

Hessian of - V~(xmao:) are negative. If one of them is less than -2 then (2.18) cannot

be satisfied. Since the JLi are decreasing functions of c: we need only find that value,

Ec, for which JLo(c:c) = -2.

~
0 a

. 6

.5

.~

.3

.z

-.z
- . 3

- . ~

- .5

- .6

(:!TI.%3301 1 :mo. nua

~~~~~~~~~~~~~ 

-~ 
(1•32.1887) I 2613. '!RIO 

. 3 

_z 

.I 

-. I 

-.z 

- . 3 

- . 1 
D .005 .DI D .DIS .ozo . 025 . 030 .035 . 010 

£P91LDN 

26 

. IS 

.ID 

.OS 

- .OS 

- . 10 

-.15 

-. zo L......_._..._._~_.__._.__~L........--'-......J.~-'--o'-'-_._J 
D . 001 .ooz . 003 -~ _oos . 006 . 001 .ooe . 009 .DID 

.z 

.I 

-.I 

-.z 

- . 3 

- . 4 

- . 5 
0 8 8 8 8 

0 N "' 
., 

~ §! f:i ~ 
., 

~ 0 0 0 0 0 ~ 0 ~ 
EPSll.OH 

Figure 2.6: The Lyapunov exponents for the rotation vector (377,2330)/ 3770 

and the trigonometric and polynomial perturbations. Also those for the vector 

{1432, 1897)/ 2513 with the trigonometric and fast-Froeschle perturbations. 



· .. .:__ 
· •. ' 't. - • . ··.:. ~ .. .... 

. 8~ 

. 87 

.80 

. 78 

. 76 

. 7~ 

.72 

. 70 

.68 

.66 

27 

, 
€ 

shadow 

. 6<. SO_'----'. S-2 ~ ...... ~~ . .._56~. 58.........._ ...... 60~ • .._62~. ~.........._ ...... 66~.-'-68---.J. 70 grad size 

· .. , '\. ., .. ·. .e~ 

.87 

.80 

. 78 

.76 

. 71 

.72 

. 70 

.68 

.66 

~ 
(fp"· 

€ 

shadow 
.~ grad size 

.so . 52 - ~ . 56 . 58 . 60 . 62 -~ .66 .68 . 70 

0.0075 
1.973. 10-8 

5.455 . 10-7 

0.0100 
1.466. 10- 6 

2.194 . 10-7 

Figure 2. 7: Birkhoff orbits for the trigonometric perturbation and the rotation vector 

(1432,1897}/2513. This panel illustrates the collapse along filam ents. Notice how the 

E = 0.0075 state has momenta seeming to lie on a smooth surface. 



! 

\ 
. ... 

~,': 
' ' 

.. ... ~ ... • . .... , 
'': .... 

·"".:.·.· ... 

''· ' · 
'· ''\, 

.. 
\ ·•.· '..:: .. 

~ 

' ... > 
"'· 

., ... ' 

i 

I 
I 

I 
I 
I 
i 

i 

I 

28 

.81 

.82 

.eo 

-78 

.76 

. 71 

.72 

. 70 

E 
.68 

shadow 

_61 L....-'------"'-:---'----'---'-~-:'-:-'--'-----"'-:--'-:-~~ grad size 
.50 .52 . 51 . 56 . 58 .60 .62 .61 .66 .68 . 70 

.66 

.81 

. 82 

. BO 

.78 

.76 

• 71 

.72 

.70 ; .. •, _..,· : i' 
..... ·. .. 

.68 · • \~. , .-: 

.66 

. ·-
... ~·· .. •·· '~ ,; r. ,· 

•· . 
/. ·~ '·:::. 

E 

shadow 
. s1 , .. grad size 

.50 .52 .51 . 56 .58 .60 .62 . 61 . 66 .68 .70 

0.0175 
2.202 -10-6 

3.625. w-8 

0.0275 
3.295. 10- 6 

2.788 . 10-8 

Figure 2.8: Bi1·khof] orbits for the trigonometric perturbation and the rotation vector 

(14 32,1897) /2513. This pair shows the appearance of Cantor-like clumping along the 

filaments. 



! 

"· \ . . 
'\ 

\_ ·., 
. ·. · ... . 

I 

\ 

'·. \ \ 
\.I .. 

'.I, 

\ \ 
\ \. 

·\ 

\ \ 
' . . \ \ 

\ 
\ 

\. 
'\ 

\_\ 

( 

\ . 
. \ \ 

\ \ 

29 

• 71 

.72 

. 70 

.68 

.66 

.61 

. 62 

.60 

.58 

.56 

.51 

.52 

. so _.__::---~-::----'-:-'"""':-"""':' ......... ~..-..L~~::--:~ 
0 . 02 .01 .06 .08 .10 . 11 . 11 .16 .11 .10 .11 .11 

. 71 

.72 

.70 

. 68 

· .... . \ ·,, 
\ 

\ \ 
\ : 
. I \ . \ \ . . \ 

. 66 

. 61 

'. 
I . 

' '· 

\ . ·. \ 

"·· '. . . \ 

\ ': 
·. \ 

. I. . \ \. 
. \ \ \ \ 

\ \ 
\ \ · \... ·\ 

\ : .62 

\ • . 60 

\ 
.58 

·. \ .. 
\ 1: \ ' · ": \ 

.S6 

. 51 ., \ . \\\. 
\ ... \\ \' ': \ ·, ... . 52 

. 50~~~~~-'-:-'~"""':-~~..-..L~~ 
0 .02 .01 . 06 .08 .10 . 11 .11 . 16 . 11 . 10 .12 . 11 

E 

shadow 
grad size 

f 

shadow 
grad size 

0.0075 
9.883. 10-6 

1.654 ·10-6 

0.0100 
2.568. 10-6 

2.599. 10-7 

Figure 2.9: Weakly perturbed Birkhoff orbits for the trigonometric perturbation and 

the rotation vector (377, 2330 }/ 3770) . 



30 

. . '· 
• 71 

· ... ·. 
.72 . ~ . 70 

., ~- . 68 .• . 
... • 66 

~: 
. 

. 61 . ···~ ... . ·· . > •• 
; 

·.•. . 62 .. . . ; ··• .-,. 
~ : · ... . ··.-

. 60 .. ., . 58 ~ 
:· .: 

.• 
.56 0.0175 .. e 

~ \. .Si . \ ~ . shadow 7.329. 10-7 
.52 

.so grad sue 1.903 10-8 
0 . 02 .01 . 06 .Oil .10 . 12 . 11 . 16 . 18 .20 .22 .21 

'. . 71 ., 
. 72 

.... 
. 70 

.68 

.• . . 66 ~ ".: .. ... " \ . 61 "!"'· 
.~ . 

\ .. . "' . , . 62 

. 60 

.58 

.56 ; 
0.0275 ·. e .. . 51 

shadow 5.885 10-7 ·. \ 
. 52 

. so grad SIZ e 1.341 . 10- 8 
0 .02 .01 . 06 .Oil .10 . 12 . 11 . 16 . 18 . 20 .72 .24 

Figure 2.10: Strongly perturbed Birkhoff orbits for the trigonometric perturbation and 

the rotation vector {377, 2330) / 3770). 



~~~. ~.+;. ~~}· 
~. :!
:~.

rs·' . •1 '.c .

tn~: · \h

.80

.79

. 79

. 77

. 76

. 75

. 74

. 73

. 72

. 71

.10
.52

.80

, ?g

.79

.n

. 76

.75

• 74

. 73

.72

.71

.10
.52

31

. 53 .54

. 53 .51

-

.55 . 56 . 57 .51 .59 .su

. 55 . 56 . 57 .51 .59 .6G

E'

shadow
grad size

€

shadow
grad size

0.0005
8.001. 10-8

6.312. 10-9

0.002
6.642. 10-8

5.516. 10-9

Figure 2.11: Birkhoff orbits for the polynomial perturbation and the rotation vector

(1432,1897}/2513. Note that the momenta remain very near their unperturbed values.

~ ~·r.·l r ·~- ~- \ ! ' :.l ~.
\ I ' f :t I I ! \ '~ I \ : \ 1• \ ! \ ..

, • • 0 ,,. ' . ': '' • t,! ,:
I I I , ,.. . :

).-· ,J ; · (,.\· . ~ j '' rl
~ ~ . \ ; • ... I I ~- ;'I"' I

jl ' \ , 't . \ ,,

'i ... ' r,' .,. . ~ ' ' , I\.,: I) ,.... It ,
ta •. ; ,.~ • , ~-\·· ~ •. ~!
··i·! ,. ;f r: . ,·1 ,:, . ~ ~
: • . I jl ., .1 ,lt ' ' 'i ... \ ,,
,,.. ,. ~ . ': ' ~' ~ ,.~ .
' ,.1) ~ .. I) t . I I'

rl ' ' ' ' ·1' .! ,.., ~t·
), . · ·' :!1. 0 ~' • \ ' • ··'

I ' ' ... \ : I ., . ; I ~ '
... ~ ' I ' ':1 I' •• '· I

. \,-~ , .a • 1.' ,.• • •
I I I 1.~ J o ' \ ' r' :

I
i

i't ,
\ •
I

.,
i ; i

i. :.

'.i

},
\., ...
'

i' ' .
'

'{

/
i

·~

' ' • i
• !

\

·',
';~

'.:

I
I

i '.' . ·'J

J
i

. 19

. 18

.n

.16

.15

• 74

.13

. 12

. 1\

32

€

shadow
. 10 ..._.--~. _ _._~_._~..__.____,~___,_~_._............. grad size
.~ .~ .~ .~ . ~ .~ .~ .~ .~

.79

. 18

.n

.76

.15

• 74

. 73

. 12

• 71

.~

€

shadow
grad size

0.003
5.13. 10-8

5.702. 10-9

0.007
1.01 . 10-7

4.796 . 10- 9

Figure 2.12: Birkho.ff orbits for the polynomial perturbation and the rotation vector

{1432,1897}/2513. This pair shows the appearance of Cantor-like clumping along the

filaments .

I .i .. r. , ,) ..r. . i . ~- i l _. (....

(I/ } I ,1.1 I .. 1, J . (){ I .I I '

1 •) I .r t .l ~- 1 .1...- ' I ·r 1 -~
r C I ··1 I ·· ~ · J J' l') .. 1 'l .. I l I f I • I ' l ,. I 1· .J .. r • 1 .. , i · ·

1
· 1 .. 1 • rl ,

,. \ I ·' / 'i ' ') f l I ,.

.. I' .) I ,(' t, ' .(,· (,l .. ,· I I li'
.. f I. I ,.1 I , I ~ I .l f (.J

.. 1 'i (.. . l J r . 1 ~· t
I' I t '' ,· ('I .. I I ' I ·' 1') . . I I I J (

' ' I ' 1 I ' ' ' j (. (' I I ,· ~ I

33

.65

. 64

. 63

. 62 -. 61

.60

. 59

.58

.57 t: 0.0005

.56 shadow 4.625 · 10-9

. 55 L......__,___._~......____.._..._._~....__.__._....__J grad size 5.036 · 10-10

.Ill! .09 .ro .11 . 12 .13 .11 . 15

.64

.63

.62

.61

.60

. 59

.58

.57 t: 0.002

. 56 shadow 1.826. to- 7

. 55 L-.&....~..__.___.__............_~.___.___.______._~ grad siz e 1.06 . 10-7
.Ill! . 09 . 10 . 11 .12 .1 3 . 11 . 15

F igure 2.13: Birkhoff orbits for the polynomial perturbation and the rotation vector

{377, 2330}/3770).

' .. ~ ~
..... · . ·J

,. I •

: •• •• 1 • r,; ,..
o • I o' .-· .. . , ..

• ol :

. . .
.~ t

, .
•.!
:·· . ~ •'' :I '
~ I ' o.:
•• J r ·

. ;. : · . " ,. . i.: .
.. :

: .. ·, .-· ' . .. : •.I
• I.: , . .

•.!

"' . • • J

:. ··,
..... :'J. :

r: . .:
.... • . ;t.

. r;
I :-.•

~ .
•.:

: · ·
' I

"' .
• ~ J

:··
o t.' I

.
r. • . •'
I ' .. :
:··

. · .. : t:
...... . : ' .. ':

I' • .. . ~
~ .

~-'
·. '

' '· ' :q . . I • . \ ~ ' . .. '
tl . : . . \J . . . I 1 • I ·. ;·.~ ! . :I
:~· . : ·: ~! 1: . : ····-~. \ . . ~:.,. l
.,. J •.•••.. '•~ • , , :\:

.. ' • : I" I . •\\' . \ ('
:<t:· .. 0 i .-:,r t ', :: .. • 1 • ~:, :

. ,, . : ; . ~: . J . ::~.: 1 : • l\' : . .
!·~ ,· : I'.· . • '. I ;t:' 1 0 '· : ~ • :

':f, ·:. ~ .. ·: \ .. ~,,. ':>. r .

·~~,·. :. : .. ·':_.! : _:· .1\x \ -'. :i·
'·. • ; , ... I . . . ·~ . ; ; 'f'
~-· I. · : ' . • :\ ' : \/ ; =\~ ·.. .r • .• :v. \ ::.·.~· \i·. ~~ . ,.l ,.,
.··:i. . . · .. ~~- ~ · ; : ; ~:· : I . \ :

. i :'.', ·. r · :'~-· , ! . r: : . · . .\l
l ' , ;,\ · • 1 " • ·:\{ ' ·, !

34

.65

.M

. 63

. 62

.61

.60

.59

.sa

.57

.56

. 55
.08 . 09 . 10 . 11 . 12 .13 . 11 .IS

.61

. 63

. 62

. 61

. 60

. 59

.58

. 57

.56

. 55 L...Jc.......__,__,___.___,__.___,__,___,__._~__._~_J
. 011 . 09 .10 . 11 . 12 . 13 . 11 . 15

E 0.003
shadow 2.332 · 10-7

grad size 1.352 · 10-8

E

shadow
grad size

0.007
2.457. 10-7

1.307 . 10-8

Figure 2.14: Birkhoff orbits f or the polynomial perturbation and the rotation vector

(377, 2330}/3770) .

35

.81

. 82

.80

.78

.76

. 71

. 72

. 70

.68

~
;P'

E

shadow
·
66 L......_._~...__..__._~..__.__._~..__.__._~...__.__J grad size

.18 .so .52 . 51 . 56 . 51 . 60 . 62 . 81 . 66

. 81

.82

.80

.78

.76

. 71

.72

.70

.68

.66

/

~ p·

. 18 .50 .52 .51 . 56 . 511 . 110 .62 .61 . 66

E

shadow
grad size

0.0075
5.545. 10-7

2.137. 10-7

0.0100
4.221. 10-7

7.532. 10- 8

Figure 2.15: Bir-khoff orbits for the fast-Froeschle perturbation and the rotation vector

(1432,1897}/2513. Notice how even the E = 0.0075 state seems to have its moment

concentrated on a curve.

-~

' ·~.

·--."~' ...
·, .~ ·, .

'·

' ., ,~

' \

·,:,
' .,,.

·'\.

36

. &I

. 82

.eo

. 78

. 76

. 74

.12

. 10 ,

. 68

,. ,

.,
.--~- .
' . "''\. •

~:'),'
1,'1;

. I,','-'

. ~.f' .. ·
€

shadow
. 66

.7-'---:-:----'L-...._._ ~...._.........._~....._.__...___.__j grad size
-~ -~ .~ .~ .~ .~ .ro .~ .~ .66

.84

.!12

. 1!0

.78

. 76

• 74

. 12

.70

.68

.66 ..,. ,

,. ,

. 48 -~

I
r~,

l I .
. J ,.r/
~ , .

. f j,
. ,r .·~,
t I

~
·'

.52 .54 .51; -~ . 60 .62 - ~ . 66

€

shadow
grad size

0.0175
2.713. 10-9

2.928 . 10-10

0.0275
5.471. 10-9

4.569 . 10-10

Figure 2.16: Birkhoff orbits f or the fast-Froeschle perturbation and the rotation vector

(14 32, 1897}/2513.

37

For the trigonometric perturbation Ec ~ 0.03856; for the polynomial perturbation

Ec ~ 0.04167. The appearance of the states suggests that neither of these is a very

good estimate; the region near the maximum is completely devoid of points long

before E = Ec. The real interest of an argument like the one above is that it can

provide an estimate of the size of perturbation needed to destroy all the original

invariant tori; since the whole next chapter is devoted to such estimates, we leave the

subject for now.

2.2.4 smoothness

We would like to be able to say that very long periodic orbits approximate a Cantor

set that we could view as the tattered remnant of an invariant torus. Such a remnant

should have a kind of smoothness; two points that lie very close to each other in

the angular variables should not have wildly different momenta. What we need is

a result like the theorem of Birkhoff, generalized by Katok [Kat82], which says that

for points in a Mather set, the momenta are Lipschitz functions of the coordinates ,

i.e., II Pi- Pi II :::; C II Xi- Xj II where Cis a constant . Katok and Berustien [KB87]

looked for such a result and, as mentioned above, were able to show that, except

perhaps at one point, the momenta are Holder continuous with index 1/ 2, that is ,

1
a=-.

2

for some constant C independent of the Xi·

Hoping to verify or improve their estimate, we computed pairs (L , II ~x II) , where

L = II ~p 11/11 ~x II , and displayed them on logarithmic axes. If some kind of Holder

continuity applies, then

L = II ~p II < c II ~X 11"'-1
II ~x II - '

so

log L < log C + (a - 1) log II ~x II·

!:PSI LON • 0 00711

' ·,·,

EPSILON • 0 01~

•, ~

·. '

! ") 1

(c)

,I)Z F.PSILOII • 0 0226

toO

(e)

39

toO

(b)

(d)

... : .. .

·.-:

".1 .

EPBILOII • 0.0 I

EPBU.ON • 0.017~

..·. ·. . .

EPSILON '"' 0 025

to-e to-4

Figure 2.17: Pairs (L , II L1:C II) calculated for the 800 most closely spaced pairs of points

in states of the rotation vector {1432,1897)/2513 with the trigonometric perturbation.

40

2.3 Hedlund's examples

In this section we will worry about whether the shapes of our states have anything to

say about the shapes of much longer states with similar rotation vectors. A central

premise of our program of rational approximation is that they do; unfortunately,

except for the two-dimensional case (twist maps on the cylinder), we cannot prove

this. We cannot even show that states with the same rotation vector must have the

same shape. Consider the family of minimizing states with rotation vectors ,

Po 2po
. .. ' '. 0. n E z+,

nqo

where p 0 / q0 is in lowest terms. For each of these states there is certainly one solution

to the Euler-Lagrange equation that is just a concatenation of n copies of the p 0 / q0

minimizing state . But there may also be other solutions, some of which may have

lesser total action.

To see how this can happen, we consider the problem of finding minimal geodesics,

curves of smallest possible length, on either the two- (or three-) dimensional torus.

This problem arises, for example, in the motion of a free particle in a system with

periodic boundary conditions and may be reduced to a symplectic map via a surface

of section, but in the discussion below it will be simpler to think about continuous

time and smooth trajectories. We will work with two different representations of

the problem, one on the two- (or three-) dimensional torus and another made by

periodically extending the torus to get the plane (or R 3
). In either representation,

we will allow the metric to be other than the usual Euclidean one.

In the Rn version of the problem, a minimal geodesic is a curve, 1 : R-+ Rn,

parameterized in terms of, say, arc length and for which every finite segment is the

shortest possible curve connecting its endpoints. Our special interest will be the

periodic geodesics; on the torus these are curves that wind around and eventually

41

begin to retrace themselves . In Rn they appear as curves for which 3r E R such that

l(t+r)=l(t)+m, mEZn (2.19)

and we may classify them according to m, which gives the number of times 1 winds

around each of the coordinate directions on the torus before repeating itself. Hedlund

studied these curves on the two-dimensional torus and, in [Hed32), showed that for

every pair (m 0 , m 1) E Z 2
, there is a minimal periodic geodesic that winds m 0 times

around the 80 direction and m 1 times in the 81 direction before closing.

He also made an observation that connects the geodesic problem to the problem

of finding Birkhoff periodic orbits. He asked whether, for example , the minimizing

periodic geodesic for the pair (10,20) could be other than the urve which traces

10 times over the (1,2) geodesic. He found that it could not. The corresponding

statement for Birkhoff orbits is that the pathology outlined at the beginning of the

section does not occur for two-dimensional twist maps of the annulus.

In the last section of his paper, Hedlund demonstrated that one cannot expect the

analogous result in higher dimension. He presented an explicit example of a metric

on T 3 for which the shortest geodesic of type (ni, nj, nk) is not n copies of the

shortest (i, j, k) geodesic. Victor Bangert [Bang87] has proved that a metric on Tn

has at least n + 1 minimal geodesics and has given some principles for the design of

Hedlund-type examples.

Figures (2.18) and (2.19) contain the main ideas. Bangert sets up the metric so

it has certain non-intersecting lattices of "tunnels," tubes in the middle of which the

metric is so small that the length of a segment is, at most, say, 1/100 of its Euclidean

length. Outside the tunnels the metric is such that the length of a segment is a bit

longer than its Euclidean length. In Bangert's examples the tunnels run along the

lines (0, t, ~), (!, ~' t), and (t, 0, 0), t E Rand along all their zn trauslates. Under

these rather severe conditions he is able to show that a minimizing geodesic must

spend essentially all its time inside the tunnels, venturing out only to leap from one

42

system of tunnels to another.

A minimizing, periodic geodesic then has only three short segments lying outside

the tunnels, no matter how long it is. Note that such a geodesic strays a long way

from the straight line that connects its endpoints; the latter is a minimizing periodic

geodesic for the flat , Euclidean metric. In the language of Birkhoff orbits, Hedlund 's

pathology would occur if some few p-q periodic states turned out t o have such tiny

actions that all very long states would be composed of a few segments, with each

segment containing many copies of the few economical states . Although we can­

not preclude this possibility, we feel it is unlikely. Hedlund and Bangert 's examples

require that the curves through the tunnels be much, much shorter than their Eu­

clidean lengths, consequently, their metrics are very far from flat. By contrast , our

generating functions are close to the unperturbed ones. We might thus hope that

our minimizing states are obliged to stay close to the unperturbed states. Katok has

shown, in [Kat88], that if the perturbed sta tes stay within some bounded distance of

the unperturbed distance and if the bound is independent of the length of the state,

then Hedlund 's pathology does not occur.

We undertook two studies to investigate these issues. In the first, figure (2.20),

we measured the deviation of our minimizing states from the straight line connecting

x 0 to Xq· The distance always remains smaller than the diameter of the torus, 1/ .../2.
In the second study we used the Farey triangle algorithm of Kim and Ostlund, (see

appendix A), to get a sequence of rotation vectors tending to (377, 2330)/3770. The

states for these vectors are displayed in figure 2.21. The longest orbits look very much

like the shortest. We also did some experiments on families of rotat ion vectors of the

form 7 np0 jnq0 ; The longer states were indistinguishable from the shorter ones.

7 An unperturbed minimizing state is n copies of the unperturbed Po/qo state and our procedures
for constructing perturbed mi nimizing states are such that this shorter , internal periodicity would
be retained throughout the calcula tion . We tried to circumven t this problem by adding a small,
random displacement to each of the p oints in the starting guess , see appendix A.

43

Figure 2.18: Some minimizing periodic geodesics for the two-dimensional torus; the

shortest curve of type {214) is just 2 copies of the shortest one of type {1 1 2}.

44

Figure 2.19: Some minimizing periodic geodesics for a Hedlund example on the three­

dimensional torus; the shortest curve of type {2,4,2} is not 2 copies of the shortest

one of type {1,2,1} .

. 50
(377. 2330) I 3770. TRIO

.45

. 40

.35

z
0
I=

~

-~

.zs
Q

.20

.IS

. 10

. 05

0 8 ~ ~ ~
0 N ~ "'

.,
~ ~ ~ ~ ~ 0 0 ~

.40
(1432. t8g?) I 2613. TRIO

. 35

-~

.zs
z
0

~
~

.20

Q

.rs

. 10

-~

0
0 8 8 8 8 0 N ~ "'

.,
~

N

0 0 0 0 0 2!
EPSILON

45

~ !1l !:! ~

2i ~
.,
2! 8

.18

.16

. 14

.12
. . .

.10

.08

.06

. 04

. 02

oL-~--~~--~~~--~~--~~
0 .001 .002 .003 .004 .005 .006 . 007 .008 .009 .010

- ~ ~~~r(~14r32~. r18~G~7l~l~2~6~t3~-~·~~-~rn~o~~~

.28

.26

.21

.22

.20

.18

.16

.11

. 12

. 10

. 08

. 06

.01

.02

o s s s s ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ a
~PSILON

Figure 2.20: The largest displacement between a point in a perturbed minimizing state

and the position it would occupy in the absence of the perturbation. Note the abrupt

jumps in the deviations fo r the fast-Froeschle example.

{20,123) 1 199

·.

46

(102,631) 1 1021

:• , ..

\ ·.
' "

·.

' ..

' .,

' .,

,.

-~ ~-\

.
' ' ! ,.,

·,.

·'

' '

{194,1199) 1 1940

J I

_1-~--~-- -- _j

'·

'·

. '

\
\· . \ \

\'.
\'·

\

'· \ \

\. \
\ · .•

\
\.

...
\ .

\:

\ \.
'- \ ­

· \

': :\.

I

------·--·-~. __ .!__~_- • ~

...

....

€- 0.0075

€- 0.01

€- 0.0175

€- 0.0275

Figure 2.21: A serzes of orbits whose rotation vectors approximate (377,2330} /3770.

47

Chapter 3

The Frontier of Chaos

Our first investigations aimed at the question "What remains after invariant tori have

been destroyed?" Our next set asks the more basic "How could we tell if the tori

were there?" To answer this question we might follow Kolmogorov, Arnold and Moser

and seek to find perturbations so small that some tori would be guaranteed to exist.

Conversely, we could try to find perturbations so large that no invariant tori remain.

Numerical evidence suggests that the first approach will be hard; tori seem to persist

well beyond the point where traditional KAM arguments break down. 1 We will adopt

the latter strategy; we will try to fill in the blanks in the following "converse KAM"

theorem :

Theorem For the n-dimensional symplectic twist map F ~ : An -4 An,

F~(:z:,r) = (:z:',r') = '-----------'

depending on the parameters, E1 we are guaranteed that no KAM tori exist for any

E E SF= { } .
L---------------~·

Proof

1 Several authors have now proved machine-assisted, constructive KAM theorems for specific
maps; these are in much better agreement with non-rigorous numerical predictions. See e.g., [CC88],
[Rana87], and [LR88].

48
I

~"
{-.....To ---

' ' ,~···~·, ·: ,
, ,

, , ,

Figure 3.1: The space of near-integrable maps, showing the frontier of non-integrability

around T0 , an integrable system.

Herman, in [Herm83] first saw that one might get a better notion of where invariant

tori exist by looking at the edge of the region where they do not. He considered maps,

TE : T X R - T x R, of the form2

TE(x,p) = (x',p') = (x + p,p + Ef(x + p)), (3 .1)

small perturbations to the integrable system, and envisioned a kind of cartography

of non-integrability. By choosing different fs he could consider different directions in

the space of perturbations. For each fixed f he could increase the value of E until it

reached a size, E = Ec(f), such that no invariant tori remained. By calculating pairs

(!, Ec(J)) he could map out the edge of non-integrability, the frontier of chaos.

We will concentrate on ways to get rigorous bounds for Ec(f) but will not make a

very extensive survey3 of fs. The rest of the chapter is organized by dimension of the

phase space and sharpness of non-existence criteria. In the next section we review

converse KAM theorems for area-preserving twist maps on the cylinder, and in section

3.2 we explain how to prove them with a digital computer. In 3.3 we formulate some

criteria for higher-dimensional systems and finally, in section 3.4, apply them to an

example.

2 0ur exmnples are not of this form, but, after a change of coordinates, their inverses are.
3 Jacob Wilbrink, in [Wilb87), used a non-rigorous existence criterion to survey a whole one

parameter family of maps.

49

3.1 Converse KAM results on the cylinder

Many of the ideas presented here originated with Herman's paper [Herm83]. Katok,

at the end of his paper [Kat83], discusses the distribution of points in minimizing

states and explains a way to prove the non-existence of circles. Mather used simi­

lar techniques to make applications to the standard map, [Ma84], and to billiards,

[Ma82b]. He also introduced a different, more generally applicable criterion based on

the existence of action-minimizing states. MacKay and Percival augmented Herman's

argument with rigorous computation and discovered a connection between Herman 's

work and Mather's action criterion.4 The presentation below owes a great deal to

their excellent paper, [MP85], and to [Strk88], which came out of Stark's thesis.

3.1.1 definitions and a first criterion

We will study maps given by (3 .1) and try to find criteria that preclude the existence

of the kind of tori produced by the KAM theory. We cannot, of course, rule out the

existence of tori in the broadest sense. No matter how large the perturbation, some

tori may remain in the islands around elliptic periodic points . In the two-dimensional

case we will restrict our attention to the kind of circles that wind once around the

cylinder; such circles5 can be smoothly deformed into the curve p = 0. In higher

dimension we will consider those tori that can be smoothly deformed into the torus

p=(O,O, ... ,O).

Maps given by (3.1) are automatically area and orientation preserving. We will

add the further restrictions that the perturbation, /, be differentiable, periodic, and

4 Recently, Rafael de Ia Llave (personal communication) has developed an extremely promising
criterion based on the construction of hyperbolic orbits.

5 These circles are also called rotational because the restriction of the map to such a circle gives
a motion conjugate to a rotation.

50

Figure 3.2: The cylinder and several invariant circles, some (a) rotational and some

(b) encircling a periodic orbit .

have average value zero, i .e.,

f(x) = f(x + 1), fo1

J(x)dx=0.

The restriction on the average value is essential; if it is not met T~ has no invariant

tori at all. To see why, consider a curve, (x,f0(x)), and its image, (x,f1(x)), where

r 1 is given implicitly by

rl(x') = p'(x,fo(x))

or

rl(x + fo(x)) = fo(x) + ~f(x). (3.2)

Preservation of area and orientation guarantee that the area between the two is in­

dependent of r 0 since, if we consider another curve, r~, and its image, r~' we can

write

so

and hence we can calculate it for any curve we like. Using r 0 (x) = p0 and equation

(3.2) we get

l\ (x + Po)= Po + E/(x), or 1\ (x) = Po+ ~f(x- Po) .

Thus we find

~r(x) ~f(x - Po).

51

Figure 3.3: A curoe and its image. The area between the two is shaded.

The area between the two curves is then

the average value of f . Now suppose r~nv is an invariant circle. That means rinv
r~nv. Then

k1

~f(x)dx = 0

and we have our first and simplest test for the non-existence of invariant circles.

Unfortunately this is not a very decisive criterion; it leaves open the possibility of

circles for any value of k in the Taylor-Chirikov standard map. To do any better we

must more carefully consider the geometry of invariant circles, a task we turn to next.

3.1.2 Lipschitz cone families and their refinement

The first thing to notice is that invariant circles divide the cylinder into two disjoint

pieces . Orbits that begin below au invariant circle must always remain below it . One

might hope to turn this observation into a non-existence criterion, say, by starting an

orbit at some point (00 , p0) and evolving it forward . If the orbit eventually attains

arbitrarily large momenta then the map has no invariant circles. Chirikov [Chkv79]

calls orbits with indefinitely increasing momentum "accelerator modes" and notes

that they exist in the standard map for k 2: 21r.

Rigorous implementation of this strategy is hard. The simple calculation described

52

Figure 3.4: Numerical error may carry a point across an invariant circle.

above does not work because one can never be sure that a computational error will

not carry the orbit across a genuine invariant circle. Simply following an orbit cannot

establish the non-existence of circles. One might instead try to follow an orbit and

say that if it never rises above a certain momentum p = Pma:c then it must be trapped

beneath an invariant circle. That is, one might try to prove the existence of circles.

From an analytic point of view this seems like a good idea. A theorem of Birkhoff

[Birk22] says that if the twist map is continuously differentiable and if there are two

values of the momentum, p 1 and p2 , p1 < p2 , such that any orbit that begins with

momentum less than p1 never attains a momentum greater than p2 , then there is an

invariant circle somewhere in the band p 1 < p < p 2 . Further, the circle6 is the graph

of some Lipschitz function, f(O).

Figure 3.5: If orbits with

initial momentum less than

p1 never rise above p = p2

there is an invariant circle.
Pt - -- ___ ,_ ,•

Despite this analytic support, we cannot get a good existence criterion either.

Not only is computational error again a problem, but we must also worry about the

cantori. Although they are not true barriers to the diffusion of phase points, they

G[Ma84) gives a sketch of the proof of this theorem.

53

can be formidable partial barriers .7 Even if we could calculate an orbit with perfect

precision we could never be sure that it was permanently trapped below a particular

Pma:r:· To get a really useful criterion we must pay closer attention to Birkhoff's

theorem, particularly to the part where he tells us that rotational invariant circles

are the graphs of Lipschitz functions.

Suppose the invariant circle has rotation number w, then we will say that it is the

graph of r..,(O). Since r.., is Lipschitz we have

(3.3)

where L is a constant independent of 0. On the graph this means that a vector

tangent to the circle is confined inside a cone, see figure (3.6). Since r"' is only a

Lipschitz function it need not have a well-defined tangent at every point. That is,

although (3.3) implies that both the right and left limits,

(f~)right

{f~)left =

must exist, they need not be the same. Nonetheless, both limits must be smaller than

L, and so both the vectors {1, {f~)Ze/t) and (1, (f~)right) are in the cones8 pictured in

figure (3.6).

The constant L is a property of r w and is defined only along the curve. We could,

instead, draw a cone at every point, (e l p), such that if an invariant circle passes

through (0, p) its tangent must lie inside. We will call such a system of cones a cone

family and represent it with two 0-periodic functions, L+(O,p) and L_(O,p); a vector

tangent to a circle through (O,p) may only have slope,£, with L_(O,p) :=:; .l :=:; L+(O,p).

7For the golden cantorus of the standard map, with k = 1.0, [MMP84] find the mean crossing
time to be on the order of lOG iterations.

8 Indeed, a Lipschitz funclion is absolutely continuous and so has a derivative defined almost
everywhere, see e.g., (TLch39].

54

Figure 3.6: An invariant curve and with some Lipschitz cones.

The simplest possible cone family is

L _ ((} , p) = Lo- , (3.4)

We will call tltis a naive or uniform cone family. We can always get such a family

by taking, at the worst, -Lo- = Lo+ = oo. Often, as we shall see, we can do much

better.

Each tangent vector lying inside the cone family is ostensibly a permissible tangent

to an invariant curve but the dynamics may preclude some of the slopes permitted

by the naive cone condition. Consider the action of the map on a tangent vector, say

the vector v with foot point ((}, p) .

is its image and has foot point ((}', p'). We can apply the map DT~ to all the vectors

allowed by the Lipschitz cone at some point Zn = (Bn, Pn) and examine their images

at Zn+l = (Bn+1!Pn+1) = T.(zn)· In this way we can use the map on tangent vectors

to define a map on cones . The image of the cone from Zn will not usually coincide

with the cone at Zn+l· This m eans we can eliminate part of the cone at Zn, for if there

were an invariant graph above Bn its tangent vector would have to be one of the ones

whose images lie inside the naive cone at Z n+l· We could make a similar argument

involving DT~-l and Zn- l and so refine the cone at Zn even further, see figure (3.7).

More formally, we can use the map to recursively define a sequence of cone families,

55

{Lo_, Lo+}

DT,-1 {Cn(T.(O,p))} n Cn(O,p) n DT,} {Cn(T,- 1 (0,p))} {3.5)

where C0 is the naive cone family, {3.4) . The vectors permitted by the nth cone family

have n allowed images and preimages. For twist maps this refinement procedure

produces increasingly restrictive cone families [S trk88]. If it ever happens that Cn(e, p)

is empty, i.e. that the intersection in {3.5) contains no vectors, then no invariant circle

can pass through the point (e, p).

Figure 3 .7: Refining the cone family. The inverse image of the cone at Zn+l and the

forward image of the cone at Zn_ 1 intersect in a new, smaller cone at Zn.

Cone crossing arguments turn out to be quite successful, though they need a little

more elaboration to be suitable for computation. So far we have seen how to prove

that no invariant circle can pass through a particular point, now let us use this to

prove non-existence of circles. Because a rotational invariant circle must cross every

vertical line, we can establish non-existence by proving that no circle can cross a

particular vertical line {(O,p)IB = Bo,p E [0, 1)}. To do that we divide the phase

space up into finitely many pieces . For example, each piece might be a rectangle of

the form Rii = {(O,p)i p E (pi>PH1] 0 E [Oi , OHI]} We can use this decomposition

to construct a sequence of piecewise constant cone families , see figure {3.8) .

56

1.0)()(~ ~ ' ~ ~)()()(

)(~~"~~)()()()(
P '~><XXX><

0.0

=--" ~ -:;;rL -:;;rL -:;;rL ~ =--"

=--" ~ r r r ~ ,.....­
xxxxx~' '~
)()()()(~~"~~)(
)()()(~~,~~)()(

0.0 1.0

Figure 3.8: A piecewise con­

stant cone family for the

standard map with k = 1. 0.

No invariant circles can

pass through the shaded

squares.

Ln-(~i) =Lb. Ln_(O,p),
R;i

where the notations "u.b ." and "l.b." mean "upper bound" and "lower bound." If

the rectangles are small enough, refinements like (3.6) can eventually produce a whole

vertical strip of empty cones.

Finally, we note that the foregoing serves to prove non-existence for a single map.

In practice one wants non-existence results for a whole class of maps , for example,

for all the standard maps with parameters kmin ::; k ::; kma:r · One need only modify

(3.6) a little, taking the bounds over both R,i and k.

Stark has shown that such a program, allied with some extra observations, can

reveal non-existence of circles with only a finite amount of work. He shows, for

example, that if one has a family of maps depending on parameters and one studies

a compact set of the parameters for which no invariant circles exist , then the cone­

crossing criterion will demonstrate their non-existence after only a finite amount of

57

computation. 9

3.1.3 some new coordinates and two more criteria

Here we will begin to explain one way to implement the ideas of the previous section

on a digital computer. In the process we will reformulate the cone-crossing criterion

in a way that obscures its geometric origin 10 but reveals a connection to minimizing

states. The first step is to recast the map in terms of delay coordinates; we have

been considering T~(B,p) = (O',p'), let us now speak of g~: TXT 1--t TxT so that

g.(en, en+l) = (en+l' en+2) where the 8' s are angular coordinates of successive points

in an orbit . We will also need a lift of g, G< : R X R -t R X R, G<(u, v) = (u', v').

As before, T< and G< are related by an action generating function, H<(u, v), where

V(x) =-fox f(y) dy,

and

In terms of these coordinates an invariant circle appears as a curve Xn+l = 1(xn)

satisfying

1(u + 1)

G<(Xn 1 !(xn))

1(u) + 1,

(xn+1 1 Xn+2) = (!(xn),!(!(xn))).

The most nmve Lipschitz cone, (3.4) with Lo± = ± oo, appears here as 0 :::; .e:::; oo

9 Here "finite" means that one could do the calculations to some finite precision and refine the
cone families for some finite number of steps.

10See [MP85] for a more direct implementation.

58

v

Figure 3 .9: An invariant

curve and some Lipschitz

cones in the delay coordi-
u

nate system.

where l is the slope of 1. The lower bound of zero is just the requirement that the

original map, when restricted to an invariant curve, be order preserving.

For examples like (3.1) u' and v' have very simple forms :

u'(u, v)

v'(u, v)

v,

v + (v - u)+Ef(v),

2v- u + E/(v).

G£'s action on tangent vectors is equally simple:

1][::]
For later convenience we will refer to 2 - E ~.,~ (x) as /3(x) .

(3.7)

(3.8)

If we take a tangent vector, [1,£], representing a slope of l then (3.8) tells us that

its image will represent a slope l' given by:

l' =
ov'
ou''
!3(v)ov ou

ov - ov'
1

/3(v)-l. (3.9)

59

Preservation of order requires that both l and £' be positive. Combining this with

(3.9) we obtain our first real criterion.

Criterion 1 If there are any values v E [0, 1) for which {3(v) < 0 then the map

G~(u, v) to which {3 corresponds has no rotational invariant circles. For the standard

map this criterion says kc .::; 2 .

We can squeeze one further analytic criterion out of (3 .9) by noticing that £'

will surely be negative if ever l is very small, and that, always, £' < maxvE(O,l] {3(v).

Suppose we have m and A1 such that 0 .::; m .::; {3(v) .::; !vi holds everywhere. Then

and £' ~ 0 together imply

I 1 £<AI--

1
0 < M-­- l

- l

or
1 0>­.(.- Jovf"

(3.10)

(3.11)

Inequality (3.11) is a global restriction on slopes, a new lower bound for the

uniform Lipschitz cone family. We could thus run through the argument again, this

time requiring£' ~ ~f . Having done that we would have a better, narrower cone family

and could repeat the argument yet again . . . better to carry this process straight to

its conclusion and realize that our estimates will stop improving when we find a slope,

l_, such that
1

l_ = Af - l_.

This has two roots. The least of them is just the l_ we wanted; the larger one is a

global upper b ound on slopes. It comes from the remark above, that l' .::; M . Since

every vector tangent to an invariant curve is the image of some other tangent we can

conclude£ .::; A1. Once that,s done we can argue£' .::; Af- ir and so on. Finally we

attain

where
AI - -J 11!2 - 4

f_ = 2)

A1 + -)1112 - 4
l+ = 2 . (3 .12)

60

Armed with this best of all possible uniform cones, we are able to make a genuine,

dynamical cone crossing argument.

Criterion 2 ("Mather f') If m ::; (3(v) ::; !If and .f+ and .f_ are the bounds of

the uniform cone family given by (3.12), then there are no rotational circles if

1
.f_ > m - .f+. (3.13)

Remark For the standard map, m = (2 - k) and }vf (2 + k) and so (3.13)

implies that kc ::; 1·
Proof The idea is to concentrate on those states that contain the point where (3

attains its minimum, where (3(v) = m. Visits to this point are most punishing to the

slopes of tangent vectors; they lead to the smallest possible values of .f' in (3.9) . If

m is so small that even the slope from the upper edge of the uniform family, .f+, is

diminished to an untenable value, then certainly no others can survive.

3.1.4 non-existence for minhnalists

We will now reformulate Criterion 2 in the language of minimizing states. The new

version will prove more fruitful for higher-dimensional generalizations. Here again we

follow MacKay and Percival, who demonstrated that their cone crossing criterion is

equivalent to the action-difference criterion put forward by Mather in [Ma86] .

We begin by assuming that an invariant circle exists, then we deduce some facts

about the minimizing orbits lying on it. Then, to prove non-existence, we will do

a calculation that contradicts these facts. Define a minimizing state to b e sequence

{· • • Xn- b Xn, Xn+ l, ···}such that every finite seg1nent Xn, Xn+l, • • ·, X 171 is a minimum

of the action functional,
n-1

lVm,n(X) = 2:::::: H, (xj, Xj+l), (3 .14)
j=m

where H, is the action-generating function and we consider variations that leave Xn

and x 171 fixed . Mather's action-difference idea is to note that if an irrational invariant

61

circle exists, then every orbit on it is mtmmtzmg and has the same action. That is,

if we take two states arising from orbits on the circle, X a = { · · · , X~, X~,· • ·} and

Xb = {- · •, X~, X~, • • •} and take the Jimi t

n-1

J0.;, L H,(xj, xj+l) - H,(x~, x~+l) (3.15)
i=-n

it should come out to be zero.11 He suggests that to test the existence of an invariant

circle having irrational rotation number w one should approximate w by a sequence

of rational numbers, En, and use the rational numbers to construct the two sequences
qn

of Birkhoff periodic orbits, the minimax and minimizing orbits. These sequences

accumulate on two distinct sets on the putative invariant circle. If the circle is really

present, orbits on the two sets should have the same action and so the limit

(3.16)

should tend to zero. If it tends to some other value then no circle with rota-

tion number w exists. Rather than trying to calculate the limit in (3.16), we will

exploit the fact that every state X= {-··,x_1,x0 ,x1, · ··} arising from an orbit

{· · ·, (x-t,P-1), (xo,Po), (xt,Pt), · ··}lying in an invariant circle must be minimizing;

every finite segment snipped out of such a state must be a non-degencrn.te minimum

over all segments having the same endpoints12
.

The foregoing suggests a strategy for proving converse KAM theorems. One

chooses an a uspicious starting point , x0 , for which the perturbation to the gener­

ating function is large , and considers every possible state containing it . This is not

quite so huge a task as it sounds. Since the map, G,(u, v), det ermines the whole state

11 Showing that the action difference (3.15) vanishes is different, and harder, than showing that the
average values of the actions a re the same. While the la tter follows from the ergudicity of irrationa l
rota t ion, Mather's result requires a more delicate examination of the action functional. See [Ma86)
for details.

12The reader may wonder wh y the sta tes lying on an invariant circle do no t belong to a one
p a rameter family, and ask how they can lead t o non-degenerate minima. The answer is tha t we
consider only va ria tions that leave the emlpuints of fini te segments fi xed; if we allowed them to m ove
the minima would be degenerate.

62

once, say, x 0 and x 1 have been given, we need only consider all possible successors,

x 1 . For each x1 we work out the state, X, and the variation of the action over finite

segments, {x-1, xo, · · ·, Xn},

0 ¥ ~ 81¥-l,n ox]· J. -l,n = ~ 8 +
j = l Xj

n-1 82J.1f
0 1 ~ -l,n c c + z ~ 8 8 UXjUXk·

j,le=l Xj Xk

The term linear in OXj is automatically zero because X is a minimizing state. For our

examples, (3.1), the quadratic term can be represented by the symmetric matrix,

0

0

which we shall call)\;fn(X), or A1n for short.

0

0

-1 2 + E~(xn-2) -1

-1 2 + E~(Xn-d

If X is n:tinimizing then lvfn is positive definite. Since A1n is so simple it is easily

rendered into diagonal form, a form that makes it simple to calculate the determinant.

We can write

2 + €£(xo) -1 0 0 do 0 0 0

-1 2 + E£(xl) - 1 0 0 dl 0 0
--t

0 -1 2 + E£(x2) -1 0 0 d2 0

where the di are computed recursively using

(3.1 7)

63

If ever one of the di is negative we may conclude that ll;fi is not positive definite

and so does not arise from a minimizing state. Notice the similarity between the

evolution equation for the diagonal entries, (3.17), and the one for slopes, (3 .9). As

we refined the limits on slopes, so we can refine those on diagonal entries. We obtain

a d_ such that if di < d_ then some later d~e, k > j is sure to be negative. We also

get d+, a global upper bound on the dj. We can thus modify (3.17) so that we begin

with d_l = d+, so do = f3(;vo) - d~. The original prescription corresponds to taking

d_l = 00 .

3.2 Rigorous computing

lu this section we will see how to implement the action criterion of the last section on

a digital computer. Since we will eventually want to treat maps in spaces of arbitrary

dimension we will outline some of the procedures in greater generality than required

for the cylinder. The most important part will be a technique for rigorously bounding

the image of a set .

3.2.1 two reductions and a plan

As in section {3.1.2), we need only show that no invariant circle crosses a particular

vertical line. In the language of the previous section this means our problem is reduced

to showing that some particular ;~;0 cannot appear as a member of any minimizing

state. We can get a further reduction by noticing that our examples satisfy

p' (()' p + 1) = p1
(()' p) + 1;

their dynamical structure is periodic in p as well as in e. So, if an invariant circle

passes through the p oint (O,p), there is also one through (O , p + 1); if n o invariant

circles pass through some vertical segment 10 = {((), p) IB = ()*, p E [0 , 1]} , then there

64

cannot be any at all. Studying a segment like / 0 is equivalent to studying a collection

-l -"' i--------

Figure 3.10: Rotational invariant circles must cross every vertical line, and, for our

examples, must be periodic in p as well as e.

of states {XI x 0 = x*, x 1 E [0, 1]}, where x* is a lift of 8*. With these reductions in

hand, we are ready to plan the main computation. Our goal will be to prove:

Theorem

There is an x* E [0, 1] and an interval of parameter values, I~= [c, ~:+], such that

none of the maps, G., € E 1£, have a minimizing state with x 0 = x*.

Piau for the proof:

(i) Formally extend the phase space to include the parameter € and use the map

G£(u,v) to define a new one, G : R x R x R---+ R x R x R, where

(3.18)

(ii) Select a starting point x*. For examples (3.1) we will want x* such that j3(x*) is

a minimum, a choice that is independent of €.

N

(iii) Divide the interval [0,1] into a collection of closed intervals, Ij, U 1i = [0, 1]. Us-
i = l

ing the Ij, which should intersect only at their endpoints, we can construct a col-

lection of sets in the extended phase space, sj = { (€, u, v) I € E 1£, u = x*' v E 1j}.

In practice, this division is done by the program itself. It begins by trying to

prove the theorem on the whole interval at once, and gets either, "Yes, the theo­

rem is true," or "l\laybe it 's true." If the answer is "maybe" it splits the interval

65

in half and tries the two pieces separately. If one of them yields "maybe" it gets

subdivided too The process of subdivision will go ou forever if the theorem

is false, but if it is true the work of Stark suggests that the cutting will stop

after finitely many steps.

(iv) For each piece I;, try to prove that no minimizing state with :z:0 = :z:* can have

:z:1 E Ii.

The last step is where the computation comes in; we will use an argument like the

one at the end of section (3.1.4), but here we calculate upper bounds13 d~c for the kth

diagonal entry in (3 .17).

u.b. ,B(:z:*)- _!_,
£El, d+

1
= u .b. ,B(v)--=-,

(<,u,v)ESj do
1

u.b . ,B(v)- -=-,
(<,u,v)EG(Sj) d1

(3.19)

Finding a way to calculate the kind of bound that appears in the definition of d2 , an

upper bound over an image of S;, is the last hurdle in the argument. What we need

is a procedure to rigorously bound the image of a set. In the next section we will

explain a quite general scheme due to MacKay aud Percival.

3.2.2 bounding in1ages of prisms

For concreteness, and to get a.n algorithm straightforward enough to be realized

as a computer program, we will concentrate on sets with a prescribed form, par­

allelepipeds, or prisms for short. An n-dimensional prism is specified by a center

13We will often want to evaluate upper bounds, as opposed to maxima. The former are realizable
on computers, the latter may not be.

66

Qn

r .O.o: 0 0 2

r= (xo,P), P = 0 ~ 0 2

0 0 .O..z:

/
2

.. '.t..X+

Figure 3.11: The n-dimensional hypercube Qn is mapped to the prism by the matrix

P.

point, Xc, and an n x n matrix, P. The prism is the set

(3 .20)

where Qn is then-dimensional hypercube, {77 E Rnl- 1 ::=; 1Ji ::=; 1}, see figure (3.11).

Our principal technical tool is the following result .

Lemma ([MP 85]) Suppose <J> : Rn --? rrn is a 0 1 map. Then the <J> - image of the

prism S = (Xc, P) is contained in the prism (xc', P') where xc' is arbitrary, P' = Ao W

for an arbitrary invertible matrix A , and W the diagonal matrix

0
W=

0 0

with

(3.21)

Remark The lemma s eems unnecessarily general; we are left to choose the matrix

A and the new center point, Xc completely arbitrar·ily. If we choose them unwisely the

67

..,.-'- -- - ~
....... ~ ,.,;"'

- ... - - ;..... /

I

I

I
I

I

Figure 3.12: A prism, its image, and a prism bounding the image.

new prism will surround the image of S, but may be much larger than necessary.

Usually we will want

and

The freedom allowed by the lemma will make it easy to handle errors m computing

<I>(xc) and cases where D<I>"'cp is singular or nearly singular.

Example (Proof of the lemma for one-dimensional maps)

We start in with a one-dimensional example, see figure (3.13). Here the map is some

C 1 function, rjJ : R--+ R , and a prism, S, is just an interval Xc- .o.x ::; x ::; Xc + .o.x.

We can use the computer to find ¢(x), a. numerical approximation to rjJ(x) for which

lr/J(x)- ¢(x)l ::; 6. Then, choosing xc' = ¢(xc) and14 A= r/J'(xc).o.x, we find

u .b.lx~- r/J(xc)l < 6,
1

w

and

P' = .o.x' =A o H1 2:: 6 + .o.x(max lr/J'(x)l).
:tE S

(3 .22)

14The choice of A is meant to suggest the fo rm required by the higher-dimensional theorem. If
¢'(xc) = 0 we will have to make another choice; any constant will do.

¢(x)
I - - , - -- -::- -

I
I "' .I I
I i :;.

I I I

.... I I

I
I

I
I

I ,' I
; · I

I .' I t
I ' I ,. I

,' I I
I I

Io

I
I
I
I I
I I
I I
I I
I I
I I
I I ... t I
I I
I I
I I

/1

68

:r:

Figure 3 .13: The bounding lemma

applied to a lift of the ci1·cle map,

</J(x) = X+ f2 + 2: sin (27rx) , wi th

n = 0.3, E = 0.8 . The in terval 11 ,

at right, is the one given by the

lemma; it contains the image of

Now let us check some point x E S, and see that its image is inside the pnsm

S' = (x~,P') . Since xis in S we can write x = Xc +77~x with -1 ~ 77 ~ 1. If ¢(x) is

in S' , then ,

or

To see that this is true , consider 1 (t) = ¢(xc + t71 ~x). 1 (t) is a 0 1 function from

[0 ,1] t o R with !(0) = ¢(xc), /(1) = ¢(x). By the Mean Value Theorem there is a

t o E [0 , 1] such that

!(1) - !(0)
d,
dt (to),

d
dt (¢(Xc + to7] ~X)),

7] ~x 4>'(xc + lo7] ~x) .

Rewriting this,

14>(x) - x~ l l4>(xc) - x~ + 7] ~x¢'(xc + to7] ~x)l ,

< lc/>(xc) - x~ l + l~xc/>'(xc + to7] ~x)I,

< ~x' , (3.23)

even as the lemma claimed.

69

Proof (The general case)

The argument is much the same as the one-dimensional argument above. Here the

assertion of the theorem is that every point in the initial prism, S = (Xc, P), has its

image in S' = (x~, P'). If one writes a point, x E S, as x = Xc + PTJ, TJ E Qn then the

theorem says

(3.24)

If we take (3.24) one component at a time we find

(3.25)

To prove this for the jth component we consider a function li : [0, 1] ---+ R ,

li(t) = [P'-1 q,(xc + t PTJ)Ji. li(t) has the same smoothness as the map and so the

Mean Value Theorem says ~t0 E [0, 1] such that

or

/i(1) - li(O)

[P'-1 (<T>(xc + PTJ) - q,(xc))]j

Arguing as we did in the sequence (3.23);

I [w-1 o A- 1
{ (<T>(xc)- x~) + D<I>..,(tn) o PTJ }ti,

~j j[A-1 {(<I>(xc)- x~) + Dq,..,(to) o PTJ}Li,

{

I[A- 1(q,(xc)- x~)Jil }

< ~; + f;; IIA -I 0 Dol>,(,,) 0 P);k I '
< 1,

which is just the thing required by (3.25).

3.2.3 choices for the matrix A

Although we usually take A ~ D<I>zc o P we may sometimes need to make a different

choice to avoid a singular A. Indeed, the very first prisms we consider, the ones of the

70

form I~ x x* x I;, have zero width in the u direction and so have singular matrices,

P. In this section we will illustrate two schemes for fattening up the matrix DCI>"'c o P.

The first, the fixed-form scheme, is borrowed directly from [MP85]. The second, called

the column-rotor, is a slight generalization of theirs. These techniques have not been

carefully optimized and are probably not the best . They work well enough and, in

any case, are not the most time consum..iug part of the algorithm.

Fattener 1 (fixed-form) Require the new matrix to have a particular form. Sup-

pose, for example, that the initial prism, P, and the derivative of the map, DCJ>"'c'

are

and so

We might then look for a matrix A of the form

A= [~ ::: l
Figure (3.14) shows an application of this scheme.

Figure 3 .14: The fixed-form fattener v

applied to the image of a singular, ver-

tical prism. The map is the delay­

embedded version of the standard map

with k = 0.8. The new prism, shown

in grey, fits snuggly in the u direction

but is much more generous in the v di-

rection.

DCJ>:Z:c 0 P =
[0

0

I
u

Fattener 2 (column-rotor) This method deals with matrices whose columns, when

viewed as vectors, are all very nearly parallel. Such matrices will be close to singular ,

71

Figure 3.15: The column-rotor

scheme applied to a narrow prism.

The initial prism is at the lower

left; it is outlined in black and

its center 'tS marked with a dot.

The prism's true image is solid

black. A bounding prism, produced

with the column-rotor scheme us­

ing an angle of 27°, is shown in

light grey, the darker prism be­

neath used an angle of 90°.

and must be expected to anse if the dynamics are hyperbolic. If we neglect the

fattening steps, the matrix of the prism bounding <Pn(50) looks like

(3 .26)

If any of the Lyapunov exponents are positive the columns of the matrix product

(3.26) will be nearly parallel to each other and to the eigenvector corresponding to

the largest eigenvalue of D<P~c. The idea of this scheme is to rotate the columns with

respect to one another so as to guarantee a certain minimum angle between each

pair. In two dimensions, (see figure (3.15)), this is an entirely satisfactory program.

In three and more dimensions it is possible to find linearly dependent collections of

column vectors each pair of which is separated by a sizable angle - one could have a

triple of coplanar vectors, for example. Such collections do not seem to arise in our

calculations, and we have made no special provisions to avoid them. The details of

column rotation are described in appendix B.

72

3.3 On to higher dimension

Here we develop some new results. The forms of the arguments will be much the

same as in the preceding sections, but t.he maps, tori, and cones will exist in higher­

dimensional spaces . The general results for higher-dimensional invariant tori are not

so strong as for circles on the cylinder, so we must make a few new restrictions and will

obtain somewhat weaker results. We will see how to generalize the cone-crossing and

action criteria and then show an application to the example with the trigonometric

perturbation, (2 .14).

3.3.1 maps and tori

As above, we will consider only small perturbations of integrable systems. We will

have 2n-dimensional symplectic maps, f£: Tn x Rn -+ T 11 x Rn, of the form

f£(8 , p) (8'(8, p), p'(8, p))

8'
8v~

8+p--
88

p' 81~
(3.27) p- -

88

where ~(8) : Tn-+ R is some periodic function with at least two continuous deriva­

tives and E is drawn from some, perhaps multi-dimensional, parameter space. We will

work mostly with a lift, F£ : Rn X Rn-+ Rn X Rn. As we noted in chapter 2, maps

like (3 .27) are the higher dimensional analogs of standard-type maps .

The generating function for a map like (3.27) is

n

IJcj- Xj)2 - ,,~ (a::). (3 .28)
i = l

Although H£(a::, a::') is formally very similar to the generating functions used earlier

in the chapter it is not quite the same; the perturbation, ~' depends on a:: rather

73

than ~'. As we shall see, this makes no real difference in the formulation of non­

existence criteria. We make this small change because the examples of chapter 2 have

generating functions like (3.28).

As on the cylinder, we will not be able to prove the uon-existence of all possi­

ble types of tori, only those that are invariant graphs, sets of the form {(O, p)IO E

Tn, p = 1/1(6)} for some 1/1 :Tn -t Rn. In higher dimension we must add the further

requirement that the graphs be Lagrangian, that is, they must have16

(3.29)

On the cylinder we have the mighty theorem of Birkhoff to assure us that any rota­

tional invariant circle must be a graph. Unfortunately, for n > 1 we have no such

assurance; there may be "accidental" invariant tori that are graphs, but not La­

grangian graphs, and there may even be rotational invariant tori that are not graphs

at all. Still, (3 .29) is not a disastrous restriction. Our techniques are fully comple­

mentary to traditional KAM theory in that constructive versions of KAM produce

just the sort of tori we can preclude, invariant, Lagrangian graphs.

Herman, iu [Herm88], has announced some results along the lines of a higher­

dimensional version of Birkhoff's theorem, but they are not so comprehensive as the

original. He has, however, shown that a Lagrangian graph, invariant under a map like

(3.27), is Lipschitz. This will prove helpful when we try to obtain global inequalities

like (3.12) .

3.3.2 Lipschitz cones: old formulae in new guises

Both the cone-crossing and action minimizing criteria have higher-dimensional analogs.

We will briefly examine the former because of its intuition-pleasing geometric roots,

15 Equivalently, a Lagrangian torus is one on whose tangent space the symplectic two-form,
w = I::j'=1 dpj 1\ d(Jj, vanishes.

74

then concentrate on the latter. Most of the formulae will bear a strong formal resem­

blance to the ones from the first part of the chapter.

As on the cylinder, we begin by switching to a map g acting on the delay co­

ordinates, g~(Bi, (Ji+l) = (Bi+l, (Ji+2), and a lift, G~ : rrn X Rn -t rrn X rrn with

G£(u, v) = (u', v'). In these coordinates the derivative of the map is

DG£

8u' 8u'
8u 8v

8v' 8v'
8u 8v

(3 .30)

where I is then x n identity matrix and ~~ is the matrix of second partial derivatives

of~. An invariant graph, p = t/J(B), appears as a hypersurface

v A(u),

()
8~

u + 7/J u - ox (u).

l~(u) and t/J(u) and are periodic extensions and A(u + rn) = A(u) + m Vm E zn.

The geometric object corresponding to a vector tangent to an invariant circle is now

a hyperplane tangent to the graph. A vector, (ou,ov), lying in tlus hyperplane has

~ ~
8u1 8u2

ov =Lou where L= fllll fllll
8u1 8 u 2

(3.31)

so that the tangent plane is the subspace spanned by the n vectors

(1 0 0 ~ fllll 8A,.)
' '· · · 'e 'e '· · · e ' Ut Ut Ut

(0 1 0 ~ f!.!'!:l.. 8A,.)
' ' . .. '8 '8 ' ... 8 ' U2 U 2 U 2

These are conveniently represented in block form as [I , L] where I is then x n identity

matrix and L is as in equation(3.31). The action of the map on the hyperplane is

75

given by

(3 .32)

where {3 = 21- ~~ (v). The new tangent hyperplane must then have

L' = {3- L - 1
. (3.33)

In the two-dimensional slope evolution equation, (3.9), existence of an invariant circle

meant both the slopes l and l' had to be positive. Here the existence of an invariant

Lagrangian graph im.plies that the matrices L and L' are positive definite. On the

cylinder we were able to study equation (3.9) and obtain a narrower global Lipschitz

cone; where first we had 0 ~ e ~ 00 we eventually got e_ ~ e ~ e+' with e± given

by equation (3.12). There is a higher-dimensional analog of this best global Lipschitz

cone, but we defer it until section 3.3.4.

3.3.3 minimalism revisited

We now turn to the higher-dimensional generalization of the action criterion. The

arguments below come mostly from MacKay, Meiss, and Stark, [MMS89], Katok,

[Kat88], and Herman, [Herm88] . The first thing we need is a higher-dimensional

version of the theorem of Mather that told us that invariant circles are composed

entirely of minimizing orbits. The necessary result, which says that every orbit on an

invariant Lagrangian graph is minimizing , has been proven by Katok, [Kat88], and

by MacKay, Meiss and Stark, [MMS89]. With this result in hand we can proceed as

before. We consider finite segments, :c_1, :c0, . . . Xn taken out of minimizing states.

The action functional is still

n-1

H7- 1,n = L H~(:cj, :Cj+1),
j=-1

n-1 1
L::.: 2 11 :Cj+1 - :Cj 11

2
- l~ (:cj)-

j = - 1

76

and the second variation of vV_ 1,n is, in block form,

,l3(:Co) -I 0 0 0

- I ,l3(:vi) - I 0 0

0 - I ,l3(:c2) - I 0

0 -I ,B(:Cn-2) - I

0 0 - I ,l3(:Cn-d

which is readily block-diagonalized to

do 0

0 d l

T h e diagon al blocks, d j, are given recursively by

(3 .34)

Our concern is that the di be positive definite. It is here that blithe, formal , general­

ization fails us; t here are no sensible formal analogs for results like equations (3 .10),

(3.12) and (3.13) . Instead we need to invent a way to test whether th e least eigen­

value of di is posi tive. We will develop a whole suite of estimates for t his eigenvalue ,

then use them and a plan like the one in section 3.2.1 to prove the non-existence of

Lagrangian graphs.

All the matrices we will be discussing are real and symmetric, hence, Hermitian.

For a particular matrix, Af, we will need to define >. _(111), the least eigenvalue of 111 ,

>.+(M), the largest eigenvalue, and Tr [.lVf] = L:~~~(M) 111j;, the trace. The following

lemma will b e our main tool.

L emn1a For real, symmetric, n x n , positive definit e matrices ,l3 , d , and d ' with

d' = ,l3 - d-1 (3.35)

77

the following suite of inequalities hold:

A_(d') (3.36)

A_(d') (3.37)

A_(d') (3.38)

Proof The first inequality, which is due to Herman, comes from the observations

that for a positive definite, Hermitian matrix, M, A_(M) ::; ~Tr [M] and Tr [1\I - 1
] ::;

Trl~J" Both these inequalities are strict except for the degenerate case where all the

eigenvalues are the same. The other two inequalities, which are ours, depend on

and

A_ (.l\J) = min (v, 1\{v) ,
vER", llvll=l

where the norm and inner product are the usual Euclidean norm in Rn and ordinary

dot product, (u, -v) = L.j=1 UjVj- Given these equations we can obtain inequalities

about the least eigenvalue of d' in (3.35) by evaluating (v, d'v) on particular vectors.

If, for example, one takes v to be the unit eigenvector corresponding to the smallest

eigenvalue of d one finds

A_ (d') < (v, d'v) (v, (3v) - (v, d- 1v),
1

(v,(3v)- A_(d)'

1
< A-t-(,l3)- A_(d)"

This is inequality (3 .37) of the lemma. Inequality (3.38) comes from an identical

argument with v the unit eigenvector corresponding to the least eigenvalue of ,l3 .

78

3.3.4 global estimates: narrowing the cones

Here we see how to use our inequalities to reduce the range of permissible >._(d;) . On

the face of it, we must allow 0 ::; >._(d) ::; oo, but inequalities (3 .36) and (3.37) have

the correct form to allow an iterative refinement like the one in section 3.1.3 . Since

Tr (,l3(v)], and >.+(,l3(v)) are continuous, zn-periodic functions , they have well-defined

minima and maxima, say,

t < Tr [.8] ::; T,

b < >.+(.B) ::; B.

Inequalities (3.36) and (3.37) then imply that the d; from a minimizing state must

satisfy

{
T - v'T2

- 4n 2
} Trrnin ::; Tr (d;] ::; Trrna.,, with Trrnin = l.b .

2
,

{
T + .JT2

- 4n 2 }
Trrna:c = u .b.

2
, (3.39)

and

{
B - y'B2

- 4}
).-rnin::; >._(dj) ::; >.-rna:c) with).-rnin = l.b . 2 ,

{
B + y'B2

- 4}
).-rna:c = U. b. 2 . (3.40)

We can also get some analytic use out of inequality (3.38) by combining it with (3.40).

Hence,

>.+(d) < Tr[d]- (n - l)>._(d)

< Tr (d] - (n - 1)>.- rnin·

>._ (d') < >. _ (.f3)

< >. _ (.f3)
1

(3.41)

79

This profusion of inequalities makes possible a whole host of "Mather f' arguments;

Herman, in [1Ierm88], gave the one based. on (3.36) and (3.39). In the next section we

show how to apply his criterion, along with other, new ones, to a specific example.

3.4 A converse KAM theorem

Here we use the arguments above on a specific system, the trigonometric example

from chapter 2. We will use the same example to illustrate some16 of the issues in

proving a machine-assisted converse KAM theorem and will show the results of several

calculations.

3.4.1 analytic preliminaries

The plan for a converse KAM theorem, section 3.2.1, requires a starting point, x* ,

and. the constants t, T, b, and B from equations (3 .39) and (3.40) . For the example

at hand,

!3(v) =

and. so

21
_ B

2
l'trig

E 8x2 '

21---E [
.]\;[trig

{ sin ;~rvu + sin 2 7r(Vo + vi)}

sin 27r(Vo + Vt)

sin 27r(Vo + Vt) l
ein ;'lrV! + sin 27r(Vo + Vt)}

Tr [,8(v)] 4- _E_ {.:_{sin27rv0 + sin27rvt}- 2sin27r(vo + v1)} (3.42)
llftrig 2

1 { Tr [13(v)] - } (3 .43)
2

11/. · I~ (sin27rv0 + sin27rvt)2 + 4 sin2 21r(v0 +vi)
t r 1g Y

._ (,8(v))

10 Appendix B gives a detailed discussion of the algorithms used and includes a specification of
the functions and data structures. The code itself is in appendix C .

80

Both Tr [13] and >._(,B) achieve their extrema on the line v0 = v1. The symmetries of

~ also ensure that

~2,/ . ~2T/ .
• [U · tng] [U ~ trtg] T t- 4 = E mm Tr ax 2 = -E max Tr Bx2 = 4 -

. (02 l1~rig) (02 V~rig)
b- 2 = E mm>._ ax 2 = -E max>._ ax2 = 2- B

We find the approximate positions of the extrema using Newton's method, then eval­

uate the bounds t, T em etc ... From these we can calculate the ranges of permissible

The choice of the starting p oint, x*, depends on which of the inequalities (3.36)

- (3.38) we expect to be most fruitful. Good use of inequality (3.36) would require

that x* be a place where Tr [,B] attains its minimum; this choice immediately gives

Ec ~ 0.0<135. Best use of inequalities (3.37) and (3.38) requires x* at a place where

)._ (j3) = b. (3.44)

This turns out to be the best choice; it immediately gives Ec ~ 0.0278. Note that we

need not be particularly rigorous about finding x*. Indeed, we are free to choose it

anywhere we like; we just get much better results if (3.44) is satisfied.

3.4.2 the computations

Once x* is chosen, we can set up the extended phase space, IE x Rn x Rn, extend GE

to Gas in (3.18), and proceed with ·a proof. The plan is the same as in section 3.2.1,

except that here the role of the intervals, Ij, is played by rectangles in the unit square.

That is, we first ask "Can any x E [0 , 1] x [0, 1] follow x* in a minimizing state?" If

the answer is "no" then we are finished, if not we cut the square in half and ask the

same question for each piece. Once the rectangle of potential successors is smaller

than the whole square we can iterate the argument for several steps, bounding image

prisms as in section 3.2.2. This yields a sequence of prisms in the extended phase

81

space, S0 , Sll · · ·, with

S0 1£ x {:v*} x {successor rectangle}= (:vc,o, Po)

Beginning with

and u.b. Tr [d_I) = Trma:z:

we proceed, at each step evaluating the whole suite

A_(d3+t) < (1) n u.b. - Tr [/3(v)] -
(£,U,V)ESj+l n u.b.(Tr [dj])

(3.45)

A_(dJ+t)
1

(3.46) < u.b. (A+(,£3(v))) -
(£,U,V)ESj+l u .b .(A_(d3))

A_(dJ+t)
1

(3.47) < u.b. (A_(,£3(v))) - (, [])
(£,U,V)ES;+l u.b. 'Ir dj - A-min

and choosing the best upper bound. Computing (3.45) automatically gives the bound

on Tr [d3] used in (3.47). These estimates do not, of course, keep improving forever.

Eventually either one of the u. b . A_ (dj) falls below A-min or one of the prisms Sj gets

so large that the inequalities (3.45) - (3.46) are vacuous . At that point one either

quits or cuts the initial prism in halr7 and ~tarts over.

3.4.3 results

Table (3.1) summarizes our results . We were able to show that the last few of the

minimizing states of section 2.2.2 persist beyond the point where no invariant tori

remain.

The figures on the following pages show some of the systems of prisms used in the

proofs. The dark grey rectangles are sets that cannot contain a successor to x* , the

17The choice of which cut to make, whether along the «:, vo, or Vt axis, depends on the shape of
the final Sj .

82

u .b . Ec :=:; longest 1 deepest I prisms I time (sec.)

0.0278 3 10 39 500

0.0276 4 11 64 759

0.0274 4 13 156 2698

0.0272 6 21 933 ,...._,

Table 3.1: A sequence of bounds on Ec and some details about the computations that

verified them. The table includes: longest, the length of the longest sequence of image

prisms considered; prisms the total number of prisms on which the algorithm suc­

ceeded; deepest, the number of refining cuts needed to make the smallest successful

prism and time the execution time in seconds. All computations were done on a Sun4 .

light grey regions may be ignored on account of symmetry, (see section 3.4.4). As one

might expect, those states that go from x* to neighborhoods near the the maximum

of Vtrig, (those that correspond to rectangles in the upper right corner), are harder

to prove non-minimizing. To succeed on such a rectangle the program must extend

the corresponding state far enough to evaluate several u.b .. L(di) · Since the prism­

bounding algorithm always gives an Sj+l bigger than the true image of Sj, the initial

prisms must be small.

3.4.4 using symmetry

In figures (3.1G) - (3 .18) we were able to ignore about half the possible successors. To

see why, notice that Vtrig is unchanged by the interchange of its v0 and v 1 arguments .

Two segments, such as {···, x*,x1,x2,···} and {- · ·,x*,x~ , x~,· · ·} in figure (3.19),

will have the same action because they are each other's images under the interchange

Xj,o ~ x j,l · Here, the interchange is just a reflection about the line18 x 0 = x 1 . So,

180ne must take some care here. The interchange is really a reflect ion t hrough the diagonal line
containing :z:*. Our program always arranges thal :z:* is in the square [0, 1] x [0, 1] and on the line
:z:u = :z:1.

83

Figure 3.16: The system of prisms used to show Ec :::; 0 .0276 .

84

Figure 3.17: Ec ::; 0.0274

85

Figure 3 .18: Ec ~ 0.0272

8G

referring to figure (3.19), if we prove that no nunnruzmg state can pass from :c*

through the box around :c1 , we are automatically assured that none can go through

the box around :c~ either.

, , , ,

, ,
,' ,

,• z* ,

, ,' ,

r:-1
L5l

, , , , , , , ,

, ,
,' , , , , , ,

,'

•
z' ,'

2 ,'

,' ,
, ,

,
,' ,

Figure 3.19: Two symmetrically related states have the same action.

87

Appendix A

Approximate Numerical Methods

In this appendix we review the numerical methods used to obtain the results of chapter

2. The first section describes the methods used to calculate the minimizing states;

the next section discusses Kim and Ostlund's scheme for approximating irrational

vectors by rational ones and the last section explains how we found the Lyapunov

exponents pictured in figure (2 .6).

A.l Methods of minimization

All our minimization schemes solve the Euler-Lagrange equations (2.10). For each ro­

tation vector, p/ q , and perturbation we produce a sequence of states {.X0 , X 1 ,'\.,., ... }

each of which satisfies (2.10) for a particular value of E = Ej· We usually begin with a

state whose first point, :v0 , lies on the minimum of the perturbation to the generating

function (that is, on a maximum of V.(x)) and whose other points are :Vj = :v0 + ~p .

Such a state is globally minimizing for the unperturbed generating function so we set

Eo = 0. We then increase the size of the perturbation, Ej, in small steps and use Xj

as a starting point to calculate Xj+l using either a gradient-flow scheme or Newton 's

88

method.

The former involves integrating the system of differential equations

through a long interval of the formal "time," r. This method is very slow; it crawls

down to the minimum with exponentially decreasing speed. On the other hand it is

extremely reliable and seems very rarely to converge to a state other than the global

minimum. Newton's method is much faster, but somewhat prone to converge to

extrema other than the minimum. It works by producing a sequence of approximate

states Y0 , Yi., ... according to the recursive scheme:

Y0 = some initial guess,

(A.l)

where H-1 is the inverse of the Hessian of the action functional and d(Lp,q) is the

functional's gradient. Since H has (qd) 2 entries, solving (A.l) could be an O((qd)2)

process, but our Hessian,

21- eV0 -1 0

-1 21- eV1 -1

0 -1 21- t:Vq-2

-1 - I

where

82 F

[~ ~ l 8 2 F 8x~
I= V· 8x2(xi) = J

o2V
8xo8x1

-1

0

-1

21- EVq-1

82V
8x0 8x1

o2 V
ox~

(xj),

89

has only a few terms off the diagonal. We implemented two schemes to solve (A.l), one

that does Gauss-Jordan elimination [PFTV86] and another, rather more complicated

algorithm that generalizes the one-dimensional work of Percival and Metsel [MP87].

We tried the latter because we hoped it would be more numerically stable; it was not,

and ran a bit more slowly than the Gauss-Jordan program.

A.2 Rational approximation of irrational vectors

The problem of approximating a single real number by a sequence of rationals is

completely solved by the simple continued fraction algorithm [Khin64,Rob78]. We

write

w
1

ao + ---------­
al + ---~1"------

1
a2+------

1
a3+----

a4 +

(A.2)

where the a;, called the partial quotients of w, are positive integers. We compute

them recursively according to

r 0 = w a; = Int[ri]

1
ri+l = --­

ri-a;

If w is rational then all but finitely many of the a; are zero, but if w is irrational

then the sequence never t erminates. Truncating the expansion (A.2) after finitely

many a; gives a sequence of rational approximations E!l., a, .. . with many desirable
qu q1

properties. Each ~ is a best approximation in the sense that the only rationals closer

tow have larger denominators. Further, the sequence contains infinitely many ~ such

that I w - p; / q; I S: 1/ VS q2
• Indeed, the extremely good convergence of this sequence

can be a problem. If one wants many approximations with modest denominators one

90

level 0

(0,1) (1,1)

level 1 (0,1) (1,2) (1,1)

(0,1) (1,3) (1,2) (2,3) (1,1)

level 2

Figure A.1: Several levels of the Farey t1·ee . The solid dot shows the position of the

golden mean. Its nth approximation is always the mediant that has the largest sum

Pn + qn of any appearing at at the nth level.

must either study numbers that, like the golden mean, have very slowly growing qi,

or introduce other approximation algorithms that produce more slowly converging

sequences.

One such algorithm depends on the Farey tree construction of the rationals. In

a Farey tree one represents the rational number E as an ordered pair (p , q). The
q

endpoints of the unit interval are thus (0, 1) and (1, 1). The construction pro-

ceeds by successively splitting intervals with endpoints (Pl, q1) and (Pr, qr) into two

daughter intervals by inserting an interior point at ((PI + Pr), (ql + qr)) . The number

((Pl + Pr), (q1 + qr)) is called the mediant of (Pl, ql) and (Pr, qr) . A sequence of Farey

subdivisions that begins from the unit interval will eventually produce all rational

numbers , each rational appearing as a mediant exactly once and in lowest terms.

We can use the Farey tree as a. tool for rational approximation by choosing Pnl qn t o

be the mediant of the nth level interval containing w. Since an interval in the nth

level of the tree has length at most 1 I (n + 1), the sequence of Farey approximations

must eventually converge. Since every sequence of Farey approximation begins with

Pol q0 = t and each subsequent approximation requires only a choice of either the left

or right daughter interval, we can represent the sequence of Farey approximations as

a binary address. For example, the address llllll .. . would indicate that w lies always

((011))

A

91

((111)) ((011)) ((111)1

c

~ ---------~ ~
((112)) c

8

«100)

A

((101))

Figure A.2: The mediant operation that refines Farey triangles. The parent triangle

is represented by an equilateral right triangle. The algorithm divides this into two

similar, daughter triangles by adding a new point in the middle of the hypotenuse.

The coordinates of the new point are sums of the coordinates of the end points of the

hypotenuse. [Kim0st86]

between (0, 1) and (1, n).

Kim and Ostlund [Kim0st86] provide a detailed algorithm for implementing Furey

approximation on a computer and generalize the idea to solve the problem of simulta­

neously approximating two irrationals (w0 ,wt) by rationals of the form (p0 jq,p!/q)\

which they represent as the triple (p0 ,p1 , q). To simplify the presentation let us re­

strict our attention to those vectors for which (w0 , w1) is such that w0 + w1 2:: 1; the

other case is not very different. The analogs of Farey intervals are Farey triangles,

see figure A.2, and the act of refinement again involves adding a point obtained by

coordinate-wise addition. When the vertices of the Farey triangles are viewed as ra­

tional points in R 2
, the 2-d Furey mediant lies on the line connecting its parents so

that the subdivision into triangles represented in figure A .2 reflects a genuine triangu­

lar decomposition of the unit square. Successive subdivisions produce every rational

vector, though some appear twice.2 As in the 1-d Farey approximation scheme, one

chooses between a right and left daughter at each level of refinement. Irrational

vectors thus have binary addresses . Kim and Ostlund assert that the analog of the

1These are just the sorts of approximations we want; q is the period of our periodic state.
2 Those vertices in the interior of the triangle (0, 1, 1), (1, 0, 1), (1, 1, 1) lie on the hypotenuse of

two different Farey triangles.

Figure A.3: Five lev­

els of the Farey trian-

gulation,

responding partition

of the unit square.

(Kim0st86]

92

golden mean is the vector whose address is rrrrrrrrr . .. ; they call it the spiral mean.

Its components are (r- 2 , r - 1), where T satisfies r 3 - T- 1 = 0. One of the rotation

vectors we studied, (1432, 1897) / 2513, is an approximation to the spiral mean,

and we used the Farey triangle algorithm to produce the approximations used in the

sequence of orbits pictured in section 2.3.

A.3 Lyapunov exponents

The Lyapunov exponents displayed in section 2.2.2 were found with the algorithm

outlined in [BGGS80). Their method depends on two observations, the first that

one can compute the largest Lyapunov exponent by examining the growth of a vector

tangent to an orbit, the second that the Lyapunov exponents are constant on a certain

nested family of subspaces of the tangent space. To find all the exponents one selects a

family of linearly independent vectors v0 , v1 , ... , v2d-l E T !1{,0 and carries them along

the orbit with the tangent map DF. Unless one makes a fantastically improbable

choice of initial vectors, each v; will grow with an exponential rate Ama:z:,

(A.3)

equal to the largest Lyapunov exponent. The v; will also become more and more

nearly parallel because their growth is dominated by that of the eigenvector with the

93

largest eigenvalue; D F(q) v 0 will be nearly parallel to this eigenvector. If we examine :z:o,po

those components of D F(q) v 1 that are perpendicular to D F(q) v0 we should find :r:o,PO zo,po

that they grow with a rate given by the next to largest Lyapunov exponent. Those

components of DF(~o.Po) v2 that are perpendicular to both DF(~o .Po) Vo and DF(~o.Po) v1

should grow with a rate given by the third to largest Lyapunov exponent, and so on.

In practice the DF(~o .Po) Vi are too nearly parallel to permit the direct calculation

described above. Instead one carries out the calculation of DF(~o.Po) Vi in q stages,

using the definition of DFi .. , (2 .17). Whenever DF(~o.Po)v0 gets larger than some

modest limit, one performs a Gram-Schmidt orthogonalization on the vectors, then

normalizes each member of the resulting orthogonal collection and keeps a running

total of the logarithn1s of the normalization constants . The Lyapunov exponents are

just

1 L logn;,
q normalization~

where ni is a normalization constant for the ith vector. We adopted the scheme of

[BGGS80] only after trying a more difficult and time consuming method based on

the rate of growth of the volumes of parallelepipeds. Although this original algorithm

had a pleasing likeness to the definitions of Oseledec's great paper [Osc68], it gave

the same answer as the algorithm described above, but took quite a bit longer.

94

Appendix B

Converse KAM Methods

The algorithms used to prove the theorems of section 3.4.3 have been implemented

in the C programming language. This appendix descibes the program in some detail.

Section B.l gives an overview of a typical computation and section B .2 explains how

the basic data: numbers, intervals, and prisms, are stored in the computer. Section

B.3 carefully describes the crucial algorithms and serves as an introduction to the

parts of the code appearing in appendix C.

B.l What the program does

This section expands on the plan for a proof offered in section 3.2.1. It first discusses

the specific map studied, then gives a more detailed sketch of the computation, ending

with a typical input file and the resulting output. This section also introduces a

convention of typography and one of nomenclature. Under the former, bits of text

taken directly from computer programs will be printed in the typewriter typeface.

Under the latter, closely related objects will have similar names. For the sake of

efficiency, I have written two versions of most functions . The first, quick and sloppy,

95

is used for exploration. The second, stately and rigorous, verifies any promising results

suggested by the first. The quick fun ction usually has some descriptive name, as has

bound_btrace(), which bounds the trace of the blocks f3(xi)· The rigorous version ,

Rbound_btrace (), has almost the same name, but for the prefix, R, connoting rigor.

A similar convention applies to names of variables; rninLeastLam is an approximate

value for A-min, the smallest permissible value for the least eigenvalue of a diagonal

block. The rigorous estimate of the same number is called RrninLeastLam.

B.l.l the map

The program really works with the three-parameter, four-dimensional, symplectic

map,

y' - y + J',

J' J _ 81~bc
{)y .

Where

Fabc(Y) = -asin(yo)- bsin(yl)- csin(y0 + yl) . (B.l)

If one takes a = b - 4~,..
2

c = 4
",..

2
this map is conjugate to the trigonometric

- 2}\-l,r ig) Mtrig

example via the change of coordinates,

J
p=-.

27r

I included the extra parameters because it was easy, and left open the possibility of

further work. I used y = 27rx to avoid having to multiply by 27r so often.

B.1.2 sketch of a computation

This section explains what the program does. First , it reads an input file and invokes

a host of initialization functions. These have names like ini t · · · () and do such things

96

as initialize variables, allocate memory, and copy the input data to various output

files . Next, the program chooses the starting point, :c* and prepares the first, all­

encompassing prism, which then becomes the sole member of a linked list of untested

prisms. The rest of the computation is a struggle to get to the end of this list. It grows

shorter whenever the prism-testing algorithm succeeds; when the program is able to

show that none of the points in a particular prism could follow :c* in a minimizing

state, that prism is removed from the list and forgotten. The list grows longer when

the algorithm fails ; the offending prism is divided in two by refinePrism() and

replaced by the resulting pair.

The program tests a prism in several stages ; it begins by examining the values

of the parameters included in the prism and computing A-min and Trmin; then it

invokes a series of prism-testing functions . The first of these, quick_ try(), tries to

show that the state with :c0 = :c*, :c 1 = {center of the prism} cannot be minimiz­

ing. If quick_try() fails the prism is judged hopeless and is immediately halved;

if quic1Ltry0 succeeds, the program passes the prism to try_Prism(). This func­

tion does a full, orbit-following, image-bounding test, but uses only 48-bit, double­

precision numbers and does not give rigorous results. If try_Prism() succeeds too,

then, finally, Rtry_Prism() checks the prism rigorously. Eventually the program ei­

ther reaches the eud of the list, and so proves a converse KAM theorem, or founders

on a difficult prism and quits .

B.1.3 using the program: a sample

The computation that proved Ec :::; 0 .0274 began when I typed:

converse <trig274.in >&trig274.out -d30

The -d30 sets the maximum depth; it tells the program to quit if it ever fails on a prism

that has already been subdivided 30 times. Other command-line options include:

97

-b filename Maintain a backup file. This is essential for long computations; the

backup file is updated frequently and contains enough information to continue

a proof that has been interrupted by some computer disaster.

-g filename Make a graphics file. The program composes a PostScript program to

draw figures like (3.16)-(3.18) and writes it on filename. If filename is the special

name, off, then the graphics parts of the program are turned off.

-p dp Fix the precision used in the rigorous parts of the computation to dp decimal

places; the example above uses the default, 35.

-s Be stubborn; keep on computing even if some prism cannot be successfully resolved

at the maximum depth. This option is good for making pictures and for getting

au idea of how hard a fully successful computation might be.

-t Change the terseness. Selecting this option makes the program more informative;

it prints a message whenever it finds a successful prism. It also makes the output

file much longer, and so I used it only during development of the program.

-r filename Restore an interrupted computation from a backup file.

The input :file, trig274. in, looks like:

0.3085
0.3085
0.617

1.0
1.0

0.00125
0.00125
0.0025

1.0
1.0

0.0274 < epsilon < 0 . 0276
Run on kastor
May 2nd, 1989

Parameters:
ac and ~a
be and ~b
Cc and ~c

Angles given in units of 27r .
(}c,O and ~(}0
ec,l and ~(}1

The parts in the typewriter typeface are copied directly from the input file; the

parts in italics are additional comments. The first three lines give the ranges for

98

parameters a, band c. For example, the first line is the pair, (ac , A a), which establishes

that the initial prism will have ac- D.a S a S ac + D.a.. The fifth and sixth lines

specify that the prism will have 0 S B; S 21r, j = 1, 2. The last few lines are

cmnments.

The computation above would yield an output file, trig.out, looking like:

apmValidate : null APM value in map.c at line 296.
Parameters :
a 3.08500000000000e-01 1 . 25000000000000e-03
b 3.08500000000000e-01 1 . 25000000000000e-03
c 6.17000000000000e-01 2 . 50000000000000e-03

Initial
v[O]
v [1]

Comments

region
3.14159265358979e+OO 3.14159265358979e+OO
3 . 14159265358979e+OO 3.14159265358979e+OO

0.0274 < epsilon < 0.0276
Run on kastor
May 2, 1989

++
I find no invariant tori for the range of parameters
0 . 307250 < a < 0.309750
0.307250 < b < 0.309750
0.614500 < c < 0.619500

Did 322 quick checks, 318 semi-rigorous bounding tries,
and 156 rigorous bounding tries .
The most deeply refined prism was cut 13 times.
The longest semi-rigorous orbit ran for 5 iterations,
the longest successful orbit, 4 iterations.
Of the 156 successful prisms, 0 fell to the trace criterion,
156 to the least eigenvalue test.
The best upper bound on the least eigenvalue came from
the maxBlam criterion 0.0% of the time,
the minBlam criterion 99.4% of the time,
and from t he trace criterion 0.6% of the time .

99

This investigation took 2697.53 seconds.

The first line is an error message from the initialization phase of the computation,

saying that some variable was not properly allocated; the program automatically

corrects this error. The next few lines are copied directly from the input and the

lines after those give the result : no tori. The rest of the file reports details about the

program's performance.

B.2 Representation of data

Here we explain how data are represented in the program. This section is fairly

technical; it is partly intended as an introduction to the program and assumes some

knowledge of C. Those wishing to avoid technical details should read only section

B.2.1, in which numbers and arbitrary precision arithmetic are discussed. This leads

into a description of intervals and interval arithmetic, which makes up the next sec­

tion. Last, we explain how prisms are represented.

B.2.1 numbers and arithmetic

The computations in the rigorous parts of the program use an arbitrary prec1s10n

arithmetic library written by Lloyd Zussman.1 A description of his library and its

constituent functions appears in appendix C; for now it is enough to know that it

allows one to do arithmetic on numbers represented as finite strings of base 10000

"digits." We will call such strings APAfs. Addition, subtraction and multiplication of

two APMs, say, x andy, always yield another number representable as an APM, but

1 Mr. Zussman's library is licensed under a variant. of the Free Software Foundation's Gnu EMACS
General Public License and so I am obliged to provide a copy of the source code to anyone who asks.
Complete source code for my program, converse, is also available on r equest .

100

division need not. The rational number ~ may have an infinite repeating represen-
Y

tation in base 10000. The division function, apmDi vide 0 , deals with this problem

by allowing the user to specify the number of decimal places (counting only those

to the right of the decimal point) to which the result should be correct. The special

functions, apmSinO, aprnCos (), and apmSqrt(), which I have written, use the same

strategy.

Fixed-precision calculations return a kind of implicit interval. An answer, a, that

is accurate to dp decimal places, can be thought of as an interval guaranteed to contain

the true answer, a;

The program also uses functions which do explicit interval arithmetic. An example is

Rbd_sin(), which accepts as its argument an interval, [0_, 0+] = 19 , and returns an

interval, [s_, s+], certain to contain sin 0 for any 0 E Io. Most of the crucial estimates

involve some fixed-precision calculation and so the program often uses the variables

and

precision= dp + SAFETY_DP.

dp is the number of digits selected with the -p option and SAFETLDP is a margin of

safety. All the program's intermediate results are calculated to precision decimal

places and then, for safety's sake, regarded as only accurate to ± rnax_error. In the

calculations summarized in table 3.1, dp = 35 and SAFETLDP = 5.

B.2.2 intervals and expressions

The structure representing an interval is

typedef struct { APM ub, lb } Bdd_aprn , ,

101

called a bounded AP M. The functions Rbd_sin () and Rbd_cos 0 each take on e bounded

APM as an argument and return another as the result. T he only ot her operations

on intervals used by the program are addition, subtraction, and multiplication. This

is all handled through two other structures, the BapiiL.term, and the BapiiLexpr. The

former is short for bounded term, the latter for bounded expression. Their full decla-

rations are:

typedef struct { int nfactors '
APM coef ;
Bdd_apm **factors, bound } BapiiL.term

and

typedef struct { int nterms '
APM const ;
Bdd_apm bound

'
BapiiL.term *terms ; } BapiiL.term

To see the use of these structures , consider computing a bound on

2.0- asin(B0)- bsin(B1),

where a, b, and the ei all belong to intervals . One would set up a bounded expression

composed of two bounded terms:

2.0
'-v-"'
con.t .

a sin 00
'-v-"' '-v-"'
factor~

Bapm_term

b sin el ,
'-v-"' '-v-"'

factor~

B apm- term

then use Rbd_sinO to bound the factors and, finally, use Rbd_exprO t o get bounds

on the whole thing .

B.2.3
.

prisms

T he prisms introduced in section 3.2.2 are the fund amental objects of the program ;

t hey are stored in

102

typedef struct RPrsm { int
APM
char

Rxtnd_pt
struct Rprsm

in_torus, n_cuts
*matrix ;
*cuts[7] ;
*center
*next ; } RPrism

The integer in_torus has one of the values NO_TQRI , UNTRIED, MAYBE, ACTIVE, or

SYMMTRC according to whether it definitely does not include points from a minimizing

state, has not yet been tested, has been inconclusively tested, is under active con­

sideration or may be disregarded on account of symmetry. The integer n_cuts tells

how many subdivisions it took to make this prism and the character strings cuts [

] explain how to produce this prism from the initial, big prism. center and matrix

are the center point and defining matrix of the prism; center is an example of an

extended phase point; it has seven con:tponents, three for the parameters and two for

each of the delay coordinates. The pointer next gives the next Rprism on the list.

B.3 Algorithms

Here we explain and verify the crucial algorithms. In the first part of the section

we will establish the correctness of apmSin(), apmCos 0, which we approximate with

truncated Taylor series, and of apmSqrt 0, which uses Newton's method. Next we

check the algorithms that set the bounds A-min and Trmin, then we turn to the

computations used to compute Lb. A_(dj)· In the last part of the section we examine

the prism-bounding algorithms.

103

B.3.1 special functions

sine and cosine

The real computational work is done by two functions, reducedSin() and reducedCos (),

which compute the sine and cosine of an angle from the interval ! 0 = [0, ~]. These

functions and the relations

sin(O ± ~) = ± cos(O),

7r .
cos(B ± "2) = =f sm(B),

sin(-0) = - sin(0) ,

cos(-B) = cos(B),

allow us to calculate the sine and cosine of any angle. As mentioned in section B.2.1,

we must set dp, the number of correct digits we want in the answer. setTrigDp(dp)

does this; it also chooses the order of the Taylor approximation and picks the number

of decimal places, trig-dp, to which intermediate results are calculated. To prove

that all this works we will estimate the error made by reducedSinO ,2 leaving unde­

termined trig_dp and the number of terms in the polynomials, trig_ terms. We will

then show how to choose these two and how to reduce an arbitrary angle 0 to one

lying in [0, ~].

The form of the approximation is

reducedSin(B) ~ PN(B) =

1 N . ----- L sinCoef[j] 023+1

sinFactrl j=O
(B.2)

where the second line substitutes names used in the code. Let us consider au angle,

B E [0, ~],which is approximately represented by an APM, 0.

Proposition If e is such that IB - OJ :::; € < 1, then

_ (12N+3

I sin 0 - PN(O)l :::; € + (2N + 3)!. (B.3)

2 The analysis of reducedCos () is much the same.

104

Proof By straightforward computation,

<
_ N . ()2j+l

IO- Ol + ~(-1)3 (2j + 1)!)

()2N+3

~ € + (2N + 3)! .

Evaluating long power series like (B.2) can take immense amounts of computer

time and memory; if the string of digits making up e has length .e then the one

representing en will have length ;::::::;: nf.. So, in the interest of computational speed,

reducedSinO truncates some intermediate expressions. What it really calculates is

a sequence of approximations to certain polynomials . In the equations below, [x]n is

the number given by the truncating x after n places to the right of the decimal point,

and tdp is short for trig_dp.

(- l)N'

[02 S0 + (2N + 1)(2N)(-1)N-l] ,
tdp

and, finally,
- esN -

reducedSin(O) = (
2

N +
1
)! ;::::::;: PN(O) (B.4)

Let us consider the additional error introduced by truncation. Use Si t o denote

the exact value of the polynomial approximated by Si· Then So = So and so 5 1 lies

105

in an interval,

with 51 = 10-tdp. Since S2 = [PS1 + C, where Cis a constant, we may be sure that

s2 is in the interval

After truncation we get

with 52 = 251 and after N such steps we are left with an error, ON

Combining this with equations (B.3) and (B.4) we get

- - Nol IBI2N+3
ireducedSin(B) - sinBI :::; IB- Bl + (N)' + ()I

2 + 1. 2N + 3.
(B.5)

The only unknown quantity here is the difference between 8 and its APM represen­

tation 0. Suppose we can arrange for this to be at least as small as 10-tdp. To ensure

dp decimal places of accuracy in our answer we need only choose N large enough that

(2N~J)! < 10-(dp+2
) and then choose trig_dp so large that N 51 :::; 10-(dp+2) too.

If we want the sine or cosine of an angle that lies outside the interval / 0 , we must

relate it to some calculation that we can do with the reduced functions . The program

contains a very accurate representation3 of 1r, so it can just subtract the appropriate

number of multiples of~ and , perhaps, reflect about the origin. For very large angles,

the reduction process may lose so much precision as to preclude a calculation to the

specified accuracy. In that case the program writes an error message and calculates

the best answer it can.
3 The current implementa tion has one good t o 45 decima l places, but it would be easy to add

more.

106

square root

The square root function apmSqrt 0 is much simpler. It takes an argument, x, and

uses Newton's method to solve the equation y 2
- x = 0. Suppose we want dp dec­

imal places of accuracy in the answer; define dp+ = dp + 2. apmSqrt () recursively

calculates a sequence Yi ::::::: .jX with

Yo X

[;(Y; + [~Ll.+ (B.6)

After the first few steps, the Yi decrease monot onically and so we may write Yi

.jX + ri; the error term, rj, is a small, positive number. Equation (B.6) then yields

the following extremely conservative estimate:

[.:(VX + Tj + [.;x X .] l -Vx,
2 x+r3 d +

p dp+

< (B.7)

where Edp+ = 10- dp+ is the inevitable truncation error. If ri < .jX, Newton 's method
2

actually gives rj+1 "' 1;, but (B.7) will be good enough for us. It tells us that we

must continue computing until the difference,

r ·
Yi-1- Yi = Tj-1- Tj > ; - 2Edp+ l

is less than 10-(dp+l); the last Yi will be the answer.

B.3.2 uniform cones and the starting point

This section explains how the program evaluates the constants Trmin, Trm""' ' A- min

and A-mao:; it also explains how t o get a good value for the starting p oint :c * . T he

107

main technical problem is the correct evaluation of the constants

and T = u.b. Tr [,£3];

these, together with equations (3.39) and (3.40), determine everything else. Finding

either B or Tis a matter of maximizing a function on [0, 1] x [0, 1] x {parameters},

so it is enough to explain how to find one of them, say T.

When the program seeks T it sets a, b, and c to their values at the center of the

intial prism, then uses Newton's method to find a zero of the gradient of Tr [,BJ. For

the computations presented in section 3.4.3, the search began at (-~, ~) and continued

until it reached a point :z:T such that

where «=newt is a small constant. In the code, the search is done with ordinary double

precision arithmetic and «=newt is called NEWLTOL and is equal to 10-9
. The :z:T it finds

is very close to the true maximum, and so a suitable estimate is

where the last term is included to allow for the variation in a, b, and c over the prism.

The point :z:T found by this technique is the natural starting point for an estimate

based on Herman's trace condition, so I call it Herman's starting point.

The estimate for B works much the same way; a Newton's method search gives

an approximate value for, :z:B, the position where max..\+(,£3) is attained. B is then

calculated according to

After calculating B, the program sets up the starting point, :z:*, also called the least­

lambda starting point. This point is essentially the same as :z:8 , but is explicitly

guaranteed to lie on the line x0 = x 1 so that the calculation can exploit symmetry,

as explained in section 3.4.4.

108

B.3.3 bounding traces and eigenvalues

This section explains how the program takes a prism, P, and evaluates the bounds

u.b. A_(,B),
(€: ,U,V)ES

u.b. A+(,B),
(E:,U,V)ES

u .b. Tr [,B],
(e: ,U ,V)ES

where e: E R 3 stands for the triple of parameters, (a, b, c). These are the basic

ingredients of the main suite of estimates, {3.45) - {3.47). Recall that the prism is

determined by its center, (e:c, uc, vc), and by the matrix that maps the hypercube,

Q7 , into the extended phase space. A point 1] E Q7 has an image given by

a(11) ac

b(1]) be

c(1]) Cc

uo(1]) Uc,O

ul (11) Uc,l

vo(1]) Vc,O

Vt (1]) Vc,l

t:.a 0 0

0 t:.b 0

0 0 t:.c

+

P11 P12 P73

0

0

0

P11

Tfl

Tfs

Tfs

From this it is easy to show that any (e:, u, v) E S has

7

lvo- Vc,ol :S L IPsil
i=l

and
7

lvt - vc,tl < LiP7il ·
i=l

(B.8)

Once we have found bounds on the components of v, we can invoke Rbd_sin () to

get bounds on the functions sin(v0), sin(vt). and sin(v0 +vi), then combine those

with t:.a, t:.b and t:.c to obtain bounds on the expressions appearing in the trace and

eigenvalues of ,B.

In the program, all this is done with the BapiiLexpr machinery described in sec­

tion B.2.1. The expressions asin(v0), bsin(vt), and csin(v0 +vi) arise so often that

109

they are given their own names: Ra_sin, Rb_sin and Rc_sin; their values are set by

RglobaLbounds (priz). In terms of these, the estimates we need are:

u.b. Tr [,£3]
s

4.0 + Ra_sin.bound.ub + Rb_sin.bound.ub + 2 Rc_sin.bound.ub

u.b . .X_(,£3)
s

_: { u.b. Tr [,£3] -Lb . .Jdiscrim.lb},
2

_: { u.b. Tr [,£3] +Lb . .J discrim.ub}
2

where discrim is a bounded APM containing estimates over S of the quantity

(B.9)

Note how, in every estimate described above, we allow each of the terms a sin(v0) • • •

to vary independently; the bounds we obtain are almost certainly too conservative.

B.3.4 bounding the images of prisms

The bulk of the computation is devoted to the kind of prism-bounding calculations

described in section 3.2.2 . In this section we will see how the program takes a prism

in the extended phase space, S = (xc, P), and constructs another, S' = (x~, P'),

guaranteed to contain G(S). The computation of x~ is easy; x~ :=::::: G(xc) where

G(b) (I bl I I ') a, , c, u, v = a , , c , u , v (a, b, c, u', v'),

u' v,

v 1 = 2v _ u _ 811abc(v)
ax . (B.lO)

Although only v' involves any real computation, and so only it introduces any error,

we will find it useful to assign a somewhat larger uncertainty, Oc, to both u' and v'.

The computation of P' is much more difficult; the work falls into two parts: setting

up the matrix A and evaluating the numbers,

(B.ll)

110

The second term, which involves bounds over :c E 5, will be the hard part. As was

mentioned in section 3.2.3, the program uses two schemes to prepare A. The first,

the fixed-form scheme, is specially suited to prisms with zero volume. Since all the

prisms on the linked list are of the form

{parameters} x { :c *} x {possible successors},

all are singular. Accordingly, the fixed-form scheme is always used on the first step

of a round of prism-bounding. Since the first image is non-singular by construction,

the second and subsequent iterates employ a different, more accurate scheme, the

column-rotor. This section describes both schemes and verifies that they are correctly

implemented.

Most of the work will come in showing that the Wj are calculated properly, a task

simplified by the following definitions and proposition.

Definition For any real, m x n, matrix A, define

n

[A]~e* = L la~ejl,
j=l

the k-th row sum of A, and

Tn n

[A]**= L L la~ejl = L [A]~e*
le=l j=l le=l

Proposition For any real, m X n matrix A and real, n x l matrix B, the product

C = AB satisfies

and (B.l2)

Proof By direct calculation:

l

[C]~e* = L lc~ejl
j = l

l n

< 2.:.:: :L I a~e i II bi j I ,
j=l i=l

111

n

< L iakil [B]i*'
i=l

n

< L iakii [B]** = [A]k ,.[B]**.
i=l

Then, using the first part of (B.12), one finds

711 711

[CJ* * = L [C]k* ~ L [A]k*[B]** = [A]**[B)**"
k=l k = l

It also follows from the definitions that

We will use a block-matrix representation for DG, the derivative of the map;

I 0 0

DG= 0 0 I (B .l3)

1' -I {3

where

[3(v) =
[2- asin(vo)- csiu(vo + v,)

-c sin(v0 +vi)

-csin(v0 + v1) l
2 - b sin(v 1) - c sin(Vo + Vt)

and

[cos(vo) 0 cos(v0 + v,)] · "Y(v) =
0 cos(vt) cos(vo + v1)

It will also prove convenient to have block forms for the matrix P and to build a

column vector, w, out of the w j .

Ppp 0 0

Wp I P= Pup Puu Puv and w = Wu ' (B.l4)

Pvp Pvu Pvv W u

112

where PPP is 3 x 3, Pup and Pvp are 3 x 2, and the rest of the blocks are 2 X 2 . The

elements of w are:

w­p-

the fixed-form fattener

, w. = [::] and w. = [::]

When using this scheme we force the matrix A to be of the form

APP 0 0

A= Aup 0 Auv (B.l5)

The explicit forms of the blocks will be chosen to simplify the calculation of the Wj·

Given (B .15), one can get a formula for A-1 in terms of the blocks and their inverses:

A- 1 pp 0 0 I 0 0

A - 1 0 A- 1A A-1 A-1 -AupA_;p1 I 0 - vu vv uv vu

0 A-1 uv 0 -AvpA_;i 0 I

A-1
pp 0 0

{ A-1 A A-1 A A-1

} vu vv uv up pp A-1A A - 1 A-1 (B.l6) - vu vv uv
1-1 A A-1 vu

-.f vu vp pp

A-1 A A-1 - uv up pp A-1 uv 0

Taking APP = PPP and using (B.16), (B.l4), and (B.l3), we get A - l o DG o P =

I 0 0

!
A;;-J(IPPP - Pup)

) { A;;-,;f3Pvu- } { A;;-,;(13Pvv - Puv) } +A;;-,; ({3 Pvp - Avp)
A;;-,; AvvA~J Pvu -A;;-J AvvA~J Pvv

+A~,;AvvA~,;(Avp - Pup)

A~; (Pvp - Aup) A~; Pvu A~J Pvv
(B.l7)

113

When computing the Wj we must allow the matrices 1 and {3, which dep end on a, b,

c, and v to vary over S. All the other blocks, those in A and those in S, are constant.

The form of (B.17) suggests the following choices for the blocks of A:

App PPP>

Aup Pvp,

Avp lcppp- Pup+ f3cPVP>

Auv Pvu + Pvv>

Avu {3c{Pvu + Pvv),

Avv f3 cPvv - Puv, (B.l8)

where f3c and lc are the values of {3 and 1 a.t the prism's center. Note that the

entries in the blocks making up P are exactly represented as APMs; so are their

sums, products, and differences. Thus Auv, Aup and APP are exact; t he other blocks

of A, which involve the evaluation of special functi ons, are uncertain to the extent as

the values of the special functions .

The choices (B.l8) immediately d et ermine most of the Wji the row sums contribut-

ing to wP a.e automatically equal to one and, unle" Auu ;, 'ingular, w. = [:] . The

program checks the invertibility of Auv by evaluating its determinant, an exact cal­

culation. If det[Auv] were to b e zero the program would write an error message and

halt; this has never actually happened. The remaining row sums, those contributing

ub {
[A~~(I - Ic)PPP + A~~({3 - f3 c)Pvp]i* + }
[A~~{3Pvu + A~~(.B- .BJPvv]j*

114

u.b.(['"Y- '"YcJ**)[PPP]**+

U. b.([/3]* *)[Pvu]** +

u.b.([/3- ,(3cJ**)([Pvp]** + [Pvv]**)

(B.19)

where k = j + 3, j = 1,2 and all upper bounds are taken over~ E S. Out of all the

numbers appearing in (B.19), only [A~J]j* and the upper bounds on [,B]**, [/3- ,l3cJ**'

aud b - 1 cl* * cannot be calculated exactly; the first can be estimated to any desired

precision with the APM library, the rest are handled with the BapiiLterm, BapiiLexpr

machinery.

the column-rotor scheme

This technique fattens matrices A ~ DG"'c o P, where DG and P are as in equations

(B.l3) and (B.l4). Such A's have almost the same form as (B.l5), but they have

non-vanishing Auu blocks. The method's name comes from the way it tries to ensure

that A is non-singular; it rotates parts of columns 4-7 with respect to each other so as

to guarantee that they are not parallel. For example, the function Rsubspace_rot (),

which performs the rotations, b egins by finding the angle between the two, 2-d column

vectors enclosed in braces in the matrix below.

a31 a32 a33 0

[::: l [::: l
If columns 4 and 5 are nearly parallel then so are these two vectors; Rsubspace_rot ()

would rotate the shorter of the two through some fixed angle, then go on to check

and, perhaps rotate, other pairs until the matrix had no parallel columns. As we

115

noted in section 3.2.3, this technique is not at all optimal. Indeed, it is not even

certain to produce a non-singular matrix, though, in practice, it always does. The

column-rotor scheme produces smaller, more snugly fitting bounding prisms than the

fixed-form fattener and so improves the program's performance.

The main computational work in this scheme is in inverting the matrix A and

m calculating the Wj. Since, after column-rotation, A bears no direct relation to

DG.,c o P, we cannot expect any special form for A-1 o DG., o P. Instead, we must

use the APM library to compute some A ~ A - 1 directly. Define4 a 4 x 4 matrix B

such that

[Buu B,.][Auu
A,. l =I

Bvu Bvv Avu Avv

Then

I 0 0 A - 1
pp 0 0

A-1 0 Buu Buv -AupA_;P1 I 0

0 Bvu Bvv -A11pA_;P1 0 I

A-1
pp 0 0

{ - BuuAupA;; } - BuvAvpA_;p1

App 0 0
,....,

A up Auu Auv (B .20) ,....,

{ -BvuAupA;,; } -BvvAvpA_;p1

Avp Avu Avv

Note that the lower-left, 4 x 4 block of A is just B. Then, agam taking App = Ppp,

4 Some of the notation in this section, like B here, is introduced as a guide to the names of
variables used in the code.

116

the product A- 1 o DG~ o Pis

I 0 0

{ AupPpp + AuuPvp+ } { AuuPvu+ } { AuuPvv+ } Auv(rPpp- Pup+ f3Pvp) Auv(f3Pvu- Puu) Auv(f3Pvv- Puv)

{ AvpPpp + AvuPvp+ } { AvuPvu+ } { AvuPvv+ } Avv(rPpp- Pup+ f3Pvp) Avv(f3Pvu- Puu) Avv(f3Pvv- Puv)
(B.21)

Since the fattening scheme does not alter the first three columns, the blocks Aup and

Avp have the forms dictated by A= DG~o o P; these are the same as the forms used

in equation (B.18) for the fixed-form scheme. Equation (B.21) then simplifies to

and the row sums contributing to w u are

ti.b.

[Auv('- rJPpp + Auv(.B- f3c)Pvp]j *+)

[AuuPvu + Auv(f3Pvu- Puu)Ji*+ '

[AuuPvv + Auv(,l3Pvv- Puv)]i*

u .b . [AuuPvu + Auv(,BPvu- Puu)]** +

u.b. [AuuPvv + Auv(,BPvv - Puv)]**. (B.22)

All the upper bounds are taken over :c E S; the formulae for w v are similar. The

program calculates the entries in A to at least precision decimal places, then treats

them as exact in the evaluation of [Avu]i * and in expressions like

(B.23)

117

Upper bounds like (B.23) are so important that the program includes a special

function, RbouncLrows (), to evaluate them. To account for the small errors (~

10-preci.oion) in A, the program adds max_error to the value of Wj as computed ac­

cording to (B.22). Since the entries of f3 and Pare all less in absolute value than 10,

and since max_error is at least five orders of magnitude bigger than the largest error

in A, this is a very conservative estimate.

matrix inversion

Notice that only blocks from the lower-left corner of A appear in equation (B.22) ;

it will be enough to calculate just these blocks to precision decimal places. The

function, Rgauss (), which does the calculation, takes a matrix M and uses the Gauss­

Jordan algorithm with full pivoting to produce a result M ::::::: .Af-1 such that Jlvf 111 =

I+ 0(E), that is

1[111 111]·. - li· ·I < € '1 •J -

where /iii is the Kroneker delta function aud E is, as usual, 10-preci.oion.

To apply the Gauss-Jordan algorithm to an n x n matrix M one constructs the

n x 2n matrix

M11 11112 Jl.f1n 1 0 0

G =
Jlvf21 Jy[22 1112n 0 1 0

l\1n 1 Mn2 Jvfnn 0 0 1

made by appending a copy of the identity to the right side of M . The algorithm

transforms the left side of G into the identity through a sequence of row operations

that simultaneously transform the right side into A- 1
. The first step is to multiply the

top row by a constant so that the (1,1) entry is equal to one, then subtract suitably

scaled multiples of the first row from each of the others in such a way as to eliminate

118

the entries in the first column. After this step the system looks like

1 M.u. l!il.n. 1 0 0
M11 M11 M11

0 Af22- Ml1llf1l _l!fu.. 1
G'= Mt I A-ftl (B.24)

0 Mn2- Jl;f,.lllfl l _.M.....t. 1
M11 M11

In the second step one uses multiples of the second row to eliminate all but the (2,2)

entry from the second column ... and so on. The true Gauss-Jordan algorithm with

full pivoting may rearrange some of the rows and columns so as to place large entries

on the diagonal of the left-hand block; also, real implementations use only a single

n x n array, gradually replacing the matrix M by its approximate inverse, /1!1. The

reader interested in the details of the algorithm should consult either the code, which

is in appendix C, or the excellent book [PFTV86]. Here, we will mostly ignore the

rearrangements, because they do not affect the error estimates we need.

The divisions needed to calculate intermediate results like (B.24) can only be done

approximately so we must calculate bounds on the errors they introduce. Suppose all

the calculations are done to some fixed precision, inv_dp and define Einv = 10inv-<lp .

We will need a new symbol, G', to denote the approximate value of the matrix G'

and will also need to define 61 , the largest error made iu calculating an entry of G';

The second step produces

1 0 *
1 0 0 Jl;ft 1

0 1 * *
M 0

G"= MIIA-12 2 - 1\;[211\;f. 2

0 0 * * * 1
(B.25)

119

Ideally, we would use G' to calculate G" according to

G~'. = l &J

G~. -
&]

if i = 2

if i -I= 2.

but instead, Rgauss 0 actually calculates

a~'.
1]

[c~ ·] l] if i = 2

G~ 2 inv.-dp

[G:; _ [G~~;;]. _. l if i -1= 2
&nv p inv.-dp

(B.26)

From this we must estimate 52 , an upper bound on the difference between G" and

G". Rgauss () finds 52 in stages, as follows:

(i) Compute

(ii)

<

This is a bound on the error made by taking

piv_inv;

pi v _inv is the name used in the code.

This is a bound on the error introduced by normalizing the second row so that

its (2,2) entry is equal to one.

(iii)

>

120

201 +or u.b.jG~ 2 1 + o1or,
lf;2

01 + 01 u .h.jpiv_invG;Icl +Or u.h.jG~ 2 1 + 010r .
lcf;2 lf;2

This is a matrix-wide bound on the errors made in computations like those in

(B.26). The inequality is a consequence of the pivoting part of the algorithm,

which ensures that jpiv_inv a; lei :::; 1.

(iv} Finally,

Similar estimates eventually give On, a matrix-wide estimate on the difference between

entries of }vf and the true inverse, .l\f- 1. From this we can conclude

(B.27)

Unless 1\1 is singular, we can choose inv_dp to make the error (B.27) as small as

we like. Rgauss () guarantees both On and the error given by (B.27) to be less than

10 - preciaion.

about truncation

Both the schemes described above produce matrices, P', whose entries are long strings

of digits, longer than those of the original matrix, P. To avoid the computational

cost of storing and manipulating long strings, the program truncates the entries in

P' to precision decimal places; this introduces a small, readily manageable error.

Call the truncated prism P:runc ; its entries differ from those of P' by, at most ,

E = 10- preciaion, so that :V E S'

:v = :v~ + P'7J fo r s ome 17 E Q7

121

differs from

- I P'
:C = :Cc + trunc11

by, at most, 7E in each coordinate. The simplest way to handle this error Is to

incorporate it into be, the upper bound on the difference I(Gabc(:cc) - :cc)jl . The

coordinates of Gabc(:cc) are calculated out to precision decimal places, so we must

have

Since the program uses De = max_error = lo•afety....dp€ = 105
E, this condition is abun-

dantly satisfied.

122

Appendix C

Computer Programs

This appendix contains the most important parts of the C programs used to prove

the results described in chapter 3. In the interest of economy, we have deleted most

of the non-rigorous and semi-rigorous parts of the code, leaving only those parts bear

on that the correctness of our converse KAM results. The first section contains Lloyd

Zussman's own description of his arbitrary precision library, the rest of the appendix

has been copied directly from the source files used to compile the program.

C.l Arbitrary precision library
APM
apminit(init, scale_factor, base)
long init;
int scale _factor;
s hort base;
{}

This routine initializes a nev APM value . The 'init' parameter is a long
integer that represents its initial value, the 'scale_factor' variable
indicates hov this initial value should be scaled, and 'base' is the base o~

the initial value . lote that the APM value returned by this routine is
normally a reclaimed APM value that has been previously disposed of via
apmDiapose(); only i~ there are no previous values to be reclaimed vill this
routine allocate a fresh APM value (see also the apmGarbageCollect()
routine).

Bases can be 2 - 36, 10000, or 0, vhere 0 defaults to base 10000 .

If the call fails , it vill return (APM)RULL and 'apm_errno' vill contain a

123

meaningful result. Otherwise, s new APM vslue will be initislized.

For example, assume that we want to initialize two APM values in base 10000,
the ~irst to 1.23466 and the second to 1 E20 ("one times 10 to the 20th
power") :

APM apm_1
APM apm_2

apmlnit(123466L, -6, 0);
apmlnit(1L, 20, 0);

As a convenience, the ~ollowing macro is de~ined in apm.h:

lde~ine apmlew(BASE)

int
apmDispose(apm)
APM apm;
{}

apminit(OL, O, (BASE))

This routine disposes o~ a APH value 'apm ' by returning it to
unused APM values (see also the apmGsrbageCollect() routine).
an appropriate status which is also put into 'apm_errno' .

int

apmGsrbageCollect()
{}

the list o~
It returns

When APH values are disposed o~. they remain allocated. Subsequent calls to
apmlnit() may then return a previously allocated but disposed APH value.
This is done ~or speed considerations. but after a vhile there may be lota o~
these unused APM values lying around. This routine reclaims the space taken
up by these unused APH values (it ~rees them). It returns an appropriate
status which is also put into 'apm_errno'.

int
apmAdd(result, apm1, apm2)
APH result;
APH apm1;
APM apm2;
{}

This routine adds 'apm1' and 'apm2', putting the sum into 'result', whose
previous value is destroyed. lote that all three parameters must have been
previously initialized via apminit().

The 'result' parameter cannot be one o~ the other AP~ parameters.

The return code and the 'apm_error' variable re~lect the status o~ this
function.

int
apmSubtract(result, apm1, apm2)
APH result;
APH apm1;
APH apm2;
{}

This routine subtracts 'apm2' ~rom 'apm1', putting the di~~erence into
'resu1t', vhose previous value is destroyed. lote that all three parameters
must have been previously initialize~ via apmlnit() .

The 'result' parameter cannot be one of the other APK parameters.

The return code and the 'apm_errno' variable re~lect the status o~ this
~unction.

int

apmMultiply(result, apml, apm2)
APH result;
APH apmt;
APH apm2;
{}

124

This routine multiplies 'apmt' and 'apm2', putting the product into 'result',
vhose previous value is destroyed. Bote that all three parameters must have
been previously initialized via apmlnit().

The 'result' parameter cannot be one o~ the other APM parameters.

The return code and the 'apm_errno' variable re~lect the status o~ this
~unction.

int
apmDivide(quotient, radix_places, remainder, apmt, apm2)
APK quotient;
int radix_places;
APK remainder;
APH apml;
APK apm2;
{}

This routine divides 'apml' by 'apm2', producing the 'quotient' and
'remainder' variables. Unlike the other three basic operations,
division c&nnot be counted on to produce non-repeating dec~als, so
the 'radix_places' variable exists to tell this routine hov many
digits to the right o~ the radix point are to be calculated be£ore
stopping. I~ the 'remainder' variable is set to (APM)BULL, no
remainder is calculated • • . this saves quite a bit o~ computation time
and hence is recommended vhenever possible.

All APK values must have been previously initialized via apmlnit() (except,
o£ course the 'remainder' value i~ it is to be set to BULL).

Division by zero creates a zero result and a varning.

The 'quotient' and 'remainder' variables can't be one o~ the other APK
par~eters.

The return code and the 'apm_errno' variable re~lect the status o~ this
~unction.

int
apmCompare(apmt, apm2)
APK apml;
APM apm2;
{}

This routine compares 'apml' and 'apm7.', returnins -1 i~ 'apml' is less than
'apm2', 1 i~ 'apm1' is greater than 'apm2', and 0 i~ they are equal.

It is not an error i~ 'apmt' and 'apm2' are identical, and in this case the
return value is 0 .

The 'apm_errno' variable contains the error code. You must check this value:
i£ it is set to an error indication, the comparison £ailed and the return
value is there~ore meaningless.

int
apmCompareLong(apm, longval, scale_~actor, base)
APM apm;
long longval;
int scale _factor;

125

short base;
{}

This routine vorks just like apmCompare(), but it compares the 'apm' value to
'longval', scaled by •scale_£actor 1 in 1base 1 • The 1apm_errno 1 variable

contains the error code.

int
apmSign(apm)
APM apm;
{}

This routine returns the sign o£ the 'apm' value: -1 £or negative, 1 £or
positive. The 'apm_errno' variable contains the error code. You must check
'apm_errno': i~ it's non-zero, the ~unction return Ya1ue is meaning1ess.

int
apmAbsoluteValue(result, apm)
APM result;
APM apm;
{}

This routine puts the absolute value o~ 1 apm 1 into 'result', vhose previous
value is destroyed. late that the tvo parameters must have been previously
initialized via apmlnit().

The 'result' parameter cannot be the other APM parameter.

The return code and the 'apm_errno' variable re£1ect the status o£ this
£unction.

int
apmKegate(result, apm)
APM result;
APM num;
{}

This routine puts the additive inverse o£ 'apm' into 'result', vhose previous
value is destroyed. Rote that the tvo parameters must have been previously
initialized via apmlnit() .

The 'result' parameter cannot be the other APM parameter.

The return code and the 'apm_errno' variable re£lect the status of this
£unction.

int
apmReciprocal(result, radix_places, apm)
APM result;
int radix_places;
APM num;
{}

This routine puts the multiplicative inverse o~ 'apm' into 'result ' , vhose
previous value is destroyed. l ote that the tvo APM parameters must have been
previously initialized via apmlnit(). Since taking the reciprocal involves
doing a division , the 'radix_places' parameter is needed here £or the same
reason it's needed in the apmDivide() routine.

Taking the reciprocal of zero yields zero vith a varning status.

The ' result' parameter cannot be the other APM parameter.

The r eturn code and the 1 apm _errno 1 variable re£lect the status of this

function .

int

apmScale(result, apm, scale_£actor)
APM result;
APM apm;
int acale_factor;
{}

126

This routine assigns to 'result' the Yalue o£ 'apm' vith its radix point
shi£ted by 'scale_£actor' (positive 1 scale_£actor' means shi£t le£t). The
'scale_£actor' represents hov many places the radix is shi£ted in the base o£
'apm' un1ess 'apm' is in base 10000 in this special case, 1 scale_~actor 1

is treated as i£ the base vere 10 .

This is a Yery quick and accurate vay to multiply or diYide by a pover o£ 10
(or the number's base).

The 'result' parameter cannot be the other APM parameter.

The return code and the 1 apm_errno' variable re£lect the status o£ this

:function.

int
apmValidate(apm)
APM apm;
{}

This routine seta 'epm_errno' and its return status to some non-zero value i£
'apm' is not a valid APM Yalue.

int
apmAssign(result, apm)
APK result;
APH num;
{}

This routine assisns the value o~ 'apm' to 'result', whose previous value is
destroyed. lote that the tvo parameters must have been previously
initialized Yia apminit().

It is not considered an error i£ 'result' and 'apm' are identical; this case
is a Yirtual no-op .

The return code and the 'apm_errno' variable re£lect the status o£ this
£unction.

int
apmAssignLong(result, long_value, scale_£actor, base)
APM result;
long long_value;
int scale_~actor;

short base;
{}

This routine assigns a long int to 'result'. Its second through £ourt h
parameters correspond exactly to the parameters o£ apmlnit(). The only
di£ference betveen the tvo routines is that this one requires that its result
be previously initialized. The 'long_value ' parameter is a long that
represents the value to assign to 'result', the 'scale_~actor' variable
indicates hov this va1ue sho~d be sca1ed, and 'base' is the base o~ the

Yalue.

Bases can be 2 - 36, 10000, or 0 , vhere 0 de£aults to base 10000.

For example, assume that ve vant to assign values to tvo previously
initialized APM entities, apm_1 and apm_2. The base vill be base 10000, the
£irst value vill be set to 1.23466 and the second vill be set to 1 E20 ("one
times 10 to the 20th pover") :

127

int ercode;

ercode = apmAssignLong(apm_1, 123466L, -6, 0);

apmAssignLong(apm_2, 1L, 20, 0);

The return code and the 1 apm_errno' variable reflect the status of this
function.

int
apmAasignString(apm, string, bass)
APK apm;
char •string;
short base;
{}

This routine takes a character string containing the ASCII representat ion of
a numeric ~alue and converts it into a APM value in the base apeci~ied . The
1 apm' parameter must have been previously initialized, 'string' must be
non-lULL and valid in the specified base, and 'base' must be a valid base.

The return code and the 'apm_errno' ~ariab1e re~lect the status o~ this

function .

int
apmConvert(string , length, decimals, round, leftjustify, apm)
char +strin~;
int length;
int decimals;

int round;
int 1eftjustify;
APM apm;
{}

This routine converts a APM value 'apm' into its ASCII representation
'string ' . The 'length' parameter is the maximum size of t he string (including
the trailing null), the 'decimals' parameter is the number of decimal plac es

to display, the 'round' parameter is a true-false value ahich determines
vhether rounding is to take place (0 =false= no rounding), the
'leftjustify' parameter is a true-false value vhich determines vhether the
result is to be left justified (0 = false = right justify; non- zero = true
left justify), and the 1apm 1 paramter is the APK value to be converted .

The 'string' parameter must p oint to an area that can h old a t least ' length'
bytes.

If the ' dec imals' parameter is < 0, the string will c ontain the number of
decimal places that are inherent in the APM value passed in .

The return code and the 1 apm_errno' variable reflect the s tatus of thi s
function.

int
(•apmErrorFunc(nevfunc))()
int (•nevfunc)();
{}

This routine registers an error handler for errors and varnin&s . Before any

of the other APK routines return to the caller, an optional err or handler
specified in 'nevfunc' can be called t o intercept the resul t of the
operation . With a registered error handler , the caller can dis pense vith the
repet i tious code for checking ' apm _errno ' or the function retu rn status aft er

128

each call to a !PM routine.

I~ no error handler is registered or i~ 'nev£unc' is set to .ULL, no action
vill be taken on errors and varnings except to set the 1 apm_errno 1 variable .
If there is an error handler, it is called as follovs vhen there is an error
or a varning:

ret code (•nevfunc)(ercode, message, file, line, function)

where . . .

int retcode;

int ercode;
char •message;

char •file;
int line;
char •function;

I• returned by 1 nevfunc 1 : should be 1 ercode 1 •I
I• error code •/
I• a short string describing the error •I
I• the file in vhich the error occurred •I

I• the line on vhich the error occurred •I
I• the name of the function in error •I

Bote that your error handler should normally return 1 ercode 1 unless it does a
longjmp, calls exit(), or in some other vay interrupts the normal processing
flov. The value returned from your error handler is the value that the apm
routine in error vill return to its caller .

The error handler is called after 'apm_errno' is set.

This routine returns a pointer to the previously registered error handler or
lULL if one isn't registered.

int
apmCalc(result, operand, ... , lULL)
!PM result;
!PM operand, . . . ;
{}

This routine per£orms a series of calculations in an RPI (11 Reverse
Polish Rotation") fashion, returning the final result in the 'result'
variable. It takes a var i able number of arguments and hence the
rightmost argument must be a RULL.

Each 'operand' is either a !PM value or a special constant i ndicating
the operation that is to be performed (see belov). This routine makes
use of a stack (18 levels deep) similar to that in many pocket
calculators. It also is able to access a set of 18 auxiliary
registers (numbered 0 through 16) for holding intermediate values.

The stack gets reinitialized at the start of this routine, so values
that have been lef t on the stack f r om a previous call vill d i sappear .
However, the auxiliary registers are static and values remain in these

registers for the duration of your program. They may also be
retrieved outside of this routine (see the apmGetRegis ter() and
apmSetRegister() routines, belo v) .

An operand that is an APM value is automatically pus hed onto the stack
simply by naming it in the function call. If the stac k is ful l vhen a
value i s being pushed onto it, the bottommo st value drops of~ t he
stack and the push succeeds; thi s is similar to hov many pocket
calculators vork. !lso , if the stack is empty, a p op vill succeed,
yielding a zero value and keeping the stack empty. The topmost value
on the etack is automatically p opped into t he 'result' parameter after
all the oper ations h ave been per formed.

An operand that is one of the f olloving spec ial v alues vill cause

an operat i on to be per f ormed . These oper at ions are descr ibed in the

129

'fol.loving list. lote that the values "V", "V1", and "V2" are used

in the following list to stand for temporary values:

APM_ABS
APM_IEG
APM_CLEAR
APM_DUP
APM_SWAP
APM_SCALE(B)
APM_PUSB(ll)
APM_POP(I)
A PM_ ADD
APM SUB
APM_MUL
APM_DIV(B)

APM_RECIP(II)

pop V, push absolute value of V
pop V, push -V

empty the stack
pop V, push V, push V

pop V1, pop V2, push V1, push V2
pop V, push V scaled by I [as in apmScale()]

V = value in register I, push V
pop V, store it in register I

pop Vl, pop V2 , push (V2 + V1)
pop V1, pop V2, push (V2 - V1)
pop V1, pop V2 , push (V2 • V1)

pop Vl, pop V2, push (V2 I Vl) vith B radix places
as in apmDivide()], remainder goes into register 0

pop V, push 1IV vith B radi x places
as in apmReciprocal()]

Since register 0 is used to hold the remainder in a division, it is
recommended that this register not be used to hold other values.

As an example, assume that APM values "~oo 11 , "ba.r", and 11 baz 11 have
been initialized via apmlnit() and that .. :foo 11 and ,.bar" are to be u s ed

to calculate "ba:z" as :follows (assume that divisions stop after 16
decimal places have been calcluated) :

baz = 1 I ((((foo * bar) + foo) I bar) - foo)

The function call vill be:

bcdCalc(baz, foo, APM_DUP, APM_POP(1), bar, APM_DUP, APM_POP(2),
APM_MUL, APM_PUSH(1), APM_ADD, APM_PUSH(2), APH_DIV(16),
APM_PUSB(1), APM_SUB, APH_RECIP(16), BULL) ;

Bote that the value of "foo" is stored in register 1 and the value of
"bar" is stored in register 2 . After this call, these registers vill
still contain those values.

int
apmGetRegister(regvalue, regnumber)
APM regvalue ;
int regnumber;
{}

The value in aux iliary regi ster number t r egnumber' is assigned to APM
value 'regvalue'. The 'regnumber' parameter must be betveen 0 and 16,
i n c l us i ve. The ' r egvalue' parameter mus t have been previ ously
initialized via apmlnit() .

i nt
apmSetRegis ter(regvalue, regnumber, nevvalue)
APM regvalue ;
int regnumber;
.APM nevTalue ;
{}

The value i n aux i1iary r egi ster n umber ' r egnumber ' is assigned t o APM
v alue 'regvalue', and then the APM value 'ne~value' i s stored in that
same register . The 'regnumber' parameter must be betveen 0 and 16,
inclusive . The ' r egva1ue ' and 'nevvalue' parameter s must hav e been
previously initialized via apminit() .

130

C.2 Source code

The listings below contain only those functions crucial to the correct execution of a

converse KAM calculation. Some references to inessential or semi-rigorous parts of

the code have been left in place because we wished to present the important functions

exactly as they appear in the original source files.

C.2.1 special functions

the header files apmSpecial.h and apmPrint.h

I define KAX_TRIG_TERHS 100
I define DFLT_TRIG_DP 20

• define PI_DP (sizeof(pi_str) I sizeof(char)

• ifndef YES

• dd'ine YES 1

• define 10 0

• end if

I ifndef m_svap
I define m_svap(x,y,t) (t=x, x=y, y=t)

I endif

zero, on•, tvo ;

- 3)

extern API!
extern APM
extern APK
extern APM

pi, tvo_pi, half_pi, threeRalf_pi, eighths_2pi[8]
Theta, scratch, xMod2pi. Theta_aq, Ansver i

Factrl, coef, apmOrder ;
extern APK approx[2], diff, ub_diff
extern int trig_dp, specialsinit
extern int trig_terms , dp_lost ;
extern char pi_str[] ;

apmCos(), etc.

I include <stdio.h>
I include <math.h>
I include "apm . h"
• include "apmPrint . h 11

• include "apmSpecial.h"

• define BUF_SZ 266

APH •sinCoef, •cosCoef
APM zero, one, tvo ;
APH pi, tvo_pi, half_pi, threeRalf_pi, eighths_2pi[8]
APH Theta, scratch, xHod2pi, Theta_sq, Ansver ;
APM sinFactrl, cosFactrl, apmOrder
APK approx[2] , diff , ub_diff ;
int trig_dp, specialsinit = 10

131

int
char
char

trig_terms, dp_lost ;
pi_str [] = "3 . 14169266368979323846243383279602884197169399376"
log_bu~[BUF_SZ] ;

I• ++++++++++++++++++++++++ •I

initApmSpecials()
{

}

int k ;

I• Initialize a bunch o~ APMs. Theta vill be the reduced argument
o~ a trig ~unction; it vill be betveen zero and pi I 4. •I

pi apmlev(0
one = apmlnit(1L, 0, 0) ;
tvo = apmlnit(2L, 0, 0) ;
zero = apmlnit(OL, O, 0) ;
di~~ = apmlev(0) ;
Theta = apmlev(0) ;
Ansver = apmlev(0) ;
tvo_pi = apmBev(0) ;
hal~_pi apmlev(0)
scratch apmlev(0)
ub di~~ apmlev(0)
xMod2pi apmlev(0)
apmOrder = apmlev(0) ;
Theta_sq = apmlev(0) ;
sinFactrl = apmlev(0)
cosFactrl apmlev(0)
approx[O] apmlev(0)
approx[1) apmlev(0)
threeHal~_pi = apmlev(0)
£or(k=O ; k < 8 ; k++)

eighths_2pi[k] = apmlev(0) ;

I• Obtain some rational mutiples o~ pi. These vill be help~ul
vhen ve go to restrict the domain o~ the trig ~unctions to
between zero and pi I 4 •I

apmAssignString(pi, pi_str, 0

apmMultiply(scratch, tvo, tvo
apmOivide(eighths_2pi[O], (PI_DP+2), (APM)IULL, pi, scratch)

~or(k=1 ; k < 8 ; k++)
apmAdd(eighths_2pi[k], eighths _2pi[O], eighths_2pi[k-1])

apmMultiply(tvo _pi, pi, tvo) ;
apmAssign(hal~_pi, eighths_2pi[1]) ;
apmAssign(threeHal£_pi, eighths_2pi[6]

setTri gOp(DFLT_TRIG_DP) ;

dp_lost = 0 ;
specialslnit = YES

return(1) ;

I• ++++++++++++++++++++++++++ •I

setTrigDp (dp)

132

int dp ;
{

}

double j, j_fact, ten_to_dp

I+ Check to see that the desired accuracy is compatible
with our knowledge of pi. +I

if((dp+2) > PI_DP) {
fprint:f(stderr,
"We don't know pi well enough to achieTe the desired accuracy. \n")
return(0) ;

}

•1••
trig_dp dp+2 ;

I• Assume the arsument is between zero and pi I 4 . How many
terms from the Taylor series do we need to include ? +I

tri~_terms = 1 ;

ten_to_dp = pow(10.0, (double)dp)
for(j = 1.0, j_fact 1.0 ; j_fact < ten_to_dp

j_:fact += j + (j + 1) ;

trif!_terms++ ;
if(trig_terms > MAI_TRIG_TERMS) {

+= 2.0) {

fprintf(stderr, "Too many terms required. \n")
return(O) ;

}

}

trig_dp += (int)(ceil(log10((double) trig_terms)))
setTrigCoef 0 ;
return(dp) ;

I• +++++++++++++++++++++++++++++++++++++ •I

reduceArg(x

I•
Takes x, chops off enough multiples of two_pi to get it
into the interTal between zero and two_pi . Checks that we
haTen't lost an unacceptable amount of precision in doing
this •tage of the reduction. Then chops off multiples
of pil4 to get the argument into the i nterTal betwe•n zero and
pil4. Sets Theta equal to the reduced argument and returns
an integer indicating in which of eight equally spaced interTals
x (mod two_pi) lay. If any precision is lost, dp_lost is set
to the number of decimal places lost .

APM x
{

int octant ;
char qtnt_str[BUF_SZ]

I• Note that we haven't lost any decimal places yet . +/
dp_lost = 0

I • Whack out many multiples of two _pi. • I
apmDiTide(scratch, 3, (APM)IULL, x, tvo_pi)
apmFloorString(qtnt_str, BUF_SZ, scratch) ;
apmAssignString(scratch, qtnt_str, 0) ;
apmMultiply(Answer, scratch, tvo_pi) ;
apmSubtract(xMod2pi , x , Answer) ;
if(apmSign(xM od2pi) == -1)

}

133

apmCalc(xMod2pi, xMod2pi, tvo_pi, !PM_!DD, BULL)

for(octant=O (octant < 8) ; octant++) {

}

if(apmCompare(xMod2pi, ei~hths_2pi[octant]) < 0)
break ;

svitch(octant) {
case 0 :

}

apm!ssi~(Theta, xMod2pi)
break

case 1 :

apmSubtract(Theta, half_pi, xMod2pi)
break

case 2 :
apmSubtract(Theta, xMod2pi, half_pi)
break

case 3 :
apmSubtract(Theta, pi, xMod2pi)
break

case 4 :
apmSubtract(Theta, xMod2pi, pi
break

cas• 6 :
apmSnbtract(Theta, threeHalf_pi, xMod2pi)
break

case 6 :
apmSubtract(Theta, xMod2pi, threeHalf_pi)
break

case 7 :
apmSubtract(Theta, tvo_pi, xMod2pi)
break

default :
break

I• Check for loss of prec1s1on •I
if((PI_DP - strlen(qtnt_str)) < tri~_dp

dp_lost tri~_dp - PI_DP + strlen(qtnt_str)
else

dp_lost 0 ;

return(octant) :

I• +++++++++++++++++++++++ •I

reducedSinO
I•

Takes the sine o~ Theta, puts the result in Ansver.

{

int order, dp_to_~ind, term_num

apm!aai~(!nsver, zero) ;

134

apmKultiply(Theta_sq, Theta, Theta)

term_num = tris_terms - 1 ;
for(order = (2 • tris_terms - 1) ; order > 0 ; order

}

I• ftultiply the old partial sum by Theta squared
and add in a new coefficient

apmKultiply(scratch, Answer, Theta_sq) ;
apmAdd(Answer, sinCoef[term_num--), scratch
apmTruncate(Answer, tris_dp) ;

I• ftultiply by the final factor of Theta,
divide by the factorial, and return •I

if(dp_lost > 0)
dp_to_find tris_dp + 1 - dp_lost

else
dp_to_find = trig_dp + 1

apmKultiply(scratch, Answer, Theta) ;

2) {

apmDivide(Answer, dp_to_find, (APft)IULL, scratch, sinFactrl)

r•turn ;
}
I• ++++++++++++++++++++++++++++++++++++ •I

reducedCos()

I•

{

Takes the cosine of Theta, puts the result in Answer.

int order, dp_to_~ind, term_num

apmAssisn(Answer, zero) ;
apmKultiply(Theta_sq, Theta, Theta)

term_num = trig_terms - 1 ;
for(order = (2 • trig_terms - 2) ; order >= 0 ; order

}

I• ftultiply the old partial sum by Theta squared
and add in a new coefficient

apmKultiply(scratch, Answer, Theta_sq) ;
apmAdd(Answer, cosCoef[term_num--], scratch

apmTruncate(Answer, tris_dp) ;

I• Divide by the factorial,
Put the result into Answer, and return •I

if(dp_lost > 0
dp_to_find trig_dp + 1 - dp_lost

else
dp_to_find = trig_dp + 1 ;

2) {

apmDivide(scratch, dp_to_find, (APft)IULL, Answer, cosFactrl)

apmAssisn(Answer, scratch) ;
return ;

}
I• ++++++++++++++++++++++++++++++++++++ •I

apmSin(result, x)

135

APM result, x ;
{

int octant ;

i£(specia~slnit == 10 {
£print£(stderr,

"apmSinO P~ease cal~ initApmSpecialsO . \n")
apmAssi~on!(result, OL, 0, 0) ;
apm_errno = APM_EPARM ;
return

}

else
apm_errno = APM_OK ;

I• Reduce the argument, report any loss o£ prec1s1on, and
note in vhich octant x (mod tvo_pi) ~ay. •I

octant = reduceAr!(x) ;
i£(dp_~ost > 0) {

£print£(stderr,
"apmSin : Big argument, lost Y,d decimu places :from the ansver. \n" ,

dp_lost) ;
apm_errno = APM_WTRUIC ;

}

e~se

apm_errno APM_OK ;

I• EYa~uate the sine. Which o£ the tvo reduced :functions
one uses depends on the octant.

svitch(octant) {
case 0 :

reducedSinO
break

case 1 :

reducedCos 0
break

case 2 :
reducedCos 0
break

case 3 :
reducedSinO
break

case 4 :
reducedSinO
apml•!ate(scratch, Ansver
apmAssi~(Ansver, scratch
break

c ase 6 :
reducedCos()
apmRegate(scratch, Ansver
apmAss i gn(Ansv er, scrat ch
break

case e :
reducedCoB()

•I

}

}

apmlegate(scratch, Answer
apmAssign(Answer, scratch
break

case 7 :
reducedSinO
apmBegate(scratch, Answer
apmAssign(Answer, scratch

break

de:faul.t :
break

apmAssign(result, Answer)

return ;

136

I• +++++++++++++++++++++++++ •I

apmCos(result, x)

APM resul. t, x
{

int octant ;

i:f(specialslnit == 10 {
:fprint:f(stderr,

}

e1se

"apmCosO Please call initApmSpecialsO :first. \n")
apmAssignLong(result, OL, O, 0) ;
apm_errno = APM_EPARM ;
return

apm_errno = APM_OK ;

I• Reduce the argument, report any loss o:f precision, and
note in vhich octant x (mod tvo_pi) lay. •I

octant = reduceArg(x
i:f(dp_lost > 0) {

:fprint:f(stderr,

}

else

"apmCos : Big argument, lost Y,d decimal places :from the ansver. \n",
dp_lost) ;

APM_WTRUBC

apm_•rrno APM_OK ;

I• Evaluate the cosine . Which o:f the tvo reduced :functions
one uses depends on the octant. •I

svitch(octant) {
case 0 :

reducedCos 0
break

case 1 :
reducedSin()
break ;

}

}

case 2 :
reducedSinO
apmlesate(scratch, Ansver
apmAssisn(Ansver, scratch
break

case 3 :

reducedCos 0
apmlesate(scratch, Anaver
apmAssisn(Anaver, scratch
break

case 4 :
reducedCos()
apmlesate(scratch, Ansver
apmAssisn(Ansver, scratch
break

case 6 :

reducedSinO
apmlesate(scratch, Ansver
apmAssisn(Ansver, scratch
break

c••• e :
reducedSinO
break

case 7 :
reducedCos 0
break

de:fault :
break

apmA•sisn(result, Ansver)
return ;

I• +++++++++++++++++++++++++ •I

apmSqrt(re•ult, dp, x)
I•

Find •quare roots usins levton's method.

int dp
API'I x, result
{

int comp, dp_plus
API'I •this_approx, •next_approx, •temp

137

Check that all the •cratch Yariables are ready.

if'(apecialslnit ~~ 10) {
:fprint:f(stderr,

"apmSqrt () : Please call ini tApmSpecials () :first. \n")
apmAs•isnLons(result, OL , 0, 0)
apm_errno ~ API'I_EPARM ;
r•turn ;

}

138

}

el.se
apm_errno J.PI!I_Dit

I~ the arsument is zero, just return zero .
I~ the arsument is ne~ative, vhine.

i~((comp = apmCompare(x, zero)) == 0) {
apmAssi~(result, zero) ;
return i

}

el.se i~(comp == -1) {
~print~ (stderr, "apmSqrt ()
apm_errno = J.PK_EPARM ;
r•turn

}

el.se
apm_errno J.PK_Oit

Do up levton. The rul.e is

Can't handl.e ne~ative ar~ents, \n")

y[n+l] = (y[n] + xly[n]) I 2 . 0

dp_pl.us = dp + 2 ;
apmJ.ssisuLon~(ub_di~~. lL, -dp_pl.us, 0)

this_approx
next_approx

l:approx [0]
l:approx[1]

apmJ.ssi~(•this_approx , x) ;
apmAssi«n(•next_approx, zero)
apmSubtract(di~~ . •this_approx, •next_approx
vhil.e(apmCompare(di~~. ub_di~~) > 0) {

}

apmDivide(scratch, dp_plus, (J.PK) lULL, x, •this_approx
apmCal.c(scratch, scratch, •this_approx, APK_J.DO, lULL
apmDivide(•next_approx, dp_pl.us, (APK) lULL, scratch, tvo
apmTruncate(•next_approx, dp_pl.us) ;

apmCal.c(di~~. •this_approx, •next_approx, J.PK_SUB, J.PK_J.BS, lULL)
m_svap(this_approx, next_approx, temp) ;

apmAssi«n(resul.t, •this_approx)
return ;

I• +++++++++++++++++++++++++++++++++++++++ •I

apmFl.oor(resul.t, ar~, base)

int base ;
J.PK resul. t, ar~
{

char bu~[BUF_SZ] , •cpt ;

apmConvert(buf, BUF_SZ, 2, IO_ROUID, LEFT_JUST, ar~)
~or(cpt = bu~ ; •cpt != '\0 1 ; cpt++)

i~ (•cpt == ' . ')
•cpt = 1 \0 1 ;

apmJ.ssi«nStrin~(resul.t, buf, base)

139

}
I• ++++++++++++++++++++++++++++++++ •I

ntTrig<:oe:t()
{

int j, order, coe£_num
char ..,.al.locO

sinCoe:t = (APM •) malloc(trig_terms * sizeo:t(APM
co•Coe:t = (APM •) malloc(trig_terms • sizeo:t(APM
if((sinCoef == lULL) I I (cosCoef == lULL)) {

fprintf(stderr, "Trouble allocating 'r.d APMs :tor coefficients . \n"
exit (0) ;

}

}

for(j=O ; j <
sinCoef[j]
cosCoef [j]

trig_terms ; j++
apmlev(0)

= apmln(0) ;

) {

}

if((trig_terms 'r. 2) != 0) {

}

apmAssignLong(sinCoef[trig_terms- 1], -1L, O, 0
apmAssignLong(cosCoef[trig_terms-1], - 1L, 0, 0

else {

}

apmAssignLong(sinCoe:t[trig_terms- 1], 1L, O, 0
apmAssignLong(cosCoef[trig_terms-1], 1L, 0, 0

coef_num = trig_terms - 2 ;
:tor(order = (2 * trig_terms - 1) ; order > 1

I• coef:ticients :tor the sine •I
order

}

apmAseignLong(apmOrder, -((long) order), 0, 0) ;
apmMultiply(scratch, sinCoe:t[coef_num+1], apmOrder
apmAssignLong(apmOrder, (long)(order-1), 0, 0) ;
apmMultiply(sinCoe:t[coef_num], scratch, apmOrder)

I• coefficients for the cosine •I
apmMultiply(scratch, cosCoe:t(coe:t_num+1], apmOrder
apmAssignLong(apmOrder, - (long)(order-2), 0 , 0)
apmMultiply(coeCoef[coef_num], scratch, apmOrder)

co•f'_num-- ;

apmAssign(s i nFactrl , sinCoe:t[O]
apmAssign(cosFactrl, cosCoe:t[O]

I• +++ •I

apmFloorString(a, n, x)

APM x ;
int n ;
char •s ;
{

}

apmConvert(s, n, 1, RO _ROURD, LEFT_JUST, x)
strip_:trac (s) ;

I• +++++++++++++++++++++ •I

2) {

140

strip_:frac(str

char •str ;
{

}

:for(cpt = str ; cpt != '\0'
i:f(• cpt == ' · ') {

•cpt = '\0'
break ;

}

I• +++++++++++++++++++++++ •I

apmLogBd(x)

cpt++)

Returns an upper bound on the base-10 log o:f an apm.

}

int order ;
char •bpt ;

i:f(apmCompare(one, x) <= 0) {
apmFloorString(log_bu:f, BUF_SZ, x)
return(strlen(log_bu:f)) ;

}

else {

}

apmConTert(log_bu:f, BUF_SZ, (BUF _SZ-4), IO _ROUID , LEFT_JUST, x)

Skip to the digits beyond the decimal point

:for(bpt=log_buf
bpt++

•bpt != '·' ; bpt++) ;

Count the number of zeroes to the right o:f the decimal point.

for(order=O ; (•bpt == ' 0') ; bpt++, order--) ;
r eturn(order) ;

C.2.2 interval arithmetic

the header file boundiug.h

typedef

typedef

typedef

Data structures ~or calculating semi-risorous bounds
on e xpressions.

atruct { double ub, lb ; } Bdd_dbl

struct { int rlactors
double coef ;
Bdd_dbl ••factors, bound } Bdd_term

struct { int nt erms ;

double
Bdd_dbl
Bdd_term

const
bound
•terms

141

} Bdd_expr

APM partners to the structures abo••

typedef struct { J.PM ub, lb ; } Bdd_apm

typedef struct { int
APM
Bdd_apm

typedef struct { int
APM
Bdd_apm
Bapm_term

I• +++++++++++++++++++++++ •I

• define asaignBapm(empty,

I define ass ignBdbl (empty,

• define nevBapm(nev, base

n£actors ;
coef ;
••factors, bound } Bapm_term

nterms
const
bound
•terms

full

full

} Bapm_expr

(apmAssign(empty->ub,
apmAssign(empty->lb,

(empty->ub = full->ub,
empty->lb = full->lb

(nev.ub apmlev(base
nev.lb = apmlev(base

full->ub), \
full->lb))

\
)

) . \
))

I define maxJ.bs(x , J) (fabs(x) > fabs(y)) ? fabs(x) : fabs(y)

extern int RmaxJ.bs()

expressions

I include
I include
I include
I include
I include

<stdio.h>
<math.h>
11 apm..h"
"converse.h"
"bounding . h"

;

J.PM Rextrema, Rextremb, Rub, Rlb
APM Rprod[4], •Rlastp = (Rprod + 4)
double prod[4], •lastp =(prod+ 4)
I• ++++++++++++++++++++++++++++ •I
initBounding()
{

}

int j ;

Rub apmRev(BASE
Rlb apmlev(BASE

Rextrema = apmlew(BJ.SE
Rextremb = apmlev(BASE

for(j=O j < 4 ; j++
Rprod[j] apmlew(BASE

I• +++++++++++++++++++++++++++ •I

Rbound_term(tpt)
I•

Take a list of bounded factors and obtain 11 bound on their

142

product.

Bapm_term •tpt l

{

}

APM *ppt l

Bdd_apm •~acptr, ••~ast~, ••~pt

I~ there is on~y ona ~actor, de~ vith it directly.

if(tpt->n~actors == 1) {

}

apmAssisn(Raxtrema, tpt->factors[O]->ub
apmAssisn(Raxtremb, tpt->factors[O]->lb

Band~• expressions vith mora than one factor .
Since soma of the factors may be ne~atiYe ve
can't just multiply to ~ether all the upper
and lover bounds .

else {

}

apmAasisn(Rextrema, tpt - >factors[O]->ub
apmAasisn(Rextremb, tpt->factors[O]->~b

fpt = atpt->factora[1] l

for(lastf tpt->factors + tpt->nfactors
facptr = •fpt l

fpt < lastf

}

apmMu~tiply(Rprod[O] , ~acptr->ub, Rextrema
apmMultiply(Rprod[1], ~acptr->ub, Rextremb
apmMultiply(Rprod[2], ~acptr->lb, Rextrema
apmMu~tiply(Rprod[3], ~acptr->lb, Rextremb

apmAssisn(Rextrema, Rprod[O]) ;
apmAaaisn(Rextremb, Rprod[O]) ;
for(ppt = (Rprod+1) ; ppt < ~astp ; ppt++) {

if(apmCompare(•ppt, Rextrema) == 1
apmAaaisn(Rextrema, •ppt) ;

else i~(apmCompare(•ppt, Rextremb -1)
apmAaaisn(Rextremb, •ppt) ;

}

apmCa~c(Rextrema, Rextrema, tpt->coef, APM_MUL, lULL
apmCalc(Rextremb, Rextremb, tpt->coe~, APM_MUL, lULL
if(apmCompare(Rextrema, Rextremb) == - 1) {

}

apmAasign(tpt->bound.ub, Rextremb)
apmAsaign(tpt ->bound . ~b, Rextrema) ;

e~se {

}

apmAssign(tpt->bound.ub, Rextrema
apmAssisn(tpt->bound. ~b, Rextremb

I• ++++++++++++++++++++++++++++++++++++ •I

Rbound _expr(ept)

I•

~pt++) {

Obtain bounds on the terms in a bounded expression, add them up,
and so obtain a bound on the vho~e .

•I

Bapm_expr •ept ;
{

Bapm_term •tpt, •~ast_term ;

apmAssign(Rub, ept->const
apmlssign(R~b, ept->const

tpt = ept->terms

143

~or(~ast_term = tpt + ept->nterms ; tpt < last_term ; tpt++) {
Rbound_term(tpt

}

}

apmCalc(Rub, Rub, tpt->bound . ub, APM_ADD, lULL
apmCalc(Rlb, Rlb, tpt->bound . lb, APM_ADD, lULL

apmAssign(ept->bound.ub, Rub
apmAssign(ept->bound.lb, Rlb

I• +++++++++++++++++++++++++++++++++ •I

RmaxAbs(result, x, y

APM result, x, y ;
{

}

apmAbsoluteValue(Rub, x)
apmAbsoluteValue(Rlb, y)

if(apmCompare(Rub, Rlb 1
apmAssign(result , Rub

else
apmAssign(result, Rlb

bounding trig. functions

• include <stdio.h>

• include <math . h>

• include "a.pm.h"

• include "apmSpecial.h"

• include 11 ConYerse . h"

• include "bounding . h"

• include llpi.h"

APM hal~, three_hal~s ;
APM Rdelta, Rmax_cos, Rmin_cos
APM Rmax_x, Rmin _x, R~loor_x, Rlft_val, Rrght_val

Bdd_apm Rnev_theta ;

I• ----------- - - -------------- - ---- •I

ini tTrigBd()

I•

•I
{

Set up the APM's de~ined above.

Rdelta apmlev(BASE
Rmin_x apmNev(BASE
Rmax_x apmlev(BASE
~loor_x = apmlev(BASE

}

Rmax_cos apmBev(BASE
Rmin_cos apmlev(BASE
R1~t _Ya1 apmlev(BASE
Rrsht_Ya1 = a~ev(BASE) ;

Rnev_theta . ub
Rnev _theta.1b

apmlev(BASE
apmlev(BASE

ha1~ = apminit(2L, O, BASE) ;
three_ha1ts = apmlnit(3L, 0, BASE) ;

144

apmCa1c(ha1~, ha1t, APK_RECIP(precision), lULL) ;
apmCa1c(three_ha1~s, ha1~ , three_ha1~s, APK_KUL, lULL

I• ++++++++++++++++++++++++++++++++++++++ •I

Rbd_cos(bound, theta

I•
Obtain bounds tor the cosine ~unction over
a certain SiYen rans• of ans1es.

Bdd_apm
{

I•
An APK partner to the function aboYe. The Yariab1es
used here are static, and are defined at the top
ot the ~i1e.

Get some Yariab1es equa1. to theta I TVO_PI. These vi11
he1p decide vhether the interYa1 under consideration
contains any extrema .

apmDiYide(Rmin_x, precision, (APK)RULL, theta->1b, tvo_pi
apmDiYide(Rmax_x, precision, (APK)IULL, theta->ub, tvo_pi

apmF1oor(R~1oor_x , Rmin_x, BASE)
apmCa1c(Rmin_x, Rmin_x, Rt1oor_x, APK_SUB, lULL
apmCa1c(Rmax_x , Rmax _x, R~1oor_x, APH_SUB, lULL
apmSubtract(Rde1ta, Rmax_x, Rmin_x) ;
i~(apmCompare(Rde1ta, one) == 1) {

}

apmAssisn(bound->ub, one)
apml•sate(bound->1b, on•) ;

e1se {
apmCos(R1~t_Ya1, theta->1b) ;
apmCos(Rrsht_Ya1, theta->ub) ;
it(apmCompare(R1tt _va1, Rrsht_va1) == 1) {

apmAssisn(Rmax_cos, R1tt_va1)
apmAssisn(Rmin_cos, Rrsht_va1) ;

}

e1s• {

}

apmAssisn(Rmax_cos , Rrsht_va1) ;
apmAssisn(Rmin_cos, R1~t_Ya1) ;

Check ~or extrema.

i£(apmCompare(Rmax_x, one) == 1
apmAs•isn(Rmax_cos, one J ;

}

}

145

i~((apmCompare(Rmax_x, three_hal~s) == 1) I I
((apmCompare(Rmin_x, hal~) -1) tt

(apmCompare(Rmax_x, hal~) == 1))) apmlesate(Rmin_cos, one)

apmidd(bound->ub, Rmax_cos, max_error) ;
apmSubtract(bound->lb, Rmin_cos, max_error

I• +++++++++++++++++++++++++++++ •I

Rbd_sin(bound, theta)
I•

Use the relation sin(x - HALF_PI) = cos(x)
and the ~unction bd_cos() to obtain a bound on
the sines 0~ ansl•• lyin! in a !iven ran!•·

•I

Bdd_apm •theta, •bound
{

I•

•I

}

Rnev_theta is used here but is declared at the top o~
the ~ile

apmSubtract(Rnev_theta.ub, theta->ub, hal~_pi
apmSubtract(Rnev_theta . lb, theta->lb, hal~_pi

Rbd_cos(bound, tRnev_theta) ;
return ;

C.2.3 starting points and global bounds

• include <•tdio . h>

• include <math . h>

• include "ap:n . h"

• include "conYers•.h11

• include "pi.h11

• de~ine DELTA 0.01
• de~ine ftAI_JUftP 0.1

APft R•tart_size ;
I• +++++++++++++++++++++ •I
setBermStart(priz)

RPriam •priz
{

doub1• a, b , c, tvo_c, x, y :
double jump_Bz , jump_scl, dx, dy ;
double !X• !Y• hxx, hxy, hyy , hdet, tolerance

a = apmtodbl(priz->center->p(O]
b apmtodbl(priz->center->p(1]
c apmtodbl(priz->center->p(2]
tvo_c = 2 . 0 • c ;

tolerance IEWT_TOL • (~abs(a) + ~abs(b) + ~abs(c))

146

Use Iewton's method to try to ~ind a minimum for the
trace of the matrix beta.

x = B.tLF_PI
y HALF _PI

do {
components o~ the gradient.

gx
gy

-a • cos(x
-b • cos(y

tvo_c • cos(x + y
tvo c • cos(x + y

hxx
hxy
hyy
hdet

components o~ the Hessian

a • sin(x) + tvo c • sin(
tvo_c • dn(X + y) ;

b • sin(y) + tvo c • sin(
hxx • hyy hxy • hxy

A Iewton's method step
hdet != 0.0) {

dx (gx • hyy gy • hxy
dy = (-gx • hxy + gy • hxx

X + J

X + J

•I

I hdet
I hdet

i~((jWIIp_sz = fabs(dx) + fabs(dy)) > !'lAX
JUIIIp_SCl = I'IAI_JUI'IP

}

dx
dy

}

X -= dx
y dy

else {

•= jump_scl
•= jump_scl

I jump_sz ;

JUI'IP) {

fprint~(stderr, "Death durinp; levton'• method. \n")
cease() ;

}

} vhile((~abs(p;x) + fabs(p;y)) > tolerance)

Force the startinp; point to
•I

dbltoapm(priz->center- >z.u[O],
dbltoapm(priz->center->z . u[1],

IIi~ DEBUG
printf("Herman's starting point
~flush(stdout) ;

II endi~
}
I• ++++++++++++++++++++++ •I

setLLStart(priz

RPrism •priz i

{

I•

lie on the line x=y.

BASE, X)

BASE, X)

X = %.6e, y= %. 6e \n'', X, X)

Bevar• this ~unction expects to be called AFTER

147

setBermStart(), no matter vhich criterion is in ~orce.

double discrim, sqrt_disc, sqrt() :
double a_sin, a_cos, b_sin, b_cos, c_sin, c_cos

double
double
double
double

a, b, c, tvo_c, x, y ;
jump_sz, jump_scl, dx, dy :
«X• SY• hxx, hxy, hyy, hdet, tolerance
dDisc_dx, dDisc_dy :

a = apmtodbl(priz->center->p[O]
b apmtodbl(priz->center->p[1]
c apmtodbl(priz- >center->p[2]
tvo_c = 2.0 • c ;

x = apmtodbl(priz->center->z.u[O]
y apmtodbl(priz->center->z.u[1]

tolerance

do {

a_sin
b_sin
c_sin

a_cos

b_cos
c_cos

IEWT_TOL • (a + b + c)

preliminaries

a • sin(x)
b • sin(y)
tvo_c • sin(x + y)

a • cos(x)
b • cos (Y.)
tvo_c • cos(x + y) :

disc rim a _sin - b_sin • (a_sin - b_sin) +
c_sin • c_sin

sqrt_disc sqrt(discrim
dDisc_dx a_cos • (a_sin
dDisc_dy = b_cos • (b_sin

b_sin) + c_coa • c_sin
a_sin) + c_cos • c_sin

I• components 0~ the szadient.

gx -a cos - c_cos - dDisc_dx I sqrt_disc
SY = -b_cos - c_cos - dDisc _dy I sqrt_disc

components o~ the Hessian

hxx a_sin + c_sin +

a_sin • (a_sin - b_sin) -
a_cos • a_cos - c_coa • c_cos +
c_sin • c_sin) I sqrt_disc

+ dDisc_dx • dDisc_dx I (discrim • sqrt_disc)

hxy c_sin +
a_cos • b_cos + c_sin • c_sin -

c_cos • c_coa) I sqrt_disc
+ dDisc_dx • dDisc_dy I (discrim • sqrt_disc)

hyy b sin + c_sin +
(b_sin • (b_sin - a_sin) -

b_cos • b_cos - c_cos • c_cos +
c_sin • c_sin) I sqrt_disc

+ dDisc_dy • dDisc_dy I (discrim • sqrt_disc)

148

hdet hxx • hyy hxy • hxy

I• A levton's method step •I
i:t(hdet != 0.0) {

dx (51' • hyy 51 • hxy I hdet
dy = (-5% • hxy + !Y • hx:x I hdet

i~((jump_sz = ~abs(dx) + ~abs(dy)) > MAI_JUMP) {
jump_scl # MAI_JUMP I jump_sz ;

}

dx •= jump_scl
dy •= jump_scl ;

}

X -= dx

J dy

else {

}

~print~(stderr, "Death durin« levton's method . \n")
cease() ;

} vhile((~abs(«x) + ~abs(«J)) > tolerance)

Force the startin5 point to lie on the line x=y.

dbltoapm(priz->center->z .u[O), BASE, x)
dbltoapm(priz->center->z.u[1], BASE, x)

ti~ DEBUG
print~("Least ei5en't"alue starting point
fflush(stdout) ;

x = 'Y..e., y= 'Y..ee \n", x, x)

I endif
}

• include <atdio.h>

• include <math . h>

• include "apm.h"

• include "apmSpecia1.h11

• include "conTerse . h"

• include "bounding.h"

• include "pi.h11

APM
APK
APK
APK
APM
double

RM_aq, RM ;
lip_scratch ;
sixteen, eight, ~our ;
Rdscrm, Rsqrt_disc ;
Rmax_alope, Rmin_slope, Rfirst_slope
max_slope, min_slope, ~irst_slop• ;

RPrism •earliest ;
Bdd_apm Rmax_btrace, Rmin_btrace, R~irst_btrace
I• +++++++++++++++++++++ •I

initLipO
{

I•
This ~unction depends in detail on the choice o~ map .

}

APM stu££

£our = apmlnit(4L, 0, BASE) ;
eiKht = apmlnit(8L, O, BASE) ;
sixteen = apmlnit(16L, 0 , BASE)

149

Rmin_slope = apmlev(BASE) I• The external APMs •I
Rmax_slope = apmlev(BASE)
Rfirst_slope = apmlev(BASE
Rd£ = apmlnit((lonK)(DEG_FREE), 0, BASE)
Rd£_sq = apmlnit((long)(DF_SQ), 0, BASE)
Ratart_size = apmlnit(1L, -START_SZ, BASE

Rdacrm = apm!ev(BASE) ;
Rsqrt_disc apmlev(BASE
lip_scratch = apmlev(BASE

nevBapm(Rmax_btrace, BASE
nevBapm(Rmin_btrace, BASE
nevBapm(R£irst_btrace , BASE

earliest = conjureRPrism()

I• +++++++++++++++++++++++ •I

setCone(priz

RPrism •priz
I•

•I
{

I•

Get the mLn1MWD and maximum values £or the
trace o£ the slope object. lote that ve
exploit the symmetry o£ the potential; the minimum
and maximum values o£ the trace o£ (beta - 2!) haTe
the same absolute Talue.

int j
APM *mat_poa

£or(j=O ; j < I_PARMS ; j++)
apmAsai~(earliest->center->p[j], priz->center->p[j))

£or(j=O ; j < DEG _FREE ; j++) {
apmAasi~(earliest->center->z.v[j), priz->center->z.u[j])

}

Rglobal_bounds(earliest) ;
Rbound_btrace(lRmin_btrace, earliest) ;

Account £or the imprecision o£ the start i nK point
and the Tariation o£ the parameters.

apmAssi~onK(lip_acratch, OL, O, BASE)
mat_pos = priz->matrix

£or(j=O ; j < I_PARMS j++) {
apmCalc(lip_scratch, lip_acratch ,

pri z->center->p[j] , Rstart_size,
APM_MUL, APM_ADD ,
•mat_pos,
APM_ABS, APM_ADD , lULL)

}

150

mat_pos += 1 + KAT_DIK
}

apmCa~c(Rmin_btrace.~b, Rmin_btrace.~b, ~ip_scratch,

APK_SUB , lULL)
apmCa~c(Rmin_btrace.ub, Rmin_btrace . ub, ~ip_scratch,

APK_ADD, lULL)

I• exp~oit the symmetry •I
apmSubtract(Rmax_btrace.ub, eisht, Rmin_btrace.~b
apmSubtract(Rmax_btrace.~b. eisht, Rmin_btrace . ub

apmCa~c(Rdscrm, Rmax_btrace.~b, APK_DUP, APK_KUL,
four, Rdf_sq, APK_KUL, APK_SUB, lULL)

apmSqrt(Rsqrt_disc, precision, Rdscrm) ;
apmAdd(~ip_scratch, Rmax_btrace.~b , Rsqrt_disc) ;
apmDivide(Rmax_s~ope , precision, (APK)IULL, ~ip_scratch, tvo)

apmSubtract(~ip_scratch, Rmax_btrace . ~b, Rsqrt_disc) ;
apmDivide(Rmin_s~ope, precision, (APK)IULL, ~ip_scratch, tvo)

min_slope = apmtodb~(Rmin_s~ope
max_s~ope apmtodb~(Rmax_s~ope

I• +++ •I

setSlopes(priz

RPrism •priz ;
I•

•I
{

Reca~~ that our orbit vil~, at the beginning of
a round of orbit-fol~oving, have just passed through a
point on the torus vhose beta vi~~ diminish the
s~ope. This implies that the slope is already smaller
than the value of max_s~ope found above. Calculate
a better upper bound on vhat the s~ope co~d be and
store it in first_s~ope and Rfirst_slope .

int j, mat_pos ;

for(j=O ; j < &_PARKS ; j++) {
apm!ssign(earliest- >center->p[j], priz->center->p[j))

mat_pos = j • (KAT_DIK + 1) ;
apmAssign(ear~iest->matrix[mat_pos], priz->matrix[mat_pos])

}

for(j=O ; j < DEG_FREE ; j++) {

}

apm!ssign(earliest->center->z.v[j] , priz->center->z . u[j])

Account for ~precision in the startins point.
•I
mat_pos = STAID_LEB + TWO_DF•KAT_DIK +

!_PARKS + DEG_FREE + j • (KAT_DIK + 1) ;
apm!ssign(earliest->matrix[mat_pos], Rstart_size)

Rg~ob~_bounds(ear~iest)

151

Rbound_btrace(tRtirat_btrace, ear1iest) :

apmDivide(lip_acratch, precision, (APK)IULL, Rdf_aq, Rmax_alope
apmCa1c(Rfirat_slope, Rfirst_btrace.ub, lip_scratch, APK_SUB,

max_error, APK_ADD, lULL

firat_a1ope apmtodbl(Rtirat_a1ope) + DBL_ERR :

}

• include <stdio.h>

• inc1ude <math . h>

• include "&JXD..hll

• include 11 apm.Special.h"

• include "conTer•e.h"

• include "bounding.h11

• inc1ude "rovs.h11

APK Rsqrt_disc :
APK
APK
Bdd_apm
RPrism

Bdd_dbl
Bdd_dbl
Bdd_dbl
Bdd_term

APK
Bdd_apm
Bdd_apm
Bdd_apm
Bapm_term

Ra_te~, Rb _term, Rc_term :

Rtrace_ll, RminBlam_ll, RmaxBlam_ll, Rdenom
RBtrace, RminLam, RmaxLam :
•earliest

discrim ;
a_sq, b_sq, c_sq
•1amFacts [2)
ab_term :

four, lam_acratch
Rdiscri.m :
Ra_sq, Rb_sq, Rc_aq
•RlamFacts [2]
Rab_term :

APK RfirstLeastLam, RminLeastLam, RmaxLea•tLam, RsumTinyLams
double firatLeaatLam, minLeaatLam, maxLeastLam, aumTinyLams :
I• ++++++++++++++++++++++++++++++ •I

iltitLambda()
{

I•

•I
Do up the APKs

Ra_term apmlell(BASE
Rb_term apmle11(BASE
Rc_term apmllell(BASE

Rdenom = apmBell(BASE) :
Rtrace_11 = apmBe11(BASE)
Rsqrt _diac = apmlell(BASE) :
RminBlam_ll apmle11(BASE)
RmaxBlam_ll = apmlell(BASE) :

RminLeastLam apmlell(BASE
RmaxLeastLam apmln(BASE
RsumTinyLams apmln(BASE
RfirstLeastLam = apmBev(BASE

ne11Bapm(Ra_sq, BASE
ne11Bapm(Rb _sq, BASE

}

nevBapm(Rc_sq, BASE)
nevBapm(RmaxLam, BASE
nevBapm(RminLam, BASE
nevBapm(RBtrace, BASE
nevBapm(Rdiscrim, BASE) ;

~our = apmlnit(4L, 0, BASE) ;
lam_acratch = apmlev(BASE)

earlieat = conjureRPriam()

Set up the terms .

ab_term.nfactors = Rab_term.n~actors 2
ab_term.~actors = lamFacta ;
Rab_term.~actors = RlamFacts ;
ab_term . coe~ = -2 . 0 ;
Rab_term.coe~ = apmlnit(-2L, 0, BASE
navBapm(Rab_term.bound, BASE) ;

ab_term.~actors[O] = ta_ain.bound
ab_term . ~actora[1] = tb_sin.bound
Rab_term . ~actors[O] tRa_sin . bound
Rab_term.~actors[1] = tRb_sin.bound

I• ++++++++++++++++++++++++ •I

Rbd_Blams(leastBlam, bi~Blam, trace)

Bdd_apm •leastBlam, •trace, •bi~Blam
I•

•I
{

An APM partner to bd_Blams ;

I• Bound the terms ~or the discriminant . •I
RsetSq(tRa_eq, tRa_sin . bound
RsetSq(tRb_eq, tRb_sin . bound
RsetSq(tRc_eq, tRc_sin.bound
Rbound_term(tRab_term) ;

I• lower bound •I

152

apmCalc(Rdiscrim.lb, Ra_sq.lb, Rb_eq.lb, APM_ADD,
~our, Rc_aq.lb, APM_MUL, APM_ADD,
Rab_term. bound.lb, APM_ADD, lULL)

i~(apmCompare(Rdiecrim . lb, zero) < 1)
apmAsei~(Rdiscrim . lb, zero) ;

I• upper bound •I
apmCalc(Rdiscrim.ub, Ra_sq. ub, Rb_sq.ub, APM_ADD,

~our, Rc_sq.ub, APM _MUL, APM_ADD,
Rab_term. bound.ub, APM_ADD, lULL)

i~(apmCompare(Rdiscrim.ub, zero) < 1)
apmAssi~(Rdiscrim . ub, zero) ;

I• Do up the ~inal bounds on the ei~envalues .

First do those raquirin~
sqrt(discrim.lb).

}

153

apmSqrt(Rsqrt_disc, precision, Rdiscrim.lb) ;
apmCalc(lam_scratch, trace->ub, Rsqrt_disc, APM_SUB,

max_error, APM_ADD, lULL) ;
apmDiTide(leastBlam->ub, precision, (APM)IULL, lam_scratch, tso

apmCalc(lam_scratch, trace->lb , Rsqrt_disc, APM_ADD,
max_error, APM_SUB, lULL)

apmDiTide(bi~Blam->lb , precision, (APM)IULL, lam_scratch, tvo

Jext those requ1r1n~
sqrt(discrim . lb)

apmSqrt(Rsqrt_disc, prsci sion, Rdiscrim. ub) ;
apmCalc(lam_scratch, trace->lb, Rsqrt_disc, APM_SUB,

max_error, APM_SUB, lULL) ;
apmDiTide(leastBlam->lb, precision, (APM)JULL, lam_scr atch , tvo

apmCalc(lam_scratch, trace- >ub, Rsqrt _disc, APM_ADD,
max_error, APM_ADD, lULL)

apmDiTide(bi~Blam->ub , precision, (APM)JULL, lam_scratch, tvo

I• ++++++++++++++++++++++++++++ •I

setLLbounds(priz

I•
Get bounds on the least ei~enTalue o~ the Tariation o~ the action
functional . Thia is equivalent to the summer's est~ate of the
yalue o~ size of the perturbation ~or vhich no minimizin~ state
can include the maximum o~ the perturbation .

RPriam •priz ;
{

int j, mat_pos
APM •pmat_pos ;

~or(j=O ; j < I_PARMS ; j++)
apmAssi~(earliest ->center->p[j], priz->center->p[j])

mat_pos = j • (MAT_DIM + 1) ;

apmAssi~(earliest->matrix[mat_pos], priz->matrix[mat_pos])

~or(j=O ; j < DEG_FREE ; j++)
apmAssi~(earliest->center->z.T[j), priz->center->z.u[j))

R~lobal_bounds(earliest) ;
Rbound_btrace(lRBtrace, earliest) ;
Rbd_Blams (lRminLam, lRmaxLam, lRBtrace

Account ~or the imprecision of the starting point
and the Tariation of the parameters.

apmAssi~on~(lam_scratch, OL, 0, BASE)
pmat_pos priz->matrix ;

~or(j=O j < B_PARMS ; j++) {

}

}

154

apmCa1c(1am_acratch, 1am_acratch,
priz->center->p[j] , Rstart_aize,
APK_KUL , APM_ADD,
•pmat_pos,
APK_ABS, APK_ADD, lULL)

pmat_pos += 1 + KAT_DIK ;

apmCa1c(RminLam.1b, RminLam.1b, 1am_acratch , APK_SUB, lULL
apmCa1c(RminLam.ub, RminLam.ub, 1am_scratch, APK_ADD, lULL

Exp1oit the symmetry o~ the examp1e . The

1arsest va1ue ~or an eisenva1ue is
4.0 - (1eastLam.1b).

The ca1cu1ation above assumes that the
u part of the prism's center contains a
starti ns point suitab1e ~or a 1east-eisenva1ue
kind o~ test, i.e . the point vhere the 1east ev
attains ita minimum. The bdd_apm RmaxLam vi11
contain in~ormation about the 1arseat ev o~ beta
at the spot vhere 1eastLam is ama11 . To set the
thins ve rea11y vant ~or the ca1cu1ations
be1ov ve must exploit the symmetry described
above .

apmSubtract(RmaxLam.ub, £our, RminLam. lb) ;
apmCa1c(Rdiscrim.ub, RmaxLam.ub , APK_DUP , APK_KUL,

£our, APM_SUB , lULL) ;
apmSqrt(Rsqrt_disc, precision, Rdiscrim . ub) ;

A s1oba1 1over bound - i~ the least eigenva1ue o£
one o~ the diagona1 blocks (see notes, Jan 10)
slips be1ov this value then the next block is
sure to have a negative ei«enva1ue .

apmSubtract(lam_scratch , RmaxLam.ub, Rsqrt _disc) ;
apmDivide(RminLeastLam, precision, (APK) lULL, 1am_scratch, tvo)
apmCa1c(RminLeastLam, RminLeaatLam, max_error, APK_SUB, lULL) ;
minLeastLam = apmtodbl(RminLeastLam) ;

•I

A lover bound on the sum o~ the non-maxima1 eisenvalues
o~ a diasona1 block.

aumTinyLama = minLeastLam ;
apmAssisn(RsumTinyLams, RminLeastLam

A s1oba1 upper bound.

apmAdd(1am_scratch, RmaxLam.ub, Rsqrt_disc) ;
apmDivide(RmaxLeastLam, precision, (APM) lULL, 1am_scratch, tvo)
apmCalc(RmaxLeastLam, RmaxLeastLam, max_error, APK_ADD, BULL) ;
maxLeastLam = apmtodbl(RmaxLeastLam) ;

I• ++++++++++++++++++++++++++++++ •I

RsetSq(xsq, x)

}

155

i~(apmCompare(x- >ub, zero) > 0) {

}

i~(apmCompare(x->~b, zero) > 0) {
a~u~tip~y(xsq->ub, x->ub, x->ub
apmK~tip~y(xsq->~b, x->~b, x->~b

}
e~se {

}

apmlbso~uteVa~ue(~am_scratch, x->~b)
i~(apmCompare(x- >ub , ~am_scratch) > 0 {

apmK~tip~y(xsq->ub , x->ub, x->ub)
apmlssisn(xsq->~b, zero) ;

}
e~se {

}

·~~tip~y(xsq->ub, x->~b, x->~b)
apmlssisn(xsq->~b, zero) ;

e~se {

}

a~u~tip~y(xsq->ub, x->~b, x->~b

apmK~tip~y(xsq->~b, x->ub, x->ub

I• ++++++++++++++++++++++++++++++++ •I

eetLeastLam(priz

RPriam •priz ;
I•

•I
{

C~c~ate an upper bound on the ~argest eigenv~ue o~ beta
at the initial point, then use it and the g~oba~ bound,
maxLeastLam to eet ~irstLeastLam.

int j, mat_pos ;

~or(j=O ; j < I_PARKS ; j++ {

}

ear1ieet->center->p[j] priz->center- >p[j]

mat_pos = j • (KAT_Dlft + 1)
ear1iest->matrix[mat_pos) = priz->matrix[mat_pos]

~or(j=O ; j < DEG_FREE ; j++)
ear1iest->center- >z . v[j) = priz->center->z.u(j]

Rg~ob~_bounds(ear~iest) ;
Rbound_btrace(tRBtrace , ear1iest) ;
Rbd_B1ams(tRminLam, tRmaxLam, tRBtrace

Obtain an upper bound on the ~east
eigenva1ue o~ the b1ock o~ the Hessian o~
the action ~unction&~ corresponding to the
starting point . As in the ~unctions in ~o~1ov . c,

compute a vhole suite o£ estimates and choose
the best one .

}

I
I
I

I
I

I

I

•I

156

Rdenom is a global upper bound
on the size o~ the largest eigevalue
o~ a diagonal block .

Rdenom ~ maximWII trace - (n-1) • minimum ev .

It's used together vith the leas t e igenvalue
o~ beta (evaluated at the starting point) :

LeastLam <~ RminBlam.ub- 1.0 I Rdenom

apmCalc(Rdenom, Rd~, one, APK_SUB,
RminLeastLam, APK_KUL, APK_BEG,
Rmax_slope, APK_ADD, lULL) ;

apmDivide(lam_acratch, precision, (APK) lULL, one, Rdenom
apmSubtract(RminBlam_ll, RminLam. ub, lam_scratch)

•I

Here ve try to attain a small estimate by
saying :

LeastLam <~ RmaxBlam.ub- 1.0 I maxLeastLam .

apmDivide(lam_scratch, precision, (APK) BULL, one, RmaxLeastLam
apmSubtract(RmaxBlam_ll, RmaxLam.ub , lam_scratch)

Finally ve make the estimate
LeaatLam <= ~irst_slope I DEG_FREE

•I
apmDivide(Rtrace_ll, precision, (APK)IULL , R~irst_slope, Rd~)

Choose the best (smallest) lover bound.

•I
ap~D.Assign(R~irstLeastLam, RmaxBlam_ll) ;
i~(apmCompare(~irstLeastLam, RminBlam_ll) ==

ap~D.Assign(R~irstLeastLam , RminBlam_ll) ;
i~(apmCompare(~irstLeastLam, Rtrace_ll) ~=

ap~D.Assign(R~irstLeastLam, Rtrace _ll)

~irstLeaatLam = apmtodbl(~irstLeaatLam

include <stdio.h>
include <math.h>
include "apm . h"
include 11 converse . h"
include "map . h"
include uboundins.h"
include "rovs.h"

I de~ine

I de~ine

IUK_FACTS
IUK_TEIUIS

3
3

Bdd _dbl
Bdd_expr
Bdd_term

Bdd_apm
Bapm_expr
Bapm_term

•~act_bu~[IUK_FACTS) ;
b_trc ;

trace_terms[IUK_TEIUIS)

•R~act_buf[BUK_FACTS) ;
Rb_trc ;
Rtrace_terms[IUK_TEIUIS]

157

I• ++++++++++++++++++++++++++++++ •I

initTraceO
{

}

int
Bdd_dbl
Bdd_apm

j
••fpt
••Rfpt ;

Set up the expressions.

b _trc .nterms
Rb _trc.nterms

IUM_TERMS
IIUM_TEMS

b _trc.const ~ 4.0 ;
Rb_trc.conet ~ apmlnit(4L, 0, BASE

nevBapm(Rb_trc.bound, BASE

b_trc.terme
Rb_trc.terms

trace_terms ;
Rtraoe_terms ;

Set up their terms.

fpt ~ fact_buf ;
Rfpt ~ Rfact_buf
for(j~O ; j < IUM_TERMS ; j++) {

trace_terms[j].nfactors ~ 1 ;
trace_terms[j].coef: - 1 . 0 ;
trace_terms[j] . factors ~ fpt

}

Rtrace_terms[j].nfactors ~ 1

Rtrace_terms[j] . coef ~ apmlnit(-1L, 0, BASE)
Rtrace_terms[j] .factors ~ Rfpt ;

nevBapm(Rtrace_terms[j] . bound, BASE

fpt++ ;
Rfpt++ ;

Fix up the constant in the third term • • . it •hould be
-2.0.

trace_terms[2].coef ~ -2.0 ;
apmAssi~ong(Rtrace_terms[2].coef, -2L, 0, BASE)

Associate the factors - vhich are only pointers
to bounded objects - t o «enuine, properly initialized objects .

I• first term •I
b_trc.terms[O].factors[O] ~ ta_sin.bound ;
Rb_trc . terms[O].factors[O] ~ tRa_sin.bound

I• second term •/
b_trc . terms[1] . factors[O] = tb_sin . bound ;
Rb_trc.terms[1].fact ors[O] ~ tRb_sin.bound

I• third term •I
b _trc.terms[2] . factors[O] ~ tc_sin.bound ;
Rb_trc.terms[2].factors[O] ~ tRc_sin.bound

I• ++++++++++++++++++++++++ •I

Rbound_btrace(result , priz

RPrism •priz
Bdd_apm •result
I•

158

An APK partner to bound_btrace. Some o~ the variables
used here are defined aboTe.

I• Bound the expression •I
Rbound_expr(tRb_trc) ;
apmCalc(Rb_trc.bound.ub, Rb_trc.bound.ub, max_error, APK_ADD, lULL
apmCalc(Rb_trc.bound.lb, Rb_trc . bound.lb, max_error, APK _SUB, BULL

}

apmissi~(result->ub, Rb_trc.bound . ub
apmiasi~(reault->lb, Rb_trc.bound.lb

C.2.4 control of the computation

the header file converse.h

• i~nde~ • de~ine • define

• endi:t

• i~ndef • define

• define

• end if

• define

• define

• define

• define

• define

• define

• def ine

• define

• de~ine
• define

• define

• define

• define

• define

• de~ine • define

YES
YES
10

WORKED
WORKED
FAILED

IO_TORI
UITRIED
KAY BE
ACTIVE
SYMTRC

I_PARIIS
DEG_FREE
DF_SQ
TWO_DF

KAT_DIK
STAID_LEII
KERC_LEI
KAT_SZ

DBL_ERR

DFLT_DEPTB

0

1
0

0
1
2
3
4

3
2

I• Ever popular •I

I• A priam of initial conditions •I
I• has one of these aa ita in_torua •I
I• attribute accordin~ to vhether •I
I• it definitely does not contain •I
I• any invariant tori, has not yet

been considered, is too hard to
decide, is under active
conaiderat_ion 1 or ia equivalent
to some symmetrically related,
other priam. •I

I• Details of the particular map •I

(DEG_FREE • DEG_FREE)
(2 • DEG_FREE)

(TWO_DF + !_PARKS) I• Used in finding ones
(lf_PARKS • KAT_DIK) I• place in the matrix ..
(TWO_DF • KAT_DIK) I• part of a prism.
(STAID_LEI + MERC_LEB)

1 . 0e-13

10 I• De~ault values for various global
DFLT_FRTBST 200 I• variables

•I
•I
• I

•I
•I

• de :tine

• de :fine

• de :tine

• de :tine

• de:tine

• de:tine

• de:tine

• de:tine

• de:tine

DFLT _PRECIS
DFLT_GilAPB
DFLT_ERR
DFLT_TERSE
STUBBORJI
SAFETY_PRECIS

START_SZ
IEWT_TOL

BASE

30
YES
YES
YES
10

6

6

10e-8

10000

159

I• Jumbers bearing on the accuracy •I
I• o:t the starting point •I

I• The base used in APM calculations. •I

Data types :tor non-rigorous , rough calculations

typede:t double •Tor_pt, •Parm_pt ;

typede:t struct { Tor_pt u, v } Embed_pt

typede:t struct { Embed_pt z
Parm_pt p } Itnd_pt ;

typede:t struct prsm { int in_ torus, n _cuts ;
char •cuts[I_PARMS+TWO_DF]
double •matrix
Itnd_pt •center
struct pram •next ; } Prism ;

I•
Data types :tor rigorous, arbitrary precision, calculat i ons

•I

typede:t APM •RTor_pt, •RParm_pt

typede:t struct { RTor_pt u, v } REmbed_pt

typede:t struct { REmbed_pt z
RParm_pt p } Rltnd_pt ;

typede:t struct Rpram { int in_torus, n_cuta
•a.trix ;
•cuts[MAT_DIM] ;
•center i

APM
char
Rltnd_pt
atruct Rprsm •next ; } RPrism

I• +++ •I

extern Prism
extern RPrism

•conjurePrism() ;
•conj ureRPrism() ;

Some variables used throughout the converse KAM calculations

extern int
extern int
extern int
extern int
extern int
extern int
extern int
extern APM
extern APM

do_graph, do_backup , restoration
prec i sion, depth, ~urth•at, terse , stubborn :
quick_tries, tries, Rtries, max _steps, max _RTateps
BermSuccess, LLSuccess, ll_used[3), most_cut s ;
(• :fatten}{) , (• rov_sums}() ;
:txed_:torm(), R:txed_:torm() , col_ro t or(}, Rcol_rotor()
:t:t_rovs(), Rf:t_rows(), cr_rovs(), Rcr_rovs(} ;
Rfirst_alope, Rmin_slope , Rmax_slope, Rd£ , R~_sq ;

RminLeastLam, RmaxLeastLam, R:tirstLeastLam, RsumTinyLams

160

extern
extern
extern
extern
extern
extern

API!
char
doubl.e
doubl.e
doubl.e
double

h~, max _error, Rstart_size, RSmBlock_err, RB~Bl.ock_err

·~a~_£ile, •back_name, •rest _name, •parm_names[] ;
~irstLeastLam, minLeastLam, maxLeastLam, sumTinyLams ;
~irst_slope, min_sl.ope, max_slope ;
apmtodbl(), parm_roo~[], parm_~loor[]
SmBlock_err, B~Block_err ;

main()

• incl.ude <stdio.h>

• inc1ude <math.h>

• incl.ude uapm . h"

• include "conYerae.h"

• include 11tree.h11

int

int
int
API!
doubl.e

do_graph, do_backup, restoration ;
precision, depth, err_hndl.r , ~urthest
stubborn, terse ;
max_error , RSmBl.ock_err, RBgBlock_err
SmBl.ock_err = DF_SQ • DBL _ERR ;

double B~Bl.ock_err = DEG_FREE • I_PARI!S • DBL_ERR
I• ++++++++++++++++++++++++++++ •I

main (argc, argv)

int ar~c ;
char •argv []
{

int
Priam
RPrism

Terdict, RTerdict, tree_Terdict, nsteps
•image_prism ;
•active_prism, •old_priam

handle_opts(argc, argv) ;
active_prism = conjureRPrism()
image_prism = conjurePrism()
commence(active _prism)

I• Study the current prism, cutting it up if need be •/
vhil.e(active_prism != lULL) {

I•
Try a prel.iminary, non-ri~orous calcul.ation to see i~
prospects are ~ood. I~ they are, do a rigorous check.
I~ they aren't, try to refine the prism. I~ it has already
been refined enough, just give up.

i~(do_~aph YES)
graphPrism(active_prism, ACTIVE)

Check the tree to see if an equivalent prism
is al.ready ~inished . If so, record the resul.t
and press on. I~ not, do a detail.ed analysis .

tree_verdict = consul.tTree(active_prism) ;

~raphPrism(active_prism, SYI!I!TRC) ;
i~(do_backup == YES)

make_backup(active_prism) ;

old_prism = active_prism ;
active_prism = ol.d_prism->next

}

161

releaseRPrism(old_prism)
}

else {

}

}

cease()

prepare_trial(active_prism) ;
verdict = try_prism(active_prism, image_prism, insteps)

Rverdict = UITRIED ;
i~(verdict == IO_TORI) {

}

Rverdict = Rtry_prism(active_prism, image_prism, tnsteps)
i~(Rverdict == IO_TORI) {

}

active_prism->in_torus = IO_TORI

i~(terse == 10)

printRPrism(active_prism.,
i:f(do_graph == YES)

graphPrism(actiTe_prism,
H(do_backup == YES)

make_bacltup(active_prism

old_prism = active_prism ;
active _prism = old_prism->next
releaseRPrism(old_prism) ;

nsteps

IO_TORI

) ;

) ;

) ;

i:f((Rverdict == MAYBE) I I (verdict == MAYBE)) {

}

I• Either re:fine the priem .. . •I
i:f(may_re:fine(active_prism) == YES) {

re:finePrism(active_prism, image _prism) ;
i:f(do_graph == YES) {

}

}

graphPrism(active_prism->next, UITRIED
graphPrism(active_prism, ACTIVE) ;

I• . . . or give up and move on. •I
else {

}

i:f(do_graph == YES
graphPrism(active_prism, MAYBE

i~(do_backup == YES }
make_backup(active_prism) ;

active _prism->in_torus = MAYBE ;
moveEdge_o_Chaos(active _prism, nsteps) ;
i:f(terse == 10)

printRPrism(active_prism, nsteps) ;

old_prism = active_prism ;
active_prism = old_prism- >next
releaseRPrism(old_prism) ;

162

Rtry_prism()

• inc~ude <stdio .h>

• include <math . h>

• include "apm.h"

• inc~ude "apmSpecial . h"

• inc~ude "conTerse . h"

• i nclude ''bounding . h"

• inc~ude "r ovs . h"

• include "pi.h"

• de:f'ine USE_CR YES I• Use the colunm rotor? •I
• de:fine USE_LL YES I• Use the least eisenYalue tes t? •I
• de :fine USE_QT YES I• Use the quick, pre~iminary teet •I
• de:fine USE_RIGOR YES I• Use the r ir;orous tests? •I
• de :fine USE_SHIFT 10

• de:fine FF_CYCLS 1

• de :fine QS_TO_RS 5 I• The ratio o:f quick s t eps to ri!orous steps
to be used in determining hov ~on!
quick_try should go.

•I

• de:fine l'l.l.l_SU!! PI

• de:fine eetLclFurthes t(n) ((((n)IQS_TO _RS)+3) > :turthest) \
"! :furthest : ((niQS_TO_RS)+3)

Declarations :for some external variables
mentioned in converse.h . The API'Is are ini tialized by
initFol~ovin!() .

The :functions in thi s :ti~e manipulate copies o:f the data
passed to them. The copies are kept in Prisms and RPrisms
!Otten vith the conjurin! :functions by initFo~lovin!().

•I
Prism

double
double

Xtnd_pt
I•

RPrism

APM
APM
API!
doub~e

I•

•vorltPriz [2] ;

b_bu:t[DF_SQ], •b_ptrs[DF_SQ] ;
parmbu:t[2•I_PARI'IS], coordbu:t[2•TVO_OF]

xpt_a, xpt_b ;

Some API'! variables needed :for orbit
:tollovi n! and e~ope vatchin! •

•Rvorlt[2] ;

:t_scratch, Rdenom
Rsum, Rmax_ sum. ;

Rtrace_~~. RmaxB~am-~~. RminB~am-~~

tra ce_11, maxBlam_11, minBl am_1l ;

The variables declared belov d on ' t really need to

)

be bounded objects (t hey did in an earlier version o:t the code),
but the . ub in their uses makes the c ode easier t o understand .

• I
Bdd_dbl
Bdd_apm

b_trace, mi nBlam, maxBlam, leastLam, slope ;
Rb_trace, RminB~am, RmaxBlam, ~eastLam, Rs~ope

163

int ia_~irst_trial = YES ;
int local_~urth, ll_uaed[3]
int HermSucceas, LLSuccess ;
int max_steps, max_ITsteps, tries, Rtries, quick_triea, most_cuts
I• +++++++++++++++++++++++++++++++++ •I

prepare_trial(priz

RPrism •priz
{

int j ;

i~(arelevParms(priz) c= YES) {

•I

Unless this is the Tery ~irst prism,
record the center point - it vill be moved by
aetHermStart() and aetLLStart() and vill neeed to be
restored to its correct value .

i~(is_~irst_trial == 10) {

}

~or (j=O ; j < DEG_FREE ; j++) {

}

apmAssisn(rpt_a . z.u[j], priz->center->z . u[j]
apmAssisn(rpt_a.z.v[j], priz->center- >z.v[j]

aetHermStart(priz
setCone(prix) ;

J i~ USE_LL

J endif

setLLStart(priz)
setLLbounda(priz) ;

J i~ USE_SHIFT
shi~tStart(prix

J endif

I•
Unless this is the very first trial, restore the
correct value of the centerpoint before evaluatin~
the initial estimates for the slope and least ei~en?alue.

if(is_first_trial == YES)
is _~irst_trial 10 ;

else {

}

~or (j=O ; j < DEG _FREE ; j++) {

}

apmAssisn(prix->center- >x.u(j], rpt _a.x . u(j]
apmAssisn(prix->center->x.v(j], xpt _a . x . v[j]

aetSlopes(priz

J if USE_LL

J else

J endif
}

aetLeastLam(prix

firstLeastLam = 1.0
minLeastLam = 0 . 6 ;
dbltoapm(Rf i rstLeastLam, BASE, firstLeastLam
dbltoapm(RminLeastLam, BASE, mi nLeastLam) ;

164

}
I• +++++++++++++++++++++++++++++++++++++++ •I

initFol1ovin&0
{

I•

•
I

Set up the correct connections betveen the Tarious
static Yariables in this ~ile.

int j, all_vel1

a1l_vel1 YES

Set up the vorkin& prisms .

vorkPriz[O] = conjurePrism()
vorkPri z[1] = conjurePrism()
if((vorkPriz[O] == NULL) I I (vorkPriz[1] == NULL))

all _vell = 10 ;

Set up the APM atuf~

~_scratch = apmRev(BASE
Rdenom = apmlev(BASE) ;

Rtrace_ll =
RminBlam_ll
RmaxBlam_ll

apmllesr(BASE)
apmllesr (BASE

= apmllev(BASE

nevBapm(Rslope, BASE
nevBapm(Rb_trace. BASE
nevBapm(RminBlam, BASE
nevBapm(RmaxBlam, BASE
nevBapm(RleastLam, BASE)

if (USE..LL == 110)

;

apmAssi¢ong(RleastLam. ub,
apmAssi¢ong(RleastLam.lb,

end if

Rsum = apmllev(BASE) ;
Rmax_aum = apmllev(BASE

1L, 0,
1L , 0,

dbltoapm(Rmax_sum, BASE, KAI_SUM

Rvork[O] = conjureRPrism() ;
Rvork[1] = conjureRPri sm() ;
i f((Rvor k[O] == lULL) I I (Rvork[1]

all_vell = 10 ;

BASE
BASE

lULL))

Set up the extended points - they ' re used by
quick_test(), and are pointed to by the
"center" attributes of the vorking prisms .

xpt _a.z . u coordbuf ;
xpt_a . z . T coordbuf + DEG_FREE
xpt_a . p parmbuf ;

xpt_b. z .u coordbu~ + TWO_DF
xpt_b.z . Y coordbuf + TWO_DF + DEG _FREE
xpt _b.p parmbuf + I _PARMS

}

165

Set up pointers to the matrix vhich receives the
chan~eable parts o~ the jacobian; the one called
"beta" in most o'f my notes.

~or(j=O ; j < (sizeo~(b_bu~
b_ptre[j] = tb_bu~[j] ;

I sizeo~(double))

Initialize various performance data .

most_cuts = 0
max_stepa = max_ITsteps = 1 ;

HermSuccess = LLSuccess = 0 ;
tries = Rtries = quick_tries = 0 ;
ll_used[O] = ll_used[1] = ll_used[2] 0

i~(all_vell == YES)
return ;

else {

j++)

~print~(stderr,
" initFollovin~

cease() ;
Could not prepare ~or pursuit. Died. \n")

}

I• ++++++++++++++++++++++++ •I

Rtry_prism(initiel_priz, final_priz, nsteps)

int
Prism
RPrism
I•

•nsteps ;
•~inal_priz

•initial_priz

•I
{

Ri~orously decides vhether a prism o~ initial data may
contain any invariant La~ran~ian tori, an APM version o~
the routine tryPrism() above.

int
RPrism

Rtries++

count ;
•priz, •priz_prime, •temp_priz

priz = Rvork[O]
priz_prime = Rvork[l]

Bote that Rtry_prism() does not cell setSlopes,setStart or
setCone . All that should have been. done vith a cell to
prepare_trial().

~ ialevPriam = YES ;

RcopyRPrism(priz, initiel_priz

~atten = R~xed_~orm
row_aums = Rff_rova

•nsteps = c ount = 1
apmAssi~(Rslope.ub, R~irst_slope) ;
apmAssi~(RleastLam . ub, R~irstLeastLam) ;
i~(apmCompare(Rslope .ub, Rmin_slope) == -1) {

HermSuccess++ ;

}

copyRPrism(~inal_priz, priz
return(IO_TORI) ;

166

if(apmCompare(RleastLam.ub, RminLeastLam)
LLSuccess++ ;

-1) {

}

copyRPrism(~inal_priz, priz) ;
return(IO_TORI) ;

I i~ (USE_RIGOR == 10)
copyRPrism(final_priz, priz
return(IO_TORI) ;

• endif

vhile(bi~_RPrism(priz) == 10) {

Check the slope .

count++

Calculate some bounds useful for both criteria .

R~lobal_bounds(priz)
Rbound_btrace(aRb_trace, priz

I if USE_LL

I endi~

I• mrm 1 s condition •I
Rbd _Blams (lRminBlam, lRmaxBlam , lRb_trace) ;

apmDivide(£_scratch, precision, (APH)IULL, one,
RleastLam.ub) ;

apmSubtract(RmaxBlam_ll, RmaxBlam. ub, £_scratch .)

apmSubtract(Rdenom, Rslope.ub, RsumTinyLams) ;
if(apmCompare(Rdenom, zero) > 0) {

}

else

apmDivide(~_scratch, precision, (APK) lULL, one, Rdenom
apmSubtract(RminBlam_ll, RminBlam. ub, ~_scratch) ;

apmAssip(RminBlam_ll, zero)

I• Herman's condition •I
apmDivide(~_scratch, precision, (APK) lULL, R~_llq, Rslope . ub)
apmSubtract(Rslope . ub, Rb_trace . ub, ~_scratch) ;

I H USE_LL

• endif

•I

apmDivide(Rtrace _ll, precision, (APH)IULL, Rslope.ub , Rdf)

Rbest_ll(RleastLam . ub, RmaxBlam_ll,
RminBlam_ll, Rtrace_ll)

Do some truncations to speed thin~s up

I i~ USE_LL
apmTruncate(RleastLam.ub, precision

I endi~

apmTruncate(Ralope . ub, precision) ;

i~(apmCompare(Rslope.ub, Rmin_slope)
+nsteps = count ;

}

i~(count > max_!Tsteps
max_!Tsteps = count

Berm.Succeaa++ ;
copyRPrism(~inal_priz, priz
return(IO_TORI) ;

167

-1) {

else i~(apmCompare(RleastLam.ub, RminLeastLam)
•nsteps = count ;

}

i~(count > max_RTsteps
max_!Tateps = count

LLSuccess++ ;
copyRPrism(~inal_priz, prix
return(IO_TORI) ;

el•• {

}

i~(count
breaJt

~urthest)

Rpriamatic_imase(priz_prime, priz) ;

m_avap(priz, priz_prime, temp_priz

I H USE_CR
i~(count > FF_CYCLS) {

~atten = Rcol_rotor
rov_aums = Rcr_rovs

}
I endi~

}

}

•nsteps = count ;
copyRPrism(~inal_priz, priz
return(M£YBE) ;

I• +++++++++++++++++++++++++++++++++++++++ •I

big_RPrism(Priz

RPrism •Priz ;
{

Rend_mat = Priz- >matrix + MAT_SZ ;
~or(Rrpt a Priz->matrix ; Rrpt < Rend_mat ;) {

apmAssisnLons(Rsum, OL, 0, BASE) ;

-1) {

~or(Rend_rov = Rrpt + KAT_DIM ; Rrpt < Rend _rov : Rrpt++)
apmCalc(Rsum, Raum , •Rrpt, APM_ABS, APM_ADD, lULL) :

}

}

i~(apmCompare(Rsum, Rmax_sum) == 1)
return (YES) ;

return(110) ;

I• ++++++++++++++++++++++ •I

168

Rbest_11(best, minB1am_11, max81am_11, trace_11

iPM best, min81am_11, max81am_11, trace_ll ;
{

}

apmAssign(best, maxBlam_ll) ;
i~(apmCompare(best, minBlam_ll) == 1)

apmissign(best, min81am_ll) ;

i~(apmCompare(best, trace_ll) == 1)
apmissign(best, trace_ll) ;

C.2.5 the map

the header file map.h

extern iPM
extern double

RDeriv[], +Rbeta_ptrs[], •Rgamma_ptrs[]
Deriv[], •beta_ptrs[], +gamma_ptrs[] ;

mapping functions

I•

•I

• • • • • •

Functions to perform the extended Froeschle map and to
calculate its jacobian. Each ~unction has a rigorous
and a non-rigorous ~o~ ; the former always has a name
beKinning vith a "R".

The functions in this file are quite specific -
they pertain to maps o~ the ~orm

(p,u,v) -> (p' ,u' ,v')

p' p
u' = v
v• 2v - u -dV(v)

vhere u, v, u• ~ v' are all in 2d Euclidean space,
p is an element o~ a space o~ parameters and

V(v) = -a • sin(v[O]) + -b • sin(v[l]) +
-c • sin(v[O] + v[1])

The parameters a, b, and c are alvays passed through
an array called "parZ!lZI" vith

a = parma[O], b = parms[l], c parms[2].

include <stdio .h>
include <math . h>
include 11 apm.h 11

include "apmSpecia.l . h"
inc1ude "converse.h"
include 11map.h"

iPPI
APPI
APM
double
double

Rmixing_term, Rv_sum, map_scratch i

•Rbeta_ptrs[DF_SQ]
+Rgamma_ptrs[DF_SQ], RDeriv[MAT _SZ]
•beta_ptrs[DF_SQ]
•gamma_ptrs[DF_SQ], Deriv[MAT_SZ] ;

I• +++

169

RimageO
+++ •I

Rimage(x_prime, x)

RXtnd_pt

I•

}

Finds the image, x _prime, o£ a delay-embedded point, x.
The parameters o£ the map are in the parameter-space point
ca1led "parms 11

•

APM
RParm_pt

•x_pt, •xp_pt, •last_x
parma

parma = x->p ;
x_pt = x->p ;
xp_pt = x_prime->p
tor(last_x = x _pt + R_PARMS ; x_pt < last_x

apmAssign(•xp_pt++, •x_pt) ;
x_pt++)

I• Because o£ the say delay embedding works,
the tirst member o£ x_prime is the same as
the s•cond member o~ x .

x_pt = x->z.v ;
xp_pt = x_prime->z.u
tor(last _x = x_pt + DEG_FREE ; x_pt < last _x

apmAssign(•xp_pt++, •x_pt) ;

I• Do up the actual map. One could

x_pt++)

vrit• a version o~ imase() vhich vorked for
any standard-type symplectic map; it would
rely on another £unction, perturb(), to
completely define the map . Instead ve
incorporate the perturbation to the
generating £unction right into our map -
ve hope to save a little time .

•I
apmAdd(Rv_sum, x->z . v[O], x->z.v[1])
apmCos(map_scratch, Rv _sum) ;
apmMultiply(Rmixing_term, map_scratch, parms[2]

apmCos(map_scratch, x - >z . v[O]) ;
apmCalc(x _prime- >z.v[O], two, x->z. v[O], APM _KUL,

x->z.u[O], APM_SUB ,
parms[O], map_scratch, APM_MUL ,
Rmixing_term, APM_ADD ,
APM_ADO, lULL

apmCos(map_scratch, x ->z.v[1)) ;
apmCalc(x_prime->z.v[1), tvo, x->z.v[1), APM _MUL,

x->z . u(l], APM _SUB,
parms(1), map_scratch, APM_MUL,
Rmixing_term, APM _ADD,
APM _ADD, lULL

I• +++

tind_RbetaO

In the interest of speed, ve provide functions which only

170

calcUlate those parts o£ the Jacobian that actually
depend on parms and (u , v) . The other parts are
assumed to have been correctly set by a call to
initJacobian() or initRjacobian(), both o£ vhich
may be £ound belov.

+++ •I

£ind_Rbeta(b_block, x)

APM •b_block[]
RXtnd_pt •x ;
{

}

apmAdd(Rv_sum, x->z.v[O], x->z . v[l]) ;
apmSin(map_scratch, Rv_sum) ;
apmMultiply(Rmixing_term, x->p[2], map _scratch

apmSin(map_scratch, x->z.v[O]) ;
apmCalc(•b_block[O], x->p[O], map_scratch, APM_MUL,

tvo, APM_SWAP, APM_SUB,
Rmixing_term, APM_SUB, BULL) ;

apmBegate(•b_block[l], Rmixing_term
apmBegate(•b_block[2], Rmixing_term

apmSin(map_scratch, x->z.v[l]) ;
apmCalc(•b_block[3], x->p[l], map_scratch, APM_MUL,

tvo, APM_SWAP, APM_SUB,
Rmixing_term, APM_SUB, BULL)

I• ++

Rgamma() : calculate the dependence o£
v 1 on the parameters. Even as the £unctions
above, gamma() and Rgamma() change only those components
pointed to by elements o£ a block of pointers.

+++ • I

£ind_Rgamma(g_block, x

APM +g_block[]
Rltnd_pt •x ;
{

}

apmAdd(Rv_sum, x->z.v[O], x->z.v[l]
apmCos(Rmixing_term, Rv_sum)

apmCos(•g_block[O], x - >z.v[O)
apmAssign(•g_block[l), Rmixing_term
apmCos(•g_block[2] , x->z.v[l]) ;
apmAssign(•g_block[3), Rmixing_term

I• ++ •I

initRjacobian(jac)

I•
Set the constant parts o£ a jacobian matrix

APM •jac
{

int
APM •end_jac, ojpt

/+

171

If the array of APM 1 s called jac has not yet been
initialized, do that first.

if(apmValidate(jac[O]) != APM_OK) {
end_jac = jac + MAT_SZ ;

}

for(jpt=jac ; jpt < end_jac ; jpt++
+jpt = apmlev(BASE) ;

end_jac jac + MAT_SZ ; /+ Set all the entries +/
for(jpt=jac ; jpt < end_jac ; jpt++

apmAssignLong(+jpt, OL, O, BASE
/+ to zero.

/+ Put the identity in the (p,p) position . +/
jpt = jac ;
for(j=O ; j < !_PARKS ; j++) {

apmAssignLong(+jpt, 1L, 0, BASE
jpt += MAT_DIM + 1 ;

}

/+ Put the identity in the (u,v) position. +/
jpt = jac + STAID_LEN + B_PARMS + DEG_FREE
for(j=O ; j < DEG_FREE ; j++) {

apmAssignLong(+jpt, 1L, 0, BASE) ;
jpt += MAT_DIM + 1 ;

}

/+ Put -1 times the identity in the (v,u) position. +/

}

jpt = jac + STAID_LEN + (DEG_FREE + MAT _DIM) + &_PARKS ;
for(j=O ; j < DEG_FREE ; j++) {

apmAssignLong(+jpt, -1L, O, BASE) ;
jpt += HAT_DIM + 1 ;

}

I• +++++++++++++++++++++ •I

initMapO
{
/+

This function depends in detail on the choice of map.
+I

/+

•I

beta_ptrs[O]

beta_ptrs [1]
beta_ptrsl2]
beta_ptr s[3]

gllJtll!la_ptrs [0]
gllJtll!la_ptrs[1]
p;amma_ptrs [2]
gamma_ptrs [3]

APM stuff

Rbeta_ptrs [0]

Rbeta_ptrs [1]
Rbeta_ptrs [2]
Rbeta_ptrs [3]

Deriv + STAID_LER + (DEG_FREE + MAT_DIM) +
R_PARMS + DEG _FREE

beta_ptrs[O] + 1 ;
beta_ptrs[O] +MAT DIM
beta_ptrs[2] + 1 ;

Deriv + STAID_LEN + (DEG_FREE + MAT_DIM)
p;amma_ptrs[O] + 2
p;amma_ptrs[O] + MAT_DIH + 1 ;
p;amma_ptrs[1] + MAT _DIM

RDeriv + STAID_LER + (DEG_FREE + HAT_DIH) +
N_PARMS + DEG_FREE

Rbeta_ptrs[O] + 1 ;
Rbeta_ptrs[O] + HAT_DIH
Rbeta_ptrs[2] + 1 ;

+I

}

172

Rglllll1la_ptra[O]
Rglllll1la_ptra[1]
Rglllll1la_ptra [2]
Rglllllllla_ptrs [3]

RDeriv + STAID_LEI + (DEG_FREE • KAT_DIM)
Rgamma_ptra[O] + 2 ;
Rgamma_ptrs[O] + ftAT_Dift + 1
Rgamma_ptrs[1] + KAT_Dift

initJacobian(Deriv)
initRjacobian(RDeriv

Further APft stu~~ - constants and scratch variab1ea.

Rv_aum = apmlev(BASE
map_acratch = apmlev(BASE) ;
Rmixing_term = apmlev (BASE) ;

I• +++++++++++++++++++++++ •I

Rjacobian(xpt

Rltnd_pt •xpt
{

}

• • • • • • •

~ind_Rbeta(Rbeta_ptra, xpt)
~ind_Rgamma(Rgamma_ptra, xpt

inc1ude <stdio.h>
inc1ude <math.h>
inc1ude "apm.h"
inc1ude "apmSpeciaLh"
inc1ude "eonTerae.h"
inc1ude ''bounding.h''
include ''map.h"

int
APft

<• ~atten)(), (• rov_sUJ!lS)()
Rv [ftAT _Dift] ;

I• ++++++++++++++++++++++++++++++++ •I

Rprismatic_image(pz_prime, pz)

RPrism
{

I•

int j ;
APM •mpt, •end_mat, •vpt, •end_v

Find the image o£ the center o~ the priam.

Rimage(pz_prime->center, pz->center)

Rjacobian(pz->center)

Fatten the matrix
singular .

I• Ca1culate the derivative
o~ the map.

DeriT • pz->matrix so that it i sn't too

(• ~atten) (pz_prime->matrix, RDeriv, pz->matrix)

Get upper bounds on the rovs o~ the ~attened matrix,
and use them to get the matrix o~ a prism gauranteed

173

to enc~ose the image of pz.

(+ rov_sums)(Rv, pz_prime->matrix, RDeriv, pz)

end_v = Rv + ftAT_Dift ;
end~at = pz_prime->matrix + ft!T_SZ ;
for(mpt = pz_prime->matrix ; mpt < end_mat ;) {

for(vpt = Rv ; vpt < end_v ; vpt++, mpt++)
apmCa~c(+mpt, +mpt, +vpt, max_error,

APM_ADD, APM_MUL, lULL) ;
}

truncateRPrism{ pz_prime, precision

}
I• +++++++++++++++++++++ •I

initPrismatic ()
{

}

int j ;

for(j=O ; j < N_PARftS ; j++) {
Rv[j] = apmNev(BASE) ;
apmAaaign(Rv[j], one) ;
v[j] = 1.0 ;

}

for(j=N_PARftS ; j < (N_PARMS + DEG_FREE)
Rv[j] = apmNev(BASE) ;

for(j=(R_PARftS + DEG_FREE) ; < KAT DIM
v[j] = 1 . 0 + DBL_ERR ;
Rv[j] = apmlev(BASE)
apmAdd(Rv[j], one, max_error

}

C.2.6 images of prisms

the header file rows.h

extern int

j++)

j++) {

extern int
extern int
extern doub~e

g~obal_bounds(), Rg~obal_bounds() ;
Rbeta_dif_star(), Rgamdif_star()
beta_dif_star(), gamdif_star()

extern Bdd_dbl cos_zero, cos_one, cos_sum

extern Bdd _expr a _sin , b _sin, c _sin i

extern Bdd_apm Rcos_zero, Rcos_one, Rcos_sum
extern Bapm_expr Ra_s i n, Rb_sin, Rc_sin ;

extern APK neg_one, neg_tvo, Rrov_abs[]
I• +++ •I

RglobaLbounds()

• include <stdio.h>

• include <math.h>

• include "apm.h"

• include "a.pnSpecia1.h"

• include ''converse .h"

• include 11bounding ~ h"

• include "rovs . h"

• define ltm_F.I.CTS 14

• define lUI'!_ TERMS 11

• define DET_TOL 111-13

API'! neg_one, neg_tvo
API'! Rrovs[DEG_FREE] , Rrov_abs[DEG_FREE]

Bdd dbl a, b, c, cos_zero, cos_one, cos_sum
Bdd dbl sin_zero, sin_one, sin_sum, theta ;
Bdd_dbl •rov_factors[ltm_FACTS] ;
Bdd_term rov_terms[ltm_TERI'IS] ;
Bdd_expr beta_dif[3], gamma_dif[3]
Bdd_expr a_sin, b_sin, c_sin ;

174

Bdd_apm
Bdd_apm
Bdd_apm
Bapm_term
Bapm_expr

Ra, Rb, Rc, Rcos_zero, Rcos_one, Rcos_sum
Rsin_zero, Rsin_one, Rsin_sum, Rtheta ;
•Rrov _factors[RUM_FACTS] ;
Rrov_terms[IUI'I_TERI'IS] ;
Rbeta_dif[3] , Rgamma_dif[3]

Bapm_expr Ra_sin, Rb_sin, Rc_sin ;
I• ++++++++++++++++++++++++++++++ •I

ini tRovSums 0
I•

•I
{

Set up the expressions and terms as described in my notes
from 11114 .

int
Bdd_dbl
Bdd_apDI
Bdd_term
Bapm_term

j, k ;
••dpt ;
••apt ;
Hpt ;
•Rtpt ;

Set up some API'I's to be used to hold intermediate
resuJ.ts.

nevBapDI(Ra, BASE
nevBapm(Rb, BASE
nevBapm(Rc, BASE
nevBapm(Rtheta, BASE) ;

nevBapm(Rcos _zero, BASE)

nevBapDI(Rcos_one, BASE) ;
nevBapm(Rcos_sum, BASE) ;
nevBapDI(Rsin_zero , BASE) ;
nevBapDI(Rsin_one, BASE)

nevBapm(Rsin_sum, BASE) ;

neg_one apmlnit (-1L, 0, BASE
neg_tvo apmlnit(-2L, 0, BASE

for(j =O ; j <DEG_FREE ; j++) {

•I

}

Rrovs[j] = apm!ev(BASE) ;
Rrov_abs[j] = apm!ev(BASE)

175

Set the number of terms in the bounded expressions

a sin.nterms
b_sin.nterms
c_sin.nter.ms

Ra_sin . nterms

Rb_sin.nterms
Rc_sin.nt•~

1

1

beta_dif[O].nterms
beta_dif[l] .nterms
beta_dif[2] .nterms

Rbeta_dif[O] . nterms 2
Rbeta_dif[1].nterms
Rbeta_dif[2].nterms 2

gamma_dif[O].nterms
gamma_dif[1].nterms
gamma_dif[2].nterms

Assign terms

tpt = rov_terma ;
Rtpt = Rrov_terms

Rgamma_dif[O].nterms 1
Rgamma_dif[1].nterms
Rgamma_dif[2].nterms

for(j=O ; j < 3 ; j++) {
beta_dif[j].terms = tpt
Rbeta_dif[j] .terms = Rtpt
tpt += beta_dif[j] . nterms
Rtpt += Rbeta_dif[j].nterms

}

gamma_dif[j] . terms = tpt ;
Rgamma_dif[j].terms = Rtpt
tpt += gamma_dif[j] .nterms
Rtpt += Rgamma_dif[j].nterms

a_sin.ter.ms = tpt++ ;

Ra_sin . terms = Rtpt++

b_sin . terms = tpt++ ;
Rb_sin.terms = Rtpt++

c_sin.te~s = tpt++ ;

Rc_sin.terms = Rtpt++

Set nfactors.

Rbeta_dif[O].terms[O].nfactors
Rbeta_dif[O] . terms[1].nfactors
Rbeta_dif[1].ter=s[O] . nfactors
Rbeta_dif[2].terms[O].nfactors
Rbeta_dif[2].ter=s[1].nfactors

beta_dif[O] . terms[O].nfactors 1
beta_dif[O] .terms[1].nfactors ~ 1
beta_dif[1].terms[O].nfactors

Rgamma_dif[O].terms->nfactors
Rgamma_dif[1].terms->nfactors
Rgamma_dif[2].terms->nfactors

beta_dif[2] .terms[O].nfactors
beta_dif[2].terms[1].nfactors

gamma_dif[O] .terms- >nfactors
gamma_dif[1].terms->nfactors
gamma_dif[2].terms->nfactors

a_sin.terms->n~actors

b sin.terms->n£actors

Ra_sin.terms->nfactors

Rb_sin.terms- >nfactors
2
2

1

1

176

c_sin . ter,ms->~actors Rc_sin . terms->n~actors

Assisn ~actors.

dpt = rov_~actors ;
apt = Rrov_~actors
~or(j=O ; j < 3 ; j++) {

I•

}

beta_dif

~or(k=O ; k < beta_di~[j] . nterms ; k++) {
beta_dif[j] . terms[k].~actors = dpt ;
Rbeta_di~[j] . terms[k].~actors =apt ;

}

dpt += beta_di~[j] .terms[k] .n~actors ;
apt+= Rbeta_di~[j] . terms[k].nfactors ;

~or(k=O ; k < ~amma_di~[j] . nterms ; k++) {
~amma_di~[j].terms[k).~actors = dpt ;
R~amma_di~[j] . terms[k] . ~actors =apt ;

}

dpt += ~amma_di~[j].terms[k).nfactors ;
apt+= Rgamma_di~[j] . terms[k].n~actors ;

a_sin.terms->~actors = dpt ;
Ra_sin.terms->factors = apt ;
dpt += 2
apt += 2 ;

b_sin.terms->~actors = dpt ;
Rb_sin.terms->~actors = apt ;
dpt += 2
apt += 2 ;

c_sin.terms->~actors = dpt ;
Rc_sin.terms->~actors = apt ;

2

Set up those o~ the "bound" attributes vhich are
bounded APM's.

~or(j=O ; j < IUM _TERMS ; j++) {
nevBapm(Rrov_terms[j] . bound , BASE

}

~or(j=O ; j < 3 ; j++) {

}

nevBapm(Rbeta_di~[j].bound, BASE) ;
nevBapm(Rgamma_di~[j] . bound , BASE) ;

neRBapm(Ra_sin . bound, BASE
neRBapm(Rb_sin.bound, BASE
nevBapm(Rc_sin.bound, BASE

177

Set up the terms and expressions .

a_sin.const = 0.0 ;

Ra_ain.conat = apmlev(BlSE) ;
a_sin.terms->coe~ = 1 . 0 ;

Ra_ain.terma->coe£ = apminit(1L, 0, BlSE)

a_sin . terms->£actora[O] = aa :
a_ain.terms->£actora[1] = aain_zero
Ra_ain.terma->£actors[O] aRa :
Ra_sin.terma->£actors[1] aRain_zero

b_sin . conat = 0.0 ;

Rb_ain.conat = apmlev(BlSE) ;
b_sin.terme->coe£ = 1.0 ;
Rb_sin . terms->coe£ = apm!nit(1L, 0, BlSE)

b_ain . terma->£actora[O] = ab ;
b_ain.terma->£actora[1] = aain_one
Rb_ain . terms->£actors[O] aRb ;
Rb_ain.terma->£actors[1] = aRsin_one

c _sin.const = 0 . 0 ;
Rc_ain.conat = apmlev(BlSE) ;

c_ain.terma->coe£ = 1.0 ;
Rc_ain . terma->coe£ = apminit(lL , 0, BlSE)

c _ain.terma->£actora[O] = ac ;
c_ain . terms->£actors[1] = asin_aum
Rc_ain.terma->£actors[O] aRc :
Rc_sin.terms->£actora[l] aRain sum

I• beta_di£[0] = (2.0 - a • sin(v[O]) - c • ain(v[O] + v[1])
-{ 2.0 - ac • sin(vc[O]) - cc • ain(vc[O] + vc[l])

Where ac, cc, vc[O], and vc[l] ar• the values o£ these
numbers at the center o£ the prism. The vhole second
term (enclosed in braces) is an entry in the j acobian
o£ the map

Rbeta_di£[0] . conat = apmlev(BlSE) :
beta_di£[0] . terma[O].coe£ = -1 . 0 ;
Rbeta_di£[0].terms[O].coe£ = ne5_one

beta_di£[0] . terms[O] . £actora[O] = aa_ain . bound
Rbeta_di£[0] .terms[O] . £actors[O] = aRa_ain . bound

beta_di£[0] .terms[1].coe£ = -1.0 ;
Rbe t a_di £[0] .terma[1].coe£ = neg_one

beta_di£[0] . terms[1].£actors [O] = ac _sin.bound
Rbeta_di£[0] . terms[1] . £actora[O] = aRc_ain.bound

}

178

I• beta_di~[1) -2.0 • c • sin . bound{ v[O] + v[1])
- { -2.0 • cc • sin.bound{ vc[O] + vc[1)) }

•I
Rbeta_di~[1] . const apmlev{ BASE) ;

beta_di~[1].terms[O].coe~ = -2.0;
Rbeta_di~[1].tsrms[O].cos~ = ne!_two

beta_di~[1].terms[O] . ~actors[O] = tc_sin.bound
Rbeta_di~[1].terms[O].~actors[O] = tRc_sin.bound

I• beta_di~[2] 2.0- b • sin . bound{v[1]) - c • sin{v[1] + v[O])
-{ 2.0 - be • sin . bound{vc[1]) - cc • sin{vc[1] + vc[O]) }

•I
Rbeta_di~[2].const = apmlew(BASE) ;

beta_di~[2].terms[O].cos~ = -1.0 ;
Rbeta_di~[2] .terms[O] . coe~ = neg_one

beta_di~[2] . terms[O].~actors[O] = tb_sin .bound
Rbeta_di~[2).terms[O] .~actora[O] = tRb_sin.bound

beta_di~[2].terms[1] . cos~ = -1 .0 ;
Rbeta_di~[2].terms[1].coe~ = ne!_one

beta_di~[2].terms[1] . £actors[O] = tc_sin . bound
Rbeta_di~[2].terms[1] .~actors[O] = tRc_sin.bound

I• !Bmma_di~[O] = da • { cos{v[O]) - cos(vc[O]))
Where da is hal~ the priam's width as measured
along the a-axis and vc is as aboTe.

R!amma_d~[O].const = apmlew(BASE)

R!amma_di~[O).terms[O).coe~ = apmlew(BASE) ;

gamma_di~[O].terms[O] . £actors[O) = tcos_zero
R!amma_di~[O].terms[O] . factors[O] = tRcos_zero

I• !Bmma_di~[1]

Rgamma_dif[1] . const apmBev(BASE) ;

R!amma_dif[1].terms[O] .coe£ = apmlew(BASE) ;

!amma_dif[1].terms[O] . factors[O] = tcos_one
R!amma_di~[1].terms[O].factors[O] = tRcos_ons

I• !Bmma_di£[2] =de • (cos(v[O] + v[1]) -
cos{vc[O) + vc[1])) •I

Rgamma_di~[2].const = apmlev(BASE) ;

R!amma_di~[2] . terms[O].coe£ = apmBev(BASE) ;

!Bmma_dif[2].terms[O] . factors[O] = tcos_sum
Rgamma_dif[2] . terms[O] . £actors[O] = tRcos_sum

I• +++++++++++++++++++++++++++++++++ •I

Rglobal_bounda(pz)

179

RPrism +p:z:
{

}

int j
APM +apt, •end_rov ;

apmAdd(Ra.ub, p:z:->center->p[O], p:z:->matrix[O]) ;
apmSubtract(Ra.lb, pz->center->p[O], pz->matrix[O]) ;

apmAdd(Rb.ub, p:z:->center->p[1), p:z:->matrix[MAT_DIM+1))
apmSubtract(Rb.lb, p:z:->center->p[1), pz->matrix[MAT_DIM+1]

apmAdd(Rc .ub, pz->center->p[2], pz->matrix[2•MAT_DIM+2)) ;
apmSubtract(Rc . lb, pz->center->p[2], pz->matrix[2+MAT_VIM+2]

apt = p:z:->matrix + STAID_LE! + (DEG_FREE • MAT_DIM) ;
~or(j=O ; j < DEG_FREE ; j++) {

apmAssign(Rrovs[j], zero) ;
~or(end_rov=apt + MAT_DIM ; apt < end_rov ; apt++) {

apmCalc(Rrovs[j], Rrovs[j), +apt,
APM_ABS, APM_ADD, lULL

}
}

apmAdd(Rtheta.ub, pz->center->:z:.Y[O], Rrovs[O)) ;
apmSubtract(Rtheta.lb, pz->center->z.Y[O], Rrovs[O]
Rbd_sin(ARsin_:z:ero, ARtheta)
Rbd_cos(ARcos_:z:ero, ARtheta) ;

apmAdd(Rtheta.ub, pz->center->z.Y[1], Rrovs[1]) ;
apmSubtract(Rtheta.lb, pz- >center->:z:.v[1), Rrovs[1)
Rbd_sin(ARsin_one, ARtheta)
Rbd_cos(ARcos_one, ARtheta) ;

apmCalc(Rtheta . ub, Rtheta.ub, pz->center- >z.v[O], Rrovs [0],

apmCalc(Rtheta.lb, Rtheta.lb,

Rbd_Bin(I:Rsin_sum, ARtheta
Rbd_cos (ARcos_sum, ARtheta

Rbound_expr(ARa_sin
Rbound_expr(ARb_ein
Rbound_expr(ARc_sin

APM_ADD, APM_ADD, !fULL)
p:z:->center->z.Y[O), Rrovs [0],

APM_SUB, APM_ADD, lULL)

I• +++++++++++++++++++++++++++++++++ •I

Rbeta_di~_star(ansver, deriv)

APM ansver, +deriv
{

APM +dpt

dpt = deriv + STAID_LER + (MAT_DIM•DEG_FREE) + B_PARMS + DEG_FREE
apmSubtract(Rbeta_dif[O] . const, tvo, •dpt++)
apmMultiply(Rbeta_dif[1] . const, ne~_tvo, •dpt) ;
dpt += MAT_DIM ;
apmSubtract(Rbeta_di~[2] . const, tvo, •dpt) ;

Rbound_expr(ARbeta_dif[O]
Rbound_expr(ARbeta_di£[1]
Rbound_expr(ARbeta_di£[2]

}

180

RmaxAbs(ansver, Rbeta_dif[O] .bound .ub, Rbeta_dif[O].bound .lb)
RmaxAbs(Rrov_abs[O], Rbeta_dif[l] . bound .ub, Rbeta_dif[l] . bound.lb
RmaxAbs(Rrov_abs[l], Rbeta_dif[2].bound .ub, Rbeta_dif[2].bound . lb

Add max_error to the ansver to account for the uncertainties
in beta••(center) .

apmCalc(ansver, ansver, Rrov_abs[O] , Rrov_abs[l], max_error,
APft_ADD, APft_ADD, APft_ADD, BULL)

I• +++++++++++++++++++++ •I

Rsamdif_star(answer, deriv, pmat

APft ansver, •deriv, *pmat
{

}

Rda pmat ;
Rdb = pmat + KAT_Dift + 1 ;
Rdc pmat+ (2 • ftAT_Dift) + 2 ;

apmAssi~(R~amma_dif[O].terms[O] . coef, •Rda)
apmAssisn(Rsamma_dif[l].terms[O].coef , •Rdb)
apmftultiply(R!amma_dif[2].terms[O] . coef, tvo, •Rdc

apt = deriv + STAID_LEI + (DEG_fREE • KAT_DIK)
apmCalc(Rsamma_dif[O].const, •Rda, APK_IEG, •apt, APK_MUL, lULL
apt += ftAT_Dift + 1 ;
apmCalc(R~amma_dif(1].const, •Rdb, APK_IEG, •apt, APK_KUL, lULL
apt++ ;

apmCalc(Rsamma_dif[2].const, two , APft_IEG, •Rdc, •apt,
APK_KUL, APft_ftUL, lULL

Rbound_expr(AR~amma_dif[OJ
Rbound_expr(tRsamma_dif[l]
Rbound_expr(. aRsamma_dif[2]

RmaxAbs(answer, R~amma_dif[O] . bound . ub, R~amma_dif[O] . bound .lb)

RmaxAbs(Rrow_abs[O], Rsamma_dif[l].bound.ub, Rgamma_dif[l] . bound.lb
RmaxAbs(Rrow_abs[l], Rgamma_dif[2].bound.ub, Rsamma_dif[2].bound . lb

Add max_error to the answer to account for the uncertainties
in beta••(center).

apmCalc(answer, answer, Rrow_abs[O], Rrow_abs[1], max_error,
APft_ADD, APM_ADD, APK_ADD, BULL)

coluinn-rotor

• include <stdio.h>

• include <math.h>

• include "apm. h 11

• include "apm.Special. . h"

• include 11 converse .. h"

• include "boundin«.h11

• include "rovs.h"

• include "pi . h 11

• def i ne m_si!"(X

• de:fine Rill_ sign(

• define USE_ROT

• define TBETA_ROT

)

x, a)

YES

0 . 6

181

((x > 0 .0) ? 1.0 : - 1.0)
apmAseignLong((x),(long)apmSi!"((a)),O,BASE)

I• The angle :for rotations - it's
recorded here in units of pi. •I

APK Rcthet, Rsthet, Rsmall_sinsq ;
APK Rarea , Rsin_sq, Rnorm_one, Rnorm_tvo, Rsign
APft Rnorm_prod, Rsign, Rx, Ry ;
double cthet, sthet, small_sinsq ;
I• +++++++++ +++++++++++++++++++++++++++++++++ •I

initRotorO
{

}

apmll'ev(BASE

apmlev(BASE

Rx = apmlev(BASE) ;
Ry = apmll'ev(BASE) ;
Rarea = apmlev(BASE)
Rsign = apmBev(BASE)
Rsin_sq = apmRev(BASE
Rnorm_one = apmlev(BASE
Rnorm_tvo = apmlev(BASE
Rnorm_prod = apmlev(BASE)
Rsmall_sinsq = apmlev(BASE

cthet = cos(PI + TBETA_ROT
sthet = sin(PI * THETA_ROT
small_sinsq = sthet * sthet

dbltoapm(Rx , BASE , TBETA_ROT
apmftultiply(Ry, pi, Rx) ;
apmCos(Rcthet, Ry) ;
apmSin(Rsthet, Ry) ;
apmftultiply (Rsmall_sinsq, Rsthet, Rsthet) ;

I• ++ •I

Rcol _rotor (Amat, Deriv , Prizmat

APM •Amat , •Deriv , •Pri zmat ;
I•

•I
{

Prepares the matrix called "A" in my notes. Mostly ve vant to
have A = DF+Priz, but ve vant to ensure that A is not singular.
In the interest of s peed ve have coded the calculations belov vith
pointers. Our hope is that the resulting funct ion vill s cream along
at ultras onic speed . Unfortunately it is quite unreadable.

int
APft
regist er APft

j ' k ;
+Aend, +Dend, •Pend
+Apt, +Dpt , +Ppt ;

Copy the fev terms vhich appear in the top rovs of Amat.

182

A end = Amat + I_PARKS • (I!AT_OHI + 1) ;

:for(Apt = Amat, Ppt = Prizmat Apt < Aend Apt += (I!AT_OII! +
Ppt += (!UT_OI!I +

apmAssi(91.(•Apt, •Ppt) ;

Clear out those parts o:f Amat vhich change :from iteration to
iteration.

Aend = Amat + I!AT_SZ ;
:for(Apt = Amat + STAIO_LEI ; Apt < Aend

apmAssi(9\Long(•Apt , OL , 0, BASE) ;

Set the (u,p) part o:f A

Apt++)

It's equal to the (v,p) part o:f Prizmat.

Aend = Amat + STAID_LEI + (DEG_FREE • I!AT_DII!) ;
Ppt = Prizmat + STAIO_LEI + (OEG_FREE • !IAT_Oll!)
:for(Apt = Amat + STA!O_LEI ; Apt < Aend ; Apt += TWO_OF) {

:for(Pend = Ppt + !_PARKS ; Ppt < Pend ; Ppt++)
apmAssign(•Apt++ , •Ppt) ;

Ppt += TWO_OF
}

Set the (v,p) part - three terms .

I• First term - equal to Oeriv(v,p) • Prizmat(p,p) •I

Opt = Oeriv + STAIO_LEI + (OEG_FREE • I!AT_OIM) ;
Apt = Amat + STA!O_LEI + (OEG_FREE • !IAT_OIM) ;

) .
1))

:tor(Aend = Apt + (DEG_FREE•MAT_OII!) ; Apt < Aend ; Apt += TWO_OF) {
Ppt = Prizmat ;
:for(Oend = Opt + R_PARI!S ; Opt < Oend Opt++) {

apmCalc(•Apt, •Apt, •Opt, •Ppt, API!_I!UL, API!_AOO, lULL)
Apt ++ ;
Ppt += I!AT_OI!I + 1 ;

}

Opt += TWO OF
}

I• Second term - equal to negative Prizmat(u,p) •/

Ppt = Prizmat + STAIO_LEI ;
Apt = Amat + STAIO_LEI + (OEG_FREE • !IAT_OII!) ;
:for(Pend = Ppt + (OEG_FREE • I!AT_Oll!) ; Ppt < Pend

:for(Aend = Apt + &_PARKS ; Apt < Aend ; Apt++)
apmCalc(•Apt, •Apt, •Ppt++, API!_SUB, lULL)

Apt += TWO_DF ;
}

Ppt += TWO_OF) {

I• Third term - equal to Deriv(v,v) • Prizmat(v,p) •/

Opt = Oeriv + STAIO_LEI + (OEG_FREE • (I!AT_OIH + 1)) + I PARKS
Dend = Oeriv + I!AT_SZ

I•

•I

183

Apt = Amat + STAID_LEI + (DEG_FREE • MAT_DIH) ;
vhile(Dpt < Dend) {

}

Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIH)
Pend = Prizmat + HAT_SZ ;
vhile(Ppt < Pend) {

}

Aend = Apt + I_PARHS ;
vhile(Apt < Aend) {

}

apmCalc(•Apt, •Apt, •Dpt, •Ppt, APH _HUL, APH_ADD, lULL)
Apt++
Ppt++ ;

Dpt++
Ppt += TWO_DF ;
Apt -= I_PARHS ;

Dpt += I_PARHS + DEG_FREE
Apt += MAT_DIH

(u,u) part
equals Priz(v,u)

Apt = Amat + STAID_LEI + I_PARHS ;
Aend = Amat + STAID_LEI + (DEG_FREE • HAT_DIH) ;
Ppt = Prizmat + STAID_LER + (DEG_FREE • MAT_DIH) + I_PARHS
vhile(Apt < Aend) {

}

Pend = Ppt + DEG_FREE
vhile(Ppt < Pend) {

apmAaai~n(•Apt++, •Ppt ++)
}

Apt += I_PARHS + DEG_FREE
Ppt += I_PARHS + DEG_FREE

(u,v) part
equals Priz(v,v)

Apt = Amat + STAID_LER + I_PARHS + DEG_FREE ;
Aend = Amat + STAID_LER + (DEG_FREE • HAT_DIH)
Ppt = Prizmat + STAID_LEN + (DEG_FREE•HAT_DIH) + R_PARHS + DEG_FREE
vhile(Apt < Aend) {

}

Pend = Ppt + DEG_FREE
vhile(Ppt < Pend)

apmAasi~(•Apt++, •Ppt++

Apt += I_PARHS + DEG_FREE
Ppt += R_PARHS + DEG_FREE

The (v,u) part - equal to Deriv(v,v) • Priz(v,u) - Priz(u,u) ,

184

I• First term •I
Apt = Amat + STAID_LEI + (DEG_FREE • ft!T_DIH) + I_PARHS ;
Aend = Apt + (DEG_FREE • KAT_DIH) ;
Dpt = Deriv + STAID_LEI + (DEG_FREE•HAT_DIK) + I_PARKS + DEG_FREE
while(Apt < Aend) {

}

Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIM) + I_PARMS ;
Pend = Ppt + DEG_FREE ;
while(Ppt < Pend) {

}

Dend = Dpt + DEG_FREE
while(Dpt < Dend) {

}

apmCa1c(•Apt, •Apt, •Dpt++, •Ppt, APM_MUL,
APM_ADD , lULL)

Ppt += ft!T_DIM

Apt++ ;
Dpt DEG_FREE
Ppt -= (DEG_FREE • MAT_DIH) - 1

Dpt += MAT_DIM
Apt += I_PARMS + DEG_FREE

I• Second term •I
Apt = Amat + STAID_LEI + (DEG_FREE • MAT_DIH) + I_PARHS + DEG_FREE
Ppt = Prizmat + STAID_LER + R_PARMS
Pend = Ppt + (MAT_DIM • DEG_FREE)
while(Ppt < Pend) {

}

Aend = Apt + DEG_FREE ;
while(Apt < Aend) {

}

apmCalc(•Apt, •Apt, •Ppt , APH_SUB, lULL)
Apt++
Ppt++ ;

Ppt += I_PARMS + DEG_FREE
Apt += R_PARHS + DEG_FREE

(v,v) part - equals Deriv(v,v) • Priz(v,v) - Priz(u,v)

I• First term •I
Apt = Amat + STAID_LER + (DEG_FREE * MAT_DIM) + R_PARHS + DEG_FREE ;
Aend = Apt + (DEG_FREE • MAT_DIM) ;
Dpt = Deriv + STAID_LER + (DEG_FREE•MAT_DIM) + I_PARMS + DEG_FREE ;
while(Apt < Aend) {

Ppt = Prizmat + STAID_LEI + (DEG_FREE•MAT_DIM) +
I _PARMS + DEG_FREE

Pend = Ppt + DEG_FREE ;
while(Ppt < Pend) {

Dend = Dpt + DEG_FREE
while(Dpt < Dend) {

apmCa1c(*Apt, •Apt, •Dpt++, •Ppt , APM_MUL,
APM_ADD, lULL)

Ppt += MAT_DIK
}
Apt++ ;

185

Dpt DEG_FREE ;

Ppt (DEG_FREE • MAT_DIM) - 1
}

Dpt += MAT_DHI
Apt += B_PARMS + DEG_FREE

}

I• Second term •I
Apt = ~at + STAID_LEB + (DEG_FREE • MAT_DIM) + I_PARMS + DEG_FREE
Ppt = Prizmat + STAID_LER + I_PARMS + DEG_FREE ;
Pend = Ppt + (MAT_DIM • DEG_FREE)
vhile(Ppt < Pend) {

}

lend = Apt + DEG_FREE ;
vhile(Apt < lend) {

}

apmCalc(•Apt, •Apt, *Ppt, APM_SUB, lULL)
Apt++
Ppt++ ;

Ppt += I_PARMS + DEG_FREE
Apt += I_PARMS + DEG_FREE

I if USE_RDT
I•

Do up the rotations.

for(j=O ; j < TVD_DF ; j++
for(k=(j+1) ; k < TVD_DF k++
Rsubspace_rot(~at, j, k

I endif
}
I• +++++++++++++++++++++++++++++ •I

Rsubspace_rot(~at, col_one, col_tvo

int col_one, col_tvo ;
APM •Amat ;
{

Apt ~at + STAID_LEI + I_PARMS +
(col_tvo - col_one - 1) • MAT_DIM +
col_one

Apt2 Apt + col_tvo - col_one ;

apmCalc(Rarea, •Apt, Apt2[HAT_DIH], APM _MUL,
Apt[HAT_DIM), •Apt2, APM_HUL,

APM_SUB, lULL)
apmCalc(Rnorm_one, *Apt, APH_DUP, APM_MUL,

Apt[MAT_DIM], APM_DUP, APM_MUL,
APM_ADD , BULL)

apmCalc(Rnorm_tvo, •Apt2, APM_DUP, APM_MUL ,
Apt2[MAT_DIM], APM_DUP, APM_HUL,

APM_ADD, BULL) ;
apmMultiply(Rnorm_prod, Rnorm_one, Rnorm_tvo) ;
if(apmCompare(Rnorm_prod, zero) == 1) {

apmMultiply(Rx, Rarea , Rarea) ;
apmDivide(Rsin_sq, precision, (APM) BULL, Rx, Rnorm_prod)

186

i~(apmCompare(Rsin_sq, Ramall_sinsq
Rm_ai~(Rsi~, Rarea } ;

-1 } {

}

}
}

• include

• include

• include

• include

• include

• include

• include

if(apmCompare(Rnorm_tvo, Rnorm_one } != 1 } {
apmCalc(Rx, Rcthet, +Apt2, APM_MUL,

}

Rsi~, Rsthet , Apt2[MAT_DIM], APM_MUL, APM_MUL,
APM_SUB, lULL } ;

apmCalc(Ry, Rsthet, +Apt2, Rsi~, APM_MUL, APM_MUL,
Rcthet, Apt2[MAT_DIM], APM_MUL,
APM_ADD, lULL }

apmlaai~(•Apt2, Rx
apmlaai~(Apt2[MlT_DIM] , Ry }

else {

}

apmCalc(Rsi~, Rai~, lPM_IEG, BULL) ;
apmCalc(Rx, Rcthet, +Apt, lPM_MUL,

Rai~, Rathet, Apt[MAT_DIM], lPM_MUL, lPM_MUL,
lPM_SUB, lULL } ;

apmCalc(Ry, Rathet, +Apt, Rsi~, APM_MUL , APM_MUL,
Rcthet, lpt[MlT_DIM], lPM_MUL,
APM_ADD, lULL } ;

apmlasisn(•Apt, Rx } ;
apmlasisn(lpt[MAT_DIM], Ry}

<atdio.h>
<math.h>
11 apm . h"
"apmSpecia1.h"
"conYerse.h"
"bounding.h"
"rova.h"

I de~ine IUM_FlCTS
I define IUM_TERMS
I de~ine DET_TOL

3
3
1e-13

int islevPrism

APM cr_acratch
lPM RBmat[MlT_SZ], Rconat_mat[DF_SQ], Rcopy[4 + DF_SQ]
lPM +Rcopy_rowa[TWO_DF]
lPM RBu_rova[DEG_FREE], RBv_rova[DEG_FREE]
APM
APM
lPI'I
APM

double
double
double
double
double
double
double

Rbd_star, Rgd_atar, Ratar, RPvp_atar ;
Rcenter_err[MlT_DIM] ;
Rup_rovs[DEG_FREE], Ruu_rovs[DEG_FREE), Ruv_rovs[DEG_FREE]
Rvp_rova[DEG_FREE), Rvu_rovs[DEG_FREE], Rvv_rova[DEG_FREE]

Bmat[MAT_SZ], conat_mat[DF_SQ], copy[4 • DF_SQ] ;
+copy_rovs[TWO_DF] ;
Bu_rows[DEG_FREE], Bv_rova[DEG_FREE]
bd_atar, sd_star, star, Pvp_star ;
center_err[MAT_DIM] ;
up_rows[DEG_FREE), uu_rovs[DEG_FREE], uv_rows[DEG_FREE]
vp_rows[DEG_FREE], vu_rovs[DEG_FREE], vv_rovs[DEG_FREE]

Bdd_dbl •cr_~actors[IUK_FACTS]

Bdd_term cr_terms[IUM_TERKS]
Bdd_expr beta_prod ;

Bdd_apm •Rcr_~actors[IUK_FACTS]

Bapm_term Rcr_terms[IU"_TERKS] ;
Bapm_expr Rbeta_prod ;
I• ++++++++++++++++++++++++++++++ •I

init_crRovs()
I•

187

Set up the expressions and terms as described in my notes
~rom 12/3 and 12/4.

int j. k ;

AP" •Rcpt ;
double •cpt ;
Bdd_dbl ••dpt
Bdd_apm ••apt ;

Initialize a batch of APH's.

~or(j=O ; j < DEG_FREE ; j++) {
RTp_rovs[j] apmlev(BASE
Rup_rovs[j] apmlev(BASE
Ruu_rovs[j] apmlev(BASE
RuT _rovs[j] apmlev(BASE
RTu_rovs[j] apmlev(BASE
RTT_rovs[j] apmlev(BASE
RBu_rovs[j] apmlev(BASE
RBT_rovs[j] apmlev(BASE

}

Rstar = apmKev(BASE) ;
R~d_star = apmlev(BASE)
Rbd _star = apmlev(BASE)
RPYp_star = apmlev(BASE) ;
cr_scratch = _apmRev(BASE)
~or(j=O ; j < "AT_SZ ; j++ {

Bmat[j] = 0 . 0 ;
RBmat[j] = apmlev(BASE

}

~or(j=O ; j < DF_SQ ; j++)
Rconst_mat[j] apmlev(BASE

~or(j=O ; j < (4 • DF_SQ) ; j++
Rcopy[j] apmlev(BASE) ;

~or(j=O ; j < HAT _DIM ; j++
Rcenter_err[j] = apmlev(BASE

cpt = copy ;
Rcpt = Rcopy
~or(j=O ; j < TWO _DF ; j++) {

copy_rovs[j] = cpt ;
Rcopy_rovs[j] Rcpt ;

cpt += TWO_DF
Rcpt += TWO _DF ;

188

}

Set the number o~ terms in the bounded expressions

beta_prod.nterms Rbeta_prod.nterms

Assisn terms

beta_prod . terms = cr_terms ;
Rbeta_prod.terms = Rcr_terms

Set Idactors.

3

Rbeta _prod.terms[O] . n~actors

Rbeta_prod.terms[l] . n~actors

Rbeta_prod . terms[2] . n~actors

beta_prod.terms[O] .nfactors
beta_prod.terms[1) .n~actors
beta_prod.terms[2].nfactors

Assisn ~actors .

dpt = cr_£actors ;
apt = Rcr_£actors ;
£or(k=O ; k < beta_prod.nterms ; k++) {

beta_prod.terms[k].£actors = dpt ;
Rbeta_prod.terms[k] .£actors = apt ;

}

dpt += beta_prod . terms[k].n~actors ;
apt+= Rbeta_prod.terms[k].n£actors ;

Set vp those o£ the "bound" attributes vhich are
bounded API!' s.

nevBapm(Rbeta_prod.bound, BASE) ;
£or(j=O ; j < RUH_TERHS ; j++) {

nevBapm(Rcr_terms[j].bound, BASE
}

Set up the terms and expressions .

I• beta_prod •I

Rbeta_prod.const = apmRev(BASE) ;
Rbeta_prod.terms[O] .coe£ = apmDev(BASE) ;

beta_prod.terma[O] . £actors[O] = la_sin . bound
Rbeta_prod.terms[O].£actors[O] = lRa_sin.bound

Rbeta_prod . terms[l].coe£ = apmRev(BASE) ;

beta_prod.terms[1].£actors[O] = lc_sin . bound

1

}

189

Rbeta_prod.terms[l] .factors[O] = tRc_sin.bound

Rbeta_prod.terms[2].coef = apmBev(BASE) ;

beta_prod.terms[2].factors[O] = tb_sin . bound
Rbeta_prod . terms[2] . factors[O] = tRb_sin . bound

I• +++++++++++++++++++++++++++++++++ •I

Rcr_rovs(Rv, Amat, Deriv, Priz

APM •Rv, •Amat, •Deriv
RPriam •Priz ;

I•

•I
{

Obtain bounds on the sums of the absolute values of
the entries in the rovs of

-1

[A] • Deriv • Pmat,

put the results in v.

int
APM
APM

j
•end_rov, •end_mat, •Pmat , •inv_pt ;

•plpt, •p2pt, •blpt, •b2pt, •vu_pt, •vv_pt

Pmat Priz->matrir ;
Rset_inverse(Amat) ;

Do up some rov •~ ~or the inYerae; these
are used to calculate center_err[] .

blpt = RBmat + STAID_LEI + I_PARMS
b2pt = blpt + MAT_DIM • DEG_FREE
for(j=O ; j < DEG_FREE ; j++) {

}

apmAssi~(RBu_rovs[j], zero)
apmAssi~(RBv_rovs[j], zero)

for(end_rov = blpt + TWO_DF blpt < end_rov ;) {
apmCalc(RBu_rovs[j], RBu_rovs[j], •blpt++,

APM_ABS, APM_ADD, lULL
apmCalc(RBv_rovs[j], RBv_rovs[j], •b2pt++,

APM_ABS, APM_ADD, lULL
}

Call functions vhich calculate upper bound on the
sums o~ the elements of Tarious matrices.
Be~ore any bounding of matrices, one must invoke
!lobal_bounds(Pmat) to set such 5lobal variables,
as cos_one, and ain_sum. This is done in Rtry_prism.

Rbeta_dif_star(Rbd_star, Deriv) ;
R!amdif_star(Rgd_star, Deriv, Pmat

Calculate bounds on the sums of the absolute values
of the elements in various blocks.

190

I• up t TP blocks •I

apm1ssisnLon~(RPvp_star, OL, 0, BASE } ;
p1pt = Pmat + ST1ID_LEI + (HAT_DIH • DEG_FREE}
endJDat = p1pt + (DEG_FREE • HAT_DIH} ;
~or(; p1pt < end_mat ; p1pt += TWO_DF } {

}

~or(end_rov = p1pt + I_PARMS ; p1pt < end_rov ; p1pt++
apmCalc(RPvp_star, RPvp_star, •p1pt, APH_ABS,

APH_ADD, lULL

apmCalc(Rstar, R~d_star, Rbd_star, RPvp_star,
APH _HUL, APH_ADD, BULL } ;

b1pt = RBmat + STAID_LER + !_PARKS + DEG_FREE
b2pt = RBmat + STAID_LEI + I_PARMS + DEG_FREE + (HAT_DIH • DEG_FREE)
~or(j=O ; j < DEG_FREE ; j++ } {

}

p1pt
p2pt

b1pt
b2pt

apmAssisnLon~(Rup_rovs[j) , OL, 0, BASE
apm1ssisnLon~(Rvp_rovs[j), OL, 0, BASE
~or(end_rov = b1pt + DEG_FREE ; b1pt < end_rov

}

b1pt++, b2pt++ {
apmCalc(Rup_rovs[j), Rup_rovs[j), +b1pt, APH_ABS,

APH_ADD, lULL }
apmCalc(Rvp_rovs[j], Rvp_rovs[j), +b2pt, APH_ABS,

APH_ADD, lULL }

apmCalc(Rup _rovs[j], Rup_rovs[j], Rstar, APH_MUL, lULL
apmCalc(Rvp_rovs[j), Rvp_rovs[j), Rstar, APH_MUL, lULL

b1pt += R_PARKS + DEG_FREE
b2pt += !_PARKS + DEG_FREE

Do the remainin~ blocks - those that actually arise
~rom the derivatives o~ the (u,v} -> (u ' ,v'} part o~
the map . This section uses the mi~hty bound_rovs(},
vhich may be £ound belov .

I• (u,u) block
B(u,u) • P(v,u) + B(u,v) • { beta • P(v,u) -

P(u,u) }

Pmat + STAID_LEW + (DEG_FREE • HAT_DIM} + !_PARKS
Pmat + STAID_LEI + !_PARKS ;

RBmat + STAID_LEB + R_PARMS
RBmat + STAID_LEI + !_PARKS + DEG_FREE

Rbound_rovs(Ruu_rovs, b1pt, p1pt, b2pt, p2pt

p1pt
p2pt

I• (u,v} block
B(u,u) • P(v,v} + B(u,v) • { beta • P(v,v) -

P(u,v} }

Pmat + STAID_LER + (DEG_FREE+HAT_DIH) + R_PARKS + DEG_FREE
Pmat + STAID_LER + R_PARKS + DEG_FREE

191

I• The same parts of RBmat as used to find uu_rovs. •I
Rbound_rovs(Ruv_rovs, b1pt, p1pt, b2pt, p2pt) ;

p1pt
p2pt

b1pt
b2pt

I• (v,u) block
B(v,u) • P(v,u) + B(v,v) • {beta • P(v,u) -

P(u,u) }

Pmat + STAID_LEK + (DEG_FREE•MAT_DIM) + I_PARMS
Pmat + STAID_LEB + I_PARMS ;

RBmat + STAID_LEI + (DEG_FREE•MAT_DIM) + I_PARMS
RBmat + STAID_LEB + (DEG_FREE•MAT_DIM) + I_PARMS + DEG_FREE

Rbound_rovs(Rvu_rovs, b1pt, p1pt, b2pt, p2pt

p1pt
p2pt

I• (v,v) block
B(v,u) • P(v,v) + B(v,v) • { beta • P(v,v) -

P(u,v) }

Pmat + STAID LEI + (DEG_FREE•MAT_DIH) + I_PARMS + DEG_FREE
Pmat + STAID_LEB + I _PARMS + DEG_FREE

I• Same parts of RBmat as are used to find vu_rovs. •I
Rbound_rovs(Rvv_rovs, blpt , plpt, b2pt, p2pt) ;

}

Get the contibutions t o Rv[] that arise from
errors in the computat i on of the ima~e of the
priam's center .

for(j=O ; j < DEG_FREE ; j++) {

}

center_err[j+B_PARMS] = Bu_rovs[j) • DBL_ERR ;
center_err[j+B_PARMS+DEG_FREE] = Bv _rovs[j] • DBL _ERR
apmMultiply(Rcenter_err[j+I _PARMS), RBu_rovs[j], max_error
apmMultiply(Rcenter_err[j+I _PARMS+DEG_FREE), RBu _rovs[j],

max _error) ;

Compute the components of v[].

vu_pt = aRv[I_PARMS] ;
vv_pt = aRv[B_PARMS + DEG_FREE]
f or(j=O ; j < DEG _FREE ; j++, vu_pt++, vv_pt++) {

}

apmCalc(•vu_pt, Rup_r ovs[j], Ruu_rova[j], Ruv_rova[j), max _error,
APM_ADD, APM _ADD, APM_ADD, lULL) ;

apmCalc(•vv_pt, Rvp_rovs[j] , Rvu_rovs[j] , Rvv_rovs[j], max_error,
APM_ADD, APM_ADD, APM_ADD, BULL) ;

Include errors due to miscalculation o~
priam's center.

for(j= B_PARMS ; j < MAT_DIM ; j++)
apmCalc(Rv[j), Rv[j], Rcenter_err[j], APH _ADD, BULL)

return ;

I• +++++++++++++++++++++++++++++++ •I

192

Rbound_rovs(rovs, £irst_b, £irst_p, second_b, second_p

APM •rovs, •~irat_b, •second_b, •~irst_p, •second_p ;

{

I•
Obtain upper bounds on the sums o£ the absolute
Talues o~ rovs of matricies given by expressions

like:
B1 • 51 + B2 • ([beta] • 51 - 52) .

Expressions like these arise in cr_rovs() above .
The idea is to cast these rovs as bounded expressions
and then use the usual machinery to £ind their limits.

int j, k
JPK •bpt_a, •bpt_b, •ppt_a, •ppt_b, •end_rov, •cpt

Evaluate the constant part o~ the matrix expression .
It's :

(81 + 2.0 • B2) • 51 B2 • 52

cpt = Rconst_mat ;
£or(j=O ; j < DEG_FREE j++) {

}

bpt_a = £irst_b + j • KAT_DIK
bpt_b = second_b + j • KAT _DIH ;
£or(k=O ; k < DEG_FREE ; k++) {

}

apmJssi~nLon~(+cpt, OL, 0, BASE

ppt_a = £irst_p + k ;
ppt_b = second_p + k ;
£or(end_rov = bpt_a + DEG _FREE ; bpt _a < end_rov) {

apmCalc(+cpt, +cpt, •bpt_a,

bpt_a++, bpt_b++
ppt_a += KAT_DIK
ppt_b += KAT_DIK

}

bpt_a
bpt_b
cpt++

DEG_FREE
DEG_FREE

+bpt_b, tvo, APK _KUL,
APK_ADD,
+ppt_a, APK_KUL,
•bpt_b, •ppt_b,
APK _KUL, APK_SUB,
JPK_ADD, lULL) ;

cpt = Rconst_mat ;
for(j=O ; j < DEG_FREE ; j++) {

apmJssi~on~(rovs[j], OL, O, BASE

bpt_a = second_b + j • KAT_DIK
bpt_b = bpt_a + 1 ;
£or(k=O ; k < DEG _FREE ; k++) {

ppt_a £irst_p + k
ppt_b = ppt _a + KAT_DIK ;

193

I• a • sin(v[O)) term •I
apmftultiply(cr_scratch, •bpt _a, •ppt_a) ;
apmlesate(Rbeta_prod.terms[O].coef, cr_scratch

I• c • sin(v[O] + v[1]) term •I
apmCalc(cr_scratch, •bpt_a, •bpt _b, AP"_ADD,

•ppt_a, •ppt _b, AP"_ADD,
AP"-"UL, NULL) ;

apmlegate(Rbeta_prod . terms[1).coef, cr_scratch

I• b • sin(v[O] + v[1]) term •I

}
}

}

apmftultiply(cr_scratch, •bpt _b, •ppt_b) ;
apmlesate(Rbeta_prod . terms[2] . coef, cr_scratch

apmlssign(Rbeta_prod.const, •cpt++) ;
Rbound_erpr(tRbeta_prod) ;

Rmaxlbs(cr_scratch, Rbeta_prod.bound.ub,
Rbeta_prod.bound. lb)

apmCalc(rovs[j], rovs[j], cr_scratch, APM_ADD, lULL)

I• ++++++++++++++++++++++++++++++ •I

Rset_inverse(mat)

APM •mat ;

{
APK •end_rov, •end_block, •end_col ;
APK •ipt_a, •ipt_b, •ipt_c, •ipt_set, ~pt_a, -.pt_b

if(islevPrism == YES) {

}

end_block = RBmat + R_PARMS • (MAT_DIK + 1) ;
for(ipt_a=RBmat, mpt_a=mat ; ipt_a < end_block) {

apmDivide(•ipt_a, precision, (AP")IULL, one, •mpt_a

mpt_a += MAT_DJM + 1

ipt_a += "AT_DIK + 1
}

islevPrism 10

Rinvert_corner(mat)

Set the (u ,p) part of the inverse .

ipt _a

~~

RBmat + STAID _LEB + !_PARKS
RBmat + STAID_LEB + R_PARMS + DEG_FREE

ipt _set = RBmat + STAID_LER
end_block = ipt_set + (MAT_DIM • DEG_FREE) ;
for(; ipt_aet < end_block ; ipt_aet += TWO_DF) {

ipt_c RBmat

mpt_a
mpt_b

mat + STAID _LER
mat + STAID_LER + (DEG_FREE • MAT_DIM)

end_rov = ipt_set + &_PARKS ;

I•

•I

}

Set

194

~or(; ipt_set < end_rov ; ipt_set++) {
apmlssi~o~(+ipt_set, OL, 0, BASE

}

end_col = mpt_a + (DEG_FREE + MAT_DIM)
~or(; mpt_a < end_col ; mpt_a += MAT_DIM) {

}

apmCalc(+ipt_set, +ipt_a, +mpt_a, APM_MUL,
+ipt_b , +mpt_b , APM_MUL ,
APM_ADD, APM_IEG,
+ipt_set, APM_ADD, lULL)

ipt_a++ ;
ipt_b++ ;
mpt_b += MAT_DIM

apmCalc(+ipt _set, +ipt_set, +ipt_c, APM_MUL, lULL)

ipt_a DEG_FREE ;
ipt_b DEG_FREE ;
ipt_c += MAT_DIM + 1

mpt_a
mpt_b

(MAT_DIM + DEG_FREE) - 1
(MAT_DIM + DEG_FREE) - 1

ipt_a += MAT_DIM ;
ipt_b += MAT_DIM ;
mpt_a DEG_FREE
mpt_b DEG_FREE ;

the (Y,p) part o~ the inverse .

ipt_a
ipt_b

RBmat + STAID_LEI + I_PARMS + (DEG_FREE + MAT_DIM)
RBmat + STAID_LEI + I_PARMS + (DEG_FREE+MAT_DIM) + DEG_FREE

ipt_set = RBmat + STAID_LEI + (DEG_FREE • MAT_DIM)
end_block = ipt_set + (MAT_DIM + DEG_FREE) ;
~or(; ipt_set < end_block ; ipt _set += TWO_DF) {

ipt_c = RBmat

mpt_a = mat + STAID_LEI
mpt_b mat + STAID_LEI + (DEG_FREE • MAT_DIM)

end_rov = ipt_set + I_PARMS ;
~or(; ipt_set < end_rov ; ipt_set++) {

apmAssi~on«(+ipt_set, OL, 0, BASE

end_col = mpt_a + (DEG_FREE + MAT_DIM)
~or(; mpt_a < end_col ; mpt_a += MAT_DIM) {

}

apmCalc(+ipt_set, +ipt_a, +mpt_a , APM_MUL ,
+ipt_b, +mpt _b, APM_MUL,
APM_ADD, APM _IEG,
•ipt_aet, APM_ADD, lULL)

ipt_a++ ;
ipt_b++ ;
mpt_b += MAT_DIM ;

apmCalc(+ipt_set, +ipt_set, +ipt_c, APM_MUL, lULL)

ipt_a DEG_FREE ;

}

}

}

ipt_b DEG_FREE ;
ipt_c += ftAT_Dift + 1

mpt_a
mpt_b

(ftAT_Dift • DEG_FREE) - 1
(MAT_DIM • DEG_FREE) - 1

ipt_a += ftAT_DIM ;
ipt_b += ftAT_DIM ;
mpt_a DEG_FREE
mpt_b DEG_FREE ;

195

I• +++++++++++++++++++++ •I

RinTert_corner(mat)

APM •mat ;
{

I•

•I

I•

Set up matrices to prepare 'em for use by R~auss() .

lote that ve use the matirx called const_matl].
At the times this function is called const_mat[]
doesn't contain anything important.

int j ;
APM •end_rov, •mpt, •bpt, •cpt

Copy the matrix .

mpt = mat + STAID_LEI + R_PARMS
for(j=O ; j < TWO_DF j++) {

}

cpt = Rcopy_rovs[j)
end_rov = mpt + TWD_DF
vhile(mpt < end_rov)

apmAssi~(•cpt++, •mpt++

mpt += I_PARMS

Do the inYersion.

R~auss(Rcopy_rovs) ;

Copy the ansver .

bpt = RBmat + STAID_LEI + I_PARMS
for(j=O ; j < TWO_DF ; j++) {

}

cpt = Rcopy_rovs[j]
end_rov = bpt + TWO_DF
vhile(bpt < end_rov)

apmAssi~n(•bpt++, •cpt++

bpt += B_PARMS

196

}

fixed-form

• include <stdio.h>

• include <math.h>

• include "apm.h"

• include "apmSpecial. . h"

• include "converse . h"

I• ++ •I

~xed_~orm(~at, Deriv, Prizmat

double •Amat, •Deriv, •Prizmat
I•

•I
{

I•

•I

I•

•I

I•

•I

I•

Prepares the matrix called "A" in my notes. Eventually ve vant to
have A = DF•Priz, but early in 11. calculation, vhen Priz is sin~ular,
ve vant to ~atten A up by requiri~ it to have 11. certain ~ixed ~orm.
In the interest o~ speed ve have coded the calculations belov vith
pointers. Our hope is that the resultin~ ~unction vill scream alon~
at ultrasonic speed . U~ortunately it is quite unreadable .

double •A end , •Aend2, •Dend, •Pend, •Pend2
re~ister double •Apt, •Apt2, •Dpt, •Ppt, •Ppt2 ;

Copy the ~ev terms vhich appear in the top rovs o~ ~at .

Aend = Amat + I _PARHS • (HAT_DIM + 1) ;
for(Apt Amat, Ppt = Prizmat ; Apt < Aend

•Ppt

Apt+= (HAT_DIH +),
Ppt += (MAT_DIM + 1))

Clear out those parts of ~at vhich ch~e ~rom iteration to
iteration.

Aend = ~at + HAT_SZ ;
~or(Apt ~at + STAID_LEI

•Apt = 0.0 ;

Set the (u , p) part of A

Apt < Aend Apt++)

It's equal to the (v,p) part o~ Prizmat.

Aend = ~at + STAID_LEI + (DEG_FREE • MAT _DIH} ;
Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIM)
for(Apt = Amat + STAID_LER ; Apt < Aend ; Apt += TWO_DF } {

~or (Pend = Ppt + R_PARHS ; Ppt < Pend ; Ppt++)
•Apt++ = •Ppt

Ppt += TWO DF
}

Set the (v,p) part - three terms.

•I

197

I• First term - equ&l to Deriv(v,p) • Prizmat(p,p) •I

Dpt = Deriv + STAID_LEI + (DEG_FREE • KAT_DIK) ;
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIM) ;
~or(Aend = Apt + (DEG_FREE•MAT_DIM) ; Apt < Aend ; Apt += TVO_DF) {

Ppt = Prizmat ;

}

~or(Dend = Dpt + I _PARMS ; Dpt < Dend Dpt++) {
•Apt++ += •Dpt • (•Ppt)
Ppt += MAT_DIM + 1 ;

}

Dpt += TVO_DF

I• Second term- equal to negative Prizmat(u,p) •/

Ppt = Prizmat + STAID_LEI ;
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIK) ;
~or(Pend = Ppt + (DEG_FREE • MAT_DIM) ; Ppt < Pend

~or(Aend = Apt + I_PARMS ; Apt < Aend ; Apt++)
•Apt -= •Ppt++

Apt += TVO_DF ;
}

Ppt += TVO_DF) {

I• Third term - equ&l to Deriv(v,v) • Prizmat(v,p) •/

Dpt = Deriv + STAID_LEI + (DEG_FREE • (MAT_DIK + 1)) + I_PARMS
Dend = Deriv + MAT_SZ ;
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIK) ;
vhile(Dpt < Dend) {

}

Ppt = Prizmat + STAID_LEI + (DEG_FREE • KAT_DIM)
Pend = Prizmat + "'T_SZ ;
vhile(Ppt < Pend) {

}

Aend = Apt + I_PARKS
vhile(Apt < Aend)

•Apt++ += •Dpt • (•Ppt++)

Dpt++ ;
Ppt += TVO_DF ;
Apt -= ft_PARMS ;

Dpt += I_PARMS + DEG_FREE
Apt += "'T_DIM

(u,v) part
equals Priz(v,u) + Priz(v,v)

Apt = Amet + STAID_LEI + ft_PARMS + DEG_FREE ;
Aend = Amat + STAID_LEI + (DEG_FREE • KAT_DIH)
Ppt = Prizmat + STAID_LEI + (DEG_FREE • MAT_DIK) + I _PARKS
Ppt2 = Ppt + DEG_FREE ;
vhile(Apt < Aend) {

Pend = Ppt + DEG_FREE
vhile(Ppt < Pend)

•Apt++ += (•Ppt++ + •Ppt2++)

I•

+I

}

198

Apt += !_PARKS + DEG_FREE
Ppt += !_PARKS + DEG_FREE
Ppt2 += !_PARKS + DEG_FREE

The (T,n) part
equal to DeriY(T,T) • { Priz(y,u) + Priz(T,T) },
vhich also equals DeriT(T, y) • A(u,v)

Apt = Amat + STAID_LEI + (DEG_FREE • KAT_DIK) + !_PARKS ;
Dpt = DeriT + STAID_LEI + (DEG_FREE • KAT_DIK) + R_PARKS + DEG_FREE
Dend = DeriT + KAT_SZ ;
vhile(Dpt < Dend) {

}

Apt2 = Amat + STAID_LEI + !_PARKS + DEG_FREE
Aend2 = Apt2 + (DEG_FREE * KAT_DIK)
vhile(Apt2 < Aend2) {

}

lend = Apt + DEG_FREE ;
vhile(Apt < lend) {

+Apt++ += +Dpt • (•Apt2++)
}

Dpt++
Apt -= DEG_FREE ;
Apt2 += DEG_FREE + !_PARKS

Apt += KAT_DIK
Dpt += !_PARKS + DEG_FREE

(v,T) part - equals DeriT(Y,Y) • Priz(T,T) - Priz(u,T)

I• Firat term •I
Apt = Amat + STAID_LE! + (DEG_FREE • KAT_DIK) + ! _PARKS + DEG_FREE :
Dpt c DeriY + STAID_LER + (DEG_FREE • KAT_DIK) + !_PARKS + DEG_FREE :
Dend = Deriv + KAT _SZ ;
vhile(Dpt < Dend) {

}

Ppt = Prizmat + STAID_LE! + (DEG_FREE • KAT_DIK) + !_PARKS + DEG_FREE
Pend = Prizmat + KAT _SZ ;
vhile(Ppt < Pend) {

}

Aend = Apt + DEG_FREE
vhile (Apt < lend) {

•Apt++ += •Dpt • (• Ppt++)
}

Dpt++
Apt DEG_FREE
Ppt += DEG_FREE + !_PARKS

Apt += KAT_DI K
Dpt += !_PARKS + DEG_FREE

I• Second term •I
Apt Amat + STAID_LE! + (DEG_FREE • HAT_DI H) + ! _PARKS + DEG_FREE
Ppt = Prizmat + STAID_LE! + !_PARKS + DEG_FREE ;

}

Pend = Ppt + (MAT_DIM • DEG_FREE)

whi1e(Ppt < Pend) {

}

Aend = Apt + DEG_FREE ;
whi1e(Apt < Aend)

+Apt++ -= +Ppt++ ;

Ppt += ! PARMS + DEG_FREE
Apt += I_PARMS + DEG_FREE

199

I• ++++++++++++++++++++++++ •I

Rf%ed_form(Amat, Deri~, Prizmat

APM •Amat, •Deriv 1 •Prizmat ;
I•

Prepares the matri% ca11ed "A" in my notes. Eventua11y we want to
ha~e A = DF•Priz, but ear1y in a ca1cu1ation, when Priz is singular,
we want to fatten A up by requiring it to ha~e a certain fi%ed form.
In the inerest of speed we have coded the ca1cu1ations be1ow in
terms of pointers. Our hope is that the resu1ting function wi11
scream a1ong at u1trasonic speed . Unfortunate1y it is quite
unreadab1e.

APM •Aend, •Aend2, •Dend, •Pend, •Pend2
register APM +Apt, •Apt2, •Dpt, •Ppt, +Ppt2 ;

Copy the few terms which appear in the top rows of Amat .

Aend = Amat + I_PARMS • (MAT_DIM + 1) ;
for(Apt = Amat, Ppt = Prizmat Apt < Aend

apmAssign(•Apt, •Ppt) ;

Apt+= (MAT_DIM + 1),
Ppt += (MAT_DIM + 1))

C1ear out those parts of Amat which change from iteration to
iteration.

Aend = Amat + MAT_SZ ;
for(Apt = Amat + STAID_LEI ; Apt < Aend

apmAssignLong(•Apt, OL, O, 0)

Set the (u,p) part of A

Apt++)

It's equa1 to the (~,p) part of Prizmat .

Aend = Amat + STAID_LER + (DEG_FREE • MAT_DIH) - TWO _DF ;
Ppt = Prizmat + STAID_LER + (DEG_FREE • MAT_DIM) ;
for(Apt = Amat + STAID_LER ; Apt < Aend ; Apt += TWO_DF) {

for(Pend = Ppt + B_PARMS ; Ppt < Pend ; Ppt++, Apt++)
apmCa1c(+Apt, +Apt, +Ppt, APM_ADD, lULL) ;

Ppt += TWO_DF ;
}

Set the (~,p) part - three terms.

200

I+ First term - equal to Deriv(v,p) + Prizmat(p,p) +I

Dpt = Deriv + STAID_LED + (DEG_FREE + HAT_DIH) ;
Apt = !mat + STAID_LEB + (DEG_FREE + HAT_DIH) ;
~or(Aend = Apt + (DEG_FREE+HAT_DIH) ; Apt < Aend ; Apt += TVO_DF) {

Ppt = Prizmat ;

}

~or(Dend = Dpt + I_PARHS ; Dpt < Dend Dpt++) {
apmHultiply(+Apt++, •Dpt, +Ppt) ;
Ppt += HAT_DIH + 1 ;

}

Dpt += TVO_DF

I• Second term - equal to negative Prizmat(u,p) +I

Ppt = Prizmat + STAID_LEN ;
Apt = Amat + STAID_LEN + (DEG_FREE + MAT_DIH) ;
~or(Pend = Ppt + (DEG_FREE • HAT_DIH) ; Ppt < Pend ; Ppt += TVO_DF) {

~or(Aend = Apt + I_PARHS ; Apt < Aend ; Apt++ , Ppt++
apmCalc(+Apt, +Apt, +Ppt, APM_SUB, lULL) ;

Apt += TVO_DF ;
}

I+ Third term - equal to Deriv(v,v) • Prizmat(v , p) •I

Dpt = Deriv + STAID_LEN + (DEG_FREE + (MAT_DIM + 1)) + I_PARHS
Dend = Deriv + KAT_SZ ;
Apt = Amat + STAID_LER + (DEG_FREE + HAT_DIM) ;
vhile(Dpt < Dend) {

}

Ppt = Prizmat + STAID_LEN + (DEG_FREE + MAT_DIM)
Pend = Prizmat + MAT_SZ - TVO_DF
vhile(Ppt < Pend) {

}

Aend = Apt + R_PARHS ;
vhile(Apt < Aend) {

}

apmCalc(+Apt, +Dpt, +Ppt, APH_MUL, +Apt, APK_ADD, lULL)
Apt++
Ppt++ ;

Dpt++
Ppt += TVO_DF ;
Apt -= &_PARKS ;

Dpt += &_PARKS + DEG_FREE
Apt += HAT_DIM

(u,v) part
equals Priz(v,u) + Priz(v,v)

Apt = Amat + STAID_LER + N_PARKS + DEG_FREE ;
Aend = Amat + STAID_LER + (DEG_FREE + HAT_DIM)
Ppt = Prizmat + STAID_LER + (DEG_FREE + MAT_DIM) + R_PARMS
Ppt2 = Ppt + DEG _F REE ;
vhile(Apt < Aend) {

Pend = Ppt + DEG_FREE
vhile(Ppt < Pend) {

apmCalc(+Apt, +Ppt, +Ppt2, APH _ADD, +Apt , APH_ADD, lULL)

}

}

Apt
Ppt
Ppt2

Apt++ ;
Ppt++ l

Ppt2++ ;

+= I_PARKS
+= I_PARKS
+= I_PARKS

The (v,u) part

201

+ DEG_FREE
+ DEG_FREE
+ DEG_FREE

equal to Deriv(v,v) • { Priz(v,u) + Priz(v,v) },
vhich also equals Deriv(v, v) • A(u,v)

Apt = Amat + STAID_LER + (DEG_FREE • HAT_DIK) + R_PARKS ;
Dpt = Deriv + STAID_LER + (DEG_FREE • KAT_DIK) + R_PARKS + DEG_FREE
Dend = Deriv + KAT_SZ ;
vhile(Dpt < Dend) {

}

Apt2 = Amat + STAID_LEI + R_PARKS + DEG_FREE
Aend2 = Apt2 + (DEG_FREE • KAT_DIK)
vhile(Apt2 < Aend2) {

}

Aend = Apt + DEG_FREE :
vhile(Apt < Aend) {

}

apmCalc(•Apt, •Apt, •Dpt, •Apt2, APK_KUL, APK_ADD , lULL)
Apt++ ;
Apt2++ ;

Dpt++
Apt -= DEG_FREE
Apt2 += DEG_FREE + I_PARKS

Apt += !IAT_DI!I
Dpt += I_PAR!IS + DEG_FREE

(v,v) part - equals Deriv(v,v) • Priz(v,v) - Priz(u,v)

I• First term •I
Apt = Amat + STAID_LER + (DEG_FREE • !IAT_DIK) + !_PARKS + DEG_FREE ;
Dpt = Deriv + STAID_LER + (DEG_FREE • !IAT_DIK) + I _PARKS + DEG_FREE ;
Dend = Deriv + !IAT_SZ ;
vhile(Dpt < Dend) {

Ppt = Prizmat + STAID_LEI + (DEG_FREE • !IAT_DI!I) + I_PARKS + DEG_FREE
Pend = Prizmat + !IAT_SZ ;
vhile(Ppt < Pend) {

Aend = Apt + DEG_FREE
vhile(Apt < Aend) {

}

apmCalc(•Apt, •Apt, •Dpt, •Ppt, APK_!IUL, AP!I_ADD, BULL)

Apt++
Ppt++

Dpt++
Apt DEG _FREE
Ppt += DEG_FREE + I_PARKS

202

}

Apt += KAT_DIK
Opt += W_PARKS + DEG_FREE

}

I• Second term •I
Apt = Amat + STAID_LEI + (DEG_FREE • KAT_DIH) + W_PARKS + DEG_FREE
Ppt = Prizmat + STAID_LER + R_PARKS + DEG_FREE ;
Pend = Ppt + (KAT_DIK • DEG_FREE)
vhile(Ppt < Pend) {

Aend = Apt + DEG_FREE ;
vhile(Apt < Aend) {

}

apmCalc(•Apt, •Apt, •Ppt, APK_SUB, lULL)

Apt++
Ppt++

Ppt += !_PARKS + DEG_FREE
Apt += !_PARKS + DEG_FREE

}
}

• include <stdio.h>

• include <math.h>

• include ''apm . h 11

• include 11 apm.Special.h"

• include 11 converse.h"

• include "bounding.h"

• include "rova.h"

• define IUK_FACTS 6
• define IUK_TERKS 6

1e-13 • define DET_TOL

APK
APK
APK
APK
APK
APK
APK

double
double
Bdd_dbl
Bdd_term
Bdd_expr

Bdd_apm

Rerr_star
ff_scratch ;
Rcenter_err[KAT_DIK) ;
Rdet_TU, Rdet_uY, Rstar
RAvv_atar 1 RAuvlnv_star
Rb_star, Rbd_star, Rsd_atar
RPYY_star, RPYp_star, RPYu_star

beta_starO ;
center_err[KAT_DIK)
•ff_factors[IUK_FACTS)
ff_terms[IUK_TERKS)
beta[3) ;

Bapm_term Rff_terms[IUK_TERKS) ;
Bapm_expr Rbeta[3) ;
I • ++++++++++++++++++++++++++++++ •I

ini t _ffRovs 0
I•

•I
{

Set up the expression s and terms as described in my notes
from 11114.

int j. k

Bdd_dbl .. dpt ;
Bdd_apm ••apt ;
Bdd_term •tpt ;
Bapm_term +Rtpt ;

203

Set up some ~PK's to be used to hold intermediate
results.

Rstar = apmlev(BASE)
Rdet uv apmRev(BASE
Rdet_vu = apmRev(BASE
Rb star = apmlev(BASE
Rbd_star = apmRev(B~SE) ;
Rsd_etar = apmRev(BASE) ;
Rerr_star apmlev(B~SE)
RAvv_star apmlev(BASE)
RPvv_star apmlev(BASE)
RPvp_star apmRev(BASE)
RPvu star apmlev(BASE)
~~_scratch = apmlev(BASE)
~uvinv_star apmlev(B~SE)

~or(j = 0 ; j < KAT_DIK ; j++)
Rcenter_err[j] = apmlew(BASE

Set the number o~ terms in the bounded expressions

beta[O] .nterma
beta[l] .nterms
beta[2) .nterms

Rbeta[O] . nterms
Rbeta[1].nterms
Rbeta[2] . nterms

2
1

2

Assisn terms

tpt = ~~_terms ;
Rtpt = R~~_terms
~or(j=O ; j < 3 j++) {

beta[j] .terms = tpt ;
Rbeta[j] . terms = Rtpt ;
tpt += beta[j] .nterms ;
Rtpt += Rbeta[j] . nterms

}

Set n£actors.

Rbeta[O].terms[O] . nfactors
Rbeta[O].terms[1].n£actors
Rbeta[l] .terms[O].nfactors
Rbeta[2].terms[O].nfactors
Rbeta[2].terms[l].n£actors

Assisn ~actors.

dpt ff_factors

beta[O].terms[O].n~actors
beta[O].terms[l].n~actors

beta[1].terms[O] .nfactor s
beta[2] .terms[O] .nfactors
beta[2] .terms[l] .n~actors

1
1
1
1
1

204

apt = R~~-~actors ;
~or(j=O ; j < 3 ; j++) {

I•

}

~or(k=O ; k < beta[j] . nterms ; k++) {
beta[j].terms[k] . factors = dpt ;
Rbeta[j] .terms[k].~actors =apt ;

}

dpt += beta[j].terms[k].~actors ;
apt+= Rbeta[j] . terms[k].n~actors ;

Set up those o~ the "bound" attributes which are
bounded APM 1 s .

~or(j=O ; j < IUM_TERMS ; j++) {
nevBapm(~f_terms[j] . bound, BASE

}

~or(j=O ; j < 3 ; j++) {
newBapm(Rbeta[j].bound, BASE)

}

Set up the terms and expressions.

I• beta[O] = 2.0 - a • sin(v[O]) - c • sin(v[O] + v[1]) •I
beta[O].const = 2.0, Rbeta[O].const =two

beta[O].terms(O] . coe~ = -1 . 0 ;
Rbeta[O] . terms[O] .coe~ = neg_one ;

beta[O].terms[O].~actors [O] = ta_sin.bound
Rbeta[O] .terms[O].~actors[O] = tRa_sin. bound

beta[O).terms[1].coe~ = -1.0 ;
Rbeta[O).terms[1].coe~ = neg_one

beta[O).terms[t).~actors[O) = tc _sin . bound;
Rbeta[O) . terms[1) . ~actors[O) = tRc_sin . bound ;

I• beta[t) = - 2 . 0 • c • sin(v[O) + v[1) •I
beta[1] .const = 0.0, Rbeta[1] . c onst = zero

beta[1] . terms[O) . coe~ = - 2. 0 ;
Rbeta[t).terms[O] . coe~ = neg_tvo ;

beta[t].terms[O].~actors[O] = tc _sin.bound;
Rbeta[t].terms[O] . ~actors[O] tRc_sin.bound ;

I• beta[2] = 2.0 - b • sin(v[1)) - c • sin(v[1] + v[O)) •I
beta[2).const = 2 . 0, Rbeta[2] .const =two

beta[2).terms[O].coef = -1.0 ;
Rbeta[2).terms[O] . coef = neg_one ;

beta[2) .terms [O).~act ors[O] = tb_sin . b ound;
Rbeta[2] . terms[O]. factors[O] = tRb_sin.bound;

}

beta[2).terms[1).coe£ = -1.0 ;
Rbeta[2).terms[1).coe£ = neg_one

205

beta[2).terma[1) .£actors[O) = ~c _sin.bound
Rbeta[2) . terms[1).factors[O] s ~Rc_sin.bound

I• +++++++++++++++++++++++++++++++++ •I

ff_rova(v, ~at, Deriv, Priz)

Prism •Priz ;
double •v, •Amat, •Deriv ;
I•

•I
{

Obtain bounds on the sums of the absolute values o£
the entries in the rovs o~

- 1

[A) • Deriv • Pmat,

put the results in v.

double
double
double
double
double

•apt, •mpt, ••nd_ro g , ••nd~at, •Pmat
det_YU, det_uv, star ;
Avv_star, Auvinv_star ;
b_star, bd_star, gd_star
Pvv_star, Pvp_star, Pvu_star

Check that A(u,v) is invertible. If not, die.

Pmat = Priz->matrix ;

apt = Amat + STAID_LEB + B_PARMS + DEG_FREE
det _uv = •apt • (•(apt + KAT_DIK + 1))
apt++ ;

det_uv -= •apt • •(apt + KAT_DIK -1))

if(fabs(det_uv < DET_TOL) {
fprintf(stderr,

}
cease()

"The determinant of A(u,"r) = ~.14e. Died. \n",
det_uv)

Call £unctions vhich calculate upper bound on the
sums of the elements of various matrices.
Before any boundin~ of matrices, one must invoke
global_bounds(Pmat) to set such global variables,
as cos_one, and sin_sum . It is called in try_prism().

b_star = beta_star() ;
bd_star beta_di£_star(Deriv) ;
gd_star = gamdif_s tar(Deri v, Pmat

Find sums of the absolute values of the entries
of A(v,v), Ainv(u,v), Pmat(v,v), Pmat(v,u), and Pmat(v,p)

end_mat = Pmat + KAT_SZ ;

206

Pvv_star = 0.0 ;
mpt = Pmat + STAID_LEI + (DEG_FREE • HAT_DIH) + I_PARHS + DEG_FREE
£or(; mpt < end_mat ; mpt += (I_PARHS + DEG_FREE)) {

£or(end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++) {
PYv_star += ~abs(+mpt) ;

}

}

Pvu star = 0 .0 ;
mpt = Pmat + STAID_LEI + (DEG_FREE + HAT_DIH) + N_PARHS ;
£or(; mpt < end_mat ; mpt += (R_PARHS + DEG_FREE)) {

£or(end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++) {
Pvu_star += £abs(•mpt) ;

}

}

Pvp_star = 0.0 ;
mpt = Pmat + STAID_LER + (DEG_FREE • HAT_DIH) ;
£or(; mpt < end_mat ; mpt += TWO_DF) {

}

for(end_rov = mpt + I_PARHS mpt < end_rov
Pvp_star += ~abs(*mpt) ;

}

Avv_star SmBlock_err

mpt++) {

mpt = Amat + STAID_LEI + DEG_FREE + HAT_DIH + DEG_FREE + R_PARHS
£or(; mpt < end_mat ; mpt += TWO_DF) {

~or(end_rov = mpt + R_PARHS mpt < end_rov ; mpt++) {
Avv_star += ~abs(+mpt) ;

}

}

Auvinv_star = SmBlock_err ;
mpt = Amat + STAID_LEI + B_PARHS + DEG_FREE ;
£or(; mpt < end_mat ; mpt += TWO_DF) {

}

£or(end_rov = mpt + I _PARHS ; mpt < end_rov
Auvinv_star += £abs(+mpt) ;

}

Check that A(v,u) is i nvertible. I£ no t , die .

mpt++) {

If it is, set the harder- to - compute elements of v .

apt = Amat + STAID_LER + R_PARHS + (DEG _FREE • HAT_DIH)
det_vu = +apt • (•(apt + HAT_DIH + 1))

apt ++ i

det _vu - = •apt • +(apt + HAT_DIH -1))

i£(£abs(det_vu < DET_TOL) {
~print£(stderr,

"The determinant o£ A(v,u)

cease()
}

else {

%.14e . Died. \n",
det vu

II [3) £abs(Amat[HAT_SZ - DEG_FREE - 1)) +
fabs(Amat[STAID_LEI + (DEG_FREE • HAT_DIH) + I_PARHS + 1)) +

}

}

207

DBL_ERR ;
v[4] fabs(Amat[ftAT_SZ - TWO_DF]) +

fabs(Amat[STAID_LER + (DEG_FREE+ftAT_Dift) + I_PARftS]) +
DBL_ERR

center_err[3] ~ v[3] • (1 + Avv_star • Auvinv_star) • DBL_ERR
center_err[4] u v[4] • (1 + Avv_star • Auvlnv_star) • DBL_ERR
center_err[6] Auvinv_star • DBL_ERR
center_err[6] center_err[6] ;

star

v[3]
v[4]
v[6]
.. [6]

(sd_star + bd_star • (Pvp_star + Pvv_star) +

b_star • Pvu_star) I det_vu ;
•= star + center_err[3] I det_vu
•= star + center_err[4] I det_vu

1.0 + center_err[6]
= 1.0 + center_err[6] ;

return ;

I• +++++++++++++++++++++++++++++++ •I

double beta_star()
{

}

double answer

bound_expr(tbeta[O]
bound_expr(tbeta[1]
bound_expr(tbeta[2]

ansver = maxAbs(beta[O] .bound . ub , beta[O].bound . lb) +
maxAbs(beta[1] .bound.ub, beta[1].bound.lb) +
maxAbs(beta[2] .bound.ub, beta[2].bound.lb)

return(ansver)

I• +++++++++++++++++++++++++++++ •I

Rff_rovs(v, Amat, Deriv, Priz

APft
RPrism

I•

+v, +Amat, •Deriv
•Priz ;

•I
{

•I

Obtain bounds on the sums of the absolute. values of
the entries in the rovs o~

-1

[A] • Deriv • Pmat,

put the results in v.

Check that A(u,v) is inver tible. If not , die.

Pmat ~ Priz->matrix ;

apt = Amat + STAID_LER + R PARHS + DEG FREE
apmftultiply(Rdet_uv, +apt, +(apt + ftAT_Dift + 1))

apt++ ;

208

apmCalc(Rdet_uv, Rdet_uv, •apt, •(apt + MAT_DIM -1),
APM_MUL, APM_SUB, lULL) ;

apmAbsoluteValue(ff_scratch, Rdet_uv)

if(apmCompare(ff_scratch, max_error != 1) {
fprintf(stderr,

}

"The determinant of A(u,v) is too small. Died. \n"
fprintf(stderr, "\t Y..12e \n", apmtodbl(ff_scratch)) ;
cease() ;

Call functions vhich calculate upper bound on the
sums of the elements of various matrices.
Before any bounding of matrices, one must invoke
global_bounds(Pmat) to set such global variables,
all cos_one, and sin_sum. It is called in Rtry_prism() .

Rbeta_star(Rb_star) ;
Rbeta_dif_star(Rbd_star, Deriv) ;
Rgamdif_star(Rgd_star, Deriv, Pmat

Find suma o~ the absolute Talues o~ the entries

of Pmat(v,v), Pmat(v,u), and Pmat(v,p)

end_mat = Pmat + MAT_SZ ;

apmAssign(RPvv_stsr, zero) ;
mpt = Pmat + STAID_LER + (DEG_FREE * MAT_DIM) + B_PARMS + DEG_FREE
for(; mpt < end_mat ; mpt += (R_PARMS + DEG_FREE)) {

}

for(end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++) {
apmCalc(RPvv_star, RPvv_star, *mpt, APM_ABS,

APM_ADD, lULL)
}

apmAssign(RPvu_star, zero) ;
mpt = Pmat + STAID_LEI + (DEG_FREE * MAT_DIM) + !_PARKS ;
for(; mpt < end_mat ; mpt += (I_PARMS + DEG_FREE)) {

}

for(end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++) {
apmCalc(RPvu_star, RPvu_star, •mpt, APM_ABS,

APM_ADD, lULL)
}

apmAssign(RPvp_star, zero) ;
mpt c Pmat + STAID_LER + (DEG _FREE * MAT_DIM) ;
for(; mpt < end_mat ; mpt += TWO _DF) {

}

for(end_rov = mpt + B_PARMS ; mpt < end_rov ; mpt++) {
apmCalc(RPvp_star , RPvp_star, •mpt, APM _ABS,

APM_ADD, lULL
}

apmAssign(RAvv_star, RSmBlock_err) ;
mpt = Amat + STAID_LER + DEG_FREE • MAT_DIM + DEG_FREE + B_PARMS
for(; mpt < end_mat ; mpt += TWO_DF) {

for(end_rov = mpt + B_PARMS ; mpt < end_rov ; mpt++) {
apmCalc(RAvv_star, RAvv _star, •mpt,

APM _ABS, APM _ADD, RULL) ;
}

209

}

apmAssign(RAuvinv_star, RSmBlock_err) ;
mpt = Amat + STAID_LEB + B_PARHS + DEG_FREE
~or(; mpt < end_mat ; mpt += TWO_DF) {

}

~or(end_rov = mpt + I_PARHS ; mpt < end_rov ; mpt++) {
apmCalc(RAuvlnv_star. RAuvlnv_star, +mpt,

APH_ABS, APH_ADD, BULL) ;
}

apmDivide(~~_scratch, precision, (APH) RULL,
RAuvlnv_star, Rdet_uv)

apmAssign(RAuvinv_star, ~~_scratch) ;

Check that A(v,u) is invertible. I~ not, die .
I~ it is, set the harder-to-compute elements o~ v .

apt = Amat + STAID_LEI + I_PARHS + (DEG_FREE * HAT_DIH)
apmHultiply(Rdet_vu, •apt, •(apt + HAT_DIM + 1))
apt++ ;
apmCalc(Rdet_vu, Rdet_vu, •apt, •(apt + HAT_DIM- 1),

APM_HUL, APM_SUB, lULL
apmAbsoluteValue(~~_scratch, Rdet_vu)

i~(apmCompare(~~-scratch, max_error != 1) {
~print~(stderr,

}

"The determinant o~ A(v,u) is too smalL Died . \n")
~print~(stderr , "\t %. 12• \n", apmtodbl(~~_scratch)) ;
cease() ;

Bote that the sums belov seem to contain some misplaced
elements o~ Amat. These are to be thousht o~ as elements
o~ A(v,u) inverse .

else {
apmCalc(v[3], Amat[HAT_SZ- DEG_FREE-1], APM_ABS,

Amat[STAID_LER+(DEG_FREE•MAT_DIH)+R_PARMS+1],
APH_ABS, max_error, APH_ADD, APH_ADD, lULL) ;

apmCa1c(v[4], Amat[KAT_SZ-TWO_DF], APH_ABS,
Amat[STAID_LEI+(DEG_FREE•HAT_DIH)+B_PARHS],
APM_ABS, max _error, APH_ADD, APM_ADD, lULL)

apmCa1c(Rerr_star, RAvv_star, RAuvlnv _star, APM_KUL,
one, APM_ADD, DULL);

apmCa1c(Rcenter_err[3], v[3] , Rerr _star, max_error,
APH_KUL, APH_KUL, BULL

apmCa1c(Rcenter_err[4], v[4] , Rerr_star, max_error,
APH_HUL, APH_HUL, lULL

apmHultiply(Rcenter_err[6], RAuvinv_star, max_error) ;
apmAssign(Rcenter_err[6], Rcenter_err[6]) ;

apmCa1c(Rstar, RPvp_star, RPvv_star, APH_ADD,
Rbd_star, APH_HUL,
Rb_star, RPvu _star, APH_HUL,
Rgd_star, APM_ADD, APK_ADD, RULL

apmCa1c(~~_scratch, Rcenter_err[3] , Rstar, v[3],

}

}

210

APM_KUL, APM_ADD, BULL) 1

apmDivide(v[3), precision, (APK) BULL, ff_scratch, Rdet_vu)
apmCalc(ff_acratch, Rcenter_err[4), Rstar, v[4),

APM_KUL, APM_ADD, BULL) ;
apmDivide(v[4), precision, (APK) lULL, ff_scratch, Rdet_vu)
apmAdd(v[S), one, Rcenter_err[S))
apmAdd(v[6), one, Rcenter_err[6)) 1

return

I• +++++++++++++++++++++++++++++++ •I

Rbeta_star(ansver

APK ansver ;
{

}

Rbound_expr(aRbeta[O]
Rbound_expr(aRbeta[1]
Rbound_expr(aRbeta[2]

RmaxAbs(ansver, Rbeta[O].bound.ub, Rbeta[O).bound.lb)

RmaxAbs(Rrov_abs[O), Rbeta[1].bound.ub, Rbeta[1].bound.lb
RmaxAbs(Rrov_abs[1], Rbeta[2).bound.ub, Rbeta[2].bound.lb

apmCalc(ansver, ansver, Rrov_abs[O], Rrov_abs[1),
APM_ADD, APM_ADD, BULL)

I• +++++++++++++++++++++++++++++ •I

matrix inverter

• • • • •
•
• • •
•
I•

include <stdio .h>
include <math.h>
include "apm.h"
include "apmSpecial. h"
include "conTerse.h"

define BUF_SZ 66

define OOM_DF 1
2
6

define MAX_RECUR
define

define

DFLT_XDP

Rm_svap(x,y,t) (apmAssisn(t, x), apmAssisn(x, y), \
apmAssign(y, t))

The Rumerical Recipes Gauss-Jordan matrix inverter as adaptaed
:for a converse KAK code.
I have removed the dimension arguments n and m and replaced

them vith TWO_DF and 1. I have also changed all the floats
into doubles and replaced some automatically allocated
arrays vith arrays o£ fixed dimension. Finally, I have
replaced the error handling code vith some o:f my ovn .

R~auss, the rigorous version , also does a host o~ checks to
guarantee that the inverse it produces , vhen multiplied by
the original matrix, a, gives something equal to the
identity to the accuracy specified by the global variable,
"precision11

•

211

int extra_dp, last_inv_dp ;
int inv_depth I• Used to make sure that ve don't keep trying

to invert singular matrices by using
ever incre•sing precision.

APH a_abs, Rbig, Rdum, Rpivinv, Rtemp ;
APH Rrov_max, Rcol_max, Rmat_min, Rmat_max
APH •Rmat[TWO_DF], Rmat_block[4•DF_SQ] ;
APM Rdiv_err, Rrov_err, Rinv_err, Rtotal_err, Rpiv_err
I• ++++++++++++++++++++++++++++++++ •I

initGaussO
{

}

int j. k
APH •mpt

inv_depth = 0
extra_dp = 0 ;

Rbig = apmRev(BASE) ;
Rdum = apmRev(BASE) ;
a_abs = apmRev(BASE)
Rtemp = apmlev(BASE) ;
Rpivinv = apmRev(BASE)
Rinv_err apmlev(BASE)
Rrov_err apmlev(BASE)
Rpiv_err apmlev(BASE)
Rdiv_err apmlev(BASE)
Rrov_max apmlev(BASE)
Rcol_max apmlev(BASE)
Rmat_min apmlev(BASE)
Rmat_max apmlev(BASE)
Rtotal_err = apmlev(BASE

mpt = Rmat_block ;
£or(j=O ; j < TWO_DF ; j++) {

Rmat[j] = mpt ;

}

£or(k=O ; k < TVO_DF ; k++
*mpt++ = apmlev(BASE)

I• ++++++++++++++++++++++++++++ •I

Rgauss(a)

APM ••a ;
{

int indxc[TWO_DF],indxr[TWO_DF],ipiv[TWO_DF];
int i,icol,irov,j,k,l,ll;
int inv_dp, err_dp ;

i£(++inv_depth > HAI_RECUR) {
£print£(stderr, "Singular matrix in Rgauss. Died. \n")
cease() ;

}

£or(j=O ; j < TWO_DF
ipi'1(j] = 0 ;
indxr[j] 0
indxc [j] = 0 ;

j++) {

}

212

I£ this is the attempt to invert a,
copy the matrix in case o£ a loss o£ precision.
J.lso. choose
the precision to vhich to do the inversion calcu1ations .

i£{ inv_depth ;; 1) {
copyRmat{ Rmat, a }
inv_dp choosePrecis(a)

}

else {

}

i£{ extra_dp ;; 0 }
inv_dp last_inv_dp + DFLT_XDP

else
inv_dp last_inv_dp + extra_dp

last_inv_dp ; inv_dp ;

Initialize the error propagation stu££.

apmAssi~ong{ Rdiv_err, 1L, -inv_dp, BASE
apmAssi~ong(Rinv_err, OL, 0, BASE) ;
apmAssign(Rpiv_err, Rinv_err) ;

£or (i;O;i<TVO_DF;i++) {
apmAssignLong(Rbig, OL, 0, BASE)
£or (j;O;j<TVO_DF;j++) {

}

H (ipiv[j] !; 1) {

}

£or (k; O;k<TVO_DF ;k++) {
i£ (ipiv[k) ;; 0) {

}

}

apmAbsoluteValue(a_abs, a[j][k]) ;
i£(apmCompare(a_abs, Rbig) !; -1) {

apmAssign(Rbig, a_abs) ;
irov=j;
icol;k;

}

else i£ (ipiv[k] > 1) {
£print£(stderr ,

}

"Singular IIUltrix in gauss. Died.\n")
cease() ;

++(ipiv[icol]);
i£(irov !; icol} {

}

£or (l; O;l<TVO_DF;l++}
Rm_svap(a[irov][l],a[icol][l],Rtemp)

indxr [i] ~irov;
indxc [i] =icol;

Check that the pivot interval does not
contain zero . I~ it does, restart the
calculation and carry more decimal places .

apmCalc(Rtemp, a[icol][icol], APM _ABS ,

213

RinT_err, APft_SUB, BULL
i~(apmCompare(Rtemp, zero) != 1) {

copyRmat(a, Rmat) ;

}

Rgauss(a) ;
return ;

Get the nev pivot error. It is here that ve ~ace
the possibility o~ catastrophic loss o~ precision .

apmDivide(Rpiv_err, inv_dp, (APft)BULL, Rinv_err, Rtemp
apmCalc(Rpiv_err, Rpiv_err, Rdiv_err, Rdiv_err,

APft_ADD, APft_ADD, BULL)
apmDiTide(RpiTinv,inv _dp,(APft)BULL,one,a[icol][icol])
apmAssignLong(a[icol][icol], 1L, 0 , BASE) ;

apmAssignLong(Rrov _max, OL, 0, BASE) ;
~or (l=O;l<TVO_DF;l++) {

}

i~(1 != icol) {

}

apmAbsoluteValue(Rtemp, a[icol][l]
if(apmCompare(Rtemp, Rrov_max) < 0

apmAssign(Rrov_max, Rtemp) ;

apmCalc(a[icol][l], a[icol][l], RpivinT,APft_ftUL,IULL)

Get a bound on the size o~ the errors in the elements
o~ the pivot rov .

apmCalc(Rrov_err, Rinv_err, Rpivinv, APft_ftUL,
Rrov_max, Rinv_err, APK_ADD,
RpiT_err, APft_ftUL, APft_ADD, lULL

apmAssignLong(Rcol_max, OL, O, BASE)
~or (ll=O;ll<TWO_DF;ll++) {

}

i~ (11 != icol) {

}

apmlssign(Rdum, a[ll][icol]) ;
apmAbsoluteValue(Rtemp, Rdum) ;
i~(apmCompare(Rtemp, Rcol_max) 1)

apmAssign(Rcol_max, Rtemp) ;

apmAssignLong(a[ll][icol], OL, 0, BASE) ;
~or (l=O;l<TVO_DF;l++)

apmCalc(a[ll][l], a[ll][l], a[icol][l], Rdum,
APft_ftUL, APft_SUB, lULL) ;

Calculate the nev upper bound on errors in the matrix.

apmCa1c(Rinv_err, Rrow~ax, Rrov_err, APM_ADD,
Rinv_err, APft_ftUL,
Rcol_max, Rrow_err, APM_KUL,
Rinv_err, APft_ADD,
APH_ADD, APH _ADD, lULL) ;

Add an extra Rdiv_err to Rinv_err and truncate everything .
This vill probably speed the calculation considerably.

}

214

apmCa1c(Rinv_err, Rinv_err, Rdiv_err, APM_ADD, lULL)

}

apmTruncate(Rinv_err, inv_dp) ;
£or(1 = 0 ; 1 < TVO_DF ; 1++)

£or(11=0 ; 11 < TVO_DF ; 11++
apmTruncate(a[1][11], inv_dp

for (1=(TVO_DF-1);1>=0;1--) {
if (indxr[1] != indxc[l])

}

for (k=O;k<TVO_DF;k++)
Rm_svap(a[k](indxr[l]],a[k][indxc[l]],Rtemp);

Check the overall size of the error.
If it is too big, set extra_dp and try again.

err_dp = -(apmLogBd(Rinv_err) + OOM_DF)
if(err_dp < precision) {

}

Tidy up .

extra_dp = precision - err_dp + 2
copyRmat(a, Rmat) ;
Rgauss (a) ;
return ;

If ve reach this line, all is vell, the inversion is
good to the desired precision, so all ve vant to do is
restore the recurrsive variables to their initial state.

inv_depth = 0 ;
extra_dp = 0 ;
return ;

I• +++++++++++++++++++++++++++++++++ •I

copyRmat(copy, mat

APM ••copy, ••mat
{

}

int j. k

for(j=O ; j < TVO _DF ; j++)
£or(k =O ; k < TVO_DF ; k++

apmAssign(copy[j][k], mat[j][k]

I• ++++++++++++++++++++++++++++++++++ •I

choosePrecis(mat)

APM ••mat ;
{

APM ~pt, •end_mat ;
int oom~in, oom_max, oom_err, oom_tvos

Find the minimum and maximum entries of the matrix.
If none of the entries has absolute value bigger than
one, use one as the max~um; this ensures that the
resulting inverse v i ll have entries good to at l east

}

"pr•cision" decimal. places.

mpt = mat [0] ;
apmAssignLong(Rmat_min, OL, 0, BASE
apmAssignLong(Rmat_max, lL, 0 , BASE

215

for(end_mat = mpt + (TWO_DF+TWO_DF) mpt < end_mat
apmAbsoluteValue(Rtemp, *mpt) ;

}

if(apmCompare(Rmat_min, Rtemp) > 0)
apmAssign(Rmat_min, Rtemp)

else if(apmCompare(Rmat_max, Rtemp) < 0)
apmAssign(Rmat_max, Rtemp) ;

mpt++) {

Do a basic estimate o£ the number of digits one must carry
to get an ansver vhose precision is as good as the code
requires.

First find the orders of magnitude ("oom"'s) of various things.

oom_max = apmLogBd(Rmat_max) ;
oom_tvos = (TWO_DF I 3) ;

oom_err = oom_tvos + OOM_DF + (2 + TWO_DF + 1) • abs(oom_max)

if(oom_err < 0)
return{ precision

else
return(precision + oom_err

216

Bibliography

[Arn63]

[Arn64]

[Arn78]

[Aub83a]

[Aub83b]

[Bang87]

[BGGS80]

[Birk22]

[Birk27]

[Bost86]

[CC88]

V. I. Arnold, "Small Denominators and the Problems of Stability of
Motion in Classical aud Celestial Mechanics," Russian !ltfathematical
Surveys 18:6 85-191 (1963).

V.I. Arnold, "Instability of Dynamical Systems with Several Degrees
of Freedom," Soviet !IIathematics-Doklady 5, 581-585 (1964) .

V. I. Arnold, .Nfathematical Methods of Classical Physics, (Springer­
Verlag, New York, 1978).

S. Aubry, "The twist map, the extended Frenkel-Kontorova model
and the devil's staircase," Physica 7D, 240-258 (1983).

S. Aubry, "Devil's staircase and order without periodicity in classical
condensed matter," J. Physique 44, 147-162 (1983).

V. Bangert "Minimal Geodesics ," preprint (1987).

G. Benettin, L. Galgaui, A. Giorgilli and J-M. Strelcyn, "Lyapunov
Characteristic Exponents for Smooth Dynamical Systems aud for
Hamiltonian Systems; a Method for Computing all of Them. Part
2: Numerical Application," Meccanica 15, 21-30 (1980).

G .D. Birkhoff, "Surface transformations and their dynamical appli­
cations," Acta !lfathematica 43, 1-119 (1922); reprinted in Collected
Mathematical Papers, vol. II. Amer. Math. Soc. : New York, 1950, pp.
111-229.

G.D. Birkhoff, "On the periodic motions of dynamical systems," Acta
Mathematica 50, 359-379 (1927) .

J . Dost, "Tores invariants des systems dynamiques Hamiltoniens,"
Asterisque 133-134, 113-157 (1986) .

A . Celletti and L. Chierchia, "Construction of Analytic KAM Sur­
faces and Effective Stability Bounds," Communications in !11athernat­
ical Physics 118, 119-161 (1988).

[CMP87]

[Chkv79]

[FPU55]

[Fro71]

[Fro72]

[Fro73)

[Grn79]

[Hed32]

[Herm88]

[Herm83]

[KnBg85]

[Kat82]

[Kat83]

[Kat88]

[KD87]

217

Q. Chen, J.D. Meiss and I. C. Percival, "Orbit extension· method for
finding unstable oriJits," Physica 29D, 143-154 (1987) .

B. Ch.irikov, "A Universal Instability of Many-Dimensional Oscillator
Systems," Physics Reports 52 #5, 263-379 (1979).

E . Fermi, J. Pasta and S. Ulam, "Studies of Non Linear Problems,"
Los Alamos Report LA-1940, May 1955; reprinted in E. Fermi, Col­
lected Works, University of Chicago Press, Chicago, (1965) , Volume
2, pgs . 978-988.

C. Froeschle, "On the number of isolating integrals in systems with
three degrees of freedom," Astrophys. Space Sci. 14, 110-117 (1971) .

C. Froeschle, "Numerical Study of a Four-Dimensional Mapping,"
Astron. &f Astrophys. 16, 172-189 (1972).

C . Froeschle and J .P. Scheideker, "Numerical Study of a Four­
Dimensional Mapping," Astron. &f Astrophys. 22, 431-436 (1973).

J .M. Greene, "A method for determining a stochastic transition,"
Journal of Mathematical Physics 20 #6, 1183-1201 (1979) .

G .A. Hedlund, "Geodesics on a two-dimensional Riemannian mani­
fold with periodic coefficients," Annals of Mathematics 33, 719-739
(1932).

Michael R . Herman, "Existence et Non Existence de Tores lnavriants
par des Diffeomorphismes Symplectiques," Preprint (1988).

Michael R. Herman, "Sur les courbes invariantes par les diffeomor­
phismes de l'anneau, Vol. 1," Asterisque 103-104, (1983).

K. Kaneko and R . Bagley, "Arnold Diffusion, Ergodicity and Inter­
mittency in a Coupled Standard Mapping," Physics Letters 110A
#9, 435-440, (1985).

A . Katok, "Remarks on Birkhoff and Mather twist map theorems,"
Ergodic Theory and Dynamical Systems 2, 185-194 (1982).

A. Katok, "Periodic and quasi-periodic orbits for twist maps," in
L . Garrido, editor, Dynamical Systems and Chaos1 Springer Lecture
Notes in Physics 179 47-65 (1983) .

A. Katok, "Minimal Orbits for Small Perturbations of Completely
Integrable Hamiltonian Systems," Preprint (1988) .

A. Katok and D. Bernstien, "BirkhoJf periodic orbits for small per­
turbations of completely integrable Hamiltonian systems with convex
Hamiltonians," Inventiunes mathematicae 88, 225-241 (1987).

[Khin64]

[Kirn0st86]

[KM88]

[LR88]

[McK88]

[MMP84]

[MMS89]

[MP85]

[Ma82a]

[Ma82b]

[Ma84]

[Ma86]

[Max77]

[MP87]

[Moser73]

[Nekh71]

218

A.Ya. Khinchin, Continued Fractions, (University of Chicago Press,
Chicago, 1964).

S. Kim and S. Ostlund, ((Simultaneous rational approximations in the
study of dynamical systems," Physical Review A 34 #4, 3426-3434
(1986) .

Hyung-tae Kook and James D. Meiss, ((Periodic Orbits for Reversible,
Symplectic Mappings," (1988), to appear in Physica D .

Rafael de la Llave and David Rana, ((Accurate Strategies for Small
Divisor Problems," preprint (1988) .

R.S. MacKay, uA criterion for non-existence of invariant tori for
Hamiltonian systems," (1988), to appear in Physica D .

R.S . MacKay, J.D. Meiss and I. C. Percival, ((Transport in Hamilto­
nian systems," Physica 13D, 55-81 (1984) .

R.S. MacKay, J.D. Meiss and J. Stark, ((Converse KAM Theory for
Symplectic Twist Maps," Prepriut (1989).

R.S. MacKay and I.C. Percival, ((Converse KAM : Theory and Prac­
tice," Communications in .Mathematical Physics 98, 469-512 (1985).

J. Mather, ((Existence of quasi-periodic orbits for twist maps of the
annulus," Topology 21 #4, 457-467 (1982).

J . Mather, ((Glancing billiards," Eryodic Theory and Dynamical Sys­
tems 2 , 397-403 (1982) .

J . Mather, ((Non-existence of invariant circles," Ergodic Theory and
Dynamical Systems 4, 301-311 (1984).

J . Mather, uA criterion for the non-existence of invariant circles,"
Math. Publ. IHES. 63, 153-204 (1986).

J. C. Maxwell, Matter and lvfotion, (1877). Reprinted by The MacMil­
lan Co., New York, 1920.

B . Metsel and I.C. Percival, ((Newton method for highly unstable
orbits," Physica 24D, 172-178 (1987) .

J. Moser, Stable and Random Jl.fotions in Dynamical Systems with
Special Emphasis on Celestial Jl.fechanics , (Princeton University
Press, Princeton, New Jersey, 1973) .

N . N. N ekhoroshev ((Behaviour of Hamiltonian systems close to inte­
grable," Functional Analysis and Applications 5, 338-339 (1971) .

[Osc68]

[Perc79]

(PFTV86]

[Rana87]

[Rob78]

[Smale65)

[Smale80]

[Strk88]

[Ttch39]

[Wig88]

[Wilb87)

219

V.I.Oseledec, "A Multiplicative Ergodic Theorem: Lyapunov Char­
acteristic Numbers for Dynamical Systems," Trans. !v!oscow Math.
Soc. 19, 197-231 {1968).

I. C. Percival, "Variational principles for invariant tori and cantori,"
Nonlinear Dynamics and the Beam-Beam Interaction,in M. Month
and J. C. Herrera, editors, Am. Inst. of Phys. Conf. Proc. 57 302-310
(1979).

W.H . Price, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numer­
ical Recipes, (Cambridge University Press, Cambridge, 1987) .

D. Rana, "Proof of Accurate Upper and Lower Bounds to Stability
Domains in Small Denominator Problems," PhD thesis, Princeton
(1987) .

J. Roberts, Elementary Number Theory, A Problem Oriented Ap­
proach, (MIT Press, Cambridge, Massachusettes, 1978) .

S. Smale, "Diffeomorphisms with many periodic points," in
S. S. Cairns, ed., Differential and Combinatorial Topology, (Princeton
University Press, Princeton, New Jersey, 1965).

S. Smale, The 111athematics of Time, (Springer-Verlag, New York,
1980) .

J. Stark, "An Exhaustive Criterion for the Non-Existence of invariant
Circles for Area-Preserving Twist Maps," Communications in Math­
ematical Physics 117, 177-189 (1988).

E.C. Titchmarsh, The Theory of Functions, (Oxford University Press,
Oxford, 1939).

S. Wiggins, Global Bifurcations and Chaos, (Springer-Verlag,
NewYork, 1988) .

J. Wilbrink, "Erratic Behavior of Invariant Circles in Standard-like
Mappings," Physica 26D, 358-368 (1987) .

