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Then from the heart of the tempest Yahweh spoke and gave Job his an­
swer. He said: 

Brace yourself like a fighter; now it is my turn to ask questions 
and yours to inform me. 

Where were you when I laid the earth's foundations? 
Who decided the dimensions of it? Do you know? 
Who laid its cornerstone wheu all the stars of morning were 
singing with joy? 

Who pent up the sea when it leapt tumultuous out of the womb, 
when I wrapped it in a robe of mist and made black clouds its 
swaddling bands? 

Have you ever in your life given orders to the morning or sent 
the dawn to its post? 

Have you journeyed all the way to the sources of the sea, or 
walked where the abyss is deepest? 

Have you an inkling of the extent of the earth? 
Which is the way to the home of the light and where does the 
darkness dwell? 

The Jerusalem Bible 

There are seven or eight categories of phenomena in the world that are 
worth talking about, and one of them is the weather. Any time you care 
to get in your car and drive across the country and over the mountains, 
come into our valley, cross Tinker Creek, drive up the road to the house, 
walk across the yard, knock Oil the door and ask to come in and talk about 
the weather, you'd be welcome. 

Annie Dillard 

Then we would write the beautiful letters of the alphabet, invented by 
smart foreigners long ago to fool time and distance. 

Grace Paley 
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Abstract 

What kinds of motion can occur in classical mechanics? \Ve address this question 

by lookiug at the structures traced out by trajectories in phase space; the most orderly, 

completely integrable systems are characterized by phase trajectories confined to low­

dimensional, invariant tori. The KAM theory examines what happens to the tori when 

an integrable system is subjected to a small perturbation and finds that, for small 

enough perturbations, most of them survive. 

The KAM theory is mute about the disrupted tori, but, for two-dimensional sys­

tems, Aubry and Mather discovered an astonishing picture: the broken tori are re­

placed by "cantori," tattered, Cantor-set remnants of the original invariant curves . 

We seek to extend Aubry and Mather's picture to higher dimensional systems and 

report two kinds of studies; both concern perturbations of a completely integrable, 

four-dititensional symplectic map. In the first study we compute some numerical ap­

proximations to Birkhoff periodic orbits; sequences of such orbits should approximate 

any higher dimensional analogs of the cautori. In the second study we prove converse 

KAM theorems; that is, we use a combination of analytic arguments and rigorous, 

machine-assisted computations to find perturbations so large that no KAM tori sur­

vive. We are able to show that the last few of our BirkhofT orbits exist in a regime 

where there are no tori. 
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Chapter 1 

Introduction 

There is a maxim which is often quoted, that "The same causes will 
always produce the same effects." . . . 

It follows from this, that if an event has occurred at a given time and 
place it is possible for an event exactly similar to occur at any other time 
and place. 

There is another maxim which must not be confused with that quoted 
at the beginning of this article, which asserts "That like causes produce 
like effects." 

This is only true when small variations in the intial circumstances 
produce small variations in the final state of the system. In a great many 
physical phenomena this condition is satisfied; but there are other cases 
in which a small initial variation may produce a very great change in the 
final state of the system, as when the displacement of the "points" causes 
a railway train to run into another instead of keeping its proper course. 

James Clerk Maxwell, 1877 

Maxwell's warning, that like causes need not produce like effects, can apply to even 

the simplest looking physical systems. Consider two equally massive stars bound in a 

binary system. Their orbits both lie in the same plane and, in a suitable coordinate 

system, their center of mass is at rest at the origin. If the orbits are nearly (but not 

quite) circular the system will look like the one pictured in figure (1.1). Now imagine 

adding a third body, a test mass so small that it does not disturb the motion of the 

stars. Place the test mass at the origin and give it a velocity v0 normal to the plane 
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Figure 1.1: A system of two equally massive stars, m 1 and m 2 , and a test mass, m 3 , 

which travels on a line through the center of mass. [Moser73] 

of the orbit. The test mass will bob up and down on the line through the origin and, 

if the initial velocity, v0 , is near enough to the escape velocity, the subsequent motion 

of the test particle will display a fantastically sensitive dependence on the value of v0 ; 

by suitable choice of v0 one can arrange for test mass to begin in the orbital plane, 

spend ~ s 1 periods of the binary system above the plane, pass through to spend ~ s 2 

periods below, then ~ s 3 above ... and so on, producing a sequence, 

where each s; is an integer counting the number of complete periods of the binary 

which pass between visits by the test mass. The s; can be chosen completely inde­

pendently, subject only to the restriction s; > C for a constant C . 

This system is described by Moser in [Moser73]. He b egins his study by drastically 

· simplifying the problem; when t = 0 he notes the phase, 80 , of the binary orbit and 

the speed, v0 , of the test mass, then asks for 81 and v1 , the corresponding phase and 

speed at the instant when the t est particle first returns to the orbital plane. Certainly 
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they depend only on 80 and v0 , so he constructs some functions 8'(8,v) and v'(8,v) 

such that 

and v1 = v'(8o,vo), 

then uses them to find a sequence,· · · (80 , v0 ), (81, v1 ) · ··,which captures the essential 

features of the dynamics. Moser shows that the wild behaviour described above occurs 

because the mapping, 

( 8' v) -t ( 8' ( 8' v)' v' ( 8' v))' ( 1.1) 

behaves like the celebrated horseshoe example of Smale, [Smale65]. Smale constructed 

the horseshoe by a process of abstraction; he began by trying to understand the 

qualitative behaviour of a system of differential equations1 , but eventually pared away 

most of the original problem, leaving a simple, illuminating model of the dynamics . 

A detailed description of the horseshoe, along with a host of examples and criteria for 

recognizing horseshoe-like behaviour, appear in [Wig88]; for us it will be enough to 

recognize that complicated dynamics arise even in simple classical systems and that 

these dynamics can be explained in terms of structures in the phase space. For the 

rest of the thesis we will be concerned with a different relationship between structure 

and dynamics; we will examine how the highly structured phase space of an orderly 

classical system changes under perturbation. 

1.1 Integrability and the KAM theorem 

The most orderly of Hamiltonian systems are the completely integrable ones; these 

systems have so many constants of the motion, (N for an N-degree-of-freedom sys­

tem,) that we can reformulate the problem in terms of action-angle variables2 (0, J), 

1 Smale gives a non-technica l a ccount of all this in one of the papers collected in [Smale80). 
2 We will use boldface symbols to denote n-dimensional objects, so that (J is in T" , the n ­

dimensional torus, p in R". We will write (Ji for the angular coordinate of the j th image of 
some phase point, (00 , p 0 ) , a nd Xj (which is in ordinary type) for the real number tha t is the j th 
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Figure 1.2: The phase space of a completely integrable system. (Arn78] 

so that the Hamiltonian, H(p, q), becomes a fuution of the actions alone. Then 

Hamilton's equations are 

J . • 

() . • (1.2) 

Figure (1.2) illustrates the structure of the phase space for a completely integrable, 

2 degree-of-freedom system. Conservation of energy restricts the motion to a three­

dimensional energy surface, represented here as a solid torus. A phase trajectory 

wiuds around on a two-dimensional torus, covering it densely unless w1 and w2 are 

rationally dependent, that is, unless there are integers m 1 and m 2 such that 

(1.3) 

Tori for which (1.3) holds are called resonant and they are entirely covered by periodic 

phase trajectories. 

Figure ( 1.2) also illustrates a construction we will use throughout the thesis, the 

Poincare surface of section. This technique reduces the continuous Hamiltonian flow, 

(1.2), whose trajectories lie in a (2n - !)-dimensional energy surface, to a discrete­

time map, T, which acts on a (2n- 2)-dimensional surface. In figure (1.2), the surface 

component of some :z: E R". Ocassionally we will need to express, "the kth coordinate of the jth 
image of the phase point (Oo, Po)." ThaL will be written Bj,k · 
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of section is g1ven by 61 = 0 and the map T carries a phase point, :v, to the next 

point where :v' s trajectory intersects the surface. That is, 

The structures of integrability leave a clear signature on the surface of section; all the 

orbits ofT are confined to circles, so that the orbit of a typical point hops around its 

circle, eventually filling it densely. Those circles that are cross sections of resonant 

tori are covered by periodic orbits; if a circle arises from a torus obeying a relation 

like (1.3), then the points on it are periodic with period m2 and hop m 1 times around 

the circle before repeating. 

This extremely regular structure has profound qualitative effects on the physics 

of the motion; integrable systems are far from satisfying the ergodic hypothesis of 

statistical mechanics. A phase trajectory, confined by conservation laws to an n­

dimensional submanifold of the (2n-1)-dimensional energy surface, does not even 

come close to exploring the whole of energetically accessible phase space and so pre­

dictions based on the microcannonical ensemble, which gives equal weight to all points 

with the same energy, will certainly be wrong. These remarks, along with the ev­

ident success· of statistical mechanics, suggest that complete integrability must be 

rare, that most of the structure of integrability cannot survive perturbation. Indeed, 

Fermi believed that the slightest perturbation would completely disrupt integrability, 

[FPU55]. 

The fate of invariant tori is, however, much more complicated and wonderful; it 

is the subject of the most spectacular theorem in Hamiltonian dynamics. 

Theorem (Kolmogorov-Arnold-Moser) 

If an unperturbed (completely integrable} system zs non-degenerate3 , then for suffi-

3 The non-degeneracy condition is that 

I ow I I {)2 

H
11 I det {)J = det {)J 2 ::f. 0, 
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ciently small conservative Hamiltonian perturbations, most non-resonant tori do not 

vanish, but are only slightly deformed, so that in the phase space of the perturbed 

system, too, there are invariant tori densely filled with phase curves winding around 

them conditionally-periodically, with a number of independent frequencies equal to the 

number of degrees of freedom . These invariant tori form a majority in the sense that 

the measure of the complement of their union is small when the perturbation is small. 

That is, most tori survive small perturbations! The statement above is taken from 

textbook by Arnold, [Arn78]; His original proof appears in [Arn63] . Moser's book, 

[Moser73], offers a readable account, and [Bost86] gives a recent review. 

1.2 The Taylor-Chirikov standard map 

We conclude our introduction with a brief review of an exhaustively studied example, 

the Taylor-Chirikov standard map. It is a two-dimensional, area-preservmg map 

acting on the set S1 x R = {(x,p)lx E [0 , 1), pER}. 

k . 
p' = p-- sm(27rx ), 

271" 

x' x + p' mod 1. (1.4) 

Chirikov [Chkv79] describes this example as a periodically-kicked rotor, sampled at 

the frequency of the kicking; xis a normalized angle variable with p the corresponding 

angular momentum. Chirikov's rotor receives periodic, impulsive blows whose size 

and direction depend on the rotor's angular position at the moment the impulse is 

delivered. For k = 0, the system is completely integrable; p is a constant of the 

motion and the orbits are confined to one-dimensional curves . 

Figure (1.3) shows the structure of the phase space for various values of the per­

turbation. Each panel shows the orbits of several points from the the set {(x,p)lx E 

where H 0 (J) is the unperturbed Hamiltonian. It means that the wi(J) are independent as functions. 
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[0, 1), p E [0, 1)}. Here we will give a qualitative discussion of these pictures, at the 

same time introducing ideas that we will study fully in later chapters. The series 

begins in the top panel with a small perturbation; many orbits still seem to lie on or 

between circles. The arcs in the corners of the picture, when associated by periodic 

boundary conditions, form ovals encircling the fixed point z0 = (a:: = 0, p = 0) . The 

ovals arise because z0 is an elliptic fixed point ; that is, the derivative of the map, 

DT= 

8a::' 8a::' 

8a:: 8p 

8p' 8p' 
ax ap 

is such that the matrix DTzo has its eigenvalues on the unit circle. Consequently, 

points that start near z0 stay nearby and their orbits form the arcs. If we were t o 

restrict our attention to this elliptic island we would find that it has much the same 

structure as the whole phase space; the ovals would play the role of invariant circles 

and between them would lie yet smaller elliptic islands. If we magnified one of those 

islands . . . the structure goes on forever . There is also another fixed point, at z1 -

(a::= ~,p = 0), but it is hyperbolic; the matrix DTz1 has eigenvalues off the unit circle, 

so almost e very orbit that begins near it eventually moves away with exponential 

speed. Besides the fixed points, there are always at least two perio dic orbits for every 

rational rotation number E . Chapter 2 gives a longer and more technical discussion of q 

periodic orbits and also discusses some special sets, the cantori, which are, in a sense, 

the ghosts of disrupted t ori. The chapter begins with a review of the two-dimensional 

theory then shows some numerical work aimed at higher dimensional generalizations . 

In the middle panel, many more elliptic islands are evident, as is a broad stochastic 

layer, a region that no longer contains any invariant tori; the orbits in such a region 

are quite complicated and chaotic, and are confined to a layer only because the phase 

space is two-dimensional and thus the invariant circles divide phase space into two 

disjoint pieces and so pairs of circles can trap even very chaotic orbits . In higher-
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dimensional systems the tori have too low a dimension to isolate parts of the phase 

space; points not actually contained in tori are free to diffuse throughout the whole 

stochastic part of the phase space, though they do so only very slowly, in a process 

called Arnold diffusion [Arn64,Nekh71] . Although we will not have much more to say 

about Arnold diffusion, we will have cause to consider the topological consequences of 

higher dimension; in both the remaining chapters we will find that topology prevents 

us from proving results as strong as those available for two dimensional systems. 

The final panel shows a perturbation large enough to guarantee very strong chaos; 

k is so large that Mather, [Ma84], has shown analytically that no invariant circles (of 

the type that wind all the way around the cylinder) remain. Numerical experiments 

by Greene suggest that no circles exist for lkl > kc ::::::: 0 .971635406 . We leave this 

subject for the moment, but Chapter 3 is entirely devoted to converse KAM results, 

theorems that say, as Mather does, that for large enough perturbations, no tori exist 

at all. There we will review Mather's work, as well as the computer-assisted arguments 

of MacKay and Percival, then discuss higher-dimensional generalizations and show 

some new results. 
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---- --·-. -·-----------------------

lc = 0.33 

lc = 0.95 

lc = 1.34 

Figure 1.3: Orbits of the standard map for several slzes of the perturbation k . Each 

panel shows 200 iterates from the orbits of 20 different initial conditions. 
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Chapter 2 

Ghosts of Order 

In this chapter we ask, "What becomes of invariant tori?" We have seen that the 

phase space of completely integrable Hamiltonian systems is filled by such tori and 

that the KAM theory assures us that some of them persist even in the face of small 

perturbations . What becomes of the nonresonant tori for which KAM fails? In 

general, one can't say. But for certain two-dimensional, area-preserving maps Mather 

[Ma82a] and, independently, Aubry [Aub83a], demonstrated the existence of some 

remarkable sets. They are reminiscent of invariant tori, but are not complete curves, 

rather, they look like graphs supported above a Cantor set. Orbits on these "cantori" 

are similar to rotation on an invariant torus; one may consider Mather's sets the 

ghosts of destroyed invariant tori. Here we review the two-dimensional results, then 

present some numerical investigations1 from an effort to find the higher-dimensional 

analogs of Mather's sets. At the end of the chapter we discuss a topological obstacle 

that prevents simple generalization of the Aubry-Mather theory. 

1 Kook and Meiss, (KM88), have reported similar studies; J. Meiss has been especially helpful in 
discussing this work. 
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p 

8 

Figure 2.1: The cylinder and its coordinate system. 

2.1 Basic Notions and Notations 

In this section we give careful definitions of the maps we will study, the spaces they 

will act on, and the tools we will use to understand them. We will also review the 

two-dimensional theory, describing cantori and explaining how to approximate them 

by periodic orbits. In the course of the review we will introduce a variational principle 

that will be the foundation of all our work . 

2.1.1 spaces and maps 

We will study maps based on the P oincare map of a near-integrable, action-angle 

system and so they will act on the n-dimensional multi-annulus, An = Tn x R n, 

where Tn is the n-torus and Rn is n-dimensional Euclidean space. To avoid having to 

worry about factors of 27r, we will always normalize the angles, and so write points in 

An as ( 8, p) where 8 = ( 81,02 • • • 8n) and the Oi are periodic coordinates with period 

1. 

The one-dimensional annulus, A = T x R, is conveniently represented as a cylinder 

with coordinates as pictured in figure (2.1). Maps taking the cylinder to itself will 

b e called T, or T£ if they depend on parameters; maps acting on A n for n > 1 will 

be either for f£ · In all cases, our maps will be symplectic, that is, they will preserve 



12 

the standard symplectic form (see e.g. [Arn78,KB87]), 
Tl 

n = :Ld9i A dPi· (2.1) 
j=l 

For a map T on the cylinder, preservation of (2.1) means that T preserves area 

and orientation and so is equivalent to Liouville's theorem about the preservation of 

volume in phase space. For higher-dimensional systems, preservation of (2.1) also 

implies preservation of volume, but is stronger. 

We will often need to work with a lifting, F~, of a symplectic map, f~, to the 

universal cover of An. This is essentially a version off~ extended periodically so that 

it acts on the whole of Rn X Rn. Iff~ : An - An, f~(9, p) = (9'(9, p), p'(9, p)) 

then F~ acts on Rn x Rn, F~(:z:,p) = (:z:'(:z:,p),p'(:z:,p)), and agrees with f~ up to an 

integer translation. That is, if f~(9o, Po) = (91l PI) and F~(:z:o = 9o, Po) = (:ell p!) 

then 

(2.2) 

for some integer vector m E zn. Further, 

The choice of a lift, F~, which comes down to the choice of m in (2.2) does not affect 

any qualitative features of the dynamics. For example, a lift of the standard map is 

p' 

x' 

p - ~ sin(2rrx ), 
27r 

I 
X +p, 

which is just the same as (1.4) except that the position coordinate is no longer taken 

mod 1. We will always use the convention that F~ : Rn X Rn is a liftoff~ : An - An. 

2.1.2 a variational principle 

The dynamics of an autonomous Hamiltonian system can be characterized with the 

principle of least action; to specify a segment of a phase trajectory, 1(t) = (p(t) , q(t)), 
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one need only note the values of the position coordinates at the ends of the segment 

and require that 1 be an extremal of the "reduced action" functional [ Arn 78], 

(2 .3) 

In particular, one can get the momenta at the endpoints of the segment by taking 

derivatives of S( q0 , ql); 

as 
Pt = -­

aqt 
and 

as 
Po=---. 

aqo 

The analogous thing for a symplectic map F~ : Rn ---t Rn is an action-generating func­

tion, a function, H~: Rn X Rn ---t R, where H~ = H~(~, ~')is such that if FE(~0 , p 0 ) = 

and 
aH~ 

Po=--­
a~ 

(2.4) 

The point of constructing a generating function is that it enables us to discuss dy­

namics entirely in terms of the position coordinates. In the next section we will 

demonstrate the usefulness of variational arguments by reviewing the theory of area­

preserving twist maps of the cylinder. These maps get their name because of a geo­

metric property of their action; a C 1 map Tis twist if it carries every vertical line into 

a monotone curve; see figure (2.2). More analytically, if T(O,p) = (O'(O,p),p'(O,p)) is 

a symplectic map of the cylinder, then Tis a uniform, differentiable, twist map if 

aO' 
ap =I= o. 

2.1.3 area-preserving twist maps 

Here we will examine the kinds of orbits that can occur for an area-preserving twist 

map. Since we will be wanting to make variational arguments, we require that, 

in addition to being a twist map, T possess a generating function, h( x, x'). For 
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Figure 2.2: A twist map carries vertical lines to monotone curves. 

convenience, we will work with a lift ofT, call it T, and will use coordinates in R x R 

rather than on the cylinder. First we will use the generating function to construct 

some periodic orbits. 

A periodic orbit is characterized by its period and by the number of titnes it winds 

around the cylinder before closing. Suppose we want an orbit that, in q steps, makes 

p turns. Such an orbit would appear on the universal cover as a sequence of points 

{· · · (xo,Po), (xl>Pt), · · · (xq-l,Pq-d, (xP, qp), · · ·} with Xj+q = Xj + p . We could seek 

it by trying to find a sequence of position coordinates, 

(2.5) 

such that the function 
q-1 

Lp,q(X) = L h(xj, xi+t) (2.6) 
j = O 

was minimized. We will call such a sequence a p-q minimizing state. If we could find 

one, then, automatically, we could compute the desired kind of periodic orbit . To see 

how, consider the condition that (2 .6) be extremal: 

8Lp,q 8h( ) 8h( ) 
- !:!-- = £1 Xj,Xj+l + n Xj-l, Xj = 0 
vXj vx vx' 

for j = 0, 1, · · · , q - 1. (2.7) 

We will call these the Euler-Lagrange equations. Now, if X were the projection of 

some periodic orbit, we would be able to recover the missing momentum coordinates 

in two ways; we could use either 

or 
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r 

Figure 2.3: The billiard ball dynamical system. [Birk27] 

The condition (2. 7) is that these two be equal, so that if we can find a sequence like 

(2.5) we have found the desired periodic orbit. Arguments like this were first made by 

Birkhoff, who used them to construct periodic orbits for the map given by the motion 

of a point particle in a convex, rigid walled box. This system can be reduced to an 

area preserving twist map by considering the particle's collisions with the wall and 

using coordinates given by a length, r measured along the perimeter of the domain, 

and the variable u = -cos( 8) where 8 is the angle the particle's path makes with 

the tangent to the wall, see figure (2.3). In this system the generating function is 

just the negative of the length of the path traced by the ball, and so the minimizing 

periodic orbit with p = 2, q = 5 is just the orbit that corresponds to the longest 

inscribed star. Besides the minimizing periodic orbit, there is another, a minimax 

orbit. To see how this orbit arises take one point of the minimizing orbit and slide it 

along the boundary, allowing the other points to shift so as to keep the total length 

of the star as large as possible. At first the length must decrease; we have assumed 

that the initial, undistorted star was the longest possible. Eventually, though, the 

length of the distorted sta r will h ave to stop decreasing and begin to increase because 

eventually the vertices will reach a configuration which is a cyclic permutation of the 

original star. The configuration for which the length again b egins t o increase must 

also be a stationary point of Lp,q ; it satisfies the Euler-Lagrange equa tions and so it 

too corresponds to a genuine periodic orbit. 

The action-minimizing p eriodic orbits, which are called Birkhoff orbits, are dis-
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tinguished by the numbers p and q used in their construction. The rational number 

£, which is the orbit's average angular speed, is called the rotation number of the 
q 

orbit. More generally, an orbit (x0 , p0 ), (x1 , pt), .. . on the universal cover is said to 

have rotation number a: if 
. Xn- Xo 

a: = Inn . 
n-+oo n 

(2.8) 

This limit does not always exist. Most of the points in the stochastic regions of the 

standard map do not have well-defined rotation numbers , though all of the orbits 

lying on invariant circles do; orbits on non-resonant circles have irrational a:. 

Percival, who, in [Perc79], coined the term "cantorus," proposed that one might be 

able to find orbits that had irrational rotation numbers, but did not lie on invariant 

tori. Mather looked for Percival's quasiperiodic orbits and, in [Ma82a], succeeded 

dramatically. He discovered whole, complicated sets of such orbits and revealed an 

unexpected, rich structure in the phase space. Serge Aubry, a condensed matter 

physicist who was investigating the ground states of certain one-dimensional m odels, 

independently discovered the same structures, see e.g., [Aub83a,Aub83b]. 

We can construct one of Mather's sets by taking a limit of Birkhoff periodic 

orbits. That is, we take a sequence of rational numbers {Po/ qo, ptf q1 · · ·} that has 

au irrational w as a limit, construct both the corresponding Birkhoff orbits, and see 

whether they accumulate on an interesting limit set . Katok, [Kat82], has shown that 

they do. If there is an invariant circle with rotation number w, then the Birkholf 

orbits accumulate on it. If there is no invariant circle, then the orbits accumulate on 

a cantorus,2 a set that looks like an invariant circle with a countable set of holes cut 

out of it, see figure (2.4). 

The cantori have many properties reminiscent of irrational invariant circles; orbits 

lying in the cantorus are dense and the motion on the cantorus, is, by a continuous 

change of coordinate, equivalent to rotation by the angle w. Also, the cantorus has 

2 The limit set may also include some points in the gaps of the cantorus; to get the true cantorus 
one has to take a minimal (in the sense of ergodic theory) subset of the limit set . 
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·• 
0.5 1.0 

Figure 2.4: A cantorus for the standard map. The vertical axis is measured in units 

of y = p -
4
:_ sin(27rx) 1 where k = 1.001635 is the size of the perturbation and the 

rotation number is~ ~l where 1 = ¥ is the golden mean. (MMP84] 

the same kind of smoothness3 as an invariant circle. If ( 00 , p0 ) and ( 01 , pt) are any 

two points from the cantorus then there is a constant L, independent of the Os, such 

that 

that is, the momenta are Lipschitz functions of the positions . 

Katok's scheme for approximating the cantorus by a sequence of periodic orbits 

is different from the approach first used by Mather, but it is much better suited to 

numerical experiment; all computational investigations of cantori depend on approx-

imation by periodic orbits e.g. [MMP84,MP87,Grn79]. 

2.2 Higher-dimensional analogs 

In this section we formulate the numerical investigations reported in the rest of the 

chapter. Our studies are based OIL Katok and Bernstien's paper, [KB87] in which they 

study certain n-dimensional symplectic maps generated by a function H.(~,~') and 

prove the existence of action-minimizing periodic orbits. For these orbits, which are 

3 A theorem of Birkholf states that the invariant circles are Lipschitz graphs. 
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defined by analogy with the Dirkhoff orbits on the cylinder, the role of the rational 

rotation number P. is played by a rotation vector, .E. where q is the length of the orbit 
q q 

and p E zn, p = (p0 , p1 , .. . , Pn) gives the number of times the orbit winds around 

each of the coordinate directions. 4 As above, each rational vector has a corresponding 

type of p, q-minimizing state, 

an action functional, Lp,q, some Euler-Lagrange equations, 

q-1 

L H~(xi, xi+1 ) (2 .9) 
j=U 

(2.10) 

and at least one mmmuzmg periodic orbit . Katok and Bernstien's maps are small 

perturbations of some completely integrable system whose unperturbed generating 

function, H0 (x,x'), satisfies H 0 (x,x') = h(x'- x) where h(u) is strictly convex, i.e., 

the Hessian matrix of h, 

cPh cPh 
8u~ 8uo8u1 8uo8un-1 

lJ2h 
8 2 h 8 2 h 

8u18uo 8ui 
{)u2 

(2.11) 

8 2 h 
8u,._ 18uo 

is positive definite. This condition is a higher dimensional analog of the twist condi­

tion, but is not the only possible g~neralization; Herman, in (Herm88], gives another . 

In the next section we will present some explicit 4-d symplectic maps and their gen-

erating functions and in section 2.2.2 we show some pictures of minimizing periodic 

orbits and discuss how their shapes and stability depend on the size of the perturba-

tion. 
4 For a two-dimensional Birkhoff periodic orbit, the rotation numbers E a nd ¥- both yield the 

same minimizing periodic o rbit . T he corresponding statement need not be £rue in h1gher dimension; 
the rotation vectors .E. and ~2 n eed not correspond to the same orbit. See section 2.3. 

q q 
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The real question here is "Are there cantori in 4-d symplectic maps?" On the an­

alytic side, the answer seems to be "maybe." Katok and Bernstien are able to show 

that if a sequence of rational rotation vectors {-!!.!!., £!., . .. } , Pi E zn, q E Z , con­
qu q1 

verges to some irrational rotation vector, w = (w17 w2, · · · wn), then the corresponding 

sequence of Birkhoff orbits also has a limit. Unfortunately their results on the prop­

erties of the limiting set are not as strong as those available for twist maps. They 

cannot say what the limiting set looks like or much about the motion on it . They 

are able to establish that the momenta should be Holder continuous functions of the 

positions , but with index a=~' that is, if (00 , p 0 ) and (01 , p t) are points from this 

limit set, then, except perhaps for a single isolated point, 

(2 .12) 

for some constant C, independent of the (Ji· We present some ambiguous numerical 

investigations aimed at verifying or improving this smoothness estimate, but are 

unable to report any definite results . 

Finally, in section 2.3 we discuss a pathology foreseen by Hedlund. Hedlund's 

examples complicate any discussion of the behaviour of very long orbits and are an 

obstacle to both analytic and numerical investigation of higher-dimensional cantori. 

These examples arise in the study of geodesics on tori, a problem related to ours by 

the principle of least action. The pathology appears for very strongly curved metrics; 

the corresponding regime for our problem is the realm of very strongly perturbed, far­

from-integrable motion. Since we will study only small perturbations of integrable 

systems, we may hope to avoid Hedlund's pathology; in section 2.3, we report some 

qualitative investigations indicating that, for our systems, it does not occur. 
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2.2.1 the maps and orbits 

We follow [KB87] and study maps that are generated by functions of the form 

H.(x, x') = h(x'- x)- ~~(x, x'), (2.13) 

where h(x'- :c): Rn -t R, the unperturbed part of the generating function, satisfies 

(2.11) and the perturbation '~( x, x') : Rn X Rn -t R, is a small, G2 function satisfying 

'~(X+ m, x' + m) = ~(X' x') Vm E zn. We will study 4-d symplectic maps generated 

by (2.13) with 

Where 

one of 

'l,oly( X) 

V(x) = or 

VJJ(x) 

with c(x) ~ { 
if x mod 1 :S ~' 

9- 48x + 72x2
- 32x3 if x mod 1 > ~ -

(2.14) 

Call the firs t perturbation the trigonometric perturbation, the second the polynomial 

perturbation5 and the third the fast-Froeschle. The constants Aftrig and Jl,fpoly are cho­

sen so that ma.x.,ETn JF(x)l = 1. \IJJ(x) is a polynomial approximation to a potential 

originally introduced as a model of star m otion in elliptical galaxies [Fro71] . The real 

Froeschle map has cosines where ours has c( x) and h as three independent constants, 

5 The Xi appearing in the definition of V~oly are all taken mod 1. 
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one for each of the terms. Since its introduction the map has been popular as a model 

for chaotic Hamiltonian dynamics e.g ., [Fro72,Fro73,KnBg85,KM88,MMS89]. 

All our examples use "standard-like" perturbations, ones where Ve(:e, :e') depends 

on :e but not on its successor, :e'. We made this choice of perturbation because it 

simplifies the map. Using (2.4) we obtain 

2.2.2 

p'( :e) p) 

:c'(:c,p) 

8V 
p- E OX (:c), 

8V 
:C + p - E-(:e). 

8:e 

shapes of orbits and Lyapunov exponents 

(2 .15) 

Figures (2 .7) - (2.16) present several families of approximate Birkhoff orbits . Each 

orbit is displayed as a pair of projections; one, on the left, is the projection into the 

angular coordinates, the other, on the right, shows the momenta. Both projections 

are computed from a p,q-periodic state that is an approximate solution to the Euler­

Lagrange equation (2.10) . The angular projection of a point :Cj is an ordered pair 

(Oj,o, ei.d, with 

Oj,i = Xj, i mod 1; 

The horizontal is the 00 direction and the vertical the 01 ; both angles lie between 0.0 

and 1.0. The momenta, which are calculated as 

(2.16) 

are arranged similarly; the horizontal is the p0 direction and the vertical the p 1 . 

measures of quality 

Beside each pair of projections appears the rotation vector, in the form (p0 , p1 )/ q, 

and two m easures of the quality of the orbit , shadow and grad size. The first of these 
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measures how closely our orbit, which has its momenta given by (2.16), approaches 

the ideal 

the value of shadow is 

II (:z:j+l, Pi+d - F£(:z:j, Pi) II 

VII :Z:j+l- :z:'(:z:j,pj) 11 2 + II Pi+l- p'(:z:j,pj) 11 2 

1 

L(xi+l,k - x'(:z:;, Pi)k)2 + (Pi+t,k- p'(:z:;, Pi)k)2
. 

k=O 

Most of the states displayed here have shadow ~ 10-6
. The other measure, grad size, 

lS 

[~~II a:::' liT 
it is the norm of the gradient of the action functional, scaled by the length of the 

state. 

shapes 

We display orbits for all three perturbations and for two rotation vectors, (1432,1897) 

/2513 and (2330,377) /3770. The first is an approximation to an irrational vector 

called the spiral mean, the second approximates Uo,/), where 1 is the golden mean. 

Both approximations come from the Farey triangle scheme of Kim and Ostlund, 

[Kim0st86], see appendix A for details. 

For small E, the orbits are well distributed over the angular variables and the 

momenta look as though they lie on a torus . With increasing perturbation the orbits 

abruptly contract and concentrate along one-dimensional filaments. The system of 

filaments depends on both the perturbation and the rotation vector; in figure (2 . 7b) 
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the (1432,1897)/2513 orbit has contracted onto a system of three curves, each of which 

winds around the torus once in each angular direction; we will call these curves of 

type (1,1). In figure (2 .12b) the same rotation vector and the polynomial perturbation 

lead to a union of seven curves, each of type (0,1). On the other hand, this same 

perturbation forces the (2330,377)/3770 state to concentrate along a single curve of 

type (4,1). 

Lyapunov exponents 

The qualitative behaviour of the orbits is correlated with their stability properties . 

The Lyapunov exponents measure the exponential rate of divergence of nearby tra­

jectories (see, e.g., [Osc68]) and, for a periodic orbit, are just the eigenvalues6 of 

= DF( )oDF( )D·· · oDF( ) E, Zq-1 tPq-1 E, Zq-2 rPq- 2 C!!:, :co rPO (2.17) 

where DF~.(:~:,p) is the Jacobian of the map. From 2.15 we can calculate 

[ ~ tii ] [ I-~ -1] 
~ ~ _82 l-: 
ore op 8rc2 I 

where I is the d-dimensional identity matrix and 82 V,./8x2 is the Hessian of the per­

turbation. Each of the D F~.(:~:; ,p;) is a real symplectic matrix and so the entire pro duct 

is real and symplectic too. The eigenvalues of D F£~(:~:o,Po) thus occur in reciprocal pairs 

(>.o, 1/ >.0) and (>.1, 1/ >.1) , [Arn78]; for the unperturbed map, all four are equal to 

one. As the perturbation increases, both pairs leave the unit circle. At about the 

same parameter value for which the first pair departs perceptibly from the circle, the 

minimizing state contracts along the filaments . The eigenvector corresponding to the 

largest exponent projects to a vector transverse t o the filam ents. For large enough 

perturbation both pairs are non -zero and the distribution along the direction of the 

6 The accurate, direct calculation of the matrix product in (2.17) is usually no t p ossible; see 
appendix A for a discussion. 
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filaments is also Cantor-like. See figure (2.6) for the exponents of roost of the orbits 

presented here. 

The eigenvector corresponding to the largest exponent projects to a vector trans­

verse to the filaments. 

2.2.3 non-existence of tori: a prelude 

Notice that the very perturbed orbits look as though they are full of holes, as though 

there are some parts of the torus they cannot visit. One might imagine that this 

is just a consequence of the finite lengths of our orbits, that if we had orbits with 

ten times as many points some of them would be bound to land in the holes. We 

can show that, for sufficiently large perturbations, the holes are genuine; there are 

neighborhoods that all minimizing Birkhoff orbits must avoid. 

Suppose V.( x) is a C 2
, standard-like perturbation to the generating function 

Ho(x, x') = ~II x' - X II · Suppose further that V.(x) has a minimum at x = Xmin· 

Then there is an Ec, such that for c: > Ec, all minimizing states must avoid a region 

containing Xmin· 

Proof A globally m.ininimizing state, X, must be an extremum of Lp,q such that 

every small, local, variation, Xi -t Xi + o increases the action. That means that X 

must satisfy the Euler-Lagrange equations (2.10) and also that each matrix 

82V 82 V 2-c:~(xi) - c: 8xu8x
1 
(xi) 

fP Lp,q 
. 8x0 

ax; 
(2 .18) 

-c: 82\1 (x·) 82V 2- c:~(xi) 8xo8xl ' 8x1 

is positive definite. Because Xmin is a mi11imum, the eigenvalues, JLo( c:) :::; JL1( c:), of the 

Hessian of - V~(xmao:) are negative. If one of them is less than -2 then (2.18) cannot 

be satisfied. Since the JLi are decreasing functions of c: we need only find that value, 

Ec, for which JLo( c:c ) = -2. 
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For the trigonometric perturbation Ec ~ 0.03856; for the polynomial perturbation 

Ec ~ 0.04167. The appearance of the states suggests that neither of these is a very 

good estimate; the region near the maximum is completely devoid of points long 

before E = Ec. The real interest of an argument like the one above is that it can 

provide an estimate of the size of perturbation needed to destroy all the original 

invariant tori; since the whole next chapter is devoted to such estimates, we leave the 

subject for now. 

2.2.4 smoothness 

We would like to be able to say that very long periodic orbits approximate a Cantor 

set that we could view as the tattered remnant of an invariant torus. Such a remnant 

should have a kind of smoothness; two points that lie very close to each other in 

the angular variables should not have wildly different momenta. What we need is 

a result like the theorem of Birkhoff, generalized by Katok [Kat82], which says that 

for points in a Mather set, the momenta are Lipschitz functions of the coordinates , 

i.e., II Pi- Pi II :::; C II Xi- Xj II where Cis a constant . Katok and Berustien [KB87] 

looked for such a result and, as mentioned above, were able to show that, except 

perhaps at one point, the momenta are Holder continuous with index 1/ 2, that is , 

1 
a=-. 

2 

for some constant C independent of the Xi· 

Hoping to verify or improve their estimate, we computed pairs (L , II ~x II) , where 

L = II ~p 11/11 ~x II , and displayed them on logarithmic axes. If some kind of Holder 

continuity applies, then 

L = II ~p II < c II ~X 11"'-1 
II ~x II - ' 

so 

log L < log C + (a - 1) log II ~x II· 
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2.3 Hedlund's examples 

In this section we will worry about whether the shapes of our states have anything to 

say about the shapes of much longer states with similar rotation vectors. A central 

premise of our program of rational approximation is that they do; unfortunately, 

except for the two-dimensional case (twist maps on the cylinder), we cannot prove 

this. We cannot even show that states with the same rotation vector must have the 

same shape. Consider the family of minimizing states with rotation vectors , 

Po 2po 
. .. ' '. 0. n E z+, 

nqo 

where p 0 / q0 is in lowest terms. For each of these states there is certainly one solution 

to the Euler-Lagrange equation that is just a concatenation of n copies of the p 0 / q0 

minimizing state . But there may also be other solutions, some of which may have 

lesser total action. 

To see how this can happen, we consider the problem of finding minimal geodesics, 

curves of smallest possible length, on either the two- (or three-) dimensional torus. 

This problem arises, for example, in the motion of a free particle in a system with 

periodic boundary conditions and may be reduced to a symplectic map via a surface 

of section, but in the discussion below it will be simpler to think about continuous 

time and smooth trajectories. We will work with two different representations of 

the problem, one on the two- (or three-) dimensional torus and another made by 

periodically extending the torus to get the plane (or R 3
). In either representation, 

we will allow the metric to be other than the usual Euclidean one. 

In the Rn version of the problem, a minimal geodesic is a curve, 1 : R-+ Rn, 

parameterized in terms of, say, arc length and for which every finite segment is the 

shortest possible curve connecting its endpoints. Our special interest will be the 

periodic geodesics; on the torus these are curves that wind around and eventually 
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begin to retrace themselves . In Rn they appear as curves for which 3r E R such that 

l(t+r)=l(t)+m, mEZn (2.19) 

and we may classify them according to m, which gives the number of times 1 winds 

around each of the coordinate directions on the torus before repeating itself. Hedlund 

studied these curves on the two-dimensional torus and, in [Hed32), showed that for 

every pair ( m 0 , m 1 ) E Z 2
, there is a minimal periodic geodesic that winds m 0 times 

around the 80 direction and m 1 times in the 81 direction before closing. 

He also made an observation that connects the geodesic problem to the problem 

of finding Birkhoff periodic orbits. He asked whether, for example , the minimizing 

periodic geodesic for the pair (10,20) could be other than the urve which traces 

10 times over the (1,2) geodesic. He found that it could not. The corresponding 

statement for Birkhoff orbits is that the pathology outlined at the beginning of the 

section does not occur for two-dimensional twist maps of the annulus. 

In the last section of his paper, Hedlund demonstrated that one cannot expect the 

analogous result in higher dimension. He presented an explicit example of a metric 

on T 3 for which the shortest geodesic of type ( ni, nj, nk) is not n copies of the 

shortest ( i, j, k) geodesic. Victor Bangert [Bang87] has proved that a metric on Tn 

has at least n + 1 minimal geodesics and has given some principles for the design of 

Hedlund-type examples. 

Figures (2.18) and (2.19) contain the main ideas. Bangert sets up the metric so 

it has certain non-intersecting lattices of "tunnels," tubes in the middle of which the 

metric is so small that the length of a segment is, at most, say, 1/100 of its Euclidean 

length. Outside the tunnels the metric is such that the length of a segment is a bit 

longer than its Euclidean length. In Bangert's examples the tunnels run along the 

lines (0, t, ~), (!, ~' t), and (t, 0, 0), t E Rand along all their zn trauslates. Under 

these rather severe conditions he is able to show that a minimizing geodesic must 

spend essentially all its time inside the tunnels, venturing out only to leap from one 
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system of tunnels to another. 

A minimizing, periodic geodesic then has only three short segments lying outside 

the tunnels, no matter how long it is. Note that such a geodesic strays a long way 

from the straight line that connects its endpoints; the latter is a minimizing periodic 

geodesic for the flat , Euclidean metric. In the language of Birkhoff orbits, Hedlund 's 

pathology would occur if some few p-q periodic states turned out t o have such tiny 

actions that all very long states would be composed of a few segments, with each 

segment containing many copies of the few economical states . Although we can­

not preclude this possibility, we feel it is unlikely. Hedlund and Bangert 's examples 

require that the curves through the tunnels be much, much shorter than their Eu­

clidean lengths, consequently, their metrics are very far from flat. By contrast , our 

generating functions are close to the unperturbed ones. We might thus hope that 

our minimizing states are obliged to stay close to the unperturbed states. Katok has 

shown, in [Kat88], that if the perturbed sta tes stay within some bounded distance of 

the unperturbed distance and if the bound is independent of the length of the state, 

then Hedlund 's pathology does not occur. 

We undertook two studies to investigate these issues. In the first, figure (2.20), 

we measured the deviation of our minimizing states from the straight line connecting 

x 0 to Xq· The distance always remains smaller than the diameter of the torus, 1/ .../2. 
In the second study we used the Farey triangle algorithm of Kim and Ostlund, (see 

appendix A), to get a sequence of rotation vectors tending to (377, 2330)/3770. The 

states for these vectors are displayed in figure 2.21. The longest orbits look very much 

like the shortest. We also did some experiments on families of rotat ion vectors of the 

form 7 np0 jnq0 ; The longer states were indistinguishable from the shorter ones. 

7 An unperturbed minimizing state is n copies of the unperturbed Po/qo state and our procedures 
for constructing perturbed mi nimizing states are such that this shorter , internal periodicity would 
be retained throughout the calcula tion . We tried to circumven t this problem by adding a small, 
random displacement to each of the p oints in the starting guess , see appendix A. 
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Figure 2.18: Some minimizing periodic geodesics for the two-dimensional torus; the 

shortest curve of type {214) is just 2 copies of the shortest one of type {1 1 2}. 
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Figure 2.19: Some minimizing periodic geodesics for a Hedlund example on the three­

dimensional torus; the shortest curve of type {2,4,2} is not 2 copies of the shortest 

one of type {1,2,1} . 
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Chapter 3 

The Frontier of Chaos 

Our first investigations aimed at the question "What remains after invariant tori have 

been destroyed?" Our next set asks the more basic "How could we tell if the tori 

were there?" To answer this question we might follow Kolmogorov, Arnold and Moser 

and seek to find perturbations so small that some tori would be guaranteed to exist. 

Conversely, we could try to find perturbations so large that no invariant tori remain. 

Numerical evidence suggests that the first approach will be hard; tori seem to persist 

well beyond the point where traditional KAM arguments break down. 1 We will adopt 

the latter strategy; we will try to fill in the blanks in the following "converse KAM" 

theorem : 

Theorem For the n-dimensional symplectic twist map F ~ : An -4 An, 

F~(:z:,r) = (:z:',r') = '-----------' 

depending on the parameters, E1 we are guaranteed that no KAM tori exist for any 

E E SF= { } . 
L---------------~· 

Proof 

1 Several authors have now proved machine-assisted, constructive KAM theorems for specific 
maps; these are in much better agreement with non-rigorous numerical predictions. See e.g., [CC88], 
[Rana87], and [LR88]. 
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Figure 3.1: The space of near-integrable maps, showing the frontier of non-integrability 

around T0 , an integrable system. 

Herman, in [Herm83] first saw that one might get a better notion of where invariant 

tori exist by looking at the edge of the region where they do not. He considered maps, 

TE : T X R - T x R, of the form2 

TE(x,p) = (x',p') = (x + p,p + Ef(x + p)), (3 .1) 

small perturbations to the integrable system, and envisioned a kind of cartography 

of non-integrability. By choosing different fs he could consider different directions in 

the space of perturbations. For each fixed f he could increase the value of E until it 

reached a size, E = Ec(f), such that no invariant tori remained. By calculating pairs 

(!, Ec(J)) he could map out the edge of non-integrability, the frontier of chaos. 

We will concentrate on ways to get rigorous bounds for Ec(f) but will not make a 

very extensive survey3 of fs. The rest of the chapter is organized by dimension of the 

phase space and sharpness of non-existence criteria. In the next section we review 

converse KAM theorems for area-preserving twist maps on the cylinder, and in section 

3.2 we explain how to prove them with a digital computer. In 3.3 we formulate some 

criteria for higher-dimensional systems and finally, in section 3.4, apply them to an 

example. 

2 0ur exmnples are not of this form, but, after a change of coordinates, their inverses are. 
3 Jacob Wilbrink, in [Wilb87), used a non-rigorous existence criterion to survey a whole one 

parameter family of maps. 
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3.1 Converse KAM results on the cylinder 

Many of the ideas presented here originated with Herman's paper [Herm83]. Katok, 

at the end of his paper [Kat83], discusses the distribution of points in minimizing 

states and explains a way to prove the non-existence of circles. Mather used simi­

lar techniques to make applications to the standard map, [Ma84], and to billiards, 

[Ma82b]. He also introduced a different, more generally applicable criterion based on 

the existence of action-minimizing states. MacKay and Percival augmented Herman's 

argument with rigorous computation and discovered a connection between Herman 's 

work and Mather's action criterion.4 The presentation below owes a great deal to 

their excellent paper, [MP85], and to [Strk88], which came out of Stark's thesis. 

3.1.1 definitions and a first criterion 

We will study maps given by (3 .1) and try to find criteria that preclude the existence 

of the kind of tori produced by the KAM theory. We cannot, of course, rule out the 

existence of tori in the broadest sense. No matter how large the perturbation, some 

tori may remain in the islands around elliptic periodic points . In the two-dimensional 

case we will restrict our attention to the kind of circles that wind once around the 

cylinder; such circles5 can be smoothly deformed into the curve p = 0. In higher 

dimension we will consider those tori that can be smoothly deformed into the torus 

p=(O,O, ... ,O). 

Maps given by ( 3.1) are automatically area and orientation preserving. We will 

add the further restrictions that the perturbation, /, be differentiable, periodic, and 

4 Recently, Rafael de Ia Llave (personal communication) has developed an extremely promising 
criterion based on the construction of hyperbolic orbits. 

5 These circles are also called rotational because the restriction of the map to such a circle gives 
a motion conjugate to a rotation. 
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Figure 3.2: The cylinder and several invariant circles, some (a) rotational and some 

(b) encircling a periodic orbit . 

have average value zero, i .e., 

f(x) = f(x + 1), fo1

J(x)dx=0. 

The restriction on the average value is essential; if it is not met T~ has no invariant 

tori at all. To see why, consider a curve, (x,f0(x)), and its image, (x,f1(x)), where 

r 1 is given implicitly by 

rl(x') = p'(x,fo(x)) 

or 

rl(x + fo(x)) = fo(x) + ~f(x). (3.2) 

Preservation of area and orientation guarantee that the area between the two is in­

dependent of r 0 since, if we consider another curve, r~, and its image, r~' we can 

write 

so 

and hence we can calculate it for any curve we like. Using r 0 ( x) = p0 and equation 

(3.2) we get 

l\ (x + Po)= Po + E/(x), or 1\ (x) = Po+ ~f(x- Po) . 

Thus we find 

~r(x ) ~f(x - Po). 
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Figure 3.3: A curoe and its image. The area between the two is shaded. 

The area between the two curves is then 

the average value of f . Now suppose r~nv is an invariant circle. That means rinv 
r~nv. Then 

k1 

~f(x)dx = 0 

and we have our first and simplest test for the non-existence of invariant circles. 

Unfortunately this is not a very decisive criterion; it leaves open the possibility of 

circles for any value of k in the Taylor-Chirikov standard map. To do any better we 

must more carefully consider the geometry of invariant circles, a task we turn to next. 

3.1.2 Lipschitz cone families and their refinement 

The first thing to notice is that invariant circles divide the cylinder into two disjoint 

pieces . Orbits that begin below au invariant circle must always remain below it . One 

might hope to turn this observation into a non-existence criterion, say, by starting an 

orbit at some point ( 00 , p0 ) and evolving it forward . If the orbit eventually attains 

arbitrarily large momenta then the map has no invariant circles. Chirikov [Chkv79] 

calls orbits with indefinitely increasing momentum "accelerator modes" and notes 

that they exist in the standard map for k 2: 21r. 

Rigorous implementation of this strategy is hard. The simple calculation described 
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Figure 3.4: Numerical error may carry a point across an invariant circle. 

above does not work because one can never be sure that a computational error will 

not carry the orbit across a genuine invariant circle. Simply following an orbit cannot 

establish the non-existence of circles. One might instead try to follow an orbit and 

say that if it never rises above a certain momentum p = Pma:c then it must be trapped 

beneath an invariant circle. That is, one might try to prove the existence of circles. 

From an analytic point of view this seems like a good idea. A theorem of Birkhoff 

[Birk22] says that if the twist map is continuously differentiable and if there are two 

values of the momentum, p 1 and p2 , p1 < p2 , such that any orbit that begins with 

momentum less than p1 never attains a momentum greater than p2 , then there is an 

invariant circle somewhere in the band p 1 < p < p 2 . Further, the circle6 is the graph 

of some Lipschitz function, f(O). 

Figure 3.5: If orbits with 

initial momentum less than 

p1 never rise above p = p2 

there is an invariant circle. 
Pt - -- ___ ,_ ,• 

Despite this analytic support, we cannot get a good existence criterion either. 

Not only is computational error again a problem, but we must also worry about the 

cantori. Although they are not true barriers to the diffusion of phase points, they 

G[Ma84) gives a sketch of the proof of this theorem. 
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can be formidable partial barriers .7 Even if we could calculate an orbit with perfect 

precision we could never be sure that it was permanently trapped below a particular 

Pma:r:· To get a really useful criterion we must pay closer attention to Birkhoff's 

theorem, particularly to the part where he tells us that rotational invariant circles 

are the graphs of Lipschitz functions. 

Suppose the invariant circle has rotation number w, then we will say that it is the 

graph of r..,(O). Since r.., is Lipschitz we have 

(3.3) 

where L is a constant independent of 0. On the graph this means that a vector 

tangent to the circle is confined inside a cone, see figure (3.6). Since r"' is only a 

Lipschitz function it need not have a well-defined tangent at every point. That is, 

although (3.3) implies that both the right and left limits, 

(f~)right 

{f~)left = 

must exist, they need not be the same. Nonetheless, both limits must be smaller than 

L, and so both the vectors {1, {f~)Ze/t) and (1, (f~)right) are in the cones8 pictured in 

figure (3.6). 

The constant L is a property of r w and is defined only along the curve. We could, 

instead, draw a cone at every point, ( e l p ), such that if an invariant circle passes 

through ( 0, p) its tangent must lie inside. We will call such a system of cones a cone 

family and represent it with two 0-periodic functions, L+(O,p) and L_(O,p); a vector 

tangent to a circle through (O,p) may only have slope,£, with L_(O,p) :=:; .l :=:; L+(O,p). 

7For the golden cantorus of the standard map, with k = 1.0, [MMP84] find the mean crossing 
time to be on the order of lOG iterations. 

8 Indeed, a Lipschitz funclion is absolutely continuous and so has a derivative defined almost 
everywhere, see e.g., (TLch39]. 
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Figure 3.6: An invariant curve and with some Lipschitz cones. 

The simplest possible cone family is 

L _ ( (} , p) = Lo- , (3.4) 

We will call tltis a naive or uniform cone family. We can always get such a family 

by taking, at the worst, -Lo- = Lo+ = oo. Often, as we shall see, we can do much 

better. 

Each tangent vector lying inside the cone family is ostensibly a permissible tangent 

to an invariant curve but the dynamics may preclude some of the slopes permitted 

by the naive cone condition. Consider the action of the map on a tangent vector, say 

the vector v with foot point ( (}, p ) . 

is its image and has foot point ( (}', p'). We can apply the map DT~ to all the vectors 

allowed by the Lipschitz cone at some point Zn = ( Bn, Pn) and examine their images 

at Zn+l = (Bn+1!Pn+1) = T.( zn)· In this way we can use the map on tangent vectors 

to define a map on cones . The image of the cone from Zn will not usually coincide 

with the cone at Zn+l· This m eans we can eliminate part of the cone at Zn, for if there 

were an invariant graph above Bn its tangent vector would have to be one of the ones 

whose images lie inside the naive cone at Z n+l· We could make a similar argument 

involving DT~-l and Zn- l and so refine the cone at Zn even further, see figure (3.7). 

More formally, we can use the map to recursively define a sequence of cone families, 
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{Lo_, Lo+} 

DT,-1 {Cn(T.(O,p))} n Cn(O,p) n DT,} {Cn(T,- 1 (0,p))} {3.5) 

where C0 is the naive cone family, {3.4) . The vectors permitted by the nth cone family 

have n allowed images and preimages. For twist maps this refinement procedure 

produces increasingly restrictive cone families [S trk88]. If it ever happens that Cn( e, p) 

is empty, i.e. that the intersection in {3.5) contains no vectors, then no invariant circle 

can pass through the point ( e, p). 

Figure 3 .7: Refining the cone family. The inverse image of the cone at Zn+l and the 

forward image of the cone at Zn_ 1 intersect in a new, smaller cone at Zn. 

Cone crossing arguments turn out to be quite successful, though they need a little 

more elaboration to be suitable for computation. So far we have seen how to prove 

that no invariant circle can pass through a particular point, now let us use this to 

prove non-existence of circles. Because a rotational invariant circle must cross every 

vertical line, we can establish non-existence by proving that no circle can cross a 

particular vertical line {(O,p)IB = Bo,p E [0, 1)}. To do that we divide the phase 

space up into finitely many pieces . For example, each piece might be a rectangle of 

the form Rii = {(O,p)i p E (pi>PH1 ] 0 E [Oi , OHI]} We can use this decomposition 

to construct a sequence of piecewise constant cone families , see figure {3.8) . 
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Figure 3.8: A piecewise con­

stant cone family for the 

standard map with k = 1. 0. 

No invariant circles can 

pass through the shaded 

squares. 

Ln-(~i) =Lb. Ln_(O,p), 
R;i 

where the notations "u.b ." and "l.b." mean "upper bound" and "lower bound." If 

the rectangles are small enough, refinements like (3.6) can eventually produce a whole 

vertical strip of empty cones. 

Finally, we note that the foregoing serves to prove non-existence for a single map. 

In practice one wants non-existence results for a whole class of maps , for example, 

for all the standard maps with parameters kmin ::; k ::; kma:r · One need only modify 

(3.6) a little, taking the bounds over both R,i and k. 

Stark has shown that such a program, allied with some extra observations, can 

reveal non-existence of circles with only a finite amount of work. He shows, for 

example, that if one has a family of maps depending on parameters and one studies 

a compact set of the parameters for which no invariant circles exist , then the cone­

crossing criterion will demonstrate their non-existence after only a finite amount of 
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computation. 9 

3.1.3 some new coordinates and two more criteria 

Here we will begin to explain one way to implement the ideas of the previous section 

on a digital computer. In the process we will reformulate the cone-crossing criterion 

in a way that obscures its geometric origin 10 but reveals a connection to minimizing 

states. The first step is to recast the map in terms of delay coordinates; we have 

been considering T~(B,p) = (O',p'), let us now speak of g~: TXT 1--t TxT so that 

g.( en, en+l) = ( en+l' en+2) where the 8' s are angular coordinates of successive points 

in an orbit . We will also need a lift of g, G< : R X R -t R X R, G<( u, v) = ( u', v'). 

As before, T< and G< are related by an action generating function, H<( u, v ), where 

V(x) =-fox f(y) dy, 

and 

In terms of these coordinates an invariant circle appears as a curve Xn+l = 1( xn) 

satisfying 

1(u + 1) 

G<(Xn 1 !(xn)) 

1(u) + 1, 

(xn+1 1 Xn+2) = (!(xn),!(!(xn))). 

The most nmve Lipschitz cone, (3.4) with Lo± = ± oo, appears here as 0 :::; .e:::; oo 

9 Here "finite" means that one could do the calculations to some finite precision and refine the 
cone families for some finite number of steps. 

10See [MP85] for a more direct implementation. 
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v 

Figure 3 .9: An invariant 

curve and some Lipschitz 

cones in the delay coordi-
u 

nate system. 

where l is the slope of 1. The lower bound of zero is just the requirement that the 

original map, when restricted to an invariant curve, be order preserving. 

For examples like (3.1) u' and v' have very simple forms : 

u'(u, v ) 

v'( u, v) 

v, 

v + (v - u)+Ef(v), 

2v- u + E/(v). 

G£'s action on tangent vectors is equally simple: 

1 ][ ::] 
For later convenience we will refer to 2 - E ~.,~ ( x) as /3( x) . 

(3.7) 

(3.8) 

If we take a tangent vector, [1,£], representing a slope of l then (3.8) tells us that 

its image will represent a slope l' given by: 

l' = 
ov' 
ou'' 
!3( v )ov ou 

ov - ov' 
1 

/3(v)-l. (3.9) 
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Preservation of order requires that both l and £' be positive. Combining this with 

(3.9) we obtain our first real criterion. 

Criterion 1 If there are any values v E [0, 1) for which {3( v) < 0 then the map 

G~( u, v) to which {3 corresponds has no rotational invariant circles. For the standard 

map this criterion says kc .::; 2 . 

We can squeeze one further analytic criterion out of (3 .9) by noticing that £' 

will surely be negative if ever l is very small, and that, always, £' < maxvE(O,l] {3( v ). 

Suppose we have m and A1 such that 0 .::; m .::; {3( v) .::; !vi holds everywhere. Then 

and £' ~ 0 together imply 

I 1 £<AI--

1 
0 < M-­- l 

- l 

or 
1 0>­.(.- Jovf" 

(3.10) 

(3.11) 

Inequality (3.11) is a global restriction on slopes, a new lower bound for the 

uniform Lipschitz cone family. We could thus run through the argument again, this 

time requiring£' ~ ~f . Having done that we would have a better, narrower cone family 

and could repeat the argument yet again . . . better to carry this process straight to 

its conclusion and realize that our estimates will stop improving when we find a slope, 

l_, such that 
1 

l_ = Af - l_. 

This has two roots. The least of them is just the l_ we wanted; the larger one is a 

global upper b ound on slopes. It comes from the remark above, that l' .::; M . Since 

every vector tangent to an invariant curve is the image of some other tangent we can 

conclude£ .::; A1. Once that,s done we can argue£' .::; Af- ir and so on. Finally we 

attain 

where 
AI - -J 11!2 - 4 

f_ = 2 ) 

A1 + -)1112 - 4 
l+ = 2 . (3 .12) 
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Armed with this best of all possible uniform cones, we are able to make a genuine, 

dynamical cone crossing argument. 

Criterion 2 ("Mather f' ) If m ::; (3( v) ::; !If and .f+ and .f_ are the bounds of 

the uniform cone family given by (3.12), then there are no rotational circles if 

1 
.f_ > m - .f+. (3.13) 

Remark For the standard map, m = (2 - k) and }vf (2 + k) and so (3.13) 

implies that kc ::; 1· 
Proof The idea is to concentrate on those states that contain the point where (3 

attains its minimum, where (3( v) = m. Visits to this point are most punishing to the 

slopes of tangent vectors; they lead to the smallest possible values of .f' in (3.9) . If 

m is so small that even the slope from the upper edge of the uniform family, .f+, is 

diminished to an untenable value, then certainly no others can survive. 

3.1.4 non-existence for minhnalists 

We will now reformulate Criterion 2 in the language of minimizing states. The new 

version will prove more fruitful for higher-dimensional generalizations. Here again we 

follow MacKay and Percival, who demonstrated that their cone crossing criterion is 

equivalent to the action-difference criterion put forward by Mather in [Ma86] . 

We begin by assuming that an invariant circle exists, then we deduce some facts 

about the minimizing orbits lying on it. Then, to prove non-existence, we will do 

a calculation that contradicts these facts. Define a minimizing state to b e sequence 

{· • • Xn- b Xn, Xn+ l, ···}such that every finite seg1nent Xn, Xn+l, • • ·, X 171 is a minimum 

of the action functional, 
n-1 

lVm,n(X) = 2:::::: H, (xj, Xj+l), (3 .14) 
j=m 

where H, is the action-generating function and we consider variations that leave Xn 

and x 171 fixed . Mather's action-difference idea is to note that if an irrational invariant 
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circle exists, then every orbit on it is mtmmtzmg and has the same action. That is, 

if we take two states arising from orbits on the circle, X a = { · · · , X~, X~,· • ·} and 

Xb = {- · •, X~, X~, • • •} and take the Jimi t 

n-1 

J0.;, L H,(xj, xj+l) - H,(x~, x~+l) (3.15) 
i=-n 

it should come out to be zero.11 He suggests that to test the existence of an invariant 

circle having irrational rotation number w one should approximate w by a sequence 

of rational numbers, En, and use the rational numbers to construct the two sequences 
qn 

of Birkhoff periodic orbits, the minimax and minimizing orbits. These sequences 

accumulate on two distinct sets on the putative invariant circle. If the circle is really 

present, orbits on the two sets should have the same action and so the limit 

(3.16) 

should tend to zero. If it tends to some other value then no circle with rota-

tion number w exists. Rather than trying to calculate the limit in (3.16), we will 

exploit the fact that every state X= {-··,x_1,x0 ,x1, · ··} arising from an orbit 

{· · ·, (x-t,P-1), (xo,Po), (xt,Pt), · ··}lying in an invariant circle must be minimizing; 

every finite segment snipped out of such a state must be a non-degencrn.te minimum 

over all segments having the same endpoints12
. 

The foregoing suggests a strategy for proving converse KAM theorems. One 

chooses an a uspicious starting point , x0 , for which the perturbation to the gener­

ating function is large , and considers every possible state containing it . This is not 

quite so huge a task as it sounds. Since the map, G,(u, v), det ermines the whole state 

11 Showing that the action difference ( 3.15) vanishes is different, and harder, than showing that the 
average values of the actions a re the same. While the la tter follows from the ergudicity of irrationa l 
rota t ion, Mather's result requires a more delicate examination of the action functional. See [Ma86) 
for details. 

12The reader may wonder wh y the sta tes lying on an invariant circle do no t belong to a one 
p a rameter family, and ask how they can lead t o non-degenerate minima. The answer is tha t we 
consider only va ria tions that leave the emlpuints of fini te segments fi xed; if we allowed them to m ove 
the minima would be degenerate. 
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once, say, x 0 and x 1 have been given, we need only consider all possible successors, 

x 1 . For each x1 we work out the state, X, and the variation of the action over finite 

segments, {x-1, xo, · · ·, Xn}, 

0 ¥ ~ 81¥-l,n ox]· J. -l,n = ~ 8 + 
j = l Xj 

n-1 82J.1f 
0 1 ~ -l,n c c + z ~ 8 8 UXjUXk· 

j,le=l Xj Xk 

The term linear in OXj is automatically zero because X is a minimizing state. For our 

examples, (3.1), the quadratic term can be represented by the symmetric matrix, 

0 

0 

which we shall call )\;fn(X), or A1n for short. 

0 

0 

-1 2 + E~(xn-2) -1 

-1 2 + E~(Xn-d 

If X is n:tinimizing then lvfn is positive definite. Since A1n is so simple it is easily 

rendered into diagonal form, a form that makes it simple to calculate the determinant. 

We can write 

2 + €£(xo) -1 0 0 do 0 0 0 

-1 2 + E£(xl) - 1 0 0 dl 0 0 
--t 

0 -1 2 + E£(x2) -1 0 0 d2 0 

where the di are computed recursively using 

(3.1 7) 
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If ever one of the di is negative we may conclude that ll;fi is not positive definite 

and so does not arise from a minimizing state. Notice the similarity between the 

evolution equation for the diagonal entries, (3.17), and the one for slopes, (3 .9). As 

we refined the limits on slopes, so we can refine those on diagonal entries. We obtain 

a d_ such that if di < d_ then some later d~e, k > j is sure to be negative. We also 

get d+, a global upper bound on the dj. We can thus modify (3.17) so that we begin 

with d_l = d+, so do = f3(;vo) - d~. The original prescription corresponds to taking 

d_l = 00 . 

3.2 Rigorous computing 

lu this section we will see how to implement the action criterion of the last section on 

a digital computer. Since we will eventually want to treat maps in spaces of arbitrary 

dimension we will outline some of the procedures in greater generality than required 

for the cylinder. The most important part will be a technique for rigorously bounding 

the image of a set . 

3.2.1 two reductions and a plan 

As in section {3.1.2), we need only show that no invariant circle crosses a particular 

vertical line. In the language of the previous section this means our problem is reduced 

to showing that some particular ;~;0 cannot appear as a member of any minimizing 

state. We can get a further reduction by noticing that our examples satisfy 

p' ( ()' p + 1) = p1 
( ()' p) + 1; 

their dynamical structure is periodic in p as well as in e. So, if an invariant circle 

passes through the p oint (O,p), there is also one through (O , p + 1); if n o invariant 

circles pass through some vertical segment 10 = {( (), p) IB = ()*, p E [0 , 1]} , then there 
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cannot be any at all. Studying a segment like / 0 is equivalent to studying a collection 

-l -"' i--------

Figure 3.10: Rotational invariant circles must cross every vertical line, and, for our 

examples, must be periodic in p as well as e. 

of states {XI x 0 = x*, x 1 E [0, 1]}, where x* is a lift of 8*. With these reductions in 

hand, we are ready to plan the main computation. Our goal will be to prove: 

Theorem 

There is an x* E [0, 1] and an interval of parameter values, I~= [c, ~:+], such that 

none of the maps, G., € E 1£, have a minimizing state with x 0 = x*. 

Piau for the proof: 

(i) Formally extend the phase space to include the parameter € and use the map 

G£(u,v) to define a new one, G : R x R x R---+ R x R x R, where 

(3.18) 

(ii) Select a starting point x*. For examples (3.1) we will want x* such that j3(x*) is 

a minimum, a choice that is independent of €. 

N 

(iii) Divide the interval [0,1] into a collection of closed intervals, Ij, U 1i = [0, 1]. Us-
i = l 

ing the Ij, which should intersect only at their endpoints, we can construct a col-

lection of sets in the extended phase space, sj = { ( €, u, v ) I € E 1£, u = x*' v E 1j}. 

In practice, this division is done by the program itself. It begins by trying to 

prove the theorem on the whole interval at once, and gets either, "Yes, the theo­

rem is true," or "l\laybe it 's true." If the answer is "maybe" it splits the interval 
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in half and tries the two pieces separately. If one of them yields "maybe" it gets 

subdivided too .. .. The process of subdivision will go ou forever if the theorem 

is false, but if it is true the work of Stark suggests that the cutting will stop 

after finitely many steps. 

(iv) For each piece I;, try to prove that no minimizing state with :z:0 = :z:* can have 

:z:1 E Ii. 

The last step is where the computation comes in; we will use an argument like the 

one at the end of section (3.1.4), but here we calculate upper bounds13 d~c for the kth 

diagonal entry in (3 .17). 

u.b. ,B(:z:*)- _!_, 
£El, d+ 

1 
= u .b. ,B(v)--=-, 

(<,u,v)ESj do 
1 

u.b . ,B(v)- -=-, 
(<,u,v)EG(Sj) d1 

(3.19) 

Finding a way to calculate the kind of bound that appears in the definition of d2 , an 

upper bound over an image of S;, is the last hurdle in the argument. What we need 

is a procedure to rigorously bound the image of a set. In the next section we will 

explain a quite general scheme due to MacKay aud Percival. 

3.2.2 bounding in1ages of prisms 

For concreteness, and to get a.n algorithm straightforward enough to be realized 

as a computer program, we will concentrate on sets with a prescribed form, par­

allelepipeds, or prisms for short. An n-dimensional prism is specified by a center 

13We will often want to evaluate upper bounds, as opposed to maxima. The former are realizable 
on computers, the latter may not be. 
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Qn 

r .O.o: 0 0 2 

r= (xo,P), P = 0 ~ 0 2 

0 0 .O..z: 

/ 
2 

.. '.t..X+ 

Figure 3.11: The n-dimensional hypercube Qn is mapped to the prism by the matrix 

P. 

point, Xc, and an n x n matrix, P. The prism is the set 

(3 .20) 

where Qn is then-dimensional hypercube, {77 E Rnl- 1 ::=; 1Ji ::=; 1}, see figure (3.11). 

Our principal technical tool is the following result . 

Lemma ([MP 85]) Suppose <J> : Rn --? rrn is a 0 1 map. Then the <J> - image of the 

prism S = ( Xc, P) is contained in the prism ( xc', P') where xc' is arbitrary, P' = Ao W 

for an arbitrary invertible matrix A , and W the diagonal matrix 

0 
W= 

0 0 

with 

(3.21) 

Remark The lemma s eems unnecessarily general; we are left to choose the matrix 

A and the new center point, Xc completely arbitrar·ily. If we choose them unwisely the 
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Figure 3.12: A prism, its image, and a prism bounding the image. 

new prism will surround the image of S, but may be much larger than necessary. 

Usually we will want 

and 

The freedom allowed by the lemma will make it easy to handle errors m computing 

<I>(xc) and cases where D<I>"'cp is singular or nearly singular. 

Example (Proof of the lemma for one-dimensional maps) 

We start in with a one-dimensional example, see figure (3.13). Here the map is some 

C 1 function, rjJ : R--+ R , and a prism, S, is just an interval Xc- .o.x ::; x ::; Xc + .o.x. 

We can use the computer to find ¢( x ), a. numerical approximation to rjJ( x) for which 

lr/J(x)- ¢(x)l ::; 6. Then, choosing xc' = ¢(xc) and14 A= r/J'(xc).o.x, we find 

u .b.lx~- r/J(xc)l < 6, 
1 

w 

and 

P' = .o.x' =A o H1 2:: 6 + .o.x(max lr/J'(x)l). 
:tE S 

(3 .22) 

14The choice of A is meant to suggest the fo rm required by the higher-dimensional theorem. If 
¢'(xc) = 0 we will have to make another choice; any constant will do. 
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:r: 

Figure 3 .13: The bounding lemma 

applied to a lift of the ci1·cle map, 

</J( x) = X+ f2 + 2: sin (27rx ) , wi th 

n = 0.3, E = 0.8 . The in terval 11 , 

at right, is the one given by the 

lemma; it contains the image of 

Now let us check some point x E S, and see that its image is inside the pnsm 

S' = ( x~,P') . Since xis in S we can write x = Xc +77~x with -1 ~ 77 ~ 1. If ¢(x) is 

in S' , then , 

or 

To see that this is true , consider 1 (t) = ¢(xc + t71 ~x). 1 (t) is a 0 1 function from 

[0 ,1] t o R with !(0) = ¢(xc), /(1) = ¢(x ). By the Mean Value Theorem there is a 

t o E [0 , 1] such that 

!(1) - !(0) 
d, 
dt (to), 

d 
dt ( ¢( Xc + to7] ~X ) ), 

7] ~x 4>'(xc + lo7] ~x ) . 

Rewriting this, 

14>(x) - x~ l l4>( xc ) - x~ + 7] ~x¢'(xc + to7] ~x)l , 

< lc/>(xc) - x~ l + l~xc/>'(xc + to7] ~x )I, 

< ~x' , (3.23) 

even as the lemma claimed. 
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Proof (The general case) 

The argument is much the same as the one-dimensional argument above. Here the 

assertion of the theorem is that every point in the initial prism, S = ( Xc, P), has its 

image in S' = (x~, P'). If one writes a point, x E S, as x = Xc + PTJ, TJ E Qn then the 

theorem says 

(3.24) 

If we take (3.24) one component at a time we find 

(3.25) 

To prove this for the jth component we consider a function li : [0, 1] ---+ R , 

li(t) = [P'-1 q,(xc + t PTJ)Ji. li(t) has the same smoothness as the map and so the 

Mean Value Theorem says ~t0 E [0, 1] such that 

or 

/i(1) - li(O) 

[P'-1 (<T>(xc + PTJ) - q,(xc))]j 

Arguing as we did in the sequence (3.23); 

I [w-1 o A- 1 
{ (<T>(xc)- x~) + D<I>..,(tn) o PTJ }ti, 

~j j[A-1 {(<I>(xc)- x~) + Dq,..,(to) o PTJ}Li, 

{ 

I[A- 1(q,(xc)- x~)Jil } 

< ~; + f;; IIA -I 0 Dol>,(,,) 0 P);k I ' 
< 1, 

which is just the thing required by (3.25). 

3.2.3 choices for the matrix A 

Although we usually take A ~ D<I>zc o P we may sometimes need to make a different 

choice to avoid a singular A. Indeed, the very first prisms we consider, the ones of the 
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form I~ x x* x I;, have zero width in the u direction and so have singular matrices, 

P. In this section we will illustrate two schemes for fattening up the matrix DCI>"'c o P. 

The first, the fixed-form scheme, is borrowed directly from [MP85]. The second, called 

the column-rotor, is a slight generalization of theirs. These techniques have not been 

carefully optimized and are probably not the best . They work well enough and, in 

any case, are not the most time consum..iug part of the algorithm. 

Fattener 1 (fixed-form) Require the new matrix to have a particular form. Sup-

pose, for example, that the initial prism, P, and the derivative of the map, DCJ>"'c' 

are 

and so 

We might then look for a matrix A of the form 

A= [ ~ ::: l 
Figure (3.14) shows an application of this scheme. 

Figure 3 .14: The fixed-form fattener v 

applied to the image of a singular, ver-

tical prism. The map is the delay­

embedded version of the standard map 

with k = 0.8. The new prism, shown 

in grey, fits snuggly in the u direction 

but is much more generous in the v di-

rection. 

DCJ>:Z:c 0 P = 
[ 0

0 

I 
u 

Fattener 2 (column-rotor) This method deals with matrices whose columns, when 

viewed as vectors, are all very nearly parallel. Such matrices will be close to singular , 
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Figure 3.15: The column-rotor 

scheme applied to a narrow prism. 

The initial prism is at the lower 

left; it is outlined in black and 

its center 'tS marked with a dot. 

The prism's true image is solid 

black. A bounding prism, produced 

with the column-rotor scheme us­

ing an angle of 27°, is shown in 

light grey, the darker prism be­

neath used an angle of 90°. 

and must be expected to anse if the dynamics are hyperbolic. If we neglect the 

fattening steps, the matrix of the prism bounding <Pn( 50 ) looks like 

(3 .26) 

If any of the Lyapunov exponents are positive the columns of the matrix product 

(3.26) will be nearly parallel to each other and to the eigenvector corresponding to 

the largest eigenvalue of D<P~c. The idea of this scheme is to rotate the columns with 

respect to one another so as to guarantee a certain minimum angle between each 

pair. In two dimensions, (see figure (3.15)), this is an entirely satisfactory program. 

In three and more dimensions it is possible to find linearly dependent collections of 

column vectors each pair of which is separated by a sizable angle - one could have a 

triple of coplanar vectors, for example. Such collections do not seem to arise in our 

calculations, and we have made no special provisions to avoid them. The details of 

column rotation are described in appendix B. 
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3.3 On to higher dimension 

Here we develop some new results. The forms of the arguments will be much the 

same as in the preceding sections, but t.he maps, tori, and cones will exist in higher­

dimensional spaces . The general results for higher-dimensional invariant tori are not 

so strong as for circles on the cylinder, so we must make a few new restrictions and will 

obtain somewhat weaker results. We will see how to generalize the cone-crossing and 

action criteria and then show an application to the example with the trigonometric 

perturbation, (2 .14). 

3.3.1 maps and tori 

As above, we will consider only small perturbations of integrable systems. We will 

have 2n-dimensional symplectic maps, f£: Tn x Rn -+ T 11 x Rn, of the form 

f£(8 , p) (8'(8, p), p'(8, p)) 

8' 
8v~ 

8+p--
88 

p' 81~ 
(3.27) p- -

88 

where ~(8) : Tn-+ R is some periodic function with at least two continuous deriva­

tives and E is drawn from some, perhaps multi-dimensional, parameter space. We will 

work mostly with a lift, F£ : Rn X Rn-+ Rn X Rn. As we noted in chapter 2, maps 

like (3 .27) are the higher dimensional analogs of standard-type maps . 

The generating function for a map like (3.27) is 

n 

IJcj- Xj)2 - ,,~ (a::). (3 .28) 
i = l 

Although H£( a::, a::') is formally very similar to the generating functions used earlier 

in the chapter it is not quite the same; the perturbation, ~' depends on a:: rather 
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than ~'. As we shall see, this makes no real difference in the formulation of non­

existence criteria. We make this small change because the examples of chapter 2 have 

generating functions like (3.28). 

As on the cylinder, we will not be able to prove the uon-existence of all possi­

ble types of tori, only those that are invariant graphs, sets of the form {(O, p)IO E 

Tn, p = 1/1(6)} for some 1/1 :Tn -t Rn. In higher dimension we must add the further 

requirement that the graphs be Lagrangian, that is, they must have16 

(3.29) 

On the cylinder we have the mighty theorem of Birkhoff to assure us that any rota­

tional invariant circle must be a graph. Unfortunately, for n > 1 we have no such 

assurance; there may be "accidental" invariant tori that are graphs, but not La­

grangian graphs, and there may even be rotational invariant tori that are not graphs 

at all. Still, (3 .29) is not a disastrous restriction. Our techniques are fully comple­

mentary to traditional KAM theory in that constructive versions of KAM produce 

just the sort of tori we can preclude, invariant, Lagrangian graphs. 

Herman, iu [Herm88], has announced some results along the lines of a higher­

dimensional version of Birkhoff's theorem, but they are not so comprehensive as the 

original. He has, however, shown that a Lagrangian graph, invariant under a map like 

(3.27), is Lipschitz. This will prove helpful when we try to obtain global inequalities 

like (3.12) . 

3.3.2 Lipschitz cones: old formulae in new guises 

Both the cone-crossing and action minimizing criteria have higher-dimensional analogs. 

We will briefly examine the former because of its intuition-pleasing geometric roots, 

15 Equivalently, a Lagrangian torus is one on whose tangent space the symplectic two-form, 
w = I::j'=1 dpj 1\ d(Jj, vanishes. 
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then concentrate on the latter. Most of the formulae will bear a strong formal resem­

blance to the ones from the first part of the chapter. 

As on the cylinder, we begin by switching to a map g acting on the delay co­

ordinates, g~(Bi, (Ji+l) = (Bi+l, (Ji+2), and a lift, G~ : rrn X Rn -t rrn X rrn with 

G£(u, v) = (u', v'). In these coordinates the derivative of the map is 

DG£ 

8u' 8u' 
8u 8v 

8v' 8v' 
8u 8v 

(3 .30) 

where I is then x n identity matrix and ~~ is the matrix of second partial derivatives 

of~. An invariant graph, p = t/J( B), appears as a hypersurface 

v A(u), 

( ) 
8~ 

u + 7/J u - ox ( u ). 

l~(u) and t/J(u) and are periodic extensions and A(u + rn) = A(u) + m Vm E zn. 

The geometric object corresponding to a vector tangent to an invariant circle is now 

a hyperplane tangent to the graph. A vector, (ou,ov), lying in tlus hyperplane has 

~ ~ 
8u1 8u2 

ov =Lou where L= fllll fllll 
8u1 8 u 2 

(3.31) 

so that the tangent plane is the subspace spanned by the n vectors 

(1 0 0 ~ fllll 8A,.) 
' '· · · 'e 'e '· · · e ' Ut Ut Ut 

(0 1 0 ~ f!.!'!:l.. 8A,.) 
' ' . .. '8 '8 ' ... 8 ' U2 U 2 U 2 

These are conveniently represented in block form as [I , L] where I is then x n identity 

matrix and L is as in equation(3.31). The action of the map on the hyperplane is 
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given by 

(3 .32) 

where {3 = 21- ~~ ( v ). The new tangent hyperplane must then have 

L' = {3- L - 1
. (3.33) 

In the two-dimensional slope evolution equation, (3.9), existence of an invariant circle 

meant both the slopes l and l' had to be positive. Here the existence of an invariant 

Lagrangian graph im.plies that the matrices L and L' are positive definite. On the 

cylinder we were able to study equation (3.9) and obtain a narrower global Lipschitz 

cone; where first we had 0 ~ e ~ 00 we eventually got e_ ~ e ~ e+' with e± given 

by equation (3.12). There is a higher-dimensional analog of this best global Lipschitz 

cone, but we defer it until section 3.3.4. 

3.3.3 minimalism revisited 

We now turn to the higher-dimensional generalization of the action criterion. The 

arguments below come mostly from MacKay, Meiss, and Stark, [MMS89], Katok, 

[Kat88], and Herman, [Herm88] . The first thing we need is a higher-dimensional 

version of the theorem of Mather that told us that invariant circles are composed 

entirely of minimizing orbits. The necessary result, which says that every orbit on an 

invariant Lagrangian graph is minimizing , has been proven by Katok, [Kat88], and 

by MacKay, Meiss and Stark, [MMS89]. With this result in hand we can proceed as 

before. We consider finite segments, :c_1, :c0, . . . Xn taken out of minimizing states. 

The action functional is still 

n-1 

H7- 1,n = L H~(:cj, :Cj+1), 
j=-1 

n-1 1 
L::.: 2 11 :Cj+1 - :Cj 11

2
- l~ (:cj)-

j = - 1 
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and the second variation of vV_ 1,n is, in block form, 

,l3( :Co) -I 0 0 0 

- I ,l3( :vi) - I 0 0 

0 - I ,l3(:c2) - I 0 

0 -I ,B( :Cn-2) - I 

0 0 - I ,l3( :Cn-d 

which is readily block-diagonalized to 

do 0 

0 d l 

T h e diagon al blocks, d j, are given recursively by 

(3 .34) 

Our concern is that the di be positive definite. It is here that blithe, formal , general­

ization fails us; t here are no sensible formal analogs for results like equations (3 .10), 

(3.12) and (3.13) . Instead we need to invent a way to test whether th e least eigen­

value of di is posi tive. We will develop a whole suite of estimates for t his eigenvalue , 

then use them and a plan like the one in section 3.2.1 to prove the non-existence of 

Lagrangian graphs. 

All the matrices we will be discussing are real and symmetric, hence, Hermitian. 

For a particular matrix, Af, we will need to define >. _(111), the least eigenvalue of 111 , 

>.+(M), the largest eigenvalue, and Tr [.lVf] = L:~~~(M) 111j;, the trace. The following 

lemma will b e our main tool. 

L emn1a For real, symmetric, n x n , positive definit e matrices ,l3 , d , and d ' with 

d' = ,l3 - d-1 (3.35) 
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the following suite of inequalities hold: 

A_(d') (3.36) 

A_(d') (3.37) 

A_(d') (3.38) 

Proof The first inequality, which is due to Herman, comes from the observations 

that for a positive definite, Hermitian matrix, M, A_(M) ::; ~Tr [M] and Tr [1\I - 1
] ::; 

Trl~J" Both these inequalities are strict except for the degenerate case where all the 

eigenvalues are the same. The other two inequalities, which are ours, depend on 

and 

A_ ( .l\J) = min ( v, 1\{v) , 
vER", llvll=l 

where the norm and inner product are the usual Euclidean norm in Rn and ordinary 

dot product, (u, -v) = L.j=1 UjVj- Given these equations we can obtain inequalities 

about the least eigenvalue of d' in (3.35) by evaluating (v, d'v) on particular vectors. 

If, for example, one takes v to be the unit eigenvector corresponding to the smallest 

eigenvalue of d one finds 

A_ ( d') < (v, d'v) (v, (3v) - (v, d- 1v), 
1 

(v,(3v)- A_(d)' 

1 
< A-t-(,l3)- A_(d)" 

This is inequality (3 .37) of the lemma. Inequality (3.38) comes from an identical 

argument with v the unit eigenvector corresponding to the least eigenvalue of ,l3 . 
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3.3.4 global estimates: narrowing the cones 

Here we see how to use our inequalities to reduce the range of permissible >._(d;) . On 

the face of it, we must allow 0 ::; >._(d) ::; oo, but inequalities (3 .36) and (3.37) have 

the correct form to allow an iterative refinement like the one in section 3.1.3 . Since 

Tr (,l3( v )], and >.+(,l3( v)) are continuous, zn-periodic functions , they have well-defined 

minima and maxima, say, 

t < Tr [.8] ::; T, 

b < >.+(.B) ::; B. 

Inequalities (3.36) and (3.37) then imply that the d; from a minimizing state must 

satisfy 

{ 
T - v'T2 

- 4n 2 
} Trrnin ::; Tr (d;] ::; Trrna.,, with Trrnin = l.b . 

2 
, 

{ 
T + .JT2 

- 4n 2 } 
Trrna:c = u .b. 

2 
, (3.39) 

and 

{
B - y'B2

- 4} 
).-rnin::; >._(dj) ::; >.-rna:c) with ).-rnin = l.b . 2 , 

{ 
B + y'B2

- 4} 
).-rna:c = U. b. 2 . (3.40) 

We can also get some analytic use out of inequality (3.38) by combining it with (3.40). 

Hence, 

>.+(d) < Tr[d]- (n - l)>._(d) 

< Tr (d] - (n - 1)>.- rnin· 

>._ (d') < >. _ (.f3) 

< >. _ (.f3) 
1 

(3.41) 
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This profusion of inequalities makes possible a whole host of "Mather f' arguments; 

Herman, in [1Ierm88], gave the one based. on (3.36) and (3.39). In the next section we 

show how to apply his criterion, along with other, new ones, to a specific example. 

3.4 A converse KAM theorem 

Here we use the arguments above on a specific system, the trigonometric example 

from chapter 2. We will use the same example to illustrate some16 of the issues in 

proving a machine-assisted converse KAM theorem and will show the results of several 

calculations. 

3.4.1 analytic preliminaries 

The plan for a converse KAM theorem, section 3.2.1, requires a starting point, x* , 

and. the constants t, T, b, and B from equations (3 .39) and (3.40) . For the example 

at hand, 

!3( v) = 

and. so 

21 
_ B

2
l'trig 

E 8x2 ' 

21---E [ 
. ]\;[trig 

{ sin ;~rvu + sin 2 7r( Vo + vi)} 

sin 27r( Vo + Vt) 

sin 27r( Vo + Vt) l 
ein ;'lrV! + sin 27r( Vo + Vt)} 

Tr [,8( v )] 4- _E_ {.:_{sin27rv0 + sin27rvt}- 2sin27r(vo + v1 )} (3.42) 
llftrig 2 

1 { Tr [13( v )] - } (3 .43) 
2 

11/. · I~ (sin27rv0 + sin27rvt)2 + 4 sin2 21r(v0 +vi) 
t r 1g Y 

.\_ (,8( v)) 

10 Appendix B gives a detailed discussion of the algorithms used and includes a specification of 
the functions and data structures. The code itself is in appendix C . 
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Both Tr [13] and >._(,B) achieve their extrema on the line v0 = v1. The symmetries of 

~ also ensure that 

~2,/ . ~2T/ . 
• [ U · tng] [ U ~ trtg] T t- 4 = E mm Tr ax 2 = -E max Tr Bx2 = 4 -

. ( 02 l1~rig) ( 02 V~rig) 
b- 2 = E mm>._ ax 2 = -E max>._ ax2 = 2- B 

We find the approximate positions of the extrema using Newton's method, then eval­

uate the bounds t, T em etc ... From these we can calculate the ranges of permissible 

The choice of the starting p oint, x*, depends on which of the inequalities (3.36) 

- (3.38) we expect to be most fruitful. Good use of inequality (3.36) would require 

that x* be a place where Tr [,B] attains its minimum; this choice immediately gives 

Ec ~ 0.0<135. Best use of inequalities (3.37) and (3.38) requires x* at a place where 

)._ (j3) = b. (3.44) 

This turns out to be the best choice; it immediately gives Ec ~ 0.0278. Note that we 

need not be particularly rigorous about finding x*. Indeed, we are free to choose it 

anywhere we like; we just get much better results if (3.44) is satisfied. 

3.4.2 the computations 

Once x* is chosen, we can set up the extended phase space, IE x Rn x Rn, extend GE 

to Gas in (3.18), and proceed with ·a proof. The plan is the same as in section 3.2.1, 

except that here the role of the intervals, Ij, is played by rectangles in the unit square. 

That is, we first ask "Can any x E [0 , 1] x [0, 1] follow x* in a minimizing state?" If 

the answer is "no" then we are finished, if not we cut the square in half and ask the 

same question for each piece. Once the rectangle of potential successors is smaller 

than the whole square we can iterate the argument for several steps, bounding image 

prisms as in section 3.2.2. This yields a sequence of prisms in the extended phase 
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space, S0 , Sll · · ·, with 

S0 1£ x {:v*} x {successor rectangle}= (:vc,o, Po) 

Beginning with 

and u.b. Tr [d_I) = Trma:z: 

we proceed, at each step evaluating the whole suite 

A_(d3+t) < (1 ) n u.b. - Tr [/3( v )] -
(£,U,V)ESj+l n u.b.(Tr [dj]) 

(3.45) 

A_(dJ+t) 
1 

(3.46) < u.b. (A+(,£3( v ))) -
(£,U,V)ESj+l u .b .(A_(d3)) 

A_(dJ+t) 
1 

(3.47) < u.b. (A_(,£3( v ))) - ( , [ ]) 
(£,U,V)ES;+l u.b. 'Ir dj - A-min 

and choosing the best upper bound. Computing (3.45) automatically gives the bound 

on Tr [d3] used in (3.47). These estimates do not, of course, keep improving forever. 

Eventually either one of the u. b . A_ ( dj) falls below A-min or one of the prisms Sj gets 

so large that the inequalities (3.45) - (3.46) are vacuous . At that point one either 

quits or cuts the initial prism in halr7 and ~tarts over. 

3.4.3 results 

Table (3.1) summarizes our results . We were able to show that the last few of the 

minimizing states of section 2.2.2 persist beyond the point where no invariant tori 

remain. 

The figures on the following pages show some of the systems of prisms used in the 

proofs. The dark grey rectangles are sets that cannot contain a successor to x* , the 

17The choice of which cut to make, whether along the «:, vo, or Vt axis, depends on the shape of 
the final Sj . 
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u .b . Ec :=:; longest 1 deepest I prisms I time (sec.) 

0.0278 3 10 39 500 

0.0276 4 11 64 759 

0.0274 4 13 156 2698 

0.0272 6 21 933 ,...._, 

Table 3.1: A sequence of bounds on Ec and some details about the computations that 

verified them. The table includes: longest, the length of the longest sequence of image 

prisms considered; prisms the total number of prisms on which the algorithm suc­

ceeded; deepest, the number of refining cuts needed to make the smallest successful 

prism and time the execution time in seconds. All computations were done on a Sun4 . 

light grey regions may be ignored on account of symmetry, (see section 3.4.4). As one 

might expect, those states that go from x* to neighborhoods near the the maximum 

of Vtrig, (those that correspond to rectangles in the upper right corner), are harder 

to prove non-minimizing. To succeed on such a rectangle the program must extend 

the corresponding state far enough to evaluate several u.b .. L(di) · Since the prism­

bounding algorithm always gives an Sj+l bigger than the true image of Sj, the initial 

prisms must be small. 

3.4.4 using symmetry 

In figures (3.1G) - (3 .18) we were able to ignore about half the possible successors. To 

see why, notice that Vtrig is unchanged by the interchange of its v0 and v 1 arguments . 

Two segments, such as {···, x*,x1,x2,···} and {- · ·,x*,x~ , x~,· · ·} in figure (3.19), 

will have the same action because they are each other's images under the interchange 

Xj,o ~ x j,l · Here, the interchange is just a reflection about the line18 x 0 = x 1 . So, 

180ne must take some care here. The interchange is really a reflect ion t hrough the diagonal line 
containing :z:*. Our program always arranges thal :z:* is in the square [0, 1] x [0, 1] and on the line 
:z:u = :z:1. 
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Figure 3.16: The system of prisms used to show Ec :::; 0 .0276 . 
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Figure 3.17: Ec ::; 0.0274 
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Figure 3 .18: Ec ~ 0.0272 
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referring to figure (3.19), if we prove that no nunnruzmg state can pass from :c* 

through the box around :c1 , we are automatically assured that none can go through 

the box around :c~ either. 

, , , , 

, , 
,' , 

,• z* , 

, ,' , 

r:-1 
L5l 

, , , , , , , , 

, , 
,' , , , , , , 

,' 

• 
z' ,' 

2 ,' 

,' , 
, , 

, 
,' , 

Figure 3.19: Two symmetrically related states have the same action. 
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Appendix A 

Approximate Numerical Methods 

In this appendix we review the numerical methods used to obtain the results of chapter 

2. The first section describes the methods used to calculate the minimizing states; 

the next section discusses Kim and Ostlund's scheme for approximating irrational 

vectors by rational ones and the last section explains how we found the Lyapunov 

exponents pictured in figure (2 .6). 

A.l Methods of minimization 

All our minimization schemes solve the Euler-Lagrange equations (2.10 ). For each ro­

tation vector, p/ q , and perturbation we produce a sequence of states {.X0 , X 1 , . . . . ..'\.,., ... } 

each of which satisfies (2.10) for a particular value of E = Ej· We usually begin with a 

state whose first point, :v0 , lies on the minimum of the perturbation to the generating 

function (that is, on a maximum of V.(x)) and whose other points are :Vj = :v0 + ~p . 

Such a state is globally minimizing for the unperturbed generating function so we set 

Eo = 0. We then increase the size of the perturbation, Ej, in small steps and use Xj 

as a starting point to calculate Xj+l using either a gradient-flow scheme or Newton 's 
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method. 

The former involves integrating the system of differential equations 

through a long interval of the formal "time," r. This method is very slow; it crawls 

down to the minimum with exponentially decreasing speed. On the other hand it is 

extremely reliable and seems very rarely to converge to a state other than the global 

minimum. Newton's method is much faster, but somewhat prone to converge to 

extrema other than the minimum. It works by producing a sequence of approximate 

states Y0 , Yi., ... according to the recursive scheme: 

Y0 = some initial guess, 

(A.l) 

where H-1 is the inverse of the Hessian of the action functional and d( Lp,q) is the 

functional's gradient. Since H has (qd) 2 entries, solving (A.l) could be an O((qd)2 ) 

process, but our Hessian, 

21- eV0 -1 0 

-1 21- eV1 -1 

0 -1 21- t:Vq-2 

-1 - I 

where 

82 F 

[ ~ ~ l 8 2 F 8x~ 
I= V· 8x2(xi) = J 

o2V 
8xo8x1 

-1 

0 

-1 

21- EVq-1 

82V 
8x0 8x1 

o2 V 
ox~ 

(xj), 
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has only a few terms off the diagonal. We implemented two schemes to solve (A.l ), one 

that does Gauss-Jordan elimination [PFTV86] and another, rather more complicated 

algorithm that generalizes the one-dimensional work of Percival and Metsel [MP87]. 

We tried the latter because we hoped it would be more numerically stable; it was not, 

and ran a bit more slowly than the Gauss-Jordan program. 

A.2 Rational approximation of irrational vectors 

The problem of approximating a single real number by a sequence of rationals is 

completely solved by the simple continued fraction algorithm [Khin64,Rob78]. We 

write 

w 
1 

ao + ---------­
al + ---~1"------

1 
a2+------

1 
a3+----

a4 + 

(A.2) 

where the a;, called the partial quotients of w, are positive integers. We compute 

them recursively according to 

r 0 = w a; = Int[ri] 

1 
ri+l = --­

ri-a; 

If w is rational then all but finitely many of the a; are zero, but if w is irrational 

then the sequence never t erminates. Truncating the expansion (A.2) after finitely 

many a; gives a sequence of rational approximations E!l., a, .. . with many desirable 
qu q1 

properties. Each ~ is a best approximation in the sense that the only rationals closer 

tow have larger denominators. Further, the sequence contains infinitely many ~ such 

that I w - p; / q; I S: 1/ VS q2
• Indeed, the extremely good convergence of this sequence 

can be a problem. If one wants many approximations with modest denominators one 
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level 0 

(0,1) (1,1) 

level 1 (0,1) (1,2) (1,1) 

(0,1) (1,3) (1,2) (2,3) ( 1,1) 

level 2 

Figure A.1: Several levels of the Farey t1·ee . The solid dot shows the position of the 

golden mean. Its nth approximation is always the mediant that has the largest sum 

Pn + qn of any appearing at at the nth level. 

must either study numbers that, like the golden mean, have very slowly growing qi, 

or introduce other approximation algorithms that produce more slowly converging 

sequences. 

One such algorithm depends on the Farey tree construction of the rationals. In 

a Farey tree one represents the rational number E as an ordered pair (p , q). The 
q 

endpoints of the unit interval are thus (0, 1) and (1, 1). The construction pro-

ceeds by successively splitting intervals with endpoints (Pl, q1) and (Pr, qr) into two 

daughter intervals by inserting an interior point at ((PI + Pr ), ( ql + qr)) . The number 

( (Pl + Pr), ( q1 + qr)) is called the mediant of (Pl, ql) and (Pr, qr) . A sequence of Farey 

subdivisions that begins from the unit interval will eventually produce all rational 

numbers , each rational appearing as a mediant exactly once and in lowest terms. 

We can use the Farey tree as a. tool for rational approximation by choosing Pnl qn t o 

be the mediant of the nth level interval containing w. Since an interval in the nth 

level of the tree has length at most 1 I ( n + 1), the sequence of Farey approximations 

must eventually converge. Since every sequence of Farey approximation begins with 

Pol q0 = t and each subsequent approximation requires only a choice of either the left 

or right daughter interval, we can represent the sequence of Farey approximations as 

a binary address. For example, the address llllll .. . would indicate that w lies always 
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(( 111)) ((011)) ((111)1 

c 

~ ---------~ ~ 
((112)) c 

8 

«100) 

A 

((101)) 

Figure A.2: The mediant operation that refines Farey triangles. The parent triangle 

is represented by an equilateral right triangle. The algorithm divides this into two 

similar, daughter triangles by adding a new point in the middle of the hypotenuse. 

The coordinates of the new point are sums of the coordinates of the end points of the 

hypotenuse. [Kim0st86] 

between (0, 1) and (1, n). 

Kim and Ostlund [Kim0st86] provide a detailed algorithm for implementing Furey 

approximation on a computer and generalize the idea to solve the problem of simulta­

neously approximating two irrationals (w0 ,wt) by rationals of the form (p0 jq,p!/q)\ 

which they represent as the triple (p0 ,p1 , q). To simplify the presentation let us re­

strict our attention to those vectors for which ( w0 , w1 ) is such that w0 + w1 2:: 1; the 

other case is not very different. The analogs of Farey intervals are Farey triangles, 

see figure A.2, and the act of refinement again involves adding a point obtained by 

coordinate-wise addition. When the vertices of the Farey triangles are viewed as ra­

tional points in R 2
, the 2-d Furey mediant lies on the line connecting its parents so 

that the subdivision into triangles represented in figure A .2 reflects a genuine triangu­

lar decomposition of the unit square. Successive subdivisions produce every rational 

vector, though some appear twice.2 As in the 1-d Farey approximation scheme, one 

chooses between a right and left daughter at each level of refinement. Irrational 

vectors thus have binary addresses . Kim and Ostlund assert that the analog of the 

1These are just the sorts of approximations we want; q is the period of our periodic state. 
2 Those vertices in the interior of the triangle (0, 1, 1), (1, 0, 1), (1, 1, 1) lie on the hypotenuse of 

two different Farey triangles. 
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golden mean is the vector whose address is rrrrrrrrr . .. ; they call it the spiral mean. 

Its components are ( r- 2 , r - 1 ), where T satisfies r 3 - T- 1 = 0. One of the rotation 

vectors we studied, (1432, 1897) / 2513, is an approximation to the spiral mean, 

and we used the Farey triangle algorithm to produce the approximations used in the 

sequence of orbits pictured in section 2.3. 

A.3 Lyapunov exponents 

The Lyapunov exponents displayed in section 2.2.2 were found with the algorithm 

outlined in [BGGS80). Their method depends on two observations, the first that 

one can compute the largest Lyapunov exponent by examining the growth of a vector 

tangent to an orbit, the second that the Lyapunov exponents are constant on a certain 

nested family of subspaces of the tangent space. To find all the exponents one selects a 

family of linearly independent vectors v0 , v1 , ... , v2d-l E T !1{,0 and carries them along 

the orbit with the tangent map DF. Unless one makes a fantastically improbable 

choice of initial vectors, each v; will grow with an exponential rate Ama:z:, 

(A.3) 

equal to the largest Lyapunov exponent. The v; will also become more and more 

nearly parallel because their growth is dominated by that of the eigenvector with the 
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largest eigenvalue; D F(q ) v 0 will be nearly parallel to this eigenvector. If we examine :z:o,po 

those components of D F(q ) v 1 that are perpendicular to D F(q ) v0 we should find :r:o,PO zo,po 

that they grow with a rate given by the next to largest Lyapunov exponent. Those 

components of DF(~o.Po) v2 that are perpendicular to both DF(~o .Po ) Vo and DF(~o.Po) v1 

should grow with a rate given by the third to largest Lyapunov exponent, and so on. 

In practice the DF(~o .Po) Vi are too nearly parallel to permit the direct calculation 

described above. Instead one carries out the calculation of DF(~o.Po) Vi in q stages, 

using the definition of DFi .. , (2 .17). Whenever DF(~o.Po)v0 gets larger than some 

modest limit, one performs a Gram-Schmidt orthogonalization on the vectors, then 

normalizes each member of the resulting orthogonal collection and keeps a running 

total of the logarithn1s of the normalization constants . The Lyapunov exponents are 

just 

1 L logn;, 
q normalization~ 

where ni is a normalization constant for the ith vector. We adopted the scheme of 

[BGGS80] only after trying a more difficult and time consuming method based on 

the rate of growth of the volumes of parallelepipeds. Although this original algorithm 

had a pleasing likeness to the definitions of Oseledec's great paper [Osc68], it gave 

the same answer as the algorithm described above, but took quite a bit longer. 
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Appendix B 

Converse KAM Methods 

The algorithms used to prove the theorems of section 3.4.3 have been implemented 

in the C programming language. This appendix descibes the program in some detail. 

Section B.l gives an overview of a typical computation and section B .2 explains how 

the basic data: numbers, intervals, and prisms, are stored in the computer. Section 

B.3 carefully describes the crucial algorithms and serves as an introduction to the 

parts of the code appearing in appendix C. 

B.l What the program does 

This section expands on the plan for a proof offered in section 3.2.1. It first discusses 

the specific map studied, then gives a more detailed sketch of the computation, ending 

with a typical input file and the resulting output. This section also introduces a 

convention of typography and one of nomenclature. Under the former, bits of text 

taken directly from computer programs will be printed in the typewriter typeface. 

Under the latter, closely related objects will have similar names. For the sake of 

efficiency, I have written two versions of most functions . The first, quick and sloppy, 
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is used for exploration. The second, stately and rigorous, verifies any promising results 

suggested by the first. The quick fun ction usually has some descriptive name, as has 

bound_btrace(), which bounds the trace of the blocks f3(xi)· The rigorous version , 

Rbound_btrace (), has almost the same name, but for the prefix, R, connoting rigor. 

A similar convention applies to names of variables; rninLeastLam is an approximate 

value for A-min, the smallest permissible value for the least eigenvalue of a diagonal 

block. The rigorous estimate of the same number is called RrninLeastLam. 

B.l.l the map 

The program really works with the three-parameter, four-dimensional, symplectic 

map, 

y' - y + J', 

J' J _ 81~bc 
{)y . 

Where 

Fabc(Y) = -asin(yo)- bsin(yl)- csin(y0 + yl) . (B.l) 

If one takes a = b - 4~,..
2 

c = 4
",..

2 
this map is conjugate to the trigonometric 

- 2}\-l,r ig ) Mtrig 

example via the change of coordinates, 

J 
p=-. 

27r 

I included the extra parameters because it was easy, and left open the possibility of 

further work. I used y = 27rx to avoid having to multiply by 27r so often. 

B.1.2 sketch of a computation 

This section explains what the program does. First , it reads an input file and invokes 

a host of initialization functions. These have names like ini t · · · () and do such things 



96 

as initialize variables, allocate memory, and copy the input data to various output 

files . Next, the program chooses the starting point, :c* and prepares the first, all­

encompassing prism, which then becomes the sole member of a linked list of untested 

prisms. The rest of the computation is a struggle to get to the end of this list. It grows 

shorter whenever the prism-testing algorithm succeeds; when the program is able to 

show that none of the points in a particular prism could follow :c* in a minimizing 

state, that prism is removed from the list and forgotten. The list grows longer when 

the algorithm fails ; the offending prism is divided in two by refinePrism() and 

replaced by the resulting pair. 

The program tests a prism in several stages ; it begins by examining the values 

of the parameters included in the prism and computing A-min and Trmin; then it 

invokes a series of prism-testing functions . The first of these, quick_ try(), tries to 

show that the state with :c0 = :c*, :c 1 = {center of the prism} cannot be minimiz­

ing. If quick_try() fails the prism is judged hopeless and is immediately halved; 

if quic1Ltry0 succeeds, the program passes the prism to try_Prism(). This func­

tion does a full, orbit-following, image-bounding test, but uses only 48-bit, double­

precision numbers and does not give rigorous results. If try_Prism() succeeds too, 

then, finally, Rtry_Prism() checks the prism rigorously. Eventually the program ei­

ther reaches the eud of the list, and so proves a converse KAM theorem, or founders 

on a difficult prism and quits . 

B.1.3 using the program: a sample 

The computation that proved Ec :::; 0 .0274 began when I typed: 

converse <trig274.in >&trig274.out -d30 

The -d30 sets the maximum depth; it tells the program to quit if it ever fails on a prism 

that has already been subdivided 30 times. Other command-line options include: 
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-b filename Maintain a backup file. This is essential for long computations; the 

backup file is updated frequently and contains enough information to continue 

a proof that has been interrupted by some computer disaster. 

-g filename Make a graphics file. The program composes a PostScript program to 

draw figures like (3.16)-(3.18) and writes it on filename. If filename is the special 

name, off, then the graphics parts of the program are turned off. 

-p dp Fix the precision used in the rigorous parts of the computation to dp decimal 

places; the example above uses the default, 35. 

-s Be stubborn; keep on computing even if some prism cannot be successfully resolved 

at the maximum depth. This option is good for making pictures and for getting 

au idea of how hard a fully successful computation might be. 

-t Change the terseness. Selecting this option makes the program more informative; 

it prints a message whenever it finds a successful prism. It also makes the output 

file much longer, and so I used it only during development of the program. 

-r filename Restore an interrupted computation from a backup file. 

The input :file, trig274. in, looks like: 

0.3085 
0.3085 
0.617 

1.0 
1.0 

0.00125 
0.00125 
0.0025 

1.0 
1.0 

0.0274 < epsilon < 0 . 0276 
Run on kastor 
May 2nd, 1989 

Parameters: 
ac and ~a 
be and ~b 
Cc and ~c 

Angles given in units of 27r . 
(}c,O and ~(}0 
ec,l and ~(}1 

The parts in the typewriter typeface are copied directly from the input file; the 

parts in italics are additional comments. The first three lines give the ranges for 
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parameters a, band c. For example, the first line is the pair, ( ac , A a), which establishes 

that the initial prism will have ac- D.a S a S ac + D.a.. The fifth and sixth lines 

specify that the prism will have 0 S B; S 21r, j = 1, 2. The last few lines are 

cmnments. 

The computation above would yield an output file, trig.out, looking like: 

apmValidate : null APM value in map.c at line 296. 
Parameters : 
a 3.08500000000000e-01 1 . 25000000000000e-03 
b 3.08500000000000e-01 1 . 25000000000000e-03 
c 6.17000000000000e-01 2 . 50000000000000e-03 

Initial 
v[O] 
v [1] 

Comments 

region 
3.14159265358979e+OO 3.14159265358979e+OO 
3 . 14159265358979e+OO 3.14159265358979e+OO 

0.0274 < epsilon < 0.0276 
Run on kastor 
May 2, 1989 

++++++++++++++++++++++++++++++++++++++++++++++++ 
I find no invariant tori for the range of parameters 
0 . 307250 < a < 0.309750 
0.307250 < b < 0.309750 
0.614500 < c < 0.619500 

Did 322 quick checks, 318 semi-rigorous bounding tries, 
and 156 rigorous bounding tries . 
The most deeply refined prism was cut 13 times. 
The longest semi-rigorous orbit ran for 5 iterations, 
the longest successful orbit, 4 iterations. 
Of the 156 successful prisms, 0 fell to the trace criterion, 
156 to the least eigenvalue test. 
The best upper bound on the least eigenvalue came from 
the maxBlam criterion 0.0% of the time, 
the minBlam criterion 99.4% of the time, 
and from t he trace criterion 0.6% of the time . 
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This investigation took 2697.53 seconds. 

The first line is an error message from the initialization phase of the computation, 

saying that some variable was not properly allocated; the program automatically 

corrects this error. The next few lines are copied directly from the input and the 

lines after those give the result : no tori. The rest of the file reports details about the 

program's performance. 

B.2 Representation of data 

Here we explain how data are represented in the program. This section is fairly 

technical; it is partly intended as an introduction to the program and assumes some 

knowledge of C. Those wishing to avoid technical details should read only section 

B.2.1, in which numbers and arbitrary precision arithmetic are discussed. This leads 

into a description of intervals and interval arithmetic, which makes up the next sec­

tion. Last, we explain how prisms are represented. 

B.2.1 numbers and arithmetic 

The computations in the rigorous parts of the program use an arbitrary prec1s10n 

arithmetic library written by Lloyd Zussman.1 A description of his library and its 

constituent functions appears in appendix C; for now it is enough to know that it 

allows one to do arithmetic on numbers represented as finite strings of base 10000 

"digits." We will call such strings APAfs. Addition, subtraction and multiplication of 

two APMs, say, x andy, always yield another number representable as an APM, but 

1 Mr. Zussman's library is licensed under a variant. of the Free Software Foundation's Gnu EMACS 
General Public License and so I am obliged to provide a copy of the source code to anyone who asks. 
Complete source code for my program, converse, is also available on r equest . 
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division need not. The rational number ~ may have an infinite repeating represen-
Y 

tation in base 10000. The division function, apmDi vide 0 , deals with this problem 

by allowing the user to specify the number of decimal places (counting only those 

to the right of the decimal point) to which the result should be correct. The special 

functions, apmSinO, aprnCos (), and apmSqrt(), which I have written, use the same 

strategy. 

Fixed-precision calculations return a kind of implicit interval. An answer, a, that 

is accurate to dp decimal places, can be thought of as an interval guaranteed to contain 

the true answer, a; 

The program also uses functions which do explicit interval arithmetic. An example is 

Rbd_sin(), which accepts as its argument an interval, [0_, 0+] = 19 , and returns an 

interval, [s_, s+], certain to contain sin 0 for any 0 E Io. Most of the crucial estimates 

involve some fixed-precision calculation and so the program often uses the variables 

and 

precision= dp + SAFETY_DP. 

dp is the number of digits selected with the -p option and SAFETLDP is a margin of 

safety. All the program's intermediate results are calculated to precision decimal 

places and then, for safety's sake, regarded as only accurate to ± rnax_error. In the 

calculations summarized in table 3.1, dp = 35 and SAFETLDP = 5. 

B.2.2 intervals and expressions 

The structure representing an interval is 

typedef struct { APM ub, lb } Bdd_aprn , , 
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called a bounded AP M. The functions Rbd_sin () and Rbd_cos 0 each take on e bounded 

APM as an argument and return another as the result. T he only ot her operations 

on intervals used by the program are addition, subtraction, and multiplication. This 

is all handled through two other structures, the BapiiL.term, and the BapiiLexpr. The 

former is short for bounded term, the latter for bounded expression. Their full decla-

rations are: 

typedef struct { int nfactors ' 
APM coef ; 
Bdd_apm **factors, bound } BapiiL.term 

and 

typedef struct { int nterms ' 
APM const ; 
Bdd_apm bound 

' 
BapiiL.term *terms ; } BapiiL.term 

To see the use of these structures , consider computing a bound on 

2.0- asin(B0 )- bsin(B1), 

where a, b, and the ei all belong to intervals . One would set up a bounded expression 

composed of two bounded terms: 

2.0 
'-v-"' 
con.t . 

a sin 00 
'-v-"' '-v-"' 
factor~ 

Bapm_term 

b sin el , 
'-v-"' '-v-"' 

factor~ 

B apm- term 

then use Rbd_sinO to bound the factors and, finally, use Rbd_exprO t o get bounds 

on the whole thing . 

B.2.3 
. 

prisms 

T he prisms introduced in section 3.2.2 are the fund amental objects of the program ; 

t hey are stored in 
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typedef struct RPrsm { int 
APM 
char 

Rxtnd_pt 
struct Rprsm 

in_torus, n_cuts 
*matrix ; 
*cuts[7] ; 
*center 
*next ; } RPrism 

The integer in_torus has one of the values NO_TQRI , UNTRIED, MAYBE, ACTIVE, or 

SYMMTRC according to whether it definitely does not include points from a minimizing 

state, has not yet been tested, has been inconclusively tested, is under active con­

sideration or may be disregarded on account of symmetry. The integer n_cuts tells 

how many subdivisions it took to make this prism and the character strings cuts [ 

] explain how to produce this prism from the initial, big prism. center and matrix 

are the center point and defining matrix of the prism; center is an example of an 

extended phase point; it has seven con:tponents, three for the parameters and two for 

each of the delay coordinates. The pointer next gives the next Rprism on the list. 

B.3 Algorithms 

Here we explain and verify the crucial algorithms. In the first part of the section 

we will establish the correctness of apmSin(), apmCos 0, which we approximate with 

truncated Taylor series, and of apmSqrt 0, which uses Newton's method. Next we 

check the algorithms that set the bounds A-min and Trmin, then we turn to the 

computations used to compute Lb. A_( dj)· In the last part of the section we examine 

the prism-bounding algorithms. 
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B.3.1 special functions 

sine and cosine 

The real computational work is done by two functions, reducedSin() and reducedCos (), 

which compute the sine and cosine of an angle from the interval ! 0 = [0, ~]. These 

functions and the relations 

sin(O ± ~) = ± cos(O), 

7r . 
cos(B ± "2) = =f sm(B), 

sin( -0) = - sin( 0) , 

cos(-B) = cos(B), 

allow us to calculate the sine and cosine of any angle. As mentioned in section B.2.1, 

we must set dp, the number of correct digits we want in the answer. setTrigDp(dp) 

does this; it also chooses the order of the Taylor approximation and picks the number 

of decimal places, trig-dp, to which intermediate results are calculated. To prove 

that all this works we will estimate the error made by reducedSinO ,2 leaving unde­

termined trig_dp and the number of terms in the polynomials, trig_ terms. We will 

then show how to choose these two and how to reduce an arbitrary angle 0 to one 

lying in [0, ~]. 

The form of the approximation is 

reducedSin(B ) ~ PN(B) = 

1 N . ----- L sinCoef[j] 023+1 

sinFactrl j=O 
(B.2) 

where the second line substitutes names used in the code. Let us consider au angle, 

B E [0, ~],which is approximately represented by an APM, 0. 

Proposition If e is such that IB - OJ :::; € < 1, then 

_ (12N+3 

I sin 0 - PN(O)l :::; € + (2N + 3)!. (B.3) 

2 The analysis of reducedCos () is much the same. 
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Proof By straightforward computation, 

< 
_ N . ()2j+l 

IO- Ol + ~( -1)3 (2j + 1)! ) 

()2N+3 

~ € + (2N + 3)! . 

Evaluating long power series like (B.2) can take immense amounts of computer 

time and memory; if the string of digits making up e has length .e then the one 

representing en will have length ;::::::;: nf.. So, in the interest of computational speed, 

reducedSinO truncates some intermediate expressions. What it really calculates is 

a sequence of approximations to certain polynomials . In the equations below, [ x ]n is 

the number given by the truncating x after n places to the right of the decimal point, 

and tdp is short for trig_dp. 

( - l)N' 

[02 S0 + (2N + 1)(2N)( -1)N-l] , 
tdp 

and, finally, 
- esN -

reducedSin(O) = (
2

N + 
1
)! ;::::::;: PN(O) (B.4) 

Let us consider the additional error introduced by truncation. Use Si t o denote 

the exact value of the polynomial approximated by Si· Then So = So and so 5 1 lies 
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in an interval, 

with 51 = 10-tdp. Since S2 = [PS1 + C, where Cis a constant, we may be sure that 

s2 is in the interval 

After truncation we get 

with 52 = 251 and after N such steps we are left with an error, ON 

Combining this with equations (B.3) and (B.4) we get 

- - Nol IBI2N+3 
ireducedSin(B) - sinBI :::; IB- Bl + ( N )' + ( )I 

2 + 1. 2N + 3. 
(B.5) 

The only unknown quantity here is the difference between 8 and its APM represen­

tation 0. Suppose we can arrange for this to be at least as small as 10-tdp. To ensure 

dp decimal places of accuracy in our answer we need only choose N large enough that 

( 2N~J)! < 10-(dp+2
) and then choose trig_dp so large that N 51 :::; 10-(dp+2) too. 

If we want the sine or cosine of an angle that lies outside the interval / 0 , we must 

relate it to some calculation that we can do with the reduced functions . The program 

contains a very accurate representation3 of 1r, so it can just subtract the appropriate 

number of multiples of~ and , perhaps, reflect about the origin. For very large angles, 

the reduction process may lose so much precision as to preclude a calculation to the 

specified accuracy. In that case the program writes an error message and calculates 

the best answer it can. 
3 The current implementa tion has one good t o 45 decima l places, but it would be easy to add 

more. 
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square root 

The square root function apmSqrt 0 is much simpler. It takes an argument, x, and 

uses Newton's method to solve the equation y 2 
- x = 0. Suppose we want dp dec­

imal places of accuracy in the answer; define dp+ = dp + 2. apmSqrt () recursively 

calculates a sequence Yi ::::::: .jX with 

Yo X 

[;(Y; + [~Ll.+ (B.6) 

After the first few steps, the Yi decrease monot onically and so we may write Yi 

.jX + ri; the error term, rj, is a small, positive number. Equation (B.6) then yields 

the following extremely conservative estimate: 

[.:( VX + Tj + [.;x X .] l -Vx, 
2 x+r3 d + 

p dp+ 

< (B.7) 

where Edp+ = 10- dp+ is the inevitable truncation error. If ri < .jX, Newton 's method 
2 

actually gives rj+1 "' 1;, but (B.7) will be good enough for us. It tells us that we 

must continue computing until the difference, 

r · 
Yi-1- Yi = Tj-1- Tj > ; - 2Edp+ l 

is less than 10-(dp+l); the last Yi will be the answer. 

B.3.2 uniform cones and the starting point 

This section explains how the program evaluates the constants Trmin, Trm""' ' A- min 

and A-mao:; it also explains how t o get a good value for the starting p oint :c * . T he 
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main technical problem is the correct evaluation of the constants 

and T = u.b. Tr [,£3]; 

these, together with equations (3.39) and (3.40), determine everything else. Finding 

either B or Tis a matter of maximizing a function on [0, 1] x [0, 1] x {parameters}, 

so it is enough to explain how to find one of them, say T. 

When the program seeks T it sets a, b, and c to their values at the center of the 

intial prism, then uses Newton's method to find a zero of the gradient of Tr [,BJ. For 

the computations presented in section 3.4.3, the search began at (-~, ~) and continued 

until it reached a point :z:T such that 

where «=newt is a small constant. In the code, the search is done with ordinary double 

precision arithmetic and «=newt is called NEWLTOL and is equal to 10-9
. The :z:T it finds 

is very close to the true maximum, and so a suitable estimate is 

where the last term is included to allow for the variation in a, b, and c over the prism. 

The point :z:T found by this technique is the natural starting point for an estimate 

based on Herman's trace condition, so I call it Herman's starting point. 

The estimate for B works much the same way; a Newton's method search gives 

an approximate value for, :z:B, the position where max..\+(,£3) is attained. B is then 

calculated according to 

After calculating B, the program sets up the starting point, :z:*, also called the least­

lambda starting point. This point is essentially the same as :z:8 , but is explicitly 

guaranteed to lie on the line x0 = x 1 so that the calculation can exploit symmetry, 

as explained in section 3.4.4. 
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B.3.3 bounding traces and eigenvalues 

This section explains how the program takes a prism, P, and evaluates the bounds 

u.b. A_(,B), 
(€: ,U,V)ES 

u.b. A+(,B), 
(E:,U,V)ES 

u .b. Tr [,B], 
(e: ,U ,V)ES 

where e: E R 3 stands for the triple of parameters, (a, b, c). These are the basic 

ingredients of the main suite of estimates, {3.45) - {3.47). Recall that the prism is 

determined by its center, (e:c, uc, vc), and by the matrix that maps the hypercube, 

Q7 , into the extended phase space. A point 1] E Q7 has an image given by 

a( 11) ac 

b( 1]) be 

c( 1]) Cc 

uo( 1]) Uc,O 

ul ( 11) Uc,l 

vo( 1]) Vc,O 

Vt ( 1]) Vc,l 

t:.a 0 0 

0 t:.b 0 

0 0 t:.c 

+ 

P11 P12 P73 

0 

0 

0 

P11 

Tfl 

Tfs 

Tfs 

From this it is easy to show that any ( e:, u, v) E S has 

7 

lvo- Vc,ol :S L IPsil 
i=l 

and 
7 

lvt - vc,tl < LiP7il · 
i=l 

(B.8) 

Once we have found bounds on the components of v, we can invoke Rbd_sin () to 

get bounds on the functions sin(v0 ), sin(vt). and sin(v0 +vi), then combine those 

with t:.a, t:.b and t:.c to obtain bounds on the expressions appearing in the trace and 

eigenvalues of ,B. 

In the program, all this is done with the BapiiLexpr machinery described in sec­

tion B.2.1. The expressions asin(v0 ), bsin(vt), and csin(v0 +vi) arise so often that 
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they are given their own names: Ra_sin, Rb_sin and Rc_sin; their values are set by 

RglobaLbounds (priz). In terms of these, the estimates we need are: 

u.b. Tr [,£3] 
s 

4.0 + Ra_sin.bound.ub + Rb_sin.bound.ub + 2 Rc_sin.bound.ub 

u.b . .X_(,£3) 
s 

_: { u.b. Tr [,£3] -Lb . .Jdiscrim.lb}, 
2 

_: { u.b. Tr [,£3] +Lb . .J discrim.ub} 
2 

where discrim is a bounded APM containing estimates over S of the quantity 

(B.9) 

Note how, in every estimate described above, we allow each of the terms a sin( v0 ) • • • 

to vary independently; the bounds we obtain are almost certainly too conservative. 

B.3.4 bounding the images of prisms 

The bulk of the computation is devoted to the kind of prism-bounding calculations 

described in section 3.2.2 . In this section we will see how the program takes a prism 

in the extended phase space, S = (xc, P), and constructs another, S' = (x~, P'), 

guaranteed to contain G(S). The computation of x~ is easy; x~ :=::::: G(xc) where 

G( b ) ( I bl I I ') a, , c, u, v = a , , c , u , v (a, b, c, u', v'), 

u' v, 

v 1 = 2v _ u _ 811abc(v) 
ax . (B.lO) 

Although only v' involves any real computation, and so only it introduces any error, 

we will find it useful to assign a somewhat larger uncertainty, Oc, to both u' and v'. 

The computation of P' is much more difficult; the work falls into two parts: setting 

up the matrix A and evaluating the numbers, 

(B.ll) 
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The second term, which involves bounds over :c E 5, will be the hard part. As was 

mentioned in section 3.2.3, the program uses two schemes to prepare A. The first, 

the fixed-form scheme, is specially suited to prisms with zero volume. Since all the 

prisms on the linked list are of the form 

{parameters} x { :c *} x {possible successors}, 

all are singular. Accordingly, the fixed-form scheme is always used on the first step 

of a round of prism-bounding. Since the first image is non-singular by construction, 

the second and subsequent iterates employ a different, more accurate scheme, the 

column-rotor. This section describes both schemes and verifies that they are correctly 

implemented. 

Most of the work will come in showing that the Wj are calculated properly, a task 

simplified by the following definitions and proposition. 

Definition For any real, m x n, matrix A, define 

n 

[A]~e* = L la~ejl, 
j=l 

the k-th row sum of A, and 

Tn n 

[A]**= L L la~ejl = L [A]~e* 
le=l j=l le=l 

Proposition For any real, m X n matrix A and real, n x l matrix B, the product 

C = AB satisfies 

and (B.l2) 

Proof By direct calculation: 

l 

[C]~e* = L lc~ejl 
j = l 

l n 

< 2.:.:: :L I a~e i II bi j I , 
j=l i=l 
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n 

< L iakil [B]i*' 
i=l 

n 

< L iakii [B]** = [A]k ,.[B]**. 
i=l 

Then, using the first part of (B.12), one finds 

711 711 

[CJ* * = L [C]k* ~ L [A]k*[B]** = [A]**[B)**" 
k=l k = l 

It also follows from the definitions that 

We will use a block-matrix representation for DG, the derivative of the map; 

I 0 0 

DG= 0 0 I (B .l3) 

1' -I {3 

where 

[3( v) = 
[ 2- asin(vo)- csiu(vo + v,) 

-c sin( v0 +vi) 

-csin(v0 + v1 ) l 
2 - b sin( v 1 ) - c sin( Vo + Vt) 

and 

[ cos(vo) 0 cos(v0 + v,) ] · "Y(v) = 
0 cos(vt) cos(vo + v1) 

It will also prove convenient to have block forms for the matrix P and to build a 

column vector, w, out of the w j . 

Ppp 0 0 

Wp I P= Pup Puu Puv and w = Wu ' (B.l4) 

Pvp Pvu Pvv W u 
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where PPP is 3 x 3, Pup and Pvp are 3 x 2, and the rest of the blocks are 2 X 2 . The 

elements of w are: 

w­p-

the fixed-form fattener 

, w. = [ :: ] and w. = [ :: ] 

When using this scheme we force the matrix A to be of the form 

APP 0 0 

A= Aup 0 Auv (B.l5) 

The explicit forms of the blocks will be chosen to simplify the calculation of the Wj· 

Given (B .15), one can get a formula for A-1 in terms of the blocks and their inverses: 

A- 1 pp 0 0 I 0 0 

A - 1 0 A- 1A A-1 A-1 -AupA_;p1 I 0 - vu vv uv vu 

0 A-1 uv 0 -AvpA_;i 0 I 

A-1 
pp 0 0 

{ A-1 A A-1 A A-1 

} vu vv uv up pp A-1A A - 1 A-1 (B.l6) - vu vv uv 
1-1 A A-1 vu 

-.f vu vp pp 

A-1 A A-1 - uv up pp A-1 uv 0 

Taking APP = PPP and using (B.16), (B.l4), and (B.l3), we get A - l o DG o P = 

I 0 0 

! 
A;;-J(IPPP - Pup) 

) { A;;-,;f3Pvu- } { A;;-,;(13Pvv - Puv) } +A;;-,; ({3 Pvp - Avp) 
A;;-,; AvvA~J Pvu -A;;-J AvvA~J Pvv 

+A~,;AvvA~,;(Avp - Pup) 

A~; ( Pvp - Aup) A~; Pvu A~J Pvv 
(B.l7) 
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When computing the Wj we must allow the matrices 1 and {3, which dep end on a, b, 

c, and v to vary over S. All the other blocks, those in A and those in S, are constant. 

The form of (B.17) suggests the following choices for the blocks of A: 

App PPP> 

Aup Pvp, 

Avp lcppp- Pup+ f3cPVP> 

Auv Pvu + Pvv> 

Avu {3c{Pvu + Pvv), 

Avv f3 cPvv - Puv, (B.l8) 

where f3c and lc are the values of {3 and 1 a.t the prism's center. Note that the 

entries in the blocks making up P are exactly represented as APMs; so are their 

sums, products, and differences. Thus Auv, Aup and APP are exact; t he other blocks 

of A, which involve the evaluation of special functi ons, are uncertain to the extent as 

the values of the special functions . 

The choices (B.l8) immediately d et ermine most of the Wji the row sums contribut-

ing to wP a.e automatically equal to one and, unle" Auu ;, 'ingular, w. = [ : ] . The 

program checks the invertibility of Auv by evaluating its determinant, an exact cal­

culation. If det[Auv] were to b e zero the program would write an error message and 

halt; this has never actually happened. The remaining row sums, those contributing 

ub { 
[A~~(I - Ic)PPP + A~~({3 - f3 c)Pvp]i* + } 
[A~~{3Pvu + A~~(.B- .BJPvv]j* 
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u.b.(['"Y- '"YcJ**)[PPP]**+ 

U. b.( [/3]* *)[Pvu]** + 

u.b.([/3- ,(3cJ**)([Pvp]** + [Pvv]**) 

(B.19) 

where k = j + 3, j = 1,2 and all upper bounds are taken over~ E S. Out of all the 

numbers appearing in (B.19), only [A~J]j* and the upper bounds on [,B]**, [/3- ,l3cJ**' 

aud b - 1 cl* * cannot be calculated exactly; the first can be estimated to any desired 

precision with the APM library, the rest are handled with the BapiiLterm, BapiiLexpr 

machinery. 

the column-rotor scheme 

This technique fattens matrices A ~ DG"'c o P, where DG and P are as in equations 

(B.l3) and (B.l4). Such A's have almost the same form as (B.l5), but they have 

non-vanishing Auu blocks. The method's name comes from the way it tries to ensure 

that A is non-singular; it rotates parts of columns 4-7 with respect to each other so as 

to guarantee that they are not parallel. For example, the function Rsubspace_rot (), 

which performs the rotations, b egins by finding the angle between the two, 2-d column 

vectors enclosed in braces in the matrix below. 

a31 a32 a33 0 

[ ::: l [ ::: l 
If columns 4 and 5 are nearly parallel then so are these two vectors; Rsubspace_rot () 

would rotate the shorter of the two through some fixed angle, then go on to check 

and, perhaps rotate, other pairs until the matrix had no parallel columns. As we 
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noted in section 3.2.3, this technique is not at all optimal. Indeed, it is not even 

certain to produce a non-singular matrix, though, in practice, it always does. The 

column-rotor scheme produces smaller, more snugly fitting bounding prisms than the 

fixed-form fattener and so improves the program's performance. 

The main computational work in this scheme is in inverting the matrix A and 

m calculating the Wj. Since, after column-rotation, A bears no direct relation to 

DG.,c o P, we cannot expect any special form for A-1 o DG., o P. Instead, we must 

use the APM library to compute some A ~ A - 1 directly. Define4 a 4 x 4 matrix B 

such that 

[ Buu B,. ][ Auu 
A,. l =I 

Bvu Bvv Avu Avv 

Then 

I 0 0 A - 1 
pp 0 0 

A-1 0 Buu Buv -AupA_;P1 I 0 

0 Bvu Bvv -A11pA_;P1 0 I 

A-1 
pp 0 0 

{ - BuuAupA;; } - BuvAvpA_;p1 

App 0 0 
,...., 

A up Auu Auv (B .20) ,...., 

{ -BvuAupA;,; } -BvvAvpA_;p1 

Avp Avu Avv 

Note that the lower-left, 4 x 4 block of A is just B. Then, agam taking App = Ppp, 

4 Some of the notation in this section, like B here, is introduced as a guide to the names of 
variables used in the code. 
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the product A- 1 o DG~ o Pis 

I 0 0 

{ AupPpp + AuuPvp+ } { AuuPvu+ } { AuuPvv+ } Auv(rPpp- Pup+ f3Pvp) Auv(f3Pvu- Puu) Auv(f3Pvv- Puv) 

{ AvpPpp + AvuPvp+ } { AvuPvu+ } { AvuPvv+ } Avv(rPpp- Pup+ f3Pvp) Avv(f3Pvu- Puu) Avv(f3Pvv- Puv) 
(B.21) 

Since the fattening scheme does not alter the first three columns, the blocks Aup and 

Avp have the forms dictated by A= DG~o o P; these are the same as the forms used 

in equation (B.18) for the fixed-form scheme. Equation (B.21) then simplifies to 

and the row sums contributing to w u are 

ti.b. 

[Auv('- rJPpp + Auv(.B- f3c)Pvp]j *+ ) 

[AuuPvu + Auv(f3Pvu- Puu)Ji*+ ' 

[AuuPvv + Auv(,l3Pvv- Puv)]i* 

u .b . [AuuPvu + Auv(,BPvu- Puu)]** + 

u.b. [AuuPvv + Auv(,BPvv - Puv)]**. (B.22) 

All the upper bounds are taken over :c E S; the formulae for w v are similar. The 

program calculates the entries in A to at least precision decimal places, then treats 

them as exact in the evaluation of [Avu]i * and in expressions like 

(B.23) 
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Upper bounds like (B.23) are so important that the program includes a special 

function, RbouncLrows (), to evaluate them. To account for the small errors ( ~ 

10-preci.oion) in A, the program adds max_error to the value of Wj as computed ac­

cording to (B.22). Since the entries of f3 and Pare all less in absolute value than 10, 

and since max_error is at least five orders of magnitude bigger than the largest error 

in A, this is a very conservative estimate. 

matrix inversion 

Notice that only blocks from the lower-left corner of A appear in equation (B.22) ; 

it will be enough to calculate just these blocks to precision decimal places. The 

function, Rgauss (), which does the calculation, takes a matrix M and uses the Gauss­

Jordan algorithm with full pivoting to produce a result M ::::::: .Af-1 such that Jlvf 111 = 

I+ 0( E), that is 

1[111 111]·. - li· ·I < € '1 •J -

where /iii is the Kroneker delta function aud E is, as usual, 10-preci.oion. 

To apply the Gauss-Jordan algorithm to an n x n matrix M one constructs the 

n x 2n matrix 

M11 11112 Jl.f1n 1 0 0 

G = 
Jlvf21 Jy[22 1112n 0 1 0 

l\1n 1 Mn2 Jvfnn 0 0 1 

made by appending a copy of the identity to the right side of M . The algorithm 

transforms the left side of G into the identity through a sequence of row operations 

that simultaneously transform the right side into A- 1
. The first step is to multiply the 

top row by a constant so that the ( 1,1) entry is equal to one, then subtract suitably 

scaled multiples of the first row from each of the others in such a way as to eliminate 
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the entries in the first column. After this step the system looks like 

1 M.u. l!il.n. 1 0 0 
M11 M11 M11 

0 Af22- Ml1llf1l _l!fu.. 1 
G'= Mt I A-ftl (B.24) 

0 Mn2- Jl;f,.lllfl l _.M.....t. 1 
M11 M11 

In the second step one uses multiples of the second row to eliminate all but the (2,2) 

entry from the second column ... and so on. The true Gauss-Jordan algorithm with 

full pivoting may rearrange some of the rows and columns so as to place large entries 

on the diagonal of the left-hand block; also, real implementations use only a single 

n x n array, gradually replacing the matrix M by its approximate inverse, /1!1. The 

reader interested in the details of the algorithm should consult either the code, which 

is in appendix C, or the excellent book [PFTV86]. Here, we will mostly ignore the 

rearrangements, because they do not affect the error estimates we need. 

The divisions needed to calculate intermediate results like (B.24) can only be done 

approximately so we must calculate bounds on the errors they introduce. Suppose all 

the calculations are done to some fixed precision, inv_dp and define Einv = 10inv-<lp . 

We will need a new symbol, G', to denote the approximate value of the matrix G' 

and will also need to define 61 , the largest error made iu calculating an entry of G'; 

The second step produces 

1 0 * 
1 0 0 Jl;ft 1 

0 1 * * 
M 0 

G"= MIIA-12 2 - 1\;[211\;f. 2 

0 0 * * * 1 
(B.25) 
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Ideally, we would use G' to calculate G" according to 

G~'. = l &J 

G~. -
&] 

if i = 2 

if i -I= 2. 

but instead, Rgauss 0 actually calculates 

a~'. 
1] 

[ c~ ·] l] if i = 2 

G~ 2 inv.-dp 

[G:; _ [ G~~;; ]. _. l if i -1= 2 
&nv p inv.-dp 

(B.26) 

From this we must estimate 52 , an upper bound on the difference between G" and 

G". Rgauss () finds 52 in stages, as follows: 

(i) Compute 

(ii) 

< 

This is a bound on the error made by taking 

piv_inv; 

pi v _inv is the name used in the code. 

This is a bound on the error introduced by normalizing the second row so that 

its (2,2) entry is equal to one. 



(iii) 

> 
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201 +or u.b.jG~ 2 1 + o1or, 
lf;2 

01 + 01 u .h.jpiv_invG;Icl +Or u.h.jG~ 2 1 + 010r . 
lcf;2 lf;2 

This is a matrix-wide bound on the errors made in computations like those in 

(B.26). The inequality is a consequence of the pivoting part of the algorithm, 

which ensures that jpiv_inv a; lei :::; 1. 

(iv} Finally, 

Similar estimates eventually give On, a matrix-wide estimate on the difference between 

entries of }vf and the true inverse, .l\f- 1. From this we can conclude 

(B.27) 

Unless 1\1 is singular, we can choose inv_dp to make the error (B.27) as small as 

we like. Rgauss () guarantees both On and the error given by (B.27) to be less than 

10 - preciaion. 

about truncation 

Both the schemes described above produce matrices, P', whose entries are long strings 

of digits, longer than those of the original matrix, P. To avoid the computational 

cost of storing and manipulating long strings, the program truncates the entries in 

P' to precision decimal places; this introduces a small, readily manageable error. 

Call the truncated prism P:runc ; its entries differ from those of P' by, at most , 

E = 10- preciaion, so that :V E S' 

:v = :v~ + P'7J fo r s ome 17 E Q7 
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differs from 

- I P' 
:C = :Cc + trunc11 

by, at most, 7E in each coordinate. The simplest way to handle this error Is to 

incorporate it into be, the upper bound on the difference I(Gabc(:cc) - :cc)jl . The 

coordinates of Gabc(:cc) are calculated out to precision decimal places, so we must 

have 

Since the program uses De = max_error = lo•afety....dp€ = 105
E, this condition is abun-

dantly satisfied. 
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Appendix C 

Computer Programs 

This appendix contains the most important parts of the C programs used to prove 

the results described in chapter 3. In the interest of economy, we have deleted most 

of the non-rigorous and semi-rigorous parts of the code, leaving only those parts bear 

on that the correctness of our converse KAM results. The first section contains Lloyd 

Zussman's own description of his arbitrary precision library, the rest of the appendix 

has been copied directly from the source files used to compile the program. 

C.l Arbitrary precision library 
APM 
apminit(init, scale_factor, base) 
long init; 
int scale _factor; 
s hort base; 
{} 

This routine initializes a nev APM value . The 'init' parameter is a long 
integer that represents its initial value, the 'scale_factor' variable 
indicates hov this initial value should be scaled, and 'base' is the base o~ 

the initial value . lote that the APM value returned by this routine is 
normally a reclaimed APM value that has been previously disposed of via 
apmDiapose(); only i~ there are no previous values to be reclaimed vill this 
routine allocate a fresh APM value (see also the apmGarbageCollect() 
routine). 

Bases can be 2 - 36, 10000, or 0, vhere 0 defaults to base 10000 . 

If the call fails , it vill return (APM)RULL and 'apm_errno' vill contain a 
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meaningful result. Otherwise, s new APM vslue will be initislized. 

For example, assume that we want to initialize two APM values in base 10000, 
the ~irst to 1.23466 and the second to 1 E20 ("one times 10 to the 20th 
power") : 

APM apm_1 
APM apm_2 

apmlnit(123466L, -6, 0); 
apmlnit(1L, 20, 0); 

As a convenience, the ~ollowing macro is de~ined in apm.h: 

lde~ine apmlew(BASE) 

int 
apmDispose(apm) 
APM apm; 
{} 

apminit(OL, O, (BASE)) 

This routine disposes o~ a APH value 'apm ' by returning it to 
unused APM values (see also the apmGsrbageCollect() routine). 
an appropriate status which is also put into 'apm_errno' . 

int 

apmGsrbageCollect() 
{} 

the list o~ 
It returns 

When APH values are disposed o~. they remain allocated. Subsequent calls to 
apmlnit() may then return a previously allocated but disposed APH value. 
This is done ~or speed considerations. but after a vhile there may be lota o~ 
these unused APM values lying around. This routine reclaims the space taken 
up by these unused APH values (it ~rees them). It returns an appropriate 
status which is also put into 'apm_errno'. 

int 
apmAdd(result, apm1, apm2) 
APH result; 
APH apm1; 
APM apm2; 
{} 

This routine adds 'apm1' and 'apm2', putting the sum into 'result', whose 
previous value is destroyed. lote that all three parameters must have been 
previously initialized via apminit(). 

The 'result' parameter cannot be one o~ the other AP~ parameters. 

The return code and the 'apm_error' variable re~lect the status o~ this 
function. 

int 
apmSubtract(result, apm1, apm2) 
APH result; 
APH apm1; 
APH apm2; 
{} 

This routine subtracts 'apm2' ~rom 'apm1', putting the di~~erence into 
'resu1t', vhose previous value is destroyed. lote that all three parameters 
must have been previously initialize~ via apmlnit() . 

The 'result' parameter cannot be one of the other APK parameters. 

The return code and the 'apm_errno' variable re~lect the status o~ this 
~unction. 

int 



apmMultiply(result, apml, apm2) 
APH result; 
APH apmt; 
APH apm2; 
{} 
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This routine multiplies 'apmt' and 'apm2', putting the product into 'result', 
vhose previous value is destroyed. Bote that all three parameters must have 
been previously initialized via apmlnit(). 

The 'result' parameter cannot be one o~ the other APM parameters. 

The return code and the 'apm_errno' variable re~lect the status o~ this 
~unction. 

int 
apmDivide(quotient, radix_places, remainder, apmt, apm2) 
APK quotient; 
int radix_places; 
APK remainder; 
APH apml; 
APK apm2; 
{} 

This routine divides 'apml' by 'apm2', producing the 'quotient' and 
'remainder' variables. Unlike the other three basic operations, 
division c&nnot be counted on to produce non-repeating dec~als, so 
the 'radix_places' variable exists to tell this routine hov many 
digits to the right o~ the radix point are to be calculated be£ore 
stopping. I~ the 'remainder' variable is set to (APM)BULL, no 
remainder is calculated • • . this saves quite a bit o~ computation time 
and hence is recommended vhenever possible. 

All APK values must have been previously initialized via apmlnit() (except, 
o£ course the 'remainder' value i~ it is to be set to BULL). 

Division by zero creates a zero result and a varning. 

The 'quotient' and 'remainder' variables can't be one o~ the other APK 
par~eters. 

The return code and the 'apm_errno' variable re~lect the status o~ this 
~unction. 

int 
apmCompare(apmt, apm2) 
APK apml; 
APM apm2; 
{} 

This routine compares 'apml' and 'apm7.', returnins -1 i~ 'apml' is less than 
'apm2', 1 i~ 'apm1' is greater than 'apm2', and 0 i~ they are equal. 

It is not an error i~ 'apmt' and 'apm2' are identical, and in this case the 
return value is 0 . 

The 'apm_errno' variable contains the error code. You must check this value: 
i£ it is set to an error indication, the comparison £ailed and the return 
value is there~ore meaningless. 

int 
apmCompareLong(apm, longval, scale_~actor, base) 
APM apm; 
long longval; 
int scale _factor; 
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short base; 
{} 

This routine vorks just like apmCompare(), but it compares the 'apm' value to 
'longval', scaled by •scale_£actor 1 in 1base 1 • The 1apm_errno 1 variable 

contains the error code. 

int 
apmSign(apm) 
APM apm; 
{} 

This routine returns the sign o£ the 'apm' value: -1 £or negative, 1 £or 
positive. The 'apm_errno' variable contains the error code. You must check 
'apm_errno': i~ it's non-zero, the ~unction return Ya1ue is meaning1ess. 

int 
apmAbsoluteValue(result, apm) 
APM result; 
APM apm; 
{} 

This routine puts the absolute value o~ 1 apm 1 into 'result', vhose previous 
value is destroyed. late that the tvo parameters must have been previously 
initialized via apmlnit(). 

The 'result' parameter cannot be the other APM parameter. 

The return code and the 'apm_errno' variable re£1ect the status o£ this 
£unction. 

int 
apmKegate(result, apm) 
APM result; 
APM num; 
{} 

This routine puts the additive inverse o£ 'apm' into 'result', vhose previous 
value is destroyed. Rote that the tvo parameters must have been previously 
initialized via apmlnit() . 

The 'result' parameter cannot be the other APM parameter. 

The return code and the 'apm_errno' variable re£lect the status of this 
£unction. 

int 
apmReciprocal(result, radix_places, apm) 
APM result; 
int radix_places; 
APM num; 
{} 

This routine puts the multiplicative inverse o~ 'apm' into 'result ' , vhose 
previous value is destroyed. l ote that the tvo APM parameters must have been 
previously initialized via apmlnit(). Since taking the reciprocal involves 
doing a division , the 'radix_places' parameter is needed here £or the same 
reason it's needed in the apmDivide() routine. 

Taking the reciprocal of zero yields zero vith a varning status. 

The ' result' parameter cannot be the other APM parameter. 

The r eturn code and the 1 apm _errno 1 variable re£lect the status of this 

function . 

int 
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APM result; 
APM apm; 
int acale_factor; 
{} 
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This routine assigns to 'result' the Yalue o£ 'apm' vith its radix point 
shi£ted by 'scale_£actor' (positive 1 scale_£actor' means shi£t le£t). The 
'scale_£actor' represents hov many places the radix is shi£ted in the base o£ 
'apm' un1ess 'apm' is in base 10000 in this special case, 1 scale_~actor 1 

is treated as i£ the base vere 10 . 

This is a Yery quick and accurate vay to multiply or diYide by a pover o£ 10 
(or the number's base). 

The 'result' parameter cannot be the other APM parameter. 

The return code and the 1 apm_errno' variable re£lect the status o£ this 

:function. 

int 
apmValidate(apm) 
APM apm; 
{} 

This routine seta 'epm_errno' and its return status to some non-zero value i£ 
'apm' is not a valid APM Yalue. 

int 
apmAssign(result, apm) 
APK result; 
APH num; 
{} 

This routine assisns the value o~ 'apm' to 'result', whose previous value is 
destroyed. lote that the tvo parameters must have been previously 
initialized Yia apminit(). 

It is not considered an error i£ 'result' and 'apm' are identical; this case 
is a Yirtual no-op . 

The return code and the 'apm_errno' variable re£lect the status o£ this 
£unction. 

int 
apmAssignLong(result, long_value, scale_£actor, base) 
APM result; 
long long_value; 
int scale_~actor; 

short base; 
{} 

This routine assigns a long int to 'result'. Its second through £ourt h 
parameters correspond exactly to the parameters o£ apmlnit(). The only 
di£ference betveen the tvo routines is that this one requires that its result 
be previously initialized. The 'long_value ' parameter is a long that 
represents the value to assign to 'result', the 'scale_~actor' variable 
indicates hov this va1ue sho~d be sca1ed, and 'base' is the base o~ the 

Yalue. 

Bases can be 2 - 36, 10000, or 0 , vhere 0 de£aults to base 10000. 

For example, assume that ve vant to assign values to tvo previously 
initialized APM entities, apm_1 and apm_2. The base vill be base 10000, the 
£irst value vill be set to 1.23466 and the second vill be set to 1 E20 ("one 
times 10 to the 20th pover") : 
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int ercode; 

ercode = apmAssignLong(apm_1, 123466L, -6, 0); 

apmAssignLong(apm_2, 1L, 20, 0); 

The return code and the 1 apm_errno' variable reflect the status of this 
function. 

int 
apmAasignString(apm, string, bass) 
APK apm; 
char •string; 
short base; 
{} 

This routine takes a character string containing the ASCII representat ion of 
a numeric ~alue and converts it into a APM value in the base apeci~ied . The 
1 apm' parameter must have been previously initialized, 'string' must be 
non-lULL and valid in the specified base, and 'base' must be a valid base. 

The return code and the 'apm_errno' ~ariab1e re~lect the status o~ this 

function . 

int 
apmConvert(string , length, decimals, round, leftjustify, apm) 
char +strin~; 
int length; 
int decimals; 

int round; 
int 1eftjustify; 
APM apm; 
{} 

This routine converts a APM value 'apm' into its ASCII representation 
'string ' . The 'length' parameter is the maximum size of t he string (including 
the trailing null), the 'decimals' parameter is the number of decimal plac es 

to display, the 'round' parameter is a true-false value ahich determines 
vhether rounding is to take place (0 =false= no rounding), the 
'leftjustify' parameter is a true-false value vhich determines vhether the 
result is to be left justified (0 = false = right justify; non- zero = true 
left justify), and the 1apm 1 paramter is the APK value to be converted . 

The 'string' parameter must p oint to an area that can h old a t least ' length' 
bytes. 

If the ' dec imals' parameter is < 0, the string will c ontain the number of 
decimal places that are inherent in the APM value passed in . 

The return code and the 1 apm_errno' variable reflect the s tatus of thi s 
function. 

int 
(•apmErrorFunc(nevfunc))() 
int (•nevfunc)(); 
{} 

This routine registers an error handler for errors and varnin&s . Before any 

of the other APK routines return to the caller, an optional err or handler 
specified in 'nevfunc' can be called t o intercept the resul t of the 
operation . With a registered error handler , the caller can dis pense vith the 
repet i tious code for checking ' apm _errno ' or the function retu rn status aft er 
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each call to a !PM routine. 

I~ no error handler is registered or i~ 'nev£unc' is set to .ULL, no action 
vill be taken on errors and varnings except to set the 1 apm_errno 1 variable . 
If there is an error handler, it is called as follovs vhen there is an error 
or a varning: 

ret code (•nevfunc)(ercode, message, file, line, function) 

where . . . 

int retcode; 

int ercode; 
char •message; 

char •file; 
int line; 
char •function; 

I• returned by 1 nevfunc 1 : should be 1 ercode 1 •I 
I• error code •/ 
I• a short string describing the error •I 
I• the file in vhich the error occurred •I 

I• the line on vhich the error occurred •I 
I• the name of the function in error •I 

Bote that your error handler should normally return 1 ercode 1 unless it does a 
longjmp, calls exit(), or in some other vay interrupts the normal processing 
flov. The value returned from your error handler is the value that the apm 
routine in error vill return to its caller . 

The error handler is called after 'apm_errno' is set. 

This routine returns a pointer to the previously registered error handler or 
lULL if one isn't registered. 

int 
apmCalc(result, operand, ... , lULL) 
!PM result; 
!PM operand, . . . ; 
{} 

This routine per£orms a series of calculations in an RPI ( 11 Reverse 
Polish Rotation") fashion, returning the final result in the 'result' 
variable. It takes a var i able number of arguments and hence the 
rightmost argument must be a RULL. 

Each 'operand' is either a !PM value or a special constant i ndicating 
the operation that is to be performed (see belov). This routine makes 
use of a stack (18 levels deep) similar to that in many pocket 
calculators. It also is able to access a set of 18 auxiliary 
registers (numbered 0 through 16) for holding intermediate values. 

The stack gets reinitialized at the start of this routine, so values 
that have been lef t on the stack f r om a previous call vill d i sappear . 
However, the auxiliary registers are static and values remain in these 

registers for the duration of your program. They may also be 
retrieved outside of this routine (see the apmGetRegis ter() and 
apmSetRegister() routines, belo v ) . 

An operand that is an APM value is automatically pus hed onto the stack 
simply by naming it in the function call. If the stac k is ful l vhen a 
value i s being pushed onto it, the bottommo st value drops of~ t he 
stack and the push succeeds; thi s is similar to hov many pocket 
calculators vork. !lso , if the stack is empty, a p op vill succeed, 
yielding a zero value and keeping the stack empty. The topmost value 
on the etack is automatically p opped into t he 'result' parameter after 
all the oper ations h ave been per formed. 

An operand that is one of the f olloving spec ial v alues vill cause 

an operat i on to be per f ormed . These oper at ions are descr ibed in the 
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'fol.loving list. lote that the values "V", "V1", and "V2" are used 

in the following list to stand for temporary values: 

APM_ABS 
APM_IEG 
APM_CLEAR 
APM_DUP 
APM_SWAP 
APM_SCALE(B) 
APM_PUSB(ll) 
APM_POP(I ) 
A PM_ ADD 
APM SUB 
APM_MUL 
APM_DIV(B) 

APM_RECIP(II) 

pop V, push absolute value of V 
pop V, push -V 

empty the stack 
pop V, push V, push V 

pop V1, pop V2, push V1, push V2 
pop V, push V scaled by I [ as in apmScale() ] 

V = value in register I, push V 
pop V, store it in register I 

pop Vl, pop V2 , push (V2 + V1) 
pop V1, pop V2, push (V2 - V1) 
pop V1, pop V2 , push (V2 • V1) 

pop Vl, pop V2, push (V2 I Vl) vith B radix places 
as in apmDivide() ], remainder goes into register 0 

pop V, push 1IV vith B radi x places 
as in apmReciprocal() ] 

Since register 0 is used to hold the remainder in a division, it is 
recommended that this register not be used to hold other values. 

As an example, assume that APM values "~oo 11 , "ba.r", and 11 baz 11 have 
been initialized via apmlnit() and that .. :foo 11 and ,.bar" are to be u s ed 

to calculate "ba:z" as :follows (assume that divisions stop after 16 
decimal places have been calcluated) : 

baz = 1 I ((((foo * bar) + foo) I bar) - foo) 

The function call vill be: 

bcdCalc(baz, foo, APM_DUP, APM_POP(1), bar, APM_DUP, APM_POP(2), 
APM_MUL, APM_PUSH(1), APM_ADD, APM_PUSH(2), APH_DIV(16), 
APM_PUSB(1), APM_SUB, APH_RECIP(16), BULL) ; 

Bote that the value of "foo" is stored in register 1 and the value of 
"bar" is stored in register 2 . After this call, these registers vill 
still contain those values. 

int 
apmGetRegister(regvalue, regnumber) 
APM regvalue ; 
int regnumber; 
{} 

The value in aux iliary regi ster number t r egnumber' is assigned to APM 
value 'regvalue'. The 'regnumber' parameter must be betveen 0 and 16, 
i n c l us i ve. The ' r egvalue' parameter mus t have been previ ously 
initialized via apmlnit() . 

i nt 
apmSetRegis ter(regvalue, regnumber, nevvalue) 
APM regvalue ; 
int regnumber; 
.APM nevTalue ; 
{} 

The value i n aux i1iary r egi ster n umber ' r egnumber ' is assigned t o APM 
v alue 'regvalue', and then the APM value 'ne~value' i s stored in that 
same register . The 'regnumber' parameter must be betveen 0 and 16, 
inclusive . The ' r egva1ue ' and 'nevvalue' parameter s must hav e been 
previously initialized via apminit() . 
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C.2 Source code 

The listings below contain only those functions crucial to the correct execution of a 

converse KAM calculation. Some references to inessential or semi-rigorous parts of 

the code have been left in place because we wished to present the important functions 

exactly as they appear in the original source files. 

C.2.1 special functions 

the header files apmSpecial.h and apmPrint.h 

I define KAX_TRIG_TERHS 100 
I define DFLT_TRIG_DP 20 

• define PI_DP (sizeof(pi_str) I sizeof(char) 

• ifndef YES 

• dd'ine YES 1 

• define 10 0 

• end if 

I ifndef m_svap 
I define m_svap(x,y,t) (t=x, x=y, y=t) 

I endif 

zero, on•, tvo ; 

- 3) 

extern API! 
extern APM 
extern APK 
extern APM 

pi, tvo_pi, half_pi, threeRalf_pi, eighths_2pi[8] 
Theta, scratch, xMod2pi. Theta_aq, Ansver i 

Factrl, coef, apmOrder ; 
extern APK approx[2], diff, ub_diff 
extern int trig_dp, specialsinit 
extern int trig_terms , dp_lost ; 
extern char pi_str[] ; 

apmCos(), etc. 

I include <stdio.h> 
I include <math.h> 
I include "apm . h" 
• include "apmPrint . h 11 

• include "apmSpecial.h" 

• define BUF_SZ 266 

APH •sinCoef, •cosCoef 
APM zero, one, tvo ; 
APH pi, tvo_pi, half_pi, threeRalf_pi, eighths_2pi[8] 
APH Theta, scratch, xHod2pi, Theta_sq, Ansver ; 
APM sinFactrl, cosFactrl, apmOrder 
APK approx[2] , diff , ub_diff ; 
int trig_dp, specialsinit = 10 
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int 
char 
char 

trig_terms, dp_lost ; 
pi_str [] = "3 . 14169266368979323846243383279602884197169399376" 
log_bu~[BUF_SZ] ; 

I• ++++++++++++++++++++++++ •I 

initApmSpecials() 
{ 

} 

int k ; 

I• Initialize a bunch o~ APMs. Theta vill be the reduced argument 
o~ a trig ~unction; it vill be betveen zero and pi I 4. •I 

pi apmlev( 0 
one = apmlnit( 1L, 0, 0 ) ; 
tvo = apmlnit( 2L, 0, 0 ) ; 
zero = apmlnit( OL, O, 0 ) ; 
di~~ = apmlev( 0 ) ; 
Theta = apmlev( 0 ) ; 
Ansver = apmlev( 0 ) ; 
tvo_pi = apmBev( 0 ) ; 
hal~_pi apmlev( 0 ) 
scratch apmlev( 0 ) 
ub di~~ apmlev( 0 ) 
xMod2pi apmlev( 0 ) 
apmOrder = apmlev( 0 ) ; 
Theta_sq = apmlev( 0 ) ; 
sinFactrl = apmlev( 0 ) 
cosFactrl apmlev( 0 ) 
approx[O] apmlev( 0 ) 
approx[1) apmlev( 0 ) 
threeHal~_pi = apmlev( 0 ) 
£or( k=O ; k < 8 ; k++ ) 

eighths_2pi[k] = apmlev( 0 ) ; 

I• Obtain some rational mutiples o~ pi. These vill be help~ul 
vhen ve go to restrict the domain o~ the trig ~unctions to 
between zero and pi I 4 •I 

apmAssignString( pi, pi_str, 0 

apmMultiply( scratch, tvo, tvo 
apmOivide( eighths_2pi[O], (PI_DP+2), (APM)IULL, pi, scratch) 

~or( k=1 ; k < 8 ; k++ ) 
apmAdd( eighths_2pi[k], eighths _2pi[O], eighths_2pi[k-1] ) 

apmMultiply( tvo _pi, pi, tvo ) ; 
apmAssign( hal~_pi, eighths_2pi[1] ) ; 
apmAssign( threeHal£_pi, eighths_2pi[6] 

setTri gOp( DFLT_TRIG_DP ) ; 

dp_lost = 0 ; 
specialslnit = YES 

return( 1 ) ; 

I• ++++++++++++++++++++++++++ •I 

setTrigDp ( dp ) 
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int dp ; 
{ 

} 

double j, j_fact, ten_to_dp 

I+ Check to see that the desired accuracy is compatible 
with our knowledge of pi. +I 

if( (dp+2) > PI_DP ) { 
fprint:f( stderr, 
"We don't know pi well enough to achieTe the desired accuracy. \n" ) 
return( 0 ) ; 

} 

•1•• 
trig_dp dp+2 ; 

I• Assume the arsument is between zero and pi I 4 . How many 
terms from the Taylor series do we need to include ? +I 

tri~_terms = 1 ; 

ten_to_dp = pow( 10.0, (double)dp ) 
for( j = 1.0, j_fact 1.0 ; j_fact < ten_to_dp 

j_:fact += j + (j + 1) ; 

trif!_terms++ ; 
if( trig_terms > MAI_TRIG_TERMS ) { 

+= 2.0 ) { 

fprintf( stderr, "Too many terms required. \n" ) 
return(O) ; 

} 

} 

trig_dp += (int)( ceil( log10((double) trig_terms) ) ) 
setTrigCoef 0 ; 
return( dp ) ; 

I• +++++++++++++++++++++++++++++++++++++ •I 

reduceArg( x 

I• 
Takes x, chops off enough multiples of two_pi to get it 
into the interTal between zero and two_pi . Checks that we 
haTen't lost an unacceptable amount of precision in doing 
this •tage of the reduction. Then chops off multiples 
of pil4 to get the argument into the i nterTal betwe•n zero and 
pil4. Sets Theta equal to the reduced argument and returns 
an integer indicating in which of eight equally spaced interTals 
x (mod two_pi) lay. If any precision is lost, dp_lost is set 
to the number of decimal places lost . 

APM x 
{ 

int octant ; 
char qtnt_str[BUF_SZ] 

I• Note that we haven't lost any decimal places yet . +/ 
dp_lost = 0 

I • Whack out many multiples of two _pi. • I 
apmDiTide( scratch, 3, (APM)IULL, x, tvo_pi ) 
apmFloorString( qtnt_str, BUF_SZ, scratch ) ; 
apmAssignString( scratch, qtnt_str, 0 ) ; 
apmMultiply( Answer, scratch, tvo_pi ) ; 
apmSubtract( xMod2pi , x , Answer ) ; 
if( apmSign( xM od2pi ) == -1 ) 



} 

133 

apmCalc( xMod2pi, xMod2pi, tvo_pi, !PM_!DD, BULL ) 

for( octant=O (octant < 8) ; octant++ ) { 

} 

if( apmCompare(xMod2pi, ei~hths_2pi[octant]) < 0 ) 
break ; 

svitch( octant ) { 
case 0 : 

} 

apm!ssi~( Theta, xMod2pi ) 
break 

case 1 : 

apmSubtract( Theta, half_pi, xMod2pi ) 
break 

case 2 : 
apmSubtract( Theta, xMod2pi, half_pi ) 
break 

case 3 : 
apmSubtract( Theta, pi, xMod2pi ) 
break 

case 4 : 
apmSubtract( Theta, xMod2pi, pi 
break 

cas• 6 : 
apmSnbtract( Theta, threeHalf_pi, xMod2pi ) 
break 

case 6 : 
apmSubtract( Theta, xMod2pi, threeHalf_pi ) 
break 

case 7 : 
apmSubtract( Theta, tvo_pi, xMod2pi ) 
break 

default : 
break 

I• Check for loss of prec1s1on •I 
if( (PI_DP - strlen(qtnt_str)) < tri~_dp 

dp_lost tri~_dp - PI_DP + strlen(qtnt_str) 
else 

dp_lost 0 ; 

return( octant ) : 

I• +++++++++++++++++++++++ •I 

reducedSinO 
I• 

Takes the sine o~ Theta, puts the result in Ansver. 

{ 

int order, dp_to_~ind, term_num 

apm!aai~( !nsver, zero ) ; 
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apmKultiply( Theta_sq, Theta, Theta ) 

term_num = tris_terms - 1 ; 
for( order = ( 2 • tris_terms - 1 ) ; order > 0 ; order 

} 

I• ftultiply the old partial sum by Theta squared 
and add in a new coefficient 

apmKultiply( scratch, Answer, Theta_sq ) ; 
apmAdd( Answer, sinCoef[term_num--), scratch 
apmTruncate( Answer, tris_dp ) ; 

I• ftultiply by the final factor of Theta, 
divide by the factorial, and return •I 

if( dp_lost > 0 ) 
dp_to_find tris_dp + 1 - dp_lost 

else 
dp_to_find = trig_dp + 1 

apmKultiply( scratch, Answer, Theta ) ; 

2 ) { 

apmDivide( Answer, dp_to_find, (APft)IULL, scratch, sinFactrl ) 

r•turn ; 
} 
I• ++++++++++++++++++++++++++++++++++++ •I 

reducedCos() 

I• 

{ 

Takes the cosine of Theta, puts the result in Answer. 

int order, dp_to_~ind, term_num 

apmAssisn( Answer, zero ) ; 
apmKultiply( Theta_sq, Theta, Theta ) 

term_num = trig_terms - 1 ; 
for( order = ( 2 • trig_terms - 2 ) ; order >= 0 ; order 

} 

I• ftultiply the old partial sum by Theta squared 
and add in a new coefficient 

apmKultiply( scratch, Answer, Theta_sq ) ; 
apmAdd( Answer, cosCoef[term_num--], scratch 

apmTruncate( Answer, tris_dp ) ; 

I• Divide by the factorial, 
Put the result into Answer, and return •I 

if( dp_lost > 0 
dp_to_find trig_dp + 1 - dp_lost 

else 
dp_to_find = trig_dp + 1 ; 

2 ) { 

apmDivide( scratch, dp_to_find, (APft)IULL, Answer, cosFactrl ) 

apmAssisn( Answer, scratch ) ; 
return ; 

} 
I• ++++++++++++++++++++++++++++++++++++ •I 

apmSin( result, x ) 
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APM result, x ; 
{ 

int octant ; 

i£( specia~slnit == 10 { 
£print£( stderr, 

"apmSinO P~ease cal~ initApmSpecialsO . \n" ) 
apmAssi~on!( result, OL, 0, 0 ) ; 
apm_errno = APM_EPARM ; 
return 

} 

else 
apm_errno = APM_OK ; 

I• Reduce the argument, report any loss o£ prec1s1on, and 
note in vhich octant x (mod tvo_pi) ~ay. •I 

octant = reduceAr!( x ) ; 
i£( dp_~ost > 0 ) { 

£print£( stderr, 
"apmSin : Big argument, lost Y,d decimu places :from the ansver. \n" , 

dp_lost ) ; 
apm_errno = APM_WTRUIC ; 

} 

e~se 

apm_errno APM_OK ; 

I• EYa~uate the sine. Which o£ the tvo reduced :functions 
one uses depends on the octant. 

svitch( octant ) { 
case 0 : 

reducedSinO 
break 

case 1 : 

reducedCos 0 
break 

case 2 : 
reducedCos 0 
break 

case 3 : 
reducedSinO 
break 

case 4 : 
reducedSinO 
apml•!ate( scratch, Ansver 
apmAssi~( Ansver, scratch 
break 

c ase 6 : 
reducedCos() 
apmRegate( scratch, Ansver 
apmAss i gn( Ansv er, scrat ch 
break 

case e : 
reducedCoB( ) 

•I 



} 

} 

apmlegate( scratch, Answer 
apmAssign( Answer, scratch 
break 

case 7 : 
reducedSinO 
apmBegate( scratch, Answer 
apmAssign( Answer, scratch 

break 

de:faul.t : 
break 

apmAssign( result, Answer ) 

return ; 
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I• +++++++++++++++++++++++++ •I 

apmCos( result, x ) 

APM resul. t, x 
{ 

int octant ; 

i:f( specialslnit == 10 { 
:fprint:f( stderr, 

} 

e1se 

"apmCosO Please call initApmSpecialsO :first. \n" ) 
apmAssignLong( result, OL, O, 0 ) ; 
apm_errno = APM_EPARM ; 
return 

apm_errno = APM_OK ; 

I• Reduce the argument, report any loss o:f precision, and 
note in vhich octant x (mod tvo_pi) lay. •I 

octant = reduceArg( x 
i:f( dp_lost > 0 ) { 

:fprint:f( stderr, 

} 

else 

"apmCos : Big argument, lost Y,d decimal places :from the ansver. \n", 
dp_lost ) ; 

APM_WTRUBC 

apm_•rrno APM_OK ; 

I• Evaluate the cosine . Which o:f the tvo reduced :functions 
one uses depends on the octant. •I 

svitch( octant ) { 
case 0 : 

reducedCos 0 
break 

case 1 : 
reducedSin() 
break ; 



} 

} 

case 2 : 
reducedSinO 
apmlesate( scratch, Ansver 
apmAssisn( Ansver, scratch 
break 

case 3 : 

reducedCos 0 
apmlesate( scratch, Anaver 
apmAssisn( Anaver, scratch 
break 

case 4 : 
reducedCos() 
apmlesate( scratch, Ansver 
apmAssisn( Ansver, scratch 
break 

case 6 : 

reducedSinO 
apmlesate( scratch, Ansver 
apmAssisn( Ansver, scratch 
break 

c••• e : 
reducedSinO 
break 

case 7 : 
reducedCos 0 
break 

de:fault : 
break 

apmA•sisn( result, Ansver ) 
return ; 

I• +++++++++++++++++++++++++ •I 

apmSqrt( re•ult, dp, x ) 
I• 

Find •quare roots usins levton's method. 

int dp 
API'I x, result 
{ 

int comp, dp_plus 
API'I •this_approx, •next_approx, •temp 
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Check that all the •cratch Yariables are ready. 

if'( apecialslnit ~~ 10 ) { 
:fprint:f( stderr, 

"apmSqrt () : Please call ini tApmSpecials () :first. \n" ) 
apmAs•isnLons( result, OL , 0, 0 ) 
apm_errno ~ API'I_EPARM ; 
r•turn ; 
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} 

el.se 
apm_errno J.PI!I_Dit 

I~ the arsument is zero, just return zero . 
I~ the arsument is ne~ative, vhine. 

i~( (comp = apmCompare( x, zero )) == 0 ) { 
apmAssi~( result, zero ) ; 
return i 

} 

el.se i~( comp == -1 ) { 
~print~ ( stderr, "apmSqrt () 
apm_errno = J.PK_EPARM ; 
r•turn 

} 

el.se 
apm_errno J.PK_Oit 

Do up levton. The rul.e is 

Can't handl.e ne~ative ar~ents, \n" ) 

y[n+l] = (y[n] + xly[n]) I 2 . 0 

dp_pl.us = dp + 2 ; 
apmJ.ssisuLon~( ub_di~~. lL, -dp_pl.us, 0 ) 

this_approx 
next_approx 

l:approx [0] 
l:approx[1] 

apmJ.ssi~( •this_approx , x ) ; 
apmAssi«n( •next_approx, zero ) 
apmSubtract( di~~ . •this_approx, •next_approx 
vhil.e( apmCompare( di~~. ub_di~~) > 0 ) { 

} 

apmDivide( scratch, dp_plus, (J.PK) lULL, x, •this_approx 
apmCal.c( scratch, scratch, •this_approx, APK_J.DO, lULL 
apmDivide( •next_approx, dp_pl.us, (APK) lULL, scratch, tvo 
apmTruncate( •next_approx, dp_pl.us ) ; 

apmCal.c( di~~. •this_approx, •next_approx, J.PK_SUB, J.PK_J.BS, lULL ) 
m_svap( this_approx, next_approx, temp ) ; 

apmAssi«n( resul.t, •this_approx ) 
return ; 

I• +++++++++++++++++++++++++++++++++++++++ •I 

apmFl.oor( resul.t, ar~, base ) 

int base ; 
J.PK resul. t, ar~ 
{ 

char bu~[BUF_SZ] , •cpt ; 

apmConvert( buf, BUF_SZ, 2, IO_ROUID, LEFT_JUST, ar~ ) 
~or( cpt = bu~ ; •cpt != '\0 1 ; cpt++ ) 

i~ ( •cpt == ' . ' ) 
•cpt = 1 \0 1 ; 

apmJ.ssi«nStrin~( resul.t, buf, base ) 
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} 
I• ++++++++++++++++++++++++++++++++ •I 

ntTrig<:oe:t() 
{ 

int j, order, coe£_num 
char ..,.al.locO 

sinCoe:t = (APM •) malloc( trig_terms * sizeo:t( APM 
co•Coe:t = (APM •) malloc( trig_terms • sizeo:t( APM 
if( (sinCoef == lULL) I I (cosCoef == lULL) ) { 

fprintf( stderr, "Trouble allocating 'r.d APMs :tor coefficients . \n" 
exit (0) ; 

} 

} 

for( j=O ; j < 
sinCoef[j] 
cosCoef [j] 

trig_terms ; j++ 
apmlev( 0 ) 

= apmln( 0 ) ; 

) { 

} 

if( (trig_terms 'r. 2) != 0 ) { 

} 

apmAssignLong( sinCoef[trig_terms- 1], -1L, O, 0 
apmAssignLong( cosCoef[trig_terms-1], - 1L, 0, 0 

else { 

} 

apmAssignLong( sinCoe:t[trig_terms- 1], 1L, O, 0 
apmAssignLong( cosCoef[trig_terms-1], 1L, 0, 0 

coef_num = trig_terms - 2 ; 
:tor( order = (2 * trig_terms - 1) ; order > 1 

I• coef:ticients :tor the sine •I 
order 

} 

apmAseignLong( apmOrder, -((long) order), 0, 0) ; 
apmMultiply( scratch, sinCoe:t[coef_num+1], apmOrder 
apmAssignLong( apmOrder, (long)(order-1), 0, 0) ; 
apmMultiply( sinCoe:t[coef_num], scratch, apmOrder) 

I• coefficients for the cosine •I 
apmMultiply( scratch, cosCoe:t(coe:t_num+1], apmOrder 
apmAssignLong( apmOrder, - (long)(order-2), 0 , 0 ) 
apmMultiply( coeCoef[coef_num], scratch, apmOrder) 

co•f'_num-- ; 

apmAssign( s i nFactrl , sinCoe:t[O] 
apmAssign( cosFactrl, cosCoe:t[O] 

I• +++++++++++++++++++++++++++++++++++++++++++++++ •I 

apmFloorString( a, n, x ) 

APM x ; 
int n ; 
char •s ; 
{ 

} 

apmConvert( s, n, 1, RO _ROURD, LEFT_JUST, x ) 
strip_:trac ( s ) ; 

I• +++++++++++++++++++++ •I 

2 ) { 
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strip_:frac( str 

char •str ; 
{ 

} 

:for( cpt = str ; cpt != '\0' 
i:f( • cpt == ' · ' ) { 

•cpt = '\0' 
break ; 

} 

I• +++++++++++++++++++++++ •I 

apmLogBd( x ) 

cpt++ ) 

Returns an upper bound on the base-10 log o:f an apm. 

} 

int order ; 
char •bpt ; 

i:f( apmCompare( one, x ) <= 0 ) { 
apmFloorString( log_bu:f, BUF_SZ, x ) 
return( strlen( log_bu:f ) ) ; 

} 

else { 

} 

apmConTert( log_bu:f, BUF_SZ, (BUF _SZ-4), IO _ROUID , LEFT_JUST, x ) 

Skip to the digits beyond the decimal point 

:for( bpt=log_buf 
bpt++ 

•bpt != '·' ; bpt++) ; 

Count the number of zeroes to the right o:f the decimal point. 

for( order=O ; (•bpt == ' 0' ) ; bpt++, order-- ) ; 
r eturn( order ) ; 

C.2.2 interval arithmetic 

the header file boundiug.h 

typedef 

typedef 

typedef 

Data structures ~or calculating semi-risorous bounds 
on e xpressions. 

atruct { double ub, lb ; } Bdd_dbl 

struct { int rlactors 
double coef ; 
Bdd_dbl ••factors, bound } Bdd_term 

struct { int nt erms ; 



double 
Bdd_dbl 
Bdd_term 

const 
bound 
•terms 
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} Bdd_expr 

APM partners to the structures abo•• 

typedef struct { J.PM ub, lb ; } Bdd_apm 

typedef struct { int 
APM 
Bdd_apm 

typedef struct { int 
APM 
Bdd_apm 
Bapm_term 

I• +++++++++++++++++++++++ •I 

• define asaignBapm( empty, 

I define ass ignBdbl ( empty, 

• define nevBapm( nev, base 

n£actors ; 
coef ; 
••factors, bound } Bapm_term 

nterms 
const 
bound 
•terms 

full 

full 

} Bapm_expr 

(apmAssign( empty->ub, 
apmAssign( empty->lb, 

(empty->ub = full->ub, 
empty->lb = full->lb 

(nev.ub apmlev( base 
nev.lb = apmlev( base 

full->ub), \ 
full->lb) ) 

\ 
) 

) . \ 
) ) 

I define maxJ.bs( x , J ) (fabs(x) > fabs(y)) ? fabs(x) : fabs(y) 

extern int RmaxJ.bs() 

expressions 

I include 
I include 
I include 
I include 
I include 

<stdio.h> 
<math.h> 
11 apm..h" 
"converse.h" 
"bounding . h" 

; 

J.PM Rextrema, Rextremb, Rub, Rlb 
APM Rprod[4], •Rlastp = (Rprod + 4) 
double prod[4], •lastp =(prod+ 4) 
I• ++++++++++++++++++++++++++++ •I 
initBounding() 
{ 

} 

int j ; 

Rub apmRev( BASE 
Rlb apmlev( BASE 

Rextrema = apmlew( BJ.SE 
Rextremb = apmlev( BASE 

for( j=O j < 4 ; j++ 
Rprod[j] apmlew( BASE 

I• +++++++++++++++++++++++++++ •I 

Rbound_term( tpt ) 
I• 

Take a list of bounded factors and obtain 11 bound on their 
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product. 

Bapm_term •tpt l 

{ 

} 

APM *ppt l 

Bdd_apm •~acptr, ••~ast~, ••~pt 

I~ there is on~y ona ~actor, de~ vith it directly. 

if( tpt->n~actors == 1 ) { 

} 

apmAssisn( Raxtrema, tpt->factors[O]->ub 
apmAssisn( Raxtremb, tpt->factors[O]->lb 

Band~• expressions vith mora than one factor . 
Since soma of the factors may be ne~atiYe ve 
can't just multiply to ~ether all the upper 
and lover bounds . 

else { 

} 

apmAasisn( Rextrema, tpt - >factors[O]->ub 
apmAasisn( Rextremb, tpt->factors[O]->~b 

fpt = atpt->factora[1] l 

for( lastf tpt->factors + tpt->nfactors 
facptr = •fpt l 

fpt < lastf 

} 

apmMu~tiply( Rprod[O] , ~acptr->ub, Rextrema 
apmMultiply( Rprod[1], ~acptr->ub, Rextremb 
apmMultiply( Rprod[2], ~acptr->lb, Rextrema 
apmMu~tiply( Rprod[3], ~acptr->lb, Rextremb 

apmAssisn( Rextrema, Rprod[O] ) ; 
apmAaaisn( Rextremb, Rprod[O] ) ; 
for( ppt = (Rprod+1) ; ppt < ~astp ; ppt++ ) { 

if( apmCompare( •ppt, Rextrema ) == 1 
apmAaaisn( Rextrema, •ppt ) ; 

else i~( apmCompare( •ppt, Rextremb -1 ) 
apmAaaisn( Rextremb, •ppt ) ; 

} 

apmCa~c( Rextrema, Rextrema, tpt->coef, APM_MUL, lULL 
apmCalc( Rextremb, Rextremb, tpt->coe~, APM_MUL, lULL 
if( apmCompare( Rextrema, Rextremb ) == - 1 ) { 

} 

apmAasign( tpt->bound.ub, Rextremb ) 
apmAsaign( tpt ->bound . ~b, Rextrema ) ; 

e~se { 

} 

apmAssign( tpt->bound.ub, Rextrema 
apmAssisn( tpt->bound. ~b, Rextremb 

I• ++++++++++++++++++++++++++++++++++++ •I 

Rbound _expr( ept ) 

I• 

~pt++ ) { 

Obtain bounds on the terms in a bounded expression, add them up, 
and so obtain a bound on the vho~e . 



•I 

Bapm_expr •ept ; 
{ 

Bapm_term •tpt, •~ast_term ; 

apmAssign( Rub, ept->const 
apmlssign( R~b, ept->const 

tpt = ept->terms 
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~or( ~ast_term = tpt + ept->nterms ; tpt < last_term ; tpt++ ) { 
Rbound_term( tpt 

} 

} 

apmCalc( Rub, Rub, tpt->bound . ub, APM_ADD, lULL 
apmCalc( Rlb, Rlb, tpt->bound . lb, APM_ADD, lULL 

apmAssign( ept->bound.ub, Rub 
apmAssign( ept->bound.lb, Rlb 

I• +++++++++++++++++++++++++++++++++ •I 

RmaxAbs( result, x, y 

APM result, x, y ; 
{ 

} 

apmAbsoluteValue( Rub, x ) 
apmAbsoluteValue( Rlb, y ) 

if( apmCompare( Rub, Rlb 1 
apmAssign( result , Rub 

else 
apmAssign( result, Rlb 

bounding trig. functions 

• include <stdio.h> 

• include <math . h> 

• include "a.pm.h" 

• include "apmSpecial.h" 

• include 11 ConYerse . h" 

• include "bounding . h" 

• include llpi.h" 

APM hal~, three_hal~s ; 
APM Rdelta, Rmax_cos, Rmin_cos 
APM Rmax_x, Rmin _x, R~loor_x, Rlft_val, Rrght_val 

Bdd_apm Rnev_theta ; 

I• ----------- - - -------------- - ---- •I 

ini tTrigBd() 

I• 

•I 
{ 

Set up the APM's de~ined above. 

Rdelta apmlev( BASE 
Rmin_x apmNev( BASE 
Rmax_x apmlev( BASE 
~loor_x = apmlev( BASE 



} 

Rmax_cos apmBev( BASE 
Rmin_cos apmlev( BASE 
R1~t _Ya1 apmlev( BASE 
Rrsht_Ya1 = a~ev( BASE ) ; 

Rnev_theta . ub 
Rnev _theta.1b 

apmlev( BASE 
apmlev( BASE 

ha1~ = apminit( 2L, O, BASE ) ; 
three_ha1ts = apmlnit( 3L, 0, BASE ) ; 
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apmCa1c( ha1~, ha1t, APK_RECIP( precision ), lULL ) ; 
apmCa1c( three_ha1~s, ha1~ , three_ha1~s, APK_KUL, lULL 

I• ++++++++++++++++++++++++++++++++++++++ •I 

Rbd_cos( bound, theta 

I• 
Obtain bounds tor the cosine ~unction over 
a certain SiYen rans• of ans1es. 

Bdd_apm 
{ 

I• 
An APK partner to the function aboYe. The Yariab1es 
used here are static, and are defined at the top 
ot the ~i1e. 

Get some Yariab1es equa1. to theta I TVO_PI. These vi11 
he1p decide vhether the interYa1 under consideration 
contains any extrema . 

apmDiYide( Rmin_x, precision, (APK)RULL, theta->1b, tvo_pi 
apmDiYide( Rmax_x, precision, (APK)IULL, theta->ub, tvo_pi 

apmF1oor( R~1oor_x , Rmin_x, BASE ) 
apmCa1c( Rmin_x, Rmin_x, Rt1oor_x, APK_SUB, lULL 
apmCa1c( Rmax_x , Rmax _x, R~1oor_x, APH_SUB, lULL 
apmSubtract( Rde1ta, Rmax_x, Rmin_x ) ; 
i~( apmCompare( Rde1ta, one ) == 1 ) { 

} 

apmAssisn( bound->ub, one ) 
apml•sate( bound->1b, on• ) ; 

e1se { 
apmCos( R1~t_Ya1, theta->1b ) ; 
apmCos( Rrsht_Ya1, theta->ub ) ; 
it( apmCompare( R1tt _va1, Rrsht_va1 ) == 1 ) { 

apmAssisn( Rmax_cos, R1tt_va1 ) 
apmAssisn( Rmin_cos, Rrsht_va1 ) ; 

} 

e1s• { 

} 

apmAssisn( Rmax_cos , Rrsht_va1 ) ; 
apmAssisn( Rmin_cos, R1~t_Ya1 ) ; 

Check ~or extrema. 

i£( apmCompare( Rmax_x, one) == 1 
apmAs•isn( Rmax_cos, one J ; 



} 

} 

145 

i~( (apmCompare( Rmax_x, three_hal~s) == 1) I I 
((apmCompare( Rmin_x, hal~) -1) tt 

(apmCompare( Rmax_x, hal~) == 1)) ) apmlesate( Rmin_cos, one ) 

apmidd( bound->ub, Rmax_cos, max_error ) ; 
apmSubtract( bound->lb, Rmin_cos, max_error 

I• +++++++++++++++++++++++++++++ •I 

Rbd_sin( bound, theta ) 
I• 

Use the relation sin( x - HALF_PI ) = cos( x ) 
and the ~unction bd_cos() to obtain a bound on 
the sines 0~ ansl•• lyin! in a !iven ran!•· 

•I 

Bdd_apm •theta, •bound 
{ 

I• 

•I 

} 

Rnev_theta is used here but is declared at the top o~ 
the ~ile 

apmSubtract( Rnev_theta.ub, theta->ub, hal~_pi 
apmSubtract( Rnev_theta . lb, theta->lb, hal~_pi 

Rbd_cos( bound, tRnev_theta ) ; 
return ; 

C.2.3 starting points and global bounds 

• include <•tdio . h> 

• include <math . h> 

• include "ap:n . h" 

• include "conYers•.h11 

• include "pi.h11 

• de~ine DELTA 0.01 
• de~ine ftAI_JUftP 0.1 

APft R•tart_size ; 
I• +++++++++++++++++++++ •I 
setBermStart( priz ) 

RPriam •priz 
{ 

doub1• a, b , c, tvo_c, x, y : 
double jump_Bz , jump_scl, dx, dy ; 
double !X• !Y• hxx, hxy, hyy , hdet, tolerance 

a = apmtodbl( priz->center->p(O] 
b apmtodbl( priz->center->p(1] 
c apmtodbl( priz->center->p(2] 
tvo_c = 2 . 0 • c ; 

tolerance IEWT_TOL • (~abs(a) + ~abs(b) + ~abs(c)) 
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Use Iewton's method to try to ~ind a minimum for the 
trace of the matrix beta. 

x = B.tLF_PI 
y HALF _PI 

do { 
components o~ the gradient. 

gx 
gy 

-a • cos( x 
-b • cos( y 

tvo_c • cos( x + y 
tvo c • cos( x + y 

hxx 
hxy 
hyy 
hdet 

components o~ the Hessian 

a • sin( x ) + tvo c • sin( 
tvo_c • dn( X + y ) ; 

b • sin( y ) + tvo c • sin( 
hxx • hyy hxy • hxy 

A Iewton's method step 
hdet != 0.0 ) { 

dx ( gx • hyy gy • hxy 
dy = ( -gx • hxy + gy • hxx 

X + J 

X + J 

•I 

I hdet 
I hdet 

i~( (jWIIp_sz = fabs(dx) + fabs(dy)) > !'lAX 
JUIIIp_SCl = I'IAI_JUI'IP 

} 

dx 
dy 

} 

X -= dx 
y dy 

else { 

•= jump_scl 
•= jump_scl 

I jump_sz ; 

JUI'IP ) { 

fprint~( stderr, "Death durinp; levton'• method. \n" ) 
cease() ; 

} 

} vhile( (~abs(p;x) + fabs(p;y)) > tolerance ) 

Force the startinp; point to 
•I 

dbltoapm( priz->center- >z.u[O], 
dbltoapm( priz->center->z . u[1], 

IIi~ DEBUG 
printf( "Herman's starting point 
~flush( stdout ) ; 

II endi~ 
} 
I• ++++++++++++++++++++++ •I 

setLLStart( priz 

RPrism •priz i 

{ 

I• 

lie on the line x=y. 

BASE, X ) 

BASE, X ) 

X = %.6e, y= %. 6e \n'', X, X ) 

Bevar• this ~unction expects to be called AFTER 
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setBermStart(), no matter vhich criterion is in ~orce. 

double discrim, sqrt_disc, sqrt() : 
double a_sin, a_cos, b_sin, b_cos, c_sin, c_cos 

double 
double 
double 
double 

a, b, c, tvo_c, x, y ; 
jump_sz, jump_scl, dx, dy : 
«X• SY• hxx, hxy, hyy, hdet, tolerance 
dDisc_dx, dDisc_dy : 

a = apmtodbl( priz->center->p[O] 
b apmtodbl( priz->center->p[1] 
c apmtodbl( priz- >center->p[2] 
tvo_c = 2.0 • c ; 

x = apmtodbl( priz->center->z.u[O] 
y apmtodbl( priz->center->z.u[1] 

tolerance 

do { 

a_sin 
b_sin 
c_sin 

a_cos 

b_cos 
c_cos 

IEWT_TOL • (a + b + c) 

preliminaries 

a • sin( x ) 
b • sin( y ) 
tvo_c • sin( x + y ) 

a • cos( x ) 
b • cos ( Y. ) 
tvo_c • cos( x + y ) : 

disc rim a _sin - b_sin • ( a_sin - b_sin ) + 
c_sin • c_sin 

sqrt_disc sqrt( discrim 
dDisc_dx a_cos • (a_sin 
dDisc_dy = b_cos • (b_sin 

b_sin) + c_coa • c_sin 
a_sin) + c_cos • c_sin 

I• components 0~ the szadient. 

gx -a cos - c_cos - dDisc_dx I sqrt_disc 
SY = -b_cos - c_cos - dDisc _dy I sqrt_disc 

components o~ the Hessian 

hxx a_sin + c_sin + 

a_sin • (a_sin - b_sin) -
a_cos • a_cos - c_coa • c_cos + 
c_sin • c_sin ) I sqrt_disc 

+ dDisc_dx • dDisc_dx I (discrim • sqrt_disc) 

hxy c_sin + 
a_cos • b_cos + c_sin • c_sin -

c_cos • c_coa ) I sqrt_disc 
+ dDisc_dx • dDisc_dy I (discrim • sqrt_disc) 

hyy b sin + c_sin + 
( b_sin • (b_sin - a_sin) -

b_cos • b_cos - c_cos • c_cos + 
c_sin • c_sin ) I sqrt_disc 

+ dDisc_dy • dDisc_dy I (discrim • sqrt_disc) 



148 

hdet hxx • hyy hxy • hxy 

I• A levton's method step •I 
i:t( hdet != 0.0 ) { 

dx ( 51' • hyy 51 • hxy I hdet 
dy = ( -5% • hxy + !Y • hx:x I hdet 

i~( (jump_sz = ~abs(dx) + ~abs(dy)) > MAI_JUMP ) { 
jump_scl # MAI_JUMP I jump_sz ; 

} 

dx •= jump_scl 
dy •= jump_scl ; 

} 

X -= dx 

J dy 

else { 

} 

~print~( stderr, "Death durin« levton's method . \n" ) 
cease() ; 

} vhile( (~abs(«x) + ~abs(«J)) > tolerance ) 

Force the startin5 point to lie on the line x=y. 

dbltoapm( priz->center->z .u[O), BASE, x ) 
dbltoapm( priz->center->z.u[1], BASE, x ) 

ti~ DEBUG 
print~( "Least ei5en't"alue starting point 
fflush( stdout ) ; 

x = 'Y..e., y= 'Y..ee \n", x, x ) 

I endif 
} 

• include <atdio.h> 

• include <math . h> 

• include "apm.h" 

• include "apmSpecia1.h11 

• include "conTerse . h" 

• include "bounding.h" 

• include "pi.h11 

APM 
APK 
APK 
APK 
APM 
double 

RM_aq, RM ; 
lip_scratch ; 
sixteen, eight, ~our ; 
Rdscrm, Rsqrt_disc ; 
Rmax_alope, Rmin_slope, Rfirst_slope 
max_slope, min_slope, ~irst_slop• ; 

RPrism •earliest ; 
Bdd_apm Rmax_btrace, Rmin_btrace, R~irst_btrace 
I• +++++++++++++++++++++ •I 

initLipO 
{ 

I• 
This ~unction depends in detail on the choice o~ map . 



} 

APM stu££ 

£our = apmlnit( 4L, 0, BASE ) ; 
eiKht = apmlnit( 8L, O, BASE ) ; 
sixteen = apmlnit( 16L, 0 , BASE ) 
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Rmin_slope = apmlev( BASE ) I• The external APMs •I 
Rmax_slope = apmlev( BASE ) 
Rfirst_slope = apmlev( BASE 
Rd£ = apmlnit( (lonK)(DEG_FREE), 0, BASE ) 
Rd£_sq = apmlnit( (long)(DF_SQ), 0, BASE) 
Ratart_size = apmlnit( 1L, -START_SZ, BASE 

Rdacrm = apm!ev( BASE ) ; 
Rsqrt_disc apmlev( BASE 
lip_scratch = apmlev( BASE 

nevBapm( Rmax_btrace, BASE 
nevBapm( Rmin_btrace, BASE 
nevBapm( R£irst_btrace , BASE 

earliest = conjureRPrism() 

I• +++++++++++++++++++++++ •I 

setCone( priz 

RPrism •priz 
I• 

•I 
{ 

I• 

Get the mLn1MWD and maximum values £or the 
trace o£ the slope object. lote that ve 
exploit the symmetry o£ the potential; the minimum 
and maximum values o£ the trace o£ (beta - 2!) haTe 
the same absolute Talue. 

int j 
APM *mat_poa 

£or( j=O ; j < I_PARMS ; j++ ) 
apmAsai~( earliest->center->p[j], priz->center->p[j) ) 

£or( j=O ; j < DEG _FREE ; j++ ) { 
apmAasi~( earliest->center->z.v[j), priz->center->z.u[j] ) 

} 

Rglobal_bounds( earliest ) ; 
Rbound_btrace( lRmin_btrace, earliest ) ; 

Account £or the imprecision o£ the start i nK point 
and the Tariation o£ the parameters. 

apmAssi~onK( lip_acratch, OL, O, BASE ) 
mat_pos = priz->matrix 

£or( j=O ; j < I_PARMS j++ ) { 
apmCalc( lip_scratch, lip_acratch , 

pri z->center->p[j] , Rstart_size, 
APM_MUL, APM_ADD , 
•mat_pos, 
APM_ABS, APM_ADD , lULL ) 



} 

150 

mat_pos += 1 + KAT_DIK 
} 

apmCa~c( Rmin_btrace.~b, Rmin_btrace.~b, ~ip_scratch, 

APK_SUB , lULL ) 
apmCa~c( Rmin_btrace.ub, Rmin_btrace . ub, ~ip_scratch, 

APK_ADD, lULL ) 

I• exp~oit the symmetry •I 
apmSubtract( Rmax_btrace.ub, eisht, Rmin_btrace.~b 
apmSubtract( Rmax_btrace.~b. eisht, Rmin_btrace . ub 

apmCa~c( Rdscrm, Rmax_btrace.~b, APK_DUP, APK_KUL, 
four, Rdf_sq, APK_KUL, APK_SUB, lULL ) 

apmSqrt( Rsqrt_disc, precision, Rdscrm ) ; 
apmAdd( ~ip_scratch, Rmax_btrace.~b , Rsqrt_disc ) ; 
apmDivide( Rmax_s~ope , precision, (APK)IULL, ~ip_scratch, tvo ) 

apmSubtract( ~ip_scratch, Rmax_btrace . ~b, Rsqrt_disc ) ; 
apmDivide( Rmin_s~ope, precision, (APK)IULL, ~ip_scratch, tvo ) 

min_slope = apmtodb~( Rmin_s~ope 
max_s~ope apmtodb~( Rmax_s~ope 

I• +++++++++++++++++++++++++++++++++++++++++++ •I 

setSlopes( priz 

RPrism •priz ; 
I• 

•I 
{ 

Reca~~ that our orbit vil~, at the beginning of 
a round of orbit-fol~oving, have just passed through a 
point on the torus vhose beta vi~~ diminish the 
s~ope. This implies that the slope is already smaller 
than the value of max_s~ope found above. Calculate 
a better upper bound on vhat the s~ope co~d be and 
store it in first_s~ope and Rfirst_slope . 

int j, mat_pos ; 

for( j=O ; j < &_PARKS ; j++ ) { 
apm!ssign( earliest- >center->p[j], priz->center->p[j) ) 

mat_pos = j • (KAT_DIK + 1) ; 
apmAssign( ear~iest->matrix[mat_pos], priz->matrix[mat_pos] ) 

} 

for( j=O ; j < DEG_FREE ; j++ ) { 

} 

apm!ssign( earliest->center->z.v[j] , priz->center->z . u[j] ) 

Account for ~precision in the startins point. 
•I 
mat_pos = STAID_LEB + TWO_DF•KAT_DIK + 

!_PARKS + DEG_FREE + j • (KAT_DIK + 1) ; 
apm!ssign( earliest->matrix[mat_pos], Rstart_size) 

Rg~ob~_bounds( ear~iest ) 
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Rbound_btrace( tRtirat_btrace, ear1iest ) : 

apmDivide( lip_acratch, precision, (APK)IULL, Rdf_aq, Rmax_alope 
apmCa1c( Rfirat_slope, Rfirst_btrace.ub, lip_scratch, APK_SUB, 

max_error, APK_ADD, lULL 

firat_a1ope apmtodbl( Rtirat_a1ope ) + DBL_ERR : 

} 

• include <stdio.h> 

• inc1ude <math . h> 

• include "&JXD..hll 

• include 11 apm.Special.h" 

• include "conTer•e.h" 

• include "bounding.h11 

• inc1ude "rovs.h11 

APK Rsqrt_disc : 
APK 
APK 
Bdd_apm 
RPrism 

Bdd_dbl 
Bdd_dbl 
Bdd_dbl 
Bdd_term 

APK 
Bdd_apm 
Bdd_apm 
Bdd_apm 
Bapm_term 

Ra_te~, Rb _term, Rc_term : 

Rtrace_ll, RminBlam_ll, RmaxBlam_ll, Rdenom 
RBtrace, RminLam, RmaxLam : 
•earliest 

discrim ; 
a_sq, b_sq, c_sq 
•1amFacts [2) 
ab_term : 

four, lam_acratch 
Rdiscri.m : 
Ra_sq, Rb_sq, Rc_aq 
•RlamFacts [2] 
Rab_term : 

APK RfirstLeastLam, RminLeastLam, RmaxLea•tLam, RsumTinyLams 
double firatLeaatLam, minLeaatLam, maxLeastLam, aumTinyLams : 
I• ++++++++++++++++++++++++++++++ •I 

iltitLambda() 
{ 

I• 

•I 
Do up the APKs 

Ra_term apmlell( BASE 
Rb_term apmle11( BASE 
Rc_term apmllell( BASE 

Rdenom = apmBell( BASE ) : 
Rtrace_11 = apmBe11( BASE ) 
Rsqrt _diac = apmlell( BASE ) : 
RminBlam_ll apmle11( BASE ) 
RmaxBlam_ll = apmlell( BASE ) : 

RminLeastLam apmlell( BASE 
RmaxLeastLam apmln( BASE 
RsumTinyLams apmln( BASE 
RfirstLeastLam = apmBev( BASE 

ne11Bapm( Ra_sq, BASE 
ne11Bapm( Rb _sq, BASE 



} 

nevBapm( Rc_sq, BASE ) 
nevBapm( RmaxLam, BASE 
nevBapm( RminLam, BASE 
nevBapm( RBtrace, BASE 
nevBapm( Rdiscrim, BASE ) ; 

~our = apmlnit( 4L, 0, BASE ) ; 
lam_acratch = apmlev( BASE ) 

earlieat = conjureRPriam() 

Set up the terms . 

ab_term.nfactors = Rab_term.n~actors 2 
ab_term.~actors = lamFacta ; 
Rab_term.~actors = RlamFacts ; 
ab_term . coe~ = -2 . 0 ; 
Rab_term.coe~ = apmlnit( -2L, 0, BASE 
navBapm( Rab_term.bound, BASE ) ; 

ab_term.~actors[O] = ta_ain.bound 
ab_term . ~actora[1] = tb_sin.bound 
Rab_term . ~actors[O] tRa_sin . bound 
Rab_term.~actors[1] = tRb_sin.bound 

I• ++++++++++++++++++++++++ •I 

Rbd_Blams( leastBlam, bi~Blam, trace ) 

Bdd_apm •leastBlam, •trace, •bi~Blam 
I• 

•I 
{ 

An APM partner to bd_Blams ; 

I• Bound the terms ~or the discriminant . •I 
RsetSq( tRa_eq, tRa_sin . bound 
RsetSq( tRb_eq, tRb_sin . bound 
RsetSq( tRc_eq, tRc_sin.bound 
Rbound_term( tRab_term ) ; 

I• lower bound •I 
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apmCalc( Rdiscrim.lb, Ra_sq.lb, Rb_eq.lb, APM_ADD, 
~our, Rc_aq.lb, APM_MUL, APM_ADD, 
Rab_term. bound.lb, APM_ADD, lULL ) 

i~( apmCompare( Rdiecrim . lb, zero ) < 1 ) 
apmAsei~( Rdiscrim . lb, zero ) ; 

I• upper bound •I 
apmCalc( Rdiscrim.ub, Ra_sq. ub, Rb_sq.ub, APM_ADD, 

~our, Rc_sq.ub, APM _MUL, APM_ADD, 
Rab_term. bound.ub, APM_ADD, lULL ) 

i~( apmCompare( Rdiscrim.ub, zero ) < 1 ) 
apmAssi~( Rdiscrim . ub, zero ) ; 

I• Do up the ~inal bounds on the ei~envalues . 

First do those raquirin~ 
sqrt( discrim.lb ). 
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apmSqrt( Rsqrt_disc, precision, Rdiscrim.lb ) ; 
apmCalc( lam_scratch, trace->ub, Rsqrt_disc, APM_SUB, 

max_error, APM_ADD, lULL ) ; 
apmDiTide( leastBlam->ub, precision, (APM)IULL, lam_scratch, tso 

apmCalc( lam_scratch, trace->lb , Rsqrt_disc, APM_ADD, 
max_error, APM_SUB, lULL ) 

apmDiTide( bi~Blam->lb , precision, (APM)IULL, lam_scratch, tvo 

Jext those requ1r1n~ 
sqrt( discrim . lb ) 

apmSqrt( Rsqrt_disc, prsci sion, Rdiscrim. ub ) ; 
apmCalc( lam_scratch, trace->lb, Rsqrt_disc, APM_SUB, 

max_error, APM_SUB, lULL ) ; 
apmDiTide( leastBlam->lb, precision, (APM)JULL, lam_scr atch , tvo 

apmCalc( lam_scratch, trace- >ub, Rsqrt _disc, APM_ADD, 
max_error, APM_ADD, lULL ) 

apmDiTide( bi~Blam->ub , precision, (APM)JULL, lam_scratch, tvo 

I• ++++++++++++++++++++++++++++ •I 

setLLbounds( priz 

I• 
Get bounds on the least ei~enTalue o~ the Tariation o~ the action 
functional . Thia is equivalent to the summer's est~ate of the 
yalue o~ size of the perturbation ~or vhich no minimizin~ state 
can include the maximum o~ the perturbation . 

RPriam •priz ; 
{ 

int j, mat_pos 
APM •pmat_pos ; 

~or( j=O ; j < I_PARMS ; j++ ) 
apmAssi~( earliest ->center->p[j], priz->center->p[j] ) 

mat_pos = j • (MAT_DIM + 1) ; 

apmAssi~( earliest->matrix[mat_pos], priz->matrix[mat_pos] ) 

~or( j=O ; j < DEG_FREE ; j++ ) 
apmAssi~( earliest->center->z.T[j), priz->center->z.u[j) ) 

R~lobal_bounds( earliest ) ; 
Rbound_btrace( lRBtrace, earliest ) ; 
Rbd_Blams ( lRminLam, lRmaxLam, lRBtrace 

Account ~or the imprecision of the starting point 
and the Tariation of the parameters. 

apmAssi~on~( lam_scratch, OL, 0, BASE ) 
pmat_pos priz->matrix ; 

~or( j=O j < B_PARMS ; j++ ) { 



} 

} 
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apmCa1c( 1am_acratch, 1am_acratch, 
priz->center->p[j] , Rstart_aize, 
APK_KUL , APM_ADD, 
•pmat_pos, 
APK_ABS, APK_ADD, lULL ) 

pmat_pos += 1 + KAT_DIK ; 

apmCa1c( RminLam.1b, RminLam.1b, 1am_acratch , APK_SUB, lULL 
apmCa1c( RminLam.ub, RminLam.ub, 1am_scratch, APK_ADD, lULL 

Exp1oit the symmetry o~ the examp1e . The 

1arsest va1ue ~or an eisenva1ue is 
4.0 - (1eastLam.1b). 

The ca1cu1ation above assumes that the 
u part of the prism's center contains a 
starti ns point suitab1e ~or a 1east-eisenva1ue 
kind o~ test, i.e . the point vhere the 1east ev 
attains ita minimum. The bdd_apm RmaxLam vi11 
contain in~ormation about the 1arseat ev o~ beta 
at the spot vhere 1eastLam is ama11 . To set the 
thins ve rea11y vant ~or the ca1cu1ations 
be1ov ve must exploit the symmetry described 
above . 

apmSubtract( RmaxLam.ub, £our, RminLam. lb ) ; 
apmCa1c( Rdiscrim.ub, RmaxLam.ub , APK_DUP , APK_KUL, 

£our, APM_SUB , lULL ) ; 
apmSqrt( Rsqrt_disc, precision, Rdiscrim . ub ) ; 

A s1oba1 1over bound - i~ the least eigenva1ue o£ 
one o~ the diagona1 blocks (see notes, Jan 10 ) 
slips be1ov this value then the next block is 
sure to have a negative ei«enva1ue . 

apmSubtract( lam_scratch , RmaxLam.ub, Rsqrt _disc ) ; 
apmDivide( RminLeastLam, precision, (APK) lULL, 1am_scratch, tvo ) 
apmCa1c( RminLeastLam, RminLeaatLam, max_error, APK_SUB, lULL ) ; 
minLeastLam = apmtodbl( RminLeastLam ) ; 

•I 

A lover bound on the sum o~ the non-maxima1 eisenvalues 
o~ a diasona1 block. 

aumTinyLama = minLeastLam ; 
apmAssisn( RsumTinyLams, RminLeastLam 

A s1oba1 upper bound. 

apmAdd( 1am_scratch, RmaxLam.ub, Rsqrt_disc ) ; 
apmDivide( RmaxLeastLam, precision, (APM) lULL, 1am_scratch, tvo ) 
apmCalc( RmaxLeastLam, RmaxLeastLam, max_error, APK_ADD, BULL ) ; 
maxLeastLam = apmtodbl( RmaxLeastLam ) ; 

I• ++++++++++++++++++++++++++++++ •I 

RsetSq( xsq, x ) 
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i~( apmCompare( x- >ub, zero ) > 0 ) { 

} 

i~( apmCompare( x->~b, zero ) > 0 ) { 
a~u~tip~y( xsq->ub, x->ub, x->ub 
apmK~tip~y( xsq->~b, x->~b, x->~b 

} 
e~se { 

} 

apmlbso~uteVa~ue( ~am_scratch, x->~b ) 
i~( apmCompare( x- >ub , ~am_scratch ) > 0 { 

apmK~tip~y( xsq->ub , x->ub, x->ub ) 
apmlssisn( xsq->~b, zero ) ; 

} 
e~se { 

} 

·~~tip~y( xsq->ub, x->~b, x->~b ) 
apmlssisn( xsq->~b, zero ) ; 

e~se { 

} 

a~u~tip~y( xsq->ub, x->~b, x->~b 

apmK~tip~y( xsq->~b, x->ub, x->ub 

I• ++++++++++++++++++++++++++++++++ •I 

eetLeastLam( priz 

RPriam •priz ; 
I• 

•I 
{ 

C~c~ate an upper bound on the ~argest eigenv~ue o~ beta 
at the initial point, then use it and the g~oba~ bound, 
maxLeastLam to eet ~irstLeastLam. 

int j, mat_pos ; 

~or( j=O ; j < I_PARKS ; j++ { 

} 

ear1ieet->center->p[j] priz->center- >p[j] 

mat_pos = j • (KAT_Dlft + 1) 
ear1iest->matrix[mat_pos) = priz->matrix[mat_pos] 

~or( j=O ; j < DEG_FREE ; j++ ) 
ear1iest->center- >z . v[j) = priz->center->z.u(j] 

Rg~ob~_bounds( ear~iest ) ; 
Rbound_btrace( tRBtrace , ear1iest ) ; 
Rbd_B1ams( tRminLam, tRmaxLam, tRBtrace 

Obtain an upper bound on the ~east 
eigenva1ue o~ the b1ock o~ the Hessian o~ 
the action ~unction&~ corresponding to the 
starting point . As in the ~unctions in ~o~1ov . c, 

compute a vhole suite o£ estimates and choose 
the best one . 



} 

I 
I 
I 

I 
I 

I 

I 

•I 
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Rdenom is a global upper bound 
on the size o~ the largest eigevalue 
o~ a diagonal block . 

Rdenom ~ maximWII trace - (n-1) • minimum ev . 

It's used together vith the leas t e igenvalue 
o~ beta (evaluated at the starting point) : 

LeastLam <~ RminBlam.ub- 1.0 I Rdenom 

apmCalc( Rdenom, Rd~, one, APK_SUB, 
RminLeastLam, APK_KUL, APK_BEG, 
Rmax_slope, APK_ADD, lULL) ; 

apmDivide( lam_acratch, precision, (APK) lULL, one, Rdenom 
apmSubtract( RminBlam_ll, RminLam. ub, lam_scratch ) 

•I 

Here ve try to attain a small estimate by 
saying : 

LeastLam <~ RmaxBlam.ub- 1.0 I maxLeastLam . 

apmDivide( lam_scratch, precision, (APK) BULL, one, RmaxLeastLam 
apmSubtract( RmaxBlam_ll, RmaxLam.ub , lam_scratch ) 

Finally ve make the estimate 
LeaatLam <= ~irst_slope I DEG_FREE 

•I 
apmDivide( Rtrace_ll, precision, (APK)IULL , R~irst_slope, Rd~ ) 

Choose the best (smallest) lover bound. 

•I 
ap~D.Assign( R~irstLeastLam, RmaxBlam_ll ) ; 
i~( apmCompare( ~irstLeastLam, RminBlam_ll ) == 

ap~D.Assign( R~irstLeastLam , RminBlam_ll ) ; 
i~( apmCompare( ~irstLeastLam, Rtrace_ll ) ~= 

ap~D.Assign( R~irstLeastLam, Rtrace _ll ) 

~irstLeaatLam = apmtodbl( ~irstLeaatLam 

include <stdio.h> 
include <math.h> 
include "apm . h" 
include 11 converse . h" 
include "map . h" 
include uboundins.h" 
include "rovs.h" 

I de~ine 

I de~ine 

IUK_FACTS 
IUK_TEIUIS 

3 
3 

Bdd _dbl 
Bdd_expr 
Bdd_term 

Bdd_apm 
Bapm_expr 
Bapm_term 

•~act_bu~[IUK_FACTS) ; 
b_trc ; 

trace_terms[IUK_TEIUIS) 

•R~act_buf[BUK_FACTS) ; 
Rb_trc ; 
Rtrace_terms[IUK_TEIUIS] 
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I• ++++++++++++++++++++++++++++++ •I 

initTraceO 
{ 

} 

int 
Bdd_dbl 
Bdd_apm 

j 
••fpt 
••Rfpt ; 

Set up the expressions. 

b _trc .nterms 
Rb _trc.nterms 

IUM_TERMS 
IIUM_TEMS 

b _trc.const ~ 4.0 ; 
Rb_trc.conet ~ apmlnit( 4L, 0, BASE 

nevBapm( Rb_trc.bound, BASE 

b_trc.terme 
Rb_trc.terms 

trace_terms ; 
Rtraoe_terms ; 

Set up their terms. 

fpt ~ fact_buf ; 
Rfpt ~ Rfact_buf 
for( j~O ; j < IUM_TERMS ; j++ ) { 

trace_terms[j].nfactors ~ 1 ; 
trace_terms[j].coef: - 1 . 0 ; 
trace_terms[j] . factors ~ fpt 

} 

Rtrace_terms[j].nfactors ~ 1 

Rtrace_terms[j] . coef ~ apmlnit( -1L, 0, BASE ) 
Rtrace_terms[j] .factors ~ Rfpt ; 

nevBapm( Rtrace_terms[j] . bound, BASE 

fpt++ ; 
Rfpt++ ; 

Fix up the constant in the third term • • . it •hould be 
-2.0. 

trace_terms[2].coef ~ -2.0 ; 
apmAssi~ong( Rtrace_terms[2].coef, -2L, 0, BASE) 

Associate the factors - vhich are only pointers 
to bounded objects - t o «enuine, properly initialized objects . 

I• first term •I 
b_trc.terms[O].factors[O] ~ ta_sin.bound ; 
Rb_trc . terms[O].factors[O] ~ tRa_sin.bound 

I• second term •/ 
b_trc . terms[1] . factors[O] = tb_sin . bound ; 
Rb_trc.terms[1].fact ors[O] ~ tRb_sin.bound 

I• third term •I 
b _trc.terms[2] . factors[O] ~ tc_sin.bound ; 
Rb_trc.terms[2].factors[O] ~ tRc_sin.bound 
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Rbound_btrace( result , priz 

RPrism •priz 
Bdd_apm •result 
I• 
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An APK partner to bound_btrace. Some o~ the variables 
used here are defined aboTe. 

I• Bound the expression •I 
Rbound_expr( tRb_trc ) ; 
apmCalc( Rb_trc.bound.ub, Rb_trc.bound.ub, max_error, APK_ADD, lULL 
apmCalc( Rb_trc.bound.lb, Rb_trc . bound.lb, max_error, APK _SUB, BULL 

} 

apmissi~( result->ub, Rb_trc.bound . ub 
apmiasi~( reault->lb, Rb_trc.bound.lb 

C.2.4 control of the computation 

the header file converse.h 

• i~nde~ • de~ine • define 

• endi:t 

• i~ndef • define 

• define 

• end if 

• define 

• define 

• define 

• define 

• define 

• define 

• def ine 

• define 

• de~ine 
• define 

• define 

• define 

• define 

• define 

• de~ine • define 

YES 
YES 
10 

WORKED 
WORKED 
FAILED 

IO_TORI 
UITRIED 
KAY BE 
ACTIVE 
SYMTRC 

I_PARIIS 
DEG_FREE 
DF_SQ 
TWO_DF 

KAT_DIK 
STAID_LEII 
KERC_LEI 
KAT_SZ 

DBL_ERR 

DFLT_DEPTB 

0 

1 
0 

0 
1 
2 
3 
4 

3 
2 

I• Ever popular •I 

I• A priam of initial conditions •I 
I• has one of these aa ita in_torua •I 
I• attribute accordin~ to vhether •I 
I• it definitely does not contain •I 
I• any invariant tori, has not yet 

been considered, is too hard to 
decide, is under active 
conaiderat_ion 1 or ia equivalent 
to some symmetrically related, 
other priam. •I 

I• Details of the particular map •I 

(DEG_FREE • DEG_FREE) 
(2 • DEG_FREE) 

(TWO_DF + !_PARKS) I• Used in finding ones 
(lf_PARKS • KAT_DIK) I• place in the matrix .. 
(TWO_DF • KAT_DIK) I• part of a prism. 
(STAID_LEI + MERC_LEB) 

1 . 0e-13 

10 I• De~ault values for various global 
DFLT_FRTBST 200 I• variables 

•I 
•I 
• I 

•I 
•I 



• de :tine 

• de :fine 

• de :tine 

• de :tine 

• de:tine 

• de:tine 

• de:tine 

• de:tine 

• de:tine 

DFLT _PRECIS 
DFLT_GilAPB 
DFLT_ERR 
DFLT_TERSE 
STUBBORJI 
SAFETY_PRECIS 

START_SZ 
IEWT_TOL 

BASE 

30 
YES 
YES 
YES 
10 

6 

6 

10e-8 

10000 
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I• Jumbers bearing on the accuracy •I 
I• o:t the starting point •I 

I• The base used in APM calculations. •I 

Data types :tor non-rigorous , rough calculations 

typede:t double •Tor_pt, •Parm_pt ; 

typede:t struct { Tor_pt u, v } Embed_pt 

typede:t struct { Embed_pt z 
Parm_pt p } Itnd_pt ; 

typede:t struct prsm { int in_ torus, n _cuts ; 
char •cuts[I_PARMS+TWO_DF] 
double •matrix 
Itnd_pt •center 
struct pram •next ; } Prism ; 

I• 
Data types :tor rigorous, arbitrary precision, calculat i ons 

•I 

typede:t APM •RTor_pt, •RParm_pt 

typede:t struct { RTor_pt u, v } REmbed_pt 

typede:t struct { REmbed_pt z 
RParm_pt p } Rltnd_pt ; 

typede:t struct Rpram { int in_torus, n_cuta 
•a.trix ; 
•cuts[MAT_DIM] ; 
•center i 

APM 
char 
Rltnd_pt 
atruct Rprsm •next ; } RPrism 

I• +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ •I 

extern Prism 
extern RPrism 

•conjurePrism() ; 
•conj ureRPrism() ; 

Some variables used throughout the converse KAM calculations 

extern int 
extern int 
extern int 
extern int 
extern int 
extern int 
extern int 
extern APM 
extern APM 

do_graph, do_backup , restoration 
prec i sion, depth, ~urth•at, terse , stubborn : 
quick_tries, tries, Rtries, max _steps, max _RTateps 
BermSuccess, LLSuccess, ll_used[3), most_cut s ; 
(• :fatten}{) , ( • rov_sums}() ; 
:txed_:torm(), R:txed_:torm( ) , col_ro t or(}, Rcol_rotor() 
:t:t_rovs(), Rf:t_rows(), cr_rovs(), Rcr_rovs(} ; 
Rfirst_alope, Rmin_slope , Rmax_slope, Rd£ , R~_sq ; 

RminLeastLam, RmaxLeastLam, R:tirstLeastLam, RsumTinyLams 
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extern 
extern 
extern 
extern 
extern 
extern 

API! 
char 
doubl.e 
doubl.e 
doubl.e 
double 

h~, max _error, Rstart_size, RSmBlock_err, RB~Bl.ock_err 

·~a~_£ile, •back_name, •rest _name, •parm_names[] ; 
~irstLeastLam, minLeastLam, maxLeastLam, sumTinyLams ; 
~irst_slope, min_sl.ope, max_slope ; 
apmtodbl(), parm_roo~[], parm_~loor[] 
SmBlock_err, B~Block_err ; 

main() 

• incl.ude <stdio.h> 

• inc1ude <math.h> 

• incl.ude uapm . h" 

• include "conYerae.h" 

• include 11tree.h11 

int 

int 
int 
API! 
doubl.e 

do_graph, do_backup, restoration ; 
precision, depth, err_hndl.r , ~urthest 
stubborn, terse ; 
max_error , RSmBl.ock_err, RBgBlock_err 
SmBl.ock_err = DF_SQ • DBL _ERR ; 

double B~Bl.ock_err = DEG_FREE • I_PARI!S • DBL_ERR 
I• ++++++++++++++++++++++++++++ •I 

main (argc, argv) 

int ar~c ; 
char •argv [] 
{ 

int 
Priam 
RPrism 

Terdict, RTerdict, tree_Terdict, nsteps 
•image_prism ; 
•active_prism, •old_priam 

handle_opts( argc, argv ) ; 
active_prism = conjureRPrism() 
image_prism = conjurePrism() 
commence( active _prism ) 

I• Study the current prism, cutting it up if need be •/ 
vhil.e( active_prism != lULL ) { 

I• 
Try a prel.iminary, non-ri~orous calcul.ation to see i~ 
prospects are ~ood. I~ they are, do a rigorous check. 
I~ they aren't, try to refine the prism. I~ it has already 
been refined enough, just give up. 

i~( do_~aph YES ) 
graphPrism( active_prism, ACTIVE ) 

Check the tree to see if an equivalent prism 
is al.ready ~inished . If so, record the resul.t 
and press on. I~ not, do a detail.ed analysis . 

tree_verdict = consul.tTree( active_prism ) ; 

~raphPrism( active_prism, SYI!I!TRC ) ; 
i~( do_backup == YES ) 

make_backup( active_prism ) ; 

old_prism = active_prism ; 
active_prism = ol.d_prism->next 
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releaseRPrism( old_prism ) 
} 

else { 

} 

} 

cease() 

prepare_trial( active_prism ) ; 
verdict = try_prism( active_prism, image_prism, insteps ) 

Rverdict = UITRIED ; 
i~( verdict == IO_TORI ) { 

} 

Rverdict = Rtry_prism( active_prism, image_prism, tnsteps ) 
i~( Rverdict == IO_TORI ) { 

} 

active_prism->in_torus = IO_TORI 

i~( terse == 10 ) 

printRPrism( active_prism., 
i:f( do_graph == YES ) 

graphPrism( actiTe_prism, 
H( do_backup == YES ) 

make_bacltup( active_prism 

old_prism = active_prism ; 
active _prism = old_prism->next 
releaseRPrism( old_prism ) ; 

nsteps 

IO_TORI 

) ; 

) ; 

) ; 

i:f( (Rverdict == MAYBE) I I (verdict == MAYBE) ) { 

} 

I• Either re:fine the priem .. . •I 
i:f( may_re:fine(active_prism) == YES ) { 

re:finePrism( active_prism, image _prism ) ; 
i:f( do_graph == YES ) { 

} 

} 

graphPrism( active_prism->next, UITRIED 
graphPrism( active_prism, ACTIVE ) ; 

I• . . . or give up and move on. •I 
else { 

} 

i:f( do_graph == YES 
graphPrism( active_prism, MAYBE 

i~( do_backup == YES } 
make_backup( active_prism ) ; 

active _prism->in_torus = MAYBE ; 
moveEdge_o_Chaos( active _prism, nsteps ) ; 
i:f( terse == 10 ) 

printRPrism( active_prism, nsteps ) ; 

old_prism = active_prism ; 
active_prism = old_prism- >next 
releaseRPrism( old_prism ) ; 
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Rtry_prism() 

• inc~ude <stdio .h> 

• include <math . h> 

• include "apm.h" 

• inc~ude "apmSpecial . h" 

• inc~ude "conTerse . h" 

• i nclude ''bounding . h" 

• inc~ude "r ovs . h" 

• include "pi.h" 

• de:f'ine USE_CR YES I• Use the colunm rotor? •I 
• de:fine USE_LL YES I• Use the least eisenYalue tes t? •I 
• de :fine USE_QT YES I• Use the quick, pre~iminary teet •I 
• de:fine USE_RIGOR YES I• Use the r ir;orous tests? •I 
• de :fine USE_SHIFT 10 

• de:fine FF_CYCLS 1 

• de :fine QS_TO_RS 5 I• The ratio o:f quick s t eps to ri!orous steps 
to be used in determining hov ~on! 
quick_try should go. 

•I 

• de:fine l'l.l.l_SU!! PI 

• de:fine eetLclFurthes t( n ) ((((n)IQS_TO _RS)+3) > :turthest) \ 
"! :furthest : ((niQS_TO_RS)+3) 

Declarations :for some external variables 
mentioned in converse.h . The API'Is are ini tialized by 
initFol~ovin!() . 

The :functions in thi s :ti~e manipulate copies o:f the data 
passed to them. The copies are kept in Prisms and RPrisms 
!Otten vith the conjurin! :functions by initFo~lovin!(). 

•I 
Prism 

double 
double 

Xtnd_pt 
I• 

RPrism 

APM 
APM 
API! 
doub~e 

I• 

•vorltPriz [2] ; 

b_bu:t[DF_SQ], •b_ptrs[DF_SQ] ; 
parmbu:t[2•I_PARI'IS], coordbu:t[2•TVO_OF] 

xpt_a, xpt_b ; 

Some API'! variables needed :for orbit 
:tollovi n! and e~ope vatchin! • 

•Rvorlt[2] ; 

:t_scratch, Rdenom 
Rsum, Rmax_ sum. ; 

Rtrace_~~. RmaxB~am-~~. RminB~am-~~ 

tra ce_11, maxBlam_11, minBl am_1l ; 

The variables declared belov d on ' t really need to 

) 

be bounded objects ( t hey did in an earlier version o:t the code), 
but the . ub in their uses makes the c ode easier t o understand . 

• I 
Bdd_dbl 
Bdd_apm 

b_trace, mi nBlam, maxBlam, leastLam, slope ; 
Rb_trace, RminB~am, RmaxBlam, ~eastLam, Rs~ope 
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int ia_~irst_trial = YES ; 
int local_~urth, ll_uaed[3] 
int HermSucceas, LLSuccess ; 
int max_steps, max_ITsteps, tries, Rtries, quick_triea, most_cuts 
I• +++++++++++++++++++++++++++++++++ •I 

prepare_trial( priz 

RPrism •priz 
{ 

int j ; 

i~( arelevParms( priz ) c= YES ) { 

•I 

Unless this is the Tery ~irst prism, 
record the center point - it vill be moved by 
aetHermStart() and aetLLStart() and vill neeed to be 
restored to its correct value . 

i~( is_~irst_trial == 10 ) { 

} 

~or ( j=O ; j < DEG_FREE ; j++ ) { 

} 

apmAssisn( rpt_a . z.u[j], priz->center->z . u[j] 
apmAssisn( rpt_a.z.v[j], priz->center- >z.v[j] 

aetHermStart( priz 
setCone( prix ) ; 

J i~ USE_LL 

J endif 

setLLStart( priz ) 
setLLbounda( priz ) ; 

J i~ USE_SHIFT 
shi~tStart( prix 

J endif 

I• 
Unless this is the very first trial, restore the 
correct value of the centerpoint before evaluatin~ 
the initial estimates for the slope and least ei~en?alue. 

if( is_first_trial == YES ) 
is _~irst_trial 10 ; 

else { 

} 

~or ( j=O ; j < DEG _FREE ; j++ ) { 

} 

apmAssisn( prix->center- >x.u(j], rpt _a.x . u(j] 
apmAssisn( prix->center->x.v(j], xpt _a . x . v[j] 

aetSlopes( priz 

J if USE_LL 

J else 

J endif 
} 

aetLeastLam( prix 

firstLeastLam = 1.0 
minLeastLam = 0 . 6 ; 
dbltoapm( Rf i rstLeastLam, BASE, firstLeastLam 
dbltoapm( RminLeastLam, BASE, mi nLeastLam ) ; 
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} 
I• +++++++++++++++++++++++++++++++++++++++ •I 

initFol1ovin&0 
{ 

I• 

• 
I 

Set up the correct connections betveen the Tarious 
static Yariables in this ~ile. 

int j, all_vel1 

a1l_vel1 YES 

Set up the vorkin& prisms . 

vorkPriz[O] = conjurePrism() 
vorkPri z[1] = conjurePrism() 
if( (vorkPriz[O] == NULL) I I (vorkPriz[1] == NULL) ) 

all _vell = 10 ; 

Set up the APM atuf~ 

~_scratch = apmRev( BASE 
Rdenom = apmlev( BASE ) ; 

Rtrace_ll = 
RminBlam_ll 
RmaxBlam_ll 

apmllesr( BASE ) 
apmllesr ( BASE 

= apmllev( BASE 

nevBapm( Rslope, BASE 
nevBapm( Rb_trace. BASE 
nevBapm( RminBlam, BASE 
nevBapm( RmaxBlam, BASE 
nevBapm( RleastLam, BASE ) 

if (USE..LL == 110) 

; 

apmAssi¢ong( RleastLam. ub, 
apmAssi¢ong( RleastLam.lb, 

end if 

Rsum = apmllev( BASE ) ; 
Rmax_aum = apmllev( BASE 

1L, 0, 
1L , 0, 

dbltoapm( Rmax_sum, BASE, KAI_SUM 

Rvork[O] = conjureRPrism() ; 
Rvork[1] = conjureRPri sm() ; 
i f( (Rvor k[O] == lULL) I I (Rvork[1] 

all_vell = 10 ; 

BASE 
BASE 

lULL) ) 

Set up the extended points - they ' re used by 
quick_test(), and are pointed to by the 
"center" attributes of the vorking prisms . 

xpt _a.z . u coordbuf ; 
xpt_a . z . T coordbuf + DEG_FREE 
xpt_a . p parmbuf ; 

xpt_b. z .u coordbu~ + TWO_DF 
xpt_b.z . Y coordbuf + TWO_DF + DEG _FREE 
xpt _b.p parmbuf + I _PARMS 



} 

165 

Set up pointers to the matrix vhich receives the 
chan~eable parts o~ the jacobian; the one called 
"beta" in most o'f my notes. 

~or( j=O ; j < (sizeo~( b_bu~ 
b_ptre[j] = tb_bu~[j] ; 

I sizeo~( double )) 

Initialize various performance data . 

most_cuts = 0 
max_stepa = max_ITsteps = 1 ; 

HermSuccess = LLSuccess = 0 ; 
tries = Rtries = quick_tries = 0 ; 
ll_used[O] = ll_used[1] = ll_used[2] 0 

i~( all_vell == YES ) 
return ; 

else { 

j++ ) 

~print~( stderr, 
" initFollovin~ 

cease() ; 
Could not prepare ~or pursuit. Died. \n" ) 

} 

I• ++++++++++++++++++++++++ •I 

Rtry_prism( initiel_priz, final_priz, nsteps ) 

int 
Prism 
RPrism 
I• 

•nsteps ; 
•~inal_priz 

•initial_priz 

•I 
{ 

Ri~orously decides vhether a prism o~ initial data may 
contain any invariant La~ran~ian tori, an APM version o~ 
the routine tryPrism() above. 

int 
RPrism 

Rtries++ 

count ; 
•priz, •priz_prime, •temp_priz 

priz = Rvork[O] 
priz_prime = Rvork[l] 

Bote that Rtry_prism() does not cell setSlopes,setStart or 
setCone . All that should have been. done vith a cell to 
prepare_trial(). 

~ ialevPriam = YES ; 

RcopyRPrism( priz, initiel_priz 

~atten = R~xed_~orm 
row_aums = Rff_rova 

•nsteps = c ount = 1 
apmAssi~( Rslope.ub, R~irst_slope ) ; 
apmAssi~( RleastLam . ub, R~irstLeastLam ) ; 
i~( apmCompare(Rslope .ub, Rmin_slope) == -1 ) { 

HermSuccess++ ; 



} 

copyRPrism( ~inal_priz, priz 
return( IO_TORI ) ; 
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if( apmCompare(RleastLam.ub, RminLeastLam) 
LLSuccess++ ; 

-1 ) { 

} 

copyRPrism( ~inal_priz, priz ) ; 
return( IO_TORI ) ; 

I i~ (USE_RIGOR == 10) 
copyRPrism( final_priz, priz 
return( IO_TORI ) ; 

• endif 

vhile( bi~_RPrism( priz ) == 10 ) { 

Check the slope . 

count++ 

Calculate some bounds useful for both criteria . 

R~lobal_bounds( priz ) 
Rbound_btrace( aRb_trace, priz 

I if USE_LL 

I endi~ 

I• mrm 1 s condition •I 
Rbd _Blams ( lRminBlam, lRmaxBlam , lRb_trace ) ; 

apmDivide( £_scratch, precision, (APH)IULL, one, 
RleastLam.ub ) ; 

apmSubtract( RmaxBlam_ll, RmaxBlam. ub, £_scratch . ) 

apmSubtract( Rdenom, Rslope.ub, RsumTinyLams ) ; 
if( apmCompare( Rdenom, zero) > 0 ) { 

} 

else 

apmDivide( ~_scratch, precision, (APK) lULL, one, Rdenom 
apmSubtract( RminBlam_ll, RminBlam. ub, ~_scratch ) ; 

apmAssip( RminBlam_ll, zero ) 

I• Herman's condition •I 
apmDivide( ~_scratch, precision, (APK) lULL, R~_llq, Rslope . ub ) 
apmSubtract( Rslope . ub, Rb_trace . ub, ~_scratch ) ; 

I H USE_LL 

• endif 

•I 

apmDivide( Rtrace _ll, precision, (APH)IULL, Rslope.ub , Rdf ) 

Rbest_ll( RleastLam . ub, RmaxBlam_ll, 
RminBlam_ll, Rtrace_ll ) 

Do some truncations to speed thin~s up 

I i~ USE_LL 
apmTruncate( RleastLam.ub, precision 

I endi~ 



apmTruncate( Ralope . ub, precision ) ; 

i~( apmCompare(Rslope.ub, Rmin_slope) 
+nsteps = count ; 

} 

i~( count > max_!Tsteps 
max_!Tsteps = count 

Berm.Succeaa++ ; 
copyRPrism( ~inal_priz, priz 
return( IO_TORI ) ; 
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-1 ) { 

else i~( apmCompare(RleastLam.ub, RminLeastLam) 
•nsteps = count ; 

} 

i~( count > max_RTsteps 
max_!Tateps = count 

LLSuccess++ ; 
copyRPrism( ~inal_priz, prix 
return( IO_TORI ) ; 

el•• { 

} 

i~( count 
breaJt 

~urthest ) 

Rpriamatic_imase( priz_prime, priz ) ; 

m_avap( priz, priz_prime, temp_priz 

I H USE_CR 
i~( count > FF_CYCLS ) { 

~atten = Rcol_rotor 
rov_aums = Rcr_rovs 

} 
I endi~ 

} 

} 

•nsteps = count ; 
copyRPrism( ~inal_priz, priz 
return( M£YBE ) ; 

I• +++++++++++++++++++++++++++++++++++++++ •I 

big_RPrism( Priz 

RPrism •Priz ; 
{ 

Rend_mat = Priz- >matrix + MAT_SZ ; 
~or( Rrpt a Priz->matrix ; Rrpt < Rend_mat ; ) { 

apmAssisnLons( Rsum, OL, 0, BASE ) ; 

-1 ) { 

~or( Rend_rov = Rrpt + KAT_DIM ; Rrpt < Rend _rov : Rrpt++ ) 
apmCalc( Rsum, Raum , •Rrpt, APM_ABS, APM_ADD, lULL ) : 

} 

} 

i~( apmCompare( Rsum, Rmax_sum) == 1 ) 
return ( YES ) ; 

return( 110 ) ; 

I• ++++++++++++++++++++++ •I 
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Rbest_11( best, minB1am_11, max81am_11, trace_11 

iPM best, min81am_11, max81am_11, trace_ll ; 
{ 

} 

apmAssign( best, maxBlam_ll ) ; 
i~( apmCompare( best, minBlam_ll ) == 1 ) 

apmissign( best, min81am_ll ) ; 

i~( apmCompare( best, trace_ll ) == 1 ) 
apmissign( best, trace_ll ) ; 

C.2.5 the map 

the header file map.h 

extern iPM 
extern double 

RDeriv[], +Rbeta_ptrs[], •Rgamma_ptrs[] 
Deriv[], •beta_ptrs[], +gamma_ptrs[] ; 

mapping functions 

I• 

•I 

• • • • • • 

Functions to perform the extended Froeschle map and to 
calculate its jacobian. Each ~unction has a rigorous 
and a non-rigorous ~o~ ; the former always has a name 
beKinning vith a "R". 

The functions in this file are quite specific -
they pertain to maps o~ the ~orm 

(p,u,v) -> (p' ,u' ,v') 

p' p 
u' = v 
v• 2v - u -dV(v) 

vhere u, v, u• ~ v' are all in 2d Euclidean space, 
p is an element o~ a space o~ parameters and 

V(v) = -a • sin( v[O] ) + -b • sin( v[l] ) + 
-c • sin( v[O] + v[1] ) 

The parameters a, b, and c are alvays passed through 
an array called "parZ!lZI" vith 

a = parma[O], b = parms[l], c parms[2]. 

include <stdio .h> 
include <math . h> 
include 11 apm.h 11 

include "apmSpecia.l . h" 
inc1ude "converse.h" 
include 11map.h" 

iPPI 
APPI 
APM 
double 
double 

Rmixing_term, Rv_sum, map_scratch i 

•Rbeta_ptrs[DF_SQ] 
+Rgamma_ptrs[DF_SQ], RDeriv[MAT _SZ] 
•beta_ptrs[DF_SQ] 
•gamma_ptrs[DF_SQ], Deriv[MAT_SZ] ; 

I• +++++++++++++++++++++++++++++++++++++++++ 
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RimageO 
+++++++++++++++++++++++++++++++++++++++++ •I 

Rimage( x_prime, x ) 

RXtnd_pt 

I• 

} 

Finds the image, x _prime, o£ a delay-embedded point, x. 
The parameters o£ the map are in the parameter-space point 
ca1led "parms 11

• 

APM 
RParm_pt 

•x_pt, •xp_pt, •last_x 
parma 

parma = x->p ; 
x_pt = x->p ; 
xp_pt = x_prime->p 
tor( last_x = x _pt + R_PARMS ; x_pt < last_x 

apmAssign( •xp_pt++, •x_pt ) ; 
x_pt++ ) 

I• Because o£ the say delay embedding works, 
the tirst member o£ x_prime is the same as 
the s•cond member o~ x . 

x_pt = x->z.v ; 
xp_pt = x_prime->z.u 
tor( last _x = x_pt + DEG_FREE ; x_pt < last _x 

apmAssign( •xp_pt++, •x_pt ) ; 

I• Do up the actual map. One could 

x_pt++ ) 

vrit• a version o~ imase() vhich vorked for 
any standard-type symplectic map; it would 
rely on another £unction, perturb(), to 
completely define the map . Instead ve 
incorporate the perturbation to the 
generating £unction right into our map -
ve hope to save a little time . 

•I 
apmAdd( Rv_sum, x->z . v[O], x->z.v[1] ) 
apmCos( map_scratch, Rv _sum ) ; 
apmMultiply( Rmixing_term, map_scratch, parms[2] 

apmCos( map_scratch, x - >z . v[O] ) ; 
apmCalc( x _prime- >z.v[O], two, x->z. v[O], APM _KUL, 

x->z.u[O], APM_SUB , 
parms[O], map_scratch, APM_MUL , 
Rmixing_term, APM_ADD , 
APM_ADO, lULL 

apmCos( map_scratch, x ->z.v[1) ) ; 
apmCalc( x_prime->z.v[1), tvo, x->z.v[1), APM _MUL, 

x->z . u(l], APM _SUB, 
parms(1), map_scratch, APM_MUL, 
Rmixing_term, APM _ADD, 
APM _ADD, lULL 

I• +++++++++++++++++++++++++++++++++++++++++++ 

tind_RbetaO 

In the interest of speed, ve provide functions which only 
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calcUlate those parts o£ the Jacobian that actually 
depend on parms and (u , v) . The other parts are 
assumed to have been correctly set by a call to 
initJacobian() or initRjacobian(), both o£ vhich 
may be £ound belov. 

+++++++++++++++++++++++++++++++++++++++++++ •I 

£ind_Rbeta( b_block, x ) 

APM •b_block[] 
RXtnd_pt •x ; 
{ 

} 

apmAdd( Rv_sum, x->z.v[O], x->z . v[l] ) ; 
apmSin( map_scratch, Rv_sum ) ; 
apmMultiply( Rmixing_term, x->p[2], map _scratch 

apmSin( map_scratch, x->z.v[O] ) ; 
apmCalc( •b_block[O], x->p[O], map_scratch, APM_MUL, 

tvo, APM_SWAP, APM_SUB, 
Rmixing_term, APM_SUB, BULL ) ; 

apmBegate( •b_block[l], Rmixing_term 
apmBegate( •b_block[2], Rmixing_term 

apmSin( map_scratch, x->z.v[l] ) ; 
apmCalc( •b_block[3], x->p[l], map_scratch, APM_MUL, 

tvo, APM_SWAP, APM_SUB, 
Rmixing_term, APM_SUB, BULL ) 

I• ++++++++++++++++++++++++++++++++++++++++++++++++++++ 

Rgamma() : calculate the dependence o£ 
v 1 on the parameters. Even as the £unctions 
above, gamma() and Rgamma() change only those components 
pointed to by elements o£ a block of pointers. 

+++++++++++++++++++++++++++++++++++++++++++++++++++++++ • I 

£ind_Rgamma( g_block, x 

APM +g_block[] 
Rltnd_pt •x ; 
{ 

} 

apmAdd( Rv_sum, x->z.v[O], x->z.v[l] 
apmCos( Rmixing_term, Rv_sum ) 

apmCos( •g_block[O], x - >z.v[O) 
apmAssign( •g_block[l), Rmixing_term 
apmCos( •g_block[2] , x->z.v[l] ) ; 
apmAssign( •g_block[3), Rmixing_term 

I• ++++++++++++++++++++++++++++++++++++++++ •I 

initRjacobian( jac ) 

I• 
Set the constant parts o£ a jacobian matrix 

APM •jac 
{ 

int 
APM •end_jac, ojpt 
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If the array of APM 1 s called jac has not yet been 
initialized, do that first. 

if( apmValidate(jac[O]) != APM_OK ) { 
end_jac = jac + MAT_SZ ; 

} 

for( jpt=jac ; jpt < end_jac ; jpt++ 
+jpt = apmlev( BASE ) ; 

end_jac jac + MAT_SZ ; /+ Set all the entries +/ 
for( jpt=jac ; jpt < end_jac ; jpt++ 

apmAssignLong( +jpt, OL, O, BASE 
/+ to zero. 

/+ Put the identity in the (p,p) position . +/ 
jpt = jac ; 
for( j=O ; j < !_PARKS ; j++ ) { 

apmAssignLong( +jpt, 1L, 0, BASE 
jpt += MAT_DIM + 1 ; 

} 

/+ Put the identity in the (u,v) position. +/ 
jpt = jac + STAID_LEN + B_PARMS + DEG_FREE 
for( j=O ; j < DEG_FREE ; j++ ) { 

apmAssignLong( +jpt, 1L, 0, BASE ) ; 
jpt += MAT_DIM + 1 ; 

} 

/+ Put -1 times the identity in the (v,u) position. +/ 

} 

jpt = jac + STAID_LEN + (DEG_FREE + MAT _DIM) + &_PARKS ; 
for( j=O ; j < DEG_FREE ; j++ ) { 

apmAssignLong( +jpt, -1L, O, BASE ) ; 
jpt += HAT_DIM + 1 ; 

} 

I• +++++++++++++++++++++ •I 

initMapO 
{ 
/+ 

This function depends in detail on the choice of map. 
+I 

/+ 

•I 

beta_ptrs[O] 

beta_ptrs [1] 
beta_ptrsl2] 
beta_ptr s[3] 

gllJtll!la_ptrs [0] 
gllJtll!la_ptrs[1] 
p;amma_ptrs [2] 
gamma_ptrs [3] 

APM stuff 

Rbeta_ptrs [0] 

Rbeta_ptrs [1] 
Rbeta_ptrs [2] 
Rbeta_ptrs [3] 

Deriv + STAID_LER + (DEG_FREE + MAT_DIM) + 
R_PARMS + DEG _FREE 

beta_ptrs[O] + 1 ; 
beta_ptrs[O] +MAT DIM 
beta_ptrs[2] + 1 ; 

Deriv + STAID_LEN + (DEG_FREE + MAT_DIM) 
p;amma_ptrs[O] + 2 
p;amma_ptrs[O] + MAT_DIH + 1 ; 
p;amma_ptrs[1] + MAT _DIM 

RDeriv + STAID_LER + (DEG_FREE + HAT_DIH) + 
N_PARMS + DEG_FREE 

Rbeta_ptrs[O] + 1 ; 
Rbeta_ptrs[O] + HAT_DIH 
Rbeta_ptrs[2] + 1 ; 

+I 
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Rglllll1la_ptra[O] 
Rglllll1la_ptra[1] 
Rglllll1la_ptra [2] 
Rglllllllla_ptrs [3] 

RDeriv + STAID_LEI + (DEG_FREE • KAT_DIM) 
Rgamma_ptra[O] + 2 ; 
Rgamma_ptrs[O] + ftAT_Dift + 1 
Rgamma_ptrs[1] + KAT_Dift 

initJacobian( Deriv ) 
initRjacobian( RDeriv 

Further APft stu~~ - constants and scratch variab1ea. 

Rv_aum = apmlev( BASE 
map_acratch = apmlev( BASE ) ; 
Rmixing_term = apmlev ( BASE ) ; 

I• +++++++++++++++++++++++ •I 

Rjacobian( xpt 

Rltnd_pt •xpt 
{ 

} 

• • • • • • • 

~ind_Rbeta( Rbeta_ptra, xpt ) 
~ind_Rgamma( Rgamma_ptra, xpt 

inc1ude <stdio.h> 
inc1ude <math.h> 
inc1ude "apm.h" 
inc1ude "apmSpeciaLh" 
inc1ude "eonTerae.h" 
inc1ude ''bounding.h'' 
include ''map.h" 

int 
APft 

<• ~atten)(), (• rov_sUJ!lS)() 
Rv [ftAT _Dift] ; 

I• ++++++++++++++++++++++++++++++++ •I 

Rprismatic_image( pz_prime, pz ) 

RPrism 
{ 

I• 

int j ; 
APM •mpt, •end_mat, •vpt, •end_v 

Find the image o£ the center o~ the priam. 

Rimage( pz_prime->center, pz->center ) 

Rjacobian( pz->center ) 

Fatten the matrix 
singular . 

I• Ca1culate the derivative 
o~ the map. 

DeriT • pz->matrix so that it i sn't too 

(• ~atten) ( pz_prime->matrix, RDeriv, pz->matrix ) 

Get upper bounds on the rovs o~ the ~attened matrix, 
and use them to get the matrix o~ a prism gauranteed 
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to enc~ose the image of pz. 

(+ rov_sums)( Rv, pz_prime->matrix, RDeriv, pz) 

end_v = Rv + ftAT_Dift ; 
end~at = pz_prime->matrix + ft!T_SZ ; 
for( mpt = pz_prime->matrix ; mpt < end_mat ; ) { 

for( vpt = Rv ; vpt < end_v ; vpt++, mpt++ ) 
apmCa~c( +mpt, +mpt, +vpt, max_error, 

APM_ADD, APM_MUL, lULL ) ; 
} 

truncateRPrism{ pz_prime, precision 

} 
I• +++++++++++++++++++++ •I 

initPrismatic () 
{ 

} 

int j ; 

for( j=O ; j < N_PARftS ; j++ ) { 
Rv[j] = apmNev( BASE ) ; 
apmAaaign( Rv[j], one) ; 
v[j] = 1.0 ; 

} 

for( j=N_PARftS ; j < (N_PARMS + DEG_FREE) 
Rv[j] = apmNev( BASE ) ; 

for( j=(R_PARftS + DEG_FREE) ; < KAT DIM 
v[j] = 1 . 0 + DBL_ERR ; 
Rv[j] = apmlev( BASE ) 
apmAdd( Rv[j], one, max_error 

} 

C.2.6 images of prisms 

the header file rows.h 

extern int 

j++ ) 

j++ ) { 

extern int 
extern int 
extern doub~e 

g~obal_bounds(), Rg~obal_bounds() ; 
Rbeta_dif_star(), Rgamdif_star() 
beta_dif_star(), gamdif_star() 

extern Bdd_dbl cos_zero, cos_one, cos_sum 

extern Bdd _expr a _sin , b _sin, c _sin i 

extern Bdd_apm Rcos_zero, Rcos_one, Rcos_sum 
extern Bapm_expr Ra_s i n, Rb_sin, Rc_sin ; 

extern APK neg_one, neg_tvo, Rrov_abs[] 
I• +++++++++++++++++++++++++++++++++++++++++++++++++++++++ •I 

RglobaLbounds() 

• include <stdio.h> 



• include <math.h> 

• include "apm.h" 

• include "a.pnSpecia1.h" 

• include ''converse .h" 

• include 11bounding ~ h" 

• include "rovs . h" 

• define ltm_F.I.CTS 14 

• define lUI'!_ TERMS 11 

• define DET_TOL 111-13 

API'! neg_one, neg_tvo 
API'! Rrovs[DEG_FREE] , Rrov_abs[DEG_FREE] 

Bdd dbl a, b, c, cos_zero, cos_one, cos_sum 
Bdd dbl sin_zero, sin_one, sin_sum, theta ; 
Bdd_dbl •rov_factors[ltm_FACTS] ; 
Bdd_term rov_terms[ltm_TERI'IS] ; 
Bdd_expr beta_dif[3], gamma_dif[3] 
Bdd_expr a_sin, b_sin, c_sin ; 
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Bdd_apm 
Bdd_apm 
Bdd_apm 
Bapm_term 
Bapm_expr 

Ra, Rb, Rc, Rcos_zero, Rcos_one, Rcos_sum 
Rsin_zero, Rsin_one, Rsin_sum, Rtheta ; 
•Rrov _factors[RUM_FACTS] ; 
Rrov_terms[IUI'I_TERI'IS] ; 
Rbeta_dif[3] , Rgamma_dif[3] 

Bapm_expr Ra_sin, Rb_sin, Rc_sin ; 
I• ++++++++++++++++++++++++++++++ •I 

ini tRovSums 0 
I• 

•I 
{ 

Set up the expressions and terms as described in my notes 
from 11114 . 

int 
Bdd_dbl 
Bdd_apDI 
Bdd_term 
Bapm_term 

j, k ; 
••dpt ; 
••apt ; 
Hpt ; 
•Rtpt ; 

Set up some API'I's to be used to hold intermediate 
resuJ.ts. 

nevBapDI( Ra, BASE 
nevBapm( Rb, BASE 
nevBapm( Rc, BASE 
nevBapm( Rtheta, BASE ) ; 

nevBapm( Rcos _zero, BASE ) 

nevBapDI( Rcos_one, BASE ) ; 
nevBapm( Rcos_sum, BASE ) ; 
nevBapDI( Rsin_zero , BASE ) ; 
nevBapDI( Rsin_one, BASE ) 

nevBapm( Rsin_sum, BASE ) ; 

neg_one apmlnit ( -1L, 0, BASE 
neg_tvo apmlnit( -2L, 0, BASE 

for( j =O ; j <DEG_FREE ; j++ ) { 



•I 

} 

Rrovs[j] = apm!ev( BASE ) ; 
Rrov_abs[j] = apm!ev( BASE ) 
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Set the number of terms in the bounded expressions 

a sin.nterms 
b_sin.nterms 
c_sin.nter.ms 

Ra_sin . nterms 

Rb_sin.nterms 
Rc_sin.nt•~ 

1 

1 

beta_dif[O].nterms 
beta_dif[l] .nterms 
beta_dif[2] .nterms 

Rbeta_dif[O] . nterms 2 
Rbeta_dif[1].nterms 
Rbeta_dif[2].nterms 2 

gamma_dif[O].nterms 
gamma_dif[1].nterms 
gamma_dif[2].nterms 

Assign terms 

tpt = rov_terma ; 
Rtpt = Rrov_terms 

Rgamma_dif[O].nterms 1 
Rgamma_dif[1].nterms 
Rgamma_dif[2].nterms 

for( j=O ; j < 3 ; j++ ) { 
beta_dif[j].terms = tpt 
Rbeta_dif[j] .terms = Rtpt 
tpt += beta_dif[j] . nterms 
Rtpt += Rbeta_dif[j].nterms 

} 

gamma_dif[j] . terms = tpt ; 
Rgamma_dif[j].terms = Rtpt 
tpt += gamma_dif[j] .nterms 
Rtpt += Rgamma_dif[j].nterms 

a_sin.ter.ms = tpt++ ; 

Ra_sin . terms = Rtpt++ 

b_sin . terms = tpt++ ; 
Rb_sin.terms = Rtpt++ 

c_sin.te~s = tpt++ ; 

Rc_sin.terms = Rtpt++ 

Set nfactors. 

Rbeta_dif[O].terms[O].nfactors 
Rbeta_dif[O] . terms[1].nfactors 
Rbeta_dif[1].ter=s[O] . nfactors 
Rbeta_dif[2].terms[O].nfactors 
Rbeta_dif[2].ter=s[1].nfactors 

beta_dif[O] . terms[O].nfactors 1 
beta_dif[O] .terms[1].nfactors ~ 1 
beta_dif[1].terms[O].nfactors 

Rgamma_dif[O].terms->nfactors 
Rgamma_dif[1].terms->nfactors 
Rgamma_dif[2].terms->nfactors 

beta_dif[2] .terms[O].nfactors 
beta_dif[2].terms[1].nfactors 

gamma_dif[O] .terms- >nfactors 
gamma_dif[1].terms->nfactors 
gamma_dif[2].terms->nfactors 

a_sin.terms->n~actors 

b sin.terms->n£actors 

Ra_sin.terms->nfactors 

Rb_sin.terms- >nfactors 
2 
2 

1 

1 
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c_sin . ter,ms->~actors Rc_sin . terms->n~actors 

Assisn ~actors. 

dpt = rov_~actors ; 
apt = Rrov_~actors 
~or( j=O ; j < 3 ; j++ ) { 

I• 

} 

beta_dif 

~or( k=O ; k < beta_di~[j] . nterms ; k++) { 
beta_dif[j] . terms[k].~actors = dpt ; 
Rbeta_di~[j] . terms[k].~actors =apt ; 

} 

dpt += beta_di~[j] .terms[k] .n~actors ; 
apt+= Rbeta_di~[j] . terms[k].nfactors ; 

~or( k=O ; k < ~amma_di~[j] . nterms ; k++) { 
~amma_di~[j].terms[k).~actors = dpt ; 
R~amma_di~[j] . terms[k] . ~actors =apt ; 

} 

dpt += ~amma_di~[j].terms[k).nfactors ; 
apt+= Rgamma_di~[j] . terms[k].n~actors ; 

a_sin.terms->~actors = dpt ; 
Ra_sin.terms->factors = apt ; 
dpt += 2 
apt += 2 ; 

b_sin.terms->~actors = dpt ; 
Rb_sin.terms->~actors = apt ; 
dpt += 2 
apt += 2 ; 

c_sin.terms->~actors = dpt ; 
Rc_sin.terms->~actors = apt ; 

2 

Set up those o~ the "bound" attributes vhich are 
bounded APM's. 

~or( j=O ; j < IUM _TERMS ; j++ ) { 
nevBapm( Rrov_terms[j] . bound , BASE 

} 

~or( j=O ; j < 3 ; j++ ) { 

} 

nevBapm( Rbeta_di~[j].bound, BASE) ; 
nevBapm( Rgamma_di~[j] . bound , BASE ) ; 

neRBapm( Ra_sin . bound, BASE 
neRBapm( Rb_sin.bound, BASE 
nevBapm( Rc_sin.bound, BASE 
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Set up the terms and expressions . 

a_sin.const = 0.0 ; 

Ra_ain.conat = apmlev( BlSE ) ; 
a_sin.terms->coe~ = 1 . 0 ; 

Ra_ain.terma->coe£ = apminit( 1L, 0, BlSE ) 

a_sin . terms->£actora[O] = aa : 
a_ain.terms->£actora[1] = aain_zero 
Ra_ain.terma->£actors[O] aRa : 
Ra_sin.terma->£actors[1] aRain_zero 

b_sin . conat = 0.0 ; 

Rb_ain.conat = apmlev( BlSE ) ; 
b_sin.terme->coe£ = 1.0 ; 
Rb_sin . terms->coe£ = apm!nit( 1L, 0, BlSE ) 

b_ain . terma->£actora[O] = ab ; 
b_ain.terma->£actora[1] = aain_one 
Rb_ain . terms->£actors[O] aRb ; 
Rb_ain.terma->£actors[1] = aRsin_one 

c _sin.const = 0 . 0 ; 
Rc_ain.conat = apmlev( BlSE ) ; 

c_ain.terma->coe£ = 1.0 ; 
Rc_ain . terma->coe£ = apminit( lL , 0, BlSE ) 

c _ain.terma->£actora[O] = ac ; 
c_ain . terms->£actors[1] = asin_aum 
Rc_ain.terma->£actors[O] aRc : 
Rc_sin.terms->£actora[l] aRain sum 

I• beta_di£[0] = (2.0 - a • sin(v[O]) - c • ain(v[O] + v[1]) 
-{ 2.0 - ac • sin(vc[O]) - cc • ain(vc[O] + vc[l]) 

Where ac, cc, vc[O], and vc[l] ar• the values o£ these 
numbers at the center o£ the prism. The vhole second 
term ( enclosed in braces ) is an entry in the j acobian 
o£ the map 

Rbeta_di£[0] . conat = apmlev( BlSE) : 
beta_di£[0] . terma[O].coe£ = -1 . 0 ; 
Rbeta_di£[0].terms[O].coe£ = ne5_one 

beta_di£[0] . terms[O] . £actora[O] = aa_ain . bound 
Rbeta_di£[0] .terms[O] . £actors[O] = aRa_ain . bound 

beta_di£[0] .terms[1].coe£ = -1.0 ; 
Rbe t a_di £[0] .terma[1].coe£ = neg_one 

beta_di£[0] . terms[1].£actors [ O] = ac _sin.bound 
Rbeta_di£[0] . terms[1] . £actora[O] = aRc_ain.bound 
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I• beta_di~[1) -2.0 • c • sin . bound{ v[O] + v[1] ) 
- { -2.0 • cc • sin.bound{ vc[O] + vc[1) ) } 

•I 
Rbeta_di~[1] . const apmlev{ BASE) ; 

beta_di~[1].terms[O].coe~ = -2.0; 
Rbeta_di~[1].tsrms[O].cos~ = ne!_two 

beta_di~[1].terms[O] . ~actors[O] = tc_sin.bound 
Rbeta_di~[1].terms[O].~actors[O] = tRc_sin.bound 

I• beta_di~[2] 2.0- b • sin . bound{v[1]) - c • sin{v[1] + v[O]) 
-{ 2.0 - be • sin . bound{vc[1]) - cc • sin{vc[1] + vc[O]) } 

•I 
Rbeta_di~[2].const = apmlew( BASE) ; 

beta_di~[2].terms[O].cos~ = -1.0 ; 
Rbeta_di~[2] .terms[O] . coe~ = neg_one 

beta_di~[2] . terms[O].~actors[O] = tb_sin .bound 
Rbeta_di~[2).terms[O] .~actora[O] = tRb_sin.bound 

beta_di~[2].terms[1] . cos~ = -1 .0 ; 
Rbeta_di~[2].terms[1].coe~ = ne!_one 

beta_di~[2].terms[1] . £actors[O] = tc_sin . bound 
Rbeta_di~[2].terms[1] .~actors[O] = tRc_sin.bound 

I• !Bmma_di~[O] = da • { cos{v[O]) - cos(vc[O]) ) 
Where da is hal~ the priam's width as measured 
along the a-axis and vc is as aboTe. 

R!amma_d~[O].const = apmlew( BASE) 

R!amma_di~[O).terms[O).coe~ = apmlew( BASE) ; 

gamma_di~[O].terms[O] . £actors[O) = tcos_zero 
R!amma_di~[O].terms[O] . factors[O] = tRcos_zero 

I• !Bmma_di~[1] 

Rgamma_dif[1] . const apmBev( BASE ) ; 

R!amma_dif[1].terms[O] .coe£ = apmlew( BASE) ; 

!amma_dif[1].terms[O] . factors[O] = tcos_one 
R!amma_di~[1].terms[O].factors[O] = tRcos_ons 

I• !Bmma_di£[2] =de • ( cos(v[O] + v[1]) -
cos{vc[O) + vc[1]) ) •I 

Rgamma_di~[2].const = apmlev( BASE) ; 

R!amma_di~[2] . terms[O].coe£ = apmBev( BASE) ; 

!Bmma_dif[2].terms[O] . factors[O] = tcos_sum 
Rgamma_dif[2] . terms[O] . £actors[O] = tRcos_sum 

I• +++++++++++++++++++++++++++++++++ •I 

Rglobal_bounda( pz ) 



179 

RPrism +p:z: 
{ 

} 

int j 
APM +apt, •end_rov ; 

apmAdd( Ra.ub, p:z:->center->p[O], p:z:->matrix[O] ) ; 
apmSubtract( Ra.lb, pz->center->p[O], pz->matrix[O] ) ; 

apmAdd( Rb.ub, p:z:->center->p[1), p:z:->matrix[MAT_DIM+1) ) 
apmSubtract( Rb.lb, p:z:->center->p[1), pz->matrix[MAT_DIM+1] 

apmAdd( Rc .ub, pz->center->p[2], pz->matrix[2•MAT_DIM+2) ) ; 
apmSubtract( Rc . lb, pz->center->p[2], pz->matrix[2+MAT_VIM+2] 

apt = p:z:->matrix + STAID_LE! + (DEG_FREE • MAT_DIM) ; 
~or( j=O ; j < DEG_FREE ; j++ ) { 

apmAssign( Rrovs[j], zero) ; 
~or( end_rov=apt + MAT_DIM ; apt < end_rov ; apt++ ) { 

apmCalc( Rrovs[j], Rrovs[j), +apt, 
APM_ABS, APM_ADD, lULL 

} 
} 

apmAdd( Rtheta.ub, pz->center->:z:.Y[O], Rrovs[O) ) ; 
apmSubtract( Rtheta.lb, pz->center->z.Y[O], Rrovs[O] 
Rbd_sin( ARsin_:z:ero, ARtheta ) 
Rbd_cos( ARcos_:z:ero, ARtheta ) ; 

apmAdd( Rtheta.ub, pz->center->z.Y[1], Rrovs[1] ) ; 
apmSubtract( Rtheta.lb, pz- >center->:z:.v[1), Rrovs[1) 
Rbd_sin( ARsin_one, ARtheta ) 
Rbd_cos( ARcos_one, ARtheta ) ; 

apmCalc( Rtheta . ub, Rtheta.ub, pz->center- >z.v[O], Rrovs [0], 

apmCalc( Rtheta.lb, Rtheta.lb, 

Rbd_Bin( I:Rsin_sum, ARtheta 
Rbd_cos ( ARcos_sum, ARtheta 

Rbound_expr( ARa_sin 
Rbound_expr( ARb_ein 
Rbound_expr( ARc_sin 

APM_ADD, APM_ADD, !fULL ) 
p:z:->center->z.Y[O), Rrovs [0], 

APM_SUB, APM_ADD, lULL ) 

I• +++++++++++++++++++++++++++++++++ •I 

Rbeta_di~_star( ansver, deriv ) 

APM ansver, +deriv 
{ 

APM +dpt 

dpt = deriv + STAID_LER + (MAT_DIM•DEG_FREE) + B_PARMS + DEG_FREE 
apmSubtract( Rbeta_dif[O] . const, tvo, •dpt++ ) 
apmMultiply( Rbeta_dif[1] . const, ne~_tvo, •dpt ) ; 
dpt += MAT_DIM ; 
apmSubtract( Rbeta_di~[2] . const, tvo, •dpt ) ; 

Rbound_expr( ARbeta_dif[O] 
Rbound_expr( ARbeta_di£[1] 
Rbound_expr( ARbeta_di£[2] 
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RmaxAbs( ansver, Rbeta_dif[O] .bound .ub, Rbeta_dif[O].bound .lb) 
RmaxAbs( Rrov_abs[O], Rbeta_dif[l] . bound .ub, Rbeta_dif[l] . bound.lb 
RmaxAbs( Rrov_abs[l], Rbeta_dif[2].bound .ub, Rbeta_dif[2].bound . lb 

Add max_error to the ansver to account for the uncertainties 
in beta••(center) . 

apmCalc( ansver, ansver, Rrov_abs[O] , Rrov_abs[l], max_error, 
APft_ADD, APft_ADD, APft_ADD, BULL ) 

I• +++++++++++++++++++++ •I 

Rsamdif_star( answer, deriv, pmat 

APft ansver, •deriv, *pmat 
{ 

} 

Rda pmat ; 
Rdb = pmat + KAT_Dift + 1 ; 
Rdc pmat+ (2 • ftAT_Dift) + 2 ; 

apmAssi~( R~amma_dif[O].terms[O] . coef, •Rda) 
apmAssisn( Rsamma_dif[l].terms[O].coef , •Rdb ) 
apmftultiply( R!amma_dif[2].terms[O] . coef, tvo, •Rdc 

apt = deriv + STAID_LEI + (DEG_fREE • KAT_DIK) 
apmCalc( Rsamma_dif[O].const, •Rda, APK_IEG, •apt, APK_MUL, lULL 
apt += ftAT_Dift + 1 ; 
apmCalc( R~amma_dif(1].const, •Rdb, APK_IEG, •apt, APK_KUL, lULL 
apt++ ; 

apmCalc( Rsamma_dif[2].const, two , APft_IEG, •Rdc, •apt, 
APK_KUL, APft_ftUL, lULL 

Rbound_expr( AR~amma_dif[OJ 
Rbound_expr( tRsamma_dif[l] 
Rbound_expr( . aRsamma_dif[2] 

RmaxAbs( answer, R~amma_dif[O] . bound . ub, R~amma_dif[O] . bound .lb) 

RmaxAbs( Rrow_abs[O], Rsamma_dif[l].bound.ub, Rgamma_dif[l] . bound.lb 
RmaxAbs( Rrow_abs[l], Rgamma_dif[2].bound.ub, Rsamma_dif[2].bound . lb 

Add max_error to the answer to account for the uncertainties 
in beta••(center). 

apmCalc( answer, answer, Rrow_abs[O], Rrow_abs[1], max_error, 
APft_ADD, APM_ADD, APK_ADD, BULL ) 

coluinn-rotor 

• include <stdio.h> 

• include <math.h> 

• include "apm. h 11 

• include "apm.Special. . h" 

• include 11 converse .. h" 

• include "boundin«.h11 

• include "rovs.h" 



• include "pi . h 11 

• def i ne m_si!"( X 

• de:fine Rill_ sign( 

• define USE_ROT 

• define TBETA_ROT 

) 

x, a ) 

YES 

0 . 6 
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( (x > 0 .0 ) ? 1.0 : - 1.0 ) 
apmAseignLong((x),(long)apmSi!"((a)),O,BASE) 

I• The angle :for rotations - it's 
recorded here in units of pi. •I 

APK Rcthet, Rsthet, Rsmall_sinsq ; 
APK Rarea , Rsin_sq, Rnorm_one, Rnorm_tvo, Rsign 
APft Rnorm_prod, Rsign, Rx, Ry ; 
double cthet, sthet, small_sinsq ; 
I• +++++++++ +++++++++++++++++++++++++++++++++ •I 

initRotorO 
{ 

} 

apmll'ev( BASE 

apmlev( BASE 

Rx = apmlev( BASE ) ; 
Ry = apmll'ev( BASE ) ; 
Rarea = apmlev( BASE ) 
Rsign = apmBev( BASE ) 
Rsin_sq = apmRev( BASE 
Rnorm_one = apmlev( BASE 
Rnorm_tvo = apmlev( BASE 
Rnorm_prod = apmlev( BASE ) 
Rsmall_sinsq = apmlev( BASE 

cthet = cos( PI + TBETA_ROT 
sthet = sin( PI * THETA_ROT 
small_sinsq = sthet * sthet 

dbltoapm( Rx , BASE , TBETA_ROT 
apmftultiply( Ry, pi, Rx ) ; 
apmCos( Rcthet, Ry ) ; 
apmSin( Rsthet, Ry ) ; 
apmftultiply ( Rsmall_sinsq, Rsthet, Rsthet ) ; 

I• ++++++++++++++++++++++++++++++++++++++++++ •I 

Rcol _rotor ( Amat, Deriv , Prizmat 

APM •Amat , •Deriv , •Pri zmat ; 
I• 

•I 
{ 

Prepares the matrix called "A" in my notes. Mostly ve vant to 
have A = DF+Priz, but ve vant to ensure that A is not singular. 
In the interest of s peed ve have coded the calculations belov vith 
pointers. Our hope is that the resulting funct ion vill s cream along 
at ultras onic speed . Unfortunately it is quite unreadable. 

int 
APft 
regist er APft 

j ' k ; 
+Aend, +Dend, •Pend 
+Apt, +Dpt , +Ppt ; 

Copy the fev terms vhich appear in the top rovs of Amat. 
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A end = Amat + I_PARKS • (I!AT_OHI + 1) ; 

:for( Apt = Amat, Ppt = Prizmat Apt < Aend Apt += (I!AT_OII! + 
Ppt += (!UT_OI!I + 

apmAssi(91.( •Apt, •Ppt ) ; 

Clear out those parts o:f Amat vhich change :from iteration to 
iteration. 

Aend = Amat + I!AT_SZ ; 
:for( Apt = Amat + STAIO_LEI ; Apt < Aend 

apmAssi(9\Long( •Apt , OL , 0, BASE ) ; 

Set the (u,p) part o:f A 

Apt++ ) 

It's equal to the (v,p) part o:f Prizmat. 

Aend = Amat + STAID_LEI + (DEG_FREE • I!AT_DII!) ; 
Ppt = Prizmat + STAIO_LEI + (OEG_FREE • !IAT_Oll!) 
:for( Apt = Amat + STA!O_LEI ; Apt < Aend ; Apt += TWO_OF ) { 

:for( Pend = Ppt + !_PARKS ; Ppt < Pend ; Ppt++ ) 
apmAssign( •Apt++ , •Ppt ) ; 

Ppt += TWO_OF 
} 

Set the (v,p) part - three terms . 

I• First term - equal to Oeriv(v,p) • Prizmat(p,p) •I 

Opt = Oeriv + STAIO_LEI + (OEG_FREE • I!AT_OIM) ; 
Apt = Amat + STA!O_LEI + (OEG_FREE • !IAT_OIM) ; 

) . 
1 ) ) 

:tor( Aend = Apt + (DEG_FREE•MAT_OII!) ; Apt < Aend ; Apt += TWO_OF ) { 
Ppt = Prizmat ; 
:for( Oend = Opt + R_PARI!S ; Opt < Oend Opt++ ) { 

apmCalc( •Apt, •Apt, •Opt, •Ppt, API!_I!UL, API!_AOO, lULL ) 
Apt ++ ; 
Ppt += I!AT_OI!I + 1 ; 

} 

Opt += TWO OF 
} 

I• Second term - equal to negative Prizmat(u,p) •/ 

Ppt = Prizmat + STAIO_LEI ; 
Apt = Amat + STAIO_LEI + (OEG_FREE • !IAT_OII!) ; 
:for( Pend = Ppt + (OEG_FREE • I!AT_Oll!) ; Ppt < Pend 

:for( Aend = Apt + &_PARKS ; Apt < Aend ; Apt++ ) 
apmCalc( •Apt, •Apt, •Ppt++, API!_SUB, lULL ) 

Apt += TWO_DF ; 
} 

Ppt += TWO_OF ) { 

I• Third term - equal to Deriv(v,v) • Prizmat(v,p) •/ 

Opt = Oeriv + STAIO_LEI + (OEG_FREE • (I!AT_OIH + 1)) + I PARKS 
Dend = Oeriv + I!AT_SZ 
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Apt = Amat + STAID_LEI + (DEG_FREE • MAT_DIH) ; 
vhile( Dpt < Dend ) { 

} 

Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIH) 
Pend = Prizmat + HAT_SZ ; 
vhile( Ppt < Pend ) { 

} 

Aend = Apt + I_PARHS ; 
vhile( Apt < Aend ) { 

} 

apmCalc( •Apt, •Apt, •Dpt, •Ppt, APH _HUL, APH_ADD, lULL ) 
Apt++ 
Ppt++ ; 

Dpt++ 
Ppt += TWO_DF ; 
Apt -= I_PARHS ; 

Dpt += I_PARHS + DEG_FREE 
Apt += MAT_DIH 

(u,u) part 
equals Priz(v,u) 

Apt = Amat + STAID_LEI + I_PARHS ; 
Aend = Amat + STAID_LEI + (DEG_FREE • HAT_DIH) ; 
Ppt = Prizmat + STAID_LER + (DEG_FREE • MAT_DIH) + I_PARHS 
vhile( Apt < Aend ) { 

} 

Pend = Ppt + DEG_FREE 
vhile( Ppt < Pend ) { 

apmAaai~n( •Apt++, •Ppt ++) 
} 

Apt += I_PARHS + DEG_FREE 
Ppt += I_PARHS + DEG_FREE 

(u,v) part 
equals Priz(v,v) 

Apt = Amat + STAID_LER + I_PARHS + DEG_FREE ; 
Aend = Amat + STAID_LER + (DEG_FREE • HAT_DIH) 
Ppt = Prizmat + STAID_LEN + (DEG_FREE•HAT_DIH) + R_PARHS + DEG_FREE 
vhile( Apt < Aend ) { 

} 

Pend = Ppt + DEG_FREE 
vhile( Ppt < Pend ) 

apmAasi~( •Apt++, •Ppt++ 

Apt += I_PARHS + DEG_FREE 
Ppt += R_PARHS + DEG_FREE 

The (v,u) part - equal to Deriv(v,v) • Priz(v,u) - Priz(u,u) , 
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I• First term •I 
Apt = Amat + STAID_LEI + (DEG_FREE • ft!T_DIH) + I_PARHS ; 
Aend = Apt + (DEG_FREE • KAT_DIH) ; 
Dpt = Deriv + STAID_LEI + (DEG_FREE•HAT_DIK) + I_PARKS + DEG_FREE 
while( Apt < Aend ) { 

} 

Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIM) + I_PARMS ; 
Pend = Ppt + DEG_FREE ; 
while( Ppt < Pend ) { 

} 

Dend = Dpt + DEG_FREE 
while( Dpt < Dend ) { 

} 

apmCa1c( •Apt, •Apt, •Dpt++, •Ppt, APM_MUL, 
APM_ADD , lULL ) 

Ppt += ft!T_DIM 

Apt++ ; 
Dpt DEG_FREE 
Ppt -= (DEG_FREE • MAT_DIH) - 1 

Dpt += MAT_DIM 
Apt += I_PARMS + DEG_FREE 

I• Second term •I 
Apt = Amat + STAID_LEI + (DEG_FREE • MAT_DIH) + I_PARHS + DEG_FREE 
Ppt = Prizmat + STAID_LER + R_PARMS 
Pend = Ppt + (MAT_DIM • DEG_FREE) 
while( Ppt < Pend ) { 

} 

Aend = Apt + DEG_FREE ; 
while( Apt < Aend ) { 

} 

apmCalc( •Apt, •Apt, •Ppt , APH_SUB, lULL ) 
Apt++ 
Ppt++ ; 

Ppt += I_PARMS + DEG_FREE 
Apt += R_PARHS + DEG_FREE 

(v,v) part - equals Deriv(v,v) • Priz(v,v) - Priz(u,v) 

I• First term •I 
Apt = Amat + STAID_LER + (DEG_FREE * MAT_DIM) + R_PARHS + DEG_FREE ; 
Aend = Apt + (DEG_FREE • MAT_DIM) ; 
Dpt = Deriv + STAID_LER + (DEG_FREE•MAT_DIM) + I_PARMS + DEG_FREE ; 
while( Apt < Aend ) { 

Ppt = Prizmat + STAID_LEI + (DEG_FREE•MAT_DIM) + 
I _PARMS + DEG_FREE 

Pend = Ppt + DEG_FREE ; 
while( Ppt < Pend ) { 

Dend = Dpt + DEG_FREE 
while( Dpt < Dend ) { 

apmCa1c( *Apt, •Apt, •Dpt++, •Ppt , APM_MUL, 
APM_ADD, lULL ) 

Ppt += MAT_DIK 
} 
Apt++ ; 
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Dpt DEG_FREE ; 

Ppt (DEG_FREE • MAT_DIM) - 1 
} 

Dpt += MAT_DHI 
Apt += B_PARMS + DEG_FREE 

} 

I• Second term •I 
Apt = ~at + STAID_LEB + (DEG_FREE • MAT_DIM) + I_PARMS + DEG_FREE 
Ppt = Prizmat + STAID_LER + I_PARMS + DEG_FREE ; 
Pend = Ppt + (MAT_DIM • DEG_FREE) 
vhile( Ppt < Pend ) { 

} 

lend = Apt + DEG_FREE ; 
vhile( Apt < lend ) { 

} 

apmCalc( •Apt, •Apt, *Ppt, APM_SUB, lULL ) 
Apt++ 
Ppt++ ; 

Ppt += I_PARMS + DEG_FREE 
Apt += I_PARMS + DEG_FREE 

I if USE_RDT 
I• 

Do up the rotations. 

for( j=O ; j < TVD_DF ; j++ 
for( k=(j+1) ; k < TVD_DF k++ 
Rsubspace_rot( ~at, j, k 

I endif 
} 
I• +++++++++++++++++++++++++++++ •I 

Rsubspace_rot( ~at, col_one, col_tvo 

int col_one, col_tvo ; 
APM •Amat ; 
{ 

Apt ~at + STAID_LEI + I_PARMS + 
(col_tvo - col_one - 1) • MAT_DIM + 
col_one 

Apt2 Apt + col_tvo - col_one ; 

apmCalc( Rarea, •Apt, Apt2[HAT_DIH], APM _MUL, 
Apt[HAT_DIM), •Apt2, APM_HUL, 

APM_SUB, lULL ) 
apmCalc( Rnorm_one, *Apt, APH_DUP, APM_MUL, 

Apt[MAT_DIM], APM_DUP, APM_MUL, 
APM_ADD , BULL ) 

apmCalc( Rnorm_tvo, •Apt2, APM_DUP, APM_MUL , 
Apt2[MAT_DIM], APM_DUP, APM_HUL, 

APM_ADD, BULL ) ; 
apmMultiply( Rnorm_prod, Rnorm_one, Rnorm_tvo ) ; 
if( apmCompare( Rnorm_prod, zero ) == 1 ) { 

apmMultiply( Rx, Rarea , Rarea ) ; 
apmDivide( Rsin_sq, precision, (APM) BULL, Rx, Rnorm_prod ) 
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i~( apmCompare( Rsin_sq, Ramall_sinsq 
Rm_ai~( Rsi~, Rarea } ; 

-1 } { 

} 

} 
} 

• include 

• include 

• include 

• include 

• include 

• include 

• include 

if( apmCompare( Rnorm_tvo, Rnorm_one } != 1 } { 
apmCalc( Rx, Rcthet, +Apt2, APM_MUL, 

} 

Rsi~, Rsthet , Apt2[MAT_DIM], APM_MUL, APM_MUL, 
APM_SUB, lULL } ; 

apmCalc( Ry, Rsthet, +Apt2, Rsi~, APM_MUL, APM_MUL, 
Rcthet, Apt2[MAT_DIM], APM_MUL, 
APM_ADD, lULL } 

apmlaai~( •Apt2, Rx 
apmlaai~( Apt2[MlT_DIM] , Ry } 

else { 

} 

apmCalc( Rsi~, Rai~, lPM_IEG, BULL ) ; 
apmCalc( Rx, Rcthet, +Apt, lPM_MUL, 

Rai~, Rathet, Apt[MAT_DIM], lPM_MUL, lPM_MUL, 
lPM_SUB, lULL } ; 

apmCalc( Ry, Rathet, +Apt, Rsi~, APM_MUL , APM_MUL, 
Rcthet, lpt[MlT_DIM], lPM_MUL, 
APM_ADD, lULL } ; 

apmlasisn( •Apt, Rx } ; 
apmlasisn( lpt[MAT_DIM], Ry} 

<atdio.h> 
<math.h> 
11 apm . h" 
"apmSpecia1.h" 
"conYerse.h" 
"bounding.h" 
"rova.h" 

I de~ine IUM_FlCTS 
I define IUM_TERMS 
I de~ine DET_TOL 

3 
3 
1e-13 

int islevPrism 

APM cr_acratch 
lPM RBmat[MlT_SZ], Rconat_mat[DF_SQ], Rcopy[4 + DF_SQ] 
lPM +Rcopy_rowa[TWO_DF] 
lPM RBu_rova[DEG_FREE], RBv_rova[DEG_FREE] 
APM 
APM 
lPI'I 
APM 

double 
double 
double 
double 
double 
double 
double 

Rbd_star, Rgd_atar, Ratar, RPvp_atar ; 
Rcenter_err[MlT_DIM] ; 
Rup_rovs[DEG_FREE], Ruu_rovs[DEG_FREE), Ruv_rovs[DEG_FREE] 
Rvp_rova[DEG_FREE), Rvu_rovs[DEG_FREE], Rvv_rova[DEG_FREE] 

Bmat[MAT_SZ], conat_mat[DF_SQ], copy[4 • DF_SQ] ; 
+copy_rovs[TWO_DF] ; 
Bu_rows[DEG_FREE], Bv_rova[DEG_FREE] 
bd_atar, sd_star, star, Pvp_star ; 
center_err[MAT_DIM] ; 
up_rows[DEG_FREE), uu_rovs[DEG_FREE], uv_rows[DEG_FREE] 
vp_rows[DEG_FREE], vu_rovs[DEG_FREE], vv_rovs[DEG_FREE] 



Bdd_dbl •cr_~actors[IUK_FACTS] 

Bdd_term cr_terms[IUM_TERKS] 
Bdd_expr beta_prod ; 

Bdd_apm •Rcr_~actors[IUK_FACTS] 

Bapm_term Rcr_terms[IU"_TERKS] ; 
Bapm_expr Rbeta_prod ; 
I• ++++++++++++++++++++++++++++++ •I 

init_crRovs() 
I• 
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Set up the expressions and terms as described in my notes 
~rom 12/3 and 12/4. 

int j. k ; 

AP" •Rcpt ; 
double •cpt ; 
Bdd_dbl ••dpt 
Bdd_apm ••apt ; 

Initialize a batch of APH's. 

~or(j=O ; j < DEG_FREE ; j++ ) { 
RTp_rovs[j] apmlev( BASE 
Rup_rovs[j] apmlev( BASE 
Ruu_rovs[j] apmlev( BASE 
RuT _rovs[j] apmlev( BASE 
RTu_rovs[j] apmlev( BASE 
RTT_rovs[j] apmlev( BASE 
RBu_rovs[j] apmlev( BASE 
RBT_rovs[j] apmlev( BASE 

} 

Rstar = apmKev( BASE ) ; 
R~d_star = apmlev( BASE ) 
Rbd _star = apmlev( BASE ) 
RPYp_star = apmlev( BASE ) ; 
cr_scratch = _apmRev( BASE ) 
~or( j=O ; j < "AT_SZ ; j++ { 

Bmat[j] = 0 . 0 ; 
RBmat[j] = apmlev( BASE 

} 

~or( j=O ; j < DF_SQ ; j++ ) 
Rconst_mat[j] apmlev( BASE 

~or( j=O ; j < (4 • DF_SQ) ; j++ 
Rcopy[j] apmlev( BASE ) ; 

~or( j=O ; j < HAT _DIM ; j++ 
Rcenter_err[j] = apmlev( BASE 

cpt = copy ; 
Rcpt = Rcopy 
~or( j=O ; j < TWO _DF ; j++ ) { 

copy_rovs[j] = cpt ; 
Rcopy_rovs[j] Rcpt ; 

cpt += TWO_DF 
Rcpt += TWO _DF ; 
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} 

Set the number o~ terms in the bounded expressions 

beta_prod.nterms Rbeta_prod.nterms 

Assisn terms 

beta_prod . terms = cr_terms ; 
Rbeta_prod.terms = Rcr_terms 

Set Idactors. 

3 

Rbeta _prod.terms[O] . n~actors 

Rbeta_prod.terms[l] . n~actors 

Rbeta_prod . terms[2] . n~actors 

beta_prod.terms[O] .nfactors 
beta_prod.terms[1) .n~actors 
beta_prod.terms[2].nfactors 

Assisn ~actors . 

dpt = cr_£actors ; 
apt = Rcr_£actors ; 
£or( k=O ; k < beta_prod.nterms ; k++ ) { 

beta_prod.terms[k].£actors = dpt ; 
Rbeta_prod.terms[k] .£actors = apt ; 

} 

dpt += beta_prod . terms[k].n~actors ; 
apt+= Rbeta_prod.terms[k].n£actors ; 

Set vp those o£ the "bound" attributes vhich are 
bounded API!' s. 

nevBapm( Rbeta_prod.bound, BASE ) ; 
£or( j=O ; j < RUH_TERHS ; j++ ) { 

nevBapm( Rcr_terms[j].bound, BASE 
} 

Set up the terms and expressions . 

I• beta_prod •I 

Rbeta_prod.const = apmRev( BASE ) ; 
Rbeta_prod.terms[O] .coe£ = apmDev( BASE ) ; 

beta_prod.terma[O] . £actors[O] = la_sin . bound 
Rbeta_prod.terms[O].£actors[O] = lRa_sin.bound 

Rbeta_prod . terms[l].coe£ = apmRev( BASE) ; 

beta_prod.terms[1].£actors[O] = lc_sin . bound 

1 
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Rbeta_prod.terms[l] .factors[O] = tRc_sin.bound 

Rbeta_prod.terms[2].coef = apmBev( BASE) ; 

beta_prod.terms[2].factors[O] = tb_sin . bound 
Rbeta_prod . terms[2] . factors[O] = tRb_sin . bound 

I• +++++++++++++++++++++++++++++++++ •I 

Rcr_rovs( Rv, Amat, Deriv, Priz 

APM •Rv, •Amat, •Deriv 
RPriam •Priz ; 

I• 

•I 
{ 

Obtain bounds on the sums of the absolute values of 
the entries in the rovs of 

-1 

[A] • Deriv • Pmat, 

put the results in v. 

int 
APM 
APM 

j 
•end_rov, •end_mat, •Pmat , •inv_pt ; 

•plpt, •p2pt, •blpt, •b2pt, •vu_pt, •vv_pt 

Pmat Priz->matrir ; 
Rset_inverse( Amat ) ; 

Do up some rov •~ ~or the inYerae; these 
are used to calculate center_err[] . 

blpt = RBmat + STAID_LEI + I_PARMS 
b2pt = blpt + MAT_DIM • DEG_FREE 
for( j=O ; j < DEG_FREE ; j++ ) { 

} 

apmAssi~( RBu_rovs[j], zero) 
apmAssi~( RBv_rovs[j], zero) 

for( end_rov = blpt + TWO_DF blpt < end_rov ; ) { 
apmCalc( RBu_rovs[j], RBu_rovs[j], •blpt++, 

APM_ABS, APM_ADD, lULL 
apmCalc( RBv_rovs[j], RBv_rovs[j], •b2pt++, 

APM_ABS, APM_ADD, lULL 
} 

Call functions vhich calculate upper bound on the 
sums o~ the elements of Tarious matrices. 
Be~ore any bounding of matrices, one must invoke 
!lobal_bounds( Pmat ) to set such 5lobal variables, 
as cos_one, and ain_sum. This is done in Rtry_prism. 

Rbeta_dif_star( Rbd_star, Deriv ) ; 
R!amdif_star( Rgd_star, Deriv, Pmat 

Calculate bounds on the sums of the absolute values 
of the elements in various blocks. 
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I• up t TP blocks •I 

apm1ssisnLon~( RPvp_star, OL, 0, BASE } ; 
p1pt = Pmat + ST1ID_LEI + (HAT_DIH • DEG_FREE} 
endJDat = p1pt + (DEG_FREE • HAT_DIH} ; 
~or( ; p1pt < end_mat ; p1pt += TWO_DF } { 

} 

~or( end_rov = p1pt + I_PARMS ; p1pt < end_rov ; p1pt++ 
apmCalc( RPvp_star, RPvp_star, •p1pt, APH_ABS, 

APH_ADD, lULL 

apmCalc( Rstar, R~d_star, Rbd_star, RPvp_star, 
APH _HUL, APH_ADD, BULL } ; 

b1pt = RBmat + STAID_LER + !_PARKS + DEG_FREE 
b2pt = RBmat + STAID_LEI + I_PARMS + DEG_FREE + (HAT_DIH • DEG_FREE) 
~or( j=O ; j < DEG_FREE ; j++ } { 

} 

p1pt 
p2pt 

b1pt 
b2pt 

apmAssisnLon~( Rup_rovs[j) , OL, 0, BASE 
apm1ssisnLon~( Rvp_rovs[j), OL, 0, BASE 
~or( end_rov = b1pt + DEG_FREE ; b1pt < end_rov 

} 

b1pt++, b2pt++ { 
apmCalc( Rup_rovs[j), Rup_rovs[j), +b1pt, APH_ABS, 

APH_ADD, lULL } 
apmCalc( Rvp_rovs[j], Rvp_rovs[j), +b2pt, APH_ABS, 

APH_ADD, lULL } 

apmCalc( Rup _rovs[j], Rup_rovs[j], Rstar, APH_MUL, lULL 
apmCalc( Rvp_rovs[j), Rvp_rovs[j), Rstar, APH_MUL, lULL 

b1pt += R_PARKS + DEG_FREE 
b2pt += !_PARKS + DEG_FREE 

Do the remainin~ blocks - those that actually arise 
~rom the derivatives o~ the (u,v} -> (u ' ,v'} part o~ 
the map . This section uses the mi~hty bound_rovs(}, 
vhich may be £ound belov . 

I• (u,u) block 
B(u,u) • P(v,u) + B(u,v) • { beta • P(v,u) -

P(u,u) } 

Pmat + STAID_LEW + (DEG_FREE • HAT_DIM} + !_PARKS 
Pmat + STAID_LEI + !_PARKS ; 

RBmat + STAID_LEB + R_PARMS 
RBmat + STAID_LEI + !_PARKS + DEG_FREE 

Rbound_rovs( Ruu_rovs, b1pt, p1pt, b2pt, p2pt 

p1pt 
p2pt 

I• (u,v} block 
B(u,u) • P(v,v} + B(u,v) • { beta • P(v,v) -

P(u,v} } 

Pmat + STAID_LER + (DEG_FREE+HAT_DIH) + R_PARKS + DEG_FREE 
Pmat + STAID_LER + R_PARKS + DEG_FREE 
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I• The same parts of RBmat as used to find uu_rovs. •I 
Rbound_rovs( Ruv_rovs, b1pt, p1pt, b2pt, p2pt ) ; 

p1pt 
p2pt 

b1pt 
b2pt 

I• (v,u) block 
B(v,u) • P(v,u) + B(v,v) • {beta • P(v,u) -

P(u,u) } 

Pmat + STAID_LEK + (DEG_FREE•MAT_DIM) + I_PARMS 
Pmat + STAID_LEB + I_PARMS ; 

RBmat + STAID_LEI + (DEG_FREE•MAT_DIM) + I_PARMS 
RBmat + STAID_LEB + (DEG_FREE•MAT_DIM) + I_PARMS + DEG_FREE 

Rbound_rovs( Rvu_rovs, b1pt, p1pt, b2pt, p2pt 

p1pt 
p2pt 

I• (v,v) block 
B(v,u) • P(v,v) + B(v,v) • { beta • P(v,v) -

P(u,v) } 

Pmat + STAID LEI + (DEG_FREE•MAT_DIH) + I_PARMS + DEG_FREE 
Pmat + STAID_LEB + I _PARMS + DEG_FREE 

I• Same parts of RBmat as are used to find vu_rovs. •I 
Rbound_rovs( Rvv_rovs, blpt , plpt, b2pt, p2pt ) ; 

} 

Get the contibutions t o Rv[] that arise from 
errors in the computat i on of the ima~e of the 
priam's center . 

for( j=O ; j < DEG_FREE ; j++ ) { 

} 

center_err[j+B_PARMS] = Bu_rovs[j) • DBL_ERR ; 
center_err[j+B_PARMS+DEG_FREE] = Bv _rovs[j] • DBL _ERR 
apmMultiply( Rcenter_err[j+I _PARMS), RBu_rovs[j], max_error 
apmMultiply( Rcenter_err[j+I _PARMS+DEG_FREE), RBu _rovs[j], 

max _error ) ; 

Compute the components of v[]. 

vu_pt = aRv[I_PARMS] ; 
vv_pt = aRv[B_PARMS + DEG_FREE] 
f or( j=O ; j < DEG _FREE ; j++, vu_pt++, vv_pt++ ) { 

} 

apmCalc( •vu_pt, Rup_r ovs[j], Ruu_rova[j], Ruv_rova[j), max _error, 
APM_ADD, APM _ADD, APM_ADD, lULL ) ; 

apmCalc( •vv_pt, Rvp_rovs[j] , Rvu_rovs[j] , Rvv_rovs[j], max_error, 
APM_ADD, APM_ADD, APM_ADD, BULL ) ; 

Include errors due to miscalculation o~ 
priam's center. 

for( j= B_PARMS ; j < MAT_DIM ; j++ ) 
apmCalc( Rv[j), Rv[j], Rcenter_err[j], APH _ADD, BULL) 

return ; 

I• +++++++++++++++++++++++++++++++ •I 
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Rbound_rovs( rovs, £irst_b, £irst_p, second_b, second_p 

APM •rovs, •~irat_b, •second_b, •~irst_p, •second_p ; 

{ 

I• 
Obtain upper bounds on the sums o£ the absolute 
Talues o~ rovs of matricies given by expressions 

like: 
B1 • 51 + B2 • ( [beta] • 51 - 52 ) . 

Expressions like these arise in cr_rovs() above . 
The idea is to cast these rovs as bounded expressions 
and then use the usual machinery to £ind their limits. 

int j, k 
JPK •bpt_a, •bpt_b, •ppt_a, •ppt_b, •end_rov, •cpt 

Evaluate the constant part o~ the matrix expression . 
It's : 

(81 + 2.0 • B2) • 51 B2 • 52 

cpt = Rconst_mat ; 
£or( j=O ; j < DEG_FREE j++ ) { 

} 

bpt_a = £irst_b + j • KAT_DIK 
bpt_b = second_b + j • KAT _DIH ; 
£or( k=O ; k < DEG_FREE ; k++ ) { 

} 

apmJssi~nLon~( +cpt, OL, 0, BASE 

ppt_a = £irst_p + k ; 
ppt_b = second_p + k ; 
£or( end_rov = bpt_a + DEG _FREE ; bpt _a < end_rov ) { 

apmCalc( +cpt, +cpt, •bpt_a, 

bpt_a++, bpt_b++ 
ppt_a += KAT_DIK 
ppt_b += KAT_DIK 

} 

bpt_a 
bpt_b 
cpt++ 

DEG_FREE 
DEG_FREE 

+bpt_b, tvo, APK _KUL, 
APK_ADD, 
+ppt_a, APK_KUL, 
•bpt_b, •ppt_b, 
APK _KUL, APK_SUB, 
JPK_ADD, lULL ) ; 

cpt = Rconst_mat ; 
for( j=O ; j < DEG_FREE ; j++ ) { 

apmJssi~on~( rovs[j], OL, O, BASE 

bpt_a = second_b + j • KAT_DIK 
bpt_b = bpt_a + 1 ; 
£or( k=O ; k < DEG _FREE ; k++ ) { 

ppt_a £irst_p + k 
ppt_b = ppt _a + KAT_DIK ; 
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I• a • sin( v[O) ) term •I 
apmftultiply( cr_scratch, •bpt _a, •ppt_a ) ; 
apmlesate( Rbeta_prod.terms[O].coef, cr_scratch 

I• c • sin( v[O] + v[1] ) term •I 
apmCalc( cr_scratch, •bpt_a, •bpt _b, AP"_ADD, 

•ppt_a, •ppt _b, AP"_ADD, 
AP"-"UL, NULL ) ; 

apmlegate( Rbeta_prod . terms[1).coef, cr_scratch 

I• b • sin( v[O] + v[1] ) term •I 

} 
} 

} 

apmftultiply( cr_scratch, •bpt _b, •ppt_b ) ; 
apmlesate( Rbeta_prod . terms[2] . coef, cr_scratch 

apmlssign( Rbeta_prod.const, •cpt++ ) ; 
Rbound_erpr( tRbeta_prod ) ; 

Rmaxlbs( cr_scratch, Rbeta_prod.bound.ub, 
Rbeta_prod.bound. lb ) 

apmCalc( rovs[j], rovs[j], cr_scratch, APM_ADD, lULL) 

I• ++++++++++++++++++++++++++++++ •I 

Rset_inverse( mat ) 

APM •mat ; 

{ 
APK •end_rov, •end_block, •end_col ; 
APK •ipt_a, •ipt_b, •ipt_c, •ipt_set, ~pt_a, -.pt_b 

if( islevPrism == YES ) { 

} 

end_block = RBmat + R_PARMS • (MAT_DIK + 1) ; 
for( ipt_a=RBmat, mpt_a=mat ; ipt_a < end_block ) { 

apmDivide( •ipt_a, precision, (AP")IULL, one, •mpt_a 

mpt_a += MAT_DJM + 1 

ipt_a += "AT_DIK + 1 
} 

islevPrism 10 

Rinvert_corner( mat ) 

Set the ( u ,p) part of the inverse . 

ipt _a 

~~ 

RBmat + STAID _LEB + !_PARKS 
RBmat + STAID_LEB + R_PARMS + DEG_FREE 

ipt _set = RBmat + STAID_LER 
end_block = ipt_set + (MAT_DIM • DEG_FREE) ; 
for( ; ipt_aet < end_block ; ipt_aet += TWO_DF ) { 

ipt_c RBmat 

mpt_a 
mpt_b 

mat + STAID _LER 
mat + STAID_LER + (DEG_FREE • MAT_DIM) 

end_rov = ipt_set + &_PARKS ; 



I• 

•I 

} 

Set 
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~or( ; ipt_set < end_rov ; ipt_set++ ) { 
apmlssi~o~( +ipt_set, OL, 0, BASE 

} 

end_col = mpt_a + (DEG_FREE + MAT_DIM) 
~or( ; mpt_a < end_col ; mpt_a += MAT_DIM ) { 

} 

apmCalc( +ipt_set, +ipt_a, +mpt_a, APM_MUL, 
+ipt_b , +mpt_b , APM_MUL , 
APM_ADD, APM_IEG, 
+ipt_set, APM_ADD, lULL ) 

ipt_a++ ; 
ipt_b++ ; 
mpt_b += MAT_DIM 

apmCalc( +ipt _set, +ipt_set, +ipt_c, APM_MUL, lULL ) 

ipt_a DEG_FREE ; 
ipt_b DEG_FREE ; 
ipt_c += MAT_DIM + 1 

mpt_a 
mpt_b 

(MAT_DIM + DEG_FREE) - 1 
(MAT_DIM + DEG_FREE) - 1 

ipt_a += MAT_DIM ; 
ipt_b += MAT_DIM ; 
mpt_a DEG_FREE 
mpt_b DEG_FREE ; 

the (Y,p) part o~ the inverse . 

ipt_a 
ipt_b 

RBmat + STAID_LEI + I_PARMS + (DEG_FREE + MAT_DIM) 
RBmat + STAID_LEI + I_PARMS + (DEG_FREE+MAT_DIM) + DEG_FREE 

ipt_set = RBmat + STAID_LEI + (DEG_FREE • MAT_DIM) 
end_block = ipt_set + (MAT_DIM + DEG_FREE) ; 
~or( ; ipt_set < end_block ; ipt _set += TWO_DF ) { 

ipt_c = RBmat 

mpt_a = mat + STAID_LEI 
mpt_b mat + STAID_LEI + (DEG_FREE • MAT_DIM) 

end_rov = ipt_set + I_PARMS ; 
~or( ; ipt_set < end_rov ; ipt_set++ ) { 

apmAssi~on«( +ipt_set, OL, 0, BASE 

end_col = mpt_a + (DEG_FREE + MAT_DIM) 
~or( ; mpt_a < end_col ; mpt_a += MAT_DIM ) { 

} 

apmCalc( +ipt_set, +ipt_a, +mpt_a , APM_MUL , 
+ipt_b, +mpt _b, APM_MUL, 
APM_ADD, APM _IEG, 
•ipt_aet, APM_ADD, lULL ) 

ipt_a++ ; 
ipt_b++ ; 
mpt_b += MAT_DIM ; 

apmCalc( +ipt_set, +ipt_set, +ipt_c, APM_MUL, lULL ) 

ipt_a DEG_FREE ; 



} 

} 

} 

ipt_b DEG_FREE ; 
ipt_c += ftAT_Dift + 1 

mpt_a 
mpt_b 

(ftAT_Dift • DEG_FREE) - 1 
(MAT_DIM • DEG_FREE) - 1 

ipt_a += ftAT_DIM ; 
ipt_b += ftAT_DIM ; 
mpt_a DEG_FREE 
mpt_b DEG_FREE ; 
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I• +++++++++++++++++++++ •I 

RinTert_corner( mat ) 

APM •mat ; 
{ 

I• 

•I 

I• 

Set up matrices to prepare 'em for use by R~auss() . 

lote that ve use the matirx called const_matl]. 
At the times this function is called const_mat[] 
doesn't contain anything important. 

int j ; 
APM •end_rov, •mpt, •bpt, •cpt 

Copy the matrix . 

mpt = mat + STAID_LEI + R_PARMS 
for( j=O ; j < TWO_DF j++ ) { 

} 

cpt = Rcopy_rovs[j) 
end_rov = mpt + TWD_DF 
vhile( mpt < end_rov ) 

apmAssi~( •cpt++, •mpt++ 

mpt += I_PARMS 

Do the inYersion. 

R~auss( Rcopy_rovs ) ; 

Copy the ansver . 

bpt = RBmat + STAID_LEI + I_PARMS 
for( j=O ; j < TWO_DF ; j++ ) { 

} 

cpt = Rcopy_rovs[j] 
end_rov = bpt + TWO_DF 
vhile( bpt < end_rov ) 

apmAssi~n( •bpt++, •cpt++ 

bpt += B_PARMS 
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} 

fixed-form 

• include <stdio.h> 

• include <math.h> 

• include "apm.h" 

• include "apmSpecial. . h" 

• include "converse . h" 

I• ++++++++++++++++++++++++++++++++++++++++++ •I 

~xed_~orm( ~at, Deriv, Prizmat 

double •Amat, •Deriv, •Prizmat 
I• 

•I 
{ 

I• 

•I 

I• 

•I 

I• 

•I 

I• 

Prepares the matrix called "A" in my notes. Eventually ve vant to 
have A = DF•Priz, but early in 11. calculation, vhen Priz is sin~ular, 
ve vant to ~atten A up by requiri~ it to have 11. certain ~ixed ~orm. 
In the interest o~ speed ve have coded the calculations belov vith 
pointers. Our hope is that the resultin~ ~unction vill scream alon~ 
at ultrasonic speed . U~ortunately it is quite unreadable . 

double •A end , •Aend2, •Dend, •Pend, •Pend2 
re~ister double •Apt, •Apt2, •Dpt, •Ppt, •Ppt2 ; 

Copy the ~ev terms vhich appear in the top rovs o~ ~at . 

Aend = Amat + I _PARHS • (HAT_DIM + 1) ; 
for( Apt Amat, Ppt = Prizmat ; Apt < Aend 

•Ppt 

Apt+= (HAT_DIH + ), 
Ppt += (MAT_DIM + 1 ) ) 

Clear out those parts of ~at vhich ch~e ~rom iteration to 
iteration. 

Aend = ~at + HAT_SZ ; 
~or( Apt ~at + STAID_LEI 

•Apt = 0.0 ; 

Set the (u , p) part of A 

Apt < Aend Apt++ ) 

It's equal to the (v,p) part o~ Prizmat. 

Aend = ~at + STAID_LEI + (DEG_FREE • MAT _DIH} ; 
Ppt = Prizmat + STAID_LEI + (DEG_FREE • HAT_DIM) 
for( Apt = Amat + STAID_LER ; Apt < Aend ; Apt += TWO_DF } { 

~or ( Pend = Ppt + R_PARHS ; Ppt < Pend ; Ppt++ ) 
•Apt++ = •Ppt 

Ppt += TWO DF 
} 

Set the (v,p) part - three terms. 



•I 

197 

I• First term - equ&l to Deriv(v,p) • Prizmat(p,p) •I 

Dpt = Deriv + STAID_LEI + (DEG_FREE • KAT_DIK) ; 
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIM) ; 
~or( Aend = Apt + (DEG_FREE•MAT_DIM) ; Apt < Aend ; Apt += TVO_DF ) { 

Ppt = Prizmat ; 

} 

~or( Dend = Dpt + I _PARMS ; Dpt < Dend Dpt++ ) { 
•Apt++ += •Dpt • (•Ppt) 
Ppt += MAT_DIM + 1 ; 

} 

Dpt += TVO_DF 

I• Second term- equal to negative Prizmat(u,p) •/ 

Ppt = Prizmat + STAID_LEI ; 
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIK) ; 
~or( Pend = Ppt + (DEG_FREE • MAT_DIM) ; Ppt < Pend 

~or( Aend = Apt + I_PARMS ; Apt < Aend ; Apt++ ) 
•Apt -= •Ppt++ 

Apt += TVO_DF ; 
} 

Ppt += TVO_DF ) { 

I• Third term - equ&l to Deriv(v,v) • Prizmat(v,p) •/ 

Dpt = Deriv + STAID_LEI + (DEG_FREE • (MAT_DIK + 1)) + I_PARMS 
Dend = Deriv + MAT_SZ ; 
Apt = Amat + STAID_LEI + (DEG_FREE • "'T_DIK) ; 
vhile( Dpt < Dend ) { 

} 

Ppt = Prizmat + STAID_LEI + (DEG_FREE • KAT_DIM) 
Pend = Prizmat + "'T_SZ ; 
vhile( Ppt < Pend ) { 

} 

Aend = Apt + I_PARKS 
vhile( Apt < Aend ) 

•Apt++ += •Dpt • (•Ppt++) 

Dpt++ ; 
Ppt += TVO_DF ; 
Apt -= ft_PARMS ; 

Dpt += I_PARMS + DEG_FREE 
Apt += "'T_DIM 

(u,v) part 
equals Priz(v,u) + Priz(v,v) 

Apt = Amet + STAID_LEI + ft_PARMS + DEG_FREE ; 
Aend = Amat + STAID_LEI + (DEG_FREE • KAT_DIH) 
Ppt = Prizmat + STAID_LEI + (DEG_FREE • MAT_DIK) + I _PARKS 
Ppt2 = Ppt + DEG_FREE ; 
vhile( Apt < Aend ) { 

Pend = Ppt + DEG_FREE 
vhile( Ppt < Pend ) 

•Apt++ += ( •Ppt++ + •Ppt2++ ) 



I• 

+I 

} 
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Apt += !_PARKS + DEG_FREE 
Ppt += !_PARKS + DEG_FREE 
Ppt2 += !_PARKS + DEG_FREE 

The (T,n) part 
equal to DeriY(T,T) • { Priz(y,u) + Priz(T,T) }, 
vhich also equals DeriT(T, y) • A(u,v) 

Apt = Amat + STAID_LEI + (DEG_FREE • KAT_DIK) + !_PARKS ; 
Dpt = DeriT + STAID_LEI + (DEG_FREE • KAT_DIK) + R_PARKS + DEG_FREE 
Dend = DeriT + KAT_SZ ; 
vhile( Dpt < Dend ) { 

} 

Apt2 = Amat + STAID_LEI + !_PARKS + DEG_FREE 
Aend2 = Apt2 + (DEG_FREE * KAT_DIK) 
vhile( Apt2 < Aend2 ) { 

} 

lend = Apt + DEG_FREE ; 
vhile( Apt < lend ) { 

+Apt++ += +Dpt • (•Apt2++) 
} 

Dpt++ 
Apt -= DEG_FREE ; 
Apt2 += DEG_FREE + !_PARKS 

Apt += KAT_DIK 
Dpt += !_PARKS + DEG_FREE 

(v,T) part - equals DeriT(Y,Y) • Priz(T,T) - Priz(u,T) 

I• Firat term •I 
Apt = Amat + STAID_LE! + (DEG_FREE • KAT_DIK) + ! _PARKS + DEG_FREE : 
Dpt c DeriY + STAID_LER + (DEG_FREE • KAT_DIK) + !_PARKS + DEG_FREE : 
Dend = Deriv + KAT _SZ ; 
vhile( Dpt < Dend ) { 

} 

Ppt = Prizmat + STAID_LE! + (DEG_FREE • KAT_DIK) + !_PARKS + DEG_FREE 
Pend = Prizmat + KAT _SZ ; 
vhile( Ppt < Pend ) { 

} 

Aend = Apt + DEG_FREE 
vhile ( Apt < lend ) { 

•Apt++ += •Dpt • ( • Ppt++) 
} 

Dpt++ 
Apt DEG_FREE 
Ppt += DEG_FREE + !_PARKS 

Apt += KAT_DI K 
Dpt += !_PARKS + DEG_FREE 

I• Second term •I 
Apt Amat + STAID_LE! + (DEG_FREE • HAT_DI H) + ! _PARKS + DEG_FREE 
Ppt = Prizmat + STAID_LE! + !_PARKS + DEG_FREE ; 



} 

Pend = Ppt + (MAT_DIM • DEG_FREE) 

whi1e( Ppt < Pend ) { 

} 

Aend = Apt + DEG_FREE ; 
whi1e( Apt < Aend ) 

+Apt++ -= +Ppt++ ; 

Ppt += ! PARMS + DEG_FREE 
Apt += I_PARMS + DEG_FREE 
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I• ++++++++++++++++++++++++ •I 

Rf%ed_form( Amat, Deri~, Prizmat 

APM •Amat, •Deriv 1 •Prizmat ; 
I• 

Prepares the matri% ca11ed "A" in my notes. Eventua11y we want to 
ha~e A = DF•Priz, but ear1y in a ca1cu1ation, when Priz is singular, 
we want to fatten A up by requiring it to ha~e a certain fi%ed form. 
In the inerest of speed we have coded the ca1cu1ations be1ow in 
terms of pointers. Our hope is that the resu1ting function wi11 
scream a1ong at u1trasonic speed . Unfortunate1y it is quite 
unreadab1e. 

APM •Aend, •Aend2, •Dend, •Pend, •Pend2 
register APM +Apt, •Apt2, •Dpt, •Ppt, +Ppt2 ; 

Copy the few terms which appear in the top rows of Amat . 

Aend = Amat + I_PARMS • (MAT_DIM + 1) ; 
for( Apt = Amat, Ppt = Prizmat Apt < Aend 

apmAssign( •Apt, •Ppt ) ; 

Apt+= (MAT_DIM + 1 ), 
Ppt += (MAT_DIM + 1 ) ) 

C1ear out those parts of Amat which change from iteration to 
iteration. 

Aend = Amat + MAT_SZ ; 
for( Apt = Amat + STAID_LEI ; Apt < Aend 

apmAssignLong( •Apt, OL, O, 0 ) 

Set the (u,p) part of A 

Apt++ ) 

It's equa1 to the (~,p) part of Prizmat . 

Aend = Amat + STAID_LER + (DEG_FREE • MAT_DIH) - TWO _DF ; 
Ppt = Prizmat + STAID_LER + (DEG_FREE • MAT_DIM) ; 
for( Apt = Amat + STAID_LER ; Apt < Aend ; Apt += TWO_DF ) { 

for( Pend = Ppt + B_PARMS ; Ppt < Pend ; Ppt++, Apt++ ) 
apmCa1c( +Apt, +Apt, +Ppt, APM_ADD, lULL ) ; 

Ppt += TWO_DF ; 
} 

Set the (~,p) part - three terms. 
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I+ First term - equal to Deriv(v,p) + Prizmat(p,p) +I 

Dpt = Deriv + STAID_LED + (DEG_FREE + HAT_DIH) ; 
Apt = !mat + STAID_LEB + (DEG_FREE + HAT_DIH) ; 
~or( Aend = Apt + (DEG_FREE+HAT_DIH) ; Apt < Aend ; Apt += TVO_DF ) { 

Ppt = Prizmat ; 

} 

~or( Dend = Dpt + I_PARHS ; Dpt < Dend Dpt++ ) { 
apmHultiply( +Apt++, •Dpt, +Ppt ) ; 
Ppt += HAT_DIH + 1 ; 

} 

Dpt += TVO_DF 

I• Second term - equal to negative Prizmat(u,p) +I 

Ppt = Prizmat + STAID_LEN ; 
Apt = Amat + STAID_LEN + (DEG_FREE + MAT_DIH) ; 
~or( Pend = Ppt + (DEG_FREE • HAT_DIH) ; Ppt < Pend ; Ppt += TVO_DF ) { 

~or( Aend = Apt + I_PARHS ; Apt < Aend ; Apt++ , Ppt++ 
apmCalc( +Apt, +Apt, +Ppt, APM_SUB, lULL ) ; 

Apt += TVO_DF ; 
} 

I+ Third term - equal to Deriv(v,v) • Prizmat(v , p) •I 

Dpt = Deriv + STAID_LEN + (DEG_FREE + (MAT_DIM + 1)) + I_PARHS 
Dend = Deriv + KAT_SZ ; 
Apt = Amat + STAID_LER + (DEG_FREE + HAT_DIM) ; 
vhile( Dpt < Dend ) { 

} 

Ppt = Prizmat + STAID_LEN + (DEG_FREE + MAT_DIM) 
Pend = Prizmat + MAT_SZ - TVO_DF 
vhile( Ppt < Pend ) { 

} 

Aend = Apt + R_PARHS ; 
vhile( Apt < Aend ) { 

} 

apmCalc( +Apt, +Dpt, +Ppt, APH_MUL, +Apt, APK_ADD, lULL ) 
Apt++ 
Ppt++ ; 

Dpt++ 
Ppt += TVO_DF ; 
Apt -= &_PARKS ; 

Dpt += &_PARKS + DEG_FREE 
Apt += HAT_DIM 

(u,v) part 
equals Priz(v,u) + Priz(v,v) 

Apt = Amat + STAID_LER + N_PARKS + DEG_FREE ; 
Aend = Amat + STAID_LER + (DEG_FREE + HAT_DIM) 
Ppt = Prizmat + STAID_LER + (DEG_FREE + MAT_DIM) + R_PARMS 
Ppt2 = Ppt + DEG _F REE ; 
vhile( Apt < Aend ) { 

Pend = Ppt + DEG_FREE 
vhile( Ppt < Pend ) { 

apmCalc( +Apt, +Ppt, +Ppt2, APH _ADD, +Apt , APH_ADD, lULL ) 



} 

} 

Apt 
Ppt 
Ppt2 

Apt++ ; 
Ppt++ l 

Ppt2++ ; 

+= I_PARKS 
+= I_PARKS 
+= I_PARKS 

The (v,u) part 
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+ DEG_FREE 
+ DEG_FREE 
+ DEG_FREE 

equal to Deriv(v,v) • { Priz(v,u) + Priz(v,v) }, 
vhich also equals Deriv(v, v) • A(u,v) 

Apt = Amat + STAID_LER + (DEG_FREE • HAT_DIK) + R_PARKS ; 
Dpt = Deriv + STAID_LER + (DEG_FREE • KAT_DIK) + R_PARKS + DEG_FREE 
Dend = Deriv + KAT_SZ ; 
vhile( Dpt < Dend ) { 

} 

Apt2 = Amat + STAID_LEI + R_PARKS + DEG_FREE 
Aend2 = Apt2 + (DEG_FREE • KAT_DIK) 
vhile( Apt2 < Aend2 ) { 

} 

Aend = Apt + DEG_FREE : 
vhile( Apt < Aend ) { 

} 

apmCalc( •Apt, •Apt, •Dpt, •Apt2, APK_KUL, APK_ADD , lULL ) 
Apt++ ; 
Apt2++ ; 

Dpt++ 
Apt -= DEG_FREE 
Apt2 += DEG_FREE + I_PARKS 

Apt += !IAT_DI!I 
Dpt += I_PAR!IS + DEG_FREE 

(v,v) part - equals Deriv(v,v) • Priz(v,v) - Priz(u,v) 

I• First term •I 
Apt = Amat + STAID_LER + (DEG_FREE • !IAT_DIK) + !_PARKS + DEG_FREE ; 
Dpt = Deriv + STAID_LER + (DEG_FREE • !IAT_DIK) + I _PARKS + DEG_FREE ; 
Dend = Deriv + !IAT_SZ ; 
vhile( Dpt < Dend ) { 

Ppt = Prizmat + STAID_LEI + (DEG_FREE • !IAT_DI!I) + I_PARKS + DEG_FREE 
Pend = Prizmat + !IAT_SZ ; 
vhile( Ppt < Pend ) { 

Aend = Apt + DEG_FREE 
vhile( Apt < Aend ) { 

} 

apmCalc( •Apt, •Apt, •Dpt, •Ppt, APK_!IUL, AP!I_ADD, BULL ) 

Apt++ 
Ppt++ 

Dpt++ 
Apt DEG _FREE 
Ppt += DEG_FREE + I_PARKS 
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} 

Apt += KAT_DIK 
Opt += W_PARKS + DEG_FREE 

} 

I• Second term •I 
Apt = Amat + STAID_LEI + (DEG_FREE • KAT_DIH) + W_PARKS + DEG_FREE 
Ppt = Prizmat + STAID_LER + R_PARKS + DEG_FREE ; 
Pend = Ppt + (KAT_DIK • DEG_FREE) 
vhile( Ppt < Pend ) { 

Aend = Apt + DEG_FREE ; 
vhile( Apt < Aend ) { 

} 

apmCalc( •Apt, •Apt, •Ppt, APK_SUB, lULL ) 

Apt++ 
Ppt++ 

Ppt += !_PARKS + DEG_FREE 
Apt += !_PARKS + DEG_FREE 

} 
} 

• include <stdio.h> 

• include <math.h> 

• include ''apm . h 11 

• include 11 apm.Special.h" 

• include 11 converse.h" 

• include "bounding.h" 

• include "rova.h" 

• define IUK_FACTS 6 
• define IUK_TERKS 6 

1e-13 • define DET_TOL 

APK 
APK 
APK 
APK 
APK 
APK 
APK 

double 
double 
Bdd_dbl 
Bdd_term 
Bdd_expr 

Bdd_apm 

Rerr_star 
ff_scratch ; 
Rcenter_err[KAT_DIK) ; 
Rdet_TU, Rdet_uY, Rstar 
RAvv_atar 1 RAuvlnv_star 
Rb_star, Rbd_star, Rsd_atar 
RPYY_star, RPYp_star, RPYu_star 

beta_starO ; 
center_err[KAT_DIK) 
•ff_factors[IUK_FACTS) 
ff_terms[IUK_TERKS) 
beta[3) ; 

Bapm_term Rff_terms[IUK_TERKS) ; 
Bapm_expr Rbeta[3) ; 
I • ++++++++++++++++++++++++++++++ •I 

ini t _ffRovs 0 
I• 

•I 
{ 

Set up the expression s and terms as described in my notes 
from 11114. 

int j. k 



Bdd_dbl .. dpt ; 
Bdd_apm ••apt ; 
Bdd_term •tpt ; 
Bapm_term +Rtpt ; 
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Set up some ~PK's to be used to hold intermediate 
results. 

Rstar = apmlev( BASE ) 
Rdet uv apmRev( BASE 
Rdet_vu = apmRev( BASE 
Rb star = apmlev( BASE 
Rbd_star = apmRev( B~SE ) ; 
Rsd_etar = apmRev( BASE ) ; 
Rerr_star apmlev( B~SE ) 
RAvv_star apmlev( BASE ) 
RPvv_star apmlev( BASE ) 
RPvp_star apmRev( BASE ) 
RPvu star apmlev( BASE ) 
~~_scratch = apmlev( BASE ) 
~uvinv_star apmlev( B~SE ) 

~or( j = 0 ; j < KAT_DIK ; j++ ) 
Rcenter_err[j] = apmlew( BASE 

Set the number o~ terms in the bounded expressions 

beta[O] .nterma 
beta[l] .nterms 
beta[2) .nterms 

Rbeta[O] . nterms 
Rbeta[1].nterms 
Rbeta[2] . nterms 

2 
1 

2 

Assisn terms 

tpt = ~~_terms ; 
Rtpt = R~~_terms 
~or( j=O ; j < 3 j++ ) { 

beta[j] .terms = tpt ; 
Rbeta[j] . terms = Rtpt ; 
tpt += beta[j] .nterms ; 
Rtpt += Rbeta[j] . nterms 

} 

Set n£actors. 

Rbeta[O].terms[O] . nfactors 
Rbeta[O].terms[1].n£actors 
Rbeta[l] .terms[O].nfactors 
Rbeta[2].terms[O].nfactors 
Rbeta[2].terms[l].n£actors 

Assisn ~actors. 

dpt ff_factors 

beta[O].terms[O].n~actors 
beta[O].terms[l].n~actors 

beta[1].terms[O] .nfactor s 
beta[2] .terms[O] .nfactors 
beta[2] .terms[l] .n~actors 

1 
1 
1 
1 
1 
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apt = R~~-~actors ; 
~or( j=O ; j < 3 ; j++ ) { 

I• 

} 

~or( k=O ; k < beta[j] . nterms ; k++ ) { 
beta[j].terms[k] . factors = dpt ; 
Rbeta[j] .terms[k].~actors =apt ; 

} 

dpt += beta[j].terms[k].~actors ; 
apt+= Rbeta[j] . terms[k].n~actors ; 

Set up those o~ the "bound" attributes which are 
bounded APM 1 s . 

~or( j=O ; j < IUM_TERMS ; j++ ) { 
nevBapm( ~f_terms[j] . bound, BASE 

} 

~or( j=O ; j < 3 ; j++ ) { 
newBapm( Rbeta[j].bound, BASE) 

} 

Set up the terms and expressions. 

I• beta[O] = 2.0 - a • sin(v[O]) - c • sin(v[O] + v[1]) •I 
beta[O].const = 2.0, Rbeta[O].const =two 

beta[O].terms(O] . coe~ = -1 . 0 ; 
Rbeta[O] . terms[O] .coe~ = neg_one ; 

beta[O].terms[O].~actors [O] = ta_sin.bound 
Rbeta[O] .terms[O].~actors[O] = tRa_sin. bound 

beta[O).terms[1].coe~ = -1.0 ; 
Rbeta[O).terms[1].coe~ = neg_one 

beta[O).terms[t).~actors[O) = tc _sin . bound; 
Rbeta[O) . terms[1) . ~actors[O) = tRc_sin . bound ; 

I• beta[t) = - 2 . 0 • c • sin( v[O) + v[1) •I 
beta[1] .const = 0.0, Rbeta[1] . c onst = zero 

beta[1] . terms[O) . coe~ = - 2. 0 ; 
Rbeta[t).terms[O] . coe~ = neg_tvo ; 

beta[t].terms[O].~actors[O] = tc _sin.bound; 
Rbeta[t].terms[O] . ~actors[O] tRc_sin.bound ; 

I• beta[2] = 2.0 - b • sin(v[1)) - c • sin(v[1] + v[O)) •I 
beta[2).const = 2 . 0, Rbeta[2] .const =two 

beta[2).terms[O].coef = -1.0 ; 
Rbeta[2).terms[O] . coef = neg_one ; 

beta[2) .terms [O).~act ors[O] = tb_sin . b ound; 
Rbeta[2] . terms[O]. factors[O] = tRb_sin.bound; 



} 

beta[2).terms[1).coe£ = -1.0 ; 
Rbeta[2).terms[1).coe£ = neg_one 
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beta[2).terma[1) .£actors[O) = ~c _sin.bound 
Rbeta[2) . terms[1).factors[O] s ~Rc_sin.bound 

I• +++++++++++++++++++++++++++++++++ •I 

ff_rova( v, ~at, Deriv, Priz ) 

Prism •Priz ; 
double •v, •Amat, •Deriv ; 
I• 

•I 
{ 

Obtain bounds on the sums of the absolute values o£ 
the entries in the rovs o~ 

- 1 

[A) • Deriv • Pmat, 

put the results in v. 

double 
double 
double 
double 
double 

•apt, •mpt, ••nd_ro g , ••nd~at, •Pmat 
det_YU, det_uv, star ; 
Avv_star, Auvinv_star ; 
b_star, bd_star, gd_star 
Pvv_star, Pvp_star, Pvu_star 

Check that A(u,v) is invertible. If not, die. 

Pmat = Priz->matrix ; 

apt = Amat + STAID_LEB + B_PARMS + DEG_FREE 
det _uv = •apt • ( •(apt + KAT_DIK + 1)) 
apt++ ; 

det_uv -= •apt • •(apt + KAT_DIK -1)) 

if( fabs( det_uv < DET_TOL ) { 
fprintf( stderr, 

} 
cease() 

"The determinant of A(u,"r) = ~.14e. Died. \n", 
det_uv ) 

Call £unctions vhich calculate upper bound on the 
sums of the elements of various matrices. 
Before any boundin~ of matrices, one must invoke 
global_bounds( Pmat ) to set such global variables, 
as cos_one, and sin_sum . It is called in try_prism(). 

b_star = beta_star() ; 
bd_star beta_di£_star( Deriv ) ; 
gd_star = gamdif_s tar( Deri v, Pmat 

Find sums of the absolute values of the entries 
of A(v,v), Ainv(u,v), Pmat(v,v), Pmat(v,u), and Pmat(v,p) 

end_mat = Pmat + KAT_SZ ; 
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Pvv_star = 0.0 ; 
mpt = Pmat + STAID_LEI + (DEG_FREE • HAT_DIH) + I_PARHS + DEG_FREE 
£or( ; mpt < end_mat ; mpt += (I_PARHS + DEG_FREE) ) { 

£or( end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++ ) { 
PYv_star += ~abs( +mpt ) ; 

} 

} 

Pvu star = 0 .0 ; 
mpt = Pmat + STAID_LEI + (DEG_FREE + HAT_DIH) + N_PARHS ; 
£or( ; mpt < end_mat ; mpt += (R_PARHS + DEG_FREE) ) { 

£or( end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++ ) { 
Pvu_star += £abs( •mpt ) ; 

} 

} 

Pvp_star = 0.0 ; 
mpt = Pmat + STAID_LER + (DEG_FREE • HAT_DIH) ; 
£or( ; mpt < end_mat ; mpt += TWO_DF ) { 

} 

for( end_rov = mpt + I_PARHS mpt < end_rov 
Pvp_star += ~abs( *mpt ) ; 

} 

Avv_star SmBlock_err 

mpt++ ) { 

mpt = Amat + STAID_LEI + DEG_FREE + HAT_DIH + DEG_FREE + R_PARHS 
£or( ; mpt < end_mat ; mpt += TWO_DF ) { 

~or( end_rov = mpt + R_PARHS mpt < end_rov ; mpt++ ) { 
Avv_star += ~abs( +mpt ) ; 

} 

} 

Auvinv_star = SmBlock_err ; 
mpt = Amat + STAID_LEI + B_PARHS + DEG_FREE ; 
£or( ; mpt < end_mat ; mpt += TWO_DF ) { 

} 

£or( end_rov = mpt + I _PARHS ; mpt < end_rov 
Auvinv_star += £abs( +mpt ) ; 

} 

Check that A(v,u) is i nvertible. I£ no t , die . 

mpt++ ) { 

If it is, set the harder- to - compute elements of v . 

apt = Amat + STAID_LER + R_PARHS + (DEG _FREE • HAT_DIH) 
det_vu = +apt • ( •(apt + HAT_DIH + 1)) 

apt ++ i 

det _vu - = •apt • +(apt + HAT_DIH -1)) 

i£( £abs( det_vu < DET_TOL ) { 
~print£( stderr, 

"The determinant o£ A(v,u) 

cease() 
} 

else { 

%.14e . Died. \n", 
det vu 

II [3) £abs( Amat[HAT_SZ - DEG_FREE - 1) ) + 
fabs( Amat[STAID_LEI + (DEG_FREE • HAT_DIH) + I_PARHS + 1) ) + 



} 
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DBL_ERR ; 
v[4] fabs( Amat[ftAT_SZ - TWO_DF] ) + 

fabs( Amat[STAID_LER + (DEG_FREE+ftAT_Dift) + I_PARftS] ) + 
DBL_ERR 

center_err[3] ~ v[3] • (1 + Avv_star • Auvinv_star) • DBL_ERR 
center_err[4] u v[4] • (1 + Avv_star • Auvlnv_star) • DBL_ERR 
center_err[6] Auvinv_star • DBL_ERR 
center_err[6] center_err[6] ; 

star 

v[3] 
v[4] 
v[6] 
.. [6] 

(sd_star + bd_star • (Pvp_star + Pvv_star) + 

b_star • Pvu_star) I det_vu ; 
•= star + center_err[3] I det_vu 
•= star + center_err[4] I det_vu 

1.0 + center_err[6] 
= 1.0 + center_err[6] ; 

return ; 

I• +++++++++++++++++++++++++++++++ •I 

double beta_star() 
{ 

} 

double answer 

bound_expr( tbeta[O] 
bound_expr( tbeta[1] 
bound_expr( tbeta[2] 

ansver = maxAbs( beta[O] .bound . ub , beta[O].bound . lb) + 
maxAbs( beta[1] .bound.ub, beta[1].bound.lb) + 
maxAbs( beta[2] .bound.ub, beta[2].bound.lb) 

return( ansver ) 

I• +++++++++++++++++++++++++++++ •I 

Rff_rovs( v, Amat, Deriv, Priz 

APft 
RPrism 

I• 

+v, +Amat, •Deriv 
•Priz ; 

•I 
{ 

•I 

Obtain bounds on the sums of the absolute. values of 
the entries in the rovs o~ 

-1 

[A] • Deriv • Pmat, 

put the results in v. 

Check that A(u,v) is inver tible. If not , die. 

Pmat ~ Priz->matrix ; 

apt = Amat + STAID_LER + R PARHS + DEG FREE 
apmftultiply( Rdet_uv, +apt, +(apt + ftAT_Dift + 1) ) 

apt++ ; 
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apmCalc( Rdet_uv, Rdet_uv, •apt, •(apt + MAT_DIM -1), 
APM_MUL, APM_SUB, lULL ) ; 

apmAbsoluteValue( ff_scratch, Rdet_uv ) 

if( apmCompare( ff_scratch, max_error != 1 ) { 
fprintf( stderr, 

} 

"The determinant of A(u,v) is too small. Died. \n" 
fprintf( stderr, "\t Y..12e \n", apmtodbl( ff_scratch ) ) ; 
cease() ; 

Call functions vhich calculate upper bound on the 
sums of the elements of various matrices. 
Before any bounding of matrices, one must invoke 
global_bounds( Pmat ) to set such global variables, 
all cos_one, and sin_sum. It is called in Rtry_prism() . 

Rbeta_star( Rb_star ) ; 
Rbeta_dif_star( Rbd_star, Deriv ) ; 
Rgamdif_star( Rgd_star, Deriv, Pmat 

Find suma o~ the absolute Talues o~ the entries 

of Pmat(v,v), Pmat(v,u), and Pmat(v,p) 

end_mat = Pmat + MAT_SZ ; 

apmAssign( RPvv_stsr, zero ) ; 
mpt = Pmat + STAID_LER + (DEG_FREE * MAT_DIM) + B_PARMS + DEG_FREE 
for( ; mpt < end_mat ; mpt += (R_PARMS + DEG_FREE) ) { 

} 

for( end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++ ) { 
apmCalc( RPvv_star, RPvv_star, *mpt, APM_ABS, 

APM_ADD, lULL ) 
} 

apmAssign( RPvu_star, zero ) ; 
mpt = Pmat + STAID_LEI + (DEG_FREE * MAT_DIM) + !_PARKS ; 
for( ; mpt < end_mat ; mpt += (I_PARMS + DEG_FREE) ) { 

} 

for( end_rov = mpt + DEG_FREE ; mpt < end_rov ; mpt++ ) { 
apmCalc( RPvu_star, RPvu_star, •mpt, APM_ABS, 

APM_ADD, lULL ) 
} 

apmAssign( RPvp_star, zero ) ; 
mpt c Pmat + STAID_LER + (DEG _FREE * MAT_DIM) ; 
for( ; mpt < end_mat ; mpt += TWO _DF ) { 

} 

for( end_rov = mpt + B_PARMS ; mpt < end_rov ; mpt++ ) { 
apmCalc( RPvp_star , RPvp_star, •mpt, APM _ABS, 

APM_ADD, lULL 
} 

apmAssign( RAvv_star, RSmBlock_err ) ; 
mpt = Amat + STAID_LER + DEG_FREE • MAT_DIM + DEG_FREE + B_PARMS 
for( ; mpt < end_mat ; mpt += TWO_DF ) { 

for( end_rov = mpt + B_PARMS ; mpt < end_rov ; mpt++ ) { 
apmCalc( RAvv_star, RAvv _star, •mpt, 

APM _ABS, APM _ADD, RULL ) ; 
} 
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} 

apmAssign( RAuvinv_star, RSmBlock_err ) ; 
mpt = Amat + STAID_LEB + B_PARHS + DEG_FREE 
~or( ; mpt < end_mat ; mpt += TWO_DF ) { 

} 

~or( end_rov = mpt + I_PARHS ; mpt < end_rov ; mpt++ ) { 
apmCalc( RAuvlnv_star. RAuvlnv_star, +mpt, 

APH_ABS, APH_ADD, BULL ) ; 
} 

apmDivide( ~~_scratch, precision, (APH) RULL, 
RAuvlnv_star, Rdet_uv ) 

apmAssign( RAuvinv_star, ~~_scratch ) ; 

Check that A(v,u) is invertible. I~ not, die . 
I~ it is, set the harder-to-compute elements o~ v . 

apt = Amat + STAID_LEI + I_PARHS + (DEG_FREE * HAT_DIH) 
apmHultiply( Rdet_vu, •apt, •(apt + HAT_DIM + 1) ) 
apt++ ; 
apmCalc( Rdet_vu, Rdet_vu, •apt, •(apt + HAT_DIM- 1), 

APM_HUL, APM_SUB, lULL 
apmAbsoluteValue( ~~_scratch, Rdet_vu ) 

i~( apmCompare( ~~-scratch, max_error != 1 ) { 
~print~( stderr, 

} 

"The determinant o~ A(v,u) is too smalL Died . \n") 
~print~( stderr , "\t %. 12• \n", apmtodbl( ~~_scratch ) ) ; 
cease() ; 

Bote that the sums belov seem to contain some misplaced 
elements o~ Amat. These are to be thousht o~ as elements 
o~ A(v,u) inverse . 

else { 
apmCalc( v[3], Amat[HAT_SZ- DEG_FREE-1], APM_ABS, 

Amat[STAID_LER+(DEG_FREE•MAT_DIH)+R_PARMS+1], 
APH_ABS, max_error, APH_ADD, APH_ADD, lULL ) ; 

apmCa1c( v[4], Amat[KAT_SZ-TWO_DF], APH_ABS, 
Amat[STAID_LEI+(DEG_FREE•HAT_DIH)+B_PARHS], 
APM_ABS, max _error, APH_ADD, APM_ADD, lULL ) 

apmCa1c( Rerr_star, RAvv_star, RAuvlnv _star, APM_KUL, 
one, APM_ADD, DULL); 

apmCa1c( Rcenter_err[3], v[3] , Rerr _star, max_error, 
APH_KUL, APH_KUL, BULL 

apmCa1c( Rcenter_err[4], v[4] , Rerr_star, max_error, 
APH_HUL, APH_HUL, lULL 

apmHultiply( Rcenter_err[6], RAuvinv_star, max_error) ; 
apmAssign( Rcenter_err[6], Rcenter_err[6] ) ; 

apmCa1c( Rstar, RPvp_star, RPvv_star, APH_ADD, 
Rbd_star, APH_HUL, 
Rb_star, RPvu _star, APH_HUL, 
Rgd_star, APM_ADD, APK_ADD, RULL 

apmCa1c( ~~_scratch, Rcenter_err[3] , Rstar, v[3], 
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APM_KUL, APM_ADD, BULL ) 1 

apmDivide( v[3), precision, (APK) BULL, ff_scratch, Rdet_vu) 
apmCalc( ff_acratch, Rcenter_err[4), Rstar, v[4), 

APM_KUL, APM_ADD, BULL ) ; 
apmDivide( v[4), precision, (APK) lULL, ff_scratch, Rdet_vu) 
apmAdd( v[S), one, Rcenter_err[S) ) 
apmAdd( v[6), one, Rcenter_err[6) ) 1 

return 

I• +++++++++++++++++++++++++++++++ •I 

Rbeta_star( ansver 

APK ansver ; 
{ 

} 

Rbound_expr( aRbeta[O] 
Rbound_expr( aRbeta[1] 
Rbound_expr( aRbeta[2] 

RmaxAbs( ansver, Rbeta[O].bound.ub, Rbeta[O).bound.lb) 

RmaxAbs( Rrov_abs[O), Rbeta[1].bound.ub, Rbeta[1].bound.lb 
RmaxAbs( Rrov_abs[1], Rbeta[2).bound.ub, Rbeta[2].bound.lb 

apmCalc( ansver, ansver, Rrov_abs[O], Rrov_abs[1), 
APM_ADD, APM_ADD, BULL ) 

I• +++++++++++++++++++++++++++++ •I 

matrix inverter 

• • • • • 
• 
• • • 
• 
I• 

include <stdio .h> 
include <math.h> 
include "apm.h" 
include "apmSpecial. h" 
include "conTerse.h" 

define BUF_SZ 66 

define OOM_DF 1 
2 
6 

define MAX_RECUR 
define 

define 

DFLT_XDP 

Rm_svap(x,y,t) (apmAssisn(t, x), apmAssisn(x, y), \ 
apmAssign(y, t) ) 

The Rumerical Recipes Gauss-Jordan matrix inverter as adaptaed 
:for a converse KAK code. 
I have removed the dimension arguments n and m and replaced 

them vith TWO_DF and 1. I have also changed all the floats 
into doubles and replaced some automatically allocated 
arrays vith arrays o£ fixed dimension. Finally, I have 
replaced the error handling code vith some o:f my ovn . 

R~auss, the rigorous version , also does a host o~ checks to 
guarantee that the inverse it produces , vhen multiplied by 
the original matrix, a, gives something equal to the 
identity to the accuracy specified by the global variable, 
"precision11

• 
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int extra_dp, last_inv_dp ; 
int inv_depth I• Used to make sure that ve don't keep trying 

to invert singular matrices by using 
ever incre•sing precision. 

APH a_abs, Rbig, Rdum, Rpivinv, Rtemp ; 
APH Rrov_max, Rcol_max, Rmat_min, Rmat_max 
APH •Rmat[TWO_DF], Rmat_block[4•DF_SQ] ; 
APM Rdiv_err, Rrov_err, Rinv_err, Rtotal_err, Rpiv_err 
I• ++++++++++++++++++++++++++++++++ •I 

initGaussO 
{ 

} 

int j. k 
APH •mpt 

inv_depth = 0 
extra_dp = 0 ; 

Rbig = apmRev( BASE ) ; 
Rdum = apmRev( BASE ) ; 
a_abs = apmRev( BASE ) 
Rtemp = apmlev( BASE ) ; 
Rpivinv = apmRev( BASE ) 
Rinv_err apmlev( BASE ) 
Rrov_err apmlev( BASE ) 
Rpiv_err apmlev( BASE ) 
Rdiv_err apmlev( BASE ) 
Rrov_max apmlev( BASE ) 
Rcol_max apmlev( BASE ) 
Rmat_min apmlev( BASE ) 
Rmat_max apmlev( BASE ) 
Rtotal_err = apmlev( BASE 

mpt = Rmat_block ; 
£or( j=O ; j < TWO_DF ; j++ ) { 

Rmat[j] = mpt ; 

} 

£or( k=O ; k < TVO_DF ; k++ 
*mpt++ = apmlev( BASE ) 

I• ++++++++++++++++++++++++++++ •I 

Rgauss( a ) 

APM ••a ; 
{ 

int indxc[TWO_DF],indxr[TWO_DF],ipiv[TWO_DF]; 
int i,icol,irov,j,k,l,ll; 
int inv_dp, err_dp ; 

i£( ++inv_depth > HAI_RECUR ) { 
£print£( stderr, "Singular matrix in Rgauss. Died. \n" ) 
cease() ; 

} 

£or( j=O ; j < TWO_DF 
ipi'1(j] = 0 ; 
indxr[j] 0 
indxc [j] = 0 ; 

j++ ) { 
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I£ this is the attempt to invert a, 
copy the matrix in case o£ a loss o£ precision. 
J.lso. choose 
the precision to vhich to do the inversion calcu1ations . 

i£{ inv_depth ;; 1 ) { 
copyRmat{ Rmat, a } 
inv_dp choosePrecis( a ) 

} 

else { 

} 

i£{ extra_dp ;; 0 } 
inv_dp last_inv_dp + DFLT_XDP 

else 
inv_dp last_inv_dp + extra_dp 

last_inv_dp ; inv_dp ; 

Initialize the error propagation stu££. 

apmAssi~ong{ Rdiv_err, 1L, -inv_dp, BASE 
apmAssi~ong( Rinv_err, OL, 0, BASE ) ; 
apmAssign( Rpiv_err, Rinv_err ) ; 

£or (i;O;i<TVO_DF;i++) { 
apmAssignLong( Rbig, OL, 0, BASE ) 
£or (j;O;j<TVO_DF;j++) { 

} 

H (ipiv[j] !; 1) { 

} 

£or (k; O;k<TVO_DF ;k++) { 
i£ (ipiv[k) ;; 0) { 

} 

} 

apmAbsoluteValue( a_abs, a[j][k] ) ; 
i£( apmCompare(a_abs, Rbig) !; -1 ) { 

apmAssign( Rbig, a_abs ) ; 
irov=j; 
icol;k; 

} 

else i£ (ipiv[k] > 1) { 
£print£( stderr , 

} 

"Singular IIUltrix in gauss. Died.\n" ) 
cease() ; 

++(ipiv[icol]); 
i£(irov !; icol} { 

} 

£or (l; O;l<TVO_DF;l++} 
Rm_svap(a[irov][l],a[icol][l],Rtemp) 

indxr [i] ~irov; 
indxc [i] =icol; 

Check that the pivot interval does not 
contain zero . I~ it does, restart the 
calculation and carry more decimal places . 

apmCalc( Rtemp, a[icol][icol], APM _ABS , 



213 

RinT_err, APft_SUB, BULL 
i~( apmCompare( Rtemp, zero ) != 1 ) { 

copyRmat( a, Rmat ) ; 

} 

Rgauss( a ) ; 
return ; 

Get the nev pivot error. It is here that ve ~ace 
the possibility o~ catastrophic loss o~ precision . 

apmDivide( Rpiv_err, inv_dp, (APft)BULL, Rinv_err, Rtemp 
apmCalc( Rpiv_err, Rpiv_err, Rdiv_err, Rdiv_err, 

APft_ADD, APft_ADD, BULL ) 
apmDiTide(RpiTinv,inv _dp,(APft)BULL,one,a[icol][icol]) 
apmAssignLong( a[icol][icol], 1L, 0 , BASE ) ; 

apmAssignLong( Rrov _max, OL, 0, BASE ) ; 
~or (l=O;l<TVO_DF;l++) { 

} 

i~( 1 != icol ) { 

} 

apmAbsoluteValue( Rtemp, a[icol][l] 
if( apmCompare( Rtemp, Rrov_max ) < 0 

apmAssign( Rrov_max, Rtemp ) ; 

apmCalc(a[icol][l], a[icol][l], RpivinT,APft_ftUL,IULL) 

Get a bound on the size o~ the errors in the elements 
o~ the pivot rov . 

apmCalc( Rrov_err, Rinv_err, Rpivinv, APft_ftUL, 
Rrov_max, Rinv_err, APK_ADD, 
RpiT_err, APft_ftUL, APft_ADD, lULL 

apmAssignLong( Rcol_max, OL, O, BASE ) 
~or (ll=O;ll<TWO_DF;ll++) { 

} 

i~ (11 != icol) { 

} 

apmlssign( Rdum, a[ll][icol] ) ; 
apmAbsoluteValue( Rtemp, Rdum ) ; 
i~( apmCompare( Rtemp, Rcol_max ) 1 ) 

apmAssign( Rcol_max, Rtemp ) ; 

apmAssignLong( a[ll][icol], OL, 0, BASE) ; 
~or (l=O;l<TVO_DF;l++) 

apmCalc( a[ll][l], a[ll][l], a[icol][l], Rdum, 
APft_ftUL, APft_SUB, lULL ) ; 

Calculate the nev upper bound on errors in the matrix. 

apmCa1c( Rinv_err, Rrow~ax, Rrov_err, APM_ADD, 
Rinv_err, APft_ftUL, 
Rcol_max, Rrow_err, APM_KUL, 
Rinv_err, APft_ADD, 
APH_ADD, APH _ADD, lULL ) ; 

Add an extra Rdiv_err to Rinv_err and truncate everything . 
This vill probably speed the calculation considerably. 
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apmCa1c( Rinv_err, Rinv_err, Rdiv_err, APM_ADD, lULL ) 

} 

apmTruncate( Rinv_err, inv_dp ) ; 
£or( 1 = 0 ; 1 < TVO_DF ; 1++ ) 

£or( 11=0 ; 11 < TVO_DF ; 11++ 
apmTruncate( a[1][11], inv_dp 

for (1=(TVO_DF-1);1>=0;1--) { 
if (indxr[1] != indxc[l]) 

} 

for (k=O;k<TVO_DF;k++) 
Rm_svap(a[k](indxr[l]],a[k][indxc[l]],Rtemp); 

Check the overall size of the error. 
If it is too big, set extra_dp and try again. 

err_dp = -(apmLogBd( Rinv_err ) + OOM_DF) 
if( err_dp < precision ) { 

} 

Tidy up . 

extra_dp = precision - err_dp + 2 
copyRmat( a, Rmat ) ; 
Rgauss ( a ) ; 
return ; 

If ve reach this line, all is vell, the inversion is 
good to the desired precision, so all ve vant to do is 
restore the recurrsive variables to their initial state. 

inv_depth = 0 ; 
extra_dp = 0 ; 
return ; 

I• +++++++++++++++++++++++++++++++++ •I 

copyRmat( copy, mat 

APM ••copy, ••mat 
{ 

} 

int j. k 

for( j=O ; j < TVO _DF ; j++ ) 
£or( k =O ; k < TVO_DF ; k++ 

apmAssign( copy[j][k], mat[j][k] 

I• ++++++++++++++++++++++++++++++++++ •I 

choosePrecis( mat ) 

APM ••mat ; 
{ 

APM ~pt, •end_mat ; 
int oom~in, oom_max, oom_err, oom_tvos 

Find the minimum and maximum entries of the matrix. 
If none of the entries has absolute value bigger than 
one, use one as the max~um; this ensures that the 
resulting inverse v i ll have entries good to at l east 



} 

"pr•cision" decimal. places. 

mpt = mat [0] ; 
apmAssignLong( Rmat_min, OL, 0, BASE 
apmAssignLong( Rmat_max, lL, 0 , BASE 
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for( end_mat = mpt + (TWO_DF+TWO_DF) mpt < end_mat 
apmAbsoluteValue( Rtemp, *mpt ) ; 

} 

if( apmCompare( Rmat_min, Rtemp ) > 0 ) 
apmAssign( Rmat_min, Rtemp ) 

else if( apmCompare( Rmat_max, Rtemp ) < 0 ) 
apmAssign( Rmat_max, Rtemp ) ; 

mpt++ ) { 

Do a basic estimate o£ the number of digits one must carry 
to get an ansver vhose precision is as good as the code 
requires. 

First find the orders of magnitude ("oom"'s) of various things. 

oom_max = apmLogBd( Rmat_max ) ; 
oom_tvos = (TWO_DF I 3) ; 

oom_err = oom_tvos + OOM_DF + (2 + TWO_DF + 1) • abs( oom_max ) 

if( oom_err < 0 ) 
return{ precision 

else 
return( precision + oom_err 
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