Ghosts of Order on the Frontier of Chaos

Thesis by
Mark Muldoon

In Partial Fulfillinent of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1989

(Submitted May 30, 1989)

1

Then from the heart of the tempest Yahweh spoke and gave Job his an-
swer. He said:

Brace yourself like a fighter; now it is my turn to ask questions
and yours to inform me.

Where were you when I laid the earth’s foundations?

Who decided the dimensions of it? Do you know?

Who laid its cornerstone when all the stars of morning were
singing with joy?

Who pent up the sea when it leapt tumultuous out of the womb,
when I wrapped it in a robe of inist and made black clouds its
swaddling bands?

Have you ever in your life given orders to the morning or sent
the dawn to its post?

Have you journeyed all the way to the sources of the sea, or
walked where the abyss is deepest?

Have you an inkling of the extent of the earth?

Which 1s the way to the home of the light and where does the
darkness dwell?

The Jerusalem Bible

There are seven or eight categories of phenomena in the world that are
worth talking about, and one of them is the weather. Any time you care
to get in your car and drive across the country and over the mountains,
come into our valley, cross Tinker Creek, drive up the road to the house,
walk across the yard, knock on the door and ask to come in and talk about
the weather, you'd be welcome.

Annie Dillard

Then we would write the beautiful letters of the alphabet, invented by
smart foreigners long ago to fool time and distance.

Grace Paley

il
A cknowledgements

I offer my thanks to my advisor, Anatole Katok, to my scientific correspondents,
Jim Meiss, Robert MacKay, and Ralael de la Llave, and to Steve Wigginé of Caltech;
without their many intellectual gifts I would have written a different, and lesser,
thesis.

More profoundly, I thank my friends, Susan Volman, Dave Wark, Bette Korber,
James Theiler, JoAnn Boyd, Paul Stolorz, Brian Warr, Chi-Bin Chien, Dawn Mered-
ith, Joel Morgan, Morgan Gopnik and Tom Bondy, and especially my mother and
sister, Lucille and Maureen Muldoon; without their love and encouragement I could
not have written a thesis at all.

Last, I thank Steve Frautschi for his patience and for providing me, through The
Mechanical Universe, with the most enjoyable summer job I have ever had. I also
gratlelully acknowledge Caltech’s Concurrent Computation Program, whose machines

both performed my calculations and typeset my thesis.

iv
Abstract

What kinds of motion can occur in classical mechanics? We address this question
by looking at the structures traced out by trajectories in phase space; the most orderly,
completely integrable systems are characterized by phase trajectories confined to low-
dimensional, invariant tori. The KAM theory examines what happens to the tor1 when
an integrable system is subjected to a small perturbation and finds that, for small
enough perturbations, most of them survive.

The KAM theory is mute about the disrupted tori, but, for two-dimensional sys-
tems, Aubry and Mather discovered an astonishing picture: the broken tori are re-
placed by “cantori,” tatlered, Cantor-set remnants of the original invariant curves.
We seek to extend Aubry and Mather’s picture to higher dimensional systems and
report two kinds of studies; both concern perturbations of a completely integrable,
four-dimensional symplectic map. In the first study we compute some numerical ap-
proximations to Birkhoff periodic orbits; sequences of such orbits should approximate
any higher dimensional analogs of the cantori. In the second study we prove converse
KAM theorems; that is, we use a combination of analytic arguments and rigorous,
machine-assisted computations to find perturbations so large that no XAM tori sur-
vive. We are able to show that the last few of our Birkhoff orbits exist in a regime

where there are no tori.

Contents

Acknowledgments i1l
Abstract iv
Table of Contents v
List of Figures viii
1 Introduction 1
1.1 Integrability and the KAM theorem 3
1.2 The Taylor-Chirikov standard map 6

2 Ghosts of Order 10
2.1 Basic Notions and Notations 11
2.1.1 spaces and mapso 0 11

212 wmvariptionplproineiple ; s v s s s s s v v wa e 2 v v oEw 55 5 12

2.1.3 area-preserving twist maps00 00 L. L. 13

2.2 Higher-dimensional analogs 17
2.2.1 themaps and orbits 20

2.2.2 shapes of orbits and Lyapunov exponents 21

2.2.3 non-existence of tori: a prelude, 25

224 smoothness e 37

2.3 Hedlund’s examples .

3 The Frontier of Chaos

vi

3.1 Converse KAM results on the cylinder

3.1.1 delinitions and a first criterion

3.1.2 Lipschitz cone families and their refinement

3.1.3 some new coordinates and two more criteria

3.1.4 non-existence for minimalists

3.2 Rigorous computing .

3.2.1 tworeductionsand aplan

322 boundimpimages ol PHSMIE « 5 < s 2 5 35 v s s e ww s 5 5 5 9 &

3.2.3 choices for the matrix A

3.3 On to higher dimension

3.3.1 maps and tori

3.3.2 Lipschitz cones: old formulae in new guises

3.3.3 minimalism revisited

3.3.4 global estimates: narrowing thecones

3.4 A converse KAM theorem

3.4.1 analytic preliminaries

34.2 The commpulaliony - o 5 5 5 5 + 5 5 b 5 v 8 4 5 ko m s n = v o

3.4.3 results

...........................

344 using symmetryo

A Approximate Numerical Methods

A.1 Methods of minimization

A.2 Rational approximation of irrational vectors

A.3 Lyapunov exponents

47
49
49
51
57
60
63
63

69
72
2
73
75
78
79
79
80
81
82

Vil

B Converse KAM Methods 94
B.l Wlhatthe programi does = » : s s v ws 2 2 « e amews 3 5§ 8595 % 94
Boll themap » o s g o mws w5 oomm s e 5o ow e s 5o wmm o s 95
B.1.2 sketch of a computation 95
B.1.3 wusing the progromsy asample s = 5 « c s ww s v o v v mow o w0 s 96

B.2 Representationof datao 99
B.21 wumbers and arithmetic . < s 2 ¢ ¢ s s s a s s 6 20536 5 5 99
B.2.2 intervals and expressions L. 100
B.2.3 prisms e e e e e e e e 101

BB Algorithmg: o ¢ » s 2 sws s s ssvaps ssssss 2 2895583 3 102
B.3.1 special functionso o L 103
B.3.2 uniform cones and the starting point 106
B.3.3 bounding traces and eigenvalues L. 108
B.3.4 bounding the images of prisms 109

C Computer Programs 122
C.1 Arbitrary precision library Lo 0oL 122
2 Goureegode & . s « s vy m e s r v PR Y P AU S H B I FEEBY BES B 130
C.2.1 special functionst 130
.22 anterval amthmebic. . ¢ o o oo v v v w e e 5 oy R E P § 3 140
C.2.3 starting points and global bounds 145
G244 controlof thevomputadion + s « « » s 5 w55 5 1 v s w w5 3 3 3 158
C2b5 themap 168

C286 imapes ol PrisIns o & « v w5 5 5 5 ¥ 58 5 53 5 8 8 @5 2w s 2 3 173

viil

List of Figures

1.1 A system of two equally massive stars, m; and m3, and a test mass, my.

1.2 The phase space of a completely integrable system.

1.3 Orbits of the standard map for several sizes of the perturbation.

2.1 The cylinder and its coordinate system.
2.2 A twist map carries vertical lines to monotone curves.
2.3 The billiard ball dynamical system. [Bick27]
2.4 A cantorus for the standard map.
28 Contonrmopsof ~Vel®l s s v mas 2 s s amss 6 ¢ 85 6854 4 ¢
2.6 The Lyapunov ezponents.o
2.7 Birkhoff orbits for the trigonometric perturbation and the rotation vec-
tor (1432,1897)/2513. . . . o oo
2.8 More Birkhoff orbits for the trigonometric perturbation and the rotation
veclor (1B I000) /0518, s s+ v s v v s w6 3 s G R BB ¥ 5 § 8 X A H & 5 5
2.9 Barkhoff orbits for the trigonometric perturbation and the rotation vec-
lor {907, BRI/ ATH0L. s s 5 v ssmn o i s s wmassises dasnoe
2.10 More Birkhoff orbils for the trigonometric perturbation and the rotation
vector (377, 2930)/3770).
2.11 Biarkhoff orbits for the polynomial perturbation and the rotation vector
(1432,1897)/2513.

2

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

3.1
3.2
3.3
3.4
3.5

3.6
3.7

ix

More Birkhoff orbits for the polynomial perturbation and the rotation

vector (1488, 189T)/8518. v v o wir s i3 4B 55 € ($ B8 & 5 8

Birkhoff orbits for the polynomial perturbation and the rotation vector

(TP BBT0I/TTHE. « o vwmv v wmmnn s b G A R S EERE S

More Birkhoff orbits for the polynomial perturbation and the rotation

vector (377, 2880)/8770).

Birkhoff orbits for the fast-Frocschlé perturbation and the rotation vec-

tor (1482,1897)/2518.

More Birkhoff orbits for the fast-Froeschlé perturbation and the rotation

vector (1482,1897)/2518.

Polre Ll BEJY. o« cc: s svmma s cmmmmn e wn mmmon o
Some minimizing periodic geodesics on the two dimensional torus.

Some minimizing pertodic geodesics for a Hedlund example on the three

dimensional toTus. e e e e e

The largest displacement between a point in a perturbed minimizing

state and the position it would occupy in the abscence of the perturba-

IO o 5 5w m e s ¥ P EREE R E TS EEE NP EEREEY DR EGEE &

A series of orbits whose rotation vectors approzimate (377,2330) /

i 5 1880 AL 2 ABERELL IANEE LA ABTEE 2 & dad v b o

The space of near-integrable maps and the frontier of non-integability.
The cylinder and several invariant circles.
Acurmeand Hsimage:. o5 » s v swm e s s ow v B m 3 Y B AW & B
Numerical error may carry a pownt across an wnvariant circle.

If orbits with initial momenium less than p, never rise above p = p,

there 18 an itnvartant circle.

An invariant curve and with some Lipschitz cones.

Refindno The vonm Joriily. - - 5 2 0 s e v 5 4 6 B B m & 8 5 45 88 & o =

44

3.8
3.9

3.10
3.11

3.12
3.13
3.14

3.15
3.16
3.17
3.18
3.19

Al
A2
A3

A piecewise constant cone family. : . - = 5 5 ¢ 5 s s v m w0 05 0w
An tnvariant curve and some Lipschitz cones in the delay coordinate
SUSLEMY., . » % ¥ s 6 S R T 7 LI HBH I L IF AEH B L I ESHE DT L D 8
Rotational invariant circles must cross every vertical line.
The n-dimensional hypercube Q" is mapped to the prism by the matriz
e e s T o/ AL S S
A prism, its image, and a prism bounding the image.
The bounding lemma applied to a Lift of the circle map.
The fized-form fattener applied to the image of a singular, vertical
DEIEHE. s @ 3 2o mE % S0 RERY § D AAE T 8 I SRAH Y S 0 L F T
The column-rotor scheme applied to a narrow prism.
The system of prisms used to show e, < 0.0276.
€ S O02T4 o o o
€. < 0.0272 . . L e e e e e e e e e e e
Two symmetrically related states have the same action.
Several levels of the Farey tree.
The mediant operation which refines Farey triangles.
Five levels of the Farey triangulation.

90
91
92

Chapter 1

Introduction

There is a maxim which is often quoted, that “The same causes will
always produce the same effects.” ...

It follows from this, that if an event has occurred at a given time and
place it is possible for an event exactly similar to occur at any other time
and place.

There is another maxim which must not be confused with that quoted
at the beginning of this article, which asserts “That like causes produce
like effects.”

This is only true when small variations in the intial circumstances
produce small variations in the final state of the system. In a great many
physical phenomena this condition is satisfied; but there are other cases
in which a small initial variation may produce a very great change in the
final state of the system, as when the displacement of the “points” causes

a railway train to run into another instead of keeping its proper course.
James Clerk Mazwell, 1877

Maxwell’s warning, that like causes need not produce like effects, can apply to even
the simplest looking physical systems. Consider two equally massive stars bound in a
binary system. Their orbits both lie in the same plane and, in a suitable coordinate
system, their center of mass is at rest at the origin. If the orbits are nearly (but not
quite) circular the system will look like the one pictured in figure (1.1). Now imagine
adding a third body, a test mass so small that it does not disturb the motion of the

stars. Place the test mass at the origin and give it a velocity vo normal to the plane

Figure 1.1: A system of two equally massive stars, m; and my, and a test mass, ms,

which travels on a line through the center of mass. [Moser73]

of the orbit. The test mass will bob up and down on the line through the origin and,
if the initial velocity, vg, 1s near enough to the escape velocity, the subsequent motion
of the test particle will display a fantastically sensitive dependence on the value of vy;
by suitable choice of vy one can arrange for test mass to begin in the orbital plane,
spend = s; periods of the binary system above the plane, pass through to spend =~ s,

eriods below, then = s; above ...and so on, producing a sequence
b] 3) ?
.- e . 80, 317 .92 “ e y

where each s; is an integer counting the number of complete periods of the binary
which pass between visits by the test mass. The s; can be chosen completely inde-
pendently, subject only to the restriction s; > C for a constant C.

This system is described by Moser in [Moser73]. He begins his study by drastically
“simplifying the problem; when ¢ = 0 he notes the phase, 6,, of the binary orbit and
the speed, vy, of the test mass, then asks for §; and v, the corresponding phase and

speed at the instant when the test particle first returns to the orbital plane. Certainly

they depend only on g and vy, so he constructs some functions 8'(6,v) and v'(6,v)

such that

01 = 9’(90,'00) and ™ = 'U’(go,‘[)o),

then uses them to find a sequence, - - - (€, vo), (61,v1) - - -, which captures the essential
features of the dynamics. Moser shows that the wild behaviour described above occurs

because the mapping,

(6,v) — (6'(,v),v'(6,v)), (1.1)

behaves like the celebrated Lorseshoe example of Smale, [Smale65]. Smale constructed
the horseshoe by a process of abstraction; he began by trying to understand the
qualitative behaviour of a system of differential equations’!, but eventually pared away
most of the original problem, leaving a simple, illuminating model of the dynamics.
A detailed description of the horseshoe, along with a host of examples and criteria for
recognizing horseshoe-like behaviour, appear in [Wig88]; for us it will be enough to
recognize that complicated dynamics arise even in simple classical systems and that
these dynamics can be explained in terms of structures in the phase space. For the
rest of the thesis we will be concerned with a different relationship between structure
and dynamics; we will examine how the highly structured phase space of an orderly

classical system changes under perturbation.

1.1 Integrability and the KAM theorem

The most orderly of Hamiltonian systems are the completely integrable ones; these
systems have so many constants of the motion, (N for an N-degree-of-freedom sys-

tem,) that we can reformulate the problem in terms of action-angle variables® (8, J),

1Smale gives a non-technical account of all this in one of the papers collected in [Smale80)].

2We will use boldface symbols to denote n-dimensional objects, so that @ is in T", the n-
dimensional torus, p in R". We will write 8, for the angular coordinate of the jth image of
some phase point, (8, po), and z; (which is in ordinary type) for the real number that is the jth

Figure 1.2: The phase space of a completely integrable system. [Arn78]

so that the Hamiltonian, H(p,q), becomes a funtion of the actions alone. Then

Hamilton’s equations are

: O0H

i o= g =0

. OH

6. = = w;. :
Y A -2}

Figure (1.2) illustrates the structure of the phase space for a completely integrable,
2 degree-of-freedom system. Conservation of energy restricts the motion to a three-
dimensional energy surface, represented here as a solid torus. A phase trajectory
winds around on a two-dimensional torus, covering it densely unless w; and w; are

rationally dependent, that is, unless there are integers m, and m, such that
M, = MalWws. (13)

Tori for which (1.3) holds are called resonant and they are entirely covered by periodic
phase trajectories.

Iigure (1.2) also illustrates a construction we will use throughout the thesis, the
Poincaré surface of section. This technique reduces the continuous Hamiltonian flow,
(1.2), whose trajectories lie in a (2n — 1)-dimensional energy surface, to a discrete-

time map, 7', which acts on a (2rn—2)-dimensional surface. In figure (1.2), the surface

component of some © € R™. Ocassionally we will need to express, “the kth coordinate of the jth
image of the phase point (89, po).” That will be written 6; k.

of section is given by #; = 0 and the map T carries a phase point, &, to the next

point where #’s trajectory intersects the surface. That is,
ws
T(J,Gl = 0,62) = (J,gl = 0,92 + 21l'w—)
1

The structures of integrability leave a clear signature on the surface of section; all the
orbits of T are confined to circles, so that the orbit of a typical point hops around its
circle, eventually filling it densely. Those circles that are cross sections of resonant
tori are covered by periodic orbits; if a circle arises from a torus obeying a relation
like (1.3), then the points on it are periodic with period m; and hop m, times around
the circle before repeating.

This extremely regular structure has profound qualitative effects on the physics
of the motion; integrable systems are far from satisfying the ergodic hypothesis of
statistical mechanics. A phase trajectory, confined by conservation laws to an n-
dimensional submanifold of the (2n—1)-dimensional energy surface, does not even
come close to exploring the whole of energetically accessible phase space and so pre-
dictions based on the microcannonical ensemble, which gives equal weight to all points
with the same energy, will certainly be wrong. These remarks, along with the ev-
ident success of statistical mechanics, suggest that complete integrability must be
rare, that most of the structure of integrability cannot survive perturbation. Indeed,
Fermi believed that the slightest perturbation would completely disrupt integrability,
[FPUS55].

The fate of invariant tori is, however, much more complicated and wonderful; it
1s the subject of the most spectacular theorem in Hamiltonian dynamics.

Theorem (Kolmogorov-Arnold-Moser)

If an unperturbed (completely integrable) system is non-degenerate®, then for suffi-

3The non-degeneracy condition is that

a—w = det

det 57

ciently small conservative Hamiltonian perturbations, most non-resonant tori do not
vanish, but are only slightly deformed, so that in the phase space of the perturbed
system, too, there are invariant tori densely filled with phase curves winding around
them conditionally-periodically, with a number of independent frequencies equal to the
number of degrees of freedom. These invariant tor: form a majority in the sense that

the measure of the complement of their union is small when the perturbation is small.

That is, most tori survive small perturbations! The statement above is taken from
textbook by Arnold, [Arn78|; His original proof appears in [Arn63]. Moser’s book,

[Moser73|, offers a readable account, and [Bost86] gives a recent review.

1.2 The Taylor-Chirikov standard map

We conclude our introduction with a brief review of an exhaustively studied example,
the Taylor-Chirikov standard map. It is a two-dimensional, area-preserving map

acting on the set S! x R = {(z,p)|z € [0,1), p € R}.

/

- k. 2
P = p—zﬂ_sm(L);

!

2 = z+p modl. (1.4)

Chirikov [ChkvT79] describes this example as a periodically-kicked rotor, sampled at
the frequency of the kicking; « is a normalized angle variable with p the corresponding
angular momentum. Chirikov’s rotor receives periodic, impulsive blows whose size
and direction depend on the rotor’s angular position at the moment the impulse is
delivered. For k& = 0, the system is completely integrable; p is a constant of the
motion and the orbits are confined to one-dimensional curves.

Figure (1.3) shows the structure of the phase space for various values of the per-

turbation. Each panel shows the orbits of several points from the the set {(z,p)|z €

where H(J) is the unperturbed Hamiltonian. It means that the w;(J) are independent as functions.

[0,1), p € [0,1)}. Here we will give a qualitative discussion of these pictures, at the
same time introducing ideas that we will study fully in later chapters. The series
begins in the top panel with a small perturbation; many orbits still seem to lie on or
between circles. The arcs in the corners of the picture, when associated by periodic
boundary conditions, form ovals encircling the fixed point 2z = (z = 0,p = 0). The

ovals arise because zg is an elltptic fixed point; that is, the derivative of the map,

o ox
Oz Jp
DT = ,
Qy fy
Oz Op

is such that the matrix DT, has its eigenvalues on the unit circle. Consequently,
points that start near zp stay nearby and their orbits form the arcs. If we were to
restrict our attention to this ellzptic island we would find that it has much the same
structure as the whole phase space; the ovals would play the role of invariant circles
and between them would lie yet smaller elliptic islands. If we magnified one of those
islands ... the structure goes on forever. There is also another fixed point, at z; =
(z = 3,p = 0), but it is hyperbolic; the matrix DT, has eigenvalues off the unit cizcle,
so almost every orbit that begins near it eventually moves away with exponential
speed. Besides the fixed points, there are always at least two periodic orbits for every
rational rotation number g. Chapter 2 gives a longer and more technical discussion of
periodic orbits and also discusses some special sets, the cantori, which are, in a sense,
the ghosts of disrupted tori. The chapter begins with a review of the two-dimensional
theory then shows some numerical work aimed at higher dimensional generalizations.

In the middle panel, many more elliptic islands are evident, as is a broad stochastic
layer, a region that no longer contains any invariant tori; the orbits in such a region
are quite complicated and chaotic, and are confined to a layer only because the phase
space is two-dimensional and thus the invariant circles divide phase space into two

disjoint pieces and so pairs of circles can trap even very chaotic orbits. In higher-

dimensional systems the tori have too low a dimension to isolate parts of the phase
space; points not actually contained in tori are free to diffuse throughout the whole
stochastic part of the phase space, though they do so only very slowly, in a process
called Arnold diffusion [Arn64,Nekh71]). Although we will not have much more to say
about Arnold diffusion, we will have cause to consider the topological consequences of
higher dimension; in both the remaining chapters we will find that topology prevents
us from proving results as strong as those available for two dimensional systems.
The final panel shows a perturbation large enough to guarantee very strong chaos;
k is so large that Mather, [Ma84], has shown analytically that no invariant circles (of
the type that wind all the way around the cylinder) remain. Numerical experiments
by Greene suggest that no circles exist for |k| > k. ~ 0.971635406. We leave this
subject for the moment, but Chapter 3 is entirely devoted to converse KAM results,
theorems that say, as Mather does, that for large enough perturbations, no tori exist
at all. There we will review Mather’s work, as well as the computer-assisted arguments
of MacKay and Percival, then discuss higher-dimensional generalizations and show

some new results.

k=033
k=095
k=134

Figure 1.3: Orbits of the standard map for several sizes of the perturbation k. FEach
panel shows 200 iterates from the orbits of 20 different initial conditions.

10

Chapter 2

Ghosts of Order

In this chapter we ask, “What becomes of invariant tori?” We have seen that the
phase space of completely integrable Hamiltonian systems is filled by such tori and
that the KAM theory assures us that some of them persist even in the face of small
perturbations. What becomes of the nonresonant tori for which KAM fails? In
general, one can’t say. But for certain two-dimensional, area-preserving maps Mather
[Ma82a] and, independently, Aubry [Aub83a], demonstrated the existence of some
remarkable sets. They are reminiscent of invariant tori, but are not complete curves,
rather, they look like graphs supported above a Cantor set. Orbits on these “cantori”
are similar to rotation on an invariant torus; one may consider Mather’s sets the
ghosts of destroyed invariant tori. Here we review the two-dimensional results, then
present some numerical investigations® from an effort to find the higher-dimensional
analogs of Mather’s sets. At the end of the chapter we discuss a topological obstacle

that prevents simple generalization of the Aubry-Mather theory.

Kook and Meiss, [KM88], have reported similar studies; J. Meiss has been especially helpful in
discussing this work.

11

Figure 2.1: The cylinder and its coordinate system.
2.1 Basic Notions and Notations

In this section we give careful definitions of the maps we will study, the spaces they
will act on, and the tools we will use to understand them. We will also review the
two-dimensional theory, describing cantori and explaining how to approximate them
by periodic orbits. In the course of the review we will introduce a variational principle

that will be the foundation of all our work.

2.1.1 spaces and maps

We will study maps based on the Poincaré map of a near-integrable, action-angle
system and so they will act on the n-dimensional multi-annulus, A™ = T" x R”,
where T™ is the n-torus and R”® is n-dimensional Euclidean space. To avoid having to
worry about factors of 2w, we will always normalize the angles, and so write points in
A" as (0,p) where @ = (6,,0;---6,) and the 6; are periodic coordinates with period
1. '

The one-dimensional annulus, A = T xR, is conveniently represented as a cylinder
with coordinates as pictured in figure (2.1). Maps taking the cylinder to itself will
be called T, or T, if they depend on parameters; maps acting on A™ for n > 1 will

be either f or f.. In all cases, our maps will be symplectic, that is, they will preserve

12

the standard symplectic form (see e.g. [Arn78 KB8T7]),
) = id@i A dp;. (2.1}
i=1
For a map T on the cylinder, preservation of (2.1) means that T preserves area
and orientation and so is equivalent to Liouville’s theorem about the preservation of
volume in phase space. For higher-dimensional systems, preservation of (2.1) also
implies preservation of volume, but is stronger.

We will often need to work with a Lfting, F,, of a symplectic map, f., to the
universal cover of A™. This is essentially a version of f, extended periodically so that
it acts on the whole of R* x R™. If f. : A® — A, f.(6,p) = (6'(8,p),p'(0,p))
then F, acts on R® x R®, F.(z,p) = (z'(z, p), p'(z,p)), and agrees with f. up to an
integer translation. That is, if f((@o,po) = (01,p1) and F(xo = O, po) = (T1,P1)
then

£, —60;=m (2.2)
for some integer vector m € Z". Further,

FG(KBQ +4- m, pn) = Fe(w())pﬂ) + m.

The choice of a lift, F, which comes down to the choice of m in (2.2) does not affect

any qualitativé features of the dynamics. For example, a lift of the standard map is
!

k
P = pg sin(2mz),

i/

2 = z+7,

which is just the same as (1.4) except that the position coordinate is no longer taken

mod 1. We will always use the convention that F, : R* x R™ is a lift of f, : A™ — A®,

2.1.2 a variational principle

The dynamics of an autonomous Hamiltonian system can be characterized with the

principle of least aclion; to specify a segment of a phase trajectory, v(¢) = (p(t), a(t)),

13

one need only note the values of the position coordinates at the ends of the segment
and require that v be an extremal of the “reduced action” functional [Arn78],
q:
5(qo,q1) = f pdq. (2.3)
9o
In particular, one can get the momenta at the endpoints of the segment by taking

derivatives of S(qo, q1);

as d as
= — an = —
P1 Py Po Bts
The analogous thing for a symplectic map F, : R® — R™ is an action-generating func-
tzon, a function, H, : R®* x R* — R, where H, = H (@, x’) is such that if F(z,,po) =
(mla pl)) then
_ OH. d _ 0H,
PL= 5 an B = 0

The point of constructing a generating function is that it enables us to discuss dy-

(2.4)

T

namics entirely in terms of the position coordinates. In the next section we will
demonstrate the usefulness of variational arguments by reviewing the theory of area-
preserving twist maps of the cylinder. These maps get their name because of a geo-
metric property of their action; a C* map T is twist if it carries every vertical line into
a monotone curve; see figure (2.2). More analytically, if T'(6,p) = (6'(4, p), P'(8, p)) is
a symplectic map of the cylinder, then T is a uniform, differentiable, twist map if

06’
dp

A1,

2.1.3 area-preserving twist maps

Here we will examine the kinds of orbits that can occur for an area-preserving twist
map. Since we will be wanting to make variational arguments, we require that,

in addition to being a twist map, T' possess a generating function, h(z,z'). For

Figure 2.2: A twist map carries vertical lines to monotone curves.

convenience, we will work with a lift of T, call it 7', and will use coordinates in R x R
rather than on the cylinder. First we will use the generating function to construct
some periodic orbits.

A periodic orbit is characterized by its period and by the number of times it winds
around the cylinder before closing. Suppose we want an orbit that, in g steps, makes
p turns. Such an orbit would appear on the universal cover as a sequence of points

{' 0T (mﬂﬁpﬂ): (ml,pl): e (mq—lapq—l)a (‘Dp: qp); o } with Lirg = Tj + D. We could seek

it by trying to find a sequence of position coordinates,
X =g, 8y, .« s By1:80 By = By -+ Pl (2.5)

such that the function ot

Lpo(X) = ;}h(mbmﬂl) (2.6)
was minimized. We will call such a sequence a p-¢ minimizing state. If we could find
one, then, automatically, we could compute the desired kind of periodic orbit. To see

how, consider the condition that (2.6) be extremal:

oL Oh Oh .
-éf:g(mj,a:ﬂl)—i-@(mj_],mj)::o for3=0,1,---,q—1. (2.7)
i
We will call these the Euler-Lagrange equations. Now, if X were the projection of
some periodic orbit, we would be able to recover the missing momentum coordinates

in two ways; we could use either

Oh Oh
p; = B—m;(fvi~1:$i) or p;= —5;(%051“)-

Figure 2.3: The billiard ball dynamical system. [Birk27]

The condition (2.7) is that these two be equal, so that if we can find a sequence like
(2.5) we have found the desired periodic orbit. Arguments like this were first made by
Birkhoff, who used them to construct periodic orbits for the map given by the motion
of a point particle in a convex, rigid walled box. This system can be reduced to an
area preserving twist map by cousidering the particle’s collisions with the wall and
using coordinates given by a length, r measured along the perimeter of the domain,
and the variable ¢ = — cos(§) where @ is the angle the particle’s path makes with
the tangent to the wall, see figure (2.3). In this system the generating function is
just the negative of the length of the path traced by the ball, and so the minimizing
periodic orbit with p = 2,q = 5 is just the orbit that corresponds to the longest
inscribed star. Besides the minimizing periodic orbit, there is another, a minimaz
orbit. To see how this orbit arises take one point of the minimizing orbit and slide it
along the boundary, allowing the other points to shift so as to keep the total length
of the star as large as possible. At first the length must decrease; we have assumed
that the initial, undistorted star was the longest possible. Eventually, though, the
length of the distorted star will have to stop decreasing and begin to increase because
eventually the vertices will reach a configuration which is a cyclic permutation of the
original star. The configuration for which the length again begins to increase must
also be a stationary point of L,4; 1t satisfies the Euler-Lagrange equations and so it
too corresponds to a genuine periodic orbit.

The action-minimizing periodic orbits, which are called Birkhoff orbits, are dis-

16

tinguished by the numbers p and g used in their construction. The rational number

5 which is the orbit’s average angular speed, is called the rotation number of the
orbit. More generally, an orbit (o, po),(Z1,P1),... on the universal cover is said to

have rotation number « if
Ln — Lo

a = lim (2.8)

n—co q
This limit does not always exist. Most of the points in the stochastic regions of the
standard map do not have well-defined rotation numbers, though all of the orbits
lying on invariant circles do; orbits on non-resonant circles have irrational a.

Percival, who, in [Perc79], coined the term “cantorus,” proposed that one might be
able to {ind orbits that had irrational rotation numbers, but did not lie on invariant
tori. Mather looked for Percival’s quasiperiodic orbits and, in [Ma82a), succeeded
dramatically. He discovered whole, complicated sets of such orbits and revealed an
unexpected, rich structure in the phase space. Serge Aubry, a condensed matter
physicist who was investigating the ground states of certain one-dimensional models,
independently discovered the same structures, see e.g., [Aub83a,Aub83b].

We can construct one of Mather’s sets by taking a limit of Birkhoff periodic
orbits. That is, we take a sequence of rational numbers {po/qo,p1/q: ---} that has
an irrational w as a limit, construct both the corresponding Birkhoff orbits, and see
whether they accumulate on an interesting limit set. Katok, [Kat82], has shown that
they do. If there is an invariant circle with rotation number w, then the Birkhoff
orbits accumulate on it. If there is no invariant circle, then the orbits accumulate on
a cantorus,? a set that looks like an invariant circle with a countable set of holes cut
out of it, see figure (2.4).

The cantori have many properties reminiscent of irrational invariant circles; orbits
lying in the cantorus are dense and the motion on the cantorus, is, by a continuous

change of coordinate, equivalent to rotation by the angle w. Also, the cantorus has

2The limit set may also include some points in the gaps of the cantorus; to get the true cantorus
one has to take a minimal (in the sense of ergodic theory) subset of the limit set.

17

0.0 ~en _ | —_

y-*tnd"l

Ko

0.0 os .0
Figure 2.4: A cantorus for the standard map. The vertical azis is measured in units
ofy =p— 4—'f,rsi11(21rm), where k = 1.001635 is the size of the perturbation and the

rotation number is ~ % where v = %@ is the golden mean. [MMP84]

the same kind of smoothness®

as an invariant circle. If (6o, po) and (61,p1) are any
two points from the cantorus then there is a constant L, independent of the fs, such
that

|po — p1| < Lo — 64|,

that is, the momenta are Lipschitz functions of the positions.
Katok’s scheme for approximating the cantorus by a sequence of periodic orbits
is diflferent from the approach first used by Mather, but it 1s much bettier suited to

numerical experiment; all computational investigations of cantori depend on approx-

imation by periodic orbits e.g. [MMP84,MP87,Gru79).

2.2 Higher-dimensional analogs

In this section we formulate the numerical investigations reported in the rest of the
chapter. Our studies are based on Katok and Bernstien’s paper, [KB87] in which they
study certain n-dimensional symplectic maps generated by a function H.(x, ') and

prove the existence of action-minimizing periodic orbits. For these orbits, which are

3A theorem of Birkhoff states that the invariant circles are Lipschitz graphs.

18

defined by analogy with the Birkhoff orbits on the cylinder, the role of the rational
rotation number 5 is played by a rolation vector, -E where g is the length of the orbit
and p € Z*, p = (po,P1,---,Pn) gives the number of times the orbit winds around
each of the coordinate directions.? As above, each rational vector has a corresponding

type of p, ¢-minimizing state,
X =20, T1,...,89.1,&g; Ty =To+ P

an action functional, L, ,, some Euler-Lagrange equations,

q—1
Lo X) = Y Hw;,%551) (2.9)
=0
6L BHE aHC
8;; ~ 0z (zj-1,2;) + B_$(mjamj+l)? (2.10)

and at least one minimizing periodic orbit. Katok and Bernstien’s maps are small
perturbations of some completely integrable system whose unperturbed generating
function, Ho(z, z'), satisfies Hy(z, 2’') = h(x' — =) where h(u) is strictly convex, i.e.,

the Hessian matrix of A,

8%h 8%h 8%h
31.15 auuaul auuau"__l
2 2
9 3%h 8%k
6 h — aulauo aul
3u7 = : : : (2.11)
8%h 8%h
i Bu,, —108uy auﬂi I]

is positive definite. This condition is a higher dimensional analog of the twist condi-
tion, but is not the only possible generalization; Herman, in [Herm88], gives another.
In the next section we will present some explicit 4-d symplectic maps and their gen-
erating funclions and in section 2.2.2 we show some pictures of minimizing periodic
orbits and discuss how their shapes and stability depend on the size of the perturba-

tion.

1For a two-dimensional Birkhoff periodic orbit, the rotation numbers 5 and %ﬂ both yield the
same minimizing periodic orbit. The corresponding statement need not be true in higher dimension;
the rotation vectors g and 32}; need not correspond to the same orbit. See section 2.3.

19

The real question here is “Are there cantori in 4-d symplectic maps?” On the an-
alytic side, the answer seems to be “maybe.” Katok and Bernstien are able to show
that if a sequence of rational rotation vectors {Euﬂ, J;—:, ...}, pPi € Z*,q € Z, con-
verges to some irrational rotation vector, w = (w;y,ws, -+ wy), then the corresponding
sequence of Birkhoff orbits also has a limit. Unfortunately their results on the prop-
erties of the limiting sel are not as strong as those available for twist maps. They
cannot say what the limiting set looks like or much about the motion on it. They
are able to establish that the momenta should be Holder continuous functions of the

positions, but with index a = 1, that is, if (6o, po) and (6, p;) are points from this

limit set, then, except perhaps for a single isolated point,
lPo — 1l < €160 — 6,]|%, (2.12)

for some constant C, independent of the @;. We present some ambiguous numerical
investigations aimed at verifying or improving this smoothness estimate, but are
unable to report any definite results.

Finally, in section 2.3 we discuss a pathology foreseen by Hedlund. Hedlund’s
examples complicate any discussion of the behaviour of very long orbits and are an
obstacle to both analytic and numerical investigation of higher-dimensional cantori.
These examples arise in the study of geodesics on tori, a problem related to ours by
the principle of least action. The pathology appears for very strongly curved metrics;
the corresponding regime for our problem is the realm of very strongly perturbed, far-
from-integrable motion. Since we will study only small perturbations of integrable
systems, we may hope to avoid Hedlund’s pathology; in section 2.3, we report some

qualitative investigations indicating that, for our systems, it does not occur.

20

2.2.1 the maps and orbits

We follow [KB87] and study maps that are generated by functions of the formn
H(z,z') = hz' —z) — V(z,z'), (2.13)

where h(z’' —x) : R* — R, the unperturbed part of the generating function, satisfies
(2.11) and the perturbation V,(z, ') : R*xR" — R, is a small, C? function satisfying
Vi(z+m,z'+m) = V(x,z') Vm € Z°. We will study 4-d symplectic maps generated
by (2.13) with

Wz,z') =z’ —z|° Viz)=V ()
2
Where
one of
Virig(®) = —g55— { 3(sin27wzg + sin 27z;) + sin 27 (zo + ;) },
treg
Vi (@) = — g7 { (831 — 20)*(20 — D)(& — 20)] [21(1 —)7 },
1/(33) = or
Vig(x) = —3{ 3(c(@o) + (1)) + (2o + 21) },
i 1 — 24z? + 322° if z mod 1< %,
with c(z) =
9 — 48z + 722® — 322® if 2 mod 1 > 3.

(2.14)
Call the first perturbation the trigonometric perturbation, the second the polynomial
perturbation® and the third the fast-Froeschlé. The constants M,,.;, and M,,, are cho-
sen so that maxzes [V ()] = 1. Vis(x) is a polynomial approximation to a potential
originally introduced as a model of star motion in elliptical galaxies [Fro71]. The real

Froeschlé map has cosines where ours has ¢(z) and has three independent constants,

5The z; appearing in the definition of V,,;, are all taken mod 1.

21

one for each of the terms. Since its introduction the map has been popular as a model
for chaotic Hamiltonian dynamics e.g., [Fro72,Fro73,KnBg85,KM88,MMS89].

All our examples use “standard-like” perturbations, ones where V¢(z, ') depends
on & but not on its successor, &'. We made this choice of perturbation because it

simplifies the map. Using (2.4) we obtain

p'(x,p) = p—f—g%(w),

z'(z,p) = z+p-— E%}g(m) (2.15)

2.2.2 shapes of orbits and Lyapunov exponents

Figures (2.7) - (2.16) present several families of approximate Birkhofl orbits. Each
orbit 1s displayed as a pair of projeclions; one, on the left, 1s the projection into the
angular coordinates, the other, on the right, shows the momenta. Both projections
are computed from a p,q-periodic state that is an approximate solution to the Euler-
Lagrange equation (2.10). The angular projection of a point ®; is an ordered pair
(05.0,0;1), with
0;: = x;; mod 1;

The horizontal is the 6, direction and the vertical the @;; both angles lie between 0.0

and 1.0. The momenta, which are calculated as

oM.
P; = — S ($j>xj+1): (2'16)

are arranged similarly; the horizontal is the po direction and the vertical the p;.

measures of quality

Beside each pair of projections appears the rotation vector, in the form (po,p1)/q,

and two measures of the quality of the orbit, shadow and grad size. The first of these

22

1.0

Figure 2.5: Contour maps of —V.(x) for the (a) trigonometric, (b) polynomial, and
(c) fast-Froeschlé perturbations. The contour interval is 0.1 and the contours corre-

sponding to negative values are dashed.

23

measures how closely our orbit, which has its momenta given by (2.16), approaches

the ideal

(wj-i-l:pj-{-l) = Fs(mjrpj)v

= ('(z;p;), (25 P;));
the value of shadow 1s

maXoe<j<g-1 | (41, Pir1) — Fe(=5,p;) ||

2 2
= maxocjca-1 V| i1 — 225, p5) P + || Piss — P25, p;5) |

1
= maXo<j<q-1 J D (zjp1. — (25, Pi) + (Pivre — P(25, P)2
k=0

Most of the states displayed here have shadow =~ 10~%. The other measure, grad size,

15 p]

it is the norm of the gradient of the action functional, scaled by the length of the

15

Oliyq

6:13,'

state.

shapes

We display orbits for all three perturbations and for two rotation vectors, (1432,1897)
/2513 and (2330,377) /3770. The first is an approximation to an irrational vector
called the spiral mean, the second approximates (ﬁ,'y), where 7 is the golden mean.
Both approximations come from the Farey triangle scheme of Kim and Ostlund,
[KimOst86], see appendix A for details.

For small €, the orbits are well distributed over the angular variables and the
momenta look as though they lie on a torus. With increasing perturbation the orbits
abrupily contract and concentrate along one-dimensional filaments. The system of

filaments depends on both the perturbation and the rotation vector; in figure (2.7b)

24

the (1432,1897)/2513 orbit has contracted onto a system of three curves, each of which
winds around the torus once in each angular direction; we will call these curves of
type (1,1). In figure (2.12b) the same rotation vector and the polynomial perturbation
lead to a union of seven curves, each of type (0,1). On the other hand, this same

perturbation forces the (2330,377)/3770 state to concentrate along a single curve of

type (4,1).

Lyapunov exponents

The qualitative behaviour of the orbits is correlated with their stability properties.
The Lyapunov exponents measure the exponential rate of divergence of nearby tra-

jectories (see, e.g., [Osc68]) and, for a periodic orbit, are just the eigenvalues® of

DF? == DFe,(::

e,(z0.p0)

)0 DFE,(%_M,G_Z) 0--+0 DFe,(mo.pu) (2.17)

g—11Pg—1

where DF, (; ;) is the Jacobian of the map. From 2.15 we can calculate

(9:13’ 3:1:' 82 V.
D lfe,(:r:,p) = =

) , Birr
where I is the d-dimensional identity matrix and 682V, /0z? is the Hessian of the per-
turbation. Each of the DI (z, ;) is a real symplectic matrix and so the entire product
is real and symplectic too. The eigenvalues of DFZ, . thus occur in reciprocal pairs
(Ao, 1/A¢) and (A1,1/Ay), [Arn78]; for the unperturbed map, all four are equal to
one. As the perturbation increases, both pairs leave the unit circle. At about the
same parameter value for which the first pair departs perceptibly from the circle, the
minimizing state contracts along the filaments. The eigenvector corresponding to the
largest exponent projects to a vector transverse to the filaments. For large enough

perturbation both pairs are non-zero and the distribution along the direction of the

SThe accurate, direct calculation of the matrix product in (2.17) is usually not possible; see
appendix A for a discussion.

25

filaments is also Cantor-like. See figure (2.6) for the exponents of most of the orbits
presented here.
The eigenvector corresponding to the largest exponent projects to a vector trans-

verse to the filaments.

2.2.3 non-existence of tori: a prelude

Notice that the very perturbed orbits look as though they are full of holes, as though
there are some parts of the torus they cannot visit. One might imagine that this
is just a consequence of the finite lengths of our orbits, that if we had orbits with
ten times as many points some of them would be bound to land in the holes. We
can show that, for sufficiently large perturbations, the holes are genuine; there are
neighborhoods that all munimizing Birkhofl orbits must avoid.

Suppose V.(z) is a C?, standard-like perturbation to the generating function
Ho(z,z') = 3 || @' — @ ||. Suppose further that V.(z) has a minimum at & = ;..
Then there is an €., such that for € > ¢, all minimizing states must avoid a region
contalning &min.

Proof A globally mininimizing state, X, must be an extremum of L, such that
every small, local, variation, £; — «; + 6§ increases the action. That means that X

must satisfy the Euler-Lagrange equations (2.10) and also that each matrix

Wy . BV ,
821 . .Eﬁg(m') ¢ Ty 1’1(m')

r.g
o il ; (2.18)
62:,' e 82‘/ (m) 2 . 2‘/ (m)
OmoOmq 2 ° 6:1:1ﬁ c
is positive definite. Because ®,;, is a minimum, the eigenvalues, po(€) < p;(e), of the
Hessian of —V.(&mae) are negative. If one of them is less than —2 then (2.18) cannot

be satisfied. Since the p; are decreasing functions of € we need only find that value,

€., for which po(e.) = —2.

26

(377.2330) / 3770, POLY

T T T T .20 T T T
.6 1
S 1 s]
4+ R
3k e AD]
2F 4
1 .05 1
g .f 1
g of] of]
g .| -
.05 F p
-2k 4
-3 - .10k]
-4k 4
-8k . 1S F 4
-6}
o o~ O &N w B ©® O N o= 0 .00l .002 .003 .004 .00S .006 .007 .008 .00S .010
8588853553 E888¢8¢8
(1432.1897) / 2513, TRIA (1432,1897) / 2613, FASTFRO
.4 e AR REES s T BB RS .5 T T T T T T T T T T Y T Y T T T T
L] &k]
o ki
.2 F
2 F -

EXPONENTH
o
T
"
o
T
1

=20k 4
-2t .
-3} 4
<23) =4k 4
1] .00s .010 .01S .020 .02 .030 .035 .040 o o @ O N T W T 2 N T W ©
BEBBES5553888888
EPSILON EPSILON

Figure 2.6: The Lyapunov exponents for the rotation vector (377,2330)/3770
and the trigonometric and polynomial perturbations. Also those for the wvector

(1432,1897)/2513 with the trigonometric and fast- Froeschlé perturbations.

27

{e 0.0075
{ shadow 1.973-107°
grad size 5.455 1077

al
ol
8r
8

P/

€ 0.0100
shadow 1.466-107°
grad size 2.194-1077

Bt
ot
2t
2t

.70

Figure 2.7: Birkhoff orbits for the trigonometric perturbation and the rotation vector
(1482,1897)/2513. This panel illustrates the collapse along filaments. Notice how the

e = 0.0075 state has momenta seeming to lie on a smooth surface.

28

R

€ 0.0175
{ shadow 2.202-107°
... .1 grad size 3.625-1078

.66 .68 .70

s = .86 T
. . e o -~
g - W 1 ORI
; A . \4. K 8 3 .B2 F ¢ . Y- 1
L g ~ o | i 4 2
! A, -.\\' - i .80 | g \“.:.\ . e]
I ~ 8 I L .
a 5 | T wm .
! . o Sty 2o . .
‘A\. x 2 i i\‘- .-’G B e t;\- » T
b 4 ~ ¢ e 4
% # AL L W :
.) oy g J
s RN 00
~ % oS e 1
. o I i 1€ 0.0275
e * st 1 shadow 3.295-107%
. : ¥ b - *: p—
g " ool o) grad size 2.788-1078
.50 .52 .54 .56 .58 .60 .62 .64 .66 .68 .70

Figure 2.8: Birkhoff orbits for the trigonometric perturbation and the rotation vector
(1432,1897)/2513. This pair shows the appearance of Cantor-like clumping along the

filaments.

29

PO

TR (T T |

€ 0.0075
shadow 9.883-107°
.1 grad size 1.654-107°

L s L L L L i " P "
0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24

Load o)

BRYBEBRT BB I

— TN Y [T L s o
L3 Y LT G Ty A
\ 1 \ * \' 3 \ A 5 L 4 1
e 2 S LI L 70 .
A; 3 ! " T
oD L T T Ly e
s u R N T
\ . % g g ow Yy 86 1
- 3 \ LT S -~
e B Ny Yy A, 15 oM " Kv"’:')
Y % s LA vy e P g il 1
A\ N . . \ . * Tr LD
! Y e N L Y 1 80 Lj 4 ,&.i ok
LN Ve 1Y YRR & Lis
A ~. N ’ ~ ‘ ! - ' \. \ 56
IR TR T | € 0.0100
i % N\, % \ '\‘ \ 3 54] B
= LY % A2 Mg o shadow 2.568 - 10
N, L W . "\ . j) -
R O a grad size 2.599-10°7

L s deci P L " " 1 s L
"0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24

Figure 2.9: Weakly perturbed Birkhoff orbits for the trigonometric perturbation and
the rotation vector (377, 2330)/8770).

30

|||||||

-
83
T

‘EEEEEEEEEE

- 0.0175
1 shadow 7.329 -10°7

| grad size 1.903.10-°

n L L L L L L L s gocl " .
0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24

1

4

iy SR 1

v B R TR B

_ . € 0.0275
i | shadow 5.885.1077
o grad size 1.341-107°

v
L4
T

.50

L 1 L i L L Eepeici L " 2 "
0 .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24

Figure 2.10: Strongly perturbed Birkhoff orbits for the trigonometric perturbation and
the rotation vector (377, 2330)/3770).

31

le 0.0005
] shadow 8.001.10%
P S S ST grad size 6.312-107°
e :
le 0.002
| shadow 6.642-10°8
Nt i e e o e grad size 5.516-107°
.53 .54 .55 .56 .57 .58 .59 .6C

Figure 2.11: Barkhoff orbits for the polynomial perturbation and the rotation vector
(1432,1897)/2513. Note that the momenta remain very near their unperturbed values.

0.003
5.13-10°8

grad size 5.702-107°

1 shadow

1€

32

.60

101 <1077

0.007
grad size 4.796-107°

shadow

.59

——T
AL
57
T

L n
415 L
-
- Hh F
m
- 43 -

.55 .56 .57 .58 .59 .60

.54

.83

80
79 F
. |+
77k
7%
L
74
73
B
n
o
80
9 -
.
77
7%
7
7

ey 7 T
-)
- - GO T
e —_— e e - e W Y nlcl
e L L T T4 R app—
. g A - i bparae)
L e - .-
. - E e
s wms ot L A
- e A meaT aaTn A= — S
. PP M opalril i Lt ok S L T e
. S =
- LA Pty
o - - & PR
e e eeTe e A TR P2y N e
. - " . -
. - 5 =]
- T o * s .
- - 5 ot -,
e S SN — et o v,
Lee - TN e mmee T i
-
. i s
-
-
A LD UL I T e - «st o
Ll uwnullllulrl...u.l i = R
L b e o 7 G T
. - B -, >
- i = T IR. Spa T “tean
Ve TR e e L e @ ST e o "t cmana
L e . o
T et
¥ = - -
- ke e o ey e i
b Tt S —
- . -

Figure 2.12: DBarkhoff orbits for the polynomial perturbation and the rotation vector
(1482,1897)/2513. This pair shows the appearance of Cantor-like clumping along the

filaments.

33

-B65

.64 |

.63 I

.62 -

.61 |

.59

.57 }] € 00005

sl | shadow 4.625.10~°

| grad size 5.036-1071°
5

.08 .08 .10 .11 .12 .13 .14 .1

.B5 T ==
.63
.61

.59

,. | Ll 1 shadow 1.826.10-7
NE LT T o iz s o ey grad size 1.06 - 10~7

.08 .09 .10 .11 .12 .13 .14 2]

|

! 1‘;1 o]

}' A 1% 0.002
| 1)

i L1

Figure 2.13: Birkhoff orbits for the polynomial perturbation and the rotation vector
(377, 2330)/3770).

34

. 2 I BT, ;W
St S g B g Eae o 8 64 1
e 3% Jwy 7 W ’ 1
a = F ot 3 S .63 1
oot L v o]
:_.,I o .r. £ = 1, B2 W.’h:%- B
Pl e 0 A Taa B4 S A A
ST T O om® .61 .
M e o B 4
'x-._: : ‘ l'. &5 W = T ; 50 4
. oL & nee N
ru 4 :J} ' Lid ;2% -59 i
J . ,' ~ L = % 4
g R P F T § i > |
= BRI A .57 1€ 0.003
H SR N S L t 1 =
o0 N ¥ Ta Ty s | shadow 2.332.1077
BRI) : 5 o ° & o)
s E_¢ AN S e B e grad size 1.352-10°8
.09 10 R 12 13 14 15
1€ 0.007
shadow 2.457.10~7
; grad size 1.307.10-8
.14 LS

Figure 2.14: Birkhoff orbits for the polynomial perturbation

(377, 2330)/3770).

and the rotation vector

35

;L] o
82 4
.80 =

.74 F 1

n}]

o le€ 0.0075

S 1 shadow 5.545.10°7

L grad size 2.137-1077
.48 .50 .52 .54 .56 .58 .60 .62 .84 .66

.04 | ' ' ’ T I ' ' b

.80 4

.7} h 1

8 ﬂ . 1

T2t /- 4

il 1e 0.0100

Sl shadow 4.221-10"7

il grad size 7.532-107%

L L 1 A n I L n
.48 .50 .52 .54 .56 .58 .80 .62 .64 .66

Figure 2.15: Birkhoff orbits for the fast-Froeschlé perturbation and the rotation vector
(1432,1897)/2513. Notice how even the ¢ = 0.0075 stale seems to have its moment

concentrated on a curve.

36

— - B R]
t)‘_ A B i \\\\ I g
. ‘-“ * - M .8z | E
. " \\\ ! \- B
. \\e D . .80 | -~ _\a‘
Fa A " ~ -
. e o B 78 b ¥ I ™ y
S . S ™~ | }i\ L]
.\ \‘\ h.,~ \\ A (] ,’J'
. ™ T r ; "'}"]
'\\ . ' - o 72 b ’ L’},‘, 1
) ~ .
L gn AES ~ -
~ ~ 2 M .70 F , -
N N ".x - le 0.0175
s Sk o ""’F] -3
\“ o VoY . \,\ shadow 2.713-107°
Ny SN . .66 E : -
™ ™ oo,] grad size 2.928-1071°

N e % . T T
‘\ : \; »- \“ .82 F l'-’\‘"_\ E
R \ Nt ‘:\ .80 [“._ \\
. L ! '
D . \’\ \ sl 'OP'Q‘ r 1
\ Sy N S i f g
L™ N TN | : :'/ Vi 1
By % BN B B s "
\s‘ '-_\ \. ~ . 4 ’# i
o, \ R 3 0.0275
N '\."::\ . .\ . i G 1 shadow 5.471-107°
b o [S .. .] grad size 4.569-10°1°
~ = ~ % i 6

1
.60 .62 .64 .6

Figure 2.16: Birkhoff orbits for the fast-Iroeschlé perturbation and the rotation vector

(1482,1897)/2513.

37

For the trigonometric perturbation €, = 0.03856; for the polynomial perturbation
€. =~ 0.04167. The appearance of the states suggests that neither of these is a very
good estimate; the region near the maximum is completely devoid of points long
before € = ¢.. The real interest of an argument like the one above is that it can
provide an estimate of the size of perturbation needed to destroy all the original
invariant tori; since the whole next chapter is devoted to such estimates, we leave the

subject for now.

2.2.4 smoothness

We would like to be able to say that very long periodic orbits approximate a Cantor
set that we could view as the tattered remnant of an invariant torus. Such a remnant
should have a kind of smoothness; two points that lie very close to each other in
the angular variables should not have wildly different momenta. What we need is
a result like the theorem of Birkhoff, generalized by Katok [Kat82], which says that
for points in a Mather set, the momenta are Lipschitz functions of the coordinates,
ie, ||pi—p; || £C| z; —=z; || where C is a constant. Katok and Bernstien [KB87]
looked for such a result and, as mentioned above, were able to show that, except

perhaps at one point, the momenta are Holder continuous with index 1/2, that is,
lpi—pil| £CJ & —=; || a=-.

for some constant C independent of the ;.

Hoping to verifly or improve their estimate, we computed pairs (L,|| az ||) , where

L = ap ||/|| az || , and displayed them on logarithmic axes. If some kind of Holder
continuity applies, then
o= H Ap ” S C” AT ”cz—1,
| az |

SO

logL < logC+ (a—1)log|| az ||.

38

We can tell whether our orbits are compatible with Lipschitz continuity by looking
at the upper envelope of (L, || az ||). 1f the envelope is a decreasing function of || az ||
then the Holder index is less than one and the momenta are not Lipschitz functions.
If the envelope is flat or sloping upward then the continuity is Lipschitz or better.
Figure (2.17) shows some collections of (L, || az ||) pairs. The results are ambiguous
at best. For very small perturbations, the upper envelope has a positive slope, see
figure (2.17 parts a and b). For inlermediate values of €, those for which the orbit Las
contracted into filaments but has not yet begun to concentrate in points, the situation
looks worse; the largest values of L occur for the smallest values of | az ||, see figures
(2.17parts ¢ and d). This would seem to doom any hope that p is a Lipschitz function
of z. Note, however, that the upper envelope has a slope of —1. This suggests that
|| ap || = const. On the other hand, we have, from Katok and Bernstien, that p is
Holder 3 . It is thus possible that the lack of smoothness may come from not having
enough points. At very large €, those for which the orbit has contracted into a few
small clumps, (L, || az ||) begins to have an increasing envelope again. Unfortunately,
il is just at these very short distances that we must begin to doubt the quality of our
orbits. Typically we have shadow = 107° and so must expect the xs, ps and their
differences to be uncertain at about that level too.

Finally, we note that the uncertainty in the ps could explain the behavior at
intermediate e. If the components of ps are uncertain beyond o, their differences
are uncertain to \/2_’crp. Then, no matter what the continuity properties of p, for
small enough || az || we should expect to see || ap || = const. This explanation is not
completely satisfactory in that it fails to explain why some of the graphs in figure 2.17

seem to have two different populations of constant || ap ||s.

39

= 0. EPSILON = 0.01
0 EPSILON = 0.0076 . 100 g
1ot i ! b J
4" .
102 F 4 w2t : 4
]]
(a) - (b)
1073 10-3
102 10-! 102 107!
EPSILON = 0.0176
10! 10! - — v
]
10 L | s
100 | E
107! b 4
1072 J
! b E
]
1 3 3 E
(c) : i (d)
14 A . o2 .)
108 104 10-3 102 1075 104 1073 1072
EPSILON - 0.0226 _
02 ’ k 3 12 EPHILON - 0.025
o L
!} 4 3
Pl ,]
100 | . 4
0?0 | J
w! b 4
107! | -
102 | Y
(e)
102 4 : . 10-3) "
1077 1076 10-5 1074 1073 1077 108 10-5 104

Figure 2.17: Pairs (L, || az ||) calculated for the 800 most closely spaced pairs of points
in states of the rotation vector (1432,1897)/2513 with the trigonometric perturbation.

40

2.3 Hedlund’s examples

In this section we will worry about whether the shapes of our states have anything to
say about the shapes of much longer states with similar rotation vectors. A central
premise of our program of rational approximation is that they do; unfortunately,
except for the two-dimensional case (twist maps on the cylinder), we cannot prove
this. We cannot even show that states with the same rotation vector must have the

same shape. Consider the family of minimizing states with rotation vectors,

2
B . mE B,

g0’ 290" ' ngo
where po/qo 1s in lowest terms. For each of these states there is certainly one solution
to the Euler-Lagrange equation that is just a concatenation of n copies of the pp/qo
minimizing state. But there may also be other solutions, some of which may have
lesser total action.

To see how this can happen, we consider the problem of finding minimal geodesics,
curves of smallest possible length, on either the two- (or three-) dimensional torus.
This problem arises, for example, in the motion of a free particle in a system with
periodic boundary conditions and may be reduced to a symplectic map via a surface
of section, bﬁt in the discussion below it will be simpler to think about continuous
time and smooth trajectories. We will work with two different representations of
the problem, one on the two- (or three-) dimensional torus and another made by
periodically extending the torus to get the plane (or R?®). In either representation,
we will allow the metric to be other than the usual Euclidean one.

In the R™ version of the problem, a minimal geodesic is a curve, v: R — R",
parameterized in terms of, say, arc length and for which every finite segment is the
shortest possible curve connecting its endpoints. QOur special interest will be the

periodic geodesics; on the torus these are curves that wind around and eventually

41

begin to retrace themselves. In R” they appear as curves for which 37 € R such that
vt +7)=7(t) + m, me Z* (2.19)

and we may classify them according to m, which gives the number of times v winds
around each of the coordinate directions on the torus before repeating itself. Hedlund
studied these curves on the two-dimensional torus and, in [Hed32|, showed that for
every pair (mg,m;) € Z*, there is a minimal periodic geodesic that winds mg times
around the 6, direction and m, times in the #; direction before closing.

He also made an observatlion that connects the geodesic problem to the problem
of finding Birkhoff periodic orbits. He asked whether, for example, the minimizing
periodic geodesic for the pair (10,20) could be other than the urve which traces
10 times over the (1,2) geodesic. He found that it could not. The corresponding
statement for Birkhoff orbits is that the pathology outlined at the beginning of the
section does not occur for two-dimensional twist maps of the annulus.

In the last section of lus paper, Hedlund demonstrated that one cannot expect the
analogous result in higher dimension. He presented an explicit example of a metric
on T3 for which the shortest geodesic of type (ni, nj, nk) is not n copies of the
shortest (¢, 7, k) geodesic. Victor Bangert [Bang87] has proved that a metric on T
has at least n + 1 minimal geodesics and has given some principles for the design of
Hedlund-type examples.

Figures (2.18) and (2.19) contain the main ideas. Bangert sets up the metric so
it has certain non-intersecting lattices of “tunnels,” tubes in the middle of which the
metric is so small that the length of a segment is, at most, say, 1/100 of its Euclidean
length. Outside the tunnels the metric is such that the length of a segment is a bit
longer than its Euclidean length. In Bangert’s examples the tunnels run along the
lines (0,¢,1), (3,3,t), and (¢£,0,0), ¢t € R and along all their Z™ translates. Under
these rather severe conditions he is able to show that a munimizing geodesic must

spend essentially all its time inside the tunnels, venturing out only to leap from one

42

system of tunnels to another.

A minimizing, periodic geodesic then has only three short segments lying outside
the tunnels, no matter how long it is. Note that such a geodesic strays a long way
from the straight line that connects its endpoints; the latter is a minimizing periodic
geodesic for the flat, Euclidean metric. In the language of Birkhoff orbits, Hedlund’s
pathology would occur if some few p-g periodic states turned out to have such tiny
actions that all very long states would be composed of a few segments, with each
segment containing many copies of the few economical states. Although we can-
not preclude this possibility, we feel it is unlikely. Hedlund and Bangert’s examples
require that the curves through the tunnels be much, much shorter than their Eu-
clidean lengths, consequently, their metrics are very far from flat. By contrast, our
generating functions are close to the unperturbed ones. We might thus hope that
our minimizing states are obliged to stay close to the unperturbed states. Katok has
shown, in [Kat88], that if the perturbed states stay within some bounded distance of
the unperturbed distance and if the bound is independent of the length of the state,
then Hedlund’s pathology does not occur.

We undertook two studies to investigate these issues. In the first, figure (2.20),
we measured the deviation of our minmimizing states from the straight line connecting
zg to 4. The distance always remains smaller than the diameter of the torus, 1/\/5
In the second study we used the Farey triangle algorithm of Kim and Ostlund, (see
appendix A), to get a sequence of rotation vectors tending to (377,2330)/3770. The
states for these vectors are displayed in figure 2.21. The longest orbits look very much
like the shortest. We also did some experiments on families of rotation vectors of the

form” npg/nge; The longer states were indistinguishable from the shorter ones.

7An unperturbed minimizing state is n copies of the unperturbed p,/qo state and our procedures
for constructing perturbed minimizing states are such that this shorter, internal periodicity would
be retained throughout the calculation. We tried to circurnvent this problem by adding a small,
random displacement to each of the points in the starting guess, see appendix A.

43

/"‘\/

/T

Figure 2.18: Some minimizing periodic geodesics for the two-dimensional torus; the

shortest curve of type (2,4) is just 2 copies of the shortest one of type (1,2).

44

|
\

D
|
\

A —_
- .
T I T I T 1 I I 1 1 “-J/
h
:n WT_/
e
10 ="
T T T) e i t" T T "‘—“/
1
- o~ |
b i
1
i
P s~ Dl et il 7t B Sl 22 u -

Figure 2.19: Some minimizing periodic geodesics for a Hedlund ezample on the three-

dimensional torus; the shortest curve of type (2,4,2) 1s not 2 copies of the shortest

one of type (1,2,1).

45

(377, 2330) / 3770, TRIG (377, 2330) / 3770, POLY
.50 LB S S S o B B LI B e e e e .20 T T T T T T T T
.
s | . 8t 1
0 f x 3 st e .
£ . 1 1| 2 .
.
of E 12 + FpEh = 1
- .
£
g =y ; 3 w0} g -
S o] .08 | ? 1
. .
3
1s | 3 .06 1
] 5
S0 f . 3 o4t |
.05 | = 3 .02 F 4
Ld <
o A A1 A Lo i A L 1 0 .l 1 i e 1 L 1 L i
P o N TomDo N« 0 .00 .002 .003 .004 .005 .006 .0O7 .008 .03 .010
B5BEBE55555888888
(1432, 1897) / 2613, TRIG (1432, 1897) / 2613, FAST-FRO
A0 T T T 230 T e e
= 281 .
s| .] xl .
] :
] b Lt -
0] 22 b . . .
-
- .20 4
z 1 .18 F 1
—~ * .16 F -
= .o}]
& 14 F 4
a .
15 - Ao | . 1
.o | L e]
o f .] oa |]
.06 B
0
os | b o |]
. " 0z 1
o fet e ey i b e e erei = e
O &N o O © O N -w W ©® O N T WU O O o ™~ ©® 9O N T W O 9O N T W D O
8888555538888 88 REBESS555888888
EPSILON EPSILON

Figure 2.20: The largest displacement between a point in a perturbed minimizing state
and the position it would occupy in the absence of the perturbation. Note the abrupt

jumps in the deviations for the fast-Froeschlé ezample.

46

(20,123) / 199 (102,631) / 1021 (194,1199) / 1940

L 1] e=0.0075

A B 5 i e=0.01

\ L e % 7 3
v A 1 E S L \ \ % 1
: 5 iR N \A-\ . AT 1
Vo ; LI 2 E YRR
b} SN %M Ny \
\ - 4 % & % . e
] v N\) e TR LY \
it \ i e Rl &
Y y v N AL 2 3 & R
v] % R v i . R
v * oy r \ Nk > \ .
N % 5 L i
A A ' . \ : 3 el \ (=
g \ ;& ol
“ \ ') , 23 % R
v IS v ~ N R LY
T U i A 9 ‘\,_ T
4 g . &S i . ; B LY e =
Y G P Y k L B Y \ Xy |
A . L2 S A N, A ey
o gmmma e o - e 77“77,7,,77‘-;,7,;,‘:__1 ERTEE 00175
\
L kL
\ Y. A
i
\ \
)
A y
\ "y 3,
; \ .
S S SR . | €= 0.0275

Figure 2.21: A series of orbits whose rotation vectors approzimate (377,2330) / 3770.

47

Chapter 3

The Frontier of Chaos

Our first investigations aimed at the question “What remains after invariant tori have
been destroyed?” Our next set asks the more basic “How could we tell if the tori
were there?” To answer this question we might follow Kolmogorov, Arnold and Moser
and seek to find perturbations so small that some tori would be guaranteed to exist.
Conversely, we could try to find perturbations so large that no invariant tori remain.
Numerical evidence suggests that the first approach will be hard; tori seem to persist
well beyond the point where traditional KAM arguments break down.! We will adopt
the latter strategy; we will try to fill in the blanks in the following “converse KAM”
theorem :

Theorem For the n-dimensional symplectic twist map F, : A™ — A",

FE(:B:T) = (a:’iTl) =I -l

depending on the parameters, €, we are guaranteed that no KAM tori exist for any

e€ Sp={ 1}
Proof | |

!Several authors have now proved machine-assisted, constructive KAM theorems for specific
maps; these are in much better agreement with non-rigorous nunerical predictions. See e.g., [CC88],
[Rana87], and |[LR88).

Figure 3.1: The space of near-integrable maps, showing the frontier of non-integrability

around Ty, an integrable system.

Herman, in [Herm83] first saw that one might get a better notion of where invariant
tori exist by looking at the edge of the region where they do not. He considered maps,

T.: TxR — T x R, of the form?

Te(z,p) = («',p") = (e + p,p + ef(2 + p)), (3.1)

small perturbations to the integrable system, and envisioned a kind of cartography
of non-integrability. By choosing different fs he could consider different directions in
the space of perturbations. For each fixed f he could increase the value of € until it
reached a size, € = €.(f), such that no invariant tori remained. By calculating pairs
(f,e(f)) he could map out the edge of non-integrability, the frontier of chaos.

We will concentrate on ways to get rigorous bounds for €.(f) but will not make a
very extensive survey® of fs. The rest of the chapter is organized by dimension of the
phase space and sharpness of non-existence criteria. In the next section we review
converse KAM theorems for area-preserving twist maps on the cylinder, and in section
3.2 we explain how to prove them with a digital computer. In 3.3 we formulate some
criteria for higher-dimensional systems and finally, in section 3.4, apply them to an

example.

2Qur examples are not of this form, but, after a change of coordinates, their inverses are.
3Jacob Wilbrink, in [Wilb87], used a non-rigorous existence criterion to survey a whole one
parameter family of maps.

49

3.1 Converse KAM results on the cylinder

Many of the ideas presented here originated with Herman’s paper [Herm83]. Katok,
at the end of his paper [Kat83], discusses the distribution of points in minimizing
states and explains a way to prove the non-existence of circles. Mather used simi-
lar techniques to make applications to the standard map, [Ma84], and to billiards,
[Ma82b]. He also introduced a different, more generally applicable criterion based on
the existence of action-minimizing states. MacKay and Percival augmented Herman’s
argument with rigorous computation and discovered a connection between Herman’s
work and Mather’s action criterion. The presentation below owes a great deal to

their excellent paper, [MP85], and to [Strk88], which came out of Stark’s thesis.

3.1.1 definitions and a first criterion

We will study maps given by (3.1) and try to find criteria that preclude the existence
of the kind of tori produced by the KAM theory. We cannot, of course, rule out the
existence of tori in the broadest sense. No matter how large the perturbation, some
tori may remain in the islands around elliptic periodic points. In the two-dimensional
case we will restrict our attention to the kind of circles that wind once around the
cylinder; such circles® can be smoothly deformed into the curve p = 0. In higher
dimension we will consider those tori that can be smoothly deformed into the torus
iR ()7 S|

Maps given by (3.1) are automatically area and orientation preserving. We will

add the further restrictions that the perturbation, f, be differentiable, periodic, and

“Recently, Rafael de la Llave (personal communication) has developed an extremely promising
criterion based on the construction of hyperbolic orbits.

5These circles are also called rotational because the restriction of the map to such a circle gives
a motion conjugate to a rotation.

(2)

(b) ——

&l

Figure 3.2: The cylinder and several invariant circles, some (a) rotational and some

(b) encircling a periodic orbit.
have average value zero, 1.e.,
1
f@)=fla+1), [fla)dz=0.

The restriction on the average value is essential; if it 1s not met 7, has no invariant
tori at all. To see why, consider a curve, (z,To(z)), and its image, (z,I';(z)), where
Iy is given implicitly by

I'i(2') = p'(2,To(=))
or
I'i(z + To(z)) = To(z) + ef(z). (3.2)
Preservation of area and orientation guarantee that the area between the two is in-
dependent of T'y since, if we consider another curve, I'y, and its image, I'}, we can

write

1 1 1 1
/r;,—ro = f I,—T: so jr;,-r; - f T =
0 4] 0 (1]

and hence we can calculate it for any curve we like. Using I'y(z) = po and equation

(3.2) we get
I'i(z + po) = po + €f (), or T'i(z)=po+ ef(z— po).

Thus we find
AT(z) = T'(z) — To(z) = ef(z — po).

-

S e

Figure 3.3: A curve and its tmage. The area between the two is shaded.

The area between the two curves is then

/01 Al(z)dz = /: ef(z — po),

the average value of f. Now suppose I'y* is an invariant circle. That means I'{** =

Iy, Then
1
/ AT(z)dz = 0
0
and we have our first and simplest test for the non-existence of invariant circles.
Unfortunately this is not a very decisive criterion; it leaves open the possibility of

circles for any value of & in the Taylor-Chirikov standard map. To do any better we

must more carefully consider the geometry of invariant circles, a task we turn to next.

3.1.2 Lipschitz cone families and their refinement

The first thing to notice is that invariant circles divide the cylinder into two disjoint
pieces. Orbits that begin below an invariant circle must always remain below it. One
might hope to turn this observation into a non-existence criterion, say, by starting an
orbit at some point (6o, po) and evolving it forward. If the orbit eventually attains
arbitrarily large momenta then the map has no invariant circles. Chirikov [Chkv79]
calls orbits with indefinitely increasing momentum “accelerator modes” and notes
that they exist in the standard map for k& > 2.

Rigorous implementation of this strategy is hard. The simple calculation described

52

o, 2

eT, 1

Figure 3.4: Numerical error may carry a point across an tnvariant circle.

above does not work because one can never be sure that a computational error will
not carry the orbit across a genuine invariant circle. Simply following an orbit cannot
establish the non-existence of circles. One might instead try to follow an orbit and
say that if it never rises above a certain momentum p = pyq. then it must be trapped
beneath an invariant circle. That is, one might try to prove the ezistence of circles.
From an analytic point of view this seems like a good idea. A theorem of Birkhoff
[Birk22] says that if the twist map is continuously differentiable and if there are two
values of the momentum, p; and p,, p; < p,, such that any orbit that begins with
momentum less than p; never attains a momentum greater than p,, then there is an
invariant circle somewhere in the band p; < p < p,. Further, the circle® is the graph

of some Lipschitz function, I'(4).

Figure 3.5: If orbits with

B T < F p2
initial momentum less than S =T
p1 never rise above p = p, -
P1 T~em ™
there is an invariant circle. ~ N

Despite this analytic support, we cannot get a good existence criterion either.
Not only is computational error again a problem, but we must also worry about the

cantori. Although they are not true barriers to the diffusion of phase points, they

6[Ma84] gives a sketch of the proof of this theorem.

53

can be formidable partial barriers.” Even il we could calculate an orbit with perfect
precision we could never be sure that it was permanently trapped below a particular
Pmaz- To get a really useful criterion we must pay closer attention to Birkhoft’s
theorem, particularly to the part where he tells us that rotational invariant circles
are the graphs of Lipschitz functions.

Suppose the invariant circle has rotation number w, then we will say that it is the

graph of I'y,(8). Since I', is Lipschitz we have
|Fw(g F AH) - rw(e)l <L |A0|7 (33)

where L is a constant independent of #. On the graph this means that a vector
tangent to the circle is confined inside a cone, see figure (3.6). Since I, is only a
Lipschitz function it need not have a well-defined tangent at every point. That is,

although (3.3) implies that both the right and left limits,

IT',(6 + a8) —T',(8)]

(Fw)ﬂ'ght = Aher{,lo IAG‘
' _ i Tw(8 4 a8) —T'u(6)]
(F,_,,)le,ft = 13}9[}].0 |A0|

must exist, they need not be the same. Nonetheless, both limits must be smaller than
L, and so both the vectors (1, (I,)iese) and (1, (T,)rigne) are in the cones® pictured in
figure (3.6).

The constant L is a property of I',, and is defined only along the curve. We could,
instead, draw a cone at every point, (6,p), such that if an invariant circle passes
through (8, p) its tangent must lie inside. We will call such a system of cones a cone
family and represent it with two #-periodic functions, L, (4,p) and L_(f,p); a vector

tangent to a circle through (¢, p) may only have slope, £, with L_(8,p) < £ < L, (6, p).

"For the golden cantorus of the standard map, with k = 1.0, [MMP84] find the mean crossing
time to be on the order of 10° iterations.

81ndeed, a Lipschitz function is absolutely continuous and so has a derivative defined almost
everywhere, see e.g., [Ttch39].

54

5
>

M

Figure 3.6: An invariant curve and with some Lipschitz cones.

The simplest possible cone family is
L_(6,p) = Lo-, Li(0,p) = Loy (3.4)

We will call this a naive or uniform cone family. We can always get such a family
by taking, at the worst, —L¢_ = Loy = oo. Often, as we shall see, we can do much
better.

Each tangent vector lying inside the cone family 1s ostensibly a permissible tangent
to an invariant curve but the dynamics may preclude some of the slopes permitted
by the naive cone condition. Consider the action of the map on a tangent vector, say

the vector v with footpoint (6, p).
V' = DTel(g'p)U

is its image and has footpoint (¢',p’). We can apply the map DT, to all the vectors
allowed by the Lipschitz cone at some point z, = (0,,pn) and examine their images
at znt1 = (Ont1,Pnt1) = Te(2n). In this way we can use the map on tangent vectors
to define a map on cones. The image of the cone from 2z, will not usually coincide
with the cone at z,,;. This means we can eliminate part of the cone at z,, for if there
were an invariant graph above 6, its tangent vector would have to be one of the ones
whose images lie inside the naive cone at z,,;. We could make a similar argument
involving DT.~! and z,_; and so refine the cone at z, even further, see figure (3.7).

More formally, we can use the map to recursively define a sequence of cone families,

55

Cn(0,p) = {Ln-(6,p), Lny(6,p)} by

CD == {L0—7L0+}
Cia(8,p) = DI7'{Cu(Te(6,p))} N Ca(6,p) N DTH{C(T(6,p))} (3.5)

where Cj is the naive cone family, (3.4). The vectors permitted by the nth cone family
have n allowed images and preimages. For twist maps this refinement procedure
produces increasingly restrictive cone families [Strk88]. If it ever happens that C.(6, p)
is empty, i.e. that the intersection in (3.5) contains no vectors, then no invariant circle

can pass through the point (6, p).

Figure 3.7: Refining the cone family. The inverse tmage of the cone at z,,; and the

forward tmage of the cone at z,,_, intersect in a new, smaller cone at z,.

Cone crossing arguments turn out to be quite successful, though they need a little
more elaboration to be suitable for computation. So far we have seen how to prove
that no invariant circle can pass through a particular point, now let us use this to
prove non-existence of circles. Because a rotational invariant circle must cross every
vertical line, we can establish non-existence by proving that no circle can cross a
particular vertical line {(6,p)|6@ = 6o,p € [0,1)}. To do that we divide the phase
space up into finitely many pieces. For example, each piece might be a rectangle of
the form R;; = {(6,p)| p € (p;, pj+1] € € [0;,0;11] } We can use this decomposition

to construct a sequence of piecewise constant cone families, see figure (3.8).

Cu(Ri;) = {Ln(Riz), Lot (Rij)} Co(Ri;) = {—L,+L}

56

L0 | XX N O\ e X X
SN XXX
PSS S [a< o< << ><
S i [e - e e
e
— | Figure 3.8: A piecewise con-
—| | | | | = = stant cone family for the
> I <IN s >< standard map with k =1.0.
g B S X S A S Y
oo IXIXIXI NN I XX s

z 1.0
Ln_(Rij) = liili)-' Lﬂ_(e,p),

Ln+(R’ij) = uﬁlb Ln+(607 p)- (36)

o
o

“u.b.” and “l.b.” mean “upper bound” and “lower bound.” If

where the notations
the rectangles are small enough, refinements like (3.6) can eventually produce a whole
vertical strip of empty cones.

Finally, we note that the foregoing serves to prove non-existence for a single map.
In practice one wants non-existence results for a whole class of maps, for example,
for all the standard maps with parameters ki < k < kjpae. One need only modify
(3.6) a little, taking the bounds over both R;; and k.

Stark has shown that such a program, allied with some extra observations, can
reveal non-existence of circles with only a finite amount of work. He shows, for
example, that if one has a family of maps depending on parameters and one studies

a compact set of the parameters for which no invariant circles exist, then the cone-

crossing criterion will demonstrate their non-existence afler only a finite amount of

57

computation.?

3.1.3 some new coordinates and two more criteria

Here we will begin to explain one way to implement the ideas of the previous section
on a digital computer. In the process we will reformulate the cone-crossing criterion
in a way that obscures its geometric origin’® but reveals a connection to minimizing
states. The first step 1s to recast the map in terms of delay coordinates; we have
been considering Te(f,p) = (6',p'), let us now speak of g. : T x T +— T x T so that
9e(On,0n1) = (0nt1,0n42) where the §'s are angular coordinates of successive points
in an orbit. We will also need a lift of g, G¢: R x R — R x R, G¢(u,v) = (v',v’).
As before, T, and G, are related by an action generating function, H(u,v), where

1 T
He(mnzmn+1) = ;(mn+1 - mn)z — eV (2n4i1), V(z) = _fo f(y) dy,
alHe(a:n;mn-Fl) = —Pn,

Aol [0y Band) = Prais

and

Ge(zn-1,2n) = (Tn,Zns1),

Bpdd = B A DD)
= z'(zn, OyH(Tn-1,2,)).
In terms of these coordinates an invariant circle appears as a curve z,41 = y(z,)

satislying

Tuw+1) = 7(u)+1,

Ge(2n,7(2n)) = (ZnsrsTniz) = (v(zn), v(7(24)))-

The most naive Lipschitz cone, (3.4) with Loy = +o0, appears here as 0 < £ < oo

9Here “finite” means that one could do the calculations to some finite precision and refine the
cone families for some finite number of steps.
10Gee [MP85) for a more direct implementation.

58

Figure 3.9: An invariant
curve and some Lipschitz

cones in the delay coordi-

nate system.

where £ is the slope of 4. The lower bound of zero is just the requirement that the
original map, when restricted to an invariant curve, be order preserving.

For examples like (3.1) u’ and v' have very simple forms:

w'(u,p) = w,
v'(u,v) = v+ (v—u)+ef(v),
= 2v—u+ef(v). (3.7)

G.’s action on tangent vectors is equally simple:

bu’ 0 1 bu
= . (3.8)

v’ =1 2-— Eil‘; v

For later convenience we will refer to 2 — e%‘;’-(m) as f(z).
If we take a tangent vector, [1,£], representing a slope of £ then (3.8) tells us that

its image will represent a slope £’ given by:

, &
o= du'’
By su
- bv v’
1
= fv) - 7 (3.9)

59

Preservation of order requires that both £ and £' be positive. Combining this with
(3.9) we obtain our first real criterion.

Criterion 1 If there are any values v € [0, 1] for which B(v) < 0 then the map
Ge(u,v) to which B corresponds has no rotational invariant circles. For the standard
map this criterion says k. < 2.

We can squeeze one further analytic criterion out of (3.9) by noticing that ¢
will surely be negative if ever £ is very small, and that, always, £ < max,¢(o,1) B(v).
Suppose we have m and M such that 0 < m < (v) < M holds everywhere. Then

1

£ < M- 7 (3.10)
and £ > 0 together imply
1 1
OSM_E or EZH. (3.11)

Inequality (3.11) is a global restriction on slopes, a new lower bound for the
uniform Lipschitz cone family. We could thus run through the argument again, this
time requiring £’ > 5;. Having done that we would have a better, narrower cone family
and could repeat the argument yet again ... better to carry this process straight to
its conclusion and realize that our estimates will stop improving when we find a slope,
£_, such that

1

Lz]l‘f—z.

This has two roots. The least of them is just the £_ we wanted; the larger one is a
global upper bound on slopes. It comes from the remark above, that £/ < M. Since
every vector tangent to an invariant curve is the image of some other tangent we can

conclude £ < M. Once that’s done we can argue £ < M — - and so on. Finally we

attain
g — /A2 —
L. LLLts where e = oL 2]\1 4,
M+/M?2—-4

60

Armed with this best of all possible uniform cones, we are able to make a genuine,

dynamical cone crossing argument.
Criterion 2 (“Mather 2”7) If m < B(v) < M and {1 and £_ are the bounds of

3

the uniform cone family given by (3.12), then there are no rotational circles if

¢ >m4i (3.13)
Remark For the standard map, m = (2 — k) and M = (2 + k) and so (3.13)
implies that k. < 2.
Proof The idea is to concentrate on those states that contain the point where 3
attains its minimum, where #(v) = m. Visits to this point are most punishing to the
slopes of tangent vectors; they lead to the smallest possible values of ¢ in (3.9). If

m is so small that even the slope from the upper edge of the uniform family, £, is

diminished to an untenable value, then certainly no others can survive.

3.1.4 non-existence for minimalists

We will now reformulate Criterion 2 in the language of minimizing states. The new
version will prove more fruitful for higher-dimensional generalizations. Here again we
follow MacKay and Percival, who demonstrated that their cone crossing criterion is
equivalent to the action-difference criterion put forward by Mather in [Ma86].

We begin by assuming that an invariant circle exists, then we deduce some facts
about the minimizing orbits lying on it. Then, to prove non-existence, we will do
a calculation that contradicts these facts. Define a minimizing state to be sequence
{ @p_1,®n, Tny, -} such that every finite segment z,,, T, 41, +, T is @ minimum

of the action functional,

n—1

I'1/'1%,71.(-?{) s Z I{c(mjaw_ﬂ-l): (314)

i=m

where H, is the aclion-generating function and we consider variations that leave z,

and z,, fixed. Mather’s action-difference idea is to note that if an irrational invariant

61

circle exists, then every orbit on it is minimizing and has the same action. That is,
if we take two states arising from orbits on the circle, X* = {.-- 2§, 2$,---} and
Xb = {... 25 2% ...} and take the limit
n—1
. b b
lim Z H (x5, 05,,) — H(z;, @) (3.15)

n—oo
J=—n

it should come out to be zero.'* He suggests that to test the existence of an invariant
circle having irrational rotation number w one should approximate w by a sequence
of rational numbers, %f, and use the rational numbers to construct the two sequences
of Birkhoff periodic orbits, the minimax and minimizing orbits. These sequences
accumulate on two distinct sets on the putative invariant circle. If the circle is really

present, orbits on the two sets should have the same action and so the limit

AW, = lim AW, q, = Wip,.q.) minimez — W(p,.q.) minimizing (3.16)

—
an

should tend to zero. If it tends to some other value then no circle with rota-
tion number w exists. Rather than trying to calculate the limit in (3.16), we will
exploit the fact that every state X = {--- z_;,2,2;,- -} arising from an orbit
{---,(z-1,p-1), (%0, P0), (z1,P1),- - -} lying in an invariant circle must be minimizing;
every finite segment snipped out of such a state must be a non-degenerate minimum
over all segments having the same endpoints'?.

The foregoing suggests a strategy for proving converse KAM theorems. One
chooses an auspicious starting point, zg, for which the perturbation to the gener-
ating function is large, and considers every possible state containing it. This is not

quite so huge a task as it sounds. Since the map, G¢(u,v), determines the whole state

'1Showing that the action difference (3.15) vanishes is different, and harder, than showing that the
average values of the actions are the same. While the latter follows fromn the ergodicity of irrational
rotation, Mather’s result requires a more delicate examination of the action functional. See [Ma86]
for details.

12The reader may wonder why the states lying on an invariant circle do not belong to a one
parameter family, and ask how they can lead to non-degenerate minima. The answer is that we
consider only variations thal leave the endpoints of finite segments fixed; if we allowed them to inove
the minima would be degenerate.

62

once, say, o and =, have been given, we need only cousider all possible successors,
x,. For each z; we work out the state, X, and the variation of the action over finite

segments, {z_1,Zo,***,Zn},

n—1 |4 ? n
SW_1n = Z 66 : fes + %5XTD2W_1’,16X
_ 1 — —1n
= 0 5 222 82,0 ——F—bz;0x.

The term linear in éz; is automaltically zero because X is a minimizing state. For our

examples, (3.1), the quadratic term can be represented by the symmetric matrix,

— d 1
2+ ¢4 (20) -1 0 ... 0
2+5%(m1) -1 - 0

D2W._1,n = .
0 - —1 2—1—6%(:&”_2) -1
0 « —1 2“}‘6%(&3”_1)_‘

which we shall call M,(X), or M, for short.

If X is minimizing then M, is positive definite. Since M, is so simple it is easily
rendered into diagonal form, a form that makes it simple to calculate the determinant.

We can write

= - 3

[2+ e () = 0 - de 0 0 0
il 2 + e (z,) -1 0 - 0 d 0 0

—
0 i 2 +eL(zy) —1 - 0 0 dy 0

where the d; are computed recursively using

d.
do = 2+ eg{g(mo),

1 d,
diya = B(@jpr) — EX where B(z;11) =2+ fd_i(f"jﬂ)- (3.17)

7

63

If ever one of the d; is negative we may conclude that A{; is not positive definite
and so does not arise from a minimizing state. Notice the similarity between the
evolution equation for the diagonal entries, (3.17), and the one for slopes, (3.9). As
we refined the limits on slopes, so we can refine those on diagonal entries. We obtain
a d_ such that if d; < d_ then some later di, k& > j is sure to be negative. We also
get d, a global upper bound on the d;. We can thus modify (3.17) so that we begin
with d_1 = d4, so do = B(ze) — i. The original prescription corresponds to taking

d_]_ = 0OQ.

3.2 Rigorous computing

In this section we will see how to implement the action criterion of the last section on
a digital computer. Since we will eventually want to treat maps in spaces of arbitrary
dimension we will outline some of the procedures in greater generality than required
for the cylinder. The most important part will be a technique for rigorously bounding

the 1mage of a set.

3.2.1 two reductions and a plan

As in section (3.1.2), we need only show that no invariant circle crosses a particular
vertical line. In the language of the previous section this means our problem is reduced
to showing that some particular &, cannot appear as a member of any minimizing

state. We can get a further reduction by noticing that our examples satisfy
P(f,p+1)=p'(6,p) + 1;

their dynamical structure is periodic in p as well as in #. So, if an invariant circle
passes through the point (8, p), there is also one through (¢,p + 1); if no invariant

circles pass through some vertical segment Iy = {(f,p)|§ = 8*, p € [0,1]}, then there

64

cannot be any at all. Studying a segment like I is equivalent to studying a collection

S - -

Figure 3.10: Rotational invariant circles must cross every vertical line, and, for our

ezamples, must be periodic in p as well as 6.

of states {X| zo = =*, z; € [0,1]}, where =* is a Lift of §*. With these reductions in
hand, we are ready to plan the main computation. Our goal will be to prove:
Theorem

There is an z* € [0,1] and an interval of parameter values, I = [e_,€.], such that
none of the maps, G, € € 1., have a minimizing state with zo = z*.

Plan for the proof:

(i) Formally extend the phase space to include the parameter € and use the map

Ge(u,v) to define a new one, G :R x R xR — R x R x R, where

G(e, u,v) = (¢, Ge(u, v)). (3.18)

(ii) Select a starting point z*. For examples (3.1) we will want z* such that G(z*) is

a minimum, a choice that is independent of e.

(ii1) Divide the interval [0,1] into a collection of closed intervals, I;, CJ I; =]0,1]. Us-
ing the I;, which should intersect only at their endpoints, we célzllconstruct a col-
lection of sets in the extended phase space, S; = {(e,u,v)| e € I, u = z*, v € [;}.
In practice, this division is done by the program itself. It begins by trying to

prove the theorem on the whole interval at once, and gets either, “Yes, the theo-

rem is true,” or “Maybe it’s true.” II the answer is “maybe” it splits the interval

65

in half and tries the two pieces separately. If one of them yields “maybe” it gets
subdivided too The process of subdivision will go on forever if the theorem
is false, but if it is true the work of Stark suggests that the cutting will stop

after finitely many steps.

(iv) For each piece I;, try to prove that no minimizing state with £o = z* can have

The last step 1s where the computation comes in; we will use an argument like the
one at the end of section (3.1.4), but here we calculate upper bounds® di for the kth

diagonal entry in (3.17).

do = u. b ol d1+
dl o (5 u u)ES_, ﬁ() N
dy = wb. A(v)— —1—
= = (e,u,v)-EC-J(SJ') Jl '
dpyn = B(v) — 7 (3.19)

(fuv)EG"(S)
Finding a way to calculate the kind of bound that appears in the definition of d,, an
upper bound over an image of S;, is the last hurdle in the argument. What we need
is a procedure to rigorously bound the image of a set. In the next section we will

explain a quite general scheme due to MacKay and Percival.

3.2.2 bounding images of prisms

For concreteness, and to get an algorithm straightforward enough to be realized
as a computer program, we will concentrate on sets with a prescribed form, par-

allelepipeds, or prisms for short. An n-dimensional prism is specified by a center

13We will often want to evaluate upper bounds, as opposed to maxima. The former are realizable
on computers, the latter may not be.

66

- |
| S
| [—A:f 0 0
Y¥=(2,P), P=| 0 4 0
/ l 0 0 £

« AT+

Figure 3.11: The n-dimensional hypercube Q™ is mapped to the prism by the matriz
P.

point, z., and an n X n matrix, P. The prism is the set
{z e Rz =24+ Py, n € Q"}, (3.20)

where Q" is the n-dimensional hypercube, {5 € R*| — 1 < 5; < 1}, see figure (3.11).
Our principal technical tool is the following result.

Lemma ([MP85]) Suppose & : R® — R™ is a C! map. Then the & - image of the
prism S = (x., P) is contained in the prism (z.', P') where z.' is arbitrary, P’ = AoW
for an arbitrary invertible matriz A, and W the diagonal matric

r .

wy 0 --- 0
0 Wy oo 0
W=
0 0 - w,
with
w; = u.b. (I(‘I’(wc) —z');| -+ u.El?s. > I[A"1 oD®, o0 P]jk‘) ‘ (3.21)
= k=1
Remark The lemma seems unnecessarily general; we are left to choose the matriz

A and the new center point, . completely arbitrarily. If we choose them unwisely the

67

e T L

Figure 3.12: A prism, its image, and a prism bounding the image.

new prism will surround the itmage of S, but may be much larger than necessary.

Usually we will want
z,' B Bla,], and A=~ D®, oP.

The freedom allowed by the lemma will make it easy to handle errors in computing
®(z.) and cases where D®, P is singular or nearly singular.

Example (Proof of the lemma for one-dimensional maps)

We start in with a one-dimensional example, see figure (3.13). Here the map is some
C* function, ¢ : R — R, and a prism, S, is just an interval z. — az < z < z. + az.
We can use the computer to find ¢(z), a numerical approximation to ¢(z) for which

|¢(z) — q_5(a:)| < §. Then, choosing z.' = ¢(z.) and** A = ¢'(z.)az, we find

ub. |zl — ¢(z.)] < §

1
-1 _
o @(ze)az’
- ; ¢'(z)az
W= T e L Flz)az|’
¢'(x)
= mem—— .b.
& (z.)az| | ee¥ [#(z)|’
and
P =az’=AoW > 6§+ Az;(mé?c I’ (z)]). (3.22)

14The choice of A is meant to suggest the form required by the higher-dimensional theorem. If
¢'(z.) = 0 we will have to make another choice; any constant will do.

$(z)

%
——n— -
N i

R

H-Ag~—4-—————*\

68

I

. .

Figure 3.13: The bounding lemma
applied to a lift of the circle map,
d(x) = =+ 2 + = sin(27z), with
2 =0.3, e =0.8. The tnterval I,
at Tight, is the one gwen by the

lemma; it contains the image of

Now let us check some point z € S, and see that its image is inside the prism

S' = (z., P'). Since z is in § we can write z = z. + 7az with —1 <7 < 1. If ¢(=) is

in §', then,

z! — az’' < ¢(z) <zl + az’ or |p(z) — zL| < az'.

To see that this is true, consider 7(t) = ¢(z. + tnaz). () is a C' function from

[0,1] to R with 4(0) = ¢(z.), 7(1) = ¢(z). By the Mean Value Theorem there is a

to € [0,1] such that

1) =7(0) = (),

) — sy = b+ bgal)

Rewriting this,

|b(x) — =]

even as the lemma claimed.

Al

IA

dt
= nazd'(z.+ lon ax).

|¢(ze) — i + nazd'(ze + ton az)),
|p(ze) — zc| + |azd'(zc + ton az),

!
AT,

(3.23)

69

Proof (The general case)

The argument is much the same as the one-dimensional argument above. Here the
assertion of the theorem is that every point in the initial prism, S = (z., P), has its
image in S’ = (z., P'). If one writes a point, z € 5, as ¢ = ¢, + P7, 7 € " then the

theorem says

P Y ®(z. 4+ Py)—z)=79", 7 €Q™ (3.24)
If we take (3.24) one component at a time we find
[P (2(=e + Py) — 2L)];] < 1. (3.25)

To prove this for the jth component we consider a function v; : [0,1] — R,
v;(t) = [P""'®(z. + t Pn)];. 7;(¢t) has the same smoothness as the map and so the

Mean Value Theorem says 3ty € [0, 1] such that
d~;
73(1) = 75(0) = —=(to),
or [P7H®(zc+ Pn) ~ 2(x))l; = [P0 D¥ariey pmy 0 Pr] .
Arguing as we did in the sequence (3.23);
[P (®(2c + Pn) — 2L)]| = }[W-‘ o A7 {(®(xc) — 2L) + D&,y 0 Py} ,],
= -~ l A { (®(z.) — =)+D<I’.,(t0)oPn}] ’
1| TATH@(e) — 2)l;]
< — n
= w; + D |[A7 0 Dygey) 0 Pla
k=1

< 1

)

)

which is just the thing required by (3.25).

3.2.3 choices for the matrix A

Although we usually take A =~ D®,_ o P we may sometimes need to make a different

choice to avoid a singular A. Indeed, the very first prisms we consider, the ones of the

70

form I, x ¢* x I;, have zero width in the u direction and so have singular matrices,
P. In this section we will illustrate two schemes for fattening up the matrix D®__o P.
The first, the fized-form scheme, is borrowed directly from [MP85]. The second, called
the column-rotor, is a slight generalization of theirs. These techniques have not been
carefully optimized and are probably not the best. They work well enough and, in
any case, are not the most time consumning part of the algorithm.

Fattener 1 (fixed-form) Require the new matrix to have a particular form. Sup-
pose, for example, that the initial prism, P, and the derivative of the map, D®,_,
are

Pl= z PP = , andso D®, oP =

We might then look for a matrix A of the form

0 a2

A=

1 oo

Figure (3.14) shows an application of this scheme.

Figure 3.14: The fized-form fattener v
applied to the image of a singular, ver-
tical prism. The map is the delay-

embedded version of the standard map

with k = 0.8. The new prism, shown
in grey, fits snuggly in the u direction

but is much more generous in the v di-

rection. u

Fattener 2 (column-rotor) This method deals with matrices whose columns, when

viewed as vectors, are all very nearly parallel. Such matrices will be close to singular,

71

Figure 3.15: The column-rotor
scheme applied to a narrow prism.
The initial prism is at the lower

left; it 1s outlined in black and

its center is marked with a dot.
The prism’s true image is solid
black. A bounding prism, produced
with the column-rotor scheme us-
ing an angle of 27°, is shown in

hght grey, the darker prism be-

neath used an angle of 90°.

and must be expecled to arise if the dynamics are hyperbolic. If we neglect the

fattening steps, the matrix of the prism bounding ®"(S;) looks like
P, = D(I’q,u—-l(mﬂ) o D@Q"‘_2(m,,) @ w0 D(P_.,c o P. (326)

If any of the Lyapunov expouents are positive the columns of the matrix product
(3.26) will be nearly parallel to each other and to the eigenvector corresponding to
the largest eigenvalue of D®7 . The idea of this scheme is to rotate the columns with
respect to one another so as to guarantee a certain minimum angle between each
pair. In two dimensions, (see figure (3.15)), this is an entirely satisfactory program.
In three and more dimensions it is possible to find linearly dependent collections of
column vectors each pair of which is separated by a sizable angle - one could have a
triple of coplanar vectors, for example. Such collections do not seem to arise in our
calculations, and we have made no special provisions to avoid them. The details of

column rotation are described in appendix B.

72

3.3 On to higher dimension

Here we develop some new results. The forms of the arguments will be much the
same as in the preceding sections, but the maps, tori, and cones will exist in higher-
dimensional spaces. The general results for higher-dimensional invariant tori are not
so strong as for circles on the cylinder, so we must make a few new restrictions and will
obtain somewhat weaker results. We will see how to generalize the cone-crossing and
action criteria and then show an application to the example with the trigonometric

perturbation, (2.14).

3.3.1 maps and tori

As above, we will consider only small perturbations of integrable systems. We will

have 2n-dimensional symplectic maps, f. : T" x R®* — T" x R", of the form

f(6,p) = (6'(8,p),p'(8,p))

av.
0 = 6+p— —
TP~ 5
' oVe
P=p-p (3.27)

where V,(6) : T* — R is some periodic function with at least two continuous deriva-
tives and € is drawn from some, perhaps multi-dimensional, parameter space. We will
work mostly with a lift, F, : R* x R®* — R" x R™. As we noted in chapter 2, maps
like (3.27) are the higher dimensional analogs of standard-type ma;ps.

The generating function for a map like (3.27) is

1
H(z,2") = §|| z—z' ||2 — V()

= }?(w} = zz)? = V(=) (3.28)

Although H.(x,z') is formally very similar to the generating functions used earlier

in the chapter it is not quite the same; the perturbation, V, depends on & rather

73

than «’. As we shall see, this makes no real difference in the formulation of non-
existence criteria. We make this small change because the examples of chapter 2 have
generating functions like (3.28).

As on the cylinder, we will not be able to prove the non-existence of all possi-
ble types of tori, only those that are invariant graphs, sets of the form {(8,p)|0 €
T", p = ¢(0)} for some 3 : T® — R™. In higher dimension we must add the further

requirement that the graphs be Lagrangian, that is, they must have!®

O _ 0Y;
86, ~ 96, ey

On the cylinder we have the mighty theorem of Birkhofl to assure us that any rota-
tional invariant circle must be a graph. Unfortunately, for n > 1 we have no such
assurance; there may be “accidental” invariant tori that are graphs, but not La-
grangian graphs, and there may even be rotational invariant tori that are not graphs
at all. Still, (3.29) is not a disastrous restriction. Our techniques are fully comple-
mentary to traditional KAM theory in that constructive versions of KAM produce
Jjust the sort of tori we can preclude, invariant, Lagrangian graphs.

Herman, in [Herm88|, has announced some results along the lines of a higher-
dimensional version of Birkhoff’s theorem, but they are not so comprehensive as the
original. He has, however, shown that a Lagrangian graph, invariant under a map like
(3.27), is Lipschitz. This will prove helpful when we try to obtain global inequalities
like (3.12).

3.3.2 Lipschitz cones: old formulae in new guises

Both the cone-crossing and action minimizing criteria have higher-dimensional analogs.

We will briefly examine the former because of its intuition-pleasing geometric roots,

15Equivalently, a Lagrangian torus is one on whose tangent space the symplectic two-form,
:0) 2
= Z_—,’=1 dp; A df;, vanishes.

74

then concentrate on the latter. Most of the formulae will bear a strong formal resem-
blance to the ones from the first part of the chapter.

As on the cylinder, we begin by switching to a map g acting on the delay co-
ordinates, g.(0;,0:+1) = (0it1,0:42), and a lift, G : R* x R® — R" x R™ with

G (u,v) = (u',v'). In these coordinates the derivative of the map is

Ou' Ou’
— 0 I
DG, = | Ou dv | = 52V , (3.30)
-1 21— “(v)
dv' v’ Oz?
L Qu Ov |

- » . " 2 - - . . "
where I is the n xn identity matrix and g—i‘{;‘ is the matrix of second partial derivatives

of V.. An invariant graph, p = %(#), appears as a hypersurface

v = A(u),

= u+YP(u)— ?:;;(u)

Ve(u) and 4(u) and are periodic extensions and A(« + m) = A(u) 4+ m Vm € Z~.
The geometric object corresponding to a vector tangent to an invariant circle is now

a hyperplane tangent to the graph. A vector, (du,év), lying in this hyperplane has

BA, A
Bul 3“2

bv = Léu where L= | 822 342 | (3.31)
Buy Busy

so that the tangent plane is the subspace spanned by the n vectors

oA 84z SAg
(170:"'0: Buy ? Buy ! BSuy)7

GA) BA BAn
(0,1,...0,241 24z Ohuy

These are couveniently represented in block form as [I, L] where Iis the n x n identity

matrix and L is as in equation(3.31). The action of the map on the hyperplane is

75

given by
1 0 I I L
DG o , (3.32)
L -1 B L BL —1

where 3 = 21 — %g}.yf(v). The new tangent hyperplane must then have

L'=8-1L" (3.33)

In the two-dimensional slope evolution equation, (3.9), existence of an invariant circle
meant both the slopes £ and ¢’ had to be positive. Here the existence of an invariant
Lagrangian graph implies that the matrices L and L’ are positive definite. On the
cylinder we were able to study equation (3.9) and obtain a narrower global Lipschitz
cone; where first we had 0 < £ < oo we eventually got £_ < £ < £, with £, given
by equation (3.12). There is a higher-dimensional analog of this best global Lipschitz

cone, but we defer it until section 3.3.4.

3.3.3 minimalism revisited

We now turn to the higher-dimensional generalization of the action criterion. The
arguments below come mosily from MacKay, Meiss, and Stark, [MMS89], Katok,
[Kat88], and Herman, [Herm88]. The first thing we need is a higher-dimensional
version of the theorem of Mather that told us that invariant circles are composed
entirely of minimizing orbits. The necessary result, which says that every orbit on an
invariant Lagrangian graph is minimizing, has been proven by Katok, [Kat88], and
by MacKay, Meiss and Stark, [MMS89]. With this result in hand we can proceed as
before. We cousider finite segments, € _,, xy, ..., taken out of minimizing states.

The action functional is still

n—1
W_oin = Y Hdlwj®i41),
ji=—1
n—1 1)
= §|| ®j41 — =5 ||° — Ve(=z;).

i=-1

76

and the second variation of W_, , is, in block form,

[B(xo) -1 0 0 s 0
I B(z) -TI 0 ‘s 0
0 -I PBz) -I 0
0 -1 ;B(wn—Z) —
0 e 0 I B(za) |

which is readily block-diagonalized to

do 0
0 d,

The diagonal blocks, d;, are given recursively by

dU = '6(“’0):
1 82V,
dj1 = B(zj)—d;’, B(zjs1) = 2 — == (241). (3.34)

Our concern is that the d; be positive definite. It is here that blithe, formal, general-
i1zation fails us; there are no sensible formal analogs for results like equations (3.10),
(3.12) and (3.13). Instead we need to invent a way to test whether the least eigen-
value of d; 1s positive. We will develop a whole suite of estimates for this eigenvalue,
then use them and a plan like the one in section 3.2.1 to prove the non-existence of
Lagrangian graphs.

All the matrices we will be discussing are real and symmetric, hence, Hermitian.
For a particular matrix, M, we will need to define A_(M), the least eigenvalue of M,
A+ (M), the largest eigenvalue, and Tr [M] = Zj’:;(M) M;;, the trace. The following
lemma will be our main tool.

Lemma For real, symmetric, n X n, positive definite matrices 3, d, and d’ with

d=p-d"! (3.35)

7

the following suite of inequalities hold:

1 n

@) £ M0 - (3.37)
A(d) < A_(ﬁ)—A+1(d). (3.38)

Proof The first inequality, which is due to Herman, comes from the observations
that for a positive definite, Hermitian matrix, M, A_(M) < 2Tr[M] and Tr [M 1] <
TI;"[;,_,—]. Both these inequalities are strict except for the degenerate case where all the
eigenvalues are the same. The other two inequalities, which are ours, depend on

Ap(M)= max v, Mv
olll]= e ¢)

and

A_(M)= min (v, Mv),

veRn, [jv||=1
where the norm and inner product are the usual Euclidean norm in R™ and ordinary
dot product, (u,v) = ¥7_, ujv;. Given these equalions we can obtain inequalities
about the least eigenvalue of d’ in (3.35) by evaluating (v, d'v) on particular vectors.
I, for example, one takes v to be the unit eigenvector corresponding to the smallest

eigenvalue of d one finds

A_(d) < (vd'v) = (v,0v)— (r,d),
1
= (v,Bv) — (@)’
< ’\-F(ﬁ) -)\ﬁlid)

This is inequality (3.37) of the lemma. Inequality (3.38) comes from an identical

argument with v the unit eigenvector corresponding to the least eigenvalue of 3.

78

3.3.4 global estimates: narrowing the cones

Here we see how to use our inequalities to reduce the range of permissible A_(d;). On
the face of it, we must allow 0 < A_(d) < oo, but inequalities (3.36) and (3.37) have
the correct form to allow an iterative refinement like the one in section 3.1.3. Since
Tr [B(v)], and AL (B(v)) are continuous, Z"-periodic functions, they have well-defined

minima and maxima, say,

t < Te[B] <T,
b < A(B) <B.

Inequalities (3.36) and (3.37) then imply that the d; from a minimizing state must

salisfy

e i TE — A3
Tomin % Trld;] € Tropey, With Tep = 1b. {T 1; i }

R {T ook 7; = 4”2} . (3.39)
and
Amin SA(d;) € Aoz, With A =Lb. {B_—- ”2‘82_4} :
 W— {B—f— ”2‘92_4} . (3.40)

We can also get some analytic use out of inequality (3.38) by combining it with (3.40).

Ao(d) < Te[d] — (n— 1)A_(d)
< Tr(d] — (n—1)A_pmin.

Hence,

Af{d} = A-(B) - o (d)
i
T Tr(d] — (n— DA_min

(3.41)

IA
5
o
=

79

This profusion of inequalities makes possible a whole host of “Mather %” arguments;

Herman, in [[Herm88], gave the one based on (3.36) and (3.39). In the next section we

show how to apply his criterion, along with other, new ones, to a specific example.

3.4 A converse KAM theorem

Here we use the arguments above on a specific system, the trigonometric example
from chapter 2. We will use the same example to illustrate some'® of the issues in
proving a machine-assisted converse KAM theorem and will show the results of several

calculations.

3.4.1 analytic preliminaries

The plan for a converse KAM theorem, section 3.2.1, requires a starting point, =*,

and the constants ¢, T, b, and B from equations (3.39) and (3.40). For the example

at hand,
621/;1-:'9
B(v) = 20— € Ha?
oT € {#rZro 4 sin 27 (vo + 1)} sin 27 (v + v1)
| Mirig sin 27 (vo + 1) {en2mu 4 gin 27m(vo + v1)}
and so

Tr [B(v)] = 4-— A; {-:-{sin 2mve + sin 271 } — 2 sin 2w (ve + vl)} (3.42)
Ltrig

1 Tr v e
A By = L] TP e

2 c 1 (. e 2 -2
T, \/Z (sin 2mvg + sin 2mwvy)" + 4 sin® 2w (ve + vy)

16 Appendix B gives a detailed discussion of the algorithms used and includes a specification of
the functions and data structures. The code itself is in appendix C.

80

Both Tr [3] and A_(3) achieve their extrema on the line vy = v;. The symmetries of

V. also ensure that

2‘,/ . az‘/'ri
t—4=c¢ minTr[%] = —¢ maxTr[—aﬁ] =4-T
Vi 6V,
b—2:emin/_(%)=—e max A_((91:29)=2—B

We find the approximate positions of the extrema using Newton’s method, then eval-
uate the bounds ¢, T em etc... From these we can calculate the ranges of permissible
A_(d;).

The choice of the starting point, *, depends on which of the inequalities (3.36)
- (3.38) we expect to be most fruitful. Good use of inequality (3.36) would require
that * be a place where Tr (3] attains its minimum; this choice immediately gives

€. < 0.0435. Best use of inequalities (3.37) and (3.38) requires &* at a place where

A_(B) =b. (3.44)

This turns out to be the best choice; it immediately gives €. < 0.0278. Note that we
need not be particularly rigorous about finding *. Indeed, we are free to choose it

anywhere we like; we just get much better results if (3.44) is satisfied.

3.4.2 the computations

Once x* is chosen, we can set up the extended phase space, I, x R®* x R?, extend G,
to G as in (3.18), and proceed with a proof. The plan is the same as in section 3.2.1,
except that here the role of the intervals, /;, is played by rectangles in the unit square.
That is, we first ask “Can any = € [0,1] x [0,1] follow z* in a minimizing state?” If
the answer is “no” then we are finished, if not we cut the square in half and ask the
same question for each piece. Once the rectangle of potential successors is smaller
than the whole square we can iterate the argument for several steps, bounding image

prisms as in section 3.2.2. This yields a sequence of prisms in the extended phase

81

space, So, 51, -, with

5 = I sx{w*}x {successor 'rectcmgle} = (Ec,m Po)

S = (®e1, P) D G(So)

Beginning with
wb. A_(d_i) = A_mes and w.b. Tr[d_1] = Trmae

we proceed, at each step evaluating the whole suite

1 n
Addpn) = Sb (; Tr [ﬁ(")]) ETYGTR) (3.45)
M) € ube (B0 - oo (3.46)
) € ubo OGO - rREn T (47

and choosing the best upper bound. Computing (3.45) automatically gives the bound
on Tr[d;] used in (3.47). These estimates do not, of course, keep improving forever.
Eventually either one of the u.b. A_(d;) falls below A_;, or one of the prisms 5; gets
so large that the inequalities (3.45) - (3.46) are vacuous. At that point one either

quits or cuts the initial prism in half'” and starts over.

3.4.3 results

Table (3.1) summarizes our results. We were able to show that the last few of the
minimizing states of section 2.2.2 persist beyond the point where no invariant tori
remain.

The figures on the following pages show some of the systems of prisms used in the

proofs. The dark grey rectangles are sets that cannot contain a successor to z*, the

17The choice of which cut to make, whether along the €, vy, or v, axis, depends on the shape of
the final 5;.

82

u.b. e, < | longest | deepest | prisms | time (sec.)
0.0278 3 10 39 500
0.0276 4 11 64 759
0.0274 4 13 156 2698
0.0272 6 21 933 ~

Table 3.1: A sequence of bounds on €. and some details about the computations that
verified them. The table includes: longest, the length of the longest sequence of image
prisms considered; prisms the total number of prisms on which the algorithm suc-
ceeded; deepest, the number of refining cuts needed to make the smallest successful

prism and time the execution tume in seconds. All computations were done on a Sun/.

light grey regions may be ignored on account of symmetry, (see section 3.4.4). As one
might expect, those states that go from «* to neighborhoods near the the maximum
of Virig, (those that correspond to rectangles in the upper right corner), are harder
to prove non-minimizing. To succeed on such a rectangle the program must extend
the corresponding state far enough to evaluate several u.b. A_(d;). Since the prism-
bounding algorithm always gives an S;; bigger than the true image of S;, the initial

prisms must be small.

3.4.4 using symmetry

In figures (3.16) — (3.18) we were able to ignore about half the possible successors. To
see why, notice that V,,;; is unchanged by the interchange of its v and v; arguments.
Two segments, such as {---,&*, @1, ®2,---} and {---,&*, x],), -} in figure (3.19),
will have the same action because they are each other’s images under the interchange

z;o = x;;. Here, the interchange is just a reflection about the line'® z, = z;. So,

80One must take some care here. The interchange is really a reflection through the diagonal line
containing ©*. Our program always arranges that =* is in the square [0, 1] x [0, 1] and on the line
Ty = 1.

83

0276

<0.

d to show e,

T81MS USE

The system of p

.16:

3

igure

F

84

17: €. < 0.0274

3

1gure

F

85

Figure 3.18: ¢, < 0.0272

86

referring to figure (3.19), if we prove that no minimizing state can pass from z*
through the box around x,, we are automatically assured that none can go through

the box around «] either.

L J .
.
1 e
T, "l
Fi o
T
I" 2
* g .
’
T, ¢
-
.
’
-
+,
.
¢
¢
’
.
P
S L]
v T
P 1

IMigure 3.19: Two symmetrically related states have the same action.

87

Appendix A

Approximate Numerical Methods

In this appendix we review the numerical methods used to obtain the results of chapter
2. The first section describes the methods used to calculate the minimizing states;
the next section discusses Kim and Ostlund’s scheme for approximating irrational
vectors by rational ones and the last section explains how we found the Lyapunov

exponents pictured in figure (2.6).

A.1 Methods of minimization

All our minimization schemes solve the Euler-Lagrange equations (2.10). For each ro-
tation vector, p/g, and perturbation we produce a sequence of states { Xo, X;,... X, ...
each of which satisfies (2.10) for a pérticular value of € = ¢;. We usually begin with a
state whose first point, @, lies on the minimum of the perturbation to the generating
function (that is, on a maximum of V,(x)) and whose other points are x=; = o + gp :
Such a state is globally minimizing for the unperturbed generating function so we set
€0 = 0. We then increase the size of the perturbation, ¢;, in small steps and use X;

as a starting point to calculate X;;; using either a gradient-flow scheme or Newton’s

88

method.

The former involves integraling the system of differential equations

d.’l!i _ 8Lp,q

dr B Ox; "’

through a long interval of the formal “time,” 7. This method is very slow; it crawls
down to the minimum wilh exponentiially decreasing speed. On the other hand it is
extremely reliable and seems very rarely to converge to a state other than the global
minimum. Newton’s method is much faster, but somewhat prone to converge to
extrema other than the minimum. It works by producing a sequence of approximate

states Yy, Y7, ... according to the recursive scheme :

Yy = some initial guess, Yo=Y+ D,

D; = —H'd(L,,) (A.1)

where H™! is the inverse of the Hessian of the action functional and d(L,,) is the
functional’s gradient. Since H has (gd)? entries, solving (A.1) could be an O((qd)?)

process, but our Hessian,

[9T eV = s =
I 22—V, I ... 0
0 con L BL—EV g 1

| -I =T Bea¥pa

where
v v
10 02V ZH s
I = y V.’i = @(IB]) = (m:l)’

0 1 82V 82V

31:062’51 aw‘;z

89

has only a few terms off the diagonal. We implemented two schemes to solve (A.1), one
that does Gauss-Jordan elimination [PFTV86| and another, rather more complicated
algorithm that generalizes the one-dimensional work of Percival and Metsel [MP87].
We tried the latter because we hoped it would be more numerically stable; it was not,

and ran a bit more slowly than the Gauss-Jordan program.

A.2 Rational approximation of irrational vectors

The problem of approximating a single real number by a sequence of rationals is
completely solved by the simple continued fraction algorithm [Khin64,Rob78]. We

write

w = ag+ (A.2)
a; +

az +
as +

1
Ay —+‘ i .
where the a;, called the partial quotients of w, are positive integers. We compute

them recursively according to

ro =w a; = Int[r]
1

T — Qf

Tit1 =

If w is rational then all but finitely many of the a; are zero, but if w is irrational
then the sequence never terminates. Truncating the expansion (A.2) after finitely
many a; gives a sequence of rational approximations 2—3, fﬂ“, ... with many desirable
properties. Each i_i is a best approximation in the sense that the only rationals closer
to w have larger denominators. Further, the sequence contains infinitely many f;—f such
that |w —pi/q: | < 1/\/5 g?. Indeed, the extremely good convergence of this sequence

can be a problem. If one wants many approximations with modest denominators one

90

level 0
(0,1) = (1,1)
level 1 (0,1) (1,2) (1,1)
(0,1) et (1,3) st (1,2) et (2,3) = (1,1)
level 2

Figure A.1: Several levels of the Farey tree. The solid dot shows the position of the
golden mean. Its nth approzimation is always the mediant that has the largest sum

Pn + qn of any appearing at at the nth level.

must either study numbers that, like the golden mean, have very slowly growing g;,
or introduce other approximation algorithms that produce more slowly converging
sequences.

One such algorithm depends on the Farey tree construction of the rationals. In
a Farey tree one represents the rational number 5 as an ordered pair (p,q). The
endpoints of the unit interval are thus (0,1) and (1,1). The constiruction pro-
ceeds by successively splitting intervals with endpoints (p;, q) and (p,, g.) into two
daughter intervals by inserting an interior point at ((p; + p-), (¢ + ¢-)). The number
((pi + p-), (@ + q-)) is called the mediant of (p;,q) and (p,,q.). A sequence of Farey
subdivisions that begins from the unit interval will eventually produce all rational
numbers, each rational appearing as a mediant exactly once and in lowest terms.
We can use the I'arey tree as a tool for rational approximation by choosing p,/g. to
be the mediant of the nth level interval containing w. Since an interval in the nth
level of the tree has length at most 1/(n + 1), the sequence of Farey approximations
must eventually converge. Since every sequence of I'arey approximation begins with
Po/Go = % and each subsequent approximation requires only a choice of either the left
or right daughter interval, we can represent the sequence of Farey approximations as

a binary address. For example, the address llilll ... would indicate that w lies always

91

((o1) (1) (o1 ((11y
A c B

B

(1on) (101)

Figure A.2: The mediant operation that refines Farey triangles. The parent triangle
ts represented by an equilateral right triangle. The algorithm divides this into two
stmilar, daughter triangles by adding a new point in the middle of the hypotenuse.
The coordinates of the new point are sums of the coordinates of the end points of the

hypotenuse. [KimOst86]

between (0,1) and (1,n).

Kim and Ostlund [KimOst86] provide a detailed algorithm for implementing Farey
approximation on a computer and generalize the idea to solve the problem of simulta-
neously approximating two irrationals (wo,w;) by rationals of the form (po/q, p1/q)*,
which they represent as the triple (po, p1,q). To simplify the presentation let us re-
strict our attention to those vectors for which (wp,w;) is such that wo + wy; > 1; the
other case is not very different. The analogs of Farey intervals are Farey triangles,
see figure A.2, and the act of refinement again involves adding a point obtained by
coordinate-wise addition. When the vertices of the Farey triangles are viewed as ra-
tional points in R?, the 2-d Farey mediant lies on the line connecting its parents so
that the subdivision into triangles represented in figure A .2 reflects a genuine triangu-
lar decomposition of the unit square. Successive subdivisions produce every rational
vector, though some appear twice.? As in the 1-d Farey approximation scheme, one
chooses between a right and left daughter at each level of refinement. Irrational

vectors thus have binary addresses. Kim and Ostlund assert that the analog of the

1These are just the sorts of approximations we want; q is the period of our periodic state.
2Those vertices in the interior of the triangle (0,1, 1), (1,0,1), (1,1,1) lie on the hypotenuse of
two different Farey triangles.

92

Figure A.3: Five lev- T —

_ NS AT,
els of the Farey trian- \l/l\;i./l\zz/'\l
gulation, \l5<¥{s\-3l<sl‘r/\4:u/\ﬁ‘%
(a), and,(b), the cor-- "2§:::;:32;|
responding partition Sk
Nl |
of the wunit square. (2) ol (®)
[KimOst86]

golden mean is the vector whose address is rrrrrrrrr . . . they call it the spiral mean.
Its components are (772,77!), where 7 satisfies 7° — 7 — 1 = 0. One of the rotation
vectors we studied, (1432, 1897) / 2513, is an approximation to the spiral mean,
and we used the Iarey triangle algorithm to produce the approximations used in the

sequence of orbits pictured in section 2.3.

A.3 Lyapunov exponents

The Lyapunov exponents displayed in section 2.2.2 were found with the algorithm
outlined in [BGGS80]. Their method depends on two observations, the first that
one can compute the largest Lyapunov exponent by examining the growth of a vector
tangent to an orbit, the second that the Lyapunov exponents are constant on a certain
nested family of subspaces of the tangent space. To find all the exponents one selects a
family of linearly independent vectors vy, vy, ...,v2qa_1 € T M,, and carries them along
the orbit with the tangent map DJF. Unless one makes a fantastically improbable

choice of initial vectors, each v; will grow with an exponential rate A,.qz,

Zo

|DFg, v

g = — 1o , A3
5 o8 (A.3)

1A
equal to the largest Lyapunov exponent. The v; will also become more and more

nearly parallel because their growth is dominated by that of the eigenvector with the

93

largest eigenvalue; D F2 vo will be nearly parallel to this eigenvector. If we examine

(z0,p0)

those components of DF(';’EU o) V1 that are perpendicular to DF vo we should find

(=0,p0)
that they grow with a rate given by the next to largest Lyapunov exponent. Those
components of DF(’:O‘W) v, that are perpendicular to both DF&U’PO) v and DF&U'PO) v
should grow with a rate given by the third to largest Lyapunov exponent, and so on.

In practice the DF(”EMJ”) v; are too nearly parallel to permit the direct calculation
described above. Instead one carries out the calculation of DF(ZUM) v; in q stages,
using the definition of DFY , (2.17). Whenever DF&U'W) Vo gets larger than some
modest limit, one performs a Gram-Schmidt orthogonalization on the vectors, then
normalizes each member of the resulting orthogonal collection and keeps a running
total of the logarithms of the normalization constants. The Lyapunov exponents are
just

X = L 3, log n;,
9 normalizations

where n; is a normalization constant for the ith vector. We adopted the scheme of
[BGGS80| only after trying a more difficult and time consuming method based on
the rate of growth of the volumes of parallelepipeds. Although this original algorithm

had a pleasing likeness to the definitions of Oseledec’s great paper [Osc68], it gave

the same answer as the algorithm described above, but took quite a bit longer.

94

Appendix B

Converse KAM Methods

The algorithms used to prove the theorems of section 3.4.3 have been implemented
in the C programming language. This appendix descibes the program in some detail.
Section B.1 gives an overview of a typical computation and section B.2 explains how
the basic data: numbers, intervals, and prisms, are stored in the computer. Section
B.3 carefully describes the crucial algorithms and serves as an introduction to the

parts of the code appearing in appendix C.

B.1 What the program does

This section expands on the plan for a proof offered in section 3.2.1. It first discusses
the specific map studied, then gives a more detailed sketch of the computation, ending
with a typical input file and the resulting output. This section also introduces a
convention of typography and one of nomenclature. Under the former, bits of text
taken directly from computer programs will be printed in the typewriter typeface.
Under the latter, closely related objects will have similar names. For the sake of

efliciency, I have written two versions of most functions. The first, quick and sloppy,

95

is used for exploration. The second, stately and rigorous, verifies any promising results
suggested by the first. The quick function usually has some descriptive name, as has
bound_btrace(), which bounds the trace of the blocks B(z;). The rigorous version,
Rbound_btrace(), has almost tlie same name, but for the prefix, R, connoting rigor.
A similar convention applies to names of variables; minLeastLam is an approximate
value for A_,in, the smallest permissible value for the least eigenvalue of a diagonal

block. The rigorous estimate of the same number is called RminLeastLam.

B.1.1 the map

The program really works with the three-parameter, four-dimensional, symplectic

map,
y’ = Y+ J,r
-
r o= gy T
Oy
Where
Vabe(y) = —asin(yo) — bsin(y;) — esin(yo + v1). (B.1)
dem? der?

If one takes a = b = this map 1s conjugate to the trigonometric

M, © T My,

example via the change of coordinates,
J
T =—— = —.
27

I included the extra parameters because it was easy, and left open the possibility of

further work. I used y = 27« to avoid having to mulliply by 27 so often.

B.1.2 sketch of a computation

This section explains what the program does. First, it reads an input file and invokes

a host of initialization functions. These have names like init---() and do such things

96

as initialize variables, allocate memory, and copy the input data to various output
files. Next, the program chooses the starting point, £* and prepares the first, all-
encompassing prism, which then becomes the sole member of a linked list of untested
prisms. The rest of the computation is a struggle to get to the end of this list. It grows
shorter whenever the prism-testing algorithm succeeds; when the program is able to
show that none of the points in a particular prism could follow * in a minimizing
state, i prism is removed from the list and forgotten. The list grows longer when
the algorithm fails; the offending prism is divided in two by refinePrism() and
replaced by the resulting pair.

The program tests a prism in several stages; it begins by examining the values
of the parameters included in the prism and computing A_,.;n and Trp,; then it
invokes a series of prism-testing functions. The first of these, quick_try(), tries to
show that the state with &y = =*, ©, = {center of the prism} cannot be minimiz-
ing. If quick try() fails the prism is judged hopeless and is immediately halved;
if quick_try() succeeds, the program passes the prism to try Prism(). This func-
tion does a full, orbit-following, image-bounding test, but uses only 48-bit, double-
precision numbers and does not give rigorous results. If try_Prism() succeeds too,
then, finally, Rtry Prism() checks the prismn rigorously. Eventually the program ei-
ther reaches the end of the list, and so proves a converse KAM theorem, or founders

on a difficult prism and quits.

B.1.3 using the program: a sample
The computation that proved e. < 0.0274 began when I typed:
converse <trig274.in >&trig274.out -d30

The -d30 sets the maximum depth; it tells the program to quit if it ever fails on a prism

that has already been subdivided 30 times. Other command-line options include:

|

-b filename Maintain a backup file. This is essential for long computations; the
backup file is updated frequently and contains enough information to continue

a proof that has been interrupted by some computer disaster.

-g filename Make a graphics file. The program composes a PostScript program to
draw figures like (3.16)-(3.18) and writes it on filename. If filename is the special

name, off, then the graphics parts of the prograin are turned off.

-p dp Fix the precision used in the rigorous parts of the computation to dp decimal

places; the example above uses the default, 35.

-s Be stubborn; keep on computing even if some prism cannot be successfully resolved
at the maximum depth. This option is good for making pictures and for getting

an idea of how hard a fully successful computation might be.

-t Change the terseness. Selecting this option makes the program more informative;
1t prints a message whenever it finds a successful prism. It also makes the output

file much longer, and so I used it only during development of the program.

-r filename Restore an interrupted computation from a backup file.

The input file, trig274.in, looks like:

Parameters:
0.3085 0.001256 a. and Aa
0.308b6 0.001256 b, and Ab
0.617 0.0025 c. and Ac

Angles given in units of 27.
1.0 1.0 f.0 and ab,
1.0 1.0 .1 and a6,
0.0274 < epsilon < 0.0276
Run on kastor
May 2nd, 1989

The parts in the typewriter typeface are copied directly from the input file; the

parts in italics are additional comments. The first three lines give the ranges for

98

parameters a, b and c. For example, ihe first line is the pair, (a., aa), which establishes
that the initial prism will have a. — aa < a < a. + aa.. The fifth and sixth lines
specify that the prism will have 0 < 6; < 2m, j = 1,2. The last few lines are

comments.

The computation above would yield an output file, trig.out, looking like:

apmValidate : null APM value in map.c at line 296.
Parameters

a : 3.08500000000000e-01 1.25000000000000e-03

b : 3.08500000000000e-01 1.25000000000000e-03

c : 6.17000000000000e-01 2.50000000000000e-03

Initial regiomn :
v[0] : 3.14159265358979e+00 3,14159265358979e+00
v[i] : 3.14159265358979e+00 3.14159265358979e+00

Comments

0.0274 < epsilon < 0.0276
Run on kastor
May 2, 1989

st i I SR A
I find no invariant tori for the range of parameters
0.307250 < a < 0.309750
0.307250 < b < 0.309750
0.614500 < ¢ < 0.619500

Did 322 quick checks, 318 semi-rigorous bounding tries,
and 156 rigorous bounding tries.

The most deeply refined prism was cut 13 times.

The longest semi-rigorous orbit ran for 5 iterations,
the longest successful orbit, 4 iteratioms.

0f the 156 successful prisms, 0 fell to the trace criterion,
156 to the least eigenvalue test.

The best upper bound on the least eigenvalue came from
the maxBlam criterion 0.0% of the time,

the minBlam criterion 99.4% of the time,

and from the trace criterion 0.6% of the time.

99

This investigation took 2697.53 seconds.

The first line is an error message from the initialization phase of the computation,
saying that some variable was not properly allocated; the program automatically
corrects this error. The next few lines are copied directly from the input and the
lines after those give the result: no tori. The rest of the file reports details about the

program’s performance.

B.2 Representation of data

Here we explain how data are represented in the program. This section is fairly
technical; it is partly intended as an introduction to the program and assumes some
knowledge of C. Those wishing to avoid technical details should read only section
B.2.1, in which numbers and arbitrary precision arithmetic are discussed. This leads
into a description of intervals and tnterval arithmetic, which makes up the next sec-

tion. Last, we explain how prisms are represented.

B.2.1 numbers and arithmetic

The computations in the rigorous parts of the program use an arbitrary precision
arithmetic library written by Lloyd Zussman.! A description of his library and its
constituent functions appears in appendix C; for now it is enough to know that it
allows one to do arithmetic on numbers represented as finite strings of base 10000
“digits.” We will call such strings APMs. Addition, subtraction and multiplication of
two APMs, say, z and y, always yield another number representable as an APM, but

IMr. Zussman’s library is licensed under a variant of the Free Software Foundation’s Gnu EMACS
General Public License and so I am obliged to provide a copy of the source code to anyone who asks.
Complete source code for my program, converse, is also available on request.

100

division need not. The rational number £ may have an infinite repeating represen-

tation in base 10000. The division function, apmDivide(), deals with this problem
by allowing the user to specify the number of decimal places (counting only those
to the right of the decimal point) to which the result should be correct. The special
functions, apmSin(), apmCos (), and apmSqrt(), which I have written, use the same
strategy.

Fixed-precision calculations return a kind of implicit interval. An answer, a, that
is accurate to dp decimal places, can be thought of as an interval guaranteed to contain
the true answer, a;

a—107" <a<ia+ 107"
The program also uses functions which do explicit interval arithmetic. An example is
Rbd_sin(), which accepts as its argument an interval, [§_,6,| = Iy, and returns an

interval, [s_, s,], certain to contain sin @ for any 8 € I,. Most of the crucial estimates

involve some fixed-precision calculation and so the program often uses the variables
— 10—dp
max_error = 107,

and

precision = dp + SAFETY_DP.

dp is the number of digits selected with the -p option and SAFETY_DP is a margin of
safety. All the program’s intermediate results are calculated to precision decimal
places and then, for safety’s sake, regarded as only accurate to -=max_error. In the

calculations summarized in table 3.1, dp = 35 and SAFETY_DP = 5.

B.2.2 intervals and expressions

The structure representing an interval is

typedef struct { APM ub, 1b ; } Bdd-apm ;,

101

called a bounded A PM. The functions Rbd_sin () and Rbd_cos() each take one bounded
APM as an argument and return another as the result. The only other operations
on intervals used by the program are addition, subtraction, and multiplication. This
is all handled through two other structures, the Bapm term, and the Bapm expr. The
former is short for bounded term, the latter for bounded ezpression. Their full decla-

rations are:

typedef struct { int nfactors ;
APM coef ;
Bdd_.apm **factors, bound ; } Bapm term ;
and
typedef struct { int nterms ;
APM const ;
Bdd_apm bound ;
Bapm_term *terms ; } Bapm.term ;

To see the use of these structures, consider computing a bound on
2.0 — asin(fy) — bsin(6,),

where a, b, and the 6; all belong to intervals. One would set up a bounded expression

composed of two bounded terms:

20 — a sinfy — b siné,,
S~ e - — S
conast. factora factors

Bapm_term Bn.pm‘.’_.tcrm
then use Rbd_sin() to bound the factors and, finally, use Rbd_expr() to get bounds

on the whole thing.

B.2.3 prisms

The prisms introduced in section 3.2.2 are the fundamental objects of the program;

they are stored in

102

typedef struct RPrsm { int in_torus, n-cuts ;
APM *matrix ;
char *cuts[7] ;
Rxtnd _pt *center ;

struct Rprsm #*next ; } RPrism ;

The integer in_torus has one of the values NO_TORI, UNTRIED, MAYBE, ACTIVE, or
SYMMTRC according to whether it definitely does not include points from a minimizing
state, has not yet been tested, has been inconclusively tested, is under active con-
sideration or may be disregarded on account of symmetry. The integer n_cuts tells
how many subdivisions it took to make this prism and the character strings cuts[
1 explain how to produce this prisin from the initial, big prism. center and matrix
are the center point and defining matrix of the prism; center is an example of an
extended phase point; it has seven components, three for the parameters and two for

each of the delay coordinates. The pointer next gives the next Rprism on the list.

B.3 Algorithms

Here we explain and verify the crucial algorithms. In the first part of the section
we will establish the correctness of apmSin(), apmCos(), which we approximate with
truncated Taylor series, and of apmSqrt (), which uses Newton’s method. Next we
check the algorithms that set the bounds A_,;, and Tr,,;,, then we turn to the
computations used to compute 1.b. A_(d;). In the last part of the section we examine

the prism-bounding algorithms.

103

B.3.1 special functions
sine and cosine

The real computational work is done by two functions, reducedSin() and reducedCos(),
which compute the sine and cosine of an angle from the interval /o, = [0,F]. These

functions and the relations

sin(d + g) = +cos(d), sin(—60) = —sin(F),
cos(d + %) = Fsin(f), cos(—Ff) = cos(f),

allow us to calculate the sine and cosine of any angle. As mentioned in section B.2.1,
we must set dp, the number of correct digits we want in the answer. setTrigDp (dp)
does this; it also chooses the order of the Taylor approximation and picks the number
of decimal places, trig-dp, to which intermediate results are calculated. To prove
that all this works we will estimate the error made by reducedSin(),? leaving unde-
termined trig_dp and the number of terms in the polynomials, trig terms. We will
then show how to choose these two and how to reduce an arbitrary angle # to one
lying in [0, %

The form of the approximation is

2N + 1)
ducedSin(f) ~ Py(f) = g (
vedisRasin(l J & Bwld) (2N+1)' E 4 (2.1'+1)!
1
~ —m Zs:LnCoef [71 %+ (B.2)

where the second line substitutes names used in the code. Let us consider an angle,

6 € [0,%], which is approximately represented by an APM, 6.

Proposition If 6 is such that |0 — 6] < e < 1, then
02N+3

il — Bl & g om—e,
|sin@ — Py(6)] < e+ N 1 3)

(B.3)

2The analysis of reducedCos() is much the same.

104

Proof By straightforward computation,

|sinf — Py(0)] < |sin@ —sinf| + |sind — Py(6)),

92]+1

Z(1)1(2 + 1)

VAN

16 — 6] +

b

§2N+3
= <tamray
Evaluating long power series like (B.2) can take immense amounts of computer
time and memory; if the string of digits making up @ has length £ then the one
representing 8 will have length ~ nf. So, in the interest of computational speed,
reducedSin() truncates some intermediate expressions. What it really calculates is
a sequence of approximations to certain polynomials. In the equations below, [z], is
the number given by the truncating « after n places to the right of the decimal point,

and tdp is short for trig dp.

5 = (-1
Si =[S0+ (2N + D)EN)(-1)VY

tdp 3

Q

2(—1)Y 4+ (2N + 1)(2N)(—1)N

[- [ézSN_l + (2N + 1)!]@,
i (2N 4 1)!
~ 9% (-1 JL________
J.E:% (=1) (27 + 1)
and, finally, o
ducedSi (é):QS—N~P(é) (B.4
reducedSin —(2N+1)1N N 4)

Let us consider the additional error introduced by truncation. Use S; to denote

the exact value of the polynomial approximated by S;. Then S, = Sy and so S lies

105

in an interval,

Sy — 61 < 51 < 51+ 6y,

with & = 107*%. Since S, = 625; + C, where C is a constant, we may be sure that

S, is in the interval
[6°(51 — 6:)+ C, (51 + 61) + C] C [(825:+C) — &, (625, +C) + 6] .
After truncation we get
S—tp € B8 18

with 6, = 26, and after N such steps we are left with an error, §y = N 107,

Combining this with equations (B.3) and (B.4) we get

N(S 92N+3
.. (B.5)

|reducedSin(§) —sinf| < |0 — 0] + 2N + 1) (2N 1 3)!

The only unknown quantity here is the difference between § and its APM represen-
tation 6. Suppose we can arrange for this to be at least as small as 10-*%?. To ensure
dp decimal places of accuracy in our answer we need only choose N large enough that
w < 107(9+2) and then choose trig_dp so large that N§; < 10~(P+2) ¢o0.

If we want the sine or cosine of an angle that lies outside the interval I, we must
relate it to some calculation that we can do with the reduced functions. The program
contains a very accurate representation® of m, so it can just subtract the appropriate
number of multiples of 7 and, perhaps, reflect about the origin. For very large angles,
the reduction process may lose so much precision as to preclude a calculation to the

specified accuracy. In that case the program writes an error message and calculates

the best answer it can.

3The current implementation has one good to 45 decimal places, but it would be easy to add
more.

106

square root

The square root function apmSqrt () is much simpler. It takes an argument, z, and
uses Newton’s method to solve the equation y2 — £ = 0. Suppose we want dp dec-
imal places of accuracy in the answer; define dp+ = dp + 2. apmSqrt () recursively
calculates a sequence y; = /x with

Yo = T

Yiv1 =

2], 9

After the first few steps, the y; decrease monotonically and so we may write y; =
VT + 7;; the error term, r;, is a small, positive number. Equation (B.6) then yields

the following extremely conservative estimate:
Tiv1 = Yi+1 — Ve,

- E(\/EJM,-JF[\—/_%”LHL — v,

T
< (‘51' +‘\/E+2Edp+)_ \/5)

< 2+ 2eas (B.7)

where €,, = 107%*

is the inevitable truncation error. If r; < \/z, Newton’s method
2
actually gives 7;,1 ~ 9;, but (B.7) will be good enough for us. It tells us that we
must continue computing until the difference,
v
Yi-1 =Y = Tj1—T; > EJ — 2€4p4,

is less than 107(%P+1); the last y; will be the answer.

B.3.2 uniform cones and the starting point

This section explains how the program evaluates the constants Tr.;n, Trmae, A—min

and A_,qe; it also explains how to get a good value for the starting point @*. The

107

main technical problem is the correct evaluation of the constants
B =ub. A, (B) and T =u.b. Tr [B];

these, together with equations (3.39) and (3.40), determine everything else. Finding
either B or T' is a matter of maximizing a function on [0,1] x [0,1] x {parameters},
so it is enough to explain how to find one of them, say T

When the program seeks T' it sets a, b, and ¢ to their values at the center of the

intial prism, then uses Newton’s method to find a zero of the gradient of Tr [3]. For

T T

the computations presented in section 3.4.3, the search began at (3, 7) and continued

until it reached a point @z such that

oT
’%ﬂ“ < (|a’c| + |bc| + lcc|) €newt;

where €, 15 2 small constant. In the code, the search is done with ordinary double
precision arithmetic and €,e.¢ is called NEWT_TOL and is equal to 107°. The &7 it finds

i1s very close to the true maximum, and so a suilable estimate is
T = Tr[B(zr)] + (ac + b + 2¢.)107°% + (aa + ab + 2ac)

where the last term 1s included to allow for the variation in @, b, and ¢ over the prism.
The point 7 found by this technique 1s the natural starting point for an estimate
based on Herman’s trace condition, so I call it Herman’s starting point.

The estimate for B works much the same way; a Newton’s method search gives
an approximate value for, g, the position where max A, (8) is attained. B is then

calculated according to
B = M (B(xzp))+ (a + b+ 2c.)107°® + (aa + ab + 2ac)

After calculating B, the program sets up the starting point, @*, also called the least-
lambda starting point. Tlis point 1s essentially the same as xg, but is explicitly
guaranteed to lie on the line g = z; so that the calculation can exploit symmetry,

as explained in section 3.4.4.

108

B.3.3 bounding traces and eigenvalues

This section explains how the program takes a prism, P, and evaluates the bounds

ub. A_(B),

(€, u,V)eS

uwb A'1'(ﬁ)7

(e, U, V)cs

u.b. Tr(d],

(€, 4, V)eS

where € € R3 stands for the triple of parameters, (a,b,c¢). These are the basic
ingredients of the main suite of estimates, (3.45) — (3.47). Recall that the prism is
determined by its center, (., u.,v.), and by the matrix that maps the hypercube,

Q7, into the extended phase space. A point 7 € Q7 has an image given by

_a,(n)] -ac 1 a2 0 0 0 | -771 f
b(m) b. 0 ab 0 e 0 72
e(n) & 0 0 ac - 0 N3
w(n) | = | %o | T N |- (B.8)
u1(n) Ue,1 : : E g s
vo(7) Ve,0 e
| v1(n)] | Ve, | | P11 P72 Prs Prr | | 77 |

From this it is easy to show that any (e,u,v) € S has

T
< > lprsl-
a=1

. ‘
|vg — Uc,O' < Z |P6j| and lv, — Ue,1
G :

Once we have found bounds on the components of v, we can invoke Rbd_sin() to
get bounds on the functions sin(wvg), sin(v;). and sin(ve + v,), then combine those
with aa, ab and ac to obtain bounds on the expressions appearing in the trace and
eigenvalues of 3.

In the program, all this is done with the Bapm expr machinery described in sec-

tion B.2.1. The expressions asin(vg), bsin(v,;), and csin(vg + v,) arise so often that

109

they are given their own names: Ra_sin, Rb_sin and Rc_sin; their values are set by

Rglobal bounds (priz). In terms of these, the estimates we need are:

ub. Tr [3] = 4.0 + Ra_sin.bound.ub + Rb_sin.bound.ub + 2Rc_sin.bound.ub

wb. A (8) = i {ub.Tr[B] - Lb. Vdiscrin b},
u:sb. A (B) = 3 {u.b. Tr [3] + 1.b. \/discrim.ub}

where discrimis a bounded APM containing estimates over S of the quantity
(asin(ve) + bsin(v;))? + 4¢? sin’(vp + v1). (B.9)

Note how, in every estimate described above, we allow each of the terms asin(vg) - - -

to vary independently; the bounds we obtain are almost certainly too conservative.

B.3.4 bounding the images of prisms

The bulk of the computation is devoted to the kind of prism-bounding calculations
described in section 3.2.2. In this section we will see how the program takes a prism
in the extended phase space, S = (z., P), and constructs another, §' = (., P'),

guaranteed to contain G(S). The computation of & is easy; . =~ G(x.) where

G(a,b,c,u,v) = (a,b,d,u',v') = (a,bc,u',v'),
o =
3‘/5 (’U)
F e BiiesiesonntBils, :
v v—u 5% (B.10)

Although only v’ involves any real computation, and so only it introduces any error,
we will find it useful to assign a somewhat larger uncertainty, é., to both ' and v'.
The computation of P’ is much more diflicult; the work falls into two parts: setting

up the matrix A and evaluating the numbers,

.
w; = ub.|[[A7(G(z.) — z.)];| + ll.el?s. X |[A_1 o DG, o P]jkl ,
2 k=1

IA

7 7
> 1A k6 4+ ub. 3 |[A7 0 DG 0 Pla, (B.11)
k=1 T k=1

110

The second term, which involves bounds over = € S, will be the hard part. As was
mentioned in section 3.2.3, the program uses two schemes to prepare A. The first,
the fixed-form scheme, 1s specially suited to prisms with zero volume. Since all the

prisms on the linked list are of the form
{parameters} x {x*} x {possible successors},

all are singular. Accordingly, the fixed-form scheme is always used on the first step
of a round of prism-bounding. Since the first image is non-singular by construction,
the second and subsequent iterates employ a different, more accurate scheme, the

column-rotor. This section describes both schemes and verifies that they are correctly

implemented.
Most of the work will come in showing that the w; are calculated properly, a task

simplified by the following definitions and proposition.
Definition For any real, m x n, matrix A, define
[Alke = D laxjl,
j=1
the k-th row sum of A, and

[Als

- lawsil =D [Alk.
k=1j=1 k=1

Proposition For any real, m x n matriz A and real, n x | matriz B, the product

C = AB satisfies
[C]k* = [A]k*[B]** and [C]** 5 [A]*t[B]*)\— (B12)

Proof By direct calculation:

4

[Cles =D lewsl =

j=1 J

.

M-

n
D aribi;
f=1

n

1

la | 551,

IA
M_,

i=1 i=1

111

< Y lakil [Blis
=1

< Z 'aki![BI** = [A]k*[B]**-

i=1

Then, using the first part of (B.12), one finds

(Che= 2 (Che < 3 [AlkalBlus = [4]..[B)...

It also follows from the definitions that

[(A + B)]k* S [A]k* + [B]k*-

We will use a block-matrix representation for DG, the derivative of the map;

I 0 0
DG=|0 0 I, (B.13)
v -1 B
where
2 — asin(vo) — csin(vg + v1) —esin(vo + v1)
B(v) = _ .
—csin(vg + vy) 2 — bsin(vy) — csin(ve + v1)
and
cos(vg) 0 cos(vp + v1)
v(v) =
0 cos(vy) cos(vg + v1)

It will also prove convenient to have block forms for the matrix P and to build a

column vector, w, out of the w;.

Pl B, B Pu and w . (B.14)

Il
g
®

112

where Ppp is 3 x 3, P, and P,, are 3 x 2, and the rest of the blocks are 2 x 2. The

elements of w are:

the fixed-form fattener

When using this scheme we force the matrix A to be of the form

App 0 0
A=| A, 0 A, |- (B.15)
Avp Avu Auv

The explicit forms of the blocks will be chosen to simplify the calculation of the w;.

Given (B.15), one can get a formula for A™! in terms of the blocks and their inverses:

A p] 0 0 i | 0 0
A—l = 0 "“A;ul Auv A;vl A;J _A"PA;PI I 0
0 A;ui 0 — Ava;; 0 I
i A 0 0 |
AA, ATA AZY
_ { vu p/ipp } —AJJAWA;} Azl (B.16)
— A b A;pl
i —~ A1 AL A Ay 0

Taking A, = Ppp and using (B.16), (B.14), and (B.13), we get A"' 0o DGo P =

I 0 0
A (P — Py
(Y Frp = Pip) AZ}BPoum A51BPy — Puy)
+AGHBPop — Aup)
A;J Ava;ul Pvu _A;ul Ava;ul va
+A;JAUUA;1}(A‘UP - Pup)
| Az (Pop — Aup) Azs Pou AP

(B.17)

113

When computing the w; we must allow the matrices v and 3, which depend on a, b,
¢, and v to vary over S. All the other blocks, those in A and those in S, are constant.

The form of (B.17) suggests the following choices for the blocks of A:

=]J

App = Ppp,

AUP = Py,

Ay = VeFop — Pup + BcPop,

Awy = Puu+ Py,

Agy = BAPw+ Pw)s

Ay = PBcPu — Puv, (B.18)

where 3, and -, are the values of 3 and = at the prism’s center. Note that the
entries in the blocks making up P are exactly represented as APMs; so are their
sums, products, and differences. Thus A4,,, 4,, and A,, are exact; the other blocks
of A, which involve the evaluation of special functions, are uncertain to the extent as
the values of the special functions.

The choices (B.18) immediately determine most of the w;; the row sums contribut-

. ; o 1
ing to w, are automatically equal to one and, unless A,, is singular, w, = . The
1

program checks the invertibility of A,, by evaluating its determinant, an exact cal-
culation. If det[A,,] were to be zero the program would write an error message and
halt; this has never actually happened. The remaining row sums, those contributing

to w,, are

AT =)P+ A5 — BB,
u.b. [A—l ODGm o P]k* - u.b. [uu('T ‘Yc) PP vu ('6 lac) p]J*"}'
[AL 18P + AL NB ~ BI)Puls,

< [A_l]j* - [(7 - 'Yc)Ppp + (6 - l@c)Pvp]**”{" ,

" [ﬁPvu + (ﬁ = ﬁc)PUU]**

114

u‘b-(h’ = ’Yc]**)[Ppp]**+
< [A7N5 e Wb ([8)en)[Poulsst (B.19)
ub([,@ - ﬁc]**)([-pvp]*k + [va]**)

where k = 7 + 3, 7 = 1,2 and all upper bounds are taken over £ € .S. Out of all the
numbers appearing in (B.19), only [4,,'];, and the upper bounds on [8].., [B — B«
and [y — 7.).« cannot be calculated exactly; the first can be estimated to any desired
precision with the APM library, the rest are handled with the Bapm term, Bapm expr

machinery.

the column-rotor scheme

This technique fattens matrices A = DG,_ o P, where DG and P are as in equations
(B.13) and (B.14). Such A’s have almost the same form as (B.15), but they have
non-vanishing A,, blocks. The method’s name comes from the way it tries to ensure
that A 1s non-singular; it rotates parts of columns 4-7 with respect to each other so as
to guarantee that they are not parallel. For example, the function Rsubspace_rot (),
which performs the rotations, begins by finding the angle between the two, 2-d column

vectors enclosed in braces in the matrix below.

a1j; @z a3 0
az; QG232 Q23 0
dz1 @Gzz Qagg 0
a44 Qs Qag TN
Qs 4 Qs dge as7
dg 4 g Gge ag7
| arqg Qs are ar7 |

If columns 4 and 5 are nearly parallel then so are these two vectors; Rsubspace_rot ()
would rotate the shorter of the two through some fixed angle, then go on to check

and, perhaps rotate, other pairs until the matrix had no parallel columns. As we

115

noted in section 3.2.3, this techuique is not at all optimal. Indeed, it is not even
certain to produce a non-singular matrix, though, in practice, it always does. The
column-rotor scheme produces smaller, more snugly fitting bounding prisms than the
fixed-form fattener and so improves the program’s performance.

The main computational work in this scheme is in inverting the matrix A4 and
in calculating the w;. Since, after column-rotation, A bears no direct relation to
DG, o P, we cannot expect any special form for A= 0 DG, o P. Instead, we must
use the APM library to compute some A = A~! directly. Define? a 4 x 4 matrix B

such that

Buu B'LHJ Auu Auv

=1
‘B‘U‘U B'U‘U AUU AUU
Then
I10 0 A;pl 00
-1 — -
A = 0 Bu. Bu —AupAppl I 0],
0 B,. By —At,pA;pl 0 I
A;; 0 0
= — B A | Ay A A, |- (B.20)
—ByuAup A} B.. B.. Awp Avu A
wB,,vA,,pA;pl

Note that the lower-left, 4 x 4 block of A is just B. Then, again toking Ay = Pipy

‘Some of the notation in this section, like B here, is introduced as a guide to the names of
variables used in the code.

116

the product A= o DG 0 P is

r

I 0
A-upppp + Auupvp+ juupvu'f‘ g- uu vv+
-lauv('yppp e up + ﬁP‘up) A~uu(,3Puu - Puu) Akuu(lﬁpuv -

}a

A‘vapp + AuuP‘up_" A~vupvu+ u 'UU+
L Auu(‘yppp—Pup_}'ﬁPup) ﬁvv(ﬁpvu'_Puu) ﬂpuv_
B 1)
Since the fattening scheme does not alter the first three columns, the blocks A,, and

Ayp have the forms dictated by A = DG,, o P; these are the same as the forms used

in equation (B.18) for the fixed-form scheme. Equation (B.21) then simplifies to

I 0 0
{ Auo(¥ = 7o) Popt } { APt } { ApuPout }
Aun(B — B.)Pop A (8P — Puy) AuwlBPo ~ Pu)
{ Auo(¥ = 7) Popt } { Ay Pt } { vuPout }
| | Au(B - 8P Bk — P AlBPus — Puy) | |
and the row sums contributing to w, are

Auv(-r 75 PPP + Auv(ﬁ ﬁ) UP]J*+
u.b. [Auquu + Auu(ﬁPUU = Puu)]j*+ !
[A-_uupw + Jz{uu(,ﬂpvv - PU”)]j*

]

IN

wb. [Avulis {0b([7 = Yeles) [Frples + 0.b(I8 = Boles)[Poslus} +
s [P - Al P BN
U..b. [EuuPuv + Auu(ﬁpvv - PIW)]**' (B22)

All the upper bounds are taken over & € §; the formulae for w, are similar. The
program calculates the entries in A to at least precision decimal places, then treats

them as exact in the evaluation of [Ay,];, and in expressions like

u.b‘ [Auupvu + Auv(ﬁpvv E Puv)]-k*- (B23)

117

Upper bounds like (B.23) are so important that the program includes a special
function, Rbound_rows(), to evaluate them. To account for the small errors (<
1Q~Presision) i A, the program adds max_error to the value of w; as computed ac-
cording to (B.22). Since the entries of 3 and P are all less in absolute value than 10,
and since max_error is at least five orders of magnitude bigger than the largest error

in A, this is a very conservative estimate.

matrix inversion

Notice that only blocks from the lower-left corner of A appear in equation (1.22);
it will be enough to calculate just these blocks to precision decimal places. The
function, Rgauss (), which does the calculation, takes a matrix M and uses the Gauss-
Jordan algorithm with full pivoting to produce a result M ~ M~! such that MM =
I+ O(e), that is

[MM);; — 6] < e

where §;; is the Kroneker delta function and e is, as usual, 10~Preci#ion,
To apply the Gauss-Jordan algorithmn to an n X n matrix M one constructs the

n X 2n matrix

[M, My, - My, 10 --- 0]
- M‘“ _[u:22 ves M 0 1 ek [
| M., M, M,.| 0 0 1]

made by appending a copy of the identity to the right side of M. The algorithm
transforms the left side of G into the identity through a sequence of row operations
that simultaneously transform the right side into A=!. The first step is to multiply the
top row by a constant so that the (1,1) entry is equal to one, then subtract suitably

scaled multiples of the first row from each of the others in such a way as to eliminate

118

the entries in the first column. After this step the system looks like

[My Mg | _1_ |
1 1"111 My, My y 0 0
G Mz — Mo Mz M
GI — ﬂf]] 1‘*1’11 (B.24)
My My, _ My,
L 0 M, My, My, 1 .

In the second step one uses multiples of the second row to eliminate all but the (2,2)
entry from the second column ... and so on. The true Gauss-Jordan algorithm with
full pivoting may rearrange some of the rows and columns so as to place large entries
on the diagonal of the left-hand block; also, real implementations use only a single
n X n array, gradually replacing the matrix M by its approximate inverse, M. The
reader interested in the details of the algorithm should consult either the code, which
is in appendix C, or the excellent book [PFTV86]. Here, we will mostly ignore the
rearrangements, because they do not affect the error estimates we need.

The divisions needed to calculate intermediate results like (B.24) can only be done
approximately so we must calculate bounds on the errors they introduce. Suppose all
the calculations are done to some fixed precision, inv_dp and define ;,, = 107v-9P,

We will need a new symbol, (/, to denote the approximate value of the matrix G’

and will also need to define 6;, the largest error made in calculating an entry of G';
b1 = uj-}g- l[é’ — G'jxl.

The second step produces

GH

0 0 =%

*

[1
0 1 * * Mg

My Mzo2—Mz 1M 2

*

(B.25)

119

Ideally, we would use G’ to calculate G" according to

R
- ifi=2
o — 22
7 G’ G’ ' ’
Gi,— —22L ifi#2
22
but instead, Rgauss () actually calculates
(G .
=< ifi=2
s Gzz inv_dp
Gy = - (B.26)
- GGl
P “} if 4 # 2
22 inv_dp tnv_dp

From this we must estimate §,, an upper bound on the difference between G* and
G". Rgauss() finds §; in stages, as follows:
(i) Compute

6,

e e
|G22| — &1

6piv

femer
S 15 L & + 2Eirw-
lGZZ| = 61 inv_dp

This is a bound on the error made by taking

1 1 i s

- = = piv_inv;
22 22)inv_dp

piv.inv is the name used in the code.

(i1)
8, = b;|piv_inv| + Ep(tlle;l)z. (B 8.5

This is a bound on the error introduced by normalizing the second row so that

its (2,2) entry is equal to one.

120
(iii)

b = 264 601Gyl + 616,

. |piv_inv G, b. |G .
> &6+ 6 l’t?!)z |piv_inv Gy, | + &, ub |G| + 816,

This is a matrix-wide bound on the errors made in computations like those in
(B.26). The inequality is a consequence of the pivoting part of the algorithm,
which ensures that |[piv_invGh,| < 1.

(iv) Finally,

52 e [6m]inv_dp <+ Einy-

Similar estimates eventually give §,,, a matrix-wide estimate on the difference between

entries of M and the true inverse, M~!. From this we can conclude

(M M) ; — &

< néb, 1}.b. | My |- (B.27)

Unless M is singular, we can choose inv_dp to make the error (B.27) as small as

we like. Rgauss() guarantees both 4, and the error given by (B.27) to be less than

10 —precision

about truncation

Both the schemes described above produce matrices, P’, whose entries are long strings
of digits, longer than those of the original matrix, P. To avoid the computational
cost of storing and manipulating long strings, the program truncates the entries in
P’ to precision decimal places; this introduces a small, readily manageable error.
Call the truncated prism P/ __; its entries differ from those of P’ by, at most,

trunc?

€ = 10~Precision oo that @ € 8’

z ==, 4 P'n for somen € Q7

121

differs from

A | ’
X = &, + F

runcn

by, at most, 7e in each coordinate. The simplest way to handle this error is to
incorporate it into 4., the upper bound on the difference |(Gap(®:) — @c)i|. The
coordinates of Ggp.(®.) are calculated out to precision decimal places, so we must

have

6. > 8e.

Since the program uses §, = max_error = 10%*/**-4P¢ = 10%¢, this condition is abun-

dantly satisfied.

122

Appendix C

Computer Programs

This appendix contains the most important parts of the C programs used to prove
the results described in chapter 3. In the interest of economy, we have deleted most
of the non-rigorous and semi-rigorous parts of the code, leaving only those parts bear
on that the correctness of our converse KAM results. The first section contains Lloyd
Zussman’s own description of his arbitrary precision library, the rest of the appendix

has been copied directly from the source files used to compile the program.

C.1 Arbitrary precision library

APM

apmInit(init, scale_factor, base)

long init;

int scale_factor;

short base;

{3
This routine initielizes a new APM value. The ’'init’ parameter is a long
integer that represents its initial value, the 'scale_factor’ variable
indicates how this initiel value should be scaled, and ’base’ is the base of
the initiml velue. Note that the APM value returned by this routine is
normally a reclmimed APM value that has been previcusly disposed of via
epmDispose(); only if there mre no previous values to be reclaimed will this
routine mllocate a fresh APM value (see mlsc the mpmGarbageCollect ()
routine).

Bases can be 2 - 36, 10000, or 0, where O defaults to base 10000.

If the call feils, it will return (APM)FULL and ’apm_serrno’ will contein a

123

meaningful result. Otherwise, a new APM value will be initimlized.

For example, assume that we want to initielize two APM values in bese 10000,
the first to 1.23468 and the second to 1 E20 (Yone times 10 to the 20th
power'):

APM wpm_1 = spmInit(123456L, -5, 0);
APM epm_2 = epmInit(1L, 20, 0);

As = convenience, the following macro is defined in epm.h:
#define mpmNew(BASE) apmInit(CL, O, (BASE))

int

apmDispose(apm)

APM mpm;

{}
This routine disposes of m APM velue ’'mpm’ by returning it to the list of
unused APM values (see also the mpmGarbageCollect() routine). It returns
an appropriate status which is also put into ’epm_errno’.

int

apmGarbageCollect ()

11
When APM values are disposed of, they remein allocated. Subsequent calls to
apmInit() may then return a previously mllocated but disposed APM value.
This is done for spesd consideramtions, but after a while there may be lots of
these unused APM values lying around. This routine reclmims the space taken
up by these unused APM values (it frees them). It returns an appropriate
status which is mlsc put into 'mpm_errno’.

int

apmAdd(result, apmi, apm2)

APHM result;

APM mpml;

APM apm2;

{r
This routine adds ’epmi’ and ’epm2’, putting the sum into ’result’, whose
previous velue is destroyed. Note that all three parameters must have been
previously initimlized vie apmInit().

The ’result’ parameter cannot be one of the other APM parameters.

The return code and the ’>mpm_serror’ variable reflect the status of this
function.

int

apmSubtrect (result, apml, apm2)

APM result;

APM apmi;

APHM epm2;

1
This routine subtracts ’apm2’ from ’epml’, putting the difference into
'result’, vhose previous value is destroyed. HNote that all three parameters
must have been previously initimlized vie epmInit().

The ’result’ parameter cannot be one of the other APHM parameters.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

124

apmMultiply(result, apml, apm2)

APH result;

APM mpmi;

APM mpm2;

{3
This routine multiplies ’mpmi’ and ’mpm2’, putting the product into ’result’,
whose previous value is destroyed. HNote theat all three parameters must have
been previously initimlized via apmInit().

The ’result’ parameter cannot be one of the other APM parameters.

The return code and the ’apm_errno’ wvarieble reflect the status of this
function.

int

apmDivide(quotient, radix_places, remainder, apml, apm2)

APM quotient;

int radix_places;

APM remminder;

APM apmi;

APM apm2;

{1
This routine divides 'eapmi’ by ’apm2’, producing the ’quotient’ and
‘remainder’ varimbles. Unlike the other three basic operations,
division cennot be counted on to produce non-repeating decimals, so
the ’'radix_places’ varimble exists to tell this routine how many
digits to the right of the radix point mre to be calculated before
stopping. If the 'remminder’ veriable is set to (APM)NULL, no
romeinder is calcnlated ... this saves quite a bit of computation time
and hence is recommended whenever possible.

All APM values must have been previously initialized via apmInit() (except,
of course the ’'remainder’ value if it is to be set to NULL).

Division by zero creates a zero result and m warning.

The ’‘quotient’ and ‘remainder’ variebles can’t be one of the other APM
parameters.

The return code and the 'apm_errno’ veriable reflect the status of this
function.

int

epmCompare(apmi, apm?2)

APH apmi;

APM mpm2;

13
This routine compares ’apmi’ and ’'epm2’, returning -1 if ’eapml’ is less than
’apm2’, 1 if ’epml’ is greater than ’mpm2’, and O if they are equal.

It is not an error if ’apmi’ and ’epm2’ are identical, and in this case the
return value is O.

The ’'apm_errno’ veriable contains the error code. You must check this wvalue:
if it is set to an error indication, the comparison feiled and the return
value is therefore meaningless.

int

apmCompareLong(apm, longvel, scale_factor, base)
APM apm;

long longvel;

int scale_factor;

125

short base;

8

This routine works just like apmCompare(), but it compares the ’'apm’ value to
'longvel’, scaled by ’scale_factor’ in ’base’. The ’apm_errno’ variable
contains the error code.

int
apmSign(epm)
APM epm;

{7

This routine returns the sign of the ’apm’ velue: -1 for negative, 1 for
positive. The ’apm_errno’ varimble contains the error code. You must check
‘mpm_errno’: if it’s non-zero, the function return velue is meaningless.

int

apmibsoluteVelue{(result, apm)
APM result;

APM apm;

{}

This routine puts the absoclute value of ’apm’ into ’result’, whose previous
value is destroyed. HNote that the two parameters must have been previously
initielized vie apmInit().

The ’result’ parameter cennot be the other APM paremeter.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

epmNegate(result, apm)
APHM result;

APHM num;

{3

This routine puts the mdditive inverse of ’epm’ into ’result’, whose previous
value is destroyed. HNote that the two parameters must have been previously
initielized via apmInit().

The ’result’ parameter cannot be the other APM parameter.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

epmReciprocel(result, radix_places, apm)

APM result;

int radix_places;

APM num;

3
This routine puts the multiplicative inverse of ’epm’ into ’result’, whose
previous velue is destroyed. Note that the two APM parameters must have been
previocusly initimlized vie apmInit(). Since teking the reciprocal involves
doing & division, the ’radix_places’ parameter is needed here for the same

reason it’s needed in the apmDivide() routine.
Taking the reciprocal of zero yields zero with a warning status.
The ’'result’ parameter cannot be the other APM parameter.

The return code and the ’mpm_errno'’ variable reflect the status of this
function.

int

126

apmScale(result, mpm, scale_factor)
APM result;

APH apm;

int scale_factor;

{

This routine assigns to ’result’ the value of ’apm’ with its radix point
shifted by ’scale_factor’ (positive ’scale_fector’ means shift left). The
'scale_factor’ represents how many places the radix is shifted in the base of
’apm’ unless ’mpm’ is in base 10000 ... in this speciml case, ’scale_factor’
is treated as if the base were 10.

This is a very quick and accurate way to multiply or divide by a power of 10
(or the number’s base).

The ’'result’ parameter cannot be the other APM parameter.

The return code and the ’mpm_errno’ variable reflect the status of this
function.

int
apmValidete(apm)
APH epm;

1}

This routine sets 'mpm_errno’ and its return status to some non-zero value if
apm’ is not m valid APM value.

int

apmissign(result, apm)
APM result;

APH num;

3

This routine mssigns the value of ’epm’ to ’result’, whose previous value is
destroyed. HNote that the twvo parameters must have been previously
initielized vie apmInit().

It is not considered an erroxr if ’result’ and ’apm’ are identical; this case
is a virtual no-op.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

epmAssignlong(result, long_value, scale_factor, base)

APH result;

long long_value;

int scale_factor;

short base;

{;
This routine mssigns a long int to ’'result’. Its second through fourth
parameters correspoend exactly to the parameters of apmInit(). The only
difference between the two routines is that this one requires thet its result
be previously initimlized. The ’long_vmlue’ parameter is m long that
represents the value to assign to ’'result’, the ’scale_factor’ variable
indicates how this value should be scnled, and ’base’ is the base of the
value,

Bases can be 2 - 38, 10000, or O, where O defaults tc base 10000.

For example, assume that we want to mssign values to two previously
initimlized APM entities, apm_1 end apm_2. The base will be base 10000, the
first value will be set to 1.23456 and the second will be set to 1 E20 ("one
times 10 to the 20th power'):

127

int ercode;

ercode = mpmAssignLong(apm_1, 123466L, -5, 0);

1

ercode = apmAssignLong(apm_2, 1L, 20, 0);

The return code und the ’mpm_errno’ variable reflect the status of this
function.

int

apmidssignString(epm, string, base)

APM apm;

char *string;

short base;

¥
This routine takes m character string containing the ASCII representation of
a numeric vemlue and converts it into a APM value in the base specified. The
'apm’ parameter must have been previously initielized, ’string’ must be
non-NULL end velid in the specified base, and ’base’ must be m valid base.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

epmConvert(string, length, decimals, round, leftjustify, apm)

cher *string;

int length;

int decimals;

int round;

int leftjustify;

APM apm;

{3
This routine converts a APM value ’apm’ into its ASCII representation
'string’. The ’length’ parameter is the maximum size of the string (including
the treiling null), the ’decimels’ parameter is the number of decimal places
to display, the ’round’ parameter is a true-false value which determines
vhether rounding is to take place (0 = false = no rounding), the
'leftjustify’ parameter is m true-false value which determines whether the
result is to be left justified (0 = false = right justify; non-zeroc = true =
left justify), and the ’apm’ paramter is the APM value to be converted.

The ’string’ parameter must point to an area that can hold at least ’length’
bytes,

If the ’'decimals’ parameter is < O, the string will contain the number of
decimal places that are inherent in the APM value passed in.

The return code and the ’apm_errno’ variable reflect the status of this
function.

int

(*apmErrorFunc(nevfunc)) ()

int (*newfunc)();

13
This routine registers an error handler for errors and warnings. Before any
of the other APM routines return to the caller, an optional error handler
specified in ’newfunc’ can be called to intercept the result of the
operation. With a registered error handler, the caller can dispense with the
repetitious codes for ch-cking ’apm_errnc’ or the function return status after

128

ench call tc a APM routine.

If no error handler is registered or if ’newfunc’ is set to NULL, no mction
will be taken on errors amnd warnings except to set the ’epm_serrno’ variable.
If there is an error handler, it is called ms follows when there is an srror
or m warning:

retcode = (*newfunc)(ercode, message, file, line, function)

where ...
int retcods; /* returned by ’'newfunc’: should be ’ercode’ */
int ercode; /* error code */
char *message; /* a short string describing the error =/
char *file; /* the file in which the error occurred */
int line; /* the line on wvhich the error occurred */
char »function; /* the name of the function in error */

Note that your error handler should normally return ’ercode’ unless it does =
longjmp, calls exit(), or in some other way interrupts the normal processing
flow. The value returned from your error handler is the value that the apm
routine in error will return to its caller.

The error handler is called efter ’mapm_errno’ is set.

This routine returns e pointer to the previously registered error handler or
NULL if one isn’t registered.

int

apmCelc(result, operand, ..., KULL)

APH result;

APM operend, ...;

1}
This routine performs m series of calculetions in an RPN ("Reverse
Polish Notmtion'") feshion, returning the finml result in the ’result’
variable. It tekes a variable number of arguments and hence the
rightmost argument must be = NULL.

Each ’opermnd’ is either e APM value or m special constant indicating

the operation that is to be performed (see below). This routine makes
use of a stack (16 levels deep) similar to that in many pocket
calculators. It also is able to access a set of 168 auxiliery

registers (numbered O through 16) for holding intermedimte values.

The stack gets reinitimlized at the start of this routine, so values
that have been left on the stack from a previous call will disappear.
However, the auxiliary registers are static and values remmin in these
registers for the duration of your program. They may mlso be
retrieved outside of this routine (see the apmGetRegister() and
apmSetRegister() routines, below).

An operand that is an APM value is automaticelly pushed onto the stack
simply by naming it in the function cmll. If the stack is full when m
value is being pushed onto it, the bottommost value drops off the
stack and the push succeeds; this is similar to hov many pocket
calculators work. Also, if the stack is empty, a pop will succeed,
yielding a zero value and keeping the stack empty. The topmost value
on the stack is automatically popped into the ’‘result’ parameter after
ull the operations have been performed.

An operand that is one of the following special values will cause
an operation to be performed. These operations are described in the

129

following list. Note that the values "V", "Vi", and "V2'" are used
in the following list to stand for temporary velues:

APM_ABS pop V, push absolute value of V

APM_NEG pop V, push -V

APM_CLEAR empty the stack

APM_DUP pep V, push V, push V

APM_SWAP pop Vi, pop V2, push Vi, push V2

APM_SCALE(N) pop V, push V scaled by N [mas in apmScale{()]

APHM_PUSH(N) V = value in register N, push V

APM_POP(N) pop V, store it in register K

APM_ADD pop Vi, pop V2, push (V2 + Vi)

APM_SUB pop Vi, pop V2, push (V2 - V1)

APM_MUL pop Vi, pop V2, push (V2 = Vi)

APK_DIV(R) pop V1, pop V2, push (V2 / V1) with N radix places
[mas in apmDivide()], remainder goes into register O

APM_RECIP(N) pop V, push 1/V with N radix places

[a5 in apmReciprocal()]

Since register O is used to hold the remainder in a division, it is
recommended that this register not be used to hold other values.

As an example, assume that APM vmlues "foo", "bar", and '"baz'" have
been initimlized via apmInit() and that "foo" and "bar'" are to be used
to calculate "baz'" as follows (mssume that divisions stop after 16
decimal places heve been calcluated):

baz = 1 / ((((foo * bar) + foo) / bar) - foo)
The function call will be:

bedCalc(baz, foo, APM_DUP, APM_POP(1), bar, APM_DUP, APM_POP(2),
APM_MUL, APM_PUSH(1), APM_ADD, APM_PUSH(2), APM_DIV(ie),
APM_PUSH(1), APM_SUB, APM_RECIP(16), NULL);

Note that the value of "foo" is stored in register 1 end the value of
"bar" is stored in register 2. After this call, these registers will
s5till contain those wvalues.

int

epmGetRegister(regvalue, regnumber)

APH regvalue;

int regnumber;

1
The value in muxiliery register number ’'regnumber’ is assigned to APHM
value 'regvalue’. The ’regnumber’ parameter must be between 0 and 1B,
inclusive. The ’regvelue’ parameter must have been previously
initinlized via apmInit().

int

epmSetRegister(regvalue, regnumber, newvalue)

APM regvalue;

int regnumber;

APM newvalue;

1r
The value in auxiliary register number ’regnumber’ is assigned to APM
value ’regvalue’, mand then the APM value ’newvalue’ is stored in that
same register. The ’regnumber’ parameter must be between O and 15,
inclusive. The ’regvalue’ and 'newvalue’ parameters must have been
previously initimlized vie apmInit{().

130

C.2 Source code

The listings below contain only those functions crucial to the correct execution of a

converse KAM calculation. Some references to inessential or semi-rigorous parts of

the code have been left in place because we wished to present tlie important functions

exaclly as they appear in the original source files.

C.2.1

special functions

the header files apmSpecial.h and apmPrint.h

* % W N

*

*
*

define
define

define

ifndef
define
define
endif

ifndef
define
endif

extern AP
extern AP
extern AP
extern AP
extern AP
extern in
extern in

extern ch

MAX_TRIG_TERMS 100
DFLT_TRIG_DP 20

PI_DP (sizeof(pi_str) / sizeof(char) - 3)

YES
YES 1
HO

m_swap
m_suap(x,y,t) (t=x, x=y, y=t)

H zero, one, two ;

M pi, two_pi, half_pi, threeHalf pi, eighths_2pi[8] ;
M Thetn, scratch, xMod2pi, Thetmn_sq, Answer ;

M Factrl, coef, epmOrder ;

M approx[2], diff, ub_diff ;

t trig_dp, specialsinit ;

t trig_terms, dp_lost ;

ar pi_str[] ;

apmCos(), etc.

*
*
*
*
*

*

include
include
include
include
include

define

APH *5
APM ze
APM pi

APH

APM si

APM
int

<stdio.h>
<math.h>

"nF“' hl‘l
"apmPrint.h"
"apmSpecial.h"

BUF_SZ 258
inCoef, *cosCoef ;

ro, one, two ;
, two_pi, half pi, threeHalf pi, eighths_2pif8] ;

Thetan, scratch, xMod2pi, Theta_sq, Answer ;

nFactrl, cosFactrl, apmOrder ;

approx[2], diff, ub_diff ;

trig_dp, specialsInit = D ;

int
char
char

131

trig_terms, dp_lost ;
pi_str[] = "3.14159265358979323846243383279502884187169399376" ;
log_buf [BUF_SZ] ;

LR e R S T LS

initApmSpecials()

1{

}

int k ;

/* Initimlize & bunch of APMs. Thete will be the reduced argument
of a trig function; it will be between zero and pi / 4. w/

pi = mpmNew(O) ;
one = apmInit(1L, O, O) ;
two = apmInit(2L, 0, 0) ;
zero = apmInit(OL, 0, O) ;
diff = apmNew(O) ;
Theta = apmNew(0) ;
inswer = apmNew(O)} ;
two_pi = apmHew(O } ;
helf _pi = epmRew(O)
scratch = epmAew(O)
ub_diff = apmNew(0)
xMod2pi = apmNew(0)
apmOrder = apmNew(O)
Theta_sq = apmBew(O)
sinFactrl = apmNew(O)
cosFactrl = apmlew(0)
approx[0] = apmNew(O)
approx[1] = epmBew(0)
threeHalf _pi = apmNew(0) ;
for(k=0 ; k < 8 ; k++)
eighths_2pi[k] = apmNew(0) ;

TR

/* Obtein some rational mutiples of pi. These will be helpful
vhen wve go to restrict the domain of the trig functions to
between zero and pi / 4 . */

apmAssignString(pi, pi_str, 0) ;

apmMultiply(scratch, two, two)
apmDivide(eighths_2pil[0], (PI_DP+2), (APM)RULL, pi, scratch) ;

for(k=1 ; k < 8 ; k++)
apmAdd(eighths_2pi[k], eighths_2pi[0], eighths_2pil[k-1]) ;

apmMultiply(two_pi, pi, two) ;

apmAssign(helf_pi, eighths_2pifi]) ;
apmAssign(threeHalf pi, eighths_2pilB]) ;
setTrigDp(DFLT_TRIG_DP) ;

dp_lost = 0 ;
specialsInit = YES ;

return(1) ;

PR e R R R R Y

setTrighp(dp)

132

int dp ;
i
double j, j_fact, ten_to_dp ;

/* Check to see that the desired mccuracy is compatible
vith our knowledge of pi. */

if((dp+2) > PI_DP) {
fprintf(stderr,
"We don’t know pi well enough to achieve the desired accuracy. \n") ;
return(0) ;

}
else
trig_dp = dp+2 ;
/+ Assume the argument is between zero and pi / 4. How meny
terms from the Taylor series do we need to include 7 */
trig_terms = 1 ;

ten_to_dp = pow(10.0, (double)dp) ;
for(j = 1.0, j_fect = 1.0 ; j_fact < ten_to dp ; j += 2.0) {
j_fact *= j * (j + 1) ;
trig_terms++ ;
if(trig_terms > MAX_TRIG_TERMS) {
fprintf(stderr, "Too many terms reguired. \n") ;
return(0) ;

}

trig_dp += (int)(ceil(logiO((double) trig_terms))) ;
setTrigCoef() ;
return(dp) ;

¥

F I e S Y

reducedrg(x)}
/*
Tekes x, chops off enough multiples of two_pi to get it
into the interval betwvesn zerc and two_pi. Checks that we
haven’t lost an unacceptable mmount of precision in deing
this stage of the reduction. Then chops off multiples
of pi/4 to get the mrgument into the interval between zeroc and
pi/4. Sets Thetam egual to the reduced argument and returns
an integer indicating in which of eight equally spaced intervals
x (mod two_pi) lay. If any precision is lost, dp_lost is set
to the number of decimal pleces lost.
*/
APH x ;

int octant ;
char qtnt_str[BUF_SZ] ;

/* Hote that we haven’t lost eny decimal places yet. */
dp_leost = 0 ;

/* Whack out many multiples of two_pi. */
mpmDivide(scratch, 3, (APM)NULL, x, two_pi)} ;
apmFloorString(qtnt_str, BUF_SZ, scratch) ;
apmissignString(scratch, gqtnt_str, O) ;
epmMultiply(Answer, scratch, two_pi) ;
apmSubtract(xMod2pi, x, Answer) ;
if(apmSign(xMod2pi) == -1)

}

133

apmCalc(xMod2pi, xMod2pi, two_pi, APM_ADD, NULL) ;

for(octant=0 ; (octant < 8) ; octant++) {
if(epmCompare(xMod2pi, eighths_2piloctant]) < 0)
break ;
¥

switch(octeant) {
case O :
apmAssign(Theta, xMod2pi) ;
break ;

case 1
upmSubtrect(Theta, half pi, xMod2pi) ;
break ;

case 2 :
apmSubtract(Theta, xMod2pi, half_pi) ;
break ;

case 3 :
epmSubtract(Theta, pi, xMod2pi)
break ;

case 4 :
apmSubtract(Theta, xMod2pi, pi)
breek ;

case b :
apmSubtract(Theta, threeHelf pi, xMod2pi) ;
break ;

case 6 :
apmSubtract(Thetm, xMod2pi, thresHalf pi)
break ;

case 7 :
apmSubtract(Theta, two_pi, xMod2pi) ;
break ;

default :
break ;

/* Check for loss of precision */
if((PI_DP - strlen{qtnt_str)) < trig._dp)

dp_lost = trig_dp - PI_DP + strlen(qtnt_str) ;
else

dp_lost = 0 ;

return(octant) ;

Ve T S Y

reducedSin()

/*

Takes the sine of Theta, puts the result in Ansver.

*/
int order, dp_to_find, term_num ;

apmAssign(Answer, zerc) ;

134

apmMultiply{ Thete_sq, Thetw, Thete) ;

term_num = trig_terms - 1 ;
for(order = (2 * trig_terms - 1) ; order > O ; order -= 2) {

/* Multiply the old partiml sum by Theta squared
and add in a new coefficient =/
epmMultiply(scratch, Ansver, Theta_sq) ;
apmAdd{ Ansver, sinCoef[term_num--], scratch) ;
apmTruncete(Answer, trig.dp) ;

/* HMultiply by the final factor of Theta,
divide by the factoriml, and return */

if(dp_lost > 0)

dp_to_find = trig_dp + 1 - dp_lost ;
else

dp_to_find = trig_dp + 1 ;

apmMultiply(scratch, Ansver, Theta) ;
epmDivide(Answer, dp_to_find, (APM)BULL, scratch, sinFactrl)} ;
return ;

}

T e 7 4

reducedCos()
/*x
Takes the cosine of Theta, puts the result in Answer.

*/
int order, dp_te_find, term_num ;

apmiAssign(Answver, zero) ;
apmMultiply(Theta_sq, Thetm, Thetm) ;

term_num = trig_terms - 1 ;
for(order = (2 * trig terms - 2) ; order >= 0 ; order -= 2) {

/* Multiply the old partial sum by Theta squared
and add in a new coefficient */
apmMultiply(scratch, Answer, Theta_sq) ;
apmAdd(Ansver, cosCoef[term_num--], scratch) ;

epmTruncate{ Answer, trig dp) ;

/* Divide by the factorial,
Put the result into Answer, end return #*/

if(dp_lost > 0)

dp_to_find = trig_dp + 1 - dp_lost ;
else

dp_to_find = trig_dp + 1 ;

apmDivide(scratch, dp_to_find, (APM)NULL, Ansver, cosFactrl) ;
apmAssign(Answver, scratch) ;
return ;

}

PR s R R Ty]

apmSin(result, x)

135

APM result, x ;
{

int octant ;

if(specimlsInit == RO) {
fprintf(stderr,
"apmSin() : Please call initApmSpecials{). \n") ;
apmissignLong(result, OL, 0, 0) ;
apm_errno = APM_EPARM ;
return ;
}
else
apm_errno = APM_OK ;

/* Reduce the argument, report any loss of precision, and
note in which octant x (mod two_pi) lumy. */

octent = reduceirg(x) ;
if(dp_lost > 0) {
fprintf(stderr,
"apmSin : Big argument, lost %d decimal places from the answer. \n'",

dp_lost) ;
epm_errno = APM_WTRUAC ;
}
else
epm_errno = APM_OK ;
/# Evaluate the sine. Which of the two reduced functions
one uses depends on the octant. */

switch{ octant) {
case O :
reducedSin() ;
bresk ;

case 1 :
reducedCos() ;
break ;

case 2 :
reducedCos() ;
break ;

case 3 :
reducedSin()
break ;

case 4
reducedSin() ;
apnlegate(scratch, Answer)
apmissign(Ansver, scratch)
break ;

- o

case b5 :
reducedCos() ;
epmRegnte(scratch, Answer) ;
apmAssign(Answer, scratch) ;
break ;

case 8 :
reducedCos() ;

136

apmNegate{ scratch, Answer) ;
epmAssign(Answer, scratch) ;
break ;

case 7 :
reducedSin() ;
apmNegate(scratch, Answer) ;
apmAssign(Ansver, scratch) ;
break ;

defanlt :
break ;
}

epmissign(result, Answer) s

return ;

}

PR e e e R R Y

apmCos(result, x)

APM result, x ;
{

int octant ;

if (specialsInit == KO) {
fprintf(stderr,
"apmCos() : Please call initApmSpecials() first. \n") ;
apmiAssignlLong(result, OL, 0, 0) ;
apm_errno = APM_EPARM ;
return ;
}
else
apm_errnc = APM_OK ;

/* Reduce the argument, report any loss of precision, and
note in which octent x (mod two_pi) lay. */

octant = reduceArg(x) ;
if(dp_lost > 0) {
fprintf(stderr,
"apmCos : Big argument, lost %d decimal places from the answer. \n",
dp._lost) ;
mapm_errno = APM_WTRUNC ;
}
else
apm_errno = APM_OK ;

/* Evaluate the cosine. Which of the two reduced functions
one uses depends on the octant. */

switch(octeant) {
case O :
reducedCos() ;
break ;

case 1 :
reducedSin() ;
break ;

137

case 2 :
reducedSin() ;
apmFegate(scratch, Answer) ;
apmissign(Answer, scratch) ;
break ;

case 3
reducedCos() ;
apmBegate(scratch, Ansver
epmAssign(Answer, scratch
break ;

~

case 4 :
reducedCos() ;
epmNegate(scratch, Answer
epmAssign(Answer, scratch
break ;

[

~

case b :
reducedSin() ;
apmiegate(scratch, Answer
epmAssign(Ansver, scratch) ;
breek ;

~

case 6 :
reducedSin() ;
breask ;

case 7 :
reducedCos() ;
break ;

default
break ;
}

apmAssign(result, Answer) ;
return ;

}

PR e e S I

apmSqrt(result, dp, x)

/*

Find square roots using Newton’s method.

*/

int dp ;
APM x, result ;
{

int comp, dp_plus ;

APHM *this_approx, *next _approx, *temp ;
/*

Check that mll the scratch varimbles are ready.

~/

if(specialsInit == B0) {
fprintf(stderr,

"apmSqrt() : Please call initApmSpecials() first.

apmAssignlong(result, OL, 0, 0) ;
apm_errno = APM_EPARM ;
return ;

\n")

138

¥
else
apm_errno = APM_OK ;

/=
If the argument is zero, just return zero.
If the argument is negative, whine.
*/
if((comp = mpmCompare(x, zero)) == 0) {
apmAssign(result, zero) ;
return ;
}
else if(comp == -1) {
fprintf(stderr, "apmSqrt() : Can’t handle negative arguments.\n") ;
epm_errno = APM_EPARM ;
return ;
}
else
apm_errnc = APM_OK ;
/=
Do up Newton. The rule is
yIn+1] = (y[n] + x/yInl) / 2.0
=/
dp_plus = dp + 2 ;
apmAssignlLong(ub_diff, iL, -dp_plus, 0) ;
this_spprox = &approx[0] ;
next_approx = kepprox[1] ;
apmAssign(*this_epprox, x) ;
apmAssign(*next_epprox, zero) ;
apmSubtract(diff, »this_sapprox, *next_spprox) ;
while(apmCompare(diff, ub_diff) > 0) {
apmDivide(scratch, dp_plus, (APM) NULL, x, *this_mpprox) ;
apmCalc(scratch, scratch, *this_approx, APM_ADD, NULL) ;
apmDivide(*next_approx, dp_plus, (APM) HULL, scratch, two) ;
epmTruncate{ *next_approx, dp_plus) ;
apmCalc(diff, *this_epprox, *next_approx, APM_SUB, APM_ABS, NULL) ;
m_swap(this_approx, next_approx, temp) ;
b
epmAssign(result, *this_epprox) ;
return ;
B

R R R R TR TR R SRR RSy
apmFloor(result, arg, base)

int base ;
APH result, arg ;
{
char buf[BUF_SZ], *»cpt ;

epmConvert(buf, BUF_SZ, 2, NO_ROUND, LEFT_JUST, arg) ;
for(cpt = buf ; =cpt != ’\0’ ; cpt++)
if(*cpt == L
xcpt = '\O’ ;

apmAssignString(result, buf, base) ;

139

}

I e e S

setTrigCoef()

{
int j, order, coef_num ;
char #malloc{) ;

sinCoef = (APM *) malloc(trig_terms * sizeof(APM)) ;
cosCoef = (APM *) mmlloc(trig_terms * sizeof(APM)) ;
if((sinCoef == NULL) || (cosCoef == HULL)) {
fprintf(stderr, "Trouble mllocating %d APMs for coefficients.\n") ;
exit (0) ;
i

for(j=0 ; j < trig_terms ; j++) {
sinCoef[j] = apmNew(O) ;
cosCoef[j] = mpmleuw(0) ;
¥

if ((trig_terms % 2) !'= 0) {

apmissignlong(sinCoef([trig_terms-1], -iL, 0, O) ;
apmAssignLong(cosCoef[trig_terms-1], -1L, 0, 0) ;
X
else {
apmissignlong(sinCoef[trig_terms-1], iL, 0, 0) ;
epmAssignlong(cosCoef[trig_terms-1], 1L, 0, 0) ;
}

coef_num = trig_terms - 2 ;
for(order = (2 * trig_terms - 1) ; order > 1 ; order -= 2) {
/* coefficients for the sine *»/

apmAssignlLong(apmOrder, -((long) order), 0, 0) ;
apmMultiply(scratch, sinCoef[coef_num+1], apmOrder) ;
spmissignlong(apmOrder, (long) (order-1), 0, 0) ;
apmMultiply(sinCoef[coef_num], scratch, apmOrder) ;

/* coefficients for the cosine */

apmMultiply(scratch, cosCoefl[coef_num+1], apmOrder) ;
apmAssignLong(apmOrder, -(long)(order-2), 0, 0) ;
apmMultiply(cosCoef[coef_num], scratch, eapmOrder) ;

coef _num-- ;

}

apmAssign{(sinFactrl, sinCoef[0]) ;
apmissign(cosFactrl, cosCoef[0]) ;
}

R o T N o o o S e L7 4

epmFlooxrString(s, n, x)

APM x
int o}
char *s 3
{

apmConvert(s, n, 1, NO_ROUND, LEFT_JUST, x) ;
strip_frac(s) ;

X

I e e S V)

140

strip_frac(str)

char =str ;

{
cher =*cpt ;
for(cpt = str ; cpt != ’\0’ ; cpt++)
if(#ept == 7.7) {
*cpt = "\0’ ;
break ;
A
}
P e e e e S S Y
apmLogBd{ x)
APM < 3
/*
Returns an upper bound on the base-10 log of an mpm.
»/
{

int order ;
char =*bpt ;

if(apmCompare(one, x) <= 0) {
apmFloorString(log_buf, BUF_SZ, x) ;
return(strlen(log_buf)) ;

bg
else {
apmConvert(log_buf, BUF_SZ, (BUF_SZ-4), NO_ROUND, LEFT_JUST, x) ;
/%
Skip to the digits beyond the decimal point
*/
for(bpt=log_buf ; *bpt != .’ ; bpt++) ;
bpt++
/*
Count the number of zeroces to the right of the decimal point.
~/
for(order=0 ; (*bpt == ?0’) ; bpt++, order--) ;
return(order) ;
&
}

C.2.2 interval arithmetic

the header file bounding.h
/*

Data structures for calculating semi-rigorous bounds
on expressions.

*/

typedef struct { double ub, 1b ; } Bdd_dbl ;

typedef struct { int nfactors ;
double coef ;
Bdd_dbl *»factors, bound ; } Bdd_term ;

typedef struct { int nterms ;

141

double const ;

Bdd _dbl bound ;

Bdd_term *terms ; } Bdd_expr ;
/*

APM partners to the structures mbove
*/

typedef struct { APM ub, 1b ; } Bdd_epm ;
typedef struct { int nfactors ;

APM coef ;

Bdd_epm »+factors, bound ; } Bapm_term ;
typedef struct { int nterms ;

APM const

Bdd _apm bound ;

Bapm_term #terms ; } Bapm_expr ;

P e s s LS Ve

define essignBapm(empty, full) (epmAssign(empty->ub, full->ub), \
apmdssign(empty->1b, full->1b))
define wessignBdbl(empty, full) (empty->ub = full->ub, \
empty->1b = full->1b)
define nevBapm(new, base) (new.ub = apmBew(base),\

nev.lb = apmlew(base))
define maxdbs(x, y) ((fabs(x) > fabs(y)) ? febs(x) : fabs(y))

extern int HRmaxidbs() ;

expressions

include <stdio.h>

include <math.h>

include '"mpm.h"

include '"converse.h"
include '"bounding.h"

APM Rextrema, Rextremb, Rub, Rlb ;
APM Rprod[4], *Rlastp = (Rprod + 4) ;
double prod[4], *lastp = (prod + 4) ;

I T s S
initBounding()

1

int j ;

Rub = apmNew(BASE) ;
R1b = mpmNew(BASE) ;

Rextrema = mpmNew(BASE) ;
Rextremb = epmNew(BASE) ;

for(j=0 ; j < 4 ; j++)
Rprod(j] = wpmNew{ BASE) ;
}

P e e e Y

Rbound _term(tpt)
/*

Take a list of bounded factors and obtein a bound on their

142

product.
*/
Bapm_term *tpt ;
{
APM *ppt ;
Bdd_apm *facptr, *+*lastf, **fpt ;
/=
If there is only one factor, deal with it directly.
*/
if(tpt->nfactors == 1) {
apmAssign(Rextrema, tpt->factors[0]->ub) ;
apmissign(Rextremb, tpt->factors[0]->1b) ;
}
/*
Hendle expressions with more than one factor.
Since some of the factors may be negative we
can’t just multiply to gether all the upper
and lower bounds.
*/
else {
apmAssign(Rextreme, tpt->factors[0]->ub) ;
apmidssign(Rextremb, tpt->factors[0]->1b) ;
fpt = &ktpt->factors[i] ;
for(lastf = tpt->factors + tpt->nfactors ; fpt < lastf ; fpt++) {
facptr = *fpt ;
apmMultiply(Rprod[0], facptr->ub, Rextrema) ;
apmMultiply(Rpred[1], facptr->ub, Rextremb) ;
epmMultiply(Rprod[2], facptr->1b, Rextrema) ;
apmMultiply(Rprod[3], facptr->1lb, Rextremb) ;
apmissign(Rextremm, Rprod[0]) ;
epmAssign(Rextremb, Rprod[0]) ;
for(ppt = (Rprod+1l) ; ppt < Rlastp ; ppt++) {
if(epmCompare(*ppt, Rextrema) == 1)
apmissign(Rextrema, *ppt) ;
else if(apmCompare(*ppt, Rextremb) == -1)
apmdssign(Rextremb, #ppt) ;
}
}
}
apmCealc(Rextrema, Rextrema, tpt—>coef, APM_MUL, NULL) ;
epmCalc(Rextremb, Rextremb, tpt->coef, APM_MUL, NULL) ;
if (apmCompare(Rextrema, Rextremb) == -1) {
epmAssign(tpt->bound.ub, Rextremb) ;
epmAssign(tpt->bound.lb, Rextrema) ;
}
else {
epmAssign(tpt->bound.ub, Rextrema) ;
epmAssign{ tpt->bound.lb, Rextremb) ;
}
¥

I L e R TR L S S R = v

Rbound_expr(ept)

/*x
Obtein bounds on the terms in a bounded
and so obtain a bound on the whole.

expression, add them up,

143

=/

Bapm_expr *ept ;
1

Bapm_term *tpt, *last_term ;

apmAssign(Rub, ept->const) ;
apmAssign(Rlb, ept->const) ;

tpt = ept->terms ;

for(last_term = tpt + ept->nterms ; tpt < last_term ; tpt++) {
Rbound_term(tpt) ;
apmCalc(Rub, Rub, tpt->bound.ub, APM_ADD, HULL): i
apmCalc(R1b, Rlb, tpt->bound.lb, APM_ADD, BULL) ;

}

apmissign(ept->bound.ub, Rub) ;
apmissign(ept->bound.lb, R1b) ;
}
R G s e TS S R T)

RmaxAbs(result, x, y)

APM result, x, ¥ ;

{
apmibsoluteValue{ Rub, x) ;
apmibscluteVelue(Rlb, v) ;
if(apmComparse{ Rub, Rlb) == 1)
apmAssign(result, Rub) ;
slse
apmAssign(resnit, Rlb) ;
1

bounding trig. functions

include <stdio.h>

include <math.h>

include "mpm.h"

include '"apmSpeciel.h"
% include '"converse.h"
include "bounding.h"
include '"pi.h"

APM helf, three_halfs ;
APM Rdelta, Rmex_cos, Rmin_cos ;
APH Rmax_x, Rmin_x, Rflcoor_x, Rlft_vel, Rrght_val ;

Bdd_apm Rnew_theta ;

[® mmm e e »/
initTrigBd()
/=

Set up the APM’s defined above.
=/
{

Rdelte = mpmNew(BASE)
Rmin_x = epmNew(BASE)
Rmax_x = apmBew(BASE)
Rfloor_x = apmBew(BASE

"t we ws we

144

Amex_cos = apmBew(BASE) ;
Rmin_cos = apmNew(BASE) ;
R1ft_val = spmBew(BASE) ;
Rrght_val = apmNew(BASE) ;

RAnew_thete.ub = epmNew(BASE)
Rnew_theta.lb = apmBew(BASE)

.. ws

half = epmInit(2L, O, BASE) ;

three_haelfs = apmInit(3L, O, BASE) ;

apmCalc(half, half, APM_RECIP(precision), BULL) ;

apmCalc(three_halfs, half, three_halfs, APM_MUL, NULL) ;
}

P e e Y

Rbd_cos(bound, thetm)

/*
Obtain bounds for the cosine function over
a certain given range of angles.

*/
Bdd _apm *theta, *bound ;

/*
An APHM partner to the function mbove. The variables
used here are static, and are defined at the top
of the file.
=/
/=
Get some variables equal to theta / TWO_PI. These will
help decide wvhether the interval under consideration
contains any extrema.
*/
apmDivide(Rmin_x, precision, (APM)NULL, theta->lb, two_pi) ;
apmDivide(Rmax_x, precision, (APM)NULL, theta->ub, two_pi) ;

apmFloor(Rfloor_x, Rmin_x, BASE) ;
apmCalc(Rmin_x, Rmin_x, Rfloor_x, APM_SUB, NULL) ;
apmCalc(Rmax_x, Rmax_x, Rfloor_x, APM_SUB, NULL) ;
apmSubtract (Rdelta, Rmax_x, Rmin_x) ;
if (apmCompere(Rdelta, one) == 1) {

apmAssign(bound->ub, one) ;

apmfegate(bound->1b, one) ;
}

else {
apmCos(R1ft_vel, theta->1b) ;
apmCos(Rrght_val, theta—>ub) ;
if(apmCompere(R1ft_val, Rrght_vel) ==1) {
apmAssign(Rmax_cos, R1ft_vel) ;
apmAssign(Rmin_cos, Rrght_val) ;
}
else {
apmAssign(Rmax_cos, Rrght_val) ;
apmAssign(Rmin_cos, R1ft_vel) ;
}
/%
Check for extrema.
=/
if(apmCompare(Rmax_x, ome) == 1)
epmAssign(Amax_cos, one) ;

}

145

if((epmCompare(Rmax_x, three_halfs) == 1) ||

((epmCompare(Rmin_x, half) == -1) &&
(apmCompare(Rmax_x, half) ==

1))

) epmNegate(Rmin_cos, one)

apmiddd(bound->ub, Amax_cos, max_srror) ;
apmSubtract(bound->1b, Rmin_cos, max_serror) ;

}

return ;

R e e S Y

Rbd_sin(bound, theta)

/*

*/

Uss the relation sin(x - HALF_PI) = cos(x)
end the function bd_cos() to obtein a bound on

the sines of angles lying in m given range.

Bdd_apm

/=

*/

*thetm, *bound ;

Rnev_theta is used here but is declared at the top of
the file

apmSubtract(Rnew_theta.ub, theta->ub, half_pi
apmSubtrect(Rnew_theta.lb, theta->1b, half pi

Rbd_cos(bound, &Rnew_thetma) ;
return ;

C.2.3

LB B B BE

*
*

include
include
include
include
include

define
define

~

starting points and global bounds

<stdio.h>
<math.h>
"apm.h"
"converse.h"
llpi .hll

DELTA 0.01
MAX_JUMP 0.1

APM ARstart_size ;
FE R R e Y
setHermStert(priz)

RPrism =»priz ;

1

double
double
double

a
b
c
two_c

a, b, c, twvo_ec, x, ¥ ;
jump_sz, jump_scl, dx, dy ;

EX, EY, hxx, hxy, hyy, hdet, tolerance ;

apmtodbl(priz->center->p[0])
apmtodbl(priz->center->p[i])
apmtodbl(priz->center->p[2])

= 2.0 * ¢ ;

tolerance = NEWT_TOL * (fabs(m) + fabs(b) + fabs(c)) ;

.

146

/*
Use Nevton’s method to try to find m minimum for the
trace of the matrix betm.
*/
x = HALF_PI ;
y = HALF_PI ;
do {
/* components of the gradient. »/
gx= -a*xcos(x) - twoc*cos(x+y);
gy = -b *cos(y) - two c *cos(x+y) ;
/= components of the Hessimn */
hxx = & * sin(x) + two_c * sin{ x +y) ;
hxy = two_c * sin(x + y) ;
hyy = b * sin(y) + two_c * sin(x +y) ;
hdet = hxx » hyy - hxy * hxy ;
/* A Newton’s method step */
if(hdet != 0.0) {
dx = (gx * hyy - gy * hxy) / hdet ;
dy = (-gx * hxy + gy * hxx) / hdet ;
if((jump_sz = fabs(dx) + fabs(dy)) > MAX_JUMP) {
jump_scl = MAX_JUMP / jump_sz ;
dx *= jump_scl ;
dy *= jump_scl ;
}
x -= dx ;
y =4y ;
¥
else {
fprintf(stderr, "Death during Newton’s method. \n'")
cease() ;
}
} vhile((fabs(gx) + fabs(gy)) > tolerance) ;
/*
Force the starting point to lie on the line x=y.
*/
dbltoapm(priz->center->z.u[0], BASE, x) ;
dbltompm(priz->center->z.ul1], BASE, x) ;
#if DEBUG
printf("Herman’s starting peoint : x = %.8e, y= %.6e \n", x, x) ;
fflush(stdout) ;
endif
}

PR e Y
setLLStart(priz)

RPrism =*priz ;
1
/*
Beware : this function expects to be called AFTER

*/

setHermStart(), no matter which criterion is in force.

147

double discrim, sqrt_disc, sqrt() ;
double a_sin, e_cos, b_sin, b_cos, c_sin, c_cos ;

double =a, b
double jump

» ©, tWwo_c, X, ¥ i
_8z, jump_scl, dx, dy ;

double gx, gy, hxx, hxy, hyy, hdet, tolerance ;
double dDisc_dx, dDisc_dy ;

e = apmtodbl
b = apmtodbl
c = epmtodbl

twvo_c = 2.0

H
1

= apmtodbl
apmtodbl

-
]

tolerance =

(priz->center->p[0]) ;
(priz->center->p[1]) ;
(priz->center->pl[2]) ;
* c ;

(priz->center->z.ul0]) ;
(priz->center->z.ul1]) ;

HEWT_TOL * (e + b + ¢) ;

do {

/* preliminaries =/

a_sin = a * sin(x) ;

b_sin = b * sin(5) ;

c_sin = two_c * sin(x + y) ;

e_cos = a * cos(x) ;

b_cos =b * cos(5) ;

c_cos = two_c * cos(x +y) ;

discrim = (a_sin - b_sin) * (a_sin - b_sin) +
c_sin * c_sin ;

sqrt_disc = sqrt(discrim) ;

dDisc_dx = m_cos * (a_sin - b_sin) + c_cos * c_sin

dDisc_dy = b_cos * (b_sin - m_sin) + c_cos * c_sin

/* components of the gradient. */

gx = -a_cos - c¢_cos - dDisc_dx / sqrt_disc
gY = -b_cos - c¢_cos - dDisc_dy / sqrt_disc

/*

T

components of the Hessian */

hxx = a_sin + c_sin +

(

+

a_sin * (e_sin - b_sin) -

®a_Ccos * a_cos - c_cos * c_cos +

c_sin * c_sin) / sqrt_disc

dDisc_dx * dDisc_dx / (discrim *» sqrt_disc)

hxy = c_sin +

(

+

b_
(

hyy

+

m_cos * b_cos + c_sin * c_sin -
c_cos * c_cos) / sqrt_disc
dDisc_dx * dDisc_dy / (discrim * sqrt_disc)

sin + c_sin +

b_sin * (b_sin - m_sin) -

b_cos *» b_cos - c_cos * c_cos +

c_sin * ¢_sin) / sqrt_disc

dDisc_dy * dDisc_dy / (discrim * sqrt_disc)

148

hdet = hxx * hyy - hxy * hxy ;
/% A Newton’s method step */
if(hdet !'= 0.0) {

dx = (gx * hyy - gy * hxy) / hdet ;
dy = (-gx * hxy + gy * hxx) / hdet ;

if((jump_sz = fabs(dx) + fabs(dy)) > MAX_JUMP) {
jump_scl = MAX_JUMP / jump_sz ;
dx *= jump_scl ;
dy *= jump_scl ;

x -= dx
= dy

?
'

else {
fprintf(stderr, "Demth during Newton’s method. \n") ;
cease() ;

}
} while((fabs(gx) + fabs(gy)) > tolerance) ;

/*
Force the starting point to lie on the line x=y.
*/
dbltompm(priz->center->z.ul0], BASE, x) ;
dbltompm(priz->center->z.u[1], BASE, x) ;

#if DEBUG
printf("Least eigenvalue starting point : x = %.B8e, y= %.6e \n", x, x) ;
fflush(stdout) ;

endif

L

include <stdio.h>
include <math.h>
include "mpm.h"
include "apmSpecial.h"
include "converss.h"
include "bounding.h"
include "pi.h"

L B B B B A

APM Rdf_sq, RAf ;
APM lip_scratch ;

APHM sixteen, eight, four ;

APM Rdscrm, Rsqrt_disc ;

APM Rmax_slope, Rmin_slope, Rfirst_slope ;

double max_slope, min_slope, first_slope ;
RPrism =earliest ;

Bdd_apm Rmax_btrace, Rmin_btrace, Rfirst_btrace ;
P e S Y

initLip()
{
/*
This function depends in detmil on the choice of map.

*/
/%

149

APHM stuff
*/
four = epmInit(4L, O, BASE) ;
eight = mpmInit(8L, 0, BASE) ;
sixteen = apmInit(16L, O, BASE) ;

Rmin_slope = apmNew(BASE) ; /* The external APMs */
Rmax_slope = mpmNew(BASE) ;

Rfirst_slope = apmNew(BASE) ;

Rdf = epmInit{ (long)(DEG_FREE), O, BASE)} ;

Rdf_sq = apmInit((long)(DF_SQ), O, BASE) ;

Rstart_size = mpmInit(1L, ~START_SZ, BASE) ;

Rdscrm = apmAew(BASE) ;
Rsqrt_disc = apmNew(BASE)
lip_scratch = apmNew(BASE)

newBapm(Amax_btrace, BASE)
newBapm(Amin_btrece, BASE)
newBapm(Rfirst_btrace, BASE

s e we

earliest = conjureRPrism() ;
}
PR e e e e S S Y

setCone(priz)

RPrism *priz ;

/*
Get the minimum and maximum values for the
trace of the slope object, Hote that we
exploit the symmetry of the potential; the minimum
end maximum velues of the trace of (beta - 2I) have
the same absolute value.
»/
i
int j ;
APM #*mat_pos ;
for(j=0 ; j < H_PARMS ; j++)
apmissign(earliest->center->p[jl, priz->center->p[j]) ;
for(j=0 ; j < DEG_FREE ; j*++) {
apmAssign(earliest->center->z.v[jl, priz->center->z.u[jl) ;
}
Rglobal _bounds(earliest) ;
Rbound_btrace(&Rmin_btrace, earliest) ;
/*
Account for the imprecision of the starting point
and the variation of the parameters.
*/

apmdssignLong(lip_scratch, OL, O, BASE) ;
mat_pos = priz->matrix ;

for(j=0 ; j < N_PARMS ; j++) {
apmCalc(lip_scratch, lip_scratch,
priz->center->p[j] , Rstart_size,
APM_MUL, APM_ADD,
*mat _pos,
APM_ABS, APM_ADD, NULL) ;

}

150

mat_pos += 1 + MAT_DIM ;
}

apmCalc(Rmin_btrace.lb, Rmin_btrace.lb, lip_scratch,
APM_SUB, RULL) ;

epmCalc(Rmin_btrece.ub, Rmin_btrace.ub, lip_scratch,
APM_ADD, NULL) ;

/* exploit the symmetry */
apmSubtract{ Rmex_btrece.ub, eight, Rmin_btrace.lb)
apmSubtract(Rmex_btrace.lb, eight, Rmin btrace.ub)

apmCalc(Rdscrm, Rmax_btrace.lb, APM_DUP, APM_MUL,
four, Rdf_sq, APM_MUL, APM_SUB, NULL) ;

apmSqrt(Rsqrt_disc, precision, Rdscrm) ;
apmAdd{ lip_scratch, Rmeax_btrace.lb, Rsqrt_disc) ;
apmDivide(Amax_slope, precision, (APM)NULL, lip_secratch, two)

npmSuhtrnct(lip_scratch, Rmax_btrace.lb, Rsqrt_disc)
apmDivide(Rmin_slope, precision, (APM)NULL, lip_scratch, two)

min_slope = apmtodbl(Rmin_slope) ;
max_slope = apmtodbl(Rmax_slope) ;

F I e S n e e T TR

setSlopes(priz)

RPrism *priz ;

/»

*/

Recall that our orbit will, =t the beginning of

a round of orbit-following, heave just passed through =
point on the torus whose beta will diminish the

slope. This implies that the slope is already smaller
than the velue of max_slope found mbove. Calculate

a better upper bound on what the slope could be and
store it in first_slope and Rfirst_slope.

int j, mat_pos ;

for(j=0 ; j < N_PARMS ; j++) {
apmissign(earliest->center->p[jl, priz->center->pl[j]) ;

mat_pos = j * (MAT_DIM + 1) ;
apmissign(earliest->matrix[mat_pos], priz->matrix[mmt_pos]

}

for(j=0 ; j < DEG_FREE ; j++) {
apmissign(earliest->center->z.v[j], priz->center->z.ulj])

/=
Account for imprecision in the starting point.
*/
mat_pos = STAID_LEN + TWO_DF*MAT_DIM +
N_PARMS + DEG_FREE + j =* (MAT_DIM + 1) ;
epmAssign(earliest->matrix[mat_pos], Rstert_size) ;

B

Rglobal _bounds(earliest) ;

)

b

151

Rbound_btrace(&Rfirst_btrace, earliest) ;

apmDivide(lip_scratch, precision, (APM)NULL, Rdf_sq, Rmax_slope)

apmCalc(Rfirst_slope, Rfirst_btrace.ub, lip_scratch, APM_SUB,
max_error, APM_ADD, NULL)

first_slope = epmtodbl(Rfirst_slope) + DBL_ERR ;

}

include <stdio.h>

include <math.h>

include "epm.h"

include "apmSpeciml.h"
include "conversse.h'"
include "bounding.h"
include "rows.h"

APM Rsqrt_disc ;

APM Re_term, Rb_term, Rc_term ;

APM Rtrace_11, RminBlam 11, RmaxBlam_11, Rdenom ;
Bdd _apm RBtrace, RminLem, RmaxLam ;

RPrism *earliest ;

Bdd _dbl discrim ;

Bdd_dbl a_sq, b_sq, c_sq ;

Bdd _dbl *lamFacts[2] ;

Bdd_term ab_term ;

APM four, lem_scratch ;
Bdd_apm Rdiscrim ;

Bdd_epm Re_sq, Rb_sq, Rc_sq ;
Bdd_apm *RlamFacts[2] ;

Bapm_term Rab_term ;

APH RfirstLeastLam, RminlLeastLam, RmaxLeastLam, RsumTinyLams ;
double firstLeastLam, minLeastLem, maxLeastLam, sumTinyLams ;
P T e R S Y 4

initLambda()

{

/*

Do up the APHMs

*/
Ra_term = apmNew(BASE) ;
Rb_term = apmBew(BASE) ;
Rc_term = apmBew(BASE) ;

Rdenom = apmNew(BASE) ;
Rtrace_11 = apmNew(BASE) ;
Rsgrt_disc = apmNew(BASE) ;
RminBlam_11 = epmNew(BASE) ;
RmaxBlam_11 = apmNew(BASE) ;

RminLeastLam = apmNew(BASE)
RmaxLeastLam = apmNew(BASE)
RsumTinylLams = apmNew(BASE)
RfirstLeastlLam = apmNew(BASE

e we =

newBapm(Ra_sq, BASE) ;
newBapm(Rb_sq, BASE) ;

152

newBapm(Rc_sq, BASE)
newBapm(RmaxLem, BASE
newBapm(RminlLam, BASE
nevwBapm(RBtrace, BASE
newBapm(Rdiscrim, BASE) ;

A N

four = apmInit(4L, O, BASE) ;
lam_scratch = apmNew(BASE) ;

sarliest = conjureRPrism() ;

/*
Set up the terms.
*/
ab_term.nfactors = Rab_term.nfactors = 2 ;
ab_term.factors = lamFacts ;
Rab_term.factors = RlamFacts ;
ab_term.coef = -2.0 ;
Rab_term.coef = mpmInit(-2L, O, BASE) ;
newBapm(Rab_term.bound, BASE) ;
ab_term.factors[0] = &m_sin.bound ;
ab_term.factors[1] = &kb_sin.bound ;
Reb_term.factors[0] = &Ra_sin.bound ;
Rab_term.factors[i] = &Rb_sin.bound ;
¥

I e e e S S Y
Rbd_Blams(leastBlam, bigBlam, trace)

Bdd_apm *leastBlam, *trace, *bigBlam ;

/*

An APM partner to bd_Blams ;

»/

{

/* Bound the terms for the discriminant. =/
RsetS5Sq(&Re_sq, &Ra_sin.bound) ;
RsetSq(&Rb_sq, &Rb_sin.bound) ;
RsetSq(&Rc_sq, &Rc_sin.bound) ;
Rbound_term(&Rab_term) ;

/* Bound the discriminant itself. */

/* lower bound */
apmCalc(Rdiscrim.lb, Ra_sq.lb, Rb_sq.1lb, APM_ADD,
four, Rc_sq.lb, APM_MUL, APM_ADD,
Rab_term.bound.lb, APM_ADD, NULL)

if (mpmCompare(Rdiscrim.lb, zero) < 1)
epmAssign{ Rdiscrim.lb, zero) ;

/* upper bound */
epmCalc(Rdiscrim.ub, Re_sg.ub, Rb_sq.ub, APM_ADD,
four, Rc_sq.ub, APM_MUL, APM_ADD,
Rab_term.bound.ub, APM_ADD, HULL)

if (apmCompare(Rdiscrim.ub, zero) < 1)
apmAssign(Rdiscrim.ub, zero) ;

/* Do up the final bounds on the eigenvalues.
First do those requiring
sqrt(discrim.1lb).

*/

’

153

apmSqrt (Rsqrt_disc, precision, Rdiserim.lb) ;
apmCalc(lam_scratch, trace->ub, Rsqrt_disc, APM_SUB,

max_error, APM_ADD, NULL) ;
apmDivide(lemstBlam->ub, precision, (APM)NULL, lem_scratch, two) ;

apmCalc(lam_scratch, trace->1b, Rsqrt_disc, APM_ADD,
mex_error, APM_SUB, NULL) ;
apmDivide(bigBlam->1b, precision, (APM)NULL, lam_scratch, two) ;

/=
Next those requiring
sqrt(discrim.1lb)
=/
apmSqrt(Rsqrt_disc, precision, Rdiscrim.ub) ;
apmCalc(lam_scratch, trace->1b, Rsqrt_disc, APM_SUB,
max_error, APM_SUB, NULL) ;
epmDivide(leastBlam->1b, precision, (APM)NULL, lam_scratch, two) ;

apmCalc(lam_scratch, trace->ub, Rsqrt_disc, APM_ADD,
max_error, APM_ADD, NULL) ;
epmDivide(bigBlam->ub, precision, (APM)NULL, lam_scratch, two) ;

}

PR e T e S SRS T

setLLbounds(priz)

/*
Get bounds on the least eigenvalue of the variation of the action
functionel. This is equivalent to the summer’s estimate of the
value of size of the psrturbation for which no minimizing state
can include the maximum of the perturbation.

*/
RPrism »*priz ;
{
int j, mat_pos ;
APM *pmat _pos ;
for(j=0 ; j < N_PARMS ; j++)
apmAssign(earliest->center->p[jl, priz->center->p[jl) ;
mat_pos = j * (MAT_DIM + 1) ;
apmAssign(emrliest->matrix[met_pos], priz->matrix[mat_pos]) ;
for(j=0 ; j < DEG_FREE ; j++)
apmAssign(earliest->center->z.v[j], priz->center->z.ul[j]) ;
/*
Rglobal_bounds(earliest) ;
Rbound_btrace(&RBtrace, earliest) ;
Rbd_Blams(&RminLam, &RmaxLam, &RBtrace) ;
/*
Account for the imprecision of the starting point
and the varietion of the parameters.
*/

apmAssignLong(lam_scratch, OL, O, BASE) ;
pmat_pos = priz->matrix ;

for(j=0 ; j < N_PARMS ; j++) {

154

apmCalc{ lam_scratch, lam_scratch,
priz->center->p[j] , Rstart_size,
APM_MUL, APM_ADD,
»*pmat_pos,
APM_ABS, APM_ADD, NULL) ;
pmat_pos += 1 + MAT_DIM ;
}

apmCalc(RminLem.lb, RminLem.lb, lam_scratch, APM_SUB, NULL) ;
apmCale(RminLem.ub, RminLam.ub, lem_scratch, APM_ADD, RULL) ;

/*
Exploit the symmetry of the example. The
largest value for an eigenvalue is
4.0 - (lemstLam.lb).

The calculation above assumes that the
u part of the prism’s center contains a
starting point suitable for a least-eigenvalue
kind of test, i.e. the point where the least ev
attains its minimum. The bdd_sapm RmaxLam will
contain information about the largest ev of beta
at the spot vhere leastLam is small. To get the
thing we really want for the calculamtions
below we must exploit the symmetry described
above.
*/
apmSubtract(RmexLem.ub, four, RminLam.1lb } ;
apmCalc(Rdiscrim.ub, RmaxLam.ub, APH_DUP, APM_MUL,
four, APM_SUB, EULL) ;
epmSqrt{ Rsqrt_disc, precision, Rdiscrim.ub) ;

/*
4 globml lower bound - if the least eigenvalue of
one of the diagonal blocks (see notes, Jan 10)
slips below this value then the next block is
sure to have m negative eigenvalue.
*/
apmSubtract{ lam_scratch, RmaxLam.ub, Rsqrt_disc) ;
apmDivide(RminLeastLam, precision, (APM) NULL, lem_scratch, two) ;
epmCalc(RminLeastLam, RminLeastLam, mex_error, APM_SUB, NULL) ;
minLeastLam = apmtodbl(RminLeastLem) ;

/*
A lower bound on the sum of the non-maximal eigenvalues
of = diagonal block.
*/
sumTinylams = minLeastLam ;
apmAssign(RsumTinyLams, RminLeastLam) ;

A global upper bound.
*/
epmAdd(lem_scratch, RmaxLem.ub, Rsqrt_disc) ;
epmDivide(AmaxLemstLam, precision, (APM) REULL, lem_scratch, two) ;
epmCealc(RmaxLeastLam, RAmexleastlLam, max_error, APM_ADD, NULL) ;
maxleastLam = apmtodbl(RmaxLeastLam) ;

}

R

RsetSq(xsq, x)

155

Bdd _apm *X, *X8q ;

{
if(apmCompare(x->ub, zero) > 0) {
if(apmCompare(x->1b, zero) > 0) {
apmMultiply(xsgq->ub, x->ub, x->ub) ;
apmMultiply(xsq->1b, x->1b, x->1b) ;
}
else {
apmibsoluteValue(lam_scratch, x->1b) ;
if (epmCompare(x->ub, lam_scratch)} > 0) {
apmMultiply(xsgq->ub, x->ub, x->ub) ;
apmissign(xsq->1b, zero) ;
}
else {
apmMultiply(xsq->ub, x->1b, x->1b) ;
apmAssign(xsq->1b, zero) ;
}
}
¥
else {
apmMultiply{ xsgq->ub, x->1b, x->1b) ;
apmMultiply{ xsg->1b, x->ub, x->ub) ;
}
}

I e s S
setLeastLam(priz)

RPrism »priz ;

/*
Calculate an upper bound on the largest eigenvmlue of beta
et the initial point, then use it and the globel bound,
maxLeastLam to set firstLeastLam.
*/
{
int j, mat_pos ;
for(j=0 ; j < H_PARMS ; j++) {
earliest->center->p[jl = priz->center->p[j] ;
mat_pos = j * (MAT_DIM + 1) ;
sarliest->matrix[mat_pos] = priz->matrix[mat_pos] ;
}
for{ j=0 ; j < DEG_FREE ; j++)
earliest->center->z.v[j] = priz->center->z.ul[j]l ;
Rglobal _bounds(earliest) ;
Rbound_btrace(kRBtrace, esarliest) ;
Rbd_Blems(&RminLam, &RmaxLem, ERBtrace) ;
/*

Obtain an upper bound on the least

eigenvalue of the block of the Hessian of

the mction functional corresponding to the
starting point. As in the functions in follow.c,
compute a whole suite of estimates mnd choose
the best one.

*/

156

/*
Rdenom is = global upper bound
on the size of the largest eigevalue
of a diagonal block.
Rdenom = maximum trace - (n-1) * minimum ev.
It’s used together with the least eigenvalue
of betn (evaluated at the starting point) :
LeastLam <= AminBlam.ub - 1.0 / Rdenom
*/

apmCalc(Rdenom, Rdf, one, APM_SUB,

RminlLeastLem, APM_MUL, APM_KEG,

Rmax_slope, APM_ADD, NULL) ;
apmDivide(lem_scratch, precision, (APM) NULL, one, Rdenom }
apmSubtrect (RminBlam_11, RminLaem.ub, lam_scratch) ;

/*
Here we try to sttain a smell estimate by
saying :
LeustLam <= AmaxBlam.ub - 1.0 / maxLeastLam.
*/

mpmDivide(lem_scratch, precision, (APM) NULL, one, RmaxLeastLam) ;
epmSubtrect (RmaxBlam_ 11, RmaxLem.ub, lem_scratch) ;

/*
Finally we make the estimate
LeastLem <= first_slope / DEG_FREE
*f
apmDivide(Rtrace_ll, precision, (APM)NULL, Rfirst_slope, Rdf) ;
/*
Choose the best (smallest) lower bound.
*/

epmAssign(RfirstLeastLam, RAmexBlem_ 11) ;

if(epmCompare(RfirstLeastLam, RminBlam_11) == 1)
apmAssign(RfirstLeastLam, RminBlam_11) ;

if (apmCompare(RfirstLeastLam, Rtrace_11) == 1)
apmissign(RfirstLeastLam, Rtrace_ 11) ;

firstLeastLam = apmtodbl{ RfirstLeastLem) ;

}

% include <stdio.h>

include <math.h>

include "apm.h"

include '"converse.h'
include "map.h"

include "bounding.h"
include "rows.h"

define NUM_FACTS 3

define NUM_TERMS 3
Bdd _dbl *fact _buf [NUM_FACTS] ;
Bdd _expr b_trec ;

Bdd_term trace_terms[NUM_TERMS] ;

Bdd _apm *Rfact _buf [FUM_FACTS] ;
Bapm_expr Rb_trec ;
Bapm_term Rtrace_terms[NUM_TERMS] ;

157

R e e e R R Y4

initTrace()
i
int b
Bdd _dbl *xfpt ;
Bdd_apm **Rfpt ;
/*
Set up the expressions.

*/

FUM_TERMS

b_trc.nterms H
NUM_TERMS ;

Rb_trc.nterms

b_trc.const = 4.0 ;
Rb_trc.const = epmInit(4L, O, BASE) ;

newBapm(Rb_trc.bound, BASE) ;

b_trc.terms = trace_terms ;
Rb_trc.terms = Rtrace_terms ;

/%
Set up their terms.
*/
fpt = fact_buf ;
Rfpt = Rfact_buf ;
for(j=0 ; j < NUM_TERMS ; j++) {
trace_terms[j].nfactors = 1 ;
trace_terms[j].coef = -1.0 ;
trace_terms[j].factors = fpt ;

Rtrace_terms[j].nfactors = 1 ;
Rtrace_terms[j].coef = mpmInit(-1L, O, BASE) ;
Rtrace_terms[j].factors = Rfpt ;

nevBapm(Rtrace_terms[j].bound, BASE) ;

fpt++
Rfpt++ ;

/=
Fix up the constant in the third term . . . it should be
-2.0.
*/
trace_terms[2].coef = -2.0 ;
epmAssigniong(Rtrace_terms[2].coef, -2L, O, BASE) ;
/=
Associate the factors - which are only pointers
to bounded objects - to genuine, properly initimlized objects.
&/
/* first term */
b_trc.terms[0].factors[0] = &e_sin.bound ;
Rb_trc.terms[0].factors[0] = &Ra_sin.bound ;

/* second term */
b_trc.terms[1].factors[0] = &kb_sin.bound ;
Rb_trc,terms[1].factors[0] = ERb_sin.bound ;

/* third term */
b_trc.terms[2].factors[0] = &kc_sin.bound ;
Rb_trc.terms[2].factors[0] = &Rc_sin.bound ;

158

I e S)
Rbound_btrace(result, priz)

RPrism »priz ;
Bdd_apm *result ;

/=
An APM partner to bound _btrace. Some of the variables
used here mre defined above.
»/
{
/* Bound the expression »/
Rbound_expr(&Rb_trc) ;
epmCalc(Rb_trc.bound.ub, Rb_trc.bound.ub, mex_error, APM_ADD, NULL)
apmCelc(Rb_trc.bound.lb, Rb_trc.bound.lb, mex_error, APM_SUB, NULL)
epmAssign(result->ub, Rb_trc.bound.ub) ;
apmiAssign(result->1b, Rb_trc.bound.lb) ;
i

C.2.4 control of the computation

the header file converse.h

ifndef YES
define YES 1 /* Ever popular */
define RO 0o
endif
* ifndef WORKED
define WORKED 1
define FAILED 0
% endif
define HO_TORI O /* A prism of initiel conditiomns */
define UNTRIED 1 /* has one of these as its in_torus */
define MAYBE 2 /* attribute mccording to whether #/
define ACTIVE 3 /% it definitely does not contain */
define SYMMTRC 4 /* any inverient tori, has not yet
been considered, is too hard to
decide, is under active
consideration, or is eguivalent
to some symmetrically related,
other prism. */
define N _PARMS 3 /* Detmils of the particular map */
define DEG_FREE 2
define DF_sQ (DEG_FREE * DEG_FREE)
define TWO_DF (2 * DEG_FREE)
define MAT_DIM (TWO_DF + H_PARMS) /* Used in finding ones */
define STAID_LEN (N_PARMS * MAT_DIM) /* place in the matrix" #*/
define MERC_LER (TWO_DF » MAT_DIM) /* part of m prism. */
define MAT_SZ (STAID_LEN + MERC_LEN)
define DBL_ERR 1.0e-13
define DFLT_DEPTH 10 /* Default values for various globel */
define DFLT_FRTHST 200 /* varimbles */

define
define
define
define
define
define

% %R NR

define
define

* ¥

define

/*

typedef
typedef

typedef

typedef

/*

typedef
typedef

typedef

typedef

DFLT_PRECIS 30
DFLT_GRAPH YES
DFLT_ERR YES
DFLT_TERSE YES
STUBBORN O
SAFETY_PRECIS b
START_SZ e
NEWT_TOL 10e-8
BASE 10000

159

/* Numbers bearing on the mccurecy */
/* of the starting point

*/

/* The base used in APM cmlculations.

Data types for nmon-rigorous, rough calculations

double *Tor_pt, *Parm_pt
struct { Tor_pt
struct { Embed_pt Z 4
Parm_pt P
struct prsm { int
char
double
Xtnd_pt

struct prsm

*/

u, v ; } Embed_pt ;

} Xtnd_pt ;

in_torus, n_cuts ;
#cuts [N_PARMS+TWO_DF] ;
*matrix ;

*center ;

*next ; } Prism ;

Data types for rigorous, arbitrary precision, calculations

APM
struct { RTor_pt

struct { REmbed_pt z
RParm_pt P

struct Rprsm { int
APM
char
RXtnd_pt

struct Rprsm

*RTor_pt, #*RParm_pt ;

. W

*/

u, v ; } REmbed_pt ;

} RXtnd_pt ;

in_torus, n_cuts ;

*matrix ;
*cuts[MAT_DIM] ;
#center ;

*next ; } RPrism ;

g e e e R G S B NS A S S Sy

extern
extern

/*

*conjurePrism() ;
*conjureRPrism()

Prism
RPrism

Some variables used throughout the converse KAM celculations

extern
extern i
extern
extern
extern
extern
extern
extern
extern

int
nt

int
int
int
int
int
APM
APM

(* fatten)(),

*/
do_graph, do_backup, restoramtion ;

precision, depth, furthast, terse, stubborn ;
quick_tries, tries, Rtries, max_steps, max _NTsteps ;
HermSuccess, LLSuccess, 11 _used[3], most_cuts ;

(* row_sums)() ;

fxed_form(), Rfxed_form(), col_rotor(), Rcol_rotor()
£f_rows(), Rff_rows(), cr_rows(), Recr_rows() ;
Rfirst_slope, Rmin_slope, Rmax_slope, Rdf, Rdf_sq ;
RminlLeastLam, RmaxLeastLam, RfirstLeastlLam, RsumTinyLams

*/

i

160

extern APM helf, max_error, Rstart_size, RSmBlock_err, RBgBlock_err ;
extern char #graf_file, *back_name, *rest_name, *parm_names[] ;

extern double firstLeastleam, minLeastLem, maxLeastLam, sumTinyLams ;
extern double first_slope, min_slope, max_slope ;

extern double apmtodbl(), parm_roof[], parm_floor[] ;

extern double SmBlock_err, BgBlock_err ;

main ()

include <stdio.h>

include <math.h>

include "apm.h"

include '"converse.h"

include '"tree.h"

int do_graph, do_backup, restoration ;

int precision, depth, err_hndlr, furthest ;
int stubborn, terse ;

APM max_error, RSmBlock_err, RBgBlock_err ;

double SmBlock_err = DF_SQ * DBL_ERR ;
double BgBlock_err = DEG_FREE * N_PARMS = DBL_ERR ;
PR T R R S LY

main (arge, argv)

int argc ;
char #*argv[] ;

{
int verdict, Rverdict, tree_verdict, nsteps ;
Prism *image_prism ;
RPrism *active _prism, =old_prism ;
handle_opts(argc, argv) ;
active_prism = conjureRPrism() ;
image _prism = conjurePrism() ;
commence{ mctive_prism) ;
/* Study the current prism, cutting it up if need be */
while(mctive_prism != NULL } {
/*
Try e preliminary, non-rigorous calculation to see if
prospects are good. If they are, do m rigorous check,
If they aren’t, try to refine the prism. If it has mlready
been refined enough, just give up.
*/
if(do_graph == YES)
graphPrism(active_prism, ACTIVE) ;
/*
Check the tree to smee if an equivelent prism
is already finished. If so, record the result
and press on. If not, do m detmiled anmlysis.
*/

tree_verdict = consultTree(active_prism) ;

grephPrism(mctive_prism, SYMMTRC) ;
if(do_beckup == YES)
make _backup(active_prism) ;

old_prism = active_prism ;
active_prism = old_prism->next ;

161

relemseRPrism(old_prism) ;

}

else {
prepare_trial(active _prism) ;
verdict = try_prism(active_prism, image_prism, &nsteps) ;

Rverdict = UNTRIED ;
if(verdict == NO_TORI) {
Rverdict = Rtry_prism(mctive_prism, image_prism, &nsteps) ;
if(Rverdict == NO_TORI) {
active _prism->in_torus = NO_TORI ;

if(terse == NO)

printRPrism(active_prism, nsteps);
if(do_greph == YES)

grephPrism(active_prism, NO_TORI) ;
if(do_backup == YES)

make _backup(active_prism) ;

old_prism = active_prism ;
active _prism = old_prism->next ;
relenseRPrism(old_prism) ;

i
if((Rverdict == MAYBE) || (verdict == MAYBE)) {

/* Either refine the prism . . . =/
if(mey_refine(mctive_prism) == YES) {
refinePrism(active_prism, image prism) ;
if(do_graph == YES) {
grephPrism(mctive_prism->next, UNTRIED) ;
graphPrism(mctive_prism, ACTIVE) ;

/* . . . or give up and move on. */
else {
if(do_graph == YES)
graphPrism(active_prism, MAYBE) ;
if(do_backup == YES)
muake _backup(active_prism) ;

active _prism->in_torus = MAYBE ;
moveEdge_o_Chaos(mctive_prism, nsteps) ;
if(terse == NOD)

printRPrism(active_prism, nsteps) ;

old_prism = active_prism ;

active_prism = old_prism->next ;
releaseRPrism(old_prism) ;

cease() ;

162

Rtry_prism()

include <stdio.h>
include <math.h>
include "apm.h"
include "epmSpecial.h'
include "converse.h'
include "bounding.h"
include '"rows.h"
include "pi.h"

E B BE B B B B O

define USE_CR YES /# Use the column rotor? */
define USE_LL YES /# Use the least eigenvalue test? */
define USE_QT YES /* Use the quick, preliminary test */
define USE_RIGOR YES /# Use the rigorous tests? #/

define USE_SHIFT HOD

* NN RR

»

define FF_CYCLS 1
define QS_TO_RS & /* The ratio of quick steps to rigorous steps
to be used in determining how long
quick_try should go.
*/
define MAX_SUM PI

define setLclFurthest(n) ((({((n)/QS_TO_RS)+3) > furthest) \
7 furthest : ((n/Q5_TOD_RS)+3))

/*
Declarations for some external variables
mentioned in converse.h. The APMs are initialized by
initFollowing().
»/
/*
The functions in this file menipulete copies of the data
passed to them. The copies mre kept in Prisms and RPrisms
gotten with the conjuring functions by initFollowing().
*/
Prism =gorkPriz[2] ;
double b_buf[DF_SQ], *b_ptrs[DF_sQ] ;
double parmbuf [2+N_PARMS], coordbuf[2+TWO_DF] ;

Xtnd_pt xpt_m, xpt_b ;

/*
Some APM varimbles needed for orbit
following eand slope watching.
*/
RPrism *Rwork[2] ;
APM f_scratch, Rdenom ;
APH Rsum, Rmax_sum ;
APM Rtrace_11, RmaxBlem_11, RminBlem_11 ;
double trace_11, maxBlam_11, minBlam_11 ;
/*
The variables declared below don’t really need to
be bounded objects (they did in an eerlier version of the code),
but the .ub in their uses makes the code easier to understand.
*/

Bdd_dbl b_trace, minBlam, maxBlam, leastLam, slope ;
Bdd_apm Rb_trece, RminBlam, RAmaxBlam, RleastLem, Rslope ;

163

int is_first_triel = YES ;

int local_furth, 11_used[3] ;

int HermSuccess, LLSuccess ;

int max_steps, mex NTsteps, tries, Rtries, quick_tries, most_cuts

R e s e S s S V)
prepare_triel(priz)

RPrism =*priz ;

1
int j
if(areNewParms(priz) == YES) {
/*
Unless this is the very first prism,
record the center point - it will be moved by
setHermStart() and setLLStart() and will neeed to be
restored to its correct value.
*/

if(is_first_triel == NO) {
for (j=0 ; j < DEG_FREE ; j++) {
apmAssign(xpt_a.z.u[jl, priz->center->z.u[j])
epmissign(xpt_a.z.v[j]l, priz->center->z.v[j])

-

}
}

setHermStart(priz) ;
setCone(priz) ;
if USE_LL
setLLStart(priz) ;
setLLbounds(priz) ;
endif
if USE_SHIFT
shiftSteart(priz) ;

endif
/=
Unless this is the very first trieml, restore the
correct value of the centerpoint before eveluating
the initial estimates for the slope and least eigenvalue.
*/
if(is_first_trial == YES)
is_first_triml = KO ;
else {
for (j=0O ; j < DEG_FREE ; j++) {
epmissign(priz->center->z.uljl, xpt_a.z.ul[j]l) ;
apmAssign(priz->center->z.v[jl, xpt_m.z.v[j]) ;
¥
¥
setSlopes(priz) ;
if USE_LL
setLeastLam(priz) ;
* olse

firstLeastLam = 1.0 ;
minLeastLam = 0.6 ;
dbltoapm(RfirstLeastLem, BASE, firstLeastLam) ;
dbltoapm(RminLemstLem, BASE, minLeastLam) ;
eondif
}

164

¥

o e e 4

initFollowing()

1

/=
Set up the correct connections between the various
static variables in this file.

*/
int j, ull_well ;
ell_well = YES ;
/*
Set up the working prisms.
*/
workPriz[0] = conjurePrism() ;
workPriz[1] = conjurePrism() ;
if ((workPriz[0] == NULL) || (workPriz[1] == NULL))
all_well = NO ;
/*
Set up the APM stuff
*/

f_scratch = apmRBew(BASE) ;
Rdenom = apmBew(BASE) ;

Rtrece_11 = apmNew(BASE) ;
RminBlem_11 = apmNew(BASE)
RmaxBlem_11 = apmNew(BASE) ;

nevBapm(Rslope, BASE) ;
newBapm(Rb_trace, BASE)
nawﬂupm(AminBlam, BASE)
nevBepm(RmaxBlem, BASE)
newBapm(RleastLam, BASE) ;

- = e

if (USE_LL == RO)
apmAssignlong(RleastLam.ub, 1L, O, BASE)}
epmAssignLong(RleastLam.lb, 1L, O, BASE)
endif

Rsum = apmNew(BASE) ;
Rmax_sum = apmNew(BASE) ;
dbltoapm({ Rmax_sum, BASE, MAX_SUM)

Rwork[0] = conjureRPrism() ;

Rwork[1] = conjureRPrism() ;

if((Rwork[0] == NULL) || (Rwork([1] == BULL))
rll_well = KO ;

/*
Set up the extended points - they’re used by
quick_test(), and mre pointed to by the
"center'" attributes of the working prisms.
*/

xpt_m.z.u = coordbuf ;
xpt_a.z.v = coordbuf + DEG_FREE ;

xpt_a.p = parmbuf ;
xpt_b.z.u = coordbuf + TWO_DF ;
xpt_b.z.v = coordbuf + TWO_DF + DEG_FREE ;

xpt_b.p = parmbuf + N_PARMS

-

165

/*
Set up pointers to the matrix which receives the
changeable parts of the jacobian; the one called

"beta'" in most of my notes.
»/
for(j=0 ; j < (sizeof(b_buf) / sizeof(double)) ; j++)
b_ptrs[j]l = &b_buf(j] ;

/*
Initianlize various performance date.

=/

most_cuts = 0 ;

max_steps = max_NTsteps 1

HermSuccess = LLSuccess 0

tries = Rtries = quick_tries = O ;

11 _used[0] = 11_used[1] = 11 _used[2] = 0 ;

]
..

if(all_well == YES)
return ;
else {
fprintf(stderr,
"initFollowing : Could not prepare for pursuit. Died. \n") ;
cease() ;

}
;2

I e T R S]

Rtry_prism(initiel _priz, final priz, nsteps)

int *nsteps ;
Prism #final _priz ;
RPrism »initial_priz ;
/*

Rigorously decides whether m prism of initial date may
contain any invariant Lagrangian tori, an APM version of
the routine tryPrism() mbove.

*/
1
int count ;
RPrism #*priz, #*priz_prime, *temp_priz ;
Rtries++ ;
priz = Rwork[0] ;
priz_prime = Rwork[1] ;
/=%
Hote that Rtry_prism() does not cmll setSlopes,setStart or
setCone. All that should have been. done with a call to
prepare_trial().
=/

"isNewPrism = YES ;
RcopyRPrism(priz, initiael_priz) ;

fatten = Rfxed_form ;
row_sums = Rff_rows ;

*nsteps = count = 1 ;

epmAssign(Rslope.ub, Rfirst_slope) ;

epmAssign(RleastLam.ub, RfirstLeastLam)} ;

if (apmCompare(Rslope.ub, Rmin_slope) == -1) {
HermSuccess++ ;

166

copyRPrism(final _priz, priz) ;
return(HO_TORI) ;

if(apmCompare(RleastLam.ub, RminLeastLam) == -1) {
LLSuccess++ ;
copyRPrism(finel _priz, priz) ;
return(NO_TORI) ;

}

if (USE_RIGOR == KO)
copyRPrism(finel priz, priz) ;
return(NO_TORI) ;

endif
while(big RPrism(priz) == H0) {

/*

Check the slope.
*/

count++ ;

/*

Calculate some bounds useful for both criteria.
*/

Rglobal _bounds(priz) ;
Rbound_btrace(&Rb_trace, priz) ;

if USE_LL
/* mrm’s condition */
Rbd_Blems(&RAminBlam, &RmaxBlam, &Rb_trace) ;

epmDivide(f_scratch, precision, (APM)RULL, one,
RleastLem.ub) ;
epmSubtract (RmaxBlem 11, AmaxBlam.ub, f_scratch) ;

apmSubtract (Rdenom, Rslope.ub, RsumTinyLams) ;

if(apmCompare(Rdenom, zero) > 0) {
epmDivide(f_scratch, precision, (APM) NULL, one, Rdenom) ;
epmSubtract(RminBlem_11, RminBlem.ub, f_scratch) ;

}
else
epmissign(RminBlam_11, zero) ;
endif
/% Herman’s condition »/
apmDivide(f_scratch, precision, (APM) RULL, Rdf_sq, Rslope.ub) ;
apmSubtract(Rslope.ub, Rb_trece.ub, f_scratch) ;
if USE_LL
apmDivide(Rtrace_ll, precision, (APM)NULL, Rslope.ub, Rdf) ;
Rbest_11(RleastLem.ub, RmaxBlem_11,
RminBlam_11, Rtrace_ll) ;
endif
/*
Do some truncations to speed things up
*/
if USE_LL

apmTruncate(RleastLam.ub, precision } ;
endif

167

apmTruncate(Rslope.ub, precision) ;

if(wpmCompare(Rslope.ub, Rmin_slope) == -1) {
*nsteps = count ;
if(count > max_NTsteps)
max_NTsteps = count ;

HermSuccess++ ;
copyRPrism(finel _priz, priz) ;
return(NO_TORI) ;
}
else if(epmCompare(RleastLam.ub, RminLeastLem) == -1) {
*msteps = count ;
if(count > max_KTsteps)
max NTsteps = count ;

LLSuccess++ ;
copyRPrism(finel_priz, priz) ;
return(NO_TORI) ;
}
else {
if(count == furthest)
breek ;

Rprismatic_image(priz_prime, priz) ;
m_swvap(priz, priz_prime, temp_priz) ;

¥
* if USE_CR

if(count > FF_CYCLS) {
fatten = Rcol_rotor ;
row_sums = Rcr_rows ;
}
endif

¥

*nsteps = count ;
copyRPrism(final_priz, priz) ;
return(MAYBE) ;

}

J L Y
big_RPrism(Priz)

RPrism =*Priz ;

1
APM *Rrpt, *Rend_mat, *Rend_row ;
Rend_mat = Priz->matrix + MAT_SZ ;
for(Rrpt = Priz->mmtrix ; Rrpt < Rend_mat ;) {
apmAssignLong(Rsum, OL, O, BASE) ;
for(Rend_row = Rrpt + MAT_DIM ; Rrpt < Rend_row ; Rrpt++)
apmCalc(Rsum, Rsum, *Rrpt, APM_ABS, APM_ADD, NULL) ;
if(apmCompare(Rsum, Rmax_sum) == 1)
return(YES) ;
}
return(HO) ;
}

168

Rbest_11(best, minBlam_11, maxBlam_ 11, trace_ 11)

APH best, minBlam 11, maxBlam_ 11, trace_l1 ;

i
apmAssign(best, mexBlem 11) ;
if(mpmCompare(best, minBlam_11) == 1)}
apmiAssign{ best, minBlem_ 11) ;
if (apmCompare(best, trace_ 11) == 1)
apmissign(best, trace_ 11) ;
}

C.2.5 the map

the header file map.h

extern APM RDeriv[], *Rbeta_ptrs[], *Rgamma_ptrs[] ;
extern double Deriv[], *beta_ptrs[], *gamme_ptrs[] ;

mapping functions

/*
Functions to perform the extended Froeschle map and to
calculate its jmcobian. Each function has e rigorous
and a non-rigorous form; the former mlways has e name
beginning with a "R".
The functions in this file are quite specific -
they pertein to maps of the form
(p,u,v) -> (p’,u’,v’)
P’ =P
u’ = v
v’ = 2v - u -dv(v)
where u, v, u’ anf v’ are mll in 2d Euclidean space,
p is an element of a space of parameters and
V(v) = -a * sin(v[0]) + -b * sin(v[1]) +
-¢ * sin(v[0] + w[1])
The parameters m, b, and ¢ are mlways passed through
an array called "parms" with
a = parms[0], b = parms[1], ¢ = parms[2].
*/
include <stdio.h>
include <math.h>
include "mpm.h'"
include "apmSpecial.h"
include "converse.h"
include "mep.h"
APM Rmixing_term, Rv_sum, map_scratch ;
APM *Rbeta_ptrs[DF_SQ] ;
APHM *Rgamma_ptrs [DF_SQ], RDeriv[MAT_SZ] ;

double #*beta_ptrs[DF_5Q] ;
double *gamma_ptrs[DF_SQ], Deriv[MAT_SZ] ;
R e e e e

169

Rimage ()
B s o O e S a4

Rimege(x_prime, x)

RXtnd_pt *x, *x_prime ;

/=
Finds the imege, x_prime, of a deley-embedded point, x.
The parameters of the map mre in the parameter-space point
called "parms".
*/
f
APM *x_pt, *xp_pt, *last_x ;
RParm_pt parms ;

parms = x-2p ;

x_pt = x->p ;

xp_pt = x_prime->p ;

for(last_x = x_pt + N_PARMS ; x_pt < last_x ; x_pt++)
apmAssign(*=xp_pt++, *x_pt) ;

/* Because of the way delay embedding works,
the first member of x_prime is the same as
the second member of x .

=/

x_pt = x=>z.v ;

xp_pt = x_prime->z.u ;

for(last_x = x_pt + DEG_FREE ; x_pt < last_x ; x_pt++)
apmAssign(*xp_pt++, *x_pt) ;

/* Do up the actual map. One could
write m version of image() which worked for
any standard-type symplectic map; it would
rely on another function, perturb(), to
completely define the map. Instead wve
incorporate the perturbation to the
genereting function right into our mep -
we hope to save a little time.
*/
apmAdd{ Rv_sum, x->z.v[0], x->z.v[1]) ;
apmCos(map_scratch, Rv_sum) ;
apmMultiply(Rmixing_term, map_scratch, parms[2]) ;

apmCos(map_scratch, x->z.v[0]) ;
apmCalc(x_prime->z.v[0], twe, x->z.v[0], APM_MUL,
x->z.ul0], APM_SUB,
perms[0], map_scratch, APM_MUL,
Rmixing_term, APM_ADD,
APM_ADD, NULL)

apmCos(map_scratch, x->z.v[1]) ;
apmCalc(x_prime->z.v[1], two, x->z.v[1], APM_MUL,
x->z.ul[1], APM_SUB,
parms[1], mep_scratch, APM_MUL,
Rmixing_term, APM_ADD,
APM_ADD, ERULL b
}

I
find_Rbeta()

In the interest of speed, we provide functions which only

170

calculate those parts of the Jacobian that actuelly
depend on parms and (u,v). The other parts are
assumed to have been correctly set by m cell to
initJacobian() or initRjecobian(), both of which
mey be found below.

B R R R R R L R S E TR T

find_Rbeta(b_block, x)

APM *b_block[] ;
RItnd_pt =*x ;
{

apmidd(Rv_sum, x->z.v[0], x->z.v[1])} ;
apmSin(map_scratch, Rv_sum) ;
apmMultiply(Rmixing_term, x->p[2], map_scratch) ;

epmSin(map_scratch, x->z.v[0]) ;

apmCalc(*b_block[0], x->p[0], map_scratch, APM_MUL,
two, APM_SWAP, APHM_SUB,
Rmixing_term, APM_SUB, NULL) ;

apmNegate(*b_block[1], Rmixing_term) ;
apmRegate(*b_block[2], Rmixing_term) ;

apmSin(mep_scratch, x->z.v[1]) ;
apmCalc(*b_block[3], x->p[1], mep_scratch, APM_MUL,
two, APM_SWAP, APM_SUB,
Rmixing_term, APM_SUB, EULL) ;
I

F I e T S T S o R M Sy

Rgamma() : calculate the dependence of
v’ on the parameters. Even as the functions
above, gamma() and Rgamma() cheange only those components
pointed to by elements of m block of pointers.
B L s S i s e

find_Rgamma(g_block, x)

APH *g_block[] ;
RXtnd_pt *x ;
{

apmAdd(Rv_sum, x->z.v[0], x->z.v[1]) ;
apmCos{ Rmixing_term, Rv_sum) ;

apmCos(*g_block[0], x->z.v[0]) ;

apmissign(*g_block{1], Amixing_term) ;

apmCos{ *g_block[2], x->z.v[1]) ;

apmAssign(*g_block[3], Rmixing term) ;
}

F I e N

initRjacobian(jac)

/=
Set the constant parts of m jacobian matrix
~/
APM =xjmc ;
{

int i
APM *end_jec, *jpt ;

171

/*
If the array of APM’s called jac has not yet been
initialized, do that first.
*/
if(mpmVelidate(jac[0]) !'= APM_OK) {
end_jac = jmc + MAT_S5Z ;
for{ jpt=jac ; jpt < end_jmc ; jpt++)
*jpt = mpmBew(BASE) ;
}

end_jac = jac + MAT_SZ ; /* Set mll the entries =*/
for(jpt=jmc ; jpt < end_jmc ; jpt++) /* to zero. */
apmissignLong(*jpt, OL, O, BASE) ;

/= Put the identity in the (p,p) position. =/

jpt = jmc ;

for(j=0 ; j < H_PARMS ; j++) {
epmAssignLong(*jpt, 1L, O, BASE) ;

jpt += MAT_DIM + 1 ;

/* Put the identity in the (u,v) position. =/
jpt = jec + STAID_LEN + N_PARMS + DEG_FREE ;
for(j=0 ; j < DEG_FREE ; j++ } {

epmAssignLong(*jpt, 1L, O, BASE) ;
jpt += MAT_DIM + 1 ;

/* Put -1 times the identity in the (v,u) pesition. #*/
jpt = jec + STAID_LEN + (DEG_FREE » MAT_DIM) + N_PARMS ;
for(j=0 ; j < DEG_FREE ; j++) {

apmAssignLong(*jpt, -1L, O, BASE) ;
jpt += MAT_DIM + 1 ;
by
}

P S e S S 7

initMap()
i
/*
This function depends in detail on the choice of map.
*/
bete_ptrs[0] = Deriv + STAID_LER + (DEG_FREE = MAT_DIM) +
N_PARMS + DEG_FREE ;
beta_ptrs[0] + 1 ;
bete_ptrs[0] + MAT_DIM ;
beta_ptrs[2] + 1 ;

bete_ptrs[i]
beta_ptrs[2]
beta_ptrs[3]

gemma_ptrs[0] = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;
gamma_ptrs[1] = gamme_ptrs[0] + 2 ;

gamma_ptrs[2] = gamma_ptrs[0] + MAT _DIH + 1 ;
gumma_ptrs[3]) = gamma_ptrs[1] + MAT_DIH ;

APH stuff
*/
Rbeta_ptrs[0] = RDeriv + STAID_LER + (DEG_FREE * MAT_DIM) +
K_PARMS + DEG_FREE ;
Rbeta_ptrs[1] = Rbete_ptrs[0] + 1 ;
Rbeta_ptrs[2] = Rbetm_ptrs[0] + MAT_DIM ;
Rbetm_ptrs[3] = Rbete _ptrs[2] + 1 ;

172

Rgamma_ptrs[0] = RDeriv + STAID_LEN + (DEG_FREE » MAT_DIM) ;
Rgerma_ptrs[1] = Rgamma_ptrs[0] + 2 ;

Rgamma_ptrs[2] = Rgamma_ptrs[0] + MAT DIM + 1 ;
Rgamma_ptrs[3] = Rgamma_ptrs[1] + MAT_DIM ;

initJacobian{ Deriv) ;
initRjacobian(RDeriv) ;

/*
Further APM stuff - constants and scratch variebles.
=/
Rv_sum = apmBew(BASE) ;
map_scratch = apmBew(BASE) ;
Rmixing_term = apmNew(BASE) ;
¥

R e R L Y
Rjacobien(xpt)

RXtnd_pt *xpt ;

{
find_Rbeta{ Rbetm_ptrs, xpt) ;
find_Rgamme(Rgamma_ptrs, xpt) ;

}

include <stdio.h>

include <math.h>

include "apm.h"

include "mpmSpecial.h"

% include "converse.h"

include "bounding.h"

include "map.h"

int (» fatten)(), (» row_sums)() ;
APM Rw[MAT_DIM] ;
P e e e e S S V)

Rprismatic_image(pz_prime, pz)

RPrism #pz_prime, *pz ;

1
int Jos
APH *mpt, *end mat, *wpt, *end_w ;
/*
Find the image of the center of the prism.
=/
Rimage(pz_prime->center, pz->center)
Rjmcobian(pz->center) ; /* Cmlculate the derivative
of the map. =/
/*
Fatten the matrix Deriv # pz->matrix so that it isn’t too
singular.
*/
(* fatten) (pz_prime->matrix, RDeriv, pz->matrix) ;
1 *

Get upper bounds on the rows of the fattened matrix,
and use them to get the matrix of a prism gauranteed

173

to enclose the imege of pz.
*/

(* row_sums)(Rw, pz_prime->matrix, RDeriv, pz) ;

end_w = Rw + MAT_DIM ;
end_mat = pz_prime->matrix + MAT_SZ ;
for(mpt = pz_prime->matrix ; mpt < end_mat ;) {
for(wpt = Rw ; wpt < end_w ; wpt++, mpt++)
nmenlc(*mpt, *mpt, *wpt, max_error,
APM_ADD, APM_MUL, KULL) ;
}

trunceateRPrism(pz_prime, precision) ;

}

P R e R S e S g

initPrismatic()

{
int j ;
for(j=0 ; j < N_PARMS ; j++) {
Re(j] = epmNew{ BASE) ;
epmAssign(Aw[j], one) ;
w[jl =1.0;
}
for(j=N_PARMS ; j < (N_PARMS + DEG_FREE) ; j++)
Rw[j] = apmNew(BASE) ;
for(j=(N_PARMS + DEG_FREE) ; j < MAT_DIM ; j++) {
w[j] = 1.0 + DBL_ERR ;
Aw[j] = apmNew(BASE } ;
apmAdd(Rw[j], one, max_srror) ;
3
ig

C.2.6 images of prisms

the header file rows.h

extern int isHewPrism ;
extern int global_bounds(), Rglobal_bounds() ;
extern int Rbeta_dif_star(), Rgemdif star() ;

extern double bete _dif star(), gamdif_star() ;

extern Bdd_dbl cos_zero, cos_one, cos_sum ;
extern Bdd_expr a_sin, b_sin, c_sin ;

extern Bdd_apm Rcos_zero, Rcos_one, Rcos_sum ;
extern Bapm_expr Ra_sin, Rb_sin, Rc_sin ;

extern APM neg_one, neg_two, Rrow_mbs[] ;
L S e o o T R ST S S o S S S o O 4

Rglobal_bounds()

include <stdio.h>

* B % N NN

*
*
*

AP
AP]

include
include
include
include
include
include

define
define
define

H
M

Bdd _dbl
Bdd _dbl

Bd

d_dbl

Bdd_term
Bdd_expr
Bdd _expr

Bd

d_apm

Bdd _epm
Bdd _apm
Bapm_term
Bapm_expr
Bapm_expr
R o e e S e I 7

174

<math.h>
llnpm.h"
"apmSpecial.h"
"converse.h"
"pounding.h"
“"rows.h'"

NUM_FACTS 14
NUM_TERMS 11
DET_TOL 1e-13

neg_one, neg_two ;
Rrows [DEG_FREE], Rrow_abs[DEG_FREE] ;

&, b, c, cos_zero, cos_one, cos_sum ;
sin_zero, sin_one, sin_sum, theta ;
*row_fuctors [FRUM_FACTS] ;

row_terms [NUM_TERMS] ;

beta_dif[3], gamma_dif[3] ;

a_sin, b_sin, c_sin ;

Ra, Rb, Rec, Rcos_zero, Rcos_one, Rcos_sum ;
Rsin_zero, Rsin_one, Rsin_sum, Rtheta ;
*Rrow_factors[NUM_FACTS] ;

Rrow_terms [NUM_TERMS] ;

Rbeta_dif[3], Rgamme _dif[3] ;

Re_sin, Rb_sin, Rc_sin ;

initRowSums ()
/»
Set up the expressions and terms as described
from 11/14.
*/
{
int G 3
Bdd _dbl #*+dpt ;
Bdd _apm *+apt ;
Bdd _term #*tpt ;
Bapm_term #*Rtpt ;
/*
Set up some APM’s to be used to hold intermediats
results.
~/

nevBepm(Re, BASE)} ;
newBapm(Rb, BASE } ;
newBapm(Rc, BASE } ;
newBapm(Rtheta, BASE) ;

newBepm(Rcos_zero, BASE) ;

newBepm(Rcos_one, BASE)
newBapm(Rcos_sum, BASE)

nevBepm(Rsin_zero, BASE) ;

newBepm(Rsin_one, BASE)
newBepm(Rsin_sum, BASE)

neg_one = apmInit(-1iL, O, BASE) ;

neg_two

apmInit(-2L, O, BASE) ;

for(j=0 ; j <DEG_FREE ; j++ } {

in my notes

f=

~/

/*

*/

/=

*/

Rrows[j] = epmAew(BASE) ;

Rrow_ebs[j] = apmNew(BASE) ;
}

Set the number of terms in the bounded expressions
a_sin.nterms = Re_sin.nterms = 1 ;
b_sin.nterms = Rb_sin.nterms = 1 ;
c_sin.nterms = Hc_sin.nterms = 1 ;
beta_dif [0] .nterms = Rbeta_dif[0].nterms = 2 ;
beta _dif[1].nterms = Rbeta_dif[1].nterms = 1 ;
bete_dif[2].nterms = Rbeta_dif[2].nterms = 2 ;
gamma_dif[0].nterms = Rgamma_dif[0].nterms = 1 ;
gamma _dif[1].nterms = Rgemma_dif[i].nterms = 1 ;
gamma _dif[2].nterms = Rgamma_dif[2].nterms = 1 ;

Assign terms

tpt = row_terms ;

Rtpt = Rrow_terms ;

for(j=0 ; j < 3 ; j++) {
beta_dif[j].terms = tpt ;
Rbete_dif[j].terms = Rtpt ;
tpt += beta_dif[j].nterms ;

Rtpt += Rbeta_dif

gomme_dif[j].term:

Rgamma_dif[j].terms =

tpt += gamma_dif[

[3].nterms ;

s = tpt ;
Rtpt

H
j].nterms 3

Rtpt += Rgamma _dif[j].nterms ;

}

a_sin.terms = tpt++ ;
Re_sin.terms = Rtpt++

b_sin.terms = tpt++ ;
Rb_sin.terms = Rtpt++

c_sin.terms = tpt++ ;
Rc_sin.terms = Rtpt++

Set nfactors.

Rbete_dif[0].terms[0]

’

.nfactors =

175

bete_dif[0].terms[0] .nfactors

Rbeta _dif[0].terms[1] .nfactors = beta_dif[0].terms[1].nfactors
Rbetn_dif[1].terms[0] .nfactors = bete _dif[1].terms[0].nfactors
Rbete _dif[2].terms[0] .nfactors = beta_dif[2].terms[0].nfactors
Rbetea_dif[2].terms[1] .nfactors = beta_dif[2].terms[1].nfactors

(ST T

Rgamma_dif [0].terms->nfectors = gamme_dif[0].terms->nfactors
Rgamma_dif[1].terms->nfactors = gamme _dif[1].terms->nfactors
Rgamme_dif [2] .terms->nfactors = gamma_dif[2].terms->nfactors =

Ra_sin.terms->nfactors 2z
Rb_sin.terms->nfactors = 2 ;

a_sin.terms->nfactors =
b_sin.terms->nfactors =

176

c_sin.terms->nfectors = Rc_sin.terms->nfactors = 2 ;

Assign factors.

dpt = row_factors ;
mpt = Rrow_factors ;
for(j=0 ; j < 3 ; j++) {
/*
beta_dif
=/
for(k=0 ; k < beta_dif[j]l.nterms ; k++) {
beta_dif[j].terms[k].factors = dpt ;
Rbete_dif[j].terms[k].factors = apt ;

dpt += beta_dif[j].terms(k].nfactors ;
apt += Rbeta_dif[j].terms[k].nfactors ;

gamme_dif
*/
for(k=0 ; k < gamma_dif[j].nterms ; k++) {
gamme_dif[j].terms[k].factors = dpt ;
Rgamma_dif[j].terms[k].factors = apt ;

dpt += gamma_dif[j].terms[x].nfactors ;
ept += Rgamma_dif[j].terms[k].nfactors ;

}

a_sin.terms->factors = dpt ;
Re_sin.terms->factors = apt ;
dpt += 2 ;

apt += 2 ;

b_sin.terms->factors = dpt ;
Rb_sin.terms->factors = mpt ;
dpt += 2
apt += 2

c_sin.terms->factors = dpt ;
Rc_sin.terms->factors = apt ;

Set up those of the "bound" attributes which are
bounded APM’s.

for(j=0 ; j < NUM_TERMS ; j++) {
newBapm(Rrow_terms[j].bound, BASE) ;
}

for(j=0 ; j < 3 ; j++) {
nevBapm(Rbeta_dif[j].bound, BASE) ;
nevBapm(Rgamme_dif[j].bound, BASE) ;
}

newBapm(Re_sin.bound, BASE)
newBapm(Rb_sin.bound, BASE) ;
newBapm(Rc_sin.bound, BASE) ;

177

/=
Set up the terms and expressions.

=/
/* wm_sin »/

a_sin.const = 0.0 ;

Ra_sin.const = apmNew(BASE) ;
a_sin.terms->coef = 1.0 ;
Ra_sin.terms->coef = apmInit(1L, O, BASE) ;

e_sin,terms->factors[0] = &e ;
a_sin.terms->factors[i] = &sin_zero ;
Ra_sin.terms->factors[0] = &Ra ;

Ra_sin.terms->factors[1] = &Rsin_zero ;
/* b_sin =/

b_sin.const = 0.0 ;

Rb_sin.const = apmNew(BASE) ;
b_sin.terms->coef = 1.0 ;
Rb_sin,terms->coef = apmInit(1L, O, BASE) ;

b_sin.terms->factors[0] = &b ;
b_sin.terms->factors[1] = &sin_one ;
Rb_sin.terms->factors[0] = &Rb ;

Rb_sin.terms->factors[i] = &Rsin_one ;
/* c_sin */

c_sin.const = 0.0 ;

Rec_sin.const = apmNew(BASE) ;
c_sin.terms->coef = 1.0 ;
Rc_sin.terms->coef = epminit(1L, O, BASE) ;

c_sin.terms->factors[0] = ke ;

c_sin.terms->factors[1] = &ksin_sum ;
Rc_sin.terms->factors[0] = &Rc ;
Re_sin.terms->factors[1] = &Rsin_sum ;

/* beta_dif */

/* beta_dif[0] = (2.0 - a * sin(v[0]) - ¢ * sin(v[0] + v[1]))
-{ 2,0 - ac * sin(vc[0]) - cc * sin(vec[0] + wc[1])
Where ac, cc, vc[0], mund vc[l] are the values of these
numbers at the center of the prism. The whole second
term (enclosed in braces) is an entry in the jacobian
of the map
*/
Rbeta_dif[0].const = apmNew(BASE) ;
beta_dif[0].terms[0].coef = -1.0 ;
Rbete_dif[0] .terms[0].coef = neg_one ;

beta_dif[0].terms[0].factors[0] = &a_sin.bound ;
Rbetmn_dif[0].terms[0] .factors[0] = &Rm_sin.bound ;

beta_dif[0].terms[1].coef = -1.0 ;
Rbete_dif[0] .terms[1].coef = neg_one ;

beta_dif[0].terms[1].factors[0] = kc_sin.bound ;
Rbetea_dif[0].terms[1] .factors[0] = &Rc_sin.bound ;

/* betm_dif([1]

178

-2.0 * ¢ * sin.bound(v[0] + v[1])
- { -2,0 * cc * sin.bound(ve[0] + vec[1]) }

*/

Rbeta_dif(1].const = mpmNew(BASE) ;
beta_dif[1].terms[0] .coef = -2.0 ;
Rbetn_dif[1].terms[0].coef = neg_two ;

/*
*/

beta_dif[1].terms[0].factors[0] = kc_sin.bound ;
Rbeta_dif[1].terms[0] .factors[0] = &Rc_sin.bound ;

beta_dif[2] = 2.0 - b * sin.bound(v[1]) - ¢ * sin(v[1] + v[0])
-{ 2.0 - be * sin.bound(vc[1]) - cc * sin(vec[1] + wc[0]) }

Rbete_dif[2].const = apmNew(BASE) ;
beta_dif[2].terms[0].coef = -1.0 ;
Rbete_dif[2].terms[0].coef = neg_one ;

beta_dif[2] .terms[0].factors[0] = &b_sin.bound ;
Rbetn_dif[2].terms[0] .factors[0] = &Rb_sin.bound ;

beta_dif[2].terms([1].coef = -1.0 ;
Rbete_dif[2].terms[1i].coef = neg_one ;

beta_dif[2] .terms[1].factors[0] = &c_sin.bound ;
Rbeta_dif[2].terms[1] .factors[0] = &Rc¢_sin,.bound ;

/* gamma_dif */

/=

Rgamme _

gamma_dif[0] = de * (cos(v[0]) - cos(vc[0]))
Where da is half the prism’s width as measured
along the a-axis mnd vc is as above. */

dif[0].const = apmBew(BASE) ;

Rgamma_dif[0].terms[0].coef = mpmNew(BASE) ;

gamma_dif[0].terms[0] .factors[0] = kcos_zero ;
Rgamma_dif [0] .terms[0].factors[0] = &Rcos_zero ;

/% geamma_dif[1] = db * (cos(v[1]) - cos(vec[1])) =/

Rgamma_dif[1].const = apmBew(BASE) ;

Rgamme _dif[1].terms[0].coef = apmHew(BASE) ;

gemma_dif[1].terms[0] .factors[0] = &cos_one ;

Rgamma_dif[1].terms[0].factors[0] = &Rcos_one ;

/* gamma_dif[2] = dc * (cos(v[0] + w[1]) -

cos(vc[0] + wc[1])) =/

Rgamme_dif[2].const = apmNew{ BASE } ;

Rgamme_dif[2].terms[0] .coef = apmNew(BASE) ;

3

gamma _dif[2].terms[0].factors[0] = kcos_sum ;
Rgamme _dif[2] .terms[0].fectors[0] = &Rcos_sum ;

PR e e e eSS S b

Rglobal_bounds(pz)

179

RPrism #*pz ;
1
int 3
APM *apt, *end_row ;

apmidd(Ra.ub, pz->center->p[0], pz->matrix[0]) ;
apmSubtreact (Ra.lb, pz->center->p[0], pz->matrix([0]) ;

apmAdd(Rb.ub, pz->center->p[i], pz->matrix[MAT_DIM+1]) ;
apmSubtract(Rb.lb, pz->center->p[1], pz->matrix[MAT_DIM+1]) ;

apmAdd(Re.ub, pz->center->p[2], pz->matrix[2«MAT_DIM+2]) ;
spmSubtract(Rc.lb, pz->center->p[2], pz->matrix[2+MAT_DIM+2]) ;

mpt = pz->mmtrix + STAID_LEN + (DEG_FREE * MAT_DIM) ;
for(j=0 ; j < DEG_FREE ; j++) {
apmAssign(Rrows[j], zero) ;
for(end_row=mpt + MAT_DIM ; apt < end_row ; apt++) {
apmCalc(Rrows[j]l, Rrows[j], *apt,
APM_ABS, APM_ADD, HNULL) ;

}

epmAdd(Rthetm.ub, pz->center->z.v[0], Rrows[0]) ;
epmSubtract(Rtheta.lb, pz->center—>z.v[0], Rrows[0]) ;
Rbd_sin(&Asin_zero, &Rthetm) ;

Rbd_cos(&Rcos_zerc, &Rtheta) ;

apmAdd(Rthete.ub, pz->center->z.v[1], Rrows[1]) ;
apmSubtract(Rtheta.lb, pz->center->z.v[1], Rrows[1]) ;
Rbd_sin(&Rsin_one, &Rtheta) ;

Rbd_cos(&Rcos_one, &Rthetm) ;

epmCalc(Rthetm.ub, Rtheta.ub, pz->center->z.v[0], Rrows[0O],
APM_ADD, APM_ADD, NULL) ;

apmCelc(Rtheta.lb, Rthete.lb, pz->center->z.v[0], Rrows[0],
APM_SUB, APM_ADD, NULL) ;

Rbd_sin(&Rsin_sum, &Rtheta) ;

Rbd_cos(&Rcos_sum, kRtheta) ;

Rbound_expr(&Re_sin)
Rbound_expr(&Rb_sin)
Rbound_expr(&Rc_sin)

}

I e S N Y
Rbeta_dif_star(mnswer, deriv)

APM answer, *deriv ;
£
APH =dpt ;

dpt = deriv + STAID_LEN + (MAT_DIM*DEG_FREE) + N_PARMS + DEG_FREE ;
apmSubtract(Rbeta_dif([0].const, two, *dpt++) ;

mpmMultiply(Rbeta_dif[1].const, neg_two, *dpt) ;

dpt += MAT_DIM ;

apmSubtract(Rbeta_dif[2].const, two, *dpt) ;

Rbound_expr(&Rbeta_dif[0]) ;
Rbound_expr(&Rbetm_dif[1]) ;
Rbound_expr(kRbetm_dif[2]) ;

180

RmaxAbs (answer, Rbeta_dif[0].bound.ub, Rbeta_dif[0].bound.lb) ;
RmaxAbs(Rrow_ebs[0], Rbete_dif[1].bound.ub, Rbeta_dif[1].bound.lb)
RmaxAbs(Rrow_abs[1], Rbeta_dif[2].bound.ub, Rbeta_dif[2].bound.lb)

/*
Add max_error to the ansver to mccount for the uncertainties
in beta*x(center).
w/
apmCalc(answer, answer, Rrow_mbs[0], Rrow_abs[i], max_error,
APM_ADD, APM_ADD, APM_ADD, HNULL) ;
}

P e Y)

Rgamdif_star(answer, deriv, pmat)

APM answver, *deriv, *pmat ;
;
APH *apt, *Rda, *Rdb, *Rdc ;
Rde = pmat ;
Rdb = pmat + MAT_DIM + 1 ;
Rdc = pmat+ (2 = MAT_DIM) + 2 ;

apmiAssign(Rgamma_dif[0].terms[0].coef, #Rde) ;
apmAssign(Rgemma_dif[i].terms[0].ccef, *Rdb) ;
apmMultiply(Rgemma_dif[2].terms[0].coef, two, *Rdc) ;

apt = deriv + STAID_LEN + (DEG_FREE * MAT_DINM) ;
epmCelc(Rgamma_dif[0].const, *Rda, APM_REG, *apt, APM_MUL, EULL) ;
apt += MAT_DIM + 1 ;
epmCalc(Rgemma_dif[1].const, *Rdb, APM_NEG, »mpt, APM_MUL, NULL) ;
apt++ ;
epmCelc(Rgemma_dif[2].const, two, APM_NEG, »Rdc, =ept,

APM_MUL, APM_MUL, KULL) ;

Rbound_expr(&Rgamma_dif[o0]) ;
Rbound_expr(&Rgamma_dif[1]) ;
Rbound_expr(. &Rgamma_dif{2]) ;

RmexAbs(ansver, Rgamma_dif[0].bound.ub, Rgamma_dif[0].bound.lb) ;
RmaxAbs(Rrow_abs[0], Rgemme _dif[1].bound.ub, Rgemma_dif[1].bound.lb)
RmexAbs (Rrow_abs[1], Rgamma_dif[2].bound.ub, Rgamma_dif[2].bound.lb)

Add mex_error to the answer to account for the uncertainties
in betm**(center).
*/
epmCalc(answer, answer, Rrow_abs[0], Rrow_abs[1], max_error,
APM_ADD, APM_ADD, APM_ADD, NULL) ;

}

column-rotor

include <stdio.h>

include <math.h>

include "apm.h"

include "epmSpeciml.h"
include ''converse.h'

include '"bounding.h'

include '"rows.h"

181

include "pi.h"

define m_sign(x) ((x>0.0) 71.0: -1.0)
* define Rm_sign(x, a) apmissignlLong((x), (long)apmSign((a)),0,BASE)
define USE_ROT YES
define THETA_RODT 0.5 /* The angle for rotemtions - it’s
recorded here in units of pi. */
APM Rcthet, Rsthet, Rsmmll_sinsq ;
APM Raren, Rsin_sq, Rnorm_one, Rnorm_two, Rsign ;
APHM

Rnorm_prod, Rsign, Rx, Ry ;

double cthet, sthet, small_sinsq ;
A o e e R e S e R Y

initRotor()

1

}

Rcthet = apmNew(BASE)
Rsthet = mpmNew(BASE)

P

Rx = apmBew(BASE) ;

Ry = apmNew(BASE) ;
Rarea = mpmNew(BASE) ;
Rsign = epmNew(BASE) ;
Rsin_sq = apmNew(BASE) ;
Rnorm_one = apmbew(BASE)
Rnorm_two = apmNew(BASE)
Rnorm_prod = mpmNew(BASE) ;
Rsmall_sinsq = apmBew{(BASE) ;

cthet = cos(PI * THETA_ROT)}
sthet = sin(PI * THETA_ROT) ;
small _sinsq = sthet * sthet ;

dbltoapm(Rx, BASE, THETA_ROT
epmMultiply(Ry, pi, Rx) ;
apmCos(Rcthet, Ry) ;
apmSin(Rsthet, Ry) ;
epmMultiply(Rsmaell _sinsq, Rsthet, Rsthet) ;

~
-

I O R R R TSNSy

Rcol_rotor(Amat, Deriv, Prizmat)

APH
/*

*/

*/

wAmat, *Deriv, *Prizmat ;

Prepares the matrix called "A" in my notes. Mostly we want to
have A = DF#*Priz, but we want to ensure that A is not singular.
In the interest of speed we have coded the calculetions below with

pointers. Our hope is that the resulting function will scream along

at ultrasonic speed. Unfortunately it is quite unreadable.

int J» k3
APM *Aend, *Dend, *Pend ;
register APM *Apt, *Dpt, *Ppt ;

Copy the few terms which appear in the top rows of Ammt.

/*

*/

/*

*/

/=

L4

Aend = Amet + N_PARMS * (MAT_DIM + 1)

182

for(Apt = Amat, Ppt = Prizmet ; Apt < Aend ; Apt += (MAT_DIK + 1),

apmissign(*Apt, *Ppt) ;

Ppt += (MAT_DIM + 1))

Clear out those parts of Amat which change from iteration to

iteration.

Aend = Amet + MAT_SZ ;

for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt++)

apmissignLong(*Apt, OL, O, BASE)

Set the (u,p) part of A

It’s equal to the (v,p) part of Prizmat.

Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Apt = Amat + STAID_LER ; Apt < Aend ; Apt += TWO_DF) {
for(Pend = Ppt + N_PARMS ; Ppt < Pend ; Ppt++)

apmdssign(*Apt++, *Ppt) ;

Ppt += TWO_DF ;

Set the (v,p) part — three terms.

/* First term - equal to Deriv(v,p) * Prizmat(p,p) =/

Dpt = Deriv + STAID_LEN + (DEG_FREE » MAT_DIM) ;
Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DINM) ;

for(Aend = Apt + (DEG_FREE*MAT_DIM)
Ppt = Prizmat ;

Apt < fend ; Apt += TWO_DF) {

for(Dend = Dpt + H_PARMS ; Dpt < Dend ; Dpt++) {
apmCalc(*Apt, #Apt, *Dpt, *Ppt, APM_MUL, APM_ADD, NULL) ;

Apt++ ;
Ppt += MAT_DIM + 1 ;
}

Dpt += TWO_DF ;

/* Second term - egqual to negative Prizmat(u,p) =/

Ppt = Prizmat + STAID_LER ;

Apt = Amat + STAID _LEN + (DEG_FREE * MAT_DIM) ;

for(Pend = Ppt + (DEG_FREE * MAT_DIM)
for(Aend = Apt + N_PARMS ; Apt < Aend ; Apt++)

apmCalc{ *Apt, *Apt, *Ppt++, APM_SUB, NULL) ;

Apt += THO_DF ;

i Ppt < Pend ; Ppt += TWO_DF) {

/* Third term - equel to Deriv(v,v) * Prizmat(v,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * (MAT_DIM + 1)) + N_PARMS

Dend = Deriv + MAT_SZ ;

*/

*/

/*

*/

183

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
while{ Dpt < Dend) {
Ppt = Prizmeat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Pend = Prizmat + MAT _SZ ;
while{ Ppt < Pend) {
Aend = Apt + N_PARMS ;
while(Apt < Aend) {
epmCalc(*Apt, *Apt, »Dpt, *Ppt, APM_MUL, APM_ADD, NULL) ;

Apt++ ;
Ppt++ ;
}
Dpt++ ;

Ppt += TWO_DF ;
Apt -= N_PARMS ;
}

Dpt += N_PARMS + DEG_FREE ;
Apt += MAT_DIM ;

(u,u) part
equals Priz(v,u)

Apt = Amet + STAID_LEN + N_PARMS ;
Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Ppt = Prizmat + STAID_LER + (DEG_FREE » MAT_DIM) + N_PARMS ;
while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

apmAssign(*Apt++, *Ppt ++) ;
3}

Apt +
Ppt +

N_PARMS + DEG_FREE ;
N_PARMS + DEG_FREE ;

(u,v) part
equals Priz(v,v)

Apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;
Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Ppt = Prizmet + STAID_LEN + (DEG_FREE+MAT_DIM) + N_PARMS + DEG_FREE ;
while(Apt < Aend) {
Pend = Ppt + DEG_FREE ;
while(Ppt < Pend)
apmAssign{ *Apt++, #Ppt++) ;

Apt += N_PARMS + DEG_FREE ;
Ppt += N_PARMS + DEG_FREE ;

The (v,u) part - equal to Deriv(v,v) * Priz(v,u) - Priz(u,u) ,

/=
*/

184

/* First term */
Apt = Amat + STAID_LER + (DEG_FREE * MAT_DIM) + N_PARMS ;
Aend = Apt + (DEG_FREE * MAT_DIM) ;
Dpt = Deriv + STAID_LEN + (DEG_FREE+MAT_DIM) + N_PARMS + DEG_FREE
while(Apt < Aend) {
Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + E_PARMS ;
Pend = Ppt + DEG_FREE ;
while(Ppt < Pend) {
Dend = Dpt + DEG_FREE ;
wvhile(Dpt < Dend) {
apmCelc(#Apt, =Apt, #Dpt++, =Ppt, APM_MUL,
APM_ADD, NULL) ;

Ppt += MAT_DIM ;

}

Apt++ ;

Dpt -= DEG_FREE ;

Ppt -= (DEG_FREE » MAT DIM) - 1 ;
}
Dpt += MAT_DIM ;
Apt += N_PARMS + DEG_FREE ;

/* Second term #*/
Apt = Amat + STAID _LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE
Ppt = Prizmat + STAID_LEN + H_PARMS ;
Pend = Ppt + (MAT_DIM * DEG_FREE) ;
while(Ppt < Pend) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend) {
apmCalc(*Apt, #*ipt, *Ppt, APM_SUB, EULL) ;
Apt++ ;
Ppt++ ;
}

Ppt += N_PARMS + DEG_FREE ;
Apt += N_PARMS + DEG_FREE ;

(v,v) part - equals Deriv(v,v) * Priz(v,v) - Priz(u,v)

/* First term »/
Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE
Aend = Apt + (DEG_FREE * MAT_DIM) ;
Dpt = Deriv + STAID_LEN + (DEG_FREExMAT_DIM) + N_PARMS + DEG_FREE
while(Apt < Aend) {
Ppt = Prizmmt + STAID_LEN + (DEG_FREE*MAT_DIM) +
H_PARMS + DEG_FREE ;
Pend = Ppt + DEG_FREE ;
while(Ppt < Pend) {
Dend = Dpt + DEG_FREE ;
while(Dpt < Dend) {
apmCalc(*Apt, *Apt, *Dpt++, *Ppt, APM_MUL,
APM_ADD, EULL) ;

Ppt += MAT_DIHM ;
}
Apt++ ;

185

Dpt -= DEG_FREE ;
Ppt -= (DEG_FREE * MAT _DIM) - 1 ;
}
Dpt += MAT_DIM ;
Apt += N_PARMS + DEG_FREE ;

/* Second term */
Apt = Amat + STAID_LEF + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;
Ppt = Prizmat + STAID LEN + N_PARMS + DEG_FREE ;
Pend = Ppt + (MAT_DIM » DEG_FREE) ;
while(Ppt < Pend) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend) {
apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;
Apt++ ;
Ppt++ ;
¥

Ppt += N_PARMS + DEG_FREE
Apt += N_PARMS + DEG_FREE

}
if USE_ROT
/*
Do up the rotations.
*/
for(j=0 ; j < TWO_DF ; j++)
for(k=(j+1) ; k < TWO_DF ; k++)
Rsubspace_rot{ Amat, j, k) ;
endif
}

I e e e e e s b

Rsubspace_rot(Amat, col_one, col_two)

int col_one, col_tvo ;
APM *Amat ;
{

APM *Apt, *Apt2 ;

Apt = Amat + STAID_LEN + N_PARMS +
(col_two - col_one — 1) * MAT_DIM +
col_one ;

Apt2 = Apt + col_two - col_omne ;

apmCelc(Rarem, *Apt, Apt2[MAT_DIM], APM_MUL,
Apt [MAT_DIM), #Apt2, APM_MUL,
APM_SUB, BULL) ;
apmCelc(Rnorm_one, *Apt, APHM_DUP, APM_MUL,
Apt[MAT_DIM], APM_DUP, APM_MUL,
APM_ADD, RULL) ;
apmCalc(Rnorm_two, *Apt2, APM_DUP, APM_MUL,
Apt2[MAT_DIM], APM_DUP, APM_MUL,
APM_ADD, RULL) ;
apmMultiply(Rnorm_prod, Rnorm_one, Rnorm_two) ;
if(epmCompare(Rnorm_prod, zero) == 1) {
epmMultiply(Rx, Rares, Rarems) ;
epmDivide(Rsin_sq, precision, (APM)} NULL, Rx, Rnorm_prod) ;

186

if(apmCompare(Rsin_sq, Rsmall_sinsq) == -1) {
Rm_sign(Rsign, Rarea) ;

if (mapmCompare(Rnorm_two, Rnorm_cne) !=1) {
apmCalc(Rx, Rcthet, #Apt2, APM_MUL,
Rsign, Rsthet, Apt2[HAT_DIH], APM_MUL, APM_MUL,
APM_SUB, NULL) ;
apmCalc(Ry, Rsthet, *Apt2, Rsign, APM_MUL, APM_MUL,
Rcthet, Apt2[MAT_DIM], APM_MUL,
APM_ADD, NULL) ;

epmidssign{ *Apt2, Rx) ;
epmAssign(Apt2[MAT_DIM], Ry) ;

}
olse {
apmCalc(Rsign, Rsign, APM_NEG, NULL) ;
apmCalc(Rx, Rcthet, *Apt, APM_MUL,
Rsign, Rsthet, Apt[MAT_DIM], APM_MUL, APM_MUL,
APM_SUB, KULL) ;
apmCalc(Ry, Rsthet, *Apt, Rsign, APM_MUL, APM_MUL,
Rothet, Apt[MAT_DIM], APM_MUL,
APM_ADD, EULL) ;
epmidssign{ *ipt, Rx) ;
apmissign(Apt[MAT_DIM], Ry) ;
}
¥
}
}
include <stdio.h>
include <math.h>
include "apm.h"
include "apmSpecial.h"
include '"converse.h"
include "bounding.h"
include "rows.h"

define NUM_FACTS 3
define NUM_TERMS 3

define DET_TOL 1e-13

int isNewPrism ;

APM cr_scratch ;

APM RBmat [MAT _SZ], Rconst_met[DF_SQ], Rcopy[4 * DF_SQ] ;

APM *Rcopy_rows[TWO_DF] ; .

APM RBu_rows[DEG_FREE], RBv_rows[DEG_FREE] ;

APH Rbd_ster, Rgd_ster, Rstar, RPvp_ster ;

APM Rcenter_err[MAT_DIM] ;

APH Rup_rows[DEG_FREE], Ruu_rows[DEG_FREE], Ruv_rows[DEG_FREE]
APH Rvp_rows[DEG_FREE], Rvu_rows[DEG_FREE], Rvv_rows[DEG_FREE]

double Bmat [MAT_SZ], const_mat[DF_SQ], copy[4 » DF_SQ] ;

double *copy._rows [TWO_DF] ;

double Bu_rows [DEG_FREE], Bv_rows[DEG_FREE] ;

double bd_star, gd_star, star, Pvp_star ;

double center_err [MAT_DIM] ;

double up_rows [DEG_FREE], uu_rows[DEG_FREE], uv_rows[DEG_FREE] ;
double vp_rows [DEG_FREE], vu_rows[DEG_FREE], vv_rows[DEG_FREE] ;

187

Bdd _dbl #*cr_factors [RUM_FACTS] ;
Bdd_term cr_terms[NUM_TERMS] ;
Bdd_expr beta_prod ;

Bdd_apm *Rcr_factors[NUM_FACTS] ;
Bapm_term Rcr_terms[NUM_TERMS] ;
Bapm_expr Rbeta_prod ;
e S R e SR S SRS]

init_crRous()

/*
Set up the expressions and terms as described in my notes
from 12/3 and 12/4.
*/
{
int J» &k ;
APH *Rept ;
double *cpt ;
Bdd _dbl #+dpt ;
Bdd_epm *xapt ;
/*
Initialize a batch of APM’s.
=/

for(j=0 ; j < DEG_FREE ; j++) {
Rvp_rows[j] = mpmNew(BASE)
Rup_rows[j] = apmNew(BASE)
Ruu_rows[j] = apmNew(BASE)
Ruv_rows[j] = apmNew(BASE) ;
Rvu_rows[j] = apmHew(BASE)
Rvv_rows[j] = apmNew(BASE)
RBu_rows[j] = apmBew(BASE)
RBv_rows[j] = apmNew(BASE)

}

Rstar = apmNew(BASE) ;
Rgd_star = apmNew(BASE) ;
Rbd_star = apmRew(BASE) ;
RPvp_star = apmNew(BASE) ;
cr_scratch = apmNew(BASE) ;
for(j=0 ; j < HAT_SZ ; j++) {

Bmat[j] = 0.0 ;

RBmat[j] = apmBew(BASE) ;
}

for(j=0 ; j < DF_SQ ; j+t+)
Rconst _mat[j] = epmNew(BASE) ;

for(j=0 ; j < (4 * DF_SQ) ; j++)
Rcopy[j]l = apmNew(BASE) ;

for(§=0 ; j < MAT_DIM ; j++)
Rcenter_err[j] = apmNew(BASE) ;

cpt = copy ;

Rept = Rcopy ;

for(j=0 ; j < TWO_DF ; j++) {
copy_rows[j]l = cpt ;
Rcopy._rous[j] = Rcpt ;

cpt += TWO_DF ;
Rcpt += TWO_DF ;

188

}
/*
Set the number of terms in the bounded expressions
*/
beta_prod.nterms = Rbeta_prod.nterms = 3 ;
/*
Assign terms
*/
beta_prod.terms = cr_terms ;
Rbetm_prod.terms = Rcr_terms ;
/=
Set nfactors.
=/
Rbeta_prod.terms[0] .nfactors = bete_prod.terms[0] .nfactors
Rbetm_prod.terms[1].nfactors = beta_prod.terms[1].nfactors
Rbete_prod.terms[2].nfactors = beta_prod.terms[2].nfactors
/*
Assign factors.
*/
dpt = cr_factors ;
apt = Rcr_factors ;
for(k=0 ; k < beta_prod.nterms ; k++) {
beta_prod.terms[k].factors = dpt ;
Rbete_prod.terms[k].factors = apt ;
dpt += betm_prod.terms[k].nfactors ;
apt += Rbeta_prod.terms[k].nfactors ;
¥
/*
Set up those of the "bound" attributes which are
bounded APM’s.
*/
nevBapm(Rbetm_prod.bound, BASE) ;
for(j=0 ; j < NUM_TERMS ; j++) {
newBapm(Rcr_terms[j].bound, BASE) ;
}
/=
Set up the terms mnd expressions.
*/

/* beta_prod */

Rbetm_prod.const =
Rbeta_prod.terms[0].coef

apmNew(BASE) ;

apmllew(BASE) ;

bete_prod.terms[0] .factors[0] = &e_sin.bound ;
Rbetm_prod.terms[0] .factors[0] = &Re_sin.bound ;

Rbetea_prod.terms[1].coef

apmNew{ BASE) ;

beta_prod.terms[1].factors[0] = &c_sin.bound ;

[}

189

Rbeta_prod.terms[1].factors[0] = &kRc_sin.bound ;
Rbete_prod.terms[2] .coef = epmHew(BASE) ;

beta_prod.terms[2].factors[0] = &b_sin.bound ;
Rbete_prod.terms[2] .factors[0] = &Rb_sin.bound ;

/* +++++ +++ b+ + x/

Ror_rows(RAw, Amat, Deriv, Priz)

APM *Rw, *Amat, *Deriv ;
RPrism #*Priz ;
/*

Obtain bounds on the sums of the absolute velues of
the entries in the rows of

-1
[a] * Deriv * Pmat,

put the results in w.

*/
{
int G
APM *end_row, *end_met, *Pmat, *inv_pt ;
APH *plpt, *p2pt, *blpt, *b2pt, *wu_pt, *wv_pt ;
Pmat = Priz->matrix ;
Rset_inverse(Amat) ;
/*
Do up some row sums for the inverse; these
are used to calculate center_err[].
*/

bipt = RBmat + STAID_LEK + K_PARMS
b2pt = bipt + MAT_DIM » DEG_FREE ;
for(j=0 ; j < DEG_FREE ; j++) {
)
)

apmAssign{ RBu_rows[j], zero
apmAssign(RBv_rows[j], zero

for(end_row = bipt + TWO_DF ; bipt < end_row ;) {
apmCalc{ RBu_rows[j], RBu_rows[j], #bipt++,
APM_ABS, APM_ADD, RULL) ;
apmCalc(RBv_rows[j], RBv_rows[j], *b2pt++,
APM_ABS, APM_ADD, NULL) ;

}
¥
/%
Call functions which calculate upper bound on the
sums of the elements of various matrices.
Before any bounding of matrices, one must invoke
global_bounds(Pmat) to set such global variables,
as cos_one, and sin_sum. This is done in Rtry_prism.
=/
Rbeta _dif_ster(Rbd_star, Deriv) ;
Rgamdif _ster(Rgd_star, Deriv, Pmat) ;
/*

Calculate bounds on the sums of the ebsolute values
of the elements in various blocks.

*/

*/

190

/* up & vp blocks */

epmAssignlong(RPvp_star, OL, O, BASE) ;
pipt = Pmat + STAID_LEN + (MAT_DIM * DEG_FREE) ;
end_mat = pipt + (DEG_FREE » MAT_DIM) ;
for(; plpt < end_mat ; pipt += TWO_DF) {
for(end_row = plpt + N_PARMS ; plpt < end_row ; pilpt++)
epmCalc(RPvp_star, RPvp_star, *pipt, APM_ABS,
APM_ADD, NULL) ;

apmCalc(Rstar, Rgd_ster, Rbd_star, RPvp_star,
APM_MUL, APM_ADD, NULL) ;
bipt = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;
b2pt = RBmat + STAID_LEN + N_PARMS + DEG_FREE + (MAT_DIM * DEG_FREE)
for(j=0 ; j < DEG_FREE ; j++) {
apmAssignLong(Rup_rows[j], OL, 0, BASE) ;
apmissignLong(Rvp_rows[j], OL, O, BASE) ;
for{(end_row = bipt + DEG_FREE ; bipt < end_xrow ;
bipt++, b2pt++) {
apmCalc{ Rup_rows[j], Rup_rows[jl, *bipt, APM_ABS,
APM_ADD, NULL) ;
apmCalc(Rvp_rows[jl, Rvp_rows[j], *b2pt, APM_ABS,
APM_ADD, NULL)

-

}

apmCalc(Rup_rows[jl, Rup_rows[j]l, Rstar, APM_MUL, NULL)
epmCalc(Rvp_rows[j], Rvp_rows[j], Rstar, APM_MUL, BULL)

we =y

bipt += N_PARMS + DEG_FREE ;
b2pt += N_PARMS + DEG_FREE ;

Do the remmining blocks - those that actuslly arise

from the derivatives of the (u,v) -> (u’,v’) part of
the map. This section uses the mighty bound_rows(),
vhich may be found below.

/* (u,u) block :
B(u,u) * P(v,u) + B(u,v) * { beta * P(v,u) -
P(u,u} }
*/

pipt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) + H_PARMS ;
p2pt = Pmat + STAID_LEN + N_PARMS ;

bipt = RBmat + STAID_LEN + N_PARMS ;
b2pt = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;
Rbound_rows({ Ruu_rows, bipt, pipt, b2pt, p2pt) ;

/* (u,v) block :
B{u,u) = P(v,v) + B(u,v) * { beta * P(v,v) -
P(u,v) }
*/

Pmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;
Pmat + STAID_LEN + N_PARMS + DEG_FREE ;

pipt
p2pt

]

’

191

/* The seme parts of RBmat as used to find uu_rows. */
Rbound_rows(Ruv_rows, bipt, pipt, b2pt, p2pt) ;

/* (v,u) block :
B(v,u) » P(v,u) + B(v,v) * { beta » P(v,u) -
P(u,u) }
*/

plpt = Pmat + STAID_LEN + (DEG_FREE+MAT_DIM) + N_PARMS
p2pt = Pmat + STAID_LER + N_PARMS ;

bipt = RBmat + STAID_LEN + (DEG_FREE+MAT_DIM) + N_PARMS ;
b2pt = RBmat + STAID_LEN + (DEG_FREE+#MAT_DIM) + N_PARMS + DEG_FREE ;
Rbound_rows(Rvu_rows, bipt, pipt, b2pt, p2pt) ;

/* (v,v) block :
B(v,u) * P(v,v) + B(v,v) * { beta * P{(v,v) -
P(u,v) }
*/

plpt = Pmat + STAID_LEN + (DEG_FREE*MAT_DIM) + N_PARMS + DEG_FREE ;
p2pt = Pmat + STAID_LEN + N_PARMS + DEG_FREE ;

/* Seme parts of RBmat as are used to find vu_rows. */
Rbound_rows(Rvv_rows, bipt, pipt, b2pt, p2pt) ;

/*
Get the contibutions to Rw[] that arise from
errors in the computation of the image of the
prism’s center.
*/
for(j=0 ; j < DEG_FREE ; j++) {
center_err[j+N§_PARMS] = Bu_rows[j] * DBL_ERR ;
center_err[j+N_PARMS+DEG_FREE] = Bv_rows[j] * DBL_ERR ;
apmMultiply(Rcenter_err[j+N_PARMS], RBu_rows[j], max_error) ;
apmMultiply(Rcenter_err[j+N_PARMS+DEG_FREE], RBu_rows[j],
max_error) ;
¥
/*
Compute the components of w([].
*/
wu_pt = kRw[N_PARMS] ;
wv_pt = &Rw[N_PARMS + DEG_FREE] ;
for(j=0 ; j < DEG_FREE ; j++, wu_pt++, wv_pt++) {
apmCalc(*wu_pt, Rup_rows[j], Ruu_rows[j], Ruv_rows[j], mex_error,
APM_ADD, APM_ADD, APM_ADD, RULL) ;
apmCalc(*wv_pt, Rvp_rows[j], Rvu_rows[j), Rvv_rows[j], max_error,
APM_ADD, APH_ADD, APM_ADD, NULL) ;
}
/*
Include errors due to miscalculation of
prism’s center.
*/
for(j= N_PARMS ; j < MAT_DIM ; j++)
apmCalc(Rw[jl, Rw[j], Rcenter_err[j], APM_ADD, NULL)} ;
return ;
}

e S Y4

192

Rbound_rows(rows, first_b, first_p, second_b, second_p)

APH

{
/*

*/

/*

=/

*rows, *first_b, *second_b, *first_p, *second_p ;

APM

cpt

Obtain upper bounds on the sums of the absolute
values of rows of matricies given by expressions
like:

Bl * S1 + B2 * ([beta] *» S1 - 52).

Expressions like these arise in cr_rows() above.
The idee is to cast these rows ms bounded expressions

and then use the usual machinery to find their limits.

is k
*bpt_a, *bpt_b, *ppt_m, *ppt_b, *end_row, *cpt ;

Eveluante the constant part of the matrix expression.
It’s :
(BL + 2.0 = B2) = 51 - B2 * 52

= Rconst_mat ;

for(j=0 ; j < DEG_FREE ; j++) {

}

cpt

bpt_a = first_b + j * MAT_DIM ;

bpt_b = second_b + j * MAT_DIH ;

for(X=0 ; k < DEG_FREE ; k++) {
apmissignlong(*cpt, OL, O, BASE) ;

ppt_a = first p + k ;

ppt.b second_p + k ;

for(end_row = bpt_m + DEG_FREE ; bpt_a < end_row

apmCalc(*cpt, *cpt, *bpt_m,

*bpt_b, two, APM_MUL,
APM_ADD,
*ppt_m, APM_MUL,
*bpt_b, *ppt_b,
APM_MUL, APM_SUB,
APM_ADD, NULL) ;

bpt_a++, bpt_b++ ;

ppt_a += MAT_DIM ;

ppt_b += MAT_DIM ;
}

bpt_a -= DEG_FREE
bpt_b -= DEG_FREE
cpt++ ;

= Rconst_mat ;

for{ j=0 ; j < DEG_FREE ; j++) {

apmissignLong(rows(jl, OL, O, BASE) ;

bpt_a = second_b + j * MAT_DIM ;

bpt_b = bpt_=& + 1 ;

for(k=0 ; k < DEG_FREE
ppt_a = first p + k
ppt.b = ppt_a + MAT_DIM ;

k++) {

X4

193

/% a * sin(v[0]) term */
epmMultiply(cr_scretch, #bpt_a, *ppt_a) ;
apmNegate(Rbete_prod.terms[0].coef, cr_scratch)

/* ¢ * sin(v[0] + v[1]) term #*/
epmCalc(cr_scratch, *bpt_a, #bpt_b, APM_ADD,
#ppt_a, *ppt_b, APM_ADD,
APM_MUL, NULL) ;
apmiegate(Rbeta_prod.terms[1].coef, cr_scratch) ;

/* b * sin(v[0] + v[1]) term */
apmMultiply(cr_scratch, *bpt_b, #»ppt_b) ;
apmNegute(Rbeta_prod.terms[2].coef, cr_scratch) ;

epmAssign(Rbete_prod.const, *cpt++) ;
Rbound_expr(&Rbeta_prod) ;

RAmaxibs(cr_scratch, Rbeta_prod.bound.ub,
Rbeta_prod.bound.lb) ;
apmCalc(rows[jl, rows[j], cr_scratch, APM_ADD, RULL) ;

}

T
/% 444 PPN + »/

Rset_inverse(mat)

APM *mat ;

{
APM *end_row, *end_block, *end_col ;
APH *ipt_m, *ipt_b, *ipt_c, *ipt_set, *mpt_m, *mpt_b ;
if(isNewPrism == YES) {
end_block = RBmat + N_PARMS » (MAT_DIM + 1) ;
for(ipt_an=RBmat, mpt_a=mat ; ipt_a < end_block ;) {
apmDivide(*ipt_m, precision, (APM)NULL, one, *mpt_a) ;
mpt_a += MAT _DIM + 1 ;
ipt_m += MAT_DIM + 1 ;
i
isNewPrism = RO ;
}
Rinvert _corner(mat) ;
/*
Set the (u,p) part of the inverse.
»/

ipt_a = RBmat + STAID_LEN + N_PARMS ;
ipt_b = RBmat + STAID_LEN + N_PARMS + DEG_FREE ;

ipt _set = RBmat + STAID_LEN ;

end_block = ipt_set + (MAT_DIM * DEG_FREE) ;

for(; ipt_set < end_block ; ipt_set += TWO_DF) {
ipt_c = RBmat ;

mpt_u = mat + STAID_LEN ;
mpt_b = mat + STAID_LEN + (DEG_FREE » MAT_DIM) ;

end_row = ipt_set + N_PARMS ;

194

for(; ipt_set < end_row ; ipt_set++) {
apmAssignlong(*ipt_set, OL, O, BASE) ;

end_col = mpt_a + (DEG_FREE * MAT_DIM) ;
for(; mpt_a < end_cel ; mpt_a += MAT_DIM) {
apmCalc(*ipt_set, *ipt_m, *mpt_m, APM_MUL,
+ipt_b, *mpt_b, APM_MUL,
APM_ADD, APM_KREG,
#ipt_set, APM_ADD, FULL) ;

r
ipt_b++ ;
mpt_b += MAT_DIH ;
}
apmCalc(*ipt_set, *»ipt_set, *ipt_c, APM_MUL, NULL) ;

ipt _a -= DEG_FREE ;

ipt _b -= DEG_FREE ;

ipt_c += MAT_DIM + 1 ;

mpt_a -= (MAT_DIM * DEG_FREE) - 1 ;
mpt_b -= (MAT_DIM # DEG_FREE) - 1 ;

}

ipt_a += MAT_DIM
ipt_b += MAT_DIM
mpt_a -= DEG_FREE
mpt_b -= DEG_FREE

H
’

Set the (v,p) part of the inverse.

ipt_a = RBmat + STAID_LENF + N_PARMS + (DEG_FREE * MAT_DIM) ;
ipt_b = RBmat + STAID LEF + N_PARMS + (DEG_FREE+MAT_DIM) + DEG_FREE ;

ipt_set = RBmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

end_block = ipt_set + (MAT_DIM *» DEG_FREE) ;

for(; ipt_set < end_block ; ipt_set += TWO_DF) {
ipt_c = RBmat ;

mpt_m = mat + STAID_LER ;
mpt_b = mat + STAID_LEF + (DEG_FREE # MAT_DIM) ;

end_row = ipt_set + N_PARMS ;
for(; ipt_set < end_row ; ipt_set++) {
apmAssignLong(*ipt_set, OL, O, BASE) ;

end_col = mpt_a + (DEG_FREE » MAT_DIM) ;
for(; mpt_a < end_col ; mpt_a += MAT_DIM) {
apmCalc(*ipt_set, *ipt_m, *mpt_m, APM_MUL,
»ipt_b, =mpt_b, APM_MUL,
APM_ADD, APM_KEG,
sipt_set, APM_ADD, NULL) ;

ipt_m++ ;
ipt_b++
mpt_b += MAT_DIM ;

}

apmCalc{ *ipt_set, *ipt_set, *ipt_c, APM_MUL, NULL) ;

ipt_a -~= DEG_FREE ;

195

ipt_b -= DEG_FREE ;
ipt_c += MAT_DIM + 1 ;

(MAT_DIM * DEG_FREE) - 1 ;
(MAT_DIM * DEG_FREE) - 1 ;

mpt_a -
mpt_b —

}

ipt_a += MAT_DIM ;
ipt_b += MAT _DIM ;
mpt_a -= DEG_FREE
mpt_b -= DEG_FREE

}
}

P e e S S s Y
Rinvert_corner(mat)

APM *mat ;

{

/*
Set up matrices to prepare ’em for use by Rgaunss()
Note that we use the metirx called const_mat[].
At the times this function is called const_mat[]
doesn’t contain anything important.

»/
int i
APM *end_row, *mpt, *bpt, *cpt ;
/*
Copy the matrix.
~/

mpt = mat + STAID_LEN + N_PARMS ;
for(j=0 ; j < TWO_DF ; j++) {

cpt = Rcopy_rows[j] ;
end_row = mpt + TWO_DF ;
vhile(mpt < end_row)
apmAssign(*cpt++, smpt++) ;

mpt += N_PARMS ;

¥
/*
Do the inversion.
*/
Rgauss(Rcopy_rows) ;
/*
Copy the answer.
*/

bpt = RBmat + STAID_LEN + N_PARMS ;
for(j=0 ; j < TWO_DF ; j++) {

cpt = Recopy_rows[jl ;
end_row = bpt + TWO_DF ;
while(bpt < end_row)
epmAssign(*bpt++, *cpt++) ;

bpt += N_PARMS ;

196

fixed-form

include <stdio.h>
include <math.h>
include ''apm.h"
include "epmSpeciel.h"
include 'converse.h"

* W W W

I e S n S a4
fxed_form(Amat, Deriv, Prizmat)

double *Amat, *Deriv, *Prizmat ;

/>
Prepares the matrix called "A" in my notes. Eventually we want to
have A = DF*Priz, but early in a calculation, when Priz is singular,
we want to fatten A up by requiring it to have m certein fixed form.
In the interest of speed we have coded the calculations below with
pointers. Our hope is that the resulting function will scream along
at ultrasonic speed. Unfortunately it is quite unreadable.
*/
{
double *Aend, *Aend2, *Dend, *Pend, *Pend2 ;
register double *Apt, *Apt2, *Dpt, *Ppt, *Ppt2 ;
/*
Copy the few terms which appear in the top rows of Amat.
*/
Aend = Ammat + N_PARMS » (MAT_DIM + 1) ;
for(Apt = Amat, Ppt = Prizmat ; Apt < Aend ; Apt += (MAT_DIM + 1),
Ppt += (MAT_DIM + 1))
=Apt = *Ppt ;
/*
Clear out those parts of Amat which change from iteration to
iteration.
»/
Aend = Amat + MAT_SZ ;
for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt++)
*Apt = 0.0 ;
/*
Set the (u,p) part of A
It’s equal to the (v,p) part of Prizmat.
Wy
Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Ppt = Prizmet + STAID LEN + (DEG_FREE * MAT_DIM) ;
for(Apt = Amat + STAID LEF ; Apt < Aend ; Apt += TWO_DF) {
for(Pend = Ppt + N_PARMS ; Ppt < Pend ; Ppt++)
*Apt++ = *Ppt ;
Ppt += TWO_DF ;
}
/*

Set the (v,p) part - three terms.

*/

*/

197

/* First term - equal to Deriv(v,p) * Prizmet(p,p) =/

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Apt = Amat + STAID_LEK + (DEG_FREE * MAT_DIM) ;

for(Aend = Apt + (DEG_FREE+MAT_DIM) ; Apt < Aend ; Apt += TWO_DF) {

Ppt = Prizmat ;

for(Dend = Dpt + N_PARMS ; Dpt < Dend ; Dpt++) {
*Apt++ += *Dpt * (*Ppt) ;
Ppt += MAT_DIM + 1 ;

*

Dpt += TWO_DF ;

/* Second term - equal to negative Prizmat(u,p) =/

Ppt = Prizmat + STAID_LEF ;
Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;

for(Pend = Ppt + (DEG_FREE » MAT_DIM) ; Ppt < Pend ; Ppt += TWO_DF) {

for(Aend = Apt + N_PARMS ; Apt < Aend ; Apt++)
*Apt -= *Ppt++ ;

Apt += TWO_DF ;

/* Third term - equal to Deriv(w,v) * Prizmmt(v,p) =/

Dpt = Deriv + STAID_LEN + (DEG_FREE = (MAT_DIM + 1)) + N_PARMS
Dend = Deriv + MAT_SZ ;
Apt = Amat + STAID _LEN + (DEG_FREE * MAT_DIM) ;
while(Dpt < Dend) {
Ppt = Prizmat + STAID_LEN + (DEG_FREE *» MAT_DIM) ;
Pend = Prizmat + MAT_SZ ;
while(Ppt < Pend) {
Aend = Apt + N_PARMS ;
while(Apt < Aend)
*Apt++ += #Dpt » (*Ppt++) ;

Dpt++ ;

Ppt += TWO_DF ;

Apt -= N_PARMS ;
i

bpt += N_PARMS + DEG_FREE ;
Apt += MAT_DIM ;

(u,v) part
equals Priz(v,u) + Priz(v,v)

Apt = Ammt + STAID_LEN + N_PARMS + DEG_FREE ;
Aend = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Ppt = Prizmet + STAID_LEN + (DEG_FREE » MAT _DIM) + N_PARMS ;
Ppt2 = Ppt + DEG_FREE ;
while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend)

*Apt++ += (*Ppt++ + #Ppt2++) ;

198

Apt += N_PARMS + DEG_FREE ;
Ppt += N_PARMS + DEG_FREE ;
Ppt2 += N_PARMS + DEG_FREE ;

The (v,u) part
equal to Deriv(v,v) * { Priz(v,u) + Priz(v,v) },
which also equals Deriv(v, v) * A(u,v)

Apt = Amat + STAID _LER + (DEG_FREE # MAT_DIM) + N_PARMS ;
Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) + K_PARMS + DEG_FREE ;
Dend = Deriv + MAT_SZ ;
while(Dpt < Dend) {
Apt2 = Ammt + STAID LEN + N_PARMS + DEG_FREE ;
Aend2 = Apt2 + (DEG_FREE * MAT_DIM) ;
vhile(Apt2 < Aend2) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend) {
*Apt++ 4= *Dpt * (*Apt2++)
}

Dpt++

Apt -= DEG_FREE ;

Apt2 += DEG_FREE + N_PARMS ;
¥

Apt += MAT_DTM ;
Dpt += H_PARHMS + DEG_FREE ;

(v,v) part - equals Deriv(v,v) * Priz(v,v) - Priz(u,v)

/#* First term */
Apt = Amat + STAID_LERN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;
Dpt = Deriv + STAID_LEN + (DEG_FREE # MAT_DIM) + N_PARMS + DEG_FREE ;
Dend = Deriv + MAT_5Z ;
while(Dpt < Dend) {
Ppt = Prizmat + STAID_LER + (DEG_FREE » MAT_DIM) + N_PARMS + DEG_FREE ;
Pend = Prizmat + MAT_SZ ;
while(Ppt < Pend) {
Aend = Apt + DEG_FREE ;
while{ Apt < Aend) {
*Apt++ += *Dpt » (#Ppt++) ;

}

Dpt++
Apt -= DEG_FREE ;
Ppt += DEG_FREE + N_PARMS ;
}

Apt += MAT_DIH ;
Dpt += N_PARMS + DEG_FREE ;

/* Second term */
Apt = Amat + STAID_LEN + (DEG_FREE * HAT_DIM) + N_PARMS + DEG_FREE ;
Ppt = Prizmat + STAID_LEN + E_PARMS + DEG_FREE ;

199

Pend = Ppt + (MAT_DIM * DEG_FREE) ;
while(Ppt < Pend) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend)
*Apt++ —= *Ppt++ ;

Ppt += N_PARMS + DEG_FREE ;
Apt += N_PARMS + DEG_FREE ;
&
R R e R S S X Y

Rfrxed_form(Amat, Deriv, Prizmat)

APM =Ammat, *Deriv, *Prizmat ;

/*
Prepares the metrix called "A" in my notes. Eventually we want to
have A = DF*Priz, but eerly in e calculetion, when Priz is singuler,
we want to fatten A up by requiring it to have a certain fixed form.
In the inerest of speed we have coded the calculations below in
terms of pointers. Our hope is that the resulting function will
scream along at ultrasonic speed. Unfortunately it is quite
unreadable.
*/
{
APM »Aend, *Aend2, *Dend, *Pend, *Pend2 ;
register APM #*Apt, *Apt2, *Dpt, *Ppt, *Ppt2 ;
/*
Copy the few terms which appear in the top rows of Amat.
»/
Aend = Amat + N_PARMS » (MAT _DIM + 1) ;
for(Apt = Amat, Ppt = Prizmat ; Apt < Aend ; Apt += (MAT_DIM + 1),
Ppt += (MAT_DIM + 1))
apmissign(*Apt, #*Ppt) ;
/%
Cleer out those parts of Amat which change from iteration to
iteration.
*/
Aend = Amat + MAT_SZ ;
for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt++)
apmiAssignLong(*Apt, OL, 0, 0) ;
/*
Set the (u,p) part of A
It’s squal to the (v,p) part of Prizmat.
=/
Aend = Ammt + STAID_LEN + (DEG_FREE » MAT_DIM) - TWO_DF ;
Ppt = Prizmet + STAID_LEN + (DEG_FREE * MAT_DIM) ;
for(Apt = Amat + STAID_LEN ; Apt < Aend ; Apt += TWO_DF) {
for(Pend = Ppt + N_PARMS ; Ppt < Pend ; Ppt++, Apt++)
epmCalc(*Apt, +Apt, *Ppt, APM_ADD, NULL) ;
Ppt += TWO_DF ;
}
/=

Set the (v,p) part - three terms.
*/

/*

*/

200

/* First term - equal to Deriv(v,p) * Prizmet{p,p) */

Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
for(Aend = Apt + (DEG_FREE#MAT _DIM) ; Apt < Aend ; Apt += TWO_DF) {
Ppt = Prizmat ;
for(Dend = Dpt + N_PARMS ; Dpt < Dend ; Dpt++)} {
apmMultiply(*Apt++, *Dpt, *Ppt)} ;
Ppt += MAT_DIH + 1 ;

}

Dpt += TWO_DF ;
}

/* Second term - equal to negative Prizmat(u,p) */
Ppt = Prizmmt + STAID_LEFN ;

Apt = Amat + STAID_LEN + (DEG_FREE » MAT_DIM) ;
for(Pend = Ppt + (DEG_FREE * MAT _DIM) ; Ppt < Pend ; Ppt += TWO_DF) {
for(Aend = Apt + N_PARMS ; Apt < Aend ; Apt++, Ppt++)
apmCalc(*Apt, *Apt, *Ppt, APM_SUB, NULL) ;

ipt += TWO_DF ;

/* Third term - egqual to Deriv{(v,v) * Prizmat(v,p) =/

Dpt = Deriv + STAID_LER + (DEG_FREE = (MAT_DIM + 1)) + N_PARMS ;
Dend = Deriv + MAT_SZ ;
Apt = Amat + STAID _LEN + (DEG_FREE * MAT _DIM} ;
while(Dpt < Dend) {
Ppt = Prizmmt + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Pend = Prizmet + MAT_SZ - TWO_DF ;
while(Ppt < Pend) {
Aend = Apt + N_PARMS ;
while(Apt < Aend) {
apmCelc(*Apt, *Dpt, *Ppt, APM_MUL, =ipt, APM_ADD, NULL) ;

jpt++ =
Ppt++ ;
F
Dpt++ ;

Ppt += TWO_DF ;
Apt -= H_PARMS ;
}

Dpt += N_PARMS + DEG_FREE ;
Apt += MAT_DIM ;

(u,v) part
squals Priz(v,u) + Priz(v,v)

Apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;
Aend = Ammt + STAID_LEN + (DEG_FREE * MAT_DIM) ;
Ppt = Prizmat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;
Ppt2 = Ppt + DEG_FREE ;
while(Apt < Aend) {

Pend = Ppt + DEG_FREE ;

while(Ppt < Pend) {

epmCelc(*ipt, *Ppt, *Ppt2, APM_ADD, *Apt, APM_ADD, NULL) ;

201

Apt++ ;
Ppt++ ;
Ppt2++ ;
¥
Apt += N_PARMS + DEG_FREE

H
Ppt += N_PARMS + DEG_FREE ;
Ppt2 += N_PARMS + DEG_FREE ;

The (v,u) part
equal to Deriv(v,v) * { Priz(v,u) + Priz(v,v) },
which also equals Deriv(v, v) * A{u,v)

Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS ;
Dpt = Deriv + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;
Dend = Deriv + MAT_SZ ;
while(Dpt < Dend) {
Apt2 = Ammat + STAID_LEN + N_PARMS + DEG_FREE ;
Aend2 = Apt2 + (DEG_FREE * MAT_DIM) ;
while(Apt2 < Aend2) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend) {
apmCalc(*Apt, =*=Apt, *Dpt, *Apt2, APM_MUL, APM_ADD, NULL) ;

Apt++ ;
Apt2++ ;
¥
Dpt++ ;

Apt -= DEG_FREE ;
Apt2 += DEG_FREE + N_PARMS ;
}

Apt += MAT_DIM ;
Dpt += N_PARMS + DEG_FREE ;

(v,v) pert - equals Deriv(v,v) * Priz(v,v) - Priz(u,v)

/* First term */
Apt = Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;
Dpt = Deriv + STAID_LER + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE ;
Dend = Deriv + MAT_S5Z ;
while(Dpt < Dend) {
Ppt = Prizmat + STAID_LEFN + (DEG_FREE + MAT_DIM) + E_PARMS + DEG_FREE ;
Pend = Prizmat + MAT_SZ ;
while(Ppt < Pend) {
Aend = Apt + DEG_FREE ;
while(Apt < Aend) {
apmCalc(#Apt, *Apt, *+Dpt, *Ppt, APM_MUL, APM_ADD, HULL) ;

Apt++
Ppt++ H
}
Dpt++ ;

Apt -= DEG_FREE ;
Ppt += DEG_FREE + N_PARMS ;

Apt++ ;
PP+t ;

}

Ppt += N_PARMS + DEG_FREE

Apt += N_PARMS + DEG_FREE

B

E
include <stdio.h>
include <math.h>
include "mpm.h'
* include '"apmSpeciml.h"
include '"converse.h"
include "bounding.h"
include "rows.h"
define NUM_FACTS B
define HNUM_TERMS B
define DET_TOL 1e-13
APM Rerr_star ;
APM ff _scratch ;
APM Rcenter_err[MAT_DIM]
APH Rdet _vu, Rdet_uv, Astar
APM RAvv_star, RAuvIinv_star
APM Rb_ster, Rbd_star, Rgd_star
APM RPvv_star, RPvp_star, RPvu_star
double beta_star() ;
double center_err [MAT_DIM] ;
Bdd_dbl #ff_factors[NUM_FACTS]
Bdd_term ff_terms[NUM_TERMS] ;
Bdd_expr betal[3] ;
Bdd_epm *Rff_factors[NUM_FACTS]

}

Apt += MAT_DIM ;

Dpt +=

X

/* Second term */

Apt =
Ppt =

Pend = Ppt + (MAT_DIM * DEG_FREE)

Amat + STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + DEG_FREE

N_PARMS + DEG_FREE

202

Prizmat + STAID_LEN + N_PARMS + DEG_FREE ;

while(Ppt < Pend) {

Aend = Apt + DEG_FREE
while{ Apt < Aend) {
apmCalc(*Aipt, *Apt, *Ppt, APM_SUB, NULL)

Bapm_term
Bapm_expr

R e e e Y

Rff_terms[NUM_TERMS]

Rbetal[3] ;

init_ffRows ()

/*

*/
{

Set up the expressions and terms as described in my notes

from 11/14.

H

’

/=

*/

/=

=/

/>

*/

/*

*/

/>

*/

Bdd _dbl *xdpt
Bdd_apm **apt
Bdd_term =#*tpt ;
Bapm_term *Rtpt ;

203

Set up some APM’s to be used to hold intermediate

results.

Rstar = eapmBew(BASE) ;

Rdet_uv = apmRew(BASE) ;
Rdet_vu = mpmNew(BASE) ;
Rb_star = apmNew(BASE) ;
Rbd_star = apmBew(BASE) ;
Rgd_star = apmNew(BASE) ;
Rerr_star = apmNew(BASE
RAvv_star = apmNew(BASE
RPvv_star = apmNew(BASE
RPvp_star = apmNew(BASE
RPyu_star = apmNew(BASE
ff_scratch = apmBew(BASE)
RAuvInv_star = apmNew(BASE

A S]

for(j = 0 ; j < MAT_DIM ;

Set the number of terms in the

beta[0] .nterms = Rbeta[0] .nterms =
beta[1] .nterms = Rbeta[1].nterms
beta[2] .nterms = Rbeta[2].nterms

Assign terms

tpt = ff_terms ;

Rtpt = Rff_terms ;

for(§=0 ; j < 3 ; j++) {
beta[j]l.terms = tpt ;
Rbetal[j].terms = Rtpt ;
tpt += betm[j].nterms ;

Rtpt += Rbeta[j].nterms ;

Set nfactors.

Rbete[0] .terms[0].nfactors
Rbeta[0] .terms[1].nfactors
Rbeta[1] .terms[0] .nfactors
Rbeta[2] .terms[0] .nfactors
Rbeta[2] .terms[1].nfactors

Assign factors.

dpt = ff_factors ;

.. me e

j++)
Rcenter_err[j] = epmNew(BASE) ;

LI
= N

n
N

beta[0] .terms [0].
beta[0] .terms[1].
beta[1].texrms[0].
beta[2] .terms[0].
beta[2].terms[1].

bounded expressions

nfectors =

nfactors
nfactors
nfeactors

nfactors =

]

I T T

204

apt = Rff_factors ;
for(j=0 ; j < 3 ; j++) o
/%
beta
~/
for(k=0 ; k < beta[jl.nterms ; k++) {
beta[j].terms[k].factors = dpt ;
Rbetalj]l.terms[k].factors = ept ;

dpt += beta[j].terms[k].nfactors ;
apt += Rbeta[j].terms[k].nfactors ;

}
}
/%
Set up those of the "bound" attributes which are
bounded APM’s.
*/
for(j=0 ; j < NUM_TERMS ; j++) {
nevBepm(Rff _terms[j].bound, BASE) ;
I
for{ j=0 ; j < 3 ; j++) {
newBapm(Rbeta[j].bound, BASE) ;
i
/=
Set up the terms and expressions.
*/
/* beta */

/* betal0] = 2.0 - a * sin(v[0]) - ¢ * sin(v[0] + v[1])
beta[0].const = 2.0, Rbetal[0].const = two ;

beta[0].terms[0].coef = -1.0 ;

Rbete[0].terms[0] .coef = neg_one ;

beta[0].terms[0].factors{0] = &km_sin.bound ;
Rbeta[0].terms[0] .factors[0] = &Ra_sin.bound ;

beta{0].terms[1].coef = -1.0 ;
Rbeta[0].terms[1] .coef = neg_one ;

betal0].terms[1].factors{0] = kc_sin.bound;
Rbeta[0] .terms[1].factors[0] = &Rc_sin.bound;

/* betal[1] = - 2.0 = ¢ * sin(v[0] + v[1]) */
beta[1].const = 0.0, Rbete[1].const = zero ;

betal[1l] .terms[0].coef = -2.0 ;

Rbetal1].terms[0] .coef = neg_two ;

beta[1].terms[0].factors[0] = &c_sin.bound;
Rbetal[1].terms[0] .fuctors[0] = &Rc_sin.bound;

/* betal2] = 2.0 - b * sin(v[1]) - ¢ * sin(v[1] + v[0])
beta[2] .const = 2.0, Rbete[2].const = two ;

betal[2].terms[0].coef = -1.0 ;

Rbete[2].terms[0] .coef = neg_one ;

beta[2].terms[0].factors[0] = &b_sin.bound;
Rbetal[2].terms[0].factors[0] = &Rb_sin.bound;

*/

*/

}

205

betal[2].terms[1].coef = -1.0 ;
Rbete[2].terms[i].coef = neg_one ;

betal2].terms[1].factors[0] = &c_sin.bound ;
Rbeta[2] .terms[1].factors[0] = &Rc_sin.bound ;

R e e g e e S S Y]

ff_rows(w, Amat, Deriv, Priz)

Prism *Priz ;
double *w, *Amet, *Deriv ;

/*

x/

/*
*/

/*

*/

/*

*/

Obtein bounds on the sums of the absolute velues of
the entries in the rows of

=1
[A] * Deriv * Pmat,

put the results in w.

double *apt, *mpt, *end_row, *end_mat, *Pmat ;
double det_wu, det_uv, star ;

double Avv_star, AuvInv_star ;

double b_star, bd_star, gd_star ;

double Pvv_star, Pvp_star, Pvu_star ;

Check that A(u,v) is invertible. If not, die.
Pmeat = Priz->metrix ;

apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;
det_uv = *apt * (*(apt + MAT_DIM + 1)) ;
apt++ ;

det_uv -= *apt * (*(mpt + MAT_DIM -1)) ;

if(febs(det_uv) < DET_TOL)} {
fprintf(stderr,
"The determinant of A(u,v) = %.14e. Died. \n",
det_uv) ;
cease() ;

Call functions which calculate upper bound on the
sums of the elements of various matrices.

Before any bounding of matrices, one must invoke
slobnl_bounds(Pmat) to set such global variables,

as cos_one, and sin_sum. It is celled in try_prism().

b_star = beta_star() ;

bd_star = beta_dif_star(Deriv) ;
gd_star = gamdif star(Deriv, Pmat) ;

Find sums of the mbsolute values of the entries
of A(v,v), AInv(u,v), Pmat(v,v), Pmat(v,u), mnd Pmat(v,p)

end_mat = Pmat + MAT_SZ ;

206

Pvv_star = 0.0 ;
mpt = Pmat + STAID_LEN + (DEG_FREE » MAT_DIM) + N_PARMS + DEG_FREE ;
for(; mpt < end _mat ; mpt += (N_PARMS + DEG_FREE)) {
for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {
Pvv_star += fabs(*mpt) ;
}
}

Pvu_star = 0.0 ;
mpt = Pmat + STAID_LER + (DEG_FREE * MAT_DIM) + N_PARMS ;
for(; mpt < end _mat ; mpt += (N_PARMS + DEG_FREE)) {
for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {
Pvu_star += febs(*mpt) ;

¥

Pvp_star = 0.0 ;
mpt = Pmat + STAID_LEF + (DEG_FREE * MAT_DIM) ;
for(; mpt < end mat ; mpt += TWO_DF) {
for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {
Pvp_star += fabs(*mpt) ;
}
}

Avv_star = SmBlock_err ;
mpt = Amet + STAID LEN + DEG_FREE + MAT _DIM + DEG_FREE + N_PARMS ;
for(; mpt < end_mat ; mpt += TWO_DF) {
for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {
Avv_star += fabs(*mpt) ;
}
X

AuvInv_star = SmBlock_err ;
mpt = Amet + STAID_LEN + N_PARMS + DEG_FREE ;
for(; mpt < end _mat ; mpt += TWO_DF) {
for(end_rov = mpt + N_PARMS ; mpt < end_row ; mpt++) {
AuvInv_star += fabs(*mpt) ;
}
}

AuvInv_star /= det_uv ;

Check that A(v,u) is invertible. If not, die.
If it is, set the harder-to-compute elements of w.

apt = Amet + STAID_LER + N_PARMS + (DEG_FREE » MAT DIM) ;
det_vu = *apt * (*{mpt + MAT_DIM + 1)) ;

apt++ ;

det_vu -= =apt * (*(apt + MAT_DIM -1))

if(fabs(det_vu) < DET_TOL) {
fprintf(stderr,
"The determinant of A(v,u) = %.14e. Died. \n",
det_vu) ;
cease() ;
T
else {
w[3] = febs(Amat[MAT_SZ - DEG_FREE - 1]) +
febs(Amat[STAID_LEN + (DEG_FREE * MAT_DIM) + N_PARMS + 1]) +

207

DBL_ERR ;
w[4] = fabs(Amnt[MAT_SZ - TWO_DF]) +

fabs(Amat[STAID_LEN + (DEG_FREE+MAT_DIM) + N_PARMS]) +

DBL_ERR ;

center_err[3] = w[3] *» (1 + Avv_star » AuvInv_star) * DBL_ERR
center_err[4] = w[4] » (1 + Avv_star * AuvInv_star) * DBL_ERR

center_err[5] = AuvInv_star * DBL_ERR ;
center_err[68] = center_err[5] ;

star = (gd_ster + bd_star * (Pvp_star + Pvv_star) +
b_ster * Pvu_star) / det_vu }

w[3] *= ster + center_err(3] / det_vu ;

w[4] == star + center_err[4] / det_vu ;

w[6] = 1.0 + center_err[6] ;

w[B8] = 1.0 + center_err[8] ;

return ;

}

e e e T R S T Y4

double beta_star()

{

double answver ;

bound_expr(&kbetel0]) ;
bound_expr(kbeta[1]) ;
bound_expr{ &kbetal[2]) ;

answer = mexAbs(beta[0].bound.ub, beta[0].bound.ldb
maxAbs(beta[1].bound.ub, beta[1].bound.lb
mexibs(beta[2].bound.ub, beta[2].bound.lb

\a-uv
+ +

return(ansver } ;

T

R e R an e

Rff_rows(w, Ammt, Deriv, Priz)

APM #w, *Amat, *Deriv ;
RPrism *Priz ;
Ve

Obtain bounds on the sums of the absclute values of
the entries in the rows of

-1
[A] * Deriv » Pmat,

put the results in w.

*/
i
APM *apt, *mpt, *end_row, *end mat, *Pmat ;
/=
Check that A{u,v) is invertible. If not, die.
*/

Pmat = Priz->metrix ;

apt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;
apmMultiply(Rdet_uv, #*apt, *(apt + MAT_DIM + 1)) ;
apt++ ;

208

nmenlc(Rdet_uv, Rdet_uv, *apt, *(apt + MAT_DIM -1),
APM _MUL, APM_SUB, BULL) ;
apmAbsoluteValue(ff_scratch, Rdet_uv) ;

if(apmCompare(ff_scratch, meax_error) !=1) {
fprintf(stderr,
"The determinant of A(u,v) is toc small. Died. \n") ;
fprintf(stderr, "\t %.12e \n", apmtodbl(f£f_scratch)) ;
cense() ;

Cell functions which calculete upper bound on the

sums of the elements of various matrices.

Befores any bounding of matrices, one must invoke
globel_bounds(Pmat) to set such global variables,

as cos_one, and sin_sum. It is celled in Rtry_prism().

Rbeta_star{ Rb_star) ;
Rbetn_dif_star(Rbd_star, Deriv) ;
Rgamdif_ster(Rgd_ster, Deriv, Pmat)} ;

Find sums of the absolute values of the entries
of Pmat(v,v), Pmat(v,u), and Pmat(v,p)

end _mat = Pmat + MAT_SZ ;

epmAssign(RPvv_star, zero) ;
mpt = Pmat + STAID_LEN + (DEG_FREE » MAT_DIM) + N_PARMS + DEG_FREE ;
for(; mpt < end_mat ; mpt += (N_PARMS + DEG_FREE)) {
for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {
apmCalc(RPvv_star, RPvv_star, *mpt, APM_ABS,
APM_ADD, NULL) ;

}

apmAssign(RPvu_star, zero) ;
mpt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) + K_PARMS ;
for(; mpt < end_mat ; mpt += (N_PARMS + DEG_FREE)) {
for(end_row = mpt + DEG_FREE ; mpt < end_row ; mpt++) {
apmCalc(RPvu_star, RPvu_star, *mpt, APM_ABS,
APM_ADD, NULL Y 3

}

apmAssign(RPvp_star, zero) ;
mpt = Pmat + STAID_LEN + (DEG_FREE * MAT_DIM) ;
for(; mpt < end_mat ; mpt += THO_DF) {
for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {
apmCelc(RPvp_star, RPvp_star, *mpt, APM_ABS,
APM_ADD, NULL) ;

}

apmissign(RAvv_star, RSmBlock_err) ;
mpt = Amat + STAID _LEN + DEG_FREE * MAT DIM + DEG_FREE + N_PARMS ;
for(; mpt < end_mat ; mpt += TWO_DF) {
for(end_row = mpt + F_PARMS ; mpt < end_row ; mpt++) {
apmCalc(RAvv_star, RAvv_star, *mpt,
APM_ABS, APM_ADD, NULL) ;

/*

*/

/*

*/

209

}

npmAasign(RAuvInv_star, RSmBlock_err) ;
mpt = Amat + STAID_LEN + N_PARMS + DEG_FREE ;
for(; mpt < end _mat ; mpt += TWO_DF) {
for(end_row = mpt + N_PARMS ; mpt < end_row ; mpt++) {
apmCalc(RiuvInv_ster, RAuvInv_ster, *mpt,
APM_ABS, APM_ADD, RULL) ;

}

apmDivide{ ff_scratch, precision, (APH) RNULL,
RAuvInv_star, Rdet_uv) ;
epmAssign(RAuvInv_star, ff_scratch) ;

Check that A(v,u) is invertible. If not, die.
If it is, set the harder-to-compute elements of w.

ept = Amat + STAID_LEN + N_PARMS + (DEG_FREE » MAT_DIM) ;

apmMultiply(Rdet_vu, *apt, *(apt + MAT_DIM + 1)) ;

ept++

apmCelc(Rdet_vu, Rdet_vu, *apt, *(apt + MAT DIM - 1),
APM_MUL, APM_SUB, FULL) ;

npmjbsolutsanue(ff_scratch, Rdet_vu) ;

if (apmCompare(f£f_scratch, max_error) != 1) {
fprintf({ stderr,
"The determinant of A{v,u) is too small. Died. \n")
fprintf(stderr, "\t %.12e \n", epmtodbl(ff_scratch)) ;

cease() ;

¥
Hote that the sums below seem to contmin some misplaced
olements of Amat. These mre to be thought of ms elements
of A(v,u) inverse.

else {

apmCalc(w[3], Amat[MAT_SZ-DEG_FREE-1], APM_ABS,
Amet [STAID_LER+(DEG_FREE#MAT_DIM)+R_PARMS+1],
APM_ABS, max_error, APM_ADD, APM_ADD, HULL)

apmCalc(w[4], Amat[MAT_SZ-TWO_DF], APM_ABS,
Amet (STAID_LEN+(DEG_FREE*MAT_DIM)+N_PARMS],
APM_ABS, max_error, APM_ADD, APM_ADD, HRULL)

apmCalc(Rerr_ster, RAvv_star, RAuvInv_star, APM_MUL,
one, APM_ADD, NULL);
apmCalc(Rcenter_err([3], w[3], Rerr_star, max_error,
APM_MUL, APM_MUL, NULL) ;
apmCalc(Rcenter_err[4], w[4], Rerr_star, max_error,
APM_MUL, APM _MUL, FULL) ;
apmMultiply(Rcenter err[5], RAuvInv_star, max_error) ;
apmissign{ Rcenter_err[6], Rcenter_err[5] } ;

apmCalc(Rstar, RPvp_star, RPvv_star, APM_ADD,
Rbd_ster, APM_MUL,
Rb_star, RPvu_star, APM_MUL,
Rgd_star, APM_ADD, APM_ADD, HULL) ;

apmCalc(f£f_scratch, Rcenter_err[3], Rstar, w[3],

210

APM_MUL, APM_ADD, NULL) ;
apmDivide(w[3], precision, (APM) NULL, £f_scratch, Rdet_vu)
apmCalc{ ff_scretch, Rcenter_err[4], Rstar, w[4],

APM_MUL, APM_ADD, FULL) ;
apmDivide(w[4], precision, (APM) NULL, ff_scratch, Rdet_vu)
epmAdd(w[5], one, Rcenter_errfE]) ;
epmidd(w[68], one, Rcenter_err(8]) ;

F

return ;

}

I o e e o e I P
Rbeta_star{ answver)

APM answver ;

i
Rbound_expr(&Rbetal0]) ;
Rbound_expr(&Rbetal[1]) ;
Rbound_expr(&Rbetal2]) ;

RmaxAbs(enswer, Rbeta[0].bound.ub, Rbeta[0].bound.lb) ;
RmaxAbs(Rrow_mbs[0], Rbeta[i].bound.ub, Rbetal[i].bound.lb)
RmaxAbs(Rrow_eabs[1], Rbeta[2].bound.ub, Rbeta[2].bound.lb)

apmCalc(ansver, ansver, Rrow_abs[0], Rrow_abs[i],
APM_ADD, APM_ADD, NULL) ;

}

P R e S T Y

matrix inverter

include <stdio.h>

include <math.h>

include "apm.h"

include "mpmSpeciel.h"

include "converse.h"

define BUF_SZ (51:]

define OOM_DF 1

define MAX_RECUR 2

define DFLT_XDP 1

define Rm_swap(x,y,t) (epmissign(t, x), apmAssign(x, y), \
apmissign(y, t)})

/*

The Numerical Recipes Gauss—Jordan matrix inverter as adaptaed
for n converse KAM code.

I have removed the dimension arguments n and m and replaced
them with TWO_DF and 1. I have also changed mll the floats
into doubles and replaced some amutomatically mllocated

arrays with arrays of fixed dimension. Finally, I have
replaced the error handling code with some of my own.

Rgauss, the rigorous version, also does a host of checks to
guarantee that the inverse it produces, when multiplied by
the originel matrix, a, gives something equal to the
identity to the mccuracy specified by the global variable,
"precision'.

*/

int
int

APH
APH
APM
APH

211

extra_dp, last_inv_dp ;

inv_depth ; /* Used to make sure that we don’t keep
to invert singuler matrices by using
ever increasing precision.

m_abs, Rbig, Rdum, Rpivinv, Rtemp ;

Rrow_max, Rcol _max, Rmat_min, Rmat_max ;

*Rmat [TWO_DF], Rmat_block[4+DF_SQ] ;

Rdiv_err, Rrow_err, Rinv_err, Rtotml_err, Rpiv_err ;

P e e e Y

initGauss ()

{

¥

int j, k
APHM *mpt

inv_depth = 0 ;
extra_dp = O ;

Rbig = npm'ﬂeﬂ(BASE) ;
Rdum = apmNew(BASE) ;
a_esbs = apmAew(BASE) ;
Rtemp = apmNew(BASE) ;
Rpivinv = apmNew(BASE) ;
Rinv_err = apmRew(BASE)
Rrow_err = apmNew(BASE)
Rpiv_err = apmNew(BASE)
Rdiv_err = apmNew(BASE)
Rrow_max = apmNew{ BASE)
Rcol_max = apmNeu(BASE)
Rmet_min = apmiew(BASE)
Rmat_max = upmNew(BASE)
Rtotal_err = mpmNew(BASE

S e ws wa wE we W e ws

-

mpt = Rmat_block ;
for(j=0 ; j < TWO_DF ; j++) {
Rmat[j] = mpt ;
for(X=0 ; k < TWO_DF ; k++)
*mpt++ = apmNew(BASE) ;
}

R R R e e s i V)

Rgauss(=)

APH
1

Ll -
int indxc[TWO_DF],indxr[TWO_DF],ipiv[TWO_DF];
int i,icol,irow,j,k,1,11;

int inv_dp, err_dp ;

if(++inv_depth > MAX_RECUR) {

trying

fprintf(stderr, "Singular matrix in Rgmuss. Died. \n") ;

cemse() ;

¥

for(j=0 ; j < THO_DF ; j++) {
ipiv[j]l = 0 ;
indxr[jl = ©
indxc[j] = 0

*/

212

If this is the attempt to invert =a,

copy the matrix in case of a loss of precision.

Also, choose

the precision to which to do the inversion calculmtions.

if(inv_depth == 1) {
copyRmat(Rmat, m) ;

inv_dp = choosePrecis(a) ;
}
else {
if(extra_dp == 0)
inv_dp = last_inv_dp + DFLT_XDP ;
else
inv_dp = last_inv_dp + extra_dp ;
}

last_inv_dp = inv_dp ;

Initialize the error propagation stuff.

apmAssignLong(Rdiv_err, 1L, -inv_dp, BASE) ;
epmAssignLong(Rinv_err, OL, O, BASE) ;
apmAssign(Rpiv_err, Rinv_err) ;

for (i=0;i<TWO_DF;i++) {
apmissignLong(Rbig, OL, O, BASE) ;
for (j=0;3j<TWO_DF;j++) {
if (ipiv[j] != 1) {
for (k=0;k<TIWO_DF;k++) {
if (ipivlk] == 0) {
apmibsoluteValne(=»_abs, aljl[k]) ;

/=

*/

if(mpmCompare(e_sbs, Rbig) '= -1) {
epmiAssign(Rbig, a_ebs) ;
irow=j;
icol=k;

}

}
else if (ipiv[k] > 1) {
fprintf(stderr,

"Singuler metrix in gauss. Died.\n") ;

cease() ;

¥

++(ipiv[icoll};
if(irow != icol) {
for (1=0;1<TWO_DF;1++)
Rm_swap(a[irow] [1],alicol][1],Rtemp) ;
1

indxr[il=irow;

indxe[i]l=icol;
Check that the pivot interval does not
contein zero. If it does, restart the

calculetion and cerry more decimal places.

apmCalc(Rtemp, mlicol] [icol], APM_ABS,

*/

/*

wf

/*
*/

/%

213

Rinv_err, APM_SUB, RULL) ;

if(mpmCompare(Rtemp, zero) !=1) {
copyRmat(u, Rmat) ;
Rgauss(a) ;
return ;

Get the new pivot error. It is here that we face
the possibility of catastrophic loss of precision.

apmDivide(Rpiv_err, inv_dp, (APM)NULL, Rinv_err, Rtemp) ;
apmCalc{ Rpiv_err, Rpiv_err, Rdiv_err, Rdiv_err,

APM_ADD, APM_ADD, NULL) ;

apmDivide(Rpivinv,inv_dp, (APM)RULL,one,n[icol] [icol]) ;
epmdssignlong(mlicol][icoll, 1L, ©, BASE) ;

spmidssignlLong(Rrov _max, OL, O, BASE) ;
for (1=0;1<TWO_DF;1l++) {
if(1 = icol) {

}

apmAbsoluteVelue(Rtemp, alicoll[1]) ;
if(apmCompare(Rtemp, Rrow _max) < 0)
apmissign(Rrow_mex, Rtemp) ;

apmCalec(alicol]l[1], a[icol][1], Rpivinv,APM_MUL,NULL) ;

Get & bound on the size of the errors in the elements
of the pivot row.

epmCalc(Rrow_err, HRinv_err, Rpivinv, APM_MUL,

Rrow_mex, Rinv_err, APM_ADD,
Rpiv_err, APM_MUL, APM_ADD, NULL) ;

apmissignlong(Rcol max, OL, O, BASE) ;
for (11=0;11<TWO_DF;11++) {
if (11 != icol) {

apmAssign{ Rdum, a[11][icel]) ;

apmibsoluteVelue(Rtemp, Rdum) ;

if(apmCompare(Rtemp, Rcol max)} == 1)
apmAssign(Rcol_max, Rtemp) ;

apmAssignLong(al11][icol]l, OL, O, BASE) ;
for (1=0;1<TWO_DF;1++)
apmCalc(n[11][1], [11]1[1], alicol][1], Rdum,
APM_MUL, APM_SUB, NULL) ;

Calculate the new upper bound on errors in the matrix.

amenlc(Rinv_err, Rrow_max, Rrow_err, APM_ADD,

Rinv_err, APM_MUL,

Rcol_max, Rrow_err, APM_MUL,
Rinv_err, APM_ADD,

APM_ADD, APM_ADD, RULL) ;

Add en extra Rdiv_err to Rinv_err and trunceate everything.
This will probably speed the cmlculation considerably.

214

apmCalc(Rinv_err, Rinv_err, Rdiv_err, APM_ADD, NULL) ;

apmTruncate(Rinv_err, inv_dp) ;
for(1 =0 ; 1 < TWO_DF ; 1++)
for(11=0 ; 11 < TWO_DF ; 11++)
apmTruncate(a[1]1[11], inv_dp) ;

for (1=(TWO_DF-1);1>=0;1--) {

if (indxr[1] != indxc[1])

for (k=0;k<TWO_DF;k++)
Rm_swep(a[k] [indxr[1]],alk] [indxc[1]],Rtemp};

}
/%
Check the overall size of the error.
If it is too big, set extra_dp and try again.
*/
err_dp = —-(apmLogBd(Rinv_err) + DOM_DF) ;
if(err_dp < precision } {
extra_dp = precision - err_dp + 2 ;
copyRmat(a, Rmat) ;
Rgauss(a) ;
return ;
}
/*
Tidy up.
If we reach this line, all is well, the inversion is
good to the desired precision, so mll we want to do is
restore the recurrsive variables to their initial state.
*/
inv_depth = 0 ;
extra_dp = 0O ;
return ;
1

I T e Y

copyRmet(copy, mat)

APM +*copy, **tmat ;

i
int j, k ;
for(j=0 ; j < TWO_DF ; j++)
for(k=0 ; k < THO_DF ; k++)
apmAssign{ copy[jl(k], mat[jI1lk]) ;
} ;

e e e e e S Y4
choosePrecis(mat)

APM #*mat ;
i
APH »*mpt, *end_mat ;
int oom_min, com_max, oom_err, com_twos ;

/*
Find the minimum end maximum entries of the matrix.
If none of the entries has absclute value bigger then
one, use one as the maximum; this ensures that the
resulting inverse will have entries good to at least

*/

*/

215

"precision'" decimal places.

mpt = mat[0] ;
apmissignlong(Rmet_min, OL, O, BASE)
epmAssignLong(Rmet_max, 1L, O, BASE)

w wa

for(end_mat = mpt + (TWO_DF*TWO_DF) ; mpt < end_mat ; mpt++) {
apmAbsoluteValue(Rtemp, #mpt) ;
if(apmCompare(Rmat _min, Rtemp) > 0)
apmissign(Rmat _min, Rtemp) ;
olse if(apmCompare(Rmat_max, Rtemp) < 0)
apmiAssign{ Rmet_max, Rtemp) ;

Do m basic estimate of the number of digits one must carry
to get an answer whose precision is ms good as the code
requires.
First find the orders of magnitude ("oom''’s) of various things.

com_mex = apmLogBd(Rmat _max) ;
oom_twos = (TWO_DF / 3) ;

oom_err = oom_twos + DOM_DF + (2 * TWO_DF + 1) * abs(com_max) ;

if(oom_exrr < O)
return{ precision) ;
else
return{ precision + ocom_err) ;

216

Bibliography

[Arn63]

[Arn64]
[Arn78)

[Aub83al
[Aub83b]

[Bang87]
[BGGS80]

[Birk22]

[Birk27]
[Bost86]

[CC88]

V. L. Arnold, “Small Denominators and the Problems of Stability of
Motion in Classical and Celestial Mechanics,” Russian Mathematical
Surveys 18:6 85-191 (1963).

V. 1. Arnold, “Instability of Dynamical Systems with Several Degrees
of Freedom,” Soviet Mathematics-Doklady 5, 581-585 (1964).

V. L. Arnold, Mathematical Methods of Classical Physics, (Springer-
Verlag, New York, 1978).

S. Aubry, “The twist map, the extended Frenkel-Kontorova model
and the devil’s staircase,” Physica 7D, 240-258 (1983).

S. Aubry, “Devil’s staircase and order without periodicity in classical
condensed matter,” J. Physique 44, 147-162 (1983).

V. Bangert “Minimal Geodesics,” preprint (1987).
G. Benettin, L. Galgani, A. Giorgilli and J-M. Strelcyn, “Lyapunov

Characteristic Exponents for Sinooth Dynamical Systems and for
Hamiltonian Systems; a Method for Computing all of Them. Part
2: Numerical Application,” Meccanica 15, 21-30 (1980).

G.D. Birkhoff, “Surface transformations and their dynamical appli-
cations,” Acta Mathematica 43, 1-119 (1922); reprinted in Collected
Mathematical Papers, vol. II. Amer. Math. Soc.: New York, 1950, pp.
111-229.

G.D. Birkhoff, “On the periodic motions of dynamical systems,” Acta
Mathematica 50, 359-379 (1927).

J. Bost, “Tores invariants des systems dynamiques Hamiltoniens,”
Asterisque 133-134, 113-157 (1986).

A. Celletti and L. Chierchia, “Construction of Analytic KAM Sur-
faces and Effective Stabilily Bounds,” Communications in Mathemat-
tcal Physics 118, 119-161 (1988).

[CMP8T]
[Chkv79]

[FPU55]

[Fro71]
[Fro72]
[Fro73]
[Grn79]

[Hed32]

[Herm88]
[Herm83]

[KnBg85]

[Kat82]

[Kat83]

[Kat88]

[KB87]

217

Q. Chen, J.D. Meiss and I.C. Percival, “Orbit extension method for
finding unstable orbits,” Physica 29D, 143-154 (1987).

B. Chirikov, “A Universal Instability of Many-Dimensional Oscillator
Systems,” Physics Reports 52 #5, 263-379 (1979).

E. Fermi, J. Pasta and S. Ulam, “Studies of Non Linear Problems,”
Los Alamos Report LA-1940, May 1955; reprinted in E. Fermi, Col-
lected Works, University of Chicago Press, Chicago, (1965), Volume
2, pgs. 978-988.

C. Froeschlé, “On the number of isolating integrals in systems with
three degrees of freedom,” Astrophys. Space Sci. 14, 110-117 (1971).

C. Froeschlé, “Numerical Study of a Four-Dimensional Mapping,”
Astron. & Astrophys. 16, 172-189 (1972).

C. Froeschlé and J.P. Scheideker, “Numerical Study of a Four-
Dimensional Mapping,” Astron. & Astrophys. 22, 431-436 (1973).

J.M. Greene, “A method for determining a stochastic transition,”
Journal of Mathematical Physics 20 #6, 1183-1201 (1979).

G.A. Hedlund, “Geodesics on a two-dimensional Riemannian mani-
fold with periodic coeflicients,” Annals of Mathematics 33, 719-739
(1932).

Michael R. Herman, “Existence et Non Existence de Tores Inavriants
par des Diffleomorphismes Symplectiques,” Preprint (1988).

Michael R. Herman, “Sur les courbes invariantes par les diffeomor-
phismes de 'anneau, Vol. 1,” Asterisque 103-104, (1983).

K. Kaneko and R. Bagley, “Arnold Diffusion, Ergodicity and Inter-
mittency in a Coupled Standard Mapping,” Physics Letters 110A
#9, 435-440, (1985).

A. Katok, “Remarks on Birkhoff and Mather twist map theorems,”
Ergodic Theory and Dynamical Systems 2, 185-194 (1982).

A. Katok, “Periodic and quasi-periodic orbits for twist maps,” in
L. Garrido, editor, Dynamical Systemns and Chaos, Springer Lecture
Notes in Physics 179 47-65 (1983).

A. Katok, “Minimal Orbits for Small Perturbations of Completely
Integrable Hamiltonian Systems,” Preprint (1988).

A. Katok and D. Bernstien, “Birkhoff periodic orbits for small per-
turbations of completely integrable Hamiltonian systems with convex
Hamiltonians,” Inventiones mathematicae 88, 225-241 (1987).

[Khin64]

[KimOst86]

[KM88]
[LR88]
[McK88|
[MMP84]
[MMS89]
[MP8S5]
[Ma82a)
[Ma82b]
[Ma84]
[Ma86]
[Max77)
[MP87]

[Moser73|

[Nekh71]

218

A.Ya. Khinchin, Continued Fractions, (University of Chicago Press,
Chicago, 1964).

S. Kim and S. Ostlund, “Simultaneous rational approximations in the
study of dynamical systems,” Physical Review A 34 #4, 3426-3434
(1986).

Hyung-tae Kook and James D. Meiss, “Periodic Orbits {or Reversible,
Symplectic Mappings,” (1988), to appear in Physica D.

Rafael de la Llave and David Rana, “Accurate Strategies for Small
Divisor Problems,” preprint (1988).

R.S. MacKay, “A criterion for non-existence of invariant tori for
Hamiltonian systems,” (1988), to appear in Physica D.

R.S. MacKay, J.D. Meiss and 1.C. Percival, “Transport in Hamilto-
nian systems,” Physica 13D, 55-81 (1984).

R.S. MacKay, J.D. Meiss and J. Stark, “Converse KAM Theory for
Symplectic Twist Maps,” Preprint (1989).

R.S. MacKay and I.C. Percival, “Converse KAM : Theory and Prac-
tice,” Communications in Mathematical Physics 98, 469-512 (1985).

J. Mather, “Existence of quasi-periodic orbits for twist maps of the
annulus,” Topology 21 #4, 457-467 (1982).

J. Mather, “Glancing billiards,” Ergodic Theory and Dynamical Sys-
tems 2, 397-403 (1982).

J. Mather, “Non-existence of invariant circles,” Ergodic Theory and

Dynamical Systems 4, 301-311 (1984).

J. Mather, “A criterion for the non-existence of invariant circles,”
Math. Publ. IHES. 63, 153-204 (1986).

J. C. Maxwell, Matter and Motion, (1877). Reprinted by The MacMil-
lan Co., New York, 1920.

B. Metsel and 1.C. Percival, “Newton method for highly unstable
orbits,” Physica 24D, 172-178 (1987).

J. Moser, Stable and Random Motions in Dynamical Systems with
Special Emphasis on Celestial Mechanics, (Princeton University
Press, Princeton, New Jersey, 1973).

N. N. Nekhoroshev “Behaviour of Hamiltonian systems close to inte-
grable,” Functional Analysis and Applications 5, 338-339 (1971).

[Osc68]

[Perc79]

[PFTVS6]

[Rana87]

[RobL78]

[Smale65)

[Smale80]

[Strk88|

[Ttch39]
[Wig88|

[Wilb87]

219

V.1.Oseledec, “A Multiplicative Ergodic Theorem: Lyapunov Char-
acteristic Numbers for Dynamical Systems,” Trans. Moscow Math.
Soc. 19, 197-231 (1968).

I. C. Percival, “Variational principles for invariant tori and cantori,”
Nonlinear Dynamics and the Beam-Beam Interactionin M. Month
and J. C. Herrera, edilors, Am. Inst. of Phys. Conf. Proc. 57 302-310
(1979).

W.H. Price, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numer-
ical Recipes, (Cambridge University Press, Cambridge, 1987).

D. Rana, “Proof of Accurate Upper and Lower Bounds to Stability
Domains in Small Denominator Problems,” PhD thesis, Princeton
(1987).

J. Roberts, Elementary Number Theory, A Problem Oriented Ap-
proach, (MIT Press, Cambridge, Massachuseltes, 1978).

S. Smale, “Diffleomorphisms with many periodic points,” in
S. S. Cairns, ed., Differential and Combinatorial Topology, (Princeton
University Press, Princeton, New Jersey, 1965).

S. Smale, The Mathematics of Time, (Springer-Verlag, New York,
1980).

J. Stark, “An Exhaustive Criterion for the Non-Existence of invariant
Circles for Area-Preserving Twist Maps,” Communications in Math-
ematical Physics 117, 177-189 (1988).

E.C. Titchmarsh, The Theory of Functions, (Oxford University Press,

~ Oxford, 1939).

S. Wiggins, Global Bifurcations and Chaos, (Springer-Verlag,
NewYork, 1988).

J. Wilbrink, “Erratic Behavior of Invariant Circles in Standard-like
Mappings,” Physica 26D, 358-368 (1987).

