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ABSTRACT

This thesis introduces fundamental equations and numerical methods for manipulating surfaces in
three dimensions via conformal transformations. Conformal transformations are valuable in appli-
cations because they naturally preserve the integrity of geometric data. To date, however, there has
been no clearly stated and consistent theory of conformal transformations that can be used to develop
general-purpose geometry processing algorithms: previous methods for computing conformal maps
have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In con-
trast, our formulation can be used to produce—for the first time—general surface deformations that
are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title
Conformal Geometry Processing.

The main contribution of this thesis is analysis and discretization of a certain time-independent
Dirac equation, which plays a central réle in our theory. Given an immersed surface, we wish to
construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed
change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution
of this equation determines the geometry of the new surface. We derive the precise conditions under
which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac
equation on triangulated surfaces.

From a practical perspective, this theory has a variety of benefits: conformal maps are desirable
in geometry processing because they do not exhibit shear, and therefore preserve textures as well as
the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build
and can be used to efhiciently edit surfaces by manipulating curvature and boundary data, as demon-
strated via several mesh processing applications. We also present a formulation of Willmore flow for
triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface

fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.
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CHAPTER 1

INTRODUCTION

The world around us is full of shapes: airplane wings and cell phones, brain tumors and rising
loaves of bread, fossil records and freeform architectural surfaces. To a large extent, our ability to mas-
ter these domains is limited by our capacity to design, process, and analyze this geometry. The aim
of Digital Geometry Processing (DGP) is to extend ideas from classical signal processing to new algo-
rithms for working with three-dimensional shape. In doing so, however, one must address a classical
signal processing question: how does one process data while preserving its integrity? And what does
“integrity” even mean in the context of three-dimensional geometric data? We adopt the perspective
that the integrity of a geometric signal can be characterized by preservation of local metric properties,
i.e., lengths and angles associated with a given surface. As we will see, this approach has some very
attractive benefits from a computational perspective; it is also linked to a rich and beautiful body of
knowledge from surface theory.

In this thesis we focus specifically on conformal transformations, which, roughly speaking, pre-
serve angle. Why conformal? To answer this question, it helps to consider the types of transforma-
tions that are available in the smooth setting. Locally (i.e., in each tangent plane) we can decompose

any smooth deformation into three modes, namely, rotation, scaling, and shearing:
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rotate scale shear

Globally, these modes induce different types of surface deformations. For instance, if all three modes
are permitted then we get arbitrary smooth deformations, which provide great flexibility but make
it difficult to preserve signal integrity. If shearing is not allowed then the angle between any pair of
vectors is preserved and we obtain conformal deformations. If in addition we prohibit scaling then
length is also preserved and we get #sometric deformations, i.e., both length and angle are perfectly
preserved. Finally, if all three modes are prohibited then we get rigidity: the shape looks exactly like
the one we started with. Actually, in most cases isometric deformations are also rigid (up to global
rotation and translation). For instance, Cauchys? rigidity theorem tells us that the boundary of any

convex body (e.g., the unit sphere) cannot be deformed isometrically—in general, many of the objects

we encounter in everyday life are likewise isometrically rigid.

Examining the list of possible motions, one is naturally inclined to ask: why not allow shearing
but prohibit scaling? In other words, why not try to preserve area instead of angle? This idea certainly
has a natural appeal, but one should be careful to understand what area preservation really implies.
For instance, we can preserve area on the sphere by swirling its surface around in a fluid-like motion

(computed here by advecting mesh vertices in a divergence-free velocity field):

original area-preserving angle-preserving



3

From the perspective of geometry processing, this type of motion is undesirable because it can lead
to arbitrarily bad degeneration of mesh elements, and distortion of data associated with the surface. In
other words, like smooth deformations, general area-preserving motions are “too flexible” to preserve
signal integrityl. In contrast, angle-preserving motions are more rigid and hence better preserve the
kinds of features we are interested in. Finally, one can try to preserve various properties of the metric
only approximately—for instance, elastic energies are commonly used in geometry processing to find
a deformation that is “as rigid as possible,” i.e., as close as possible to isometric [SA07, CPSS10]. Later
in this thesis we will describe a similar approach: preserve angles exactly, but try to preserve area as
well as possible (Section 4.5.3.1).

The next question we must answer is: how does one manipulate a surface in space without dis-
torting angles? Traditional methods consider maps into the complex plane, which are useful only for
problems such as surface parameterization and planar shape deformation where the target surface is
flat. We instead consider maps into the guaternions H, which allows us to work directly with surfaces
in R (Chapter 2). In particular, we introduce the guaternionic Dirac operator and use it to develop
novel integrability conditions for conformal deformations (Chapter 4). A key feature of our theory is
that a deformation can be expressed via a scalar function that prescribes the extrinsic curvature. Prac-
tically speaking, this setup allows us to “paint” a change in curvature on a surface and produce the
corresponding conformal deformation (Chapter 6). For instance, a model that has already been care-
tully detailed (left) can be further altered without compromising texture or geometric detail (middle),

whereas standard mesh editing tools do not respect these features (right):

These transformations also preserve mesh quality—here a grid of equilateral triangles (top left) is sub-

stantially deformed while preserving triangle shape almost perfectly (top right); similarly, a carefully

"The present colloquial use of the term “area-preserving” or “volume-preserving” in geometry processing is perhaps
more suggestive of volume-preserving elastic deformations, which also try to minimize angle distortion.
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quadrangulated beetle (bottom left) becomes an old beat-up car (bottom right) while preserving the

shape of quadrilaterals:

When applied to a task like surface fairing, where we wish to smooth out or regularize a given surface,

our approach gracefully preserves texture and mesh quality throughout all stages of the flow:

Moreover, we can take integration time steps orders of magnitude larger than those seen in classical
approaches (Section 6.4).
Our discretization yields sparse linear systems that are simple to build and can be efficiently solved

using standard numerical techniques (Section 6.6). In particular, deformations are computed by solv-
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ing an eigenvalue problem and a Poisson equation; matrices have the same sparsity as the standard
cotangent discretization of the Laplace-Beltrami operator [Mac49, Duf59]. The linearity of this for-
mulation is most unusual: if one instead wants to prescribe standard quantities (such as the induced
metric, principal curvatures, etc.) more difficult nonlinear problems must be solved [ESP0S].
Conformal maps have already proven invaluable in applications like computational medicine
[GWC*04] and anatomy [LDI11] because they are cheap to compute and preserve important geo-
metric structure. For example, they preserve the numerical conditioning of discrete Poisson prob-
lems, and preserve the integrity of signals associated with a surface [CPS11]. Exceptional numerical
methods for parameterization [GY03, MTADOS, SSP08] and uniformization [JKG07] have been
developed by applying intrinsic tools from Riemann surface theory. However, conformal maps have
thus far seen relatively little use in broader geometry processing applications due to the lack of a read-
ily discretizable theory for surfaces immersed in three dimensions. The purpose of this thesis is to
extend the applicability of conformal maps in geometry processing beyond the traditional context of

paramererizaz‘ian/ um’formizﬂtion.

1.1 Contributions

The main outcome of this thesis is a clearly stated and consistent theory of conformal immersions from
which one can develop a broad class of conformal geometry processing algorithms. In particular, let f
be an immersion of a compact surface M into R?. We describe numerical procedures for constructing
new immersions f that, up to discretization error, (I) induce the same conformal structure on M and
(II) satisty additional application-specific criteria. For instance, to regularize noisy data one might
define a fairing energy £ (such as the Willmore energy) and require that £( f )< E(f).

In pursuit of this goal, we introduce the guaternionic Dirac operaror (Chapter 3), leading to
simple integrability conditions for conformal transformations of smooth surfaces sitting in R> (Sec-
tion 4.3). Kamberov et al. [KPP98] investigate integrability in the case of surfaces with spherical
topology; we complete the picture by establishing conditions on surfaces of arbitrary topological
type. These conditions are discretized and applied to the computation of conformal deformations
(Chapter 5). To our knowledge, our method is the first to produce general transformations of dis-
crete surfaces that converge to perfectly conformal deformations in the limit of spatial and temporal

refinement, as validated by numerical experiment (Section 5.8.3). We also show how changes in ex-

trinsic curvature can be used to express a variety of mesh processing tasks (Chapter 6); in particular, we
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establish the first numerical algorithm for Willmore flow that does not exhibit a time step restriction
based on grid spacing (Section 6.4).

Much of the work in this thesis appears in the following publications:

* Keenan Crane, Ulrich Pinkall, and Peter Schréder, “Spin Transformations of Discrete Sur-

taces,” ACM Transactions on Graphics (SIGGRAPH), 30(4), 2011.

* Keenan Crane, Ulrich Pinkall, and Peter Schréder, “Robust Fairing via Conformal Curvature

Flow,” ACM Transactions on Graphics (SIGGRAPH), 32(4), 2013.

A significant portion of the material (esp. Chapters 3 and 4) is previously unpublished, and ap-

pears on a private collaborative research blog shared by the above authors during the years 2010-2013.

1.2 Related Work

Differential representations are well-studied in digital geometry processing [BS08] but ignore the
question of integrability: under what condition does a prescribed differential quantity come from
an actual surface? The standard practice is to forgo this question and instead look for a surface that
best approximates prescribed data in the least-squares sense, as first proposed by Yu et al. [YZX104].
For conformal maps we need to be more careful since the closest surface may be far from conformal,
even when the new differential comes from a similarity transformation at each point (see Section 5.9
for several comparisons).

Later work expresses edge vectors with respect to local coordinate frames at vertices to ensure
rigid motion invariance [LSLCOO05]. In these algorithms reconstruction is nonlinear since coordi-
nate frames depend nonlinearly on vertex positions. Paries et al. [PDKO07] also seek conformal de-
formations, encoding local frames as quaternions at vertices. Reconstruction entails a sequence of
alternating least-squares problems: first to minimize the differences between local frames, then to
find the closest surface that exhibits these frames; ultimately, however, distortion remains. Lipman et
al. [LCOGLO07] also minimize frame differences, with an additional nonlinear unit-norm constraint
at each vertex to enforce isometric deformation. As before the nonlinear relationship between posi-

tions and frames is resolved with an iterative scheme and no integrability condition is considered.
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Conformal deformations have also been studied in the context of cage-based editing, where coor-
dinate functions on a coarse volumetric cage induce transformations of an enclosed surface [LLCOO08,
BCWGO09]. The main difficulty is that the only conformal maps from R? to itself are Mébius transfor-
mations, which are far too rigid for surface editing. As a result, cage-based methods are inherently lim-
ited to so-called guasi-conformal maps, which can still introduce significant distortion (Section 5.9).
On the other hand, these methods are highly efficient since they need only evaluate simple (often
closed-form) coordinate expressions. It may therefore make sense to use our method in conjunction
with existing methods to produce a final, high-quality surface (see Sections 6.3 and 5.9).

Discrete conformal maps have been studied extensively in the case of surface parameterization
where the target surface has constant curvature (such as the plane or the sphere). A common approach
is to compute a pair of discrete harmonic functions that describe a map into the plane, requiring the so-
lution of a linear system [Mer01, DMA02, LPRMO02, GY03], or an eigenvalue problem [MTADO8].
Conformal transformations can also be constructed by prescribing values at vertices that directly con-
trol the rescaling of the metric [BCGB08, YKL*08, SSP08]. However, a metric alone is not sufficient
to describe an embedding—one must therefore restrict the scope of the problem to metrics of con-
stant curvature in order to realize the final surface. We instead store values at vertices that encode
both local rescaling and roration, which is ultimately sufficient to describe the extrinsic geometry of a
deformation (Section 4.3).

Several methods allow prescription of extrinsic curvatures [ESP08] and metric properties such as
length [EP09]. However, the resulting energies are expressed in terms of vertex positions, making
them highly nonlinear. Using higher-order differential quantities (such as our function p) as primary
degrees of freedom may prove useful in this setting.

In contrast to previous approaches our setup ensures that transformations are conformal by con-
struction—any failure to achieve integrability on a mesh is due purely to discretization error (Sec-

tion 5.8.3).



CHAPTER 2

BACKGROUND

2.1 Notation

The following notation is adopted throughout unless otherwise indicated !. Single angle brackets (-, -)
and bars | - | denote the Euclidean inner product and norm (respectively) either on individual vectors
in R” or evaluated pointwise for vector-valued functions; double brackets ((-,-)) and bars || - || denote
the #? inner product and norm on functions. The symbol x denotes the usual cross product on R>.
When applied to vector fields, operators like (-,-) and x act pointwise. Vector space isomorphism is
denoted by V = W for any two vector spaces V, W. The symbol 1 denotes a function equal to one

at every point, or a vector containing a one in each entry. The symbol id denotes the identity map.

If ¢(t) is a time-varying quantity, then ¢ denotes the time derivative of ¢ at time zero, i.e.,

, d
gﬂ = —gD .
dt o

For any quantity ¢(s) defined along a 1D curve, ¢’ denotes the spatial derivative:

/,_d
v = d5§0.

Indices are typeset without serifs (e.g., i, j, k) to distinguish them from the basis for imaginary

quaternions (z, 7, and k). Superscripts x, y, and z denote components of vectors in R3.

"Note that symbols in most equations are byperlinked, i.e., clicking on a symbol will take you to its definition



2.2 Curves and Surfaces

This section reviews standard concepts from the differential geometry of surfaces and outlines the no-
tation we adopt in this thesis. Importantly, expressions in this section apply to general immersed sur-
faces, whereas in the remainder of the thesis we will adopt the convention that surfaces are described

by a conformal immersion (see Section 2.3). Caveat lector!

A

M

o

Y

The objects we consider in this thesis are 1- and 2-dimensional hypersurfaces immersed in Eu-
clidean space, i.e., curves in the Euclidean plane R? and surfaces in Euclidean R>. Explicitly, we de-
scribe the shape of a curve or surface via a map f : M — R”*! where M is a topological #-manifold
with boundary d M. We assume throughout that M is compact, connected, and orientable, and will
subsequently indicate when it is closed (M = @) or simply connected (77,(M) = 0). Since the di-
mension of M is no greater than two it has a uniquely defined smooth structure, hence a well-defined
tangent bundle 7 and differential df : TM — TR” = R”. Tangent vector fields on M are typically
denoted by capital Roman letters X, Y, Z, etc., and we use the notation df (X) to denote the pushfor-
ward of X to the ambient space R”. For convenience we will sometimes abbreviate the pushforward

with a caret, e.g.,

X = df(x),

and will more generally use a caret to distinguish vector fields on the ambient space R” from those
on the domain M. Throughout we assume that f is an immersion, meaning that df maps nonzero
vectors to nonzero vectors. (Note thatimmersions are not in general injective, i.e., /(M) may have self-
intersections.) Two immersions f and f~ are regularly homotopic if there exists a continuous family of

immersions f, : M - R”,t € [0,1] such that fy= f and f; = f.

Since f is an immersion we can use it to define an induced Riemannian metric

g(X,Y):=(df (X),df (Y)),
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(also known as the first fundamental form 1(X,Y")). When M is a surface, we let A denote the total

.A::J o,
M

arca

where o is the induced volume form
o(X,Y):=(N,df (X)xdf(Y)),

and N is the unit normal. More precisely, the unit normal or Gauss map N : M — S 1cR"isa

smoothly varying unit vector field on M such that
(N,df(X))=0

for all vector fields X . Our convention is to let N be the outward normal, i.e., normal vectors drawn
on a closed compact surface are visible from a point at infinity. For a vector field Z on the immersed

surface we use | to denote the tangential part and L to denote the normal part, i.e.,

2" =7 - (Z,N)N,

Since N is a unit vector field, its differential d N must produce vectors orthogonal to N itself, i.e.,

dN(X)isavector field tangent to the surface. Hence, there must exist a tangent space endomorphism
§:TM — TM such that
df (§X)=dN(X)

for all vector fields X. We adopt the somewhat unconventional nomenclature that dN is called the
Weingarten map and § is called the shape operator (traditionally these terms are used interchangeably,
but we wish to distinguish d N, which produces immersed vector fields, from S, which produces

intrinsic ones). Using these operators, we can express the second fundamental form as

H(X,Y):=—(dN(X),df (Y)) = —g(SX,Y)



1

and the normal curvature along X as

(dN(X),df (X)) _ (X, X)
dfxOP g(XX)

k(X):=—

It is not hard to verify that § is self-adjoint with respect to g and hence /7 is symmetricin X and Y.
On surfaces, we will use X;, X, to denote unit vectors along the directions of principal curvature and

K1,k to denote the corresponding curvatures, i.e.,

X = kX,

and hence

dN(X,) = kidf (X;).

Since § is self-adjoint with respect to g it follows that the principal directions are orthogonal with
respect to the induced metric, i.e., g(X{,X,) = 0. We define the Gaussian and mean curvature of an

immersed surface as

K =« k5,
K{+K
H= 1 2,
2

respectively.
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For vector fields X, Y on Euclidean R”, the Levi-Civita connection V can be expressed as
VyY =dY(X)

where d denotes the exterior derivative and Y is viewed as a vector-valued 0-form. In other words,
to differentiate a vector field Y we simply take its usual directional derivative along X. If V is the

Levi-Civita connection on an immersed hypersurface f : M — R”, then we can decompose V as
VY =df(VyY)+II(X,Y)N,

i.e., the derivative of a tangent vector field consists of a tangential part determined by the intrinsic co-
variant derivative and a normal part given by the second fundamental form. (Recall that X = df (X))

and Y = df (Y); here we extend X and Y arbitrarily to smooth vector fields on R”.) We then have
df (VxY)=(Vg?)T,

H(X,Y)=(N,(Vz 7))

Throughout we use div, grad, curl, and A to denote the divergence, gradient, curl, and Laplace-
Beltrami operators induced by f. The quantity %A f is called the curvature normal, equal to kN for

curves and H N for surfaces.

2.3  Conformal Immersions

When working with surfaces, we make the simplifying assumption that f is a conformal immer-
sion. This idea will be made more precise in a moment, but roughly speaking conformal means that

the notion of angle is preserved as we go from M to R3.
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Why is it useful (or even reasonable) to work with conformal maps? For readers already familiar
with geometry processing, the conformal assumption may sound like a “special” condition, tailored to
very specific problems and application domains. As we will see, however, conformal immersions are a
natural tool for analyzing general surfaces (i.e., when doing pen-and-paper derivations)—even if one
has no interest whatsoever in computing conformal maps. Moreover, this convention puts absolutely
no restriction on the type of geometry we are able to work with in practice.

To better motivate the use of conformal maps, consider the much simpler case of curves. In many

situations a curve appears as just a subset of the plane, with no explicit parameterization: 2

Conceptually, we can always imagine that this curve is the image (M) of some map f : M — R?.
In other words, as long as we know such a map exists, we can use it to reason about the curve without
ever having to explicitly compute the function f itself. Moreover, since we do not have to go to the
trouble of computing f, we may as well assume thatitisas nice as possible. For curves, one particularly
nice convention is to let f be an arc-length or isometric parameterization f : [0,L] — R?%;s — £(s),

which means that length is locally preserved: |df (X)| = |X|. In this case quantities like the roral

L
(:J ds.
0

For a general parameterization we would instead have to write something like

length of the curve can be expressed as just

L arx 2 af 2 L
(= J i + L ds or equivalently = J y/detg ds,
0 ds ds 0

where f* and f7 are the two coordinate functions associated with f, and g is the induced metric. In

other words, we have to account for metric distortion as we go from M into R?, which often com-

*This curve, for instance, was extracted from the painting “Yellow, Red, Blue” by Kandinsky, who very likely had no
parameterization in mind!
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plicates our understanding of the curve. Conversely, an isometric parameterization provides simple
algebraic expressions that convey a clear picture of the underlying geometry.

Like curves, surfaces often come without an explicit parameterization. Nowhere is this statement
more true than in digital geometry processing, where a surface begins life as a big jumble of points or
triangles floating in space! Unlike curves, however, we cannot always expect to find a parameterization
free of metric distortion, which explains why cartographers have so many different projections of the

globe:

1
I B

On the other hand, we can always describe a surface using an angle-preserving or conformal map—
no matter what the surface looks like! In other words, we do not have to make any special assumptions
about the surface under consideration. As with curves, this convention tends to produce simple alge-
braic expressions that make it easy to understand the behavior of the geometry. As just one example,
consider the Laplace-Beltrami operator A acting on a scalar function ¢, which in the case of a general
immersion f : R? D Q — R%;(s;,5,) — f(s5,5,) is typically expressed as

2 1 7 L
o | v/ detgg’——¢
ds,

= i;:l /'det g asi

Agp

For a conformal immersion this expression simplifies to just

A 1 22 92
p=—7—\7321T52
‘/ det g 8 S1 3 52
In the latter expression we still have to account for metric distortion, but overall the geometric mean-
ing is easier to interpret: the Laplacian on the surface is just a scalar multiple of the usual sum of

second derivatives in the plane. Again, we can use this insight to #nderstand the geometry, without

ever touching a computer or writing down an explicit formula for f.
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In general, we do not even need to imagine that the domain of f is the Euclidean plane (or any
other metric space, for that matter). To be more precise, let M be a topological surface. A complex

structure® on M is a vector bundle automorphism J : TM — TM such that
J 2= _id.

Intuitively J represents a 90—degree rotation in each tangent space, just as the imaginary unit 1 repre-
sents a 90-degree rotation in the complex plane. An immersion f : M — R? is then conformal if for
Al X e TM

df (JX) = Nxdf (X). 2.1)

Intuitively: an immersion is conformal if 90-degree rotations in the tangent space yield 90-degree
rotations in the ambient space. One can easily verify that this definition agrees with the usual notion
of a conformal immersion, namely that |df (X)| = |df (JX)| and (df (X),df (JX)) = O for all X.
Note that we adopt the usual right-hand rule for the cross product, which means that 7 is effectively

a counter-clockwise rotation.

f

Nxdf

(X)=

It is perhaps more intuitive to turn this story around: any immersion f — R? induces a natural
complex structure on M, obtained by rotating each vector 90 degrees around its normal—in essence,
the normal field of an immersed surface defines the complex structure. In other words, start with any

immersion f and define JX as the unique vector such that Equation 2.1 holds. Then f is conformal

*Note that J is more typically called an almosr complex structure, but for surfaces this data is sufficient to uniquely
determine a complex structure in the usual sense.
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by construction. Note that one does not need to invoke deeper results here (like uniformization): the
existence of a conformal immersion is guaranteed by the fact that an immersed surface already has a

smoothly varying Riemannian (and hence conformal) structure.

2.4 Half-Densities

Intuitively, a half-density is a function that maps each tangent vector to a scalar multiple of its
length, where the scaling coefficient depends only on the basepoint. Since this function depends only
on the length of a vector (and not its direction), its graph over each tangent space is a circular cone. A
half-density on a surface can therefore be visualized as a collection of cones with varying aspect ratio,
as depicted above.

More precisely, let M be a topological surface with complex structure 7, and let f : M — R3
be any immersion compatible with this structure (i.e., df (JX) = N x df (X) for all X). Every half-

density on M can be expressed as a map

X = oldf (X)),
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where ¢ is some real-valued function on M. (Notably, half-densities are not 1-forms since they are
not linear in the argument X.) We will typically denote half-densities by expressions like ¢|df | to
make explicit both the reference immersion f and the corresponding coefficient function ¢. In other

words,
oldf |(X) = pldf (X)|.

Note that for any other conformal immersion fN we can always find a function ¢ such that @|d ]; | =
@ldf|, namely @ := o|df|/|d f |. In other words, there is nothing special about the particular immer-
sion we choose to represent a given half-density (other than the fact that it agrees with the conformal

structure on M).

The fact that we can write all half-densities with respect to a single reference immersion f means
that they have a natural vector space structure induced by the vector space structure of the associated

coefficient functions, i.e., ¢, |df |+@,|df | := (¢, +¢,)|df |. This space also hasa natural inner product

(oldf | paldf 1) = JMmldfP,

i.e., we take the inner product of the two coefficient functions with respect to the volume form |df |?
induced by the reference immersion. We will denote the space of half-densities on M by H (M), (or
just H when the domain is understood.) An important property of half-densities is that their norm is
preserved by arbitrary diffeomorphisms & € Diff(M), not just volume-preserving diffeomorphisms
& € SDiff(M). This fact will come into play in Chapter 4.

A central object in our discussion of conformal immersions is the mean curvature balf-density

= Hldf|

Note that y is scale-invariant, since the mean curvature H is inversely proportional to the induced
length element |df|. This quality is particularly convenient in the context of geometry processing,
since one does not have to calibrate computations to account for global scale. In contrast, mean curva-
ture alone does not convey much information about the global appearance of a surface. For example,

the two surfaces below exhibit mean curvature whose magnitude is identical on average:
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Likewise, a local increase in mean curvature H is easily mistaken for an increase in bending, but
in reality an increase in mean curvature can also result from uniform shrinking and a simultaneous
decrease in bending. In contrast, the effect of manipulating mean curvature half-density y is unam-

biguous: increasing u exaggerates bending; decreasing u mitigates it.

2.5 Quaternions

The guaternions H are a number system well-suited to expressing three-dimensional geometric rela-
tionships; they also provide a natural algebraic language for conformally immersed surfaces [KNPP02].
Quaternions can be viewed as a four-dimensional real vector space with basis {1, 7, , k} along with the

associative, noncommutative Hamilton product, which is uniquely determined by the relationship

The imaginary quaternions ImH are elements of the three-dimensional subspace spanned by {, j, k}.
Throughout this thesis we use imaginary quaternions to represent vectors in R? via the natural iden-
tification

(a,b,c)—ai+bj+ck.
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We use Re and Im to denote the real and imaginary parts of a quaternion, respectively, i.e.,

Re(@a+bi+cj+dk) = a,
Im(@+bi+cj+dk) = bi+cj+dk.

We will sometimes express a quaternion g as the sum of a real scalar part g, € R C H and an imaginary

vector part ¢, € R* = ImH C H, writing

q9=9s+4,

as an abbreviation for ¢ = g, +¢*i + ¢ j + k. In this case, the Hamilton product of two quater-

nions ¢, p becomes

qp =4;ps — (qv’pv>+qspv T PGy TGy X Py -

real imaginary

In the case where g and p are purely imaginary we omit the subscript v and simply write

gp=qxp—{q,p) (2.2)

The conjugate of a quaternion ¢ =a + bi + c¢j + dk is the involution given by
qg:=a—bi—cj—dk,

i.e., conjugation simply negates the imaginary part. In particular, § = —g whenever ¢ € ImH. Con-

jugation reverses the order of a product, i.e.,

99 =79
and can be used to concisely express the Euclidean inner product for any p,q e H= R*:
(p>q) =Re(pq).

In particular,

laI> =74.
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Finally, it g is a #nit quaternion then the action

q—qxq

on vectors x € ImH represents a rotation of Euclidean 3-space, i.e., gxq is a rotated version of x.
Explicitly, ¢ = cos(6/2) —sin(6/2)u represents rotation by an angle & around the axis #» € R>. More
generally, if |¢| # 1 then thisaction represents a similarity, i.e., rotation and uniform scaling by a factor
|g|>. This representation will be especially important in our description of conformal deformations,

since conformal maps are local similarity transformations.

2.6 Quaternionic Differential Forms

Quaternion-valued differential forms provide a convenient language for discussing conformal immer-

sions. On an orientable surface M, these objects are quite easy to describe:
* O-forms are H-valued functions on M;
* I-forms are real-linear maps taking a vector field on M to an H-valued function;
* 2-forms are rescalings of the volume form o by an H-valued function.

For example, the immersion f can be thought of as a quaternionic 0-form, the differential df can
be thought of as a quaternionic 1-form (taking any vector field X to the corresponding H-valued
function df (X)), and the volume form o itself can be thought of as a quaternionic 2-form. For a

1-form a, real-linear means that
a(hX +Y)=ha(X)+a(Y)

for any real-valued function 4 and pair of vector fields X, Y.
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The wedge product N\ of two 1-forms @, 3 yields a 2-form

aABX,Y):=a(X)B(Y)—a(Y)5(X),

and one can easily verify the basic identities

ahf = —ﬁ/\a,
aNhB=ahA

where b is again real-valued. To give a concrete example, the induced volume form of a general im-

mersion f can be expressed as the quaternionic 2-form
1
0 = df ANdf,

since then

20(X,Y) = df(X)Ndf(Y)—df (VINdf(X)
= —(df(X)df (V) df (V)df (X)N
= —2df(X)x df(Y))N
= 2N, df(X)x df (Y)).

In the special case where f is conformal, we will denote the volume form by the symbol

ldf 2.

This convention makes explicit the fact that the volume is induced by the immersion f, which is
useful in contexts involving several different immersions. The notation | - |* is motivated by the fact
that ¢ is uniquely determined by the relationship o(X, 7X) = |df (X)|*. Also note that g(X,X) =
(df (X),df (X)) = |df (X)|? hence, one can also think of [df|* as the Riemannian metric induced
by f. Division by |df |* identifies any 2-form ¢ with the corresponding scalar multiple of the volume

form, i.e.,

w
ap ~ T

where X has unitlength with respectto £, i.e., |df (X)| = 1. For readers familiar with exterior calculus,

it may be useful to note that
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* |df |? represents the Hodge star on O-forms (x¢ = ¢|df|?),
* J represents the Hodge star on 1-forms (xd a(X ) = da(JX)), and
» 1/|df|? represents the Hodge star on 2-forms (xco = w /|df |*).

In the particular case of the 1-form df , we can also use the unit normal to express the Hodge star, i.e.,

*df = Ndf . Using the Hodge star, one can write the wedge product of 1-forms as

ahfB=axf—xaf,
and the induced Laplace-Beltrami operator on 0-forms as
A=xdxd.

Finally, the £ inner product on quaternion-valued functions ¢, ¢ : M — H is given by
(0= | Tt

2.7 Geometry in the Quaternions

The ideas introduced in the past few sections lead naturally to the main convention adopted in this
thesis: every surface in R? can be viewed as a conformal immersion in the quaternions, i.e., f : M —
ImH c H[KPP98, KNPP02]. This description has nice algebraic consequences, since most geometric

quantities of interest can be naturally identified with different components of a quaternion-valued
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function. In particular, any quaternionic function ¢ : M — H can be decomposed as

¢ = a + df(Y) + bN

quaternion real tangent normal

for some vector field Y and pair of real-valued functions 2, b on M. In other words, it can be written

as the sum of a real part, a tangential part, and a normal part, respectively, as depicted below.

quaternion

scalar tangent normal

real imaginary

When working with purely imaginary quantities g, p € ImH representing vectors in R?, we will

repeatedly take advantage of the relationship

qp=qxp—1{q,p)

to simplify calculations. For instance, for any tangent vector field ¥ = df (Y') and pair of normal

vector fields 21 =bN, 7 , = b,N we have
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In other words: normal vector fields commute with each-other; normal and tangent vectors anti-

commute. Similarly, for any pair of orthonormal tangent vector fields df (X), df (JX) we have
df (X)df (TX) = df (X) x df (X )= Nldf (X)I’,

where the magnitude |df (X)[? is a consequence of the fact that £ is a conformal immersion.
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CHAPTER 3

THE QUATERNIONIC DIRAC OPERATOR

On any conformally immersed surface f : M — ImIH we define a differential operator D on smooth

quaternion-valued functions, which we call the guaternionic Dirac operator:

dfndy

W. (3.1)

D¢ =
Very roughly speaking, the Dirac operator can be thought of as a generalized gradient operator: it
describes the first-order derivatives of a given function. In the quaternionic setting, however, the
derivative of a function is a function of the same type. For instance, a real-valued function and its
gradient vector field can both be expressed in terms of quaternion-valued functions, as discussed in
Section 2.7. For this reason, the operator D provides a unified treatment of differential operators on
immersed surfaces, as will be discussed in Section 3.4. More generally, Dirac operators play an impor-
tant role in physics and geometry, and will be central to our treatment of conformal deformations. In

particular, we will be interested in the time-independent Dirac equation

(D—p)p=r¢ (3.2)

where p is a real-valued function, ¢ is a quaternion-valued function of unit norm (||¢|| = 1), and y

is a real eigenvalue.
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Physically, the Dirac equation can be thought of as a more accurate version of the more traditional
Schridinger equation which models a phenomenon known as spin-orbit coupling. To draw a classical
analogy: if a Schrodinger equation were used to model the moon orbiting around the Earth, then
the corresponding Dirac equation takes into account the fact that the moon is spinning. In both
equations total angular momentum is conserved, but in the Dirac equation this momentum is trans-
ferred back and forth between two modes: orbital angular momentum (the moon traveling around
the Earth) and spin angular momentum (the moon turning around its own axis). In our particular
version of the Dirac equation (Equation 3.2) the function p plays the role of a scalar potential, the
function ¢ describes a steady-state wave function of a spin-1/2 particle interacting with this potential,
and the eigenvalue y represents the corresponding energy level. As with the Schrodinger equation,
the magnitude |¢|* describes the probability of discovering the particle over any given region of space.
As demonstrated in Section 3.2, our quaternionic Dirac operator is locally equivalent to the quantum
mechanical Dirac operator for a spin-1/2 particle—this interpretation is used in Section 6.5.1 to visu-

alize (for the first time) relativistic electron wave functions as conformal immersions of the sphere.
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3.1 Basic Properties

We first establish some basic properties of the quaternionic Dirac operator D, where as usual we as-
sume that £ : M — R’ is an immersion of a compact connected orientable surface M which inherits
a complex structure J from the unit normal field on f(M). On closed domains (M = 0), we show
that D exhibits the behavior expected of any Dirac operator, namely that itis self-adjoint and (weakly)
elliptic. These properties are desirable from an applications point of view, because on a compact do-
main any self-adjoint elliptic operator has an orthonormal eigenbasis and a discrete spectrum of real
eigenvalues—hence, we can think of the operator D in much the same way as we think about a real
symmetric matrix. (These properties become especially valuable when we analyze the configuration
space of conformal immersions—see Chapter 4.) For surfaces with boundary, the behavior of D de-
pends on the particular choice of boundary conditions. Motivated by applications described in this
thesis, Bohle and Pinkall [BP13] provide a geometric characterization of boundary conditions for
which the resulting Dirac operator is self-adjoint and elliptic—these results are summarized in Sec-

tion 4.5.4.

Proposition 3.1.1. Let M be closed (i.e., IM = Q). Then for any two differentiable functions ¢, ¢ :
M — H we have

(D, o) = (¢, D),

i.e, D is self-adjoint.

Proof. We have

dfnd
jdf

(p.0g)=-| FErP == | Jafndg=| dindfg-| dgarg)

By Stokes’ theorem the latter term vanishes and we get

jM dgndfp = —JMEdedsﬁ _TBD8) = (Dg ).

Proposition 3.1.2. Ler M be closed. Then D is (weakly) elliptic.



28

Proof. Let (sq,s,) belocal coordinates on M. Then for any quaternionic function ¢ we have

dfndg = (Shds'+SLds?)n(Ghdst+52ds?)

hence

Ly a5y
¢—352851 ds, Is,

Locally, then, the symbol of D is a linear map py, : R? — H given by

af 9f

pp(s155,) = 3—5251 - 3—5152

(i.e., we replace each partial derivative operator d / J's; with the corresponding coordinate variable s; ).

Letting X = (s;,5,), we can also write the symbol as

pp(X)=df (JX).

Butssince f is an immersion, df is nondegenerate. Hence, D is weakly elliptic. O

3.2 Relationship to Spin Dirac Operator
The Dirac operator for a spin-1/2 particle in the plane is given by
—i(0,d,+0,9),

where o and o , are the Pauli matrices

01 0 —i
o » 0, = . .
1 0 1 0

Proposition 3.2.1. In local coordinates, the quaternionic Dirac operator D is equivalent to the spin-

Dirac operator described above.

Proof. Note that any function gb : M — H can be written as

b=¢+id,
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for some pair of C-valued functions ¢,, é,. Define & and 2 via

=43, -id)y, I¢:=13,+id)¢.

At any given point, we can choose coordinates such that our immersion f maps to the 7» /e—plane, ie.,

f =jzforsome z : M — C. We then have

df nd=jdzN(3p,dz+db,dZ)+ (3 brdz + 3 $,d7))
=(jI¢,+Ib,)dzAdZ
=—2(jO$1+3b,)ildfT?).

Dividing through by —1/|df]* we get D¢ = 2( ]59151 + d ¢,)i, which means the matrix of D is

N
D=2 [ _ ] i :z(ax3x+ay3y),
Jd o0

i.e., our quaternionic Dirac operator is locally the same as the spin Dirac operator up to sign. O

3.3 Relationship to Laplace-Beltrami

Dirac operators are often referred to as “square roots of the Laplacian.” Here we make this relation-

ship explicit for the quaternionic Dirac operator D.

Proposition 3.3.1. Let A be the Laplace-Beltrami operator induced by a conformal immersion f. Then

dNAd ¢

PYEA T

for any function ¢ : M — H.

Proof. Recalling the definition of D (Equation 3.1), we have

dfPDY = —dfndg

< —dfdfDy = —df«d)+ «df dj
~—
~dfN
= dfD¢ = *dd+Ndyd



divX = Re(NDX) | divergence
gradgp = —NDy | gradient
curl X = Re(DX) | curl
SX = —(DX)T | shape operator
H = — %N DN | mean curvature
K = %N Im(D?)N | Gaussian curvature
N = - %D /| unit normal
I(X,Y) = —Re(XY) | first fundamental form
I(X,Y) = Re(YDX) | second fundamental form
Ap = Re(D?¢) | scalar Laplacian
AX = (D(DX)H)T | vector Laplacian
Vx¢ = Re(XNDgy) | covariant derivative

Table 3.1: Standard differential operators expressed using the quaternionic Dirac operator D. Here
X and Y are tangent vector fields, ¢ is a scalar function, and N is the unit normal field.

where in the last step we take advantage of the fact that f is an immersion. Taking the derivative of

both sides, we get

—df Nd(Dg)=d ~d+dNNd.

Notice that the left-hand side of this expression has the same form as the right-hand side of the first

line above, replacing ¢ with D¢). Making this substitution, we get
|df"D*¢ =d xd ) +dNNdY

or equivalently

ANAdY

20 =A ——
DY=adt

]

Note that we can therefore obtain the Laplacian of a real function ¢ by extracting the real part of

D?¢, ie., Ap =Re(D*¢) since dNAd ¢ is a tangent-valued 2-form.

3.4 Vector Analysis

One attractive feature of the quaternionic operator D is that it can be used to concisely express all
other basic differential operators from the theory of surfaces, both intrinsic and extrinsic. This fact

will prove useful in later analysis; it also suggests a potential approach to numerical discretization
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(Chapter 7).
Consider any quaternionic function ¢ : M — H. If we decompose this function into three com-
ponents ¢ =a+df(Y)+ bN (Section 2.7), then a concise way to summarize the effect of D on ¢

18

0 —curl 0 a
Dy=| Jgrad —S grad Y (3.3)
0 —div  2H b

Using this relationship we can express all of the standard differential operators on a surface, as summa-
rized in Table 3.4. The remainder of this section serves to verify these facts. To obtain an expression for
each component of the 0-form D¢ we simply evaluate the 2-form —df Ad ¢ on a pair of orthogonal

vectors X, JX which have unit length with respect to the induced metric, i.e.,
|df (X)| = 1df (TX)| = 1.
Proposition 3.4.1. Leta : M — R be a real differentiable function on M. Then
Da=df(Jgrad a),

i.e, applying the Dirac operator to a real function yields a 90-degree rotation of its gradient (as an

immersed vector field).

Proof. We have
Da = —dfhda(X,JX)
= —(df (X)da(TX) — df (TX)da(X))
= Ndf(JX)da(JX)+ Ndf (X)da(X)
= Ndf(da(X)X +da(TX)JTX)
= Ndf(grada)
= df(Jgrada).

Proposition 3.4.2. Let Y be a vector field on M. Then

DY = —(curl Y +df (SY)+ (div Y)N).
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Proof. We have

—DY =dfAdY(X,TJX)=df (X)dY(TX)—df (TX)dY (X).
Remembering that d Y (JX) is just the ambient covariant derivative V Y the first term becomes

XV Y =X(df (V 53 ¥)+I(TX,Y)N) = X(Z = g(STX, Y)N).
—
=7

A A

Since X and Z are both tangent vector fields we have X Z = XxZ - (X, Z) = (NX,Z)N — (X, Z)
We therefore get

(NX,Z)N —(X,Z) — g(STX,Y)XN
(Ndf(X),df (V x Y )IN = {df (X),df (V 7xY)) = g(STX,Y)df (X)N
= g(IX,VxY)N —g(X,V 55 Y)+g(STX,Y)df (TX).

Similarly, the second term of our initial expression for DY can be written as
AF(TX)AY (X) = —g(X, Ty YIN = g(TX, ¥y Y) = g(SX, Y)df (X)
Taking the difference of these two terms we get a real part
g(IX,VyY)—g(X,V 7xY)=(curl Y)N,

a tangential part

g(SX,Y)df (X)+g(STX,Y)df (TX)
df (g(SY, X)X +g(8Y,JX)TX)

= df(SY),

and a normal part

(§(X,VY) + g(JX,V ;4 V)N = (div Y)N.

All together, we get
—DY =curl Y +df(SY)+(div Y)N.
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Proposition 3.4.3. Let N be the unit normal field on f(M). Then

DN =-2HN.

Proof. Recall that the directions of principal curvature X;, X, are orthonormal with respect to the
induced metric, and are eigenvectors of the shape operator § with associated eigenvalues x4, «,, re-

spectively. We therefore have

—DN = dfANdN(X,,X;)
= df (X)dN(X,) —df (X,)dN(X)
= df(X))df (§X,) - df (X,)df (§X,)
= kpdf (Xy)df (X;) — kydf (X;)df (X;)

= 2H(df (X;) x df (X3))
= 2HN.
O
Proposition 3.4.4. Let b be a real function on M. Then
D(bN)=df(grad b)+2bHN.
Proof. 'This result follows immediately from Propositions 3.4.1 and 3.4.3. O]

The propositions above effectively determine the 3 x 3 matrix form of D (Equation 3.3) and
thereby verify the first five identities in Table 3.4; the remainder of this section serves to verify the

rest.

Proposition 3.4.5. The Gaussian curvature of a conformally immersed surface f can be expressed as
1 2
K = > N(ImD*)N.

Proof. From Proposition 3.3.1, we have
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and evaluating the 2-form d NAdN on the principal directions X;, X, yields

dNNdN(X,X,) = dN(X,)dN(X,)—dN(X,)dN(X,)
= 2dN(X,)dN(X,)
= 2k6,df (X)df (TX)
= 2KN|df]*.

Multiplying through by N /2|df |? yields the result. O

Proposition 3.4.6. The unit normal field N on a conformally immersed surface f can be expressed as
N= 1D
== f.
Proof. We have
df Ndf (X, TX) = df (X)df (TX) - df (TX)df (X) = 2df (X)df (TX) = —2N|df (X)P*.

Hence,

2NldfP? _

Pr= e

O

Proposition 3.4.7. The first fundamental form of a conformally immersed surface f can be expressed
as

I(X,Y)=—Re(XY).

Proof. We have
Re(XY)=Re(X x Y — (X,Y)) = —(df (X),df (Y)) = —I(X,Y).
O

Proposition 3.4.8. Let X andY be any two vector fields on M. The second fundamental form induced

by a conformal immersion f can be expressed as

1I(X,Y)=Re(YDX).
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Proof. From Proposition 3.4.2, we have

A

DX = —(curl X +df (§X)+ (div X)N).

Since both Y (curl X) and Y (div X )N are tangent-valued, we are left with just

Re(Ydf(5X)) = Re(Y xdf(SX)—(Y,df(§X))
= —(V,df(s ))
= —(df(Y),dN(X))
= II(X,Y).
Proposition 3.4.9. Let X bea tangent vector field on a conformally immersed surface f. Then
AX =(D(DX)H)T
Proof. From Proposition 3.4.2 we get
(DX)* = (div X)N,
and from Proposition 3.4.4 we get
D((div X)N)T = df (grad odiv X) = AX.

Proposition 3.4.10. Let ¢ be a real-valued function on M and let X be a tangent vector field. Then
V9 =Re(XNDg).
Proof. From Proposition 3.4.1 we have Do = df (Jgrad ¢), hence

XNDy = XNdf (Jgrad ¢) = —X Ndf (grad ¢)
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We then get
—Re(¥NDp) = (X,df (grad p)) = Vi .
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CHAPTER 4

THE SHAPE SPACE OF CONFORMAL
IMMERSIONS

Given a surface in space, one can easily determine its curvature. A natural question is: given a
curvature function, when can one uniquely determine the corresponding surface? This chapter in-
vestigates this question in the context of a conformal immersion f (Section 2.3) and its associated
mean curvature half-density u (Section 2.4). In particular, we show how to recover f by integrating
, and describe the precise conditions under which u must evolve in order to preserve integrability.
The space of valid functions w itself turns out to be (almost everywhere) an infinite dimensional Rie-
mannian manifold which—in spirit—has the structure of the helicoid depicted above. We refer to
this space as the shape space of conformal immersions. Understanding this manifold is essential to the
development of algorithms because it allows one to successfully “navigate” the space, i.e., to find tra-
jectories of curvature that induce the desired operations on the surface itself. In the following section
we give a very informal discussion of shape spaces and how they relate to our framework for working

with surfaces—for a more formal discussion, see the book by Younes [Youl0].
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4.1 Shape Spaces

Shape spaces are, generally speaking, configuration spaces associated with a given piece of geometry,
such as a curve in the plane or a surface in space. Shape spaces can be thought of in analogy with simple
configuration spaces appearing in mechanics. For instance, the orientation of a rigid body spinning
in space can be identified with a rotation relative to some initial, canonical configuration. To build an
licit descripti f thi 1l th i i H=R*d i i
explicit description of this space, recall that every unit quaternion ¢ € H = etermines a rotation
x — gxq of vectors x € ImH = R? (Section 2.5). Geometrically, then, the configuration space of a

spinning rigid body looks like the collection of unit vectors in R*—in other words, the 3-sphere S 3

S3

=P

The nice thing about this description is that § 3 has a concrete geometry, which allows one to talk

clearly about things like “shortest paths of rotations” and “derivatives of rotations,” etc. As empha-
sized in the cartoon above, however, using § 3 to represent rotations is in some sense redundant. In
particular, any two quaternions g and —q describe the same rotation: gxq = (—q)x(—¢g). To make
this representation unique, we could “glue together” opposite points on the sphere, i.e., we could
take the quotient § 341, yielding the real projective space RP3. This set is again a geometric space,
endowed with natural notions of length, tangent vectors, etc. In practice, however, it is often more
convenient to work with the “redundant” space § 3 which can be easily visualized and has a nice alge-
braic representation (namely, the quaternions).

The story about rigid bodies captures some of the essential features one considers when formulat-

ing a shape space for surfaces. For instance, consider a smooth submanifold > C R3 with spherical



39
topology. The subset ¥ can always be expressed as the image of a general immersion f : §? — R?,
i.e., we can always find an f such that £(§%) = . And, just as quaternions were a redundant rep-
resentation of orientations, immersions are a redundant representation of shape. For surfaces, the
redundancy comes from the fact that we can first “swirl the sphere around” before mapping it into
space. More precisely, if & : §?2 > §%is any diffeomorphism of the sphere, then the map f o ¢ is
another immersion describing %, i.e., since £ (§?) = §2, we have £(£(8%)) = f(§?) =%

/&

fo&
3
—
‘. .

This description of surfaces exhibits a reparameterization symmetry: it does not matter which points
on §? get mapped to which points of R?, as long as the whole sphere S? gets mapped to the whole sur-
face . Moreover, this representation exhibits something that, very roughly, resembles a vector space
structure, i.e., one can often get away with pretending that the sum of two immersions is an immer-
sion. This approach reflects a standard practice in geometry processing: surfaces are represented via
Euclidean coordinates at mesh vertices, which get manipulated as though they are arbitrary R3-valued
functions—there are typically no special constraints to ensure that the surface remains immersed, em-

bedded, etc. The ability to work in a linear space is essential from an application perspective, because
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it allows one to take advantage of efficient computational tools like numerical linear algebra.

As discussed in Section 2.3, we can also use a conformal immersion f : M — R to describe any
surface. This representation exhibits a much simpler reparameterization symmetry: if two conformal
immersions describe the same surface, then they differ only up to a conformal diffeomorphism of the
sphere, i.e., a Mibius transformation. Unlike the full space of diffeomorphisms Diff(S?) which is
infinite dimensional and hence quite challenging to discretize, the space of M6bius transformations
is finite dimensional (six dimensional, in fact) and hence much more manageable from a numerical
point of view. For instance, it is computationally feasible to compare two functions by searching
over the Mdbius group, as done, for example, by Lipman and Daubechies [LD11]. However, one
important question remains: how does one represent the conformal immersions themselves? The
immersion function f is an inconvenient choice, since the collection of such functions looks nothing
like a vector space, i.e., in most cases the sum of two conformal immersions does not even come close
to being conformal. (This fact is quite salient in the discrete setting: take the sum of two surfaces with

“nice” texture coordinates and the result will not be so nice!)

An important observation made by Kamberov et al. [KPP98] is that, apart from a few excep-
tional cases, a global conformal immersion is uniquely determined by its mean curvature half-density
u = H|df|. Yet unlike conformal immersions f, half-densities do have a vector space structure, as
discussed in Section 2.4. This structure is the essential feature that allows us to work with conformal
transformations in geometry processing: although we cannot “add together” two conformal immer-
sions, we can add the corresponding half-densities and easily recover a surface that resembles both
of them in a way that is highly intuitive. In this thesis, we provide a detailed analysis of the corre-
sponding shape space M (Section 4.5). Notably, M also exhibits a conformal reparameterization
symmetry (e.g., M6bius transformations in the case of $2), an observation which may prove valuable
in applications like shape matching. In most applications, however, it is more convenient to work in
the “redundant” space of half-densities, which avoids the introduction of additional singularities in

the quotient space.
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4.2  Curves and Isometry: A Prelude to Surfaces
f0)=f(L)
/f\)

Y

f([O’L]) ( T:df(X)

Before developing a shape space for surfaces, we examine the much simpler case of curves, which
helps illustrate the general method for establishing integrability conditions in terms of curvature.
Namely, we write down each relevant constraint in terms of positions or tangents, differentiate it in
time, then convert it to a constraint on curvature using established relationships. The only difference
in the case of surfaces is that these relationships become more intricate.

As discussed in Section 2.3, we view any planar curve as the image of an arc-length or éometric
immersion

f:[0,L] - R?

where L € R is the total length of the curve, and isometry means that length is locally preserved, i.c.,
|ldf (X)| = |X]

for all tangent vectors X . Associated with this curve is a unit tangent field 7 := f” and corresponding
curvature normal kN = 7" (see above); we use d/ to denote the usual length element on the real line.

Which curvature functions « : [0,L] — R describe a valid curve? In the case where f is an open
curve (i.e., no constraints on the endpoints), it is fairly easy to see that any such function is valid:
simply integrate « to get the unit tangents 7', then integrate 7" to get new positions ]F . More explicitly,

if we let & be the cumulative angle

0(s):=0, +J kdl,

0

then the new unit tangent field is given by f(s) = (cos8(s),sinb(s)). We can then recover the posi-
tions ]; via

fN(s)szO+LS Tde.
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Note that the curve f is determined only up to a global rotation and translation, specified by values
f,€Rand f € R2. By construction, this new curve will also be isometrically immersed, since we

always integrate u#nir tangents 7.

The situation becomes more interesting when we consider closed, regular curves. Closed means

that the two endpoints meet:

fO)= /(L) (4.1)

and regular means that tangents agree at endpoints:
TO)=T(L). (4.2)

Regularity prohibits motions that develop sharp “kinks”, as seen in the center image below:

LGLHLHO

The main task now is to re-express these conditions in terms of curvature. More precisely, suppose we

start out with a valid curvature function « (which we can obtain, for instance, by simply differentiating
our initial curve). What then are the valid changes in curvature £ as our curve evolves in time? The
latter condition (Equation 4.2) implies that the tangent turns around a whole number of times as we

walk around the curve. Equivalently, it says that the total curvature is an integer multiple of 27, i.e.,

L
J xdl =21k
0

for some turning number k € Z. It « satisfies this condition at time ¢ = 0, it will remain satisfied as

long as the total curvature does not change, i.e., as long as

L
J rxdl =0.
0

The first condition (Equation 4.1) is not quite as easy to reformulate, but a straightforward deriva-

tion shows that it can also be expressed as a simple linear condition on «:

Proposition 4.2.1. Let k(t) be the curvature of an isometrically immersed curve f, varying in time.
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Then
L
J kfdl=0.
0

Proof. 'The endpoints f(0) and f(L) agree as long as the unit tangent field 7" integrates to zero:
L
f Tdl=0.
0

Since T is a unit vector at each point, both 7" and T’ are orthogonal to 7. Differentiating in time

therefore yields
L . L .
O:f Tdf:J. (Jr,7)JTd!,
0 0

where here ] denotes a 90-degree rotation in the plane. Recalling that "= T and 7’ = kN, we get
L . L . .0 .,
o=] | (TN de =] | PR T e
0 0
L ‘ L
=1 [ TNy +ipEi) de = [ art,
0 0

where on the first line we apply integration by parts and the fundamental theorem of calculus. [

A concise way to write the whole collection of constraints is then

(& 1) = (&, /) = (&, /7)) =0,

where f*, f7 : [0,L] — R are the current x— and y— coordinate functions of the curve, respectively,

and ({-,-)) is the £ inner product on functions (Section 2.1).

In terms of shape spaces, this analysis allows us to adopt the following picture. Imagine that « is

a point in the space of all smooth functions on the interval [0, L]. We can move « in any direction &,
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except the three directions ¢y, ¢,, ¢5 described by the three linear constraints above. Since the space of
valid curvature functions locally looks like a linear space, one is naturally inclined to wonder whether
these spaces are in fact tangent spaces of some global Riemannian manifold. This question will be

considered in greater detail when we consider the case of conformally immersed surfaces (Section 4.5).

4.3  Spin Transformations

N

Consider two general immersions f, f~ : M — ImH of a topological surface M, as depicted above.
These surfaces are said to be spin equivalent if their differentials df ,d £ are related by a similarity

transformation at each point, i.e., if there exists some non-vanishing function A : M — H such that

df (X) = 2df(X)A (4.3)



45
for all tangent vectors X . Importantly, the Riemannian metrics induced by two such immersions will

be related by a positive scaling:

(df (X),df (V)
(Adf (X)A, Adf (Y)2)
IS (X),df (V)
= A" ex, 7).

~—~—

>0

§X.Y)

In other words, spin equivalence implies conformal equivalence. However, not every pair of con-
formally equivalent immersions are related by a spin transformation—in particular, Kamberov et

al. [KPP98, Remark 2] make the following observations:

1. When M is simply connected, any two conformal immersions f, f are spin equivalent.

2. When M is not simply connected, / and ]; are spin equivalent if and only if they are regularly

homotopic.

Inspired in part by numerical experiments done for this thesis (Section 6.5.4), Pinkall [Pin] makes a

further conjecture:

Conjecture. (Pinkall) Let f, f : M — R? be two regularly homotopic conformal immersions. Then f
and f are conformally homoropic in the sense that there exists a regular homotopy between f and f~

that is conformal throughout.

These facts help us understand what types of deformations can be achieved via spin transforma-
tions, and what cannot. For instance, one can achieve any conformal deformation of the sphere § 2
but cannot achieve certain conformal deformations of the torus 72. However, these deformations
correspond to large, global, non-injective “twists”, which are not typically needed for geometry pro-

cessing:
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In practice, the most typical scenario is that we start with a surface / and wish to find a spin trans-
formation ]F that expresses a relatively small, local change in geometry (e.g., for editing, smoothing,
etc.). However, an arbitrary transformation A will not, in general, produce a 1-form d ]; that is the
differential of some surface f~ Jie., d 'f A may not be inregrable. In other words, we cannot construct
the new surface ]F unless A satisfies the very special criterion expressed in Equation 4.3. Solving this
equation directly appears intractable, since computationally it amounts to a large system of guadratic

equations. Fortunately, there is an alterative, /inear condition on A that ensures integrability:

Proposition 4.3.1. Let f : M — ImH be a conformal immersion of a simply connected domain M.

Then the transformed differential B := Adf A is integrable if and only if A satisfies the condition
(D—p)A=0 (4.4)
for some real-valued function o : M — R, where D is the guaternionic Dirac operator induced by f .

Proof. (This proof follows Kamberov et al. [KPP98, Lemma 2.2].) On a simply connected domain,

[ is exact (i.e., integrable) as long as it is closed, from which we get

0=d(Adf )= dINdf A= Adf NdA = Xdf NdA— ddf AdA.

But for any quaternion g € H, ¢ — g = 2Im(q). The expression above therefore says that the 2-form
Adf AdA s purely real, or in other words, AdfAdA = pldf|? for some real function p. Equivalently,
we can require that —df AdA = pA|df|* for a different real-valued function p which is related to p
by p = —p/|A]>. Substituting D into this final expression yields (D — p)A = 0. O
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At first glance, Equation 4.4 appears difficult to solve: we have to simultaneously find a function
e and a similarity transformation A. However, suppose we start with an arbitrary scalar function p-

If we solve the eigenvalue problem

(D—p)A=yA (4.5)

for any eigenvector A and corresponding eigenvalue y, it follows that the pair (4, o+ y) satisfies Equa-
tion 4.4, i.e., (D — (o + 7))A = 0. In other words, any scalar function p determines a conformal
immersion f, as long as we allow p to be shifted by a global constant. Overall, then, the following

procedure determines a spin transformation fona simply connected domain M:
1. Pick a scalar function o on M.
2. Solve an eigenvalue problem (Equation 4.5) for the similarity transformation A.
3. Solve a Poisson equation (Equation 4.3) for the new surface ]; .

This procedure represents the main computational task in our conformal geometry processing algorithms—
a numerical version is developed in Chapter 5. The nonsimply connected case is discussed in Sec-

tion 4.5.2.

4.4 Curvature Potential
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In the procedure above deformations are specified via the scalar function p. What is the geometric
meaning of p? Recall the mean curvature half-density u = H|df | induced by an immersion f (Sec-
tion 2.4), which provides a scale-invariant description of the smoothness or roughness of the surface.

The mean curvature half-density of a spin transformation f~ is given by
Hdf| = H\df |+ pldf], (46)

where H is the mean curvature induced by f~ (see Kamberov et al. [KPP98, Lemma 2.3]). Thus, the
scalar function p controls the change in mean curvature half-density—we will call this function the
curvature potential. As illustrated in the image above, the resulting deformations behave somewhat
like normal displacements: positive values, indicated by green spots, cause the surface to bulge out;
negative values, indicated by purple spots, cause the surface to bulge in. Unlike normal displacements,
however, the conformal structure of the surface is preserved, as illustrated by the fact that grid lines
remain orthogonal. Also note that the effect of applying a constant shift to the curvature potential p
(as in Equation 4.5) is akin to adding a constant value to a grayscale image—the resulting appearance

is largely the same.

4.5 Conformal Shape Space

Definition 4.5.1. Let f : M — R> be a conformal immersion of a closed surface M. The conformal
shape space M(f) (or just M when the immersion is understood)is the collection of all mean curvature

balf-densities that can be achieved via some spin transformation f of f:

M= {olar 1| odf| = Alaf - g f e~ .

Note that since spin equivalence is in fact an equivalence relation, M depends only on the con-
formal structure and regular homotopy class induced by £, i.e., for any spin transformation ]; of f
we get M( /; )= M(f). In the case of the sphere §? we can drop the immersion f altogether, since all
spheres are spin equivalent.

To better understand the structure of this space, it helps to consider special points p|df | € M.
For instance, M(f) always contains the origin p|df| = 0, since DA = 0 for any constant function

A= q € H. Geometrically, this statement reflects the fact that any global rigid rotation and uniform

scale gdfq is a spin transformation.
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More can be said about the global structure of shape space when the domain A is closed and
simply connected, i.e., when M = $2. In this case, Equation 4.5 indicates that if p|df| € M then
(p +y)ldf| € M for any eigenvalue y of D. But as implied by Propositions 3.1.1 and 3.1.2, D has
only a discrete collection of eigenvalues y, which we index by the integers Z, i.e., ..., ¥_1, Yo, V15 - -- I
terms of the shape space M, we can then imagine that, starting out at our initial surface u, = 0 we
can travel a finite distance y; along the constant direction |df | to find another surface u; := y;|df]|.

Locally, then, M must look like a discrete collection of “sheets:”

~—
ldf|

We also know that M must be connected, since all spheres are spin equivalent. One could therefore

imagine that globally these sheets come together to form a single Euler spiral:

The pictures above are, of course, just “cartoons” of M, meant only to provide some intuition about
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conformal shape space (in general, for instance, sheets will not be evenly spaced). Nonetheless, this
intuition strongly suggests that M itself will turn out to be a Riemannian manifold. A formal proof
of this fact is likely quite technical and will not be pursued in the present thesis. However, the basic
intuition is as follows. Let D denote the Dirac operator induced by f. Points in M correspond
to half-densities p|df| such that the operator Dy — o has a kernel (Equation 4.4), i.e., points where
det(Dy — p) = 0 for a suitably defined determinant det. The function p|df | — det(D; — p) can be
viewed as a differential map from H into RR; at points where D does not have repeated eigenvalues this
map is a submersion and hence M is locally a hypersurface, i.e., a codimension-1 submanifold in the
space of half-densities H. Generically, D I will not have repeated eigenvalues—this kind of degeneracy
might corresponds to immersions f with a high degree of symmetry, for instance (Section 6.5.1). In

this setting, M inherits the Riemannian metric induced by the inner product ((,)) on .

451 Local Analysis

For applications where we consider, e.g., the continuous time evolution of a surface, it will also prove
valuable to understand the local structure of M, i.e., which local variations of the mean curvature
half-density u are admissible? In particular, we have the following characterization of the tangent

space TM:

Proposition 4.5.1. Let A, p be time-varying solutions to Equation 4.4 with A(Q) = 1 and p(0) = 0.
Then
DA=p. (4.7)

Proof. We can rewrite Equation 4.4 as DA = pA, and since D is constant with respect to ¢, differenti-

ating this relationship in time yields just

L0
Di=phtfi=p.
O

Proposition 4.5.2. Let M be a closed surface and let f be any immersion such that the induced Dirac
operator D has a one-dimensional kernel. Then the tangent space of M at the origin consists of half-

densities & with zero mean, i.e.,

~ (ldr1, ) =o.
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Proof. Any tangent vector can be viewed as the velocity £ = p|df | of some curve p(t) at time t =0,

where p(0) = 0. Integrating Equation 4.7 over M and applying Stokes’ theorem, we get

()= piarP=| oaafp=| arndi=| agahy=| gl

which equals zero since aM=0. O
Using this description of the tangent spaces, we can easily determine the normal direction on M:

Proposition 4.5.3. At regular points of M, the unit normal is given by
1

mldfl-

y =

Proof. Atregular points, M isa hypersurface with tangent spaces spanned by all half-densities & with

Zero mean, i.e.,

(11df1,E) =0.

Butsince 1|df | is orthogonal to all tangent vectors, it must be the unique normal direction; moreover,

it has length
1/2
||1|df|||=<fM|df|2) — VA

Note in particular that the normals of M corresponding to any two spin equivalent immersions

f,f are consistently oriented (i.e., they are contained within the same “half-space”) since

() = (ldf 1L 1af 1) = (IAdf AL ldf ) = (APIF L ldf 1) = JM |APldf? > 0.

For this reason, a more appropriate cartoon for M than the Euler spiral (where normals can point

in any direction) is the helicoid mentioned at the beginning of this chapter (where all normals point
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“upwards”). Just as the 3-sphere provided a nice visualization for rotations, the helicoid provides a
good mental model for the shape space of conformal immersions. In particular, to analyze the local
behavior of shape space we will typically consider a time-varying curvature potential o(¢) with p(0) =

0, which determines a trajectory p(¢)|df | of half-densities passing through the origin:

At time t = 0, this curve corresponds to the initial immersion f since p(0) = 0, i.e., no change
in curvature. At any other time ¢, we can associate the trajectory p(t) with the induced similarity
transformation A(¢) and resulting spin transformation f (t),i.e., A satisfies the integrability relation-
ship (D — p(t))A(t) = 0 (Equation 4.4) and ]; satisfies the spin equivalence relationship d]; (tr) =
E(t)d f A(t). In particular, we have A(0) = 1 and f~ (0) = f. From here we can analyze how a change
& := p|df| in mean curvature half-density induces an infinitesimal change f in the resulting surface,
or alternatively, how a desired motion of the surface can be expressed in terms of curvature. Impor-
tantly, we can always perform this analysis at the origin p|df | = 0, since (as discussed at the beginning
of this section) we can always re-express M(f) with respect to any spin equivalent immersion f~ ,le.,
we can “translate” shape space so that the immersion of interest sits at the origin. These conventions
are worth understanding, since they will be adopted without further mention in later derivations—
we also remind the reader that the notation ¢ is used to indicate the time derivative ar time zero
(Section 2.1).

The helicoid is also a good picture of shape space because it captures the fact that M is a hypersur-
Jace (i.e., a codimension-1 submanifold) which, despite being infinite dimensional, behaves in many

ways like an ordinary surface in R3. Asone example we compute the shape operator on M:

Proposition 4.5.4. At regular points of M, the shape operator S : TM — TM acts on any tangent
vector & = p|df | via
S(E)=2A""Re(N),

where A is the corresponding change in A, i.e., D= o
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Proof. Recall from Proposition 4.5.3 that the unit normal is given by v = A~"/2|df|. The shape

operator is simply the derivative of the unit normal along the direction of interest. In other words,

imagine that v(¢) is the shape space normal associated with the trajectory p(t)|df|. Then

sE)=v=2 (A 21af o) _ -

dt t=0

Since o determines the immersion only up to global scale, we can normalize f such that A remains

constant with respect to ¢. Recalling that d f~ = f A (Equation 4.3) and hence |d ]; | = |AP|df], we
get

10
SE) = A2 | W+T0 | 1df1 =247 PR\

where in the final step we use the fact that ¢ +¢ = 2Re(g) for any g € H. ]

The shape operator can be used to verify a fact about shape space that becomes particularly im-
portant in the context of Willmore flow (Section 6.4), namely that the round sphere is a stable critical

point:

Theorem 4.5.1. Let f : S? — R? describe the unit sphere in R, i.e., for all x € f(S?), |x|* = 1. Then

M(f) is convex at the origin.

Proof. Let {¢"} be an orthonormal basis of Laplacian eigenfunctions on the unit sphere with corre-
sponding eigenvalues ¢, = k(k + 1); m is used to index eigenfunctions sharing the same eigenvalue.
Since the eigenbasis spans all of £%(§?,R) (spectral theorem) and since any tangent vector in 7,M
has zero mean (Proposition 4.5.2), we need only consider the action of S on each of the ¢, excluding
the constant function ¢,. Let A be the change in the similarity transformation A induced by motion

along the direction gé[:", ie., Dl= ng':‘ As discussed in Section 2.7, we can decompose das
A=a+df(Y)+bN,
where a and b are real functions and Y is a tangent vector field. From Equation 3.3, we then have
(DA = Tgrada — df (SY)+grad b.

Note that on the unit sphere N = f and we get df (§X) = dN(X) = df (X), i.e., the shape operator
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isjust S =id. Since 0= (4" = (DA)", the previous equation becomes
Y =Jgrada +grad b
and again applying Equation 3.3, we have
¢ =Re(DA) = —curl Y =div JY = div J?grad a + Wﬁ —divgrada = Aa.

Hence,

Re(/.l):a:A_lgbL" = b

k(k+1)
and since the area of the unit sphere is A = 47, we get
S(}Sm 1 ¢m
KT kk+ )y K

In other words, the normal curvature associated with the direction qSE" is just

1

K(¢Ln)= W,

since ¢E’ has unit norm with respect to the inner product on ‘H. But then curvature is positive in all

directions, since k(¢[") > O for all k, m. O

4.5.2  Nontrivial Topology

The integrability condition (D — p)A = 0 established in Section 4.3 fails when M is not simply
connected (e.g., when M is a torus), since in general not every closed 1-form is exact. At present, there
is no global characterization of the shape space M for nonsimply connected surfaces M. However, we

can continue with the local analysis initiated in Section 4.5.1, i.e., starting with a mean curvature half-
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density ¢ induced by an immersed surface, we can determine the local variations in y that preserve
integrability. In practice, this approach allows us to compute flows on surfaces of arbitrary topological
type (Section 6.4); large deformations can then be achieved by flowing towards the desired curvature
potential o. The key idea is to think of an exact 1-form as a closed 1-form with a vanishing harmonic
component. One can then translate a condition on the transformed differential By, f A to a constraint

on the induced change in the curvature potential p:

Proposition 4.5.5. Let {v;} be a basis for harmonic vector fields on an immersed surface f(M). Then
any tangent vector p|df | € TyM(f) satisfies

(6. ZE) = (200 = (. Z0) =0

for alli, where Z;:=D~'v; and Z7, Z7, Z? denote the three imaginary components of Z;. (Note that

this statement is still vacnously true whenever M has trivial ropology.)

Proof. Recall Equation 4.3, which effectively says that a transformation A is integrable as long as the
resulting differential 3 := Adf Ais exact, ie, B =d f for some new immersion /. In particular,
[ must have a vanishing harmonic component. Let {cw,} be an orthonormal basis for real-valued

harmonic 1-forms on a closed surface M, and note that H-linear combinations of these bases span all H-

valued harmonic 1-forms. To preserve integrability, it is therefore sufficient to ensure that (3, w;)) =

0 for all i. Differentiating 3 with respect to time yields
B =df +df = 20m(df ),
which means that A must satisfy ((Im(df 1), w;)) = 0, or equivalently
ImJ xwANdfA=0
M

for all i. Evaluating this integrand yields

woNf (X,JX) = 0 JX)Af UX)+ e,(X)df (X)
= df(a)i(X)X +w,(JX)]X)= df(Y.) =V

:)’I

where Y is a harmonic vector field on M and v, is its pushforward to the immersed surface. The
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induced integrability condition on Ais then just Im((/'l, v;)) = 0 for all harmonic bases u,.
To find the equivalent condition on p, consider the solutions Z; to DZ; = v;. A quaternion has
no imaginary component if its scalar product with all vectors 2 € R? is zero, hence our condition on

A becomes

0={a, [, Av;) =~ [, via, ) == [,, (DZ;a, A)
=— [ (Za, D) == [, (Za,p) = [\, (Zpa)p-

where we have used the self-adjointness of D and the fact that DI = p- In other words, o must be

orthogonal to each of the three imaginary components of each of the functions Z;. O

4.5.3 Sphere Inversions

Consider the unit sphere with center ¢ in R”. An inversion in this sphere is the map

X —cC

=%,

X —C+ 7 =
|x —c|
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i.e., relative to the center of the sphere, each vector x — ¢ gets mapped to a parallel vector of reciprocal
length; note that points on the sphere get mapped to themselves. Sphere inversions of R? are of
interest in conformal geometry processing because (i) they induce a conformal deformation of any
immersed surface, and (ii) because they preserve the Willmore energy of the surface (Section 6.4). In
practice, we may wish to “factor out” sphere inversions from a given deformation, or alternatively,
use them to reduce area distortion while preserving conformal structure (Section 6.4.4). To do so, we

must understand how sphere inversions induce a change in mean curvature half-density.

Proposition 4.5.6. Let f : M — R be a conformal immersion and consider the “double inversion”

fo (e

where here we view | and ¢ as quaternions, i.e., as points in ImHL. In other words, we first invert f
in the unit sphere centered at the origin, then invert it in a sphere centered at ¢ (which restores the
original orientation). If the sphere center c(t) varies in time, with ¢ = a € R® at time zero, then the

induced change in the curvature potential at time zero is
o =-2(a,N)
where N is the unit normal.

1

Proof. Applying the identity ditq_ =—q'4q7" (forany g € H), we get

d -1 -1 _
(T = o= ff.

Hence

df =df(af)=(fa)df.

Butsince df (¢) = E(t)df(O)/l(t) and A(0) = 1, we also have
df = df A+ df.

Together these statements imply that A=a f.

The resulting change in curvature p is determined via the relationship DA= £ (Equation 4.7). In
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particular, let » € R? be the component of 2 orthogonal to N so thata = b + (a, N)N. Then

AfNbAF(X,TX) = dfObdf(TX)—df(TX)bdf(X)
= df(X)bNdf(X)— Ndf X)bdf(X)
= df(X)(bN+Nb)df(X)
= O,

since bN = —Nb (Equation 2.2). Hence D(bf) = 0 and we find that any curvature change corre-

sponding to an inversion has the form

__dfnaN)Ndf _2N[df |
- dfr ldfP

4531 Mobius Balancing

By applying the result of Proposition 4.5.6, we can find the sphere inversion that moves a given surface
towards a desired distribution of area, up to uniform global scaling. In particular, if dA is the desired
metric, then we have |df |> = 2 d A for some conformal factor #. Since the metric of the transformed

surface is

\df 2= AMdf 2,

the change in scale factor is
i =1L log| A" = 2Re(A).

For a sphere inversion, A = af for some a € R? (Proposition 4.5.6). Hence, # = —2{a, f). The

optimal direction for & is found by solving

l;ﬁa:xl {(#,mean(u) — u)),

where | -| , is the appropriate norm, described below. In other words, we want to move away from

our current scale factors # and toward uniform factors mean(#) as quickly as possible. Letting #° :=
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u — mean(#), the objective can be expressed as

(@ ), 57N = [ 1y f)u° = (@, [,y u°f ) = {a, 0),
—

:=veR’

where we omit a constant factor 2. Since the direction a determines a change in mean curvature half-
density, the value of |4 . 1s given not by the usual Euclidean norm on R? but rather the 22 norm of

the induced function p = —2(a, N). In particular,
|a|i = 4fM(a,N)2 = (Ba,a),
where B € R¥ equals B =4 fM N ® N. We then want to solve

max (a,v) st (Ba,a)=1,
aeR?

which amounts to solving Ba = v, then normalizing 2 w.r.t. B. A discrete version of this procedure

will be applied in the context of Willmore flow (Section 6.4).

45.3.2 'The Canonical Metric

In the previous section we looked at a curvature flow that attempts to achieve a given distribution of
area distortion, via sphere inversions. In practice, how is this distribution determined? The answer
depends largely on the application, but in general there are two attractive choices: we can either try

to match the area distribution of some reference surface, or we can use the canonical metric [Hua06].

Definition 4.5.2. Let M be a closed surface of nontrivial topology (r{(M) # O), and let {co;} be an
orthonormal basis for real harmonic I-forms on M, as in Proposition 4.5.5. The canonical metric on M

is the positive-definite bilinear operator gy : TM x TM — R determined by

2G
gu (X, X) =Zwi(X)2-

The notation gy, is suggestive of the fact that the canonical metric depends only on the global
topology of M and not any particular immersion f. (Note, however, that this metric is distinct from
the uniformized metric of constant curvature.) Nonetheless, it will be convenient to have an expres-

sion for g, that can be easily evaluated for an immersed surface f:
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Proposition 4.5.7. Let g be the Riemannian metric induced by an immersion f : M — R> of a closed
surface M of genus G, and let y, : M — R denote the tangent vector field on f (M) representing the
harmonic I-form w,, i.e., w, (X)= (y,df (X)) for all X. Then

EmM="ng

where u is the positive function
1 2G 5
u= EZ il
i=1

In other words, g can be expressed as a conformal rescaling of gy via the conformal factor u.

Proof. Suppose we order the y, such that

Va1 =N X Yy

Then we have o
Z w; Z Y df (X)),

Since y,, and y,, | | are orthonormal, we have

(ka,df(X))z + (3’2k+1’df(X)>2 = |3’2k|2|df(X 2

Hence,
G 1
X) = lyalldf (X)) = 3 <Z ly; |2> |df (X
i=1
But note that |df(X)|2: (df (X),df (X)) =g(X,X). ]

In Section 6.5.4 we use the canonical metric to generate canonical immersions of complex tori.
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45.4 Boundary Conditions

N

So far we have considered the shape space M for surfaces M without boundary. Bohle and Pinkall
describe boundary conditions for which the operator D is self-adjoint and elliptic, and hence for which
Equation 4.4 still provides a meaningful notion of integrability [BP13]. In particular, let f : M — R’
be an immersion of a surface M with boundary dM. Along the boundary curve f(JM) there is a
natural coordinate frame consisting of the unit normal N, unit vector T tangent to the boundary,
and binormal B :== T x N, as depicted above. Let U be any linear combination of N, 7', and B, and
suppose we want to construct a spin transformation f~ of f such that U gets mapped to a prescribed
vector U. If 6 is the angle between U and U and w is the unit normal of their shared plane, then the

function

Ag ::(cosg—wsing)(a—b[j)

maps U to U for any pair of values a, b € R. Suppose, then, that in Equation 4.4 we adopt boundary
conditions A|;,, = A5, where a, b : IM — R are undetermined functions. The operator appearing

in this problem will be

* elliptic if U does not coincide with the directions N, and

* self-adjoint it U is perpendicular to 7.

Examples of surfaces constructed using these conditions are given in Section 6.5.3. In terms of the
conformal shape space, we have the following characterization of TM for surfaces with prescribed

binormals:

Proposition 4.5.8. Let f be a conformal immersion of a topological disk M with prescribed binormal

directions B along the boundary. Then any tangent vector pldf| € ToM(f) has zero mean.

Proof. Along the boundary, we have
):d+ﬁ§
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for real-valued time-varying functions , 3. In other words, the only admissible motion of Ais a grad-
ual rotation around the prescribed binormal direction B. Noting that D= o (Proposition 4.5.1),

we have

jM oldf? = JM DAdf|P=— fM dfnd A= fM didf)=| dfh

M
Note that 7' = df (X)) for any tangent vector X along dM; moreover, we have T x B = —N. The
integrand above therefore becomes &7 — ,BN . Butssince this quantity has no real component, o must

integrate to zero. [

For surfaces f with prescribed tangents along the boundary, we have no such constraint: the op-
erator D fails to be self-adjoint and therefore has a continuous (rather than discrete) spectrum. Asa
result (as long as the tangents T themselves can be realized) M(f') consists of the entire Hilbert space
H, i.e., we can achieve any change in mean curvature half-density whatsoever. In this sense, a disk with
prescribed tangents is the natural analog of curve with open endpoints (Section 4.2). However, not
every collection of tangents is valid: for instance, it is impossible to construct a compact surface whose

boundary tangents point in a constant direction (at some point the curve must “turn around”).
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CHAPTER S

DISCRETIZATION

In this chapter we discretize the operators used in Equation 4.5. Throughout we use sans serif charac-

ters to denote a matrix approximating a smooth linear operator—e.g., L approximates L.

5.1 Quaternionic Matrices

Matrices X € H™*" with quaternion-valued entries provide a convenient representation for the oper-
ators used in our discretization. Although standard packages for numerical linear algebra do not sup-
port quaternionic matrices, they can easily be implemented by constructing a real matrix X € Ré4mx4n

where each entry g =a + bi + cj + dk is replaced by a 4 x 4 block

[ & b —c —d ]
b a —-d ¢
c d a —b

| d — b a ]

If performance or storage are an issue, one can alternatively provide a callback routine that applies
the Hamilton product directly. Note that the real transpose XT of such a matrix corresponds to the

conjugate transpose XH of the original quaternionic matrix.
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5.2 Discrete Dirac Operator

To compute spin transformations of meshes, we need a discretization of the Dirac operator D.
Let K ={V,E,F} bea triangulation of M, and let /', € ImH, A, € H denote the values of f and A (re-
spectively) at each vertex v; € V. Then the discrete Dirac operator D € HF1XIV1 s a sparse rectangular

matrix whose nonzero entries are

1
D;; = oA (5.1)

where A, is the area of triangle t;, j is the index of any vertex v; of t;, and e; is the opposing edge vector

(see above). By convention, edge vectors are oriented counter-clockwise around each triangle.

There are a number of ways to derive D, but the simplest is perhaps to observe that in the smooth

setting DA can be written as

_d(df})
CldfP

If welet f and A be piecewise linear functions interpolating values at vertices, integrating the function

DA

DA over a triangle t, with vertices (i, ], k) gives us

At
| paare=[ ari= 3 | ara= 30— 02
Y Y e; € ¥ ¢ e;€dy
We can simplify this sum by making the substitution e, = f; — f; (and similarly for the other edges).
Noting that DA is constant in each face, we can then divide the integrated quantity by the total area
to get

1
—Z—A(eiﬂi"‘ej’{fi_ek/{k)’

which is precisely the quantity expressed by our matrix D above.
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5.3 Curvature Potential

To solve the time-independent Dirac equation (Equation 4.5) we also need to discretize the curvature
potential p, which as an operator represents scalar multiplication by a real-valued function. We pro-
ceed as above by integrating over triangles—in particular, let o be a piecewise constant function with

values p, € R in each face, and let A be piecewise linear as before. We then have

1 1
2 _
[ PP =p [ 52
(A Vjeti
over any triangle t;. For later derivations it will be convenient to express the corresponding discrete
operator R € HIFIXIVI a5

R:=PB

where P € HF X1l is a diagonal matrix with entries P; = p., and the averaging operator B € HIF X1V
amounts to a triangle-vertex incidence matrix with nonzero entries B;; = 1/3 for each vertex v; of
triangle t;. Finally, we let

A:=D-R

be the discretization of the operator A := D — p appearing in Equation 4.5.

5.4 Adjoint Matrices

For any matrix X, we use X* to denote the adjoint with respect to the £ 2 inner product. More specif-
ically, consider the diagonal mass matrices My € HIF Xl with diagonal entries equal to triangle areas
A, and My, € HIVIXIVI wich entries equal to one-third the area of triangles incident on each vertex.
Then the adjoint of any matrix X € HIFIXIV g given by MV_1XTM - In all systems we consider, the
term My, ~! appears on both the left- and right-hand side—for convenience we therefore omit this

term and adopt the notational convention

* ,__yH
X = XM,
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5.5 Dirac Equation

Consider the time-independent Dirac equation
(D—p)A=y4

introduced in Section 4.3. If we discretize this equation as simply AA = yBA the resultis a rectangular
eigenvalue problem, which is difficult to solve directly. One possibility is to make the system square
by averaging the values AA and BA from faces back to vertices, but this local averaging introduces

spurious modes in the null space that severely corrupt solutions.

We can instead obtain a square system in the following way. Consider that in the smooth setting
any solution (y, A) to the problem A = y A also yields a solution to the problem A*A = y? ). How-
ever, the opposite is not true since positive and negative eigenspaces can “mix” when we square A. In
other words, if (y, A7) and (—y, A7) are solutions to the original problem then linear combinations
of AT and A~ are eigenfunctions of A? but not of A. The solution is to use the generalized eigen-
value problem AP )= yAA, where the additional factor of A on the right-hand side now distinguishes

between eigenvalues of different sign. This observation leads to the discretization
A*AL=yB AL, (5.2)

which we solve for the smallest eigenvalue y and its corresponding eigenvector A € HIVI, Solutions

to this problem exhibit excellent agreement with smooth solutions (see Section 5.8).

For surface editing tasks we are usually interested in the eigenvalue closest to zero and do not
have to worry as much about mixing eigenspaces. In practice, then, we can often solve the problem

A*AA=yMy A, or equivalently the standard eigenvalue problem
(AV)*AVA = y A, (5.3)

where V := My, /2 and A = VA recovers the final solution. In particular, we use this problem for
the applications described in Chapter 6. Note that all matrices in Equation 5.2 and Equation 5.3
(including B*D) are sparse and symmetric, and that operators appearing on the left-hand side are
positive semi-definite. It is also easy to verify that these operators involve values only in the 1-ring of a

given vertex. Asaresult, these systems can be efficiently solved using standard numerical libraries—see
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Section 6.6 for further discussion.

5.6 Spin Transformations

After solving for the similarity transformation A, we still need to determine the final vertex posi-
tions £ . by solving d F = Adf A (Equation 4.3). In the discrete setting, this equation says that each
new edge vector &; := ]; i~ f ; should equal the edge vector e;; := f;— f; from the original mesh scaled
and rotated by A. This transformation is discretized by integrating By f A along each edge, yielding

1— 1— 1— 1—
&= —Ade A+ -Ae. L+ —/lje--/l- + —xlje--/l (5.4)
3 6 6 3

icijh ivij7 ij7hi ij7ye

At this point we can solve the linear system df = & for vertex positions f. To do so we minimize the

residual 7 :=|d f~ — &|%, which amounts to a standard Poisson problem
Af=V-é. (5.5)

Discretization of this problem yields (using notation from [DKTO08]) the standard cotangent opera-
tor Ac:=df! x dy € HIVIXIVI and divergence operator V- = di'x € HIVIXIE] built as quaternionic

matrices with purely real entries.

One might wonder why we need to solve this system in the least-squares sense—after all, in the
smooth setting our integrability condition (Equation 4.4) guarantees that Equation 4.3 has an exact
solution. As with linear discretizations of Cauchy-Riemann, however, this exactness does not carry
over to the discrete setting. Nonetheless we can empirically verify that the magnitude of the residual
r depends only on mesh resolution and vanishes under refinement (Section 5.8). More importantly,
even at a coarse level we see substantial improvement over methods that do not consider integrability,

which exhibit significant conformal distortion even under refinement (Section 5.9).
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5.7 Boundary Conditions

Suppose that U and U are unit tangent vectors that specify initial and target directions at each
boundary point, as discussed in Section 4.5.4. Let & be the angle between U and U and let w be the
unit vector orthogonal to both tangents. (In the case where U=12U,let @ =0andlet w be any unit
vector.) Then at each point along the boundary, the similarity transformation A must have the form

A= (cos%—wsin%) (a—b0)

foranya, b € R. The first term rotates from U to U and the second term describes subsequent scaling
and rotation around U.

In the discrete setting we store a pair of values @, » € R at each boundary vertex (in lieu of a value
A € H) and build the block-diagonal matrix C € R19VI¥29 VI where d V denotes the set of boundary

vertices and each block has the form

1 0
0o U~
o O |

_o lN]Z-

where U x 0» , U7 are the components of U. We also build the diagonal matrix W € HIVIXIVI where
W;, equals 1 for interior vertices and cos(&, /2)+w, sin(8, /2) for boundary vertices v,. Finally, suppose
that vertex indices are ordered such thatinterior vertices appear before boundary vertices. We can then

build the matrix

I 0
U:=W ,
0 C

where | denotes the identity. This matrix maps both interior and boundary degrees of freedom to the

appropriate values of A. Hence, Equation 5.3 becomes

(AVU)*AVUA =y A
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and the final solution is recovered by evaluating A=VUL

5.8 Validation

In this section we examine the behavior of our discrete operator D relative to known properties of
the smooth operator D, and investigate numerical convergence of solutions to the time-independent

Dirac equation (Equation 3.2).

5.8.1 %si-Conformal Error

M

Up)

Throughout this chapter we measure the quality of any map 5 : f(M) — fN (M) between immersed
surfaces in terms of the associated guasi-conformal error Q : M — R, defined as the ratio of largest
to smallest singular value of d 7. On a triangulated surface, quasi-conformal error is evaluated in each
face, as described by Sander et al. [SSGHO1]. An error of Q =1 is ideal, indicating that no shearing
and Q

takes place (only uniform scaling and rotation). We use Q to denote the mean and

mean max

maximum quasi-conformal error over the whole domain.

5.8.2  Eigenvalue Spectrum

On the unit sphere the eigenvalues of D are the integers 7 € Z, which appear with multiplicity 7 + 1
(note that 7 = —1 does not appear at all). Even on a coarse mesh of only 8k triangles, the spectrum of

our discrete operator (black dots) matches the predicted spectrum (orange dots) exceptionally well:
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-
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eigenvalue (y;)

7L . ]
8l . ]
9} . ]
10} . ]
E-————-———.———eu ]
12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

index (i)

Here we plot the first twenty distinct eigenvalues (out of 120 total) for the unit sphere; these eigenval-

ues appear with the correct multiplicity 7 + 1.

Eigenfunctions of D on the unit sphere are called the spherical spinors [Szm10], which can be used
to compute fundamental solutions to the Dirac equation for a spin-1/2 particle such as an electron
in a spherically symmetric potential (this relationship motivates the “spin equivalence” terminology).
The corresponding spin transformations f~ are called Dirac spheres, which can be used to validate our
discretization since closed-form expressions are known and have previously been visualized for small

values of 7:

Boxed plots were produced by Richter [Ric97]; color plots are generated using our method as de-

scribed in Chapter 5.



71

5.8.3 Convergence

In the discrete setting, our integrability condition (Equation 4.4) will not be satisfied exactly due to
spatial and temporal discretization error—the Poisson equation used to recover position Equation 5.5
effectively distributes this error over the domain. Even on coarse meshes, however, the resulting con-
formal distortion is slight, and converges linearly under temporal and spatial refinement. We exam-
ined the spatial convergence of our method by computing spin transformations of the unit sphere
corresponding to an arbitrary but smooth curvature potential p, measuring quasi-conformal error as

a function of mean edge length:

1

10

—_
oo
T

(slope: 0.996)

quasi-conformal error (Q)
5

107 10°
mean edge length
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Colors indicate the spatial distribution of quasi-conformal error Q. Note that D is a self-adjoint ellip-
tic operator, which means that on a compact surface it has a discrete spectrum. Hence, asking for the
smallest eigenvalue is a well-posed problem, and the observed linear convergence is precisely what we
expect from a piecewise linear discretization. In this test we used a regular triangulation of the sphere
obtained by applying regular 4-1 subdivision to a combinatorial icosahedron. However, further tests
suggest that results do not depend critically on element quality. Below we let p be a smooth bump
function on a flat circular disk, and obtain similar results for a uniform (left) and nonuniform (right)

sampling of the domain:

In the case of surfaces with nontrivial topology, we also experience discretization error due to lineariza-
tion of the infinitesimal constraints described in Section 4.5.2. In other words, a finite motion of our
surface will “step oft” the conformal shape space M. We again observe, however, that any induced

conformal distortion vanishes under temporal refinement:
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conformal distortion (Q

max )

I . . M I . . I . . M
0.05 0.10 0.20 0.50 1.00

step size (1)

In this example we run Willmore flow (Section 6.4) on a surface of genus G = 3. The initial surface is
depicted in the top left. In the top center, we visualize the failure of the transformed differential 8 =
Adf Ato close by locally integrating the surface (rather than solving the Poisson problem described in
Equation 5.5)—here we take an excessively large time step to exacerbate the effect of non-integrability.
In the top right, we show the surface recovered using our method for a more reasonable time step (salt
cubes are added for artistic effect). On the bottom we show a log-log plot of conformal distortion
versus time step size 7; the dashed line corresponds to linear convergence. For all tests performed in

this section we used the standard eigenvalue problem (Equation 5.3).

5.9 Comparison

In this section we provide a comparison with methods described in Section 1.2. In each example
we apply the procedure described in Section 6.3 to find a spin transformation that approximates the
output of an existing approach. In each case, the quasi-conformal distortion Q incurred by the spin
transformation is substantially smaller. Moreover, in contrast to previous methods, this error is ex-
pected to vanish under spatial refinement (see Section 5.8.3). Histograms plot the distribution of
quasi-conformal distortion over mesh faces.

First, following Lipman et al. [LLCOO8, Fig. 13], we examine a cross-shaped bar deformed using
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green coordinates:

original

green coordinates spin transformation

L
22 24 26 1 1.2 1.4 1.6 1.8 2 22 2.4 26

number of faces (log scale)

quasi-conformal distortion (Q)

Notice that the spin transformation preserves circles perfectly. (See [LLCOO08] for additional com-

parisons.) Next, we examine a deformation produced via a variational harmonic map [BCWGO09]:
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original variational harmonic map spin transformation
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We next examine a deformation produced via the method of consistent local frames [PDKO07]:

original consistent local frames spin transformation
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Finally, we apply a simple closed-form rotation A to the differential df of a rectangular prism in order
to obtain a bent block. In the top row we reconstruct the surface directly from the transformed differ-

ential 8= Adf ) in the bottom row we find an integrable version of A by first solving Equation 4.5
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This example emphasizes the fact that global integrability is indeed crucial when computing conformal
deformations. In other words, even though A describes a perfect similarity transformation at each

point, this local condition is not enough to preserve conformal structure globally.
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CHAPTERG

APPLICATIONS

This chapter demonstrates how a variety of basic digital geometry processing tasks can be expressed

in terms of mean curvature half-density.

6.1 Conformal Parameterization

The most traditional application of conformal maps in digital geometry processing is conformal
parameterization: given an immersed disk f/ : M — R3, find a map z : M — C that induces the
same conformal structure as f. For triangulated surfaces one typically tries to minimize conformal
distortion (in the £ sense, say) since in general there will be no piecewise linear map that perfectly

preserves conformal structure. There are already a wide variety of excellent methods for solving this
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problem (or variants of it), and at present we do not claim to improve on these methods from a nu-
merical perspective. For completeness, however, we will demonstrate how this standard task can be

easily implemented using our discrete Dirac operator.

Proposition 6.1.1. Let ¢ =a — bN for real functions a,b on M. If (D))" =0, then z :=a + bi is
holomorphic.

Proof. Applying Equation 3.3 we have

0 —curl 0 a 0
Dy=| Jgrad —S grad 0 | =| Jgrada—gradb
0 —div  2H —-b —2Hb

which means the tangential part is just (D¢)T = Jgrad a — grad b and we recover the usual Cauchy-

Riemann equations

grad b = Jgrad a.

]

We can implement this system numerically as follows. Let D € HIFIXIVI be our usual discrete

Dirac operator; let E € RHVIX2AVI be 5 block-diagonal matrix with blocks

T
0 N¥
0 N’
|0 N

and let F € RAFIX4E] pe block-diagonal with blocks

y z

0 X' X! X
X Y

0 YF Y Y/

The vector N, € R? is the normal of vertex i, and the vectors X,, Y, € R? are any orthonormal basis
for face k. The matrix E maps real degrees of freedom 4, b to quaternionic values 2 — 5N at each ver-
tex; the matrix F extracts the tangential component of (D¢))T from each face. The composite matrix

C = FDE can therefore be used to solve a least-squares problem for values z = a + b at each vertex,



79
subject to appropriate boundary conditions or norm constraints. We adopt the approach of Mullen
etal. [MTADO8], replacing their matrix L with our matrix C (otherwise, the numerical treatment is
identical). The image above demonstrates a surface parameterized using this method. Note that our
discretization cannot be the same as the standard least-squares approach [DMA02, LPRM02] since
it depends on the choice of vertex normals N, though in this preliminary investigation we do not

perform a detailed numerical comparison.

6.2  Filtering Curvature

The most straightforward way to specify a general deformation is to “paint” a function p on a
surface, altering its curvature. Filtering this function achieves a variety of effects while preserving
a conformal map to the original disk. Above we apply a low-pass filter (top right), high-pass filter
(bottom left), and unsharp mask (bottom right). Animportant feature of our approach is that, unlike
many methods for filtering surfaces, we do not have to derive special filters for triangulated surfaces—

here we simply apply standard image filters to a regular grayscale image that defines the curvature
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potential p.

Generally speaking, if / is a bump function specifying a displacement in the normal direction,
setting o = Ah produces a similar but conformal bump. This observation is based on the fact that for
a flat surface undergoing a normal deformation F(t)=f +thN, the change in Hdf attime t =0
equals A. Even for modest displacements, simple normal offsets can severely distort texture, whereas

the corresponding spin transformation prevents distortion:

normal displacement spin transformation

Note that large, high-frequency spikes in o will not be well-represented unless the domain is sufh-
ciently well-sampled. In other words, it is typically impossible to keep quasi-conformal distortion
low when making large deformations to a small number of triangles (consider adding a large amount

of curvature to a single vertex 1-ring).

6.3 Arbitrary Deformations

More generally, we can take a mesh that has been deformed arbitrarily and find a nearby spin trans-
formation. We first compute “best-fit” similarity transformations in each face. In particular, let
E,,E, be rotation matrices bringing the source and target face into a common plane, and let F be
the (orientation-preserving) map between the resulting planar triangles. If F = UY is the polar de-

composition of F (where U is the orthogonal part), then the best-fit similarity transformation is

S = y/det(Y)E; 'UE,,

i.e., the geometric average of principal stretches times the rotational component of the map between
triangles. These transformations are expressed as quaternions and averaged from faces to vertices to
get a value y, at each vertex.

In general u will not satisfy our integrability condition (Equation 4.4), but we can still find a

change in curvature that closely approximates the target surface by minimizing ||(D — R)||* with
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respect to the values p,. The optimal values can be computed locally in each face (i.e., no global solve

is necessary), and are given explicitly by

We then solve for A and the new surface / as usual.

Using this procedure, we can edit a mesh using a general-purpose 3D modeling tool and project

the result onto a nearby spin transformation, preserving the appearance of associated textures:

The original surface is shown on the left; two different spin transformations are shown in the center
and on the right where we achieve quasi-conformal distortion of Q... = 1.015. Asillustrated on the
right, we can of course explicitly modify scale while preserving conformal structure—here we ask for
a much larger head. We found that the generalized eigenvalue problem (Equation 5.2) proved more

robust for this application.

Deformations with a large amount of shear cannot be well-approximated by any conformal map,
even in the smooth setting. Here we can make a tradeoff between approximation quality and confor-

mality by interpolating between A (far left) and u (far right):
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The top row shows an extreme example: the conformal “deformation” closest to a twisted beam (top

©

- 1.25

right) is simply the original beam (top left). Similarly, local twisting of “suckers” on the starfish pro-

hibit the arms from bending conformally.

6.3.1 Boundary Prescription

We can also edit surfaces by manipulating boundary data. Forinstance, by setting o = 0 on the interior
of the domain and prescribing new tangents T along the boundary (as described in Section 5.7) we

can modify the boundary shape while preserving the surface curvature (Q =1.016):

mean

S
s
=
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Notice that some features change scale, yet angles are almost perfectly preserved as illustrated by or-
thogonal grid lines.
We can also prescribe a new boundary and new curvature. Here we lift a planar cartoon (left) into

three dimensions (middle) and recover the closest conformally equivalent shape (right):

Note that the initially squashed leg, tail, and head, recover their initial shape (Q = 1.011). In

these applications we discretize 7" and T as simply the (unit) outgoing edge vector at each boundary

vertex of the source and target mesh, respectively.

6.3.2 DPosition Constraints

So far, our treatment of boundary conditions allows one to prescribe the direction of vectors along
the boundary, or equivalently, the boundary curvature. In many applications, however, it is desirable
to enforce Dirichlet constraints on position, i.e., we want to prescribe the exact coordinates of f at
certain points. The reason we have not examined position constraints up to this point is that they are
not, in general, conformal. For instance, if one tries to conformally map a surface to the plane while
explicitly prescribing the boundary curve, the conformal distortion will be much larger that if one

allows the boundary to evolve freely:

initial surface prescribed boundary free boundary
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This behavior is unavoidable, independent of the particular numerical method used to compute the
map (here, for example, we apply standard linear conformal parameterization [DMA02, LPRMO02,
MTADOS]). However, we can seek a deformation that minimizes conformal distortion in the £
sense, as described below (one can also minimize distortion in the L*° sense [WMZ12], though it is

not immediately obvious how to apply this technique for arbitrary conformal deformations in R?).

To force the boundary curve f|5,, to match the boundary of a target surface ]A( , we find values
A5 along the boundary that (i) map initial tangents 7" to target tangents T, and (ii) make the initial
normals N parallel with target normals N, precisely as described in Section 5.7. Discretely, we ap-
proximate 7 at vertices as the average of incident edge vectors; N is any reasonable vertex normal
orthogonal to T'. Minimizing the residual ||(D — p)A||* subject to A| 5, = A yields a standard linear
least-squares problem—in particular, we build the same matrix X used for the eigenvalue problem
(Section 6.6.1) with boundary columns moved to the right-hand side. We then recover the trans-
formed surface by minimizing ||d f~ - ET/H |2 subject to f~ oy = ]A‘ 21> Amounting to a Poisson equa-

tion with fixed boundary values; here we use the usual cotangent operator (Section 6.6.2).

In the example below, the boundary of a hemisphere (left) is modified using constraints on either

tangents (center) or positions (right):

In the latter case a perfectly conformal deformation does not exist—instead, conformal distortion is
distributed over the domain. Overall we observe reasonably good preservation of conformal structure
despite distortion near the boundary. Finally, although we consider only the domain boundary d M

in this example, one could in principle enforce similar constraints for curves in the domain interior.
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6.4 Willmore Flow

This section presents a formulation of Willmore flow for triangulated surfaces that permits ex-
traordinarily large time steps and naturally preserves the quality of the input mesh. The main insight
is that numerical algorithms for Willmore flow become remarkably stable when expressed in terms
of mean curvature half-density (Section 2.4)—the practical outcome is a highly efficient algorithm
that naturally preserves texture and does not require remeshing during the flow. We also present a
new algorithm for length-preserving flow on planar curves, which provides a valuable analogy for the

surface case.

At the most basic level, a curvature flow produces successively smoother approximations of a
given piece of geometry (e.g., a curve or surface), typically by reducing a fairing energy. Such flows have
far-ranging applications in fair surface design [CG91, WW94, SK01, YB02], inpainting [CDD*04],
denoising [ Tau95, DMSB99, BS05], and biological modeling [Hel73, Can70]; they are also the cen-

tral object of study in mathematical problems such as the Willmore conjecture [PS87].

Numerical algorithms for curvature flow suffer from two principal difficulties: (I) a severe time
step restriction, which often yields unacceptably slow evolution and (II) degeneration of mesh ele-
ments, which necessitates frequent remeshing or other corrective devices. We circumvent these is-
sues by (I) using a curvature-based representation of geometry (Section 4.4), and (II) working only
with conformal transformations (Section 2.3), which naturally preserve the aspect ratio of triangles
throughout the flow. The resulting algorithm stably integrates time steps orders of magnitude larger
than previous methods, resulting in substantially faster real-world performance (Section 6.4.6). For
instance, in the example below a detailed frog flows to a round sphere in only three large, explicit

integration steps—meanwhile, the quality of the triangulation is almost perfectly preserved:
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6.4.1 Curvature Flow

There are a wide variety of surface fairing procedures for triangle meshes, which at first glance appear
to be quite disparate. Yet most fairing algorithms can be viewed as numerical minimization of either
the membrane energy E,, or the Willmore energy Ey,. To simplify discussion, we will assume that

the surface M has no boundary—in this case, membrane energy is just the surface area

E\(f) = jMa,

and Willmore energy is the squared £ 2 horm of mean curvature
Ew(f):= f H%o.
M

Minimizing E , via gradient descent leads to the popular mean curvature flow f = —HN, where the
surface evolves in the normal direction with speed proportional to curvature. Recalling that Af =

2H N (Section 2.2), we can also write mean curvature flow as

f=—iAf.
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Similarly, we can write Willmore energy as

Ey(f)= (A, A1) = 1(A%, f)-

If we ignore the dependence of A on f when taking the gradient of Eyy, we get the bi-Laplacian flow
f = _%Azf )

which approximates the fully nonlinear Willmore flow

f==VEy(f).

A bi-Laplacian term also appears in surface diffusion flow [SKO1]. Importantly, all these flows are

nonlinear PDEs since the operator A is itself a function of the immersion .

From this perspective, many algorithms for surface fairing arise from different choices of spatial
and temporal discretization: Brakke’ Surface Evolver [Bra92] minimizes membrane energy via ex-
plicit gradient descent, corresponding to mean curvature flow via the forward Euler method; Taubin3
Al i algorithm [Tau95] amounts to bi-Laplacian flow via forward Euler when A = —y; and the im-
plicit fairing method of Desbrun et al. [DMSB99] corresponds to mean curvature flow via backward
Euler. More recently, Bobenko and Schréder [BS05] and Wardetzky et al. [WBH™07] investigate
discrete Willmore flow, using a semi-implicit quasi-Newton scheme to cope with nonlinearity. Com-
mon to all these methods are time step restrictions based on the smallest edge length h—at a practical
level performance degrades rapidly as resolution increases or elements degenerate. Explicit methods
typically exhibit restrictions of O(h?) and O(h*) for mean curvature and Willmore flow, respectively
(see [OR09] for a proposal to ameliorate this restriction). Implicit integrators such as backward Euler
improve the situation, but do not guarantee unconditional stability since flows are inherently non-
linear, again due to the dependence of A on f (cf. [DMSB99]). In light of this situation, it is rather

remarkable to find a change of variables that evades this restriction.

One can also compare geometric qualities of these methods. For example, mean curvature flow
can develop sharp singularities (even in the continuous setting [CM09]) which undermine the fairing
process. Kazhdan et al. propose a modification that helps avoid degeneracy but can still produce
sharp features; in contrast, Willmore or bi-Laplacian flow tend to produce rounder, more aesthetic

shapes. In this example, for instance, we compare Kazhdan’ modified mean curvature flow (top) to
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our conformal Willmore flow (bottom):

Fourth-order flows like Willmore also permit tangent constraints at the boundary, valuable for appli-
cations like geometric modeling [CG91, WW94].

The example above also illustrates that existing flows produce unwanted conformal distortion (Q).
For example, notice that the flow of Kazhdan et al. yields a conformal map to the sphere, yet exhibits
conformal distortion at intermediate steps. This type of distortion not only degrades texture and mesh
elements, but can also exacerbate numerical stability. Simple corrective devices do not quite work as
desired. For instance, Laplacian-based tangential smoothing helps avoid degenerate elements, at the
cost of distorting texture; it also suffers from the same stability issues as curvature flow itself [YB02].

In the example below we apply curvature flow to a bump representative of small surface detail (left):

Standard fairing (center) distorts texture, even when tangential smoothing is applied (here we apply
the method of Yoshizawa & Belyaev [2002] to the flow of Desbrun et al. [1999]). Conformal fair-
ing (right) nicely preserves texture while producing a pleasing geometric shape. Similarly, adaptive
remeshing helps maintain element quality [dGV08], but neither prevents texture distortion nor im-

proves asymptotic stability.



89
Another tempting idea is to project an existing flow onto the nearest angle-preserving deforma-
tion, yet in the discrete case this approach is far too rigid since neighboring triangles are forced to have
identical scale. In the following example, for example, fairing an initial mesh (left) via standard meth-

ods such as implicit mean curvature flow (center) produces significant conformal distortion (g¢):

Projecting onto an angle-preserving deformation (right) does not help, since in the discrete case such
deformations are rigid and one simply recovers the initial surface. Here we apply the method of
Bouaziz et al. [BDS'12] which very neatly restores the original surface—thereby reverting any fair-

ing that may have occurred.

Conformal flows of the merric (e.g., Yamabe) have proven valuable for applications like surface
parameterization—see [GZLY11] for further discussion. However, these methods work only with
intrinsic (Gaussian) curvature which is insufficient to determine the geometry of an immersed surface.
To date such flows have not been used for surface fairing. To our knowledge, ours is the first method

for extrinsic conformal flow, making it naturally suited to surfaces embedded in R3.

Finally, one should be careful to note that our goal is 7oz to develop integrators for the standard
PDE:s describing curvature flow. Classical flows are inherently non-conformal, which means that even
an excellent numerical approximation will not provide the kinds of practical benefits we seek. Instead,
our goal is to develop new PDEs for curvature flow that provide equal utility from an application
perspective, but are far easier to integrate at the numerical level. (As a result, one should not attempt
to use a pointwise comparison of our results with classical solutions as a figure of merit—doing so

would most certainly be an “apples to oranges” comparison!)
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6.4.2 Curvature Flow in Curvature Space

Our main point of departure from existing algorithms is that we manipulate curvature directly—for
now, let # denote a generic curvature variable equal to either « for curves or u for surfaces. Fairness

is measured via the quadratic energy

E(u)=||ull,

leading to the simple gradient flow

i=—2u. (6.1)

However, we must be careful that curvature remains integrable as it evolves. Asdiscussed in Chapter 4,
this seemingly difficult condition can be expressed as a set of linear constraints {(#, c;)) = O for some
collection of easily computed constraint functions ¢;. In practice, we integrate Equation 6.1 using the
forward Euler scheme

Wt =yk —2ry* (6.2)

for some fixed time step T > 0; constraints are enforced by building an orthonormal basis {¢,} via the
Gram-Schmidt process and augmenting the initial flow direction v := —2u via v < v — > {(v,¢)) ;.
To recover the final geometry we integrate curvature to get tangents, then integrate tangents to get

positions, as discussed in Sections 6.4.3 and 6.4.4. The overall procedure is outlined in the following

table:

STEP | DESCRIPTION CURVE SURFACE
I. | Evaluate curvature. K« %(N, Af) H«~ %(N, Af)

IL | Pick a desired flow direction. | & «— —VEq(«x) p——=VEy(p)
IIL | Build a constraint basis. ORTHOGONALIZE {1, 7, f’} | ORTHOGONALIZE {1, N*?*, Z*"*}
IV. | Project flow onto constraints. | &« & — >, (£, )¢ p—p—2u o eNe

V. | Take an explicit Euler step. K< K+ TK p—p+p
VL | Recover tangents. T « INTEGRATE & SOLVE (D — p)A=yA4, T« 2ATA

VIIL. | Recover positions. SoLvE Af~ =v.T SoLVE Af~ =Vv.T

Our formulation has a number of valuable consequences. First, since only curvatures are pre-
scribed, we are free to reconstruct positions that preserve lengths or angles—in a sense we are free to
take advantage of reparameterization symmetry (Chapter 4) to obtain more desirable numerical prop-
erties. Unlike constraint- or penalty-based methods, these quantities are preserved by construction.

Second, this scheme leads to greatly improved stability, chiefly because the flow we want to inte-

grate (Equation 6.1) involves no spatial derivatives. Therefore, our one and only stability criterion is
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that |1—27| < 1, orequivalently, 7 < 1. The addition of constraints only improves stability, since pro-
jection onto the constraint set 7educes the norm of the speed function. Experiments agree perfectly

with this analysis—setting 7 just above 1 yields an unstable flow; setting it just below 1 produces a

stable flow, independent of mesh quality or resolution:

Here we apply our algorithm for Willmore flow to a highly irregular mesh (left) with minimum edge
length less than 0.2% of the mesh diameter. The top row depicts the first four steps of an stable flow
with 7 = 1 — ¢; the bottom row depicts an unstable flow with 7 = 1+ ¢, where ¢ = 3 x 1071 As
predicted, the flow remains stable when ¢ < 1, despite the presence of near-degenerate elements. One
can also observe that curvature in the unstable flow exhibits oscillatory behavior characteristic of the

forward Euler method.

6.4.2.1 Filtered Flows

The flow # = —2u gives an appearance different from traditional smoothing, since we take the gra-
dient of E with respect to a nonstandard metric (namely, the #? norm on curvature rather than

position). In particular, large features shrink at the same rate as small bumps:

Proposition 6.4.1. Consider an immersed surface [ : M — R3, which we can express locally as a
time-varying beight function h(t) over each tangent plane. Integrating the flow p = —2H induces an

exponential scaling down of beight over time, namely,
h(t)=e"?h(0).
Proof. In asufficiently small ball around any point p € M we can write the height function as

hy(q)=(N(p) f(q) = f(p))-



92

Noting that N(p) and f(p) are constant with respect to ¢, we have
Ab, = (N(p),Af) =2H(N(p),N).

In particular, when g = p we get

H(p)=3(Ab,)(p)-

Now consider an evolution of the surface that looks like » b= —h » atsome point p, i.e., an exponen-

tial scaling down of height over the tangent plane. Then differentiating H(p) in time yields

H(p)=X(Ah,)(p)=—3(Dh,)p)=—3H(p),

i.e., the change in A/ must be proportional to H itself. This evolution is the same as the evolution
o= —%H , since a small normal deformation f = f +¢hN over a plane is isometric (hence conformal)

up to first order. In particular, d N =0 for a plane, hence

§(u,0) = (df (n),df (v)) = g(u,0) + e(dh(u){N,df (v)) +dh(v)(N,df (1)) + O(?),

but (N,df (#)) =0 forall . O

This observation can be confirmed experimentally—in this example, gradient flow with respect to
curvature scales down features at all scales uniformly (center left), whereas filtering out low-frequency

components of the flow (center right) closely approximates standard position-based Willmore flow

(right):

To achieve this kind of behavior, one can simply filter the flow direction v—in particular, we use the
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spectral filter

v v—(id—oA¥) o,

which damps low-frequency motion by subtracting a regularized version of v from itself. The param-
eters 0 > 0 and k € Z control the degree of regularization and the filter shape, respectively; evaluat-
ing the filter amounts to solving a scalar Poisson equation (see Taubin [Tau95] for a more thorough
discussion of this approach to filtering). For k = 2 this flow closely approximates traditional position-

based Willmore flow, since A~2 approximates the norm on curvature induced by the £ 2 norm on

position. The following example demonstrates the effect of parameters k = 0,1, 3 (from left to right):

6.4.3 Isometric Curve Flows

Let f : [0,L] — R? an isometrically immersed curve with unit tangents 7' = f” and curvature nor-
mal kN = T, as described in Section 4.2. A natural fairing energy is just the squared £ 2 norm of

curvature

L
Few)s= | wdt =P

(Note that this energy would be rather difficult to express in terms of the positions f, involving second
derivatives and a high degree of nonlinearity.) For open curves, the resulting flow & = —2« can be
integrated without modification. In the case of a closed regular curve, however, & must satisfy the

linear conditions derived in Section 4.2, namely

(&, 1) = (&, /7N = (&, /7)) =0.
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f;—l i+1

To numerically integrate this flow, we discretize the curve f as a collection of vertex coordinates
fise-es [ € R?, tangents T, = f; — f; associated with edges, and curvatures «; € R associated with
vertices. On each iteration we apply the forward Euler method to the curvature values «;, enforcing
constraints as described in Section 6.4.2. Letting £;; = |T;;| denote edge lengths on the initial curve,

we then recover tangents by computing the cumulative sums
k
_ 1
0, =0,+ 2 :E(gi—l,i + 40K
i=1

New tangent vectors are then given by Tij ={}(cost;,sin G,).

In the smooth setting, length preservation follows from our isometry assumption. Numerically,
however, we experience a small amount of discretization error, which we distribute uniformly by
solving the optimization problem min 7 |d f~ — i‘|2 for the vertex positions f~ that best agree with our
desired tangents T. Equivalently, we can solve the linear Poisson problem A ]; =V . T. To recover
positions in the discrete setting we solve the Poisson equation L f~ = b where L is an m X m matrix
with off-diagonal entries L; = —1/¢;; for any edge (i, j) and diagonal entries ; = 1/¢;_;; +1/{; ;.
The right-hand side & is the discrete divergence of the new tangent field, given by &, = fi,i i/l —

T._:/l:_y; ateach vertex. (Note that this system can be solved as a pair of scalar Poisson equations

with either x- or y-components of T on the right-hand side.)

As demonstrated below, any remaining length distortion resulting from discretization is quite

small even for large time steps, and converges quadratically under temporal refinement:
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% length distortion (max)

0.1
001
0.001

1074

1073

L n n L n n n P L n n L n n n P L
0.002 0.005 0.010 0.020 0.050 0.100 0.200
step size (7)

In this case we start with a polygon consisting of 200 edges (top left). Even after taking a large time
step, the failure to close is slight (top center) and yields little length distortion when projected onto the
nearest closed curve (top right). On the bottom we show a log-log plot of worst edge length distortion
as a function of step size; the dashed line represents quadratic convergence. Visually, curves produced
by our algorithm do notstretch as they evolve, as emphasized by the chain links used to represent curve

edges in the following example:
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Moreover, curves remain regular throughout the flow, ultimately flowing to the smoothest immer-

sion of equal turning number:
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In contrast, 1D mean curvature low f = —2«N develops sharp cusps that can be a source of numeri-
cal instability. Finally, the algorithm we describe is quite efficient, and remarkably stable: on a curve
of 2k vertices, each integration step requires about 1.4ms of computation time (using a 2.4 GHz Core
2 Duo processor); a global minimum of the curvature energy E -~ can be found in about six integration

steps.

6.4.4 Conformal Surface Flows

Our treatment of surfaces closely parallels the curve case, except that instead of quantities f, 7', and
x, we now work with the analogous quantities f, A, and o, respectively. The immersion f : M — R3
again describes the position of our surface in space; the map A : M — H describes how tangents
change from one surface to the next; likewise the map p : M — R describes a change in curvature
(Section 4.3).

The key motivation for working with this setup is that Willmore energy now amounts to a simple

quadratic function of mean curvature half-density:

EW<M>=jMH2|df|2 - fM 2 = [l

Gradient flow with respect to u is then quite simply & = —2u, or equivalently, o = —H (see Propo-

sition 6.4.1). We again apply the forward Euler scheme
P = ok 20 HX,

where H* is the mean curvature of the current mesh computed via the cotan operator [DMSB99].
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In practice we express p with respect to the previous surface in the flow, hence pk = 0and we simply
solve the smallest eigenvalue problem (D + tH™)A = y A as described in Section 6.6. We solve these
equations as described in Chapter 5, except that for convenience we now specify p via a single value
at each vertex—Section 6.6 describes a simple facewise construction of the corresponding matrix.
For topological disks the flow o = —H can be integrated without further modification. Here,
for instance, running conformal Willmore flow on a rhino head shrinks mean curvature as quickly as

possible:

For more general surfaces, however, our flow direction p|df| must be projected onto the tangent
space TM of the conformal shape space M. In other words, it must satisfy the linear constraints

derived in Section 4.5, which we summarize here:

+ Total Curvature: As with curves, total curvature must remain constant, which is enforced via

the constraint ((p,1)) =0

* Exactness: For non-simply connected surfaces (e.g., a torus or annulus) we must add the con-
straint (0, Z7)) = (e, 27) = {(p,Z7)) = 0 for Z; solutions to DZ; = u;, where {u;} is a basis

for harmonic vector fields on the surface.

* Inversion: sphere inversions preserve both Willmore energy and conformal structure, but may
produce area distortion [Bla29]. To avoid inversions, we apply the constraint ((p,N*)) =

(o, N”)) = {(p, N?)) =0, where N*?>* are the scalar components of the unit normal N.

* Mébius Balancing (optional): We can also use sphere inversions (Section 4.5.3) to reduce area
distortion, in particular by adding (2, N) to p, where a € R is computed as described in Sec-

tion 6.4.5.

Opverall we have a constraint basis

{1, N*7%, 250"
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the corresponding constraints are enforced as described in Section 6.4.2. On a triangulated surface
N is the vector of vertex normals; the functions Z; are computed as described in Section 6.4.5. Note
that Mébius balancing must be applied after the sphere inversion constraint and before any remaining
constraints.
The following example demonstrates a flow on a surface of nontrivial topology with and without

the exactness constraint—notice that this constraint is crucial not only for preserving texture, but also

for preventing degenerate geometry:

initial surface without constraint with constraint

The next example illustrates scale artifacts resulting from unnecessary sphere inversions (top), and the

improved area distribution resulting from Mobius balancing (bottom):

6.4.5 Implementation

6.4.5.1 Exactness

€
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On a triangulated surface, we compute the functions Z; € HIV! as follows:
L. Pick 2G random discrete 1-forms o, € RI71.
II. Extract harmonic components «w; via Hodge decomposition.
III. Orthogonalize {c;} via the Gram-Schmidt process.
IV. Construct corresponding vector fields v; € ImHI*.
V. Solve XZ; = v, for each harmonic vector field v;.

For Hodge decomposition, we use the method of Desbrun et al. [DKTO05]. The matrix X is given in
Section 6.6, letting o = 0. To get the vector fields v;, we construct appropriate vectors v € ImH in
each triangle. Let e; and e, be two edge vectors (see inset), and let a)il, a)iz be the corresponding 1-form
values. Then v must satisfy (v,e;) = a)il and (v,e,) = a)iz. If we express v as a linear combination

vV =ae; +a,e,, we geta 2 X 2 system

for the coefficients 2,4, € R.

6.4.5.2 Mobius Balancing

On a mesh with vertex areas V,, desired vertex areas Vi*, and vertex normals N, the balancing direction

a is computed as follows:
I. Compute scale factors #; «— % log(V,/V;) at each vertex.
II. Remove the mean via #° « u; — Z!g V.”./Z!g V.
III. Compute the vector v «— >3V, fiu’.
IV. Solve Ba =v where B=43, VNN .

V. Normalize 2 < a/(Ba,a)'/.
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6.4.6 Comparison

We compared our method to a wide variety of existing algorithms for surface fairing in terms of nu-
merical stability and preservation of conformal structure. All methods were carefully optimized and
run on the same 2.4 GHz Intel Core 2 Duo machine; for each method we used appropriate solvers
from the SuiteSparse package [CDHRO08], re-using both symbolic and numeric factorizations wher-

ever possible. See Section 6.6 for further details about our implementation.

The figure below shows the result of running each flow for 10s of CPU time, using the maxi-
mum stable time step for each method. Here we use an isotropic mesh with near-uniform edge
length [BK04], which represents a best-case scenario for traditional methods. Algorithms used were
(B) explicit mean curvature flow [Bra92], (C) explicit bi-Laplacian flow [ Tau95] using the cotangent
Laplacian; (D) implicit discrete Willmore flow [BS05], (E) implicit modified mean curvature flow
[KSBC12], (F) implicit volume-controlled mean curvature flow [EPT*07], (G) implicit mean curva-
ture flow [DMSB99], (H) implicit bi-Laplacian flow via backward Euler, (1) implicit Willmore flow
based on isometric bending [WBH*07], and (J) our conformal fairing flow. Notice that many of
these methods do not make much progress, despite being very cheap to evaluate for an individual
time step. Most methods also exhibit significant conformal distortion, especially in regions of high
curvature. Notable exceptions are our method and the modified mean curvature flow of Kazhdan et
al., both of which rapidly flow to the unit sphere. As noted before, however, the latter produces con-
formal distortion and sharp geometric features during intermediate steps; moreover, it applies only

to surfaces with spherical topology.

6660
sk

F G
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6.5 Special Surfaces

A numerical discretization of spin transformations allows us to compute special surfaces that are dif-
ficult or impossible to construct via closed-form expressions. Apart from a simple aesthetic appeal,
these surfaces provide interesting visualizations of physical phenomena (Section 6.5.1), and can be

valuable in domains such as geometric design or computational architecture (Section 6.5.3).

6.5.1 Dirac Spheres

In Section 5.8.2 we computed Dirac spheres corresponding to the eigenvalue y = 1 to numerically
validate our discretization of Equation 3.2. Here we visualize for the first time several Dirac spheres

corresponding to higher energy states:

Note that when p =0 (as in these examples) one must be careful to remove the constant component
from each solution eigenvector, since constant functions are in the null space of the system D*DA =

}/B*D/L
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In the examples above we picked arbitrary solutions A from several eigenspaces. To get a more
structured depiction of the Dirac spheres, we can start with a canonical expression for the spherical
spinors. In particular, let (6, ¢) € [0, r] x [0,27) be polar coordinates on the unit sphere. Then for

. . . . _ 1
any nonzero integer & and integer —|«| < s < |«|, the spherical spinors 2, (6, ) for 4 =54 3 can

be expressed as quaternionic functions

Q, m(0,¢):=Re¢, —Im¢,i —Regh,j +Im¢,k,

where ¢, ¢, are complex-valued functions given by

1
K—u+>5
b1 = sgn(—=)W 532 Yo, u-1/2(0, ),
1
K+ut+>
¢, = Vﬁyz,y—1/2(e>¢)>

with £ := |k + %| - % and Y, . is the complex-valued function

[2¢ {—m)! ‘
Y[,m(ﬁ, @)= 2 4: ! E[ " m;!P[’m(cos Q)el"ﬂ#’.

Here Py (&) are the associated Legendre functions of the first kind, given by

C_l)m o df+m
TR A=

P&m(g)::

Letting A =, . and reconstructing the corresponding spin transformations f yields the following
table of conformally immersed surfaces; each row effectively represents a different energy level for an

orbiting hydrogen electron:
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Note that because of symmetry, we plot only surfaces corresponding to ¢ > 0; the right half of the

image shows a cross section of each surface.

6.5.2 Dirac Disks

A similar experiment can be repeated when M is a topological disk and the immersion f takes M to
a flat circular disk in the plane. Here we fix the direction of the binormals along M (i.c., B= B) by

applying boundary conditions described in Section 5.7):
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6.5.3 Constant Mean Curvature

Surfaces of constant mean curvature (CMC) are well-studied in surface theory; physically they can
be thought of as describing the geometry of soap films. For instance, a soap film attached to a fixed
boundary yields a minimal surface (H = 0); a simply connected soap film without boundary will
buckle into a perfectly round sphere (H > 0).

Traditional numerical schemes for computing CMC surface proceed by iteratively minimizing
an appropriate energy functional, e.g., via gradient descent. In contrast, the scheme described in Sec-
tion 6.3.1 allows one to compute minimal surfaces “instantly”, i.e., by solving a single eigenvalue prob-
lem. More explicitly, let M be a topological disk, and let f : M — R3 be any immersion into the plane,
i.e., /(M) C R? C R’. Then setting the curvature potential to o = 0 while prescribing new boundary
directions (e.g., TorB ) results in a surface of zero mean curvature half-density, and hence, zero mean
— 1.054):

curvature (Q, ...
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We can also construct CMC surfaces via a completely different procedure: start with a curved sur-
face and flow to its Willmore minimizer (Section 6.4). Suppose that M is a topological disk with
fixed tangents along the boundary. Then the Dirac operator D has a continuous spectrum and we
can therefore achieve any change whatsoever in mean curvature half-density. In particular, we can
remove the initial curvature (by setting o = —H) to again obtain a minimal surface. Empirically, this
approach also appears to work for nonsimply connected surfaces exhibiting a high degree of symmetry

(Qinean = 1.070):

As with boundary prescription, this surface was generated by solving a single eigenvalue problem,

i.e., we did not need to run an iterative flow. Alternatively, by prescribing new binormals along the
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boundary we obtain a CMC surface of nonzero curvature.

Proposition 6.5.1. Ler f be a conformally immersed disk with fixed binormals along the boundary.

Then [ is a stationary point of Willmore flow if and only if it has constant mean curvature.

Proof. The steepest descent direction on Willmore energy is found by projecting the unconstrained
gradient direction p|df| = —H]|df| onto the tangent space Ty M (Section 6.4). Moreover, from
Proposition 4.5.8 we know that 7, M consists of half-densities of mean zero whenever M is a topo-
logical disk with fixed binormals. But then f is a stationary point if and only if ¢ —mean(p) =0, i.e.,
if at every point

H = mean(H).
O

In this example, for instance, we prescribe oscillating binormals B along the boundary of a hemi-

sphere:

In addition to being efficient to compute, a notable fact about this approach is that (unlike existing
methods for computing CMC surfaces) the conformal structure of the initial domain is naturally pre-
served, as illustrated by the circular pattern in the example above. This feature is valuable both from
a numerical perspective (no remeshing is required) as well as an aesthetic/design perspective, e.g., in

architectural applications one often seeks repeating patterns of similarly shaped elements [PAHKO07].

6.5.4 Complex Tori

The Willmore problem asks the question: how smooth can one make a surface of a given genus? More

precisely, what is the smallest Willmore energy Ey, among all immersions f of a given surface M? Itis
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a widely held belief that the global minimizer of Willmore energy among all immersions of the torus
T2 is the Clifford torus, exhibiting a Willmore energy of 272 [Wil65]. However, little is known about
so-called constrained Willmore surfaces, i.e., minimizers of Willmore energy within a given conformal
class. The algorithm described in Section 6.4 allows us to examine this question experimentally. In
particular, by flowing a torus with a non-rectangular conformal structure to its minimizer we find a

surface with an appearance quite different from the Clifford torus:

Notably, this torus appears “twisted”, owing to the fact that the generating lattice of its conformal

structure is not rectangular. In the future we hope to continue such experiments in order to find the
“smoothest complex tori” in each class, providing a concrete visualization of the often abstract notion

of global conformal structure.

6.6 Numerics and Performance

The main computational cost when computing conformal deformations is solving the eigenvalue
problem
(D—p)A=yA

for the smallest eigenvalue y and corresponding eigenvector A.

A fairly common misconception in geometry processing is that eigenvalue problems are expensive
to solve, or require sophisticated numerical libraries (like ARPACK [LSY97]). In reality, however, the
cost of finding the smallest eigenvalue/eigenvector pair is nearly identical to the cost of solving a single

linear system; moreover, it can be found via a very simple algorithm: In our case X is the matrix used

Algorithm 1 The Inverse Power Method
Require: Initial guess Aq.
I: fori=1,...,kdo

2. Solve XA =A_,
3 A< A/lAll
4: end for
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in the standard eigenvalue problem (Equation 5.3), which is symmetric positive-semidefinite with
roughly 7 nonzeros in each row/column. In each step of the inverse power method we must solve
the same linear system, with different data on the right-hand side. We can therefore prefactor X and
re-use this factorization in each iteration of the power method; the cost of applying backsubstitution
in subsequent iterations is almost negligible in comparison. Moreover, for the geometry processing

problems we are interested in solving this method typically converges to an acceptable solution after

very few iterations (one or two), as discussed below.

The following figures depict two tests: bumpy, where we add random bumps to a sphere, and
moon, where we paint a face on a disk. Starting from a random initial guess the inverse power method

tends to produce acceptable results after only a few iterations:

reference

Bumpy Sphere

mean

quasi-conformal error

1 15 2 25 3 35 4
number of power iterations (k)

I'eference Man in the Moon

—— max
— mean

quasi-conformal error

number of power iterations (k)

A more intelligent initial guess sets A = 1, which corresponds to the identity transformation. In

this case we obtain a result virtually indistinguishable from the reference solution after only a single

iteration:
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Bumpy Sphere w Initial Guess

k=3 k=4 | reference

quasi-conformal error

1 15 2 25 3 35 4
number of power iterations (k)

refe rence | Man in the Moon w Intial Guess

—

max
mean

125

quasi-conformal error

1 15 B 25 3 35 4
number of power iterations (k)

In comparison, matrix factorization followed by a single application of backsubstitution (which re-
quires an identical amount of computation) is currently among the most efficient ways to solve linear
systems for geometry processing [BBKO0S].

In our experiments, we use the routines implemented in CHOLMOD [CDHRO8] to perform
sparse Cholesky factorization. On a 2.4 GHz Core 2 Duo laptop, a single iteration of the power
method takes 0.3 seconds on a mesh with 8k faces (bumpy) and 1.26 seconds on a mesh with 33k faces

(moon); this timing includes additional overhead due to calling CHOLMOD from within MATLAB.

6.6.1 Building the Eigenvalue System

In practice it is often convenient to build the matrix X directly, rather than building it up from con-
stituent matrices as described in Section 5.5. The following algorithm provides a simple facewise con-

struction of X: Here k is the index of the current triangle, A, is its area, and p, is the desired change

Algorithm 2 Facewise Construction of Eigenvalue System
. fork=1,...,|F|do
1

2: a<«— —

4__,4k

3 be—pl6

4 ce—p?A/9

5. forall (i,i) € {1,2,3} x {1,2,3} do
6 X+ =aee;+blej—e)+c

7. end for
8: end for

in mean curvature half-density. The inner loop visits all ordered pairs of edges e, e,, e; of the current
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face. In this version of the algorithm we assume that p is expressed as a single value per face. If one
instead wishes to associate p with vertices (as is done for Willmore flow), then Line 6 can be replaced

with the expression
ee. 1 A

j K
X+ = —m + g(Piej —pie)+ 5 Pifi

Listing 6.1 provides an implementation of this algorithm in C++ (with p stored on faces).

Listing 6.1: Facewise Construction of Eigenvalue System in C++

void buildEigenvalueProblem( const vector<Face>& faces,
const vector<Vertex>& vertices,
QuaternionSparseMatrix& E )

// allocate a sparse |V|x|V]| matrix
int nV = vertices.size();
E.resize( nV, nV );

// visit each face
for( size_t k = 0; k < faces.size(); k++ )
{
double A
double rho

facelk].area();
face[k].rho;

// compute coefficients
double a = -1. / (4.%A);
double b = rho / 6.;
double ¢ = A*rho*rho / 9.;

// get vertex indices
int I[3] =
{
faces[k].vertex[0],
faces[k].vertex[1],
faces[k].vertex[2]
};

// compute edges across from each vertex
Quaternion e[3];
for( int i = 0; i < 3; i++ )
{
e[i] = vertices[ I[ (i+2) % 3 11 -
vertices[ I[ (i+1) % 3 11 ;

// increment matrix entry for each ordered pair of vertices
for( int i = 0; i < 3; i++ )

for( int j 0; j < 3; j++ )

{

E(I[i],I[j]) += axel[il*e[j] + Db*(el[jl-elil) + c;
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6.6.2 Building the Poisson Problem

The Poisson problem Af = V - & is solved using standard linear finite element discretization of the

Laplacian [Mac49], which can be expressed using the well-known cotangent formula:

(fy=5 3 (oras 4ot B~ )

JeN ()

where (Lf); denotes the weak Laplacian of f at vertex i, N(i) is the set of vertices adjacent to vertex i,

and ¢; and f3; are the two angles opposite edge (i, })-
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CHAPTER 7

CONCLUSION

We have presented a starting point for developing general-purpose conformal geometry processing
algorithms, but much work remains to be done. Most notably, our present discretization of spin
transformations corresponds to a piecewise linear finite element approximation that does not pre-
serve essential structures of the smooth theory—in the future, it may be useful to develop a truly “dis-
crete” theory that captures phenomena like conformal equivalence classes, spin equivalence classes,
etc., at the discrete level, 4 la Springborn et al. [SSP08]. Even with the current discretization, how-
ever, there are many interesting avenues to pursue. In particular, canonical visualizations of complex
tori (as described in Section 6.5.4) could be obtained by applying conformal Willmore flow to Hopf
tori [Pin85]; one is also tempted to produce a conformal sphere eversion in the vein of Francis et
al. [FSH98]. From a more practical perspective, the vector analysis in Section 3.4 suggests an inter-
esting approach to constructing discrete differential operators for various surface descriptions, since
one can simply discretize the Dirac operator D and obtain most other differential operators via oper-
ations that are computationally quite trivial (e.g., taking the real part, multiplying by normals, etc.).
This approach may provide a flexible framework for developing operators on more general polygo-
nal surfaces, point clouds, higher-order surface descriptions, etc. Finally, the extraordinary stability
exhibited by the curvature-space approach to Willmore flow (Section 6.4) may prove especially valu-
able in computer graphics, where meshes come from many disparate sources (e.g., simulation, artist
modeling, etc.) that do not often provide guarantees on mesh quality. Note that although we have
developed this machinery in the context of Willmore flow, it could be applied to other flows of inter-
est by simply changing the flow direction . A promising avenue for future work is a more thorough

investigation of curvature-based filtering, as already hinted at in Sections 6.2 and 6.4.2.1.
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NOMENCLATURE

A Dirac operator with potential, page 65

A total area of an immersed surface, page 10

X* adjoint of matrix X, page 65

X pushforward of vector field X by df, page 9

A discrete Dirac operator with potential, page 65

B vertex-face averaging operator, page 65

g conjugate of g, page 19

1 constant vector/function, page 8

V Levi-Civita connection on immersed surface, page 12
V Levi-Civita connection on ambient space, page 12

X cross product on R?, page 8

XM matrix conjugate transpose, page 63

curl curl operator, page 12

D quaternionic Dirac operator, page 25

|df|* volume form induced by a conformal immersion £, page 21
A Laplace-Beltrami operator, page 12

df differential of the immersion f, page 9

div  divergence operator, page 12
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|df| length element induced by £, page 17
dN Weingarten map, page 10

D discrete Dirac operator, page 64

E, membrane energy, page 86

Eq curve fairing energy, page 93

e; edge opposite vertex i, page 64

e; edge from vertex i to vertex j, page 67
Ey, Willmore energy, page 86

f immersion, page 9

ﬁ Hodge star on 2-forms induced by £, page 21
G topological genus, page 60

¢ induced Riemannian metric, page 9
gy canonical metric on M, page 59
grad gradient operator, page 12

H mean curvature, page 11

H quaternions, page 18

I first fundamental form, page 9

id identity map, page 8

I second fundamental form, page 10
Im(g) imaginary part of g, page 19
ImH imaginary quaternions, page 18

{(,)) &2 inner product, page 8
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(-,-) Euclidean inner product, page 8

J complex structure, page 15

K Gaussian curvature, page 11

« normal curvature, page 11

K maximum principal curvature, page 11
K, minimum principal curvature, page 11
L total length of a curve, page 41

A local similarity transformation of differential, page 44
M domain of immersion, page 9

My triangle mass matrix, page 65

4 mean curvature half-density, page 17
My, vertex mass matrix, page 65

N unit normal, page 10

||| £? norm, page 8

|-| Euclidean norm, page 8

v unit normal on conformal shape space, page 51
JdM boundary of M, page 9

P diagonal matrix of p values, page 65

Q quasi-conformal error, page 69

Re(g) real part of ¢, page 19

p curvature potential, page 48

R discrete curvature potential, page 65
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S shape operator, page 10

S shape operator on shape space, page 52

o volume form induced by a general immersion, page 10
T unit tangent, page 41

T time step, page 90

TM tangent bundle of M, page 9

T tangent part of an immersed vector field, page 10
XT matrix transpose, page 63

v harmonic vector field on f (M), page 55

@' spatial derivative of the quantity ¢, page 8

V' square root of vertex mass matrix, page 66

v; vertex i, page 64

A wedge product of differential 1-forms, page 21
X, maximum principal direction, page 11

X, minimum principal direction, page 11

Z harmonic constraint function, page 55

A, triangle area, page 64

t; triangle i, page 64
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