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Chapter 6

Dynamics and trapping of atoms
near dielectric surfaces

6.1 Introduction

In this section we investigate the center-of-mass dynamics as well as quantum electrodynamics of

single atoms located in close proximity to dielectric surfaces, including in the presence of gravita-

tional, optical dipole, and Casimir-Polder potentials, as well as the stochastic nature of the atom

cloud distribution, photon statistics, and atom-photon scattering processes. Interesting insights

can be gained from these Monte-Carlo simulations, implemented for the specific system of a silica

microtoroidal resonator and cesium atoms, revealing behaviors that are validated by experiments

discussed in Chapter 5. Moreover, these provide useful tools in designing optical traps for neutral

atoms in close proximity to dielectric boundaries as well as loading schemes, with the specific exam-

ple of using real-time detection to load atoms into an orbiting optical dipole trap being discussed.

This chapter also discusses schemes of trapping neutral atoms near a dielectric surfaces, with specific

examples given for a microtoroidal cavity based system, such as an optical tweezer trap, orbiting

evanescent far off resonant trap (eFORT), or toroid-nanofiber trap.

In Sec. 6.2, we discuss the dynamics of a specific system of falling cesium atom cloud near a

silica microtoroidal resonator, which has been experimentally realized, as discussed in Chapter 5.

While in the context of this specific system, many aspects of this simulation are extendable to the

general case of single neutral atoms near dielectric surfaces. This includes the effects of dielectric

surfaces on the internal states of the atom, such as modifications of atomic spontaneous decay rate

and surface-induced shifting atom’s electronic energy levels due to the Casimir-Polder effect. In

Sec. 6.3, we discuss various atom trapping schemes.
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6.2 Simulations of atomic trajectories near a dielectric sur-

face

This section is largely based on ref. [228]. Reference [228] refers to the then current literature in

2011 at the time of publication. The work described in this section (Sec. 6.2) is a result of a team

collaboration of three authors of the manuscript, whose contributions I would like to acknowledge

here. Nate Stern made major contributions in the theoretical formulations discussed in this section,

especially in the calculation of atom-surface effects such as the Casimir-Polder potential, and played

a major role in the writing of the manuscript. My major contributions are in the design, creation and

programming of the simulations performed in this manuscript, development of ideas and theories in

this manuscript, and help in the preparation of the manuscript. I would also like to acknowledge

Prof. Takao Aoki for his contributions to our microtoroidal cavity QED experimental system, the

platform that forms the basis of the context of this manuscript. This work was carried out under

the guidance and supervision of my advisor, Prof. Jeff Kimble at Caltech.

In this section, we present a semiclassical model of an atom moving in the evanescent field

of a microtoroidal resonator. Atoms falling through whispering-gallery modes can achieve strong,

coherent coupling with the cavity at nanoscale distances of approximately 100 nanometers from

the surface; in this regime, surface-induced Casmir-Polder level shifts become significant for atomic

motion and detection. Atomic transit events detected in recent experiments are analyzed with our

simulation, which is extended to consider atom trapping in the evanescent field of a microtoroid.

6.2.1 Background

Strong, coherent interactions between atoms and light are an attractive resource for storing, ma-

nipulating, and retrieving quantum information in a quantum network with atoms serving as nodes

for quantum processing and storage and with photons acting as a long-distance carrier for com-

munication of quantum information [132]. One realization of a quantum node is an optical cavity,

where light-matter interactions are enhanced by confining optical fields to small mode volumes. In

the canonical implementation, a Fabry-Perot resonator with intracavity trapped atoms enables a

panoply of cavity quantum electrodynamics (cQED) phenomena using single photons and single

atoms, and thereby, validates many aspects of a cQED quantum node [167, 254].

Despite these achievements, high-quality Fabry-Perot mirror cavities typically require significant

care to construct, and complex experimental instrumentation to stabilize. These practical issues
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have begun to be addressed by atom chips [193, 81], in which atoms are manipulated in integrated

on-chip microcavity structures offering a scalable interface between light and matter [240, 50, 86].

Owing to their high quality factors, low mode volumes, and efficient coupling to tapered optical

fibers [11], microtoroidal resonators are a promising example of microcavities well-suited for on-chip

cQED with single atoms and single photons [224]. Strong coupling [9, 5] and non-classical regulation

of optical fields [57, 10] have been demonstrated with atoms and the whispering-gallery modes of a

silica microtoroidal resonator.

In our experiments with microtoroids, Cs atoms are released from an optical trap and fall near

a silica toroid, undergoing coherent interactions with cavity modes as each atom individually tran-

sits through the evanescent field of the resonator. In the most recent work of [5], atom transits

are triggered in real-time to enable measurement of the Rabi-split spectrum of a strongly-coupled

cQED system. Whereas a single atom is sufficient to modify the cavity dynamics, falling atoms are

coupled to the cavity for only a few microseconds. Atom dropping experiments necessarily involve

a large ensemble of individual atomic trajectories and represent, consequently, a far more complex

measurement result.

Interactions between a neutral atom and a dielectric surface modify the radiative environment

of the atom resulting in an enhanced decay rate [156] and Casimir-Polder (CP) forces [231, 32].

These perturbative radiative surface interactions are usually insignificant in cQED experiments with

Fabry-Perot resonators where atoms are far from mirror surfaces, but in microcavity cQED, atoms

are localized in evanescent fields with scale lengths λ/2π ∼ 150 nm near a dielectric surface. The

experimental conditions for microtoroidal cQED with falling atoms in [5] necessarily involve signif-

icant CP forces and level shifts while simultaneously addressing strong coupling to optical cavity

modes. Theoretical analysis of this experiment requires addressing both the strong atom-cavity

interactions and atom interactions with the dielectric surface of the microtoroid. As reported in [5]

and discussed in Chapter 5, spectral and temporal measurements offer signatures of both strong

coupling to the cavity mode and the significant influence of surface interactions on atomic motion.

The role of these effects is quantified with detailed simulation of the trajectories of falling atoms

detected in the real-time at low photon numbers.

In this section, we discuss in detail the approach used to simulate atomic motion near the surface

of an axisymmetric dielectric resonator under the influence of strong coherent interactions with cavity

modes. The experimental detection method of [5] is implemented stochastically in a semiclassical

simulation of atom trajectories. These simulations provide a perspective on the atomic motion of
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atom transits recorded in our microtoroid experiments, while offering additional insights into the

loading of optical evanescent field traps. In section 6.2.2, we outline the semiclassical model of a two-

level atom coupled to the whispering gallery modes of a microtoroidal resonator. In section 6.2.3,

we review the optical dipole forces which are a critical factor influencing atomic motion in an optical

cavity. Our calculations of modified emission rates and Casimir-Polder surface interactions are

detailed in section 6.2.4. Section 6.2.5 describes the implementation of our model for simulating

recent atom-toroid experiments. Finally, section 6.3.2.1 extends our simulation to evanescent field

traps around a microtoroid.

6.2.2 Atoms in a microtoroidal cavity

We approach the motion of atoms moving under the influence of surface interactions and coherent

cavity dynamics with a semiclassical method to efficiently simulate a large number of atom tra-

jectories. For surface interactions, dispersion forces are calculated perturbatively using the linear

response functions of SiO2 and a multi-level atom. For nearly-resonant non-perturbative coherent

interactions between atom and cavity, the atomic internal state and the cavity field are treated

quantum mechanically within the two-level and rotating-wave approximations.

Simulations of atomic motion follow the semiclassical method detailed in [66]. Mechanical effects

of light are incorporated classically as a force ~F (~r) on a point particle atom at location ~r. Trajectories

~r(t) are calculated with a Langevin equation approach to incorporate momentum diffusion from

fluctuations. At each simulation time step ti, the atomic velocity is calculated as:

vi+1
j = vij + F ij∆t/mCs +

√
2Di

jj∆t/m
2
CsW

i
j , (6.1)

where ~vi is the velocity at the i time step, mCs is the atomic mass, and ∆t is the simulation time

step ti+1 − ti. The ~W i are normally distributed with zero mean and standard deviation of one.

Given the force ~F and diffusion tensor Dij as discussed in section 6.2.3, the atom trajectory ~r(t)

and cavity transmission and reflection coefficients, T (t) and R(t), are calculated. A single atom

strongly coupled to the cavity mode has a large effect on cavity fields and optical forces, requiring

simultaneous solutions of atomic motion and cQED dynamics.

Full quantization of atomic motion leads to an unwieldy Hilbert space not conducive to efficient

simulation. In contrast, semiclassical methods are well-suited for simulating atomic motion in ex-

periments with falling atoms near resonators. The ratio of the recoil energy to the linewidth of the

cesium 6S1/2 → 6P3/2 transition is less than 10−3. Further, the recoil velocity of ∼ 3.5 mm/s is
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much less than the typical velocity of falling atoms of order 200 mm/s so that each spontaneous

emission event represents a small momentum kick. Cavity fields and internal atomic states respond

quickly to environment changes, allowing calculation of optical forces and momentum diffusion in

a constant-velocity limit at time t and energy shifts from surface interactions as if the atom were

stationary. Overall simulation accuracy is limited by uncertainty in input parameters such as field

strength, couplings, geometry, and approximations for the force, not by the semiclassical approx-

imation for atomic center-of-mass motion. The remainder of this section discusses the quantum

mechanical equations of motion for the atom and cavity fields in the low-probe intensity limit, to be

followed later by contributions to the force ~F used in (6.1).

6.2.2.1 Modes of a microtoroidal resonator

Refer to Sec. 3.1.1.1 for discussion of this topic.

6.2.2.2 Cavity QED in an axisymmetric resonator

Please refer to Sec. 3.1.1.3 for discussion of this topic.

6.2.3 Optical forces on an atom in a cavity

Neutral atoms experience forces from the interaction of the atomic dipole moment with the radiation

field. These optical dipole forces have a quantum mechanical interpretation as coherent photon

scattering [92, 55]. For a light field near resonance with the atomic dipole transition, these optical

forces can be quite strong, even at the single photon level; cavity-enhanced dipole forces [66, 108]

have been exploited to trap [107] and localize [187] a single atom with the force generated by a single

strongly-coupled photon. In this section, we discuss how the optical forces, their first-order velocity

dependence, and their fluctuations are included in our semiclassical simulation.

6.2.3.1 Dipole forces

In a quantum mechanical treatment of light-matter interactions [55], the eigenstates of the system

are dressed states of atom and optical field. The quantum mechanical optical force on the atom

at location ~r can be found from the commutator of the atom momentum ~p with the interaction

Hamiltonian Hint consisting of the last two terms from the Hamiltonian (5.1):

~F =
d~p

dt
=
i

~
[Hint, ~p] = −~∇g∗tw(~r)

(
a†σ− + σ+b

)
− ~∇gtw(~r)

(
σ+a+ b†σ−

)
. (6.2)
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The gradient from the position space representation of the momentum operator ~p only acts on gtw(~r)

and not on the field operators [244, 67]. The steady-state expectation values of (6.2) give the dipole

force on the atom in the semiclassical approximation:

〈~F 〉ss = −~∇g∗tw(~r)
(
〈a†〉ss〈σ−〉ss + 〈σ+〉ss〈b〉ss

)
−~∇gtw(~r)

(
〈σ+〉ss〈a〉ss + 〈b†〉ss〈σ−〉ss

)
. (6.3)

As described in section 6.2.2, the steady-state operator expressions are simplified by reducing ex-

pectation values of operator products to products of linearized steady-state operator expectation

values. Ignoring fiber and spontaneous emission losses, an effective conservative dipole potential Ud

can be defined by integration of (6.3).

6.2.3.2 Velocity-dependent forces on an atom

Non-zero velocity effects on the force (6.3) are found by including a first-order velocity correction in

the steady state expectation values [80, 92, 67]. Consider a vector of operators ~O whose expectation

values obey a linearized equation system such as (3.15). Assuming a small velocity, we expand the

operator expectation values 〈 ~O〉 as:

〈 ~O〉 = 〈 ~O〉0 + 〈 ~O〉1 + . . . , (6.4)

where the subscripts denote the order of the velocity v in each term. If an atom is moving through

these fields, then the cavity parameters depend in general on atomic position ~r. As ~r changes in

time, the fields must evolve in response. Consequently, the time derivative of the expectation value

evolves not only from explicit time dependence, but from atomic motion as well.

〈 ~̇O〉 =

(
∂

∂t
+ ~v · ~∇

)
〈 ~O〉. (6.5)

Setting the explicit time derivatives in (6.5) to zero, the perturbative expansion of the time derivative

can be equated to the original linearized equation system. Collecting terms of each order in velocity

gives an equation for the first-order term 〈 ~O〉1 in terms of the zero-velocity steady-state solution 〈 ~O〉0.

This procedure requires the spatial derivative of the zero-order steady-state solutions, where spatial

dependence enters through the atomic transition frequency ωa(~r), the spontaneous emission rate

γ(~r), and the atom-cavity coupling g(~r). The steady-state solutions 〈 ~O〉 to first order in velocity
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are then used to calculate a velocity-dependent optical force ~F (~r) in (6.3). Only terms linear in

velocity are kept in the operator products in (6.3). However, these friction terms, while included for

completeness, do not have a significant influence on calculated spectra or time-dependent trajectories.

In practice, first-order velocity corrections are small in our simulation. For example, Doppler

shifts arising from spatial derivatives of the cavity modes are on the order of ~k · ~v, where ~k is the

mode wavevector. For typical azimuthal velocities of less than 0.1 m/s, the Doppler shift is less

than 1 MHz. The effect becomes more significant as atoms accelerate to high velocities near the

surface, but atomic level shifts from surface interactions are more significant in this regime than the

Doppler shifts. Frictional forces not related to the cavity-enhanced mode, i.e., Casimir-Polder forces

on moving atoms, are not included in the simulation since they are extremely weak and short-ranged

for ground state atoms [210].

6.2.3.3 Momentum diffusion and the diffusion tensor in a cavity

Quantum fluctuations of optical forces are treated by adding a stochastic momentum diffusion con-

tribution to the atomic velocity in the Langevin equations of motion. We calculate the diffusion

tensor components used in (6.1), Dii, using general expressions for diffusion in an atom-cavity system

generalized for the two-mode cavity of a toroid [170]:

2Dii = (~k)22γ
∣∣〈σ−〉

ss

∣∣2 +
∣∣~∇i 〈σ−〉ss∣∣2 2γ + 2κ

(
|~∇i 〈a〉ss|

2
+ |~∇i 〈b〉ss|

2
)
, (6.6)

for i = x, y, z, where γ is the atomic field spontaneous decay rate. The first term represents fluctu-

ations from spontaneous emission, the second term describes a fluctuating atomic dipole coupled to

a cavity field, and the third represents a fluctuating cavity field coupled to an atomic dipole. (6.6) is

approximated using steady-state fields calculated from the linearized solutions to the master equa-

tion (3.18). Although included in the trajectory model, momentum diffusion does not significantly

alter averages over ensembles of trajectories at the weak excitation levels and low atomic velocities

used in the relevant experiments.

6.2.4 Effects of surfaces on atoms near dielectrics

In the vicinity of a material surface, the mode structure of the full electromagnetic field is modified

due to the dielectric properties of nearby objects. These off-resonant radiative interactions modify

the dipole decay rate of atomic states and shift electronic energy levels. This surface interaction

varies spatially as the relative atom-surface configuration changes. The surface phenomena are
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dispersive and depend on the multi-level description of the atom’s electronic structure; they are

calculated using traditional perturbation theory with the full electromagnetic field without focusing

on a few select modes enhanced by a cavity in cQED.

6.2.4.1 Spontaneous emission rate near a surface

When a classical oscillating dipole is placed near a surface, its radiation pattern is modified by the

time-lagged reflected field from the dielectric surface. The spontaneous emission rate oscillates with

distance d from the surface, which can be interpreted as interference between the radiation field

of the dipole and its reflection. The variation of the emission rate depends on whether the dipole

vector is parallel or perpendicular to the surface, as intuitively expected from the asymmetry of

image dipole orientations of dipoles aligned parallel and perpendicular to the surface normal. For

either orientation, the spontaneous emission rate features a marked increase within a wavelength

of the surface due to surface evanescent modes that become available for decay for d . λ0. The

decay rate diverges as (λ/2d)3Im(ε) for small d due to absorption, but this regime is not relevant in

the present cQED transmission simulations because fast-moving atoms spend a negligible amount

of time at vanishing d and, further, surface-induced level shifts also scaling as d−3 bring the atom

out of resonance near the surface (section 6.2.4.2).

We calculate the surface-modified dipole decay rates γ
(‖)
s (d) and γ

(⊥)
s (d) for a cesium atom near

an SiO2 surface following the methods of Refs. [156, 149] (see Fig. 6.1). This calculation involves an

integration of surface reflection coefficients over possible wavevectors of radiated light. The integrand

depends on the dielectric function of SiO2 evaluated at the frequency ωa of the atomic transition.

The orientations refer to the alignment of a classical dipole relative to the surface plane.

6.2.4.2 Calculation of Casimir-Polder potentials

Radiative interactions with a surface are important components of motion for neutral atoms within

a few hundred nm of a surface, with the potential for manipulating atomic motion through at-

tractive [231] or repulsive forces [169]. Depending on the theoretical framework, these forces are

naturally thought of as radiative self-interactions between two polarizable objects, fluctuations of

virtual electromagnetic excitations, or as a manifestation of vacuum energy of the electromagnetic

field. These surface interactions, represented by a conservative potential Us, are sensitive to the

frequency dispersion of the electromagnetic response properties of the atoms and surfaces.

For an atom located a short distance d� λ0 from a dielectric, the fluctuating dipole of the atom
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Figure 6.1: Variations of the dipole decay rate γs(d) for a dipole oriented parallel (‖) and
perpendicular (⊥) to the surface normal as a function of distance d from a semi-infinite
region of SiO2. The decay rate is in units of the vacuum decay rate γ0 and the wavelength of the
transition is λ = 852 nm.

interacts with its own surface image dipole in the well-known nonretarded van der Waals interaction.

Using only classical electrodynamics with a fluctuating dipole, the surface interaction potential is

found to take the Lennard-Jones (LJ) form ULJ
s = −C3/d

3, where C3 is a constant that depends

on the atomic polarizability and dielectric permittivity of the surface [153, 154, 146, 79]. At larger

separations, virtual photons exchanged between atoms and surfaces cannot travel the distance in

time t ∼ 1/ω due to the finite speed of light. Consequently, the interaction potential is reduced,

as first calculated in the 1948 paper by Casimir and Polder [38]. The retarded surface potential

takes the form U ret
s = −C4/d

4 for a constant C4, where C4 depends on both c and ~ as this is

fundamentally both a relativistic and quantum phenomenon. The full theory of surface forces for

real materials with dispersive dielectric functions came with the work of Lifshitz [150, 72]. This

framework reduces to both the above situations for the proper limits, and, importantly, it accounts

for finite temperatures, predicting a U th
s ∝ d−3 potential caused by thermal photons dominant at

large distances for d� ~c/kBT [7]. In our discussion, we refer to these generalized dispersion forces

as Casimir-Polder (CP) forces, whereas ULJ
s , U ret

s , and U th
s refer to the appropriate distance limits.

In microcavity cQED, evanescent field distance scales are set by the scale length of the evanescent

field, λ0 = λ0/2π = 136 nm (for the Cs D2 line). The relevant distances (0 < d . 300 nm) span

both the LJ and retarded regimes, but are much shorter than the thermal regime (d > 5 µm). In

the transition region, the limiting power laws do not fully describe Us over the relevant range of

d. In our modeling, we utilize a calculation of Us with the Lifshitz approach. The Lennard-Jones,
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Figure 6.2: Dispersive response functions for SiO2 and cesium atoms. (a) The dielectric
function ε(iξ) for SiO2 evaluated for frequency ξ along the imaginary axis. (b) Total atomic polar-
izability α(iξ) evaluated for frequency ξ along the imaginary axis for the 6S1/2 ground state (red)
and the 6P3/2 excited state (blue) of cesium calculated as described in 6.2.6.

retarded, and thermal limits arise naturally from the Lifshitz formalism [7].

The potential Us enters our simulation in two ways. First, the transition frequency ωa of the

two-level atomic system shifts away from the vacuum frequency by δa = (U ex
s (~r)− Ug

s (~r))/~, where

Ug
s (~r) and U ex

s (~r) are the surface potentials for the ground and excited states, respectively. Since the

atom transitions between the ground and excited states during its passage through the mode, the

average net force used in calculations is found by weighting each contribution by the steady-state

atomic state populations, Fs = F g
s

(
1− 〈σ†〉ss 〈σ〉ss

)
+ F ex

s 〈σ†〉ss 〈σ〉ss.

We calculate Ug
s and U ex

s for a cesium atom near a glass SiO2 surface using the Lifshitz approach.

This calculation depends on the dispersion properties of the response functions of materials, in this

case the polarizability of the Cs ground state α(ω) and the complex dielectric function ε(ω) of

the silica surface. Modeling of these functions is discussed in 6.2.6. In particular, these response

functions must be evaluated on the imaginary frequency axis ω = iξ, as shown in Figure 6.2.

Following the proximity force approximation of [29], curvature of the toroid surface is imple-

mented by treating the toroid as a cylinder with radius of curvature R = Dm/2. The major axis

curvature is neglected because for all relevant distances d � DM/2. The resulting formula can be

interpreted as a sum over discrete Matsubara frequencies ξn = 2πnkBT/~ with an integration over

transverse wave vectors, which we quote without derivation [29]:

Usurf(d) = −kBT
√

R
R+d

∑∞
n=0
′
α(iξn)

∫∞
0
k⊥ dk⊥ e

−2qnd
[
qn − 1

4(R+d)

]
{

2r‖(iξn, k⊥) +
ξ2
n

q2
nc

2

[
r⊥(iξn, k⊥)− r‖(iξn, k⊥)

]}
. (6.7)
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Here, α (iξn) is the atomic polarizability and r‖,⊥ (iξn, k⊥) are the reflection coefficients of the

dielectric material evaluated for imaginary frequency iξn. The primed summation implies a factor

of 1/2 for the n = 0 term. The reflection coefficients for the two orthogonal light polarizations are:

r‖ (iξn, k⊥) = ε(iξn)qn−kn
ε(iξn)qn+kn

, (6.8)

r⊥ (iξn, k⊥) = kn−qn
kn+qn

, (6.9)

where

qn =

√
k2
⊥ +

ξ2
n

c2
, kn =

√
k2
⊥ + ε

ξ2
n

c2
, (6.10)

and ε(iξn) is the complex dielectric function evaluated for imaginary frequencies iξn. Depending on

the author, r‖ (r⊥) is sometimes referred to as rTM (rTE).

Ug
s is calculated by numerical evaluation of (6.7). U ex

s is also calculated using (6.7), but with an

additional contribution accounting for real photon exchange from the excited state with the surface,

which is proportional to Re
[
ε(ωa)−1
ε(ωa)+1

]
in the LJ limit [79, 93].

The atom-surface potential Ug
s for the ground state of cesium near a SiO2 surface is shown in

Fig. 6.3, including calculations for both a planar and a cylindrical surface. Without the cylindrical

correction, the potential approaches the LJ, retarded, and thermal limits at appropriate distance

scales. For the planar dielectric, our calculation yields C3/h = 1178 Hz µm3 and C4/h = 158

Hz µm4 for the LJ and retarded limits. Note that the transition region between LJ and retarded

regimes occurs around d ∼ 100 nm, the relevant distance scale for the experiments we are modeling.

The effect of the proximity force approximation for the cylindrical cross-section is less than our

calculational precision in the region close to the toroid surface (d . 300 nm). For d > Dm, the

proximity force approximation method accounting for the curvature is no longer accurate [29], but

at these distances, the surface forces are insignificant to atomic motion due to their steep power law

fall-off. The excited state potential U ex
s has a similar form to Ug

s (see the blue curve in Fig.6.3), with

the C3 coefficient for the excited state given by Cex
3 /h ' 2Cg

3/h = 2356 Hz µm3, where Cg
3/h = 1178

Hz µm3 is the ground state C3 coefficient.

6.2.5 Simulating atoms detected in real-time near microtoroids

In order for the semiclassical model to be applied to our falling atom experiments, we must simulate

the atom detection processes. In particular, in [5], falling Cs atoms are detected with real-time

photon counting using a field programmable gate array (FPGA), with subsequent probe modulation
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Figure 6.3: Atom-surface potentials Ug
s (red) and U ex

s (blue) for a cesium atom at distance
d from an SiO2 surface. The solid lines are for a planar surface whereas the dashed lines are for
a curved surface with radius of curvature R = Dm/2 = 1.5 µm. The limiting regimes for Ug

s with
a planar surface are shown as dotted lines, each calculated from analytic expressions not using the
Lifshitz formalism. The cylindrical surface correction weakens the potential, which is noticeable in
the retarded and thermal regimes.

triggered by atom detection.

A microtoroidal cavity with frequency ωc is locked near the 6S1/2, F = 4→ 6P3/2, F = 5 atomic

transition of Cs at ω0
a at desired detuning ∆ca = ωc−ω(0)

a . Fiber-cavity coupling is tuned to critical

coupling where the bare cavity transmission vanishes, T . Tmin ' 0.01. For atom detection, a

probe field at frequency ωp = ωc and flux Pin ∼ 15 cts/µs is launched in the fiber taper and the

transmitted output power PT is monitored by a series of single photon detectors. Photoelectric

events in a running time window of length ∆tth are counted and compared to a threshold count

Cth. A single atom disturbs the critical coupling balance so that T/Tmin > 1, resulting in a burst

of photons which correspond to a possible trigger event. Details of the experimental procedure are

given in Chapter 5.

Whereas only a single atom is required to produce a trigger, spectral and temporal data are

accumulated over many thousands of trigger events since each individual atom is only coupled to

the cavity for a few microseconds. Simulation is a valuable technique to disentangle atomic dynamics

from the aggregate data and offer insights into the atomic motion which underlies the experimental

measurements.



141

6.2.5.1 Simulation procedure

Central to our simulations is the generation of a set of N representative atomic trajectories for

the experimental conditions of atoms falling past a microtoroid fulfilling the criteria for real-time

detection. Since experimental triggering is stochastic, the trajectory set is generated randomly

as well. For each desired collection of experimental parameters P, a set of semiclassical atomic

trajectories {~rj(t)}P is generated that satisfies the detection trigger criteria. This ensemble is used

to extract the cavity output functions T (t,∆ap) and R(t,∆ap). For each individual trajectory, t = 0

is defined to be the time when the trajectory is experimentally triggered by the FPGA. For each

set P, N is chosen large enough for a sufficient ensemble average to be obtained for the final output

functions, typically at least 400 unique triggered trajectories.

Within each simulation, the probe field is fixed to a given ωp. Cavity behavior is determined by

the parameters ωc, h, κi, and κex. h and κi are determined from measurements of the bare cavity

with no atoms present. Low-bandwidth fluctuations in κex and ωc from mechanical vibration and

temperature locking are modeled as normally distributed random variations with standard deviations

of 3 MHz and 1.5 MHz, respectively, that are fixed once for the duration of each simulated trajectory.

Similar to the experimental procedure, we impose that the bare-cavity output flux is less than 0.4

cts/µs at critical coupling and on resonance. This rate would be identically zero for ∆cp = 0 and

critical coupling in the absence of these fluctuations. If the noise threshold is not met, then the

particular trajectory is thrown out as it would have been in experiments.

The atomic cloud is characterized by its temperature, size, and its height above the microtoroid.

Its shape is assumed to be Gaussian in each direction with parameters determined by florescence

imaging. For each simulation loop, an initial atomic position ~rin is selected from the cloud and

the initial velocity ~vin is selected from a Maxwell-Boltzmann distribution of temperature T . The

trajectory is propagated forward in time under the influence of gravity until it crosses the toroid

equatorial plane at z = 0. Only trajectories which pass within 1 µm of the toroid surface at z = 0

are kept as a candidate for detection, as atoms outside of this annulus have negligible probability

of triggering due to their weak coupling to the optical mode. Once an acceptable set of initial

conditions is obtained, the trajectory ~r(t) is calculated over a 50 µs time window starting 20 µs

before its crossing of z = 0, this time with the gravity, optical dipole forces, and surface interactions

included. As the atom moves through the cavity mode, the atom-cavity coupling g, level shifts, decay

rates, and forces change with position ~r, causing deviations of the trajectory from the preliminary

free-fall trajectory. If the atom crashes into the surface of the toroid, then the coupling is set to
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g = 0 from then onwards and the trajectory effectively ends (except for random ‘noise’ photon counts

arising from the non-zero background transmission).

Using ~r(t) and the steady-state expressions for the fields (section 6.2.2), we find the transmission

T (t). The photon count record Ci(tj) on each photodetector i for time step tj is generated from

a time-dependent Poisson process with mean count per bin of Ci(tj) = T (tj)Pin∆t, where ∆t =

tj+1 − tj = 1 ns and Pin is the input flux. Since the typical flux is Pin ∼ 10 MHz and the time

scale of quantum correlations is ∼ 10 ns, the photon count process is assumed to be Poissonian on

the relevant timescale of a few hundred nanoseconds for atom detection. The count record Ci(tj)

is compared to the desired threshold of Cth in a time window ∆tth [5]. If the trigger condition is

met, the initial conditions ~rin,j , ~vin,j , the random cavity parameters ωc and κex, and the random

number seed used to generate ~W i for diffusion processes are stored for later use. The semiclassical

trajectory ~rj(t) can be fully reconstructed from these parameters. The time coordinate is shifted so

that the trigger event occurs at t = 0. This process is repeated to acquire N triggered trajectories.

Cavity output functions such as the experimentally measurable transmission Texp(t,P) for each

simulation parameter set P are calculated from the set of trajectories {~rj(t)}:

Texp(t,P) =
1

N

N∑
j

T (~rj(t),P). (6.11)

Reflection coefficients Rexp(t,P) are calculated similarly. Spectra are calculated by averaging output

powers over a time window t1 < t < t2 for each probe frequency ωp. The times t1 and t2 are chosen

to be the same as in our experiments, which are typically t1 = 250 ns and t2 = 750 ns. The

set of triggered trajectories {~rj(t)} is valid for a given set of conditions P and detection criteria

{Cth,∆tth} until the trigger at t = 0. In experiments, the probe frequency ωp can be changed in

power and detuning upon FPGA trigger. Although the same set of trajectories is valid before t = 0

for each detuning, the trajectory set must be recalculated for t > 0 for each probe detuning to mimic

experimental conditions for spectral measurements. A numerical solution of the master equation in

a number state basis is used for calculation of T (t) in (6.11); the linearized model is only used to

calculate the trajectory ~r(t) and efficiently generate triggers.

Whereas experiments give access only to ensemble averaged output functions, simulations contain

the full trajectory paths. Provided that the simulation offers a reasonable approximation of the true

ensemble of trajectories, then these results provide a window into the atomic dynamics underlying

the cQED measurement of falling atoms which are not readily clear from observations.
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Figure 6.4: Plots of T (gtw, θ,P) for (a) ∆ca/2π = 0 MHz, and (b) ∆ca/2π = 60 MHz,
calculated numerically from (3.13). Atoms with higher gtw generally have higher T and a
larger probability for detection. The variation of T with θ is evident, with a different periodicity for
the two cavity detunings.

6.2.5.2 Simulation distributions

The experimentally measurable cavity transmission Texp(t) is obtained in (6.11) as an average over

the trajectory set {~rj(t)} at each time t. Eq. (6.11) can formally be written as an integration over

the probability distribution of coupling constants at time t, pt(g, θ), for the given experimental

parameters P:

Texp(t,P) =

∫
dg dθ T (g, θ,P)pt(g, θ). (6.12)

The function T (g, θ,P) is shown in Fig. 6.4 for the parameters P relevant to experiments, specifically

with ∆ca/2π = 0, 60 MHz. For this discussion, we assume all frequencies are fixed and neglect surface

shifts. In this perspective, Texp(t) is not directly related to the trajectory set {~rj(t)} but rather the

probability distribution pt(g, θ) at time t. The time dependence of pt evolves based on the underlying

trajectory ensemble.

It is instructive to consider the probability distribution pt(g, θ) in more detail since it is the formal

output of the simulations. We consider only the distribution pt=0(g) over the coupling parameter

g at the trigger time t = 0 by integrating out the angular dependence. Through a reasonably

simple analytic model (detailed in Sec. 6.2.7), we calculate pt=0(g) and compare to the results of

the semiclassical simulation, which includes dipole and surface forces (Fig. 6.5). For a cavity on

resonance with the atom transition, ∆ca/2π = 0, the analytic model agrees well with a simulation

when dipole and surface forces are not included. In this case, atom trajectories are nearly straight

and vertical near the toroid, and the approximations of Section 6.2.7 are sufficient. When the full

forces are included in the semiclassical model, the additional forces shift the distribution toward

lower g. This effect is more significant for ∆ca/2π = 60 MHz. The corresponding experimental



144

−100 0 100 200
0

0.5

1

Δpa/2π (MHz)

T

(b)

0 20 40 60 80 100
0

0.01

0.02

0.03

p t=
0(g

)
g/2�

(a)
 Δca= 0

0 20 40 60 80 100
0

0.01

0.02

0.03 Δca/2π = +60 MHz

g/2�
(c)

p t=
0(g

)

Δca/2π = +60 MHz

Figure 6.5: Distributions pt=0(g) of coupling constants calculated for (a) ∆ca/2π = 0 and
(b) ∆ca/2π = +60 MHz. Distributions from the analytic model (red), semiclassical trajectory
simulation with no dipole or surface forces (blue), and the simulation with all forces (black) are
shown for comparison. (c) Experimental cQED spectra data for cavity detuning ∆ca/2π = 60 MHz
(blue points) from [5] plotted with model spectra calculated from the distributions pt=0(g) in panel
(b). The red is the analytic model of Section 6.2.7 and black is the semiclassical simulation.

cQED spectra confirm that the semiclassical model with dipole and surface forces is necessary to

reproduce spectral features in the real-time experiments (Fig. 6.5c). The overall simulation accuracy

for the calculations in Fig. 6.5c is at the level of 20% in the difference between the atom and no-atom

spectra. The refinements introduced to the linearized semiclassical model such as velocity-dependent

forces, curvature corrections to the surface forces, and distance dependent decay rates are at a level

comparable to the widths of the lines for the curves drawn in the figures.

The cavity transmission T varies as a function of the atomic azimuthal coordinate θ = mφ, as

evident in Fig. 6.4. This biases atomic detection towards specific locations around the toroid and

leads to a non-uniform angular distribution pt=0(θ) for atom location at detection. Fig. 6.6 shows

distributions of the atomic angular coordinate at the detection trigger t = 0 for three simulation

conditions relevant to the experiments of [5]. Although averaged spectra do not explicitly measure

the coordinate θ, these simulations make it clear that trajectories passing through certain regions

around the toroid are preferentially detected. The phase of the cavity output field depends on θ,

suggesting the possibility for future experiments to measure the distribution of Fig. 6.6.
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MHz (red, semi-transparent). Normalization is such that the sum across all θ is unity.

6.2.5.3 Simulated trajectories

We now turn to the simulated trajectories {~rj(t)}. In contrast to experiments, in simulations we

have the capability of turning certain forces selectively on and off. In particular, we can adjust

the surface potential Us and the dipole forces, referred to symbolically as Ud (despite them not

being strictly derivable from a potential). To investigate the effects these optical phenomena have

on atomic trajectories, we run simulations for four cases: the full semiclassical model, the model

without surface forces (Us = 0), the model without dipole forces (Ud = 0), and the model without

any radiative forces (Ud = Us = 0).

Considering conditions relevant to [5], we plot simulations for two sets of experimental parameters

P1,2 in Fig. 6.7. For P1, the cavity is detuned to the red, whereas the cavity is blue-detuned in P2

(∆ca/2π = −40 MHz for P1 and +40 MHz for P2). In each set of conditions, the probe field is

on resonance with the cavity for high signal-to-noise atom detection (∆cp = 0) and the average

bare-cavity mode population of a is ≈ 0.05 photons. The toroid cavity parameters are those of [5],

{gmax, h, κin, κex}/2π = {100, 11, 13, 17} MHz. Comparing the full model, we see that trajectories

for P1 primarily crash into the surface, whereas those from P2 both crash and are repelled from
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the toroid. This asymmetry is due to the repulsive or attractive dipole force for different probe

detunings relative to the atomic transition. The largest effect of turning surface forces off is seen in

the blue-detuned trajectories, which have a lower crash rate when Us = 0. With Ud = 0, both P1

and P2 trajectories look nominally the same; the detuning ∆ca only affects cQED spectra, with a

minor imperceptible effect arising from CP potentials initially shifting the atomic transition either

closer to (red) or further from (blue) the cavity field.

In addition to the qualitative differences in detected atom trajectories summarized here, the

effects of Ud and Us are evident in the experimental quantities Texp(t) and Rexp(t). Since here we

focus specifically on trajectory calculations, the reader is referred to [5] for detailed comparisons

of spectral and temporal simulations to experimental data. The present semiclassical simulations,

reliable to a few percent for cQED spectra, are sufficiently accurate to understand the experimental

results of [5] without further refinement.
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6.2.6 Calculating the polarizability and dielectric response functions

Evaluation of Casimir-Polder interactions of atoms with the surface of the dielectric resonator re-

quires evaluation of the atomic polarizability and of the dielectric function as functions of a complex

frequency. Here we outline our analytic model of the complex dielectric function for SiO2 and the

atomic polarizability of cesium atoms in the ground and excited states.

The complex dielectric function ε(ω) = ε1 + iε2 is modeled using a Lorentz oscillator model of the

real and imaginary parts of the response function to analytically introduce frequency dependence

and enforce causality,

ε(ω) = ε∞ +
∑
j

fj
(ω2
j − ω2)2 + ω2γ2

j

(
(ω2
j − ω2) + iωγj

)
. (6.13)

Here, ωj is the resonance frequency, γj is the damping coefficient, and fj is the oscillator strength

for each oscillator in the model. ε∞ = ε(ω → ∞) = 1. ε can be expressed in terms of the complex

index of refraction ñ = n + iκ as ε = ñ2 = n2 − κ2 + 2inκ, where n is the refractive index and κ

is the extinction coefficient. Experimental data for ñ for SiO2 is available over a wide frequency

range [185], which is used to fit the parameters of (6.13) for a seven-oscillator model (j = 1 − 7).

Using the analytic form of (6.13), the dielectric function can readily be evaluated over complex

frequencies as shown in Fig. 6.2.

The frequency-dependent atomic polarizability αs(ω) for cesium in a state s is calculated as a

sum over transitions of the form,

αs(ω) =
∑
n

e2fns
me

1

ω2
ns − ω2

, (6.14)

where e is the electron charge, me is the electron mass, ωns is the transition frequency, and fns is

the signed oscillator strength for the transition of state n to the state s (fns > 0 if state n is above

s in energy). A more complete expression for the response function α(ω) should include damping

coefficients given by the transition linewidths. Since our calculations involve integrals over infinite

frequency on the imaginary axis and atomic linewidths are generally narrow with respect to transition

frequencies, we assume that the off-resonant form given by (6.14) without damping is sufficient. We

also note that this expression does not account for the differences between magnetic sublevels and

hyperfine splitting, which again represent small corrections when these expressions are integrated

over the imaginary frequency axis. The general form of (6.14) applies to the polarizabilities for both

the 6S1/2 ground state and the 6P3/2 excited state, with an additional tensor polarizability for the
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6P3/2 state.

The total atomic polarizability is composed of contributions from valence electron transitions

(αv) and high-energy electron transitions from the core shells to the continuum (αc), such that

α = αv + αc. The valence polarizability αv constitutes 96% of the total static polarizability [59] in

Cs, with αc only significant at high frequencies. We take αc to be the same for both the ground and

excited states of Cs, whereas αv is obviously sensitive to the different electronic transition manifolds

for the 6S1/2 and 6P3/2 states. Valence electron oscillator strengths and transition frequencies are

tabulated in many sources [174, 145]. Our estimate of αv(ω) for the ground state includes all 6S1/2 →

NP1/2 and 6S1/2 → NP3/2 transitions, with N = 6− 11. For the excited state, αv(ω) is calculated

using 6P3/2 → (6 − 15)S1/2, 6P3/2 → (5 − 11)D3/2, and 6P3/2 → (5 − 11)D5/2 transitions. Tensor

polarizability contributions sum to zero when averaged over all angular momentum sublevels [127].

In agreement with [59], our calculation of αv comprises about 95% of the total static polarizability.

For simplicity, all core electron transitions are lumped into a single high-frequency term of the

form used in (6.14). This term contains two free parameters, fcore and ωcore, which are found from

the following two conditions. Using the calculation of αv(ω) for the Cs ground state, we enforce that

the ground state static polarizability α(ω → 0) matches the known value calculated theoretically [6]

α(0) = 5.942× 10−23 cm3. We also ensure that the ground state LJ constant for a Cs atom near a

metallic surface agrees with the known value [59, 117] C3 = − ~
4πd3

∫∞
0
α(iξ)dξ = 4.4 · h kHz µm3.

These conditions are sufficient to fix the two free parameters in αc(ω) for this single oscillator core

model, although the high-frequency structure of the core polarizability is lost. For the excited state

calculation, we use the same αc(ω).

6.2.7 Analytic model of falling atom detection distributions

Here we develop an analytic model of the distribution pfall(g, θ) of coupling parameters g and az-

imuthal coordinate θ = mφ. Atoms are assumed to fall at constant vertical velocity with no forces,

in contrast to the more complete semiclassical trajectories used in this chapter to generate pt(g).

An abbreviated description of this model is discussed in Sec. 5.10.1.

The linearized steady-state cavity transmission T (∆ap, g(~r)) is a known function of ∆ap and ~r.

We only consider the lowest order mode where the cavity mode function is approximately Gaussian

in z and exponential in distance from the surface d. The approximate temporal behavior of the
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coupling constant g for a single trajectory is,

g(ρ, z(t)) = gc(ρ)e−(z(t)/z0)2

, (6.15)

where gc(ρ) is the maximum value of the g at the closest approach of its trajectory (z = 0), z0 is

a characteristic width assumed to be independent of ρ, and z(t) = −vt. gc(ρ) decays exponentially

from the maximum gmax at the toroid surface, gc(ρ) ∼ gmaxe
−(ρ−Dp)/λ0 . The transmission T and

hence the detection probability depend on θ; in general, if atoms fall uniformly around the toroid,

the most numerous trajectories detected will be at the values of θ which maximize T (θ) for the

cavity parameters of interest (θ = π/2 for ∆ca/2π = +40 MHz, for example, as in Fig. 6.6).

The probability density function for the full ensemble of detected falling atoms pfall(g, θ) can be

estimated as the product of the probability of any atom having a particular g and the probability

of a trigger event occurring for an atom with coupling g,

pfall(g, θ) ∼ patom(g)ptrigger(g, θ). (6.16)

An atom transit is triggered when the total detected photon counts exceeds a threshold number,

Cth, within a detection time window ∆tth. For a probe beam of input flux Pin, the mean counts in

this window are C = T (g, θ)Pin∆tth. This expression assumes that the atom is moving slowly so

that the T (g, θ) at the trigger event is the only T (g, θ) that contributes to the detection probability.

The detection probability ptrigger(g, θ) is estimated from a Poisson distribution of mean count C.

From (6.15), patom(g) can be written as a product of the probability p(g|gc) of an atom in a

trajectory with a given gc to have coupling g and the probability of a trajectory to have that gc,

pmax(gc), integrated over all gc,

patom(g) =

∫ gmax

g

p(g|gc)pmax(gc) dgc. (6.17)

The integral has limits from g to gmax since gc cannot be smaller than g.

For atoms falling uniformly over the ρ − φ plane, pmax(gc) dgc is proportional to the area of a

ring of radius ρ and thickness dρ, pmax(gc) dgc ∼ 2πρ dρ. Using gc(ρ) ∼ e−(ρ−Dp/2)/λ0 , dgc

gc
∼ − dρ

λ0
.

Hence, pmax(gc) ∼ 1/gc for (ρ−Dp/2)� Dp/2. To find p(g|gc) we note that that the probability is

proportional to the time an atom in the trajectory is at a particular g. From (6.15) for a constant

velocity v, this trajectory is Gaussian and the relative probability must be proportional to dz.
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Finding the differential as a function of g gives p(g|gc) ∝ dz ∼ 1

g
√

ln(gc/g)
.

Putting the results together in (6.17) gives

patom(g) ∼
∫ gmax

g

1

ggc

dgc√
ln(gc/g)

∼

√
ln
(
gmax

g

)
g

. (6.18)

This result diverges as g goes to zero since there are infinite transits with small gc and infinite

time for atoms with small g for any transit regardless of gc for t → ±∞. This divergence is not

problematic in calculating (6.16) since ptrigger(g, θ) cuts off for low g faster than the logarithmic

divergence in patom(g).

The spectrum for given experimental parameters as a function of probe detuning ∆ap = ωp−ω(0)
a

can be written as:

T (∆ap) =

∫ gmax

0

T (∆ap, g, θ)pfall(g, θ) dg dθ, (6.19)

where the normalization of pfall(g, θ) is chosen such that

∫ gmax

0

pfall(g, θ) dg dθ = 1. (6.20)

The overall probability of g, pfall(g) independent of θ, is found by integrating over θ. In practice,

pfall(g) is quite similar to pfall(g, θ) evaluated for the θ which maximizes the transmission. Fig. 6.5

compares this simple model for pfall(g) with the equivalent distribution from the semiclassical tra-

jectory simulation, pt=0(g).

6.3 Trapping of atoms near dielectric surfaces

In Chapters 4 and 5, we discuss the realizations of strong coupling between falling single cesium

atoms and a microtoroidal resonator, with interaction times of a few microseconds. Despite this

advance in monolithic resonator chip-based cavity QED, the short interaction time presents a limit-

ing factor, for example in single-shot measurement signal-to-noise ratio, processing or storage times

for quantum information protocols, and in integration for the realization of a multi-nodes entangle-

ment/functioning quantum network (which requires multiple nodes to have strongly coupled trapped

atoms at the same time). In addition, it also allows exploration of other types of physics including

many-body quantum dynamics, high precision surface-atom effect measurements, and in the case of

orbiting traps, investigation of angular dynamics.
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Realizations of strong coupling cavity QED with trapped atoms using nanophotonic devices will

open up multiple exciting possibilities. In this section, we discuss several schemes that may lead to

the realization of an optical trap for single atoms using an on-chip microtoroidal resonator.

6.3.1 Optical tweezer trap

A potentially promising scheme to trap single atoms next to a microtoroidal resonator is to use a

common technique of optical tweezer dipole trap with red-detuned focused beam that provides three

dimensional confinement for a single atom close to a microtoroid’s surface. While an optical tweezer

trap for a single atom has been realized at a sub-micron scale, using diffraction-limited focused

FORT beam with numerical aperture of 0.7 formed by multiple lenses with a 1 cm working distance

[211] (more recently, [234]), there are a number of physical and practical limitations present in this

approach.

Firstly, scalability and integrability may require miniaturization of the imaging system used to

form the tightly focused beam. In the microtoroid lab in our group, we (particularly Scott Kelber

and Cindy Regal) investigated an approach to this issue by using a lensed-fiber (from Nanonics

Imaging) that creates a tightly focused beam with numerical aperture of 0.7 (beam radius of 300

nm) with a working distance of 5 µm.

Secondly, in general the diffraction limit imposes a minimum distance an atom trap can be

located relative to the surface of the toroid of ≈ λdip/2, which is larger than the 1/e decay length

of the microtoroid’s whispering-gallery-mode evanescent field of λ/2π ≈ 136 nm for λ = 852 nm.

Although this is true in general, there are potential solutions that can reduce the trap-to-toroid

distance significantly. For example, reflecting the FORT beam off the toroid’s surface at normal

incident could generate a standing-wave pattern with first local intensity maximum located at λ/4

from the toroid’s surface (e.g., for λdip & 852nm, it is & 213 nm). Another potential solution is to

use self-imaging nanoscale patterns that may be implemented onto the lensed-fiber tip, a technique

that has been demonstrated in a different system [119] where local intensity maxima with < λ/4

sizes have been realized.

Thirdly, the positioning of the trap location with respect to the on-chip toroid presents a practical

limitation. Here, the optical beam size and working distance of the focusing lens present geometrical

constraints.

Finally, assuming the tweezer trap does not get ‘destroyed’ by the presence of the silica toroid

(which preliminary analysis showed may be the case for the system considered), then there is the
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challenge of atom loading into the conservative optical tweezer trap.

As the toroid is fabricated on top of an opaque silicon chip substrate, realization of atom cooling

near a microtoroid is challenging, as we have limited optical access. This is in contrast for example

with the nanofiber trap discussed in Sec. 3.2, where one could overlap a magneto-optically trapped

cloud of cold atoms in an optical molasses with the nanophotonic nanofiber device. A potential

solution is to utilize multiple optical conveyor belts discussed in Sec. 3.1.2.1, which may require

additional optical components such as additional lensed fibers. Another potential solution is investi-

gated in a recent experiment [235], using Raman sideband cooling combined with the application of

a magnetic bias field to mitigate effects from polarization ellipticities formed by the tightly focused

light (with significant longitudinal polarizations as discussed in Sec. 2.5). Here, an optical tweezer

trap is demonstrated by using a focusing lens with a numerical aperture of 0.43, where atoms are

loaded from a magneto-optical trap. Transport over a distance of ≈ 20 µm is also demonstrated by

using a scanning galvanometer mirror [235].

In conclusion, these schemes offer promising potential to be candidates for single atom trapping

near a microtoroid cavity. There are potential solutions that may be implemented to allow toroid-

to-trap distances comparable to the decay lengths of the toroid’s evanescent field. There are however

quite a number of practical challenges such as in the loading process and position control that may

post significant limitations in terms of scalability and on-chip integrability.

6.3.2 Orbiting trap

6.3.2.1 Trapping atoms in the evanescent field of a microtoroid

Our trajectory simulation discussed in Sec. 6.2 can be extended to study trapping of atoms in a

two-color evanescent far off-resonant trap (eFORT) near a microtoroidal resonator [5, 228]. An

evanescent field trap takes advantage of the wavelength dependence of scale lengths for the optical

dipole force of two optical fields with frequencies far-detuned from the atomic transition to limit

scattering [52, 179, 69]. The relative powers of the two fields are set so that near the surface, the

blue-detuned, repulsive field is stronger than a red-detuned attractive field. As each field falls off

with a decay constant of roughly λ = 2π/λ, at some distance the red, attractive field will dominate

and the atom will be attracted to the surface forming a potential minimum. Recently, evanescent

fields have been harnessed to trap atoms in a two-color eFORT around a tapered optical fiber [248],

where the fiber enables efficient optical access to deliver both high intensity trapping fields and

weaker probe fields to the trapped atoms in a single structure. The tapered fiber can be positioned
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as desired, bringing the trapped atoms near a device for atomic coupling.

The tapered nanofiber eFORT is a remarkable achievement toward integrating atom traps with

solid-state resonators, but the nanofiber scheme does not allow direct integration with a cavity for

achieving strong, coherent coupling between light and trapped atoms. Another disadvantage is that

trap depth is limited by the large total power required to achieve trapping with evanescent fields.

The high quality factors and monolithic structure of WGM resonators allow evanescent field traps

free from these problems while maintaining efficient optical access from tapered fiber coupling. Two-

color evanescent field traps in WGM resonators have been analyzed in detail for spheres [246] and

microdisks [201]. In this section, we extend our simulations of atoms in the evanescent field of a

microtoroid to an eFORT that can capture single falling Cs atoms triggered upon an atom detection

event.

Unlike nanofibers, a microtoroid cannot be placed directly in a magneto-optical trap for a source

of cold atoms. As shown in [5], we have the experimental capability to detect a single atom falling

by a microtoroid and trigger optical fields while that atom remains coupled to the cavity mode. The

semiclassical simulations described here are ideal for investigating the capture of falling atoms in a

trap triggered upon experimental atom detection.

We add an additional eFORT potential Ut to our semiclassical trajectory model in addition to the

dipole forces and surface potential Us. For our simulation, Ut is formed from a red (blue)-detuned

mode near 898 nm (848 nm) with powers ∼ 50 µW to give a trap depth of ∼ 1.5 mK at d ∼ 150

nm from the surface (Fig. 6.8a). The red (blue) fields interact primarily with the 6S1/2 → 6P1/2

(6S1/2 → 6P3/2) transition. The trap depth is limited by the total power in vacuum that can

propagate in the tapered fibers of [5]. Power handling can be improved with specific attention to

taper cleanliness, so with experimental care the trap depth can be increased reasonably from the

discussion here, although we simulate under the conditions given to illustrate that this trap is already

experimentally accessible.

The difference in vertical scale lengths (ψ0 in (3.3)) for modes of different wavelength leads to

a trap that is not fully confined if both the red- and blue-detuned trap modes are of the lowest

order (as in Fig. 3.1.1.1b). As |ψ| increases, the repulsive blue-detuned light weakens faster than

the red-detuned field, and atoms can crash into the toroid surface. This problem is alleviated by

exciting a higher-order mode for the 898 nm light, as shown in Fig. 6.8b. The modal pattern confines

atoms near z = 0 and prevents trap leakage along ψ. This problem is not present in the microdisk

eFORT of [201] because the optical mode extent is determined by structural confinement and not
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Figure 6.8: (a) The trapping potential Ut along the z = 0 axis with the CP potential included. Also
shown are the red and blue evanescent potentials of the two trapping modes, Ut, respectively. (b)
The mode function used in Ut for the 898 nm mode with m = 106. (c) Simulated trajectories for
trapping simulations with an eFORT Ut triggered “on” by atom detection at t = 0 with ∆ca = 0.
Falling atoms with the FORT beams “off” (t < 0) are colored blue, whereas trajectories after the
trap is triggered are red. Trajectories are colored pink for t > 50 µs to illustrate the timescale.
Roughly 25% of the triggered trajectories become trapped. (d) Same as (c) showing only the
trapped trajectories and a clearer view of atom orbits in the evanescent trap. Note: this figure
appears in [228].

the optical scale length. Use of a higher-order mode was also used to form an atom-gallery in a

microsphere [246].

During the detection phase of the simulation, Ut = 0. At t = 0 conditioned on an atom detection

trigger, Ut is turned on. The kinetic energy of an atom with typical fall velocity of v ∼ 0.2 m/s

is equivalent to 0.3 mK, so a 1.5 mK trap is sufficiently deep to capture an atom if it is triggered

near the trap potential minimum. Defining a trapped trajectory to be one such that the atom has

g/2π > 5 MHz at t = 10 µs, approximately 25% of triggered atom trajectories are captured when

the trapping potential is turned on. Simulated trapping times exceed 50 µs, limited not by heating

from trapping light but by the radiation pressure from the unbalanced traveling whispering-gallery
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modes of a nearly-resonant optical probe field. This probe field can be turned off so that the atoms

remain trapped beyond the simulation time.

In contrast to the standing-wave structure of a typical eFORT or Fabry-Perot cavity trap [259],

microtoroidal resonators offer the tantalizing possibility of radially confining an atom in a circular

orbit around the toroid [246, 158]. The Ut = 0 outlined here does not confine the atoms az-

imuthally, forming circular atom-gallery orbits around the microtoroid [158] (Fig. 6.8c,d). In the

same manner as [248], a localized trap can be achieved by exciting a red-detuned standing wave for

three-dimensional trap confinement.

This trapping simulation outlines how real-time atom detection can be utilized to trap a falling

atom in a microtoroidal eFORT. In practice, microtoroidal traps present some serious practical

challenges. Notably, because the trap quality is sensitive to the particular whispering-gallery mode,

the excited optical mode must be experimentally controlled. The success of an eFORT for Cs atoms

around a tapered nanofiber [248] strongly suggests that similar trap performance might be achieved

for an eFORT around a high-Q WGM cavity, localizing atoms in a region of strong coupling to a

microresonator.

6.3.2.2 Microtoroidal cavity modes, spectrum and tunability

In the previous section, we discuss a scheme to trap single atoms in orbit around a microtoroid via

evanescent field FORT trap. One challenging capability required to realize such a trap is the ability

to excite particularly chosen higher order modes of a toroid. As discussed previously, there are a

number of factors that limit the intrinsic Q (or the intrinsic loss rates) of a microtoroidal cavity,

including bulk material absorption, surface contaminant and surface scattering, and radiation loss.

For a silica microtoroid with a relatively small size relevant to the work in this thesis (e.g., with

diameter � 100 µm), the Q is limited not by bulk material absorption of silica (Qbulk ∼ 1010), nor

radiation losses (Qrad > 1013), but the limiting factor is the absorption by surface contaminants such

as OH and water molecules, and surface scattering losses [224, 134, 261]. Because of this, the total

quality factor Q of a microtoroidal cavity is sensitive to the amount of electric field that is present

at the surface boundary of the toroid, leading to the tendency for the fundamental mode to have

a higher Q than the higher order modes. Empirically, we regularly observe a spectrum or ‘forest’

of many (10-100) cavity resonance frequencies over a frequency scan range of 5-10 nm (roughly a

free-spectral-range) of a toroid. Most of these resonances have Q that are a few orders of magnitude

lower than the ‘maximum’ good Q that we utilize, of Q ∼ 107, for our geometry (Dp = 10-20 µm,
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Dm = 3-6 µm, λ ≈ 852 nm). This cavity resonance Q signature provides a guide for us to excite the

fundamental mode of the toroid1. The excitation of higher-order modes, however, is quite different

and more challenging.

Figure 6.9 a) shows cross-sectional |E| profiles of a microtoroid’s whispering-gallery mode from

the fundamental z-polarized mode (labeled 1) and ρ-polarized mode (labeled 1’), to the 6th-order

modes, labeled by the number n for n-th order mode, with unprimed numbers indicating z-polarized

modes and primed numbers indicating ρ-polarized mode. Fig. 6.9 b) shows the corresponding spec-

trum (resonance frequencies) for azimuthal mode numbers of m = 117, 118, 119. For our microtoroid

cavity QED experiment system considered in Chapter 5 and Sec. 6.2, we have m = 118, toroid prin-

cipal diameter Dp = 12 µm, minor diameter of Dm = 3 µm, with fundamental mode polarized in z

(labeled 1 in part a) of the figure). This mode is temperature-tuned (base temperature ≈ 100 ◦C)

to cesium D2 line shown in Fig. 6.9 b) as the dashed vertical line, more specifically to the F=4 →

F’=5 transition. The numbers 1 to 10 next to the blue lines refer to the fundamental (1st order)

to 10th order modes, with the primed numbers always subsequent to the unprimed numbers. These

lines of resonance frequencies of the microtoroid mode are calculated using Comsol. Note that we do

not take into account the finite linewidths of the cavity modes, we only show the lines representing

the resonant frequencies of the cavity modes.

Now recall that as discussed in Sec. 6.3.2.1, we considered an orbiting trap scheme that requires

excitation of the fundamental mode (mode 1 or 1’) for blue-detuned FORT, as well as the 3rd order

mode (mode 3 or 3’) for the red-detuned FORT, in order to form a fully closed trap potential. While

this may seem like a simple task, it requires the ability to excite particular high-order modes of the

microtoroid. Now, the free-spectral-range of the toroid for our typical experimental parameters (Dp

= 12 µm, DM = 10.5 µm, Dm = 3 µm, λ = 852 nm), FSR = 6.85 nm (or in frequency units, 2.8

THz) is significantly smaller than the differences in frequency between different modes of the toroid,

as evident in Fig. 6.9 b). Because of this, the task of selecting a particular high-order mode becomes

practically quite challenging, as we have to be able to pick the desired mode within a ‘forest’ of modes

present in the structure. We note that there are potential solutions to this problem, for example by

figuring out the exact spectral profiles (including variations in linewidths of each of the resonances);

the frequency shift responses, which may occur at a different rate or to a different extent, in response

to changing parameters such as temperature; and finally, also the possibility of performing direct

1In our experiments, we also perform other checks that support excitation of the fundamental mode, such as
mapping the spatial field pattern of the toroid’s excited mode by scanning the position of tapered fiber, toroid-taper
optical coupling, and cavity QED analyses (i.e., atom-photon coupling strength g profile, and atom dynamics in
cQED).
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Figure 6.9: Whispering gallery modes of a microtoroid. a) Transverse cross-sectional plots
showing electric field amplitude |E| for the first six modes of a silica microtoroid with principal
diameter Dp = 24 µm and minor diameter Dm = 3 µm, for z-polarized (unprimed labels) and ρ-
polarized (primed labels) modes. b) Plots of azimuthal mode number m as a function of toroid’s
resonance frequencies f , showing a ‘forest’ of modes in the spectrum, for m = 117 (red), m = 118
(blue), and m = 119 (green). The plots in a) corresponds to m = 118. c) Sensitivity of resonant
frequency for m = 118, z-polarized mode (the mode used in the experiment described in Chapter 5)
as a function of principal diameter Dp (for minor diameter Dm = 3 µm) and temperature change
δT in Kelvin.

near-field scanning optical microscopy (NSOM) for example by moving the tapered fiber next to the

microtoroid, or using an independent probe [139, 138].

Figure 6.9 c) shows in the top panel the change in resonant frequency of the m = 118, z-polarized

fundamental-mode, as a function of varying principal diameter Dp, with the dashed line indicating

the principal diameter Dp = 12 µm used in the calculations of parts a) and b). The points represent

each of nine Comsol calculation results for the corresponding principal diameter values. The bottom

panel of part c) of the figure shows the frequency response to temperature, for m = 118, z-polarized

fundamental-mode, Dp = 12 µm, λ corresponding to the first fundamental mode labeled by the

number 1 (blue line) in Fig. 6.9 c). The cavity resonance frequency response to temperature is

due to two factors, namely the change in refractive index of silica, and the mechanical thermal

expansion of silica, the former having much larger effect for our typical experimental parameters.

More specifically, the change in cavity wavelength λcav(n,R), which is a function of the refractive
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index n and toroid’s size or radius R, is given by [134]:

d

dT
λcav(n,R) = λcav

dn

dT
+ λcav

dR

dT
, (6.21)

where in our case, we use λcav = the wavelength corresponding to the fundamental mode labeled by

number 1 in Fig. 6.9 b), close to cesium line 852 nm; temperature dependence of the refractive index

dn
dT = 1.28×10−5 K−1 for silica; and thermal expansion coefficient of silica dR

dT = α = 5.5×10−7 K−1.

In our experiment, we use temperature tuning to tune the cavity resonance frequency to cesium

transition, by using a Peltier (and thermistor in contact with the toroid chip inside the vacuum

chamber) actively temperature locked at ≈ 100◦C for base temperature, and a larger bandwidth

laser heating beam focused onto the toroid chip (not very close to the toroid to avoid light leakage

into the tapered fiber), which is also actively locked with a bandwidth of about 8 Hz, as we alternate

between this temperature lock and running the entire experiment sequence and taking measurement

data. This temperature locking method maintains the toroid’s resonant frequency to within a few

MHz of the cesium transition frequency.

6.3.3 Toroid-fiber trap

In this section we discuss a scheme to trap single atoms next to a microtoroidal cavity using a tapered

optical nanofiber, which is illustrated in figure 6.10 a). In Chapter 5, we discuss a two-chamber setup

connected by a differential pumping tube where an atomic cloud magneto-optically trapped in the

source chamber is transported by way of an optical conveyor belt (formed by counter-propagating

red-detuned FORT beams as shown in the figure by the red arrows), to the science chamber where

a microtoroid chip is positioned. In this scheme, starting with this procedure, we add a mirror

as shown in the figure, allowing three-dimensional polarization-gradient cooling (green arrows) to

provide cooling to load the atoms into a (conservative) optical trap formed by the nanofiber (counter-

propagating red and blue arrows indicating the red- and blue-detuned fiber-guided beams used to

form the state-insensitive trap as will be discussed in Chapter 7). We note that metallic mirror such

as gold is used to allow minimum adverse effects to the reflecting cooling beam polarizations, and

the metal plate (copper) on which the microtoroid silicon chip is mounted, provides the thermal

conductivitiy required for temperature stabilization. A top-view photograph of the experimental

setup is shown on the top-left of the figure, with a tapered nanofiber that is fabricated with the

same specifications as in the experiment discussed in Chapter 7 (nanofiber radius a = 215 nm), but

without a microtoroid chip at the time of the photograph. Figure 6.10 b) shows a fluoresence signal
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from an atom cloud transported from the source to science chamber, overlaped with the nanofiber

in the science chamber, without trapping or cooling, pumped by a resonant beam from the direction

of the green arrow labeled (i) in the figure. Lastly, as illustrated in Fig. 6.10 a), the next step of the

scheme involves transporting the loaded nanofiber-trapped atoms to the vicinity of the microtoroid

by employing another optical conveyor belt formed by chirping the frequency of the red-detuned

standing wave FORT beams that make up the lattice potential along the nanofiber [215]. Note

that stand-alone nanofiber atom traps have been realized to date; For example: in the landmark

experiment of [248], and in our state-insensitive nanofiber trap experiment discussed in Chapter 7.

The state-insensitivity of our trapping scheme is of a particular importance to the toroid-fiber trap

scheme described in this section, as it allows the transition frequencies of the trapped atoms to

remain within the cavity’s resonant linewidth, as the atoms move within the traps.

Although the abovementioned scheme seems feasible to realize, the integration of this microtoroid-

fiber system presents several important challenges. Firstly, as discussed in Chapter 5, positioning of

a nanofiber with respect to a microtoroid cavity requires stacks of nanopositioners to provide suffi-

cient spatial degrees of freedom. Consequently, it is not very practical to have a dedicated nanofiber

for trapping and another independent nanofiber for optical coupling into and out of the toroid.

While it is possible to use just a single nanofiber serving the dual purposes of input-output optical

coupling to the toroid, and atom trapping2, the positioning of the nanofiber presents a compatibility

challenge that we will discuss later.

Figure 6.11 shows trap potentials using a set of ‘good’ parameters in our parameter scans, taking

into account multiple aspects of the scheme, including trap potential transition as one approaches the

microtoroid along the nanofiber, trap potential profile in the presence of Casimir-Polder forces near

the dielectric surfaces, toroid-fiber super-mode, and atom-photon coupling strength g. Fig. 6.11 a)

shows a close-up of a nanofiber next to a microtoroid, where in (i), the nanofiber is far enough from

the toroid that we treat it as a stand-alone nanofiber, and in (ii), the toroid-fiber gap is at its smallest:

here we treat (approximately) the toroid-fiber system as two parallel cylindrical silica waveguides

with fiber radius a = 215 nm, and toroid minor diameter Dm = 3 µm. At this closest approach

(ii), with a surface-to-surface gap of 400 nm, the parallel waveguide composite system supports two

modes polarized along the x direction, the even (symmetric) and odd (anti-symmetric) modes shown

in the two columns in Fig. 6.11 c), for the red-detuned (937 nm) and blue-detuned (687 nm) magic

2Note that this involves spectral filtering of the trapping beams (∼ 10 mW) to be decoupled to the probe beams
(∼ 100 fW) at the fiber input-output ports, requiring more than 11 orders of magnitude extinction ratio. This can be
achieved by using a cascade of volume Bragg gratings providing high transmission (diffraction) efficiency at the same
time. We used this in our fiber trap experiment discussed in Chapter 7.
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Figure 6.10: Nanofiber atom trap and microtoroid cavity scheme. a) Top view of exper-
imental setup for atom trapping next to a microtoroidal cavity using a tapered nanofiber. Right
diagram: Atom cloud transported by a free-space optical conveyor belt (one-dimensional dipole
trap lattice) formed by counter-propagating red-detuned beams (red arrows), which is loaded into a
nanofiber trap (formed by two pairs of red- and blue-detuned beams using our magic-compensated
scheme described in Chapter 7, red and blue arrows) as it is cooled by polarization-gradient cooling
beams (green arrows), and transported along the fiber by another optical conveyor belt to the toroid.
The gold mirror provides reflections of the cooling beams (green arrows) in the vertical plane, and
the copper plate provides thermal conductivity for cavity temperature control. b) Photon counts
measured at the output of the fiber coming from fluorescence of atom cloud in the conveyor belt
trap at the science chamber (overlaped with tapered fiber). The y-axis is the ratio of photon counts
with atom and without atom, Catom/Cnoatom. A resonant pumping beam that illuminates the atom
cloud and nanofiber in the cooling beam direction labeled (i) is turned on at t = 0.04 ms, and turned
off at t = 0.9 ms.

wavelengths along the two top and bottom rows, respectively. The color of the contour plots shows

the magnitude of the electric field |E|, as shown by the color bar at the bottom. In Fig 6.11 b),

the x axis origin is located at the axis of the nanofiber, so that the left end of the plot corresponds

to x1 = a = 215 nm, the nanofiber radius, and x6 = 615 nm is the microtoroid’s surface, with 400

nm surface-to-surface gap. The thick colored trap potential curves correspond to the ground-state

F=4 manifold. These curve appear to overlap with the thick black dashed curves, which represent

the ground-state F=3 manifold. Finally, the thin colored curves represent the excited state F’=4

manifold. The set of curves labeled (i) in Fig. 6.11 b) corresponds to the single-fiber (far from

toroid) case as shown in (i) in Fig. 6.11 a), while the set of curves labeled (ii) corresponds to the

closest approach case of the two parallel waveguide composite system. The line that appears at x2
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in Fig. 6.11 b) is part of the total potential U , which includes Casimir-Polder potentials of both the

fiber and toroid’s dielectric surface. The line at x2 shows that the potential U rapidly decreases as x

comes close to the nanofiber’s surface. The Casimir-Polder (surface) potential for the fiber’s surface

is taken into account as the stronger van der Waals potential (limit), U ≈ C3/(x − a)3 potential,

where a is the fiber radius, and C3 is the van der Waals coefficient with the value C3 = 1.13× 10−48

mK.m3 for ground-state, and C3 = 7.69 × 10−49 mK.m3 for excited state. The Casimir-Polder

potential near the toroid’s surface is calculated with the full calculation as described in Sec. 6.2.4.2.

The configuration used for this plot consists of counter-propagating red-detuned beams at λ = 937

nm, each with a power of Pred = 0.4 mW, and counter-propagating blue-detuned beams (λ = 937

nm, with small ∼ 100 GHz detuning), each with a power of Pblue = 10 mW.

In Fig 6.11 d), just as in part c) of the figure, x1 = 215 nm, x2 shows the rapidly decreasing

van der Waals potential near the fiber surface, and x6 = 615 nm shows the surface of the toroid.

The red colored trap potential curves are the same as the curves shown in part c), whereas the

blue colored trap potential curves are calculated with Pred = 0.36 mW each, Pblue = 11 mW each

(a 10% decrease and increase in the red-detuned and blue-detuned beam powers respectively), and

the green colored trap potential curves correspond to Pred = 0.44 mW each, Pblue = 9 mW each.

These different trapping beam power cases illustrate the sensitivity of the trap potential to changes

in powers at the ≈ 10% level. We note that, although the ground-state trap potential is degrading

but is still present as we go from green to red to blue curves, the trap potential for the excited states

degrades to become anti-trap for the blue curves. These degradations are caused largely by the very

strong Casimir-Polder force near the toroid’s surface, forming steep potential “cliffs”. While this

suggests increasing of the trap-to-toroid distance, for atom-photon coupling reasons we require the

trap-to-toroid distance to be small. For example, using the experimental parameters of Chapter 5,

we show the atom-photon coupling strength profile g in Fig. 6.11 d) showing the exponential decay

profile of the toroid’s evanescent field. The relevance and values at x3, x4, x5 are discussed below.

The compatibility challenge involves three key requirements that have to be satisfied simultane-

ously but are not necessarily compatible with each other:

• First, a good trap potential needs to be formed by the toroid-fiber composite system, taking

into account: the adiabaticity requirement for the trap potential transition as the toroid-to-

fiber distance decreases to the closest approach gap close to the microtoroid, moving along

the fiber; the optical supermodes formed by the electromagnetic field coupling between the

toroid mode and fiber mode especially at the small surface-to-surface gap distance required
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(gap < 500 nm); reasonable trapping beam power (≈ 10 mW), keeping in mind that the FORT

beam wavelengths have to be the magic wavelengths (e.g., 687 nm, 937nm for cesium D2 line)

to maintain atom transition frequency close to cavity resonance; and finally the minimum

limit of toroid-to-fiber distance due to the presence of Casimir-Polder potentials that create

potential ‘cliffs’ near the dielectric surfaces, destroying the optical trap potentials.

• While the first requirements argue for larger toroid-to-fiber gap distance, this second require-

ment necessitates smaller gap distance. In fact, here, the smaller gap may actually be better.

As expected, this second requirement is required to position the trapped atom close to the

toroid to achieve as strong coupling as possible. For our experimental parameters discussed

in Chapter 5, with a quality factor of Q ∼ 107 leading to a total cavity decay rate of κ/2π

= 20 MHz, the electric field mode profile for toroid principal diameter Dp = 24 µm and mi-

nor diameter Dm = 3 µm, we have that the atom-photon coupling parameter g is equal to

κ (i.e., g/2π = κ = 20 MHz) at atom-to-toroid distance of x6-x3 = 244 nm. For g/2π = 30

MHz and 45 MHz, the atom-to-toroid distances are (x6-x4) = 184 nm and (x6-x5) = 122 nm,

respectively.

• The third, last but certainly not least requirement, is the critical coupling condition. While

this requirement may not be absolutely required depending on the specific experiment, the

fact is that the toroid-taper distance determines the extrinsic input-output coupling rate, κex.

As discussed in detail in Sec. 3.1.1.2, not only is there only a single toroid-taper distance that

provides critical coupling, but this location is quite sensitive to exact fabrication parameters

such as the principal diameter of toroid and nanofiber diameter, see Fig. 3.2. With the ≈ 5-

10% microtoroid dimensions fabrication uncertainty and ≈ 5% nanofiber diameter fabrication

uncertainty, this third requirement presents a significant constraint.

As can be seen from the above, the integration of a microtoroid cavity with a single nanofiber

facilitating optical input-output coupling and atomic trapping involves a compatibility challenge

as discussed above. While the three abovementioned requirements are each quite important and

critical, they are not necessarily compatible with each other —they may not all be satisfied or

optimized simultaneously. This presents a tough challenge which requires addition of more degrees

of freedom to allow the three-dimensional constraints to be tuned with a sufficient number of ‘knobs’,

or significant reduction in the experimental and fabrication uncertainties such that the optimization

may be done at the design and fabrication stage. At a more intrinsic and fundamental design level,
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one of the reasons these challenges arise is because of the fact that the composite system consists of

two parts, the microtoroid cavity, and the tapered nanofiber. A possible promising candidate that

offers a one-part cavity QED system is a photonic crystal cavity that is butt-coupled to an optical

fiber. Within this context, we investigate and discuss cavity QED platforms using nanophotonic

waveguides and cavities, discussed in Chapter 8.



165

(c)

(d)

(a)

300 400 500 600

0

0.15

0.3

0.45
U

 (m
K

)

x (nm)

0

30

60

90

g/2� (M
H

z)

x3 x4 x5x1 x6x2

400 600 800 1000

0

0.2

0.4

U
 (m

K
)

x (nm)

x6x1

(i)

(ii)

x2(b)

0-500 500
x (nm)

0-500 500

0

-500

500
x (nm)

y 
(n

m
)

0

-500

500

y 
(n

m
)

λ=937 nm
λ=687 nm

oddeven

(i)

(ii)

0.5 0.750.250 1 |E|

Figure 6.11: Trapping atoms near a nanofiber and a microtoroid. a) Schematic of a micro-
toroidal cavity and a nanofiber for trapping atoms in the evanescent field of the toroid’s whispering
gallery mode. b) Dipole trap potential U around the nanofiber far away from the toroid, using the
fundamental HE11 mode of the nanofiber (radius a = 215 nm) is shown by curve (i) in a) and b). The
left end of the plot is at x = x1 = 215 nm (the fiber’s surface), while x = x6 is the toroid’s surface
for the trap potential curve (ii) in b) and a), which takes into account the even and odd supermodes
as equal superpositions. The almost vertical line at x = x2 represents the Casimir-Polder potential
‘cliff’ that diverges to −∞ at the nanofiber surface. c) Electric field amplitude |E| profiles for the
lowest order even and odd supermodes for λ = 687 nm and 937 nm, treating the nanofiber and
toroid as two silica parallel cylindrical waveguides with diameters 430 nm and 3 µm respectively.
d) Trap potentials, U , at the closest approach plane (ii) in a), for F=4 ground state (thick colored
curves), F=3 ground states (black dashed curves), and F ′=4 excited states (thin colored curves).
The same set of red curves are shown in b) and d). The orange curve in d) shows the atom-toroid
coupling rate g, with g/2π = 20, 30, 45 MHz at x3, x4, x5 respectively. A typical experimental value
for the total cavity decay rate achieved for the toroid geometry considered as described in Chapter 5
is κ/2π = 20 MHz.


