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Chapter 2

Atom-photon interactions

2.1 Introduction

As discussed in Sec. 1.1.3.4, the realization of a scalable quantum network based on neutral atoms

consisting of N � 1 quantum nodes requires a significant shift of approach from conventional Fabry-

Perot cavity QED systems to a completely different platform in the world of nanophotonics, which

utilizes parallel on-chip lithographic fabrication technology. This thesis presents early investigations

of this emerging transition, focusing on three specific atom-nanophotonic platforms or systems using

microtoroidal resonators, nano-optical fibers, and nanophotonic crystals, all of which involve matter-

light interactions at the ∼ 100 nm scale.

In this regime of interactions between single atoms and nanophotonics, new issues previously not

as significant in conventional cavity QED systems arise, involving, for example, complex electromag-

netic field polarizations and atom-surface interaction effects. Although these issues bring about new

nontrivial challenges, the prospects are great and these challenges may even turn into opportunities

to increase our understanding in this regime, for example through potential precise measurement of

Casimir effects by a strongly coupled single-atom probe.

This chapter presents a brief overview of the three specific platforms investigated in this thesis,

and introduces the corresponding theoretical models and experimental setups for these systems.

Detailed discussions of specific experiments and theoretical studies are included in the subsequent

chapters.
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Figure 2.1: Overview of atom-photon interaction. a) Two level atom interacting with a single
photonic mode ap at rate g. b) Dressed atom energy levels Ejn where j = g, e for ground, excited
states (dashed lines: absent atom-photon coupling). c) Excited atom decay rate into the photonic
mode ap (e.g., waveguide mode, intracavity mode), Γp, and decay (loss) rate to the environment, Γ0.
The coupling rate between the mode ap and detector is κ, which is equal to Γp in direct detection,
but may be different than Γp for a cavity system. d) Probability Pe of an initially excited atom
to be in the excited state after a time givt where giv = 105MHz. (i) Atom free-space decay rate
Γ0/2π = 5.2 MHz. (ii) Enhanced decay rate Γp = 2Γ0. (iii) With g/2π = 105 MHz, κ/2π = 20
MHz, Γ0/2π = 5.2 MHz (Cesium D2 line) [5]. e) Atom-photon interaction strengths parametrized
by χ = Γp/Γ0 for waveguides 1. to 3. and cavities 4. to 8. Limits are discussed in main text. Inset:
Some data points showing χ realized in various experiments, 1a-1b: Nanofiber trap in [248] and [91],
also with the corresponding cooperativity parameter C for cavity QED systems with Fabry-Perot
(5a) [33], Microtoroid (7a-7b) [9] and [5].
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2.2 One atom and a single photonic mode

Consider a simple system that consists of a two-level atom and a single (quantized) electromagnetic

field mode as depicted in Fig. 2.1 a). The system is described by the Jaynes-Cummings Hamiltonian

that describes the atom-photon interaction by an electric dipole interaction Hamiltonian, Hint, which

is given by the rotating wave approximation [114]:

Htot = Hatom +Hphoton +Hint (2.1)

=
1

2
~ωaσz + ~ωa†pap + ~g(apσ

+ + a†pσ
−) (2.2)

where σ± are Pauli spin-flip operators for the atom, ap is the annihilation operator for the photonic

mode of frequency ω, and Hint is the interaction Hamiltonian representing absorption of a photon

and excitation of the atom from the ground state |g〉 to excited state |e〉 for (apσ
+) and the converse

for (a†pσ
−). The atom-photon coupling strength is given by ~g = 〈~d · ~E〉, where g is the coupling

rate and ΩR = 2g is the one-photon Rabi frequency. The atomic dipole moment operator is given

by ~d = −e~r = ~dge(|g〉〈e|+ |e〉〈g|), where e is the electron’s charge, ~r is the relative coordinate core-

valence electron, ~dge is a real numbered vector (not an operator) with direction given by the dipole

polarization axis and the magnitude given by the dipole matrix element for the transition between

|g〉 and |e〉. The matrix elements dge can be calculated by using the Wigner-Eckart theorem and

Clebsch-Gordan coefficients for the atomic transitions. Note that without loss of generality, we have

chosen the matrix element g to be real. Furthermore, since we are considering frequencies close to

the atomic resonance, (ω−ωa)� ωa, we have applied the rotating wave approximation by omitting

the terms apσ
− and a†pσ

+ as they evolve at optical frequencies (ωa + ω).

Solving for the energy eigenstates of the Hamiltonian given in Eq. (2.2) [165], we obtain:

E1n = ~(n+
1

2
)ω +

1

2
~ΩR′ and E2n = ~(n+

1

2
)ω − 1

2
~ΩR′ , (2.3)

where ΩR′ =
√

∆ω2 + 4g2(n+ 1) is the generalized Rabi flopping frequency, with ∆ω = ω− ωa the

frequency detuning and n the total number of excitations in the system. The eigenenergies of these

dressed states are plotted as a function of ωa for (n− 1), n, (n+ 1) excitations in Fig. 2.1 b). Note

the anti-crossings evident on resonant (ωa = ω).

Substituting the eigenstates into the Schrödinger equation, we obtain [165] the time-evolution of

the dressed state system. For zero initial photon number and a resonant atom initially in the excited
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state, the probabilities of exchanging the excitation between the atom and photon mode are:

Pg(t) = sin(gt) and Pe(t) = cos(gt), (2.4)

which show Rabi flopping at the Rabi frequency, due to the vacuum fluctuations in the electromag-

netic field, which stimulate an excited atom to emit via a spontaneous emission process.

Although the above simple atom and single photonic mode system is powerful and is intuitive,

it is a quite challenging system to realize in practice. This is because, in reality, there are typically

numerous modes that all interact with an atom. All of these modes make up a continuous spectrum

of vacuum fluctuations that all attempt to make an excited atom Rabi flop. The resulting sum of all

of the continuums of probability amplitudes that interfere give rise to the more commonly observed

exponential decay of an excited atom by dissipating the energy irreversibly into its environment.

The challenge and goal, then, is to realize a system where the coupling strength between the atom

and a particularly chosen single photonic mode (e.g., single mode defined by an optical fiber) is

much stronger relative to all other dissipative channels such as the vacuum/environment. One of

the focuses of this thesis is to investigate and experimentally demonstrate systems that span this

coupling strength ratio from small to one of the largest achieved to date. One figure of merit that

can be used to compare various systems spanning orders-of-magnitude in coupling strength is the

ratio between the atom’s decay rate into the single photonic mode, Γp and the decay rate into all

other dissipative modes of the environment, Γ0, which leads to irreversible loss of information. This

ratio,

χ ≡ Γp/Γ0, (2.5)

includes various types of single photonic mode (e.g., optical fiber mode, nano-waveguide mode, opti-

cal cavity mode), various types of loss modes (e.g., vacuum, surface modes in cases where the atom

is in proximity to a material surface), and various types of enhancements (e.g., ultra-high intensity

and small optical mode volume systems, sub-diffraction limit systems, cavity enhancement, and

band-structure enhancement). An overview is presented in Fig. 2.1 e) that includes various different

platforms discussed in more detail in Sec. 2.5 and the corresponding ranges of the χ parameter.

Fig. 2.1 c) shows a general schematic of the systems considered in this thesis, which consist of an

atom and a single photonic mode ap that is coupled to the detector at a rate κ. The atom decays

into the good single photonic mode at a rate Γp, and (is lost) into the environment at a rate Γ0.

In the subsequent chapters, we look at quantitative ways to descibe the system from the weak
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coupling regime (g � κ,Γ0) all the way to the strong coupling regime (g � κ,Γ0). Recall that g is

the rate of coherent exchange of excitation between an atom and the single mode ap, with the Rabi

flopping frequency ΩR = 2g.

2.3 Interaction in the weak coupling regime (g � κ,Γ0)

In Sec. 2.2, we discuss how an initially excited atom Rabi flops purely due to vacuum fluctuations

of a single photonic mode. In most realistic cases however, the atom interacts with a continuum of

modes of its environment, which leads to an exponential decay of the excited state probability. A

simplified but intuitive way to describe this quantitatively is to apply the Fermi Golden Rule (in

first order perturbation theory) [165]:

Γ =
dPe→g

dt
= 2π

|〈~dge · ~E〉|2

~2
D(ω) = 2πg2(ω)D(ω), (2.6)

where we have used the perturbing Hamiltonian Hint = ~d · ~E in g = 〈~d·~E〉
~ =

〈~dge·~E〉
~ , where ~dge is the

dipole matrix element number with the direction of the atomic dipole polarization. The density of

states, D(ω), describes the number of final states per unit energy that the atom can decay into (at

optical frequency ω), and Pe→g is the transition probability from |e〉 to |g〉.

Although using Fermi’s Golden Rule to compute Γ is intuitive and highlights the key factors

affecting the decay rate Γ, namely the strength of the coupling g and density of states D , it assumes

that the initial atomic state probability remains equal to unity rather than decaying exponentially.

Hence it is valid only for times short enough that the excited state population is not significantly

depleted [165]. A more general approach is given by the Weisskopf-Wigner theory, which does predict

exponential decay of the initial state, and is valid over long time responses. Note that in addition to

a decay, the Weisskopf-Wigner theory predicts a frequency shift due to the interaction of the atom

with the vacuum fluctuations, known as the Lamb shift. For an atom in free-space, it can be shown

[165] that the spontaneous decay rate is given by

Γ =
ω3

ad
2
ge

3πε0~c3
≡ γ0, (2.7)

where ε0 is the vacuum permittivity. This result for free-space spontaneous emission rate of an atom

is called Einstein’s A coefficient. As discussed previously, the spontaneous emission of an atom is

not an intrinsic property but depends on the atom’s environment. A nice simple example is a system
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that consists of an atom positioned inside an optical cavity with quality factor Q and optical mode

volume Vm. It can be shown that in this case [190]:

Γcav(ωc = ωa)

γ0
= Fp =

3Q

4π2

(
λ3

Vm

)
, (2.8)

where on resonance (cavity resonance frequency ωc is equal to atomic transition frequency ωa), we

see enhancement of spontaneous decay rate by the Purcell factor (Fp), Γcav/γ0 = Fp, as the density

of state is enhanced by the cavity —the Purcell effect [190]. Note that an implicit assumption in

the above equations is that the material presence of the cavity does not alter the atom’s electronic

states and dissipative decay rates γ0. As we will discuss in later sections, this assumption may

break down in nanophotonics, where the atom’s proximity to material surfaces can be sufficiently

close that the dissipative decay rates can be modified say by the presence of surface modes, and

the internal state of the atoms may be affected by Casimir effects between the atom and material

surfaces. In this case, the free space decay rate γ0 becomes Γ0, which may be larger or smaller than

γ0 depending on the surrounding environment. We note that this effect of modification to γ0 involves

multi-level atom description. In addition to enhancement of atom spontaneous emission, inhibition

can also occur when the density of states that the atom can decay into is suppressed by the cavity,

for example, if the lowest electromagnetic field frequency supported by the cavity is higher than

the atom’s transition frequency. Inhibited spontaneous emissions1 were first demonstrated in 1974

by Drexhage [70], and in the 1980s by Kleppner [137, 109] and Gabrielse [84]. Enhanced atomic

spontaneous emission in a resonant cavity was first observed in Rydberg atoms of sodium by Haroche

[94, 195].

Treating a two-level atom in a cavity with Γ0 (atom’s spontaneous decay rate in its specific

surrounding environment) and κ (cavity decay rate), we can describe the dissipative system by

using the master equation [23] (at zero temperature):

∂

∂t
ρ = −i~[Htot, ρ]−Γ0

2
[σ+σ−ρ(t)+ρ(t)σ+σ−−2σ−ρ(t)σ+]−κ

2
[a+aρ(t)+ρ(t)a+a−2aρ(t)a+], (2.9)

where Htot is given by Eq. (2.2), Γ0 is the coupling of the atom to the environment (loss channels),

1Drexhage et al. in 1974 studied the fluorescence of a dye film on a mirror and observed an alteration of the
fluorescence lifetime arising from the interference of the molecular radiation with its surface image [70]. Large inhibition
of spontaneous emission was first clearly observed by Gabrielse and Dehmelt where a single electron confined in a
Penning trap was shown to have a lifetime up to ten times longer due to inhibition of spontaneous emission by the
cavity formed by the electrodes [84]. In the experiment by Kleppner et al., Rydberg atoms were placed between two
parallel conducting plates that led to a longer excited state lifetime by a factor of 20 due to inhibited spontaneous
emissions by the cavity [109].
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and κ is the coupling of the system into the output mode (detector) as illustrated in Fig. 2.1 c). In

this case, the general solution [23] for the probability amplitude of the atom in the excited state is

given by:

ce(t) = ce1e
α1t + ce2e

α2t, (2.10)

where

α1,2 = −1

2

(
Γ0

2
+
κ

2
+ i∆ω

)
± 1

2

[(
Γ0

2
+
κ

2
+ i∆ω

)2

− 4g2

]1/2

, (2.11)

with some coefficients ce1 and ce2. The probability for the atom in the excited state is given by

Pe(t) = |ce(t)|2. A few example cases that illustrate the behaviour of Pe(t) based on Eq. (2.10) are

shown in Fig. 2.1 d) showing free-space cesium atom exponential decay (ce1 = 0, ce2 = 1,Γ0 = γ0 =

5.2MHz, κ = 0) in i, and with κ = Γp = 2Γ0 in ii, the rest of parameters being the same as in i. In

the second case, ii, the decay rate is dominated by κ which in this case is set to Γp = 2Γ0. This

illustrates the enhancement of the decay rate into a single photonic mode, resulting in a total atom

decay rate of Γtot = 3Γ0. In these cases, we have assumed the weak coupling regime, g � κ,Γ0.

The case for the strong coupling regime where g � κ,Γ0 is discussed in the next section.

2.4 Interaction in the strong coupling regime (g � κ,Γ0)

In the strong coupling regime where g � κ,Γ0, Eq. (2.11) reduces to

α1,2 = −1

2

(
Γ0

2
+
κ

2
+ i∆ω

)
± ig, (2.12)

which leads to a damped oscillation of Pe(t) with the Rabi frequency ΩR = 2g with a damping

constant (Γ0 + κ)/4. Some example cases of Pe(t) are shown in Fig. 2.1 d), iii, for a cesium atom

coupled to a microtoroidal resonator using the experimental parameters discussed in Chapter 5 of

this thesis (ce1 = ce2 = 0.5, g = 105MHz, κ = 20MHz,Γ0 = 5.2MHz). This corresponds to a cesium

atom located at about 100nm from the surface of the microtoroid.

As discussed in Sec. 2.2, the realization of atom-photon interaction in the strong coupling regime

requires a strong enhancement in the density of states for an atom to decay into the photonic (single)

mode, relative to all other dissipative channels into the environment. One powerful technique to

realize such a system is to use a high quality optical resonator, where an atom can be coupled to the

photonic cavity mode much more strongly than the coupling to its environment. In the subsequent

sections below, we discuss in more detail the qualities and relevant figure of merits, firstly of an
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optical cavity, and secondly in connection to the strength of atom-photon interaction.

2.4.1 Optical cavity

An optical cavity can be thought of as a photonic trap, where, upon entering a cavity, an input photon

gets ‘trapped’ within the electromagnetic mode volume of the cavity, as it bounces around inside the

cavity for a large number of times before it can escape out of the cavity. Some examples of optical

cavities are illustrated in Fig. 2.3. As more photons enter the cavity as the intracavity photons

are bouncing around, the intracavity power continually build up until it reaches an equilibrium,

where in this steady-state condition, the rate of increase in intracavity power due to new incoming

photons, equals the rate of energy dissipation due to intracavity losses such as material absorption

or radiative loss, and outcoupling of the intracavity photons as they escape the cavity. We will now

proceed to describe the aforementioned mathematically.

Two figure of merits of an optical cavity are its finesse, F and quality factor, Q. The cavity

finesse is the number of bounces an intracavity photon will make before its probability of escaping

the cavity are 1/e. It is a measure of how small the total losses of the cavity is (both due to intrinsic

losses such as absorption and radiative loss, as well as extrinsic coupling to the input/output port).

The cavity finesse is related to the cavity free spectral range wavelength and angular frequency,

∆λFSR and ∆ωFSR, and the full-width-half-maximum, δλfwhm and δωfwhm by:

F =
∆λFSR

δλfwhm
=

∆ωFSR

δωfwhm
. (2.13)

In contrast to the cavity finesse (F ) which is independent from the cavity length, the cavity quality

factor (Q) depends on the cavity length, Lcav. This is because the quality factor measures the

cavity’s ability to store energy. It is equal to 2π times the ratio of stored intracavity energy to the

energy loss per oscillation cycle. Here, an oscillation cycle refers to the field oscillation cycle, not

the cavity round-trip cycle. The cavity quality factor Q is given by:

Q = F
ncavLcav

λcav
=

ωcav

δωfwhm
=

λcav

δλfwhm
= ωcavτ, (2.14)

where ωcav and λcav are the resonant angular frequency and wavelength of the cavity mode respec-

tively (ω = 2πc/λ), for optical frequency ν), ncav is the refractive index of the cavity medium and

Lcav is the total round-trip cavity length. For example, Lcav is equal to twice the physical linear

length of a Fabry-Perot cavity, and it is equal to the effective circumference of a microtoroidal cavity.
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The cavity lifetime, τ , describes the 1/e decay time of the cavity photons. For example, for a cavity

with initial N0 number of photons, the number of photons after time t is given by N(t) = N0e
−t/τ .

The free spectral range and full width half maximum quantities are given by:

∆λFSR =
λ2

cav

ncavLcav
, ∆ωFSR =

c

ncavLcav
(2.15)

δωfwhm = 2κ, δλfwhm =
λ2

cav

c
2πδωfwhm, (2.16)

where c is the speed of light in vacuum, and where we have used first-order Taylor expansion

dλ = c
f2 df = λ2

c df . Note that the cavity lifetime τ is related to the linewidth by τ = Q/ω = 1/(2κ).

The quantity κ represents the total decay rate of the cavity field amplitude. It can be decomposed

into intrinsic and extrinsic loss rates as κ = κi + κex, where intrinsic losses include material and

defects absorption and radiative losses, and extrinsic loss is given by the coupling rate of the cavity

to the input/output optical port. Correspondingly, we can define intrinsic and extrinsic quality

factors:

κ =
πc

λcavQ
, κi =

πc

λcavQi
, κex =

πc

λcavQex
, (2.17)

where Q is the total quality factor, and Qi and Qex are the intrinsic and extrinsic quality factors.

Note that ω and κ have angular frequency units.

With the above parameters, we now look at the cavity power build up factor, which is the ratio

of the intracavity circulating power (Pcirc) to the input power (Pin). An approximate solution is

simply given by Pcirc/Pin = F/π, where F is the cavity finesse. The exact solution is given by

[134]:

Pcirc

Pin
=
c∆λFSR

λ2
cav

1

τex

(
1

2τi
+

1

2τex

)−2

=
2λcav

πncavLcav
Qex (1 +Qex/Qi)

−2
. (2.18)

2.4.2 Cavity QED

In the previous section, we discussed the parameters that are important in determining the perfor-

mance of an optical cavity. In this section, we consider placing a single atom inside the electromag-

netic field mode volume of an optical cavity, and discuss the various parameters that are important

in characterizing the performance of such a cavity QED system. There are four critical parameters

that determine the nature of atom-photon interactions in a cavity QED setting. Firstly, we consider

the number of times an intracavity photon bounces around and hence interact with a single atom.

This is given by the finesse of the cavity, F , which is proportional to the quality factor Q according

to Eq. (2.14). The larger the Q is, the stronger the atom-photon interaction will be. Secondly, the
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strength of atom-photon interaction is determined by the energy density associated with a single

photon distributed within the cavity’s mode volume, Vm. The smaller the mode volume Vm is, the

stronger the interaction between a single atom and a single photon will be. Thirdly, in realistic

cavities, there are are some distributions of electric field strength within the mode volume of the

cavity. For example, in a Fabry-Perot cavity like one shown in Fig. 2.3 a), the electric field strength

| ~E(~ra)| varies as a function of space. In the transverse direction, depending on the atom’s position

~ra, the electric field strength varies from a small value at the tail of the Gaussian intensity profile,

to a maximum at the center of the Gaussian intensity profile. Along the longitudinal direction, it

varies from zero at the nodes of the standing-wave and maximum at the antinodes. This behavior

is quantitatively specified by the ratio | ~E(~ra)|/| ~Emax|. The larger this ratio is, the stronger the

atom-photon interaction will be. Fourthly, we consider the size of the atomic dipole moment. The

larger the value of the dipole moment, the stronger the interaction between the atomic dipole and

the electromagnetic field, as expected.

As discussed previously in this chapter, the strength of atom-photon interaction is quantitatively

described by the coupling parameter g, which is directly related to the Rabi flopping rate ΩR = 2g

that represents the frequency at which an excitation is exchanged between a single atom and the

photonic mode of the cavity. This coupling strength parameter g is given by [224]:

g(~ra) = Γ0⊥(~ra)| ~E(~ra)/ ~Emax|
√
Va(~ra)/Vm, (2.19)

where Γ0⊥(~ra) is the atom transverse decay rate into all other channels other than the cavity mode

that may depend on the atom’s position ~ra. The transverse decay rate is given by Γ0⊥(~ra) ≥ Γ0(~ra)/2

where Γ0(~ra) = Γ0‖(~ra) is the spontaneous decay rate into the environment, also known as the

longitudinal decay rate [227]. This is because Γ0 = Γ0‖ is the rate of relaxation of the z-component

of the Bloch vector to the ground state, whereas Γ0⊥ is the rate at which coherences damp, which

is damping in the direction transverse to the z-axis of the Bloch vector. Note that the longitudinal

relaxation time (from excited to ground state) is given by T1 = 1/Γ0 and the transverse relaxation

(dephasing) time T2 = 1/Γ0⊥. For a cesium D2 line in vacuum (free-space), Γ0⊥/2π = γ0⊥/2π =

2.61 MHz. Note that γ0 represents the decay rate in vacuum (free-space), while Γ0 represents the

decay rate into the environment given the atom’s specific position and surrounding, which may be

larger or smaller than γ0. For example, if the atom is in close proximity to a dielectric surface, Γ0

may be larger than γ0 because of the increased density of states that the atom can decay into, such

as into the surface modes of the dielectric. The other terms in Eq. (2.19) are | ~E(~ra)|, the electric field
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strength at ~ra, | ~Emax|, the maximum electric field strength of the cavity mode, Va, the characteristic

atomic interaction volume, and Vm, the cavity electromagnetic mode volume, given by:

Va(~ra) =
3cλ2

a

4πΓ0⊥(~ra)
, Vm ≡

∫
VQ
ε(~ra)| ~E(~ra)|2d3~ra

| ~Emax|2
, (2.20)

where VQ represents a quantization volume of the electromagnetic field and ε(~ra) = (n(~ra))2 is the

relative permittivity, which is the square of the refractive index at ~ra.

Taking into account the decay or dissipative rate of the cavity, κ = κi + κex, another important

parameter that describes the strength of atom-photon interaction in the cQED setting (relative to

the loss channels), is the so-called cooperativity parameter, C, which is given by:

C(~ra) =
g(~ra)2

2κΓ0⊥(~ra)
=

3λ3
a| ~E(~ra)/ ~Emax|2

8π2

Q

Vm
, (2.21)

where we note that C ∼ | ~E(~ra)/ ~Emax|2Q/Vm. The enhancement of the atomic decay rate into

the cavity mode is given by the Purcell factor, PF = 1 + 2C = Γp/Γ
′
p, where Γ′p is the decay

rate without the cavity enhancement. For example, consider an atom in free-space with a decay

rate of Γ0 = γ0. Placing a relatively macroscopic Fabry-Perot cavity surrounding it, that lead

to a cooperativity parameter of C = 10, will enhance the decay rate into the cavity mode to be

Γp = PFΓ0 = 21Γ0 = 21γ0. As another example, consider an atom located in close proximity

to an optical nanofiber waveguide, which is coupled to the waveguide through the sub-wavelength

evanescent field surrounding the single-mode nanofiber. Without a cavity, the decay rate into the

environment is enhanced due to the presence of the dielectric surface, for example Γ0 ≈ 1.5γ0. Now

because of the strong intensity of the nanofiber mode (i.e., the small effective area Aeff defined

below), then the scattering rate Rsc ∼ σ/Aeff becomes large and leads to an enhanced decay rate

into the nanofiber mode, say Γp = 0.2Γ0. In addition to all of these, suppose we add a pair of

mirrors on both ends of the nanofiber, forming a cavity, which leads to a cooperativity parameter

of C = 10. Then, for this nanofiber cQED system, the decay rate into the cavity mode will be

Γp = PFΓ′p = (21)(1 + 0.2)Γ0 = (21)(1.2)(1.5γ0) = 37.8γ0.

The electromagnetic field effective area Aeff is defined by

Aeff = Aeff(~r) =
P

I(~r)
, (2.22)

where I(~r) is the electric field intensity at location ~r, and P is the propagating optical power in
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the direction of light propagation. For example, in a nanofiber, P is the optical power propagating

along the fiber axis, it does not include contributions from the transverse components of the Poynting

vector. This propagating power P is equal to the optical power measurable at the output of the

fiber, P = Pout.

Two important figure of merits that describe a cavity QED system are the critical photon number,

n0, and critical atom number, N0. The critical photon number corresponds to the number of photons

required to saturate an intracavity photon, while the critical atom number corresponds to the number

of atoms required to have an appreciable effect on the intracavity field. They are given by [224]:

n0 =
Γ2

0⊥
2g2

, N0 =
2Γ0⊥κ

g2
=

1

C
, (2.23)

where the dependence of the quantities on the atom’s location ~ra is implicitly assumed, and C is

the cooperativity parameter. In cQED systems with strong atom-photon couplings, these numbers

can be very small. For example, for a microtoroidal cavity QED systems, they can take the values

of n0 ∼ 10−3 − 10−5 photons and N0 ∼ 10−2 − 10−7 atoms.

Finally, we note that in cavity QED systems in weak to intermediate coupling, the Purcell factor is

an especially important parameter that measures the strength of the atom-photon interaction, where

the coupling strength increases with increasing PF. In the strong coupling regime, the condition

requirement is more strict, and the important parameter is the coupling rate g, which is compared

to all other dissipative rates κ and Γ0. The criterion for strong coupling regime is

g � κ,Γ0. (2.24)

Here, the coherent Rabi flopping process of excitation exchange between a single atom and the cavity

field mode dominates over all other dissipative processes, including losses of information by decay

processes into the environment, by absorption of materials and defects, and by the coupling into the

input/output port of the cavity. In this case, the time evolution of the system involves oscillations

in the atomic excited state probability at the Rabi flopping frequency ΩR as shown in Fig. 2.1 d)

curves iii and iv.
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2.5 Platforms for atom-photon interactions

In this section, we present an overview of various atom-photon interaction platforms, including the

platforms specifically investigated in this thesis, namely microtoroidal cavity QED, optical nanofiber,

and nanophotonic waveguides and cavities. As with Sec. 2.1 and Fig. 2.1 e), the idea is to give

a broad perspective comparing the range of atom-photon interaction strengths and the benefits,

disadvantages, challenges and limitations of the various types of platforms, which span orders of

magnitudes. As such, the emphasis here is more on the qualitative behavior and features of the types

of platforms, the key factors involved in each type, and rough or order of magnitude comparisons,

instead of precise quantitative investigations, which will be discussed in more detail in the subsequent

chapters.

The basic diagram of the system is shown in Fig. 2.2 a), and consists of a single (two-level) atom

with transition frequency ωa between the ground (|g〉) and excited (|e〉) states, which interacts with

a single photonic mode ap. Note that, more precisely, it consists of four modes, two forward- and

backward-propagating modes at the input side and two forward- and backward-propagating modes

at the output side. For a single sided excitation (from the input side), this leads to two measurable

quantities, namely transmission (of the input light after interaction with an atom) and reflection

(of the input light after interaction with an atom). For an input power Pin, it corresponds to the

transmitted power PT and reflected power PR, where Pin = PT + PR + P0, and P0 is the power loss

into the environment. The decay rate of an excited atom into the photonic mode is Γp, symmetrically

going into the forward and backward directions, each at a rate of Γp/2. The decay rate of the atom

into all other channels other than this photonic mode (i.e., into the environment), is given by Γ0,

which may be different than the free-space decay rate γ0 depending on the atom’s environment. As

discussed in Sec. 2.1, in an isolated single atom and single photonic mode coherent system absent of

any dissipations, the system is described by the Jaynes-Cummings Hamiltonian, which leads to Rabi

flopping oscillations at the Rabi frequency ΩR = 2g. In most realistic systems such as in free-space

or with nanophotonic waveguides (with the exception of strong coupling systems such as in certain

cavity QED systems), there exists a continuum of modes whereby all of the probability amplitudes,

each undergoing Rabi flopping, destructively interfere, and lead to an exponential decay behavior,

with the 1/e lifetime given by 1/Γp and 1/Γ0. For example, for the cesium D2 line, the free-space

natural linewidth is Γ0/2π = γ0/2π = 5.2 MHz, and the lifetime is 30.5 ns.

As illustrated in Fig. 2.2 a), in the weak coupling regime, where the atom decays exponentially

at some enhanced rate Γtot = Γp + Γ0, a measure of the strength of the atom-photon coupling into
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the photonic mode ap is χ = Γp/Γ0, which is determined by the electric field E(ωp) at the frequency

ωp and the electric dipole moment of the atom dge between the two states |g〉 and |e〉. In the

strong coupling regime, where the atom decays with Rabi oscillations resembling the pure Jaynes-

Cummings system, one could start modeling the system using the Jaynes-Cummings interaction

Hamiltonian Hint as given by Eq. (2.2), and including the relatively weak dissipations in the system

using techniques such as the master equation in Eq. (2.9). Here, the strength of the interaction is

more conveniently characterized by the coupling parameter g, which is related to the Rabi frequency

by ΩR = 2g.

In this section, we will first look at various platforms that do not involve any optical cavity,

which are mostly in the weak coupling regime. Here, we characterize the strength of atom-photon

interactions by the parameters Γp, and χ = Γp/Γ0, transmittance T = PT/Pin, and reflectance

R = PR/Pin. In the second subsection, we will look at various platforms that involve optical cavities,

which are mostly in the strong coupling regime. Here, we characterize the strength of atom-photon

interactions by the parameter g, which is related to the cooperativity parameter by C = g2/2κΓ0⊥

as given by Eq. (2.21), as well as by the parameter χ = Γp/Γ0, where Γp represents the atomic decay

rate into the cavity mode ap. Finally, in Fig. 2.1 e) we compare all of the platforms considered, from

the weak to strong coupling regimes, by the single parameter χ = Γp/Γ0.

2.5.1 Atom-photon interactions without a cavity

2.5.1.1 Free-space

We start by considering a very simple scenario of shining a collimated laser beam, say with a beam

radius of 1 mm, onto a single atom hypothetically held fixed in free-space. For simplicity, let us

assume that the laser power is very weak such that it is far below the intensity saturation threshold

of the single atom, and that the laser frequency is resonant to the atomic transition frequency. We

then ask the question: What fraction of power of the laser beam will be scattered by the single

atom? The answer to this is given by the ratio of the atom’s absorption cross-section area to the

beam’s cross-section area, the scattering ratio given by

Rsc ≡
Pout

Pin
≈ σ0

Aeff
, (2.25)

where σ0 = 3λ2

2π is the atom’s free-space resonant absorption cross-section area (that can be inter-

preted as the effective area of the atom for removing radiation from the incident light beam), and
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Aeff = πw2/2 is a Gaussian beam’s cross-sectional area, where w = Gaussian beam 1/e radius. For

cesium D2 line (λ = 852 nm) and σ0 ≈ 0.35 µm2. For our hypothetical example with w = 1 mm, Aeff

= 1.6 mm2, and the scattering ratio Rsc ≈ 2.2× 10−7, the answer to our question is essentially zero.

As evident from Eq. (2.25), an appreciable scattering ratio can only be achieved with Aeff ∼ λ2 ∼ 1

µm2.

In the spirit of increasing free-space incident light beam intensity, or in other words, decreasing

Aeff , let us now consider a system consisting of a pair of two focusing lenses with focal length f as

illustrated in Fig. 2.2 c), where a collimated beam, say out of a single-mode fiber, can enter the lens

from the left hand side Pin, focus down after a distance of approximately f , interact with an atom at

this location, diverge and get collimated by the second lens, and couple back into a single-mode fiber,

Pout. Although this technique significantly increases the atom-photon interaction strength, there are

fundamental limits to the inverse, due to two main reasons. Firstly, there is a limit to how much light

can be focused, the diffraction limit, Dbeam ∼ λ/2, where Dbeam is the beam’s diameter. Secondly,

as one confines the light beam (propagating electromagnetic field) into a very small space, complex

polarization structure emerges, which results, for example, in a significant electric field component

parallel to the wavevector of the beam. Because of these reasons, simple paraxial approximation

approaches of focusing light to a very high degree break down in this regime, and a more involved

model describing the system is required. This problem was first investigated in 2000 [243] and had

been investigated further experimentally in 2008 [233, 234], where the record light absorption by a

single Rubidium-87 atom trapped at the center between the pair of lenses is about 10%, that is, a

single atom transmittance of T = 0.90. Here, the probe light’s waist size is w ≈ 800 nm and λ =

780 nm.

For a system consisting of a single-mode input fiber, a pair of focusing lenses, and an output

single-mode fiber, as illustrated in Fig. 2.2 c), the scattering rate Rsc is given by [234]:

Rsc =
3

4u3
e2/u2

[
Γfn

(
−1

4
,

1

u2

)
+ uΓfn

(
1

4
,

1

u2

)]2

, (2.26)

where Γfn(a, b) =
∫∞
b
ta−1e−tdt is the gamma function, u = win/f is the focusing strength parameter,

win is the input collimated beam’s Gaussian 1/e beam radius (waist) and f is the focal length of

each of the two lenses. The transmission into the single-mode fiber at the output side, T = PT/Pin,

and reflection back into the single-mode fiber at the input side, R = PR/Pin are given by [234]:

T = (1−Rsc/2)2, R = R2
sc/4, (2.27)
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where Rsc is given by Eq. (2.26), and the fraction of power lost or scattered into the environment is

given by T0 = P0/Pin = 1− T −R where P0 is the amount of power lost into the environment. We

note that the emission of the atom is symmetric into the forward-propagating mode and backward-

propagating mode, such that the fraction of power emitted into the single-mode fiber (in both

directions) is equal to 2R. Now the ratio of the decay rate of the atom into the photonic mode (that

is into both the forward and backward directions of the single-mode fibers), Γp, to the decay rate

into the environment, Γ0, is given by:

χ =
Γp

Γ0
=

2PR

P0
=

2R

1− T −R
=

2R

T0
. (2.28)

The results for T,R, χ, along with the corresponding result for paraxial approximation χ′, using

paraxial approximation scattering rate R′sc = 3u2 are shown in Fig. 2.2 d). We see that the highest

possible value for χ is χmax = χ(u = 2.24) = 2.7 at u = 2.24. The record experimental result

demonstrated in [233] is shown in Fig. 2.2 d) at point (i), with u = 0.31 and T = 1 − 0.104. This

was achieved using an incident ‘collimated’ probe beam (λ = 780 nm) of radius win = 1.4 mm,

focused down to wf = 800 nm. The discrepancy from the theoretical prediction of Tpred = 1−0.2299

is attributed to non-ideality of the lenses used and reduction of the interaction strength due to

the motion of the atom in the dipole trap formed at the focus of the pair of lenses, which has an

estimated temperature of ∼ 100 µK [233].

2.5.1.2 Nanophotonic waveguides

In Sec. 2.5.1.1, we discussed reducing the effective photonic mode area, Aeff by using an increasingly

strong focusing parameter u, to increase the atom-photon interaction strength. We noted that one of

the ultimate limits of this approach is the diffraction limit Dbeam ∼ λ/2, where Dbeam is the beam’s

spot size diameter. In this section, we explore platforms based on nanophotonic waveguides such as

an optical nanofiber, a nanobeam, or a nanobeam with periodic structure forming a photonic crystal,

where an atom can interact with evanescent fields of the modes that are sub-diffraction-limited. This

allows for potentially stronger interactions than those possible in the free-space systems discussed

in Sec. 2.5.1.1.

A nanophotonic waveguide system using a tapered optical nanofiber is illustrated in Fig. 2.2 e),

and one using a nanobeam (without or potentially with periodic structure forming a photonic crystal)

in Fig. 2.2 f). As in Sec. 2.5.1.1, an atom now coupled to the evanescent fields of the single-mode

nano-waveguides can absorb an incident photon and emit back into the nanoguide mode at a rate of
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Γp/2 in the forward direction, and Γp/2 into the backward direction, and it can also emit into the

environment at a rate of Γ0. Also as discussed in Sec. 2.5.1.1, the atom-photon coupling strength

affects the transmittance T = PT/Pin, reflectance R = PR/Pin, and power fraction lost into the

environment T0 = P0/Pin for a given incident input power Pin. We note that PT = ~ωaΓp/2,

PR = ~ωaΓp/2, and P0 = ~ωaΓ0, and T + R + T0 = 1 by conservation of energy. We should stress

that in these types of systems, the important parameters involve all of T,R, T0 (three parameters),

not just one scattering ratio parameter Rsc = Pout/Pin as in the case of simple (weak) free-space

interaction between a beam of light and atoms, because while in such cases it is implicitly assumed

that any light absorbed by the atom will be lost (scattered) into the environment, in more strongly

coupled systems such as these nanoguide systems, the emission from the atom may go into the

nanoguide’s mode with non-negligible probability.

Now consider a silica optical nanofiber system with fiber radius a = 200 nm. Here, there are

multiple factors that are important in determining the dynamics and strengths of atom-photon

coupling for an atom located in close proximity to the nanofiber, overlaping with the evanescent

field of the nanoguide. Firstly, due to the strong transverse confinement of the fiber mode field,

a high intensity (small Aeff) can be achieved, increasing the strength of atom-photon interaction.

Secondly, the significant longitudinal component of the electric field of the fiber mode leads to a

transverse component of the Poynting vector, which interacts with the atom. Thirdly, the presence

of the dielectric surface of the nanofiber modifies the spontaneous emission rate of the atom, Γ0 6= γ0

(see Fig. 5.1 (c) (iii)). And finally, the multilevel structure of a real atom also needs to be taken into

account. All of these aspects, for the case of a fiber with radius a = 200 nm, and a cesium atom

probed at D2 line, λ = 852 nm, are investigated in [126]. The results are shown in the top plot of

Fig. 2.2 g) for the transmittance, T , reflectance, R, and atomic decay rate ratio χ = Γp/Γ0 where

Γp is the decay rate into the fiber mode (Γp/2 into the forward and backward directions each) and

Γ0 is the decay rate into the environment, taking into account the presence of the dielectric surface

of the fiber. Note that all of the results are shown as dashed curves, with χ given by two curves

representing the maximum and minimum for different magnetic sublevels [126].

Given the full calculation results taking into account many factors important in nano-waveguide

systems [126], the goal now is to use this result as a basis to make estimations for similar systems in

similar length scales. To check how close these estimates can be, we first would like to check them

against the full calculation result itself. Our estimation procedure is the following: First we take the

value for Γp at the surface of the (radius a = 200 nm) nanofiber, Γp,0 = (0.48+0.31)/2γ0 = 0.395γ0,
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which is computed using the full calculations in [126] for cesium D2 transition. The averaging gives

the mean value across the range of Γp for different magnetic sublevels. Next, we know that Γp ∼ 1
Aeff

,

or equivalently we can write Γp = A0
λ2

Aeff
with A0 a proportionality constant [42]. Note that λ2 is

just a normalization factor for the effective area Aeff . At λ = 852 nm, this value is A0 = 0.16828.

Now independently, we can analytically calculate the effective area Aeff for a nanofiber with radius

a = 200 nm, as a function of the atom-to-surface distance, d. The analytical equations describing a

nanofiber mode and also the effective area are discussed in detail in Chapter 7. Given this function

Aeff for this specific fiber geometry, we can then solve for the proportionality constant A0 given

the explicit value of Γp,0. Next, we independently calculate the modification of the decay rate into

the environment, Γ0 (we used Γ0‖) for a cesium atom near a silica dielectric surface, as discussed

in Sec. 6.2.4.1 and shown in Fig. 6.1. With this, we plot the resulting (estimated) decay rate ratio

χ = Γp/Γ0, shown as the solid red curve in the top plot of Fig. 2.2 g). Finally, the transmittance T

and reflectance R are given by [42, 41]:

T (Γp,Γ0,∆ω) =
Γ2

0 + 4∆ω2

(Γ0 + Γp)2 + 4∆ω2
(2.29)

R(Γp,Γ0,∆ω) =
Γ2

p

(Γ0 + Γp)2 + 4∆ω2
, (2.30)

where ∆ω = ω − ωa the detuning between the probe beam frequency ω and the atomic resonance

frequency ωa. In our calculations, we express Γp and Γ0 in units of the free-space unmodified decay

rate γ0. The estimation results based on the aforementioned procedure are shown as solid curves in

the top plot of Fig. 2.2 g) on resonant (∆ω = 0). For comparison, we include the simple scattering

ratio R′sc = σ0/Aeff where σ0 = 3λ2

2π is the resonant absorption cross-section of an atom in free-space,

where we see that this simple model for absorption (1 − R′sc = PT/Pin = T ) deviates significantly

from the full-model T especially for decreasing atom-to-surface gap, d. We note that on resonant

(∆ω = 0), Eq. (2.29) and Eq. (2.30) reduce to:

T (χ) =
1

(1 + χ)2
(2.31)

R(χ) =
χ2

(1 + χ)2
, (2.32)

where χ = Γp/Γ0 is the ratio of the decay rate into the chosen ‘good’ photonic mode to the decay

rate into the environment (irreversible dissipation rate), T = PT/Pin is the transmittance, and

R = PR/Pin is the reflectance.
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As shown in the top plot of Fig. 2.2 g), although there is a slight deviation between the aforemen-

tioned estimation procedure results to the full results of [126] for the case of a nanofiber with radius

a = 200nm, the estimates are good up to a few percent, and they are significantly different to the less

precise simple model based on the simple scattering ratio R′sc = σ0/Aeff . Using the same estimation

models and A0 parameter as described above, we now change the effective area profile Aeff = Aeff(d),

for nanofibers with radius a = 250 nm, and a = 215 nm, which are the dimensions for the nanofiber

atom trapping experiments in [248] and [91] respectively. The results are shown in the bottom plot

of Fig. 2.2 g), where the bottom curves correspond to the [248] experimental parameters, and the

top curves correspond to the [91] experimental parameters. The region in between the two curves is

shaded for a visual guide. We note the deviations from the simple R′sc = σ0/Aeff model are shown

by the orange curves on the same plot. The points (i) and (ii) represent the experimental data of

measurements of absorption, 1 − T , for the two experiments, where atoms are located at the trap

minima at d = 230 nm and d = 215 nm respectively. We see that the measured result of [91], point

(ii), (1 − T )expt = 0.0769 (using single-atom optical depth d1 = 0.08, and T = e−d1), is in a good

agreement with the predicted value, (1 − T )pred = 0.0838. The measured result of [248], point (i),

(1−T )expt = 0.00648 (using single-atom optical depth d1 = 0.0065, and T = e−d1), is about a factor

of seven smaller than the predicted value, (1 − T )pred = 0.044. As mentioned in [248], one factor

that contributes to this difference is the inhomogeneous line broadening induced by the trapping

light. Where this broadening is absent, the absorbance is estimated to increase by a factor of 2.5

[248].

Finally in Fig. 2.2 h), we present a contour plot of χ = Γp/Γ0 as a function of λ2/Aeff and

d, the atom-to-surface distance, where we have used the values A0 and λ = 852 nm as described

above. We include in these contour plots the parameters corresponding to the experiments in

[248] and [91] labeled (i) and (ii) respectively, where (λ2/Aeff , d, χ) = (0.1389, 230nm, 0.0230) and

(0.2759, 215nm, 0.045). The quantities λ2/Aeff are calculated analytically using the model described

in detail in Chapter 7. As discussed above, we note that while this prediction agrees with the

experimental result of [91], point (ii), the prediction does not agree with the experimental result of

[248]. One factor that causes this difference is the line broadening induced by the trapping light in

[248] as discussed above.

The results of Fig. 2.2 h) may be used for other nanophotonic waveguides that may have different

cross-sectional geometries such as a rectangle in a rectangular nanobeam, using the appropriate Aeff

profiles that depend on the material refractive index and exact dimensions of the nano-waveguides.
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Although it is less precise than using a full model approach such as with Green’s functions [110], it

is useful to give estimations and comparisons of the strength of atom-photon interaction in various

nanophotonic waveguide designs. For the purpose of this section and in Fig. 2.1 e), we attribute a

range of χ between 0 and 1 for nanophotonic waveguide systems discussed.

We note that there has been recent interest in investigations of nanophotonic waveguides that

possess periodic structures that form band-structures [14, 159, 110]. In these systems, a large en-

hancement of the decay rate of the atom into the photonic crystal mode can be achieved by tuning

the band-structure such that the frequency associated with the atomic resonant frequency corre-

sponds to a small group velocity vg of the photonic crystal mode. More precisely, the enhancement

factor Γp/Γ0 is directly proportional to the inverse of the mode’s group velocity vg. These are

discussed in detail in [159, 110]. For practically realizable structures, enhancement factors of ∼ 10

are predicted, and an enhancement factor greater than 16 has been demonstrated in [14] at room

temperature for a photonic crystal point defects slab containing a GaInAsP quantum well. For

the purpose of this section, and in Fig. 2.1 e), we attribute an enhancement factor of up to 40 for

waveguides with band structure relative to the range of 0 < χ < 1 for nanophotonic waveguides

without any band-structure discussed in previous paragraphs. Hence, in Fig. 2.1 e), the range for χ

for a nanoguide with band-structure is shown to be between zero and 40.

2.5.2 Atom-photon interactions within a cavity

As discussed in Sec. 2.4, a proven approach to achieve strong coupling between a single atom and

a single photon is to use a high quality optical cavity, where a very high density of states for the

atomic decay into the cavity mode compared to all other modes lost into the environment can be

made very large, χ = Γp/Γ0 � 1. Generic features of such a cavity QED system involve a high

finesse (F ) optical cavity where photons can bounce inside the cavity mode for a large number of

times, as well as a small cavity field mode volume (Vm) leading to high electric field intensity at the

location of the atom from a single photon. In this section, we explore various cavity QED platforms

including a microtoroidal cavity QED platform that is one of the focuses of this thesis, and look at

the various key parameters including Q,Vm, C, χ, | ~E(~ra)/ ~Emax|, as defined and discussed in Sec. 2.4,

and illustrated in Fig. 2.3. We note that other parameters such as κ, κi, κex, g,Γp,Γ0, Pin, PT, PT,

and d (the atom-to-surface distance) are defined in Sec. 2.4; please refer to this section for detailed

information.
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Figure 2.2: Atom-photon interaction without a cavity. a,c,e,f) Atom interacting with
photonic mode ap, E(ωp) is the oscillating electric field at optical frequency ωp; σ− and dge are
atomic lowering operator and electric dipole moment; Hint: atom-photon interaction Hamiltonian;
Pin, PR, PT : input, reflected, transmitted optical power; Γp and Γ0 are decay rate into photonic
mode ap and decay (loss) rate into the environment respectively; Aeff and σ are photonic effective
area and atomic scattering cross-section respectively. c) f : focal length of the pair of lenses; win:
input Gaussian beam waist (radius) size. b) Cesium D2 line energy levels/manifolds. d,g,h) T,R:
transmittance and reflectance; RSc = σ0/Aeff , atom scattering rate, where σ0 is the atomic resonant
scattering cross-section. d) Results for strongly focused light; χ: full model; χ′: paraxial approxi-
mation; u = win/f , focusing strength; (i): Experimental result for T of [233]. Top g) Comparison
between our approximate model (solid curves) and full results of [126] (dashed curves). Bottom
g) Results using our model for parameters in [248] (fiber radius 250 nm) and [91] (fiber radius 215
nm) with measurements of (1− T ) shown by (i) and (ii) respectively. The variable d is the atom to
fiber’s surface distance. h) Contour plot of χ. Points (i) and (ii) correspond to parameters in [248]
and [91] respectively. g,h) As evident in g), the prediction model agrees with [91], point (ii), but
this is not the case for [248], point (i). This is discussed further in the text.
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2.5.2.1 Fabry-Perot cavity

A Fabry-Perot cavity QED system is illustrated in Fig. 2.3 a), which consists of a pair of highly

reflective mirrors with an atom positioned at the anti-node of the cavity’s standing wave mode. We

include the parameters achieved in the experiment described in [33, 131], where the reflectivity of

each mirror is 0.999 998 4, giving a finesse F = 4.2 × 105, mirror radius of curvature = 0.2 m,

cavity length of 44.6 µm, mode-volume of Vm = 3.0 × 104 ∼ 104 µm3, λ = 852 nm, quality factor

of Q = 2.2× 107 ∼ 107, and assuming that the atom is located (trapped) at the maximum electric

field such that | ~E(~ra)/ ~Emax| = 1. This leads to a coupling parameter g/2π = 19 MHz, κ/2π =

4 MHz, and C = g2/2κΓ0⊥ = 23 where Γ0⊥ = Γ0/2 = 2.61 MHz. This set of parameters from

the experiment in [33] is shown as the point a1 and line a1 in Fig. 2.3 parts e) and f) respectively.

As in the Fabry-Perot cavity system, the atom is located far away from any dielectric surface, the

spontaneous decay rate to the environment is given to a good approximation by the free-space decay

rate Γ0 = γ0, and there is no dependence on the atom-to-surface gap parameter d as with other

types of nanophotonic cavities discussed in later sections. We note that in a Fabry-Perot cQED

system, the mirrors of the cavity have to be stabilized to within 0.01 picometers to maintain the

cavity’s resonance frequency relative to the atomic transition frequency [33].

Stronger atom-photon coupling has been achieved using Fabry-Perot cavity QED systems, for

example in [107] with g/2π = 110 MHz, κ/2π = 14.2 MHz (Q = 6 × 106), and C = g2/2κΓ0⊥ =

163 where Γ0⊥ = Γ0/2 = 2.61 MHz. The ultimate limit due to a finite realistic Q/Vm ratio for a

Fabry-Perot cavity QED system (taking into account the mirrors and dielectric layer coatings of the

mirrors) as discussed in [106, 33] is Q/Vm ∼ 105.3 µm−3, which gives an atom-photon cooperativity

parameter of C = 5000 with | ~E(~ra)/ ~Emax| = 1. This is shown as the point a2 and line a2 in Fig. 2.3

parts e) and f) respectively.

2.5.2.2 Microtoroidal cavity

A microtoroidal cavity QED system is illustrated in Fig. 2.3 b), which consists of a monolithic

silica microtoroidal resonator that supports a circulating whispering gallery mode, which is optically

coupled to a tapered optical nanofiber at a rate of κex. The total cavity Q includes both the intrinsic

losses (due to material absorption, defect scatterrers and radiative losses) κi and extrinsic loss or

input/output coupling rate κex, which is tunable by the positioning of the nanofiber relative to the

toroid, which is discussed in more detail in Sec. 3.1.1.2. Note that the dominant source of intrinsic

loss is absorption of silica material, which is orders of magnitude larger than the radiation loss for
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typical toroid dimensions [224].

Due to its potential ultra high quality factors and small mode volumes, a microtoroidal cavity

QED system is very attractive, allowing potentially strong atom-photon coupling even surpassing

the practical limits of a Fabry-Perot cavity QED system. This, combined with the monolithic nature

and scalability of its parallel lithographic fabrication [240] makes it a particularly promising platform

for cavity QED.

In contrast to Fabry-Perot cavity systems, here an atom couples to the cavity mode via the

evanescent field that extends ∼ λ/2π ∼ 100 nm away from the surface of the toroid. In this

case, in addition to the spatially varying effective mode area Aeff = Pcav/Icav(~r) (where Pcav is

the circulating power of the cavity, and Icav(~r) is the intensity profile of the cavity mode as a

function of the coordinate ~r), Γp = Γp(~ra), and | ~E(~ra)/ ~Emax|, the decay rate into the environment,

Γ0 = Γ0(~ra) = Γ0(d) also depends on the atom’s location ~ra (see Fig. 5.1 (c)). Note that the distance

d in this case is taken to be the atom-to-surface distance along the equatorial plane of the toroid

(z = 0).

In Fig. 2.3 e), we include two experimental results of microtoroidal cavity QED experiments as

described in [9] and [5], with the latter discussed in detail in Chapter 5. We calculate the parameters

Aeff = Pcav/Icav(~r) and | ~E(~ra)/ ~Emax| by using finite element analysis software COMSOL. In the

first case [9], the toroid’s major diameter is DM = 44 µm and minor diameter is Dm = 6 µm, giving

a mode volume of ∼ 5 × 100 µm3. Here, κ/2π = 18 MHz (Q ≈ 5 × 106) and g/2π = 50 MHz

(inferred from measurements), corresponding to atoms located at ≈ 100 nm (| ~E(~ra)/ ~Emax| = 0.15)

from the toroid’s surface. The cooperativity parameter is C = 12. The result of this experiment

[9] is shown in Fig. 2.3 parts e) and f) as point b1 and curve b1 respectively, where in part f),

we have taken into account the spatial variation of Γp(~ra) through Aeff(~ra) and Γ0 = Γ0(~ra) due

to surface-modified spontaneous emission effects (see Sec. 6.2.4.1 and Fig. 6.1). For this particular

case, we use Γ0(~ra) = Γ0‖(d), for parallel atomic dipole orientation relative to the toroid’s surface,

assumed to be a flat plane.

Although the toroid’s evanescent field extent has an exponential decay with decay constant

λ/2π, which is sub-wavelength, the cross-sectional area of the mode is larger than in the case of

nanophotonic waveguides such as nanofibers and nanobeams. As a result, the complex polarization

properties associated with nanophotonic waveguides that involve significant longitudinal components

of the electric field are not present in the case of the toroid. Here, we can use the simple formula for

the scattering rate Rsc = σ0/Aeff where σ0 = 3λ2/2π is the atomic resonant absorption cross-section
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and Aeff(~r) = Aeff(d) is the mode effective area. Using Eq. (2.29) and noting that 1− T = Rsc, we

have:

χ =
Γp

Γ0
=
Rsc +

√
1−Rsc − 1

1−Rsc
. (2.33)

Now we consider the experimental parameters of [5]. The toroid’s mode volume is about five

times smaller than the case of [9]. Here, the toroid’s major diameter is DM = 22.5 µm and minor

diameter is Dm = 3 µm, giving a mode volume of ∼ 100 µm3. Here, κ/2π = 20 MHz (Q ≈ 107)

and g/2π = 105 MHz (inferred from measurements), corresponding to atoms located at ≈ 100 nm

(| ~E(~ra)/ ~Emax| = 0.15) from the toroid’s surface. The cooperativity parameter is C = 53. The result

of this experiment [5] is shown in Fig. 2.3 parts e) and f) as point b2 and curve b2 respectively. We

note that in this experiment, we are able to detect strongly coupled single atoms in real time. The

distribution of the atom-to-surface distance d has two peaks, one located at 100 nm and another

at 200 nm (see Fig. 5.2 (c)). For atoms located at 200 nm from the surface, g/2π = 52 MHz and

C = 15. For the overall ensemble average, g/2π = 40 MHz and C = 8.

Although the aforementioned microtoroid cavity QED experiments have already demonstrated

quite strong atom-photon couplings, these are still orders of magnitude away from the projected

limits of a microtoroid cQED system [224, 131]. It is projected that quality factors of Q ∼ 1010 and

Q ∼ 1011 are realistically achievable. Using the same mode volume as above, Vm ∼ 100 µm3, this

leads to a three to four order of magnitude increase in the Q/Vm ratios. This leads to cooperativity

parameters C ∼ 104 and C ∼ 105. They are shown in Fig. 2.3 parts e) and f) as points b3-4 and

curves b3-4 respectively.

Finally, we note that the points on the curves b1-4 in Fig. 2.3 f) correspond to the location d

= 100 nm, which were experimentally accessed through measurements in the case for b1-2 [9, 5].

The decay rate ratio χ = Γp/Γ0 is calculated by taking into account the enhancement of Γp due

to the small Aeff , multiplied by the enhancement of Γp due to the cavity effect; the Purcell factor

PF = 1 + 2C; and the enhancement of Γ0 due to the proximity of the atom to the dielectric surface,

as calculated in Sec. 6.2.4.1. While the rest of the enhancement effects (factors) are in the order of

∼ 1, the enhancement due to the cavity ranges from ∼ 10 to ∼ 105. As expected, this is the key

quality of cavity QED that enables the atom-photon coupling strength to be orders of magnitude

higher than similar systems without a cavity. This is enabled by the combination of high finesse

(hence quality factor) and small mode volume.
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2.5.2.3 Nanophotonic cavities

Figure 2.3 parts c) and d) illustrate nanophotonic waveguides (e.g., optical silica nanofiber, silicon

nitride nanobeam) that may or may not have periodic structures (e.g., periodic holes), that may or

may not have photonic crystal mirrors on both sides of the waveguide forming a cavity, and that

may or may not have arrays of atoms, which can form mirrors and a one dimensional cavity.

We first consider the simple case of a bare silicon nitride nanobeam waveguide with none of the

above features except a pair of photonic crystal mirrors on both sides of the waveguides, forming

a cavity. Consider a set of currently realistic and readily achievable parameters, a nanobeam with

rectangular cross-section width× height of 300× 200 nm (the width is along the x axis and the height

is along the y axis, see Fig. 3.11), and a cavity length of 100 µm. Given this, we roughly estimate

a mode-volume of Vm ≈ 20 µm3, i.e., Vm ∼ 10µm3. The pair of photonic crystal mirrors leads to a

cavity linewidth of δω ≈ 20 GHz (quality factor Q ≈ 17600, i.e., Q ∼ 104) and a finesse of F = 80,

i.e., F ∼ 100 (where we have used the group index ng = 2.06 as the effective refractive index2, with

λ0 = 852 nm, the free-space wavelength). From COMSOL simulation, we estimate for this geometry

that | ~E(dx = 200nm, y = 0)/ ~Emax| = 0.3, where the atom is located along the x-axis, at dx = 200 nm

away from the surface of the nanobeam, and for the nanobeam mode polarized along the x-axis. If the

atom is located 200 nm away from the surface along the y-axis, | ~E(dy = 200nm, x = 0)/ ~Emax| = 0.25.

It is also possible to have a double nanobeam waveguide, say with the same rectangular cross-sections,

separated by 200 nm along the x-direction, and the atom symmetrically located at the center between

the pair of nanobeams (see Fig. 3.13). In this case, the atom is located at 100 nm away from both

surfaces on both sides, and | ~E(dx = 100nm, y = 0)/ ~Emax| = 0.70. Note that the electric field

profiles of these nanobeams are discussed in more detail in Sec. 3.3. For completeness, we note that

| ~E/~Emax| = 0.33 for a nanofiber waveguide (with fiber diameter 430 nm), with an atom located 215

nm away from the surface, in the same direction as the probe beam’s linear polarization. For the

purpose of Fig. 2.3 parts e) and f), we show the case for | ~E/~Emax| = 0.70 and Q/Vm = 103 µm−3

as point d1 and curve d1 in part e) and f) respectively. This leads to a cooperativity parameter of

C = 12. Note that the cooperativity parameter C scales with the electric field strength at the atom

location ~ra as C ∼ | ~E(~ra/ ~Emax|2.

2In this dispersive system, the effective refractive index is determined by the group index, ng = c/vg where vg is

the group velocity. Using neff = β/k, β = neffk = neffω/c,
dβ
dω

= 1
vg

= 1
c

(
ω dneff

dω
+ neff

)
, the group index is given by

ng =
(
ω dneff

dω
+ neff

)
, where neff is the phase effective index (calculated for example by COMSOL), β is the guided

mode propagation constant, and k is the free-space wave number. For our case of SiN nanobeam, with width w =
300 nm, height h = 200 nm, we obtain from COMSOL, neff = 1.15 = λ0/λcav. From COMSOL, we also obtain, by

scanning the propagating optical angular frequency ω, the value dneff
dω

= 3.90 × 10−4 THz−1.
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The curve d1 in Fig. 2.3 f) shows χ = Γp/Γ0, where Γp = Γ′p ×PF where Γ′p is calculated taking

into account the factors considered by the full model in Sec. 2.5.1.2 given by the solid curve χ in the

top plot of Fig. 2.2 g), and PF is the Purcell factor enhancement due only to the cavity. As with

previous calculations, Γ0 = Γ0‖ is calculated according to Sec. 6.2.4.1 (see Fig. 6.1). The point on

the curve d1 in Fig. 2.3 f) gives the specific atom-surface distance considered in the above paragraph,

d = 200 nm.

The above parameters are calculated for a modest cavity finesse of F ≈ 102 (Q ≈ 104) and a

relatively large mode volume Vm ≈ 10 µm3. One can imagine that the finesse of the photonic crystal

cavities may be increased by a factor of 10 or 100 (keeping the mode volume constant), leading to

an increase by a factor of 10 or 100 in Q. Alternatively, one can also reduce the mode volume by

a factor of 10, say by reducing the cavity length by a factor of 10; in this case, the finesse needs to

be increased by a factor of 10 in order to keep Q constant. Whichever the approach, or with the

combined approach, we include in Fig. 2.3 e) and f) the points d2, d3 and curves d2, d3 respectively

for the case where the ratio Q/Vm is increased by 10-fold and 100-fold. An estimate [224, 147] of

the ultimate limit gives Q/Vm ≈ 106.5 µm−3, leading to a cooperativity parameter of C ≈ 104 (for

| ~E/~Emax| = 0.70). This is included as point d4 and curve d4 in Fig. 2.3 e) and f).

At the end of Sec. 2.5.1.2, we discussed how periodic structure of nanophotonic waveguides may

lead to band-structures that may be tailored to give a small group velocity of the mode, which may

give further enhancement by a factor of ∼ 10 for realistic fabrication parameters [110]. Using this

technique, it may be possible to obtain a further enhancement say by 10-fold in the effective Q. This

is surely highly simplified and is intended only to give rough order of magnitude estimates of the

possible ranges. These cases are shown in Fig. 2.3 e) and f), labelled by d5, d6, d7, and d8. Here,

we locate the atom right in the middle of the photonic crystal holes, such that | ~E/~Emax| = 1. As

in this case, the behaviour of Γ0 can deviate significantly from the other cases above, and we have

set Γ0 = γ0, the free-space decay rate. We note that in this case, the largest projected limit can be

Q/Vm = 107.5 µm−3 and have a cooperativity parameter of C = 7 × 105, slightly higher than the

‘ultimate limit’ projected for a microtoroid cQED system (C ≈ 5× 105 for an atom located at 150

nm away from the surface of the toroid).

Finally for completeness, we include in our comparisons the work of [41], which considers a new

kind of cavity QED system where a one-dimensional linear array of atoms may be used to form

a cavity surrounding a chosen/designated ‘defect’ atom. Here, it is predicted that a cooperativity

parameter of C ∼ 10 is achievable with Nm ∼ 103 number of mirror atoms surrounding the single
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defect (qubit) atom, as illustrated in Fig. 2.3 c). Using C = 10 and | ~E/~Emax| = 0.33 (corresponding

to the electric field of an atom located 215 nm away from a nanofiber of diameter 430 nm along the

probe beam’s linear polarization direction), we show in Figs. 2.3 e) and f), point c1 and curve c1.

For the plot in part f), we have used the spatially dependent parameters Aeff ,Γp,Γ0 for a fiber of

diameter 430 nm. We have also included as point c2 and curve c2, the case where | ~E/~Emax| = 1,

which corresponds to C ≈ 90.
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Figure 2.3: Atom-photon interaction within a cavity. a,b,c,d) Q: cavity quality factor,
Vm: cavity mode volume; Pin, PR, PT : input, reflected, transmitted optical powers; g: atom-photon
coupling rate; κi: intrinsic cavity loss; κex: extrinsic input/output coupling rate; Emax and E(~ra)
are the maximum electric field and the electric field at atom’s position ~ra; Γp: atom’s decay rate
into cavity photonic mode; Γ0: atom’s decay rate into the environment. e,f) C: cooperativity
parameter; χ = Γp/Γ0; d = atom-to-surface distance. a) Fabry-Perot cavity; labels in e) and f): a1,
experimental parameters of [33], a2, ultimate limit [33]. b) Microtoroidal cavity; labels in e) and
f): b1 and b2, experimental parameters of [9] and [5], b3 and b4, projected limits [224, 131]. c)
Atomic mirror cavity (formed by 2 Nm atoms): c1, prediction from [41] with |E|/|Emax| = 0.33, c2,
with |E|/|Emax| = 1. d) Photonic crystal cavity: d1-d4 for currently realizable Q/Vm value to the
projected limit [147], with |E|/|Emax| = 0.5, d5-d8 for same range of Q/Vm but with |E|/|Emax| =
1 and an enhancement factor of 10 in atom’s decay rate into the photonic mode that may be gained
by utilization of photonic crystal band structure effect. Note: a1, a2, d5-d8 indicate values of χ
(with Γ0 = γ0, the free-space decay rate), they are not functions of d. The horizontal lines serve as
visual guides for comparison with other curves.


