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Chapter 5

Strong interactions of single atoms
and photons near a dielectric
boundary

This chapter is largely based on Ref. [5]. Reference [5] refers to the then current literature in 2011

at the time of publication. The work described in this chapter is a result of our team collaboration

of seven authors of the manuscript, whose contributions I would like to acknowledge here. Hansuek

Lee and Eric Ostby (Vahala group) contributed to the fabrication of microtoroidal resonator devices

and sharing of expertise in optical coupling using the tapered fiber central to our experiment. Nate

Stern and I contributed to carrying out the experiment, implementing critical modifications that

build upon the setup discussed in chapter 4 and developed by Takao Aoki and myself, conducting

measurements, data analysis, and developing strongly coupled atom near surface models. In our

numerical work, Nate Stern contributed mainly to the calculation of Casimir-Polder phenomena,

and I contributed mainly to the entire system simulation. This work was carried out under the

guidance and supervision of my advisor, Prof. Jeff Kimble, in collaboration with Prof. Kerry

Vahala at Caltech.

5.1 Introduction

Cavity quantum electrodynamics (cQED) provides the setting for quantum control of strong inter-

actions between a single atom and one photon. Many such atom-cavity systems interacting through

coherent exchanges of single photons could be the basis for scalable quantum networks. However,

moving beyond current proof-of-principle experiments involving just one or two conventional opti-

cal cavities requires the localization of individual atoms at distances . 100 nm from a resonator’s
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surface. In this regime an atom can be strongly coupled to a single intracavity photon while at

the same time experiencing significant radiative interactions with the dielectric boundaries of the

resonator. Here, we present observations of strongly coupled single atom-photon dynamics in a

cavity QED setting using real-time detection and high-bandwidth feedback to select and monitor

single cesium atoms located ∼ 100 nm from the surface of a micro-toroidal optical resonator. Strong

radiative interactions of atom and cavity field probe atomic motion through the evanescent field of

the resonator and reveal both the significant role of Casimir-Polder attraction and the manifestly

quantum nature of the atom-cavity dynamics.

5.2 Background

The proximity of dielectric boundaries fundamentally alters atomic radiative processes as compared

to quantum electrodynamics in free space. For example, free-space Lamb shifts and Einstein-A

coefficients (i.e., level positions and decay rates) are modified for atom-surface distances comparable

to the relevant transition wavelengths, as considered in the pioneering analyses of Casimir and

Polder [38] and of Purcell [190] in the late 1940s. Seminal experiments in the 1970s investigated

radiative decay for organic dye molecules near a metal mirror [70] and were followed in the 1980s by

landmark observations of the inhibition of spontaneous emission for a trapped electron [84] and an

atom in a waveguide [109]. The ensuing years have witnessed the development of cavity quantum

electrodynamics (cQED) in this perturbative regime of boundary-modified linewidths and level shifts

[101, 231, 24], with applications ranging from measurements of fundamental constants [177] to the

development of novel semiconductor devices [166].

With increased interaction strength, a non-perturbative regime of cQED becomes possible and is

characterized not by the dominance of irreversible decay but rather by the cyclic, reversible exchange

of excitation between atom and photon [114]. The experimental quest for strong atom-photon

coupling had its initial success in 1985 in the microwave regime with the realization of the micromaser

[164], with strong non-perturbative coupling in the optical domain achieved some years later [236].

Now, however, strong coupling has made possible the coherent control of atomic radiative dynamics

on a photon-by-photon basis [167, 101]. Strong coupling has also been demonstrated for a wide

class of physical systems [240] beyond single atoms, including quantum dots coupled to micropillars

and photonic bandgap cavities [124] and Cooper-pairs interacting with superconducting resonators

[216]. This non-perturbative regime of cQED with strong light-matter interactions mediated by

single photons has led to new scientific capabilities, ranging from a laser that operates with one-and-



105

the-same atom [162] to the deterministic generation of entangled photon pairs [250] to a two-qubit

superconducting quantum processor [63].

To a large degree, investigations of perturbative and non-perturbative cQED phenomena have

been made independently. For example, for one atom located near the center of a Fabry-Perot

cavity with volume (l)3 ∼ (10 µm)3, the coherent coupling g to an optical resonance can be large

compared to radiative decay characterized by the Einstein-A coefficient and cavity loss rate κ,

namely g � (γ0, κ) where γ0 = A/2, placing the system in the regime of strong, non-perturbative

atom-photon coupling [167, 86]. Nevertheless, corrections to the atomic Lamb shift and Einstein-A

coefficient arising from surface interactions with the cavity boundaries remain small (e.g., δA/A ∼

10−5). However, many applications in quantum information science [132] could benefit from strong

atom-photon interactions with micro- and nano-scopic optical resonators [11, 200, 147, 224, 50, 73]

integrated on atom chip devices [81, 193]. Atomic localization on a sub-wavelength scale near a

resonator’s surface is then required, with aspects of both perturbative and non-perturbative cQED

necessarily coming into play.

In this chapter we investigate such a regime for single cesium atoms radiatively coupled to a

high-Q microtoroidal cavity [9, 11] and in close proximity to the resonator’s dielectric surface. As

illustrated in Fig. 5.1(a), cold cesium atoms are released from an optical dipole-force trap and

randomly fall past the microtoroid. A real-time detection scheme based upon strong radiative

interactions between one atom and the evanescent cavity field selects atomic trajectories passing

within d . 300 nm from the resonator’s surface, with a large fraction of atoms passing below 100 nm

and crashing into the surface. On this scale, the atom’s coherent interaction with the cavity field is

characterized by strong, non-perturbative coupling [Fig. 5.1(b), 5.3 (c) (i)], which we demonstrate

by direct measurements of so-called “vacuum-Rabi” spectra for light transmitted and reflected by

the atom-cavity system, as well as by observations of photon antibunching for the transmitted

light. On the other hand, the atom’s motion and level structure are significantly influenced by the

(perturbative) Casimir-Polder potential from the surface’s proximity [Fig. 5.1 (c) (ii)], which we

infer from measurements of the time dependence of the cavity transmission during an atomic transit

event, as well as from modifications of the spectra recorded for the transmitted and reflected fields.

These observations are in reasonable agreement with a theoretical model that we have implemented

by Monte-Carlo simulation and which gives insight into the underlying atomic dynamics, as detailed

in Sec. 5.10
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Figure 5.1: Radiative interactions and optical potentials for an atom near the surface
of a toroidal resonator. (a) Simple overview of the experiment showing a cloud of cold cesium
atoms released so that a few atoms fall within the evanescent field of a microtoroidal resonator.
Light in a tapered optical fiber excites the resonator with input power Pin at frequency ωp, leading
to transmitted and reflected outputs PT, PR. (b) Cross section of the microtoroid at φ = 0 showing
the coherent coupling coefficient |g (~r) = g(ρ, z, φ)| for a TE polarized whispering-gallery mode. The
microtoroid has principal and minor diameters (Dp, Dm) = (24, 3) µm, respectively. (c) (i) Coherent
coupling |g(d, z, φ)| for the external evanescent field as a function of distance d = ρ − Dp/2 from

the toroid’s surface for (z, φ) = (0, 0). (ii) The effective dipole potentials Ud for resonant ωp = ω
(0)
a ,

red ωp < ω
(0)
a and blue ωp > ω

(0)
a free-space detunings of the probe Pin (intracavity photon number

∼ 0.1, circulating power ∼ 100 nW, circulating field intensity at surface ∼ 0.01 µW/µm2). The
Casimir-Polder surface potential Us for the ground state of atomic Cs is also shown. (iii) The atomic
decay rate γ(d) as a function of distance d from the toroid’s surface for TE (γ‖) and TM (γ⊥)
modes. All rates in this figure are scaled to the decay rate in free space for the amplitude of the
Cs 6P3/2 → 6S1/2 transition, γ0/2π = 2.6 MHz. The approximate distance scale probed in our
experiment is 0 < d < 300 nm.
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5.3 Real time single atom detection

For the identification of atoms near the surface of the microtoroid in the regime shown in Fig. 5.1(c),

we rely on the strong interaction of atom and cavity field to modify the light transmitted by the

cavity. Specifically, because the atom-cavity coupling coefficient g (~r (t)) depends upon the atomic

trajectory ~r(t), we can select single atoms located within the cavity mode by demanding a minimum

criterion for the change in cavity transmission due to the atomic trajectory. Our scheme for single-

atom detection is similar to that used in previous work [9, 57, 10], but with significant modifications.

Namely, by implementing fast digital logic, we achieve reliable real-time identification of atomic

transit events in times as short as 250 ns from the photoelectric counts due to the transmitted

power PT(t). Note that this identification would not be possible for an atom in free space without the

emission rate enhancement and efficiency afforded by coupling to the cavity. Given the identification

of a falling atom, the control logic switches the power Pin and frequency ωp of the probe input within

' 100 ns and records subsequent photoelectric counts for the transmitted PT(t) and reflected PR(t)

outputs from the cavity. These records of photoelectric counts form the basis for the analysis that

follows, with further details presented in Sec. 5.9.1.

To address experimentally the question of the distance scale for the recorded atom transit events,

we first examine the time dependence of the cavity transmission T (t) = PT(t)/Pin immediately

following a trigger heralding the arrival of an atom into the cavity mode. Figure 5.2 (a) shows T (t)

for the case of resonant excitation, namely ∆pa = ωp−ω(0)
a = 0 and ∆ca = ωc−ω(0)

a = 0, where ω
(0)
a

is the free-space atomic frequency for the 6S1/2, F = 4 → 6P3/2, F = 5 transition in atomic Cs, ωp

is the incident laser probe frequency, and ωc is the resonant frequency of the relevant toroidal cavity

mode. Two characteristic decay times are evident, with the background subtracted transmission

TB(t) ≡ T (t)−B fitted well by the sum of an exponential (∝ e−t/δtI ) and a Gaussian (∝ e−(t/δtII)2

).

Here, the background level B ≡ T (t� δtI,II) is determined from the cavity transmission for times

long compared to the duration of the transit event, with B/T (∆pa � κ) . 0.01.

The time constants δtI, δtII can be associated with distance scales dI, dII by way of the average

velocity v̄ with which atoms arrive at the toroid’s mode following release from the optical trap,

namely v̄ ∼ 0.17 m/s, leading to dI ' 130 nm and dII ' 640 nm. For comparison, the scale length

for g(d) in the radial direction is λ = 1/k0 = 136 nm (Fig. 5.1 (c) (i)), while in the vertical direction,

the variation of g(z) is approximately Gaussian (∝ e−(z/w0)2

) with waist w0 ' 590 nm (Fig. 5.1 (b)).

The comparisons dI ∼ λ and dII ∼ w0 suggest that the short-lived component δtI in Fig. 5.2 (a)

arises from atomic trajectories that are deflected from their otherwise vertical fall to largely radial
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paths of length λ that terminate at the dielectric surface. Similarly, the longer-lived component δtII

is associated with trajectories that pass along z without significant radial motion toward the surface

of the toroid.

Of course an atom near the surface will not move with constant velocity but will be accelerated by

interactions with surface potentials and the cavity field itself. To reach a quantitative understanding

of the external, center-of-mass motion and the internal, atomic dipole-cavity field coupling, we

have implemented a numerical simulation that incorporates both perturbative and non-perturbative

aspects of the radiative interaction of the atom and micro-toroid. Our Monte-Carlo simulation

draws random initial trajectories for atoms falling from a thermal cloud and implements a stochastic

process for photoelectric detection to emulate our real-time detection technique. The model includes

Casimir-Polder and dipole forces from the potentials Us(~r), Ud(~r) shown in Fig. 5.1 (c) (ii), atomic

level shifts (and hence detunings) from Us(~r), and boundary-modified decay γ‖(d) shown in Fig. 5.1

(c) (iii). The non-perturbative interaction of atom and cavity field is based upon the analytic results

in Ref. [9, 57]. Details of the simulation can be found in the Sec 5.10.2.

5.4 Experimental results

Results from this analysis are presented in Fig. 5.2 (b-e). In agreement with the observations in

Fig. 5.2 (a), TB(t) from the simulation in Fig. 5.2 (b) exhibits two time scales and is fit well by the

sum of an exponential and a Gaussian. Atomic trajectories associated with the δt
(s)
I have distances

peaking around dI ∼ 100 nm and terminate with crashes into the surface of the toroid [pI(d) in

Fig. 5.2 (c)], but exhibit large coupling gI/2π ∼ 40 MHz [pI(g) in Fig. 5.2 (d)] and large surface-

induced shifts of the atomic transition frequency δa,I/2π & 10 MHz for d . 60 nm [pI(δa) in Fig. 5.2

(e)]. By contrast, the complementary set of trajectories for δt
(s)
II pass roughly vertically through

the cavity mode along z (hence their Gaussian time dependence). Relative to the δt
(s)
I set, these

trajectories exhibit larger distances dII ∼ 250 nm, smaller coupling gI/2π ∼ 20 MHz, and surface-

induced shifts of the atomic transition frequency δa,I . γ0 [pII(d), pII(g), pII(δa) in Figs. 5.2 (c-e),

respectively].

In Fig. 5.3 we investigate temporal dynamics for the cavity transmission T (t) but now with

non-zero detuning between the atom and probe field, ∆ca/2π = ∆pa/2π = ±40 MHz (Fig. 5.3

(a)). Since ωp 6= ωa, dipole forces from coherent excitation of the intracavity field should induce an

asymmetry for T (t) for red and blue detuning, with faster decay for red detuning (ωp < ωa) due

to the combined effect of the attractive potentials Us(~r) and Ud(~r) shown in Fig. 5.1 (c) (ii). The
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Figure 5.2: Observation (a) and simulation (b-e) of atomic transits within the evanescent
field of the micro-toroidal resonator for ∆ca = ∆pa = 0. a) Observed cavity transmission
TB(t) versus time t following a triggering event at t = 0, with approximately 5 × 104 triggered
transits included. The data are fit to the sum of an exponential (I) and a Gaussian (II) (green
curve), with time constants δtI = 0.78 ± 0.02 µs and δtII = 3.75 ± 0.09 µs, with each component
shown by the dotted lines. (b) Simulation result for 1000 triggered atoms for the cavity transmission

T
(s)
B (t) versus time t (points) from an ensemble of triggered trajectories. The green curve is a fit to

the sum of an exponential and Gaussian with time constants δt
(s)
I = 0.69 µs, δt

(s)
II = 4.0 µs while the

dotted lines represent the individual fit components. c-e Probability densities pi(d), pi(g), pi(δa) for

the distance d, coupling g, and transition frequency shift δa = ωa(d)−ω(0)
a from the same simulation

set as for (b). {d, g, δa} are averaged over the first 500 ns following the trigger. For these results, the
trajectories are divided into two classes based on simulated detection events for photon tranmission,

i = {I, II} corresponding to the two time constants δt
(s)
I (blue shaded curve) and δt

(s)
II (red shaded

curve) in (b). This is a stochastic division and hence the distributions and trajectory characteristics
show some overlap between sets I and II. Note: Intracavity photon number ∼ 0.1, circulating power
∼ 100 nW, circulating field intensity at surface ∼ 0.01 µW/µm2.
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data are fit well by decaying exponentials (∝ e−t/δti , i ={red, blue}). Also plotted are simulations

of the experiment for freely falling atoms with Us = Ud = 0, atoms under the influence of only

dipole forces, Us = 0, and a full simulation including both the dipole force and CP forces. For both

red and blue detunings, the timescales from the simulation absent Us, Ud are substantially longer

than observed in experiment. In contrast with the case ωp = ωa in Fig. 5.2, there is no significant

Gaussian component of these temporal decays because of the difference in scale lengths of the CP

potential Us and effective dipole potential Ud(∆ca = ±15γ0), which become comparable to γ0 for

distances d . {65, 200} nm, respectively (Fig. 5.1 (c) (ii)). Long range dipole forces, which are

largely absent for Fig. 5.2, dominate the trajectory dynamics of Fig. 5.3 and consequently vertically

falling long-lived Gaussian trajectories do not significantly contribute.

5.5 Atom trajectories near a microtoroid

To illustrate the underlying atomic motion, Fig. 5.3 (b) displays atomic trajectories projected onto

the ρ−z plane for the simulations in Fig. 5.3 (a), with each panel displaying a representative sample

of untriggered and triggered trajectories. For red detuning, ∆pa < 0, introducing dipole forces and

CP forces leads to every triggered atom crashing into the toroid surface, explaining the short decay

δtred. The blue detuned case is more complicated, with both attractive CP forces and the repulsive

dipole force reducing the time the atom is in the mode; CP forces pull nearby atoms into the surface

while the dipole force repels other atoms out of the mode.

As shown in Fig. 5.3 (c) and discussed in Sec. 5.9, we have augmented our numerical simulation

to include a dipole force optical trap Ut (FORT) formed by the toroid’s evanescent field [246, 201]

in addition to the potentials Us, Ud. The trapping potential Ut is triggered by the same criteria as

for Figs. 5.3 (a), (b), with then a significant fraction of triggered atoms bound in orbit around the

toroid for durations surpassing 50 µs.

5.6 Spectral measurements

The measurements in Figs. 5.2, 5.3 rely upon strong interactions of atoms and photons for initial

atomic localization within the cavity mode and for measurements of the subsequent motion by way

of T (t). To establish directly the non-perturbative coupling of atom and cavity field, we next turn

to measurements of transmission T (ωp) = PT(ωp)/Pin and reflection R(ωp) = PR(ωp)/Pin spectra

as functions of ωp (Fig. 5.4). Probe spectra {T (ωp), R(ωp)} are recorded following the detection of
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Figure 5.3: Dynamics and trajectories for strongly coupled atoms moving in surface and
dipole potentials {Us, Ud}. (a) Transmission T (t) for ∆ca/2π = −40 MHz (left) and +40 MHz
(right) measured after an atom trigger at t = 0. In each panel, the circles are data for 2 × 103

trigger events; the lines are simulations of T (t) for the full model (blue), for Us = 0 (magenta), and
for Us = Ud = 0 (green). Exponential fits to the data give time constants δtred = 0.11 ± 0.01 and

δtblue = 0.53 ± 0.03 µs, while fits to the full simulation yield time constants δt
(s)
red = 0.19 ± 0.02 µs

and δt
(s)
blue = 0.59± 0.06 µs, where quantitative differences are attributed to simplifications inherent

in the simulation model (see SI). (b) Representative atomic trajectories projected onto the ρ − z
plane for simulations in panel (a), with the TE mode intensity plotted on a gray scale. The upper
panels are for ∆ca/2π = −40 MHz while the lower panels are for ∆ca/2π = +40 MHz. The color
bars at the top of the panels match the colors of the curves in (a). For each panel, orange lines
are untriggered trajectories, while triggered trajectories are represented by blue lines which turn
red after a trigger at t = 0. (c) Simulations showing trajectories from a full 3D simulation with
Us, Ud, as well as a two-color dipole potential (FORT) triggered “on” by atom detection at t = 0.
∆ca/2π = +40 MHz in correspondence to (a), (b). Blue lines represent falling atoms with the FORT
beams “off” (t < 0), while red lines are trajectories after the FORT is triggered “on” and an atom
begins to orbit the toroid. To illustrate the timescale, the trajectories are colored pink for t > 50
µs. Note: intracavity photon number ∼ 0.1, circulating power ∼ 100 nW, circulating field intensity
at surface ∼ 0.01 µW/µm2.
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a single-atom event with ωp = ωc for a fixed detuning ∆ca between atom and cavity to optimize

sensitivity for an intracavity atom (i.e., ∆ca = ∆pa). With an atom thereby present in the cavity

mode, fast control logic and feedback switch the probe power Pin to some fiducial level for a given

spectrum and the probe frequency ωp to a relevant detuning ∆pa 6= ∆ca for measurements of

{T (ωp), R(ωp)}. The spectra are built up over thousands of transit detections and consequently

represent an ensemble average over triggered atom trajectories.

Strong radiative coupling of an atom and a microtoroidal resonator is described by an extension

of the Jaynes-Cummings [114, 9] Hamiltonian (see SI). Our whispering-gallery resonator supports

two counter-propagating traveling-wave modes that are coupled by internal scattering at a rate h.

The interaction of the cavity eigenmodes with an intracavity atom is characterized by coherent

coupling g(~r), with the resulting atom-cavity eigenvalues {λi} shown in Fig. 5.4 (a) for the single-

excitation eigenstates. For large detuning |∆ca| � g, there is one atom-like and two cavity-like

eigenvalues. For ∆ca ∼ g, there is an anti-crossing between the imaginary parts of two dressed-state

eigenvalues λ± with splitting ∆λ± = Im (λ+ − λ−) ≈
√

∆2
ca + 4g2 for g � {h, κ, γ‖}, while the

third cavity-like eigenvalue λ0 remains uncoupled to the atom. This dressed-state eigenstructure,

along with the dissipative rates γ‖(d) and κ for atom and cavity, determine the system’s spectral

response {T (ωp), R(ωp)}.

Using a simple model with atoms falling vertically through the evanescent field of Fig. 5.1 (b)

with {Us, Ud} = 0 (SI), we construct a probability distribution pfall(g) of coupling constants for atom

detection, with probe spectra {T (ωp), R(ωp)} then obtained by averaging spectra for fixed g over

the distribution pfall(g) (Fig. 5.4 (b)). Although the full eigenstructure from Fig. 5.4 (a) cannot be

resolved due to the ‘smearing’ from pfall(g) even with gmax � {κ, γ‖}, the splitting ∆ω
(b)
peaks between

λ− and λ0 (shifted by its proximity to the unresolved λ+) is resolved, and approximates, though

underestimates, the eigenvalue splitting ∆λ± (i.e., ∆ω
(b)
peaks/2π = 110 MHz, while ∆λ±/2π = 130

MHz).

Figures 5.4 (c), d show measured spectra for both the bare-cavity with no atoms (NA), RNA (∆pa)

and TNA (∆pa), and with triggered single atoms (A), RA (∆pa) and TA (∆pa), for ∆ca/2π = 60 MHz.

The splitting ∆ωexp/2π ≈ 95 ± 5 MHz between the prominent cavity peak and the dressed state

feature can be read directly from both TA and RA. Taking ∆ω
(c,d)
peaks as a lower estimate for the average

eigenvalue splitting ∆λ± yields an average coupling g/2π & 37 ± 3 MHz. This average coupling

indicates that strong coupling is achieved on average, with g > (κ, γ0), where (κ, γ0) /2π = (21, 2.6)

MHz.
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Figure 5.4: Transmission T (ωp) and reflection R(ωp) spectra for single atoms coupled
to a microtoroidal resonator. (a) cQED eigenvalues λ±,0 for {h, g}/2π = {10, 40} MHz as a
function of atom-cavity detuning ∆ca. The dashed lines indicate the detunings for the spectra in the
following panels. (b) Ti(ωp) for ∆ca/2π = +60 MHz for the empty cavity i = NA (red) and with
atoms i = A (blue) calculated from a simple average for falling atoms over the distribution pfall(g)
(inset) absent cavity and surface forces. ∆ωpeaks is computed from the frequency difference for the
peaks indicated by arrows. (c-d) Experimental reflection Ri(∆pa) and transmission Ti(∆pa) spectra
with the peaks used for ∆ωexp indicated. Curves are results of the full Monte Carlo simulation and
the color scheme is the same as in panel b. e Difference spectra ∆R = RA(∆pa) − RNA(∆pa) and
∆T = TA(∆pa) − TNA(∆pa) for ∆ca/2π = +60 (i,ii), +40 (iii,iv), −40 MHz (v,vi). Green lines are
simulation results for Us = Ud = 0, while blue lines are from the complete simulation. Error bars
are estimated from photon counting statistics and systematic uncertainties.
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Quantitative differences between the simple model in Fig. 5.4 (b) and the experimental spectra in

Fig. 5.4 (c-d) yield information about additional effects, including perturbative surface interactions

not included in the standard Jaynes-Cummings treatment [9, 57]. In particular, the feature at

∆pa/2π = −30 MHz in both RA and TA is significantly reduced in magnitude from the spectrum

predicted by pfall(g), which as discussed below, results from the effects of {Us, Ud} on the atomic

trajectories and internal levels as in Figs. 5.2, 5.3.

Measurements of the difference spectra taken with and without atom transit events, RA −RNA

and TA−TNA are shown in Figs. 5.4 (e) for cavity detunings ∆ca/2π = 60, 40,−40 MHz. Again, the

simple prescription of reading ∆ωpeaks directly from the splitting of the low and high frequency peaks

together with the expression for ∆λ± leads to an estimate of the average coupling g/2π & 35 ± 5

MHz that is consistent across the six spectra displayed.

For comparison to the measured spectra, the full curves in Figs. 5.4 (e) are from our Monte

Carlo simulation for ∆R ≡ R(∆pa) − Rg→0(∆pa) and ∆T ≡ T (∆pa) − Tg→0(∆pa). Calculated

spectra are shown both for the full model and with all forces removed. Agreement with the full

model is achieved for the choice gmax/2π ∼ 100 MHz, which is somewhat less than the value of

gmax/2π = 140 MHz expected for the fundamental TE mode near λ = 852 nm estimated from a

finite element calculation (Fig. 5.1 (b)). The difference is attributable to imprecise knowledge of

the toroid geometry and mode. Except for the relevant detunings and measured cavity decay rates,

the same parameters are used for each spectrum simulation; specifically, (gmax, γ0) /2π = (100, 2.6)

MHz. Note that apart from the adjustment of gmax, all parameters in the simulation are estimated

from measurements or, in the case of dipole forces, surface forces, and level shifts, are taken from

theoretical and experimental results in the literature (see Sec. 5.10).

For each of the spectra in Fig. 5.4 (e), removing the Casimir-Polder and dipole forces (i.e., setting

Us, Ud to zero) leads to increased deviations from the measured spectra relative to the full simulation,

which describes the measurements reasonably well. The most significant effect of Us is seen for a red-

detuned cavity (∆ca/2π = −40 MHz) where significant spectral features not readily observed in the

data appear for Us = 0. In combination with the temporal analysis in Figs. 5.2, 5.3, the cQED spectra

in Fig. 5.4 (e) illustrate the necessity of including perturbative surface interactions for understanding

atomic dynamics near the resonator. The model uses a distance dependent atomic decay rate γ‖(d)

for our linearly polarized TE mode, but the differences between γ‖ and γ0 are too small to be

observed in the data. Despite the overall consistency achieved with the full simulation, systematic

disagreements between data and model suggest that further analytical progress is required, including
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better (independent) knowledge of the toroid geometry, as well as solving the full master equation

to account for the multi-level structure of the Cs atom[26] (see Sec. 5.10).

5.7 Photon statistics

To confirm the quantum nature of the atom-cavity interaction near the surface of the toroid, we

present in Fig. 5.5 measurements of photon statistics for the transmitted field PT for ∆ca = 0.

Photon statistics are inferred from the time records C1,2(ti) of photoelectric counts in time bins ti

for two detectors D1, D2 following an atomic trigger event at t = 0. Fig. 5.5 shows the average

cross-correlation C12(τ) =
∑
i〈C1(ti)C2(ti + τ)〉 for 0 < ti < 8 µs as well as the cross-correlation of

the average counts C12(τ) =
∑
i〈C1(ti)〉〈C2(ti + τ)〉, where the angled brackets represent sums over

the ensemble of triggers. The photon process is super-Poissonian, indicated by C12(τ) > C12(τ) for

all τ , due to large fluctuations in transmitted intensity from one atom to the next, which presumably

arise from variations in atomic position ~r and hence coupling g(~r) near the toroid’s surface (inset

(i)). Even in the face of these large fluctuations, the non-classical character of the atom-cavity

interaction survives, as is evident from the short-time dynamics shown in Fig. 5.5, where C12(0) <

C12(τ) exhibits photon antibunching. From the minimum at τ = 0, C12(τ) regress to its peak with

characteristic half-width of 6 ns.

In contrast to the case C12 → 0 realized in microtoroids in the bad-cavity limit for a photon

turnstile [57] and a photon router [10], here C12(0) is 0.55 of its maximum value, which results

from coherent dressed-state dynamics for ∆ca = 0. Averaging a time-dependent calculation of the

coincidence count rate for a fixed value of g over the distribution of g obtained from our trajectory

simulations results in reasonable agreement with our measurements (red curve in Fig. 5.5), with

the only free parameter being the overall amplitude which is scaled to match the data. Our model

predicts both C12(0) 6= 0 and the regression timescale near τ = 0, which supports its effectiveness

in describing the quantum behavior of the atom near the surface of the toroidal resonator.

5.8 Detailed microtoroid cQED theory

Here we outline a basic cQED theoretical model for an atom coupled to a cylindrically symmetric

whispering gallery resonator as originally presented in the supplementary material of Refs. [9] and

[57] and shown schematically in Fig. 5.6 (also see Fig. 3.1 a-b)). A microtoroidal cavity supports

two degenerate counter-propagating whispering gallery modes at resonance frequency ωc with anni-
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Figure 5.5: Photon statistics for localized atoms with ∆ca = 0,∆pa = 0. Cross-correlation
C12(τ) (blue circles) computed from the records of photoelectric counts at detectors D1, D2 from
the forward flux PT from a sum over many atom trajectories showing photon antibunching around
τ = 0, with C12(τ) obtained from the product of averages of the recorded counts at each detector for
comparison (black circles). The red curve is a calculation for the two-time second-order correlation
function from the full simulation scaled by a single parameter to match C12(τ) at τ = ±40 ns.
(i) Expanded view of C12(τ) and C12(τ) over full range of τ , with the long decay time of ∼ 2 µs
originating from the atom transit times (Fig. 2a) and the classical variance between transits.

hilation operators a and b, which are coupled via scattering at a rate h [223]. Each travelling-wave

mode has an intrinsic loss rate, κi, due to absorption, scattering, and radiation. A tapered fiber

carries input fields {ain, bin} at frequency ωp which couple to the cavity modes with an extrinsic

coupling rate κex. The output fields of the fiber taper can be written in terms of the input fields

as {aout, bout} = −{ain, bin} +
√

2κex{a, b} [9, 57]. For single-sided excitation, 〈bin〉 = 0 and ain

drives the a mode with strength εp = i
√

2κex〈ain〉. The transmitted and reflected photon fluxes,

PT = 〈a†outaout〉 and PR = 〈b†outbout〉, are calculated from the input flux Pin = 〈a†inain〉, with the

transmission and reflection coefficients defined as T = PT/Pin and R = PR/Pin, respectively.

We consider a two-level atom with transition frequency ωa at location ~r (ρ, φ, z) (in standard

cylindrical coordinates) coupled to the travelling wave modes {a, b} with single-photon coupling

rate gtw(~r) = gmax
tw f(ρ, z)e±iθ, where f(ρ, z) is a function determined by the cavity mode, θ = kρφ,

and k is the wavevector of the circulating mode. The atomic frequency ωa may in general be shifted

by frequency δa from the vacuum frequency due to interactions with the surface of the dielectric

resonator. An approximate form for the function f(ρ, z) for the lowest order toroid mode in the

evanescent region can be written as f(ρ, z) ∼ e−d/λe−(z2/wz)2

where d = d(ρ, z) is the closest distance

to the toroid surface, wz is a vertical distance scale, and λ is the wavelength over 2π.
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Figure 5.6: Schematic of microtoroidal cQED system. (a) A microtoroidal resonator supports
counter-propagating travelling wave modes {a, b} coupled at a rate h. The circulating fields decay at
a rate κ = κi + κex where κi is the resonator intrinsic loss rate and κex =

√
κ2

i + h2 is the coupling
rate between the cavity and a tapered fiber at critical coupling. An optical switch controlled by an
FPGA selects a driving field conditioned upon detection of an atom coupled to the cavity normal
modes at a rate g. The all-in-fiber switch and beam splitter network delivers a power Pin to the
microtoroid. Transmitted power PT and reflected power PR are detected by four single photon
counting modules (SPCMs) and digitally recorded by a counter card. (b) A cloud of cesium atoms
from a separate ‘MOT chamber’ is transferred via a differential pumping tube by an optical conveyor
belt into the ‘science chamber’ and released 800 µm above a microtoroid.

The Hamiltonian in a frame rotating at ωp is given by [9, 57]:

H/~ = ∆apσ
+σ− + ∆cp

(
a†a+ b†b

)
+ h

(
a†b+ b†a

)
+
(
ε∗pa+ εpa

†)
+
(
g∗twa

†σ− + gtwσ
+a
)

+
(
gtwb

†σ− + g∗twσ
+b
)
, (5.1)

where σ± are the atomic raising and lowering operators, ∆ap = ωa − ωp and ∆cp = ωc − ωp.

Dissipation is treated using the master equation for the density operator of the system ρ:

ρ̇ = − i
~

[H, ρ] + κ
(
2aρa† − a†aρ− ρa†a

)
+ κ

(
2bρb† − b†bρ− ρb†b

)
+γ
(
2σ−ρσ+ − σ+σ−ρ− ρσ+σ−

)
. (5.2)

Here, κ = κi + κex is the total field decay rate of each cavity mode, and 2γ(~r) is the atomic

spontaneous emission rate, which is orientation dependent near a dielectric surface (Sec. 6.2.4.1). The

Hamiltonian (Eq. 5.1) can be rewritten in a standing wave basis using normal modes A = (a+b)/
√

2
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and B = (a− b)/
√

2,

H/~ = ∆apσ
+σ− + (∆cp + h)A†A+ (∆cp − h)B†B +

(
ε∗pA+ εpA

†) /√2

+
(
ε∗pB + εpB

†) /√2 + gA

(
A†σ− + σ+A

)
− igB

(
B†σ− − σ+B

)
, (5.3)

where gA(~r) = gmaxf(ρ, z) cos(θ), gB(~r) = gmaxf(ρ, z) sin(θ), and gmax =
√

2gmax
tw . Depending on

the azimuthal coordinate θ, coupling may occur predominantly, or even exclusively, to one of the two

normal modes. For such θ, the system can be interpreted as an atom coupled to one normal mode in

a traditional Jaynes-Cummings model with dressed-state splitting given by the single-photon Rabi

frequency Ω(1) = 2g ≡ 2gmaxf(ρ, z), along with a second complementary cavity mode not coupled

to the atom. For a fixed phase of h set by the scattering in the toroid, this decomposition is not

possible for arbitrary atomic coordinate θ; for non-zero h the atom in general couples to both normal

modes.

The master equation can be numerically solved using a truncated number state basis for the

cavity modes. For a sufficiently weak probe field, the Eq. (5.2) can be linearized to find equations

of motion for the field amplitudes. Note that while the detunings ∆cp and ∆ap in these theoretical

expressions are referenced to the probe frequency, those used in the sections prior to Sec. 5.8 in this

chapter are referenced to the frequency of the 6S1/2,F = 4→ 6P3/2,F
′ = 5 transition of Cs.

5.9 Experiment scheme and setup

A silicon chip with 10-30 silica microtoroids is fabricated using standard methods [11] and mounted

on a thermoelectric heat pump which stabilizes the resonance frequency ωc for the mode of interest

to within ∼ 1 GHz of ωa. The cavity resonance frequency ωc is tuned using the silicon substrate

temperature to be near the 6S1/2, F = 4 → 6P3/2, F
′ = 5 transition of Cs at frequency ω

(0)
a . The

microtoroid used in the experiment has a major diameter of DM ≈ 24 µm, minor diameter of

Dm ≈ 3 µm, and a quality factor Q ∼ 107. A finite element model of the fundamental TE mode for

this geometry gives a mode volume of ∼ 100 µm3, corresponding to maximum atom-cavity coupling

for linear polarized light of gmax/2π ≈ 100 MHz at the toroid surface (i.e., a maximum single-

photon Rabi frequency Ω
(1)
max/2π = 2gmax/2π ≈ 200 MHz). The parameters for the ∆ca = 0 and

∆ca/2π = 60 MHz measurements are (κi, h, κex) /2π = (8, 10, 12.8) MHz, and for the ∆ca/2π = ±40

MHz measurements are (κi, h, κex) /2π = (13.5, 11, 17.4) MHz. For the results of Ref. [5], the typical

intracavity photon number is n̄ . 0.1 in the absence of an atom and the effective mean atom-cavity
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coupling is ḡ/2π ≈ 40 MHz. For κ/2π ∼ 20 MHz, the critical photon number n0 ≈ γ2
0/2ḡ

2 ∼ 10−3

and critical atom number N0 ≈ 2γ0κ/ḡ
2 ∼ 10−2 are both less than unity. Therefore, the system is

in the single photon, strong coupling regime.

The experimental setup is similar to that in Refs. [9] and [57] and is illustrated in Fig. 5.6. Briefly,

cesium atoms are magneto-optically cooled and trapped below 10 µK in an ‘MOT chamber’, then

loaded into an optical conveyor belt [140], and transported over 20 cm into a ‘Science chamber’ (at

< 10−9 torr) through a differential pumping tube to limit cesium contamination on the microtoroids

[10]. This cloud of ∼ 107 atoms at temperature T ≈ 100 µK is dropped 800 µm directly above

a microtoroid. Access to the input and output light fields of the microtoroid is provided by a

tapered optical fiber. The taper and toroid chip are mounted on piezoelectric-driven stages inside

the ‘Science’ chamber which enable stable tuning of κex to the critical coupling condition κex =√
κ2

in + h2 where the transmitted output field aout nearly vanishes for ∆cp = 0. A darkness of

T = PT/Pin ≈ 0.01 at critical coupling is actively maintained using an optical heating servo with

∼ 10-Hz bandwidth to stabilize ωc. Typical input power is at the level of Pin ∼ 4 pW at frequency

ωp.

Detection and probe beams pass through fast (∼ 10 ns response) in-fiber Mach-Zehnder optical

switches before entering a beam splitter network which reduces the power to Pin (Fig. 5.6 (a)). The

transmitted beam PT passes through a 50/50 beam-splitter to two single-photon counting-modules

(SPCMs), {D1, D2}, while the reflected beam PR travels back through the beam splitter network to

another two SPCMs, {D1r, D2r}. In each experimental cycle, a detection beam with |ωp−ωc|/2π < 5

MHz is used for real-time atom detection while the atom cloud is falling (see Sec. 5.9.1). The atom

cloud takes ∼ 50 ms to pass the toroid, during which 1 − 10 single atom events typically lasting

2-4 µs are observed. An atom coherently coupled to the cavity at rate g(~r) disturbs this critical

coupling condition and the photodetector counts at D1, D2 increase. Single photoelectric events

within a running time window ∆tth are counted and compared with a threshold number Cth by a

field programmable gate array (FPGA) operating at 40 MHz. For the data shown in Figs. 5.3 and

5.4, the parameters ∆tth = 750 ns and Cth = 5 are chosen to give a false detection rate of less than

1% and an average trigger time as early as possible during the atom transits (Sec. 5.9.1). Upon a

trigger event determined by a 40-MHz field-programmable gate array (FPGA), which defines t ≡ 0

for each event, the FPGA sends a trigger pulse to a photon counting card to time stamp and record

subsequent photodetections with 2-ns time resolution. This generates photon count time series Ci(t)

from detector Di with 2-ns resolution. In addition, upon a trigger event, the fiber input is switched
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from the detection to the probe beam which may have different power and/or frequency detuning

as discussed below. The entire sequence from MOT loading through atom dropping takes ∼ 500

ms. During the ∼ 450 ms when atoms are not falling, a third beam with frequency continuously

scanned over a range of ∼ 1 GHz around ωa is used to measure ωc for the optical temperature

servo. The empty cavity transmission measured with this scanning beam is also used to optimize

the cavity-fiber coupling, κex.

As discussed above, at t = 0, the FPGA triggers high-frequency optical modulators that switch

the power and frequency of the probe input to the tapered fiber. For typical experiments, the probe

flux is reduced to Pin ' 2 pW and the probe detuning ∆pa = ωp−ω(0)
a set to a value within the range

shown in Fig. 5.4. Including both optical and electrical delays, the optical switching is complete by

t = 150 ns. The photocount record on detector i, Ci(t), in a time interval 0 < t < 8 µs following

the trigger is recorded for a succession of N � 1 trigger events. For spectral measurements, the

transmitted and reflected photocount records are averaged over a selected time window (typically,

200 < t < 700 ns) and normalized by the photocounts taken with large detuning, PT (∆pa � κ), to

obtain the experimental transmission and reflection spectra, T (∆pa) and R (∆pa). Error bars for

data are estimated assuming Poissonian counting statistics and are written as plus or minus one

standard deviation. Fit results are quoted with 68% confidence intervals.

Having validated our trajectory simulation with the measurements in Figs. 5.2-5.5, we have

studied loading of falling atoms into a two-color evanescent field far off-resonance trap (FORT)

(Fig. 5.3 (c)) [246, 201]. A trapping potential Ut can be formed using a blue-detuned fundamental

mode and a higher order red-detuned mode [246]. For our simulation, we use a red (blue)-detuned

mode near 898 nm (848 nm) with powers ∼ 50 µW each to give a trap depth of ∼ 1.5 mK which is

switched on at t = 0 conditioned on a falling atom FPGA trigger. Despite the large kinetic energy

of falling atoms and poor localization of the atoms relative to the trap minimum, approximately

20% of triggered atom trajectories are captured in the trap. Simulated trapping times exceed 50 µs,

limited not by heating from trapping light but by the radiation pressure from unbalanced traveling

whispering-gallery modes. This radiation pressure leads to atom gallery orbits around the toroid

[158] (Fig. 5.3 (c)). Exciting a red-detuned standing wave would provide three-dimensional trap

confinement and increase the trap lifetime.
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5.9.1 Real time detection of atom transits

The temporal and spectral experiments described in Ref. [5] are realized by switching the driving

laser conditioned on a single atom being coupled to the cavity to measure the response. Real-time

detection and triggering of atomic transits is achieved in less than a microsecond for atom transits

which typically last a few microseconds so that the optical triggering and switching occurs while

the atom remains coupled to the resonator. As mentioned previous section, single-atom detection is

performed at critical coupling with PT ≤ 0.01Pin. When an atom is coupled to the cavity, the cQED

eigenstructure splits and PT increases. The cavity response for ∆ca = 0 is shown for representative

values of θ in Fig. 5.7 (a)-(b), illustrating the increase in T for g 6= 0 and the sensitivity to θ. The

spectra vary smoothly with θ, with θ = 0 the mirror image about ∆pa = 0 of θ = π/2. During the

50-ms interval after Cs atoms are released, PT is monitored by SPCMs D1 and D2 and analyzed in

real-time by the 40-MHz FPGA. The FPGA outputs a trigger pulse when it counts a threshold Ct

single-photon pulses in a running time window of length ∆t. The trigger gates the photon counting

card as well as controls the optical switch network. Signal logic, electrical and optical travel times,

and optical switch times introduce a latency of approximately 100 − 150 ns between trigger and

modulation of probe beam parameters at the toroid.

Figures. 5.7 (c) and (d) show the total transmitted flux
∑
i (C1(t) + C2(t)) summed over 1501

triggers using Ct = 4 and ∆t = 750 ns. Instead of switching the input beam upon a trigger event,

the FPGA trigger times are digitally recorded along with the photon counts. In part (c), the time

series C1(t) + C2(t) for each trajectory is aligned such that the trigger occurs at t = 0. The sharp

peak just before t = 0 has a width of ∼ 50 ns, corresponding to the last (fourth) photon count that

generated the trigger within the last 25-ns FPGA time step for every trigger. The previous three

photon counts are distributed within the 750 ns window prior to the trigger. Note that 25 ns prior

to this window, C1 +C2 = 0 because if there was a count here, then the transit criteria would have

been satisfied one 25-ns time step earlier. These classical detection biasing effects are not indicative

of cQED dynamics of the microtoroidal system. In part (d), the origin is shifted for each trigger

individually so that t = 0 corresponds to the weighted mean of photon arrival times for ±10 µs

around each trigger event. The distribution of the 1501 events shows that most of the triggers occur

near the peak of C1 +C2. For experiments, the trigger parameters Ct and ∆t are chosen so that the

false detection rate of atom triggers is below 1% and the trigger time is as early as possible relative

to the peak trajectory transmission. For the experiments in Fig. 5.3 and 5.4 of Sec. 5.4 and 5.6, we

use the parameters Ct = 5 and ∆t = 750 ns.
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Figure 5.7: Real time detection of single atom transits. (a) Normalized transmission spectra
T (∆pa) as a function of probe detuning ∆pa for g = 0 and g/2π = 50 MHz (θ = 0 and θ = π/4)
at critical coupling. The spectrum for θ = π/2 is the mirror image of the θ = 0 case about the
∆pa = 0 axis. (b) Transmitted photon flux as a function of g for ∆pa = 0. An atom trajectory
with increasing g (say from g = 0 to g/2π = 50 MHz) results in increased PT illustrated by the
cyan arrow. (c) Experimental counts C1(t) + C2(t) for 1501 transits from 596 atom drops with 4%
false detection rate where the triggers are aligned at t = 0. (d) The same data aligned by redefining
t = 0 to be the mean photon arrival time for each individual transit (blue). This alignment removes
selection biasing seen in panel (a) and allows plotting of the distribution of trigger times relative to
the transit center (red). Most triggers occur just prior to the peak of transmission of atom transits.
The data in (c) and (d) have been smoothed for clarity, which artificially broadens the selection
biasing effects in (c). In (b), (c) and (d) the maximum off-resonant transmitted photon flux is
PT ≈ 18 MCts/s ∼ 4 pW.
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5.10 Modeling ensembles of atoms detected in real time

The stochastic nature of the detection process used in Ref. [5] introduces an ensemble of cQED

parameters included in any given measurement. We present two methods in this section for under-

standing the resulting distributions. A simplified analytic approach gives a rough result by neglecting

the details of atomic trajectories. A Monte Carlo simulation treats atomic motion in a semiclassical

model to investigate the effects of atomic forces.

5.10.1 Analytic model for real time detection distributions

Here we outline a simple analytic model of the stochastic distribution pfall(g) of coupling param-

eters g observed in a real-time detection experiment. We assume atoms fall vertically through a

Gaussian cavity mode so that g(ρ, z(t)) ∼ gc(ρ)e−(z(t)/wz)2

with constant velocity so that z ∝ t

where gc(ρ) ∼ gmaxe
−(ρ−DM)/λ is the maximum coupling at closest approach. This simple approach

neglects forces on the atom which significantly modify the atomic trajectories and the dynamics of

real-time triggering (see Sec. 5.10.2).

Within the cQED model, the cavity transmission T (∆pa, g(~r)) is a known function of probe

detuning and atom location ~r. For this calculation, we assume that θ is restricted to values which

maximize T (θ) at cavity resonance (θ = π/2 for ∆ca/2π = +40 MHz, for example). We also

assume that the atoms are slowly moving so that the coupling at a trigger event is the only g

that contributes to a spectrum. The probability density function pfall(g) can be estimated as the

product of the probability of any atom having a particular g and the probability of a trigger event

occurring for an atom with coupling g, pfall(g) ∼ patom(g)ptrigger(g). An atom transit is triggered

when the total detected photon counts exceeds a threshold number, Ct, within a detection time

window ∆t. The detection probability ptrigger(g) is estimated from a Poisson distribution of mean

count T (g)Pin∆t. Given the Gaussian form of g(t), patom(g) can be written as a product of the

probability of g in an atom transit with given gmax and the probability of a transit to have that

gmax, pmax(gmax), integrated over all gmax,

patom(g) =

∫ gmax

g

pmax(gc)p(g|gc)dgc. (5.4)

Note that the integral has limits from g to gmax since gc cannot be smaller than g. Analytic

approximations for the form of pmax(gc) and p(g|gc) can be found from the Gaussian approximation

to the mode evanescent field so that Eq. 6.17 can be evaluated (see Fig. 5.8).
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5.10.2 Full Monte Carlo simulation

Analysis of experimental results which include the details of atomic trajectories is implemented with

a Monte Carlo simulation of atom transits near the toroid. For each desired set of experimental

parameters, a set of atomic trajectories is generated which satisfies the stochastic detection criteria.

This ensemble is used to extract the cavity output functions T (t,∆pa) and R(t,∆pa). Parameters

used in the simulation are based on direct and indirect experimental measurements and estimates

as well as theoretical calculations.

Since the spontaneous emission recoil velocity ~k/m ∼ 0.4 cm/s is much less than the typical ve-

locities of falling atoms ∼ 15 cm/s at z = 0, we use a semiclassical approximation for atomic motion.

The initial atomic velocity ~vi is selected from the Maxwell-Boltzmann distribution of temperature

T = 100 µK and the individual trajectories are propagated forward in time. Gravity, optical dipole

forces (Sec. 6.2.3), and Casimir-Polder surface interactions (Sec. 5.10.2.3) are included in the trajec-

tory simulation. Selection logic simulating the FPGA criteria is applied to the photon counts from

each trajectory, which are assumed to be Poissonian on the relevant timescales. The simulation is

repeated to acquire enough triggered trajectories for a sufficient ensemble average for the final model

output, which is typically at least 400 unique triggered trajectories. Spectral and temporal behav-

iors are calculated from the set of triggered trajectories generated for each detection criteria. The

simulated output fluxes PT(t) and PR(t) are summed over the entire set of trajectories in the same

time windows used for the experimental data to obtain the simulation results quoted in the text.

A comparison of the distribution of g between the analytic model and the Monte Carlo simulation

with and without forces appears in Fig. 5.8.

5.10.2.1 Dipole force

The dipole force is calculated from the commutator ~F = d~p
dt = i

~ [H, ~p] using the Hamiltonian

Eq. 5.1. In order to make this operator expression tractable, operator products are calculated

as products of linearized steady-state expectation values which is approximate for weak driving

power Pin [66, 80]. Momentum diffusion is implemented using a generalized expression for the

atom-cavity diffusion tensor [170], again simplifying with linearized steady-state field expectation

values. Although included in the trajectory model, diffusion is not a significant factor in falling atom

trajectories at the power levels and atomic velocities in this experiment. For Fig. 5.1 of Sec. 5.2,

the effective potential Ud is calculated by integrating the dipole force along the path ρ′ = ∞ → ρ,

assuming all steady-state fields change adiabatically with atom location ~r.
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Figure 5.8: Sample distributions p(g) calculated for (a) ∆ca/2π = 0 and (b) ∆ca/2π = +60
MHz. The analytic model is shown in red while the equivalent distribution from the Monte Carlo
model with Ud = Us = 0 is shown in blue. The distribution from the full Monte Carlo simulation
with all potentials is shown in black for comparison. In both cases, the additional forces pull the
distribution toward lower g.

5.10.2.2 Spontaneous emission rate near a surface

When a classical oscillating dipole is placed near a dielectric or metallic surface, its spontaneous

emission rate is modified by the boundary. This behavior is in general oscillatory with distance d

and dependent on the orientation, whether the dipole is parallel or perpendicular to the surface.

The spontaneous emission rate features a marked increase within a wavelength of the surface due to

available evanescent modes for decay. Calculations of γ‖(d) and γ⊥(d) for a planar surface used in

our simulations and seen in Fig. 5.1 (b) of Sec. 5.2 follow those of Ref. [156].

5.10.2.3 Casimir-Polder interactions

Casimir-Polder (CP) interactions are important components of atomic motion for neutral atoms

within a few hundred nm of a dielectric surface. For an atom located a short distance d from

the dielectric, the surface potentials take the Lennard-Jones (LJ) form ULJ
s = −C3/d

3 where C3

is a constant that depends on the atomic polarizability and dielectric permittivity of the surface

[154, 146]. At larger distances, relativistic retardation [38] leads to a reduced potential U ret
s =

−C4/d
4. Microtoroid cQED distance scales are set by the evanescent field scale length, λ = 136

nm for the D2 line of Cs. The relevant distances (0 < d . 300 nm) span both the LJ and retarded

regimes, and consequently, the limiting power laws do not fully describe experimentally accessible CP

interactions. Our model utilizes a full calculation of Us with a Lifshitz equation approach [150, 72]

valid over the entire range of d.

The CP potentials enter into our simulation in two distinct ways. First, the transition frequency
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ωa of the two-level atomic system shifts away from the vacuum frequency by δa = (U ex
s − Ug

s )/~,

where Ug
s and U ex

s are the surface potentials for the ground and excited states, respectively. Second,

a force ~Fs = −∇Us on the atom can be derived from these potentials.

We now briefly describe our calculation to find Ug
s for a cesium atom near a SiO2 glass surface.

The frequency dependent polarizability of the Cs ground state α(ω) and the complex dielectric func-

tion ε(ω) of the silica surface are needed in the Lifshitz equation. ε(ω) for SiO2 is obtained from

a fit of experimental data for the complex index of refraction [185] to a seven-oscillator Lorentz

model. α(ω) is calculated as a sum of Lorentz oscillators over valence 6S → NP transitions, with

N = 6− 11, whose oscillator strengths are tabulated in many sources [174]. A single high-frequency

oscillator representing the Cs core polarizability is introduced with parameters such that the cal-

culation matches the experimentally known ground state static polarizability α(0) = 5.942× 10−23

cm3 [6] as well as the known ground state C3 constant for a Cs atom near a metallic surface

C3 = − ~
4πd3

∫∞
0
α(iξ)dξ = 4.4 ·h kHz µm3 [59, 117]. For U ex

s we use the same core polarizability but

use 6P → NS, ND valence states. Curvature of the silica surface is treated following the modified

method of [29] with the toroid taken as a cylinder with radius of curvature R = Dm/2 using the

calculated material properties ε(ω) and α(ω). Numerical evaluation of the excited state potential

U ex
s is calculated in a similar manner as Ug

s , with an additional contribution accounting for real

allowed photon exchange with the surface [79].

Figure 6.3 shows the atom-surface potential Ug
s for the ground state of cesium near a SiO2

surface. For the limiting cases, our calculation yields C3/h = 1178 Hz µm3 and C4/h = 158 Hz µm4

for a planar dielectric surface. Note that the transition region between LJ and retarded regimes

dominates the relevant distance scales, with Us never fully reaching the CP power law behavior

before the thermal limit takes over. For d > Dm, the curvature correction is no longer accurate [29],

but in this regime, CP forces are already negligible to atomic motion. The excited state potential

U ex
s has a similar form but is larger in magnitude.

5.11 Additional cQED spectra

Figure 5.4 of Sec. 5.6 presents experimental difference spectra for various cavity detunings ∆ca. For

clarity, only the full simulation and a simulation with no forces are shown. Figure 5.10 displays

the experimental spectra as well as additional simulations where the dipole force and CP forces are

removed individually from the model. This additional figure illustrates the relative importance of

force components for each experimental condition as well as the need to include both foces to achieve
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Figure 5.9: Calculated atom-surface potential Ug
s for a Cesium atom at distance d from

a SiO2 surface with radius of curvature R = Dm/2 = 1.5 µm (red) and R → ∞ (blue).
The limiting cases for R → ∞ are shown as dotted lines. In the region where surface forces are
important, the cylindrical correction provides an accurate expression for the CP potentials. For
d > R, the cylindrical correction formula is no longer valid.

agreement between simulation and data.

5.12 Summary

By exploiting real-time triggering of single atoms, our experiment has realized a system where an

atom’s dynamics are governed by both its strong, single-photon interactions with the resonator’s

field and perturbative forces on classical atomic motion, and internal level structure from proximity

to the resonator’s surface. Entering this regime opens the door for quantitative study of dynam-

ical Casimir-Polder forces in the strong-coupling limit [34], which will require trapping atoms at

short distance scales for extended interrogation times, for which a fiber evanescent trap is a pri-

mary candidate [17, 248]. In contrast to the standing-wave structure of a Fabry-Perot cavity [258],

microtoroidal resonators offer the tantalizing possibility of radially confining an atom in a circular

orbit around the toroid [158, 246], with initial results from our simulation shown in Fig. 5.3 (c).

In correspondence with the development of cQED to reach the regime of strong coupling with one

trapped atom in a Fabry-Perot resonator [258], the advances described here offer an important step

toward trapping and cooling of a single atom near the surfaces of micro- and nano-scopic optical

resonators, thereby creating an avenue for scalable on-chip quantum information science.
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Figure 5.10: Experimental spectral data for various cavity detuning cases: (a) ∆ca/2π =
+40 MHz. (b) ∆ca/2π = −40 MHz. (c) ∆ca/2π = +60 MHz. In each difference spectrum, we plot
the simulation for the full model (blue), Ud = 0 (cyan), and Us = 0 (magenta), and Ud = Us = 0
(green). The full simulation and Ud = Us = 0 cases also appear in Fig.5.4.


