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Abstract

We develop efficient and robust numerical methods in the finite element framework for
numerical solutions of the singularly perturbed convection-diffusion equation and of a de-
generate elliptic equation. The standard methods for purely elliptic or hyperbolic problems
perform poorly when there are sharp boundary and internal layers in the solution caused
by the dominant convective effect. We offer a new approach in which we design the finite

element basis functions that capture the local behavior correctly.

When the structure of the layers can be determined locally, we apply the multiscale finite
element method in which we solve the corresponding homogeneous equation on each element
to capture the small scale features of the differential operator. We demonstrate the effec-
tiveness of this method by computing the enhanced diffusivity scaling for a passive scalar
in the cellular low. We carry out the asymptotic error analysis for its convergence rate and
perform numerical experiments for verification. When the layer structure is nonlocal, we
use a variational principle to gain additional information. For a random velocity field, this
variational principle provides correct scaling results. This allows us to design asymptotic

basis functions that can capture the global layers correctly.

The same approach is also extended to elliptic problems with high contrast coefficients.
When an asymptotic result is available, it is incorporated naturally into the finite element
setting developed earlier. When there is a strong singularity due to a discontinuous coef-
ficient, we construct the basis functions using the infinite element method. Our methods

can handle singularities efficiently and are not sensitive to the large contrast.
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Chapter 1 Introduction

1.1 Overview

Solving the singularly perturbed convection-diffusion equation accurately has long been a
challenge for numerical analysts. There is a large literature on the development of specialized
numerical methods for these problems, summarized in [73, 63, 50] among others. However,
most of the work has been confined to the one-dimensional or very simple two-dimensional
cases. Effective methods in one dimension can be derived without too much difficulty,
but they are typically extended to two dimeunsions via operator splitting along coordinate
directions and then by the application of the one-dimensional method in each direction.
Therefore, the convective term has to be simple and the solution has to be essentially one-
dimensional in its behavior in order for these methods to work. For problems with genuinely
two-dimensional effects, these methods often perform poorly. In the present work, we discuss

effective methods for some nontrivial two-dimensional problems.

The difficulty in obtaining the numerical solution is in large measure due to the dual nature
of the convection-diffusion equation. Because the diffusive term is multiplied by a small
parameter € (0 < € < 1), the convective effect dominates and the equation behaves es-
sentially as a hyperbolic one in a large part of the domain. In a small region, however,
diffusion becomes important and the balance between the convective and diffusive effects
creates boundary or internal “layers.” In these layers, the solution varies rapidly over a
short distance. Numerically, this means that a very fine grid is required, at least inside
these regions, in order to compute the solution accurately. In particular, the layers typical-
ly have the exponential behavior of the form e/ (x)/¢* with some smooth function f (x) and
exponent « for e. The thickness of these layers is proportional to €®. Therefore, as ¢ — 0,
the thickness of the layers decreases accordingly and the number of grid points required is

often such that it is infeasible to resolve the layer structure by simply taking smaller and



smaller mesh size.

Many methods have been proposed to deal with this problem. These common methods
basically fall into two categories. The first type uses a modification of the underlying mesh.
The idea is to put more grid points only where they are needed. For simple problems in which
much about the layers is known, optimal meshing and its properties have been developed, as
summarized in [63]. For more complicated problems, general adaptive meshing algorithms
using a posteriori error estimates are needed; see, e.g., [12]. However, these algorithms are
complicated and require sophisticated programming. Unlike the methods we consider in
the present work, the grid points added for refinement in adaptive meshing algorithms are
coupled globally to the grid points of the regular mesh, increasing the size of the matrix
problem. The linear system of the discretized equations also lacks the banded structure of
the uniform grids. In [36], an example is given in which a mesh refinement for an internal
layer problem gives an indefinite matrix even though the differential operator is positive
definite. All this makes solving the linear system more difficult and time-consuming as the
level of refinement increases. Moreover, a standard grid adaptation in which more mesh
points are placed where the solution changes rapidly may not always place transition layers
correctly. It has been shown in [21] that to compute these layers correctly, the numerical
method may need to include a large number of points close to the boundary where the

solution may be flat.

The second class of methods for dealing with the layers is based on a modification of the
differential operator. The simplest approach in this category is the upwinding method (see,
e.g., [57, 80]), in which differencing schemes are biased in the direction of the convection. In
two dimensions, the characteristics of the hyperbolic part of the equation are followed. This
method does produce a stable numerical solution, but at the loss of accuracy. In general,
it is O(h) accurate away from the layers but only O(1) near the layer [53]. Moreover, the
error bounds depend on the Sobolev norm of the solution, which is large for small diffusion.
Another way of suppressing spurious oscillations is the method of artificial viscosity. In two
dimensions, it is the streamline-diffusion in which viscosity is added only in the direction
of characteristics [50, 29]. But, again, the fronts are smeared and the accuracy is degraded.

The global estimates are also not uniform with respect to ¢, and a parameter must be



tuned in order to add the right amount of artificial viscosity. A different approach involves
adjusting the differencing scheme. Since the layers are typically exponential, the idea is
to modify the differencing scheme in such a way that an exponential function is captured
exactly rather than a polynomial one. This idea of “exponential fitting” is very old, dating
back to 1950s [2], and there have been many variants on this theme [62, 68, 81, 39, 59,
76, 72]. In the finite element setting [26, 20], the finite element space is modified with
basis functions that have the exponential behavior. By reflecting the multiscale property
of the differential operator, these basis functions can improve the solution dramatically.
The difficulty, however, has been that it is hard to construct such basis functions in the

genuinely two-dimensional problems. This is the subject of the present work.

We find that there are in general two classes of velocity fields, for which different approaches
are needed. In Chapter 2, we study the case in which the correct behavior of the solution
can be determined by examining the equation locally. We study this case in the context of
the enhanced effective diffusivity problem from fluid mechanics [7, 5, 45]. This provides an
interesting physical background for examining the performance of our method. Specifically,
we study the transport properties of the highly oscillatory but periodic cellular velocity
field. The fluid in this flow is rotating in each of the small cells of size §, with opposite
directions in adjacent cells. To this problem, we apply the multiscale finite element method
originally developed for elliptic problems [44, 43], and obtain the correct scaling of the over-
all diffusivity property of the flow. In this method, the support of each basis function is
larger than the small scale of the problem, and we obtain the basis by solving the associ-
ated homogeneous equation locally in place of the standard polynomial basis. These basis
functions then contain the oscillaf;ions from the small scales. Thus, rather than resolving
the small scales of the coeflicient in a globally coupled fashion, we resolve them within each
basis function. The finite element formulation then transfers the correct averaged effect to
the coarse grid. Thus, we break up an otherwise prohibitively large problem into smaller,
more manageable pieces. Results from homogenization theory [49, 16, 77] are introduced
in Section 1.4 to be used in the analysis of this method. In Section 2.4, we carry out the
asymptotic error analysis for the method to show that the relative error is of order §/h,
and does not depend on the small scale €. This estimate shows that for a fixed grid h, the

method converges in the limit of § — 0. This estimate is sharp, as verified by numerical



computations. In contrast, the standard finite element method has ¢ on the denominator

and the method fails to converge unless we have a very fine mesh so that i < §.

For this analysis, we assume that the details within each basis functions are well-resolved.
While the construction of each basis is independent and therefore easily parallelized, it can
still be expensive if € is so small that a large number of mesh points are required inside
an element. In Section 2.5, we explore the possibility of using an asymptotic expansion,
in place of a direct computation. While we find that we can obtain a good approximation
this way for the cellular flow problem at hand, capturing two-dimensional behavior with

asymptotics seems too difficult in general.

The problems we consider in Chapter 2 are manageable because the characteristic length
scale that governs the local behavior is small. The information contained in the support
of each element is sufficient to determine the local behavior correctly. This allows us to
break up the problem into smaller pieces and still capture the correct overall solution. In
Chapter 3, we examine the more difficult case in which the characteristic length scale is much
larger than the element size. This means we cannot obtain useful basis functions by solving
the equation locally; the support of each basis function is too small to contain the nonlocal
information. Thus, in order to come up with the basis functions of the correct local behavior,
we must have some knowledge of the solution structure a priori. When this information
is not available, one must then resort to conventional methods; but for many problems,
enough information is available or can be obtained to aid us in designing a more effective
method. For the random velocity field we consider, for instance, theoretical understanding
of the flow field based on percolation theory [33] and the variational principle introduced in
[31] can provide the necessary information. This variational principle is nonlocal and a test
function must be evaluated on the whole domain in order to compute the energy integral.
While the test function that minimizes the integral has a complicated layer structure and
is difficult to find, we can construct an artificial test function that captures the essential
behavior of the layers and use this to extract the location and the thickness of boundary
layer. The information obtained this way is interesting by itself, because it gives an estimate
of the effective diffusivity property of the flow introduced in Chapter 2. Once we have the

information regarding the layers, we examine how to use this to construct useful basis



functions. We first consider a one-dimensional problem with a turning point to get insights
into how to construct such basis functions in two dimensions. In both cases, we find it
necessary to embed the exponential behavior into separate basis functions in order to handle
internal layers. These basis functions are then placed along the streamlines on which the
layers occur, while the bilinear basis functions of the underlying uniform grid are still kept
for the smooth part of the solution. When the exponential bases are incorporated correctly
into the finite element formulation, we find that the numerical solution can be obtained
from a relatively coarse grid and that the error is reduced substantially. In particular, the

exponential basis functions adapt well with decreasing e.

In the last chapter, we study an elliptic equation with large variations in the coefficient
[62, 55, 17, 18]. This “high contrast” situation is common, since the coefficient often rep-
resents a property of a medium which may differ drastically in different regions. When the
coefficient has extremely large variation or even discontinuities, singular behavior results
and conventional numerical methods do not perform well [10, 58]. For certain singulari-
ties, the standard finite element method can be arbitrarily slow in its convergence [75]. To
remedy the situation, we present another variation on the finite element method approach
we have employed in Chapter 2 and Chapter 3. The goal again is to build special basis
functions that can capture the correct local behavior. This elliptic problem is similar to
the convection-diffusion problem of Chapter 2 in that the singularity is essentially local.
But an additional difficulty is that we may not be able to solve the equation locally: some
singularities, such as the “checkerboard” pattern, are nearly impossible to resolve using any
conventional scheme. In some instances, the form of the singular behavior can be obtained,
for example, through the solution of an eigenvalue problem [79, 66]; numerical methods have
been developed using this information. But in general, the nature of the singular behavior
is unknown and we need another means of obtaining the local solution. The solution we
present here is the construction of the local basis using the infinite element method [82].
This elegant technique takes advantage of the similarity of its special grid structure and
has the effect of having infinite resolution at the singularity. The number of unknowns in
the solution process is proportional to the number of points on the element boundary, i.e.,
given m mesh points on each side of an element, the matrix problems involved are for 4m

unknowns, not for m? unknowns as in most other methods. We also derive a way of com-



puting the stiffness matrix efficiently. We examine the case of a corner and checkerboard
singularities [75] and find that the method performs very well. As the contrast increases,
the singularity gets more localized and even for a moderate mesh size in the infinite element,

the method is not sensitive to the high contrast.

In summary, we pursue the numerical solution of singularly perturbed or degenerate elliptic
problems within the finite element framework. When the nature of the problem is such
that we can capture the multiscale property of the differential operator locally, we construct
special finite element basis functions by solving the equation directly within the elements. In
particular, we employ the multiscale finite element method for highly oscillatory problems
and the infinite element technique for the singularities that cannot be resolved by other
means. When the layer structure is determined nonlocally, we make use of the variational
principle or matched asymptotics results to design the basis functions with correct features.

We verify the effectiveness of the schemes with numerical experiments.

1.2 The Convection-Diffusion Equation

1.2.1 Motivation

Many phenomena in science and engineering are transport processes. Some quantity of
interest gets transported by the diffusive motion of particles and by the convective motion
of the underlying velocity field. For example, the transported quantity w(x,¢) may be the
temperature or the concentration of a pollutant. The partial differential equation that
describes these effects is the convection-diffusion equation

Ou(x,t)

o + b(x) - Vu(x,t) — eAu(x,t) = f(x). (1.1)

The term “advection” is sometimes used in place of convection interchangeably. We assume
that the velocity field b(x) is given in the problem. One may, for example, solve the
Navier-Stokes equations coupled to this equation to obtain this velocity field. € (0 < e < 1)

is the molecular diffusivity characterizing the Brownian motion; f is the forcing on the



system. The convection term is sometimes written in a more general form as V - (bu). But

most velocity fields in which we are interested come from streamfunctions and hence are

incompressible, V - b = 0.

Examples of this equation are found in many areas of science and engineering. It is the
linearized version of the Navier-Stokes equations with 1/Re being the small parameter.
Here Re is the Reynolds number which is very large in many important problems. It is also
the vorticity equation for the incompressible Navier-Stokes equations in two dimensions
with viscosity €. Transport of heat in Rayleigh-Bénard convection [74] and transport of
magnetic field in the kinematic dynamo problem [65, 78, 25] are also described by (1.1). In
semiconductor device simulation, it is the widely-used “drift-diffusion” model [69] with u

being the electric potential.

1.2.2 The Singularly Perturbed Case

An equation is said to be singularly perturbed when the term with the highest derivative is
multiplied by a small parameter. In the present case, we also refer to it as the convection-
dominated case, since |b|/e is large. In fluid mechanics, it is also referred to as the high
Peclet number problem. The Peclet number Pe is the ratio between the convective and the

diffusive effects.

Equation (1.1) can be written in elliptic form for any positive viscosity ¢ if we can find a skew-
symmetric matrix H = (H;;) such that V- H = —b. This is the case if b is incompressible

and has mean zero. In two dimensions, if b is obtained through a streamfunction ¢, that
is, b = V14 = (=1, 1p;), we simply have
0 =

H= . (1.2)
0

Now, the equation (1.1) can be written in the following divergence form:

ou(x,t)

o =V (d+ H)Va(x, 1) = f(x). (1.3)



As mentioned in the overview, the limiting equation with ¢ — 0 is hyperbolic, and the
equation qualitatively does not have many features that we would expect from an elliptic
equation. In particular, solutions of (1.3) may have sharp boundary and internal layers.
The boundary layer theory for the singularly perturbed problem has been studied for a long
time, and there are some analytical techniques available, such as the matched asymptotics
and multiple scale expansions [15, 40, 54, 67, 41]. However, except for simple problems, the
analytical approach is limited and we must turn to numerical schemes. Unfortunately, the
standard numerical schemes have difficulties of their own. In the present work, we improve
the numerical methods by combining them with some analytical understanding of the layer

structure.

An important characteristic of (1.1) is that the operator is not self-adjoint and we do not
have the nice properties of the Sturm-Liouville type problems. The stiffness matrix of
the finite element formulation is therefore nonsymmetric, requiring a different set of linear
system solvers from the most commonly used ones. The matrix problem may already
be ill-conditioned because of small €. Also, the lack of self-adjointness creates additional

difficulties when we try to formulate a variational principle in Chapter 3.

1.2.3 The Nonlocal Behavior

In Section 1.1, we referred to the fact that there are no simple and efficient methods for
general two-dimensional problems. We clarify one reason for this here. A common extension
of successful one-dimensional methods to two-dimensional situations is the tensor product
approach, in which the one-dimensional solution is used in each direction, i.e., ¢;;(x,y) =
¢i(x)¢j(y). This works well for a small class of problems whose behavior is essentially one-
dimensional, e.g., when b(x) = (by(x), be(y)) with bi(z) > by > 0 and ba(y) > by > 0 for
some constant by [68, 81, 39]. Other methods that work well in genuinely two-dimensional
problems impose stringent conditions on the coefficients or require that much information
is given about the layer structure in advance [63]. For example, many methods require that

the velocity field does not have a turning point where the coefficient switches the sign.

There is a fundamental reason for the difficulty of constructing eflicient two-dimensional
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Figure 1.1: A nonlocal effect in the cell problem: in this periodic cellular flow given by the
streamfunction ¢ = sin(mx) sin(zy) for unit size cells, an internal layer is formed along the
vertical boundary at the center; however, this cannot be predicted if the velocity field is
sampled only in the box shown.

numerical methods: the layer structure, in particular its location and thickness, is nonlocal.
We illustrate this in Figure 1.1. Suppose that the fluid is rotating in opposite directions in
the adjacent cells, as shown in the picture. Such a velocity field results from the stream-
function ¢ = sin(mz) sin(ny) if the cells are of unit size. Locally, near the center boundary,
the velocity field is pushing the fluid upward; if we were solving the equation in that small
box shown, we would expect the layer to be horizontal along the top. However, the correct
solution in this case has vertical layers along the center boundary, determined by the global
feature of the velocity field and boundary conditions. This illustrates that unless the sam-
pled region for determining the solution behavior is larger than some characteristic length
scale of the problem, we cannot obtain a general method for dealing with layers. Either the
sampled region must be large enough or some a priori knowledge concerning the structure

of the global solution is necessary.

1.3 Formulation of the Problem

We need to introduce some basic spaces before stating the problem in the weak form for
the finite element method. Let @ C R? be a bounded domain with a Lipschitz continuous
boundary 8Q. We will use L?(Q2) based Sobolev space H*(Q), which is the space of all

functions u € L?(Q2) whose derivatives D% (in the sense of distributions) of order |o| < k
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are also in L?(§2). This space is equipped with norms and seminorms

1/2

lullr.0 = [Duf? |

1/2

ulke = | [ > 1D%f ]
/Qjaizk

ulloo, = esssup |u(z)|.
zEQ

The space H} () is the closure of the set C§°(Q) in H(2). With the sufficiently smooth
boundary 92, H} () is the set of all functions u in H1(£2) such that u = 0 on 9Q. H~}(Q)
is the dual space of H} (), the set of all continuous linear functions on H{(Q). H/?(Q) is
the trace on 9 of all functions in H'(Q2) with the norm ||v|[1 /2,50 = inf [ul|y,o where the
infimum is taken over all v € H'()) with trace v. C denotes a generic positive constant
independent of small parameters unless otherwise stated and C +C = C and C - C = C.
We say that a quantity p is O(q) when |p| < Cq for all ¢ sufficiently small. We also use the

FEinstein summation convention, in which we sum over repeated indices.

1.3.1 Weak Formulation

The steady-state problem is

—eAu+b(x)-Vu = f in QcCR? (1.4)
u = 0 on Jf. (1.5)

The weak form is to find u € H} such that

a(u,v) = f(v), Yve€ H}, (1.6)
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where

a(u,v):e/Vu'Vva’x%-/b-Vuvdx,
Q

Q
Flv) = /Q Fudx.

We assume that the coefficients satisfy the uniform ellipticity condition ¢ |&;|? < a8 <
c21€i1? (0 < ¢1 < ¢g) for any € € R?, where a;j = €6+ Hyj of (1.3). We assume that a;;,b; €
L%(Q) and f € H~(Q). We only consider the homogeneous Dirichlet boundary condition
for clarity, but other boundary conditions can be easily incorporated. A nonhomogeneous
Dirichlet condition can also be easily translated into the forcing term; Neumann boundary
condition is automatically enforced by the variational form if Dirichlet condition is not

imposed. We fix the domain to be = (0,1) x (0,1) C R? for computation.

1.3.2 Existence and Uniqueness

We need the following theorem for the existence and uniqueness of the solution in the weak

form.

Lemma 1.1 (Lax-Milgram Lemma) Let V' be a Hilbert space with some norm || - |lv,

a(-,-) be a bilinear functional, and f(-) be a linear functional such that

(1) a(v,v) > aljv||?, VYo €V (coercivity)
(2) la(u,v)| < B lullv|lvlly, Vu,v €V (continuity)

(3) 1F W)l <7 llvllv

for some positive constants o, 8, and . Then there exists a unique solution such that

a(u,v) = f(v), Vo e V.

Proof. The proof can be found in many books, e.g., [20]. O
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Now we can easily obtain the existence and uniqueness for (1.6) by applying the Lax-
Milgram Theorem with V = H}(Q) and || - |y = || - || 2. Conditions (2) and (3) are easily

verified; for (1), we have

a(v, v) —_—e/g;[w%/ﬂt)évw?)

:e/Q|Vv}2+/Q (—%V-b) |v]?.

Therefore, we need to have —1/2V - b > 0. Then, with the Poincaré-Friedrichs inequality

[20]

ull2s < e¢plul? Yu € Hg,

we satisfy condition (1). The incompressible velocity fields we consider satisfy this by

V.b=0

1.3.3 The Finite Element Method

In the finite element method (FEM) [26, 71], we apply the differential operator exactly but

restrict the weak form (1.6) to a finite dimensional subspace of HJ(§): Find u” € V" such

that
a(u”, ") = fo"), W' e W, (1.7)

where V = span{¢y,...,¢n} and W" = span{v, ... 1y} with trial and test functions ¢;
and 1;, respectively. V" is called the trial function space and W the test function space.
When V" = W (¢; = 1;), we refer to the method as the Galerkin method; when V# # W

we refer to it as the Petrov-Galerkin method.

We choose v = v" in (1.6) and subtracting (1.7) from (1.6), we have
a(u —u,v") =0, (1.8)

an orthogonality property that becomes very useful in the error analysis. Applying coer-
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civity with v = u — u”, orthogonality, and continuity, we have

1
lu— "0 < olu - ulu—ul)
1
< —afu —u,u —o")
a
p

VAN

—|lu — U,L||1,QHU — o ll,Q-
87

So we have the following lemma [20]:

Lemma 1.2 (Ceéa’s Lemma) Let u be the weak solution of (1.6) and the approximation

ul of (1.7). Then we have

lu— v, VotteVh (1.9)

lu—utlig <2 min
o UhGVh

This guarantees that the weak form picks out the optimal o” from V". This version of the
lemma, however, is not too helpful for the singularly perturbed case. In this case, we can
explicitly compute the constants and get 8/a = (1 + 02)1/2(1 + Pe?)1/2 ) where ¢, is the
constant in the Poincaré-Friedrichs inequality and Pe is the Peclet number ||b||z~ /e. For
our computational domain (0,1) x (0,1), ¢, = 1/4. This is the standard step that reduces
the finite element method to an approximation theory problem, but for large Pe cases in

which we are interested, the 1/¢ factor makes the estimate less useful.

Finally, we note the standard H} estimates for interpolants:

Ju—u"flo < C I |ulg,

u— " < Ch¥ur.

1.4 Homogenization

In the following chapters, we consider problems with another small scale 4, in addition to

the small diffusivity e. This ¢ is the fine scale characterizing the rapid variation in the
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coefficient. In Figure 1.1, for example, the size of the cells may be O(§). In this section, we

ignore the issue of boundary and internal layers temporarily and discuss how to deal with

this new fine scale.

The rapidly oscillating coefficient is common to many multiple scale problems. If the coef-
ficient were the permeability of porous media, for instance, it would oscillate rapidly. As
is the case with ¢, it may be prohibitively expensive to solve the problems with enough
resolution to resolve the fine scale §. We are often content with the coarse scale behavior
of the solution, but we cannot simply ignore the fine scales because the fine scales interact

with other scales to affect the coarse grid solution.

Homogenization is a way of extracting an equation for the coarse behavior that takes into
account the effect of the small scales. The homogenized or the “effective” equation contains
no small scales and is therefore much easier to solve. Physically speaking, it is a method by
which a problem in a medium consisting of a large number of periodic cells is approximated
by a problem in a homogeneous medium. The classic reference for this is [16], while a more
readable account is given in [49]. Another book from a more physical viewpoint is [77].
Many applications in science and engineering are described in [61]. Here, we review the

basic homogenization theory that will be important in the analysis later.

We consider the divergence form of the equation,
-V -(a(z/0)Vu)=f inQ, u=g ondf, (1.10)

with u € H} () and f € H 1(Q). The convection-diffusion equation (1.4) can be written
in this form, with a;; = €d;; + H;;. According to the homogenization theory, the solution u

has the following property of convergence,

u—ug  weakly in Hg (), (1.11)

a(x/8) Vu — a*Vuy  weakly in L3(Q), (1.12)
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as § — 0, where ug satisfies the homogenized equation
-V -a'Vug=f inQ, u=g ondf. | (1.13)
The homogenized coefficient a* does not contain the small scale §.

One way to derive an expression for the homogenized coefficient ¢* is through asymptotic
analysis. We introduce the fast variable y = z/§ and let a(z,y) be periodic in y. We

consider z and y to be independent and

d 0

19
— = - 1.14
It is natural [77] to seek the first approximation in the form

The justification for this expansion is given in [16, 49]. In terms of the separated variables,

we have
d z\ d
Ls = — iil=) —
b dx; (a]<(5> da:j)
(0, 10N, (0 10
- ox; 0 Oy, K ox; d Oy;
1 1
25—2A1+5A2+A37
where
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When we apply this Ls to the expansion of u(z,y) (1.15), we have

1 1
Ls = <-5~§A1 -+ —5-142 + Ag) (up + duy) (1.16)
1 1
5—2A1 + 3— (A1U1 + AQ'LLQ) + (Ag’u,o + AQUI) + 6 Aszu. (1.17)

We now match the different order terms. The O(672) term is

0 8u0(1,y) —
= (aij@)—w) _o, (1.18)

which shows that ug(z,y) = ug(z), [16]. The next order gives

2 (2t D

Y. ()22
Ay, G\ 0y; Oy; e <y)8mj

This can be considered as a periodic boundary value problem with respect to y. The general

solution to this problem is
ui(z,y) = X" (y) 5— (1.19)

where x* is the solution of the “cell problem”

0 ox* (s o
5?/7 <aij(y) Ey(;/)> — _a—yiaik(y). (1.20)

The x* function is determined up to a constant; we impose <Xk> = (0 to get a unique
solution, where (-) denotes the average over one period. With the O(46°) terms, we take the

average with respect to y, which results in the expression for the homogenized coeflicient
L1 ax?
a,lfj = m /Y Qe <5]k + 8—y;¢> dy, (1.21)
where Y denotes the periodic cell of y variable and Y| is the volume of the cell.

Now, since ug satisfies g on the boundary 92, uy + du; does not. In order to enforce this

boundary condition, we need to introduce a “corrector” s, which satisfies

Lsfs =0 in 9, 05 = —ui(z,2/0) on S (1.22)
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Putting this together, we have

. [T\ O
Us = Up + 5Xk (%) a—zz + 8065. (1.23)

This expansion is used in Section 2.4.
1.4.1 A Simple Example

We illustrate this homogenization process with the following simple example:

d T\ du
e ( (5) 3;) =0, (1-24)
where u € H}([0,1]), u(0) = u(1) =0, a € L*([0,1]), and a(z) > ap > 0 for all = € [0,1].

With y = 2/4, the cell problem (1.20) is

0 dx daly)
— — | =- . 1.2
5 (e 3E) = -2 (1.25)
Integrating both sides and dividing by a(y), we get
ox c
—=-14—— 1.26
Ay aly) (20

Since we have <g—§> = 0 due to periodicity, we find that
c= <a_]'>“1 . (1.27)
Using the one-dimensional version of (1.21), we get

o = (at)+an3Y) (1.28)

a1y
- <a(y)+a(y) (-1+<a( y )> (1.29)

= (a7, (1.30)
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Thus, the homogenized solution ug satisfies

i (<a—1>*1 %) 0. (1.31)

A naive guess for the homogenized coefficient may be the arithmetic average (a). But there
can be a large difference between this and the correct coefficient, the harmonic average
<a‘1>’1. If a(y) is the material coefficient that oscillates evenly between the two constant

values a1 = 1 and ay = 1000, then {(a) = 500, while (a“1>~1 ~ 2.
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Chapter 2 The Convection-Diffusion Equation with

Periodic Coeflficients

2.1 Introduction

While equation (1.1) explicitly contains only one small parameter €, another parameter
enters when we want to consider the behavior of this equation in the large-domain and
long-time limit. Rather than trying to solve the equation in successively large domains for

increasingly longer time, we introduce the rescaling parameter 6. We let
x'=x/6 and t =t/6%, (0<d<1), (2.1)

which transforms (1.1) to, after dropping the apostrophe on x" and ¢/,

ou 1
67?6 + 5 b(x/0) - Vus = eAuy. (2.2)

We have also set f = 0, since there is no forcing in the problem we consider in this sec-
tion. The analysis of this equation with periodic coefficients in the § — 0 limit involves

homogenization, which we reviewed in Section 1.4.

The homogenization theory applied to the convection-diffusion equation is the following,
[60, 31]. As 6 — 0, the solution to the rescaled equation us converges to u, which satisfies

the constant coeflicient equation

— = g.Au. (2.3)

The convergence is in L?,

lim sup /]u(x,t) —us(x,1)[?dx =0 (2.4)
=0 0<t<ty .
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for any t9. Equation (2.3) means that in the large-domain, long-time limit, the overall
behavior can be characterized as diffusive, with the convection term making contribution
of varying degree depending on the velocity field. How different velocity fields affect this
“effective diffusivity” tensor o, is of great interest and it is the test problem for the numerical

methods we develop. Using homogenization theory, we can obtain an expression for this o,

[31):
oc(e) =e{(Vx+e) - (Vx+e)), (2.5)

where (-) denotes averaging over one period and e is a unit vector. This comes directly from
the expression for the homogenized coefficient (1.21). x is the solution of the cell problem

(1.20), which we can rewrite, with a;; = €d;; + H;;, also in a vector form as
V- -[(eI+H)(Vx+e)] =0, (2.6)
with H as defined in (1.2). This can be simplified by using V- H = —b to
—eAx+b-Vx+b-e=0 (2.7)

on the torus. o, is generally a nonsymmetric matrix, but for the streamfunction we consider,
there is a symmetry of the form H(x) = —H(—x) and this assures that the o, tensor is

symmetric [31]. Uniform boundedness of the streamfunction ¢ is sufficient for the existence

of this homogenization [7].

The full solution to (2.2) has fine scales characterized by ¢ and ¢, (0 < § < 1,0 < € < 1),
and conventional numerical methods perform poorly unless we resolve all the small scales.
But to do so is prohibitively expensive. In this chapter, we apply the multiscale finite
element method [44, 43, 30] to this convection-diffusion problem. After introducing the
multiscale FEM in Section 2.2, we demonstrate its effectiveness for the periodic problem
by using it to obtain the correct diffusivity scaling for the cellular flow in Section 2.3. In
Section 2.4, we study the convergence rate of the multiscale method using asymptotic error
analysis. We find that the estimates derived are sharp, as verified by numerical experiments.

Finally, in Section 2.5, we examine possible improvements to the method by obtaining the



21

1

(X33

o8k

o7k

[ X34

=08

o4

ost

o.2f

o

° L : n L . . L
] o.1 0.2 0.3 04 [+X3 06 %4 o8 a9 1

x

Figure 2.1: 1-D solution with an exponential layer (¢ = 1 and ¢ = .05). There is an
exponential layer of thickness O(e) at the right boundary.

basis functions using asymptotic methods.

2.1.1 Problems in One Dimension

To gain insights into the behavior of the singularly perturbed equation, we first consider

the simple one-dimensional problem,
~eu” +a(z)u' =0, ze€]0,1], (2.8)

with Dirichlet boundary conditions u(0) = 0, u(1) = 1. If a(x) is a constant ag, the exact

solution is

eaoz/e -1

u(z) = . (2.9)

eso/e — 1

which is plotted in Figure 2.1. Near z = 1, there is an exponential layer of thickness O(e),
in which the eu” term becomes important. Intuitively, we can think of the ' term as the
convective effect pushing the “fluid” to the right. When a < 0, it gets pushed to the left
and the boundary layer is near z = 0. If a(z¢) = 0 for some zy € [0, 1], x¢ is called a turning

point. In this case, internal layers can also occur.

Two standard methods for solving (2.8) are the finite difference and the finite element

methods. In the simplest FEM, we expand u(z) = Zf[ u;pi(x), where ¢; are the “hat”
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Figure 2.2: Regular and adaptive basis functions (e = .01). The adaptive basis function on
the right is obtained by solving the equation locally on each side.

functions

b= (x —xi-1)/h, x € [®i_1,xi] (2.10)
(ig1 —x)/h, T € (24, 2441]

as shown on the left in Figure 2.2. Substituting this in the equation (2.8), we have

ah ah )
——<1+“2—€>u2;1+2ui—(1"56—)’“1‘-{-1:07 t=1...,N-1,

where there are N + 1 grid, or “nodal,” points and h = 1/N. The finite difference dis-
cretization with central differencing gives exactly the same set of equations in this case.
With boundary conditions ug = 0 and uxy = 1, the exact solution to this set of equations

at the nodal points are '
v =1 _ 1+ah/(2€)
AN T T T an/(2e)

U; =

We immediately see that unless ah/e < 2, oscillations will occur. The ratio ah/e is often
called the mesh Peclet number. This illustrates the common problem, that the mesh size h

needs to be very small when € is very small.
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2.1.2 Green’s Function Approach

To deal with the present difficulty, many methods have been proposed, as reviewed in
Section 1.1. Among the most effective methods are the finite element methods with ba-

sis functions that contain the exponential behavior resembling the boundary layer of the

solution [73].

It is common [39] to obtain the trial functions by solving the homogeneous equation modified

by making the coeflficient constant. In one dimension,
—ed +ag, =0, with a= (a(z;—1) +a(z;))/2, forz € (i—1,z:). (2.11)

The functions ¢; obtained this way have exponential layers, as shown on the right in Fig-
ure 2.2. When these functions are summed up with correct weights, they provide a better

approximation to the solution than the hat functions do. In fact, if the coeflicient is con-

stant, this scheme gives exact nodal values.

While (2.11) was based on a heuristic thinking, we can be more systematic by thinking in

terms of the Green’s functions. By definition,
ux) = [ Glxxa) ) da, (2.12)
Choosing v(x) = G(Xg,x) in the bilinear form (1.6) and using (2.12), we have
a(u,G) = (f,G) = u. (2.13)

Note that this is true for any choice of f, which means it is also true for any choice of u.

Letting u — u — u” in (2.13), we can now write
alu —u, @) =u—ul.

Subtracting this from the orthogonality condition a(u—u", v) = 0 (see equation (1.8)), (1.8)

uw—ul =alu—u,G—v), voevVh (2.14)
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This shows that the error ||u — u"|| can be minimized by selecting the test function space
V" to contain as much of the Green’s functions as possible. Given this reasoning, it makes

sense to choose V" to include functions G; that satisfy
L*Gi(x) = =6(x — x;)
at each mesh point x;. L* is the adjoint operator here.

Fortunately, in one dimension, G is a linear combination of local Green’s functions g;(z), z €

(zj—1,%j+1), that satisfy -
L'gj(x) =0, gj(zj-1) =gj(zj01) =0, gj(z;)=1 (2.15)

For variable coefficient problems, previously proposed methods suggest solving a local prob-
lem with averaged coefficients. However, as we will also do in two dimensions, we solve the

variable coefficient problem directly. Then we obtain the following lemma:

Lemma 2.1 For the one-dimensional equation (2.8) with a variable coefficient convection
term, using linear trial functions and solutions to the local homogeneous adjoint equation
as test functions in the weak formulation results in exact nodal values, if the integrations

are done ezactly.

The proof is in the appendix.

Note that the trial functions can be any basis as long as they are continuous. If there is no

forcing, adaptive trial functions and linear test functions also give exact nodal values.

In two dimensions, the global Green’s function cannot be expressed as a linear combination

of local Green’s functions solved in each element. However, the adjoint equation is still



25

useful and we can see its effect in the following expression:

a(mw)ze/Vv-dex—%/b-vadx
Q Q

=6/V0-dex—~/b-vadx,
Q Q

where the boundary term disappears in the integration by parts because w € H&. If we

break up the integral into elements denoted by K and integrate by parts in each element,
we get

a(v,w)zez Vv dex—Z/ b - Vwuvdx

K

:GZ/ vV - nds-ez vadx—Z/ b - Vw vdx.
~ Jox

When we get w by solving the adjoint equation
—eAw—b-Vw=0

on each element, the second and third terms disappear. We then let v = u — u” and use

the projection property (1.8) and get

Z (u—u Ww-nds = 0.

We see that when the test functions w are the solutions of the adjoint problem, there is a

projection of the error u — u” onto the element boundary that becomes zero.

In the next section, we describe a similar method called the multiscale finite element method
[44], in which the trial functions are the solution of the homogeneous equation and the
test functions some continuous function, e.g., the bilinear functions. This method was
motivated by a different reasoning for different problems, one to capture sharp layers and
one to capture rapid oscillations. But the two methods are similar in that both use the
homogeneous equation locally to capture the property of the differential operator more

accurately. Numerical comparison is given at the end of Section 2.4.5 for different trial and
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test functions.

2.2 The Multiscale Finite Element Method

In [44], the multiscale FEM was introduced for elliptic equations with oscillatory coefficients.
The main idea is to resolve the fine scales locally within each element of size h > § by solving
the homogeneous equation with some appropriate boundary conditions. This way, each basis
function retains the oscillatory property of the differential operator. The authors prove that
when these elements are used to construct the global stiffness matrix, the averaged effects of
the rapidly oscillating coefficients are correctly captured. By resolving the fine details inside
the elements, problems that are prohibitively expensive with conventional finite element
methods are broken down into smaller, manageable parts. Because the elements are larger,
the final solution is computed on a coarser grid. However, the large scale features are usually

of interest in the first place, and sufficient information is obtained for that purpose.

Formally, the multiscale FEM formulation is the following. We let K" be a partition of € of
triangles or rectangles with diameter less than h. We define a set of basis qﬁfs, it =1,....d,

(d = 3 for triangles and d = 4 for rectangles) such that qﬁg’ 5 satisfies
Ls¢s =0 in K. (2.16)

At the nodal points z; € K,j = 1,...,d, we require Qﬁfs’K(IL’j) = §;; as usual. The correct
boundary conditions for (2.16) would match the global solution, but since we do not know
this, we can impose linear boundary conditions for now; this issue is discussed later. We

define
VP =span{df:i=1,...,d, K CK"} CHj(Q),

and the Galerkin formulation is to find the solution ug € V" such that
a(ult v) = fv) vweVh (2.17)

In order to understand the convergence of this method, the ideas from the homogenization
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procedure discussed in Section 1.4 play a critical role. Just as we expand ug in (1.15), we

can also expand the basis function ¢; as

) 0
ds=du-+ 0" (5) 5o + " (218)

with ¢}, x*, and 6% defined similarly to (1.13), (1.20), and (1.22). Since ¢ is a smooth
function, we see that the oscillation in ¢5 comes from that of y, which solves the cell
problem (2.7). The error analysis is based on the fact that ¢s and ugs satisfy the same
operator and therefore the two expansions (1.23) and (2.18) match, away from the small

region near the boundary.

We see that the boundary conditions are an important issue if the two expansions were
to match better near the boundary. While we assumed linear boundary condition above,
another possibility is to solve the one-dimensional version of the equation along each edge,
as we do for the problems in this chapter. This usually results in some improvement in error.
For the very small ¢’s, care must be taken: the layers inside the basis may have thickness
of O(d/€), but the reduced equation on the boundary may give layers of thickness O(de).
In that case, the mesh spacing that resolves the layers inside the basis may not resolve the
layers on the boundary. The case in which solving the one-dimensional equation works the
best is in Chapter 4, when coefficients have discontinuities. For many elliptic problems, the
best solution turns out to be the oversampling method introduced in [43]. In that case, the
effect of a wrong boundary condition is restricted to a O(d) region near to the boundary.
The oversampling idea is then to solve for the basis function on a domain larger than the
element and extract the information from the middle of the domain. This reduces the error
due to the incorrect boundary conditions. A rigorous analysis has been carried out in [30].
In the convection-diffusion case, the oversampling does not. always work because the effect

of the boundary condition may not be confined to such a small region.
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2.3 Computation of the Effective Diffusivity

We apply the multiscale FEM discussed in the previous section to the time-dependent
convection-diffusion problem with the periodic velocity field. In particular, we consider the
“cellular” flow for which some analytical results exist. The problem we use to demonstrate

the effectiveness of the method is the computation of the effective diffusivity property (2.5).

2.3.1 Effective Diffusivity

The “cellular flow” is given by the streamfunction
1 2w 2
= —=sin (ﬂ) sin <%y) . (zy) € 0,12, (2.19)

where ¢ is the rescaling parameter that determines the number of cells. The scaling factor

1/(472) is used to relate to other studies done on domains of size [—7,7]?. The resulting

velocity field is

b= Vi = (—thy, 1) (2.20)
= <2lﬁ sin <&gﬁ> cos <2_7(;3/_> , é—}r—g cos <%7(—;£> sin <g%/—)> . (2.21)

This streamfunction with 6 = 1 is plotted in Figure 2.3. The velocity vector is tangent to

the streamlines shown.

A well-known result for this velocity field, described for example in [25, 24, 74], concerns
the long-time, large-distance diffusive behavior: the “effective diffusivity” o in the limit

€ — 0, scales as
e ~ e (2.22)

In the absence of convection, the effective diffusivity is simply e. It is clear that convection
can only increase the overall diffusivity, as it carries particles along the streamlines faster

than diffusion does. This can be seen clearly when we expand the expression for o, in (2.5)
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Figure 2.3: A streamfunction for the cellular flow (6 = 1).

and simplify to get another expression,
oce=€+e(Vx-Vyx), (2.23)

where the second term is positive.

The result (2.22) can be understood through a simple scaling argument. The important
feature in the solution is the formation of boundary layers near separatrices. It is these
boundary layers that characterize the transport properties of particles. To determine the
width of the layer along the separatrices, we set § = 1 and balance the diffusive flux across

the layer with the convective flux along the layer. Comparing the time scales,

w? )
el

€ Ug

where w is the width of the layer, [ is the size of the cell, and wugy is the magnitude of the
velocity. Since [ and wuy are of O(1), we conclude that w ~ /e. Then we can use (2.5).
w ~ /e means Vy ~ 1/4/€ and substituting this in (2.5) and integrating over the width of

the layer immediately gives (2.22).

In general, o, is a tensor. It is the asymptotic rate of mean square displacement with
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different diffusivity depending on the direction. In the present case, however, the effective
diffusivity is isotropic. This allows us to introduce a simple and intuitive definition, also
useful for computations. With a slight modification from [31], we can measure the mean

square displacement by

o = lim ~—// 2 + ) u(z,y,t) dz dy, (2.24)

with the delta function at the origin as the initial function. We have inserted the factor 4
so that when there is no convection term, we get o, = ¢, which we can verify by putting in

the Green’s function for the heat equation into (2.24).

2.3.2 Numerical Results

In order to test the multiscale FEM, we compute the equation (2.2) in time, starting with
a regularized delta function. An example of a multiscale basis function obtained by solving
(2.16) is shown in Figure 2.4, to illustrate the fine details within the basis. The basis
function has the same layer structure as we would find in the global solution. The boundary
conditions given are 1 at the lower left corner and 0 at the other corners; along the edges,
the reduced one-dimensional equations are solved. Layers are strong at the lower left region

because of this boundary condition.

Discretization

In the weak formulation, the time-dependent problem is
(ue,v) + (Drug, v) + (bauy, v) = € ((ug, V) + (uy, vy)) -

We define a uniform mesh of (n + 1) x (n + 1) grid points (ih,jh), i,j = 0,... ,n, where
h = 1/n. Labeling the P = (n + 1)? basis functions with a single index, we let u(z,y,t) =



Figure 2.4: A contour plot of the multiscale basis function, with 1 at the lower left corner
and 0 at the other nodes. In this example, §/h = .5, where A is the mesh size.

Zf:l &(t)pi(z,y) and v = ¢; and get

P P P
DG (b5, ) + Y Ei(E) (bropjas di) + > &i(E) (bacbsy, b1)
=1

j=1 j=1

b
=€ Z &i(t) [(Pjas Piz) + (Djy, Diy)] -
7=1

A good discretization scheme for this problem is second order Adams-Bashforth on the

advection term and Crank-Nicholson on the diffusion term. With this, we have

Z {(ijv (,252) - %At [(¢jI7 stzz) + (ijya szy)]} £n+1 =

J=1

Z {(¢j:¢i) - gAt (0102, Pi) + (badbjy, Pi)] + %At [(Pjz> Piz) + (¢jy7¢iy)]} &

J=1

At

+; 5 (0162, i) + (bachy, )] €7
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Figure 2.5: Computation of o, over time (e = .01).

We can approximate the initial condition with a Gaussian or another smooth function such

as
L (sin(drr +1/8) +1)2, r < .25

16
u(z,y) = . .
, T

where 7 is the radius.

We restrict R? to a finite domain and then scale it to the computational domain of the
unit square using 0; we take small At and compute up to some time 7', depending on €
and 6. When o, starts to decrease noticeably, we know that the fluid front has reached the
boundary but is prevented from moving further. In Figure 2.5, we see how o, evolves in

time, before this happens.

We compute the scaling by comparing the values of o, at a fixed time for different e. In
Table 2.1, we plot the rate at which o, in (2.24) is changing. Given the scaling (2.22), we
expect o, to decrease by a factor of 1/v/2 ~ .7071 when e is halved. We see in the table
that when § = 1, o, is nearly halved, meaning there is no enhancement. However, when
6 = .05, the ratio is close to the predicted value, as € gets small. If the conventional bilinear

elements are used, this behavior is missed completely.

We note that while we compute the effective diffusivity here, that is not the main objective

of the method. The objective is to compute the transient state correctly. The fact that we
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€ o | ratio o | ratio o. | ratio
.04 | 0.03252 0.03265 0.03275

.02 1 0.02092 | .6432 | 0.02316 | .7093 | 0.02355 | .7191
01 ] 0.01141 | .5454 | 0.01643 | .7094 | 0.01665 | .7070
005 | 0.00619 | .5425 | 0.01300 | .7912 | 0.01233 | .7405
0025 | 0.00344 | .5557 | 0.01046 | .8046 | 0.00872 | 7072

Table 2.1: The diffusivity scaling for the cellular flow (n = 16, m = 32).

get the correct scaling is just a consequence of obtaining the correct solution.

Multigrid Solver

One of the major difficulties for the singularly perturbed problems is solving the linear
system. For small €, the linear system may be indefinite and often ill-conditioned. This
means some iterative techniques would not converge. It was shown in [36] that the pos-
itive definiteness of the continuous differential operator is not always mirrored by some
discretization schemes, even if the matrix is diagonally dominant. As a result, the standard
multigrid algorithm, which is an O(N) algorithm where N is the total number of unknown-
s, often performs poorly. Fortunately, there is a modified multigrid algorithm developed
specifically for convection-dominated problems [28]. It uses matrix-dependent prolongation
and restriction operators that account for the character of the equation. We have found
that this algorithm is very efficient and robust, usually converging under 10 or 20 iterations
to the residual of 1078, Tterative methods such as BICGSTAB or GMRES [13] for non-
symrnetric matrices also work, but the number of iterations required may be large as e gets

small.

Parallel Efficiency

A major advantage of the multiscale FEM algorithm is its parallel efficiency. The con-
struction of one basis function is independent from that of any other; the elements can be

divided evenly among all the processors first, and then collected to a “master” processor
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Figure 2.6: Parallel efficiency of the multiscale FEM (n = 32,m = 64).

that performs the final calculations. In Figure 2.6, we see that the algorithm is almost per-
fectly parallelized: as the number of the processors doubles, the computing time is halved.
The time is not exactly halved since the master process has to do the final step after the
global stiffness matrix is computed. Only when the number of processors is very large is the
efficiency degraded, as the communication time amongst the processors takes a significant

portion of the total time.

There is also a substantial saving in the memory required. We let n be the number of
multiscale elements within each direction and let m be the number of grid points in each
element. Then, the total memory required is O(n? +m?), since O(m?) operations for each
element can be done in sequence. If the same resolution were to be achieved in direct
simulation, O ((nm)Q) would be required. If n = 32, m = 32, for example, there is a factor

of 1000 saving in memory.

2.4 Asymptotic Error Analysis

We study the error of the multiscale method in this section. In the genuinely elliptic

problem considered before in [44, 30], there is one parameter §, which characterizes the
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rapid oscillation. Now there is an additional parameter ¢ for thin layers that must be

considered in examining the error terms.

2.4.1 Previous Results

We first discuss the result for the symmetric coefficient, a;; = aj;, studied in detail in [44],
as it provides the framework for the analysis of this section. When the small scale of the

problem ¢ is resolved by the mesh size h, the error estimate is
B\ 2
u=ilon < (5) Iflon. (b0 (2.25)

In this case, the multiscale basis functions do not have oscillations and look similar to the
bilinear functions. Thus, the convergence rate resembles that of the standard FEM. Note
that we must have h small enough to resolve the ¢ scale for convergence. The two methods
are different for the case of our interest, h > . In [44], estimates from homogenization

theory are used to show that

1/2
Hu — ’LLhHLQ <4 (%) -+ CQ}L”f”(LQ, (h > 5) (2.26)

Note that 6 < 1 is now the numerator of the first term. The method therefore converges
as § — 0 for a fixed h, unlike in the h < ¢ case (2.25). To get the L? estimate, the Aubin-
Nitsche trick [20] is usually employed to gain an extra order in h from the H' estimate.

This method, however, does not work well for this problem and results in
5\ 1/2
|lu — U,hH()’Q <y (E) + CQhQHfHO?Q, (h > 9). (2.27)

Notice that the (5/h)"/? term does not change. We still expect to see the ratio of § and A,
since these are two scales inherent in the problem. But the exponent 1/2 is not satisfactory,

and numerical experiments show that this (§/h)'/? estimate is not sharp.

In order to obtain the correct estimate, subtle error cancellations in the discrete problem
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need to be examined. With this analysis, it is formally concluded that
Ju=ulon < Cis + o+ Ol flog, (b5 9) (2.28)
The leading order term is now (d/h) and as long as h is large enough, the error is small, as

verified by numerical examples [44].

Discrete Analysis

We review this analysis of the discrete problem [44, 30], so that we can understand the

convection-diffusion case.

Using the triangular inequality, standard finite element estimates for bilinear elements, and

the regularity and homogenization estimates [44], we can write

lo,o + lluo — ufllog + lu” — ulllog (2.29)

IA

llu —u{fo.0 llu — ug

CL6 + Cob?| flloo + llu” — wlllo., (2.30)

N

where u is the solution to the original continuous problem, u” the numerical approximation
to u given by (2.17); uy is the solution to the homogenized problem (1.13), uf the numerical
approximation to ug. We would obtain u? by solving the bilinear form (1.6) with the

homogenized coefficient.

The problem then is to estimate the |[u” — u?|lo.o term in (2.30). To examine this term, we

introduce the discrete [? norm. It is shown in [44] that
lu? = ugllz> < Crllu” — uf 2 + Cas, (2.31)

where

1/2
o = e = (Z [ o) = o) h?) (2:32)

€N

with A containing all the nodal points of the mesh.
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Equations (2.30) and (2.31) show that ||u” —u2]|;2, the convergence of u” to u? at the nodal

points, contains the crucial error term.

Let U" be the vector containing the nodal points »”. This is the solution to the discrete

equation
AP = fP, (2.33)

where A" and f" are the global stiffness matrix and the load vector, obtained from (2.17)

using v = qsg.
Similarly, we have for the homogenized problem,

ARUS = f3, (2.34)
where we obtain A and f} from the bilinear form for (1.13) using v = ¢).

Since the basis function ¢; can be expanded as (2.18), we can also expand the stiffness

matrix and load vector around the homogenized counterparts as
A=Al 5t ) = fhasf (2.35)

Al is assembled from the local stiffness matrix of each element, which we denote by e. By
substituting the expansion ¢s5 = ¢ + dx*Ipo/dxs, + 66° (2.18) in the bilinear form (1.6),

we find, after some algebra, that

1r

K ’ K ’ 0 Jk :
and

Qﬁ=—4f&%&+@d% (2.37)
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where the comma is a shorthand for partial differentiation. Here,

g . vk
o = at® <5jk+ rX ) (2.38)
dy;
and
59 = g4 — aij _ Uij,iyp- (2.39)

From (1.20) and (1.21), we find that <a” > is the homogenized coefficient a¥ and afgi = 0.

Integrating by parts, we also obtain <apj Xfyp> = 0 and hence (%) =0 [30].
Given the expansions (2.35), we can deduce an expansion in U”,
Ut =Ul +sUr + 520N - (2.40)
where Uih are given by
AbUl = gl — Abyh | (2.41)

Finally, we get an expression that we can analyze for Ulh from this. We write the ¢ = 1 case

of (2.41) as
Ul = Gofi = GG AUy (242)
where G = (A})~L.

Now the whole analysis reduces to estimating the order of U, since ||[U" — Ul|| < §[|UP|| +

S2||Us]|® + ---. With ||UP||, (2.30) and (2.31) directly lead to the desired estimate of

lu = u"llo.q.
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2.4.2 The Convection-Diffusion Case

We now return to the convection-diffusion case, where we have, in place of (2.30),

lu —u < lu = uollo,n + Juo — ulllon + [[u" — ult]lo (2.43)
2
< cl—j—g ; Cz%ﬂfllo,a Tl — ulo.0. (2.44)

The 1//€ is due to the fact that the norm of the solution grows at the rate of /e, as we

will verify later.

In the symmetric case, a;; = aj;, it was shown in [30] that we can write the second term for

Ul in (2.42) in a difference form:

N j<k
(GSA’{U(?)i =33 ap (v - uvt) (G - G6¥); (2.45)
k=1 7=1
Ul = Gy fi — DGh A DU, (2.46)

D is a difference operator, details of which are not relevant to this discussion and can
be found in [30]. The fact that we can write DGE and DU} here is crucial because this
difference structure gives an additional O(h) in the convergence rate. With the estimates
HGSHO,Q < C/h?, |f}] < C16 + Cah, and HA’fHQQ < C/h, this leads to [|[U}|| < C1 + Cy/h
in the symmetric case and hence to (2.28).
In the convection-diffusion case, we do not have the same structure. After some algebra
and discrete integration by parts, we have, instead of (2.46),
N j<k . 3
(¢ A"Uo) =Y Al (vf - UO> (GZ’)’“ +GY). (2.47)

k=1 j=1

Because of the plus sign between the Gy terms, we can write this only as
Ul = G ff — Gy A DU, (2.48)

without the difference operator for G& term.
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The fact that we lost O(h) means that the structure of (2.42) must be examined more

carefully for possible additional cancellation.

2.4.3 Estimating A"

We do this by carefully estimating the A? term in (2.42). We denote the terms in (2.36) as

follows:
M= = [ o (00 + oh,08,) do. (2:49)
1 P ( 0,] Os 09] 07)
Ay = 6 /K af 956", dz, (2.50)
I T
Ay = o o0, d- (2.51)
5 K . 3

We now proceed to examine each of these terms.

i) Estimating A; :
We first move the integral to the boundary to avoid estimating Hfi inside an element

and use the fact that ' = x!(8¢o/0z) on the boundary from (1.22) and that d¢g/0x ~
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1/h in a cell of size h. Thus,

/Koijgélg,]ﬂfi dr = /BK aijqﬁ]&ﬂlni ds (2.52)
1 L
~ /8K(a” + apr?yp)Xlnz- ds (2.53)
= 1 ay'n;ds + 1 aPx? x'n;ds (2.54)
h Jox ' hiJox 0 '

The first term of (2.54) is O(1) since e¥ and x' are bounded. The second term is
more difficult to estimate. Note that these terms are indexed by k,! and summed in
other indices. Some terms are dropped once their sizes have been estimated, but the
same indices should still be summed even though they may not be repeated. Now we
group the boundary segments for the second term into two parts, with I'; shown in

Figure 2.7. (2.54) now is the same order as

1 _ oy
5 (/ a””xfykxlm ds +/ \ akafykxlng ds)
PANES Ty+1y
1

[ (/ allxﬂﬂxlnl ds + / alzxf:y.)xln] ds
h JI 4+ ) JI1 413 -

—|—/ CLZIX’jlean ds + / aQQnggxlng ds> . (2.55)
o414 ' ST+

We consider the j = 1 case now; the j = 2 case is analogous, except that the role of
the second and third terms in (2.55) are reversed. The first and the last terms present
little problem since the coefficient is @'’ = a?? = €, which comes from the diffusion

term and cancels out the effect of the y term.

The second and third term appear more troublesome. x satisfies the singularly per-
turbed problem (2.7) and so has layers. But we observe that Vy is O(1/+/€), that is,
the thickness of the layer in x is O(y/€), as will be discussed soon. Since the stream-

function % is a smooth function and the layers occur around the separatrices ¢ = 0,



42

Figure 2.8: Cell problem solutions x; (left) and xo (right), rescaled to the unit square.

1 is of O(y/€) in the layer. Thus, (2.55) can be estimated as

1 / . : X 1
€ — + % ,)ds+/ WYX, ds+ e —= (2.56
Ve Jrgr, " roly Ve )
1 1 1
~ o — [—— . — 4
€ \/g-{—\/g—F\/E \/E+€ 7 (2.57)
~ O(1). (2.58)

We plot the x! and x? functions in Figure 2.8 to clarify the terms in (2.56). We note,
however, that the domain in the figure is over one period and not over some arbitrary
element domain K of the integral. The key step in obtaining (2.58) is considering
the interaction of x and 1. By examining where the layers occur, we obtain the O(1)
estimate and avoid the 1/y/€ estimate, which is what we would get with a simpler

procedure.

In (2.56) and (2.57), we have assumed that

1
!

; ~—. 2.59
5l o ~ 72 259
This is what we expect from the argument for the effective diffusivity scaling, as
the gradient of x determines the /e scaling. In fact, we see in (2.5) that y directly
determines the o, scaling. With the layer of width O(y/€) and gradient O(\/e€), x

gives the correct scaling. We compute this numerically, and the result is shown in

Table 2.2.
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f € I O¢ { ratio i
0.02 | 0.02365
0.01 | 0.01585 | 0.6702
0.005 | 0.01193 | 0.7527
0.0025 | 0.00866 | 0.7259

Table 2.2: o, = ((Vx +e) - (Vx + e)) scales as /e.

| [l | ratio | Il | ratio |
0.2 | 0.7903 0.5650
0.01 | 1.6755 | 2.1200 | 0.8479 | 1.5007
0.005 | 3.0552 | 1.8234 | 0.9482 | 1.1182
0.0025 | 4.7457 | 1.5533 | L.2551 | 1.3236

Table 2.3: || le1 | has 1/+/€ behavior for resolved solutions over one cell.

Estimate (2.59) can also be verified directly, as shown in Table 2.3: derivatives of x3

along each direction have the 1/,/€ scaling; xo gives similar results.

ii) Estimating As :

We again transfer the integral to the boundary first.

0 a

K

In order to obtain (2.63), we use the same argument as for A;, assuming that

ko', dx

o

= 5/ ainkajnid.s
oK
g ij kgl
~ E/aKa]X 0, ds

g )
~ E/e@fjds—i—ﬁ/d)efjds
oK

OK
i=j i#5

~ O(E) +0() = 0(1).

l .
J

1
1K) Oy/e

(2.60)
(2.61)

(2.62)

(2.63)

(2.64)

In general, the structure of 6 is very complicated, as shown in Figure 2.9, and it is

hard to derive such estimates analytically. The effect of the boundary condition may

travel past the immediate vicinity of the boundary. That is the reason we move the

derivatives of 6 from inside the element onto the boundary whenever possible. Since
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Figure 2.9: Corrector 8 (e = .001).

e | Ixilleo | ratio | [Ixt,lle | ratio |
0.02 | 0.7903 0.6099
0.01 | 1.6755 | 2.1200 | 1.1513 | 1.8877
0.005 | 3.0552 | 1.8234 | 1.9513 | 1.6949
0.0025 | 4.7457 | 1.5533 | 2.8846 | 1.4783

Table 2.4: ||[VO|| has 1/+/€ behavior, with resolved solutions over one cell.

the estimate (2.64) is only on the boundary, the scaling is easier to understand. From
(1.22), we know that 6 behaves as x on the boundary. So, the 6 derivative along
the boundary of the element scales as 1/y/€ with respect to ¢, following (2.59). The
derivative perpendicular to the boundary should not be larger than 1/y/e because
the layers along the boundary get weakened as they propagate inside. The numerical
result in Table 2.4 appears to support this. The 1/6 scaling is reasonable because the
size of the periodic cell is of O(4). The O(e) layer within the d-size cells gives the
absolute thickness of O(§/€).

Estimating Az :

A rough estimate for Az gives

L[ it 1 11\ 1
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[ ¢ [ IGHz | ratio | |Gl | ratio |
.04 80.6231 114.2264
.02 144.2394 1 1.7891 | 204.3565 | 1.7890
01 | 218.5669 | 1.5153 | 309.6592 | 1.5153
005 | 292.8571 | 1.3399 | 414.9086 | 1.3399
.0025 | 403.3811 | 1.3774 | 571.4950 | 1.3774

Table 2.5: ||GE|| has 1/,/¢ dependence (n = 8, m = 256).

However, we actually get an additional O(h) because we can write this term in a
difference form A3z = DX for some A*. Because this term does not involve x or 6, it
is exactly the same as in the elliptic case. In [30], details on the difference structures
of Az are described. We can also say the same thing for f{, also described in [30].

With the additional h, we conclude that Az ~ O(1).

2.4.4 Error Estimate

Putting the A; estimates together, we obtain the following:

3 1 -
IGhatputl < ¢ (). (2.60)
4] h?

jot — vl < & (ﬁ) 0 (Z2) 1)

The 1/+/¢ term comes from the definition G% = (Ag)_l. This is the scaling we expect for

0.0- (2.67)

GGL because the homogenized coeflicient for Ag behaves as v/e. We verify this numerically

in Table 2.5.

Using (2.44) and the fact that ||ullo.o ~ 1/v/€, we finally have

0,9 (2.68)

llu — UhHO,Q _5_ 2
a1 <h> Y

for the relative error. Due to the discrete analysis, we get the (6/h) term as the leading
order error. This is a sharp estimate, as will be verified in the next section. We note that the
relative error is independent of €. If we had used the conventional finite element analysis,

the first step of using Ceas’s Lemma 1.2 by itself would give 1/¢, from which we would be



46

| e | 5 | I° norm | rate | norm | rate |
.008 | 0.015625 3.7034 1.4633
.004 | 0.015625 4.9398 1.3338 | 1.9515 | 1.3337
002 | 0.015625 6.9347 1.4038 | 2.7391 | 1.4036
.001 | 0.015625 9.8403 1.4190 | 3.8858 | 1.4186

Table 2.6: ||u|| has 1/+/€ behavior (n = 4096).

unable to recover the current estimate.

2.4.5 Numerical Results

We solve the problem numerically to verify the convergence rate given by (2.68). We use

zero Dirichlet boundary condition and the forcing function
f=xz(1 —y?) +sin(10(z — y)) + cos(5(z + y)).

The well-resolved solution was computed on a 4096 x 4096 grid on the parallel computer

(Intel Paragon).

In Table 2.6, we clearly see that the [ norm of the solution itself grows as 1/+/e: decreasing
€ by 2 results in a /2 increase in the error. In order to verify the &/h factor, we reduce &
and h at the same time. In Table 2.8, we clearly see that as § and A — 0 (with the ratio

fixed at §/h = 1/4), the error stays about the same.

From (2.68), we expect the leading order error to have the 1/h term. We see in Table
2.7 that this is indeed the case, as halving h results in doubling of the error. In that
computation, since ¢ and § remain the same, we keep the overall resolution the same by
keeping n x m constant. In all the numerical computations of this section, the results are

in excellent agreement with the error estimate (2.68).
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[ 7 ! m error[ ratio ]lz error] ratio ‘

8 | 256 | 0.0675 0.0259
16 | 128 1 0.1605 | 2.3794 | 0.0628 | 2.4247
32 | 64 | 0.3358 | 2.0919 | 0.1297 | 2.0653
64 1 32 | 0.6134 | 1.8265 | 0.2397 | 1.8481

=

Table 2.7: ||u — u"|| has the 1/h term (e = 0.008,6 = 0.015625).

\ n | ) jlooerror] ratio ‘ I“error { ratio '
8 0.03125 0.1112 0.04566
16 | 0.015625 0.1517 | 0.7330 | 0.05954 | 0.7668
32 | 0.0078125 | 0.1661 | 0.9133 | 0.06457 | 0.9221
64 | 0.00390625 | 0.1625 | 1.0222 | 0.06365 | 1.0144

Table 2.8: |Ju — u”|| has the §/h term (m = 256, ¢ = .008).

Choice of Trial and Test Functions

At the end of Section 2.1.2, we referred to the similarity between using the multiscale basis
as the trial function (with some continuous function as the test function) and using the
solution to the adjoint problem as the test function (with some continuous function as the
trial function). The first method was initially motivated by homogenization to capture
the small scale oscillations; the second method was simply trying to generalize the one-
dimensional idea of Green’s functions. However, despite the different motivations, they are

very similar in their implementation.

Given these choices, it is not immediately clear what the optimal method is. We try to make
some numerical comparisons in Table 2.9. We test four different cases for the cellular flow
problem, each with different combinations of trial and test functions. We see that in the
first case, the first three choices give almost identical results. If the trial and test functions
are both linear, however, there are spurious oscillations and the method gives very large
errors. In the second case (a different 4), there are some differences. Using the multiscale
basis for both the trial and the test function gives about 15% less error than that given by
the adjoint test function. The multiscale trial and adjoint test function combination was

also tried but did not have any advantages.
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I U" (trial) ] V" (test) | L®error | Lerror [

Case |

multiscale | multiscale | 0.33347 | 0.11416

multiscale linear 0.34372 | 0.11764

linear adjoint 0.34344 | 0.11771

linear linear 2.98428 | 1.08749
Case 11

multiscale | multiscale | 0.20151 | 0.06813

multiscale linear 0.22942 | 0.07766

linear adjoint 0.23507 | 0.07961

linear linear 2.98330 | 1.08716

Table 2.9: Error comparison for different choices of trial and test functions. Cell flow with
forcing (n = 8,m = 128,¢ = .008,6 = 1/16,1/32).

The similar numerical experiments were performed on many different problems. Depending
on the problem, different combinations give slightly smaller errors. They vary up to a factor
of two on some problems, but not more. Overall, using the multiscale basis for both test
and trial spaces seems to be most consistent in giving small errors. In all the cases, the

error is dramatically smaller than that given by the standard bilinear functions.

2.5 Asymptotic Basis

In the multiscale FEM, the basis functions are solved numerically. So far we have assumed
that we have sufficient resolution within each element to resolve all the fine structures.
However, this process becomes increasingly expensive as ¢ — 0, for the same reason that
the global problem became intractable in the first place. Therefore, it is natural to look for
ways to reduce the work in obtaining the basis. One possibility is to look for an asymptotic

expansion.

In general, this is a very difficult problem. There are many complicated internal layers
along the separatrices of the streamfunction. Fortunately, we can simplify this one step by

again using the asymptotic expansion:

o

P

da:k.

x

b5 = o + X" (g) + 66°. (2.69)
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This is a multiple scale expansion for the basis function, just as we had for the global
solution in (1.23). Thus, we can find the asymptotic expansion for x instead of ¢s, and
then use (2.69) to get an expression for ¢s. In general, constructing ¢s by finding x first is
not a practical option, since there may not even be a periodic structure. However, we carry

out this step here to gain insights into the solution structure.

The problem now is to find the asymptotic solution to the cell problem (2.7) for x over the
torus. This is still a difficult problem with possibly very complicated layer structures. For
the cellular flow, however, we can make some progress. The rest of this section is devoted

to this problem.

First, we can reduce (2.7) to a “quarter-cell problem,” by using certain symmetry properties.
A “cell” was shown in Figure 2.3; it contains four square regions and so a quarter-cell has
boundary layers along the edges and no internal layer. Looking at (2.7), when e is unit
vector in y, x is even in the z direction and odd in the y direction. Then by defining

p = x + =, the analysis of (2.7) is reduced to that of [31],

—eAp+b-Vp =0, (2.70)
_ 1 L0 =0 =
P(fll', 0) - Ov ,0(33, 1) - 17 a.L (07 y) - 81(17y) = 0. (271)

The Boundary Layer Coordinates

To understand (2.70), we need to transform to a new coordinate system. The boundary layer
structure is still too complicated to be described in the (z,y) coordinates. However, since
the layers occur along the streamlines of Figure 2.3, the streamfunction ¥(x,y) provides a
good basis for the new coordinate system. We define t(z,y) as one coordinate and then

define a family of lines orthogonal to the streamlines [24, 78] by

#(z,y) =C / b - dl, (2.72)

where dl is the tangent to the streamlines. This is an “angle” variable that measures the

distance along a given streamline. C' = C(¢) is a constant for the given level set of 9. It
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is introduced here to calibrate ¢(x,y), to make sure that it takes the same range of values
on each streamline. We can pick C = 1/C;, where C; is the circulation along the given
streamline. For very small ¢, we can also choose C'; to be circulation along the cell boundary
since the layers are close to it, and still have small errors [3]. This way, C is constant for

all ¢ (z,y) and we avoid computing it for each streamline.

With these new variables, (2.70), after some rescaling, becomes [24],

op &p
with the boundary conditions

p(¢+4,9) = p(d 1)), (2.74)
p($,0) =0, 0<¢<1, (2.75)
9p(¢,0) _
p$.0) =1, 2<$<3, (2.77)
Ip(#,0) _

G =0 3<esd, (2.78)

Physically, this corresponds to the temperature distribution generated by periodic segments

of heating, insulation, cooling, and insulation.

The solution to this problem can be obtained by the Wiener-Hopf method [3, 22]. In the
interval ¢ = [0, 1],

pl6.) = ~Avete (7= )

+2\/177€7¢; /Ooo {exp [—%J + exp {—%} } R dy',  (2.80)

where R(%)) is the initial distribution with R(¥) = p(0,4). We use erf and erfe to denote
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the error function and the complimentary error function

2 z t2 9 0o t2
erf(z) = ﬁ/o exp (——2-) dt, erfe(z) = \/_7?/:6 exp <—E> di.
In the interval ¢ = [1,2], we use p(1,%) as the initial distribution and obtain

p(e,9) = 2\/%25 /OOO {exp [—%} + exp [—%”p(l,w’)dd/- (2.81)

Now we can get an equation for R(t)) by using (2.80), (2.81), and the fact that p(2,¢) =
—R(v) from (2.79).

With the stretched variable £ = 1/(2/€), we then obtain the integral equation for R(¢):
oG
RO = ~F(+ [ Gle.e)RE) . (2.82)
where

F(e) = 71; /O T {oxp [<(6 - €)7] +exp [<(6 + )] exfe(e)) de', (2.89)

¢ = {exp [—@ . 5')2} it {(5;;')} + e [—@;w?] ot [&;;')] }

(2.84)

If we can find R(v) from the integral equation (2.82), we know the solution to the problem
(2.73), and hence to (2.70). This is still a difficult problem, but it was noted that the
solution may be written as an expansion in temperature waves [3], and their coefficients can

be computed from the analytic expression [3] given by

>sin< ¢ —(2n-1)g¢—92n_1)

52n~1

ple, ) = % + % Z C2n—1 €XP (—

n=1

~ 1.0808 exp (-\/%Z) sin ( JTE — )2 — 0.2949)
+0.2536 exp (n\/ﬁ) sin (/7€ — /2 — 0.1723)
+0.2036 exp (—\/775) sin /7€ — mg/2 - 0.1288) .

5271, -1



Figure 2.10: A quarter cell of x in (¢, &) using the asymptotic solution.

This function is plotted in Figure 2.10 in (¢, &) coordinates.

This asymptotic expansion can now be converted numerically to (z,y) coordinates. In Fig-
ures 2.11 and 2.12, we have plotted the two solutions of y using the asymptotics and the
finite element method, respectively. The asymptotic expansion gives a very good approxi-

mation in this case.

By working out the asymptotic approach for the construction of the basis function in this
section, we see that such an approach is possible, but only for simple problems. The multi-
scale basis functions in general contain complicated, genuinely two-dimensional structures.
That is the reason for the success of the multiscale method, as it captures the complicat-
ed small scale features that other simpler approaches cannot. However, it means that the
asymptotics becomes very difficult as well. Sometimes it can be done, as we demonstrated
for the cellular flow case in this section. The boundary layer coordinates based on (2.72)
may often be successful because of the generic behavior that the layers form along some
streamlines. The advantage of the asymptotic approach is that the workload does not
change even for very small €. In general, it is difficult to carry out the asymptotics and one

must resort to a numerical scheme.
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2.6 Summary

We have considered in the chapter a finite element method in which the basis functions
are solutions to the homogeneous equation. We were motivated by the one-dimensional
results which showed that when the basis functions contain the property of the differential
operator, solutions with sharp features can be computed correctly with a coarse grid. In
two dimensions, we found that the multiscale finite element method works nicely when
the correct behavior can be captured locally, inside each element. In particular, we have
studied the cellular flow problem in detail. By resolving the fine layer structure within each
element, we were able to compute the effective diffusivity scaling for the long-time, large-
domain limit efficiently. Asymptotic error analysis has been carried out to show that the
method converges for a fixed mesh, independent of the layer structure, if the element is larger

than the small scale of the problem. This has been confirmed by numerical experiments.
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Chapter 3 The Convection-Diffusion Equation with

Random Coefficients

3.1 Introduction

We now turn to the more difficult case in which the characteristic length scale of the
problem is large. The method used in the previous chapter does not work anymore because
the basis functions that sample only a small region cannot capture the correct behavior.
This nonlocality was explained in Section 1.2.3. One velocity field with such a property is
the random flow constructed as a perturbation to the cellular flow. This is the velocity field
we consider throughout this chapter. We first study the scaling properties, and then look

for an efficient method for capturing the layers in the solution.

The properties of random velocity fields have been studied for a long time [42, 48, 74, 56, 19],
particularly in relation to turbulent flows [37, 11, 32, 7]. With regard to the effective
diffusivity of a passive scalar, a very interesting theoretical result was obtained previously.
The velocity field is assumed to be steady, incompressible, have mean zero, and come from
a stationary streamfunction t(z,y); how this particular “random” flow is generated is

described in the next section. Isichenko and Kalda [45, 47] argued that as € — 0,

o ~ 13, (3.1)

This 3/13 enhancement is a substantial one, even compared to the 1/2 in the cellular flow
case. For example, when e = .0001, we have ¢//2 = .01 and €¥/13 ~ .1194. This means
the overall effect of the random convection for this € is more than a thousand—fold increase
in the diffusivity compared to the pure diffusion and a ten—fold increase compared to the

cellular flow.

This claim (3.1) is due to a scaling argument based on some results from the percola-
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tion theory regarding the geometry of the streamlines of the flow, as will be described in
Section 3.2.2, [46]. This scaling behavior is difficult to verify computationally, as it is an
asymptotic result that is valid when the parameters involved are small. In order to ap-
proximate the infinite domain limit, which is necessary for the validity of the percolation
estimates, § must be small. ¢ is the parameter that rescales the domain and time in (2.1).
The scaling is also in the limit of small diffusivity e. In Section 3.3, we compute this problem
directly on a parallel machine. We find that even for moderately small values of § and e,

we can see the effect of the randomness of the flow in the enhancement of o..

To overcome the problem caused by the nonlocality, we need to have some knowledge
regarding the structure of the layers before solving the problem. In Section 3.4, we introduce
a variational principle [34], originally developed for the periodic flow and then used for
random flows [31, 33]. We find that we can recover the scaling results reasonably well using

this variational principle as a numerical scheme.

With the information provided by the variational principle, we attempt to design a more
efficient numerical method. The idea is similar to that of the previous chapter. We would
like to have the trial or test functions that contain the same behavior as the solution. In
Section 3.5, we show how this idea works in one dimension for a coefficient with a turning
point. We find that the one-dimensional variational principle correctly predicts the scaling of
the exponential layer, and we can get a much improved solution if the exponential behavior
is incorporated in the correct way. This idea is extended to two dimensions in Section 3.6.
The implementation is more complicated but the insights gained from the turning point

problem can be used to design an efficient method.

3.2 Random Flow Computations

3.2.1 Random Streamfunction

There are many ways of generating a random flow [4]. One common approach is to specify

the spectrum in the Fourier space, as is usually done in turbulence literature [56]. Balk and
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Figure 3.1: A periodic streamfunction (

McLaughlin [11] generated it through a superposition of shear flows in random directions.
Avellaneda et al. [8] considered a large number of vortices randomly placed. Isichenko
[45] generated it by adding random perturbations to the cellular flow streamfunction. We
choose the last approach here because it allows us to make use of various scaling arguments

and come up with a prediction for the effect of the randomness.

For a cellular streamfunction, shown in Figure 3.1, the straight lines are the separatrices
and their intersections are the hyperbolic stagnation points. Due to the nature of hyperbolic
points, the cellular structure is unstable when these points are perturbed. This results in
the cell boundaries reconnecting in some random manner, forming channels and islands of
various sizes. Numerically, we generate a set of random numbers in the range [—v, 7] at the
hyperbolic points, connect them with a smooth bicubic spline interpolation, and then add
to the cellular streamfunction. A similar perturbation can be made in the Fourier space,
but that approach seems to offer less control in specifying the flow. One realization is shown

is Figure 3.2.

We note that in the random flow case, the cell problem (2.6) is not as useful. In the
periodic case, the cell problem allows us to understand the property of the flow by looking

at a single period; in the random flow, that period becomes infinitely large. However, we



Figure 3.2: A random streamfunction (§ = .25,y = .5).

find it convenient to work with the cell problem, even though the cell is the whole domain,
since we have the convenient expression for o, in terms of x, (2.5). We think of the random

cell problem as the infinite volume limit of the periodic cell problem.

3.2.2 Percolation Theory and Scaling Argument

When these random reconnections occur among the cells, the streamlines form closed loops
of various lengths. Fortunately, the statistical properties of the resulting configurations
have been studied in connection with the “bond percolation clusters,” and their behavior is
well-understood. The idea is to map the continuum percolation to a lattice and study how
the cells are connected to their neighbors through a “bond” when the probability of each
bond occurring is given. Details are given in [33] and the references therein. We simply cite

the main results here.

We define the level set h of some streamfunction v (z,y) to be {(z,y) |v¥(z,y) = h}. This

level set is a complicated curve with some perimeter. From the percolation theory, the
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typical “diameter” &£(h) of the level set h near 1 = 0 scales as
E~RTY, v=4/3. (3.2)

That is, the diameter grows larger as h approaches 0 and it is infinite at the critical set
h = 0. The exponent v is a measure of the correlation length of the cluster. The complicated
perimeter of this cluster actually forms a fractal curve, with the fractal dimension of dj, =
1+1/v = T7/4. These values are hard to prove rigorously, but many numerical experiments
support the predictions. A Monte-Carlo simulation of a large perimeter clusters in [83], for

example, yields dj, = 1.751 &= 0.002.

Putting (3.2) and the fractal dimension together, the typical length of the curve near A = 0

18
I(h) ~ R~V (3.3)

When Vi ~ 1, we also know [33] that the width of the contour lines with diameter of order

£ is
w(€) ~ e, (3.4)

Intuitively, these estimates mean that near the critical level ¢(z,y) = 0, there emerges a
very long loop. This loop then gives the dominant contribution to the overall diffusivity
because once a particle diffuses onto this layer, it gets transported very far before it has a
chance to diffuse out. The longest zero streamline of one realization is shown in Figure 3.3.

We see that as 0 — 0, it will have a fractal structure as predicted.

With these estimates, we can now make a scaling argument for o.. As in the periodic case,

the diffusive time scale across the layer of width w should equal the convective time scale

over the cell of size [:

~—= (h>0). (3.5)

The magnitude of velocity ug here is O(1) and the size of the cell is also O(1). Unlike the
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Figure 3.3: Zero level set contour lines (6 = .0625, v = .5).

periodic case, the width w and the length [ of the layer now depends on the level set h.
The w(h) can be obtained by combining (3.2) and (3.4). This results in w(h) ~ h. Now

substituting these in (3.5), we get
hQ
€

~h~ 1/0l;L

or,

1 :
he ~ €ZF0d, = ¢3/13,

We use h, to denote this particular level set that contains the long fractal boundary layer.

From this h., we can compute the diffusive flux using (2.5), [31].

oc = e((Vx+e)-(Vx+e)) (3.6)
1 2
~ € (E;) I(he) w(he) (3.7)
1\’ _
o € (63/13> (—7/13 ;3/13 (3.8)
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Figure 3.4: Distribution of the contour lengths for 5 realizations. y-axis is I(h.) and z-axis
is the frequency of occurrence.

The main contribution (3.7) by the long loop is computed simply by multiplying the gradient
in the layer to its area [(h.)w(h:). We see that the width of the layer h. is translated into

Vx ~ 1/h. within the layer and then to the o, ~ 3/13 scaling.

In Figure 3.4, each curve represents a different realization of the random flow. y-axis is the
length of the loops at the level set h = 0 and z-axis is the frequency at which the curve of
given length appears. The figure shows that there are few loops with very long perimeter
and the number increases as the length gets shorter. In the limit of an infinite domain,

there would be a single loop of infinite size.

3.3 Large-Scale Computations

The scaling result (3.1) is a theoretical one. There has been little numerical evidence to
support this claim. The reason for the lack of computational work is that it is difficult to
have enough resolution to verify an asymptotic result that is in the limit of small viscosity
(e — 0) and infinite domain (6§ — 0). More “cells” are squeezed into a given computational

resolution as 6 — 0 and the layers get thiner as e — 0, making it difficult to achieve sufficient
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resolution.

One previous numerical result for the o, scaling is contained in [48]. In that work, a
Monte-Carlo method was employed: at each time step At, particles are advected according
to dx/dt = b(x) and displaced by a distance v/4eAt in a random direction. Then the
distances traveled by the particles are averaged. The streamfunction used to generate the

random velocity field b was
1N
Yn(r) = —= ) sin(k;r), (3.10)

where the direction of k; is chosen randomly. The N~1/2 factor is introduced to fix the
average amplitude. The computation was performed with 256 particles for different number
of directions superimposed. The scaling exponent they compute is 3 of the form o, ~
e(Pe)?. Since the Peclet number Pe has the 1/e factor, the value of 3/13 scaling we have
mentioned is equivalent to § = 10/13 & 0.7692. The estimates of 3 obtained by the Monte-
Carlo approach are 0.72 + 0.03 (N = 12), 0.81 £ 0.03 (N = 18), 0.69 + 0.02 (N = 25) and
0.81 £ 0.03 (N = 30). These results were inconclusive, as the computation was sensitive to

the parameters.

This type of Monte-Carlo approach often is satisfactory if one is interested only in the
scaling result. However, our goal is not just to obtain the scaling, but also to compute the

correct solution itself. The scaling computation is simply an interesting application.

Our approach in this section is a direct simulation, resolving the details with a very fine

mesh, to see the scaling behavior. We do this by solving for the steady-state solution p(z, y)

given by
—eAp+b-Vp=0, (3.11)
(z,0) =0, p(z,1)=1 %(0 )—Q’—)(l )=0 (3.12)
p ’ ] p ’ - Bx » Y —(9.56 Yy =V, .

just like (2.70) and then use

O & e// IVpl|? dz dy. (3.13)
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Figure 3.5: A cell low computation (¢ = .001, = .5,7 = 0).

This is equivalent to the cell problem (2.5) for x = p — z. (3.13) is an approximation
because the problem is no longer periodic. In Figure 3.5, we plot p for the periodic cellular
flow. In Figure 3.6, we see the solution after random perturbations have been added to the
flow. The computations for obtaining o. are done with smaller §, but here we show the
0 = .5 case, so that the details can be observed. The size of the perturbation v was .5. In

Figure 3.7, we plot the solution for the ¢ = .125,¢ = .001 case.

We could also solve the unsteady problem with a regularized delta function as an initial
condition and compute o, using (2.24), as we did for the cellular flow in Section 2.3.2.
However, this presents some complications in the numerical problem. We find that in order
for any structures related to the topography of the streamlines to appear, we need to run
the equation for a long period of time. However, because of the increase in the effective

diffusivity, we have the fluid reaching the boundary more quickly.

3.3.1 Numerical Results

We solve the steady problem (3.11). We use the Intel Paragon parallel computer as in

Section 2.3.2. It has maximum of 512 nodes, each with 32 MB of memory. We are able to
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Figure 3.6: A random flow computation (e =.001,0 = .5,v = .5).

Figure 3.7: A random flow computation (e = .001,§ = .125,y = .5).
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( € 1 ) | O¢ [ rate [
0.00025 | 0.25 | 0.00557396 | 0.834036
0.00025 | 0.125 | 0.00518526 | 0.858599
0.00025 | 0.0625 | 0.00512630 | 0.850075

Table 3.1: Estimating the scaling exponent as § — 0; we compute the rate as e = .0005 —
.00025 for each § (y = .5,n = 2048).

\ € f ) } o ’ rate 1
0.016 | .25 | 0.02095145
0.008 | .25 | 0.01530900 | 0.73068
0.004 | .25 | 0.01222705 | 0.79868
0.002 | .25 | 0.00975801 | 0.79806
0.001 | .25 | 0.00800031 | 0.81987
0.0005 | .25 | 0.00668312 | 0.83535

0.00025 | .25 | 0.00557396 | 0.83403

Ot

o1}

Table 3.2: Estimating the scaling exponent as € — 0; rate of change as for o, as € — ¢/2
for a fixed § (v = .5,n = 2048).

compute on a grid as large as 4096 x 4096 on this machine. The multigrid solver [28] has
been parallelized and it works fairly well for the random flow, as long as perturbation from

the cellular flow is not too large.

If the correct scaling exponent is indeed 3/13, we expect that when ¢ — €/2, o, is reduced
by

1\3/13
(§> ~ 0.85218. (3.14)

In the cellular flow case, this number was 1/4/2 ~ .707107.

In Table 3.1, we see that with small ¢, the rate of change is very close to the predicted
number as 0 — 0. In theory, this number should approach the number in (3.14) as ¢ is
reduced. It is not conclusive with three data points, but we see that it appears to support
the predicted scaling. Since the scaling result is an asymptotic one in the limit of both
e — 0 and § — 0, we record the rate as ¢ — 0 with ¢ fixed in Table 3.2. The rate is not
monotone, but even with § = .25, it is increasing slowly in the right direction, to a number

close to the predicted one.
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3.4 Variational Principle

Variational principles have long been used in material science and other fields in order to
obtain bounds on effective properties of nonhomogeneous media; see, e.g., [64]. Naturally,
such approach has also been used for the effective diffusivity problem. Avellaneda and
Majda in [7, 6] derive an integral representation and used it to find upper bounds. In
[31], Fannjiang and Papanicolaou find another form of the variational principle and its dual
for the effective diffusivity of the convection-diffusion equation. Their variational principle
allows one to attain rigorous estimates of the effective diffusivity for many flows when the
test functions are suitably chosen. While these variational principles have been useful for
theoretical purposes, we show how they can be used as a numerical tool. In the first section,
we briefly review the procedure in [31] for obtaining the variational principle. Then we use

it in the next section to estimate the scaling exponent.

3.4.1 Derivation

The main difficulty in obtaining a variational principle for the convection-diffusion equation
comes from the convection term. Because of the skew-symmetric part H in the coefficient
(eI + H), we cannot easily formulate a functional that has o, as the minimum. In order to

find this functional, the problem has to be symmetrized in some way.

The solution to the equation has a symmetric part and an anti-symmetric part. It is then
natural to separate the two parts of the solution by adding and subtracting to it the solution
of the adjoint problem. This is analogous to finding the symmetric and anti-symmetric part

for a given matrix.

Recall that the space # of square integrable vector functions can be decomposed as

where H, is the subspace of gradient fields, H. the subspace of divergence-free fields, and

Hg the subspace of constants.



67

For a given function f(x) in H, we have the Fourier representation

f(x) =) e *f(k), (3.16)
k

with Fourier coefficients f (k). We define T'y to be the orthogonal projection operator onto
Hg, given by

k(k - £(k)) ex

e (3.17)

Tyf = VAT'VE ="
k#£0

We can understand this definition for I'y by the following. We can write any vector f as
f = c+V x{ti1+V fy according to (3.15), for some constant ¢, a vector field fy, and a function

f2. We see that if we apply VA7V to f, all terms will disappear except the gradient field
V fa-

With this T'y operator, it is possible to rewrite the cell problem (2.6) in an integral form

[31], as
E'=e-T,HE", (3.18)

where we have set ¢ = 1 momentarily for simplicity and defined ET = Vy + e, the solution

of the cell problem (2.6). Now we define E™ to satisfy

E  =e+,HE . (3.19)

Now we can separate the symmetric and anti-symmetric parts as we wanted, by setting

(Et—-E7). (3.20)

PO} =

A= (B +E), B-=

After several steps [31], we find that we can write (2.5) as

ole) = ¢ < (1 - G%HFQH) A A> . (3.21)
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Now we have a complicated nonlocal operator I — (1/¢)HI',H instead of a matrix. The
advantage, however, is that the operator is self-adjoint and positive definite. Thus, we have

symmetrized the problem, at the cost of introducing the nonlocal operator I'.

With some simplifications on (3.21), we arrive at the form of two-dimensional variational
principle we can use:

oile) = inf <e (VI + % (T,HV/ -T,HY f)) . (3.22)

3.4.2 Variational Principle as a Numerical Method

We notice that in the scaling argument of Section 3.2.2 for determining o, (3.6), the major
contribution to the integral comes from the region of large V. The integral is basically

the value of [Vx|? in the boundary layer multiplied by the area of the layer w(h¢) l(he).

Given this information, it is reasonable to try test functions of the form

f(z,y) = exp (—wf{?—wﬂ) (3.23)

for approximating the behavior of x. « is the unknown exponent we wish to find and c is
the unknown level set at which the longest streamline occurs. We expect this ¢ to be near 0
if the other parameters are such that the percolation results hold. Since f(z,y) has a layer
of thickness proportional to €* and V f ~ 1/e%, we expect the « of (3.23) that achieves the

minimum of the variational integral to be close to the true value of the exponent.

Thus, in our new numerical method, we vary « and ¢ until the minimum of the integral
is reached. It involves starting with some initial o and ¢ in the test function in (3.23),
evaluating the variational integral (3.22), and then repeating this process with suitable

choices of o and ¢ until the minimum is found.

For this purpose, we can rewrite (3.22) in a form more amenable to computation. We would

like to avoid working with I'y operator. We can do this by introducing a new function g
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that satisfies

IHVf =€eVyg. (3.24)
Then, with 'y = VA~V and V- H = —b, (3.24) simplifies to

—eAg=b-V/. (3.25)

This is a Poisson problem for g with forcing —(b -V f)/e. Now the variational principle can
be written as

oc(e) = <vi?>f:e (e(Vf-Vf)+e(Vg-Vg)), (3.26)

where f and g are related by (3.25).

Thus, given some f, we iterate through the process of solving the Poisson problem (3.25) for
g and then evaluating (3.26). The Poission equation can be solved fast and the evaluation

of the integral only involves some differentiations and summations.

We note that the true minimizer of this integral is

1 _
fi= §(XT +x; ) + 2, (3.27)

where X;L, X; are the solutions of

with periodic boundary conditions. X;L is the solution of the cell problem (2.7) introduced
earlier and x; is the solution of the same problem but with the flow going in the opposite
direction. The subscript ¢ can be 1 or 2, corresponding to the two possible directions of
the unit vector e. The relationship between f; and g; is analogous to that of A and B
in (3.20). With f defined as (3.27), we can find that g; = —1/2(x;" — x; ). With some
algebra, we can directly verify that e (Vf -V f)+¢e(Vg-Vg) = o.(e), using the fact that
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Figure 3.8: Variational integral for the cellular flow; minimum is achieved at o = .5 as
expected.

O = €<(VXT +e;)- (VX? +ei)> = 6<(VXZ~“ +e;) - (Vx; + ei)>.

While the test function (3.23) we use is not the true minimizer (3.27), we are mimicking

the essential behavior with a simple artificial function.

3.4.3 Periodic Case

We test the method for the cellular flow problem first. We know, both from analytical and
numerical result, that o should be 1/2 in this case. We plot the value of the integral as a
function of « in Figure 3.8. We see that it gives a correct estimate for o. This gives some

confidence that our heuristic approach is valid. We now test it for the random flow.

3.4.4 Random Case

The random case is more sensitive to the parameters and therefore requires more attention.
In the periodic case, for example, the same estimate for « is achieved for different values
of ¢, unlike the random case. In the small diffusivity, infinite domain limit, the exponent
should be approaching 3/13 ~ 0.2307. We do not expect to obtain this number exactly

in a finite-domain computation with limited resolution. But we see in Table 3.3 that as §
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[ € [ § ] exponent I
0.0001 1 .34
0.0001 5 .26
0.0001 | 0.25 .23
0.0001 | 0.125 .22

Table 3.3: Estimate of the scaling for the random flow with the variational principle; at the
exponent listed, the variational integral achieves the minimum.
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Figure 3.9: Variational integral for the random velocity field as a function of the exponent
a (e =.0001, § = .125).

decreases, the a at which the functional is minimized is decreased and is close to the limit.
At § = .125, it goes below the expected number. We see that even for a large §, there is
a substantial change from the cellular case. A typical shape of the functional is shown in
Figure 3.9. In the test function (3.23), we also need to find the value of c¢. This is the level
set of the streamfunction where the layer of interest occurs. We expect this number to be
close to zero in our computations. In Figure 3.10, we show the value of the integral as a

function of ¢. We indeed see that the energy is minimized at ¢ ~ 0.

The idea presented in this section can be applied more generally. Given a problem and
its variational principle, if the dominant contribution to the integral comes from a layer
structure of the solution, we can use this idea to find out the thickness and the location of
the layer. Then we can use this information to design a more efficient method to solve the

original problem. This is illustrated in the next two sections.
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Figure 3.10: Variational integral for the random velocity field as a function of the constant
¢ (a=.23, e =.0001, § = .25).

3.5 Exponential Basis Functions: One-Dimensional Problem

Many authors have studied the one-dimensional convection-diffusion problem with varia-
tions on the exponential basis idea. We noted in Section 2.1.1 that the test function space
should be composed of exponentials that solve the local adjoint problem in order to min-
imize the error for a given mesh. However, all these methods have assumed a positive

coefficient, a(x) > ag > 0, [73, 68, 63, 81].

In this section, we study how basis functions should be constructed for a more general
case when the coefficient has a turning point. Understanding the turning point case in one
dimension is essential for the two-dimensional problems studied in the next section, since a

similar phenomenon occurs all along the layers.
We consider the simple case

1, 0<z<1/2
el +a@u' =0, a(z)={0, z=12 (3.28)

-1, 12<z<1

with boundary conditions u(0) = 0 and u(1) = 1. We can find the exact solution by solving
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Figure 3.11: A proper combination of basis functions for an internal layer: two bases with the

exponential behavior on different sides, a hat function over the same support, and another
hat function in the next support are needed to achieve the shape of the layer shown.

the equation in each region and imposing continuity of the solution and its derivative at

x = 1/2. The solution is

et/e—1
_el 0<z<1/2
u(z) = 4 2 (3.29)

eli=z)/e _q

There is a sharp internal layer at z = 1/2. Intuitively, the “fluid” on the left of z = 1/2 is

being pushed to the right while the opposite is true on the right of z = 1/2.

For this problem, simply replacing the linear basis functions with the local solutions of the
homogeneous equation does not work. We still need to solve the equation locally but we
need to incorporate this information in a different way. It turns out that we must separate
the exponential behavior on each side of the turning point into two different bases and
include all the linear functions as well. This is illustrated in Figure 3.11. We see that at
the turning point z3, there are three basis functions over the same support: one linear, one
with the exponential layer on the left, and the last with the exponential layer on the right.
The problem is well-posed as long as the three bases remain linearly independent. This is

true if the diffusion is weak and the grid is relatively coarse.

Once we have the necessary basis functions, we need to reformulate the problem accounting
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for the overlapping bases. Assuming that there are two types of bases, ¢; and ;, that are

linear and exponential respectively, we write
n 2n
u=Y adi+» bt (3.30)
i=1 i=1
When we know where the layer will occur, we only need to include 1; where they are needed.

One way to solve this is as a minimization for the variational principle for (3.28), given by

I(u(z)) = min 1/016-’?6 <(ux)2—-2ﬂ> dz, (3.31)

uef0,1] 2 €
% {0)=0
u(1)=0

where b(z) = [ a(s)ds. The validity of (3.31) can be seen easily by setting 6] = 0 and

finding the corresponding Euler equation.

We now substitute (3.30) in (3.31) and impose the boundary conditions to get a minimiza-
tion problem. This can be solved, for example, by the conjugate gradient method. We
can find explicit expressions for the terms in VI and use them to move down the gradient.
Numerical experiments show that for moderate size n, correct weights a; and b; are found

in a short amount of time.

While using the one-dimensional variational problem (3.31) was motivated by the previous
section, it is not the best way to find a; and b;. The best way of solving this problem
is through the finite element formulation, which can also be thought of as a variational

problem. We find that we are able to handle many unknowns more easily that way.

The finite element method now needs to be modified for the extra unknowns b;. When
1h; are present, the local stiffness matrix is not 2 x 2 anymore. If we were to keep all 2n
extra bases in (3.30), the global stiffness matrix changes from n X n to 3n x 3n. In general,
we include the extra bases only near the possible layer locations. Therefore, the matrix
problem increases only by a small number of rows and columns. While the new matrix does

not have a banded structure anymore, it can be solved efficiently, as will be described in

Section 3.6.3.



75

-eps U_xx + a(x) U_x = 0, U{0)=0, u(1)=1, eps=.01, n=20, m=100
14 T T T T

08

04 F N 5
with special bases

02

02 F .

-0.4 L L

Figure 3.12: 1-D internal layer problem with and without extra bases: using linear bases
only results in oscillations; combining with exponential bases in a proper combination results
in exact nodal values for the coefficient in (3.28).

In Figure 3.12, we see that using the linear basis alone gives oscillations when the mesh is
not fine enough. With the extra basis, not only are the oscillations suppressed, the nodal
values are exact for this turning point problem with piecewise constant coefficient (3.28).
As € — 0, the oscillations get larger with only the linear bases, while the new approach

performs the same regardless of e.

3.6 Exponential Basis Functions: Two-Dimensional Problem

In two dimensions, we would also like to design basis functions that capture the exponential
behavior. The difficulty, as mentioned in Section 3.1, is that solving the equation locally
does not give the correct behavior for the velocity fields we consider in this chapter. This is
the reason we introduced the variational principle in Section 3.4. In this section, we examine
how to use our knowledge of the layer structure, based on the percolation theory and the
variational principle, to design basis functions that will capture a global layer accurately.
We find that the framework developed in this section can be used more broadly as we will

see in the next chapter.
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Ideally, we would like to construct special basis functions ¥;,¢ = 1,...,s such that u —
301 6:%; is smooth when b; are chosen optimally. If we can do that, the smooth part can
be approximated well by the bilinear functions ®;. Then, for u" = 3" a;®; + 37 b;¥;, we
would have [79]

Hu - uhHl < O b (3.32)

s
u — E CZ'\I/i
1

k

In general, it is too hard to find all these W;. It is equivalent to finding the location and
behavior of all the layers in the solution exactly. For the random flow problem, we are
trying to capture just the main feature of the solution which we think has the dominant
contribution. We see in the numerical examples that the large errors in fact come from few

sharp layers and that the use of a limited number of ¥; improves the result significantly.

3.6.1 Cellular Flow Case

The extra basis functions are constructed based on an insight gained from the one-dimensional
example shown in Figure 3.11. We define the support of the new basis functions along the
layer and then embed the correct exponential behavior. At each location, there are two
bases, each with the predicted layer shape on one side, and linear function on the other.
The underlying grid is uniform and the bilinear bases on this grid takes care of the smooth

part of the solution.

A simple test problem is for the cellular flow case. We compute the problem (3.11) with
0 = .25. We see the presence of strong layers in the solution, which is shown in Figure 3.13.
Where the exponential functions are present, we find that the exponential bases pick up
most of the weight while linear functions contribute little. These extra functions suppress
oscillations and reduce the error, as seen in Table 3.4. The method with exponential bases

is less sensitive to e.

In Section 3.4.3, we found that the test function with the scaling exponent o = 1/2 had
the minimum energy for the cellular flow case. To see whether that is a useful estimate for

the present situation, we compute a sequence of solutions, with a set of additional basis
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Figure 3.13: x for the cellular flow (6 = .25).

‘ € [ 1% error [ 1% error k

With extra bases

0.001 0.001645 | 0.006589

0.0005 0.002460 | 0.010542

0.00025 0.003368 | 0.015862
Linear bases only

0.001 0.001784 | 0.010459

0.0005 0.003957 | 0.020935

0.00025 0.008201 | 0.041641

Table 3.4: Improvement in error with exponential basis functions for the cellular flow (n =
64,m = 16). As before, the global coarse grid is n x n. The mesh inside each element for
numerical integration is m x m.
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Figure 3.14: [? error of the cell problem as a function of the exponent «; the error is
minimized with o = .5, as was indicated by the variational integral. A cubic spline was fit
using additional points (not shown).

functions whose exponential behavior is given by different « each time. In Figure 3.14, we
plot the I? error, as a function of the exponent a. We note that indeed the minimum error
is achieved when the basis functions are constructed with o &~ 1/2. This is an important
verification. It confirms that the value of a obtained through the variational principle is
the value that we can use to approximate the exponential behavior. Figure 3.14 also shows

that the method is robust with respect to a slight error in the estimate of «.

3.6.2 Random Flow Case

In general, the streamlines along which the layers occur are not aligned with the underlying
uniform grid. The computer implementation in this case becomes more involved. For
example, we need to segment evenly the separatrices on which layers occur, define the
element support appropriately, and use a mapping from a quadrilateral support to a square

to construct modified linear bases.

While the variational principle of the last section gives information about a dominant layer,
this may not be sufficient for some situations. If § is not small, for example, there may
not be one such layer; there may be other layers we need to capture. We thus modify the

method slightly. We know that the internal layers will generally occur along the separatrices
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that contain the hyperbolic points. The layers occur there because that is where the flows
in opposite directions meet. Therefore, we search for these hyperbolic points near the ¢ = 0
using a searching algorithm similar to the one given in [27], and place additional extra bases

functions nearby.

We study the performance of the method in the following “cell” problem. In the random
flow case, the cell problem (2.6) does not appear to be useful at first because it is now over
the whole domain R?. But since we have a convenient characterization (2.5) of o, in terms
of the cell problem solution y, we still would like to use the cell problem. We do this by

thinking of the random problem as an infinite volume limit of the periodic cell problem.

We first generate some random streamfunction, such as the one shown in Figure 3.15. Since
the formulation of the cell problem requires periodic boundary conditions, we extend the
original streamfunction in the first quadrant to the other quadrants by reflections ¥ (z,y) =
P(z, —y) and Y(z,y) = ¥(—z,y) [33]. We then rescale the domain to [0, 1] before solving
the problem. A resolved solution for the velocity field given by the streamfunction of
Figure 3.15 extended in this way is shown in Figure 3.16. To use the exponential basis
functions, we lay down a mesh as shown in Figure 3.17. The boxes along the curved
streamlines indicated the support of the special basis functions. Along this curved mesh,
we place a set of exponential basis functions, in a manner analogous to the one-dimensional

example of Section 3.5.

The results for the € = .001 case are shown in Table 3.5. We see that the error is decreased
by 60% for both in the I? and I°° norm when exponential functions are used. Since changing
the resolution in the interior of the basis function results in only small changes, most of the
error is due to other weak layers not approximated by the exponential form or due to the

differences in the exponential behavior on different layers.

For smaller ¢, the difference is larger. For ¢ = .0005, we see that the multigrid method that
we found to be very robust does not converge in the bilinear case unless n is at least 64.
For € = .00025, we need at least n = 256 for its convergence. With the exponential basis,
smaller € cases are handled more effectively. We see in Table 3.6 that stable solutions are

obtained, although the error does increase, at the rate of roughly 40%, when ¢ is halved.
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Figure 3.15: A random streamfunction for the use of exponential basis functions. This is
the streamfunction for a quarter of the domain.

Figure 3.16: Solution to a random cell problem. The streamfunction was generated by
extending the random streamfunction of Figure 3.15 to all four quadrants and then rescaling
it to the unit square. The boundary conditions are now periodic.
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Figure 3.17: Support for the exponential basis functions along some separatrices.

‘ } n k m f 12 error | {* error {
| linear [ 16 [ 16 [ 0.089987 | 0.28294 |
exponential | 16 | 8 | 0.038651 | 0.11858
16 | 16 | 0.037504 | 0.11340
16 | 32 | 0.037553 | 0.11117

Table 3.5: Improvement due to the use of exponential functions (e = .001).

[ € | n t m ’ 12 error l [%° error ’
.001 16 | 16 | 0.037504 | 0.11340
0005 | 16 | 16 | 0.055643 | 0.15914
00025 1 16 | 32 | 0.080120 | 0.21643

Table 3.6: Dependence of the error on € using the exponential basis functions.
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f « } [? error 1 [ error I
0.25 | 0.041468 | 0.14996
0.30 | 0.037868 | 0.12832
0.35 | 0.037504 | 0.11340
0.40 | 0.038647 | 0.12414
0.45 | 0.040918 | 0.13583
0.50 | 0.042721 | 0.14491

Table 3.7: Behavior of the error for varying values of a (¢ = .001,n = 16, m = 16).

It is not always possible to determine the shape of the layers exactly. The widths also
vary a little on different layers. Therefore, it is desirable to have low sensitivity to small
inaccuracies in the estimates for a, the exponent that determines the layer thickness given
some €. In Table 3.7, we show the error in the solutions for different a. We see that o ~ 0.35
gives the least error. This value is not surprising since we expect it to be somewhere between
a = .5 of the cellular flow and « = .23 of random flow in the infinite domain limit. We
see in the table that as o changes little, the error increases only by a small amount. This

shows that the method is tolerant to small errors in the estimate of a.

Ideally, we would like to use an efficient method such as the one developed in this section
to compute the diffusivity scaling for the random flow accurately. However, in the steady-
state problem, we find that the layer does not form a long smooth curve. That may be true
in the time-dependent problem but still only in the long-time limit. Instead, due to the
nonhomogeneous boundary condition, the solution develops more small scale features, as
shown in the contour plot of Figure 3.7. We see that the layer locations are very complicated.
We find that the resulting complexity of these layers is too burdensome for the method of this
section. The fact that the method seems to insensitive to small errors in the layer thickness
estimate works to our advantage, but the location of the layers are not clearly known. As ¢
gets small, there are many potential sites for these layers and it becomes difficult to account
for all of them. For less complex problems, the exponential basis approach works well, as

we demonstrated above with numerical examples.

There is one important difference between conventional methods and the exponential ap-
proach we consider here: because the latter is based on asymptotic theory, its performance

should improve as the parameters get small. For example, if we can manage to evolve the
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time-dependent problem for a long time, there should be more coherent structure in the
solution, as predicted by the percolation results. Then the present method should capture
more of the important features in the solution. In contrast, other methods do not take

advantage of any solution structure and would deteriorate quickly for smaller parameters.

3.6.3 Solution of the Augmented Linear System

The global stiffness matrix of the conventional finite element method in two dimensions is
a banded matrix with nine diagonals. With the extra basis functions, however, the stiffness

matrix contains added rows and columns, as shown in (3.33).

A B 1 ¥
= (3.33)

Cc D T9 g

The matrix A represents the interaction of the bilinear elements, B and C' the interactions
between the bilinear and the exponential, and D the interaction between the exponentials;
x1 is the weight of the bilinear elements and z; that of the special elements. The support
of the exponential basis function does not have to be the same size as that of a bilinear
element; thus one exponential basis function can interact with more than eight bilinear
elements. As a result, B,C, and D in general do not have a regular pattern and must be

treated as full matrices.

In solving this system, we still would like to take advantage of the banded structure of A.
The following algorithm is a generalization of the Bordering algorithm in [51]. One way of

combining the system

Axy+ Bxo = f (3.34)
Cz1+ Das = g (3.35)
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results in the form with the Schur complement,

(D-CA™'B)zy=g- CA™'f. (3.36)

Based on this equation, we solve the original problem in the following manner:

i) Solve for n in An = B.
ii) Let L =D — Cn.
iii) Solve for £ in A = f.
iv) Let r = g — C¢.

v) Solve Lzo = 7.

vi) Solve & — nxs.

Thus we can still use the fast multigrid solver [28] for the banded matrix A. Step (i) is the
most expensive, since we need to solve the matrix problem for each column of B. However,
the multigrid iteration can be supplied with a good initial guess and hence is more efficient

after the first solve. Many columns of B are also zeros and do not require the iteration.

One difficulty still arises for the cell problem (2.7). Dirichlet and Neumann boundary
conditions can be applied to the extended matrix (3.33) without much trouble, but when
the periodic boundary condition is required for the cell problem, the banded structure of A is
destroyed. We then store all the matrices in a sparse form [70] and supply the matrix-vector
multiplication routine to the GMRES [13] algorithm. It is not as fast as the multigrid, but

we can still obtain a good solution.

3.7 Summary

We have considered the convection-diffusion equation with a random velocity field. Because

the characteristic length scale of the problem is larger than each element, methods employed
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in Chapter 2 fail to capture the correct behavior. A nonlocal information is needed to

construct the desired basis functions.

A solution is provided by a variational principle [31], which was obtained through a sym-
metrization process. We find that we can use this variational principle as a numerical
method. We construct artificial test functions based on the fact that the dominant contri-
bution to the effective diffusivity comes from an exponential layer along a long streamline
near the zero level set of the streamfunction. Using these test functions in the variational
integral, we are able to find the correct scaling for the cellular flow and obtain the scaling
for the random flow that seems to support a theoretical prediction. This prediction is also

in agreement with the direct simulations we carried out on a parallel computer.

Based on the layer thickness and location estimates thus obtained, we construct exponential
basis functions and superimpose them on the uniform grid. The proper construction of the
basis is not obvious and requires insights from a one-dimensional problem with a turning
point. We find that with these extra basis functions, we can suppress spurious oscillations

and obtain small errors with a relatively coarse grid.
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Chapter 4 Elliptic Problems with High Contrast

Coeflicients

4.1 Introduction

In the previous chapters, we have considered the singularly perturbed elliptic equation that
has the characteristics of a hyperbolic equation. Now we consider the genuinely elliptic
case, but with a degeneracy coming from a large variation in the values of the coefficients.
In general, the coeflicient may be a matrix (a;;), but here we will deal with the isotropic

case, a;; = a d;;. The equation is
-V (ale,y)Vu) = f, QER (4.1)

with a(z,y) > ag > 0. The finite element formulation, as before, is to find v € U" such

that

/ aVu' - Vodx = [ fodx, YveV", (4.2)
Q Q

where U? and V" are some finite element spaces containing trial and test functions, respec-

tively.

Elliptic equations [35] can be found in many areas of science and engineering, such as flow
through porous media and conductivity in composite materials, and they often have large
variations in their coefficients. For instance, a(z, y) may represent permeability or electrical
conductivity, which can often vary wildly in different regions. We refer to these as the “high

contrast problems,” where the contrast is defined as max a(z,y)/ mina(z,y).
Y

While conventional numerical methods work well for smooth and slowly-varying coefficients,

they need to be modified in other cases. For highly oscillatory coefficients, for example, the
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multiscale FEM was developed and tested extensively in [44, 43]. In this chapter, we deal
with the modifications for high contrast problems, as well as problems with singularities
arising from discontinuities in the coefficients [79, 9, 1]. We are particularly interested in

the case in which the coefficient is discontinuous and the contrast is large.

We again employ a finite element method with special basis functions in this chapter. In
the convection-diffusion problems of the previous chapters, the dominance of the convec-
tive effects over the diffusive effects, as expressed by a large Peclet number, created sharp
features in the solution. Special exponential basis functions were introduced in place of
mesh refinements. In the first problem we consider in this chapter, the large variance in the
coefficient also causes sharp features, for which special basis functions will be introduced.
In general, it is difficult to find the terms of the asymptotic expansion for the solution
explicitly, but this can be done in some high contrast problems [17]. We utilize this result

in devising additional basis functions.

In Section 4.3, we consider the case of discontinuous coefficients. This creates difficulties of
varying degrees depending on the smoothness of interface and the contrast. It is well known
that the convergence rate of the standard numerical methods is degraded in most cases, and
it can even be arbitrarily slow in the case of severe singularities. Even the adaptive mesh
refinement schemes may become too burdensome very quickly for some of the singularities.
We start with a review of the properties of the singularities and some available methods
to deal with them. Most methods require that the structure of the singularity is known
beforehand, often by solving a related eigenvalue problem. Only after the leading behavior

is known can those methods perform efficiently.

We turn to the infinite element method to remedy the situation. Using the special self-
similar grid placed around the singularity, the method is designed to offer essentially infinite
resolution at the singularity. The number of unknowns meanwhile stays proportional to
the number of mesh points on the boundary of the element. If an element has m points
on each side, the matrix problems involved are for 4m unknowns, not for m? unknowns
as is the case with finite elements. We use this technique to construct the basis if that
element covers the singularity. We can use bilinear elements away from the singularity. We

apply this infinite element approach to interface problems with corner singularities and the
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“checkerboard” singularities. Through numerical experiments, we find that the method we

propose is efficient and robust, particularly with regard to the high contrast.

4.2 High Contrast Problems

4.2.1 Description of the Problem

In the porous media problems, the coeflicient may represent conductivity or permeability;
one can easily see that this quantity can be very large or small depending on the medium. It
is not unusual for the contrast to be on the order of 10*. We deal with this type of coefficients

in this section, but with the assumption that the coefficients are still continuous.

The important result in this case is the flow channeling: the flow tends to concentrate in
narrow channels in between the highly conductive or resistive inclusions of the media. This
was studied by Batchelor and O’Brian in [14]; other references are in [17]. This means that
these channels are the key features that need to be computed accurately. Away from these

channels, the resolution needs not be high.

Previous studies, e.g. [52, 18, 55], have revealed that this concentration of the flow can be

modeled well by the conductivity of the form
a(z,y) = agexp (=S(w,y)/e?) , (4.3)

where S(z,y) is a smooth function with a saddle point and ¢ < 1 is the parameter that
determines the contrast. This has been shown to be a good model even when the true

conductivity is not as smooth as represented by S(z,y) [55].

In [17], Borcea and Papanicolaou used the asymptotic properties of this model to extract
the behavior of the solution at the channels. This information was then incorporated in the
finite difference method to make a hybrid method. Given the extra information in the form
of an asymptotic behavior, one should be able to design a more efficient method. Their

numerical results confirm that the error of the hybrid method is smaller compared to the
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standard finite difference scheme and is often comparable to that of the more expensive

mesh refinement schemes.

Our approach is similar to that of Chapters 2 and 3, where we exploited the exponential
behavior of the solution layers to supplement the finite element space with exponential basis
functions. This is a natural setting in which to incorporate the asymptotic results, even
though the layer may not be exponential. In fact, we can avoid extra procedures needed in
[17], such as computing the fluxes and matching them across boundaries to link to the finite
difference method. In the finite element setting, the best combination of basis functions are

chosen automatically and the channels can be placed in arbitrary locations without much

additional work.

4.2.2 Asymptotic Behavior

We first discuss the asymptotic result, as reviewed in [17]. In the small neighborhood of

the saddle point x;, the conductivity behaves as

ky(z —z6)%  koly — Ys)?

a(z,y) = ag exp (—S(m,y)/eQ) ~ ag exp < ( 502 s) - (y2€2 s) (4.4)
with some positive constants £; and ky. The saddle could be pointing in any direction, but
we have chosen it to be in the x direction here for simplicity. Then, in that neighborhood,
the solution can be obtained by the matched asymptotic expansion [54, 41] to be

P(x) =~ —C erf —ki(m - xs)} , (4.5)

2¢2

where erf(z) is the error function

2 [T
erf(z) = ﬁ/{) e " dt.

From this, we can get the flux using Darcy’s law:

lr— )2
j=—aVo=alx,) C 4/ 2k exp _kely = ys)” €. (4.6)
e 2¢?
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Since this flux is a narrow Gaussian centered at x,, we see that the flow concentration is

high near the saddle point.

In general, there may be many channels in the domain. In that case, we can model each of

them separately as above. In [18], the case of many channels was modeled as a network of

resistors.

To have the desired saddle point behavior (4.4), S(z,y) must be chosen carefully. One

choice [17] is

S(z,y) = So+ M(§)M(n) sin(v€) sin(yn),
where Sy is the background conductivity, M is the mollifier

(

0, x < =7/
sin® (g (:r-{—%) /d), —r/y<z<-m/y+d
M(z) =141, —m/y+d<z<7w/y-—d (4.7)
—sin3(%(z~g)/d>, w/y—d<z<mly
0, Ty <x

and &, 7 are the rotated coordinates

1 Iy .
& = <ZL—§>C059+<Z/-‘§>SIHQ,
1y . 1
n = (:z:—§>sm0+<y——§>cosﬁ.

We take v = 2v/27 for the computational domain of the unit square and 6 = 7/4 to have

the saddle orientation match that of (4.4). We plot this S(z,y) in Figure 4.1.

4.2.3 A Special Basis Function

In Figure 4.2, we plot the asymptotic result (4.5) for various values of \/k1/(2¢2). The error
function is an integral of an exponential function, but it still has a sharp layer for small

€. The asymptotics gives an excellent approximation, even for moderate values of ¢, to the
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Figure 4.1: A high contrast coefficient (e2 = .5,d = 1/2/8).

shape of the solution.

We now construct the special basis function using the asymptotic expression. The procedure
is similar to that of Chapter 3. We define a set of basis functions, in addition to the bilinear
ones, that have the error function behavior of (4.5) on one side while linear on the other.
We lay down a series of these bases along the channel. Depending on the location of the
saddle, the support of these bases may or may not coincide with the underlying grid. But
this has been worked out in Chapter 3 and presents no serious difficulty. An example of

this basis is shown in Figure 4.3.

4.2.4 Numerical Examples

We consider a sample problem with Neumann boundary conditions and driven by the forcing

function of the form
f(x) =d(x—x1) — §(x — x2), (4.8)

where x; is the point source and x5 is the sink. As usual, we approximate the delta functions

with regularized Gaussians. A resolved solution is plotted in Figure 4.4. We see the flow
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Figure 4.3: A basis function using the asymptotic result (cierf((z — z,)/0.05) + ¢, on one
side and linear on the other).
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Figure 4.4: A contour plot of the solution with high contrast conductivity; there is a narrow
channel through the saddle point (e? = .15,x; = (.2,.2), x5 = (.8,.8)).

{ 7 } €’ | contrast \ [*° relative error ] [*° rate ‘
16 | 0.2166168 1E4 1.12%
16 | 0.1732940 1E5 2.80% 2.50
16 | 0.1444116 1E6 3.83% 1.37
16 | 0.1237813 1E7 4.56% 1.19
16 | 0.1083087 1E8 5.49% 1.20
16 | 0.0962744 1E9 6.43% 1.17

Table 4.1: Relative error in [* for different contrasts.

concentrates along the channel, as dictated by the saddle point behavior. Other features

are smooth and can be approximated by bilinear functions.

With the asymptotic basis functions along the channel, most of the weight is picked up by
the extra bases and there is a large improvement in the solution. For € = .15, n = 16, the
relative error in [ or [°° norms with only the linear functions is 17.1% while it is 3.6% with
the asymptotic bases. This is about 80% reduction in the error. In addition to this large
reduction, the error is not sensitive to the change in contrast. We show this in Table 4.1.
We see that the relative error increases only slightly for a tenfold increase in contrast, unlike

conventional methods.
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Figure 4.5: Coefficient for the multiple channel case (e = 1).

‘ o) { €? ( contrast f relative error in [*° ]
16 | 0.1732940 1E5 2.93%
16 | 0.1444116 1E6 3.70%
16 | 0.1237813 1E7 4.52%
16 | 0.1083087 1E8 8.28%

Table 4.2: Relative error in [*° for multiple channels.

Our method performs similarly for different configurations of channels. We simply need
to make sure that the asymptotic basis functions are placed along the predicted channel
paths. The cases in which the channels occurs in complicated paths are handled easily by
the implementation developed in the previous chapter. We can generate a more complicated
structure, for example, by extending a single channel case periodically. A coefficient with
16 saddle points is shown in Figure 4.5. The numerical results are presented in Table 4.2 for
various values of e. Again, the error is not too sensitive to the contrast. The error is larger
if we use bilinear elements only. For example, for 10° contrast, using bilinear elements only

give relative errors of 16%, as opposed to 2.9% for combining them with asymptotic bases.
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Figure 4.6: The simplest problem with smooth interface.

4.3 Infinite Elements for Discontinuous Coefficients

When the coefficients are discontinuous, we require the governing equation (4.1) to hold
in each domain and also that the solution and the normal flux be continuous across the

mterface.

Suppose we have
ay  in Qq,
afz,y) =
ag  in o,
where  is a convex polygon in R?, ; C € is an open domain with boundary I' = 9Q; C Q,
and Q0 = Q\ €7 . An example is shown in Figure 4.6 in the case of a smooth interface.

The continuity and the jump conditions are

= 0g—F7 s (49)

utlpg, = U250, » al%

where n is the outward normal to the interface 9€2;. We now discuss the singularities that
arise in this context, depending on the smoothmness of the interface 9€;. In the next section,
we introduce the infinite element method, followed by a section on how it can be constructed

as a basis function. We present numerical results in Section 4.3.4.
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4.3.1 Behavior at the Singularities

Smooth Interfaces

When the interface is smooth, as in Figure 4.6, the singularity is not severe. A smooth
interface implies that the solutions are smooth inside each region, although the global
regularity may be lower. Many methods have been developed for this case and they work
well, at least for moderately large contrast. A method that is the simplest conceptually but
nontrivial in implementation is aligning the grid with the discontinuity. In [23], it is proved
that if the boundary is at least C?, this finite element method converges nearly in the same

optimal way, in both the L? and energy norms, as in the problems without interfaces.

In [58], Leveque and Li develop the Immersed Interface Method. They use a uniform rect-
angular grid, but they develop different finite difference formulas near the discontinuities,
first expanding around the discontinuity in Taylor series and then using the jump condition
to substitute terms in the expansion. One problem with this method is that while the
continuous problem is self-adjoint and uniformly elliptic, the linear system may be non-
symmetric and not positive definite. When the contrast is large, the system is also highly
ill-conditioned and hence difficult to solve accurately. This method also cannot handle

interfaces that are not smooth.

In the finite element formulation, Babuska and Osborn in [10] give one way of modifying
the trial functions without aligning the mesh with the interface, which is assumed to be a
convex polygon. Let 0Q be the interface, 7, a quasi-uniform triangulation, and n and ¢
are the normal and tangent to J€2. For an element T € Ty, the basis function ¢ is linear if

TNoQ=0; if TNoQ+# 0D, it satisfies the following conditions:

i) ¢1 = fiﬁleQ1 and ¢o = ¢|THQZ are linear,
i) ui|p = ug|p, where I' = 90Q N T,
iii) (Ou1/0t)|p = (Duz/Ot)|1,

iv) a1 (0uy/0n)|p = ag(Bug/dn)|p .
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Figure 4.7: A corner with interfaces at 81 and 5.

The following energy norm estimate is proved [10]:
Hu - uh“H1,h < Ch’“fHLQ’

where

HUH%IM = / v? dx dy + Z </ Vol dz dy + / Vol da:dy) :
Q T TN JTNs

However, when the contrast gets large, the stiffness matrix again becomes ill-conditioned

and it is difficult to obtaln an accurate solution.

Corner Singularities

The singularity caused by a corner in the interface is more difficult to handle. The severity
of the singularity depends on the shape of the corner and the contrast in the coefficient,
as revealed by the eigenvalues of the Sturm-Liouville problem described below. When f
is sufficiently smooth on the boundary, the solution in the neighborhood of the singularity

can be expanded [38] as
oo
u(r,0) = Z'yi v 9;(0),
1=0

where r and 0 are as shown in Figure 4.7.

The exponents v; are the eigenvalues of the problem

(a@')l + 120 =0,
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with the associated eigenfunctions ©;. These v; determine how badly the singularity be-
haves. We see that if 1y = .1, for example, r! is very steep at the origin and requires many

points to resolve.

If we denote the angles that the interfaces make at the singularity by 6;, then the jump

conditions (4.9) become

e(6]) = e(6,), (4.10)
a(07)0'(6;") = a(67)0'(6;). (4.11)

(3

The eigenfunctions are orthogonal,
27
/ a(H) 92(9) @](9) df = (Sz'j,
0

and we can solve for the constants ~; [79]. For simple problems, this process can be carried
out and we can obtain exact formulas for eigenvalues and eigenfunctions. But in general,
this must be solved numerically. Solving this problem is the first step in many numerical

methods [79]. Without the knowledge of the singularities, these methods cannot be efficient.

Another class of methods for handling the corner singularity is similar to the “auxiliary
mapping” by Babuska and Oh [66]. The idea is to use a local transformation to map a region
around the singularity to a new domain. For a simple geometry, a conformal mapping of
type z = £ can be used. However, when the domain or the interface is more complicated,
some other appropriate mapping must be found somehow. Moreover, the nature of the

singularity must be obtained separately in order to determine c.

In the new method we introduce in the next section, there is no need to solve this eigenvalue

problem. The local grid will have sufficient resolution, even if v; are small.

Checkerboard Singularities

The most difficult case is that of the “checkerboard” configuration, shown in Figure 4.8

with the singularity at the center. Sometimes it is referred to as the “four-corner juncture”
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Figure 4.8: The checkerboard singularity at the center.

problem.

In general, the four regions may have four different conductivities, c;,7 = 1,...,4. In the

neighborhood of the singularity, the analytic solution behaves as [75]
u(r, 0) = wy (0)r7 + w2 (0)r* ™7 + O(r?), (4.12)

where v = y(a1, a2, a3, 04) and 0 < v < 1. When three of the four regions have the same
«, as in a corner of a rectangle, we get v = 2/3. For our numerical example, we consider the
case when oy = a3 = 1 and a3 = oy = a. In that case, v = \/a [75]. So when the contrast
is 10000, the leading order behavior at the singularity is 7°%!. We note that as a — 0, we
also have v — 0. In fact, in the limit of & — 0, the solution becomes discontinuous at the
singularity. This problem has been studied before, often as an example of when a method

fails.

Since the singularity is local, we can use regular finite elements in the smooth region away
from the singularities. Near the singularity, we employ the “infinite elements.” The infinite
element method is an elegant technique that has the advantages of having essentially infinite

mesh refinement at the singularity. We introduce this method in the next section.
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Figure 4.9: An example of the infinite element grid; further refinements at the center are
not shown in the picture.

4.3.2 Infinite Element Method

First appeared in early 1970s, the infinite element method has been most useful in infinite
domain problems and singularity problems, for reasons that will become obvious. Its many
properties and some applications are described in [82] and the references therein. The main
idea is to lay down a grid with certain similarity structure and then utilize the self-similarity

in reducing the size of the problem.

For example, consider a square domain with a singularity at the center. We lay down a grid
that looks like the one in Figure 4.9. The dimensions of the elements decrease geometrically
by a factor of 0 < £ < 1 as they get closer to the center. Close to the center, the elements
get arbitrarily small and there is essentially an infinite number of refinements. We call
the region between two successive nested squares a “layer” (see Figure 4.10). In general,
the element can be any polygon and the singularity does not have to be located at the
center. The only requirement is that the similarity is preserved between the layers and in
the triangulation of each layer. In partitioning inside a layer, we do it in such a way as to

avoid small angles at the element corners.
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Figure 4.10: The node numbering scheme for the first layer.

For the following discussion, we label the nodes by letting y,(j) (k=0,...,00;1=1,....n) be
the i point around the center on the k™ layer. This is illustrated in Figure 4.10. Now, to
create the global stiffness matrix, we add up the local stiffness matrix for each element to

-get a “layer stiffness matrix.” It can be written as

K AT
-A K’

(4.13)

with K and K’ being positive definite. This is a 2n x 2n matrix that relates y,(f)7 (i=1,..,n)
and y,(f}rl, (¢ =1,...,n) for any k. The key observation is that this matrix is the same for all

layers due to the self-similarity of the grid.

For the global stiffness matrix, we put the layer matrices together and obtain

K AT Yo bo
A K'+K AT " 0
_ . (4.14)

-4 K +K . Y2 0

This is an infinite set of equations. by comes from the boundary condition. In order to solve
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this system, we first assume that there is a matrix X, called the transfer matrix, such that
Yk+1 = XY (4.15)

The existence of this matrix is proved in [82]. This transfer matrix plays a crucial role: given
the boundary condition yg, we can compute the values at all the interior grid points yi, (k =

L,...,00) from X through (4.15). This means all the information about the singularity is

contained in X.

Notice that we can write each block line after the first in (4.14) as
—Ayp + (K" + K)yp1 — A ypgo = 0.

With yr1 = Xy and g0 = X2y, this becomes

(—A+ (K'+ K)X — ATX?)y, = 0.

We can then find X by solving

~A+(K'+K)X - ATX? = 0. (4.16)

This is not a trivial process. One way to solve it is to rewrite this problem to an eigenvalue

problem of the form

K'+K' -A AT 0
Yk _ Yk+1 . (4.17)

I 0 Y—1 0 I Yk

We let A be the eigenvalues and g the corresponding eigenvectors of X, i.e.,

Xg = Ag,
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and (4.17) can be written as

K+ K —A\ [a AT 0\ [
9) _ 7. (4.18)

I 0 g 0 1 g

We can now find the eigenvalues A from det(R; — ARy) = 0, where R; and Ry are the
matrices on the left and right sides respectively in (4.18). Once A and g are found, we can
find X by X = TAT™!, where T has the eigenvectors g as columns and A contains the

eigenvalues A along the diagonal.

While this procedure makes sense, it is rather cumbersome. Fortunately, the following

iterative method can be used instead [38].

We generate a sequence of matrices K;, K/, and A; by

K, = K; 1 —Al [(Ki_i + Kl )" 4,4, (4.19)

K = K_|—-A (K1 +K_|) A, (4.20)
A = Aia(Ki + KL )AL, (4.21)
: Algg" 4;

K' = K, - 42 1 4.22
z 2 qTKl'g ’ ( )

with Ky = K, Kj = K' and Ag = A from (4.13). In [82], it is proven that the sequence of
K! converges:

lim K, = K.
1—00

With K, we can then compute X using [82]
X=(K,+K)'A (4.23)

The motivation for this procedure is the minimization of energy and is described in [82].
The most expensive part of the algorithm is inverting the 2n x 2n matrix (K,_; + K!_;)
at each iteration; but for relatively small n, e.g., n = 16, 32,64, the algorithm is still fast.
Using this algorithm, we define X% = (K! + K!)"'4; and iterate until X¥) converges to

some specified tolerance. For the problems we discuss in the next section, the number of
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Figure 4.11: The infinite element solution for the checkerboard singularity at the center.

iterations till || X %) — X(6+D)) < 10710 is fewer than 12 and is not sensitive to the severity

of the singularity.

As a sample problem, we try the checkerboard configuration of Figure 4.8. We set the
boundary condition to be u(z,y) = x. The infinite element solution is plotted in Figure 4.11,
where we have computed the interior values using the transfer matrix. Only the first 10
layers were plotted in the figure, but we can clearly see that there is a singularity at the

center that would be difficult to resolve by any other numerical method.

4.3.3 Infinite Element as a Basis Function

In order to use the infinite element technique for the construction of basis functions, the
procedure is basically the same. The difference is that we need to impose appropriate
boundary conditions for each basis. We employ the infinite elements only at the singularities;

away from the singularities, we can use the standard bilinear elements. In the uniform
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grid, the only requirement is that the singular part of the solution is contained in one
element, which is not difficult to do since the worst singular behavior is confined to a local

neighborhood.

Once we compute all the basis functions, we need to put them together into the global stiff-
ness matrix. The integration over the linear elements can be done with the two-dimensional
trapezoidal rule as usual. But over an infinite element, it is not immediately clear how to
sum up the contribution of all the layers. The shape of the local elements are different
and there are infinite many of them. Fortunately, we find that a simple expression can be

obtained just in terms of the boundary condition and the transfer matrix, as described in

the following.

We start by writing the integration over an element K as a sum over the layers,

/quSj-Vcbidx: 3 / aVot . vl dx. (4.24)
4 kth layer )

But within each layer, we can also write

2n
k k
Zo/ D
m=1
where ¢§k)7 <]§§-k) are the infinite element solution in the £*" layer, and nfk), g}(,f ) are the linear

elements within the layer.

Substituting this in (4.24), we have

[ avel?-viax = [ av (Za i ) (Zﬁfff) cﬁf)) dx

kth layer kth layer

S e / v v g
{ m

th layer

But we notice that each integral here is just an element of the local stiffness matrix for the

infinite element basis. This has been computed already and is stored in K, K’, and A in
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(4.13). Here, al(k) ,(l = 1,...,2n) contains the grid point values along the outer perimeter

(I =1,...,n), and the inner perimeter (I =n + 1,...,2n) for each layer K.

We now simplify this notation for the subsequent discussion by noticing that oel( ) for [ =

n+ 1,...,2n are the same as al(kH) with | = 1,...,n; in other words, the outer perimeter

points of one layer are the inner perimeter points of the next layer. We let &l(k), a vector of

size n, denote only the outer points. This allows us to write

= (k 5k
o) — atk) S _ B)
G+ | Ble+1)

Now we sum over each layer. For the first layer,

K —ATY\ (W
= aVT (Kﬁm ATAP) 46 T (-aBY + KB 2). (4.25)

For the second layer,

= a7 (KB<2> — ATBO)) 4 a7 (—48% + K’B<3>) . (4.26)
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From this, we can easily see that
3 / aVl - vl ax

_ [&(k)T <K5(k) _ ATB(k—H)) 1 gkDT (wAB(k) I K/B(k+1))]

k=1,...,00

= T (K3<1> _AT3<2>)
+ 3 [&WT (_ ABR=1) 4 Krg(k)) 1+ ahT ( KB® AT@(M))]

k=2,...,00

with 8% = xpk-1 and gkt = x2gk-1),
- T (K—ATX) 5(1)
-+ Z {&(k)T [_A.;_ (K+K')X+X2] B(k—l)}‘
2

But we had determined that —A + (K + K') X + X? = 0 previously in (4.16). Only the

first term then survives, and we have the simple expression:

/ aVl" . Vol dx = aWT (K — ATX) 5V, (4.27)
K

where &(1) is the boundary condition for ¢; and [;’(1) for ¢;. Therefore, the sum over an
element has been reduced to multiplying the boundary condition by some matrix. This is

not unexpected since the transfer matrix X should contain all the interior information.

As in the multiscale FEM case, the correct boundary condition for the infinite element
basis function is not known. But in this case, good results are obtained when the reduced
one-dimensional problem is used on the boundary. This is simple for a piecewise constant

coefficient because an exact solution can be obtained easily. For

with
a; if0<z<mn,

as ifn<z<l,
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the solution is
ifo<ax <y,

1
(n+(1—n)a1/a2> z (4.28)

u(z) =
(m>x+(l—m> ifn<z<l

This solution is linear in each section; at x = 7, it satisfies the continuity and the jump

conditions
du

= a2 —_—
p=n- dx

du
ula?:n— = utx:n+7 alZIf.Z'—

z=nt
4.3.4 Numerical Results

When the singularity is severe, the standard FEM converges very slowly as described later
in the section. This makes it hard to obtain the highly-resolved “exact” solution to which
we can compare other computations. However, there is a way to measure the convergence
rate without this resolved solution by comparing the errors on a sequence of grids, as long
as there are no pointwise oscillations as the grid is refined. If we denote the solutions at

the grids of dimensions n,2n, and 4n by wuy,, us,, and ugy,, respectively, we have

Hun - U2n” < Chﬁ <§1E - 1) s (4.29)

Jrizn — wanl] < C (g)ﬁ (2% - 1) , (430)

based on

Hun - uemact” < Ch’.

Solving for the convergence rate 3, we get

B = (log2) tlog <M> . (4.31)

luzn — wan]]
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Figure 4.12: An interface with sharp corners; different coefficients in regions ©; and Q.

Corner Problem

We first consider singularities that arise from sharp corners in the interface. One example

is shown in Figure 4.12. Suppose we have the coefficient

1 ifz ey,
a(z,y) =
a ifxe Q.
For this problem, the standard FEM converges with O(h), when the grids are lined up with
the interface [38]. This is easy to do if the interface is simple; if the interface is complicated,
fitting the mesh around the interface is not a trivial process. If the singularity happens to

be inside an element, the standard FEM results in a large error.

With the infinite elements at the four corners of the square, the convergence rate is still
first order in term of h. However, the error is much smaller because the singularities are
now well-resolved. We see in Table 4.3 that the I? error from the infinite element method
is about 10 times smaller than that produced by the standard FEM, even with moderate
m = 16 for the infinite element. A major of advantage of our new method is also the
following: since the main source of the error is the singularity at the corners, we can keep
the uniform coarse grid in the whole domain and simply refine the few infinite element
bases locally. Unlike the standard adaptive mesh methods in which new refinement points
are coupled globally to all the others, the refinement inside an infinite element is decoupled

from the rest of the domain. The size of the global stiffness matrix does not change. We
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‘ n | m ] 12 error | ratio ’ [ error | ratio I
| FEM 8 [ 32 | .07619 | | 17850 | {
IEMS8 | 16 | .00733 02946

IEM 8 | 32 | .00430 | .7695 | .01515 | 0.9594
IEM 8 | 64 | .00299 | .5242 | .00768 | 0.9801

Table 4.3: Improvements in error with the infinite element bases at the corners.

f o ’ a9 l I? error I ratio [ [®° error 1 ratio }
1 .001 0.0042230 0.015367
1 .0001 | 0.0041871 | 0.9915 | 0.015252 | 0.9925
1 | .00001 | 0.0039059 | 0.9328 | 0.013827 | 0.9066
1 | .000001 | 0.0038436 | 0.9840 | 0.012988 | 0.9393

Table 4.4: Sensitivity of the infinite element basis method for the corner problem (n =
8, m = 32).

can see in Table 4.3 that the reduction in error with this refinement is nearly first order in
hy in the [°° norm, where A, = h/m is the mesh size along the boundary of the element.

With this strategy, we can obtain very small errors.

We note that increasing m (an element has m points along each edge) here is different from
the refinement of multiscale basis of the previous chapters. In the infinite element case, the
number of unknowns is only doubled when m is doubled, since only the boundary points
are involved in the computation. In the multiscale and most other methods, the number
of unknowns is squared when m is doubled. Therefore, we can take m to be large without

having to worry about the memory size.

Because the infinite element grid can resolve severe singularities, the error should also be
insensitive to high contrast. Indeed, as we vary the contrast of the coefficients, the error

stays basically the same up to oo = 1075 or so, as shown in Table 4.4.

Checkerboard Problem

Now we turn to the more difficult case of the checkerboard problem, shown in Figure 4.8.

The leading order behavior at the singularity is rYwithy = y/«, as described earlier.
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o |y=ya[n=64|n=128[n=256 | n=>512]
25 5 1.023 | 1.035 | 1.038 | 1.040
0625 25 619 621 613 613
015625 | 125 541 462 397 366

Table 4.5: Convergence rates for standard FEM with a single juncture at (.5,.5).

For a fixed point in the domain, the convergence of the standard finite element or finite
difference method is predicted to be O(h?7) [75]. This means that as contrast in the con-
ductivities increases, the method is arbitrarily slow. This is already with the assumption

that the gridlines are lined up with the discontinuities and the four-corner is on a grid point.

The numerical results shown in Table 4.5 of the convergence rates for the standard finite
element method corroborate the prediction. At each n and «, we have estimated the
convergence rate by comparing the [? error on successive grids. We see that as n gets large,
the order settles down. By the last column, the rate is close to being proportional to 2+,
as the convergence rate is also halved when + is halved. Thus the method slows down

dramatically with the contrast.

In Figure 4.13 and Figure 4.14, we plot examples of the infinite element basis for the
checkerboard case. These elements have 1 at the upper left corner and 0 at the remaining
corners. The values on the boundary are obtained by solving the one-dimensional equation
(4.28). The contrast is 10 for the first case and 10° for the second. We can see the difference

in the degree of the singular behavior.

A good way to verify the performance of the infinite element bases is by considering the
problem with multiple junctures, as in Figure 4.15. The coefficient alternates between
and ao in the shaded and unshaded regions. For convenience, we again fix a; = 1 and let
be the parameter c. We lay down a grid in such a way that each juncture is placed in the
middle of an element. This is not necessary for the method, but the implementation is a bit
easier. The singular behavior is usually confined to the immediate vicinity of the singular

point. As long as the element covers this area, the location of the singularity within the

element is irrelevant.

In Table 4.5, we saw that the standard FEM performs very poorly with respect to the
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Figure 4.13: An infinite element basis for the checkerboard pattern, with conductivities
ap =1 and ay = .1 (m = 16); first 30 layers are plotted.
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Figure 4.14: An infinite element for the checkerboard pattern, with conductivities a7 = 1
and g = .00001 (m = 16); first 30 layers are plotted.
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Figure 4.15: A checkerboard pattern with conductivities a; and «y alternating.

} « I I error ] ratio [ [%° error | ratio }
e-1 | 0.0006797 0.0010896
e-2 1 0.0048499 | 7.14 | 0.0078976 | 7.24
e-3 | 0.0144204 | 2.97 | 0.0239461 | 3.03
e-4 | 0.0172374 | 1.20 | 0.0300191 | 1.25
e-5 | 0.0166001 | 0.96 | 0.0309556 | 1.03
e-6 | 0.0166416 | 1.00 | 0.0311084 | 1.00
e-7 | 0.0177008 | 1.06 | 0.0311447 | 1.00

Table 4.6: Sensitivity to the contrast with the infinite element basis (n = 16, m = 16).
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I? error l rate | {*° error l rate ]
a=1/4
16 | 8 | 0.00067777 0.00107151
16 | 0.00032362 | 1.0665 | 0.00051008 | 1.0708
32 1 0.00015251 | 1.0854 | 0.00024004 | 1.0874
64 | 0.00007301 | 1.0626 | 0.00011484 | 1.0636
128 | 0.00003556 | 1.0380 | 0.00005591 | 1.0385
a = 1/256
16 | 8 | 0.01290978 0.02175406
16 | 0.00888366 | 0.5392 | 0.01456563 | 0.5787
32 | 0.00398064 | 1.1582 | 0.00644239 | 1.1769
64 | 0.00129888 | 1.6157 | 0.00209229 | 1.6225
128 | 0.00037668 | 1.7859 | 0.00060590 | 1.7879

[n ] m ]

Table 4.7: Error for multiple juncture problem as the infinite element basis is refined (o =
1/4,1/256).

increase in contrast. The convergence is arbitrarily slow as @ — 0. In Table 4.6, we show
the behavior of the error for the infinite element basis method as the contrast is increased.
We see that the error increases initially, but grows less sensitive as the contrast is increased.
Past a = .0001 or so, the error essentially remains the same. We can explain this in terms of
the area affected by the singularity. As the contrast grows larger, the singular behavior gets
more severe, but it also gets more localized. We can see this from the analytical estimate
(4.12) and from Figure 4.13 and Figure 4.14. Therefore, once the singular behavior is
sufficiently localized due to high enough contrast, the infinite element captures this with
very little error. The insensitivity to contrast due to the infinite element mesh is the great

advantage of this method.

As described for the corner problem, we can again refine the local mesh inside the element,
rather than the global mesh, in order to gain a substantial error reduction. In Table 4.7,
we show how the overall error changes when the basis functions are refined. We see that for
the relatively small contrast of o = 1/4, the convergence rate with respect to the local grid
size hy, is close to 1; for o = 1/256, the rate actually increases, and approaches to 2. This
shows that the overall error is indeed coming from the lack of refinement at the singularity

and that the infinite element method can deal with the severe singularities very well.

We already mentioned that, in general, it is hard to obtain a well-resolved solution when
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] ] n [ m 1 1? error { % error I [ error ; % error ’
| linear | 64 | 16 [ 0.950445 | 93% [2.183628 [ 93% |
IEM (64! 8 | 0.146707 14% 0.379787 16%
64 | 16 | 0.064785 6.4% 0.189092 8.1%
64 | 32 | 0.032905 3.2% 0.106049 4.5%
64 | 64 | 0.023659 2.3% 0.067518 2.9%

Table 4.8: Comparisons to the homogenized solution obtained using a* = |/a0m.

there is a strong singularity. However, for the checkerboard problem, we know that the
homogenized coefficient is /ajas, where ay and ay are the alternating coefficients [52].
The final example uses this result to verify the performance of the infinite element method.
We pick some boundary condition and forcing, e.g., f(z,y) = 1 in the domain and u(z,y) =

sin(1.57z) sin(7w(y + .5)) on the boundary.

In Table 4.8, we show how different methods perform. We let n = 64 and a; = 1, ap = .001
in this case. We see that the linear method completely fails to capture the correct behavior,
and the error is O(1). On the other hand, using the infinite elements gives the correct
averaging, and the error is very small, down to 2.3% when m = 64. As before, the solution
improves as the mesh inside the element is refined. As a9 decreases, the size of the solution
grows, but the relative error stays nearly the same. The relative errors are 8.9%, 8.1%, 7.3%
for ap = .01,.001,.0001, respectively. For these computations, the boundary conditions
used for the infinite element bases are again the piecewise constant solutions (4.28); using

linear functions gives much larger errors.

4.4 Summary

In the earlier chapters, we developed finite element methods with basis functions that
capture the solution behavior accurately. In this chapter, the same approach has been
extended to elliptic problems with singular behavior. We have considered a high contrast
but smooth coefficient for which asymptotic results can be used to construct the basis
functions. For the discontinuous coefficients, we have used the infinite element method

for the elements that contain the singularity. In particular, we have considered the corner
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and checkerboard singularities. Because most of the error comes from the neighborhood
of singularities, we found that the local refinement of the infinite element results in the
reduction of the global error and that this can be done efficiently involving only the points
on the element boundary. Finally, we have found that the infinite element approach gives

excellent results, without regard to the contrast.
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Chapter 5 Conclusions

Efficient numerical methods have been developed for dealing with the boundary and inter-
nal layer structure in the convection-diffusion equation and for the singular behavior in the
elliptic equation. Simple extensions of successful one-dimensional approaches are not capa-
ble of capturing complicated two-dimensional effects, and general adaptive mesh algorithms
lead to large, often ill-conditioned matrix problems. An effective alternative approach we
propose in the present work is to construct the basis functions in the finite element setting

that contain the correct local behavior.

We find that there are two cases in general. In Chapter 2, we deal with the case when the
characteristic length scale of the problem is small enough to be contained in an element basis.
Then the multiscale finite element method works well, as the solution of the homogeneous
equation solved locally reflects the global behavior correctly. This is the case in the periodic
cellular flow we consider. We analyze this multiscale method using multiple scale expansions
and homogenization estimates. To obtain the correct estimate of the convergence rate, we
need to consider the subtle cancellation of errors in the discrete equation. We find that for
the cellular flow, the leading order term of the relative error is O(d/h), where § is the spatial
oscillation and h the mesh spacing. Thus the method converges as § — 0 for a fixed h,
regardless of the small diffusivity e. We then try to improve the multiscale method further
by constructing asymptotic basis functions, since solving them numerically may become
expensive in the limit ¢ — 0. This involves a transformation to the streamline coordinates,
on which the resulting Wiener-Hopf problem has already been worked out. Although we
can construct such bases successfully for the cellular flow, numerical methods will have to

be employed for obtaining the basis in general.

In Chapter 3, we perturb the cellular structure randomly to obtain a random flow. The
resulting characteristic length scale is much larger as estimated by percolation theory. The

layer structure is nonlocal in this case and the multiscale basis function cannot produce the
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necessary basis functions by sampling a small region. However, we find that a variational
principle has been derived for this situation and can provide the necessary information
if employed properly. The variational priﬁciple is still nonlocal, but the correct scaling
of the layer that minimizes the energy can be found efficiently using some test functions
that capture the exponential layer structure. Using this information, exponential basis
functions can be constructed and added to the finite element space. This destroys the
banded structure of the stiffness matrix for bilinear finite elements, but the matrix problem
can still be solved efficiently. When these extra functions are incorporated correctly, there

is a substantial improvement in the numerical solution.

The same approach of adaptive basis functions provides a natural setting for dealing with the
singular behavior of an elliptic problem when the coefficient has a high contrast. This case is
studied in Chapter 4. When the coefficient has a saddle point behavior resulting in a narrow
channel of high concentration, we can capture its behavior correctly using an asymptotic
basis function based on an asymptotic result. For the discontinuous interface problems with
high contrast, the basis functions can be constructed using the infinite element method.
Based on the self-similarity of a specialized grid, it provides an accurate way of capturing
the behavior near a singular point. We apply this method to interfaces with corners and

the checkerboard problem and see that the method is efficient and robust.

Throughout this work, the main idea has been that when the finite element space is enriched
with the basis functions that capture the correct local behavior, we can use a relatively coarse
grid and yet still capture various singular behavior in a robust manner. This approach is
particularly well-suited for periodic velocity fields such as the cellular flow and interface
problems with sharp singularities, for which conventional methods require a prohibitively
large number of grid points. Other problems, particularly those involving the random flows
of Chapter 3, have additional difficulties such as nonlocality and nonuniformity of layers. We
can overcome these problems to some extent through a variational principle and analytical
results. Further research would involve obtaining better predictions regarding the location
of the layers and dealing with layers that evolve in time, as well as applying the methods

developed in this work to problems in other areas.
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Appendix A Proof of Lemma 2.1

For the one-dimensional convection-diffusion equation
—u" +a(z)u' =f, x€l0,1], (A.1)

with boundary conditions u(0) = u(1) = 0, we substitute u(z) = 3_, u;¢;(z) and v = ;(z)

in the weak form

(W', v') + (au',v) = (f,v), VYve€ H] (A.2)
to get
> 16 w0) + (agf ) s = (1. 9). (A.3)
j
With integration by parts,
(65,90 + (ad ) = (B ¥ [2i71 = (¢4, %7) = (5, (api)') (A4)
= (¢ ¥)la) 1 (A.5)

if the trial functions are the “hat” functions as defined in (2.10), or some other continuous
functions with the correct boundary conditions, and the test functions are the solutions of

the adjoint equation
—! — (a(z)) = 0. (A.6)

We could integrate in the other direction in (A.4) and then pick the trial functions that
satisfy —¢/ + (a(z)¢;)’ = 0, but this does not give the desired result in the end when forcing

is present.

Defining b(x) = exp([” a(s) ds), we find the exact expressions for this test function in (A.6)
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to be

o) - (biw) 2, bls)ds) / (b(a) [0 bls)ds) . o € [,

(A7)
(M@ugﬂmg@)/@uugﬂmg@),xepmaﬂy

Now we can compute the inner product of (A.5) exactly and find that the discretized

equations (A.3) are now

1 n 1 4 1 1 1 /$i+1 Finds. (A8)
I\ 7E ) W ; : Ui = | Ty | Wil = ids. (A.
S A W A e 5% ) T ) Jy, T

We will write [7 b(s)ds as [T b, etc., in the following for convenience.
Ti=1 Ti=1 &

We now expand the right-hand side using v; to get

“géﬁ/:fl fipids = b(il) (/:_l [ids +/:i+1 fui ds) (A.9)
L f@)b}f) gf b) ds L f(s)f}: ()b (f20) s o

If we define
x xr
F@z/fwldeE/F@ (A.11)
0 0

and integrate by parts, we have

L J& Fb sl

S Jds = F(z;) — b pay) S A2

oy ) s =l gy~ P+ Sy (4.12)
1

-7 (G(zit1) — G(x3)) (A.13)

) G(z;) - T@%G(fﬂiﬂ)-

Zi

(A.14)
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Now we combine this with (A.8) to obtain

1 1

= (u(zi1) + G(zio1)) + (fxz b + s b) (u(z:) + G(ry))

Jzl )b

Ti—1 Z;

—z;-'l;‘z—b (w(zit1) + G(zip1)) = 0. (A.15)

N
Defining E; = u(z;) + G(z;), this reduces to

1 1
—— (B~ B )+ —— (Eiv1— E;) =0. (A.16)

[ 25

With the boundary condition £y = 0, we find that E; = ('f;(; b. With Enx = u(zy) +
G(zn) = fol Fb, we have ¢ = fol Fb/ fol b. Therefore, the values at the nodal points are

u(z;) = E; — G(z;) (A.17)
T 1 Fb €T
:_épwﬂ%bﬂb (A.18)
. 0 b -

Meanwhile, the exact solution can be derived for the original equation (A.1). Using the

integrating factor,

(b)Y = —fbt, (A.19)
u' = —bF + cob, (A.20)
and finally
u(r) = —/ bF—i—co/ b+¢. (A.21)
0 0

With boundary conditions u(0) = u(1) = 1,

(A.22)

¢ = 0. (A.23)
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We see that the exact solution (A.21) at the nodal points then match the values obtained
from the finite element method (A.18).
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