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If . . .

Rudyard Kipling

“If you can keep your head when all about you
Are losing theirs and blaming it on you;

If you can trust yourself when all men doubt you,
But make allowance for their doubting too:
If you can wait and not be tired by waiting,

Or being lied about, don’t deal in lies,
Or being hated don’t give way to hating,

And yet don’t look too good, nor talk too wise;

If you can dream — and not make dreams your master;
If you can think — and not make thoughts your aim,

If you can meet with Triumph and Disaster
And treat those two impostors just the same:

If you can bear to hear the truth you’ve spoken
Twisted by knaves to make a trap for fools,

Or watch the things you gave your life to, broken,
And stoop and build ’em up with worn-out tools;

If you can make one heap of all your winnings
And risk it on one turn of pitch-and-toss,

And lose, and start again at your beginnings
And never breathe a word about your loss:

If you can force your heart and nerve and sinew
To serve your turn long after they are gone,
And so hold on when there is nothing in you

Except the Will which says to them: ‘Hold on!’

If you can talk with crowds and keep your virtue,
Or walk with Kings — nor lose the common touch,

If neither foes nor loving friends can hurt you,
If all men count with you, but none too much:

If you can fill the unforgiving minute
With sixty seconds worth of distance run,

Yours is the Earth and everything that’s in it,
And — which is more — you’ll be a Man, my son!”
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Abstract

Home to hundreds of millions of souls and land of excessiveness, the Himalaya is also the

locus of a unique seismicity whose scope and peculiarities still remain to this day somewhat

mysterious. Having claimed the lives of kings, or turned ancient timeworn cities into heaps of

rubbles and ruins, earthquakes eerily inhabit Nepalese folk tales with the fatalistic message

that nothing lasts forever. From a scientific point of view as much as from a human per-

spective, solving the mysteries of Himalayan seismicity thus represents a challenge of prime

importance. Documenting geodetic strain across the Nepal Himalaya with various GPS and

leveling data, we show that unlike other subduction zones that exhibit a heterogeneous and

patchy coupling pattern along strike, the last hundred kilometers of the Main Himalayan

Thrust fault, or MHT, appear to be uniformly locked, devoid of any of the creeping barriers

that traditionally ward off the propagation of large events. The approximately 20 mm/yr of

reckoned convergence across the Himalaya matching previously established estimates of the

secular deformation at the front of the arc, the slip accumulated at depth has to somehow

elastically propagate all the way to the surface at some point. And yet, neither large events

from the past nor currently recorded microseismicity nearly compensate for the massive

moment deficit that quietly builds up under the giant mountains. Along with this large

unbalanced moment deficit, the uncommonly homogeneous coupling pattern on the MHT

raises the question of whether or not the locked portion of the MHT can rupture all at once

in a giant earthquake. Univocally answering this question appears contingent on the still

elusive estimate of the magnitude of the largest possible earthquake in the Himalaya, and

requires tight constraints on local fault properties. What makes the Himalaya enigmatic

also makes it the potential source of an incredible wealth of information, and we exploit

some of the oddities of Himalayan seismicity in an effort to improve the understanding of

earthquake physics and cipher out the properties of the MHT. Thanks to the Himalaya,

the Indo-Gangetic plain is deluged each year under a tremendous amount of water during

the annual summer monsoon that collects and bears down on the Indian plate enough to

pull it away from the Eurasian plate slightly, temporarily relieving a small portion of the
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stress mounting on the MHT. As the rainwater evaporates in the dry winter season, the

plate rebounds and tension is increased back on the fault. Interestingly, the mild waggle of

stress induced by the monsoon rains is about the same size as that from solid-Earth tides

which gently tug at the planets solid layers, but whereas changes in earthquake frequency

correspond with the annually occurring monsoon, there is no such correlation with Earth

tides, which oscillate back-and-forth twice a day. We therefore investigate the general re-

sponse of the creeping and seismogenic parts of MHT to periodic stresses in order to link

these observations to physical parameters. First, the response of the creeping part of the

MHT is analyzed with a simple spring-and-slider system bearing rate-strengthening rheol-

ogy, and we show that at the transition with the locked zone, where the friction becomes

near velocity neutral, the response of the slip rate may be amplified at some periods, which

values are analytically related to the physical parameters of the problem. Such predictions

therefore hold the potential of constraining fault properties on the MHT, but still await

observational counterparts to be applied, as nothing indicates that the variations of seis-

micity rate on the locked part of the MHT are the direct expressions of variations of the

slip rate on its creeping part, and no variations of the slip rate have been singled out from

the GPS measurements to this day. When shifting to the locked seismogenic part of the

MHT, spring-and-slider models with rate-weakening rheology are insufficient to explain the

contrasted responses of the seismicity to the periodic loads that tides and monsoon both

place on the MHT. Instead, we resort to numerical simulations using the Boundary Integral

CYCLes of Earthquakes algorithm and examine the response of a 2D finite fault embedded

with a rate-weakening patch to harmonic stress perturbations of various periods. We show

that such simulations are able to reproduce results consistent with a gradual amplification

of sensitivity as the perturbing period get larger, up to a critical period corresponding to

the characteristic time of evolution of the seismicity in response to a step-like perturba-

tion of stress. This increase of sensitivity was not reproduced by simple 1D-spring-slider

systems, probably because of the complexity of the nucleation process, reproduced only by

2D-fault models. When the nucleation zone is close to its critical unstable size, its growth

becomes highly sensitive to any external perturbations and the timings of produced events

may therefore find themselves highly affected. A fully analytical framework has yet to be

developed and further work is needed to fully describe the behavior of the fault in terms of

physical parameters, which will likely provide the keys to deduce constitutive properties of

the MHT from seismological observations.
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Earthquakes of the Nepal Himalaya:
towards a physical model of the seismic

cycle
Thomas Ader, May 21st, 2013

California Institute of Technology, Pasadena, California, USA

Introduction

Whenever I tell someone that I study geophysics, I get either one of the two reactions

“What is that?” or “When is the next earthquake coming?” To the first question I just reply

that I study earthquakes, and face the other one within seconds. People are predictable.

Earthquakes, not yet.

Having lived in Southern California for close to five years in the vicinity of a major

active seismic fault, I have learned to never risk myself to a prediction more accurate than

“most likely some time within the next 500 years”, as many people here still live with the

trauma of an intense seismic quake shaking their house, and earthquakes are a dangerous

material for jokes. Adepts of conspiracy theories think that we can predict them but hide

our findings for some obscure reasons, fatalist minds think that trying to predict them is

as promising as trying to predict the future, and know-it-alls often explain to me that we

should look for a precursor sign that would indicate that a disastrous earthquake is near.

The truth is that we are at a stage where new seismic events still raise more questions

than they confirm our understanding of earthquake mechanics. The 2011 MW 9 Tohoku-Oki

earthquake in Japan came as a big surprise in terms of the unexpectedly huge amount of

slip that occurred on the fault, generating an earthquake and a tsunami much larger than

what geophysicists expected.

Five MW ∼ 6 earthquakes happened at Parkfield, California, with an incredibly regular

22-year period from 1881 to 1966, leaving scientists expecting an event in the late 80’s.

What looked like a reliable earthquake prediction turned out to be a new challenge by
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nature, as the following MW ∼ 6 event lingered for almost 20 more years past the expected

date to only happen in 2004.

Earthquake prediction still slips out the grasp of current physical and statistical models

and several paths are explored, hoping to find the one that will lead to the Holy Grail:

being able to announce minutes, hours or even days in advance that the Earth is going to

shake at a given location. We can predict sunny skies, rain, storms, snow and hurricanes

days in advance using elaborate physics-based models mostly relying on fluid dynamics and

meteorological observations. The key to earthquake forecasts may very well reside in similar

physical models of earthquake dynamics. But the same reason that makes earthquakes so

dramatic and ravaging sets them apart from the weather, this reason is their suddenness.

Earthquakes happen, weather is and evolves on a human scale. This distinctive suddenness

needs to be reflected in the accuracy of any physical model that could one day pretend to

crack open their secret. Building such a model is no easy task and in order to do so, the

entire variety of seismic configurations that the Earth has to offer needs to be exploited.

The Himalaya is one of these outstanding configurations: it is the only place on the

planet where two continents collide over such a large scale. Even if the exact terminology for

such a seismotectonic setting is “collision”, as it involves two continents, Figure 1 shows that

it is structurally identical to a subduction such as Japan, Sumatra or Chile, which produced

the largest events ever recorded during the instrumental era. Besides its paramount scientific

interest, the Himalayan region is also home to hundreds of millions of people living under

the ongoing threat of a devastating earthquake. The Himalaya is not a land of half measure:

we know that events of magnitude greater than 8 have happened in the past and are bound

to happen again. How large can Himalayan earthquake be, how often and where they

should be expected remain widely debated and outstanding issues to which this doctoral

work hopes to bring a valuable contribution.

More specifically, I focused my PhD on the Nepalese part of the Himalaya, where the

favorable political context has permitted a collaboration with the National Seismological

Center (NSC), part of the Department of Mines and Geology (DMG) in Kathmandu, Nepal.

Initiated by the Département Analyse, Surveillance et Environnement (DASE) at the Com-

missariat à l’Energie Atomique (CEA) in France, and then extended to Caltech in California,

this collaboration has seen its principal materialization in the development of both a seismic

and a GPS network covering the Nepalese territory, making the country an unrivaled place

to study Himalayan seismicity.
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Figure 1: Formation of the Himalaya and present day collision. Prior to the collision, an
ocean (the Tethys Sea) used to separate the northern margin of India and Eurasia. The
southern margin of Asia was an active margin with a subduction zone similar, for example,
to the Andean subduction zone bordering the western margin of South America. Today,
the Indian plate is being subducted underneath the Eurasian plate and major earthquakes
happen on the interface between the two plates: the Main Himalayan Thrust fault (MHT).
Figure from Avouac (2007)

Figure 2, taken from Ader et al. (2012a), shows the most recent large events known to

have happened within the Nepalese borders. The western part of Nepal has not ruptured

since the major event of June 6th, 1505, which magnitude is still debated but most likely

greater than 8 (Ambraseys and Douglas, 2004). The eastern part of Nepal has a more

recent seismic history with an event in 1833 of magnitude slightly below 8, and the major

MW > 8 (e.g., Ambraseys and Douglas, 2004) Bihar-Nepal earthquake of 1934. Previous

known events are not represented in Figure 2, but a large earthquake in 1255 is famous

for having killed a third of the population of Kathmandu, among which the King of Nepal

Avaya Malla, while trenches dug in western Nepal brought to light a major paleo-earthquake

in ∼ 1100 (Lavé et al., 2005), for which human reports yet await to be discovered.

1255, 1505, 1934, maybe 1100, the Himalayan collision is raising the Roof of the World

at a much slower pace than the life time of collective memory, relegating the occurrence of

cataclysmic earthquakes to the rank of ancient myths rather than ongoing threat. Present

day survivors of the 1934 earthquake see their number vanish, taking away with them the

seismic awareness in Nepal. And yet, pictures of the disaster, such as the destruction of

Bhaktapur Durbar Square in Figure 3, send an alarming message to the megalopolis that

Kathmandu has become today. Figure 4 is a picture that I took from the Swayambhu
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Figure 2: Seismotectonic setting of the Nepal Himalaya from Ader et al. (2012a). Arrows
show Indian plate motion relative to Eurasia computed using the rotation poles of Eurasian
plate in ITRF 2005 from Altamimi (2009), and Indian plate in ITRF 2005 from Ader et al.
(2012a). Focal mechanisms show thrust events (rake = 90◦ ± 45◦) from the CMT catalog
between 1976 and 2011. White ellipses show locations of historical earthquakes according to
Ambraseys and Douglas (2004). Ellipses sizes are scaled with the earthquakes magnitudes,
and might not represent reliably the area ruptured during these earthquakes. Active faults
(in red) map modified from Styron et al. (2011).

temple, north-east of Kathmandu, showing a city that has grown maybe too fast, spreading

uncontrollably into a maze of tall and narrow 4 to 5 story buildings, essentially made of

heavy bricks, an architecture well known to behave like a house of cards when undergoing

a seismic tremor. The consequences of a large earthquake shaking Kathmandu today could

be disastrous.

A paramount challenge in Nepal, as much from a scientific standpoint as from a human

perspective, is thus to estimate how large, how often and where should major events be

expected. Such information is key for establishing appropriately scaled building regulations

and provides a reliable ground material to plan efficient earthquake response programs,

such as the Nepal Risk Reduction Consortium Flagship projects led by the Ministry of
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Figure 3: Bhaktapur Darbar Square before and after the 1934 Bihar-Nepal MW ∼ 8.1
earthquake that killed almost 20,000 people. Picture from Proksch and Baidya (1995).

Figure 4: View of Kathmandu today. The city counts close to a million inhabitants ac-
cording to the latest national population census, by the National Planning Commission
Secretariat, Central Bureau of Statistics (CBS), Government of Nepal in September 2011.
Buildings are tall and narrow, mostly made of bricks, lining narrow streets, against all
earthquake safety recommendations.

Home Affairs and the United Nations Office for the Coordination of Humanitarian Affairs

(UNOCHA) [http://un.org.np/coordinationmechanism/nrrc].

Other major subduction zones, such as the Andean or the Sumatran subduction zones,

where complete seismic cycles have been observed (i.e., slow interseismic loading / coseis-

mic rupture / post seismic deformation), suggest that this information can be inferred from

the observation of the slow interseismic loading process. Figure 5 shows that during the
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possible sliver motion is not resolvable with the available
GPS data.
[23] The robust feature shared by both models, and by

many alternative models presented in Text S1 of the
auxiliary material, is the decrease of the coupling coefficient
associated with the narrowing of the coupled zone from
South to North, with a minimum in the La Serena bay, where
coupling no longer exceeds 60%. Our preferred coupling
model (Figures 5 and 7) shows that the highly coupled zone
(F >70%) is generally well developed, though discontinu-
ous, along the subduction interface. We identify three seg-
ments where coupling is intense and one segment where
postseismic rebound still occurs. (1) The Valdivia segment

that starts south of the Arauco peninsula (38°S) is still
experiencing the postseismic deformation caused by the
1960 9.5 event [Wang et al., 2007; Moreno et al., 2008].
(2) The Maule segment that spreads from the Arauco
peninsula (38°S) to the San Antonio bay (33.5°S) is char-
acterized by a highly coupled zone that extends down to
45 km depth. (3) The Metropolitan segment, where the
highly coupled zone narrows and where the coupling
vanishes at 30 km depth, extends from San Antonio bay
(33.5°S) to the Tongoy peninsula (30°S). (4) The smaller
Atacama segment extends from the Choros peninsula
(29.2°S) to the Caldera peninsula (27.5°S) and is charac-
terized by a very shallow highly locked zone that is con-
fined between the trench and 20 km depth. These segments
are bounded by narrow areas where the coupling coefficient
decreases sharply and where the average coupling coeffi-
cient 〈F〉 (calculated for the first 60 km of the subducting
slab, see Figure 8) is lower than 60%: at 38°S (South of
Arauco peninsula), at 33.5°S (San Antonio bay), 30°S (La
Serena bay, between Tongoy and Choros peninsulas) and
27.5°S (Caldera peninsula).
[24] The extent of the downdip transition zone, where

coupling is lower than 70% and decreases with depth, also
varies along-strike (roughly following the shape of the
locked zone). It spreads down to 60 km in the Maule seg-
ment (from 38°S to 33.5°S) and down to 90 km (although it
is poorly resolved) in the Choros to Caldera area (29.2°S to
27.5°S). The downdip transition zone narrows from San
Antonio to the Tongoy Peninsula (33.5°S to 30°S) and
reaches the freely creeping zone at 45 km depth only. The
downdip limit of the locked zone differs from the depth of
the continental Moho (Figure 7) [Tassara et al., 2006].
Except in the Tongoy peninsula where the coast is not far
from the trench (!70 km) and the GPS coverage is dense,
we have no resolution on the shallowest part of the slab
(from surface to 15 km depth) where an upper transition
zone may develop (Figure S2 in Text S1 of the auxiliary
material).

6. Discussion

6.1. Coupling Segmentation and Seismic Behavior
[25] Ruptures of historical large earthquakes in central

Chile often stopped at intersegment areas characterized by
low average coupling. They generally ruptured within the
areas that are highly coupled during the interseismic period
(F > 70%, Figures 2 and 7). The background seismicity
recorded by the USGS since 1976 underlines changes in the
rate and amount of moderate size earthquakes along the
subduction zone. The seismicity complements the average
coupling 〈F〉 to define four different “coupled segments”
(Figure 8). In the following, we jointly describe the inter-
seismic coupling pattern of each segment and its seismic
behavior.
[26] 1. The Valdivia segment ruptured entirely during the

1960 sequence [Plafker and Savage, 1970; Cifuentes, 1989].
Its northern limit appears to be the Arauco peninsula, a
complex tectonic coastal feature, where the 1960 Mw 9.5
rupture and its Mw 8.4 foreshock nucleated, and where the
Mocha Fracture Zone subducts. It is now affected by post-
seismic processes following this major seismic event, and the
measured deformation there reflects not only interseismic

Figure 7. Coupling pattern and segmentation. Coupling
distribution is color coded and superimposed by rupture
zones of major instrumental or historical earthquakes (solid
or dotted ellipses respectively). Dashed black line: intersec-
tion of the continental Moho with the plunging slab follow-
ing Tassara et al. [2006]. Green star: epicenter of the 1960
Mw 9.5 earthquake (CMT). Colored ellipses depict rupture
zones of major historical earthquakes that are well (solid
line) or poorly (dashed line) resolved. Their color code
corresponds to the segment they broke. Those segments
are numbered on the left: (1) Valdivia segment (green),
(2) Maule segment (red), (3) Metropolitan segment (blue),
(4) Atacama segment (yellow). Grey rectangles: intersegment
zones. Names of peculiar coastal features are indicated. Dark
blue solid lines: bathymetric features Co R-Copiapo ridge,
CFZ-Challenger fracture zone; JFR-Juan Fernandez Ridge;
MFZ-Mocha Fracture Zone.

MÉTOIS ET AL.: COUPLING ALONG CENTRAL CHILE SUBDUCTION B03406B03406

10 of 16

Figure 5: Coupling maps along the Sumatra (left) and Chilean (right) subduction zones,
together with location of large earthquakes known to have occurred on these subduction
interfaces. The color coding for the degree of coupling is different for both maps and is
indicated in each map by a color bar. A coupling of 1 indicates that the fault is completely
locked during the interseismic period, while a coupling of 0 corresponds to a creeping part
of the fault. Known earthquakes are indicated by the contour of their slip, their year of
occurrence and moment magnitude. Both the coupling map for the Sumatra (Konca et al.,
2008) and the Chilean subduction zones (Métois et al., 2012) show that large megathrust
earthquakes seem to rupture the patches on the interface that are locked during the inter-
seismic period and rarely propagate through creeping segments. The location and extent
of such locked patches on plates interfaces therefore appears as a good proxy in order to
anticipate the location and magnitude of megathrust earthquakes.

interseismic period, the slip on the fault at the interface between the two plates is hetero-

geneous: some parts of the interface creep steadily while some others are stuck. This so

called “coupling pattern” can then be compared to the areas on the fault that slip during

large events, and the coseismic slip pattern appears to be a negative of the interseismic slip

on the interface, the areas of the fault that rupture during earthquakes correspond to the

ones that were locked during the interseismic period before the event.

The first major component of my doctoral work, detailed in the publication in chapter 1,

was therefore to determine the interseismic coupling pattern on the MHT under Nepal with
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as much accuracy as present day data allows, using surface deformation measured by the

current Nepalese GPS network, which grew throughout the years from 3 stations around

Kathmandu in 1997 to an extensive network of nowadays 30 stations covering all of Nepal.
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Figure 6: Comparison between observed horizontal GPS velocities and predicted by the
coupling pattern. Interseismic coupling is shown as shades of red on the fault: red areas
are locked during the interseismic loading, while white areas are creeping. The GPS data
with corresponding error bars are plotted respectively as green and black arrows for the
continuous and campaign GPS measurements. Blue arrows show predicted velocities ac-
cording to the plotted pattern of interseismic coupling. Dashed line approximately trending
north-south indicates the east-west separation, on each side of which the secular velocity
can be different. Red arrows represent the east and west long term convergence rate across
the Himalaya. Black dashed lines with numbers represent contour lines of fault depth (in
km).

Figure 6 shows the coupling and interseismic convergence rate across the Nepal Hi-

malaya, computed in the publication from chapter 1. Whereas the interseismic couplings

on subduction zones interfaces always seem to exhibit patchy patterns (Figure 5), the locked

patches representing potential locations for megathrust earthquakes to develop, the coupling

pattern in Nepal is extremely homogeneous along strike: the MHT seems to be homoge-

neously locked from the surface to about 100 kilometers along dip, and then creeping at
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greater depths at an interseismic convergence rate of about 20 mm/yr. This interseismic

convergence rate matches the long term slip rate at the front of the Main Himalayan Thrust

of 21.5± 1.5 mm/yr, deduced by Lavé and Avouac (2000) from the uplift of Holocene ter-

races. This indicates that the interseismic deformation is mostly elastic, and that all the slip

that occurs at depth during the interseismic period has to somehow propagate all the way

to the front of the chain at some point, most likely during large earthquakes. These large

earthquakes are rare, the last one in Nepal to have ruptured the MHT up to the surface

being the 1934 MW ∼ 8.4 Bihar-Nepal earthquake (Sapkota et al., 2013). No large event

rupturing the MHT up to the surface has occurred during the instrumental period and has

thus been recorded in Nepal, but the Himalaya produced a MW = 7.6 earthquake in the

Kashmir region in 2005 that ruptured the fault up to the surface and claimed 80,000 lives.

How large and where can these mega earthquakes be, are fundamental questions that

we would like to be able to unambiguously answer. But where we were expecting to resolve

isolated locked patches during the interseismic period, we see a homogeneous pattern unique

to the Nepal Himalaya, which raises as many questions as it answers. The main one that now

comes to mind is: can the entire fault rupture all at once in an unprecedented humongous

earthquake?

From the point of view of the coupling pattern, there does not seem to be any creeping

area that would act as a barrier against the propagation of large events. Similar studies

in Bhutan and India suggest the same homogeneous along strike coupling pattern, and it

thus seems that this homogeneous pattern extends to the whole Himalayan range. I also

spent a fair amount of time during my PhD looking for repeating events within the belt

of seismicity in order to obtain independent constraints for the convergence rate across

the MHT, by correlating the waveforms of all seismic events recorded by the National

Seismological Center (NSC) in Kathmandu, Nepal between 1995 and 2010. Given that the

convergence rate is about 20 mm/yr and that the completeness magnitude of the seismic

network is below ML = 3, if some of the microseismicity on the MHT contained repeating

events, they should be detected. But where other subduction zones usually display such

events, less than 10 repeating earthquakes could be detected on the MHT, highlighting

again the discrepancy between the MHT and other subduction zones.

Jumping to the conclusion that the Himalaya is able to produce seismic events that

would rupture the entire arc all at once might however be a bit hasty. That a fairly circular

patch locked in the interseismic period produces a large event does not necessarily mean

that a rectangular homogeneously locked patch 3000 km long and only 100 km wide will
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necessarily be able to generate a single event, as geometrical factors will most likely come

into play. Besides, unlike other subduction zones, the MHT seems to be locked all the way

to the surface, and the effect of the free surface on a hypothetical along-strike propagation

of a seismic rupture remains unclear.

Known Himalayan earthquakes that ruptured the locked part of the MHT all the way to

the surface, such as the 2005 Kashmir or the 1934 Bihar-Nepal earthquakes, only ruptured

a bounded along strike segment of the fault, which always remained short compared to the

total length of the Himalayan range. But this has, unfortunately, no reason to mean that

one day an event could not propagate throughout the entire arc.

The reasoning can be pushed further than these phenomenological considerations. As-

suming that both this coupling pattern and the convergence rate remain steady in time,

it is possible to quantify the rate of moment deficit, i.e., the moment that accumulates

under Nepal every year, awaiting to be released somehow, possibly by large earthquakes.

We played that game in Ader et al. (2012a) and computed a rate of moment deficit of

Ṁ0 = 6.6± 0.4× 1019 Nm/yr. This is a lot: this is a MW = 7.6 event, similar to the 2005

Kashmir earthquake with its aftershocks, every 14 years. This is a magnitude 8.4 every 225

years.

However, one piece of the puzzle is missing in order to nail down such seismic hazard

assessments: the magnitude of the largest possible event in the Himalaya, which is actually

the information we were initially after. Magnitude 8.4 events would happen every 225 years

in Nepal if these were the largest events ever produced on the MHT. But if one assumes

that the MHT can produce events as large as the MW 9.2 2004 Sumatra earthquake, then

events of magnitude MW ≥ 8.4 would only need to happen every 570 years to balance the

rate moment deficit.

Trying to deduce this information from the know Himalayan seismicity, Figure 7 plots

the Gutenberg-Richter distribution of the Nepalese seismicity, i.e., the annual number of

events above a given magnitude as a function of this magnitude, for three available catalogs:

the catalog recorded by the National Seismological Center (NSC) in Kathmandu, Nepal

between 1995 and 2001, the Centroid Moment Tensor (CMT) catalog covering the period

from 1976 to 2010, and a historic catalog compiled by Ambraseys and Douglas (2004). These

catalogs obviously have different sensitivities (i.e., different completeness magnitudes) but

cover different time periods, therefore populating different regions of the Gutenberg-Richter

plot.

All three distributions seem to line up along a line of slope of -1 (Gutenberg-Richter b-
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Figure 7: Gutenberg-Richter plot of the seismicity in Nepal, using the different catalogs
available: The NSC catalog (1995-2001), the CMT catalog (1976 - 2010) and an historic
catalog compiled using the catalog from Ambraseys and Douglas (2004). We used the
last 500 years of the historic catalog for MW > 8 earthquakes, and the last 200 years for
MW > 7.5 earthquakes. The dotted lines are the distribution that the seismicity should
follow if 100% of the moment deficit was released seismically following a Gutenberg-Richter
distribution with b = 1, up to a given maximum magnitude of 8, 9 and 10. The asterisk
line shows, for a given maximum possible magnitude for Himalayan earthquakes, the return
period of such earthquakes.

value of 1), and succumbing to the temptation of extrapolating these distributions to larger

magnitudes in order to deduce the largest possible magnitude of events in Nepal would give

Mmax
W = 10. Let’s be clear, doing so would be simply and plainly wrong. This would be

unreasonable first, because such MW = 10 maximum magnitudes would require an average

slip on the fault of a hundred meters, assuming a shear modulus of 30 GPa and a locked part

of the MHT 3000 km long and 100 km wide. This would also be bluntly wrong because in

order to be able to extrapolate the distribution to larger magnitudes, the seismicity plotted

would have to be the average seismicity produced by the fault during a full seismic cycle.

It would be possible only if the seismicity rate was constant through time, but we know

that this is far from being the case. The seismicity rate increases drastically after large

events, during aftershock sequences, meaning that the catalog duration would have to cover

several complete seismic cycles for the seismicity considered to be a good estimate of that

average, and therefore be longer than several times the return period of the largest possible
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event, i.e., several thousand of years. Even at magnitude 8.4, the 500 years covered by

the historic catalog by Ambraseys and Douglas (2004) are too little time compared to the

minimum possible return period of such events (225 years) to assure that the value plotted

in Figure 7 is a good estimate of the average return period of such events.

As discussed in Ader et al. (2012a), the rate of moment deficit might vary with time,

although such time variations probably have a minor impact on the global budget of moment

deficit, as suggested by the fact that the coupling pattern is so homogeneous along strike,

although a large event ruptured the MHT in eastern Nepal in 1934 while the western part

of Nepal has not ruptured in the past 500 years. A fraction of this moment deficit might

also be released in an aseismic way during the postseimic slip following large earthquakes

or during slow slip events, but observations in other subduction zones suggest that this

fraction would be small.

So the question is still open: how big can Himalayan earthquakes be? Now that we have

explored our possibilities, it seems that the only remaining way to answer this question

would be to numerically simulate the evolution of the MHT over a few tens or hundreds of

thousands of years, i.e., over a few complete seismic cycles, and see if it is possible to both

produce events that rupture a finite segment of a uniformly locked MHT up to the surface

and occasionally events which rupture the entire arc. The hurdles standing in the way of

realizing such a simulation are still manifold, and some of them are still out of our reach,

but some issues can already be tackled with the tools we have in hand.

We already know fairly well the geometry of the locked zone and the convergence rate

thanks to GPS data, but we need to determine the physical parameters characterizing

the fault properties that we will plug into such a simulation. Friction between rocks and

therefore fault behavior is usually described with the rate-and-state framework (Dieterich,

1979a,b; Ruina, 1983).

In the rate-and-state formalism, the evolution of the friction coefficient µ between two

rock surfaces or gouge layers logarithmically depends on the slip rate V and a state variable

θ (Dieterich, 1978, 1979a,b; Ruina, 1983):

µ = µ∗ + a ln
V

V ∗
+ b ln

θV ∗

Dc
, (1)

where µ∗ is the reference friction coefficient corresponding to the reference slip velocity

V ∗, Dc is the characteristic slip for state evolution (e.g., Dieterich, 1978, 1979a,b; Ruina,

1983; Rice and Ruina, 1983; Dieterich and Kilgore, 1994), and a and b are rate-and-state
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constitutive fault parameters. The state variable θ can be interpreted as the average age

of the population of contacts between two surfaces and its evolution is usually described

either by the aging law (e.g., Marone, 1998):

dθ

dt
= 1− V θ

Dc
, (2)

or by the slip law (e.g., Marone, 1998):

dθ

dt
= −V θ

Dc
ln
(
V θ

Dc

)
. (3)

Note that the state variable evolves in time even if there is no relative motion between

rocks in contact.

In the steady-state regime where dθ/dt = 0, Vss = Dc/θ and the friction can therefore

be expressed as a function of the slip rate on the fault only:

µ = µss + (a− b) ln
V

Vss

. (4)

Equation (4) shows that the friction has two distinct behaviors depending on whether

a−b is positive or negative. When a−b is positive, the friction on the fault increases when the

slip rate increases, which promotes stable creep (rate-strengthening rheology). Conversely,

in the case where a − b is negative, the friction decreases when the slip rate increases,

which might lead to highly increasing slip rates (rate-weakening rheology). Looking at the

coupling pattern in Nepal in Figure 6, one can easily see how this formalism can qualitatively

represent the observed pattern on the fault: the creeping part of the fault may be described

by a rate-strengthening rheology, while the locked zone would be represented by a rate-

weakening rheology. Quantitatively though, in order to run a realistic simulation, the

numerical values of rate-and-state fault parameters a, b andDc would need to be determined.

It turns out that fault properties may be extracted by analyzing the response of the fault

to stress perturbations, and this is where Nepal represents an incredible natural laboratory

with a helpful variety of stress perturbations. On top of the secular shear stress loading

at the plate interface resulting in a fairly constant stress rate on the MHT, two types of

additional stress perturbations are at play. The first ones, perhaps the most common form

of stress perturbation in a seismic zone, are the sudden stress changes due to large events.

The study of the evolution of aftershock sequences may thus be able to shed light onto some

of the local fault properties.
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The second ones are periodically varying stresses. These are due to the solid Earth

tides, which induce variations of the shear stress on the MHT of the order of 3 kPa of

amplitude (Bettinelli et al., 2008), or, a specificity of the Himalaya, to the hydrological

cycle dominated by the heavy monsoonal rains in the summer, which causes a dramatic

accumulation of water in the aquifers of the Gangetic basin. This surface load bends the

Indian plate, generating annual shear stress variations on the MHT between the wet summer

and the dry winter months, also of about 3 kPa of amplitude. The individual and relative

responses of the fault to both these periodic stress variations are likely constrained by fault

properties, and the second major component of my PhD has thus been to evaluate the

amplitude of these responses in Nepal.

The Nepalese microseismicity from 1995 to 2008 is plotted in Figure 8, both in map

view and in terms of the evolution of the cumulative number of events with time. In order

to appraise the response of this seismicity to both periodic stress perturbations (seasonal

variations and tidal perturbation), I developed a tool based on the Schuster test to assess

the existence of periodicities in the timing of events in an earthquake catalog, which is

presented in the manuscript submitted for publication in chapter 2. With this tool, called

the Schuster spectrum, I pointed out that looking at small magnitude events in a catalog

may provide a statistically more significant number of events, but these events quickly tend

to cluster in time (aftershock sequences, clusters, etc.) and any periodicity in the catalog

may be occulted by this loss of independence between events. The best way to circumvent

this problem is hence to look at the largest events in a catalog which will most likely

remain uncorrelated with each other. As a vicious consequence, looking at a region over

a longer time period will not necessarily increase the number of events available to assess

the existence of any periodicity: the magnitudes of the largest events present in the catalog

increasing with time, the magnitude of events that one should use will also increase.

In order to examine the periodicities in the seismicity on the MHT we thus compute

the Schuster spectrum (Ader and Avouac, 2013) for ML ≥ 5.5 events from the National

Seismological Center (NSC) seismic catalog in Nepal from 1995 to 2008, and Mb ≥ 4 events

from the International Seismological Centre (ISC) catalog from 1965 to 2008. Both spectra

are reproduced from Ader and Avouac (2013) in Figure 9 and show an annual variation

of the seismicity rate in Nepal above the 95% confidence level, but no detectable variation

at any of the tide periods. This indicates that even though the seasonal and tidal stress

perturbations have comparable amplitudes, the response of the seismicity is larger in the
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Figure 5: Time and space distribution of the ML � 3 NSC seismicity used in this study.

Upper plot shows cumulative number of events from 1995 to the end of 2008 for raw (grey

curve) and declustered (black curve) catalogs, together with times of ML � 5.5 events

from the declustered catalog (blue stars). The map shows midcrustal events from the raw

catalog used in the study, selected according to their localization, using the same selection

contour as in Bollinger et al. (2007). Circles sizes are proportional to events magnitudes:

smallest events have ML = 3, and ML � 5.5 events are indicated by their magnitude,

giving an idea of the scale.

29

Figure 8: Time and space distribution of the ML ≥ 3 NSC seismicity used in this study.
Upper plot shows cumulative number of events from 1995 to the end of 2008 for raw (grey
curve) and declustered (black curve) catalogs, together with times of ML ≥ 5.5 events from
the declustered catalog (blue stars). The map shows midcrustal events from the raw catalog
used in the study, selected according to their localization, using the same selection contour
as in Bollinger et al. (2007). Circles sizes are proportional to events magnitudes: smallest
events have ML = 3, and ML ≥ 5.5 events are indicated by their magnitude, giving an idea
of the scale.

annual case. Quantitatively, we show that the relative amplitude of variations of seismicity

rate could be as large as 40% at the annual period, while the amplitude of the response at

the tidal periods is less than 25%.

As is represented in Figure 6, the MHT is made of two distinct zones: a creeping zone

at depth, best modeled by a rate-strengthening rheology in the rate-and-state framework,

and a locked seismogenic zone, that would be described by a rate-weakening rheology. I
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Figure 9: Schuster spectra (Ader and Avouac, 2013) computed for large events from a) the
NSC and b) the ISC declustered catalogs. For the NSC catalog, the spectrum is computed
for ML ≥ 5.5 events for the entire available catalog (1995 to 2008). The spectrum for the
ISC catalog is computed for Mb ≥ 4 events from 1965 to 2008. The periodicity at one year
is highlighted in red and indicated by a red arrow.

therefore studied the response of both rheologies to harmonic shear stress variations, in

order to evaluate the impact that both zones may have on the response of seismicity to

both tidal and seasonal stress perturbations.

First and foremost, I started with the response of a rate-strengthening fault to a har-

monic variation of Coulomb stress, which is detailed in the publication in chapter 3. The

Coulomb stress S(t) is defined in terms of the shear stress τ(t) and the normal stress σ(t):

S(t) = τ(t)− µσ(t), (5)
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Figure 10: Response of a spring-slider system with rate-strengthening rheology to small
harmonic Coulomb stress perturbations of different periods and amplitudes ∆S1 = 0.9 kPa
(simulation 1) and ∆S2 = 15 kPa (simulation 2). The amplitudes of the shear and normal
stress perturbations are the same. The system is undergoing constant loading at velocity
Vss = 0.02 m/yr under mean normal stress σo = 5 MPa. The normalized spring stiffness
is k/σo = 0.002 m−1. The other parameters are: µo = 0.7, a = 0.004, b = 0.0036 and
Dc = 2×10−4 m. Upper panel: Amplitude of the creep rate variations. The black lines with
circles represents the results of the simulations (one line for each value of ∆S). The dashed
grey lines with triangles represent the small perturbation approximation (Ader et al., 2012b)
for each simulation while the dashed light grey lines indicate the corresponding asymptotic
behavior of the system with equations indicated on the plot. The critical periods Tθ, TQ
and Ta are also indicated on the plot. Lower panel: Phase difference between the creep rate
variations and the stress perturbation.
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where µ is the friction coefficient. Creeping faults do not produce large earthquakes since

no moment deficit is usually accumulated on them, but they seem able to produce tremor

like signals, which intensity is usually considered to vary with the creep rate on the fault

(Ide et al., 2007; Shelly et al., 2011). Tremor intensity and therefore slip rate on creeping

faults has been reported on multiple occasions to highly correlate with tidal perturbations

(Rubinstein et al., 2008; Nakata et al., 2008; Thomas et al., 2009, 2012; Hawthorne and

Rubin, 2010) in spite of the low amplitude of tidal perturbing stresses, indicating a high

sensitivity of creeping faults to stress perturbations. This high sensitivity is generally at-

tributed to near lithostatic pore pressures, which would reduce the effective normal stresses

by orders of magnitude below their lithostatic value at the depths considered.

As has been highlighted in the case of non-volcanic tremors (Ader et al., 2012b), near-

lithostatic pore pressures require specific fault properties for the nucleation sizes to re-

main consistent with the occurrence of the smallest earthquakes recorded. Besides, near-

lithostatic pore pressure and corresponding effective normal stresses are orders of magnitude

below the values reported from afterslip studies in various tectonic contexts (Hearn et al.,

2002; Miyazaki et al., 2004; Perfettini and Avouac, 2004, 2007; Hsu et al., 2006, 2009a,b;

Fukuda et al., 2009; Barbot et al., 2009).

The main point made in Ader et al. (2012b), presented in chapter 3, is that a set of rate-

and-state parameters such that a − b ≈ 0 on a creeping fault can cause a highly amplified

response of the creep rate to a harmonic stress perturbation. At the right perturbing

period, the amplitude of the variations of slip rate due to a perturbation of Coulomb stress

of amplitude ∆S becomes indeed
∆V
Vss

≈ e
∆S

(a−b)σ , (6)

which can be large if either a− b or σ are small enough for (a− b)σ to be smaller than the

amplitude of the stress perturbation.

Figure 10, taken from Ader et al. (2012b), shows the response of a spring-slider system

with rate-strengthening rheology to harmonic perturbations of Coulomb stress throughout

a range of periods, for two different amplitudes ∆S1 and ∆S2 such that ∆S1 < (a − b)σ
and ∆S2 > (a− b)σ. It shows that between the characteristic periods TQ and Ta (see Ader

et al. (2012b) for the expressions and physical meaning of these periods), the amplitude of

the response depends on (a − b)−1. Within this range of periods, when ∆S � (a − b)σ,

equation (6) can be linearized to ∆V/Vss ≈ ∆S/(a − b)σ. But when ∆S2 > (a − b)σ the

amplitude of the response becomes larger than this linear approximation: the response has
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a large amplitude and is described by equation (6), as is derived and tested in Ader et al.

(2012b). On a fault region where a−b ≈ 0, this second regime is consequently likely to be at

play. This especially applies to slow slip events and tremors since they are usually observed

at the transition between the locked and creeping parts of faults, i.e., as was mentioned

earlier, at the transition between a rate-weakening (a− b < 0) and and a rate-strengthening

(a − b > 0) rheologies. The delimitating periods Ta, TQ and Tθ in Figure 10 are inversely

proportional to the background loading rate, and thus the sensitivity to periodic stresses

should vary when this background velocity changes, as for example during a slow slip event.

Such variations of response amplitude have been observed in Parkfield, California (Thomas

et al., 2012), and might therefore help bring constraints on fault parameters on the San

Andreas fault.

Tremors and slow slip events yet remain to be observed in Nepal, and if they exist

there, the analysis of their response to tidal and seasonal stress variations should be able to

bring tight constraints on the fault parameters of the creeping part of the MHT. It is not

yet clear if annual variations of the creep rate are responsible for the observed variations

of the seismicity rate on the MHT. The variations of strain recorded at the surface by

the GPS stations in Nepal seem to be entirely explained by the elastic deformation of the

crust in response to the hydrological surface loading, and do not display any significant

signal that would come from variations of creep on the MHT. If small variations of the

creep rate at depth might not be large enough to generate detectable strain variations at

the surface, there is still the possibility that they induce important variations of stress at

the transition between the locked part and the creeping part of the MHT, cradle of the

Himalayan seismicity. Such effects still need to be studied and quantified.

I then focused my efforts on the locked seismogenic part of the MHT in order to de-

termine if a fault with rate-weakening rheology could explain both the annual variations of

seismicity in Nepal and the apparent lack of response to tidal perturbations. Trying to ex-

plain this contrasted response of the seismicity with a simple 1D Spring-slider Rate-and-state

Model (hereafter referred to as SRM) as we did earlier in the case of a rate-strengthening

fault proves to be unsuccessful, as a spring-slider with a rate-weakening rheology would

predict a response to the tides at least as large as for the annual forcing, as is showed

in Figure 11 (Ader et al., 2013). This is due to the fact that if a simple spring-slider is

appropriate to describe the behavior of a creeping fault, which almost always remain in its

steady-state regime, it does not reproduce all the complexity of the transitory earthquake
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Figure 11: Amplitude of seismicity rate variations on the fault for different periods of
shear stress harmonic variations of constant amplitude, according to the Coulomb Failure
model (CFM) and the SRM. The predicted curve of the SRM is derived from the equations
presented in Dieterich (1994). See Ader et al. (2013) for details on both models. The
black curves represent the exact solutions solving for equations numerically, while the grey
dashed lines represent the asymptotic behavior at large and short perturbing periods, with
corresponding equations indicated on the plot, and derived in Ader et al. (2013). Supposing
that the response to the Monsoon is on one of these curves, neither the SRM nor the
Coulomb models are able to explain the fact that the response of Nepalese seismicity to tides
is of less amplitude than the response to the Monsoon, remembering that both perturbations
have the same amplitude, and should thus be one the same curve, but that the tides should
be to the left of the monsoon on this plot as they have a much smaller period.
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generation processes, and therefore leads to wrong quantitative predictions in the case of

a rate-weakening rheology. Indeed, the generation of an earthquake on a rate-weakening

patch starts with the nucleation phase, where a creeping zone at the edge of the patch,

called the nucleation zone, steadily grows in size under the influence of the remote secular

loading. When the nucleation zone reaches a critical size, it becomes unstable and starts

growing recklessly: this is the propagation phase of the seismic rupture, or simply the seis-

mic event itself. If the notion of a critical nucleation size appears in the spring-slider model,

the notion of a physically growing nucleation zone does not exist.

A major task of my doctoral work has thus been to study the evolution of rate-weakening

patches under harmonic stress perturbations, resorting to 2D fault models, which constitutes

the last chapter of my PhD thesis. This problem is too complex to be entirely studied

analytically and the evolution of slip on a finite fault was thus numerically simulated using

the BICYCLE (Boundary Integral Cycles of Earthquakes) code developed at Caltech, based

on the boundary integral method, and described in Lapusta et al. (2000), Lapusta and Rice

(2003) and Lapusta and Liu (2009). The actual code used in the simulations presented in

Ader et al. (2013) is the one presented in Noda and Lapusta (2010), where we have added

the possibility of a perturbation of stress history superimposed over the entire fault. The

results are presented in a publication in preparation for the Journal of Geophysical Research

reproduced in chapter 4.

Figure 12 gives a schematic representation of the fault for which we compute the evo-

lution through time. BICYCLE uses a spectral representation of the boundary integral

formulation (Lapusta et al., 2000) in order to deal with the computationally intensive in-

ertial effects, which requires to periodically pave an infinite 2D space with the fault from

Figure 12, resulting in a fault infinite in the direction indicated as a dashed line in Figure 12.

It is made of a rate-weakening seismogenic patch (dark blue in Figure 12) embedded within

a rate-strengthening creeping matrix (yellow part of the fault). The fault is only 3 km

wide, with the seismogenic patch being 500 m in most of the simulations. The cell size used

depended on the physical parameters of the simulation, but was 0.5 m in the vast majority

of the simulations and for all figures that are presented in this introduction. The secular

loading on the fault is reproduced by loading the fault at its edges with a constant velocity

Vpl. When imposed, the stress perturbation is applied over the entire fault.

The second main ingredient of BICYCLE is the variable time stepping (Lapusta et al.,

2000; Lapusta and Rice, 2003), which enables the simulation of both the quiet interseis-

mic period of quasi-static deformation with large time steps but also the rapidly evolving
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Figure 12: Cartoon showing the finite fault used in the numerical simulations. The fault is
infinite in one direction, and consists of one rate-weakening (seismogenic) patch embedded
within a rate-strengthening medium. The whole fault is loaded on both side at a constant
velocity. The stress perturbation (either a step function or a harmonic perturbation) is
applied over the entire fault. In most simulations in Ader et al. (2013), the fault has a
length of 3 km, and the seismogenic patch at the center is 500 m long.

nucleation and propagation processes during seismic events. In order to simulate a sta-

tistically significant number of seismic events and seismic cycles, this algorithm was run

during ten days on two HP SL390 Compute Nodes, each containing twelve Dual Westmere

X5650 processors running at 2.67 GHz. On an fault evolving under the sole influence of the

secular loading at the edge and without any additional stress perturbation, this produced

a seismic catalog of about 15,000 events spanning a period of over 1700 years. Figure 13

shows approximatively two year of the slip evolution on the fault, and displays the diversity

of seismic events and cycles produced by such a fault. This Figure also indicates that the

duration of a seismic cycle, i.e., the time between two major events rupturing the entire

seismogenic patch, never exceeds half a year, so that a 1700 year-long seismic catalog covers

a large number of complete seismic cycles.

The fact that the natural evolution of slip on the fault (i.e., under the sole influence of

the loading at the edges of the fault) and population of seismic events produced by such

a finite fault displays some complexity is already a notable difference from the periodic

uniform seismicity predicted by a simple spring-slider model. Since the fault is infinite in

one direction, the magnitude considered here is the magnitude per unit of length in the

infinite direction, and is defined as:

Mlin =
2
3

log10Mlin − 6.7, (7)
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Figure 13: Upper plot: Evolution of slip during about 2 years on the unperturbed fault
loaded at the edges at a constant velocity Vpl = 1 cm/yr. The linear magnitude of the
seismic events produced is indicated on each event. If the fault is in the coseismic regime,
the slip on the fault is plotted every 0.02 s (dashed black lines), while during the inter
seismic period, slip is only plotted every 0.01 yrs (plain grey lines). Lower plot: Magnitude
distribution of events produced by the fault. The earthquake catalog produced by the
simulation contains a total of about 15,000 events, covering about 1700 years of evolution
of the fault.
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where the linear moment Mlin of a seismic event on this fault is:

Mlin = G

∫

fault
s(x) dx, (8)

with x ∈ [−1.5; 1.5] km the position along the fault, s(x) the slip on the fault at position

x and G = 30 GPa the shear modulus. The magnitudes of earthquakes produced in the

upper plot of Figure 13 are indicated in the plot and give an insight on which type of event

the magnitudes in the lower plot correspond to: the bimodal distribution of magnitudes

corresponds to events that either rupture the whole seismogenic patch (Mlin > 0.75) or only

rupture an edge of the patch (Mlin < 0.75).

Response of a finite rate-and-state fault to harmonic shear-stress perturbations. Each

point on the plot corresponds to a simulation which generated an earthquake catalog. The

times of events from the catalog are stacked over one period and the resulting stacked

seismicity rate is fitted with equation (4.19). The value obtained for β is reported on the

upper plot, while the phase shift Φ between the seismicity rate and the stress is represented

on the lower plot. Simulation parameters are described in Ader et al. (2013): a = 0.008,

b = 0.004 in the creeping zone and b = 0.012 on the seismogenic patch. Normal stress is

σ = 5 MPa and parameter Dc = 5 µm, and the loading velocity is Vpl = 1 cm/yr. Dashed

grey curves show the predictions of the SRM, where we have taken 2πta = 0.1 years in order

to fit the phase. As in the SRM, one can separate two regimes of response, depending on

whether the perturbing period is shorter or greater than a critical period Ta. However, the

amplitude of the response is always greater than predictions from the SRM, sometimes by

more than an order of magnitude, and this amplitude of the response increases with the

period T for periods T < Ta.

This fault is then perturbed in Ader et al. (2013) with a harmonic shear stress perturba-

tion and we look at the response of the seismicity. Figure 14 displays the harmonic response

of the finite fault from the simulations, and is thus the equivalent of Figure 11 for a finite

fault. The response for the SRM is reminded as a dashed grey line in Figure 14.

The way Figure 14 is obtained is detailed in Ader et al. (2013), but I summarize here

the pertaining points. Each grey circle corresponds to one simulation, where the finite fault

undergoes a harmonic shear stress perturbation of period T , indicated on the x-axis, and of

amplitude ∆τ , constant from one simulation to another. In order to evaluate the variations

of seismicity rate with time in the output seismicity catalog, we stack the times of events

from the catalog over one period T and fit the obtained seismicity rate over one period with
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Figure 14: Response of a finite rate-and-state fault to harmonic shear-stress perturbations.
Each point on the plot corresponds to a simulation which generated an earthquake catalog.
The times of events from the catalog are stacked over one period and the resulting stacked
seismicity rate is fitted with equation (9). The value obtained for β is reported on the upper
plot, while the phase shift Φ between the seismicity rate and the stress is represented on the
lower plot. Simulation parameters are described in Ader et al. (2013): a = 0.008, b = 0.004
in the creeping zone and b = 0.012 on the seismogenic patch. Normal stress is σ = 5 MPa
and parameter Dc = 5 µm, and the loading velocity is Vpl = 1 cm/yr. Dashed grey curves
show the predictions of the SRM, where we have taken 2πta = 0.1 years in order to fit the
phase. As in the SRM, one can separate two regimes of response, depending on whether the
perturbing period is shorter or greater than a critical period Ta. However, the amplitude
of the response is always greater than predictions from the SRM, sometimes by more than
an order of magnitude, and this amplitude of the response increases with the period T for
periods T < Ta.
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Figure 15: Stacked seismicity rate on a finite fault under a harmonic stress perturbation of
period T = 0.1 years and amplitude ∆τ = 3 kPa. The black dots with error bars represent
the normalized stacked seismicity rate from the perturbed catalog, computed by dividing
the period into B = 32 bins of equal length and counting the number of events falling
within each bin. The black line shows the fit of equation (9) with best fitting parameters:
amplitude β = 1.02 ± 0.04 and phase Φ = 35◦ ± 3◦. The error bars on the seismicity
rate only depend on the total number of events N in the catalog and the number of bins
used to compute the seismicity rate from the seismicity catalog output from the numerical
simulation: σ2

B = (B− 1)/N (e.g., Ader and Avouac, 2013). For comparison, the light grey
circles with error bars show the seismicity rate from the unperturbed catalog stacked over
the same period with corresponding fit of equation (9) with dashed grey line. In spite of
being derived with the spring-slider model, equation (9) provides a good qualitative fit to
the seismicity rate variations on the finite fault. However, given that the normal stress on
the finite fault is σ = 5 MPa, and that the fault parameter a = 0.008, the spring-slider
model would prescribe βSRM = ∆τ/aσ = 0.075, a value more than an order of magnitude
less than the β-value required to fit the seismicity rate.
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the following expression:
R(t)
r

=
eβ sin(ωt−Φ)

〈eβ sinωt〉 , (9)

where the amplitude β and phase Φ of the response are determined to fit the results of each

simulation. The notation 〈.〉 refers to the mean of the function. Equation (9) corresponds

to the predictions of the seismicity rate by the SRM (this expression is derived in Ader

et al. (2013) on the ground of the equations obtained by Dieterich (1994)), except that in

the SRM, parameters β and Φ are prescribed in terms of the fault parameters.

A lot can be learned from these simulations and numerous results are highlighted in the

paper in preparation reproduced in chapter 4. In order to explain the contrasted response

of the seismicity in Nepal to tidal and seasonal stress variations on the fault, some of these

conclusions come handy. Figure 15 may suggest that although predicted by the SRM,

equation (9) seems to fit well the seismicity rate of the finite fault. However, quantitatively

looking at the amplitude of the variations of the seismicity rate on the finite fault, the best

fit is obtained for β = 1.02±0.04 whereas the SRM would advocate βSRM = ∆τ/aσ = 0.075,

a value more than an order of magnitude less than the β-value required to fit the seismicity

rate. Reciprocally, interpreting this observed β ≈ 1 amplitude on the finite fault with the

predictions of the SRM would lead to aσ ≈ ∆τ = 3 kPa, whereas the actual value of aσ on

the finite fault is 40 kPa. This underestimation of the amplitude of the response of seismicity

to harmonic stress is not specific to the period T = 0.1 year, as Figure 14 shows that the

amplitude of the variations of seismicity rate predicted by the SRM is systematically much

lower than the amplitude yielded by the finite fault simulations. Estimating fault parameters

on real faults by fitting variations of the seismicity rate observed in nature with predictions

of the SRM (Cochran et al., 2004; Bettinelli et al., 2008) will therefore deceivingly yield a

seemingly good fit, but as highlighted in Ader et al. (2013), the quantitative estimates of

fault parameters may be off by sometimes several orders of magnitudes. The claim made

by Bettinelli et al. (2008) that aσ has to be as low as 8 kPa on the MHT (requiring either

values of the fault parameter a orders of magnitudes lower than laboratory measured values

(Dieterich, 1994) or near lithostatic pore pressure) for the microseismicity to responds as

much as it does to seasonal variations of stress might therefore not be necessary. New

laws relating rate-and-state fault parameters to the quantitative response of a rate-and-

state fault to a harmonic stress perturbation have to be established in order to pull out

trustworthy estimates of fault parameters from observations.

As for the fact that the seismicity on the MHT seems to have a higher response at the



27

annual than at the tidal periods (Ader and Avouac, 2013) although both stress variations

have comparable amplitudes (Bettinelli et al., 2008), Figure 14 seems to indicate that for

periods smaller than a critical period Ta, the amplitude of the response increases with the

period, and then decreases as the period keeps increasing above Ta. The phase Φ goes from

about 0 to about −π/4 as T grows towards Ta, indicating a seismicity rate mostly in phase

with the shear stress with a slight time lag appearing as T grows closer to Ta, and then

jumps to Φ ∼ π/2 when T > Ta, meaning that the seismicity rate becomes in phase with

the shear stress rate. Applying these simple observations to the case of Nepal, the fact

that the annual response of the seismicity is in phase with the stress rate but that it is still

larger than the response to tides indicates that Ta must be of the order of 1 year. If Ta

was much larger than 1 year, then the seismicity rate in Nepal would be in phase with the

seasonal stresses and not the stress rates, but if Ta was much smaller than 1 year, then the

amplitude of the response at 1 year would be very small and unlikely to be greater than

the response to tides.

This value of Ta for Nepal can also be independently obtained by looking at aftershock

sequences. We simulated in Ader et al. (2013) the response of a finite fault to a step of

shear stress of amplitude ∆τ , and showed that the evolution with time of the cumulative

number of event following the step (supposedly imposed at time t = 0) could be fitted by

an expression again inspired by the predictions of the SRM:

N(t) = rt+ rata ln
[
eβ +

(
1− eβ

)
e−t/ta

]
H(t), (10)

where the background seismicity rates r and ra are free parameters to fit for, r being the

background seismicity rate of the entire zone considered and ra corresponding to the one

only on the faults producing aftershocks. In the SRM, since only one fault is considered,

both background rates r and ra are equal. But looking at natural seismicity, one needs

to consider a zone that encompasses the entire aftershock sequence, which will therefore

also contain faults not responding to the stress change, which justifies resorting to two

different background seismicity rates in equation (10). The two other free parameters are

the amplitude of the response β and the characteristic relaxation time of the seismicity

rate following the stress step (i.e., the characteristic duration of the aftershock sequence)

ta. The function H(t) is the Heavyside function: H(t) = 0 for t < 0 and H(t) = 1 for

t ≥ 0. Expressions of ta and β are prescribed in the SRM in terms of other parameters

of the problem: noting τ̇a = kVpl the secular loading rate of shear stress on the slider,



28

81.2 81.4 81.6 81.8 82 82.2

29.2

29.4

29.6

29.8

30

30.2

Longitude (oE)

L
at

it
u

d
e

(o N
)

2001.5 2002 2002.5 2003 2003.5 2004 2004.5
0

500

1000

1500
Cumulat ive events distribut ion

Time (years)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15
Probability Density Function

t a (years)

 

 
<ta> = 0.242 years

m ta = 0.051 years

Figure 16: Aftershock sequence in Western Nepal following the ML = 6.1 event that hap-
pened on November 27, 2001. The upper maps show the location of all ML ≥ 2 aftershocks
within 0.5◦ from the center of the cluster, ML ≥ 5 events being signaled by a star. Lower
left plot: cumulative number of events within this radius and fit with equation (10) for the
best values of β and ta. Best fit model has ta ≈ 0.24 years. Lower right plot: complete PDF
for ta, indicating that ta ≈ 0.24± 0.05 years. This value is of the same order of magnitude
as critical period Ta ≈ 1 year, estimated from the frequency response of the seismicity in
Nepal.

the characteristic relaxation time is ta = aσ/τ̇a, and the amplitude is βSRM = ∆τ/aσ,

equivalently to the response to a harmonic perturbation of shear stress. We show in Ader

et al. (2013) that similarly to the findings of Kaneko and Lapusta (2008) and to the harmonic

response, the β-value necessary in order to fit the cumulative number of events produced

by the finite fault in response to the step of shear stress is much larger than βSRM and is

thus hard to interpret in terms of the fault constitutive parameters.

In the SRM, the characteristic time ta and the characteristic period Ta are related by

the simple equation:

Ta = 2πta. (11)

Assuming that this expression still remains valid in the context of a real fault, we

compute ta for the aftershock sequence following the ML = 6.1 earthquake in western



29

Nepal on November 27, 2001, which is the largest aftershock sequence recorded there with

more than 900 ML ≥ 2 aftershocks. Figure 16 shows the location in map view of this

aftershock sequence, and the temporal fit of equation (10) to the cumulative number of

events in the sequence yields ta ≈ 0.24 ± 0.05 years. The complete PDF of ta in plotted

in the lower right part of Figure 16. Using equation (11), this value of ta corresponds to

Ta = 1.5 ± 0.32 years, in fairly good agreement with the 1 year value estimated from the

response of the MHT to seasonal variations of stress.

We proposed an analytical expression for the critical time Ta in Ader et al. (2013):

Ta = 2πκ
a

F (a, b)
Dc

Vpl
, (12)

where the function F (a, b) of the fault parameters a and b refers to different models esti-

mating the critical nucleation size, and can be F (a, b) = a − b (Ruina, 1983), F (a, b) = b

(Dieterich, 1992), or F (a, b) = b when a/b < 0.37 and F (a, b) = π/2 × (b − a)2/b when

a/b > 0.5 (Rubin and Ampuero, 2005). The parameter κ is of the order of a few units and

represents the distance over which the deformation is accumulated at the onset of nucleation

compared to the critical nucleation size (Ader et al., 2013).

Unfortunately, equation (12) cannot lead to uncorrelated estimates of fault constitutive

parameters, as it involves unknown parameters a, b, Dc and the function F (a, b). However,

even though the exact values of parameters a and b are still unknown, an order of magnitude

of Dc can already be drawn from equation (12) by noting that both κ and a/F (a, b) are

most likely of the order of a few units, so that the factor 2πκa/F (a, b) ∼ 102. Taking from

the previous analysis Ta ∼ 1 year and using the geodetically inferred convergence rate across

the Nepal Himalaya of Vpl ≈ 20 mm/yr, one can approximately say that Dc should be of

the order of 0.1 mm. This estimate remains loosely constrained: additional analyses of the

response of a finite fault to a stress perturbation still have to be undertaken in order to also

take advantage of the information potentially contained in the amplitude and the phase of

the response to eventually refine our knowledge of the constitutive fault parameters on the

MHT from the Nepalese seismicity.

It should also be noted that these estimates implicitly assume fairly homogeneous fault

properties, i.e., that the different faults on which earthquakes are produced have similar

properties. A temporary seismic network, deployed from July to December 1995 above the

midcrustal cluster of seismicity, showed that the microseismicity is localized in a volume,

which approximately 10 kilometers thick and mainly localized within the overriding plate,
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around the down-dip end of the locked part of the MHT (Cattin and Avouac, 2000). The

majority of these events are therefore produced on secondary faults around the MHT rather

than on the MHT per se, and the study of the response of the midcrustal seismicity to

stress perturbations yields averaged fault properties on these secondary faults. Extending

these faults properties to the MHT therefore requires the hypothesis that the properties

of these secondary faults are comparable to the fault properties of the MHT. Besides, it

is noteworthy that the study suggests that the correlation of the timing of seismic events

to perturbing stresses is due to the response of the growth of the nucleation zone to stress

perturbations, and is not related to the event size, which only depends on the pre-stresses

on the fault. According to these results, all events produced by the MHT should display a

similar response to stress perturbations on the fault, regardless of their magnitude.

As has been described in the present introduction, the following four chapters present

the four publications I wrote during my PhD. Chapter 1 uses geodetic observations of the

deformation in Nepal to address the issue of the coupling pattern on the MHT and the

convergence rate across the Nepal Himalaya, and assess some of the implications for seismic

hazard in the Himalaya. The content of chapter 1 has been published in the Journal

of Geophysical Research (Ader et al., 2012a). The following chapter contains a paper

submitted to Earth and Planetary Science Letters in January 2013 still under review, which

examines the existence and amplitudes of periodicities in the seismicity rate in the Nepal

Himalaya by developing a spectrum based on the Schuster test (Ader and Avouac, 2013).

Chapter 3 focuses on the response of a rate-strengthening fault to harmonic shear stress

perturbations through a publication in Geophysical Research Letters (Ader et al., 2012b),

which uses simple spring and slider systems with rate-strengthening rheology. Finally,

chapter 4 presents the simulations on a finite 2D fault containing a rate-weakening patch

using the BICYCLE algorithm to study the response of a rate-weakening fault to shear

stress perturbations, together with results and conclusions.
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2Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, 24 rue Lhomond, 75004

Paris, France.

3Key Laboratory of Continental Collision and Tibetan Plateau Uplift, Institute of Ti-

betan Plateau Research, Chinese Academy of Sciences, Beijing, People Republic of China.
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Abstract

We document geodetic strain across the Nepal Himalaya using GPS times series from 30

stations in Nepal and southern Tibet, in addition to previously published campaign GPS

points and leveling data and determine the pattern of interseismic coupling on the Main

Himalayan Thrust fault (MHT). The noise on the daily GPS positions is modeled as a com-

bination of white and colored noise, in order to infer secular velocities at the stations with

consistent uncertainties. We then locate the pole of rotation of the Indian plate in the ITRF

2005 reference frame at longitude = −1.34◦±3.31◦, latitude = 51.4◦±0.3◦ with an angular

velocity of Ω = 0.5029 ± 0.0072◦/Myr. The pattern of coupling on the MHT is computed

on a fault dipping 10◦ to the north and whose strike approximately follows the arcuate

shape of the Himalaya. The model indicates that the MHT is locked from the surface to

a distance of approximately 100 km down dip, corresponding to a depth of 15 to 20 km.

In map view, the transition zone between the locked portion of the MHT and the portion

which is creeping at the long term slip rate seems to be at the most a few tens of kilometers

wide and coincides with the belt of midcrustal microseismicity underneath the Himalaya.

According to a previous study based on thermokinematic modeling of thermochronological

and thermobarometric data, this transition seems to happen in a zone where the temper-

ature reaches 350◦C. The convergence between India and South Tibet proceeds at a rate

of 17.8 ± 0.5 mm/yr in central and eastern Nepal and 20.5 ± 1 mm/yr in western Nepal.

The moment deficit due to locking of the MHT in the interseismic period accrues at a rate

of 6.6 ± 0.4 × 1019 Nm/yr on the MHT underneath Nepal. For comparison, the moment

released by the seismicity over the past 500 years, including 14 MW≥ 7 earthquakes with

moment magnitudes up to 8.5, amounts to only 0.9× 1019 Nm/yr, indicating a large deficit

of seismic slip over that period or very infrequent large slow slip events. No large slow

slip event has been observed however over the 20 years covered by geodetic measurements

in the Nepal Himalaya. We discuss the magnitude and return period of M>8 earthquakes

required to balance the long term slip budget on the MHT.
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1.1 Introduction

Most of the convergence rate across the Himalaya of central Nepal has been shown to be

absorbed by slip along a major basal thrust fault, the Main Himalayan Thrust fault (MHT),

which emerges at the surface along the front of the Himalayan foothills (e.g., review by

Avouac, 2003). It is therefore a good first approximation to assume that the Himalaya

overthrusts the Indian crust with little internal deformation. A corollary is that large

earthquakes which are known to recur along the Himalayan front (Ambraseys and Douglas,

2004; Bilham, 2004) must be associated with ruptures of the MHT. The largest Himalayan

earthquake which has occurred in the instrumental period in the Himalaya is the 1950 Assam

earthquake, which reached a moment magnitude estimated to MW ∼ 8.5 (Ambraseys and

Douglas, 2004; Chen and Molnar , 1977). Paleoseismological investigations suggest that

even larger earthquakes may have happened in the past (Lavé et al., 2005; Kumar et al.,

2006, 2010). Some studies have also suggested some out of sequence thrusting, with possible

reactivation of thrust faults in the Main Central Thrust (MCT) zone (e.g., Hodges et al.,

2004; Seeber and Gornitz , 1983).

In this context the pattern of geodetic strain measured across the Nepal Himalaya over

the last 20 years, during which no large earthquake has happened (the largest earthquake

during this period has a moment magnitude of 5.6), may be used to determine the pattern

of locking of the fault in the interseismic period and estimate the return period of large

earthquakes required to release the elastic strain which builds up in the interseismic period.

This pattern is quantitatively characterized by the ‘interseismic coupling ratio’, defined as

the ratio of the deficit of slip rate in the interseismic period divided by the long term slip

rate.

The approach used here is commonly used to study subduction zones. It has been shown

that in the subduction context the pattern of locking is generally very heterogeneous and

shows a correlation with the rupture areas of large interplate eartquakes (Chlieh et al.,

2008; Moreno et al., 2010; Suwa et al., 2006; Ozawa et al., 2011; Loveless and Meade, 2010;

Freymueller et al., 2000; Wallace et al., 2004).

Modeling of interseismic strain may reveal creeping patches that could act as barriers to

the propagation of large earthquakes, as well as locked asperities, which might hence help

determine the possible extent of future seismic ruptures (Bürgmann et al., 2005; Kaneko

et al., 2010). Hereafter, we introduce the seismotectonic setting of the Nepal Himalaya in

section 1.2 and we describe in section 1.3 the processing applied to the geodetic data used in
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this study, as well as the computation of the pole of rotation of the Indian Plate in the ITRF

2005 reference frame. The supplementary material details the processing from raw GPS data

to estimates of secular velocities at each station with coherent uncertainties. The coupling

pattern on the MHT inferred from geodetic data is presented in section 1.4, and then used

in section 1.5 to evaluate the seismic hazard in Nepal. The supplementary material contains

details on the inversion of the geodetic data, such as resolution and smoothing method, as

well as a discussion on the modeling of the extension of the Tibetan plateau. It also derives

a couple additional estimates of the recurrence time of large earthquakes.

1.2 Seismotectonic Setting

Most of the crustal deformation in the Himalaya occurs on the Main Himalayan Thrust

fault (MHT) (e.g., Cattin and Avouac, 2000; Lavé and Avouac, 2000), where the Indian

lithosphere underthrusts beneath the chain (Zhao et al., 1993). The MHT absorbs about

20 mm/yr of the India-Eurasia convergence (Bilham et al., 1997), which accounts for about

half of the total convergence rate between the Indian and Eurasian plate (Bettinelli et al.,

2006). The MHT reaches the surface at the Main Frontal Thrust fault (MFT) (Nakata,

1989), where the secular slip rate has been estimated from the study of uplift of Holocene

terraces to be 21.5 ± 1.5 mm/yr in central Nepal (Lavé and Avouac, 2000) and 19 ± 6

mm/yr in western Nepal (Mugnier et al., 2003). Previous geodetic studies (Bilham et al.,

1997; Jouanne et al., 1999, 2004; Larson et al., 1999; Bettinelli et al., 2006) indicate that the

MHT is actually locked at the surface and roots about 100 km to the north of the MFT into a

subhorizontal shear zone of probably thermally enhanced ductile flow (Cattin and Avouac,

2000). A fraction of geodetic interseismic strain could be due to anelastic deformation

(Bilham et al., 1997; Meade, 2010). This fraction is probably small given that the slip rate

on the MFT matches the shortening rate across the range, and is therefore neglected in this

study. The locked portion of the fault elastically absorbs the 20 mm/yr of shortening across

the Nepal Himalaya during the interseismic period, and releases this deformation during

large (MW > 8) earthquakes (Molnar , 1987; Bilham et al., 1995; Avouac et al., 2001). The

observation of meter-scale displacements on some regions of the MFT indicates that during

those large earthquakes, the locked portion of the fault sometimes ruptures all the way to

the surface (Nakata, 1989; Lavé et al., 2005). This description of the seismic cycle in the

Himalaya is supported by the observation of a belt of microseismicity at the creeping-locked

transition (Pandey et al., 1995, 1999), which underlies a zone of greater stress accumulation
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Figure 1.1: Seismotectonic setting of the Himalaya. Arrows show Indian plate motion
relative to Eurasia computed using the rotation poles of Eurasian plate in ITRF 2005 from
Altamimi (2009), and Indian plate in ITRF 2005 from this study. Focal mechanisms show
thrust events (rake = 90◦ ± 45◦) from the CMT catalog between 1976 and 2011. White
ellipses show locations of historical earthquakes according to Ambraseys and Douglas (2004).
Ellipses sizes are scaled with the earthquakes magnitudes, and might not represent reliably
the area ruptured during these earthquakes. Active faults (in red) map modified from
Styron et al. (2011).

rate (Cattin and Avouac, 2000; Bollinger et al., 2004). An accurate knowledge of the

coupling pattern of the MHT is thus a paramount element to investigate the distribution

of the seismicity in time, space and magnitude, relating it to the accumulation of moment

deficit on the MHT.

Previous geodetic studies using GPS campaign and leveling measurements (Jouanne

et al., 2004; Bollinger et al., 2004) as well as data from a few continuous GPS stations

(Bettinelli et al., 2006) assumed a fault locked from the surface to a certain depth and found

a satisfying fit to the data with a fault dipping about 10◦ to the north and a downdip end

of the locked part of the fault about 100 km along dip from its surface trace. The dataset

was insufficient to resolve details of the interseismic coupling pattern, including possible
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along-strike variations. Here we take adavantage of an improved geodetic dataset which

we combine with previous geodetic measurements to better resolve the pattern of coupling

on the MHT and investigate the relationship between geodetic strain and seismicity in the

Himalaya.

1.3 Data used to determine the coupling pattern on the MHT

and the convergence rate

1.3.1 Continuous GPS stations

We use data from a network of continuous GPS stations currently consisting of 24 sta-

tions, spanning the Nepalese territory (supplementary Figure S1). In addition, a station

in Sarangkot (SRGK) has been in operation from March 2005 to February 2007, providing

one additional velocity point (see supplementary table S2 for velocities and coordinates of

the stations as well as their dates of operation), bringing up the total number of continuous

GPS velocities available in Nepal to 25. The station SIMR in Simara was in operation

from November 1997 until April 2005, but was eventually replaced by the nearby station

SIM4. The stations BRNG and MSTG respectively in Biratnagar and Lo-Mantang (Upper

Mustang) are now destroyed and have been replaced by the 2 stations BRN2 and MST2 in

2009. We also used data from 5 continuous GPS stations in southern Tibet, provided by

the Institute of Tibetan Plateau Research, Chinese Academy of Science.

Raw dual frequency code and phase observations are translated to RINEX files. Observa-

tions were taken at 30 second intervals, or downsampled to that rate if the sampling rate was

higher (15 seconds) and then processed with the GAMIT/GLOBK software package (Her-

ring et al., 2009). Daily network solutions include neighboring IGS sites (Table S1). The

daily regional solutions are combined with solutions for five global IGS networks (SOPAC)

to yield daily station coordinates for all sites in the ITRF2005 realization (Altamimi , 2009).

Previous studies have shown that the dominant sources of signal in the GPS time series

are the interseismic secular rate of loading and seasonal variations due to surface load vari-

ations induced by the Monsoon regime (Bettinelli et al., 2006, 2008). However a number

of artificial steps can also appear in the time series, mostly due to maintenance opera-

tions, small local earthquakes or equipment malfunction. The GPS position time series are

therefore modeled as follows:
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x(t) = p1 + p2t+
4∑

i=1

(
p2i+1 cos 2π

t

T/i
+ p2i+2 sin 2π

t

T/i

)
+

S∑

i=1

p10+i1t>tsi , (1.1)

where T = 1 year, S is the total number of steps known to be in the time series, tsi is the

time at which each step occurs and the linear parameters pi are defined as

• a constant offset (parameter p1),

• the secular velocity (parameter p2),

• annual variations, modeled by sine waves of periods of 1, 1/2, 1/3 and 1/4 years

(parameters p3 to p10),

• steps in the time series (for s steps, parameters p11 to p10+s).

The function 1t>tsi is defined as follows:

1t>τi =





0 if t < tsi

1 if t ≥ tsi
. (1.2)

The linear parameters pi are estimated through a standard least-squares inversion.

The nominal uncertainties on the daily positions do not account for all sort of additional

sources of signal not taken into account in this decomposition (steps too small to be detected

for example). Also the daily estimates are temporaly correlated and it is therefore incorrect

to assume a purely white noise model (Zhang et al., 1997; Langbein and Johnson, 1997;

Williams, 2003a). For these reasons we have determined a noise model and the related

covariance matrix following the approach of Williams (2003a) and Williams et al. (2004).

Details are given in Supplements.

1.3.2 GPS campaign measurements

Several GPS campaigns have been conducted, starting in 1991 with the CIRES network,

that covers Nepal from the Higher Himalaya to the Himalayan foreland (Bilham et al., 1997).

Then, starting in 1995, the LDG campaign focused on points at the longitude of Katmandu

while the IDYLHIM program, including some of the CIRES points and adding new ones,

was designed to study the Himalaya of central and western Nepal (Jouanne et al., 2004).

We also used recently published GPS campaign measurement from the Garhwal-Kumaon

Himalaya (India) close to the far western border of Nepal (Ponraj et al., 2011).
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1.3.3 Determination of the Euler pole of the Indian plate in the ITRF2005

reference frame

In order to invert the geodetic data for the pattern of coupling on the MHT, we first need to

express the GPS velocities with respect to the Indian plate reference frame. In this section,

we compute the coordinates and angular velocity of the Indian plate’s Euler pole in the

ITRF 2005 reference frame that we will use to put our data in the Indian reference frame.

We use the secular velocities computed following the method described in the previous

section of 4 stations from southern Nepal (DNGD, NPGJ, SIMR/SIM4, BRNG), the IGS

station IISC, the two stations HYDE and MALD as well as the DORIS station COLA in

Columbo. We also use the velocities at 12 Indian stations published by Banerjee et al.

(2008). The time series at those stations being not available we could not estimate the

uncertainties at those stations using the approach described in this study, used at the other

continuous sites. The uncertainties on the velocities obtained with the Maximum Likelihood

Estimation (MLE) algorithm used in this study (see supplements for details) might differ

from the uncertainties provided by Banerjee et al. (2008). However, we observe that at the

3 common stations HYDE, MALD and IISC, the velocities match within their uncertainties,

which are 1 to 1.5 times larger in the estimates of Banerjee et al. (2008). The Indian plate

is regarded as a rigid plate, in first order agreement with the conclusion of Banerjee et al.

(2008) who inferred a 2 ± 1mm/yr north-south shortening across the Indian subcontinent

(i.e., strain rate less than 10−14s−1). The observed GPS velocities are thus entirely modeled

by the rotation of a rigid plate. Adding data from southern Nepal insures us to be in the

northern India reference frame in case of a slight north-south shortening of the Indian plate.

This best fit model is plotted on Figure 1.2 and corresponds to the following Euler pole

describing the rigid Indian plate motion in the ITRF05 reference frame:





longitude = −1.34◦ ± 3.31◦

latitude = 51.4◦ ± 0.3◦

Ω = 0.5029± 0.0072◦/Myr

. (1.3)

Those parameters are in good agreement with previously published GPS-based models

of the Indian plates motion (Socquet , 2003; Bettinelli et al., 2006; Banerjee et al., 2008), as

is shown in Figure 1.2(c).
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Figure 1.2: Pole of rotation of the rigid Indian plate in the ITRF 2005 reference frame. (a)
Fit to the GPS velocities assuming a rigid Indian plate, (b) residuals of the fit, (c) Positions
of Euler poles describing the rotation of the Indian Plate in the ITRF 2005 reference frame
from the literature (light colors) and recomputed in this study with the original published
data (corresponding dark colors). The studies from which each Euler pole is taken are
indicated in the figure.

1.3.4 Leveling data

The most reliable vertical velocities available are the leveling data collected between 1977

and 1990 by the Survey of Nepal (DMG) along the Birganj-Katmandu-Kodari road, in cen-

tral Nepal (line of white dots on Figure 1.3(a)) (Jackson and Bilham, 1994). The GPS ver-
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tical velocities have large uncertainties (table S2). They are used in the inversion presented

below although we find that they do not add much constraint to the model (Figure 1.3(b)).

1.4 Coupling method and results

1.4.1 Inversion method

We invert the geodetic data using the backslip modeling approach (Savage, 1983): the long

term slip along the fault (related to the long term convergence between India and southern

Tibet as it is assumed that the hanging wall and footwall do not deform in the long term) is

subtracted from the interseismic geodetic displacements, and we thus solve for a backward

slip which represents interseismic locking of the MHT. Displacements at the surface are

related to fault slip at depth assuming a linear purely elastic half space (Okada, 1985).

The backslip formulation is rigorously correct only in the case of a purely planar fault

(Vergne et al., 2001). Our fault model dips straight 10◦ towards the north. It should be

noticed that for a locked fault the geometry of the modeled fault does not need to reproduce

the geometry of the real fault provided they match at the downdip end of the locked zone

(Vergne et al., 2001). Especially, the ramp on the MHT that has been reported in numerous

studies (e.g., Pandey et al., 1995) does not need to be modeled here as it falls within the

locked zone of the MHT, as will be seen later. In order to account for the arcuate shape

of the Nepal Himalaya we consider 3 segments, whose directions schematically follow the

front of the Himalaya (figures 1.3(a), 1.5(a) and 1.7). Along the MFT, the first segment

covers longitudes from 78.4◦E to 82.4◦E, the second segment goes from 82.4◦E to 86.6◦E

and the third one from 86.6◦E to 88.1◦E. The fault is then discretized into 935 rectangular

patches (17 along dip, 55 along strike) of about 20 × 15 km, for each of which the slip is

computed. This back-slip velocity is then used to estimate the interseismic coupling (ISC)

which quantifies the degree of locking of the fault:

ISC =
deficit of slip rate on the patch

long term slip rate
. (1.4)

In principle, in absence of transient slip events along the MHT, interseismic coupling should

be between 0 and 1. A coupling of 0 indicates that the patch creeps at the long term slip

rate, and a coupling of 1 indicates that the patch is locked. Negative values of the coupling

would imply that the fault could creep faster than the far field velocity, while coupling

values greater than 1 would mean that the patch is creeping backward. The coupling is
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thus constrained to be between 0 and 1 in this inversion.

The Tibetan plateau is also undergoing some east-west extension through a network of

north-south oriented grabens and east-west strike-slip faults (Armijo et al., 1986) with a

detectable geodetic signal (Chen et al., 2004; Styron et al., 2011). Here we model this exten-

sion by letting the far field velocity vary both in norm and azimuth in eastern and western

Nepal. The separation between the east and the west is chosen so that it coincides with the

Thakkola graben in the Himalaya (dashed line on Figure 1.3(a)), which is the only graben

that extends into the Himalaya. On top of the east-west separation, we model the cumu-

lative contribution of the other grabens by a linear extension along the N98.2E direction

applied to all stations north of the northern border of Nepal (those being the only stations

displaying an obvious deviation), justified by the observation by Styron et al. (2011) that

the arc-parallel extension is uniformly distributed throughout the Nepal Himalaya. This

direction has been selected because it minimizes the projection of the velocity correction

due to the extension onto the far field velocity in southern Tibet. Adding both effects (the

graben and the linear extension in southern Tibet) reduced the variance of the fit by an

amount that has a probability of 80% to be significant, according to the F-test (Press et al.,

1992). As will be specified later, the model used for the arc-parallel extension actually has

little impact on the quantities estimated in this study.

Assuming an elastic medium, the surface displacements at the stations are related to

the slip distribution on the fault through the linear equation:

d = Gm, (1.5)

where d is the data vector made of the surface displacements at the measurement points, G

is the Green’s functions matrix computed using the semi-analytical formulation published

by Okada (1985), and m is the vector of parameters we are looking for (strike and dip

slip on the 935 15 × 20 km rectangular sub-patches used to mesh the fault, the long term

convergence rates across western and eastern Nepal Himalaya and the linear extension rate

of southern Tibet). The displacements on the fault are determined from a standard least-

squares inversion.

Owing to the sparsity of geodetic data, the problem is underdetermined. In order to

regularize the problem, we apply a Laplacian smoothing to the slip on the fault, weighting it

according to the resolution on each patch (see supplementary section S.3 for more details).

This adds two Laplace equations per patch (one for slip in the dip direction, and one for
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slip in the strike direction), which, together with the geodetic data to fit, make the problem

overdetermined. The east-west extension of the Tibetan plateau causes the velocities on

the plateau to vary from east to west but also to deviate from being purely dip-slip. If no

additional constraint is imposed, this divergence is compensated by a strike-slip component

at the downdip end of the fault, which is an artifact that we are not interested in modeling

in this study. To counter this effect, we require the solution to minimize the coupling at

downdip end of the fault.

Summarizing those constraints into an equation, the slip on the fault (vector m) is

obtained by minimizing the quantity:

χ2(m) =‖ Cd
−1/2(Gm− d) ‖2 +λ ‖ Λm ‖2 +µ ‖ Idm ‖2, (1.6)

where Cd is the data covariance matrix, Λ is the Laplacian matrix and Id is the ma-

trix which, when multiplied by m returns the components of m corresponding to the slip at

depth, λ and µ measure the weights attributed to each constraint. The parameter µ is man-

ually adjusted (µ = 0.01) to prevent any significant strike-slip component at the downdip

end of the fault without affecting the slip on the rest of the fault, while the parameter λ is

chosen to minimise χ2, which leads to λ = 0.85 (Figure 1.8(a)). The values of the slip m

are then divided by the corresponding value of the long term slip rate to obtain interseismic

coupling.

The uncertainties have been multiplied by 5 at stations that displayed an abnormal

behavior, that would require additional “parameters” not included in our model to be

explained. This is the case for instance of NPGJ that has a northward motion of about 3.5

mm/yr, whereas it sits about 20 km south of the MFT, and should hence have almost no

northward motion.
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Figure 1.3: Fit to the geodetic data. (a) Comparison between observed and predicted hor-
izontal velocities. Interseismic coupling is shown as shades of red on the fault. The GPS
data with corresponding error bars are plotted respectively as green and black arrows for
the continuous and campaign GPS measurements. Blue arrows show predicted velocities
according to the plotted pattern of interseismic coupling. Dashed line approximately trend-
ing north-south indicates the east-west separation, on each side of which the secular velocity
can be different. Red arrows represent the east and west long term convergence rate across
the Himalaya. Black dashed lines with numbers represent contour lines of fault depth (in
km). (b) Fit to the continuous GPS vertical velocities (map) and to the spirit leveling data
(inset). White dots show location of the leveling line. The inset shows the fit to leveling
data.

1.4.2 Results of the inversion

The pattern of interseismic coupling and the convergence rates across the Himalaya, east

and west of the Thakkola graben, determined from the inversion of the GPS velocities and

leveling line are plotted in Figure 1.3. The reduced chi squares of the fit to the different

data sets are given in Table 1.1. These values show that there is no need to renormalize the

uncertainties as all reduced chi-squares are of the order of unity.

Data set reduced χ2

continuous GPS 1.92
campaign GPS 2.94

leveling 1.69
total 2.29

Table 1.1: Values of the reduced χ2 of the fit to the different data sets.

The overall reduced chi-square value obtained for this best fitting model is 2.29 suggest-

ing that some small fraction of the signal might not be adequately explained by the model.

However, the residuals plotted on Figure 1.4 show no systematic misfits, indicating that

no significant signal has been left out by the model. The somewhat large residuals at the

north-westernmost station might be due to the effect of the Karakoram fault.

The resolution at each of the fault’s patches is plotted in Figure 1.5(a) (see supplemen-

tary material section S.3 for details on how resolution is determined). The resolution is

expressed here in terms of the characteristic size of smallest inhomegeneities of coupling

which could in principle be resolved given the spatial distribution and the uncertainties of

the measurements. For clarity, we saturated Figure 1.5(a) at a resolution of 80km, since

one can assume that above such a value there is simply no resolution on the corresponding
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Figure 1.4: Residuals of the fit to the geodetic data. The GPS residuals with corresponding
error bars are plotted as red arrows for the campaign measurements and as green arrows
for continuous GPS. The dashed line represents the position of the Thakkola graben.

patch and that the slip on this patch is entirely determined by the slip on the neighboring

patches. Those patches with no resolution are shaded in grey in Figure 1.5. The resolution

on the fault can be as good as 20 km close to the MFT (i.e., at shallow depth) and gradu-

ally increases to about 60 km at greater depth along the MHT. On the edges, there is no

resolution, indicating that there would be no point extending the fault along strike.

A striking result of this inversion is that the fault seems to be fully locked from where

it emerges at the surface along the Himalayan foothills to beneath the front of the high

range about 100 km to the north. At the resolution afforded by this inversion, no zone

of creep appears close to the surface. Especially, interseismic coupling appears to be very

homogeneous along strike. The subtle along strike inhomogeneities of the coupling pattern

probably mostly reflect inhomogeneities of the resolution. It is noteworthy that the width

of the transition zone at the downdip end of the locked fault zone is typically of the order

of the nominal resolution size. It is sharpest in the area where the resolution is enhanced

by the leveling data. There, the transition from a fully locked fault to a fault creeping at

the long term slip rate occurs within 20 km according to our coupling model (red line on

Figure 1.6) but it could in reality be even sharper. Elsewhere the transition is always wider

(light red shaded curve on Figure 1.6), probably because of the more limited resolution of
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Figure 1.5: (a) Resolution on each of the patches of the fault, given in km. See text
and supplements for details on the computation of the resolution. Locations of the data
points used to compute the resolution are indicated in the figure and legend. (b) Map of
the coupling on the MHT on which patches with no resolution (resolution > 80 km) are
masked.
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the inversion. A thorough reader will notice slight decreases of coupling at the junctions

between the planes used to model the fault. Those are a pure artifact of the model, and

moving the location of those junctions also moves the slight decrease of coupling.

The convergence rate across the Himalaya is estimated to 17.8 ± 0.5 mm/yr east of

the Thakkola graben and 20.5 ± 1 mm/yr west of it and the annual moment deficit to

6.6±0.4×1019 Nm/yr, assuming a shear modulus of 30 GPa. Those uncertainties are given

at the 1-σ confidence level, as is the case for all uncertainties reported throughout this

paper. One should also keep in mind that they are computed using the 1-σ uncertainties

on geodetic data but that they do not include error on the model itself, other than being

rescaled in order to have a final χ2 of the fit equal to 1. As a result, those uncertainties are

slightly underestimated.

The extension rate across the Thakkola graben is estimated to 3.1 ± 2.6 mm/yr. Else-

where, we get a distributed extension rate of the southern Tibetan plateau of 9.3 ± 2.1

mm.yr−1.10−3km−1 (or nstrain.yr−1). This adds up to a total extension rate of the south-

ern Tibetan plateau north of Nepal of 12.4 ± 4.7 nstrain.yr−1, consistent with, although

somewhat lower than the ∼ 35 nstrain.yr−1 estimated by Styron et al. (2011). This exten-

sion is accommodated by north-south grabens and east-west strike-slip faults in southern

Tibet. One must keep in mind that those rates highly depend on the assumed direction

of extension, which was chosen in order to interfere as little as possible with our results

of coupling on the MHT and consequently these rates should be regarded with caution.

The coupling pattern on the MHT and the important quantities estimated in this study

(convergence velocity and moment deficit accumulation rate) are not much affected by the

model used for the extension of the Tibetan plateau. Not adding the linear extension and

letting the strike slip component on the MHT being as large as needed results in long term

velocities of 18.1± 0.5 mm/yr east of the Thakkola graben and 20.8± 1 mm/yr west of it,

and in an annual moment deficit of 6.7± 0.4× 1019 Nm/yr. Those values are less than 2%

different from the ones derived with the model of linear arc parallel extension in southern

Tibet. Figure S5 shows that the direction selected for the arc-parallel extension does not

have an significant impact either.



49

1.5 Implications

1.5.1 Convergence rate across the Himalaya

The estimates of the geodetic convergence rate across the Himalaya obtained in this study,

17.8± 0.5 mm/yr and 20.5± 1 mm/yr east and west of the Thakkola graben respectively,

are better constrained than but consistent with previous estimates, e.g., 19 ± 2.5mm/yr

in central and eastern Nepal according to Bettinelli et al. (2006) or 16 mm/yr in eastern

Nepal according to Banerjee et al. (2008). Those rates are also close to the 21.5 ± 1.5

mm/yr of rate determined by Lavé and Avouac (2000) from deformed Holocene terraces.

This observation indicates that decadal geodetic interseismic deformation of the upper crust

is essentially elastic and entirely released over the longer term by localized slip along the

MHT, without any significant shortening of the hanging wall. Especially, over the past

decade, no deformation within the MCT zone is required to explain the data.

We also observe that the convergence is nearly perpendicular to the strike of the range

front and parallel to the azimuth of slip vectors on thrust faults along the Himalayan arc

as well as to the stretching lineation observed in the Lesser Himalaya (Bollinger et al.,

2004). This observation still holds if we do not resort to the linear arc-parallel extension

of the Tibetan plateau and let the strike slip on the fault be as large as needed to fit the

geodetic data. The direction of convergence across the range must have been remarkably

stationary at the 10-15 Ma time scale of the development of the Lesser Himalayan duplex

system (Bollinger et al., 2004).

1.5.2 Temperature control on the downdip end of the Locked Fault Zone

Along-strike variations of geodetic strain across the Nepal Himalaya are thus small and are

accounted for by relatively minor variations of the location of the downdip end of the locked

fault zone (Figure 1.5). Figure 1.6 shows along-dip variations of interseismic coupling along

the MHT at the location of the Kathmandu basin where the resolution is best, as well as

the coupling calculated on the rest of the fault. The seismicity rate is also indicated on

this figure as a bar plot and appears to peak in the zone where the coupling values drop.

Given the cylindrical geometry of Himalayan structure, this observation makes it difficult

to identify what factor primarily controls the downdip extent of the locked fault zone.

Laboratory experiments on quartzo-feldspathic rocks show frictional sliding transitions from

rate-weakening, favoring unstable slip sliding, to rate-strengthening, favoring stable creep,

at a temperature around 350◦C (Blanpied et al., 1995; Marone, 1998). This has been
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Figure 1.6: Upper plot: elevation profile. The black line represents the mean elevation,
while the shaded grey area represents the whole elevation swath. Lower plot: Comparison
between the coupling, temperature and seismicity rate along the dip direction. The red
line with error bars corresponds to the coupling underneath the leveling line, where the
resolution is the best. The shaded red curve in the background is a stack of the coupling on
the whole fault, the darker red shaded area representing the 1-σ scatter of coupling, and the
lighter red shaded area showing the whole scatter of coupling with respect to the distance
to the MFT. The blue histogram shows the seismicity rate, normalized to a maximum
value of 1. The green curve shows the temperature variation along a MHT dipping 10◦,
determined by Herman et al. (2010), corresponding to the duplex formation model. The
thin dashed green line indicates the critical temperature of 350◦C, above which frictional
sliding is generally thought to be dominantly rate-strengthening, promoting stable sliding,
according to lab experiments on quartzo-feldspathic rocks (Blanpied et al., 1995; Marone,
1998).

advocated as an explanation for the seismicity cut-off generally observed at a depth of
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around 15km within continents. This explanation would hold well for the Himalaya as

well as shown by the comparison of interseismic coupling with the thermal structure of

the Himalaya of central Nepal, which is well constrained by thermokinematic modeling

of thermochronological, thermometric and barometric data (Herman et al., 2010). Here

we use the best fitting thermal model which was determined from the inversion of the

thermochronological thermobarometric data available for central Nepal. This model takes

into account the accretion process that has resulted from the development of the Lesser

Himalaya duplex over the last ∼ 10 − 15Ma. Interseismic coupling is indeed observed to

drop abruptly at the location where temperature increases from about 300◦C to about

500◦C according to the duplex model.

1.5.3 Relationship between geodetic strain and background seismicity

Previous studies had noticed that background seismicity along the Himalayan arc is clus-

tered along a relatively narrow zone which follows the front of the high Himalaya (Pandey

et al., 1995, 1999) and which also approximately coincides with the downdip end of the

locked fault zone (Cattin and Avouac, 2000; Bollinger et al., 2004). This correlation sug-

gests that seismicity is triggered by quasistatic stress build up in the interseismic period at

the tip of the creeping zone (Cattin and Avouac, 2000; Bollinger et al., 2004) . This inter-

pretation is confirmed by our study: Figure 1.7 shows interseismic stress accumulation on

the MHT derived from the interseismic coupling pattern together with the distribution of

seismicity relocated with the double difference technique (Waldhauser and Ellsworth, 2000).

The stress represented here corresponds to that on a planar fault where each patch would

have a purely dip slip motion at a rate of 20×(1-ISC) mm/yr, assuming a shear modulus

of 30 GPa and a Poisson ratio of 0.25. Such a rough approximation is justified by the fact

that the stress rate estimation is limited anyways by the resolution of the inversion.

Clearly most of the microseismicity falls in the area of maximum Coulomb stress increase

in the interseismic period. Only the along dip variations of stress rate should be regarded

as a valuable information: along strike inhomogeneities in the stress pattern computed

are here mostly due to inhomogeneities of the resolution, as discussed earlier. The stress

accumulation rate is maximum underneath the leveling line because the locked-creeping

transition is resolved with more accuracy there. Since this transition seems always sharper

than what the resolution offers, the values of the stress accumulated plotted on Figure 1.7

should be seen as lower boundaries of the real values.

In fact, the seismicity does not occur on the MHT per se but rather within a 5-10
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Figure 1.7: Mapview of the midcrustal microseismicity from 1996 to 2008 superposed to the
map of the shear stress accumulation rate on the MHT, deduced from the coupling pattern.
The thick red line represents the 3500m elevation contour line above which the seismicity
seems to drop.

Time span Moment released Fraction of moment
Catalog (yrs) seismically (Nm/yr) accumulated1 (%)
Historic2 ∼ 500 1.8× 1019 27.3
Historic3 ∼ 500 0.9× 1019 13.6

CMT 35 2.9× 1018 4.4
CMT micro4 35 3.4× 1017 0.5

NSC5 6 1.2× 1017 0.2

Table 1.2: Moment released during earthquakes annually according to different seismicity
catalogs. This moment released is compared to the rate of moment deficit of 6.6 × 1019

Nm/yr inferred in this study.

kilometer size volume around the downdip end of the locked fault zone. The moment

released by the background seismicity amounts to 1.2 × 1017 Nm/yr which represents less

than 0.2% of the deficit of moment accumulating due to interseismic locking of the MHT

(table 1.2). This quantity was estimated by converting local magnitudes reported in the

catalogue of the National Seismological Centre (NSC) in Nepal from 1995 to 2001, a period

of homogeneous completeness over the whole network, into moment magnitudes and by

summing the scalar moments. To do so, the local magnitudes (MNSC
L ) reported in the
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NSC catalogue were converted into moment magnitudes (MNSC
W ) from a subset of events

reported also in the CMT calatogue (NSC, personal communication) yiedling:

MNSC
W = 0.84MNSC

L + 0.21. (1.7)

So background seismicity does not contribute much to releasing interseismic stress build up

but it does reflect areas of most rapid stress increase.

Interseismic stress build up is probably not the only factor controlling the distribution

of background seismicity as the seismicity is observed to shut off underneath the higher

Himalaya, where the elevation gets higher than 3500m (Figure 1.7) (Avouac, 2003; Bollinger

et al., 2004). This correlation can be simply interpreted as the effect of the topography on

the stress field: where the elevation is higher than 3500m the principal stress becomes

vertical. As a result, optimally oriented faults correspond to normal fault planes whose

rupture is actually inhibited by interseismic stress buildup (Bollinger et al., 2004).

1.5.4 Moment deficit accumulation rate, return period and magnitude of

the largest plausible earthquake

Given the pattern of interseismic coupling and the long term slip rate on the MHT derived

from this study, locking of the MHT has resulted in the accumulation of a deficit of moment

of about Ṁ0 = 6.6±0.4×1019 Nm/yr (assuming a shear modulus of 30 GPa) over the last 20

years covered by the dataset analyzed in this study. This value is quite robust with respect

to the parameters of the inversion, for instance the Laplacian smoothing (Figure 1.8(a)) or

the direction selected for the extension of the Tibetan plateau (Figure S5).

Over the longer run, this deficit of moment has to be compensated by transient slip

events along the MHT: this must presumably be the result of large Himalayan earthquakes

and associated afterslip. The rate of accumulation of moment deficit can therefore be used

to estimate the return period of large earthquakes.

The return period estimate is related to a number of additional parameters that are

not necessarily available, and some assumptions hence have to be made. First, we assume

that the rate of moment deficit accumulation can be extrapolated over the whole duration

of the interseismic period. This assumption is justified by the lack of evidence for any

significant temporal change over the period analyzed here (i.e., 13 years for the stations

GUMB and DAMA, see the time series at DAMA on supplementary Figure S3), and for

the insignificant difference between eastern Nepal, which last produced a large (MW ∼ 8.1,
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Ambraseys and Douglas (2004)) earthquake in 1934, and western Nepal where no large

earthquake has occurred since 1505. Moreover, both the convergence velocities in eastern

and western Nepal approximately match the geological slip rate across the MFT proposed

by Lavé and Avouac (2000) within uncertainties. Since that geological slip rate encompasses

several earthquake cycles, it represents the average convergence velocity over time, and is

therefore the value to use when evaluating the moment deficit. Whether this value varies

with time and today matches its mean value or is constant with time actually does not

matter for our estimate of the moment deficit, as long as we use a value close enough to the

average convergence rate, which is the case here. Time variations of the coupling pattern on

the MHT also seem like a dubious eventuality, since such variations would have no reason to

be uniform in space and would thus most likely engender lateral variations on the snapshot

of coupling pattern that we observe today. As was mentioned earlier, such lateral variations

do not show up in the present study. It is hence hard to imagine time variations of the

coupling pattern large enough to modify the moment deficit accumulation rate by more

than a few percents.

We also assume that a fraction α of the moment deficit is released by seismic slip through

a distribution of earthquakes following a Gutenberg-Richter law (Gutenberg and Richter ,

1954) up to a maximum magnitude corresponding to a moment Mmax, above which the

seismicity rate drops to zero. The remaining fraction, 1 − α, is assumed to be released

elastically by transient aseismic slip event (slow slip events, hereafter SSEs) or afterslip

following large earthquakes. As was mentioned earlier, anelastic deformation of the crust is

ruled out by the observation that the geological slip rate on the MFT is comparable to the

shortening rate across the Himalayan range.

The oldest GPS stations in Nepal have now been recording daily positions for almost

13 years and no SSE has been identified in the time series (see for instance the time series

of the station DAMA in supplementary Figure S3(b)). Known SSEs usually have return

periods of less than a few years (e.g., review by Schwartz and Rokosky , 2007). This might

be an artifact of the short observation time span of SSEs, which could not be detected

until a couple decades ago owing to the lack of adequate instruments, so nothing rigorously

bans a scenario of large unfrequent SSEs in Nepal releasing a major portion of the moment

deficit. However, in absence of direct evidence for SSEs over the 20 years period covered

by geodetic data, we assume in the following that SSE do not contribute significantly to

the release of interseismic strain. This is a strong hypothesis that should be kept in mind

hereafter. Afterslip generally tapers off within a year following the mainshock and can
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typically release around 25% of co-seismic slip as has been observed for intracontinental

earthquakes (Hsu et al., 2009b; Perfettini and Avouac, 2007) and a number of subduction

zone earthquakes (Melbourne et al., 2002; Hsu and Bürgmann, 2006; Chlieh et al., 2008;

Perfettini et al., 2010). A few exceptions should be mentioned though. The afterslip of the

Sanriku-Haruka-Oki earthquake (a typical interplate thrust event of moment magnitude

MW = 7.6) released an energy equivalent to a MW = 7.7 earthquake (Heki et al., 1997)

(α ∼ 0.4), while the large afterslip following the 2004 MW = 6 Parkfield earthquake would

lead to a value of α as low as 0.25 (Freed , 2007). Based on relatively sparse data, it seems

that the afterslip of the 2005 Kashmir earthquake released a moment significantly large in

proportion of the co-seismic moment, corresponding to an α value ranging between 0.6 and

0.7 (Jouanne et al., 2011). So a reasonable range of values for α is probably between 0.5

and 0.9, with a more probable value around 0.8.

Under those assumptions the recurrence time of earthquakes of momentM is (Molnar ,

1979)

T (M) =
1

1− 2b/3
Mmax

αṀ0

( M
Mmax

)2b/3

, (1.8)

where the b-value of the Gutenberg-Richter distribution is usually close to 1. For b = 1,

which is approximately the case for the crustal seismicity in Nepal (Figure 1.8(b)) the return

period of the largest possible earthquakes on the MHT becomes

Tb=1(Mmax) =
3Mmax

αṀ0

. (1.9)

Figure 1.8(b) displays a comparative Gutenberg-Richter plot of the different seismicity

catalogs available in Nepal and equation (1.9) for α = 1, and Mmax = 8, 9 and 10. Three

catalogs are represented on this plot. The first one is the microseismicity monitored between

1995 and 2001 by the National Seismological Centre (NSC) in Nepal. 1995-2001 corresponds

to the period where the seismic network was functioning well enough to have a homogeneous

magnitude completeness on the whole Nepalese territory.

The second catalog is the CMT catalog, that covers the last 35 years, and for which we

have selected earthquakes with a dip-slip focal mechanism (rake = 90◦±45◦) corresponding

in map view to the midcrustal cluster. Here we have considered the whole Himalayan arc,

over its full length extent (almost 3000 km), and rescaled to the territory of Nepal which

extends over about a third of the full length of the Himalayan arc. One should keep in

mind that this catalog is largely dominated by the 2005 MW 7.6 Kashmir earthquake and

its aftershocks (45 out of the 69 events of the whole catalog). Finally the historic catalog
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of the seismicity in Nepal, using the different catalogs available: The NSC catalog (1995-
2001), the CMT catalog (1976 - 2010) and an historic catalog compiled using the catalog
from Ambraseys and Douglas (2004). We used the last 500 years of the historic catalog for
MW > 8 earthquakes, and the last 200 years for MW > 7.5 earthquakes. The dotted lines
are the distribution that the seismicity should follow if 100% of the moment deficit was
released seismically following a Gutenberg-Richter distribution with b = 1, up to a given
maximum magnitude of 8, 9 and 10. The asterisk line shows, for a given maximum possible
magnitude for Himalayan earthquakes, the return period of such earthquakes.

has been compiled using the catalog from Ambraseys and Douglas (2004), accounting for all

earthquakes over the whole Himalayan arc, considering again that Nepal covers one third of

the chain. The only MW ≥ 8.5 earthquake of this catalog in the past 500 years is the 1950
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Assam earthquake. Over the same period of time, it has 3 MW ≥ 8 earthquakes (1505,

1934, 1950), and in the past 200 years, 6 MW ≥ 7.5 earthquakes.

Above their magnitude of completeness, the earthquakes catalogs are fairly consistent

with b = 1. However, they fall noticeably below the 3 dotted lines corresponding to equa-

tion (1.9), meaning that they do not account for all the moment deficit that accumulates in

the interseismic period. Clearly the known historical and instrumental seismicity falls well

short of balancing interseismic strain buildup. If we assume that earthquakes in Nepal never

exceed a moment magnitude of 8.5, and that every large earthquake is documented within

the catalogs, seismicity over the last 500 years would account for less than 20% of slip deficit

due to locking of the MHT in the interseismic period (table 1.2). The contribution is even

less if we assume a lower possible magnitude (say MW = 8). This mismatch, is too large

to be due to the contribution of afterslip. If we now assume that the largest earthquakes

on the MHT could reach a magnitude higher than the MW ∼ 8.5 magnitude estimated for

the 1950 Assam event, the mismatch is reduced. We note that the historic seismicity also

seems to line up in favor of the occurrence of very large (MW > 9) earthquakes in Nepal.

Such earthquakes would have a very long return period: a maximum magnitude Mmax
W = 9.2

would have a return period of the order of 3000 years if all the moment deficit was released

seismically (see supplementary Figure S6(a)). In the absence of a clear segmentation of

interseismic stress build up along the Nepal Himalaya, we cannot exclude the possibility

of such a large event. As a comparison, it is interesting to note that western Nepal has

not apparently ruptured since the 1505 earthquake (Ambraseys and Douglas, 2004). If the

moment deficit accumulation has proceeded at a constant rate since then, a release now of

this moment deficit between the 1934 Bihar earthquake and the western border of Nepal

(i.e., about 500 km of fault length) could generate up to a MW 8.9 earthquake.

Conclusion

The denser network of geodetic data in Nepal brings better kinematic constraints on the

convergence of India underneath the Tibetan plateau. The MHT appears to be nearly fully

locked from the surface to beneath the front of the high Himalaya, over a width of about

100km. Interseismic coupling decreases abruptly, within a transition zone probably narrower

than 30km. This transition occurs at a depth of about 15-20 km, where the temperature

on the MHT is estimated to reach 350◦C. This might reflect that stable aseismic sliding is

promoted where the temperature exceeds 350◦C as inferred from laboratory experiments
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and observations in other continental contexts (Blanpied et al., 1995; Marone, 1998; Hsu

et al., 2009b). This favors the scenario of a primary control by temperature of the locked-

creeping transition, similar to the conclusions drawn by Hsu et al. (2009b) on the Chelungpu

fault in Taiwan and by Brooks et al. (2011) on the Mandeyapecua thrust fault in the central

Andean backarc. The microseismicity on the MHT seems to cluster where the shear stress

accumulation is the greatest, and drops under topography greater than 3500m of elevation,

i.e., where the principal Coulomb stresses become vertical. The apparent segmentation

of the microseismicity then comes off as a result of the competition between the relative

positions of the 3500m contour line and of the locked-creeping transition, where the stress

rate is the greatest. The lack of any apparent lateral variation of coupling is an interesting

result, since it differs from observations at subduction zones, whose patterns of coupling

exhibit noticeable segmentations ((Chlieh et al., 2008; Moreno et al., 2010; Suwa et al.,

2006; Ozawa et al., 2011; Loveless and Meade, 2010; Freymueller et al., 2000; Wallace

et al., 2004). This might point to a fundamental difference between intracontinental and

subduction megathrust. In any case, the rate of accumulation of moment deficit on the

MHT within Nepal is large (6.6 ± 0.4 × 1019 Nm/yr), and comparison with the historical

seismicity suggests that infrequent (with return period larger than 1000yr) events with

magnitude larger than the MW ∼ 8 value assigned to the largest known earthquakes of

1934 and 1505 should be taken into consideration, as inferences based on paleoseismological

investigations have also suggested (Lavé et al., 2005). However, one should keep in mind

that those seismic hazard assessment rely on a few hypothesis (no significant release of

moment by afterslip or slow slip events) that could alter our conclusions if proven inexact.
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Coupling on the MHT - Supplementary material

S.1 Map of the GPS network

Figure S1: Map indicating the names and position of the continuous GPS stations used in
this study to determine the pattern of coupling on the MHT.

S.2 Derivation of secular velocities from the GPS time series

S.2.1 Noise model for the inversion

Several studies of GPS time series have established that the daily estimates of GPS positions

are temporally correlated (Langbein and Johnson, 1997; Zhang et al., 1997; Mao et al., 1999;

Williams, 2003a; Williams et al., 2004). Assuming a purely white noise model is therefore

incorrect and although it doesn’t a↵ect much the value of the final parameters inverted for,

it results in a dramatic underestimation of their uncertainties. We thus add to the white

noise in our GPS time series a component of colored noise, i.e. a noise that has a power
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spectrum of the form:

P(f) / f, (S1)

where f is the temporal frequency, and  is called the spectral index (Mandelbrot and

Van Ness, 1968). The spectral index is estimated for each time series by first fitting equa-

tion (1.1) (see main paper) to the time series assuming a white noise, and computing a

periodogram of the fit’s residuals. The spectral index is then estimated by fitting to the

power spectrum a combination of white and colored noise (figure S2):

P (f) = P0 + Pcf
, (S2)

where P0 and Pc are the respective amplitudes of the white and the colored noise.

Once the spectral index is estimated, we build the covariance matrix of the data as the

sum of white and colored noise covariance matrices. The relative amplitudes of both noises

are estimated by a Maximum Likelihood Estimation (MLE) method (Williams et al., 2004).

The covariance matrix for the white noise is the usual diagonal covariance matrix

Cw = diag(�2
1,�

2
2, . . . ,�

2
n),

where �i is the standard deviation of data point number i. The colored noise covariance

matrix C is built following an adaptation of the method described in Williams (2003a):

C = �tsTTT , (S3)

where �ts is the sampling interval (so �ts = 1 day for GPS time series), and the matrix T

is defined as:

T =

0
BBBBBBBBB@

 0 0 0 . . . 0

 1  0 0 . . . 0

 2  1  0 . . . 0
...

...
...

. . .
...

 n�1  n�2  n�3 . . .  0

1
CCCCCCCCCA

, (S4)
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Figure S2: Power spectra of the noise (blue curve) for a sample of time series and fit
assuming a combination of white noise and colored noise (red curve). The spectral index 
of the colored noise is indicated on each plot.

where the quantities  n are defined by the recurrence formula:

8
><
>:
 0 = 1

 n+1 = n�/2
n+1  n

.

The rows and columns corresponding to times with no data are then removed from the

covariance matrix.
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The final data covariance matrix is given by

CD = a2Cw + b2C, . (S5)

where a and b are the parameters to be estimated by MLE, measuring respectively the

amplitude of white and colored noise. Assuming a Gaussian distribution of the uncertainties

on GPS positions, the likelihood that has to be maximized with respect to a and b is then

likelihood(CD) =
1

(2⇡)N/2(detCD)1/2
e�

1
2
rT CD

�1r, (S6)

where r is vector of residuals of the fit and N is the number of daily GPS positions available.

The fit and residuals on some time series are shown on figure S3.

S.2.2 Uncertainties due to unmodeled steps in the time series

Steps in the time series can be of many di↵erent origins, being actually tectonic, environ-

mental or coming from equipment malfunction, human error, etc. (Williams, 2003b). The

ones large enough to be detected are included in the model (equation (1.1)), but smaller

ones remain unnoticed and a↵ect the estimates of model parameters and their uncertain-

ties. Therefore, those uncertainties have to be adjusted accordingly. For convenience, we

will assume that those unmodeled steps account for all the errors on the model.

Those steps are assumed to happen at a frequency ⌫, and to have a random Gaussian

amplitude N
�
0,�2

x

�
. The standard deviation on the secular velocity due to those steps is

then (Williams, 2003b)

�v =
�x
p
⌫p

T
, (S7)

where T is the length of the time series.

In the case of our GPS time series, the amplitude of the steps that were actually detected

was always greater than 1.5 time the median value of the uncertainties on the daily positions

in the time series. We hence take �x = h�Di, where h.i denotes the median value and �D is

the uncertainty on daily positions of the time series.

We estimate ⌫ through the following considerations. First, the steps that were large

enough to be detected in the time series happened on average once every 5 years. Assuming

that the smaller the steps are, the more frequent they would be, the value for ⌫ should be
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Figure S3: Fits and residuals of the continuous GPS time series at some stations. For each
time series, the upper plot shows the raw data (blue curve) and the fit (green curve) with
equation (1.1). The value of the reduced chi square �2

r of each fit is indicated on the upper
plot’s lower right corner of the corresponding figure.

greater than 1/5. On the other hand, a value of ⌫ overestimated (⌫ > 1 in this case) results

in larger uncertainties on the secular velocity, and eventually leads to values of a reduced

chi square smaller than 1 when one fits the Euler pole of the Indian plate in the ITRF 2005

reference frame (see section 1.3.3), indicating that the uncertainties on the GPS velocities
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are probably overestimated. As a result, we chose a value of ⌫ = 1/3, which gives the final

formula for the uncertainties on the secular velocity due to unmodeled steps:

�v =
h�Dip

3T
. (S8)

The velocities and corresponding uncertainties that we obtain at the GPS stations used

in this paper as well as at the DORIS stations COLA and EVEB are given in table S2.

S.3 Slip resolution and Laplacian

The result of our inversion should be assessed in view of its resolution. This information is

contained in the resolution matrix:

R =
�
GTCd

�1G + ⇤T⇤
��1

GTCd
�1G, (S9)

where G is the Green’s matrix defined in equation (1.5) from the main paper, Cd is the

data covariance matrix and ⇤ is the Laplacian matrix. The diagonal of R tells how well

the slip value on each patch can be retrieved by the inversion. However, it doesn’t express

how each patch correlates with its neighbors. This information is contained in each of the

individual columns of R: column number i is the vector of parameters (i.e. the slip on

each patch) returned by the inversion from an input dataset corresponding to a unit slip on

patch i and no slip on other patches. Usually, what the inversion returns is slip on a more

Station ID Site name Latitude (�N) Longitude (�E) Elevation (m)

BAN2 Bangalore 13.03431 77.51161 832
DGAR Diego Garcia -7.26968 72.37024 -65
GUAO Guao 43.47111 87.17731 2029
GUAM Guam Observatory 13.58933 144.86836 202
HYDE Hyderabad 17.41726 78.55087 442
IISC Indian Inst. Science 13.02117 77.57038 844

KUNM Kunming 25.02954 102.79712 1986
LHAS Lhasa 29.65734 91.10399 3625
LHAZ Lhasa2 29.67533 91.10403 3625
POL2 Poligan IVTAN 2 42.67977 74.69427 1714
SELE Selezaschita 43.17873 77.01690 1342
TAIW Taipei 25.02133 121.53654 44
URUM Urumqi 43.80795 87.60067 859
WUHN Wuhan 30.53165 114.35726 26

Table S1: List of IGS sites included in the daily regional processing.
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Velocities in ITRF05 (mm/yr) Time of operation
Station lon (�E) lat (�N) Ve Vn Vu Init. End
DAMA 85.1077 27.6081 36.73± 0.45 34.21± 0.33 1.46± 1.37 Nov 1997 current
GUMB 85.8775 27.9098 35.88± 0.44 28.2± 0.34 5.7± 1.19 Nov 1997 current
SIMR 84.9844 27.1646 37.05± 1.03 34.82± 0.58 2.68± 2.72 Nov 1997 Apr. 2005
BRNG 87.2813 26.4387 37.7± 2.83 36.15± 3.49 �2.2± 3.55 Mar 2004 May 2009
BRN2 87.272 26.5197 38.46± 1.34 33.61± 1.82 8.13± 5.48 May 2009 current
CHLM 85.3154 28.2054 36.65± 0.48 27.55± 0.35 4.36± 1.2 Mar 2004 current
JMSM 83.7467 28.8044 34.33± 0.54 26.28± 0.39 3.28± 1.36 Ma. 2004 current
KKN4 85.2788 27.8008 36.12± 0.45 32.27± 0.4 1.13± 1.23 Jan 2004 current
KLDN 83.6119 27.7669 35.66± 0.43 34.64± 0.36 1.69± 1.17 Apr 2004 current
MSTG 83.8946 29.1789 34.68± 1.3 24.19± 1.05 5.79± 3.7 Apr 2004 Sept 2004a

MST2 83.953 29.1778 31.64± 1.59 23.73± 1.13 1.81± 4.09 Oct 2009 current
ODRE 87.3921 26.8662 38.71± 0.52 35.44± 0.37 �3.02± 1.5 Mar 2004 current
SIM4 84.99 27.17 37.13± 0.63 35.32± 0.5 �1.4± 1.8 Mar 2004 current
SRGK 83.9358 28.2603 35.62± 1.03 30.65± 0.9 4.52± 3.01 Mar 2005 Feb 2007
TPLJ 87.71 27.35 37.98± 0.55 31.24± 0.32 1.25± 1.03 Mar 2004 current
BMCL 81.7144 28.6558 34.51± 0.93 33.5± 0.47 0.47± 2.29 Mar 2007 current
DLPA 82.8204 28.9853 34.85± 0.63 25± 0.51 1.23± 1.68 May 2007 current
GRHI 82.4914 27.9509 35.09± 0.62 32.27± 0.54 3.97± 1.64 May 2007 current
JMLA 82.1923 29.2742 32.04± 0.76 26.14± 0.45 2.1± 1.6 May 2007 current
NPGJ 81.5953 28.1172 35.22± 0.67 39.04± 0.74 �0.16± 1.63 May 2007 current
BYNA 81.2007 29.4742 31.5± 1.38 26± 0.74 1.69± 2.39 May 2008 current
DNGD 80.5818 28.7545 35.29± 0.67 30.14± 0.85 �0.48± 1.8 May 2008 current
DRCL 80.5009 29.7338 31.41± 0.72 29.78± 1.2 2.64± 2.34 Mar 2008 current
GNTW 80.6262 29.1765 33.57± 0.67 33.68± 0.63 0.72± 3.15 Apr 2008 current
RMJT 86.55 27.3051 35.08± 1.62 32.58± 1.48 �1.04± 4.36 Oct 2008 current
RMTE 86.5971 26.991 35.86± 0.78 33.49± 0.69 1.44± 2.02 Sep 2008 current
SMKT 81.8065 29.9694 29.82± 0.71 21.84± 0.52 3.73± 1.83 May 2008 current
SYBC 86.7125 27.8142 35.55± 1.18 25.93± 0.96 7.14± 2.88 Oct 2008 current
CUOM 86.9039 30.4451 40.52± 0.59 20.38± 0.52 0.3± 2.05 Oct 2006 current
JRGR 85.0568 30.7286 36.11± 0.59 20.39± 0.5 3.03± 1.57 Mar 2007 current
XGBA 81.9259 32.0469 29.19± 1.55 18.25± 1.43 1.47± 4.25 Mar 2007 Sep 2007b

YARE 84.0431 29.5344 35.56± 0.68 24.14± 0.53 3.56± 1.86 Oct 2006 current
ZHXZ 86.9396 28.3569 37.86± 0.54 24.36± 0.45 1.87± 1.88 Oct 2006 current
MALD 73.526 4.189 43.35± 0.65 34.9± 0.49 �5.1± 1.93 Jul 1999 May 2006
HYDE 78.551 17.417 39.24± 0.49 35.24± 0.36 0.48± 1.18 Sept 2002 current
IISC 77.5704 13.0212 41.74± 0.47 35.06± 0.35 �0.05± 1.26 Oct 1997 current

COLA 79.8741 6.892 44.54± 4.8 35.33± 2.99 0.44± 3.78 Jan 1993 Sep 2004
EVEB 86.8131 27.9581 37.08± 4.4 25.32± 3.17 2.06± 3.64 May 1993 current

Table S2: Estimates of the secular velocity at the continuous GPS stations in ITRF
2005 and dates of operation of each station. The uncertainties on the velocities
indicated are the 1-� uncertainties. See text for details on the derivation of those
quantities. Gaps in the time series are not unfrequent, and one should keep in
mind that they are not indicated in this table.

aA 2-day campaign measurement has also been done with a di↵erent antenna on the station’s
monument in October 2009.

b4 additional points in May 2009 made the positions at this station exploitable.
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or less spread area centered on patch i. The characteristic size of this area is estimated by

fitting a bell curve to the slip on the patches as a function of distance to patch i (Lohman,

2004), and taking the standard deviation of that bell curve. Namely, for each patch i, we

find the distance wi that minimizes the quantity:

�2
i =

NpX

j=1

0
@
����
Rji

Rii

����� e
�

d2
ij

2w2
i

1
A

2

, (S10)

where Np is the number of patches on the fault, Rji is the value of the coe�cient (j, i) of

the resolution matrix R (row j and column i), and dij is the distance between patches i

and j.

This idea of an estimate of the resolution scale on each patch is also used in order to more

e�ciently smooth our model by weighting the Laplacian according to the resolution on each

patch. Since the Laplacian matrix is not yet available (this is what we try to determine),

we compute a first resolution matrix using the Moore-Penrose pseudoinverse matrix (Aster

et al., 2005), keeping only the singular values larger than 10% of the maximum one. We

then compute how far each patch correlates with its neighbors with the method previously

described applied to this resolution matrix. Finally, each line of the Laplacian matrix is

weighted by the decimal logarithm of the resolution size on the corresponding patch.

S.4 Supplementary figures on the pattern of coupling on the

MHT

S.4.1 Laplacian smoothing

On figure S4 we test how di↵erent values of the Laplacian smoothing a↵ect the estimate

of the moment deficit accumulated every year. Weights assigned to the Laplacian too

small (� < 0.8) lead to models featuring locked patches only underneath data points, right

next to creeping patches. Besides being unphysical and resulting in very high reduced chi

squares, such models are highly dependent on the data spatial distribution and must then be

rejected. A smoothing too large (� > 5) tends to lead to a fault locked further at depth, and

with a very smooth locked-creeping transition, which doesn’t fit the data anymore (reduced

�2 > 3 on figure S4). Within the range of Laplacian weight 0.8 < � < 5, the moment deficit
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accumulated each year remains within the uncertainties determined by the inversion.
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Figure S4: Variation of the �2 of the fit and of the moment deficit rate for di↵erent values of
the weight attributed to the Laplacian in the inversion. The black curve shows the moment
deficit accumulated every year as a function of the weight attributed to the Laplacian.
The dashed black line and grey shaded area represent the rate of moment deficit with
uncertainties derived in this study, i.e Ṁ0 = 6.6 ± 0.4 ⇥ 1019 Nm/yr. The green, red and
blue curves respectively represent the value of the �2 of the fit to the continuous GPS,
campaign and leveling data.

S.4.2 Direction of extension of the Tibetan plateau

Figure S5 shows the sensitivity of the long term velocity and the moment accumulation rate

estimated in this study to the direction chosen for the extension of the Tibetan Plateau. The

direction N98.2E has been chosen because it is the one that a↵ects the least the estimates of

the long term velocities (it is the ‘most perpendicular’ direction to those velocities, i.e. it is

the direction onto which the sum of the projections of the East and West long term velocities

reaches a minimum). But there is no real reason to prevent this direction from varying by a

few degrees from the N98.2E azimuth. Figure S5 shows that even by changing this direction

by 10�, the final values of the parameters remain within their estimated uncertainties.
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Figure S5: Impact of the azimuth selected for the extension of the Tibetan plateau on
the long term East and West velocities (upper plot) and the moment deficit rate (lower
plot). The solid thick lines represent the values of the parameters with respect the azimuth,
the horizontal dashed lines and filled area of corresponding colors are the values with 1-
� uncertainties that we retained in this study (corresponding to an azimuth of N98.2E):
Ve = 17.8± 0.5 mm/yr, Vw = 20.5± 1 mm/yr and Ṁ0 = 6.6± 0.4⇥ 1019 Nm/yr.

S.4.3 Recurrence time of large eartquakes

Assuming that the moment deficit of Ṁ0 = 6.6± 0.4⇥ 1019 Nm/yr computed in the main

paper was released through earthquakes following a Gutenberg-Richter distribution up to

a maximum magnitude, the recurrence time of those largest earthquakes (corresponding

to those largest magnitudes) is plotted on figure S6(a). The black lines (solid, dashed

and dotted) correspond to Ṁ0 = 6.6 ⇥ 1019 Nm/yr, with di↵erent percentages of this

moment deficit being released seismically, while the grey surrounding lines show the extent

corresponding to the uncertainties on Ṁ0. This plot shows that earthquakes as large as the

1950 Assam earthquake, whose moment magnitude is estimated at Mw ⇠ 8.5 (Ambraseys

and Douglas, 2004; Chen and Molnar , 1977), could happen as often as once every 270 years

within the borders of Nepal. As far as frequency is concerned, this would be the worst case

scenario where all the moment deficit accumulated was released seismically in earthquakes
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whose magnitude wouldn’t exceed 8.5. However, too many parameters remain unknown

to make any accurate estimation on the return period of major earthquakes. Should the

actual b-value of the seismicity distribution in Nepal slightly di↵er from 1, equation (1.8)

shows that those estimates would be significantly a↵ected. Another unknown parameter is

the largest possible earthquake magnitude in Nepal which has a paramount e↵ect, as shown

on figure S6(b). Indeed if the seismicity on the MHT doesn’t go beyond those Mw ⇠ 8.5

earthquakes, they would indeed have a period of return of about 270 years. But if we

assume that the MHT can produce earthquakes up to Mw ⇠ 9.2, then the return period of

Mw � 8.5 earthquakes would become of the order of 600 years.
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Figure S6: Estimations on the recurrence time of earthquakes.
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Abstract

We propose a method based on the Schuster test to search for periodicities in the timing

of earthquakes in a catalog of independent events (i.e., a ‘declustered’ catalog). Such peri-

odicities can be detected by computing a spectrum of Schuster p-values (the probability to

observe such a level of periodic variations in a catalog occurring out of a constant seismicity

rate), looking for harmonic variations of the seismicity rate at adequately chosen periods.

We show that the detection level is actually period dependent, the 95% confidence detection

level being achieved for Schuster p-values lower than 0.05 × T/t rather than simply 0.05,

where T is the period tested and t the duration of the catalog. Fortunately, this only trans-

lates into minor differences of amplitudes of seismicity rate variations for detection at the

same confidence level. The Schuster spectrum is therefore an effective method to detect pe-

riodicities. It also provides information about the eventual non-harmonicity of the periodic

signal in the catalog, or identifies an eventual imperfect declustering of the earthquake cat-

alog, making it coincidently a potential tool to assess whether a catalog has been properly

declustered. Applying this tool to the midcrudstal seismicity in Nepal, we show that inter-

mediate magnitude events (i.e., ML ≥ 5.5 from the 1995 to 2008 NSC catalog and Mb ≥ 4

from the 1965 to 2008 ISC catalog) exhibit annual variations of seismicity of amplitude of

about 30%, while no other periodicity appears. In particular, no variations of seismicity at

any of the tidal periods are observed. Seasonality of events at smaller magnitudes cannot

be established with certainty by available data, as the seasonality of aftershocks subsequent

to the seasonality of larger events may conceal or even replace it.
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2.1 Introduction

On the road towards a global understanding of earthquake mechanics, numerous studies

have added a paving stone by examining the response of seismicity to periodic stresses. The

investigation is regularly carried out under the assistance of the Schuster test as a quantita-

tive tool to either discard or reveal any existing correlation (Schuster , 1897; Heaton, 1975;

Tanaka et al., 2002a, 2006). Arthur Schuster first developed this test in 1897 (Schuster ,

1897), using the derivations of Rayleigh (1880) to build a quantitative counter-argument

to Knott (1897), who claimed that earthquakes and tides displayed a correlation in Japan.

Tanaka et al. (2002a, 2006); Cochran et al. (2004) contemporarily revisited the question with

modern catalogs, using the same test to shed light on some actual cases of tidal triggering.

The test considers the timing of events relative to the time variations of a perturbation,

and ciphers out a p-value corresponding to the probability that the distribution of those

relative times results from a uniform random process. It thereby provides a good measure-

ment of the null hypothesis that events from a catalog do not correlate with a given periodic

perturbation, and is therefore appropriate to investigate the correlation with any periodic

forcings beyond tides. For instance, Rydelek and Hass (1994) used it to identify the presence

of misidentified daily blasts in seismicity catalogs while Bettinelli et al. (2008) established

the existence of annual variations of microseismicity in Nepal with it, which they linked

to surface water load variations subsequent to the monsoon. Lockner and Beeler (1999)

and Beeler and Lockner (2003) also used the Schuster test to quantify the response of a

fault submitted to periodic load variations during lab experiments. All these studies thus

used the Schuster test to determine how much the system responded to a known applied

perturbation.

Conversely, we propose that the Schuster test may be used to identify periodicities of

the seismicity rate in an earthquake time catalog. The idea is to compute a spectrum

of Schuster p-values within a given range of periods, hereafter referred to as a Schuster

spectrum, systematically tracking down hypothetical harmonic variations of the seismicity

rate at the appropriate subset of periods.

After briefly presenting the principle of the Schuster test, section 2.3 determines the

appropriate period sampling rate to build the Schuster spectrum as well as the threshold

above which a peak in the spectrum can be regarded as significant. We then discuss the

period dependence of the detection and artifacts that can occur in the spectrum in sec-

tion 2.4, underlining the fact that the claim of periodic variations of the seismicity rate in a
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catalog requires the computation of a complete Schuster spectrum, rather than an isolated

Schuster test. Finally, computing Schuster spectra for the midcrustal seismicity in Nepal

in section 2.5, we show that annual variations of seismicity are discernible for the largest

events of the catalogs, while they cannot be unequivocally claimed for small events. These

annual variations are the only ones that come out of the spectra; in particular, no variations

at the tidal periods are apparent.

2.2 The Schuster test

The Schuster test has been described in details in different studies (Heaton, 1975; Rydelek

and Hass, 1994; Tanaka et al., 2002a, 2006) and we here only summarize its pertaining

principles in the case of harmonic variations. To compute the probability that the timing

of events in a catalog varies harmonically at a period T , a phase is associated to each event:

calling tk the time of event number k, its associated phase θk is:

θk = 2π
tk
T
. (2.1)

The catalog of times can hence be converted into a 2D walk made of successive unit length

steps, in directions given by these phases. The probability p that a distance greater than

or equal to D, the distance between the start and end points of this walk, can be reached

by a uniformly random 2D walk is the probability of the null hypothesis that event times

distribution arises from a uniform seismicity rate, and reads (e.g., Schuster , 1897):

p = e−D
2/N , (2.2)

where N is the number of events in the catalog. This probability is what we refer to as

the Schuster p-value: the lower this p-value, the higher the probability of a periodicity at

period T .

If a catalog contains N events occurring out of a harmonically varying seismicity rate:

R(tk)
r

= 1 + α cos
(

2πtk
T

)
, (2.3)

where r is the average seismicity rate, α is the amplitude of the seismicity rate variations,

tk is the time of event number k and T the period of the variations, the logarithm of the
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Schuster p-value computed at period T follows (see auxiliary material for derivation):




〈− ln p〉 =

〈
D2

N

〉
= 1 + Nα2

4 ,

var(ln p) = var
(
D2

N

)
=
(

1− α2

2

)(
1 + Nα2

2

)
.

(2.4)

The Schuster p-value is therefore independent of the period tested and only determined by

both the number N of events in the catalog and the amplitude α of the seismicity rate

variations.

2.3 Building a spectrum of Schuster p-values

The process of testing a periodicity in an earthquake catalog always boils down to the same

underpinnings: the catalog gets stacked over the investigated period, and the probability

that there exists a periodicity is subsequently estimated with whatever test is chosen (the

Schuster test, fitting a sine-wave to the stacked catalog, etc.). Therefore, beyond the single

period under investigation, the whole range of periodicities that remain coherent throughout

the stacking process get actually tested.

Figure 2.1 illustrates this point. Let’s suppose that we are searching for periodicities in

a signal of length t that has a periodicity at period T (upper plot). We define the number

of complete cycles in the catalog n(T ) = I(t/T ), where I(.) denotes the integer part of a

real number. If the signal is stacked over the period T (lower left plot), then the periodicity

is detected and the statistical test performed will quantitatively establish the existence of

this periodicity. Now, let’s imagine that instead of testing the period T , one tests a period

T + ∆T1, such that n∆T1 � T . In this case again, a periodicity appears in the stacked

signal (lower middle plot), and is due to the periodicity at period T . The test at period

T + ∆T1 is thus redundant with the one at period T since both will bring up the same

periodicity. But if the period tested T + ∆T2 is such that the condition n∆T2 � T is

not satisfied, then the periodic signal starts getting scrambled during the stacking process

(lower right plot) and no periodicity will be detected.

Based on these considerations, one can determine the appropriate period sampling in

order to be sure to test all periods within a given range: two consecutive tested periods Ti

and Ti+1 = Ti + ∆Ti have to verify n(Ti)∆Ti < Ti, or

n(Ti)∆Ti = εTi, (2.5)
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Figure 2.1: Figure showing why testing periodicities T and T + ∆T can be redundant or
not, depending on the duration of the dataset. Upper plot: harmonically varying signal
at period T over a duration t, such that nT < t < (n + 1)T . Grey dashed line shows the
signal while black dots represent hypothetical measurements. Errors have been added to
hypothetical measurements, but those are not required for the reasoning to hold. Lower
plots: from left to right, same signal stacked over different periods, respectively T , T + ∆T1

such that n∆T1 � T , and T +∆T2 such that condition n∆T2 � T is not fulfilled any more.
In this last case, the periodicity at T is scrambled by the stacking process. It is therefore
redundant to test periodicities both at T and T + ∆T1, but not at T and T + ∆T2.

where ε will be determined more precisely later. Noting that n(Ti) = I(t/Ti) ≤ t/Ti,

the condition in equation (2.5) can be replaced by the following condition for the period

increment:

∆Ti =
εT 2

i

t
. (2.6)

Noting ν = 1/T the frequency, the frequency increment is thus constant:

∆ν =
ε

t
, (2.7)

as would be the case for the set of frequencies at which a discrete Fourier transform would

have to be evaluated for a classical time series with even spacing of data, in which case

ε = 1 (e.g., Scargle, 1982; Hernandez , 1999).

Equation (2.6) shows that the period increment is smaller at short periods than at large

periods. For instance, for a t = 10 year long earthquake catalog, taking ε = 1, in order
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to detect any periodicity around the main tides period (i.e., Ttides ≈ 0.5 days), the period

increment has to be ∆Ttides ≈ 7 × 10−5 days (≈ 6 s), while testing annual variations of

seismicity only requires an increment ∆Tyear ≈ 37 days.

Computing a spectrum between periods Tmin and Tmax (i.e., between frequencies νmin =

1/Tmax and νmax = 1/Tmin) requires performing N Schuster tests, where from equa-

tion (2.7):

N =
t

ε

(
1

Tmin
− 1
Tmax

)
≈ t

εTmin
, (2.8)

since in general Tmin � Tmax.

As is suggested by equation (2.6), the subset of periods at which the spectrum will be

computed depends on the choice of ε. Choosing a value too large, the spectrum will “miss”

some periods, while values too small will yield an oversampling of periods and consequently

an unnecessarily long computation time. We thus determine εo, the optimal value of ε,

which is the largest value of ε such that all periods are tested, for a subset of periods

built according to equation (2.6). Deriving a Schuster spectrum for a collection of periods

between Tmin and Tmax with ε > εo, the N periods tested will hence be independent. As a

result, the probability that all N Schuster p-values computed in the spectrum are greater

than a given value δ is:

P = (1− δ)N . (2.9)

Since in general N � 1, for δ � 1 (otherwise P ≈ 0), equation (2.9) can be well approxi-

mated by:

P = e−δN . (2.10)

Calling δm the smallest Schuster p-value of the spectrum, the random variable X = Nδm

has thus a Poissonian probability density function (hereafter PDF):

pX(X) = e−X , (2.11)

and an expected value 〈X〉 = 1, simply reflecting the fact that for a random catalog (with

no periodicity of the seismicity rate), the Schuster p-value has a uniform PDF over [0;1].

In order to estimate the actual value of εo, we build the PDF of the random variable

Y = εX = δm

(
t

Tmin
− t

Tmax

)
(2.12)
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which has the following PDF if ε > εo:

pY (Y ) =
1
ε
e−Y/ε, (2.13)

since in this case all periods tested in the spectrum are independent. In the case ε < εo,

the periods tested are not independent any more, and the actual number of independent

periods tested becomes Nc ≤ N since some periods are redundant. The PDF of the random

variable Y thus becomes:

pY (Y ) =
1
εc
e−Y/εc , (2.14)

where εc ≥ ε is such that Nc = N(εc), following equation (2.8).

In order to estimate the optimal value εo, we build the PDF of the random variable Y

for different values of ε, by computing Schuster spectra on randomly generated catalogs,

and fit each PDF with a law following equation (2.14), fitting for the parameter εc. If the

initial choice of ε is smaller than εo, the periods tested in the spectrum are not independent,

and the best fit will thus be obtained for a value of εc greater than ε. On the other hand,

if the initial value of ε is large enough for all periods tested to be independent, the best fit

will be obtained for εc = ε. The optimal value εo is therefore the minimum value of εc such

that εc = ε.

Figure 2.2 illustrates this process. Figure 2.2a shows a plot of the PDF of Y computed

with 105 randomly generated catalogs of 104 events each, for each of which the Schus-

ter spectrum has been evaluated from Tmin/t = 10−3 to Tmax/t = 0.1 and ε = 0.1. We

derive the complete PDF of εc (inset in Figure 2.2) by computing the probability that equa-

tion (2.14) represents the PDF of Y for different values of εc. In the case of Figure 2.2a, this

leads to εc = 0.357±0.002. Technical details on this process are given in the supplementary

material, section S.2.

This operation is then repeated for different initial values of ε and the obtained values

of εc are plotted in Figure 2.2b, as a function of the initial value ε. Figure 2.2a thus

corresponds to the leftmost point on Figure 2.2b. Figure 2.2b shows that the periods tested

seem to start being independent for ε ≥ 0.8. Hereafter, we simply choose to use εo = 1.

With the value of εo in hand, and thus the PDF for the minimum Schuster p-value, it

is possible to estimate the expected threshold above which a Schuster p-value will indicate

with confidence that the seismicity rate contains a periodicity. From equation (2.11), the

expected value of the minimum Schuster probability is 〈δm〉 = 1/N ≈ εoTmin/t ≈ Tmin/t.

Since throughout the spectrum, in general T � Tmax, the expected value of the minimum
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Figure 2.2: a) PDF of random variable Y = tδm/Tmin (bar plot) and fit with equation (2.14)
for different values of εc. The PDF was simulated with 105 randomly generated 104 event
catalogs, taking ε = 0.1, and computing the Schuster spectra between Tmin/t = 10−3 and
Tmax/t = 10−1, where t is the total length of the catalog. Dashed black line corresponds
to the best fitting model (εc = 0.36), while grey lines correspond to the fit for εc = 0.3
(dash-dotted line) and εc = 0.4 (dashed line). Inset: complete PDF of εc. b) Difference
between εc (obtained from the fit to the PDF as is shown on figure a) and input value of
ε to compute the spectrum, for different initial value of ε. Error bars represent the 1-σ
uncertainties obtained from the complete PDF of εc.

Schuster probability for periods greater than T is simply:

〈δm〉 =
T

t
. (2.15)

A periodicity in the catalog will thus have a significant probability to exist if its Schuster

p-value is significantly lower than this expected value. Quantitatively, a periodicity can be
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Figure 2.3: Schuster spectrum over a uniformly random 1000 event catalog of length t,
computed between Tmin/t = 10−4 and Tmax = t. The period dependent “expected value”
dashed line represents the expected minimum Schuster p-value, and corresponds to equa-
tion (2.15), while “99% confidence level” corresponds to 1% of minimum expected values.

claimed to be detected above the 95% confidence level if the corresponding Schuster p-value

is lower than 0.05× 〈δm〉 = 0.05× T/t, rather than simply 0.05: the detection level is thus

period dependent, being better at larger periods. Figure 2.3 shows the Schuster spectrum

obtained for a 1000 event catalog of duration t, generated out of a uniform seismicity rate.

The spectrum is built between Tmin/t = 10−4 and Tmax = t. Even though the catalog does

not contain any periodicity, the Schuster test returns smaller Schuster p-values at short

periods (equation (2.15)), due to a greater density of periods tested.

As suggested by equation (2.7), a “flat” spectrum would be obtained for a linear x-axis

in frequencies. However, with such a representation, the expected value of the Schuster

p-values could not be represented by a simple straight line anymore.

A periodicity in the seismicity rate thus requires a lower Schuster p-value for the de-

tection to be considered significant a shorter periods. However, if equation (2.15) may

suggest a drastic dependence of the detection threshold on the period, combining it with

equation (2.4) leads to the following expression for the critical amplitude of seismicity rate

variations necessary for a detection at the 95% confidence level:

α95 =
2√
N

√
2 + ln

t

T
, (2.16)
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indicating that the critical amplitude of the seismicity rate variations above which a period-

icity can generally be detected is not very sensitive to the period. For a 1000 event catalog

covering 10 years, α95(T = 1 year) ≈ 14%, while α95(T = Ttides) ≈ 21%. The difference

thus remains minor, suggesting that the Schuster spectrum offers a reliable way to detect

periodicities.

2.4 Application to synthetic catalogs

Now that we have exposed how to build a Schuster spectrum and established the levels of

confidence for detection of periodicities, we apply it to three different synthetic catalogs,

in order to show that it is able to detect an unknown periodicity, and that it actually is

the only way to claim whether the catalog analyzed contains a periodicity or not. Indeed,

if a catalog occurs out of a uniform seismicity rate, or if the variations of seismicity rate

are randomly distributed with respect to the period tested, the Schuster test will return

high p-values. However, if variations of the seismicity rate remain coherent throughout the

stacking process, the Schuster p-values will be small, whether the variations of seismicity

rate are periodic at the period considered or not. In particular, periodic variations of the

seismicity rate at periods that are an integer multiple of the period considered, or a sudden

outburst of seismicity will lead to low p-values. We thus apply the Schuster spectrum to the

three following types of catalogs: one generated out of a harmonically varying seismicity

rate, one out of a periodic but non-harmonic seismicity rate, and one out of a uniform

seismicity rate superimposed with an aftershock sequence. Supplementary material section

S.3 describes in details how the catalogs have been generated.

First of all, Figure 2.4a represents the Schuster spectrum from a 1000 event catalog

generated from a harmonic seismicity rate following equation (2.3), with T/t = 0.029 and

α = 0.35. In this case, the spectrum clearly reveals the periodicity at period T/t, and no

other periodicity appears.

However, if the seismicity rate is periodic, but non harmonic, harmonics of the main

periods may appear in the spectrum. Figure 2.4b shows the spectrum for a catalog generated

out the following periodic, non-harmonic, seismicity rate:

R(tk)
r

=





1, if tk[T ]/T ∈ [0; 0.1]

α, if tk[T ]/T ∈ [0.1; 0.2]

1, if tk[T ]/T ∈ [0.2; 1]

, (2.17)
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Figure 2.4: a) Schuster spectrum for a 1000 event catalog generated out of a harmonically
varying seismicity rate following equation (2.3), with variations of amplitude α = 0.35, and
period T/t = 0.028, where t is the total duration of the catalog. b) Schuster spectrum for
a 1000 event catalog generated out of a periodic, non-harmonic seismicity rate following
equation (2.17), with variations of amplitude α = 3, and period T/t = 0.04. c) Schuster
spectrum for a 1000 event catalog containing a Dieterich (1994) type aftershock sequence,
which seismicity rate is given by equation (2.18), with characteristic aftershock decay time
ta/t = 10−2. Other parameters are given in the main text. The inset at the top left corner
of each spectrum schematically represents the seismicity rate used to generate the catalog.

where tk is the time of event number k, T is the period of the seismicity rate, tk[T ] is the

modulus of tk after division by the period T , and α > 1 a manually chosen parameter. A

schematic of this seismicity rate is shown as an inset in Figure 2.4b. The seismicity rate used

to generate the catalog analyzed in Figure 2.4b was obtained for T/t = 0.04 and α = 3.

In this case, if the periodicity at T/t = 0.04 appears clearly, one also notices harmonic

periodicities in the spectrum at T2/t = 0.02, T3/t = 0.0133 and T4/t = 0.01. It is easy to

understand how such periodicities show up in the spectrum from the way the Schuster test

works: when stacked over the period T , the seismicity rate is α = 3 times higher at times

between 0.1×T and 0.2×T . When stacked over the period T/2, it is 3 times higher every

other cycle for times between 0.2×T/2 and 0.4×T/2, and is thus on average 2 times higher

on that interval of times. When stacked over the period T/3, it is 3 times higher every 3 cycle

for times between 0.3×T/3 and 0.6×T/3, and is thus on average 1.667 times higher on that

interval of times. This reasoning can be applied to all successive harmonics, until the time

span over which the seismicity rate is higher becomes of the order of the harmonic’s period.

Those harmonics should thus be disregarded when looking for independent periodicities in

the catalog, but the smallest harmonic appearing in the spectrum provides an estimate of

the duration of the higher seismicity rate within one period.

Another configuration of catalog that might lead to a bad period detection is the case

where some events are not independent from each other and cluster in time, as is the

case for instance if the catalog contains an aftershock sequence. In this case, keeping

these aftershocks in the catalog might conceal some periodic variations in the background

seismicity rate. This is illustrated by the spectrum on Figure 2.4c: the simulated catalog

has a uniform background seismicity rate r with an aftershock sequence superimposed to
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it, and its seismicity rate is described by the following law (Dieterich, 1994):

R(tk)
r

=
1

1 + (e−Q − 1) e−(tk−tm)/taH(tk − tm)
, (2.18)

where tk is the time of event number k, the background seismicity rate r is supposed to be

identical before and after the aftershock sequence, eQ is the normalized seismicity rate right

after the mainshock, tm is the time of the mainshock and ta the characteristic duration

of the aftershock sequence. The function H(.) is the Heavyside function (H(x) = 0 for

x < 0 and H(x) = 1 for x ≥ 0). In order to make sure that the aftershock sequence

is over before the end of the catalog, we suppose that ta � t − tm. The catalog used

to generate Figure 2.4c contains a background of 1000 events and an aftershock sequence

containing 100 events, with ta = 10−2t, tm = 0.2t and Q = 10. In this case, for all periods

of the order of or larger than the characteristic duration of the aftershock cluster, the

“Schuster walk” will progress in one direction by a large distance during the aftershock

sequence, systematically resulting in artificially low Schuster p-values that might conceal

existing periodicities of the background rate. The same thing will happen for a swarm of

earthquakes in a catalog or any increase of seismicity rate over a duration less than the

period tested. This misinterpretation of clusters into periodic variations is not inherent to

the Schuster test itself, it only comes from the stacking of events times over the period

considered. Deriving the entire spectrum thus provides a mean to detect if a low Schuster

p-value might be due to clusters. Conversely, the Schuster spectrum might also be used to

assert if the catalog contains clusters, whatever their nature, in which case the spectrum

will systematically display low p-values at large periods.

These tests on synthetic catalogs show that the Schuster spectrum proves to be an

efficient tool to detect unknown periodicities in the seismicity rate of an event catalog, but

also outline the paramount benefit of the whole Schuster spectrum over a isolated Schuster

test. It provides a much more precise diagnostic on whether a catalog contains a periodicity,

or if low Schuster p-values are due to different non-uniformities of the seismicity rate.

2.5 Application to the seismicity of Nepal

The seismicity of the Nepal Himalaya has been reported to undergo seasonal variations of

its rate (Bollinger et al., 2007; Bettinelli et al., 2008), and is a good case of study to apply

the Schuster spectrum.

A large fraction of the earthquakes in Nepal cluster at the downdip end of the locked
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part of the Main Himalayan Thrust (MHT) fault (Cattin and Avouac, 2000; Bollinger

et al., 2004; Ader et al., 2012a), forming a belt of seismicity at the front of the Himalayan

chain (Pandey et al., 1995), well recorded by the National Seismological Center (NSC) in

Kathmandu, Nepal. Looking at events from this midcrustal cluster from 1995 to 2000,

Bollinger et al. (2007) reported seismicity rates 30% to 60% higher during the winter than

the summer months, which they attributed to stress variations on the MHT subsequent to

surface load variations following the hydrological cycle.
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Figure 5: Time and space distribution of the ML � 3 NSC seismicity used in this study.

Upper plot shows cumulative number of events from 1995 to the end of 2008 for raw (grey

curve) and declustered (black curve) catalogs, together with times of ML � 5.5 events

from the declustered catalog (blue stars). The map shows midcrustal events from the raw

catalog used in the study, selected according to their localization, using the same selection

contour as in Bollinger et al. (2007). Circles sizes are proportional to events magnitudes:

smallest events have ML = 3, and ML � 5.5 events are indicated by their magnitude,

giving an idea of the scale.

29

Figure 2.5: Time and space distribution of the ML ≥ 3 NSC seismicity used in this study.
Upper plot shows cumulative number of events from 1995 to the end of 2008 for raw (grey
curve) and declustered (black curve) catalogs, together with times of ML ≥ 5.5 events from
the declustered catalog (blue stars). The map shows midcrustal events from the raw catalog
used in the study, selected according to their localization, using the same selection contour
as in Bollinger et al. (2007). Circles sizes are proportional to events magnitudes: smallest
events have ML = 3, and ML ≥ 5.5 events are indicated by their magnitude, giving an idea
of the scale.
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Today, the available seismicity catalog compiled by the NSC extends until the end of

2008. This, together with the Schuster spectrum presented above, provides new material to

both reassess the significance of the reported seasonal variations of seismicity in Nepal, and

look for any other periodic variations of the seismicity rate. In parallel, we corroborate our

results by independently looking at the ISC catalog (International Seismological Centre,

2010) from 1965 to 2008. For both catalogs, we isolate events from the midcrustal cluster

using the same contour in map view as in Bollinger et al. (2007), and decluster with the

algorithm described in Reasenberg (1985), with the same set of parameters as in Bollinger

et al. (2007) (P = 0.95, 1 ≤ τ ≤ 10 days, D ≤ 20 km, Ux = 5 km and Uz = 10 km).

Figure 2.5 shows the temporal evolution of ML ≥ 3 selected events from both the raw

and the declustered NSC catalogs, together with a map showing their spatial distribution

(the map showing the position of ISC events is available in the supplementary material,

Figure S2).

Burtin et al. (2008) showed that the seismic noise at the recording seismic stations,

largely imputable to friction of pebbles at the bottom of rivers, was higher in the summer,

due to higher water stream power and discharge. In order to avoid any contamination of

our results by these seasonal variations of seismic noise, we consider only events with local

magnitude ML ≥ 3, which is above the detection level at all time (Bollinger et al., 2007).

We first derive the Schuster spectrum for the catalog used in the study by Bollinger et al.

(2007), both before and after declustering (respectively figures 2.6a and 2.6b). The Schuster

spectrum of the catalog before declustering (Figure 2.6a) displays a prominent peak at one

year, but it also contains numerous peaks at larger and smaller periods, indicating, as

has been showed in the previous section with synthetic catalogs, that the observed annual

periodicity may as well be due to clusters present in the catalog, such as aftershock sequences

or other abrupt changes of seismicity rate (Figure 2.5). There is, for instance, a global

increase of seismicity rate by a factor of more than 2 during the winter months of 1998-

1999 (see also Figure S3, supplementary material), even after declustering, which would

induce low p-values at periods larger than about a year. Once the catalog is declustered

(Figure 2.6b), most of the previous periodicities disappear from the spectrum. The annual

period returns a Schuster p-value between the 95% and 99% confidence levels, but can hardly

be claimed as a clear annual periodicity of the seismicity rate rather than the product of

clusters in the catalog, since periodicities at larger periods consistently remain. Given the

6 year total duration of the catalog, it is difficult to assert whether these periodicities are

valid or also due to clusters in the catalog, such as the one during the winter months of
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Figure 2.6: Schuster spectra built with the NSC ML ≥ 3 seismicity catalog over the same
period of time as in Bollinger et al. (2007) (i.e., from 1995 to 2001), a) before and b) after
declustering, and c) for the whole available NSC ML ≥ 3 declustered catalog (i.e., from
1995 to 2008). The vertical dashed blue lines indicate tidal, half annual and annual periods.
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1998-1999. Declustered or not, this catalog does not display any variation of the seismicity

rate at any of the tidal periods.

Extending the ML ≥ 3 NSC catalog until the end of 2008, the peak at 1 year actually

disappears from the spectrum (Figure 2.6c), while peaks at periods larger than 2.5 years

consistently remain, suggesting that clusters are most likely still present. This outlines the

main drawback of working with small magnitude events: although they come in a statis-

tically significant number, they easily violate the independence hypothesis, owing to their

sensitivity to local perturbations, which could originate from larger seismic events or other

possible forcing events (slow slip events, sub-surface hydrology, mining, etc.). Moreover, if

both large and small events follow similar periodic variations of seismicity rate, small events’

rate variations might be occulted by larger events’ aftershocks, and thereupon ironed out

during the declustering process.

Deriving the whole Schuster spectrum on these catalogs thus shows that no variations

at periods less than a year are manifest, but that no rigorous claim can be made for periods

of 1 year or more, because of clusters present in the catalogs.

A natural way to circumvent this issue is therefore to look at events of larger magnitude.

This is now possible thanks to the longer time span of the NSC declustered catalog, which

contains 16 events of ML ≥ 5.5 from 1995 to 2008 (up to ML = 6.3), only 3 of which

happen around the summer months (decimal year between 0.25 and 0.75, see blue stars on

Figure 2.5), a misbalance that only has a 2% binomial probability of happening out of a

uniform seismicity rate. On the Schuster spectrum computed for these events, the annual

periodicity appears as the only one above the 95% confidence level (Figure 2.7a), suggesting

indeed that peaks at other periods on the spectrum for ML ≥ 3 events were mostly due

to singular variations of the seismicity rate. Besides, here again, no variations at the tidal

period stand out.

The Schuster spectrum computed over the 210 Mb ≥ 4 events from the declustered ISC

catalog taken from 1965 to 2008 (Figure 2.7b) backs up these observations: the periodicity

at 1 year still emerges alone above the 95% detection level. Equation (2.4) indicates that

the Schuster p-value at 1 year corresponds to variations of the seismicity rate of α =

27%±7%, a value close to the one claimed in Bollinger et al. (2007). The Mb = 4 magnitude

selection threshold may seem low, especially in the earlier years of the catalog, but since

the completeness magnitude does not vary in a periodic way for the ISC catalog, this would

not affect the detection of periodicities. Annual variations of seismicity thus prevail for

larger events, and stand alone as the only periodic variations of the midcrustal seismicity
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Figure 2.7: Schuster spectrum computed for large events from a) the NSC and b) the
ISC declustered catalogs. For the NSC catalog, the spectrum is computed for ML ≥ 5.5
events for the entire available catalog (1995 to 2008). The spectrum for the ISC catalog is
computed for Mb ≥ 4 events from 1965 to 2008.

in Nepal. In particular, no variations are detected at any of the tidal periods.

Using equations (2.4) and (2.15) together with current seismicity rates from the NSC

catalog, Figure 2.8 shows the minimum theoretical catalog duration necessary to detect

annual variations of seismicity at the 95% confidence level for the NSC catalog at different

cutoffML. It indicates that 6 years of the declusteredML ≥ 3 NSC catalog should be enough

to detect variations of the seismicity rate of amplitude greater than 20%, and that the 14

available years of this catalog should actually enable us to detect variations of amplitude

as low as 15% (or 22% when looking at ML ≥ 3.5 events). Were the annual variations of

the seismicity rate of the ML ≥ 3 NSC events as intense as those of the Mb ≥ 4 ISC events

(i.e., 27% ± 7%), they should thus clearly come out of the spectra in Figure 2.6. However,
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Figure 2.8: Theoretical minimum duration of the NSC catalog in order to detect variations
of seismicity rate of a given amplitude α at the 95% confidence level, for different cutoff
magnitudes. This theoretical duration is solution of the equation ln p+σln p = ln(0.05×δm),
where ln p and σln p are given by equation (2.4), and δm is given in equation (2.15).

once the NSC catalog is declustered, they might appear when considering the catalog up to

2001 (6 years of data), although they cannot be told apart from the presence of clusters of

seismicity, and clearly do not show up anymore in the 1995-2008 catalog.

As has been discussed before, one possible reason is that the seasonal variations of

seismicity for small events get smoothed out during the declustering process. This would

explain in retrospect why annual variations of seismicity appear so clearly in the undeclus-

tered catalog (Figure 2.6a), although once again this is rigorously not possible to assert it

with this spectrum. Large winter events may in fact trigger surrounding faults close to fail-

ure, that would have otherwise ruptured later in the winter, thus annihilating the gradual

increase of seismicity. In other words, these small events occur all at once as aftershocks of

a larger event instead of as the result of a slow increase of seismicity.

Another possibility for this observation, is that the amplitude of the seasonal variations

might vary with time, as has been proposed for earthquakes triggered by earth tides (Tanaka

et al., 2002b). Figure 2.9 shows the evolution of the Schuster p-value at 1 year when

successively adding years to the Mb ≥ 4 declustered ISC catalog, as well as the theoretical

Schuster p-value with the 1σ standard deviation (equation (2.4)), for variations of amplitude

α = 40%, given the number of events in the catalog. Note that the value α = 27% ± 7%

specifically corresponds to the Schuster p-value considering the whole 1965-2008 period
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Figure 2.9: Evolution of the Schuster p-value by adding years to the ISC declustered catalog,
considering Mb ≥ 4 events, starting in 1965. The dashed black line indicates the detection
at the 95% confidence level. The grey lines show the expected Schuster p-value for the
ISC catalog given the number of events in the catalog, assuming annual variations of the
seismicity rate of amplitude α = 40%, using equation (2.4).

(rightmost value of the black curve in Figure 2.9), while the value α = 40% seems to better

follow the general trend of evolution of the annual Schuster p-value in Figure 2.9. In this

plot, the magnitude of the annual variations of the seismicity rate seems to decrease after

2000, but the p-value remains within one standard deviation of its expected value. This

indicates that the decrease might simply be a statistical effect: the amplitude of annual

variations of seismicity rate may globally be around 40%, but may appear to be less when

looking at a short time range. This decrease seems to also appear in the ML ≥ 3 declustered

NSC catalog (supplementary figure S4), although Figure S4 can be misleading since as has

been explained earlier, the Schuster p-value at 1 year is also affected by isolated variations

of the seismicity rate at such low magnitudes.

2.6 Conclusion

We propose a way to use the Schuster tests in order to build an entire spectrum of Schuster

p-values, testing for harmonic variations of seismicity at a properly selected set of periods.

The obtained spectrum provides an efficient tool to both detect unknown periodicities in

an earthquake catalog and assert if variations of seismicity rate in the catalog are actually

periodic or not, something that an isolated Schuster test cannot do.

Applying this Schuster spectrum to earthquakes catalogs from the midcrustal cluster
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of seismicity in Nepal suggests that intermediate events (ML ≥ 5.5 or Mb ≥ 4) exhibit

seasonal variations of seismicity, with an increase of seismicity in the winter of about 30%.

The complete spectrum shows that seasonal variations of seismicity at lower magnitudes

cannot be established with the same confidence, as aftershock sequences are more numerous

in the winter and might therefore cover an increase of background seismicity. Whatever

magnitude one examines though, no other periodic variations of seismicity rate appear in

the catalog. In particular, no periodicity at any of the tidal periods is detected.

The implementation of the spectrum is straightforward. We propose an implemen-

tation written in Matlab, which can be found on the Tectonics Observatory’s website

(http://www.tectonics.caltech.edu/resources). The code Schuster test log.m com-

putes the log p-value for a given catalog at a given array of periods, while the code

Schuster spectrum.m computes and plot the whole Schuster spectrum of a catalog be-

tween 2 given periods.
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Supplementary material

S.1 Mean and variance of the Schuster lnp value

It is possible to analytically tie together the Schuster p-value and the parameters of a

normalized seismicity rate with harmonic variations:

R(tk)
r

= 1 + α cos
(

2πtk
T

)
, (S1)

where α is the amplitude of the seismicity rate variations, tk is the time of event number k

and T the period of the variations. The Schuster test corresponds to N steps in directions

θk defined in equation (2.1), where the PDF of each of the random variable θk is, from

equation (S1)

pθ(θk) =
1

2π
(1 + α cos θk). (S2)

Calling X and Y the coordinates of the end point of the walk along the x and y axes, one

has

X =
N∑

k=1

cos θk and Y =
N∑

k=1

sin θk. (S3)

Using the PDF of θk from equation (S2), one gets

〈X〉 =
N∑

k=1

∫ 2π

0
cos θk pθ(θk) dθk =

αN

2
, (S4)

and similarly,

〈Y 〉 =
N∑

k=1

∫ 2π

0
sin θk pθ(θk) dθk = 0. (S5)

The second moments of X and Y can be computed by noting that the PDF of the
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random variables ϕkl = θk + θl (k 6= l) and ψkl = θk − θl are identical and given by

pϕ(ϕkl) = pθ(θk) ∗ pθ(θl) =
1

2π

(
1 +

α2

2
cosϕkl

)
. (S6)

After derivation, this leads to

〈X2〉 =
∫ 2π

0

(
N∑

k=1

cos θk

)2

pθ(θk) dθk =
N

2
+N(N − 1)

α2

4
. (S7)

The variance of X is then directly obtained

var(X) = σ2
X = 〈X2〉 − 〈X〉2 =

N

2

(
1− α2

2

)
. (S8)

Similarly, one gets

var(Y ) = 〈Y 2〉 = N/2. (S9)

Since we are in the configuration where N � 1, one can assume that both X and Y have

normal distributions, which means are given by equations (S4) and (S5), and variances by

equations (S8) and (S9).

From there, the expected value of the logarithm of the Schuster p-value is directly

computed

〈− ln p〉 =
〈X2〉+ 〈Y 2〉

N
= 1 +

Nα2

4
. (S10)

In the case where there actually is some periodicity in the catalog at the studied period

(α 6= 0), the condition N � 1 might lead to Nα2 � 1, and then the expected value of the

Schuster p-value simply reduces to

〈ln p〉 = −Nα2/4. (S11)

Computing the variance of ln p requires the tedious calculation of moments of order

four: 〈X4〉, 〈Y 4〉 and 〈X2Y 2〉. Instead, one can notice that for small values of α (typically

α < 0.5), var(X) ≈ var(Y ) = N/2. For α ≥ 0.5 both variances become slightly different, but

in that case, the Schuster walk mostly progresses in the x direction, and the variance of the

end position of the walk is dominated by the variance of X itself. In order to compute the

PDF of the distance D covered by the Schuster walk, one can thus assume that var(Y ) = σ2
X
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Figure S1: Comparison of simulated Schuster tests and theory for harmonic variations of
seismicity rate of peak-to-peak amplitude 2α = 2∆R/r. Upper plot: Simulation for 100
values of α linearly distributed between 0 and 1. For each value of α, 200 catalogs of 1000
events each are simulated and the Schuster p-value is computed. The mean simulated p-value
is plotted as a dashed gray line, while the mean predicted by the theory (equation (S10))
is plotted as a solid black line, and the dotted black line shows the 1-σ standard deviation
(equation (S12)) above and below the mean. Lower plot: Comparison between the simulated
and theoretical (equation (S12)) values of the standard deviation. The simulation is similar
to the one in the upper plot, except that 2000 catalogs were drawn for each value of α.

for all values of α. Under this approximation, D2 = X2 + Y 2 has a noncentral chi-squared

distribution with 2 degrees of freedom and a noncentrality parameter λ = 〈X〉2/σ2
X . The

properties of the noncentral chi-squared distribution are well known (Muirhead , 2005), and

give us the variance of ln p in the case where N � 1:

var(ln p) =
(

1− α2

2

)(
1 +

Nα2

2

)
. (S12)

Figure S1 shows that equations (S10) and (S12) represent good approximations of the
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mean and variance of the ln p-value.

S.2 Computation of the complete PDF for εc

In order to derive the complete PDF for εc, we generated Ns = 105 uniformly distributed

catalogs for each of which we computed a spectrum between Tmin/t = 10−3 and Tmax/t =

0.1, extracted the minimum p-value δm and computed the value of the random variable

Y = εNδm with equation (2.12). We then compute the probability that the set of 105

random variables {Y1, Y2, . . . , YNs} is an occurrence of the PDF in equation (2.14), for

different values of εc.

S.2.1 Method

If a set of values occurs out of a uniform PDF over [0,1], we are able to analytically derive the

PDF ps(s) of the standard deviation s of the binned values around the mean. This derivation

is given in next subsection for clarity. With that in hand, here is the approach we follow:

we first pick a value for εc, and we transform the set of values Y = {Y1, Y2, . . . , YNs} into a

set set of values Z = {Z1, Z2, . . . , ZNs}, that would have a uniform distribution over [0,1] if

equation (2.14) was the PDF for Y :

Zi =
∫ Yi

0
pY (y) dy =

∫ Yi

0
e−y/εc

dy

εc
= 1− e−Yi/εc , (S13)

We then bin the values of Z (i.e. we divide the interval [0,1] into b bins of equal size, and

count how many values of Z fall in each bin), compute the standard deviation of the number

of Z falling in each bin, and use this to compute the probability that the set of values Z

occurs out of a uniform PDF. We repeat the process for different values of εc in order to

derive the full PDF for εc.

S.2.2 Derivation of the PDF ps(s)

In order to compute the probability that Z can be described by a uniform PDF, we divide the

interval [0,1] into b bins of equal size and count the number nk of Zi that fall in bin number

k (k ∈ {1, 2, . . . , b}). The random variable nk has thus the same binomial distribution
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B(Ns, 1/b) in each bin:

pn(nk) =
(
Ns

nk

)(
1
b

)nk (
1− 1

b

)Ns−nk
. (S14)

Now, if Ns is large enough, this PDF can be approximated by a Gaussian distribution

nk ∼ N
(
Ns
b ,

Ns
b

(
1− 1

b

))
. Finally, introducing the normalized and centered number of Zi

in bin number k

Xk =
nk
Ns/b

− 1, (S15)

Xk thus follows a centered normal distribution, independent of k

px(Xk) = N
(

0,
b− 1
Ns

)
=

1
σ
√

2π
e−

x2

2σ2 , (S16)

where σ2 = b−1
Ns

.

In order to estimate the probability that a set of uniformly distributed variables has the

standard deviation of X = {X1, X2, . . . , Xb}, we use the unbiased estimator of the standard

deviation of a set of b random variables with a centered Gaussian distribution

s =
1√
b− 1

√√√√
b∑

i=1

X2
k . (S17)

We can write

1 =

∞∫

−∞

px(x1) dx1

∞∫

−∞

px(x2) dx2 . . .

∞∫

−∞

px(xb) dxb,

=
∫

Rb

px(x1)px(x2) . . . px(xb) dx1 dx2 . . . dxb,

=
∫

Rb

(
1

σ
√

2π

)b
e−

x21+x22+···+x2b
2σ2 dx1 dx2 . . . dxb.

We do the spherical change of variable r =
√
x2

1 + x2
2 + · · ·+ x2

b , so we have dx1 dx2 . . . dxb =
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Sb(r) dr, where Sb(r) is the surface of a sphere in b dimensions and is

Sb(r) = b
πb/2

Γ
(
b
2 + 1

) rb−1,

where Γ is the usual Gamma function defined by

Γ(x) =

∞∫

0

tx−1e−t dt.

So we now have

1 =

∞∫

0

(
1

σ
√

2π

)b
e−

r2

2σ2 Sb(r) dr,

=

∞∫

0

(
1

σ
√

2π

)b
e−

r2

2σ2 b
πb/2

Γ
(
b
2 + 1

) rb−1 dr,

=

∞∫

0

b

Γ
(
b
2 + 1

)
(

1
σ
√

2

)b
rb−1e−

r2

2σ2 dr.

We finally introduce the unbiased estimator of the standard deviation as our new variable

s =
r√
b− 1

, dr = ds
√
b− 1,

which finally gives us

1 =

∞∫

0

b

Γ
(
b
2 + 1

)
(

1
σ
√

2

)b√
b− 1

b−1
sb−1e−

√
b−12s2

2σ2
√
b− 1ds,

=

∞∫

0

b

Γ
(
b
2 + 1

)
(

1
σ̃
√

2

)b
sb−1e−

s2

2σ̃2 ds,=

∞∫

0

ps(s) ds,

where

σ̃ =
σ√
b− 1

=
1√
b− 1

√
b− 1
Ns

=
1√
Ns

,
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is actually independent of b.

Finally, using the property of the Gamma function Γ(x+ 1) = xΓ(x), the PDF for the

standard deviation of Xk is

ps(s) =
2

Γ
(
b
2

)
√
Ns

2

b

sb−1e−
Nss

2

2 (S18)

S.3 Generation of earthquake catalogs following a given seis-

micity rate

The spectra on figure 2.4 have been computed from earthquake catalogs randomly generated

from a specific seismicity rate R(tk), where hereafter, tk is the time of earthquake number

k. Taking the total length of the catalog to be the time unit and

N =
∫ 1

0
R(τ) dτ (S19)

the total number of events in the catalog, one can define the probability of an event to

happen at time tk:

pR(tk) =
R(tk)
N

. (S20)

In order to generate a catalog that follows the seismicity rate R, we thus generate N times

tu = {tu1 , tu2 , . . . , tuN} uniformly distributed over [0,1], and associate to each of them a time

of event tk solution of the equation

tuk =
∫ tk

0
pR(τ) dτ. (S21)

The set of times tk is thus a realization of the PDF pR.

S.3.1 Harmonic seismicity rate: figure 2.4a

In order to generate a catalog that contains N events occurring out of a harmonically

varying seismicity rate (equation (2.3) in the main paper):

R(tk)
r

= 1 + α cos
2πtk
T

, (S22)
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the events time distribution will follow the PDF

pR(tk) = 1 + α cos
2πtk
T

. (S23)

From the uniformly distributed times tu, the times of events tk are solution of equation (S21),

i.e.

tuk = tk + α
T

2π
sin

2πtk
T

, (S24)

which can be efficiently solved by a Newton-Raphton (Press et al., 1992) algorithm. Noting

θu =
2π
T




tu1

tu2
...

tuN



, and θe =

2π
T




t1

t2
...

tN



, (S25)

equation (S24) simply becomes

θu = θe + α sin θe. (S26)

Introducing the function to zero out f(θ) = θ + α sin θ − θu, starting with θ0 = θu, one has

θn+1 = θn −
f(θn)
f ′(θn)

= θn −
θn + α sin θn − θu

1 + α cos θn
, (S27)

and we take θe = θn such that ‖θn − θn−1‖ < ε, where ε � 1. In our algorithm, we took

ε = 10−5. Since the θs here are vectors, the division sign is abusive, and actually refers to a

term to term division of each vector. The first term of the series θ1 is actually very simple,

and we thus directly started the algorithm with it:

θ1 = θu −
α sin θu

1 + α cos θu
.
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S.3.2 Periodic non-harmonic seismicity rate: figure 2.4b

The spectrum in figure 2.4b has been computed from an earthquake catalog following the

PDF

pR(tk) =
1
Ω





1, if tk[T ]/T ∈ [0; 0.1]

α, if tk[T ]/T ∈ [0.1; 0.2]

1, if tk[T ]/T ∈ [0.2; 1]

, (S28)

where the normalization factor Ω = 0.9+0.1α, and tk[T ] is the modulus of tk after division by

the period T . In this case, the computation of tk from tuk is quite tedious but straightforward.

We here directly present the result:

tk = tuk +





0.1tuk [T ](α− 1), if tuk [T ]/T ∈ [0; 0.1
Ω ]

(1− 1
α)(0.1T − 0.9tuk [T ]), if tuk [T ]/T ∈ [0.1

Ω ; 0.1(1+α)
Ω ]

0.1(α− 1)(tuk [T ]− T ), if tuk [T ]/T ∈ [0.1(1+α)
Ω ; 1]

. (S29)

The catalog for which the spectrum is plotted in figure 2.4b was generated with α = 3.

S.3.3 Aftershock sequence: figure 2.4c

In order to generate an aftershock sequence, we choose a seismicity rate following the law

proposed by Dieterich (1994):

R(tk) =
r

1 +
(
e−∆τ/Aσ − 1

)
e−(tk−tm)/taH(tk − tm)

, (S30)

where r is the background seismicity rate supposed to be identical before and after the after-

shock sequence, ∆τ is the amplitude of the stress step caused by the mainshock generating

the aftershock sequence, A is a dimensionless fault parameter, σ is the normal stress on the

fault, tm is the time of the mainshock and ta the characteristic duration of the aftershock

sequence. In order to make sure that the aftershock sequence is over before the end of the

catalog, we suppose that ta � 1− tm (recall that the total duration of the catalog is t = 1).

The function H(.) is the Heavyside function (H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0).

Note that individual values of parameters ∆τ , A and σ actually don’t matter, the result
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depending only on the value of the ratio

Q = ∆τ/Aσ. (S31)

The seismicity rate from equation (S30) can be separated into a constant background

rate r and the seismicity rate of the aftershock sequence Ra(t):

R(tk) = r +
rH(tk − tm)

1
1−e−Q e

−(tk−tm)/ta − 1
= r +Ra(tk). (S32)

The number of events in the aftershock sequence being

Na =
∫ 1

0
Ra(τ) dτ ≈ rta

∆τ
Aσ

= rtaQ, (S33)

we generate the complete catalog by both generating r events uniformly distributed over

[0,1] and Na events occurring out of the PDF pRa(tk) = Ra(tk)/Na. More specifically, from

Na times tu uniformly distributed over [0,1], the times of events te = {t1, t2, . . . , tN} in the

aftershock sequence can be derived from equation (S21):

te = tm − ta ln
eQ − eQtu

eQ − 1
. (S34)
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S.4 Seismicity in Nepal
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Figure S2: Maps showing Mb ≥ 4 midcrustal events from the ISC catalog used in the study,
selected according to their position on the map, using the same selection contour as in
Bollinger et al. (2007). Circles sizes are proportional to events magnitudes: same scale for
event sizes as on the NSC map.
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Figure S3: Midcrustal seismicity rate from the NSC catalog in Nepal, from 1995 to 2008, for
events of local magnitude ML ≥ 3.5 (upper plot), and ML ≥ 4 (lower plot). The seismicity
rate has been computed using a sliding window of half a year, centered on the date at which
the seismicity rate is evaluated. A clear increase of seismicity rate appears during winter
1998-1999.
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Figure S4: Evolution of the Schuster p-value at 1 year by gradually adding years to the NSC
ML ≥ 3 declustered catalogs, starting in 1995. The dashed black line indicates detection at
the 95% confidence level.
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Abstract

Slow slip events and associated non-volcanic tremors are sensitive to oscillatory stress per-

turbations, such as those induced by tides or seismic surface waves. Slow slip events and

tremors are thought to occur near the seismic-aseismic transition regions of active faults,

where the difference a − b = ∂µ/∂ lnV between the sensitivity of friction to slip rate and

fault state, which characterizes the stability of slip, can be arbitrarily small. We investigate

the response of a velocity-strengthening fault region to oscillatory loads through analyti-

cal approximations and spring-slider simulations. We find that fault areas that are near

velocity-neutral at steady-state, i.e., ∂µ/∂ lnV ≈ 0, are highly sensitive to cyclic loads:

oscillatory stress perturbations in a certain range of periods induce large transient slip

velocities. These aseismic transients can in turn trigger tremor activity with enhanced os-

cillatory modulation. In this sensitive regime, a harmonic Coulomb stress perturbation of

amplitude ∆S causes a slip rate perturbation varying as e∆S/(a−b)σ, where σ is the effective

normal stress. This result is in agreement with observations of the relationship between

tremor rate and amplitude of stress perturbations for tremors triggered by passing seismic

waves. Our model of tremor modulation mediated by transient creep does not require ex-

tremely high pore fluid pressure and provides a framework to interpret the sensitivity and

phase of tidally modulated tremors observed in Parkfield and Shikoku in terms of spatial

variations of friction parameters and background slip rate.
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3.1 Introduction

The recent discovery of slow-slip events (SSEs) and non-volcanic tremors (NVTs) has lead to

a vast body of observational work in the past decade. SSEs and NVTs appear to coincide in

time and space (e.g., Rogers and Dragert (2003)) and have been observed in various tectonic

settings (Schwartz and Rokosky (2007); Brown et al. (2009); Shelly et al. (2011)). Rubinstein

et al. (2008), Nakata et al. (2008) and Thomas et al. (2009, 2012) reported a modulation of

NVTs intensity by tidal stresses of a few kPa or less, in the Cascadia subduction zone, in

southwest Japan and on the deep San Andreas Fault at Parkfield, respectively. Hawthorne

and Rubin (2010) inferred a modulation of the slip rate of SSEs by tidal stresses studying

borehole strainmeter data in Cascadia. Miyazawa and Brodsky (2008) found that NVTs in

western Japan were triggered by the passing surface waves radiated by the 2004 Sumatra

earthquake, and observed an exponential relationship between the amplitude of the NVTs

and the Coulomb stress perturbation in the source region.

Nakata et al. (2008) and Thomas et al. (2009, 2012) explained the correlation of NVTs

with tidal loading with the model of Dieterich (1994), therefore postulating that tidal

stresses directly triggered seismic slip on locked asperities. This interpretation required

low values of aσ, either implying a orders of magnitude lower than values inferred from

lab experiments (Blanpied et al., 1995) or extremely low effective normal stresses. They

retained the second hypothesis (Nakata et al. (2008) proposed σeff ≈ 100 kPa while Thomas

et al. (2009) found σeff ≈ 9 to 35 kPa), and justified it by a nearly lithostatic pore pressure.

However, since the nucleation size on an asperity is inversely proportional to the effective

normal stress (e.g., Rubin and Ampuero (2005)), this would imply large nucleation sizes

for seismic ruptures, in contradiction with the prevailing view that tremors are small shear

rupture events. Miyazawa and Brodsky (2008) explained the exponential relationship be-

tween tremor amplitude variations and amplitude of the incoming waves with a pre-existing

exponential distribution of failure stresses within the tremor source region.

Velocity-weakening fault patches also show enhanced sensitivity to oscillatory loads, but

only over a narrow range of patch sizes and loading periods (Perfettini and Schmittbuhl ,

2001; Lowry , 2006).

Here we present an alternative mechanism for these observed correlations, relying on

the fact that tremors usually happen at the transition between the rate-strengthening and

rate-weakening parts of a fault, thus a region where the sensitivity of steady-state friction

to velocity, a − b = ∂µ/∂ lnV , can be arbitrarily low. We first present the response of a



107

spring-slider system with rate-strengthening rheology to harmonic shear and normal stress

perturbations of different periods. We then establish an non-linear, exponential relation-

ship between the amplitudes of the slip rate and the stress perturbations for large enough

Coulomb stress perturbations.

3.2 Model hypotheses

We adopt the view proposed by Ide et al. (2007) and Shelly et al. (2011) that tremors

are generated by the rupture of small rate-weakening asperities caused by slip on the sur-

rounding plate interface. Under the assumption that the rupture is Coulombian, the NVTs

intensity is directly proportional to the slip rate on the fault.

We thus study the response of a rate-strengthening fault to a stress perturbation, mod-

eling the fault as a one-dimensional spring-slider system with stiffness k (e.g., Perfettini

et al., 2001; Parsons, 2004), loaded at constant background velocity Vss, under shear stress

perturbation ∆τ(t) = ∆τeiωt and perturbed normal stress σ(t) = σo + ∆σeiωt, where the

amplitude of the perturbation is smaller than the prevailing normal stress (∆σ < σo). Both

shear and normal stress perturbations are supposed to be in phase for the sake of simplicity.

The evolution of the friction coefficient µ is described by a rate-and-state law (e.g., Marone,

1998):

µ = µss + a ln
V

Vss

+ b ln
θVss

Dc
, (3.1)

where V is the total slip rate of the slider, θ a fault state variable, µss the steady-state

friction coefficient at slip rate Vss, Dc the characteristic slip for friction to evolve between

two steady states, and a and b are constitutive fault parameters verifying a − b > 0, such

that the system has a rate-strengthening rheology. The state variable θ evolves according

to the “aging law” (e.g., Marone, 1998):

dθ

dt
= 1− V θ

Dc
. (3.2)

3.3 Period dependent response of the system

When the amplitude of the harmonic perturbations of Coulomb stress ∆S = ∆τ − µss∆σ

is small enough (i.e., ∆S � (a− b)σ), the slip rate of the slider undergoes small harmonic

variations around its steady state value: V (t) = Vss + ∆V eiωt, where ∆V � Vss. The

resulting perturbations of slip rate ∆V can be obtained by a linearized approximation



108

(Segall , 2010):
∆V
Vss

=
iω

1 + iωta(ω)
∆S
τ̇ss

, (3.3)

where ω = 2π/T is the pulsation, τ̇ss = kVss the background stressing rate, ta(ω) =

A(ω)σ/τss, and

A(ω) = a− b

1 + iωθss

(3.4)

is a period dependent constitutive fault parameter. In the limits ωθss � 1 and ωθss � 1, A

becomes real (A = a− b and A = a, respectively) and quantifies the velocity dependence of

the friction in the steady-state regime.

Equation (3.3) is represented for two different values of ∆S in Figure 3.1 (dashed line

with triangles), such that ∆S1 < (a− b)σ and ∆S2 > (a− b)σ. Three characteristic periods

bounding different behaviors of the system appear. Tθ = 2πθss = 2πDc/Vss, where θss is

the steady-state value of the state variable, defines the characteristic time scale for the

evolution of the state variable. For perturbations with period T < Tθ, the state variable

does not have time to evolve and the rate-and-state law reduces to a purely rate-dependent

law with ∂µ/∂ lnV = a. TQ = Tθ × a/(a − b) > Tθ is the period above which the state

variable has time to fully adjust so that in the steady state, ∂µ/∂ lnV = a − b. The third

period, Ta, is the one for which |ωta(ω)| = 1 and separates between two physically different

responses of the system to the stress perturbation. For periods T > Ta, the damping due

to the friction acts on a much smaller time-scale than that of the characteristic evolution of

the spring-slider and the response of the system becomes that of a perturbed spring-slider

in steady state with no friction. In this quasi-static regime, equation (3.3) reduces to:

∆V
Vss

=
∆Ṡ
τ̇ss

. (3.5)

For T < Ta, the period of the velocity oscillations is too small for the spring stiffness to

have any significant effect, and the system evolves as a simple slider with a rate-and-state

friction law. In this regime, the amplitude of the velocity perturbation is proportional to

the amplitude of the stress perturbation:

∆V
Vss

=
∆S
Aσ

, (3.6)

where A = |A(ω)| depends on the period. In particular, when TQ < T , A ≈ (a− b) and so
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Figure 3.1: Response of a spring-slider system to small harmonic Coulomb stress perturba-
tions of different periods and amplitudes ∆S1 = 0.9 kPa (simulation 1: ∆τ1 = ∆σ1 = 3 kPa)
and ∆S2 = 15 kPa (simulation 2: ∆τ2 = ∆σ2 = 50 kPa). The system is undergoing con-
stant loading at velocity Vss = 0.02 m/yr under mean normal stress σo = 5 MPa. The
normalized spring stiffness is k/σo = 0.002 m−1. The other parameters are: µss = 0.7,
a = 0.004, b = 0.0036 and Dc = 0.2 mm. Upper panel: Amplitude of the creep rate vari-
ations. The black lines with circles represents the results of the simulations (one circle for
each period tested). The dashed grey lines with triangles represent the small perturbation
approximation (equation (3.3)) for each simulation while the dashed black lines indicate the
corresponding asymptotic behavior of the system with equations indicated on the plot. The
critical periods Tθ, TQ and Ta are also indicated on the plot. Lower panel: Phase difference
between the creep rate and the Coulomb stress variations.

the amplitude of the velocity oscillations becomes:

∆V
Vss

=
∆S

(a− b)σ , (3.7)
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which may result in large oscillations of the slip rate for small values of (a− b).
The ratio Ta/Tθ has the following expression:

(
Ta
Tθ

)2

=
1
2



√

4ã2 +
(

1−
[
ã− b̃

]2
)2

−
(

1−
[
ã− b̃

]2
)
 , (3.8)

where ã = aσ/kDc and b̃ = bσ/kDc. A graphical representation of equation (3.8) is given

in the supplementary figure S1. A response following equation (3.7) requires Ta/Tθ � 1,

which is possible only when ã− b̃� 1, in which case Ta/Tθ = ã− b̃.
In order to assess the validity of the linear approximation, we simulate the general

response of a spring-slider system to harmonic shear and normal stress perturbations of

equal amplitudes, solving the equations of motion using a Runge-Kutta algorithm with a

fifth-order adaptive step-size control (Press et al., 1992) for Coulomb stress perturbations

of amplitudes ∆S1 and ∆S2. The results are plotted on Figure 3.1 and show that in

the first case, the linear approximation is justified, while in the second case, for periods

TQ < T < Ta, the amplitude of the slip perturbation becomes non linear and greater than

what equation (3.3) predicts.

3.4 Influence of Coulomb stress amplitude

Over the range of periods TQ < T < Ta, Coulomb stress perturbations of amplitude greater

than (a − b)σ induce non linear velocity fluctuations of large amplitude. In Figure 3.1,

Ta/TQ = (a−b)/a×Ta/Tθ = 102, but can actually be several orders of magnitude larger for

a different set of parameters values. For instance, Dc = 2µm (e.g., Marone, 1998) increases

this ratio to 104. This non-linear amplification of the response can thus prevail over a range

of periods spanning several orders of magnitude.

To first approximation, the induced non linear velocity fluctuations depend exponentially

on the stress perturbation (see derivation in appendix):

∆V
Vss

≈ e
∆S

(a−b)σ . (3.9)

Equation (3.7) is simply a linear approximation of equation (3.9) when ∆S � (a − b)σ.

Figure 3.2 shows the result of a simulation with shear and normal stress perturbations of

period T/TQ = Ta/T > 1, and increasing amplitudes. This simulation shows that the

exponential approximation (equation (3.9)) provides a good description of the system’s
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behavior. This statement still holds when considering the “slip law” (e.g., Marone, 1998)

instead of the “aging law” for the evolution of the state variable (supplementary figure S2).

This simulation also predicts a correlation of the slip perturbation with the Coulomb

stress rather than with the shear stress perturbation. This point has been discussed in the

observational literature, but unfortunately the conclusions remain elusive and thus hard to

compare with our model predictions. Both Nakata et al. (2008) and Miyazawa and Brodsky

(2008) reported a correlation of the tremor with the Coulomb stress perturbations, while

Thomas et al. (2009, 2012) and Hawthorne and Rubin (2010) observed a correlation with

shear stress variations only. However, Thomas et al. (2009, 2012) found the best correlation

for an extremely small friction coefficient (µ = 0.02), while Hawthorne and Rubin (2010)

noted that if fluids did not diffuse significantly over the time scale of tides, the changes

in pore pressure could compensate the applied normal stress variations, resulting in small

effective normal stress variations. In both cases, the effective Coulomb stress and shear

stress variations were almost the same, making it impossible to ascertain whether tremors

correlated better with the one or the other.

Looking at the phase difference Φ(∆V/∆τ) between the slip rate and the stress variations

(Figure 3.2, lower plot) indicates that, at periods for which the sensitivity is the highest,

NVTs should correlate with stress perturbations rather than with perturbations of the stress

rate (Φ = 0 and not π/2). We will come back to this point in the discussion.

3.5 Discussion and Conclusions

We here propose a mechanism to explain the observed triggering of NVTs by tidal stresses

and passing seismic surface waves (Miyazawa and Brodsky , 2008; Nakata et al., 2008), as

well as the apparent tidal modulation of slow slip in Cascadia (Hawthorne and Rubin, 2010).

The idea relies on the fact that both NVTs and SSEs seem to occur right below the locked

section of faults, where the fault constitutive parameters define a nearly velocity-neutral

zone (a− b ≈ 0). We show that for a certain range of periods, a harmonic perturbation of

the Coulomb stress on such a fault can induce a large perturbation of the slip rate around its

steady-state value, of amplitude varying exponentially with the amplitude of the Coulomb

stress perturbation. Assuming that NVTs are due to the rupture of rate-weakening (a−b <
0) patches embedded in that fault region, the tremor intensity should be proportional to

the transient aseismic slip velocity. This can explain the sensitivity of NVTs to tidal and

seismic stresses without requiring unusual values for a and b nor requiring extremely low
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Figure 3.2: Non linear response of a spring-slider system to small harmonic stress per-
turbations for different amplitudes. The period T of the perturbation is such that
T/TQ = Ta/T = 2.5. The parameters are the same as in Figure 3.1, except for the fault
parameter b = 0.00385 and Dc = 0.5 mm, so that A = |A(ω)| = 1.08(a − b) ≈ (a − b).
The meaning of the different lines is given in the legend. Upper panel: Amplitude of the
creep rate variations. The exponential models derive from equation (3.9) taking either the
Coulomb stress or only the shear stress, and replacing (a − b) by the actual value of A.
The linear model corresponds to equation (3.3). The lower panel shows the phase difference
between the creep rate and the Coulomb stress variations.

effective normal stresses. This also provides an alternative explanation to the exponential

relationship between NVTs intensity and passing surface waves amplitude without resorting

to ad-hoc exponential distributions of initial stresses (Miyazawa and Brodsky , 2008).

This model predicts a correlation of NVTs with varying stresses only for a bounded range

of periods, TQ < T < Ta, which can vary in space and time yielding inhomogeneities of the

sensitivity of NVTs to stress perturbations. In Parkfield, Thomas et al. (2012) observed an

increase of sensitivity at tidal periods as a function of depth and closeness to the creeping

segment, i.e., towards regions where Vss is expected to be larger. Given that both TQ and

Ta are inversely proportional to Vss, those observations can be explained by the fact that
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as Vss decreases, TQ increases to values that might become higher than the tidal period,

thus inhibiting the correlation. Other parameters, such as Dc, a and b, might also induce

spatial variations of the sensitivity by acting on the bounding periods. Inhomogeneities of

(a − b) have two effects: they affect the bounding periods and they directly influence the

amplitude of the correlation, according to equation (3.9). The existence of NVTs itself, and

thus of rate-weakening patches (a− b < 0) within the creeping zone (a− b & 0), may stand

as a direct manifestation of the non-uniformity of (a − b) on the fault. This could explain

variations of sensitivity to tides in Shikoku (Ide, 2010), which pattern seem too erratic

to be explained by local variations of the creep rate. Finally, the analysis of the phase

suggests that NVTs should correlate and approximately be in phase with the perturbing

stress (Figure 3.2). However, Figure 3.1 shows that should the period of the perturbation

get closer to TQ or Ta, the maximum NVTs intensity would respectively happen slightly

before or after the maximum stress perturbation. This could explain why Nakata et al.

(2008) observed a time advance of tremors relative to tidal stresses (and concluded of a

correlation with the stress rate coupled with a delayed nucleation), while Thomas et al.

(2012) reported a slight time lag. In the latter study, if our interpretation of the loss of

sensitivity due to decreasing Vss is correct, the loss of correlation should go hand in hand

with an increase of the phase lag.

Stress perturbations due to either tides or passing surface waves have been reported to

be of the order of a few kPa (Miyazawa and Brodsky , 2008; Nakata et al., 2008; Thomas

et al., 2012). For a hydrostatic effective normal stress of 300 MPa and stress perturbations

of ampltiude 3 kPa, this exponential regime would be observed for 0 < a − b < 10−5.

Although such values might appear small, they may prevail at the transition between the

rate-weakening and rate-strengthening parts of the fault, where NVTs and SSEs are ob-

served to originate. For (a− b)/a = 10−2, Vss ∼ 1 m/yr (e.g., Schwartz and Rokosky , 2007)

and Dc ∼ 3 µm (e.g., Marone, 1998), TQ is of the order of half a day, the dominant period

of tides. One needs smaller Dc or larger Vss for TQ to become of the order of the seismic

waves period.

In order to apply this mechanism to real faults, small values of (a− b) = ∂µ/∂ lnV are

necessary over large enough regions, in order to sustain the high sensitivity of tremors to

oscillatory stresses. Shimamoto (1986) and Moore et al. (1997) reported a N-shaped depen-

dence of the steady-state friction on lnVss during lab experiments on halite and chyrsotile

serpentine respectively, thus unraveling two critical velocities for which ∂µ/∂ lnV = 0. Es-

trin and Bréchet (1996) and more recently Beeler (2009) proposed models for frictional slid-
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ing with a N-shaped curve for the velocity dependence of the friction coefficient. Shibazaki

and Iio (2003) and Shibazaki and Shimamoto (2007) subsequently used similar friction laws

in simulations of slow-slip events. In those models, the creep velocity during the SSE was

such that ∂µ/∂ lnV ≈ 0. The previous spring-slider analysis can then be applied to this

configuration, and the spatial extent of the zone with small values of a− b is as large as the

region of active slow slip. This altogether qualitatively reconciles the various observations

of correlation of slow slip events and associated non volcanic tremors to stress perturba-

tions induced by tides and passing seismic waves, with fault parameters in agreement with

laboratory values, no drastic constraints on local pore pressures, or initial distribution of

stresses.

Although the present study focuses on tremors and SSEs, this mechanism might also be

applied to regular earthquakes in some situations. In Nepal for instance, Bollinger et al.

(2004) reported annual modulations of the seismicity, which turned out to be linked to

small stress perturbations of a few kPa, due to varying surface loads caused by the local

hydrological cycle (Bettinelli et al., 2008). Modulation of seismicity by daily tides of similar

stress amplitudes was not found. Given that the correlating seismicity forms a belt falling

at the transition between the locked and creeping zones of the fault (Ader et al., 2012a),

the seasonal variations of the seismicity rate might be related to the mechanism proposed

here. The lack of sensitivity to daily loadings is explained by our model if the period TQ

lies between one day and one year.

3.A Appendix: Coulomb stress perturbation of large ampli-

tude

If (a − b) is small, the small perturbation hypothesis might not be valid anymore. In the

steady-state regime, for periods such that TQ = aTθ/(a − b) < T < Ta, the equation of

motion of the system becomes:

∆τeiωt = τ̇ss

[
δ(t)
Vss

− t
]

+
(
σo + ∆σeiωt

) [
µss +A ln

V (t)
Vss

]
, (3.A.1)

where A = |A(ω)| ≈ (a− b). The two terms in the right-hand side of the equation represent

respectively the elastic stress due to the spring and the friction on the slider. Now, if the

slider reaches high velocities but over a short time, its overall displacement remains small

and the elastic force will have little impact on the system. The friction then dictates the
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evolution of the slider, and equation (3.A.1) reduces to:

(∆τ − µss∆σ) = Aσ ln
∆V
Vss

, (3.A.2)

which leads to the following relation between the velocity and Coulomb stress perturbations:

∆V
Vss

= e
∆S
Aσ . (3.A.3)
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Supplementary figures

Figure S1: A graphical representation of equation (3.8) and gives the value of the ratio
Ta/Tθ for different values of the problem’s parameters.
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Figure S2: Equivalent to Figure 3.2, except that the slip law has been used instead of the
aging law. The results are quite similar.
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Abstract

We study the response of the seismicity produced by a 2D seismogenic fault obeying rate-

and-state friction laws to harmonically-varying stress perturbations of different periods.

Using continuum models of rate-and-state faults made of a seismogenic patch surrounded

by creeping areas, we conduct fully dynamic simulations of earthquake sequences using the

Boundary Integral CYCLe of Earthquakes approach. We show that when the fault is sub-

jected to harmonic stress perturbations, the corresponding changes in seismicity rate have

an amplitude larger than what is predicted by the Coulomb failure model and models based

on 1D spring-and-slider systems obeying rate-and-state friction laws. The same conclusions

can be drawn for the amplitude of the response of the seismicity to a step-like perturbation

of stress. We point out that when inferring fault properties from the response of natural

seismicity to stress perturbations, both Coulomb failure and rate-and-state spring-slider

models systematically under-estimate the product aσ, where a is the rate-and-state consti-

tutive parameter relating changes in slip rate to frictional strength, and σ is the effective

normal stress on the fault. We suggest that the high sensitivity of the finite fault to external

perturbations is due to the sensitivity of the growth of the nucleation zone at the onset of

nucleation. The response to harmonic stress perturbations depends on whether the period

T of the harmonic stress perturbation is greater or smaller than a characteristic period

Ta, similarly to predictions of rate-and-state spring-slider models. At periods T � Ta, the

correlation between the stress perturbation and the seismicity rate is consistent with the

Coulomb failure model, i.e., the seismicity-rate variations are proportional to the stress-rate

perturbations. At periods T � Ta, the stress-rate variations are in phase with the stress

perturbation, although a gradual phase shift appears as T increases towards Ta. More

importantly, as T increases towards Ta, the amplitude of the seismicity-rate variations in-

creases. This would explain observations of variations of seismicity in Nepal, where changes

in earthquake frequency correspond with the annually occurring monsoon, whereas there is

no such correlation with the semidiurnal Earth tides, although both phenomena yield stress

variations of comparable amplitudes. Such a period-dependent behavior of the seismicity
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has also been observed in lab experiments. Based on theoretical considerations and analo-

gies with rate-and-state spring-slider models, we propose a semi-analytical expression for

the characteristic period Ta, suggesting that Ta is proportional to the ratio Dc/Vpl, where Dc

is the characteristic slip for state evolution and Vpl is the secular loading velocity, and that

Ta is independent of the effective normal stress. Comparing the responses of the seismicity

to step-like and harmonic perturbations of stress, we highlight the inherent nonlinearity of

earthquake generation processes, and therefore the challenges standing in the way of the

establishment of an analytical framework capturing the full behavior of the fault based on

the physical parameters of the problem.



121

4.1 Introduction

How a seismogenic fault responds to an applied stress history remains a fundamental ques-

tion, for which a definitive answer has yet to be set. One of the main obstacles standing

in the way toward a solution is the limited range of configurations of stress variations and

the resulting seismicity rate arising in nature, which can be constrained from observations.

Figure 4.1 depicts this challenge: the responses of seismicity to either a constantly increas-

ing stress, a stress step (e.g., Gross and Kisslinger , 1997; Gross and Bürgmann, 1998; Toda

et al., 1998, 2012), or a periodically varying stress (e.g., Heki , 2003; Cochran et al., 2004;

Christiansen et al., 2007; Bollinger et al., 2007; Bettinelli et al., 2008; Ader and Avouac,

2013) are the most common configurations available. Fortunately, these three configurations

actually constitute the standard approach to establish and characterize the transfer function

of a linear system, which is fully determined by its ramp, step, and harmonic responses.

Seismogenic faults are nonlinear systems since friction is inherently nonlinear, but a lot

about earthquake physics can be inferred from their response to these stress configurations.

Other mechanisms of earthquake triggering have been mentioned, such as dynamic trigger-

ing (e.g., Hill , 1993; Gomberg et al., 2003; Felzer and Brodsky , 2006), pore fluid motion and

induced variations in fault strength (e.g., Nur and Booker , 1972; Bosl and Nur , 2002) or

fluids intrusions (e.g., Hainzl and Fischer , 2002; Cappa et al., 2009; Dahm et al., 2010), but

are beyond the scope of the present study.

The case of a simple constant loading rate on a fault is probably the most commonly

arising in nature. At plate interfaces, for instance, where faults are steadily loaded by the

slow motion of tectonic plates, over a time period much longer than the characteristic return

period of events of a given magnitude, the stressing rate can be regarded as constant through

time and results in an approximately constant seismicity rate, often called “background”

rate.

Aftershock sequences following large events are the most frequent type of deviation

from this constant background seismicity. Under the premise that aftershocks are statically

triggered by the sudden stress change caused by a mainshock, their evolution can be seen as

the response of the seismicity to a step-like function in stress. This evolution is characterized

by a sudden jump of the seismicity rate immediately after the mainshock, followed by a

gradual decay of the seismicity rate with time back to its pre-mainshock level, according to

the Omori law (see Utsu et al. (2005) for a recent review). The time evolution, amplitude

and other characteristics of aftershock sequences have thus been broadly studied, in order to
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Figure 4.1: Cartoon presenting the challenge underlying today’s knowledge of earthquake
physics. Earthquake physics would enable one to predict how a fault would react to an
imposed stress history, and remains somewhat of a grey box. Few configurations arise
naturally and some have been tested in the lab, although lab experiments may not capture
the full behavior of natural faults. Most natural faults are loaded at near-constant stress
rates which results in constant seismicity rate. A population of faults undergoing a stress
step (due to a mainshock) will see its seismicity rate suddenly increase and gradually decay
back to the initial seismicity rate, following the Omori law. Seismicity in Nepal gives us the
response of seismicity to periodic stresses of comparable amplitudes but different periods,
and suggests a larger seismic response to a larger perturbing period, something that cannot
be explained by the current seismicity-rate models.
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find a way measure fault properties (e.g., Gross and Kisslinger , 1997; Gross and Bürgmann,

1998; Toda et al., 1998, 2012).

Another case that arises in nature is that of a periodic loading, generally either due to

tides (e.g., Cochran et al., 2004), or seasonal loading due to the local hydrological cycle (e.g.,

Heki , 2003; Christiansen et al., 2005, 2007; Bollinger et al., 2007; Bettinelli et al., 2008).

Correlation of seismicity with tides has been reported by Cochran et al. (2004), who showed

a correlation between the occurrence of shallow thrust earthquakes and the occurrence of the

strongest tides for global M > 5.5 events from the Harvard Centroid Moment Tensor (CMT)

catalog. Seasonal variations of seismicity following seasonal variations of stress loading on a

fault have been reported at different locations. Heki (2003) pointed out possible variations

of seismicity in Japan, where the annual variations of snow load seem able to generate annual

variations of seismicity. Snow unloading coupled to groundwater recharge was also reported

to induce seasonal variations of seismicity in western US volcanic centers (Christiansen

et al., 2005), by modifying the stress on the fault by about 5 kPa. The hydrological cycle

and associated variations of water load at the surface induce stress variations at depth,

which have been reported to induce variations of the seismicity rate on various seismogenic

faults. Along the San Andreas fault, Christiansen et al. (2007) observed that hydrologically

induced stress perturbations of ∼ 2 kPa might be sufficient to affect seismicity. Variations

of seismicity in the Nepal Himalaya have also been examined, and hydrologically induced

stress variations on the Main Himalayan Thrust fault (MHT) of amplitude of about 3 kPa

appear to produce seasonal variations of the seismicity rate of amplitude ∼ 40% (Ader and

Avouac, 2013), in phase with the variations of stress rate on the fault (Bollinger et al.,

2007; Bettinelli et al., 2008), while the seismicity rate appears to remain unresponsive to

tidal stress variations yet of similar amplitude (Bettinelli et al., 2008; Ader and Avouac,

2013). This would indicate a period-dependent response of the Nepalese seismicity, with

less sensitivity at tidal periods than to the annually occurring monsoon.

Such a period-dependent response of faults has been observed in various laboratory ex-

periments, where sample faults undergo harmonic stress variations (Lockner and Beeler ,

1999; Beeler and Lockner , 2003; Savage and Marone, 2007, 2008). All of these studies ob-

serve two distinct regimes of response of the fault depending on the perturbation’s period.

At periods larger than a critical period, the seismicity rate on the sample fault appears to

be directly proportional to the rate of harmonically varying stress. In such a regime, the

amplitude of the seismicity-rate variations are inversely proportional to the perturbation’s

period. At shorter periods, sample faults appear to have a different behavior. Lab exper-
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iments by Lockner and Beeler (1999) and Beeler and Lockner (2003) suggested a slightly

period-dependent response, with the correlation between the timing of events and the stress

perturbation increasing with the perturbation’s period. This period-dependent response at

shorter periods could explain the observations in Nepal, whereas changes in earthquake fre-

quency correspond with the annually occurring monsoon, there is no such correlation with

Earth tides, which oscillate back-and-forth twice a day.

The multitude of various efforts deployed have contributed to our increasing understand-

ing of earthquake physics. The grey box of earthquake mechanics depicted in Figure 4.1

becomes more transparent as new discoveries are made, bringing to light the underlying

gearwheel. The mechanisms seemingly acting on faults are well described in the formalism

of rate-and-state friction (Dieterich, 1978, 1979a,b; Ruina, 1983), where the friction be-

tween two rock surfaces of within a granular rock layer depends on the relative slip velocity

and a state variable evolving with time. The rate-and-state friction laws were established

in order to reproduce the observations that the onset of frictional sliding in lab experiments

is a time-dependent process, and introduce a time-dependent failure mechanism for the

generation of earthquakes.

Using this formalism and modeling the earthquake generation process on faults with a

simple 1D spring-and-slider system obeying rate-and-state friction laws, Dieterich (1994)

proposed an analytical expression linking the stress history on a fault to the expected

resulting seismicity rate. To some extent, some of the observations described earlier can be

explained by the predictions of this Spring-slider Rate-and-state Model (SRM). The Omori

law for the decay of aftershocks rate with time is well reproduced by the SRM (Dieterich,

1994), although it requires a near-lithostatic pore pressure where aftershocks nucleate in

order to quantitatively explain the typical duration of aftershock sequences (e.g., Gross

and Kisslinger , 1997; Gross and Bürgmann, 1998; Toda et al., 1998, 2012). In the case

of harmonic stress perturbations, the SRM explains the phase shift between the stress

perturbations and the resulting seismicity-rate variations (e.g., Beeler and Lockner , 2003).

Applied to the observations in Nepal, the SRM also requires a near-lithostatic pore pressure

in the seismogenic zone in order to explain the amplitude of the correlation between the

seismicity rate and the monsoon-induced variations of stress (Bettinelli et al., 2008).

As has been highlighted in the case of non-volcanic tremors (Ader et al., 2012b), near-

lithostatic pore pressures require specific fault properties for the nucleation sizes to re-

main consistent with the occurrence of the smallest earthquakes recorded. Besides, near-

lithostatic pore pressure and corresponding effective normal stresses are orders of magnitude
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below the values reported from afterslip studies in various tectonic contexts (Hearn et al.,

2002; Miyazaki et al., 2004; Perfettini and Avouac, 2004, 2007; Hsu et al., 2006, 2009a,b;

Fukuda et al., 2009; Barbot et al., 2009). Moreover, the SRM does not explain the period-

dependent response of the seismicity to harmonic stress perturbations at shorter periods as

was observed in lab experiments (Lockner and Beeler , 1999; Beeler and Lockner , 2003) and

in Nepal (Bettinelli et al., 2008; Ader and Avouac, 2013).

In this study, we therefore drop the spring-slider approximation and study the response

of a 2D seismogenic fault obeying rate-and-state friction laws to harmonically-varying stress

perturbations of different periods. In other words, we investigate the harmonic response of

a 2D seismogenic finite fault. To do so, we conduct fully dynamic simulations of earthquake

sequences (Lapusta et al., 2000; Lapusta and Rice, 2003; Lapusta and Liu, 2009; Noda and

Lapusta, 2010) on a seismogenic patch of finite size surrounded by creeping areas, and

undergoing stress perturbation. Our goal is to compute the corresponding changes of the

seismicity rate. The motivation for studying the response of a finite fault comes from the

study of Kaneko and Lapusta (2008) that showed that finite faults have different reposes to

shear stress than spring-slider models. The present study mostly focuses on the response of

such a finite fault to harmonic perturbations, but we also present some results of the step

response of the finite fault.

In the following, we start by briefly reviewing in sections 4.2 and 4.3 the main principles

of the two most common models relating the stress history to the expected seismicity rate on

a fault — the Coulomb Failure Model (CFM) and the SRM — and present their respective

predictions for the response of seismicity to a step-like and a harmonic stress perturbation.

We then present the finite-fault simulations that constitute the core of this study by first

describing the methodology in section 4.4 and then the frequency response of finite faults in

section 4.5. Section 4.6 then introduces results of the step response highlighting properties

of the finite fault revealed by the frequency response, as well as illustrating the general

nonlinearity of the response. We propose an interpretation of the results in section 4.7 and

conclude in section 4.8.

4.2 Response of seismicity in the Coulomb Failure model

The CFM is probably the simplest way to conceptualize the relation between stressing

and earthquake occurrence on a fault. It assumes that whenever the Coulomb stress S =

τ − µσeff, where µ is the friction coefficient, τ the shear stress and σeff the effective normal



126

stress (i.e., the normal stress reduced by the pore pressure), reaches a threshold value called

the Coulomb Failure Stress (CFS), the fault produces an earthquake and the stress on the

fault drops to a lower value. Assuming in addition a population of faults on which the

pre-stresses are uniformly distributed up to the CFS, the observed seismicity rate R(t) is

therefore proportional to the Coulomb stress rate Ṡ(t), and thus to the shear-stress rate

τ̇(t) when the normal stress is kept constant. Since the seismicity rate cannot have negative

values, this relation of direct proportionality remains true only as long as the Coulomb

stress keeps increasing. If it starts decreasing, there will not be any earthquakes until it

grows back to a value equal to its last maximum. Denoting by Sf (t) the increasing envelope

of the Coulomb stress S(t) (see Figure 4.A.1a in appendix 4.A for a representation of the

equivalent functions τ(t) and τf (t)), the seismicity rate R(t) in the CFM can be simply

written as:

R(t) ∝ Ṡf (t). (4.1)

In the case of a step-like change of stress on the fault, this model implies a simple

impulse change of the seismicity rate, and therefore does not reproduce the Omori law for

the decay of aftershocks with time.

The case of the response to a harmonic stress perturbation is more insightful. The

seismicity rate in the CFM is proportional to the stress rate as has been reported for the

seasonal variations of seismicity in Nepal (Bettinelli et al., 2008), and for the results of

laboratory experiments at larger perturbing periods (Lockner and Beeler , 1999; Beeler and

Lockner , 2003; Savage and Marone, 2007, 2008). Given a background loading rate of shear

stress τ̇a, superimposing harmonic variation of shear stress of amplitude ∆τ might cause the

resulting shear stress to periodically decrease, if the period T of the perturbation is short

enough (Figure 4.A.1a). We show in appendix 4.A that, depending whether the period T

of the perturbation is greater or smaller than the critical period Tτ = 2π∆τ/τ̇a, the relative

amplitude of the variations of seismicity rate is

∆R
r

=
Tτ
T

when T ≥ Tτ , (4.2)

and
∆R
r

= 2
√
π

√
Tτ
T

when T � Tτ . (4.3)

Equations (4.2) and (4.3) indicate that at all periods, the amplitude of the seismicity

response increases as the period decreases, in contradiction with observations. In the case of
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Figure 4.2: The amplitude of seismicity rate variations for different periods of harmonic
variations in shear stress, according to the CFM and SRM. The black curves represent
the exact solutions while the grey dashed lines represent the asymptotic behavior, with
corresponding equations indicated on the plot, and derived in the appendices.

Nepal, for instance, this would imply a greater response of the seismicity to the semidiurnal

tidal loading than to the annual forcing. This is also incompatible with the results of

lab experiments at shorter perturbing periods by Lockner and Beeler (1999) and Beeler

and Lockner (2003). The predicted amplitude of the variations of seismicity rate ∆R/r in

response to a harmonic perturbation of shear stress of amplitude ∆τ by the CFM is plotted

in Figure 4.2 as a function of the perturbing period T .

4.3 Response of seismicity in the SRM

The major issue with the CFM is that it does not contain any time-dependent mechanism

for the earthquake nucleation process that could reproduce the gradual decay of aftershocks

rate following a mainshock. Dieterich (1994) proposed an alternative model of the seismicity

rate on a fault based on a 1D spring-and-slider system following rate-and-state friction laws.

In the rate-and-state formalism, the evolution of the friction coefficient µ between two

rock surfaces or gouge layers, or below the slider in the case of the SRM, logarithmically

depends on the slip rate V and a state variable θ (Dieterich, 1978, 1979a,b; Ruina, 1983):

µ = µ∗ + a ln
V

V ∗
+ b ln

θV ∗

Dc
, (4.4)

where µ∗ is the reference friction coefficient corresponding to the reference slip velocity V ∗,



128

Dc is the characteristic slip for state evolution (e.g., Dieterich, 1978, 1979a,b; Ruina, 1983;

Rice and Ruina, 1983; Dieterich and Kilgore, 1994), and a > 0 and b > 0 are rate-and-

state constitutive fault parameters with a− b < 0 so that the system has a rate-weakening

rheology. The state variable θ can be interpreted as the average age of the population

of contacts between two surfaces and evolves according to the “aging law” (e.g., Marone,

1998):
dθ

dt
= 1− V θ

Dc
. (4.5)

Note that the state variable evolves in time even if there is no relative motion between rocks

in contact.

In order to derive a relation between the seismicity rate on a population of faults un-

dergoing a time-varying stress, the SRM of Dieterich (1994) makes a few assumptions. The

model assumes that the times to failure are uniformly distributed, and that variations of

stress on the faults simply modify the time to failure. Besides, it is assumed that, at the

onset of rupture, the velocity on the fault is large enough so that V θ/Dc � 1, thus reducing

equation (4.5) to dθ/dt = −V θ/Dc. The relations obtained are reviewed in appendix 4.B

for the case of a constant normal stress. For a stress step mimicking a sudden stress change

produced by a nearby mainshock, SRM’s relations successfully reproduce the Omori law

for the time decay of aftershocks (equation (12) from Dieterich (1994)). The cumulative

number of events following a stress step a time t = 0 is given by:

N(t) = rt+ rta ln
[
e∆τ/aσ +

(
1− e∆τ/aσ

)
e−t/ta

]
H(t), (4.6)

where

ta = aσ/τ̇a (4.7)

is the characteristic relaxation time of the seismicity rate following a stress step (i.e., the

characteristic duration of an aftershock sequence), and H(t) is the Heavyside function, i.e.,

H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0. This model is able to link the parameters of the

rate-and-state formalism and the empirical Omori’s law for the time decay of aftershocks.

It has therefore fostered numerous studies inferring fault properties from observations of

aftershock sequence decays (Gross and Kisslinger , 1997; Gross and Bürgmann, 1998; Toda

et al., 1998, 2012, e.g.,). With the right estimates of the stress step amplitude ∆τ and

the secular stress rate τ̇a on the fault, a fit of equation (4.6) to the observed cumulative

number of events in the aftershock sequence yields estimates of the product aσ. The fault
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parameter a has been measured in laboratory experiments (Dieterich (1994) found 0.005 to

0.012) and, assuming that these laboratory-derived values can be applied to real faults, aσ

leads to estimates of the effective normal stress at the depth of the aftershock sequence.

This exercise has been performed on numerous aftershock sequences, systematically

leading to effective normal stresses one to several orders of magnitude below the lithostatic

pressure at studied depths. Using the temporal evolution of the 1992 Landers event after-

shocks for instance, Gross and Kisslinger (1997) constrained aσ between 23 and 47 kPa.

Following the same procedure on the 1989 Loma Prieta earthquake, Gross and Bürgmann

(1998) estimated aσ = 11 to 330 kPa, based on the value of ta in the fit. In Japan, Toda

et al. (1998) computed aσ = 35 kPa for the time decay of the aftershocks of the 1995 Kobe

event, and Toda et al. (2012) reported aσ = 10 kPa for the Joshua Tree and Landers earth-

quakes. Noting that an effective normal stress equal to the hundreds of MPa of overburden

pressure at seismogenic depth would lead to values of a much less than the range of lab-

oratory derived values (Dieterich, 1994), these studies thus concluded that the prevailing

effective normal stress should be of the order of a few MPa, i.e., two orders of magnitude

below the lithostatic value. To explain this difference, they appealed to near-lithostatic

pore pressures at seismogenic depths, which would reduce the effective normal stress by a

few orders of magnitude.

Regarding the response of seismicity to harmonic stress perturbations, one can conceptu-

ally understand how the time-dependent failure mechanism introduced by the rate-and-state

laws in the SRM might be able to dampen the frequency response at shorter periods: if

the nucleation time of events ta is much larger than the stress perturbation period T , the

stress variations seen by the seismicity is smoothed out, and the amplitude of the seismicity

response is reduced. Conversely, in the opposite case where nucleation time ta is much

smaller than the stress perturbation period T , the existence of a nucleation time will simply

introduce a phase shift Φ ∼ 2πta/T between the stress rate and the seismicity rate, rapidly

negligible with increasing T , but should not produce a response much different from the

one predicted by the CFM. The complete derivation of the harmonic response for the SRM

is detailed in appendix 4.B. As has been noticed in previous studies (e.g., Lockner and

Beeler , 1999; Beeler and Lockner , 2003) and described before, this model indeed predicts

two different behaviors of the seismicity response (Figure 4.2), depending on whether the

period of the perturbation T is larger or smaller than the characteristic period Ta, defined

as

Ta = 2πta = 2π
aσ

τ̇a
. (4.8)
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As expected, the critical period Ta is directly related to the characteristic relaxation time

ta.

For perturbation periods T much larger than Ta, the seismicity responds in a Coulomb

Failure fashion. The seismicity rate is directly proportional to the stress rate as long as

it remains positive, otherwise, a seismicity quiescence is observed, exactly following the

predictions of the CFM (see equations (4.B.14) and (4.B.15) in the appendix). In the case

of perturbations of period T � Ta, as expected, the response of the seismicity is lower

than the predictions of the CFM. The amplitude of the seismicity-rate variations actually

becomes independent of the period, and the seismicity rate in response to a shear stress

perturbation τ(t) = τ̇at+ ∆τ sinωt can be written as (equation (4.B.13) in the appendix):

R(t) ∝ exp
(

∆τ
aσ

sinωt
)
. (4.9)

In the case where the amplitude of the perturbations is such that ∆τ � aσ, the relative

amplitude of the seismicity rate around its unperturbed value is simply ∆R/r = ∆τ/aσ

(equation (4.B.7) in the appendix). This small-perturbation configuration is the one con-

sidered later in the finite-fault simulations, in order to avoid introducing any extra source

of nonlinearity. Like for aftershock-rate predictions, these simple expressions have enabled

studies to determine values of the product aσ from real cases of variations of seismicity.

Looking at triggering of earthquakes by tides worldwide, Cochran et al. (2004) fitted the

amplitude of induced variations of seismicity with the SRM and provided a range of values

for aσ between 48 and 110 kPa, with a best fit of 64 kPa, values of the same order of mag-

nitude as the ones inferred from the study of aftershock sequences. Based on the results

of the SRM, Bettinelli et al. (2008) reported that for the Nepalese seismicity to be able to

respond to seasonal variations of surface water load, extremely low values of aσ (between

3 and 8 kPa) were required. These results would thus also suggest extremely low effective

normal stresses at the seismogenic depth of the faults, at least at places where aftershocks

nucleate.

The SRM reproduces, at least qualitatively, the usually observed time decay of after-

shocks rates, but an issue remains for the frequency response. Even though the response of

the seismicity at short periods is dampened compared to what the CFM would predict, the

response still remains at least as large when the period gets shorter. Therefore, the SRM

cannot explain the observations in Nepal (Bollinger et al., 2007; Bettinelli et al., 2008; Ader

and Avouac, 2013) and the results of lab experiments by Lockner and Beeler (1999) and
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Beeler and Lockner (2003). Besides, it seems to require a near-lithostatic pore pressure,

i.e., extremely low normal stresses at seismogenic depths in order to quantitatively explain

both aftershock sequences and response to periodic perturbations. As mentioned earlier,

low effective normal stresses might be a problem for the nucleation of the smallest recorded

events, and they are not observed in afterslip studies.

We thus investigate whether the rate-and-state law alone is able to reproduce the results

observed for the step and harmonic responses of seismicity, by setting aside the spring-slider

approximation, and examining what would be the behavior of a 2D fault with rate-and-state

friction under such stress perturbations.

4.4 Modeling a finite rate-and-state fault

We study the behavior of the 2D fault schematically represented in Figure 4.3, infinite in

one direction, and consisting of a potentially seismogenic rate-weakening patch(a− b < 0),

surrounded by rate-strengthening areas (a − b > 0). The fault is 3 km long and, unless

stated otherwise, discretized into 6000 cells of 0.5 m each. The evolution of the slip on this

finite rate-and-state fault is simulated using the Boundary Integral CYCLe of Earthquakes

(BICYCLE) approach (Lapusta et al., 2000; Lapusta and Rice, 2003; Lapusta and Liu,

2009; Noda and Lapusta, 2010). Several thousands of earthquakes are simulated in order

to have a statistically significant number of events. The fault is loaded at constant slip

velocity Vpl = 1 cm/yr (unless indicated otherwise) on both sides, and the rate-and-state

parameters are a = 0.008 on the entire fault, b = 0.012 on the seismogenic patch and 0.004

in the creeping zone, Dc = 5 µm, and the reference friction coefficient is µ∗ = 0.6 at slip

rate V ∗ = 10−6 m/s. The medium has a shear modulus of G = 30 GPa and, unless noted

otherwise, σ = 5 MPa. In fully dynamic simulations of 2-D antiplane earthquakes sequences,

resolving the cohesive zone size Λ0 with 3 to 5 spatial cells is the more stringent requirement

for the aging formulation of rate-and-state friction and typical rate-and-state parameters

(Lapusta and Liu, 2009). For a fault interface governed by rate-and-state friction laws, Λ0

can be expressed as (Palmer and Rice, 1973; Day et al., 2005; Lapusta and Liu, 2009)

Λ0 =
GDc

bσ
. (4.10)

In our case, Λ0 = 2.5 m, which justifies our choice of 0.5 m for the cell size in our simulations.

Unless indicated otherwise, the seismogenic patch is 500 m long. Our choice of σ = 5 MPa

is motivated by the small stress perturbations we would like to study and the fact that the
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Figure 4.3: Schematics of the finite fault used in the numerical simulations. The fault is
infinite in one direction, and consists of one rate-weakening (seismogenic) patch embedded
within a rate-strengthening medium. The whole fault is loaded on both sides at a constant
slip velocity. The stress perturbation (either a step function or a harmonic perturbation)
is applied over the entire fault. Unless otherwise indicated, the fault has a length of 3 km,
and the seismogenic patch at the center is 500 m long. The normal stress is held constant
at σ = 5 MPa. The rate-and-state fault parameters are: a = 0.008 over the entire fault,
b = 0.012 in the seismogenic patch (so that a−b < 0) and b = 0.004 in the rate-strengthening
region (so that a − b > 0), Dc = 5 µm, and the reference friction coefficient is µ∗ = 0.6 at
the reference slip velocity V ∗ = 10−6 m/s.

SRM predicts an amplitude not greater than ∆τ/aσ for the response of the seismicity rate

to a stress perturbation of amplitude ∆τ . In order to look at stress perturbations of the

order of 3 kPa, as has been estimated for the monsoon-induced stresses in Nepal, we settle

for the largest normal stress able to bring out a response of the seismicity large enough to

be detected.

Figure 4.4a shows the natural evolution of slip along the fault over about 2 years, without

any exterior stress perturbation. In order to represent both the interseismic and coseismic

slip in Figure 4.4a, the slip is plotted every 0.01 years if the fault is in the interseismic

regime and every 0.02 seconds if it is in the coseismic regime. We consider that a seismic

event is occurring on the fault when the maximum velocity on the fault is greater than 1

cm/s, many orders of magnitude greater than the loading velocity of 1 cm/yr. The linear

magnitude Mlin of each of the seismic events on the fault is indicated in Figure 4.4a, and it

is defined as:

Mlin =
2
3

log10Mlin − 6.7, (4.11)
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Figure 4.4: a) Evolution of slip on the unperturbed fault with time. The linear magnitude
of the seismic events produced is indicated on each event. If the fault is experiencing a
seismic event, the slip on the fault is plotted every 0.02 s (dashed black lines), while during
the interseismic period, slip is only plotted every 0.01 yrs (plain grey lines). b) Magnitude
distribution of events produced by the fault. The earthquake catalog contains a total of
about 15,000 events, covering about 1700 years of evolution of the fault.
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where the linear moment Mlin of a seismic event on this fault is

Mlin = G

∫

fault
s(x) dx, (4.12)

x ∈ [−1500; 1500]m is the position along the fault and s(x) is the slip on the fault at

position x. Note that initial conditions assumed on the fault affect only several first events;

afterwards, the fault behavior becomes independent of initial conditions (e.g., Lapusta and

Liu, 2009). In Figure 4.4a and other similar Figures, the first events shown occur after at

least 100 other events that have been removed.

When evolving only under constant background loading, the fault can produce a fairly

broad complexity of event sizes and earthquake patterns (Figure 4.4). Some events rupture

the entire seismogenic patch at once, still producing events of various magnitudes, while

some smaller events only rupture an edge of the patch. The complexity produced by this

fault is due to the fact that the critical size necessary to nucleate seismic events on the

seismogenic patch is much smaller than the total length of the seismogenic patch. The

critical nucleation size has been analyzed in numerous studies (e.g., Ruina, 1983; Dieterich,

1992; Rubin and Ampuero, 2005), and can be written as:

h∗ =
GDc

F (a, b)σ
, (4.13)

where the function F (a, b) of the fault parameters a and b refers to different models esti-

mating the critical nucleation size, and can be F (a, b) = a − b (Ruina, 1983), F (a, b) = b

(Dieterich, 1992), or F (a, b) = b when a/b < 0.37 and F (a, b) = π/2 × (b − a)2/b when

a/b > 0.5 (Rubin and Ampuero, 2005). In our case, a/b ≈ 0.67, and taking the estimation

by Rubin and Ampuero (2005) yields

h∗ =
2
π

b

(b− a)2

GDc

σ
≈ 15 m. (4.14)

In order to illustrate the event complexity, Figure 4.4b represents the distribution of

linear magnitudes of all the seismic events produced by this fault. To the first order, this

distribution is bimodal: events with Mlin > 0.75 rupture the entire seismogenic patch while

events with Mlin < 0.75 only rupture an edge of the seismogenic patch. As illustrated in

Figure 4.4a, the fault exhibits irregularity, a fact supported in Figure 4.4b by the existence of

various peaks in the magnitudes distribution at Mlin > 0.75. Larger events of Mlin ∼ 1.05

and Mlin ∼ 1.2 alternate with smaller foreshocks and aftershocks with Mlin < 0.75 and
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Figure 4.5: Schuster spectrum for the unperturbed fault (Figure 4.4). The spectrum is
computed for the timing of about 15,000 events spanning 1700 years of history on the fault.
The Schuster p-value indicates the probability that a periodicity is observed by chance in
the timing of events. The “expected value” line indicates the expected value of the Schuster
p-value, while points above the “99% confidence level” line have a probability above 99% to
be real periodicities in the catalog, rather than being observed by chance. The periodicity
at T ≈ 0.2 years corresponds to the return period of Mlin ≈ 0.94 events, indicating that
these events happen quite periodically on the fault, while periodicities at smaller periods
are harmonic of this period.

sometimes other small events during the interseismic period (first 12 events in Figure 4.4a),

whereas events of Mlin ∼ 0.94 that also rupture the entire patch seem to almost periodically

follow each other without any smaller events in-between (events 13 to 18 in Figure 4.4a).

This is even more obvious when looking at periodicities in the timing of events produced

by this fault: Figure 4.5 shows the Schuster spectrum (Ader and Avouac, 2013) computed

for the timing of the ∼ 15, 000 events from the catalog generated by the simulation. This

spectrum shows the periodicities in the timings of events on the fault: peaks above the “99%

confidence level” line indicate that a periodicity at the tested period exists in the timing

of events in the catalog at more than a 99% level of confidence. The Schuster spectrum

thus indicates that this fault has a natural periodicity around period of T = 0.02 years.

The periodicities at smaller periods are simply harmonics of this period (Ader and Avouac,

2013).

To understand the origin of this natural periodicity, one can estimate the return period

of events of a given linear moment Mlin, by supposing that such events release all the
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moment deficit accumulated on the seismogenic patch from the constant loading:

TRET(Mlin) =
Mlin

GWVpl
, (4.15)

where W = 500 m is the length of the seismogenic patch and Vpl = 1 cm/yr is the loading

plate velocity. In terms of linear moment magnitude Mlin, and with the parameters of the

simulation, equation (4.15) becomes:

TRET(Mlin) = 101.5Mlin−2.08. (4.16)

Using equation (4.16), the expected return periods of events rupturing the entire seismo-

genic patch corresponding to the main peaks in Figure 4.4b would be TRET(Mlin = 0.94) ≈
0.21 years, TRET(Mlin = 1.05) ≈ 0.31 years and TRET(Mlin = 1.2) ≈ 0.53 years. Periods

corresponding to the return periods of Mlin = 1.05 and Mlin = 1.2 events do not appear

in the Schuster spectrum of the seismicity, indicating that events of magnitude Mlin > 1

happen in a fairly chaotic manner. The strong periodicity appearing at 0.2 years in Fig-

ure 4.5 corresponds to the expected return period of Mlin ∼ 0.94 events, implying that these

happen at quite regular time intervals on the fault.

4.5 Response of a rate-and-state seismogenic fault to har-

monic shear-stress perturbations

4.5.1 Method

In order to study the response of the fault presented in the previous section to harmonic

stress perturbations, we simulate the evolution of the slip on this fault with the exact same

fault parameters as previously described, while superimposing a harmonically varying stress

over the entire fault (both the rate strengthening and the rate weakening parts):

∆τ(t) = ∆τ sinωt, (4.17)

where the amplitude of the stress perturbation is held constant at ∆τ = 3 kPa, as inferred for

Nepal (Bettinelli et al., 2008). The ratio ∆τ/aσ = 0.075� 1, indicating that we are in the

case of small perturbations according to section 4.3. We run simulations for perturbations

at periods varying between 10−6 and 10 years. In order to estimate the amplitude of the

variations of seismicity and their phase, we stack the times of N events from the simulated
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catalog over the perturbing period. We then compute the seismicity rate over the perturbing

period T by dividing the period into B = 32 bins of equal duration T/B and counting the

number of events falling within each bin. We finally normalize this stacked seismicity rate

by its mean, so that the average seismicity rate is equal to 1. Given the number of events N

in the catalog and the number of bins B, the variance of the normalized number of events

falling within each bin is (e.g., Ader and Avouac, 2013):

σ2
B = (B − 1)/N. (4.18)

For each simulated catalog, we then fit the seismicity rate with a function qualitatively

following the predictions of Dieterich (1994):

R(t)
r

=
eβ sin(ωt−Φ)

〈eβ sinωt〉 , (4.19)

where the amplitude β and phase Φ of the response are determined to fit the results of each

simulation. Note that β = ∆τ/aσ according to the SRM for periods smaller than Ta; here,

we do not impose β but rather determine it from the simulation results. The notation 〈.〉
refers to the mean of the function.

Figure 4.6 illustrates this process: it shows, for 4 different simulations with different

perturbing periods, the stacked seismicity rate (black circles with error bars corresponding

to σB in equation (4.18)) and the result of the fit. This Figure shows that, although the

perturbation is of a small amplitude, the resulting variations of the seismicity rate can

actually be fairly large, and that a phase shift appears as the perturbing period increases

(recall that the shear stress perturbation is a sine function, and so it is 0 at time equals

0). The amplitude of the seismicity rate variations thus appears to be dependent on the

perturbation period in non-monotonic manner, being higher at T = 0.027 years than at

both T = 0.0027 years and T = 1 year.

In order to estimate uncertainties on β and Φ, we use analytical estimates for the case

of small variations of the seismicity rate, i.e., β � 1. In this case, equation (4.19) can be

linearized:
R(t)
r

= 1 + β sin(ωt− Φ) = 1 +m1 sinωt+m2 cosωt, (4.20)

where m1 and m2 are two linear parameters determined by the fit to the seismicity rate,

such that β =
√
m2

1 +m2
2 and Φ = tan−1(m2/m1). With parameters m1 and m2, the fit is
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Figure 4.6: Stacked seismicity rate (black dots with error bars) and its fit with equa-
tion (4.19) (black line). The grey circles with error bars and dashed grey line show the
seismicity rate from the unperturbed catalog stacked over the same period and the corre-
sponding fit. The seismicity rate is normalized by its average, so that the quantity plotted
is R(t)/r. The error bars on the seismicity rate only depend on the total number of events
N in the catalog and the number B of bins used to compute the stacked seismicity rate:
σB =

√
(B − 1)/N (e.g., Ader and Avouac, 2013). The period of perturbation T is indicated

on each plot.
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linear and the covariance matrix associated to the vector of parameters [m1m2] is:

CM = 2
B − 1
BN

I2, (4.21)

where I2 is the 2× 2 identity matrix. Given that the expected variance of the residuals is

N/B (e.g., Ader and Avouac, 2013), in order to account for the misfit of equation 4.20 to

the seismicity rate, the covariance matrix CM is multiplied by var(residuals)×B/N if the

variance of the residuals var(residuals) is greater than N/B. The uncertainties on β and Φ

are finally computed from the obtained covariance matrix, which is fast because analytical.

This method most likely underestimates the errors on β when the linear condition β � 1

is not verified, but in practice yields good orders of magnitudes for the uncertainties. In

Figure 4.6, for instance, the case T = 0.0027 years is the most pathological and yields β ≈
1.7±0.12. The uncertainty on β is thus probably underestimated, but still provides a correct

order of magnitude of the actual uncertainty, and a better estimate of this uncertainty is

never needed in this study.

4.5.2 Influence of the period of the shear-stress perturbation

The procedure of section 4.5.1 is repeated for different perturbing periods (Figure 4.7). We

plot both the amplitude of the seismicity rate variations (parameter β in equation (4.19))

and their phase shift (parameter Φ in equation (4.19)) with respect to the stress perturbation

for the different values of the perturbation’s period. The amplitude plot has been normalized

by the maximum possible amplitude according to the SRM, i.e., βSRM = ∆τ/aσ. The

predictions of the SRM are indicated for comparison as a dashed grey line, where we have

taken 2πta = 0.1 years in order to approximately fit the phase change from the simulations

in Figure 4.7. This value of ta is quite arbitrarily selected at this stage, because the secular

stress loading rate τ̇a and thus ta are not as well defined for a finite fault as for the SRM,

since in the case of a finite fault, τ̇a varies both in space and time. The harmonic response

of the finite fault plotted in Figure 4.7 displays features in agreement with the predictions

of the SRM, but also major qualitative and quantitative differences.

There are two important differences between the response of the finite fault in our

simulations and the SRM. First, the dependence of the finite-fault seismicity response on

the perturbation period is non-monotonic, with a pronounced peak. We will denote the

period at which the seismicity peaks by Ta. Note that the existence of such a peak may

explain the differences between the response of the seismicity in the Himalaya to seasonal
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Figure 4.7: Response of a finite rate-and-state fault to harmonic shear-stress perturbations.
Each point on the plot corresponds to a simulation which generated an earthquake catalog.
The times of events from the catalog are stacked over one period and the resulting stacked
seismicity rate is fitted with equation (4.19). The value obtained for β is reported on the
upper plot, while the phase shift Φ between the seismicity rate and the stress is represented
on the lower plot. Dashed grey curves show the predictions of the SRM, where we have taken
2πta = 0.1 years in order to fit the phase. As in the SRM, one can separate two regimes of
response, depending on whether the perturbing period is shorter or greater than a critical
period Ta. However, the amplitude of the response is always greater than predictions from
the SRM, sometimes by more than an order of magnitude, and this amplitude of the response
increases with the period T for periods T < Ta.
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perturbations and tides, provided that the period Ta is close to one year and hence the

fault is more sensitive to the seasonal perturbations than perturbations of smaller periods.

In Figure 4.7, Ta ≈ 0.03 years, not yet appropriate for explaining the response in the

Himalaya, and that is why we investigate the dependence of Ta on the model parameters in

the following sections. Second, the amplitude of the seismicity response for the finite fault

is always much larger than the predictions of the SRM. As discussed in section 4.7.3, this

finding would modify how aσ is estimated based on observations.

At the same time, as predicted by the SRM, one can distinguish between two regimes

of response of the seismicity, depending whether the period T of the perturbation is larger

or smaller than the critical period Ta, at which the amplitude of the seismicity response

peaks. At periods T < Ta, variations of the seismicity rate tend to be in phase with the

stress perturbation (Φ ∼ 0), although a gradual time lag from 0 to about −π/4 appears

as the period increases, which is not expected in the SRM. On the other hand, for periods

T ≥ Ta, the seismicity rate appears to correlate with the rate of shear stress perturbation,

since the phase is Φ ∼ π/2 and the amplitude seems to decrease following a 1/T trend.

At these periods, the response of the seismicity rate seems thus analogous to the Coulomb

Failure type of response, as predicted by the the SRM at periods such that T � ta.

In order to better understand the high sensitivity of the finite fault to stress variations,

we examine in more detail the seismicity produced by the perturbed fault. Figure 4.8 shows

the distribution of event magnitudes produced by the harmonically perturbed fault, at

periods T = 0.0027 years, T = 0.027 years and T = 1 year. This Figure should be compared

to Figure 4.4, which shows the distribution of event magnitudes on the unperturbed fault.

At period T = 1 year, when the fault responds in a Coulomb-like fashion (Figure 4.7),

the distribution of magnitudes on the fault is quite similar. However, for the perturbation

periods shorter than Ta (T = 0.0027 and 0.027 years), the distribution of magnitudes is

considerably modified. The fault only produces either events of magnitude Mlin ∼ 1.05

rupturing the entire seismogenic patch or events with −0.4 ≤ Mlin ≤ 0.4, i.e., smaller on

average than the events usually produced by the unperturbed fault, which have magnitudes

−0.2 ≤ Mlin ≤ 0.6. Events of magnitude Mlin ∼ 0.94 that appear to form a stable pattern

on the unperturbed fault have completely disappeared from the seismicity on the fault

perturbed at periods T < Ta.

Figure 4.9 shows the Schuster spectra of the seismicity on the faults perturbed with

the same three periods. Except for a prominent peak at 1 year caused by the response

of the seismicity to the stress perturbation, the spectrum of the fault perturbed at 1 year
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Figure 4.8: Magnitude distribution of events happening on a fault loaded at Vpl = 1 cm/yr
(i.e., grey circles in Figure 4.7), for harmonic shear stress perturbations at periods T =
0.0027 years, T = 0.027 years (thus T < Ta) and T = 1 year (T > Ta). The other simulation
parameters are the same as for Figure 4.7. While the distribution of magnitudes produced
by the fault perturbed at 1 year is essentially the same as the one of the unperturbed fault
(Figure 4.4), the distribution is very different for the two faults perturbed at periods T < Ta.
The perturbed fault produces smaller events than the unperturbed fault, and events that
rupture the entire seismogenic patch all have Mlin ∼ 1.05. In particular, Mlin ≈ 0.94 and
Mlin ∼ 1.2 events have almost completely disappeared from the seismic population produced
by the fault.
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Figure 4.9: Schuster spectra for timing of events happening on a fault loaded at Vpl =
1cm/yr (i.e., grey circles in Figure 4.7), for harmonic shear stress perturbations at periods
T = 0.0027 yrs, T = 0.027 yrs and T = 1 yr. Other simulation parameters are the same as
for Figure 4.7. We saturated the y-axis at 10−20 in order for the plots to be readable. For
the perturbations at T = 0.0027 years (upper plot), the Schuster p-value at the perturbing
period goes up above 10−150. For the perturbations at T = 0.027 years (middle plot),
the Schuster p-value at the perturbing period goes up to about 10−2150, and all the first
harmonics go up to values above 10−100. For the perturbation at T = 1 year (lower plot), the
Schuster p-value at the annual period goes up to about 10−50. Except for the prominent
peak at T = 1 year, the spectrum of the fault perturbed at 1 year (lower plot) is very
similar to spectrum of the unperturbed fault in Figure 4.5. The spectra of faults perturbed
at T < Ta (upper and middle plot), exhibit a prominent peak at T = 0.33 years, which is
approximately the return period of Mlin = 1.05 events, indicating that these now happen
in a quasi-periodic way on the fault.
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(lower plot in Figure 4.9) is essentially the same as the spectrum of the unperturbed fault

in Figure 4.5. The periodicity at T ≈ 0.2 years, corresponding to the return period of

Mlin ∼ 0.94 events, is still in the spectrum, although not as prominent as in the unperturbed

case. The timing of these events is most likely slightly affected by the perturbation and they

do not happen as periodically as in the unperturbed case. The Schuster spectra for faults

perturbed at periods T = 0.0027 and 0.027 years are much different from the spectrum

of the unperturbed case (Figure 4.5). As expected, they have prominent periodicities at

the perturbing periods and at some harmonics of the perturbing period (the y-axis has

been saturated, the corresponding Schuster p-values are much smaller than what can be

read on the spectra), but they also exhibit very low Schuster p-values at periods around

0.33 years, which, as has been indicated earlier, approximately corresponds to the return

period of Mlin = 1.05 events on the fault. As highlighted earlier, these Mlin ∼ 1.05 events

now constitute all of the events produced on the fault that rupture the entire seismogenic

patch. Although they used to happen in a fairly chaotic way on the unperturbed fault,

the strong periodicity at their return period indicates that they now occur fairly regularly.

The characteristics of the seismicity on the fault are thus drastically changed when the

fault undergoes harmonic stress perturbations at periods T < Ta, consisting exclusively of

large Mlin = 1.05 events, almost systematically followed by two small aftershocks, with the

rare occurrence of small events during the interseismic period (this is obvious when looking

at the slip on the fault in this case, supplementary Figure S1). The perturbation seems

to have stabilized the seismic cycles dominated by Mlin = 1.05 events, while the seismic

regime stable in the case of an unperturbed fault (repeating Mlin ∼ 0.95 events) has literally

disappeared from the seismicity. It also seems that the fault is now unable to produce larger

Mlin ∼ 1.2 events.

This highlights a first major conceptual difference between the finite-fault simulations

and the SRM, which assumes that the stress perturbation simply modifies the timing of

events on the fault. Our simulations suggest that, beyond a mere change in the timing of

events, the entire set of characteristics of the earthquake population produced by the fault

is modified. This might explain why the response of the seismicity is much larger in the

case of the finite fault than with the SRM.

The modification of the seismicity pattern by the perturbation is even more obvious when

studying a fault with a smaller seismogenic patch. Figure 4.10 shows the slip on a fault of

the same size (3 km), but where the seismogenic patch is 200 m long. The unperturbed

fault (Figure 4.10a) only produces one type of an earthquake, happening like a clock with
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Figure 4.10: Unperturbed and perturbed slip evolution of a fault. a) Unperturbed evolution
of the fault, which has the same features as the previous fault, except that the seismogenic
patch is only 200 m long. In this case, the fault only produces one type of earthquake, at
equally-spaced time intervals (return period of about 0.17 years). b) Slip on the fault when
it is perturbed with a harmonically varying shear stress with period T = 0.02 years and
amplitude ∆τ = 3 kPa. The seismicity produced by the perturbed fault is much differ-
ent, illustrating that the perturbation may have a much broader impact on the seismicity
produced by the fault than just inducing a simple modification of the timing of events.

the exact same magnitude and at constant time intervals. The seismicity produced is much

less diverse than the one produced by a fault with a 500 m long patch. However, when a

small harmonic perturbation is applied, the seismicity produced by the 200 m-long patch

becomes diversified (Figure 4.10b). The patch starts to produce events that rupture the

entire seismogenic patch and events that only happen at the edges, so that the seismicity

distribution covers a larger range of magnitudes. Even more clearly here than with the

500 m patch, the introduction of an external harmonic perturbation does much more than

simply affect the timing of events: it modifies the type of earthquakes that the fault can

produce.

4.5.3 Influence of the background loading rate

In the SRM, the response of the seismicity to a harmonic stress perturbation depends on

the relative values of the perturbation’s period and the characteristic period Ta which is

inversely proportional to the secular loading rate τ̇a (equation (4.8)).

In order to see how the secular loading rate affects the frequency response of the finite

fault, we look at the frequency response under different loading velocities. In the case of

the finite fault, the relation τ̇a = kVpl is not well defined any more since τ̇a varies in space
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Figure 4.11: Stacked seismicity rate (black dots with error bars) and its fit with equa-
tion (4.19) (black line) for Mlin > 1 events only. This plot is similar to Figure 4.6, except
that we only select Mlin ≥ 1 events. Equation (4.19) fits the seismicity rate quite well,
indicating that the SRM describes qualitatively well the seismicity rate on the perturbed
fault for events rupturing the entire seismogenic patch.

and time. For example, when an event ruptures the entire patch, the following events often

happen concurrently with the afterslip of this initial event, and therefore under a higher

local τ̇a. As a result, in order to single out the effect of the secular loading, we look at

the response of Mlin > 1 events, for which afterslip does not have any effect anymore, and

which thus happen only under the loading due to the constant loading velocity applied at

the edges of the fault.

The stacked seismicity rate for these large events is represented in Figure 4.11 for the

same periods as in Figure 4.6. In this case, some of the complexity disappears and equa-

tion (4.19) gives a good fit to the seismicity rate at all periods, indicating that the SRM

provides a good qualitative representation of the seismicity.

Looking at the quantitative response, Figure 4.12 shows the response of Mlin > 1 events

to harmonic perturbations of shear stress, for different values of the background loading

velocity: the pink squares with the red line show the response for Vpl = 10 cm/yr, the

grey circles with yellow line show the response for Vpl = 1 cm/yr and the blue triangles
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Figure 4.12: Response of a rate-and-state fault to harmonic shear-stress perturbations,
for three different values of the plate loading velocity (blue triangles with the blue line:
Vpl = 0.1 cm/yr, black circles with yellow line: Vpl = 1 cm/yr, pink squares with the red
line: Vpl = 10 cm/yr) for Mlin ≥ 1 events. Other parameters of the simulation and the
method to generate the plot are the same as in Figure 4.7. The critical period Ta at which
the amplitude of the response is the largest appears to be inversely proportional to Vpl, in
qualitative accordance with predictions of the SRM. Interestingly, the value of Vpl has an
impact on the amplitude of the frequency response, especially at the critical period Ta.
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with the blue line show the response for Vpl = 0.1 cm/yr. For all these values of Vpl, the

amplitude of the harmonic response at these magnitudes always remains much greater than

the predictions of the SRM (dashed lines). In other words, if equation (4.19) provides a

good qualitative representation of the variations of the seismicity rate for large events, the

amplitude β of the response has to be much larger than the predictions of the SRM in order

to fit the seismicity rate variations, sometimes by several orders of magnitude.

In terms of the impact of the secular loading on the response of the fault to harmonic

stress perturbations, Vpl influences both the amplitude of the response and the critical period

Ta for which this amplitude is the largest (Figure 4.12). More specifically, the critical period

Ta appears to be inversely proportional to the plate velocity Vpl, analogously to the inverse

proportionality of ta and τ̇a predicted by the SRM. The amplitude of the response, however,

is not a simple translation along the periods axis as predicted by the SRM. The amplitude

at the critical period Ta seems to increase as Vpl gets smaller. The difference is not obvious

between loading velocities Vpl = 1 and 10 cm/yr, but the peak amplitude at Vpl = 0.1

cm/yr is about 2 orders of magnitude larger than at Vpl = 1 cm/yr. Such a peak looks like

a resonance at the characteristic return period of events TRET, but would have no obvious

reason to happen at T = 1 year for Vpl = 0.1 cm/yr, and not at T = 0.1 years for Vpl = 1

cm/yr, since TRET ∝ 1/Vpl (equation (4.15)).

The inverse dependence of Ta on the loading rate appears in other features of the re-

sponse of seismicity. For instance, comparing the frequency response of all and Mlin > 1

events for Vpl = 1 cm/yr (grey circles with yellow line respectively in Figures 4.7 and 4.12),

the critical period Ta is higher for the response of Mlin > 1 events. This simply comes

from the fact that smaller events (i.e., events that only rupture an edge of the seismogenic

patch) often occur concurrently with the afterslip of large events, and hence they have a

higher loading rate than larger events, and, assuming an inverse variation of Ta with τ̇a,

their apparent Ta is smaller. When looking at all events together (Figure 4.7), since there

are more smaller events than larger events, the global variations of seismicity rate on the

fault are dominated by those of the smaller events, and therefore the apparent Ta is the one

of the smaller events.

Events that rupture the entire seismogenic patch and have a magnitude Mlin > 0.9 are

usually followed by two aftershocks. Comparing the timing of these first two aftershocks

with the stress perturbation ongoing on the fault brings to light another manifestation of

the inverse dependence of Ta on the loading rate. Figure 4.13 shows the distribution of the

timings of Mlin > 0.9 events stacked over one perturbing period and the relative timing
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Figure 4.13: Timing of mainshocks (Mlin > 0.9) stacked over the perturbing period (T =
0.027 yrs) for a fault loaded at Vpl = 1 cm/yr, and relative timing of the first two small
aftershocks (Mlin < 0.75). The time distribution of the mainshocks is indicated with black
bars, while the one of the aftershocks is indicated with grey bars. The dashed grey sine-wave
schematically shows the phase of the stress applied on the fault. The timing of aftershocks
seem largely affected by the stress perturbation and their phase with respect to the stress
perturbation varies through time, owing to the influence of the afterslip caused by the
mainshock.
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of the first two aftershocks. Note that Mlin > 0.9 events are about the same set as the

Mlin > 1 events, as the distribution of magnitudes from Figure 4.8 indicates that very few

events have magnitudes between 0.9 and 1. After a Mlin > 0.9 event happens, afterslip at

the edge of the seismogenic patch induces the stressing rate τ̇a to suddenly increase, and

then slowly decay back to its interseismic value (e.g., Perfettini and Avouac, 2004). The

inverse dependence of Ta with the loading rate would thus cause Ta to suddenly drop after

the mainshock (i.e., the Mlin > 0.9 event) and then increase back to its interseismic value.

With this expected variation of Ta in mind, the variation of phase of aftershocks in

the case of a perturbing period T = 2.7 × 10−3 years (Figure 4.13 upper plot) can be

understood. Figure 4.12 (grey circles with yellow line) indicates that the phase Φ between

the seismicity rate of large events and the shear stress perturbation is slightly negative,

meaning that the peak of seismicity rate happens slightly after the peak of stress when no

afterslip occurs. However, Figure 4.13 (upper plot, T = 0.0027 years) shows that if the

mainshocks have an expected slightly negative phase, the aftershocks have different phases

depending on their timing relative to the mainshock. Aftershocks happening within one

period of the mainshock have a positive phase Φ > 0 (they happen before the maximum of

the shear stress, almost at the maximum of shear stress rate), while the phase of aftershocks

happening around 9 or 10 periods later drops to Φ ≈ −π/4 and then gradually increases

to Φ ∼ 0 for aftershocks happening 14 or more periods after the mainshock. Noting from

Figure 4.12 that Φ > 0 corresponds to Ta < T , Φ ≈ −π/4 to Ta & T and Φ ∼ 0 to Ta � T ,

this variation of phase can indeed be explained by the value of Ta dropping right after the

mainshock and then slowly increasing, while the period T of the stress perturbation remains

the same.

The case of the perturbing period T = 0.027 years (Figure 4.13 middle plot) displays

a similar pattern. The mainshocks happen with a slightly negative phase (T < Ta ac-

cording to Figure 4.7), and the aftershocks happen within either 1 or 2 periods of the

mainshock. Aftershocks happening within one period of the mainshock have an almost π/2

phase (Coulomb regime, Ta � T ), while the phase of the ones happening during the next

period starts decreasing (Ta . T ).

Figure 4.13 also shows the case of a perturbing period T = 0.1 years (lower plot), which

illustrates the complexity of the seismicity on the fault. The mainshocks are getting close

to the Coulomb regime (Φ > 0 in Figure 4.12 for T = 0.1 years), and so the aftershocks

would tend to remain in the same regime when decreasing Ta as τ̇a increases due to after-

slip. However, in this case, the period of the perturbation becomes larger than the typical
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mainshock-aftershock time, which is usually less than 0.05 years, as can be seen in the cases

of perturbations periods T = 0.0027 and T = 0.027 years. As a result, when mainshocks

happen at the beginning of the period, which is the case for the majority of them, induced

aftershocks cannot “wait” an entire period to happen, and they nucleate before the end of

the period as soon as the stress on the fault starts increasing again. The global shear stress

reduction due to the perturbation thus still appears to prevent them from nucleating, but

as soon as the perturbing stress starts increasing again, these events nucleate, resulting in

a peak in the seismicity rate at the end of the period. These considerations explain the

complexity that is observed in the seismicity rate in Figure 4.6 for periods T = 0.027 and

0.1 years: the different peaks in the seismicity rate within one period correspond to dif-

ferent populations of events that happen under different loading conditions, and thus with

different phases. Stacking them altogether thus results in a complex seismicity rate that

equation (4.19) thus cannot fit properly. This explains why isolating large events as is done

in Figure 4.11, which all respond with the same phase, leads to a much more successful fit

of equation (4.19) to the seismicity rate.

4.5.4 Influence of the characteristic rate-and-state slip Dc

Studying the influence of Dc is challenging, because varying the value of Dc on the fault has

several implications. When Dc increases, equation (4.13) indicates that the nucleation size

of events increases proportionally. When the nucleation size is not small enough compared

to the length of the seismogenic patch (typically, when the nucleation size becomes larger

than a tenth of the length of the seismogenic patch), only events of similar magnitude

rupturing the whole patch occur. Such a regular seismicity has a different behavior, with

resonances appearing between the return period of events produced and the period of the

perturbation, and comparing the response of such a fault to the response of a fault able

to produce a wide range of magnitudes becomes difficult. On the other hand, when Dc

decreases, the size of the cohesion zone defined in equation (4.10) decreases proportionally,

and the cell size for the simulation has to be reduced accordingly, which requires longer

simulation times. Therefore, the parameter Dc can only be varied within a limited range of

values.

Nevertheless, equations (4.10) and (4.13) indicate that both the size of the cohesion

zone and the nucleation size are proportional to Dc/σ. In theory, varying Dc and σ so that

the ratio Dc/σ remains constant should therefore result in both a constant nucleation size

and a constant size of the cohesion zone, i.e., a constant cell size required to simulate the
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evolution of slip on the fault. Since such simulations alone cannot assess whether changes

in the fault response are due to variations of Dc or σ, we therefore run simulations where

we vary only Dc, simulations where we vary only σ, and simulations where we vary both

Dc and σ together keeping the ratio Dc/σ constant. The last type of simulations lets us

vary Dc over a wider range of values than the first two types of simulations.

First, we look at the response of the fault to harmonic perturbations for a reduced

range of values of Dc (Dc = 1, 2, 5 and 10 µm) keeping the other parameters constant.

When varying Dc, the characteristic period Ta at which the amplitude of the seismicity-rate

variations is the largest seems to remain approximately proportional to Dc (Figure 4.14).

Figure 4.14 also seems to indicate that the amplitude of the variations of the seismicity rate

at perturbing period Ta increases with Dc, although this could be due to a period-sampling

effect, i.e., the periods chosen for simulation.

The case of Dc = 10 µm (blue triangles in Figure 4.14) is presented in Figure 4.14 in

order to show the complexity and the nonlinearity of the response, but actually does not

provide much insight about the value of Ta. In this case, the nucleation size is too large for

the unperturbed fault to produce a variety of magnitudes, and only Mlin = 1.09 event are

produced at the regular return period of 0.38 years. Some complexity happens when the

fault is perturbed at periods smaller than this regular return period, similarly to the fault

shown in Figure 4.10. But when the fault is perturbed around the return period of events,

the timing of seismic events starts to resonate with the perturbation and the amplitude

of the response becomes quite large. The peak at 0.3 years in Figure 4.14 is due to this

resonance and precludes us from determining Ta and the associated peak for this set of

parameters if such resonance did not exist (i.e., for a longer fault segment).

Note that in the cases of Dc = 1, 2 and 5 µm, the period Ta is smaller than the

characteristic return period of events considered on the fault. For Dc = 5 µm, the return

period of events rupturing the whole patch (i.e., Mlin ≈ 1.05 events) is about 0.31 years and

Ta ≈ 0.08 years, while for Dc = 1 and 2 µm, the return period of the considered events is

about 0.15 years (Mlin ≈ 0.85) whereas Ta ≈ 0.02 or 0.03 years. In these cases, the increase

of the response amplitude is thus not due to a resonance with the natural return period of

events. The fact that a resonance at the return period of considered events will impair the

determination of Ta is also illustrated in Figure S8 in the supplementary material, where

we compare the response of a fault with Dc = 1 µm and σ = 1 MPa to stress perturbations

of amplitude ∆τ = 0.6 kPa and ∆τ = 3 kPa. Figure S8 is coincidently a good illustration

of the nonlinearity of the response of the finite fault with ∆τ .
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Figure 4.14: Response of a finite rate-and-state fault to harmonic shear-stress perturbations
for four different values of the fault parameterDc, for events rupturing the whole seismogenic
patch. Other parameters are the same as in Figure 4.7. Blue triangles with the blue line:
Dc = 10 µm; black circles with yellow line: Dc = 5 µm; pink squares with the red line:
Dc = 2 µm; light grey circles with green line: Dc = 1 µm. The critical period Ta at
which the amplitude of the response is maximum seems to be approximately proportional
to Dc. The peak in amplitude in the case of Dc = 10 µm is due to a resonance at the return
period of typical events produced by the fault, which makes it dependent on the seismogenic
segment size and hence different from Ta dependencies in other cases.
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Figure 4.15: Response of a finite rate-and-state fault to harmonic shear-stress perturbations
for three different values of the fault parameter Dc, as well as varying σ and ∆τ to keep
ratios Dc/σ and ∆τ/aσ constant for the three simulations. Only events rupturing the whole
seismogenic patch are used to compute the variations of seismicity rate. Blue triangles with
the blue line: Dc = 50 µm; black circles with yellow line: Dc = 5 µm; pink squares with
the red line: Dc = 1 µm. Other parameters of the simulation and the method to generate
the plot are the same as in Figure 4.7. Similarly to Figure 4.14, the period Ta at which the
amplitude of the response is maximum seems to be proportional to Dc.
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Now that the influence of Dc alone has been examined, we vary Dc and σ together

keeping the ratio Dc/σ and thus the nucleation size constant. In this case, we also vary the

amplitude of the stress perturbation ∆τ from one set of parameters to the other so that the

ratio ∆τ/aσ remains constant. Doing so over a wider range of values for Dc than previously

explored (Dc = 1, 5 and 50 µm), the position of the characteristic period Ta seems again

to be proportional to Dc, indicating that Ta varies with Dc but not with σ (Figure 4.15).

Besides, as before, the amplitude of the variations of seismicity rate at Ta seems to increase

as Dc increases.

It is noteworthy that the phase associated with this response (lower plot in Figure 4.15)

seems to display anomalies, especially obvious around T = 0.05 years for Dc = 1 µm and

around T = 0.3 years for Dc = 5 µm. In the case Dc = 1 µm and thus σ = 1 MPa, the

larger events produced by the fault have a magnitude of Mlin ∼ 0.5 which would have a

return period of T (Mlin ∼ 0.5) ≈ 0.05 years, according to equation (4.16). Similarly, as

has been mentioned earlier, the period T = 0.3 years corresponds to the return period of

large characteristic Mlin ∼ 1.05 events produced by the fault when Dc = 5 µm and thus

σ = 5 MPa. These anomalies in phase are thus most likely due to a resonance between the

perturbing period and the natural return period of the considered events. This resonance

can also be detected at a much lower level on the amplitude plot, without affecting the

general trend of the response. This is why it is preferable to select the values of Ta from

the amplitude response curve.

Finally, in order to validate the assessment that the critical period Ta does not depend

on the normal stress σ, we simulate the response of the finite fault for different values of σ,

holding all other parameters constant. As equations (4.10) and (4.13) suggest, this exposes

us to the same challenges as varying Dc in terms of the impact on the nucleation size and

the size of the cohesion zone. Figure 4.16 displays again the response of the fault with σ = 5

MPa (dark grey circles with yellow line) together with the response when we increase the

normal stress to 12.5 and 25 MPa (respectively pink squares with the red line and light grey

circles with green line). In terms of the impact on the nucleation size, these two values of

the normal stress are respectively equivalent to Dc = 2 and 1 µm (respectively pink squares

with the red line and light grey circles with green line in Figure 4.14). Whereas decreasing

Dc to 1 or 2 µm proportionally decreases the critical period Ta (Figure 4.14), increasing σ

to either 12.5 or even 25 MPa does not have any systematic effect on Ta.
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Figure 4.16: Response of a finite rate-and-state fault to harmonic shear-stress perturbations
for three different values of the normal stress σ, for events rupturing the whole seismogenic
patch. Large dark grey circles with yellow line: σ = 5 MPa, pink squares with the red line:
σ = 12.5 MPa, small light grey circles with green line: σ = 25 MPa. The last two values of σ
are respectively equivalent to Dc = 2 µm (pink squares with the red line in Figure 4.14) and
Dc = 1 µm (small light grey circles with green line in Figure 4.14) in terms of changing the
nucleation size and the size of the cohesion zone. As for Figure 4.14, the grid size has been
changed accordingly. Unlike Dc, the normal stress does not seem to change the position of
the critical period Ta.
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4.6 Step response of a rate-and-state seismogenic fault

If the response of the seismicity to a shear stress history τ(t) applied on the fault was linear

with the stress rate, the corresponding seismicity rate on the fault R(t) could be written as

a simple convolution:

R(t) = G(t) ∗ τ̇(t), (4.22)

where the Green’s function G(t) would be the response of the seismicity to a Dirac function

for the stress rate, i.e., to a step function in stress. In other words, G(t) would simply be

the seismicity rate of an aftershock sequence following a stress step of unit amplitude.

In this section, we therefore examine the response of the finite fault to a step-like per-

turbation in stress, and see to which extent it compares with the harmonic response of

the fault described in the previous section. We do not study the step response in as much

detail as the harmonic response. The goal of this section is to highlight some of the inher-

ent properties of the finite fault revealed in the previous section and to also illustrate the

nonlinearity of the response of the fault to stress perturbations.

In order to determine the response of a finite fault to a step-like perturbation of stress,

we consider the fault presented in section 4.4 and alternatively impose steps of shear stress

of amplitude ∆τ = 40 kPa and -40 kPa so that |∆τ/aσ| = 1. With this mode of perturba-

tion, the mean of the stress perturbation is zero in the long term, so that no shear stress

accumulates on the fault. As in the previous section, the fault is loaded at three different

plate velocities: Vpl = 0.1, 1 and 10 cm/yr. When the fault is loaded at Vpl = 0.1 cm/yr,

the stress steps are applied every 50 years, whereas they are applied every 5 years when

Vpl = 1 or 10 cm/yr. These time intervals are chosen because they are much longer than the

characteristic time of response of the seismicity to a stress perturbation (e.g., Figure 4.12),

so that the transitory response of the seismicity to the step is over when the next step is

imposed on the fault. Besides, Figure 4.5 shows that 5 years does not correspond to any

natural periodicity of the fault loaded at Vpl = 1 cm/yr, so that the steps happen at random

times within the seismic cycle of the fault. This remains true for the two other loading ve-

locities studied (Vpl = 0.1 and 10 cm/yr). This can also be verified a posteriori by checking

that the distribution of the time intervals between the last event and the stress step has an

exponential distribution (see supplementary Figure S5 for the case Vpl = 1 cm/yr).

Given that the stress steps are imposed at random times during the interseismic period,

in order to study the response of a population of faults that would be at different stages of

their interseismic cycle, we stack the timing of events happening around the positive stress
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steps, taking the time of the stress step as an origin of times. For instance, in the case of

the fault loaded at Vpl = 1 cm/yr, we select events happening between 0.2 years before and

1 year after the stress step is imposed. This time window is multiplied or divided by 10

when Vpl is respectively divided or multiplied by 10, and it has been chosen in regard of the

results of the frequency response of the fault, where we determined that the characteristic

period was of the order of Ta = 2πta ≈ 0.1 years (Figure 4.12), which would correspond to

a characteristic time of response to a stress-step perturbation of ta ≈ 0.02 years.

As described in section 4.3, the SRM by Dieterich (1994) determines the cumulative

number of events in response to a step of shear stress happening at time t = 0 for a spring-

slider model under rate-and-state rheology. Similarly as in the case of the response to a

harmonic variations of stress, we fit the cumulative number of events produced by the finite

fault with an expression analogous to the prediction of the SRM (equation (4.6)):

N(t)
r

= t+ ta ln
[
eβ +

(
1− eβ

)
e−t/ta

]
H(t), (4.23)

where the parameters β and ta are determined to fit the results of the simulation. In the

SRM, equation (4.6) indicates that βSRM = ∆τ/aσ and ta|SRM = aσ/τ̇a. Besides, according

to equation (4.23), the total number of events in the aftershock sequence is:

Na

r
= βta, (4.24)

which in the case of the SRM reduces to

Na

r

∣∣∣∣
SRM

=
∆τ
τ̇a
. (4.25)

Figure 4.17 shows the cumulative number of events before and after the stress step is

imposed (black curve), where the ranges plotted on the axes have been scaled by a factor

inversely proportional to Vpl. It also shows the fit of equation (4.23) to the cumulative

number of events using β as a free parameter (dashed dark-grey curve), or imposing the value

β = βSRM = ∆τ/aσ = 1 (dashed light-grey curve). Similarly to the case of the response to

a harmonic stress perturbation, the SRM qualitatively reproduces the behavior of the finite

fault but underestimates the amplitude of the response. In other words, equation (4.23)

fits well the cumulative seismicity rate in Figure 4.17, but the best-fit value of β is much

larger than what the SRM would predict. Imposing β = βSRM = ∆τ/aσ as prescribed by

the SRM and solving only for ta never leads to a good fit (the best fitting curve with βSRM
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Figure 4.17: Cumulative number of events with time in response to a step of shear stress
of amplitude ∆τ/aσ = 1 at time t = 0, for three values of the loading rate (Vpl = 0.1, 1
and 10 cm/yr). The other parameters of the simulations are the same as in section 4.4.
Black curves show the cumulative number of events from the simulation, the dashed dark-
grey curve shows the fit of equation (4.23) to the cumulative distribution of events, where
parameters r, ta and β are determined to fit the results of the simulations. The dashed
light-grey curve shows the fit with equation (4.23) imposing the β-value prescribed by the
SRM (i.e., βSRM = 1 in this case) and fitting for the best value of ta. Note that the ranges
plotted on both axes are scaled by a factor proportional to 1/Vpl. As for the harmonic
response, the equation predicted by the SRM qualitatively fits the response of the finite
fault, but underestimates the amplitude of the response (parameter β).
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is the dashed light-grey curve in Figure 4.17).

The value of ta obtained from the fit of equation (4.23) to the cumulative number of

events in the aftershock sequence generated with the finite-fault simulations (ta = 0.2 years

in the case Vpl = 1 cm/yr) is 10 times larger than the one computed in the case of the

harmonic response (ta = 0.01 years). This points out the nonlinearity of the response of a

fault to a stress perturbation, and therefore the challenge underlying the quest of a general

simple law linking the stress history on a fault and the resulting seismicity rate.

The characteristic time of response of the seismicity ta is found to be inversely propor-

tional to the loading velocity Vpl (Figure 4.17), as in the case of the response to a harmonic

perturbation and as predicted by the SRM. This finding also concurs with the observations

of Toda et al. (2002), who reported that the characteristic duration of aftershock sequences

in the Izu islands had decreased by a factor ∼ 1000 during dyke intrusions that increased

the background stressing rate by a factor ∼ 1000. Besides, as for the response to a harmonic

perturbation, varying Vpl has an impact on the amplitude β of the response. However, the

relation between amplitude β and background velocity Vpl seems different in both cases:

the amplitude β of the response here appears to increase when Vpl increases, whereas β

decreases when Vpl increases in the harmonic response. This points out another nonlinear-

ity of the response of the fault to stress perturbations, indicating that looking for a linear

relation such as the one described in equation (4.22) would be bound to fail.

Recall that in the case of the periodic perturbation, the magnitude distribution of events

was different in the unperturbed and perturbed cases. Let us explore this phenomenon here.

Figure 4.18 shows the distribution of magnitudes of the first three aftershocks happening

after each stress step, together with the magnitudes of the background seismicity on the

same fault and the magnitudes of events produced by an unperturbed fault, in the case

of Vpl = 1 cm/yr. The background seismicity is defined here as the seismicity between 1

and 4 years after the stress step has been applied on the fault (recall that the stress steps

are applied every 5 years), a time window chosen so that the effect of the stress step has

died off. As expected, the background seismicity on the perturbed fault is the same as

the seismicity on the unperturbed fault, but aftershocks induced by the stress step have

a very different distribution of magnitudes. Some of these aftershocks have much smaller

magnitudes than the unperturbed fault can produce (magnitudes between -0.6 and -0.2),

while conversely, the proportion of aftershocks of magnitude Mlin > 1 is higher than the

number of Mlin > 1 events on the unperturbed fault. It is noteworthy that while applying

a step-like stress perturbation or a harmonic stress perturbation causes a change in the
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Figure 4.18: Magnitude distribution (top) of the first three aftershocks after the fault
undergoes a stress step, (middle) of the background seismicity, i.e., the seismicity starting
one year after the stress step has been applied, a time long enough for the the stress step
not to have any effect anymore, and (bottom) of events from the unperturbed catalog. The
fault has the same properties as in Figure 4.17, and is loaded at Vpl = 1 cm/yr. As for the
response to a harmonic perturbation, the seismicity on the fault perturbed by a stress step
is quite different from the one generated by the fault evolving unperturbed.
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distribution of magnitudes produced by the fault, applying a random stress perturbation

on the fault does not modify the type of events produced (Figure S6).

The results of the step response of the finite fault are thus quite similar to the ones for

the harmonic response, and lead again to the major conclusion that the finite fault is much

more sensitive to stress perturbations than the SRM predicts.

4.7 Discussion

4.7.1 Critical perturbation period on a finite fault

A major analogy between the finite-fault and the SRM is the existence of two regimes

for the response to harmonic stress perturbations: the seismicity correlates with the stress

perturbation at periods T shorter than Ta, whereas it correlates with the stress-rate pertur-

bation at periods larger than Ta. In the SRM, the characteristic period separating the two

regimes is Ta = 2πta = 2πaσ/τ̇a, where the secular shear stress is τ̇a = kVpl, k being the

spring stiffness. The fact that Ta seems to be proportional to 1/Vpl in the finite-fault model

suggests that this relation should be to some extent transferable to the finite-fault model.

The main issue in doing so is the fact that whereas k and τ̇a are constant in space and

time and thus well defined in the SRM, they are not in the finite-fault model: depending

on where and when on the seismogenic patch one measures the shear-stress rate, the value

varies a lot (Figure S2).

As has been pointed out earlier, the fact that an event correlates in time with the

stress perturbation is determined by the sensitivity of the nucleation zone at the onset of

nucleation. In order to derive the expression of the characteristic period Ta, we therefore

consider for τ̇a what would be the shear stress rate on the fault at the onset of rupture,

when the nucleation zone reaches its critical size. Writing τ̇a = kff Vpl, where kff would be

the equivalent stiffness of the finite fault, kff = G/H, where G is the shear modulus and H

the characteristic length over which interseismic deformation is accumulated.

Taking for H the whole length of the rate strengthening zone leads to τ̇a = 250 kPa/yr,

which is much less than any shear stress rate measured on the seismogenic patch during

the nucleation (the smallest value is 1250 kPa/yr, Figure S2). Also, decreasing the size of

the creeping zone by a factor of 2 does not modify the response of the seismogenic patch

to a harmonic perturbation (see Figure S4 for a comparison when the size of the creeping

zone is divided by 2), indicating that as long as the rate-strengthening zone is large enough

to prevent any boundary effects, its actual size does not influence the behavior of the
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seismogenic patch.

Instead, one can assume that the characteristic length over which interseismic defor-

mation is accumulated is of the order of a few times the critical nucleation size (Kaneko

and Lapusta, 2008): H = κh∗, where h∗ is the critical nucleation size defined in equa-

tion (4.13) and κ a factor of the order of a few units. In this case, the critical period

Ta = 2πta = 2πaσ/τ̇a is

Ta = 2πκ
a

F (a, b)
Dc

Vpl
. (4.26)

Taking for F (a, b) the expression by Rubin and Ampuero (2005) leads to a background shear-

stress rate τ̇a = 13.3/κ MPa/yr, i.e., κ ∼ 10 given that in the nucleation zone τ̇a ≈ 1.25

MPa/yr at the crack tip at the onset of nucleation (supplementary Figure S2). With this

value of κ, equation (4.26) yields Ta = 0.2 years, which is of the order of magnitude of what

can be read in Figure 4.12. Equation (4.26) also reproduces the dependence on Dc/Vpl

described in the section 4.5, and as expected does not a priori depend on the normal stress

σ. It is possible that the prefactor κ slightly depends on σ, but this dependence would be

of lesser amplitude than the dependence of Ta on Dc/Vpl, as discussed in section 4.5.4.

With a mechanism of nucleation so different between the finite fault and the SRM, it

is actually interesting that the qualitative predictions for the seismicity rate of the SRM

(equation (4.19)) reproduce the seismicity rate of the finite-fault model so well (Figure 4.11).

4.7.2 High sensitivity of finite faults to stress perturbations

The fact that the finite fault is more sensitive to step-like stress perturbations than the

predictions of the SRM had already been pointed out by Kaneko and Lapusta (2008). They

showed that nucleation zones that contribute to aftershock response do not always satisfy the

approximation made by Dieterich (1994) that V θ/Dc � 1 when the perturbation is applied.

Replacing this approximation by the condition V θ/Dc = 1 before the perturbation and

V θ/Dc � 1 only after the perturbation, they proposed a new expression for the amplitude

of the response of the seismicity to a step-like stress perturbation (equation (D11) in Kaneko

and Lapusta (2008)), which in our case would give βKL ≈ 1.6. This estimate is therefore

slightly closer than βSRM to the values obtained in Figure 4.17 (β = 2.6 for Vpl = 0.1 cm/yr

and β = 3.7 for Vpl = 1 and 10 cm/yr), but still underestimates the amplitude of the

response. Applying the approach of Kaneko and Lapusta (2008) to the case of a harmonic

stress perturbation leads to a response of amplitude βKL = ∆τ/(b − a)σ, twice as large

as the predictions of the SRM since in our simulations a is twice as large as b − a. These
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modifications to the SRM could partly explain the larger sensitivity of the finite fault, since

at periods T � Ta, β/βSRM ≈ 3 (Figure 4.12), but the finite fault is still more sensitive

than this modification would prescribe.

Besides, the considerations by Kaneko and Lapusta (2008) do not capture the period-

dependent response of the finite fault at periods T < Ta. Ader et al. (2012b) showed that the

amplitude of slip-rate variations of a spring-slider system with rate-strengthening rheology

under harmonic stress perturbations may be period dependent at periods T < Ta. In their

study, the period dependence comes from the fact that if the period T of the perturbation

is smaller than the period Tθ = 2πθss = 2πDc/Vss, where θss is the the characteristic time

of evolution of the state variable (equal to the steady-state value of the state variable),

and Vss is the steady-state creep rate, the amplitude of the variations of creep rate is

∆V/Vss = ∆τ/aσ, whereas when T > Tθ, ∆V/Vss = ∆τ/(a− b)σ. Such a period-dependent

response may therefore be at play in the rate-strengthening part of the finite fault, but it

does not appear be responsible for the period-dependent response of the seismogenic patch.

Supplementary Figure S9 shows the response of the finite fault where we have imposed b = 0

in the rate-strengthening areas of the fault, so that the response of the rate-strengthening

areas cannot be period dependent any more since a− b = a. Such a modification does not

alter the period-dependent response of the seismicity.

Basing their study on the behavior of a spring-and-slider system with rate-weakening

rheology, Perfettini et al. (2001) demonstrated the possibility of a resonance of the slip

rate in the nucleation zone with a harmonic perturbation of normal or shear stress at the

critical period Tc = 2π
√
a/(b− a)(Dc/VN ), where VN is the loading velocity on the spring-

slider. However, that resonance would have a noticeable effect only for perturbing periods T

within 5% of Tc. In the finite-fault simulations presented earlier, the increase of correlation

is noticeable at periods two orders of magnitude around the critical period Ta (Figure 4.12).

Since the fault parameters a, b and Dc are constant in the simulations, this would require the

background slip velocity VN in the nucleation zone to be such that Ta ≈ Tc, and vary over

approximately two orders of magnitude. Supplementary Figure S3 shows that the velocity

in the nucleation zone is of the order of 0.1 cm/yr during most of the nucleation phase, and

ranges from 0.04 cm/yr to 0.2 cm/yr at the onset of nucleation, corresponding to resonance

periods Tc ranging from 0.02 to 0.1 years. The amplitude of the response of the seismicity

on the finite fault to harmonic shear-stress perturbations is at least 3 times larger than

the predictions of the SRM for periods ranging from 10−3 years to 1 year, therefore larger

than the range possibly covered by Tc. Therefore, this resonance phenomenon probably
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explains a part of the high correlation around these periods, but cannot alone explain the

high sensitivity of the finite fault to stress perturbations.

We showed earlier that events correlate with the shear-stress perturbation independently

of their magnitude (Figures 4.7 and 4.12). An event nucleates on the fault when the nu-

cleation zone (i.e., the zone at the edge of but within the seismogenic patch that creeps)

reaches a critical size, and what then determines the size of the event is the distribution of

pre-stresses on the fault (e.g., Kaneko and Lapusta, 2008). The fact that there is no obvi-

ous relation between the size of an event and its correlation with the stress perturbation

therefore indicates that the correlation with the loading stress happens at the nucleation of

events. Since there is no gradually growing nucleation zone during the interseismic period

in the SRM, where the slider moves uniformly, this might explain the higher sensitivity of

the finite-fault model to stress perturbations.

Under the premise that the correlation of the timing of events with the stress per-

turbation is determined at the nucleation, the high sensitivity of the finite fault can be

heuristically understood following Griffith’s theory (Griffith, 1924). Calling l the size of

the nucleation zone, the energy δEs necessary to increase this size by a length δl is the

surface energy associated with the crack faces, i.e., the energy required to break the bounds

holding both sides of the fault together. This surface energy is δEs = 2γδl, where γ is the

surface free energy (e.g., Segall , 2010), depending on the material properties. Increasing

the size of the nucleation zone by a length δl also releases the elastic energy δEel ∝ K2δl

(e.g., Segall , 2010), where the stress intensity factor K ∝ ∆τ
√
l, and where ∆τ is the stress

drop. δEel/δl may therefore be expressed as δEel = αl∆τ2δl, where α is another constant

depending on the material properties. Therefore, the energy necessary in order to increase

the size of the nucleation zone by a length δl is

δE

δl
= 2γ − αl∆τ2. (4.27)

This energy thus decreases as the size of the nucleation zone increases. As long as the

nucleation zone is small enough for δE/δl to be positive, energy has to be brought to the

fault in order to increase the size of the nucleation zone, which therefore grows slowly under

the influence of the secular loading. Conversely, when the nucleation zone is large enough

so that δE/δl < 0, increasing the size of the nucleation zone globally releases energy, so

that the rupture propagates by itself and a seismic event is generated. At the onset of

nucleation, δE/δl ≈ 0. The stress drop can be expressed as ∆τ = τ(t) − µdσ, where µd is
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the dynamic friction on the fault and where the total shear on the fault τ(t) contains the

external load perturbations, so that any small external perturbation of stress determines

how the nucleation zone grows. The timing of the event will thus highly correlate with the

perturbation.

Once an event has nucleated, it will rupture the entire seismogenic patch only if the

distribution of pre-stresses on the seismogenic patch is adequate. Otherwise, the rupture

will not be able to propagate and the event will only cover an edge of the patch. This

would explain why we observed different magnitude distributions on the unperturbed and

perturbed faults in the finite-fault model. If the perturbation modifies the relative evolutions

of the size of the nucleation zone and of the pre-stresses on the fault, new magnitudes will be

produced. For instance, whereas the finite fault does not produce any event of magnitude

Mlin < −0.2 when left unperturbed (Figures 4.4b), it is able to produce events of magnitude

as low as Mlin = −0.6 when perturbed (Figure 4.8 for harmonic and Figure 4.18 for step-

like shear-stress perturbation). This indicates that in some cases, the perturbation causes

the nucleation zone to grow and reach its critical size while the pre-stresses on the fault

are still lower than they would be at this point on an unperturbed fault, which leads to

smaller events. The fact that both Mlin ∼ 0.95 and Mlin ∼ 1.2 events disappear from the

perturbed fault indicates that in some cases, the perturbation either delays or accelerates

the nucleation when an unperturbed fault would have nucleated. This indeed indicates a

high sensitivity of the propagation of the crack tip to any stress perturbation at the onset

of failure. We also pointed out the occurrence of a larger proportion of Mlin ∼ 1.2 events

following a stress step than on an unperturbed fault. These events are most likely events

that are already close to nucleating when the stress step is applied: the stress step therefore

increases the already-high pre-stresses on the fault without changing much the timing of

the event, yielding events rupturing the entire patch with a larger-than-average slip.

The variations of pre-stresses due to applied stress perturbations on the fault therefore

appear to have an impact on the size of the events produced, whereas the timing of events

is rather related to the modified growth of the nucleation zone under the influence of the

stress perturbation. Understanding how the nucleation zone grows under the influence of

a stress perturbation is therefore most likely a prerequisite for the establishment of a fully

analytical framework describing the correlation of the timing of events with a given stress

history in terms of the problem’s parameters.
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4.7.3 Implications for the estimation of aσ

A recurring feature in the behavior of a finite fault undergoing a stress perturbation is

that the amplitude of the response is much larger than the predictions of the SRM. This

observation calls for caution regarding the estimates of aσ computed from the response

of seismicity to stress perturbations, which are usually based on the predictions of the

SRM (Cochran et al., 2004; Bettinelli et al., 2008; Gross and Kisslinger , 1997; Gross and

Bürgmann, 1998; Toda et al., 1998, 2012).

In order to compute aσ, one generally estimates the amplitude β of the relative variations

of seismicity rate in response to a stress perturbation. In the case of periodic variations,

β is half the peak to peak value of the seismicity rate, whereas for an aftershock sequence,

a fit of equation (4.23) to the cumulative number of events is necessary to estimate β.

Considering that this amplitude can be expressed as a function of the problem parameters

with the predictions of the SRM, aσ = ∆τ/β, where the amplitude ∆τ of the perturbation

can be evaluated provided the fault geometry at the location of the events considered.

However, the finite fault simulations indicate that the amplitude of the correlation is

much larger than the predictions of the SRM, so that it may be possible to observe a strong

response of the seismicity to a shear stress perturbation without necessarily requiring very

small values of aσ.

In the case where the finite fault is subjected to harmonic stress perturbations, the

amplitude of the response at T = 0.0027 years is 5 times larger than what would be predicted

by the SRM. This cannot be due to a resonance with the return period of events on the

fault, as T = 0.0027 years is two orders of magnitude less than the natural periodicities

on the fault (Figure 4.5). At T = 0.027 years, the amplitude of the response is about

20 times larger than the predictions of the SRM. As a result, using the SRM to explain

the large amplitude of the seismicity rate variations at T = 0.027 years, knowing that the

perturbation has a ∆τ = 3 kPa amplitude yields aσ ≈ 2 kPa, where in fact aσ = 40

kPa. This could have important implications for values of aσ that have been estimated on

real faults from their response to a periodic perturbation (Cochran et al., 2004; Bettinelli

et al., 2008). The actual value of aσ in the seismogenic zone might actually be orders of

magnitudes larger than the value computed with the SRM, which would then allow the

effective normal stress to be as large as the overburden minus hydrostatic pore pressure at

seismogenic depths.

The same conclusions remain true when estimating aσ from aftershock sequences with

the SRM predictions (Gross and Kisslinger , 1997; Gross and Bürgmann, 1998; Toda et al.,
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1998, 2012). Gross and Kisslinger (1997) and Gross and Bürgmann (1998) actually used

the total number of aftershocks Na to first estimate τ̇a from the predictions of the SRM

with equation (4.25) and then to obtain ta from the fit of equation (4.23) to the cumulative

number of events, to finally estimate aσ = taτ̇a. This procedure is equivalent to estimat-

ing aσ = ∆τ/β from the β-value from the fit. As our finite-fault simulations show, the

observed value of β is greater than the predictions from the SRM, which would lead to

underestimating aσ, as in the case of the harmonic response.

Similar issues with estimating aσ from observations using the spring-slider-based SRM

equations have been pointed out by Kaneko and Lapusta (2008) for a different finite-fault

problem.

4.8 Conclusions

The response of a continuum model of finite seismogenic patch with rate-and-state rhe-

ology surrounded by creeping areas subjected to a stress perturbation appears to mimic

the observed behavior of seismogenic faults in lab experiments and in nature. To some

extent, the results can be qualitatively reproduced by Spring-slider Rate-and-state Models

(SRMs) such as the model proposed by Dieterich (1994), although some of the features

observed in the lab or on natural faults can only be successfully reproduced by the finite-

fault model. Quantitatively, the finite fault is much more sensitive to stress perturbations

than the SRM, suggesting that using the results of the SRM to infer fault properties from

observations might lead to biased estimates.

Proceeding by analogies between the SRM and the finite-fault model, a few features

observed on the finite fault are captured by the SRM. The first one is the qualitative shape

of the seismicity rate in response to either a harmonic stress perturbation or a stress step,

which can be fit by the predictions of the SRM (Figure 4.11 for the response to a harmonic

perturbation and Figure 4.17 for the response to a stress step). In the case of the harmonic

response, besides, the seismicity rate is approximately in phase with the stress perturbation

at periods shorter than a critical period Ta, and with the stress rate at periods larger

than Ta, in compliance with the predictions of the SRM (Figure 4.2). Moreover, both the

characteristic period Ta dividing between these two regimes and the characteristic duration

of the response to a stress step ta seem to be inversely proportional to the loading rate on

the patch, similar to their relation in the SRM: Ta = 2πta = 2πaσ/τ̇a.

However, the paramount difference with the SRM is quantitative: the amplitude of the
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response to stress perturbations is much larger on the finite fault, sometimes by several

orders of magnitudes. If one were to interpret the output of the finite-fault simulations

with the formulae yielded by the SRM in order to compute fault properties of the seismo-

genic patch, one would systematically underestimate the product aσ, sometimes by a few

orders of magnitude. This calls for caution when using these same formulae to estimate

fault properties on real faults from the seismicity variations ensuing stress perturbations.

In addition, where the SRM was unable to explain any increase of the amplitude of the

response to harmonic stress perturbations with the perturbing period, yet observed in lab

experiments (Lockner and Beeler , 1999; Beeler and Lockner , 2003) and on the Nepalese

seismicity (Bettinelli et al., 2008; Ader and Avouac, 2013), the finite fault reproduces it for

perturbing periods up to Ta. This increase of amplitude with perturbing period seems to

go hand in hand with a phase lag between the seismicity and the stress perturbation up to

π/4, a feature also unexplained by the SRM.

These differences are to be somehow expected, owing to some prominent disparities

between both models. Conceptually, the main difference between the SRM and the finite-

fault model is the fact that on the finite fault, spatial variations of slip are permitted along

the fault. This enables the advent a growing nucleation zone within the rate-weakening

patch, i.e., a zone at the edge of the seismogenic patch undergoing creep, which does not

exist in the SRM. If the notion of a critical nucleation size does exist in the SRM, no actual

evolving nucleation zone is physically modeled. In the SRM, the slider moves as a block and

the slip is therefore uniform in space. In the finite-fault model, the rupture initiates when

the nucleation zone reaches a critical size, and the distribution of pre-stresses on the fault

determines how far the rupture propagates, i.e., the size of the event. The timing of the

event is thus directly linked to the growth process of the nucleation zone. What determines

how an applied perturbation will affect the timing of events is thus how it will affect the

evolution of the nucleation zone at the onset of nucleation, when the growth of the nucleation

zone precisely becomes the most sensitive to any stress perturbation. This high sensitivity

of the growth of the nucleation zone at the onset of nucleation most likely explains why the

finite fault is overall much more sensitive than the SRM to stress perturbations. Besides,

a stress perturbation modifies the size of the nucleation zone without necessarily bringing

the pre-stresses to the corresponding configuration they would have had on an unperturbed

fault. This might result in configurations of pre-stresses at the onset of nucleation on the

fault subjected to a stress perturbation that would have never prevailed at the onset of

nucleation on an unperturbed fault. This justifies why the stress perturbation appears to
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modify the distribution of magnitudes of the events produced on the finite fault, instead of

simply modifying the timing of events as is assumed in the SRM.

The similarities between the SRM and the finite-fault model may be exploited in order

to better understand and quantify the behavior of the finite fault. Notably, both models

exhibit a characteristic time ta for the response of the seismicity to a stress perturbation.

In the SRM, the characteristic time of relaxation of the seismicity rate in response to

a stress step (characteristic duration of aftershock sequence) is ta = aσ/τ̇a, where the

background stressing rate τ̇a = kVpl is well defined, k being the spring stiffness and Vpl

the loading plate velocity. For the response to harmonic stress perturbations, Ta = 2πta is

the characteristic period separating between the regime where the seismicity rate correlates

with the stress perturbation (periods T � Ta) from the one where it correlates with the

stress-rate perturbation (periods T � Ta). These notions of a characteristic time ta and a

characteristic period Ta also seem to appear in the finite-fault model, but these quantities

are more complicated to interpret in terms of the physical parameters of the problem, since

τ̇a varies in time and space on the fault during the interseismic phase. Besides, the relation

Ta = 2πta does not come up as clearly as for the SRM, an indication of the important

nonlinearity of the behavior of the finite fault. It seems nevertheless possible to derive an

expression of Ta for the finite fault inspired from the expression yielded by the SRM. Given

that the response of the fault to a stress perturbation is determined by the sensitivity of the

nucleation zone at the onset of nucleation, we take for the background stressing rate τ̇a the

stress rate close to the crack tip at the onset of nucleation. This results in a characteristic

period Ta described by equation (4.26), i.e., proportional to the ratio Dc/Vpl, and relatively

independent on the normal stress σ. Testing the influence of these three parameters on Ta

seems to support this result.

Unlike in the SRM, Vpl and Dc also seem to have an effect on the amplitude of the

response. In the case of Vpl, the effect is the opposite for the responses to harmonic and

step-like perturbations: increasing Vpl increases the amplitude of the response to a stress

step whereas it decreases the amplitude of the response to a harmonic perturbation at

the critical period Ta. This is another illustration of the nonlinearity of the response of

the finite fault with the problem’s parameters. In the case of harmonic perturbations,

varying Vpl can modify the amplitude of the response by several orders of magnitudes.

Similarly, increasing the characteristic distance Dc seems to make the finite fault slightly

more sensitive to harmonic stress perturbations at the characteristic period Ta. The reasons

for these dependences still remain unclear.
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The influence of other parameters on the characteristic time ta is more intricate to

establish as it appears that their individual contributions cannot be singled out. The

analysis of their influence requires additional work and is beyond the scope of the present

study. The eventual goal of the presented simulations would be to be able to establish

new laws describing the quantitative behavior of a rate-and-state fault in response to a

harmonic or step stress perturbation, in order to be able to estimate fault parameters from

observations of seismicity on natural faults, either from time variations of the seismicity rate

in response to an oscillating stress perturbation, or from the time evolution of aftershock

sequences.

Applying the results of these simulations to real cases of seismicity variations seems

like an exciting and feasible project. The simulations presented here are conducted on

an isolated seismogenic patch, with constant size and rheologic properties, and show that

the seismicity on an unperturbed seismogenic patch seems to display its own characteristic

periodicities. However, it is unlikely that observed periodic variations of seismicity in a

catalog are due to the natural periodicities of the faults. Regional seismicity results from

the combined seismicity of a population of seismogenic patches with different sizes and

possibly, although less likely, slightly different fault properties. Therefore, even if all the

seismogenic patches considered had similar characteristic periodicities, these periodicities

would have no reason to be in phase with one another and would thus be unlikely to build

up a coherent observable signal. Besides, the natural periodicity on a seismogenic patch

corresponds mostly to the return period of events rupturing the whole patch, which directly

depends on the patch size (the return period is proportional to the square root of the patch

size on our 2D faults, see supplementary Figure S7). Seismicity observed in nature is most

likely produced by a population of faults of a wide variety of sizes, and therefore with a

wide variety of natural periodicities, so that the natural periodicities of each fault will get

scrambled together and thus go undetected. Now, when a stress perturbation is applied

on a population of faults of different sizes, the resulting variations of seismicity will remain

coherent even if the rheologic properties of the patches (fault parameters a, b, Dc, loading

velocity Vpl, etc.) vary slightly. Regionally, these properties are likely to undergo only small

relative variations, so that the responses of the individual patches can coherently combine

to build up a detectable signal. Observed variations of seismicity in nature are therefore

most likely due to a forcing of some kind, and identifying first the forcing and then the

relation between this forcing and the resulting variations of seismicity rate may provide

precious elements about regional fault properties.
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Thus, there is a real perspective to be able to decipher fault properties more accurately

from the observation of the evolution of seismicity in response to stress perturbations from

these simulations.
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4.A Response of seismicity to harmonic stress perturbations

in the Coulomb Failure Model

The CFM predicts that the seismicity rate on the fault should be proportional to the

stressing rate. Calling r the seismicity rate on the fault under constant stressing rate τ̇a,

this implies that under a stress history τ(t), a fault would have the following seismicity rate:

R(t)
r

=
τ̇(t)
τ̇a

. (4.A.1)

This, however, is only true if the stresses on the faults are distributed uniformly up to

the Coulomb Failure Stress (hereafter CFS). Also, the seismicity rate can clearly not have

negative values. Therefore, if τ(t) decreases, the seismicity will shut off and only resume

when the stress on the fault will have increased back to a value greater than its past largest

value. Otherwise, all the faults that have not ruptured yet will have stresses less than the

CFS. Calling τf (t) the increasing envelope of τ(t) (Figure 4.A.1), the seismicity rate on the

fault should actually be written
R(t)
r

=
τ̇f (t)
τ̇a

. (4.A.2)

These stresses as well as the corresponding seismicity rate are represented in Figure 4.A.1,

in the case where the shear stress τ(t) decreases at some point.

For a stress history made of a component increasing at constant rate τ̇a and of harmonic

variations of amplitude ∆τ and period T

τ(t) = τ̇at+ ∆τ cos
(

2π
t

T

)
, (4.A.3)

the stress rate is increasing on the fault if τ̇a ≥ 2π∆τ/T , i.e.

T ≥ Tτ =
2π∆τ
τ̇a

. (4.A.4)

In this case, τf (t) = τ(t) and the amplitude of the seismicity-rate variations is simply

∆R
r

=
Tτ
T
, (4.A.5)

and so for a given perturbation amplitude, the seismicity-rate variations are inversely pro-

portional to the period.

For small periods, such that T � Tτ , τf (t) 6= τ(t) and the seismicity rate is zero between
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Figure 4.A.1: Evolution of the seismicity rate under a harmonic stress perturbation accord-
ing to a Coulomb failure model (CFM). a) Shear stresses on the fault. Dashed grey line
shows the secular loading τ̇at on the fault, while the plain grey curve represents the total
shear stress on the fault τ(t) (secular loading and harmonic variations). The black curve
shows the stress actually “seen” by the seismicity, i.e., the increasing envelope of the stress
on the fault. b) Seismicity rate on the fault corresponding to the shear stresses from upper
plot. The grey curve shows the seismicity rate if it were truly proportional to the shear
stress rate (and would thus be negative), while the black curve shows the actual (positive)
seismicity rate on the fault. When the period of the stress becomes small enough, the actual
amplitude of the seismicity-rate variations becomes smaller than the one of the stress rate
(respectively black and grey curves on plot b)
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times t0 and t1 within each period in Figure 4.A.1. It is maximum at time t1, such that the

amplitude of the variations is entirely defined by the value of the stress at t1. The time t0 is

the first time within the period such that the stress rate cancels out. Taking the derivative

of equation (4.A.3), this directly leads to, assuming T � Tτ :

t0 =
T

2π
sin−1

(
T

Tτ

)
≈ T

2π
T

Tτ
, (4.A.6)

and

τ(t0) ≈ ∆τ

[
1 +

1
2

(
T

Tτ

)2
]
. (4.A.7)

The time t1 is such that t1 > t0 and τ(t1) = τ(t0). The approximation T � Tτ lets us

write t1 = T − ε, where ε is such that ε/T � 1 and it is solution of the equation:

τ(t1) ≈ τ̇aT
(

1− ε

T

)
+ ∆τ

[
1− 1

2

(
2π

ε

T

)2
]
. (4.A.8)

Equating equations (4.A.7) and (4.A.8) yields

ε

T
=
√

T

πTτ
. (4.A.9)

The amplitude of the variations of seismicity rate is simply ∆R/r = R(t1)/r − 1 =

τ̇(t1)/τ̇a − 1, which finally leads to the final expression:

∆R
r

= 2
√
π

√
Tτ
T
. (4.A.10)

The asymptotic lines for the Coulomb response in Figure 4.2 show that equations (4.A.5)

and (4.A.10) give good approximations of the amplitude of the variations of seismicity rate

in the cases where respectively T/Tτ ≥ 1 and T/Tτ � 1.
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4.B Response of seismicity to harmonic stress perturbations

in the SRM

Based on a spring-slider system subjected to a rate-and-state friction law and a few other

assumptions (see section 4.3), Dieterich (1994) proposed an equation to link the seismicity

rate on a fault R(t) to a given stress history τ(t). Assuming a constant normal stress on

the fault, his equations (9) and (11) yield




aσ dγdt = 1− γ(t)dτdt ,

R(t)
r = 1

τ̇aγ(t) ,
(4.B.1)

where r is the constant seismicity rate under constant stressing rate τ̇a, a is a fault constitu-

tive parameter and σ is the normal stress on the fault, assumed to be constant here. Taking

the origin of time and shear stress so that τ(0) = 0, and supposing that R(t = 0−) = r, one

can integrate the system of equations (4.B.1) to get

R(t) =
reτ(t)/aσ

1 + 1
ta

∫ t
0 e

τ(x)/aσ dx
, (4.B.2)

where ta = aσ/τ̇a represents the characteristic time for the evolution of the seismicity rate.

Equation (4.B.2) can be easily linearized and solved in the case of small harmonic

variations of the shear stress:

τ(t) = τ̇at+ ∆τeiωt, (4.B.3)

where ω = 2π/T , and we assume that ∆τ � aσ (small perturbation assumption). In

this case, once the steady-state regime is established (i.e., for times such that t � ta)

equation (4.B.2) reduces to

R(t)
r

=
1 + ∆τ

aσ e
iωt

1
ta

∫ t
0 e

x−t
ta

(
1 + ∆τ

aσ e
iωx
)
dx
. (4.B.4)

Simplifying equation (4.B.4), the seismicity rate can be written R(t) = r + ∆Reiωt where

the relative amplitude ∆R/r of the harmonic variations of seismicity rate verifies

∆R
r

=
∆τ
aσ

iωta
1 + iωta

. (4.B.5)

Equation (4.B.5) suggests two regimes of response of the seismicity to small stress perturba-
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Figure 4.B.1: Evolution of the seismicity rate under a harmonic stress perturbation accord-
ing to the SRM, simulated and analytical evolution. On all three plots, the plain black line
shows the solution by solving equation (4.B.10) numerically. a) β = 2 and T/ta = 5× 10−2

(i.e., T � ta case), dashed grey line plots equation (4.B.13). b) β = 10 and T/ta = 100
(i.e., T � ta case with βωta ≈ 0.6 < 1), dashed dark-grey line plots equation (4.B.14) while
dashed light-grey line plots equation (4.B.13) for comparison. c) β = 30 and T/ta = 100
(i.e., T � ta case where βωta ≈ 1.9 > 1), dashed dark-grey line plots equation (4.B.15)
while dashed light-grey line plots equation (4.B.13) for comparison.
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tions depending whether ωta � 1 or ωta � 1, i.e., depending on the value of the perturbing

period T compared to the critical period

Ta = 2πta. (4.B.6)

For perturbations at small periods (ωta � 1, or T � Ta), the seismicity rate becomes

proportional to the stress perturbation,

∆R
r

=
∆τ
aσ

, (4.B.7)

and the response is thus period independent and is in phase with the shear stress. For

perturbations of large period (ωta � 1, or T � Ta), the seismicity rate follows the stress

rate, as in the CFM:
∆R
r

=
iω∆τ
τ̇a

. (4.B.8)

This regime will be referred to as the Coulomb regime.

When the shear-stress perturbation becomes large, equation (4.B.2) can still be solved

in the two configurations where ωta � 1 and ωta � 1. For a shear stress increasing at

constant rate τ̇a with harmonic variations of amplitude ∆τ and period T

τ(t) = τ̇at+ ∆τ sinωt, (4.B.9)

once the steady-state regime is established (i.e., for times such that t� ta) equation (4.B.2)

becomes
R(t)
r

=
e

∆τ
aσ

sinωt

1
ta

∫ t
0 e

x−t
ta e

∆τ
aσ

sinωx dx
. (4.B.10)

In the case of a harmonic perturbation at short periods ωta � 1 (T � Ta), the periodic

term in the integral in equation (4.B.10) evolves much faster than the exponential term,

such that the denominator in equation (4.B.10) can be approximated by

1
ta

∫ t

0
e
x−t
ta e

∆τ
aσ

sinωx dx ≈
〈
e

∆τ
aσ

sinωt
〉∫ t

0

1
ta
e
x−t
ta dx ≈

〈
e

∆τ
aσ

sinωt
〉
, (4.B.11)

where 〈
e

∆τ
aσ

sinωt
〉

=
∫ 1

0
e

∆τ
aσ

sin 2πt dt. (4.B.12)
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So in this case, the seismicity rate can simply be written

R(t)
r

=
e

∆τ
aσ

sinωt

〈
e

∆τ
aσ

sinωt
〉 . (4.B.13)

Figure 4.B.1b shows that this expression provides a good approximation of the exact so-

lution. Besides, one can easily verify that equation (4.B.7) is simply a linear approximation

of this expression when ∆τ
aσ � 1.

In the opposite case where ωta � 1 (i.e., T � Ta), the exponential term in the integral

in equation (4.B.10) is significantly non zero only when the integration parameter x lies

within a few ta from t. Since Ta � T , the sine term does not vary much on this interval

and can be approximated by sinωx ≈ sinωt + (x − t)ω cosωx. With this approximation,

and once the steady state regime has been reached (i.e., for times t� ta), equation (4.B.10)

reduces to:
R(t)
r

= 1 +
Tτ
T

cosωt =
τ̇(t)
τ̇a

, (4.B.14)

which is analog to the Coulomb case. As in the Coulomb case, equation (4.B.14) is actually

only valid in the case T > Tτ (i.e., ∆τ
aσ ωta < 1), which is likely since ωta � 1. However,

strictly speaking, the ratio ∆τ/aσ can be arbitrarily large, and thus Tτ might be greater

than T . This case is similar to the case examined in appendix 4.A, and the result is the

same: one simply has to replace τ(t) by its increasing envelope τf (t) to get the final result.

Equation (4.B.14) can thus be directly replaced by

R(t)
r

=
(

1 +
Tτ
T

cosωt
)
H [τ(t)− τ(tm(t))] , (4.B.15)

where H(t) is the Heavyside function (H(t) = 0 for t < 0 and H(t) = 1 for t ≥ 0), and

tm(t) is the time of previous shear stress maximum. Given the stress in equation (4.B.9),

one has tm(t) = t − mod (t − t0, T ), where t0 is the time of first maximum stress within

one period (same thing as in appendix 4.A), and is

t0 =
T

2π
cos−1

(
− T
Tτ

)
. (4.B.16)

Figure 4.B.1c shows that equation (4.B.15) provides a fairly good approximation of the

exact solution.



Response of R&S faults to stress perturbations
***

Supplementary material

In order to test whether the distribution of times ∆t between the instant where the

stress step is applied and the last seismic event on the seismogenic patch can be described

by an exponential PDF p(∆t) = 1
Λ exp(−∆t/Λ), we follow the method described in the

supplementary material of Ader and Avouac (2013). To each ∆t we associate a ∆tu, which

distribution is uniform if p(∆t) is the right PDF for the distribution of the ∆t:

∆tu =
∫ ∆t

0
p(t) dt. (S1)

The ∆tu are by construction distributed over [0;1]. We then divide the [0;1] interval into

b bins of equal width and compute the standard deviation σΛ of the normalized number of

∆tu falling within each bin. Given the number Ns of ∆tu, we know that σΛ should follow

the distribution (Ader and Avouac, 2013):

ps(σΛ) =
2

Γ
(

b
2

)
√
Ns

2

b

σb−1
Λ e−

Nsσ
2
Λ

2 , (S2)

which has an expected value
√
b/Ns ± 1/

√
2Ns. The computed value of σΛ for different

values of Λ as well as the expected theoretical value with error bars are plotted in Figure S5,

lower plot.
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Figure S1: Displacement on the fault presented in section 4.4, when the fault undergoes
a harmonic perturbation at period T = 0.0027 years. The red lines are plotted every
0.01 year during the interseismic period, while the blue dashed lines are plotted every
0.02 s when seismic rupture is occurring, i.e. when the maximum velocity on the fault is
greater than 1cm/s. This pattern of slip is to compare to the slip on the unperturbed fault
presented in Figure 4.4a. Once the fault is perturbed, the seismicity only consists of large
Mlin ≈ 1.05 events followed by two small (−0.4 ≤Mlin ≤ 0.4) aftershocks, and sometime a
small foreshock. The ratio of small to large events in this case is 2.25, indicating that on
average there is a foreshock every 4 cycles. This well organized pattern of seismicity is very
different from the seismicity on an unperturbed fault.
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the finite fault with an expression similar to equation (3):788

N(t)

r
= t + ta ln

⇥
e� +

�
1� e�

�
e�t/ta

⇤
H(t), (14)789

where � and ta are parameters to fit for. In the spring-slider model, equation (3) gives790

� = �⌧/a� and ta = a�/⌧̇a. Equation (14) besides indicates that the total number of791

events in the aftershock sequence is Na/r = N(t � ta)/r � t = �ta, which in the case of792

the spring-slider thus simply reduces to Na/r = �⌧/⌧̇a.793

Figure 17 shows the cumulative number of events slightly before and after the stress794

step, where the axes have been scaled by a factor inversely proportional to Vpl. It also795

shows the fit of equation (14) to the cumulative number of events keeping � as a free796

parameter (dark grey dashed curve), or imposing the value � = 1 prescribed by the797

spring-slider model.798

Interestingly, similarly to the case of the frequency response, the spring-slider model799

reproduces qualitatively well the behavior of the finite fault but underpredicts the ampli-800

tude of the response, meaning that equation (14) seems to fit the cumulative seismicity801

rate well on figure 17, but the best fit value of � is much larger than what the spring-slider802

would predict. Imposing the value � = �⌧/a� prescribed by Dieterich [1994] model and803

solving only for ta never leads to a good fit.804

This observation also puts a warning on the estimates of a� computed from fit to the805

cumulative number of events in a natural aftershock sequence. There are two ways to806

estimate a� from the observation of the cumulative number of events in an aftershock807

sequence.808

The first one is to simply fit the cumulative number of events with equation (14) and809
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Figure S2: Evolution of the stress and of the stress rate with time in the nucleation zone. The
shear stress and its time derivative are plotted at 7 points, one at the rate-weakening/rate-
strengthening transition (blue curve), and the 6 other ones located inside the rate-weakening
zone between 29 m and 49 m from the rate-strengthening/rate-weakening transition, equally
spaced by 4 m from one another. The position of the points at which the stress is measured
is indicated on the upper plot. At each of the points, the stress increases as the crack tip
progresses toward the point of measurement, and then decreases to a common value once
the point is within a creeping zone. The time at which the stress is maximum is the instant
at which the crack tip is exactly at the point of measurement. The lower plot shows that the
stress rate in the nucleation zone varies with time and localization within the nucleation
zone, but that it is always larger than 1.25 MPa/yr (black line). The rupture nucleates
when the crack tip is located between 45 and 49 m within the nucleation zone, which gives
the critical nucleation size.
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the finite fault with an expression similar to equation (3):788
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�
1� e�

�
e�t/ta

⇤
H(t), (14)789

where � and ta are parameters to fit for. In the spring-slider model, equation (3) gives790

� = �⌧/a� and ta = a�/⌧̇a. Equation (14) besides indicates that the total number of791

events in the aftershock sequence is Na/r = N(t � ta)/r � t = �ta, which in the case of792

the spring-slider thus simply reduces to Na/r = �⌧/⌧̇a.793
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Figure S3: Evolution of the velocity with time in the nucleation zone, at the same locations
as in Figure S2. The velocity in the nucleation zone is lower than the remote plate loading
rate of Vpl = 1 cm/yr.
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Figure S4: Comparison of the frequency response of faults with creeping zones of different
sizes, for large events rupturing the entire seismogenic patch. The large dark grey circles
overlying the yellow curve show the frequency response for the fault presented in section 4.4
which is the exact same plot as in Figure 4.12, and where the creeping zone is 1200m wide
on each side of the seismogenic patch. The smaller light grey circles overlaying the green
curve show the response for a fault with the same seismogenic patch, but where the creeping
zone is only 450 m wide on each side. Both faults display the same response, indicating
that as long as it is wide enough to avoid boundary effects, the actual size of the creeping
zone does not have any significant impact on the frequency response of a seismogenic patch
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Figure S5: Upper plot: distribution of times between the last seismic event and the applied
stress step. If the stress steps are applied at random times within the seismic cycle, the
distribution of these inter times follows an exponential distribution, which mean is half the
average inter event time. Lower plot: Test if the distribution of the ∆t plotted in the upper
plot can occur out of an exponential distribution, of a given mean. The blue line shows the
standard deviation of the ∆t redistributed along a uniform PDF if their initial distribution
results from an exponential distribution of given mean, while the dark blue line indicates
the expected the expected standard deviation, with 1-σ deviations indicated by the dashed
lines. More details are given in the text.
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Figure S6: Comparison of the distribution of magnitudes of seismic events produced by the
seismic patch on a fault undergoing a random perturbation in time. For comparison, the
distribution of magnitudes of seismic events produced by the seismic patch on an unper-
turbed fault (figure 4.4b in the main paper) is showed on the lower plot, and shows that
both distributions are the same. The random perturbation consists of steps of shear stress
∆τ of amplitude uniformly distributed between -3 and 3kPa, applied at each time step
during the simulation.
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Figure S7: Distribution of linear magnitudes Mlin of seismic events that rupture the en-
tire seismogenic patch, as a function of the width of the seismogenic patch. The error
bars indicate the spread in magnitudes of events. For patches less than 400 m wide, the
magnitudes of events are essentially always the same, while some complexity appears for
patches wider than 500 m. This plots suggest that in first approximation, Mlin is directly
proportional to the logarithm of the width of the seismogenic patch. Plugging this relation
into equation (4.11) from the main paper leads toMlin ∝W 3/2, which together with equa-
tion (4.15) indicates that the return period of large events rupturing the entire seismogenic
patch depends on its width as T ∝

√
W .
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Figure S8: Plot showing the non-linearity due to resonances with the return period of
characteristic events happening on the fault. In these two simulations, Dc = 1 µm and σ = 1
MPa, similarly to the red squares in Figure 4.15 from the main paper. In this Figure, only
the amplitude of the stress perturbation ∆τ is changed between the two curves: ∆τ = 0.6
kPa for the red squares (exactly same plot as red squares in Figure 4.15) while ∆τ = 3 kPa
for the red circles. When ∆τ = 3 kPa, a resonance appears at T ≈ 0.05 years, which is
the return period of typical large events produced by the fault. This resonance can also be
noted when ∆τ = 0.6 kPa but is of much less amplitude. When ∆τ = 3 kPa, this resonance
impairs the determination of the critical period Ta, similarly to what happens at Dc = 10
µm in Figure 4.14 from the main paper (blue triangles).
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Figure S9: Plot showing that the increase of sensitivity of the seismogenic patch around
period Ta is not due to the increase of the variations of slip rate in the creeping zone
showed in Ader et al. (2012). The large dark grey circles overlying the yellow curve show
the frequency response for the fault presented in section 4.4 which is the exact same curve as
in Figure 4.12, while the pink squares overlaying the red curve show the response of a similar
fault where fault parameter in the rate-strengthening zone is b = 0, such that a − b = a.
As is showed in Ader et al. (2012), this would prevent any increase of amplitude of the slip
rate variation in the creeping zone, and yet one can see an increase of the sensitivity of the
seismicity.
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Conclusion

The joint contributions of geodetic measurements, seismic observations and the development

of numerical simulation, yield an extraordinary wealth of results and have the potential to

bear much more. Geodetic observations in Nepal, today dominated by data from the GPS

network, tomorrow maybe complemented by INSAR data, let us resolve the coupling pattern

on the MHT and the convergence rate across the Nepal Himalaya, the two key ingredients

to compute the rate at which moment deficit accumulates on the MHT underneath Nepal.

The present day seismicity and major events of magnitude greater than 8 over the past

500 years are unable to balance this deficit, opening the gates to a fundamental question:

How large of an earthquake can the MHT produce? Are the magnitudes 8 from the past as

large of an event as the MHT can produce or rather the forewarning of a brewing gigantic

Himalayan earthquake?

The answer to these questions requires a deepened understanding of fault properties

and earthquake mechanics, and this is where numerical simulations take over. The observed

response of the seismicity to stress perturbations bears the potential of providing us with

the keys to unravel fault properties and understand earthquake mechanics. Numerical

simulations provide a cracking instrument to analyze this response and dig out the relation

between stress perturbations and associated variations of seismicity rate on a fault. The

results of these simulations, examined in the present doctorate in the case of step-like

and harmonic perturbations, the two configurations at play on the MHT in Nepal, look

extremely promising in terms of deciphering fault parameters from observations of variations

of seismicity on the MHT. They lay the bases for follow through work in order to build and

hone the tools able to extract the fault properties on the MHT.

These fault properties on the MHT are a crucial piece of information in order to under-

stand Nepalese seismicity, but the road towards a realistic simulation of the complete the

seismic cycle in the Himalaya will have to go through the resolution of two other paramount

computational challenges: the available computation power and taking into account the free

surface of a non-vertical fault like the MHT in the numerical simulations. To this day, these
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two challenges still remain major impediments against the implementation of the precious

numerical simulation that will hopefully determine wether or not the Himalaya can produce

humongous earthquakes.

The available computational power is a problem because the locked part of the MHT

is large, about 100 × 3000 km, while the smallest wavelength that has to be resolved in a

dynamic rupture simulation is generally small, and does not scale with the total fault size.

Instead, it is determined by the cohesion zone R0 of the rupture front (Lapusta and Liu,

2009), which has been estimated by Day et al. (2005)

R0 ≈
G∗Dc

bσeff
,

where G∗ is equal to the shear modulus G for mode III rupture and G/(1− ν) for mode II,

with ν the Poisson’s ratio, σeff is the effective normal stress, i.e., the lithostatic normal stress

reduced by the pore pressure, and b and Dc are rate-and-state fault parameters. The size of

this cohesion zone is thus inherent to the material considered and does not vary too much

from one fault to another, and imposes a required maximum cell size for the simulation

of the order of a hundred meters at the most. Given the current computational power

available, such a small grid is manageable when simulating the seismic cycle on relatively

small faults, such as Parkfield in California (Barbot et al., 2012), which has dimensions of

15 × 30 kilometers, but remains way too intensive computationally for a fault an order of

magnitude larger like the MHT.

Another limitation that was described earlier, is the boundary integral formulation of

an algorithm like BICYCLE periodically stitches the fault to itself in order to deal with

inertial effects. This is fine if one is looking to simulate the evolution of a fault which is

self-similar at the edges, again like in the case of the seismogenic patch in Parkfield, which is

entirely embedded within a creeping medium, but does not offer an suitable representation

of the boundary conditions for a fault like the MHT, which is non vertical and has a free

surface and is thus rate-weakening at the free edge and rate strengthening at the opposite

edge at depth. A way to handle this free surface in the simulation yet remains to be found.

The Himalayan seismicity is an incredible mine of information, and its exploitation

nurtures an exciting wealth of new challenges to overcome. In 2009, during my first field

trip to Nepal in Lo-Mantang, in the remote Mustang area, a Buddhist monk explained to

me that earthquakes were simply the jolts of the giant fish on whose back the world was

built, whenever its guardian god released his attention. Our understanding of earthquakes
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has now come a long way from the fish model and places them out of the reach of some

rancorous god trying to punish humans for their unpardonable sins. Earthquakes simply

obey the laws of nature, the laws of physics, and like most other natural disasters there is no

reason that the human mind will not find a way to crack open the secret of their prediction.

The clock is ticking before the Himalaya produces its greatest earthquake, and we are still

gathering the pieces needed to forecast it. We may have a few hundred years to solve the

puzzle. Or maybe just a couple of days...
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