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ABSTRACT 

Despite the complexity of biological networks, we find that certain common architectures govern 

network structures. These architectures impose fundamental constraints on system performance and 

create tradeoffs that the system must balance in the face of uncertainty in the environment. This 

means that while a system may be optimized for a specific function through evolution, the optimal 

achievable state must follow these constraints. One such constraining architecture is autocatalysis, 

as seen in many biological networks including glycolysis and ribosomal protein synthesis. Using a 

minimal model, we show that ATP autocatalysis in glycolysis imposes stability and performance 

constraints and that the experimentally well-studied glycolytic oscillations are in fact a consequence 

of a tradeoff between error minimization and stability. We also show that additional complexity in 

the network results in increased robustness. Ribosome synthesis is also autocatalytic where 

ribosomes must be used to make more ribosomal proteins. When ribosomes have higher protein 

content, the autocatalysis is increased. We show that this autocatalysis destabilizes the system, 

slows down response, and also constrains the system’s performance. On a larger scale, 

transcriptional regulation of whole organisms also follows architectural constraints and this can be 

seen in the differences between bacterial and yeast transcription networks. We show that the degree 

distributions of bacterial transcription network follow a power law distribution while the yeast 

network follows an exponential distribution. We then explored the evolutionary models that have 

previously been proposed and show that neither the preferential linking model nor the duplication-

divergence model of network evolution generates the power-law, hierarchical structure found in 

bacteria. However, in real biological systems, the generation of new nodes occurs through both 

duplication and horizontal gene transfers, and we show that a biologically reasonable combination 

of the two mechanisms generates the desired network. 
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Equation Section (Next)                        Chapter 1 

INTRODUCTION 

Minimizing waste, resource use, and fragility to perturbations in system components, operation, and 

environment (1) is crucial to sustainability of systems ranging from cells to engineering 

infrastructure. Much of the studies of the evolutionary basis of biological networks have been based 

on the idea that the networks optimize growth rate, but both engineering and biology are 

constrained by tradeoffs between efficiency and robustness which are rarely formalized in biology. 

Tools that are commonly used in optimization as well as in systems and control theory can provide 

a good foundation in understanding these tradeoffs in biological networks. 

Certain network architectures have aggravated constraints and tradeoffs (2). One such architecture 

is autocatalysis, where a species is consumed in catalyzing its own production. This type of 

structure can grow uncontrollably without feedback regulation, yet we find autocatalysis in many 

crucial functions of the cell, including metabolism (glycolysis) and protein synthesis. Some 

autocatalysis is unavoidable due to the reaction energetics requirements as in the case of glycolysis. 

Glycolysis is a central energy producer in a living cell, consuming glucose to generate Adenosine 

Triphosphate (ATP) which is used throughout the cell. The first steps of the reaction require ATP, 

making it autocatalytic. The energy input from ATP hydrolysis is necessary to power 

thermodynamically unfavorable reactions. 

Using the well-studied problem of glycolytic oscillation as a case study, we integrated concepts 

from biochemistry and control theory to explore the hard limits of robust efficiency. We chose 



 

 

2 
glycolysis as a first case study, as it not only has interesting dynamics (e.g. oscillations) but has a 

rich literature experimentally and theoretically (3). Despite extensive experimental and modeling 

studies since 1965 (4), whether the oscillations are beneficial or simply an evolutionary accident 

remained unsolved. Using control theoretic analysis on a simple model, we suggest a third 

alternative: Oscillations are the inevitable consequence of tradeoffs between metabolic overhead 

and robustness to disturbances, as well as the interplay between feedback control and necessary 

autocatalysis of network products (5, 6). Our model is now also the simplest (with only two states) 

example of a system with a right-half plane zero and can be used as a tool for teaching some 

fundamental concepts of control theory. 

Glycolysis is one of the most common pathways in biology, but there is another universal system 

that is autocatalytic: protein synthesis. Proteins are synthesized by ribosomes, which are part RNA 

(called ribosomal RNA, rRNA) and part protein (called ribosomal proteins or riboproteins). The 

protein components of the ribosomes must also be synthesized by ribosomes themselves, resulting 

in not only an autocatalytic loop but a resource competition between riboproteins and all other non-

ribosomal proteins. The cell must decide how much of the available ribosomes should be used to 

make more ribosomal proteins instead of growth proteins. How the cell balances this resource 

during different growth conditions such as maximal growth and starvation, and how it manages the 

consequences of the autocatalytic loop, is of great interest. There has been a recent surge of interest 

in the problem of resource allocation/competition, particularly with ribosomes, since the growth of 

the field of synthetic biology (7, 8), but the autocatalytic nature of the process has not been 

discussed. Here we explore different models capturing resource competition and autocatalysis in 

terms of the protein content of ribosomes. 
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At a larger scale biology is still governed by various architectures. Regulation of gene expression 

is layered, with only specific regulatory proteins and RNA able to bind to DNA and control gene 

expression. The success of complex communication networks has largely been the result of 

adopting such layered architecture (9). However, combinatorial regulation using transcription 

factors pose a cost in the size of the genome. There is evidence that, in prokaryotes, the number of 

transcription factors scales quadratically to the number of total genes (10), yet the genome size of 

prokaryotes seems to be constrained at around 9000 genes by metabolism and cell size (11).  The 

quadratic scaling is certainly not seen when we go from prokaryotes to higher eukaryotes. In 

bacteria the regulation is largely achieved by regulatory proteins (called transcription factors) and a 

class of small RNAs, while eukaryotes have many more noncoding regulatory RNAs (such as micro 

RNAs, small nuclear RNAs, small interfering RNAs) and can also regulate expression by 

alternative splicing. The transcription regulation network is very complex even in small, single cell 

organisms such as bacteria, but graph theoretic analysis can be used to study some general 

properties. The degree distributions of Bacillus subtilis, Escherichia coli, and Saccharomyces 

cerevisiae transcription networks reveal that there are, in fact, fundamental differences between 

prokaryotic and eukaryotic regulations. 

 



 

 

4 
C h a p t e r  2  

MINIMAL MODEL OF GLYCOLYTIC OSCILLATIONS: LIMITS AND TRADEOFFS 

Glycolytic oscillation, in which the concentrations of metabolites fluctuate, has been a classic case 

for both theoretical and experimental study in control and dynamical systems since the 1960s  (12). 

Numerous mathematical models have been developed, from minimal models (4, 13) to those with 

extensive mechanistic detail (14). Besides being the most studied control system and the most 

common, glycolysis is also conserved from bacteria to human, and presumably has been under 

intense evolutionary pressure for robust efficiency. Thus new insights are less likely to be 

confounded by either gaps in the literature or evolutionary accidents compared with less well 

studied biological circuitry. Nevertheless, the function of the oscillations, if any, remains a mystery 

and one we aim to resolve.  

The first step is development of the simplest possible model of glycolysis that illustrates the 

tradeoffs caused by autocatalysis. Biologically motivated minimal models of glycolytic oscillations 

exist, but analysis of robustness and efficiency tradeoffs has not received much attention. Such 

analysis can provide a much deeper understanding of the underlying basis of glycolytic oscillations, 

as well as illustrate universal laws that are broadly applicable. 

Minimal Model 

Early experiments in S. cerevisiae observed two synchronized pools of oscillating metabolites (12), 

suggesting that a two-state model incorporating Phosphofructokinase (PFK) might capture some 

aspects of system dynamics and indeed, such simplified models (4, 13) qualitatively reproduce the 

experimental behavior. We propose a minimal system with three reactions (shown in Fig 2.1A), for 

which we can identify specific mechanisms both necessary and sufficient for oscillations.   
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 

(2.1) 

Model Parameters Definition of Terms 

x lumped variable of intermediate 

metabolites 

P(s) Open loop response (h=0) in frequency 

(s) domain 

y output, ATP level 

k intermediate reaction rate WS(s) Weighted response to a disturbance  . 

WS(s)=W(s)S(s) where W(s) is the weight   perturbation in ATP consumption 

q autocatalytic stoichiometry S(s) Impulse response to a disturbance   

a cooperativity of ATP binding to PFK z Zero, the solution to P(z)=0 

h feedback strength of ATP on PFK p Pole, the solution to W(p)=P(p)=∞, or 

D(p)=0 

g feedback strength of ATP on PK  

Table 1. 

In the first reaction in (2.1), PFK consumes q molecules of y (ATP) with allosteric inhibition by 

ATP. We lump the intermediate metabolites into one variable, x. In the second reaction, Pyruvate 

Kinase (PK) produces q+1 molecules of y for a net (normalized) production of 1 unit, which is 

consumed in a final reaction representing the cell’s use of ATP. In glycolysis, 2 ATP molecules are 

consumed upstream and 4 are produced downstream, which normalizes to q=1 (each y molecule 

produces 2 downstream) with kinetic exponent a=1. To highlight essential tradeoffs with the 

simplest possible analysis, we normalized the concentration such that the unperturbed ( 0  ) 

steady states are 1y   and 1/x k (the system can have one additional steady state which is 

unstable when (1, 1/k) is stable).  The basal rate of PFK reaction and consumption rate have been 

normalized to 1 (the 2 in the numerator and feedback coefficients of the reactions come from these 



 

 

6 
normalizations). Our results hold for more general systems as discussed below and in SI, but the 

analysis is less transparent.  

Like most research, we focus on allosteric activation of the enzyme PFK by Adenosine 

Monophosphate (AMP) as the main control point of glycolysis. We assume total concentration of 

adenosine phosphates in the cell [Atot]=[ATP]+[ADP]+[AMP] remains constant and the activating 

effects of AMP can be modeled as ATP inhibition. ATP also inhibits PK activity, although this has 

been largely ignored in most models (except (15, 16)). We emphasize its importance and model 

both inhibitions through exponents h and g.  

We use linearization to focus initially on steady state error and instability while highlighting 

disturbance and control: 

10

( 1) ( 1) 1

Disturbance Control

x xk a g
h y

y y qq k qa g q


       
       

       

   
   

       (2.2) 

The first term on the right hand side (RHS) gives the dynamics of the “open loop” plant (P, defined 

as (2.2) when there is no control, i.e. h=0; solid and dotted loop in Fig 2.1A or solid box in Fig 

2.1B) in response to the second term (disturbance in demand), while the third is the control on PFK 

(dashed loop in Fig 2.1A).   
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Figure 2.1. (A) Diagram of two state glycolysis model. ATP along with constant glucose input 

produce a pool of intermediate metabolites (phosphorylated six-carbon sugars), which then 

produces two ATPs. ATP inhibits both the first (Phosphofructokinase/PFK-like) and second 

(Pyruvate Kinase/PK-like) reactions. (B) Control-theoretic diagram of the same system (arrows 

represent logical connections, not fluxes.) The system without inhibition/feedback is labeled the 

“Plant” (P; solid box, solid and dotted loop in (A)) while the inhibitory mechanism is considered 

the “Controller” (here labeled by its inhibitory strength, H; dashed loop in (A) and (B).) The effect 

of disturbance   in ATP demand is modeled as the system W (see text for definition). 

 

Steady State Limits 

The simplest robust performance requirement (motivated by the need to maintain high energy 

charge) is that the concentration of y remain nearly constant despite fluctuating demand . In our 

model this requires that the steady state error ratio, obtained by solving for 
y




when 

0

0

x

y

   
   

  





 

1y

h a





 (2.3) 

be small, or |h-a| large, and /y  0 if and only if h∞. One tradeoff is that large h requires 

either high cooperativity or very tight ATP-enzyme binding, and the resulting complex enzymes are 
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more costly for the cell to produce. A more interesting tradeoff arises because (2.2) is stable if and 

only if 

 1
0

k g q
h a

q

 
    (2.4) 

The left boundary indicates where the system is unstable (unstable node) while the right boundary 

indicates where the system starts to oscillate (limit cycle). 

We can plot f(y) vs. y and the equilibrium points are the intersections of f(y) and the consumption 

rate of ATP, which in this model is normalized to 1 (Figure 2.2). There is one equilibrium point 

when 2a h  (Fig 2.2A and B) and two when 2a h (Fig 2.2C and D). We can show using linear 

stability analysis that when the (1, 1/k) equilibrium point is either stable or in a limit cycle, the other 

equilibrium point is always unstable, with one positive and one negative eigenvalue (a saddle node). 

In fact, we can show that the equilibrium point is unstable when the slope of f(y) is positive and thus 

the lower equilibrium point is unstable. If we relax the normalization for ATP consumption then the 

equilibrium point moves with the consumption. A study by Kloster and Olsen also confirms that the 

activity of intracellular ATPase significantly affects oscillations (17). 

The left hand side (LHS) of (2.4) bounds the minimum feedback strength h required to stabilize the 

system, so autocatalysis requires some minimal enzyme complexity for stability, but this is 

compatible with making (2.3) small. (Experimentally observed PFK activity in response to ATP 

suggests that indeed h>a. When h<=a, PFK activity would be monotonically increasing with ATP 

but when h>a, PFK activity would increase at low ATP then peaks and starts decreasing). The latter 

behavior has been observed in PFK of many organisms (18, 19). More significantly, combining 

(2.3) and (2.4) constrains the minimum stable steady state error to: 
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 
1

1

y q

h a k g q


 

  
 (2.5) 

 

Figure 2.2. The equilibrium point(s) of the system is given by the intersection(s) of the curve f(y) 

(blue) with 1 (red). A) a=h=1. B) a =1 < h=2. C) a=1 < h=8. D) a=5 < h=8. 

 

 

Equation (2.5) and Fig 2.3A (showing the error bound (2.5) versus k) illustrate a simple and elegant 

tradeoff between robustness and efficiency (as measured by complexity and metabolic overhead).  

Low error requires large h, but to allow this to be stable, k and/or g must also be large enough. 

Large k requires either more efficient or higher level of enzymes, and large g requires a more 

complex allosterically controlled PK enzyme; both would increase the cell’s metabolic load. Thus 

fragility directly trades off against complexity and high metabolic overhead (low efficiency).  

The steady state error is minimized when h is chosen so that (2.5) is an equality, but (2.1) enters 

sustained oscillations at this hard limit (this boundary is called a supercritical Hopf bifurcation). 
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Thus at least in this model, oscillations have no direct purpose but are side effects of hard 

tradeoffs crucial to the functioning of the cell, and can be avoided at some expense. Note that 

robustness means making fragility (steady state error and oscillations) small, and efficiency means 

making metabolic overhead (enzyme amount and complexity) small. 

 
Figure 2.3. Tradeoffs between waste, fragility, and complexity due to enzyme complexity and 

amount. Enzyme amount affects the intermediate reaction rate k (x-axis), plotted for g=0 (solid) and 

g=1 (dashed). Large k requires high metabolic overhead and large g requires high enzyme 

complexity. Even small g>0 enhances the tradeoffs, particularly at low k. (A) The y-axis shows the 

system’s steady state error and the curves denote the boundary between stable (above) and 

oscillatory (below) regions. (B) The y-axis shows the lower bound of the hard limits in (2.11) and 

(2.13). 
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Hard limits on robust efficiency  

Thus far we described simple tradeoffs based on basic biochemical features of a minimal model. 

Our elementary analysis of (2.2) is consistent with existing literature, yet clarifies in (2.5) how 

oscillations are the inevitable side effect of robust efficiency and tradeoffs between steady state 

error and stability. An important next step is to expand to a more detailed and comprehensive 

model, and also extend the analysis to study global nonlinear stability, stochastics, and worst-case 

disturbances. We have explored such dimensions and the results are consistent, though often less 

accessible (most additional modeling details make the tradeoffs worse). 

A more fundamental direction, however, is to rigorously prove that the tradeoffs suggested by (2.5) 

are unavoidable regardless of these neglected details, depend only on the basic properties of 

autocatalytic and control feedbacks, and are unlikely to be either artifacts of model simplifications 

or “frozen accidents” of evolution (of course, in principle anything is possible since there is always 

some gap between models and reality.) Fortunately, control theory has been developed precisely to 

address such questions in engineering. Unfortunately, while well known to engineers and 

mathematicians, control theory has not been integrated into other fields. A good background is 

given in (3).  

Control theory focuses our attention on a more complete picture of the transient response to 

disturbances. Since even temporary ATP depletion can induce cell death, large amplitude oscillation 

can be detrimental (20). Therefore, static steady state response alone provides insufficient 

information and the dynamics must be analyzed carefully. To this end we reconsider the linearized 

model (2.2) and allow =(t) to be an arbitrary function of time, though the figures only show 

responses of the nonlinear system (2.1) to step changes in (t). The theory is most conveniently 
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written using frequency-domain transforms  ˆ ( ) sty s y t e dt







 , where s is the (complex) 

Laplace transform variable, and frequency  with s j  is the Fourier transform variable. We 

consider three cases of control: 1) “wild type” with constant h (the case studied above), 2) a general 

case where h is replaced by a controller H with arbitrarily complex internal dynamics, constrained 

only to stabilize (2.2), and 3) no control (h=H=0).  H is assumed linear and time invariant, and we 

write H=H(s).  

The weighted sensitivity transfer function defined as      ˆˆ /WS s y s s   is the response from  

to y. Given  (2.2) and controller H, we can factor      WS s W s S s  where S is called the 

sensitivity function and W is the weight, equal to the uncontrolled (H=h=0) response from  to y. 

WS can be calculated as follows:  

 

1

1

2

( )
( )

( )

( ) 0
0 1

( 1) ( ) ( 1) 1

( ( )) ( )

Y s
WS C sI A B

D s

s k a h g

q k s q a h q g

s k

s k g q a h g s k a h





 

      
            




      

 (2.6) 

Which can be separated into the Weight W and Sensitivity function S: 

2

2 2

( ) ( ) ( )

( ( ))

( ( )) ( ( )) ( )

WS s W s S s

s k s k g q a g s ka

s k g q a g s ka s k g q a h g s k a h



      
  

            

 (2.7) 

Therefore, disturbance , W(s), S(s) and the open loop response P(s) are given by: 

 
 

1 ( )
( ) ( )

( ) 1 ( ) ( ) ( ) ( ) ( )

s k D s qs k
W s S s P s

D s P s H s D s H s qs k D s

  
  

   
 (2.8) 
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where   2 ( ( ))D s s k g q a g s ka      . With constant, stabilizing H(s)=h>a, it follows 

from (2.8) and (2.5) that the response at frequency =0 is equal to the steady state error ratio: 

     
 

1 1
0 0 0

1

y a q
WS W S

a h a h a k g q


    

   
 (2.9) 

S is the primary robustness measure for feedback control (2), and |S(s=j)| measures how much a 

disturbance is attenuated (|S(j)|<1) or amplified (|S(j)|>1) at frequency . ( ) 1S s   when

  0H s  . The response of y to any other disturbance can be treated with the appropriate weight 

W. 

When there is autocatalysis, we can derive stricter bounds on the response WS and S, using the 

maximum modulus theorem from complex analysis. In (2.8), when q>0, P(s) has a zero at z=k/q 

defined as P(z)=0 which is positive real (  Re 0z  ). When a>0, both W(s) and P(s) have an 

unstable pole (p>0) defined as where W(p)=P(p)=∞, and can be computed by solving D(p)=0. So 

for any stabilizing H: S(z)=1, S(p)=0, and neither S(s) nor  WS s have poles in  Re 0s  . Hence 

the maximum modulus theorem holds for WS(s) in the positive real domain  Re 0s   and 

  
 

     
Re 0

max max
j s

q
WS WS j WS s W z S z

k qg


 
  


 (2.10) 

  max
j

s p z p
S S j S

s p z p






 
 

 
 (2.11) 
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The norm WS


 has a variety of interpretations (2), the simplest of which is the maximum 

sinusoidal steady state response for any frequency . Ideally, both WS and S should be low at all 

frequencies, but this contradicts (2.10) and (2.11), which hold regardless of the controller used. The 

peak WS


is always larger than the bound in (2.10) for any h, and that minimizing steady state 

error |WS(0)| leads to WS

∞ and oscillations. Fig 3B shows how the RHS of (2.11) varies with 

k and g; both (2.10) and (2.11) are aggravated by small k and g. These are hard constraints on any 

stabilizing controller from y to the first enzyme, no matter how complex the implementation, and 

thus are much deeper than (2.5) which applies only for constant H=h. 

 Conditions such as (2.10)-(2.11) can be applied to other transfer functions and weights to provide a 

rich theoretical framework for exploring additional tradeoffs and details, including realistic 

frequency content of (t), appropriate error penalties in y(t) and other signals, and other sources of 

noise and uncertainty (2, 21). A complementary focus is on constraints that are independent of 

these details, such as Bode’s Integral Formula (2):  

 
0

1
ln 0S j d 





  (2.12) 

that holds for any linear, stabilizing H that is causal (i.e. H cannot depend on future values of y(t). 

H=h depends only on current values.) This “water bed” effect implies that the net disturbance 

attenuation (ln|S(j)|<0) is at least equaled by the net amplification (ln|S(j)|>0). It is a general 

constraint on  WS s  for any W, which transparently factors out (

         ln ln ln lnWS j W j S j W j S j       ). For q=0, constant controllers 

H=h achieve (2.12) with equality, illustrated in Fig 2.4A. More controller complexity can thus fine 
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tune the shape of  ln S j
 
but cannot uniformly improve it. Autocatalysis q>0 however makes 

things worse, since z=k/q is finite, and (2.12) can be strengthened to:   

  2 2

0

1
ln max 0, ln

z z p
S j d

z z p
 

 

  
  

  
  (2.13) 

when z,p>0 . (2.13) is a variation of the Bode Integral Formula and we can prove that this holds for 

relative degree <2 as follows:  

We start with the following lemma (see Chapter 6 of (2) for proof): 

Lemma 1:  

Let S be analytic and of bounded magnitude in Res≥0 and let: 0z j    be a point in the 

complex plane with 0  . Then 

2 2

0

1
( ) ( )

( )
S z S j d


 

   






                                         (2.14) 

We can factor S as: 

ap mpS S S   (2.15) 

Sap is defined as the product of all factors of the form 
s p

s p




 where p ranges over all the positive 

poles (where S(p)=0) and mp

ap

S
S

S
 . Since S(z)=1, 

1
( )

( )
mp

ap

S z
S z

  

 

Lemma 2 : For every point 0z j    with 0  , 

2 2

0

1
ln | ( ) | ln | ( ) |

( )
mp

z
S z S j d

z
 

  






   (2.16) 
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Then for our two state model with one z>0 and one p>0 we can write:  

2 2

1
ln | ( ) | ln ( ) lnmp

z z p
S j d S z

z z p
 

 






 

   (2.17) 

  

It is easily shown that p>0 when a>0, and otherwise (2.13) is just bounded by 0. Hence 

autocatalysis always causes positive z and p and the integral in (2.13) is bounded similar to (2.11). 

The low pass filter 
2 2

z

z 
 constrains the waterbed effect to below frequency =z. Small z=k/q 

produces a more severe limitation since any disturbance attenuation must be repaid with 

amplification within a more limited frequency range. Fig 2.3B shows the tradeoff in three criteria: 

high k both stabilizes the system and reduces the bound but implies high metabolic overhead. Fig 

2.4B illustrates how autocatalysis and (2.13) impact dynamics.  

 
Figure 2.4. Effects of higher autocatalytic stoichiometry q. Higher autocatalysis results in higher 

peak in the Sensitivity function, S (left) which corresponds to more ringiness in the transient 

response (right) and eventually leads to oscillation.  
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S(0) gives the steady state error while the peak in S(j)  corresponds to how “ringy” the transient  

y(t) dynamics are at frequency . At h=2, S(0) is large, the peak S


is low, and y(t) has a large 

steady state error, which h=3 lowers but with more transient fluctuations. At h=4 the system 

oscillates at the frequency where S(j)∞. Larger q makes z smaller and performance worse (more 

ringy), shown in Fig 2.4. The tradeoff in (2.5)  and the difference between (2.12) and (2.13) 

disappears with no autocatalysis (q0) because the RHS bound in (2.5)∞, and in (2.13)0. Zero 

steady state error with stability is then possible by taking h∞.   

Complexity and robustness 

We have taken PFK feedback as the main controller, but the often neglected PK feedback increases 

enzyme complexity and plays an important but subtle role in robustness. Most simply, increasing g 

uniformly improves the stability bound in (2.5). From (2.4), if q=a=1, then the system is stable for 

all k>0 if and only if 0<h-1<2g. Thus g>0 is necessary to simultaneously maintain acceptable 

steady state error S(0)=1/(h-1) and stability for all k>0.  Replacing g=0 (Fig 5B) with g=1 (Fig 

2.6A) doesn’t change S(0), but ( )y t  is more damped  (and the peaks and integral in (2.13) are 

lower). The h=4 case is unstable in Fig 2.5B but stable in Fig 2.6A. The effect of g>0 on the 

robustness vs. efficiency tradeoff involving k gives us insight into how the system is designed. 

While a and q are essentially fixed by the network’s autocatalytic structure, h and g can be tuned on 

evolutionary time scales. Thus 0<h-1<2g is biologically plausible and in fact consistent with most 

estimates, ensuring stability for all k>0 (15). This allows individual cells to further fine tune k>0 

through the many mechanisms that control enzyme levels, but stability for all k>0 also provides 

robustness to unavoidable noise in gene expression and enzyme levels (22). Quantifying this effect 

would require more detailed modeling and integration of our hard limits on robustness to external 



 

 

18 
 

 
Figure 2.5. Log sensitivity log|S(j)| (i) without ATP feedback on PK (g=0) and step response of 

the nonlinear system (2.1) to step change in demand  (ii). The integral of log|S(j)| is constrained 

by (2.12) in A.i and (2.13) in B.i and is the same for all h. Only the shape changes with increasing h. 

Higher h gives better steady state error with more oscillatory transient. A) With no autocatalysis 

(q=0) the system is stable for all h>0. B) When q=1, log|S(j)| is more severely constrained by 

(2.13) and the system has sustained oscillations for large h. 
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disturbances with those in (22) on robustness to internal noise in transcription.   

From an engineering perspective, this is a remarkably clever control architecture, and the presence 

of g>0 suggests that at least in this case evolution favors higher complexity in exchange for 

flexibility in k and robustness. Further insights come from the bound in (2.13).  Since z=k/q, 

increasing k improves both sides of (2.13) and uniformly improves robustness (Fig 2.6B), at the 

expense of higher enzyme levels. Increasing g decreases p while leaving z unchanged (

2( ) ( ( )) 4

2

k g q a g k g q a g ka
p

        
 ), decreasing ln

z p

z p




 (Fig 2.3B). This 

improves the constraint in (2.13) and enables more aggressive controller gains h on PFK.  By itself 

(when h<a) however, g>0 cannot stabilize, and a stabilizing G(s) would actually need to be an 

unstable controller which needs very high complexity (see SI-VI in (5)). 

Our simple model thus far restricts the controller implementation to ATP inhibition, but other 

intermediate metabolites can also have inhibitory effects. We show that control by intermediate 

metabolites can relax stability and performance constraints at the cost of lower efficiency.  

Glycolytic enzymes, and PFK in particular, have a complex regulatory control. PFK is known to be 

not only inhibited by ATP but also by its immediate product, fructose 1,6-bisphosphate (F1,6bP) 

(23). We look at the effect of allowing PFK inhibition by the intermediate, x (note that to maintain 

basal rate of PFK and steady state y concentration to 1, the net inhibition of x on PFK is normalized 

to be (kx)
-f
) 

1 1 0
( ) (1 )

1 1
h f ga

PFK PK Consumption

x xd
y y kx kxy

y y q qdt
           

         
        


   

  
 (2.18) 



 

 

20 

 
Figure 2.6. Log sensitivity log|S(j)| (i) and step response of the system to step change in demand  

(ii). A) The two state glycolysis model allows higher feedback gain h and better performance when 

there is additional feedback loop on PK (g=1). h=4 does not drive the system into sustained 

oscillation as in the g=0 case in Fig 3B. Compared to Fig 5B, both the peaks and total area in 

log|S(j)| are lower. B) The effects of varying intermediate reaction rate k given particular 

inhibition strengths (in this case, h =3 and g=1). Lower k results in both higher peak and area under 

the curve (i), which translate to more oscillatory transients (ii). 
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The steady state error ratio for this model is:  

 

 
1

( )

y f

h a fg

 


 
 (2.19) 

This new system has stability bounds: 

 
0

( ) 0

h a fg

k kf g q a h g

  

     
 (2.20) 

which relaxes the stability constraints and further bounds the steady state error to be:  

 
 

   

11

( ) 1

q fy f

h a fg k q g f k gq

 
 

     
 (2.21) 

  

The functions S and P are now given by: 

 
2

2

( ( ))

( ( )) ( )

s k kf g q a g s ka kfg
S

s k kf g q a h g s k a h kfg

      


        
 (2.22) 

 
2

( )
( ( ))

qs k
P s

s k kf g q a g s ka kfg

 


      
 (2.23) 

  

And hence the zero remains the same as 
k

z
q

 . 

Termonia and Ross also modeled the activating effects of F1,6bP on PK (15). Including this 

effect in our model changes the effect of k in our analysis to k(1+c) where c is the activation 

coefficient on PK. Thus, increasing c can seem to make both stability and performance better 

(again at the cost of a more complex enzyme). In reality, however, activation is bounded by the 

saturation effects of the enzyme, and thus c cannot be arbitrarily high. 
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Intermediate inhibition on PFK can thus change both the steady state error and stability bounds, 

while intermediate activation of PK can lift performance constraint (ultimately, the effects of both 

are limited by enzyme saturation). Fructose 1,6-bisphosphate (the product of PFK) has been thought 

to both inhibit PFK and activate PK, again suggesting that nature accepts greater complexity in 

return for robustness. 

 Pros Cons 

Low q  Improves performance limit. 

 Can stabilize the system. 

 Reduces metabolic efficiency 

High k  Improves performance limit. 

 Can stabilize the system. 

 Increases enzyme complexity 

 Increased metabolic load  

High h  Stabilizes the system. 

 Improves steady state error. 

 Increases enzyme complexity 

 High h can lead into a limit 

cycle 

 Worse transient oscillations 

Additional feedback 

loop (g>0) 

 Improves performance limit. 

 Improves stability bounds. 

 Increases pathway complexity. 

 Increases enzyme complexity. 

Table 2 

 

Experiments in Single Cells 

Our theory shows both how autocatalysis makes glycolysis more prone to sustained oscillations and 

how sufficiently complex feedback control ameliorates this potential fragility. The tradeoffs 

summarized in Table 2 suggest that ringy transient dynamics would be more likely under specific 

worst case conditions that we have attempted to create experimentally. Small z=k/q has the most 

obvious impact on overall fragility, and this occurs at high autocatalytic stoichiometry q and/or low 

k.  
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Transcription levels of some glycolytic genes are decreased when S. cerevisiae is grown in 

ethanol (24), which could decrease k. Flow cytometry of S. cerevisiae cells with GFP-tagged 

enzymes (from Invitrogen GFP library) indeed show a lower abundance of glycolytic enzymes 

involved in the intermediate reaction including Fructose 1,6-bisphosphate aldolase (FBA1) and 

Glyceraldehyde-3-phosphate dehydrogenase (TDH3) (Table 3). Flow cytometry data was analyzed 

using FlowJo. 

 FBA1 fluorescence (AU) TDH3 fluorescence (AU) 

Mean Median Mean Median 

Glucose 564.1 552.5 423.5 352.3 

Ethanol 468.8 393.7 301.5 198.1 

Table 3. Fluorescence statistics of GFP-tagged glycolytic enzymes in yeast cells grown in media 

with glucose vs ethanol. 

 

Interestingly, the level of TDH3 also shows higher variability when grown in ethanol, as shown in 

Figure 2.7, further underlining the importance of robust stability for all k>0. 

 

Figure 2.7. Fluorescence histogram of 

GFP-tagged Glyceraldehyde-3-

phosphate dehydrogenase. Cells grown 

in ethanol has lower mean and median 

of fluorescence, and also higher 

variability. 
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Wild type yeast S. cerevisiae cells (strain W303) were then grown overnight in Yeast Nitrogen Base 

(YNB) + ethanol. Cells were then imaged using the microfluidic platform ONIX (CellAsic) and an 

inverted microscope (Nikon Eclipse Ti-E). We imaged the NADH autofluorescence (excitation 370 

nm, emission 460 nm) in the cells as the ethanol medium was switched to a medium containing 

YNB, glucose, and potassium cyanide (KCN) to induce anaerobic glycolysis. Both simultaneous 

and independent addition of glucose and KCN were performed. During the media shift, we chose 

the highest flow rate which would not dislodge the cells, in order to ensure the media was shifted as 

abruptly as possible. For the ONIX microfluidic pump, this flow rate was at 7 psi. In a separate 

experiment, cells were harvested and starved by resuspending them in phosphate buffer (PBS) 

before adding glucose and KCN, which induces oscillations in dense cell suspension (25). Control 

cells were grown in YPD and shifted to YNB, glucose, and KCN. 

Fluorescence measurement was taken every 3 seconds. Photo bleaching occurred after 

approximately 15 minutes, hence we analyzed only the early time points (Fig 2.8 shows 

measurements during the first five minutes). Note that while synchronized and sustained oscillation 

is found in dense whole yeast cell suspension, we could not achieve this density on a single cell 

layer using the microfluidic chamber. 

Time-lapse images show a portion of the cells exhibiting a transient oscillation in response to 

glucose and KCN addition, before settling in to a higher NADH level. This behavior is as expected 

from a robust controller and roughly corresponds to 1 3k   in Fig 2.6B(ii). The period is in good 

agreement with the 36 second period of NADH oscillation observed in dense yeast cell suspensions 

(25).  Additionally, when the cells are starved in phosphate buffer before the shifting to glucose and 

KCN, a larger portion (~30%) of the cells exhibit transient oscillations. On the other hand, cells 

grown in glucose showed no fluctuation in the transients when KCN was added (Fig 2.9). 
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Concentrations of KCN and glucose were varied and responses were compared, but no sustained 

oscillation was observed. Further attempt to stress the cells by heat shock (which unfolds enzymes, 

lowering k, and increases ATP demand) or by amino acid starvation (lowering enzyme levels) still 

did not induce oscillations. The period is in good agreement with the 36s period in cell suspensions 

(25), and this transient does not occur in cells grown in glucose (Fig 2.9), also as expected for high k 

(e.g k=5 in Fig 2.6B(ii)). We observed no sustained oscillation regardless of the experimental 

perturbations applied, suggesting that the intact single cell is indeed rather robust.  

 

Figure 2.8. Single cell NADH autofluorescence measurements in previously-starved yeast cells 

made anaerobic using potassium cyanide (KCN). Dashed line indicates when the media 

(YNB+Ethanol) was switched to a glucose+KCN media. Some cells exhibited transient fluctuations 

while others exhibited a smoother response. 
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Figure 2.9. Single cell NADH autofluorescence measurements in yeast cells grown in glucose 

made anaerobic using potassium cyanide (KCN). Black line indicates when KCN was added. No 

fluctuation was observed in the transients and cells NADH fluorescence returned close to its 

original value. 

 

In fact, despite intense experimental study, spontaneous sustained oscillations in yeast have only 

been observed in cell-free extracts or in intact cells in dense suspensions but not when isolated (25). 

Our single cell model is too simplistic to be as predictive as the detailed models in the literature, but 

because the analysis highlights fundamental tradeoffs, it potentially gives insights into these 

different behaviors. For example, in cell-free extracts parameters can be pushed into regimes 

exposing extreme fragilities that wild type cells have evolved to avoid. In the next section, we show 

that our model and theory are consistent with observed patterns of oscillations in well-known 

extract experiments (26). Of course, the possibility of single cell oscillation cannot be ruled out and 
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there is much more to be done theoretically and experimentally to fully resolve this. Chapter 3 

discusses the problem of single cell oscillations further. 

Agreement with Yeast Extract Experiments in Continuous Stirred Tank Reactor 

In a continuous stirred tank reactor (CSTR) experiment, we can assume that the mixture inside 

the tank reactor is well mixed and thus can be modeled essentially as a single cell. Both yeast 

extract and glucose were flown into the tank reactor at the same rate, and the mixture was flown 

out keeping the volume in the tank constant. Other researchers observed early on that the 

concentration of NADH in these extracts oscillate when the flow rate is varied (26). NADH is 

stable at low flow rate and starts to oscillate when the flow rate is increased. When the flow rate 

is increased even more, NADH returns to being stable. This is perhaps the most well-known 

experimental result in glycolytic oscillation and the oscillation in NADH is later shown to 

correspond to oscillation in other glycolytic intermediates.  

Our model can be simply modified to capture this extract case. We model the flow rates as a 

“consumption” of the produced metabolites, characterized by the parameter v. The inflow of ATP 

from the extract is modeled by the parameter u and is half of the initial concentration of ATP that 

is added into the extract. 

22
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 (2.24) 

   

We show that this model can qualitatively replicate the result of these CSTR experiments as 

shown in Fig 2.10. Under a low flow rate v of both extract and glucose, the reactor reaches 
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equilibrium. When the v is increased, the system at some point passes through a bifurcation and 

starts to oscillate. However, when v is increased even more, the system moves back to a stable 

region. The bifurcations occur when k is low (as predicted by our theory), which is the case in a 

dilute extract solution, but which is a condition intact cells have probably evolved to avoid or 

cannot survive in. 

 

Figure 2.10. Simulation of our two state model (2.24) qualitatively recapitulates experimental 

observation from previous CSTR studies including (12, 26). As the flow of material in/out of the 

system is increased, the system enters a limit cycle and then stabilizes again. In this simulation, 

the parameters have been normalized so that the steady state concentration of ATP is 1. For this 

simulation, we take q=a=V=1, k=0.2, g=1, u=0.01, h=3. 

 

 

Equation Section (Next) 
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C h a p t e r  3  

SINGLE CELL OSCILLATIONS AND REDOX 

Oscillations in Single Yeast Cells 

The presence of oscillations at the population level in intact yeast cells seems to depend on high cell 

density, and the amplitude depends on the cell density. Until 2012, no oscillation was observed in 

sparse population of yeast cells, even when cyanide was added. As the density is increased, the 

entire population starts to oscillate in synchrony (27). There is some evidence that acetaldehyde, 

which diffuses in and out of the cells, is the synchronizing species (28, 29). Although some models, 

such as those by De Monte, capture this density dependence, De Monte explicitly models an 

oscillator instead of a mechanistic reaction model and thus does not explain why the density 

dependence occurs (30). Other models explore how acetaldehyde might synchronize oscillations 

between cells, but the long-standing controversy was how the cells behave at low density (31): do 

the single cells synchronize out of phase at low density, or are they stable and then start to oscillate 

synchronously as the density is increased? Lacking the technology, previous studies from each side 

of the argument have used indirect methods to answer the question. 

Until 2012, no study had reported the existence of unsynchronized oscillations in isolated single 

cells. A study by Poulsen et al removed cells from an oscillating population, and when observed 

individually, these cells show no oscillation (25). It has then been thought that yeast cells transition 

directly from a non-oscillating state immediately to synchronized oscillations, rather than from 

unsynchronized oscillations in single cells that become synchronized.  In a 2012 paper, Gustavsson 

et al managed to observe sustained oscillations in isolated single cells for the first time using a 

microfluidic chamber and optical tweezers (32). Oscillations were observed when the flow rate 
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through the chamber and the cyanide concentration were in a certain range. So far, this is the only 

paper that has reported oscillations in single isolated S. cerevisiae cells, although Weber et al 

reports that immobilized S. carlsbergensis cells desynchronize to out of phase single cell 

oscillations (33) (while they are both yeasts and the glycolytic pathway structure is universal, there 

are differences in the conditions required to achieve oscillations in the two organisms (34)). In our 

single cell studies, we kept the same cyanide concentration and chose the flow rate to be the 

maximum without dislodging the cells, and this may be beyond the oscillatory range. 

Gustavvson et al suggested that the right concentration of extracellular acetaldehyde (low, but not 

too low) must be maintained for synchronized oscillations (32) and that this is achieved by the 

addition of potassium cyanide (KCN) to the medium. Cyanide not only halts aerobic metabolism 

but also reacts with the extracellular acetaldehyde which is released by the cells. Acetaldehyde 

reacts with NADH (to produce ethanol and NAD+) which is involved in the upper reactions of 

glycolysis and is coupled with ATP. Gustavsson et al showed that increasing flow rate through the 

microfluidic chamber can replace the role of cyanide in inducing oscillations (the cells must still be 

made anaerobic by flushing the medium with nitrogen). They observed heterogeneity in the 

responses where about 40% of the cells exhibit sustained oscillations and simulations of their 

detailed model captures this heterogeneity. However, they did not show one of the most important 

issues, which is whether the cells bifurcate from steady state to an oscillatory state as the flow rates 

(and thus acetaldehyde removal) are varied. It is still unclear whether their model captures this 

behavior. 

On the other hand, Kloster and Olsen showed the dependency of oscillations on the cell density 

using simulations of a simple, three-state autocatalytic model (17). However, in the main paper they 

modeled the autocatalytic species as the diffusing species. Paralleling our model, removal of this 
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species would be equivalent of increasing ATP consumption, which we have shown affects 

oscillations. The authors claim that they have explored a model where the autocatalytic and 

diffusing species are different (much like ATP and acetaldehyde) and that the results were 

consistent, but these results were not presented in the paper. 

Analysis of the Kloster Model 

In their paper, Kloster et al showed how the amplitude of the oscillation changes as the density is 

increased in their model (the amplitude is taken as zero when there is no oscillation). We looked at 

the stability of this model to see if it will also capture the effects of changing flow rate or cyanide 

concentration (essentially changing the rate of acetaldehyde removal from the external medium) in 

inducing oscillation. 

The three-state model proposed by Kloster is as follows: 
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 (3.1) 

Where [B]i  and [B]e is the intracellular and extracellular concentration of species B, respectively. 

The two variables to study here are the density n (and  , which is defined as the cytoplasmic 

volume divided by the external volume, and depends on n) and the removal rate of [B]e, ke. 

However, contrary to the hypothesis that high density helps maintain a “low enough” extracellular 

acetaldehyde concentration conducive to oscillation, it can be easily shown that [B]e  increases with 

 .  
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Using the parameters given in (17), we performed linear stability analysis which indeed shows 

that there is a range of low density where the system can go from stable to an oscillatory state and 

back to stable as the diffusing species removal rate is increased (see Fig 3.1), as experimentally 

shown in (32). The experiment in (32) was performed at a particular low density (maintained using 

optical tweezers) which may lie in this range. Linear stability analysis indicates that if the density is 

decreased even more oscillations may not occur for any removal rate (given the parameters used in 

(17)).  

Figure 3.1.  

Linear stability of the Kloster 

model with density ( ) and 

extracellular species removal 

rate ke. The rest of the 

parameters are fixed with the 

values given in (17). The white 

region indicates the stable 

region, while region in red 

indicates where the system is in 

a limit cycle. The region in 

black has a non-positive steady 

state. 

 

On the other hand, this three-state model presents some discrepancy compared to the real pathway. 

Kloster uses [B] as both the autocatalytic and diffusing species, which would imply that the 

diffusing species has a direct effect on the autocatalytic species, ATP. In fact, acetaldehyde effects 

NAD+/NADH, which are substrates on some glycolytic reactions and in this way affects ATP 

production (if we look at NAD+ instead of NADH in this pathway, then NAD+ itself is also 

autocatalytic). The authors claim that a 4-state model where the autocatalytic species and the 

diffusing species are separated achieve the same results, but these results have not been published. 
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We then explored a more mechanistic model to see if similar behavior that corresponds to the 

single cell experiments can be achieved. 

Redox Balance in Anaerobic S. cerevisiae 

The glycolytic pathway produces two NADH, a reducing agent which is then used as an electron 

donor in the electron transport system to produce more ATP. However, in anaerobic conditions the 

electron transport system is shut down and NADH becomes a waste product. The NAD+/NADH 

ratio and the redox balance of the cell is very important and must be maintained, because many 

reactions depend on the proper NAD+/NADH ratio (typically this ratio is kept high in the cell). 

Thus, without the electron transport system, anaerobic cells must regain redox balance and high 

NAD+ level through another pathway. In S. cerevisiae, this is mainly achieved through glycerol and 

ethanol production, which oxidizes NADH into NAD+ (35). In fact, mutant cells that are unable to 

synthesize glycerol cannot grow anaerobically (36). 

In addition to the NADH produced by glycolysis, some biosynthetic pathways also result in NADH 

production. In anaerobic S. cerevisiae, acetic acid is still produced, and further metabolized into 

acetyl-CoA, an imperative building block of fatty acid biosynthesis. The conversion of acetaldehyde 

into acetic acid produces 2 NADH.  

TCA pathway activity is still maintained during fermentation to supply the amino acid biosynthetic 

precursors, but in a branched fashion. One branch forms 2-oxoglutarate and is oxidative while the 

other forms fumarate and is reductive; however, the reductive branch produces more NADH than is 

consumed by the oxidative branch, so it must still be compensated by either glycerol or ethanol 

production (35). 
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Glycolysis Model with Redox and Diffusion 

The minimal model in Chapter 2 does not incorporate any species diffusion out of the cell and is not 

able to capture the density dependence of intact cell oscillations. This model was expanded to 

include acetaldehyde with diffusion and its reaction with NAD+/NADH. We developed two models 

to explore the role of cell density and media flow rate. The first model has seven states 

incorporating the previous ATP autocatalytic loop, NAD+ autocatalytic loop and acetaldehyde 

diffusion in and out of the cell (Fig 3.2A).  
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 (3.2) 

X, Y, and Z are lumped intermediate metabolites, A represents ATP, N represents NAD+, and C and 

Ce are intracellular and extracellular acetaldehyde, respectively. Cyanide reacts with acetaldehyde, 

removing it from the media (as both the flow rate and cyanide addition have the same effect of 

removing acetaldehyde, we lump them in the same reaction). Acetaldehyde is turned into ethanol in 

a reaction that also oxidizes NADH to NAD+. NAD+ is used a substrate for part of the upper 

glycolytic reactions, producing NADH, while the lower part oxidizes it back to NAD+, resulting in 

a futile cycle where the same number of NAD+ molecules are consumed upstream as produced 

downstream. NAD+ is also produced from the conversion of an intermediate metabolite to glycerol 
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(the NAD+ production step is actually the production of glycerol-3-phosphate, a precursor to 

glycerol). There is a consumption of N (NAD+), equivalent to production of NADH from the 

biosynthetic pathways, as dictated by the demand of the cell for biosynthetic building blocks. The 

consumption is assumed to be a constant determined by the growth requirements of the cell. In this 

model, kin=kout as they are diffusion parameters. 

We asked if the expanded model could capture the experimentally observed behavior in (32). The 

key behaviors we looked for was: 1) the system goes from stable to a limit cycle as density 

increases, and 2) for lower density, the system can go from stable to a limit cycle and back to a 

stable region as the acetaldehyde removal rate is increased (either through increasing cyanide 

concentration or flow rate). 

To obtain starting parameter values, we scanned the parameter space for a set that satisfies the first 

desired behavior above (bifurcation from stable to limit cycle with increasing density). Linear 

stability again shows that the 7-dimensional model can capture the desired behavior, as shown in 

Fig 3.3, indicating that either high density or the right acetaldehyde removal rate can induce 

oscillation in a single cell. 
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A  B  

 

Figure 3.2. A) 7-dimensional model of glycolysis and acetaldehyde diffusion. B) 4-dimensional 

model of glycolysis and acetaldehyde diffusion. There is an autocatalytic loop of ATP, which also 

inhibits PFK and PK. An intermediate metabolite is converted into glycerol in a reaction that 

produces NAD+. NAD+ is used as a substrate in an upstream reaction. One of the end products, 

acetaldehyde, diffuses in and out of the cell and is removed by cyanide in the media. Intracellular 

acetaldehyde is converted into ethanol in a reaction that also produces NAD+, completing the 

autocatalytic loop. 

 

In order to better understand the role of the NAD+ loop on stability, we reduced the model to four 

states and introduced a new pair of parameters to model the stoichiometry of the NAD+ 

autocatalysis, where mcons is the number of NAD+ molecules consumed upstream, mprod is the 

number of NAD+ molecules produced downstream (in the real pathway including glycolysis and 

acetaldehyde production, mcons = mprod =1). Acetaldehyde and NAD+ is lumped in this model:  

 



 

 

37 
Figure 3.3. Stability of the 7-

state model. The area in red 

shows the parameter region 

where the system is oscillating, 

while the area in white is where 

the system is stable. Just like in 

the Kloster model, the system 

goes into limit cycle as density is 

increased. At lower density the 

system moves from stable to 

oscillating to stable as the 

acetaldehyde removal rate is 

increased. 
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In this model, since NAD+ is lumped with acetaldehyde, kin  encapsulates both the diffusion and the 

ethanol reaction, therefore in outk k . As in Chapter 2, we fixed the steady state value of A=1, and 

linearize the system to: 
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Where Xss and Css are the steady state values of X and C, respectively. 
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First, we take 1consm  . When mprod=1, which is the value in the real pathway. We can find a 

parameter set such that we achieve the desired behavior (Fig 3.4). We asked if it was indeed the 

extracellular acetaldehyde concentration that is important for oscillation, as suggested in (32), and 

looked at the concentration values in both the stable and the oscillatory regions.  

Figure 3.4. Stability regions of the 4-state 

glycolysis model with mcons=mprod=1. The 

red shows the limit cycle region while white 

is the stable region. The plot shows that the 

system goes from a stable state to a limit 

cycle as the density is increased. 

Additionally, at lower density the system 

can go from stable to limit cycle and back to 

a stable state with increasing acetaldehyde 

removal rate. Parameters used were a=1; 

h=3; g=1; q=1; V = 4.0136;k =6.0459; 

kg=0.5927; kin = 1.0492; kout = 3.1639; 

kc=4.7862; 

There is in fact no specific range of extracellular acetaldehyde concentration that pinpoints if the 

system would oscillate. That is, while there does seem to be a minimum required concentration of 

acetaldehyde to affect the glycolytic reactions and induce oscillations, the maximum concentration 

in the oscillatory region is actually higher than the maximum in the stable region, thus there is no 

range where the system always oscillates (Fig 3.5). 
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Figure 3.5. 

Extracellular acetaldehyde concentration 

(Ce) spanning a range of densities and 

acetaldehyde removal rates. The left shows 

the concentrations found in a stable 

parameter set (black) while the right shows 

concentrations for parameter sets where the 

system oscillate. The system does not 

oscillate when [Ce] is too low but there is no 

range of extracellular concentration that 

determines if the system will always 

oscillate. 

 

 This result can be easily tested experimentally by adding a flow of acetaldehyde to the extracellular 

medium of cells and checking if varying this concentration will change the cellular behavior (most 

studies have tried adding pulses of acetaldehyde, which only changes the concentration transiently 

(29, 37)).  In (27) it is shown that the addition of acetaldehyde did not abolish oscillations, which 

supports our results above, but the acetaldehyde concentration added needs to be systematically 

varied. 

Interestingly, the same parameter values used in Fig 3.4 makes the system oscillatory even in low 

density for mprod>2, even though it means lower autocatalysis (Fig 3.6A). Changing the 

acetaldehyde removal rate also does not change the effects of the autocatalysis (Fig 3.6B). When we 

look at the stability using different parameter values, we find that mprod =mcons is indeed the most 

robust (Fig 3.7). This is a surprising result, as we expected that lower autocatalysis (mprod >mcons) 

would be more stable, yet in line with the real biological network. It is, however, true that while the 

system may oscillate with lower autocatalysis, it is more unstable (unstable node) at higher 

autocatalysis. 
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Figure 3.6. Linear stability analysis for varying NAD+ autocatalytic stoichiometry vs. density (left) 

or acetaldehyde removal rate (right). The system is stable when the net NAD+ production is 0 

(mprod-mcons=0) regardless of acetaldehyde removal rate. The system is also most robust in the 

switching behavior as density is increased at mprod-mcons=0. 
 

Probing the parameter space further reveals that the behavior in the NAD+ autocatalysis results 

from its interaction with ATP autocatalysis. Figure 3.8 shows the stability as both NAD+ and ATP 

autocatalytic stoichiometry is varied. We see that for lower ATP autocatalysis q, lower NAD+ 

stoichiometry is indeed more stable. 

 

Figure 3.7. Stability regions with varying 

numbers of NAD+ molecules and produced. 

The top and bottom figures use different 

parameter sets but both show that mprod =mcons 

is the most robustly stable. In the bottom 

figure mprod =2, mcons=1 is stable, but in the 

face of noisy environment and gene 

expression, this stoichiometry would not be 

robust. 
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Figure 3.8. How stability changes with the 

interaction of the two autocatalytic loops. NAD 

stoichiometry gives the net number of molecules 

produced (mprod -mcons), which is 0 in the real 

pathway. For q=0, lower NAD stoichiometry is 

stable but becomes unstable at higher q.Red is the 

oscillatory region and blue is the unstable region. 

 

The Role of Glycerol Production 

In glycolysis, the six-carbon sugar fructose-1,6-bisphosphate is cleaved into two three-carbon 

sugars, dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (G3P), which can be 

interconverted by an isomerase. G3P goes on along the glycolytic pathway to eventually produce 

pyruvate and ATP, while DHAP is either converted into glycerol or converted back to G3P. As 

discussed above, in anaerobic conditions yeast cells ramp up glycerol production in order to oxidize 

NADH to NAD+ and maintain redox balance. Deleting the enzyme glyceraldehyde-3-phosphate 

dehydrogenase, which produces NAD+ along with glycerol-3-phosphate eliminates oscillations 

(38). It is also known that mutant cells which cannot synthesize glycerol cannot survive in 

anaerobic conditions. 

When there is no glycerol production at all, or kg=0, the model (3.3) actually has no positive steady 

state. To see what role (other than maintaining redox balance) changing the rate of glycerol 

production has on the pathway, we also looked at the stability as glycerol production rate is 

increased.  Fig 3.9 shows that increasing glycerol production rate allows stability for different 
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autocatalytic stoichiometry of both NAD+ and ATP. Plotting the stability regions of glycerol 

production rate kg vs. other parameters, including density and acetaldehyde removal rate showed 

that the system oscillates at low kg but is stable at higher kg, indicating that kg indeed confers 

stability. This is interesting, as our model does not impose redox balance constraints, yet increasing 

glycerol production not only helps maintain redox balance but apparently also stabilizes the system. 

Glycerol production branches off the glycolytic pathway and consumes DHAP, therefore increasing 

glycerol production decreases the downstream output (including ATP). This presents another 

tradeoff between robustness (stability) and efficiency (ATP output per glucose). 

 
Figure 3.9. Higher glycerol production rate stabilizes a wider range of both ATP (left) and NAD+ 

(right) autocatalytic stoichiometry. The blue region is unstable while the red region is oscillatory. 

The white region shows the stable region. 
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C h a p t e r  4  

RIBOSOME AUTOCATALYSIS 

Equation Section (Next) 

Ribosome synthesis is another significant autocatalytic loop in a cell. Ribosomes are required to 

synthesize peptides and proteins, but are also partially composed of proteins themselves, thereby 

creating an autocatalytic loop. As we have seen in the previous chapters, autocatalysis can produce 

undesirable behavior, such as oscillation or fluctuation. Is there a similar consequence to 

autocatalysis in the case of ribosomes? Ribosome concentration is known to have low noise level 

(39). Changes in ribosome concentration can drastically affect the protein expression level even 

when mRNA levels are constant, and computational studies suggest that in some cases it may even 

lead to ultrasensivity (40). Fluctuations in the ribosome level therefore can lead to extremely noisy 

protein expression and can be detrimental to the cell.  

This loop also presents the problem of resource allocation. Would the cell benefit more from 

allocating ribosomes to make more ribosomes, or to make other types of proteins? Is there an 

optimal ratio, and how is this ratio controlled? The cell devotes a significant amount of resources to 

ribosome production. Ribosomal mRNA transcription accounts for about 50% of the RNA 

Polynomerase Pol II transcription in yeast (41) while Pol I transcribes ribosomal RNA (rRNA) 

exclusively. 

As it turns out, the feedback regulation of ribosome synthesis is still unclear, with various 

conflicting models proposed in the literature. One regulation is widely accepted, however. Since 

ribosomal proteins must combine with rRNA to form a complete ribosome, the synthesis rate of 

both must be regulated to minimize wasteful production of either. Excess ribosomal proteins (that 
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are not complexed with rRNA) inhibit ribosomal protein translation by inhibiting the binding of 

ribosomes (42). How the rRNA synthesis is regulated is still under debate, but it is known that 

rRNA synthesis responds to the nutrient level (43). 

We will explore some of the proposed mechanisms of ribosome regulation, which have included: 

1) Free (non-translating) ribosome inhibits the transcription of rRNA via an “indirect” 

mechanism. This is called the “ribosome feedback model” (44).  

2) The transcription of some rRNA operons is not specifically regulated, but the transcription 

rate per operon decreases as the number of rRNA operons (or the number of genes 

transcribed) increase because of RNA Polymerase availability goes down, presenting yet 

another resource competition problem (43). 

3) ppGpp level increases during amino acid deprivation and induces transcriptional pausing of 

RNA polymerase, thereby decreasing transcription rate. Another study suggests that rrna 

operons are always saturated and higher ppGpp level frees up RNA polymerase to 

transcribe unsaturated promoters such as biosynthetic enzymes (45). In this case there is no 

feedback from ribosome, but the synthesis rate is controlled by nutrient level. 

Minimal Model of Ribosome Synthesis: Resource Competition 

The simplest model of ribosome synthesis is a 2-state model of ribosome and non-ribosomal 

proteins. Ribosomes are used to produce both species at a ratio v and (1-v), with feedback required 

to obtain steady state. Here kt represents the total translation rate, determined by both the translation 

rate and the total mRNA level. We assume that the total mRNA level is conserved (due to a limited 

pool of RNA Polymerase) and thus the ratios of ribosome and the rest of the proteins sum up to 1 
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(in the next section we explore a larger dimensional model allowing arbitrary expression of both 

mRNAs and show that the ratio is indeed what is important). 
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When ribosome feedback on ribosome production is implemented, this model correctly captures the 

approximate ratio of 50% ribosome production during maximal growth. The protein steady state 

level is given by: 
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The steady state protein level at this optimal ratio is given by: 
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, therefore by the second derivative test, (4.4) is a local 

maxima. During maximal cell growth, ribosomes have been shown to be stable for many hours, 

therefore dr is very small (46). We can see that as drK<<kt , voptimal0.5, which corresponds to the 
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observed 50% transcription of ribosomal proteins. The cell grows and divides when it reaches a 

certain size, therefore it may never reach steady state. Instead of maximizing for steady state protein 

level, it may be more relevant to optimize for growth rate instead. Fig 4.1 shows the optimal 

riboprotein transcription ratio for maximal protein synthesis rate at a shorter time scale. This ratio 

also lies between 55% to 60% for this 2-state model for various values of kt and dr.  

  

Figure 4.1. 

Growth rate (short term protein level) 

with varying ribosome production ratio 

shows that the optimal ratio lies between 

55%-60%. The three curves show the 

growth rates for varying kt and dr values. 

 

On the other hand, during starvation translation slows down due to limited amino acid supply and 

ribosomes are degraded fast, so the optimal ratio increases as kt decreases and dr increases. Linear 

stability also shows that the system is stable when r

t

Kd
v

k
  (there is in fact no positive steady state 

beyond this boundary). When nutrient level is low, translation rate (kt) decreases, so v must be 

larger (especially since dr is known to increase) and v is no longer optimal (at the optimal ratio the 

system is stable when t
r

k
d

K
 ). Production of most proteins is halted when the cells are starved, 

other than the stress response systems, yet ribosomes are still being produced at a significant rate. 

When growth rate drops by 20%, protein levels drop accordingly and the mRNA level drops to 10% 

compared to the level during fast growth, but ribosome level only drops to little less than half (47). 
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In starved vibrio cells (after 24 hours of starvation), ribosomes make up around 80% of the total 

dry cell mass (48). After 3 days of starvation, this ratio drops to about 50%. We assume similar 

numbers will be found in E. coli. This simple model does not explain why ribosome degradation 

would increase. Additionally, the model does not really capture the autocatalytic “consumption” of 

ribosome (via binding to riboprotein mRNA). 

Higher Order Model of Ribosome Synthesis 

To capture both resource allocation and autocatalysis, we modeled the production of ribosomes and 

“proteins” and ribosomal binding to mRNA. As a first cut, the system was simplified by removing 

rRNA, resulting in a 6-state model (Fig 4.2).  Both the mRNA of riboproteins (Rm) and mRNA of 

the other proteins (Pm) complex with ribosomes (R) and then translated to produce ribosomes and 

proteins (P). 

We implemented the “ribosome feedback model” discussed above. Since rRNA is not explicitly 

modeled, effectively the free ribosomes that are not translating inhibit the synthesis of more 

“ribosomes” (ribosomal protein) with strength h. 

 

Figure 4.2. Diagram of the 6-state ribosome synthesis model. mRNAs bind to free ribosomes to 

form a complex which dissociates when translation is completed. Free ribosomes inhibit binding to 

riboprotein mRNA. 
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  (4.5) 

Rm Concentration of mRNA of 

riboproteins 

vrm Rate of riboprotein mRNA 

synthesis 

Pm Concentration of mRNA of other 

proteins 

vpm Rate of other mRNA synthesis 

CR Complex of ribosomes bound to Rm kon Binding of ribosomes to mRNA 

CP Complex of ribosomes bound to Pm kr, kp Translation rate of ribosomes or 

other proteins, respectively 

R Concentration of ribosomes dm 

dr, dp 

Degradation rates of mRNA, 

ribosomes, and other proteins, 

respectively. 

P Concentration of other proteins h Strength of inhibition of free 

ribosomes on binding rate.  

Table 4. Parameter definitions of model (4.5). 

Tradeoffs in Ribosome Synthesis: Maximal Growth and Efficiency 

In fast growing E. coli, ribosome composes about 25%  of the dry cell mass and ribosomal proteins 

make up 50% of Pol II transcription (41). Other than maintaining stable response as discussed 

above, is there an optimal ratio of ribosome vs protein synthesis? 

Snoep et al used a simple model to look at the optimal ribosome concentration for maximal (steady 

state) growth but not the ribosome:protein ratio (49). However, ribosome and protein synthesis is 

costly to the cell. If we assume there is a limit to resources inside the cell (e.g. due to saturated 

glucose transporter), then the ratio between the two production instead of absolute ribosome 

synthesis becomes the variable to optimize. 
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Using the 6-state model above, we looked at the steady state protein concentration spanning 

different ratios of ribosome production. We also looked at the relative proportion of ribosomes vs 

proteins by mass to define efficiency, corrected for the fact that the average protein is ten times 

larger than ribosomes. Fig 4.3 shows that the optimal ratio for growth occurs around 50% ratio of 

ribosome transcription, while the proportion in the cell increases with increasing ratio. 

  

Figure 4.3. The optimal 

ratio for growh (left) and the 

proportion of ribosome in 

the cell (right) with 

increasing ratio of 

transcription devoted to 

riboprotein mRNAs. 

 

Tradeoffs in Ribosome Synthesis: Feedback and Stability 

 Unlike glycolysis, autocatalysis in the case of ribosome synthesis is not as easily quantified. We 

can quantify it by the amount of protein needed to form a ribosome, which depends on both the size 

of the ribosome and the ratio of ribosomal proteins to rRNA. Higher ribosome to protein production 

ratio means higher autocatalysis, and this can result from increased transcription of riboprotein 

mRNA compared to protein mRNAs, so one measure of autocatalysis is the ratio of the two 

transcription rates vrm:vpm (with the simplifying assumption that the ribosomes bind equally strong 

to both types of mRNAs). 
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By linearizing the model (4.5) we can look at the stability boundaries. Fig 4.4A shows that the 

ratio vpm:vrm (and thus the slope in the plot) must stay within a certain range for the system to have a 

smooth and stable response. Simulations of the full nonlinear system exhibit this behavior, as shown 

in Fig 4.5A. When vrm becomes too high, the system starts to exhibit damped oscillations (Fig 

4.5B). As discussed above, some mRNAs are ultrasensitive to ribosome concentration and this 

fluctuation could be detrimental (40). When vpm:vrm becomes too high the system crashes, and as it 

decreases the system oscillates or goes unstable (Fig 4.5C). 

Fig 4.4B shows a similar plot for a higher feedback inhibition. While the boundary locations vary as 

the parameter values change, the shape and thus the general tradeoffs remain the same. 

Additionally, we also see that higher feedback gain actually narrows the parameter region where the 

system has a stable, smooth response. 

 
Figure 4.4. Stability regions as riboprotein mRNA production rate vrm and protein mRNA 

production rate vpm are varied. The white region is where the system is stable, blue indicates the 

region of damped oscillation, red indicates a limit cycle, and green indicates unstable region. The 

plot on the right shows that the stable region is narrowed when h is higher (h=3 compared to h=2 

on the left). 
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Figure 4.5. Simulation of model (4.5) as the ratio vrm/vpm is increased. A higher ratio eventually 

leads to oscillations (C). 

 

Since higher feedback gain narrows the stable parameter region, we hypothesized that higher 

feedback must trade off with another desired property, for example error and sensitivity. We then 

looked at the relative changes in the steady state protein and ribosome concentrations to 

perturbations in parameter values. We found that higher feedback indeed confers higher robustness 

in steady state values to various parameter perturbations (Fig 4.6). 

Ribosome Synthesis During Starvation 

Production of most proteins is halted when the cells are starved, other than the stress response 

proteins. When growth rate drops by 20%, protein levels drop accordingly, and mRNA level drops 

to 10% compared to the level during fast growth, but ribosome level only drops to little less than 

half (47). In starved vibrio cells (after 24 hours of starvation), ribosomes make up around 80% of 

the total dry cell mass (48). After 3 days of starvation, this ratio drops to about 50%. We assume 

similar numbers will be found in E. coli.  The mRNA levels for a large number of ribosomal protein 

genes (in yeast) are reduced by a factor of 2 to 4 during amino acid starvation (50). 
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Figure 4.6. The relative change in steady state level following 10% perturbations in different 

parameters for low feedback inhibition (h=1) and high feedback inhibition (h=2). Higher feedback 

increases steady state robustness to parameter perturbation. 

 

We modeled starvation conditions by reducing the transcription and translation rates and again 

looking at the optimal ratio for growth. The optimal ratio increases somewhat compared to the 

maximal growth condition and the proportion of ribosome in the cell is much higher at around 55% 

(Fig 4.7), comparable to the numbers seen in vibrio. 



 

 

53 
Figure 4.7. 

The optimal ratio for 

highest non-ribosomal 

protein level increases 

in starvation condition 

and the proportion of 

ribosome in the cell is 

much higher. Low 

ratio of ribosome 

transcription is no 

longer stable in 

starvation. 

 

While ribosome production is also decreased in starved cells and rRNA transcription by Pol I is 

nutrient limited (51), ribosomes are still being produced at a significant rate. Instead of being used 

to translate mRNAs, these ribosomes are selectively degraded at an increased rate so that their 

amino acid components can be recycled. This seems wasteful, as ribosome production requires 

energy which the cell must use sparingly in starvation; so why do the cells continue to produce 

significant amounts of ribosome? 

One obvious hypothesis is that because the transcription and translation process is slow, when the 

cell continues to produce ribosomes, it will be able to respond faster when it suddenly encounters 

more nutrient. Indeed, simulation of our model shows that this is indeed the case (Fig 4.8). A 

natural extension of the model should include the amino acid recycling from the degraded 

ribosomes and proteins, another autocatalytic loop when combined with biosynthetic pathways that 

is of interest for future studies. 
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Figure 4.8. 

Simulation of model (4.5) 

shows that when the system 

keeps a high ribosome 

production (high vrm) it 

responds faster at the shorter 

time scale. 

 

Three-State Model of Ribosome Autocatalysis 

The 6-state model above does not explicitly capture how much protein composes a ribosome. The 

protein compositions of ribosomes vary in different organisms, ranging from 25% protein in E. coli 

(52) to 60% protein in the thermophilic archaea T. aquaticus (53). We are interested in the potential 

trade-offs between ribosome with low vs. high protein content. To explore this issue, we now turn 

to a 3-state model explicitly modeling both ribosome and ribosomal proteins. We know that rRNA 

level corresponds to nutrient level, therefore the total rRNA level (Rt) is modeled as constant and is 

the tuning parameter as we see what happens at different nutrient levels. 
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In this model we take into account the size of the ribosome, S, and how much of that (q) is 

composed of proteins vs. rRNA (S-q). The “ribosome feedback model” proposed by some studies is 

0 50 100 150 200 250 300 350

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

[P
ro

te
in

]

 

 

High vrm

Low vrm



 

 

55 
under debate but we do know that excess ribosomal proteins inhibits translation, which we model 

here with coefficient of inhibiton g. Ribosomal proteins bind to free rRNA ( ( )tR S q R  ) with 

rate kon. Just like in the 2-state model, the total mRNA transcription is also assumed constant and 

the control variable is the ratio of transcription between ribosomal protein vs. non-ribosomal protein 

mRNAs. First we want to check that this very simple model can recapitulate a well-known 

experimental result that the ribosome synthesis rate scales with growth rate, and that the ribosomal 

protein transcription ratio (not just the absolute level of transcription) also scales with growth rate 

(8). The growth rate is determined by the nutrient level. Fig 4.9 shows that indeed the optimal 

transcription ratio rm increases with increasing rRNA level and naturally followed by increasing 

protein level. 

 

Figure 4.9. The optimal riboprotein transcription ratio rm increases with increasing nutrient level 

(represented by increasing total rRNA, Rt). The growth rate (protein response) increases with 

increasing rm and Rt . 

 

 Despite the exceeding simplicity of the model, we hope that it can shed light to the effects of 

protein content autocatalysis. Analysis of the glycolysis system in Chapter 2 suggests that 
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autocatalysis can be destabilizing, thus we look at the linear stability of the ribosome synthesis 

system with respect to q. The system linearizes to: 
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(4.7) 

Figure 4.10. 

Stability region with varying 

autocatalysis defined by the ribosomal 

protein content (q/S) and ribosomal 

transcription ratio (rm). As q increases, 

higher transcription ratio is needed to 

stabilize the system. The region in black 

indicates where the system has no 

positive steady state, while the region in 

green indicates an unstable steady state. 

The white region is the stable region. 

 

Fig 4.10 shows the interaction between q and the mRNA transcription ratio. High q (ribosomal 

protein content) is destabilizing. As q increases, higher mRNA transcription ratio is needed to 

stabilize the system. Increasing ribosomal protein transcription can be costly, however. The 

ribosomes are merely machineries required to translate growth and metabolic proteins. An efficient 

system should achieve fast growth rate with low amount of ribosomes. Fig 4.11 shows that ratio of 

ribosomes (“cost”) over growth proteins (“benefit”) increases nonlinearly with rm. 
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Figure 4.11 

The cost of cell growth measured by 

the ratio of ribosomes over growth 

protein increases with rm. Green dot 

indicates that the system is unstable at 

that rm. 

 

As discussed before, for a growing cell, growth rate is also an important concern. Simulating the 

response of (4.6) shows that higher protein content q is not only destabilizing but also slows down 

the response time, leading to slower growth (Fig 4.12). 

 

Figure 4.12. Simulated time response of (4.6) for varying protein content (q/S). The response is 

given for all three states: ribosomal proteins, ribosomes, and proteins for protein content=20%, 

40%, and 60%. Higher protein content leads to slower response for all three states. 
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While ribosome synthesis scales with growth rate for exponential growth conditions, the system’s 

behavior during starvation seems paradoxical. Ribosomes are still produced at a significant rate and 

in fact production ratio is much higher in starved cells, yet they are degraded much faster (47). The 

fast degradation is not due to a global destabilization of proteins for amino acid recycling, but 

selective degradation of ribosomes has been shown to occur through autophagy in starved yeast 

cells (54). It seems exceedingly wasteful to produce high level of ribosomes only to be degraded, 

but linear stability analysis proposes a possible answer why the cell behaves this way. Fig 4.13 

shows the lowest stable rm for varying total rRNA level, Rt. At low Rt (and thus low nutrient level), 

the ribosome transcription ratio must be high for the system to be stable. 

  

Figure 4.13. 

The minimal ratio for stability decreases as total 

rRNA level increases.  

 

The strength of the riboprotein feedback on translation (g) can help stabilize lower transcription 

ratios and therefore achieve a higher protein steady state level, as shown in Fig 4.14. Depending on 

the parameter values the optimal ratio for highest steady state level may not be stabilized with a 

biologically reasonable feedback strength but a lower ratio closer to the optimal will result in a 

higher protein level. 
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Figure 4.14. 

The blue line shows the optimal 

ribosome transcription ratio for 

maximal protein level, purple shows 

optimal ratio for maximal short term 

growth, while the red line shows the 

minimum ratio for stability. As the 

feedback on riboprotein translation 

is increased, the minimum ratio for 

stability is decreased while the 

optimal ratio is not significantly 

affected. 

We’ve seen that autocatalysis in the form of ribosomal protein content can make the system 

unstable. Fig 4.15 shows that it also affects the optimal transcription ratio for highest steady state 

level. Both the optimal and the minimum stable ratio increases with autocatalysis, but it increases 

faster for stable ratio. At low autocatalysis it may be possible to operate at the optimal ratio because 

it is within the stable range but as autocatalysis increases, the optimal ratio is no longer stable. 

 

Figure 4.15.  

The optimal and minimum stable 

ratio as autocatalysis is increased. 

The optimal transcription ratio in 

blue maximizes protein steady 

state level, while the ratio in 

green maximizes growth rate for 

a shorter time scale.  
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Thus far we have only looked at feedback as inhibition on translation. Recall the Bode integral 

formula and sensitivity function from Chapter 2. Just like the case of glycolysis, we can also ask 

what the limitations of an arbitrary controller are for the ribosome system. As we have seen in 

Chapter 2, even with an arbitrary optimal controller, the regulated system’s performance is still 

constrained by properties of the “open loop” system, measurable by the poles (p) and zeros (z) of 

the open loop system (g=0).  

While the poles are determined by the eigenvalues of the linearized system (4.7) at g=0, the zeros 

are dependent on the feedback interconnection. Our three-state model thus far only incorporated the 

feedback from excess ribosomal protein on its own translation, a widely accepted regulation, but 

there is also the debated “ribosome feedback model” where ribosomes inhibit rRNA transcription. 

By looking at z for both feedback interconnections, we can see the fundamental limits of both types 

of feedback even when an arbitrary controller is allowed. Figure 4.16 shows how the poles move as 

we change the ribosome transcription ratio (rm) and autocatalysis (q/S). Note that when rm is too 

low, there is no positive steady state and thus we do not look at p here. The behavior here is just 

another representation of Fig 4.10. High autocatalysis destabilizes the system such that it has a 

positive/right half plane p and high transcription ratio can stabilize. 

The zeros show a similar behavior for both feedback types. Figure 4.17 shows z for the ribosomal 

protein feedback on translation. At low rm, z is positive (and complex) and it becomes negative as rm 

increases before splitting into two real, negative z’s. The opposite occurs where z is negative for low 

autocatalysis and becomes positive as the autocatalysis is higher. Unlike the glycolysis model where 

there is always a RHP z whenever q>1, the ribosome system can tolerate a small amount of 

autocatalysis. Figure 4.18 shows a similar behavior for the ribosome feedback on rRNA level (Rt). 

One of the zeros stay constant with changing parameters, but the other becomes negative as rm 
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Figure 4.16. The poles of system (4.7) when g=0. At low transcription ratio (rm), there is a positive 

pole which is stabilized as rm increases. On the other hand, high autocatalysis (q/S) moves one of the 

poles to be positive. 

 

increases and becomes positive as autocatalysis increases. All of the results are consistent that high 

ribosomal protein content, and therefore high autocatalysis, poses a constraint on not only system 

stability but potential performance. 

 

Figure 4.17. The zeros for 

system (4.7) with feedback 

from ribosomal protein on its 

own translation. High 

autocatalysis makes the zeros 

positive which aggravates 

system constraint but is 

ameliorated by higher 

transcription ratio. 

0 0.2 0.4 0.6 0.8 1
-2

-1.5

-1

-0.5

0

0.5

1

Autocatalysis (q/S)
0 0.2 0.4 0.6 0.8 1

-2

-1.5

-1

-0.5

0

0.5

1

Ribosome Transcription Ratio

O
p

e
n

 L
o

o
p

 P
o

le
s

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Autocatalysis (q/S)

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Ribosome Transcription Ratio

Z
e

ro
s



 

 

62 
 

Figure 4.18. The zeros of 

system (4.7) with feedback 

from ribosomes to rRNA level. 

The behavior is similar to the 

other feedback type where high 

autocatalysis makes one zero 

positive, aggravating system 

constraint, and can be 

ameliorated by high ribosome 

transcription ratio. 

 

Rather than increasing the ribosome transcription ratio to stabilize the system, we would ideally 

stabilize the optimal transcription ratio. Looking at the closed loop transfer function given by: 

( )
( )

1 ( ) ( )

P s
C s

P s H s



 (4.8) 

 where P(s) is the open loop system and H(s) an arbitrary controller we found that for a feedback 

going from Rp to translation, any of the three common controllers (proportional, proportional 

integral (PI), proportional integral derivative (PID)) can stabilize the system, but that PI and PID 

controllers can stabilize the system at lower gains and that PID controller gives a higher gain 

margin. The proportional controller can be implemented via a direct inhibition, while PI and PID 

controllers will require a mediating sensor that can integrate the signal or sense the rate of change 

rather than absolute change of the output. 
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Mitochondrial Ribosomes 

Over the course of evolution, the mitochondrion has lost most of its genome. Many of the genes 

have been incorporated into the nuclear chromosome, yet mitochondria retain some genes, 

including the genes involved in ATP synthesis. It has been suggested that this is due to the 

requirement for physical association of these genes with the bioenergetic membranes (55). Loss of 

proton gradient in the inner mitochondrial membrane leads to apoptosis and thus this must be 

controlled tightly (11).  

Mitochondrial ribosomes present a strong evolutionary case for the tradeoffs in riboprotein 

autocatalysis. Mitochondria retain a portion, but not all, of the DNA required to transcribe 

ribosomal components. Part of the ribosomes are transcribed by the nuclear DNA, translated, and 

then transported back into the mitochondria while other parts are transcribed in the mitochondria, 

and together they are assembled in the mitochondria. Is there an evolutionary advantage to retaining 

only part of the ribosome?  

While plants and certain protozoa retain a significant number of their mitochondrial ribosomal 

protein genes within the mitochondrial genome, only one small subunit of the identified proteins in 

the yeast mitoribosome is encoded in the mitochondria (56). Human mitochondrial ribosomes are 

about the same size as bacterial ribosomes, but contain half as many RNA and twice as many 

protein components. This seems to suggest that there is an advantage to having more protein 

components. Indeed, proteins are more versatile and more stable than RNA and can fold to a 

structure that is either more stable or performs more accurately than RNA. Whether there’s a benefit 

to having higher protein content is as yet, unproven, however. There are only anecdotal 

comparisons available, such as in thermophilic archaea. It has been thought that the evolution of 

protein-rich ribosomes is an adaptation to higher temperatures, as ribosomes both eukaryotic and 
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thermophilic archaea have higher protein content than bacterial ribosomes (57). Thermophilic 

archaea T. aquaticus has ribosomes which are 60% protein and 40% RNA (53). 

However, having a protein-rich ribosome would increase the autocatalysis of riboproteins which, 

according to our theoretical analysis above, can aggravate the performance of the system. In 

humans, mitochondria bypasses this issue by producing all of the mitochondria ribosomal proteins 

on cytoplasmic ribosomes and importing into the mitochondria, thus eliminating the autocatalytic 

loop (58). In contrast, the rRNAs are produced within the mitochondria. Since the riboproteins must 

form a complex with rRNA, the mitochondria can still control the amount of ribosome complexes 

being built by controlling rRNA production (similarly, mitochondria control the production of 

respiratory complexes by encoding a few core subunits while the rest are encoded by the nucleus). 

Ribosome Heterogeneity 

Thus far we had assumed that the ribosomal protein stoichiometry is fixed within each organism 

and that the cell controls ribosome synthesis through transcription and translation. There is some 

evidence, however, that ribosomes are much more complicated and that the ribosomal protein 

composition can change in different conditions. In E. coli, it’s been shown that the ribosomal 

protein stoichiometry decreases with slower growth rate (59). Yeast in stationary phase has been 

shown to have lower amounts of A-proteins in their large ribosomal subunits compared to 

exponentially growing yeast (60). It has been suggested that ribosomes with different protein 

compositions transcribe different types of mRNAs and presents another layer of regulatory 

complexity (61, 62). Our simple model certainly cannot capture the details of this complexity, but 

consistent with the observation in E. coli we can show that lower nutrient level (which translates to 

lower rRNA level) indeed requires lower ribosomal protein stoichiometry to be stable (Fig 4.19). 
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 Figure 4.19 

Stability analysis of the 3-state model shows 

that at lower rRNA level, the system requires 

lower autocatalysis to maintain stability. The 

region in green is unstable while white is the 

stable region. 

While heterogeneity in ribosome protein content in E. coli was first shown in 1975, there had not 

been many studies until recently. As our theoretical results have shown on a very simple model, 

autocatalysis is destabilizing and lowers system performance, therefore it is possible (and would be 

very interesting) that the observed heterogeneity is a way to control the amount of autocatalysis in 

different conditions. It also presents a potential approach to experimentally test our minimal model 

analysis as more understanding and techniques develop in the future, by manually tuning the protein 

content. However, if the different protein subunits are indeed responsible for different subsets of 

mRNA, this approach may not be feasible. 
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C h a p t e r  5  

EVOLUTION OF TRANSCRIPTION NETWORK ARCHITECTURE 

Power Law Distributions and Scale Free-ness 

The degree distribution of biological networks from metabolic to protein-protein interaction 

networks to transcriptional networks has often been characterized as scale-free, following a power-

law distribution (63). However, recent literature suggests that these distributions often do not 

conform to a power-law distribution upon closer scrutiny (64-66).  

Most researchers use the frequency-degree plot to determine the form of the degree distribution, but 

it has been shown that this can be misleading, and that the rank degree plot (where rank r(k)  is 

defined as the cumulative frequency of degree ≤ k) is less ambiguous (64). A node degree sequence 

follows a power law distribution if 

 ( )r k ck   (5.1) 

In the log-log axis, this curve will follow a straight line with slope   (

log ( ) log log logr k ck c k     ). On the other hand, a node degree sequence follows an 

exponential distribution if 

 ( ) kr k ce   (5.2) 

Which looks linear in the semi-log axis with slope   ( log ( ) log logkr k ce c k     ). 
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We found clear differences in the degree distributions between the prokaryotic and eukaryotic 

transcriptional networks. 

We then explored the differences between two network evolution models widely accepted to 

simulate protein-protein networks: the preferential linking model (also known as the Yule process) 

(67) and the duplication-divergence model (68, 69). While the two models have been reported to 

generate power law distributions, here we show that this was not the case. We also explored the 

hierarchical network model which generates power law, hierarchical networks, but we discuss how 

this model is not biologically relevant. We next combined the preferential linking and the 

duplication divergence model in a way that is supported by biological intuition and shows that the 

new combined mechanism generates a network with the same properties as seen in bacteria. 

Transcription Network Architecture in Bacteria vs. Yeast 

We obtained transcriptional regulatory network data for three well-characterized organisms: B. 

subtilis (922 genes, 1380 edges) (70), E. coli (1567 genes, 3989 edges) (71), and S. cerevisiae 

(4441 genes, 12871 edges) (68). The average out-degree for all the nodes increases from 1.5 in B. 

subtilis to 2.4 in E. coli and 2.9 in S. cerevisiae. The average number of target genes a 

transcription factor regulates is 8.8 in B. subtilis, 21.1 in E. coli, and 82 in S. cerevisiae. The 

average in-degree (the number of regulators per gene) is 1.5 in B. subtilis, 2.4 in E. coli, and 2.9 

in S. cerevisiae.  

To determine the degree distribution, we used MATLAB to plot the rank-degree, which is less 

ambiguous than the frequency-degree plot. The rank-degree distributions of the bacterial 

transcription networks seem to follow a power-law distribution which is linear in the log-log axis, 

while the yeast network seems to have an exponential distribution instead (linear in the semi-log 
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axis) (Fig 5.1). On the other hand, the in-degree (incoming edges) distributions are exponential 

for all three organisms (Fig 5.2). 

 

Figure 5.1. Rank-degree plot of the three transcriptional regulatory networks in log-log axis. 

The bacterial network follows a power law distribution as it is linear in log-log, while the yeast 

network follows an exponential distribution. 

   

Figure 5.2. 

Distribution of the in-

degree of the three 

transcriptional networks in 

log-log axis. All three 

networks have in-degrees 

that follow an exponential 

distribution. 

 

Table 5 shows the statistics of the three networks. The median of the entire network is zero due to 
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the large amount of target genes and this statistics is therefore not useful, but on the other hand 

when we remove the target genes and look at only the non-zero nodes (transcription factors), the 

statistics are telling. The median to mean to standard deviation ratio of the yeast network roughly 

follows the expected ratio for exponential networks (ln(2) ~=1=1). This is not the case for either 

of the bacterial network.  

 MEDIAN MEAN S.D. 

B. subtilis – degree 0 1.5 12.21 

B. subtilis - indegree 1 1.5 0.98 

E. coli - degree 0 2.4 18.29 

E. coli - indegree 2 2.4 1.78 

S. cerevisiae- degree 0 2.9 21.79 

S. cerevisiae – indegree 2 2.9 2.81 

 

NON-ZERO DEGREE NODES ONLY 

 MEDIAN MEAN S.D. 

B. subtilis - degree 2 8.79 28.56 

E. coli - degree 6.5 21.11 50.58 

S. cerevisiae - degree 52 81.99 82.59 

Table 5. Statistics of the three transcription networks. The top table shows statistics of the entire 

network which is less useful due to the large amount of target genes (with degree 0). The bottom 

table shows only the non-zero degree nodes (transcription factors). 

 

To see if the operon structure is responsible for the power law distribution in bacteria, we lumped 

the genes in E. coli into their respective operons, and plotted the degree distribution for the 

operon-operon network. We found that the operon-operon network still has a power law degree 

distribution, suggesting that the operon architecture is not responsible for the network structure 

(Fig 5.3). 
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Figure 5.3. Rank-degree plot of the operon-operon 

regulatory network in E. coli shows that the 

network still follows a power law degree 

distribution. 

 

We computed the clustering coefficients of the nodes and found that they correlate negatively 

with the degree of the node, approximately following a scaling law of 1( )c k k ,
 which indicates 

a hierarchical structure in each network (Fig 5.4). We separated the transcription factors from the 

target genes in the yeast network and computed the clustering coefficients, which revealed no 

correlation and indicated that there is no hierarchy in the interactions between transcription 

factors, only from transcription factors to target genes. 

 
Figure 5.4. The clustering coefficients of all three organisms are negatively correlated with 

degree. 
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Comparison of Existing Network Generating Models 

We then compared the different models of network evolution which have been previously 

proposed in the literature and the types of networks each generates, including the preferential 

linking model, the duplication divergence model, and the hierarchical network model (72).  

The preferential linking model (the Yule process) (67) was simulated as follows: 

1) At each time step a new node is added to the network.  

2) The new node forms edges to m existing nodes.  

3) The edge to node i forms with the probability proportional to the number of existing 

edges from node i ( i
i

j

j

k
p

k



) where kj is the number of edges from node j. 

The preferential linking model generates a network with power law distribution, but clustering 

coefficients that are independent of the node degree (Fig 5.5). On the other hand, in the real 

bacterial networks clustering coefficients scale inversely with the node degree (a property of 

scale-free networks). Therefore, while the preferential linking model is generally accepted as a 

model to generate power law networks, it does not generate a scale-free, hierarchical network. 

This model thus captures part but not all of the properties of the bacterial transcription network.  
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Figure 5.5 

The clustering coefficients of the 

network generated by preferential 

linking/Yule process do not correlate 

with degree. 

 

Even though the authors in (69, 73) previously claimed that the duplication-divergence model 

generates a power law distribution, we show that the model actually generates networks with 

exponential distributions, linear in the log-linear axis as compared to the preferential linking 

model which is linear in the log-log axis (Fig 5.6). In addition, the duplication divergence model 

does generate a hierarchical network, and could thus explain the evolution of exponential 

distributions in yeast, but not in prokaryotes. 

We simulated the duplication-divergence model presented in (73) as follows:  

1) At each time step, we select a random node i, which is duplicated into i’. The 

duplicated node i’ is linked to the same nodes i is linked. With some probability p, a 

new link is added between i and i’ to account for the possibility that the two interact.  

2) To account for divergence/mutation, one of the links to/from i’ is removed with 

probability q. 

As discussed above, the preferential linking model fails to generate a scale-free network due to 
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the distribution of clustering coefficients. Ravasz and Barabasi then proposed the hierarchical 

network model which generates a scale-free network with power law distribution and clustering 

coefficients that scale inversely with the node degree (72).  

The hierarchical network model was simulated according to (72) as follows: 

1) We start with a fully interconnected network or cluster with five nodes. 

2) At subsequent time steps, four replicas of the entire network are duplicated, and 

each of the newly formed peripheral nodes are connected to the central node of the original 

cluster.  

The generating mechanism is non-realistic for biological networks. In this model, the network is 

duplicated into four replicas at each time step. Although whole genome duplication events are 

widely accepted, there is no evidence that the genome would be duplicated into so many replicas 

at one time. Additionally, the peripheral new nodes are automatically connected to the central 

node of the original network. Again, there is nothing to support that this would occur in 

transcriptional networks. We therefore concluded that while this model generates a network with 

the desired characteristics, it is not relevant for biological networks.  

A Biologically Relevant Combined Model 

While the preferential linking model does not capture the hierarchical nature of the bacterial 

transcription network, the duplication divergence model seems to be a fairly reasonable model for 

the yeast network. We believe this can largely be explained by the prevalence of horizontal gene 

transfers in bacteria, as we will explain later in the next section. We also simulated the evolution 
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Figure 5.6. 

Network generated by the preferential 

linking mechanism/Yule process follows 

a power law degree distribution (linear 

in log-log, blue), while the one generated 

by the duplication divergence 

mechanism follows an exponential 

distribution (red). 

 

of a small power law network which then undergoes expansion via duplication divergence, and as 

the network expands, the degree distribution tends to exponential distribution (Fig 5.7). This led 

us to combine the two mechanisms into one model, as both horizontal gene transfer and gene 

duplication occur in the real biological networks. 

We hypothesized that horizontal gene transfers in bacteria occur more frequently for target genes 

to acquire new phenotypes such as antibiotic resistance, but less for regulators. Our first cut for a 

combined model consisted of duplication divergence for new transcription factors and 

preferential attachment of new target genes. We simulated this mechanism to generate a network 

of ~1500 nodes and around 10% transcription factors, roughly the same numbers for the E. coli 

network. This resulted in a network which looks very similar to that of E. coli: a degree 

distribution which follows a power law (Fig 5.8) and clustering coefficients which scale inversely 

with the degree (Fig 5.9). 

The combined network model was simulated as follows: 

1) At each time step, we created a new node. 10% of the time we assume this node will 
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be a transcription factor instead of a target node. 

2) When creating a new transcription factor, for X% of the time the new node follows 

the duplication divergence step, while for 100-X% of the time it follows the preferential 

linking mechanism. We simulated this model both for X=100 and X=50. For a new target 

gene, we followed the preferential linking mechanism. 

Horizontal gene transfer does occur for transcription factors, although the frequency has been 

under debate. Using evolutionary distance as the cutoff, Price et al suggests that a large portion of 

transcription factors in E. coli, with the exception of global regulators, actually evolved through 

horizontal gene transfer (74), while Teichmann and Babu suggests that the majority evolved 

through duplication (75). 

We then modified the combined model such that half of the transcription factors evolve via 

duplication divergence and half via preferential attachment. We show that this model also still  

 
Figure 5.7. A small power-law network is expanded via duplication divergence. Simulation 

shows that the expanded network diverges from power law to an exponential distribution. 

10
0

10
1

10
2

10
0

10
1

10
2

10
3

R
a

n
k

200 nodes

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Degree

700 nodes

10
0

10
2

10
4

10
0

10
1

10
2

10
3

1200 nodes



 

 

76 
 

 
Figure 5.8. Degree distributions of a network simulated using the combined network model with 

around 10% transcription factors to mimic E. coli (left). The degree distribution closely follows 

that of the E. coli network (right). 

 

  

Figure 5.9. 

The clustering coefficients of the network 

generated using the combined mechanism 

scales inversely with degrees, just like in the 

biological networks. 

 

generates a network similar to that of E. coli, with power law degree distribution and clustering 

coefficients that scale. 

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree

R
a

n
k

Simulated Network

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Degree
R

a
n

k

E. Coli Network

10
0

10
1

10
2

10
3

10
4

10
-4

10
-3

10
-2

10
-1

Degree

C
lu

s
te

ri
n

g
 C

o
e

ff
ic

ie
n

ts

Clustering Coefficients of Simulated Network



 

 

77 
Prokaryotic vs Eukaryotic Regulation 

Studies estimate that gene duplicates account for only 30% of the entire yeast genome (76). The 

exon/intron structure of eukaryotic genomes allows for duplication and shuffling of protein 

domains rather than whole genes. In transcription factors and chromatin binding proteins it was 

shown that this was the main method of protein diversification from yeast to humans (77). 

Additionally, the eukaryote architecture has adapted other means of regulations. The 

combinatorial regulation using transcription factors poses a constraint on the genome size with 

respect to the number of transcription factors. There is evidence that, in prokaryotes, the number 

of transcription factors scales quadratically to the number of total genes (10). This scaling is 

certainly not seen when we go from prokaryotes to higher eukaryotes. The upper limit of any 

known bacterial genome is about 9000 genes and is believed to be constrained by the cell size and 

metabolism (11). Mattick suggests that eukaryotes have bypassed this size constraint by relying 

more on small non-coding RNAs as regulators (78). The proportion of non-coding RNA in the 

genome doubles between bacteria and yeast, and more than quadruples between bacteria and 

human (non-coding RNA is estimated to account for more than 80% of the human genome and 

only about 10% of bacterial genome (79)). Regulatory RNAs therefore seem to be a much more 

scalable regulatory architecture than transcription factors.  
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Chapter 6 

CONCLUSIONS 

Our analysis in glycolysis illustrates the power of control theory to clarify biological phenomena, 

and biology to motivate new theoretical directions (80). In this simple model of glycolysis, 

oscillation is neither directly purposeful nor an evolutionary accident, but a necessary consequence 

of autocatalysis and hard tradeoffs between robustness and efficiency (or fragility and overhead). 

Nature has evolved a control structure finely tuned to effectively manage these tradeoffs with 

flexibility to adapt to changes in supply and demand, at the cost of higher enzyme complexity. 

Consistent with engineering, purposeful complexity in biology is primarily driven by robustness, 

not minimal functionality (1), and there are hard tradeoffs that this complexity mediates.  

The theory presented here is consistent throughout in highlighting hard tradeoffs, but there are 

important differences in the details. While (2.5) is phenomenological and specific to the model in 

(2.2), the theory in (2.10-2.13) is more complete, holding for all frequencies and arbitrarily complex 

causal controllers, and also applying to other systems. However, (2.13) still requires substantial 

phenomenology, since the formulas for z and p depend on assumptions about autocatalysis (q and a) 

and enzyme efficiencies and levels (k). This motivates further unification of control theory with 

thermodynamics and statistical mechanics, and recent progress is encouraging (81). It also 

motivates rethinking how biology overcomes the “causality” limit with various mechanisms that 

exploit predictable environmental fluctuations (e.g. circadian rhythms) or provide remote sensing 

(e.g. vision, hearing), both of which can greatly mitigate hard limits such as (2.13) (82). In the case 

of circadian rhythms, oscillation is not just a side effect, but has the purpose of exploiting 

predictable periodicity in the environment. 
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While our minimal model has limited quantitative predictive power, it can still provide 

qualitative insights about experiments, such as which parameters to perturb and why extracts 

oscillate more easily than isolated cells. To maximize accessibility, we used the simplest possible 

model that captures the real system’s essential features, yet facilitates theoretical analysis 

connecting network structure with functional tradeoffs, and allowing the results to be carried out 

analytically (a model’s scope and fidelity versus ease of theoretical analysis is itself an inherent 

tradeoff (83).)  The limits can be generalized to various extensions to our model, including a 

nonlinear model of arbitrary length (SI-XII in (5), see also (84)) and reversible reactions (SI-XIII in 

(5)). The effect of reversibility in the intermediate (PK) reaction depends on PK inhibition strength 

g, and can either ameliorate performance limit at the cost of efficiency, or make it worse. The 

analysis readily scales to more complex models with appropriate computer-aided design (CAD) 

software, but the results are far less accessible.  

We extended our minimal model to include the NAD+ autocatalytic loop and diffusion of 

acetaldehyde in and out of the cell. The extended model captures the well known density 

dependence of oscillations (3) and the single cell oscillatory behavior seen in (32). The interaction 

between the two autocatalytic loops of NAD+ and ATP results an interesting behavior. While 

higher ATP autocatalysis aggravates stability and performance, the NAD+ loop seems most robust 

when the net product equals zero and lower autocatalysis (where the system produces more NAD+ 

molecules downstream than consumed upstream) did not seem to ameliorate stability. It turns out 

that this is due to the interaction with the ATP loop. If ATP autocatalysis was low (or zero), then 

lower NAD+ autocatalysis indeed gives higher robustness. In anaerobic conditions, ATP 

autocatalysis is high and the net product of the NAD+ autocatalysis is indeed zero, so the system in 

fact sits in the most robust parameter region. The cell also increases glycerol production in 

anaerobic growth in order to maintain redox balance by replenishing NAD+ (36). I have also shown 
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that the increased glycerol production not only maintains required redox balance but in fact 

makes the system more robust. High glycerol production can stabilize the system even for high 

autocatalytic stoichiometry and high cell density. In aerobic conditions, both ATP and NAD+ 

autocatalysis become much lower due to the additional production of both species from the Krebs 

cycle and electron transport system, again letting the system move towards a more robust parameter 

region. 

Another autocatalytic loop universally found in cells is ribosome synthesis. Synthesis of 

ribosomal proteins is not only a problem of autocatalysis but also one of resource allocation, or 

resource competition. A two-state model can capture the resource allocation problem and we have 

shown that the optimal ratio in maximal growth conditions tend to the ratio seen in exponentially 

growing cells. A more detailed model showed that the ribosome to protein production ratio must 

sit in a certain range for the system to be stable. Additionally, there is a tradeoff between stability 

and robustness of the steady state level to perturbations in various parameters that can be 

controlled by the strength of a negative feedback loop.  

In synthetic biology, the optimal resource allocation is perturbed by the insertion of new genes 

(which are typically not needed for cell growth). The expression of unneeded genes have been 

found to decrease the production of cellular machineries such as ribosome and RNA polymerase 

and thus can lead to reduced growth rate (85). To really understand optimal resource allocation, 

we must also take into account production of metabolic enzymes that produce the energy, and 

biosynthetic pathway machineries that produce the building blocks (e.g. amino acids) necessary 

for transcription and translation, a big issue which we have not touched here. Ultimately, the 

ribosome synthesis model should be combined with the glycolysis model and biosynthetic 

pathways for a more complete model of cellular growth.  



 

 

81 
 

We also developed a three-state model that not only captures the resource allocation but also the 

autocatalysis in terms the protein content of ribosomes. While our model is very simple, it 

produces some results that will hopefully lead to novel experiments and outlook. All the 

theoretical results consistently show that high autocatalysis (high protein content in ribosomes) 

aggravate not only system stability but also constraints on the optimal possible performance. The 

model also suggests that perhaps the seemingly wasteful behavior of producing significant 

amount of ribosomes during starvation is necessary for stability. A possible future experiment is 

to tune ribosome production in starvation (or various nutrient levels). Ribosome resource 

allocation is currently a widely studied topic, but the possible effects of autocatalysis have not 

been noticed. We hope that our simple model will spark an interest in this potentially huge effect 

for both experimental efforts and more detailed modeling and analysis 

Lastly, we looked at how regulatory protocols can result in large scale differences between 

organisms. There seems to be a significant shift in the organization of transcriptional regulatory 

networks between prokaryotes and eukaryotes, as exemplified by the differences between B. 

subtilis and E. coli vs. S. cerevisiae. We believe these changes could be partially explained by the 

fact that lateral gene transfers make up a significant portion of the emergence of new genes in 

prokaryotes, while eukaryotes evolve new genes via duplication and mutation. In the future we 

would need to extend similar analysis to other eukaryotes, but at the moment, only data for 

specific modules is available, and there is no reliable source for the transcriptional regulatory 

network of the entire organism in eukaryotes (we have shown that the coagulation network in 

human also follows an exponential degree distribution, but this data is still unpublished).  

The former can be modeled with the rich-get-richer model which generates power law 
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distributions, and the latter follows the duplication-divergence model, which as we showed 

here actually generates exponential distributions. Simulating the evolution of a small power law 

network by duplication divergence shows that the network eventually tends to an exponential 

network as the new nodes follow an exponential distribution. Of course, neither model can 

capture the true mechanisms of network evolution, as there are more than just horizontal gene 

transfer, gene duplication, and mutation. A comprehensive model will need to capture events 

including loss of regulatory links, whole genome duplication, and exon shuffling.  
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