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“The vastness of the heavens stretches my imagination—stuck on this carousel my little eye can

catch one-million-year-old light. A vast pattern—of which I am a part... What is the pattern or the

meaning or the why? It does not do harm to the mystery to know a little more about it. For far

more marvelous is the truth than any artists of the past imagined it...”

— Footnote,

Richard Feynman

“I come in search of the truth.”

— The Star Trek series: Where Silence Has Lease,

Q
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Abstract

Cosmic birefringence (CB)—a rotation of photon-polarization plane in vacuum—is a generic signa-

ture of new scalar fields that could provide dark energy. Previously, WMAP observations excluded

a uniform CB-rotation angle larger than a degree.

In this thesis, we develop a minimum-variance–estimator formalism for reconstructing direction-

dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude im-

provement in sensitivity with incoming Planck data and future satellite missions. Next, we perform

the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection

of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude

of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation

between CMB temperature and the rotation for detecting the CB signal, for different quintessence

models. We find that it may improve sensitivity in case of marginal detection, and provide an

empirical handle for distinguishing details of new physics indicated by CB.

We then consider other parity-violating physics beyond standard models—in particular, a chiral

inflationary-gravitational-wave background. We show that WMAP has no constraining power, while

a cosmic-variance–limited experiment would be capable of detecting only a large parity violation.

In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral

gravity waves.

We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomo-

geneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with

WMAP-7 data, and show that data from Planck should start approaching interesting portions of

the EoR parameter space and can be used to exclude reionization tomographies with large ionized

bubbles.

In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line

from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the

simulated 21-cm brightness temperature, and discuss the information that can be recovered using

these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly

sensitive to the properties of the ionizing sources and the size of ionized bubbles.

Finally, we discuss prospects for related future investigations.
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Part I

General Introduction
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Few questions ever spoken so perpetually excite the human mind as those inquiring about the

origins and fabric of the entire observable Cosmos. Several decades after cosmology assumed its

place on the pedestal of modern science, they are beginning to be answered.

The science of cosmology now rests upon several major pillars: the Big Bang paradigm about a

hot, explosive birth of our Universe followed by the everlasting expansion and cool-down we witness

today; inflationary theory, assigning quantum origins to the seeds of structure and explaining the

flatness and homogeneity of spacetime; and the gravitational-collapse scenario for growth of non-

linearities in matter that gave rise to nearly everything in the realm of astrophysics. These pillars

stand upon percent-level measurements of the age, geometry, and energy content of the Universe,

reinforced by many observations of experimental particle physics and astrophysics.

In spite of a number of fascinating breakthroughs in the last few decades, a long road is still

ahead: to pick out details of the Universe’s infancy; to unravel the “mysterious” nature of its two

major components: dark matter and dark energy, and tame them into the frameworks of particle

physics and General Relativity; to catch glimpses from the true cosmic dawn, when the first stars

ended the dark ages during cosmic reionization, and to understand these distant beginnings of the

astrophysical Universe—this is just an incomplete sketch of a modern cosmologists’ “to-do list” for

the 21st century.

The goal of the research presented in this doctoral thesis is to address some of these big questions,

through novel theoretical approaches designed to extract information about new fundamental physics

and very early cosmic times from current state-of-the-art observations of the cosmic microwave

background (CMB) radiation. The plan of the rest of this thesis is as follows.

Part II (based on Refs. [1–3]) gives a brief overview of the physics, observations, and formalism

used to describe the CMB; most of the subsequent text relies on the definitions and concepts pre-

sented therein. Part III (based on Ref. [4–7]) presents CMB tests of new fundamental physics. In

particular, we focus on anisotropic cosmic birefringence and similar exotic mechanisms, discussing

theoretical underpinnings, developing optimized analysis formalisms, obtaining the first constraints

from WMAP data1 [8], proposing new statistical avenues to be applied to future data sets, and

forecasting sensitivities of upcoming and next-generation CMB experiments2. Part IV (based on

Refs. [12, 13]) studies very early (astrophysical) times through two complementary investigations

of the epoch of cosmic reionization. We first adopt the formalism from Part III to constrain key

reionization parameters with WMAP data, and interpret our results in the context of a simple an-

alytic reionization model. Next, we diverge from the CMB-themed discussions in the rest of the

1In various parts of this work, we use WMAP 5-, 7-, and 9-year data release, depending on what was available at
the time relevant part of the work was completed. However, we do not expect that updating all the results to account
for the latest and final (9-year) data release would change our conclusions in any significant way.

2We considered various stages of the WMAP mission, as a current CMB experiment, Planck ’s [9] and SPIDER’s
[10] upcoming data releases, and also the proposed CMBPol-EPIC mission [11], as a next-generation (futuristic)
experiment. We did not consider any ground-based experiments, but we note that they might be highly relevant for
the work done or proposed in this thesis.
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presented work and use simulations of the redshifted 21-cm signal from the epoch of reionization in

order to develop and test new statistical tools, designed to analyze future data from low-frequency

radio arrays currently under construction. We make concluding remarks in Part V. Appendix A

provides some useful formulas involving Wigner-3j symbols, and Appendix B presents a derivation

of Maxwell’s equations in the presence of an electromagnetic Chern-Simons term. The bulk of Parts

III, and IV has been adapted from previously published material of which I was an author and is

reproduced here with permission.
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Part II

CMB as a Precision Tool: A Brief

Overview
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Cosmic microwave background radiation, coming isotropically from all directions as almost per-

fect black-body radiation at about 2.73K (corresponding to a mean energy density of about 0.26eV

cm−3), consists of photons that last scattered more than 13 billion years ago. It therefore paints

a picture of an infant Universe on the sky, first observed in 1965 [14]. Maps of the miniscule di-

rectional fluctuations of its temperature and polarization, now routinely acquired by space-based,

balloon-borne, and ground-based telescopes, bear an astonishing amount of information, enabling

the CMB to become a power tool that boosted cosmology from a speculative discipline to a precision

science. Today, it continues to inform research in the areas of astrophysics and fundamental physics,

probing distances and energy regimes inaccessible by any imaginable human-built laboratory.

The CMB constitutes a special data set for several reasons. As the oldest (primordial) signal

we observe today, it provides insight into the physics of very early times and very high energies.

Since it travelled through all later epochs of cosmic evolution, it also probes large distances, bearing

signatures from a wide range of processes that took place along the way, such as cosmic reionization,

structure formation and evolution of gravitational potentials, late-time cosmic acceleration (driven

by dark energy), etc. Finally, and most importantly, this plethora of signatures can be disentangled

owing to the fact that the CMB was created when the Universe was a linear system, the physics of

which is well understood. The purpose of this part of the thesis is to provide a concise review of the

physics, observations, and formalisms used nowdays to describe statistical properties of the CMB

temperature and polarization fields. The work presented in this thesis heavily relies on the concepts

presented in this part, since the main subject we deal with is extraction and interpretation of a

variety of secondary signatures that the new undiscovered physics and early astrophysical epochs

might have left in the CMB.
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Chapter 1

Story of the CMB

Instead of reviewing calculational details, we devote this chapter to a heuristic storyline, intended

to capture the essence of the physics that gave rise to the CMB anisotropies, linking it to the main

traits of the observed CMB sky. For a more technical resource, see, e.g., Refs. [1, 15]

In the beginning, there was inflation—an epoch of accelerated (faster-than-light) expansion of

the observable Universe that ended in the first 10−35 seconds of time. The speed of this expan-

sion allowed for the (ever-present and extremely short-lived) “quantum flutterings” of the metric

field to become classical fluctuations, sowing seeds of structure which gradually grew into bound

astrophysical objects—stars, galaxies, clusters, etc.—through the process of gravitational collapse.

In addition, inflation ironed out any prior amount of curvature, making our Universe spatially flat.

Finally, by blowing up small causal patches by (at least) 60 e−folds, it made the entire content of

our present-day cosmological horizon homogeneous in temperature, down to 1 part in 100 000. Even

though details of these very early times are still speculative, the inflation was probably driven by

a slowly evolving scalar field—the inflaton—whose potential dominated the energy budget of the

Universe, until its decay (the process of reheating) ended inflation1.

Soon after, the Universe was populated with baryonic matter2, dark matter, and radiation: a

mesh of particles in thermal equilibrium whose abundances can be calculated knowing their inter-

actions, and using the Boltzmann equations. As the expansion and cool-down continued, different

species “froze” when reactions controlling their abundance lost the race with cosmic expansion.

When the Universe was about 3 minutes old, Big-Bang nucleosynthesis took place, setting primor-

dial abundances of chemical elements, whereby roughly 3/4 of the baryonic mass stayed in the form

of single protons (hydrogen nuclei). The radiation component dominated the energy density of the

Universe in these very early times, and the expansion rate maintained the pace sufficient for the

Fourier modes of primordial density fluctuations to continue exiting the causal horizon. Past redshift

1Modeling reheating is an active area of research, and a quite challenging one; to figure out what inflaton decayed
into during reheating requires detailed knowledge of the Standard Model, as well as assumptions about new physics
that might arise at these high energies.

2In this context, “baryonic matter” stands for all Standard Model particles, including leptons and force carriers.
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of z ≈ 3000, matter took over (with only about 1/5 in baryons, and the rest in the dark matter

component), and at that time, fluctuation modes started re-entering the horizon and falling under

the influence of causal physics—i.e., they started growing.

Another important transition happened when temperatures approached the hydrogen ionization

energy: the Universe transformed from the state of plasma to a neutral state, in a brisk process of

recombination. It is the physics of this primordial plasma just before recombination (380 000 years

after the Big Bang) that shaped the CMB anisotropies we observe today.

Prior to recombination, photons were tightly coupled to baryons, through Thomson scattering off

free electrons. The evolution of this photon-baryon fluid was controlled by two major forces: gravity

of the overdensities (imprints of density fluctuations inherited from inflationary times), and pressure

from relativistic photons. The perturbations in the fluid behaved like simple acoustic oscillations,

driven by the balance of these two forces and damped by the expansion of the Universe. Perturbation

modes of shorter wavelengths entered the horizon earlier and went through a number of oscillation

periods, while some of the largest ones just got through a fraction of the first oscillation period (1/4

for those corresponding to the size of horizon at recombination). When the Universe recombined,

photons were released, free-streamed, and redshifted ever since, forming the CMB radiation we see

coming from all directions in the sky, as a cold “echo” of these early times. The apparent source of

the radiation is a sphere of radius z ≈ 1100 in redshift space, called the last-scattering surface. CMB

anisotropies represent a “snapshot” of these primordial sound waves frozen at different oscillation

phases and projected onto the celestial sphere. Finally, the CMB is polarized at a few-percent level,

owing to the existence of quadrupolar anisotropy in the radiation field at the last-scattering surface

(see Figure 1.1 for illustration).

Due to the quantum origins of the temperature fluctuations in the CMB, modes at a given

angular scale represent, to a very good approximation, a random Gaussian field, uncorrelated with

modes at other scales. A two-point correlation function, i.e., their variance, therefore describes the

statistics of the CMB sky. Its analogue in spherical-harmonic space is the power spectrum C` (see

Chapter 3), where multipole ` roughly corresponds to a particular angular scale in the sky θ,

θ[rad] ≈ π/`. (1.1)

Most of the current CMB experiments take measurements of the difference in signal in two directions

in the sky, and are thus insensitive to the monopole (` = 0), and the mean CMB temperature. The

dipole (` = 1) is the largest anisotropy (with the amplitude of about 3.4 mK), but it presumably

mostly comes from the Earth’s motion with respect to the CMB rest frame (with velocity of about

370 km/sec), and is thus typically discarded from the analysis of anisotropies3. Higher multipoles

3This is why the sums in the calculation of the temperature power spectra, such as those in Eq. (3.1) start from
the quadrupole, ` = 2; in the case of polarization, however, the first non-zero multipole is the quadrupole.
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Figure 1.1: Quadrupolar anisotropy is illustrated, where the hot and cold spots lie at the surface of
last scatter (plane of the drawing), and the observer’s line of sight is perpendicular to it. The short
lines represent the direction of polarization of light incident on the electron at the last-scattering
surface; their length signifies the intensity of incident radiation, corresponding to the same polar-
ization component in the light scattered toward the observer. Note that there are also polarization
components parallel to the observer’s line of sight, but they do not contribute to the polarization
of scattered light. As a result of such scattering process, the light coming to the observer has a net
polarization in the direction connecting cold spots.

carry abundance of information about the initial conditions, inflation, and secondary effects.

We can distinguish three angular regimes for the anisotropies in the sky, according to the dom-

inant physical processes that shaped them. On sub-degree scales, the fluctuations in the CMB

temperature are governed by the acoustic oscillations described above. The variance of the fluctu-

ations peaks at about a degree scale, corresponding to the angular size of the (sound) horizon at

recombination seen from a distance of z ≈ 1100. At smaller angular scales, the power of the oscilla-

tions progressively drops; at about a few arcminutes, the so-called (Silk) damping tail appears in the

power spectrum, as a result of photon-diffusion suppression of the small-wavelength fluctuations. At

scales above a degree or so, the power of the fluctuations was not changed much by causal physics,

and most pristinely reflects the initial conditions. The corresponding low−` region of the tempera-

ture power spectrum is called the Sachs-Wolfe plateau (visible in Figure 3.4). Furthermore, a slight

rise in power at the lowest `’s appears due to the integrated Sachs-Wolfe effect—time evolution of

gravitational potentials of large-scale structure, that the CMB photons traversed on their way to

the observer (also visible in Figure 3.4).

Aside from the anisotropies imprinted at the last-scattering surface, secondary anisotropies are

also induced by various late-time astrophysical processes on various angular scales. Two most

distinct and well-studied examples are: additional power added at large scales in the CMB polar-
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ization (` . 10), during the epoch of cosmic reionization, and weak gravitational lensing, where the

large-scale structure gravitationally deflected photon paths, changing the statistical description of

anisotropies below arcminute scales. All these secondary anisotropies, if disentangled from primor-

dial signatures, provide plenty of information about later times—either by themselves or, especially,

in cross-correlation with other astrophysical data sets.

As pointed out before, the primordial perturbations that gave rise to the CMB temperature

and polarization anisotropies were in the linear regime, and thus computationally tractable and

well understood. Efficient Boltzmann codes for calculating CMB-anisotropy power spectra are now

publicly available (e.g., CMBFAST [16] and CAMB [17]) and accurate to ∼ 1% level; we make use

of these codes a number of times in the work presented in this thesis.
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Chapter 2

Current Observations

Ever since the faint radio glow was first discovered coming from all directions in the sky—a remnant

from the Big Bang—hundreds of experiments were built to observe and characterize this cosmic

microwave background radiation. Here, we briefly describe just a few current experiments, with

special focus on the Willkinson Microwave Anisotropy Probe (WMAP) [18], whose data we use later

in this work.

CMB observations are conducted from space, high-altitude balloons, or very dry ground-based

sites, because the peak of its spectrum (at 160.2 GHz) corresponds to a frequency range which

is heavily absorbed by water vapor in Earth’s atmosphere. Full-sky coverage is only possible from

space, while the ground-based experiments typically conduct deep surveys of small patches of the sky.

Combination of the two modes of observation enables mapping of anisotropies at different angular

scales, driving complementary science goals. Most of the work in this thesis has focused on the

science enabled by all-sky surveys. However, several ground-based surveys currently underway will

have a large impact on CMB science in the near future, and might be optimal for future directions

of study that stem from the research presented here (see Conclusions of Parts III and IV for more

details on this). Here, in addition to reviewing the basic description of the two preeminent satellite

missions, we also briefly turn to these ground-based experiments.

The first measurement of the acoustic peaks that allowed for a percent-level determination of

key cosmological parameters was derived from all-sky maps (in both temperature and polarization;

see Figures 2.1 and 2.2) acquired by NASA’s WMAP satellite mission, launched in 2001. WMAP’s

final 9-year data release came out in December 2012. The instrument on board the spacecraft is

a radio telescope with two primary reflecting mirrors—a pair of Gregorian dishes facing opposite

directions in the sky. The receivers are polarization-sensitive differential radiometers, which measure

the difference in the sky signal between two telescope beams, separated by a 141◦ angle. WMAP has

multi-frequency coverage, with five frequency bands, ranging from 23 GHz to 94 GHz. The space-

craft’s location is at the Sun-Earth’s second Lagrange point (L2, which is 1.5 million kilometers from

Earth), which minimizes the amount of contamination from solar, terrestrial, and lunar emissions,
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Figure 2.1: Temperature sky maps in Galactic coordinates (smoothed) from WMAP-9 (Figure from
Ref. [19]).

and allows for thermal stability. WMAP traces an orbit around L2 with a 6-month period, acquir-

ing a complete sky coverage each time. The telescope’s scan strategy also includes a short-period

rotation and precession.

The next-generation CMB space mission, the Planck satellite [9], was launched in 2009 by the

European Space Agency. First release of the CMB data from Planck is expected in early 2013. The

major difference in detector technology that enabled lower instrumental noise and better angular

resolution in comparison to WMAP is the use of bolometers coupled to the telescope through cold

optics. Planck carries two instruments, both of which are able to measure the total intensity and

polarization of photons, and together cover a frequency range of 30 to 857 GHz, in 9 frequency

bands. Both instruments use high electron mobility transistors, and are cryogenically cooled (with
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Figure 2.2: Maps of polarized intensity p ≡ (Q2 + U2)0.5 in Galactic coordinates (smoothed) from
WMAP-9; line segments represent the direction of polarization plane for pixels where signal-to-noise
> 1 (Figure from Ref. [19]).

a supply of helium-3) to a fraction of 1K. Planck is also in an orbit around L2, and spins once every

minute. It covers the entire sky in about 1 year.

As an example of a ground-based experiment, we briefly turn to the South Pole Telescope (SPT)

[20, 21], keeping in mind that there are a number of experiments currently under construction, and

with similar capabilities, such as the Atacama Cosmology Telescope (ACT) [22], POLARBEAR [23],

etc. SPT is designed for conducting large-area millimeter- and sub-millimeter-wave surveys of faint,

low contrast emission. It is a 10m-diameter off-axis Gregorian telescope operating at the Amundsen-

Scott South Pole Station in Antarctica. Extensive shielding ensures low optical loading on the

detectors (from stray light reflected from local buildings and the horizon), and therefore low noise.

High pointing accuracy and the surface accuracy of the primary mirror enable scanning at high



13

frequencies, as compared to other experiments of similar type. The receiver is based on a focal plane

with 1000 superconducting cryogenically cooled Transition-Edge-Sensor (TES) bolometers, with

SQUID-based frequency-domain multiplexer readout. Observations will be done simultaneously in

at least three frequency bands, between 95 and 345 GHz. Current width of the survey is 2500 square

degrees; the next stage of the experiment will involve a survey with a new polarization-sensitive

camera, SPTPol [24].

We conclude this chapter with a few remarks about challenges related to measuring the CMB

anisotropies. Aside from technical challenges of recovering such a miniscule signal at frequencies that

are hard to observe from the ground, the microwave sky is also contaminated by strong foreground

emission from the Galaxy and extragalactic sources. The Galaxy is very bright at these frequen-

cies, due to synchrotron, bremsstrahlung, and dust emission. Far from the Galactic plane, and at

frequencies around 100 GHz where the Galactic emission reaches its minimum, contamination is at

a level . 10%. Frequency dependence of the foreground components allows them to be subtracted

from the entire CMB map prior to analyzing CMB anisotropies, which is one of the reasons why

most CMB experiments strive for multi-wavelength coverage. In addition, in full-sky surveys, pixels

close to the Galactic plane are discarded, or masked, since these portions of the sky are dominated

by the Galactic emission; a similar procedure is applied to known extragalactic point sources. At

the moment, foreground contamination is not limiting the precision of CMB surveys, but in the

near future, more detailed studies will be required in order to properly account for foregrounds in

polarization maps [2].
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Chapter 3

Formalism

In this chapter, we review the formalism used to analyze CMB anisotropies on the full sky. In

Section 3.1, we focus on the description of temperature, while Section 3.2 focuses on polarization

anisotropies. Section 3.3 describes the calculational path from the maps of temperature/polarization

to recovering the power spectra and estimating their variances.

3.1 Temperature

In this section, we cover the basics of the theoretical formalism used to describe temperature

anisotropies in the CMB. We start by noting that the spherical harmonics Y`m, which represent

a complete orthonormal basis for scalar functions on a sphere1, are used to decompose temperature

anisotropies2 on the full sky as3

T (n̂) =

∞∑
`=2

∑̀
m=−`

T`mY`m(n̂) (3.1)

where n̂ represents a unit vector pointing in a given direction on the celestial sphere, n̂ = (r = 1, θ, ϕ).

The inverse transformation (from pixel space to harmonic space) has the form

T`m =

∫
dn̂T (n̂)Y ∗`m(n̂), (3.2)

where we use the following normalization

∫
dn̂Y`m(n̂)Y ∗`′m′(n̂) = δ``′δmm′ . (3.3)

1Y`m’s are the angular portion of the solutions for Laplace’s equation, ∇f = 0, where f is a scalar function; they
are thus related to Legendre polynomials; see Appendix A.

2By “anisotropies”, we mean that the temperature map T (n̂) actually represents the difference between the tem-
perature in the direction n̂ and the mean temperature of the CMB sky T0 ≈ 2.73K, divided by T0.

3We will often suppress the limits on the sums and use the more compact notation:
∞∑̀
=2

∑̀
m=−`

→
∑̀
m

.
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The main reason to treat the anisotropies in the spherical-harmonic space rather than in pixel

space is that the coefficients in the decomposition T`m are, to first approximation, Gaussian random

variables with zero mean4, where different ` modes are uncorrelated. Therefore, the statistics of the

fluctuations are captured by measuring the variance at each `, i.e., the power spectrum CTT` ,

CTT` δ``′δmm′ ≡ 〈T`mT ∗`′m′〉 , (3.4)

where the mean is taken over the ensemble of all possible realizations of the CMB sky, or by

assumption of ergodicity, over all observer positions in the Universe.

Notice also that, since the temperature field is real, and spherical harmonics satisfy

Y ∗`m = (−1)mY`−m, (3.5)

temperature multipole coefficients satisfy the following reality condition

T ∗`m = (−1)mT`−m. (3.6)

We show the current state-of-the-art measurements of the TT power spectrum in Figure 3.1,

along with the corresponding best-fit theoretical curve. While satellite missions like WMAP are

able to map large-scale (low `) anisotropies with astonishing precision, the higher acoustic peaks

and the damping tail (high `) are currently best measured with the deep ground-based surveys, such

as SPT and ACT.

3.2 Polarization

Two equivalent formalisms for the full-sky treatment of polarization anisotropies are now widely

used in the CMB community: the approach introduced by Refs. [3,26] uses differential geometry on

a sphere, and the so-called E-B decomposition, while the approach introduced by Refs. [27,28] uses

spin-weighted spherical harmonics. Since they provide complementary insights into the problems

discussed later in this thesis, we combine them as appropriate.

In addition to the map of brightness temperature T (n̂), maps of the Stokes parameters Q(n̂),

U(n̂), and V (n̂) complete a description of a polarized radiation field of the CMB, assuming it is a

perfect black body5. In Cartesian coordinates, components of the electric field of a monochromatic

4Some amount of non-Gaussianity is expected in the primordial signal, but other mechanisms for producing non-
Gaussian signatures are also known to affect the statistics of the CMB (such as the weak gravitational lensing,
for example). They usually require higher-order corrections to the Gaussian CMB sky, which is why Gaussian
approximation holds well, at least to first order.

5In reality, the CMB should also exhibit small spectral distortions in its frequency spectrum (see, for example,
Ref. [29]).
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Figure 3.1: Shown are the current best measurements of the TT -power-spectrum multipoles, along
with the best-fit curve, from WMAP-9 (black), SPT (blue), and ACT (orange) experiments (Figure
from Ref. [25]).

electromagnetic wave of frequency ω0, propagating along the z direction, are given as [3]

Ex = ax(t) cos[ω0t− θx(t)]

Ey = ay(t) cos[ω0t− θy(t)],
(3.7)

in which case, (all four6) Stokes parameters are defined as the following time averages

I ≡
〈
a2
x

〉
+
〈
a2
y

〉
Q ≡

〈
a2
x

〉
−
〈
a2
y

〉
U ≡

〈
axay cos[θx − θy]

〉
V ≡

〈
axay sin[θx − θy]

〉
.

(3.8)

Q(n̂) and U(n̂) transform as components of a real, symmetric, and trace-free 2 × 2 tensor field

6Notice that I represents the intensity, or the temperature fluctuations; no circular polarization has so far been
detected in the CMB, and V is usually assumed to vanish.
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on a 2-sphere,

P (n̂) =
1√
2

 Q(n̂) −U(n̂) sin θ

−U(n̂) sin θ −Q(n̂) sin2 θ

 , (3.9)

which can be expanded in terms of tensor spherical harmonics, representing a complete orthonormal

basis for tensor functions on a sphere, such that7

Pab(n̂) =

∞∑
`=2

∑̀
m=−`

[E`mY
E
(`m)ab(n̂) +B`mY

B
(`m)ab(n̂)], (3.10)

where we emphasize that there are two distinct components in this decomposition, Y E`m and Y B`m,

which can be expressed in terms of the usual (spin-zero) spherical harmonics,

Y B(`m)ab =
1

2

√
2(`− 2)!

(`+ 2)!
(Y(`m):acε

c
b + Y(`m):bcε

c
a), (3.11)

Y E(`m)ab =

√
2(`− 2)!

(`+ 2)!
(Y(`m):ab −

1

2
gabY(`m):c

c), (3.12)

where a colon denotes a covariant derivative on a 2-sphere; g and ε are, respectively, the metric

tensor and the Levi-Civita tensor on a unit 2-sphere, given by

g =

 1 0

0 sin2 θ

 , (3.13)

and

ε =

 0 sin θ

− sin θ 0

 . (3.14)

The corresponding orthonormality relations read∫
dn̂[Y E(`m)ab(n̂)]∗Y E,ab(`′m′)(n̂) =

∫
d[Y B(`m)ab(n̂)]∗Y B,ab(`′m′)(n̂) = δ``′δmm′ ,∫

dn̂[Y E(`m)ab(n̂)]∗Y B,ab(`′m′)(n̂) = 0.

(3.15)

E`m and B`m are the E mode and the B mode tensor-spherical-harmonic coefficients, respectively.

The E mode describes the gradient (curl-free) component of the polarization pattern in the sky

(named in analogy with the electric field), while the B mode describes the curl component with a

defined handedness (in analogy with the magnetic field); visualizations of both patterns are shown

in Figure 3.2. Their power spectra (autocorrelations) are defined as usual,

7Notice that we sometimes separate multipole indices from the tensor indicies using parentheses, for clarity; we
drop the parentheses when they are unnecessary.
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E mode B mode 

Figure 3.2: Shown are examples of elementary polarization patterns that represent a pure E mode,
and a pure B mode. Notice that the E mode is parity-even, while the B mode, obtained by rotating
the E mode by 45◦, has handedness.

CEEl δ``′δmm′ ≡ 〈E`mE∗`′m′〉 ,

CBBl δ``′δmm′ ≡ 〈B`mB∗`′m′〉 .
(3.16)

We can also define cross-correlations between different modes, and between temperature and polar-

ization,

CEBl δ``′δmm′ ≡ 〈E`mB∗`′m′〉 ,

CTEl δ``′δmm′ ≡ 〈T`mE∗`′m′〉 ,

CTBl δ``′δmm′ ≡ 〈T`mB∗`′m′〉 .

(3.17)

We show current state-of-the-art measurements of TE and EE power spectra, as well as the

theoretical predictions, in Figures 3.3 and 3.4. Several remarks about these measurements are in

order now. Firstly, most of the currently available polarization maps are noise dominated, including

those from WMAP. However, that situation will drastically change when Planck, SPTPol, ACTPol,

and similar experiments deliver the first sets of signal-dominated polarization data, demanding

a careful reassessment of analyses applicable in the new regime. Secondly, currently measured

cosmological signal consists solely of an E-mode pattern, while the measured B mode still comes

from noise. The search for primordial B modes represents one of the “holy grails” of modern

cosmology, but there are not, as of yet, precise predictions for the amplitude of this signal. The

reason is the following: while the dominant scalar component to primordial fluctuations can give

rise to E modes, primordial B modes are generated only by the inflationary gravitational waves, or

tensor perturbations, whose amplitude directly depends on the unknown energy scale of inflation.
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Should they be detected, they would present the first direct evidence that confirms the inflationary

theory and opens a completely new avenue for exploring the physics of the very early Universe.

Among secondary sources of the B-mode signal is also the weak gravitational lensing of the CMB

by the intervening large-scale structure. It too is expected to be subdominant to the primordial E

modes. Figure 3.4 compares the theoretical power spectra generated by different mechanisms.

For Gaussian theories, the six power spectra defined so far (TT , EE, BB, TE, TB, and EB)

fully define statistical properties of a temperature and polarization map. However, since the parities

of tensor spherical harmonics are (−1)` for Y`m and Y E`m, and (−1)`+1 for Y B`m, the EB and TB

cross-correlations should vanish, CEB` = CTB` = 0, as long as the physics that generated the CMB

respects parity symmetry8. As we will see in Chapters 5 and 6, there are mechanisms that violate

this symmetry, giving rise to parity-violating correlations in the CMB, and also to off-diagonal ``′

correlations—a form of non-Gaussianity which we use to test those scenarios.

There is a connection between tensor spherical harmonics and spin-weighted spherical harmonics,

which we derive here by expressing the double derivatives in Eqs. (3.12) and (3.11) as [30]

Y(`m):ab = −`(`+ 1)

2
Y(`m)gab +

1

2

√
(`+ 2)!

(`− 2)!
[2Y(`m)(m+ ⊗m+) +−2 Y(`m)(m− ⊗m−)]ab, (3.18)

where

m± ≡
1√
2

(êθ ∓ iêϕ), (3.19)

and the symbol ⊗ denotes a direct product, and the two unit (basis) vectors are

êθ ≡

 1

0

 , êϕ ≡

 0

sin θ

 . (3.20)

This substitution leads to the following expressions9

Y B(`m) =

 i
√

2
4 (+2Y −−2 Y)

√
2

4 sin(θ)(−2Y ++2 Y)
√

2
4 sin(θ)(−2Y ++2 Y) i

√
2

4 sin2(θ)(−2Y −+2 Y)

 , (3.21)

Y E(`m) =

 √
2

4 (+2Y +−2 Y) i
√

2
4 sin(θ)(−2Y −+2 Y)

i
√

2
4 sin(θ)(−2Y −+2 Y) −

√
2

4 sin2(θ)(−2Y ++2 Y)

 , (3.22)

where the spin-s spherical harmonics are normalized as

∫
dn̂sY(`m)(n̂)sY

∗
(`′m′)(n̂) = δ``′δmm′ . (3.23)

8Parity transformation is (θ → π − θ, ϕ→ π + ϕ).
9We suppress (`m) indices for Y`m’s in these formulas.
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As an alternative to using the polarization tensor P (n̂), we will sometimes use the following

polarization field

p(n̂) ≡ Q(n̂) + iU(n̂) = −
∑
`m

(E`m + iB`m)2Y`m(n̂), (3.24)

in terms of which the expressions for the E and B modes are

E`m =
1

2

∫
dn̂ [p(n̂)2Y

∗
`m(n̂) + p∗(n̂)−2Y

∗
`m(n̂)] (3.25)

and

B`m =
1

2i

∫
dn̂ [p(n̂)2Y

∗
`m(n̂)− p∗(n̂)−2Y

∗
`m(n̂)] , (3.26)

where we used the following property of the spin-weighted spherical harmonics

sY
∗
`m = (−1)s+m−sY`−m. (3.27)

Note that the E and B modes satisfy the same reality condition of Eq. (3.6) as the temperature

multipoles.

3.3 From Maps to Power Spectra

This section describes analytically the calculational road from the CMB temperature and polariza-

tion maps to the estimates of the cosmological signal, i.e., the power spectra. Most of this procedure

we demonstrate for the case of temperature, but it is readily applicable to the polarization as well.

Before we begin, let us first define our notation; the same notation will be used in Chapters 5, 7,

and 8, which deal with theoretical considerations related to cosmic birefringence, while a slightly

modified notation will be employed when we turn to data analysis in Chapter 6; we point out these

changes in the text.

Multipole-coefficient and map symbols X and X ′ stand for either T , E, or B, such that X,X ′ ∈

{T,E,B}, and XX ′ ∈ {TT,EE,BB, TE, TB,EB}. Absence of a superscript denotes the (theoret-

ical) cosmological signal, either in pixel space, or in harmonic space, uncontaminated by the noise

(of instrumental, or astrophysical origin), while the superscript “map” denotes multipoles recovered

from a map which include the noise, where the contributions to the noise considered in different

problems are clearly specified in the text. An overhat symbol denotes an estimator, approximating

(but distinct from) a theoretical value. The theoretical power spectra we use are calculated with

CMBFAST, or CAMB.
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We start by noting that multipole coefficients are reconstructed from a map as

Tmap
`m =

∫
dn̂T (n̂)Y ∗`m(n̂) ≈ 4π

Npix

Npix∑
i=1

Tmap
i (n̂i)Y

∗
`m(n̂i), (3.28)

where Npix is the total number of pixels in the map, and Tmap
i (n̂i) is the temperature measured in

pixel i in the direction n̂i. In theory, any power spectrum is calculated by taking a mean over the

ensemble of all possible realizations of the CMB sky, such as those in Eqs. (3.4), (3.16), and (3.17).

In practice, we only observe one sky, so the power spectrum is typically estimated from multipole

coefficients recovered from a map, assuming isotropy (independence on m), and taking the mean

over all m modes for a given `, as

ĈTT ,map
` ≡ 1

2`+ 1

∑
m

Tmap
`m Tmap, *

`′m′ . (3.29)

This procedure limits the accuracy of the measurement of C`’s due to a sample variance called

cosmic variance. Cosmic variance affects most severely the measurements at large angular scales,

corresponding to low ` multipoles, where a small number of m modes is available at each ` (the

number of m modes is 2`+ 1).

In addition to the cosmic-variance limitation, instrumental noise and resolution are also sources

of uncertainty in measuring the power spectra10. Even though a faithful description of these ef-

fects, which we generically refer to as the “noise”, is complex and more amenable to simulations

than analytic description, it is instructive to understand approximate scaling with key instrumental

parameters in the idealized case where the noise can be described fully by a noise power spectrum.

We demonstrate this for temperature, but emphasize that the entire calculation is analogous in the

case of polarization.

We start by assuming that Tmap
i and Tmap

`m include the cosmological signal, plus noise, such that

Tmap
`m = T`mW` + T noise

`m , (3.30)

where the beam transfer function (or the window function) W` accounts for the beam smearing, and

is usually approximated by a (symmetric) Gaussian as

W` ≈ exp−l
2σ2
b/2, (3.31)

10There are additional contributions that fold into the measurement of multipoles in temperature and polarization
and should be accounted for when extracting cosmological signals. These come, for example, from sky cuts, Galactic
and extragalactic foregrounds, foreground residuals, instrumental systematics, etc. We address some of these in more
detail when we present the analysis of WMAP data, in Chapter 6.
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where

σb = θFWHM/
√

8ln2, (3.32)

and θFWHM is the beam full width at half maximum, in radians. In the case of homogeneous Gaussian

noise (where every pixel has the same noise variance σ2
T ), uncorrelated to the signal,

〈
TiT

noise
j

〉
= 0, (3.33)

and in the absence of pixel-noise correlations,

〈
T noise
i T noise

j

〉
= σ2

T δij , (3.34)

where the noise in polarization is uncorrelated with the noise in temperature, we get

CTT ,map
` δ``′δmm′ ≡

〈
Tmap
`m Tmap, *

`′m′

〉
= |W`|2 〈T`mT ∗`′m′〉+

〈
T noise
`m T noise, *

`′m′

〉
=
(
|W`|2CTT` + CTT ,noise

`

)
δ``′δmm′ ,

(3.35)

where we define

CTT ,noise
` ≡ 4πσ2

T

Npix
. (3.36)

Note that we used Eq. (3.28) for the noise map, and the orthonormality relation for spherical

harmonics to arrive at these expressions. The last ingredient to keep in mind is that the pixel-noise

variance for polarization is roughly twice that for the temperature,

σ2
E = σ2

B = 2σ2
T . (3.37)

A word of caution on the notation here: some of the “map” power spectra are also denoted by

the estimator sign (overhat), while some of them are not. The distinction between them is this:

those that bear the overhat sign denote the power estimated from a map, using Eq. (3.29), while

those that do not have an overhat are calculated by adding the theoretical signal to the analytic

description of the noise, and taking the mean over all sky realizations, as in Eq. (3.35). The first

is the power truly calculated from the maps, while the second procedure is a way to analytically

represent it, where the relation between the two is

CTT ,map
` =

〈
ĈTT ,map
`

〉
. (3.38)

Similarly, if the estimator for the power spectrum is unbiased, than the following holds

CTT` =
〈
ĈTT`

〉
. (3.39)
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Once we measure the power spectrum from a temperature/polarization map, we can estimate

the cosmological signal as

ĈXX
′

` =
(
ĈXX

′,map
` − CXX

′,noise
`

)
|W`|−2

. (3.40)

Since there are six power spectra, the uncertainty of this measurement is represented by a 6 × 6

covariance matrix ΞAA′ , where A ≡ XX ′. This matrix is not diagonal (ΞAA′ 6= 0, for A 6= A′), since

only three multipoles X are used to reconstruct six power spectra. The covariance-matrix elements

can be derived starting from its definition and combining the above formulas, as

Ξ`X(1)X(2),X(3)X(4)
≡
〈(
Ĉ
X(1)X(2)

` − CX(1)X(2)

`

)(
Ĉ
X(3)X(4)

` − CX(3)X(4)

`

)〉
=
(〈
Ĉ
X(1)X(2),map

` Ĉ
X(3)X(4),map

`

〉
− CX(1)X(2),map

` C
X(3)X(4),map

`

)
|W`|−4

= |W`|−4

(∑
mm′

〈
X(1)`m

∗X(2)`′m′X(3)`m
∗X(4)`′m′

〉
(2`+ 1)

2 −
〈
X(1)`m

∗X(2)`′m′
〉 〈
X(3)`m

∗X(4)`′m′
〉)

=
|W`|−4

(2`+ 1)

(〈
X(1)`m

∗X(3)`′m′
〉 〈
X(2)`m

∗X(4)`′m′
〉

+
〈
X(1)`m

∗X(4)`′m′
〉 〈
X(2)`m

∗X(3)`′m′
〉)

=
1

(2`+ 1)
|W`|−4(CX1X3,map

` CX2X4,map
` + CX1X4,map

` CX2X3,map
` ),

(3.41)

where all multipoles X have superscript “map”, which we suppress for clarity. Diagonal components

of this matrix approximately provide the variance with which TT , EE, and BB power spectra can

be measured,

Ξ`XX,XX =
2

2`+ 1

(
CXX,map
` |W`|−2

)2

. (3.42)

One more remark about the notation. The two main differences between the notation conventions

introduced here and used in all theoretical considerations of this work, and the notation used in the

data-analysis portion of this thesis (presented in Chapter 6 and Section 9.1) are the following: 1) in

data analysis, the power spectra and multipoles denoted with “map” have already been corrected for

the effects of instrumental resolution, i.e., the window function has been divided out; what we call

the “noise” will then also have been divided by the square of the window function, and 2) the noise

in theoretical derivations is represented by a power spectrum that arises in a simplified model of

instrumental noise and instrumental resolution, while in data analysis, the noise model we consider

is typically more complicated and cannot be represented analytically.

With this, we conclude the introductory overview of the CMB physics and analysis formalisms

and move on to the core subject of this thesis by addressing various physical problems, using the

CMB as the main tool.
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Figure 3.3: Measurements (and best fits) of the TE and EE power spectra from WMAP (black
dots), and a number of other CMB experiments (colored symbols); note the unusual normalization
of the y-axis in the top panel, chosen so that both low-` and high-` features are visible (plots from
Ref. [2]).
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Figure 3.4: Theoretical power spectra, calculated with CAMB using the best-fit WMAP-7 cosmology.
The contribution to BB is shown from both weak lensing and primordial gravitational waves (tensor
modes), calculated for tensor-to-scalar ratio r = 0.1, which is close to its current upper limit. From
the amplitude of the signals, it is clear why detection of temperature fluctuations came before
the detection of polarization fluctuations, and also why the search for B modes represents such a
challenge in a regime where the E modes are still noise dominated. The normalization of C`’s in
this figure is adopted as the standard for plotting the power spectra, as it creates a quantity that
has the same variance in every log(`) interval, and also clearly displays the Sachs-Wolfe plateau for
the temperature.
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Part III

Testing New Physics: Cosmic

Birefringence
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This part of the thesis studies CMB signatures of physics beyond the standard models of cosmol-

ogy and particle physics. We are in particular concerned with the effect of cosmic birefringence—a

postulated frequency-independent rotation of the plane of polarization of photons that propagate

through the Universe [31].

We first review physical scenarios that give rise to cosmic birefringence, motivating the search

for direction-dependent (anisotropic) rotation α(n̂) (where n̂ is a direction in the sky) using CMB

data sets, and summarize related previous work, in Chapter 4. In Chapter 5, we develop a full-

sky formalism for measuring α(n̂) with temperature and polarization maps of the CMB, draw the

distinction between rotation and weak lensing of the CMB, and forecast the sensitivity of upcoming

and next-generation CMB experiments. In Chapter 6, we revisit previous constraints on the uniform

rotation angle, test the validity regime of our formalism using a suite of simulated CMB realizations

including the instrumental response, and then perform an optimized analysis of WMAP data to look

for the presence of direction-dependent rotation in the sky, evaluating statistical uncertainty and the

impact of systematic effects. These measurements provide the first constraint on the rotation-angle

power spectrum Cαα` down to multipoles corresponding to the resolution of the instrument. We

discuss implications of these constraints for quintessence models of dark energy. In Chapter 7, we

propose a cross-correlation of the rotation angle with CMB temperature as a new statistical tool to

boost signal-to-noise, and help distinguish underlying physical scenarios, in case of detection with

future data. Finally, in Chapter 8, we place the effect of cosmic birefringence in the context of other

parity-violating physics, in particular chiral gravitational waves from inflation, and explore how

accurately the two effects can be distinguished in case the parity-violating EB/TB power spectra

are measured in CMB maps.
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Chapter 4

Motivation, Phenomenology, and
Previous Results

In this chapter, we review the physics behind cosmic birefringence and motivate the search for its

anisotropic-rotation signature in full-sky CMB maps, and summarize previous results.

Let us consider an extension of the Standard Model of particles that includes a new scalar degree

of freedom φ, which has a potential V (φ) and a cannonical kinetic term in the Lagrangian,

Lφ = −1

2
(∂µφ)(∂µφ)− V (φ), (4.1)

Its equation-of-state parameter, defined as the ratio of pressure pφ to energy density ρφ, takes on

the following form1

wφ ≡ pφ/ρφ =
1

2a2 φ̇
2 − V (φ)

1
2a2 φ̇

2 + V (φ)
(4.2)

where dots represent derivatives with respect to conformal time, and a is the cosmological scale

factor. If the kinetic energy is negligible in comparison to the potential, or, in other words, if the

field has slow time evolution, it is said to exhibit slow roll, and then we get

w → −1, for φ̇→ 0. (4.3)

If such field happens to dominate the energy budget of the Universe, it will drive accelerated expan-

sion. There have been at least two instances in the history of our Universe when acceleration has

occurred: one was at very early times, during inflation [32], and the other is the late-time accelera-

tion observed today [33, 34]. Late-time acceleration is ascribed to the dark-energy component that

makes about 70% of the energy density in the Universe today, and is measured to have ωDE ≈ −1

(within a few-percent measurement error; see [35]). The physical nature of this component is yet

1Remember that the energy density is the first entry of the stress-energy tensor corresponding to this field, and
the pressure corresponds to each of the elements on the main diagonal; the stress-energy tensor is obtained by taking

the derivative of the Lagrangian density of Eq. (4.1) with respect to the metric: Tµν ≡ 2√
−g

δ(Lφ
√
−g)

δgµν
.
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Figure 4.1: We show the potential for the PNGB, given by Eq. (4.4). The mode that goes around
the rim of this “Mexican-hat” potential is the PNGB. In this case, the hat is tilted, i.e., the global
symmetry is explicitly broken (not exact), so the field acquires a mass. The potential descends from
a complete theory that includes a complex scalar ψ.

unknown, but the most popular models include vacuum energy, or cosmological constant ; modified

gravity; and a slowly evolving scalar field, or quintessence [36]. If we investigate the third option,

the first step is to find a good candidate for quintessence.

Quantum field theories with explicitly (weakly) broken global U(1) symmetry necessarily give

rise to pseudo Nambu-Goldstone bosons (PNGB), with a shallow potential (see, e.g., [37]) of the

following form

V = m4[1− cos(φ/f)], (4.4)

where f is a parameter of the theory. If the symmetry is exact, the field is massless, but if it is weakly

broken, the field acquires a small mass m (see Figure 4.1). From a cosmological perspective, a (scalar)

PNGB field with this property is a natural candidate for quintessence, since it can drive epochs of

accelerated expansion [31]. In addition, many other extensions of the Standard Model of particle

physics abound in scalar fields resembling the PNGB, and have nothing to do with quintessence.

Cosmic birefringence appears as a generic feature in both of these cases, as a consequence of the

Chern-Simons coupling between a PNGB field and electromagnetism. The relevant part of the

electromagnetic Lagrangian in this case reads

LEM = − βφ

2M
Fµν F̃µν −

1

4
FµνFµν , (4.5)
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where

F̃µν ≡ εµνρσF ρσ/2 (4.6)

is the dual of the electromagnetic field-strength tensor (FF̃ is often called the pseudo scalar of

electromagnetism), εµνρσ is the Levi-Civita tensor (totally antisymmetric), and M is a parameter

with dimensions of mass. If φ is a PNGB, then M is the vacuum expectation value for the broken

global symmetry, and β is a coupling [31,38] (see Figure 4.1). There are therefore “natural” candidate

scalar fields for dark energy that arise in particle physics (introduced for reasons that have nothing

to do with explaining accelerated expansion of the Universe). On the other hand, these fields, such

as the PNGB, generically couple to the pseudo scalar of electromagnetism and give rise to cosmic

birefringence through the mechanism described below.

The electromagnetic Lagrangian of Eq. (4.5) introduces a modification to the standard Maxwell’s

equations (see Appendix B for derivation), which results in different dispersion relations for left- and

right-circularly polarized photons. Consequently, linearly polarized electromagnetic waves that prop-

agate over cosmological distances undergo cosmic birefringence2—a frequency-independent rotation

of the plane of polarization by an angle α, where [39]

α =
β

M

∫
dτ

(
∂

∂τ
− n̂ · ~∇

)
φ =

β

M
∆φ, (4.7)

with ∆φ being the change in φ over the photon trajectory, and τ being the conformal time. For

the CMB, the polarization rotation is determined by the change in φ since recombination, when the

CMB polarization pattern was largely established. See Figure 4.2 for an illustration of this effect.

There is an additional appeal associated with quintessence scenarios with cosmic birefringence.

Namely, if we consider a new degree of freedom, we may rightfully be concerned that its other

couplings might already forbid its existence, due to strong accelerator constraints on the Standard

Model phenomenology—unless there is a symmetry requirement that suppresses these couplings.

Ref. [31] has shown that, if shift symmetry is required, whereby the action is invariant under the

following transformation

φ→ φ+ const, (4.8)

then the only allowed dimension-5 coupling of this scalar to the Standard Model is represented by

the Chern-Simons term of Eq. (4.5). Because of the suppression of other interaction terms due to

shift symmetry, the new degree of freedom φ could thus evade detection in colliders and other lab

experiments, but could still be manifest in cosmology through the effect of cosmic birefringence.3

2In a sense, this effect is similar to birefringence in crystals, and thus the name: it is a birefringence of light in a
polarized vacuum with an evolving quintessence.

3Let us emphasize here that the field that is the subject of this discussion is not an axion field, even though they
share some characteristics, such as the existence of the Chern-Simons coupling; laboratory constraints on axions,
such as those of PVLAS experiment [40], apply to much more massive fields than the quintessence, which is usually
expected to have m ∼ 10−33eV, or so.



31

Observer 

Source 



Figure 4.2: This figure illustrates the effect of cosmic birefringence, where polarization at the source
is represented by a vertical line on the very right; the direction of polarization progressively changes
along the photons’ path, so that, by the time they reach the observer, the polarization is rotated by
the angle α, proportional to the total change in the field ∆φ along the line of sight.

On the other hand, the simplest way to ensure a sustained slow roll for quintessence is precisely to

require that V (φ) respects (approximate) shift symmetry, such as the case for PNGB.

Summarizing what we have stated so far: cosmic birefringence arises generically in quintessence

models, and could thus provide one of the preciously rare avenues for testing the microphysics of

dark energy; more generally, it is a feature of models that simply include new scalar degrees of

freedom, regardless of their time evolution or cosmological role4.

To search for this effect, we need to identify a polarized source at a cosmological distance; we also

need to know the description of its polarization field at the source, so we can compare it with what

we observe today. The reason to use a source at a cosmological distance is that the mass-suppression

scale M is expected to be large, around the Planck mass,

M ≈MPl, (4.9)

corresponding to the energy scale of the new high-energy physics underlying the effective field theory

represented by Eq. (4.5).5

One of the cosmological sources that has previously been used to look for cosmic birefringence are

4Another interesting example is the birefringence that appears in some exotic models for dark matter [41], which
we do not explicitly consider here.

5This Chern-Simons term is a non-renormalizable term of an effective field theory, expected to descend from a
more complete description at high energies.
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active galactic nuclei (AGN). For example, Ref. [42] used measurements of the ultraviolet polarization

of eight distant radio galaxies distributed across the sky to constrain uniform rotation to

α . 2.2◦, (4.10)

and Ref. [43] used the same data set to also provide an upper limit on the root-mean-square (RMS)

rotation on the sky, 〈
α2
〉
. 3.7◦. (4.11)

Additionally, a detailed understanding of the statistical description of its primordial fluctuations

and the largest available lookback time of any other cosmological sources make the CMB a lead-

ing background-source candidate to look for cosmic birefringence. The sensitivity of WMAP data

to uniform-rotation signal is already similar to AGN—the best current constraint comes from a

combined analysis of the WMAP, Bicep [44], and QUAD [45] experiments,

−1.4◦ < α < 0.9◦, (4.12)

at the 95% confidence level [46]. However, in the case of anisotropic (direction-dependent) rotation,

the AGN measurements can only constrain the variance, while the CMB data allow for the recon-

struction of individual multipoles of the rotation-angle power spectrum, Cαα` —which is one of the

goals of the work presented in this thesis.

Previous work has thus mostly focused on a special case of a uniform field in the sky, where the

rotation angle is the same in every direction. However, if it is driven by a dynamical cosmic scalar

φ, then φ may have spatial fluctuations which would drive anisotropies in the rotation angle,

∆α(n̂) = (β/M)δφ(n̂), (4.13)

where fluctuations δφ(n̂) are evaluated at recombination. The power spectrum Cαα` can be calculated

for any model, given the potential V (φ), using the equations of motion for the fluctuations in φ, and

projecting them on the sky. This procedure is presented in more detail for a couple of specific models

of rotation in Subsections 7.1.1 and 7.1.2. A measurement of the shape of Cαα` can thus provide a

window into detailed physics of the new cosmic scalar field. Therefore, measuring fluctuations in the

rotation angle across the sky is a general quest that goes beyond constraints on a uniform-rotation

signal, and can directly probe spatial fluctuations of a cosmic scalar field φ. Additionally, higher-

multipole measurements can help boost signal-to-noise for detection (see Section 6.6), and can also

be the only avenue to look for the signal if there is no monopole (or no uniform rotation), which is

the case for a massless field (see Subsection 7.1.1).
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We end with a few words to motivate our choice of full-sky analysis to look for α(n̂). While

a flat-sky analysis may be suitable if the rotation-angle power spectrum peaks at small scales, the

full-sky formalism will be required to maximize the sensitivity in models such as that in Ref. [47],

where the signal-to-noise peaks at low multipoles. There has also been growing attention recently

to the possibility of variations in fundamental fields (perhaps remnants of the pre-inflationary Uni-

verse) over distance scales comparable to, or larger than, the horizon [48,49]. Observationally, these

entail searches for departures from homogeneity/isotropy or departures from statistical homogene-

ity/isotropy in the CMB or large-scale structure [50]. The full-sky formalism we turn to in Chapter

5 is exact, and can be used to search for the low multipole (e.g., ` = 1, 2, 3, · · · ) moments of α(n̂)

that may arise if φ has long-wavelength fluctuations, in addition to, or instead of, the higher-` modes

that can also be probed with a survey of a smaller region of the sky6. We therefore focus in this

thesis on reconstructing the Cαα` power spectrum at all scales down to the resolution of the best

full-sky CMB data sets available today.

6Note that the full-sky formalism is exact, but not necessarily computationally more demanding than the flat-sky
calculations.
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Chapter 5

Theoretical Considerations

This chapter deals with the formalism and other theoretical considerations related to the search

for cosmic birefringence, and similar physical scenarios, using the CMB. It is organized as follows.

In Section 5.1, we derive CMB correlations induced or altered by direction-dependent rotation of

the CMB polarization pattern. Section 5.2 presents a complete set of minimum-variance estimators

for the rotation-angle multipole coefficients, constructed from four temperature-polarization cross-

correlations that can be measured in full-sky CMB maps, as well as their variances. In Section

5.3, we show how the signals from rotation and the weak gravitational lensing from the large-scale

structure can be geometrically distinguished, and argue that the lensing signal should not bias

the rotation measurements. In Section 5.4, we use the full-sky estimator formalism to forecast

sensitivity of current, upcoming, and the next-generation satellite experiments. Finally, we conclude

and summarize in Section 5.5.

5.1 Effect of Rotation on the CMB Correlations

We now derive the correlations in the CMB maps induced by a post-recombination anisotropic

rotation α(n̂) of the polarization, to first order in α. To do this, we first derive the expressions

for the rotation-induced E and B modes, noting that the temperature field is not affected. The

derivation presented here does not rely on any particular model for the rotation field in the sky,

nor does it depend on the physical causes for rotation, making this formalism directly applicable to

investigating physical scenarios beyond just cosmic birefringence.

Let us suppose that the polarization at the surface of last scatter is a pure E mode (we re-evaluate

this assumption below). If so, a small rotation α(n̂) induces the following change to the polarization

tensor

δPab(n̂) = 2α(n̂)P rab(n̂), (5.1)

Material in this chapter was largely adapted from “Derotation of the cosmic microwave background polarization:
Full-sky formalism,” Vera Gluscevic, Marc Kamionkowski, and Asantha Cooray, Phys. Rev. D 80, 023510 (2009) [4].
Reproduced here with permission, c©(2009) by the American Physical Society.
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Figure 5.1: This figure illustrates the effect of rotation of a pure E-mode polarization, by an arbitrary
amount in every point in the sky. Notice that the resulting polarization pattern is a combination of
an E mode and a B mode.

where [51]

P rab(n̂) =

∞∑
l=2

∑̀
m=−`

E`mY
B
(`m)ab(n̂). (5.2)

A pure E mode thus gets rotated into a B mode, where the presence of this B mode becomes one

of the characteristic signatures of rotation (see Figure 5.1 for illustration). Note that Eq. (5.2) is

valid only in the limit of small angles, α(n̂) � 1. Given that, the B mode will be small compared

to the E mode, which satisfies existing empirical constraints. Since the primordial B mode is also

constrained to be much smaller than the primordial E mode, and so is the B-mode signal induced

by the weak gravitational lensing, the assumption we made about a pure E mode holds well, to first

order. Considerations of the higher-order effects are beyond the scope of this work.

Just like the temperature, rotation is also a scalar field in the sky, and can thus be expanded in

terms of spherical harmonics,

α(n̂) =
∑
LM

αLMYLM (n̂), (5.3)

where αLM are the coefficients of the expansion. Now, using Eqs. (5.1), (5.2), and (5.3), the B mode

induced by a small rotation angle from a pure E mode can be expressed as1

δB`m =

∫
dn̂δPab(n̂)Y B∗,ab(`m) (n̂) = 2

∑
LM

∑
`2m2

αLME`2m2

∫
dn̂Y B∗,ab(`m) Y(LM)Y

B
(`2m2)ab. (5.4)

1Notice that we drop explicit dependence on (n̂) in triple-Y integrals, for clarity of the expressions.
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Similarly, the induced E mode is

δE`m =

∫
dn̂δPab(n̂)Y E∗,ab(`m) (n̂) = 2

∑
LM

∑
`2m2

αLME`2m2

∫
dn̂Y E∗,ab(`m) Y(LM)Y

B
(`2m2)ab. (5.5)

Using Eqs. (3.22) and (3.21), we further obtain

Y B∗,ab(`m) Y B(`2m2)ab =
1

2
(−2Y

∗
(`m) ×−2 Y(`2m2) ++2 Y

∗
(`m) ×+2 Y(`2m2)), (5.6)

and

Y E∗,ab(`m) Y B(`2m2)ab =
i

2
(+2Y

∗
(`m) ×+2 Y(`2m2) −−2 Y

∗
(`m) ×−2 Y(`2m2)). (5.7)

The next step is to use this result in order to rewrite the integrals in Eqs. (5.4) and (5.5) in terms

of Wigner 3j symbols. To do that, we need the relation between spin-weighted spherical harmonics

and Wigner 3j symbols [30], ∫
dn̂s1Y

∗
`1m1

(n̂)s2Y`2m2(n̂)s3Y`3m3(n̂)

= (−1)m1+s1

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

 `1 `2 `3

−m1 m2 m3

 `1 `2 `3

s1 −s2 −s3

 .

(5.8)

Noting that the spin-spherical harmonics of zero spin are the regular spherical harmonics,

0Y(`m) ≡ Y(`m), (5.9)

let us first look at the case of the induced B mode, where we have∫
dn̂Y B∗,ab(`m) Y(LM)Y

B
(`2m2)ab

=
1

2
(−1)m

√
(2`+ 1)(2L+ 1)(2`2 + 1)

4π

 ` L `2

−2 0 2

+

 ` L `2

2 0 −2

 ` L `2

−m M m2

 .

(5.10)

We then define2

ξLMlm`2m2
≡ (−1)m

√
(2`+ 1)(2L+ 1)(2`2 + 1)

4π

 ` L `2

−m M m2

 , (5.11)

and

HL
``2 ≡

 ` L `2

2 0 −2

 . (5.12)

2Note that the definitions of ξLM
`m`′m′ and HL

``′ differ from those in Ref. [51]; we re-define these quantities in order
to avoid division by zero.
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Due to the properties of the Wigner 3j symbols (see Appendix A), changing the sign on all three

m’s brings up a factor of (−1) +̀̀ 2+L, so the sum in Eq. (5.10) vanishes, unless `+ `2 +L =even.

Replacing Eqs. (5.10), (5.11), and (5.12) into Eq. (5.4), we come to a relatively simple expression

for the rotation-induced B mode,

δB`m = 2
∑
LM

∑
`2m2

αLME`2m2
ξLM`m`2m2

HL
``2 , (5.13)

where the only non-zero terms in the sum are those that satisfy `+`2+L=even.

Similarly, for the case of the rotation-induced E mode, the properties of the Wigner 3j symbols

ensure that if the sum of m’s does not vanish, the value of the symbol is zero, so we get

∫
dn̂Y E∗,ab(`m) Y(LM)Y

B
(`2m2)ab = iξLM`m`2m2

HL
``2 . (5.14)

Combining this result with Eq.( 5.5), we arrive to

δE`m = 2i
∑
LM

∑
`2m2

αLME`2m2
ξLM`m`2m2

HL
``2 . (5.15)

In Eqs. (5.14) and (5.15), the only non-zero terms are those that satisfy `+ `2 +L =odd. Now

that we have obtained the expressions for rotation-induced E and B modes, we can derive the

rotation-induced correlations in the CMB temperature and polarization.

Four correlations are modified/induced by the rotation, to first order: EB, EE, TB, and TE

(there is also a BB correlation, but it is second order in α, and thus neglected here). Every mode

that we detect will contain the sum of the primordial and rotation-induced component,

Etot
`m = E`m + δE`m,

Btot
`m = δB`m.

(5.16)

Using the definitions of the EE and TE power spectra, and the Eqs. (5.13) and (5.15), we get

〈
Btot
`mE

tot, *
`′m′

〉
= 2

∑
LM

αLMC
EE
l′ ξLM`m`′m′H

L
``′

=
1√
π
α00C

EE
l′ δ``′δmm′ + 2

∑
L>1

L∑
M=−L

αLMC
EE
`′ ξLM`m`′m′H

L
``′ ,

(5.17)

where in the last step we separated explicitly the contribution from the rotation-angle monopole,

which we will used in a later discussion of the uniform rotation. We emphasize again that the

absence of any superscript on the symbols for the power spectra in these equations denotes primordial

contributions (prior to rotation), and the modes with superscript “rot” encompass both primordial
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and the rotation-induced parts. Similarly, the rest of the correlations are

〈
Etot
`mE

tot, *
`′m′

〉
= CEEl δ``′δmm′ + 2i

∑
LM

(CEE`′ − CEE` )αLMξ
LM
`m`′m′H

L
``′ , (5.18)

〈
Btot
`mT

tot, *
`′m′

〉
= 2

∑
LM

αLMC
TE
`′ ξLM`m`′m′H

L
``′ , (5.19)

〈
Etot
`mT

tot, *
`′m′

〉
= CTE` δ``′δmm′ + 2i

∑
LM

CTE`′ αLMξ
LM
`m`′m′H

L
``′ . (5.20)

Note that for EB and TB, the sum is taken over the terms that satisfy `+`′+L=even, and in EE

and TE, `+`′+L=odd.

The next step is, in a sense, to invert the above four equations in order to obtain an optimal

estimator for the rotation-angle multipoles, which can then be evaluated using the measurements of

these four cross-correlations from the CMB maps.

5.2 Estimators for Rotation: Full-Sky Formalism

We now focus on building an optimal estimator for the rotation-angle multipoles, α̂LM , using all four

temperature-polarization cross-correlations induced by rotation. In this section, we use expressions

containing Wigner-3j symbols; in Section 6.2, we revisit this derivation in pixel space for the TB

case only, and obtain expressions in terms of the triple-Y integrals. The advantage of the latter is a

straightforward implementation in the CMB-analysis software package called HEALPix [52], which

we use to analyze WMAP data. However, it is not always possible to conduct calculations in pixel

space, in which case one must resort to the expressions presented here.

In the following, we will work under the null assumption, i.e., evaluate all the covariances for the

case of no rotation. This approach is justified in the regime of small rotation3. Furthermore, as we

show in Section 6.4, the RMS rotation angle in the sky (calculated from the values in each WMAP

pixel) is constrained to be less than about ten degrees. Therefore, the uncertainties estimated based

on the null assumption provide good accuracy.

To start, we assume that the primordial CMB temperature/polarization pattern is a realization

of a statistically isotropic Gaussian random field, in which case the spherical-harmonic coefficients

(T`m, E`m, and B`m) for the primordial field are uncorrelated at different angular scales, where

` 6= `′. As Eqs. (5.17)–(5.20) show, however, rotation induces off-diagonal correlations, i.e., correla-

tions between spherical-harmonic coefficients of different `m and `′m′. This specific non-Gaussian

signature is a hallmark of post-recombination rotation of the polarization pattern in the sky. While

3Indeed, the uniform rotation angle was previously constrained to be less than about a degree, as pointed out in
Chapter 4.
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A ZAll′
BE CEEl′
EB CEEl
EE −i(CEEl′ − CEEl )
BT CTEl′
TB CTEl
ET −iCTEl′
TE −iCTEl

Table 5.1: The quantities ZAll′ , defined in Eq. (5.21), obtained from Eqs. (5.17)–(5.20).

the correlations of specific `m-`′m′ pairs depend on the azimuthal quantum numbers m and m′,

they can be parametrized in terms of the rotational invariants (i.e., independent of m),

DLM,A
``′ ≡ 2αLMZ

A
``′H

L
``′ , (5.21)

where the quantities ZA``′ are given in Table 5.2. Notice that the EB correlator, for a given ``′ pair

with ` 6= `′, is different than the BE correlator, so we consider both BE and EB (and similarly for

TE/ET and TB/BT ) and then restrict our sums to `′ ≥ ` to avoid double-counting. We thus have

for ` > `′, A = {BE,EB, TB,BT, TE,ET,EE}, while for ` = `′, we have A = {BE, TE, TB,EE}.

With these shorthands,

〈
Xtot
`m(X ′`′m′)

tot, *
〉

=
∑
LM

DLM,XX′

``′ ξLM`m`′m′ , (5.22)

where we emphasize again that the superscript “tot” represents combined contribution from pri-

mordial + rotation-induced signal, while the absence of any superscript denotes just the primordial

signal (for either multipole coefficients, or the power spectra).

We now suppose that we have a measurement of the spherical-harmonic coefficients Tmap
`m , Emap

`m ,

Bmap
`m , obtained from a CMB temperature and polarization maps. These receive contributions from

the true signal on the sky, reduced by the `-space window function W` (where we assume a Gaussian

beam of width θFWHM), and a contribution from detector noise (see Section 3.3 for more details).

The predictions for the rotational invariants for the map are

DLM,XX′,map
``′ = DLM,XX′

``′ W`W`′ . (5.23)

Following Refs. [50,51,53], the minimum-variance estimator for each DLM,XX′,map
``′ is4

D̂LM,XX′,map
``′ = (G``′)

−1
∑
mm′

Xmap
`m X ′,map,∗

`′m′ ξLM`m`′m′ , (5.24)

4Note that the definition of G``′ differs from that in Refs. [50, 51].
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where we use (see Appendix A),

∑
mm′

(ξLM`m`′m′)
2 = G``′ ≡

(2`+ 1)(2`′ + 1)

4π
. (5.25)

Recall also that for EB and TB, only the terms in Eq. (5.24) that satisfy `+ `′+L =even are

non-vanishing, while for EE and TE only `+`′+L=odd terms are non-vanishing.

The variances with which D̂LM,XX′,map
ll′ can be measured for each XX ′ can also be calculated;

moreover, measurements for different XX ′ are correlated, for the same ``′. The corresponding

covariance is given by

C``
′

AA′ ≡ G``′
(〈
D̂LM,A,map
``′ D̂LM,A′,map

``′

〉
−
〈
D̂LM,A,map
``′

〉〈
D̂LM,A′map
``′

〉)
. (5.26)

Notice that this covariance resembles (and is similarly defined and derived as) the covariance for

the power spectra presented earlier in Eq. (3.41); the difference is the scaling with HL
``′ and the

rotation-angle multipoles. In principle, C``
′

AA′ is a 7× 7 matrix (in AA′ space) for ` 6= `′ and 4× 4 for

` = `′. However, the matrix is sparsely populated in AA′ space; it can be written in block-diagonal

form, since the EB and TB correlators are non-vanishing only for `+`′+L=even while those for TE

and EE are non-vanishing only for `+`′+L=odd. We derive explicit expressions for the relevant

entries of C``
′

AA′ in the following.

We first recall that each D̂LM,A,map
``′ (i.e., each ``′ and AA′, for a given LM) provides a measure-

ment of αLM , through

(α̂LM )A``′ = D̂LM,A,map
``′ /FL,A``′ , (5.27)

in terms of

FL,A``′ ≡ 2ZA``′H
L
``′W`W`′ . (5.28)

The variance and covariance of (α̂LM )A``′ are given simply in terms of those for D̂LM,A,map
``′ , scaled

by the appropriate factors of FL,A``′ .

We then choose to construct an optimal estimator α̂LM by minimizing its variance. A minimum-

variance estimator is obtained by summing all of the individual estimators (α̂LM )A``′ , for a fixed LM ,

with inverse-variance weighting (and taking into account also the covariances). The estimator thus

reads

α̂LM = σ2
L

∑
`′≥l

GL``′
∑
AA′

FL,A
′

``′ D̂LM,A,map
``′

[
(C``

′
)−1
]
AA′

, (5.29)

and its variance

σ−2
L =

∑
`′≥`

GL``′
∑
AA′

FL,A``′ F
L,A′

``′

[
(C``

′
)−1
]
AA′

. (5.30)

The ``′ sums must satisfy triangle inequalities given in Eq. (A.12), and the AA′ sums are over
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{EB,BE, TB,BT,EE, TE,ET} for ` 6= `′, and {EB, TB,EE, TE} for ` = `′, and the matrix

inversion is in the AA′ space.

We further assume that the noise is homogeneous (with the same variance in each pixel), un-

correlated with the data, and uncorrelated between different pixels. We also assume that the noise

in temperature is uncorrelated with the noise in polarization. If so, then the power spectra for the

map are given by Eq. (3.35), for A ∈ {TT,EE,BB}, where the corresponding noise power spectra

are given by (or analogous to) Eq. (3.36). The instrumental-noise contributions to the cross-power

spectra in this case vanish,

CEB,noise
` = CTB,noise

` = CTE,noise
` = 0. (5.31)

Now we can calculate the desired covariances using Eqs. (5.24) and the usual definitions of the

power spectra CA` . For EB, for ` 6= `′, we have

C``
′

BE,BE = CBB,map
` CEE,map

`′ ,

C``
′

EB,EB = CBB,map
`′ CEE,map

` ,

C``
′

EB,BE = C``
′

BE,EB = 0,

(5.32)

and for ` = `′,

C``BE,BE = CBB,map
` CEE,map

` . (5.33)

The covariances for BT and TB are the same, with the replacements E → T . There are also

covariances between the TB and EB estimators. For ` 6= `′, they read

C``
′

BE,BT = CBB,map
` CTE,map

`′ ,

C``
′

EB,TB = CBB,map
`′ CTE,map

` ,

C``
′

BE,TB = C``
′

EB,BT = 0,

(5.34)

and for ` = `′,

C``BE,BT = CBB,map
` CTE,map

` . (5.35)

For EE,

C``
′

EE,EE = (1 + δ``′)C
EE,map
` CEE,map

`′ . (5.36)
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For the TE case, for ` 6= `′, we have

C``
′

TE,TE = CTT,map
` CEE,map

`′ ,

C``
′

ET,ET = CTT,map
`′ CEE,map

` ,

C``
′

TE,ET = C``
′

ET,TE = CTE,map
` CTE,map

`′ ,

(5.37)

and for ` = `′,

C``ET,ET = CTT,map
` CEE,map

` −
(
CTE,map
`

)2

. (5.38)

There are also TE-EE covariances. However, since TE and EE will turn out to almost always be

weaker probes of the rotation (see Section 5.4), we do not include these additional expressions here.

As an example (and for clarity), let us now explicitly write down the expressions for the estimator

and its variance (uncertainty) in the case where we use only information from the BE correlator,

α̂LM = σ2
L

∑
`′≥`

(1 + δ``′)
−1G``′

[
FL,BE``′ D̂LM,BE,map

``′

CBB,map
` CEE,map

`′

+ (B↔ E)

]
, (5.39)

and

σ−2
L =

∑
`′≥`

(1 + δ``′)
−1G``′

[
(FL,BE``′ )2

CBB,map
l CEE,map

`′

+ (B↔ E)

]
. (5.40)

The ``′ sums here are over values that satisfy `+`′ +L =even. The estimator and variance for TB

are the same after the replacement E → T .

We now perform two cross-checks of the above expressions. First, we take the flat-sky limit of

the expression in Eq. (5.40), valid for the full sky, and compare it to the flat-sky results of Ref. [54].

Secondly, we reduce our expressions to those corresponding to the case where the rotation field only

has the monopole, and compare them with what we expect to obtain for the case of uniform rotation.

For the first test, we work out the EB case, but the other three estimators (from TB, EE, and

TE) follow analogously. From Eqs. (5.40) and (5.28), we get

σL
−2 = 4

∑
`′>`

(HL
``′)

2GL``′(W`W`′)
2

[
(CEE`′ )

2

CBB,map
` CEE,map

`′

+
(CEE` )

2

CBB,map
`′ CEE,map

`

]
. (5.41)

The two terms in this equation are the same under the exchange of ` and `′. Thus, after re-naming

the indices on one of the two terms, we get the sums over ` < `′ and ` > `′, which covers the whole

range of `’s5. We are left with

(σL)
−2

= 4
∑
``′

XL``′G``′(H
L
``′)

2, (5.42)

5Note that, when we switch to integration, as shown further on in the text, the ` = `′ term is of measure zero, and
can be ignored.
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where we have defined

X``′ ≡ (W`W`′)
2 (CEE`′ )

2

CEE,map
`′ CBB,map

`

. (5.43)

We now derive the limit of high multipoles.6 We start by using the approximation [30],

HL
``′ ≈ cos 2ϕ``′

 ` `′ L

0 0 0

 , (5.44)

for the `+`′+L=even case. From Eqs. (5.25) and (5.44), we have

G``′(H
L
``′)

2 L,`,`′→∞−−−−−−→ ``′

π

 ` `′ L

0 0 0

2

cos2 2ϕ``′ . (5.45)

From Eq. (5.8), this gives, for large L,

(σL)
−2 −−−−−−→

L,`,`′→∞
4
∑
``′

X``′

√
``′

2πL

∫
dn̂Y`0Y`′0YL0 cos2 2ϕ``′ . (5.46)

Given that
2π∫
0

dϕ`
2π

eimϕ` = δm,0, (5.47)

Eq. (5.46) can be rewritten using

∑
mm′M

∑
``′

√
``′

2πL

∫
dn̂Y ∗`mY`′m′YLMδM,0δm,0δm′,0

=
∑

mm′M

∑
``′

√
``′

2πL

∫
dn̂Y ∗`mY`′m′YLM

∫
dϕ`dϕ`′dϕL

(2π)
3 ei(MϕL+m′ϕ`′−mϕ`).

(5.48)

We then use relations from Ref. [30]

ei·
~̀·~n ≈

√
2π

`

∑
m

imY`me
imϕ` , (5.49)

δ(~L− (~̀− ~̀′)) =

∫
dn̂

(2π)
2 e
i(~L−~̀+~̀′)·n̂ ≈

∫
dn̂

(2π)
2

∑
mm′M

Y ∗`mY`′m′YLM

√
(2π)

3

``′L
ei(MϕL+m′ϕ`′−mϕ`),

(5.50)

6If L is large, then the triangle inequalities and the requirement for non-flat triangles ensures that ` and `′ are also
large.
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and replace the sum with the integral,

∑
``′

∫
dϕ` dϕ`′ ``

′ ↔
∫ ∫

d2~̀d2~̀′. (5.51)

Finally, by combining Eqs. (5.48)–(5.51) and Eq. (5.46), and after integrating over dϕL, we obtain

the flat-sky limit,

(σL)
−2 −−−−−−→

L,`,`′→∞
4

∫
d2`′

(2π)
2 cos22ϕ`′`(W`W`′)

2 (CEE`′ )2

CBB,map
` CEE,map

`′

, (5.52)

which can be shown to agree with the results of Ref. [54]7.

Additionally, to illustrate the difference between the flat-sky and full-sky analysis, we numerically

evaluate the flat-sky formula, and compare those results to the full-sky expressions for the variance

of the EB estimator, for a fixed instrumental noise and resolution. As expected, the two results are

in good agreement at high multipoles, where the flat sky makes a valid approximation (better than

a fraction of a percent for L & 50), while the discrepancy increases up to ∼ 4% at lower L’s. In

general, the full-sky formalism is exact, and rarely more computationally expensive than the flat-sky,

so we resort to it in this work.

We now turn to the second test, and derive the variance for the L = 0 term only, in which case

all the representation-theory coefficients can be readily evaluated. We focus only on the EB case.

From Eqs. (5.42) and (5.43) (for ` = `′), after evaluating the coefficients for L = 0, we get the

variance of the uniform-rotation estimator to be

(σ00)−2 =
1

π

∑
`

[CEE` (W`)
2
]
2
(2`+ 1)

CEE,map
` CBB,map

`

. (5.53)

On the other hand, the B mode induced by small rotation from a pure E mode is given by

Eq. (5.1). The induced EB power spectrum in that case is simply

CEB,tot
` = 2αCEE` , (5.54)

and estimators for the rotation can be expressed for each `m pair as

α̂`m =
Emap
`m Bmap

`m

2CEE` W 2
`

. (5.55)

7After combining their Eqs. (7) and (8) and results from their Table 1, we arrive to the same expression.
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The variance is then calculated from all `m pairs as

σ−2 =

∞∑
`=0

∑̀
m=−`

1〈
(α̂`m)

2
〉 =

∑
`

(2`+ 1)
4[CEE` (W`)

2
]
2

CEE,map
` CBB,map

`

, (5.56)

where the factor of (2`+1) comes from the sum over m, because the terms in the sum have effectively

only index `. For L = 0, Eq. (5.56) reduces precisely to Eq. (5.53), once the factor of
√

4π by which

α and α00 differ is taken into account8.

In conclusion, both the agreement of our full-sky results with the previous flat-sky calculations

and the uniform-rotation test validate the derivations presented in this section.

5.3 Rotation vs. Weak Lensing

Here we briefly demonstrate that the effects of rotation and weak gravitational lensing [30,55–64] on

the CMB polarization are orthogonal to each other and can thus be distinguished geometrically with

a full-sky map. If this were not the case, we should be concerned with a method of disentangling

the two effects, since the estimator for the rotation would suffer a large bias from the lensing

contributions, and the corresponding uncertainties would need to be corrected as well.

To begin, recall that if we start with a pure E mode at the surface of last scatter, rotation induces

a B mode, given by Eq. (5.4), where the only non-zero terms are those that satisfy L+`+`2 =even.

However, if we consider the effect of weak lensing, a pure–E-mode polarization tensor changes by

δPab = (∇cϕ)(∇cPab), (5.57)

where only in this section ϕ denotes the projection of the gravitational potential along the line of

sight (to be distinguished from the previous use of this symbol to denote a coordinate on the sky).

Thus, the B mode induced by weak lensing is

δB`m =

∫
dn̂δPab(n̂)Y B∗,ab(`m) (n̂) = 2

∑
LM

∑
`2m2

ϕLME`2m2

∫
dn̂Y B∗,ab(`m) (∇cY(LM))(∇cY E(`2m2)ab).

(5.58)

The parity of the spherical harmonic YLM is (−1)L. The parity of the E-mode term in the integral

is (−1)`2 , and the parity of the B-mode term is (−1)`+1. The parity of the integrand in Eq. (5.58) is

thus (−1)L+`+`2+1. Therefore, the integral is non-vanishing only for terms that satisfy L+̀ +̀ 2 =odd.

We conclude that the rotation induces B modes that satisfy L+̀ +̀ 2 =even, while for weak lensing

we have L+`+`2 =odd (see Eqs. (5.4) and (5.13)), so that the two effects are orthogonal. Finally,

another relevant point for the analysis of the rotation signal is that the weak lensing affects the

8This factor comes about because of the normalization of spherical harmonics, so that the physical uniform rotation
on the sky and the monopole coefficient are related by α = α00/

√
4π.
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temperature map, while the rotataion does not, which provides an additional avenue to distinguish

their relative contributions.

5.4 Forecasts

We now calculate forecasts for the sensitivity of different CMB experiments to detecting rotation.

We do so by numerically evaluating the expression of Eq. (5.30) for the variance of α̂LM , for a range

of L-modes, given appropriate instrumental noise levels and resolutions. We perform the calculations

for a fixed cosmology, using the primordial power spectra obtained with CMBFAST with WMAP-5-

year [65] best-fit cosmological parameters: Ωbh
2 = 0.02267, Ωch

2 = 0.1131, Λ = 0.726, ns = 0.960,

τ = 0.084, and a power spectrum normalized to WMAP-5.

We analyze three different experiments: (i) CMBPol’s (EPIC-2m) 150 GHz channel with resolu-

tion θFWHM = 5′, taking the relevant parameters as given in Ref. [66], a noise-equivalent tempera-

ture NET= 2.8µK
√

sec, and the observation time tobs = 4 yr; (ii) Planck ’s 143 GHz channel, with

θFWHM = 7.1′, NET = 31µK
√

sec, and tobs = 1.2 yr; (iii) WMAP-5, with θFWHM = 21′, σT = 30µK,

and σP = 42.6µK [50]. The NET parameters specified for Planck and CMBPol are related to the

temperature/polarization pixel-noise variances as

σ2
T /Npix = f0

sky(NET)2/tobs, (5.59)

where f0
sky is fraction of the sky observed9, here assumed to be unity.

The variances are shown for each of the three experiments in Figure 5.2, for estimators con-

structed separately from EB, EE, TB, and TE correlations. The first thing to notice here is that

both the lower noise and the higher resolution contribute to about two orders of magnitude im-

provement in the sensitivity to rotation from WMAP to Planck, and would lead to yet more than

another order-of-magnitude improvement in CMBPol. This is illustrated in more detail in Figure

5.3, where the variances in the EB and TB estimators are compared for all three experiments. We

can also see that, at low multipoles (below L of about 200), the most sensitive estimators for all

three experiments are those derived from the EB and TB correlations. This is the case because

of the absence of any TB or EB correlation under the assumption (justified by the current upper

limits to the B mode amplitude) of no B modes at the surface of last scatter.

For WMAP, we find a TB-estimator variance of 8.3◦ at L = 0, which is consistent with the

current constraints on uniform rotation10 [65, 67]. The dipole and quadrupole components of the

9The fraction of the sky observed should be distinguished from the fraction of the sky used in the analysis, which
we denote fsky. For satellite experiments, f0sky ≈ 1 usually, and it is used to estimate the noise power spectrum, while

fsky ≈ 0.7, since the pixels around the Galactic plane are typically covered by an analysis mask, cutting out about
30% of the surveyed sky.

10Note that we calculate the multipole moments of rotation, so a constraint on a uniform rotation α corresponds
to a monopole constraint of α00 =

√
4πα. Thus, an upper limit α00 = 8.3◦ is equivalent to α = 2.3◦.
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rotation have the same variances as the monopole (L = 0), since the variance remains fairly flat

out to L of about 100, in all three instruments. Above L ≈ 400, the variance increases rapidly.

This happens when the exponential part of the window functions becomes dominant, due to the

finite angular resolution of the instrument. Also, since the correlation angle for polarization is

about ten times smaller than that for temperature, the exponential tail in the EE-estimator case

becomes prominent at higher multipoles than in the TE case. The variance from the EB estimator

at L = 0 is 46.2◦ for WMAP, and thus not constraining. The TE-estimator variance quickly drops

below the EB-estimator variance (at L ≈ 20) and below the TB-estimator variance (at L ≈ 150).

However, the variance σL at these L’s is so large (& 100 degrees) that the measurements are not at

all constraining. Similar features are apparent in plots for the other two experiments.

For Planck, the variances of the EB and TB estimators are more comparable, and the constraints

to all rotation multipoles in the range from L of 0 to about 300 come from the EB variance. At

L = 0 the variance is 14′ and 24′, for the EB- and TB-estimator variances, respectively. Planck

can thus provide an order-of-magnitude better sensitivity to the uniform rotation than WMAP. For

high multipoles, above L ≈ 400 or so, the TE-estimator variance becomes the smallest one. At

L ≈ 800, a rapid rise in all four variances is visible, due to the limitations in angular resolution and

the correlation angle of the polarization.

For CMBPol, the EB-estimator variance is the smallest in the whole range of multipoles from

0 to 1000. At L = 0, the EB and TB values are, respectively, 22” and 63”, which is better than

Planck by more than an order of magnitude. Similarly to WMAP and Planck variances, we observe

a rapid rise in the variance above L ≈ 1000, corresponding to the resolution limitations and/or the

polarization correlation length.

In Figure 5.4, we show the variance for the combined minimum-variance estimator, obtained from

all four cross-correlations, with inverse-variance weighting. We have not included the covariance

between the four estimators in this numerical calculation. However, this omission should make

negligible difference for WMAP and CMBPol, where the variance is determined primarily by TB

and EB, respectively; the Planck curve may be increased, but only slightly. The run of this combined

variance with L differs very little from the smallest (constraining) variance (that comes from TB in

the case of WMAP, and EB in the case of Planck and CMBPol), since that term typically dominates

the weighted sum. In other words, the estimator obtained from TB for WMAP, and from EB for

higher-sensitivity experiments is very close to being exactly the minimum-variance estimator; very

little is gained by adding the information from the other three correlations.
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5.5 Summary and Conclusions

In this chapter, we derived the complete set of minimum-variance quadratic estimators for a direction-

dependent rotation of the CMB polarization, and provided a recipe, given a full-sky map, for mea-

suring the rotation angle as a function of position in the sky. Namely, if primordial perturbations

are assumed to be Gaussian (as predicted by inflation), then the rotation introduces a characteristic

non-Gaussian signal in the polarization map. More specifically, if primordial perturbations are Gaus-

sian, then the spherical-harmonic coefficients E`m and B`m of the polarization map are statistically

independent for different ` and m. However, the rotation introduces off-diagonal correlations, i.e.,

correlations between different `m pairs, which can then be measured to recover the rotation angle.

We also evaluated the variances with which the rotation-angle spherical-harmonic coefficients can be

measured for WMAP, Planck, and CMBPol, providing forecasts for the sensitivity of each of these

satellite experiments. Our results indicate that EB and TB correlations will provide more sensitive

probes of the rotation angle than TE and EE correlations (at most angular scales), and that EB

becomes better, relative to TB, as the instrumental noise is reduced. We have checked that our

results for the variances recover prior results, both analytically and numerically, in the flat-sky limit.

As an additional check, we showed that our expression for the monopole variance corresponds to

that derived for a uniform rotation.

Furthermore, we discussed the use of parity considerations in distinguishing the effects of rota-

tion and of weak lensing on the CMB temperature/polarization maps. There is a subtlety related

to this, worth noting again: we assumed that the polarization pattern at the surface of last scatter

is a pure E mode, and calculated B modes induced by rotation, pointing out that they are orthog-

onal to those induced by weak lensing. However, the rotation may also affect the lensing-induced

modes, producing secondary effects. Proper treatment of these higher-order effects requires a more

complicated analysis, which is beyond the scope of this thesis and is left for future work.

We have elucidated the all-sky formalism; one of the next steps in this context is to work out

algorithms for recovery of the rotation angle for a map with partial sky coverage, such as those

forthcoming from deep ground-based observations that are currently underway. We anticipate that

analogous techniques for determining the cosmic-shear deflection angle may be adapted for this

purpose.
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Figure 5.2: Variances for the estimator of the rotation-angle multipole coefficients from all four
correlations, for WMAP, Planck, and CMBPol. At a large range of multipoles, where the constraints
are meaningful, the minimum-uncertainty estimator for Planck and CMBPol comes from the EB
correlation, and for WMAP from the TB correlation.
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Figure 5.3: The best constraints to the rotation-angle multipole coefficients, i.e., the variances for its
estimators from the EB and TB correlations, compared for three different experiments. Notice that
Planck gives about two orders of magnitude improvement with respect to WMAP, and CMBPol is
one order of magnitude more sensitive than Planck.
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Figure 5.4: The combined variance of the rotation-angle multipole coefficients, obtained from all
four cross-correlations, evaluated for WMAP, Planck and CMBPol. Note that, due to the inverse-
variance summation, the smallest of the four variances dominates the shape and amplitude of the
curves for each experiment.
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Chapter 6

Data Analysis

In this chapter, we analyze WMAP 7-year temperature and polarization maps, applying the full-sky

formalism of Chapter 5 to search for direction-dependent rotation of CMB polarization, from cosmic

birefringence. It is organized as follows. In Section 6.1, we describe the data and auxilliary tools

(such as sky masks) used in the analysis. In Section 6.2, we rewrite our optimal estimator for the

rotation-angle multipole coefficients in pixel space, which facilitates numerical calculations; in the

entire chapter, we focus solely on the estimator constructed from TB measurements, as it is expected

to have the best sensitivity and yield maximum signal-to-noise at most multipoles, given WMAP

noise levels. We also present an estimator for the rotation-angle autocorrelation CααL and discuss

our data-based de-biasing technique. In Section 6.3 we briefly turn to discussing the type of non-

Gaussianity induced by direction-dependent rotation, so as to clarify which modes in temperature

and polarization maps contribute most of the signal for reconstructing the rotation map. In Section

6.4, we revisit the current constraints on RMS rotation angle in the sky, coming from the TE power

spectrum, in order to further justify small-angle approximation used to interpret our final results.

In Section 6.5, we discuss in detail the simulations used in the analysis, and present our test run

to demonstrate the validity of the analysis method. In Section 6.6, we present the key results:

the first model-independent constraints on directional fluctuations of the rotation angle, down to

the resolution of the instrument (i.e., constraints on CααL multipoles, up to L = 512), and also

the implied constraint on a scale-invariant model for CααL . In Section 6.7, we discuss systematic

effects and demonstrate that neither polarized point sources, foregrounds, nor asymmetric beams

are expected to significantly impact our results. We discuss the implications of the null measurement

for quintessence models for dark energy in Section 6.8, and conclude and summarize in Section 6.9.

Material in this chapter was largely adapted from “First CMB constraints on direction-dependent cosmologi-
cal birefringence from WMAP-7,” Vera Gluscevic, Duncan Hanson, Marc Kamionkowski, and Christopher Hirata,
Phys. Rev. D 86, 103529 (2012) [5]. Reproduced here with permission, c©(2012) by the American Physical Society.
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6.1 WMAP 7-year Data

We now turn to applying the formalism presented in the earlier sections to search for rotation in the

CMB maps made by the WMAP satellite. In this section, we describe in detail the data set we use

for this purpose.

We use the full-resolution (corresponding to HEALPix resolution of Nside = 512) co-added 7-year

sky maps that contain foreground-reduced measurements of the Stokes I, Q, and U parameters in

three frequency bands: Q (41 GHz), V (61 GHz), and W (94 GHz), available at the LAMBDA

website [8]. A summary of the instrumental parameters most relevant to this analysis is provided in

Table 6.1.

Band θFWHM ∆T [µKarcmin] ∆P [µKarcmin]
Q (41 GHz) 34’ 316 544
V (61 GHz) 24’ 387 589
W (94 GHz) 22’ 467 693

Table 6.1: Relevant instrumental parameters: beam full-width half maximum and approximate map
noise for temperature and polarization for the three frequency bands we use in the analysis [8].

Even though WMAP mapped 4π sterradians of the sky, about 30% (depending on the wavelength)

around the plane of our Galaxy is heavily contaminated with various foregrounds and must be

discarded prior to the analysis. This is done by “masking out the Galaxy”, i.e., setting the pixel

values in the contaminated portion of the sky to zero. Known point sources and any other localized

contamination are treated in the same way. We therefore apply the seven-year temperature KQ85y7

mask with 78.27% of the sky admitted, and a polarization P06 mask with 73.28% of the sky admitted.

These are the fiducial masks we use in the analysis of both data maps and simulated maps. They

are constructed to remove diffuse emission based on the data in K and Q bands, and on a model

of thermal dust emission, while the point sources are masked based on a combination of external

catalog data and WMAP-detected sources. For more information about the fiducial exclusion masks,

see Ref. [68] and Figure 6.1.

6.2 Optimized Estimators and De-biasing Procedure

In preparation to apply the rotation formalism to WMAP data, we rewrite the estimator for the

rotation-angle spherical-harmonic coefficients α̂LM and their variances in the form that is convenient

for implementation with the CMB-analysis software package HEALPix. Namely, instead of working

with Wigner-3j symbols, we leave parts of the expressions in terms of triple-Y integrals in pixel space

(position space). We then construct the estimator ĈααL for the rotation-angle autocorrelation CααL ,

and discuss the method for de-biasing this measurement. The goal of this analysis is to measure the
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Fiducial temperature-analysis mask KQ85y7 Fiducial polarization-analysis mask P06

Extended analysis mask

Temperature-analysis mask with point-sources uncovered

0 1

Figure 6.1: Fiducial temperature-analysis mask (with ∼ 78% of the sky admitted), fiducial
polarization-analysis mask (∼ 73%), extended mask (∼ 33%), and the temperature-analysis mask
with point sources uncovered (∼ 82%). Fraction of the sky admitted of the combined fiducial masks
for polarization and temperature is ∼ 68%, which is twice the sky admitted as compared to the
extended mask. For more details on the use of the latter two masks, see Section 6.7.

rotation-angle power spectrum, or otherwise put an upper limit on a range of its multipoles, down

to the resolution of WMAP. Formulas presented in this section are directly incorporated into our

analysis pipeline.

In the presence of rotation, the polarization field acquires a phase factor,

ptot(n̂) ≡ [Q+ iU ](n̂) = p(n̂)e2iα(n̂), (6.1)

where the absence of a superscript denotes the polarization in the absence of rotation, which we

refer to here as the “primary polarization”. To obtain an estimate of the phase factor e2iα(n̂) from

the polarization field in Eq. (6.1), we require a tracer of p(n̂). The primary polarization is generated

by Thomson scattering of the local temperature quadrupole, so the observed temperature field may

be used for this purpose. Due to projection effects, the local temperature quadrupoles at last

scattering appear on the sky as a curvature of the temperature field. The estimator for the rotation

angle then involves projecting the temperature field into a map as a spin-2 quantity (which evaluates

the curvature) and looking for correlation with the polarization field which varies as a function of

position in the sky. We turn to a rigorous derivation of the estimator in the following.
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On the full sky, the polarization field can be decomposed in terms of spin-2 spherical harmonics

2Ylm(n̂), as shown in Eq. (3.24), where E and B modes represent polarization patterns of opposite

parity [28, 69]. The primary E-mode polarization signal (sourced by the dominant scalar perturba-

tions) is detected with high significance in WMAP-7 data [46], while the primary B modes (sourced

by the subdominant tensor perturbations) have only been constrained with upper limits. For this

reason, most of the constraining power for rotation in WMAP comes from the search for the rotation

of the primary E mode into an observed B mode. The induced B mode is given as [4, 51] (see also

Eq. (3.26))

B`m =
i

2

∫
dn̂[p(n̂)e2iα(n̂)

2Y
∗
`m(n̂)− p(n̂)∗e−2iα(n̂)

−2Y
∗
`m(n̂)]. (6.2)

This B mode is correlated with the primary E mode (from which it originated), and through it

also with the temperature anisotropies. The presence of rotation therefore gives rise to anomalous

EB and TB correlations, and both these power spectra can be used to search for the rotation. It

is, however, worth keeping in mind that individual multipoles of the E-mode polarization signal

are still noise dominated, whereas the temperature is measured at S/N > 1, for a large number of

multipoles, in every frequency band of the WMAP-7 data. Therefore, at WMAP-7 noise levels the

temperature field makes a better tracer of the primary E mode than the observed E mode itself.

For this reason, on most angular scales, the search for a TB correlation, which we focus on here,

provides the best constraint on rotation (see Ref. [4] and Section 5.4).

Assuming the primary polarization is a pure E mode at the surface of last scatter, the rotation-

induced TB correlation reads [4, 51] (see also Section 5.2)

〈
Btot
`mT

tot, *
`′m′

〉
=

∫
dn̂CTE`′

[
1

2
sin(2α)[2Y`′m′2Y∗`m + −2Y`′m′−2Y∗`m]− i

2
cos(2α)[2Y`′m′2Y∗`m − −2Y`′m′−2Y∗`m]

]
,

(6.3)

where we suppress the n̂ dependence for clarity. The two contributions to the correlation, sin and cos,

have opposite parities, where only terms that satisfy `+`′+L=even, and `+`′+L=odd, respectively,

contribute to the sum. Power spectrum CTE`′ is the correlation between the temperature and the

primary E mode, which we calculate using CAMB.

So far, we have not assumed anything about the magnitude of the rotation per pixel in CMB

maps. As discussed in Chapter 4, from a combination of CMB data sets, the uniform rotation

was previously constrained to be less than about a degree; the observations of quasars suggest an

upper bound on the RMS of α(n̂) of just a few degrees; and the measurement of the TE correlation

from WMAP-7 data implies a somewhat weaker constraint on RMS rotation of less than about ten

degrees (see Section 6.4 for details on this last calculation). Motivated by these results, in the rest

of this work, we adopt a small–rotation-angle limit. The numerical results we present in Section 6.6
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do not depend on the validity of this assumption, but their interpretation as an upper limit of the

rotation-angle autocorrelation CααL does; this subtlety is discussed in more detail in Sections 6.5 and

6.6.

In the limit of small rotation angle, only the sine term contributes to the observed TB which

then reads

〈
Btot
lmT

tot,*
l′m′

〉
≈
∫
dn̂CTE`′ α(n̂)[2Y`′m′(n̂)2Y

∗
`m(n̂) + −2Y`′m′(n̂)−2Y

∗
`m(n̂)]. (6.4)

A TB correlation generated by weak gravitational lensing of the CMB is of opposite parity, with

`+`′+L =odd, and does not represent a source of bias for measuring a small-rotation signal (as

discussed in detail in Section 5.3). In addition, the effect of lensing is not internally observable

at WMAP noise levels, even with an optimal estimator [70]. We therefore do not consider lensing

further in this section.

From Eq. (6.4), it is evident that scale-dependent birefringence induces correlations between

temperature and polarization modes at different wavenumbers (multipoles) `, `′; i.e., it produces

a statistically anisotropic imprint on the covariance matrix of the observed CMB. Each ``′ pair

measured in the maps may therefore be used as an estimate of the rotation-angle multipole αLM ,

provided that it satisfies the usual triangle inequalities1, as well as the parity condition `+`′+L=even.

The prescription for combining all ``′ estimates in order to produce a minimum-variance quadratic

estimator is explained in detail in Ref. [4] and in Section 5.2, and is somewhat similar to the

prescription presented in Ref. [58]. Here, we only present the final expressions for the TB estimator,

α̂LM = NL

∫
dn̂YLM (n̂)

[∑
`m

B̄∗`m2Y`m(n̂)
∑
`′m′

CTE`′ T̄`′m′2Y
∗
`′m′(n̂) + (complex conjugate)

]
, (6.5)

where NL is an L-dependent normalization and the barred quantities denote inverse-variance filtered

multipoles. For full-sky coverage and homogenous noise in pixel space, the expressions for these

quantities read

B̄`m ≡
Bmap
`m

CBB,map
`

,

T̄`′m′ ≡
Tmap
`′m′

CTT ,map
`′

.

(6.6)

The unbarred Bmap
`m and Tmap

`′m′ are the observed temperature and polarization multipoles corrected

for the combined instrumental beam and pixelization transfer function2 W`, and the TT and BB

1These are the inequalities that the triple-Y integrals, or Wigner-3j symbols, must satisfy; see Appendix A for
more details.

2Note that W` in this section includes the pixelization transfer function which approximates smoothing of the
signal fluctuations as they are binned into pixels; this is a small effect which should be taken into account in the
actual data analysis, even though we neglected it in previous theoretical considerations of Chapter 5.
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power spectra are analytic estimates of the cosmological signal (under the null assumption of no

rotation) + noise power spectrum in a given frequency band,

CTT ,map
` ≡ CTT` + CTT,noise

` /W 2
` ,

CBB,map
` ≡ CBB` + CBB,noise

` /W 2
` .

(6.7)

Notice that we use slightly different notation than in Section 3.3 and Chapter 5; here, symbols with

“tot” and “map” denote quantities already corrected for the beam and pixelization transfer function

W`. In the idealized case of full-sky coverage and homogeneous instrumental noise, the estimator

normalization NL is calculable analytically and is equal to the inverse of the estimator variance,

NL =

(∑
``′

(2`+ 1)(2`′ + 1)

4π

(CTE`′ )2

CBB,map
` CTT ,map

`′

(HL
``′)

2

)−1

, (6.8)

where

HL
``′ =

 `

−2

L

0

`′

2

+

 `

2

L

0

`′

−2

 , (6.9)

again, slightly differently defined than in Chapter 5. The objects in parentheses are Wigner-3j

symbols, as before.

In the non-idealized case of real data, the simple analytic inverse-variance filters presented in

Eqs. (6.6) and (6.7) are suboptimal, in the sense that the associated estimator variance is not truly

minimized. To obtain a true minimum-variance estimate, computationally more involved filters

are required [70]. In practice, however, we find that the full-sky expressions for the estimator in

Eq. (6.5) provide a very good approximation to its behavior on the cut sky. Namely, the analytic

expression for its variance, given by Eq. (6.8), is consistent with the full variance recovered from a

suite of Monte Carlo simulations (described in detail in Section 6.5) when the simple inverse-variance

filters are used in the presence of sky cuts3. This result motivates us to continue using the simple

inverse-variance filters and the corresponding analytic expressions for the estimator normalization.

The insensitivity to the presence of the Galactic mask that we observe here can be interpreted as

a consequence of the following properties. First, the estimator of Eq. (6.5) is a product of inverse-

variance filtered T and B maps in position space, which are local functions of the data. The inverse-

variance filters are local in pixel space (they resemble Gaussians with a width of a few arcmins,

corresponding to the resolution in a given frequency band), and so the mask boundaries remain

localized after filtering. Additionally, the estimator is an even function of the temperature map (see

Eq. (6.5)—it contains a second derivative of the temperature field performed by 2Y`′m′), and so it is

relatively insensitive to the discontinuities introduced by the analysis mask. These properties put the

3The appropriate correction for the fraction of the sky admitted by the analysis masks must be included in this
case, however; more details on this in Section 6.5.
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rotation estimator α̂LM in sharp contrast with the estimators for the gravitational-lensing potential,

where the dependence on the gradient of the temperature field renders the lensing reconstruction

very sensitive to sky cuts [71].

A word of caution before we proceed. In order to apply the full-sky formalism to the cut sky

(after contaminated portions of the sky have been masked), all measured power spectra need to be

corrected4 by a factor of ∼ 1/fsky. Unless otherwise noted, fsky is calculated as the fraction of the

pixels that the mask admits. We include this factor when appropriate in the following derivation.

Once the rotation-angle multipoles are measured, using the estimator of Eq. (6.5), their auto-

correlation can be estimated as

Cα̂α̂L ≡ 1

fsky(2L+ 1)

∑
M

α̂LM α̂
∗
LM . (6.10)

This represents a sum over the 〈TBTB〉 trispectrum, where T and B denote the temperature and

B-mode multipole moments. This estimator for CααL is non-zero, even in the absence of rotation,

due to the presence of Wick contractions from the primary CMB and the instrumental noise. They

produce the noise bias Cαα, noise
L , and must be subtracted from the measurement of Cα̂α̂L , in order

to recover an estimate ĈααL of the rotation-induced signal CααL ,

ĈααL = Cα̂α̂L − Cαα,noise
L . (6.11)

For Gaussian CMB+noise fluctuations, the noise bias can be identified with the three disconnected

Wick contractions of the trispectrum which Cα̂α̂L probes:

(a) TBTB

(b) TBTB

(c) TBTB.

(6.12)

We neglect contraction (a), which only couples to the L = 0 mode of α̂LM , and also contraction (c), as

it is negligible5. In the absence of statistical anisotropy (i.e., for full-sky coverage and homogeneous

instrumental noise), the contraction (b) between two real fields with multipoles `m, `′m′ carries a

set of delta functions δ``′δmm′ , and the realization-dependent noise bias may be written explicitly

in terms of the observed power spectra. If Cα̂α̂L is evaluated by cross-correlating the f1, f2, f3, and

4When multipole coefficients are calculated from a map where a fraction 1−fsky of the pixels is masked (i.e., signal
set to zero), the usual full-sky expression for their variance (i.e., the power spectrum, as calculated in Eq. (3.29)) is
underestimated by a factor of fsky, because the variance corresponding to the masked pixels is effectively zero.

5In our simulations, we verify that this term has indeed a negligible numerical contribution.
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f4 frequency-band maps, the analytic expression for this isotropic bias follows from Eq. (6.5),

Cα
f1f2αf3f4 ,noise,iso

L ≡ 〈α̂LM α̂∗LM 〉Gauss,iso =

N2
L

∑
``′

(2`+ 1)(2`′ + 1)

4π
(HL

``′C
TE
`′ )2 ĈTT,f1f3,map

`′ ĈBB,f2f4,map
`

(CTT,f1f1,map
`′ CBB,f2f2,map

` CTT,f3f3,map
`′ CBB,f4f4,map

` )
,

(6.13)

where the power spectra in the denominator of Eq. (6.13) are the simple analytic inverse-variance

filters. The ĈTT,f1f3,map
`′ and ĈBB,f2f4,map

` are measured by cross-correlating data maps in the

frequency bands f1 and f3, or f2 and f4 respectively, and corrected by the factor of 1/fT
sky and

1/fP
sky, corresponding to the temperature and polarization analysis mask, respectively. Most of

the power in temperature comes from CMB fluctuations, and the B-mode power is mostly noise if

f2 = f4, and negligible otherwise. Therefore, since the instrumental noise is independent for different

frequency bands, the largest contribution to the noise bias can be eliminated by cross-correlating

estimates of α̂LM obtained from two different frequency bands.

In reality, we work with a masked sky which has been observed with inhomogeneous noise levels,

and Eq. (6.13) does not provide a perfect description of the noise bias, although it is an excellent

first approximation. This leads us to utilize a two-stage de-biasing procedure in which we subtract

both the data-based isotropic bias of Eq. (6.13), and an additional Monte-Carlo–based correction,

in order to correct for the effects of sky cuts and inhomogeneity of the instrumental noise. The total

noise bias Cαα, noise
L is the sum of the two contributions,

Cαα,noise
L ≡ Cαα,noise,iso

L + Cαα,noise,MC
L . (6.14)

We estimate Cαα,noise,MC
L from a set of WMAP realizations generated with no rotation signal (de-

scribed in Section 6.5), analyzed in the same way as the data itself. For each realization, we calculate

the appropriate Cαα,noise,iso
L , and, averaging over many realizations, we obtain Cαα,noise,MC

L as

Cαα,noise,MC
L ≡ 〈Cα̂α̂L − Cαα,noise,iso

L 〉sims. (6.15)

This two-stage procedure reduces the sensitivity of our estimator to uncertainties in the CMB and

instrumental-noise model, as compared to the case where the entire bias is recovered from Monte

Carlo analysis. With the two-stage procedure, the largest (isotropic) contribution to the bias is

evaluated directly from the power spectra of the observed maps, and is specific to the CMB realization

at hand; subtracting it from the bispectrum naturally takes care of any noise (bias) contribution

that might arise from the uncertainty in the background cosmology or in the noise description used

to generate Monte Carlo simulations. The procedure is equivalent to simply omitting the terms in

the expression for the bispectrum which we know come from sources other than the rotation signal.



60

0 100 200 300 400 500
l

0

100

200

300

400

500

l′

Wigner 3j kernel: HL
ll′ (2l+1)(2l′ +1)/(4π)   [L=10]

0

6

12

18

24

30

36

42

48

54

0 100 200 300 400 500
l

0

100

200

300

400

500

l′

Wigner 3j kernel: HL
ll′ (2l+1)(2l′ +1)/(4π)   [L=200]

0.0

1.5

3.0

4.5

6.0

7.5

9.0

Figure 6.2: The Wigner-3j geometric factors in the summands of Eqs. (6.5) and (6.13), for L = 10
and 200. The geometric factor is non-zero only in the region of the ``′ space where the triangle
inequalities, and parity conditions are satisfied. The dominant contribution comes from the triangles
in which L ∼ `, or L ∼ `′, i.e., where either the temperature or the polarization mode has a length
scale comparable to the length scale of the rotation-angle mode.

As shown in Section 6.6, we find consistency of the results obtained with either the calculation

of the trispectrum as a four-point autocorrelation of the maps in the same band, or the calculation

of the trispectrum from cross-band correlations, which have an almost negligible noise bias.

6.3 Geometry of the Estimators

For completeness, to illustrate the shape in harmonic space of the statistical anisotropy introduced

by birefringent rotation, we show here the power-spectrum kernel, as well as the geometric Wigner-3j

contributions to the kernels in the ``′ space from Eq. (6.5) in Figures 6.2, and 6.3. The structure

of the power-spectrum kernel originates from the polarization and temperature power spectra, so

that the terms that correspond to the acoustic peaks in the primordial TT and TE power spectra

have the largest contribution to the sums over ` and `′. The geometric weight (corresponding to

the Wigner-3j symbols discussed in Section 5.2) dictates the shape of the ``′L triangles generated

by the rotation at a scale L. The terms where either `, or `′ is close in value to L have the largest

contribution. The combination of the geometric weight and the power-spectra weight dictates the

size of the statistical uncertainty at any particular L. The interplay of the two, for example, produces

a peak at L ∼ 270, apparent in all the plots of the noise bias presented in this work (see, for example,

Figure 6.7). The local maximum in the variance of ĈααL also appears at this scale.

6.4 Constraints on RMS Rotation Revisited

We argued in Chapter 4 that the small-angle approximation and the null assumption are proven

to hold, by non-detection of rotation in WMAP data. Our results in Section 6.6 will demonstrate
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Figure 6.3: The power-spectrum kernel of the summands in Eqs. (6.5) and (6.13) is shown. The types
of triangles that contribute the most to the isotropic bias of Cα̂α̂L are set by the geometric properties
of spin-2 Wigner-3j symbols illustrated by the kernel shown in Figure 6.2, which is modulated by
this kernel to produce summands in the expression for the bias.

that this is true for uniform rotation; here, we repeat previous WMAP analysis that provides an

upper limit to the pixel variance (or the RMS) of rotation from the measurement of the TE power

spectrum.

If the primordial B mode is small compared to the primordial E mode, and the rotation field is

independent of the CMB, the measured TE power spectrum reads (see also Figure 6.4)

CTE,tot
` = 〈cos[2α(n̂)]〉CTEl , (6.16)

where the mean is taken over all realizations of the rotation field, and it does not depend on the

direction n̂. In the case the probability distribution for α is a Gaussian centered at zero and with a

width
〈
α(n̂)2

〉1/2
, the expectation value in Eq. (6.16) is simply related to the pixel-variance of α,

〈cos[2α(n̂)]〉 = e−2〈α(n̂)2〉. (6.17)

Therefore, an estimate of this expectation value and its uncertainty, obtained from the TE mea-

surement as compared to the primordial power spectrum CTEl , provides an upper limit of the

rotation-angle pixel-variance. Using the expressions for a minimum-variance estimator and its vari-
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Figure 6.4: TE power spectrum measured from WMAP-7 data (black) is compared to the primordial
power spectrum, generated using CAMB for the best-fit cosmology, with no rotation (red, solid).
Both power spectra are adopted from Ref. [8]. The uncertainty on this measurement (gray error
bars) leaves room for a maximal rotation-angle RMS of roughly 9.5◦.

ance (analogous to those of Eqs. (9.9) and (9.10)), we obtain6

〈cos[2α(n̂)]〉 = 0.997± 0.050, (6.18)

implying an upper limit on the rotation RMS of

〈
α(n̂)2

〉1/2
. 9.5◦. (6.19)

6.5 Simulations and Test Run

We now describe our Monte Carlo simulations of the observed CMB maps, and also present results

of a test run for a toy model of rotation, to ensure that our formalism and analysis method recover

the signal accurately.

We produce a suite of simulated WMAP observations, to test the normalization of our αLM

6Note that this constraint also follows from the 21σ confidence-level detection of the TE power spectrum, reported
by Ref. [46].
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estimates, calculate their variance and the noise bias Cαα, noise
L of Eq. (6.11). We produce simple

simulations of the WMAP data with the following procedure:

1. Generate CMB-sky temperature and polarization realizations for the best-fit “LCDM+SZ+ALL”

WMAP-7 cosmology of Ref. [8].

2. Convolve simulated CMB skies with a symmetric experimental beam. For the WMAP band

maps, we use an effective beam calculated as the average beam transfer function for all differ-

encing assemblies at a given frequency.

3. Add simulated noise realizations based on the published I,Q, U covariance matrices within each

pixel. We do not make any attempt to generate noise with pixel-to-pixel noise correlations,

although we do exclude multipoles with l < 100 from our analysis, as this is where most of the

correlated noise resides. We demonstrate that there is consistency of ĈααL estimates constructed

from autocorrelations and cross-correlations of maps with independent noise realizations, and

so are justified in neglecting correlated noise in our analysis.

We do not include Galactic foreground residuals or unresolved point sources in our simulations, but

we address their possible impact on our results in Section 6.7.

In order to demonstrate the recovery of the cosmic-birefringence signal using the minimum-

variance estimator formalism and the de-biasing method discussed in Section 6.2, we generate a

suite of simulations that include a rotation signal, i.e., where the polarization maps are rotated by

realizations of a scale-invariant power spectrum,

CααL = ACαα,fiducial
L ≡ A 131deg2

L(L+ 1)
, (6.20)

where we choose the amplitude of this fiducial model so that it gives a signal-to-noise ratio of order 1

at low L for WMAP V band, and an RMS rotation-angle on the sky of 10◦, satisfying the small-angle

approximation7. We apply analysis masks to each simulated map, and then analyze the map cross-

correlations, recovering α̂LM multipoles. We then compute the power spectrum using Eq. (6.10).

Due to the interaction of the power distribution at different scales in the map with the geometry

of the analysis mask, the fsky factor is in principle a function of the multipole moment L, which

typically starts smaller than the average8 value at low L’s, and converges towards the average value

at high L’s. Since most of the signal for the model of Eq. (6.20) (which we come back to in Section

6.6) comes from low L’s, we evaluate the exact L dependence, and substitute the fsky(L) function

in Eq. (6.10).

7It is important that the model satisfies the small-angle approximation, as our calculation of the bias from Monte
Carlo analysis is based on the null assumption. In the regime where this approximation is not satisfied, higher-order
corrections will be necessary to recover the rotation-angle power spectrum from the measured 〈TBTB〉 trispectrum.

8The “average” here is the usual fsky fraction associated with a mask, equal to the fraction of the pixels that the
mask admits.
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In order to evaluate the exact L-dependence of fsky, we generate a large number of α(n̂) real-

izations of the power-spectrum model of Eq. (6.20), mask the sky with the fiducial analysis mask,

and then recover the input power spectrum in the usual way, i.e., take the pseudo-CL of the masked

map. The fsky(L) shown in Figure 6.5 is the average ratio of the output (recovered) to the input

(signal) power, as a function of the multipole moment L.
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Figure 6.5: The L dependence of the fsky factor used for the reconstruction of a scale-invariant
rotation-angle power spectrum. The horizontal (green) line at fsky = 0.68 represents the fraction of
pixels admitted by the mask.

Figure 6.6 shows the results of the test run, comparing the input CααL power spectrum to the

mean of the reconstructed power from a large number of simulations, and demonstrate a successful

recovery of the signal. In Section 6.6, we apply the same signal-reconstruction method to WMAP-7

data.

To conclude this section, we note one subtlety necessary for the correct interpretation of the

results of our analysis. The expression for the estimator of Eq. (6.5) only recovers the rotation-

angle multipole in the small-angle regime. In the general case of arbitrarily large rotation, Eq. (6.5)

provides an exact estimate of the multipoles of another observable quantity: 1
2 sin[2α(n̂)]. Strictly

speaking, our de-biasing procedure also relies on the small-angle approximation, since Cαα,noise,MC
L

is calculated from a suite of null simulations. It is therefore necessary to inquire which regime

corresponds to a particular model of rotation before interpreting our results as a constraint on such

a model. However, the fiducial model we use as an example here satisfies this assumption (producing

an RMS rotation of ∼ 10◦). In this particular case, the difference between the two power spectra
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(of α and of 1
2 sin[2α]) is mainly contained in the 15% difference in their amplitudes. It is thus

possible to recover the rotation-angle power spectrum by simply rescaling the measured power for

this case—the fact we use in Section 6.6 to constrain this model from WMAP data.
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Figure 6.6: The recovery of the rotation signal with our analysis method is demonstrated using a
suite of simulations that include realizations of a rotated sky. Blue dashed line is the input-signal
power spectrum of CααL , red thick line represents the power spectrum of 1

2 sin[2α(n̂)], and the thin
black line is the mean recovered power from the simulations; the gray region is a 1σ–confidence-level
interval calculated from the same suite of simulations.

6.6 Results: Constraints on Cαα
l

In this section, we present the results of our analysis to look for rotation from cosmic birefringence in

WMAP data. Before continuing, let us first clarify some of our notation. The rotation-angle power

spectra are marked with four frequency bands as [f1f2][f3f4]. This means that the two estimates

of αLM needed to evaluate the power spectrum are obtained by cross-correlating band f1 with f2,

and f3 with f4, respectively. Here, the temperature multipoles are measured from f1 and f3, and

the B modes are obtained from the maps in f2 and f4 bands. We measure five different cross-band

correlations: [VV][VV], [QV][QV], [QQ][VV], [WV][WV], and [WW][VV], but since the results for

all of them are qualitatively the same, here we only show plots for a characteristic subset.

Figures 6.7, 6.8, and 6.9 show the measurement of the rotation-angle autocorrelation, before and

after de-biasing, and different components of the noise bias described in Section 6.2. The blue and

gray areas in the middle panels represent 1σ and 3σ confidence-level intervals, respectively, derived

from the null-hypothesis (no rotation) Monte Carlo analysis described in Section 6.5. We see no

significant deviations from zero in any of the five cross-band correlations—our results are consistent
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with αLM = 0, within 3σ at each multipole, in the range from L = 0 to 512.9 We bin the power

and list the measurements for all multipoles in Table 6.2. As an additional consistency check, the

upper limit we obtain on the uniform rotation angle, given as α ≡ α00/
√

4π, is in good agreement

with previous WMAP results [46], as shown in Table 6.3.

As we pointed out in Section 6.5, in the general case of arbitrarily large rotation, our method

provides an exact estimate of the autocorrelation of the quantity 1
2 sin[2α(n̂)], rather than the rotation

angle itself; when the small-angle approximation is satisfied, this quantity and its power spectrum

assymptote to α(n̂) and CααL , respectively. In order to evaluate the regime corresponding to a

particular model, we note that the RMS fluctuation typical of realization of a power spectrum CααL

is given by

〈α(n̂)2〉1/2 =

√∑
L

2L+ 1

4π
CααL . (6.21)

In the event of a breakdown of the small-angle approximation, the values in Table 6.2 should be

interpreted as constraints on the autocorrelation of 1
2 sin[2α(n̂)], rather than α itself10. Evaluating

Eq. (6.21) for the uncertainty levels quoted in Table 6.2 would erroneously lead to a conclusion that

a large RMS rotation is allowed by the WMAP data. We show that the upper limit on the RMS

rotation is roughly 9.5◦ in Section 6.4, and we again note that previous studies of quasar data imply

an even stronger constraint of ∼ 4◦ [43].

L bin [VV][VV] [QV][QV] [QQ][VV] [WV][WV] [WW][VV]
26 2.65±1.87 1.61±2.44 1.05±1.62 0.72±2.03 -0.43±1.34
77 1.86±2.58 0.70±2.84 1.57±2.36 1.03±2.70 0.17±2.04
128 1.07±1.33 1.00±1.36 0.27±1.17 3.04±1.35 0.96±1.02
179 1.40±1.49 -1.29±1.65 -0.31±1.15 -0.40±1.48 0.66±1.13
230 -1.90±1.76 -4.47±1.96 1.87±1.36 -3.36±1.97 -0.69±1.33
282 4.31±2.23 3.17±2.42 2.04±2.21 2.14±2.42 -0.20±1.90
333 1.98±2.39 -0.25±2.60 4.59±1.80 2.62±2.45 -1.11±1.96
384 0.81±1.78 -1.71±1.93 1.97±1.51 1.22±1.71 1.93±1.52
435 -0.40±1.64 -0.19±1.80 1.53±1.26 -1.03±1.74 -1.65±1.30
486 3.22±1.75 0.78±1.93 1.02±1.39 2.69±1.84 -0.28±1.27

Table 6.2: Results for the measurement of ĈααL [degrees2] are listed, as recovered from five different
cross-band correlations. The 1σ confidence intervals are calculated with a suite of Gaussian-sky
simulations, described in Section 6.5. The results are binned, with the central L value of each bin
listed in the Table; the width of each bin is ∆L ∼ 51.

The null result shown here is model independent, but it can be translated into an upper limit

9Of course, a closer inspection of some of the ` bins in some cross-band correlations might be interpreted as 1σ-2σ
detection instead of null result within a 3σ confidence interval. However, since the birefringent rotation we are looking
to detect is a frequency-independent effect, we would expect consistency in all band-cross correlations, which we do
not observe, at any of the multipoles. Therefore, we are justified in quoting our cleanest cross-band measurements as
upper limits on the rotation-angle power-spectrum multipoles.

10In addition, the de-biasing procedure would possibly need to be adjusted in order to include higher-order correc-
tions which might affect the results presented here.
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Figure 6.7: Top panel: Measurement of the rotation-angle power spectrum from V band, shown
before de-biasing, along with the components of the noise bias: Monte-Carlo measurement of the
null-hypothesis mean 〈ĈααL 〉 (solid green), isotropic noise bias (blue dashed), and the mean isotropic
bias (magenta dashed). Middle panel: The same power spectrum after de-biasing, with 1σ and 3σ
confidence interval. Bottom panel: binned version of the middle-panel power spectrum. The results
are consistent with zero within 3σ.
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Figure 6.8: Same as Figure 6.7, for [f1f2][f3f4]=[WW][VV].
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Figure 6.9: Same as Figure 6.7, for [f1f2][f3f4]=[WV][WV].
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[f1f2] α± 1σ [◦]
[VV] -0.9 ± 2.3
[QV] -0.5 ± 2.4
[QQ] 0.9 ± 2.8
[WV] -2.2 ± 2.4
[WW] -1.8 ± 2.7

Table 6.3: Uniform-rotation angle α with a 1σ confidence interval, from five cross-band correlations
of WMAP-7; the correction factor of 1/fsky is applied to each measurement here. The uncertainties
are consistent with the ±1.4◦ uncertainty on the uniform-rotation angle reported by the WMAP
team [46] for a joint analysis of the Q-, V- and W-band data, after accounting for the fact that we
analyze the bands individually (resulting in slightly larger error bars).

on the amplitude of any specific model of rotation. As a generic example, we focus on a scale-

invariant rotation-angle power spectrum11 of Eq. (6.20). The best-fit amplitude is evaluated from

all multipoles in the range 0 ≤ L ≤ 512, using a Fisher-matrix minimum-variance estimator, as in

Ref. [7]

Â = σ2
A

∑
L

Cαα,fiducial
L ĈααL

var(ĈααL )
, (6.22)

where

σA =

(∑
L

(Cαα,fiducial
L )2

var(ĈααL )

)−1/2

(6.23)

is the analytic expression for the variance of Â, and var(ĈααL ) is the variance of the estimated

rotation-angle power spectrum, calculated from a suite of null-hypothesis simulations. We note

that the measured ĈααL have been corrected by fsky(L) (see Section 6.5; the correction is calculated

specifically for this model) only in this portion of the analysis interpretation. For the presentation

of the model-independent results, we use the average value, fsky ∼ 0.68. Most of the constraint here

comes from low L’s: 50% of the sum in Eq. (9.10) comes from L = 1, and 90% from L < 10.

Even though the analytic expression above provides a good estimate of the statistical variance,

because the constraint comes primarily from low-L modes, the probability distribution of Â is

significantly non-Gaussian. To capture this non-Gaussianity in our analysis, we again generate a

suite of null-hypothesis Monte Carlo simulations and recover the 68% and 99% confidence-level

intervals from these simulations. The corresponding probability distributions for Â are shown in

Figure 6.10.

The best-fit values for the quadrupole amplitude Ĉαα2 and associated confidence intervals are

listed in Table 6.4; consistency with zero is apparent within 3σ for all cross-band correlations we

analyzed. The tightest constraint on the quadrupole amplitude of a scale-invariant rotation-angle

11Such a power spectrum would be acquired by a massless scalar field which was a spectator during inflation, for
example; specific rotation models are discussed in some more detail in Chapter 7.
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power spectrum comes from [WW][VV]. It is

√
Cαα2 /(4π) . 1◦, (6.24)

with 68% confidence12.

[f1f2][f3f4] Ĉαα2 ± 1σ(±3σ) [deg2]

[VV][VV] 11.4+15.8
−16.9(+79.0

−27.7)

[QV][QV] 29.6+18.8
−18.3(+70.3

−33.4)

[QQ][VV] 19.8+14.3
−13.9(+51.6

−46.6)

[WV][WV] 16.8+15.9
−16.9(+79.0

−27.7)

[WW][VV] 3.0+14.0
−13.9(+43.3

−42.9)

Table 6.4: Measurement of the quadrupole amplitude of a scale-invariant rotation-angle power spec-
trum for different cross-band correlations, with 68% and 99% confidence-level intervals, recovered
from a suite of null-hypothesis simulations. Consistency with zero within 3σ is apparent for all
cross-band correlations, and the tightest constraint comes from [WW][VV].

6.7 Control of Systematics

In addition to the statistical uncertainty, there is also a systematic error for the measurement of the

uniform rotation angle, owing to uncertainty in the detector polarization angles [46]. This systematic

uncertainty should only apply to the monopole of α. The direction-dependent part is only sensitive

to the extent that it affects the statistical noise bias, and this is mitigated by our data-dependent

de-biasing procedure. There are, however, other sources of systematic error that can potentially

bias our estimates and add uncertainties to the rotation-angle measurements. In this section, we

investigate the impact of asymmetry of the instrumental beams, unresolved polarized point sources,

and foreground residuals from unremoved/unmasked Galactic emission.

6.7.0.1 Beam Asymmetries

The fast spin and precession rates of the WMAP scan strategy, coupled with the yearly motion of

the satellite around the ecliptic, enforce that any bias to α̂LM originating from scan-strategy related

systematics, like beam asymmetry, must be confined to M = 0 modes in ecliptic coordinates [72].

Furthermore, the smoothness of the scan strategy on large scales (dictated by the ∼70-degree opening

angle of the detectors13, and the large 22.5-degree amplitude of the hourly satellite precession), ensure

that any such bias falls off quickly as a function of L. The estimates of C2, as we discuss in Section

6.6, are most sensitive to the low-L modes of ĈααL , so to test for the presence of beam-asymmetry

contamination, we rotate our coordinate system to ecliptic coordinates, and re-derive a constraint

12Note that the conversion between the amplitude A and the quadrupole is C2 = A× 131deg2/6.
13This is one half of the separation angle of the two telescope beams.
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on C2 from L < 10, M = 0 modes. We see no departure from the null hypothesis in this case where

it should be maximal, and so conclude that beam asymmetries are not a significant source of bias

for our measurements.

6.7.0.2 Unresolved Point Sources

To test the impact of unresolved point sources on our results, we repeat our analysis after unmasking

the portion of the maps associated with detected point sources (but not Galactic contamination).

Compared to our fiducial analysis, the measurement points for ĈααL shift by . 1σ, where σ represents

the statistical error from our foreground-free Monte Carlo analysis; see Figure 6.11. This shift

provides a conservative upper limit on the systematic uncertainty that point-source residuals can

produce, assuming that the bright detected population has comparable polarization properties to

those of the fainter sources. The unresolved point-source power at WMAP frequencies is dominated

by unclustered radio sources, with fluxes close to the detection threshold, and so this is a reasonable

assumption. We note that there is no overall bias, as the direction of scatter does not appear to

be correlated for different multipoles. Of course, the contribution of radio point sources to the map

is a steep function of the flux cut, and by unmasking all detected point sources our estimate of

potential bias and uncertainty is overly conservative. Given a model for radio-source number counts

(per flux) dN/dS, we can scale these results to the levels of contamination expected at the actual

WMAP source detection threshold of (conservatively) ∼ 1 Jy. Any bias ∆ĈααL (which we do not see

evidence for, even in the unmasked map) will scale with the point-source trispectrum as

∆ĈααL ∝
∫ Scut

S=0

S4 dN

dS
dS, (6.25)

while the uncertainty on ĈααL will scale with the point-source power as

σ
(
ĈααL

)
∝

(∫ Scut

S=0

S2 dN

dS
dS

)2

. (6.26)

Evaluating these terms for the dN/dS model of Ref. [73], we find that ∆ and σ should be suppressed

by factors of 0.005 and 0.06, respectively, when moving from a flux cut of 10 Jy (no masking) to

1 Jy. We find even smaller (though comparable in magnitude) results using the simpler dN/dS ∝

S−2.15 model of Ref. [74]. This implies that any bias from unresolved sources should be completely

negligible, and any increase in uncertainty due to their contribution to the observed power should

be . 0.1σ, where σ represents the statistical error from our point-source–free Monte Carlo analysis.

In conclusion, we expect the unresolved point sources to produce a negligible systematic uncertainty

in the measurement of ĈααL from WMAP.
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6.7.0.3 Foreground Residuals

An additional conceivable source of systematic uncertainty might result from Galactic foregrounds.

To explore the extent to which such uncertainty might affect our results, we perform two tests. In

the first, we repeat our analysis on non-foreground-reduced maps, to test the effect of the presence

of unsubtracted foregrounds. In the second, we repeat the foreground-reduced analysis using a mask

which excludes a larger fraction of the low-Galactic-latitude sky. We construct this conservative

mask by combining the fiducial KQ85y7 analysis mask with the extended mask of Ref. [8], and

additionally masking out pixels with Galactic latitudes in the range of ±40◦; the mask admits only

about 33% of the sky, approximately half the sky admitted in our fiducial analysis (see Figure 6.1).

The function of this test is to explore the effect of residuals left by the foreground subtraction

procedure, which should be stronger close to the Galactic plane. The measurement of ĈααL is scaled

appropriately to account for the fractional sky coverage and the results from the two modified

analyses are compared with the results of the fiducial analysis in Figure 6.12. In the first case, the

change in the measurements is negligible compared to the statistical uncertainty. In the second case,

the scatter between the two results is consistent with the difference in sky coverage (producing up

to 40% larger scatter for the extended-mask data points). The measurements show no apparent bias

in either case. These results imply that foregrounds and foreground residuals are not likely to make

a large systematic contribution to our estimated statistical uncertainty, at least for the case of the

most constraining cross-band correlation [WW][VV] of WMAP.

6.8 Implications for Quintessence Scenarios

In this section, we discuss the implications of the constraints presented in Section 6.6 for mod-

els where cosmic birefringence is caused by a quintessence field, assumed to drive the accelerated

expansion of the Universe today.

As captured by Eq. (4.7), the amount of birefringent rotation in any given direction is propor-

tional to the amount by which the birefringence-inducing field φ has evolved along the photons’

path ∆φ, multiplied by the strength of the Chern-Simons coupling β, and inversely proportional

to the characteristic mass scale of the underlying theory. We can now inquire how the constraints

on Cαα` affect the allowed M -β parameter space for quintessence models. To do this, we first need

to specify which model for V (φ) we are interested in, since the potential controls the value of ∆φ;

in other words, there is no model-independent answer to this inquiry. Even though careful model

building and selection is beyond the scope of this thesis, we attempt to illustrate the constraining

power of the current, upcoming, and futuristic CMB data sets, in the context of a class of commonly

considered quintessence models.

The “natural” energy scale M of the underlying theory is typically set around the Planck mass
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MPl, and parameter β is expected to be close to unity [31], regardless of the specific form of the

potential V ,

M ≈MPl, β ≈ 1. (6.27)

If we now assume φ is a PNGB (as these fields are quite common in particle physics and make

natural candidates for scalars with slow roll), and set the density-weighted average equation-of-state

parameter as far away from cosmological-constant value of −1 as allowed by current supernovae

observations [35],

〈wφ〉 ≈ −0.95, (6.28)

and also request that the current fractional energy density in the field φ accounts for the dark energy

today,

Ωφ ≈ 0.7, (6.29)

and finally solve the equation of motion for φ (see Subsection 7.1.1) under these conditions, we get

that the field φ evolves by [6]

∆φ ≈ 0.01MPl, (6.30)

since last scattering until today. Substituting these values into Eq. (4.7) then gives a value for

the birefringent-rotation angle of about a degree—matching the level of current constraint on the

monopole of α(n̂). In other words, with WMAP data, we have started probing the “natural” regime

of rotation angles for a fairly generic class of PNGB quintessence models. Lowering this limit by more

than an order of magnitude with Planck data, or data from the forthcoming ground-based surveys

like SPTPol, or ACTPol, would then start excluding large portions of the preferred parameter space

for these models.14.

One additional thing to note is that the constraints on the anisotropies in the rotation angle

might also have a competitive constraining power when it comes to probing spatial fluctuations

in the quintessence field, since the commonly-considered observational probes, such as large-scale

structure, galaxy surveys, and supernova surveys, impose only weak constraints on fluctuations in

quintessence15 (see, for example, [75,76]). Investigating this avenue further is an interesting direction

for future work.

14The caveat is, of course, the fact that this order-of-magnitude calculation tightly depends on the measurements
of the equation-of-state parameter; for values closer to -1, the constraints become weaker.

15This result is expected, for several reasons. Directional fluctuations in the equation-of-state parameter should be
on the order of 1 part in 105, while the Poisson noise from the measurements is overwhelmingly larger. In addition,
any kind of survey of astrophysical objects will involve considerations related to non-linear growth of structure which
is much harder to understand than the linear system such as the CMB.
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6.9 Summary and Conclusions

In this section, we implemented the minimum-variance quadratic-estimator formalism presented in

Chapter 5 to search for direction-dependent cosmic birefringence with WMAP 7-year data.

We obtained the first CMB measurement of the rotation-angle power spectrum Cαα` , in the range

from ` = 0 to 512, finding consistency with zero at each multipole. We then derived an upper limit for

the signal, by simulating a suite of Gaussian-sky realizations with no rotation, including symmetric

beams, noise realizations appropriate for each WMAP frequency band, Q-U correlations, and sky

cuts. We investigated the impact of foregrounds and polarized diffuse point sources on the reported

constraints, and came to the conclusion that they do not represent significant sources of systematic

error. We also used this null result to get a 68% confidence-level upper limit of
√
Cαα2 /(4π) . 1◦

on the quadrupole of a scale-invariant rotation-angle power spectrum. This constraint is a factor

of 2 stronger than the one obtained previously from quasar observations [43] (see Subsection 7.1.1).

This is not surprising, since, as we argued earlier, the CMB analysis has a significant advantage

over the AGN analysis for this purpose: it provides a measurement of the rotation-angle power

at each individual multipole, and has better sensitivity to models with significant power at high

multipoles. Additionally, we discussed how different modes in the CMB maps contribute to the non-

Gaussian signal from rotation at a multipole L, showing that most of the contribution comes from

L``′ triangles where either ` ∼ L, or `′ ∼ L. We also revisited previous constraints on RMS rotation

from the TE power spectrum, in order to further justify the small-angle assumption used to interpret

the results and perform power-spectrum de-biasing. Finally, we discussed the implications of our

constraints on Cαα` for PNGB quintessence, arguing that the current upper limit corresponds to the

amount of rotation expected in some relatively generic scenarios, pointing out that the upcoming

data from Planck will have the power to start rejecting interesting regions of parameter space.

In conclusion, with 7 years’ worth of integration time with WMAP, we were able to constrain the

uniform rotation to less than about a degree. It will be interesting to see the results of this analysis,

as applied to data from Planck, SPTPol, ACTPol, and other upcoming experiments, which will, for

the first time, provide signal-dominated polarization measurements.
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Figure 6.10: Probability distributions of the best-fit amplitude Â of the scale-invariant rotation
power CααL recovered from a suite of null-hypothesis simulations are shown for some representative
cross-band correlations. The gray-shaded area denotes a 68% confidence interval around the mean
value; the red vertical line represents the measurement of the best-fit Â. We find consistency with
zero within 3σ for all five measurements.
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Figure 6.11: Measurement of ĈααL from [WW][VV]. Results shown in black are obtained by using
the analysis mask that covers all the point sources brighter than ∼ 1Jy, while the results in red
(empty circles) are obtained after unmasking all the point sources. There is no apparent bias and
the difference in every bin is less than the statistical uncertainty, despite the extreme variation in
the source contamination. Scaling arguments in Section 6.7 imply that the unresolved point sources
have a negligible contribution to the estimated measurement uncertainty for the most constraining
cross-band correlation in WMAP.
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Figure 6.12: Measurement of ĈααL from [WW][VV] cross-band correlation, with the corresponding
statistical uncertainty obtained from a suite of null-hypothesis foreground-free simulations. Black
filled circles are measurements obtained from the foreground-reduced maps after applying the fiducial
analysis mask, and they represent our fiducial results of Figure 6.8. The colored data points (and
the associated error bars) correspond to the two test analyses: the green x’s are obtained from the
maps prior to foreground subtraction, but using the fiducial mask, while the red empty circles are
measurements obtained from foreground-reduced maps, after applying an extended mask (with an
additional ∼ 35% of the sky covered around the Galactic plane). The results from the two tests
show no apparent bias. For the case of non-foreground-reduced analysis, the difference from the
fiducial measurements is negligible compared to the statistical uncertainty. For the extended-mask
case, the scatter between the two results is consistent with the difference in sky coverage. This
implies that foregrounds and foreground residuals should not have a drastic impact on the estimated
measurement uncertainty for WMAP.
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Chapter 7

Outlook: Cross-correlation of
Rotation with Temperature

In this chapter, we explore the possibility that cosmic-birefringence signal may be correlated with

primordial density perturbations, and thus also with temperature fluctuations in the CMB. The

plan of this chapter is as follows. In Section 7.1, we work out the signal predictions for direction-

dependent α(n̂) for two distinct physical scenarios: a massless-scalar-field model (in which there

is no uniform rotation and no cross-correlation with the temperature pattern T (n̂)), and a PNGB

quintessence model with adiabatic primordial perturbations seeded during inflation. In Section 7.2,

we derive a minimum-variance estimator for CαTL and compare the detectability of CααL and CαTL ,

for current and futuristic CMB experiments. Throughout this chapter, we focus only on the EB

estimator for the rotation angle, as it is expected to provide the best sensitivity with upcoming and

future experiments (see Section 5.4).

7.1 Scenarios for Anisotropic Rotation

7.1.1 Massless Scalar Field

In the first scenario, we suppose that the φ field is simply a massless scalar with a potential that

vanishes,

V (φ) = 0. (7.1)

In this case, the value of the field is completely uncorrelated with primordial density perturbations1

[47]. If φ is effectively massless during inflation, there will be a scale-invariant power spectrum of

Material in this chapter was largely adapted from “Cross-correlation of cosmological birefringence with CMB
temperature,” Robert Caldwell, Vera Gluscevic, and Marc Kamionkowski, Phys. Rev. D 84, 043504 (2011) [6].
Reproduced here with permission, c©(2011) by the American Physical Society.

1We imagine that some mechanism has nullified the quantum-gravity effects that generically break global symme-
tries [77,78].
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perturbations to φ,

Pδφ(k) = H2
I /2k

3, (7.2)

with an amplitude fixed by the Hubble parameter HI evaluated during inflation2, where k is a

wavenumber. If we split the field into a smooth background component and a perturbation on top

of it,

φ(~x, τ)→ φ(τ) + δφ(~x, τ), (7.3)

the evolution of the homogeneous background component (which is not a function of the spatial

coordinates represented by ~x) is given by the following equation of motion

φ̈+ 2Hφ̇+ a2V ′ = 0, (7.4)

where

H ≡ ȧ/a, (7.5)

a is the scale factor, dots denote derivatives with respect to conformal time τ , and the prime

denotes derivative with respect to φ. For a vanishing potential, this equation has only a decaying

and a constant solution, so the value of the field is fixed in time in each causally disconnected region

of the early Universe. This precludes the scalar-field perturbations from having any correlation with

perturbations in the matter/radiation density. This is manifest in the absence of any source term

in the perturbed equation of motion for the scalar field,

δφ̈+ 2Hδφ̇− k2δφ = 0, (7.6)

where we set

(dφ/dτ) = 0, V = 0. (7.7)

A solution to Eq. (7.6) is a transfer function

Tk(τ) ∝ j1(kτ)/(kτ), (7.8)

where j1 denotes a spherical Bessel function. The transfer function describes the conformal-time

evolution of a given Fourier mode of wavenumber k, during matter domination.

The power spectrum CααL for the rotation angle is then

CααL = 4π

(
β

M

)2 ∫
k2 dk

2π2
Pφ(k) [jL(k∆τ)Tk(τlss)]

2
=

1

π

(
βHI

M

)2 ∫
dk

k
[jL(k∆τ)Tk(τlss)]

2
, (7.9)

2It is also imaginable that a white-noise spectrum of φ fluctuations is imprinted by some post-inflation phase
transition, but we will not consider that scenario here.
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where ∆τ is the conformal-time difference between last scattering and today, and τlss is the conformal

time at the last scattering. For large angular scales the transfer function evaluates to

Tk(τlss) ≈ 1, forL . 100, (7.10)

in which case

CααL ≈ (βHI/M)2

2πL(L+ 1)
, forL . 100. (7.11)

The upper limit on a scale-invariant power spectrum derived from WMAP-7 data, presented by

Eq. (6.24), provides a limit on the relevant combination of model parameters,

βHI/M . 0.1, (7.12)

which is 2 times stronger than the one implied by previous studies of AGN data [43]. We therefore

choose a fiducial amplitude of the power spectrum such that this combination of parameters is 0.2, to

match the current 2σ upper limit. The left-hand panel of Figure 7.1 shows the result of a numerical

calculation for CααL of Eq. (7.38), for a range of amplitudes equal to, or smaller than the current

constraint.

The CMB temperature power spectrum is given by

CTT` =
2

π

∫
k2 dk [∆T,`(k)]

2
PΨ(k), (7.13)

where PΨ(k) is the primordial power spectrum for the gravitational potential Ψ, and ∆T,`(k) is the

transfer function that quantifies the contribution of a density mode of wavenumber k to CTT` , and

may be obtained from numerical Boltzmann codes, such as CMBFAST or CAMB.

As discussed above, scalar-field fluctuations are not sourced by the gravitational potentials for

this V = 0 model. Similarly, energy-density fluctuations in the scalar field have only second-order

corrections due to the fluctuations δφ, and so their effect on gravitational potentials is also small.

In this case, the αT cross-correlation power spectrum vanishes,

CαTL = 0. (7.14)

7.1.2 Quintessence

In the second scenario, we suppose that φ is a quintessence field with a non-zero potential and a

homogeneous component that undergoes time evolution. In this case, gravitational-potential per-
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Figure 7.1: Shown are the power spectra for the rotation angle CααL and its cross-correlation with
the CMB temperature CαTL (logarithm of the absolute value), for a PNGB quintessence model in
which the rotation-angle fluctuations are driven by the scalar-field fluctuations at the last-scattering
surface. The black solid curves are the theoretical predictions for (from top to bottom) A = 1, 0.1,
and 0.01, where A is the power-spectrum amplitude for the rotation-angle autocorrelation, in the
units of the maximum currently allowed amplitude at 2σ confidence level. We also show the noise
power spectra anticipated for SPIDER (red, dot-dashed), Planck (green, dashed), and CMBPol
(blue, dotted). The autocorrelation power spectrum for a massless quintessence is the same as the
one shown in the left panel, while the αT cross-correlation vanishes. All of our numerical integrations
are done in the synchronous gauge, using a modified version of CMBFAST.

turbations directly source (and are also sourced by) scalar-field fluctuations. A cross-correlation

between the birefringent-rotation angle and CMB-temperature fluctuations is therefore inevitable,

although its amplitude and detailed features depend on the specific potential V . We now derive

CααL and CαTL for the case of a PNGB quintessence with a potential given by Eq. (4.4), as expected

if φ is an axion-like field.

Since every CMB photon that comes from a given direction n̂ last scattered at the spacetime

point in the direction n̂ when the Universe had some fixed temperature, α(n̂) is determined by

the value of φ at that point of spacetime. In other words, the rotation-angle anisotropies α(n̂)

are determined by the synchronous-gauge scalar-field perturbations (δφ)syn at the last-scattering

surface.

We first suppose that the initial value of φ is set by some post-inflationary physics, so that the
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primordial perturbation to φ is adiabatic3. In this case, (δφ)syn initially vanishes. We then evolve

the scalar-field–perturbation equation of motion forward in time, from the early radiation-dominated

epoch, to the last-scattering surface. This equation of motion reads

δφ̈+ 2Hδφ̇+ a2V ′′δφ−∇2δφ = −1

2
ḣφ̇, (7.15)

in the synchronous gauge, and

δφ̈+ 2Hδφ̇+ a2V ′′δφ−∇2δφ = φ̇(3Φ̇ + Ψ̇)− 2a2V ′Ψ, (7.16)

in the conformal-Newtonian/longitudinal gauge, where definitions of the metric variables Φ, Ψ, η,

and h are given in Ref. [79]. The subsequent evolution of the scalar field is not adiabatic, meaning

that (δφ)syn,lss does not necessarily vanish at the last-scattering surface, even though all the matter

and radiation perturbations do. We take an initial value of φ, and values for the model parameters

m and f such that, today, the fractional energy density of the Universe carried by the quintessence

field is4

Ωφ = 0.7, (7.17)

and the density-weighted average equation-of-state parameter5

〈w〉 ≈ −0.95, (7.18)

which gives

∆φ = 0.045MPl, (7.19)

for the change in the scalar field between decoupling and today. However, the power spectra pre-

sented in Figure 7.1 will be similar for any quintessence potential that has wφ → −1 at early times.

We now derive an analytic approximation for (δφ)syn,lss, which allows for the numerical results

for the power spectra to be reproduced with high accuracy. For this purpose, we switch to the

conformal-Newtonian/longitudinal gauge and make the approximation that decoupling takes place

well into matter domination. We assume that most of the growth in perturbations happens during

this epoch. For wφ → −1, the V ′′ term in Eq. (7.16) is negligible. Additionally, in the superhorizon

limit, valid for multipoles L . 100, we can neglect the spatial-gradient term. The simplified equation

3By “post-inflationary physics”, we are actually referring to the period of reheating. Also, note that the choice
of exact initial conditions does not make much difference for a quintessence field with a negative equation-of-state
parameter. This is because the fluctuations in such field are always decaying away until much after recombination.

4This number is chosen so as to agree with the current measurement of the energy density trapped in the dark-
energy component, often modeled with a quintessence field, such as the one discussed here.

5The evolution of φ here is set up so that w starts at −1 (no roll), and then gets more positive (significant evolution
starts at z of a few; observations are constraining this density-average w, rather than just its present-day value, when
interpreted for models with an evolving scalar field.
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of motion is then,

δφ̈+ 2Hδφ̇ ≈ −2a2V ′Ψ. (7.20)

Aside from the homogeneous solutions that are either constant or decaying, it also has an inhomo-

geneous solution that grows as

(δφ)con ≈ −a2τ2V ′Ψ/27, (7.21)

during matter domination. The potential derivative V ′ can be expressed, using the quintessence

slow-roll approximation, from

a2V ′ ≈ −3Hφ̇. (7.22)

Also, the pressure pφ and energy density ρφ of the scalar, and its equation-of-state parameter wφ,

given by Eq. (4.2), satisfy

pφ + ρφ =
1

a2
φ̇2, (7.23)

so that

φ̇2 = a2ρφ(1 + wφ), (7.24)

with

ρφ = Ωφρc, (7.25)

and where

ρc = 3H2M2
Pl/(8π) (7.26)

is the critical density today. We then find

(δφ)con =
4

9

[
3

8π
Ωφ(1 + wφ)

]1/2

MPlΨ. (7.27)

Finally, going back to the synchronous gauge, by using the gauge-transformation equations presented

in Ref. [79],

(δφ)syn = (δφ)con − αMBφ̇(δφ̇)syn = (δφ̇)con − αMBφ̈, (7.28)

after noting that6

αMB ≈ (2/3)Ψ/H, (7.29)

during matter domination, we arrive at the synchronous-gauge scalar-field perturbation at the last-

scattering surface,

(δφ)syn,lss = −2

9

(
3Ωφ,lss(1 + wφ,lss)

8π

)1/2

MPlΨ, (7.30)

where the equation-of-state parameter wφ,lss and the energy-density parameter Ωφ,lss are evaluated

6We use αMB to denote parameter α from Ref. [79], not to be confused with the notation we use for the rotation
angle α.
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at recombination.

We proceed to derive the initial conditions in the conformal-Newtonian/longitudinal gauge, for

the sake of completeness, which can then be used to evolve Eq. (7.16). To obtain the initial conditions

in this gauge, we use Eq. (7.28), where

αMB = (1/2)Ψ/H, (7.31)

during radiation domination. At early times, deep in the radiation era, we can set the fractional

energy-density perturbation in the radiation field to [79]

δr = −2Ψ, (7.32)

and assume that the equation-of-state parameter wφ → −1, and changes slowly with time. Further-

more, using Eq. (7.23), and the perturbation in the energy density,

(δρφ)con =
1

a2
φ̇ ˙δφ+ V ′(φ)δφ− 1

a2
φ̇2Φ, (7.33)

while the adiabatic initial conditions require that the entropy-density perturbation vanishes at early

times, so that

S ≡ δρφ
ρφ + pφ

− δρr
ρr + pr

. (7.34)

Inserting these assumptions into the gauge-transformation equations, and noting that δφ vanishes

in the synchronous gauge, we get the initial conditions for the scalar-field perturbations in the

conformal-Newtonian/longitudinal gauge7,

(δφ)con =
1

2

φ̇

H
Ψ,

(δφ̇)con = φ̇Φ− 3

2
φ̇Ψ− 1

2

a2V ′

H
Ψ.

(7.35)

The primordial power spectrum for the gravitational potential, for large scales (small k) is

PΨ =
9

25

2π2

k3
∆2

R, (7.36)

where, for simplicity, we take the scalar spectral index to be ns = 1, and the curvature-perturbation

amplitude ∆2
R(k0) = 2.43(±0.11) × 10−9 [68]. To evolve the power spectrum from primordial to

the last-scattering surface, we need to multiply it by transfer functions, which are a suppression

factor for small scales (large k’s). The power spectrum for the birefringent-rotation angle in this

7These initial conditions can also be derived by requiring that S and Ṡ vanish at early times.
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quintessence model is then

CααL =
2

27
Ωφ(1 + wφ)

(
βMPl

M

)2 ∫
k2 dk

2π2
PΨ(k)[jL(k∆τ)Tk(τlss)]

2. (7.37)

For large scales, L . 100, Eq. (7.10) again holds, so we can simplify the power spectrum to8

CααL ' 3.5× 10−11 (βHI/M)2

L(L+ 1)
Ωφ(1 + wφ), forL . 100. (7.38)

In other words, CααL for the quintessence scenario will be scale-invariant, as in the case of a massless

scalar field, in the small-L limit, as shown in Figure 7.1.

However, in the case of quintessence, there will also be a cross-correlation with the CMB tem-

perature, since the CMB temperature is determined largely by the potential Ψ at last scattering.

From Eqs. (7.13) and (7.37), we get

CαTL = −4π

3

√
Ωφ(1 + wφ)

6π

βMPl

M

∫
k2 dk

2π2
PΨ(k)∆T,L(k)jL(k∆τ)Tk(τlss). (7.39)

The absolute value of this cross-correlation is also shown in Figure 7.1.

7.2 Prospects for Detection

Since the best sensitivity to detecting rotation-angle coefficients αLM will ultimately come from

the EB cross-correlation (as shown in Section 5.4), here we restrict our attention only to EB and

analyze detectability of CααL and CαTL by, first deriving, and then numerically evaluating expressions

for corresponding noise power spectra, and finally comparing the noise to the signal calculated for

specific models presented in Section 7.1.

Using the same assumptions, definitions, and notation as in Chapter 5, we rewrite the minimum-

variance estimator for the rotation-angle spherical-harmonic coefficients of Eq. (5.39) as

α̂LM = Cαα,noise
L

∑
mm′,`′≥l

ξLM`m`′m′ [V
L
``′E

map
`′m′B

map
`m + V L`′`E

map
`m Bmap

`′m′ ], (7.40)

where,

V L``′ ≡
FL,BE``′

(1 + δ``′)C
BB,map
` CEE,map

`′

, (7.41)

and also

FL,EB``′ = FL,BE`′` . (7.42)

Under the null hypothesis of no rotation, the expectation value of the estimator in Eq. (7.40) is zero,

8We arrive at this by combining Eqs. (8) and (12) of Ref. [6].
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and its variance is the αα noise power spectrum, as given in Ref. [4],

Cαα,noise
L ≡

〈
|α̂LM |2

〉
=

[∑
``′

(2`+ 1)(2`′ + 1)(FL,BE``′ )2

4πCBB,map
` CEE,map

`′

]−1

. (7.43)

The usual noise power spectra, which include instrumental noise and resolution, are defined and

calculated as before,

CTT ,noise
` ≡

4πf0
sky(NET)2

tobs
,

CEE,noise
` = CBB,noise

` ≡ 2CTT ,noise
` ,

CEB,noise
` = CTB,noise

` ≡ 0,

(7.44)

where tobs is the total observation time, f0
sky is the fraction of the sky surveyed (taken to be different

from 1 only for SPIDER [10]; see Table 8.1), and NET is the noise-equivalent temperature, which we

use here instead of the pixel-noise variance σ2
T (see Eqs. (3.36) and (5.59)). As before, we assume no

cross-correlation between the noise in polarization and temperature, and apply the null assumption

of no B modes in the signal, so there are no TB and EB correlations. The power spectrum CBB,map
`

thus contains only the contribution from instrumental noise.

We note here that weak gravitational lensing and primordial gravitational waves both induce

a contribution to the B mode. However, the power spectrum for this B mode should be smaller

than that of the noise, even for a futuristic mission like CMBPol [7], and so our sensitivity estimates

should be unaffected by neglecting it. While weak gravitational lensing also induces off-diagonal EB

correlations, the EB correlations from weak lensing can be distinguished geometrically from those

due to birefringent rotation (see Section 5.3).

If the polarization pattern at the last scattering is a realization of a statistically isotropic field,

then there are 2L + 1 statistically independent M modes for each L in α̂LM . In this case, each

M mode provides an independent estimator of the rotation power spectrum, CααL . The minimum-

variance estimator, prior to the fsky correction for the masked portion of the sky9, is (see Eq. (6.10))

ĈααL =
1

2L+ 1

L∑
M=−L

|α̂LM |2. (7.45)

Each α̂LM is a sum of products of Gaussian random variables and is thus not a Gaussian random

variable. However, if the number of terms in the sum is large, the central-limit theorem holds, and

α̂LM can be approximated as Gaussian. In this case, the expression for the variance of ĈααL takes

9We fold in this correction in just a few lines; the reason to leave it out for now is simply to be consistent with the
notation used in the Section 3.3 which is concerned only with simplified analytic understanding of the noise power
spectra, rather than with the convenience for reconstruction from real data maps. Since the topic of this section are
forecasts of sensitivity, we resort to the same notation.
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on a simple form, (
∆ĈααL

)2

≈ 2

fsky(2L+ 1)

(
Cαα,noise
L

)2

, (7.46)

where fsky is, as before, the fraction of the sky used in the analysis10, taken here to be 0.8 for Planck

and CMBPol, and 0.5 for SPIDER.

In analogy with the derivation in Ref. [3] of the estimator for CTE` (or, following the expressions

for the power-spectra covariances of Section 3.3), the estimator for CαTL is

ĈαTL =
1

2L+ 1

L∑
M=−L

α̂LM (Tmap
LM )∗W−1

L , (7.47)

where Tmap
LM is the temperature spherical-harmonic coefficient obtained from a map, as usual. Under

the null hypothesis, Tmap
LM has no correlation with any B`m, and it is correlated with E`m only for

{LM} = {`m}, and uncorrelated otherwise. The estimator α̂LM depends on a large number of

E`m modes but does not include {`m} = {LM}. There is therefore no correlation (under the null

hypothesis) of α̂LM and Tmap
LM ; i.e., there is no noise contribution to CαTL . The full expression for its

variance (which is a six-point correlation function), after applying Wick’s theorem and the properties

of Wigner-3j symbols (see Appendix A), reads

(∆ĈαTL )2 =
(Cαα,noise

L )2CBB, noise
L

4πW 2
L

[2(V LLL)2(CTE, map
L )2 +

∑
`

[2
(2`+ 1)2

(2L+ 1)2
(V L`` )2CEE, map

l CTT ,map
L

+(1 + δ`L)(V L`L)2(CTE,map
L )2] +

∑
``′

(1 + δ``′)
(2`+ 1)(2`′ + 1)

(2L+ 1)
(V L``′)

2CTT ,map
L CEE,map

`′ ].

(7.48)

Again, if α̂LM is approximately Gaussian, then the expression for the variance, in analogy with the

variance of CTE` (see Ref. [3], or Section 3.3), simplifies to

(
∆ĈαTL

)2

≈ 1

fsky(2L+ 1)
Cαα,noise
L CTT,map

L W−2
L . (7.49)

To check the validity of this expression for the purpose of calculating the sensitivity of future CMB

experiments to the rotation signal, we compare it to the full expression of Eq. (7.48), and confirm

that the numerical results agree up to a level of a few percent. Thus, without any loss in accuracy,

Eq. (7.49) can be used instead of Eq. (7.48).

We now return to the two scenarios for cosmic-birefringence rotation which predict that the

rotation α is a realization of a random field with the power spectra CααL and CαTL presented in

Figure 7.1. Our aim here is to evaluate the smallest signal amplitude detectable by measurement

of the rotation alone, as well as the smallest amplitude detectable by measurement of the rotation-

temperature cross-correlation.

10To be distinguished from f0sky, the fraction of the sky surveyed.



89

We write the power spectra as

CααL ≡ A2Cαα,fiducial
L ,

CαTL ≡ ACαT ,fiducial
L ,

(7.50)

where the fiducial model (A = 1) is the quintessence model in Figure 7.1 with the largest amplitude

allowed by current rotation-angle constraints at 2σ level. The inverse variance with which the

amplitude A2 of CααL can be obtained from the rotation-angle autocorrelation can be evaluated

using the Fisher-matrix formalism [80] as

1

[∆(A2)]
2 =

∑
L

(
∂CααL
∂(A2)

)2
1(

∆ĈααL

)2 =
∑
L

(
Cαα,fiducial
L

∆ĈααL

)2

. (7.51)

Similarly, the inverse variance with which the amplitude A of CαTL can be obtained from the cross-

correlation of the rotation with the temperature is

1

(∆A)
2 =

∑
L

(
∂CαTL
∂A

)2
1(

∆ĈαTL

)2 =
∑
L

(
CαT ,fiducial

∆ĈαTL

)2

. (7.52)

From these relations, we can estimate the signal-to-noise ratio for measurement of A2 from CααL to

be

(S/N)αα = A2/
[
∆(A2)

]
, (7.53)

and the signal-to-noise for measurement of A from CαTL to be

(S/N)αT = A/(∆A). (7.54)

We evaluate these expressions for our fiducial model (A = 1), for different instrumental parameters

and present the results in Table 8.1. The smallest A detectable at the 2σ level from CαTL and CααL

are 2∆A and
[
2∆(A2)

]1/2
, respectively.

We now evaluate the largest possible signal-to-noise and the smallest detectable amplitude A for

three satellite-based CMB polarization experiments: (i) SPIDER’s 150 GHz channel, as described in

Ref. [10], (ii) Planck ’s 143 GHz channel, as described in Ref. [81], and (iii) CMBPol’s (EPIC-2m) 150

GHz channel, as described in Ref. [11]. We obtain the CMB temperature-polarization power spectra

from CMBFAST, using WMAP-7 cosmological parameters [46]. The instrumental parameters we

use are listed in Table 8.1.

Figure 7.1 shows the noise power spectra11 Cαα,noise
L and CαT,noise

L obtained by evaluating expres-

11Note that there is a difference in normalization between the noise and the variance: CXX
′,noise

L ≡
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Instrument f0
sky fsky θFWHM [arcmin] NET [µK

√
sec] tobs [year] (S/N)αα (S/N)αT

SPIDER 0.5 0.5 60 3.1 0.016 9 7
Planck 1 0.8 7.1 62 1.2 11 9

CMBPol/EPIC 1 0.8 5 2.8 4 2× 105 1200

Table 7.1: Key instrumental parameters we use for the three experiments considered in Section
7.2: beamwidth, noise-equivalent temperature, and observation time. The last two columns list
signal-to-noise ratios (S/N) for the messurement of birefringent-rotation angle autocorrelation and
its cross-correlation with the CMB temperature, for a fiducial quintessence model (A = 1) shown
in Figure 7.1. Note that the signal-to-noise scales with the signal amplitude as (S/N)αα ∝ A2 and
(S/N)αT ∝ A.

sions derived in this section. For CαTL , strictly speaking, there is no instrumental-noise contribution,

only the effective noise, arising from cosmic variance. Table 8.1 also lists the projected signal-to-noise

ratios, assuming A = 1, for all three experiments.

In conclusion, we find that SPIDER and Planck may already have the sensitivity to detect

not only the rotation signal, but also its cross-correlation with the temperature, in the optimistic

scenario of A ∼ 1, where the signal is just below the current detection limit12. In both cases, the

sensitivity to the signal may be improved if both CαTL and CααL are measured in tandem. A futuristic

mission like CMBPol should have sensitivity to a signal as small as A ∼ 10−5, and a detection of

the cross-correlation of very high signal-to-noise may be obtained if A ∼ 1.

7.3 Summary and Conclusions

If a quintessence field gives rise to cosmic birefringence, then a correlation between the rotation-angle

fluctuations and CMB-temperature fluctuations is inevitable. We calculated this cross-correlation

assuming the initial quintessence perturbations are adiabatic and seeded during inflation. We also

discussed, by way of contrast, a scenario in which the birefringence-inducing field is just a massless

scalar field that has no correlation with primordial perturbations.

We then derived the minimum-variance estimator for the CαTL power spectrum that can be

obtained from CMB temperature and polarization maps. We found that measurement of this cross-

correlation may improve sensitivity to the rotation signal in some cases where the signal would

otherwise be only marginally detectable. We further showed that a high signal-to-noise measure-

ment of this cross-correlation is conceivable with forthcoming and future CMB experiments if the

rotation-angle power-spectrum amplitude is near its current upper limit, and can thus provide an-

other empirical handle with which to probe new physics indicated by cosmic birefringence.√
(2L+ 1)/2∆ĈXX

′
L , where XX′ = {αα, αT}. It is customary to plot the noise power spectra, even though the

variance enters the expressions for signal-to-noise.
12Here we have assumed that the errors to the rotation-angle estimators are approximately Gaussian. However, if

the signal is barely detectable (for example, for SPIDER in case A ∼ 1), then this assumption may break down, and
if so, the precise quantitative forecasts for the signal-to-noise may differ slightly.
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We have restricted our attention to the EB estimator for the rotation angle, as it is expected

to provide the best sensitivity. However, there may be some improvement, though probably small,

with the inclusion of the TE, TB, and EE estimators for the rotation. We leave this calculation

for future work. Likewise, we have left more careful investigation of the impacts of partial-sky

analysis, foregrounds, uneven noise, and the effect of cosmic birefringence on cosmological parameter

extraction [82] for future work.

We have refrained from discussing details of the quintessence model here, as the angular depen-

dence of the cosmic-birefringence power spectra at superhorizon scales at the time of recombination,

L . 100, is insensitive to these details. The dependence of the amplitudes of the CααL and CαTL

power spectra is given in terms of the quintessence parameters Ωφ and wφ at the last-scattering

surface by Eqs. (7.37) and (7.39). However, if the quintessence field couples to the pseudoscalar

of electromagnetism, it is natural to expect it to be a PNGB field. In this case, φ is frozen at

early times leading to spatial variations in α at small scales (L &100) that are unobservably small.

However, additional fluctuations in α may be produced during the epoch of reionization, which is

another potentially interesting direction for future research.

For the massless scalar field, the uniform rotation angle is expected to be zero, and so a search

for the fluctuations is essential to detect the signal. For quintessence, however, the uniform rotation

is expected to be non-zero and generically quite a bit larger than the fluctuations, which, given the

current best constraint may imply a relatively small amplitude of the fluctuations power spectrum.

However, we have shown that future experiments, like CMBPol, may be sensitive to a fluctuation

amplitude as small as ∼ 10−5 of the current upper limit to the uniform rotation, which, if detected,

would help distinguish between different birefringence scenarios. Moreover, the fluctuation amplitude

in the quintessence scenario could be larger than a measured uniform-rotation angle. This could

occur if, for example, the uniform-rotation angle (which can only be recovered mod π) happens to

be close to an integer multiple of π. It will be interesting, with forthcoming precise CMB maps, to

address these questions empirically rather than through theoretical speculation.
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Chapter 8

Parity Violations Beyond Standard
Models

Both inflation [32] and late-time cosmic acceleration [33] require new physics beyond general rel-

ativity and the standard models of particle physics and cosmology. Since the Standard Model of

particles violates parity within the weak sector and is presumably only a low-energy limit of a grand

unified theory, it is natural to inquire whether there are manifestations of parity violation in the

new physics responsible for cosmic inflation and/or late-time acceleration.

One such possibility arises if a quintessence field couples to the pseudo-scalar of electromagnetism

that manifests as rotation of the polarization of light that propagates through the Universe, produc-

ing the effect of a uniform1 cosmic birefringence we explored in Chapters 5 and 6. Beyond cosmic

birefringence, parity violation has, for example, been introduced in inflation through modifications

of gravity that produce a difference in the amplitude of right (R) and left (L) circularly polarized

gravitational waves in the inflationary gravitational-wave background. We refer collectively to these

inflationary mechanisms as chiral gravity.

Since the CMB polarization can be decomposed into two modes of opposite parity—E modes,

or the gradient part, and B modes, or the curl part (see Section 3.2)—a cross-correlation between

the E and B modes, and similarly between the temperature modes T and the B mode, would, if

detected, be a sign of parity violation [83], making the CMB maps an excellent test ground to look for

signatures of parity-violating physics. Chiral gravitational waves induce TB and EB power spectra

at the CMB last-scattering surface [83, 84], while cosmic birefringence induces parity violation by

rotating the primordial polarization afterwards [83, 85]. An early analysis of CMB data suggested

a possible birefringence signal with rotation angle ∼ 6◦ [67], but current constraints are less than a

few degrees (see Chapter 4). Ref. [86] showed that WMAP does not have enough sensitivity to test

Material in this chapter was largely adapted from “Testing parity-violating mechanisms with cosmic microwave
background experiments,” Vera Gluscevic and Marc Kamionkowski, Phys. Rev. D 81, 123529 (2010) [7]. Reproduced
here with permission, c©(2010) by the American Physical Society.

1Only uniform rotation representa parity violation; multipoles above the monopole do not, as they average out to
zero on the whole sky.
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chiral gravity, and discussed prospects for detection of chiral gravitational waves with Planck and

CMBPol.

In this chapter, we quantify how well the effects of uniform rotation in the sky (such as that

originating from cosmic birefringence) and chiral gravity can be constrained and distinguished from

each other, in case of a positive detection of EB and/or TB power spectra. In Section 8.1 we

conveniently parametrize gravitational chirality and discuss its effect on the CMB maps; similarly,

we review the effects of uniform rotation in Section 8.2. These two sections also present forecasts for

detecting these signals separately with WMAP, SPIDER, Planck, CMBPol (EPIC), and a cosmic-

variance–limited experiment. Section 8.3 quantifies the degeneracy between the two signals, in case

of detection of EB/TB power spectra. Section 8.4 revisits the current constraints and forecasts for

detectability of primordial gravity waves, using BB and also TB power spectra. Section 8.5 discusses

possible B-mode contamination of the birefringent signal and the chiral-gravity signal, from other

cosmological sources, such as weak gravitational lensing and primordial B modes, and their effect

on our results. Finally, we summarize and give concluding remarks in Section 8.6. Throughout this

chapter, we use ΛCDM model consistent with WMAP-5 [65] best-fit cosmology.2

8.1 Gravitational Chirality

Scenarios for gravitational chirality previously considered in the literature include3:

• Addition of the Chern-Simons terms to the Einstein-Hilbert action [83]. If there is some

new physics that violates parity and time-reversal symmetry, that appears at a large energy

scale, and involves a scalar field whose time evolution violates time-reversal, then the low-

energy effective Lagrangian should include terms that are a generalization of those in Eq. (4.1)

responsible for cosmic birefringence. In addition, the same physics can give rise to the following

terms

Lφ = f(φ)RλσµνR̃
σµν
λ , (8.1)

where Rλσµν is the Riemann tensor, and R̃σµνλ its dual. In this scenario, the scalar could be a

present-day field (like that in scalar-tensor theories of gravity, or the quintessence) in which

case Solar-System tests constrain Chern-Simons gravity, as suggested in Ref. [87]. Here, we

consider the case where φ is identified with the inflaton, so the only observable consequences

are produced during inflation and imprinted on the CMB. While the coupling does not change

the background dynamics, it can be shown to induce a difference in amplitudes of L and R

2When the numerical part of this work was done, only the 5-year results from WMAP were available; we note,
however, that updating cosmological parameters and appropriate constraints to WMAP-9-year results should not
affect our results in any significant way.

3Notice that these scenarios might come from similar underlying physics, but we mention them separately, as they
are discussed in the literature.
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primordial gravity waves, by amplifying R, while attenuating L, as they propagate inside the

horizon. The accumulated difference becomes frozen when the modes exit the horizon, and it

alters the statistical properties of the CMB during recombination, by inducing non-vanishing

TB and EB power spectra. It is worth noting here that parity-violating gravitational Chern-

Simons term is ubiquitous in string theory, the only current candidate for a unifying theory.

• Chiral gravity, whereby a different gravitational constant is associated with R and L gravitons

[84]. As suggested in Ref. [84], since R and L graviton polarizations are two genuinely separate

degrees of freedom, there is nothing in the theory forcing the L and R Newton’s constants to

the same value. It can also be shown that the difference between the two values would drive

a discrepancy in the amplitudes of primordial L and R gravity waves.

• Gravity at a Lifshitz point, as a formulation of quantum gravity in 4-dimensions [88]. The

associated action necessarily contains a Cotton tensor, which violates parity invariance, so we

can expect as its robust prediction circular polarization of primordial gravitational waves, or

gravitational chirality.

In all these inflationary mechanisms, which we refer to collectively as chiral gravity, linearized gravity

prefers one handedness (i.e., it is chiral), so the power spectra of the L and R gravitational waves

may have different amplitudes and thus induce non-vanishing TB and EB power spectra at the last-

scattering surface. Measurements of these power spectra can therefore provide an estimate of the

chiral asymmetry, with a variance due to the finite precision of the instrument and cosmic variance.

We first want to quantify the chirality by introducing an appropriate chirality parameter and show

how the CMB polarization map depends on this parameter. To have B modes at the last-scattering

surface, we need primordial gravitational waves, or in other words, a non-zero tensor-to-scalar ratio,

r ≡ At/As, At =
r

1 + r
, (8.2)

where At and As are, respectively, the fractional contributions of tensor and scalar modes to the TT

quadrupole. Each one of the six CMB temperature/polarization power spectra—TT , EE, BB, TE,

TB, and EB—have a tensor component proportional to At, while TT , EE, and TE additionally

have a scalar component proportional to As. The tensor-to-scalar ratio r is constrained to be . 0.22

at a 95% confidence level [65] with WMAP-5.4

As demonstrated in Ref. [86], parity-odd TB and EB power spectra are proportional to the

difference of the L- and R-mode contributions to the gravitational-wave (tensor) power spectra,

P t,L(k) and P t,R(k),

CXX
′

` = (4π)2

∫
k2dk[P t,L(k)− P t,R(k)]∆X

` (k)∆X′

` (k), (8.3)

4Current constraint with WMAP-9 results is even lower: r . 1.3 at a 95% confidence level [25].
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Figure 8.1: B-mode power spectra for r = 0.22 and ∆χ = 0.2.

while the tensor-contributions to the parity-even power spectra—TT , EE, BB, and TE—are

CXX
′

` = (4π)2

∫
k2dk[P t,L(k) + P t,R(k)]∆X

` (k)∆X′

` (k), (8.4)

where ∆X
` (k) is the radiation transfer function for X, and X,X ′ = {T,E,B}, as before. Following

Ref. [86], we define a chirality parameter ∆χ as

P t,L(k) ≡ 1

2
(1 + ∆χ)P t(k),

P t,R(k) ≡ 1

2
(1−∆χ)P t(k),

(8.5)

where

P t(k) ≡ P t,L + P t,R. (8.6)

Maximal parity violation occurs when there are gravitational waves of only one handedness: ∆χ =

1 corresponds to fully left-handed, and ∆χ = −1 to fully right-handed gravitational waves. To

illustrate, we show the three B-mode power spectra alculated using a modified version of CMBFAST

for r = 0.22 and ∆χ = 0.2, in Figure 8.1.

To calculate the uncertainty with which ∆χ can be estimated with different CMB experiments

we use a Fisher-matrix analysis [80], employing the null hypothesis, CEB` = CTB` = 0. This ensures

that the TB and EB power spectra do not have cross-correlations with the other four power spectra.
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Instrument θFWHM [arcmin] NET [µK
√

sec] tobs [years]
WMAP-5 21 650 5
SPIDER 60 3.1 0.016
Planck 7.1 62 1.2
CMBPol 5 2.8 4
CV-limited 5 0 1.2

Table 8.1: Instrumental parameters from Ref. [9–11,50], for the five CMB experiments considered in
the text. The parameters are the beamwidth, noise-equivalent temperature, and observation time.

The reciprocal value of the variance σ2
∆χ is then given by [3]

σ−2
∆χ =

∑
`

∑
A,A′

∂CA`
∂∆χ

∂CA
′

`

∂∆χ
[Ξ`]−1

AA′ , (8.7)

where the inversion is in AA′ space, A,A′ = {TB,EB}, and Ξ` is the TB-EB part of the power-

spectrum covariance matrix5 (see also Section 3.3 for definitions). The partial derivatives in Eq. (8.7)

can be evaluated by noting from Eqs. (8.3) and (8.5) that

(∂C
TB/EB
` /∂∆χ) = C

TB/EB
` (∆χ = 1). (8.8)

We obtain the TB/EB power spectra by modifying CMBFAST and using a ΛCDM model consistent

with WMAP-5 parameters.

We now forecast the sensitivities to chiral gravity of the following five experiments: (i) WMAP-5,

(ii) SPIDER’s 150 GHz channel, (iii) Planck ’s 143 GHz channel, (iv) CMBPol’s (EPIC-2m) 150 GHz

channel, and (v) a cosmic-variance–limited experiment. The corresponding instrumental parameters

are given in Table 8.1. We use σP =
√

2σT as before (see Section 3.3). We take f0
sky = 1.0 (the

fraction of the sky surveyed), and fsky = 0.7 (the fraction of the sky used in the analysis), for all

experiments, except for SPIDER, where f0
sky = fsky = 0.5.

Figure 8.2 shows the 1σ uncertainty of the estimate of ∆χ, as a function of tensor-to-scalar ratio r.

The error increases with decreasing r, which implies the existence of a critical value of r below which

a 1σ-level detection becomes impossible, even for maximal allowed signal (when σ∆χ ≥ 1). This

value is far above the upper limit for WMAP-5 (compare to results from Ref. [86]), and so WMAP-5

can provide no constraints on chiral gravity. Prospects are more optimistic for the upcoming and

next-generation CMB data releases. The critical r is about 0.064 for SPIDER, 0.082 for Planck,

0.0079 for CMBPol, and 0.0023 for the cosmic-variance–limited experiment. If r is just below the

WMAP-5 detection limit of 0.22, ∆χ will be detectable at the 1σ level if it is greater than 0.46,

0.51, 0.18, and 0.11 for these four experiments, respectively. If we consider the 3σ confidence level,

5Note that under the null hypothesis ∆χ = 0, the 2× 2 TB-EB part of the inverted 6× 6 covariance matrix is the
same as the inverse of the 2× 2 TB-EB matrix.



97

Figure 8.2: 1σ uncertainty on the gravitational-chirality parameter ∆χ for five different CMB ex-
periments, for the fiducial value of ∆χ = 0. The horizontal dotted line is at σ∆χ = 1 and represents
maximal parity violation. In the region above this line, the chirality is non-detectable. Note that
the WMAP-5 curve lies entirely above the non-detection line.

the corresponding lowest detectable values are larger by a factor of ∼ 3.

To conclude this section, we show how different multipoles ` contribute to the sum of Eq. (8.7),

separating the contribution from TB and EB, in Figure 8.3. In this plot, only the TB/EB summands

of Eq. (8.7) are plotted against `, for r = 0.22, for SPIDER, Planck, and CMBPol. The off-diagonal

terms that contain the covariance between TB and EB are negligible. The major contribution

to σ−2
∆χ for all five experiments comes from the TB power spectrum, from low multipoles, ` . 7.

Thus, large angular scales in TB contain most of the information about gravitational chirality in

the primordial signal.

8.2 Uniform Rotation

In this section, we rewrite all the relevant formulas needed to compare the effects of primordial chiral

gravitational waves to uniform rotation from cosmic birefringence. We also re-evaluate the prospect

for detecting uniform rotation with various CMB experiments.

If linear polarization at each point on the sky is rotated by an angle6 ∆α, TB and EB power

6Notice the change in notation: previously used symbol α denoting a uniform-rotation angle is now substituted by
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Figure 8.3: Diagonal (TB-TB and EB-EB) summands of Eq. (8.7), for r = 0.22, are plotted against
the multipole ` to show that the constraint to ∆χ comes primarily from the TB power spectrum at
l . 7.

spectra are induced,

CTB,rot
` = 2∆αCTE` , CEB,rot

` = 2∆αCEE` . (8.9)

The uncertainty σ∆α to which ∆α can be measured is given by

σ−2
∆α =

∑
`

∑
A,A′

∂CA`
∂∆α

∂CA
′

`

∂∆α
[Ξ`]−1

AA′ . (8.10)

Using the same instrumental parameters as in Section 8.1, and for r = 0.22, we obtain the

following 1σ uncertainties for the uniform rotation angle: 3.2◦ from WMAP-5, 0.9◦ from SPIDER,

15.9′ from Planck, 10.7” from CMBPol, and 1.9 µarcsec from a cosmic-variance–limited experiment—

all in good agreement with previous forecasts (see Refs. [4, 54,83] and Section 5.4).

∆α, to match the notation for the chirality parameter, ∆χ.



99

Figure 8.4: Diagonal (TB-TB and EB-EB) summands of Eq. (8.10), for r = 0.22, are plotted against
the multipole ` to show that the constraints to ∆α from upcoming and future CMB experiments
will come primarily from `’s of ∼100, 500, or 700 (depending on the experimental sensitivity).

In Figure 8.4, we plot, separately, the contributions from only TB and only EB correlation to

the sum in Eq. (8.10), as a function of multipole moment `, for the cases of SPIDER, Planck, and

CMBPol, for r = 0.22. The off-diagonal terms that contain the covariance between TB and EB

are small. The dominant contribution to the constraint on ∆α comes from the TB correlation for

WMAP-5, and from EB for the higher-precision experiments. Different multipoles give the leading

summands in σ−2
∆α for different experimental sensitivities, but unlike the case of chiral gravitational

waves, small angular scales (l & 100) always dominate the sum.

8.3 Separating Chiral Gravity from Uniform Rotation

In this section, we ask how well the effects of chiral gravity and uniform rotation can be distinguished,

assuming that a TB/EB power spectrum has been detected in CMB maps.

To first order in ∆α and ∆χ, the TB/EB power spectrum is a sum of a part CA,chi
` due to chiral
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Figure 8.5: Theoretical curves representing TB and EB power spectra from primordial chiral grav-
itational waves for ∆χ = 0.2 and r = 0.22 (dashed red curves), and from uniform rotation for
∆α = 5′ (solid blue curves).

gravitational waves and a part CA,rot
` due to uniform rotation. The combined EB and TB power

spectra are

CTB,tot
` = ∆χCTB,t` (∆χ = 1) + 2∆αCTE` ,

CEB,tot
` = ∆χCEB,t` (∆χ = 1) + 2∆αCEE` ,

(8.11)

where the superscript t indicates the tensor-induced part of the power spectrum, while the absence

of it denotes the full power spectrum, including the scalar part, which we denote with superscript

s. Figure 8.5, which shows CA,chi
` and CA,rot

` , demonstrates that the contributions from these

two mechanisms are qualitatively different. Our goal now is to quantify how well they can be

distinguished, given a finite precision of the temperature/polarization maps.

The Fisher matrix for ∆α and ∆χ has the following entries

Fij =
∑
`

∑
A,A′

∂CA`
∂ai

∂CA
′

`

∂aj
[Ξ`]−1

AA′ , (8.12)
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where i, j = {1, 2}; ai and aj are the elements of ~a = (∆α,∆χ); A,A′ = {TB,EB}; and F is the

inverse of the covariance matrix between ∆α and ∆χ. The derivatives in Eq. (8.12) can be calculated

using Eq. (8.11), and [Ξ`]−1
AA′ is the inverse of the TB-EB covariance matrix defined in Section 3.3,

where the inversion is in AA′ space. Once again, we employ the null hypothesis7 ∆α = ∆χ = 0.

Figure 8.6 shows 1σ error ellipses in the ∆α-∆χ parameter space, for WMAP-5, SPIDER, Planck,

and CMBPol, for a range of tensor-to-scalar ratios. In addition, each plot shows a 1σ-error ellipse

for a different set of fiducial values: ∆χ = 0.2 and ∆α = 5”. The ellipses for this model are merely

shifted in the ∆α-∆χ space, but are otherwise not significantly different from the null-hypothesis

ellipses.

From Figure 8.6, we see that once we take into account the covariance between ∆α and ∆χ,

the results differ very slightly from the two cases where we had only one of these two effects acting

on the CMB (the ellipses show very little tilt in ∆α-∆χ space). We conclude that if non-vanishing

TB/EB power spectra are measured with high statistical significance, we will be able to distinguish

uniform rotation from gravitational chirality to a high degree of precision.

This result can also be explained in terms of the features apparent in Figures 8.3 and 8.4, which

show that the ∆χ constraint comes primarily from TB at low `’s, while the ∆α constraint comes

primarily from EB at high `’s.

8.4 Constraints on Tensor-to-Scalar Ratio Revisited

We now examine a claim of Ref. [84] that if the gravitational-wave background is chiral, it may be

more easily detected through the TB signal than the BB signal, due to a the boost in the amplitude

obtained by cross-correlating a weak signal (B modes) with a strong one (T modes), rather than

with itself.

Under the null hypothesis of no gravitational waves, the error with which the tensor-to-scalar

ratio can be measured, from just one power spectrum A (where A ∈ {BB, TB,EB}) is

σ−2
r =

∑
`

(
∂CA`
∂At

)2 (
Ξ`AA

)−1
, (8.13)

where the inversion is in ` space. Remember that these power spectra are simply proportional to r,

(∂CA` /∂r) ∝ CA` (r = 1). (8.14)

7Even in the case where we work around non-zero fiducial values, the effect of the off-diagonal terms is negligible
and the covariance matrix can be treated as a block-diagonal matrix to good precision. In addition, the cross-terms
between TB/EB and the other four power spectra in Eq. (8.12) vanish, to the first order in small parameters, so we
really only need to consider TB and EB separately.
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The relevant covariance-matrix entries are obtained from Eqs. (3.35) and (3.41), for

CBB` = CTB` = CEB` = 0, (8.15)

and they read

Ξ`BB =
2

2`+ 1

(
CBB,map
` |Wl|−2

)2

=
2

2`+ 1

(
CBB,noise
` |Wl|−2

)2

, (8.16)

Ξ`TB,TB =
1

2`+ 1
|Wl|−4

[(
CTB,map
`

)2

+ CTT ,map
` CBB,map

`

]
=

1

2`+ 1
CBB,noise
` |Wl|−2

[
CTT,s` + CTT ,noise

` |Wl|−2
]
,

(8.17)

where we have employed the null hypothesis in the second equality in each of these equations. The

expressions are similar for EB, with the substitute T → E.

Given that the current data already provide signal-dominated temperature measurements,

CTT ,noise
` � CTT` , (8.18)

for the low `, at which the gravitational-wave signal arises, we can set

CTT ,noise
` ≈ 0. (8.19)

Moreover,

CTB` ∼ β(CBB` CTT` )1/2, withβ ∼ 0.1. (8.20)

As a result, while the summand for σ−2
r from BB is ∼ (CBB` /CBB,noise

` )−2, that from TB is ∼

CBB` /CBB,noise
` . Thus, in the limit of sufficiently high signal-to-noise, CBB,noise

` → 0, the BB signal

provides a better probe (i.e., probes smaller σr). In other words, the value of the cross-correlation

with T is ultimately limited by cosmic variance (as is also the cross-correlation with E), while the

BB sensitivity improves without limit as the instrumental noise is reduced. The importance of TB

is also weakened slightly given that

CTB` < [CTT` CBB` ]1/2. (8.21)

It is true that in the opposite limit, where instrumental noise is large, TB is more sensitive to

gravitational waves (with ∆χ = 1) than TT . However, this limit is only of academic interest, as it

encompasses the regime of r that is already ruled out by temperature measurements.

To make these arguments more quantitatively precise, we have evaluated σr for BB, TB, and
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Instrument from BB from TB from EB
WMAP-5 0.68 0.37 3.03
SPIDER 0.011 0.051 0.20
Planck 0.026 0.071 0.30
CMBPol 1.57×10−5 0.0018 0.0062

Table 8.2: The projected 1σ uncertainty σr on the tensor-to-scalar ratio for a maximal chiral-
gravitational-wave background with ∆χ = 1, from measurements of three different power spectra,
for several CMB experiments.

EB (for ∆χ = 1) for WMAP-5, SPIDER, Planck, and CMBPol; the results are shown in Table

8.2. We see that the sensitivity to gravitational waves with future experiments will come primarily

from BB measurements, with only marginal improvement from TB measurements. While the TB

sensitivity of WMAP-5 is better than that of BB, the smallest r detectable with either is already

larger than the upper limit obtained from TT measurements.

In conclusion, we showed here that, while TB may improve the sensitivity to a chiral-gravitational-

wave background, it does so only marginally, with most of the sensitivity due primarily to BB (see

also Ref. [86]).

8.5 Possible B-mode Contamination

We now briefly examine the degree of contamination that the reconstruction of the parity-violating

signals considered in this chapter might suffer from other cosmological sources of B modes—the

primordial tensor modes and the weak lensing of the CMB.

Chiral-gravitational-wave signal and the uniform-rotation signal represent parity violations. Only

such effects that exhibit overall preferred handedness in the sky can induce EB and TB power

spectra, to first order. Weak lensing and the fluctuations in the rotation angle that average to zero

on the whole sky, for example, only induce off-diagonal correlations in the maps, where ` 6= `′.

Therefore, the lensing signal does not mimmic parity-violating signals, and so should not bias the

measurements discussed in this chapter.

However, it is worth noting that the expressions of Eq. (8.9) hold true only to first order in small

parameters, ∆α and r. Second-order contribution to CEB,rot` can arise due to rotation of a primordial

B mode into an E mode. This contribution is, however, negligible even in the case where r takes

on the maximal value allowed by current observations. Likewise, the additional contribution due to

late-time rotation of a lensing-induced B mode is also negligible (second order in small parameters).

On the other hand, when calculating the uncertainties, we include both the weak-lensing8 and

primordial B modes, in order to account for their contribution to the overall noise power. To

8The lensing surface is assumed to be located after the last-scattering surface, and before most of the rotation can
take place.
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illustrate these different contributions, we compare them to the instrumental noise in Figure 8.7.

From this figure, it is evident that the noise power is dominated by the instrumental noise/resolution

at high `’s, and by the primordial BB at low `’s. For the case of chiral gravitational waves, for

example, there is no need to include the contribution from the weak lensing, since the constraints

to ∆χ come from large scales (below ` of 10 or so), where weak lensing has no power9.

8.6 Summary and Discussion

In this chapter, we first revisited the sensitivity of current and future CMB experiments to chiral-

gravitational-wave background leftover from inflation, and to uniform rotation from cosmic birefrin-

gence, separately. We showed that the WMAP polarization data are not precise enough to provide

any information about gravitational chirality, even for the case where the tensor-to-scalar ratio is just

below the current upper limit. Planck and SPIDER may be able to make a marginal detection, but

only if r and ∆χ are both close to their maximal allowed values. CMBPol may probe gravitational

chirality over a larger range of the r-∆χ parameter space. As an illustration, the smallest amount

of gravitational chirality detectable at the 3σ level with a cosmic-variance–limited experiment (if

r is at its maximal allowed value) corresponds to about 65% of the gravitational-wave background

being of one handedness, and 35% of another. In an analogous analysis, we show that Planck has a

1σ sensitivity to a uniform rotation of about 16′, while a cosmic-variance–limited experiment could

reach down to rotation angles of about 2µarcsec.

We then showed that there is no strong degeneracy between ∆α and ∆χ parameters. In other

words, the effects of chiral gravity and uniform rotation can be easily distinguished, provided that

the TB/EB power spectra are clearly detected. However, the same results can be interpreted as

to infer that a marginal (e.g., 3σ) detection of ∆α could be due, alternatively, to gravitational

chirality at some level. For example, if CMBPol were to measure ∆α ≈ 15” and find r = 0.1,

then the corresponding TB/EB detection could alternatively be attributed, with similar statistical

significance, to gravitational chirality with ∆χ = 0.6. If, however, the earlier suggestion of a TB/EB

signal corresponding to a rotation angle of 6◦ [67] had held up, it could not have been attributed to

chiral gravity, as the implied value of ∆χ would have been in the unphysical regime ∆χ � 1. The

plot that summarizes these results is shown in Figure 8.6.

Furthermore, we re-examined an earlier claim that, if the gravitational-wave background is chiral,

it may be more easily detected through the TB signal than the BB signal. We demonstrated that,

while TB may improve the sensitivity, it does so only marginally, due to cosmic-variance limitation;

BB remains the most sensitive probe for the noise regime of Planck and next-generation CMB

experiments.

9We note here that these conclusions hold for a full-sky analysis; in the case of cut-sky, a more careful treatment
of this issue may be required.
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A few more notes on distinguishing these two parity-violating effects. If a parity-violating signal is

detected in the CMB and attributed to uniform rotation from cosmic birefringence, it may be possible

to test it further with observations of cosmological radio sources [89]. Off-diagonal correlations in

the CMB may also provide additional information on cosmic birefringence, if the rotation angle is

position dependent [4, 51, 54], as suggested in Refs. [47, 90], and discussed in detail in Chapter 5.

A parity-violating signal from chiral gravity waves might be distinguished from that due to cosmic

birefringence through direct detection of the gravitational-wave background at shorter wavelengths

[91–94]. Finally, it may be that any signals of chiral gravity in the CMB may be corroborated,

within the context of specific alternative-gravity theories, by a variety of other observations and

measurements [95].

Finally, we emphasized that we do not expect weak lensing by the large-scale structure to be a

significant contaminant in detecting a signal from chiral gravity and/or cosmic birefringence, with

Planck or CMBPol. For the case of direction-dependent rotation, the contribution of the weak

leansing can be geometrically distinguished from the effects of rotation, as discussed in Section 5.3.

We examined potential contamination for the case of parity-violating signals, and showed that in the

case of chiral gravity, most of the signal is imprinted in the large-scale inhomogeneities, where weak

lensing has no power. On the other hand, for uniform rotation, the corresponding correction to the

variance due to weak lensing turns out to be numerically small—less than 10% for CMBPol, and

negligible for all other instruments we considered (except for a cosmic-variance–limited experiment

where we analyzed un-lensed maps only).
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Figure 8.6: Constraints on the allowed ∆α-∆χ parameter space are shown for the case of null
detection with different experiments (in case of null detection, the area outside the ellipse is excluded
at a 68% confidence level). The solid-line ellipses on each plot are for the fiducial value of zero for
both parameters, and for the following values of tensor-to-scalar ratios (going from the narrowest
to the widest ellipse in the ∆χ direction): 0.22, 0.1, and 0.06. The dot-dashed ellipse in each plot
is for r = 0.22, for a model with ∆χ = 0.2 and ∆α = 5”. In both models, the tilt of the ellipses
is negligible, which means that the two signals are separable to high accuracy, provided a detection
with high statistical significance. Thus, the combined constraints on both parameters are almost
the same as those calculated individually in Sections 8.1 and 8.2.
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Figure 8.7: BB power spectra from primordial gravitational waves (dashed lines), and from the
weak lensing of the primordial E modes (solid lines), for r = 0.22 (red), r = 0.1 (blue), and r =
0.06 (green). The dotted black line is appropriately normalized instrumental-noise power spectrum
for CMBPol. Note that the instrumental noise dominates at high multipoles, due to the limited
resolution of the experiment. The lensed maps are obtained from CMBFAST code for the same set
of cosmological parameters we use throughout this chapter.
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Part IV

Probing Old Times: Cosmic

Reionization
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Since recombination at the age of ∼380 000 years (z ≈1100), the Universe stayed mostly neutral

for the next 100 million years or so (z ≈ 20–30), when the first astrophysical sources of light were

born and started a phase transition from the cosmic “dark ages” to the ionized and star-lit Universe

we observe today. Details of the epoch of reionization (EoR) are still unclear, and currently available

observational constraints are few.

Lyα absorption in the spectra of distant quasars suggests that the tail end of reionization occurred

at a redshift z & 6 [96], but the implications of these measurements are difficult to interpret precisely

[97]. Recent measurements of the density of Lyα emitters at high redshift also imply a transition

from neutral to ionized intergalactic medium (IGM) occured at z . 6–7, or so [98]. Large-scale

anisotropy in the CMB polarization spectra (the “reionization bump”, visible at ` . 10 in Figure

3.4), implies an integrated optical depth to Thomson scattering of CMB photons off free electrons of

τ ≈ 0.074± 0.034, which places the redshift of reionization at zr ≈ 10.6± 1.4, with 68% confidence

[46, 99], if reionization occurred everywhere suddenly (i.e., if the ionized fraction10 xi(z) is a step

function). However, analytic considerations [100–102] and numerical simulations [103] have long

established the current paradigm of an inhomogeneous reionization process [104], where regions

of ionized gas, seeded by the first star-forming galaxies, grew and eventually coalesced, filling the

entire volume of the IGM. If so, then reionization may have occurred over a range of redshifts.

Recent results from the EDGES experiment [105], a low-frequency survey looking to detect a global

reionization signal by observing a step function in the frequency spectrum of the sky, placed a lower

limit on the duration of the EoR, ∆z & 0.06, at 95% confidence level. Finally, observations from the

SPT CMB survey have provided an upper limit on the duration of the EoR for specific reionization

scenarios (under assumptions that the mechanism of reionization accords with prevailing theoretical

models), ∆z . 7.9, at 95% confidence level [106], by constraining the kinetic-Sunyaev-Zel’dovich

signal [107] from bulk motions of ionized bubbles during the EoR.

Properties of ionizing sources (their clustering, masses, radiation spectra, feedback mechanisms,

etc.) control details of the IGM tomography (size distribution of the bubbles as a function of redshift,

and the overall ionized fraction), and so confronting theoretical predictions about the tomography

with direct observations of the EoR is one of the most active and challenging areas of research in

modern cosmology.

There are several avenues currently explored for probing details of the EoR; in this part of the

thesis, we focus on the following two: reionization signatures imprinted on the CMB, and redshifted

21-cm signal from neutral hydrogen during EoR. These are complimentary ways to tie observables

to the description of the ionization structure during the EoR. While the 21-cm mapping allows for

3D tomography of neutral hydrogen (since scanning in frequency space corresponds to mapping in

redshift z), the CMB can only recover a projection in 2D plane of the sky. On the other hand, the

10The ionized fraction xi is defined as the ratio of the number of protons to the total number of hydrogen atoms.
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Figure 8.8: A slice through redshifts from one of the simulations of the EoR is shown. Black
represents neutral, and white ionized IGM. Notice the inhomogeneous ionization structure in the
mid-phases of the reionization process, where regions of ionized gas form around sources of radiation,
expand, and merge to complete the EoR at low redshifts. (Figure from Ref. [106]).

21-cm spectral line probes neutral fraction during the EoR, while the CMB probes ionized fraction

through the integrated optical depth all the way to the last-scattering surface.

In this thesis, we first use currently available CMB data to constrain simple phenomenological

models of reionization and discuss implications for future work (Chapter 9). We then diverge from

the CMB and investigate statistical tools which can be applied to the maps of the redshifted 21-cm

signal—the goal of many low-frequency radio arrays currently under construction (Chapter 10).



111

Chapter 9

Reionization Signatures in the
CMB

There are three main mechanisms that affect the statistics of the CMB during the EoR [108]: (i)

Thomson scattering of the local CMB quadrupole off the free electrons in ionized regions adds

large-scale power to polarization anisotropies; (ii) Doppler shift of the CMB photons scattered off

ionized regions with peculiar motions gives rise to the kinetic Sunaiev-Zel’dovich effect; and (iii)

the screening of the last-scattering surface due to Thomson scattering damps CMB anisotropies by

a factor of e−τ(n̂), where, sourced by the inhomogeneities in the ionized fraction during the patchy

middle phase of the EoR, the integrated optical depth varies as a function of the position n̂ in the

sky [108],

τ(n̂, z) = σTnp,0

z∫
0

dz′
(1 + z′)

2

H(z′)
xi(n̂, z

′), (9.1)

where σT is the Thomson-scattering cross-section, np,0 is the present-day nuber density of protons,

and xi(n̂, z) is the ionization fraction in direction n̂ at redshift z. In this chapter, we study the

effects of patchy screening on the CMB.

Anisotropic screening of the small-scale fluctuations produces a B-mode polarization that is

correlated in a characteristic way with the temperature and with the E mode [108, 109], and it

also modulates the power in the temperature map. Statistically, the effect on the CMB maps

is very similar to the effect of anisotropic rotation we discussed in earlier chapters. In fact, the

minimum-variance-estimator formalism used to search for α(n̂) in CMB maps can easily be adapted

for reconstruction of τ(n̂) and its power spectrum CττL , which is the approach we use in this chapter.

In Section 9.1, we outline the formalism adapted for reconstruction of the optical-depth map τ(n̂)

proposed by Ref. [108]. In Section 9.2, we interpret prior null searches for a modulation of CMB

power [110] in terms of an upper limit to optical-depth fluctuations. We then apply the minimum-

Material in this chapter was largely adapted from “Patchy screening of the cosmic microwave background by
inhomogeneous reionization,” Vera Gluscevic, Duncan Hanson, and Marc Kamionkowski, Phys. Rev. D 87, 047303
(2013) [13]. Reproduced here with permission, c©(2013) by the American Physical Society.
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variance estimator of Ref. [108] to WMAP-7 data to search for patchy screening by measuring the

off-diagonal TB correlations. We derive an upper limit to all multipoles of the power spectrum CττL

up to L = 512, and discuss possible systematic effects that might affect our results. In Section 9.3,

we discuss implications of these constraints for a simple phenomenological reionization model whose

parameters might serve as figures of merit for future experiments. We also revisit predictions for

future experiments and discuss constraints on the parameter space imposed by the recent results

from the EDGES [105] experiment. Finally, we conclude and summarize in Section 9.4.

9.1 Patchy Reionization

Patchy-reionization signal can be traced either through its effect on the CMB power spectra or

using the off-diagonal correlations induced by directional variation of τ . However, the effect on the

power spectra is small on all angular scales, and will be difficult to disentangle from other secondary

anisotropies, such as lensing and low-redshift kinetic Suniaev-Zel’dovich effect1 [108, 114–119]. We

therefore focus on the reconstruction from off-diagonal correlations proposed by Ref. [108]. This

formalism is directly analogous to the minimum-variance–estimator formalism we used to look for

direction-dependent rotation from cosmic birefringence (discussed in detail in Chapter 5), the main

difference being the opposite parities of α̂LM and τ̂LM estimators. We briefly review the main

formulas in the following.

Patchy screening suppresses primary2 anisotropies, so the observed temperature fluctuation and

polarization are, respectively,

T obs(n̂) = e−τ(n̂)∆T (n̂),

pobs(n̂) ≡ Q(n̂) + iU(n̂) = e−τ(n̂)p(n̂),
(9.2)

where Q and U are the usual Stokes parameters. All six temperature and polarization correlations

in the CMB can, in principle, be used to reconstruct the map of τ(n̂).3 The EB estimator will

ultimately provide the best sensitivity to patchy screening [4,109], once low-noise polarization mea-

surements are available with future CMB experiments. With WMAP and Planck, however, the best

sensitivity is achieved with the TT correlation, which we discuss in Section 9.2. Here, we derive a

constraint to patchy screening from the TB correlation, as a proof of principle for future application

of this analysis method. The estimator for the optical-depth fluctuation is [4, 109] (see also Section

1For example, currently favored patchy-reionization models produce BB power spectra with an amplitude of
∼ 0.01µK, which is an order of magnitude lower than the one expected from weak lensing [107,111–113].

2By “primary” here, we mean those generated before reionization.
3Note that this was not the case with direction-dependent rotation of polarization maps, where temperature was

not affected.
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6.2),

τ̂LM = −iNL
∫
dn̂YLM (n̂)

[ ∑
`m`′m′

B̄∗`m2Y`m(n̂)CTE`′ T̄`′m′2Y
∗
`′m′(n̂) + complex conjugate

]
, (9.3)

where the sum is only over `+`′+L = odd. Barred quantities B̄lm and T̄lm represent the inverse-

variance–filtered multipoles,

B̄`m ≡ Bmap
`m /CBB,map

` ,

T̄`m ≡ Tmap
`m /CTT,map

` ,
(9.4)

where the TT and BB power spectra are analytic estimates of the total (signal plus noise) power

spectrum, as defined in Chapter 6,

CXX,map
` ≡ CXX` + CXX,noise

` W−2
` , (9.5)

in a given frequency band, for XX ∈ {TT,BB}, and Bmap
`m and Tmap

`m are the observed temperature

and polarization multipoles, recovered from the maps and corrected for the combined instrumental-

beam and pixelization transfer function W`. The normalization NL can be calculated either analyti-

cally or using Monte Carlo simulations. Note that the estimator of Eq. (9.3) is equivalent to the real

part of the rotation-angle estimator in of Eq. (6.5), the only difference being the parity condition. In

Chapter 6, we demonstrated that the full-sky formalism with the full-sky inverse-variance-filtering

procedure described above is justified in spite of the sky cuts introduced by masking the Galaxy.

The TB correlations sought by this estimator can in principle also be generated by re-scattering

of CMB photons and by the kinetic-Sunyaev-Zel’dovich effect from re-scattering. However, Ref. [108]

showed that the estimator is relatively insensitive to the kinetic-Sunyaev-Zel’dovich effect, and also

that only the large-scale (` .40) temperature fluctuations are sensitive to the former mechanism.

In order to avoid large-scale contamination from pixel-pixel noise correlations in WMAP, we discard

Tmap
`m and Emap

`m multipoles below l = 100 from our analysis anyway, so we effectively probe only

patchy screening.

The estimator for the corresponding power spectrum of fluctuations of τ is

C τ̂ τ̂L ≡
1

fsky(2L+ 1)

∑
M

τ̂LM τ̂
∗
LM , (9.6)

where, as before, fsky represents the fraction of the sky admitted by the analysis mask, correcting for

the fact that the full-sky analysis is applied to the maps where a portion of the pixel values (mostly

around the Galactic plane) was set to zero. When evaluated for the fixed cosmology of WMAP-7

best-fit parameters, and for the noise levels appropriate for the experiment in consideration, this

four-point correlation provides a biased estimate of CττL , where the bias mostly arises from the
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inhomogeneous pixel noise and the sky cuts. However, if this trispectrum is estimated by cross-

correlating the τ̂LM signal estimated from one frequency band with the same signal estimated from

another frequency band, the largest contribution to its bias vanishes, because the instrumental noise

is uncorrelated in different frequency bands. The leftover bias can be evaluated and subtracted

by running a suite of null-hypothesis (no patchy signal) Monte Carlo simulations. We therefore

generate a suite of null simulations, as described in Section 6.5, and use data-based de-biasing

technique of Section 6.2. We also use the null simulations to recover the statistical uncertainty for

each measurement following the procedure described in Chapter 6.

9.2 Current Constraints from CMB

We now show the results that the analysis method described in Chapter 6, adapted for the search

for patchy screening in WMAP-7 data, yields. The results are shown only for the cleanest band-

cross correlation [WW][VV], where the estimate of τLM recovered from the W frequency band is

cross-correlated with the estimate from the V frequency band. Prior to the analysis, we mask out

the Galaxy and the known point sources using the fiducial 7-year analysis masks available at the

LAMBDA website [8] (where for the combined mask fsky ≈ 68%). After subtracting the bias, we

recover a de-biased estimate ĈττL of the power spectrum at each multipole up to L = 512; Figure

9.1 shows the binned measurements with estimated uncertainties. At all multipoles, we recover

consistency with zero within the 3σ confidence level.

Our simulations do not include polarized point sources nor foreground residuals. In order to

test their impact on our estimates of the power spectrum and associated statistical uncertainty, we

perform the tests described in Section 6.7. The results of these tests are shown in Figures 9.2 and

9.3, which demonstrate that the foregrounds and point sources do not significantly affect the results

reported in Figure 9.1.

9.3 Interpretation: Simple Analytic Model for Reionization

To understand the implications of the results of Section 9.2, we consider a simple parametriza-

tion of inhomogeneous reionization in which optical-depth fluctuations are described by white noise

smoothed on angular scales

θC ≡ π/LC , (9.7)

corresponding to the following power spectrum

CττL = (4π/L2
C)(∆τ)2e−L

2/L2
C , (9.8)



115

20 40 60 80 100
L

8
6
4
2
0
2
4
6
8

Ĉ
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Figure 9.1: The top two panels show the measurements of the power spectrum of fluctuations
in optical depth τ , recovered from off-diagonal TB correlations, with corresponding 1σ and 3σ
confidence-level intervals, for all multipoles down to the resolution limit of WMAP-7. A binned
version of this plot, with associated statistical uncertainty, is shown in the bottom panel. The first
two bins are −0.0085 ± 0.1264 at L = 26, and 0.0029 ± 0.0056 at L = 77; they are omitted for the
sake of clearer presentation. The measurements are consistent with zero at all multipoles.

plotted in Figure 9.5 for several values of LC . We constrain the parameters ∆τ and LC with the

Fisher-matrix minimum-variance estimate for the amplitude,

(̂∆τ)2 = (σ[(∆τ)2])2
∑
L

Cττ ,fiducial
L ĈττL /var(ĈττL ), (9.9)

where (
σ[(∆τ)2]

)−2
=
∑
L

(Cττ ,fiducial
L )2/var(ĈττL ) (9.10)

is roughly the inverse-variance with which (∆τ)2 can be measured, var(ĈττL ) is the variance of the

power spectrum, estimated from a suite of simulations with no patchy screening, and ĈττL are the

unbinned measurements from WMAP-7 maps. Since the results are consistent with no signal, the

variance provides a constraint on (∆τ)2, which we show as a function of the model parameter LC

in Figure 9.6. We also show in Figure 9.6 the upper limit to (∆τ)2 inferred from upper limits to

the power of TT modulation discussed in Ref. [110]. Given that the mean optical depth is known

to be τ ∼ 0.1, it is clear that our bound ∆τ . 1, from TB is far from constraining, and that
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Figure 9.2: Measurement of ĈττL from off-diagonal TB correlations in WMAP-7 data. Results
shown in black (filled circles) are obtained by using the analysis mask that covers all the point
sources brighter than ∼ 1 Jy, while the results in red (empty circles) are obtained after unmasking
all the point sources. In spite of the large difference in the source contamination, the two results
differ by much less than the statistical uncertainty, and no overall bias is observed.

∆τ . 0.01− 0.1, from TT is at best marginally constraining.

While the power spectrum of Eq. (9.8) describes a particular patchy pattern on the sky, it does

not rely on any specific description of the underlying reionization process. We now take a step

further in this direction, and consider what happens if every point in the Universe goes suddenly

from neutral to ionized, at slightly different times, so that a “reionization surface”, as observed from

Earth, is “crinkled” on a comoving scale of

RC ≈ 200 Mpc (LC/150)−1. (9.11)

We refer to this simple analytic reionization model as the crinkly-surface model (see Figure 9.4

for illustration). During matter domination, this smoothing scale, or bubble size, corresponds at a

reionization redshift zr ∼ 10 to a redshift interval

∆z ≈ RCz1/2
r Ω1/2

m H0/c. (9.12)
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Figure 9.3: Measurement of ĈττL from off-diagonal TB correlations in WMAP-7 data. Black filled
circles represent the measurements obtained from the foreground-reduced maps after applying the
fiducial analysis mask (the fiducial result of Figure 9.1). The rest of the data points correspond to
the two test cases: the green x’s are obtained from the maps prior to foreground subtraction, but
using the fiducial mask, while the red empty circles are measurements obtained from foreground-
reduced maps after applying an extended mask, shown in Figure 6.1. No overall bias is observed in
the two cases, and all three results are consistent, within the estimated statistical uncertainty.

Since the optical depth scales with the reionization redshift as

τ ∝ z3/2, (9.13)

we find that a bubble size RC induces an optical-depth fluctuation

∆τ ≈ 0.01(RC/200 Mpc). (9.14)

There is thus a rough scaling,

(∆τ) ≈ 0.01 (LC/150)−1, (9.15)

between the optical-depth-fluctuation amplitude and the correlation multipole LC for the crinkly-

surface model, represented by a thick band (to indicate roughly the theory uncertainty) in Figure

9.6. Figure 9.6 also shows the expectations we obtained for the (model-independent) sensitivities of

Planck and CMBPol-EPIC in this parameter space [120], and the constraint on the crinkly-surface



118

Observer 

Ionized  
bubbles 

ionized neutral 

zr 

Figure 9.4: Depiction of the crinkly-surface model for reionization: as ionized bubbles of the same
radius RC nucleate at different places at slightly different times, completing the reionization process
when they 3D-tile the entire volume of IGM. The surface of reionization then appears crinkled, with
characteristic scale corresponding to RC , as seen from a distance of z ∼ zr.

model implied by the EDGES results ( ∆z & 0.06, at 95% confidence).

Notice at the end that the upper-limit lines in Figure 9.6 are not tied to the crinkly-surface inter-

pretation; they simply constrain the patchy pattern in the sky, produced by an arbitrary reionization

model, and described by Eq. (9.8). The gray band, however, is model-dependent and represents the

preferred region of this parameter space, under the assumption of crinkly-surface reionization de-

scribed above. Latter is also true for the EDGES exclusion region. (Both the gray region and

the EDGES-excluded region are calculated using the scaling relations valid for the crinkly-surface

model.)

A wider range of reionization scenarios can be described by a “Swiss cheese” model in which

bubbles of size RC are spread over a larger redshift range [107], so that each line of sight crosses, on

average, N bubbles. The RMS optical-depth fluctuation in Eq. (9.8) would, for fixed RC , then be

reduced by a factor N1/2, relative to the crinkly-surface model. Thus, both the gray-shaded area and

the EDGES excluded region in Figure 9.6 would be reduced by N1/2. Note that kinetic-Sunyaev-

Zel’dovich fluctuations should increase in sensitivity as N increases [106, 107] to complement the

reduced sensitivity of patchy screening in this limit.

9.4 Summary and Conclusions

The directional dependence of the optical depth τ(n̂) to Thomson scattering of CMB photons encodes

information about the morphology of the ionized regions during the EoR. In this chapter, we used
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Figure 9.5: Family of simple patchy-reionization models, given by Eq. (9.8), for ∆τ = 1, and different
values of LC .

WMAP-7 temperature and polarization data to derive a bound on the individual multipoles of the

optical-depth power spectrum up to L = 512, or bubble sizes larger than ∼ 60 Mpc comoving. We

then interpreted these null results in terms of a bound on an RMS optical-depth fluctuation ∆τ in

a model of white-noise fluctuations with coherence angle θC . While the bound derived proves to be

too weak to constrain realistic models, and probes bubble sizes larger than those (RC . 10 Mpc)

favored in current reionization models, our result provides a proof of principle that such analyses

can be carried out with future data. We then note that data from the forthcoming Planck satellite

and from a subsequent post-Planck project should approach the realistic parameter space. Before

such optical-depth-fluctuation searches are carried out in the future, though, several issues will need

to be understood. For example, the estimator in Eq. (9.3) has the same parity as that for the lensing

potential (see Section 5.3 and Ref. [71]), and further modeling of the ∆τ and lensing signals, and/or

de-lensing of the CMB, will be necessary for a CMB detection in the optical-depth fluctuation with

Planck or future-generation experiments.4

4This is the opposite from what we concluded for the estimator for direction-dependent rotation; the difference
comes from the fact that, in the case of rotation vs. weak lensing, different temperature and polarization multipoles
were contributing to constraints of the two effects, due to the parity requirements. This is no longer the case for
patchy reionization, where the lensing signal must be removed prior to the analysis.
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Figure 9.6: Shown are the 1σ confidence-level upper limits from WMAP-7 TT and TB off-diagonal
correlations, on the amplitude (∆τ)2 of the patchy-screening model given in Eq. (9.8), as a function
of the coherence-scale parameter LC . Also shown are sensitivity forecasts for experiments with map
noise of 27µKarcmin and 1µKarcmin, and beam width of 7′ and 5′, corresponding to Planck and
CMBPol-EPIC–like mission, respectively. The values expected for a reionization surface that is
crinkled on scales RC are indicated by the gray band. Also shown is the portion of this parameter
space (under the assumption of the crinkly-surface scenario) excluded by EDGES.
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Chapter 10

Statistics of the 21-cm Signal

Among the most promising observational probes of the EoR is the 21-cm spectral line, from hyperfine

splitting in the ground state of hydrogen, with an energy of 5.9 × 10−6eV that corresponds to the

rest-frame frequency of 1420 MHz. The redshifted 21-cm emission from neutral regions of the IGM

during reionization is estimated to be a 1% correction (in terms of emission or absorption, depending

on the redshift) to the energy density of the CMB. It is expected to display angular structure and

frequency structure, due to the inhomogeneities in the gas density, ionized fraction xi, and spin

temperature [121] of the emitting gas.

Statistical detection of the large-scale brightness fluctuations in redshifted 21-cm emission is

within the scope of a number of experiments that are presently being built, such as the Murchison

Widefield Array (MWA) and the Low Frequency Array (LOFAR) (for reviews see, e.g., [122, 123]).

In this context, it is important to develop appropriate statistical tools to be employed in analyzing

the incoming data. Such development is facilitated by the fact that the N-body and radiative-

transfer simulations of reionization have begun to reach the large scales of order 100 comoving

Mpc [103, 124, 125] needed to capture the evolution of the IGM during the EoR. These simulated

data cubes can be used to test various statistical tools proposed for extracting information about

the properties of the IGM during reionization.

So far, studies of the statistics of the 21-cm fluctuations have mainly focused on the power spec-

trum of the brightness temperature Tb [126–128]. While this statistic is fully representative at the

onset of the EoR, where the Gaussian primordial density fluctuations drive the 21-cm fluctuations,

it ceases to be so at later times. Namely, as the reionization process advances, the mapping be-

tween the hydrogen density and Tb becomes highly non-linear (as evidenced, for instance, by the

bounded domain, xi ∈ [0, 1]), which results in non-Gaussianity of the probability distribution function

(PDF) of Tb. For this reason, various authors have started exploring alternative and complementary

statistics (see, e.g., [129–131]), in particular the PDFs and difference PDFs of the 21-cm brightness

Material in this chapter was largely adapted from “Statistics of 21-cm fluctuations in cosmic reionization simula-
tions: PDFs and difference PDFs,” Vera Gluscevic and Rennan Barkana, MNRAS 408, pp. 2373-2380 (2010) [12].
Reproduced here with permission, c©(2010) by the Royal Astronomical Society.
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temperature [123, 132]. In this chapter, we test these two statistics on six different simulated data

cubes of Ref. [103]. These data cubes are results of different astrophysical inputs that produce

various reionization histories, all of which are allowed by the current observational constraints. We

measure the one-point PDFs and difference PDFs and analyze their properties.

The plan of the Chapter is as follows: in Section 10.1 we briefly describe the simulation runs

used in this work. In Section 10.2 we then present the measured one-point PDFs along with the

best fits of the model proposed by Ref. [132], and discuss the main parameters driving the PDF

shape. We next present in Section 10.3 the first measurements of difference PDFs for the same set

of simulations and analyze their properties. We conclude and summarize in Section 10.4.

10.1 21-cm Simulations

In order to interpret future observations of the high-redshift Universe, we need to understand the

morphology of HII regions1 during reionization, in particular their size distribution and how it

is affected by the properties of the ionizing sources, gas clumping and source suppression from

photoheating feedback. For this purpose, Ref. [103] ran a 10243 N-body simulation in a box of size

65.6h−1 ≈ 94 Mpc to model the density field, post-processing it using a suite of radiative-transfer

simulations. The authors assumed a standard ΛCDM cosmology, with ns = 1, σ8 = 0.9, Ωm = 0.3,

ΩΛ = 0.7, Ωb = 0.04 and h = 0.7. The outputs are stored at 50 million year intervals, roughly

between redshifts 6 and 16.

The radiative-transfer code assumes sharp HII fronts, which are traced at sub-grid scales. The

properties of the sources are chosen in most cases so that reionization ends near z ∼ 7. A soft

ultraviolet spectrum that scales as ν4 is assumed for each source. The typical luminosity of a halo

of mass m is taken to be2

Ṅ(m) = 3× 1049m/(108M�), (10.1)

in ionizing photons per second. This corresponds to a halo star formation rate of

Ṡ(m) = f−1
esc m/(1010M�), (10.2)

in units of M� yr−1, for an escape fraction of fesc and a Salpeter initial mass function. The N-body

simulation resolves haloes down to 109M�, but since the effect of smaller mass haloes cannot be

neglected, the effect of haloes down to 108M� is included in some of the runs with a merger tree

(see Table 10.1).

For the purpose of measuring PDFs and difference PDFs, we choose six runs, labeled as in

1HII stands for ionized hydrogen.
2M� is one solar mass.
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Simulation Merger tree haloes Ṅ [photons sec−1] Comments
S1 Yes 2× 1049M8 -

S4 No CS4M8 Includes only haloes with m > 4× 1010M�.

C5 No 6× 1049M8 Structure on small scales; Ccell = 4 + 3δC.

F2 Yes 2× 1049M8 Includes feedback on m < MJ/2; τSF = 20 Myr.

M2 No 9× 1049M8 Includes minihaloes with mmini > 105M�.

Z1 Yes 1× 1050M8 Higher source efficiency (early reionization).

Table 10.1: Details of the radiative-transfer simulations from Ref. [103]. Merger tree haloes: ’Yes’
means that the halo resolution is supplemented with a merger tree down to 108M�; CS4 is calibrated
such that there is the same output of ionizing photons in each time step as in S1; M8 denotes the
halo mass in units of 108M�; Ccell is the sub-grid clumping factor; δC is the baryonic overdensity
smoothed on the cell scale; τSF is the time-scale over which the cool gas in the source is converted
into stars; and MJ is the linear-theory Jeans mass.

Ref. [103]: S1, S4, C5, F2, M2 and Z1. These runs differ by the efficiency of the sources and by

the halo-mass resolution. Some runs include feedback from photoheating, which suppresses source

formation within ionized regions. Others investigate the impact of clumping, i.e., IGM density

inhomogeneities, and include a sub-grid clumping factor Ccell different from unity. Finally, some

runs account for the presence of minihaloes, which are dense absorbers for ionizing photons and thus

tend to extend the process of reionization. A summary of the parameters of each of the six runs is

presented in Table 10.1. The list of the redshift slices for each data cube is shown in Table 10.2. For

more details about the simulations, see Ref. [103].

Simulation Redshift slices
S1 6.9, 7.3, 7.7, 8.2, 8.7, 9.4, 10.1, 11.1, 12.3, 13.9, 16.2

S4 7.3, 7.7, 8.2, 8.7, 9.4, 10.1, 11.1, 12.3, 13.9, 16.2

C5 6.6, 6.9, 7.3, 7.7, 8.2, 8.7, 9.4, 10.1, 11.1, 12.3, 13.9, 16.2

F2 6.3, 6.6, 6.9, 7.3, 7.7, 8.2, 8.7, 9.4, 10.1, 11.1, 12.3, 13.9, 16.2

M2 6.9, 7.3, 7.7, 8.2, 8.7, 9.4, 10.1, 11.1, 12.3, 13.9, 16.2

Z1 10.1, 11.1, 12.3, 13.9, 16.2

Table 10.2: List of the simulation runs and corresponding redshift slices discussed in this work. The
redshift outputs for each simulation are spaced in 50 Myr intervals.
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10.2 One-point PDFs

We measure the one-point PDFs of the observed brightness temperature Tb of the redshifted 21-cm

emission, in the six simulation runs of Ref. [103]. We measure Tb in a 323 grid, i.e., Tb is averaged

over cells of size of 2.9 comoving Mpc, at each of the redshifts listed in Table 10.2. Note that

this scale is much larger than the spatial resolution of the simulations; it is chosen by balancing

the requirement to be large enough to fall close to the general range of the upcoming observations

(corresponding to a resolution of arcminutes), with the need to be small enough compared to the

simulation box to give a reasonable statistical sample. The PDFs are shown in Figure 10.1.

As seen in Figure 10.1, the one-point PDFs are Gaussian-like at the highest redshifts and highly

non-Gaussian at lower redshifts. The Gaussian shape of the PDFs at the beginning of reionization,

when the Universe is almost completely neutral, is driven by the primordial fluctuations in the

density field of the emitting IGM gas. At lower redshifts and near the end of reionization, the

completely ionized gas does not emit at 21-cm, while the brightness temperatures of the leftover

patches of neutral gas are still governed by the density-field inhomogeneities. At these redshifts,

entirely ionized cells contribute to the increasingly dominant delta function at Tb = 0 mK, while the

emission from the partially neutral cells maintains a Gaussian around a higher Tb. The interplay

between these two types of cells sets the shape of the PDFs as the reionization proceeds.

In Figure 10.1, we also plot the best fit of a Gaussian + Exponential + (Dirac) Delta function

model (GED model) for the 1-pt PDFs. This is an “empirical” model (i.e., based on simulation

data), suggested by Ref. [132]:

p(Tb) =


PDδD(Tb) + a eλTb ; Tb 6 TL ,

cG e
− (Tb−TG)2

2σ2
G ; Tb > TL .

(10.3)

To get a smooth curve, the values of the two functions and their first derivatives are matched at the

brightness temperature Tb = TL, leaving (after normalization) four independent parameters for the

GED model: the joining point of the exponential and the Gaussian function TL, the mean of the

Gaussian TG, its standard deviation σG, and its maximum value cG.

From the best fit of the GED model to the PDF in each redshift slice for each of the simulated

data cubes, we obtain the value of the probability fraction contained in the delta function (at Tb’s

around zero) PD, in the Gaussian (at high Tb’s), PG, and in the exponential part of the model

(which interpolates between the delta function and the Gaussian) PE . These parameters can be

reconstructed from observations and must sum to unity, to ensure a normalized PDF. The variation

of PD, PE , PG, TG, TL, and σG with the global ionized fraction x̄i is shown in Figure 10.2. The

evolution of x̄i with redshift for each of the simulation runs is also shown.

When we fit the GED model, while its δD function portion is meant to capture the PDF spike
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near Tb = 0 mK (at low redshifts), we do not attempt to model (or resolve in the data) the shape of

this spike. Thus, we exclude the lowest-temperature bin before fitting the GED model, and derive

PD in three different ways: from the required overall normalization of the PDF to unity; then also

directly, i.e., without the model fitting, from the total number count in the first bin of the Tb PDF;

finally, we measure the one-point PDFs of xi, and estimate PD from the number count in the highest

bin of this PDF (the cells in this bin have xi ≥ 0.95). These three different estimates of PD are

compared for all six simulation runs in Figure 10.3. In this figure, we show that the difference in

PD calculated from the cell counts and from the GED model is negligible, which indicates that

this model represents the data faithfully. The values of PD as measured indirectly (from fitting the

GED model) yield an accurate estimate of the fraction of fully ionized cells. In the limit of infinite

resolution, PD would equal x̄i and so directly measure the reionization history, while in reality PD

measures a low-resolution, smoothed-out version of the reionization history.

Comparing the various simulation runs, we find that small-scale structure has a relatively minor

effect on the 21-cm PDF during reionization, at least for the present implementation of sub-grid

astrophysics, and when the final reionization redshift is held (relatively) fixed. Compared to our

fiducial case (S1), we have three simulations where mainly the small-scale structure has been ad-

justed: a scenario with photoheating feedback (F2), one with evaporating minihaloes (M2), and one

with increased sub-grid clumping (C5). The latter two also do not have merger-tree source haloes.

Figures 10.1 and 10.2 show that these scenarios have the effect of stretching out cosmic reionization,

especially by delaying its progress early on, when the rarity of high-mass haloes makes feedback ef-

fective (F2), or the still-high density makes recombinations important (C5), or the minihaloes have

not yet photo-evaporated (M2). However, in all these scenarios, the 21-cm PDF at a given stage (as

measured by x̄i) is fairly unchanged. In particular, the evolution of the probabilities PD, PE , PG,

and the parameters TG and TL is rather similar for these three scenarios and S1.

Strong changes in the properties of the ionizing sources do have more of an effect on the evo-

lution of the PDF. For example, a higher source luminosity (Z1) leads to earlier reionization by

somewhat more massive haloes. Even early in reionization, the ionized bubbles are already rather

large (compared to the fixed pixel scale at which the PDF is measured), which changes the PDF

shape and the reconstructed GED-model parameters. Also, since reionization in this case occurs at

higher redshifts, when the Universe is denser, the mean 21-cm brightness is higher, leading to higher

values of TG and TL compared to the lower-redshift cases. Furthermore, even without changing the

redshift range, if the ionized sources lie in much more massive haloes (S4) than in the S1 case, the

impact on the PDFs is noticeable. In this case, the ionized bubbles (produced by larger and more

strongly clustered sources) grow larger than the effective PDF resolution quite early in reionization,

so that PD is larger than in the other cases (mostly at the expense of PE), and is generally closer

to the value of x̄i.
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In summary, we find that x̄i is the main parameter determining the one-point 21-cm PDFs. In

particular, various modifications in the small-scale structure have only a minor effect on the PDF

evolution versus x̄i (as quantified by the parameters of the GED-model fits). This suggests that

analysis of features of the observed one-point PDFs can be used to reconstruct the global reionization

history relatively independently of any assumptions about the astrophysics on unresolved sub-grid

scales. On the other hand, the typical mass of source haloes, and the typical reionization redshift,

have more of an effect. It is important to note, though, that observations will provide independent

constraints on these major parameters. The redshift will obviously be measured, and, for example,

the span of the reionization epoch will constrain the typical halo mass driving this process. Note

also from Figure 10.2 that in all the simulation runs, the Gaussian probability PG can be taken as

a rough estimate of the cosmic neutral fraction (1− x̄i).

While the one-point PDF is interesting, it will be rather difficult to measure with the upcoming

generation of instruments, mainly due to comparatively bright foregrounds and the associated ther-

mal noise. In particular, Ref. [132] found that the one-point PDF can only be reconstructed from

upcoming observations if the analysis is made on the basis of quite strict (and not easily tested)

assumptions that the real PDF is very similar in shape to that measured in numerical simulations.

This difficulty motivates the use of an alternative statistical tool that should have a much higher

signal-to-noise ratio for a given observation, namely the difference PDF proposed by Ref. [123]. In

Section 10.3 we present the first numerical measurements of difference PDFs, specifically using the

same six simulated data cubes, and we discuss their properties.

10.3 Difference PDFs

The PDF of the difference in the 21-cm brightness temperatures,

∆Tb ≡ |Tb1 − Tb2|, (10.4)

at two separate points in the sky (or, analogously, at two cells in the simulated data cube) was

previously proposed [123] as a useful statistic for describing the tomography of the IGM during the

EoR. More precisely, if we consider two points separated by a distance r, then the distribution of

∆Tb is given by the difference PDF p∆(∆Tb), normalized as

∫
p∆∆Tb = 1. (10.5)

The motivation for introducing this statistic is at least threefold. Firstly, the effective number of

data points available for reconstructing the difference PDF is much larger than for the one-point

PDF (by roughly a factor of the number of pixels divided by two, though the pixel pairs must be
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divided up into bins of distance r). Secondly, the difference PDF (which is a major piece of the two-

point PDF) is a generalization which not only includes the information in the commonly considered

power spectrum or two-point correlation function (which can be derived from the variance of the

difference PDF), but also yields additional information. And thirdly, being a PDF of a difference in

Tb, it avoids the mean sky background and fits naturally with the temperature differences measured

via interferometry.

We present the first measurements of difference PDFs, for the same set of simulation runs of

Ref. [103] that we used to discuss the properties of the one-point PDF in Section 10.2. The difference

PDFs for all the redshifts of S1 are shown in Figure 10.4. For each of the other five simulation runs,

we show difference PDFs at three representative redshifts in Figure 10.5. In Figures 10.4 and 10.5,

every redshift has 6 distance bins, logarithmically spaced, and each distance bin has 20 temperature

bins, linearly spaced. The range in distance is chosen so that it covers basically the full range from

the resolution (pixel) scale to the largest separations found within the 94 comoving Mpc data cube.

Even for the one-point PDF, there is no good analytical model that matches simulations, possibly

because the PDF is sensitive to the reionization topology, and specifically to the way in which the

complex-shaped ionized bubbles partially overlap the box-shaped pixels. This led Ref. [132] to base

their analysis on the PDF as measured in a simulation, and to consider an empirical model for fitting

the PDF shape. Similarly, in the case of the difference PDF, the analytical model of Ref. [123] does

not quantitatively match the result that we find in the simulations, but we can nonetheless use the

model and the discussion in Ref. [123] to develop a qualitative understanding of the difference PDF

and how best to analyze it.

At high redshifts, when the PDF is nearly Gaussian, the difference PDF (which is defined using

the absolute value of ∆Tb) should approximately be a half-Gaussian. Non-linear density fluctuations,

though, give a slower decaying tail at high ∆Tb than would be expected for a pure Gaussian. As

reionization develops with time, the difference PDF becomes a superposition of three contributing

terms: The pixel pairs in which both pixels are fully ionized, those in which one pixel is (partly)

neutral and the other ionized, and those where both are neutral. We explicitly show these three

contributions in Figure 10.6 for one redshift near the midpoint of reionization in the S1 simulation.

The both-ionized pixel pairs basically give the δD function at zero ∆Tb; the amount of probability in

this δD function is physically meaningful, as discussed below. The pairs in which one pixel is neutral

and the other ionized tend to be well separated in Tb, and so this contribution is responsible for the

high ∆Tb peak, at ∆Tb ∼ 13 mK in the case plotted there. As we consider smaller r, the Tb values of

the two points that are separated by r become more strongly correlated, making it difficult for one

to be ionized and the other neutral, and so this contribution declines at smaller r. At the same time,

as we reduce r, this contribution becomes more highly concentrated at small values of ∆Tb, since at

small separations, if one pixel is fully ionized, then the second one tends to be at least highly ionized,
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making their Tb difference small. Note also that the ionized+neutral contribution drops suddenly at

∆Tb ∼ 1.5 mK, but this is due to the fact that some of the probability in this region that should be

included under ionized+neutral is incorrectly swept up under the both-ionized δD function, which

is dominant at ∆Tb near zero. This is an unavoidable effect of the finite (2.9 Mpc) resolution of our

gridded field. Since in practice we define a “fully ionized” pixel as having an ionization fraction of

95% or higher, some highly ionized pixels are classified as fully ionized. A higher resolution map,

with a definition closer to 100% ionization, would move this artificial drop-off closer to ∆Tb = 0.

Those pairs in which both pixels are neutral peak at ∆Tb = 0, and give a contribution with a roughly

half-Gaussian shape, at all separations r.

The difference PDF as a function of separation transitions between two limits. The r →∞ limit

corresponds to two uncorrelated points, for which p∆ is essentially a convolution of the one-point PDF

p with itself. As long as r is large enough to maintain a weak correlation, p∆ keeps its large-r limit

and only varies slowly as r is decreased. Once r becomes small enough for a significant correlation

(which is positive in the physical regimes considered here), it becomes harder to produce a large

difference ∆Tb between the two correlated points (as noted above, even when one is fully ionized

and the other is not); p∆ thus becomes more strongly concentrated near ∆Tb = 0, approaching a δD

function at ∆Tb = 0 as r → 0.

The correlation between cells, referred to above, probes different physical effects at different

redshifts. Before reionization, this is the density correlation, which arises from large-scale modes

in the initial fluctuations. During reionization, the correlation of Tb is dominated by ionization, so

that points close enough together to be in the same ionized bubble (or in strongly correlated nearby

bubbles) will have strongly correlated 21-cm brightness temperatures. Thus, by inspecting the plots,

one can make a rough estimate of the average size of an ionized bubble at low redshifts, or the typical

density-fluctuation correlation length at high redshifts. This effective correlation length is the first

separation bin at which the difference PDF at high ∆Tb drops significantly below its value at larger

separations. For example, in Figure 10.4, the average bubble size can be seen to increase beyond 10

comoving Mpc during the late stages of reionization.

As in the case of the one-point PDF, the difference PDF is relatively insensitive to variations

in the small-scale sub-grid physics, as tested by the various simulation runs. Figure 10.7 displays

a comparison of the difference PDFs for the six different reionization runs, for various comoving

distance bins, at the redshift where x̄i is closest to the value of 0.4 (i.e., in the midst of the reionization

process). We also show the corresponding one-point PDFs, for easy comparison. Similarly to p (as

discussed in Section 10.2), the large ionized bubbles and correlation length in the case of reionization

by massive, rare sources stretch p∆ out to higher values of ∆Tb (as seen in the Z1 run and, especially,

S4). Our findings are consistent with those of Ref. [103] and with the general theoretical expectation

that clustered groups of galaxies determine the spatial distribution of ionized bubbles [133] which is



129

then driven by large-scale modes and is mainly sensitive to the overall bias of the ionizing sources.

We next proceed to measure the parameter analogous to PD, but this time for the case of

difference PDFs. This parameter, which we denote ∆PD, represents the (number) fraction of pairs

for which ∆Tb ≈ 0. In the reality of having limited resolution, it is the fraction of pairs for which

∆Tb falls within the lowest-temperature bin. Ideally, this value would directly measure the fraction

of pairs in which both cells are fully ionized, but the finite resolution adds a contribution from pairs

that do not satisfy this condition, but nonetheless have matching brightness temperatures to within

the bin size.

Just as PD in the one-point PDF measures a low-resolution version of the reionization history, so

can ∆PD be considered as measuring a low-resolution version of the ionization correlation function

[123]. In particular, in the limit of infinitely high resolution, ∆PD would precisely measure the joint

ionization probability of two points as a function of their separation. In this case, we would expect

∆PD to vary from the corresponding value of PD, at r → 0, down to P 2
D, at r → ∞ (where each

pixel in the pair is independently ionized with probability PD). While these relations are not exact

with finite resolution, they do provide a rough guide for what to expect. We show the value of

∆PD in Figure 10.8, for the redshifts of each simulation at which the δD function at ∆Tb ≈ 0 is

visible. A comparison with the corresponding values of PD (shown in Figure 10.3) shows that the

above theoretical behavior is satisfied only approximately, since the fully ionized pairs make up only

a fraction of ∆PD. Still, Figure 10.8 shows the flat asymptote of ∆PD at large r, and its rise as r

drops below the correlation length (although r does not quite reach small enough values to see the

flat r → 0 asymptote).

We have illustrated how the difference PDF encodes information about the EoR, in particular

by separating out information on the ionization correlations (unlike the power spectrum analysis,

in which the ionization and density correlations are mixed together). We note that a model for

the PDF (such as the GED model) is insufficient for constructing an analytical model fit for the

difference PDF, since the latter depends on additional information regarding the correlations on

various scales. We leave for future work a more quantitative analysis of the features of the difference

PDF and their relation to the properties of the ionizing sources and the reionization history.

10.4 Summary and Conclusions

Upcoming low-frequency radio observations will use the MWA, LOFAR, and similar instruments to

survey the sky for redshifted 21-cm emission. Analyzing this data will require extraction of a small

signal on top of the overwhelming foregrounds, so the detection is expected to be achieved only

statistically. It is therefore important to develop appropriate statistical tools that can be used to

gain information about the history of reionization from these observations.
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In this chapter, we examined PDFs and difference PDFs, using six different simulations from

Ref. [103]. We showed that the PDFs are highly non-Gaussian in the midst of the reionization

process, and are thus a complementary statistic to the commonly discussed power spectrum. As a

way to analyze the PDFs, we examined the evolution of the parameters of the best-fit GED model

with the global ionized fraction x̄i. In particular, the δD function portion of the probability (PD)

measures a low-resolution, smoothed-out version of the reionization history (i.e., x̄i as a function of

redshift).

We also presented the first numerical measurements of difference PDFs; specifically, we measured

difference PDFs for the same set of simulation runs from Ref. [103]. We argued that the larger

data set and the nature of this statistic can be significant advantages in the presence of bright

foregrounds. The difference PDF can be physically understood as arising from three contributions:

pixel pairs in which both, one, or neither of the pixels is ionized. As an illustration of the information

that can be deduced from the difference PDFs, we considered the typical correlation length, which

corresponds to the average size of an ionized bubble during reionization, or the typical density-

fluctuation correlation length, at the onset of the EoR. The difference PDF also has a delta-function

portion (∆PD), which measures a low-resolution, smoothed-out version of the ionization correlation

function at each redshift.

We found that increasing small-scale clumping, and including photoheating feedback or mini-

haloes has only a small effect on the one-point and difference PDFs (considered at a given x̄i), at

least within the range of assumptions covered by the simulations that we considered. On the other

hand, we showed that the PDFs are highly sensitive to the properties of the ionizing sources, so that

measuring them can help distinguish between reionization driven by large versus small haloes, and

help unveil information about the first sources of light in the Universe. These conclusions parallel

those of Ref. [103], highlighting the fundamental fact that the spatial structure of reionization is

driven by large-scale modes and depends mainly on the overall bias of the ionizing sources [129,133].

As one of the future steps, it will be interesting to more precisely quantify the properties of

difference PDF and establish the relation between their features and the properties of the IGM

during the EoR. It would also be interesting to explore the PDFs and difference PDFs in alternative

reionization scenarios, such as those dominated by x-ray sources or a decaying dark matter particle.

Contrasting different scenarios may lead to a fuller understanding of the information content of the

specific PDF shapes that we measured.
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Figure 10.1: One-point PDFs for six different simulation runs, at the redshifts listed in Table 10.2.
The y-axis is the logarithm of p(Tb), where p represents the number fraction of points (i.e., pixels,
or data-cube cells) at a given Tb, normalized by the temperature-bin size. The units of p are mK−1.
There are 20 evenly spaced temperature bins in each curve. The size of a bin at each redshift is set
by the temperature range of the cells at that redshift. The top PDF in each plot is at the lowest
redshift of the data cube, and the redshift increases downward. The i-th PDF in each plot is shifted
down the vertical axis by 2(i − 1) in logarithmic space, for clarity. We show the measured PDFs
(solid red curves) as well as the best fits of the GED model (dashed blue curves).
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Figure 10.2: Top panel: evolution of the global ionized fraction x̄i with redshift z, for each of the six
simulation runs. Other panels show how various parameters derived from the best-fit GED model to
the 21-cm PDF evolve as the reionization proceeds. PD, PE , and PG are, respectively, the fractional
probability in the delta function, the exponential, and the Gaussian part of the PDF; TL is the
joining point of the exponential and the Gaussian, TG is the mean of the Gaussian, and σG is its
variance. There are four free parameters in the fit to each PDF.
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Figure 10.3: Three different measurements of PD are shown versus x̄i. These include PD as calculated
from the best fit of the GED model (solid black curve), directly from the measured PDF of Tb, i.e.,
the fraction of pixels that fall within the lowest-temperature bin (dotted blue curve), and directly
from the measured PDF of xi, i.e., the fraction of pixels that fall within the highest-xi bin (dashed
red curve). Results for the six different simulation runs are shown.
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Figure 10.4: Difference PDFs are shown for all the output redshifts of the S1 simulation. The x-axis
is the brightness temperature difference ∆Tb for pairs of cells, and the y-axis, p∆, is the number
fraction of pairs of cells at a given separation, r, with a given ∆Tb (normalized by the size of the
∆Tb bin). Different curves indicate different r bins (the legend indicates the central values of the
logarithmic bins).
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Figure 10.5: This figure is a smaller version of Figure 10.4: difference PDFs for the rest of the
simulation runs are shown for three representative redshifts (i.e., early, mid, and late reionization).
The legend is the same as in Figure 10.4.



136

Figure 10.6: Separate contributions to the difference PDF, for the S1 simulation at z = 7.3. We
show the contribution of pixel pairs in which both cells are fully ionized (dashed curves, capturing
the δD functions at zero ∆Tb), pairs in which one cell is fully ionized (dot-dashed curves), and pairs
in which neither of the cells is fully ionized (dotted curves). The total p∆ (solid curves) is the sum
of these three contributions.
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Figure 10.7: Comparison of the one-point PDFs (upper panel) and difference PDFs (lower panel), for
all six simulation runs, at r = 16.2 comoving Mpc. Each simulation run is shown at the redshift for
which the value of the global ionized fraction x̄i is closest to 0.4, i.e. in the midst of the reionization
process.
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Figure 10.8: ∆PD parameter (thick lines), measured from difference PDFs as the value of the zero-
temperature-difference bin, for all six simulation runs, is shown for the redshifts where it is non-
vanishing. It represents the fractional probability in the delta function around ∆Tb ≈ 0, i.e., the
number fraction of pairs of cells which are either both fully ionized, or both at the same brightness
temperature. We see that this value tends to asymptote to the corresponding PD, at r ∼ 0, as
expected for fully correlated cells. The thin lines of the same type and color represent the part of
the corresponding ∆PD that originates from pairs where both cells are fully ionized.
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Part V

General Conclusions
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In this thesis, we explored two very different topics: signatures of new (potentially parity-

violating) physics, and the epoch of cosmic reionization. We now conclude with a few general

remarks regarding future research directions.

First, the formalism and analysis method developed to search for cosmic birefringence and chiral

gravity in the CMB are readily applicable to investigating other signatures that will open up a “gold

mine” of information for cosmology in the next decade. One example is the weak gravitational

lensing of the CMB, and another we already started exploring in this thesis—the signature that

reionization inhomogeneities have imprinted on the CMB. Second, all our theoretical considerations

were based on analyzing higher-order statistics, which are rapidly becoming important for unearthing

tiny deviations from the concordance model of cosmology, and perhaps are the main direction that

CMB science is headed in the future. Thirdly, the work of this thesis was only concerned with

data from full-sky CMB surveys; however, a particularly interesting avenue has just started opening

up with the advent of deep, small-area ground-based surveys, such as SPT and ACT, whose data

might become highly relevant for related searches in the future. Also, the CMB measurements

of upcoming data sets, from both Planck and the ground-based observations, are entering a new

regime of signal-dominated polarization measurements—it will be interesting to see how these might

challenge or confirm some of the results presented here. Finally, we have briefly focused on tools

of 21-cm cosmology, by investigating different statistics for analyzing planned low-frequency radio

observations whose aim will be to map the redshifted 21-cm signal from reionization—a direction

which by itself represents one of the most active areas of cosmology research. To unify it with the

CMB-themed part of this thesis, let us just point out that a cross-correlation between the 21-cm

maps and the maps of patchy screening of the CMB could have a potential to unveil tomography

of the intergalactic medium, far exceeding either one of the two approached alone—a prospect well

worth exploring.

Figure 10.9: Modified Flammarion engraving
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Appendix A

Wigner-3j Symbols

Here we list some useful relations regarding the Wigner-3j symbols (abundantly used in Chapter 5

of this thesis).

We start by providing a useful way to define spherical harmonics, using Legendre polynomials,

Y`m(θ, ϕ) =

√
(2`+ 1)

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimϕ. (A.1)

The metric tensor and its inverse on a unit 2-sphere (i.e., on the sky) is

g =

 1 0

0 sin2 θ

 , (A.2)

g−1 =

 1 0

0 1
sin2 θ

 . (A.3)

The Levi-Civita tensor on a unit 2-sphere is

ε =

 0 sin θ

− sin θ 0

 . (A.4)

An orthonormal basis on a unit 2-sphere is

êθ ≡

 1

0

 , êϕ ≡

 0

sin θ

 . (A.5)

Some useful properties of the Wigner 3j symbols and related quantities include `1 `2 `3

m1 m2 m3

 = (−1)`1+`2+`3

 `1 `2 `3

−m1 −m2 −m3

 , (A.6)
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 `1 `2 `3

m1 m2 m3

 =

 `2 `3 `1

m2 m3 m1

 , (A.7)

 `1 `2 `3

m1 m2 m3

 = (−1)`1+`2+`3

 `2 `1 `3

m2 m1 m3

 , (A.8)

 ` ` 0

m −m 0

 =
(−1)

`−m
√

2`+ 1
, (A.9)

m1 +m2 +m3 6= 0⇒

 `1 `2 `3

m1 m2 m3

 = 0, (A.10)

∑
m1m2

(2`3 + 1)

 `1 `2 `3

m1 m2 m3

 `1 `2 `3
′

m1 m2 m3
′

 = δ`3`3′δm3m3
′ . (A.11)

They also satisfy triangle inequalities,

L ≤ `+ `′,

L ≥ |`− `′|,
(A.12)

The relation between spin-zero spherical harmonics and Wigner 3j symbols is

∫
dn̂Y`1m1

(n̂)Y`2m2
(n̂)Y`3m3

(n̂) =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

 `1 `2 `3

m1 m2 m3

 `1 `2 `3

0 0 0

 .

(A.13)
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Appendix B

Maxwell’s Equations with
Chern-Simons Coupling

In this chapter, we derive Maxwell’s equations in curved spacetime, modified by the presence of an

electromagnetic Chern-Simons coupling of photons to a dynamical scalar field φ, considered in Part

III of this thesis.

We consider the following Lagrangian density

L =
√
−g(−1

4
FµνFµν −

β

4M
φεµνρσF

µνF ρσ) ≡ L1 + L1, (B.1)

and the metric element

ds2 = −a2(1 + 2Ψ)dt2 + a2(1− 2Φ)d~x2, (B.2)

with the usual definition of the symbols. We begin by sketching out the derivation of the first and

second Maxwell’s equations, and then focus on the third and fourth, which are relevant for the

derivation of the birefringent rotation angle in Eq. (4.7).

Let us begin by expanding the Euler-Lagrange equation,

∂L

∂Aα
−∇β

∂L

∂(∇βAα)
= 0, (B.3)

noting that in the absence of currents1 the first term vanishes, and the second term has contributions

from the standard electromagnetic part L1, and from the Chern-Simons term L2. Substituting

∂(∇µAν)

∂(∇σAρ)
= δ σµ δ

ρ
ν , (B.4)

and

Fµν ≡ ∂µAν − ∂νAµ (B.5)

1Since we are only interested in propagation of photons in a vacuum, we set the current to zero.
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into

L1 = −
√
−g 1

4
gµλgνσFµνFλσ, (B.6)

and plugging the new expression into the Euler-Lagrange equation for L1, we get the usual result2,

∇β
∂L1

∂(∇βAα)
= ∇β(

√
−gFαβ). (B.7)

We further use Eqs. (B.4) and (B.5) and expand L2 as

L2 = −
√
−g β

4M
φεµνρσg

µλgνγgρδgσξFλγFδξ, (B.8)

to get

∂L2

∂(∇βAα)
= −
√
−g β

4M
φ[(εβαρσ − εαβρσ)F ρσ + (εµν

βα − εµναβ)Fµν ] = −
√
−g β

M
φFµνεµν

βα,

(B.9)

where in the last step we used antisymmetry of the Levi-Civita tensor,

εβαρσ = −εαβρσ, (B.10)

renamed indicies ρσ → µν, and employed the following property

εβαµν = εµν
βα. (B.11)

Finally, remembering the definition of the dual of the electromagnetic field-strength tensor, we can

write the full Euler-Lagrange equation (including the Chern-Simons term) in curved spacetime as3

∇µ(
√
−gFµν) +∇µ(2

β

M
φ
√
−gF̃µν) = 0. (B.12)

Explicit forms of the first and the second Maxwell’s equation can be obtained by separating time

and space components of Eq. (B.12), and using the definition of Fµν given below.

We now focus on obtaining the third and the fourth equation. Starting from the following

equality4

∂αFβγ + ∂βFγα + ∂γFαβ = 0, (B.13)

where the components of Fµν in the free-falling observer’s frame, in the conformal-Newtonian gauge,

2In flat Minkowski spacetime,
√
−g = 1, which recoveres the standard result.

3Note that the covariant derivatives (denoted with ∇µ) of the metric and the Levi-Civita tensor vanish, which can
be used to write this equation only in terms of Fµν .

4This equality holds for any metric, since Fαβ = −Fβα, by definition.
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to first order in Φ and Ψ, read

F00 = F11 = F22 = F33 = 0,

F01 = −Exa2(1− Φ + Ψ),

F02 = −Eya2(1− Φ + Ψ),

F03 = −Eza2(1− Φ + Ψ),

F12 = Bza
2(1− 2Φ),

F13 = −Bya2(1− 2Φ),

F23 = Bxa
2(1− 2Φ),

(B.14)

and considering, respectively, the following two cases: α = 1, β = 2, γ = 3, and α = 0, β = 1, γ = 2,

we arrive at the third and fourth Maxwell’s equation including the Chern-Simons term in curved

spacetime,

~∇( ~Ba2(1− 2Φ)) = 0,

~∇× ( ~Ea2(1− Φ + Ψ)) = − ∂

∂τ
( ~Ba2(1− 2Φ)).

(B.15)
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