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Abstract 

We have used the technique of non-redundant masking at the Palomar 200-inch telescope 

and radio VLBI imaging software to make optical aperture synthesis maps of two binary stars, {3 

Corona Borealis and o- Herculis. The dynamic range of the map of {3 CrB, a binary star with a 

separation of 230 milliarcseconds is 50:1. Foro- Her, we find a separation of 70 milliarcseconds 

and the dynamic range of our image is 30:1. These demonstrate the potential of the non-redundant 

masking technique for diffraction-limited imaging of astronomical objects with high dynamic 

range. 

We find that the optimal integration time for measuring the closure phase is longer than that 

for measuring the fringe amplitude. There is not a close relationship between amplitude errors 

and phase errors, as is found in radio interferometry. Amplitude self calibration is less effective 

at optical wavelengths than at radio wavelengths. Primary beam sensitivity correction made in 

radio aperture synthesis is not necessary in optical aperture synthesis. 

The effects of atmospheric disturbances on optical aperture synthesis have been studied by 

Monte Carlo simulations based on the Kolmogorov theory of refractive-index fluctuations. For 

the non-redundant masking with r c-sized apertures, the simulated fringe amplitude gives an upper 

bound of the observed fringe amplitude. A smooth transition is seen from the non-redundant 

masking regime to the speckle regime with increasing aperture size. The fractional reduction of 

the fringe amplitude according to the bandwidth is nearly independent of the aperture size. The 

limiting magnitude of optical aperture synthesis with r c-sized apertures and that with apertures 

larger than r c are derived. 

Monte Carlo simulations are also made to study the sensitivity and resolution of the bis

pectral analysis of speckle interferometry. We present the bispectral modulation transfer function 
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and its signal-to-noise ratio at high light levels. The results confirm the validity of the heuristic 

interferometric view of image-forming process in the mid-spatial-frequency range. The signal

to-noise ratio of the bispectrum at arbitrary light levels is derived in the mid-spatial-frequency 

range. 

The non-redundant masking technique is suitable for imaging bright objects with high 

resolution and high dynamic range, while the faintest limit will be better pursued by speckle 

imaging. 
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Chapter I. 

Introduction 

"The new theory, which connects the wave function with probabilities for one photon, gets over 

the difficulty by making each photon go partly into each of the two components. Each photon 

then interferes only with itself. Interference between two different photons never occurs." 

- P.A.M. Dirac, The Principle of Quantum Mechanics 
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1. Purposes of Research 

Progress and discovery in astronomy always take place along with the improvement in 

sensitivity and spatial resolution of an observing technique at any wavelength. 

High-resolution interferometric observation from the ground is a technique to extract spatial 

structure of an astronomical object by a correlation analysis of an ensemble of instantaneous in

terference patterns made by transient partially coherent light. This overcomes the 'seeing' limit of 

the direct imaging of astronomical object and restores the potential resolution of a given telescope 

larger than 10 em e.g., the diffraction limit of the 200-inch telescope is 25 milliarcseconds. Unlike 

the improvement in both sensitivity and spatial resolution expected from the Hubble Space Tele

scope through direct imaging from space, ground-based observations gain high angular resolution 

at the cost of sensitivity, because of the short life time of each interference pattern and the de

pendence on higher-order correlations. The resultant trade-off between sensitivity and resolution 

places high-resolution ground-based observations in a unique position in current astronomy as de

scribed later in this chapter. When one has to work at the very limit of a technique, astronomical 

goals and the technique are hardly separable. 

In the development of high-spatial-resolution astronomy, two major issues have been 'imag

ing' and 'limiting magnitude.' Here imaging refers to the recovery of a two-dimensional source 

structure of the astronomical object, and limiting magnitude refers to the brightness limit of the 

astronomical object whose image is recoverable with a given signal-to-noise ratio. In this thesis, 

Diffraction-Limited Imaging on the 200-inch Telescope, these two issues are studied in two stages. 

The first stage is a demonstration of the potential of a high-resolution 'imaging' technique with 

ground-based optical telescopes, the non-redundant masking for making diffraction-limited images 

of astronomical objects with high dynamic range (Chapter II). The second stage is an estimate of 
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limitations of two high-resolution imaging techniques with ground-based optical telescopes, opti

cal aperture synthesis including non-redundant masking (Chapter III) and the bispectral analysis 

of speckle interferometry (Chapter IV). 

In this chapter, an introduction to current high-resolution astronomy is given in §2. In §3, 

one of the major goals of the high-resolution imaging effort at Caltech, high-resolution imaging 

of active galactic nuclei and quasars, is discussed in detail. High-resolution imaging techniques 

and some recent developments are introduced in §4. Future prospects of high-resolution imaging 

from the ground are discussed in §5. 

2. Current High-Angular-Resolution Astronomy 

In this section, high-resolution studies of astronomical objects at optical and infrared wave

lengths are briefly reviewed. 

Stellar Astronomy 

High-resolution interferometric observation of astronomical objects was initiated as stellar 

interferometry by Michelson and Pease (1921 ). Among other fields of stellar interferometry, 

studies of binary stars have been systematically and extensively made. Binary stars are the 

fundamental source for the determination of stellar masses. Interferometric determinations of 

the magnitude differences and the orbits of double-lined spectroscopic binary star systems give 

the best estimates of masses. Systematic studies of binary stars are currently going on and the 

empirical mass-luminosity relation is still being improved (McAlister 1985, references therein). 

The measurements of spectroscopic binary stars also contribute to cosmology through independent 

distance determinations. Binary Cepheids and spectroscopic binaries in the Hyades cluster are 
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good targets of current high-resolution techniques. Some results on Hyades binaries have already 

been published (McAlister 1985). 

Stellar diameters are the fundamental parameters in the study of stellar atmospheres. Until 

recently, however, the only systematic study of stellar diameters was made by the stellar intensity 

interferometer (Hanbury Brown 1974, references therein). Angular diameters of 32 stars brighter 

than B = 2.5 mag were obtained; the average measured angular diameter was 1.7 milliarcseconds 

and the spectral type of the stars ranged from 05f to F8. The measurement of about 30 more 

stars was made by speckle interferometry, amplitude interferometry and CERGA long-baseline 

interferometry in France with lower resolutions than the intensity interferometer. The status of 

interferometric measurements before 1984 has been summarized by Davis (1984). Very recently, 

the Mount Wilson Mark III interferometer (Shao et al. 1988) produced the preliminary results of 

the angular diameter measurement of 24 stars (Hutter et al. 1988) with a 12-m baseline. This 

fringe-tracking interferometer is promising in this field, taking into account the use of a 32-m 

baseline in the near future. Necessary resolution and sensitivity to cover various spectral types 

and luminosity classes are discussed by Davis (1978). 

The massive end of the stellar mass distribution is ambiguous because of the high multi

plicity found in very massive stars by high-resolution imaging. R136a, the central object of 30 

Doradus with an estimated mass of 3000 M0 , has been resolved into a multiple stellar system by 

speckle imaging (Weigelt and Baier 1985). A systematic study of the duplicity and multiplicity 

of massive objects (e.g., Wolf-Rayet stars) should be made by high-resolution observations. 

Until now, infrared study of dust-reflection nebulosities around both young stellar objects 

and evolved mass-loss stars has been made by one-dimensional speckle interferometry with a 

resolution of about 0.3 arcseconds (e.g., HL Tau; Beckwith et al. 1989). Major progress in this 

field is expected with the use of two-dimensional detectors with low read-out noise. 
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Solar System 

Since Michelson measured the angular diameters of the Galilean satellites of Jupiter (1891), 

solar system objects have been the targets of high-resolution observations. Since the photographic 

discovery of a satellite of Pluto, Charon, by Christy and Harrington (1978), the orbit of the Pluto

Charon system has been traced by speckle interferometry (e.g., Beletic et al. 1989). 

The solar system provides the brightest non-spherical solid bodies in the observable Uni

verse, asteroids, for high-resolution 'imaging.' Since speckle interferometry was implemented, 

some observations of asteroids (e.g., Baier and Weigelt 1983) have been made. However, there 

has not been any systematic study of the three-dimensional geometry of an asteroid or a polari

metric study. Because of the transient nature of the objects, it is desirable to have a dedicated 

telescope which provides continuous observations. 

Nuclei of Galaxies 

Active galactic nuclei and quasars have often been referred to as major targets of high

resolution imaging. For example, the high-resolution imaging project at Caltech was initiated 

by the astronomers whose research interests are in these objects (e.g., Readhead et al. 1983; 

Neugebauer et al. 1987). However, at optical/IR wavelengths, there have not been many successful 

observations which extracted meaningful astrophysical parameters with a sub-arcsecond resolution 

from active galactic nuclei. A critical reexamination of the necessary dynamic range and resolution 

of images and observing strategy must be made, taking the future progress of the field made by 

the Hubble Space Telescope into account. Since a study of active galactic nuclei is also a major 

interest of the author, further discussion is given in the next section. 

So far not much attention has been paid to normal galaxies. However, not only ' active' 

nuclei, but also nuclei of normal galaxies are interesting. By the study of stellar velocity dispersion 

around the nuclei of nearby galaxies, dynamically distinct cores have been found (e.g., Kormendy 
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1988). The stellar density profile of the core in M31 is likely to be obtained by high-resolution 

imaging. 

By direct CCD imaging under good seeing conditions, stellar cusps were found in the nuclei 

of M87 and NGC6251 (Young et al. 1978, 1979). Resolving stellar cusps is a challenging project 

for speckle interferometry applied to faint objects. 

3. Active Galactic Nuclei and Quasars 

Since one of the original scientific motivations of the project Diffraction-Limited Imaging 

on the 200-inch Telescope was to study active galactic nuclei (AGN) and quasars, a discussion of 

future prospects of the field is given in this section. 

Central power-law-continuum source 

The physical dimension of the emitting region for black hole models will be order of 10 

rg, where rg is the gravitational radius. For a black hole of 109 M0 , 10 rg = 3 x 1010 krn or 

250 AU. At the distance of the Virgo cluster, the corresponding angular size is 10 11-arcseconds. 

Mm-VLBI may achieve this resolution in the near feature. However, it is not likely that a central 

source can be resolved by optical/IR interferometry early in the next century. 

Broad-Line Region (BLR) 

At optical wavelengths, the environment of the AGN whose angular scale is smaller than 

a few arcseconds has been studied primarily by spectroscopy. The kinematics and the physical 

condition of the interstellar medium near the central power-law source are thought to be determined 

by its gravitational potential and radiation. The BLR is characterized by a high density (electron 

density > 109 cm-3) and a high ionization state. There has not been any consensus on the 
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origin of high-velocity wings of emission lines (> 5000 km/s) in this region, though they may 

be partly explained by Keplerian motion around a massive object. By a simple scaling argument 

concerning the luminosity and the region size based on the photo-ionization model (Davidson 

and Netzer 1979, references therein), it is predicted that the BLRs of the brightest AGNs and 

QSOs (e.g., NGC4151, 3C273) at low redshifts have angular sizes of about 0.5 milliarcseconds. 

For instance, the physical dimension at the distance of NGC4151 is 0 .05 pc. However the outer 

region may merge into the narrow-line region described below at a scale as large as 1 pc. The 

necessary angular resolution corresponds to a 60-m baseline interferometer in space at Lya and 

a 300-m baseline at Ha. In order to extract the dynamics of the region it will be desirable to 

resolve spectrally into at least a few pixels with an appropriate fractional bandwidth of around 

0.01. A breakthrough in ground-based long-baseline interferometry (§5) or a space interferometer 

in the next century will enable us to study the BLRs. 

Narrow-Line Region (NLR) 

The NLR lies between the outer envelope of the BLR and the host galaxy. The interstellar 

medium with a low density ( < 104 em - 3) and a small velocity dispersion ( < 1000 km/s) compared 

to that in the BLR is ionized or heated by X-ray and UV radiation from the central object. 

The scale of interest ranges from 0.1 pc to 1 kpc. In nearby AGNs, the NLRs are often 

spatially resolved by direct line imaging with a resolution of a few arcseconds. Recent studies 

show the evidence for spatial stratification of physical properties (velocity, density, ionization 

state) within the NLR (Wilson and Heckman 1985, references therein). Therefore any angular 

scale smaller than 1 arcsecond is of interest in nearby AGNs. 

Using strong [OIII] doublets at 4959 A and 5007 A, Ebstein et al. (1989) have mapped the 

NLRs of NGC1068 and NGC4151 by speckle imaging with a resolution of 0.3 arcseconds. The 

spatial distribution of the [OIII] emission was found to be similar to that of the radio continuum 
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at 2 em. The same tendency had been found previously at larger scales (Wilson and Heckman 

1985). 

Since the expected spatial structure of the emitting region is complicated, the true spatial 

resolution of a line image will depend on its dynamic range. High-dynamic-range imaging is a 

challenge for speckle techniques. The situation will be drastically improved by the Hubble Space 

Telescope which will have resolutions up to 20 milliarcseconds at near UV and 50 milliarcseconds 

at visual wavelengths with very high dynamic range. Beyond a resolution of tens of milliarcsec

onds, NLRs may be targets of the first-generation optical-aperture-synthesis array planned to be 

built in the last decade of the 20th century. However, it is not likely that the image quality of 

an aperture synthesis map of the NLR will be comparable with that of a direct image taken by 

the Hubble Space Telescope. Structures seen with a resolution of 50 milliarcseconds but with a 

high contrast may be lost at higher resolution because of the lower dynamic range of an image 

made by ground-based interferometry. Unless a breakthrough from the ground takes place (some 

candidates are discussed in §5), high-dynamic-range mapping from the ground may tum out to 

be impossible. The recognition of the absolute limitation of the ground-based techniques will 

become a force for steering the efforts of the high-resolution community to space interferometry. 

Infrared continuum 

So far the classification of distinct regions in AGNs has been made spectroscopically at 

optical wavelengths and the size estimates have been made mainly by the study of variability. 

The above discussions about the central continuum source, BLR and NLR, are simply based 

on the previously known facts. It is likely that an improvement in spatial resolution will be 

accompanied by a new discovery. At optical wavelengths, a true discovery will be made by the 

Hubble Space Telescope. Infrared continuum mapping of AGNs will be able to reveal at least 

three features in the environment of the nuclei: the stellar distribution, star-forming activity and 
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thermal re-radiation from hot dust heated by the central continuum source. 

The stellar distribution in AGNs will be best studied in the near-infrared wavelengths 

because of extinction in the AGN. The diffraction limit of a 10-m telescope at 2 J.Lm is comparable 

to the resolution of the Hubble Space Telescope at visual wavelengths. However, in the case of 

the heavily obscured nucleus found in NGC1068, the near-infrared continuum may be affected by 

scattered radiation of the obscured central source by dust. High-resolution imaging polarimetry 

will help determine the nature of near-infrared light in dusty objects. Circum-nuclear star-forming 

regions will be located by infrared continuum mapping beyond 3 J.Lm and maybe best at 10 J.Lm. 

Any angular scale smaller than a few arcseconds (kpc at the distance of Virgo) is of interest. 

These regions overlap with the optical NLR. 

Dusty Seyfert galaxies, especially ones selected by IRAS observations, have most of their 

luminosity in the mid- to far-infrared wavelengths (Soifer et al. 1987, references therein). They 

show a wide variety of spectral energy distributions. For thermal re-radiation from dust heated by 

the central power-law source, it is possible to estimate the size of the emitting region at a given 

wavelength and observed flux density, by assuming the equilibrium temperature which peaks at 

that wavelength. In the case of the brightest Type-2 Seyfert, NGC1068, the size of the 10-J.Lm 

emitting region will be between 10 milliarcseconds and 100 milliarcseconds depending on the 

optical depth. The angular scale of interest is considerably smaller at shorter wavelengths. 

Infrared Line Mapping 

A variety of hydrogen recombination lines in the Paschen and Brackett series, helium recom

bination lines, forbidden [Fell] lines and molecular hydrogen lines fall into near-infrared windows 

depending on the redshift of the galaxy. 

Among others, molecular hydrogen lines having been found to be generally strong in AGN 

galaxies are of special interest (e.g., Kawara et al. 1987). From the study of runaway heating of 
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the interstellar medium (ISM) of the host galaxy by the X-ray from the central source, Begelman 

(1985) argues that even after the elimination of the cool component of the diffuse ISM (T < 104 

K) within a scale of kpc from the nucleus, giant molecular clouds may survive, because of their 

small covering factors and large masses. Then the spatial distribution of the molecular hydrogen 

lines will be a key to understanding the circum-nuclear star formation and possibly the feeding 

mechanism of the central object. Any angular scale smaller than a few arcseconds has significant 

information. 

furbidden [Fell] at 1.644 !-LID has also been found to be strong in Seyfert galaxies (e.g., 

Moorwood and Olivia 1988). In dusty IRAS galaxies where optical narrow lines have significant 

extinction, [Fell] may be useful as a tracer of the NLR in addition to hydrogen recombination 

lines, provided that this line is excited by the radiation from the central power-law source (Graham 

et al. 1989). Angular scales of interest are the same for the optical NLR. Infrared spectroscopy 

of AGNs should precede infrared line imaging to provide a basic guide line. 

4. High Resolution Imaging Techniques from the Ground 

In this section, high-resolution imaging from the ground is introduced and the recent de

velopments are described of two imaging techniques relevant to this thesis. 

Two-Dimensional Photon-Counting Detection of an Astronomical Object 

Thrbulent mixing of the air causes local fluctuations of temperature and thus of density 

and refractive index. Multiple small-angle scattering by the local fluctuations of the refractive 

index turns an incoming plane wave from a star into a partially coherent wavefront. The partial 

coherence originates from the continuity of the wavefront and the finite phase-fluctuation power 

at small scales characterize~ by a coherence length which is about 10 em at visual wavelengths. 
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If the partially coherent light is collected by an aperture larger than the coherence length (a 

large ground-based telescope), a random interference pattern or speckle pattern will be seen on 

the image plane. Each pair of coherent portions in the aperture plane forms an interferometer. If 

the baseline of the hypothetical interferometer is shorter than the diameter of the aperture, there 

will be multiple pairs which form the identical baseline. Then that baseline is redundant. Fringes 

made by the redundant baseline interfere destructively on the image plane and the modulation 

attenuates. The degree of attenuation depends on the redundancy of the baseline. 

If a mask with a pair of holes whose size is much smaller than the coherence length (an 

ideal Michelson interferometer) is set over the aperture plane of the telescope, a fringe pattern with 

an amplitude of unity and a random phase will be seen on the image plane. Even if the number 

of holes is increased to three, a set of three superposed fringes with amplitudes of unity will be 

seen on the image plane, as long as the configuration of the holes does not form any redundant 

baseline. Although the individual fringes wander around according to their random phases, the 

'closure phase', the sum of the three fringe phases, remains constant, setting a constraint on the 

triangular pattern. 

The translation by the wind and the pattern change of the turbulent layer cause decorre

lation of the speckle pattern or the fringe pattern in time. In order to preserve the modulation 

corresponding to a high spatial frequency, snap shots with an exposure time of 10 milliseconds 

must be taken. For an extended source, the modulation in a speckle or that in a fringe pattern is 

attenuated by incoherent addition (or convolution) of displaced point-source speckle patterns or 

that of displaced point-source fringe patterns in a static manner. 

At high light levels, the signal-to-noise ratio of the modulation per speckle pattern is finite 

and the static source information has to be extracted from an ensemble of speckle patterns. On 

the other hand, a fringe pattern made by the ideal Michelson interferometer has an infinite signal-
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to-noise ratio per snap shot. 

At low light levels, the particle nature of the visual light sets further limits to the signal

to-noise ratio through photon noise. A wavefront disturbed by the atmosphere becomes a time

varying wave function of a single photon and a speckle pattern or a fringe pattern becomes a 

probability distribution for the detection of each photon. Instead of the ideal Michelson inter

ferometer, masks with apertures whose sizes are about the lateral coherence length are used, in 

practice, to collect more photons at low light levels. We term this technique, 'non-redundant 

masking' (NRM), since the baseline configuration does not have redundancy. Only a limited 

number of discrete photon events are seen within a short-exposure frame. In practice, a photon

counting detector is used in our experiments and therefore the observables are the event location 

and the arrival time of each photon. 

Image Reconstruction by Spatial Spectrum Analysis 

An image of an extended object is in principle hidden in its instantaneous speckle pattern as 

the convolution function with the hypothetical simultaneous point-source speckle pattern. In the 

case of the ideal Michelson interferometer, the point-source fringe pattern is in principle known 

a priori, therefore the modulation in the object fringe pattern should immediately tell about the 

source structure. However, in practice, the quality of an instantaneous speckle pattern or fringe 

pattern obtained by NRM is severely limited both by the atmospheric disturbance and photon 

noise. Thus an image must be obtained from ensemble averaged observables. The atmospheric 

disturbance makes the absolute position of the speckle pattern and the absolute phase of the 

fringe pattern poor observables. Natural observables are correlation functions (autocorrelation, 

triple correlation ... ) of the image or their counterparts in the Fourier domain (power spectrum, 

bispectrurn ... ), since these quantities extract structure of the patterns. The power spectrum 

gives the amplitude of the modulation leaving 180° ambiguity compared to a 'true image.' The 
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bispectrum gives phase information as the closure phase which is related to the asymmetry in the 

structure. When the amplitude and the closure phase are combined, a true image is obtained apart 

from the absolute position. The amplitude and the phase of the Fourier transform of the image are 

derived from the power spectrum and the bispectrum by supplying additional absolute position 

information. In practice, direct correlations of photon events are often taken at low light levels. 

Correlation functions whose orders are higher than the third are practically of no use, since they 

are much noisier than the autocorrelation and the triple correlation. 

Speckle Imaging 

The recognition of the use of full apertures of ground-based large telescopes by Labeyrie 

(1972) through speckle interferometry opened up a new era in high-resolution observations. A clue 

to speckle imaging using the phase difference was first proposed by Knox and Thompson (1974) 

and a practical implementation was made recently (e.g., Nisenson et al. 1985). A more powerful 

imaging technique, the bispectral analysis was developed by the Erlangen group (e.g., Lohmann 

et al. 1983, Wimitzer 1985). A successful recovery of an image of a 11-mag multiple stellar 

system with a resolution of 0.1 arcsecond by Hoffman and Weigelt (1986) gathered the attention 

of radio astronomers who had been producing diffraction-limited maps under unstable conditions 

of phase through phase-closure imaging (Pearson and Readhead 1984, references therein). As 

was pointed out by Cornwell (1987), the bispectral analysis is the fully-filled-aperture version of 

phase-closure imaging. A comparison between the bispectral analysis and NRM in terms of the 

redundancy of the aperture configuration was discussed by Readhead et al. (1988). 

In this thesis, the potential and the limitations of the bispectral analysis are studied by Monte 

Carlo simulations to give an estimate of the limiting magnitude and the resolution in Chapter IV. 

Optical Aperture Synthesis Imaging 

Diffraction-limited imaging of an astronomical object using an interferometric array under 
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unstable phase conditions was first achieved at radio wavelengths as phase-closure imaging of 

VLBI (Readhead and Wilkinson 1978). Although the application of phase-closure imaging to 

optical wavelengths had been considered to be straightforward (Readhead et al. 1980), measure

ments of the closure phase to test the feasibility of optical phase-closure imaging were made 

only recently by a group at Cambridge (Baldwin et al. 1986) and by one at Caltech (Readhead 

et al. 1988) through the NRM technique with ground-based optical telescopes. The successful 

measurement of the closure phase by the Cambridge group allowed the first optical aperture syn

thesis image of a binary star with a separation of a half arcsecond (Haniff et al. 1987), that by 

the Caltech group was demonstrated by two images of binary stars with separations of 70 and 

230 milliarcseconds presented in Chapter II. The application of the radio imaging technique to 

optical aperture synthesis turned out not to be as straightforward as was expected. Fundamental 

differences that arise from the difference in interference-detection schemes at radio and optical 

wavelengths and associated problems are discussed in Chapter II. 

The NRM technique can be regarded as a first step towards the next-generation optical 

aperture synthesis array under the constraint of passive optics. The effects of the atmospheric 

disturbance on the NRM and masking with apertures larger than the lateral coherence length are 

studied by Monte Carlo simulations and the sensitivity is obtained in Chapter III. 

5. Future Prospects 

Potential and Limitations of Ground-Based Imaging Techniques with Passive Optics 

As estimated in Chapter III and Chapter IV respectively, the limiting visual magnitude of 

NRM is around 11 mag and that of speckle imaging is somewhere between 13 and 15 mag. The 

limiting magnitude of long-baseline interferometry is not better than those of single-telescope 
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techniques, since the atmospheric disturbance and the bandpass set more severe constraints on 

long-baseline interferometry. Here the limiting magnitude of 11 mag is taken as the best-case de

sign. A magnitude-resolution diagram at optical wavelengths is shown in Fig. 1. In this diagram, 

the limiting magnitude of the power spectrum analysis (or Labeyrie's speckle interferometry) and 

the coverage of the Hubble Space Telescope are included. 

Major progress is expected in the measurement of stellar diameters by long-baseline inter

ferometry and in imaging of asteroids by single telescopes. The study of active galactic nuclei 

becomes difficult beyond the resolution of the Hubble Space Telescope. 

Infrared high-resolution imaging is limited either by detector background or sky background 

depending on the type of detector. For an integration-type two-dimensional detector with read

out noise of 100 electrons per pixel, the limiting magnitude is around 7 mag, while for a low 

background detector such as a SSPM discussed in the following, the limiting magnitude will reach 

the sky-background limit of about 11 mag. The limiting magnitudes were obtained simply by 

equating the number of photon counts with that of background counts. 

A magnitude-resolution diagram at 2 JLm is also shown in Fig. 2. Reflection nebulosities 

around young stellar objects and T-Tauri stars are observable with a limiting magnitude of 6 mag 

or fainter with a resolution of one arcsecond. Nearby Seyfert nuclei are observable with a limiting 

magnitude of 8 mag or fainter. The brightnesses of a typical bipolar-outflow source, L1551-IRS5 

and the brightest quasar, 3C273 are both around 9 mag. The study of narrow-line regions of 

active galactic nuclei will crucially depend on the availability of low background detectors. 

Possible Breakthroughs 

The ultimate solution of the problem of the atmospheric disturbance will be to set an 

observing system in space (space interferometer, telescope on the moon, etc.). However this 

is far beyond the scope of this thesis and probably a project for the mid 21st century. Here 
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possible breakthroughs whose success may drastically improve the sensitivity of the ground-based 

techniques in the near future are discussed. 

Adaptive Optics +Artificial Guide Star 

The fundamental limitation of imaging techniques using passive optics such as speckle 

interferometry or NRM is set by the finite coherent integration time and the necessity for higher

order correlations. The idea of adaptive optics such as wavefront compensation or fringe tracking 

is to make the integration time unlimited and obtain a direct image or true phase. Since the 

behavior of the wavefront must be known in real time, the adaptive optics requires many photons 

per coherent cell per coherence time. Therefore the limiting magnitude of 'pure' adaptive optics 

which activates a servomechanism solely by an astronomical object itself is worse than the passive 

methods and is limited at around 9 mag at visual wavelengths (Roddier 1988). 

Although astronomers do not have any control over the atmospheric disturbance itself, they 

can possibly have a control over a light source in the sky which may illuminate the wavefront 

and activate the adaptive optics. An idea of creating an artificial guide star by laser pulses was 

first proposed by roy and Labeyrie (1985). The first experiment using resonant scattering by the 

sodium layer in the mesopause (80-llOkm) was carried out by Thompson and Gardner (1987). 

Although the artificial star spread over one arcminute, the intensity of backscattered light was 

found to be nearly sufficient. 

Because of the proximity to the ground and the finiteness of the scattering layer, a laser guide 

star is not likely to be useful for long-baseline interferometry. As an intermediate stage between 

a 'pure' ground-based interferometer which has the severe limitation in sensitivity and a space 

interferometer which is at least many decades ahead, a ground-based interferometer guided by an 

artificial star in space may be a realistic solution to the sensitivity problem. Since the satellite 

which carries a light source has to keep intervening the astronomical object and the ground-based 
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interferometer on the rotating earth, there may be a technical challenge in navigation. A laser is 

again the suitable light source and is especially ideal in the infrared where the elimination of the 

thermal background emission by a narrow bandpass is crucial. 

Solid-State Photomultiplier 

Although the detector technology both for long integrations (CCD) and for photon count

ing (photomultiplier) at optical wavelengths seems to have been nearly optimized, the detector 

technology in the infrared is still in a stage of rapid development. 

The ideal detector for high-resolution imaging is characterized by a high quantum efficiency 

and low background noise. Even in the infrared, by reducing the thermal sky background by spatial 

filtering and/or spectral filtering, the advantage of a low background detector becomes obvious. 

The most promising and possibly the ultimate infrared detector in a low background situation 

is a solid-state photomultiplier (SSPM: Petroff et al. 1988). The SSPM is a solid-state photon

counting detector which utilizes electron multiplication by the impurity-band avalanche caused by 

impact ionization of one carrier. A quantum efficiency of 30% is observed at 20 J.Lm and the 

linearity is good to 1010 counts per second. By choosing the dopant, the spectral response can be 

optimized to infrared windows of interest (Bharat et al. 1987). Although the first device was made 

in the form of a small linear array, there is no essential difficulty in making a two-dimensional 

detector. The limiting magnitude of continuum interferometry at 2 J.Lm using a two-dimensional 

SSPM should be 11 mag per square arcsecond, the sky background limit. The SSPM will truly 

be ideal for line imaging. 

6. Layout of Thesis 

This thesis is composed of three separate papers. 
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Chapter II, Diffraction-Limited Imaging II: Optical Aperture Synthesis Imaging of Two 

Binary Stars (Nakajima, T., Kulkarni, S.R., Gorham, P.W., Ghez, A.M., Neugebauer, G., Oke, 

J.B., Prince, T.A., and Readhead, A.C.S. 1989. Astron. J. 97, 1510), describes a demonstration 

of the potential of the NRM technique for making diffraction-limited images with high dynamic 

range. It also discusses fundamental differences between optical aperture synthesis mapping and 

its radio counterpart which arise from the difference in the interference-detection scheme. 

Chapter III, Atmospheric Disturbance on Optical Aperture Synthesis, (to be submitted to 

J. Opt. Soc.· Am. A), describes Monte Carlo simulations of the NRM technique and masking 

with apertures with larger than the coherence length. Fringe amplitudes are obtained as functions 

of aperture size, bandwidth and baseline length. By introducing a cut-off spatial frequency in 

the Kolmogorov spectrum, the effects of small-scale and large-scale disturbances are separately 

simulated and the relation of the results to the performance of a passive interferometer and active 

interferometer is discussed. Based on the simulated fringe amplitudes, limiting magnitudes of the 

NRM technique and masking with 50-cm apertures are derived. 

Chapter IV, Signal-to-Noise Ratio of the Bispectral Analysis of Speckle Interferometry, 

(Nakajima, T. 1988. J. Opt. Soc. Am. AS, 1477), describes a study of the performance of a 

speckle imaging technique, the bispectral analysis, by Monte Carlo simulations and by a modeling 

of photo-detection process. The bispectral modulation transfer function is simulated and its signal

to-noise ratio at high light levels is obtained. A general expression of the signal-to-noise ratio of 

the bispectral analysis of photon-noise-affected images is derived. In the mid-spatial-frequency 

range, the signal-to-noise ratio is obtained as a function of the telescope transfer function, the 

number of speckles and the light level. 

Chapter IV was published first, and then Chapter II and Chapter III were written in chrono

logical order. Minor modifications in technical terms, notations and references were made to 
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original papers for the self-consistency as a thesis. 
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Figure Captions 

Fig. 1 - Magnitude-resolution diagram at visual wavelengths. A right arrow (e.g., of the intensity 

interferometer) indicates the limiting magnitude. An upward arrow (e.g., of the Hubble 

Space Telescope (HST)) indicates the the diffraction limited resolution of the observing 

system. The right arrow of the HST indicates a potentially higher resolution. Right and 

downward arrows of astronomical objects indicate necessary limiting magnitudes and reso

lutions respectively. The box of Pluto-Charon system indicates the ranges of the brightness 

and separation of the object. A left arrow (e.g., of 3C273) indicates the brightness and an 

unknown angular size of the object. 

Fig. 2 - Magnitude-resolution diagram at 2 J.Lm. The limiting magnitude of IR speckle imaging using 

an imager with a read-out noise of 100 electrons per pixel, is estimated to be 7.5. The 

limiting magnitude of IR speckle imaging with 2-p,m continuum using a two dimensional 

SSPM is estimated to be 11. This corresponds to the sky brightness at Palomar of 11 mag 

per square arcsecond. The limiting magnitude of IR line imaging with a spectral resolution 

of 1000 is estimated to be 12.5. The spatial resolution of 2-pm direct imaging reaches 0.5 

arcseconds. The meanings of arrows are the same as in Fig. 1. 
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Chapter II. 

Optical Aperture Synthesis Imaging of Two Binary Stars 
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1. Introduction 

Three years ago we began a concerted program to obtain diffraction-limited images at 

optical wavelengths using the Hale 5-m telescope of the Palomar Observatory. The basic goal of 

this program is to understand quantitatively the strengths, limitations and sensitivities of different 

high-resolution imaging techniques. The background to this work and the demonstration of the 

feasibility of constructing diffraction-limited images on the 5-m telescope, using the techniques 

adapted from radio astronomy, have been described elsewhere (Readhead et al. 1988, hereafter 

Paper 1). We have concentrated our efforts on understanding the trade-offs between the fully filled 

aperture (FFA) and the non-redundant masking (NRM) techniques. In this chapter we present the 

first diffraction-limited images obtained by optical aperture synthesis using non-redundant masks 

on the Hale 5-m telescope. In a subsequent paper we will present results obtained using the FFA 

(Gorham et al. 1989). In parallel with these observational efforts, we have embarked on a detailed 

analytical study of the problems associated with diffraction-limited imaging (Paper I; Chapter IV; 

Kulkarni 1989; Kulkarni and Nakajima 1989; Chapter III). 

Other groups are engaged in similar studies aimed at exploiting the imaging potential of 

optical telescopes, and results have been published of a number of high-resolution observations 

using speckle interferometry (Labeyrie 1972), the Knox-Thompson algorithm (e.g., Nisenson et 

al. 1985), the speckle masking method (e.g., Hoffman and Weigelt 1986) and the NRM technique 

(Haniff et al. 1987). 

Unlike speckle interferometry, which uses full uv coverage with attenuated complex ampli

tudes, the NRM technique uses limited uv coverage with high signal-to-noise ratio. A detailed 

study of the trade-offs between the speckle masking technique and the non-redundant masking 

technique shows that the NRM method produces higher dynamic range images at medium to high 
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light levels, while the speckle masking is better suited to pursuing the faint limit. (Kulkarni and 

Nakajima 1989). Finally, the NRM technique can be regarded as a first step towards an optical 

interferometric array and is important in establishing an optimal image reconstruction procedure 

and understanding the potential and limitations of the performance of an interferometric array 

under the constraint of passive optics. 

fur our first attempts, only bright binary stars were observed. The reconstructed images 

demonstrate intrinsically high resolution and potentially high dynamic range. The instrumentation 

and the observing procedure are described in §2 and §3. The data reduction and analysis are 

found in §4. Images of binary stars are presented in §5 along with the discussion of their dynamic 

range. In §6, the image reconstruction procedure and the estimation of the dynamic range are re

examined and distinctions between radio interferometry and optical interferometry are discussed 

in detail. 

2. Instrumentation 

A schematic drawing of the optics of the prime focus camera for the Hale 5-m telescope is 

shown in Fig. 1. An f /3.3 primary beam is collimated by a Nikon f /2.8 85 mm camera lens. 

The lens forms an image of the primary mirror at a distance of about 85 mm (1 focal length) 

where a mask is placed on a stepper-motor-driven rotary stage controlled by a personal computer. 

One mm on the mask plane is equivalent to 19.8 em on the primary mirror. Another camera lens 

identical to the first forms a second focus where the scale is 12" I mm. The image is expanded 

by a microscope objective with a power of 80. The final image size on the detector is 0.15" I 

mm. A 6300 A interference filter with 30 A bandpass was set between the microscope objective 

and the detector throughout the run. 
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The detector is a resistive anode position sensing photon counting detector (liT #FM 

4146M). It has a MA-2 photo cathode, essentially a red extended S-20, and five stages of mi

crochannel plates (MCPs) arranged in a V-Z configuration. A net potential drop of about 5 kV 

is maintained from the cathode to the anode. Each primary photoelectron results in an avalanche 

of 107 - 108 secondary electrons onto the resistive anode. Output currents from the four comers 

of the resistive anode are amplified and fed to an analog-to-digital position computer (Surface 

Science Lab, Mountain View, CA), which converts input currents into (x, y) coordinates of the 

avalanche. The position computer outputs 10 bits per axis as well as a strobe pulse; the position 

conversion takes approximately 10 J.LS and this is a source of one of the dead-times of the detector. 

Another source of dead time is the charge depletion resulting from the large gain of the tube. 

This has the effect that after an avalanche of secondary electrons, the pixel(s) corresponding to 

the location of the photoelectron are dead, for perhaps as long as several tens of milliseconds. 

Fortunately, for our case the fringes spread the light out and for the counting rates reported here 

(< 1.5 x 104 s-1) dead-time effects were negligible. A camera interface appended 12 bits of 

arrival time information to the photon coordinate data and passed the resulting "event" to a Digital 

Equipment Corporation (DEC) J.L Vax workstation via a DEC DRV -11 parallel interface. At ap

propriate times, the interface unit also sends the absolute time (32 bits) to the computer, enabling 

a reconstruction of the absolute arrival time of each photon to better than 1 J.LS. The data were 

first recorded onto a hard disk of the J.L Vax and later transferred to a magnetic tape for archival 

storage and processing. 

In order to decrease the dark current, the detector was cooled to -20° C with liquid nitrogen. 

At this temperature the dark count rate was below 20 counts s- 1 over the entire area of the 

detector. By comparing the actual count rate of stars of known magnitudes, the net throughput of 

the observing system was inferred to be 0.7%. This is determined primarily by the net detector 

efficiency of about 2% and the filter transmittance of 40%. The nominal spatial resolution of the 
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detector is 60 J.Lm FWHM and the size of active area is 25 mm in diameter. The corresponding 

angular resolution and field of view are 9 milliarcseconds (mas) FWHM and 3.75" in diameter 

respectively. The spatial linearity was tested by measuring an artificial fringe pattern in the 

laboratory and the non-linearity was found to be negligible. 

3. Observing procedure 

Observations were made over the nights of 3 and 4 April, 1988. Objects near the zenith were 

selected to minimize the path length in the atmospheric layer. The seeing condition varied between 

1" and 2.511 during the run. Observations of the binary stars whose images were successfully 

reconstructed were made under 1.5" visual seeing or better. A nearby point source calibrator was 

observed for each binary star with the same uv coverage. Observations of a program source and 

the corresponding calibrator were separated in time by less than 30 minutes. 

Two kinds of masks were used depending on the necessary resolution and uv coverage. 

One was a five hole mask which had relatively short baselines and a uniform uv coverage at each 

position angle. The maximum baseline length of this mask was 220 em. The other was a six 

hole mask which had three widely separated pairs of holes. Each pair formed a short baseline of 

about 40 em. The pairs were separated by about 280 em and the maximum baseline length was 

310 em. The equivalent size of each hole in both masks was 15 em in diameter on the primary 

mirror. The observations were made at four or five different rotational angles. The uv coverage 

of these two masks are shown in Figs. 2 and 5 respectively. For each rotational angle, either 

"' 6 x 105 or "' 12 x 105 events were recorded. 

4. Data reduction and analysis 
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The data reduction and analysis were carried out on a CONVEX C-1 minisupercomputer 

and a V AX(780 and consisted of several phases: 

i. Determination of spatial frequencies. 

ii. Estimation of the fringe amplitude and closure phase. 

iii. Calibration of the fringe amplitude. 

iv. Model fitting and hybrid mapping. 

(i). Determination of Spatial Frequencies. 

Initially 10 ms was adopted as a default integration time, r, and power spectra of the 

"frames" were obtained; here a frame is an image obtained over integration time equal to r. 

Given the small number of photons per frame, it was computationally advantageous to calculate 

and integrate the frame auto-correlation functions (ACF) followed by the Fourier transform of the 

integrated ACF to yield the power spectrum. 

The purpose of calculating the power spectrum was to determine the spatial frequencies 

provided by the mask. In principle, the spatial frequencies could have been measured by measuring 

accurately the coordinates of the holes in the mask if the alignment of the optics had been 

perfect. Instead, however, we inferred the spatial frequencies from the integrated power spectrum 

of observed data. 

Approximate spatial frequencies of frin ges were obtained by centroiding power spectrum 

components which had finite extent in the spatial frequency domain. In a mask with nh holes only 

nh- 1 hole coordinates must be determined since the origin of the mask plane is arbitrary. Least 

squares fitting was therefore made to determine n h - I unknown hole coordinates from nh(nh - 1)/2 
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power peaks. The nh hole coordinates were pair-wise differenced to yield nh(nh- 1)/2 baseline 

vectors. This procedure ensured that all the triangles closed (see below). 

From the knowledge of the focal lengths and magnification of the optics, the baseline 

vectors were converted from pixel units to spatial frequency units. The absolute errors in the 

measurement of the baseline vectors in the detector plane are determined by the signal-to-noise 

ratio of power spectrum, while the systematic error in the conversion of the baseline vectors to 

spatial frequencies depends on the precision of alignment of the optics. It was found that the 

systematic error of 3% in scaling dominated the errors in the spacial frequencies. The orientation 

of the detector on the sky was measured by a low-magnification image of the center of a globular 

cluster. The position angle towards north was estimated to be precise to 1°. 

(ii). Estimation of the Fringe Amplitude and Closure Phase. 

Once the spatial frequencies were determined, it was computationally advantageous to eval-

uate the discrete Fourier transform (DFT) of the raw data at those frequencies and to estimate the 

bispectrum or the triple product at only selected spatial frequency triplets. 

The DFT was evaluated at the spatial frequencies derived earlier from the power spectrum 

data in each frame. The DFT component at a spatial frequency u of the jth frame, iJ j(u) is given 

by, 

Ni 

Dj(u) = L exp(iu · xk), (1) 
k=! 

where Ni is the number of photons in the jth frame and xk is the location of the kth event. An 

unbiased estimator of the classical power spectrum for the jth frame, is given by, 

(2) 

(Goodman and Belsher 1976, 1977; Dainty and Greenaway 1979). An unbiased estimator of the 
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classical bispectrum for the jth frame, Q)3>(u1, u2) is given by 

(3) 

(Wimitzer 1985, Chapter IV). 

The determination of spatial frequencies by centroiding power spectrum components is not 

necessarily free from error. This can result in a non-closing triplet of spatial frequencies which 

introduces a complex photon-noise bias in the bispectrum. Suppose three fringe frequencies, 

u 1, u2 and u3 satisfy the closure relation only approximately as, 

Ut + U2 + U3 = W, (4) 

where w is a small but non-zero residual spatial frequency and lw · xk I ~ 1. The triple product 

of the three DFr components is 

Nk 

=Dj (Ut)Dj(U2)Dj( -u1- u2) + iDj(ut)Dj(U2)w · L xk exp{ i( -u1- u2)xk} , (5) 
k=l 

where exp(iw · xk) ~ 1 + iw · Xk was used. The additional terms 

Nk 

iDj(UI)Dj(u2) L w · xk exp{ i(u1 + u2)xk}, 
k=l 

=Dj(ut)Dj(u2)w · Vu1+u2Dj(-ut-u2), (6) 

introduce a complex bias in the measured bispectrum. In principle, this bias can be taken into 

account provided w is known. The closure relation through the least-squares fitting was used to 

adjust the spatial frequencies and thus to ensure w = 0, eliminating the need for the additional bias 

compensation. Squares of unbiased estimators were also integrated to determine variances. These 

are used in computation of the signal-to-noise ratio. After integration, mean fringe amplitudes 
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were obtained from the power spectrum normalized by the zero frequency component and mean 

closure phases were obtained from bispectral components along with their signal-to-noise ratios. 

In order to obtain the maximum signal-to-noise ratio, DFrs were taken with different 

integration times ranging from 10 ms to 100 ms for a data set taken at one rotational angle of the 

mask for each object. Since the decorrelation caused by the atmospheric disturbance is continuous, 

there is no physical frame boundary. For this reason, frames were oversampled and each photon 

was processed twice. As a result of oversampling, the final signal-to-noise ratio increased by 30% 

to 40% compared to the case without oversampling and thus the procedure was justified. For the 

observations of the binary stars presented in this chapter, the optimal integration time was found 

to be around 20 ms. The behavior of the fringe amplitude, signal-to-noise ratios of the fringe 

amplitude and closure phase as functions of integration time is discussed in detail in §6. 

(iii). Calibration of the Fringe Amplitude. 

The method of choice for the amplitude calibration depends on the time scale of the calibra

tion and the nature of dominant errors. As an analogy to radio interferometry, we first considered 

an application of amplitude self calibration. However, it was found to be difficult to carry out 

amplitude self calibration in optical interferometry and this difficulty is discussed in §6. 

An attempted to correct long-term and static systematic errors was made by dividing fringe 

amplitudes of objects by those of corresponding point source calibrators. The extent to which this 

correction works depends on the stability of systematic errors. For one of the two binary stars 

whose images are presented here the correction was fairly successful and for the other binary star 

it was less successful (§5). 

The calibration of object closure phase was not made, since closure phases of point source 

calibrators did not show a significant deviation from zero. The calibrated amplitudes and the 
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closure phases were transferred from the CONVEX to the VAXn8o on which the image recon

struction was made. 

(iv). Model Fitting and Hybrid Mapping. 

So far, photon coordinates with arrival times were reduced to calibrated fringe amplitudes 

and closure phases. The image construction was done using the Caltech VLBI hybrid mapping 

package (Pearson and Readhead, 1984) in two steps: (a) the best fit model was obtained by direct 

model fitting to the observables and (b) the final image was obtained by using the observables 

and the model as inputs to the hybrid mapping. 

The input model for hybrid mapping was derived by a least-squares fitting of a model 

binary star with the calibrated fringe amplitudes and closure phases. A non-linear model-fitting 

program of the software package was used with some minor modifications. The modification 

consisted of changing the relative weights of the closure phase and amplitudes. This was done 

because in the VLBI software package the number of independent closure phases is assumed 

to be (nh - 1)(nh - 2)/2 which is true in a regime of high signal-to-noise ratio as in radio 

interferometry. This number is actually the number of mathematically independent phases in error 

free phase closure relations. However, data are always corrupted by finite errors and what is really 

relevant for model fitting is the number of statistically independent closure phases. As shown by 

Kulkarni (1988) for the Gaussian noise regime and Kulkarni and Nakajima (1989) for the Poisson 

regime, the number of statistically independent closure phases increases from (nh- l)(nh - 2)/2 

to nh(nh - l)(nh - 2)/6 as the signal-to-noise ratios of the closure phases decrease. In optical 

interferometry, it can safely be assumed that all the nh(nh - 1)(nh - 2)/6 closure phases are 

independent, since their signal-to-noise ratios per short exposure frame are generally very low 

( < 0.1). The relative statistical weighting between the x2 of the fringe amplitude and the x2 

of the closure phase was adjusted by increasing the weight of the x2 of the closure phase by 
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A hybrid mapping procedure was carried out in a single pass without iterations, because 

of the simplicity of the source structure. The major purposes of hybrid mapping were to obtain 

a true image with an estimate of dynamic range, to correct for any residual station-dependent 

amplitude errors and to look for any additional features of the object. 

In order to synthesize the image from the uv data, closure phases must be reduced to 

fringe phases. Closure phase relations were algebraically solved with the aid of the model phases 

(Readhead and Wilkinson 1978). The amplitudes were then adjusted by self calibration using 

the method of Cornwell and Wilkinson (1981). However, as discussed in §6, baseline-dependent 

errors seemed to be significant at optical wavelengths and the effectiveness of amplitude self 

calibration was questionable. 

Finally, the fuurier inversion was carried out. Based on the calibrated amplitudes and 

derived phases, a dirty map and a dirty beam were computed, and the final deconvolution was 

done using the CLEAN algorithm (Hogbom 1974). 

5. Results 

We have fully reduced three binary stars, (3 Corona Borealis, a Herculis and (3 Leonis 

Minoris. All of them have been studied by speckle interferometry (McAlister and Hartkopf 1984, 

references therein). We report the successful imaging of the first two and failure in the third. 

(3 CrB. This is a spectroscopic binary with visual magnitude ~ 3.7 mag (Hoffleit and 

Jaschek 1982). It has been continuously studied by speckle interferometry since 1973 and the 

separation ranged from 40 to 310 mas (McAlister and Hartkopf 1984). 
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Observations of this system were made on the night of 3 April, I988, using the five hole 

mask at four different rotational angles. The seeing was about I". The uv coverage is shown in 

Fig. 2. 1.2 x 106 photons were recorded at a rate of 5.7 KHz for each rotational angle. For an 

integration time of 20 ms, there were II4 photons per frame and 2.I x 105 frames in all, because 

of the oversampling by a factor of 2. Fringe amplitudes were calibrated by using observations 

of 6 Bootis. The raw fringe amplitudes of the object and the calibrator and the calibrated fringe 

amplitude are plotted against the projected uv plane along the orientation of the binary in Fig. 3. 

The upper bound of the raw fringe amplitude of the calibrator is about 50%. This is consistent 

with Monte Carlo simulations of an atmospheric phase screen based on a Kolmogorov spectrum 

which give an average fringe amplitude of 60% under a condition of I" seeing (Chapter III). 

For the NRM with I5-cm holes, the effect of small-scale fluctuations which degrades wavefront 

across the aperture and the effect of large-scale fluctuations which causes wandering of the Airy 

disk appear to be equally significant in reducing the fringe amplitude according to the results of 

the simulations. A clear modulation in the calibrated fringe amplitude demonstrates the success 

of the empirical calibration procedure. There were 40 fringe amplitudes and 40 closure phases. 

Examples of closure phases and their signal-to-noise ratios are shown in Table 1. The average 

signal-to-noise ratios of the amplitudes and the closure phases were 25 and 8 respectively. We 

expect that the signal-to-noise ratio in the map will be limited by that of the closure phase and 

approximated by 8 x ..)40 = 50. 

The reconstructed image is shown in Fig. 4. A binary system with 6-m = 1.47 mag, P.A.= 

138.3° and MJ = 23I mas was well resolved by a beam of 50 mas FWHM. As is mentioned earlier, 

the P.A. is good to I 0 because of the systematic error in the determination of the orientation in 

the sky. The largest spurious component is minus two percent of the maximum. The dynamic 

range defined as the ratio between the maximum and the largest spurious component is about 

50: I, which is consistent with the signal-to-noise ratio of the closure phases, as discussed above. 
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<7 Her. This is a double line spectroscopic binary with a visual magnitude of 4.2 mag. It 

was first discovered to be a binary by speckle interferometry in 1972 and the separation ranged 

from <30 (unresolved) to 119 mas (McAlister and Hartkopf 1984). 

The observation was made on 4 April 1988, using the six hole mask at five different 

rotational angles. The resultant uv coverage is shown in Fig. 5. 6.0 x 105 photons were recorded 

at a rate of 4.2 KHz for each rotational angle. The seeing was about 1.5". fur an integration time 

of 20 ms, there were 84 photons per frame and 1.4 x 105 frames in all. Fringe amplitudes were 

calibrated by a point source, o Herculis. The raw fringe amplitudes of the object and the calibrator 

and the calibrated fringe amplitude are plotted against the projected uv plane along the orientation 

of the binary in Fig. 6. The amplitude calibration of <7 Her was not as successful as that of /3 

CrB. There were 75 fringe amplitudes and 100 closure phases. The average signal-to-noise ratio 

of the amplitudes was 13, while that of closure phases was 5. Thus the expected signal-to-noise 

ratio in the map is dominated by the closure phase error and is 5 x v'100 = 50. 

The reconstructed image is shown in Fig. 7. A binary system of a separation of 71 mas 

was resolved by a beam of 30 mas FWHM. !lm = 2.4 mag. P.A. = -174.4°. The largest spurious 

component is plus three percent of the maximum. The dynamic range is about 30:1, worse than 

expected from the signal-to-noise ratio of the closure phases or the amplitudes. We suspect that 

the decrease in dynamic range from the theoretically expected value is due to systematic errors 

in the calibrated amplitudes. 

/3 LMi. This is a double line spectroscopic binary consisting of a G8III star with a visual 

magnitude of 4.2 mag and a F8V star with a visual magnitude of 6.1 mag (Hoffleit and Jascheck 

1982). It has been observed by speckle interferometry since 1975, and the separation has been 

decreasing from 598 mas since 1977 (McAlister and Hartkopf 1984). 

The observation was made on 3 April 1988, under a seeing condition of 2". The optimal 
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integration time for this object was 5 ms and the mean fringe amplitude of the calibrator (E 

Ursa Majoris) was below 20% for this integration time. The average signal-to-noise ratio of the 

amplitudes was 12 while that of the closure phases was 2.5. The low average signal-to-noise ratio 

of the closure phases is due to the poor seeing condition. 

Although a map of this binary star has been presented as a preliminary result (Kulkarni 

1988a), we were not able to confirm it by the reorganized image reconstruction procedure described 

in the previous section. A model fitting only with fringe amplitudes gave .6.m = 1.67 mag and 

MJ = 322 mas. P.A. = -120° or +60° with a systematic error of + j - 1°. The quality of closure 

phases was too low to determine the orientation uniquely. 

6. Discussion 

In this section we first re-examine the image reconstruction procedure and the estimation of 

the dynamic range. Then we discuss fundamental differences between radio interferometry and 

optical NRM. 

Potential of Hybrid Mapping for Imaging Unknown Sources. 

Since the objects are known binary stars, we explicitly utilized this fact in the data analysis 

described in §4. In order to test the potential for imaging unknown sources, hybrid mapping was 

carried out for {3 CrB and f7 Her using a point source as a starting input model instead of using the 

nature of the sources. It was found that hybrid mapping was effective in revealing companions of 

both of the binary stars and was successful in obtaining the identical images to the ones shown 

in §5. 

In the case of {3 CrB, the companion appeared as the largest component among positive 

components and a negative spurious component was the largest in the CLEAN map after the first 
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iteration. As a common exercise of hybrid mapping, the CLEAN map was used as the input 

for model-fitting and the best-fit binary star was obtained. Therefore the image identical to that 

obtained by the procedure described in §4 was constructed in the second iteration. In the case 

of a Her, the companion appeared as the largest component in the CLEAN map after the first 

iteration. Again model-fitting using the CLEAN map as the input gave the best-fit binary star 

and the second iteration was identical to the single path hybrid mapping described in §4. A point 

source is a better starting point for a Her than for f3 CrB, since the magnitude difference of a 

Her is larger. 

The success of hybrid mapping using point sources as starting models implies that the NRM 

can be very sensitive to a faint secondary feature in the presence of a bright point source as a 

phase reference. For instance, a map of a 10 mag star with a dynamic range of 100 will contain 

meaningful features to 15 mag. Simulations of imaging more complicated objects are discussed 

in Paper I. However, a further investigation is necessary based on actual observing data. 

Examination of Dynamic Range. 

In §5, the dynamic range was defined crudely as the ratio of the maximum and the largest 

spurious component in the CLEAN map. Another way of estimating the dynamic range is to 

see the change of the goodness of fit according to the deviation of the model from the best-fit 

model. In Table 2, degrees of freedom and x2 are shown for different models of f3 CrB and a 

Her: the best-fit binary star model, the best-fit point-source model, a binary star model with an 

additional flux of 2% to the second component to the best-fit one, a binary star model with an 

additional flux of 5% to the second component, a triple star model whose third component of 2% 

is additional to the best-fit binary star model and a triple star model whose third component of 

5% is additional to the best-fit model. In the triple star model, three components geometrically 

form an equilateral right triangle whose right angle vertex is the primary component. Since 
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the goodness of fit is primarily determined by the systematic errors, fitting parameters do not 

behave as Gaussian random variables and therefore it is not possible to quantitatively estimate 

the likelihood of models based on the x2 distribution. Here we interpret the combination of the 

degrees of freedom and x2 semi-quantitatively. 

In the case of f3 CrB, the best-fit point-source model is nowhere near the best-fit binary 

star model, while in the case of cr Her, the best-fit point-source model is not so far from the 

best-fit binary star model. This is because of the difference in the magnitude differences of the 

two binary stars. An additional component of 2% to the best-fit model of f3 CrB appreciably 

increases x2 , while one to the best-fit model of cr Her affects x2 differently depending on where 

the additional component is. Apparently a change of flux by 2% is not significant in the case of 

cr Her. On the other hand, an additional component of 5% causes a significant change in x2 in 

both of the cases. These support the estimate given in §5 that the dynamic range of the map of 

f3 CrB is 50:1 and that of cr Her is 30:1. 

Fundamental Differences between Radio Interferometry and Non-Redundant Masking. 

We now discuss some fundamental differences between radio interferometry and optical 

NRM. These differences are primarily in the order of correlations of observables, the behavior 

of signal-to-noise ratios of observables according to the light level and interference-detection 

scheme of the light. Here the order of correlation of observables, n is defined mathematically as 

the number of complex fringe amplitudes needed to define a particular observable. For instance, 

the order of correlation of the power spectrum or fringe amplitude is two and that of the bispectrum 

or closure phase, three. The behavior of the signal-to-noise ratios of observables depends on the 

order of correlation and the light level. At high light levels, the signal-to-noise ratios of both the 

fringe amplitude and closure phase <X N!, where N is the number of photon events per integration 

time. At low light levels, the signal-to-noise ratio of the fringe amplitude <X N , while that of the 
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closure phase ex: N~. The general expressions of signal-to-noise ratios of the power spectrum 

and the bispectrum as functions of the number of photons are obtained by Dainty and Greenaway 

(1979) and Nakajima (Chapter IV) respectively. Henceforth the behavior of the signal-to-noise 

ratio of an observable ex: NOt, is specified by the "SNR exponent", a. 

In most cases of radio interferometry except for VLBI, both fringe amplitudes and phases 

or complex fringe amplitudes are observables. In the case of VLBI, observables are the fringe 

amplitude (second order correlation) and the closure phase (third order correlation) as in optical 

NRM. However there is a difference in the behavior of the signal-to-noise ratios of the observables 

between radio VLBI and optical NRM. 

In radio interferometry, one heterodyne receiver is associated with each antenna and the 

characteristics of the antenna-receiver combinations cause station-dependent errors which domi

nate overall systematic errors. In NRM, the beams from all the holes (stations) are introduced to 

a two dimensional incoherent detector where the quantum mechanical interference of each photon 

takes place (e.g., Dirac 1958). The concept of station becomes vague, since it is impossible 

to measure the wave function at each hole. Within an integration time, there is only a sparse 

distribution of photon events which hardly looks like a fringe pattern. If it were not for the 

atmospheric disturbance, the fringe pattern or complex amplitude would become an observable 

from an ensemble of many photon events, since the classical fringe pattern would be a probability 

distribution for individual photons. Instead of the probability distribution, it is necessary because 

of the atmospheric disturbance, to estimate the second and third order correlations of the prob

ability distribution from ensembles of photon event correlations. The necessity of higher order 

correlations leads to a very low signal-to-noise ratio per integration time and to the necessity of 

processing a large number of frames. The low signal-to-noise ratio per integration time sets a 

limitation in the time scale of amplitude calibration. Four differences found in the practice of 
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data reduction and analysis are discussed in the following. 

Error in Closure Phase. 

At radio wavelengths, the amplitude uncertainty (A/ a A) is related to the phase error a 4> as 

(7) 

since a(fringe amplitude) = a(fringe phase) = l The error in the closure phase can then be 

estimated from the propagation of phase errors: 

(8) 

since a(fringe phase)= a(closure phase) = 1· 

For an observation of a faint object at optical wavelengths, however, a(fringe amplitude) 

= 1, the fringe phase is not observable, and a(closure phase) = ~· Therefore there is no simple 

relation between the amplitude error and the closure phase error. 

Optimal Integration Times for Amplitude and Closure Phase. 

Since a(fringe amplitude) =fa( closure phase), we do not necessarily expect the same optimal 

integration time (r ex: N) for these two quantities. One advantage of using a photon counting 

detector is in that the effect of the atmospheric disturbance can be traced as a function of integration 

time, r. In Fig. 8, fringe amplitudes of {3 CrB at a position angle of the mask of 36° are 

plotted against r. A slow decay of fringe amplitudes indicates good seeing conditions. Fringe 

amplitudes of the calibrator showed a very similar decay pattern which was necessary for a 

successful amplitude calibration. Signal-to-noise ratios of the power spectrum and the bispectrum 

are plotted as functions of r in Fig. 9 and Fig. 10 respectively. The signal-to-noise ratio of 

the power spectrum (or fringe amplitude) peaks at an integration time of 20 ms, while that of 

bispectrum (or closure phase) has a broad peak between 20 ms and 60 ms. At this low photon 
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rate (~ 5 KHz), for a given data set (the total number of photons fixed), the signal-to-noise ratio 

of the power spectrum is expected to be proportional to 

V.,. 2 
X VT, (9) 

while that of bispectrum is expected to be proportional to 

V.,. 3 
X T, (10) 

where r is the integration time and V.,. is the fringe amplitude as a function of r (Appendix). 

Therefore a longer optimal integration time for the bispectrum is expected at a low photon rate. 

As the light level is lowered, the discrepancy of the optimal integration time for the power 

spectrum and that for the bispectrum becomes wider. Since the peak of the signal-to-noise ratio 

of the bispectrum was broad, both the power spectrum and bispectrum were calculated with an 

integration time of 20 ms for all the data sets taken at different rotational angles of the mask. 

However, the choice of separate integration times for the amplitude and the closure phase should 

be considered in observing fainter objects. 

Absence of Primary Beam Correction. 

Unlike the case in radio aperture synthesis, there is no primary beam correction in the 

optical NRM method. The 'primary beam correction' is a sensitivity correction made when the 

field of view of the synthesized map is comparable to the primary beam size of each radio antenna. 

A variation of gain within a field of view occurs because each radio antenna is accompanied 

by a single heterodyne detector which is sensitive to only one angular mode (>../D). In the 

case of optical NRM, all the beams from different holes (stations) on the mask are combined 

onto a two dimensional incoherent detector plane where no variation in sensitivity is seen in 

principle. Therefore there is no primary beam correction at optical wavelengths. In practice, 
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a finite bandwidth and physical dimension of the detector limits the field of view. The finite 

bandwidth effect on the field of view, OFw is estimated by the relation, 

(11) 

For the observations of binary stars presented in this chapter, eFw > 600 mas and the effect is 

negligible. 

Difficulty in Amplitude Self Calibration. 

In radio VLBI, two methods of amplitude self calibration, 'closure amplitude' (Readhead 

et al., 1980) and the method of Cornwell and Wilkinson (1981) are successfully used. Although 

the two methods are different in approaches, both of them require certain signal-to-noise ratios 

of closure amplitudes or complex fringe amplitudes within each integration time and the absence 

of significant baseline-dependent errors. Self calibration is reviewed by Pearson and Readhead 

(1984, references therein). 

At optical wavelengths, the signal-to-noise ratio of a fringe amplitude per integration time 

is typically very low ( < 0.3), because of photon noise. A closure amplitude formed by four 

fringe amplitudes has much lower signal-to-noise ratio than each amplitude and is not practically 

measurable even after integrating over many frames. The method of Cornwell and Wilkinson 

is not applicable either within this short time scale. Realistically there is not any amplitude 

calibration within the time scale of integration. 

At optical wavelengths, amplitude self calibration must be attempted in a time scale of 

many integrations in order to eliminate photon noise compared to other systematic errors. fur 

the observations reported in this chapter, this time scale was order of several minutes. After 

the elimination of photon noise, time-averaged amplitudes may include both static or long-term 

systematic errors and short-term errors. A closure amplitude formed by four time-averaged fringe 
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amplitudes cancels out long-term station-dependent errors. The quality of the 'long-term closure 

amplitudes' of the point-source calibrator for {3 CrB, 6 Boo were examined by comparing them 

with 'fake closure amplitudes' formed by non-closed combinations of two random amplitudes 

in numerator and two others in denominator. It was found to be poor, showing that the errors 

of the fringe amplitudes were dominated by short-term station-dependent errors and/or baseline

dependent errors. 

A fairly good calibration of the amplitudes of {3 CrB by dividing those of 6 Boo suggested 

that the atmospheric condition was rather stable during the observation of the pair of stars (§5). 

For this particular period the amplitude errors must have been dominated by static or long

term errors. Combined with the poor 'long-term closure amplitudes' of 6 Boo, the successful 

division indicated the significance of static or long-term baseline-dependent errors. The presence 

of baseline-dependent errors reduces the effectiveness of the method of Cornwell and Wilkinson 

applied to a long time scale. It has been found by Monte Carlo simulations of the effect of 

the atmospheric disturbance on the NRM technique based on the Kolmogorov spectrum that the 

reduction of the fringe amplitude by the effect of large-scale disturbances is a major cause of 

long-term baseline-dependent errors (Chapter III). Astigmatism of the primary mirror is one of 

the suspected causes of static baseline-dependent errors. 

7. Conclusions 

We have carried out an experiment of optical aperture synthesis imaging using the non

redundant masking technique at the Hale 5-m telescope. Reduced observables, amplitudes and 

closure phases were processed by the Caltech VLBI hybrid mapping package. 
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Main conclusions are: 

(1) Images of two bright binary stars were successfully constructed. {3 CrB, with a separation of 

230 milliarcseconds, was resolved by a 50 milliarcsecond beam. The dynamic range of the image 

was 50:1. <7 Her, with a separation of 70 milliarcseconds, was resolved by a 30 milliarcsecond 

beam. The dynamic range of the image was 30:1. The results demonstrate the potential of the 

technique for diffraction-limited imaging of astronomical objects with high dynamic range. 

(2) In the data reduction, the optimal integration times for the fringe amplitude and the closure 

phase are not necessarily the same, since the signal-to-noise ratios of these quantities behave 

differently according the integration time. In general, the optimal integration time for the closure 

phase is longer than that for the fringe amplitude. 

(3) The direct application of radio imaging technique worked well as a starting point for optical 

aperture synthesis. However there are some major differences between optical and radio regimes, 

which leave room for improvement of optical imaging. 

At optical wavelengths, amplitude calibration is applied only to average fringe amplitudes 

over many integration times and is not effective to correct short term variations of the atmosphere. 

Unlike radio interferometry, significant baseline-dependent errors were found in our experiment. 

A close relation between amplitude errors and phase errors seen at radio wavelengths does not 

exist at optical wavelengths. As a result one important function of hybrid mapping procedure, 

amplitude self-calibration, does not have the basis for effectiveness at optical wavelengths. These 

facts are to be taken into account in future algorithms for optical aperture synthesis imaging. 

(4) Primary beam correction of radio interferometry is not necessary in optical aperture synthesis, 

due to the incoherent detection scheme at optical wavelengths. 

Appendix. Signal-to-Noise Ratio vs. Integration Time 
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The power spectrum and bispectrum analysis of photon-noise-affected images are well un-

derstood in terms of the behavior of the signal-to-noise ratio according to the light level (Goodman 

and Belsher 1976, 1977; Dainty and Greenaway 1979; Wirnitzer 1985; Chapter IV), including the 

covariance analysis (Kulkarni and Nakajima 1989). In this appendix, these results are applied to 

photon-noise-limited fringe patterns. 

Here the dependence the signal-to-noise ratio of the power spectrum and that of the bis-

pectrum on the integration time and the fringe amplitude, (9) and (10) are derived at low light 

levels. The discussion given here can easily be generalized to arbitrary light levels using the 

expression for the signal-to-noise ratio of the power spectrum per short-exposure frame (Dainty 

and Greenaway 1979) and that of the bispectrum (Chapter IV). It can also be generalized to a 

covariance analysis to obtain the number of statistically independent fringe amplitudes and that 

of statistically independent closure phases (Kulkarni and Nakajima 1989). 

At low light levels, the signal-to-noise ratio per short-exposure frame of the power spectrum 

component at spatial frequency o is given by, 

-- 2 N(li(u)i ), (A- 1) 

- - 2 
where N is the number of photons per frame, () stands for an ensemble average, and li(u)i is 

the power spectrum component normalized by the zero spatial-frequency component (Dainty and 

Greenaway, 1979). The signal-to-noise ratio of the bispectrum component at (01, 02) is given by 

(A- 2) 

where l)<3>(o1 , u2) is the bispectrum component (Wirnitzer 1985; Chapter IV). 
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In the case of the NRM, each power spectrum component is related to the fringe amplitude 

(A- 3) 

where V-r is the fringe amplitude as a function of the integration time and nh is the number of 

holes. A bispectrum component is given by 

(A - 4) 

where v1 v2v3 is the triple product of three complex visibilities. In the case of a point source, or 

a binary star with a large magnitude difference ( D..m 2: 1 ), 

(A- 5) 

since the closure phase is zero or small. 

For a data set with the total number of photons, Ntot• the signal-to-noise ratio of the 

integrated power spectrum, S p is given by, 

S -NV/~tot p- - --
nh2 N 

= ~v:z r= 2 -r yr, 
nh 

(A- 6) 

where R is the photon rate and thus N = Rr. The signal-to-noise ratio of the integrated bispec-

trum, S B is given by, 

(A -7) 

It is intuitively clear that the S p and S B peak at different r and that the optimal integration time 

for the power spectrum (or fringe amplitude) is shorter. A brief confirmation is given here. 

d log(Sp) = 2 dlogV-r + ~.!. , 
dr dr 2 r 

(A- 8) 
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while 

dlog(S8 ) = 3 dlogVT + .!... 
dr dr r 

(A- 8) 

S B peaks when, 

2 dlogVT * + .!__!__ = Q 
dr 2 r* ' 

(A- 9) 

and 

3
d log VT * + _!_ = _ d log VT * 

dr r * dr ' 
(A- 10) 

where * stands for a value at the peak of S p. Since VT is a monotonically decreasing function 

of r, - d l~gT Vr * is positive. Therefore when S p peaks at a given r*, S B is still increasing. 
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hole number I x-coordinate(cm) I y-coordinate(cm) 
1 -125.2 27.8 
2 -132.9 175.4 
3 4.2 130.6 
4 21.8 192.9 
5 -36.0 200.5 

hole combination I fringe amplitude I SNR 
12 0.687 27.5 
13 0.507 14.2 
14 0.818 20.2 
15 0.741 25.3 
23 0.695 24.4 
24 0.830 29.2 
25 0.599 24.8 
34 0.715 28.9 
35 0.575 24.6 
45 0.647 27.2 

hole combination I closure phase I SNR 
123 10.2 6.6 
124 -0.1 7.4 
125 7.0 9.2 
134 0.3 6.1 
135 8.2 6.8 
145 4.8 8.4 
234 -3.1 9.7 
235 14.5 6.9 
245 -7.0 9.2 
345 -24.1 11.0 

Table 1 - An example of calibrated data. Calibrated fringe amplitudes and closure phases of {3 CrB 

at the position angle of the mask, 144° are shown along with their signal-to-noise ratios 

and hole coordinates. 
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{3 CrB best fit binary best fit point 2nd+2%l 2nd+5%ltriple(3rd=2%)ltriple(3rd=5%) 
degrees of freedom 76 79 76 

x.L 234 323 236 I 268 I 237 I 269 

e1 Her best fit binary best fit point 2nd+2%1 2nd+5%1triple(3rd=2%)ltriple(3rd=5%) 
degrees of freedom 171 174 171 

x.L 275 292 281 I 297 I 275 I 284 

Table 2 - x2 for different models of {3 CrB and e1 Her. The first row has the star name and the type of 

models. The second row and third row are degrees of freedom and x2 respectively. From 

the second column to the seventh column are the best-fit binary star model, the best-fit 

point-source model, a binary star model whose second component is increased by 2% of 

the maximum, a binary star model whose second component is increased by 5% of the 

maximum, a triple star model made from the best-fit binary-star model by adding the third 

component of 2% of the maximum, and a triple-star model made from the best-fit binary star 

model by adding the third component of 5% of the maximum. In the triple star model, the 

three components form an equilateral right triangle whose right angle vertex is the primary 

component. 
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Figure Captions 

Fig. 1 - Schematic of the optics of the prime focus camera. A mask is placed at the image of the 

primary mirror made by the collimator lens. 

Fig. 2 - Uv coverage for the observation of f3 CrB. The unit is not wavelength as usual, but baseline 

length in em. 

Fig. 3 - Raw fringe amplitudes of f3 CrB (+), raw fringe amplitudes of 8 Boo (o) and calibrated 

amplitudes (x), plotted against the projected uv plane along the orientation of the binary. 

Fig. 4 - Reconstructed image of f3 CrB. Contour levels are -2, -1, 1, 2, 3, 5, 10, 20, 30, 40, 50 and 

60% of the maximum. The top to the north and the left to the east. 

Fig. 5 - Uv coverage for the observation of a Her. The unit is baseline length in em. 

Fig. 6 - Raw fringe amplitudes of a Her (+), raw fringe amplitudes of o Her (o) and calibrated 

amplitudes (x), plotted against the projected uv plane along the orientation of the binary. 

Fig. 7 - Reconstructed image of a Her. Contour levels are -2, -1, 1, 2, 3, 5, 10, 20, 30, 40, 50 and 

60% of the maximum. The top to the north and the left to the east. 

Fig. 8 - Raw fringe amplitudes of f3 CrB for the mask position angle of 36° plotted against integra

tion time. Ten different symbols denote fringe amplitudes of different baselines. 

Fig. 9- Signal-to-noise ratios of power spectrum components of f3 CrB for the mask position angle 

of 36° plotted against integration time. The observed photon rate was 5.7 KHz, the total 

number of photons was about 1.2 x 105• 

Fig. 10 - Signal-to noise-ratios of bispectrum components of f3 CrB for the mask position angle of 

36° plotted against integration time. Different symbols denote different triangles. The 

observed photon rate was 5.7 KHz, the total number of photons was about 1.2 x 105
. 
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Figure 2 
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Figure 5 



I 

1-
X X 

X X 
X 

X 

X X X 
515 

r-
X 

XX X 
X 

X ~ 

t-X 
X 

X X 

X 

X X 
X 

r- X 
X 

X X 
X 

X X 

X 

X 

- x :i/5 
X 

X 

X X X 

X ~ X* 
X 

X 
X X X 

~ X 

X X X 

X 
X X 

X X 

..A 

OOL 

"x 

X 

I 

OS 

<& 

~ 
ED 

~ 
ED 

fl+ 
~ 

~ 
~ 

~ 
c9 
0~ 
o-
G 

c:8'& 
~ 
G<()t 
~ 

61 

0 
- 1.{) 

I"") 

0 - 0 
I"") 

0 - 1.{) 
N 

0 
- 0 

N 

0 - 1.{) 

0 - 0 

- 0 
1.{) 

§.~+ 

+@ ()-

+oe-
,t:r:\ 

0 
apnt!ldwo a6u!Jl 

,.......,. 
E 
u ..__, 
> \0 
:J 

~ 

" 6'o Q) ....., u: u 
Q) 

·a ... 
Cl.. 



62 

CLEAN MAP 

475999 .969 GHz 1988.00 

0 
0 0 

0 --;:;-) 
\ .... 

0 
{;..."\ 

0 c· 'l 
._:'/ 

0 .I .... 
N 

@ ':I 
0 0 

'::: -:> (' 
,-

I I 

0 -
..-.. 0 u 

Q) 
en 
u 0 1.... 
0 0 

E r"" 0 ....... .......... • >. \.J , 
( ~r)/ 
\ ... 

r"\ 

\ ... 

0 I ) -
0 
0 r·l 
N \ I 

I 
,;.;-
\':_,.I 

-..., t" ' '-
I -I 

200 0 -200 

x (milliarcsec) 

Figure 7 



63 

l I I 

1-

0 -4001-<1 {l 

<>.al-- <1{( 

<> •:e+ <l {l 

1- <> 0+ «t 

<> • + «x 

1- <> Clll-4 + «x 

<> a .c+ «t 

I I 

OS ov 0£ oz OL 

(%)apn+[ldwo a5u!.Jf 

- 0 co 

- 0 
c.D 

- 0 
~ 

- 0 
N 

0 

0 

........... 
Ul 

E 
'--" 

Q) 

E 
......, 

00 

c e 0 
6'o ......, 

0 u:: I... 
CJ'l 
Q) ......, 
c 



64 

I I I 

1-

0 .. :o-0+- <I {l 

- 0 ll() iG <l{l 

0 •x®OI- <I {l 

- 0 x~+ <l{l 

0 -8+ <l{l 

0 

0 <II ~+ <l{l 

<E£1X .. ® 
<:01 X<f-<l{l 

I I I • I 

OS ov 0£ oz Ol 
wn.Jpads .J8MOd j.O .JUS 

~ . 

0 
- 0 

- 0 co 

- 0 
(!) 

- 0 
"<t 

0 

0 

,........ 
en 
E ....__, 
Q) 

E 
....-

0\ c 
~ 0 

:;::; ~ 0 ..._ i.t: o> 
Q) ....-
c 



1-

1-

I 

OL 

65 

I 

<> 
0 

- 0 

<I+ • E)X ~ <> 

<I· 0-1!1- ~ 

<I 0 -Ill( {%01 

G+ x{:ll 0 

O+<a<~ {0 <> 

... 

·+«I * 0 l3r 

0<1 

<> 

<> 

<> 

<> 

<> 

<> 

+ ... ~ 0 <> 

- 0 
<D 

- 0 
v 

- 0 
N 

+ -9 -<cJ <> 
I <;>*0~ 0 

g 0 

.......... 
en 
E 

........... 
Q) 

E 0 ....., -
c: ~ 
0 ;:s 

....., b.!) 

0 ll::: 
~ 

o> 
Q) ....., 
c: 



66 

Chapter III. 

Atmospheric Disturbance on Optical Aperture Synthesis 
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1. Introduction 

The method of non-redundant masking (NRM) is a promising technique for high-dynamic

range diffraction-limited imaging with ground-based telescopes. The potential of this technique 

has been demonstrated by two groups, one at Cambridge (Haniff et al. 1987) and the other at 

Caltech (Chapter II). In the course of the demonstrations, two major problems were encountered; 

these were low fringe amplitudes and baseline-dependent amplitude errors. Since the NRM 

technique is the first step towards optical aperture synthesis with a discrete array of telescopes, it 

is important to understand the origin of the problems and to find suitable solutions. 

It has been observed that the fringe amplitude of a point source is much lower than 100% 

(Haniff et al. 1987, Chapter II) even under seeing conditions as good as 1". The maximum 

fringe amplitude is around 50% for baselines shorter than 1 m, and the fringe amplitude gradually 

decreases with increasing baseline length. Both disturbances in the atmosphere and imperfections 

in the telescope optics can be responsible for the reduction of the fringe amplitude. In this chapter, 

the reduction of the fringe amplitude due to atmospheric disturbances is estimated by simulations 

based on a Kolmogorov spectrum. Assuming a fringe amplitude of unity for a point source, 

Kulkarni and Nakajima (1989) obtained a lower bound to the limiting magnitude of the NRM 

technique, taking into account the covariance analysis of the amplitude and closure phase and thus 

the signal-to-noise ratio of an ideally constructed map. In this paper, more realistic estimates of 

the signal-to-noise ratio will be given taking atmospheric disturbances into account. 

A fringe pattern formed on the image plane suffers from atmospheric disturbances in two 

ways: 

Small-scale. High frequency fluctuations across each aperture degrade each Airy disk and thus 

result in station-dependent amplitude reduction. 
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Large-scale. Low frequency fluctuations prevent different Airy disks from overlapping perfectly 

on the image plane and thus result in baseline-dependent amplitude reduction. 

An advantage of simulations over real observations is that it is possible to simulate the 

effects of small-scale and large-scale disturbance separately and to study the relative significance 

by introducing a cut-off frequency in the Kolmogorov spectrum. Separating the small-scale effect 

and the large-scale effect is also important in evaluating the performance of an active interferometer 

which in principle can compensate for the path difference and the large-scale effects in real time. 

An obvious disadvantage of the NRM technique is the waste of photons. By increasing 

the aperture size, the fringe amplitude is reduced due to redundancy in baselines, but there is 

a gain in the number of photons and uv coverage. A transition from the NRM regime with 

r c-sized apertures to the speckle regime and trade-offs are studied from the behavior of the fringe 

amplitude as a function of the aperture size. Throughout this chapter, the size of an aperture or 

the aperture size refers to the diameter of a circular aperture unless specified otherwise. 

The algorithm of the simulations and the computation are described in §2 and §3 respectively. 

The results of the simulations are presented in §4. A discussion on the simulated results is given 

in §5. Finally the limiting magnitudes of the NRM technique and masking with 50-cm apertures 

are derived in §6. 

2. Algorithm 

The simulations are based on the Kolmogorov theory of turbulence and refractive-index 

fluctuations (Kolmogorov 1961; Tatarskii 1961, 1967) and on recent observations of the altitude 

dependence of the refractive-index structure constant Cn 2 (e.g., La Silla Seeing Campaign: Vemin 

1986; Roddier and Roddier 1986). The Kolmogorov theory provides mathematical expressions 
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of the atmospheric disturbance on a light-wave propagation as two-dimensional spectral densities 

of phase fluctuation, amplitude fluctuation and the cross spectral density of the two. On the other 

hand, recent observations indicate that most of the turbulence is produced at the boundary layer 

and that the high altitude turbulence contributes a relatively small fraction of the overall seeing 

degradation. We therefore assume that the major disturbance appears as phase fluctuations in the 

near-field limit and that amplitude fluctuations (scintillation) and the cross correlation of the phase 

and the amplitude fluctuations are negligible to first order. 

In the near-field limit, the spectral density of the phase fluctuation at the aperture plane of 

a telescope is given by, 

(1) 

where "-r = J Kx2 + "-l is the two-dimensional radial spatial frequency, k is the wave number, 

and J Cn 2(L)dL is the integrated structure constant of the refractive-index fluctuation over the 

optical path through a turbulent medium. 

Since the spectral density specifies only the frequency-dependent variance of the fluctuation 

but not the probability distribution, we further assume a Gaussian probability distribution with zero 

mean. In what follows, <l>(x) denotes the phase at the aperture plane of a telescope and is a real 

function of x, and <i>(K) denotes its Fourier transform, which is a conjugate-symmetric-complex 

function of "-· In the simulations, <i>(K) is generated at each point over one half of the "' space; 

<i>(K) is a complex random number whose modulus is a Gaussian random number with a variance 

of Fs(Kr)l:!.K and whose phase is a uniform random number between 0 and 271". l!.K denotes an 

area in"' space equaling ( 1.::)
2

• where lmax is the size of the square phase screen. A conjugate

symmetric-to-real Fourier transform from "' to x space then creates a monochromatic phase screen 

<l>(x) at .X = 2;. The same algorithm is used in the simulations of speckle interferometry in Chapter 

IV. 
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Idealized masking or aperture synthesis is simulated simply by calculating the wave func-

tion at multiple circular apertures on the phase screen and its propagation to the image plane. At 

each point of the aperture plane, the complex amplitude 'I'(x) = exp(i<l>(x)) is calculated. Another 

Fourier transform simulates the light-wave propagation from the aperture plane to the image plane, 

and from the squared modulus of the Fourier transform of 'I'(x), a monochromatic fringe pattern, 

i'P(s)l2 
is obtained; s denotes the coordinate on the image plane. Since the phase fluctuations 

are proportional to the wave number k, finite bandwidth effects are taken into account by averag-

ing over monochromatic fringe patterns at equally spaced wave numbers covering the bandpass. 

Thus from one evaluation of 'I'(x), multiple i'P(s)l2 
are generated and averaged to produce one 

interferogram J(s). If Taylor's hypothesis of frozen-in turbulence (Taylor 1961) and a uniform 

translation by a constant wind velocity are assumed, a continuous observation can be simulated 

by considering a series of masks displaced by a distance that is typically the coherence length, r c · 

In the data reduction, the fringe amplitude is obtained statistically to a required accuracy 

by combining many frames. The fuurier transform li(u) of the jth fringe pattern, Jj(s), is taken 

to form the power spectrum, 

(2) 

where u denotes the spatial frequency on the image plane. fur n speckle interferograms, the sum 

of power spectra, 
n 

P(u) = L Pj (u) , (3) 
j =l 

is calculated. Then at each spatial frequency u, corresponding to each mean baseline vector, the 

fringe amplitude (or visibility) V(u) is calculated as, 

(4) 

where n h is the number of holes in the mask. In some cases, the signal-to-noise ratio of P(u) is 
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also calculated. Since the purpose of this paper is to study the effect of aunospheric disturbances, 

we study the simple case of a point source. 

3. Computation 

The simulations were made at a central wavelength of 6300 A. The aperture configuration 

was the same as one of the masks used in the experiment discussed in Chapter ll and the resultant 

uv coverage is shown in Fig. 1. The simulations were made with six different aperture sizes of 

10, 15, 20, 30, 40 and 50 em and five different bandwidths of 0, 30, 100, 300 and 1000 A. 

The integrated structure constant of the refractive-index fluctuation, 

(5) 

was adopted corresponding to I" seeing. This is approximately Roddier' s value (Roddier 1981 ). 

As discussed later in §5, the coherence length rc, defined as a scale length within which the 

rms phase fluctuations are smaller than one radian, was 14 em under these conditions. It was 

experimentally found that five monochromatic fringe patterns produced at equally spaced wave 

numbers within the bandpass were enough to obtain a reasonable averaged interferogram. 

In order to include wavefront degradation at small scales, the sampling interval on the phase 

screen must be significantly smaller than the coherence length rc. On the other hand, the linear 

dimension of the phase screen has to be significantly larger than the longest baseline so that the 

large-scale disturbance is simulated properly. Both the sampling interval, ~l . and the size of the 

phase screen, lmax• were determined empirically. It was found that, for sampling intervals, ~~ < 

2 em, the simulated amplitudes were constant to 1% even for a mask with 10-cm apertures which 

was most affected by the small-scale disturbance. Hence, ~~ was set to 2 em. Masks with 15-cm 
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and 50-em apertures with 300-A bandpass were simulated with lmax = 10m and 20 m and the 

results were compared. In the case of the mask with 15-cm apertures, and baselines of 1.5 m or 

shorter, the resultant fringe amplitudes did not show any difference larger than 1%. Therefore 

the fringe amplitudes of baselines shorter than 1.5 m were fully determined by the fluctuations 

whose scale lengths were smaller than 10m. Fluctuations whose scale lengths were between 10 

m and 20 m only caused overall wandering of the superposed fringe pattern, but did not cause the 

dislocation of the Airy disks. fur the baselines longer than 1.5 m, the fringe amplitudes simulated 

with lmax = 20 m were lower than their COWlterparts with lmax = 10 m by at most 2% at the 

longest baseline. In the simulation of a mask with 50-em apertures, the resultant amplitudes 

did not show any difference at all baselines for different lm ax· l max was set to 10.24 m for 

the convenience of computation. The array size on the computer was thus ( 7/ = 5122. In 

producing fringe patterns, 5122-sized fast Fourier transforms were made to satisfy the Nyquist 

sampling requirement. 

Throughout this chapter, any effect smaller than 2% in the difference of fringe amplitude 

is regarded as negligible. A comparison of different sizes of the phase screen indicated that for a 

baseline of length B, any fluctuation of scale length L > 6B was fully negligible. fur a sinusoidal 

fluctuation of wavelength 6B, an area of the wavefront of the size B x B is often tilted, but is 

always flat. Intuitively, sinusoidal fluctuations with scale lengths smaller than 2d degrade and 

spread the Airy disk made by a d-sized aperture, but do not cause wandering of the Airy disk. 

This disturbance is fully 'small-scale' and the reduction of the fringe amplitude is station (or hole) 

dependent. fur the same reason, fluctuations with scale lengths larger than 6d cause wandering 

of the Airy disk made by a d-sized aperture, but do not cause any significant degradation of 

the Airy disk. For a multi-aperture mask, the dislocation of the Airy disks reduces the fringe 

amplitude. This disturbance is fully 'large-scale' and the reduction of the fringe amplitude is 

baseline dependent. Fluctuations with scale lengths between 2d and 6d contribute to both types 
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of disturbances. In this chapter, for a d-sized aperture, atmospheric disturbances by fluctuations 

with scale lengths smaller than 4d are defined as 'small-scale disturbances (SSD)' and those 

with scale lengths larger than 4d are defined as 'large-scale disturbances (LSD).' Based on these 

definitions, the cutoff spatial frequency "-c of the Kolmogorov spectrum was introduced as 

(6) 

In practice a smooth cutoff was adopted by attenuating the Kolmogorov spectrum below or above 

"-c by a unit-Gaussian attenuation factor which peaked at "-c with a width of 10 em. Hereafter, 

the Kolmogorov spectra with the lower and upper cutoffs are called the spectrum of small-scale 

disturbances (SSSD) and the spectrum of large-scale disturbances (SLSD) respectively. The 

simulations were carried out on a Convex C-1 minisupercomputer. 

4. Results 

Aperture-Size Dependence of Fringe Amplitudes with Monochromatic Light 

Monochromatic fringe amplitudes are plotted as functions of the baseline length for masks 

with different aperture sizes in Figs. 2, 3, and 4 respectively for the Kolmogorov spectrum, 

SSSD, and SLSD. As expected, there is no baseline-length dependence of the fringe amplitude 

for SSSD, but LSD cause a baseline-dependent amplitude reduction. 

The aperture dependence of the relative importance between SSD and LSD shows an in-

teresting behavior. By averaging fringe amplitudes over different baselines, the mean amplitude 

for each mask is obtained. In Fig. 5, the mean amplitudes are plotted as functions of aperture 

size d. For small apertures, SSD and LSD are equally important, while for large apertures SSD 

are dominant. For small apertures, the quality of Airy disks is so high that small displacements 
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of the Airy disks by LSD are equally important as SSD. For large apertures, intrinsically smaller 

Airy disks are already degraded and spread to the size of a seeing disk by SSD and the effect of 

LSD is less appreciable. 

The fluctuation spectrum (spectral density) of the phase gradient is an indicator of LSD. 

As shown in Appendix 1, the spectral density of phase gradient follows a - ~ power law. The 

negative power law exponent implies that the effect of LSD will dominate the disturbance in 

long-baseline interferometry with small apertures. 

Finite-Bandpass Effects 

The finite-bandpass causes further decorrelation in fringes. Table 1 summarizes the mean 

amplitudes of all the simulated combinations of the mask and bandpass for the Kolmogorov 

spectrum. It is again emphasized that simulated fringe amplitudes are accurate to 2%. Figs. 6, 

7 and 8 are the Kolmogorov spectrum, SSSD, and SLSD respectively for bandwidths of 0, 30, 

100, 300 and 1000 A. The effect of finite bandpass on SSD is negligible. As seen from Figs. 6 

and 8, finite bandwidth combined with LSD causes baseline-dependent amplitude reduction. fur 

~A = 0, 30 and 100 A, there is no appreciable effect, but the reduction of the amplitude toward 

longer baselines is seen for ~A = 300 and 1000 A. 

The effects of finite bandpass and aperture size are empirically found to be nearly indepen

dent of each other. In Fig. 9, mean fringe amplitudes for six different aperture sizes are plotted 

as functions of bandpass. The finite bandpass affects the fringe amplitude in the same manner 

for any aperture size. Therefore the mean amplitude V(d, ~A) as a function of the aperture size 

d and bandpass ~A is factored as 

V(d, ~A) = V o(d)R(~A), (7) 

where V o(d) is the mean fringe amplitude for monochromatic light and R(~A) is the amplitude

reduction factor dependent only on the bandpass. R(~A) is used in estimating the signal-to-noise 
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ratio of optical aperture synthesis images in §6. 

5. Discussion 

Comparison between Simulations and Observations 

One of the observations described in Chapter II was made using a five-hole mask with 15-

cm apertures and 30-A bandpass. At 6300 A, 15 em corresponds nearly to the lateral coherence 

length for 1" seeing. For a point source calibrator, the observed fringe amplitude ranged from 

45% to 25% under a condition of 1". On average, the fringe amplitude decreased from 35% on 

60-cm baselines to 30% on 2-m baselines. However a much larger anisotropy in the uv plane(~ 

10%) than the radial dependence was observed on baselines with nearly the same lengths. 

The simulated fringe amplitudes with 30-A bandpass for the Kolmogorov spectrum, SSSD 

(fluctuation scales shorter than 60 em) and SLSD (fluctuation scales larger than 60 em) are plotted 

in Fig. 10. In all the simulations, the rms error in fringe amplitudes is smaller than 2%. The 

simulated fringe amplitude with the Kolmogorov spectrum monotonically decreased from 63% 

at shorter baselines to 60% at longer baselines. With SSSD, fringe amplitudes of 73% were 

obtained, independently of baseline length. With SLSD, the simulated fringe amplitude showed 

a weak decreasing tendency from 78% at 60-cm baselines to 73% at 2-m baselines. Both the 

effects of SSD and LSD were equally significant in the reduction of the fringe amplitude. However, 

observed fringe amplitudes were typically only half of the simulated fringe amplitudes. Because 

of the uncertainty in the estimate of the seeing condition in the observations, precise comparison 

between the results of the simulations and the observations is impossible. However, the simulated 

fringe amplitudes seem to give an upper bound of the observed fringe amplitudes. 

The most striking qualitative discrepancy between the simulations and the observations is 

the large anisotropy of the observed fringe amplitude in the uv plane. This anisotropy must 
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originate from either imperfections in the telescope optics or from incorrect assumptions of the 

statistical isotropy in the Kolmogorov theory. One clue to distinguish the telescope imperfections 

from the atmospheric disturbance may be given by the time variability of the anisotropy. As 

discussed in Chapter II, a fairly successful baseline-dependent calibration of the amplitude of the 

object by that of the calibrator indicated that the anisotropy was almost static over a period of 20 

minutes, and thus we conclude that the anisotropy was caused by the telescope imperfections. 

Transition from NRM Regime to Speckle Regime 

By a linear fitting of a logarithmic plot (Fig. 5), the aperture dependence of the fringe 

amplitude with SSSD (o), VD, for apertures larger than 30 em, is empirically given by 

(8) 

From the heuristic interferometric view of the image-forming process that is applicable to the 

effect of SSD (Rogers 1963), the fringe amplitude is expected to be the reciprocal of the square 

root of the redundancy of the baseline ( -4./ (Korff et al. 1972, Appendix 2 of Chapter IV) and 
rc 

thus V = 7· Therefore the coherence length, rc, estimated from the interferometric view is 14 

em at 6300 A with the integrated structure constant of 5 x 10-13 m-!. For aperture sizes of 

50 em or larger, SSD are the dominant cause of the amplitude reduction and aperture masking 

is essentially in the speckle regime. A smooth transition from the NRM regime to the speckle 

regime is seen in Fig. 5. 

Origin of Finite-Bandpass Effects 

In the uv plane, the diameter of a statistically independent spatial frequency circle at lf 
determined by atmospheric disturbances is T for monochromatic light. By widening the band-

width, uncorrelated phasors of baselines adjacent to B at wavelengths adjacent to A, incoherently 

blend into the phasor at the spatial frequency, lf. If it were not for the effect of LSD, no blending 
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should occur for a r c-sized aperture, because of the geometrical absence of the adjacent baselines. 

Therefore no amplitude reduction caused by the finite bandpass is seen in the simulation of NRM 

with SSSD. On the other hand, obvious reduction with a wide bandpass is seen for 50-cm aper-

tures with SSSD because of the geometrical presence of neighboring baselines (Fig. 11). The 

finite-bandpass effect becomes significant when 

(9) 

For B = 2 m, ~.X ;::::: 300 A, the estimate is therefore consistent with the simulations. 

For a long-baseline interferometer with r c-sized apertures, the finite-bandpass effect induced 

by LSD will dominate the amplitude reduction. By a real-time compensation of both the path 

difference and the effect of LSD, high quality fringes affected only by SSD can in principle be 

obtained. 

6. Signal-to-Noise Ratio of Aperture Masking 

The limiting magnitudes of the NRM technique and that of masking with apertures larger 

than r c are estimated at low light levels. These estimates are based on the results of simulations, 

on the theory discussed by Kulkarni and Nakajima (1989), and on the experience with real 

observations described in Chapter II. 

Light Level Dependence 

Before proceeding to the discussion of limiting magnitudes, the light level dependence of 

the signal-to-noise ratio (SNR) of the power spectrum (Jfringe amplitudeJ2
) of NRM is considered 

in comparison with that of an ideal Michelson interferometer. The SNR of a power spectrum 
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component per short-exposure frame is given by 

(10) 

where V, nh, N, n = .::',. and a A 2 are the fringe amplitude, the number of holes, the mean 

photon counts per short-exposure frame, the mean photon counts per hole per short-exposure 

frame and the variance of the power spectrum component purely due to atmospheric disturbances 

respectively (e.g., Kulkarni and Nakajima 1989). Since the object under consideration is a point 

source, the fringe amplitude V represents the atmospheric disturbance. We consider the case of 

a five-hole mask with 15-cm apertures and 100-A bandpass. For ideal Michelson interferometry 

free from atmospheric disturbances, V = 1.0 and a A = 0.0. The simulation of the NRM including 

atmospheric disturbances gives V = 0.6 and a A = 0.01. In Fig. 12, the SNRs of the ideal 

Michelson interferometer and the simulated NRM are plotted as functions of n. At low light 

levels (n < 10), the SNRs of both the ideal Michelson interferometer and the simulated NRM are 

proportional to n. The SNR of the simulated NRM is lower than that of the ideal Michelson by a 

factor of V 2 = 0.36 for a given n. At high light levels (n > 10), the SNR of the ideal Michelson 

interferometer is proportional to n~, while that of the simulated NRM saturates to 1.4. For an 

observing system with a net throughput of ry%, the magnitude at the transition light level n = 10 

is 

Mtr = 6.1 + 2.5log TJ mag. (11) 

Low Light Levels 

In Table 2, expressions of the SNR of a power spectrum component (~ SNR of fringe 

amplitude), a bispectrum component(~ SNR of closure phase) and the total SNRs in the power 

spectrum and bispectrum are given in terms of the fringe amplitude, V, the number of holes, 

nh, the mean photon counts per integration time, nand the number of short-exposure frames, A1 
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(Appendix 2.). Here the total SNR in the power spectrum is defined by 

SNR of a power spectrum component x v'number of statistically independent components, 

and the total SNR in the bispectrum is defined by 

SNR of a bispectrum component x Vnumber of statistically independent components. 

The total SNRs in the power spectrum and the bispectrum can also be interpreted as the SNRs of 

an ideally constructed autocorrelation function (ACF) of an object and an ideally constructed map 

of the object respectively. Since the total SNR in the bispectrum (third order quantity) is always 

lower than that in the power spectrum (second order quantity), the SNR of a map is determined 

by the total SNR of the bispectrum which supplies phase information. A detailed discussion of 

this subject is found in Kulkarni (1989). 

The expression 'ideally' is used since some practical complications were not included in 

these estimates of the SNRs of the ACF and the map. Individual short-exposure frames are limited 

by photon noise. The same expressions for the SNRs would be obtained for an error-free fringe 

amplitude instead of the mean fringe amplitude affected by the atmospheric disturbance. However, 

after eliminating the predominance of photon noise by an ensemble average of M(2> 1) frames, 

the quality of a data set is limited by long-term systematic errors caused by the atmospheric 

disturbance (Chapter II) which do not show up in the given expressions. Any calibration problem 

originating from these hidden systematic errors limits the total SNR, especially of the power 

spectrum, and hence the SNRs of both the ACF and the map. One obvious way to avoid this 

calibration problem is to keep the mean fringe amplitude high and thus minimize the effects of 

atmospheric disturbances. If this is the only solution for the calibration problem, high-dynamic

range images can be obtained only by interferometry with re-sized apertures. 

Limiting Magnitude of Non-Redundant Masking 
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The limiting magnitude of the NRM technique is estimated under rather strict constraints 

for high-dynamic-range imaging. The SNR of a bispectrum component is maximized by using a 

three-hole mask. However, the uv coverage is so poor that mapping with a three-hole mask is not 

very practical. By using a mask with more than seven holes the SNR of the map does not increase, 

but the SNR of each bispectrum component decreases. Therefore a seven-hole mask is nearly 

optimal for a non-redundant configuration (Kulkarni and Nakajima 1989). If a seven-hole mask 

with 15-cm apertures is used at >. = 6300 A, a constant fringe amplitude of V = 0.6 is expected 

for up to 2-m baselines with Ll>. :::; 100 A. Two conservative constrains are imposed based on 

the experience of data reduction and analysis described in Chapter II. First, a minimum SNR 

of three is required for each bispectrum component. Second, the maximum observing time per 

aperture configuration (e.g., rotational angle of the mask) required for the purpose of a successful 

amplitude calibration (between point sources, a cross calibration) is assumed to be on the order of 

ten minutes. An integration time of 20 milliseconds is adopted as in the observation described in 

Chapter II. Henceforth the limiting magnitude, M1im(3a; 10; 20), is obtained with the assumptions 

of a ten-minute observing time and 20-millisecond integration times. The corresponding total 

number of frames, M, is about 5 x 104 including the over-sampling factor of two. The inferred 

number of photons per hole is n = 1. For an observing system with a net throughput of 17%, the 

resultant limiting magnitude is 

Mlim (3a; 10; 20) = 8.6 + 2.5log 17 mag. (12) 

With the current technology of photo-multipliers the best-case design of the throughput 17 will 

be 10%. The limiting magnitude of the NRM technique for high-dynamic-range imaging is then 

around 11 mag. For each configuration, the SNR of each power spectrum component is 12. The 

SNRs of the ACF and the map will be 50 and 18 respectively. It should again be emphasized that 

the 3a limit is imposed on a bispectrum component, while the constraint on the observing time is 

imposed by amplitude calibration. Under conditions that T-minute observations and integration 
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times of r milliseconds are allowed, the limiting magnitude, Mlim(3u; T; r), will be given by 

Ml;m(3u; T; r) = lvh m(3u; 10; 20) + 1.25log(T /10) + 2.5log(r /20) mag. (13) 

With several different aperture configurations, a map with a dynamic range over 100 will 

be obtained. In the presence of a point source reference of 11 mag or brighter, features as faint 

as 16 mag can be imaged. If a laser guiding star brighter than 11 mag is successfully created 

(Fay and Labeyrie 1985, Thompson and Gardner 1987), but not bright enough to activate adaptive 

optics, the NRM technique may well be the method of choice for high-dynamic-range imaging. 

Masking in Speckle Regime 

As discussed in §5, a smooth transition from the NRM regime to the speckle regime 

is seen when the aperture size is increased from 10 em to 50 em. Beyond d = 30 em, the 

amplitude reduction is dominated by the effect of SSD. With 50-cm apertures, aperture masking 

is practically in the speckle regime. The limiting magnitude of aperture masking in the speckle 

regime is of practical interest, since many of the currently planned optical-aperture-synthesis 

arrays have aperture sizes around 50 em (e.g., COAST, Mackay and Baldwin 1988). Therefore the 

sensitivity limit of the masking with 50-cm apertures sets the upper bound of those of long-baseline 

interferometers since more severe atmospheric disturbances are expected on longer baselines. 

fur d ~ 50 em, the fringe amplitude is expected to behave as V = 7 for Ll.A :::; 100 A. 

Table 3 shows the SNRs of a power spectrum component and bispectrum component, and the 

total SNRs. Statistically independent spatial frequency components are extended in the uv plane. 

The mean amplitude, V is constant and equals 7 n
1
h over a circle of diameter { in the uv plane. 

The SNR of the fringe amplitude per statistically independent spatial component does not depend 

on the aperture size (see Table 3). The reduction in amplitude and the increase in the number of 

photons are balanced in the photon noise limit. Therefore if the systematic errors caused by the 
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atmospheric disturbance are negligible, the SNR in the ACF will be gained simply by better uv 

coverage of larger apertures. 

In the following, the same observing parameters as used to test the NRM technique are first 

assumed aiming at high-dynamic-range mapping. If a seven-hole mask is used with a bandpass of 

100 A, the 3a limit in the bispectrum per configuration for a ten-minute observation corresponds 

to nc = 0.9, where nc is the number of photon events per re-sized coherent cell. nc = 0.9 is nearly 

the same object brightness as n = 1.0 for the NRM with 15-cm apertures. At this flux level, the 

SNR in amplitude is 29, the SNRs of ACF and map are 466 and 218 respectively. In reality, 

such a high dynamic range has never been seen in images produced by speckle interferometry. 

The hidden atmospheric effect must be well understood especially in this speckle regime. Is 

the estimated SNR of the map wrong or is there any calibration procedure which overcomes this 

problem? The limiting magnitude for potential high-dynamic-range imaging is the same as that for 

the NRM technique. fur objects brighter than nc ~ 1, the NRM technique is advantageous over 

masking with larger apertures unless a good calibration procedure exists in the speckle regime. 

Now we relax the constraints on the bandpass, the number of holes and the limiting SNR 

per closure phase, in order to pursue the faintest limit. As discussed in §5, the amplitude

reduction factor due to the finite bandpass, R(t:J.>..), is independent of aperture size d. Then, 

G(t:J.>..) = R(t:J.>..)/fio represents a gain in the apparent SNR compared to 100 A bandpass because 

of the increased number of photons. G2 and G 3 correspond to the gain factors in power spectrum 

and bispectrum respectively. From Fig. 11, R(t:J.>..) is obtained at a given baseline. For a 2-m 

baseline, G(300) = 1.55 and G(1000) = 2.0. This gain factor seems to saturate beyond 1000 A, 

judging from the change of the slope. t:J.>.. = 1000 A will be the practical maximum bandpass 

and the maximum gain in the SNR of the bispectrum component is 8. Since there are many 

more statistically independent bispectrum components, n h = 7 is no longer a constraint. Here 
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the minimal value, nh = 3 is adopted. Compared to NRM which has fully discrete triangles, 

masking with large apertures has a contiguous distribution of triangles. Since contiguous data 

points are easier to handle (e.g., by smoothing) than fully discrete data points, the requirement 

for the minimum SNR per bispectrum component could be reduced to one. Taking all these gain 

factors into account, the limiting magnitude for 1cr detection with a three-hole mask with 50-cm 

apertures and 1000-A bandpass is 

Mtim(lcr; 10; 20) = 11.8 + 2.5log 1J· (14) 

At this limit, the SNR of the map is 12. 

7. Conclusions 

In this chapter the effects of the atmospheric disturbance on the method of NRM and 

masking with apertures larger than the coherence length are studied by Monte Carlo simulations 

based on the Kolmogorov theory of refractive-index fluctuations. The simulations are made at 

6300 A with different bandwidths ranging from 0 to 1000 A under a seeing condition of 1". The 

baseline length ranges from 60 em to 2.2 m. The limiting magnitudes of the NRM technique and 

masking with 50-cm apertures are estimated, based on the results of the simulations, the theory 

by Kulkarni and Nakajima (1989) and the practical experience described in Chapter II. 

Major conclusions are as follows: 

(1) The mean fringe amplitude simulated for the NRM technique with r e-sized apertures is about 

60%. This value gives an upper bound for the observed fringe amplitudes which are also af

fected by telescope imperfections. The effects of small-scale disturbances (SSD) and large-scale 

disturbances (LSD) are equally significant in the reduction of the fringe amplitude. 
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(2) A smooth transition from the NRM regime to the speckle regime is simulated by increasing the 

aperture size from 10 em to 50 em. In the speckle regime, the monochromatic fringe amplitude is 

consistent with the value predicted by the heuristic interferometric view of image-forming process. 

A real-time compensation of the effect of LSD does not improve the mean fringe amplitude for 

apertures larger than 2rc. 

(3) A criterion for a significant amplitude reduction for a baseline B is given by 6;.' ~ ]r. For the 

NRM technique, the effect of LSD combined with the finite bandwidth causes baseline-dependent 

amplitude reduction. For larger apertures, the finite-bandwidth and the effect of SSD cause the 

mixing of uncorrelated baseline phasors at a given spatial frequency because of the geometrical 

presence of multiple baselines corresponding to that particular spatial frequency. The fractional 

reduction of fringe amplitudes according to the bandwidth is nearly independent of the aperture 

size. 

(4) The limiting magnitudes for high-dynamic-range imaging are obtained with the following 

assumptions; the 3<7 limit in each bispectrum component, an observing time of ten minutes for 

a successful amplitude calibration, and an integration time of 20 milliseconds. For an observing 

system with a net throughput of 7]%, the estimated limiting magnitudes, Mt;m(3<7; 10; 20) of the 

NRM technique and the masking with 50-cm apertures and 100-A bandwidth were the same, and 

are 8.6 + 2.5log rJ· With the best system currently available, Mtim (3<7; 10; 20) ~ 11 mag. For 

objects brighter than the limiting magnitude given above, NRM will be the method of choice 

for the purpose of high-dynamic-range imaging unless a good calibration scheme is found in the 

speckle regime. The faintest limit for the phase-closure imaging will be pursued by relaxing 

the requirements for the detection limit of each bispectrum component to 1<7 and the bandpass 

to 1000 A. For the masking with 50-cm apertures, the limiting magnitude, Mt;m(l<Y; 10; 20) is 

11.8 + 2.5log rJ mag. With the best system currently available, M t;m (3<7; 10; 20) ~ 14 mag. 
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Under conditions that T -minute observing times and r-millisecond integrations are allowed, the 

limiting magnitude will be given by, Mtim(T; r) = MtimOO; 20)+ 1.25log(T /10)+ 2.5log(r /20) 

mag. 

Appendix 1. Kolmogorov Spectrum of Phase Gradient 

In order to characterize the effect of LSD quantitatively, it would be desirable to obtain the 

correlation function of the angle () of the wavefront normal, De(r). However, () is a non-linear 

function of the phase S and it is next to impossible to calculate D 8 (r) analytically. Instead, the 

Kolmogorov spectrum of fluctuations of phase gradient, F 1 v 5 1, is derived from the Kolmogorov 

spectrum of phase fluctuations, Fs(Kr), as an indicator of the effect of LSD. 

First the power spectrum or"~; is derived as 

Fll(Kx, Ky) = F6'(x)(Kx, Ky) X Fs(Kr) 
a., 

K 2 
= li

2
;1 X Fs(Kr). 

Similarly, 

Because of statistical isotropy in the turbulence, 

FIVSI(Kr) = Fll + Fll 
a~ a11 

Kr 2 = (271") Fs(Kr) 

s 
<X ,..,:; J 

Appendix 2. Signal-to-Noise Ratios of Power Spectrum and Bispectrum 

(A- 1) 

(A- 2) 

(A- 3) 
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The power spectrum and bispectrum analysis of of photon noise affected images are well 

understood in terms of the behavior of the signal-to-noise ratios (SNR) according to the light levels. 

(Goodman and Belsher 1976, 1977; Dainty and Greenaway 1979; Wimitzer 1985; Chapter IV). 

These results are applied to photon-noise-limited fringe patterns to derive the formulae of SNRs 

given in Tables 2 and 3. 

By extending the variance analysis to the covariance analysis, the number of statistically 

independent fringe amplitudes and that of statistically independent closure phases have been 

obtained (Kulkarni and Nakajima 1989). By using the results of the covariance analysis, SNR of 

a point source in a synthesized map are given in Tables 2 and 3. 

At low light levels, the SNR per short-exposure frame of the power spectrum component 

at spatial frequency u is given by 

- - 2 N (l i(u)i ), (A- 4) 

where N is the number of photons per frame, () stands for an ensemble average, and i1(u/ is 

the power spectrum component normalized by the zero spatial frequency component (Dainty and 

Greenaway 1979). The SNR of the bispectrum component at (ut, u2) is given by 

(A- 5) 

where iP>(u1 , u2) is the bispectrum component (Wimitzer 1985). 

In the case of NRM, each power spectrum component is related to the fringe amplitude V 

as 

- 2 V 2 

(li (u)i ) = - 2 , 
nh 

(A- 6) 
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where V is the visibility amplitude and n h is the number of holes. A bispectrum component is 

given by 

(A -7) 

where v1 v2v3 is the triple product of three complex visibilities. In the case of a point source, 

(A- 8) 

since the mean closure phase is zero. This approximation is valid only if V is not very noisy or 

not too small compared to unity (> 0.3). 

By introducing the number of photons per hole, nh, N = nhn, for an ensemble of M 

frames, the SNR of the amplitude (power spectrum) is, 

(A - 9) 

Similarly, the SNR of the closure phase (bispectrum) is, 

3 

N! (Ji:P>(ut, uz)I)VM = V 3( n) ~ VM. 
nh 

(A- 10) 

In the case of aperture masking in the speckle regime, each power spectrum component is 

related to the fringe amplitude V as 

- 2 1 rc 2 
(Ji(u)J ) = -2(-d) ' 

nh 
(A- 11) 

where r c is the coherence length and d is the aperture size (Korff et al. 1972, Appendix 1 of 

Chapter IV). 

A bispectrum component is given by 

-(3) 1 r c 4 
(b (Ut, Uz)) = -(-) 

nh3 d 

(Readhead et al. 1988, Appendix 1 of Chapter IV). 

(A- 12) 
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By introducing the number of photons per coherent cell, nc, N = nhnc( .sl.}. The SNR of 
rc 

amplitude is given as 

(A- 13) 

The SNR of closure phase is given as 

(A- 14) 

At low light levels, all the fringe amplitudes and the closure phases are effectively statisti-

cally independent (Kulkarni and Nakajima 1989). In the case of NRM, there are nh(nh - 1)/2 

amplitudes and nh(nh - l)(nh - 2)/6 closure phases. In the case of the masking in the speckle 

regime, there are nh(nh -1)/2 x <!; l amplitudes and nh(nh -1)(nh -2)/6x (rd)
4 

closure phases. 

Eq. (A-9), multiplied by Jnh(nh- 1)/2 gives the SNR of an ideally constructed amplitude map. 

Similarly, the SNR of a phase map of NRM and those of an amplitude map and a phase of the 

masking in the speckle regime are obtained as given in Tables 2 and 3. 
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Amplitudes averaged over baselines 

d \ 11>. OA 30 A 100 A 300 A 1000 A 

10 em 0.78 0.76 0.76 0.64 0.43 

15 em 0.62 0.61 0.63 0.54 0.35 

20 em 0.51 0.50 0.51 0.43 0.29 

30 em 0.38 0.38 0.38 0.33 0.24 

40 em 0.30 0.30 0.29 0.26 0.17 

50 em 0.25 0.25 0.24 0.21 0.15 

Table 1. 

SNR of Non-Redundant Masking 

NRM SNR Total SNR 

Power spectrum v2"ViVJ n,. v2rr---;jn2"n-;.lViVJ 

Bispectrum V3( n )~VM nh V3n~ V (n,. -lXn• -2) VM 6nh2 

Table 2. 

SNR in Speckle Regime 

Speckle Regime SNR Total SNR 

Power spectrum n....JM n,. ( .!L)n ,jn• -1 VM 
r e c 2n,. 

Bispectrum (.!:.;. )(11,.}../M d nh (.!L)n ~J<n·-O<n.-2>ViVJ 
r

0 
C 6n,.2 

Table 3. 



92 

Figure Captions 

Fig. 1 - UV coverage of the simulated five-hole mask. The unit is in meters. 

Fig. 2 - Aperture-size dependence of the fringe amplitude for the Kolmogorov spectrum. ~A = 0 

A. Different symbols denote different aperture sizes. d = 10, 15, 20, 30, 40 and 50 em 

from the top to the bottom. 

Fig. 3 - Aperture-size dependence of the fringe amplitude for SSSD. ~A = 0 A. Different symbols 

denote different aperture sizes. d = 10, 15, 20, 30, 40 and 50 em from the top to the bottom. 

Fig. 4 - Aperture-size dependence of the fringe amplitude for SLSD. ~A = 0 A. Different symbols 

denote different aperture sizes. d = 10, 15, 20, 30, 40 and 50 em from the top to the bottom. 

Fig. 5 - Mean fringe amplitudes plotted as functions of the aperture size in logarithmic scale. ~A = 

0 A. From the top to the bottom, three different symbols denote SLSD (x), SSSD (o) and 

the Kolmogorov spectrum (*). 

Fig. 6 - Finite-bandwidth effects on NRM with the Kolmogorov spectrum. d = 15 em. Different 

symbols denote different bandwidths. ~A = 0, 30, 100, 300 and 1000 A from the top to 

the bottom. 

Fig. 7 - Finite-bandwidth effects on NRM with SSSD. d = 15 em. ~A = 0, 30, 100, 300 and 1000 

A. 

Fig. 8 - Finite-bandwidth effects on NRM with SLSD. d = 15 em. Different symbols denote different 

bandwidths. ~A = 0, 30, 100, 300 and 1000 A from the top to the bottom. 

Fig. 9 - Finite-bandwidth and aperture size. The mean fringe amplitudes are plotted as functions of 

the bandpass in logarithmic scale. ~A = 30, 100, 300, 1000 A. Different symbols denote 

different aperture sizes. d = 10, 15, 20, 30, 40 and 50 from the top to the bottom. The 
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fractional amplitude reduction caused by the finite-bandwidth effect is nearly independent 

of the aperture size. 

Fig. 10 - NRM with monochromatic light. d = 15 em, Ll.A = 0 A. Circles, crosses and square boxes 

are the fringe amplitudes for the Kolmogorov spectrum, SSSD, and SLSD respectively. 

Fig. 11 - Atmospheric disturbance on masking in the speckle regime. d = 50 em. Different symbols 

denote different bandwidths. From the top to the bottom, Ll.A = 0, 30, 100, 300 and 1000 

A. 

Fig. 12 - SNR of an ideal Michelson interferometer with 15-cm apertures (*) and that of NRM 

with 15-cm apertures (solid line). SNR of NRM saturates at high light levels due to the 

atmospheric disturbance. 
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Chapter IV. 

Signal-to-Noise Ratio of the Bispectral Analysis of Speckle Interferometry 
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1. Introduction 

Speckle interferometry, (Labeyrie 1970) was first extended to full imaging with phase by 

Knox and Thompson (1974). A more powerful imaging technique, based on the use of closure 

phase, was developed in radio astronomy (Readhead and Wilkinson 1978). Independently for 

optical wavelengths, a method to extract closure-phase information from speckle observations by 

means of the bispectrum was developed by the Erlangen group (Lohmann et al. 1983, references 

therein). So far, the method called bispectral analysis has been successful in recovering a lOth

magnitude multiple stellar system (Hoffman and Weigelt 1986). However the potential and the 

limitations of the method have not yet been investigated fully both in sensitivity and resolution. It 

is important to quantify the behavior of the signal-to-noise ratio (SNR) of the bispectrum, which 

depends on both the spatial frequency and the light level. 

The analysis of the signal-to-noise ratio of the bispectral analysis is parallel to that of the 

power spectrum analysis and comprises two stages. First the modulation transfer functions (MTFs) 

which describe the combined effect of the telescope and the atmospheric disturbance are obtained 

by treating an incoming light as a wave and a speckle interferogram as an intensity distribution. 

By taking the influence of photon noise into account, the SNR of the bispectrum at arbitrary light 

levels is determined as a function of the classical MTFs and the mean photon counts. 

In most of the literature of speckle interferometry where the SNR is discussed, MTFs are 

derived in the mid-spatial-frequency range based on the heuristic interferometric view (HIV) of 

the image-forming process (Rogers 1963). From this point of view, a speckle pattern is regarded 

as a random interference pattern produced by a partially coherent incident wave. The validity of 

this heuristic treatment is known empirically in the case of the power spectrum analysis. The 

effect of the atmospheric disturbance is included in only one parameter, the coherence length. 
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The existence of the steep Kolmogorov spectrum in phase fluctuations suggests that there may be 

some important effects that are not predicted by this simple approach. A more thorough derivation 

of the power spectrum MfF, based on the phase structure function of the Kolmogorov theory, 

was derived by Korff (1973), who used a semi-analytical approach that took the atmospheric 

turbulence properly into account. The derivation of the power spectrum MTF is close to the limit 

of what can be done analytically. In order to obtain higher-order MTFs, such as the bispectral 

MTF, that take the Kolmogorov theory into account, it is necessary to resort to Monte Carlo 

simulations. This method enables us to test the predictions of the HIV of the bispectral analysis 

(Roddier 1986, Karbelkar and Nityananda 1987, Readhead et al. 1988) and it is shown here 

that they can be used as a guide to the correct first-order results. Predictions of the HIV are 

summarized in Appendix 1 of this chapter. 

The modeling of photodetection process, based on the rules of conditional statistics, and its 

application to the power spectrum analysis, were given by Goodman and Belsher (1976, 1977), 

who formulated an unbiased estimator of the classical power spectrum from an ensemble of photon 

noise limited images. They also obtained an expression for the signal-to-noise ratio of the power 

spectrum in terms of the classical modulation transfer function and the mean photon counts. 

Their analysis is applicable to non-photon-counting detection. In other words, they treated a case 

in which average photon counts per image were measurable, but neither positions of individual 

photons nor the total photon counts of individual images were known. Dainty and Greenaway 

(1979) applied the approach of Goodman and Belsher to photon-counting detection and pointed 

out that an unbiased estimator of the power spectrum is given in the same manner as in the case 

of non-photon-counting detection but the expression for the SNR is different. Since the photon 

noise bias can be removed in each frame, the variance of the power spectrum does not include 

terms originating from the fluctuations of the bias. 
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Wimitzer (1985) gave an unbiased estimator of the classical bispectrum, applying the 

method of Goodman and Belsher to the bispectral analysis for photon-counting detection. 

Wirnitzer also obtained the SNR in the high and low light limits, by evaluating the corresponding 

leading terms in the power of photon counts. This was the first realistic attempt to estimate the 

limiting magnitude of the bispectral analysis. However, as was first pointed out by Karbelkar 

and Nityananda, the classical bispectral MTF adopted by Wimitzer and the SNR in the high-light 

limit do not agree with those derived from the treatment based on the HIV. 

Monte Carlo simulations of an atmospheric phase screen, based on the Kolmogorov spec

trum (Kolmogorov 1961, Tatarskii 1961) were made in order to study statistical properties of the 

bispectral MTF at high light levels. The algorithm and the computation are described in §2 and 

§3, respectively. The results of the simulations for a 2-m telescope are presented in §4. The 

results are compared with those obtained using the interferometric view in §5. The MTF obtained 

by the simulations is re-interpreted to yield the SNR at low light levels in §6. In §7, the discus

sion of SNR is generalized to arbitrary light levels and arbitrary telescope sizes by modeling of 

the photo-detection process and the approximate modulation MTFs in the mid-frequency range. 

Finally in §8, the SNR in the recovered map is considered. An estimate of the practical limiting 

magnitude is discussed along with the limitation in resolution. 

2. Algorithm 

The algorithm of creating a phase screen at the aperture plane is identical to that described 

in Chapter III. The simulations are based on the Kolmogorov theory of turbulence and refractive

index fluctuation (Kolmogorov 1961; Tatarskii 1961, 1967) and recent observations of the altitude 

dependence of the refractive-index structure constant Cn 2 (e.g the La Silla Seeing Campaign : 
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Vemin 1986, Roddier and Roddier 1986). The Kolmogorov theory provides mathematical ex

pressions of the atmospheric disturbance on a light-wave propagation as two dimensional spectral 

densities of phase fluctuation, amplitude fluctuation and the cross spectral density of the two. 

On the other hand, recent observations indicate that most of the turbulence is produced at the 

boundary layer and that the high-altitude turbulence contributes a relatively small fraction of the 

overall seeing degradation. We therefore assume that the major disturbance appears as phase 

fluctuations in the near-field limit and that the amplitude fluctuation (scintillation) and the cross 

correlation of the phase and the amplitude fluctuations are negligible to first order. 

In the near-field limit, the spectral density of the phase fluctuation at the aperture plane of 

a telescope is given by 

(1) 

where "'r = J "'x2 + "'l is the two-dimensional radial spatial frequency, k is the wave number, 

and J Cn 2(L)dL is the integrated structure constant of the refractive-index fluctuation over the 

optical path through a turbulent medium. 

Since the spectral density constrains the frequency-dependent variance of the fluctuation but 

not the probability distribution, we further assume a Gaussian probability distribution with zero 

mean. In the following, <l>(x) denotes the phase at the aperture plane of a telescope, which is a real 

function of x and ci>(,..) denotes its fuurier transform which is a conjugate-symmetric-complex 

function of ""· At each point over one half of the "" space, ci>(K,), a complex random number 

whose modulus is a Gaussian random number with a variance of F s ("'r)/1"' and whose phase is a 

uniform random number between 0 and 2rr, is generated. /1"' denotes an area in"" space equalling 

( 1.:: .. l, where l max is the size of the square phase screen. A conjugate-symmetric-to-real Fourier 

transform from "" to x space then creates a monochromatic phase screen <l>(x) at >. = 2; . 
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An idealized telescope is simulated simply by a circular aperture on the phase screen. At 

each point of the aperture plane, the complex amplitude 'l'(x)"" exp(ict>(x)) is calculated. Another 

Fourier transform simulates the light-wave propagation from the aperture plane to the image 

plane and from the squared modulus of the Fourier transform of 'l'(x), a monochromatic speckle 

pattern, l'i'(s)l
2 

is obtained, where s denotes the coordinate on the image plane. Since the phase 

fluctuations are simply proportional to the wave number k, the finite-bandwidth effect is taken 

into account by averaging over monochromatic speckle patterns at equally spaced wave numbers 

covering the bandpass. Thus, from one evaluation of 'l'(x), multiple l'i'(s)l2 
s are generated and 

averaged to produce one speckle interferogram J(s). If Taylor's hypothesis of frozen-in turbulence 

(Taylor 1961) and a uniform translation by a constant wind velocity are assumed, a continuous 

observation can be simulated by considering a series of apertures displaced by a distance which 

is typically the coherence length, rc. 

In the data reduction, many short-exposure frames are processed to derived statistics. The 

Fourier transform lj(U) of the speckle interferogram of the j th frame Ij(S) is taken to form the 

bispectrum 

(2) 

where o denotes the spatial frequency on the image plane. For n frames, both the sum of bispectra 

and the sum of square moduli 

n 

L Bj3>(ot , 02) 

j:l 

n 
~ -(3) 2 
~ IE j (Ot, 02)1 ' 
j:l 

are calculated. The unbiased estimator of the ensemble average bispectrum is 

""'n _8(3)( ) 
(B- (3)( )) - .0 j:l j Ut' 02 

01,02 - , 
n 

(3) 

(4) 

(5) 
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where () indicates an ensemble average. Likewise the unbiased estimator of the variance of the 

bispectrum per frame is 

(6) 

In the case of the bispectral MTF, the mean value is real (Lohmann et al. 1983), since the 

atmospheric disturbance is statistically isotropic and the ideal telescope is static and symmetric. 

After averaging over enough samples, the SNR of the MTF per frame is defined as 

(7) 

Henceforth a SNR means a SNR per frame, unless specified otherwise. The SNR in the 

recovered map will be discussed in §8. 

3. Computation 

The simulations were made at a wavelength .X = 0.55 J.Lm with a fractional bandwidth of 

0.1. At this wavelength, the integrated structure constant of the refractive-index fluctuation, 

(8) 

was adopted corresponding to 1-arcsec seeing. This is approximately Roddier's value (Roddier 

1981). It was found experimentally that five monochromatic speckle interferograms produced at 

equally spaced wave numbers within the bandpass were enough to obtain a reasonable averaged 

speckle interferogram. 

In order to include wave front degradation at small scales, the sampling interval on the 

phase screen must be significantly smaller than the coherence length r c· On the other hand, the 
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linear size of the phase screen ( lmax ) has to be significantly larger than the primary mirror of 

the telescope so that the large-scale disturbance is simulated properly. Both the sampling interval 

and the ratio between the size of the phase screen and the diameter of the primary mirror ~ 

were determined empirically. The sampling interval 1:::.1 was chosen as 2 em, so that 49 phase data 

were obtained within a square area of r/ for rc = 14 em. It was found that fluctuations with 

correlation scales larger than 4 times the telescope diameter mainly caused image wandering, but 

did not affect the power spectrum or the bispectrum of a speckle interferogram. The ratio ~ 

must be at least 4. 

The maximum practical array size on the computer used, a VAX(750, is 5122 when the 

memory access time and the CPU-time for the Fast fuurierTransform(FFT) are taken into account. 

When the array size is combined with the sampling interval 1:::.1, the size of phase screen is 

(5121:::.1)2 ~ 10 m x 10 m. Sin~ the size of the phase screen is still smaller than the typical 

outer scale of the atmospheric turbulence, the Kolmogorov theory can safely be assumed. The 

maximum primary mirror size of the resultant simulated telescope is about 2.5 m or 128 pixels in 

diameter. In practice, we concentrated on a 2-m telescope, but also made calculations for a 1-m 

telescope for comparison. In producing images, 2562-sized fast Fourier transforms were made to 

satisfy the Nyquist sampling requirement. A cross section of a phase screen is shown in Fig. 1. 

Unfortunately the entire four-dimensional bispectrum is beyond the capacity of the computer 

used. It is however, possible to get a good insight into the MTF from a two-dimensional cross 

section of the bispectrum, since the atmospheric disturbance was already assumed to be locally 

isotropic in the Kolmogorov theory. The cross section of the bispectral MTF was chosen so that 

u1 and u2 are perpendicular to each other because of the convenience in drawing two-dimensional 

contour maps (Fig. 2). Therefore in a four-dimensional expression, the cross section is 

-(3) - - - -B ((, 0, 0, ry)- J((, 0)1(0, ry)J( -(, - ry). (9) 
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It should be noted that the third spatial frequency ( -u1 - Uz) has the largest modulus ( J (? + ry 2) 

among the three and the circle, 

(10) 

forms the boundary of the bispectrum, where If is the telescope cutoff frequency. 

4. Results of the Simulations 

The results of the computations are the normalized bispectral MTFs defined as 

(11) 

Since fluctuations in the total intensity 1(0) = J I(x)dx are not considered, 

(B<3>co, 0)) = 1(0)
3 = const. , (12) 

and then 

(13) 

where z(u) = ~- For the same reason, the SNR in the normalized bispectral MTF is 

(14) 

The ( and 1J axis on the ( -ry plane correspond to the normalized power spectrum MTF: 

and similarly, 

(b<3>((,0,0, 0)) = (z((,O)t(O, O)l.(-(,0)) 

= (t((,0)1t((,O)*) 

- 2 = (li((,O)I ) , (15) 

(16) 
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The normalized MrF of a 2-m telescope is shown in Fig. 3. The statistics are derived from 

500 interferograms sampled from independent portions of 50 different phase screens to assure the 

statistical independence of instantaneous bispectra. One pixel in spatial frequency corresponds 

to 0.173(arcsec)- 1 = 1
0:gff; = 0 .01 ~ and the 102nd pixel corresponds to the telescope cutoff 

frequency, ~. 

In understanding the physics of the results, it is convenient to introduce a concept of the 

attenuation of the bispectral MrF, since the atmospheric disturbance is regarded as a low-pass 

filter of the spatial-frequency information. The attenuation factor (ATF) of the bispectral MTF, 

aP>((, 0, 0, ry) is defined along with the the optical transfer function (OTF) of the telescope, 

f 3>((, 0, 0 , TJ), as 
-(3) 

(-<3>((00 ))=(b ((,O,O,TJ)) 
a ' ' '7J f<3>(( 0 0 ) ' 

' ' '7J 
(17) 

where f 3>((, 0 , 0, ry) is static and real. The OTF is the normalized bispectrum of the Airy pattern 

and thus is the normalized MrF under the coherent illumination. It could also be interpreted 

as the relative weight of the frequency components or the relative redundancy of the triangular 

baselines (both closed and nonclosed) on the primary mirror. To avoid confusion, it should be 

noted that the attenuation is the combined effect of the atmosphere and the optics and thus that 

the ATF depends on the OTF even for a given atmospheric condition. The OTF and the ATF are 

shown in Figs. 4 and 5, respectively. The OTF is a monotonically decreasing function of ( and 

ry . It is fairly flat at J (2 + 772 ::; 0.5 J?: and then falls more steeply at higher frequencies. 

The ATF, and thus the MrF, behaves in a more complicated manner. The SNR of the 

classical MTF or the saturated SNR at high light levels is shown in Fig. 6. The behavior of the 

SNR is quite similar to that of the ATF. Semi-quantitatively, the contour maps of the ATF and 

SNR can be classified into five distinct regions in spatial frequency as follows. 

i) Low-Frequency Region ( J ( 2 + ry2 ::; 0 .1 ~ ) 
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The ATF is larger than 0.01 and the SNR is larger than unity. The information of this 

region originates from the envelopes of instantaneous interferograms. Even this low-frequency 

region has better information than a seeing disk obtained by a long time exposure, since the effect 

of image wandering is removed. 

ii) On-Axis Region (( = 0, TJ = 0) 

The power spectrum ATF is plotted as a function of radial frequency in Fig. 7, since it is 

statistically isotropic. The ATF falls off steeply at low frequencies ( ::; 0 .1 f ) and then levels 

between 0.1 f and 0.8 f at around 4 x 10-3
• Above 0.8 f, the ATF slowly rises up to t0- 1 at 

f. This increase of the ATF at high spatial frequency is not fast enough to compensate the steep 

fall of the OTF and the power spectrum MTF monotonically falls off as is shown on the axes in 

Fig. 3. The SNR is larger than 0.8 up to f. 

iii) Near-Axis Region (( ::; 0.1 ¥· or 1J ::; 0.1 f ) 

The ATF falls off steeply to 10-4 and the SNR decreases to 0.3 as the plot moves vertically 

away from each axis. The bispectral components are the combination of the low-frequency 

Fourier components and the power spectrum. Phases of the bispectral components in this region 

are effectively local phase differences of nearby Fourier components which are used in the Knox

Thompson method (Knox and Thompson 1974). 

iv) Mid-Frequency Region ((, TJ ~ 0.1 f and J ( 2 + ry2 ::; 0 .8 ~) 

A large triangular plateau of the ATF with a mean value of 3 x 10-5 is evident in Fig. 5. 

In this region, the behavior of the MTF is determined mainly by that of the OTF. The MTF falls 

from 10-4 to 10-6 . The SNR is between 0.1 and 0.2. 

v) High frequency region ((2 + r? ~ ( f /) 
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The diffraction limited information lies in this region. Because of the steep fall of the OTF, 

the :MTF is very small ( ::; w-7 
) . The SNR is smaller than 0.1. 

5. Comparison with the Heuristic Interferometric View 

It is interesting to compare the above results with the predictions by the heuristic interfer-

ometric view (HIV) of the image-forming process. A brief description of this view is given in 

Appendix 1, and a detailed discussion is found in Readhead et al. (1988). The HIV predicts that 

the power spectrum ATF is approximated by n:;- 1 = (]5-)2 where n 8 is the number of speckles, 

and that the SNR of the power spectrum is unity at the 'mid frequency range'. It also estimates 

that the bispectral ATF in the mid-frequency range is about n:;-2 = (]5-)4 and the SNR is given by 

1 

n-; ~ = -]5-. The bispectral ATF and its SNR are therefore related by 

(18) 

Thus the similarity of the contour maps of the ATF and the SNR, which are plotted in logarithmic 

scale in Figs. 5 and 6, is naturally explained by the HIV. For rc = 14 em and D = 2 m, n 9 = 

204. The flat portion of the simulated power spectrum ATF between 0.2 ~ and 0.8 ~ is 4 x 10-3 

on average, while the value predicted by the HIV is 5 x 10-3
• The SNR of the power spectrum 

lies between 0.6 and 0.8 and is approximately unity. At the mid-frequency region, the simulated 

bispectral ATF has an average value of 3 x w-5
, while the value predicted by the HIV is 2 x w-5

• 

We consider this agreement good. 

The simulations were also made for a 1-m telescope. For a telescope of this size, the mid-

frequency of the power spectrum ranges from 0.3 ~ to 0.6~ and the simulated power-spectrum 

ATF is 3 x 10-2 while the predicted value is 2 x 10-2
. The SNR of the power spectrum is 

between 0.7 and 1.0. The simulated bispectral ATF at the mid frequency is 2 x 10-3 in average, 
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which is somewhat larger than the predicted value, 4 x 10-4
• The agreement is not as good as 

for a 2-m telescope. 

The rise of the power spectrum ATF at the high-frequency region(~ 0.8 f forD= 2m) can 

qualitatively be interpreted by the HIV. At the high-frequency region, the redundancy (or OTF) 

of the baselines is so small and the identical baselines are so localized on the primary mirror that 

the phasors of those baselines are correlated and increase the ATF. The approximate validity of 

the heuristic interferometric view of the image-forming process is confirmed by the simulations. 

The simulations also clarified the boundaries of the mid frequency for given apertures. Because 

of the higher redundancy and the wider mid-frequency range, the predictions by the HIV work 

better for larger telescopes. 

6. Signal-to-Noise Ratio at Low· Light Levels 

At low light levels, the signal-to-noise ratio per frame of an unbiased estimator of the 

classical bispectral modulation transfer function is approximated by 

(19) 

where N is the average photon counts per frame (Wimitzer 1985). Therefore the contour map of 

(iP>(u1, u2)) can be immediately converted to that of the SNR. 

Fig. 8 shows the signal-to-noise ratio of a V = 12.3 mag star with a 2-m telescope after 

integrating 104 frames; this magnitude corresponds to one photon per speckle in a 10% fractional 

bandwidth, with 10% efficiency of the observing system and 10 ms integration time. The SNR 

= 3 contour reaches the diffraction limit on the axes, but stays near the axis as ( or 'r/ increases. 

The slope of contours is the steepest diagonally. Fig. 9 shows SNR = 3 contours according to the 
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brightness of sources. At 9.0 mag, the bispectral analysis is diffraction limited in the sense of a 

three-sigma detection, whereas at 13.9 mag, even the power-spectrum analysis is not necessarily 

diffraction limited, and the region of high SNR is strictly near the axes. 

The contour maps immediately show that the power spectrum in general has better SNR 

than the bispectnun. The closure-phase information obtained by near-axis bispectral components 

is effectively local phase differences of neighboring Fourier components. For a simple source such 

as a multiple stellar system, the autocorrelation function contains most of the source structure. 

The behavior of the phase in Fourier space is fairly regular and thus the local phase differences are 

enough to recover a full image. Hofmann and Weigelt (1986) used only the 5% of the bispectrum 

near the axes with the highest SNR for their image recovery. The result of the simulations is 

consistent with their observations. The wide mid-frequency range contains global closure-phase 

information with lower quality. For a complicated source, mid-frequency components may be 

crucial in recovering a full image. Intensive computations are required for utilization of the full 

bispectrum. 

7. Signal-to-Noise Ratio at Arbitrary Light Levels 

In the simulations, the incoming light has been treated as a wave. Thus from the point 

of view of photon detection, a limiting case with an infinite number of photons is considered. 

In this section, by using the modeling of the photodetection process by Goodman and Belsher 

(1976, 1977; Goodman 1985) and following the treatment of the influence of photon noise on the 

bispectral analysis by Wirnitzer (1985), the derivation of an unbiased estimator of the classical 

bispectrum is reviewed and then an expression for the SNR of the bispectral MTF is obtained as 

a function of the mean photon count, OTF's of telescopes and the number of speckles. 
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We consider a speckle observation using a photon-counting detector which records positions 

of individual photons detected on the image plane. The raw intensity of the jth frame is given as 

Ni 

Dj(X) = L 8(x- Xk), 

k=l 

(20) 

where Xk is the position of the kth photon and Ni is the total number of photons. The Fourier 

transform of Eq. (20) is 

N · 

Di(u) = j t 8(x- xk)exp(iux)dx 
k=l 

Ni 

= L exp(iuxk). 
k=l 

The bispectrum of the raw data is given as 

iJ)3>(ut,u2) = Dj(Ut)Dj(u2)Dj(-Ut- u2) 

Ni Ni Ni 

= L L L exp(i{ Ut(Xk- Xm) + U2(X1 - Xm)} ). 
k=l 1=1 m=l 

(21) 

(22) 

The expected value of .fJ)3>(u1 , u2) is evaluated over the conditional statistics of xks, Ni and the 

rate function Aj(x), which is proportional to the classical intensity, Ij(x). For a given Ni and 

Aj(x), the event locations x are independent random variables, with common probability-density 

function, 

(23) 

The characteristic function of Pi(x) equals the normalized Fourier transform of the classical 

intensity distribution z j(U) : 

Pi(u) = j Pi(x)exp(iux)dx 

_ J Ij(x)exp(iux)dx 
- J lj(x)dx 

_ J j (U) 

- li(O) 

= zj(u). (24) 
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First D)3>(u., u2) is averaged over the conditional statistics of xk> x1 and Xm and then averaged 

over Nj and Aj(X). The starting point is the evaluation of 

Ni Ni Ni 

Ekzm[D}3>(ul, 02)] = Ekzm[L L L exp(i{u1(xk- Xm) + u2(xz - Xm)})] 
k=1 1=1 m=1 

Ni Ni Ni 

= L L L Eklm[exp(i{ul(Xk- Xm) + u2(x1- Xm)})], (25) 
k=1 1=1 m=1 

where Eklm stands for an average over xk> x1 and Xm. The N/ terms are classified as follows: 

(1) 

(2) 

k =I= m Nj terms 

k=fl=m Nj(Nj - 1) terms 

Ekzm[exp(iul(Xk- xz))] = j j exp(iu1(xk- xz))pj(Xk)pj(Xz)dxkdxz 

= <j pj(Xk)exp(iulxk)dxk)(j pj(xl)exp( -iu1x1)dx1) 

= z-jcu1>I;< -u1> 

where lzj(u1)12 
is the normalized power spectrum. 

(3) k=m=fl Nj(Nj - 1) terms 

(4) k=l=fm N j (Nj - 1) terms 

(26) 

(27) 

(28) 

(29) 
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k=/l=/m 

Ektm[exp(i{ut(Xk- Xm) + U2(Xt- Xm)})] 

= cj pj(xk)exp(iUtXk)dxk)(J pj(xt)exp(iu2Xt)dxt)(J Pj(Xm)exp(i( -Ut- U2)Xm)dxm) 

= Ij(utYZ'j<u2)Zj(-ul- u2) 

(30) 

where b}3>(ut, u2) is the normalized bispectrum. Thus the average of iJ}3>(u1, u2) over the statistics 

(31) 

Next EktmLl>?>(ut, u2)] is averaged over the Poisson statistics of Nj. For Poisson statistics, 

E[Nj(Nj - 1) · · · (Nj- r + 1)] = N/, (32) 

where Nj denotes the Poisson mean of Ni. For a given rate function Aj(x) 

(33) 

Finally, averaging over the ensemble of Aj(x) or Pi(x), yields 

(34) 

If N i does not fluctuate from frame to frame, i.e. 

(35) 
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for an arbitrary r, 

(36) 

In order to express an unbiased estimator of (lP>(u~, u2)) using the quantities observed directly, 

- 2 -- --2 - 2 
E[iD(u)i 1 = N + N (ii(u)i ), (37) 

is useful. This relation was first obtained by Goodman and Belsher for non-photon-counting 

detection and and was also derived by Dainty and Greenaway (1979) for photon-counting detection. 

From it we obtain 

Thus an unbiased estimator of the bispectrum for the jth frame becomes 

where the terms in {} are the photon noise bias. Equation (39) was first obtained by Wirnitzer 

(1985). This estimator can be rewritten as 

Q}3>(ul, u2) = L exp(i{ Ut(Xk- Xm) + u2(x, - Xm)} ). 
k'f'l=/m 

(40) 

Since the observables are the positions of individual photons, it is also possible to directly calculate 

the Nj(Nj - l)(Nj- 2) exponential terms through Eq. (40). The absolute minimum number of 

photons per frame is three, since triple cross correlations of different photon events contribute to 

the unbiased estimator of the classical bispectrum. 

The next goal is to find the variance of the unbiased estimator Q}3>(ut, u2) and its SNR per 

frame. In evaluating the variance, CT2(Q}3>(ut, u2)), it is necessary to calculate E[IQ}3)(ut, u2) I
2
J. 
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The derivation is systematic but lengthy and is given in Appendix 2. Here only the resultant 

expression is presented: 

where 

+ (li(ul)i\iJC3)(uz, u1 + uz) + c.c.)) 

+ (li(uz)i\iJC3)(ul, u1 + Uz) + c.c.)) 

+ (li( -u1 - Uz)i\iJC3)(ul, -uz) + c.c.))] 

+ F[(lb(3)(ul , uz)l
2
)- l(b(3)Cu1, Uz))i\ (41) 

(42) 

is the normalized fourth order spectrum and c.c. denotes complex conjugate. The SNR of the 
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unbiased estimator of the bispectrum is given by 

(43) 

In order to obtain a more useful expression, it is convenient to use approximate attenuation 

factors of MTFs based on the HIV of the image-forming process (Appendix 1). In the mid-

frequency range, MTFs are expressed by the number of speckles ns and normalized OTF's of the 

telescope as follows: 

(44) 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

Typically n 8 = (~)2 ~ 102, and ll(u)l
2 ~ 10-1 in the mid frequency range. By selecting leading 

terms of each order of N in Eq. (41), the variance of the unbiased estimator of the classical 

2 - (3) -3 ...,..,.4 1 - 2 - 12 1- 12 a (Q (Ut. u2)) = N + N n; [lt(ul)l + 1t(u2) + t( -u1- u2) ] 

-5 2 - 2 - 2 - 2 - 2 - 2 - 2 + N n; [jt(ul)l It( -u1 - u2)l + jt(u2)l It( -u1 - u2)l + Jt(ul)l jt(u2)l ] 

(51) 

The SNR of the unbiased estimator is then given by 

(52) 
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If the mean number of photons per speckle, n is defined as n = :!. , the SNR is alternatively 

expressed as 

where 

1- 12 ,- 12 - 2 A= 1 + n( t(u1) + t(u2) +it( -u1 - u2)l ) 

(53) 

and y'1i;SNR(Q<3>(ul,u2)) is independent of n, = C;'.t Ayers et al. (1988) obtained, by 

means of a different logical path, an expression identical to Eq. (53). In Fig. 10, y'1i; x 

SN R(Q<3>(x ~ ,0, 0, x ~))at x = (0.2, 0.3, 0.4, 0.5, 0.6) is plotted as a function ofn in logarithmic 

scale. An estimate of the SNR for a telescope of diameter D meters can be obtained by lowering 

the value on the plot by log( D). It should again be emphasized that the above approximate rc 

estimations are valid only in the mid-frequency range. 

8. Estimates of the Limiting Magnitude and Resolution 

In order to estimate the limiting magnitude, the statistically independent volume of the 

bispectrum must be obtained first. The heuristic interferometric view suggests that the Fourier 

components in the mid-frequency range are statistically independent. The volume is proportional 

to n; which must be multiplied by a factor related to the symmetry and the boundary of the 

2 

bispectrum. Wimitzer (1985) estimated the bispectral volume as ;-.. In Readhead et al. (1988), 

3n/ for a square aperture, and ;~ n, 2 for a circular aperture, were obtained, assuming statistical 

independence of all the triangles. Since only the mid-frequency components are statistically 
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independent, these values give upper limits. An estimate of the SNR of an ideally recovered map 

from the bispectral MTF is given as 

(54) 

where S N R(Q<3l(u1, u2)) is the average SNR over the mid-frequency range and M is the number 

of frames. As is estimated from Eq. (53) and is shown in Fig. 10, the SNR at the mid-frequency 

for n :::; 1 is approximated well by 

(55) 

since A ~ 1 in Eq. (53). Equation (55) can then be rewritten as 

(;2 I_ 

SN R(map) = y 32(n5n3)~t(3l(ul, u2)VM 

~ 0.027(n8 n3)!VM, (56) 

where [(3l(ut, u2) is the average OTF over the mid-frequency and about 5 x 10-2
. n can be 

expressed as a function of the magnitude of the object m, fractional bandwidth !!.>../ >.., efficiency 

of the detection system ry, integration time !l.r, and the coherence length rc . Then the limiting 

magnitude at >.. = 0.55J.Lm is given as 

!!.>..j>.. TJ !l.r 
mlim = 13.3 + 2.5[log( -

0 1 
) +log( -

0 
) + log(-

0
-) 

. .1 1 ms 
4 rc 2 D 1 M 2 SN R(map) 

+3log(14cm)+3log(1m)+3log(104 )- 3log( 10 )]. (5?) 

With a resolution about a factor two lower than the diffraction limit, a SNR of 10 will be obtained 

from the attainable number of frames of 104 for a point source of 13.3 mag with a 1-m telescope 

and of 14.5 mag with a 5-m telescope. For a good observing condition, !l.r may be somewhat 

longer and the limiting magnitude may reach 15 mag. As can be seen in Fig. 10, the SNR at 

frequencies above 0 .5 ~ decreases drastically according to the behavior of the OTF. 
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fur the high frequency region, the non-redundant-masking method (Baldwin et al. 1986, 

Haniff et al. 1987, Readhead et al. 1988, Chapter II) is more promising than the fully-filled

aperture method of the conventional speckle. From the interferometric view, for a certain Fourier 

component, other Fourier components behave as backgrounds. In the presence of overwhelming 

lower frequency components, high frequency components are strongly suppressed because of the 

low redundancy of long baselines. However before we proceed to a quantitative comparison 

between the fully-filled aperture and the non-redundant masking, there are remaining problems 

to be solved such as the estimation of the independent bispectral volume for the non-redundant 

masking (Kulkarni and Nakajima 1989). 

9. Conclusions 

In this chapter the behavior of the signal-to-noise ratio of the bispectral analysis of speckle 

interferometry has been studied in two stages. At the high light limit, the Monte Carlo simulations 

of an atmospheric phase screen based on the Kolmogorov theory and recent observations of 

the atmospheric disturbance are used to derive statistical properties of the classical bispectral 

modulation transfer function. The influence of photon noise is taken into account, by modeling 

the photodetection process. 

A general expression of the signal-to-noise ratio of the bispectrum at arbitrary light levels 

is obtained in terms of the classical modulation transfer functions and the mean photon counts. 

In the mid-frequency range, a practical expression is obtained for the signal-to-noise ratio as a 

function of the optical transfer functions of the telescope optics, the number of speckles and the 

mean photon counts was obtained. 

Major conclusions are: 
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(1) The overall behavior of the atmospheric transfer function is qualitatively consistent with the 

heuristic interferometric view of the image-forming process, and, especially in the mid-frequency 

range, the quantitative predictions of the heuristic interferometric view agree approximately with 

the simulated results. At the mid frequencies, the attenuation of the bispectral modulation transfer 

I 

function and the signal-to-noise ratio are approximated by the predicted values n;2 and n;'-

respective! y. 

(2) At low light levels, only bispectral components near the axes have a high signal-to-noise 

ratio. Closure phases near the axes are effectively local phase differences. For simple sources, 

the behavior of the phase in Fourier space is so regular that local phase differences are enough 

for a full image recovery. In recovering complicated sources, global closure phases contained in 

the mid-frequency range may be crucial for the reconstruction of images of complicated sources. 

However, the signal-to-noise ratio at the mid frequency falls off so drastically at low light levels 

that the effective limiting magnitudes are much lower than those of simple sources. 

(3) As estimated from the signal-to-noise ratio in the mid-frequency range, the practical limiting 

magnitude of the bispectral analysis at a visual wavelength will be between 13 and 15 mag 

depending on the size of the telescope and observing conditions. This limit is achieved with a 

resolution half of the diffraction limit of a given telescope. 

Appendix 1. Predictions Obtained by the Treatment Based on the Heuristic Interferometric 

View of the Image-Forming Process 

A detailed treatment based on heuristic interferometric view of the image-forming process 

was discussed in Readhead et al.. In this appendix the major predictions are reviewed briefly. 

A speckle pattern is regarded as an instantaneous interference pattern formed by a number of 
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elementary coherent areas on the aperture plane, whose linear sizes are about r c · The discussion 

has to be restricted to mid spatial frequency, where a certain Fourier component on the image 

plane is given as a sum of random phasors originating from identical baselines on the aperture 

plane. A mid-frequency component satisfies the following two conditions. First, the corresponding 

baselines to a mid-frequency component are so sufficiently longer than rc that the rms phase(a<I>) 

of the baselines is significantly larger than 211". In other words, the rms phase correlation function 

of a pair of elementary areas is significantly larger than 211". Then the unit phasor exp(i<l>) of a 

baseline becomes a uniform random number on the unit circle on the complex plane. Effectively 

a «l> can be regarded as a uniform random number between -11" and 11". Second, the redundancy of 

the baseline must be high so that the number of random phasors is large enough for an incoherent 

average to be performed. Although individual phasors have uniformly random phases, phases 

of neighboring baselines are correlated. In order to average well over the random phasors, the 

number of phasors must be significantly larger than 211" (Recall that the translation by rc on the 

aperture plane causes rms phase change of 1 radian). At the highest-frequency region of a circular 

aperture, this condition is not satisfied, thus we restrict our discussion to the mid-frequency range. 

The dependences of the power spectrum A1F, the bispectral ATF and their SNRs on the 

number of speckles (n8 = ( D /) are determined below. For simplicity, we neglect scintillation 
r c 

and assume unit phasors originating from individual baselines. 

u1 , ](u1) and N(u1) denote a mid spatial frequency, the Fourier component and the number 

ofphasors or redundancy of the baseline corresponding toUt. respectively. The Fourier component 

is given as 

N(ut) 

](ut) = L exp(ici>k), 
k=l 

where ci> k is the phase of the kth phasor. And the average power spectrum M1F over an ensemble 
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of speckle patterns is 

N(ut) N(ut) 

(llCut)l
2
) = ( L L exp(i(<l>k- cl>1))) 

k=1 1=1 

N(ut) N(ut) 

= L L (exp(i(<l>k- <l>1))). 
k=1 1=1 

Since <l> k and cl> 1 are not correlated unless k = l, 

(exp(i(<l>k- <l>1))) = 1 k = l N(ut) terms 

= 0 k =II N(ut)(N(ut) - 1) terms; 

then 

In the absence of atmospheric disturbance, 

Thus the ATF or the power spectrum ATF is N(u1)-
1. In addition to the ATF due to the 

- 2 
atmosphere, there is an atmospheric noise factor "" N(u1). Thus the SNR of (II(u1)1 ) is 1. At 

the mid-frequency region, the redundancy, N(u) is proportional to and of the order of the number 

of speckles, ns = ( D { The ATF is about ns - 1. 
rc 

The bispectral ATF is obtained in the same manner. The ensemble average of bispectral 

component at (Ut, Uz) is 

N(ut) N(u2) N(-Ut - u2) 

(J<3>(ut, uz)) = ( L exp(i<l>12,k) L exp(i<l>23,1) L exp(i<l>31,m)) 
k=1 1=1 m=1 

N(ut)N(ul)N( -u1 -u2) 

= L L L (exp(i (cl>12,k + cl>23,1 + <l>31 ,m))), 
k=1 1=1 m=1 

where 12, 23 and 31 stand for baselines corresponding to the frequencies Ut. uz and -Ut - Uz 

respectively. The only terms with k = l = m have have finite contributions, and other terms have 
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zero mean. In the ideal case that the closure-phase cancellation is perfect, 

where M in(N(ut), N(uz), N( -Ut- uz)) is the minimum among the three redundancies and the 

number of closed triangles. In the absence of atmospheric disturbance, 

then the bispectral ATF at (ut, uz) is 

M in(N(ut) , N(uz), N( -Ut- uz)) 

N(Ut)N(uz)N( -Ut - Uz) 

After N(ut)N(uz)N( -Ut - uz) terms are added, the average becomes Min(N(ut), N(uz), N( -Ut-

Uz)). Therefore the SNR is 

M in(N(ut), N(uz), N( -Ut- uz)) 

J N(ut)N(uz)N( -u1 - uz) 

Estimates of the bispectral ATF and the SNR are given as ns - 2 and ns- ~ respectively. 

In what follows, higher-order ATF's used to derive Eqs.(46)-(50) are calculated. 

~N(ui) ~N(u2) ~N(u3) ~N(-u1-u2-u3) ( ("(<l> <l> """ """ ))) 
(

- (4)( )) _ L.Jk-l L.J I-l L.Jm-1 L.J n -1 exp t 12,k + 23,1 + 'V34,m + 'V41 ,n 
a Ut, Uz, U3 -

N(ut)N(uz)N(uJ)N(-ut- uz- UJ) 

Min(N(ut), N(uz),N(uJ),N(-Ut- Uz- u3)) 
= 

N(ut)N(uz)N(uJ)N(-Ut- Uz- UJ) 

since the following closure-phase cancellations work only the terms with k = l = m = n, 

<I>12,k + <I>23,k + <I>34,k + <I>4t,k = (<I>l2,k + <I>23,k + <I>31,k) + (<I>13,k + <I>34,k + <I>4t,k) 

= 0. 

Thus we have 

~N(u1) ~N(ui) ~N(u2) ~N(u2) (exp(i(<l> <I> + cl> <l> ))) 
(ia(u )i2ia(u )12) = L.Jk-1 L.Jt= l L.Jm= l L.Jn=l 12,k- 12,1 34,m- 34,n 

1 2 
N(ut)2 N(uz)2 

N(Ut)N(uz) 

= N(ut)2 N(uz)2 

-2 
~ n s ' 
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since only for the terms with k = l, m = n, 

(exp(i(cl>12,k- cl>12,1 + cl>34,m - cl>34,n))) = 1; 

N(ut) N(ut) N(ul) N(u3) N(-u2-u3) 

(jii(ut)l
2
ii(3)(uz, U3)) = L L L L L (exp(i(cl>12,k- cl>12,1 + cl>34,m + cl>4s,n + cl>s3,o))) 

k=l 1=1 m=1 n=1 o=1 

/ N(ut)2 N(uz)N(uJ)N( -uz- u3) 

N(ut) x Min(N(uz),N(uJ),N(-uz- u3)) 
= 

N(ut)2N(uz)N(uJ)N(-uz- U3) 

since only for the terms with k = l, m = n = o, 

(exp(i(cl>l2,k - cl>12,1 + cl>34,m + cl>4s,n + cl>sJ,o))) = 1, 

k=l 1=1 m=1 n=1 o=1 p=1 

(exp(i(cl>t2,k + cl>23,1 + cl>31,m- cl>12,n- cl>23,o - cl>31,p))) 

/N(ut)2N(uz)2N(-Ut- Uz)2 

N(ut)N(uz)N(-Ut- Uz) + Min(N(uz), N(u3), N(-uz- u3))2 

= 
N(ut)2N(uJiN(-Ut- Uz)2 

......, n-3 . ......, s • 

since only for the terms with k = n,l = o,m = p or k = l = m,o = p = q, 

(exp(i(cl>12,k + cl>23,1 + cl>31,m - cl>12,n - cl>23,o - cl>31,p))) = 1. 

Appendix 2. Calculations of the Variance of the Bispectrum 

In the estimation of the expected value of the variance, the starting point is the modulus 

squared of Eq. (40): 

E a.6"Y8•d L L exp(i{ut(Xa-X"Y-X8 +X1:}+uz(x,a -Xry-X,+x()})] 
ol"j,6=h 8=/•=1(. 

= L L E a.6"Y8•dexp(i{ut(X0 - x"Y - x8 + Xc) + Uz(X,a - Xry- x, + Xr_)} )], 
a=/,6=/"Y 8=/•=IC. 
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where E ocf3-yo•C stands for an average over Xoc , x13 , X-y , x8 , x. and xc. The {Nj(Nj- l)(Nj- 2)}2 

terms are classified as follows: 

(1) a=b,/3=E,[=( 

(2) a= E,/3 = b,[ = ( Nj(Nj - l)(Nj - 2) terms 

(3) a=(,/3=£,[=b 

(4) a=b, /3 =(,[=£ 

(5) a=£,/3=(,[=b 

(6) a = ( , f3 = b, 7 = £ 

(7) Nj(Ni - l)(Nj - 2)(Nj - 3) terms 
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(8) a= 6, {3 =IE, 1 = ( 

(9) 

(10) a=fE,/3=6,1=( 

(11) Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(12) Nj(Ni - l)(Nj - 2)(Nj - 3) terms 

(13) Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(14) a =I (, {3 = E, 1 = 8 

(15) a= (, {3 =f., 1 =f8 Nj(Nj - l)(Nj - 2)(Nj - 3) terms 
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(16) a=fo,(3=(,1=E Nj(Nj - 1)(Nj - 2)(Nj - 3) terms 

(17) Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(18) Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(19) Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(20) a =f (,, (3 = 6, I = E Nj(Nj - l)(Nj - 2)(Nj - 3) terms 

(21) Nj(Nj - l )(Nj - 2)(Nj - 3) terms 

(22) a = (,, (3 =f 6, I = E Nj(Nj - 1)(Nj - 2)(Nj - 3) terms 
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(23) 

(24) a=E,/3=/(,/=0 Nj(Nj - l)(NJ - 2)(Nj - 3) terms 

(25) Nj(NJ - l)(NJ - 2)(NJ - 3)(NJ - 4) terms 

(26) 

(27) Nj(NJ - l)(NJ - 2)(NJ - 3)(Nj - 4) terms 

(28) Nj(Nj - l)(Nj - 2)(Nj - 3)(Nj - 4) terms 

(29) a =/1 =/ 0 =/ E, f3 = ( 

(30) 



138 

(31) {3 =I 'Y =I o =IE, a = ( 

(32) Nj(Nj - l)(Nj - 2)(Nj - 3)(Nj - 4) terms 

(33) {3=/-y=/8=/(,a = E Nj(Nj - 1)(Nj - 2)(Nj - 3)(Nj - 4) terms 

(34) 

Ea,a7 s€t;(exp(i{ut(Xa - xs) + uz)(x,a - x€)- (u1 + uz)(~- Xc;)})] = !'ij(Ut) l
2
ltj(Uz)l

2
ltj(-Ut- uz)l

2 

= lb}3>Cut, uz)l
2 

Averaging over the statistics of Nj and Aj(x) and assuming that Eq. (35), we obtain Eq. 

(41). 

Appendix 3. Variance for Non-Photon-Counting Detection 

fur an observation with a non-photon-counting detector, it is impossible to remove bias 

terms frame by frame. An unbiased estimator of classical bispectrum is again given by Eq. (39). 

However, fluctuations of the bias terms cause additional terms in the variance of the unbiased 
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estimator of the classical bispectrum, Eq. (40). Those terms are evaluated as 

- -2 -3 -2 - 2 - 2 - 2 
N+N +2(N +2N )[(ji(Ut)i )+(Ji(u2)J )+(Ji(-Ut-U2)J )] 

--4 -3 -2 - 4 - 4 - 4 
+(N +4N +2N )[(ji(ul)l )+(Ji(u2)1 )+(ji(-ul-u2)1) 

- 2- 2 - 2- 2 - 2- 2 
+ 2((ji(ul)l Ji(u2)1 ) + (Ji(u2)1 ji(-Ut- u2)l ) + (ji(-u1- u2)l Ji(ul)l ))] 

+ (N
5 

+6ft'+ 6N
3
)([b(3\u1, u2)) + c.c.][Jz(ut)l

2 
+ J7(u2)1

2 
+ jz( -u1 - u2)l

2
1) 
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Figure Captions 

Fig. 1 - A cross section of a simulated phase screen, plotted as a function of x coordinate on the 

aperture plane. 

Fig. 2 - Two-dimensional coordinate system ((, ry) adopted to represent a two-dimensional cross 

section of the four-dimensional bispectrum /P)((, 0, 0, ry) and that of the signal-to-noise 

ratio. Ut = ((, 0) and u2 = (0, ry) are perpendicular to each other and the third spatial 

frequency -Ut- u2 = (-(, -ry) has the largest modulus .j(2 + ry2. Therefore the circle 

( 2 + ry2 = (If )2 
forms the boundary, where ~ is the telescope cutoff frequency. 

Fig. 3 - Contour map of the normalized bispectral modulation transfer function iP)((, 0, 0, ry) for 

a 2-m telescope, drawn on the ( -ry plane in a logarithmic scale. The numbers labeling 

contours indicate powers of 10. 

Fig. 4 - Contour map of the normalized optical transfer function of the telescope, f<3)((, 0, 0, ry), 

drawn on the ( -ry plane in a logarithmic scale. The numbers labeling contours indicate 

powers of 10. 

Fig. 5 - Contour map of the attenuation factor, a<3)((, 0, 0, ry) for a 2-m telescope, drawn on the ( -ry 

plane in a logarithmic scale. The number labeling contours indicate powers of 10. 

Fig. 6 - Contour map of the signal-to-noise ratio of the bispectral modulation transfer function 

S N R(iP)((, 0, 0, ry)) for a single frame obtained with a 2-m telescope, drawn on the ( -ry 

plane. This map shows the saturated signal-to-noise ratio at high light levels. 

Fig. 7 - Power spectrum attenuation factor la(u)l 2
, plotted as a function of the modulus of the radial 

spatial frequency lui. 



143 

Fig. 8 - Contour map of the signal-to-noise ratio for a V=12.3 mag star obtained with a 2-m telescope 

after integrating 104 frames, assuming 10% observing efficiency, 10% fractional bandwidth 

and 10-ms integration time. These brightness and observing efficiency correspond to one 

photon per speckle. 

Fig. 9 - Behavior of 3 u contours, plotted according to the light levels. Magnitudes are calculated 

assuming the same conditions as for Fig. 8. 

Fig. 10 - Light level and spatial-frequency dependence of the signal-to-noise ratio, yn;.s N R(Q<3>(x · 

~ , 0, 0 , x · ~ )), which is independent of the size of the telescope, plotted as a function of the 

mean photon counts per speckle n and the normalized spatial frequency x. Since tn; = D , V ••5 r c 

the signal-to-noise ratio for a telescope of diameter of D meters can be obtained by lowering 

the whole plot by log( D) as indicated by the arrow. 
r c 
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