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ABSTRACT
Oxygen isotopes were measured in mineral separates from martian meteorites using laser
fluorination and were found to be remarkably uniform in both 5'*0 and A'’0, suggesting
that martian magmas did not assimilate aqueously altered crust regardless of any other

geochemical variations.

Measurements of Cl, F, H, and S in apatite from martian meteorites were made using the
SIMS and NanoSIMS. Martian apatites are typically higher in Cl than terrestrial apatites
from mafic and ultramafic rocks, signifying that Mars is inherently higher in CI than Earth.
Apatites from basaltic and olivine-phyric shergottites are as high in water as any terrestrial
apatite from mafic and utramafic rocks, implying the possibility that martian magmas may
be more similar in water abundance to terrestrial magmas than previously thought. Apatites
from lherzolitic shergottites, nakhlites, chassignites, and ALH 84001 (all of which are
cumulate rocks) are all lower in water than the basaltic and olivine-phyric shergottites,
indicating that the slow-cooling accumulation process allows escape of water from trapped
melts where apatite later formed. Sulfur is only high in some apatites from basaltic and
olivine-phyric shergottites and low in all other SNCs from this study, which could mean
that cumulate SNCs are low in all volatiles and that there are other controlling factors in

basaltic and olivine-phyric magmas dictating the inclusion of sulfur into apatite.

Sulfur Ka X-rays were measured in SNC apatites using the electron probe. None of the
peaks in the SNC spectra reside in the same position as anhydrite (where sulfur is 100%
sulfate) or pyrite (where sulfur is 100% sulfide), but instead all SNC spectra peaks lie in

between these two end member peaks, which implies that SNC apatites may be substituting
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some sulfide, as well as sulfate, into their structure. However, further work is needed to

verify this hypothesis.
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Introduction

MARS AND MARTIAN METEORITES

Martian (SNC) meteorites are the only physical samples we have from the planet Mars.
They provide a valuable way to explore martian geochemistry as well as to test theoretical
models and to corroborate observations and measurements made on Mars, either remotely
from orbit or from ground-based landers and rovers. Some of the most impactful
observations and measurements include liquid-carved (most likely water)
geomorphological features on the martian surface (Carr 2012 and references therein);
spectra indicating the presence of carbonates, hematite, sulfates, halides, and phyllosilicates
(Christensen et al. 2001; Squyres et al. 2004; Bibring et al. 2006; Ming et al. 2006;
Ehlmann et al. 2008; Mustard et al. 2008; Morris et al. 2010; Jensen and Glotch 2011),
which are all produced in the presence of water; and a wealth of volatiles, some of which,
such as chlorine and sulfur, appear to be more abundant on Mars than on Earth (Clark and
Baird 1979; Dreibus and Wanke 1985, 1987; Haskin et al. 2005; King and McLennan

2010).

To date, there are 67 known martian meteorites, and they are petrographically grouped into
six types of rocks: Basalts, olivine-phyric basalts, lherzolites (these first three are known as
shergottites named after the type specimen Shergotty), clinopyroxenites (known as
nakhlites named after the type specimen Nakhla), one orthopyroxenite (named ALH
84001), and dunites (known as chassignites named after the type specimen Chassigny).

They span a wide range of ages from 175 Ma to 4.1 Ga (Borg et al. 1997; Nyquist et al.



2001; Borg et al. 2003; Bouvier et al. 2005, 2008; Symes et al. 2008; Bouvier et al. 2009;
Nyquist et al. 2009; Park et al. 2009; Lapen et al. 2010), and are thought to come from
various parts of the martian surface. Although some alteration materials and volatile
elements have been found in the SNCs (Brdiges et al. 2001; Filiberto and Treiman 2009),
they do not exhibit abundant evidence of martian magmas being wet. They do not contain

nominally hydrous minerals or anomalously high volatiles like what is observed remotely.

The focus of my studies at Caltech has been to use indirect techniques to investigate the
presence of water and volatiles that may have existed on the martian surface and in the
magmas that generated these meteorites. Specifically, I measured oxygen isotopes in
mineral separates from many of the martian meteorites to detect whether magmas had
assimilated crust that had been aqueously altered. This would be evident by variation in
oxygen isotopes between meteorites, and would contribute to remote observations that

suggest past liquid water on the martian surface.

I also measured Cl, F, H, and S in apatite from these meteorites, in order to test for high
water abundance as well as to assess whether they were uniformly high in Cl, and
anomalously high in S, similar to soil measurements made by the Viking lander. Apatite is
a retentive, igneous mineral that can stoichiometrically incorporate Cl, F, and/or OH in
what is known as the X site of its atomic structure, and include S as a substitution trace
element. High H abundance in apatite would confirm the presence of water in martian
magmas, which has been more difficult to establish than the presence of water on the

surface. High Cl and S in apatites would suggest that their high abundances on the surface



is because Mars is inherently high in volatiles rather than the result of surficial processes

driving Cl and S to concentrate in particular areas on the surface.

Sulfur is a unique volatile compared to CI, F, and H in that it can vary in its oxidation state
depending on the oxygen fugacity of the magma that the apatite is generated from. Apatite
is thought to accommodate sulfur strictly as sulfate groups replacing phosphate, but it is
possible that sulfur might also substitute as sulfide on the X site. Measuring sulfur in
apatite also gave me the opportunity to explore whether apatite in martian meteorites is
harboring sulfur in both its oxidized and reduced states, as the range of oxygen fugacities
estimated for martian magmas extend from conditions where both sulfate and sulfide exist
in the magma to conditions where only sulfide exists. In either case, sulfur is a good
potential tool to contribute to the estimation of oxygen fugacity in the magmas where these

meteorites were produced.



Chapter I

OXYGEN ISOTOPE COMPOSITIONS OF MINERAL SEPARATES FROM SNC
METEORITES: CONSTRAINTS ON THE ORIGIN AND EVOLUTION OF

MARTIAN MAGMAS

Introduction

Martian (SNC) meteorites currently comprise 67 (unpaired) mafic and ultramafic igneous
rocks that are classified as shergottites, nakhlites, chassignites, and ALH 84001. The
shergottites are subdivided into three petrographic types (basaltic, olivine-phyric, and
lherzolitic) that crystallized at 175 — 575 Ma (e.g., Nyquist et al. 2001; Borg et al. 2003;
Symes et al. 2008; Nyquist et al. 2009) or possibly 4.1 — 4.3 Ga (Bouvier et al. 2005, 2008,
2009). Nakhlites and chassignites are cumulates (clinopyroxenites and dunites,
respectively) that formed at ca. 1.3 Ga (Nyquist et al. 2001; Bouvier et al. 2009; Park et al.
2009). ALH 84001 is an orthopyroxenite that formed at either 4.5 Ga (e.g., Nyquist et al.

2001) or 4.1 Ga (Bouvier et al. 2009; Lapen et al. 2010).

The shergottites have been subdivided into depleted, moderately depleted, and enriched
groups based on their light rare earth element (LREE) to heavy rare earth element (HREE)
ratios, with the depleted group having the lowest ratios and the enriched group having the
highest ratios (e.g., Borg et al. 2002; Bridges and Warren 2006). The ratios of LREE to
HREE in these meteorites are correlated with several radiogenic isotope ratios (e.g.,

positively with *’Sr/**Sr and negatively with '*Nd/"**Nd) and with oxygen fugacity, which



5
increases by three logl0 units from the depleted group to the enriched group (Wadhwa

2001; Herd, Borg, et al. 2002; Herd 2003; McCanta et al. 2004; Herd 2006). In addition,
whole rock 80 values of shergottites correlate positively with oxygen fugacity and

enrichment (Herd 2003).

On Earth, 80 values of mantle peridotites and primitive mafic magmas are generally
similar, but they differ systematically from sedimentary, weathered, and hydrothermally
altered components of the crust due to low-temperature fractionations between these crustal
materials and coexisting water. The distinctive oxygen isotope ratios of crustal materials
can influence the §'*0 values of mantle-derived magmas either by mixing into the mantle
sources of basalts via subduction or delamination or by assimilation as these magmas pass
through the crust or altered mantle lithosphere (Taylor 1980; Eiler 2001 and references
therein). These processes are known to occur on Earth, and they lead to ranges of up to ~5
per mil in the 'O values of unaltered terrestrial igneous rocks and to correlations between
8'*0 values and other geochemical variables (e.g., Taylor 1980; Davidson et al. 2005).
These processes are sufficiently common that oxygen isotope measurements of a random
sampling of several dozen terrestrial igneous rocks would likely make it obvious that the
Earth’s crust is rich in sedimentary and aqueously altered materials. Based on this
terrestrial analogy, a straightforward interpretation of the positive correlations between
8'*0 values, LREE/HREE ratios, and oxidation in the shergottites is that they reflect
variable amounts of crustal assimilation into mantle-derived magmas; that is, the depleted
shergottites reflect partial melts of martian mantle uncontaminated by altered crustal rocks,

while the incompatible-element-enriched, oxidized shergottites crystallized from magmas
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that either assimilated high-3'°0 crustal rocks that had experienced aqueous alteration at

low temperatures or mixed with partial melts of such crustal rocks.

There is considerable evidence that at least parts of the martian crust have been altered by
exposure to liquid water: e.g., martian valley networks, outflow channels, gullies, deltas,
etc. (Carr 2012 and references therein); the presence of carbonates, hematite, sulfates,
halides, and phyllosilicates in the SNC meteorites (Bridges et al. 2001; McCubbin et al.
2009); and the identification of similar phases on the martian surface (e.g., Squyres et al.
2004; Ming et al. 2006; Morris et al. 2010), or by remote sensing (e.g., Christensen et al.
2001; Bibring et al. 2006; Ehlmann et al. 2008; Mustard et al. 2008; Jensen and Glotch
2011). Although the extent of these processes and their effects on the '*0/'°O ratios of
martian crustal rocks are unknown, if aqueous alteration has been widespread, it could also
have modified the oxidation states of multivalent cations in the crust and thus could also
explain the oxidation of enriched, relative to depleted, magmas. Interaction of mantle-
derived magmas with altered crust could thus explain why enriched shergottites have
elevated 5'°O values relative to the depleted shergottites and that these values appear to
correlate with trace element ratios, oxidation state, and radiogenic isotope ratios (Taylor
1980). Although current data are consistent with correlations expected for such an
assimilative process when whole rock §'°0 values are compared to oxygen fugacity and
trace element ratios (Herd 2003), whole rock 8'°0 values of the shergottites do not
necessarily correspond to those of the liquids from which they precipitated because many
of these meteorites are cumulates (e.g., McSween 1994; Bridges and Warren 2006; Papike
et al. 2009); i.e., they contain proportions of minerals that are not representative of the

normative mineralogy of their parent magmas, and because igneous minerals differ from
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one another in their mineral-melt oxygen isotope fractionations, it is likely that whole rock
cumulates have §'°0 values different from the liquids from which they precipitated (Eiler
2001 and references therein). Many of the SNCs also contain alteration phases (e.g.,
Bridges et al. 2001), which differ in 8'°0 from coexisting igneous minerals (Clayton and
Mayeda 1983; Valley et al. 1997; Farquhar et al. 1998; Romanek et al. 1998). Acid
leaching is a relatively common practice to remove (or at least test for the effects of)
alteration phases prior to oxygen isotope analysis, but the effects of alteration on published
whole rock §'%0 values of SNC meteorites are difficult to evaluate because most authors

did not report whether or not they performed acid leaching or other purification procedures.

In addition to studies of 8'%0 values in SNC meteorites, A'’O values in the SNCs have been
studied extensively, and indeed the systematic deviation of these meteorites from the
terrestrial fractionation line was a critical factor in lumping the SNC meteorites (previously
thought of as three separate groups of meteorites) into one group likely from a single parent
body (Clayton and Mayeda 1983, 1996). A detailed investigation of A'’O values in SNC
whole rocks and mineral separates has detected variations that have been used to suggest
the assimilation of near-surface alteration materials (Rumble and Irving 2009). However,
interpretations of variability in A'’O values in SNCs are difficult to connect quantitatively
with inferences based on 8'°0 values, trace element ratios, or oxygen fugacity because
observed variations in A'’O have not yet been shown to correlate with other geochemical

parameters.

The goal of the work reported here is to test previously proposed relationships between the

SNC meteorites by constraining the 8'°0 and A'’O values of mineral separates in the SNCs
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(i.e., rather than basing these relationships on whole rock measurements). Although, as

summarized above, there have been many previous measurements of these parameters for
martian meteorites, and results from different laboratories differ beyond stated error bars
(even for the same meteorite) with the result that the collective dataset of 8'°0 (for
shergottites in particular) is variable and confusing (see figure 1.1 and the previous studies
section below). Our work differs from previous studies by (1) analyzing mineral separates
(i.e., pyroxene, olivine, and maskelynite) rather than whole rocks so as to constrain the
8'*0 values of the liquids from which cumulate phases crystallized (discussed below); (2)
analyzing many of the known SNC meteorites in a single laboratory, thereby minimizing
issues associated with interlaboratory comparisons that may account for some of the
variability in currently available data; (3) utilizing recent analytical advances in laser
fluorination techniques and extensively replicating analyses, thereby minimizing
uncertainties in the measurements; and (4) attempting to evaluate the effects of alteration
phases on measured oxygen isotope ratios through the use of various sample preparation
protocols. We emphasize (1) in particular because the focus on mineral separates allows
direct comparison between the same phase from different meteorites permits assessment of
whether equilibrium has been achieved among coexisting phases in a single meteorite
(Eiler 2001), and minimizes potentially confusing effects of variations in whole rock
oxygen isotope ratios that would arise between a series of cogenetic cumulates that vary

only in their phase proportions.

Overall, our goal is to address the question of whether the sources of enriched, oxidized
shergottites differ in 8'*0 and A0 from those of depleted shergottites and thereby to

address the possible role of aqueously altered crustal materials in their petrogenesis. The



Shergotty |- O
Zagami [~ OA o
EET 79001 B |- O A
QUE 94201 |- o O
Los Angeles |~ + +
NWA 856 |- + +
NWA 2800 |~ + 4+

Clayt d Mayeda (1996
NWA 2975/2986 |- + 44 | P Claytonand Mayeda (1996)
NWA 3171 + + A Romanek et al. (1998)

NWA 4480 + 4+ @ Franchi et al. (1999)
NWA 5029 |- + -+ Rumble and Irving (2009)
NWA 5298 |~ —+4
Dhos78 T yooUUTUTTT 4TI
ALH A77005 |- O o
LEW 88516 |~ O Lherzolitic Shergottites
NWA 2646 |~ + +
NWA 4797 = —+ +
Y 793605 |~ O
DaG47el T e Tttt
Dho 019 |~ + —+
EET 79001 A |- O A Olivine-Phyric
NWA 1110 Shergottites

NWA 1195 |~ +H
_|_

Basaltic
Shergottites

+
+

NWA 2046 |~
NWA 2626 |- +
NWA 4468 - + -+
NWA 4925 |- + +
Chassigny |- A o A
Lafayette |- AA A Clinopyroxenites
Nakhla |- o
Gov. Valadares |~ o
NWA 817 |- + +

ALH 84001 |~ O e
I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1
3.5 4.0 4.5 5.0 5.5 6.0

18
5 "Oysmow

+
+

Dunite

A A
0 e

Orthopyroxenite

Figure 1.1. Previous oxygen isotope studies.

key result is that we have been unable to confirm the correlation between 3'°0 of mineral

separates and concentrations of incompatible elements or indexes of oxidation state that
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previous workers have found based on whole rock 3'°O analyses. Instead we have found
uniformity in 8'®O from the same minerals (and A'’O from all phases) among the
shergottites. We also measured nakhlites, a chassignite, and ALH 84001 to assess their
oxygen isotopic compositions relative to the shergottites and previous whole rock analyses,
and we found them to differ from the shergottites, but by much less than what has been
suggested previously. Preliminary results of this study were reported in Channon et al.

(2009, 2010).

Previous Studies

Values of %0

Taylor et al. (1965) found negligible differences in 8'*0O of pyroxene separates between
Shergotty, Lafayette, and Nakhla (a range of 0.2 per mil). Clayton and Mayeda (1996)
found a whole rock standard deviation of 0.35 per mil (1o; all errors reported hereafter are
1) among all the SNCs in their study, but attributed it to different modal abundances of
major minerals in each meteorite and concluded that there is no isotopic evidence for
crustal, water-dominated processes that affect the petrogenesis of these rocks. Romanek et
al. (1998) and Franchi et al. (1999) observed ranges between meteorites in whole rock §'°0
values similar to those observed by Clayton and Mayeda (1996), but in general, the three
whole rock studies differ systematically by up to 0.4 per mil in the average value of their
ranges (figure 1.1). Franchi et al. (1999) attributed these value discrepancies to different
reference gas calibration methods by the three different laboratories (described below). A
preliminary oxygen isotope study by Rumble and Irving (2009), performed at a different

laboratory than any of the three previous whole rock studies, yields a similar range in
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whole rock 3'°0 between meteorites, with values most closely resembling those of Clayton
and Mayeda (1983). All other available §'*O data come from one of these laboratories or
various others for the purpose of individual sample characterization and/or meteorite
classification (Clayton and Mayeda 1983, 1986; Valley et al. 1997; Farquhar and Thiemens
2000; Rubin et al. 2000; Barrat, Gillet, et al. 2002; Gnos et al. 2002; Jambon et al. 2002;
Sautter et al. 2002; Taylor et al. 2002; Gillet et al. 2005; Beck et al. 2006; Treiman and
Irving 2008). The combined dataset of all available §'*0 measurements span a range of up
to 2 per mil and do not form any trends with incompatible-element enrichment or oxygen

fugacity.

Values of A0

Several previous oxygen isotope analyses of the SNCs have had as their primary goal the
measurement of '’O anomalies as a tool for meteorite categorization. Clayton and Mayeda
(1996) demonstrated that the SNCs have a uniform A'’O of 0.28 + 0.07%o (note that the
standard deviation of 0.07%o is comparable to the uncertainty for the conventional
fluorination methods used in their study), suggesting that they all come from the same
parent body. Romanek et al. (1998), using a laser fluorination method, reproduced six of
these whole rock measurements and made measurements on mineral and alteration
separates from Lafayette, A'’O = 0.30 + 0.06%o (calculated from table 2 in Romanek et al.
1998). Franchi et al. (1999) generated a higher precision laser fluorination dataset with an
even more tightly defined A'’O value for martian igneous rocks of 0.32 + 0.013%o (n = 11).
They concluded that the larger variability in A'’O observed in previous whole rock studies

resulted from analytical uncertainty and that SNCs have no inherent differences in A'’O
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above laser fluorination uncertainty. However, since then, more SNCs have been
discovered and analyzed in several different laboratories, largely for meteorite
classification. All of these newer data sets exhibit the same ~0.3%o average offset from the
terrestrial fractionation line observed in previous data, but the standard deviation in A'’O of
the composite data set (61 meteorites) is comparable to that found in the initial studies of
Clayton and Mayeda (1996) and Romanek et al. (1998) (i.e., £0.05%0). The larger
uncertainty of all data now available relative to the study of Franchi et al. (1999) could
reflect poor interlaboratory precision or real variations in A'’O among samples not
considered by Franchi et al. (1999). Rumble and Irving (2009) addressed this issue by
examining 22 SNCs using a laser fluorination technique similar to that used by Franchi et
al. (1999), and they found an average A'’O of 0.33 = 0.04%o; the uncertainty is larger than
the 0.01%o uncertainty observed by Franchi et al. (1999), consistent with the notion that
Franchi et al. (1999) analyzed a smaller set of samples that simply happened to be less
variable. Moreover, Rumble and Irving (2009) also found significant variations between
splits of the same meteorite (a range of 0.1%0 in NWA 856). They attempted to minimize
the effects of terrestrial weathering as a source of this variability by acid washing their
samples; they attribute sample-to-sample variability to different amounts of assimilation of
crustal alteration phases by ascending magmas, and they attribute heterogeneity within a
single meteorite to the lack of isotopic equilibration of the assimilated material within the

magma.
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Sample Materials, Preparation, and Analytical Techniques

Portions of 10 shergottites, 3 nakhlites, NWA 2737 (a chassignite), and ALH 84001 were
crushed in air in a stainless steel mortar and pestle and sieved to separate out 200 — 500 pm
grain-size fractions (a few samples with smaller crystal sizes were sieved to separate out a
100 — 500 um grain-size fraction). This was followed by hand picking olivine (ol),
pyroxene (px), and maskelynite (msk) separates under a binocular microscope. The purity
of the separates is estimated to be >90% based on Raman spectroscopy and scanning
electron microscopy (SEM). No effort was made to distinguish augite (aug), pigeonite
(pig), and orthopyroxene (opx) during hand picking, and the pyroxenes in shergottites were
therefore measured as mixtures. Pyroxene in nakhlites is primarily aug, and px in ALH

84001 is primarily opx.

Three terrestrial samples were analyzed in this study; UWG-2 garnet was used as the main
standard (Valley et al. 1995), and o/ and opx (enstatite) from a San Carlos lherzolite were
monitored as internal, check standards and treated as unknown samples. John Valley
provided the UWG-2 garnet, and the San Carlos lherzolite was obtained from the
Geological and Planetary Science Division sample collection at the California Institute of
Technology. For this study the lherzolite was crushed and sieved in the same manner as the

meteorites, and o/ and opx were separated by hand under an optical microscope.

Cleaning studies were performed on px (presumably mostly aug) separates from sample
NWA 998, a highly altered nakhlite that has experienced both martian and terrestrial
weathering (Treiman and Irving 2008), and less-altered opx from the San Carlos lherzolite

as a terrestrial analogue. The San Carlos lherzolite contains both opx and cpx (Cr-diopside),
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which were easily separated because the cpx is bright green. Aliquots of the hand-picked

pyroxene separates from the 200 — 500 mm size fractions of both NWA 998 and San Carlos
were washed in 2.5M HCI for 20 minutes at 90°C. A subset of these HCl-washed separates
were additionally washed in 5% HF for 10 minutes at room temperature, rinsed with 2.5M
HCI, and then rinsed with deionized H,O. All of the washed samples were dried in an oven

prior to analysis.

All oxygen isotope measurements were performed at the California Institute of Technology
by laser fluorination using a CO, laser, BrFs reagent, and a purification apparatus using
cryogenic traps and a Hg-diffusion pump (Sharp 1990; Elsenheimer and Valley 1993). All
samples were prefluorinated with BrFs at room temperature for at least 12 hours to remove

adsorbed water and trace surface contaminants prior to analysis.

For the A'’O analyses, O, released by fluorination was recovered first by adsorption onto a
liquid-nitrogen-cooled 13X molecular sieve following the methods of Miller et al. (1999)
and Wiechert et al. (2001). The liquid nitrogen trap was replaced by an ethanol — dry ice
slush (similar to Clayton and Mayeda 1983) to keep fluorination by-products such as NF3
and CF, trapped on the 13X molecular sieve while releasing O,. The released O, was then
adsorbed onto a liquid-nitrogen-cooled SA molecular sieve inside a pyrex glass finger, after
which the glass finger was isolated from the rest of the extraction line, and the O, was
released and measured with a Finnigan MAT 252 mass spectrometer. This method also
gave 5'°0 analyses, but most 8'*0 measurements reported in this study were made by

converting O, to CO, using a heated graphite rod based on designs by Sharp (1990) and
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Elsenheimer and Valley (1993) rather than trapping it onto a liquid-nitrogen-cooled 13X

molecular sieve, and analyzed by a ThermoFinnigan Delta”""® XL mass spectrometer.

A total of 17 measurements (two of which were for the cleaning study—one where the
sample was leached only with HCI and the other with both HCI and HF) were made on 11
SNC meteorites during 8 separate sessions spread over an 11-month period using the O,
method for analysis on the MAT 252; a single MAT 252 session took one day and typically
included 3 analyses of UWG-2 garnet, 1 analysis of either San Carlos o/ or opx, and 2 SNC
analyses. A total of 77 measurements on 15 SNC meteorites were made during 16 separate
analytical sessions using the CO, method for analysis on the Delta; a single Delta session
lasted one day and typically included 6 analyses of UWG-2 garnet, 4 analyses of San
Carlos ol and/or opx, and 5 meteorite analyses. Raw data for all sessions can be found in
Appendix A. All measured §'°0 values are reported using the VSMOW scale, and were
standardized to UWG-2 garnet using the oxygen isotopic composition of 8'*Oysmow =
5.800%o0 (Valley et al. 1995). All 8"Ovsmow values were standardized using UWG-2 =
3.046%o (Spicuzza et al., 2007). We calculated A'’O using equations and methods of Miller
(2002), with a high-temperature silicate slope A of 0.5259 (Spicuzza et al. 2007). Variation
of UWG-2 garnet over the course of any one session was on average +0.07%o for
58 0vsmow and £0.03%o for 8'"Oysmow. Over the course of this study 8" 0vsmow values of
5.23 £0.16%0 (n =28) and 5.72 £ 0.11%o (n = 34) were obtained for San Carlos o/ and opx.
The San Carlos o/ value is similar to 5.23 £ 0.15%o (n = 11—from F; fluorination) and 4.99
+ 0.18%0 (n = 7—from BrFs fluorination) reported by Rumble et al. (1997), and 5.26 +
0.05%0 (n = 7) reported by Eiler et al. (1996). Both of these studies use similar UWG-2

garnet values. San Carlos opx is not typically used as a standard, so it is not compared to
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other labs. However, the ~0.50%o difference in 8'°0 between San Carlos ol and opx agrees
with independent estimates of the equilibrium fractionation between these two phases at
magmatic temperatures (Eiler 2001 and references therein). The San Carlos o/ and opx

gave A'’O values of 0.000 £ 0.019%o (n = 8) and 0.003 + 0.019%o (n = 5) respectively.

Results

Oxygen isotope compositions of all SNC mineral separates measured in this study are
presented in table 1.1. Errors in parentheses are standard error of the mean of all analyses
for that phase per meteorite; all others are the standard deviation (15) of the UWG-2 garnet
standard used during the same session. Analyses of 8'°0 yield similar results whether
measured as CO, on the Delta™"® XL or as O, on the MAT 252. The cleaning study
showed that there is little difference in 'O of measurements of NWA 998 px whether the

separates were unleached or leached using HCI or HF (table 1.2).

Measurements of 3'*Oysmow of o in shergottites (with the exception of DaG 476) and
chassignite NWA 2737 average to 4.36 + 0.12%o (table 1.1 and figure 1.2). The exception,
ol from DaG 476, is ~1%o higher; it is also higher than all SNC px and msk measurements
from this study. We discuss below the possibility that DaG 476 ol has undergone
subsolidus alteration that modified its 3'°0. Olivine in the nakhlites is 0.35%o higher in

818OVSM0W than o/ in the shergottites and chassignite.

The average 8" Ovsmow of shergottite px’s is 4.71 = 0.13%0. However, DaG 476, Dho 019,
and SaU 005 are outliers at the higher end of the 5'°0 shergottite range; the px from these

three meteorites have an average 8'*Ovsmow value of 4.88 + 0.09%o (figure 1.2). Excluding



Table 1.1. Data from this study obtained by CO, and O, analyses.
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Meteorite phase 3"Oysmow error 8"Oygow error A0 error
Basaltic Shergottites
Shergotty pyoxene 481 0.09
4.79 0.03
* 2.75 0.02 4.66 0.03 0.306 0.015
Average 4.75 (0.05)
maskelynite 5.14  0.09
533  0.03
527 0.07
Average 5.25 (0.06)
Zagami pyroxene 465 0.12
4.58 0.07
* 2.74 0.01 4.60 0.02 0.323 0.010
Average 4.61 (0.02)
maskelynite 5.04 0.12
5.16 0.07
Average 5.10 (0.06)
NWA 2986 pyroxene 456 0.09
470 0.09
* 2.72  0.01 4.62 0.01 0.288 0.004
Average 4.63 (0.04)
maskelynite 5.16 0.09
5.10 0.09
543  0.07
Average 5.23 (0.10)
NWA 4468 pyroxene 4.61 0.12
475 0.11
* 2.86 0.01 4.82 0.01 0.327 0.004
Average 4.73 (0.06)
maskelynite 495 0.12
496 0.07
Average 4.96 (0.01)

*Measurements made using the O, method on the MAT 252; all others were made
using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

these three samples, the average 88 0vsmow of shergottite px’s is 4.67 £ 0.10%o. The

5 0vsmow of px in the nakhlites average to 4.87 £ 0.10%o; i.e., like the three anomalous

shergottite px values, they are also ~0.2%o higher than the mean value of the typical
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Table 1.1 continued.

Meteorite phase 3"Oysmow  error 8"Oygyow error A0  error
Olivine/Pyroxene-Phyric Shergottites
DaG 476 pyroxene 478 0.08
482 0.07
5.00 0.07
Average 4.87 (0.07)
olivine 538 0.11
532 0.07
Average 5.35 (0.03)
Dho 019 pyroxene 496 0.07
SaU 005 pyroxene 486 0.12
olivine 429 0.12
NWA 2046 pyroxene 476  0.06
4.58 0.08
Average 4.67 (0.09)
olivine 4.15 0.06
449 0.08
442 0.11
Average 4.35 (0.10)

*Measurements made using the O, method on the MAT 252; all others were made
using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

shergottite px’s. The 8'*Oysmow of px in ALH 84001 is 5.02 = 0.11%o, which is ~0.35%o

higher than the average of typical shergottite px and ~0.15%o higher than nakhlite px.

Excluding msk from NWA 4468, shergottite msk has an average 8'°Ovsmow = 5.20 +

0.13%o (table 1.1 and figure 1.2). Maskelynite from NWA 4468 is 0.15%o lower than the

others.

The average of the A'’O analyses of SNC mineral separates is 0.313 % 0.015%o (table 1.1
and figure 1.3). Except for the A'’O of HF-leached NWA 998 px, which is ~0.03%o higher
(figure 1.3) than HCl-leached and untreated NWA 998 px, there are no systematic

variations within or between samples.
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Table 1.1 continued.

Meteorite phase 8"Oysvow error 8"Oygyow error A0 error
Peridotitic ("'Lherzolitic'') Shergottites
ALH A77005 pyroxene 4.77  0.07
449 0.11
Average 4.63 (0.14)
olivine 439 0.12
4.16 0.16
426 0.16
432 0.04
4.50 0.09
* 2.59 0.05 431 0.08 0321 0.010
Average 4.32 (0.05)
NWA 1950 pyroxene 4.58 0.12
480 0.16
4.61 0.16
471 0.04
Average 4.68 (0.05)
olivine 441 0.12
446 0.16
450 0.09
433 0.04
* 2.59 0.06 439 0.15 0.287 0.024
* 2.57 0.01 429 0.03 0321 0.020
Average 2.58 (0.01) 4.40 (0.03) 0.304 (0.017)

*Measurements made using the O, method on the MAT 252; all others were made
using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

Discussion

Cleaning Study

Pyroxene separates from NWA 998 typically have spots of red-orange stains or films on
their surfaces. It was a concern that this contamination might contribute to the relatively
high values of 8'°0 we observe for the nakhlites. However, after the leaching experiments

(described above), visual inspection of the separates showed that HCI and HF baths had
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Table 1.1 continued.

Meteorite phase 8""Ovsmow error 8"Oyguow error A0 error
Nakhlites
Lafayette pyroxene 493 0.12
480 0.16
476 0.16
5.03 0.09
* 2.83  0.01 483 0.02 0.293 0.010
Average 4.87 (0.05)
olivine 451 0.16
492 0.09
4.69 0.04
483 0.09
Average 4.74 (0.09)
Nakhla pyroxene 5.00 0.03
474 0.06
4.68 0.08
* 2.82  0.01 476 0.03 0.319 0.020
Average 4.80 (0.07)

*Measurements made using the O, method on the MAT 252; all others were made

using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

removed the surface contamination (the appearance of San Carlos opx did not change—the
surface appeared clean both before and after the experiments), and yet 8'*O measurements
remained the same (table 1.2—where all errors are 16 of the UWG-2 garnet standard from
that session) at a 95% confidence level using the Mann-Whitney U test. It is possible this is
because BrFs pretreatment removes the contaminant (i.e., leaching in acids prior to
introduction to the laser fluorination sample chamber just removes constituents that would
have been removed during pretreatment). Or, the surface impurities do not meaningfully
contribute to the oxygen isotopic composition, either due to their low abundance or
similarity in oxygen isotope composition to the mineral substrates. Measurements of A'’O

appear to be influenced by HF leaching, at least in the one sample on which this was



21

Table 1.1 continued.

Meteorite phase 3"Oysmow €rror 8"Oygyow error A0 error
Nakhlites Continued

NWA 998 pyoxene 494 0.04
5.01 0.04
5.00 0.04
497 0.04

* 2.83  0.05 478 0.08 0.324 0.010

* 2.83  0.05 481 0.08 0306 0.010

* 2.90 0.03 491 0.05 0317 0.008

* 2.79 0.07 473 0.14 0309 0.012

Average 2.84 (0.02) 4.89 (0.04) 0.314 (0.005)
HCl-treated 496 0.04
pyroxene 495 0.04
492 0.04
482 0.04

* 2.92 0.03 495 0.05 0317 0.008
Average 4.92 (0.03)
HF-treated 498 0.06
pyroxene 4.85 0.06
482 0.06
474  0.06

* 2.86 0.07 479 0.14 0342 0.012
Average 4.84 (0.04)

all pyroxene 2.85 (0.02) 4.89 (0.02) 0.319 (0.005)
olivine 441 0.16
486 0.09
458 0.04
474 0.09
Average 4.65 (0.10)

*Measurements made using the O, method on the MAT 252; all others were made
using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

attempted. However, only one measurement of this kind was made, therefore conclusions

are unclear at this time.
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Table 1.1 continued.

Meteorite phase 3"Oysmow error 8"Oygow error A0 error
Chassignite

NWA 2737 olivine 437 0.12
* 2.62 0.01 436 0.02 0.325 0.010

Average 4.37 (0.01)

Orthopyroxenite

ALH 84001 pyroxene 5.18  0.03

492 0.03

5.03  0.06
* 2.92 0.02 497 0.03 0.305 0.015

Average 5.03 (0.06)

*Measurements made using the O, method on the MAT 252; all others were made
using the CO, method on the Delta. Methods are described in the sample materials
preparation, and analytical techniques section.

Measurements of &' O

Except for DaG 476 ol, all 80 values of SNC minerals from this study display
relationships that broadly agree with equilibrium fractionations in oxygen isotope ratios
among these minerals at igneous temperatures (figure 1.2). Maskelynites show the highest
values, olivines show the lowest, and pyroxenes are in the middle. Figure 1.4 illustrates the
mineral — mineral fractionations for various coexisting mineral pairs (olivine — pyroxene
and maskelynite — pyroxene pairs from the same rock) analyzed in this study, and compares
these data with similar mineral pairs from terrestrial mafic igneous rocks (where
plagioclase is included as a point of comparison to maskelynite), and to fractionations
predicted based on previous experimental constraints on mineral — mineral fractionation
factors (Rosenbaum and Mattey 1995; Eiler 2001). Most terrestrial data appear to be
slightly out of equilibrium compared to experimental and theoretical determinations, either
because the experiments are slightly in error or because phenocryst assemblages in mafic

igneous rocks are typically slightly out of equilibrium. Almost all martian data from this



23
Table 1.2. Results of cleaning study.

618OVSMOW
untreated error HCl error HF error
NWA 998 4.94 0.04 4.96 0.04 498 0.06
5.01 0.04 495 0.04 4.85 0.06
5.00 0.04 4.92 0.04 4.82 0.06
4.97 0.04 4.82 0.04 4.74 0.06
Average 4.98 0.03 4.91 0.06 4.85 0.10
SCOL 5.77 0.04

5.78 0.04 5.79 0.06
5.69 0.04 5.59 0.06 5.84 0.06
5.75 0.06 5.89 0.06 5.75 0.06
5.55 0.06 5.82 0.06 5.64 0.06
5.75 0.06 5.65 0.06 5.67 0.06
Average 5.72 0.09 5.75 0.12 5.73 0.09

study are comparable to terrestrial data and most are within predicted ranges of equilibrium
fractionations. However, the o/ — px fractionation in DaG 476 and the px — msk
fractionation in NWA 4468 fall outside both the predicted range for magmatic equilibrium

and the majority of the terrestrial dataset we considered.

Comparison of the Present Study with Previous Data

Figure 1.5 compares 8'°O values of SNCs from this study to previous measurements. It is
noteworthy that we observe a significantly smaller range in 3'°O for any one phase than
was observed in previous studies. There are three factors that may be contributing to this
finding. First, most of these rocks are cumulates. Bulk measurements of a lherzolitic
shergottite that consists of mostly ol and px will result in a lower 8'°0 than a basaltic
shergottite that consists of px and msk even if they had parent magmas that were identical

in "0 and had closely similar 'O values of pyroxenes. This is due to oxygen isotope
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Figure 1.2. Measurements from this study. The shergottites are grouped according to
depletion. All error bars are 1o standard deviation.

fractionation among coexisting phases in magmas. Clayton and Mayeda (1996) attributed

all variations of 8'*0 values of SNC whole rock samples in their study to this factor.

Second, different laboratories use different sample preparation techniques and
prefluorination conditions. Neither Romanek et al. (1998) nor Franchi et al. (1999) report
acid washing as a sample preparation technique, but Rumble and Irving (2009) do report
acid washing. Measurements of bulk rocks might include contaminants, such as terrestrial
weathering products and/or martian alteration phases that are not present in mineral

separates. Acid leaching is intended to remove these contaminants, though it is not clear
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Figure 1.3. Histogram of all A O measurements made on SNC mineral
separates from this study.

that it does so with perfect efficiency. Furthermore, acid leaching might actually degrade
the quality of oxygen isotope measurements in some cases. Olivine can transform to an
amorphous “gel” when exposed to acids. It is unknown whether or not this causes an effect
on 8'°0 (or A'’0) measurements, but there is a possibility that acid leaching a bulk sample
that contains a lot of olivine may have an effect. Measurements of the same sample
prepared in various ways made in one lab, and on one instrument (similar to the cleaning
experiments performed on NWA 998 pyroxenes in this study) may be able to resolve
whether some of the cleaning methods used in prior studies subtly influence 5'°0 (or A'’0)

values.
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Prefluorination of the sample chamber in this study and at the Geophysical Laboratory
(GL—Ilaboratory used by Rumble and Irving 2009) is done overnight at room temperature

(Rumble et al. 2007), whereas at Open University (OU—Iaboratory used by Franchi et al.
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1999) the sample chamber is evacuated overnight at elevated temperature and then
prefluorinated at room temperature prior to analysis (Franchi et al. 1999). Romanek et al.
(1998) prefluorinated for one hour at an elevated temperature, presumably following

methods of Clayton and Mayeda (1963).

Third, not all studies have followed the same practices in calibrating measurements to the
VSMOW scale. Laboratories that make calibrations based on international silicate
standards (this study and that of Romanek et al. 1998) obviously depend on the accepted
value for that standard. Kusakabe and Matsuhisa (2008) have demonstrated that different
laboratories are not reporting the same values for some standards. Franchi et al. (1999), and
Clayton and Mayeda (1983) report data for silicate standards that are lower than those from
Romanek et al. (1998), and this study (e.g., 8'°0 of UWG-2 = 5.4%o vs. 5.8%o). The
conference abstract of Rumble and Irving (2009) does not report standard data. However,
even after one corrects for different silicate standard values, scatter still exists in the data,
even for the same meteorite. Franchi et al. (1999) and Clayton and Mayeda (1963) report
data relative to a working gas that has been independently calibrated to VSMOW (i.e., as
opposed to the difference with respect to an interlaboratory silicate standard). It is unclear
how data were calibrated to the VSMOW scale for the Rumble and Irving (2009) abstract.
Surveying the various approaches to calibration for obtaining 8'*O values, we conclude that
one cannot compile a data set of 'O measurements of SNC meteorites among different
laboratories without introducing systematic errors on the order of tenths of per mil due to
variations in methods and materials for calibration to the VSMOW scale (and this is likely
generally true for silicate 3'°0 values). Nevertheless, when one attempts to correct for these

differences (i.e., by adding 0.4%o to data from the Franchi et al. 1999 and Clayton and
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Mayeda 1983 to make them consistent with our calibration), significant interlaboratory

differences still exist in data for the SNC meteorites, even for whole rock measurements of
the same meteorite. This implies that differences in analytical or sample preparation
procedures are at least partially responsible. Nevertheless, we again emphasize the general
lack of variation in 8'°0 in this study and the one done at OU (Franchi et al. 1999); a large
enough range of samples are considered in that work that we consider it unlikely variations
in 8'°0 observed among other studies reflect true variations among primary martian silicate

minerals.

Shergottites

Pyroxene is a major phase in SNC meteorites and was analyzed in the largest number and
diversity of samples in this study, and so serves as the simplest point of reference for
estimating differences in 5'°O between samples. Figures 1.2 and 1.5 summarize these data
for our sample suite, which covers the whole range in shergottites, from depleted and
reduced to enriched and oxidized. These figures suggest that liquids from which the
shergottites crystallized span a significantly smaller range in 8'*Ovsmow (0.35%0) than
previously inferred from whole rock measurements (~2%o), and that the process responsible
for the trends between 8'°0 and enrichment and oxygen fugacity among the shergottites
(Herd 2003) do not reflect compositional trends among the SNC parent magmas; they must
instead be fortuitous results of analytical errors, sample preparation artifacts and/or
systematic differences in mineral proportions of cumulate rocks. In any event, our oxygen
isotope data provide little to no evidence that the oxidation state or enrichment of

shergottites is associated with oxygen isotope signals, and thus do not provide any
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indication that the shergottite parent magmas assimilated or mixed with aqueously altered

mantle or crustal components.

Pyroxenes in DaG 476, Dho 019, and SaU 005 (that is, three of the four depleted
shergottites that we analyzed) are slightly higher in §'°0 (by ~0.2%o) than pyroxenes from
other shergottites. A 0.2%o difference in 8'*0O among shergottite pyroxenes may be too
small to support any confident conclusions. But it is among the only statistically significant
variations we observe in our otherwise uniform data set, so we discuss possible

explanations below.

It is imaginable that this reflects a high proportion of §'®O-rich alteration phases in
pyroxene separates from these samples. None of these samples were acid washed, and both
DaG 476 and Dho 019 exhibit terrestrial weathering; however, SaU 005 does not exhibit
terrestrial weathering. And, our cleaning study of NWA 998 (also higher in §'°0 by 0.2%o)
suggests that acid leaching makes no significant difference to the measurements of
pyroxenes that contain visible alteration products. We conclude that there is little evidence

that alteration products could be responsible for this difference.

The depleted shergottites are relatively rich in low-Ca pyroxene (mostly pig with some opx,
and little aug). It is known that opx is higher in 8'*O than coexisting high-Ca cpx when they
form in mutual equilibrium. It is not obvious whether this reflects a chemical or structural
difference, and so it is not clear whether the low-Ca, clinopyroxene pig should exhibit an
oxygen isotope fractionation resembling opx or calcic cpx. If the fractionation of 3'*0 in
pyroxene depends on Ca content (i.e., pig behaves more like opx) one could argue that the

px from these three depleted shergottites are high in 5'°O because they contain more low-



31

Ca px than high-Ca px. However, in this case, we would have expected the lherzolitic
shergottites (the lherzolitic shergottites measured in this study are intermediately enriched),
which have the lowest Ca px’s of all the shergottites, to be even higher in §'°0, which they
are not (figure 1.2). If instead, 5'°0 fractionation among the pyroxenes depends on
structure (i.e., pig behaves like cpx), then these three depleted shergottites should have had
8'%0 values similar to basaltic shergottites (all basaltic shergottites in this study are
enriched and are abundant in cpx) rather than the slightly elevated values we observe.
Additionally, because lherzolitic shergottites (where px is mostly opx and pig) have the
same 8'°0 values as basaltic shergottites (which have roughly equal aug and pig), it is
unlikely that variations in oxygen isotope fractionation behavior among various end
member pyroxenes are responsible for the subtle differences among bulk pyroxene

separates we analyzed in this study.

Alternatively, the higher 5'°0 of pyroxenes from DaG 476, Dho 019, and SaU 005 could
reflect a slightly higher 8'°0 of the sources of depleted shergottites (perhaps approaching
the 8'%0 values of nakhlites; see below). It would be counterintuitive if this difference
reflected altered crustal components to those sources, as these should lead to elevated §'°0
coupled with enriched geochemical signatures. Thus, it is more plausible that this
difference exists between the mantle sources of depleted shergottites and the rest of the
shergottites. The one counter indication of this hypothesis is that NWA 2046 has also been
classified as a depleted shergottite but does not display elevated 8'*0. However, there is no
REE, Rb/Sr, or Sm/Nd data for NWA 2046, and its classification as depleted is based on
secondary evidence from olivine trace element abundances and maskelynite major element

compositions (Shearer et al. 2008; Papike et al. 2009). It is worth exploring whether NWA
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2046 shares the depleted source characteristics of DaG 476, Dho 019, and SaU 005 (i.e., it

is possible that the depleted shergottites are, in fact, universally slightly elevated in 3'°0,
and NWA 2046 is not actually a depleted shergottite). Depleted shergottites studied by
Bouvier et al. (2009) define a trend in Pb isotope space that differs from that defined by the
moderate and enriched shergottites (both of which share the same trend), which indicates
that the shergottites come from at least two reservoirs that have remained separate for over
four billion years. Additionally, Sm-Nd isotopes show that DaG 476, Dho 019, and QUE
94201 share a pseudoisochron with nakhlites Nakhla, Lafayette, and Governador
Valadares, while enriched and intermediate shergottites share a separate pseudoisochron
(Nyquist et al. 2001). Although the depleted shergottites are much younger than the
Nakhlites, they are also several hundred million years older than other shergottites. Perhaps
there is no relationship between any of the shergottite types, and the observed trend
between enrichment and oxidation is not from mixing two reservoirs, but rather from a
magma ocean stratification process in the mantle that is zoned with depth, similar to

conclusions of Symes et al. (2008).

DaG 476 Olivine and NWA 4468 Maskelynite

Olivine megacrysts in DaG 476 have the most obviously anomalous §'*0 value among the
shergottites in that they are higher than both px and msk from the same rock, rather than
lower as expected for equilibrium partitioning at magmatic temperatures, and thus higher
than any plausible equilibrium magmatic value for olivine in these rocks. DaG 476 and its
pairs were found in the desert and display abundant terrestrial weathering. Wadhwa et al.

(2001) reported in situ SIMS REE patterns in DaG o/ that exhibit a LREE enrichment they
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argue is specific to terrestrial alteration. However, Edmunson et al. (2005) attribute this
enrichment to mobilization of oxygen during impact on Mars that creates defects and
allows incorporation of larger, incompatible elements into their structures (i.e., it may be a
consequence of subsolidus processes on Mars). Oxygen isotope exchange during terrestrial
alteration processes at near surface temperatures generally increases the 3'°0 in altered
solids. In the case of martian meteorites, terrestrial weathering should also decrease their
A0 values (though this may only be noticeable if alteration is severe). It is possible that
shock impact created defects in megacrystic o/ grains without affecting smaller px and plag
in the same manner, thus leaving o/ more susceptible to terrestrial weathering. This
scenario would be consistent with the fact that we observe a difference in 5'°O between px
and msk in DaG 476 consistent with magmatic equilibrium, but a higher 3'°0 value in

olivine.

Similarly, NWA 4468 exhibits a difference in 8'°O between msk and px that differs from
the equilibrium fractionation between plagioclase and pyroxene at magmatic temperatures
(figure 1.4). The relatively low 8'°0 value of msk in NWA 4468 may reflect the earlier
growth of opx from the parent melt. NWA 4468 contains large opx-cored oikocrysts, and
msk 1s an interstitial phase in this poikilitic rock. Crystallization of opx (and possibly pig)
from basaltic melt is predicted to reduce the 8'°O of residual basaltic liquid. Thus, growth
of plagioclase from a late-stage, interstitial melt after growth of opx could lead to msk-px

fractionations that are smaller than equilibrium at magmatic temperatures.
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Nakhlites, Chassignite, and ALH 84001

Olivine in the nakhlites is higher in 8'°O than o/ in all the other SNCs (apart from DaG 476,
which we suggest is influenced uniquely by subsolidus alteration). Pyroxene in the
nakhlites is higher in §'°O than px in all the enriched and moderate shergottites but similar
in 3'°0 to px in the depleted shergottites, Dag 476, Dho 019, and SaU 005. High 3'°0 in
minerals from the nakhlites could be a product of exchange with late-stage evolved melts
that coexisted with these cumulate rocks. Olivine in the nakhlites is out of Fe/Mg
equilibrium with coexisting px and is thought to have undergone diffusive chemical
exchange with the evolving magma during slow cooling (Longhi and Pan 1989). Iron and
magnesium interdiffusion is much faster than oxygen self-diffusion in olivine (e.g.,
Ryerson et al. 1989; Dohmen et al. 2007), and so it is not obvious that this slow cooling
had to affect the oxygen isotope compositions of these grains, though it could have if
cooling were slow enough. Self-diffusion of oxygen occurs faster in pyroxene than in
olivine. Crystallization of oxides, high-Ca cpx, and o/ in basaltic melts increases 5'°O of the
residual magma. Therefore, oxygen exchange between an early formed cumulate phase and
an evolved magma could increase the 5'°0 of the earlier formed olivine and pyroxene.
Olivine in all other SNCs is thought to have crystallized early and have undergone
subsolidus equilibration to a much smaller degree that only affects o/ rims. Therefore, this
process is only suspected to have affected the nakhlites. Thus, if slow cooling in the
presence of evolved melt explains the high 3'°0 of nakhlite minerals, their similarity to the
somewhat high 3'°0 in px from depleted shergottites DaG 476, Dho 019, and SaU 005

must be coincidental.
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Instead, this could be consistent with the nakhlites and depleted shergottites being products

of partial melting of a shared or similar, high 5'°O reservoir—an idea supported by the fact
that these rocks collectively define a 'Y’Sm-'Nd whole-rock “isochron” of 1.3 Ga
(Nyquist et al. 2001) and have similar £'**Nd (Foley et al. 2005). Other constraints on this
hypothesis are that nakhlites are LREE enriched (Wadhwa and Crozaz 1995) whereas the

depleted shergottites are not, and Rb-Sr whole-rock ages for these samples are 4.5 Ga.

Olivine from the chassignite, NWA 2737 is similar in 'O to olivine from the enriched and
intermediate shergottites, and is not relatively high like the nakhlites. This is consistent
with Wadhwa and Crozaz’s (1995) suggestion that chassignites and nakhlites are not from

the same source magma.

Pyroxene from ALH 84001 is the only px separate that consists of mostly opx rather than
cpx (pig and aug), and has the highest 5'°0 value. The difference in 5'°0 between px from
ALH 84001 and px from all the other SNCs is similar to the difference expected for §'°0
fractionation between cpx and opx at magmatic temperatures. Thus, the parent melt of ALH

84001 may have had a 'O value closely similar to those of other SNCs.

Measurements of A!’O

The standard deviation in A'O (£0.015%0) of SNCs from this study is similar to the
+0.013%o standard deviation reported by Franchi et al. (1999) (figure 1.6). Franchi et al.
(1999) calculated values of A'’O using the expression: A'’0O = §'"0 — 0.52 3'°0 (Clayton
and Mayeda 1996) whereas this study uses the logarithmic equations of Miller (2002),

A0 = 1000In((5'"0/1000) + 1) — A1000In((5'*0/1000) + 1), and a mass law exponent, A,
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Figure 1.6. Measurements from this study (red) compared with those from other
laboratories. The solid and dashed black lines are the martian fractionation line and
associated error reported by Franchi et al. (1999). The variation in this study is similar
to that of Franchi et al. (1999). Black squares, Franchi et al. (1999) study; grey
diamonds, Clayton and Mayeda (1996) study; grey triangles, Romanek et al. (1998)
study; grey circles, Rumble and Irving (2009) study; grey vertical diamonds,
additional data from Open University (2000 — 2008); grey upside-down triangles,
additional data from Geophysical Laboratory. Red symbols from this study: circle,
Shergotty px; square, NWA 2986 px; large diamond, Zagami px; small diamond,
Lafayette px; triangle, NWA 4468 px, large upside-down triangle, NWA 2950 o/;
small upside-down triangle, Nakhla px; large vertical diamond, ALH A77005 ol
horizontal diamond, NWA 2737 ol.

of 0.5259 (Spicuzza et al. 2007). These two methods result in closely similar results
because of the small variations in 8'*0 among SNC samples and the relatively modest
differences between SNC samples and terrestrial standards; i.e., the linear approximation is
suitable. Nevertheless, we use the power law expression throughout this study in order to

be consistent with current evaluations of the terrestrial fractionation line.
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We can think of no obvious explanation as to why we found a uniform, precisely defined
A0 value for SNC meteorite components, other than that the minerals in question (and
their parent magmas) are, in fact, invariant in A'’O (i.e., it seems unlikely that such a null
result could arise fortuitously or through an analytical artifact). This conclusion implies that
the variations in A'’O found in some previous studies are analytical artifacts or a
consequence of terrestrial or martian alteration products that we successfully removed by
pretreatment. This is unsurprising in the case of Clayton and Mayeda (1996), who used a
resistance-heated fluorination technique with analytical errors no better than +0.07%o
(based on analyses of standards from Clayton and Mayeda 1996). However, the
discrepancies among the other published studies need more explanation, as Franchi et al.
(1999), Romanek et al. (1998), and Rumble and Irving (2009) used the laser fluorination
technique as was used in this study. In addition to different sample techniques and
prefluorination conditions between laboratories described above, different labs also used
different O, extraction methods. After heating the sample with a laser in the presence of
BrFs, Romanek et al. (1998), Franchi et al. (1999), and Rumble and Irving (2009) (as
reported in Rumble et al. 2007) expose the sample gas product to KBr to remove any
excess F, whereas in this study the gas is transferred through a Hg-diffusion pump where
excess F will react with heated Hg. After exposure to KBr, Rumble and Irving (2009) also
transfer the gas through a Hg-diffusion pump (Rumble et al. 2007). The gas is then trapped
by freezing it onto a 13X molecular sieve in this study and at the Open University labs
(Franchi et al. 1999); a 5A molecular sieve at Geophysical Laboratory (Rumble et al.
2007); and in a flow-through He cryostat by Romanek et al. (1998). In this study, the gas is

further purified by slightly raising the temperature of the 13X molecular sieve trap (we
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replace liquid nitrogen with an ethanol slush, similar to methods of Clayton and Mayeda

1983) to keep other fluorination by-products such as NF; and CF, trapped while releasing
O,, and then refreeze onto a SA molecular sieve. These fluorination by-products can cause
interferences for mass-to-charge ratio (m/z) 33, and are dealt with at OU by scanning m/z =
52 (NF,") on the mass spec and, if necessary, refreezing the sample gas onto a separate 13X
molecular sieve, and adjusting the temperature with insulated heating tape so that the NF;
is retained on the trap but O, is released (Miller et al. 1999). At GL, the use of a SA
molecular sieve is helpful in preferentially adsorbing the interfering molecules, and their
laboratory is known to monitor interference by scanning m/z = 52 and 69 (CF;") (Wiechert

et al. 2001). Romanek et al. (1998) does not discuss this issue.

Most available A'’O measurements of SNC meteorites come from University of Chicago—
the lab used by Clayton and Mayeda (1996), the OU, or the GL, whose respective methods
are described above. However, a significant amount of available data comes from various
other laboratories, and most of this has been reported only in meteoritical bulletins and/or
conference abstracts, omitting methodological details. Although the same approximate
A0 value of ~0.3%o is reported for all SNCs by all laboratories, it seems possible to us
that subtle variability about this value observed in a subset of the data reflects inter- and
intralaboratory artifacts. Now that standard deviations in A'’O of 0.015%o or less are found
in two separate studies that cover a broad range of SNCs (this one and that of Franchi et al.
1999), we think it unlikely that the variation in A'’O of other existing data is characteristic

of primary silicate minerals in martian samples.
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Conclusions

Though we have made some effort to explain subtle variations in 8'*0 among the SNCs,
the key result of this study is that the SNCs, taken as a group, are remarkably uniform in
oxygen isotope composition, and most of the subtle variations that are observed can be
understood as consequences of crystallization differentiation or (in the case of o/ in DaG
476) terrestrial weathering. This homogeneity is even clearer in A'’O, which is uniform
within analytical precision. Our results are explicitly inconsistent with the correlation
between 8'°0 and indices of enrichment noted by Herd (2003), and we suggest that result
reflected the combined effects of fortuitous analytical errors and systematic effects of
crystal accumulation on whole rock 3'°0O values. In any event, no such correlation exists
among the parent magmas of the SNCs. We conclude that there is no oxygen isotope
evidence that the enriched shergottites are derived from an aqueously altered source or

assimilated or mixed with a component of altered crust.

The apparent uniformity in oxygen isotope compositions of martian magmas (at least, as
sampled by igneous minerals in the SNC meteorites) is remarkable when compared with
terrestrial, lunar, and other meteoritic materials. The variability in 8'%0 of terrestrial
basaltic and gabbroic rocks exceeds that of martian equivalents by more than an order of
magnitude—a testament to the important role of aqueous alteration and authigenic
sediments in the geochemical evolution of the crust, which is sampled by terrestrial basaltic
magmas as subducted source components and lithospheric contaminants. Though it is
challenging to reach general conclusions about martian geology based on our sampling of

rocks in the known SNC meteorite collection, it would appear that these phenomena do not
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operate on Mars. It seems inevitable that martian magmatism must expose hot magmas to
the walls of magmatic plumbing systems, and so stoping, crustal melting, and assimilation
must occur. The absence of an oxygen isotope signature of assimilation in the SNCs
suggests that the crust of Mars is simply very poor in aqueous alteration products. This
implies that clays, sulfates, carbonates, and oxides observed at the surface of Mars and
found in trace quantities as martian weathering products in the SNCs make up a relatively
small fraction of the martian crust overall. While this argument is based on indirect,
negative evidence, it is one of the only insights available to us today regarding the

distribution of aqueous alteration products beneath the martian surface.

Martian magmas seem to be more homogeneous in 3'°0, by greater than a factor of 2, than
lunar magmas (Wiechert et al. 2001; Spicuzza et al. 2007). However, the majority of
heterogeneity in 8'*0 of mare basalts appears to be from an offset between high- and low-
Ti basalts. Similar to conclusions of Spicuzza et al. (2007), we suggest this is an indication
of the distinctive role of oxide-rich cumulates in the early differentiation history of the
moon. Even at magmatic temperatures, oxide minerals are markedly lower in 8'*O than
coexisting silicates. This effect could readily explain why high-Ti basalts are, on average,

~0.2%o lower in 8'*0 than low-Ti basalts (Spicuzza et al. 2007).

Parent magmas of the SNCs are much more homogeneous in 8'°0, by nearly a factor of 4,
than previous measurements of the HED meteorites (Wiechert et al. 2004; Scott et al.
2009). Most of this heterogeneity seems to come from the cumulate eucrites (Scott et al.
2009), but unfortunately the HED meteorites have not yet been subjected to a high-

precision study of the oxygen isotope compositions of mineral separates. Therefore, there
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remain several possible explanations for their 8'°O variation—analytical errors,
contaminants, mixing of minerals having different partitioning behavior, and actual
heterogeneity in 8'°O of the HED parent body, or bodies. We suggest this is an attractive

target for future study.

DaG 476 exhibits abundant terrestrial weathering that may have had more of an affect on
impact-fractured, megacrystic o/ than other nonfractured phases. This could explain why o/
from DaG 476 is higher in 5'°O than expected for equilibrium with coexisting phases at
magmatic temperatures. Similarly, px and msk are slightly out of isotopic equilibrium in
NWA 4468 and may reflect the early growth of opx phenocrysts that relatively depleted the

residual melt of '*0 by the time plagioclase crystallized.
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Chapter I1

ABUNDANCES OF CL, F, H, AND S IN APATITES FROM SNC METEORITES

Introduction

The abundances of volatiles (e.g. H,O, COa, S, F, Cl, etc.) in silicate magmas have a strong
effect on their phase equilibria and physical properties, such as density and viscosity, both
of which influence magmatic composition and behavior during crystallization, melting,
ascent, and eruption (Roggensack et al. 1997; Webster et al. 1999; Behrens and Webster
2011; Zajacz et al. 2012). Additionally, outgassing of igneous volatiles plays a critical role
in atmospheric composition and climate (Devine et al. 1984; Symonds et al. 1988; Wallace
and Gerlach 1994; Thordarson and Self 2003; Behrens and Webster 2011; Zelenski and

Taran 2012).

Several lines of evidence suggest that the martian surface is richer in chlorine and sulfur
than Earth (Clark and Baird 1979; Dreibus and Wanke 1985, 1987; Haskin et al. 2005;
King and McLennan 2010), and that water persisted on the surface at least long enough to
carve out many geomorphologic features (Carr 2012 and references therein). However,
there is little understanding of the connections between these observations regarding the
geology of the martian surface and the abundances and forms of volatiles released by
martian magmas during their eruption and intrusion. We have few constraints on current
and past volatile abundances in the martian mantle and their effects on magmatic processes,

and on the contributions of magmatic volatiles to the atmosphere and surface of Mars
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(Dreibus and Wanke 1985, 1987; Johnson et al. 1991; Watson et al. 1994; Jakosky and

Jones 1997; Dann et al. 2001; Lentz et al. 2001; McSween et al. 2001; Patifio Douce and
Roden 2006; Nekvasil et al. 2007; Filiberto and Treiman 2009; Gaillard and Scaillet 2009;

Righter et al. 2009; King and McLennan 2010; McCubbin et al. 2012).

One way to acquire information on the volatiles Cl, F, OH, and S in magmas is through
analyses of the mineral apatite—Cas(PO.)3;(C1,F,OH) (Piccoli and Candela 2002; Parat and
Holtz 2004). Apatite is a late-crystallizing mineral in igneous systems and is more retentive
of these volatile elements than glasses and silicate melts (Roegge et al. 1974; Brenan 1994;
Streck and Dilles 1998; Tepper and Kuehner 1999). In addition to sequestering Cl, F, and
OH, apatite can also incorporate sulfur as sulfate by substituting it for phosphate (Pan and
Fleet 2002; Parat et al. 2011). However, sulfate is only present in magmas where oxygen
fugacity is greater than ~1 log unit below the quartz-fayalite-magnetite (QFM) buffer
(Carroll and Rutherford 1988; Wallace and Carmichael 1994; Jugo et al. 2005; Baker and
Moretti 2011), and Peng et al. (1997) have observed increasing abundance of sulfur in
apatite with increasing oxygen fugacity. The oxygen fugacities of SNC magmas have been
estimated to be between 5 log units below and 1 log unit above the QFM buffer (Herd et al.
2001; Wadhwa 2001; Herd, Borg, et al. 2002; Goodrich et al. 2003; Herd 2003; McCanta
et al. 2004; Herd 2006; Karner et al. 2007; McCanta et al. 2009), thus we should only

expect to observe sulfur in apatites from the more oxidized end of the spectrum of SNCs.

Previous measurements show that CI is higher in most SNC apatites than in terrestrial
apatites from mafic and ultramafic rocks (figure 2.1), which is consistent with the high

chlorine contents found in martian soils (Clark and Baird 1979; Dreibus and Wanke 1985,
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Figure 2.1. SNC apatites compared to terrestrial apatites from mafic and ultramafic
rocks. SNC data are from Jagoutz and Winke (1986), Harvey et al (1993), McCoy et
al. (1999), Leshin (2000), Barrat, Gillet et al. (2002), Taylor et al. (2002),
Xirouchakis et al. (2002), Boctor et al. (2003), Greenwood et al (2003), Guan et al.
(2003), Warren et al. (2004), Beck et al. (2006), Treiman et al. (2007), Greenwood et
al. (2008), Treiman and Irving (2008), Sharp et al. (2011), McCubbin et al. (2012),
and terrestrial data are from GEOROC.

1987). Previous measurements also show that SNC apatites have a similar range in H,O as
terrestrial apatites, and they are lower in S than terrestrial apatites. This would suggest that
there is more water in martian magmas than previously believed, and that the oxygen
fugacities are too low for apatite to incorporate much sulfur. However, the data are too
sparse to support any general conclusions regarding the diversity of volatile contents
among the various types of martian igneous rocks and, by inference, their mantle sources.
Here, we report measurements of Cl, F, H, and S from a relatively large and representative
set of SNC apatites, obtained in order to better constrain the volatile contents of martian

magmas.
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Materials and Methods

Analyses of Cl, F, H, (reported as H,O), and S were measured in apatite and olivine
[(Mg,Fe),Si04] in martian and terrestrial samples, which were prepared both as polished
thin sections (PTS) and as polished grains or rock fragments pressed into indium. Twenty-
one apatite grains in PTSs of three basaltic shergottites (JaH 479, NWA 856, and NWA
2986), one lherzolitic shergottite (NWA 1950), and one nakhlite (NWA 998) were
analyzed using the Cameca IMS 7f-GEO secondary ion mass spectrometer (SIMS) at the
Center for Microanalysis at Caltech. Fourteen apatite grains in PTSs from one basaltic
shergottite (Shergotty), two olivine-phyric shergottites (Dho 019 and NWA 6710), one
chassignite (NWA 2737), and one terrestrial sample from a Kilauea Iki lava lake drill core
(NMNH 116771-178) were measured using the Cameca NanoSIMS 50L also at the Center
for Microanalysis at Caltech. Seven olivine grains in PTSs of two olivine-phyric
shergottites (two in Dho 019 and one in NWA 6710) and the Kilauea Iki sample, and
sixteen olivine grains were also analyzed on the on the NanoSIMS, from rock fragments
mounted in indium from one basaltic shergottite (JaH 479), one lherzolitic shergottite
(NWA 1950), one olivine-phyric shergottite (NWA 6710), and olivine separates mounted
in indium from a terrestrial peridotite (San Carlos). The analyses of olivine in PTSs were
compared to analyses of olivine mounted in indium in order to test the effect, if any, the
thin sections had on the hydrogen background. Additionally, the NanoSIMS was used to
generate elemental images of seven apatite grains in one basaltic shergottite (JaH 479) and
two olivine-phyric shergottites (Dho 019 and NWA 6710), one olivine grain in NWA 6710,
two pyroxene grains (one in Dho 019 and one in NWA 6710), and one maskelynite grain in

NWA 6710 in order to assess the homogeneity of such grains.
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All thin sections were previously carbon coated in order to locate phosphate grains using
the JEOL JXA-8200 electron probe at Caltech. Back-scattered electron (BSE) and
secondary electron (SE) images were made of apatite grains after their composition was
verified using the Oxford X-MAX SDD X-ray energy dispersive spectrometer (EDS)
system on the Zeiss 1550VP field emission scanning electron microscope (FE SEM) at
Caltech. Carbon coats were removed by polishing them with 0.25-pum grit diamond paste.
Thin sections were then cleaned by sonication in deionized water for 30 seconds, and then
rinsed with ethanol. Once dry, they were then sputter coated with 30 — 50 nm of gold. They
were held in the airlock of either the 7f-GEO or NanoSIMS 50L for 12 — 72 hours prior to

analysis.

For measurements made with the Cameca IMS-7f GEO, a Cs' primary ion beam was
rastered over a ~20 x 20 um area, and a 100 um field aperture was used to collect ions from
the central 8 — 10 um of the sputtered region. The beam current was 3.5 nA with an impact
energy of 20 kV, and the mass resolving power was ~5000 (M/AM). We routinely
inspected the secondary ion image of carbon after ten seconds of presputtering (to establish
that the carbon coat was removed) and ~3 minutes of tuning (in the same spot of analysis),
and then collected fifteen cycles through the mass sequence 2c, %0'H, 0, VF, *'p, %S,

and *>Cl using an electron multiplier detector for all masses.

For spot analyses using the Cameca NanoSIMS 50L, a Cs" primary ion beam was rastered
over a 2 x 2 um area, and electrostatic gating of the secondary ion beam was used to
restrict collected ions to the central area of 1.1 % 1.1 um. The beam current was 9 pA with

an impact energy of 16 kV, and a mass resolving power of >8000. Because most apatite
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grains in the SNCs were small (~30 % 30 pm), tuning prior to each measurement was done
on the spot intended for analysis; therefore presputtering was only 10 seconds. We
measured 100 cycles of 2c, 1%0'H, 0, F, *'P, #S, and *Cl, where all masses were

simultaneously collected.

For NanoSIMS elemental mapping images, a Cs™ primary beam current of 3 pA was
rastered over areas from 35 x 35 to 50 x 50 um, with total image acquisition times of 15 to

30 minutes.

We measured four independently analyzed natural apatites, Ap003, Ap004, Ap005, and
Ap018 (abundances reported in McCubbin et al. 2012) and synthetic fluorapatite and
chlorapatite (abundances reported in Boyce et al. 2012) and plotted measured ion ratios
against reported abundances in order to create a calibration curve for converting measured
ion ratios of our samples to elemental abundances (raw data and calibration curves can be
found in appendix B). Another natural apatite from Durango, Mexico was used as an in-
house laboratory check standard. We used eight independently analyzed olivine grains (one
synthetic), grr997, grr999a, grr1012-1, grr1017, grr1629-2, grr1695-2, grr1784e, and
rom177 (Mosenfelder et al. 2011) as olivine standards. All spot analyses were made after
examining secondary ion images of carbon (typically associated with contaminants) to
identify and avoid cracks. Additionally, the cracks were analyzed and compared to
nominally crack-free samples to better recognize sample measurements that accidentally
included cryptic crack-associated contaminants. Finally, we rejected any apatite analyses in
which measured H, CI, and F summed to significantly less (0.85) or greater than one (1.10)

atom per formula unit (i.e., they violated the stoichiometric constraints on measurements of
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apatite and thus likely included signals from materials other than apatite). The lower limit
was set farther from nominal stoichiometry in order to allow grains that might have
substantial trace element substitutions to pass the filter. Thirty sample apatite analyses out
of eighty-three were rejected for one or more of these reasons and can be found in appendix

B.

Results

NanoSIMS Images

The ion images generated for apatites in samples JaH 479 (an enriched basaltic shergottite)
and NWA 6710 (an enriched olivine-phyric shergottite) show that all measured volatiles
have high signal intensities in cracks and along grain boundaries, but are relatively
homogenous throughout grain interiors for volatiles other than sulfur (which is commonly
heterogeneous within apatite grains; figures 2.2 through 2.5). Sulfur enrichments are
observed in linear features in the interiors of apatite grains. These may represent
microcracks along which sulfur pervaded apatites. These linear S enrichments do not
appear to be associated with enrichments in other volatiles. lon NanoSIMS images of an
NWA 6710 olivine show three features: (1) oscillatory zoning in phosphorus in the outer
edges of the crystal, preserving evidence of faceted growth; (2) increased abundance in
both Cl and S in smaller cracks and (3) increased abundances of all volatiles in larger
cracks (figure 2.6). Similarly; an ion image of pyroxene in NWA 6710 shows that OH is
homogeneously distributed throughout the grain but high in abundance in large cracks and
grain boundaries, and increased abundances of all other volatiles in microcracks (figure

2.7). An ion image of maskelynite in NWA 6710 shows a relatively homogeneous



49

Log 3°Cl/'80 19/180
100.39 83.09
36.16 71.23
13.03 59.36
4.69 47.50
1.69 35.63
0.61 23.77
0.22 11.90
0.08 0.04
70.76 40.62
42.03 12.40
24.96 3.79
14.83 1.16
8.81 0.35
5.23 0.11
3.11 0.03
1.85 0.01

Figure 2.2. JaH 479 apatite 2. Note that a logarithmic scale is not used for the fluorine
image.

distribution of all volatiles within grain interiors with some increased concentrations
towards grain boundaries, and complete homogeneity in phosphorus (figure 2.8). The ion
image of apatite in Dhofar 019 (a depleted olivine-phyric shergottite) shows heterogeneity
and penetration into microcracks from all volatiles (figure 2.9). A Dho 019 pyroxene image
shows the same distribution as the apatite, except that it also shows penetration into

microcracks by phosphorus as well (figure 2.10).



Figure 2.3. JaH 479 apatite 6.
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Data for all apatite spot analyses can be found in table 2.1 (where the MS column indicates
which mass spectrometer was used, either the 7f or the NanoSIMS—NS), and all olivine
spot analyses can be found in table 2.2. Most SNC apatites, in both this study and previous
studies using various techniques, have chlorine abundances between 1 and 3 wt%, but rare
samples are outside this range, spanning from nearly 0 to just under 4 wt% (figure 2.11).
This is an extraordinary range, though we emphasize it appears to be a consistent feature

across multiple independent studies: Chlorine concentrations reported here are generally 1
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Figure 2.4. JaH 479 apatite 7.

wt% or less than previously reported values for SNC meteorites with the same petrographic
lithology. Both this study and previous data show that SNC apatites are typically higher in

Cl than terrestrial apatites from mafic and ultramafic rock types (with a few outliers).

Apatites from basaltic shergottites have H,O abundances that average 0.50 + 0.15 wt% and
range between 0.12 and 0.87 wt% (again, considering both data from this study and from
previous studies; figure 2.12). Apatites from the two olivine-phyric shergottites examined
in this study average 0.86 + 0.10 wt% H,O. Apatites from lherzolitic shergottites (including

both measurements in this study and one previous study) have average H,O abundances of
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Figure 2.5. NWA 6710 apatite 4.

0.22 + 0.17 wt%. However, note that the lherzolitic shergottite from this study (NWA
1950) has apatite H,O contents at least 0.15 wt% less than the apatite from a previously
analyzed lherzolitic shergottite, GRV 99027 (Guan et al. 2003). Apatites from
clinopyroxenite NWA 998, dunites Chassigny and NWA 2737, and orthopyroxenite ALH
84001 (all analyzed in this study; we are aware of no previous measurements of water
contents of apatites from cumulate SNCs) have an average H,O abundance of 0.13 + 0.06
wt%. Measurements from this study and previous SNC studies differ by no more than 0.19

wt% H,O among apatites from meteorites that share the same petrographic lithology.
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Figure 2.6. NWA 6710 olivine.

Log 1°F/180

53

52.00
14.15
3.85
1.05
0.29
0.08
0.02
0.01

118.86
23.67
4.71
0.94
0.19
0.04
0.01
0.00



Log 35Cl/180
# N

Figure 2.7. NWA 6710 pyroxene.
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Figure 2.8. NWA 6710 maskelynite.
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Figure 2.9. Dhofar 019 apatite 1. Note that a logarithmic scale is not used for the
chlorine and fluorine images.

Martian apatites show a similar range in H,O content as terrestrial apatites from mafic and
ultramafic rocks, excepting apatites from the two olivine-phyric shergottites, which show

higher H,O contents than terrestrial apatites from mafic and ultramafic rocks.

The abundances of H,O in olivines from SNCs and terrestrial samples are shown in figure
2.13. Note that our results depend strongly on the sample preparation techniques. The
average abundance of H,O in all the SNC olivines that were mounted in indium is 1090 +

620 ppm. This is significantly in excess of the water contents of typical terrestrial igneous
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Figure 2.10. Dhofar 019 pyroxene.
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Table 2.1. All SNC apatite measurements from this study.

Cl+
Cl F H,O0 S F+
Meteorite Grain MS (wt%) 26 (Wt%) 26 (Wt%) 26 (wt%) 26 OH

Basaltic Shergottites
JaH 479 11 7f 220 0.11 1.49 0.03 042 005 0.13 0.02 0.95

2 1b 7f 1.14 0.07 128 0.09 087 0.16 0.10 0.02 0.98
23 NS 1.79 0.10 1.63 0.18 0.64 0.06 0.12 0.01 1.04
3

1 7f 2.04 0.10 146 002 049 005 0.21 0.02 0.95

a 7f 1.51 0.07 1.70 0.02 0.58 0.06 0.09 0.03 0.98
b 7f 1.60 0.11 1.76 0.05 0.63 0.07 0.10 0.02 1.04
1.56 1.73 0.60 0.09 1.01

7 la 7f 220 0.09 139 0.02 042 004 0.16 0.02 0.92

1 7f 145 0.08 1.79 0.02 047 0.04 0.10 0.01 0.94
2 7t 1.59 0.07 1.83 0.02 0.38 0.04 0.08 0.01 0.92
3 7f 1.95 0.08 1.42 0.02 048 0.05 0.13 0.01 0.93

1 7f 1.57 0.07 193 0.03 037 0.03 0.10 0.01 0.94
2a 7f 1.74 0.10 1.83 0.03 0.53 0.11 0.13 0.02 1.03

10 1 7f 1.86 0.09 141 003 049 0.05 0.14 0.01 091
111 7f 1.26 0.07 241 005 036 0.04 0.10 0.01 1.02

NWA 856 7t 235 0.15 0.62 0.01 0.57 0.06 0.03 0.01 0.97

1
2 7t 296 0.18 0.59 0.03 059 0.07 0.05 0.01 091
31 7f 1.34 0.06 194 002 036 0.03 0.03 0.00 091

NWA2986 12 7f 1.88 0.08 1.25 0.03 0.53 0.05 0.09 0.01 0.89
21 7f 293 0.19 0.88 0.02 043 0.04 0.06 0.00 0.90
31 7f 1.79 0.08 1.74 0.02 032 0.03 0.14 0.08 0.90
1 7f 259 0.14 123 0.03 031 003 0.05 0.00 0.88
1 7f 1.97 0.12 130 0.03 044 0.04 0.05 0.00 0.87

1 NS 242 0.15 1.59 0.16 0.60 0.12 0.04 0.01 1.10
2 NS 242 0.15 1.60 0.16 0.60 0.12 0.04 0.01 1.10

1 NS 255 0.16 141 0.15 054 0.11 0.07 0.01 1.04
2 NS 236 0.15 1.53 0.16 058 0.12 0.06 0.02 1.07
3 NS 236 0.14 153 0.16 0.59 0.12 0.05 0.01 1.07

Shergotty
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Table 2.1 continued.

Cl+

Cl F HzO S F+

Meteorite Grain MS (Wwt%) 206 (Wt%) 206 (Wt%) 20 (wWt%) 26 OH
Olivine-Phyric Shergottites

NWA 6710 1la 2 NS 0.20 0.03 2.05 041 094 0.20 0.04 0.01 1.08

Ib 1 NS 043 0.04 1.89 039 0.83 0.17 0.02 0.01 1.02
21 NS 0.05 0.02 1.83 039 092 0.19 0.01 0.01 0.99
92 NS 047 0.03 1.77 0.19 093 0.09 0.03 0.01 1.04

I NS 1.56 0.08 148 0.18 0.75 0.07 0.02 0.01 1.03
2 NS 1.26 0.06 153 0.18 0.74 0.07 0.02 0.01 0.99

Dho 019 23 NS 3.18 0.18 1.08 0.17 0.99 0.09 0.21 0.02 1.03
24 NS 3.52 0.17 1.05 0.17 0.72 0.06 0.09 0.01 0.99

Lherzolitic Shergottites

1 7f 228 0.10 202 002 0.07 001 0.02 0.00 091
2t 1.73 0.16 2.54 0.04 0.10 0.02 0.01 0.00 0.98

2 la 7f 0.31 0.02 292 0.04 0.27 0.03 0.01 0.00 0.97
2 1b 7f 047 0.02 288 0.07 028 0.03 0.01 0.00 0.99
0.39 2.90 0.28 0.01 0.98

Nakhlites
NWA 998 11 7f 3.06 0.14 1.74 0.02 0.07 0.01 0.00 0.00 0.95

2 la 7f 305 0.13 1.84 0.02 0.07 0.0 0.00 0.00 0.97
31 7f 3.11 0.11 1.71 0.02 0.11 0.01 0.01 0.00 0.97

NWA 1950 1
1

Chassignites

1 NS 246 0.11 231 0.18 0.15 0.06 0.00 0.01 1.06
3 NS 195 0.11 240 0.19 0.12 0.06 0.00 0.01 0.99

2 la NS 227 0.11 243 0.19 0.16 0.06 0.00 0.01 1.06
2 1b NS 228 0.11 244 0.19 0.16 0.61 0.00 0.01 1.07
2.27 243 0.16 0.00 1.06

NWA 2737

olivines, so we suspect these high average values and large range reflects variable
contamination (possibly during martian weathering, terrestrial weathering and/or sample

preparation and storage). The analysis of the olivine grain in the thin section of NWA 6710



Table 2.2 All olivine measurements from this study.

H,O0
Meteorite Olivine Medium (ppm) 20
Basaltic Shergottite

JaH 479 2 1 indium 1630 830
4 1 indium 2320 1690
5 1 indium 1540 650

Olivine-Phyric Shergottites

Dho 019 1 1 thinsection 2070 450
2 1 thinsection 2830 600

NWA 6710 1 1 thinsection 5800 910
1 1 indium 1730 710
1 2 indium 1050 340
2 1 indium 1630 710
3 1 indium 740 690
4 1 indium 980 340
5 1 indium 1330 610

Lherzolitic Shergottite

NWA 1950 1 1 indium 520 180
1 2 indium 400 130
3 1 indium 900 360
4 1 indium 50 50
51 indium 320 100
6 1 indium 1140 400

60

gave an apparent H,O
abundance of 5800
ppm—an extraordinarily
high value that almost
certainly reflects the high
degree of H
contamination. The
contrast between this
result and results for SNC
olivines mounted in
indium suggests that most
of the contamination
present in  nominally
anhydrous minerals in
thin sections was
intruduced during the thin
section preparation

process (not surprising,

given the use of epoxy in sample mounting for thin sectioning). Similarly, the olivine

grains in the thin section of Dho 019 give an average apparent water content of 2450 + 540

ppm, or ~1360 ppm higher than the average SNC olivine mounted in indium. We further

examined the contamination associated with thin sections by analyzing a thin section

mount of olivine from Kilauea Iki drill core (sample 116771-178). Our measurement of this
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Figure 2.2 continued. olivine  yielded an
H,0
Sample Olivine Medium (ppm) 20
Terrestrial

NMNH 116771-178 1 1  thin section 210 100
1 2 thin section 230 110 than the average of the
2 1  thin section 290 120

average of 250 + 80 ppm,

which is 250 ppm higher

San Carlos olivine grains

4 1  thin section 170 90

5 1 thin section 370 140 (0 ppm) that were
San Carlos 1 1  indium 0 60 mounted in indium. It is

1 2 indium 0 60 ‘

13 indium 0 60 noteworthy to mention

2 1 indium 10 60 that olivine in the SNCs

2 2 indium 10 70

has undergone shock
metamorphism, which might increase its vulnerability to H contamination (both on Mars
and on Earth, and during thin section preparation). Nevertheless, this experiment makes it
clear that thin sections are more vulnerable to H contamination than indium mounted
grains. We discuss the implications of this artifact for our measurements of H>O (and other

volatiles) in apatite in the following sections.

Figures 2.12 and 2.14 illustrate systematic variations in H,O abundance of apatite by rock
type. Basaltic shergottites and olivine-phyric shergottites have higher H,O contents than the
lherzolitic shergottites, nakhlite, chassignites, and ALH 84001. Figure 2.14 also supports
previous observations (figure 2.11) that SNC apatites typically have more CI (as well as

less F) than terrestrial igneous apatites from mafic and ultramafic rocks.

Sulfur in SNC apatites ranges from zero to 0.21 wt%, which is higher than previous

measurements by at least 0.13 wt% (figure 2.15). As with H,O, S abundances are lower in
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Figure 2.11. Chlorine abundance in apatites from SNCs grouped according to rock
type and compared to a histogram of terrestrial apatites from mafic and ultramafic
rocks. Symbols in color are measurements from this study; symbols in grey are from
previous studies (Jagoutz and Winke 1986; Harvey et al. 1993; McCoy et al. 1999;
Barrat, Gillet et al. 2002; Taylor et al. 2002; Boctor et al 2003; Greenwood et al. 2003;
Warrant et al. 2004; Beck et al. 2006; Treiman et al. 2007; Treiman and Irving 2008;
Sharp et al. 2011; McCubbin et al. 2012); terrestrial data are from GEOROC.

apatites from the lherzolitic shergottites, nahklite, and chassignite than in those from the

basaltic shergottites, and olivine-phyric shergottites.

Discussion

H,0 Contamination

The ion images of apatites in SNC meteorites suggest the distribution of H within them is

relatively homogeneous (figures 2.2 through 2.5, and 2.9). Additionally, we screened all
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Figure 2.12. H,O abundance in SNC apatites grouped according to rock type and
compared to a histogram of terrestrial apatites from mafic and ultramafic rocks.
Symbols in color are measurements from this study; symbols in grey are from
previous studies (Leshin 2000; Boctor et al. 2003; Guan et al. 2003; Greenwood et al.
2008; McCubbin et al. 2012); terrestrial data are from GEOROC.

the analysis sites with secondary ion images of carbon and positioned the sample stage
such that the ion beam would not overlap carbon-contaminated cracks during analysis.
Additionally, the H,O abundances we obtained for samples that have been previously
measured in other laboratories are nearly identical (figure 2.12). And, we rejected all
analyses where measurements of Cl, F, and OH summed to greater than 1.10 per formula
unit. These precautions were all taken to increase our confidence that our H,O
measurements of the apatites reflect those of the apatite itself rather than surface or crack
contaminants. However, these precautions were unsuccessful in many of the SNC olivines,

indicating that H contamination occurs in these samples and could be present in the SNC
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Figure 2.13. Measurements of apatites and olivines from both thin sections and indium
mounts from this study, including standards.

apatites. Some of this contamination may simply be increased instrumental background
levels of OH from thin section degassing compared to indium mounts. It is not clear why
this contribution would be higher in the SNC thin sections than in the terrestrial thin
section, but this clearly could be the case. We know most about H contamination in SNC
sample NWA 6710, in which olivine was analyzed both in thin section and mounted in
indium and the H contamination is unusually high (table 2.2 and figure 2.13). There is no
obvious artifact in the measurements of olivine in the thin section of NWA 6710 that would
lead us to reject the analyses on technical grounds; '*O counts were steady and similar to
other olivines. It is possible that olivine in this sample contains cryptic cracks (either

healed, or just below the surface) that provided unusual opportunities for contamination
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Figure 2.14. Ternary plot showing the occupancy distribution of the halogen site in
apatite normalized to F + Cl + OH = 1. All SNC data are from this study, and all
terrestrial data are from GEOROC.
(whether on Mars, Earth or in sample preparation). Future work should attempt to replicate
the measurement in the same olivine and several others in the NWA 6710 thin section and

perhaps explore the possible sources of this H using D/H ratio measurements (I consider it

possible that some component of this H is martian).

Not only is the difference in HO of olivine between thin sections and indium mounts
greater for SNCs than for terrestrial rocks, the H,O abundance of SNC olivines mounted in
indium is also greater than terrestrial olivines mounted in indium. This leads me to suspect

that at least some minerals from the SNCs contain H contamination that has nothing to do
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Figure 2.15. Sulfur abundances in SNC apatites grouped according to rock type and
compared to a histogram of terrestrial apatites from mafic and ultramafic rocks.
Symbols in color are measurements from this study; grey symbols are from previous
studies (Harvey et al. 1993; Xirouchakis et al. 2002; Greenwood et al. 2003; Treiman
and Irving 2008; McCubbin et al. 2012); terrestrial data are from GEOROC.

with epoxy or thin sectioning, and is either an intrinsic property of these martian minerals
or was acquired during their residence on earth. The lherzolitic shergottite NWA 1950 is
the only meteorite that I measured that has olivines with hydrogen contents similar to
terrestrial olivines, and it also has low water contents in the apatites. This suggests the
possibility that the meteorites that have apatites with high water abundance could have high
water abundance throughout the rock. One difference between the terrestrial olivine mounts
and the SNC mounts that might contribute to this phenomenon is that the terrestrial mounts
are of olivine separates, whereas the SNC mounts are polished rock fragments that may

contain glasses and/or interstitial phases that may be degassing in the NanoSIMS sample
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chamber and adding to the background. SNC olivines in indium are ~1000 ppm higher in

H,O than the terrestrial olivines, which again, is similar to the uncertainty in SNC apatite
H,0 abundance for the H,O-enriched apatites, and thus is not believed to be a major factor

in the H measurements of SNC apatites.

One other factor to consider here for the SNC olivine measurements is the accuracy of our
calibrations of water contents of olivines. Our terrestrial olivine standards exhibit a smaller
range in apparent H,O abundance than the SNC olivines we studied. The calibration curve
for olivine is relatively steep (i.e., high inferred H,O abundance for a given measured OH-
ion intensity), and we lack olivine standards having high H,O abundances so the
extrapolation of the calibration curve to high water contents may involve relatively large
errors. Hence, any increase in OH counts due to contamination, outgassing of glasses
and/or interstitial phases in the rock fragments, etc., will lead to exaggerated inferred water
contents (i.e., much higher than if the same contaminant was encountered when analyzing a

phase, like apatite, having a gentler slope to its calibration curve).

A key question for our study is whether contamination that clearly impacted analyses of H
in olivine has influenced our measurements of H or other volatiles in apatite. It has not
been possible for us to find and analyze apatite in indium mounts, so it is difficult to
directly assess the effect of thin section mounting on volatile abundances in apatites.
Instead, we must make indirect arguments based on the effects on olivines and the relative
volatile abundances and slopes of calibration curves between the two phases (figure 2.16).
The most important fact to note is that olivine has a much higher slope to its calibration

curve than does apatite (at least in our work), and so a uniform contaminant applied to both
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Figure 2.16. Calibration curves for OH in apatite and olivine during one of the
NanoSIMS sessions.

phases will lead to thousands of ppm artificial enrichments in olivine but only hundreds of
ppm enrichments in apatite. And, because apatite appears to be intrinsically much higher in
H,O content than olivines, that contamination is added to a larger true amount, leading to a
smaller proportional enrichment. For this reason, I did not make any corrections to the H,O
abundances in SNC apatites reported in table 2.2 to account for the H contamination
observed in olivine. Nevertheless, I believe this issue should be reevaluated by finding and
mounting SNC apatites in indium in order to analyze them free of at least the one source of
contamination we know we can control—thin section contaminants. And, if possible, SNC
olivine separates (as opposed to apatite bearing rock fragments) should be mounted in

indium in order to discern the contribution of glasses and/or interstitial phases to the
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background of the apatite measurements. Finally, future work should measure D/H of SNC

apatites and olivines to at least distinguish whether H,O is from a terrestrial source, which
could indicate contamination from weathering in the terrestrial desert prior to meteorite

discovery and collection, or is instead martian.

Finally, we examined whether apparent H,O abundances in SNC apatites are correlated
with elevations in carbon. Carbon can be a structural constituent of some apatites, but is
very low in abundance in mafic igneous rocks. In contrast, carbon is generally very
abundant in common contaminants, and so is potentially an indication of contamination
(figure 2.17). The Ap003 and Ap004 standards were also plotted for comparison, as they
were the two standards that had the highest and lowest H,O abundance. Figure 2.17 spans
four analytical sessions, one on the 7f and three on the NanoSIMS, and are denoted in the
NanoSIMS plot as S1, S2, and S3 at the end of the sample or standard name. Most of the
SNC apatites have more carbon than the standards, as well as more variation in carbon than
the standards. This could be evidence that the SNC apatites are relatively rich in organic
contaminants (not surprising given that they were prepared as epoxy mounted thin
sections). Or, it could be an indication that carbonate is substituting for phosphate in the
SNCs. The variability of the data yields only ambiguous evidence as to how they should be
best interpreted: The highest 'YOH/'®*O measurements are not the highest “C/*O
measurements, suggesting carbon abundances have little to do with H>O abundances. There
does appear to be a general correlation between carbon and OH in the NanoSIMS plot, but
it is not confirmed in the 7f plot and the location of the basaltic shergottites are the same in
both plots. These plots seem to neither confirm nor definitively rule out contamination in

the SNCs.
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are the same as previous

laboratories, and because stoichiometric closure has been met, I will continue discussing

what these results, as they are, might mean.

H,O versus Rock Type

The correlation between rock type and H,O abundance observed in this study (figures 2.12
and 2.14) could reflect (1) different water contents in the source magmas of the SNCs, (2)

different extents of crystallization prior to apatite formation, or (3) different degassing or
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cooling histories. If H>O contents of apatites faithfully record the relative H,O contents of
their source magmas, the similarities between apatites in basaltic and olivine-phyric
shergottites and terrestrial basalts could signify similar water contents in the sources of
basalts on these two planets. However, this is complicated because, aside from the
petrographic difference that divides shergottites, there also exists a geochemical ordering of
shergottites into depleted, enriched, and intermediate shergottites based on rare earth
element patterns, and Rb/Sr and Sm/Nd systematics. The petrographic groups (i.e., the
different water abundances) do not align with the geochemical groups. For example, there
exist both enriched and depleted basaltic shergottites. Therefore, it would have to be a
coincidence that all the basaltic shergottite sources have the same water contents even

though they have different incompatible element contents.

Again, the extent of crystallization prior to apatite formation depends on source
composition, therefore scenario (2) has a problem similar to scenario (1). The phosphorus
content of magmas generally dictates when apatite will crystallize within the cooling
sequence of a particular magma body. This would predict an inverse correlation between
bulk rock phosphorus content and apatite H,O content; however, bulk rock phosphorus in
basaltic and olivine phyric shergottites is either higher than or similar to that in cumulate

rock types.

Scenario (3) is most compelling because the correlation between rock type and H,O
abundance in apatite also coincides with the low-H,O apatites prevailing in rock types that
are cumulates. Lherzolitic shergottites, nakhlites, chassignites, and ALH 84001 are all

considered to be cumulate rocks that are missing major mineral components typically



72
found in basalts (Reid and Bunch 1975; Floran et al. 1978; Lundberg et al. 1990; Harvey et

al. 1993; McSween 1994; Mittlefehldt 1994; Nyquist et al. 2001; Bridges and Warren
2006). Lherzolites are made of early accumulation minerals from primary basaltic magmas
formed in large, shallow, subsurface reservoirs or large lava lakes (Harvey et al. 1993;
Ikeda 1994; McSween 1994). Nakhlites and chassignites are believed to have formed by
accumulation of layers of clinopyroxene and olivine (respectively) in thick lava flows or
lava lakes, or shallow subsurface sills (McSween 1994; McSween and Treiman 1998;
Friedman Lentz et al. 1999; Treiman 2005), and ALH 84001 is considered to be
accumulated orthopyroxene from a subsurface magma reservoir (Mittlefehldt 1994;

Treiman 1998).

On the other hand, olivine-phyric and basaltic shergottites are basalts that contain
additional cumulus crystals rather than only consisting of accumulated early mineral
phases. Olivine-phyric shergottites contain megacrysts of either xenocrystic or phenocrystic
cumulus olivine (McSween and Jarosewich 1983; Mittlefehldt et al. 1999; Zipfel et al.
2000; Wadhwa et al. 2001; Barrat, Jambon et al. 2002; Herd, Schwandt et al. 2002;
Goodrich 2003; Shearer et al. 2008; Basu Sarbadhikari et al. 2009; Usui et al. 2009), while
most basaltic shergottites contain cumulus pyroxene (e.g., McSween 1994 and references
therein). Basaltic shergottite QUE 94201 may be the only martian meteorite to represent a
primary liquid composition (McSween et al. 1996). Basaltic and ol-phyric shergottites are
thought to have formed either entirely extrusively or intrusively, or have a two-stage
history of early crystallization in large magma chambers followed by quicker cooling in

dikes and sills or lava flows that entrain the earlier formed crystals.
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The correlation between rock type and H,O abundance in apatite could be due to the

different formation histories in the slower-cooling cumulate rocks compared to the phyric
and aphyric basaltic rocks. Perhaps the slow cooling of deeper cumulate rocks has
allowed redistribution of H,O away from interstitial regions where apatite later formed.
This does not; however, explain why apatites from olivine-phyric shergottites are higher
in H,O than apatites from basaltic shergottites. Yet, it is interesting to note that all of the
apatite data for the olivine-phyric shergottites show stoichiometries where CI+F+OH are
either nearly one, or higher than one (table 2.2). It is not a rule that all apatites from this
study that have high H,O contents have stoichiometries close to one, or that all apatites
that have stoichiometries close to one also have high H,O contents. However, it is true
that all olivine-phyric shergottite apatite measurements have high H,O abundances and
have stoichiometries that are 0.99 or greater. If future work to determine exact
contributions to the OH background by either thin sections or interstitial phases can
reconcile the difference in H,O abundance of apatites between basaltic and olivine-phyric
shergottites, this scenario may be plausible for explaining the systematic correlation of
rock type and apatite H,O abundance.

No matter which scenario is favored, the addition of data from this study to existing data
clearly shows that H;O contents of SNC apatites span a remarkably similar range to
apatites from terrestrial mafic and ultramafic rocks (figures 2.12 and 2.18). This may
indicate that H>O contents in martian magmas are more similar to terrestrial magmas than

previously thought.
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Figure 2.18. SNC apatite data from this study added to previous SNC apatite data, and
compared to terrestrial apatite data.

Sulfur

Because S appears to penetrate microcracks in SNC grains that other volatiles do not
penetrate, and we cannot use stoichiometry as an additional constraint for the validity of S
measurements, caution has been used in the interpretation of the S data. However, figure
2.19 shows that most of the microcracks are visible in the back-scattered electron images,
and therefore would have been avoided for point analyses. The exception to this is the
meteorite Dho 019, which is highly weathered from both terrestrial and martian alteration
processes. Aside from Dho 019, I will still make efforts to interpret the S data as a

constraint on the S contents of martian magmatic rocks.

The major observation in the S data is that there is very low abundance in the apatites from
lherzolites, the nakhlite, and the chassignite, and variable abundance in the apatites from

basaltic shergottites, olivine-phyric shergottites, and ALH 84001. All of these apatites have
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Figure 2.19. NanoSIMS image of JaH 479 apatite 7 on the left compared to a back-
scattered electron image of the same grain on the right.

somewhat discrete sulfur abundances that when put together form an array with a similar
range to terrestrial apatites from mafic and ultramafic rocks. Aside from ALH 84001, this
is consistent with the possibility that the cumulate SNC apatites, which we also found to be
low in H,O, are low in volatiles in general. However, sulfur is more complicated because
its incorporation into apatite is partly controlled by oxygen fugacity. The lherzolitic
shergottites are too low in oxygen fugacity (QFM-3.1 to QFM-1.9) to incorporate sulfate
(McCanta et al. 2009), which generally happens at ~QFM-1 or greater. However, some
nakhlites (QFM-2.4 to QFM-0.3), basaltic shergottites (QFM-5 to QFM-0.92), and olivine-
phyric shergottites (QFM-4.2 to QFM+0.92) may be high enough in oxygen fugacity to
incorporate some sulfate. The oxygen fugacity for chassignites and ALH 84001 is
unknown, however it has been estimated that ALH 84001 formed at an oxygen fugacity of
either QFM-3.5 or at the QFM buffer. Specifically from this study, Shergotty is between
QFM-1.6 and QFM -0.92, depending on the method used to determine oxygen fugacity

(Herd et al. 2001; Wadhwa 2001; McCanta et al. 2004), and the rest of the meteorites from
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this study have unknown oxygen fugacities, which indicates that they may be high enough

to incorporate some sulfate. Perhaps the measurement of S in apatite could be a more
sensitive oxygen fugacity barometer for meteorites with oxygen fugacity estimates greater

than ~QFM-1.0.

Another possible explanation is that, similar to H,O content, there could simply be different
S abundances in the source magmas, and the array of discrete abundances could signify
reservoir mixing between a high-S reservoir and a low-S reservoir. However, as we argued
in the case of H,O abundances, S abundances are not correlated with other variables
commonly used to assign magmatic source compositions to SNCs, such as radiogenic

isotopes and rare earth element enrichment.

There is also a possibility that apatite is able to sequester sulfide into the halogen site. If
this is true, I imagine it might be possible to use S speciation measurements in estimating
oxygen fugacity for these meteorites. This possibility will be discussed in detail in chapter

III.

In any case, finding SNC apatites with sulfur abundances of up to 0.2 wt% makes the high
sulfur abundance found in martian soils less anomalous than previously believed. Even if
most of the sulfur has degassed out of these magmas prior to complete crystallization, the
record of high S in some SNC apatites shows that there existed some high-S magmas and
that the high-S soils are not just a product of weathering processes that increased the

concentration in the soils.
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Summary/Conclusions

The prominent findings of this study are the low water contents of apatites from the
cumulate rock types (lherzolitic shergottites, the nakhlite, chassignites, and ALH 84001)
and the high S abundance in some of the SNCs. Additionally, the ranges in SNC apatite
H,O contents are similar to the ranges in apatites from terrestrial mafic and ultramafic
rocks. This is more clearly illustrated in the abundance histograms that include the

measurements from this study as well as all other available data (figure 2.18).
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Chapter 111

SPECIATION OF SULFUR IN APATITES FROM SNC METEORITES

Introduction

Chapter II illustrates that sulfur is abundant (up to 2100 ppm) in some martian apatites.
Apatite is thought to incorporate sulfur only as S° ions (in the form of sulfate) substituting
for P°* jons (in the form of phosphate) (Pan and Fleet 2002; Parat et al. 2011). Dissolved
S only exists in appreciable quantities in magmas where the oxygen fugacity is greater
than one log unit below the quartz-fayalite-magnetite (QFM) buffer, below which sulfur is
predominantly S* (Carroll and Rutherford 1988; Wallace and Carmichael 1994; Jugo et al.
2005; Baker and Moretti 2011). Martian magmas are believed to have oxygen fugacities
that range from about one log unit above the QFM buffer to well below the QFM buffer
(by five log units) (Herd et al. 2001; Wadhwa 2001; Herd, Borg, et al. 2002; Goodrich et
al. 2003; Herd 2003; McCanta et al. 2004; Herd 2006; Karner et al. 2007; McCanta et al.
2009). It is possible that all the martian apatites containing sulfur from chapter II are from
the more oxidized magmas on Mars. The oxygen fugacity of Shergotty has been estimated
to be between QFM-1.6 and QFM-0.92 depending on the method used (Herd et al. 2001;
Wadhwa 2001), therefore the Shergotty magma may have had high enough oxygen
fugacity for sulfate to be present at the time of apatite crystallization. However, oxygen
fugacity of the magmas from which the other high-S bearing apatites in chapter II
crystallized from has not yet been determined and may be lower than QFM-1, as the

majority of the magmas that the martian meteorites crystallized from have been estimated
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to be. In the same vein, lunar apatites have been shown to contain sulfur (310 — 460 ppm,
Boyce et al. 2010), and their magmas are thought to be too reducing to contain oxidized
sulfur. Therefore, it is possible that both lunar and martian apatites are incorporating S*
ions into the halogen site; a substitution mechanism never previously observed in nature.
On the other hand, the last gasp of melt from which apatite crystallizes in the mesostasis in
lunar and martian rocks could be more oxidizing than the oxygen fugacities calculated from
other phenocrysts in the same samples. Or perhaps sulfur is simply present as a

contaminant in healed cracks and inclusions.

The oxidation state of sulfur in minerals has been determined by measuring the Ko X-ray
wavelength of sulfur, which exhibits a peak shift between S°* and S* (Carroll and
Rutherford 1988; Rowe et al. 2007). Our goal is to measure the peak positions of sulfur Ka
X-rays in apatites from martian meteorites in order to better understand their high sulfur
contents in these SNCs. Additionally, the sulfur wavelengths in martian apatites, relative to
S® and S standards, may be used to determine the relative proportions of the two species.
And finally, I explore whether the relative peak intensities combined with sulfur abundance
measurements from chapter II can be used as a calibration curve to determine the sulfur

abundance in apatites with unknown sulfur concentration.

Materials and Methods

A total of twenty apatites from six SNC thin sections were analyzed; four of those were
basaltic shergottites (JaH 479, NWA 856, NWA 2986, and Shergotty), one was an olivine-
phyric shergottite (RBT 04262), and one was a lherzolitic shergottite (NWA 1950). The

sulfur Ka X-rays were measured over three separate sessions (martian samples were
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measured only in the first and last of these sessions) on the Caltech JEOL 8200 electron

microprobe with a 15 kV, 300 nA beam for 2 — 60 seconds/step (shorter count times were
for the two standards with high S abundance) for L values (distance from the crystal to the
sample that theoretically corresponds to wavelengths between 0.5276 and 0.5464 nm,
respectively where L = 280sinf = 320)) between 169 and 175 with PET diffracting crystals
and ~280 mm Rowland circles. The beam was defocused to 15 um, and sulfur Ka X-rays
were measured using either 3 or 4 PET crystals simultaneously. For session 1, L value step
sizes were between 0.01 and 0.03, with shorter step sizes for low-sulfur intensities and
larger step sizes for high-sulfur intensities. Step sizes were constant at 0.001 for session 2,
and 0.015 for session 3. Unfortunately, we had no independently measured apatites to use
for calculating S®*/S* ratios. Instead, we used anhydrite and pyrite as relative standards for
peak positions that we defined to be 100% sulfate and 100% sulfide, respectively and then
applied a linear relationship between the two to estimate the percent of sulfide present in
apatite samples. A terrestrial apatite crystal from Durango, Mexico was used to test the
reproducibility of the relationship between apatite peak positions and the two standard end-
member peak positions. The same crystals of Durango apatite and the two end-member
standards were used for all the sessions. In order to avoid sulfur generated from sources
other than apatite, we made every possible attempt to avoid cracks, grain boundaries, and
apatites adjacent to sulfide minerals. Although every effort was made to avoid sources of
potential contamination, it is possible that contamination from cryptic sources such as

healed cracks or melt inclusions may have affected some or all of these analyses.
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Data Reduction

In order to determine peak positions, the raw spectra were corrected using linear
backgrounds and Gaussian curves in the program Igor. Another control used to test the
validity of the data was the agreement or disagreement of relative peak positions of samples
compared to the standard peak positions (calculated percent sulfide) from spectrometer to
spectrometer within a session. We rejected four sample analyses (that can be found in

appendix C) that varied widely in percent sulfide between spectrometers.

Corrected peak height intensities were combined with sulfur abundances from chapter II,
and stoichiometrically calculated sulfur abundances for anhydrite and pyrite to determine
sulfur concentrations of SNC apatites that had not been measured in chapter II. A weighted,
least-squares linear regression was calculated to find the best-fit line for the data (Reed
1992) for each spectrometer in each session and averaged to determine the final

concentration result per measurement.

Results

All peak position data and percent sulfide estimates can be found in tables 3.1 through 3.3
(divided by electron probe session). Figure 3.1 (also divided by session) shows the spectra
and peak positions of Durango apatite and the two end-member standards, anhydrite and
pyrite, for all the spectrometers used during each session. This figure shows that the
position of the Durango peak is in a different relative position to anhydrite and pyrite for
each session, which changes the estimated percent of sulfide present in Durango by up to

49%. For example, for spectrometer 3 Durango is calculated to have 13% sulfide in session
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Table 3.1. Corrected S Ko X-ray peak positions and estimated percent sulfide from
session 1.

Session 1
Peak Position % Sulfide
Sample spec2 spec3 spec5  spec2 spec3 specS
Standards
anhydrite 172.093 172.007 172.072 0 0 0

pyrite 172.151 172.068 172.131 100 100 100
Durango 172.098 172.015 172.080 9 13 14

Basaltic Shergottites

JaH 479 1 172.107 172.031 172.087 24 39 25
3 172.104 172.018 172.088 19 18 27
9 172.098 172.018 172.086 9 18 24
10 172.102 172.018 172.086 16 18 24
NWAS856 2 172.102 172.018 172.098 16 18 44
4 172.113 172.025 172.084 34 30 20

NWA2986 1 172.110 172.026 172.073 29 31 2

Olivine-Phyric Shergottite
RBT 04262 1 172.102 172.011 172.080 16 7 14
2 172.103 172.018 172.081 17 18 15

Table 3.2. Corrected S Ko X-ray peak positions and estimated percent sulfide from
session 2.

Session 2

Peak Position % Sulfide
Standard specl spec2 spec3 spec5 specl spec2 spec3 specS

anhydrite 172.167 172.125 172.028 172.031 0 0 0 0
pyrite 172.223 172.181 172.077 172.105 100 100 100 100
Durango 172.188 172.147 172.052 172.059 37 39 49 38

1 and 62% sulfide in session 3. Figure 3.1 C also shows that anhydrite spectra are not
always reproducible in the same session. Figure 3.2 shows that the apatites from basaltic

shergottites possibly display a similar shift in estimated percent sulfide from
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Table 3.3. Corrected Ka X-ray peak positions and estimated percent sulfide from
session 3.

Session 3

Peak Position % Sulfide
Sample specl spec2 spec3 spec5 specl spec2 spec3 specS

Standards
anhydrite 172.070 172.000 171.988 171.955
172.074 171.980 171.963 171.894
172.072 171.990 171.976 171.925 0 0 0 0

pyrite 172.169 172.074 172.054 171.993
172.160 172.066 172.047 171.988
172.165 172.070 172.051 171.991 100 100 100 100

Durango 172.123 172.031 172.017 171.950 55 51 55 39
172.120 172.029 172.015 171.950 52 49 53 39

Basaltic Shergottites
JaH 479 3 172.128 172.036 172.016 171.952 61 58 54 42
8 172.114 172.016 172.001 171.940 45 32 34 23

NWAS856 1 172.105 172.029 172.013 171.943 36 49 50 28
3 172.089 171.995 171.995 171.927 18 6 26 4

NWA 2986 3 172.109 172.015 171.993 171.926 40 31 23 2
4 172.100 172.009 171.990 171.924 30 24 19 -1

Shergotty 3 172.116 172.036 172.014 171.938 48 58 51 20
6 172.122 172.038 172.019 171.945 54 60 58 31

Lherzolitic Shergottites
NWA 1950 1 172.068 171.995 171.976 171.902 -4 6 1 -34
2 172.097 172.024 172.018 171.954 27 42 57 45

session 1 to session 3 to that observed for Durango, particularly for JaH 479. Detected peak
positions for anhydrite, pyrite, Durango, and JaH 479 apatite 3 (the only SNC apatite grain
measured in both session 1 and session 3) are most similar between sessions on
spectrometer 3. Therefore, using absolute peak positions from spectrometer 3 rather than
percent sulfide relative to anhydrite and pyrite, figure 3.3 shows that there is less of a

discrepancy between session 1 and session 3 for the basaltic shergottites and Durango.



84

(A)
— anhydrite
— - pyrite

— Durango

Session 1

1710 1715 1720 1725
Peak Position (spectrometer 2 L value)

— anhydrite
— - pyrite
— Durango

1710 1715 1720 1725

Peak Position (spectrometer 3 L value)
— anhydrite 7 '\\
— = pyrite 7 11\
— Durango / 1\
// | \
— = I \
N\
I .
L L L L 1 L L L L 1 L L L L 1 || L L L 1 L L 1 I
171.0 171.5 172.0 172.5

Peak Position (spectrometer 5 L value)

Figure 3.1. Spectra of standards from all spectrometers used during a session. Vertical
scale is arbitrary intensity; the scale was changed for each spectrum such that the peak
heights would match and peak positions could be more easily compared. (A) session 1,
(B) session 2, and (C) session 3.

However, the standards are not reproducible between session 1 and 3, especially not
anhydrite. Additionally, peak positions for the standards and Durango in session 2 are
different than in the other sessions. Not only are the peak positions different for the same

samples from session to session, but the distance between anhydrite and pyrite, and the
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Figure 3.1 continued.
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Figure 3.1 continued.
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Figure 3.2. Estimated percent sulfide of each Durango and SNC analysis grouped
according to sample type and session. Each plotted point represents the average of

percent sulfide values calculated for each spectrometer used during
bars are one standard deviation.

an analysis. Error

relative peak position of Durango between them is different from session to session as well.

The one consistency is that all the apatite peak positions fall between the anhydrite and

pyrite peak positions within a session (or slightly outside of anhydrite, correlating to less

than —10% percent sulfide when the calculated percent sulfide from all spectrometers are

averaged).

Because spectrometer 3 yields the most similar peak positions for the apatites between

sessions 1 and 3 (the only two sessions where SNC apatites were measured), only spectra
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Figure 3.3. Peak positions from spectrometer 3 of all grains analyzed in this study

grouped according to sample type and session.

from that spectrometer are used for the figures in the rest of this chapter to make visual

comparisons easiest. Figures of spectra from all the other spectrometers besides 3 can be

found in appendix C. Figures 3.4 through 3.9 show the spectra and peak positions for the

SNC apatites relative to the standard end-members. The vertical scale on all spectra figures

is arbitrary; the scale was changed for each spectrum such that the peak height would be the

same for all spectra within a figure. This was done after calculating peak positions, and has

no bearing on the data presented in tables 3.1 through 3.3. An example of the variation

between peak intensity for different samples can be seen in figure 3.10. Background-



89

, Session 1
— anhydrite

— - pyrite

— JaH 479 Ap 1

anhydrite
pyrite
— JaH 479 Ap 3

-,
—

— —

— anhydrite
— - pyrite
— JaH 479 Ap 9

— anhydrite
— - pyrite
— JaH 479 Ap 10

] 1 ] ] ] ] 1 ] ] ] ] 1l |. ] ] ] 1 ]
171.0 171.5 172.0 172.5
Peak Position (spectrometer 3 L value)

Figure 3.4. Spectrometer 3 spectra of all apatite grains from basaltic shergottite JaH
479 measured during session 1 and session 3. Vertical scale is arbitrary intensity; the
scale was changed for each spectrum such that the peak heights would match and peak
positions could be more easily compared. (A) session 1, and (B) session 3.

corrected peak intensities and sulfur abundances are listed in table 3.4, and an example of
the calibration curve is plotted in figure 3.11 with data from session 1 and spectrometer 3.

The rest of the calibration curves can be found in appendix C. The best-fit lines from each
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Figure 3.4 continued.
spectrometer were used to calculate independent sulfur concentrations, and those
concentrations were averaged to get the final concentration shown in table 3.4. All
calculated sulfur concentration data can be found in appendix C. Concentrations were
determined for NWA 856 apatites 2 and 4, Shergotty apatite 3, and RBT 04262 apatites 1
and 2. The estimated sulfur concentrations for apatites 2 and 4 in NWA 856 agree well with
the ion probe concentration measurements of apatites 1 and 3 for NWA 856 from chapter
II. The estimated sulfur abundance for Shergotty apatite 3 agrees well with the ion probe
concentration measurements of apatites 5 and 6 from chapter II. The estimated sulfur
abundance for RBT 04262 apatites are within the range of apatite sulfur concentrations in

all basaltic and olivine-phyric shergottites measured by the ion probe in chapter II.
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Figure 3.5. Spectrometer 3 spectra of all apatite grains from basaltic shergottite NWA
856 measured during session 1 and session 3. Vertical scale is arbitrary intensity; the
scale was changed for each spectrum such that the peak heights would match and peak

positions could be more easily compared.
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Figure 3.6. Spectrometer 3 spectra of all apatite grains from basaltic shergottite NWA
2986 measured during session 1 and session 3. Vertical scale is arbitrary intensity; the
scale was changed for each spectrum such that the peak heights would match and peak

positions could be more easily compared.

Discussion

Sulfur Speciation

Spectrometer 3 appears to be the most consistent from session to session. However, it

appears to only be consistent for apatite, and not for anhydrite or pyrite. The exception to

this is Durango apatite in session 2; it also appears to be inconsistent with Durango
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Figure 3.7. Spectrometer 3 spectra of apatite grains from basaltic shergottite Shergotty
measured during session 3. Vertical scale is arbitrary intensity; the scale was changed
for each spectrum such that the peak heights would match and peak positions could be
more easily compared.
measurements from the other sessions. It is not expected that the peak positions between
sessions should be consistent, but it is expected that the relative peak positions of Durango
within the end member peaks should be consistent, unless the sulfide percent of Durango is
heterogeneous within the crystal. Therefore, it is not feasible to calculate sulfide
percentages from the data at this time. Anhydrite appears to be the least reproducible from

session to session (figure 3.3), which perhaps suggests that the anhydrite standard is

heterogeneous and is the leading problem to tackle going forward.

Aside from the irreproducibility of the standards, an encouraging result is that all the
basaltic shergottite apatites are similar to each other in peak position. An additional
promising result is that all the apatite peak positions (both Durango and the SNCs) reside

within the anhydrite and pyrite end-member peaks, which indeed indicates the possibility
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Figure 3.8. Spectrometer 3 spectra of all apatite grains from olivine-phyric shergottite
RBT 04262 measured during session 1. Vertical scale is arbitrary intensity; the scale
was changed for each spectrum such that the peak heights would match and peak
positions could be more easily compared.

that apatites are incorporating both sulfate (mostly likely substituting for phosphate) and
sulfide (most likely substituting in the halogen site). However, in order to determine how
much of each they are taking up, either the inability to reproduce the standards from session
to session needs to be resolved, or different standards should be used. It is also possible that
measurement of this sort would be more successful using XANES, however electron probe
measurements have been used in the past to determine sulfur speciation (Carroll and
Rutherford 1988; Rowe et al. 2007), and if they can be resolved here it would be a more

cost-effective and time-efficient way to conduct this research.

One difference in methods between sessions in this study was the L value step size. This
seems the least likely cause for different peak calculations, however in order to be rigorous

it should be ruled out and it is the easiest next step. Simply setting up another session to use
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Figure 3.9. Spectrometer 3 spectra of all apatites from lherzolitic shergottite NWA
1950 measured during session 3. Vertical scale is arbitrary intensity; the scale was
changed for each spectrum such that the peak heights would match and peak positions
could be more easily compared.

the same step size as one of the previous sessions to determine if the anhydrite and pyrite
peak positions can be replicated (or at least if the distance between the anhydrite and pyrite
peak positions and the relative Durango peak position between them can be reproduced)

should clarify if this is the cause for the discrepancy.

In the direction of using new standards, either a synthetic cesanite, NagCas(SO4)s(OH),, or
caracolite, NagPb4(SO4)sCl, could be an acceptable alternative to anhydrite (Pan and Fleet
2002). Pyrite seems to be more robust than apatite, but a sulfoapatite, Ca;o(PO4)sS, has
been synthesized in the laboratory (Henning et al. 2000), and if it can be synthesized again

or obtained from Henning, may be a good standard to use here instead of pyrite.
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Figure 3.10. Spectrometer 3 spectra from session 1 illustrating the vast difference
between peak intensities for various samples.

In either case, future work should include independently analyzed S®7/S* ratios (such as
from XANES) of either the anhydrite and pyrite, or the new synthetic standards in order to

make a more quantitative determination of the proportions of sulfide and sulfate present.

Sulfur Concentrations

Although the sulfur concentration estimates determined in this study match well with those
determined in chapter II, it is not advisable that this method be used in place of traditional
techniques to determine concentrations. The calibration curves used to calculate the S
concentration vary from session to session, which means that additional standards would
need to be used during each session to create a calibration curve, on top of which the
method is much less robust than traditional techniques. This can be seen in table 3.5, which

compares the concentration data of ion probe measurements from chapter II to the
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Table 3.4. Background corrected peak intensities from spectrometer 3 in all sessions,
and sulfur abundances (measured by ion probe in chapter II, unless otherwise noted) for
all samples in this study.

Session 1 Session 3
S Abundance
Peak Height Peak Height (wt % £20)
Sample spec 2 spec 3 spec S spec 1 spec 2 spec 3 spec 5
Standards
anhydrite 200 1330 1130 320 570 1280 1450 23.55*
280 500 1200 1230
pyrite 2010 14850 14000 2375 4300 9700 10500 53.45*
2380 4300 9700 10500
Durango 14 34 32 53 9.1 19 19 0.10+£0.02
5.5 93 20 20 0.10+0.02
Basaltic Shergottites
JaH479 1 64 16 17 0.13+0.02
3 64 15 16 5.1 87 20 23 0.21£0.02
8 2.7 4.6 10 12 0.10+0.01
9 63 15 13 0.12+0.02
10 9.3 21 21 0.14+0.01
NWA 856 1 1.1 1.0 2.1 2.0 0.04+0.01
2 24 53 5.4 0.04+0.06°
3 0.6 09 24 2.2 0.03+0.00
4 2.6 53 5.4 0.05+0.07°
NWA2986 1 3.5 9.2 11 0.09+0.01
3 2.1 35 10 9.6 0.14+0.08
4 1.5 2.8 89 7.0 0.05+0.00
Shergotty 3 1.2 1.7 41 35 0.03+0.01°
6 2.8 4.7 10 13 0.060.02
Olivine-Phyric Shergottite
RBT 04262 1 6.7 17 16 0.13+0.17°
2 57 14 12 0.11+0.15°
Lherzolitic Shergottite
NWA 1950 1 0.5 09 19 2.0 0.01+0.00
2 0.5 08 19 2.0 0.01+0.00

*Calculated by stoichiometry.
PEstimated in this study.
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Figure 3.11. Background corrected peak intensities from spectrometer 3 in session 1
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 20 of
concentrations determined from ion probe measurements. The best-fit line calculated by
weighted, least-squares linear regression of the data is also shown.

concentration data calculated in this study. However, using this method to estimate sulfur
abundances in order to corroborate them with sulfur abundances measured by more
traditional methods may be a good contribution for evaluating the robustness of a

measurement.

Conclusions

Electron probe measurements of sulfur Ka X-rays show little variability in peak positions
of apatites from basaltic and olivine-phyric shergottites, however this study was unable to

illustrate reproducibility of relative peak positions of Durango within the two end member
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Table 3.5. Concentration of standards and apatites calculated from this study
compared to ion probe concentration data in chapter II.

Session 1 Session 3

Calculated S Calculated S Known S
Sample Apatite Abundance Abundance  Abundance
Wt% £26) (Wt% £20) (wt% =£20)
Standards
anhydrite 6.34+1.12 9.19+0.37 23.55%
8.12+0.45
pyrite 70.59+2.30  68.38+0.17 53.45*%

68.41+0.15
Durango 0.27+0.37 0.14+0.03 0.10+0.02
0.14+0.02 0.10+0.02

Basaltic Shergottites
JaH 479 1 0.13+0.16 0.13+0.02
3 0.12+0.17 0.14+0.01 0.21£0.02
8 0.07+0.01 0.10+0.01
9 0.12+0.17 0.12+0.02
10 0.18+0.25 0.14+0.01
NWA 856 1 0.02+0.02 0.04+0.01
3 0.02+0.00 0.03+0.00
NWA 2986 1 0.07£0.08 0.09+0.01
3 0.06+0.01 0.14+0.08
4 0.05+0.02 0.05+0.00
Shergotty 6 0.08+0.01 0.06+0.02
Lherzolitic Shergottite

NWA 1950 1 0.01£0.00 0.01+0.00
2 0.01£0.00 0.01+0.00

*Calculated by stoichiometry.

standards of anhydrite and pyrite from session to session. Because anhydrite and pyrite
were the standards being used to determine sulfur speciation, the estimates of percent
sulfide present in the apatites listed in tables 3.1 through 3.3 are not considered to be

robust. However, because all of the apatite X-rays from basaltic shergottites have similar
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peak wavelengths, and because all apatite peaks (from both Durango and SNCs) reside

within the anhydrite and pyrite end member peaks, it is recommended that further efforts to
resolve measuring sulfur speciation in apatites using the electron probe are worthwhile to
pursue. I conclude that the most likely pursuit to resolve reproducibility of percent sulfide
calculations would be to replace the standards (especially anhydrite which seems to be the
least reproducible) with minerals more closely related to apatite and that are homogeneous

(presumably the best materials to use would need to be synthesized in the laboratory).

Sulfur concentrations estimated in apatites from NWA 856, Shergotty, and RBT 04262
using this technique fall well within the range of sulfur abundances measured in basaltic
and olivine-phyric shergottites in chapter II. However, this is not a feasible replacement for

traditional abundance measurement techniques.
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Appendix A

RAW DATA FOR CHAPTER I

Data for chapter 1 was acquired from 16 sessions on the Delta, and 8 sessions on the
MAT 252. During the Delta sessions CO, was measured yielding only data for 5'°0; the
raw data from those sessions can be found in table A.1. During the MAT 252 sessions O2
was measured which resolves both 6180 and 6170; the raw data from those sessions can
be found in table A.2. The abbreviations for the analyzed material in both tables are as
follows: gt, garnet; px, pyroxene; cpx, clinopyroxene; opx, orthopyroxene; ol, olivine;

and msk, maskelynite.
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Table A.2 continued.
Sample  Material 6”0, ¢ &%0, o
13-May-10
UWG-2 gt -11.14 0.08 -21.78 0.05
UWG-2 gt -11.15 0.09 -21.80 0.05
NWA 4468 px -11.33 0.07 -22.75 0.04
NWA 2986 px -11.47 0.06 -22.94 0.04
UWG-2 gt -11.14 0.08 -21.80 0.04
18-May-10
UWG-2 gt -11.15 0.06 -21.82 0.03
UWG-2 gt -11.16 0.04 -21.81 0.03
Lafayette cpx -11.37 0.04 -22.77 0.02
Zagami px -11.46 0.04 -22.99 0.02
NWA 2737 ol -11.58 0.04 -23.22 0.02
UWG-2 gt -11.17 0.03 -21.85 0.03
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Appendix B

RAW DATA AND CALIBRATION CURVES FOR CHAPTER II

Data for chapter Il was acquired from one SIMS session and five NanoSIMS sessions. I
analyzed SNC apatites in the SIMS session, which occurred in January of 2011. The raw
data from the SIMS session can be found in table B.1, and the calibration curves can be
found in figures B.1 — B.4. I analyzed SNC apatites over three NanoSIMS sessions, and
the last two of the five NanoSIMS sessions were used for analyzing SNC and terrestrial
olivines, as well as terrestrial apatite. The NanoSIMS sessions occurred during June and
December of 2011, and February, May, and June of 2012 and the raw data can be found
in tables B.2 — B.6 (respectively), and the calibration curves can be found in figures B.5 —

B.23 (respectively).
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Figure B.1. Calibration curve for OH during the January 2011 SIMS session.
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Figure B.2. Calibration curve for Cl during the January 2011 SIMS session.
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Figure B.3. Calibration curve for F during the January 2011 SIMS session.
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Figure B.4. Calibration curve for S during the January 2011 SIMS session.
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Figure B.5. Calibration curve for OH during the June 2011 NanoSIMS session.
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Figure B.6. Calibration curve for Cl during the June 2011 NanoSIMS session.
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Figure B.7. Calibration curve for F during the June 2011 NanoSIMS session.
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Figure B.8. Calibration curve for S during the June 2011 NanoSIMS session.
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Figure B.9. Calibration curve for OH during the December 2011 NanoSIMS
session.
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Figure B.10. Calibration curve for Cl during the December 2011 NanoSIMS
session.
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Figure B.11. Calibration curve for F during the December 2011 NanoSIMS
session.
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Figure B.12. Calibration curve for S during the December 2011 NanoSIMS
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Figure B.13. Calibration curve for OH during the February 2012 NanoSIMS
session.
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Figure B.14. Calibration curve for Cl during the February 2012 NanoSIMS
session.
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Figure B.15. Calibration curve for F during the February 2012 NanoSIMS
session.
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Figure B.16. Calibration curve for S during the February 2012 NanoSIMS
session.
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Figure B.17. Calibration curve for OH in apatite during the May 2012
NanoSIMS session.
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Figure B.18. Calibration curve for OH in olivine during the May 2012
NanoSIMS session.
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Figure B.19. Calibration curve for OH in apatite during the June 2012
NanoSIMS session.
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Figure B.20. Calibration curve for OH in olivine during the June 2012
NanoSIMS session.
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Figure B.21. Calibration curve for Cl in apatite during the June 2012
NanoSIMS session.
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Figure B.22. Calibration curve for F in apatite during the June 2012
NanoSIMS session.
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Figure B.23. Calibration curve for S in apatite during the June 2012
NanoSIMS session.
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Appendix C

SUPPLEMENTARY DATA, SPECTRA, AND CALIBRATION CURVES FOR

CHAPTER III

Data for chapter III was acquired over 3 electron probe sessions. Four analyses from
sessions 1 in chapter III were removed because their peak positions (percent sulfide)
relative to the standards were significantly different from spectrometer to spectrometer
within the session (table C.1). Figures C.1 — C.17 show spectra of the SNCs from all
spectrometers other than 3 (those spectra are found in chapter III) during sessions 1 and
3. The vertical scale of all the spectra figures is arbitrary intensity; the scale was changed
for each spectrum such that the peak heights would match and peak positions could be
more easily compared. The calibration curves used to convert peak intensities to sulfur
concentration for all spectrometers in each session (except for spectrometer 3 in session
1, which can be found in chapter III) are shown in figures C.18 — C.23. Table C.2 lists all

the calculated sulfur concentration data for each spectrometer in sessions 1 and 3.

Table C.1. Analyses from session 1 that were removed because of
inconsistent percent sulfide calculations between spectrometers.
Sample Apatite spec2 spec3 spec5 spec2 spec3 specS

Session 1
NWA 856 172.142 172.023 172.080 84 26 14

172.082 172.039 172.090 -19 52 31

1
5

NWA 2986 2 172.267 172.176 172.054 300 277 -31
3 172.190 172.101 172.000 167 154  -122
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Figure C.1. Spectrometer 1 spectra of apatite grains from basaltic shergottite JaH 479

measured during session 3.
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Figure C.2. Spectrometer 2 spectra of apatite grains from basaltic shergottite JaH 479
measured during session 1 and session 3. (A) session 1, and (B) session 3.
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Figure C.2 continued.
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Figure C.3. Spectrometer 5 spectra of all apatite grains from basaltic shergottite JaH
479 measured during session 1 and session 3. (A) session 1, and (B) session 3.
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Figure C.3 continued.
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Figure C.4. Spectrometer 1 spectra of all apatite grains from basaltic shergottite NWA
856 measured during session 3.
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Figure C.5. Spectrometer 2 spectra of all apatite grains from basaltic shergottite NWA

856 measured during session 1 and session 3.
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Figure C.6. Spectrometer 5 spectra of all apatite grains from basaltic shergottite NWA

856 measured during sessions 1 and 3.
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Figure C.7. Spectrometer 1 spectra of all apatite grains from basaltic shergottite NWA
2986 measured during session 3.
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Figure C.8. Spectrometer 2 spectra from all apatite grains from basaltic shergottite

NWA 2986 measured during sessions 1 and 3.
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Figure C.9. Spectrometer 5 spectra of all apatite grains from basaltic shergottite NWA

2986 measured during sessions 1 and 3.
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Figure C.10. Spectrometer 1 spectra of all apatite grains from basaltic shergottite

Shergotty measured during session 3.
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Figure C.11. Spectrometer 2 spectra of all apatite grains from basaltic shergottite

Shergotty measured during session 3.
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Figure C.12. Spectrometer 5 spectra of all apatite grains from basaltic shergottite
Shergotty measured during session 3.
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Figure C.13. Spectrometer 2 spectra of all apatite grains from olivine-phyric
shergottite RBT 04262 measured during session 1.
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Figure C.14. Spectrometer 5 spectra of all apatite grains from olivine-phyric
shergottite RBT 04262 measured during session 1.
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Figure C.15. Spectrometer 1 spectra of all apatites from lherzolitic shergottite NWA
1950 measured during session 3.
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Figure C.16. Spectrometer 2 spectra of all apatites from lherzolitic shergottite NWA
1950 measured during session 3.
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Figure C.17. Spectrometer 5 spectra of all apatites from lherzolitic shergottite NWA
1950 measured during session 3.
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Figure C.18. Background corrected peak intensities from spectrometer 2 in session 1
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 2c of
concentrations determined from ion probe measurements. The best-fit line calculated
by a weighted, least-squares linear regression of the data is also shown.
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Figure C.19. Background corrected peak intensities from spectrometer 5 in
session 1 plotted against sulfur abundances measured in chapter II for apatites,
and stoichiometrically calculated for anhydrite and pyrite. Error bars are 2o of
concentrations determined from ion probe measurements. The best-fit line
calculated by a weighted, least-squares linear regression of the data is also
shown.
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Figure C.20. Background corrected peak intensities from spectrometer 1 in session 2
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 20 of
concentrations determined from ion probe measurements. The best-fit line calculated
by a weighted, least-squares linear regression of the data is also shown.
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Figure C.21. Background corrected peak intensities from spectrometer 2 in session 2
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 20 of
concentrations determined from ion probe measurements. The best-fit line calculated
by a weighted, least-squares linear regression of the data is also shown.
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Figure C.22. Background corrected peak intensities from spectrometer 3 in session 2
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 20 of
concentrations determined from ion probe measurements. The best-fit line calculated
by a weighted, least-squares linear regression of the data is also shown.
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Figure C.23. Background corrected peak intensities from spectrometer 5 in session 2
plotted against sulfur abundances measured in chapter II for apatites, and
stoichiometrically calculated for anhydrite and pyrite. Error bars are 20 of
concentrations determined from ion probe measurements. The best-fit line calculated
by a weighted, least-squares linear regression of the data is also shown.
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Table C.2. Calculated sulfur concentration data for each spectrometer per session.

Calculated S Abundance (wt%) Known S
Session 1 Session 3 Abundance
Sample spec 2 spec 3 spec S spec 1 spec 2 spec 3 specS (wt% +20)
Standards
anhydrite 6.90 636 5.77 9.20 9.08 9.02 9.44 23.55*%

8.05 7.97 845 8.01

pyrite 69.31 70.97 71.51 68.30 68.50 68.34 68.36 53.45°
68.45 68.50 68.34 68.36

Durango 048 0.16 0.16 0.15 0.14 0.13 0.12 0.10+0.02
0.16 0.15 0.14 0.13 0.10+0.02

Basaltic
Shergottites
JaH479 1 0.22 0.08 0.09 0.134+0.02
3 022 0.07 0.08 0.15 0.14 0.14 0.15 0.214+0.02
8 0.08 0.07 0.07 0.08 0.10+0.01
9 022 0.07 0.07 0.12+0.02
10 0.32 0.10 0.11 0.1440.01
NWA 856 1 0.03 0.02 0.01 0.01 0.04+0.01
2 0.08 0.03 0.03
3 0.02 0.01 0.02 0.01 0.03£0.00
4 0.09 0.03 0.03
NWA2986 1 0.12 0.04 0.06 0.094+0.01
3 0.06 0.06 0.07 0.06 0.14+0.08
4 0.04 0.04 0.06 0.05 0.05+0.00
Shergotty 3 0.03 0.03 0.03 0.02
6 0.08 0.07 0.07 0.08 0.06+0.02

Olivine-Phyric

Shergottite
RBT 04262

p—

0.23 0.08 0.08
2 020 0.07 0.06

Lherzolitic

Shergottite
NWA 1950 1 0.01 0.01 0.01 o0.01 0.01£0.00

2 0.01 0.01 0.01 0.01 0.01+0.00

*Calculated by stoichiometry.
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