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Abstract

This thesis explores the design, construction, and applications of the optoelectronic

swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed

around a swept-frequency (chirped) semiconductor laser (SCL) to control its instan-

taneous optical frequency, such that the chirp characteristics are determined solely by

a reference electronic oscillator. The resultant system generates precisely controlled

optical frequency sweeps. In particular, we focus on linear chirps because of their

numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity

surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wave-

lengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion

procedure that enables SFL operation at very high chirp rates, up to 1016 Hz/sec. We

describe commercialization efforts and implementation of the predistortion algorithm

in a stand-alone embedded environment, undertaken as part of our collaboration

with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW)

ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry,

in which the frequency sweeps of multiple SFLs are “stitched” together in order to

increase the optical bandwidth, and hence improve the axial resolution, of an FMCW

ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL

sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which

enables MS-FMCW ranging without additional signal processing. The culmination

of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical

bandwidth of 2 THz, and a free-space axial resolution of 75 µm.

We describe our work on the tomographic imaging camera (TomICam), a 3-D
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imaging system based on FMCW ranging that features non-mechanical acquisition

of transverse pixels. Our approach uses a combination of electronically tuned opti-

cal sources and low-cost full-field detector arrays, completely eliminating the need for

moving parts traditionally employed in 3-D imaging. We describe the basic TomICam

principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept exper-

iment. We also discuss the application of compressive sensing (CS) to the TomICam

platform, and perform a series of numerical simulations. These simulations show

that tenfold compression is feasible in CS TomICam, which effectively improves the

volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent

beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power

amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables

non-mechanical compensation of optical delays using acousto-optic frequency shifters,

and its high chirp rate simultaneously increases the stimulated Brillouin scattering

(SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier

coherent-combining system. We use a chirp rate of 5 × 1014 Hz/sec to increase the

amplifier SBS threshold threefold, when compared to a single-frequency seed. We

demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-

doped fiber amplifier channels, achieving temporal phase noise levels corresponding

to interferometric fringe visibilities exceeding 98%.
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