Appendix A

Time-Domain Phase Analysis Using I/Q Demodulation

In this appendix we describe the in-phase and quadrature (I/Q) demodulation technique which is used for time-domain analysis of the locked-state OPLL phase error in chapter 6.

The goal of the technique is to separate the amplitude modulation A(t) from the phase modulation $\theta(t)$ of a sinusoidal signal y(t) with a known frequency ω_0 ,

$$y(t) = A(t)\sin\left[\omega_0 t + \theta(t)\right]. \tag{A.1}$$

We form the in-phase signal $y_i(t)$ and the quadrature signal $y_q(t)$ by multiplying y(t) with sine and cosine waveforms at a frequency of ω_0 , and low-pass filtering the results.

$$y_i(t) = h(t) \star [y(t) \sin \omega_0 t]$$

= $h(t) \star \left\{ \frac{A(t)}{2} \cos \theta(t) - \frac{A(t)}{2} \cos [2\omega_0 t + \theta(t)] \right\}$, and (A.2)

$$y_q(t) = h(t) \star [y(t) \cos \omega_0 t]$$

= $h(t) \star \left\{ \frac{A(t)}{2} \sin \theta(t) + \frac{A(t)}{2} \sin [2\omega_0 t + \theta(t)] \right\},$ (A.3)

where h(t) is the impulse response of the low-pass filter, and ' \star ' denotes the convolution operation. The filter is designed to average out the sum frequency terms at

frequency $2\omega_0$, while retaining the difference frequency terms at DC, yielding

$$y_i(t) = \frac{A(t)}{2} \cos \theta(t)$$
, and (A.4)

$$y_q(t) = \frac{A(t)}{2}\sin\theta(t).$$
(A.5)

The amplitude and phase modulations are recovered using

$$A(t) = 2\sqrt{y_i^2(t) + y_q^2(t)}$$
, and (A.6)

$$\theta(t) = \operatorname{atan2}\left[y_q(t), y_i(t)\right],\tag{A.7}$$

where $\operatorname{atan2}(y_q, y_i)$ is the four-quadrant inverse tangent function defined below.

$$\operatorname{atan}^{2}(y_{q}, y_{i}) \equiv \begin{cases} \tan^{-1}\left(\frac{y_{q}}{y_{i}}\right) & y_{i} > 0\\ \tan^{-1}\left(\frac{y_{q}}{y_{i}}\right) + \pi & y_{q} \ge 0, \ y_{i} < 0\\ \tan^{-1}\left(\frac{y_{q}}{y_{i}}\right) - \pi & y_{q} < 0, \ y_{i} < 0\\ +\frac{pi}{2} & y_{q} > 0, \ y_{i} = 0\\ -\frac{pi}{2} & y_{q} < 0, \ y_{i} = 0\\ \operatorname{undefined} & y_{q} = 0, \ y_{i} = 0 \end{cases}$$
(A.8)