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Chapter 6

Phase-Locking and Coherent Beam
Combining of Broadband
Linearly Chirped Optical Waves

6.1 Introduction

Optical phase-locking has found various applications in the fields of optical commu-

nication links [52, 78–81], clock generation and transmission [82, 83], synchronization

and recovery [84,85], coherence cloning [7], coherent beam combining (CBC) and op-

tical phased arrays [8,86–91], and optical frequency standards [92,93], to name a few.

In these applications, electronic feedback is used to precisely synchronize the phases

of two optical waves. With a few notable exceptions [34,94], prior demonstrations of

phase-locking and synchronization have been performed using nominally monochro-

matic optical waves. In this chapter we describe our work on the phase-locking of

optical waves whose frequencies are swept rapidly with time and over large chirp ex-

tents. The phase-locking of optical waves with arbitrary frequency chirps is a difficult

problem in general. However, precisely linear chirps, such as the ones generated by

the optoelectronic SFL (see chapter 3) can be phase-locked with very high efficiency

using a frequency shifter. The main application of this result is the simultaneous

stimulated Brillouin scattering (SBS) suppression and coherent combining of high-

power fiber amplifiers. Other potential applications include electronic beam steering

for lidar and 3-D imaging systems.
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We begin our discussion by reviewing CBC approaches to the generation of high-

power continuous-wave optical beams. We proceed to describe the basic principle

behind phase-locking of linearly chirped optical waves, and present theoretical anal-

yses of chirped-wave phase-locking in homodyne and heterodyne configurations. We

demonstrate heterodyne phase-locking of chirped optical waves and implement a

passive-fiber CBC system [10, 11]. We conclude with a description of our recent

CBC experiment with two erbium-doped fiber amplifier (EDFA) channels [12]. The

work described in this chapter was performed in collaboration with Jeffrey O. White’s

group at the United States Army Research Laboratory.

6.2 Coherent Beam Combining

The output power of optical fiber amplifiers is usually limited by SBS. Advances in

the design of the geometry and doping profiles of active fiber have enabled increases

in the SBS threshold power [95–97]. Further increases in the SBS threshold of a

single amplifier can be obtained by broadening the linewidth of the seed laser through

phase or frequency modulation [32,33]. A separate approach to achieving high optical

powers is the coherent beam combining of the outputs of multiple laser or amplifier

elements [8, 86–90].

The efficiency of a CBC scheme depends on the matching of the relative am-

plitudes, phases, polarizations and pointing directions of the multiple emitters in

the array [86, 98, 99]. Phase synchronization of the array elements is a particularly

difficult challenge, which in the past has been addressed with various approaches,

including evanescent wave and leaky wave coupling of emitters [100, 101], common

resonator arrays [102,103], and phase-locking through optoelectronic feedback [8,90].

In optoelectronic feedback systems, the phase error between the combined beams is

measured and fed back to a phase actuator, such as an electro-optic phase modula-

tor [87], acousto-optic frequency shifter [90], or a fiber stretcher [34,89].

Kilowatt-level systems have been demonstrated [33] and rely on the simultaneous

suppression of SBS in high-power fiber amplifiers and the CBC of multiple amplifier
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channels. The path-length mismatch between array elements in an amplifier CBC

system has to be much smaller than the seed coherence length, in order to prevent

de-phasing due to incoherence. The traditional approach to SBS suppression relies on

a broadening of the seed linewidth, and therefore a reduction of its coherence length.

As a result, SBS suppression in high-power fiber amplifier CBC systems requires

precise channel path-length matching. Recently, Goodno et al. [33] have demon-

strated the phase-locking of a 1.4 kW fiber amplifier. This power level was achieved

by increasing the SBS threshold using a modulated seed source with a linewidth of

∼ 21 GHz. Efficient power combining was only possible with precise path-length

matching of active fibers to sub-mm accuracy. Further increases in the power out-

put of a single amplifier will require even broader seed linewidths, and path-length

matching to within ∼ 10s of µm will be necessary. Weiss et al. [34] have recently

demonstrated that coherent combining can still be achieved using a novel feedback

loop that senses the path-length mismatch and corrects it using a fiber stretcher.

In this chapter we explore an architecture capable of SBS suppression and co-

herent beam combining without stringent mechanical path-length matching require-

ments [10–12]. Our approach is to use a rapidly chirped (> 1014 Hz/s) swept-

frequency laser (SFL) seed to reduce the effective length over which SBS occurs [35,

36]. The advantage of this approach is that path-length matching requirements are

relaxed due to the long coherence length (several meters) of semiconductor laser

based SFLs. In the following section we describe the basic principle of phase-locking

of linearly chirped optical waves using acousto-optic frequency shifters (AOFSs) to

compensate for static and dynamic optical path-length differences. We proceed with

an analysis of homodyne and heterodyne optical phase-locked loop (OPLL) configu-

rations, and present results of proof-of-concept experiments that demonstrate phase-

locking, coherent combining, and electronic phase control in chirped-wave passive-

fiber systems.
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Figure 6.1: Intuitive description of chirped-seed amplifier coherent beam combining.
A path-length mismatch between amplifier arms results in a frequency difference at
the combining point, and can therefore be compensated using a frequency shifter
placed before amplifier 2.

6.3 Phase-Locking of Chirped Optical Waves

The basic concept of phase-locking multiple chirped-seed amplifiers (CSAs) in a

master oscillator power amplifier (MOPA) configuration is depicted in figure 6.1 [10,

11]. A SFL is used to generate a linear chirp, with an instantaneous optical frequency

given by

ωL(t) = ωL,0 + ξt, 0 ≤ t ≤ T, (6.1)

where ωL,0 is the initial optical frequency, ξ is the sweep rate, and T is the sweep time.

The SFL is split into multiple amplifier seeds which then undergo amplification and

recombination to form a high-power beam. A difference in the lengths of the fiber

amplifiers 1 and 2 result in a frequency difference ξl12/c at the locking point, where l12

is the path-length mismatch and c is the speed of light. An acousto-optic frequency

shifter (AOFS) is placed in one of the arms to correct this frequency difference. For

a linear chirp of ξ
2π

= 1015 Hz/s and a path-length mismatch of 10 cm in fiber, the

required frequency shift is 500 kHz, which is well within the dynamic range of AOFSs.

An optical phase-locked loop is formed by recording an interference signal between

the two arms on a photodetector and feeding it back to the AOFS, as shown in figure

6.2 and figure 6.4. In lock, the AOFS synchronizes the optical phases and corrects



112

the fixed path-length mismatches as well as the dynamic length fluctuations arising

from vibrations and temperature drift. The loop bandwidth determines the fastest

fluctuation frequency that is suppressed, and previous work using AOFSs and single-

frequency seeds has shown that sufficient bandwidths can be achieved for efficient

combining of fiber amplifier outputs [90].

SBS suppression in high-power amplifiers scales with the chirp rate [35,36]. There-

fore, we limit our attention to SFLs with perfectly linear chirps, in order to ensure

that uniform SBS suppression is obtained throughout the duration of the frequency

sweep. Moreover, a linear chirp enables path-length mismatches to be corrected by

a constant frequency shift, as described above. Deviations from chirp linearity are

corrected using a feedback loop, as long as these deviations are small and at frequen-

cies within the loop bandwidth. It is therefore desirable that the chirp be close to

perfectly linear, particularly at high chirp rates ξ, in order to relax the requirements

on the frequency tuning range of the AOFS and the bandwidth of the feedback loop.

We note that it should be possible to further extend the phase-locking approach to

other sweep profiles, by using a time-varying frequency shift to compensate for the

time-varying slope of the optical frequency chirp, e.g., using the iterative algorithm

of section 3.2.3 to pre-distort the AOFS bias signal.

6.3.1 Homodyne Phase-Locking

We first consider the homodyne phase-locking configuration shown in figure 6.2. The

output of an optoelectronic SFL is split into two arms using a fiber splitter. The

goal of the experiment is to phase-lock the outputs of the two arms by feeding back

the error signal generated using a 2 × 2 fiber coupler and a balanced detector. The

bias frequencies and phase shifts of the two AOFSs are denoted by ω1, ω2 and φ1,

φ2. The differential delay between the first and second arms is denoted by τ12. We

also introduce a common delay τd to model the long fiber length inside an optical

amplifier. The feedback loop is very similar to a typical phase-locked loop [51], and

can be analyzed accordingly. We define the DC loop gain KDC as the product of the
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Figure 6.2: Passive-fiber chirped-wave optical phase-locked loop in the homodyne
configuration. PD: Photodetector
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Figure 6.3: Small-signal frequency-domain model of the homodyne chirped-wave op-
tical phase-locked loop. The model is used to study the effect noise and fluctuations
(green blocks) on the loop output variable δθ12(ω).
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optical power in each arm (units: W), and the gains of the balanced detector (V/W),

loop amplifier (V/V), and frequency shifter (rad/s/V). Let the SFL optical frequency

be given by equation (6.1), and let us denote the optical phases of the two arms at

the coupler by θ1(t) and θ2(t). The optical phase difference between the two arms is

given by

θ12(t) ≡ θ1(t)− θ2(t)

= (ωL,0 + ω1)(t− τd) +
ξ

2
(t− τd)2 + φ1 − (ωL,0 + ω2)(t+ τ12 − τd)

− ξ

2
(t+ τ12 − τd)2 − φ2 −

∫ t+τ12−τd

0

KDC cos θ12(u)du =

= ∆ωfr(t− τd)− (ω2 + ωL,0)τ12 −
ξτ 2

12

2
+ φ12 −

∫ t+τ12−τd

0

KDC cos θ12(u)du,

(6.2)

where ∆ωfr ≡ ω1 − ω2 − ξτ12 is the free-running frequency difference between the

two arms, and φ12 ≡ φ1 − φ2. The final term in equation (6.2) represents the phase

shift due to the feedback to the AOFS, which is the integral of the frequency shift.

The steady-state solution θ0
12, obtained by setting the time derivative of θ12(t) to 0,

is given by

θ0
12 = cos−1

(
∆ωfr
KDC

)
. (6.3)

We use this result to rewrite equation (6.2),

θ12(t) = ∆ωfr(t+ τ12 − τd) + θ0
12 −

∫ t+τ12−τd

0

KDC cos θ12(u)du. (6.4)

In lock, the optical phases of the two arms differ by θ0
12, and there is no frequency

difference.

Next, we linearize the loop about its steady-state solution in order to study dy-

namic behavior and the effect of fluctuations. We denote the phase noise and residual

nonlinearity of the SFL by θnL(t), and the phase noise introduced in the two arms by

θn1 (t) and θn2 (t), which include noise contributions from the AOFSs and fluctuations

in the optical path lengths. We introduce δθ12(t), the small-signal fluctuation of θ12(t)
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about the steady state, so that

θ12(t) = θ0
12 + δθ12(t). (6.5)

We plug equation (6.5) into equation (6.4), and expand about the steady-state point

(equation (6.3)). Solving for δθ12(t), we arrive at

δθ12(t) = θn12(t)+θnL(t− τd)−θnL(t+ τ12− τd)+KDC sin θ0
12

∫ t+τ12−τd

0

δθ12(u)du, (6.6)

where θn12(t) ≡ θn1 (t)− θn2 (t). Taking the Fourier transform of both sides of equation

(6.6), we arrive at a frequency-domain description of the small-signal fluctuations,

δθ12(ω) = θn12(ω) + θnL(ω)
[
e−jωτd − e−jω(τd−τ12)

]
+
KDCKel(ω) sin θ0

12

jω
e−jω(τd−τ12)δθ12(ω),

(6.7)

where Kel(ω) is the frequency-dependent gain of the loop electronics. This frequency-

domain model is shown schematically in figure 6.3. The solution of equation (6.7) is

given by

δθ12(ω) =
θn12(ω)

1 +K(ω)
+
θL(ω)

[
e−jωτd − e−jω(τd−τ12)

]
1 +K(ω)

, (6.8)

where

K(ω) ≡ −KDCKel(ω) sin θ0
12

jω
e−jω(τd−τ12)

=
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jω(τd−τ12)

(6.9)

is the total frequency-dependent feedback gain, and we picked the negative root in

calculating sin θ0
12 in order to achieve negative feedback.

In our experiments, loop bandwidths have been limited to the sub-MHz range by

the AOFS frequency modulation response, and we therefore restrict our attention to

the Fourier frequency range below ∼ 10 MHz. Typical values of τ12 are in the ns
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range, so ωτ12 . 10−2, and we can expand equation (6.8) and equation (6.9) near

ωτ12 = 0, yielding

δθ12(ω) =
θn12(ω)

1 +K(ω)
− jωτ12

θL(ω)e−jωτd

1 +K(ω)
, and (6.10)

K(ω) =
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jωτd . (6.11)

According to equation (6.10), phase fluctuations in the fiber are reduced by a

factor 1 + K(ω) in the locked state. For frequencies within the loop bandwidth,

K(ω)� 1, and significant noise suppression is obtained. The second term describes

the effect of the SFL phase noise and residual chirp nonlinearity. The system behaves

like a frequency discriminator with gain τ12, and the feedback again suppresses the

measured frequency noise by the factor 1 +K(ω). It is clear that a small differential

delay τ12 and an SFL with a highly linear chirp and low phase noise minimize the

phase error in the loop.

The homodyne phase-locking approach described above has a few shortcomings.

1. The value of the steady-state phase θ0
12 can only be adjusted (within the range

[0, π]) by varying the bias frequency shifts ω1 and ω2; this is not optimal since

it adversely impacts loop gain and therefore performance.

2. The desired operating point for in-phase beam combining is θ0
12 ≈ 0; however,

according to equation (6.9), the loop gain contains the factor sin θ0
12, and the

loop therefore loses lock as this operating point is approached. It is desirable

that the loop be locked at quadrature θ0
12 = π/2, maximizing the gain.

3. Finally, it is not straightforward to scale this approach to multiple phase-locked

arms.

These problems are all addressed by adopting a heterodyne phase-locking archi-

tecture, as described in the next section.
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6.3.2 Heterodyne Phase-Locking

In a heterodyne chirped-seed CBC experiment, the SFL output is split into a reference

and multiple amplifier arms. The goal of the experiment is to lock the phases of all

the amplifier arms to the reference, at an offset frequency ωos. The heterodyne OPLL

formed between the reference and the n-th amplifier is shown in figure 6.4. The bias

frequency and phase shift of the AOFSs is denoted by ωn and φn. The differential

delay between the reference and amplifier arms is denoted by τrn, and we again

introduce a common delay τd. The optical phase difference between the two arms is

given by

θrn(t) = (−ωn − ξτrn)(t− τd)− (ωn + ωL,0)τrn −
ξτ 2
rn

2
− φn

−
∫ t+τrn−τd

0

KDC cos [θrn(u) + ωosu+ θos,n] du,

(6.12)

where θos,n is the phase of the offset oscillator in the n-th OPLL. The steady-state

solution θ0
rn(t), obtained by setting the time derivative of the mixer phase θrn(t) +

ωost+ θos to 0, is given by

θ0
rn(t) = −ωost− θos,n + cos−1

(
∆ωfr
KDC

)
, (6.13)

where ∆ωfr = ωos − ωn − ξτrn. We use this result to rewrite equation (6.12),

θrn(t) = ∆ωfr(t+ τrn − τd) + θ0
rn(t)−

∫ t+τrn−τd

0

KDC cos [θrn(u) + ωosu+ θos,n] du.

(6.14)

If we acquire lock at a zero free-running frequency difference, the steady-state optical

phase difference between the n = 1 and n = 2 amplifier arms is given by

θ0
12 = θ0

r2(t)− θ0
r1(t) = θos,1 − θos,2 ≡ θos,12. (6.15)

The steady-state phase difference between the two amplifier arms can now be con-

trolled electronically by setting the relative offset oscillator phase θos,12. Loop oper-
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ation off quadrature is therefore no longer required. The electronic phase control is

also important for beam-steering and phase-controlled optical apertures.

Next, we linearize the loop about its steady-state solution. We denote the phase

noise introduced in the reference and amplifier arms by θnr (t) and θnn(t), and offset

oscillator phase noise by θnos,n(t). We introduce δθrn(t), the small-signal fluctuation

of θrn(t) about the steady state, so that

θrn(t) = θ0
rn(t) + δθrn(t). (6.16)

We plug equation (6.16) into equation (6.14), and expand about the steady-state

point (equation (6.13)). Solving for δθrn(t), we arrive at

δθrn(t) = θnrn(t) + θnL(t− τd)− θnL(t+ τrn − τd)

−KDC

√
1−

(
∆ωfr
KDC

)2 ∫ t+τrn−τd

0

[
δθrn(u) + θnos,n(t)

]
du.

(6.17)

When locked at quadrature, the frequency-domain description of the small-signal

fluctuations is given by

δθrn(ω) = θnrn(ω)− jωτrne−jωτdθnL(ω)−K(ω)
[
δθrn(ω) + θnos,n(ω)

]
, (6.18)

where

K(ω) ≡
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jω(τd−τrn), (6.19)

and we have introduced the frequency-dependent electronic gain Kel(ω). This small-

signal model is shown schematically in figure 6.5. The solution of equation (6.18) is

given by

δθrn(ω) =
θnrn(ω)

1 +K(ω)
− jωτrn

θL(ω)e−jωτd

1 +K(ω)
− K(ω)θnos,n(ω)

1 +K(ω)
. (6.20)

As in the homodyne case, for frequencies within the loop bandwidth, the OPLL

reduces the phase error due to fiber fluctuations and SFL phase noise by a factor

1 + K(ω). The factor multiplying the offset phase noise term θnos,n(ω) goes to 1 for
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Figure 6.6: Locked-state Fourier spectrum of the measured beat signal between the
reference and amplifier arms, over a 2 ms chirp interval. The nominal loop delay
parameters are τd = 20 m and τr1 ≈ 0 m. The time-domain signal was apodized with
a Hamming window.

large K(ω). The offset oscillator phase noise is transferred to the optical wave, and

should be kept as small as possible.

6.3.3 Passive-Fiber Heterodyne OPLL

The heterodyne phase-locking experiment of figure 6.4 was performed at 1550 nm

using a VCSEL-based optoelectronic SFL with a chirp rate of 2 × 1014 Hz/s (see

chapter 3 for a summary of its operation). We used polarization-maintaining fiber-

optic components, and an AOFS (Brimrose Corporation) with a nominal frequency

shift of 100 MHz and a frequency modulation bandwidth of ∼ 75 kHz. We used a DDS

integrated circuit to provide the 100 MHz offset signal. The circuit can rapidly switch

the output amplitude, phase and frequency when driven by an external trigger, which

allowed us to use different locking parameters for the up and down chirps. Similarly,

we designed a triggered arbitrary waveform generator in order to vary the AOFS bias

during the up and down chirps. The experiment was performed for different values
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(a) (b)

Figure 6.7: (a) Phase difference between the reference and amplifier arms calculated
using the I/Q demodulation technique. The three curves (offset for clarity) correspond
to different values of the loop delay τd and the path-length mismatch τr1. (b) Transient
at the beginning of the chirp. The locking time is determined by the loop bandwidth,
which is limited by the AOFS to about 60 KHz.

of the loop propagation delay τd and path-length mismatch τr1.1

We measured the beat signal between the reference and amplifier arms in order

to characterize the performance of the heterodyne OPLL. The locked-state beat

signal phase fluctuations, δθr1(t), are described in the frequency domain by equation

(6.20). The variance of these phase fluctuations, 〈δθ2
r1(t)〉t, is the critical metric

of loop performance since it determines the fraction of the amplifier power that is

coherent with the reference path [8, 104]. The spectrum of the beat signal over one

2 ms chirp duration is calculated using a Fourier transform with a Hamming window,

and is shown in figure 6.6. The delay parameters were τd = 20 m and τr1 ≈ 0. The

spectrum comprises a transform-limited peak at 100 MHz and a small noise pedestal.

The loop bandwidth is about 60 kHz, limited by the AOFS. The residual noise may be

calculated by integrating the noise in the spectral measurement [8, 104]. From figure

6.6, the standard deviation of the phase fluctuations is calculated to be 0.08 rad,

which corresponds to 99.4% of the amplifier optical power being coherent with the

reference wave.

An alternative means of analysis is to use the in-phase and quadrature (I/Q)

1The optical delay is reported here in units of length, and is to be understood as the time taken
for light to propagate along that length of polarization-maintaining Panda fiber.
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demodulation technique, as described in appendix A. It allows us to extract the

time-domain phase fluctuations δθr1(t), and directly calculate the variance 〈δθ2
r1(t)〉t.

The locked-state phase fluctuations during one 2 ms chirp are plotted in figure 6.7a

for three different values of the loop delay τd and the differential delay τr1 (the curves

are offset from each other for clarity). The locking transient is shown in figure 6.7b.

The locking time is determined by the loop bandwidth, which is limited by the AOFS

to about 60 KHz.

We calculated the phase error standard deviations and locking efficiencies for

different delays, and the results are tabulated in table 6.1. For a given differential

delay, the addition of a large loop delay τd = 20 m slightly reduces the bandwidth of

the loop, resulting in a marginally lower phase-locking efficiency. On the other hand,

for a given loop delay, the addition of τr1 = 32 cm of differential delay results in

an increased amount of SFL phase noise affecting the loop, as predicted by equation

(6.20). This reduces the locking efficiency from ∼ 99% to ∼ 90%. Differential delays

much smaller than 32 cm are trivially achieved in practice, and correspond to phase-

locking efficiencies larger than 90%.

Loop delay Differential delay Phase error std. dev. Locking efficiency

τd (m) τr1 (cm) σr1 = 〈δθ2
r1(t)〉1/2t (mrad) η = 1

1+σ2
r1

2 0 47 99.8%

2 32 279 92.8%

20 0 76 99.4%

20 32 315 91.0%

Table 6.1: Measured OPLL phase error standard deviation and phase-locking effi-
ciency for different values of the loop delay τd and the differential delay τr1
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Figure 6.8: Schematic diagram of the passive-fiber chirped-seed CBC experiment with
two channels. Heterodyne optical phase-locked loops are used to lock the amplifier
(blue, green) and reference (black) arms. The outputs of the amplifier arms are
coupled to a microlens (µ-lens) array to form a two-element tiled-aperture beam
combiner. The far-field intensity distribution of the aperture is imaged on a CCD
camera.
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6.4 Coherent Combining of Chirped Optical

Waves

6.4.1 Passive-Fiber CBC Experiment

To demonstrate beam combining and electronic beam steering, we constructed two

separate heterodyne OPLLs, as shown in figure 6.8. The SFL output was split into

a reference arm and two amplifier channels. The reference arm was further split into

two, and delivered to the two OPLLs. The two loops were locked using electronic offset

signals that were provided by a pair of synchronized DDS oscillators, with individually

controllable amplitudes and phases. We measured the OPLL photocurrents in each

loop for three values of the loop delay τd and differential delays τr1 and τr2. The

calculated spectra and demodulated phases are shown in figure 6.9 for τd ≈ 0 m, τr1 =

τr2 ≈ 0 cm, figure 6.10 for τd ≈ 18 m, τr1 = τr2 ≈ 0 cm, and figure 6.11 for τd ≈
18 m, τr1 = τr2 ≈ 32 cm. The performance of the two loops is essentially identical.

The same trend that is described above is evident in these figures—a large loop delay

τd only slightly affects the loop bandwidth and marginally increases the measured

noise levels, while the addition of a differential delay τr1 or τr2 increases the effect

of SFL phase noise, causing a noticeable increase in the spectra pedestals and phase

deviations.

The outputs of the two amplifier paths (after the AOFSs and additional fiber

delays) were used to form a coherent aperture using a fiber V-groove array placed

at the focal plane of a microlens array. The emitter spacing was 250 µm. A CCD

camera was used to image the far-field intensity distribution of the aperture over

many chirp periods. The delays in the fiber paths that deliver the amplifier channels

to the microlens array are not compensated for by the OPLLs, which yields an optical

frequency difference between the two channels at the aperture. We solved this issue

by simply phase-locking the two loops at slightly different offset frequencies, so as to

get a stable fringe pattern on the camera. Moreover, we isolated these fibers using a

vibration-damping polymer sheet, in order to minimize the fluctuations in their path
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(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.9: Characterization of the two heterodyne OPLLs in the locked state. τd ≈
0 m, τr1 = τr2 ≈ 0 cm.

(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.10: Characterization of the two heterodyne OPLLs in the locked state.
τd ≈ 18 m, τr1 = τr2 ≈ 0 cm.

(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.11: Characterization of the two heterodyne OPLLs in the locked state.
τd ≈ 18 m, τr1 = τr2 ≈ 32 cm.
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Figure 6.12: Experimental demonstration of electronic phase control and beam steer-
ing of chirped optical waves. (a) Far-field intensity profiles for the unlocked and
phase-locked cases. The position of the fringes is controlled by varying the phase
of the electronic oscillator in one loop. (b) Horizontal cross sections of the far-field
intensity patterns

lengths. It is important to note that these efforts are not necessary in the free-space

experiment of section 6.4.3

The far-field intensity distributions of the aperture in the locked and unlocked

states are shown in figure 6.12. We observe a narrowing of the central lobe in the

locked case vs. the unlocked case, and a corresponding increase in its intensity by

a factor of 1.6. We also demonstrate electronic steering of the far-field intensity

pattern by varying the phase of one of the offset oscillators, as shown in figure 6.12.

The demonstrated coherent-combining approach also scales well to larger systems,
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since the combination of coherent signal gain and incoherent phase errors leads to an

increasing interferometric visibility with increasing number of array elements [105].

6.4.2 Combining Phase Error in a Heterodyne Combining

Experiment

We briefly revisit the small-signal residual phase error analysis. So far we have focused

on measuring phase errors between the reference and amplifier arms, which is useful

in characterizing the OPLL performance. However, in a dual-channel combining

experiment, the relevant phase error is the combining error δθ12(ω), given by

δθ12(ω) ≡ δθr2(ω)− δθr1(ω) (6.21)

Plugging in equation (6.20), we arrive at

δθ12(ω) =
θn12(ω)

1 +K(ω)
− jωτ12

θL(ω)e−jωτd

1 +K(ω)
, (6.22)

where θn12 is the relative path-length fluctuation of the two amplifier arms. In deriving

equation (6.22), we have assumed equal gains in the two OPLLs, and neglected the

contribution of the offset oscillator noise.

In the experiment of section 6.4.1, we learned that the amount of differential path-

length mismatch essentially determines the locked-state noise levels. From equation

(6.22), it is clear that the combining noise level is actually determined by τ12 =

τr2 − τr1, the path-length mismatch between the two amplifier arms, and not by τr1

or τr2 alone.

6.4.3 Free-Space Beam Combining of Erbium-Doped Fiber

Amplifiers

A schematic of the dual-channel chirped-seed amplifier (CSA) CBC experiment is

shown in figure 6.13. An optoelectronic SFL based on a 1550 nm VCSEL is linearly
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Figure 6.13: Schematic diagram of the dual-channel CSA coherent-combining exper-
iment. PD: Photodetector, PM: Back-scattered power monitor
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chirped over a bandwidth of 500 GHz in 1 ms, resulting in a sweep rate ξ/(2π) =

5× 1014 Hz/sec. At the end of the 1 ms sweep time, the laser is chirped in reverse at

the same rate, bringing it back to its original starting frequency. Channels 1 and 2

are boosted to powers of ∼ 3 W each with commercially available erbium-doped fiber

amplifiers.

The back-scattered power from the 5 m final amplifier stage and the 45 m delivery

fiber is recorded for each channel. We define the stimulated Brillouin scattering

threshold as the power level at which the ratio of the back-scattered power to the

forward power is 10−4. We report a threefold increase in the SBS threshold for the

5× 1014 Hz/sec chirp rate, when compared to a single-frequency seed.

Synchronized DDS circuits are used as offset oscillators in the two heterodyne

OPLLs. An offset frequency of 100 MHz is chosen to match the nominal acousto-

optic frequency shift. A tiled-aperture is formed using a 90◦ prism with reflecting legs,

and its far-field distribution is imaged onto a phosphor-coated CCD camera with a

lens.

Intensity distributions of the individual channels, as well as that of the locked

aperture are shown in figure 6.14. The path lengths are nominally matched, with

l12 = 20 mm. This level of path-length matching is easily achieved. We observe, in

the locked state, a twofold narrowing of the central lobe and an associated increase

in the peak lobe intensity. The phases of the individual emitters track the phases of

the DDS oscillators, and we are therefore able to electronically steer the combined

beam. Intensity distributions corresponding to relative DDS phases of θos,12 = 0, π/2,

π, and 3π/2 radians are shown in figure 6.15.

We extract the time-dependent phase differences between the reference and ampli-

fier channels from the two photodetector signals. The phase differences corresponding

to the four values of θos,12 are shown figure 6.16. As expected, the OPLL phases, and

hence the phases of the individual chirped waves track the DDS setpoint.

To characterize performance, we consider three path-length matching cases, sum-

marized in Table 6.2. The I/Q technique yields the residual phase errors, δθr1(t) and

δθr2(t). The time-domain combining phase error is then calculated using equation
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Figure 6.14: Far-field intensity distributions of the individual channels and the locked
aperture. τr1 = −19 mm, and τr2 = 1 mm
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Figure 6.15: Steering of the combined beam through emitter phase control. θos,12 is
the relative DDS phase.
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Figure 6.16: I/Q-demodulated phase differences between the amplifier channels and
the reference. θos,12 is the relative DDS phase.

(6.21). The standard deviations σxy =
√
〈δθ2

xy(t)〉t of all three phase errors, along

with the phase-noise-limited fringe visibilities are listed in table 6.2. The visibilities

are calculated from the standard deviations σ12 using a Gaussian phase noise model,

as described in appendix B.

The first case (nominally path-length-matched) has the lowest combining error,

which is consistent with equation (6.22). The second and third cases have nearly

identical amplifier path-length mismatches and exhibit nearly identical combining

phase errors. This is consistent with the prediction that the residual combining error

is determined solely by the mismatch between the amplifier channels.

The phase-noise-limited fringe visibility for the path-length-matched case is al-

most 99%, yet the fringe visibility in figure 6.14 is only about 80%. We believe the

discrepancy is due to the wavefront distortions introduced by the collimators and the

prism reflectors.

6.5 Summary

We have analyzed and experimentally demonstrated the phase-locking of chirped

optical waves in a master oscillator power amplifier configuration. The precise chirp

linearity of the optoelectronic SFL enables non-mechanical compensation of optical

delays using acousto-optic frequency shifters, and is at the heart of our chirped phase-

locking and coherent-combining systems.



132

We have demonstrated heterodyne phase-locking of optical waves with a chirp

rate of 5 × 1014 Hz/sec at 1550 nm, achieving a loop bandwidth of 60 kHz and a

phase error variance less than 0.01 rad2. We used the heterodyne OPLL architecture

to construct a dual-channel passive-fiber coherent beam combining experiment, and

have demonstrated coherent combining and electronic beam steering of chirped optical

waves.

We have also implemented and characterized a 1550 nm chirped-seed amplifier

coherent-combining system. We used a chirp rate of 5× 1014 Hz/sec, which resulted

in a threefold increase of the amplifier SBS threshold, when compared to a single-

frequency seed. We demonstrated efficient phase-locking and electronic beam steering

of two 3 W erbium-doped fiber amplifier channels. We achieved temporal phase noise

levels corresponding to fringe visibilities exceeding 90% at path-length mismatches of

≈ 300 mm, and exceeding 98% at a path-length mismatch of 20 mm.

The optoelectronic SFL has the potential to significantly increase the achievable

output power from a single fiber amplifier by increasing its SBS threshold. Coherent

beam combining techniques developed in this chapter can be used to efficiently com-

bine multiple chirped amplifier outputs, without imposing strict path-length matching

requirements, presenting a viable path towards high-power continuous-wave sources.

Case Differential delay (mm)a Phase error (mrad) Fringe visibility

τr1 τr2 τ12 σr1 σr2 σ12 V = e−σ
2
12/2

1 −19 1 20 118 79.3 160 98.7%

2 110 450 340 184 531 428 91.3%

3 −118 220 338 150 273 410 92.0%

aThese are fiber lengths corresponding to the time delays between the different
paths. Actual mismatches have both free-space and fiber components.

Table 6.2: OPLL phase errors and phase-noise-limited fringe visibilities in the dual-
channel active CBC experiment


