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Abstract

This thesis explores the design, construction, and applications of the optoelectronic

swept-frequency laser (SFL). The optoelectronic SFL is a feedback loop designed

around a swept-frequency (chirped) semiconductor laser (SCL) to control its instan-

taneous optical frequency, such that the chirp characteristics are determined solely by

a reference electronic oscillator. The resultant system generates precisely controlled

optical frequency sweeps. In particular, we focus on linear chirps because of their

numerous applications. We demonstrate optoelectronic SFLs based on vertical-cavity

surface-emitting lasers (VCSELs) and distributed-feedback lasers (DFBs) at wave-

lengths of 1550 nm and 1060 nm. We develop an iterative bias current predistortion

procedure that enables SFL operation at very high chirp rates, up to 1016 Hz/sec. We

describe commercialization efforts and implementation of the predistortion algorithm

in a stand-alone embedded environment, undertaken as part of our collaboration

with Telaris, Inc. We demonstrate frequency-modulated continuous-wave (FMCW)

ranging and three-dimensional (3-D) imaging using a 1550 nm optoelectronic SFL.

We develop the technique of multiple source FMCW (MS-FMCW) reflectometry,

in which the frequency sweeps of multiple SFLs are “stitched” together in order to

increase the optical bandwidth, and hence improve the axial resolution, of an FMCW

ranging measurement. We demonstrate computer-aided stitching of DFB and VCSEL

sweeps at 1550 nm. We also develop and demonstrate hardware stitching, which

enables MS-FMCW ranging without additional signal processing. The culmination

of this work is the hardware stitching of four VCSELs at 1550 nm for a total optical

bandwidth of 2 THz, and a free-space axial resolution of 75 µm.

We describe our work on the tomographic imaging camera (TomICam), a 3-D
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imaging system based on FMCW ranging that features non-mechanical acquisition

of transverse pixels. Our approach uses a combination of electronically tuned opti-

cal sources and low-cost full-field detector arrays, completely eliminating the need for

moving parts traditionally employed in 3-D imaging. We describe the basic TomICam

principle, and demonstrate single-pixel TomICam ranging in a proof-of-concept exper-

iment. We also discuss the application of compressive sensing (CS) to the TomICam

platform, and perform a series of numerical simulations. These simulations show

that tenfold compression is feasible in CS TomICam, which effectively improves the

volume acquisition speed by a factor ten.

We develop chirped-wave phase-locking techniques, and apply them to coherent

beam combining (CBC) of chirped-seed amplifiers (CSAs) in a master oscillator power

amplifier configuration. The precise chirp linearity of the optoelectronic SFL enables

non-mechanical compensation of optical delays using acousto-optic frequency shifters,

and its high chirp rate simultaneously increases the stimulated Brillouin scattering

(SBS) threshold of the active fiber. We characterize a 1550 nm chirped-seed amplifier

coherent-combining system. We use a chirp rate of 5 × 1014 Hz/sec to increase the

amplifier SBS threshold threefold, when compared to a single-frequency seed. We

demonstrate efficient phase-locking and electronic beam steering of two 3 W erbium-

doped fiber amplifier channels, achieving temporal phase noise levels corresponding

to interferometric fringe visibilities exceeding 98%.
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Chapter 1

Overview and Thesis Organization

1.1 Introduction

This thesis focuses on the construction and applications of the optoelectronic swept-

frequency laser (SFL)—a feedback system that enables closed-loop control over the

instantaneous optical frequency of a chirped semiconductor laser (SCL) [1–3]. Even

though our feedback architecture is laser-agnostic, we restrict our attention to SCL

diodes because of their small size, high wall-plug efficiency, and superior sub-MHz

linewidths. The wide gain bandwidth of semiconductor quantum wells, the ability to

fabricate SCLs with precisely controlled emission frequencies [4], and the fact that

SCLs can be frequency tuned with current [5] enable broadband and agile coverage

of the optical spectrum. These properties uniquely position the SCL as the device

of choice for a range of high-fidelity applications, such as optical phase-locking and

coherent combining [6–12], ranging and 3-D imaging [1,13,14], and spectroscopy and

chemical sensing [6, 15]. The design and construction of the optoelectronic SFL is

discussed in chapter 3.

The optoelectronic SFL can be configured to generate chirps with any arbitrary

optical frequency vs. time profile, subject to the tunability of the SCL in its core.

Precisely linear frequency sweeps are of particular interest because of their appli-

cations in optical frequency-modulated continuous-wave (FMCW) reflectometry and

3-D imaging, as described in chapter 2, and chirped-seed phase-locking, as described

in chapter 6. Building on our group’s expertise in the field of phase and frequency
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control of SCLs, we develop applications that take advantage of the unique properties

of the SCL-based optoelectronic SFL. These applications can be subdivided into two

categories: ranging and 3-D imaging using FMCW reflectometry, and coherent beam

combining (CBC) of chirped-seed amplifiers (CSAs).

1.2 Ranging and 3-D Imaging Applications

The fundamental challenge of 3-D imaging is ranging—the retrieval of depth infor-

mation from a scene or a sample. One way to construct a 3-D imaging system is

to launch a laser beam along a particular axis, and collect the reflected light, in an

effort to determine the depths of all the scatterers encountered by the beam as it

propagates. A 3-D image may then be recorded by scanning the beam over the entire

object space.

A conceptually simple way to retrieve depth information is to launch optical pulses,

and record arrival times of the reflections. Scatterer depth can then be calculated

by multiplying the arrival times by the speed of light c. Implementations based on

this idea, collectively known as time-of-flight (TOF) systems, have been successfully

demonstrated [16, 17]. The depth resolution, also called range resolution or axial

resolution, of TOF methods depends on the system detection bandwidth, with 1 GHz

yielding a resolution of ∆z ∝ c × (1 ns) = 30 cm in free space. Improvement of the

resolution to the sub-mm range requires detectors with 100s of GHz of bandwidth,

and is prohibitively expensive with current technology.

1.2.1 Optical FMCW Reflectometry

The technique of frequency-modulated continuous-wave (FMCW) reflectometry, orig-

inally developed for radio detection and ranging (radar), can be applied to the optical

domain to circumvent the detector bandwidth limit by using a swept-frequency optical

waveform. Systems utilizing FMCW reflectometry, also known as swept-source optical

coherence tomography (SS-OCT) in the biomedical optics community, are capable of
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resolutions of a few µm with low detection bandwidths. As a result, FMCW reflectom-

etry has found numerous applications, e.g. light detection and ranging (lidar) [18,19],

biomedical imaging [20,21], non-contact profilometry [22,23] and biometrics [24,25].

The FMCW technique is analyzed in full detail in chapter 2, and in chapter

3 we apply the optoelectronic SFL to FMCW imaging and demonstrate a simple

profilometry application.

1.2.2 Multiple Source FMCW Reflectometry

In chapter 4 we describe multiple source FMCW (MS-FMCW) reflectometry—a novel

imaging approach aimed at increasing the effective bandwidth of an FMCW rang-

ing system. This is achieved by combining, or stitching, separate swept-frequency

lasers (SFLs), to approximate a swept-source with an enhanced bandwidth [13,14,19].

The result is an improvement in the range resolution proportional to the increase in

the swept-frequency range. This technique is of particular interest in the context of

the SCL-based optoelectronic SFL. MS-FMCW leverages narrow SCL linewidths to

present a pathway towards long-distance ranging systems with sub-100 µm resolu-

tions.

1.2.3 The Tomographic Imaging Camera

FMCW reflectometry enables the retrieval of depth information from a single lo-

cation in the transverse plane. One way to acquire a full 3-D data set is through

mechanical raster-scanning of the laser beam across the object space. The acqui-

sition time in such systems is ultimately limited by the scan speed, and for very

high resolution datasets (> 1 transverse mega pixel) is prohibitively slow. Rapid 3-D

imaging is of crucial importance in in vivo biomedical diagnostics [21, 26] because

it reduces artifacts introduced by patient motion. In addition, a high-throughput,

non-destructive 3-D imaging technology is necessary to meet the requirements of sev-

eral new industrial developments, including 3-D printing and manufacturing [27], 3-D

tissue engineering [28–30], and 3-D cell cultures and tissue models [31].
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In chapter 5 we discuss the tomographic imaging camera (TomICam), which com-

bines FMCW ranging with non-mechanical transverse imaging, enabling robust, large

field of view, and rapid 3-D imaging. We also discuss the application of compressive

sensing (CS) to the TomICam platform. CS is an acquisition methodology that takes

advantage of signal structure to compress and sample the information in a single

step. It is of particular interest in applications involving large data sets, such as 3-D

imaging, because compression reduces the volume of information that is recorded by

the sensor, effectively speeding up the measurement.

1.3 Phase-Locking and Coherent Combining of

Chirped Optical Waves

In chapter 6, we switch gears and discuss our work on the phase-locking of and

coherent combining of chirped optical waves. The phase-locking of optical waves

with arbitrary frequency chirps is a difficult problem in general. However, precisely

linear chirps, such as the ones generated by the optoelectronic SFL can be phase-

locked with very high efficiency using a frequency shifter. The main application of

this result is the simultaneous stimulated Brillouin scattering (SBS) suppression and

coherent combining of high-power fiber amplifiers.

The output power of optical fiber amplifiers is usually limited by SBS. Conven-

tional methods to suppress SBS by increasing its threshold include the broadening

of the seed laser linewidth through high-speed phase modulation. The increase in

the amplifier SBS threshold comes at the expense of the seed coherence length [32],

which places strict path-length matching requirements on the scaling of optical power

through coherent combining of multiple amplifiers. Efficient coherent combining of

such amplifiers has been demonstrated, but requires careful path-length matching to

submillimeter accuracy [33,34].

In chapter 6 we explore an architecture capable of SBS suppression and coherent

combining without stringent mechanical path-length matching requirements. Our
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approach is to use the optoelectronic SFL as the amplifier seed, in order to reduce

the effective length over which SBS occurs [35, 36]. We develop a chirped phase-

locking technique and demonstrate its use in coherent beam combining of multiple

chirped-seed amplifiers. Path-length matching requirements are relaxed due to the

long coherence length (10s of meters) of semiconductor laser based SFLs.

The work described in chapter 6 was performed in collaboration with Jeffrey O.

White’s group at the United States Army Research Laboratory.



6

Chapter 2

Optical FMCW Reflectometry

2.1 Introduction

The centerpiece and workhorse of the research described in this thesis is the optoelec-

tronic swept-frequency laser (SFL)—a feedback system designed around a frequency-

agile laser to produce precisely linear optical frequency sweeps (chirps) [1–3]. This sys-

tem is studied in detail in chapter 3. In the present chapter, by way of introduction, we

focus on an application of swept-frequency waveforms, optical frequency-modulated

continuous-wave (FMCW) reflectometry, and its use in three-dimensional (3-D) imag-

ing. We examine how chirp characteristics affect application metrics and therefore

motivate the choices made in the design of the optoelectronic SFL.

The fundamental challenge of 3-D imaging is ranging—the retrieval of depth in-

formation from a scene or a sample. One way to construct a 3-D imaging system

is to launch a laser beam along a particular axis, and collect the reflected light, in

an effort to determine the depths of all the scatterers encountered by the beam as it

propagates. A 3-D image may then be recorded by scanning the beam over the entire

object space.

A conceptually simple way to retrieve depth information is to launch optical pulses,

and record arrival times of the reflections. Scatterer depth can then be calculated

by multiplying the arrival times by the speed of light c. Implementations based on

this idea, collectively known as time-of-flight (TOF) systems, have been successfully

demonstrated [16, 17]. The depth resolution, also called range resolution or axial
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resolution, of TOF methods depends on the system’s ability to generate and record

temporally narrow optical pulses. A state-of-the-art TOF system therefore requires a

costly pulse source, e.g., a mode-locked laser, and a high-bandwidth detector [37]. A

detection bandwidth of 1 GHz yields a resolution of ∆z ∝ c× (1 ns) = 30 cm in free

space. Improvement of the resolution to the sub-mm range requires detectors with

100s of GHz of bandwidth, and is prohibitively expensive with current technology.

The technique of frequency-modulated continuous-wave (FMCW) reflectometry,

originally developed for radio detection and ranging (radar), can be applied to the op-

tical domain to circumvent the detector bandwidth limit by using a swept-frequency

optical waveform. Systems utilizing FMCW reflectometry, also known as swept-source

optical coherence tomography (SS-OCT) in the biomedical optics community, are ca-

pable of resolutions of a few µm with low detection bandwidths. Moreover, optical

FMCW is an interferometric technique in which the measured signal is proportional

to the reflected electric field, as opposed to the reflected intensity, as in the TOF

case. The signal levels due to a scatterer with reflectivity R < 1 are therefore propor-

tional to R and
√
R in TOF and FMCW systems, respectively. The combination of

higher signal levels due to electric field dependence, and lower noise due to low detec-

tion bandwidths results in a significantly higher dynamic range and sensitivity of the

FMCW system versus a TOF implementation [37,38]. As a result, FMCW reflectom-

etry has found numerous applications, e.g., light detection and ranging (lidar) [18,19],

biomedical imaging [20,21], non-contact profilometry [22,23] and biometrics [24,25].
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2.1.1 Basic FMCW Analysis and Range Resolution

Let us first examine the problem of recovering single-scatterer depth information using

a SFL. For simplicity, we consider a noiseless laser whose frequency changes linearly

with time. The normalized electric field at the source, for a single chirp period, is

given by

e(t) = rect

(
t− T/2
T

)
cos

(
φ0 + ω0t+

ξt2

2

)
, (2.1)

where T is the scan duration, ξ is the slope of the optical chirp, and φ0 and ω0 are

the initial phase and frequency, respectively. The rect function models the finite

time-extent of the chirp and is defined by:

rect(x) ≡


0, |x| > 1/2

1/2, |x| = 1/2

1, |x| < 1/2

(2.2)

The instantaneous optical frequency is given by the time derivative of the argument

of the cosine in equation (2.1)

ωSFL(t) =
d

dt

(
φ0 + ω0t+

ξt2

2

)
= ω0 + ξt (2.3)

The total frequency excursion of the source (in Hz) is then given by B = ξT/2π.

We illuminate a single scatterer with the chirped field, and collect the reflected light.

The time evolution of the frequencies of the launched and reflected beams is shown

in figure 2.1. Because the chirp is precisely linear, a scatterer with a round-trip time

delay τ (and a corresponding displacement cτ/2 from the source) results in constant

frequency difference ξτ between the launched and reflected waves.

The FMCW technique relies on a measurement of this frequency differences to de-

termine the time delay τ . This is accomplished in a straightforward way by recording

the time-dependent interference signal between the launched and reflected waves on

a photodetector. An FMCW measurement setup based on a Mach-Zehnder interfer-

ometer (MZI) is shown schematically in figure 2.2. Another common implementation
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ω
L

0

Figure 2.1: Time evolution of the optical frequencies of the launched and reflected
waves in a single-scatterer FMCW ranging experiment

is based on a Michelson interferometer, and is shown in figure 2.3. In both implemen-

tations, the sum of the electric fields of the launched and reflected waves is incident

on a photodetector. It is common to call the launched wave a local or a reference

wave, and we will use all three terms interchangeably (hence the reference arm and

reference mirror designations in the MZI and Michelson interferometer figures).

The normalized photocurrent is equal to the time-averaged intensity of the incident

beam, and is given by

i(t) =

〈∣∣∣e(t) +
√
Re(t− τ)

∣∣∣2〉
t

= rect

(
t− T/2
T

){
1 +R

2
+
√
R cos

[
(ξτ)t+ ω0τ −

ξτ 2

2

]}
,

(2.4)

where R is the target reflectivity, and we have assumed that τ << T . The averaging,

denoted by 〈·〉t, is done over an interval that is determined by the photodetector

response time, and is much longer than an optical cycle, yet much shorter than the

period of the cosine in equation (2.4). In the expressions that follow we drop the

DC term (1 + R)/2 for simplicity. It is convenient to work in the optical frequency
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Figure 2.2: Mach-Zehnder interferometer implementation of the FMCW ranging ex-
periment

Figure 2.3: Michelson interferometer implementation of the FMCW ranging experi-
ment
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domain, so we use equation (2.3) to rewrite the photocurrent as a function of ωSFL.

y(ωSFL) ≡ i

(
ωSFL − ω0

ξ

)
=
√
R rect

(
ωSFL − ω0 − πB

2πB

)
cos

(
ωSFLτ −

ξτ 2

2

)
.

(2.5)

The delay τ is found by taking the Fourier transform (FT) of y(ωSFL) with respect

to the variable ωSFL, which yields a single sinc function centered at the delay τ .

Y (ζ) ≡ FωSFL{y(ωSFL)} = πB
√
R exp

(
−j ξτ

2

2

)
exp [−j(ζ − τ)(ω0 + πB)] sinc [πB(ζ − τ)] ,

(2.6)

where ζ is the independent variable of the FT of y(ωSFL), and has units of time, and

sinc(x) = sinx
x

. Additionally, we only consider positive Fourier frequencies since the

signals of interest are purely real, and the FT therefore possesses symmetry about

ζ = 0.

A collection of scatterers along the direction of beam propagation arising, for

example, from multiple tissue layers in an SS-OCT application, results in a collection

of sinusoidal terms in the photodetector current, so that equation (2.6) becomes:

Y (ζ) = πB
∑
n

√
Rn exp

(
−j ξτ

2
n

2

)
exp [−j(ζ − τn)(ω0 + πB)] sinc [πB(ζ − τn)],

(2.7)

where τn and Rn are the round-trip time delay and the reflectivity of the n-th scat-

terer. Each scatterer manifests itself as a sinc function positioned at its delay, with a

strength determined by its reflectivity. The ζ-domain description is therefore a map

of scatterers along the axial direction.

The range resolution is traditionally chosen to correspond to the coordinate of the

first null of the sinc function in equation (2.6) [39]. The null occurs at ζ = τ + 1/B,

which corresponds to a free-space axial resolution

∆z =
c

2B
. (2.8)



12

The first constraint on the SFL is therefore the chirp bandwidth B—a large optical

frequency range is necessary in order to construct a high-resolution imaging system.

SS-OCT applications require resolutions below 10 µm in order to resolve tissue struc-

ture, and therefore make use of sources with bandwidths exceeding 10 THz.

An additional constraint on the imaging system is the need for precise knowledge of

the instantaneous optical frequency as a function of time—it was used in transforming

the photocurrent to the ω-domain. In the preceding analysis we have assumed a

linear frequency sweep. While chirp linearity is preferred since it simplifies signal

processing, it is not strictly necessary. As long as ωSFL(t) is known precisely, it is

still possible to transform the measured signal to the optical frequency domain, and

extract the scatterer depth information. Because most SFLs have nonlinear chirps,

it is common practice to measure the instantaneous chirp rate in parallel with the

measurement using a reference interferometer. A related technique relies on what is

called a k-clock—an interferometer that is used to trigger photocurrent sampling at

time intervals that correspond to equal steps in optical frequency [20]. The k-clock is

therefore a hardware realization of the ω-domain transformation.

While nonlinear chirps can be dealt with, they require faster electronics in order

to acquire the higher frequency photocurrents associated with a nonuniform chirp

rate. The optoelectronic SFL described in chapter 3 uses active feedback to enable

precise control of the instantaneous optical frequency. As a result, the chirp can be

programmed to be exactly linear in advance, allowing the use of a lower detection

bandwidth, and hence decreasing electronic noise in an FMCW measurement.

2.1.2 Balanced Detection and RIN

In the preceding FMCW analysis we have simplified the expressions by intentionally

leaving out DC contributions to the photocurrent. This simplification, while valid in

an ideal noiseless laser, needs further justification in a practical measurement. The

output intensity of laser systems varies due to external causes such as temperature and

acoustic fluctuations, and also due to spontaneous emission into the lasing mode [40].
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These intensity fluctuations scale with the nominal output intensity and are termed

relative intensity noise (RIN). In a laser with RIN, the terms which give rise to the

DC components of equation (2.4), also give rise to a noise component that we call

n(t). Equation (2.4) is therefore modified to

i(t) = rect

(
t− T/2
T

){(
1 +R

2
+ n(t)

)
+
√
R cos

[
(ξτ)t+ ω0τ −

ξτ 2

2

]}
. (2.9)

The term n(t) is a random variable whose statistics depend on the environmental

conditions, the type of laser used in the measurement, and on the frequency response

of the detection circuit. While the DC terms are readily filtered out, n(t) is broad-

band and can corrupt the signal. This corruption is particularly important when the

scatterers are weak and the signal level is low.

Balanced detection is a standard way to null the contribution of the DC terms and

RIN. It relies on the use of a 2x2 coupler and a pair of photodetectors to measure the

intensities of both the sum and the difference of the reference and reflected electric

fields. Mach-Zehnder interferometer (MZI) and Michelson interferometer balanced

FMCW implementations are shown in figure 2.4 and figure 2.5. These measurements

produce pairs of photocurrents

i±(t) = rect

(
t− T/2
T

){(
1 +R

2
+ n(t)

)
±
√
R cos

[
(ξτ)t+ ω0τ −

ξτ 2

2

]}
. (2.10)

Balanced processing consists of averaging the two photocurrents, yielding

idiff(t) ≡ i+(t)− i−(t)

2
= rect

(
t− T/2
T

)√
R cos

[
(ξτ)t+ ω0τ −

ξτ 2

2

]
. (2.11)

The DC and RIN terms are nulled in the subtraction, justifying the simplification

made earlier. However, small gain differences in the photodetector circuitry, as well

as slight asymmetries in the splitting ratio of the 2x2 coupler, result in a small amount

of residual DC and RIN being present in the balanced photocurrent. This places a

further constraint on the SFL—it is desirable that the laser possess a minimal amount

of RIN so as to limit the amount of noise left over after balancing, and therefore



14

Figure 2.4: A balanced Mach-Zehnder interferometer implementation of the FMCW
ranging experiment

Figure 2.5: A balanced Michelson interferometer implementation of the FMCW rang-
ing experiment
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enhance the measurement dynamic range.

2.1.3 Effects of Phase Noise on the FMCW Measurement

So far we have assumed an SFL with a perfectly sinusoidal electric field. Practical

lasers, however, exhibit phase and frequency noise. These fluctuations arise due

to both external causes, such as thermal fluctuations, as well as due to spontaneous

emission into the lasing mode [40]. These phenomena are responsible for a broadening

of the spectrum of the electric field of a laser. In this section we analyze the effects

of phase noise on the FMCW measurement. We begin by deriving the linewidth ∆ω

of single-frequency emission with phase noise. We then modify the FMCW equations

to account for phase noise, derive its effects on fringe visibility, and define the notion

of coherence time. To further quantify the effects of phase noise, we calculate the

FMCW photocurrent spectrum. It will turn out that phase noise degrades the signal-

to-noise ratio (SNR) with increasing target delay, putting a limit on the maximum

range that can be reliably measured. We conclude by deriving statistical properties

of the measurement accuracy, which help quantify system performance in a single-

scatterer application (for example, profilometry).

2.1.3.1 Statistics and Notation

We first review some useful statistical results and introduce notation. For a wide-sense

stationary random process x(t), we denote its autocorrelation function by Rx:

Rx(u) = E [x(t)x(t− u)] , (2.12)

where E [·] is the statistical expectation value. For an ergodic random process, the

expectation can be replaced by an average over all time, giving:

Rx(u) = 〈x(t)x(t− u)〉t , (2.13)
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By the Wiener–Khinchin theorem, the power spectral density (PSD) Sx(ω) and au-

tocorrelation Rx(u) are FT pairs.

Sx(ω) = Fu [Rx(u)] =

∫ ∞
−∞
Rx(u)e−iωudu, (2.14)

where Fu [·] is the Fourier transform with respect to the variable u. We denote the

variance of x(t) by σ2
x. For an ergodic process, the variance may be calculated in the

time domain:

σ2
x =

〈
x(t)2

〉
t
− 〈x(t)〉2t . (2.15)

Alternatively, it may be calculated by integrating the PSD:

σ2
x =

1

2π

∫ ∞
−∞
Sx(ω)dω. (2.16)

2.1.3.2 Linewidth of Single-Frequency Emission

We first derive a standard model for the spontaneous emission linewidth of a single-

frequency laser [41]. The electric field is given by

e(t) = cos [ω0t+ φn(t)] , (2.17)

where φn(t) is a zero-mean stationary phase noise term. Plugging this expression into

equation (2.13), we find the autocorrelation.

Re(u) = 〈cos [ω0t+ φn(t)] cos [ω0(t− u) + φn(t− u)]〉t

=
1

2
〈cos [ω0u+ ∆φn(t, u)]〉t +

hhhhhhhhhhhhhhhhhhhhh

1

2
〈cos [2ω0t− ω0u+ φn(t) + φn(t− u)]〉t,

(2.18)

where the sum term is crossed out because it averages out to zero. ∆φn(t, u) is the

accumulated phase error during time u, defined by

∆φn(t, u) ≡ φn(t)− φn(t− u), (2.19)
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and is the result of a large number of independent spontaneous emission events. By

the central limit theorem, ∆φn(t, u) must be a zero-mean Gaussian random variable.

The following identities therefore apply:

〈cos [∆φn(t, u)]〉t = exp

[
−
σ2

∆φn
(u)

2

]
, and 〈sin [∆φn(t, u)]〉t = 0. (2.20)

So, equation (2.18) simplifies to

Re(u) =
1

2
cos(ω0u) exp

[
−
σ2

∆φn
(u)

2

]
. (2.21)

Taking the FT of equation (2.21), we find the spectrum of the electric field,

Se(ω) =
1

4
[S◦e (ω − ω0) + S◦e (ω + ω0)] , (2.22)

where S◦e (ω) is the baseband spectrum given by

S◦e (ω) = Fu
{

exp

[
−
σ2

∆φn
(u)

2

]}
. (2.23)

To determine the emission lineshape we first consider the variance of the accumulated

phase error. We start by expressing the autocorrelation of ∆φn(t, u) in terms of the

autocorrelation of φn(t). Using equation (2.13) and equation (2.19),

R∆φn(s, u) = 〈∆φn(t, u)∆φn(t− s, u)〉t = 2Rφn(s)−Rφn(s+u)−Rφn(s−u). (2.24)

The PSD is given by

S∆φn(ω, u) = Fs [R∆φn(s, u)] = Sφn(ω)
(
2 + ejωu + e−jωu

)
= 4Sφn(ω) sin2(ωu) = 4u2S .

φn
(ω)sinc2(ωu),

(2.25)

where S .
φn

(ω) = ω2Sφn(ω) is the spectrum of the frequency noise
.
φn. Spontaneous

emission into the lasing mode gives rise to a flat frequency noise spectrum [40, 42],
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and we therefore assign a constant value to S .
φn

(ω),

S .
φn

(ω) ≡ ∆ω. (2.26)

We plug equation (2.25) and equation (2.26) into equation (2.16) to calculate the

variance of the accumulated phase error.

σ2
∆φn(u) =

1

2π

∫ ∞
−∞
S∆φn(ω, u)dω

=
1

2π

∫ ∞
−∞

4u2∆ω sinc2(ωu)dω

= |u|∆ω.

(2.27)

Plugging this result into equation (2.23), we obtain the baseband spectrum of the

electric field.

S◦e (ω) = Fu
{

exp

[
−
σ2

∆φn
(u)

2

]}
= Fu

[
exp

(
−|u|∆ω

2

)]
=

∆ω

(∆ω/2)2 + ω2
.

(2.28)

The presence of phase noise broadens the baseband spectrum from a delta function

to a Lorentzian function with a full width at half maximum (FWHM), or linewidth,

of ∆ω.

To summarize, a flat frequency noise spectrum with a value of ∆ω corresponds to

a linewidth of ∆ω.

S .
φn

(ω) = ∆ω ⇐⇒ linewidth ∆ω (rad/s) (2.29)

So far we have been using angular frequency units (rad/s) for both frequency noise and

linewidth. Ordinary frequency units (Hz) are often used, so we convert the relation

in equation (2.29) to

S .
φn
2π

(ν) =
1

(2π)2
S .
φn

(2πν) =
∆ν

2π
⇐⇒ linewidth ∆ν =

∆ω

2π
(Hz), (2.30)



19

where ν = ω/(2π) is the Fourier frequency in Hz. In practice, there are other noise

sources that give rise to a 1/f behavior of the frequency noise spectrum. It has been

shown that such noise sources generate a Gaussian lineshape [43].

As an exercise, we numerically verify equation (2.30) using a Monte Carlo simu-

lation. We model a flat angular frequency noise spectrum by drawing samples from

a zero-mean Gaussian distribution. These frequency noise samples are integrated in

time, and the cosine of the resultant phase noise is calculated. The PSD of this signal

therefore corresponds to half the baseband spectrum of equation (2.28). Each itera-

tion of this procedure is performed over a finite time T , and therefore yields only an

estimate of the true PSD. If the angular frequency resolution 2π/T is much smaller

than the angular linewidth ∆ω, the mean of this estimate, over many iterations, will

converge to equation (2.28) [44].

Estimates of baseband electric field spectra corresponding to S .
φn

(ω) = 2π(1 MHz)

are shown in blue in figure 2.6. As the number of iterations N used in the calculation

is increased, the simulated PSD converges to the true PSD of equation (2.28), shown

in red. Simulated frequency noise spectra and corresponding baseband lineshapes

for three different values of ∆ω are plotted in figure 2.7, illustrating the relation of

equation (2.29).

2.1.3.3 Fringe Visibility in an FMCW Measurement

We continue or analysis by modifying the chirped electric field in equation (2.1) to

include phase noise,

e(t) = rect

(
t− T/2
T

)
cos

(
φ0 + ω0t+

ξt2

2
+ φn(t)

)
, (2.31)

and assume a perfect reflector (R = 1). The photocurrent is therefore given by

i(t) = rect

(
t− T/2
T

){
1 + cos

[
(ξτ)t+ ω0τ −

ξτ 2

2
+ ∆φn(t, τ)

]}
, (2.32)
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Figure 2.6: Convergence of the Monte Carlo simulation of the baseband electric field
spectrum (blue) to the theoretical expression (red). The angular linewidth is ∆ω =
2π(1 MHz). N is the number of iterations used in calculating the PSD estimate.
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Figure 2.7: Normalized frequency noise spectra (top panel) and corresponding base-
band electric field spectra (bottom panel) for ∆ω = 2π(900 kHz) (black), 2π(300 kHz)
(blue), and 2π(100 kHz) (green). The spectra are averaged over N=1000 iterations.
The red curves are plots of the theoretical lineshape for the three values of ∆ω.
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where ∆φn(t, τ) is the familiar accumulated phase error during time τ . In the noiseless

case, the oscillations (fringes) in the photocurrent extend from 0 to 2. The presence

of phase noise will add jitter to the locations of the peaks and troughs. The ampli-

tude of the fringes, averaged over many scans, is therefore expected to decrease with

increasing phase noise. To quantify this effect, we define the fringe visibility

V ≡ imax − imin
imax + imin

, (2.33)

where imax and imin are the photocurrent values at the peaks and troughs, averaged

over many scans. The visibility takes on a value of 1 in the noiseless case, and goes

to zero as the amount of noise increases. Using the identities in equation (2.20), we

write down expressions for the maximum and minimum currents,

imax = 1 + exp

[
−
σ2

∆φn
(τ)

2

]
, and

imin = 1− exp

[
−
σ2

∆φn
(τ)

2

]
.

(2.34)

Plugging in equation (2.27) and equation (2.34) into equation (2.33), we arrive at an

expression for the phase-noise-limited visibility [45],

V = exp

(
−|τ |∆ω

2

)
= exp

(
−|τ |
τc

)
, (2.35)

where

τc ≡
2

∆ω
=

1

π∆ν
(2.36)

is the coherence time of the SFL. For delays much shorter than the coherence time,

the visibility decreases linearly with τ . Once τ is comparable to τc, the visibility

drops exponentially. The coherence time is therefore a measure of the longest range

that can be acquired by an FMCW system.
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2.1.3.4 Spectrum of the FMCW Photocurrent and the SNR

The signal-to-noise ratio (SNR) is more useful in quantifying the effect of phase noise

than the visibility. To determine the SNR we must first calculate the photocurrent

spectrum. We assume a balanced detector and disregard, for now, the rect function

that models the finite chirp bandwidth of the SFL. The photocurrent expression

becomes

i(t) =
√
R cos

[
(ξτ)t+ ω0τ −

ξτ 2

2
+ ∆φn(t, τ)

]
. (2.37)

Plugging this expression into equation (2.13), we find the autocorrelation,

Ri(u) =
R

2
〈cos [(ξτ)u+ ∆φn(t, τ)−∆φn(t− u, τ)]〉t

=
R

2
〈cos [(ξτ)u+ θ(t, τ, u)]〉t

=
R

2
cos [(ξτ)u] exp

[
−σ

2
θ(τ, u)

2

]
,

(2.38)

where

θ(t, τ, u) ≡ ∆φn(t, τ)−∆φn(t− u, τ), (2.39)

and we have assumed that θ(t, τ, u) possesses Gaussian statistics. Taking the FT of

equation (2.38), we find the spectrum of the photocurrent.

Si(ω) =
1

4
[S◦i (ω − ξτ) + S◦i (ω + ξτ)] , (2.40)

where S◦i (ω) is the baseband spectrum given by

S◦i (ω) = Fu
{

exp

[
−
σ2
θ(τ,u)

2

]}
. (2.41)

To find the baseband spectrum and the SNR we need to calculate the variance of

θ(t, τ, u). First we derive a useful identity. Let us write down the variance of ∆φn(t, u),
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as it is defined in equation (2.15),

σ2
∆φn(u) =

〈
[φn(t)− φn(t− u)]2

〉
t

= 2σ2
φn − 2 〈φn(t)φn(t− u)〉t .

(2.42)

This gives us an expression for the autocorrelation of φn(t),

Rφ(u) = 〈φn(t)φn(t− u)〉t = σ2
φn −

σ2
∆φn

(u)

2
. (2.43)

We plug this result into equation (2.24),

R∆φn(s, u) = 2Rφn(s)−Rφn(s+ u)−Rφn(s− u)

=
σ2

∆φn
(s+ u)

2
+
σ2

∆φn
(s− u)

2
− σ2

∆φn(s)

. (2.44)

We are now in a position to calculate the variance of θ(t, τ, u). Beginning with the

definition in equation (2.15),

σ2
θ(τ, u) =

〈
[∆φn(t, τ)−∆φn(t− u, τ)]2

〉
t

=
〈
∆φn(t, τ)2 + ∆φn(t− u, τ)2 − 2∆φn(t, τ)∆φn(t− u, τ)

〉
t

= 2σ2
∆φn(τ)− 2R∆φn(u, τ).

(2.45)

Plugging in equation (2.44), we arrive at

σ2
θ(τ, u) = 2σ2

∆φn(τ) + 2σ2
∆φn(u)− σ2

∆φn(u+ τ)− σ2
∆φn(u− τ). (2.46)

Using the result of equation (2.27), we write down a final expression for the vari-

ance of θ(t, τ, u),

σ2
θ(τ, u) = ∆ω (2τ + 2|u| − |u− τ | − |u+ τ |)

=


4|u|
τc

|u| ≤ τ,

4τ

τc
|u| > τ.

(2.47)
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The baseband photocurrent spectrum is found by plugging equation (2.47) into equa-

tion (2.41), yielding [46,47]

S◦i (ω) = Fu
{

exp

[
−
σ2
θ(τ,u)

2

]}

= 2πδ(ω)e−
2τ
τc +

τc

1 +
(
ωτc
2

)2

{
1− e− 2τ

τc

[
cos(ωτ) +

2

ωτc
sin(ωτ)

]}
.

(2.48)

This expression has two terms—the delta function that represents the beat signal

due to an interference of the reference and reflected beams, and the noise pedestal

that arises as a result of the finite coherence time of the chirped beam. Each FMCW

measurement is performed over a finite time T , and its PSD is therefore only an

estimate of equation (2.48). The expected spectrum is given by the convolution of

equation (2.48) and the PSD of the rect function that accompanies the electric field

of equation (2.31) [44],

S◦i (ω, T ) =
1

2π
S◦i (ω) ?

[
T sinc2

(
Tω

2

)]
= T sinc2

(
Tω

2

)
e−

2τ
τc +

τc

1 +
(
ωτc
2

)2

{
1− e− 2τ

τc

[
cos(ωτ) +

2

ωτc
sin(ωτ)

]}
.

(2.49)

In performing this convolution we have assumed that the scan time is the slowest

time scale in the model, i.e., T � τ and T � τc, so that the sinc-squared PSD of the

rect function effectively acts as a delta function when convolved with the spectrum of

the noise pedestal. Plots of equation (2.49) for four different values of τ/τc are shown

in figure 2.8. The scan time is T = 1 ms and the coherence time is τc = 1 µs. The

spectra are normalized to the level of the noise at ω = 0. In the coherent regime, i.e.,

τ � τc, the PSD comprises a sinc-squared signal peak and a broad noise pedestal

with oscillations. The period of these oscillations is given by 2π/τ . As the delay is

increased, the signal peak shrinks, and the noise pedestal grows, until we obtain a

Lorentzian profile with a FWHM of 2∆ω. This is what we expect for a beat spectrum

of two uncorrelated beams with a linewidth of ∆ω each.
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Figure 2.8: Baseband FMCW photocurrent spectra for four different values of τ/τc,
normalized to zero-frequency noise levels. The scan time is T = 1 ms and the coher-
ence time is τc = 1 µs.
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The SNR is readily calculated from equation (2.49), and is given in decibel units

by

SNRdB = 10 log10

T
τi
× 1

e2τ/τc −
(

1 + 2τ
τc

)
 . (2.50)

A plot of the SNR versus τ/τc is shown in figure 2.9 for three different values of

T/τc. In the coherent regime, the SNR decreases at 20 dB/decade with τ/τc, and

drops sharply for τ > τc. This is consistent with the rapid decrease in visibility

for delays longer than the coherence time, as predicted by equation (2.35). As the

current analysis shows, the visibility is not the full story—even low fringe visibilities

can result in a decent SNR, provided that the scan time T is long enough.

2.1.3.5 Phase-Noise-Limited Accuracy

The axial resolution of an FMCW system, ∆z = c/2B, quantifies its ability to tell

apart closely-spaced scatterers. If we assume that the beam only encounters a single

scatterer, as it would in a profilometry application, then the relevant system metric

is the accuracy—the deviation of the measured target delay τm from the true target

delay τ . We briefly consider statistical properties of the accuracy using the phase

noise model developed above.

The instantaneous photocurrent frequency in a single-scatterer FMCW experi-

ment is given by a derivative of the cosine phase in equation (2.37),

ωPD(t) = ξτ +
d

dt
∆φn(t, τ). (2.51)

The target delay is calculated from an average of the photocurrent frequency over the

scan time T ,

ξτm =
1

T

∫ T

0

ωPD(t) = ξτ +
∆φn(T, τ)−∆φn(0, τ)

T
. (2.52)
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The accuracy is therefore given by

δτ ≡ τm − τ =
∆φn(T, τ)−∆φn(0, τ)

B
. (2.53)

The accuracy of a single measurement is a zero-mean random process with standard

deviation

σδτ =
1

B

√
4τ

τc
, (2.54)

where we have used equation (2.39) and equation (2.47). Likewise, the depth accuracy

δz is characterized by the standard deviation

σδz =
c

2B

√
4τ

τc
= ∆z

√
4τ

τc
. (2.55)

Equation (2.55) shows that by operating in the sub-coherent regime, τ � τc, it is

possible to measure spatial features on a scale that is much finer than the axial

resolution. We come back to this idea in section 3.5.2, where we are able to record

surface variations on a scale of a few tens of microns using an FMCW system with

an axial resolution of 300 µm.

2.1.4 Summary

We have introduced the technique of optical frequency-modulated continuous-wave

reflectometry and outlined its advantages over TOF ranging in 3-D imaging applica-

tions. We have derived the dependence of axial resolution on the chirp bandwidth

and introduced balanced detection as a way to mitigate intensity noise. We have

shown that SFL linewidth puts an upper limit on the target range, introduced sys-

tem performance metrics, and derived the dependence of these metrics on the SFL

coherence length, target delay, and scan time.

An ideal SFL will possess a narrow linewidth, linear frequency tuning, high chirp

bandwidth, and a low RIN. The semiconductor laser (SCL)-based optoelectronic SFL

attains these qualities without moving parts, and is studied in detail in chapter 3.
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Chapter 3

The Optoelectronic
Swept-Frequency Laser

3.1 Introduction

In this chapter we study the optoelectronic swept-frequency laser (SFL)—a feedback

system that enables closed-loop control over the instantaneous optical frequency of a

chirped semiconductor laser (SCL). Precisely linear frequency sweeps are of particular

interest because of their applications in optical frequency-modulated continuous-wave

(FMCW) reflectometry and 3-D imaging, as described in chapter 2. The SFL is a key

component of an FMCW system since its characteristics directly affects important

performance metrics. Specifically, the axial resolution and the maximum range are

inversely proportional to the laser frequency tuning range and linewidth, respectively.

Mechanically tunable extended cavity lasers with large frequency excursions of

about 10 THz have been used in medical tomographic applications to achieve range

resolutions of about 10 µm [26, 48]. However, linewidths of tens of GHz, which are

typical for such devices, limit ranging depths to just a few mm [49, 50]. Moreover,

the mechanical nature of the frequency tuning limits the scan repetition rate and

adds overall system complexity. Commercially available semiconductor laser (SCL)

diodes, on the other hand, offer superior sub-MHz linewidths, corresponding to rang-

ing depths of a few hundred meters, and can be frequency tuned with current [5],

enabling precise chirp control with closed-loop feedback [1]. The small size and high
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wall-plug efficiency of these devices makes them attractive for hand-held applications.

The wide gain bandwidth of semiconductor quantum wells and the ability to fabricate

SCLs with precisely controlled emission frequencies [4] make possible sophisticated

imaging modalities such as multiple source FMCW [13,14], described in chapter 4.

In this chapter we begin by analyzing the SCL-based optoelectronic SFL. We

derive equations governing the SFL closed-loop operation, and describe a bias cur-

rent predistortion algorithm that improves the SFL linearity. We discuss the SCLs

that were used in our experiments and describe an amplitude control sub-system

that suppresses the intensity modulation of a current-tuned SCL. We demonstrate

closed-loop linear chirps at range of chirp rates and wavelengths, and show that the

optoelectronic SFL is capable of generating arbitrary chirp profiles. We describe our

collaborative efforts with Telaris Inc. to implement the feedback and predistortion

functionality on an embedded electronic platform and commercialize the SFL. We

conclude by demonstrating the use of the optoelectronic SFL in reflectometry and

profilometry applications.

3.2 System Analysis

A schematic diagram of the optoelectronic SFL is shown in figure 3.1. The system

comprises an SCL coupled to a Mach-Zehnder interferometer (MZI), a photodetector

at the MZI output, a mixer that compares the phases of the photocurrent and the

reference oscillator, and an integrator that processes the mixed-down signal and feeds

it back into the SCL. The MZI measures the instantaneous chirp slope, and the feed-

back loop locks it to a constant value that is determined by the reference frequency,

ensuring a perfectly linear chirp. An amplitude controller is used to keep the SCL

intensity constant as its frequency is tuned with input current. We begin our analy-

sis by noting an analogy between the SFL feedback and a phase-locked loop (PLL).

We then derive its steady-state operating point and analyze small-signal deviations in

the frequency domain. We introduce an iterative predistortion procedure that relaxes

constraints on the optoelectronic feedback and enables locking at high chirp rates.
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We conclude by discussing different SCL platforms and how they motivate the choice

of an amplitude control element.

Photodetector

×

~Reference 
oscillator

Semiconductor 
laser

Amplitude 
controller

System output

   

Predistorted bias 
current

Tap coupler

MZI

Figure 3.1: Schematic diagram of the SCL-based optoelectronic SFL

3.2.1 The Optoelectronic SFL as a PLL

We first demonstrate that the optoelectronic SFL acts like a phase-locked loop in the

small-signal approximation. We begin by assuming that the SCL bias current predis-

tortion is perfect, so that the output chirp is precisely linear. We will later remove this

assumption by treating post-predistortion residual nonlinearity as additional phase

noise. The electric field of a linear chirp is given by equation (2.1), replicated below

without the rect function that models the chirp’s finite duration:

e(t) = cos [φSFL(t)] , and φSFL(t) ≡ φ0 + ω0t+
ξt2

2
, (3.1)

where φSFL(t) is an overall electric field phase that is quadratic in time, ξ is the slope

of the optical chirp, and φ0 and ω0 are the initial phase and frequency, respectively.
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The instantaneous optical frequency is therefore the derivative of φSFL(t):

ωSFL(t) =
dφSFL(t)

dt
. (3.2)

A tap coupler is used to launch a small amount of the chirped light into a MZI with

delay τ . The beat signal between e(t) and e(t − τ) is measured by a photodetector,

so that its output current is given by:

iPD ∝ cos [φSFL(t)− φSFL(t− τ)]

≈ cos

(
τ
dφSFL
dt

)
= cos [φPD(t)] , and φPD(t) ≡ ωSFL(t)τ,

(3.3)

and we have ignored DC terms for simplicity. Equation (3.3) shows that if the MZI

delay is chosen small enough, the photocurrent phase φPD is proportional to the

instantaneous SCL frequency. Consider a small-signal δs(t) at the input to the inte-

grator in figure 3.1. Assuming that the integrated signal is small enough so that the

SCL tuning remains linear, the associated change in the photocurrent phase δφPD(t)

is given by:

δφPD(t) = δωSFL(t)τ ∝
∫ t

δs(u) du, (3.4)

where δωSFL(t) is the SCL frequency shift due to the additional bias current. The

photocurrent phase shift is proportional an integral of δs(t) in the small-signal ap-

proximation, which is the defining characteristic of an ideal voltage-controlled oscilla-

tor (VCO). The integrator, the SCL, the MZI, and the photodetector may therefore

be lumped together and treated as a VCO. These elements are highlighted in figure

3.2.

The action of the optoelectronic SFL is therefore to lock the phase of the effective

VCO to a reference electronic oscillator.

φLPD(t) = φREF (t) + 2πn =⇒ ωLSFL(t)τ = ωREF t+ φREF (0) + 2πn, n ∈ Z, (3.5)

where φREF (t) is the overall phase of the reference oscillator and ωREF is its fre-
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φPD(t)=ωSFL(t)τ  
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Figure 3.2: Elements of the optoelectronic SFL lumped together as an effective VCO

quency. We use the superscript L to denote quantities associated with the locked

state. The feedback maintains a precisely linear chirp with a chirp rate and initial

optical frequency given by

ξL =
ωREF
τ

and ωL0 =
φREF
τ

+ n
2π

τ
. (3.6)

We recognize that 2π
τ

is just the free spectral range (FSR) of the MZI. Equation

(3.5) describes a family of closed-loop linear chirp solutions indexed by the integer

n. The solutions are separated in optical frequency by the MZI FSR, and the choice

of a particular one depends on the free-running chirp parameters. Specifically, the

system will lock to the solution whose initial optical frequency most closely matches

the free-running optical frequency.

At the end of the scan the system is taken out of lock, and the SCL current is

brought back to its original value. The chirp is consequently re-started and lock

re-established. As a result, if the fluctuations in the free-running initial optical fre-

quency are great enough, for example, due to imperfect SCL temperature control,
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the SFL will lock to a different system solution during subsequent scans. To obtain

repeatable chirps, it is therefore necessary to choose the MZI FSR large enough, so

that fluctuations in the free-running chirp are localized around a single closed-loop

solution.

Mixer

Locked phase     
ΔφL            .

Integrator
1 / jω

Loop delay
e-jωτd 

MZI
jωτ 

Loop gain
K

  

SCL phase 
noise φn,SCL(ω) 

SCL
HFM(ω) / jω

Reference phase 
noise φn,REF(ω) 

MZI fluctuations 
φn,MZI(ω) 

SFL(ω)

Figure 3.3: Small-signal frequency-domain model of the optoelectronic SFL

3.2.2 Small-Signal Analysis

The preceding discussion establishes an analogy between the optoelectronic SFL and

a phase-locked loop. We now apply small-signal analysis [1, 51] to study fluctuations

about the locked state in the Fourier domain, with the Fourier frequency denoted

by ω. The small-signal model of the feedback loop is shown in figure 3.3. The loop

variable is the deviation of the optical phase from its steady-state value,

φLSFL(t) = φ0 +
φREF
τ

t+ n
2π

τ
t+

ωREF t
2

2τ
. (3.7)

The transfer function of the SCL is HFM (ω)
jω

, where HFM(ω) is the frequency modula-

tion (FM) response of the SCL, normalized to unity at DC, and 1
jω

results from the
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integral relationship between the SCL bias current and the optical phase. The FM

response of single-section SCLs is characterized by a competition between thermal

and electronic tuning mechanisms [52–55]. At low modulation frequencies, the opti-

cal frequency decreases with rising bias current due to increased junction heating. At

higher modulation frequencies, carrier tuning dominates, and the optical frequency is

increased with rising bias current. As a result, the FM response of the SCL undergoes

a phase reversal in the Fourier frequency range of 0.1 − 10 MHz. This phenomenon

is the dominant bandwidth limitation in the optoelectronic SFL [7,9].

For frequencies much smaller than its free spectral range, the MZI can be ap-

proximated as an ideal optical phase differentiator with gain τ (this is the same

approximation as in equation (3.3)) [56]. The total DC loop gain K is given by the

product of the gains of all the loop elements—laser, photodetector, mixer, integrator,

and other electronic circuits that are not explicitly shown. The loop propagation

delay τd is on the order of tens of ns. While it does add to the loop phase response at

higher frequencies, around the feedback bandwidth its contribution is small compared

to the phase acquired due to the SCL FM response.

The optical phase noise of the SCL and the optical phase excursion due to residual

nonlinearity are lumped together and denoted by φn,SCL(ω). The phase noise of the

reference oscillator and the phase noise introduced by environmental fluctuations

in the MZI are denoted by φn,REF (ω) and φn,MZI(ω), respectively. Going around

the loop, we write a frequency-domain expression for the locked phase deviation

∆φLSFL(ω) from the steady state.

∆φLSFL(ω) = φn,SCL(ω)−KHFM(ω)e−jωτd

ω2
[φn,REF (ω) + φn,MZI(ω)]

+Kτ
HFM(ω)e−jωτd

jω
∆φLSFL(ω)

(3.8)
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Solving for ∆φLSFL(ω) yields

∆φLSFL(ω) =
jω

jω +KτHFM(ω)e−jωτd
φn,SCL(ω)

+
1

jωτ
× KτHFM(ω)e−jωτd

jω +KτHFM(ω)e−jωτd
[φn,REF (ω) + φn,MZI(ω)] .

(3.9)

We observe that for frequencies within the loop bandwidth, the residual phase devi-

ation tracks the reference oscillator and MZI noise, suppressed by the term jωτ ,

∆φLSFL(ω � Kτ) ≈ φn,REF (ω) + φn,MZI(ω)

jωτ
. (3.10)

For frequencies outside the loop bandwidth, the residual phase deviation is given by

the free-running phase noise term,

∆φLSFL(ω � Kτ) ≈ φn,SCL(ω). (3.11)

From equation (3.10) it is clear that there are three considerations involved in the

generation of precisely linear chirps: (1) using an electronic oscillator with low phase

noise, (2) stabilizing the MZI against acoustic and thermal fluctuations, and (3)

picking a large τ .

High quality electronic oscillator integrated circuits are widely available. In our

systems we use direct digital synthesis (DDS) oscillators because they offer excellent

phase and frequency stability, precise control of the reference frequency, and broad

frequency tuning. The latter is useful in generating a wide range of chirp rates.

Active and passive interferometer stabilization techniques are well known, and

include locking the delay to a reference laser using a fiber stretcher [57], athermal

design of the MZI waveguides [58], and the use of vibration-damping polymers in

interferometer packaging [59], to name a few. In our systems we use fiber-based MZIs

packaged with sheets of Sorbothane R©.

The choice of MZI delay is constrained by the free-running frequency fluctuations

of the SCL, as discussed in section 3.2.1. In our systems we choose the largest
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τ that yields repeatable chirps from scan to scan. For distributed-feedback laser

(DFB) systems we use a delay from 5ns to as much as 30 ns, depending on the laser

quality. Systems based on vertical-cavity surface-emitting lasers (VCSELs) possess

more frequency jitter, and we therefore use MZIs with delays of about 1 ns.

3.2.3 Bias Current Predistortion

So far we have assumed that the SCL bias current is predistorted so that the chirp

is sufficiently linear for lock acquisition. In this section we describe a predistortion

procedure based on a simple nonlinear tuning model [1]. Even though the model

is inaccurate, and a single use of this procedure does not yield a linear chirp, it is

possible to achieve the desired linearity through iteration.

We model the nonlinear current-frequency relation of an SCL by introducing a

tuning constant K that is a function of the SCL modulation current.

ωSFL(t) = ω0 + i(t)K[i(t)], (3.12)

where ω0 is the initial SCL frequency due to some bias current, and i(t) is the deviation

from that bias. To characterize the chirp we calculate the spectrogram of the MZI

photocurrent. The spectrogram allows us to extract the instantaneous photocurrent

frequency, found by differentiating the photocurrent phase in equation (3.3)

ωPD(t) =
dφPD(t)

dt
= τ

dωSFL(t)

dt
. (3.13)

Plugging in equation (3.12), we arrive at

ωPD(t) = τ
dωSFL(t)

dt
= τ [K(i) + iK ′(i)]

di(t)

dt
= S(i)

di(t)

dt
, (3.14)

where S(i) ≡ K(i) + iK ′(i). The function S(i) describes the nonlinear tuning of the

SCL and can be measured by launching a linear current ramp into the SCL and using
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(a) Current ramp chirp spectrogram (b) Predistorted chirp spectrogram

Figure 3.4: Single predistortion results

a spectrogram to calculate ωPD(t). Then,

S(i) =
ωPD [t(i)]

α
, (3.15)

where α is the current ramp slope. We use equation (3.14) to write a differential

equation for the SCL modulation current

di(t)

dt
=

τ

S(i)

dωSFL,d
dt

, (3.16)

where ωSFL,d(t) is the desired optical chirp. We solve this equation numerically to

find the current that will generate the desired tuning behavior ωSFL,d(t).

The outlined procedure was used to predistort the current for a 1.55 µm VCSEL

chirping 475 GHz in 100 µs. According to equation (3.13), a perfectly linear chirp

is described by a flat photocurrent spectrogram. Figure 3.4a shows the spectrogram

corresponding to a current ramp that was used to characterize S(i). The y-axis

has been rescaled by τ to show the instantaneous chirp rate. Figure 3.4b shows the

spectrogram corresponding to the predistorted waveform, confirming the improvement

in linearity.

Figure 3.4b is not perfectly flat, meaning that the corresponding optical chirp is

not perfectly linear. The reason is that the tuning model is incomplete—it fails to cap-
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ture dynamic tuning behavior, e.g., the competition between thermal and electronic

tuning mechanisms described in section 3.2.2. Even though the model is incomplete,

its application yields an improvement in chirp linearity. It stands to reason that

iterative application of the model may yield additional improvements in chirp lin-

earity. Iterative application means that we use the previous current predistortion

to re-characterize the function S(i), and calculate the next approximation by again

solving equation (3.16). This process is repeated until the ensuing optical chirp is

perfectly linear. We can combine equation (3.16) and equation (3.14) to write down

the differential equation that can be used to calculate the nth-order predistortion in(t)

from the preceding order predistortion, in−1(t), and the corresponding photocurrent

frequency measurement ωPD,n−1(t).

din(t)

dt
=

ξdτ

ωPD,n−1 [tn−1(in)]
× din−1

dt
, (3.17)

where ξd is the desired chirp rate, and tn−1(i) is the inverse of the in−1-th predistortion.

We have found that using a fourth-order predistortion is sufficient. The results are

shown in figure 3.5. Each successive predistortion results in a chirp that is closer to

the desired tuning characteristic, so that by the fourth order we arrive at a sufficiently

linear chirp.

It is possible to further simplify the predistortion procedure. In equation (3.17)

we evaluate the photocurrent frequency at time tn−1(in) = i−1
n−1(in). It stands to

reason that once the difference between successive predistortions is small enough, the

photocurrent frequency may be evaluated just at time t,

din(t)

dt
=

ξdτ

ωPD,n−1(t)
× din−1

dt
. (3.18)

This procedure makes sense intuitively—the slope of the previous predistortion

is scaled by the ratio of the desired photocurrent frequency to the instantaneous

photocurrent frequency. If the chirp is too fast, then the ratio will be less than one,

slowing down the sweep at that particular time. Likewise, if the chirp is too slow, the
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(a) Zeroth-order predistortion (current
ramp) spectrogram

(b) First-order predistortion spectrogram

(c) Second-order predistortion spectrogram (d) Third-order predistortion spectrogram

(e) Fourth-order predistortion spectrogram

Figure 3.5: Iterative predistortion results
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ratio will be greater than unity, speeding it up.

This procedure is simpler computationally—it does not involve inverses, and there-

fore avoids interpolation. The differential equation (3.18) itself is simpler as well, since

the right hand side no longer depends on in. We motivated these simplifications with

the assumption that the successive predistortions are already close to each other.

It is the case, however, that the simplified procedure works well in practice, and

demonstrates the same rate of convergence as the original scheme, even if iterated

starting at the linear current ramp. As part of our collaboration with Telaris Inc.

to commercialize the optoelectronic SFL, we have implemented the simplified predis-

tortion procedure on a microcontroller. The full predistortion procedure would have

been significantly more difficult to realize in the computationally-limited embedded

environment.

3.3 Design of the Optoelectronic SFL

3.3.1 SCL Choice

The choice of the semiconductor laser to use in the optoelectronic SFL is dependent

upon the desired chirp bandwidth and linewidth. Distributed-feedback lasers (DFB)

are inherently single-mode, possess a stable polarization, and a narrow linewidth of

hundreds of kHz to a ∼ 1 MHz. The chirp ranges of commercially-available DFB

lasers depend on the emission wavelength. In our experience, 1550 nm DFB lasers

are limited in chirp range to about 100 GHz. The frequency chirp range increases

with decreasing wavelength, and we have found that DFB lasers in the 1060 nm range

can be current-tuned over a spectral range of about 200 GHz. The output power of

DFB lasers is usually in the tens of mW.

When compared to DFBs, vertical-cavity surface-emitting lasers (VCSELs) are

much cheaper, and generally tune over greater regions of the optical spectrum. We

have tested VCSELs at wavelengths of 1550 nm, 1310 nm, 1060 nm, and 850 nm.

We measured chirp bandwidths of ∼ 500 GHz at 1550 nm, ∼ 1 THz at 1310 nm,
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∼ 400 GHz at 1060 nm, and ∼ 1.5 THz at 850 nm. The 1060 nm VCSEL breaks the

pattern, possibly because this is the least-developed VCSEL wavelength. Because of

their short cavity lengths, VCSELs have broader linewidths of a few tens of MHz,

and suffer from a reduced frequency stability. The reduced stability necessitates the

use of shorter MZIs in the SFL feedback, increasing the closed-loop residual phase

error, as described in section 3.2.2. In addition, VCSELs possess significantly lower

powers of hundreds of µW to a few mW. As a result, VCSEL-based SFLs require

amplitude control elements capable of providing optical gain, as described in section

3.3.2. Due to the circular symmetry of the VCSEL cavity, these devices sometimes

have polarization instability and polarization mode hops [60], limiting their use in

applications requiring polarization control. Nevertheless, VCSELs remain extremely

attractive as swept sources in imaging and ranging applications due to their broad

chirp bandwidths.

The optical spectra of the locked optoelectronic SFLs based on some of the SCLs

discussed above are shown in figure 3.6. Swept sources based on 1310 nm and 850 nm

VCSELs are currently being developed.

SOA/VOA
Optical output

Gain

Tap coupler
Optical 
input

Amplitude 
setpoint

Photodetector

Loop 
Filter

+
- 

Figure 3.7: Schematic diagram of the amplitude controller feedback system
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3.3.2 Amplitude Control

As the SCL current is swept to produce a frequency chirp, the light undergoes unde-

sired amplitude modulation. To overcome this effect, we place an amplitude controller

after the SCL. The amplitude controller is a feedback system, shown in figure 3.7, that

uses an intensity modulator and a tap photodetector to measure the instantaneous

optical intensity, and lock it to a constant value. In our systems we have used two dif-

ferent intensity modulation elements—semiconductor optical amplifiers (SOAs) and

variable optical attenuators (VOAs) based on electro-optical ceramics [61]. The SOAs

provide optical gain, have GHz-range modulation bandwidths [62], but require tem-

perature control and heat sinking. Furthermore, additional optical isolation is neces-

sary to prevent lasing. VOAs solutions are cheaper and more compact because they

do not generate excess heat, but they are also much slower, with sub-MHz modulation

bandwidths. Because VOAs are passive devices, they are only practical for use with

SCLs that emit sufficiently high optical powers. We use SOAs with VCSEL-based

systems, which serves the dual purpose of amplitude control and optical amplification

of the weak VCSEL output, and reserve the use VOAs for DFB-based SFLs.

The effect of the SOA-based amplitude controller on a chirped VCSEL input

is shown in figure 3.8. The amplitude controller feedback signal is shown in the

top panels and the MZI photocurrent is plotted in the bottom panels. When the

amplitude controller is turned on, the intensity of the input into the MZI becomes

fixed, suppressing the fluctuations in the MZI signal envelope. Corresponding plots for

the DFB-VOA combination are shown in figure 3.9. Because the VOA is considerably

slower than the SOA, transient effects appear in the beginning of the scan.

3.3.3 Electronics and Commercialization

As part of our collaboration with Telaris Inc., the company has commercialized the

optoelectronic SFL. The chirped diode laser (CHDL) system offered by Telaris Inc.

is a stand-alone SFL that is controlled by a computer through a USB port. The

feedback electronics are implemented on a pair of printed circuit boards (PCBs),
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(a) SFL feedback PCB (b) Amplitude controller PCB

Figure 3.10: Optoelectronic SFL printed circuit board layouts

Figure 3.11: The 1550 nm CHDL system.
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shown in figure 3.10. The boards include low-noise current sources and tempera-

ture controllers for the SCL and the SOA-based amplitude controller, a direct digital

synthesis (DDS) chip to provide a frequency-agile reference oscillator, a 1 µs sam-

pling rate digital-to-analog converter to generate predistortion waveforms, an offset-

trimmed multiplier, and digital potentiometers to provide control over the various

feedback gain and filter parameters. Calculating spectrograms for the predistortion

procedure is a computationally-intensive task. Instead, the MZI signal is digitized

using a comparator, and its instantaneous frequency is calculated by counting the

number of zero-crossings that occur in a specified time window. This hardware-

assisted predistortion measurement, along with the simplified algorithm described in

section 3.2.3, enables rapid predistortion of the SCL bias current in an embedded

environment. The entire system is controlled by an 8-core microcontroller. Parallel

cores provide deterministic timing that is necessary for the simultaneous processing

of the MZI signal and generation of the predistortion waveform. The system uses an

acoustically-isolated fiber MZI to generate the feedback signal. The VCSEL-based

1550 nm CHDL system is shown in figure 3.11, and is capable of generating precisely

linear chirps exceeding 500 GHz in bandwidth, at a maximum rate of 10 kHz.

3.4 Experimental Results

3.4.1 Precisely Controlled Linear Chirps

The optoelectronic SFL is turned on by first iterating the predistortion procedure,

as described in section 3.2.3, with the MZI feedback gain set to zero. The MZI

photocurrent spectra at different steps of this process are shown in figure 3.12. The

x-axis has been scaled by the MZI FSR to correspond to the chirp rate ξ. Successive

predistortion steps lead to a narrowing of the signal peak at the desired chirp rate. By

the 3rd predistortion, the signal peak width has achieved the transform limit 1
τT

, and

additional predistortion steps reduce the noise pedestal. Once sufficient linearity is

achieved with the predistortion, the feedback gain is turned on, and the SFL acquires
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lock, yielding a constant chirp slope and a fixed starting frequency. The locked

spectrum is characterized by a transform-limited peak with a low noise pedestal.

The chirp rate of the optoelectronic SFL is controlled by tuning the frequency

of the electronic reference oscillator. The systems that we have built are capable of

generating linear chirps with rates that are tunable over a decade. The locked spectra

at different chirp rates of an optoelectronic SFL based on a 1550 nm DFB laser are

shown in figure 3.13a. Corresponding spectra for a 1550 nm VCSEL system are shown

in figure 3.13b, for a 1060 nm DFB system in figure 3.13c, and for a 1060 nm VCSEL

system in figure 3.13d. The x-axis in all the plots corresponds to the chirp rate.

3.4.2 Arbitrary Chirps

So far we have focused on precisely linear chirps. The optoelectronic feedback tech-

nique can be extended in a straightforward way to generate arbitrary frequency

chirps [1]. The predistortion procedure is modified to include time-dependence in

the desired chirp rate ξd in equation (3.17) and equation (3.18). The integral of ξd(t)

gives the desired optical frequency vs. time function. Similarly, the locking frequency

ωREF becomes a function of time. The locked optical frequency evolution of the SFL

will therefore be given by

ωSCL(t) =
1

τ

∫ t

0

ωREF (t)dt+
φREF
τ

+ n
2π

τ
, (3.19)

where φREF is again the DC phase of the reference oscillator, and the integer n indexes

the family of possible locked behaviors.

We have demonstrated this principle experimentally by generating quadratic and

exponential optical frequency chirps using a DFB-based SFL at 1550 nm. For the

quadratic chirp, we varied the reference frequency between 1.43 and 4.29 MHz, corre-

sponding to a linear variation of the chirp rate from 50 to 150 GHz/ms. The measured

photocurrent spectrogram in figure 3.14 matches the desired chirp characteristic ex-

actly. In the exponential chirp case, we varied the reference frequency according
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Figure 3.13: Locked MZI spectra of various SFLs for different values of the chirp rate
ξ. The x-axis in all the plots corresponds to the chirp rate.
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Figure 3.14: Quadratic chirp spectrogram

Figure 3.15: Exponential chirp spectrogram
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to

ωREF (t) = 2π × (4.29 MHz)×
(

1.43 MHz

4.29 MHz

)t/(1 ms)

. (3.20)

This corresponds to an exponential decrease of the optical chip rate from 150 to

50 GHz/ms. The measured photocurrent spectrogram is shown in figure 3.15. A

combination of bias current predistortion and optoelectronic feedback can therefore

be used for arbitrary chirp generation.

3.5 Demonstrated Applications

3.5.1 FMCW Reflectometry Using the Optoelectronic SFL

The development of the optoelectronic SFL was motivated by FMCW reflectometry

and its applications in ranging and 3-D imaging (see chapter 2). The free-space

depth resolution of an FMCW system is given by equation (2.8), and a bandwidth of

500 GHz corresponds to a free-space resolution of 0.3 mm. For a medium with index

of refraction n, the depth resolution is given by

∆z =
c

2nB
, (3.21)

where B is the chirp bandwidth of the SFL. We demonstrated the use of the VCSEL-

based optoelectronic SFL in FMCW reflectometry by imaging acrylic sheets of varying

thickness and a refractive index of 1.5 using the experimental configuration of figure

2.2. Reflections from the front and back acrylic surfaces show up as peaks in the

FMCW photocurrent spectrum, shown in figure 3.16 for four sheets with nominal

thicknesses of (a) 4.29 mm, (b) 2.82 mm, (c) 1.49 mm, and (d) 1.00 mm. The x-

axis has been scaled to distance. The measured peak separations agree well with

the nominal values. The bandwidth of the SFL was 500 GHz, corresponding to a

resolution of 0.2 mm in acrylic. As a result, all of the reflection pairs shown in figure

3.16 are very well resolved.
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Figure 3.16: FMCW reflectometry of acrylic sheets using the VCSEL-based optoelec-
tronic SFL with a chirp bandwidth of 500 GHz and a wavelength of ∼ 1550 nm
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3.5.2 Profilometry

The range resolution of an FMCW system describes its ability to tell apart reflections

from closely spaced scatterers. In some imaging applications, such as profilometry, it

is a priori known that there is only a single scatterer. The relevant metric then is not

resolution, but accuracy. The accuracy of an FMCW system can be much finer than

its resolution, as described in section 2.1.3.5. We demonstrate this by measuring the

profile of a United States $1 coin using the VCSEL-based optoelectronic SFL with

a chirp bandwidth of 500 GHz at 1550 nm. The coin was mounted on a motorized

two-dimensional translation stage. The light was collimated using a gradient-index

(GRIN) lens with a beam diameter of 0.5 mm. The depth at a particular transverse

location was determined by measuring the strongest photocurrent frequency in a

Michelson interferometer with a balanced detector (figure 2.5). The measured profile

is shown in figure 3.17. As expected, we were able to record features with depth

variations that are much finer than the 0.3 mm axial resolution of a 500 GHz chirp.

3.6 Summary

In this chapter we described the design of the SCL-based optoelectronic SFL. We

derived equations that govern its steady-state operation, and introduced an iterative

predistortion procedure that relaxes constraints on the optoelectronic feedback and

enables locking at high chirp rates. We discussed different SCL platforms and how

they motivate the choice of an amplitude control element. We demonstrated closed-

loop linear and arbitrary chirps and established the use of the optoelectronic SFL in

reflectometry and profilometry applications.

In the next chapter we examine multiple source FMCW (MS-FMCW) reflectom-

etry, a high-resolution optical ranging technique that is enabled by the starting fre-

quency stability and chirp control of the optoelectronic SFL.
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Figure 3.17: Depth profile of a United States $1 coin measured using the VCSEL-
based optoelectronic SFL with a chirp bandwidth of 500 GHz and a wavelength of
∼ 1550 nm
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Chapter 4

Multiple Source FMCW
Reflectometry

4.1 Introduction

In this chapter we describe a novel approach aimed at increasing the effective band-

width of a frequency-modulated continuous-wave (FMCW) ranging system. This is

achieved by combining, or stitching, separate swept-frequency lasers (SFLs), to ap-

proximate a swept-source with an enhanced bandwidth [13, 14, 19]. The result is

an improvement in the range resolution proportional to the increase in the swept-

frequency range. This technique bears resemblance to synthetic aperture radar, in

which radio frequency (RF) signals collected at multiple physical locations are used

to approximate a large antenna aperture, and hence a high transverse resolution.

In multiple source FMCW reflectometry, the synthesized aperture is not physical,

but instead represents the accessible optical frequency range. This technique is of

particular interest in the context of the SCL-based optoelectronic SFL. MS-FMCW

leverages narrow SCL linewidths to present a pathway towards long-distance ranging

systems with sub-100 µm resolutions.

We start our discussion of MS-FMCW by generalizing the results of chapter 2 to

the case of multiple sources. We consider software and hardware implementations

of stitching—the action of synthesizing a high-resolution range measurement from

multiple source data sets—and present a series of experiments that demonstrate the
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MS-FMCW principle. The culmination of this effort is a four-VCSEL system capable

of ranging with an effective optical bandwidth of 2 THz, and a corresponding free-

space axial resolution of 75 µm.
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Figure 4.1: Schematic of an FMCW ranging experiment. PD: Photodetector

4.2 Theoretical Analysis

4.2.1 Review of FMCW Reflectometry

We begin our discussion with a brief review of FMCW reflectometry (see chapter 2

for a full discussion). Consider the FMCW ranging experiment shown in figure 4.1.

The normalized electric field of the linearly chirped SFL is given by

e(t) = rect

(
t− T/2
T

)
cos

(
φ0 + ω0t+

ξt2

2

)
, (4.1)

where T is the scan duration, ξ is the slope of the optical chirp, and φ0 and ω0 are the

initial phase and frequency, respectively. The total frequency excursion is therefore

given by B = ξT/2π. For a single scatterer with round-trip delay τ and reflectivity

R, the ω-domain photocurrent is given by

y(ω) =
√
R rect

(
ω − ω0 − πB

2πB

)
cos

(
ωτ − ξτ 2

2

)
. (4.2)
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The signal processing consists of calculating the Fourier transform (FT)1 of y(ω) with

respect to the variable ω, which yields a sinc peak centered at the delay τ .

Y (ζ) = πB
√
R exp

(
−j ξτ

2

2

)
exp [−j(ζ − τ)(ω0 + πB)] sinc [πB(ζ − τ)] , (4.3)

where ζ is the independent variable of the FT of y(ω), and has units of time. Y (ζ−τ)

is therefore the axial point spread function (PSF) of the FMCW system.

The range resolution is given by the location of the first null of the sinc function

in equation (4.3) [37, 39]. This happens at ζ = τ + 1/B, which corresponds to a

free-space range resolution

∆d =
c

2B
, (4.4)

where c is the speed of light. An equivalent metric of the resolution of the FMCW

system is the full width at half maximum (FWHM) of the sinc function, given by

FWHM ≈ 3.79

πB
= ∆d

7.58

πc
(4.5)

Let us now consider the following view of an FMCW imaging system. The target

is characterized by some underlying function of the optical frequency, ytarget(ω), given

by

ytarget(ω) =
∑
n

√
Rn cos

(
ωτn −

ξτ 2
n

2

)
, (4.6)

where τn and Rn are the delays and reflectivities of the multiple reflectors that make

up the target. In deriving equation (4.6) we have assumed highly transparent re-

flectors (Rn � 1), and ignored interference between reflected beams. The FMCW

photocurrent is then given by

y(ω) = a(ω)ytarget(ω), (4.7)

where a(ω) is the rectangular window function, as in equation (4.2). The function

1In the following analysis we use capital letters to denote the FTs of the corresponding lower-case
functions.
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Figure 4.2: Schematic representation of single-source FMCW reflectometry. Top
panel: the window function a(ω) corresponding to a single chirp. Bottom panel: The
underlying target function ytarget(ω) (blue) and its portion that is measured during
the single sweep (red)

Figure 4.3: Schematic representation of dual-source FMCW reflectometry. Top
panel: the window function a(ω) corresponding to two non-overlapping chirps. Bot-
tom panel: The underlying target function ytarget(ω) (blue) and its portion that is
measured during the two sweeps (red)
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ytarget(ω) contains all the information about the target, and perfect resolution is ob-

tained if ytarget(ω) is known for all values of the optical frequency ω. The measurement

in equation (4.7) gives us partial information about ytarget(ω), collected over the fre-

quency excursion defined by a(ω), resulting in a nonzero ∆d. This single-source

measurement is illustrated in figure 4.2.

We next develop the theory of MS-FMCW reflectometry, in which multiple sources

sweep over distinct regions of the optical spectrum. The motivation for this approach

is that the use of multiple sources allows us to further characterize ytarget(ω). Figure

4.3 shows a schematic representation of a dual-source FMCW measurement. The

target information is collected over a larger portion of the optical spectrum, resulting

in an increase in the effective B, and a corresponding decrease in ∆d.

4.2.2 Multiple Source Analysis

Taking the FT of equation (4.7), and equation (4.6), we arrive at the expression

Y (ζ) =
1

2

∑
n

√
Rn exp

(
−j ξτ

2
n

2

)
A(ζ − τn), (4.8)

which has peaks at ζ = τn. The axial PSF (i.e., the shape of the peaks) is given by

the FT A(ζ) of the window function a(ω). We model the use of multiple sources with

a window function aN(ω) that comprises N non-overlapping rectangular sections, as

shown in the top panel of figure 4.4a. The approach is easily modified to include

overlapping sections. The k-th sweep originates at ω0, k, and is characterized by an

angular frequency excursion 2πBk, where k = 1, . . . , N . As illustrated in the middle

and bottom panels of figure 4.4a, aN(ω) can be decomposed into a rectangular window

with width 2πB̃ ≡ 2π
[∑N

k=1Bk +
∑N−1

k=1 δk

]
, and a set of thin rectangular sections

(gaps). Each gap represents the frequency range 2πδk between the end of the k-

th sweep and the beginning of the (k+1)-th sweep, across which no photocurrent

is measured. Amplitudes of the ζ-domain FTs of the functions in figure 4.4a are

shown in figure 4.4b. We observe that if the gaps are chosen sufficiently small, their

effect in the ζ-domain can be treated as a small perturbation of the single sweep of
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Figure 4.4: Multiple source model. (a)ω-domain description. The top panel shows a
multiple source window function aN(ω). This function may be decomposed into the
sum of a single-source window function (middle panel) and a function that describes
the inter-sweep gaps (bottom panel). (b)ζ-domain description. The three figures
show the amplitudes of the ζ-domain FTs of the corresponding functions from part
(a).
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bandwidth 2πB̃.

Therefore, an N-source sweep is described by

aN(ω) = rect

(
ω − ω0,1 − πB̃

2πB̃

)
−

N−1∑
k=1

rect

(
ω − ω0, k+1 + πδk

2πδk

)
(4.9)

in the ω-domain, and by

AN(ζ) = 2πB̃ exp
[
−jζ(ω0,1 + πB̃)

]
sinc

(
ζB̃
)

− 2π
N−1∑
k=1

δk exp [−jζ (ω0, k+1 − πδk)] sinc(ζδk)
(4.10)

in the ζ-domain. To find the range resolution we find the first null of equation (4.10).

Expanding near ζ = 1/B̃ and using the approximation
∑N−1

k=1 δk �
∑N

k=1Bk yields

ζ−1
null =

∣∣∣∣∣B̃ exp
[
−jζnull(ω0,1 + πB̃)

]
+

N−1∑
k=1

δk exp [−jζnull (ω0,k+1 − πδk)]
∣∣∣∣∣ . (4.11)

Equation (4.11) can be solved numerically to find ζnull. We note that an upper bound

on ζnull, and consequently on the range resolution, may be obtained by applying the

triangle inequality to equation (4.11), to yield

∆dMS−FMCW ≤
c

2
∑N

k=1Bk

. (4.12)

The conclusion is that by sweeping over distinct regions of the optical spectrum, we

collect enough information about the target to arrive at an range resolution equivalent

to the total traversed optical bandwidth, provided that the said bandwidth is much

greater than the inter-sweep gaps.

4.2.3 Stitching

We next consider the problem of stitching, that is, synthesizing a measurement with

enhanced resolution using photocurrents collected from multiple sweeps. In the pre-
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Figure 4.5: Schematic of a multiple source FMCW ranging experiment. A reference
target is imaged along with the target of interest, so that the inter-sweep gaps may
be recovered. BS: Beamsplitter. PD: Photodetector

ceding sections we have mapped photocurrents from the time domain to the optical

frequency domain. Since the optical frequency is linear in time, this mapping involves

first scaling the time axis by the chirp slope, and then translating the data to the

correct initial frequency. Whereas the rate of each chirp is precisely controlled [1],

the starting sweep frequencies are not known with sufficient accuracy. To reflect this

uncertainty, we omit the translation step, so that the data collected during the k-th

scan is given by

yk(ω) = rect

(
ω − πBk

2πBk

)
ytarget(ω + ω0,k). (4.13)

The stitched measurement, given by ystitched = aN(ω)ytarget(ω), can be written in

terms of functions yk(ω) using equation (4.9):

ystitched(ω) =
N∑
k=1

yk(ω − ω0,k). (4.14)

The magnitude of the FT of equation (4.14) may be used for target recognition, and

is given by

|Ystitched(ζ)| =
∣∣∣∣∣
N∑
k=1

exp

[
−j2πζ

k−1∑
l=1

(Bl + δl)

]
Yk(ζ)

∣∣∣∣∣ . (4.15)



65

The uncertainty in the starting frequencies manifests itself as an uncertainty in

the inter-sweep gaps. To recover the gaps, we use a known reference target along with

the target of interest, as shown in figure 4.5. By analyzing the data collected from

the reference target, we are able to extract the parameters δk, and stitch together the

target of interest measurement, according to equation (4.15).

To develop a gap recovery algorithm, we examine a two-sweep system with a

single gap δ. The case of more than two sources may then be treated by applying

this algorithm to adjacent sweeps in a pairwise manner. For simplicity we consider

sweeps of equal slopes ξ, durations T , and therefore, bandwidths B. Suppose the

known reference target consists of a single reflector with reflectivity Ra, located at

the delay τa. The experiment of figure 4.5 generates two photocurrents, one for each

sweep, of the form of equation (4.2). The initial photocurrent phase depends on the

starting frequency of the corresponding sweep, and will change as the inter-sweep gap

varies. Therefore, by considering the phase difference between the two photocurrents,

we can calculate the value of the gap. Formally, let us evaluate the FT of the k-th

photocurrent, at the maximum of the reference target peak. Using equation (4.6) and

equation (4.13),

Yk(τa) = πBkRa exp
[
−jξ τ2a

2
+ jω0,kτa

]
, k = 1, 2. (4.16)

The ratio of the two expressions in equation (4.16) yields the phase difference between

the photocurrents:

ψa ≡
Y1(τa)

Y2(τa)
= exp [−j2πτa(B + δ)] . (4.17)

Given the reference reflector delay τa and the frequency excursion B, the gap may be

found using

arg [exp(j2πτaB)ψa] = −2πτaδ. (4.18)

The phase of a complex number can only be extracted modulo 2π, so that equation

(4.18) can only be used to recover δ with an ambiguity of 1/τa. Therefore, the gap

needs to be known to within 1/τa before equation (4.18) may be applied. Using a
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grating-based optical spectrum analyzer would yield the gap value with an accuracy

of a few GHz, and we therefore need 1/τa & 10 GHz. The nonzero linewidth of the

source generates errors in the phase measurement ψa in equation (4.17) (see section

2.1.3.4). According to equation (4.18), the corresponding error in the gap calculation

is inversely proportional to τa, and a large τa is therefore necessary to calculate δ

accurately.

To overcome this issue, we use two reflectors τa and τb, and express the gap size

as a function of the reflector separation. We define two phase factors

ψn ≡
Y1(τn)

Y2(τn)
, n = a, b (4.19)

and calculate the two reflector-analog of equation (4.18):

arg

{
exp [j2π(τa − τb)B]

ψa
ψb

}
= −2π(τa − τb)δ. (4.20)

From equation (4.20), 1/|τa − τb| can be chosen to be > 10 GHz to determine the

value of δ. The error in this calculation is proportional to 1/|τa − τb|. The accuracy

of the gap calculation can now be improved by using equation (4.18), which yields a

new value of δ with a lower error proportional to 1/τa. Depending on system noise

levels, more stages of evaluation of δ using more than two reference reflectors may be

utilized to achieve better accuracy in the calculations.

A potential MS-FMCW system architecture employing the stitching technique

is shown in figure 4.6. The optical sources are multiplexed and used to image a

target and a reference, as discussed above. The optical output is demultiplexed and

measured using a set of photodetectors to generate the photocurrents of equation

(4.13). The reference data is processed and used to stitch a target measurement

with improved resolution. The multiplexing may be performed in time or optical

frequency, or a combination of the two. The real power of the MS-FMCW technique

then lies in its scalability. One envisions a system that combines cheap off-the-shelf

SCLs to generate a swept-frequency ranging measurement that features an excellent
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Figure 4.6: Proposed multiple source FMCW system architecture. BS: Beamsplitter.
PD: Photodetector

combination of range resolution, scan speed, and imaging depth.

4.3 Experimental Demonstrations

4.3.1 Stitching of Temperature-Tuned DFB Laser Sweeps

Our first demonstration of the MS-FMCW technique was based on a 1550 nm DFB

optoelectronic SFL (see chapter 3). The source generated a highly linear chirp with a

bandwidth of 100 GHz and a scan time of 1 ms. We used the configuration of figure 4.5

with a two reflector reference characterized by 1/|τa−τb| ∼ 10 GHz (∼ 3 cm free-space

separation). This reference was chosen to accommodate the accuracy with which the

gaps are initially known (∼ 1 GHz). We tuned the SCL temperature through two set

points to generate two 100 GHz sweeps with different starting frequencies. Optical

spectra of the two sweeps (blue and red) are shown in figure 4.7. Even though it

looks like the sweeps have significant overlap in optical frequency, the end of one is

actually aligned to the beginning of the other. The perceived overlap is due to the

nonzero width of the analyzer PSF, shown in black.

These sweeps were launched sequentially into the experiment, and the correspond-

ing photocurrents were recorded. Applying the two-step procedure described in sec-
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Figure 4.7: Optical spectra of the two DFB sweeps (blue and red) and the optical
spectrum analyzer PSF (black)

Figure 4.8: Single-sweep and stitched two-sweep photocurrent spectra of a dual re-
flector target with a separation of 5.44 mm. No apodization was used.
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Figure 4.9: Single-sweep and stitched two-sweep photocurrent spectra of a dual re-
flector target with a separation of 1.49 mm. No apodization was used.

Figure 4.10: Single-sweep and stitched two-sweep photocurrent spectra of a dual
reflector target with a separation of 1.00 mm (a microscope slide). No apodization
was used.
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tion 4.2.3, we recovered the gaps, and stitched the photocurrent spectra using equa-

tion (4.15). To characterize the range resolution of the system, we imaged slabs of

transparent material (acrylic and glass). Reflections from the two slab interfaces were

recorded for three slab thicknesses: 5.44 mm, 1.49 mm, and 1.00 mm (glass micro-

scope slide). Figure 4.8, figure 4.9, and figure 4.10 show the ζ-domain photocurrent

spectra for the three cases. The x-axis has been rescaled to correspond to distance in

a material with refractive index 1.5, i.e., acrylic and glass. Each of the three figures

shows the single-sweep spectra (blue and green), as well as the stitched spectrum

(red). The FWHM of the peaks in the stitched plots is half of the FWHM of the

peaks in the single-sweep plots, as predicted by equation (4.5). Figure 4.10 is of

particular interest because the two peaks in the single-scan spectrum, corresponding

to reflections from the two microscope slide facets, are barely resolved. This is con-

sistent with the theoretical range resolution in glass of 1 mm for a 100 GHz sweep.

The stitched curve shows two prominent peaks, demonstrating our improved ability

to resolve two closely spaced targets.

By using more aggressive temperature and current tuning, we were able to ex-

tend the number of sweeps to three, and observe a threefold improvement in range

resolution. The single-scan and stitched photocurrent spectra of a single reflector

are shown in figure 4.11a. The single reflector spectra allows us to reliably measure

the improvement in the FWHM of the axial PSF. The FWHMs are 12.17 ps and

4.05 ps for the single and multiple source cases, respectively. Using equation (4.5) we

calculate the free-space range resolutions to be 1.51 mm and 500 µm. The threefold

range resolution enhancement is consistent with equation (4.12). The improvement

in resolution again allows us to resolve the two reflections from the 1 mm glass micro-

scope slide in figure 4.11b. The measured peak separation of 10 ps is the round-trip

delay between the two slide facets, and indeed corresponds to a glass thickness of 1

mm.
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Figure 4.11: The gray and black curves correspond to single-sweep and stitched three-
sweep photocurrent spectra, respectively. No apodization was used. (a) Single reflec-
tor spectrum. (b) Glass slide spectrum. The peaks correspond to reflections from the
two air-glass interfaces. The slide thickness is 1 mm.
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Figure 4.13: Optical spectra of the two VCSEL sweeps in the 250 GHz experiment

Figure 4.14: Optical spectra of the two VCSEL sweeps in the ∼ 1 THz experiment
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Figure 4.15: Single-sweep and stitched two-sweep photocurrent spectra of dual re-
flector targets with various separations. The total chirp bandwidth is 250 GHz. No
apodization was used.
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Figure 4.16: Single-sweep and stitched two-sweep photocurrent spectra of dual re-
flector targets with various separations. The total chirp bandwidth is ∼ 1 THz. No
apodization was used.
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4.3.2 Stitching of Two VCSELs

In the current section we describe the next phase of our MS-FMCW experiments—the

stitching of two commercial VCSELs at 1550 nm. When compared to DFB lasers,

VCSELs offer increased tunability, a faster chirp rate, as well as a significant cost

reduction (see section 3.3.1).

In the proof-of-principle DFB experiment we used a single laser and tuned its

temperature through multiple setpoints to generate up to three sweeps. The SCL

temperatures needed to equilibrate before data collection, and as a result, the system

scan time was about ten minutes. In this experiment, we used two VCSELs and an

optomechanical switch in a feedback loop to form an optoelectronic SFL, as shown

in figure 4.12. The switch selects a particular VCSEL, and the feedback imposes a

perfectly linear chirp. Each VCSEL completed its chirp in 100 µs, but the total scan

time was limited by the switch to about 20 ms.

We started our experiment with conservative tuning of 125 GHz per channel. The

temperatures of the VCSELs were tuned to align their optical spectra to each other,

as shown in figure 4.13. As before, we included a reference target to aid in the gap

recovery procedure. Figure 4.15 compares single-source and stitched axial scans of

acrylic and glass slabs of varying thicknesses. As expected, the stitched scans have a

higher axial resolution, as evidenced by both the reduced FWHM of the axial PSF,

as well as our ability to resolve the surfaces of the 1 mm glass slide in figure 4.15d.

We continued our experiment with more aggressive temperature and current tun-

ing, which yielded 475 GHz of optical bandwidth per channel, with a total chirp

bandwidth of just under 1 THz, as shown in figure 4.14. This bandwidth corresponds

to a free-space axial resolution of ∼ 150 µm, and a glass resolution of ∼ 100 µm.

Two-target axial scans are shown in figure 4.16. As before, stitching the photocur-

rents narrowed the axial PSF. The thinnest target we used was a glass microscope

coverslip with a nominal thickness of 150 µm, which showed up as a single broad peak

in the single sweep, but was resolved into two reflections in the stitched scan.
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4.3.3 Hardware Stitching of Four VCSELs

Previous stitching experiments relied on a simultaneous measurement of a multi-

reflector reference target to determine the inter-sweep gaps. Our next stitching ex-

periment relied on the optoelectronic SFL to control the starting sweep frequencies

of each channel. We used four 1550 nm VCSEL-based optoelectronic SFLs in the

configuration of figure 4.17. The electric fields of each channel were added using a

4×1 fiber coupler. Each VCSEL was chirped 500 GHz in 100 µs, and then turned off.

We allocated 25 µs between adjacent channel time slots to allow the previous laser

to turn off, and the next laser to turn on. The total scan time was therefore 500 µs.

As described in section 3.2.2, locked states of the optoelectronic SFL form a family

of linear chirps, separated by the loop MZI FSR in optical frequency. These locked

states are shown schematically in red in figure 4.19. A locked SFL (shown in black)

aligns itself to the state that most closely matches its free-running chirp. Tuning the

SCL temperature and initial sweep current can therefore be used to shift the SFL to

a particular locked state. We used an MZI with a relatively large FSR of 9.6 GHz

to lock the VCSELs. As a result, the SFLs locked to the same state from scan to

scan, generating precisely repeatable linear chirps. Moreover, because the SFLs used

the same MZI, it was possible to tune all four channels to the same locked state, as

shown in the blue curve in figure 4.19.

The combination of repeatable chirps and the ability to lock the SFLs to the same

chirped state obviates the gap recovery procedure that was necessary in previous iter-

ations of our MS-FMCW systems. The stitching is therefore essentially performed by

the SFL hardware, which enables real-time processing of the MS-FMCW photocur-

rents. We used a coarse 80.2 GHz FSR MZI to tune the SCL temperatures and ensure

that the SFLs are locked to the same chirped state. This MZI was used purely for

calibration at start-up, and the acquisition of the coarse MZI signal was not necessary

to process the MS-FMCW measurement.

Each channel in the hardware stitching system generated a 500 GHz sweep, for

a total chirp bandwidth of 2 THz, as shown in figure 4.18. This corresponds to a
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Figure 4.17: Four channel 2 THz hardware stitching experiment

Figure 4.18: Optical spectra of the four 1550 nm VCSEL sweeps in the 2 THz hard-
ware stitching experiment



79

Figure 4.19: Schematic representation of a family of locked states (red) of the opto-
electronic SFL. In lock, the SCL (black) follows the locked state that most closely
matches its free-running chirp. In hardware stitching, temperatures and currents are
tuned so that all the MS-FMCW channels operate in the same locked state (blue).

range resolution of 75 µm in free space, and 50 µm in glass. We imaged a 150 µm

glass microscope coverslip that was suspended above a metal surface. The time-

domain stitched photocurrent is shown in the top panel of figure 4.20. The curve

was generated by measuring the photocurrent during each channel’s time slot, and

appending the four data sets to each other. The SFL hardware enables perfect real-

time stitching, and we therefore observe a continuous time-domain curve. Single-

sweep (black) and stitched (red) photocurrent spectra are shown in the bottom panel

of figure 4.20. The x-axis is scaled to correspond to distance in glass. The time-

domain photocurrents were apodized with a Hamming window before calculating

the FT. The windowing suppressed the sinc sidebands seen in previously calculated

photocurrent spectra, at the cost of broadening the PSF by a factor of 1.37. The

Hamming-broadened glass resolutions are therefore 274 µm for the single-sweep, and

68.5 µm for the stitched measurement.
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In the single-sweep photocurrent spectrum we observe two broad peaks, one due

to reflections from the coverslip, and the other one due to a reflection from the metal

surface underneath. In the stitched spectrum, the front and back coverslip surfaces

are perfectly resolved, and the peak due to the metal surface is narrowed by a factor

of four.

4.4 Summary

We have analyzed and demonstrated a novel variant of the FMCW optical imaging

technique. This method combines multiple lasers that sweep over distinct but adja-

cent regions of the optical spectrum, in order to record a measurement with increased

effective optical bandwidth and a corresponding improvement in the range resolu-

tion. The MS-FMCW technique is highly scalable and is a promising approach to

realize a wide-bandwidth swept-frequency imaging system that inherits the speed and

coherence of the SCL.

We have described the various phases of our experimental work on MS-FMCW.

We started with a single DFB proof-of-concept experiment that relied on tempera-

ture tuning to generate three sweeps of 100 GHz each, for a total chirped bandwidth

of 300 GHz. Because the laser temperature had to equilibrate between sweeps, the

system scan time was about 10 minutes. We then moved on to a two-source VCSEL-

based system with a bandwidth of 500 GHz per channel, and a total chirp bandwidth

of 1 THz. We used an optomechanical switch to select the particular VCSEL channel,

which limited the minimum scan time to about 20 ms. The last MS-FMCW iteration

took advantage of the starting frequency control of the optoelectronic SFL to essen-

tially perform real-time stitching in hardware. We used four VCSEL channels, and

turned them on one at a time. Each VCSEL chirped 500 GHz in 100 µs, with a total

chirp bandwidth of 2 THz and a scan time of 500 µs.

These results demonstrate the possibility of high-resolution depth imaging, e.g.,

optical coherence tomography, in a SCL-based platform with no moving parts.
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Figure 4.20: Top panel: time-domain stitched photocurrent in the hardware stitching
experiment. Bottom panel: Single-sweep (black) and stitched four-sweep (red) pho-
tocurrent spectra of a 150 µm glass microscope coverslip suspended above a metal
surface. The spectra are apodized with a Hamming window. The total chirp band-
width is 2 THz.
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Chapter 5

The Tomographic Imaging Camera

5.1 Introduction

So far in our discussion of 3-D imaging we have focused on the retrieval of depth

information from a single location in the transverse plane. One way to acquire a full

3-D data set is through mechanical raster-scanning of the laser beam across the object

space. The acquisition time in such systems is ultimately limited by the scan speed,

and for very high resolution datasets (> 1 transverse mega pixel) is prohibitively slow.

Rapid 3-D imaging is of crucial importance in in vivo biomedical diagnostics [21,

26] because it reduces artifacts introduced by patient motion. In addition, a high-

throughput, non-destructive 3-D imaging technology is necessary to meet the require-

ments of several new industrial developments. The emerging fields of 3-D printing and

manufacturing [27] will require high-precision and cost-effective 3-D imaging capabili-

ties. Advances in 3-D tissue engineering, such as synthetic blood vessels [28], synthetic

tendons [29], and synthetic bone tissue [30], require high-resolution 3-D imaging for

tissue monitoring and quality control. To ensure higher physiological relevance of

drug tests, the pharmaceutical industry is moving from two-dimensional (2-D) to 3-D

cell cultures and tissue models, and high-throughput 3-D imaging will be used as

a basic tool in the drug development process [31]. To date, no imaging technology

exists that meets these industrial demands.

In this chapter we describe our development of a conceptually new, 3-D tomo-

graphic imaging camera (TomICam) that is capable of robust, large field of view,
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and rapid 3-D imaging. We develop the TomICam theory and demonstrate its basic

principle in a proof-of-concept experiment. We also discuss the application of com-

pressive sensing (CS) to the TomICam platform. CS is an acquisition methodology

that takes advantage of signal structure to compress and sample the information in a

single step. It is of particular interest in applications involving large data sets, such as

3-D imaging, because compression reduces the volume of information that is recorded

by the sensor, effectively speeding up the measurement. We use a series of numerical

simulations to demonstrate a reduction in the number of measurements necessary to

acquire sparse scatterer information with CS TomICam.

5.1.1 Current Approaches to 3-D Imaging and Their Limi-

tations

A generic FMCW 3-D imaging system has two important components: an SFL for

ranging and a technique to translate the one-pixel measurement laterally in two di-

mensions to capture the full 3-D scene. The basic principle of FMCW ranging is

illustrated in figure 5.1. The optical frequency of a single-mode laser is varied lin-

early with time, with a slope ξ. The output of the laser is incident on a target sample

and the reflected signal is mixed with a part of the laser output in a photodetec-

tor (PD). If the relative delay between the two light paths is τ , the PD output is a

sinusoidal current with frequency ξτ . The distance to the sample is determined by

taking a Fourier transform of the detected photocurrent. Reflections from multiple

scatterers at different depths result in separate frequencies in the photocurrent.

ω
L

0

PD
Launched Reflected

ω0 + ξt ω0 + ξ(t− τ)

i ∝ cos [ξτt+ ω0τ ]

Resolution: δz = c
2B

Figure 5.1: Principle of FMCW imaging with a single reflector
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The important metrics of an SFL are first, the sweep linearity—a highly linear

source reduces the data-processing overhead—and, second, the total frequency excur-

sion, B, which determines the axial (z) resolution (see figure 5.1 and equation (5.3)).

State-of-the-art SFL sources for biomedical and other imaging applications are typ-

ically mechanically-tuned external-cavity lasers where a rotating grating tunes the

lasing frequency [26, 48, 63]. Excursions in excess of 10 THz, corresponding to axial

resolutions of about 10 µm [26, 48] have been demonstrated for biomedical imaging

applications. Fourier-domain mode locking (FDML) [64] and quasi-phase continuous

tuning [65] have been developed to further improve the tuning speed and lasing prop-

erties of these sources. However, all these approaches suffer from complex mechanical

embodiments that lead to a high system cost and limit the speed, linearity, coherence,

size, reliability, and ease of use of the SFL.

Detectors for 3-D imaging typically rely on mechanical scanning of a single-pixel

measurement across the scene [66], as shown schematically in figure 5.2a. The combi-

nation of high lateral resolution (< 10 µm) and large field of view (> 1 cm), requires

scanning over millions of pixels, resulting in slow acquisition. The mechanical nature

of the beam scanning is unattractive for high-throughput, industrial applications, due

to a limited speed and reliability. It is therefore desirable to eliminate the requirement

for beam scanning, and obtain the information from the entire field of view in one

shot. This is possible using a 2-D array of photodetectors and floodlight illumination.

However, in a high-axial-resolution system, each detector in the array measures a beat

signal ξτ in the MHz regime. A large array of high speed detectors therefore needs

to operate at impractical data rates (∼THz) and is prohibitively expensive. For this

reason, full-field FMCW imaging systems have been limited to demonstrations with

extremely slow scanning rates [25,66] or expensive small arrays [67].

A further limitation of FMCW imaging is the need to process the photodetec-

tor information. This processing typically consists of taking a Fourier transform of

the photocurrent at each lateral (x, y) position. In applications requiring real-time

imaging, e.g., autonomous navigation [68], it is desirable to minimize the amount of

processing overhead.
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An ideal FMCW 3-D imaging system will therefore consist of a rapidly tuned

SFL with a large frequency sweep and a detection technique that is capable of mea-

suring the lateral extent of the object in one shot. The system will be inexpensive,

robust, and contain no moving parts. The TomICam platform achieves these goals

through its use of low-cost low-speed detector arrays. It takes advantage of the lin-

earity and starting frequency stability of the optoelectronic SFL (see chapter 3), as

well as our development of SFLs at wavelengths compatible with off-the-shelf silicon

cameras (1060 nm and 850 nm). Moreover, TomICam is inherently compatible with

novel compressive acquisition schemes [69], which leads to further increases in the

acquisition speed.

Various other approaches to 3-D imaging have been described in literature, and

recent work is summarized in table 5.1. Broadly speaking, the depth information

is obtained using time-of-flight (TOF) or FMCW techniques. Transverse imaging

is obtained either by mechanical scanning or using a full-field detector array. In

some embodiments, compressive sensing ideas are used to reduce the number of mea-

surements necessary to obtain the full 3-D image. TOF ranging systems illuminate

the sample with a pulsed light source, and measure the arrival time of the reflected

pulse(s) to obtain depth information. As a result, the axial resolution of TOF systems

is limited by the pulse-width of the optical source, as well as the bandwidth of the de-

tector. Ongoing TOF experiments rely on expensive femto/pico-second mode-locked

lasers and/or acquisition systems with large bandwidths (' 10s of GHz), in order to

achieve sub-cm axial resolution [17]. Transverse imaging is typically achieved using

mechanically scanned optics [16]. Full-field imaging systems using specially designed

demodulating pixels have also been demonstrated; however, these systems have sig-

nificantly lower axial resolution (' 10s of cm) and a limited unambiguous depth of

range [70].

FMCW ranging has many advantages over the TOF approach, since it elimi-

nates the need for narrow optical pulses or accurate high-speed optical detectors

and electronics (see chapter 2). Very high resolution systems (< 10 µm) have been

demonstrated, and have found many applications, e.g., swept-source optical coherence
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Technology
Axial

resolution
Transverse

imaging
Hardware

requirement
Limitations

Compressive
sensing

TOF-
LIDAR [16]

' 2 cm
Mechanical
scanning

Mode-locked
laser, fast
electronics

Slow scanning,
moving parts,

expensive
components,

limited
resolution

Not used in
cited work

T
O

F Single-pixel
TOF-

LIDAR [17]
' 1 cm

Spatial
light

modulator,
single pixel

detector

Mode-locked
laser, fast

electronics,
SLM

Expensive
components,

limited
resolution

Used to
convert the
single-pixel
data into a
3D model

Lock-in
TOF [70]

10s of cm
Lock-in

pixel CCD

Specially
engineered

lock-in pixel
CCD

Poor
resolution,

limited lock-in
CCD size

Not used

SS-
OCT/CS-
OCT [71]

1–10 µm
Mechanical
scanning

External cavity
chirped laser
with moving
parts, slow

detector

Slow scanning,
moving parts,

bulky and
fragile

Used to
reduce scan

time

F
M

C
W

TomICam
10–

100 µm

CCD/
CMOS
array

Optoelectronic
SFL (no

moving parts),
standard

CCD/CMOS
sensor

Floodlight
illumination

(higher power)

Reduced
acquisition
time and

power

Table 5.1: Recent 3-D camera embodiments
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(a) (b)

Figure 5.2: (a) Volume acquisition by a raster scan of a single-pixel FMCW measure-
ment across the object space. (b) Volume acquisition in a TomICam system. 3-D
information is recorded one transverse slice at a time. The measurement depth is
chosen electronically by setting the frequency of the modulation waveform.

tomography [71].

The TomICam approach is unique, in that it combines the high resolution of

FMCW ranging, along with full-field imaging using a detector array, thereby elimi-

nating any mechanical beam scanning optics. Moreover, it does not require specially

engineered detectors pixels, unlike the lock-in TOF lidar [70], making it more ver-

satile and scalable. Specifically, state-of-the art lock-in CCDs are limited to tens of

thousands of pixels, while standard low-speed CMOS/CCD sensors with tens of mega

pixels are commercially available. The TomICam technique therefore has significant

advantages over other state-of-the-art high-resolution 3-D imaging modalities.

5.1.2 Tomographic Imaging Camera

In its basic implementation, the TomICam acquires an entire 2-D (x, y) tomographic

slice at a fixed depth z, as shown in figure 5.2b. A full 3-D image is obtained by a set

of measurements where the axial (z) location of the 2-D slice is tuned electronically.

An intuitive description of the TomICam principle is shown in figure 5.3. The

conventional FMCW measurement in figure 5.3a produces peaks in the photocurrent



88

Fourier variable (x × time)
xt1 xt2 xt3

FMCW Target
reflections

(b)

0

Sinusoidal
intensity

modulation

Fourier variable (x × time)
xt2-n

TomICam
measurement

0 xt3-n

(a)

n = xt1

Figure 5.3: (a)Spectrum of the FMCW photocurrent. The peaks at frequencies ξτ1,
ξτ2, and ξτ3, where ξ is the chirp rate, correspond to scatterers at τ1, τ2, and τ3. (b)
The beam intensity is modulated with a frequency ξτ1, shifting the signal spectrum,
such that the peak due to a reflector at τ1 is now at DC. This DC component is
measured by a slow integrating detector.

spectrum, each peak corresponding to a scatterer at a particular depth (z) within the

sample. If a sinusoidal modulation is imposed on the optical intensity, and hence on

the photocurrent, the spectrum is shifted towards DC. In figure 5.3b, the DC compo-

nent of the shifted spectrum is measured by a slow detector (e.g., a pixel in a CCD

or CMOS array). The entire spectrum is recovered by changing the modulation fre-

quency over several scans. This scheme supplants the need for computing the Fourier

transform and thus effects a reduction in system complexity. Inherent compatibility

with compressive sensing further reduces the number of measurements necessary to

reconstruct the full 3-D scene.

In the following sections we develop the formalism necessary to describe the TomI-

Cam principle and its extension with compressive sensing.

5.1.2.1 Summary of FMCW Reflectometry

A detailed description of the FMCW ranging system is presented in chapter 2. Here,

we briefly summarize the FMCW analysis to set the scene for TomICam. Consider

the FMCW experiment shown in figure 5.4a. We analyze the response of this system

under excitation by an SFL with a linear frequency sweep, ω(t) = ω0 + ξt. We

assume that the sample comprises a set of scatterers with reflectivities Rn and round-
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1×2
coupler

Reference arm

Circulator Integrating
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Sample

SFL

2×1
coupler Fast

detector

Fourier

transform

(a)

1×2
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Circulator Integrating
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Sample

SFL

Intensity
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W(t)

2×1
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(b)

Figure 5.4: (a) Single-pixel FMCW system. The interferometric signal is recorded
using a fast photodetector, and reflector information is recovered at all depths at
once. (b) Single-pixel TomICam. The beam intensity is modulated with a sinusoid,
and the interferometric signal is integrated using a slow detector. This gives one
number per scan, which is used to calculate the reflector information at a particular
depth, determined by the modulation frequency.
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trip delays τn; and that these delays are smaller than the laser coherence time, so

that any phase noise contribution can be neglected. The normalized photocurrent is

equal to the time-averaged intensity of the incident beam (see chapter 2),

iFMCW(t) =

〈∣∣∣∣∣e(t) +
∑
n

√
Rn e(t− τn)

∣∣∣∣∣
2〉

= rect

(
t− T/2
T

)∑
n

√
Rn cos

[
(ξτn)t+ ω0τn −

ξτn
2

2

]
,

(5.1)

where T is the scan duration, ξ is the slope of the optical chirp, φ0 and ω0 are the

initial phase and frequency, respectively, and only the cross terms were retained for

simplicity. The total frequency excursion of the source (in Hz) is therefore given by

B = ξT/2π. A Fourier transform of this photocurrent results in a map of scatterers

along the direction of beam propagation (e.g., figure 5.3a). The strength of a scatterer

at some delay τ is given by the intensity of the Fourier transform of equation (5.1),

evaluated at a frequency ν = ξτ :

|Y (ν = ξτ)|2 =

∣∣∣∣∫ T

0

exp [j(ξτ)t] iFMCW(t)dt

∣∣∣∣2 . (5.2)

By the Fourier uncertainty relation, the resolution of this measurement is inversely

proportional to the integration time T . The spatial resolution is, therefore, given by

∆z =
c

2

2π

ξ

1

T
=

c

2B
, (5.3)

where c is the speed of light.1

5.1.2.2 TomICam Principle

The key idea behind TomICam is that the Fourier transform required for FMCW

data processing may be performed in hardware using an integrating photodetector,

e.g. a pixel in a CCD or CMOS imaging array. To this end, we modify the basic

FMCW experiment to include an intensity modulator, as shown in figure 5.4b. The

1The scatterer range is given by z = cτ/2.
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integrating detector is reset at the beginning of every sweep, and sampled at the end.

For a given modulation signal W (t), the beat signal at the detector is given by

yW (t) ∝ W (t) iFMCW(t). (5.4)

The value sampled at the output of the integrating detector is therefore given by

YW =

∫ T

0

W (t) iFMCW(t)dt, (5.5)

where YW is the TomICam measurement corresponding to an intensity modulation

waveform W (t), and we assumed an overall system gain of 1 for simplicity. The

TomICam measurement therefore amounts to projecting the FMCW photocurrent of

equation (5.1) onto a basis function described by the modulation W (t).

We consider two modulations: WC = cos [(ξτ)t], and WS = sin [(ξτ)t], which

correspond to the cosine and sine transforms.

YWC
(τ) =

∫ T

0

cos [(ξτ)t] iFMCW(t)dt (5.6)

YWS
(τ) =

∫ T

0

sin [(ξτ)t] iFMCW(t)dt (5.7)

Equation (5.2) may therefore be written as:

|Y (ν = ξτ)|2 = |YWC
(τ) + j ∗ YWS

(τ)|2 = |YWC
(τ)|2 + |YWS

(τ)|2 . (5.8)

The scatterer strength at a delay τ is calculated using two consecutive scans. The

strength of the TomICam platform lies in its ability to generate depth scans using

low-bandwidth integrating detectors, making possible the use of a detector array, such

as a CMOS or CCD camera. A possible extension to a 2-D integrating detector array

is shown in figure 5.5. Each element in the array performs a TomICam measurement

at a particular lateral (x, y) location, as described above. The TomICam platform



92

Camera

Swept-frequency 
laser

Intensity 
modulator

 

Aperture

Illuminating 
wavefront

Reference 
wavefront

Sample

W(t)

 

Reference 
mirror

Figure 5.5: A possible TomICam configuration utilizing a CCD or CMOS pixel array
in a Michelson interferometer. Each transverse point (x, y) at a fixed depth (z) in the
object space is mapped to a pixel on the camera. The depth (z) is tuned electronically
by adjusting the frequency of the modulation waveform W (t).

therefore has the following important features:

• A full tomographic slice is obtained in a time that is only limited by the chirp

duration. This is orders of magnitude faster than a raster-scanning solution,

and enables real-time imaging of moving targets.

• The depth of the tomographic slice is controlled by the electronic waveform

W (t), so that the entire 3-D sample space can be captured without moving

parts.

• It leverages the integrating characteristic of widely available inexpensive CCD

and CMOS imaging arrays to substantially reduce signal processing overhead.

• It is scalable to a large number of transverse pixels with no increase in acquisition

or processing time.

• The TomICam platform is not limited to sinusoidal modulations W (t), making

it inherently suitable for compressive sensing, as described in section 5.2.

5.1.2.3 TomICam Proof-of-Principle Experiment

In order to verify the equivalence of FMCW and TomICam measurements, we have

performed a proof-of-principle experiment, shown schematically in figure 5.6. We
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Figure 5.6: Schematic diagram of the TomICam proof-of-principle experiment. A
slow detector was modeled by a fast detector followed by an integrating analog-to-
digital converter. The detector signal was sampled in parallel by a fast oscilloscope,
to provide a baseline FMCW depth measurement.

Figure 5.7: The custom PCB used in the TomICam experiment. Implemented func-
tionality includes triggered arbitrary waveform generation and high-bit-depth acqui-
sition of an analog signal.
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used the 1550 nm VCSEL-based optoelectronic SFL, described in section 3.4.1, which

produced a precisely linear chirp with a swept optical bandwidth of 400 GHz, and a

scan time of 2 ms. The beam was modulated using a commercially available lithium

niobate intensity modulator.

The necessary electronic functionality, including an arbitrary waveform generator,

an integrating high-bit-depth analog-to-digital converter, and a microcontroller, was

implemented on a PCB, shown in figure 5.7. The waveform generator was used to

provide sine and cosine waveforms of different frequencies to the intensity modulator.

The amplitude of these waveforms was apodized by a Hamming window, which sup-

pressed the sinc sidebands associated with a rectangular apodization. The integrating

analog-to-digital converter recorded a single number per scan. The microcontroller

was used to coordinate the waveform generation and signal acquisition. The pho-

todetector output was also sampled on a high-speed oscilloscope in order to provide

a baseline FMCW measurement.

We used a sample comprising two acrylic slabs. Reflections from the air-acrylic

and acrylic-air interfaces were recorded and the results are shown in figure 5.8. The

red curve is the intensity of the Fourier transform of the FMCW photocurrent. The

blue curve is constructed by varying the frequencies of the modulation waveforms

WC(t) and WS(t), and applying equation (5.8). As expected, the two curves are

practically identical.

We note that a copy of the signal, scaled in frequency by a factor of 1
3
, shows up

in the TomICam spectrum in figure 5.8. This ghost replica is due to a third-order

nonlinearity exhibited by our intensity modulator, and can be resolved through the

use of a linear intensity modulator. An example of such a modulator is the amplitude

controller based on an semiconductor optical amplifier in a feedback loop, described

in section 3.3.2.

We characterize the dynamic range of our system by performing FMCW and

TomICam measurements on a fiber Mach-Zehnder interferometer (MZI). We intro-

duce optical attenuation in one of the MZI arms, and measure the signal SNR. The

results for unbalanced and balanced acquisition in FMCW and TomICam configura-
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Figure 5.8: Comparison between FMCW (red) and TomICam (blue) depth measure-
ments. The two are essentially identical except for a set of ghost targets at 1

3
of the

frequency present in the TomICam spectrum. These ghosts are due to the third-order
nonlinearity of the intensity modulator used in this experiment.

Figure 5.9: Characterization of the FMCW and TomICam dynamic range. The signal-
to-noise ratio was recorded as a function of attenuation in one of the interferometer
arms. At low attenuations, the SNR saturates due to SFL phase noise and residual
nonlinearity.
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tions are shown in figure 5.9. The dynamic range of our system, defined as the ratio

of the strongest to weakest measurable target reflectivity, is about ∼ 80 dB. For low

attenuation, i.e., large reflectivities, the SNR is limited by the laser coherence and

residual chirp nonlinearity, saturating at a (path-length mismatch dependent) value

of ∼ 50 dB. The fiber mismatch used in this experiment was about 40 mm.

5.2 Compressive Sensing

The total number of tomographic slices, N , used in a 3-D image reconstruction is

given by the axial extent, Lz, of the target divided by the axial resolution, ∆z. We

note that most real life targets are sparse in the sense that they have a limited number

of scatterers, k, in the axial direction. The acquisition of N � k slices to form the 3-D

image is therefore inefficient. In this section, we investigate the use of compressive

sensing (CS) in conjunction with the TomICam platform in order to obtain the 3-D

image with many fewer than N measurements. This has the potential to reduce the

image acquisition time and the optical energy requirement of the TomICam by orders

of magnitude.

5.2.1 Compressive Sensing Background

We briefly state the salient features of CS [69]. Consider a linear measurement system

of the form:

y = Ax A ∈ Cm×N ,x ∈ CN ,y ∈ Cm, (5.9)

where the vector x is the signal of interest, and the vector y represents the collected

measurements. The two are related by the measurement matrix A. The case of

interest is the highly under-determined case, m� N . The system therefore possesses

infinitely many solutions. Nevertheless, CS provides a framework to uniquely recover

x, given that x is sufficiently sparse, and the measurement matrix A satisfies certain

properties such as restricted isometry and incoherence [69]. The intuition behind CS
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is to perform the measurements in a carefully chosen basis where the representation

of the signal x is not sparse. The signal is then recovered by finding the sparsest x

that is consistent with the measurement in equation (5.9). Specifically, the recovery

is accomplished by solving a convex minimization problem:

minimize ‖x‖1

subject to Ax = y,
(5.10)

where ‖x‖1 denotes the l1 norm of x. The use of the l1 norm promotes sparse

solutions, while maintaining convexity of the minimization problem, resulting in a

tractable computation time. Success of recovery depends on the number of measure-

ments m, the sparsity level of x, and the properties of the measurement matrix A.

This approach is of particular interest due to continuous advances in computational

algorithms that improve the reconstruction speed [72].

5.2.2 TomICam Posed as a CS Problem

Fundamentally, the FMCW imaging technique converts the reflection from a given

depth in the z direction to a sinusoidal variation of the detected photocurrent at a

frequency that is proportional to the depth. Scatterers from different depths thus

result in a photocurrent with multiple frequency components. In its basic implemen-

tation (section 5.1.2.2), the TomICam uses a single-frequency modulation of the beam

intensity to determine one of these possible frequency components. Full image ac-

quisition requires N measurements (N = Lz/∆z), determined by the axial resolution

of the swept-frequency source. When the number of axial scatterers—and hence the

number of frequency components in the photocurrent—is sparse, the CS framework

enables image acquisition with a smaller number of measurements.

We first show that the TomICam is inherently suited to compressive imaging

and that different types of measurements may be easily performed with almost no

modification to the system. We recast equation (5.5) in a form more suitable for

the discussion of CS. We assume that there are N possible target locations with
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corresponding delays τn, n = 0, 1, . . . , (N − 1) and target reflectivities Rn. These

target locations are separated by the axial resolution: τn = n/B. We assume that

the target is k-sparse so that only k of the N possible reflectivities are nonzero. The

time axis is discretized to N points given by th = hT
N
, h = 0, 1, . . . (N − 1). Equation

(5.5) can now be written as

y =
N−1∑
h=0

N−1∑
n=0

W (th)

√
Rn

N
cos (ξτnth + ω0τn). (5.11)

Each TomICam measurement therefore yields a single value y for a particular W (th)

(per pixel in the lateral plane), as given by equation (5.11). Note that a sinusoidal

variation ofW (th) yields the reflectivity at a particular axial depth, and a tomographic

slice is obtained using a detector array, as described in section 5.1.2.2.

In this section, we will explore other intensity modulation waveforms W (th) that

are compatible with the CS framework to reduce the number of scans in the axial

dimension. We extend the discussion to include m measurements indexed by s, i.e.,

we will use m different intensity modulation waveforms Ws(th) to obtain m distinct

measurements ys. Equation (5.11) can be simplified to give

ys =
N−1∑
h=0

N−1∑
n=0

Ws

(
hT

N

)
· 1√

N
exp

(
−j 2πhn

N

)
·
√
Rn

N
exp

(
−j ω0

B
n
)

=
N−1∑
h=0

N−1∑
n=0

Wsh · Fhn · xn,
(5.12)

where Wsh ≡ Ws

(
hT
N

)
, Fhn ≡ 1√

N
exp

(
−j 2πhn

N

)
, xn ≡

√
Rn
N

exp
(
−j ω0

B
n
)
, and it is

understood that the measurements correspond to the real part of the right hand side.

Rewriting equation (5.12) in matrix notation, we obtain:

y = WFx, (5.13)

where x is the k-sparse target vector of length N , y is the vector containing the m

TomICam measurements, F is the N×N unitary Fourier matrix, and W is the m×N
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matrix that comprises the m intensity modulation waveforms Ws(th).

Since W is electrically controlled, a variety of measurement matrices can there-

fore be programmed in a straightforward manner. Each TomICam measurement ys is

obtained by multiplying the optical beat signal with a unique modulation waveform

Ws(th) and integrating over the measurement interval. If the modulation waveforms

are chosen appropriately, the measurement matrix can be made to satisfy the cru-

cial requirements for CS, i.e., the restricted isometry property and incoherence [69].

This ensures that the information about the target—which is sparse in the axial

dimension—is “spread out” in the domain in which the measurement is performed,

and a much smaller number of measurements is therefore sufficient to successfully

recover the complete image.

5.2.3 Robust Recovery Guarantees

We now consider two possibilities for W that yield a measurement matrix capable

of robust signal recovery. These represent straightforward implementations of CS

TomICam imaging.

5.2.3.1 Random Partial Fourier Measurement Matrix

A random partial Fourier matrix of size m × N is generated by selecting m rows at

random from the N×N Fourier matrix F. This operation is accomplished by a binary

matrix W that has a single nonzero entry in each row. The location of the nonzero

entry is chosen randomly without replacement. For this class of matrices, robust

signal recovery is guaranteed whenever the number of measurements satisfies [73]

m ≥ Ck log (N/ε), (5.14)

where k is the signal sparsity, 1− ε is the probability of recovery, and C is a constant

of order unity.

In the TomICam implementation, a random partial Fourier measurement corre-

sponds to pulsing the intensity modulator during the linear chirp, so that only a single



100

optical frequency is delivered to the target per scan, leaving a lot of dead time. As a

result, the optoelectronic SFL is not the most ideal laser candidate, and other sources

that can provide rapid random frequency access, such as sampled grating SCLs, are

more suitable [74]. In these devices, the cavity mirrors are formed using a pair of

sampled gratings, each of which has multiple spectral reflection bands. Current tun-

ing of the mirror sections is used to make these reflection bands overlap, forming a

single band whose position may be varied over a broad spectral range. Further, a

phase section current is applied to align a Fabry-Pérot cavity mode to the middle

of the band in order to optimize lasing properties. Simultaneously tuning all three

sections enables broadband frequency access, approaching 5 THz at 1550 nm [75].

5.2.3.2 Gaussian or Sub-Gaussian Random Measurement Matrix

This class of matrix has the property that any entry Aij in the matrix A is randomly

chosen from independent and identical Gaussian or sub-Gaussian distributions. In

this case, robust signal recovery is guaranteed for

m ≥ Ck log (N/k), (5.15)

where k is the signal sparsity, and C is a constant of order unity. Moreover, the same

result also applies to a measurement matrix that is a product of a Gaussian or sub-

Gaussian random matrix and a unitary matrix. Since F is unitary, a Gaussian random

matrix W results in robust signal recovery when equation (5.15) is satisfied [76]. The

measurements obtained using a Gaussian matrix W may be interpreted as a collection

of conventional TomICam measurements where each measurement queries all possible

depths with different weights.

We want the failure rate ε to be much less than unity, while the sparsity level k is

at least unity. Therefore, the Gaussian random matrix requires fewer measurements

than the random partial Fourier matrix for correct recovery.
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Figure 5.10: Flow diagram and parameters of the CS TomICam simulation

5.2.4 Numerical CS TomICam Investigation

Because the partial Fourier matrix is not well-suited for the TomICam platform, we

continue our investigation with the Gaussian random matrix in mind. We evaluate

the performance of a compressively-sampled TomICam through a series of numerical

simulations. The simulation steps and parameters are summarized in figure 5.10.

We consider a signal space with dimension N = 100, and generate a random target

signal x0 of a given sparsity. We generate a Gaussian random matrix W of size m×N ,

where m is the number of measurements. We then make a noisy measurement

y0 = WF(x0 + xn), (5.16)

where xn is a randomly generated noise vector. We define the SNR as the ratio of

the signal and noise energies,

SNR ≡ ‖x0‖2

‖xn‖2

. (5.17)

We then proceed to solve the convex minimization problem in equation (5.10), which

yields the recovered signal x. We define the signal-to-error ratio (SER) as the ratio of
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Figure 5.11: SER curves for a CS simulation with a Gaussian random matrix
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the energy of the recovered signal to the energy of the difference between the recovered

and the original signals.

SER ≡ ‖x‖2

‖x− x0‖2

. (5.18)

We repeat this procedure 100 times and record the average SER. We consider 0 <

m < 100, and simulate 100 reconstructions for each value of m, resulting in a curve

of SER vs. m. We generate 15 such a curves by considering five sparsity levels

k = [1, 3, 5, 7, 9], and three noise levels SNR = [40dB, 80dB, 120dB].

These curves are plotted in figure 5.11, with the 120 dB SNR shown in red, 80 dB

in blue, and 40 dB in black. We expect that for a small number of measurements,

the reconstructions will fail, yielding a zero SER. Once the number of measurements

satisfies equation (5.15), the reconstruction will essentially always succeed, yielding an

SER that is approximately equal to the SNR. This is the pattern that we see in figure

5.11. The curves corresponding to the different sparsity levels are in order, with the

sparsest case achieving the transition in SER at the lowest number of measurements.

We observe that ∼ 50 measurements are necessary to recover a 9-sparse target, which

corresponds to a factor of two compression, when compared to conventional sampling.

We note that a Gaussian random matrix has negative entries, and is therefore

not physical (we can only modulate the beam intensity with a positive waveform).

To fix this, we investigate numerically random matrices that contain only positive

entries. SER curves for W given by the absolute value of a Gaussian random matrix

are shown in figure 5.12. The qualitative behavior of the curves is unchanged from

the random Gaussian case.

A passive intensity modulator can only provide a modulation between 0 and 1,

and we therefore examine a waveform matrix W with entries that are uniformly

distributed between 0 and 1. The SER curves for this case are shown in figure 5.13,

and follow the trend of the previous simulations.

Realistic intensity modulators have a finite extinction ratio, meaning they cannot

be used to turn the beam completely off. Moreover, it may be desirable to operate the
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intensity modulator away from the zero point to keep its response as linear as possible.

To account for this possibility we ran the simulation using a waveform matrix W with

entries that are uniformly distributed between 0.5 and 1. Again, the transition trends

for the SER curves, shown in figure 5.14 remain essentially unchanged.

The waveform generator has a finite bit depth, and we consider, as an extreme

case, only two modulation levels—0.5 and 1—which corresponds to a waveform matrix

W whose entries can equal either of the modulation levels with equal probabilities.

The SER curves for this simulation are shown in figure 5.15, and again demonstrate

the same behavior.

For our final simulation we increased the dimension of the space to 1000, and used

a waveform matrix W with entries that are uniformly distributed between 0 and 1.

The SER curves for this simulation are shown in figure 5.16. We observe that ∼ 80

measurements are necessary to recover a 9-sparse target, which corresponds to greater

than 10× compression, when compared to conventional sampling.

5.3 Summary

In this chapter we described the basic tomographic imaging camera principle, and

demonstrated single-pixel TomICam ranging in a proof-of-concept experiment. The

TomICam uses a combination of electronically tuned optical sources and low-cost

full-field detector arrays, completely eliminating the need for moving parts tradi-

tionally employed in 3-D imaging. This new imaging modality could be useful in a

variety of established and emerging disciplines, including lidar [18], profilometry [22],

biometrics [25], biomedical diagnostics [21, 26], 3-D manufacturing [27], and tissue

engineering [28–31].

We also discussed the application of compressive sensing to the TomICam plat-

form, and performed a series of numerical simulations. These simulations show that

a factor of 10 reduction in the number of measurements is possible with CS if the

number of depth bins is about 1000. Future implementations of TomICam will benefit

from the development of high frame rate, high pixel count silicon CCD and CMOS
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cameras, rapidly-tunable semiconductor lasers [77], efficient compressive sensing algo-

rithms, and continuous advances in computing performance. As a result, TomICam

has the potential to push 3-D imaging functionality well beyond the state of the art.



108

Chapter 6

Phase-Locking and Coherent Beam
Combining of Broadband
Linearly Chirped Optical Waves

6.1 Introduction

Optical phase-locking has found various applications in the fields of optical commu-

nication links [52, 78–81], clock generation and transmission [82, 83], synchronization

and recovery [84,85], coherence cloning [7], coherent beam combining (CBC) and op-

tical phased arrays [8,86–91], and optical frequency standards [92,93], to name a few.

In these applications, electronic feedback is used to precisely synchronize the phases

of two optical waves. With a few notable exceptions [34,94], prior demonstrations of

phase-locking and synchronization have been performed using nominally monochro-

matic optical waves. In this chapter we describe our work on the phase-locking of

optical waves whose frequencies are swept rapidly with time and over large chirp ex-

tents. The phase-locking of optical waves with arbitrary frequency chirps is a difficult

problem in general. However, precisely linear chirps, such as the ones generated by

the optoelectronic SFL (see chapter 3) can be phase-locked with very high efficiency

using a frequency shifter. The main application of this result is the simultaneous

stimulated Brillouin scattering (SBS) suppression and coherent combining of high-

power fiber amplifiers. Other potential applications include electronic beam steering

for lidar and 3-D imaging systems.
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We begin our discussion by reviewing CBC approaches to the generation of high-

power continuous-wave optical beams. We proceed to describe the basic principle

behind phase-locking of linearly chirped optical waves, and present theoretical anal-

yses of chirped-wave phase-locking in homodyne and heterodyne configurations. We

demonstrate heterodyne phase-locking of chirped optical waves and implement a

passive-fiber CBC system [10, 11]. We conclude with a description of our recent

CBC experiment with two erbium-doped fiber amplifier (EDFA) channels [12]. The

work described in this chapter was performed in collaboration with Jeffrey O. White’s

group at the United States Army Research Laboratory.

6.2 Coherent Beam Combining

The output power of optical fiber amplifiers is usually limited by SBS. Advances in

the design of the geometry and doping profiles of active fiber have enabled increases

in the SBS threshold power [95–97]. Further increases in the SBS threshold of a

single amplifier can be obtained by broadening the linewidth of the seed laser through

phase or frequency modulation [32,33]. A separate approach to achieving high optical

powers is the coherent beam combining of the outputs of multiple laser or amplifier

elements [8, 86–90].

The efficiency of a CBC scheme depends on the matching of the relative am-

plitudes, phases, polarizations and pointing directions of the multiple emitters in

the array [86, 98, 99]. Phase synchronization of the array elements is a particularly

difficult challenge, which in the past has been addressed with various approaches,

including evanescent wave and leaky wave coupling of emitters [100, 101], common

resonator arrays [102,103], and phase-locking through optoelectronic feedback [8,90].

In optoelectronic feedback systems, the phase error between the combined beams is

measured and fed back to a phase actuator, such as an electro-optic phase modula-

tor [87], acousto-optic frequency shifter [90], or a fiber stretcher [34,89].

Kilowatt-level systems have been demonstrated [33] and rely on the simultaneous

suppression of SBS in high-power fiber amplifiers and the CBC of multiple amplifier
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channels. The path-length mismatch between array elements in an amplifier CBC

system has to be much smaller than the seed coherence length, in order to prevent

de-phasing due to incoherence. The traditional approach to SBS suppression relies on

a broadening of the seed linewidth, and therefore a reduction of its coherence length.

As a result, SBS suppression in high-power fiber amplifier CBC systems requires

precise channel path-length matching. Recently, Goodno et al. [33] have demon-

strated the phase-locking of a 1.4 kW fiber amplifier. This power level was achieved

by increasing the SBS threshold using a modulated seed source with a linewidth of

∼ 21 GHz. Efficient power combining was only possible with precise path-length

matching of active fibers to sub-mm accuracy. Further increases in the power out-

put of a single amplifier will require even broader seed linewidths, and path-length

matching to within ∼ 10s of µm will be necessary. Weiss et al. [34] have recently

demonstrated that coherent combining can still be achieved using a novel feedback

loop that senses the path-length mismatch and corrects it using a fiber stretcher.

In this chapter we explore an architecture capable of SBS suppression and co-

herent beam combining without stringent mechanical path-length matching require-

ments [10–12]. Our approach is to use a rapidly chirped (> 1014 Hz/s) swept-

frequency laser (SFL) seed to reduce the effective length over which SBS occurs [35,

36]. The advantage of this approach is that path-length matching requirements are

relaxed due to the long coherence length (several meters) of semiconductor laser

based SFLs. In the following section we describe the basic principle of phase-locking

of linearly chirped optical waves using acousto-optic frequency shifters (AOFSs) to

compensate for static and dynamic optical path-length differences. We proceed with

an analysis of homodyne and heterodyne optical phase-locked loop (OPLL) configu-

rations, and present results of proof-of-concept experiments that demonstrate phase-

locking, coherent combining, and electronic phase control in chirped-wave passive-

fiber systems.
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Figure 6.1: Intuitive description of chirped-seed amplifier coherent beam combining.
A path-length mismatch between amplifier arms results in a frequency difference at
the combining point, and can therefore be compensated using a frequency shifter
placed before amplifier 2.

6.3 Phase-Locking of Chirped Optical Waves

The basic concept of phase-locking multiple chirped-seed amplifiers (CSAs) in a

master oscillator power amplifier (MOPA) configuration is depicted in figure 6.1 [10,

11]. A SFL is used to generate a linear chirp, with an instantaneous optical frequency

given by

ωL(t) = ωL,0 + ξt, 0 ≤ t ≤ T, (6.1)

where ωL,0 is the initial optical frequency, ξ is the sweep rate, and T is the sweep time.

The SFL is split into multiple amplifier seeds which then undergo amplification and

recombination to form a high-power beam. A difference in the lengths of the fiber

amplifiers 1 and 2 result in a frequency difference ξl12/c at the locking point, where l12

is the path-length mismatch and c is the speed of light. An acousto-optic frequency

shifter (AOFS) is placed in one of the arms to correct this frequency difference. For

a linear chirp of ξ
2π

= 1015 Hz/s and a path-length mismatch of 10 cm in fiber, the

required frequency shift is 500 kHz, which is well within the dynamic range of AOFSs.

An optical phase-locked loop is formed by recording an interference signal between

the two arms on a photodetector and feeding it back to the AOFS, as shown in figure

6.2 and figure 6.4. In lock, the AOFS synchronizes the optical phases and corrects
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the fixed path-length mismatches as well as the dynamic length fluctuations arising

from vibrations and temperature drift. The loop bandwidth determines the fastest

fluctuation frequency that is suppressed, and previous work using AOFSs and single-

frequency seeds has shown that sufficient bandwidths can be achieved for efficient

combining of fiber amplifier outputs [90].

SBS suppression in high-power amplifiers scales with the chirp rate [35,36]. There-

fore, we limit our attention to SFLs with perfectly linear chirps, in order to ensure

that uniform SBS suppression is obtained throughout the duration of the frequency

sweep. Moreover, a linear chirp enables path-length mismatches to be corrected by

a constant frequency shift, as described above. Deviations from chirp linearity are

corrected using a feedback loop, as long as these deviations are small and at frequen-

cies within the loop bandwidth. It is therefore desirable that the chirp be close to

perfectly linear, particularly at high chirp rates ξ, in order to relax the requirements

on the frequency tuning range of the AOFS and the bandwidth of the feedback loop.

We note that it should be possible to further extend the phase-locking approach to

other sweep profiles, by using a time-varying frequency shift to compensate for the

time-varying slope of the optical frequency chirp, e.g., using the iterative algorithm

of section 3.2.3 to pre-distort the AOFS bias signal.

6.3.1 Homodyne Phase-Locking

We first consider the homodyne phase-locking configuration shown in figure 6.2. The

output of an optoelectronic SFL is split into two arms using a fiber splitter. The

goal of the experiment is to phase-lock the outputs of the two arms by feeding back

the error signal generated using a 2 × 2 fiber coupler and a balanced detector. The

bias frequencies and phase shifts of the two AOFSs are denoted by ω1, ω2 and φ1,

φ2. The differential delay between the first and second arms is denoted by τ12. We

also introduce a common delay τd to model the long fiber length inside an optical

amplifier. The feedback loop is very similar to a typical phase-locked loop [51], and

can be analyzed accordingly. We define the DC loop gain KDC as the product of the
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optical power in each arm (units: W), and the gains of the balanced detector (V/W),

loop amplifier (V/V), and frequency shifter (rad/s/V). Let the SFL optical frequency

be given by equation (6.1), and let us denote the optical phases of the two arms at

the coupler by θ1(t) and θ2(t). The optical phase difference between the two arms is

given by

θ12(t) ≡ θ1(t)− θ2(t)

= (ωL,0 + ω1)(t− τd) +
ξ

2
(t− τd)2 + φ1 − (ωL,0 + ω2)(t+ τ12 − τd)

− ξ

2
(t+ τ12 − τd)2 − φ2 −

∫ t+τ12−τd

0

KDC cos θ12(u)du =

= ∆ωfr(t− τd)− (ω2 + ωL,0)τ12 −
ξτ 2

12

2
+ φ12 −

∫ t+τ12−τd

0

KDC cos θ12(u)du,

(6.2)

where ∆ωfr ≡ ω1 − ω2 − ξτ12 is the free-running frequency difference between the

two arms, and φ12 ≡ φ1 − φ2. The final term in equation (6.2) represents the phase

shift due to the feedback to the AOFS, which is the integral of the frequency shift.

The steady-state solution θ0
12, obtained by setting the time derivative of θ12(t) to 0,

is given by

θ0
12 = cos−1

(
∆ωfr
KDC

)
. (6.3)

We use this result to rewrite equation (6.2),

θ12(t) = ∆ωfr(t+ τ12 − τd) + θ0
12 −

∫ t+τ12−τd

0

KDC cos θ12(u)du. (6.4)

In lock, the optical phases of the two arms differ by θ0
12, and there is no frequency

difference.

Next, we linearize the loop about its steady-state solution in order to study dy-

namic behavior and the effect of fluctuations. We denote the phase noise and residual

nonlinearity of the SFL by θnL(t), and the phase noise introduced in the two arms by

θn1 (t) and θn2 (t), which include noise contributions from the AOFSs and fluctuations

in the optical path lengths. We introduce δθ12(t), the small-signal fluctuation of θ12(t)
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about the steady state, so that

θ12(t) = θ0
12 + δθ12(t). (6.5)

We plug equation (6.5) into equation (6.4), and expand about the steady-state point

(equation (6.3)). Solving for δθ12(t), we arrive at

δθ12(t) = θn12(t)+θnL(t− τd)−θnL(t+ τ12− τd)+KDC sin θ0
12

∫ t+τ12−τd

0

δθ12(u)du, (6.6)

where θn12(t) ≡ θn1 (t)− θn2 (t). Taking the Fourier transform of both sides of equation

(6.6), we arrive at a frequency-domain description of the small-signal fluctuations,

δθ12(ω) = θn12(ω) + θnL(ω)
[
e−jωτd − e−jω(τd−τ12)

]
+
KDCKel(ω) sin θ0

12

jω
e−jω(τd−τ12)δθ12(ω),

(6.7)

where Kel(ω) is the frequency-dependent gain of the loop electronics. This frequency-

domain model is shown schematically in figure 6.3. The solution of equation (6.7) is

given by

δθ12(ω) =
θn12(ω)

1 +K(ω)
+
θL(ω)

[
e−jωτd − e−jω(τd−τ12)

]
1 +K(ω)

, (6.8)

where

K(ω) ≡ −KDCKel(ω) sin θ0
12

jω
e−jω(τd−τ12)

=
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jω(τd−τ12)

(6.9)

is the total frequency-dependent feedback gain, and we picked the negative root in

calculating sin θ0
12 in order to achieve negative feedback.

In our experiments, loop bandwidths have been limited to the sub-MHz range by

the AOFS frequency modulation response, and we therefore restrict our attention to

the Fourier frequency range below ∼ 10 MHz. Typical values of τ12 are in the ns
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range, so ωτ12 . 10−2, and we can expand equation (6.8) and equation (6.9) near

ωτ12 = 0, yielding

δθ12(ω) =
θn12(ω)

1 +K(ω)
− jωτ12

θL(ω)e−jωτd

1 +K(ω)
, and (6.10)

K(ω) =
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jωτd . (6.11)

According to equation (6.10), phase fluctuations in the fiber are reduced by a

factor 1 + K(ω) in the locked state. For frequencies within the loop bandwidth,

K(ω)� 1, and significant noise suppression is obtained. The second term describes

the effect of the SFL phase noise and residual chirp nonlinearity. The system behaves

like a frequency discriminator with gain τ12, and the feedback again suppresses the

measured frequency noise by the factor 1 +K(ω). It is clear that a small differential

delay τ12 and an SFL with a highly linear chirp and low phase noise minimize the

phase error in the loop.

The homodyne phase-locking approach described above has a few shortcomings.

1. The value of the steady-state phase θ0
12 can only be adjusted (within the range

[0, π]) by varying the bias frequency shifts ω1 and ω2; this is not optimal since

it adversely impacts loop gain and therefore performance.

2. The desired operating point for in-phase beam combining is θ0
12 ≈ 0; however,

according to equation (6.9), the loop gain contains the factor sin θ0
12, and the

loop therefore loses lock as this operating point is approached. It is desirable

that the loop be locked at quadrature θ0
12 = π/2, maximizing the gain.

3. Finally, it is not straightforward to scale this approach to multiple phase-locked

arms.

These problems are all addressed by adopting a heterodyne phase-locking archi-

tecture, as described in the next section.
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6.3.2 Heterodyne Phase-Locking

In a heterodyne chirped-seed CBC experiment, the SFL output is split into a reference

and multiple amplifier arms. The goal of the experiment is to lock the phases of all

the amplifier arms to the reference, at an offset frequency ωos. The heterodyne OPLL

formed between the reference and the n-th amplifier is shown in figure 6.4. The bias

frequency and phase shift of the AOFSs is denoted by ωn and φn. The differential

delay between the reference and amplifier arms is denoted by τrn, and we again

introduce a common delay τd. The optical phase difference between the two arms is

given by

θrn(t) = (−ωn − ξτrn)(t− τd)− (ωn + ωL,0)τrn −
ξτ 2
rn

2
− φn

−
∫ t+τrn−τd

0

KDC cos [θrn(u) + ωosu+ θos,n] du,

(6.12)

where θos,n is the phase of the offset oscillator in the n-th OPLL. The steady-state

solution θ0
rn(t), obtained by setting the time derivative of the mixer phase θrn(t) +

ωost+ θos to 0, is given by

θ0
rn(t) = −ωost− θos,n + cos−1

(
∆ωfr
KDC

)
, (6.13)

where ∆ωfr = ωos − ωn − ξτrn. We use this result to rewrite equation (6.12),

θrn(t) = ∆ωfr(t+ τrn − τd) + θ0
rn(t)−

∫ t+τrn−τd

0

KDC cos [θrn(u) + ωosu+ θos,n] du.

(6.14)

If we acquire lock at a zero free-running frequency difference, the steady-state optical

phase difference between the n = 1 and n = 2 amplifier arms is given by

θ0
12 = θ0

r2(t)− θ0
r1(t) = θos,1 − θos,2 ≡ θos,12. (6.15)

The steady-state phase difference between the two amplifier arms can now be con-

trolled electronically by setting the relative offset oscillator phase θos,12. Loop oper-
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ation off quadrature is therefore no longer required. The electronic phase control is

also important for beam-steering and phase-controlled optical apertures.

Next, we linearize the loop about its steady-state solution. We denote the phase

noise introduced in the reference and amplifier arms by θnr (t) and θnn(t), and offset

oscillator phase noise by θnos,n(t). We introduce δθrn(t), the small-signal fluctuation

of θrn(t) about the steady state, so that

θrn(t) = θ0
rn(t) + δθrn(t). (6.16)

We plug equation (6.16) into equation (6.14), and expand about the steady-state

point (equation (6.13)). Solving for δθrn(t), we arrive at

δθrn(t) = θnrn(t) + θnL(t− τd)− θnL(t+ τrn − τd)

−KDC

√
1−

(
∆ωfr
KDC

)2 ∫ t+τrn−τd

0

[
δθrn(u) + θnos,n(t)

]
du.

(6.17)

When locked at quadrature, the frequency-domain description of the small-signal

fluctuations is given by

δθrn(ω) = θnrn(ω)− jωτrne−jωτdθnL(ω)−K(ω)
[
δθrn(ω) + θnos,n(ω)

]
, (6.18)

where

K(ω) ≡
KDCKel(ω)

√
1−

(
∆ωfr
KDC

)2

jω
e−jω(τd−τrn), (6.19)

and we have introduced the frequency-dependent electronic gain Kel(ω). This small-

signal model is shown schematically in figure 6.5. The solution of equation (6.18) is

given by

δθrn(ω) =
θnrn(ω)

1 +K(ω)
− jωτrn

θL(ω)e−jωτd

1 +K(ω)
− K(ω)θnos,n(ω)

1 +K(ω)
. (6.20)

As in the homodyne case, for frequencies within the loop bandwidth, the OPLL

reduces the phase error due to fiber fluctuations and SFL phase noise by a factor

1 + K(ω). The factor multiplying the offset phase noise term θnos,n(ω) goes to 1 for
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Figure 6.6: Locked-state Fourier spectrum of the measured beat signal between the
reference and amplifier arms, over a 2 ms chirp interval. The nominal loop delay
parameters are τd = 20 m and τr1 ≈ 0 m. The time-domain signal was apodized with
a Hamming window.

large K(ω). The offset oscillator phase noise is transferred to the optical wave, and

should be kept as small as possible.

6.3.3 Passive-Fiber Heterodyne OPLL

The heterodyne phase-locking experiment of figure 6.4 was performed at 1550 nm

using a VCSEL-based optoelectronic SFL with a chirp rate of 2 × 1014 Hz/s (see

chapter 3 for a summary of its operation). We used polarization-maintaining fiber-

optic components, and an AOFS (Brimrose Corporation) with a nominal frequency

shift of 100 MHz and a frequency modulation bandwidth of ∼ 75 kHz. We used a DDS

integrated circuit to provide the 100 MHz offset signal. The circuit can rapidly switch

the output amplitude, phase and frequency when driven by an external trigger, which

allowed us to use different locking parameters for the up and down chirps. Similarly,

we designed a triggered arbitrary waveform generator in order to vary the AOFS bias

during the up and down chirps. The experiment was performed for different values



121

(a) (b)

Figure 6.7: (a) Phase difference between the reference and amplifier arms calculated
using the I/Q demodulation technique. The three curves (offset for clarity) correspond
to different values of the loop delay τd and the path-length mismatch τr1. (b) Transient
at the beginning of the chirp. The locking time is determined by the loop bandwidth,
which is limited by the AOFS to about 60 KHz.

of the loop propagation delay τd and path-length mismatch τr1.1

We measured the beat signal between the reference and amplifier arms in order

to characterize the performance of the heterodyne OPLL. The locked-state beat

signal phase fluctuations, δθr1(t), are described in the frequency domain by equation

(6.20). The variance of these phase fluctuations, 〈δθ2
r1(t)〉t, is the critical metric

of loop performance since it determines the fraction of the amplifier power that is

coherent with the reference path [8, 104]. The spectrum of the beat signal over one

2 ms chirp duration is calculated using a Fourier transform with a Hamming window,

and is shown in figure 6.6. The delay parameters were τd = 20 m and τr1 ≈ 0. The

spectrum comprises a transform-limited peak at 100 MHz and a small noise pedestal.

The loop bandwidth is about 60 kHz, limited by the AOFS. The residual noise may be

calculated by integrating the noise in the spectral measurement [8, 104]. From figure

6.6, the standard deviation of the phase fluctuations is calculated to be 0.08 rad,

which corresponds to 99.4% of the amplifier optical power being coherent with the

reference wave.

An alternative means of analysis is to use the in-phase and quadrature (I/Q)

1The optical delay is reported here in units of length, and is to be understood as the time taken
for light to propagate along that length of polarization-maintaining Panda fiber.
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demodulation technique, as described in appendix A. It allows us to extract the

time-domain phase fluctuations δθr1(t), and directly calculate the variance 〈δθ2
r1(t)〉t.

The locked-state phase fluctuations during one 2 ms chirp are plotted in figure 6.7a

for three different values of the loop delay τd and the differential delay τr1 (the curves

are offset from each other for clarity). The locking transient is shown in figure 6.7b.

The locking time is determined by the loop bandwidth, which is limited by the AOFS

to about 60 KHz.

We calculated the phase error standard deviations and locking efficiencies for

different delays, and the results are tabulated in table 6.1. For a given differential

delay, the addition of a large loop delay τd = 20 m slightly reduces the bandwidth of

the loop, resulting in a marginally lower phase-locking efficiency. On the other hand,

for a given loop delay, the addition of τr1 = 32 cm of differential delay results in

an increased amount of SFL phase noise affecting the loop, as predicted by equation

(6.20). This reduces the locking efficiency from ∼ 99% to ∼ 90%. Differential delays

much smaller than 32 cm are trivially achieved in practice, and correspond to phase-

locking efficiencies larger than 90%.

Loop delay Differential delay Phase error std. dev. Locking efficiency

τd (m) τr1 (cm) σr1 = 〈δθ2
r1(t)〉1/2t (mrad) η = 1

1+σ2
r1

2 0 47 99.8%

2 32 279 92.8%

20 0 76 99.4%

20 32 315 91.0%

Table 6.1: Measured OPLL phase error standard deviation and phase-locking effi-
ciency for different values of the loop delay τd and the differential delay τr1
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Figure 6.8: Schematic diagram of the passive-fiber chirped-seed CBC experiment with
two channels. Heterodyne optical phase-locked loops are used to lock the amplifier
(blue, green) and reference (black) arms. The outputs of the amplifier arms are
coupled to a microlens (µ-lens) array to form a two-element tiled-aperture beam
combiner. The far-field intensity distribution of the aperture is imaged on a CCD
camera.
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6.4 Coherent Combining of Chirped Optical

Waves

6.4.1 Passive-Fiber CBC Experiment

To demonstrate beam combining and electronic beam steering, we constructed two

separate heterodyne OPLLs, as shown in figure 6.8. The SFL output was split into

a reference arm and two amplifier channels. The reference arm was further split into

two, and delivered to the two OPLLs. The two loops were locked using electronic offset

signals that were provided by a pair of synchronized DDS oscillators, with individually

controllable amplitudes and phases. We measured the OPLL photocurrents in each

loop for three values of the loop delay τd and differential delays τr1 and τr2. The

calculated spectra and demodulated phases are shown in figure 6.9 for τd ≈ 0 m, τr1 =

τr2 ≈ 0 cm, figure 6.10 for τd ≈ 18 m, τr1 = τr2 ≈ 0 cm, and figure 6.11 for τd ≈
18 m, τr1 = τr2 ≈ 32 cm. The performance of the two loops is essentially identical.

The same trend that is described above is evident in these figures—a large loop delay

τd only slightly affects the loop bandwidth and marginally increases the measured

noise levels, while the addition of a differential delay τr1 or τr2 increases the effect

of SFL phase noise, causing a noticeable increase in the spectra pedestals and phase

deviations.

The outputs of the two amplifier paths (after the AOFSs and additional fiber

delays) were used to form a coherent aperture using a fiber V-groove array placed

at the focal plane of a microlens array. The emitter spacing was 250 µm. A CCD

camera was used to image the far-field intensity distribution of the aperture over

many chirp periods. The delays in the fiber paths that deliver the amplifier channels

to the microlens array are not compensated for by the OPLLs, which yields an optical

frequency difference between the two channels at the aperture. We solved this issue

by simply phase-locking the two loops at slightly different offset frequencies, so as to

get a stable fringe pattern on the camera. Moreover, we isolated these fibers using a

vibration-damping polymer sheet, in order to minimize the fluctuations in their path
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(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.9: Characterization of the two heterodyne OPLLs in the locked state. τd ≈
0 m, τr1 = τr2 ≈ 0 cm.

(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.10: Characterization of the two heterodyne OPLLs in the locked state.
τd ≈ 18 m, τr1 = τr2 ≈ 0 cm.

(a) OPLL spectra. (b) I/Q-demodulated OPLL phases.

Figure 6.11: Characterization of the two heterodyne OPLLs in the locked state.
τd ≈ 18 m, τr1 = τr2 ≈ 32 cm.
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Figure 6.12: Experimental demonstration of electronic phase control and beam steer-
ing of chirped optical waves. (a) Far-field intensity profiles for the unlocked and
phase-locked cases. The position of the fringes is controlled by varying the phase
of the electronic oscillator in one loop. (b) Horizontal cross sections of the far-field
intensity patterns

lengths. It is important to note that these efforts are not necessary in the free-space

experiment of section 6.4.3

The far-field intensity distributions of the aperture in the locked and unlocked

states are shown in figure 6.12. We observe a narrowing of the central lobe in the

locked case vs. the unlocked case, and a corresponding increase in its intensity by

a factor of 1.6. We also demonstrate electronic steering of the far-field intensity

pattern by varying the phase of one of the offset oscillators, as shown in figure 6.12.

The demonstrated coherent-combining approach also scales well to larger systems,
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since the combination of coherent signal gain and incoherent phase errors leads to an

increasing interferometric visibility with increasing number of array elements [105].

6.4.2 Combining Phase Error in a Heterodyne Combining

Experiment

We briefly revisit the small-signal residual phase error analysis. So far we have focused

on measuring phase errors between the reference and amplifier arms, which is useful

in characterizing the OPLL performance. However, in a dual-channel combining

experiment, the relevant phase error is the combining error δθ12(ω), given by

δθ12(ω) ≡ δθr2(ω)− δθr1(ω) (6.21)

Plugging in equation (6.20), we arrive at

δθ12(ω) =
θn12(ω)

1 +K(ω)
− jωτ12

θL(ω)e−jωτd

1 +K(ω)
, (6.22)

where θn12 is the relative path-length fluctuation of the two amplifier arms. In deriving

equation (6.22), we have assumed equal gains in the two OPLLs, and neglected the

contribution of the offset oscillator noise.

In the experiment of section 6.4.1, we learned that the amount of differential path-

length mismatch essentially determines the locked-state noise levels. From equation

(6.22), it is clear that the combining noise level is actually determined by τ12 =

τr2 − τr1, the path-length mismatch between the two amplifier arms, and not by τr1

or τr2 alone.

6.4.3 Free-Space Beam Combining of Erbium-Doped Fiber

Amplifiers

A schematic of the dual-channel chirped-seed amplifier (CSA) CBC experiment is

shown in figure 6.13. An optoelectronic SFL based on a 1550 nm VCSEL is linearly
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Figure 6.13: Schematic diagram of the dual-channel CSA coherent-combining exper-
iment. PD: Photodetector, PM: Back-scattered power monitor
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chirped over a bandwidth of 500 GHz in 1 ms, resulting in a sweep rate ξ/(2π) =

5× 1014 Hz/sec. At the end of the 1 ms sweep time, the laser is chirped in reverse at

the same rate, bringing it back to its original starting frequency. Channels 1 and 2

are boosted to powers of ∼ 3 W each with commercially available erbium-doped fiber

amplifiers.

The back-scattered power from the 5 m final amplifier stage and the 45 m delivery

fiber is recorded for each channel. We define the stimulated Brillouin scattering

threshold as the power level at which the ratio of the back-scattered power to the

forward power is 10−4. We report a threefold increase in the SBS threshold for the

5× 1014 Hz/sec chirp rate, when compared to a single-frequency seed.

Synchronized DDS circuits are used as offset oscillators in the two heterodyne

OPLLs. An offset frequency of 100 MHz is chosen to match the nominal acousto-

optic frequency shift. A tiled-aperture is formed using a 90◦ prism with reflecting legs,

and its far-field distribution is imaged onto a phosphor-coated CCD camera with a

lens.

Intensity distributions of the individual channels, as well as that of the locked

aperture are shown in figure 6.14. The path lengths are nominally matched, with

l12 = 20 mm. This level of path-length matching is easily achieved. We observe, in

the locked state, a twofold narrowing of the central lobe and an associated increase

in the peak lobe intensity. The phases of the individual emitters track the phases of

the DDS oscillators, and we are therefore able to electronically steer the combined

beam. Intensity distributions corresponding to relative DDS phases of θos,12 = 0, π/2,

π, and 3π/2 radians are shown in figure 6.15.

We extract the time-dependent phase differences between the reference and ampli-

fier channels from the two photodetector signals. The phase differences corresponding

to the four values of θos,12 are shown figure 6.16. As expected, the OPLL phases, and

hence the phases of the individual chirped waves track the DDS setpoint.

To characterize performance, we consider three path-length matching cases, sum-

marized in Table 6.2. The I/Q technique yields the residual phase errors, δθr1(t) and

δθr2(t). The time-domain combining phase error is then calculated using equation
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the relative DDS phase.
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Figure 6.16: I/Q-demodulated phase differences between the amplifier channels and
the reference. θos,12 is the relative DDS phase.

(6.21). The standard deviations σxy =
√
〈δθ2

xy(t)〉t of all three phase errors, along

with the phase-noise-limited fringe visibilities are listed in table 6.2. The visibilities

are calculated from the standard deviations σ12 using a Gaussian phase noise model,

as described in appendix B.

The first case (nominally path-length-matched) has the lowest combining error,

which is consistent with equation (6.22). The second and third cases have nearly

identical amplifier path-length mismatches and exhibit nearly identical combining

phase errors. This is consistent with the prediction that the residual combining error

is determined solely by the mismatch between the amplifier channels.

The phase-noise-limited fringe visibility for the path-length-matched case is al-

most 99%, yet the fringe visibility in figure 6.14 is only about 80%. We believe the

discrepancy is due to the wavefront distortions introduced by the collimators and the

prism reflectors.

6.5 Summary

We have analyzed and experimentally demonstrated the phase-locking of chirped

optical waves in a master oscillator power amplifier configuration. The precise chirp

linearity of the optoelectronic SFL enables non-mechanical compensation of optical

delays using acousto-optic frequency shifters, and is at the heart of our chirped phase-

locking and coherent-combining systems.
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We have demonstrated heterodyne phase-locking of optical waves with a chirp

rate of 5 × 1014 Hz/sec at 1550 nm, achieving a loop bandwidth of 60 kHz and a

phase error variance less than 0.01 rad2. We used the heterodyne OPLL architecture

to construct a dual-channel passive-fiber coherent beam combining experiment, and

have demonstrated coherent combining and electronic beam steering of chirped optical

waves.

We have also implemented and characterized a 1550 nm chirped-seed amplifier

coherent-combining system. We used a chirp rate of 5× 1014 Hz/sec, which resulted

in a threefold increase of the amplifier SBS threshold, when compared to a single-

frequency seed. We demonstrated efficient phase-locking and electronic beam steering

of two 3 W erbium-doped fiber amplifier channels. We achieved temporal phase noise

levels corresponding to fringe visibilities exceeding 90% at path-length mismatches of

≈ 300 mm, and exceeding 98% at a path-length mismatch of 20 mm.

The optoelectronic SFL has the potential to significantly increase the achievable

output power from a single fiber amplifier by increasing its SBS threshold. Coherent

beam combining techniques developed in this chapter can be used to efficiently com-

bine multiple chirped amplifier outputs, without imposing strict path-length matching

requirements, presenting a viable path towards high-power continuous-wave sources.

Case Differential delay (mm)a Phase error (mrad) Fringe visibility

τr1 τr2 τ12 σr1 σr2 σ12 V = e−σ
2
12/2

1 −19 1 20 118 79.3 160 98.7%

2 110 450 340 184 531 428 91.3%

3 −118 220 338 150 273 410 92.0%

aThese are fiber lengths corresponding to the time delays between the different
paths. Actual mismatches have both free-space and fiber components.

Table 6.2: OPLL phase errors and phase-noise-limited fringe visibilities in the dual-
channel active CBC experiment
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Chapter 7

Conclusion

7.1 Summary of the Thesis

7.1.1 Development of the Optoelectronic SFL

We have demonstrated the use of optoelectronic feedback for precise control over the

optical chirp of a semiconductor laser diode. This system, the optoelectronic SFL,

formed the backbone of all the work described in this thesis. The development of

the optoelectronic SFL was guided by optical FMCW reflectometry and 3-D imaging

applications. Specifically, we aimed to build a swept-source with narrow linewidth (for

long-range imaging), linear frequency tuning (to reduce the processing overhead), and

high chirp bandwidth (for high axial resolution), all on a compact platform without

moving parts.

The optoelectronic SFL works like a PLL. A portion of the SCL light is launched

into a Mach-Zehnder interferometer, and the loop locks the sinusoidal intensity fluc-

tuation at the interferometer output to a reference electronic oscillator. The opto-

electronic SFL, just as a regular PLL, only achieves lock if the feedback bandwidth

is larger than the unlocked beat signal linewidth, which is determined by the free-

running SCL chirp nonlinearity. As the SCL is chirped faster, the nonlinearity is

increased, which lead to poor locking—our initial experiments were limited to a chirp

rate of 1014 Hz/s for DFB lasers and 5×1014 for VCSELs. To improve the free-running

sweep nonlinearity, we developed a bias current predistortion algorithm. Even though
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the algorithm was based on a very naive nonlinear tuning model, it yielded impres-

sive results when iterated. Using iterative predistortion we were able to significantly

increase the chirp rates of our systems, up to 1015 Hz/s for DFB lasers and 1016 for

VCSELs. We developed SFLs based on VCSELs and DFB lasers at wavelengths of

1550 nm and 1060 nm, and demonstrated their use in reflectometry and profilome-

try applications. Electronic development of the SFL undertaken as part of our work

eventually lead to its commercialization by Telaris, Inc.

A key feature of the optoelectronic SFL, albeit not one that we recognized until

after the first system was built and tested, is that successive chirps are exactly repeat-

able. The PLL locks not just the beat signal frequency, i.e., the instantaneous chirp

rate, but also the beat signal phase, i.e., the starting chirp frequency. This means

that each frequency sweep starts at the exact same point. As it turned out, stability

of the starting sweep frequency was crucial for our work on MS-FMCW reflectometry

and TomICam.

7.1.2 Ranging and 3-D Imaging Applications

7.1.2.1 MS-FMCW Reflectometry and Stitching

In an effort to increase the axial resolution of an SCL-based ranging system, we

developed a novel variant of the FMCW optical imaging technique. This method,

MS-FMCW reflectometry, uses multiple lasers that sweep over distinct but adjacent

regions of the optical spectrum, in order to “stitch” a measurement with increased

optical bandwidth and a corresponding improvement in the axial resolution. This

technique bears resemblance to synthetic aperture radar, in which RF signals collected

at multiple physical locations are used to approximate a large antenna aperture, and

hence a high transverse resolution. In MS-FMCW reflectometry, the synthesized

aperture is not physical, but instead represents the accessible optical frequency range.

The culmination of this work was an MS-FMCW system with four VCSEL chan-

nels, yielding a total chirp bandwidth of 2 THz and a scan time of 500 µs. This

particular demonstration relied on hardware stitching to remove the need for addi-
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tional signal processing that was present in our early MS-FMCW work. In a hardware

stitching system, the SCL sweeps are locked to the same MZI with an electronic ref-

erence oscillator whose phase is not reset during channel switching. Because the

starting frequencies of the sweeps are controlled exclusively by the reference oscilla-

tor phase, this configuration allowed perfect stitching to be performed in hardware.

Each channel’s chirp started precisely where the previous one ended!

7.1.2.2 The Tomographic Imaging Camera

One of the goals of our work is to enable rapid, high-resolution, and low-cost 3-D

imaging without moving parts. The tomographic imaging camera was our solution to

the problem of non-mechanical acquisition of transverse pixel information. TomICam

uses low-cost full-field detector arrays to acquire depth information one transverse

slice at a time. This is achieved by modulating the intensity of the transmitted beam

with sinusoidal function, which shifts the signal spectrum to DC, allowing the use

of low-speed integrating detector arrays, i.e., CCD and CMOS cameras. The depth

of the slice is determined by the modulation frequency, and can therefore be tuned

electronically. As a result, TomICam completely eliminates the need for moving parts

traditionally employed in 3-D imaging.

We demonstrated basic TomICam functionality in a single-pixel proof-of-concept

experiment at 1550 nm, and showed that the depth scan retrieved with TomICam

is identical to the traditional FMCW measurement. It turns out that multiple mea-

surements (two to four, depending on whether or not the imaging interferometer is

balanced) at the same modulation frequency but different modulation phases are nec-

essary to extract the depth information. This means that TomICam imaging would

not be possible if there was appreciable starting frequency jitter between subsequent

SFL sweeps. For TomICam, as for MS-FMCW, precise repeatability of the frequency

sweeps generated by the optoelectronic SFL turned out to be a necessary require-

ment. We also discussed the application of compressive sensing to the TomICam

platform, and showed, through computer simulations, that a tenfold improvement in

the volume acquisition speed is possible for sufficiently sparse depth signals.
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7.1.3 Phase-Locking and CBC of Chirped Optical Waves

Out group’s current focus on the phase and frequency control of SCLs started a

few years ago with phase-locking and coherent beam combining experiments that

used commercially available, single-frequency semiconductor laser diodes. We have

generalized these experiments to the case of chirped optical waves. The precise chirp

linearity of the optoelectronic SFL enables non-mechanical compensation of optical

delays using acousto-optic frequency shifters, and is at the heart of our chirped phase-

locking and coherent-combining systems.

We have demonstrated heterodyne phase-locking of optical waves with a chirp rate

of 5× 1014 Hz/sec at 1550 nm, and constructed a dual-channel passive-fiber coherent

beam combining experiment. We achieved efficient combining and demonstrated elec-

tronic beam steering of chirped optical waves by tuning the electronic offset oscillator

phase in one of the heterodyne OPLLs.

The key physical result driving this work is that swept-frequency optical waveforms

suppress stimulated Brillouin scattering (SBS) in fiber by reducing the effective length

over which SBS occurs. This has the potential to increase the maximum output of

high-power fiber amplifiers; and the chirped phase-locking techniques developed in

this thesis can be used to form coherent amplifier arrays, further scaling the optical

power. Conventional SBS suppression techniques result in a decrease of the seed

laser coherence length, and coherent combining therefore requires very strict path-

length matching. In practice, sub-mm matching is necessary at the kW power level.

The chirped-seed combining approach developed in this thesis does not have strict

matching requirements, due to the comparatively long coherence lengths of SCL-

based SFLs, and therefore presents a viable path towards high-power continuous-wave

sources.

We have also performed, for the first time, an active CBC experiment using a

chirp rate of 5 × 1014 Hz/sec and two 3 W erbium-doped fiber amplifier channels.

We recorded a threefold increase of the amplifier SBS threshold, when compared

to a single-frequency seed. We demonstrated efficient phase-locking and electronic
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beam steering of amplified chirped beams, and achieved temporal phase noise levels

corresponding to fringe visibilities exceeding 90% at path-length mismatches of ≈
300 mm, and exceeding 98% at a path-length mismatch of 20 mm.

7.2 Current and Future Work

The ground for continuing SFL development is fertile. One of the projects undertaken

in our group, led by Yasha Vilenchik, is the integration of the optical components

of the optoelectronic SFL on a hybrid Si/III-V integrated platform. Images of the

subcomponents fabricated to date are shown in figure 7.1. The hybrid platform

has the potential to bring photonic and electronic components together on a single

bonded chip, and continuing development will one day yield a chip-scale chirped

LIDAR transmitter.

Another interesting development in our group is the recent demonstration of a

hybrid Si/III-V high-coherence semiconductor laser based on a modulated-bandgap

design, shown in figure 7.2 [106]. The laser’s high-Q resonator, designed and fabri-

cated by Christos Santis, is contained entirely in silicon, and is therefore subject to

much lower optical loss than traditionally used III-V resonators. This laser’s chirp

bandwidth is comparable to that of commercially available DFBs, while its linewidth

is inherently superior. The use of this laser in an optoelectronic SFL will enable

3-D imaging systems that simultaneously possess long imaging range and high axial

resolutions.

(a) (b) (c) (d)

Figure 7.1: (a) Hybrid Si/III-V DFB laser bar. (b) Scanning electron microscope
(SEM) image of a 1× 3 multimode interference (MMI) coupler, (c) SEM image of a
2× 2 MMI coupler. (d) SEM closeup of the a spiral delay line for the loop MZI
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(a) (b)

Figure 7.2: Schematic of the hybrid Si/III-V high-coherence semiconductor laser.
(a) Side-view cross section. (b) Top-view of the laser and the modulated-bandgap
resonator

Development of narrow-linewidth swept-frequency lasers will also contribute to

the group’s label-free biomolecular sensing project, led by Jacob Sendowski. The

sensor comprises an ultra-high-Q SiN microdisk resonator and a microfluidic analyte

delivery system [15], as shown in figure 7.3. Biomolecular binding events shift the

microdisk resonance frequency, which is detected using the optoelectronic SFL. Long-

term repeatability of the starting frequency of SFL sweeps was a deciding factor in

using it to interrogate the biomolecular sensor. The use of narrow-linewidth SFLs has

the potential to improve measurement sensitivity by enhancing the sensor’s ability to

resolve small resonant frequency shifts. Moreover, integration of the SFL will enable

a complete chip-scale high-sensitivity biomolecular sensor.

Recent developments in the field of microelectromechanical (MEMS) VCSELs hold

promise for SFLs with extremely high chirp rates [107]. These devices are based on

an electrically-tunable MEMS mirror, and are capable of sweeping a bandwidth of

100 nm at a wavelength of 1060 nm, with repetition rates exceeding 100 kHz. This

corresponds to a chirp rate > 1018 Hz/sec, which is two orders of magnitude higher

than the fastest SFLs constructed with conventional SCLs.

Our chirped-waveform CBC experiments are currently being repeated at 1060 nm

using the VCSEL-based SFL. This is the wavelength of choice for high-power laser

sources because of the extremely efficient Yb-doped fiber amplifier technology. The

development of an SFL based on the 1060 nm MEMS VCSEL will yield unprecedented

chirped-seed SBS suppression results, due to the extremely high chirp rates attainable

with these devices.
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Figure 7.3: Schematic representation of the label-free biomolecular sensing system

TomICam experiments aimed at demonstrating full 3-D imaging capability using

a low-cost silicon CCD camera are currently being performed in our group. These

experiments rely on our 1060 nm DFB and VCSEL SFLs for illumination. A preferred

wavelength for silicon sensors is 850 nm, and we are currently developing an 850 nm

VCSEL-based SFL to address this demand. Recently-demonstrated 850 nm MEMS

VCSELs [108] can be used to build SFLs that will enable µm-scale axial resolutions

in our TomICam systems. An alternative path towards increasing TomICam axial

resolution is through the use of MS-FMCW. Hardware stitching can be adopted

to the TomICam platform in a very straightforward way, and an array of 850 nm

VCSELs can therefore be used for broadband swept-frequency illumination.

In summary, electronic control over the frequency of semiconductor lasers enables

a range of swept-frequency applications, from spectroscopy and biomolecular sensing,

to ranging and 3-D imaging, to stimulated Brillouin scattering suppression in, and

coherent combining of high-power fiber amplifiers. Continuing development and inte-

gration of the SFL technology holds promise for chip-scale coherent sensing and 3-D

imaging systems.
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Appendix A

Time-Domain Phase Analysis
Using I/Q Demodulation

In this appendix we describe the in-phase and quadrature (I/Q) demodulation tech-

nique which is used for time-domain analysis of the locked-state OPLL phase error

in chapter 6.

The goal of the technique is to separate the amplitude modulation A(t) from the

phase modulation θ(t) of a sinusoidal signal y(t) with a known frequency ω0,

y(t) = A(t) sin [ω0t+ θ(t)] . (A.1)

We form the in-phase signal yi(t) and the quadrature signal yq(t) by multiplying

y(t) with sine and cosine waveforms at a frequency of ω0, and low-pass filtering the

results.

yi(t) = h(t) ? [y(t) sinω0t]

= h(t) ?

{
A(t)

2
cos θ(t)− A(t)

2
cos [2ω0t+ θ(t)]

}
, and

(A.2)

yq(t) = h(t) ? [y(t) cosω0t]

= h(t) ?

{
A(t)

2
sin θ(t) +

A(t)

2
sin [2ω0t+ θ(t)]

}
,

(A.3)

where h(t) is the impulse response of the low-pass filter, and ‘?’ denotes the convo-

lution operation. The filter is designed to average out the sum frequency terms at
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frequency 2ω0, while retaining the difference frequency terms at DC, yielding

yi(t) =
A(t)

2
cos θ(t), and (A.4)

yq(t) =
A(t)

2
sin θ(t). (A.5)

The amplitude and phase modulations are recovered using

A(t) = 2
√
y2
i (t) + y2

q (t), and (A.6)

θ(t) = atan2 [yq(t), yi(t)] , (A.7)

where atan2(yq, yi) is the four-quadrant inverse tangent function defined below.

atan2(yq, yi) ≡



tan−1
(
yq
yi

)
yi > 0

tan−1
(
yq
yi

)
+ π yq ≥ 0, yi < 0

tan−1
(
yq
yi

)
− π yq < 0, yi < 0

+pi
2

yq > 0, yi = 0

−pi
2

yq < 0, yi = 0

undefined yq = 0, yi = 0

(A.8)
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Appendix B

Phase-Noise-Limited
Tiled-Aperture Fringe Visibility

We consider the case of tiled-aperture CBC with two emitters. We assume that

the emitters have equal intensities and are phase-locked with a residual phase error

δθ12(t). The far-field intensity at location rrr is then given by:

I ∝ 〈|1 + exp [jθ12(rrr) + jδθ12(t)]|2〉t = 2 + 2e−σ
2
12/2 cos θ12(rrr), (B.1)

where θ12(rrr) is the mean phase difference between the beams at the point rrr and 〈〉t
denotes an average over time. We assumed that δθ12(t) is a zero-mean Gaussian

random variable with variance σ2
12, so that 〈ejδθ12(t)〉t = e−σ

2
12/2. Intensity extrema

are found at points of constructive and destructive interference, with cos θ12(rrr) = ±1.

The fringe visibility is therefore given by:

V ≡ (Imax − Imin)/(Imax + Imin) = e−σ
2
12/2 (B.2)

Strictly speaking, this derivation applies only to single-frequency beams, since in

the chirped case the propagation phase θ12 is a function of both rrr and t. However,

equation (B.2) still applies to the chirped-seed CBC experiments of chapter 6, because

the frequency ranges considered there are ∼ 0.25% of the nominal lasing frequency.

Chirp ranges that constitute a significant fraction of the lasing frequency require a

more sophisticated analysis based, for example, on chirped Gaussian modes [109].
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