
Algorithmic Challenges in Green Data Centers

Thesis by

Minghong Lin

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended June 6, 2013)

ii

c© 2013

Minghong Lin

All Rights Reserved

iii

This thesis is dedicated to

my wife Xuefang,

whose love made this thesis possible,

and my parents,

who have supported me all the way.

iv

Acknowledgements

First, I would like to express my deepest gratitude to my advisor, Adam Wierman, for his thoughtful

guidance, insightful vision and continuing support. His patience and encouragement helped me

overcome many crisis situations. I am thankful for the opportunity to learn from him.

Next, I am grateful to my collaborators, Lachlan Andrew, Bert Swart, Eno Thereska, Steven

Low, Zhenhua Liu, Lijun Chen, Jian Tan and Li Zhang. It is a great pleasure to work with them.

They have always provided insightful discussions and constructive suggestions. I am also thankful

to my former research advisors, John C.S. Lui and Dah-Ming Chiu, for their guidance during my

M.Phil study in Hong Kong. They were the reason why I decided to go to pursue a Ph.D. I would

also like to take this opportunity to express my gratitude to Mani Chandy. His comments and

questions were very beneficial in my completion of the thesis.

I greatly enjoyed the opportunity to study in Computer Science at Caltech, which provides

amazing supportive environment for students. It is wonderful to have so many intelligent professors

and outstanding students around to ask for advice and opinions. I would also like to thank the

helpful administrative staff in our department, especially Sydney Garstang.

Finally, I wish to thank my family for providing a loving environment for me. My parents and

my brother receive my deep gratitude for their dedication and the many years of support. I would

like to thank my wife Xuefang for her understanding and love during the past few years. Her support

and encouragement was what made this thesis possible.

v

Abstract

With data centers being the supporting infrastructure for a wide range of IT services, their efficiency

has become a big concern to operators, as well as to society, for both economic and environmental

reasons. The goal of this thesis is to design energy-efficient algorithms that reduce energy cost while

minimizing compromise to service. We focus on the algorithmic challenges at different levels of

energy optimization across the data center stack. The algorithmic challenge at the device level is to

improve the energy efficiency of a single computational device via techniques such as job scheduling

and speed scaling. We analyze the common speed scaling algorithms in both the worst-case model

and stochastic model to answer some fundamental issues in the design of speed scaling algorithms.

The algorithmic challenge at the local data center level is to dynamically allocate resources (e.g.,

servers) and to dispatch the workload in a data center. We develop an online algorithm to make

a data center more power-proportional by dynamically adapting the number of active servers. The

algorithmic challenge at the global data center level is to dispatch the workload across multiple data

centers, considering the geographical diversity of electricity price, availability of renewable energy,

and network propagation delay. We propose algorithms to jointly optimize routing and provisioning

in an online manner. Motivated by the above online decision problems, we move on to study a general

class of online problem named “smoothed online convex optimization”, which seeks to minimize the

sum of a sequence of convex functions when “smooth” solutions are preferred. This model allows

us to bridge different research communities and help us get a more fundamental understanding of

general online decision problems.

vi

Contents

Acknowledgements iv

Abstract v

Contents vi

1 Introduction 1

1.1 Energy efficiency of data centers . 1

1.2 Algorithmic challenges in energy efficiency . 2

1.3 Overview of this thesis . 3

2 Server Speed Scaling 9

2.1 Model and notation . 12

2.2 Dynamic speed scaling . 15

2.2.1 Worst-case analysis . 15

2.2.2 Stochastic analysis . 20

2.3 Gated-static speed scaling . 22

2.3.1 Optimal gated-static speeds . 23

2.3.2 Gated-static vs. dynamic speed scaling . 27

2.4 Robustness and speed scaling . 28

2.5 Fairness and speed scaling . 29

2.5.1 Defining fairness . 30

2.5.2 Speed scaling magnifies unfairness . 31

2.6 Concluding remarks . 34

Appendix 2.A Running condition for SRPT . 34

Appendix 2.B Running condition for PS . 37

Appendix 2.C Proof of unfairness of SRPT . 38

3 Dynamic Capacity Provisioning in Data Centers 42

3.1 Model and notation . 43

vii

3.1.1 General model . 44

3.1.2 Special cases . 45

3.2 Receding horizon control . 47

3.3 The optimal offline solution . 48

3.4 Lazy capacity provisioning . 50

3.5 Case studies . 51

3.5.1 Experimental setup . 52

3.5.2 When is right-sizing beneficial? . 53

3.6 Concluding remarks . 59

Appendix 3.A Analysis of the offline optimal solution . 61

Appendix 3.B Analysis of lazy capacity provisioning, LCP(w) 64

4 Cost-Effective Geographical Load Balancing 71

4.1 Model and notation . 73

4.1.1 The workload . 73

4.1.2 The Internet-scale system . 73

4.1.3 Cost optimization problem . 75

4.1.4 Generalizations . 76

4.2 Algorithms and analytical results . 77

4.2.1 Receding horizon control . 77

4.2.2 Fixed horizon control . 79

4.3 Case studies . 81

4.3.1 Experimental setup . 81

4.3.2 Experimental results . 84

4.4 Concluding remarks . 87

Appendix 4.A Notation . 88

Appendix 4.B Proof of Theorems 4.6 . 88

Appendix 4.C Proofs of Theorems 4.1 and 4.4 . 89

Appendix 4.D “Bad” instances for receding horizon control (RHC) 91

5 Smoothed Online Convex Optimization 94

5.1 Problem formulation . 96

5.2 Background . 99

5.2.1 Online convex optimization . 99

5.2.2 Metrical task systems . 100

5.3 The incompatibility of regret and the competitive ratio 101

5.4 Balancing regret and the competitive ratio . 105

viii

5.5 Concluding remarks . 106

Appendix 5.A Proof of Proposition 5.1 . 107

Appendix 5.B Proof of Lemma 5.1 . 107

Appendix 5.C Proof of Lemma 5.2 . 108

Appendix 5.D Proof of Lemma 5.3 . 109

Appendix 5.E Proof of Lemma 5.4 . 110

Appendix 5.F Proof of Lemma 5.5 . 110

Bibliography 116

1

Chapter 1

Introduction

Data centers provide the supporting infrastructure for a wide range of IT services and consume a

significant amount of electricity. According to the US EPA Report to the Congress on Server and

Data Center Energy Efficiency in 2007, US data centers consume 61 billion kWh in 2006 (1.5% of

total U.S. electricity). Moreover, it is growing exponentially at an annual rate of 15%. A recent

report [76] revealed that although the growth rate slowed down a little recently, electricity used by

data centers worldwide increased by about 56% from 2005 to 2010. Further, from an operator’s

stand point, the energy cost has grown to exceed the server costs in data centers. Thus, it is not

surprising that optimizing energy cost in data center is receiving increasing attention. However,

saving energy and improving performance are usually in conflict with each other, and thus the joint

optimization is a challenge.

1.1 Energy efficiency of data centers

Traditionally computer systems usually focused on performance and throughput. Energy efficiency

as a new focus has been studied in the mobile and embedded areas due to the limited battery

capacity. As the IT becomes a significant consumer of energy resources and a substantial source of

greenhouse gas pollution, the focus on energy-efficient computing has expanded to general-purpose

computing over the past decade, including servers and data centers. Many energy-saving techniques

developed for mobile devices directly benefit the design of energy-efficient servers, such as clock

gating and DVFS technique. However there are also many differences. For example, the activity

pattern for mobile devices is very different than that of the servers [16]. Mobile devices need high

performance for short periods and then remain idle for a long periods. Therefore, the design of

mobile devices can focus on the energy efficiency in peak performance mode and idle mode. On

the other hand, servers operate at a mild load level for most of the time, i.e., they are rarely idle

or operating at maximum load. As a result, servers do not benefit much from inactive low-energy

states like sleep or standby that work very well for mobile devices. Instead, speed-scaling technique

2

may be more useful for servers.

For a data center, besides the energy consumed by the servers performing the computation, a

large fraction of energy is consumed by the cooling and provisioning infrastructure. To capture

this consumption, power usage effectiveness (PUE) measures the ratio of total building power to

IT power, i.e., the power consumed by the actual computing equipments such as servers, network

equipments and so on. It is reported that PUE was greater than 2 for typical data centers [52].

Fortunately, PUE can be substantially improved by careful design for energy efficiency. The

most energy-efficient data centers today have PUE ≤ 1.2 [17]. This is achieved via a few steps

(a) maintaining data centers at a higher temperature. It has been shown that increasing the cold

aisle temperatures to 25-27◦C can save a large amount of cooling energy without causing higher

equipment failures. (b) using more efficient air-flow control to reduce the energy needed for cooling.

This is one of the primary reasons why container-based data centers are more efficient, because

the hot air is isolated from the cold air and the path to the cooling coil is short. (c) adopting

more efficient gear to reduce the UPS and power distribution losses. For example, using per-server

UPSs instead of a facility-wide UPS will increase the efficiency of the overall power infrastructure

by eliminating the AC-DC-AC overhead.

Beyond these engineering improvements, there is also significant energy reduction to be achieved

via improved IT design in data centers [18, 3]. From the hardware perspective, according to [95],

the main part of the power in a server is consumed by CPU, followed by the memory and the

power loss. However, CPU no longer dominates the power consumption of the server. This is

because the modern CPUs are adopting much more energy-efficient techniques than other system

components. As a result, they can consume less than 30% of their peak power in low-activity mode,

i.e., the dynamic power range is more than 70% of the peak power [16]. In contrast, the dynamic

power ranges of all other components are much narrower: less than 50% for DRAM, 25% for disk

drives, 15% for network switches, and negligible for other components. The energy efficiency of

IT components has been widely studied from an algorithmic perspective as well. The goal here

is usually to design energy-efficient algorithms that reduce energy consumption while minimizing

compromise to service.

1.2 Algorithmic challenges in energy efficiency

Generally the literature on energy-efficient algorithms can be classified into three categories based

on the “layer” of the data center that is the focus: server level, local data center level and global

data center level. The optimization at the server level is to improve the energy efficiency of a single

server via techniques such as scheduling and speed scaling. The optimization at the local data center

level is to decide how many resources (e.g., servers) to use and how to dispatch the workload among

3

servers. The optimization at the global data center level is to dispatch the workload across multiple

data centers, considering electricity price diversity and propagation delay diversity. We focus on the

algorithmic challenges at all three levels in this thesis.

At the server level, many energy-saving techniques developed for mobile devices directly benefit

the design of energy-efficient servers such as power-down mechanism and speed-scaling technique.

However, because of the activity pattern, speed-scaling technique is more useful than power-down

mechanism for servers. The basic idea behind speed scaling is that running at a low speed consumes

less energy. But running at a low speed will make the user delay increase. Thus the speed scaling

algorithms need to make a tradeoff between performance and energy usage. Depending on the

objective, we may want to minimize the energy usage while meeting job deadlines, optimize user

experience given energy budget, or minimize a linear combination of user delay and energy usage.

At the local data center level, a guiding focus for research into ‘green’ data centers is the goal

of designing data centers that are ‘power-proportional’, i.e., use power only in proportion to the

load. However, current data centers are far from this goal – even today’s energy-efficient data

centers consume almost half of their peak power when nearly idle [16]. A promising approach for

making data centers more power-proportional is using software to dynamically adapt the number of

active servers to match the current workload, i.e., to dynamically ‘right-size’ the data center. The

algorithmic question is, how to determine how many servers to be active and how to control servers

and requests.

At the global data center level, as the demand on Internet services has increased in recent years,

enterprises have move to using several distributed data centers to provide better QoS for users. To

improve user experience, they tend to disperse data centers geographically so that user requests from

different regions can be routed to data centers nearby, thus reducing the propagation delay. Recently,

since the energy cost is becoming a big fraction for the total cost of the data centers, it has been

proposed that the energy costs, both monetary and environmental, can be reduced by exploiting

temporal variations and shifting processing to data centers located in regions where energy currently

has low cost. Lightly loaded data centers can then turn off surplus servers.

1.3 Overview of this thesis

This thesis is divided into four components. In Chapter 2 we focus on the speed scaling problem at

the server level. In Chapter 3 we study the capacity management problem at the local data center

level. In Chapter 4 we investigate the geographical load balancing problem at the global data center

level. Finally, in Chapter 5 we move beyond the data center area and study a general optimization

framework for online decision problems.1

1Note that the notations in different chapters are independent.

4

Chapter 2: Server speed scaling

Algorithmic work at the server level focuses on designing algorithms to reduce energy consumption

while minimizing compromise to performance. Most of the algorithms studied are online algorithms

since the device has to decide which action to take at the current time without knowing the future.

The algorithmic questions that have been studied most widely at the server level are power-down

mechanisms and speed scaling. Our focus is on speed scaling algorithms, but we begin by briefly

surveying power-down mechanisms.

Power-down mechanisms are widely used in mobile devices, e.g., laptop goes to sleep mode if it

has been idle longer than a certain threshold. The design question is how to determine such idle

thresholds. Generally, a device has multiple states, each state has its own power consumption rate,

and it consumes a certain amount of energy to transit from one state to others. The device must

be at active state to serve tasks, and it may go to some sleep states during idle periods to save

energy. The goal is to minimize the total energy. It has been shown that the energy consumed by

the best possible deterministic online algorithm is at most twice that of the optimal solution, and

randomized algorithms can do even better [65]. Many generalizations of this problem have been

studied, including stochastic settings [10].

Speed scaling is another way to save energy for variable speed devices, since running at a low

speed consumes less energy. Fundamentally, a speed scaling algorithm must make two decisions at

each time:(i) a scheduling policy must decide which job(s) to service, and (ii) a speed scaler must

decide how fast to run the server. The analytic study of the speed scaling problem began with Yao

et al. [124] in 1995. Since [124], three main performance objectives balancing energy and delay have

been considered: (i) minimize the total energy used in order to meet job deadlines [14, 101], (ii)

minimize the average response time given an energy budget [32, 125], and (iii) minimize a linear

combination of expected response time and energy usage per job [4, 13].

Despite the considerable algorithmic literature, there are many fundamental issues in the design

of speed scaling algorithms that are not yet understood. Can a speed scaling algorithm be optimal?

What structure do (near-)optimal algorithms have? How does speed scaling interact with scheduling?

How important is the sophistication of the speed scaler? What are the drawbacks of speed scaling?

Our results show that “energy-proportional” speed scaling provides near-optimal performance,

i.e., running at the speed such that the power is proportional to the number of jobs in the system.

Additionally, we show that speed scaling can be decoupled from the scheduler. That is, energy-

proportional speed scaling performs well for the common scheduling policies. Further, our results

show that scheduling is not as important once energy is considered, i.e., policies that differ greatly

when optimizing for delay have nearly the same performance when energy is considered. Our results

highlight that the optimal gated-static speed scaling algorithm performs nearly as well as the optimal

dynamic speed scaling algorithm. Thus, sophistication does not provide significant performance

5

improvements in speed scaling designs. Finally, our results uncover one unintended drawback of

dynamic speed scaling: speed scaling can magnify unfairness.

The work presented in this chapter is based on the publications [7, 85].

Chapter 3: Dynamic capacity provisioning in data centers

Algorithmic questions at the local data center level focus on allocating compute resources for incom-

ing workloads and dispatching workloads in the data center. The goal of design is to achieve “energy

proportionality” [16], i.e., use power only in proportion to the load. A promising approach for mak-

ing data centers more power-proportional is to dynamically ‘right-size’ the data center. Specifically,

dynamic right-sizing refers to adapting the way requests are dispatched to servers in the data center

so that, during periods of low load, servers that are not needed do not have jobs routed to them and

thus are allowed to enter power-saving modes (e.g., go to sleep or shut down).

Technologies that implement dynamic right-sizing are still far from standard in data centers due

to a number of challenges. First, servers must be able to seamlessly transition into and out of

power-saving modes while not losing their state. There has been a growing amount of research into

enabling this in recent years, dealing with virtual machine state [39], network state [37] and storage

state [108, 5]. Second, such techniques must prove to be reliable, since administrators may worry

about wear-and-tear consequences of such technologies. Third, it is unclear how to determine how

many servers to toggle into power-saving mode and how to control servers and requests.

We provide a new algorithm to address this third challenge. We develop a simple but general

model that captures the major issues that affect the design of a right-sizing algorithm, including:

the cost (lost revenue) associated with the increased delay from using fewer servers, the energy cost

of maintaining an active server with a particular load, and the cost incurred from toggling a server

into and out of a power-saving mode (including the delay, energy, and wear-and-tear costs). First,

we analytically characterize the optimal solution. We prove that it exhibits a simple, ‘lazy’ structure

when viewed in reverse time. Second, we introduce and analyze a novel, practical online algorithm

motivated by this structure, and prove that this algorithm guarantees cost no larger than 3 times the

optimal cost, under very general settings arbitrary workloads, and general delay cost and general

energy cost models provided that they result in a convex operating cost. Further, in realistic settings

its cost is nearly optimal. Additionally, the algorithm is simple to implement in practice and does

not require significant computational overhead. Moreover, we contrast it with the more traditional

approach of receding horizon control and show that our algorithm provides much more stable cost

saving with general settings.

Furthermore, we validate our algorithm using two load traces (from Hotmail and a Microsoft

Research data center) to evaluate the cost savings achieved via dynamic right-sizing in practice. We

show that significant savings are possible under a wide range of settings.

6

The work presented in this chapter is based on the publications [83].

Chapter 4: Cost-effective geographical load balancing

The algorithmic questions at the global data center level focus on exploring the diversity of power

prices and the diversity of propagation delays given geographically distributed data centers. Further,

electricity prices and workloads are time-varying, which makes the joint optimization on energy and

performance even more challenging. There is a growing literature related to the energy optimization

of geographic dispersed data centers, but is still a fairly open problem. So far, [104] investigates the

problem of total electricity cost for data centers in multi-electricity-market environment and propose

a linear programming formulation to approximate it. They consider the queueing delay constraint

inside the data center (assumed to be an M/M/1 queue) but not the end-to-end delay of users, thus

the diversity of propagation delay has not been explored. Another approach, DONAR [118] runs a

simple, efficient algorithm to coordinate their replica-selection decisions for clients with the capacity

at each data center fixed. The distributed algorithm solves an optimization problem that jointly

considers both client performance and server load. However, DONAR does not optimize the capacity

provision at each data center and thus does not explore the diversity of power price. Moreover,

neither approach considers the time variation of power price and workloads in the optimization

problem.

We developed a framework to jointly optimize the total energy cost and the end-to-end delay of

users by considering the price diversity and delay diversity. Our goal is to find a global dispatching

scheme to route the workload from different regions to certain data centers dynamically, while

considering the capacity optimization at each data center. Similar to the energy optimization at the

local data center level, we would like to optimize both the operating cost for providing the service

and the switching cost for changing the provisioning in an online manner. A commonly suggested

algorithm for this setting is “receding horizon control” (RHC), which computes the provisioning

for the current time by optimizing over a window of predicted future loads. We show that RHC

performs well in a homogeneous setting, in which all servers can serve all jobs equally well; however,

we also prove that differences in propagation delays, servers, and electricity prices can cause RHC

to perform badly. So, we introduce variants of RHC that are guaranteed to perform as well in the

face of such heterogeneity.

We then uses these algorithms to study the environmental potential of geographical load balanc-

ing. We illustrate that the geographical diversity of Internet-scale services can significantly improve

the efficiency of the usage of renewable energy and this potential can be realized by our online al-

gorithms. The numerical experiments show that using our algorithms for “follow the renewables”

routing can provide significant environmental benefits. These algorithms are then used to study

the feasibility of powering a continent-wide set of data centers mostly by renewable sources, and to

7

understand what portfolio of renewable energy is most effective. The numerical results reveal that

the optimal renewable portfolio may include more wind power than solar power, though solar power

seems to have better correlation with the workload shape.

The work presented in this chapter is based on the publications [82, 88, 87].

Chapter 5: Smoothed online convex optimization

The optimization problems in Chapter 3 and Chapter 4 share a similar property: We would like to

adapt our decision (e.g., capacity, routing) based on the time-varying environment (e.g., workload,

electricity price, renewable availability), but we do not want to adapt it too frequently because

changing the decisions incurs overhead (e.g., service migration, data movement, wear-and-tear con-

sequence). Actually this property also exists in many other problems even outside of the data center

environment. For example, video streaming [67], where the encoding quality of a video needs to

change dynamically in response to network congestion, but where large changes in encoding quality

are visually annoying to users; optical networking [126], in which there is a cost to reestablish a light

path; and content placement problems for CDN, in which there is a cost to move data. In addition

to applications within computer systems, there are a number of problems in industrial optimization

having similar property. One is the dynamic dispatching of electricity generators, where a particu-

lar portfolio of generation must be allocated to cover demand, but in addition to the time-varying

operating costs of the generators there are significant “setup” and “ramping” costs associated with

changing the generator output [69].

In this chapter we consider the general “smoothed online convex optimization” (SOCO) prob-

lems, a variant of the class of online convex optimization (OCO) problems that is strongly related to

metrical task systems. Actually, many applications typically modeled using online convex optimiza-

tion have, in reality, some cost associated with a change of action; and so may be better modeled

using SOCO rather than OCO. For example, OCO encodes the so-called “k-experts” problem, which

has many applications where switching costs can be important, e.g., in stock portfolio management

there is a cost associated with adjusting the stock portfolio owned. In fact, “switching costs” have

long been considered important in related learning problems, such as the k-armed bandit problem

which has a considerable literature studying algorithms that can learn effectively despite switching

costs [9, 54]. Further, SOCO has applications even in contexts where there are no costs associated

with switching actions. For example, if there is concept drift in a penalized estimation problem,

then it is natural to make use of a regularizer (switching cost) term in order to control the speed of

the drift of the estimator.

Prior literature on these problems has focused on two performance metrics: regret and the

competitive ratio. There exist known algorithms with sublinear regret and known algorithms with

constant competitive ratios; however, no known algorithm achieves both simultaneously. We show

8

that this is due to a fundamental incompatibility between these two metrics – no algorithm (deter-

ministic or randomized) can achieve sublinear regret and a constant competitive ratio, even in the

case when the objective functions are linear. However, we also exhibit an algorithm that, for the im-

portant special case of one-dimensional decision spaces, provides sublinear regret while maintaining

a competitive ratio that grows arbitrarily slowly.

The work presented in this chapter is based on the publications [84, 6].

9

Chapter 2

Server Speed Scaling

Computer systems must make a fundamental tradeoff between performance and energy usage. The

days of “faster is better” are gone — energy usage can no longer be ignored in designs, including

chips and servers. The importance of energy has led the designs to move toward speed scaling. Speed

scaling designs adapt the “speed” of the system so as to balance energy and performance measures.

Speed scaling designs can be highly sophisticated — adapting the speed at all times to the current

state (dynamic speed scaling) — or very simple — running at a static speed that is chosen a priori

to balance energy and performance, except when idle (gated-static speed scaling).

The growing adoption of speed scaling designs for systems from chips to disks has spurred analytic

research into the topic. The analytic study of the speed scaling problem began with Yao et al. [124]

in 1995. Since [124], three main performance objectives balancing energy and delay have been

considered: (i) minimize the total energy used in order to meet job deadlines, e.g., [14, 101] (ii)

minimize the average response time given an energy/power budget, e.g., [32, 125], and (iii) minimize

a linear combination of expected response time and energy usage per job [4, 13]. We focus on the

third objective. This objective captures how much reduction in response time is necessary to justify

using an extra 1 joule of energy, and naturally applies to settings where there is a known monetary

cost to extra delay (e.g., many web applications). This is related to (ii) by duality.

Fundamentally, a speed scaling algorithm must make two decisions at each time: (i) a scheduling

policy must decide which job(s) to service, and (ii) a speed scaler must decide how fast to run

the server. It has been noted by prior work, e.g., [101], that an optimal speed scaling algorithm

will use shortest remaining processing time (SRPT) scheduling. However, in real systems, it is

often impossible to implement SRPT, since it requires exact knowledge of remaining sizes. Instead,

typical system designs often use scheduling that is closer to processor sharing (PS), e.g., web servers,

operating systems, and routers. We focus on the design of speed scalers for both SRPT and PS.

The study of speed scaling algorithms for these two policies is not new. There has been significant

prior work, which we discuss in Sections 2.2.1 and 2.2.2, studying speed scaling for SRPT [4, 12,

13, 15, 81] and for PS [30, 42, 48, 117, 120]. Interestingly, the prior work for SRPT is entirely done

10

using a worst-case framework while the prior work for PS is done in a stochastic environment, the

M/GI/1 queue.

Despite the considerable literature studying speed scaling, there are many fundamental issues in

the design of speed scaling algorithms that are not yet understood. This work provides new insights

into four of these issues:

I Can a speed scaling algorithm be optimal? What structure do (near-)optimal algorithms have?

II How does speed scaling interact with scheduling?

III How important is the sophistication of the speed scaler?

IV What are the drawbacks of speed scaling?

To address these questions we study both PS and SRPT scheduling under both dynamic and

gated-static speed scaling algorithms. Our work provides (i) new results for dynamic speed scaling

with SRPT scheduling in the worst-case model, (ii) the first results for dynamic speed scaling with

PS scheduling in the worst-case model, (iii) the first results for dynamic speed scaling with SRPT

scheduling in the stochastic model, (iv) the first results for gated-static speed scaling with SRPT in

the stochastic model, and (v) the first results identifying unfairness in speed scaling designs. Table

2 summarizes these.

These results lead to important new insights into Issues I-IV above. We describe these insights

informally here and provide pointers to the results in the body of the chapter.

With respect to Issue I, our results show that “energy-proportional” speed scaling provides

near-optimal performance. Specifically, we consider the algorithm which uses SRPT scheduling and

chooses sn, the speed to run at given n jobs, to satisfy P (sn) = nβ (where P (s) is the power

needed to run at speed s and 1/β is the cost of energy). We prove that this algorithm is (2 + ε)-

competitive under general P (Corollary 2.1). This provides a tight analysis of an algorithm with

a considerable literature, e.g., [4, 12, 13, 15, 81] (see Section 2.2.1 for a discussion). It also gives

analytic justification for a common heuristic applied by system designers, e.g., [16]. Further, we

show that no “natural” speed scaling algorithm (Definition 2.1) can be better than 2-competitive

(Theorem 2.2), which implies that no online energy-proportional speed scaler can match the offline

optimal.

With respect to Issue II, our results uncover two new insights. First, we prove that, at least

with respect to PS and SRPT, speed scaling can be decoupled from the scheduler. That is, energy-

proportional speed scaling performs well for both SRPT and PS (and another policy LAPS studied

in [34]). Specifically, we show that PS scheduling with speeds such that P (sn) = n, which are

optimally competitive under SRPT, is again O(1)-competitive1 (Theorem 2.3). Further, we show

1O(·) and o(·) are defined in [20]; f = ω(g) ⇔ g = o(f); f = Ω(g) ⇔ g = O(f); f = Θ(g) ⇔ [f = O(g) and g =
O(f)].

11

that using the speeds optimal for an M/GI/1 PS queue to control instead an M/GI/1 SRPT queue

leads to nearly optimal performance (Section 2.2.2). Second, our results show that scheduling is

not as important once energy is considered. Specifically, PS is O(1)-competitive for the linear

combination of energy and response time; however, when just mean response time is considered PS

is Ω(ν1/3)-competitive for instances with ν jobs [96]. Similarly, we see in the stochastic environment

that the performance under SRPT and PS is almost indistinguishable (e.g., Figure 2.1). Together,

the insights into Issue II provide a significant simplification of the design of speed scaling systems:

they suggest that practitioners can separate two seemingly coupled design decisions and deal with

each individually.

With respect to Issue III, our results add support to an insight suggested by prior work. Prior

work [120] has shown that the optimal gated-static speed scaling algorithm performs nearly as well

as the optimal dynamic speed scaling algorithm in the M/GI/1 PS setting. Our results show that the

same holds for SRPT (Section 2.3). Thus, sophistication does not provide significant performance

improvements in speed scaling designs. However, sophistication provides improved robustness (Sec-

tion 2.4). To support this analytically, we provide worst-case guarantees on the (near) optimal

stochastic speed scalers for PS and SRPT (Corollary 2.3). Note that it is rare to be able to provide

such guarantees for stochastic control policies. The insights related to Issue III have an interesting

practical implication: instead of designing “optimal” speeds it may be better to design “optimally

robust” speeds, since the main function of dynamic speed scaling is to provide robustness. This

represents a significant shift in approach for stochastic speed scaling design.

With respect to Issue IV, our results uncover one unintended drawback of dynamic speed

scaling: speed scaling can magnify unfairness. Unfairness in speed scaling designs has not been

identified previously, but in retrospect the intuition behind it is clear: If a job’s size is correlated

with the occupancy of the system while it is in service, then dynamic speed scaling will lead to

differential service rates across job sizes, and thus unfairness. We prove that speed scaling magnifies

unfairness under SRPT (Theorem 2.5) and all non-preemptive policies, e.g., FCFS (Proposition 2.6).

In contrast, PS is fair even with dynamic speed scaling (Proposition 2.5). Combining these results

with our insights related to Issue II, we see that designers can decouple the scheduler and the speed

scaler when considering performance, but should be wary about the interaction when considering

fairness.

Our results highlight the balancing act a speed scaling algorithm must perform in order to achieve

the three desirable properties: near-optimal performance, robustness, and fairness. It is possible to

be near-optimal and robust using SRPT scheduling and dynamic speed scaling, but this creates

unfairness. SRPT can be fair and still near-optimal if gated-static speed scaling is used, but this is

not robust. On the other hand, dynamic speed scaling with PS can be fair and robust but, in the

worst case, pays a significant performance penalty (though in stochastic settings is nearly optimal).

12

Name Scheduler Speed scaler: sn P (s) Optimal? Robust? Fair?

SRPT-INV SRPT Dynamic: P−1(nβ) General 2-competitive (Theorem 2.1). yes no

SRPT-DP SRPT Dynamic: Prop. 2.1 sα O(1)-competitive for α ≤ 2
(Corollary 2.3).

yes no

SRPT-LIN SRPT Dynamic: n
√
β s2 No guarantee, simulation re-

sults in Figure 2.7.
weakly no

SRPT-GATED SRPT Gated: (2.20) Regular O(1)-competitive in M/GI/1
under heavy traffic with
P (s) = s2 (Corollary 2.2). Op-
timal gated in M/GI/1 under
heavy traffic (Theorem 2.4).

no yes

PS-INV PS Dynamic: P−1(nβ) sα O(1)-competitive (Theorem
2.3).

yes yes

PS-DP PS Dynamic: Prop. 2.1 sα O(1)-competitive for α ≤ 2
(Corollary 2.3).
Optimal in M/GI/1 PS [120].

yes yes

PS-LIN PS Dynamic: n
√
β s2 O(1)-competitive in M/GI/1

with P (s) = s2 [120].
weakly yes

PS-GATED PS Gated: (2.17) Regular O(1)-competitive in M/GI/1
with P (s) = s2 (Corol-
lary 2.2). Optimal gated in
M/GI/1 [120].

no yes

Table 2.1: Summary of the speed scaling schemes in this chapter.

Thus, the policies considered in this chapter can achieve any two of near-optimal, fair, and robust

— but not all three.

Finally, it is important to note that the analytic approach in this chapter is distinctive. It is

unusual to treat both stochastic and worst-case models together; and further, many results depend

on a combination of worst-case and stochastic techniques, which leads to insights that could not

have been attained by focusing on one model alone.

2.1 Model and notation

We consider the joint problem of speed scaling and scheduling in a single-server queue to minimize

a linear combination of expected response time (also called sojourn time or flow time), denoted by

T , and energy usage per job, E :

z = E[T] + E[E]/β. (2.1)

By Little’s law, this may be more conveniently expressed as

λz = E[N] + E[P]/β

where N is the number of jobs in the system and P = λE is the power expended.

13

Before defining the speed scaling algorithms, we need some notation. Let n(t) be the number of

jobs in the system at time t and s(t) be the speed that the system is running at time t. Further, define

P (s) as the power needed to run at speed s. Then, the energy used by time t is E(t) =
∫ t

0
P (s(τ))dτ .

Measurements have shown that P (s) can take on a variety of forms depending on the system being

studied; however, in many applications a low-order polynomial form provides a good approximation,

i.e., P (s) = ksα with α ∈ (1, 3). For example, for dynamic power in CMOS chips α ≈ 1.8 is a good

approximation [120]. However, this polynomial form is not always appropriate. Some of our results

assume a polynomial form to make the analysis tractable, and particularly α = 2 provides a simple

example which we use for many of our numerical experiments. Other results hold for general, even

non-convex and discontinuous, power functions. Additionally, we occasionally limit our results to

regular power functions, which are differentiable on [0,∞), strictly convex, non-negative, and 0 at

speed 0.

Now, we can define a speed scaling algorithm: A speed scaling algorithm A = (π,Σ), is a pair

of a scheduling discipline π that defines the order in which jobs are processed, and a speed scaling

rule Σ that defines the speed as a function of system state, in terms of the power function, P . In

this chapter we consider speed scaling rules where the speed is a function of the number of jobs in

the system, i.e., sn is the speed when the occupancy is n.2

The scheduling algorithms π we consider are online, and so are not aware of a job j until it arrives

at time r(j), at which point π learns the size of the job, xj . We consider a preempt-resume model,

that is, the scheduler may preempt a job and later restart it from the point it was interrupted without

any overhead. The policies that we focus on are: shortest remaining processing time (SRPT), which

preemptively serves the job with the least remaining work, and processor sharing (PS), which shares

the service rate evenly among the jobs in the system at all times.

The speed scaling rules, sn, we consider can be gated-static, which runs at a constant speed while

the system is non-idle and sleeps while the system is idle, i.e., sn = sgs1n6=0; or more generally

dynamic sn = g(n) for some function g : N ∪ {0} → [0,∞). Note that the speed is simply the rate

at which work is completed, i.e., a job of size x served at speed s will complete in time x/s. To

avoid confusion, we occasionally write sπn as the speed under policy π when the occupancy is n. The

queue is single-server in the sense that the full speed sn can be devoted to a single job.

We analyze the performance of speed scaling algorithms in two different models — one worst-case

and one stochastic.

2This suits objective (2.1); e.g., it is optimal for an isolated batch arrival, and the optimal s is constant between
arrival/departures. For other objectives, it is better to base the speed on the unfinished work instead [15].

14

Notation for the worst-case model

In the worst-case model we consider finite, arbitrary (maybe adversarial) deterministic instances of

arriving jobs. A problem instance consists of ν jobs, with the jth job having arrival time (release

time) r(j) and size (work) xj . Our objective is again a linear combination of response time and

energy usage. Let E(I) be the total energy used to complete instance I, and Tj be the response time

of job j, the completion time minus the release time. The analog of (2.1) is to replace the ensemble

average by the sample average, giving the cost of an instance I under a given algorithm A as

zA(I) =
1

ν

(∑
j
Tj +

1

β
E(I)

)
.

In this model, we compare the cost of speed scaling algorithms to the cost of the optimal offline

algorithm, OPT. In particular, we study the competitive ratio, defined as

CR = sup
I
zA(I)/zO(I),

where zO(I) is the optimal cost achievable on I. A scheme is “c-competitive” if its competitive ratio

is at most c.

Notation for the stochastic model

In the stochastic model, we consider an M/GI/1 (or sometimes GI/GI/1) queue with arrival rate

λ. Let X denote a random job size with c.d.f. F (x), c.c.d.f. F̄ (x), and continuous p.d.f. f(x). Let

ρ = λE[X] ∈ [0,∞) denote the load of arriving jobs. Note that ρ is not the utilization of the system

and that many dynamic speed scaling algorithms are stable for all ρ. When the power function is

P (s) = sα, it is natural to use a scaled load, γ := ρ/β1/α, which jointly characterizes the impact of

ρ and β (see [120]).

Denote the response time of a job of size x by T (x). We consider the performance metric (2.1)

where the expectations are averages per job. In this model the goal is to optimize this cost for a

specific workload, ρ. Define the competitive ratio in the M/GI/1 model as

CR = sup
F,λ

zA/zO

where zO is the average cost of the optimal offline algorithm.

15

2.2 Dynamic speed scaling

We start by studying the most sophisticated speed scaling algorithms, those that dynamically adjust

the speed as a function of the queue length. In this section we investigate the structure of the

“optimal” speed scaling algorithm in two ways: (i) we study near-optimal speed scaling rules in the

case of both SRPT and PS scheduling; (ii) we study each of these algorithms in both the worst-case

model and the stochastic model.

2.2.1 Worst-case analysis

There has been significant work studying speed scaling in the worst-case model, focusing on SRPT. A

promising algorithm is (SRPT, P−1(n)), and there has been a stream upper bounds on its competi-

tive ratio for objective (2.1): for unit-size jobs in [4, 15] and for general jobs with P (s) = sα in [12, 81].

A major breakthrough was made in [13], which shows the 3-competitiveness of (SRPT, P−1(n+ 1))

for general P .

Our contribution to this literature is twofold. First, we tightly characterize the competitive ratio

of (SRPT, P−1(nβ)). Specifically, we prove that (SRPT, P−1(nβ)) is exactly 2-competitive under

general power functions (see Theorem 2.1 and Corollary 2.1). Second, we prove that no “natural”

speed scaling algorithm can be better than 2-competitive. Natural speed scaling algorithms include

algorithms which have speeds that grow faster, slower, or proportional to P−1(nβ), or that use

a scheduler that works on exactly one job between arrival/departure events (see Definition 2.1).

Thus, the class of natural algorithms includes energy-proportional designs for all schedulers and

SRPT scheduling for any sn. We conjecture that this result can be extended to all speed scaling

algorithms, which would imply that the competitive ratio of (SRPT, P−1(nβ)) is minimal.

In contrast to this stream of work studying SRPT, there has been no analysis of speed scaling

under PS. We prove that (PS, P−1(nβ)) is O(1)-competitive for P (s) = sα with fixed α, and in

particular is (4α − 2)-competitive for typical α, i.e., α ∈ (1, 3]. This builds on [34], which studies

LAPS, another policy “blind” to job sizes. (LAPS, P−1(nβ)) is also O(1)-competitive in this case.

For both PS and LAPS the competitive ratio is unbounded for large α, which [34] proves holds for

all blind policies. But, note that α ∈ (1, 3] in most computer systems today; thus, asymptotics in α

are less important than the performance for small α.

The results in this section highlight important insights about fundamental issues in speed scaling

design. First, the competitive ratio results highlight that energy-proportional speed scaling (P (sn) =

nβ) is nearly optimal, which provides analytic justification of a common design heuristic, e.g., [16].

Second, note that energy-proportional speed scaling works well for PS and SRPT (and LAPS). This

suggests a designer may decouple the choice of a speed scaler from the choice of a scheduler, choices

that initially seem very intertwined. Though we have seen this decoupling only for PS, SRPT, and

16

LAPS, we conjecture that it holds more generally. Third, scheduling seems much less important

in the speed scaling model than in the standard constant speed model. For an instance of ν jobs,

PS is Ω(ν1/3)-competitive for mean response time in the constant speed model [96], but is O(1)-

competitive in the speed scaling model. Again, we conjecture that this holds more generally than

for just PS.

Amortized competitive analysis

The proofs of the results described above use a technique termed amortized local competitive analysis

[44, 107]. The technique works as follows.

To show that an algorithm A is c-competitive with an optimal algorithm OPT for a performance

metric z =
∫
ζ(t)dt it is sufficient to find a potential function Φ : R→ R such that, for any instance

of the problem:

1. Boundary condition: Φ = 0 before the first job is released, and Φ ≥ 0 after the last job is

finished;

2. Jump condition: At any point where Φ is not differentiable, it does not increase;

3. Running condition: When Φ is differentiable,

ζA(t) +
dΦ

dt
≤ cζO(t), (2.2)

where ζA(t) and ζO(t) are the cost ζ(t) under A and OPT respectively.

Given these conditions, the competitiveness follows from integrating (2.2), which gives

zA ≤ zA + Φ(∞)− Φ(−∞) ≤ czO.

SRPT analysis

We now state and prove our results for SRPT.

Theorem 2.1. For any regular power function P , (SRPT, P−1(nβ)) has a competitive ratio of

exactly 2.

The proof of the upper bound is a refinement of the analysis in [13] that accounts more carefully

for some boundary cases. It uses the potential function:

Φ(t) =

∫ ∞
0

n[q;t]∑
i=1

∆(i) dq (2.3)

17

for some non-decreasing ∆(·) with ∆(i) = 0 for i ≤ 0, where n[q; t] = max(0, nA[q; t]−nO[q; t]) with

nA[q; t] and nO[q; t] the number of unfinished jobs at time t with remaining size at least q under the

scheme under investigation and the optimal (offline) scheme, respectively.

The following technical lemma is the key step of the proof and is proven in Appendix 2.A.

Lemma 2.1. Let η ≥ 1 and Φ be given by (2.3) with

∆(i) =
1 + η

β
P ′
(
P−1 (iβ)

)
. (2.4)

Let A = (SRPT, sn) with sn ∈ [P−1(nβ), P−1(ηnβ)]. Then at points where Φ is differentiable,

nA + P (sA)/β +
dΦ

dt
≤ (1 + η)(nO + P (sO)/β). (2.5)

Using the above Lemma, we can now prove Theorem 2.1.

Proof of Theorem 2.1. To show that the competitive ratio of (SRPT, P−1(nβ)) is at most 2, we

show that Φ given by (2.3) and (2.4) is a valid potential function.

The boundary conditions are satisfied since Φ = 0 when there are no jobs in the system. Also,

Φ is differentiable except when a job arrives or departs. When a job arrives, the change in nA[q]

equals that in nO[q] for all q, and so Φ is unchanged. When a job is completed, n[q] is unchanged

for all q > 0, and so Φ is again unchanged. The running condition is established by Lemma 2.1 with

η = 1.

To prove the lower bound on the competitive ratio, consider periodic unit-work arrivals at rate

λ = sn for some n. As the number of jobs that arrive grows large, the optimal schedule runs at rate

λ, and maintains a queue of at most one packet (the one in service), giving a cost per job of at most

(1 + P (λ)/β)/λ. In order to run at speed λ, the schedule (SRPT, P−1(nβ)) requires n = P (λ)/β

jobs in the queue, giving a cost per job of (P (λ) + P (λ))/(λβ). The competitive ratio is thus at

least 2P (λ)
β+P (λ) . As λ becomes large, this tends to 2 since a regular P is unbounded.

Theorem 2.1 can easily be extended to non-negative power functions by applying the same

argument as used in [13].

Corollary 2.1. Let ε > 0. For any non-negative and unbounded P̃ , there exists a P such that

emulating (SRPT, P−1(nβ)) yields a (2 + ε)-competitive algorithm.

This emulation involves avoiding speeds where P is not convex, instead emulating such speeds

by switching between a higher and lower speed on the convex hull of P̃ .

Corollary 2.1 shows that (SRPT, P−1(nβ)) does not match the performance of the offline optimal.

This motivates considering other algorithms; however we now show that no “natural” algorithm can

do better.

18

Definition 2.1. A speed scaling algorithm A is natural if it runs at speed sn when it has n unfinished

jobs, and for convex P , one of the following holds:

(a) the scheduler is work-conserving and works on a single job between arrival/departure events; or

(b) g(s) + P (s)/β is convex, for some g with g(sn) = n; or

(c) the speeds sn satisfy P (sn) = ω(n); or

(d) the speeds sn satisfy P (sn) = o(n).

This fragmented definition seems “unnatural”, the class contains most natural contenders for

optimality: all algorithms that use the optimal scheduler SRPT, and all whose speeds grow faster

than, slower than, or proportional to P−1(n). To be “unnatural”, an algorithm must have speeds

which increase erratically (or decrease) as n increases.

Theorem 2.2. For any ε > 0 there is a regular power function Pε such that any natural algorithm

A on Pε has competitive ratio larger than 2− ε.

This theorem highlights that if an algorithm does have a smaller competitive ratio than (SRPT,

P−1(nβ)), it will not use “natural” scheduling or speed scaling. Though the result only applies to

natural algorithms, we conjecture that, in fact, it holds for all speed scaling algorithms, and thus

the competitive ratio of (SRPT, P−1(nβ)) is minimal.

Proof. Consider the case when P (s) = sα, with α yet to be determined. We show that, for large α,

the competitive ratio is at least 2− ε, by considering two cases: instance IB(ν) is a batch arrival of

ν jobs of size 1 at time 0 with no future arrivals, and instance IR(b,λ) is a batch of b jobs at time 0

followed by a long train of periodic arrivals of jobs of size 1 at times k/λ for k ∈ N.

Fix an ε > 0 and consider a speed scaling which can attain a competitive ratio of 2 − ε for all

instances IR(·,·). For IR(·,λ), with large λ, the optimal algorithm will run at speed exceeding λ for

a finite time until the occupancy is one. After that, it will run at speed λ so that no queue forms.

For long trains, this leads to a cost per job of (1 + P (λ)/β)/λ.

First, consider a “type (d)” natural A. For sufficiently large λ, n > ksαn for all sn ≥ λ/2, where

k = 2α+2/β. Between arrivals, at least 1/2 unit of work must be done at speed at least λ/2, in order

for A not to fall behind. The cost per unit work is at least (1/s)(ksα + sα/β), and so the total cost

of performing this 1/2 unit is at least (k + 1/β)λα−1/2α > 4λα−1/β. For large λ, this is at least

twice the cost per job under the optimal scheme: (1 + P (λ)/β)/λ < 2λα−1/β.

It remains to consider natural algorithms of types (a)–(c).

Consider a “type (a)” natural A on the instance IR(n,sn) for some n. It will initially process

exactly one job at speed sn, which it will finish at time 1/sn. From this time, a new arrival will

occur whenever a job completes, and so the algorithm runs at speed sn with occupancy n until the

19

last arrival. So, the average cost per job tends to (n+ P (sn)/β)/sn on large instances, leading to a

competitive ratio of:

1 +
n− 1

P (sn)/β + 1
≤ CRperiodic ≤ 2− ε. (2.6)

Consider a “type (b)” natural A. On IR(n,sn), A also satisfies (2.6): Let s̄ to denote the time-

average speed. For all φ < 1, for sufficiently long instances we need s̄ ≥ φsn to prevent an unbounded

queue forming. By Jensen’s inequality, the average cost per job satisfies z̄ ≥ (g(s̄) + P (s̄)/β) ≥

(g(φsn) + P (φsn)/β). Since φ can be arbitrarily close to 1, the cost can be arbitrarily close to

n+ P (sn)/β, implying (2.6).

For a “type (c)” natural A, P (sn)/n→∞ for large n.

Thus, for types (a)–(c), ∃n0 such that for all n > n0:

sn ≥ ŝn := P−1

(
nβ

1− ε/2

)
. (2.7)

We now show that this condition precludes having a competitive ratio of 2− ε in the case of batch

arrivals, IB(ν).

For IB(ν), the optimal strategy is to server one job at a time at some speeds s∗n, giving cost

zO(IB(ν)) =

ν∑
n=1

n

s∗n
+
P (s∗n)

βs∗n
=

ν∑
n=1

n(α−1)/α

β1/α

[(
nβ

(s∗n)α

)1/α

+

(
(s∗n)α

nβ

)(α−1)/α
]
.

The unique local minimum of φ(·) = (·)(α−1)/α + (·)−1/α occurs at 1/(α− 1). This gives a minimum

cost of

zO(IB(ν)) =
α
∑ν
n=1 n

(α−1)/α

β1/α(α− 1)(α−1)/α

for s∗n = (nβ/(α− 1))1/α. More generally, the optimum is

βn = s∗nP
′(s∗n)− P (s∗n). (2.8)

Under A, when more than n− 1 work remains, there must be at least n unfinished jobs. Thus,

for α− 1 > 1− ε/2,

z(IB(ν)) ≥
ν∑

n=n0

n(α−1)/α

β1/α

[(
nβ

(ŝn)α

)1/α

+

(
(ŝn)α

nβ

)(α−1)/α
]
.

since the minimum of φ(·) subject to (2.7) then occurs at (ŝn)α/(nβ).

Since (ŝn)α/(nβ) = 1/(1− ε/2), this gives

CRbatch ≥

(∑ν
n=n0

n(α−1)/α∑ν
n=1 n

(α−1)/α

)(
(α− 1)(α−1)/α

α

)[(
1

1− ε/2

)(α−1)/α

+

(
1

1− ε/2

)−1/α
]
.

20

For any ε ∈ (0, 1), the product of the last two factors tends to 1 + 1/(1 − ε/2) as α → ∞, and

hence there is an α = α(ε) for which their product exceeds 1/(1− ε/3) + 1. Similarly, for all α > 1,

there is a sufficiently large ν that the first factor exceeds 1/(1+ε/9). For this α and ν, CRbatch > 2.

So, for P (s) = sα(ε), if the competitive ratio is smaller than 2 − ε in the periodic case, it must

be larger than 2 in the batch case.

Theorem 2.2 relies on P being highly convex, as in interference-limited systems [58]. For CMOS

systems in which typically α ∈ (1, 3], it is possible to design natural algorithms that can outperform

(SRPT, P−1(nβ)).

PS analysis

We now state and prove our bound on the competitive ratio of PS.

Theorem 2.3. If P (s) = sα then (PS, P−1(nβ)) is max(4α− 2, 2(2− 1/α)α)-competitive.

In particular, PS is (4α− 2)-competitive for α in the typical range of (1, 3].

Theorem 2.3 is proven using amortized local competitiveness. Let η ≥ 1, and Γ = (1 + η)(2α −

1)/β1/α. The potential function is then defined as

Φ = Γ

nA(t)∑
i=1

i1−1/α max(0, qA(ji; t)− qO(ji; t)) (2.9)

where qπ(j; t) is the remaining work on job j at time t under scheme π, and {ji}n
A(t)
i=1 is an ordering

of the jobs in increasing order of release time: r(j1) ≤ r(j2) ≤ · · · ≤ r(jnA(t)). Note that this is a

scaling of the potential function that was used in [34] to analyze LAPS. As a result, to prove Theorem

2.3, we can use the corresponding results in [34] to verify the boundary and jump conditions. All

that remains is the running condition, which follows from the technical lemma below. The proof is

provided in Appendix 2.B.

Lemma 2.2. Let Φ be given by (2.9) and A be the discipline (PS, sn) with sn ∈ [(nβ)1/α, (ηnβ)1/α].

Then under A, at points where Φ is differentiable,

nA + (sA)α/β +
dΦ

dt
≤ c(nO + (sO)α/β) (2.10)

where c = (1 + η) max((2α− 1), (2− 1/α)α).

2.2.2 Stochastic analysis

We now study optimal dynamic speed scaling in the stochastic setting. In contrast to the worst-case

results, in the stochastic setting, it is possible to optimize the algorithm for the expected workload.

21

In a real application, it is clear that incorporating knowledge about the workload into the design can

lead to improved performance. Of course, the drawback is that there is always uncertainty about

workload information, either due to time-varying workloads, measurement noise, or simply model

inaccuracies. We discuss robustness to these factors in Section 2.4, and in the current section assume

that exact workload information is known to the speed scaler and that the model is accurate.

In this setting, there has been a substantial amount of work studying the M/GI/1 PS model

[30, 42, 48, 117]3. This work is in the context of operations management and so focuses on “operat-

ing costs” rather than “energy”, but the model structure is equivalent. This series of work formulates

the determination of the optimal speeds as a stochastic dynamic programming (DP) problem and

provides numeric techniques for determining the optimal speeds, as well as proving that the op-

timal speeds are monotonic in the queue length. The optimal speeds have been characterized as

follows [120]. Recall that γ = ρ/β1/α.

Proposition 2.1. Consider an M/GI/1 PS queue with controllable service rates sn. Let P (s) = sα.

The optimal dynamic speeds are concave and satisfy the dynamic program given in [120]. For α = 2

and any n ≥ 2γ, they satisfy

γ +
√
n− 2γ ≤ sn√

β
≤ γ +

√
n+ min

(γ
2n
, γ1/3

)
. (2.11)

For general α > 1, they satisfy4

sn
β1/α

≤
(

1

α
min
σ>γ

(
n+ σα − γα

(σ − γ)
+

γ

(σ − γ)2

))1/(α−1)

(2.12)

sn
β1/α

≥
(

n

α− 1

)1/α

. (2.13)

Proof. Bounds (2.11) and (2.12) are shown in [120]. Additionally, the concavity of sn follows from

results in [120]. To prove (2.13), note that when ρ = 0 the optimal speeds are those optimal for batch

arrivals, which satisfy (2.13) by (2.8). Then, it is straightforward from the DP that sn increases

monotonically with load ρ, which gives (2.13).

Interestingly, the bounds in Proposition 2.1 are tight for large n and have a form similar to the

form of the worst-case speeds for SRPT and PS in Theorems 2.1 and 2.3.

In contrast to the large body of work studying the optimal speeds under PS scheduling, there

is no work characterizing the optimal speeds under SRPT scheduling. This is not unexpected since

the analysis of SRPT in the static speed setting is significantly more involved than that of PS.

Thus, instead of analytically determining the optimal speeds for SRPT, we are left to use a heuristic

3These actually study the M/M/1 FCFS queue, but since the M/GI/1 PS queue with controllable service rates is
a symmetric discipline [72] it has the same occupancy distribution and mean delay as an M/M/1 FCFS queue.

4In [120] the range of minimization was misstated as σ > 0.

22

approach.

Note that the speeds suggested by the worst-case results for SRPT and PS (Theorems 2.1 and 2.3)

are the same, and the optimal speeds for a batch arrival are given by (2.8) for both policies. Motivated

by this and the fact that (2.8) matches the asymptotic form of the stochastic results for PS in

Proposition 2.1, we propose to use the optimal PS speeds in the case of SRPT.

To evaluate the performance of this heuristic, we use simulation experiments (Figure 2.1) that

compare the performance of this speed scaling algorithm to the following lower bound.

Proposition 2.2. In a GI/GI/1 queue with P (s) = sα,

zO ≥ 1

λ
max(γα, γα(α− 1)(1/α)−1).

This was proven in [120] in the context of the M/GI/1 PS but the proof can easily be seen to

hold more generally.

Simulation experiments also allow us to study other interesting topics, such as (i) a comparison of

the performance of the worst-case schemes for SRPT and PS with the stochastic schemes and (ii) a

comparison of the performance of SRPT and PS in the speed scaling model. In these experiments,

the optimal speeds for PS in the stochastic model are found using the numeric algorithm for solving

the DP described in [48, 120], and then these speeds are also used for SRPT. Due to limited space,

we describe the results from only one of many settings we investigated.

Figure 2.2 shows that the optimal speeds from the DP (“DP”) have a similar form to the speeds

motivated by the worst-case results, P−1(nβ) (“INV”), differing by γ for high queue occupancies.

Figure 2.1 shows how the total cost (2.1) depends on the choice of speeds and scheduler. At low loads,

all schemes are indistinguishable. At higher loads, the performance of the PS-INV scheme degrades

significantly, but the SRPT-INV scheme maintains fairly good performance. Note though that if

P (s) = sα for α > 3 the performance of SRPT-INV degrades significantly too. In contrast, the DP-

based schemes benefit significantly from having the slightly higher speeds chosen to optimize (2.1)

rather than minimize the competitive ratio. Finally, the SRPT-DP scheme performs nearly opti-

mally, which justifies the heuristic of using the optimal speeds for PS in the case of SRPT5. However,

the PS-DP scheme performs nearly as well as SRPT-DP. Together, these observations suggest that

it is important to optimize the speed scaler, but not necessarily the scheduler.

2.3 Gated-static speed scaling

Section 2.2 studied a sophisticated form of speed scaling where the speed can depend on the current

occupancy. This scheme can perform (nearly) optimally; however its complexity and overheads may

5Note that the peak around γ = 1 in Fig. 2.1(b) is most likely due to the looseness of the lower bound.

23

1/16 1/4 0 4 16 64
0

10

20

30

40

50

60

γ

co
st

PS−INV
PS−DP
SRPT−INV
SRPT−DP
LowerBound

(a)

1/16 1/4 0 4 16 64
0

1

2

3

4

γ

co
st

/lo
w

er
bo

un
d

PS−INV
PS−DP
SRPT−INV
SRPT−DP

(b)

Figure 2.1: Comparison of SRPT and PS scheduling under both sn = P−1(nβ) and speeds optimized
for an M/GI/1 PS system, using Pareto(2.2) job sizes and P (s) = s2.

be prohibitive. This is in contrast to the simplest non-trivial form: gated-static speed scaling, where

sn = sgs1n 6=0 for some constant speed sgs. This requires minimal hardware to support; e.g., a CMOS

chip may have a constant clock speed but AND it with the gating signal to set the speed to 0.

Gated-static speed scaling can be arbitrarily bad in the worst case since jobs can arrive faster

than sgs. Thus, we study gated-static speed scaling only in the stochastic model, where the constant

speed sgs can depend on the load.

We study the gated-static speed scaling under SRPT and PS scheduling. The optimal gated-

static speed under PS has been derived in [120], but the optimal speed under SRPT has not been

studied previously.

Our results highlight two practical insights. First, we show that gated-static speed scaling can

provide nearly the same cost as the optimal dynamic policy in the stochastic model. Thus, the

simplest policy can nearly match the performance of the most sophisticated policy. Second, we

show that the performance of gated-static under PS and SRPT is not too different, thus scheduling

is much less important to optimize than in systems in which the speed is fixed in advance. This

reinforces what we observed for dynamic speed scaling.

2.3.1 Optimal gated-static speeds

We now derive the optimal speed sgs, which minimizes the expected cost of gated-static in the

stochastic model under both SRPT and PS. First note that, since the power cost is constant at

P (sgs) whenever the server is running, the optimal speed is

sgs = arg min
s
βE[T] +

1

λ
P (s) Pr(N 6= 0). (2.14)

24

0 20 40 60 80 100
0

2

4

6

8

10

12

n

s n

DP
INV

Figure 2.2: Comparison of sn = P−1(nβ) with
speeds “DP” optimized for an M/GI/1 system
with γ = 1 and P (s) = s2.

0.5 0.9 0.99 0.999
0

10

20

30

40

ρ

E
[T

]

approximate E[T]
numerical E[T]

Figure 2.3: Validation of the heavy-traffic
approximation (2.19) by simulation using
Pareto(3) job sizes with E[X] = 1.

In the second term Pr(N 6= 0) = ρ/s, and so multiplying by λ and setting the derivative to 0 gives

that the optimal gated-static speed satisfies

β
dE[N]

ds
+ r

P ∗(s)

s
= 0, (2.15)

where r = ρ/s is the utilization and

P ∗(s) ≡ sP ′(s)− P (s). (2.16)

Note that if P is convex then P ∗ is increasing and if P ′′ is bounded away from 0 then P ∗ is

unbounded.

Under PS, E[N] = ρ/(s − ρ), and so dE[N]/ds = E[N]/(ρ− s). By (2.15), the optimal speeds

satisfy [120]

βE[N] = (1− r)rP ∗(s). (2.17)

Unfortunately, in the case of SRPT, things are not as easy. For s = 1, it is well known, e.g., [75],

that

E[T] =

∫ ∞
x=0

∫ x

t=0

dt

1− λ
∫ t
0
τ dF (τ)

+
λ
∫ x
0
τ2 dF (τ) + x2F̄ (x)

2(1− λ
∫ x
0
τdF (τ))2

dF (x)

The complexity of this equation rules out calculating the speeds analytically. So, instead we use

simpler forms for E[N] that are exact in asymptotically heavy or light traffic.

A heavy-traffic approximation

We state the heavy-traffic results for distributions whose c.c.d.f. F̄ has lower and upper Matuszewska

indices [20] of m and M . Intuitively, C1x
m . F̄ (x) . C2x

M as x → ∞ for some C1, C2. So, the

Matuszewska index can be thought of as a “moment index.” Further, let G(x) =
∫ x

0
tf(t) dt/E[X]

25

be the fraction of work coming from jobs of size at most x. The following was proven in [85].

Proposition 2.3 ([85]). For an M/GI/1 under SRPT with speed 1, E[N] = Θ(H(ρ)) as ρ → 1,

where

H(ρ) =

 E[X2]/((1− ρ)G−1(ρ)) if M < −2

E[X] log(1/(1− ρ)) if m > −2.
(2.18)

Proposition 2.3 motivates the heavy-traffic approximation below for the case when the speed is

1:

E[N] ≈ CH(ρ) (2.19)

where C is a constant dependent on the job size distribution. For job sizes which are Pareto(a) (or

more generally, regularly varying [20]) with a > 2, it is known that C = (π/(1 − a))/(2 sin(π/(1 −

a))) [85]. Figure 2.3 shows that in this case, the heavy-traffic results are accurate even for quite low

loads.

Given approximation (2.19), we can now return to equation (2.15) and calculate the optimal

speed for gated-static SRPT. Define h(r) = (G−1)′(r)/G−1(r).

Theorem 2.4. Suppose approximation (2.19) holds with equality.

(i) If M < −2, then for the optimal gated-static speed,

βE[N]

(
2− r
1− r

− rh(r)

)
= rP ∗(s). (2.20a)

(ii) If m > −2, then for the optimal gated-static speed,

βE[N]

(
1

(1− r) log(1/(1− r))

)
= P ∗(s). (2.20b)

Proof. For brevity, we only prove the second claim.

If m > −2, then there is a C ′ = CE[X] such that

E[N] =
C ′

s
log

(
1

1− ρ/s

)
. (2.21)

for speed s. Now

dE[N]

ds
= −C

′

s2
log

(
1

1− ρ/s

)
− C ′ρ

s2(s− ρ)

= −E[N]

s

(
1 +

ρ

s

1

(1− ρ/s) log(1/(1− ρ/s))

)
,

and the factor in brackets is dominated by its second term in heavy traffic. Substituting this

into (2.15) gives the result.

26

1 2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

ρ

ρ/
s

PS−GATED
SRPT−GATED

(a)

2 3 4 5
9

9.5

10

10.5

11

11.5

a

s

PS−GATED
SRPT−GATED

(b)

Figure 2.4: Comparison for gated-static: PS using (2.17) and SRPT using (2.22), with P (s) = s2.
(a) Utilization given Pareto(2.2) job sizes. (b) Dependence of speed on the job size distribution, for
Pareto(a).

To evaluate the speeds derived for heavy-traffic, Figure 2.4(b) illustrates the gated-static speeds

derived for SRPT and PS, for P (s) = s2 and ρ = 10 and varying job size distribution. This suggests

that the SRPT speeds are nearly independent of the job size distribution. (Note that the vertical

axis does not start from 0.) Moreover, the speeds of SRPT and PS differ significantly in this setting

since the speeds under SRPT are approximately minimal (the speeds must be larger than γ), while

the PS speeds are γ + 1.

Beyond heavy-traffic regime

Let us next briefly consider the light-traffic regime. As ρ→ 0, there is seldom more than one job in

the system, and SRPT and PS have nearly indistinguishable E[N]. So, in this case, it is appropriate

to use speeds given by (2.17).

Given the light-traffic and heavy-traffic approximations we have just described, it remains to

decide the speed in the intermediate regime. We propose setting

sSRPTgs = min(sPSgs , s
SRPT (HT)
gs), (2.22)

where sPSgs satisfies (2.17), and s
SRPT (HT)
gs is given by (2.20) with E[N] estimated by (2.19).

To see why (2.22) is reasonable, we first show that (2.20) often tends to the optimal speed as

ρ→ 0.

Proposition 2.4. If m > −2 or both M < −2 and arbitrarily small jobs are possible (i.e., for all

x > 0 there is a y ∈ [0, x] with F (y) > 0), then (2.20) produces the optimal scaling as ρ→ 0.

Proof. For ρ → 0, also r → 0, and E[N]/r → 1. By L’Hospital’s rule (1− r) log(1/(1− r))/r ∼ 1,

and (2.20b) gives β = P ∗(s). If arbitrarily small jobs are possible, then G−1(0) = 0, and rh(r)→ 1

by L’Hospital’s rule, whence (2.20a) also becomes β = P ∗(s).

27

1/16 1/4 0 4 16 64
0

10

20

30

40

50

60

γ

co
st

PS−GATED
PS−DP
SRPT−GATED
SRPT−DP
LowerBound

(a)

1/16 1/4 0 4 16 64
0

1

2

3

4

γ

co
st

/lo
w

er
bo

un
d

PS−GATED
PS−DP
SRPT−GATED
SRPT−DP

(b)

Figure 2.5: Comparison of PS and SRPT with gated-static speeds (2.17) and (2.22), versus the
dynamic speeds optimal for an M/GI/1 PS. Job sizes are distributed as Pareto(2.2) and P (s) = s2.

From (2.8), this is the optimal speed at which to server a batch of a single job. Since, as ρ→ 0,

the system almost certainly has a single job when it is non-empty, this is an appropriate speed.

Although (2.20) tends to the optimal speeds, (2.19) over estimates E[N] for small ρ and so

s
SRPT (HT)
gs is higher than optimal for small loads. Conversely, for a given speed, the delay is less

under SRPT than PS, and so the optimal speed under SRPT will be lower than that under PS.

Hence s
SRPT (HT)
gs < sPSgs in the large ρ regime where the former becomes accurate. Thus, the min

operation in (2.22) selects the appropriate form in each regime.

2.3.2 Gated-static vs. dynamic speed scaling

Now that we have derived the optimal gated-static speeds, we can contrast the performance of gated-

static with that of dynamic speed scaling. This is a comparison of the most and least sophisticated

forms of speed scaling.

As Figure 2.5 shows, the performance (in terms of mean delay plus mean energy) of a well-tuned

gated-static system is almost indistinguishable from that of the optimal dynamic speeds. Moreover,

there is little difference between the cost under PS-GATED and SRPT-GATED, again highlighting

that the importance of scheduling in the speed scaling model is considerably less than in standard

queueing models.

In addition to observing numerically that the gated-static schemes are near optimal, it is possible

to provide some analytic support for this fact as well. In [120] it was proven that PS-GATED is

within a factor of 2 of PS-DP when P (s) = s2. Combining this result with the competitive ratio

results, we have

Corollary 2.2. Consider P (s) = s2. The optimal PS and SRPT gated-static designs are O(1)-

competitive in an M/GI/1 queue with load ρ.

28

0 10 20 30 40

5

10

15

20

design γ

co
st

SRPT−GATED
SRPT−DP
SRPT−LIN

(a) SRPT

0 10 20 30 40

5

10

15

20

design γ

co
st

PS−GATED
PS−DP
PS−LIN

(b) PS

Figure 2.6: Effect of misestimating γ under PS and SRPT: cost when γ = 10, but sn are optimal
for a different “design γ”. Pareto(2.2) job sizes; P (s) = s2.

Proof. Let π ∈ {PS, SRPT} and sπgs be the optimal gated-static speed for π and sDPn be the optimal

speeds, which solve the DP for the M/GI/1 PS queue. Then

z(π,sπgs) ≤ z(PS,sPSgs) ≤ 2z(PS,sDPn) ≤ 2z(PS,P−1(nβ)) ≤ 12zO.

The last three steps follow from [120], the optimality of DP for PS in M/GI/1, and Theorem 2.3.

2.4 Robustness and speed scaling

Section 2.3 shows that near-optimal performance can be obtained using the simplest form of speed

scaling — running at a static speed when not idle. Why then do CPU manufacturers design chips

with multiple speeds? The reason is that the optimal gated-static design depends intimately on the

load ρ. This cannot be known exactly in advance, especially since workloads typically vary over time.

So, an important property of a speed scaling design is robustness to uncertainty in the workload, ρ

and F , and to model inaccuracies.

Figure 2.6 illustrates that if a gated-static design is used, performance degrades dramatically

when ρ is mispredicted. If the static speed is chosen and the load is lower than expected, excess

energy will be used. Underestimating the load is even worse; if the system has static speed s and

ρ ≥ s then the cost is unbounded.

In contrast, Figure 2.6 illustrates simulation experiments which show that dynamic speed scaling

(SRPT-DP) is significantly more robust to misprediction of the workload. In fact, we can prove this

analytically by providing worst-case guarantees for the SRPT-DP and PS-DP. Let sDPn denote the

speeds used for SRPT-DP and PS-DP. Note that the corollary below is distinctive in that it provides

worst-case guarantees for a stochastic control policy.

29

Corollary 2.3. Consider P (s) = sα with6 α ∈ (1, 2] and algorithm A which chooses speeds sDPn

optimal for PS scheduling in an M/GI/1 queue with load ρ. If A uses either PS or SRPT scheduling,

then A is O(1)-competitive in the worst-case model.

Proof. The proof applies Lemmas 2.1 and 2.2 from the worst-case model to the speeds from the

stochastic model.

By Proposition 2.1, sn ≥ (nβ/(α − 1))1/α. Since α < 2, this implies sn ≥ P−1(nβ). Further,

(2.12) implies that sDPn = O(n1/α) for any fixed ρ and β and is bounded for finite n.

Hence the speeds sDPn are of the form given in Lemmas 2.1 and 2.2 for some finite η (dependent

on π and the constant ρ), from which it follows that A is constant competitive.

For α = 2, Proposition 2.1 implies sDPn ≤ (2γ + 1)P−1(nβ), whence (SRPT, sDPn) is (2γ + 2)-

competitive.

Corollary 2.3 highlights that sDPn designed for a given ρ leads to a speed scaler that is “robust”.

However, the cost still degrades significantly when ρ is mispredicted badly (as shown in Figure 2.6).

We now consider a different form of robustness: If the arrivals are known to be well approximated

by a Poisson process, but ρ is unknown, is it possible to choose speeds that are close to optimal for

all ρ? It was shown in [120] that using “linear” speeds, sn = n
√
β, gives near-optimal performance

when P (s) = s2 and PS scheduling is used. This scheme (“LIN”) performs much better than using

sn = P−1(nβ), despite the fact that it also uses no knowledge of the workload. Given the decoupling

of scheduling and speed scaling suggested by the results in Section 2.2, this motivates using the

same linear speed scaling for SRPT. Figure 2.7 illustrates that this linear speed scaling provides

near-optimal performance under SRPT too. The robustness of this speed scaling is illustrated in

Figure 2.6. However, despite being more robust in the sense of this paragraph, the linear scaling is

not robust to model inaccuracies. Specifically, it is not O(1)-competitive in general, nor even for the

case of batch arrivals.

2.5 Fairness and speed scaling

To this point we have seen that speed scaling has many benefits; however we show in this section

that dynamic speed scaling has an undesirable consequence — magnifying unfairness. Fairness is

an important concern for system design in many applications, and the importance of fairness when

considering energy efficiency was recently raised in [109]. However, unfairness under speed scaling

designs has not previously been identified. In retrospect though, it is not a surprising byproduct of

speed scaling: If there is some job type that is always served when the queue length is long/short

it will receive better/worse performance than it would have in a system with a static speed. To see

6This is proven in [121] for α ∈ (1,∞).

30

1/16 1/4 0 4 16 64
0

10

20

30

40

50

60

γ

co
st

PS−LIN
PS−DP
SRPT−LIN
SRPT−DP
LowerBound

(a)

1/16 1/4 0 4 16 64
0

1

2

3

4

γ

co
st

/lo
w

er
bo

un
d

PS−LIN
PS−DP
SRPT−LIN
SRPT−DP

(b) c

Figure 2.7: Comparison of PS and SRPT with linear speeds, sn = n
√
β, and with dynamic speeds

optimal for PS. Job sizes are Pareto(2.2) and P (s) = s2.

that this magnifies unfairness, rather than being independent of other biases, note that the scheduler

has greatest flexibility to select which job to serve when the queue is long, and so jobs served at that

time are likely to be those that already get better service.

In this section, we prove that this service rate differential can lead to unfairness in a rigorous

sense under SRPT and non-preemptive policies such as first come first serve (FCFS, which serves

jobs in order of arrival). However, under PS, speed scaling does not lead to unfairness.

2.5.1 Defining fairness

The fairness of scheduling policies has recently received a lot of attention in computer systems

modeling, which has led to a variety of fairness measures, e.g., [11, 105, 122], and the analysis of

nearly all common scheduling policies, e.g., [74, 103, 122]. Refer to the survey [119] for more details.

Here, we compare fairness not between individual jobs, but between classes of jobs, where a class

consists of all jobs of a given size. Since we focus on delay, we compare E[T (x)] across x. For this

purpose, fairness when s = 1 has been defined in prior work as follows [119]:

Definition 2.2. A policy π is fair if for all x

E[Tπ(x)]

x
≤ E[TPS(x)]

x
.

This metric is motivated by the fact that (i) PS is intuitively fair since it shares the server

evenly among all jobs at all times; (ii) for s = 1, the slowdown (“stretch”) of PS is constant,

i.e., E[T (x)]/x = 1/(1 − ρ); (iii) E[T (x)] = Θ(x) [59], so normalizing by x when comparing the

performance of different job sizes is appropriate. Additional support is provided by the fact that

minπ maxx E[Tπ(x)]/x = 1/(1− ρ) [122].

31

Using this definition, it is interesting to note that the class of large jobs is always treated fairly

under all work-conserving policies, i.e., limx→∞ E[T (x)]/x ≤ 1/(1 − ρ) [59] — even under policies

such as SRPT that seem biased against large jobs. In contrast, all non-preemptive policies, e.g.,

FCFS have been shown to be unfair to small jobs [122].

The foregoing applies when s = 1. The following proposition shows that PS still maintains a

constant slowdown in the speed scaling environment, and so Definition 2.2 is still a natural notion

of fairness.

Proposition 2.5. Consider an M/GI/1 queue with a symmetric scheduling discipline, e.g., PS with

controllable service rates. Then, E[T (x)] = x (E[T]/E[X]) .

The proof follows from using Little’s law for jobs with size in [x, x+ ε] and is omitted here.

2.5.2 Speed scaling magnifies unfairness

Now that we have a natural criterion for fairness, we prove that speed scaling creates/magnifies

unfairness under SRPT and non-preemptive policies such as FCFS.

SRPT

We first prove that SRPT treats the largest jobs unfairly in a speed scaling system. Recall that the

largest jobs are always treated fairly in the case of a static speed.

Let s̄π be the time-average speed under policy π, and let π + 1 denote running policy π on a

system with a permanent customer in addition to the stochastic load (e.g., s̄PS+1).

Theorem 2.5. Consider a GI/GI/1 queue with controllable service rates and unbounded inter-

arrival times. Let sSRPTn ≤ sPSn be weakly monotone increasing and satisfy s̄PS+1 > ρ and

s̄SRPT+1 > ρ.7 Then

lim
x→∞

TPS(x)

x
<a.s. lim

x→∞

TSRPT (x)

x
.

The intuition behind Theorem 2.5 is the following. An infinitely sized job under SRPT will

receive almost all of its service while the system is empty of smaller jobs. Thus it receives service

during the idle periods of the rest of the system. Further, if sSRPTn ≤ sPSn then the busy periods will

be longer under SRPT and so the slowdown of the largest job will be strictly greater under SRPT.

This intuition also provides an outline of the proof.

Proof. By Lemma 2.6 in Appendix 2.C, Tπ(x)/x→ 1/(s̄π+1 − ρ) a.s. in each case.

Lemma 2.9 completes the proof by showing s̄PS+1 > s̄SRPT+1. It considers the average speed

between renewal instants in which both queues are empty, which it maps to renewal periods. It then

7Note that the conditions s̄PS+1 > ρ and s̄SRPT+1 > ρ are equivalent to the stability conditions for sSRPTn and
sPSn .

32

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

x

E
[T

(x
)]

/x

SRPT−INV
PS−INV

(a) vs job size

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

F(x)

E
[T

(x
)]

/x

SRPT−INV
PS−INV

(b) vs CDF of job size

Figure 2.8: Slowdown of large jobs under PS and SRPT under Pareto(2.2) job sizes, γ = 1, sn =
P−1(n), and P (s) = s2. Note the fairness of PS.

uses Lemma 2.7, which shows that a busy period is longer under SRPT than PS, to show that less

work is done on the permanent customer in the renewal period under SRPT than under PS.

Figure 2.8 shows that unfairness under SRPT can be considerable, with large jobs suffering a

significant increase in slowdown as compared to PS. However, in this case only around 10% of the

jobs are worse off than under PS. Note that this setting has a moderate load, which means that

SRPT with static speeds would be fair to all job sizes. Figure 2.8 was generated by running a

simulation to steady state and then injecting a job of size x into the system and measuring its

response time. This was repeated until the 90% confidence intervals (shown on Figure 2.8(a) for

SRPT) were tight around the estimate.

Theorem 2.5 proves that SRPT cannot use dynamic speeds and provide fairness to large jobs;

however, by using gated-static speed scaling SRPT can provide fairness, e.g., [122]. Further, as

Figure 2.5 illustrates, gated-static speed scaling provides nearly optimal cost. So, it is possible to

be fair and near-optimal using SRPT scheduling but, to be fair, robustness must be sacrificed.

Non-preemptive policies

The magnification of unfairness by speed scaling also occurs for all non-preemptive policies.

In the static speed setting, all non-preemptive policies are unfair to small jobs [122] since the

response time must include at least the residual of the job size distribution if the server is busy, i.e.,

E[T (x)]/x ≥ 1 + ρE[X2]/(2E[X]x),

which grows unboundedly as x → 0. However, if we condition on the arrival of a job to an empty

system (i.e., the work in system at arrival W = 0), then non-preemptive policies are “fair”, in the

sense that the slowdown is constant: T (x|W = 0)/x = 1. Speed scaling magnifies unfairness under

33

non-preemptive policies in the following sense: T (x|W = 0)/x can now differ dramatically across

job sizes.

Proposition 2.6. Consider a non-preemptive GI/GI/1 speed scaling queue with mean inter-arrival

time 1/λ and speeds sn monotonically approaching s∞ ∈ (0,∞] as n → ∞. Then, with probability

1,

lim
x→0

T (x|W = 0)

x
=

1

s1
and lim

x→∞

T (x|W = 0)

x
=

1

s∞
.

The intuition behind this result is that small jobs receive their whole service while alone in the

system; whereas large jobs have a large queue build up behind them, and therefore get served at

a faster speed. Thus, the service rate of large and small jobs differs, magnifying the unfairness of

non-preemptive policies.

Proof. First, the limit as x → 0 follows immediately from noting that as x shrinks the probability

of another arrival before completion goes to 0.

To prove the limit as x→∞, let Ã(x) be such that

Ã(x)−1∑
i=0

si
λ
< x ≤

Ã(x)∑
i=0

si
λ
.

and let ε > 0 be arbitrary. This Ã(x) can be thought of as the number of arrivals before x work is

completed if jobs arrived periodically with inter-arrival time 1/λ.

Since speeds are non-decreasing, the time to finish the job can be bounded above by the time to

reach speed si plus the time it would take to finish the whole job at speed si. Further, we can use

the law of large numbers to bound the time to reach speed si as x→∞. This gives

Pr

T (x|W = 0)

x
<

1

s√
Ã(x)

+

√
Ã(x)

x

1 + ε

λ

→ 1 w.p.1. (2.23)

Since {si} are non-decreasing and Ã(x) = Θ(x), it follows that the right hand side inside the brackets

approaches 1/s∞ as x→∞.

Conversely, a lower bound on the time to finish the job is given by the time to finish it at

maximum speed:

Pr

(
T (x|W = 0)

x
≥ 1

s∞

)
= 1 w.p.1. (2.24)

Together, (2.23) and (2.24) establish the result.

In general, speed scaling based on the occupancy n may magnify unfairness in any policy for

which n(t) is correlated with the size of the job(s) being processed at time t. Note that gated-

static scaling does not magnify unfairness, regardless of the scheduling discipline, since all jobs are

processed at the same speed.

34

2.6 Concluding remarks

This chapter has studied several fundamental questions about the design of speed scaling algorithms.

The focus has been on understanding the structure of the optimal algorithm, the interaction between

speed scaling and scheduling, and the impact of the sophistication of the speed scaler. This has led

to a number of new insights, which are summarized in the introduction.

The analytic approach of this chapter is distinctive in that it considers both worst-case and

stochastic models. This combination of techniques is fundamental in obtaining two of the main re-

sults of the work: Corollary 2.3 providing worst-case guarantees for policies designed in the stochastic

model, and Theorem 2.5 identifying unfairness in expected performance under dynamic speed scaling

with SRPT. Further, the combination of stochastic and worst-case analysis adds support to many

of the other insights of the chapter, e.g., the decoupling of scheduling and speed scaling.

These results suggest many interesting topics. Foremost, it will be interesting to see if the

lower bound of 2-competitive for natural speed scaling algorithms extends to all algorithms. It is

also important to understand the range of applicability of the insights that speed scaling can be

decoupled from scheduling with little performance loss, and that scheduling is less important when

energy is added to the objective. Further, the implications for fairness were only touched on briefly.

Finally, it is important to address all of the issues studied here in the context of other performance

objectives, e.g., when temperature is considered or when more general combinations of energy and

response time are considered.

Appendix 2.A Running condition for SRPT

The proof of Lemma 2.1 uses the following lemmas, which parallel those in [13]. Let nA(·) and nO(·)

be arbitrary unfinished work profiles, nA = nA(0), nO = nO(0), and let sA and sO be arbitrary

non-negative speeds, with sO = 0 if nO = 0.

Lemma 2.3. For any non-decreasing ∆ with ∆(i) = 0 for i ≤ 0, if nO < nA then, under SRPT,

where Φ is differentiable either

both d
dtΦ ≤ ∆(nA − nO + 1)(−sA + sO) (2.25a)

and nO ≥ 1, (2.25b)

or d
dtΦ ≤ ∆(nA − nO)(−sA + sO). (2.25c)

Proof. Consider an interval I = [t, t+ dt] sufficiently small that no arrivals or departures occur. Let

Φ(t + dt) − Φ(t) = dΦA + dΦO, where dΦA reflects the change in nA and dΦO reflects the change

due to OPT. On I, nx[q] decreases by 1 for q ∈ [qx− sx dt, qx], for x = A,OPT . Then A will remove

35

a term from the sum in (2.3), and OPT may add an additional term. Let qA (qO) be the remaining

work of the job being processed by algorithm A (OPT). If qA 6= qO, these intervals do not overlap,

and so

dΦA = −∆(nA[qA]− nO[qA])sA dt (2.26a)

dΦO ≤ ∆(nA[qO]− (nO[qO]− 1))sO dt. (2.26b)

The result follows from one of the following cases, divided by dt. The improvement from [13] comes

from handling the boundary case nO = 0 more carefully.

qA < qO The second term in (2.26a) becomes nO[qA] = nO[qO] = nO, whence dΦA = −∆(nA −

nO)sA dt. Since qA < qO implies nA[qO] ≤ nA[qA] − 1, and ∆ is non-decreasing, ∆(nA[qO] −

(nO[qO]− 1)) ≤ ∆(nA[qA]− nO[qO]). Thus dΦA + dΦO ≤ ∆(nA − nO)(−sA + sO) dt.

qA = qO If sA ≥ sO then one term is removed from the sum in (2.3) for q ∈ [qA− sA dt, qA− sO dt],

which gives Φ(t+ dt)− Φ(t) = ∆(nA − nO)(−sA + sO) dt.

If sO > sA, then one term is added for q ∈ [qA − sO dt, qA − sA dt], whence Φ(t+ dt)−Φ(t) =

∆(nA − nO + 1)(−sA + sO) dt. As sO > sA ≥ 0, nO 6= 0, whence nO ≥ 1.

qA > qO If nO = 0 then, nO[qA] = 0 = nO whence dΦA ≤ −∆(nA − nO)sA dt, and sO = 0 whence

dΦO = 0 = 2∆(nA − nO)sO dt. This implies (2.25c).

If nO > 1 then qA > qO implies nO[qA] ≤ nO[qO] − 1. Since ∆ is non-decreasing, (2.26a)

becomes dΦA ≤ −∆(nA − nO + 1)sA dt. Since qA > qO, nA[qO] = nA[qA] = nA, and (2.26b)

becomes dΦO ≤ ∆(nA − nO + 1)sO dt. This implies (2.25a) and (2.25b).

This differs from the corresponding result in [13] in condition (2.25b), which ensures that the

argument of ∆ in (2.25) is always at most nA and gives the following.

Lemma 2.4. Consider a regular power function, P , and let ∆(i) be given by (2.4) for i > 0. If

nO < nA and nA ≤ P (sA)/β then (2.25) implies

dΦ

dt
≤ (1 + η)(P (sO)/β − nA + nO).

Proof. Since P is regular, ∆ is non-decreasing. Now, consider two cases.

If (2.25a) and (2.25b) holds, then let Ψ(s) = P (s)/β and set i = nA − nO + 1 in Lemma 2.5

36

below to give

dΦ

dt
≤ ∆(nA − nO + 1)(−sA + sO)

= (1 + η)Ψ′(Ψ−1(nA − nO + 1))(−sA + sO)

≤ (1 + η)
(
− sA+ Ψ−1(nA− nO+ 1)

)
Ψ′(Ψ−1(nA− nO+ 1)) + (1 + η)(Ψ(sO)− nA + nO − 1)

≤ (1 + η)(Ψ(sO)− nA + nO)

where the last inequality follows from

nO ≥ 1 ⇒ sA ≥ P−1(nAβ) ≥ Ψ−1(nA − nO + 1). (2.27)

Otherwise (2.25c) holds. Since sA ≥ P−1(nAβ) ≥ Ψ−1(nA − nO), the above manipulations go

through again, with i = nA − nO in Lemma 2.5.

Next, we need the following result, Lemma 3.1 of [13].

Lemma 2.5. [13] Let Ψ be a strictly increasing, strictly convex, differentiable function. Let i, sA, sO ≥

0 be real. Then

Ψ′(Ψ−1(i))(−sA + sO) ≤ (−sA + Ψ−1(i))Ψ′(Ψ−1(i)) + Ψ(sO)− i.

We can now prove Lemma 2.1.

Proof of Lemma 2.1. When nA = 0, (2.5) holds trivially. Consider now three cases when nA ≥ 1:

If nO > nA, then dΦO = 0, since there is a dt > 0 such that nO[q] > nA[q] for q ∈ [qO−sO dt, qO],

which implies that nO[q]−nA[q] ≤ 0 for all times in [t, t+dt]. Since dΦA ≤ 0 on any interval, dΦ ≤ 0.

Thus (2.5) holds, since P (sA)/β ≤ ηnA.

Consider next nO < nA. Since the optimal scheme runs at zero speed when it is empty, sO = 0

if nO = 0, and so Lemma 2.3 applies. Then by Lemma 2.4, dΦ/dt ≤ (1 + η)(P (sO)/β − nA + nO),

whence

nA+
P (sA)

β
+
d

dt
Φ ≤ nA+ ηnA+ (1 + η)(

P (sO)

β
− nA+ nO) = (1 + η)(nO + P (sO)/β).

Finally, if nO = nA, then either dΦ ≤ 0 or (2.25) holds:

1. If qA < qO, then nA[q] − nO[q] becomes negative for q ∈ [qA − sA dt, qA] (whence n[q] =

max(0, nA[q]− nO[q]) remains 0), and remains negative for q ∈ [qO − sO dt, qO]. Hence n[q] is

unchanged, and dΦ = 0.

37

2. If qA = qO, consider two cases. (i) If sA ≥ sO then nA[q] − nO[q] becomes negative for

q ∈ [qA − sA dt, qA − sO dt] and remains zero for q ∈ [qA − sO dt, qA], whence n[q] again

remains unchanged. (ii) Otherwise, n[q] increases by 1 for q ∈ [qA − sO dt, qA − sA dt], and

dΦ = ∆(nA − nO + 1)(−sA + sO) dt. Again, nO ≥ 1 since sO > sA ≥ 0, and the optimal is

idle when nO = 0.

3. The case qA > qO is identical to the case in the proof of Lemma 2.3, and (2.25) holds.

Again, if (2.25) holds, then (2.5) holds. If instead dΦ ≤ 0, then the left hand side of (2.5) is at

most (1 + η)nA, which is less than the first term on the right hand side.

Appendix 2.B Running condition for PS

Proof of Lemma 2.2. First note that if nA = 0 then the LHS of (2.10) is 0, and the inequality holds.

Henceforth, consider the case nA ≥ 1.

The rate of change of Φ caused by running OPT is at most Γ(nA)1−1/αsO, which occurs when

all of the speed is allocated to the job with the largest weight in (2.9).

Let l ≥ 0 be the number of zero terms in the sum (2.9), corresponding to jobs on which PS

is leading OPT. The sum in (2.9) contains nA − l non-zero terms, each decreasing due to PS at

rate i1−1/αdqA/dt = i1−1/αsA/nA. The sum is minimized (in magnitude) if these are terms i =

1, . . . , nA − l. Thus, the change in Φ due to PS is at least as negative as

−Γ

nA−l∑
i=1

i1−1/α s
A

nA
≤ −Γ

∫ nA−l

0

i1−1/α s
A

nA
di

≤ −Γ
α

2α− 1
(nA − l)2−1/αβ1/α(nA)(1/α)−1 (2.28)

since sA ≥ (nAβ)1/α. This gives

dΦ

dt
≤ Γ(nA)1−1/αsO − Γ

αβ1/α

2α− 1
(nA)(1/α)−1(nA − l)2−1/α

Moreover, since (sA)α/β ≤ ηnA and l ≤ nO, we have nA + (sA)α/β ≤ (1 + η)nA and nO +

(sO)α/β ≥ l + (sO)α/β. To show (2.10), it is sufficient to show that

(1 + η)nA+ Γ(nA)1−1/αsO− Γ
αβ1/α(nA)(1/α)−1(nA − l)2−1/α

2α− 1
≤ c(l + (sO)α/β).

Since nA > 0, dividing by nA gives the sufficient condition

0 ≤ c(sO)α/(βnA)− ΓsO/(nA)1/α + cl/nA + Γ
αβ1/α

2α− 1
(1− l/nA)2−1/α − (1 + η). (2.29)

38

To find a sufficient condition on c, we take the minimum of the right hand side with respect to sO,

l and nA. Following [35], note that the minimum of the first two terms with respect to sO occurs

for sO = (βΓ
cα)1/(α−1)(nA)1/α, at which point the first two terms become

−
(

1− 1

α

)(
βΓα

cα

)1/(α−1)

. (2.30)

Now consider a lower bound on the sum of the terms in l. Let j = l/nA, and minimize this with

respect to j ≥ 0. Setting the derivative with respect to j to 0 gives c = β1/αΓ(1 − j)1−1/α. Hence

the minimum for j ≥ 0 is for j = 1 − (min(1, c/(β1/αΓ)))α/(α−1). For c ≥ β1/αΓ, the sum of the

terms in l achieves a minimum (with respect to l) of β1/αΓα/(2α − 1) at l = 0, for all nA. In this

case, it is sufficient that

0 ≤ −
(

1− 1

α

)(
βΓα

cα

)1/(α−1)

+ β1/αΓ
α

2α− 1
− (1 + η).

Rearranging shows that it is sufficient that c ≥ β1/αΓ and

c ≥ β
(

Γ

α

)α(
(α− 1)(2α− 1)

αβ1/αΓ− (1 + η)(2α− 1)

)α−1

= (1 + η)

(
2α− 1

α

)α
.

where the equality uses Γ = (1 + η)(2α− 1)/β1/α.

Appendix 2.C Proof of unfairness of SRPT

The following lemmas establish Theorem 2.5.

We start by characterizing the limiting slowdown in terms of the average speed in a system with

a permanent customer.

Lemma 2.6. Consider a GI/GI/1 queue with service discipline π ∈ {PS, SRPT} with controllable

service rate sπn such that s̄π+1 > ρ, then

lim
x→∞

Tπ(x)

x
=a.s.

1

s̄π+1 − ρ
.

Proof. We prove only the case of PS. The proof for SRPT is analogous.

Consider a PS+1 system. Let S(t) be the total work completed (service given) by time t. Let

R(t) be the service given to the permanent job by time t and R̄(t) be the service given to all other

jobs by time t. Note S(t) = R(t) + R̄(t).

Since the system is stable, we have limt→∞ R̄(t)/t =a.s. ρ, and by definition, we have limt→∞ S(t)/t =a.s.

39

s̄PS+1. Thus,

lim
t→∞

R(t)/t =a.s. s̄
PS+1 − ρ.

To complete the proof note that R(T (x)) = x and so

lim
x→∞

T (x)

x
= lim
t→∞

t

R(t)
=a.s.

1

s̄PS+1 − ρ
.

Next, we focus on relating the length of the busy periods in the PS and SRPT systems. This

eventually lets us conclude that s̄PS+1 > s̄SRPT+1. Let tπ(w) be the time when w work has been

completed under policy π.

Lemma 2.7. Consider a single server with a controllable service rate. Assume sPSn ≥ sSRPTn for

all n and that sPSn and sSRPTn are both weakly monotonically increasing. Then

tPS(w) ≤ tSRPT (w).

Hence, busy periods are longer under SRPT than under PS.

Proof. We prove the result only in the case where sPSn = sSRPTn for all n and sPSn and sSRPTn are

both strictly monotonically increasing; the general proof is analogous.

Observe that t(w) is continuous under both PS and SRPT. So, it is sufficient to show that at

every point v when tPS(v) = tSRPT (v) ceases to be true it is because tPS(v+) < tSRPT (v+). Thus,

we induct over moments when tPS(v) = tSRPT (v) and tPS(w) ≤ tSRPT (w) for all w ≤ v.

The base case follows from noting that tPS(0) = tSRPT (0) = 0 and that sPSn = sSRPTn until

the moment of the first completion, which happens under SRPT due to the optimality of SRPT.

Let w0 be the work that has been completed at this moment. Then, if the system is not empty,

tPS(w+
0) < tSRPT (w+

0) since sn is strictly monotonically increasing.

Next, consider a point v such that tPS(v) = tSRPT (v) and tPS(w) ≤ tSRPT (w) for all w ≤ v.

There are three cases:

nPS(tPS(v)) > nSRPT (tSRPT (v)): In this case, tPS(v+) < tSRPT (v+) since sn is strictly increasing.

nPS(tPS(v)) = nSRPT (tSRPT (v)): In this case, tPS(w) = tSRPT (w) for all w > v until the next

completion moment, w0. Applying Lemma 2.8 below, we know that this completion happens

under SRPT. So, tPS(w+
0) < tSRPT (w+

0) since sn is strictly increasing.

nPS(tPS(v)) < nSRPT (tSRPT (v)): Lemma 2.8, below, proves that this cannot happen.

40

Lemma 2.8. Consider a single server with a controllable service rate. At moments when tPS(v) =

tSRPT (v) and tPS(w) ≤ tSRPT (w) for all w ≤ v,

nPS(tPS(v)) ≥ nSRPT (tSRPT (v)).

Proof. The first step is to warp time separately for each system such that the server is always

working at rate 1 until v work has been done. To do that, scale time by 1/sn(t) at all times t until

that point. The warping, and hence the arrival instance, will be different in each system. Call the

resulting instances IPS and ISRPT .

These two instances satisfy the following relationships:

(i) The number of arrivals is the same in both instances.

(ii) The size of the ith arrival is the same in both instances for all i.

(iii) The inter-arrival times of the two instances may differ.

(iv) The ith arrival in ISRPT happens no later than the ith arrival in IPS . This follows from the

hypothesis of the lemma that tPS(w) ≤ tSRPT (w) for all w ≤ v.

Let nπ(t, I) denote the number in system at time t in instance I under policy π. Now, it is

enough to prove that nPS(t, IPS) ≥ nSRPT (t, ISRPT). Intuitively, this should be true because

(i) the arrivals are happening earlier in ISRPT and (ii) SRPT minimizes the queue length.

To prove this formally, note that the optimality of SRPT immediately gives nPS(t, IPS) ≥

nSRPT (t, IPS). Second, consider Cπ(t, I), the number of completions by time t under policy π

and instance I. To finish the proof, we claim that CSRPT (t, IPS) ≤ CSRPT (t, ISRPT), whence

nSRPT (t, IPS) ≥ nSRPT (t, ISRPT). To prove the claim, first define a (non–work-conserving) policy

Q, which, when run on instance ISRPT , has exactly the same completion instants as SRPT does on

instance IPS . Such a Q exists since all arrivals happen no later under ISRPT than IPS .

By the optimality of SRPT and the definition of Q,

CSRPT (t, IPS) = CQ(t, ISRPT) ≤ CSRPT (t, ISRPT),

which completes the proof of the claim and the lemma.

Finally, we use the above results to prove that s̄SRPT+1 < s̄PS+1, which completes the proof of

Theorem 2.5.

Lemma 2.9. Consider a GI/GI/1 queue with a controllable service rate and an unbounded inter-

arrival time distribution. Assume sPSn ≥ sSRPTn for all n and sPSn and sSRPTn are both weakly

41

monotonically increasing with s1 > 0. Further, assume that supn s
PS
n > ρ and supn s

SRPT
n > ρ.

Then both systems are stable and

ρ < s̄SRPT+1 < s̄PS+1.

Proof. First, note that the stability of π and sπ1 > 0 guarantees that s̄π+1
n > ρ for π ∈ {SRPT, PS}.

We will prove the result in the case that sPSn = sSRPTn for all n. The case of sPSn ≥ sSRPTn

follows immediately. We refer to the PS+1 or the SRPT+1 system as “empty” when it is empty

except for the permanent customer. Define a renewal point as occurring when both the PS+1 and

SRPT+1 systems are “empty”. Since both systems are stable and the inter-arrival time distribution

is unbounded, there are infinitely many such renewals.

At the moments when both systems are “empty”, the same customers have been completed in

both systems. The only difference is how much work has been done on the permanent customer. So,

the policy which has completed the most of the permanent customer has the largest average service

rate.

We now focus on a single renewal and determine the time-average speeds under SRPT+1 and

PS+1. By the renewal reward theorem, this is enough to prove the lemma. Let time 0 be when the

sub-busy period began (when both systems were last empty). Let te be the first time when both

systems are “empty”. Let v be the amount of work completed on the permanent customer under

PS during this sub-busy period.

Now, consider an instance that is unchanged except that the permanent customer is replaced

by a job of size z that arrives at time 0 and that no new arrivals occurs after time te. Choose z

large enough that it will always have lowest priority in the SRPT+1 system. By Lemma 2.7, this

busy period is at least as long under SRPT+1 as under PS+1. Thus, since sPS1 = sSRPT1 , at time

te SRPT+1 must have completed no more than v work on the permanent customer. So, within this

renewal, s̄SRPT+1 ≤ s̄PS+1.

Finally, the stronger statement s̄SRPT+1 < s̄PS+1 holds since with positive probability the

renewal will include exactly 2 arrivals that are both in the system at the moment of the first

departure under SRPT+1, which guarantees that this completion instant is strictly earlier under

SRPT+1 than under PS+1.

42

Chapter 3

Dynamic Capacity Provisioning in
Data Centers

Energy costs represent a significant fraction of a data center’s budget [57] and this fraction is expected

to grow as the price of energy increases in coming years. Hence, there is a growing push to improve

the energy efficiency of the data centers behind cloud computing. A guiding focus for research into

“green” data centers is the goal of designing data centers that are “power-proportional”, i.e., use

power only in proportion to the load. However, current data centers are far from this goal – even

today’s energy-efficient data centers consume almost half of their peak power when nearly idle [16].

A promising approach for making data centers more power-proportional is using software to

dynamically adapt the number of active servers to match the current workload, i.e., to dynamically

‘right-size” the data center. Specifically, dynamic right-sizing refers to adapting the way requests

are dispatched to servers in the data center so that, during periods of low load, servers that are not

needed do not have jobs routed to them and thus are allowed to enter a power-saving mode (e.g.,

go to sleep or shut down).

Technologies that implement dynamic right-sizing are still far from standard in data centers due

to a number of challenges. First, servers must be able to seamlessly transition into and out of

power-saving modes while not losing their state. There has been a growing amount of research into

enabling this in recent years, dealing with virtual machine state [39], network state [37] and storage

state [108, 5]. Second, such techniques must prove to be reliable, since administrators we talk to

worry about wear-and-tear consequences of such technologies. Third, and the challenge that this

chapter addresses, it is unclear how to determine the number of servers to toggle into power-saving

mode and how to control servers and requests due to the lack of knowledge about future workloads,

which means that a server that is put to sleep may soon need to be woken again. Although receding

horizon control has been proposed for the online control [116, 78], as shown in Section 3.2, its

performance really depends on the prediction window and the toggling cost of servers, which may

vary widely in different data centers.

43

A goal of this chapter is to provide a new algorithm to address this challenge for general settings.

To this end, we develop a general model that captures the major issues that affect the design of a

right-sizing algorithm, including: the cost (lost revenue) associated with the increased delay from

using fewer servers, the energy cost of maintaining an active server with a particular load, and the

cost incurred from toggling a server into and out of a power-saving mode (including the delay, energy,

and wear-and-tear costs).

This chapter makes three contributions: First, we analytically characterize the optimal offline

solution (Section 3.3). We prove that it exhibits a simple, “lazy” structure when viewed in reverse

time.

Second, we introduce and analyze a novel, practical online algorithm motivated by this structure

(Section 3.4). The algorithm, named lazy capacity provisioning (LCP(w)), uses a prediction window

of length w of future arrivals and mimics the “lazy’ structure of the optimal algorithm, but proceeding

forward instead of backwards in time. We prove that LCP(w) is 3-competitive, i.e., its cost is at

most 3 times that of the optimal offline solution. This is regardless of the workload and for very

general energy and delay cost models, even when no information is used about arrivals beyond the

current time period (w = 0). Further, in practice, LCP(w) is far better than 3-competitive, incurring

nearly the optimal cost.

Third, we validate our algorithm using two load traces (from Hotmail and a Microsoft Research

data center) to evaluate the cost savings achieved from dynamic right-sizing in practice (Section

3.5). We contrast our new algorithm with receding horizon control and confirm that our algorithm

provides much more stable cost saving. We show that significant savings are possible under a wide

range of settings and that savings become dramatic when the workload is predictable over an interval

proportional to the toggling cost. The magnitude of the potential savings depends primarily on the

peak-to-mean ratio (PMR) of the workload, with a PMR of 3 being enough to give 30% cost saving.

In the context of these real traces, we also discuss when it does and when it does not make sense

to use dynamic right-sizing versus the alternative of “valley-filling”, i.e., using periods of low load

to run background/maintenance tasks. We find that dynamic right-sizing provides more than 15%

cost savings even when the background work makes up 40% of the workload when the PMR is larger

than 3.

3.1 Model and notation

Right-sizing problems vary between data centers: some systems have flexible quality of service (QoS)

requirement, others have hard service level agreements (SLAs); the electricity price may be time-

varying or fixed; workloads can be homogeneous or heterogeneous, etc. We first introduce a general

model which captures the main issues in many right-sizing problems in different systems. We then

44

give examples and show how they fit into this general model.

3.1.1 General model

We now describe the general model used to explore the cost savings possible from dynamic right-

sizing. An instance consists of a constant β > 0, a horizon1 T > 0, a sequence of non-negative

convex functions gt(·) for t = 1, . . . , T − 1; gt(·) can take on the value ∞ but cannot be identically

∞. For notational simplicity, let gT (x) ≡ 0 and x0 = xT = 0. The model is:

minimize
x1,...,xT−1

T∑
t=1

gt(xt) + β

T∑
t=1

(xt − xt−1)+ (3.1)

subject to xt ≥ 0

where (x)+ = max(0, x), and {xt} are non-negative scalar variables. The solution to optimization

(3.1) may not be unique. By Corollary 3.1 in Appendix 3.A, there exists a solution that is the

element-wise maximum. Unless otherwise stated, “the solution” refers to this maximum solution.

We discuss the extension to vector xt in the next chapter.

To apply this to data center right-sizing, recall the major costs of right-sizing: (a) the cost

associated with the increased delay from using fewer servers and the energy cost of maintaining an

active server with a particular load; (b) the cost incurred from toggling a server into and out of a

power-saving mode (including the delay, migration, and wear-and-tear costs). We call the first part

“operating cost” and the second part “switching cost” and consider a discrete-time model where

the timeslot length matches the timescale at which the data center can adjust its capacity. There is

a (possibly long) time-interval of interest t ∈ {0, 1, . . . , T} and the capacity (i.e., number of active

servers) at time t is xt.

The operating cost in each timeslot is modelled by gt(xt), which presents the cost of using xt

servers (xt has a vector value if servers are heterogeneous) to serve requests at timeslot t. Moreover,

gt(·) captures many other factors in timeslot t, including the arrival rate, the electricity price, the

cap on available servers, the SLA constraints.

For the switching cost, let β be the cost to transition a server from the sleep state to the active

state and back again. We deem this cost to be incurred only when the server wakes up. Thus

the switching cost for changing the number of active servers from xt−1 to xt is β(xt − xt−1)+. The

constant β includes the costs of (i) the energy used, (ii) the delay in migrating connections/data/etc.

(e.g., by VM techniques), (iii) increased wear-and-tear on the servers, and (iv) the risk associated

with server toggling. If only (i) and (ii) matter, then β is either on the order of the cost to run a

server for a few seconds (waking from suspend-to-RAM or migrating network state [37] or storage

1If parameters such as β are known in advance, then the results in this chapter can be extended to a model in
which each instance has a finite duration, but the cost is summed over an infinite horizon.

45

state [108]), or several minutes (to migrate a large VM [39]). However, if (iii) is included, then

β becomes on the order of the cost to run a server for an hour [27]. Finally, if (iv) is considered

then our conversations with operators suggest that their perceived risk that servers will not turn

on properly when toggled is high, so β may be many hours’ server costs. Throughout, denote

the operating cost of a vector X = (x1, . . . , xT) by costo(X) =
∑T
t=1 gt(xt), the switching cost by

costs(X) = β
∑T
t=1(xt − xt−1)+, and cost(X) = costo(X) + costs(X).

Constraints on xt are handled implicitly in functions gt(·) by extended-value extension, i.e.,

defining gt(·) to be∞ outside its domain. This extension makes our description/notation more clear

without introducing particular constraints in different data centers.

Formulation (3.1) makes a simplification that it does not enforce that xt be integer valued. This

is acceptable since the number of servers in a typical data center is large. This model also ignores

the requirement to maintain availability guarantees. Such issues are beyond the scope of this thesis,

however previous work shows that solutions are possible [108].

This optimization problem would be easy to solve offline, i.e., given functions gt(·) for all t.

However, our goal is to find online algorithms for this optimization, i.e., algorithms that determine

xτ using only information up to time τ + w, where the “prediction window” w ≥ 0 is part of the

problem instance. Here, we assume that the predictions [gτ , . . . , gτ+w] are known perfectly at time

τ , but we show in Section 3.5 that our algorithm is robust to this assumption in practice.

We evaluate the performance of an online algorithm A using the standard notion of competitive

ratio. The competitive ratio of A is defined as the supremum, taken over all possible inputs, of

cost(A)/cost(OPT), where cost(A) is the objective function of (3.1) under A and OPT is the

optimal offline algorithm. The analytic results of Sections 3.3 and 3.4 assume that the service has

a finite duration, i.e., T < ∞, but hold for arbitrary sequences of convex functions gt(·). Thus,

the analytic results provide worst-case guarantees. However, to provide realistic cost estimates, we

consider case studies in Section 3.5 where gt(·) is based on real-world traces.

3.1.2 Special cases

Now let us consider two choices of gt(·) to fit two different right-sizing problems into Formulation

(3.1). The discrete-time model consists of finitely many times t ∈ {0, 1, . . . , T}, where T may be

a year, measured in timeslots of 10 minutes. Assume the workload affects the operating cost at

timeslot t only by its mean arrival rate, denoted λt. (This may have a vector value if there are

multiple types of work). This assumption is reasonable for many services such as web search, social

network or email service since the request interarrival times and the response times are much shorter

than the timeslots so that the provisioning can be based on the arrival rate.

We model a data center as a collection of homogeneous servers (The heterogeneous systems will

be studied in the next chapter.) and focus on determining xt, the number of active servers during

46

each time slot t. For notational simplicity, we assume a load balancer assigns arriving jobs to active

servers uniformly, at rate λt/xt per server (which is widely deployed and turns out to be optimal

for many systems). Assume the power of an active server handling arrival rate λ is e(λ), and the

performance metric we care about is d(λ) (e.g., average response time or response time violation

probability). For example, a common model of the power for typical servers is an affine function

e(λ) = e0 + e1λ where e0 and e1 are constants; e.g., see [1]. The average response time can be

modeled using standard queuing theory results. If the server happens to be modeled by an M/GI/1

processor sharing queue then the average response time is d(λ) = 1/(µ−λ), where the service rate of

the server is µ [75]. Other examples include, for instance, using the 99th percentile of delay instead

of the mean. In fact, if the server happens to be modeled by an M/M/1 processor sharing queue

then the 99th percentile is log(100)/(µ−λ), and so the form of d(λ) does not change [75]. Note that,

in practice, e(λ) and d(λ) can be empirically measured by observing the system over time without

assuming mathematical models for them. Our analytical results work for any e(·) and d(·) as long

as they result in convex gt(·). But for simplicity, we will use e(λ) = e0 + e1λ and d(λ) = 1/(µ− λ)

for our numerical experiments.

Example 1: Services with flexible QoS requirement

Many Internet services, such as web search, email service and social network are flexible in response

time in certain range. For such applications, it is hard to find a threshold to distinguish “good

services” and “bad services”. Instead, the revenue is lost gradually as the response time increases

and thus our goal is to balance the performance and the power cost [110, 43, 78, 36]. One natural

model for the lost revenue is d1λ(d(λ)− d0)+ where d0 is the minimum delay users can detect and

d1 is a constant. This measures the perceived delay weighted by the fraction of users experiencing

that delay. For the energy cost, assume the electricity price is pt at timeslot t, then the energy cost

is pte(λ). There may be a time-varying cap Mt on the number of active server available due to other

activities/services in the data center (e.g., backup activities). The combination together with the

dispatching rule at the load balancer gives

minimize

T∑
t=1

xt

(
d1λt
xt

(
d

(
λt
xt

)
− d0

)+

+ pte

(
λt
xt

))
+ β

T∑
t=1

(xt − xt−1)+ (3.2)

subject to λt ≤ xt ≤Mt

Compared to Formulation (3.1), we have

gt(xt) =


xt

(
d1λt
xt

(
d
(
λt
xt

)
− d0

)+

+ pte
(
λt
xt

))
if λt ≤ xt ≤Mt,

∞ otherwise.

47

We can see that gt(xt) is in the form of the perspective function of f(z) = d1z(d(z)−d0)++pte(z),

which is convex under common models of d(·) and e(·), such as M/G/1 queueing models with or

without speed scaling of individual servers. Thus gt(·) is convex under common models.

Example 2: Services with hard QoS constraints

Some data centers have to support services with hard constraints such as SLA requirement or delay

constraints for multimedia applications. For such systems, the goal is to minimize energy cost while

satisfy the constraints, as shown in [104, 115]. The optimization becomes

minimize

T∑
t=1

xtpte

(
λt
xt

)
+ β

T∑
t=1

(xt − xt−1)+ (3.3)

subject to xt ≥ λt and d

(
λt
xt

)
≤ Dt

where d(·) can be average delay, delay violation probability or other performance metrics. This

constraint usually defines a convex domain for xt. Actually if we assume that d(·) is an increasing

function of the load, then it is equivalent to imposing an upper bound on the load per server (i.e.,

λt/xt is less than certain threshold) and thus results in a convex optimization problem.

The corresponding gt(·) can be defined as follows:

gt(xt) =

xtpte
(
λt
xt

)
if xt ≥ λt and d

(
λt
xt

)
≤ Dt,

∞ otherwise.

3.2 Receding horizon control

As motivation for deriving a new algorithm, let us first consider the standard approach. An online

policy that is commonly proposed to control data centers [116, 78] (and other dynamic systems)

is receding horizon control (RHC) algorithms, also known as model predictive control. RHC has a

long history in the control theory literature [79, 80, 90] where the focus was on stability analysis.

In this section, let us introduce briefly the competitive analysis result of RHC for our data center

problem (The result will be proven in the next chapter where we study the performance of RHC in

both homogeneous systems and heterogeneous systems.) and see why we may need a better online

algorithm.

Informally, RHC(w) works by solving, at time τ , the cost optimization over the window (τ, τ+w)

given the starting state xτ−1, and then using the first step of the solution, discarding the rest.

Formally, define Xτ (xτ−1; gτ . . . gτ+w) as the vector in Rw+1 indexed by t ∈ {τ, . . . , τ+w}, which

48

is the solution to

minimize

τ+w∑
t=τ

gt(xt) + β

τ+w∑
t=τ

(xt − xt−1)+ (3.4)

subject to xt ≥ 0

Then, RHC(w) works as follows.

Algorithm (Receding horizon control: RHC(w)). For all t ≤ 0, set the number of active servers to

xt = 0. At each timeslot τ ≥ 1, set the number of active servers to

xτ = Xτ
τ (xτ−1; gτ . . . gτ+w)

Note that (3.4) need not have a unique solution. We define RHC(w) to select the solution with

the greatest first entry. Define e0 the minimum cost per timeslot for an active server, then we have

the following theorem:

Theorem. RHC(w) is (1 + β
(w+1)e0

)-competitive for optimization (3.1) but not better than (1
w+2 +

β
(w+2)e0

)-competitive.

This highlights that, with enough lookahead, RHC(w) is guaranteed to perform quite well. How-

ever, its competitive ratio depends on the parameters β, e0 and w. These parameters vary widely in

different data centers since they host different services or have different SLAs. Thus, RHC(w) may

have a poor competitive ratio for a data center with big switching cost or small prediction window.

This poor performance is to be expected since RHC(w) makes no use of the structure of the

optimization we are trying to solve. We may wonder if there exists better online algorithm for this

problem that performs well for a wider range of parameters, even when the prediction window w = 0

(no workload prediction except current timeslot).

3.3 The optimal offline solution

In order to exploit the structure of the specific problem (3.1), the first natural task is to characterize

the optimal offline solution, i.e., the optimal solution given gt(·) for all t. The insight provided by

the characterization of the offline optimum motivates the formulation of our online algorithm.

It turns out that there is a simple characterization of the optimal offline solution X∗ to the

optimization problem (3.1), in terms of two bounds on the optimal solution which correspond to

charging cost β either when a server comes out of power-saving mode (as (3.1) states) or when it

goes in. The optimal x∗τ can be viewed as “lazily” staying within these bounds going backwards in

time.

49

More formally, let us first describe lower and upper bounds on x∗τ , denoted xLτ and xUτ , respec-

tively. Let (xLτ,1, . . . , x
L
τ,τ) be the solution vector to the optimization problem

minimize

τ∑
t=1

gt(xt) + β

τ∑
t=1

(xt − xt−1)+ (3.5)

subject to xt ≥ 0

where x0 = 0. Then, define xLτ = xLτ,τ . Similarly, let (xUτ,1, . . . , x
U
τ,τ) be the solution vector to the

optimization

minimize

τ∑
t=1

gt(xt) + β

τ∑
t=1

(xt−1 − xt)+ (3.6)

subject to xt ≥ 0

Then, define xUτ = xUτ,τ .

Notice that in each case, the optimization problem includes only times 1 ≤ t ≤ τ , and so ignores

the future information for t > τ . In the case of the lower bound, β cost is incurred for each server

toggled on, while in the upper bound, β cost is incurred for each server toggled into power-saving

mode.

Lemma 3.1. For all τ , xLτ ≤ x∗τ ≤ xUτ .

Given Lemma 3.1, we now characterize the optimal solution x∗τ . Define (x)ba = max(min(x, b), a)

as the projection of x into [a, b]. Then, we have:

Theorem 3.1. The optimal solution X∗ = (x∗1, . . . , x
∗
T) of the data center optimization problem

(3.1) satisfies the backward recurrence relation

x∗τ =


0, τ > T ;(
x∗τ+1

)xUτ
xLτ

, τ ≤ T .

Theorem 3.1 and Lemma 3.1 are proven in Appendix 3.A.

An example of the optimal x∗t can be seen in Figure 3.1(a). Many more numeric examples of the

performance of the optimal offline algorithm are provided in Section 3.5.

Theorem 3.1 and Figure 3.1(a) highlight that the optimal algorithm can be interpreted as moving

backwards in time, starting with x∗T = 0 and keeping x∗τ = x∗τ+1 unless the bounds prohibit this, in

which case it makes the smallest possible change. This interpretation highlights that it is impossible

for an online algorithm to compute x∗τ since, without knowledge of the future, an online algorithm

cannot know whether to keep xτ constant or to follow the upper/lower bound.

50

0 5 10 15 20 25
0

50

100

150

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

Optimal

bounds

(a) Offline optimal

0 5 10 15 20 25
0

50

100

150

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

LCP(0)

bounds

(b) LCP(0)

Figure 3.1: Illustrations of (a) the offline optimal solution and (b) LCP(0) for the first day of the
MSR workload described in Section 3.5 with a sampling period of 10 minutes. The operating cost
is defined in (3.2) with d0 = 1.5, d1 = 1, µ = 1, pt = 1, e0 = 1 and e1 = 0 and the switching cost
has β = 6 (corresponding to the energy consumption for one hour).

3.4 Lazy capacity provisioning

A major contribution of this chapter is the presentation and analysis of a novel online algorithm,

lazy capacity provisioning (LCP(w)). At time τ , LCP(w) knows only gt(·) for t ≤ τ + w, for some

prediction window w. As mentioned before, we assume that these are known perfectly, but we show

in Section 3.5 that the algorithm is robust to this assumption in practice. The design of LCP(w) is

motivated by the structure of the optimal offline solution described in Section 3.3. Like the optimal

solution, it “lazily” stays within upper and lower bounds. However, it does this moving forward in

time instead of backwards in time.

Before defining LCP(w) formally, recall that the bounds xUτ and xLτ do not use knowledge about

the loads in the prediction window of LCP(w). To use it, define refined bounds xU,wτ and xL,wτ such

that xU,wτ = xUτ+w,τ in the solution of (3.6) and xL,wτ = xLτ+w,τ in that of (3.5). Note that w = 0

is allowed (no future prediction) and xU,0τ = xUτ and xL,0τ = xLτ . The following generalization of

Lemma 3.1 is proven in Appendix 3.B.

Lemma 3.2. xLτ ≤ xL,wτ ≤ x∗τ ≤ xU,wτ ≤ xUτ for all w ≥ 0.

Now, we are ready to define LCP(w) using xU,wτ and xL,wτ .

Algorithm 3.1 (Lazy capacity provisioning: LCP(w)).

Let XLCP (w) = (x
LCP (w)
0 , . . . , x

LCP (w)
T) denote the vector of active servers under LCP(w). This

vector can be calculated using the following forward recurrence relation

xLCP (w)
τ =


0, τ ≤ 0;(
x
LCP (w)
τ−1

)xU,wτ
xL,wτ

, τ ≥ 1.

Figure 3.1(b) illustrates the behavior of LCP(0). Note its similarity with Figure 3.1(a), but with

the laziness in forward time instead of reverse time.

51

The computational demands of LCP(w) may initially seem prohibitive as τ grows, since calcu-

lating xU,wτ and xL,wτ requires solving convex optimizations of size τ + w. However, it is possible to

calculate xU,wτ and xL,wτ without using the full history. Lemma 3.10 in Appendix 3.B implies that it

is enough to use only the history since the most recent point when the solutions of (3.5) and (3.6) are

either both increasing or both decreasing, if such a point exists. In practice, this period is typically

less than a day due to diurnal traffic patterns, and so the convex optimization, and hence LCP(w),

remains tractable even as τ grows. In Figure 3.1(b), each point is solved in under half a second.

Next, consider the cost incurred by LCP(w). Section 3.5 discusses the cost in realistic settings,

while in this section we focus on worst-case bounds, i.e., characterize the competitive ratio. The

following theorem is proven in Appendix 3.B.

Theorem 3.2. cost(XLCP (w)) ≤ cost(X∗) + 2costs(X
∗). Thus, LCP(w) is 3-competitive for op-

timization (3.1). Further, for any finite w and ε > 0 there exists an instance, with gt of the form

xtf(λt/xt), such that LCP(w) attains a cost greater than 3− ε times the optimal cost.

Note that Theorem 3.2 says that the competitive ratio is independent of the prediction window

size w, the switching cost β, and is uniformly bounded above regardless of the form of the operating

cost functions gt(·). Surprisingly, this means that even the “myopic” LCP(0) is 3-competitive,

regardless of {gt(·)}, despite having no information beyond the current timeslot. It is also surprising

that the competitive ratio is tight regardless of w. Seemingly, for large w, LCP(w) should provide

reduced costs. Indeed, for any particular workload, as w grows the cost decreases and eventually

matches the optimal, when w > T . However, for any fixed w, there is a worst-case sequence of

cost functions such that the competitive ratio is arbitrarily close to 3. Moreover, there is such a

sequence of cost functions having the natural form xtf(λt/xt), which corresponds to a time-varying

load λ being shared equally among xt servers, which each has a time-invariant (though pathological)

operating cost f(λ) when serving load λ.

Finally, though 3-competitive may seem like a large gap, the fact that cost(XLCP (w)) ≤ cost(X∗)+

2costs(X
∗) highlights that the gap will tend to be much smaller in practice, where the switching

costs make up a small fraction of the total costs since dynamic right-sizing would tend to toggle

servers once a day due to the diurnal traffic.

3.5 Case studies

In this section the goal is two-fold: The first is to evaluate the cost incurred by LCP(w) relative to the

optimal solution and RHC(w) for realistic workloads. The second is more generally to illustrate the

cost savings and energy savings that come from dynamic right-sizing in data centers. To accomplish

these goals, we experiment using two real-world traces.

52

0 10 20 30 40 50
0

20

40

60

80

100

time (hours)

lo
a
d

(a) Hotmail

0 20 40 60 80 100 120
0

20

40

60

80

100

time (hours)

lo
a
d

(b) MSR

Figure 3.2: Illustration of the traces used for numerical experiments.

3.5.1 Experimental setup

Throughout the experimental setup, the aim is to choose parameters that provide conservative

estimates of the cost savings from LCP(w) and right-sizing in general.

Cost benchmark

Current data centers typically do not use dynamic right-sizing and so to provide a benchmark against

which LCP(w) is judged, we consider the cost incurred by a “static” right-sizing scheme for capacity

provisioning. This chooses a constant number of servers that minimizes the costs incurred based on

full knowledge of the entire workload. This policy is clearly not possible in practice, but it provides

a conservative estimate of the savings from right-sizing since it uses perfect knowledge of all peaks

and eliminates the need for overprovisioning in order to handle the possibility of flash crowds or

other traffic bursts.

Cost function parameters

The cost is of the form (3.2), characterized by the parameters d0, d1, µ, pt, e0 and e1, and the

switching cost β. We normalize µ = 1, pt = 1 and choose units such that the fixed power is e0 = 1.

The load-dependent power is set to e1 = 0, because the energy consumption of current servers is

dominated by the fixed costs [16].

53

The delay cost d1 reflects revenue lost due to customers being deterred by delay, or to violation

of SLAs. We set d1/e0 = 1 for most experiments but consider a wide range of settings in Figure 3.8.

The minimum perceptible delay is set to d0 = 1.5 times the time to serve a single job. The value 1.5

is realistic or even conservative, since “valley filling” experiments similar to those of Section 3.5.2

show that a smaller value would result in a significant added cost when using valley filling, which

operators now do with minimal incremental cost.

The normalized switching cost β/e0 measures the duration a server must be powered down to

outweigh the switching cost. We use β = 6e0, which corresponds to the energy consumption for one

hour (six samples). This was chosen as an estimate of the time a server should sleep so that the

wear-and-tear of power cycling matches that of operating [27].

Workload information

The workloads for these experiments are drawn from I/O traces of two real-world data centers. The

first set of traces is from Hotmail, a large email service running on tens of thousands of servers.

We used traces from 8 such servers over a 48-hour period, starting at midnight (PDT) on Monday

August 4 2008 [108]. The second set of traces is taken from 6 RAID volumes at MSR Cambridge.

The traced period was 1 week starting from 5PM GMT on 22nd February 2007 [108]. These activity

traces represent respectively a service used by millions of users and a small service used by hundreds

of users. The traces are normalized such that the peak load is 100, which are shown in Figure 3.2.

Notice that this normalization does not affect the experiment results since only the shape of trace

matters for cost saving. Both sets of traces show strong diurnal properties and have peak-to-mean

ratios (PMRs) of 1.64 and 4.64 for Hotmail and MSR respectively. Loads were averaged over disjoint

10 minute intervals.

The Hotmail trace contains significant nightly activity due to maintenance processes (backup,

index creation, etc.) which is not shown fully in Figure 3.2(a). The data center, however, is

provisioned for the peak foreground activity. This creates a dilemma: should our experiments

include the maintenance activity or to remove it? Figure 3.5 illustrates the impact of this decision.

If the spike is retained, it makes up nearly 12% of the total load and forces the static provisioning

to use a much larger number of servers than if it were removed, making savings from dynamic right-

sizing much more dramatic. To provide conservative estimates of the savings from right-sizing, we

chose to trim the size of the spike to minimize the savings from right-sizing. This trimming makes

the nightly background spike have value roughly equal to 100 (the peak foreground activity).

3.5.2 When is right-sizing beneficial?

Our experiments are organized in order to illustrate the impact of a wide variety of parameters on the

cost savings provided by dynamic right-sizing with LCP(w). The goal is to better understand when

54

0 2 4 6 8 10 12
−5

0

5

10

prediction window, w

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(w)

RHC(w)

(a) Hotmail

0 2 4 6 8 10 12
0

10

20

30

40

50

prediction window, w

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(w)

RHC(w)

(b) MSR

Figure 3.3: Impact of prediction window size on cost incurred by LCP(w).

dynamic right-sizing can provide large enough cost savings to warrant the extra implementation

complexity. Remember that throughout, we have attempted to choose experimental settings so that

the benefit of dynamic right-sizing is conservatively estimated.

The analytic results show that the performance of RHC(w) is more sensitive to the prediction

window w and the switching cost β/e0 while LCP(w) works well for general settings. The first two

experiments consider the realistic cost saving from RHC(w) and LCP(w) with varying w and β/e0

under real-world traces.

Impact of prediction window size

The first parameter we study is the impact of the predictability of the workload. In particular,

depending on the workload, the prediction window w for which accurate estimates can be made

could be on the order of tens of minutes or on the order of hours. Figure 3.3 illustrates its impact

on the cost savings of RHC(w) and LCP(w), where the unit of w is one timeslot of is 10 minutes.

The first observation from Figure 3.3 is that the savings possible (“Optimal”) in the MSR trace

are larger than in the Hotmail trace. Second, the cost saving of LCP(w) is similar to RHC(w) when

w ≥ 3. However, RHC(w) can be much worse when w ≤ 2, i.e., LCP(w) has more stable cost

saving than RHC(w), which supports the analytic results very well. In both traces, a big fraction

of the optimal cost savings is achieved by LCP(0), which uses only workload predictions about the

current timeslot (10 minutes). The fact that this myopic algorithm provides significant gain over

static provisioning is encouraging. Further, a prediction window that is approximately the size of

β = 6 (i.e., one hour) gives nearly the optimal cost savings.

Impact of switching costs

One of the main worries when considering right-sizing is the switching cost of toggling servers, β,

which includes the delay costs, energy costs, costs of wear-and-tear, and other risks involved. Thus,

55

min hour day
−40

−20

0

20

β / e
0

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(3)

LCP(0)

RHC(3)

RHC(0)

(a) Hotmail

min hour day

−50

0

50

β / e
0

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

LCP(3)

LCP(0)

RHC(3)

RHC(0)

(b) MSR

Figure 3.4: Impact of switching cost, against time on a logarithmic scale.

an important question to address is: “How large must switching costs be before the cost savings

from right-sizing disappears?”

Figure 3.4 shows that significant gains are possible provided β is smaller than the duration of

the valleys. Given that the energy costs, delay costs, and wear-and-tear costs are likely to be on the

order of an hour, this implies that unless the risks associated with toggling a server are perceived

to be extreme, the benefits from dynamic right-sizing are large in the MSR trace (high PMR case).

Though the gains are smaller in the Hotmail case for large β, this is because the spike of background

work splits an 8 hour valley into two short 4 hour valleys. If these tasks were shifted or balanced

across the valley, the Hotmail trace would show significant cost reduction for much larger β, similarly

to the MSR trace.

Another key observation is that the cost saving of LCP(w) is similar to that of RHC(w) when

β is small or moderate. However, when β becomes big, LCP(w) is much better than RHC(w),

which confirms that LCP(w) provides more stable cost saving than RHC(w). Since we use moderate

prediction window and moderate switching cost as the default setting in our experiments, we will

show only the LCP(w) results but not RHC(w) results for the remaining experiments.

Prediction error

The LCP(w) algorithm depends on having estimates for the arrival rate during the current timeslot

as well as for w timeslots into the future. Our analysis in Section 3.4 assumes that these estimates

are perfect, but of course in practice there are prediction errors. Figure 3.6 shows the cost reduction

for the Hotmail trace when additive white Gaussian noise of increasing variance is added to the

predictions used by LCP(w), including the workload in current timeslot. A variance of 0 corresponds

to perfect knowledge of the near-future workload, and this figure shows that the performance does

not degrade significantly when there is moderate uncertainty, which suggests that the assumptions

of the analysis are not problematic. The plot for the MSR trace is qualitatively similar, although

the actual cost savings are significantly larger.

56

0 2 4 6 8 10 12
0

20

40

60

% of load due to spike

%
 c

o
s
t

re
d

u
c
ti
o

n

Optimal

w=3

w=0

Figure 3.5: Impact of overnight peak in the
Hotmail workload.

0 5 10 15 20 25
0

1

2

3

4

5

Mean prediction error (% mean load)

%
 c

o
s
t

re
d

u
c
ti
o

n

w=3

w=0

Figure 3.6: Impact of prediction error on
LCP(w) under Hotmail workload.

Even very inexact knowledge of future workloads can be beneficial. Note that LCP(0)’s upper and

lower bounds xU and xL implicitly assume that future workloads will be infinite and 0, respectively.

Performance can be improved if either of these bounds can be tightened. For example, it may be

possible to use daily trends to predict a lower bound on the load, while the upper bound is still

taken to be infinite to allow for flash crowds. Given that prediction errors for real data sets tend

to be small [51, 78], based on these plots, to simplify our experiments we allow LCP(w) perfect

predictions.

Impact of peak-to-mean ratio (PMR)

Dynamic right-sizing inherently exploits the gap between the peaks and valleys of the workload, and

intuitively provides larger savings as that gap grows. To illustrate this, we artificially scaled the PMR

of each trace and calculated the resulting savings. The results, in Figure 3.7, illustrate that the intu-

ition holds for both cost savings and energy savings. The gain grows quickly from zero at PMR=1,

to 5–10% at PMR≈ 2 which is common in large data centers, to very large values for the higher

PMRs common in small to medium sized data centers. This shows that, even for small data centers

where the overhead of implementing right-sizing is amortized over fewer servers, there is a significant

benefit in doing so. To provide some context for the monetary value of these savings, consider that

a typical 50,000 server data center has an electricity bill of around $1 million/month [57].

The workload for the figure is generated from the Hotmail workload by scaling λt as λ̂t = k(λt)
α,

varying α and adjusting k to keep the mean constant. Note that though Figure 3.7 includes only

the results for Hotmail, the resulting plot for the MSR trace is nearly identical. This highlights that

the difference in cost savings observed between the two traces is primarily due to the fact that the

PMR of the MSR trace is so much larger than that of the Hotmail trace.

57

2 4 6 8 10

0

20

40

60

peak/mean ratio

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(a) Total cost

2 4 6 8 10

0

20

40

60

80

peak/mean ratio

%
 e

n
e
rg

y
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(b) Energy cost

Figure 3.7: Impact of the peak-to-mean ratio of the workload on the total cost and energy cost
incurred by LCP(w) in the Hotmail workload.

10
0

10
2

−10

0

10

20

30

energy cost / delay cost

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(a) Hotmail

10
0

10
2

−20

0

20

40

60

80

energy cost / delay cost

%
 c

o
s
t
re

d
u
c
ti
o
n

Optimal

w=3

w=0

(b) MSR

Figure 3.8: Impact of increasing energy costs.

Impact of energy costs

Clearly the benefit of dynamic right-sizing is highly dependent on the cost of energy. As the economy

is forced to move towards more expensive renewable energy sources, this cost will inevitably increase

and Figure 3.8 shows how this increasing cost will affect the cost savings possible from dynamic

right-sizing. Note that the cost savings from dynamic right-sizing grow quickly as energy costs rise.

However, even when energy costs are quite small relative to delay costs, we see improvement in the

case of the MSR workload due to its large PMR.

Impact of valley filling

A common alternative to dynamic right-sizing that is often suggested is to run very delay-insensitive

maintenance/background processes during the periods of low load, known as “valley filling”. Some

applications have a huge amount of such background work, e.g., search engines tuning their ranking

algorithms. If there is enough such background work, then the valleys can in principle be entirely

filled and so the PMR≈ 1 and thus dynamic right-sizing is unnecessary. Thus, an important question

is: “How much background work is enough to eliminate the cost savings from dynamic right-sizing?”

58

0 10 20 30 40

0

2

4

6

8

mean background load (% total)

%
 c

o
s
t

re
d

u
c
ti
o

n

Optimal

w=3

w=0

(a) Hotmail

0 20 40 60 80
−10

0

10

20

30

40

50

mean background load (% total)

%
 c

o
s
t

re
d

u
c
ti
o

n

Optimal

w=3

w=0

(b) MSR

Figure 3.9: Impact of background processes. The improvement of LCP(w) over static provisioning
as a function of the percentage of the workload that is background tasks.

Figure 3.9 shows that, in fact, dynamic right-sizing provides cost savings even when background

work makes up a significant fraction of the total load. For the Hotmail trace, significant savings

are still possible when background load makes upwards of 10% of the total load, while for the MSR

trace this threshold becomes nearly 60%. Note that Figure 3.9 results from considering “ideal”

valley filling, which results in a perfectly flat load during the valleys, but does not give background

processes lower queueing priority.

Impact of capacity limits

Energy-related expenses account for almost half of the cost of a data center. However, many of

those, such as power supply and cooling infrastructure, depend on the peak power rather than the

total energy. This raises the question of whether LCP increases the peak number of servers used, or

equivalently the peak power consumption. The dotted line of Figure 3.10 shows the optimal static

number of servers to use, which we call M , while the dashed line in Figure 3.10(a) shows the optimal

number and that in Figure 3.10(b) shows the number used by LCP. Dynamic provisioning uses a

higher peak number of servers, which would increase the cost.

However, the LCP algorithm (and off-line optimization) can impose an additional constraint

xt ≤Mt = M to ensure that the infrastructure cost is not increased. Indeed, when Mt is independent

of t the constrained optimum appears to have the very simple form min(M,x∗t) — the unconstrained

optimum clipped to M — though this structure does not hold for general time-varying bounds. An

example of xt is shown by the solid lines in Figure 3.10. Despite the additional constraint, most of

the potential gains are still realized by dynamic right-sizing. In this case, the gain of the optimal

solution drops from 8% to 6.5%, and that of LCP drops from 5.1% to 4.4%.

59

0 6 12 18 24 30 36 42 48
0

20

40

60

80

100

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

Static

Optimal

constrained

(a) Offline optimal

0 6 12 18 24 30 36 42 48
0

20

40

60

80

100

time t (hours)

n
u

m
b

e
r

o
f

s
e

rv
e

rs
 x

t

Static

LCP

constrained

(b) LCP(0)

Figure 3.10: Illustrations of (a) the offline optimal solution and (b) LCP(0) for the Hotmail workload
described in Section 3.5 with a sampling period of 10 minutes. The operating cost is as in Figure 3.1.
The dotted line shows the optimal static number of servers to use, the dashed line shows the optimal
or LCP provisioning without constraints, and the solid line shows the constrained optimum or
constrained LCP solution. Notice that the constrained optimum turns out to correspond to simple
clipping of the unconstrained optimum.

3.6 Concluding remarks

This chapter has provided a new online algorithm, LCP(w), for dynamic right-sizing in data centers.

The algorithm is motivated by the structure of the optimal offline solution and guarantees cost no

larger than 3 times the optimal cost, under very general settings — arbitrary workloads, and general

delay cost and general energy cost models provided that they result in a convex operating cost.

Further, in realistic settings the cost of LCP(w) is nearly optimal. Additionally, LCP(w) is simple

to implement in practice and does not require significant computational overhead. Moreover, we

contrast LCP(w) with the more traditional approach of receding horizon control RHC(w) and show

that LCP(w) provides much more stable cost saving with general settings.

Additionally, the case studies used to evaluate LCP(w) highlight that the cost and energy savings

achievable by dynamic right-sizing are significant. The case studies highlight that if a data center

has PMR larger than 3, a cost of toggling a server of less than a few hours of server costs, and less

than 40% background load then the cost savings from dynamic right-sizing can be conservatively

estimated at larger than 15%. Thus, even if a data center is currently performing valley filling, it

can still achieve significant cost savings by dynamic right-sizing.

60

Interest in right-sizing has been growing since [36] and [99] appeared early last decade. Ap-

proaches range from very “analytic” work focusing on developing algorithms with provable guar-

antees to “systems” work focusing on implementation. Early systems work such as [99] achieved

substantial savings despite ignoring switching costs in their design. Other designs have focused on

decentralized frameworks, e.g., [73], [88] and [68], as opposed to the centralized framework considered

here. A recent survey is [18].

Related analytic work focusing on dynamic right-sizing includes [100], which reallocates resources

between tasks within a data center, and [64], which considers sleep of individual components, among

others. Typically, approaches have applied optimization using queueing theoretic models, e.g., [47,

46], or control theoretic approaches, e.g., [63, 38, 110]. A recent survey of analytic work focusing on

energy efficiency in general is [3]. Our work is differentiated from this literature by the generality of

the model considered, which subsumes most common energy and delay cost models used by analytic

researchers, and the fact that we provide worst-case guarantees for the cost of the algorithm, which

is typically not possible for queueing or control theoretic algorithms.

The model and algorithm introduced in this chapter most closely ties to the online algorithms

literature, specifically the classic rent-or-buy (or “ski rental”) problem [28]. The best deterministic

strategy for deciding when to turn off a single idle server (i.e., to stop “renting” and to “buy”) is

2-competitive [71]. Additionally, there is a randomized algorithm which is asymptotically e/(e− 1)-

competitive [70]. The “lower envelope” algorithm of [64], which generalizes the standard rent-or-buy

algorithm, puts a device into deeper sleep mode m at a time t such that the optimal solution would

use m if the idle period finished right after t. This is like LCP following xU downward; in [64] a

device must be fully on to serve work, and so there is no equivalent to xL forcing the system to turn

on in stages.

An important difference between these simple models and this chapter is that the cost of the

“rent” action may change arbitrarily over time in the data center optimization problem. Problems

with this sort of dynamics typically have competitive ratios greater than 2. For example, when

rental prices vary in time, the competitive ratio is unbounded in general [19]. Further, for “metrical

task systems” [29], which generalize rent-or-buy problems and the data center optimization problem,

there are many algorithms available, but they typically have competitive ratios that are at best poly-

logarithmic in the number of servers. Perhaps the most closely related prior work from this area is

the page-placement problem (deciding on which server to store a file), which has competitive ratio 3

[21]. The page replacement-problem is nearly a discrete version of the data center optimization

problem where the cost function is restricted to f(x) = |x− 1|.

The general model proposed in this chapter captures many applications other than the right-

sizing problems in data centers. Intuitively, this model seeks to minimize the sum of a sequence

of convex functions while “smooth” solutions are preferred. Other applications may be captured

61

by this model, such as video streaming [127], in which encoding quality should vary depending on

network bandwidth, but large changes in encoding quality are visually annoying to users. A natural

generalization of the framework of (3.1) is to make xt a vector, corresponding to managing resources

of multiple different types. This extension has many important applications, including joint capacity

provision in geographically distributed data centers [88], automatically switched optical networks

(ASONs) in which there is a cost for re-establishing a lightpath [126], and power generation with

dynamic demand, since the cheapest types of generators typically have very high switching costs [69].

In the next chapter, we are going to study this generalization and develop online algorithms for it.

Appendix 3.A Analysis of the offline optimal solution

In this section we will prove Lemma 3.1 and Theorem 3.1. Before beginning the proofs, let us first

rephrase the data center optimization (3.1) as follows.

minimize

T∑
t=1

gt(xt) + β

T∑
t=1

yt (3.7)

subject to yt ≥ xt − xt−1, xt ≥ 0, yt ≥ 0.

Next, we want to work with the dual of optimization (3.7). The Lagrangian (with respect to the

first constraint) is

L(x, y, ν) =

T∑
t=1

gt(xt) + β

T∑
t=1

yt +

T∑
t=1

νt(xt − xt−1 − yt)

=

T∑
t=1

(gt(xt) + (β − νt)yt) +

T−1∑
t=1

(νt − νt+1)xt + νTxT − ν1x0

and the dual function is D(ν) = infx≥0,y≥0 L(x, y, ν). Since we are interested in the maximum of

D(ν) in the dual problem, we need only to consider the case β − νt ≥ 0. Then the dual function

becomes

D(ν) = inf
x≥0

(
T∑
t=1

gt(xt) +

T−1∑
t=1

(νt − νt+1)xt + νTxT − ν1x0

)

=−
T−1∑
t=1

g∗t (νt+1 − νt)− g∗T (−νT)− ν1x0.

where g∗t (·) is the convex conjugate of function gt(·) (enforcing gt(xt) =∞ when xt < 0). Therefore

62

the corresponding dual problem of (3.7) is

max−
T−1∑
t=1

g∗t (νt+1 − νt)− g∗T (−νT)− ν1x0 (3.8)

subject to 0 ≤ νt ≤ β,

where the complementary slackness conditions are

νt(xt − xt−1 − yt) = 0 (3.9)

(β − νt)yt = 0, (3.10)

and the feasibility condition is xt ≥ 0, yt ≥ 0, yt ≥ xt − xt−1 and 0 ≤ νt ≤ β.

Using the above, we now observe a relationship between the data center optimization in (3.7)

and the upper and lower bounds, i.e., optimizations (3.6) and (3.5). Specifically, if ντ+1 = 0 in a

solution of optimization (3.8), then ν1, . . . , ντ is a solution to:

max−
τ−1∑
t=1

g∗t (νt+1 − νt)− g∗τ (−ντ)− ν1x0 (3.11)

subject to 0 ≤ νt ≤ β,

which is identical to the dual problem of optimization (3.5). Thus, the corresponding x1, . . . , xτ is

a solution to optimization (3.5). On the other hand, if ντ+1 = β in a solution of optimization (3.8),

then ν1, . . . , ντ is a solution to:

max−
τ−1∑
t=1

g∗t (νt+1 − νt)− g∗τ (β − ντ)− ν1x0 (3.12)

subject to 0 ≤ νt ≤ β.

Let ν′t = β − νt, which makes (3.12) become

max−
τ−1∑
t=1

g∗t (ν′t − ν′t+1)− g∗τ (ν′τ) + ν′1x0 − βx0

subject to 0 ≤ ν′t ≤ β. (3.13)

It is easy to check that the corresponding x1, . . . , xτ is a solution to optimization (3.6).

We require some notation and two technical lemmas before moving to the proofs of Lemma 3.1

and Theorem 3.1. Denote hi,j(x;xS ;xE) =
∑j
t=i gt(xt) + β(xi − xS)+ + β

∑j
t=i+1(xt − xt−1)+ +

β(xE − xj)+ for j ≥ i, and h′i,j(x;xS ;xE) =
∑j
t=i gt(xt) + β(xS − xi)+ + β

∑j
t=i+1(xt−1 − xt)+ +

63

β(xj − xE)+ for j ≥ i. Then the objective of (3.5) is h1,τ (x;x0; 0). Similarly, the objective of (3.6)

is h′1,τ (x;x0;xM) where

xM = max(max
τ,t

xUτ,t,max
t
x∗t). (3.14)

The first lemma is to connect hi,j and h′i,j :

Lemma 3.3. Given xS and xE, any solution minimizing hi,j(x;xS ;xE) also minimizes h′i,j(x;xS ;xE)

and vice versa.

Proof.

hi,j(x;xS ;xE)− h′i,j(x;xS ;xE)

=β(xi − xS) + β

j∑
t=i+1

(xt − xt−1) + β(xE − xj)

=β(xE − xS),

which is a constant. Thus any minimizer of hi,j(x;xS ;xE) or h′i,j(x;xS ;xE) is also a minimizer of

the other.

Lemma 3.4. Given xS and xE ≤ x̂E, let X = (xi, . . . , xj) minimize hi,j(x;xS ;xE), then there

exists an X̂ = (x̂i, . . . , x̂j) minimizing hi,j(x;xS ; x̂E) such that X ≤ X̂.

Proof. If there is more than one solution minimizing hi,j(x;xS ; x̂E), let X̂ be a solution with greatest

x̂j . We will first argue that xj ≤ x̂j . By definition, we have hi,j(X;xS ;xE) ≤ hi,j(X̂;xS ;xE) and

hi,j(X̂;xS ; x̂E) ≤ hi,j(X;xS ; x̂E). Note that if the second inequality is an equality, then xj ≤ x̂j .

Otherwise, sum the two inequalities, to obtain the strict inequality

(xE − xj)+ + (x̂E − x̂j)+ < (x̂E − xj)+ + (xE − x̂j)+.

Since xE ≤ x̂E , we can conclude that xj < x̂j . Therefore, we always have xj ≤ x̂j .

Next, recursively consider the subproblem hi,j−1(·) with xE = xj and x̂E = x̂j . The same

argument as above yields that xj−1 ≤ x̂j−1. This continues and we can conclude that (xi, . . . , xj) ≤

(x̂i, . . . , x̂j).

Lemma 3.4 shows that the optimizations have a unique maximal solution, as follows.

Corollary 3.1. If there is more than one solution to optimization problem (3.1), (3.4), (3.5) or

(3.6), there exists a maximum solution which is not less than others element-wise.

Proof. Let us consider problem (3.1) with multiple solutions and prove the claim by induction.

Assume that x∗ is a solution with the first τ (τ ≥ 1) entries not less than those in other solutions,

64

but x∗τ+1 < x̂∗τ+1 where x̂∗ is a solution with the greatest (τ+1)th entry. Since (x∗1, . . . , x
∗
τ) minimizes

h1,τ (x;x0;x∗τ+1), Lemma 3.4 implies there exists a solution (x̄∗1, . . . , x̄
∗
τ) minimizing h1,τ (x;x0; x̂∗τ+1)

which is not less than (x∗1, . . . , x
∗
τ). Thus we can replace (x̂∗1, . . . , x̂

∗
τ) in x̂∗ by (x̄∗1, . . . , x̄

∗
τ) to get a

solution with the first τ+1 entries not less than other solutions. The proof for optimization problem

(3.4), (3.5) and (3.6) are similar and thus omitted.

We now complete the proofs of Lemma 3.1 and Theorem 3.1.

Proof of Lemma 3.1. Let XL
τ = (xLτ,1, x

L
τ,2, . . . , x

L
τ,τ) be the solution of optimization (3.5) at time

τ and define XU
τ symmetrically for (3.6). Also, let X∗τ = (x∗1, . . . , x

∗
τ) be the first τ entries of the

offline solution to optimization (3.1).

We know that XL
τ minimizes h1,τ (x;x0; 0) and X∗τ minimizes h1,τ (x;x0;x∗τ+1). Since x∗τ+1 ≥ 0,

Lemma 3.4 implies X∗τ ≥ XL
τ , and thus, in particular, the last entry satisfies x∗τ ≥ xLτ,τ .

Symmetrically, XU
τ minimizes h′1,τ (x;x0;xM) where xM satisfies (3.14). By Lemma 3.3, XU

τ

also minimizes h1,τ (x;x0;xM). Since x∗τ+1 ≤ xM , Lemma 3.4 implies that X∗τ ≤ XU
τ , and thus

x∗τ ≤ xUτ,τ .

Proof of Theorem 3.1. As a result of Lemma 3.1, we know that x∗τ ∈ [xLτ , x
U
τ] for all τ . Further, if

x∗τ > x∗τ+1, by the complementary slackness condition (3.9), we have that ντ+1 = 0. Thus, in this

case, x∗τ solves optimization (3.5) for the lower bound, i.e., x∗τ = xLτ . Symmetrically, if x∗τ < x∗τ+1,

we have that complementary slackness condition (3.10) gives ντ+1 = β and so x∗τ solves optimization

(3.6) for the upper bound, i.e., x∗τ = xUτ . Thus, whenever x∗τ is increasing/decreasing it must match

the upper/lower bound, respectively.

Appendix 3.B Analysis of lazy capacity provisioning, LCP(w)

In this section we will prove Lemma 3.2 and Theorem 3.2.

Proof of Lemma 3.2. First, we prove that xL,wτ ≤ x∗τ . By definition, xL,wτ = xLτ+w,τ , and so it

belongs to a solution minimizing h1,τ+w(x;x0; 0). Further, we can view the optimal x∗τ as an entry in

a solution minimizing h1,τ+w(x;x0;x∗τ+w+1). From these two representations, we can apply Lemma

3.4, to conclude that xL,wτ ≤ x∗τ .

Next, we prove that xLτ ≤ xL,wτ . To see this we notice that xLτ is the last entry in a solution mini-

mizing h1,τ (x;x0; 0). And we can view xL,wτ as an entry in a solution minimizing h1,τ (x;x0;xLτ+w,τ+1)

where xLτ+w,τ+1 ≥ 0. Based on Lemma 3.4 we get xLτ ≤ xL,wτ .

The proof that x∗τ ≤ xU,wτ ≤ xUτ is symmetric.

From the above lemma, we immediately obtain an extension of the characterization of the offline

optimum.

65

Corollary 3.2. The optimal solution of the data center optimization (3.1) satisfies the following

backwards recurrence relation

x∗τ =

 0, τ > T ;

(x∗τ+1)
xU,wτ
xL,wτ

, τ ≤ T .

Moving to the proof of Theorem 3.2, the first step is to use the above lemmas to characterize

the relationship between x
LCP (w)
τ and x∗τ . Note that x

LCP (w)
0 =x∗0 =x

LCP (w)
T+1 =x∗T+1 =0.

Lemma 3.5. Consider the timeslots 0 = t0 < t1 < . . . < tm = T such that x
LCP (w)
ti = x∗ti . Then,

during each segment (ti−1, ti), either

(i) x
LCP (w)
t > x∗t and both x

LCP (w)
t and x∗t are non-increasing for all t ∈ (ti−1, ti), or

(ii) x
LCP (w)
t < x∗t and both x

LCP (w)
t and x∗t are non-decreasing for all t ∈ (ti−1, ti).

Proof. The result follows from the characterization of the offline optimal solution in Corollary 3.2

and the definition of LCP(w). Given that both the offline optimal solution and LCP(w) are non-

constant only for timeslots when they are equal to either xU,wt or xL,wt , we know that at any time ti

where x
LCP (w)
ti = x∗ti and x

LCP (w)
ti+1 6= x∗ti+1, we must have that both x

LCP (w)
ti and x∗ti are equal to

either xU,wti or xL,wti .

Now we must consider two cases. First, consider the case that x
LCP (w)
ti+1 > x∗ti+1. It is easy to

see that x
LCP (w)
ti+1 does not match the lower bound since x∗ti+1 is not less than the lower bound.

Thus x
LCP (w)
ti ≥ x

LCP (w)
ti+1 since, by definition, LCP(w) will never choose to increase the number of

servers it uses unless it matches the lower bound. Consequently, it must be that x∗ti = x
LCP (w)
ti ≥

x
LCP (w)
ti+1 > x∗ti+1. Since x∗ is decreasing, both x

LCP (w)
ti and x∗ti match the lower bound. Further, the

next time, ti+1, when the optimal solution and LCP(w) match is the next time either the number

of servers in LCP(w) matches the lower bound xL,wt or the next time the number of servers in the

optimal solution matches the upper bound xU,wt . Thus, until that point, LCP(w) cannot increase

the number of servers (since this happens only when it matches the lower bound) and the optimal

solution cannot increase the number of servers (since this happens only when it matches the upper

bound). This completes the proof of part (i) of the lemma. The proof of part (ii) is symmetric.

Given Lemma 3.5, we bound the switching cost of LCP(w).

Lemma 3.6. costs(X
LCP (w)) = costs(X

∗).

Proof. Consider the sequence of times 0 = t0 < t1 < . . . < tm = T such that x
LCP (w)
ti = x∗ti identified

in Lemma 3.5. Then, each segment (ti−1, ti) starts and ends with the same number of servers being

used under both LCP(w) and the optimal solution. Additionally, the number of servers is monotone

for both LCP(w) and the optimal solution, thus the switching cost incurred by LCP(w) and the

optimal solution during each segment is the same.

66

Next, we bound the operating cost of LCP(w).

Lemma 3.7. costo(X
LCP (w))≤costo(X∗)+β

∑T
t=1|x∗t − x∗t−1|.

Proof. Consider the sequence of times 0 = t0 < t1 < . . . < tm = T such that x
LCP (w)
ti = x∗ti identified

in Lemma 3.5, and consider specifically one of these intervals (ti−1, ti) such that x
LCP (w)
ti−1

= x∗ti−1
,

x
LCP (w)
ti = x∗ti .

There are two cases in the proof: (i) x
LCP (w)
t > x∗τ for all τ ∈ (ti−1, ti) and (ii) x

LCP (w)
t < x∗τ

for all t ∈ (ti−1, ti).

We handle case (i) first. Our goal is to prove that

ti∑
t=ti−1+1

gt(x
LCP (w)
t) ≤

ti∑
t=ti−1+1

gt(x
∗
t) + β|x∗ti−1

− x∗ti |. (3.15)

DefineXτ = (xτ,1, . . . , xτ,τ−1, x
LCP (w)
τ) where (xτ,1, . . . , xτ,τ−1) minimizes h′1,τ−1(x;x0;x

LCP (w)
τ).

Additionally, define X ′τ = (x′τ,1, . . . , x
′
τ,τ) as the solution minimizing h′1,τ (x;x0;x

LCP (w)
τ); by

Lemma 3.3 this also minimizes h1,τ (x;x0;x
LCP (w)
τ).

We first argue that x′τ,τ = x
LCP (w)
τ via a proof by contradiction. Note that if x′τ,τ > x

LCP (w)
τ ,

based on similar argument in the proof of Theorem 3.1, we have x′τ,τ = xLτ , which contradicts the

fact that x′τ,τ > x
LCP (w)
τ ≥ xLτ . Second, if x′τ,τ < x

LCP (w)
τ , then we can follow a symmetric argument

to arrive at a contradiction. Thus x′τ,τ = x
LCP (w)
τ .

Consequently, x′τ,t = xτ,t for all t ∈ [1, τ] and we get

h′1,τ (X ′τ ;x0;xM) = h′1,τ (Xτ ;x0;xM) (3.16)

Next, let us consider Xτ+1 = (xτ+1,1, . . . , xτ+1,τ , x
LCP (w)
τ+1) where (xτ+1,1, . . . , xτ+1,τ) minimizes

h′1,τ (x;x0;x
LCP (w)
τ+1). Recalling x

LCP (w)
t is non-increasing in case (i) by Lemma 3.5, we have Xτ+1 ≤

X ′τ by Lemma 3.4. In particular, xτ+1,τ ≤ xLCP (w)
τ . Thus

h′1,τ+1(Xτ+1;x0;xM) ≥h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xM) + gτ+1(x
LCP (w)
τ+1) (3.17)

=h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xLCP (w)
τ) + gτ+1(x

LCP (w)
τ+1)

By definition of X ′τ , we get

h′1,τ ((xτ+1,1, . . . , xτ+1,τ);x0;xLCP (w)
τ) (3.18)

≥h′1,τ (X ′τ ;x0;xLCP (w)
τ) ≥ h′1,τ (X ′τ ;x0;xM)

67

Combining equations (3.16), (3.17) and (3.18), we obtain

h′1,τ+1(Xτ+1;x0;xM) ≥ h′1,τ (Xτ ;x0;xM) + gτ+1(x
LCP (w)
τ+1).

By summing this equality for τ ∈ [ti−1, ti), we have

ti∑
t=ti−1+1

gt(x
LCP (w)
t) ≤ h′1,ti(Xti ;x0;xM)− h′1,ti−1

(Xti−1
;x0;xM).

Since x
LCP (w)
ti−1

= x∗ti−1
, x

LCP (w)
ti = x∗ti , we know that both Xti−1

and Xti are prefixes2 of the offline

solution x∗, thus Xti−1 is the prefix of Xti . Expanding out h′(·) in the above inequality gives (3.15),

which completes case (i).

In case (ii), i.e., segments where x
LCP (w)
t < x∗τ for all t ∈ (ti−1, ti), a parallel argument shows

that (3.15) again holds.

To complete the proof we combine the results from case (i) and case (ii), summing equation

(3.15) over all segments (and the additional times when x
LCP (w)
t = x∗t).

We can now prove the competitive ratio in Theorem 3.2.

Lemma 3.8. cost(XLCP (w)) ≤ cost(X∗)+2costs(X
∗). Thus, LCP(w) is 3-competitive for the data

center optimization (3.1).

Proof. Combining Lemma 3.7 and Lemma 3.6 gives that cost(XLPC(w)) ≤ cost(X∗) + β|x∗t − x∗t−1|.

Note that, because both LCP(w) and the optimal solution start and end with zero servers on, we

have
∑T
t=1 |x∗t − x∗t−1| = 2

∑T
t=1(x∗t − x∗t−1)+, which completes the proof.

All that remains for the proof of Theorem 3.2 is to prove that the bound of 3 on the competitive

ratio is tight.

Lemma 3.9. The competitive ratio of LCP(w) is at least 3.

Proof. The following is a family of instances parameterized by n and m ≥ 2, whose competitive

ratios approach the bound of 3. The operating cost for each server is defined as f(z) = zm + f0 for

0 ≤ z ≤ 1 and f(z) =∞ otherwise, whence gt(xt) = xtf(λt/xt). The switching cost is β = 0.5. Let

δ ∈ (1, 1.5) be such that n = logδ
1
δ−1 . The arrival rate at time i is λi = δi−1 for 1 ≤ i ≤ n, and

λi = 0 for n < i ≤ T , where T > β/f0 + n with f0 = β(δm−1)
n(δmn−1) .

For the offline optimization, denote the solution by vector x∗. First note that x∗i = x∗n for

i ∈ [1, n] since x∗i is non-decreasing for i ∈ [1, n] and, for the above f ,

d

dx
[xf(λi/x)] < 0 for x ∈ [λi, x

∗
n]. (3.19)

2That is, Xti−1 is the first ti−1 components of x∗ and Xti is the first ti components of x∗.

68

Moreover, x∗i = 0 for i ∈ [n+ 1, T]. Hence the minimum cost is
∑n
i=1

λmi
(x∗n)m−1 + (nf0 + β)x∗n. Then

by the first order (stationarity) condition we get

(x∗n)−m =
(nf0 + β)(δm − 1)

(m− 1)(δmn − 1)
, (3.20)

which is smaller than λ−mn because nf0 + β ≤ 1, m− 1 ≥ 1 and δ > 1. Thus it is feasible (f(λi/x
∗
n)

is finite). The cost for the offline optimal solution is then

C∗ =
m

m− 1
(nf0 + β)x∗n.

We consider LCP (w) with w = 0 before considering the general case. Let C[i,j] denote the cost

of LCP(0) on [i, j].

For the online algorithm LCP(0), denote the result by vector x̂. We know x̂i is actually matching

xLi in [1, n] (xUi is not less than x∗i = x∗n), thus x̂i is non-decreasing for i ∈ [1, n] and x̂n = x∗n. By

the same argument as for x∗n, we have

(x̂τ)−m =
(τf0 + β)(δm − 1)

(m− 1)(δmτ − 1)
(3.21)

Thus the cost for LCP(0) in [1, n] is

C[1,n] =

n∑
τ=1

(
λmτ

(x̂τ)m−1
+ f0x̂τ

)
+ βx∗n

>

n∑
τ=1

δm(τ−1)

(
(τf0 + β)(δm − 1)

(m− 1)(δmτ − 1)

)m−1
m

+ βx∗n

>

(
β(δm − 1)

m− 1

)m−1
m

n∑
τ=1

δτ−m + βx∗n

=

(
β(δm − 1)

m− 1

)m−1
m δn − 1

(δ − 1)δm−1
+ βx∗n

Thus by (3.20)

C[1,n]

x∗n
>

δn − 1

(δmn − 1)1/m
· β(δm − 1)

(m− 1)(δ − 1)δm−1
+ β

>
δn − 1

δn
· β(δm − 1)

(m− 1)(δ − 1)δm−1
+ β

As n → ∞, both δ → 1 and (δn − 1)/δn → 1, since n = logδ
1
δ−1 . Since m is independent of δ,

69

L’Hospital’s Law gives

lim
n→∞

C[1,n]

x∗n
≥ lim
δ→1

βmδm−1

(m− 1)(mδm−1 − (m− 1)δm−2)
+ β

=
m

m− 1
β + β

Now let us calculate the cost for LCP(0) in [n+ 1, T].

For τ > n, by LCP(0), we know that xτ will stay constant until it hits the upper bound. Let

Xτ = {xτ,t} be the solution of optimization (3.6) in [1, τ] for any τ > n. We now prove that for τ

such that (τ − n)f0 < β, we have xτ,τ ≥ x∗n, and thus x̂τ = x∗n.

Note that xτ,n ≥ x∗n since x∗n belongs to the lower bound. Given xτ,n, we know that xτ,n+1, . . . , xτ,τ

is the solution to the following problem:

minimize

τ∑
t=n+1

f0Xτ,t + β

τ∑
t=n+1

(Xτ,t−1 −Xτ,t)
+

subject to Xτ,t ≥ 0

Let xmin = min{xτ,n, . . . , xτ,τ}. Then

τ∑
t=n+1

f0xτ,t + β

τ∑
t=n+1

(xτ,t−1 − xτ,t)+

≥
τ∑

t=n+1

f0xmin + β(xτ,n − xmin)

≥ (τ − n)f0xτ,n

The last inequality is obtained by substituting β > (τ − n)f0. We can see that xτ,i = xτ,n(i ∈

[n + 1, τ]) is a solution, thus xτ,τ ≥ x∗n. (Recall that, if there are multiple solutions, we take the

maximum one). Therefore, we have

C[n+1,τ] = (τ − n)f0x
∗
n.

Since f0 → 0 as δ → 1, we can find an τ so that (τ − n)f0 → β, and thus

C[n+1,τ] → βx∗n. (3.22)

By combining the cost for LCP(0) in [1, n] and [n+ 1, T], we have

C[1,T]/C
∗ ≥

m
m−1β + 2β
m
m−1 (nf0 + β)

=
3− 2/m

1 + nf0/β
.

Using the relationship between n, f0 and δ, we can choose a large enough m and n to make this

70

arbitrarily close to 3. This finishes the proof for LCP(0).

Now let us consider LCP(w) for w > 0. Denote the solution of LCP(w) by x̂′. At time τ ∈

[1, n−w], LCP(w) solves the same optimization problem as LCP(0) does at τ +w. Thus x̂′τ = x̂τ+w

of LCP(0). Thus

C ′[1,n−w] =

n−w∑
τ=1

(
λmτ

(x̂′τ)m−1
+ f0x̂

′
τ

)
+ βx∗n

=

n∑
τ=1+w

(
1

δwm
λmτ

(x̂τ)m−1
+ f0x̂τ

)
+ βx∗n

>
1

δwm
C[1+w,n]

By pushing n→∞, and hence δ → 1, we have C ′[1,n−w]/C[1,n] → 1.

And for τ > n + 1, if f0(τ − n) < β, then C ′[n+1,τ−w] = (τ − w − n)f0x
∗
n. By pushing δ → 1,

we can find a τ such that C ′[n+1,τ−w] → βx∗n, the same as (3.22). Therefore, as δ → 1, we have

C ′[1,T]/C[1,T] → 1, thus the supremum over arbitrarily large m ≥ 2 and arbitrarily small δ > 1 of the

competitive ratio of LCP(w) on this family is also 3.

Finally, the following lemma ensures that the optimizations solved by LCP(w) at each timeslot

τ remain small.

Lemma 3.10. If there exists an index τ ∈ [1, t − 1] such that xUt,τ+1 < xUt,τ or xLt,τ+1 > xLt,τ , then

(xUt,1, . . . , x
U
t,τ) = (xLt,1, . . . , x

L
t,τ). No matter what the future functions gi(·) are, solving either (3.5)

or (3.6) in [1, t′] for t′ > t is equivalent to solving two optimizations: one over [1, τ] with initial

condition x0 and final condition xUt,τ and the second over [τ + 1, t′] with initial condition xUt,τ .

Proof. Consider the case xLt,τ+1 > xLt,τ . By the complementary slackness conditions (3.10), the

corresponding dual variable ντ+1 = β. Based on the argument in the proof of Theorem 3.1, we know

the dual problem up to time τ is (3.12), which is identical to (3.13), the dual problem of (3.6). Since

the optimal xi depends only on νi and νi+1, the optimal xi for i ≤ τ are completely determined by

νi for i ∈ [1, τ + 1], with ντ+1 = β. Hence (xLt,1, . . . , x
L
t,τ) = (xUt,1, . . . , x

U
t,τ). The proof for the case

xUt,τ+1 < xUt,τ is symmetric.

Notice that (xUt,1, . . . , x
U
t,t) minimizes h′1,t(x;x0;xM) and thus h1,t(x;x0;xM) based on Lemma

3.3, (xLt,1, . . . , x
L
t,t) minimizes h1,t(x;x0; 0). No matter what the future functions gi(·) are, the first

t entries of its solution must minimize h1,t(x;x0;xt+1) for some xt+1 ∈ [0, xM] by the maximality

of xM . Based on Lemma 3.4, the first t entries are bounded by (xUt,1, . . . , x
U
t,t) and (xLt,1, . . . , x

L
t,t).

However, we have seen that (xUt,1, . . . , x
U
t,τ) = (xLt,1, . . . , x

L
t,τ), thus the first τ entries of its solution

are equal to (xUt,1, . . . , x
U
t,τ) no matter what the future is.

71

Chapter 4

Cost-Effective Geographical Load
Balancing

As shown in the previous chapters, energy consumption of data centers is a major concern to both

operators and society. Electricity for Internet-scale systems costs millions of dollars per month [102]

and, though IT uses only a small percentage of electricity today, the growth of electricity in IT

exceeds nearly all sectors of the economy. For these reasons, and more, IT must play its part

in reducing our dependence on fossil fuels. This can be achieved by using renewable energy to

power data centers. Already, data centers are starting to be powered by a greener portfolio of

energy [114, 91, 93]. However, achieving a goal of powering data centers entirely with renewable

energy is a significant challenge due to the intermittency and unpredictability of renewable energy.

Most studies of powering data centers entirely with renewable energy have focused on powering

individual data centers, e.g., [50, 49]. These have shown that it is challenging to power a data center

using only local wind and solar energy without large-scale storage, due to the intermittency and

unpredictability of these sources.

The goal of this chapter is twofold: (i) to illustrate that the geographical diversity of Internet-

scale services can significantly improve the efficiency of the usage of renewable energy, and (ii) to

develop online algorithms that can realize this potential.

Many papers have illustrated the potential for using “geographical load balancing” (GLB) to

exploit the diversity of Internet-scale service and provide significant cost savings for data centers;

see [102, 98, 104, 106]. The goal of this chapter is different. It is to explore the environmental

impact of GLB within Internet-scale systems. In particular, using GLB to reduce cost can actually

increase total energy usage: reducing the average price of energy shifts the economic balance away

from energy-saving measures. However, more positively, if data centers have local renewable energy

available, GLB provides a huge opportunity by allowing for “follow the renewables” routing.

Research is only beginning to quantify the benefits of this approach, e.g., [88] and [87]. Many

questions remain. For example: Does “follow the renewables” routing make it possible to attain

72

“net-zero” Internet-scale services? What is the optimal mix of renewable energy sources (e.g., wind

and solar) for an Internet-scale service? To address these questions, we perform a numerical study

using real-world traces for workloads, electricity prices, renewable availability, data center locations,

etc. Surprisingly, our study shows that wind energy is significantly more valuable than solar energy

for “follow the renewables” routing. Commonly, solar is assumed to be more valuable given the

match between the peak traffic period and the peak period for solar energy. Wind energy lacks this

correlation, but also has little correlation across locations and is available during both night and

day; thus the aggregate wind energy over many locations exhibits much less variation than that of

solar energy [8].

Our numerical results suggest that using GLB for “follow the renewables” routing can provide

significant environmental benefits. However, achieving this is a challenging algorithmic task. The

benefits come from dynamically adjusting the routing and service capacity at each location, but

the latter incurs a significant “switching cost” in the form of latency, energy consumption, and/or

wear-and-tear. Further, predictions of the future workload, renewable availability, and electricity

price are inaccurate beyond the short term. Thus online algorithms are required for GLB.

Although the distant future cannot be known, it is often possible to estimate loads a little in the

future [123]. These predictions can be used by algorithms such as receding horizon control (RHC),

also known as model predictive control, to perform geographical load balancing. RHC is commonly

proposed to control data centers [116, 78] and has a long history in control theory [79]. In RHC, an

estimate of the near future is used to design a tentative control trajectory; only the first step of this

trajectory is implemented and, in the next time step, the process repeats.

Due to its use in systems today, we begin in Section 4.2 by analyzing the performance of RHC

applied to the model of Section 4.1. In particular, we study its competitive ratio: the worst-case

ratio of the cost of using RHC to the cost of using optimal provisioning based on perfect future

knowledge. We prove that RHC does work well in some settings, e.g., in a homogeneous setting

(where all servers are equally able to serve every request) RHC is 1 + O(1/w)-competitive, where

w is the size of the prediction window. However, RHC can perform badly for the heterogeneous

settings needed for geographical load balancing. In general, RHC is 1 + Ω(β/e0)-competitive, where

β measures the switching cost and e0 is the cost of running an idle server. This can be large and,

surprisingly, does not depend on w. That is, the worst-case bound on RHC does not improve as the

prediction window grows.

Motivated by the weakness of RHC in the general context of geographical load balancing, we

design a new algorithm in Section 4.2 called averaging fixed horizon control (AFHC). AFHC works

by taking the average of w+ 1 fixed horizon control (FHC) algorithms. Alone, each FHC algorithm

seems much worse than RHC, but by combining them AFHC achieves a competitive ratio of 1 +

O(1/w), superior to that of RHC. We evaluate these algorithms in Section 4.3 under real data

73

center workloads, and show that the improvement in worst-case performance comes at no cost to

the average-case performance.

Note that the analysis of RHC and AFHC applies to a very general model. It allows hetero-

geneity among both the jobs and the servers, whereas systems studied analytically typically have

homogeneous servers [46, 36] or disjoint collections thereof [63].

4.1 Model and notation

Our focus is on understanding how to dynamically provision the (active) service capacity in geo-

graphically diverse data centers serving requests from different regions so as to minimize the “cost”

of the system, which may include both energy and quality of service. In this section, we introduce

a simple but general model for this setting. Note that the model generalizes most recent analytic

studies of both dynamic resizing within a local data center and geographical load balancing among

geographically distributed data centers, e.g., including the previous chapter and [88, 53, 102].

4.1.1 The workload

Similar to the workload model in Chapter 3, we consider a discrete-time model whose timeslot

matches the timescale at which routing decisions and capacity provisioning decisions can be updated.

There is a (possibly long) interval of interest t ∈ {1, . . . , T}. There are J geographically concentrated

sources of requests, and the mean arrival rate at time t is denoted by λt = (λt,j)j∈{1,...,J}, where

λt,j is the mean request rate from source j at time t. We set λt = 0 for t < 1 and t > T . In a real

system, T could be a year, a timeslot could be 10 minutes.

4.1.2 The Internet-scale system

We model an Internet-scale system as a collection of S geographically diverse data centers, where

data center s ∈ S is modeled as a collection of Ms homogeneous servers.1 We seek the values of two

key GLB parameters:

(i) λt,j,s, the amount of traffic routed from source j to data center s at time t, such that∑S
s=1 λt,j,s = λt,j .

(ii) xt = (xt,s)s∈{1,...,S}, where xt,s ∈ {0, . . . ,Ms} is the number of active servers at data center s

at time t.

The objective is to choose λt,j,s and xt to minimize the “cost” of the system, which can be decom-

posed into two components:

1Note that a heterogeneous data center can simply be viewed as multiple data centers, each having homogeneous
servers.

74

(i) The operating cost incurred by using active servers. It includes both the delay cost (revenue

loss) which depends on the dispatching rule through network delays and the load at each data

center, and also the energy cost of the active servers at each data center with particular load.

(ii) The switching cost incurred by toggling servers into and out of a power-saving mode between

timeslots (including the delay, migration, and wear-and-tear costs).

We describe each of these in detail below.

Operating cost

The operating cost is the sum of the delay cost and the energy cost. Each is described below.

Delay cost: The delay cost captures the lost revenue incurred because of the delay experienced

by the requests. To model this, we define rt(d) as the lost revenue associated with a job experiencing

delay d at time t, which is an increasing and convex function. The delay has two components: the

network delay experienced while the request is outside of the data center and the queueing delay

experienced while the request is at the data center.

We model the network delays by a fixed delay δt,j,s experienced by a request from source j to

data center s during timeslot t. We make no requirements on the structure of the δt,j,s. We assume

that these delays are known within the prediction window w.

To model the queueing delay, we let qs(xt,s,
∑
j λt,j,s) denote the queueing delay at data center

s given xt,s active servers and an arrival rate of
∑
j λt,j,s. Further, for stability, we must have

that
∑
j λt,j,s < xt,sµs, where µs is the service rate of a server at data center s. Thus, we define

qs(xt,s,
∑
j λt,j,s) =∞ for

∑
j λt,j,s ≥ xt,sµs.

Combining the above gives the following model for the total delay cost Dt,s at data center s

during timeslot t:

Dt,s =

J∑
j=1

λt,j,srt

(
qs

(
xt,s,

∑
j′
λt,j′,s

)
+ δt,j,s

)
. (4.1)

We assume that Dt,s is jointly convex in xt,s and λt,j,s. Note that this assumption is satisfied by

most standard queueing formulae, e.g., the mean delay under M/GI/1 processor sharing (PS) queue

and the 95th percentile of delay under the M/M/1.

Energy cost: To capture the geographic diversity and variation over time of energy costs, we let

ft,s(xt,s,
∑
j λt,j,s) denote the energy cost for data center s during timeslot t given xt,s active servers

and arrival rate
∑
j λt,j,s. For every fixed t, we assume that ft,s(xt,s,

∑
j λt,j,s) is jointly convex in

xt,s and λt,j,s. This formulation is quite general, and captures, for example, the common charging

plan of a fixed price per kWh plus an additional “demand charge” for the peak of the average power

used over a sliding 15 minute window [97]. Additionally, it can capture a wide range of models

for server power consumption, e.g., energy costs as an affine function of the load, see [45], or as a

75

polynomial function of the speed, see [120] and Chapter 2. One important property of ft,s for our

results is e0,s, the minimum cost per timeslot for an active server of type s, i.e., ft,s(xt,s, ·) ≥ e0,sxt,s.

The total energy cost of data center s during timeslot t is

Et,s = ft,s

(
xt,s,

∑
j
λt,j,s

)
. (4.2)

Switching cost

For the switching cost, let βs be the cost to transition a server from the sleep state to the active

state at data center s. The same as in Chapter 3, we assume that the cost of transitioning from

the active to the sleep state is 0. If this is not the case, we can simply fold the corresponding cost

into the cost βs incurred in the next power-up operation. Thus the switching cost for changing the

number of active servers from xt−1,s to xt,s is

d(xt−1,s, xt,s) = βs(xt,s − xt−1,s)
+,

where (x)+ = max(0, x). The constant βs includes the costs of (i) the energy used toggling a server,

(ii) the delay in migrating state, such as data or a virtual machine (VM), when toggling a server, (iii)

increased wear-and-tear on the servers toggling, and (iv) the risk associated with server toggling. If

only (i) and (ii) matter, then βs is either on the order of the cost to run a server for a few seconds

(waking from suspend-to-RAM or migrating network state [37] or storage state [108]), or several

minutes (to migrate a large VM [39]). However, if (iii) is included, then βs becomes on the order of

the cost to run a server for an hour [27]. Finally, if (iv) is considered then our conversations with

operators suggest that their perceived risk that servers will not turn on properly when toggled is

high, so βs may be even larger.

4.1.3 Cost optimization problem

Given the workload and cost models above, we model the Internet-scale system as a cost-minimizer.

In particular, we formalize the goal of the Internet-scale system as choosing the routing policy λt,j,s

and the number of active servers xt,s at each time t so as to minimize the total cost during [1, T].

This can be written as follows:

76

minimize
xt,s,λt,j,s

T∑
t=1

S∑
s=1

Et,s +Dt,s + d(xt−1,s, xt,s) (4.3)

subject to
∑S

s=1
λt,j,s = λt,j , ∀t, ∀j

λt,j,s ≥ 0, ∀t,∀j,∀s

0 = x0,s ≤ xt,s ≤Ms, ∀t, ∀s

The above optimization problem is jointly convex in λt,j,s and xt,s, thus in many cases the

solution can be found easily offline, i.e., given all the information in [1, T]. However, our goal is

to find online algorithms for this optimization, i.e., algorithms that determine λt,j,s and xt,s using

only information up to time t + w where w ≥ 0 is called the “prediction window”. Based on the

structure of optimization (4.3), we can see that λt,j,s can be solved easily at timeslot t once xt,s are

fixed. Thus the challenge for the online algorithms is to decide xt,s online.

4.1.4 Generalizations

Although the optimization problem (4.3) is very general already, the online algorithms and results

in this chapter additionally apply to the following, more general framework:

minimize
x1,...,xT

T∑
t=1

ht(xt) +

T∑
t=1

d(xt−1, xt) (4.4)

subject to 0 ≤ xt ∈ RS , x0 = 0.

where xt has a vector value and {ht(·)} are convex functions. Importantly, this formulation can easily

include various SLA constraints on mean queueing delay or the queueing delay violation probability.

In fact, a variety of additional bounds on xt can be incorporated implicitly into the functions ht(·)

by extended-value extension, i.e., defining ht(·) to be∞ outside its domain. Clearly the optimization

problem (4.4) is a vector version of the optimization problem (3.1) in the previous chapter.

To see how the optimization problem (4.3) fits into this general framework, we just need to define

ht(xt) for feasible xt as the optimal value to the following optimization over λt,j,s given xt,s fixed:

minimize
λt,j,s

∑S

s=1
(Et,s +Dt,s) (4.5)

subject to
∑S

s=1
λt,j,s = λt,j , ∀j

λt,j,s ≥ 0, ∀j,∀s

For infeasible xt (xt,s 6∈ [0,Ms] for some s) we define ht(xt) = ∞. We can see that the optimal

77

workload dispatching has been captured by the definition of ht(xt). Note that other restrictions of

workload dispatching may be incorporated by the definition of ht(xt) similarly.

Intuitively, this general model seeks to minimize the sum of a sequence of convex functions when

“smooth” solutions are preferred, i.e., it is a smoothed online convex optimization problem. This

class of problems has many important applications, including more general capacity provisioning

in geographically distributed data centers, video streaming [66] in which encoding quality varies

but large changes in encoding quality are visually annoying to users, automatically switched optical

networks (ASONs) in which there is a cost for re-establishing a lightpath [126], and power generation

with dynamic demand, since the cheapest types of generators typically have very high switching

costs [69].

In order to evaluate the performance of the online algorithms we discuss, we focus on the com-

petitive ratio again. Actually the geographical load balancing problem (4.3) and the generalization

(4.4) are instances of the class of problems known as “metrical task systems (MTSs)”. MTSs have

received considerable study in the algorithms literature, and it is known that if no further structure is

placed on them, then the best deterministic algorithm for a MTS has competitive ratio proportional

to the number of system states [29], which is infinity in our problem.

Note that the analytic results of Section 4.2 focus on the competitive ratio, assuming that the

service has a finite duration, i.e., T < ∞, but allowing arbitrary sequences of convex functions

{ht(·)}. Thus, the analytic results provide worst-case (robustness) guarantees. However, to provide

realistic cost estimates, we also consider case studies using real-world traces for {ht(·)} in Section

4.3.

4.2 Algorithms and analytical results

We can now study and design online algorithms for geographical load balancing. We start by ana-

lyzing the performance of the classic receding horizon control (RHC). This uncovers some drawbacks

of RHC, and so in the second part of this section we propose new algorithms which address these.

We defer the proofs to the appendix of this chapter.

4.2.1 Receding horizon control

RHC is classical control policy [79] that has been proposed for dynamic capacity provisioning in

data centers [116, 78].

Informally, RHC works by, at time τ , solving the cost optimization over the window (τ, τ + w)

given the starting state xτ−1. Formally, define Xτ (xτ−1) as the vector in (RS)w+1 indexed by

78

t ∈ {τ, . . . , τ + w}, which is the solution to

minimize
xτ ,...,xτ+w

τ+w∑
t=τ

ht(xt) +

τ+w∑
t=τ

d(xt−1, xt) (4.6)

subject to 0 ≤ xt ∈ RS .

Algorithm 4.1 (Receding horizon control: RHC). For all t ≤ 0, set the number of active servers

to xRHC,t = 0. At each timeslot τ ≥ 1, set the number of active servers to

xRHC,τ = Xτ
τ (xRHC,τ−1).

In studying the performance of RHC there is a clear divide between the following two cases:

1. The homogeneous setting (S = 1): This setting considers only one class of servers, and thus

corresponds to a single data center with homogeneous servers. Under this setting, only the

number of active servers is important, not which servers are active, i.e., xt is a scalar (In

Chapter 3, we have seen some numerical results of RHC compared with LCP in this scenario.).

2. The heterogeneous setting (S ≥ 2): This setting allows for different types of servers, and thus

corresponds to a single data center with heterogeneous servers or to a collection of geographi-

cally diverse data centers. Under this setting, we need to decide the number of active servers

of each type, i.e., xt is a vector.

To start, let us focus on the homogeneous setting (i.e., the case of dynamic resizing capacity

within a homogeneous data center). In this case, RHC performs well: it has a small competitive

ratio that depends on the minimal cost of an active server and the switching cost, and decays to one

quickly as the prediction window grows. Specifically:

Theorem 4.1. In the homogeneous setting (S = 1), RHC is (1 + β
(w+1)e0

)-competitive.

Theorem 4.1 is established by showing that RHC is not worse than another algorithm which

can be proved to be (1 + β
(w+1)e0

)-competitive. Given Theorem 4.1, it is natural to wonder if

the competitive ratio is tight. The following result highlights that there exist settings where the

performance of RHC is quite close to the bound in Theorem 4.1.

Theorem 4.2. In the homogeneous setting (S = 1), RHC is not better than (1
w+2 + β

(w+2)e0
)-

competitive.

It is interesting to note that [77] shows that a prediction window of w can improve the performance

of a metrical task system by a factor of at most 2w. If β/e0 � 1 then RHC is approximately within

a factor of 2 of this limit in the homogeneous case.

79

The two theorems above highlight that, with enough lookahead, RHC is guaranteed to perform

quite well in the homogeneous setting. Unfortunately, the story is different in the heterogeneous

setting, which is required to model the geographical load balancing.

Theorem 4.3. In the heterogeneous setting (S ≥ 2), given any w ≥ 0, RHC is ≥ (1+maxs(βs/e0,s))-

competitive.

In particular, for any w > 0 the competitive ratio in the heterogeneous setting is at least as large

as the competitive ratio in the homogeneous setting with no predictions (w = 0). Most surprisingly

(and problematically), this highlights that RHC may not see any improvement in the competitive

ratio as w is allowed to grow.

The proof, given in Appendix 4.D involves constructing a workload such that servers at different

data centers turn on and off in a cyclic fashion under RHC, whereas the optimal solution is to avoid

such switching. Therefore, {ht(·)} resulting in bad competitive ratio are not any weird functions but

include practical cost functions for formulation (4.3). Note that the larger the prediction window w

is, the larger the number of data centers must be in order to achieve this worst case.

The results above highlight that, though RHC has been widely used, RHC may result in unex-

pected bad performance in some scenarios, i.e., it does not have “robust” performance guarantees.

The reason that RHC may perform poorly in the heterogeneous setting is that it may change provi-

sioning due to (wrongly) assuming that the switching cost would get paid off within the prediction

window. For the geographical load balancing case, the electricity price based on the availability

of renewable power (e.g., wind or solar) may change dramatically during a short time period. It

is very hard for RHC to decide which data centers to increase/decrease capacity without knowing

the entire future information, thus RHC may have to change its decisions and shift the capacity

among data centers very frequently, which results in a big switching cost. Notice that this does not

happen in the homogeneous setting where we do not need to decide which data center to use, and

the new information obtained in the following timeslots would only make RHC correct its decision

monotonically (increase but not decrease the provisioning by Lemma 4.3).

In the rest of this section we propose an algorithm with significantly better robustness guarantees

than RHC.

4.2.2 Fixed horizon control

In this section, we present a new algorithm, averaging fixed horizon control (AFHC), which addresses

the limitation of RHC identified above. Specifically, AFHC achieves a competitive ratio for the

heterogeneous setting that matches that of RHC in the homogeneous setting.

Intuitively, AFHC works by combining w + 1 different bad algorithms, which each use a fixed

horizon optimization, i.e., at time 1 algorithm 1 solves and implements the cost optimization for

80

[1, 1 + w], at time 2 algorithm 2 solves and implements the cost optimization for [2, 2 + w], etc.

More formally, first consider a family of algorithms parameterized by k ∈ [1, w+1] that recompute

their provisioning periodically. For all k = 1, . . . , w+1, let Ωk = {i : i ≡ k mod (w+1)}∩ [−w,∞);

this is the set of integers congruent to k modulo w + 1, such that the lookahead window at each

τ ∈ Ωk contains at least one t ≥ 1.

Algorithm 4.2 (Fixed horizon control, version k: FHC(k)). For all t ≤ 0, set the number of active

servers to x
(k)
FHC,t = 0. At timeslot τ ∈ Ωk, for all t ∈ {τ, . . . , τ + w}, use (4.6) to set

x
(k)
FHC,t = Xτ

t

(
x

(k)
FHC,τ−1

)
. (4.7)

For notational convenience, we often set x(k) ≡ x(k)
FHC . Note that for k > 1 the algorithm starts

from τ = k − (w + 1) rather than τ = k in order to calculate x
(k)
FHC,t for t < k.

FHC can clearly have very poor performance. However, surprisingly, by averaging different

versions of FHC we obtain an algorithm with better performance guarantees than RHC. More

specifically, AFHC is defined as follows.

Algorithm 4.3 (Averaging FHC: AFHC). At timeslot τ ∈ Ωk, use FHC(k) to determine the provi-

sioning x
(k)
τ , . . . , x

(k)
τ+w, and then set xAFHC,t =

∑w+1
n=1 x

(n)
t /(w + 1).

Intuitively, AFHC seems worse than RHC because RHC uses the latest information to make the

current decision and AFHC relies on FHC which makes decisions in advance, thus ignoring some

possibly valuable information. This intuition is partially true, as shown in the following theorem,

which states that RHC is not worse than AFHC for any workload in the homogeneous setting

(S = 1).

Theorem 4.4. In the homogeneous setting (S = 1), cost(RHC) ≤ cost(AFHC).

Though RHC is always better than AFHC in the homogeneous setting, the key is that AFHC

can be significantly better than RHC in the heterogeneous case, even when S = 2.

Theorem 4.5. In heterogeneous setting (S ≥ 2), there exist convex functions {ht(·)} such that

cost(RHC) > cost(AFHC).

Moreover, the competitive ratio of AFHC is much better than that of RHC in the heterogeneous

case.

Theorem 4.6. AFHC is
(

1 + maxs
βs

(w+1)e0,s

)
-competitive in both the homogeneous setting and the

heterogeneous setting.

81

0 6 12 18 24 30 36 42 48
0

0.2

0.4

0.6

0.8

1

hour

w
or

kl
oa

d
(n

or
m

al
iz

ed
)

(a) Trace 1

0 6 12 18 24 30 36 42 48
0

0.2

0.4

0.6

0.8

1

hour

w
or

kl
oa

d
(n

or
m

al
iz

ed
)

(b) Trace 2

Figure 4.1: HP workload traces.

The contrast between Theorems 4.3 and 4.6 highlights the improvement AFHC provides over

RHC. In fact, AFHC has the same competitive ratio in the general (possibly heterogeneous) case

that RHC has in the homogeneous case. So, AFHC provides the same robustness guarantee for

geographical load balancing that RHC can provide for a homogeneous local data center.

4.3 Case studies

In the remainder of the chapter, we provide a detailed study of the performance of the algorithms

described in the previous section. Our goal is threefold: (i) to understand the performance of the

algorithms (RHC and AFHC) in realistic settings; (ii) to understand the potential environmental

benefits of using geographical load balancing to implement “follow the renewables” routing; and (iii)

to understand the optimal portfolio of renewable sources for use within an Internet-scale system.

4.3.1 Experimental setup

This study uses the setup similar to that of [88], based on real-world traces for data center locations,

traffic workloads, renewable availability, energy prices, etc., as described below.2

The workload

We consider 48 sources of requests, with one source at the center of each of the 48 continental US

states. We consider 10-minute time slots over two days.

The workload λt is generated from two traces at Hewlett-Packard Labs [49] shown in Figure 4.1.

These are scaled proportional to the number of Internet users in each state, and shifted in time to

account for the time zone of that state.

2Note that the setup considered here is significantly more general than that of [88], as follows. Most importantly,
[88] did not model switching costs (and so did not consider online algorithms). Additionally, the current work
investigates the optimal renewable portfolio more carefully, using multiple traces and varying the renewable capacity
among other things.

82

0 6 12 18 24 30 36 42 48
0

20

40

60

hour

w
in

d
po

w
er

 (
kW

)

CA
TX
IL
NC

Average

(a) Wind

0 6 12 18 24 30 36 42 48
0

5

10

15

hour

no
rm

al
iz

ed
 G

H
I

CA
TX
IL
NC

Average

(b) Solar

Figure 4.2: Renewable generation for two days.

The availability of renewable energy

To capture the availability of solar and wind energy, we use traces with 10 minute granularity from

[111, 112] for global horizontal irradiance (GHI) scaled to average 1, and power output of a 30 kW

wind turbine. The traces of four states (CA, TX, IL, NC) are illustrated in Figure 4.2. Note that we

do not consider solar thermal, because of the significant infrastructure it requires. Since these plants

often incorporate a day’s thermal storage [94], the results could be very different if solar thermal

were considered.

These figures illustrate two important features of renewable energy: spatial variation and tem-

poral variation. In particular, wind energy does not exhibit a clear pattern throughout the day and

there is little correlation across the locations considered. In contrast, solar energy has a predictable

peak during the day and is highly correlated across the locations.

In our investigation, we scale the “capacity” of wind and solar. When doing so, we scale the

availability of wind and solar linearly, which models scaling the number of generators in a wind farm

or solar installation, rather than the capacity of each. We measure the “capacity” c of renewables

as the ratio of the average renewable generation to the minimal energy required to serve the average

workload. Thus, c = 2 means that the average renewable generation is twice the minimal energy

required to serve the average workload. We set capacity c = 1 by default, but vary it in Figures 4.5

and 4.7.

The Internet-scale system

We consider the Internet-scale system as a set of 10 data centers, placed at the centers of states known

to have Google data centers [92], namely California, Washington, Oregon, Illinois, Georgia, Virginia,

Texas, Florida, North Carolina, and South Carolina. Data center s contains Ms homogeneous

servers, where Ms is set to be twice the minimal number of servers required to serve the peak

workload of data center s under a scheme which routes traffic to the nearest data center. Further,

83

the renewable availability at each data center is defined by the wind/solar trace from a nearby

location, usually within the same state.

We set the energy cost as the number of active servers excluding those that can be powered by

renewables. Note that this assumes that data centers operate their own wind and solar generations

and pay no marginal cost for renewable energy. Further, it ignores the installation and maintenance

costs of renewable generation. Quantitatively, if the renewable energy available at data center s at

time t is rt,s, measured in terms of number of servers that can be powered, then the energy cost of

data center s at time t is

Et,s = ps(xt,s − rt,s)+. (4.8)

Here ps for each data center is constant, and equals to the industrial electricity price of each state

in May 2010 [113]. This contrasts with the total power cost psxt,s typically used without owning

renewable generation.

For delay cost, we set the round-trip network delay δt,j,s to be proportional to the distance

between source and data center plus a constant (10 ms), resulting in round-trip delays in [10 ms,

260 ms]. We model the queueing delays using parallel M/GI/1/processor sharing queues with the

total load
∑
j λt,j,s divided equally among the xt,s active servers, each having service rate µs =

0.2(ms)−1. Therefore, the delay cost of data center s at time t is

Dt,s = γ
∑
j

λt,j,s

(
1

µs −
∑
j λt,j,s/xt,s

+ δt,j,s

)
. (4.9)

Here we consider linear lost revenue function rt(d) = γd, where γ is set to be 1. Measurements [56]

show that a 500 ms increase in delay reduces revenue by 20%, or 0.04%/ms. To get a conservative

estimate of the benefit from geographical load balancing, we pick γ = 1, which is slightly higher than

[56], so that the penalty for the propagation delay of geographical load balancing is high compared

to the benchmark policy. Later we scale ps (with γ = 1 corresponding to the default setting) in

Figure 4.4(a) to show the impact of relative energy cost to delay cost as energy price possibly goes

high in future, or the delay penalty is lower for the systems.

For the switching cost, we set β = 6 by default, which corresponds to the operating cost of an

idle server for about half an hour to one hour. We vary β in Figure 4.4(b) to show its impact on

cost saving. For the prediction window, we set w = 3 by default, which corresponds to half an hour

prediction of workload and renewable generation. We vary w in Figure 4.3 to examine its impact on

cost saving.

84

2 4 6 8 10
0

2

4

6

prediction window w

no
rm

al
iz

ed
 c

os
t

RHC
AFHC

(a) Cost using workload used in the proof
of Theorem 4.3

2 4 6 8 10
0.9

0.95

1

1.05

1.1

prediction window w

no
rm

al
iz

ed
 c

os
t

RHC
AFHC

(b) Cost using Trace 1

Figure 4.3: Total cost, normalized by the cost of OPT, versus prediction window under RHC and
AFHC

Algorithms

We use optimization (4.3) with energy cost (4.8) and delay cost (4.9) for the geographical load

balancing. We use “GLB” to denote the offline optimal solution to (4.3). The online solutions of

algorithms receding horizon control and averaging fixed horizon control are denoted by “RHC” and

“AFHC”, respectively.

As a benchmark for comparison, we consider a system that does no geographical load balancing,

but instead routes requests to the nearest data center and optimally adjusts the number of active

servers at each location. We call this system ‘LOCAL’ and use it to illustrate the benefits that come

from using geographical load balancing.

4.3.2 Experimental results

With the foregoing setup, we performed several numerical experiments to evaluate the feasibility of

moving toward Internet-scale systems powered (nearly) entirely by renewable energy and the optimal

portfolios.

The performance of RHC and AFHC

Geographical load balancing is known to provide Internet-scale system operators cost savings. Let

us first study the cost saving from geographical load balancing and how much of it can be achieved

by the online algorithms RHC and AFHC. Figure 4.3(a) shows the total cost in the bad scenario

with an artificial workload used in the proof of Theorem 4.3 (with J = (w + 1)2 types of jobs),

which illustrates that AFHC may have much better performance in the worst case. The degradation

in the performance of RHC as w grows is because J also grows. In contrast, Figure 4.3(b) shows

the total cost of RHC and AFHC (with default settings but β = 6 min(ps), the same as in the bad

scenario) under HP Trace 1. We can see that both RHC and AFHC are nearly optimal for the real

85

2 4 6 8 10
0

2

4

6
x 10

9

energy price (1/γ)

to
ta

l c
os

t

GLB
RHC
AFHC
LOCAL

(a) Effect of energy price, with switching
cost β = 6.

2 4 6 8 10

1

1.02

1.04

1.06

1.08

1.1
x 10

9

switching cost β

to
ta

l c
os

t

GLB
RHC
AFHC
LOCAL

(b) Effect of switching cost with delay cost
γ = 1.

Figure 4.4: Impact of the energy price and switching cost when the total renewable capacity is c = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

capacity c

re
la

tiv
e

br
ow

n
en

er
gy

 u
sa

ge

GLB
RHC
AFHC
LOCAL

(a) Trace 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

capacity c

re
la

tiv
e

br
ow

n
en

er
gy

 u
sa

ge

GLB
RHC
AFHC
LOCAL

(b) Trace 2

Figure 4.5: Impact of the renewable capacity when solar percentage is 20%.

workload. Figure 4.3 confirms that AFHC is able to provide worst-case guarantee without giving

up much performance in common cases.

This behavior under real workload is further illustrated in Figure 4.4, which shows the total cost

under GLB, RHC, AFHC, and LOCAL as energy price or switching cost is increased. The cost

saving of GLB over LOCAL becomes large when the energy price is high because GLB can save a

great deal of energy cost at the expense of small increases in network delay since requests can be

routed to where energy is cheap or renewable generation is high. Moreover, the cost saving of GLB,

RHC and AFHC over LOCAL looks stable for a wide range of switching cost.

The impact of geographical load balancing

Geographical load balancing is much more efficient at using renewable supply than LOCAL because

it can route traffic to the data center with higher renewable generation. Figure 4.5 illustrates the

differences of brown energy usage as a function of the capacity of renewable energy for both traces.

The brown energy consumption is scaled so that the consumption is 1 when there is no renewable

86

0 0.5 1
0.5

0.6

0.7

0.8

0.9

1

wind ratio

re
la

tiv
e

co
st

Washington
Virginia
Oregon

(a) LOCAL using Trace 1

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

wind ratio

re
la

tiv
e

co
st

Trace 1
Trace 2

(b) GLB

Figure 4.6: Impact of the mix of renewable energy used.

1.6 1.8 2
0

0.2

0.4

0.6

Peak−to−Mean ratio

O
pt

im
al

 s
ol

ar
 r

at
io

c=0.5
c=1
c=2

(a) Trace 1

2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Peak−to−Mean ratio

O
pt

im
al

 s
ol

ar
 r

at
io

c=0.5
c=1
c=2

(b) Trace 2

Figure 4.7: Optimal portfolios for different PMRs and capacities.

(c = 0). Interestingly, Figure 4.5 highlights that when there is little capacity of renewables, both

GLB and LOCAL can take advantage of it, but that as the capacity of renewables increases GLB

is much more efficient at using it, especially for Trace 1. This is evident by the significantly lower

brown energy consumption of GLB that emerges at capacities > 1. For Trace 1 in Figure 4.5(a), the

capacities of renewables necessary to reduce brown energy usage to 20% and 10% under LOCAL are

1.9 and 4.3, respectively, while those required under GLB are only 1.5 and 2.3. Similar reductions

can be observed for Trace 2 in Figure 4.5(b).

As in Figures 4.3(b) and 4.4, the performance of RHC and AFHC is again quite close to that

of the optimal solution GLB, which reinforces that both RHC and AFHC are nearly optimal in

common cases. Therefore we will show only GLB and LOCAL for the remaining experiments.

The optimal renewable portfolio

We now move to the question of what mix of solar and wind is most effective. A priori, it seems that

solar may be the most effective, since the peak of solar availability is closely aligned with that of the

data center workload. However, the fact that solar is not available during the night is a significant

87

drawback, which makes wind necessary to power the data centers during night. Our results lend

support to the discussion above. For each data center under LOCAL, the optimal wind percentage

is quite different for each location because of different renewable generation qualities, as shown in

Figure 4.6(a). There are also similarities for different locations, e.g., the optimal portfolios contain

both solar and wind, and wind has a large percentage, 60%- 90%.

Once GLB is used, it becomes possible to aggregate wind availability across geographical lo-

cations. This makes wind more valuable since wind is not correlated across large geographical

distances, and so when aggregated, the availability smoothes. As illustrated in Figure 4.6(b), the

optimal renewable portfolio for Trace 1 contains 80% wind. We can also see that the optimal port-

folio is affected significantly by the workload characteristics. Compared with Trace 1, Trace 2 has

less base load during night, requiring less wind generation.

The impact of workload characteristics becomes more clear in Figure 4.7, where we use loads

λ′j,t = λαj,t, α = 1, 1.25, 1.5, 1.75, 2, to get different peak-to-mean ratios. For large diurnal peak-to-

mean ratios the optimal portfolio can be expected to use a higher percentage of solar because solar

peak is closely aligned with the workload peak, which is validated in Figure 4.7. Also, when renewable

capacity is fairly large and we plan to install extra capacity, since solar generation can already provide

enough power to serve the workload peak around noon, the increased renewable capacity can then

be almost from wind generation to serve the workload during other times, especially night. This will

make the solar ratio lower in the optimal portfolios, which can be seen from the lines of different

renewable capacities in Figure 4.7.

4.4 Concluding remarks

This chapter studies online algorithms for geographical load balancing problem in Internet-scale

systems via both theoretical analysis and trace-based experiments. The optimization problem in this

chapter can be seen as a vector generalization of the optimization problem in the previous chapter.

We show that the classical algorithm, receding horizon control (RHC), works well in homogeneous

setting (where all servers are equally able to serve every request). However, in general, RHC can

perform badly for the heterogeneous settings needed for geographical load balancing. Motivated by

the weakness of RHC, we design a new algorithm called averaging fixed horizon control (AFHC)

which guarantees good performance. We evaluate RHC and AFHC under workloads measured on a

real data center. The numerical results show that RHC and AFHC are nearly optimal for our traces,

which implies that the improvement in worst-case performance of AFHC comes at negligible cost to

the average-case performance. The experiments also reveal vital role of geographical load balancing

in reducing brown energy consumption to (nearly) zero. We also perform a detailed study on the

impact of workload characteristics and renewable capacity on the optimal renewable portfolio under

88

GLB.

Appendix 4.A Notation

We first introduce some additional notation used in the proofs. For brevity, for any vector y we

write yi..j = (yi, . . . , yj) for any i ≤ j.

Let x∗ denote the offline optimal solution to optimization (4.4), and OPT be the algorithm that

uses x∗. Further, let X be the result of RHC, and recall that x(k) is the result of FHC(k).

Let the cost during [t1, t2] with boundary conditions be

gt1,t2(x;xS ;xE) =

t2∑
t=t1

ht(xt) + d(xS , xt1) +

t2∑
t=t1+1

d(xt−1, xt) + d(xt2 , xE).

If xE is omitted, then by convention xE = 0 (and thus d(xt2 , xE) = 0). If xS is omitted, then by

convention xS = xt1−1. Note that gt1,t2(x) depends on xi only for t1 − 1 ≤ i ≤ t2.

For any algorithm A ∈ {RHC,FHC,AFHC,OPT}, the total cost is cost(A) = g1,T (xA).

Appendix 4.B Proof of Theorems 4.6

Lemma 4.1. Since d(·) satisfies triangle inequality, we have

cost(FHC(k)) ≤ cost(OPT) +
∑
τ∈Ωk

d(x
(k)
τ−1, x

∗
τ−1).

Proof. For every k = 1, . . . , w + 1 and every τ ∈ Ωk,

gτ,τ+w(x(k)) =

τ+w∑
t=τ

ht(x
(k)
t) +

τ+w∑
t=τ

d(x
(k)
t−1, x

(k)
t)

≤
τ+w∑
t=τ

ht(x
∗
t) +

τ+w∑
t=τ+1

d(x∗t−1, x
∗
t) + d(x

(k)
τ−1, x

∗
τ−1) + d(x∗τ−1, x

∗
τ)

=gτ,τ+w(x∗) + d(x
(k)
τ−1, x

∗
τ−1). (4.10)

Summing the above over τ ∈ Ωk, establishes the lemma.

Proof of Theorem 4.6. Substituting d(x, y) = β · (y − x)+ into Lemma 4.1, by the convexity of ht

89

(and thus g1,T),

cost(AFHC)

cost(OPT)
≤ 1

w + 1

w+1∑
k=1

g1,T (x(k))

cost(OPT)
≤ 1 +

β ·
∑T
t=1 x

∗
t−1

(w + 1)cost(OPT)

≤ 1 +
β ·
∑T
t=1 x

∗
t−1

(w + 1)
∑T
t=1 ht(x

∗
t)
≤ 1 +

β ·
∑T
t=1 x

∗
t−1

(w + 1)e0 ·
∑T
t=1 x

∗
t

≤ 1 + max
s

βs
(w + 1)e0,s

where the second step uses Lemma 4.1, and the last step uses the facts that βi/e0,i ≤ maxs βs/e0,s,

and 0 ≤
∑T
t=1 x

∗
t−1 ≤

∑T
t=1 x

∗
t element-wise as x∗0 = 0.

Appendix 4.C Proofs of Theorems 4.1 and 4.4

The following lemma says that the optimal solution on [i, j] is non-decreasing in the initial condition

xi−1 and the final condition xj+1.

Lemma 4.2. Let S = 1. Given constants xi−1, xj+1 ∈ R, let xij = (xiji , . . . , x
ij
j) be a vector

minimizing gi,j(x;xi−1;xj+1). Then for any x̂i−1 ≥ xi−1 and x̂j+1 ≥ xj+1, there exists a vector

x̂ij = (x̂iji , . . . , x̂
ij
j) minimizing gi,j(x; x̂i−1; x̂j+1) such that x̂ij ≥ xij.

Proof. Since xij and x̂ij minimize their respective objectives, we have gi,j(x
ij ;xi−1;xj+1) ≤ gi,j(x̂ij ;xi−1;xj+1)

and gi,j(x̂
ij ; x̂i−1; x̂j+1) ≤ gi,j(xij ; x̂i−1; x̂j+1). If there is an xij such that the latter holds with equal-

ity, then we can choose x̂iji = xiji and consider the problem with gi+1,j recursively. Otherwise, i.e.,

the latter is a strict inequality, summing the two inequalities and canceling terms gives

(xiji −xi−1)++ (x̂iji −x̂i−1)++ (x̂j+1−x̂ijj)++ (xj+1−xijj)+

<(x̂iji −xi−1)++ (xiji −x̂i−1)++ (x̂j+1−xijj)++ (xj+1−x̂ijj)+.

Since x̂i−1 ≥ xi−1 and x̂j+1 ≥ xj+1, it follows that either xiji < x̂iji or xijj < x̂ijj , by the submodularity

of φ(x, y) = (x − y)+. In either case, we can continue recursively, considering gi+1,j in the former

case or gi,j−1 in the latter.

Finally we have x̂ij ≥ xij .

The next technical lemma says that RHC has larger solutions than related algorithms that look

less far ahead.

Lemma 4.3. Consider a system in the homogeneous setting (S = 1), and constants t, Xt−1 ≥

x̃t−1 ≥ 0, and k ∈ [t, t+ w]. Let x̃ = (x̃t, . . . , x̃k) minimize gt,k(x; x̃t−1), and let X = xRHC . Then

x̃ ≤ Xt..k.

90

Proof. The proof is by induction. By hypothesis, x̃t−1 ≤ Xt−1. We need to prove that if x̃τ−1 ≤

Xτ−1, then x̃τ ≤ Xτ .

Notice that x̃τ is the first entry of a vector minimizing gτ,k(x;xτ−1). Similarly Xτ is the first

entry of a vector minimizing gτ ;τ+w(x,Xτ−1). If k = τ + w, we have x̃τ ≤ Xτ by Lemma 4.2 and

the tie-break rule of RHC. Otherwise, i.e., k < τ +w, we know that Xτ is the first entry of a vector

minimizing gτ,k(x;Xτ−1;x′k+1) with x′k+1 ≥ 0. By Lemma 4.2 and the RHC tie-break we again have

x̃τ ≤ Xτ .

Next comes the first main lemma used to prove Theorem 4.4.

Lemma 4.4. In the homogeneous setting (S = 1), each version k of FHC allocates fewer servers

than RHC:

x
(k)
FHC ≤ xRHC . (4.11)

Hence xAFHC ≤ xRHC .

Proof. Let X = xRHC be the result of RHC, and x = x
(k)
FHC . The proof is by induction. By

definition, x0 = X0 = 0. To see that xτ−1 ≤ Xτ−1 implies xτ ≤ Xτ , notice that xτ is the first entry

of a vector minimizing gτ,k(x;xτ−1) for some k ∈ [τ, τ +w], with k+1 ∈ Ωk. The implication follows

by Lemma 4.3 and establishes (4.11). The proof for xAFHC is immediate.

Lemma 4.5. In the homogeneous setting (S = 1), for any given vector x ≤ xRHC , we have

g1,T (xRHC) ≤ g1,T (x).

Proof. Denote X = xRHC . It is sufficient to construct a sequence of vectors ξτ such that: ξ1 = x,

ξτt = Xt for t < τ , and g1,T (ξτ) is non-increasing in τ . The sequence can be constructed inductively

with the additional invariant ξτ ≤ X as follows.

At stage τ , we calculate ξτ+1. Apply RHC to get Xτ (Xτ−1) = (x̃τ , . . . , x̃τ+w). Note that

x̃τ = Xτ ≥ ξττ since ξτ ≤ X by the inductive hypothesis. Moreover x̃τ..τ+w ≤ Xτ..τ+w by Lemma 4.3.

If x̃τ..τ+w ≥ ξττ..τ+w element-wise, then replace elements τ to τ + w in ξτ to get ξτ+1 =

(ξτ1..τ−1, x̃τ..τ+w, ξ
τ
τ+w+1..T) ≥ ξτ . Then g1,τ+w(ξτ+1) ≤ g1,τ+w(ξτ) by the optimality of x̃τ..τ+w.

Since ξττ+w ≤ x̃τ+w and d(x, y) = β(y − x)+ is non-increasing in its first argument, we also have

gτ+w+1,T (ξτ+1) ≤ gτ+w+1,T (ξτ). Therefore, g1,T (ξτ+1) ≤ g1,T (ξτ). Finally, to see that ξτ+1 ≤ X,

note that ξτ ≤ X and x̃τ..τ+w ≤ Xτ..τ+w as remarked above.

Otherwise, let k ∈ [τ+1, τ+w] be the minimum index that x̃k < ξτk . Let ξτ+1 = (ξτ1..τ−1, x̃τ..k−1, ξ
τ
k..T) ≥

ξτ . Note that k ≥ τ + 1 since x̃τ = Xτ ; this ensures ξτt = Xt for t < τ . Again, ξτ+1 ≤ X as in the

previous case. It remains to prove g1,T (ξτ+1) ≤ g1,T (ξτ).

Let uA = ξττ..k−1, uB = ξτk..τ+w, ũA = x̃τ..k−1 and ũB = x̃k..τ+w. Let vectors (uA, uB), (ũA, uB),

(uA, ũB) and (ũA, ũB) be indexed by t ∈ {τ, . . . , τ + w}. To see how replacing ξττ...k−1 by x̃τ...k−1

91

affects the cost in [1, T], note

g1,T (ξτ+1)− g1,T (ξτ) = gτ,τ+w((ũA, uB))− gτ,τ+w((uA, uB)).

Now since x̃k < ξτk , x̃k−1 ≥ ξτk−1 and φ(x, y) = (x− y)+ is submodular, we have

(gτ,τ+w((ũA, uB))− gτ,τ+w((uA, uB))) + (gτ,τ+w((uA, ũB))− gτ,τ+w((ũA, ũB))) (4.12)

= β
(
(ξτk − x̃k−1)+ − (ξτk − ξτk−1)+ + (x̃k − ξτk−1)+ − (x̃k − x̃k−1)+

)
≤ 0.

But since (ũA, ũB) optimizes (4.6), we have

gτ,τ+w((uA, ũB))− gτ,τ+w((ũA, ũB)) ≥ 0.

Thus the first bracketed term in (4.12) is non-positive, whence

g1,T (ξτ+1)− g1,T (ξτ)) ≤ gτ,τ+w((ũA, uB))− gτ,τ+w((uA, uB)) ≤ 0.

Proof of Theorem 4.4. By Lemma 4.4 and AFHC, we have x̂ ≤ xRHC . By Lemma 4.5, g1,T (xRHC) ≤

g1,T (x̂).

Proof of Theorem 4.1. The bound on the competitive ratio of RHC follows from Theorems 4.4

and 4.6.

Appendix 4.D “Bad” instances for receding horizon control

(RHC)

We now prove the lower bound results in Section 4.2 by constructing instances that force RHC to

incur large costs.

Proof of Theorem 4.2. Consider the operating cost ht(xt) = e0xt for λt ≤ xt and ht(xt) = ∞ for

λt > xt. Note that this cost function is convex. Now consider the arrival pattern λ = {λt}1≤t≤T
where λk(w+2)+1 = Λ > 0 for k = 0, 1, . . . and other λt are all 0. It is easy to see that RHC will

give the provisioning Xk(w+2)+1 = Λ and Xt = 0 for other t. Thus we have

g1,T (X) =
T

w + 2
Λe0 +

T

w + 2
βΛ.

92

Now consider another provisioning policy x̂ = {x̂t = Λ}1≤t≤T . Its cost is g1,T (x̂) = TΛe0 + βΛ.

Thus

g1,T (X)/g1,T (x∗) ≥ g1,T (X)/g1,T (x̂) =
e0 + β

(w + 2)(e0 + β/T)
∼ 1

w + 2
+

β

(w + 2)e0

as T →∞.

Note that the cost function in the proof of Theorem 4.2 is applicable to data centers that impose

a maximum load on each server (to meet QoS or SLA requirements).

Proof of Theorem 4.5. When S = 2, the following geographical load balancing instance causes

cost(AFHC) < cost(RHC).

Choose constants f1 > f2 and β1 < β2 such that (w+1)f1 < (w+1)f2 +β2 < (w+1)f1 +β1 and

wf1 + β1 < wf2 + β2. These can simultaneously be achieved by choosing an arbitrary f1 − f2 > 0,

then choosing β2 − β1 ∈ (w,w + 1)(f1 − f2), and then β2 > (w + 1)(f1 − f2).

Let the switching cost for data center i be βi. Let the operating cost be ht(xt) = f1xt,1 + f2xt,2

for λt ≤ xt,1 + xt,2 and ht(xt) = ∞ for λt > xt,1 + xt,2. Note that this function is convex. In this

system, the servers in the second data center have lower operating cost but higher switching cost

(e.g., more expensive, energy-efficient severs).

Choose constants T > w + max(1, β2/(f1 − f2)), and Λ > 0. Now consider the cost of schemes

AFHC and RHC under the load such that: (a) λw+1 = 0, (b) λt = Λ for all other t ∈ [1, T], and (c)

λt = 0 for t 6∈ [1, T].

Under AFHC: At time t = 1, FHC(1) sees λ1, . . . , λw+1 and so uses Λ servers in data center 1 for

the first w timeslots and turns off all servers at timeslot w + 1. From timeslot t = w + 2 onwards,

it sees λ = Λ until time T , and so uses Λ servers in data center 2 until T .

For 2 ≤ i ≤ w + 1, FHC(i) initially sees a window of loads in which w or fewer time slots have

non-zero load, and so again chooses servers in data center 1. However, the last slot in the first

window, slot i − 1, has load Λ, and so servers remain on. In the second and subsequent windows,

the cost of switching is greater than uses servers in data center 1 until T . Thus its total cost is

cost(AFHC) =
w

w + 1
(f1ΛT + β1Λ) +

1

w + 1
(f1Λw + β1Λ + f2Λ(T − w − 1) + β2Λ).

Under RHC: RHC uses only servers in data center 1 forever, for the same reason as FHC(i) for

2 ≤ i ≤ w + 1. Thus its total cost is

cost(RHC) = f1ΛT + β1Λ

The choice of T implies f1(T −w) > f2(T −w− 1) + β2, and thus cost(AFHC) < cost(RHC).

93

Proof of Theorem 4.3. The proof will be by construction. Consider an Internet-scale system with S

data centers and J types of jobs (e.g., workload from different locations). Let J ≥ S � w. Let the

switching cost for servers in data center s be βs = β0 + 2εsw. Denote the type-j workload at time

t by λt,j (j ∈ {1, . . . , J}). Let the operating cost be ht(xt) =
∑S
s=1(e0 − sε+ C

∑J
l=s+1 λt,l)xt,s for∑S

s=1 xt,s ≥
∑J
j=1 λt,j and ht(xt) =∞ otherwise, where ε > 0 is a small constant and C > maxs βs

is a large constant. Intuitively, this operating cost function means that servers in data center s

consume a little bit more energy when s is smaller, and they are very inefficient at processing

workload of types higher than s. Also, the switching cost increases slightly as s increases. This may

occur if all servers use roughly the same hardware, but data center s store locally only data for jobs

of types 1 to s.

Consider the workload trace which has λt,1 = Λ for t = 1, . . . , w + 1 and λt,t−w = Λ for

t = w + 2, . . . , w + S. All the other arrival rates λt,j are zero. Then RHC would start with Λ

servers in data center 1 (the cheapest to turn on) at timeslot 1, and then at each t ∈ [2, S] would

switch off servers in data center (t − 1) and turn on Λ servers in data center t (the cheapest way

to avoid the excessive cost of processing type t jobs using servers in data center s with s < t). For

sufficiently small ε, the optimal solution always uses Λ servers in data center S for t ∈ [1, w + S].

Therefore the total costs in [1, w + S] for small ε are cost(RHC) = Λ(w + S)e0 + ΛSβ0 +O(ε) and

cost(OPT) = Λ(w + S)e0 + Λβ0 +O(ε). Therefore,

cost(RHC)

cost(OPT)
= 1 +

(S − 1)β0

(w + S)e0 + β0
+O(ε).

For S � w and Se0 � β0 and small ε, this ratio will approach 1+β0/e0, which implies the result.

94

Chapter 5

Smoothed Online Convex
Optimization

In Chapter 3 and Chapter 4 we have seen that many data center management problems can be

formalized as optimization problems whose objective has two components: one is the operating

cost given the decision in each timeslot, the other is the switching cost for changing the decision

between timeslots. Intuitively, we seek to minimize the sum of a sequence of convex functions

when “smooth” solutions are preferred, i.e., it is a smoothed online convex optimization (SOCO)

problem. This class of problems also has many other important applications outside of data center

area, including video streaming [66], automatically switched optical networks (ASONs) [126], power

generation with dynamic demand [69] and so on. Given the fact that so many applications can

be captured by SOCO, without a doubt similar online problems have been studied in different

research communities such as online algorithm community, online learning community and control

community. For example, in an online convex optimization (OCO) problem in the online learning

community, a learner interacts with an environment in a sequence of rounds. During each round t:

(i) the learner must choose an action xt from a convex decision space F ; (ii) the environment then

reveals a cost convex function ct, and (iii) the learner experiences cost ct(xt). The goal is to design

learning algorithms that minimize the cost experienced over a (long) horizon of T rounds.

The SOCO model we study in this chapter is a generalization of online convex optimization. The

only change in SOCO compared to OCO is that the cost experienced by the learner each round is

now ct(xt) + ‖xt − xt−1‖, where ‖ · ‖ is a seminorm.1 That is, the learner experiences an additional

“smoothing cost” or “switching cost” associated with changing the action.

Many applications typically modeled using online convex optimization have, in reality, some cost

associated with a change of action. For example, switching costs in the k-armed bandit setting have

received considerable attention [9, 54]. Further, SOCO has applications even in contexts where there

are no costs associated with switching actions. For example, if there is concept drift in a penalized

1Recall that a seminorm satisfies the axioms of a norm except that ‖x‖ = 0 does not imply x = 0.

95

estimation problem, it is natural to make use of a regularizer (switching cost) term in order to

control the speed of the drift of the estimator.

Though the precise formulation of SOCO does not appear to have been studied previously, there

are two large bodies of literature on closely related problems: (i) the online convex optimization

(OCO) literature within the machine learning community, e.g., [128, 60], and (ii) the metrical task

system (MTS) literature within the algorithms community, e.g., [29, 89]. We discuss these literatures

in detail in Section 5.2. While there are several differences between the formulations in the two

communities, a notable difference is that they focus on different performance metrics.

In the OCO literature, the goal is typically to minimize the regret, which is the difference between

the cost of the algorithm and the cost of the offline optimal static solution. In this context, a number

of algorithms have been shown to provide sub-linear regret (also called “no regret”). For example,

online gradient descent can achieve O(
√
T)-regret [128]. Though such guarantees are proven only in

the absence of switching costs, we show in Section 5.2.1 that the same regret bound also holds for

SOCO.

In the MTS literature, the goal is typically to minimize the competitive ratio, which is the

maximum ratio between the cost of the algorithm and the cost of the offline optimal (dynamic)

solution. In this setting, most results tend to be “negative”, e.g., when ct are arbitrary, for any

metric space the competitive ratio of an MTS algorithm with states chosen from that space grows

without bound as the number of states grows [29, 25]. However, these results still yield competitive

ratios that do not increase with the number of tasks, i.e., with time. Throughout, we will neglect

dependence of the competitive ratio on the number of states, and describe the competitive ratio as

“constant” if it does not grow with time. Notice that positive results are possible when the cost

function and decision space are convex, as shown in Chapter 3 and Chapter 4.

Interestingly, the focus on different performance metrics in the OCO and MTS communities has

led the communities to develop quite different styles of algorithms. The differences between the

algorithms is highlighted by the fact that all algorithms developed in the OCO community have poor

competitive ratio and all algorithms developed in the MTS community have poor regret.

However, it is natural to seek algorithms with both low regret and low competitive ratio. In

learning theory, doing well for both corresponds to being able to learn both static and dynamic

concepts well. In the design of a dynamic controller, low regret shows that the control is not more

risky than static control, whereas low competitive ratio shows that the control is nearly as good as

the best dynamic controller.

The first to connect the two metrics were [22], who treat the special case where the switching

costs are a fixed constant, instead of a norm. In this context, they show how to translate bounds

on regret to bounds on the competitive ratio, and vice versa. A recent breakthrough was made by

[31] who use a primal-dual approach to develop an algorithm that performs well for the “α-unfair

96

competitive ratio”, which is a hybrid of the competitive ratio and regret that provides comparison

to the dynamic optimal when α = 1 and to the static optimal when α =∞ (see Section 5.1). Their

algorithm was not shown to perform well simultaneously for regret and the competitive ratio, but

the result highlights the feasibility of unified approaches for algorithm design across competitive

ratio and regret.2

This chapter explores the relationship between minimizing regret and minimizing the competitive

ratio. To this end, we seek to answer the following question: “Can an algorithm simultaneously

achieve both a constant competitive ratio and a sub-linear regret?”

To answer this question, we show that there is a fundamental incompatibility between regret and

competitive ratio — no algorithm can maintain both sublinear regret and a constant competitive ratio

(Theorems 5.1, 5.2, and 5.3). This “incompatibility” does not stem from a pathological example:

it holds even for the simple case when ct is linear and xt is scalar. Further, it holds for both

deterministic and randomized algorithms and also when the α-unfair competitive ratio is considered.

Though providing both sub-linear regret and a constant competitive ratio is impossible, we show

that it is possible to “nearly” achieve this goal. We present an algorithm, “randomly biased greedy”

(RBG), which achieves a competitive ratio of (1 + γ) while maintaining O(max{T/γ, γ}) regret for

γ ≥ 1 on one-dimensional action spaces. If γ can be chosen as a function of T , then this algorithm

can balance between regret and the competitive ratio. For example, it can achieve sub-linear regret

while having an arbitrarily slowly growing competitive ratio, or it can achieve O(
√
T) regret while

maintaining an O(
√
T) competitive ratio. Note that, unlike the scheme of [31], this algorithm has a

finite competitive ratio on continuous action spaces and provides a simultaneous guarantee on both

regret and the competitive ratio.

5.1 Problem formulation

An instance of smoothed online convex optimization (SOCO) consists of a convex decision/action

space F ⊆ (R+)n and a sequence of cost functions {c1, c2, . . . }, where each ct : F → R+. At each

time t, a learner/algorithm chooses an action vector xt ∈ F and the environment chooses a cost

function ct. Define the α-penalized cost with lookahead i for the sequence . . . , xt, ct, xt+1, ct+1, . . . to

be

Cαi (A, T) = E

[
T∑
t=1

ct(xt+i) + α‖xt+i − xt+i−1‖

]
,

where x1, . . . , xT are the decisions of algorithm A, the initial action is xi = 0 without loss of

generality, the expectation is over randomness in the algorithm, and ‖ · ‖ is a seminorm on Rn. The

2There is also work on achieving simultaneous guarantees with respect to the static and dynamic optima in other
settings, e.g., decision making on lists and trees [24], and there have been applications of algorithmic approaches from
machine learning to MTS [23, 2].

97

parameter T will usually be suppressed.

In the OCO and MTS literatures the learners pay different special cases of this cost. In OCO

the algorithm “plays first” giving a 0-step lookahead and switching costs are ignored, yielding C0
0 .

In MTS the environment plays first giving the algorithm 1-step lookahead (i = 1), and uses α = 1,

yielding C1
1 . Note that we sometimes omit the superscript when α = 1, and the subscript when

i = 0.

One can relate the MTS and OCO costs by relating Cαi to Cαi−1, as done by [22] and [31]. The

penalty due to not having lookahead is

ct(xt)− ct(xt+1) ≤ Oct(xt)(xt − xt+1) ≤ ‖Oct(xt)‖2 · ‖xt − xt+1‖2, (5.1)

where ‖ · ‖2 is the Euclidean norm. We adopt the assumption, common in the OCO literature, that

‖Oct(·)‖2 are bounded on a given instance; which thus bounds the difference between the costs of

MTS and OCO (with switching cost), C1 and C0.

Performance metrics. The performance of a SOCO algorithm is typically evaluated by compar-

ing its cost to that of an offline “optimal” solution, but the communities differ in their choice of

benchmark, and whether to compare additively or multiplicatively.

The OCO literature typically compares against the optimal offline static action, i.e.,

OPTs = min
x∈F

T∑
t=1

ct(x),

and evaluates the regret , defined as the (additive) difference between the algorithm’s cost and that

of the optimal static action vector. Specifically, the regret Ri(A) of Algorithm A with lookahead i

on instances C, is less than ρ(T) if for any sequence of cost functions (c1, . . . , cT) ∈ CT ,

C0
i (A)−OPTs ≤ ρ(T) (5.2)

Note that for any problem and any i ≥ 1 there exists an algorithm A for which Ri(A) is non-positive;

however, an algorithm that is not designed specifically to minimize regret may have Ri(A) > 0.

This traditional definition of regret omits switching costs and lookahead (i.e., R0(A)). One can

generalize regret to define R′i(A), by replacing C0
i (A) with C1

i (A) in (5.2). Specifically, R′i(A) is less

than ρ(T) if for any sequence of cost functions (c1, . . . , cT) ∈ CT ,

C1
i (A)−OPTs ≤ ρ(T) (5.3)

Except where noted, we use the set C1 of sequences of convex functions mapping (R+)n to R+ with

98

(sub)gradient uniformly bounded over the sequence. Note that we do not require differentiability;

throughout this chapter, references to gradients can be read as references to subgradients.

The MTS literature typically compares against the optimal offline (dynamic) solution,

OPTd = min
x∈FT

T∑
t=1

ct(xt) + ‖xt − xt−1‖,

and evaluates the competitive ratio. The cost most commonly considered is C1. More generally,

we say the competitive ratio with lookahead i, denoted by CRi(A), is ρ(T) if for any sequence of

cost functions (c1, . . . , cT) ∈ CT

Ci(A) ≤ ρ(T)OPTd +O(1). (5.4)

Bridging competitiveness and regret. Many hybrid benchmarks have been proposed to bridge

static and dynamic comparisons. For example, adaptive-regret [61] is the maximum regret over

any interval, where the “static” optimum can differ for different intervals, and internal regret [26]

compares the online policy against a simple perturbation of that policy. We adopt the static-dynamic

hybrid proposed in the most closely related literature [25, 22, 31], the α-unfair competitive ratio,

which we denote by CRαi (A) for lookahead i. For α ≥ 1, CRαi (A) is ρ(T) if (5.4) holds with OPTd

replaced by

OPTαd = min
x∈FT

T∑
t=1

ct(xt) + α‖xt − xt−1‖.

Specifically, the α-unfair competitive ratio with lookahead i, CRαi (A), is ρ(T) if for any sequence of

cost functions (c1, . . . , cT) ∈ CT

Ci(A) ≤ ρ(T)OPTαd +O(1). (5.5)

For α = 1, OPTαd is the dynamic optimum; as α→∞, OPTαd approaches the static optimum.

To bridge the additive versus multiplicative comparisons used in the two literatures, we define

the competitive difference . The α-unfair competitive difference with lookahead i on instances C,

CDα
i (A), is ρ(T) if for any sequence of cost functions (c1, . . . , cT) ∈ CT ,

Ci(A)−OPTαd ≤ ρ(T). (5.6)

This measure allows for a smooth transition between regret (when α is large enough) and an additive

version of the competitive ratio when α = 1.

99

5.2 Background

In the following, we briefly discuss related work on both online convex optimization and metrical

task systems, to provide context for the results in this chapter.

5.2.1 Online convex optimization

The OCO problem has a rich history and a wide range of important applications. In computer

science, OCO is perhaps most associated with the k-experts problem [62, 86], a discrete-action

version of online optimization wherein at each round t the learning algorithm must choose a number

between 1 and k, which can be viewed as following the advice of one of k “experts.” However, OCO

also has a long history in other areas, such as portfolio management [41, 33].

The identifying features of the OCO formulation are that (i) the typical performance metric

considered is regret, (ii) switching costs are not considered, and (iii) the learner must act before

the environment reveals the cost function. In our notation, the cost function in the OCO literature

is C0(A) and the performance metric is R0(A). Following [128] and [60], the typical assumptions

are that the decision space F is non-empty, bounded and closed, and that the Euclidean norms of

gradients ‖Oct(·)‖2 are also bounded.

In this setting, a number of algorithms have been shown to achieve “no regret”, i.e., sublinear

regret, R0(A) = o(T). An important example is online gradient descent (OGD), which is parame-

terized by learning rates ηt. OGD works as follows.

Algorithm 5.1 (Online gradient descent, OGD). Select arbitrary x1 ∈ F . In time step t ≥ 1, select

xt+1 = P (xt − ηtOct(xt)), where P (y) = arg minx∈F ‖x− y‖2 is the projection under the Euclidean

norm.

With appropriate learning rates ηt, OGD achieves sub-linear regret for OCO. In particular, the

variant of [128] uses ηt = Θ(1/
√
t) and obtains O(

√
T)-regret. Tighter bounds are possible in

restricted settings. [60] achieves O(log T) regret by choosing ηt = 1/(γt) for settings when the cost

function additionally is twice differentiable and has minimal curvature, i.e., O2ct(x)−γIn is positive

semidefinite for all x and t, where In is the identity matrix of size n. In addition to algorithms based

on gradient descent, more recent algorithms such as online Newton step and follow the approximate

leader [60] also attain O(log T)-regret bounds for a class of cost functions.

None of the work discussed above considers switching costs. To extend the literature discussed

above from OCO to SOCO, we need to track the switching costs incurred by the algorithms. This

leads to the following straightforward result, proven in Appendix 5.A.

Proposition 5.1. Consider an online gradient descent algorithm A on a finite dimensional space

with learning rates such that
∑T
t=1 ηt = O(ρ1(T)). If R0(A) = O(ρ2(T)), then R′0(A) = O(ρ1(T) +

100

ρ2(T)).

Interestingly, the choices of ηt used by the algorithms designed for OCO also turn out to be

good choices to control the switching costs of the algorithms. The algorithms of [128] and [60],

which use ηt = 1/
√
t and ηt = 1/(γt), are still O(

√
T)-regret and O(log T)-regret respectively when

switching costs are considered, since in these cases ρ1(T) = O(ρ2(T)). Note that a similar result

can be obtained for online Newton step [60].

Importantly, though the regret of OGD algorithms is sublinear, it can easily be shown that the

competitive ratio of these algorithms is unbounded.

5.2.2 Metrical task systems

Like OCO, MTS also has a rich history and a wide range of important applications. Historically,

MTS is perhaps most associated with the k-server problem [40]. In this problem, there are k servers,

each in some state, and a sequence of requests is incrementally revealed. To serve a request, the

system must move one of the servers to the state necessary to serve the request, which incurs a cost

that depends on the source and destination states.

The formulation of SOCO in Section 5.1 is actually, in many ways, a special case of the most

general MTS formulation. In general, the MTS formulation differs in that (i) the cost functions ct

are not assumed to be convex, (ii) the decision space is typically assumed to be discrete and is not

necessarily embedded in a vector space, and (iii) the switching cost is an arbitrary metric d(xt, xt−1)

rather than a seminorm ‖xt − xt−1‖. In this context, the cost function studied by MTS is typically

C1 and the performance metric of interest is the competitive ratio, specifically CR1(A), although

the α-unfair competitive ratio CRα1 also receives attention.

The weakening of the assumptions on the cost functions, and the fact that the competitive ratio

uses the dynamic optimum as the benchmark, means that most of the results in the MTS setting

are “negative” when compared with those for OCO. In particular, it has been proven that, given

an arbitrary metric decision space of size n, any deterministic algorithm must be Ω(n)-competitive

[29]. Further, any randomized algorithm must be Ω(
√

log n/ log log n)-competitive [25].

These results motivate imposing additional structure on the cost functions in order to attain

positive results. For example, it is commonly assumed that the metric is the uniform metric, in

which d(x, y) is equal for all x 6= y; that assumption was made by [22] in a study of the tradeoff

between competitive ratio and regret. For comparison with OCO, an alternative natural restriction

is to impose convexity assumptions on the cost function and the decision space, as done in this

chapter.

Upon restricting ct to be convex, F to be convex, and ‖·‖ to be a semi-norm, the MTS formulation

becomes quite similar to the SOCO formulation. This restricted class has been the focus of Chapter

101

3 and Chapter 4 in this thesis and we know that positive results are possible. For example, when F

is a one-dimensional normed space,3 lazy capacity provisioning (LCP) is 3-competitive.

Importantly, though the algorithms described above provide constant competitive ratios, in all

cases it is easy to see that the regret of these algorithms is linear.

5.3 The incompatibility of regret and the competitive ratio

As noted in the introduction, there is considerable motivation to perform well for regret and com-

petitive ratio simultaneously. See also [25, 22, 31, 61, 26]. None of the algorithms discussed so far

achieves this goal. For example, online gradient descent has sublinear regret but its competitive

ratio is infinite. Similarly, lazy capacity provisioning is 3-competitive but has linear regret.

This is no accident. We show below that the two goals are fundamentally incompatible: any

algorithm that has sublinear regret for OCO necessarily has an infinite competitive ratio for MTS;

and any algorithm that has a constant competitive ratio for MTS necessarily has at least linear

regret for OCO. Further, our results give lower bounds on the simultaneous guarantees that are

possible.

In discussing this “incompatibility”, there are a number of subtleties as a result of the differences

in formulation between the OCO literature, where regret is the focus, and the MTS literature, where

competitive ratio is the focus. In particular, there are four key differences which are important to

highlight: (i) OCO uses lookahead i = 0 MTS uses i = 1; (ii) OCO does not consider switching costs

(α = 0) while MTS does (α = 1); (iii) regret uses an additive comparison while the competitive ratio

uses a multiplicative comparison; and (iv) regret compares to the static optimal while competitive

ratio compares to the dynamic optimal. Note that the first two are intrinsic to the costs, while the

latter are intrinsic to the performance metric. The following teases apart which of these differences

create incompatibility and which do not. In particular, we prove that (i) and (iv) each create

incompatibilities.

Our first result in this section states that there is an incompatibility between regret in the

OCO setting and the competitive ratio in the MTS setting, i.e., between the two most commonly

studied measures R0(A) and CR1(A). Naturally, the incompatibility remains if switching costs are

added to regret, i.e., R′0(A) is considered. Further, the incompatibility remains when the competitive

difference is considered, and so both the comparison with the static optimal and the dynamic optimal

are additive. In fact, the incompatibility remains even when the α-unfair competitive ratio/difference

is considered. Perhaps most surprisingly, the incompatibility remains when there is lookahead, i.e.,

when Ci and Ci+1 are considered.

3We need only consider the absolute value norm, since for every seminorm ‖ · ‖ on R, ‖x‖ = ‖1‖|x|.

102

Theorem 5.1. Consider an arbitrary seminorm ‖·‖ on Rn, constants γ > 0, α ≥ 1 and i ∈ N. There

is a C containing a single sequence of cost functions such that, for all deterministic and randomized

algorithms A, either Ri(A) = Ω(T) or for large enough T , both CRαi+1(A) ≥ γ and CDα
i+1(A) ≥ γT .

The incompatibility arises even in “simple” instances; the proof of Theorem 5.1 uses linear cost

functions and a one-dimensional decision space, and the construction of the cost functions does not

depend on T or A.

The cost functions used by regret and the competitive ratio in Theorem 5.1 are “off by one”,

motivated by the different settings in OCO and MTS. However, the following shows that parallel

results also hold when the cost functions are not “off by one”, i.e., for R0(A) vs. CRα0 (A) and R′1(A)

vs. CRα1 (A).

Theorem 5.2. Consider an arbitrary seminorm ‖ · ‖ on Rn, constants γ > 0 and α ≥ 1, and a

deterministic or randomized online algorithm A. There is a C containing two cost functions such

that either R0(A) = Ω(T) or, for large enough T , both CRα0 (A) ≥ γ and CDα
0 (A) ≥ γT .

Theorem 5.3. Consider an arbitrary norm ‖ · ‖ on Rn. There is a C containing two cost functions

such that, for any constants γ > 0 and α ≥ 1 and any deterministic or randomized online algorithm

A, either R′1(A) = Ω(T), or for large enough T , CRα1 (A) ≥ γ.

The impact of these results can be stark. It is impossible for an algorithm to learn static

concepts with sublinear regret in the OCO setting, while having a constant competitive ratio for

learning dynamic concepts in the MTS setting. More strikingly, in control theory, any dynamic

controller that has a constant competitive ratio must have at least linear regret, and so there are

cases where it does much worse than the best static controller. Thus, one cannot simultaneously

guarantee the dynamic policy is always as good as the best static policy and is nearly as good as

the optimal dynamic policy.

Theorem 5.3 is perhaps the most interesting of these results. Theorem 5.1 is due to seeking to

minimize different cost functions (ct and ct+1), while Theorem 5.2 is due to the hardness of attaining

a small CRα0 , i.e., of mimicking the dynamic optimum without 1-step lookahead. In contrast, for

Theorem 5.3, algorithms exist with strong performance guarantees for each measure individually,

and the measures are aligned in time. However, Theorem 5.3 must consider the (nonstandard) notion

of regret that includes switching costs (R′), since otherwise the problem is trivial.

We now prove the results above. We use one-dimensional examples; however these examples can

easily be embedded into higher dimensions if desired. We show proofs only for competitive ratio;

the proofs for competitive difference are similar.

Let ᾱ = max(1, ‖α‖). Given a > 0 and b ≥ 0, define two possible cost functions on F = [0, 1/ᾱ]:

fα1 (x) = b + axᾱ and fα2 (x) = b + a(1 − xᾱ). These functions are similar to those used by [55] to

103

study online gradient descent to learn a concept of bounded total variation. To simplify notation,

let D(t) = 1/2− Extᾱ, and note that D(t) ∈ [−1/2, 1/2].

Proof of Theorem 5.1

To prove Theorem 5.1, we prove the stronger claim that CRαi+1(A) +Ri(A)/T ≥ γ.

Consider a system with costs ct = fα1 if t is odd and fα2 if t is even. Then Ci(A) ≥ (a/2 + b)T +

a
∑T
t=1(−1)tD(t+ i). The static optimum is not worse than the scheme that sets xt = 1/(2ᾱ) for all

t, which has total cost no more than (a/2 + b)T + ‖1/2‖. The α-unfair dynamic optimum for Ci+1

is not worse than the scheme that sets xt = 0 if t is odd and xt = 1/ᾱ if t is even, which has total

α-unfair cost at most (b+ 1)T . Hence

Ri(A) ≥a
T∑
t=1

(−1)tD(t+ i)− ‖1/2‖

CRαi+1(A) ≥
(a/2 + b)T + a

∑T
t=1(−1)tD(t+ i+ 1)

(b+ 1)T

Thus, since D(t) ∈ [−1/2, 1/2],

(b+ 1)T (CRαi+1(A) +Ri(A)/T) + (b+ 1)‖1/2‖ − (a/2 + b)T

≥a
T∑
t=1

(−1)t(D(t+ i+ 1) + (b+ 1)D(t+ i))

=ab

T∑
t=1

(−1)tD(t+ i)− a
(
D(i+ 1) + (−1)TD(T + i+ 1)

)
≥ −abT/2− a

To establish the claim, it is then sufficient that (a/2 + b)T − (b+ 1)‖1/2‖ − abT/2− a ≥ γT (b+ 1).

For b = 1/2 and a = 30γ + 2 + ‖6‖, this holds for T ≥ 5.

Proof of Theorem 5.2

To prove Theorem 5.2, we again prove the stronger claim CRα0 (A) +R0(A)/T ≥ γ.

Consider the cost function sequence with ct(·) = f0
2 for Ext ≤ 1/2 and ct(·) = f0

1 otherwise,

on decision space [0, 1], where xt is the (random) choice of the algorithm at round t. Here the

expectation is taken over the marginal distribution of xt conditioned on c1, . . . , ct−1, averaging out

the dependence on the realizations of x1, . . . , xt−1. Notice that this sequence can be constructed by

an oblivious adversary before the execution of the algorithm.

The following lemma is proven in Appendix 5.B.

Lemma 5.1. Given any algorithm, the sequence of cost functions chosen by the above oblivious

104

adversary makes

R0(A), R′0(A) ≥ a
T∑
t=1

|1/2− Ext| − ‖1/2‖, (5.7)

CRα0 (A) ≥
(a/2 + b)T + a

∑T
t=1 |1/2− Ext|

(b+ ‖α‖)T
(5.8)

From (5.7) and (5.8) in Lemma 5.1, we have CRα0 (A) + R0(A)/T ≥ (a/2+b)T
(b+‖α‖)T −

‖1/2‖
T . For

a > 2γ(b + ‖α‖), the right hand side is bigger than γ for sufficiently large T , which establishes the

claim.

Proof of Theorem 5.3

Let a = ‖1‖/2 and b = 0. Let M = 4αγ‖1‖/a = 8αγ. For T � M , divide [1, T] into segments

of length 3M . For the last 2M of each segment, set ct = fα1 . This ensures that the static optimal

solution is x = 0. Moreover, if, for all t in the first M time steps, ct is either fα1 or fα2 , then the

optimal dynamic solution is also xt = 0 for the last 2M time steps.

Consider a solution on which each segment has non-negative regret. Then to obtain sublinear

regret, for any positive threshold ε at least T/(3M)−o(T) of these segments must have regret below

ε‖1‖. We will then show that these segments must have high competitive ratio. To make this more

formal, consider (w.l.o.g.) the single segment [1, 3M].

Let c̃ be such that c̃t = fα2 for all t ∈ [1,M] and c̃t = fα1 for t > M . Then the optimal dynamic

solution on [1, 3M] is xtd = 1t≤M , which has total cost 2α‖1‖.

The following lemma is proven in Appendix 5.C.

Lemma 5.2. For any δ ∈ (0, 1) and integer τ > 0, there exists an ε(δ, τ) > 0 such that, if ct =

fα2 for all 1 ≤ t ≤ τ and xt > δ for any 1 ≤ t ≤ τ , then there exists an m ≤ τ such that

C1(x,m)− C1(OPTs,m) > ε(δ, τ)‖1‖.

Choose δ = 1/[5 max(1, ‖α‖)] ∈ (0, 1) such that, for any decisions such that xt < δ for all

t ∈ [1,M], the cost of x under c̃ is at least 3αγ‖1‖. Let the adversary choose a c on this segment

such that ct = fα2 until (a) the first time t0 < M that the algorithm’s solution x satisfies C1(x, t0)−

C1(OPTs, t0) > ε(δ,M)‖1‖, or (b) t = M . After this, it chooses ct = fα1 .

In case (a), C1(x, 3M) − C1(OPTs, 3M) > ε(δ,M)‖1‖, since OPTs incurs no cost after t0.

Moreover C1(x, 3M) ≥ C1(OPTd, 3M).

In case (b), C1(x, 3M)/C1(OPTd, 3M) ≥ 3αγ‖1‖/(2α‖1‖) = 3γ/2.

To complete the argument, consider all segments. Let g(T) be the number of segments for which

case (a) occurs. The regret then satisfies

R′1(A) ≥ ε(δ,M)‖1‖g(T).

105

Similarly, the ratio of the total cost to that of the optimum is at least

C1(x, T)

C1(OPTd, T)
≥ [T/(3M)− g(T)]3αγ‖1‖

[T/(3M)]2α‖1‖
=

3

2
γ

(
1− 3Mg(T)

T

)
.

If g(T) = Ω(T) then then R′1(A) = Ω(T). Conversely, if g(T) = o(T) then for sufficiently large T ,

3Mg(T)/T < 1/3 and so CRα1 (A) > γ.

5.4 Balancing regret and the competitive ratio

Given the above incompatibility, it is necessary to reevaluate the goals for algorithm design. In

particular, it is natural now to seek tradeoffs such as being able to obtain εT regret for arbitrarily

small ε while remaining O(1)-competitive, or being log log T -competitive while retaining sublinear

regret.

To this end, in the following we present a novel algorithm, randomly biased greedy (RBG), which

can achieve simultaneous bounds on regret R′0 and competitive ratio CR1, when the decision space

F is one-dimensional. The one-dimensional setting is the natural starting point for seeking such a

tradeoff given that the proofs of the incompatibility results all focus on one-dimensional examples

and that the one-dimensional case is of practical significance like the data center management in

Chapter 3. The algorithm takes a norm N as its input:

Algorithm 5.2 (Randomly biased greedy, RBG(N)).

Given a norm N , define w0(x) = N(x) for all x and wt(x) = miny{wt−1(y) + ct(y) + N(x − y)}.

Generate a random number r uniformly in (−1, 1). For each time step t, go to the state xt which

minimizes Y t(xt) = wt−1(xt) + rN(xt).

RBG is motivated by [40], and makes very limited use of randomness – it parameterizes its “bias”

using a single random r ∈ (−1, 1). It then chooses actions to greedily minimize its “work function”

wt(x).

As stated, RBG performs well for the α-unfair competitive ratio, but performs poorly for the

regret. Theorem 5.4 will show that RBG(‖ ·‖) is 2-competitive,4 and hence has at best linear regret.

However, the key idea behind balancing regret and competitive ratio is to run RBG with a “larger”

norm to encourage its actions to change less. This can make the coefficient of regret arbitrarily

small, at the expense of a larger (but still constant) competitive ratio.

Theorem 5.4. For a SOCO problem in a one-dimensional normed space ‖·‖, running RBG(N) with

a one-dimensional norm having N(1) = θ‖1‖ as input (where θ ≥ 1) attains an α-unfair competitive

ratio CRα1 of (1 + θ)/min{θ, α} and a regret R′0 of O(max{T/θ, θ}).

4Note that this improves the best known competitive ratio for this setting from 3 (achieved by lazy capacity
provisioning) to 2.

106

Note that Theorem 5.4 holds for the usual metrics of MTS and OCO, which are the “most

incompatible” case since the cost functions are mismatched (cf. Theorem 5.1). Thus, the conclusion

of Theorem 5.4 still holds when R0 or R1 is considered in place of R′0.

The best CRα1 , 1 + 1/α, achieved by RBG is obtained with N(·) = α‖ · ‖. However, choosing

N(·) = ‖ · ‖/ε for arbitrarily small ε, gives εT -regret, albeit larger CRα1 . Similarly, if T is known in

advance, choosing N(1) = θ(T) for some increasing function achieves an O(θ(T)) α-unfair compet-

itive ratio and O(max{T/θ(T), θ(T)}) regret; taking θ(T) = O(
√
T) gives O(

√
T) regret, which is

optimal for arbitrary convex costs [128]. If T is not known in advance, N(1) can increase in t, and

bounds similar to those in Theorem 5.4 still hold.

Proof of Theorem 5.4

To prove Theorem 5.4, we derive a more general tool for designing algorithms that simultaneously

balance regret and the α-unfair competitive ratio. In particular, for any algorithm A, let the op-

erating cost be OC(A) =
∑T
t=1 c

t(xt+1) and the switching cost be SC(A) =
∑T
t=1 ‖xt+1 − xt‖, so

that C1(A) = OC(A) + SC(A). Define OPTN to be the dynamic optimal solution under the norm

N(1) = θ‖1‖ (θ ≥ 1) with α = 1. The following lemma is proven in Appendix 5.D.

Lemma 5.3. Consider a one-dimensional SOCO problem with norm ‖ · ‖ and an online algorithm

A which, when run with norm N , satisfies OC(A(N)) ≤ OPTN + O(1) along with SC(A(N)) ≤

βOPTN + O(1) with β = O(1). Fix a norm N such that N(1) = θ‖1‖ with θ ≥ 1. Then A(N) has

α-unfair competitive ratio CRα1 (A(N)) = (1+β) max{ θα , 1} and regret R′0(A(N)) = O(max{βT, (1+

β)θ}) for the original SOCO problem with norm ‖ · ‖.

Theorem 5.4 then follows from the following lemmas, proven in Appendices 5.E and 5.F.

Lemma 5.4. Given a SOCO problem with norm ‖ · ‖, EOC(RBG(N)) ≤ OPTN .

Lemma 5.5. Given a one-dimensional SOCO problem with norm ‖ · ‖,

ESC(RBG(N)) ≤ OPTN/θ with probability 1.

5.5 Concluding remarks

This chapter studies the relationship between regret and competitive ratio when applied to the class

of SOCO problems. It shows that these metrics, from the learning and algorithms communities

respectively, are fundamentally incompatible, in the sense that algorithms with sublinear regret

must have infinite competitive ratio, and those with constant competitive ratio have at least linear

regret. Thus, the choice of performance measure significantly affects the style of algorithm designed.

It also introduces a generic approach for balancing these competing metrics, exemplified by a specific

algorithm, RBG.

107

There are a number of interesting directions that this work motivates. In particular, the SOCO

formulation is still under-explored, and many variations of the formulation discussed here are still

not understood. For example, is it possible to tradeoff between regret and the competitive ratio

in bandit versions of SOCO? More generally, the message from this chapter is that regret and the

competitive ratio are incompatible within the formulation of SOCO. It is quite interesting to try

to understand how generally this holds, for example, under the settings where the cost functions

are random instead of adversarial, e.g., variations of SOCO such as k-armed bandit problems with

switching costs.

Appendix 5.A Proof of Proposition 5.1

Recall that, by assumption, ‖Oct(·)‖2 is bounded. So, let us define D such that ‖Oct(·)‖2 ≤ D. Next,

due to the fact that all norms are equivalent in a finite dimensional space, there exist m,M > 0 such

that for every x, m‖x‖a ≤ ‖x‖b ≤M‖x‖a. Combining these facts, we can bound the switching cost

incurred by an OGD algorithm as follows:

T∑
t=1

‖xt − xt−1‖ ≤M
T∑
t=1

‖xt − xt−1‖2 ≤M
T∑
t=1

ηt‖Oct(·)‖2 ≤MD

T∑
t=1

ηt.

The second inequality comes from the fact that projection to a convex set under the Euclidean norm

is nonexpansive, i.e., ‖P (x) − P (y)‖2 ≤ ‖x − y‖2. Thus, the switching cost causes an additional

regret of
∑T
t=1 ηt = O(ρ1(T)) for the algorithm, completing the proof.

Appendix 5.B Proof of Lemma 5.1

Recall that the oblivious adversary chooses ct(·) = f0
2 for Ext ≤ 1/2 and ct(·) = f0

1 otherwise, where

xt is the (random) choice of the algorithm at round t. Therefore,

C0(A) ≥E
T∑
t=1

a(1− xt) + b if Ext ≤ 1/2

axt + b otherwise

=EbT + a

T∑
t=1

(
1/2 + (1/2− xt)sgn(1/2− Ext)

)
=bT + a

T∑
t=1

(
1/2 + (1/2− Ext)sgn(1/2− Ext)

)
=(a/2 + b)T + a

T∑
t=1

|1/2− Ext|

108

where sgn(x) = 1 if x > 0 and −1 otherwise. The static optimum is not worse than the scheme that

sets xt = 1/2 for all t, which has total cost (a/2 + b)T + ‖1/2‖. This establishes (5.7).

The dynamic scheme which chooses xt+1 = 0 if ct = f0
1 and xt+1 = 1 if ct = f0

2 has total α-unfair

cost not more than (b+ ‖α‖)T . This establishes (5.8).

Appendix 5.C Proof of Lemma 5.2

Proof. We prove the contrapositive (that if C1(x;m) − C1(OPTs,m) ≤ ε for all m then xt < δ for

all t ∈ [1, τ]). We consider the case that xt are non-decreasing; if not, the switching and operating

cost can both be reduced by setting (xt)′ = maxt′≤t x
t′ .

Note that OPTs sets xt = 0 for all t, whence C1(OPTs,m) = am, and that

C1(x;m) = xm‖1‖ − a
m∑
i=1

xi + am.

Thus, we want to show that if xm‖1‖ − a
∑m
i=1 x

i ≤ ε for all m ≤ τ then xt < δ for all t ∈ [1, τ].

Define fi(·) inductively by f1(y) = 1/(1− y), and

fi(y) =
1

1− y

1 + y

i−1∑
j=1

fj(y)

 .

If y < 1 then {fi(y)} are increasing in i.

Notice that {fi} satisfy

fm(y)(1− y)− y
m−1∑
i=1

fi(y) = 1.

Expanding the first term gives that for any ε̂,

ε̂fm(a/‖1‖)− a

‖1‖

m∑
i=1

ε̂fi(a/‖1‖) = ε̂. (5.9)

If for some ε̂ > 0,

xm − a

‖1‖

m∑
j=1

xj ≤ ε̂ (5.10)

for all m ≤ τ , then by induction xi ≤ ε̂fi(a/‖1‖) ≤ ε̂fτ (a/‖1‖) for all i ≤ τ , where the last inequality

uses the fact that a < ‖1‖ whence {fi(a/‖1‖)} are increasing in i.

The left hand side of (5.10) is (C1(x;m)−C1(OPTs,m))/‖1‖. Define ε = ε̂‖1‖ = δ‖1‖/(2fτ (a/‖1‖)).

Then if (C1(x;m) − C1(OPTs,m)) ≤ ε for all m, then (5.10) holds for all m, whence xt ≤

ε̂fτ (a/‖1‖) = δ/2 < δ for all t ∈ [1, τ].

109

Appendix 5.D Proof of Lemma 5.3

We first prove the α-unfair competitive ratio result. Let x̂1, x̂2, . . . , x̂T denote the actions chosen by

algorithm ALG when running on a normed space withN = ‖·‖ALG as input. Let ŷ1, ŷ2, . . . , ŷT be the

actions chosen by the optimal dynamic offline algorithm, which pays α times more for switching costs,

on a normed space with ‖ · ‖ (i.e., OPTαd). Similarly, let ẑ1, ẑ2, . . . , ẑT be the actions chosen by the

optimal solution on a normed space with ‖ · ‖ALG, namely OPT‖·‖ALG (without an unfairness cost).

Recall that we have C1(ALG) =
∑T
t=1 c

t(x̂t+1) + ‖x̂t+1− x̂t‖, OPTαd =
∑T
t=1 c

t(ŷt) +α‖ŷt− ŷt−1‖,

and OPT‖·‖ALG =
∑T
t=1 c

t(ẑt) + ‖ẑt − ẑt−1‖ALG. By the assumptions in our lemma, we know that

C1(ALG) ≤ (1 + β)OPT‖·‖ALG +O(1). Moreover,

OPTαd =

T∑
t=1

ct(ŷt) + α‖ŷt − ŷt−1‖ ≥
T∑
t=1

ct(ŷt) +
α

θ
‖ŷt − ŷt−1‖ALG ≥

OPT‖·‖ALG
max{1, θα}

The first inequality holds since ‖ · ‖ALG = θ‖ · ‖ with θ ≥ 1. Therefore, C1(ALG) ≤ (1 +

β) max{1, θα}OPT
α
d .

We now prove the regret bound. Let dmax denote the diameter of the decision space (i.e.,

the length of the interval). Recall that C0(ALG) =
∑T
t=1 c

t(x̂t) + ‖x̂t − x̂t−1‖ and OPTs =

minx
∑T
t=1 c

t(x). Then we know that C0(ALG) ≤ C1(ALG) + D
∑T
t=1 ‖xt+1 − xt‖ + ‖dmax‖ for

some constant D by (5.1). Based on our assumptions, we have
∑
t c
t(x̂t+1) ≤ OPT‖·‖ALG + O(1)

and
∑
t ‖x̂t+1 − x̂t‖ ≤ βOPT‖·‖ALG + O(1). For convenience, we let E = D + 1 = O(1). Then

C0(ALG) is at most:

T∑
t=1

ct(x̂t+1) + E‖x̂t+1 − x̂t‖+ ‖dmax‖+O(1)

≤(1 + Eβ)OPT‖·‖ALG + ‖dmax‖+O(1)

≤(1 + Eβ)(OPTs + ‖dmax‖ALG) + ‖dmax‖+O(1)

Therefore, we get a regret C0(ALG)−OPTs at most

EβOPTs + ‖dmax‖(1 + E(1 + β)θ) +O(1)

=O(βOPTs + (1 + β)θ) = O(max{βOPTs, (1 + β)θ})

In the OCO setting, the cost functions ct(x) are bounded from below by 0 and are typically

bounded from above by a value independent of T , e.g., [62, 86], so that OPTs = O(T). This

immediately gives the result that the regret is at most O(max{βT, (1 + β)θ}).

110

Appendix 5.E Proof of Lemma 5.4

In this section, we argue that the expected operating cost of RBG (when evaluated under ‖ · ‖)

with input norm N(·) = θ‖ · ‖, θ ≥ 1, is at most the cost of the optimal dynamic offline algorithm

under norm N (i.e., OPTN). Let M denote our decision space. Before proving this result, let us

introduce a useful lemma. Let x̂1, x̂2, . . . , x̂T+1 denote the actions chosen by RBG (similarly, let

x1
OPT , . . . , x

T+1
OPT denote the actions chosen by OPTN).

Lemma 5.6. wt(x̂t+1) = wt−1(x̂t+1) + ct(x̂t+1).

Proof. We know that for any state x ∈ M , we have wt(x) = miny∈M{wt−1(y) + ct(y) + θ‖x− y‖}.

Suppose instead wt(x̂t+1) = wt−1(y) + ct(y) + θ‖x̂t+1 − y‖ for some y 6= x̂t+1. Then

Y t+1(x̂t+1) = wt(x̂t+1) + θr‖x̂t+1‖

= wt−1(y) + ct(y) + θ‖x̂t+1 − y‖+ θr‖x̂t+1‖

> wt−1(y) + ct(y) + θr‖y‖

= Y t+1(y),

which contradicts x̂t+1 = arg miny∈M Y t+1(y). Therefore wt(x̂t+1) = wt−1(x̂t+1) + ct(x̂t+1).

Now let us prove the expected operating cost of RBG is at most the total cost of the optimal

solution, OPTN .

Y t+1(x̂t+1)− Y t(x̂t)

≥Y t+1(x̂t+1)− Y t(x̂t+1)

=(wt(x̂t+1) + θr‖x̂t+1‖)− (wt−1(x̂t+1) + θr‖x̂t+1‖)

=ct(x̂t+1)

Lemma 5.4 is proven by summing up the above inequality for t = 1, . . . , T , since Y T+1(x̂T+1) ≤

Y T+1(xT+1
OPT) and EY T+1(xT+1

OPT) = OPTN by Er = 0.

Note that this approach also holds when the decision space F ⊂ Rn for n > 1.

Appendix 5.F Proof of Lemma 5.5

To prove Lemma 5.5 we make a detour and consider a version of the problem with a discrete state

space. We first show that on such spaces the lemma holds for a discretization of RBG, which we name

DRBG. Next, we show that as the discretization becomes finer, the solution (and hence switching

111

cost) of DRBG approaches that of RBG. The lemma is then proven by showing that the optimal

cost of the discrete approximation approaches the optimal cost of the continuous problem.

To begin, define a discrete variant of SOCO where the number of states is finite as follows.

Actions can be chosen from m states, denoted by the set M = {x1, . . . , xm}, and the distances

δ = xi+1 − xi are the same for all i. Without loss of generality we define x1 = 0. Consider the

following algorithm.

Algorithm 5.3 (Discrete RBG, DRBG(N)).

Given a norm N and discrete states M = {x1, . . . , xm}, define w0(x) = N(x) and wt(x) =

miny∈M{wt−1(y) + ct(y) + N(x − y)} for all x ∈ M . Generate a random number r ∈ (−1, 1).

For each time step t, go to the state xt which minimizes Y t(xt) = wt−1(xt) + rN(xt).

Note that DRBG looks nearly identical to RBG except that the states are discrete. DRBG is

introduced only for the proof and need never be implemented; thus we do not need to worry about

the computational issues when the number of states m becomes large.

Bounding the switching cost of DRBG

We now argue that the expected switching cost of DRBG (evaluated under the norm ‖ · ‖ and run

with input norm N(·) = θ‖ · ‖) is at most the total cost of the optimal solution in the discrete

system (under norm N). We first prove a couple of useful lemmas. The first lemma states that if

the optimal way to get to some state x at time t is to come to state y in the previous time step,

incur the operating cost at state y, and travel from state y to state x, then in fact the optimal way

to get to state y at time t is to come to y at the previous time step and incur the operating cost at

state y.

Lemma 5.7. If ∃x, y : wt(x) = wt−1(y) + ct(y) + θ‖x− y‖, then wt(y) = wt−1(y) + ct(y).

Proof. Suppose towards a contradiction that wt(y) < wt−1(y) + ct(y). Then we have:

wt(y) + θ‖x− y‖ < wt−1(y) + ct(y) + θ‖x− y‖ = wt(x) ≤ wt(y) + θ‖x− y‖

(since one way to get to state x at time t is to get to state y at time t and travel from y to x). This

is a contradiction, which proves the lemma.

We now prove the main lemma. Let SCt =
∑t
i=1 ‖xi − xi−1‖ denote the total switching cost

incurred by DRBG up until time t, and define the potential function φt = 1
2θ (wt(x1) + wt(xm)) −

‖xm−x1‖
2 . Then we can show the following lemma.

Lemma 5.8. For every time step t, ESCt ≤ φt.

112

Proof. We will prove this lemma by induction on t. At time t = 0, clearly it is true since the

left hand side ESC0 = 0, while the right hand side φ0 = 1
2θ (w0(x1) + w0(xm)) − ‖xm−x1‖

2 =

1
2θ (0 + θ‖xm − x1‖) − ‖xm−x1‖

2 = 0. We now argue that at each time step, the increase in the left

hand side is at most the increase in the right hand side.

Since the operating cost is convex, it is non-increasing until some point xmin and then non-

decreasing over the set M . We can imagine our cost vector arriving in ε-sized increments as follows.

We imagine sorting the cost values so that ct(i1) ≤ ct(i2) ≤ · · · ≤ ct(im), and then view time step

t as a series of smaller time steps where we apply a cost of ε to all states for the first ct(i1)/ε time

steps, followed by applying a cost of ε to all states except state i1 for the next ct(i2)− ct(i1)/ε time

steps, etc., where ε has a very small value. If adding this epsilon-sized cost vector would cause us

to exceed the original cost ct(ik) for some k, then we just use the residual ε′ < ε in the last round

in which state ik has non-zero cost. Eventually, these ε-sized cost vectors will add up precisely to

the original cost vector ct. Under these new cost vectors, the behavior of our algorithm will not

change (and the optimal solution cannot get worse). Moreover, we would never move to a state in

which ε cost was added. If the left hand side does not increase at all from time step t− 1 to t, then

the lemma holds (since the right hand side can only increase). Our expected switching cost is the

probability that the algorithm moves multiplied by the distance moved. Suppose the algorithm is

currently in state x. Observe that there is only one state the algorithm could be moving from (state

x) and only one state y the algorithm could be moving to (we can choose ε to be sufficiently small

in order to guarantee this). Notice that the algorithm would only move to a state y to which no

cost was added. First we consider the case x ≥ xmin.

The only reason we would move from state x is if wt(x) increases from the previous time step, so

that we have wt(x) = wt−1(x)+ε. Notice that for any state z > x, we must have wt(z) = wt−1(z)+ε.

If not (i.e., wt(z) < wt−1(z) + ε), then we get a contradiction as follows. The optimal way to get

to z at time step t, wt(z), must go through some point j in the previous time step and incur

the operating cost at j. If j ≥ x, then we know wt−1(j) + ε + θ‖z − j‖ = wt(z) < wt−1(z) + ε ≤

wt−1(j)+θ‖z−j‖+ε, which cannot happen. On the other hand, by Lemma 5.7, if j < x then we get

wt(x)+θ‖z−x‖ ≤ wt(j)+θ‖1‖|x−j|+θ‖1‖|z−x| = wt(j)+θ‖z−j‖ = wt−1(j)+ct(j)+θ‖z−j‖ =

wt(z) < wt−1(z) + ε ≤ wt−1(x) + θ‖z − x‖ + ε, which cannot happen either. Hence, we know

wt(z) = wt−1(z) + ε for all z ≥ x.

By the above argument, we can conclude a couple of facts. The state y we move to cannot be

such that y ≥ x. Moreover, we also know that wt(xm) = wt−1(xm) + ε (since xm ≥ x). Notice that

for us to move from state x to state y, the random value r must fall within a very specific range. In

113

particular, we must have Y t(x) ≤ Y t(y) and Y t+1(y) ≤ Y t+1(x):

(wt−1(x) + θr‖1‖x ≤ wt−1(y) + θr‖1‖y) ∧ (wt(y) + θr‖1‖y ≤ wt(x) + θr‖1‖x)

=⇒wt−1(y)− wt−1(x)− ε ≤ wt(y)− wt(x) ≤ θr‖x− y‖ ≤ wt−1(y)− wt−1(x)

This means r must fall within an interval of length at most ε/θ‖x− y‖. Since r is chosen from

an interval of length 2, this happens with probability at most ε/(2θ‖x− y‖). Hence, the increase

in our expected switching cost is at most ‖x − y‖ · ε/(2θ‖x− y‖) = ε/2θ. On the other hand, the

increase in the right hand side is φt − φt−1 = 1
2θ (wt(x1) − wt−1(x1) + wt(xm) − wt−1(xm)) ≥ ε/2θ

(since wt(xm) = wt−1(xm) + ε). The case when x < xmin is symmetric. This finishes the inductive

claim.

Now we prove the expected switching cost of DRBG is at most the total cost of the optimal

solution for the discrete problem.

By Lemma 5.8, for all times t we have ESCt ≤ φt. Denote by OPT t the optimal solution at

time t (so that OPT t = minx w
t(x) and OPTT = OPTN). Let x∗ = argminxw

t(x) be the final

state which realizes OPT t at time t. We have, for all times t:

ESCt ≤φt =
1

2θ
(wt(x1) + wt(xm))− ‖xm − x1‖

2

≤ 1

2θ
(wt(x∗) + θ‖x∗ − x1‖+ wt(x∗) + θ‖xm − x∗‖)−

‖xm − x1‖
2

=
1

θ
OPT t.

In particular, the equation holds at time T , which gives the bound.

Convergence of DRBG to RBG

In this section, we are going to show that if we keep splitting δ, the output of DRBG, which is

denoted by xtD, converges to the output of RBG, which is denoted by xtC .

Lemma 5.9. Consider a SOCO with F = [xL, xH]. Consider a sequence of discrete systems such

that the state spacing δ → 0 and for each system, [x1, xm] = F . Let xi denote the output of DRBG

in the ith discrete system, and x̂ denote the output of RBG in the continuous system. Then the

sequence {xi} converges to x̂ with probability 1 as i increases, i.e., for all t, limi→∞ |xti − x̂t| = 0

with probability 1.

Proof. To prove the lemma, we just need to show that xi converges pointwise to x̂ with probability

1. For a given δ, let Y tD denote the Y t used by DRBG in the discrete system (with feasible set

M = {x1, . . . , xm} ⊂ F) and Y tC denote the Y t used by RBG in the continuous system (with

114

feasible set F). The output of DRBG and RBG at time t are denoted by xtD and xtC respectively.

The subsequence on which |xtC − xtD| ≤ 2δ clearly has xtD converge to xtC . Now consider the

subsequence on which this does not hold. For each such system, we can find a x̄tC ∈ {x1, . . . , xm}

and |x̄tC − xtC | < δ (and thus |x̄tC − xtD| ≥ δ) such that Y tC(x̄tC) ≤ Y tC(xtD), by the convexity5 of

Y tC . Moreover Y tD(xtD) ≤ Y tD(x̄tC) and Y tC(xtD) ≤ Y tD(xtD). So far, we have only rounded the tth

component. Now let us consider a scheme that will round to the set M all components τ < t of a

solution to the continuous problem.

For an arbitrary trajectory x = (xt)Tt=1, define a sequence xR(x) with xτR ∈ {x1, . . . , xm} as

follows. Let l = max{k : xk ≤ xτ}. Set xτR to xl if cτ (xl) ≤ cτ (xl+1) or l = m, and xl+1 otherwise.

This rounding will increase the switching cost by at most 2θ‖δ‖ for each timeslot. If l = m then the

operating cost is unchanged. Next, we bound the increase in operating cost when l < m.

For each timeslot τ , depending on the shape of cτ on (xl, xl+1), we may have two cases: (i) cτ

is monotone; (ii) cτ is non-monotone. In case (i), the rounding does not make the operating cost

increase for this timeslot. Note that if xτC ∈ {xL, xH} then for all sufficiently small δ, case (ii)

cannot occur, since the location of the minimum of cτ is independent of δ. We now consider case (ii)

with xτC ∈ (xL, xH). Note that there must be a finite left and right derivative of cτ at all points in

(xL, xH) for cτ to be finite on F . Hence these derivatives must be bounded on any compact subset of

(xL, xH). Since xτC ∈ (xL, xH), there exist a set [x′L, x
′
H] ⊂ (xL, xH) independent of δ such that for

sufficiently small δ we have [xl, xl+1] ⊂ [x′L, x
′
H]. Hence there exists a Hτ such that for sufficiently

small δ the gradient of cτ is bounded by Hτ on [xl, xl+1]. Thus, for sufficiently small δ, the rounding

will make the operating cost increase by at most Hτδ in timeslot τ .

Define H = maxτ{Hτ}. If we apply this scheme to the trajectory which achieves Y tC(x̄tC), we get

a decision sequence in the discrete system with cost+rθ‖x̄tC‖ not more than Y tC(x̄tC)+(Hδ+2θ‖δ‖)t

(by the foregoing bound on the increase in costs) and not less than Y tD(x̄tC) (because the solution

of Y tD(x̄tC) minimizes cost + rθ‖x̄tC‖). Specifically, we have Y tD(x̄tC) ≤ Y tC(x̄tC) + (Hδ + 2θ‖δ‖)t.

Therefore,

Y tC(x̄tC) ≤ Y tC(xti) = Y tC(xtD) ≤ Y tD(xtD) ≤ Y tD(x̄tC) ≤ Y tC(x̄tC) + (Hδ + 2θ‖δ‖)t.

Notice that the gradient bound H is independent of δ and so (Hδ + 2θ‖δ‖)t → 0 as δ → 0.

Therefore, |Y tC(xti)− Y tC(x̄tC)| converges to 0 as i increases.

Independent of the random choice r, the domain of wtC(·) can be divided into countably many

non-singleton intervals on which wtC(·) is affine, joined by intervals on which it is strictly convex.

Then Y tC(·) has a unique minimum unless −r is equal to the slope of one of the former intervals,

since Y tC(·) is convex. Hence it has a unique minimum with probability one with respect to the

5The minimum of a convex function over a convex set is convex, thus by definition, wt is a convex function by
induction. Therefore, Y tC is convex as well.

115

choice of r.

Hence w.p.1, xtC is the unique minimum of Y tC . To see that Y tC(·) is continuous at any point

a, apply the squeeze principle to the inequality wtC(a) ≤ wtC(x) + θ‖x − a‖ ≤ wtC(a) + 2θ‖x − a‖,

and note that Y tC(·) is wt(·) plus a continuous function. The convergence of |x̄tC − xtC | then implies

|Y tC(x̄tC) − Y tC(xtC)| → 0 and thus |Y tC(xti) − Y tC(xtC)| → 0, or equivalently Y tC(xti) → Y tC(xtC). Note

that the restriction of Y tC to [xL, x
t
C] has a well-defined inverse Y −1, which is continuous at Y tC(xtC).

Hence for the subsequence of xti such that xti ≤ xtC , we have xti = Y −1(Y tC(xti)) → Y −1(Y tC(xtC)) =

xtC . Similarly, the subsequence such that xti ≥ xtC also converge to xtC .

Convergence of OPT in discrete system

To show that the competitive ratio hold for RBG, we also need to show that the optimal costs

converge to those of the continuous system.

Lemma 5.10. Consider a SOCO problem with F = [xL, xH]. Consider a sequence of discrete

systems such that the state spacing δ → 0 and for each system, [x1, xm] = F . Let OPT iD denote

the optimal cost in the ith discrete system, and OPTC denote the optimal cost in the continuous

system (both under the norm N). Then the sequence {OPT iD} converges to OPTC as i increases,

i.e., limi→∞ |OPT iD −OPTC | = 0.

Proof. We can apply the same rounding scheme in the proof of Lemma 5.9 to the solution vector of

OPTC to get a discrete output with total cost bounded by OPTC + (Hδ + 2θ‖δ‖)T , thus

OPT iD ≤ OPTC + (Hδ + 2θ‖δ‖)T.

Notice that the gradient bound H is independent of δ and so (Hδ+2θ‖δ‖)T → 0 as δ → 0. Therefore,

OPT iD converges to OPTC as i increases.

116

Bibliography

[1] SPEC power data on SPEC website at http://www.spec.org.

[2] J. Abernethy, P. L. Bartlett, N. Buchbinder, and I. Stanton. A regularization approach to

metrical task systems. In Proc. Algorithmic Learning Theory (ALT), pages 270–284, 2010.

[3] S. Albers. Energy-efficient algorithms. Comm. of the ACM, 53(5):86–96, 2010.

[4] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. In Lecture

Notes in Computer Science (STACS), volume 3884, pages 621–633, 2006.

[5] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan. Robust and

flexible power-proportional storage. In Proc. ACM SoCC, 2010.

[6] L. L. H. Andrew, S. Barman, K. Ligett, M. Lin, A. Meyerson, A. Roytman, and A. Wierman.

A tale of two metrics: Simultaneous bounds on competitiveness and regret. In Proc. Conf. on

Learning Theory (COLT), 2013.

[7] L. L. H. Andrew, M. Lin, and A. Wierman. Optimality, fairness and robustness in speed

scaling designs. In Proc. ACM SIGMETRICS, 2010.

[8] C. L. Archer and M. Z. Jacobson. Supplying baseload power and reducing transmission re-

quirements by interconnecting wind farms. J. Appl. Meteorol. Climatol., 46:1701–1717, Nov.

2007.

[9] M. Asawa and D. Teneketzis. Multi-armed bandits with switching penalties. IEEE Trans.

Automatic Control, 41(3):328 –348, Mar. 1996.

[10] J. Augustine, S. Irani, and C. Swamy. Optimal power-down strategies. SIAM Journal on

Computing, 37(5):1499–1516, 2008.

[11] B. Avi-Itzhak, H. Levy, and D. Raz. A resource allocation fairness measure: properties and

bounds. Queueing Systems Theory and Applications, 56(2):65–71, 2007.

[12] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee. Scheduling for speed bounded processors.

In Proc. Int. Colloq. Automata, Languages and Programming, pages 409–420, 2008.

http://www.spec.org

117

[13] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In

Proc. ACM-SIAM Symp. Discrete Algorithms (SODA), pages 693–701, 2009.

[14] N. Bansal, H.-L. Chan, K. Pruhs, and D. Katz. Improved bounds for speed scaling in devices

obeying the cube-root rule. In Automata, Languages and Programming, pages 144–155, 2009.

[15] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow times. In Proc. ACM-SIAM

SODA, pages 805–813, 2007.

[16] L. A. Barroso and U. Hölzle. The case for energy-proportional computing. Computer,

40(12):33–37, 2007.

[17] L. A. Barroso and U. Hölzle. The datacenter as a computer: An introduction to the design of

warehouse-scale machines. Synthesis Lectures on Computer Architecture, 4(1):1–108, 2009.

[18] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Zomaya. A taxonomy and survey of energy-efficient

data centers and cloud computing systems. Technical Report CLOUDS-TR-2010-3, Univ. of

Melbourne, 2010.

[19] M. Bienkowski. Price fluctuations: To buy or to rent. In Approximation and Online Algorithms,

pages 25–36, 2008.

[20] N. Bingham, C. Goldie, and J. Teugels. Regular Variation. Cambridge University Press, 1987.

[21] D. L. Black and D. D. Sleator. Competitive algorithms for replication and migration problems.

Technical Report CMU-CS-89-201, Carnegie Mellon University, 1989.

[22] A. Blum and C. Burch. On-line learning and the metrical task system problem. Machine

Learning, 39(1):35–58, 2000.

[23] A. Blum, C. Burch, and A. Kalai. Finely-competitive paging. In Proc. IEEE Symp. Founda-

tions of Computer Science (FOCS), pages 450–457, 1999.

[24] A. Blum, S. Chawla, and A. Kalai. Static optimality and dynamic search-optimality in lists

and trees. In Proc ACM-SIAM Symp. Discrete Algorithms (SODA), pages 1–8, 2002.

[25] A. Blum, H. Karloff, Y. Rabani, and M. Saks. A decomposition theorem and bounds for

randomized server problems. In Proc. IEEE Symp. Foundations of Computer Science (FOCS),

pages 197–207, 1992.

[26] A. Blum and Y. Mansour. From external to internal regret. Learning Theory, LNCS 3559:621–

636, 2005.

118

[27] P. Bodik, M. P. Armbrust, K. Canini, A. Fox, M. Jordan, and D. A. Patterson. A case for

adaptive datacenters to conserve energy and improve reliability. Technical Report UCB/EECS-

2008-127, University of California at Berkeley, 2008.

[28] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cambridge Uni-

versity Press, 1998.

[29] A. Borodin, N. Linial, and M. E. Saks. An optimal on-line algorithm for metrical task system.

J. ACM, 39(4):745–763, 1992.

[30] J. R. Bradley. Optimal control of a dual service rate M/M/1 production-inventory model.

European Journal of Operations Research, 161(3):812–837, 2005.

[31] N. Buchbinder, S. Chen, J. Naor, and O. Shamir. Unified algorithms for online learning and

competitive analysis. In Proc. Conf. on Learning Theory (COLT), 2012.

[32] D. P. Bunde. Power-aware scheduling for makespan and flow. J. Scheduling, 12(5), Oct. 2009.

[33] G. C. Calafiore. Multi-period portfolio optimization with linear control policies. Automatica,

44(10):2463–2473, 2008.

[34] H.-L. Chan, J. Edmonds, T.-W. Lam, L.-K. Lee, A. Marchetti-Spaccamela, and K. Pruhs.

Nonclairvoyant speed scaling for flow and energy. In Proc. STACS, pages 255–264, 2009.

[35] H.-L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of processes with arbitrary speedup

curves on a multiprocessor. In Proc. ACM Symp. Parallel Algorithms and Architectures

(SPAA), pages 1–10, 2009.

[36] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P. Doyle. Managing energy

and server resources in hosting centers. In Proc. Symp. Operating System Principles, pages

103–116, 2001.

[37] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. Energy-aware server

provisioning and load dispatching for connection-intensive internet services. In Proc. USENIX

NSDI, 2008.

[38] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gautam. Managing server

energy and operational costs in hosting centers. In Proc. ACM SIGMETRICS, 2005.

[39] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield.

Live migration of virtual machines. In Proc. USENIX NSDI, pages 273–286, 2005.

[40] A. Coté, A. Meyerson, and L. Poplawski. Randomized k-server on hierarchical binary trees.

In Proc. ACM Symposium on the Theory of Computing (STOC), 2008.

119

[41] T. M. Cover. Universal portfolios. Mathematical Finance, 1(1):1–29, 1991.

[42] T. B. Crabill. Optimal control of a service facility with variable exponential service times and

constant arrival rate. Management Science, 18(9):560–566, 1972.

[43] R. Das, J. O. Kephart, C. Lefurgy, G. Tesauro, D. W. Levine, and H. Chan. Autonomic multi-

agent management of power and performance in data centers. In Proceedings of International

Joint Conference on Autonomous Agents and Multiagent Systems, 2008.

[44] J. Edmonds. Scheduling in the dark. In Proc. ACM STOC, pages 179–188, 1999.

[45] X. Fan, W.-D. Weber, and L. A. Barroso. Power provisioning for a warehouse-sized computer.

In Proc. ACM Int. Symp. Comp. Arch., 2007.

[46] A. Gandhi, V. Gupta, M. Harchol-Balter, and M. Kozuch. Optimality analysis of energy-

performance trade-off for server farm management. Performance Evaluation, 67(11):1155–

1171, Nov. 2010.

[47] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy. Optimal power allocation in server

farms. In Proc. ACM SIGMETRICS, 2009.

[48] J. M. George and J. M. Harrison. Dynamic control of a queue with adjustable service rate.

Oper. Res., 49(5):720–731, 2001.

[49] D. Gmach, Y. Chen, A. Shah, J. Rolia, C. Bash, T. Christian, and R. Sharma. Profiling

sustainability of data centers. In Proc. ISSST, 2010.

[50] D. Gmach, J. Rolia, C. Bash, Y. Chen, T. Christian, and A. Shah. Capacity planning and

power management to exploit sustainable energy. In Proc. of CNSM, 2010.

[51] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper. Workload analysis and demand predic-

tion of enterprise data center applications. In Proc. IEEE Symp. Workload Characterization

(IISWC), pages 171–180, Boston, MA, Sept. 2007.

[52] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myatt. Best practices for data centers:

Lessons learned from benchmarking 22 data centers. Proceedings of the ACEEE Summer Study

on Energy Efficiency in Buildings in Asilomar, CA. ACEEE, August, 3:76–87, 2006.

[53] B. Guenter, N. Jain, and C. Williams. Managing cost, performance, and reliability tradeoffs

for energy-aware server provisioning. In INFOCOM, 2011 Proceedings IEEE, Apr. 2011.

[54] S. Guha and K. Munagala. Multi-armed bandits with metric switching costs. In Automata,

Languages and Programming, volume 5556 of Lecture Notes in Computer Science, pages 496–

507. Springer Berlin / Heidelberg, 2009.

120

[55] Y. Gur, O. Besbes, and A. Zeevi. Non-stationary online stochastic approximation. In Presented

at INFORMS general meeting, 2012.

[56] J. Hamilton. The cost of latency. http://perspectives.mvdirona.com/, 2009.

[57] J. Hamilton. Cost of power in large-scale data centers. http://perspectives.mvdirona.

com/, 2009.

[58] S. V. Hanly. Congestion measures in DS-CDMA networks. IEEE Trans. Commun., 47(3):426–

437, Mar. 1999.

[59] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic convergence of scheduling policies

with respect to slowdown. Perf. Eval., 49(1-4):241–256, Sept. 2002.

[60] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex optimiza-

tion. Mach. Learn., 69:169–192, Dec. 2007.

[61] E. Hazan and C. Seshadhri. Efficient learning algorithms for changing environments. In Proc.

International Conference on Machine Learning, pages 393–400. ACM, 2009.

[62] M. Herbster and M. K. Warmuth. Tracking the best expert. Mach. Learn., 32(2):151–178,

Aug. 1998.

[63] T. Horvath and K. Skadron. Multi-mode energy management for multi-tier server clusters. In

Proc. ACM PACT, page 1, 2008.

[64] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management

strategies for systems with multiple power savings states. In Proc. Design, Automation, and

Test in Europe, page 117, 2002.

[65] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in systems

with multiple power-saving states. ACM Trans. Embed. Comput. Syst., 2(3):325–346, 2003.

[66] V. Joseph and G. de Veciana. Variability aware network utility maximization. ArXiv Com-

puting Research Repository (CoRR), abs/1111.3728, 2011.

[67] V. Joseph and G. de Veciana. Jointly optimizing multi-user rate adaptation for video transport

over wireless systems: Mean-fairness-variability tradeoffs. In INFOCOM, 2012 Proceedings

IEEE, pages 567–575. IEEE, 2012.

[68] A. Kansal, J. Liu, A. Singh, , R. Nathuji, and T. Abdelzaher. Semantic-less coordination of

power management and application performance. In ACM SIGOPS, pages 66–70, 2010.

[69] S. Kaplan. Power plants: Characteristics and costs. Congressional Research Service, 2008.

http://perspectives.mvdirona.com/
http://perspectives.mvdirona.com/
http://perspectives.mvdirona.com/

121

[70] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic tcp acknowledgement and other stories

about e/(e− 1). In Proc. ACM Symp. Theory of Computing (STOC), 2001.

[71] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy caching.

Algorithmica, 3(1):77–119, 1988.

[72] F. P. Kelly. Reversibility and Stochastic Networks. Wiley, 1979.

[73] B. Khargharia, S. Hariri, and M. Yousif. Autonomic power and performance management for

computing systems. Cluster computing, 11(2):167–181, Dec. 2007.

[74] A. A. Kherani and R. Nunez-Queija. TCP as an implementation of age-based scheduling:

fairness and performance. In IEEE INFOCOM, 2006.

[75] L. Kleinrock. Queueing Systems Volume II: Computer Applications. Wiley Interscience, 1976.

[76] J. Koomey. Growth in data center electricity use 2005 to 2010. In Analytics Press, Oakland,

CA, USA, 2011.

[77] E. Koutsoupias and C. H. Papadimitriou. Beyond competitive analysis. SIAM Journal on

Computing, 30(1):300–317, 2000.

[78] D. Kusic, J. O. Kephart, J. E. Hanson, N. Kandasamy, and G. Jiang. Power and performance

management of virtualized computing environments via lookahead control. Cluster computing,

12(1):1–15, Mar. 2009.

[79] W. Kwon and A. Pearson. A modified quadratic cost problem and feedback stabilization of a

linear system. IEEE Trans. Automatic Control, AC-22(5):838–842, 1977.

[80] W. H. Kwon, A. M. Bruckstein, and T. Kailath. Stabilizing state feedback design via the

moving horizon method. Int. J. Contr., 37(3):631–643, 1983.

[81] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling functions for flow time

scheduling based on active job count. In Proc. Euro. Symp. Alg., 2008.

[82] M. Lin, Z. Liu, A. Wierman, and L. L. H. Andrew. Online algorithms for geographical load

balancing. In International Green Computing Conference(IGCC), 2012.

[83] M. Lin, A. Wierman, L. L. H. Andrew, and E. Thereska. Dynamic right-sizing for power-

proportional data centers. In Proc. IEEE INFOCOM, 2011.

[84] M. Lin, A. Wierman, A. Roytman, A. Meyerson, and L. L. Andrew. Online optimization with

switching cost. ACM SIGMETRICS Performance Evaluation Review, 40(3):98–100, 2012.

122

[85] M. Lin, A. Wierman, and B. Zwart. Heavy-traffic analysis of mean response time under

shortest remaining processing time. In Performance Evaluation vol. 68(10), Oct. 2011.

[86] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Inf. Comput.,

108(2):212–261, Feb. 1994.

[87] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Geographic load balancing

with renewables. In Proc. ACM GreenMetrics, San Jose, CA, 7 Jun 2011.

[88] Z. Liu, M. Lin, A. Wierman, S. H. Low, and L. L. H. Andrew. Greening geographical load

balancing. In Proc. ACM SIGMETRICS, pages 233–244, San Jose, CA, 7-11 Jun 2011.

[89] M. Manasse, L. McGeoch, and D. Sleator. Competitive algorithms for on-line problems. In

Proc. ACM Symp. Theory of Computing (STOC), pages 322–333, 1988.

[90] D. Q. Mayne and H. Michalska. Receding horizon control of nonlinear systems. IEEE Trans.

Automat. Contr., 35(7):814–824, 1990.

[91] C. Miller. Solar-powered data centers. Datacenter Knowledge, 13 July 2010.

[92] R. Miller. Google data center FAQ. Datacenter Knowledge, 27 March 2008.

[93] R. Miller. Facebook installs solar panels at new data center. Datacenter Knowledge, 16 April

2011.

[94] D. Mills. Advances in solar thermal electricity technology. Solar Energy, 76:19–31, 2004.

[95] L. Minas and B. Ellison. Energy efficiency for information technology: How to reduce power

consumption in servers and data centers. Intel Press, 2009.

[96] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoret. Comput. Sci.,

130(1):17–47, 1994.

[97] S. Ong, P. Denholm, and E. Doris. The impacts of commercial electric utility rate structure

elements on the economics of photovoltaic systems. Technical Report NREL/TP-6A2-46782,

National Renewable Energy Laboratory, 2010.

[98] E. Pakbaznia and M. Pedram. Minimizing data center cooling and server power costs. In Proc.

ISLPED, 2009.

[99] E. Pinheiro, R. Bianchini, E. Carrera, and T. Heath. Load balancing and unbalancing for

power and performacne in cluster-based systems. In Proc. Compilers and Operating Systems

for Low Power. 2001.

123

[100] C. G. Plaxton, Y. Sun, M. Tiwari, , and H. Vin. Reconfigurable resource scheduling. In ACM

SPAA, 2006.

[101] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for your erg. ACM

Trans. Algorithms, 4(3):Article 38, June 2008.

[102] A. Qureshi, R. Weber, H. Balakrishnan, J. Guttag, and B. Maggs. Cutting the electric bill for

internet-scale systems. In ACM SIGCOMM, pages 123–134, Aug. 2009.

[103] I. A. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of FB scheduling for job size distributions

with high variance. In Proc. ACM SIGMETRICS, 2003.

[104] L. Rao, X. Liu, L. Xie, and W. Liu. Minimizing electricity cost: Optimization of distributed

Internet data centers in a multi-electricity-market environment. In IEEE INFOCOM, 2010.

[105] W. Sandmann. A discrimination frequency based queueing fairness measure with regard to

job seniority and service requirement. In Proc. Euro NGI Conf. on Next Generation Int. Nets,

2005.

[106] R. Stanojevic and R. Shorten. Distributed dynamic speed scaling. In IEEE INFOCOM, 2010.

[107] R. E. Tarjan. Amortized computational complexity. SIAM J. Alg. Disc. Meth., 6(2):306–318,

1985.

[108] E. Thereska, A. Donnelly, and D. Narayanan. Sierra: a power-proportional, distributed storage

system. Technical Report MSR-TR-2009-153, Microsoft Research, 2009.

[109] P. Tsiaflakis, Y. Yi, M. Chiang, and M. Moonen. Fair greening for DSL broadband access. In

GreenMetrics, 2009.

[110] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely. Dynamic resource allocation and

power management in virtualized data centers. In Proc. IEEE NOMS, Apr. 2010.

[111] http://rredc.nrel.gov/solar/new_data/confrrm/. 2010.

[112] http://wind.nrel.gov. 2010.

[113] http://www.eia.doe.gov.

[114] http://www.google.com/green/operations/renewable-energy.html.

[115] H. N. Van, F. Tran, and J.-M. Menaud. Sla-aware virtual resource management for cloud

infrastructures. In Computer and Information Technology, 2009. CIT ’09. Ninth IEEE Inter-

national Conference on, OCT 2009.

http://rredc.nrel.gov/solar/new_data/confrrm/
http://wind.nrel.gov
http://www.eia.doe.gov
http://www.google.com/green/operations/renewable-energy.html

124

[116] X. Wang and M. Chen. Cluster-level feedback power control for performance optimization. In

IEEE HPCA, pages 101–110, 2008.

[117] R. R. Weber and S. Stidham. Optimal control of service rates in networks of queues. Adv.

Appl. Prob., 19:202–218, 1987.

[118] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. Donar: decentralized server selection

for cloud services. In Proc. ACM SIGCOMM, pages 231–242, New York, NY, USA, 2010. ACM.

[119] A. Wierman. Fairness and classifications. Perf. Eval. Rev., 34(4):4–12, 2007.

[120] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing

systems. In Proc. IEEE INFOCOM, pages 2007–2015, 2009.

[121] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing

systems: Optimality and robustness. In preparation, 2010.

[122] A. Wierman and M. Harchol-Balter. Classifying scheduling policies with respect to unfairness

in an M/GI/1. In Proc. ACM SIGMETRICS, 2003.

[123] W. Xu, X. Zhu, S. Singhal, and Z. Wang. Predictive control for dynamic resource allocation

in enterprise data centers. In Proc. IEEE/IFIP Netw. Op. Manag. Symp (NOMS), pages

115–126, 2006.

[124] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc.

IEEE Symp. Foundations of Computer Science (FOCS), pages 374–382, 1995.

[125] S. Zhang and K. S. Catha. Approximation algorithm for the temperature-aware scheduling

problem. In Proc. IEEE Int. Conf. Comp. Aided Design, pages 281–288, Nov. 2007.

[126] Y. Zhang, M. Murata, H. Takagi, and Y. Ji. Traffic-based reconfiguration for logical topologies

in large-scale WDM optical networks. IEEE J. Lightwave Technology, 23(10):2854, 2005.

[127] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz. Subjective impression of variations in layer

encoded videos. In Proceedings of the 11th International Conference on Quality of Service,

pages 137–154. Springer-Verlag, 2003.

[128] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In

T. Fawcett and N. Mishra, editors, Proc. Int. Conf. Machine Learning (ICML), pages 928–936.

AAAI Press, 2003.

	Acknowledgements
	Abstract
	Contents
	Introduction
	Energy efficiency of data centers
	Algorithmic challenges in energy efficiency
	Overview of this thesis

	Server Speed Scaling
	Model and notation
	Dynamic speed scaling
	Worst-case analysis
	Stochastic analysis

	Gated-static speed scaling
	Optimal gated-static speeds
	Gated-static vs. dynamic speed scaling

	Robustness and speed scaling
	Fairness and speed scaling
	Defining fairness
	Speed scaling magnifies unfairness

	Concluding remarks
	Appendix Running condition for SRPT
	Appendix Running condition for PS
	Appendix Proof of unfairness of SRPT

	Dynamic Capacity Provisioning in Data Centers
	Model and notation
	General model
	Special cases

	Receding horizon control
	The optimal offline solution
	Lazy capacity provisioning
	Case studies
	Experimental setup
	When is right-sizing beneficial?

	Concluding remarks
	Appendix Analysis of the offline optimal solution
	Appendix Analysis of lazy capacity provisioning, LCP(w)

	Cost-Effective Geographical Load Balancing
	Model and notation
	The workload
	The Internet-scale system
	Cost optimization problem
	Generalizations

	Algorithms and analytical results
	Receding horizon control
	Fixed horizon control

	Case studies
	Experimental setup
	Experimental results

	Concluding remarks
	Appendix Notation
	Appendix Proof of Theorems 4.6
	Appendix Proofs of Theorems 4.1 and 4.4
	Appendix ``Bad'' instances for receding horizon control (RHC)

	Smoothed Online Convex Optimization
	Problem formulation
	Background
	Online convex optimization
	Metrical task systems

	The incompatibility of regret and the competitive ratio
	Balancing regret and the competitive ratio
	Concluding remarks
	Appendix Proof of Proposition 5.1
	Appendix Proof of Lemma 5.1
	Appendix Proof of Lemma 5.2
	Appendix Proof of Lemma 5.3
	Appendix Proof of Lemma 5.4
	Appendix Proof of Lemma 5.5

	Bibliography

