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Abstract

This thesis investigates the design and implementation of a label-free optical biosens-

ing system utilizing a robust on-chip integrated platform. The goal has been to

transition optical micro-resonator based label-free biosensing from a laborious and

delicate laboratory demonstration to a tool for the analytical life scientist. This has

been pursued along four avenues: (1) the design and fabrication of high-Q integrated

planar microdisk optical resonators in silicon nitride on silica, (2) the demonstration

of a high speed optoelectronic swept frequency laser source, (3) the development and

integration of a microfluidic analyte delivery system, and (4) the introduction of a

novel differential measurement technique for the reduction of environmental noise.

The optical part of this system combines the results of two major recent devel-

opments in the field of optical and laser physics: the high-Q optical resonator and

the phase-locked electronically controlled swept-frequency semiconductor laser. The

laser operates at a wavelength relevant for aqueous sensing, and replaces expensive

and fragile mechanically-tuned laser sources whose frequency sweeps have limited

speed, accuracy and reliability. The high-Q optical resonator is part of a monolithic

unit with an integrated optical waveguide, and is fabricated using standard semicon-

ductor lithography methods. Monolithic integration makes the system significantly

more robust and flexible compared to current, fragile embodiments that rely on the

precarious coupling of fragile optical fibers to resonators. The silicon nitride on silica

material system allows for future manifestations at shorter wavelengths. The sensor

also includes an integrated microfluidic flow cell for precise and low volume delivery

of analytes to the resonator surface. We demonstrate the refractive index sensing

action of the system as well as the specific and nonspecific adsorption of proteins
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onto the resonator surface with high sensitivity. Measurement challenges due to en-

vironmental noise that hamper system performance are discussed and a differential

sensing measurement is proposed, implemented, and demonstrated resulting in the

restoration of a high performance sensing measurement.

The instrument developed in this work represents an adaptable and cost-effective

platform capable of various sensitive, label-free measurements relevant to the study

of biophysics, biomolecular interactions, cell signaling, and a wide range of other

life science fields. Further development is necessary for it to be capable of binding

assays, or thermodynamic and kinetics measurements; however, this work has laid

the foundation for the demonstration of these applications.
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Chapter 1

Overview

1.1 Introduction

Optical biosensing has proven to be an important enabling technology for biochemical

characterization and analysis in the life sciences. Many optical biosensing systems

exhibit high sensitivity and specificity in the detection and analysis of the interaction

of chemicals or biomolecules of interest. These attributes portend the potential im-

pact of optical biosensing in applications such as medical diagnostics and analytical

chemistry and biology. Established commercial optical biosensing techniques exist;

however, these commercial approaches are of limited sensitivity and/or high cost.

Nascent label-free optical sensing techniques employing optical micro-resonators

have demonstrated performance beyond the capabilities of commercially available sys-

tems. Several signal pathways exist, though the majority of optical resonator sensors

are essentially refractive index (RI) transducers. These systems measure changes in

the resonant frequency of a high quality optical resonator that occur when a target

analyte molecule binds to the resonator surface perturbing the refractive index of the

optical mode. Various measurements can be performed with such a system including

binding assays, chemical detection, and association/dissociation kinetics. Addition-

ally, many optical micro-resonator sensor architectures are rooted in semiconductor

materials and processing and therefore posses the potential for integration and wafer

scale fabrication.

This work develops and demonstrates a label-free optical biosensing instrument
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Figure 1.1: A schematic diagram of an integrated on-chip optical micro-resonator
based label-free optical biosensing system.

based on the integration of an electronically controlled linear swept-frequency semi-

conductor laser, an on-chip planar high quality factor (Q) optical resonator, and a

micro-fluidic flow cell for analyte delivery. We address a number of key issues that

currently prevent this technology from becoming an accessible, affordable, and useful

tool.

1.2 Label-free optical biosensing

Studying the behavior of biomelecules at low concentrations, often a necessity due

to their rarity, is typically accomplished using fluorescence measurements such as

the enzyme-linked immunosorbent assay (ELISA) [9]. A critical disadvantage of this

method is that it requires the biomolecule to have inherent fluorescence or that it or

its conjugate be labeled with a fluorescent molecule. The former is uncommon and

the later requires a series of reactions that can significantly alter a molecule’s subse-

quent behavior. Additionally, many chemical species of interest are not available with

fluorescent labels. Label-free technologies therefore present a tremendous advantage

in probing biomolecules in their natural state or in performing specific measurements

of target analyte molecules.

Many label-free optical biosensing techniques rely on monitoring changes in the

properties of a sensitive optical structure as analyte molecules bind to its surface.
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Figure 1.2: A cartoon depiction of a label-free specific sensing experiment using an
integrated microdisk resonator. (a) The disk is immersed in a buffer solution. (b)
The resonator surface is functionalized with an antibody by fluid flow. (c) Analyte
solution containing antigen molecules is flown over the disk resulting in antibody
antigen binding.

The effective refractive index of a composite dielectric structure is one such optical

property that is modified by the binding of molecules. Biomolecules have a refractive

index that is different, typically higher, than the refractive index of the solution they

are dissolved in. Therefore molecule binding events perturb a dielectric structure’s

effective index. In the case of a dielectric resonator structure, index perturbations

elongate the effective optical path length within the resonator and modify the reso-

nance condition resulting in a red shift in optical frequency.

Surface plasmon resonance (SPR) [10] is one alternative label-free sensing tech-

nology that shares some of the benefits of the optical micro-resonator method and is

commercially available from several companies including GE. This technology involves

exciting a surface plasmon in a gold film and monitoring the changing resonance con-

dition (wavelength or incidence angle) of the plasmon as analyte molecules such as

antibodies bind to the film. SPR is highly sensitive to refractive index perturbations;

however, the resonance has a particularly wide linewidth. Typical limits of detection

for commercial SPR systems are > 10 pM [11].

High-Q optical resonator structures fill an important role in label-free optical

biosensing providing both high sensitivity to refractive index perturbations and high

resolution. Additionally, the dielectric resonator surface can be chemically function-

alized with conjugate or partner molecules, e.g. an antibody, thereby restricting it
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to interactions with only specific analyte species. The focus of much of the research

on optical micro-resonator biosensors has been on the demonstration of extreme sen-

sitivity down to the single molecule [12], viron [13], or nano-particle [14–16] level.

However, single unit sensitivity is not necessary in many applications where ana-

lyte concentrations in the 10 fM to 100 nM regime are more prevalent. This work is

directed at creating and developing a label-free refractive index-based optical biosens-

ing system that addresses the shortcomings of contemporary systems and provides

relevant sensitivity.

Optical resonator biosensing systems typically comprise three subsystems, an op-

tical resonator and coupling scheme for signal transduction, a tunable laser for mea-

suring resonator transmission spectra, and an analyte fluid delivery system. This

work seeks to improve each of these three areas in order to develop a system that is

robust, low cost, amenable to mass production, and relatively easy to use. A basic

system schematic is shown in figure 1.1.

1.2.1 Optical resonator

The need for simple, sensitive, label-free, highly specific detection of biomolecules

has led to increased interest in optical microresoantor sensors. Many resonator ge-

ometries have been proposed and demonstrated including microspheres [13, 15–17],

microtoroids [12], photonic crystals [18], microrings [6, 19, 20], and microdisks [5, 21].

These devices can be characterized by their quality factor or, Q, which is a mea-

sure of the power lost by the resonator per optical cycle. Whispering gallery mode

(WGM) type resonators, such as microspheres and microtoroids, have garnered much

attention in the biosensing community and elsewhere due to their ability to achieve

quality factors on the order of 108. Successful implementations of microspheres and

microtoroids involve a fabrication step to reduce the surface roughness of the res-

onator. This is accomplished by either melting or polishing the surface, reducing the

roughness. However, the change in size of the resonator that occurs during this com-

plicated process demands post fabrication positioning of delicate optical components
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to couple light into the resonant mode. Such positioning, and the fragile nature of

these optical coupling schemes preclude on-chip integration of the resonator, coupling

waveguide, and fluid delivery. These cavity geometries are therefore incongruous with

the goal of developing a miniature and robust optical biosensor.

This work focuses on the development of lithographically defined high-Q resonator

structures on-chip using established semiconductor processing tools and methods.

Specifically, we fabricate planar microdisk resonators with integrated waveguides in

a silicon nitride on silicon oxide material system. The microdisk resonators achieve

high loaded quality factors enabling them to provide high resolution frequency shift

measurements. Additionally, the silicon nitride material system has low absorption

loss in the wavelength regime of interest, 1.3–0.7 µm, allowing for sensor operation

at wavelengths where water absorption losses are also low.

Figure 1.3: A three-dimensional rendering of the integrated silicon nitride microdisk
resonator sensor with micro-fluidic channel. The depiction is not to scale.
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1.2.2 Swept frequency laser source

Resonator based label-free sensing measurement requires continuous monitoring of the

resonant frequency of the device as analyte molecules adsorb onto its surface. This

is accomplished using a swept frequency laser to rapidly and repeatedly interrogate

the transmission spectrum of the resonator. A reliable, robust, and precise laser

source is therefore needed in order to enable practical use of the optical biosensing

system. Current commercially available swept frequency lasers used in label-free

optical biosensing systems rely on the mechanical tuning of an external cavity. These

mechanically tuned lasers are beset by limitations on sweep speed and linearity and

are also fragile and expensive [22, 23]. Previous work in our group has produced a

novel, precisely controlled, optoelectronic swept frequency laser (SFL) based on a

semiconductor laser in a feedback loop [24].

The SFL leverages several unique properties of semiconductor lasers including

size, power output, reliability, narrow linewidth, and low cost to produce optical

frequency sweeps with bandwidths that are capable of covering the magnitude of

frequency shifts encountered in measuring dielectric resonator biosensors. The SFL

has no moving parts and generates precise, repeatable, highly linear optical chirps.

Additionally, the SFL system architecture can be implemented at several wavelengths

of interest including 1550 nm, 1310 nm, and 1064 nm. The work presented in this

thesis mostly used a 1310 nm SFL. The SFL wavelength used in experiments is noted

throughout the text.

1.2.3 Sensor flow system

For an optical biosensing system to be an effective analytical or diagnostic tool,

it must consume as little analtye as possible during the course of a measurement.

Additionally, it should be constructed from inert biologically compatible materials.

Micro-fluidic devices made from the soft polymer polydimethylsiloxane (PDMS) have

become invaluable tools for these reasons [25]. We use standard photolithographic

techniques to fabricate PDMS flow delivery devices. The micro-fluidic device and
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optical resonator chip are treated with oxygen plasma and permanently bonded. The

integrated resonator and waveguide are a natural fit with a PDMS microfluidic anaylte

delivery system. Complex microfludic devices incorporating valves and recirculating

pumps can also be fabricated enabling highly sensitive assays that use only minute

quantities of analyte.

1.3 Organization of the thesis

The thesis has the following organizational structure. The optoelectronic swept fre-

quency laser and some of its applications are described in Chapter 2. This includes the

design of the control loop used for creating linear optical chirps as well as demonstra-

tions of several swept frequency laser systems. Some non biosensing applications of

the swept frequency laser, including experimental demonstrations are also presented.

Whispering gallery mode optical micro-resonators are described in Chapter 3.

The basic concepts behind traveling wave optical resonator structures are presented.

Optical resonances in disk type dielectric optical resonators are described; detailed

numerical simulations of the whispering gallery modes of silicon nitride on silica mi-

crodisks are also shown. Coupling between a microdisk resonator and a single mode

optical waveguide is explored using a coupled mode approach. Microdisk resonators

are fabricated and measured demonstrating resonances with quality factors of 7×106.

Chapter 4 covers refractive index-based sensing using silicon nitride microdisk res-

onators. Design considerations for optical resonator sensors operating in an aqueous

environment are discussed. Bulk refractive index sensing is described, simulated, and

experimentally demonstrated. The results for several biosensing experiments includ-

ing both nonspecific and specific adsorption of proteins are presented.

Chapter 5 discusses the challenges and sources of environmental and measurement

noise associated with high-Q micro-resonator based RI sensing measurements. A

solution to many of these issues, in the form of a differential measurement utilizing

dual microdisk resonators, is proposed, analyzed, and experimentally demonstrated.

The dual resonator approach is shown to dramatically improve the performance of



8

the label-free optical biosensing system.

Chapter 6 summarizes the thesis and presents the outlook for future of the project.

A covalent surface functionalization scheme is described and potential improvements

to the microfluidic channel structure are briefly discussed.
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Chapter 2

The optoelectronic
swept-frequency laser

2.1 Introduction

The semiconductor laser (SCL) has become one of the foundations of modern optical

communication because of its compact size, efficiency, low cost, ease of integration

with electronic circuits, and maturity of fabrication techniques. SCLs bring a unique

combination of coherence, low physical volume, cost, and practicality that have en-

abled it to become the workhorse of fiber optic networks.

Amongst the many unique properties of SCLs, one that is less desirable in optical

telecommunications is their high frequency sensitivity to both injection current and

temperature. The direct modulation of SCLs for data transmission can result in

optical pulses with a frequency chirp. These chirps can conspire with group velocity

dispersion (GVD) in an optical fiber resulting in temporally broadened optical pulses

and reduced data transmission rates. The strong frequency-temperature sensitivity

often necessitates high quality packaging with internal temperature control systems

for frequency stabilization.

At first blush, the frequency sensitivity of SCLs may seem entirely disadvanta-

geous. However, these properties enable the use of a semiconductor laser diode as

a current controlled oscillator (CCO). In electronics, the CCO and the voltage con-

trolled oscillator (VCO) are critical components for feedback systems such as phase-
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locked loops (PLL). The existance of an opto-electronic CCO enables the construction

of optoelectronic feedback systems such as optical phaselocked loops (OPLLs) [26–28]

and the optoelectronic swept frequency laser (SFL).

In this chapter we discuss the broadband frequency-current tuning response, and

the frequency modulation (FM) response of the single section distributed feedback

(DFB) semiconductor laser. We also report on the use of these characteristics in

designing optoelectronic feedback systems to generate and control the properties of

broadband linear optical frequency sweeps. The basic operating principals of the SFL

are discussed and experimental demonstrations of several SFL systems are presented.

Linear optical frequency sweeps, and therefore SCL based SFL systems, have applica-

tions in many fields including three-dimensional imaging, LIDAR, spectroscopy, and

particularly the main subject of this thesis, label-free optical biosensing. The use

of SFL systems in the applications of range resolution imaging and spectroscopy are

explained and demonstrated experimentally.

2.2 Semiconductor laser frequency-current tuning

The output frequency of the SCL varies strongly with injection current from the las-

ing threshold to the maximum possible input current. This injection current tuning

goes hand in hand with the variation in optical output power as a function of in-

jection current. Figures 2.1a and 2.1b demonstrate the relationship of both of these

parameters with input current. To investigate the tuning, the injection current into a

λ0 ≈ 1310 nm DFB laser was varied from 0 mA to the manufacturer’s recommended

operating maximum. The optical output power was measured with an integrating

power meter and the optical frequency was measured using a wavemeter.

During these experiments, the SCL was mounted in a temperature controlled

mount and its temperature was maintained at 25◦ C throughout the measurement.

Figure 2.1b represents the DC tuning characteristic of the DFB-SCL. The DC tuning
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Figure 2.1: (a)The optical output power vs. input current (LI) characteristic of a λ0 ≈
1310 nm DFB laser. (b) The output optical frequency vs. input current characteristic
of the same DFB laser as in (a). (c) The optical output power vs. input current (LI)
characteristic of a λ0 ≈ 1310 nm vertical cavity surface emitting laser (VCSEL) (d)
The output optical frequency vs. input current characteristic of the same VCSEL as
in (c).
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Figure 2.2: Optical spectra of a λ0 ≈ 1310 nm DFB laser with a triangle wave drive
current waveform. The frequency of the drive current waveform is stepped over several
orders of magnitude providing ramp durations from 1 s to 10 µs.

characteristics of vertical cavity surface emitting lasers (VCSELs) were also investi-

gated at a variety of wavelengths including 1550 nm, 1310 nm, and 850 nm though

only the results from the 1310 nm experiments are shown in Figures 2.1a through

2.1d. From Figures 2.1c and 2.1d we can see that the VCSEL is capable of single

mode tuning over a much larger optical bandwidth than the DFB laser. This is

attributable to the shorter cavity length of the VCSEL.

The current-frequency tuning of the laser is accompanied by a modulation in the

output power of the laser. This amplitude modulation, a parasitic effect from the

perspective of constructing a swept frequency laser (SFL), can be corrected with a

second feedback loop incorporating either a variable optical attenuator (VOA), or a

semiconductor optical amplifier (SOA).

Dynamic tuning of the SCL, as opposed to the static DC tuning shown in 2.1b

and 2.1d, effects the characteristics of the generated frequency sweep or chirp. The

total frequency tuning bandwidth decreases as the speed with which the ramped input

current is increased. This is due to the slow nature of the thermal tuning mechanism

responsible for the large signal frequency response of the SCL [29, 30]. Particularly,
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it reflects the inability of the thermal response to follow rapidly varying injection

currents. To measure the possible chirp bandwidth range of the 1310 nm DFB laser

at several chirp rates, the modulation input of the laser driver circuit was connected

to a waveform generator outputting a 2 V peak-to-peak triangle voltage waveform

with a DC offset of 1 V. The corresponding current output of the laser driver was

a triangle wave varying from 122 mA to 42.3 mA. The low point current was still

well above the laser’s threshold value. The frequency of the modulation waveform

was varied between 0.5 Hz and 50 kHz in steps of factors of 10. The output of the

DFB laser was put through an SOA and the optical spectrum was observed using an

optical spectrum analyzer in max hold mode. The results are shown in Figure 2.2.

The temperature of the laser was set to 28◦C and was maintained by a temperature

controller.

From Figure 2.2 we can see that the full tuning range of the laser decreases by

several tens of GHz as the current ramp speed is increased. With a sweep duration

of 1 s ( 0.5 Hz triangle wave) the 3 dB chirp bandwidth is 163 GHz. The chirp

bandwidth further decreases to 119 GHz at 1 ms, 90 GHz at 100 µs, and 59 GHz

at 10 µs. The relative flatness of the output optical spectra is due to the presence

of the SOA which was operated in a gain saturated mode due to the relatively high

output power, approximately 10 dBm, of the DFB laser itself. For the applications

under consideration in this work, frequency chirp rates on the order of 1014 Hz/s or

100 GHz in 1 ms are adequate, though it should be noted that this laser is capable

of producing sweeps as fast as 1015 Hz/s. Some VCSELs are capable of producing

chirps up to 1016 Hz/s or 1 THz in 100 µs.

The SCL output frequency is also highly sensitive to its operating temperature

which in many cases is maintained by a temperature controller. Adjusting the steady-

state temperature setpoint of the SCL provides coarse tuning of the optical frequency.

Utilizing the coarse temperature setpoint-based tuning, adjacent portions of the op-

tical spectrum can be addressed using a single laser diode. This functionality is of

particular usefulness in investigating the transmission spectra of multimode optical

resonators or in spectroscopic measurements. The coarse temperature tuning of cur-
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Figure 2.3: Optical spectra of a dynamically tuned 1310 nm DFB laser at three
different steady state operating temperatures. The black, red, and blue traces were
taken at temperatures of 34◦C, 28◦C, and 22◦C respectively.

rent tuned laser frequency sweeps is shown in Figure 2.3. The current waveform used

for dynamic tuning in this experiment was the same 1 ms duration triangle waveform

input described above.

2.3 SFL system description

The frequency tuning of single section DFB lasers and VCSELs, discussed in Sec-

tion 2.2, is nonlinear with injection current. This nonlinearity limits the usefulness of

frequency chirps generated by SCL sources in applications of interest including range

resolution imaging, spectroscopy, and label-free optical biosensing. In many cases

linear optical chirps are desired because they provide a simple mapping from time to

optical frequency. To linearize frequency sweeps generated by SCL sources, feedback

control techniques using a fiber-based interferometer and a lock-in amplifier [31] have

been proposed and demonstrated. However, that work produced optical frequency

sweeps limited to 100 GHz in 10 ms, which according to Figure 2.2 is considerably

slower than what a single section DFB laser should be capable of achieving.
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Figure 2.4 illustrates the feedback system used, first reported in [24], to produce

high speed precisely linear chirps from single section DFB SCLs and VCSELs. In this

system, a small portion of the output light from an SCL is tapped off using a fused

fiber 90/10 coupler and fed into an SOA based amplitude control loop followed by an

optical fiber differential delay Mach-Zhender interferometer (MZI) and a photodiode.

The MZI serves as a frequency discriminator [32], converting frequency modulation

at the input into amplitude modulation. The fiber MZI is stabilized from mechanical

vibrations by careful packaging in an enclosure. The photodiode produces an electrical

signal which is mixed with a reference sinusoid from a high quality monochromatic

electronic oscillator. The resulting error signal is integrated, summed with the large

signal bias current waveform (nominally a linear ramp) and fed back into the SCL

current driver. The laser drive current is limited in its allowed range and must be

ramped and then reset to sweep again thereby producing optical chirps of relatively

short duration. The feedback loop operates in a gated fashion. Therefore, the loop

must acquire the locked state at the initiation of each sweep. By contrast, in recent

work on and development of these swept frequency laser sources, the laser is driven

in a manner more akin to a triangle wave, resulting in linear optical frequency chirps
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both up and down [33]. This mode of operation is both necessary and desirable in

certain applications such as the suppression of stimulated brillouin scattering (SBS)

in high power fiber amplifiers [33, 34].

2.3.1 Steady state analysis

To understand how the feedback system shown in Figure 2.4 produces precisely linear

frequency sweeps, we first look at the feedback loop from the perspective of a steady

state analysis. Assume that the laser is generating a linearly varying frequency output

ω (t) that can be described by

ω (t) = ω0 + ξt, (2.1)

where ω0 is the starting frequency of the sweep and ξ is its slope. This corresponds

to a time varying optical phase φ (t) given by the integral of equation 2.1, namely

φ (t) =
1

2
ξt2 + ω0t+ φ0. (2.2)

The intensity of the output of the MZI consists of both time varying and DC terms

(which we will ignore). The non-DC terms are proportional to

IMZI ∝ cos (φ (t)− φ (t− τ)) , (2.3)

where τ is the differential delay of the interferometer. Substituting 2.2 into 2.3, we

arrive at an expression for the photocurrent iPD given by

iPD (t) = KPDcos

(

ξτt+ ω0τ −
ξτ 2

2

)

(2.4)

where KPD is the gain of the photodiode. From Equation 2.4 we can begin to see

the function of the MZI. The photodiode signal oscillates at a frequency proportional

to both the interferometer delay and the slope of the optical chirp. Additionally,

the starting phase of this signal (a gated sinusoid) contains information about the
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starting frequency of the chirp.

ωPD = ξτ, φPD = ω0τ −
ξτ 2

2
(2.5)

Mixing the photocurrent with a high quality electronic oscillator results in both a

sum and difference term. We will ignore the sum frequency term, as it will be filtered

out by the loop, and focus on the difference term given by

imix (t) = KPDKmixcos

(

ξτt+ ω0τ −
ξτ 2

2
− ωRef t− φRef

)

. (2.6)

With an appropriate choice for the electronic reference oscillator frequency ωRef ,

namely

ωRef = ωPD = ξτ, (2.7)

the mixer difference signal becomes

imix (t) = KPDKmixcos

(

ω0τ −
ξτ 2

2
− φRef

)

(2.8)

This DC signal is then integrated producing a linear current ramp which when added

to the open loop bias current waveform is fed back into the laser once again yielding

the linear frequency sweep of Equation 2.1. We have therefore arrived at a self

consistent steady state solution for the SFL.

It is important to recognize that the actual steady state criteria imposed by the

feedback loop is

dimix

dt
=

d

dt
(KmixKPDcos (φ (t)− φ (t− τ)− (ωRef t+ φRef ))) = 0. (2.9)

In the approximation that φ (t)− φ (t− τ) is small, Equation 2.9 becomes

d

dt
(φ (t)− φ (t− τ)− φRef ) = ωRef . (2.10)

If we further assume that τ itself is small enough to use only the first order terms
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from a Taylor expansion, the steady state condition can be reduced to

d2φ (t)

dt2
τ = ωRef ,

dω (t)

dt
τ = ωRef , (2.11)

which has solutions in the form of a linear frequency vs. time (ω vs.t) dependence.

The slope of the frequency sweeps and the starting frequency of each sweep, in

locked steady state operation are therefore given by

ξ =
ωRef

τ
, ω0 =

φRef + 2πm

τ
. (2.12)

We note that the steady state solution of the feedback system is actually a family

of linearly varying frequency sweeps where the sweep speed is locked to the frequency

of an electronic oscillator, and the allowed starting frequencies of the sweeps are

separated by the free spectral range (FSR) of the MZI used in the feedback loop.

The FSR is given by 1/τ . The actual solution, and therefore the absolute starting

frequency of the sweep, will depend on both the bias current and temperature set point

of the SCL. This feature of the SFL is of extreme importance in the applications of

spectroscopy and optical biosensing.

The validity of the approximations made in this analysis rely on the free running

nonlinearity of the frequency sweep (that produced by the open loop bias current

waveform) to be small and the loop gain to be high. Both of these conditions can be

met and are discussed in Section 2.3.3.

2.3.2 Small signal analysis

Further understanding of the operation of the optoelectronic swept frequency laser can

be gained by performing a small signal analysis of the feedback loop in the frequency

domain.

Assuming the steady state operating point derived in the previous section, the

propagation of phase fluctuations in the feedback loop of Figure 2.4 can be represented
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Figure 2.5: The small signal model for the optoelectronic swept frequency laser system
(SFL). MZI is a differential delay Mach-Zhender interferometer.

by the small signal model shown in Figure 2.5. In this model, the laser acts as a current

controlled oscillator whose output phase is proportional to the integral of the input

current modulation. The true FM response of an SCL is non-uniform and rather

complicated [29]. However for our purposes, it is sufficient to use a simple integrator

model. The phase noise of the laser and its deviations from the steady state solution

(sweep nonlinearity) are encompassed in the variable φn
s (f). The MZI is modeled as

an ideal frequency discriminator which is valid in the regime in which the small signal

frequency fluctuations are much less than the FSR of the interferometer. The phase

noise of the RF source and the interferometer noise are accounted for by φR (f) and

φMZI (f) respectively. The DC loop gain K lumps together the photodetector, mixer,

integrator, and laser gains. The effect of the finite loop delay τd is given by e−j2πfτd .

The integrator is assumed to be ideal.

To gain an understanding of how the feedback loop effects the output phase φs (f)

we can write the propagation of the phase noise in the loop as
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φs (f) = (−φs (f) j2πfτ + (φR (f) + φMZI (f)))Ke
−j2πfτd

(

1

j2πf

)2

+ φn
s (f) .

(2.13)

Rearranging terms we obtain

φs (f) =φn
s (f)

(

j2πf

j2πf + τKe−j2πfτd

)

+ (φR (f) + φMZI (f))

(

Ke−j2πfτd

j2πf (j2πf + τKe−j2πfτd)

)

. (2.14)

From the first term of Equation 2.14 we can see that the loop seeks to minimize

the laser phase noise and sweep nonlinearity term φn
s (f) within the delay limited

loop bandwidth. We therefore expect the loop not only to ensure the generation

of linear frequency chirps but also to enhance the coherence of the laser within the

loop bandwidth. The other sources of loop error contained in the second term of

Equation 2.14, are dependent on the stability of the MZI and the electronic oscillator.

In practice the phase noise of the electronic oscillator is negligible and can be ignored.

However, special care must be taken in the construction and packaging of the fiber

interferometer to ensure its stability.

2.3.3 Open-loop laser bias current waveform

Throughout the prior discussion on operation of the optoelectronic swept frequency

laser it has been assumed that a nominally linear open loop frequency sweep could

be achieved by the laser if it were driven by an appropriate bias current waveform. In

fact, for the small signal analysis of the previous section to hold, and more generally

for the feedback loop to acquire lock, this must be the case. In other words, for the

system to perform as intended, deviations of the laser frequency sweep from linearity

must indeed be of a small signal nature. Unfortunately, as the characterization of both

the DC and dynamic tuning of a single section SCL in Section 2.2 demonstrated, a

linear injection current vs. time waveform does not generate such a nominally linear
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frequency vs. time optical output. Here, we present an empirical method for the

determination of an open loop bias current waveform that produces a suitably linear

output chirp to be further improved by the feedback system.

Continuing with the assumption that the single section SCL can be modeled as a

CCO, we can construct a simple model of the laser output frequency as a function of

the injection current expressing it as

ω (t) = ω0 +K (i) i (t) , (2.15)

where K (i) is the current dependent gain of semiconductor laser and i (t) is the

injection current. ω0 is the nominal output frequency of the laser.

Our previous small signal analysis of the feedback system used the MZI as a

frequency discriminator to determine sweep nonlinearity and to provide a small signal

correction to the laser. It is also possible to use the MZI to measure the open loop

sweep nonlinearity and determine an appropriate open loop bias current waveform

to generate a more linear sweep. Using the model for the SCL in Equation 2.15, the

frequency of the photocurrent at the output of the MZI is given by

ωPD (t) = τ
dω

dt

= τ
di

dt
×
(

KDC + i (t)
dK

di

)

. (2.16)

We can then define a nonlinear distortion function Fdist (i) that is a function of the

current such that

ωPD ≡ di

dt
× Fdist (i) . (2.17)

By using a linearly varying injection current, and therefore a known di/dt, and

measuring the resultant MZI photocurrent frequency ωPD, we can calculate the non-

linear sweep characteristic of the laser Fdist (i). It is then possible to use this nonlinear

response measurement and the desired frequency output profile, in the case of a linear

sweep ωPD = constant, to solve the differential Equation 2.17 for the appropriate non-

linear injection current waveform. Iterating this procedure provides an improvement
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(a) (b)

(c) (d)

Figure 2.6: (a) Spectrogram of the post MZI photodetector current of a 1310 nm
DFB laser with a linearly varying injection current waveform. (b) The spectrogram
of the same laser after one predistortion, (c) after two predistortions, (d) after three
predistortions.
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in the resultant open loop sweep.

To characterize the linearity of the sweep generated by the SCL and the improve-

ments to the sweep linearity made by the open loop bias current correction and feed-

back system, we utilize a spectrogram of the photodiode current. The spectrogram

depicts the evolution of the Fourier spectrum of the photocurrent over the duration of

the sweep. A linear frequency sweep would be represented as a flat line (i.e. constant

slope) and a quadratic sweep by a line with a constant slope. Figures 2.6a, 2.6b,

2.6c, and 2.6d demonstrate the improvements to the linearity of the generated optical

chirps as a result of the open loop correction as well as the benefit of iterating the

procedure.

The response to a linear current ramp of the particular laser diode measured in the

experiment shown in Figure 2.6a contains both short range nonlinearity (the chirp

slope oscillates around a mean value) and long range nonlinearity. The open loop

predistortion is able to remove much of the long range nonlinearity sweep within

two iterations (Figure 2.6c). The short range nonlinearity persists even after further

iterations (Figure 2.6d) and must be corrected by the feedback loop. It is rather

interesting that a simple phenomenological model of the laser frequency-current tun-

ing response such as Equation 2.15 is able to provide helpful corrections to the open

loop large signal response of the laser. Even more interesting is the convergence of

the open loop tuning characteristic to linearity after several iterations. This topic

certainly warrants further study. It is important to note that the current-frequency

tuning characteristic of the single section DFB SCL is dependent on its operating

temperature, and changes as the laser ages. The open loop bias current predistortion

procedure must therefore be performed often, typically at start-up of the SFL system,

to achieve best results.

2.4 Experimental demonstration

Experimental demonstrations of the full optoelectronic swept frequency laser system

shown in Figure 2.4 were performed with a large variety of SCLs in several wavelength
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Figure 2.7: The time domain photodiode output of the optoelectronic swept frequency
laser operating in the closed loop locked condition. The laser was a λ0 = 1310 nm
DFB SCL.

regimes including DFB at 1539 nm (Fitel), VCSEL at 1550 nm (Raycan), DFB at

1310 nm (Archcom), VCSEL at 1310 nm (Raycan), and DFB at 1064 nm (QDLaser).

In the following section we present the details of the experimental demonstrations for

selected SFL systems.

Figure 2.7 shows the output signal of the photodiode from the feedback loop of

Figure 2.4. Recall that the feedback loop operates in a gated fashion and is reset at

the end of each sweep. Figure 2.7 therefore shows the photodiode output signal from

one representative sweep, that had a duration of 1 ms. The MZI differential delay

in this experiment was 3.3 ns corresponding to a FSR of 300 MHz and a physical

fiber length of approximately 67 cm. To determine the average sweep rate of the

chirp from Figure 2.7 we take the Fourier transform of this signal. The main lobe of

the spectrum shown in Figure 2.8a is at a frequency of 333 kHz. Given the known

interferometer delay τMZI , this value corresponds to to a sweep rate of ξ = 1014 Hz/s

as desired. The linearity of the feedback locked chirp is also transform limited. The

3 dB spectral width of the peak in Figure 2.8a is 1 kHz corresponding to the transform
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Figure 2.8: (a) The Fourier transform (computed by FFT) of the locked SFL photo-
diode output shown in Figure 2.7, (b) A spectrogram of the same signal as in (a).
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limit of a 1 ms duration signal.
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Figure 2.9: The optical spectrum of a linear frequency sweep as generated by the
optoelectronic swept frequency laser with a total frequency excursion of 100 GHz.
The nominal wavelength is 1310 nm.

With knowledge of both the duration and sweep rate of the generated optical chirp,

we can calculate the total optical frequency excursion. In the example we have been

following thus far, a 1 ms sweep at a rate of ξ = 1014 Hz/s results in a total optical

frequency excursion of 100 GHz or a total wavelength excursion of approximately

0.6 nm with a nominal wavelength of 1307 nm. We also used an optical spectrum

analyzer (OSA) to observe directly the wavelength/frequency range of the optical

output. The full breadth of the optical spectrum of the 1310 nm SFL is shown in

Figure 2.9. The optical spectrum of the SFL shown here includes not only the light

from the sweep that is controlled by the feedback system, i.e. the linear well behaved

portion, but also the portion of the optical output of the system when the feedback

loop and drive current are reset in between chirps. This unstructured light output is

not used in any practical measurements involving the SFL but is present in the OSA

measurement at hand, resulting in a broader looking optical spectrum than would be

expected.
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Figure 2.10: (a) A spectrogram of the locked 1550 nm VCSEL SFL output. (b) The
optical spectrum of the locked 1550 nm VCSEL SFL output.
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A nearly identical SFL system using a VCSEL at 1550 nm was also built. Typ-

ically, due to the small size of the laser cavity, VCSELs have much lower threshold

and operating currents than DFB lasers. Accordingly, they generally produce much

lower optical output power. The design of the VCSEL based SFL required alterations

to the laser current driver (to source nearly 10x less current) and the use of an SOA

based amplitude control loop to boost the overall output signal (a previously built

1539 nm DFB based SCL used a variable optical attenuator-based amplitude control

loop).

The VCSEL cavity also has a much larger current tuning response characteristic

than that of the DFB laser, as demonstrated in Figure 2.1d. VCSEL based SFLs

are therefore able to produce optical frequency sweeps of a much larger bandwidth

than DFB laser based SFLs. Unfortunately, VCSELs tend to have poorer optical

coherence characteristics than those of DFB lasers, with linewidths typically on the

order of 50 MHz to 100 MHz as opposed to 1 MHz for DFBs. Both the coherence of

the laser source and the total sweep bandwidth of the SFL are important parameters

in determining the appropriate MZI delay τ to use in constructing the feedback loop.

The proper delay should be long enough to help suppress chirp nonlinearity but

also be shorter than the coherence time of the laser source to avoid noise in the

photocurrent ipd due to incoherence of the light in the signal and reference arms of

the MZI. Additionally, the choice of τMZI , along with the desired sweep rate ξ of the

SFL, determine the locking frequency of the loop ωPD. This frequency must be chosen

carefully to be within the bandwith of the feedback loop and all of its components

including mixers, filters, electronic reference oscillators, and summing amplifiers. In

the case of the 1550 nm VCSEL SFL, we employed a fiber based MZI with a delay of

approximately 0.29 ns corresponding to a FSR of 3.4 GHz or length of nearly 20 cm in

SMF-28 fiber. The 1550 nm VCSEL SFL produced chirps with an optical bandwidth

of approximately 500 GHz with a duration of either 1 ms or 100 µs corresponding to

chirp rates of ξ = 5 × 1014 Hz/s and 5 × 1015 Hz/s respectively. The spectrogram of

one such optical chirp is shown in Figure 2.10a. The optical spectrum of the chirp as

measured with an OSA is shown in Figure 2.10b.
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The 1064 nm DFB based SFL was designed as a replacement for the 1310 nm SFL

in optical biosensing measurements to further reduce optical absorption loses due to

the aqueous sensing environment encountered in those experiments (this is discussed

in Chapter 4). This SFL system is capable of producing chirps of up to 200 GHz in

100 µs and has a CW linewidth of approximately 2 MHz. It utilizes an MZI with a

delay τMZI of 5 ns corresponding to an FSR of 200 MHz or a fiber delay of nearly 1 m.

The optical spectrum of the 1064 nm DFB SFL is shown in Figure 2.11
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Figure 2.11: The optical spectrum of the output of the 1064 nm DFB swept frequency
laser. The sweep rate of the chirp was 1.05× 1015 Hz/s. The duration was 128 µs.

2.5 Applications of the SFL

A precisely linear optical frequency sweep is a powerful tool that has many scientific

applications including imaging, sensing, and spectroscopy. Here, we present some

motivation for the use of linear optical chirps in two applications: (1) the range reso-

lution imaging technique of frequency modulated continuous wave laser reflectometry

(FMCW), and (2) chemical spectroscopy. Label-free optical biosensing is discussed

in subsequent chapters.
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SFL PD

Target

Figure 2.12: A schematic diagram of a basic FMCW laser reflectometry experiment.
SFL is an optoelectronic swept frequency laser producing a linear chirp, PD photo-
diode. The red dashed lines denote free space optical waves to and from the target.

2.5.1 SFL range resolution imaging

FMCW laser reflectometry is a method for rapidly measuring the distance to a target

using coherent linearly chirped waves [35]. This technique is based on splitting a

linearly chirped coherent optical source into two beams, one of which is reflected off

of a target object and the other of which is set aside as a reference. The reflected

light is, upon collection, interfered with the reference beam at a photodetector. The

delay in the reference arm can be set such that the differential delay between the

two arms is within the coherence length of the laser source. A schematic of the

basic experiment is shown in Figure 2.12. Our previous analysis showed that the

differential delay between the paths of the two arms of the interferometer manifests

as a sinusoidal beat signal at the photodetector. The frequency of the beat note is

proportional to the chirp rate of the optical wave used in the measurement and to

the delay in the interferometer. Therefore distance to a target can be determined by

simply taking the FFT of the beat signal. This imaging technique can be used with

targets consisting of single, or multiple reflectors and when scanned over an object or

scene a full three dimensional image can be constructed.

The axial resolution of any such three-dimensional image, or more generally speak-

ing of any FMCW measurement, is a function of the chirp bandwidth or the total
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Figure 2.13: An illustration of the FMCW range resolution experiment. ξ is the chirp
rate and τd is the delay due to the propagation distance to the target. B is the optical
bandwidth of the chirp.

optical frequency excursion given by

δz =
c

2B
, (2.18)

where c is the speed of light and B is the chirp bandwidth [36]. From Equation 2.18 we

surmise that in order to discern closely spaced axial targets, large bandwidth optical

chirps are needed. More precisely, given the two SFL sources we have previously

described (100 GHz chirps at 1310 nm and 500 GHz chirps at 1550 nm) we have

range resolutions of approximately 1 mm and 200 µm respectively, depending on the

refractive index of the material being measured.

In order to demonstrate the use of an SFL source in making FMCWmeasurements,

we performed the basic FMCW experiment shown in Figure 2.12 to image the front

and back interfaces of both a microscope slide, with a nominal thickness of 1 mm,

and microscope cover slip, with a nominal thickness of 120 µm. The SFL used was

a VCSEL-based 1550 nm source, chirping 528 GHz in 1024 µs corresponding to a

sweep rate of 5.12× 1014 Hz/s. The results are shown in Figures 2.14a and 2.14b. In

Figure 2.14a the two faces of the microscope slide are clearly visible as the distance

between them is considerably greater than the axial resolution of the SFL source used
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Figure 2.14: Results from an FMCW experiment performed using a VCSEL based
SFL with a nominal wavelength of 1550 nm and a bandwidth of 528 GHz. (a) Shows
distance to the front and back interfaces of a glass microscope slide with a nominal
thickness of 1 mm, (b) shows the distance to interfaces of a glass microscope cover
slip with a nominal thickness of 120 µm.
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as determined by Equation 2.18. The thickness of the slide as measured with the

FMCW technique is 0.9 mm. By contrast, only one peak is visible for the coverslip.

The two interfaces of the coverslip are not visible because their separation is less than

the axial resolution of the SFL source.

FMCW imaging of biological samples, also known as swept source optical coher-

ence tomography (SS-OCT) [37] or optical frequency domain imaging (OFDI) [38]

requires very high range resolution in order to distinguish various tissue layers and

cells within a sample. Given that the desired axial resolution in this case is on the

order of 10 to 15 µm, the required chirp bandwidth of an SFL source to achieve this

is on the order of 5 to 10 THz. This is beyond the ability of a single SCL based SFL

source. Techniques to increase the effective bandwidth of SFL sources have been in-

vestigated including multiple source FMCW imaging [39] and chirp multiplication by

four wave mixing in a nonlinear medium [40]. The enhancement of chirp bandwidths

via nonlinear processes is discussed in Appendix A.

2.5.2 Spectroscopy

The optoelectronic swept frequency laser source provides linear frequency sweeps of

both a known duration in time and a precise sweep rate. It is therefore possible to

use the SFL directly to characterize spectral features such as absorption lines and

resonances that fall within the optical bandwidth of the source. This is in contrast

to other laser based optical spectroscopy techniques such as amplitude-modulation

(AM) and frequency-modulation (FM) [41] optical spectroscopy where an external

amplitude or phase modulator is used to generate and sweep an optical sideband over

a resonance, and the in-phase and in-quadrature components of the detected signal

are measured using a lock-in amplifier or IQ demodulation technique. It should be

noted that it is also possible to employ the SFL in an optical FM spectroscopy system

where the laser’s linear frequency sweep is used to change the frequency offset of the

FM sideband as opposed to the sweeping of the electronic modulation frequency.

As a proof of concept experiment, a DFB based SFL operating with a nominal
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Figure 2.15: A schematic drawing of an absorption spectroscopy experiment employ-
ing the SFL. The optical path is shown in blue.

wavelength of 1539 nm was used to interrogate a portion of the absorption spectrum

of a fiber-coupled acetylene gas cell. A schematic of this simple experiment is shown in

Figure 2.15. The available optical chirp bandwidth from the DFB based SFL is only

100 GHz. However due to the many absorption features of acetylene in the telecom C

band, it was possible to observe three acetylene vibrational resonance modes within

the bandwidth of a single chirp. The experimentally measured absorption spectrum

is shown in Figure 2.16a.

In order to corroborate the absorption spectrum obtained by the SFL, it was also

measured with a conventional external cavity tunable laser diode (TLD). A com-

parison of the SFL measured spectra with that of the conventional TLD allowed

the determination of the absolute wavelength of the absorption features as well as

the confirmation of the bandwidth of the SFL produced chirp. Excellent agreement

between the spectra for the SFL and TLD sweeps is seen in Figures 2.16a and 2.16b.

The conventional TLD measured spectrum consisted of 1000 sample points which

required a measurement time on the order of 10 minutes. By contrast, the SFL

produces a continuous frequency sweep with a duration of 1 ms and a repetition rate

of 500 Hz. The number of sample points in the SFL measurement is limited by the

analog-to-digital converter or oscilloscope used to record the data. In this case, the

record length was set to 10,000 points. To illustrate the high spectral resolution of

the SFL, a detailed view of the left most absorption line was recorded and is displayed
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Figure 2.16: (a) The absorption spectrum of an acetylene gas cell as measured by
both the SFL and a conventional external cavity tunable laser (agilent), (b) a detailed
view of the left most absorption line in (a) as captured using the SFL source.
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in Figure 2.16b. In this detailed view small Fabry-Perot oscillations are visible on

top of the main resonance feature most likely due to back reflections from the ends

of the gas cell. The ability of the SFL to perform spectroscopic measurements with

high speed, at a high rate, and with extreme resolution makes it a valuable tool.

The results from the experimental demonstration of SFL based optical spec-

troscopy in Figures 2.16a and 2.16b only show the amplitude of the acetylene ab-

sorption line. However, it is also possible to measure the phase and therefore the

dispersion characteristics of the resonance feature by placing the gas cell within one

arm of a Mach-Zhender interferometer and performing IQ demodulation on the de-

tected signal.
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Chapter 3

Integrated planar silicon nitride
(Si3N4) microdisk resonators

3.1 Introduction

Optical micro-resonators, like resonant structures in other branches of physics, are

capable of confining and storing wave energy at specific resonant frequencies. They

are versatile devices that find applications in many regions of science including: spec-

troscopy [42], quantum optics [43], cavity quantum electrodynamics [44], and nonlin-

ear optics [45], to name a few. Within optical-electronic engineering, applications of

resonators include: lasers, filters, modulators, parametric oscillators, and the subject

of this work, label free optical biosensors. Many excellent and thorough treatments

of optical resonators — micro and otherwise — exist and the reader is encouraged to

consult them for more detail [46–48].

Optical micro-resonators can be designed and fabricated such that they are ex-

tremely sensitive to changes in their effective optical path length or equivalently the

refractive index of their constituent materials. Careful engineering of the micro-

resonator design and fabrication can be used to leverage the device as an effective

refractive index transducer for the sensing and measurement of biomolecules in ultra-

low, yet biologically relevant, concentrations.

Here, we present some basic resonator concepts before focusing on the design of

microdisk optical resonators fabricated from silicon nitride on silica. Simulations of
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the nitride are performed and used in conjunction with waveguide mode simulations

and a coupled mode perturbation theory formalism to compute coupling coefficients

and conditions for the waveguide resonator system in both air and aqueous envi-

ronments. The thermal characteristics of the microdisk resonant modes including

possible designs for athermal operation in the aqueous environment are discussed.

Fabrication processes, methods, and experimental measurements of both silica mi-

crotoroid and silicon nitride microdisk resonators in both liquid and air environments

are presented.

3.2 Traveling wave optical micro-resonators

3.2.1 The resonance condition

In the most basic form, an optical resonator consists of two mirrored surfaces aligned

in parallel such that light traveling perpendicular to the mirrors reflects back and

forth and is contained within the cavity or space between the mirrors. Assuming that

the mirrors are perfect and lossless and imposing the boundary condition that the

electric field must vanish at an interface with a perfect electrical conductor we can

conceptualize that the number of oscillations in the longitudinal electric field between

the mirrors is an integer number of half wavelengths (so that the field may return

to a value of zero at each mirror). A cartoon depiction of this scenario is shown in

Figure 3.1. The resonant criteria of an integer number of wavelengths fitting into the

structure is the basic principle behind many different resonator geometries in which

different methods of folding the optical path or constructing the mirrors are employed.

Mathematically the resonance condition (in the case of a Fabry-Perot type resonator

as shown in Figure 3.1) is given by

λm = 2Ln, kL = 2πm, (3.1)

where λ is the free space wavelength of the resonant optical field, L is the physical

length of the resonant cavity, k is the propagation constant of the optical field (2π/λ
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Figure 3.1: Schematic diagrams of various resonator structures including (a) Fabry-
Perot etalon, (b) whispering gallery mode disk resonator, (c) ring resonator, and (d)
one dimensional defect Bragg resonator. The red arrows indicate the general location
and flow of optical energy within the resonator structure.
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in free space), n is the refractive index of the material within the resonant cavity

and m is an integer. In the case of an axisymmetric resonator such as a microtoroid,

microdisk or microring, the resonance condition takes on the form

λm = 2πRneff , (3.2)

where R is the radius of the path traveled by the mode.

3.2.2 Whispering gallery mode resonances

Resonant structures require some form of closed path for waves to travel allowing for

multiple round trips or passes. One such ring-like resonant structure, is known as the

whispering galley, named after the famous whispering gallery at Saint Paul’s cathedral

in London (see Figure 3.2) where one can hear whispers uttered from distant points

along the gallery by keeping near to the gallery wall. In the case of acoustic waves,

a combination of reflection of sound waves from the curved wall, and the “inertia” of

the forward propagating wave, allow them to travel along the wall with little loss and

therefore preserve the whispers.

A whispering gallery mode (WGM) optical resonator can be constructed in a

similar way such that optical waves propagate around the periphery of a smoothly

curved dielectric structure (such as a sphere, torus, or disk), and are guided by total

internal reflection at an interface with a lower index dielectric material. A cartoon

example of a WGM resonator is shown in Figure 3.1 (b).

The ray optics / total internal reflection picture of waveguiding at the surface of a

dielectric disk is helpful to phenomenologcally appreciate why a resonant mode exists.

However, this view leaves several important aspects of WGM resonators unexplained,

particularly the evanescent field, which is integral to both the radiation loss and

input/output coupling of the resonator.

Intuition for some of the subtleties of WGM structures, as well as motivation for

a more complete numerical simulation of the WGM modes, can be gained by treating

the dielectric disk as a infinite cylinder and utilizing a conformal mapping to solve the
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Figure 3.2: A photograph, highlighting the smooth curved cylindrical wall, of the
famous whispering gallery at St. Paul’s Cathedral in London, England.

wave equation for whispering gallery modes in one dimension. In what follows we will

reproduce some of the key concepts from the paper by Heiblum and Harris [49] before

moving on to a full numerical FEM based simulation of the microdisk resonators used

in this work.

Beginning with the scalar wave equation

∇2
x,yE + k2 (x, y)ψ = 0, (3.3)

we can use a conformal transformation by expressing the x, y coordinate plane as the

complex plane z = x + iy. We can then find solutions in another coordinate system

w where w = u+ iv and the transformation from z to w is given by

w = u+ iv = f (z) = f (x+ iy) , (3.4)

where f is an analytic function. Such a transformation from z tow is conformal, i.e.

it preserves angles. Under such a transformation

∇2
x,y = ∇u,v

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

2

, (3.5)

where |dw/dz|2 = (∂u/∂x)2 + (∂v/∂x)2 depends on the particular transformation
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Figure 3.3: (a) A cross section of the infinite disk /cylinder dielectric structure. (b)
The cross section of the cylinder structure after conformal transformation. (c) The
refractive index profile of the disk. (d) The refractive index profile after conformal
transformation.
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used. The wave equation is now written as

[

∇2
u,v +

∣

∣

∣

∣

dz

dw

∣

∣

∣

∣

2

k2 (x (u, v) y (u, v))

]

ψ = 0. (3.6)

Insight into the existence of the whispering gallery mode can be gained from

this equation and its implications alone. The propagation constant term can be

decomposed to become

∣

∣

∣

∣

dz

dw

∣

∣

∣

∣

2

k2 (x (u, v) , y (u, v)) =
n2 (x (u, v) , y (u, v))ω2

c2
, (3.7)

so that the refractive index n in the w plane is given by

nu,v =

∣

∣

∣

∣

dz

dw

∣

∣

∣

∣

n(x, y). (3.8)

Treating the microdisk as an infinite cylinder of refractive index ncore with an

air cladding we have the refractive index profile shown in Figure 3.3a. We desire to

perform a conformal mapping that will unwrap the circular path of the disk into a

straight line. To perform this action, we employ the transformation

w = R ln
( z

R

)

, (3.9)

where ln denotes the natural logarithm, and R is the radius of the disk. Figure 3.3b

shows the cylindrical geometry of Figure 3.3a transformed under Equation 3.9. The

conformal transformation of the refractive index profile is shown in Figures 3.3c

and 3.3d. It is from the transformed refractive index profile of the disk structure

that the presence of the whispering gallery and mode can be explained. The region of

the disk just to the interior of the boundary with the lower index dielectric material

presents a local maximum in the refractive index profile that serves to support a leaky

guided mode. These solutions to the wave equation are of the form

ψ (u, v) = A (u) ei(β+iα)v , u < R ln

(

ndisk

ncladding

)

, (3.10)
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where β is the propagation constant, and α is the loss coefficient, and A (u) is the

spatial distribution of the mode in w. The losses addressed by α stem from the

tunneling of the evanescent field of the guided WGM modes into the high index

region outside the disk illustrated in Figure 3.3d. This radiation loss is an important

contributor to the intrinsic loss of the WGM mode and allows the coupling of light

into and out of the resonant mode. Closed form analytical solutions to the electric

field distribution A (u) can be obtained using the WKB approximation as outlined

in [49]. Armed with the intuition gained by the conformal mapping of the step index

disk structure we move on to full finite element method (FEM) simulations of the

WGM microdisk modes using the simulation tool Comsol R©.

3.2.3 WGM simulations

Careful design of the planar microdisk resonator and its coupling waveguide are neces-

sary to enable measurement of the transmission spectrum to ensure proper operation

of the device in the desired coupling regime in either an air environment, a liquid

environment, or both. However, a full three-dimensional finite element simulation for

a microdisk structure is too computationally intensive. To reduce the computation

time, we exploit the rotational symmetry of the disk structure and solve the wave

equation for the resonator modes given a cross-section of the disk.

Beginning with the two Maxwell’s curl equations,

∇× E = − 1

µ

∂H

∂t
, (3.11)

∇×H = ǫ
∂E

∂t
. (3.12)

We take advantage of the continuity of the magnetic H field across boundaries due

to the uniform magnetic permeability µ. Substituting one equation into the other,

we obtain the vector wave equation
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∇×
(

1

ǫ
∇×H

)

− α∇ (∇ ·H) +
1

c2
∂H

∂t
= 0. (3.13)

Although the second term on the left hand side containing the divergence of

the magnetic field is zero in the absence of magnetic monopoles, it is kept in the

equation as a penalty term to suppress spurious numerical solutions. This method

for preferentially finding WGM solutions has been used by [50] and [51].

Equation 3.13 can then be re-written in a so called weak form and solved by

Comsol using the Galerkin method of weighted residuals [52]. More information

on implementing the Galerkin method, specifically in the Comsol partial differential

equation solver, can be found in [50].

Solutions of Equation 3.13 are of the form

H (r) = eiMφ
(

Hr, Hφ, Hz
)

, (3.14)

where M is the azimuthal mode number and the azimuthal dependence of the field is

given by the exp [iMφ] term.

We performed FEM simulations for the microdisk devices looking for resonant

modes in the 1310 nm and 1064 nm wavelength regimes. The dielectric structure

simulated including the finite element mesh is shown in Figure 3.4. The structure was

divided into three layers, the disk core (silicon nitride), the lower cladding (silica), and

the upper cladding (either air or water). The thickness of the core, lower cladding,

and upper cladding layers were 250 nm, and 6 µm, and 4 µm respectively. The

simulation domain boundaries were treated as perfect electrical conductors. A finer

mesh was used in the region of the disk that supports the resonant mode to improve

the results of the simulation.

The numerical simulations of the whispering gallery modes presented here serve

two purposes. Firstly, they positively indicate that a resonant mode is supported

by the geometry and material make up of the given structure and provide estimates

of the resonant frequency and mode numbers. Secondly, the information derived

from the numerical simulations including the spatial distribution of the electric field,
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Figure 3.4: A cross section of the dielectric structure and mesh used to simulate WGM
modes. Si3N4 has a refractive index of 2.0 and serves as the device layer for both the
microdisk resonator and the waveguide core. Si02 is used as the lower cladding layer
and has a refractive index of 1.46. A silicon layer, which serves as a substrate for the
top two layers, is not included in the simulation.
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Figure 3.5: A full view of the cross section of the microdisk resonator with an inset
showing the intensity of a fundamental radial order mode. The radius of the disk is
70 µm, the thickness of the core layer is 250 nm with a refractive index of ndisk = 2,
and the lower cladding layer is 6 µm thick with a refractive index of ncladding = 1.46.
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(a)

(b)

(c)

(d)

M=530,R=1
λ0 = 1311 nm

neff = 1.58
Veff = 74.9 (λ0

3)

M=520,R=2
λ0 = 1308 nm
neff = 1.547

Veff = 94.6 (λ0
3)

M=511,R=3
λ0 = 1308 nm
neff = 1.5195

Veff = 105.1 (λ0
3)

M=502,R=4
λ0 = 1307 nm

neff = 1.49
Veff = 131.57 (λ0

3)

Figure 3.6: Intensity of the radial component of the electric field |Er|2 of various
whispering gallery modes solved using the finite element method in the 1310 nm
wavelength regime.(a) R1 (b) R2 (c) R3 (d) R4 mode.
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the eigenfrequency, the effective volume Veff , the effective mode index neff , and

the confinement factors Γdisk andΓcladding are of use in the design of the waveguide

coupling arrangement, and the potential thermal dependence of the resonator / sensor.

3.2.4 Thermal properties of silicon nitride microdisk resonators

The measurements of the transmission spectra of the silicon nitride microdisk res-

onators in Section 3.4 represent the foundation of the dynamic measurements we

wish to perform with the label-free optical biosensing system. Sensing measurements

involve the continuous interrogation and monitoring of the transmission spectra of

the resonator as its upper cladding is subtly changed thereby altering the effective

index of the resonant mode and therefore the resonant wavelength. However, inten-

tional changes to the waveguide cladding are not the sole avenue for perturbing the

resonant mode. The refractive index of the materials that comprise the resonator are

each a function of temperature. Changes in the ambient temperature affect the very

parameter used for sensing bio-molecules and can confound sensing experiments.

Here, we use numerical mode simulations to determine the thermo-optical coeffi-

cient (TOC) of the radial order modes of the silicon nitride microdisks. The TOC or

∂n/∂T of a mode is given by

∂n

∂Ttotal
=

∂n

∂Tcore
Γcore +

∂n

∂Tlower

Γlower +
∂n

∂Tupper
Γupper, (3.15)

where each of the ∂n/∂T terms is dependent on the material of each disk region and

Γ is the confinement factor of mode field within each region. Table 3.1 lists values for

the cladding and disk materials that will be used in the microdisk label-free biosensing

system. The negative slope of the water temperature index response suggests that

Material Si3N4 SiO2 Water

∂n/∂T 3× 10−5 1× 10−5 −8× 10−5

Table 3.1: Values of the thermo-optic coefficient for several materials of interest [2–4].
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it may be possible to engineer the resonator geometry to balance the positive and

negative ∂n/∂T components. Such a resonator could be considered athermal over a

range of operating temperatures.

Water is one amongst a group of materials with negative thermo-optical effect

coefficients. Other work has used polymer upper cladding layers with negative ∂n/∂T

values to achieve athermal operation of integrated ring resoantor filters [53]. Work

on label-free optical biosensing using silica microtoroid resonators by Armani et al.

also used this analysis to minimize thermal drift of their resonators [12].

FEM simulations of the R1 through R4 modes of the microdisk with a water upper

cladding were used to determine the confinement factors in each material region.

∂n/∂Ttotal was then calculated based on the simulated confinement factors and values

for the index temperature variation coefficient taken from the literature [54]. The

calculated TOC was approximately 1.6 ×−5 RIU/K for all of the modes considered.

This value in conjunction with a temperature controlled device stage with an accuracy

of 0.01◦C, could reduce ambient thermal refractive index drift to the level of 1× 10−7

RIU.

We also note that the sign of the TOC is positive. We should therefore expect

that when the resonator is immersed in water, increases in the device temperature in

generally will result in an increase in the modal index, and therefore a red shift in

the resonant frequency.

3.2.5 Resonant field behavior

The spatial profile of the WGM modes determined by FEM simulations are important

in determining the behavior of the modes for sensing and coupling purposes. The

temporal behavior of the resonant mode is also of critical importance. Here, we

investigate the temporal behavior of the mode in order to study the intrinsic and

coupling losses of the resonator and their effect on its spectral properties.

Practical resonators experience losses both intrinsic and extrinsic. Intrinsic losses

can be due to a variety of phenomena including material absorption, scattering, ra-
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diation, coupling to undesired modes, and surface states. Extrinsic loses are due to

coupling between the resonator and the outside world via an intensionally imper-

fect mirror, or in some resonator geometries a fiber taper [55] or integrated waveg-

uide [56, 57].

Following the derivation outlined by H. Haus in [46] we will look at the behavior

of a resonant optical field in the time domain. We start by writing the equation of

motion for the field a (t) in the case of an uncoupled resonator

da

dt
= iω0a−

1

τ0
a, (3.16)

where ω0 is the resonant frequency, and 1/τ0 represents the intrinsic loss rate of the

resonator. The intrinsic loss rate can be written as the sum of its constituent loss

channels
1

τ0
=

1

τrad
+

1

τabs
+

1

τsc
, (3.17)

where τrad, τabs, and τsc represent the loss rates due to radiation, material absorption,

and scattering respectively.

From the right hand side of Equation 3.16 we see that the phase of the field within

the resonator processes at a rate of ω0 as expected and will decay exponentially at

the rate determined by 1/τ0.

In the case where the resonator is coupled to the outside world, an additional

decay term is added to the right hand side to address the presence of the additional

loss channel. Equation 3.16 then becomes

da

dt
= iω0a−

1

τ0
a− 1

τe
a

= a

(

iω0 −
(

1

τ0
+

1

τe

))

, (3.18)

where 1/τe is the decay rate due to coupling of the resonator to the external environ-

ment.
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It is instructive to look at the rate of change of the energy in the resonator W

given by W = |a|2. The temporal behavior of the energy of the resonator, or power

flow, can be expressed as

dW

dt
=
d |a|2
dt

= a∗
da

dt
+ a

da∗

dt
(3.19)

= −2

(

1

τ0
+

1

τe

)

W. (3.20)

The power dissipated within the resonator Pd and the power escaping the resonator

through external coupling Pe are therefore given by

Pd =
2

τ0
W, (3.21)

Pe =
2

τe
W. (3.22)

To characterize the amount of optical power stored in the resonator, we define

the quality factor or Q. It is a dimensionless number that is given as the ratio of

the energy stored in the resonator per optical cycle to the energy dissipated by the

resonator per cycle:

Q = ω0 ×
stored energy

dissipated power
=
ω0W

P
. (3.23)

Using both Equations 3.21, 3.22 and the definition of the Q factor Equation 3.23, we

can describe both the power dissipated within the resonator due to internal losses and

the power dissipated due to external coupling of the resonator with Q factors Q0 and

Qe respectively. They are referred to as the intrinsic Q and the external or coupling

Q and are given by
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1

Qe

=
Pe

ω0W
=

2

ω0τe
, (3.24)

1

Q0

=
Pd

ω0W
=

2

ω0τ0
. (3.25)

It is instructive to define a loaded quality factor QL that encompasses both the

intrinsic loss sources and the external coupling loss mechanism:

1

QL

=
1

Qe

+
1

Q0

. (3.26)

The loaded Q is what will be obtained by measuring the transmission spectrum of

the resonator waveguide system. From this loaded Q, it is then possible to determine

the individual contributions of external coupling loss and intrinsic loss if the nature

of the external coupling is known.

Similarly, we can decompose the intrinsic loss channels outlined in Equation 3.17

in terms of a quality factor

1

Q0

=
1

Qrad

+
1

Qabs

+
1

Qsc

. (3.27)

It is difficult to experimentally determine the values for each of the individual in-

trinsic Q contributions however some studies have done so by implementing artificial

scatterers [58] or by studying the onset of nonlinear effects [59].

3.2.6 Resonator waveguide coupling

Measurement of the coupled resonator requires the addition of power to the system

and the measurement of the transmitted power in the waveguide past the resonator.

We define the power of the incident wave as |S+|2 and rewrite the equation of motion

of the field within the resonator to reflect the addition of this field as

da

dt
= a

(

iω0 −
(

1

τ0
+

1

τe

))

+ κS+, (3.28)
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Figure 3.7: A schematic of the microdisk resonator waveguide system showing the
input field S+, the resonant field a, the output field S− and the loss and coupling
rates τ0 τe and κ.

where κ is the rate at which the input field S+ is coupled into the resonator.

Taking the Fourier transform of Equation 3.28 and assuming steady state conditions,

we can write the field as

a (ω) =
κS+

i (ω − ω0) +
(

1
τ0
+ 1

τe

) , (3.29)

following a time reversal symmetry argument, it can be shown that the incident

field coupling coefficient κ is related to the external decay rate τe by

κ =

√

2

τe
. (3.30)

The difference in scaling between the two coupling rates shown in Equation 3.30 is

due to the difference in normalization between the resonator field and the waveguide

field. Recall that the resonator field is normalized such that |a|2 = W , while the

waveguide field was normalized such that |S+|2 = P .

The resonator geometry of interest in this work is that of the microdisk coupled to

a waveguide shown in Figures 3.1(b) and 3.7. We are interested in and will be mea-

suring the transmitted power |S−|2. The transmitted field S− is a linear combination

of the input field S+ and the resonator field a and can be written

S− = C1S+ + C2a, (3.31)
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where C1 and C2 are constant coefficients. The case of no input power into the

waveguide can be used to determine C2 = κ =
√

2/τe. Conservation of energy,

namely that the difference between the input and transmitted power must be equal

to sum of the circulating power and the internally dissipated power, is expressed as

|S+|2 − |S−|2 =
d

dt
|a|2 + 2

τ0
|a|2 , (3.32)

and leads to C1 = −1.

The main results of this discussion are the following equations

da

dt
= a

(

iω0 −
(

1

τ0
+

1

τe

))

+ κS+, (3.33)

S− = −S+ +

√

2

τe
a, (3.34)

which fully describe the coupled resonator waveguide system. We can now express

the normalized amplitude transmission as

t (ω) =
S−

S+

=
1/τe − 1/τ0 − i (ω − ω0)

1/τe + 1/τ0 + i (ω − ω0)
, (3.35)

and the normalized power transmission as

T = |t (ω)|2 =
∣

∣

∣

∣

S−

S+

∣

∣

∣

∣

2

=

∣

∣

∣

∣

1/τe − 1/τ0 − i (ω − ω0)

1/τe + 1/τ0 + i (ω − ω0)

∣

∣

∣

∣

2

. (3.36)

To analyze the structure of the power transmission spectrum, and gain some

intuition for the important parameters in the design of a micro-resonator and its

coupling, it is helpful to define

K = τe/τ0 = Q0/Qe. (3.37)

Substituting Equation 3.37 into Equation 3.36 and plotting the result vs. normalized

frequency detuning we obtain the normalized resonator transmission spectra shown

in Figure 3.8. From Equation 3.37 and Figure 3.8 we see that there are clearly three
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Figure 3.8: A demonstration of the three possible resonator waveguide coupling
regimes based on equations 3.36. The blue, green, and red curves correspond to
under-coupled, critically-coupled, and over-coupled scenarios respectively. K is the
ratio of the internal loss rate to external coupling rate, τe/τ0 or in terms of Q factor,
Q0/Qe.

domains of resonator coupling:

1. Under-coupled — the under-coupled regime occurs where K < 1 or equiv-

alently, τe < τ0 or Q0 < Qe. Under coupling can be recognized from the

transmission spectrum of a resonator waveguide system when the minima of

the transmitted power does not reach zero and the full width at half maximum

(FWHM) of the spectrum is measured to be less than that of the resonator in

either the critically-coupled or over-coupled states. An example of five times

under coupling is shown in Figure 3.8. In the under-coupled case, internal losses

of the resonator dominate the coupling losses.

2. Critically-coupled — the critically-coupled regime occurs where K = 1 or

equivalently, τe = τ0 or Q0 = Qe. Critical coupling [47, 60, 61] is unmistakable

and can be recognized easily as the minimum of the transmitted power reaches

zero. This implies that critical coupling results in the maximum circulating

power within the resonator for a given input power. An example of critical-
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coupling is shown in Figure 3.8. In the critically-coupled case, loss due to the

waveguide is tuned to exactly match the intrinsic loss. An alternative interpre-

tation is that the light escaping the resonator to the waveguide is precisely 180◦

out of phase with the light in the waveguide resulting in destructive interference.

In practice, it is difficult to achieve true critical coupling though it is possible

to come close to it.

3. Over-coupled — the over-coupled regime occurs where K > 1, or equivalently,

τe > τ0 or Q0 > Qe. Over coupling can be recognized from the transmission

spectrum of a resonator waveguide system when the minimum of the transmitted

power does not reach zero and the full width at half maximum (FWHM) of

the spectrum is much wider than that of the resonator in either the critically-

coupled or under-coupled states. An example of five times over-coupling is

shown in Figure 3.8. In the over-coupled case, the waveguide is the dominant

source of loss.

3.2.7 Clockwise and counter-clockwise resonant modes

The previous discussion of the time dependent behavior of the resonator mode field

assumed that the resonant mode traveled in a single direction. The perfect microdisk

resonator waveguide structure shown in Figure 3.7 supports two degenerate whisper-

ing gallery modes for each set of mode numbers, a clockwise propagating mode and

counter-clockwise propagating mode. In the case of an ideal resonator, these modes

are fully degenerate and can be treated identically as in Section 3.2.5. In practical res-

onators, slight refractive index perturbations due to surface roughness on the sidewall

of the resonator serves to couple to two modes and break the degeneracy resulting in

resonance splitting or doublet resonance. Doublet resonances are typically seen only

for narrow linewidth modes as the splitting must be on the order of the linewidth to

be resolved in the transmission spectrum.

Considering both the clockwise and counter-clockwise propagating modes, the

equations of motion for the coupled system are written as
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dacw
dt

= acwi∆ω −
(

1

τ0
+

1

τe

)

acw + κS+ +
1

γ12
accw, (3.38)

daccw
dt

= accwi∆ω −
(

1

τ0
+

1

τe

)

accw +
1

γ21
acw, (3.39)

where acw and accw are the clockwise and counter-clockwise propagating mode ampli-

tudes respectively, and γ12 and γ21 are the coupling rates between the modes. ∆ω

represents the detuned resonant frequency of the modes with respect to ω0.

In the steady state, the mode amplitudes are given by

acw (ω) =
κs+

(

i∆ω +
(

1
τ0
+ 1

τe

))

−∆ω2 +
(

1
τ0
+ 1

τe

)2

− γ2 + i∆ω +
(

1
τ0
+ 1

τe

)
, (3.40)

accw (ω) =
κs+i2γ

−∆ω2 +
(

1
τ0
+ 1

τe

)2

− γ2 + i∆ω +
(

1
τ0
+ 1

τe

)
. (3.41)

The power transmission spectrum of the doublet resonance is therefore

T =
|s+ − κ (acw + accw)|2

|s+|2
. (3.42)

3.3 Microdisk resonator and waveguide coupling

simulations

In Section 3.2.6 the concepts of critical, over, and under coupling were developed and

related to the quality factors Qe and Q0. In order to design a practical integrated

microdisk resonator waveguide system of the type shown in Figure 3.7, the geometric

and material parameters of the device must be translated into corresponding values

for Qe. This translation requires the numerical simulation of both the microdisk

resonator modes as described in Section 3.2.3 and of the waveguide modes as well as

computation of the coupling Q.
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3.3.1 A coupled mode approach to resonator waveguide cou-

pling

We will follow a perturbation theory approach similar those formulated in [47] and [46]

to arrive at an expression for the coupling coefficient κ or similarly the coupling quality

factor Qc. In this calculation, we assume that the region of interaction between the

waveguide and disk is short compared to the curvature of the disk such that disk

can be approximated as a waveguide and that an argument similar to that of the

coupling of two parallel waveguides can be used. In this case, the electric field of the

whispering gallery mode is written as

Edisk = Edisk⊥ (x, y) ei(ωt−Mθ), (3.43)

with the waveguide mode written as

Ewg = Ewg⊥ (x, y) ei(ωt−βwgz). (3.44)

It can be shown that the coupling coefficient between the waveguide and resonator

modes κwg,disk at a given longitudinal location z is

κwg,disk (z) =
ωǫ0
4

∫

x

∫

y

E∗
wg∆ǫ (x, y)Ediskdxdy. (3.45)

Using a conservation of power argument, the total coupling between the resonator

and waveguide mode over the complete length of interaction is

κ =
−iωǫ0

4

∫

z

∫

x

∫

y

E∗
wg∆ǫ (x, y)Ediskdxdydz, (3.46)

where we have dropped the subscript on κ for brevity.

We recall that in Section 3.2.5 we set up the equations of motion for the resonator

field a (t) and the waveguide field s+ such that they were normalized to unit energy

and unit power respectively. Those same normalizations are used in the calculation

of κ from Equation 3.46. To obtain the normalization factors from the numerical
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simulations we express the resonator energy Wdisk as

Wdisk =
1

2
ǫ0ǫdiskE

2
max,diskVeff , (3.47)

where ǫdisk is the relative dielectric constant of the silicon nitride disk core, Emax,disk

is the maximum value of the electric field in the disk, and Veff is the effective mode

volume of the microdisk mode given by

Veff =

∫ ∫ ∫

ǫ (x y z) |Edisk (x y z)|2 dxdydz
max

[

ǫ (x, y, z) |Edisk (x, y, z)|2
] . (3.48)

We express the power flux through the waveguide as

Pwg =
1

2
ǫ0ǫwgE

2
max,wgAeffvg, (3.49)

where Aeff is the effective mode area of the waveguide given by

Aeff =

(∫ ∫

|Ewg (x, y)|2 dxdy
)2

∫ ∫

|Ewg (x, y)|4 dxdy
, (3.50)

and vg is the group velocity of the mode given by

vg =
∂ω

∂βwg

. (3.51)

Equation 3.46 can then be written as

κ =
−iωǫ0

4

∫

z

∫

x

∫

y

∆ǫ (x, y)
E∗

⊥wg
√

Pwg

E⊥disk√
Wdisk

eiMθe−iβwgzdxdydz. (3.52)

Where we have chosen to write the electric field of both the disk and waveguide

in the form of Equations 3.43 and 3.44 to explicitly reveal the importance of both

the transverse field overlap terms and the phase matching terms. Expanding the

expressions for Wdisk andPwg in Equation 3.52 can grant us some additional insight
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into the role of each parameter in the coupling.

κ =
−iω
2

∫

z

∫

x

∫

y

∆ǫ (x, y)
E∗

⊥wg

|Ewg,max|
E⊥disk

|Edisk,max|
eiMθe−iβwgz

√

ǫwgǫdiskVeffAeffvg
dxdydz, (3.53)

or using the expression for the coupling quality factor Qc = ω/ |κ|2,

Qc =
4VeffAeffvgn

2
wgn

2
disk

ω

∣

∣

∣

∣

∫

z

∫

x

∫

y
∆ǫ (x, y)

E∗

⊥wg

|Ewg,max|
E⊥disk

|Edisk,max|e
iMθe−iβwgzdxdydz

∣

∣

∣

∣

2 . (3.54)

From Equation 3.54 we see that while Qc is proportional to the effective volume

of the resonator and therefore is dependent on the radius of the disk, it is the value

of the integral that plays the largest role in determining the strength of the coupling

between the waveguide and the resonator. The integral has two main components:

the overlap of the waveguide and disk modes within the waveguide, and the phase

matching between the two modes.

The evanescent field of the disk decreases exponentially away from the outer

boundary of the disk, therefore Qc will have an exponential dependence on the dis-

tance between the resonator and the waveguide, also referred to as the coupling gap.

The phase matching term eiMθe−iβwgz greatly impacts the value of the integral. A

large phase mismatch between the waveguide and disk modes can result in little or no

energy transfer. In the ideal case, the propagation constant of the waveguide mode

and the effective propagation constant of the microdisk mode would be equal. In

practice this is is extremely difficult to achieve as the propagation constants of the

microdisk mode and waveguide mode are very different. The integration volume, or

more specifically, the length of the integral over the z, direction also plays a major

role in the determination of the value of Qc. In the case of disk to waveguide coupling

where the modes are only interacting over a short distance, we choose the interaction

length, and therefore the limits of the integral over z in Equation 3.54, to be such

that the angle swept out over the disk is small, i.e., tan (θ) ≈ θ.
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θ

Z

W

gap

R

Figure 3.9: A schematic diagram of the coupling region illustrating the relevant di-
mensions. w is the waveguide width, g is the closest distance between the waveguide
and the microdisk, and R is the radius of the microdisk.

In order to integrate over the direction of propagation, it is helpful to write the

azimuthal phase dependence of the microdisk as a function of z rather than θ. From

Figure 3.9 we can write

tan (θ) =
z

R + g + w/2
. (3.55)

In the case where θ is small (an approximation that we are already making), such

that tan (θ) ≈ θ, we can directly substitute Equation 3.55 into the phase-matching

condition such that

eiMθe−iβwgz = eiMz/(w/2+g+R)e−iβwg . (3.56)

This expression is enough to be able to numerically compute Qc, however we can

again gain insight into the disk / waveguide system by using the resonance condition

for the microdisk modes from Equation 3.2 in Equation 3.56 to obtain the phase

matching condition
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Figure 3.10: (a) The effective index of the relevant WGM modes of a 70 µm radius
250 nm tall microdisk resonator along with the effective index of the waveguide mode
as a function of the waveguide width at 1310 nm with an upper cladding material
of water (red) and air (blue). (b) The effective index of the relevant WGM modes
of a 70 µm radius 250 nm tall microdisk resonator along with the effective index of
the waveguide mode as a function of the waveguide width at 1064 nm with an upper
cladding material of water (red) and air (blue).
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eik0z(ndiskη−nwg), (3.57)

where η = R/ (R + w/2 + g). From Equation 3.57 it is clear that minimizing the

difference between the modified microdisk mode effective index ndiskη and the effective

index of the waveguide mode nwg will result a greater Qc. In order to get an initial

indication of which microdisk modes in the disk would be most accessible from a

phase-matching perspective, we compute via numerical simulation the effective index

of the various microdisk modes, with different radial and azimuthal mode numbers

such that their resonant frequencies fall into our wavelength regime of interest, namely

1310 nmand 1064 nm. We also compute the effective index of the guided mode of

a single mode waveguide in the same material system as a function of the width of

the waveguide in order to help determine the proper waveguide width from a phase-

matching perspective. The results of these calculations are shown in Figures 3.10a

and 3.10b.

The height of both the waveguide and microdisk are set by the thickness of the

silicon nitride device layer, in this case 250 nm. Therefore, the waveguide width

is the only adjustable parameter capable of affecting the propagation constant, and

through Equation 3.57 the phase-matching condition of the coupling. TE guided

modes of the silicon nitride waveguides were simulated over a range of widths in

which they support a single mode, with both an air and a water upper cladding, at

both 1310 nmand 1064 nm. These are the conditions in which the waveguides will be

required to operate as part of the label-free optical biosensor.

From Figure 3.10a it is clear that at 1310 nm there is a large difference between

the effective index of the fundamental radial order microdisk mode and the wavgguide

mode over the entire range of widths. This difference is also more pronounced in air

than it is in water. In both cases, the disk mode is better confined to the core region

than is the waveguide mode. When the waveguide is immersed in water, the index

contrast between the nitride core and the upper cladding is lower than in the case of

air. The water pulls the mode up into the core region and increases its effective index.
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(a) (b)

Figure 3.11: The spatial distribution of the transverse electric field Ex of the TE
guided mode of a 250 nm×950 nm silicon nitride waveguide with silica lower cladding
and (a) air (n = 1) upper cladding and (b) water (n = 1.33) upper cladding.

Looking at the spatial distribution of the waveguide mode shown in Figure 3.11, it

is clear that in case of air cladding (a) the mode has a large component in the silica

lower cladding layer, whereas in (b) the amount of the mode confined to silica lower

cladding is less. The confinement factor Γupper was calculated to be Γair = 0.478 and

Γwater = 0.491 and the effective indices were neff,air = 1.519 and neff,water = 1.567.

Due to the large difference in effective index between the fundamental mode of the disk

and the waveguide mode in air at 1310 nm, it is necessary to place the waveguide and

disk close together to increase the field overlap and improve coupling. The effective

indices are a closer match when the upper cladding is water; this improves the phase

matching condition.

We also note that there is a range of waveguide widths which are single mode in

both wavelength regimes of interest in both air and water environments. This will

enable the same device to work in both wavelength regimes by simply switching SFL

sources. This is an advantage of the silicon nitride on silica material system. A device

fabricated in a silicon on insulator (SOI) platform would not be able to operate in

both wavelength regimes due to optical absorption in silicon at wavelengths below

1100 nm.
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Figure 3.12: A view of the transverse plane in which coupling between the waveguide
mode (right side) and the microdisk resonator WGM (left side) takes place. The
important geometrical dimensions are labeled.

3.3.2 Numerical coupling simulation results

We now turn our attention to the results of the full simulation and calculation of the

coupling coefficient κ and the coupling quality factor Qc.

The integration of Equation 3.54 was performed using the necessary values calcu-

lated in Comsol along with the the spatial distribution of the waveguide and microdisk

electric fields as found by FEM simulation in Comsol. The normalized field distri-

butions of the waveguide and resonator fields within the perturbation region as well

as the product of the two are shown in Figure 3.13. The exponential decay of the

microdisk mode field within the waveguide is clear from the upper panel of the fig-

ure. The lower panel shows that most of the field overlap, and therefore exchange of

energy between the two modes, takes place in the region of the lower region of the

waveguide closest to the the microdisk.

Coupling coefficients were simulated over a variety of coupling gap and waveguide

widths while maintaining a microdisk resonator radius of 70 µm and silicon nitride

layer thickness of 250 nm. The refractive index of the silicon nitride was taken to

be nnitride = 2.0 and the refractive index of the silica lower cladding was taken to

be nsilica = 1.46. The refractive index of the upper cladding was taken to be either

air with nair = 1.0 or water with nwater = 1.33. Cases of both air and water upper

cladding were calculated to determine an appropriate range of designs that would

work in both environments. Simulated coupling coefficients for both air and water

clad devices in the 1310 nm wavelength regime are shown in Figures 3.14a through
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Figure 3.13: Normalized electric field distributions of the microdisk resonator field
(top), the waveguide electric field (middle) and the product of the two (bottom)
within the waveguide core for a 250 nm×950 nm waveguide and the R = 1,M = 530
mode of a 70 µm microdisk. The gap between the waveguide and the disk is 600 nm.
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Figure 3.14: (a) The coupling quality factor Qc for a 70 µm radius silicon nitride
microdisk resonator in air as a function of the waveguide width with a fixed gap
distance of 500 nm and (b) as a function of the distance between the waveguide and
microdisk resonator with a fixed waveguide width of 850 nm. (c) The coupling quality
factor Qc for a 70 µm radius silicon nitride microdisk resonator in water as a function
of the waveguide width with a fixed gap distance of 500 nm and (d) as a function of
the distance between the waveguide and microdisk resonator with a fixed waveguide
width of 850 nm.
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3.14d.

The goal of these simulations is to obtain an understanding of how to engineer

the resonator waveguide coupling region in order to ensure device operation in the

desired coupling regime. They are to serve as a starting point for device designs and

to provide a range of values for waveguide width and gap distance in which we can

begin to explore the fabrication of actual devices. Of the three coupling regimes:

over coupling, under coupling, and critical coupling, we are mostly interested in the

under-coupled regime and the case of critical coupling. In the under-coupled regime

(Qc > Q0), the intrinsic loss of the resonator dominates the waveguide coupling loss.

This leads the loaded quality factor of the resonator waveguide system, as measured

by the FWHM of the resonance transmission dip, to be closer to Q0. At the critical

coupling point Qc = Q0 and therefore QL = 2Q0. In practice it is difficult to match

Qc and Q0 due to fabrication imperfections and the large effect that small deviations

in the length of the coupling gap can have on the field overlap.

Critical coupling is useful in applications such as nonlinear optics where large

circulating power within the resonator is desired. Designing a device to operate at

or near critical coupling requires a priori knowledge of Q0 such that the waveguide

and gap are chosen to provide a Qc that is equivalent. A review of the literature can

provide a range of realizable experimentally measured Q values as a starting point for

initial designs. In the case of on-chip silicon nitride microdisk resonators, both planar

and undercut of a variety of sizes, the highest Q factors reported were in the range

of several million [62–64]. In interpreting the simulation results from Figures 3.14a

through 3.14d it is important to compare the values of Qc therein with values of Q0

between 1× 105 and 1× 107.

When the upper cladding of the microdisk is air, the calculated coupling quality

factor for the R1 mode approaches values on the order of 1 × 106 to 1 × 107 for gap

distances less than 400 nm. For higher order radial modes, the evanescent field

extends further beyond the disk boundary resulting in greater coupling (lower values

of Qc) but also resulting in higher internal losses due to radiation (lower Qrad), and

scattering (interaction with the disk sidewalls) (lowerQsc) leading to a lowerQ0. From
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Figure 3.14b it is clear that for a fixed lithographically defined gap, various coupling

regimes will be observed for each of the different radial order modes. Aiming to

achieve critical coupling to the R1 mode, which from Figure 3.6 has the lowest mode

volume, highest effective mode index and highest Q0, will result in the other observed

higher order radial modes being in the over-coupled regime.

When the upper cladding of the microdisk is water, or an aqueous buffer solution of

similar refractive index, coupling between the disk and waveguide is enhanced and Qc

decreases. Recall that the higher index upper cladding pulls the WGM and waveguide

modes up slightly and reduces the decay rate of the evanescent field, thereby increasing

the mode overlap in the coupling region. The phase mismatch between the modes is

also reduced as the effective index of the waveguide and microdisk modes are closer

in value.

The presence of the water cladding not only lowers Qc through enhanced coupling,

but, in the near infrared (NIR) wavelength regime, lowers Q0 by adding a substantial

amount of absorption loss to the resonator mode. Optical absorption in water is a

key consideration for the design of a liquid phase label-free biosensing system and is

discussed in more detail in Chapter 4. For an operating wavelength near 1310 nm the

intrinsic Q of the water clad microdisk is dominated by absorption loss and limited

to nearly 5 × 105. According to Figure 3.14d, this upper bound in the value of Q0

necessitates as coupling gap width of less than 300 nm in order to achieve critical

coupling to the R1 microdisk mode.

These coupling simulations have uncovered a few interesting results and insights

for the design and fabrication of the microdisk resonator waveguide coupling region

which we will summarize below.

1. The effect of increasing the waveguide width so as to improve the coupling

through better phase matching of the modes is negligible once the waveguide is

more than 900 nm wide. Tuning the coupling gap width has a much stronger

effect on Qc.

2. In order to achieve critical coupling, we need to have an idea of what values



71

Figure 3.15: A cross section of the dielectric stack structure used to both simulate
the WGM modes and fabricate the actual devices. The silicon layer serves only as
the substrate to host the top two layers.

of Q0 we are capable of achieving for a given resonator design and fabrication

process.

3. For a given waveguide resonator design at NIR wavelengths, it is possible to

achieve similar coupling conditions in both air and water environments due to

the reduction in both Qc and Q0 resulting from the increase in the real and

imaginary part of the upper cladding refractive index.

3.4 Experimental demonstration and results

Planar microdisk resonators with integrated waveguides were fabricated in the silicon

nitride on silica platform using a combination of electron beam lithography (EBL)

and dry etching. The coupling gap was lithographically tuned over a range of values

determined by the simulations of Section 3.3. The transmission spectra of the mi-

crodisk resonators were measured using an optoelectronic swept frequency laser with

a nominal wavelength of 1310 nm.
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3.4.1 Microdisk resonator device fabrication

The wafers used for fabricating devices consisted of a silicon substrate with a thick-

ness of nearly 500 µm with 6 µm of thermally grown oxide followed by 250 nm of

low pressure chemical vapor deposition (LPCVD) silicon nitride. The wafers were

custom ordered and purchased from Rogue Valley Microdevices of Medford, Oregon.

A diagram of the dielectric layer structure is shown in Figure 3.15.

Figure 3.16: An illustration of the fabrication process for the silicon nitride microdisk
resonators.

To fabricate the microdisk resonators, a positive tone e-beam resist with good

dry etch selectivity, ZEP 520A, was used to write the microdisk/waveguide patterns.

E-beam write parameters were optimized to reduce line-edge roughness on the re-

sist sidewalls. An O2 plasma resist mask trimming step was used to further reduce

line-edge roughness. Pattern transfer to the nitride was accomplished via induc-

tively coupled reactive ion etching (ICP-RIE) employing a mixed-mode SF6/C4F8

gas chemistry under low pressure and at room temperature. We found these process

conditions to provide highly anisotropic pattern transfer. The gas flow rates as well

as RF and ICP power were optimized to suppress mask erosion and yield smooth

etched sidewalls. Resist reflow prior to etching was found to have minimal effect on
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the experimentally measured resonance quality factors. Etched samples were cleaned

thoroughly using solvents and acid. The samples were lapped to a thickness of ap-

proximately 150 µm and waveguide facets were cleaved. The fabrication process flow

is detailed in Figure 3.16.

A scanning electron microscope (SEM) was used to image the device and measure

the width of the waveguides and coupling gaps. Representative SEM images are

shown in Figures 3.17a through 3.17d. We found that the waveguides turned out

nearly 100 nm narrower than designed and that the gaps were wider than designed

by nearly 25 nm. This is most likely due to overexposure of the e-beam resist used due

to the e-beam write parameters used. To combat this effect, the waveguide widths in

the mask designs were positively biased by 100 nm.

3.4.2 Resonator transmission spectra: experimental results

The experimental setup shown in Figure 3.18 was used to characterize the trans-

mission spectra of the silicon nitride microdisks. Measurement of the transmission

spectrum of a high-Q optical micro-resoantor is very similar to the measurement of

the transmission spectrum of the acetylene gas cell from Section 2.5.2. Differences in

the implementation of the measurement related to need to couple light into and out

of the on-chip waveguide. Many different methods are capable of performing this task

including vertical grating couplers [65], lensed fiber edge coupling, direct coupling of

cleaved fibers via on-chip v grooves [66], and free space coupling using microscope ob-

jectives. Of these techniques, free space coupling via microscope objective lenses was

chosen due to its robustness to drift and the relative large working distance afforded

by the objective lenses over lensed fibers ( 1 mm as compared to 12µm). Vertical

grating couplers, which work quite well in the case of material system with high re-

fractive index contrast, such as silicon on insulator (SOI), are difficult to implement

in the silicon nitride structure used here [67].

Early iterations of the devices were fabricated with inverse taper spot size convert-

ers on the waveguide ends to improve the coupling efficiency [68]. The taper section of
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(a) (b)

(c) (d)

Figure 3.17: Scanning electron micrographs of a silicon nitride microdisk resonator.
(a) An aerial view of the disk, (b) a closeup of the disk side wall showing minimal
line-edge roughness, (c) a view of the coupling region, (d) a broader perspective of
the device from an angled vantage point.
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Figure 3.18: A schematic diagram of the experimental setup used to measure the
transmission spectrum of a microdisk resonator. SFL, an optoelectronic swept fre-
quency laser from Chapter 2, PC polarization controller, PBS polarizng beam splitter,
MO microscope objective, PD photodiode. The optical path is shown in red and is
in optical fiber up until the collimator.

the spot size converters was 300 µm long in which the waveguide transitioned from its

full width to a width of 180 nm. Devices with inverse tapers underwent an additional

deposition of PECVD silica to act as a cladding for the narrow waveguide region. A

window in the oxide layer was then etched back such that the disks would operate

with an air cladding. Eventually, spot size converters were dropped from microdisk

resonator and sensor chip fabrication due to the additional fabrication steps and lack

of necessity.
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Figure 3.19: The transmission spectrum of a silicon nitride microdisk resonator.
Whispering gallery modes with radial mode numbers between 1 and 5 are present
in various coupling scenarios.

The 1310 nm SFL detailed in Chapter 2 was used to interrogate the transmission



76

spectrum of the microdisk resonators. The frequency sweeps used in the measure-

ments had a chirp rate of 1 × 1014 Hz/sec and a duration of 1 ms for a total chirp

bandwidth of 100 GHz. A trigger signal generated by the laser control electronics at

the beginning of each frequency sweep was used to trigger the oscilloscope to ensure

that the measured photodiode signal was captured correctly.

A representative transmission spectrum of a silicon nitride microdisk resonator is

shown in Figure 3.19. This spectrum is more than 300 GHz wide and was obtained

by changing the temperature set point of the SFL to coarsely tune the absolute

wavelength of the sweep. Four overlapping spectral measurements were captured

using different temperature set points and were stitched together using the various

resonance features as landmarks. The device had a waveguide width of approximately

850 nm and a gap width of nearly 575 nm. The wide coupling gap width was chosen

for several reasons. By choosing to operate in the severely undercoupled regime, the

measured loaded Q factor is very close to the intrinsic Q therefore high values for the

loaded Q can be measured. Operating in the severely undercoupled regime for the

R1 mode also allows for undercoupling to the higher radial order modes. Therefore a

determination of the modes can be made more easily based on the measured loaded

Q and the extinction ratio. In Figure 3.19 the radial order of the modes shown from

left to right are R4, R3, R2, R1, and R5.

To better characterize the transmission spectra of the microdisk whispering gallery

modes, detailed views of the transmission spectra of the modes were also captured.

Performing detailed or zoomed-in measurements of fine spectral features is extremely

simple using the SFL setup. The resolution of the horizontal (time / frequency) axis

of the oscilloscope is simply increased, or alternatively, the number of points cap-

tured from the oscilloscopes memory can be increased. The sweep repetition rate

of the SFL is 500 Hz so such changes are observed seemingly instantaneously. The

measured transmission was normalized to the baseline (off resonance value) and a

Lorentzian function was fit to the experimental data based on the theoretical trans-

mission spectrum of a traveling wave resonator given by Equation 3.36. Transmission

spectra for individual resonances are shown in Figures 3.20a through 3.20d. These



77

−150 −100 −50 0 50 100 150

0.9

0.92

0.94

0.96

0.98

1

1.02

∆ν (MHz)

T
ra

ns
m

is
si

on
 (

a.
u)

Q = 6.8×106

(a)

−400 −200 0 200 400
0.2

0.4

0.6

0.8

1

1.2

 ∆ν  (MHz)
T

ra
ns

m
is

si
on

 (
a.

u.
)

Q=3.8×106

(b)

−500 0 500
−0.5

0

0.5

1

1.5

 ∆ν (MHz)

T
ra

ns
m

is
si

on
 (

a.
u.

)

Q=7.8×105

(c)

−4000 −2000 0 2000 4000
0.2

0.4

0.6

0.8

1

1.2

  ∆ν (MHz)

T
ra

ns
m

is
si

on
 (

a.
u.

)

Q=1.2×105

(d)

Figure 3.20: Experimentally measured transmission spectra from a representative
silicon nitride microdisk resonator. (a) R1 mode under-coupled, (b)R2 mode under-
coupled, (c) R3 mode near critical coupling, and (d)R4 mode over-coupled. Blue
traces are experimental data. Red traces are lorentzian or doublet lorentzian curve
fits.
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spectral measurements were performed at low optical input power to avoid thermal

nonlinear effects within the disk, which can corrupt the measurement [59,69]. For in-

creasing frequency sweeps at high power, thermal nonlinearities can artificially narrow

the measured resonance linewidth [70,71]. Similarly, for decreasing frequency sweeps

at high input power, the measured resonance linewidth is broadened and takes on

the familiar bistable “shark fin” shape [59, 72]. All transmission spectral measure-

ments were performed using decreasing frequency sweeps at power levels such that

no thermal nonlinearity was observed.

The transmission spectra in Figures 3.20a and 3.20b clearly show splitting of the

degeneracy between the clockwise and counter-clockwise propagating modes for the

ultra high-QR1 andR2 modes of the microdisk resonator. To our knowledge the Q

factors measured here are the highest reported Q factors, loaded or intrinsic, for

integrated planar silicon nitride microdisk resonators of this size. Other ultra high

Q (≈ 107) silicon nitride /oxide ring resonators have been reported with radii on the

order of several millimeters [73].
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Chapter 4

Liquid phase sensing with silicon
nitride (Si3N4) microdisk resonators

Label-free optical biosensing attempts to address the need for systems capable of

detecting and analyzing the interactions of biomolecules at ultra low concentrations.

The large refractive index sensitivity and narrow linewidth of high-Q optical res-

onators make them an attractive transducer for such a label-free sensing system. A

multitude of high-Q optical resonators with various geometries, materials, Q factors,

and other attributes have been used for refractive index sensing as part of label-

free sensing systems. Much of the work in this area has been focused on two parallel

tracks: extreme performance, or robust systems of lower sensitivity. The performance

oriented approach to label-free sensing has fixated on single molecule detection with

free standing WGM resonators with Qs in the 107 − 108 range. The coupling of light

into and out of these resonators is a delicate affair typically involving fragile tapered

optical fibers. The more practical camp has leveraged the relative maturity of silicon

photonics to fabricate integrated planar ring or disk resonators on SOI with modest

Q factors in the mid 104 range. Silicon has proved to be wonderful material for inte-

grated optics, however its absorption spectrum places a constraint on the wavelength

of any potential biosensing system that runs counter to the wavelength constraint of

water, the host medium for biomolecules.

In this chapter, we explore the development of a label-free biosensing system

that is built around the high-Q planar integrated silicon nitride microdisk resonators
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Figure 4.1: A schematic diagram of the microdisk resonator-based sensing system.
The resonant frequency of the microdisk is measured repeatedly while an analyte
solution is flown over its surface.

presented in Chapter 3 and the optoelectronic swept frequency laser presented in

Chapter 2. The integration of planar high-Q optical resonators on chip, and the de-

velopment of reliable and relatively low cost laser measurement systems are important

advances in the realization of practical label-free biosensing systems.

We present theoretical foundations of optical resonator based refractive index

sensing and numerical simulations of the bulk refractive index response of the sil-

icon nitride microdisk resonator. We discuss the importance of the wavelength of

operation for the sensing system, highlighting the advantages of silicon nitride for

short wavelength operation. Details of the design, fabrication, and integration of

microfluidic channels for the precise and controlled delivery of analyte solutions are

given. We experimentally demonstrate the bulk refractive index response of several

microdisk modes and determine the sensitivity of the disk as a transducer. Finally,

we experimentally demonstrate the use of the microdisk sensor to measure both the

non-specific and specific adsorption of biomolecules.

4.1 Refractive index sensing

Chapter 3 discussed in detail the physics of the microdisk resonator. In that discus-

sion, emphasis was placed on engineering the resonator waveguide coupling and on

the fabrication and experimental demonstration of ultra-high quality factor resonators
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(a)

(b)

Figure 4.2: (a) A mock up of the label-free sensing device showing both the PDMS
microfluidic module and the optical module with multiple microdisk resonators. (b)
A cross sectional view of the sensing device from (a) denoting the various layers in
the device structure. The depictions are not to scale.



82

in the silicon nitride on silica material platform. Here, we build on those concepts

and results, employing the planar integrated silicon nitride microdisk resonator as a

refractive index transducer to make sensitive measurements of the refractive index of

the upper cladding material of the resonator.

4.1.1 Refractive index sensing theory

Light confined to the whispering gallery modes of a microdisk resonator must sat-

isfy the self consistent periodic resonance condition. That is, the frequency of the

propagating wave must complete an integer number of cycles in one complete circum-

navigation of the disk.

2πRneff = m
c

fres
= mλres, (4.1)

where R is the radius of the microdisk, neff is the effective refractive index of the

resonant optical mode, fres is the resonant frequency, c is the speed of light, and m

is the azimuthal mode number. The sensing action can be understood by looking

at small changes in the effective index of the mode ∆neff and the corresponding

change in the resonant frequency or wavelength ∆f or∆λ. The effective index of the

resonant mode is a function of the refractive indicies of its constituent materials , i.e.,

neff = neff (ncore, nupper, nlower) and the resonator geometry. In the case of a change

in the bulk refractive index of the upper cladding of the resonator we can write

∂λres
∂nupper

=
2πR

m

(

∂neff

∂nupper

)

. (4.2)

For a given change in the bulk upper cladding index ∆nupper, the resulting change in

the resonant wavelength is given by

∆λres =
2πR

m

(

∂neff

∂nupper

)

∆nupper. (4.3)
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Some reports on high-Q resonator sensing in the literature [5, 6] take

∂neff

∂nupper

= Γupper. (4.4)

This yields

∆λres =
2πR

m
Γupper∆nupper. (4.5)

Strictly speaking, the effective index of the mode is defined as neff = βresλ0/ (2π)

where the propagation constant βres is determined by solving the eigenvalue equation

for a specific dielectric resonator structure. Therefore, we choose to leave the bulk

refractive index response in the form of Equation 4.3.

The driving element of bulk refractive index sensing, and of sensing in general, is

the interaction of particles or molecules, representing a ∆n, with the evanescent field

of the microdisk mode. The evanescent field decays exponentially away from the disk

meaning that the most sensitive portion of the active sensing area is that closest to

the disk surface. In light of this, others [5,6] have defined another confinement factor

Γsense to cover the fraction of the mode field in this area and a similar version of

Equation 4.5 can be written for the the sensing area. This interpretation can be used

to describe the deposition of thin films onto the surface of the resonator and thereby

determine the mass response in Hz/gram.

4.1.2 Bulk refractive index sensing simulations

A rigorous calculation of the bulk refractive index response of the resonator can be

determined from FEM simulations of the whispering gallery modes. Modeling the

same silicon nitride microdisk resonator as in Chapter 3, we solved for the eigen-

frequency of resonant modes with a nominal wavelength of 1310 nm as the upper

cladding refractive index was varied from 1.33 to 1.335. The results are shown in Fig-

ures 4.3a, 4.3b, and 4.3c. The values of ∆λ/∆n taken from a linear fit to the slope

are 94.83nm/RIU, 95.05nm/RIU, and 95.57nm/RIU for the R1, R2, and R3 modes

respectively. This corresponds to a frequency responsivity of −16.9 THz/RIU. For
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the R1,M541 mode, the approximate bulk responsivity calculated from Equation 4.5

is found to be 77 nm/RIU which is not in very good agreement with the value cal-

culated from the numerical simulations. The difference is due to the approximations

made to obtain Equation 4.5.

4.1.3 Wavelength of operation

The wavelength of operation for a resonator based sensor in a aqueous environment

is of critical importance to the achievement of high optical quality factors. High-Q

narrow linewidth resonances allow for the resolution of smaller changes in the resonant

frequency. Recall from Chapter 3 that the intrinsic quality factor of the resonator

mode is composed of many parallel loss channels and can be written as

1

Q0

=
1

Qrad

+
1

Qsc

+
1

Qabs,core

+
1

Qabs,clad

, (4.6)

where Qrad describes the power dissipated in the resonator due to radiation losses,

Qsc describes the power lost in the resonator due to surface scattering losses, Qabs,core

describes the power lost in the resonator due to material absorption in the core

region, and Qabs,clad describes the dissipated power due to material absorption in

the cladding region. The parallel addition of Q factors carries the implication that

the overall intrinsic Q0 of the resonator is dominated by the largest loss mechanism

for the system. In the case of the air clad resonators demonstrated in Chapter 3,

the dominant loss mechanisms are scattering losses due to surface roughness of the

resonator and absorption losses of the silicon nitride core material. For a microdisk

resonator with a water or aqueous buffer upper cladding, material absorption losses

play a large role in the determination of Q0 and strongly depend on the wavelength

of the mode under consideration.

The optical properties of liquid water have been well documented and sources

for the values of the complex refractive index water at 25◦C are available in the

literature [1]. Values for the extinction coefficient k of water at various wavelengths

of interest for biosensing are listed in Table 4.1. The full absorption spectrum of water
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Figure 4.3: The results of FEM simulations of 70 µm radius silicon nitride microdisk
resonators. The bulk refractive index of the upper cladding material is varied from
1.33 to 1.335 and plotted against the resulting resonant wavelength found from sim-
ulation. (a) The R1,M541 mode, (b) the R2,M530 mode, (c) the R3,M521 mode.
Lines are linear fits to the simulation results to determine the bulk refractive index
responsivity in nm/RIU.
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Figure 4.4: The absorption coefficient per unit length in cm−1 of liquid water at 25◦C
over the 200 nm to 2µm wavelength region from [1]. Values from the paper are blue
circles. Red line is a cubic spline interpolation of the data.
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is shown in Figure 4.4. The visible portion of the spectrum occupies the large dip in

absorption values between 400 nm and 700 nm. The linear absorption coefficient α

is derived from k using the well known relationship [47]

α =
4πk (λ)

λ
. (4.7)

To determine the Qabs,clad we use the relationship

1

Qabs

=
2αr,m

βr,m
, (4.8)

which follows from the definition of the Q factor in that it represents the energy lost

per optical cycle due to absorption. However, as the majority of the resonant mode

does not overlap with the lossy upper cladding material, it is necessary to modify

Equation 4.8 to include only the portion of the energy that does. The appropriate

modification is given by the confinement factor of the mode in the upper cladding

Γupper [74]. We therefore have the expression for Qabs,clad

1

Qabs,clad

=
2αr,m

βr,m
Γupper. (4.9)

Calculations of Qabs,clad were performed using values of the extinction coefficient

from [1] and values of Γupper as determined from FEM simulations of the appropriate

microdisk resonant modes. The results are given in Table 4.1. The confinement of the

mode in the upper cladding, (water), is low. At 850 nm, 1060 nm, and 1310 nm Γupper

λ (nm) Extinction k Absorption α cm−1 Qabs

625 1.39× 10−8 0.0028 5× 108

850 2.93× 10−7 0.0433 4.65× 107

1060 1.1× 10−6 0.1304 8.77× 106

1310 1.25× 10−5 1.199 5.6× 105

1550 1.25× 10−4 10.13 5.8× 104

Table 4.1: Values of the extinction coefficient, absorption coefficient, and correspond-
ing Qabs for liquid water at 25◦C at several wavelengths of interest.
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was found to be 0.0488, 0.0689, and 0.0948 respectively. Though small, this fractional

overlap of the mode with water dramatically impacts Qabs,clad at longer wavelengths.

In these cases water absorption loss becomes the limiting factor in determining Q0

for the resonator. From these calculations, it is clear that in order to construct

a high-Q optical resonator-based label-free biosensing system that operates in an

aqueous environment, shorter wavelength light should be used in the measurement.

It is precisely this rationale that drove the decision to develop optoelectronic swept

frequency laser sources at 1310 nm, 1064 nm, and 850 nm.

The desire to use shorter optical wavelengths in turn impacted the decision to

use the silicon nitride on silica material system to construct the resonators. Much

attention in the field of label-free optical biosensing has been placed on the use of sil-

icon on insulator (SOI) devices due to the maturity of the material and its processing

techniques. Unfortunately, silicon exhibits strong absorption at wavelengths below

1100 nm — due to its relatively low bandgap energy (1.12 eV) — and is unsuitable for

the fabrication of high Q resonators at shorter wavelengths. Both silicon nitride and

silica exhibit good optical transparency over all wavelengths of interest. Additionally,

silicon nitride has a relatively high refractive index of two, allowing for small device

footprints and good field confinement in both wave guiding and resonant structures.

Knowledge of the water absorption quality factor aids in designing the coupling

between the microdisk resonator and bus waveguide. In order to achieve critical or

under coupling, we require Q0 = Qc. At the wavelengths of 1310 nm or 1550 nm,

where the intrinsic Q of the resonator is dominated by water absorption losses such

that Q0 ≈ Qabs,clad, we can use the values of Qabs from Table 4.1 to inform the design

of the coupling region.

4.2 Microfluidic integration

The realization of a small form factor, low cost, robust high-Q optical biosensing

system requires careful integration of the resonator and the analyte delivery system.

The microscale dimensions of the planar waveguide and resonator pair are a natural
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match with microfluidic flow delivery.

For the high-Q microresonator device to become an effective analytical tool, it

must consume as little analyte as possible in the course of making a measurement.

Additionally, its use in biomolecular assays or affinity measurements requires that it

be made from hydrophilic and bio-inert materials. We fabricated microfluidic devices

made from polydimerhylsiloxane (PDMS), a two stage curable elastomer, to deliver

fluids to the surface of the silicon nitride microdisk resonators.

The aim of the microfluidic devices used here is only simple fluid delivery. The

design of the microfluidic channels used requires only a single mold and a single layer

PDMS structure.

An image of the photomask used for creating the molds of the microdluidic devices

is shown in Figure 4.5. Early microfluidic modules consisted of a single channel

oriented perpendicularly to the waveguides as depicted in Figure 4.2a. During flow

experiments all of the microdisk resonators on a chip would be exposed to the analyte

solution simultaneously. The current experimental setup shown in Figure 4.1 is only

capable of measuring the transmission spectrum of a single resonator at a time. In

the interest of conserving a precious resource, the high-Q resonators, the microfluidic

device design was updated to have an individual flow channel for each resonator with

flow parallel to the waveguide as shown in figure 4.5.

Using standard photolithographic techniques, we fabricated molds for the mi-

crofluidic devices from SU-8 2010 negative tone photoresist on bare 3 inch silicon

Figure 4.5: An image of the mask pattern used in fabricating the PDMS microfluidic
device molds. The dimensions of the microfluidic module were approximately 5 mm
× 9 mm. The image shown is not actual size.
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wafers. The following procedure was used:

1. Clean 3 inch Si wafer with solvent and blow dry.

2. Spin coat wafer with Su-8 2010 for 1.5 minutes at 3500 rpm to achieve 10 µm

film thickness.

3. Soft bake resist coated wafers at 95◦C for 3 minutes.

4. Expose to UV radiation with mask aligner for 95 seconds.

5. Bake for 2.5 minutes at 95◦C.

6. Develop in Su-8 developer for 3 min with agitation.

7. Hard bake for 6 minutes at 150◦C to cure mold and fix imperfections.

PDMS microfluidic devices were then cast using the Su-8 molds. The following

procedure was used:

1. Vapor deposit clorotrimethylsilane (CTMS) onto silicon mold to prevent per-

manent adhesion of PDMS to wafer.

2. Prepare Sylgard 184 ( Dow Corning) PDMS two part solution in teflon mixing

container in 10:1 ratio of part A : B. Mix using mixer / degasser at 1 min :

5 min mixing to degassing time.

3. Pour mixed PDMS over mold in plastic petri dish.

4. Place mold with PDMS in vacuum chamber and degass until no bubbles are

visible .

5. Bake at 80◦C overnight.

Fresh PDMS contains uncrosslinked polymer chains that may migrate within the

bulk material and can diffuse into microfluidic channels causing contamination of

resonator devices. To avoid this, finished PDMS devices were immersed in toluene
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Figure 4.6: A photograph of a finished high Q silicon nitride microdisk resonator
sensor with PDMS microfluidic channel for analyte delivery.

for 1 day followed by acetone for 1 day and water for 1 day. These solvent immersions

swell the PDMS and allow the uncrosslinked oligomers to diffuse out. The resulting

PDMS is cleaner and easier to permanently bond to the optical module [75].

Permanent bonding of the PDMS microfluidic devices to resonator chips was

accomplished by treating both modules with oxygen plasma. Prior to the plasma

treatment, the PDMS devices were sonicated in isopropanol for 5 minutes to remove

particles and surface contaminants that may have accumulated during storage. The

resonator chips were solvent cleaned and blown dry with dry nitrogen in a clean

room environment. The resonator chips were treated with a 50 W oxygen plasma

for 2 minutes alone and then together with the microfluidic devices for an additional

minute. The resonators and microfluidic channels were then aligned using a custom

setup and pressed into contact. The finished devices were baked overnight at 80◦C. A

photograph of a representative high-Q resonator sensing device is shown in Figure 4.6.

Fabrication of early devices included a 2µm thick PECVD oxide layer deposited

over the resonator chip to serve as both an upper cladding for inverse taper spot

size converters and as an adhesion layer for the permanent bonding of the PDMS

microfluidic channels. A trench in the PECVD oxide layer was then etched back to

expose the resonator surfaces. It was later determined that the PECVD oxide layer

was neither necessary for PDMS bonding nor were spot size converters necessary

for input/output coupling. These additional fabrication steps were dropped and the
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Figure 4.7: A schematic diagram of the experimental setup used to measure the
transmission spectra of integrated silicon nitride microdisk resonators subjected to
fluid flow via the bonded microfluidic channel.

microfluidic devices were bonded directly to the silicon nitride chip surface.

4.3 Experimental results

We now present the results of experimental measurements on the silicon nitride res-

onators operating in a liquid environment. We demonstrate a reduction of the loaded

quality factor of the resonances from the air clad values as predicted in Section 4.1.3.

We also perform dynamic sensing measurements to determine the bulk refractive in-

dex response of the resonators. Nonspecific adsorption of the protein bovine serum

albumin (BSA) is reported. Finally we demonstrate specific sensing of streptavadin

with biotin using microdisk resonators.

4.3.1 Microdisk resonators in water

The measurement system shown in Figure 4.7 was used to observe the transmission

spectrum of the resonator during water immersion. The use of the syringe pump

enabled precise control of the flow rate, duration, and volume of fluid introduced to
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the resonator. The impact of the water cladding on the measured Q factors of the

microdisk resonator devices was nearly immediate.

Figures 4.8a through 4.8d show detailed transmission spectra for each of the four

resonant modes in the aqueous environment. The resonator used in these measure-

ments is the same as was used in the air upper cladding measurements from Fig-

ures 3.20a through 3.20d. The effect of increased optical absorption losses on the

loaded Q of the resonator due to the water cladding is readily apparent. As expected,

in the aqueous environment, optical absorption is the dominant loss channel. The

loaded quality factors obtained from the measurements are all in the mid 105 regime.

We note good agreement between these values and the water absorption limited qual-

ity factor Qabs,upper at a wavelength of 1310 nm, as given in Table 4.1, of 5.6× 105.

To further illustrate the importance of shorter optical wavelengths in maximizing

the loaded wet Q of a WGM resonator, we measured the transmission spectra of

a silica microtoroid resonator in water with a swept frequency laser operating at

1539 nm and at 1310 nm. Silica microtoroid resonators can easily be fabricated with

ultra high quality factors owing to their very smooth side walls [12, 43]. They were

used in exploratory measurements investigating the use of SFLs for optical biosensing

at the outset of this work. The results are shown in Figures 4.9a, 4.9b, and 4.9c. The

quality factors as extracted from Lorentzian fits to the data are 2.2× 104 in water at

1539 nm, and 3.5× 105 in water at 1310 nm. These values should be compared with

the dry loaded Q for the device measured of 3× 107. These values for the wet Q are

in good agreement with the expected values for these wavelengths from Table 4.1.

It should be noted that the silicon nitride microdisk resonators and waveguides do

not support guided modes at 1539 nm and therefore could not be used for these

measurements.

4.3.2 Bulk refractive index sensing

We investigated the response of the silicon nitride microdisk resonators to changes

in the bulk refractive index of the aqueous upper cladding. Measurements were per-
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Figure 4.8: Experimentally measured transmission spectra of selected modes of a
silicon nitride microdisk resonator with a water upper cladding. Blue curves are the
measured data, red curves are Lorentzian fits. The loaded quality factors extracted
from the Lorentzian fits are noted in each case. (a) R1 mode (b) R2 mode (c) R3

mode (d) R4 mode.
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Figure 4.9: Experimentally measured transmission spectra of a resonant mode of a
silica microtoroid in (a) air at 1539 nm, (b) water at 1539 nm, and (c) water at
1310 nm. The blue traces are the measured data, red traces are Lorentzian fits.
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formed in three steps for a given bulk refractive index change.

1. DI water was flown through the microfluidic channel over the microdisk res-

onator to obtain a baseline position for the resonant frequency of the mode

under observation.

2. The solution under flow was changed from water to a NaCl solution with a

known concentration of salt. Flow and measurements continued until the reso-

nance shift saturated.

3. The solution under flow was changed back to the baseline DI water solution and

continued until the resonance had returned to its initial position.

Solutions consisting of various concentrations of NaCl dissolved in deionized water

were used to vary the refractive index of the bulk upper cladding of the resonators.

The refractive index of saline solution as a function of salinity, temperature, and

wavelength is well known and excellent empirical models exist [76]. We used solu-

tions with 1/32%, 1/16%, 1/8%, 1/4%, 1/2%, and 1% NaCl by weight prepared by

sequential dilution from a stock 1% solution. A control experiment in which the

saline soultion flow step was replaced by DI water was also performed in order to

judge system characteristics. A slightly modified version of the experimental setup

shown in Figure 4.7 was used to perform bulk refractive index sensing experiments

on the silicon nitride microdisk resonators. A three way solenoid valve controlled via

computer was used to select the solutions flowing into the microfluidic channel. A

bank of computer controlled syringe pumps was used to drive fluid flow.

Dynamic response curves showing the real time response of the R2 mode resonant

frequency are shown in Figure 4.10. These dynamic curves correspond to the flow

experiment steps as outlined in Section 4.3.2. The flow rate for all solutions was

100 µL/min. Additional bulk refractive index response experiments were conducted

with the R3 and R4 modes of the same microdisk. The results of all three experiments

are shown in Figure 4.11.
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Figure 4.10: The dynamic frequency response of the R2 mode of the silicon nitride
microdisk resonator to the flow of saline solutions of varying salinity.

4.3.2.1 Sensitivity

A linear fit of the data in Figure 4.11 was used to extract the value of the first order

correction to the resonance frequency caused by the change in the bulk refractive

index of the microdisk upper cladding. The experimentally obtained values for the

bulk refractive index sensitivity of the WGMmodes were 93.4 nm/RIU 95.25 nm/RIU

and 96.8 nm/RIU for the R2, R3, and R4 modes respectively. These values are in good

agreement with those obtained from the simulations in Section 4.1.2. The differences

between the sensitivities of the different radial order modes are negligible. In the case

where the Q — and therefore the limit of detection — for a given mode is limited

by water absorption (as is the case at 1310 nm) any mode can be used in sensing

experiments without the loss of performance.

The bulk refractive index response measured for the silicon nitride microdisk res-

onators here is on par with those of other TE mode microdisk resonators [5]. Other

traveling wave resonator geometries including silicon and silicon nitride microrings [6],
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Figure 4.11: Bulk refractive index sensitivity of the R2 (a) and (b), R3 (c) and (d),
and R4 (e) and (f) modes of the silicon nitride microdisk resonator.
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TM mode microdisks [7], and slot waveguide based microrings [8, 77] have been re-

ported with higher bulk index responses due to a larger overlap of the resonant field

with the bulk upper cladding. By the same token, at longer infrared wavelengths,

the wet Q of these resonator structures suffers leading to reduced limit of detection.

Table 4.2 summarizes the bulk sensitivity of the aforementioned resonator sensors

along with their wet Q factors and extrapolated bulk ∆n detection limits.

4.3.2.2 Limit of detection

The limit of detection, defined as the smallest resolvable refractive index change, is

the major figure of merit of a refractive index based label-free biosensing system.

This number is typically arrived at by dividing the minimum detectable resonant

frequency shift ∆λmin by the sensitivity ∆λ/∆n. The minimum detectable resonance

shift is influenced by many factors including the resonator wet loaded Q, resonator

drift, laser drift, detector electrical noise, and data processing techniques. Some

authors [13] claim that the resonance shifts on the order of ∆f/100 — where ∆f

is the resonator linewidth — are achievable. Others [7] hold that the minimum

resolvable shift should only be ∆f/2 thereby creating a more level playing field where

the resonator’s characteristics, and not the sophistication of the measurement scheme,

are at the fore. The values of ∆n min reported in Table 4.2 are those given in the

literature. As for this work, given the measured sensitivity of 96 (nm/RIU) and wet Q

of 3.6× 105, the extrapolated theoretical limit of detection of detection is 3.9× 10−7

Type Material λ0 (nm) ∆λ
∆n

(nm/RIU) Q ∆n min

disk Si3N4 970 91 7.5× 104 1.4× 10−6

disk Si3N4 1310 95 4× 105 3.8× 10−7

disk Si (TM mode) 1550 142 1.6× 104 6.8× 10−4

ring Si 1550 160 4.3× 104 7.6× 10−7

slot ring Si3N4 1310 240 2× 104 8.8× 10−6

Table 4.2: Values of the bulk refractive index sensitivity, wet-loaded Q factor and
limit of detection for various traveling wave resonator sensors as reported in [5–8] and
from this work (shaded).
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using ∆f/100 criteria, or 1.9 × 10−5 using the ∆f/2 criteria. Both of these values

should be considered to be the theoretical limit of detection for the system. The

experimentally determined limit of detection can be gathered from the results of the

control experiment shown in figure 4.10 in which the maximum observed frequency

shift was nearly 400 MHz over the course of one hour due to the flow of DI water.

Taking this value as the minimum detectable frequency change of the system — a

conservative estimate — the experimentally determined limit of detection is calculated

to be ∆n = 2.36× 10−5.

4.3.3 Bulk refractive index response at 1064 nm

We repeated the bulk refractive index response experiments using a swept frequency

laser with a nominal wavelength of 1064 nm. All of the experimental procedures

were identical to those of the same experiment conducted at 1310 nm. The dynamic

resonance response is shown in figure 4.12. The bulk refractive index sensitivity of

the device at 1064 nm was determined by a linear fit to the saturated resonance

shifts measured in figure 4.12. The results are shown in figure 4.13. The red curve

and circles correspond to measured data. The blue curve and circles correspond to

simulation results for the R2 mode. The radial order of the experimentally measured

mode is not known because of the large number of modes present in the transmission

spectrum.

The measured value for the bulk RI sensitivity of the device at 1064 nm was

-13.61 THz/RIU or equivalently 51.7 nm/RIU. There is good agreement between

the measured sensitivity and the simulated value of 55.79 nm/RIU. Of the various

radial order modes simulated, the simulated values for the responsivity were all near

55 nm/RIU. The sensitivity of the disk to bulk refractive index changes at 1064 nm

is only 60% of what it is at 1310 nm. This is due to the lesser penetration of the

optical mode into the upper cladding material at 1064 nm than at 1310 nm. The

sensitivity could be improved by using a thinner silicon nitride layer as the core

thereby delocalizing the the optical mode.
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Figure 4.12: The dynamic resonance response of the silicon nitride microdisk res-
onator to bulk refractive index changes.
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Figure 4.13: The bulk refractive index sensitivity of the silicon nitride microdisk
resonator.

The control experiment had a maximum frequency excursion of 200 MHz dur-

ing the 20 minute target flow step. This control response along with the mea-

sured sensitivity of -13.61 THz/RIU leads to an experimental limit of detection of

∆n = 1.46× 10−5.
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4.3.4 Adsorption of proteins

The bulk refractive index response of the microdisk resonator is a key characteristic

of any label-free biosensing system. However, the main goal of label-free biosensing

is to detect resonant frequency shifts associated with the binding of proteins to the

resonator surface or other proteins immobilized thereon. Biomolecules typically have

a refractive index nmol ≈ 1.45. Consequently, when a protein binds to the surface

of a resonator displacing water (n ≈ 1.33), the effective index of the resonant mode

increases and induces a red shift in the resonant frequency. Here we present the

results of protein binding experiments performed using the silicon nitride microdisk

resonators and 1310 nm SFL. These experiments were focused on either nonspecific

adsorption of protein or specific adsorption of protein via non-covalent surface func-

tionalization chemistry. The measurement setup used is shown in Figure 4.7.

4.3.4.1 Non-specific adsorption of proteins

To obtain an initial impression of the capabilities of the system for detecting simple

protein adsorption events, we investigated the nonspecific adsorption of bovine serum

albumin (BSA), a model and well understood protein, to the surface of the silicon

nitride microdisks. Nonspecific adsorption is mediated by electrostatic attraction be-

tween the protein and a surface and is pH dependent. The pH of the buffer was 7.4,

in which BSA is positively charged. Non-specific binding is basically indiscriminate,

i.e., BSA should bind to all surfaces including the sensing region of the microdisk.

However, as the adsorption is electrostatic and non-covalent, the binding is not per-

manent and molecules will desorb from surfaces as well. It should also be possible to

remove bound BSA using a surfactant or low pH buffer.

Experiments to characterize the response of the resonator to nonspecific adsorp-

tion were similar in structure to the saline solution bulk refractive index experiments.

Solutions consisting of BSA in phosphate buffered saline (PBS) were made from a

stock solution purchased from Thermo Scientific. Concentrations ranging from 100 fM

(1× 10−13 mol/L) to 1 µM in steps of 10× were prepared by sequential dilution. The
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Figure 4.14: (a) The microdisk prior to flow of BSA solution, (b) microdisk sur-
rounded by BSA solution, (c) microdisk post PBS flush showing nonspecifically ad-
sorbed BSA.

following procedure was used to introduce BSA solutions to the microdisk surface:

1. Flow PBS for several minutes to obtain baseline response and resonant fre-

quency.

2. Flow BSA solution and observe resonant frequency shift.

3. Flow PBS to flush microfluidic channel, removing excess BSA solution and

unbound BSA.

4. Flow sodium dodecyl sulfate (SDS) solution, a surfactant, to remove all BSA

from all surfaces in preparation for the next experiment.

5. Flow PBS to return the sensor to baseline operation.

Experimental results from selected experiments are shown in Figure 4.15. The flow

rate for all solutions was 50 µL/min. The BSA concentrations for experiments shown

in Figure 4.15 and are rather large and were from the upper range of concentrations

used in experiments. A control experiment consisting of a PBS buffer flow was also

performed to serve as a reference. In general, the nonspecific adsorption experiments

were not very reliable and it was difficult to reproduce results on demand. We believe

this is due to the pH sensitivity of the electrostatic interaction between BSA and

silicon nitride. For a given set of non-specific adsorption experiments comprising

a flight of BSA concentrations from 100 fM to 1 pM, all concentrations provoked
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an obvious resonance shift from the resonator. However, there lacked a clear trend

between increasing concentration of BSA and increased magnitude of the resonant

frequency shift. Such a relationship is necessary for the label-free biosensing system

to be realized as a tool for quantitative measurement.

4.3.4.2 Specific adsorption of protiens

Using the silicon nitride microdisk resonator platform, we performed proof-of-principle

specific sensing experiments with the proteins biotin and streptavadin. The strep-

tavadin/biotin interaction is well understood [78,79] and the specific binding of these

proteins has been used to characterize several label-free biosensing systems [6, 80].

We used the covalent surface functionalization method discussed in Chapter 6. This

technique covalently tethers biotin molecules to the resonator surface at the end of

a short polyethylene glycol (PEG) chain (tens of nanometers in length). The biotin

molecules are then available for streptavadin molecules to bind onto as they pass

though the microfluidic channel.

The functionalized resonator was first exposed to a buffer solution consisting of

PBS with 0.1% BSA. The BSA in the buffer solution serves to occupy and bock all

of the non-specific adsorption sites on the resonator. This ensures that any resonant

frequency shift seen is due to the specific binding of streptavadin and biotin and not

to the non-specific adsorption of streptavadin onto the disk surface. Streptavadin

analyte solutions were also prepared by disolving streptavadin into the same PBS-

BSA buffer solution. Analyte solutions with concentrations of streptavadin ranging

from 100 fM to 100 nM were flown over the resonator surface. A control experiment,

in which the analyte solution was also the PBS-BSA buffer, was also performed.

The results of the experiment are shown in Figure 4.16. Only the results from the

control and 100 nM streptavadin solution are shown. The 100 nM solution exhibited

a clear and large resonance shift of nearly 35 GHz during the twenty minute flow

period. The resonance shift continued and then saturated during the buffer flush

step. The saturation of the resonance during this step is evidence that the resonance

shift observed is due solely to the binding of streptavadin and biotin and therefore an
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Figure 4.15: The dynamic response of the R2 mode of the silicon nitride microdisk
resonator to the flow BSA solutions of various concentration. The nominal wavelength
was 1307 nm. Note that steps 3 through 5 are not shown.
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Figure 4.16: Dynamic resonance response of a silicon nitride microdisk resonator
covalently functionalized with biotin to a 100 nM streptavadin solution and to a
control buffer solution.

alteration of the resonator surface. The responses from the other analyte solutions

were not distinguishable from the control on this scale. The flow rate of all of the

solutions was 50 µL/min. At this flow rate, it is possible that there is not enough time

for diffusion to transport streptavadin molecules through the flow boundary layers to

resonator surface at low concentrations. This can be improved by reducing the flow

rate to allow for increased diffusion time.
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Chapter 5

Differential sensing with dual
silicon nitride (Si3N4) microdisk
resonators

5.1 Introduction

The extreme sensitivity of high-Q optical resonators to refractive index perturbations

makes them fantastic sensors for the detection of biomolecule interactions in label-

free biosensing experiments. Unfortunately, analyte binding events are not the only

thing that can affect the effective index of the resonant mode and cause a shift in the

resonant frequency. Changes in environmental temperature and pressure, flow effects,

and drift in the laser sweep starting frequency can all result in spurious frequency

shifts that obscure the resonator response signal due to analyte binding.

Here, we implement a differential sensing technique to remove these environmen-

tal factors from the measurement. This is accomplished by utilizing two high-Q

silicon nitride microdisk resonators coupled to the same waveguide. The dual disk

approach provides an on-chip reference which can be interrogated concurrently with

the resonator under test without the need for additional optical inputs and outputs,

or supporting hardware.

In this chapter, we discuss the observed drift in resonant frequency of the microdisk

resonators both in the air environment and under flow during sensing measurements.

A solution to the resonance drift issues in the form of dual microdisk resonators
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in a dual laminar flow microfluidic channel is proposed. Theoretical analysis and

numerical simulations of the dual flow microfluidic channel are presented along with

a qualitative experimental demonstration. Finally, we show a reduction of resonance

drift in measurements of bulk refractive change and non-specific adsorption of BSA

using the dual resonator dual flow differential sensing technique.

5.2 Resonant frequency drift

Changes in the resonant frequency of the whispering gallery mode not associated with

adsorption of the target analyte are undesired. Resonance drift, regardless of physical

origin, diminishes the limit of detection of the measurement system, negating the

resolution (∆λmin) advantage of having a high-Q resonator. Spurious drifts can also

corrupt analyte binding signals making a quantitative assay inaccurate or impossible.

Measurements of the relative position of the resonant frequency over time fre-

quency can be corrupted by drift from two sources,(1) unintended perturbations to

the resonator’s environment, and (2) variations in the starting frequency of the linear

chirp produced by the SFL.

5.2.1 Environmental resonance drift

5.2.1.1 Flow induced drift

We observed resonant frequency drift at various rates when microdisks were subject

to flow through the integrated microfluidic channel. Examples of two such cases are

shown in Figure 5.1. The measurement for the red curve was taken directly after

that of the curve in blue. Two syringes, each with DI water, were connected to the

microfluidic flow delivery system via a manually actuated valve. The driving flow was

alternated between these two sources every 10 minutes corresponding to the periodic

short lived transients in the figures. Recall from the simulation and analysis of the

resonator thermo-optical characteristics in Chapter 3 that the microdisk mode with a

water upper cladding has an overall negative thermo-optical coefficient dn/dT . This
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Figure 5.1: Dynamic response of the microdisk resonator to flow of deionized water
at 100 µL/min

implies that increases in the mode temperature should result in a decrease of the

mode effective index and therefore an increase in the resonant frequency (decrease

in wavelength). Similarly, decreases in the resonator temperature should result in a

decrease in the resonant frequency (increase in wavelength). Both flow experiments

exhibit a blue shift in the resonant frequency which we attribute to warming of the

resonator and the solution immediately surrounding it by optical absorption. This

explanation also helps to explain the decrease in drift rate during the initial flow and

the more constant drift rate in the second experiment in terms of the system reaching

a thermal equilibrium.

5.2.1.2 Laser drift

Measurements of relative frequency shifts require some reference frequency from which

to judge changes. In the case of a single microdisk resonator interrogated by an SFL

this reference frequency is the starting frequency of the linear optical chirp. The

laser frequency output is given by Equation 2.1. The steady state analysis of the

SFL control loop resulted in Equation 2.12 which relates the starting frequency of
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Figure 5.2: Resonant frequency drift as a function of time over an hour, measured
with a high-Q mode of a silicon nitride microdisk with an air upper cladding.

the sweep to the phase of the reference oscillator and the delay of the interferometer.

Small changes in the length of the delay due to variations in the temperature or

length of the interferometer — known as fiber breathing — result in drift of the

starting frequency of the SFL. Drift in the free running starting frequency of the laser

may also manifest as drift in the closed loop starting frequency of the laser. However,

the free running frequency difference is more likely the cause of discrete jumps in the

starting frequency equal to the FSR of the MZI as indicated by the 2πm/τ term in

Equation 2.12. These FSR frequency jumps are easily recognized and corrected for

during measurements.

Experiments to determine the starting frequency drift of the laser were performed

with the SFL in both open loop and closed loop configurations. Using the sensing

system shown in Figure 4.1, transmission spectra of a Si3N4 microdisk resonator

mode with a loaded Q factor of 2.1× 106 were captured at 3 second intervals for one

hour. The resonator chip was covered by a PDMS microfluidic channel permanently

bonded to its surface (the channel was free of liquid during these measurements), and

the measurement was performed in an enclosure to minimize exposure to thermal
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variations and air currents in the laboratory. The total temperature change in the

measurement enclosure during the measurements was less than 0.01◦C as measured

by a thermistor located near the device. Lorentzian lineshape functions were fit to

each spectral measurement and the drift in resonant frequency over the duration of

one hour was calculated. The results are shown in Fig. 5.2. In the open loop case,

where neither the starting frequency of the sweep nor the sweep rate are locked to

the electronic reference, the mean and variance of the frequency drift were calculated

to be −50 MHz and 1.6× 1015 Hz2 respectively. The maximum frequency excursion

was −120MHz over 1 hour. In the closed loop case, the mean and variance of the

frequency drift were calculated to be −17 MHz and 1.5× 1014 Hz2 respectively. The

maximum frequency excursion was −37 MHz over one hour.

Operating the SFL in the closed loop configuration provides nearly an eight fold

improvement in mean wavelength drift and nearly a 19 fold improvement in the

variance of the frequency drift. The open loop case performed better than expected

due to the use of the predistorted open loop driving current. The starting frequency

drift of the SFL in the closed loop case is ultimately limited by the stability of the

fiber MZI in the feedback loop. Great care was taken to isolate the MZI from both

thermal and vibrational instabilities. The measured frequency drift of 37 MHz over

one hour corresponds to a thermal drift in the fiber MZI of approximately 0.008◦C.

Slightly better thermal stability may possibly be achieved by immersing the MZI in

an ice bath to stabilize its temperature to 0.001◦C as in [14].

The previous measurement of long term laser drift relied on the assumption that

the resonant frequency was stable through out the experiment. Strictly speaking,

the drift measured was that of the entire system. The drift solely due to starting

frequency variation can be isolated using the SFL to observe a molecular vibrational

transition such as a gas absorption line. HF gas has absorption lines at both 1304 nm

and 1312 nm and could be used for this purpose. However, we did not perform this

measurement.
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Figure 5.3: A conceptual diagram of the concept of dual microdisk resonator differen-
tial label-free biosensing. Red arrows are the optical signal. Two blue arrows signify
two distinct laminar flows. The mock transmission spectrum shows the independent
resonances of the two disks simultaneously.

5.3 Dual microdisk resonators

Undesired resonance drift is an unavoidable fact of refractive index based label-free

optical biosensing. These complications, whether environmental or systemic in origin,

are difficult to separate and understand. The solution to these issues is to employ

a differential measurement to reject the spurious signals introduced by these noise

sources.

5.3.1 Dual disk proposal, design, and idea

A differential measurement seeks to reject unwanted environmental fluctuations as

common mode noise by subtracting two signals, a reference and a probe, that are both

exposed the the same noise sources. The design of a differential measurement scheme

for the label-free optical biosensing system must consider all sources of system noise

to be rejected and ensure that both the probe and reference resonators are exposed

to them.

A schematic of the chosen differential measurement architecture is shown in Fig-

ure 5.3. Two silicon nitride microdisk resonators are coupled to the same bus waveg-

uide. The composite transmission spectrum of the waveguide should therefore contain
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Lorentizian shaped dips corresponding to the modes of both resonators. Slight imper-

fections in the fabrication of both resonators will ensure that the resonant modes of

the two disks will be close in frequency, allowing them to be easily monitored simul-

taneously, but not overlapping. Alternatively, the radius of the disks could be chosen

to differ slightly, imposing a frequency offset. A dual flow microfluidic channel is used

to flow independent solutions over the probe and reference disk simultaneously. The

laminar flow that occurs within a microfluidic channel allows for side-by-side propa-

gation of two distinct liquids without mixing. Aiming to take advantage of this effect,

we flow a reference buffer solution over the reference disk and the analyte solution

over the probe disk simultaneously. This side-by-side flow structure creates nearly

identical environmental conditions, i.e., pressure, temperature, and flow rate, for both

the probe and reference disk.

The use of a dual disk differential sensing scheme relaxes requirements on the SFL

used in the measurement. The long term stability of the starting frequency of the

optical chirp is no longer necessary. A precisely linear chirp is still required.

Figure 5.4: An overhead image of the dual disk resonators within a dual flow mi-
crofluidic channel
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5.3.2 Experimental demonstration

To investigate the potential of the dual disk differential sensing technique we fabri-

cated devices using the same fabrication procedure as described in Section 3.4.1. An

optical micrograph of the dual disk resonators lying within a dual flow microfluidic

channel is shown in in Figure 5.4.

We measured the transmission spectra of the dual disk resonator devices using

the measurement system shown in Figure 4.1. The SFL had a nominal wavelength

of 1310 nm and produced optical frequency sweeps with a duration of 1 ms and a

frequency bandwidth of 100 GHz. The transmission spectrum of a representative dual

disk resonator device is shown in Figure 5.5.
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Figure 5.5: The normalized transmission spectrum of a dual disk resonator device.
Three different radial order modes are seen for each disk.

As a proof-of-concept experimental demonstration of differential sensing with a

dual microdisk resonator device, we tracked the resonant frequency of the device

measured by the SFL as it warmed up. The warm up period of the SFL is typically

several hours during which the SCL and fiber MZI settle to their respective steady

state temperatures. The results from the measurement are shown in Figure 5.6. The

pair of resonances used in the experiment were both R2 modes. The quality factors
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of each mode were 1.7 × 106 and 1.5 × 106 for the left and right mode respectively.

A representative transmission spectrum captured during the measurement is shown

in Figure 5.7. The mean and variance of the frequency drift of the differential signal

were −1.7 MHz and 3.2 × 1013 Hz2 corresponding to a mean and variance of the

wavelength drift of .09 pm and .0001 pm2. This uncertainty in the resonance position

yields a limit of detection of ∆n = 3.6× 10−7 for measurements taking place on the

time scale of an hour.
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Figure 5.6: Dynamic resonance shift over 1 hour during SFL warm up. The individual
resonance positions are shown in the upper panel. The differential signal is shown in
the lower panel. A 1 GHz offset is applied between the reference and probe curves on
the upper panel in order to distinguish them.

The results are a direct confirmation of the idea behind differential measurement

and the implementation of this idea using dual resonators coupled to the same waveg-

uide. The individual resonances drift by 2.85 GHz during the hour long measurement.

The differential signal drifts by only 6.2 MHz in that same time. This represents a

460 fold improvement. In comparison with the hour long drift results obtained with

a single microdisk (with the starting frequency of the sweep as the reference) from
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Figure 5.2, of 37 MHz, differential sensing produces a nearly six fold improvement.

Another important implication of this result is that the SFL warm up period is no

longer a time that is unsuitable for conducting measurements with the system.
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Figure 5.7: A detailed view of the transmission spectrum of a single pair of R2 mode
resonances from a dual disk device. The blue curve is the measured data, the red
curve is a double Lorentzian fit. The loaded Q of left and right modes were 1.7× 106

and 1.5× 106 respectively.

5.4 Dual flow microfluidic channels

It is well known that fluids traveling within small channels in which the Reynolds

number Re is low, i.e., Re ≈ 1, experience laminar flow [81]. Transport of dilute

particles within laminar flows is mediated by diffusion, making mixing of laminar flows

very difficult [82]. The lack of mixing in side-by-side laminar flows is an advantage in

the design of the dual flow microfluidic channel envisioned in Figure 5.3. Here, we use

both analytical and theoretical fluid flow models in the design of the dual flow channel

microfluidic device. Careful design of the channel width and the diffusive mixing

region are necessary to maintain separation of flows over the microdisk resonators

and to avoid diffusion of analyte from the probe flow into the reference flow.
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5.4.1 Confluence of laminar flows

In order to gain an understanding of the characteristics of the dual laminar flow

channel we use a simple model shown in Figure 5.8a where the analyte flow is on the

left side and the reference flow (that does not contain any analyte) is on the right

side. Starting with the continuity equation for an incompressible flow we have

∂cN
∂t

+

(

vx
∂cN
∂x

+ vy
∂cN
∂y

+ vz
∂cN
∂z

)

= DN

(

∂2cN
∂x2

+
∂2cN
∂y2

+
∂2cN
∂x2

)

, (5.1)

where cN is the concentration of analyte species N , v is the velocity, and DN is the

diffusion coefficient of N . Under steady state laminar flow, we take ∂cN/∂t = 0

and vx = vy = 0. We neglect axial diffusion so that (∂2cN/∂z
2 = 0). Equation 5.1

therefore becomes

vz
∂cN
∂z

= DN

(

∂2cN
∂x2

+
∂2cN
∂y2

)

. (5.2)

The primary concern in the design of the dual flow microfluidic channel is the lim-

iting lateral diffusion of the analyte species from the probe channel into the reference

channel. Dropping the vertical diffusion term from Equation 5.2 and choosing to look

at a particular cross section of the channel at a moment in time we obtain the well

known one dimensional diffusion equation

∂cN
∂t

= DN
∂2cN
∂x2

, (5.3)

where we used

vz
∂cN
∂z

=
dz

dt

∂cN
∂z

=
∂cN
∂t

, (5.4)

Equation 5.3 has well known solutions of the form

c (x, t) = c (0, 0) erfc

(

x

2
√
DNt

)

, (5.5)

where erfc is the complementary error function. Plots of Equation 5.5 for several
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Figure 5.8: (a) A schematic diagram of the dual flow microfluidic channel for con-
structing the simple one-dimensional diffusion model. (b) The concentration profile
of the analyte species within the reference flow path after side-by-side flow for .042
seconds. The diffusion coefficient is a parameter.
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analyte species of interest are shown in Figure 5.8b. These analytes, along with their

molecular weight and diffusion coefficients, are given in Table 5.1. The channel under

consideration has dimensions 10 µm × 600 µm×7000 µm as shown in Figure 5.8a. The

cross-sectional area is therefore 6000 µm2. For a volumetric flow rate of 60 µL/min

through this cross section we obtain an average flow velocity of 1× 107 µm/min. For

a channel length of 7000 µm the transit time is 0.042 s. This transit time was used

as the time for the diffusion calculations of Figure 5.8b.

From the results of the calculations in Figure 5.8b, we see that even for the most

diffusive species, the concentration of analyte in the reference flow is nearly five orders

of magnitude lower than in the the probe flow at lateral displacement of 40 µm. For

a analyte species more akin to those measured in Chapter 4 the concentration is 15

orders of magnitude lower at a lateral displacement of 40 µm. We note that a safe

design is nearly guaranteed by placing the resonators more than 80 µm from the flow

interface.

5.4.2 Numerical simulations of dual flow

To improve upon the simple one-dimensional diffusion analysis of the previous section

and to simulate the full microfluidic channel design in more detail, we performed

two-dimensional laminar flow simulations in Comsol using both the fluid flow and the

dilute species transport physics models.

In these simulations, the microfluidic channel geometry from figure 5.8a was used

to solve for the channel velocity profile throughout. The Reynolds number was found

to be less than one, allowing for the Stokes flow approximation [81]. With the velocity

Molecule calcium fluorescent biotin BSA

MW (daltons) 40 831 66, 000

DN (cm2/s) 1.2× 10−5 3.4× 10−6 6.5× 10−7

Table 5.1: The molecular weight and diffusivity of analyte molecules of interest used in
the one-dimensional diffusion model for side-by-side laminar flows. MW is molecular
weight.
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Figure 5.9: The concentration profile of a dilute species under steady pressure-driven
flow in a dual flow microfluidic channel. For this simulation DN = 6.5× 10−7 cm2/s
and the volumetric flow rate was 60 µL/min. The dimensions of the main channel
were 10 µm × 600 µm× 7000 µm.

profile in hand, the concentration profile of the dilute species introduced to the channel

via the probe inlet was calculated by numerically solving Equation 5.2. The results

are shown in Figure 5.9.

For a given microfluidic channel width, the main design parameter is the distance

from the channel center to the edge of the resonators. We desire the resonators to

be sufficiently far from the channel center that there is no overlap of the reference

resonator with the region of diffusive mixing that forms at the flow interface. From

Figure 5.9 it is clear that two laminar flows stay separated and that there is very

little diffusive mixing. In the simulation, the pressure difference between the inlets

and outlets was 25 kPa leading to a maximum flow velocity of 1.6 cm/s; this is

close to the experimental flow velocities. The diffusion coefficient of the analyte was

DN = 6.5× 10−7 cm2/s corresponding to that of the protein BSA. The concentration

and velocity profiles along a cut line transverse to the direction of flow and 1 mm

from the end of the channel are shown in Figures 5.10a and 5.10b respectively.

The velocity profile of the flow depicts nearly uniform velocity across the channel.

The zero velocity at the channel boundaries are a result of the non-slip condition [81].

Typical laminar flow in a pipe exhibits a parabolic velocity profile, however the very

high aspect ratio of the microfluidic channel, in this case 60 : 1, leads to the very
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Figure 5.10: (a) The concentration profile of the dual flow channel simulation, (b)
the velocity profile of the dual channel flow simulation. The red vertical lines mark
the positions of the microdisk resonators.

uniform velocity profile. The concentration profile clearly shows the region of diffu-

sive mixing. We see that at 50 µm displacement from the center of the channel, the

concentration of analyte in the reference flow is negligible. The red vertical lines in

both figures denote the extents of the microdisk resonators. It is clear from the sim-

ulations that placing the disks 160 µm apart edgewise will ensure equal velocity flow

over each disk while keeping both in their respective flows. This choice of resonator

spacing coincides with the size of one main field of the e-beam lithography system.

Using a single main field for each disk and one for the space between the devices is

important to avoid stitching errors that may arise from writing a mask pattern across

two exposure areas. Stitching errors result in increased scattering and therefore lower

Q resonances.

We fabricated the dual channel microfluidic devices from PDMS using the same

fabrication procedure as outlined in Chapter 4. The channel geometry was identical

to that of the simulation shown in Figure 5.9. The main flow section had dimensions

of 10 µm × 600 µm × 7000 µm. The inlet and outlet tributaries had dimensions

of 10 µm × 300 µm × 1000 µm and were set at an angle of 45 degrees to the main

channel.

As a qualitative proof-of-concept, we bonded a dual flow device to an unpatterned
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Figure 5.11: An optical micrograph of the dual laminar flow channel with water and
dilute blue ink solution flowing side by side at 10 µL/min.

silicon nitride dummy chip using the oxygen plasma treatment described in Chapter 4.

We then used a syringe pump to inject both DI water and a dilute blue ink solution

into the channel. A frame capture from a video of this experimental demonstration

is shown in Figure 5.11. The separation of flows is readily apparent. Flow rates from

3 µL/min to 300 µL/min were used, no qualitative difference in the flow separation

was seen.

5.5 Experimental demonstration

Having prepared the foundation for the dual microdisk resonator differential sens-

ing technique in the previous sections, we move on to experimental demonstrations.

Here, we combine the optical and microfluidic modules to demonstrate differential

sensing of bulk refractive index changes as well as non-specific adsorption of BSA at

a concentration of 100 fM.

5.5.1 Bulk refractive index experiments

An experimental setup similar to that of Figure 4.7, with the addition of a second

syringe pump to feed the reference flow channel, was used to perform bulk refractive

index response measurements. Transmission spectra of the dual resonator device were
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captured once per second. Individual Lorentzian lineshape functions were fit to each

of the probe and reference resonances. The individual resonance positions as well as

the difference between them, taken to be ∆νR−∆νP , were then plotted as a function

of time. The procedure for the experiment was the following:

1. Initialize flow of deionized (DI) water over both reference and probe resonators

at the same flow rate.

2. Switch probe resonator flow to saline solution via computer actuated solenoid

valve. Reference flow remains DI water.

3. Switch probe flow back to DI water. Reference flow remains DI water.

An example of a dynamic resonance response curve is shown in Figure 5.12. The

observed resonant frequency shift is in response to the flow of 1/256% by weight NaCl

solution corresponding to a bulk refractive index change ∆n = 6.4 × 10−6 according

to [76]. The flow rate of the both the reference and probe solutions was 100 µL/min.

The flow steps were of 5 minutes, 15 minutes, and 15 minutes duration respectively.

A control experiment consisting of the continuous flow of DI water in both channels

was also performed and is shown in Figure 5.12. The control experiment resulted in a

resonance shift of approximately 65 MHz which can be used with the measured bulk

refractive index response to determine the experimental limit of detection.

Both the individual probe and differential curves clearly display the resonance

shift due to the introduction of saline. However, there is a small amount of resonance

drift that can be seen from the reference resonance that is not present in the difference

signal. Additionally, a periodic modulation of the resonance frequency is seen in both

the reference and probe signals but is removed in the difference signal. The differential

technique clearly cleans up both measurement noise and unwanted resonance drift in

bulk refractive index response measurement. Note that we see no resonance shift in

the reference signal after the introduction of saline. This is evidence that reference and

probe flows are indeed separated and that there is no contamination of the reference
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Figure 5.12: The dynamic resonance response of a dual resonator device. The upper
panel shows the resonance shift of both the reference and probe resonators. The lower
panel shows the differential signal.

channel by diffusive transport. Simply put, the dual flow microfluidic device performs

as intended.

The previous experimental demonstration of the bulk refractive index response of

the differential sensor to 1/256% saline solution was done in the context of a flight

of saline solution concentrations. The goal of these experiments was to show the

noise and drift reduction accomplished by the differential measurement over a large

range of bulk refractive index differences. As in the single resonator experiments,

saline solutions were prepared by sequential dilution from a stock 1% NaCl by weight

solution. The differential signal from the dynamic resonance responses are shown in

Figure 5.13a. The maximum or saturated frequency shift observed during each flow

experiment is plotted vs. ∆n in Figure 5.13b. A linear fit to the bulk refractive index

response yeilds a slope of 18.2 THz/RIU and is in good agreement with the trend of

salinities 1/64% − 1/4%. However the responses from the two lower concentration

saline solutions were slightly larger than would be predicted by the simple linear
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Figure 5.13: (a) Differential dynamic resonance response for bulk refractive index
flow experiments. (b) The bulk refractive index response as determined from the
experimental data in (a).
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model. This is most likely due to second order corrections to the resonant frequency

caused by bulk refractive index perturbations. We note that resonator sensitivity

derived from the slope is 7.7% greater than that measured for the single disk sensor

and predicted by numerical simulations. The cause of this discrepancy is not currently

understood.

Using the experimentally determined bulk refractive index sensitivity of 18.2

THz/RIU and the control experiment resonance drift of 65 MHz, yields an exper-

imentally determined limit of detection of ∆n = 3.57× 10−6. This represents nearly

an order of magnitude improvement over the experimental limit of detection of the

single disk device.

5.5.2 Non-specific adsorption of BSA

We also experimentally demonstrated the sensing of nonspecific adsorption of the

protein BSA at ultra low concentrations using the dual resonator differential measure-

ment. The silicon nitride resonator surface was functionalized with (3-Aminopropyl)

triethoxysilane (APTES) by flowing a solution of 2% APTES in ethanol. This silane

molecule covalently binds to Si atoms on the resonator surface and presents positively

charged amine (NH2) groups that aid the nonspecific adsorption and retention of BSA

molecules. Both reference and probe resonators were exposed to the APTES solu-

tions in order to maintain close spacing of the resonances. The microfluidic device

was flushed with PBS before commencing the BSA flow experiments.

The reference flow was PBS. The probe flow was BSA diluted in PBS to a concen-

tration of 100 fM. The dynamic resonance response of both the probe and reference

channels as well as the difference signal are shown in Figure 5.14. The familiar reso-

nance frequency blue shift is clearly seen in both the probe and reference responses.

A periodic modulation, most likely related to the syringe pumps, is also plainly visi-

ble. Neither of these spurious resonance shifts appears in the differential signal. The

frequency shift due to to the adsorption of BSA was 250 MHz after 12 minutes of

exposure. It is difficult to attribute this frequency shift to a quantity of adsorbed



127

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

Time (s) →

∆ν
R

,P
 (

G
H

z)

 

 

Reference
Probe

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6

Time (s) →

∆ν
R
−

∆ν
P
 (

G
H

z)

 

 

Differential

Figure 5.14: The dynamic resonance response of the dual resonator device to a 100 fM
solution of BSA in PBS. The upper panel shows the resonance shift of both the
reference and probe resonators. The lower panel shows the differential signal.

BSA. Resonator coverage is incomplete and studies on mass transfer and transport

phenomena are beyond the scope of this work.
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Chapter 6

Conclusion

6.1 Summary of the thesis

The goal of this work has been to introduce improvements to important aspects

of label-free optical biosensing in order to usher the technique from a laboratory

demonstration to a useful analytical and diagnostic tool. This has been accomplished

via the avenues of the interrogating laser source, the refractive index transducer, and

the analyte delivery system.

We have introduced a low cost, non-mechanical tunable laser source capable of pro-

ducing highly linear broadband optical frequency sweeps. This optoelectronic swept

frequency laser leverages the unique direct modulation (frequency-current) tuning

characteristic of single section semiconductor laser diodes to produce optical chirps

with bandwidths ranging from 100 GHz to 500 GHz and durations as short as 100 µs.

An electronic feedback loop and predistorted drive current are used to linearize the

slope of the frequency sweep and lock the starting frequency of successive sweeps. The

precisely linear optical chirps generated by the SFL enable transmission spectroscopy

measurements of the exact nature needed in label-free optical biosensing systems. We

demonstrated using the SFL to perform label-free optical biosensing measurements

with both microtoroid and microdisk optical resonators.

The potential of the SFL architecture to adapt to laser sources at shorter wave-

lengths is also a key advantage. An SFL source operating at a wavelength of 1064 nm

is expected to allow operation of high-Q planar microdisk resonators beyond the wa-
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ter absorption limit in an aqueous environment with the potential for detection limits

near ∆n = 1× 10−7.

We have designed, fabricated, and demonstrated a high-Q planar integrated mi-

crodisk resonator and waveguide using a silicon nitride on silica material system. The

resonators were designed to be highly flexible with respect to wavelength of opera-

tion, enabling a future transition to shorter wavelength lasers. Careful consideration

was given to the resonator waveguide coupling physics. Designs were studied using

a coupled mode approach in order to obtain critical coupling for the fundamental

and higher radial order modes. We realized resonators with loaded Qs greater than

7×106. These are the highest quality factors reported for planar integrated microdisks

on silicon nitride of this size at 1310 nm.

The planar on-chip resonator design was also shown to be friendly to microfluidic

integration. PDMS microfluidic channels were fabricated using standard methods and

bonded onto resonator chips enabling precise and controlled analyte fluid delivery.

Using the integrated sensor device, we demonstrated bulk refractive index sensing,

as well as specific and non specific adsorption of model proteins onto the resonator

surface. The experimentally measured bulk refractive index response of the sensor

was shown to be in excellent agreement with simulated values.

Lastly, but perhaps most importantly, we have conceived and implemented a dif-

ferential measurement scheme to alleviate the sensing measurement from several con-

siderable sources of noise and frequency drift. The differential measurement utilized

two high-Q microdisk resonators coupled to the same bus waveguide within a dual

laminar flow microfluidic channel. The unique properties of laminar flow were used

to maintain separation of analyte and reference flows while both resonators were

subjected to identical environmental drift factors including temperature, pressure,

and flow cooling. Differential measurements were shown to significantly reduce mea-

surement noise and improve the reliability and performance of bulk refractive index

sensing measurements.

Overall, this work has made significant improvements in the implementation of

an on-chip integrated label-free biosensing system. We have prepared the foundation
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for future work using this platform and for the evolution of label-free sensing from

a highly complex laboratory based assay to a powerful tool for life sciences research

and medical diagnostics.

6.2 Future outlook

6.2.1 Covalent surface functionalization

The next major development necessary for the biosensing system to move towards

practicality, is the development of a covalent chemistry for the functionalization of

the resonator surface. The label-free sensing approach requires the immobilization of

one half of a protein or biomolecule conjugate pair onto the active sensing surface of

the silicon nitride microdisk resonator in order to capture the other half. Fortunately,

there are are several well established chemical methods that can potentially be used

to do so. Here we will briefly describe one of the more promising methods that is

compatible with silica, and potentially silicon nitride.

The functionalization procedure has several steps and can be performed by flowing

solutions through previously bonded microfluidic channels or by treating the resonator

chip prior to bonding. The first step involves the deposition of an amino silane;

either (3-Aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)-trimethoxysilane

(APTMS) can be used. These silane molecules react with hydroxyl (-OH) groups

that form on the surface of the silicon nitride or oxide forming a covalent bond.

Both APTES and APTMS are terminated with an amine (-NH2) group allowing for

further covalent bonds to be formed with many other functional groups including N-

hydroxysuccinimide esters. APTES can be deposited on the resonator surface in the

vapor phase, or by immersion in a 2% APTES in ethanol solution, or by flowing such a

solution over the chip through a microfluidic channel. Depending on the type of assay

desired, various heterobifunctional linking molecules can be intruduced to the chip to

bind with the amine on one end and provide another different functional group to bind

a biomolecule of choice. The heterobifunctional biolinker acts as a brige between the
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amine terminated resonator surface and an antibody, single stranded DNA fragment

or protien. The final step involves immobilization of the probe molecule. These

surface functionalization steps are depicted in Figure 6.1.

Figure 6.1: A diagram of the proposed covalent surface functionalization process.

6.2.2 Analyte transport efficiency

Measurement time is a critical parameter for a practical analytical or diagnostic in-

strument. The duration of measurements observed in Chapters 4 and 5 were on the

order of an hour and need to be shortened. Limiting factors for sensing measurement

duration included length of plumbing leading from syringe pumps to the microfluidic

channel inlet, valve dead volume, and analyte diffusion within the flow channel. Dead

volume and tubing length can be easily reduced by utilizing smaller valves, and closer

placement of pumps and valves to the device. Alternatively, multilayer microfluidic

systems can be implemented, integrating pumps and valves with the sensor chip [83].
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A careful analysis of analyte transport within the channel is also necessary to improve

measurement times. Laminar flow, a feature used to advantage in the dual flow differ-

ential measurement, increases measurement time by limiting dilute species’ transport

to diffusion. The microdisk resonator is located on the wall of the fluid channel well

within the velocity boundary layer. Analyte molecules must therefore diffuse from

the bulk fluid flow in the center of the channel through the boundary layer (≈ 2 µm

thick) to the disk surface [84]. Turbulent mixing within a flow channel could be used

to remove the diffusion bottle neck and decrease measurement times [83].

6.2.3 Wavelength of operation

As discussed in Chapter 4, optical absorption losses due to the aqueous sensing envi-

ronment limit the loaded Q of the resonator and therefore the frequency resolution of

the sensing measurement. The fabrication-limited Q in air has been measured to be

nearly ten million. Moving the SFL wavelength to 1064 nm will result in an increase

in the measured wet quality factor of nearly an order of magnitude. As shown in

Table 4.1 the calculated water absorption Q at 1064 nm for the nitride microdisk

used in this work is 8.6× 106, on par with the loaded fabrication Q of the resonator

in air. At such a value, water absorption ceases to be the dominant loss channel.

An SFL sources have been developed in parallel with this work using both DFB

lasers and VCSELs with a nominal wavelength of 1064 nm. The transmission spectra

of a nitride microdisk with both water and air environments measured using the

1064 nm SFL are shown in Figures 6.2a through 6.2d. The measured loaded wet Q

determined by a Lorentzian fit is 1.7 × 106. This value should be compared to the

loaded dry Q of 1.9 × 106 for a similar resonance on the same device prior to water

immersion. The loaded wet quality factor measured here is the highest reported for

a planar integrated optical mirco-resonator of any type at any wavelength by nearly

two orders of magnitude.
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Figure 6.2: Transmission spectra from a silicon nitride microdisk resonator as mea-
sured with a 1064 nm optoelectronic swept frequency laser.(a) 400 GHz wide spectrum
in an air environment, (b)400 GHz wide spectrum in a water environment,(c) detailed
spectrum of a single resonance mode in an air environment, (d) detailed spectrum of
a single resonance mode in a water environment.
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Appendix A

Bandwidth enhancement of linearly
chirped optical waves by four-wave
mixing in nonlinear media

A.1 Introduction

Linear swept frequency laser sources have applications in three dimensional imaging

and ranging [85], spectroscopy, [41] and sensing [86, 87]. The total range B (Hz)

(bandwidth) of the frequency sweep is the key parameter in many of these applica-

tions. In linear chirp ranging and imaging, the axial resolution δz is related to B

by [36]:

δz =
c

2B
. (A.1)

It is clear from Equation A.1 that swept frequency lasers with larger chirp band-

widths enable the resolution of smaller features in frequency modulated continuous

wave (FMCW) imaging systems. Many laser systems for generating large frequency

sweeps have been demonstrated including those using Fourier domain mode lock-

ing [22] and rotating polygonal mirrors within the laser cavity [23]. Though these

laser systems have large optical tuning bandwidths and therefore high axial resolu-

tion, they suffer from low coherence length, limiting the range in which they can be

used to several centimeters. The mechanical nature of the tuning mechanism also

limits the robustness of these lasers. Additionally, the frequency sweeps generated
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by such lasers are not linear and extensive post processing is necessary to correct the

nonlinearity and compose a target image.

Previously, we have demonstrated the generation of broadband precisely linear

optical frequency sweeps using a semiconductor laser in an optoelectronic phase-lock

loop [24]. This approach takes advantage of the electronic tunability of semiconductor

DFB lasers and VCSELs to construct light sources with frequency sweeps of up to

500 GHz in 100 µs. From Eq.(A.1) this provides an axial resolution of 300 µm in air.

Some imaging applications, including optical coherence tomography (OCT), are

aimed at imaging biological structures [88] and require axial resolutions on the order

of 15 µm corresponding to a chirp bandwidth of 10 THz. It is therefore desirable

to increase the chirp bandwidth of the optoelectronic swept frequency laser (SFL).

This can be accomplished using multiple SFLs covering adjacent frequency bands and

stitching together the resultant signals in post processing similar to synthetic aperture

radar [39]. Another method for increasing the bandwidth of the optoelectronic SFL

is to perform chirp multiplication by taking advantage of the nonlinear optical effect

of four wave mixing (FWM) [40]. The doubling of high bandwidth input chirps via

FWM is the subject of this appendix.

FWM can occur in a variety of materials including specialty highly nonlinear

silica optical fibers (NLF), integrated optical waveguides, and semiconductor optical

amplifiers (SOAs) amongst other media. Here, we will discuss FWM in NLF and

preliminary work on chirp doubling by FWM in silicon waveguides on chip.

A.2 FWM in NLF

Nonlinear optical fibers (NLF) exhibit four-wave optical interaction. The nonlinear

gain γ in these fibers is roughly an order of magnitude greater than in standard single

mode optical fiber (SMF) (γ = 11.3 km−1W−1 in NLF). Given two input fields to a

length of NLF, it can be shown that the power generated in the FWM output is given

by
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Pout(L) = γ2P 2
chPRe

−αL

(

1− e−αL

α

)2
α2

α2 +∆β2

(

1 +
4e−αL sin2 ∆βL

2

(1− e−αL)2

)

, (A.2)

where α is the loss per unit length and ∆β = 2βch−βR−βout which, to lowest order in
∆ω can be written as ∆β = −β2∆ω2, where ∆ω is the frequency difference between

the chirped and reference waves [40]. It is clear from Equation A.2 that the phase

mismatch ∆β between the three waves, Ech, ER, andEout has a large effect on the

FWM output power generated at the end of a fiber. Using the group velocity disper-

sion (GVD) parameter β2 = −λ2Dc/2πc, we can show that ∆β = −λ2Dc∆ω
2/2πc. In

order to achieve large nonlinear gain, NLF fibers with lengths of 100 m and dispersion

parameters of less than 1 ps/nm-km were used. As seen in Figure A.1, even in these

low dispersion fibers the phase mismatch accrued between the the input chirp and

reference fields at large frequency differences over 100 m of fiber hinders the FWM

process.
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Figure A.1: A comparison of the conversion efficiency spectra of 100 m segments of
NLF with different dispersion coefficients. In both cases the chirp and reference input
powers are 100 mW and γ = 11.3 km−1W−1
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To double a chirp of bandwidth B, the minimum separation between the frequency

of the reference wave ωR and the starting frequency of the chirped wave ωch0 is B. This

ensures that chirp doubled output frequency, given by ωout = 2ωch0 − ωR, does not

overlap with the input chirp. Consider an input chirp with a bandwidth of 500 GHz.

The frequency separation is 500 GHz at the start of the chirp and 1 THz at the end

of the chirp. From Figure A.1 it is clear that the amplitude of the FWM output

will be modulated by the nonuniform conversion efficiency and could even have nulls

for certain values of Dc. To efficiently double high bandwidth chirps, it is necessary

to employ a nonlinear medium with a larger conversion efficiency bandwidth. One

way to do this in NLF is to use the technique of quasi phase matching via dispersion

compensation.

A.3 FWM with QPM NLF

A.3.1 Theory

Quasiphase matching (QPM), is a method of dispersion compensation that utilizes

short fiber segments of alternating dispersion (β2) sign to construct a single long fiber

with low dispersion and therefore a low phase mismatch. This enables a QPM NLF

to achieve a long nonlinear interaction length while maintaining a large conversion

efficiency bandwidth.

...

L1,β1 L2,β2 Li,βi Ln-1,βn-1 Ln,βn

z1=0

...

zi=0 zi=Liz1=L1,z2=0

Figure A.2: A multiple segment nonlinear waveguide for FWM

Consider a fiber that is composed of n segments, each with length Ln and propa-

gation constants βch,n, βR,n, and βout,n. We can define a new reference frame in each

segment

zn = z −
n−1
∑

i=1

Li. (A.3)
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The differential equation that describes the evolution of the FWM output field

amplitude, Aout, is still valid and it can be shown that the output field at the end of

the nth segment is given by

A′
out,n(Ln) = A′

out,n−1(Ln−1)e
−αLn/2 − jξA2

ch,1(0)A
∗
R,1(0) exp

(

−j
n−1
∑

i=1

∆βout,iLi

)

× exp

(

−3α

2

n−1
∑

i=1

Li −
αLn

2

)

(

1− e−(α+j∆βn)Ln

α + j∆βn

)

, (A.4)

where ξ = ncǫ0γAeff/2. Expression A.4 is valid up to an overall phase factor. The

FWM output power is therefore given by

Pout

(

N
∑

i=1

Li

)

=
1

2

(

ǫ0
µ0

)1/2

nAeff

∣

∣A′
out,N (LN)

∣

∣

2
. (A.5)

From Equations A.4 and A.5 we see that the FWM output bandwidth is de-

termined by the phase mismatch, and therefore the length and dispersion, of the

individual segments of the fiber and not of the total length of the fiber. Figure A.3

demonstrates the bandwidth advantage of a QPM fiber over a single segment fiber.

Consider a 500 GHz input chirp with the minimum offset of 500 GHz. The fiber,

QPM or single segment would require a minimum 3dB conversion efficiency bandwidth

of 1 THz and provide enough FWM power to make the chirp doubled output usable.

From Figure A.3 it is clear that the 4 × 50 m QPM fiber is the best choice of those

shown.

A.3.2 Experimental results

We measured the conversion efficiency spectrum of both a QPM fiber comprising

two 100 m segments of NLF with alternate dispersion coefficient signs and a QPM

comprising four 50 m segments of NLF with alternating dispersion signs. We also

performed chirp doubling of a 500 GHz input chirp to obtain a 1 THz output chirp

using the four 50 m segment QPM fiber. The nonlinear fibers used to construct
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Figure A.3: Theoretical conversion efficiency spectra (a) demonstrating bandwidth
advantage of a two segment QPM fiber over a single non-QPM fiber of the same
length, (b) demonstrating the bandwidth advantage of four shorter segments over
two segments
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Figure A.4: Schematic diagram of the experimental setup for chirp bandwidth dou-
bling in QPM NLF. EDFA: Erbium doped fiber amplifier, BPF: Band pass filter,
MZI: Mach-Zehnder interferometer, PD: Photodetector

the QPM fiber were dispersion flattened NLF manufactured by OFS. The NLF had

γ = 11.3 km−1W−1 and α = 1 dB/km. The dispersion parameters of the two 100 m

parent fibers were D1 = −0.59 ps/nm− km and D2 = +0.38 ps/nm− km. QPM

fiber was constructed using a fusion splicer to minimize losses. Both QPM fibers had

SMF pigtails with FC/APC connectors.

To measure the conversion efficiency spectrum of the fibers, we used an experi-

mental setup similar to that of Figure A.4 where the output of the fiber was fed into

an optical spectrum analyzer (OSA). A 20 dB attenuator was used at the OSA input

to avoid damage to the instrument. A CW VCSEL with a nominal wavelength of

1550 nm was used as a reference while an Agilent tunable laser was tuned from a

frequency separation of 0 to 2.2 THz. The power of the FWM product waves was

measured using the OSA. Typical input powers for both the chirped and reference

waves were on the order of 100 mW.

The conversion efficiency spectra of the two QPM fibers is shown in Figure A.5.

The theoretical predictions and the experimentally measured values are in good agree-

ment for both fibers for detuning values up to 1.5 THz. At larger detuning values,

the effects of higher order dispersion, which are not included in the theoretical model,

cause the deviation between experiment and theory.
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Figure A.5: Experimental measurement of the conversion efficiency spectrum of (a)
two segment QPM NLF and (b) four segment QPM NLF. In both arrangements, the
total fiber length is approximately 200 m.
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Figure A.6: (a)Experimental demonstration of chirp doubling in a four segment QPM
NLF and (b) the spectrogram of photocurrent of the filtered FWM output. The total
length of the fiber is approximately 200m. Pch = 100 mW and PR = 100 mW.
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We also performed a chirp doubling experiment using the four 50 m segment QPM

NLF fiber. The input chirp field was produced by a VCSEL based optoelectronic

swept frequency laser. This SFL produced linear frequency sweeps of 500 GHz over

400 µs. The CW reference field was provided by an TLD. The output optical spectrum

in Figure A.6(a) clearly shows the 500 GHz input chirp and the 1 THz output chirp.

To demonstrate the linearity of the chirp doubled output, the FWM output was

filtered from the input chirp and reference fields. This output was amplified by a

telecom EDFA to compensate for losses from the filtering process and measured using

a Mach-Zehnder interferometer and photodetector. The spectrogram of the filtered

output chirp in Figure A.6(b) shows the constant sweep rate of the chirp doubled

output at 1 THz/400 µs.

A.4 FWM in integrated silicon waveguides

Silicon on insulator (SOI) waveguides have been used to demonstrate wavelength

conversion [89–91] and parametric amplification [92] via four wave mixing on chip.

Silicon is a strongly nonlinear material and has been shown to possess a nonlinear

index coefficient that is several orders of magnitude greater than that of silica. The

effective mode area of silicon waveguides is also much smaller than that of nonlinear

silica fibers. This enables the use of relatively short SOI waveguides with lengths on

the order of 1 cm to achieve the nonlinear gain of hundreds of meters of NLF. Addi-

tionally, the group velocity dispersion (GVD) of SOI waveguides can be engineered

via the waveguide dimensions to achieve low dispersion and therefore large FWM con-

version efficiency bandwidths enabling the efficient doubling of high bandwidth linear

chirps on chip. Here, we present some preliminary work in this area demonstrating

the wide conversion efficiency bandwidth of 7.5 mm long SOI waveguides and optical

spectra showing chirp doubling.

A.4.1 Device design and fabrication

The nonlinear gain coefficient γ of a waveguide or fiber is given by



144

γ =
n2ω0

cAeff

, (A.6)

where n2 is the nonlinear refractive index coefficient of the material, and Aeff is

the effective area of the waveguide. From Equation A.6 it is clear that minimizing

the effective area of the waveguide will result in a larger nonlinear gain allowing for

shorter device lengths. As in the case of NLF, shorter waveguides will also result in

a larger FWM conversion efficiency bandwidth due to smaller phase mismatch.

Assuming a waveguide thickness of 220nm ( the thickness of the Si device layer

in our SOI wafer) and a 2 µm thick silica upper cladding layer, we simulated the

mode profiles of various single mode wave guides with widths varying from 360 nm

to 560 nm in Comsol. Waveguides with widths larger than 440 nm are above the

single mode cutoff and are not of practical use but were included to illustrate the

effect of waveguide width on effective area. In our calculations we set the nonlinear

index n2 = 4 × 10−18 m2/W. This has been shown to be in good agreement with

experimental results from similar silicon waveguide structures [91]. From Figure A.7

(b) we see that as the core of the waveguide becomes wider, the optical mode is

more confined to the silicon and the effective mode area decreases. If we design

our waveguide to be 440 nm wide, we can achieve the smallest effective area (while

maintaining a single mode waveguide), and therefore the highest nonlinear gain. In

this case γ = 89250 km−1W−1.

In silicon waveguides, the majority of the dispersion is a result of waveguide dis-

persion. We simulated the modes of waveguides of several widths over the range

of wavelengths 1537–1570 nm to compute the propagation constant β (ω). Material

dispersion was incorporated into the simulations using the Sellmeier model for the

refractive index of both the silicon core and silica cladding. The dispersion coefficient

for the waveguide is then given by Dc = −2πcβ2/λ
2, where β2 is the second derivative

of β (ω) with respect to ω.

From Figure A.8 we can see that as the waveguide width increases, the dispersion

decreases. Again, we are limited by the single mode criteria to a width of 440 nm
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Figure A.7: (a) Mode profile of a single mode Si ridge waveguide with dimensions
440 nm×220 nm. (b) The effective area Aeff and nonlinear coefficient γ of the of Si
ridge waveguides as a function of waveguide width. For waveguide larger than 440 nm
wide (the single mode cutoff) the values shown are for the fundamental mode
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Figure A.8: The dispersion parameter Dc as a function of wavelength for 220 nm thick
silicon waveguides with a 2µm silica upper cladding. The width of each waveguide is
given in the legend.

which provides a dispersion parameter in this wavelength range of -600 to -900 ps/nm-

km.

We fabricated 7.5 mm long silicon waveguides using 220 nm thick SOI. Waveguide

widths between 300 nm and 440 nm were designed. However, due to fabrication

issues the actual waveguide widths were narrower. Inverse taper spot size converters

were designed and implemented to minimize input and output coupling losses. The

devices were patterned using electron beam lithography. A short oxygen plasma

“resist trimming” step was used to reduce e-beam resist sidewall roughness. The

devices were dry etched using a combination of C4F8 and SF6 in an ICP RIE etcher.

The silica upper cladding was deposited using PECVD.

A.4.2 Experimental results

Using an experimental setup similar to that in Figure A.4 we measured the FWM

conversion efficiency as a function of the detuning between the pump and signal waves.
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The conversion efficiency spectrum is shown in Figure A.9 (a).

From Figure A.4 (a) we can clearly see a 3 dB bandwidth greater than 1.75 THz

which is more than enough to perform chirp doubling with 500 GHz bandwidth input

chirps. For pump signal detuning values less than 1 THz there is good agreement

between theory and experiment. However, the theoretical calculation does not include

higher order dispersion terms which are responsible for the earlier than expected roll

off in conversion efficiency observed in the experimental results.

Using a linearly chirped pump wave and CW signal wave, we observed chirp

doubling in the output optical spectrum of the silicon waveguide. The output power

of the EDFA was 700 mW; however, due to the input coupling losses, the input

power of the silicon waveguide is not known. The conversion efficiency achieved was

aproximately -28 dB. This can easily be improved by increasing the power of the

pump (chirped wave) and by increasing the length of the waveguide and increasing

the input power of the pump (chirped) wave. Further improvements of the input

and output coupling alignment will also improve the conversion efficiency of the chirp

doubled output. The large noise floor visible in Figure A.9 is present due to the use

of an extra SOA to boost the optical power of the chirped VCSEL laser prior to the

high power EDFA. A tunable bandpass filter can be used after the EDFA to minimize

the effect and presence of ASE noise in the FWM process. The “horns” observed in

Figure A.9 (b) are an artifact from the OSA measurement and do not represent actual

increased optical power at the band edges of the SFL.
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Figure A.9: (a) The normalized conversion efficiency spectrum of a 400 nm × 220 nm
SOI waveguide at a nominal wavelength of 1550 nm. Blue circles are experimental
data, red line is theoretical simulation. (b) The output optical spectrum of the same
waveguide using a 500 GHz in 400 µs linear chirp as the pump wave, with a CW
signal wave.
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