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To my wife Christine,

whose face I consciously perceive every morning when I open my eyes,

and it makes me so happy.



v



ACKNOWLEDGEMENTS

Every single day I wake up and I am grateful. Yes, even on those days while I was writing this
thesis, an infamously grueling experience. I have always been free to pursue my dream, even if it
has been in constant evolution. When I was in high school, my dream was to study and save the
tigers with an organization like the World Wildlife Fund. Then, as my studies went on, my dream
evolved into wanting to solve the puzzle of how our planet got to be what it is (I got a bachelor’s
and master’s degree in earth and atmospheric sciences). My dream evolved further into wanting
to understand how life started (I got a master’s degree in biochemistry, focused on the origins of
life). But my dream was not done maturing yet. I gave it a little more time to do so, and went
traveling around the world with my favorite person on this planet. During my travels, I came
across Christof Koch’s 2004 book, The Quest for Consciousness, and my dream finally entered
puberty. I needed to understand the brain! I needed to understand what made us do everything
that we did, know everything that we knew, feel everything that we felt, discover everything that

we discovered.

There are so many people (and institutions) to acknowledge who have accompanied me and my
dream during childhood. My parents, who provided a peaceful and loving home for me to grow
in, made everyday life easy so I could simply concentrate on getting a great education, and never
interfered with my choices. My brother and sister, with whom I grew up, contributed to forging
my character. My many teachers who saw something in me and pushed me in the right direction.
The Ecole Normale Supérieure, a haven for budding scientists, offered me freedom in the form of
a four year fellowship to do what I loved doing: learn. Pr. Harold Helgeson welcomed me for my
first long research endeavor, a six month stint in his theoretical biogeochemistry lab at UC
Berkeley; 1 discovered California, and most importantly, met my wife-to-be. Then Pr. Pier Luigi

Luisi welcomed me for another 6-month soul-searching stunt, working on the Minimal Cell



vi

project in his laboratory in Rome. Christof put an end to my scientific childhood by responding to
an email I sent to him after reading 7he Quest back in the spring of 2006. I had boldly asked him
if I could come learn neuroscience in his lab and work for him for a year. To my advantage, I still
had funding from the Ecole Normale Supérieure. He invited me to come to the lab and meet with
him. When we met, I remember him asking: are you here to surf or to do neuroscience?
Understandable reaction, I was very tan and blond from two months working as a divemaster on a
small island off the coast of Honduras... but I was serious about learning neuroscience, and this is

why you are reading this thesis today.

I have so many people to thank for what I have become over the six years of my dream’s drawn-

out puberty years.

First and foremost, my three main scientific mentors. Christof Koch, for supporting me through
the hardships of failed experiments, providing a good working environment, and saving me the
worries of looking for funding and other distracting matters. Christof is greater than life when it
comes to scientific curiosity and motivation, and I already greatly miss his flamboyant,
contagious energy. I caught Christof in a period of many transitions; I have the utmost respect for
how he dealt with them, always righteous. Ralph Adolphs was the other major figure who
accompanied me behind the curtains (and now officially in the spotlight), through my time at
Caltech. Ralph was Nao’s postdoc advisor, and from the onset I worked together with him. For
every new project that I started, I sought out Ralph’s invariably insightful advice. I always
considered myself a member of his extended family — Ralph’s lab truly feels like a family, with
biweekly meetings, weekly social hour, monthly lab dinners, other social events such as movie
nights, and of course the annual lab camping trip to Catalina Island. My two DoktorVaters (both
German speakers, as it turns out) at Caltech were true mentors, two role models to look up to:
Christof for extravagant, unstoppable genius; Ralph for grounded, meticulous genius. I had a

third, no less important science and life mentor, and no less a genius, who was by my side most of



vii

those years, though not officially: Rufin VanRullen. I worked on many research projects with
Rufin over the past six years which are not part of this thesis, but contributed to making me the
scientist that I am today. Rufin was with me from the very beginning; it is with him that I did my
very first neuroscience project in the summer of 2006 before I came to work at Caltech. I can
only aspire to be as good a scientist as he is — always thinking critically and oh so sharply, with a

curiosity for the brain’s inner workings that goes far beyond his own field of research.

Then there were my committee members, who helped shape this thesis in the last years of my
adventure. I learned about fMRI experimental design from John O’Doherty back in 2006, when I
took his class. Six years later, I still have much to learn from him. I had never interacted much
with Doris Tsao, though I had much admiration for her work, until the last few months, when we
discovered that we had some very similar interests and started collaborating on a fMRI decoding
project; I enjoyed her “charge ahead” approach to research. Get it done. Mike Tyszka is probably
one of the few people in the world that thoroughly understands everything about fMRI, and I
have asked him many a question over the years about imaging sequences and the like. At some
point I wanted to do some calibrated fMRI using breath holding in the scanner — I did not follow
through with it, but Mike was always there to lend a hand. I truly was blessed with the nicest and

most competent committee one could wish for.

So many other people should be mentioned, but this section would be way too lengthy. In
general, [ want to acknowledge everyone in the CNS department, professors, students, postdocs,
etc.; and Tanya, of course, who really is the one running the show. I decided against listing the
names of the many students and postdocs with whom I shared great experiences, fruitful
discussions, good meals, exercise at the gym, barbecues, hikes, camping trips, etc. It would have
been too long a list, and I would have felt bad for involuntarily leaving out some names. If you
read those lines and think your name should probably have appeared here, you are right. I am

thinking of you.



viii

Life is not all about the workplace. When I moved here and started working at Caltech, I spent a
wonderful three years living at Christine’s parents’ house; Tom and Margaret took me in as a
child of their own, and always made me feel like I had not really left my parents’ home. I found
yet another set of parents in Mary and Steve, Christine’s godparents, who have always taken such
good care of me. I feel so grateful for the love that has surrounded me here, thousands of miles

from my kin.

And then there is Christine. To me she is the proof that Plato’s myth of the Androgyne may not
be a myth after all. She is my other half, she makes me feel whole. I do not have to be someone
else to accommodate her. She is the most loving, attentive, caring, sensitive, creative, intelligent,
and fun human being that I have ever met. She has opened my eyes to many new ways to live an
even fuller life, and there are still many, many more years for us to make the best of this strange

odyssey.

Granted, I do not yet understand how our universe and our planet came about, how life on Earth
started, or how consciousness arises from our brains; but I am extremely thankful that all these

things happened.



1X

ABSTRACT

Waking up from a dreamless sleep, I open my eyes, recognize my wife’s face and am
filled with joy. In this thesis, I used functional Magnetic Resonance Imaging (fMRI) to
gain insights into the mechanisms involved in this seemingly simple daily occurrence,
which poses at least three great challenges to neuroscience: how does conscious
experience arise from the activity of the brain? How does the brain process visual input to
the point of recognizing individual faces? How does the brain store semantic knowledge
about people that we know? To start tackling the first question, I studied the neural
correlates of unconscious processing of invisible faces. I was unable to image significant
activations related to the processing of completely invisible faces, despite existing reports
in the literature. I thus moved on to the next question and studied how recognition of a
familiar person was achieved in the brain; I focused on finding invariant representations
of person identity — representations that would be activated any time we think of a
familiar person, read their name, see their picture, hear them talk, etc. There again, I
could not find significant evidence for such representations with fMRI, even in regions
where they had previously been found with single unit recordings in human patients (the
Jennifer Aniston neurons). Faced with these null outcomes, the scope of my
investigations eventually turned back towards the technique that I had been using, fMRI,
and the recently praised analytical tools that I had been trusting, Multivariate Pattern
Analysis. After a mostly disappointing attempt at replicating a strong single unit finding
of a categorical response to animals in the right human amygdala with fMRI, I put fMRI

decoding to an ultimate test with a unique dataset acquired in the macaque monkey.



There I showed a dissociation between the ability of fMRI to pick up face viewpoint
information and its inability to pick up face identity information, which I mostly traced
back to the poor clustering of identity selective units. Though fMRI decoding is a
powerful new analytical tool, it does not rid fMRI of its inherent limitations as a

hemodynamics-based measure.
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of a functional localizer consisting of alternating blocks of flashing checkerboards in the peripheral frames; dark
gray, left visual field > right visual field; light gray, left visual field < right visual field (p<107). Right, percent
signal change for the contrasts discussed in the main text: Attention to faces vs. Attention to houses, when a face
is presented on the left, and when a face is presented on the right. The pattern is as expected in the right early
visual cortex (EVC): a face presented in the left visual field is enhanced by selective attention to the central
stream of faces, and leads to a higher signal in the right EVC. However, it is against our prediction in the left
EVC. 56
Figure 28 Design of the Jiang & He study, which I tried to replicate. (A) In the invisible condition, the intact face
images with neutral and fearful expressions and the scrambled face images presented to the non-dominant eye
can be completely suppressed from awareness by dynamic Mondrian patterns presented to the dominant eye
because of interocular suppression. The suppression effectiveness was verified by objective behavioral
experiments. (B) The visible condition was the same as the invisible condition except that the Mondrian patterns
were not presented; instead, both eyes viewed the same face or scrambled face stimuli. Reproduced from 7. 58
Figure 29 d’ for the visibility experiment in my replication of Jiang & He, for three subjects (red, green and blue). All
subjects were unaware of the stimuli before the fMRI experiment, as evidenced by a d’ that is not greater than
zero (it is unclear why d’ is actually negative: if the subjects had no information, d’ should be zero on average;
this is likely to just be due to the small sample). However, by the end of the experiment, at least the red subject
clearly perceived some of the stimuli, which is problematic if one wants to claim unconscious processing (see the
section on good practices, page 83). 59
Figure 30 Results of my replication attempt for Jiang & He's experiment. Top, their results in the Fusiform Face Area
(FFA), modified from ”. Bottom, my results. I have no problem replicating a strong activation to visible neutral
(left bar) and fearful (right bar) faces, as compared to scrambled faces. However, in the invisible condition, there
is no clear activation to either neutral of fearful faces in FFA. 60
Figure 31 The paradigm for my parametric CFS experiment in the fMRI scanner. Left: temporal sequence of a block.
The arrow represents time. After a random ITI (1<ITI<4 seconds), a 6 seconds long sequence is shown,
consisting of 10 successive 300ms presentations of a static image in the non-dominant eye and a sequence of
masks (changing every 100ms) in the dominant eye, separated by 300ms blank periods; the same static image is
shown 10 times in a given block. At the end of this, two questions ensue: a two-alternative forced choice
objective visibility task and a four-alternative forced choice subjective visibility task. Right, top: four possible
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mask contrasts (same mask contrast throughout a given block). Right, bottom: images shown in the non-
dominant eye are fearful faces, houses (or nothing). See text for more details. 62
Figure 32 Staircase-determined thresholds for face (left plot) and house (right plot) images were roughly stable over
time, across subjects. All subjects had prior experience with Continuous Flash Suppression through a practice
session outside the scanner. Threshold measurements were performed five times for most subjects: during the
first fMRI session, at the onset, in the middle, and at the end; during the second fMRI session, at the onset and at
the end. The shaded area represents the standard error of the mean. 63
Figure 33 Individual data for the CFS threshold determination with a staircase procedure. Each plot represents a
subject. Circles are for face images, triangles for house images. The symbols are green if the staircase threshold
determination was done at a mask contrast of 0.25, and blue if done at 0.125. Note that the threshold did
dramatically decrease for some individual subjects, for instance the 4t plot in the top row (a lower threshold
means that suppression is less effective; the target contrast needs to be reduced). 64
Figure 34 Example behavior for one subject in the main fMRI experiment, showing the effects of manipulating mask
contrast on perception. Top panel: distribution of responses (F1: face, lowest confidence; H4: house, highest
confidence). Lower panel: area under the ROC curve (red circle: face as signal, house as noise; blue triangle:
house as signal, face as noise; black line: 95% confidence interval computed using distribution of responses to
blank trials and assigning randomly face and house labels to each trial). This shows that our mask contrast
manipulation had the desired effect of changing visibility (and objective performance). 64
Figure 35 Face and House responsive areas, evidenced with the contrast faces vs. houses in a fMRI block design and
“painted” on one subject's inflated brain. The dark gray areas represent sulci (i.e., valleys), the light gray gyri
(i.e., hills). Statistical parametric map thresholded at p<0.001 uncorrected. 65
Figure 36 Retinotopy results for V1 definition. Left: stimuli. Right: thresholded statistical parametric map, p<0.001
uncorrected. The V1-V2 border is drawn by hand on the surface, following the maximum activation to the
vertical meridian. 66
Figure 37 Automatic anatomical labels assigned by the recon-all procedure in Freesurfer®. In blue, the amygdalae. 67
Figure 38 Correlation of BOLD activation with mask contrast (factoring out visibility). For each subject, average
BOLD signal change in each ROI for each trial was plotted as a function of mask contrast (log scale), and the
Spearman rank correlation coefficient was computed. The effect of confidence was factored out by considering
each confidence rating in turn, then averaging across confidence ratings to get the final correlation. 1 star:
p<0.05; 2 stars: p<0.01; 3 stars: p<0.001. 68
Figure 39 BOLD activity as a function of mask contrast in V1 (note the logarithmic scale on the x-axis). No main effect
of mask contrast on difference between face trials and blank trials, or on difference between house trials and
blank trials (1-way ANOVA) 68
Figure 40 BOLD correlation with subjective visibility (factoring out the effects of mask contrast). For each subject, the
average BOLD signal change for each ROI for each trial was plotted as a function of confidence rating, from -4
(house, high confidence) to 4 (face, high confidence). The effect of mask contrast was factored out by
considering each mask contrast in turn, then averaging across mask contrasts to get the final correlation. 1 star:
p<0.05; 2 stars: p<0.01; 3 stars: p<0.001. 69
Figure 41 BOLD response to faces at different visibility ratings. The large bars represent average across subjects, the
small bars individual subjects. There was no sizeable response on average in FFA voxels when faces were
invisible. Only subjects for whom we had enough trials at each visibility level were included in the analysis
(yellow, p<0.05; magenta, p<0.01). 70
Figure 42 Our paradigm to compare sandwich masking (left) and continuous flash suppression (right). The displays are
as equalized as possible, with the same total energy for visual stimulation (8 masks, a prime and a target). Figure
adapted from Gregory Izatt's final SURF report (2012). 75
Figure 43 Schematic description of the subliminal face priming method and behavioral results in °. (a) Each trial
consisted in the sequential presentation of a fixation cross, a forward mask, a prime, a backward mask and the
target. Participants were presented with familiar and unfamiliar faces and were instructed to perform a fame-
judgment task on the target. Masks were constructed from overlays of inverted faces. (b) Mean reaction times for
the six priming conditions. The experiment involved a two-by-three factorial design including famous and
nonfamous target faces preceded by a prime that could depict the same person in the same view (same-view
conditions), the same person in a different view (cross- view conditions) or a different person (control condition).
(c) Regression of priming on prime visibility. Each data point represents a participant. The regression functions
(dotted lines indicate 95% confidence intervals) show the association between the global priming effect found for
famous faces and prime visibility. Priming is interpreted as subliminal when the curve representing the lowest
value in the confidence interval passes above the origin. Reproduced from . 76
Figure 44 Preliminary results for same view priming in our comparison of sandwich masking (SM) and continuous
flash suppression (CFS). This analysis only considers trials that were rated as visibility one, which leads to a
variable number of trials across subjects. Left, from top to bottom: accuracy on the main task, whether the target
face is famous or not famous; accuracy on the objective visibility task, whether the prime was the image shown
on the left or on the right; number of trials for each condition (group of bars), for all subjects (in the same order
as in the previous plots). Right: colors represent significance in a t-test against zero (red, p<0.001; yellow,
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p<0.05; black, p>=0.05); the error bars are s.e.m. As far as we can tell, there is no significant difference between
repetition priming in the sandwich masking and continuous flash suppression conditions. We are now
investigating cross-view priming. 79
Figure 45 The Nine circles of scientific Hell, by Neuroskeptic. Reproduced from '%. 80
Figure 46 The Burton and Bruce IAC model of person recognition. FRUs (Face Recognition Units) and WRUs (Word
Recognition Units) are the input units, which respond respectively when a face is seen and when a name is seen.
Units in the FRU pool are tuned to specific identities; they perform invariant recognition of faces (in different
conditions of illumination, different viewpoint, etc.). WRUs are tuned to words, and feed into NRUs (Name
Recognition Units) which are tuned to names. Both FRUs and NRUSs can activate (and reciprocally, be activated

by) the corresponding PINs (Person Identity Nodes). Activation of a PIN corresponds to an amodal
representation of the identity of an individual, and in Burton et al.’s framework, it is at this level that the feeling

of familiarity arises. PINs are a sort of hub, mediating the retrieval of semantic information from sensory input
(faces, names). Semantic information is stored in a pool of SIUs (Semantic Information Units); everything that is
known about a given individual is stored in the SIUs, such as their for profession, nationality, whether they like
strawberries, and their name (in this specific model; other models model the same as part of a separate pool).

Note the reciprocal connections between SIUs and PINs; the feedback connections from SIUs to PINs are
thought to mediate some semantic priming effects. Reproduced from '*%. 91
Figure 47 The Haxby & Gobbini cognitive neuroscience model for familiar face perception. This model divides brain
areas that are involved in face perception into a Core System—occipitotemporal visual extrastriate areas that play

a central role in the visual analysis of faces—and an Extended System—neural systems whose functions are not
primarily visual but play critical roles in extracting information from faces. In the Core System, the authors
emphasize a distinction between representation of invariant features that are critical for recognizing facial
identity and representation of changeable features that are critical for facial gestures, such as expressions and eye

gaze. They emphasize three sets of brain areas in the Extended System that are involved, respectively, in the
representation of person knowledge, in action understanding (including gaze and attention), and in emotion.
Familiar face recognition involves visual codes for familiar individuals in Core System areas in the fusiform, and
possibly anterior temporal, cortex, along with the automatic activation of person knowledge and emotional
responses. Facial expression involves visual codes in the STS, along with activation of representations of
emotion and motor programs for producing expressions. Perception of eye gaze similarly involves visual codes in

the STS, along with activation of brain areas for shifting attention and oculomotor control. Reproduced from ''.

94

Figure 48 Design of our faces/scenes by famous/unknown fMRI paradigm for functional localization of face responsive
areas and familiarity responsive areas. There were 24 blocks of 16 seconds, belonging to four conditions, which

were shown in a pseudorandom order (top): FK (faces known), FU (faces unknown), SK (scenes known) and SU
(scenes unknown). Within each block, a sequence of 16 images was shown; subjects performed a simple one-

back memory task. 95
Figure 49 Whole brain results on a group of 19 subjects for the contrast faces known vs. faces unknown, shown on the
glass brain (left) and on an orthographic projection (right) centered on the precuneus. Statistical map thresholded

at p<0.05 (FDR corrected), with a minimum cluster size five voxels (using xjview). 96
Figure 50 Design of the person identity network experiment. Top: table representing the number of blocks for each
condition, in one run. Bottom: example blocks (the names written in black or white are an irrelevant feature). In a
given 16 second block, a sequence of eight images was presented; in the leftmost example, the task is to press the
button (only one button is given to the subject) whenever the first initial of the individual shown on the screen is
between A and L (included). Hence, the perfect answer in this case would be, as represented by a binary vector: 1

1 1111 0 0 [Al Pacino/Cher/Barbra Streisand/Julia Roberts/Johnny Depp/Jennifer Aniston/Mick
Jagger/Michael Jackson]. 97
Figure 51 The posterior left middle temporal gyrus is more active when performing a task on the name of a famous
person than judging their gender (from a picture). The SPM is shown on the anatomy of the only subject on
whom we ran this experiment, and was thresholded aggressively here (p<107'?, i.e. T>8) for a clean figure. 98
Figure 52 Schematic description of the type of electrodes most often used at UCLA in temporal lobe targets.
Platinum/iridium contacts of approximately 1.5 mm length along the electrode are used to acquire clinical wide

band EEG data. Through the lumen of the 1.25 mm diameter electrodes, 8 platinum/iridium microwires are
inserted. Electrodes are fabricated at UCLA. Microwires extend 1 to 3 mm from the tip of the electrode, lying
inside a cone with an opening angle of less than 45°. Reproduced from '**. 100
Figure 53 My brain with the regions usually targeted at UCLA color-labeled (Freesurfer recon-all). Luckily this is just
for show, and I did not have to undergo the surgical procedure. Better yet, this picture was published in one of
Christof’s Scientific American Mind columns'*®, hence this particular sagittal section of my brain is forever
famous. (Red, amygdala; green, hippocampus; blue, entorhinal cortex; yellow, parahippocampal cortex). 100
Figure 54 A single neuron responding selectively to Oprah Winfrey. (A) A neuron in the hippocampus that responded
selectively to pictures of the television host Oprah Winfrey (stimulus 40, 39, and 11), as well as to her written
(stimulus 56) and spoken (stimulus 73) name. To a lesser degree, the neuron also fired to Whoopi Goldberg.

They were no responses to any other picture, sound, or text presentations. For space reasons, only the largest 30
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(out of 78) responses are displayed. In each case the raster plots for the six trials, peristimulus time histograms
(PSTH) and the corresponding pictures are shown. The vertical dotted lines mark picture onset and offset, one
second apart. (B) Median number of spikes (across trials) for all stimuli. Presentations of Oprah Winfrey are
marked with red bars. Stimulus numbers corresponds to the ones shown above each picture in (A). The gray
horizontal line shows the five standard deviations above the baseline threshold used for defining significant

responses Reproduced from '** 102
Figure 55 Four characters for a first pilot experiment. Top: David Palmer, Jack Bauer (from 24). Bottom: John Locke,
Jack Shepard (from Lost). 103

Figure 56 Decoding of identity in early visual cortex, in one subject. The performance of the classifier for each
searchlight is overlaid on the EPI (sub-axial) slices, which are arranged from bottom to top; the left side
correspond to the left side of the brain. Chance is 25%. The accuracy map was thresholded using FDR, with a
threshold at 0.05. 104

Figure 57 Caltech students love their cartoons. I performed a survey amongst Caltech undergraduates, asking them to
rate from 1 to 4 their level of familiarity with each of four cartoons: Futurama, South Park, Family Guy, and the
Simpsons. Here, I plot only the number of “4” responses (“4” meaning “you have watched (almost) all episodes
religiously and could write a ten-page essay about each of the main characters”); out of 169 surveyees, a large

number used the rating “4”, and quite a few used it for two or more cartoons! 107
Figure 58 Cartoon characters used in the cartoon pilot. Top: Bart and Homer Simpson; Bottom: Peter and Stewie
Griffin 107

Figure 59 Experimental design for the cartoon pilot. The arrow represents time. A run consists of a succession of 15
second blocks, which themselves consist of a five second clip, a five second blank, then another five second clip.
If the first clip is audio, the second is video, and vice-versa. Both clips in a block are of the same character. The
task of the subject is to determine whether the audio and the video match. Blocks succeed each other, separated
by nine second interblock intervals. 108
Figure 60 Effects of histogram matching and power spectrum equalization on mean images and power spectrum
averages. Left: original clips (the four thumbnails correspond to the average of all frames for Bart, Homer, Peter
and Stewie). Right: after equalization, obvious luminance and power-spectrum confounds are gone. 109
Figure 61 Decoding identity in early visual cortex from videos (after the attempt to remove low-level confounds with
power spectrum and histogram matching of all video frames), in a single subject. Left: orthographic projection,
centered on maximal accuracy (map is thresholded by FDR at q=0.05). Right: confusion matrix showing which
identities seem to be easily discriminated from the others, at the location of the crosshair on the left (overall
accuracy is ~75% as seen on the left side; Peter is easy to tell apart from the other characters, while Bart and
Stewie are less differentiable at that location). 111
Figure 62 Decoding of identity from audio clips (voices). Left: the contrast video clips vs. audio clips, thresholded at
p<0.001, is a good localizer for early visual (red-yellow) and early auditory (blue-light blue) cortices. Right:
regions of above chance decoding of the identity from the voice (thresholded with FDR at g=0.05), at a location
which corresponds to left early auditory cortex. 111
Figure 63 The (initial) design of the Brad Pitt, Matt Damon and Tom Cruise experiment. The arrow from left to right
represents time, and is graduated in units of volumes (the repetition time is two seconds). Every other volume
(stimulus onset asynchrony is 2xTR, i.e. four seconds), a static stimulus is shown on the screen, either a picture
or a written name. There are 169 trials per run, including 13 null trials (nothing presented), 39 picture trials per
actor, and 13 name trials per actor. The task of the subject is to press one of three buttons on each trial,
corresponding to the identity of the actor that they are seeing. The three buttons were pre-assigned to the three
identities and stayed the same throughout the experiment. 114
Figure 64 Imaging volume for seven subjects in the first version of the Brad Pitt/Matt Damon/Tom Cruise experiment.
A sub-axial slice angle was used, covering the occipital and temporal lobes. The limited coverage is due to a
fairly high resolutuon protocol: with a repetition time of two seconds (appropriate in a fast event-related design),
30 slices could be acquired at the 2mm isotropic resolution that we programmed (with the use of parallel imaging
GRAPPA, and an acceleration factor of 2). 115
Figure 65 Searchlight decoding, represented as -logl10(p) for a t-test across the seven subjects that performed the first
version of the Brad Pitt/Matt Damon/Tom Cruise experiment, i.e. with an explicit identification task using three
buttons. Note the above chance decoding in the right cerebellum, most likely due to a motor confound (decoding
of finger movement). The notation “picture > name” means that the classifier is trained on (averages of) picture
trials, and tested on (averages of) name trials. Results are shown on axial MNI slices, ordered from ventral to
dorsal. Areas of the brain that are not covered in all subjects are shaded. 117
Figure 66 Searchlight decoding, represented as -log10(p) for a t-test across the 13 subjects that performed the second
version of the Brad Pitt/Matt Damon/Tom Cruise experiment, i.e., with the one-back task on identity. No area
seems to support decoding within AND across modalities. 119
Figure 67 Stimuli used in the last version of the Brad Pitt/ Matt Damon/ Tom Cruise experiment (the “supersubject”
version). Only pictures and written names were used for 14 out of 18 runs. Movie names (clipped from posters)
and spoken names (not shown, obviously!) were used in the four remaining runs (replacing half the picture trials
and half the written name trials. 122
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Figure 68 Searchlight decoding results for the last version of the Brad Pitt / Matt Damon / Tom Cruise experiment (the
“supersubject” experiment). The picture>name and name>picture decoding schemes did not yield any decoding
above the FDR threshold of g=0.05, hence are not represented here. The finding of significant decoding in the
bilateral occipito-temporal cortices in this subject is a finding worth pursuing further, to understand for instance
whether it corresponds to underlying Word Recognition Units or Name Recognition Units. 123

Figure 69 My wife Christine's reconstructed head, with her bilateral amygdalae labeled (image produced with Slicer;
automatic anatomical labelling with Freesurfer). Note: the dip in front of her right ear is due to the headphones
she was wearing in the scanner. 129

Figure 70 A single unit in the amygdala activated by animal pictures. A: Responses of a neuron in the right amygdala to
pictures from different stimulus categories, presented in randomized order. For each picture, the corresponding
raster plots (order of trials from top to bottom) and peristimulus time histograms are given. Vertical dashed lines
indicate image onset and offset (one second apart). B: The mean response firing rates of this neuron between
image onset and offset across six presentations for all individual pictures. Pictures of persons, animals and
landmarks are denoted by brown, yellow and cyan bars, respectively. Reproduced from '®. 131

Figure 71 Amygdala neurons respond preferentially to animal pictures. (a) Response probabilities of neurons in
different MTL regions to different stimulus categories revealed significant preferences in the amygdala (P<107"3,
main effect of increased responses to animals at ~1%) and entorhinal cortex (P<0.03, main effect of decreased
responses to persons), but not in the hippocampus. (b) Mean response magnitudes of all responsive neurons
showed increased response activity of amygdala neurons to animals (P<107). (c,d) The animal preference in
both response probability and magnitude was seen only in the right amygdala (P<10" and P<0.0005,
respectively). Error bars denote binomial 68% confidence intervals (a,b) and s.e.m. (c,d). *P < 0.05, ***P <
0.001. Reproduced from '®. 132

Figure 72 A specific category response to animals in the right amygdala at the population level. (a) For a set of 201
amygdala units (96 left, 105 right) that were all presented with the same 57 stimuli (23 persons, 16 animals, 18
landmarks), we constructed representational dissimilarity matrices by determining the dissimilarity in evoked
response patterns for each pair of stimuli (as 1 — » from the Pearson correlation across units). (b) Hierarchical
cluster analysis automatically grouped stimuli with similar response patterns together into clusters. In the right
amygdala, this unsupervised procedure yielded a cluster that contained all animal stimuli, whereas no such
category effect was found in the left amygdala. 134

Figure 73 Stimulus sets for the fMRI paradigm. 60 pairs of animal and non-animal stimuli, taken from the IAPS picture
set and matched for emotional valence and arousal, were divided into four groups of low and high valence and
low and high arousal, respectively, and presented to ten subjects in a 3.0 T Siemens Magnetom Trio Scanner. The
average values for each of the eight groups are represented by large triangles. 136

Figure 74 Thresholded statistical parametric map for the contrast animal vs. non animal. Group analysis of ten subjects
using a standard general linear model (GLM) showed a cluster of voxels in the right amygdala (MNI coordinates
x=23; y=-4; z=-15) that responded more strongly to animal than to non-animal pictures (P<0.001, uncorrected;
P=0.02 after small-volume correction based on the total volume of both amygdalae). This animal vs. non-animal
contrast is independent of emotional valence and arousal since stimuli from both categories were matched for
these emotional dimensions. Reproduced from'®. 137

Figure 75 Comparison of the two scanning sequences that we used. On the left, the sequence used for the published
results. On the right, an “optimized” sequence to avoid dropout in the amygdala region. Note the higher
resolution (2mm isotropic vs. 3mm isotropic), but much reduced imaging volume (24 slices with 128mm field of
view vs. 32 slices with a 192mm field of view), in the improved sequence. 138

Figure 76 Dropout due to magnetic field inhomogeneities affects signal very close to the amygdala (labeled in red) in a
typical subject scanner with the 3mm isotropic, original fMRI protocol. 139

Figure 77 The mean fMRI signal in the amygdala, binned for each subject. Protocol 2 shows less of a tail towards
lower values, hence is less affected by signal dropout, as desired. 139

Figure 78 ROI analyses, based in the mean activation in the left and right amygdalae, for both sets of subjects (top, the
original 13 subjects scanned at 3mm isotropic; bottom, the new set of 14 subjects, scanned at 2mm isotropic), and
both image sets (left, the IAPS image set; and right, the UCLA image set). The large bars represent the average
across subjects, and the small bars are for individual subjects. The p-values for a one-sided t-test against zero are
color coded (yellow: p<0.05; magenta: p<0.01; red: p<0.001). The only consistent finding in the IAPS
experiment at the ROI level (average across all left and right amygdala voxels, respectively) is a higher activation
for high-arousal than low-arousal images; no significant categorical effect can be seen (except in the left
amygdala, in the second set of subjects). With the UCLA image set, there is a very significant activation to faces
in the left and right amygdalae, compared to landmarks. There is also a weak activation to animals, as compared
to landmarks, which only transpires in the first set of subjects however. 141

Figure 79 Statistical parametric maps for the contrast animals vs. non animals, in the experiment using the IAPS image
set, in the two set of subjects (Protocol 1, 3mm isotropic; Protocol 2, 2mm isotropic). These are whole brain,
group results (in MNI space). On the left, a glass brain representation, and on the right, an orthographic
projection on the normalized anatomy of one subject, centered at MNI coordinates [20 -4 -18]mm. Note that the
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threshold is different for the two protocols. Nevertheless, this shows that the original cluster of voxels found in
the right amygdala somewhat replicates in the second, independent set of subjects. 142
Figure 80 Statistical parametric maps for the contrast faces vs. landmarks in the experiment based on the UCLA image
set. In both independent sets of subjects, we note a clear bilateral activation of the amygdalae (the orthographic
projections are centered at MNI coordinates: [20 -4 -18]mm). 144
Figure 81 The average event related potentials (ERPs) computed from the Low Frequency Potentials, averaged across
all amygdala channels, for three stimulus categories (faces, animals and buildings). The amplitude of the positive
peak at 450ms for the animal ERP is larger than for other stimulus categories, but not significantly. The
overwhelming response to faces picked up by fMRI does not show in the LFP analysis. 145
Figure 82 Face patches evidenced with fMRI in monkey M1. The face localizer fMRI experiment consists of blocks of
human faces, monkey faces, fruits, bodies, hands, and technological objects. The contrast faces vs. fruits, hands,
bodies, objects is used to find areas of the monkey brain that are more responsive to faces than to other
categories. Reproduced from ', 148
Figure 83 The eight viewpoints in the face views dataset, used by Winrich Freiwald and Doris Tsao in '’ 149
Figure 84 Single unit decoding of viewpoint and identity, for the full face views dataset. The set comprised eight
viewpoints and 25 identities. Left: viewpoint decoding. The bars represent the accuracy of multiclass decoding in
the three face patches. Chance level is the dashed line (100/8=12.5%); the 95% confidence intervals from a
permutation test (1000 surrogates) are shown as colored vertical lines, roughly centered at chance level. Below,
the confusion matrices are shown for each patch; rows represent the true labels, and columns the labels predicted
by the classifier (the order of labels in the confusion matrix is shown below). Correct classifications thus fall

along the diagonal. Right: identity decoding. 151
Figure 85 The 20 images from the face views image set which were used in the fMRI experiments. Four male identities
are pictured at five different viewpoints. 152

Figure 86 Decoding of viewpoint and identity in M5's AM patch, from 28 single units, with a dataset comprising 16
familiar individuals pictured at three different viewpoints. Left: viewpoint decoding. Right: identity decoding.

Same layout as in Figure 84. 153
Figure 87 The Contrast to Noise Ratio (CNR) using MION compared to using BOLD (no contrast agent); on average,
the CNR is three times higher with MION. Reproduced from'”>. 154

Figure 88 Decoding of viewpoint with single unit and fMRI data. A) Left, decoding accuracy in the three face patches
using the data from the single unit recordings. Chance is indicated with a dashed black line. The 95% interval
from a permutation test (1000 surrogates) is shown as a vertical line for each patch. Right, confusion matrices for
each patch. Rows represent the true labels (ordered from full left to full right profile) and columns represent the
predicted labels. B) Same as A, using fMRI data. The results are shown separately for the two monkeys, M4 and
MS5. Note the nice correspondence between the confusion matrices of the single unit data and fMRI in ML/MF
and AL, especially the mirror symmetry in AL (whereby left and right profile representations are difficult to tell
from each other) (I quantified the correspondence with Spearman correlation coefficients p, and assessed their
significance with a permutation test; M4: ML/MF p=0.705, p<10~, AL p=0.780, p<10~, AM p=0.584, p=3.9 x
107, M5:ML/MF p=0.728, p<10~, AL p=0.785, p<10~, AM p=0.349, p=0.073). 156

Figure 89 Decoding of identity with single unit and fMRI data. A) Left, decoding accuracy in the three face patches
using the data from the single unit recordings. Chance is indicated with a dashed black line. The 95% interval
from a permutation test is shown as a vertical line for each patch. Right, confusion matrices for each patch. Rows
represent the true labels (ordered from full left to full right profile) and columns represent the predicted labels. B)
Same as A, using fMRI data. The results are shown separately for the two monkeys, M4 and M5. Note the very
good classification of ID 4 in ML/MF and AL in the single unit data and M5’s fMRI data, which I attribute to
obvious low level differences. Importantly, there is no significant retrieval of identity information in AM in the
fMRI data, whereas AM represents identity almost perfectly in the single unit data. 158

Figure 90 Representational Dissimilarity Matrices (RDMs). The distances between all pairs of images (in the order
depicted at the bottom) are computed from the single unit data (left) and from the fMRI data of monkey M4
(right): A) using a Pearson correlation based distance measure, as in '”° and B) using the distance from the
separating hyperplane in a linear SVM one vs. one decoding framework (measure that I introduced). Diagonal
values were set to zero. Some patterns emerge clearly from these RDMs, such as the mirror symmetry in AL
(darker top right and bottom left corners), and the identity coding in AM (dark diagonal stripes). 159

Figure 91 Simple model of V1 and corresponding representational dissimilarity matrix. A) Left, the bank of gabor
filters at 17 scales and four orientations constituting the V1 model'”®. Right, a face stimulus from the experiment,
shown at the same scale as the gabor filters. B) Left, representation dissimilarity matrix (distance metric is
Pearson correlation based), sorted by viewpoint. Right, representational dissimilarity matrix sorted by identity. I
am thankful to Tim Kietzmann for sharing some Matlab code with me to perform this analysis'’*. 160

Figure 92 Top: Spearman rank correlation between single unit RDM and fMRI RDMs (filled bars), before regressing
out the V1 model RDM. After selectively shuffling identity information, the Spearman correlation was almost
unchanged (hatched bars). However, selectively shuffling viewpoint information severely disrupted the
Spearman correlation (empty bars). The vertical lines are the 95% confidence interval obtained with a
permutation test (1000 surrogates). Bottom: same, after regressing out the V1 model RDM. 161
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Figure 93 Functional signal-to-noise ratio (fSNR) in the regions of interest, for M4 and M5 (mean across ten functional
runs, and standard error). The functional SNR was computed using the output of a General Linear Model, as the
average of parameter estimates for face block regressors divided by the standard deviation of the residuals. Note
that fSNR generally decreases from posterior (ML/MF) to anterior (AM) areas. However, the fSNR in AM for
monkey M4 is comparable to the fSNR is ML/MF and AL for monkey MS5; since these two areas supported
decent decoding in M5, fSNR cannot be the main cause for the poor decoding of identity in AM. 162

Figure 94 Sparseness of the neuronal representations of viewpoint (solid lines) and identity (dash-dotted lines),
computed from the single unit data (using all faces in the face views image set). The Gini index (bar plot, inset)
corresponds to twice the area below the diagonal when plotting the fraction of the total response against the
fraction of units (main plot). Sparseness increases from posterior to anterior regions, but identity representations
are no sparser than viewpoint representations. 163

Figure 95 Clustering of single unit responses. The correlation of responses of neighboring units (<Imm) was assessed,
across viewpoints and across identities, in the three regions of interest. Viewpoint selectivity in ML/MF and AL
is very clustered, while identity selectivity does not show above chance clustering. In AM, both viewpoint and
identity selectivity are clustered, but to a much lesser extent than in ML/MF or AL. A 95% confidence interval
for the distribution of chance was estimated with a permutation test (1000 surrogates) and plotted as vertical
lines. Error bars are s.e.m. 164

Figure 96 fMR adaptation paradigm. Top: each run had four block types. A=same identity, same viewpoint;
B=different identity, same viewpoint; C=same identity, different viewpoint; D=different identity, different
viewpoint. Bottom: predictions. If there are underlying neuronal populations that are tuned to different
viewpoints within a voxel, the response to blocks with the same viewpoint throughout (A and B) should be less
than the response to blocks with varying viewpoint (C and D). Similarly, if there are underlying neuronal
populations tuned to identity, one would expect same identity blocks (A and C) to yield lower activations than
varying identity blocks (B and D). Finally, one can imagine a mixed situation in which there are both populations
tuned to different identities and to different viewpoints. In that case, we expect A to show the most adaptation,
i.e., the lowest activation, and D to show the largest activation, while B and C will be somewhere in between (not
necessarily equal). 166

Figure 97 ROI analysis of MR adaptation experiment for both monkeys (M4: blue; MS5: red). The error bars are the
s.e.m. across runs. M4 may show results that are compatible with the predictions (mixed tuning in AL, identity
tuning in AM), but M5 does not. Our paradigm is likely underpowered. 167

Figure 98 A colorful blimp flying over Dodger Stadium. A metaphor for bulk tissue technologies, used by Christof in
his Quest® . Source: Getty Images. 169



INTRODUCTION

“Bulk tissue technologies such as fMRI reliably identify which brain regions relate to
vision, imagery, pain, or memory, a rebirth of phrenological thinking. Brain imaging tracks
the power consumption of a million neurons, irrespective of whether they are excitatory or
inhibitory, project locally or globally, are pyramidal neurons or spiny stellate cells. Unable
to resolve details at the all-important circuit level, they are inadequate to the task at hand.”

Christof Koch, Confessions of a Romantic Reductionist (2012)."

“Unable to resolve details |[...] inadequate [...]”

Christof omitted sharing these concerns when I started working on a fMRI project with Nao
Tsuchiya trying to uncover the relationship between attention and consciousness in the fall of
2006. Somehow, I stuck with fMRI after I joined Caltech as a PhD student; most likely it was a
combination of fascination, optimism and stubbornness that led me on this path. At the onset of
my PhD, I was still quite naive about fMRI, and simply thought of it as a really cool technique to
measure brain activity. I believe that this is how most cognitive scientists think of fMRI; trying to
be rather oblivious of the underlying complexity and abstracting themselves from details and
concentrating on drawing conclusions. This is the reason why I needed to write the first chapter
of this thesis; the glimpse that I offer into the physical bases of the fMRI signal will most likely
leave the reader experiencing a queasy feeling about the whole venture. But the reader should not
write the technique off right away; Nikos Logothetis, one of the leading experts in fMRI, wrote
the following in his superb 2008 review” published in Nature:
“[...] fMRI is not and will never be a mind reader, as some of the proponents of decoding-

based methods suggest, nor is it a worthless and non-informative ‘neophrenology’ that is
condemned to fail, as has been occasionally argued.”



For now, let us thus downplay Christof’s assertion and agree with Nikos that fMRI is not a

worthless technology. This is the bet I made a few years ago.
“[...] the task at hand.”

What is the task at hand, anyway? The dry version of it is that I have been trying to study how
conscious visual experience arises from brain activity. The more colorful version is: what
happens in my brain, when I open my eyes in the morning, look at my wife’s face, recognize her
and am filled with bliss? I have been seeking clues to answer this simple question through the use
of fMRI. In the next chapters, I report failures and successes as they happened, to shed an
(almost) unbiased light on studying the conscious and unconscious visual experience with fMRI. 1
report, in turn, on my ventures: whether invisible pictures of faces are processed unconsciously
(Chapter 2); how the brain recognizes familiar people (Chapter 3); and finally, on two somewhat
more methodologically oriented projects aimed at replicating strong single neuron findings with
fMRI, one about a categorical response to pictures of animals in the right human amygdala, the
other about face viewpoint and identity information in the macaque’s face patches (Chapter 4). I
relied heavily on fMRI throughout this thesis, but I am well aware of the importance of
combining different recording techniques to draw unbiased conclusions about brain function; I
bring this up in the discussion at the end of this thesis. I have, in fact, worked on other research
questions in the past six years, which are not reported in this thesis, through my collaboration
with Rufin VanRullen; with Rufin, I have mostly made use of electroencephalography and
Transcranial Magnetic stimulation’> (and psychophysics®’). Thus I have a fairly good
understanding of the advantages and drawbacks of the major techniques available for non-
invasive studies of the brain. In the work that I present here, I focused on fMRI for two reasons:
1) it was the most readily available technique for me here at Caltech, and 2) I truly wanted to
understand its limitations. I gained many insights into the technique itself, and some sparser

insights on the question(s) I was asking with it.



Besides being a narrative of intertwined scientific projects that unfolded in the past years, this
thesis is also, and perhaps primarily, the story of my childhood as a scientist. I feel like I may

finally be coming of age. Finally! I enjoyed the process though. I hope you will too.



I. WHAT YOU MUST KNOW ABOUT FUNCTIONAL
MAGNETIC RESONANCE IMAGING (FMRI)

My relationship with fMRI has had its share of ups and downs in the last few years. Perhaps this
section should be entitled: “Things you wish you had known before starting fMRI research”, or
just as well, “Things you should periodically be reminded of when conducting fMRI research.”
Either way, there is no excuse for ignoring this chapter. Cognitive neuroscientists cannot all be
MRI physicists, but we should still have a pretty good idea of what we are measuring to be

informed users.

I asked Ralph Lee, the manager of MR education and technologies at the Center for Brain
Imaging at Caltech, for some numbers. According to him, in the U.S.A. there are about 8,000
magnets. Out of those there may be 500 or so that are dedicated research magnets (the rest are for
clinical use, however research universities may purchase time after hours for research). Perhaps
about 12 sites in the U.S.A. are dedicated to neuroscience only. The number of functional MRI
studies published yearly has grown exponentially since the technique was developed in 1990
(Figure 1), and we are at present at the downright alarming rate of about five studies published
per day®! The troubling thing is that our understanding of the human brain is far from progressing

at the same rate. In 2004, Nikos Logothetis and Brian Wandell wrote’:

In the short period of time since its introduction, fMRI has evolved to become the most
important method for investigating human brain function.
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Figure 1 The rise of fMRI; data from ISI Web of Knowledge (fMRI = functional magnetic resonance imaging;
PET=positron emission tomography; SPECT=single-photon emission computed tomography; EEG=electro-
encephalography; MEG=magnetoencephalography). Reproduced from ®.

I succumbed to fashion, in some sense. This is why I want to make it very clear from the onset
what fMRI is. You could probably gather much of the material that I go through in this chapter
from various textbooks on the subject (I drew heavily from the excellent textbook by Huettel,
Allen and Song'® to compile this chapter, as well as a number of research and review papers >*''"~

'), This is a condensed tutorial, which summarizes what you should absolutely be aware of any

time you read a fMRI study, and especially before you read the body of my work.

When scientists talk about their research, they blissfully omit many of the methodological details
and technical challenges that they encountered in the process, and paint a pretty picture that far
overreaches what can be concluded from the actual data — this is, of course, especially true when
they talk to the public, but I find that it is often the case when they talk to their peers or write
grant proposals. I am rather averse to this behavior, so here’s the basic science, and you’ll get
plenty of reminders throughout this thesis of my obsession with honestly interpreting data —

unfortunately, this may do my career some harm in the short term.



A. The Physics of BOLD fMRI
In the following, I provide a classical physics description of MRI, which is a simplified
explanation of the phenomena at play; for a thorough understanding, one would need to resort to

quantum mechanics, which is beyond the scope of this thesis.

1. MR signal generation

a. Spins

fMRI relies on hydrogen nuclei, 'H. A hydrogen atom is composed of a proton (its nucleus) and
an electron. The proton, under normal conditions, spins about itself. Because the proton is
electrically charged, this rotation creates an electrical current, which in turn generates a torque (a
turning force) when the proton is placed in a magnetic field: this is known as the magnetic
moment. Because the proton has a mass, the rotation also gives rise to a non-zero angular
momentum. These combined properties give the hydrogen nucleus the magnetic resonance
property — I will refer to hydrogen nuclei as “spins” in the following. Note that other nuclei could
potentially be used for magnetic resonance imaging ("°F, *'P, °C, *Na, '"0); all these nuclei have
unpaired protons, hence spin. However, these are rare in the body/brain (rare isotopes), compared

to 'H which is omnipresent (body tissue contains 60-80% of water, H,O...).

In a strong magnetic field, these spins will start a gyroscopic motion, called precession, about the
axis of the magnetic field, at an angle determined by their angular momentum. There are two
possible states for these precessing protons: parallel or antiparallel to the direction of the
magnetic field. A spin can transition from the high-energy state (antiparallel) to the low-energy
state (parallel), emitting a photon in the process; the energy of the photon is exactly the difference
between the two quantized energy states. Conversely, a spin in the low energy state may absorb a

photon and transition to the high-energy state. The frequency (w,) of the absorbed/emitted



electromagnetic energy (E=h w, where h is the Planck constant) can be shown to depend only on
the magnetic field strength (By) and on the gyromagnetic ratio (y, the ratio of the magnetic
moment to the angular momentum, constant for a given nucleus): it is known as the Larmor

frequency.
wo = YBy

For a 3T scanner, the Larmor frequency for hydrogen is approximately 127.74MHz (note that this
is close to the FM and TV broadcast bands). Interestingly, the precession frequency (in rad/s) is

also given by the Larmor frequency.

b. Net Magnetization

There are many (on the order of 7.5 x 10%, just counting water molecules) hydrogen atoms in the
average human brain. Under normal circumstances, these are oriented randomly, pointing in all
directions, and thus do not lead to a substantial net magnetization. In the presence of a magnetic
field, the spins will align, as described above; there will be a net magnetization (in the direction
of the magnetic field), proportional to the difference in the number of spins in the parallel and
antiparallel states. The higher the field strength, the higher the proportion of spins in the parallel,
energetically more stable state (the energy difference between the two states increases linearly

with field strength; this is known as the Zeeman effect).

c. Excitation and relaxation

The net magnetization, when tipped away from equilibrium, will start precessing around the main
axis of the field at the Larmor frequency (as it relaxes to equilibrium). In a MRI scanner, a short
excitation pulse at the Larmor frequency is applied by a transmitter coil to tip the net

magnetization away from equilibrium.



The precession of the net magnetization vector can be picked up by a receiver coil; this is the MR
signal. With time, the net magnetization vector relaxes back towards its equilibrium state via two
mechanisms: longitudinal relaxation, whereby spins gradually returning to the low energy state
lead to an increase in the longitudinal magnetization (back towards its equilibrium value) — the

time constant of this process is called T1; and transverse relaxation, whereby the spins,

X-projection (real axis)
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Figure 2 The changes in longitudinal (left) and transverse (right) magnetization over time, following an excitation
pulse. Left: when fully recovered (A), the longitudinal magnetization is at its maximum value, as shown by the dotted
line, and does not change over time. However, following an excitation pulse that tips the net magnetization into the
transverse plane, there will be zero longitudinal magnetization (B). As time passes following excitation, the
longitudinal magnetization recovers toward its maximum value (C). The time constant T1 governs this recovery
process. Right: the magnetism in the transverse plane is a vector defined by its angle and magnitude. As time passes, its
angle follows a circular motion with constant angular velocity o, while its magnitude decays with time constant T2.
These two components combine to form the inward spiral path shown (dashed lines). Shown at the top and right sides
of the spiral path are its projections onto the x- and y- axes, respectively. Within each axis, the projection of the
transverse magnetization is a one-dimensional oscillation, as illustrated by the blue and green lines. This oscillation is
shown over time at the bottom of the figure, which illustrates the decaying MR signal. Reproduced from '°.

initially in phase as they precess, progressively get out of phase, leading to a decrease in the
transverse magnetization (back towards zero) — the time constant of this process is called T2
(Figure 2). Transverse relaxation may sometimes be faster than predicted by the T2 time

constant; local field inhomogeneities will cause spins to precess at slightly different frequencies,



hence getting out of phase more rapidly. The T2* time constant takes field inhomogeneity into
account; naturally, T2* is always smaller than T2. These relaxation processes constrain how

much MR signal can be picked up following a single excitation pulse.

2. MR image formation

We now know how to measure the net magnetization of a chunk of matter in a magnetic field.
How do we generate a three-dimensional picture of the brain? This is achieved through the use of

magnetic gradients (the magnetic field varies in space).

a. Slice selection

The application of a static gradient along the slice selection axis makes it so that spins along that
axis have different Larmor frequencies. An excitation pulse centered at a given frequency will
thus only affect the spins within a given slice of the volume. To excite a perfectly rectangular
slice, a sinc-modulated electromagnetic pulse must be applied. Slice location and thickness are
determined by, 1) the center frequency of the excitation pulse, 2) the bandwidth of the excitation
pulse, and 3) the strength of the gradient field. Note that to increase resolution, strong gradients

are required.

b. Spatial encoding

Once spins are excited within the selected slice, additional gradients are turned on for spatial
encoding. In a typical gradient-echo sequence (which is what I used throughout this thesis), a first
gradient is turned on in one dimension (before data acquisition), which results in the
accumulation of a certain amount of phase offset; this is the phase-encoding gradient. A second
gradient in the orthogonal direction is turned on during data acquisition, which changes the

precession frequency of the spins; this is the frequency-encoding gradient.



10

c¢. Image formation

MR image formation relies on the formalism of k-space. k-space is the two-dimensional Fourier
transform of a MR image; its complex values are sampled (at discrete points) during a MR
measurement; it thus constitutes a temporary image space, in which data from digitized MR
signals are stored during data acquisition. For instance, the previously described combination of a
phase-encoding gradient before data acquisition and a frequency encoding gradient during data
acquisition fills one line of k-space. When all lines of k-space are filled, the MR image can be
retrieved with an inverse Fourier transform. An interesting consequence is that the field-of-view
and resolution of the two-dimensional image of the slice depend, respectively, on the resolution

and the field-of-view of two-dimensional k-space sampling.

3. MR contrasts and pulse sequences

a. TI1-or T2-weighted?

There are two fundamental parameters in designing a pulse sequence: the repetition time (TR) is
the time between two consecutive excitation pulses; the echo time (TE) is the time between the
excitation pulse and data acquisition. The values of these two parameters dictate what type of

image is collected; for instance, whether a T1-weighted image or a T2-weighted image.

b. Echo-Planar Imaging

Imaging the functioning brain requires being able to acquire images rapidly. Echo-Planar Imaging
is a method in which the entire k-space is filled using rapid gradient switching following a single
excitation pulse (in the classical gradient echo sequence described above, each line of k-space
requires its own excitation pulse) (Figure 3). It is very taxing on the gradient hardware, and leads

to several common artifacts such as signal loss (due to field inhomogeneities, e.g., at boundaries
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between brain tissue and air-filled cavities) and geometric distortions (due to the long readout
time for each excitation, small field variations in the image plane can cause distortions up to

several pixels).

Figure 3 An echo planar imaging (EPI) pulse sequence (left) and the corresponding trajectory in k-space (right). Note
that the directions of the gradients are changed rapidly over time to allow the back-and-forth trajectory through k-space.
Reproduced from '

4. How can Blood Oxygen Level be picked up by MR?

Oxygen nuclei do not have the magnetic resonance property (there are no unpaired protons in the
20 nucleus). Hence, measuring blood oxygen level directly with MR would not be possible.
Hemoglobin, the molecule which carries oxygen in our blood, has a fortuitous property:
oxygenated, it is diamagnetic (zero magnetic moment), while deoxygenated, it becomes
paramagnetic. Fully deoxygenated blood has a magnetic susceptibility 20% higher than fully
oxygenated blood. Deoxygenated blood will thus cause a local field inhomogeneity, leading to
spin dephasing and faster transverse relaxation (Figure 4). In a T2* weighted image, a voxel’s

intensity will thus vary as a function of the oxygenation of the blood that flows through it.
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Figure 4 Effect of blood deoxygenation upon MR relaxation constants. Shown are the differential effects of blood
deoxygenation upon transverse and longitudinal relaxation times, as expressed by the constants 1/T2 (filled circles) and
1/T1 (open circles). The x-axis indicated the square of the proportion of deoxygenated blood. Note that oxygenation
increases from left to right. Clearly evident is the fact that 1/T2 decreases with increasing oxygenation; that is, the more
deoxygenated hemoglobin that is present, the shorter the T2. Note that T1 is not affected by blood oxygenation level.
Reproduced from .

B. The link between BOLD signal and neuronal activity
Information processing in the brain relies on communication between neurons. Each neuron can
perform some basic operation on its inputs, and then propagates the output to other neurons; the
main way (that we know of so far) for neurons to communicate over a distance is via action
potentials. For instance, all of the information communicated from the retina to the rest of the
nervous system is represented in the action potentials from ganglion cells. Consequently, the
study of action potentials (via microelectrode recordings) has, for the past 50 years, been the gold
standard for understanding computations performed in the brain. Is the Blood Oxygen Level

Dependent (BOLD) signal related to the neural signal?

1. Increased activity — increased blood flow — deoxyHb flushed — increased
signal

Neuronal activity requires energy in the form of Adenosine Tri-Phosphate (ATP). The brain does
not store energy, hence ATP molecules must be synthesized on demand through the oxidation of

glucose. Glucose and oxygen are supplied by a local increase in Cerebral Blood Flow (CBF).
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This increase overcompensates the oxygen deficit resulting in an oversupply of oxygenated

blood, and a corresponding increase in the BOLD signal (Figure 5).

Baseline Stimulus
i

Artery Vein ® Oxyhemoglobin @ Deoxyhemoglobin

Figure 5. Vascular responses to neural activity. This schematic shows oxyhemoglobin (red dots) and deoxyhemoglobin
(blue dots) in blood flowing through arteries, arterioles, capillaries, venules, and finally to veins. At prestimulus
baseline conditions (left), blood oxygen saturation is ~100% in arteries, while it is ~60% in veins. Increases in neural
activity (after stimulation, right) trigger an increase in blood velocity (indicated by the size of arrows) and dilation of
vessels. The resulting increase in perfusion exceeds what is required by the increase in oxygen consumption rate.
Reproduced from '8,

2. Devilish Detailed Mechanisms of Neurovascular coupling

a. Quick primer on brain vasculature

One often forgets how densely vascularized the brain is (that is, if you have never actually seen a
brain). The brain consumes about 20% of blood oxygen (when the body is at rest); for an organ
that represents only about 2-3% of body weight, this is quite spectacular. Two major arterial
systems, the carotid arteries and the vertebral artery, supply oxygenated blood to the brain. These
arteries (4-10mm in diameter) branch into smaller arteries, then into even smaller arterioles, and
eventually into capillaries (5-10um in diameter, corresponding to the width of a red blood cell). It
is at the level of the capillaries that exchanges of oxygen, nutrients, and waste products occur.
The distance between capillaries and neurons is likely less than 13pm (in the most densely
vascularized areas of cortex), since the average intercapillary distance is about 25um. Capillaries
then coalesce into small venules, which collect into larger and larger veins, which drain into long

venous channels (formed by the meningeal covering of the brain) called sinuses. The superior and
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Figure 6 Scanning electron micrographs of a vascular corrosion cast from monkey visual cortex (superior temporal
gyrus). Casts were cut and trimmed to allow a vertical view on the cortex. The gray-white matter demarcation line is
shown as dashed line. Note the continuous orderly distribution of large vessels oriented perpendicularly to the cortical
surface, their different length and branching patterns and the rather homogeneous mesh size and density of the capillary
bed. (A=artery, B=vein). Reproduced from
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inferior sagittal sinuses drain into the transverse sinuses, which eventually form the jugular veins,

exiting the skull and returning “dirty” blood to the heart (Figure 7).

b. Feedforward signaling (rather than metabolic feedback)

In the last few years, our understanding of neurovascular coupling has progressed rapidly. The
traditional (intuitive) explanation of neurovascular coupling used to be that CBF was directly
regulated by the increased metabolism and energy demand of neurons, through signals such as the
fall in O, or glucose concentration, and the rise in CO, concentration (which dilates cerebral
vessels; an increase in CO, leads to a decrease in pH, which is sensed by chemoreceptors, and
vasodilation occurs to flush out excess CO,). This metabolic feedback idea has been almost
completely superseded. It is now believed that neurotransmitter-mediated signaling (mostly with
glutamate, which is used in 90% of synapses in the brain) is the main factor in the regulation of
CBF, and that a certain class of glial cells, the astrocytes, plays a major role. In short, glutamate
mediated signaling leads to the release of vasoactive substances such as nitric oxide (NO) from
neurons and arachidonic acid (+ derivatives) from astrocytes; these molecules can either have
vasodilating or vasoconstricting effects, depending on local O, concentration. Figure 8 represents
a simplified scheme of our current, though still far from complete, understanding of glutamate-
signaling mediated neurovascular coupling. Interestingly, another long-held belief was that blood
flow was controlled solely at the level of arterioles, through the tone of smooth muscle
surrounding those. As was recently discovered, the diameter of capillaries may be controlled by

contractile cells called pericytes, which are present at roughly S50um intervals along capillaries.

c¢. Oxygen oversupply: still not properly understood

As stated previously, the increase in blood flow leads to an oversupply of oxygen, which is the

basis for BOLD fMRI. Many explanations were put forward to explain this mismatch. Among
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these figured the rather complex “balloon model.” It rests principally on the observation that the
delivery system for oxygen (passive diffusion from capillaries to cells) is inefficient: as the
velocity of blood inside capillaries increases, its transit time decreases, and the rate of oxygen
delivery decreases nonlinearly. A disproportionate increase in blood flow becomes necessary to
supply enough oxygen to cater to the increased demand. Unfortunately, experimental evidence

against this hypothesis has since been reported.
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Figure 8 Major pathways by which glutamate regulates cerebral blood flow. Pathways from astrocytes and neurons
(left) that regulate blood flow by sending messengers (arrows) to influence the smooth muscle around the arterioles that
supply oxygen and glucose to the cells (right, shown as the vessel lumen surrounded by endothelial cells and smooth
muscle). Reproduced from '¢.

In the complex picture that is emerging, it is becoming clear that the relative importance of the
different neurovascular coupling pathways (through neurons or astrocytes) is bound to differ
between brain areas and between different neural networks in the same brain area. Also, as stated
previously, differences in vascular density between different brain regions will lead to different

coupling efficiencies. A study by Logothetis’s team'’ demonstrated that the microvascular density
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of primary visual cortex is higher than that of other visual areas; they suggest this feature may
influence the signal-to-noise ratio of the hemodynamic signals and consequently increase the
chances of detecting differences between conditions. This means that the relationship of the
BOLD signal to underlying neural activity will be rather heterogeneous throughout the brain, a

fortiori precluding direct comparisons between brain regions.

3. In practice: BOLD often correlates with LFPs

A series of studies conducted in sensory cortices of mammals supports a strong correlation
between the Local Field Potential (LFP) and the BOLD signal. While the exact composition of
the LFP (obtained by low-pass filtering extracellular recordings) itself is still a matter of
investigation, the current understanding is that it reflects the excitatory/inhibitory postsynaptic
potentials, together with dendritic hyperpolarization and intrinsic membrane oscillations; it is
usually thought of as a measure of the input to neurons that are around the tip of the electrode, in
the context of a typical extracellular recording. Since the input to neurons is bound to affect their

output, it is generally assumed that neural activity indirectly drives the BOLD signal.

a. LFPs correlates with BOLD in sensory cortices...

In 2001, Logothetis and colleagues™ recorded simultaneously the BOLD signal, the LFP (40-
130Hz) and Multi-Unit spiking Activity (MUA) in the primary visual cortex of anesthetized
monkeys viewing contrast gratings. They found a strong correlation between LFPs and BOLD,
and a slightly weaker correlation (but still a robust one) between MUA and BOLD. It was also
shown later that abolishing spiking in the visual cortex through pharmacological manipulation'*
still led to a robust correlation between LFPs and BOLD signal. The important take-home from
all these studies (well summarized in *') is that the strong correlation that may sometimes be

found between spiking activity and BOLD signal is due to a correlation between LFPs and BOLD



18

signal on the one hand, and LFPs and spiking on the other hand, rather than to a direct link
between spiking and BOLD signal: BOLD and spike rate correlations cannot typically be
assumed. Whether BOLD will reflect spike rate thus depends on whether LFPs and spike rate

correlate.

b. ... but not necessarily in other areas

As reviewed in *', many studies have also failed to find a correlation between LFPs and BOLD;
one region where it seems particularly difficult is the hippocampus. Ekstrom invokes local
circuitry and local vasculature as possible causes for the absence of correlation. Whatever the
reason, this is particularly disturbing for a project in which I invested much effort, that of finding

fMRI evidence for “Jennifer Aniston neurons”, which I describe in this thesis (page 88).

4. Spatial and temporal resolution of the BOLD signal

In pretty much any introductory course to neuroscience, you’ll find a plot akin to that in Figure 9.
It compares most of the techniques used in neuroscience, in terms of their spatial and temporal
resolution. You see that fMRI has a decent spatial resolution compared to other non-invasive
techniques such as EEG/MEG; however the temporal resolution is several orders of magnitude
worse than for these techniques. In the following I quickly discuss what factors influence the

spatial and temporal resolution of BOLD fMRI.
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Figure 9 Spatial and temporal resolution of various methods for studying brain function
(MEG=magnetoencephalography; ERP=event-related potential; fMRI=functional magnetic resonance imaging;
PET=positive emission tomography; TMS=transcranial magnetic stimulation). Reproduced from 2.

a. Spatial resolution of BOLD fMRI

The main limiting factor in terms of spatial resolution for fMRI is that it measures a vascular
response. For example, while the response should, in principle, be colocalized to the capillary
beds, larger draining vessels may contribute to the signal; if this is the case, a BOLD contrast may
be detected downstream of the active area, resulting in mislocalization and overestimation of the
extent of activation. With the typical voxel size in most cognitive neuroscience studies this is not
a serious problem, but it poses a limit to the resolution one can hope to achieve. Interestingly, a
higher field strength leads to a lesser contribution of larger vessels”. Also, while the most
common pulse sequence in cognitive neuroscience studies is Gradient-Echo Echo Planar Imaging,
which is sensitive to all vessel sizes, a Spin-Echo sequence is less sensitive to larger vessels. A

recent quantitative study of the vasculature of monkey primary visual cortex” concluded that the
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ultimate spatial resolution of an imaging scheme based on the penetrating venous vessels would
be around 0.70 mm’; they also noted the possibility of a better resolution by imaging signals

originating from arteries (feeding volume 0.44 mm3) or, better, from capillaries.

What is the resolution one can achieve? In 2001, researchers were able to resolve ocular
dominance columns with fMRI at 4T** — these have a mean width of 1mm, and the fMRI voxels

had an in-plane resolution of roughly 0.47x0.47mm". This is already impressive.

b. Temporal resolution

Vascular factors are also limiting the temporal resolution of BOLD fMRI; the vascular response
is sluggish, and thus will always, at best, reflect a low pass filtered version of the underlying
activity. Technically, it is also time consuming to sample a whole fMRI volume; with single-shot
gradient-echo EPI, one slice can be acquired in roughly 40-50ms. One can imagine that
technology will improve somewhat in the next years; for instance parallel imaging, which uses

multiple coils to sample the image, already allows accelerated acquisition.

Despite its limitations in terms of spatial and temporal resolution, two major advantages of fMRI
should be emphasized here: it can be done safely in live humans, and it allows imaging of the

whole brain.

C. From ugly functional MR volumes to pretty colorful blobs

There now exist a couple of very good recent textbooks on fMRI data analysis ***°

, which you
should read VERY carefully if you are thinking of toying with your own fMRI data (they were
not available when I started). Here I describe briefly the steps that I typically use in my analyses

to give you a flavor of how much processing goes into producing final results. My methods have

evolved over the last six years, with an increased use of multiple software packages to perform
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various operations. But in the end, these are pretty small variations around a main series of steps.

I drew a schematic overview of the steps that I usually use in Figure 10.

At the end of a typical scanning session, you find yourself with about 1500-2000 dicom files,
each file corresponding to one volume of fMRI data. A fMRI session is usually subdivided into
many runs; between runs, the experimenter stops the scanner to give the subject (and the
gradients) a few minutes’ rest. Besides the functional runs, the experimenter may acquire a high
resolution anatomical image (T1-weighted), as well as a field map—this is a special sequence

which allows measurement of the magnetic field inhomogeneities.
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Figure 10 A rough schematic of my fMRI data processing pipeline. Colors represent the software suite that I usually
use for each step (orange, SPM; green, FSL; blue, FREESURFER; red: cus