
On Erasure Coding for Distributed Storage

and Streaming Communications

Thesis by

Derek Leong

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California, USA

2013

(Defended October 8, 2012)

ii

c⃝ 2013

Derek Leong

All Rights Reserved

iii

To my parents and grandparents

iv

Acknowledgments

I would like to express my gratitude to my research adviser Tracey Ho for her guidance and

infinite wisdom, generosity, and patience, and also for her constant encouragement and prodding

to tighten this bound and generalize that theorem. I would also like to extend my appreciation to

my research mentor and collaborator Alex Dimakis for sharing his intuitions and insights on various

problems, and for his candid tips on preventing paper rejections and audience narcolepsy. My thanks

also go to my other thesis committee members Michelle Effros, Steven Low, Babak Hassibi, and

Jehoshua (Shuki) Bruck for their feedback and comments on improving my work. I would also like

to thank my research collaborators Edmund Yeh, Asma Qureshi, Michael Burd, Kyle Dumont, and

Rebecca Cathey for the many enriching discussions.

The work in this thesis was funded in part by the Agency for Science, Technology and Research

(A*STAR), Singapore; the Lee Center for Advanced Networking, California Institute of Technol-

ogy; Subcontract 069153 issued by BAE Systems National Security Solutions, Inc. and supported

by the Defense Advanced Research Projects Agency (DARPA) and the Space and Naval Warfare

System Center (SPAWARSYSCEN), San Diego, under contract N66001-08-C-2013; and the Air

Force Office of Scientific Research (AFOSR) under grant FA9550-10-1-0166.

My Caltech graduate student experience has been an exciting and fulfilling one thanks in large

part to the company of my research group mates and office mates Theodoros Dikaliotis, Svitlana

Vyetrenko, Alex Gittens, Christopher Chang, Tao Cui, Mayank Bakshi, Ming Fai Wong, Jinghao

Huang, and Hongyi Yao.

Lastly, I would like to thank my parents and grandparents for their unconditional love and

support, and for the sacrifices they have made to give me the opportunity to pursue my ambitions.

To them I dedicate my thesis with love.

v

Abstract

The work presented in this thesis revolves around erasure correction coding, as applied to dis-

tributed data storage and real-time streaming communications.

First, we examine the problem of allocating a given storage budget over a set of nodes for max-

imum reliability. The objective is to find an allocation of the budget that maximizes the probability

of successful recovery by a data collector accessing a random subset of the nodes. This optimization

problem is challenging in general because of its combinatorial nature, despite its simple formula-

tion. We study several variations of the problem, assuming different allocation models and access

models, and determine the optimal allocation and the optimal symmetric allocation (in which all

nonempty nodes store the same amount of data) for a variety of cases. Although the optimal al-

location can have nonintuitive structure and can be difficult to find in general, our results suggest

that, as a simple heuristic, reliable storage can be achieved by spreading the budget maximally over

all nodes when the budget is large, and spreading it minimally over a few nodes when it is small.

Coding would therefore be beneficial in the former case, while uncoded replication would suffice in

the latter case.

Second, we study how distributed storage allocations affect the recovery delay in a mobile set-

ting. Specifically, two recovery delay optimization problems are considered for a network of mobile

storage nodes: the maximization of the probability of successful recovery by a given deadline, and

the minimization of the expected recovery delay. We show that the first problem is closely related to

the earlier allocation problem, and solve the second problem completely for the case of symmetric

allocations. It turns out that the optimal allocations for the two problems can be quite different. In a

simulation study, we evaluated the performance of a simple data dissemination and storage protocol

for mobile delay-tolerant networks, and observed that the choice of allocation can have a significant

impact on the recovery delay under a variety of scenarios.

vi

Third, we consider a real-time streaming system where messages created at regular time inter-

vals at a source are encoded for transmission to a receiver over a packet erasure link; the receiver

must subsequently decode each message within a given delay from its creation time. For erasure

models containing a limited number of erasures per coding window, per sliding window, and con-

taining erasure bursts whose maximum length is sufficiently short or long, we show that a time-

invariant intrasession code asymptotically achieves the maximum message size among all codes

that allow decoding under all admissible erasure patterns. For the bursty erasure model, we also

show that diagonally interleaved codes derived from specific systematic block codes are asymptot-

ically optimal over all codes in certain cases. We also study an i.i.d. erasure model in which each

transmitted packet is erased independently with the same probability; the objective is to maximize

the decoding probability for a given message size. We derive an upper bound on the decoding prob-

ability for any time-invariant code, and show that the gap between this bound and the performance

of a family of time-invariant intrasession codes is small when the message size and packet erasure

probability are small. In a simulation study, these codes performed well against a family of random

time-invariant convolutional codes under a number of scenarios.

Finally, we consider the joint problems of routing and caching for named data networking.

We propose a backpressure-based policy that employs virtual interest packets to make routing and

caching decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol

that combines shortest-path routing with least-recently-used (LRU) cache replacement.

vii

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

2 Distributed Storage Allocations 5

2.1 Introduction . 5

2.1.1 Independent Probabilistic Access to Each Node 7

2.1.2 Access to a Random Fixed-Size Subset of Nodes 9

2.1.3 Probabilistic Symmetric Allocations . 11

2.1.4 Other Related Work . 11

2.2 Independent Probabilistic Access to Each Node 12

2.2.1 Asymptotic Optimality of Maximal Spreading 15

2.2.2 Optimality of Minimal Spreading (Uncoded Replication) 16

2.2.3 Optimal Symmetric Allocation . 17

2.3 Access to a Random Fixed-Size Subset of Nodes 22

2.3.1 Regime of High Recovery Probability . 24

2.3.2 Upper Bounds for the Optimal Recovery Probability 26

2.4 Probabilistic Symmetric Allocations . 28

2.4.1 Optimality of Maximal Spreading . 30

2.5 Conclusion and Future Work . 31

2.6 Proofs of Theorems . 32

2.7 Acknowledgment . 64

viii

3 Distributed Storage Allocations for Optimal Delay 65

3.1 Introduction . 65

3.1.1 Our Contribution . 67

3.1.2 Other Related Work . 68

3.2 Theoretical Analysis . 68

3.2.1 Maximization of Recovery Probability . 69

3.2.2 Minimization of Expected Recovery Delay 70

3.3 Simulation Study . 74

3.3.1 Protocol Description . 74

3.3.2 Network Model and Simulation Setup . 77

3.3.3 Simulation Results . 77

3.3.4 Evaluation on Mobility Traces . 79

3.4 Conclusion and Future Work . 80

3.5 Proofs of Theorems . 80

4 Coding for Real-Time Streaming under Packet Erasures 87

4.1 Introduction . 87

4.2 Problem Definition . 89

4.3 Code Constructions . 91

4.3.1 Symmetric Intrasession Codes . 91

4.3.1.1 Active Messages at Each Time Step 93

4.3.1.2 Block Sizes for Each Message 95

4.3.1.3 Achievability . 95

4.3.1.4 Partitioning of Coding Windows 96

4.3.2 Diagonally Interleaved Codes . 97

4.4 Window-Based Erasure Model . 99

4.4.1 Coding Window Erasure Model . 100

4.4.2 Sliding Window Erasure Model . 101

4.5 Bursty Erasure Model . 103

4.5.1 Optimality of Symmetric Intrasession Codes 104

ix

4.5.2 Optimality of Diagonally Interleaved Codes 104

4.6 IID Erasure Model . 110

4.6.1 Performance of Symmetric Intrasession Codes 112

4.6.1.1 Decoding Probability . 113

4.6.1.2 Burstiness of Undecodable Messages 115

4.6.1.3 Trade-off between Performance Metrics 116

4.6.2 Simulation Study: Symmetric Intrasession Codes vs. Random Time-

Invariant Convolutional Codes . 117

4.6.2.1 Simulation Setup . 117

4.6.2.2 Simulation Results and Discussion 119

4.7 Conclusion and Future Work . 123

4.8 Proofs of Theorems . 125

4.9 Acknowledgment . 160

5 Routing-Caching for Named Data Networking 161

5.1 Introduction . 161

5.2 Network Model . 162

5.2.1 Creation of Requests . 163

5.2.2 Handling of Interest Packets (IPs) and Routing 164

5.2.3 Handling of Data Packets (DPs) and Caching 164

5.2.4 Performance Metrics . 165

5.3 Virtual Backpressure Routing-Caching Policy . 166

5.3.1 Creation of Virtual Interest Packets (VIPs) 167

5.3.2 Handling of Virtual Interest Packets (VIPs) 168

5.3.3 Routing Policy for the Actual Plane . 169

5.3.4 Caching Policy for the Actual Plane . 169

5.4 Simulation . 171

5.4.1 Simulation Setup . 172

5.4.2 Simulation Results and Discussion . 172

5.5 Conclusion and Future Work . 174

x

5.6 Acknowledgment . 174

6 Summary and Future Work 175

6.1 Summary . 175

6.2 Future Work . 176

Bibliography 183

xi

List of Figures

2.1 Information flows in a distributed storage system 6

2.2 Plot of access probability p against budget T describing the optimality of minimal

spreading . 17

2.3 Plot of recovery failure probability 1− PS against budget T for symmetric allocations 18

2.4 Plot of access probability p against budget T describing the optimal symmetric al-

location . 21

2.5 Plot of the optimal recovery probability maxPS against budget T 23

2.6 Plot of the desired recovery probability PS against the number of nodes accessed r

describing the optimality of allocation
(
1
r , . . . ,

1
r

)
. 26

2.7 Plot of recovery probability PS against budget-per-node T
n for probabilistic sym-

metric allocations . 29

2.8 Plot of recovery probability PS against the number of nodes accessed r describing

the optimal probabilistic symmetric allocation . 31

2.9 Example for the construction in the proof of Theorem 2.15 50

2.10 Example for the construction in the proof of Theorem 2.16 53

3.1 Information flows in a network of mobile storage nodes 66

3.2 Plot of expected recovery delay E [D] against budget T for symmetric allocations . 72

3.3 Simulation results for the random waypoint mobility model 75

3.4 Simulation results for the mobility traces . 76

4.1 Real-time streaming system . 88

4.2 Packet space allocation in the symmetric intrasession code 93

4.3 Partitioning of time steps based on a symmetric intrasession code 97

xii

4.4 Construction of the diagonally interleaved code 98

4.5 Systematic block code specified in Theorem 4.9 105

4.6 Systematic block code specified in Theorem 4.10 105

4.7 Systematic block code specified in Theorem 4.12 106

4.8 Plots describing the performance of symmetric intrasession codes 114

4.9 Simulation results for the low-erasure scenario . 120

4.10 Simulation results for the medium-erasure scenario 121

4.11 Simulation results for the high-erasure scenario 122

5.1 Network used in the simulation . 171

5.2 Simulation results for the Virtual Backpressure routing-caching policy 173

xiii

List of Tables

2.1 Notation . 12

2.2 Optimal allocations for number of nodes n = 2, 3, 4, 5 14

2.3 Construction of a #LSS instance for a given #3SAT instance 33

1

Chapter 1

Introduction

The work presented in this thesis revolves around erasure correction coding, as applied to dis-

tributed data storage and real-time streaming communications. In this chapter, we briefly discuss

key motivations, related previous work, and our main contributions.

Distributed storage systems are widely used today as a means of keeping data safe and easily ac-

cessible. They can be as small as a RAID system [1] sitting on a desk, or as large as the Amazon S3

storage service [2] spanning across multiple data centers around the world. A distributed storage

system introduces many new coding challenges that are not addressed in the single node case; chief

among them are the cost and reliability of data recovery (or reconstruction) and node repairs in the

event of device failures.

In Chapter 2, we explore the fundamental limits of the reliability of data recovery in a distributed

storage system. Specifically, we examine the problem of allocating a given storage budget over a set

of nodes for maximum reliability. The objective is to find an allocation of the budget that maximizes

the probability of successful recovery by a data collector accessing a random subset of the nodes.

This optimization problem is challenging in general because of its combinatorial nature, despite its

simple formulation. The issue of storage allocations has rarely been addressed in previous work on

distributed data storage; most storage schemes that apply coding, as opposed to uncoded replication

or mirroring, would simply assume that the same amount of coded data should be stored in every

node (e.g., see [3–7]). However, this common strategy of uniformly spreading the budget over

all nodes can be suboptimal even for a simple homogeneous access model (or failure model) in

which each node fails independently with the same probability [8]. We study several variations of

2

the problem, assuming different allocation models and access models, and determine the optimal

allocation and the optimal symmetric allocation (in which all nonempty nodes store the same amount

of data) for a variety of cases. Although the optimal allocation can have nonintuitive structure and

can be difficult to find in general, our results suggest that, as a simple heuristic, reliable storage

can be achieved by spreading the budget maximally over all nodes when the budget is large, and

spreading it minimally over a few nodes when it is small. Coding would therefore be beneficial in

the former case, while uncoded replication would suffice in the latter case. Although these results

are framed in the context of distributed data storage, the fundamental nature of the problem lends

them to many other applications, such as multipath routing over delay-tolerant networks [9–11],

peer-to-peer networking [12], and streaming communications.

In Chapter 3, we study how distributed storage allocations affect the recovery delay in a mo-

bile setting. Specifically, two recovery delay optimization problems are considered for a network

of mobile storage nodes: the maximization of the probability of successful recovery by a given

deadline, and the minimization of the expected recovery delay. We show that the first problem is

closely related to the allocation problem of Chapter 2, and solve the second problem completely

for the case of symmetric allocations. It turns out that the optimal allocations for the two problems

can be quite different. We present a simple data dissemination and storage protocol that generalizes

the Spray-and-Wait protocol [13] by using variable-size coded packets to create different symmetric

allocations. In a simulation study, we evaluated the performance of the proposed protocol for delay-

tolerant networks using a random waypoint mobility model and real-world mobility traces from

vehicles, and observed that the choice of allocation can have a significant impact on the recovery

delay under a variety of scenarios.

The ability to stream data reliably in real-time over packet erasure networks such as the Internet

is essential for applications ranging from personal video conferencing to large-scale environmental

monitoring or surveillance. In contrast to ordinary communications, real-time streaming imposes

stringent constraints on what an encoder can access, and how long a decoder can wait.

In Chapter 4, we explore the fundamental limits of real-time streaming under various packet

erasure models. Specifically, we consider a real-time streaming system where messages created

at regular time intervals at a source are encoded for transmission to a receiver over a packet era-

sure link; the receiver must subsequently decode each message within a given delay from its cre-

3

ation time. Unlike previous work that aim to minimize the expected message decoding delay [14],

or achieve a decoding failure probability that decays exponentially with delay [15–17], our real-

time streaming model features hard message decoding deadlines. For erasure models containing a

limited number of erasures per coding window, per sliding window, and containing erasure bursts

whose maximum length is sufficiently short or long, we show that a time-invariant intrasession code

asymptotically achieves the maximum message size among all codes that allow decoding under all

admissible erasure patterns. This is interesting because intrasession coding is attractive due to its

relative simplicity (it allows coding within the same message but not across different messages),

but it is not known in general when intrasession coding is sufficient or when intersession coding

is necessary. For the bursty erasure model, we also show that diagonally interleaved codes derived

from specific systematic block codes are asymptotically optimal over all codes in certain cases. We

also study an i.i.d. erasure model in which each transmitted packet is erased independently with the

same probability; the objective is to maximize the decoding probability for a given message size.

We derive an upper bound on the decoding probability for any time-invariant code, and show that

the gap between this bound and the performance of a family of time-invariant intrasession codes

is small when the message size and packet erasure probability are small. In a simulation study,

these codes performed well against a family of random time-invariant convolutional codes, which

are related to the codes in [14, 17], under a number of scenarios.

In Chapter 5, we consider the joint problems of routing and caching for named data networking.

Named data networking (NDN), or content-centric networking (CCN), is a proposed network ar-

chitecture for the Internet that replaces the traditional client-server model of communications with

one based on the identity of data or content [18]. Requests for a data object in an NDN can be

fulfilled not only by the origin server but also by any node with a copy of the object in its cache.

Assuming the prevalence of caches, the usual approaches to routing and caching may no longer be

effective for such a network. We propose a policy based on the backpressure algorithm [19,20] that

employs virtual interest packets to make routing and caching decisions. In a packet-level simula-

tion, the proposed policy outperformed a basic protocol that combines shortest-path routing with

least-recently-used (LRU) cache replacement [21].

In the final chapter, we conclude the thesis by summarizing our main contributions and propos-

ing avenues for future work. Up-to-date information and resources on this thesis (e.g., links to

4

publications, source code, corrections) are available at http://purl.org/net/phdthesis.

5

Chapter 2

Distributed Storage Allocations

2.1 Introduction

Consider a distributed storage system comprising n storage nodes. A source has a single data

object of normalized unit size that is to be coded and stored in a distributed manner over these

nodes, subject to a given total storage budget T . Let xi be the amount of coded data stored in node

i ∈ {1, . . . , n}. Any amount of data may be stored in each node, as long as the total amount of

storage used over all nodes is at most the given budget T , i.e.,

n∑
i=1

xi ≤ T.

This is a realistic constraint if there is limited transmission bandwidth or storage space, or if it is

too costly to mirror the data object in its entirety in every node. At some time after the creation of

this coded storage, a data collector attempts to recover the original data object by accessing only the

data stored in a random subset r of the nodes, where the probability distribution of r ⊆ {1, . . . , n}

is specified by an assumed access model or failure model (nodes or links may fail probabilistically,

for example). Figure 2.1 depicts such a distributed storage system.

The reliability of this system, which we define to be the probability of successful recovery (or

recovery probability in short), depends on both the storage allocation and the coding scheme. For

maximum reliability, we would therefore need to find

The material in this chapter was presented in part in [22–25].

6

Figure 2.1. Information flows in a distributed storage system. The source s has a single data object of
normalized unit size that is to be coded and stored over n storage nodes. Subsequently, a data collector t
attempts to recover the original data object by accessing only the data stored in a random subset r of the
nodes.

1) an optimal allocation of the given budget T over the nodes, specified by the values of

x1, . . . , xn; and

2) an optimal coding scheme

that jointly maximize the probability of successful recovery. It turns out that these two problems

can be decoupled by using a good coding scheme, specifically one that enables successful recovery

whenever the total amount of data accessed by the data collector is at least the size of the original

data object. This can be seen by considering the information flows for a network in which the source

is multicasting the data object to a set of potential data collectors [26, 27]: successful recovery can

be achieved by a data collector if and only if its corresponding max-flow or min-cut from the source

is at least the size of the original data object. Random linear coding over a sufficiently large field

would allow successful recovery with high probability when this condition is satisfied [28, 29].

Alternatively, a suitable maximum distance separable (MDS) code for the given budget and data

object size would allow successful recovery with certainty when this condition is satisfied.

Therefore, assuming the use of an appropriate code, the probability of successful recovery for

an allocation (x1, . . . , xn) can be written as

P [successful recovery] = P

[∑
i∈r

xi ≥ 1

]
.

Our goal is to find an optimal allocation that maximizes this recovery probability, subject to the

7

given budget constraint.

Although we have assumed coded storage at the outset, coding may ultimately be unnecessary

for certain allocations. For example, if the budget is spread minimally such that each nonempty

node stores the data object in its entirety (i.e., xi ≥ 1 for all i ∈ S, and xi = 0 for all i /∈ S, where

S is some subset of {1, . . . , n}), then uncoded replication would suffice since the data object can be

recovered by accessing any one nonempty node; the data collector would not need to combine data

accessed from different nodes in order to recover the data object. Thus, by solving for the optimal

allocation, we will also be able to determine whether coding is beneficial for reliable storage.

We note that even though no explicit upper bound is imposed on the amount of data that can

be stored in each node, it is never necessary to set xi > 1 because xi = 1 already allows the data

object to be stored in its entirety in that node. The absence of a tighter per-node storage constraint

xi ≤ ci < 1 is reasonable for storage systems that handle a large number of data objects: we would

expect the storage capacity of each node to be much larger than the size of a single data object,

making it possible for a node to accommodate some of the data objects in their entirety. As such, it

would be appropriate to apply a storage constraint for each data object via the budget T , without a

separate a priori constraint for xi. Furthermore, the simplifying assumption of xi being a continu-

ous variable is a reasonable one for large data objects: a large data object size would facilitate the

creation of coded data packets with sizes (closely) matching that of a desired allocation. Inciden-

tally, the overhead associated with random linear coding or an MDS code, which is ignored in our

model, becomes proportionately negligible when the amount of coded data is large.

In spite of the simple formulation, this optimization problem poses significant challenges be-

cause of its combinatorial nature and the large space of feasible allocations. Different variations of

this problem can be formulated by assuming different allocation models and access models; in this

chapter, we will examine three such variations that are motivated by practical storage problems in

content delivery networks, delay tolerant networks, and wireless sensor networks.

2.1.1 Independent Probabilistic Access to Each Node

In the first problem formulation, we assume that the data collector accesses each of the n nodes

independently with constant probability p; in other words, each node i appears in subset r inde-

pendently with probability p. The resulting problem can be interpreted as that of maximizing the

8

reliability of data storage in a system comprising n storage devices where each device fails inde-

pendently with probability 1− p. It is not hard to show that determining the recovery probability

of a given allocation is computationally difficult (specifically, #P-hard). The intuitive approach of

spreading the budget maximally over all nodes, i.e., setting xi =
T
n for all i, turns out to be not nec-

essarily optimal; in fact, the optimal allocation may not even be symmetric (we say that an allocation

is symmetric when all nonzero xi are equal). The following counterexample from [8] demonstrates

that symmetric allocations can be suboptimal: for (n, p, T) =
(
5, 23 ,

7
3

)
, the nonsymmetric alloca-

tion (
2

3
,
2

3
,
1

3
,
1

3
,
1

3

)
,

which achieves a recovery probability of 0.90535, performs strictly better than any symmetric al-

location; the maximum recovery probability among symmetric allocations is 0.88889, which is

achieved by both (
7

6
,
7

6
, 0, 0, 0

)
and

(
7

12
,
7

12
,
7

12
,
7

12
, 0

)
.

Evidently, the simple strategy of “spreading eggs evenly over more baskets” may not always im-

prove the reliability of an allocation.

Our Contribution: We show that the intuitive symmetric allocation that spreads the budget max-

imally over all nodes is indeed asymptotically optimal in a regime of interest. Specifically, we derive

an upper bound for the suboptimality of this allocation, and show that the performance gap vanishes

asymptotically as the total number of storage nodes n grows, when p > 1
T . This is a regime of

interest because a high recovery probability is possible when p > 1
T ⇐⇒ pT > 1: The expected

total amount of data accessed by the data collector is given by

E

[
n∑

i=1

xiYi

]
=

n∑
i=1

xiE [Yi] = p

n∑
i=1

xi ≤ pT, (2.1)

where Yi’s are independent Bernoulli(p) random variables. Therefore, the data collector would be

able to access a sufficient amount of data in expectation for successful recovery if pT > 1.

We also show that the symmetric allocation that spreads the budget minimally is optimal when p

is sufficiently small. In such an allocation, the data object is stored in its entirety in each nonempty

node, making coding unnecessary. Additionally, we explicitly find the optimal symmetric allocation

9

for a wide range of parameter values of p and T .

Related Work: This problem was introduced to us through a discussion at UC Berkeley [8]. We

have since learned that variations of the problem have also been studied in several different fields.

In reliability engineering, the weighted-k-out-of-n system [30] comprises n components, each

having a positive integer weight wi and surviving independently with probability pi; the system

is in a good state if and only if the total weight of its surviving components is at least a specified

threshold k. Related work on this system and its extensions has focused on the efficient computation

of the reliability of a given weight allocation (e.g., [31]).

In peer-to-peer networking, the allocation problem deals with the recovery of a data object from

peers that are available only probabilistically. Lin et al. [12] compared the performance of uncoded

replication vs. coded storage, restricted to symmetric allocations, for the case where the budget is

an integer.

In wireless communications, the allocation problem is studied in the context of multipath rout-

ing, in which coded data is transmitted along different paths in an unreliable network, exploiting

path diversity to improve the reliability of end-to-end communications. Tsirigos and Haas [9, 10]

examined the performance of symmetric allocations and noted the existence of a phase transition

in the optimal symmetric allocation; approximation methods were also proposed by the authors to

tackle the optimization problem, especially for the case where path failures occur with nonuniform

probabilities and may be correlated. Jain et al. [11] evaluated the performance of symmetric allo-

cations experimentally in a delay tolerant network setting, and presented an alternative formulation

using Gaussian distributions to model partial access to nodes.

Our work generalizes these previous efforts by considering nonsymmetric allocations and non-

integer budgets. We also correct some inaccurate claims about the optimal symmetric allocation

in [11] and its associated technical report.

2.1.2 Access to a Random Fixed-Size Subset of Nodes

In the second problem formulation, we assume that the data collector accesses an r-subset of

the n nodes selected uniformly at random from the collection of all
(
n
r

)
possible r-subsets, where

r is a given constant. The resulting problem can be interpreted as that of maximizing the recovery

probability in a networked storage system of n nodes where the end user is able or allowed to

10

contact up to r nodes randomly. We can treat this access model as an approximation to the preceding

independent probabilistic access model by picking r ≈ np. Finding the optimal allocation in this

case is still challenging. As in the first problem formulation, it is not hard to show that determining

the recovery probability of a given allocation is computationally difficult (specifically, #P-complete).

The problem appears nontrivial even if we restrict the optimization to only symmetric alloca-

tions. Numerically, we observe that given n and r, either a minimal or a maximal spreading of the

budget is optimal among symmetric allocations for most, if not all, choices of T . One example of an

exception is (n, r, T) =
(
14, 5, 83

)
for which it is optimal to have 8 nonempty nodes in the symmet-

ric allocation, instead of the extremes 2 or 13; another example is (n, r, T) =
(
16, 4, 72

)
for which

it is optimal to have 7 nonempty nodes in the symmetric allocation, instead of the extremes 3 or 14.

Furthermore, the number of nonempty nodes in the optimal symmetric allocation is not necessarily

a nondecreasing function of the budget T ; for instance, given (n, r) = (20, 4), it is optimal to have

(4, 18, 14, 19, 20) nonempty nodes in the symmetric allocation for T = (4.25, 4.5, 4.67, 4.75, 5),

respectively.

Our Contribution: We show that the allocation
(
1
r , . . . ,

1
r

)
is optimal in the high recovery prob-

ability regime. Specifically, we demonstrate that this allocation, which has a recovery probability

of exactly 1, minimizes the budget T necessary for achieving any recovery probability exceeding a

specified threshold 1− ϵ. Although ϵ depends on n and r in a complicated way, we can conclude

that for any r, this allocation is optimal if the recovery probability is to exceed 1− 1
n .

We also make the following conjecture about the optimal allocation, based on our numerical

observations:

Conjecture 2.1. A symmetric optimal allocation always exists for any n, r, and T .

Related Work: Sardari et al. [32] presented a method of approximating an optimal solution to

this problem by considering a data collector that accesses r random nodes with replacement. More

recently, Alon et al. [33] showed that this problem is related to an old conjecture by Erdős on the

maximum number of edges in a uniform hypergraph [34].

11

2.1.3 Probabilistic Symmetric Allocations

In the third problem formulation, we assume a probabilistic allocation model in which the source

selects a random allocation from a distribution of allocations, with the constraint that the expected

total amount of storage used in an allocation is at most the given budget T . We specifically consider

the case where each of the n nodes is selected by the source independently with constant probability

min
(
ℓT
n , 1

)
to store a constant 1

ℓ amount of data, thus creating a probabilistic symmetric allocation of

the budget. The data collector subsequently accesses an r-subset of the n nodes selected uniformly

at random from the collection of all
(
n
r

)
possible r-subsets, where r is a given constant. The goal

is to find an optimal allocation, specified by the value of parameter ℓ, that maximizes the recovery

probability. This model was conceived as a simplification of the preceding fixed-size subset access

model which assumes a deterministic allocation of the budget.

Our Contribution: We show that the choice of ℓ = r, which corresponds to a maximal spreading

of the budget, is optimal when the given budget T is sufficiently large, or equivalently, when a

sufficiently high recovery probability (specifically, 3
4 or higher) is achievable. We believe this is a

reasonable operating regime for applications that require good reliability.

2.1.4 Other Related Work

Apart from the work done on the preceding problems, a variety of storage allocation problems

have also been studied in a nonprobabilistic setting. For instance, the objective adopted in [35]

and [36] is to minimize the total storage budget required to satisfy a given set of deterministic

recovery requirements in a network. Incidentally, the use of network coding makes it easier to deal

with the total cost of content delivery, which covers the initial dissemination, storage, and eventual

fetching of data objects; this cost-minimization problem is considered in [27] and [37], subject to

various deterministic constraints involving, for example, load balancing or fetching distance.

We note that in most of the literature involving reliable distributed storage, either the data object

is assumed to be replicated in its entirety (e.g., [13]), or, if coding is used, every node is assumed

to store the same amount of coded data (e.g., [3–7]). Allocations of a storage budget with nodes

possibly storing different amounts of data are not usually considered.

In the following three sections, we define each problem formally and state our main results.

12

Table 2.1. Notation.

Symbol Definition

n total number of storage nodes, n ≥ 2

xi amount of data stored in storage node i, xi ≥ 0, where i ∈ {1, . . . , n}
T total storage budget, 1 ≤ T ≤ n

r subset of nodes accessed, r ⊆ {1, . . . , n}
p access probability (Section 2.2), 0 < p < 1

r number of nodes accessed (Section 2.3), 1 ≤ r ≤ n
1
ℓ amount of data stored in each nonempty node (Section 2.4), ℓ > 0

B (n, p) binomial random variable with n trials and success probability p

1 [G] indicator function; 1 [G] = 1 if statement G is true, and 0 otherwise
Z+
0 the set of nonnegative integers, i.e., Z+ ∪ {0}

Proofs of theorems are deferred to Section 2.6. Table 2.1 summarizes the notation used throughout

this chapter.

2.2 Independent Probabilistic Access to Each Node

In the first variation of the storage allocation problem, we consider a data collector that accesses

each of the n nodes independently with probability p; successful recovery occurs if and only if

the total amount of data stored in the accessed nodes is at least 1. We seek an optimal allocation

(x1, . . . , xn) of the budget T that maximizes the probability of successful recovery, for a given

choice of n, p, and T . This optimization problem can be expressed as follows:

Π1(n, p, T) :

maximize
x1,...,xn

∑
r⊆{1,...,n}

p|r|(1− p)n−|r| · 1

[∑
i∈r

xi ≥ 1

]
(2.2)

subject to
n∑

i=1

xi ≤ T (2.3)

xi ≥ 0 ∀ i ∈ {1, . . . , n}. (2.4)

13

The objective function (2.2) is just the recovery probability, expressed as the sum of the probabilities

corresponding to the subsets r that allow successful recovery. An equivalent expression for (2.2) is

P

[
n∑

i=1

xi Yi ≥ 1

]
,

where Yi’s are independent Bernoulli(p) random variables. Inequality (2.3) expresses the budget

constraint, and inequality (2.4) ensures that a nonnegative amount of data is stored in each node. For

the trivial budget T = 1, the allocation (1, 0, . . . , 0) is optimal; for T = n, the allocation (1, . . . , 1)

is optimal. Incidentally, computing the recovery probability of a given allocation turns out to be

#P-hard:

Proposition 2.2. Computing the recovery probability

∑
r⊆{1,...,n}

p|r|(1− p)n−|r| · 1

[∑
i∈r

xi ≥ 1

]

for a given allocation (x1, . . . , xn) and choice of p is #P-hard.

Table 2.2 lists the optimal allocations for n = 2, 3, 4, 5, covering all parameter values of

p ∈ (0, 1) and T ∈ [1, n). These solutions are obtained by minimizing T for each possible value of

the objective function (2.2). We observe that

1) for any T , the symmetric allocation (1, . . . , 1, 0, . . . , 0), which corresponds to a minimal

spreading of the budget (uncoded replication), appears to be optimal when p is sufficiently

small; and

2) the optimal symmetric allocation appears to perform well despite being suboptimal in some

cases, e.g., when (n, T) =
(
4, 52
)

and p > 1
2 .

We will proceed to show that the first observation is indeed true in Section 2.2.2; the opposite ap-

proach of spreading the budget maximally over all nodes turns out to be asymptotically optimal

when p is sufficiently large, as will be demonstrated in Section 2.2.1. Motivated by the second ob-

servation, we examine the optimization problem restricted to symmetric allocations in Section 2.2.3.

For brevity, let x̄(n, T,m) denote the symmetric allocation for n nodes that uses a total storage

14

Table 2.2. Optimal allocations for number of nodes n = 2, 3, 4, 5.

n Budget T Optimal allocation Condition on access probability p (if any)

2 1 ≤ T < 2 (1, 0)

3

1 ≤ T < 3
2 (1, 0, 0)

3
2 ≤ T < 2

(1, 0, 0) if p ≤ 1
2(

1
2 ,

1
2 ,

1
2

)
if p ≥ 1

2

2 ≤ T < 3 (1, 1, 0)

4

1 ≤ T < 4
3 (1, 0, 0, 0)

4
3 ≤ T < 3

2

(1, 0, 0, 0) if p ≤ 1+
√
13

6 ≈ 0.768(
1
3 ,

1
3 ,

1
3 ,

1
3

)
if p ≥ 1+

√
13

6 ≈ 0.768

3
2 ≤ T < 2

(1, 0, 0, 0) if p ≤ 1
2(

1
2 ,

1
2 ,

1
2 , 0
)

if p ≥ 1
2

2 ≤ T < 5
2

(1, 1, 0, 0) if p ≤ 2
3(

1
2 ,

1
2 ,

1
2 ,

1
2

)
if p ≥ 2

3

5
2 ≤ T < 3

(1, 1, 0, 0) if p ≤ 1
2(

1, 1
2 ,

1
2 ,

1
2

)
if p ≥ 1

2

3 ≤ T < 4 (1, 1, 1, 0)

5

1 ≤ T < 5
4 (1, 0, 0, 0, 0)

5
4 ≤ T < 4

3

(1, 0, 0, 0, 0) if p ≤ 1+
3
√

235−6
√
1473+

3
√

235+6
√
1473

12 ≈ 0.869(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4

)
if p ≥ 1+

3
√

235−6
√
1473+

3
√

235+6
√
1473

12 ≈ 0.869

4
3 ≤ T < 3

2

(1, 0, 0, 0, 0) if p ≤ 1+
√
13

6 ≈ 0.768(
1
3 ,

1
3 ,

1
3 ,

1
3 , 0
)

if p ≥ 1+
√
13

6 ≈ 0.768

3
2 ≤ T < 5

3

(1, 0, 0, 0, 0) if p ≤ 1
2(

1
2 ,

1
2 ,

1
2 , 0, 0

)
if p ≥ 1

2

5
3 ≤ T < 2

(1, 0, 0, 0, 0) if p ≤ 1
2(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3

)
if p ≥ 1

2

2 ≤ T < 7
3

(1, 1, 0, 0, 0) if p ≤ 2
3(

1
2 ,

1
2 ,

1
2 ,

1
2 , 0
)

if p ≥ 2
3

7
3 ≤ T < 5

2

(1, 1, 0, 0, 0) if p ≤ 2−
√
2 ≈ 0.586(

2
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3

)
if p ≥ 2−

√
2 ≈ 0.586

5
2 ≤ T < 3

(1, 1, 0, 0, 0) if p ≤ 7−
√
17

8 ≈ 0.360(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
if p ≥ 7−

√
17

8 ≈ 0.360

3 ≤ T < 7
2

(1, 1, 1, 0, 0) if p ≤ 2
3(

1, 1
2 ,

1
2 ,

1
2 ,

1
2

)
if p ≥ 2

3

7
2 ≤ T < 4

(1, 1, 1, 0, 0) if p ≤ 1
2(

1, 1, 1
2 ,

1
2 ,

1
2

)
if p ≥ 1

2

4 ≤ T < 5 (1, 1, 1, 1, 0)

15

of T and contains exactly m ∈ {1, 2, . . . , n} nonempty nodes:

x̄(n, T,m) ,
(

T

m
, . . . ,

T

m︸ ︷︷ ︸
m entries

, 0, . . . , 0︸ ︷︷ ︸
(n−m) entries

)
.

Since successful recovery for the symmetric allocation x̄(n, T,m) occurs if and only if at least⌈
1
/ (

T
m

)⌉
=
⌈
m
T

⌉
out of the m nonempty nodes are accessed, the corresponding probability of

successful recovery can be written as

PS(p, T,m) , P
[
B (m, p) ≥

⌈m
T

⌉]
.

2.2.1 Asymptotic Optimality of Maximal Spreading

The recovery probability of the symmetric allocation x̄ (n, T,m=n), which corresponds to a

maximal spreading of the budget over all nodes, is given by

PS(p, T,m=n) = P
[
B (n, p) ≥

⌈n
T

⌉]
. (2.5)

To establish the optimality of this allocation, we compare (2.5) to an upper bound for the recovery

probability of an optimal allocation. Such a bound can be derived by conditioning on the number of

accessed nodes:

Lemma 2.3. The probability of successful recovery for an optimal allocation is at most

n∑
r=0

⌊
min

(
rT

n
, 1

)(
n

r

)⌋
pr(1− p)n−r. (2.6)

The suboptimality of x̄ (n, T,m=n) is therefore bounded by the difference between (2.5) and

(2.6), as given by the following theorem; when p > 1
T , this allocation becomes asymptotically opti-

mal since its suboptimality gap vanishes as n goes to infinity:

Theorem 2.4. The gap between the probabilities of successful recovery for an optimal allocation

and for the symmetric allocation x̄ (n, T,m=n), which corresponds to a maximal spreading of the

16

budget over all nodes, is at most

p T P
[
B (n− 1, p) ≤

⌈n
T

⌉
− 2
]
.

If p and T are fixed such that p > 1
T , then this gap approaches zero as n goes to infinity.

We note that the regime p > 1
T is particularly interesting because it corresponds to the regime

of high recovery probability; the recovery probability would be bounded away from 1 if p < 1
T ⇐⇒

pT < 1 instead. This follows from the application of Markov’s inequality to the random variable

W denoting the total amount of data accessed by the data collector, which produces

P [W ≥ 1] ≤ E [W].

Since P [W ≥ 1] is just the probability of successful recovery, and E [W] ≤ pT according to (2.1),

we have

P [successful recovery] ≤ pT.

2.2.2 Optimality of Minimal Spreading (Uncoded Replication)

The recovery probability of the symmetric allocation x̄ (n, T,m=⌊T ⌋), which corresponds to a

minimal spreading of the budget, is given by

PS (p, T,m=⌊T ⌋) = P [B (⌊T ⌋, p)≥1] = 1− (1−p)⌊T ⌋. (2.7)

Recall that coding is unnecessary in such an allocation since the data object is stored in its entirety

in each nonempty node. A sufficient condition for the optimality of this allocation can be found

by comparing (2.7) to an upper bound for the recovery probabilities of all other allocations. Our

approach is to classify each allocation according to the number of individual nodes that store at least

a unit amount of data. We then find a bound for allocations containing exactly 0 such nodes, another

bound for allocations containing exactly 1 such node, and so on. The subsequent comparisons of

(2.7) to each of these bounds result in the following theorem:

17

Figure 2.2. Plot of access probability p against budget T , showing regions of (T, p) over which the sufficient
conditions of the theorems are satisfied, for n = 20. Minimal spreading (uncoded replication) is optimal
among all allocations in the colored regions.

Theorem 2.5. If 1 < T < n and

1− (1− p)⌊T ⌋−n + (n− ℓ)

(
p

1− p

)
+

⌈ n−ℓ
T−ℓ⌉−1∑
r=2

(
1− T − ℓ

n− ℓ
· r
)(

n− ℓ

r

)(
p

1− p

)r

≥ 0

(2.8)

for all ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1}, then x̄ (n, T,m=⌊T ⌋), which corresponds to a minimal spreading

of the budget (uncoded replication), is an optimal allocation.

The following corollary shows that this allocation is indeed optimal for sufficiently small p:

Corollary 2.6. If 1 < T < n and p ≤ 2
(n−⌊T ⌋)2 , then x̄ (n, T,m=⌊T ⌋) is an optimal allocation.

Figure 2.2 illustrates these results in the form of a region plot for an instance of n.

2.2.3 Optimal Symmetric Allocation

The optimization problem appears nontrivial even if we were to consider only symmetric alloca-

tions. Figure 2.3, which compares the performance of different symmetric allocations over different

budgets for an instance of (n, p), demonstrates that the value of m corresponding to the optimal

18

Figure 2.3. Plot of recovery failure probability 1− PS against budget T for each symmetric allocation
x̄(n, T,m), for (n, p) =

(
20, 3

5

)
. Parameter m denotes the number of nonempty nodes in the symmetric

allocation. The gray and black curves describe lower bounds for the recovery failure probability of an opti-
mal allocation, as given by Lemma 2.3 and (2.23), respectively.

symmetric allocation can change drastically as the budget T varies.

Fortunately, we can eliminate many candidates for the optimal value of m by making the fol-

lowing observation: Recall that the recovery probability of the symmetric allocation x̄(n, T,m) is

given by PS(p, T,m) , P
[
B (m, p) ≥

⌈
m
T

⌉]
. For fixed n, p, and T , we have

⌈m
T

⌉
= k when m ∈

(
(k − 1)T, kT

]
,

for k = 1, 2, . . . ,
⌊
n
T

⌋
, and finally,

⌈m
T

⌉
=
⌊n
T

⌋
+ 1 when m ∈

(⌊n
T

⌋
T, n

]
.

Since P [B (m, p) ≥ k] is nondecreasing in m for constant p and k, it follows that PS(p, T,m)

is maximized within each of these intervals of m when we pick m to be the largest integer in

the corresponding interval. Thus, given n, p, and T , we can find an optimal m∗ that maximizes

19

PS(p, T,m) over all m from among
⌈
n
T

⌉
candidates:

{
⌊T ⌋, ⌊2T ⌋, . . . ,

⌊⌊n
T

⌋
T
⌋
, n
}
. (2.9)

For m = ⌊kT ⌋, where k ∈ Z+, the corresponding probability of successful recovery is given by

PS (p, T,m=⌊kT ⌋) = P [B (⌊kT ⌋, p) ≥ k].

The difference between the probabilities of successful recovery for consecutive values of k ∈ Z+

can be written as

∆(p, T, k) , PS (p, T,m=⌊(k + 1)T ⌋)− PS (p, T,m=⌊kT ⌋)

= P [B (⌊(k + 1)T ⌋, p) ≥ k + 1]− P [B (⌊kT ⌋, p) ≥ k]

=

min(αk,T−1,k)∑
i=1

P [B (⌊kT ⌋, p) = k − i] · P [B (αk,T , p) ≥ i+ 1]


− P [B (⌊kT ⌋, p) = k] · P [B (αk,T , p) = 0],

where αk,T , ⌊(k + 1)T ⌋−⌊kT ⌋. The above expression is obtained by comparing the branches of

the probability tree for ⌊kT ⌋ vs. ⌊(k + 1)T ⌋ independent Bernoulli(p) trials: the first term describes

unsuccessful events (“B (⌊kT ⌋, p) < k”) becoming successful (“B (⌊(k + 1)T ⌋, p) ≥ k + 1”) after

the additional αk,T trials, while the second term describes successful events (“B (⌊kT ⌋, p) ≥ k”)

becoming unsuccessful (“B (⌊(k + 1)T ⌋, p) < k + 1”) after the additional αk,T trials. After further

simplification, we arrive at

∆(p, T, k) = pk(1− p)⌊(k+1)T ⌋−k·
min

(
αk,T−1,k

)∑
i=1

αk,T∑
j=i+1

(
⌊kT ⌋
k − i

)(
αk,T

j

)(
p

1− p

)−i+j

− (⌊kT ⌋
k

) . (2.10)

The following theorem essentially provides a sufficient condition on p and T for ∆(p, T, k) ≥ 0

for any k ∈ Z+, thereby eliminating all but the two largest candidate values for m∗ in (2.9), i.e.,

m =
⌊⌊

n
T

⌋
T
⌋

and m = n, which correspond to a maximal spreading of the budget over (almost) all

20

nodes (they are identical when n
T ∈ Z+, i.e., T = n, n2 ,

n
3 , . . .):

Theorem 2.7. If

(1− p)⌊T ⌋ + 2⌊T ⌋p(1− p)⌊T ⌋−1 − 1 ≤ 0, (2.11)

then either x̄
(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n), which correspond to a maximal spreading of

the budget, is an optimal symmetric allocation.

The following corollary restates Theorem 2.7 in a slightly weaker but more convenient form:

Corollary 2.8. If p ≥ 4
3⌊T ⌋ , then either x̄

(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n) is an optimal sym-

metric allocation.

The following lemma mirrors Theorem 2.7 by providing a sufficient condition on p and T for

∆(p, T, k) ≤ 0 for any k ∈ Z+, thereby eliminating all but the smallest candidate value for m∗ in

(2.9), i.e., m = ⌊T ⌋, which corresponds to a minimal spreading of the budget (uncoded replication):

Lemma 2.9. If T > 1, and either

T =
1

p
∈ Z+ (2.12)

or

T <
1

p
and p (1− p)⌈T ⌉−1 ≤ 1

T

(
1− 1

T

)⌈T ⌉−1

, (2.13)

then x̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation.

The following lemma restates Lemma 2.9 in a slightly weaker but more convenient form:

Lemma 2.10. If p ≤ 2
⌈T ⌉ −

1
T , then x̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation.

The following theorem expands the region covered by Lemma 2.10 by showing that

x̄ (n, T,m=⌊T ⌋) remains optimal between the “peaks” in Figure 2.4:

Theorem 2.11. If p ≤ 1
⌈T ⌉ , then x̄ (n, T,m=⌊T ⌋), which corresponds to a minimal spreading of

the budget (uncoded replication), is an optimal symmetric allocation.

Figure 2.4 illustrates these results in the form of a region plot. The theorems cover all choices

21

Figure 2.4. Plot of access probability p against budget T , showing regions of (T, p) over which the sufficient
conditions of the theorems are satisfied. The black dashed curve marks the points satisfying p = 1

T . Maximal
spreading is optimal among symmetric allocations in the colored regions above the curve, while minimal
spreading (uncoded replication) is optimal among symmetric allocations in the colored regions below the
curve.

of p and T except for the gap around p = 1
T , which diminishes with increasing T . Both minimal

and maximal spreading of the budget may be suboptimal among symmetric allocations in this gap

on either side of the curve p = 1
T : for example, when (n, p, T) =

(
10, 9

25 ,
5
2

)
, for which p < 1

T ,

the optimal symmetric allocation is x̄ (n, T,m=⌊2T ⌋); when (n, p, T) =
(
10, 35 ,

12
5

)
, for which

p > 1
T , the optimal symmetric allocation is x̄ (n, T,m=⌊3T ⌋). In general, for any budget T ≥ 2,

the optimal symmetric allocation changes from minimal spreading to maximal spreading eventually,

as the access probability p increases. This transition, which is not necessarily sharp, appears to occur

at around p = 1
T . Interestingly, when p = 1

T exactly, we observe numerically that x̄ (n, T,m=⌊T ⌋)

is the optimal symmetric allocation for most values of T ; the optimal symmetric allocation changes

continually over the intervals

1.5 ≤ T < 2 and 2.5 ≤ T ≤ 2.8911,

while x̄ (n, T,m=⌊2T ⌋) is optimal for 3.5 ≤ T ≤ 3.5694. These findings suggest that it may be

difficult to specify an optimal symmetric allocation for values of p and T in the gap; we can, how-

ever, restrict our search for an optimal symmetric allocation to the
⌈
n
T

⌉
candidates given by (2.9).

22

2.3 Access to a Random Fixed-Size Subset of Nodes

In the second variation of the storage allocation problem, we consider a data collector that

accesses an r-subset of the n nodes selected uniformly at random from the collection of all
(
n
r

)
possible r-subsets, where r is a given constant; successful recovery occurs if and only if the total

amount of data stored in the accessed nodes is at least 1. We seek an optimal allocation (x1, . . . , xn)

of the budget T that maximizes the probability of successful recovery, for a given choice of n, r,

and T . This optimization problem can be expressed as follows:

Π2(n, r, T) :

maximize
x1,...,xn,PS

PS (2.14)

subject to∑
r⊆{1,...,n}:

|r|=r

1(
n
r

) · 1[∑
i∈r

xi ≥ 1

]
≥ PS (2.15)

n∑
i=1

xi ≤ T (2.16)

xi ≥ 0 ∀ i ∈ {1, . . . , n}. (2.17)

The left-hand side of inequality (2.15) is just the recovery probability, expressed as the sum of

the probabilities corresponding to the r-subsets r that allow successful recovery. The objective

function (2.14) is therefore equal to the recovery probability since PS is maximized when (2.15)

holds with equality. Inequality (2.16) expresses the budget constraint, and inequality (2.17) ensures

that a nonnegative amount of data is stored in each node. For the trivial budget T = 1, the allocation

(1, 0, . . . , 0) is optimal; for T ≥ n
r , the allocation

(
1
r , . . . ,

1
r

)
, which has the maximal recovery

probability of 1, is optimal. Incidentally, computing the recovery probability of a given allocation

turns out to be #P-complete:

Proposition 2.12. Computing the recovery probability

∑
r⊆{1,...,n}:

|r|=r

1(
n
r

) · 1[∑
i∈r

xi ≥ 1

]

23

(a) (n, r) = (6, 2)

(b) (n, r) = (5, 3)

Figure 2.5. Plot of the optimal recovery probability maxPS against budget T , for (a) (n, r) = (6, 2) and
(b) (n, r) = (5, 3). The optimal allocation corresponding to each value of maxPS is given on the right-
hand side of the plot. In (a), the red dashed line marks the threshold on PS derived in Theorem 2.15; the
allocation

(
1
r , . . . ,

1
r

)
is optimal for Π′

2(n, r, PS) if and only if the desired recovery probability PS exceeds
this threshold. In (b), the red dashed line marks the threshold on PS derived in Theorem 2.16; the allocation(
1
r , . . . ,

1
r

)
is optimal for Π′

2(n, r, PS) if PS exceeds this threshold.

for a given allocation (x1, . . . , xn) and choice of r is #P-complete.

An alternate way of formulating this problem is to minimize the budget T required to achieve a

desired recovery probability PS:

Π′
2(n, r, PS) :

minimize
x1,...,xn,T

T

subject to the three constraints (2.15)–(2.17) of Π2(n, r, T).

Figure 2.5 shows how the optimal recovery probability maxPS varies with the budget T , for

24

two instances of (n, r). These plots are obtained by solving Π′
2(n, r, PS) for each possible value of

PS. We observe that when the budget T drops below n
r , the optimal recovery probability maxPS is

reduced by a significant margin below 1. In other words, if the desired recovery probability PS in

Π′
2(n, r, PS) is sufficiently high, then the optimal allocation is

(
1
r , . . . ,

1
r

)
, which requires a budget

of T = n
r . In Section 2.3.1, we examine the optimality of this allocation for the high recovery

probability regime.

2.3.1 Regime of High Recovery Probability

Consider the optimization problem Π′
2(n, r, PS). We will demonstrate that the allocation(

1
r , . . . ,

1
r

)
is optimal when the desired recovery probability PS exceeds a specified threshold ex-

pressed in terms of n and r. Our results follow from the observation that successful recovery for

certain combinations of r-subsets of nodes can impose a lower bound on the required budget T .

For example, given (n, r) = (4, 2), if successful recovery is to occur for {1, 2} and {3, 4}, possibly

among other r-subsets of nodes, then we have

∑
i∈{1,2}

xi ≥ 1 and
∑

i∈{3,4}

xi ≥ 1,

which would imply that the minimum budget T must be at least 2, since

T ≥
4∑

i=1

xi =
∑

i∈{1,2}

xi +
∑

i∈{3,4}

xi ≥ 2.

This observation is generalized by the following lemma:

Lemma 2.13. Consider a set S ⊆ {1, . . . , n}, and c subsets of S given by rj ⊆ S, j = 1, . . . , c. If

∑
i∈rj

xi ≥ 1 ∀ j ∈ {1, . . . , c}, (2.18)

and each element in S appears exactly b > 0 times among the c subsets, i.e.,

c∑
j=1

1 [i ∈ rj] = b ∀ i ∈ S, (2.19)

25

then ∑
i∈S

xi ≥
c

b
.

We begin with the special case of probability-1 recovery, i.e., PS = 1. The resulting optimiza-

tion problem is just a linear program with all
(
n
r

)
possible r-subset constraints.

Lemma 2.14. If PS = 1, then
(
1
r , . . . ,

1
r

)
is an optimal allocation.

When the desired recovery probability PS is less than 1, we can afford to drop some of the r-subset

constraints from this linear program (recall that the recovery probability of an allocation is just

the fraction of these
(
n
r

)
constraints that are satisfied). Our task is to determine how many such

constraints can be dropped before the lower bound for T obtained with the help of Lemma 2.13

falls below n
r , in which case the allocation

(
1
r , . . . ,

1
r

)
may no longer be optimal. We do this by

constructing collections of r-subset constraints that yield the required lower bound of n
r for T , and

counting how many r-subset constraints need to be removed from the linear program before no such

collection remains. Our answer depends on the divisibility of n by r.

When n is a multiple of r, we are able to state a necessary and sufficient condition on PS for the

allocation to be optimal:

Theorem 2.15. If n is a multiple of r, then
(
1
r , . . . ,

1
r

)
is an optimal allocation if and only if

PS > 1− r

n
.

When n is not a multiple of r, we are only able to state a sufficient condition on PS for the

allocation to be optimal:

Theorem 2.16. If n is not a multiple of r, then
(
1
r , . . . ,

1
r

)
is an optimal allocation if

PS > 1− gcd(r, r′)

α gcd(r, r′) + r′
,

where α and r′ are uniquely defined integers satisfying

n = α r + r′, α ∈ Z+
0 , r′ ∈ {r + 1, . . . , 2r − 1}.

However, if n is a multiple of (n− r), then this sufficient condition becomes necessary too:

26

Figure 2.6. Plot of the desired recovery probability PS against the number of nodes accessed r, showing
intervals of PS over which the allocation

(
1
r , . . . ,

1
r

)
is optimal for Π′

2(n, r, PS), for n = 40. A dotted cir-
cle marker denotes an endpoint that may not be tight, i.e., we have not demonstrated that the allocation is
suboptimal everywhere outside the interval.

Corollary 2.17. If n is a multiple of (n− r), then
(
1
r , . . . ,

1
r

)
is an optimal allocation if and only if

PS >
r

n
.

Note that Corollary 2.17 allows us to solve Π2(n, r, T) completely when n is a multiple of (n− r):

for any T ∈
[
1, nr

)
, the allocation (1, 0, . . . , 0) is optimal since it has a recovery probability of

(n−1
r−1)
(nr)

= r
n , i.e., exactly the threshold in Corollary 2.17; higher recovery probabilities are not achiev-

able unless T ≥ n
r .

Figure 2.6 illustrates these results for an instance of n.

2.3.2 Upper Bounds for the Optimal Recovery Probability

Consider the optimization problem Π2(n, r, T). For a given allocation (x1, . . . , xn), let S be

the collection of successful subsets, i.e.,

S ,
{
r ⊆ {1, . . . , n} : |r| = r,

∑
i∈r

xi ≥ 1

}
,

27

and let S be the number of successful subsets, i.e., S = |S|. The following lemma provides sev-

eral upper bounds on S, which can be used to bound the optimal recovery probability in both the

fixed-size subset access model of Section 2.3 and the independent probabilistic access model of

Section 2.2:

Lemma 2.18. For any feasible allocation (x1, . . . , xn), i.e., such that
∑n

i=1 xi ≤ T and xi ≥ 0 for

all i ∈ {1, . . . , n}, the number of successful subsets S has the following upper bounds:

S ≤
(
n

r

)
− gcd(r, r′)

α gcd(r, r′) + r′

(
n

r

)
if T <

n

r
, (2.20)

S ≤ ⌊T ⌋ r
n

(
n

r

)
if T <

⌊n
r

⌋
, (2.21)

S ≤ ⌊βT ⌋
β

r

n

(
n

r

)
, (2.22)

where α and r′ are uniquely defined integers satisfying n = α r + r′, α ∈ Z+
0 , and

r′ ∈ {r, . . . , 2r − 1}, and β , lcm(n,r)
n .

Upper bound (2.20) is a corollary of Theorems 2.15 and 2.16. To obtain upper bounds (2.21) and

(2.22), we apply permutation counting arguments similar to Katona’s proof of the Erdős-Ko-Rado

theorem [38,39]. Picking the tightest of these bounds, and applying the fact that S is an integer that

is at most
(
n
r

)
, produces the following upper bound for S:

SUB(n, r, T) ,



0 if T < 1,⌊
min

(
1− 1

[
T < n

r

]
· gcd(r,r′)
α gcd(r,r′)+r′ ,

1− 1
[
T <

⌊
n
r

⌋]
·
(
1− ⌊T ⌋ rn

)
, ⌊βT ⌋

β
r
n

)(
n
r

)⌋
otherwise.

By combining this bound with the proof technique of Theorem 2.5, we can in turn derive an im-

proved upper bound for the optimal recovery probability in the independent probabilistic access

model of Section 2.2 (cf. Lemma 2.3):

PUB
S (n, p, T) , max

ℓ∈{0,1,...,⌊T ⌋}

(i)︷ ︸︸ ︷
1− (1− p)ℓ+

(ii)︷ ︸︸ ︷
(1− p)ℓ

n−ℓ∑
r=2

SUB(n− ℓ, r, T − ℓ) pr(1− p)n−ℓ−r.

(2.23)

28

Parameter ℓ denotes the number of individual nodes that store at least a unit amount of data. At least

ℓ amount of data is stored in these complete nodes, leaving the remaining budget of at most T − ℓ to

be allocated over the remaining n− ℓ incomplete nodes. Term (i) gives the probability of successful

recovery from accessing at least one complete node, while term (ii) gives an upper bound on the

probability of successful recovery from accessing exactly r ∈ {2, . . . , n− ℓ} incomplete nodes. A

plot of this bound is shown in Figure 2.3.

2.4 Probabilistic Symmetric Allocations

In the third variation of the storage allocation problem, we consider the case where each of the

n nodes is selected by the source independently with probability min
(
ℓT
n , 1

)
to store 1

ℓ amount of

data, so that the expected total amount of storage used in the resulting symmetric allocation is at

most n · ℓTn ·
1
ℓ = T , the given budget. The data collector subsequently accesses an r-subset of the

n nodes selected uniformly at random from the collection of all
(
n
r

)
possible r-subsets, where r is

a given constant; successful recovery occurs if and only if the total amount of data stored in the

accessed nodes is at least 1. We seek an optimal probabilistic symmetric allocation of the budget T ,

specified by the value of parameter ℓ, that maximizes the probability of successful recovery, for a

given choice of n, r, and T . Since successful recovery for a particular choice of ℓ occurs if and only

if at least
⌈
1
/ (

1
ℓ

)⌉
= ⌈ℓ⌉ out of the r accessed nodes are nonempty, the corresponding probability

of successful recovery can be written as

PS(n, r, T, ℓ) , P
[
B
(
r,min

(
ℓT

n
, 1

))
≥ ⌈ℓ⌉

]
.

This optimization problem can therefore be expressed as follows:

Π3(n, r, T) :

maximize
ℓ

P
[
B
(
r,min

(
ℓT

n
, 1

))
≥ ⌈ℓ⌉

]
subject to ℓ > 0.

29

Figure 2.7. Plot of recovery probability PS against budget-per-node T
n for each choice of parameter

ℓ ∈ {1, 2, . . . , r}, for r = 10. Parameter ℓ controls how much the budget is spread in the probabilistic sym-
metric allocation; specifically, each of the n nodes is selected by the source independently with probability
min

(
ℓT
n , 1

)
to store 1

ℓ amount of data. Arrows indicate the direction of increasing ℓ. The black dashed line
marks the threshold on T

n derived in Theorem 2.20; maximal spreading (ℓ = r) is optimal for any T
n greater

than or equal to this threshold.

For budget T ≥ n
r , the choice of ℓ = r, which yields a recovery probability of P [B (r, 1) ≥ r] = 1,

is optimal.

Observe that the recovery probability PS(n, r, T, ℓ) is zero when ℓ > r. Furthermore, for fixed

n, r, and T , the recovery probability is nondecreasing in ℓ within each of the unit intervals (0, 1],

(1, 2], (2, 3], . . ., since as ℓ increases within each interval, ⌈ℓ⌉ remains constant while min
(
ℓT
n , 1

)
either increases or remains constant at 1. Thus, given n, r, and T , we can find an optimal ℓ∗ from

among r candidates:

{
1, 2, . . . , r

}
. (2.24)

Figure 2.7, which compares the performance of different probabilistic symmetric allocations

over different budgets for an instance of r, suggests that there are two distinct phases pertaining to

the optimal choice of ℓ: when the budget is below a certain threshold, the choice of ℓ = 1, which

corresponds to a minimal spreading of the budget (uncoded replication), is optimal; when the budget

exceeds that same threshold, the choice of ℓ = r, which corresponds to a maximal spreading of the

30

budget, becomes optimal. This observation echoes our findings on the allocation and access models

of the preceding sections, namely that minimal spreading (ℓ = 1) is optimal for sufficiently small

budgets, while maximal spreading (ℓ = r) is optimal for sufficiently large budgets. However, we

note two important distinctions in contrast to the previous models. First, the recovery probability

for a probabilistic symmetric allocation in this model is a continuous nondecreasing function of

the given budget; there are no “jumps” from one discrete value to the next. Second, our empirical

computations suggest that the phase transition from the optimality of minimal spreading to that of

maximal spreading in this model is sharp; the other intermediate values of ℓ ∈ {2, . . . , r − 1} never

perform better than both ℓ = 1 and ℓ = r simultaneously.

In Section 2.4.1, we shall demonstrate that the choice of ℓ = r, which corresponds to a max-

imal spreading of the budget, is indeed optimal when the given budget T is sufficiently large, or

equivalently, when a sufficiently high recovery probability is achievable.

2.4.1 Optimality of Maximal Spreading

Assume that r ≥ 2. As noted earlier, the choice of ℓ = r, which corresponds to a maximal

spreading of the budget, is optimal for any T ≥ n
r because it yields the maximal recovery probability

of 1. The following lemma provides an upper bound for the recovery probabilities corresponding to

the other candidate values for ℓ∗ in (2.24) at the critical budget T = n
r :

Lemma 2.19. The probability of successful recovery PS(n, r, T, ℓ) at T = n
r is at most 3

4 for any

ℓ ∈ {1, 2, . . . , r − 1}.

Such an upper bound allows us to derive a sufficient condition for the optimality of ℓ = r, by making

use of the fact that the recovery probability PS(n, r, T, ℓ) is a nondecreasing function of the budget

T . The following theorem shows that the choice of ℓ = r is optimal when the budget T is at least a

specified threshold expressed in terms of n and r:

Theorem 2.20. If

T ≥ n

r

(
3

4

) 1
r

,

then the choice of ℓ = r, which corresponds to a maximal spreading of the budget, is optimal.

The following corollary states an equivalent result in terms of the achievable recovery probability;

31

Figure 2.8. Plot of recovery probability PS against the number of nodes accessed r, indicating the value of
PS at which the optimal choice of parameter ℓ changes from 1 to r, for each given value of r. Specifically, if
it is possible to achieve a recovery probability PS above the square marker, then maximal spreading (ℓ = r)
is optimal; otherwise, minimal spreading or uncoded replication (ℓ = 1) is optimal. Observe that the critical
value of PS for r = 10 (which is approximately 0.633652) corresponds to the intersection point of the curves
for ℓ = 1 and ℓ = 10 in Figure 2.7.

it demonstrates the optimality of ℓ = r in the high recovery probability regime:

Corollary 2.21. If a probability of successful recovery of at least 3
4 is achievable for the given n, r,

and T , then the choice of ℓ = r is optimal.

Figure 2.8 describes the optimal choice of ℓ for different values of r. We observe that the gap

between the threshold of 3
4 derived in Corollary 2.21 and the actual critical value of PS indicated in

the plot appears to be no more than 0.12.

2.5 Conclusion and Future Work

We examined the problem of allocating a given total storage budget in a distributed storage

system for maximum reliability. Three variations of the problem were studied in detail, and we

are able to specify the optimal allocation or optimal symmetric allocation for a variety of cases.

Although the exact optimal allocation is difficult to find in general, our results suggest a simple

heuristic for achieving reliable storage: when the budget is small, spread it minimally; when the

budget is large, spread it maximally. In other words, coding is unnecessary when the budget is

32

small, but is beneficial when the budget is large.

The work in this chapter can be extended in several directions. We can impose additional sys-

tem design constraints on the model; one practical example is the application of a tighter per-node

storage constraint xi ≤ ci < 1. The independent probabilistic access model of Section 2.2 can be

naturally generalized to handle heterogeneous access, e.g., nonuniform access probabilities pi for

individual nodes (e.g., [40]). It would also be interesting to find reliable allocations for specific

codes with desirable encoding or decoding properties, e.g., sparse codes that offer efficient algo-

rithms (e.g., [4–7]). A related problem would be to construct such codes that work well under

different allocations. Another set of interesting problems involves the application of richer access

models; for instance, we can introduce a network topology to a set of storage nodes and data col-

lectors, and allow each data collector to access only the nodes close to it. More generally, we can

assign different priorities to each node for data storage and access, so as to reflect the costs of storing

data in the node and communicating with it.

2.6 Proofs of Theorems

2.6.1 Proof of Proposition 2.2

We note that the computational complexity of this problem was well understood in the Berkeley

meetings [8] and is by no means a major contribution of this work. We present the detailed proofs

here for completeness.

Consider an allocation (x1, . . . , xn) where each xi is a nonnegative rational number. The prob-

lem of computing the recovery probability of this allocation for the special case of p = 1
2 , for which

p|r|(1− p)n−|r| =
(
1
2

)n for any subset r ⊆ {1, . . . , n}, is equivalent to the counting version of the

following decision problem (which happens to be polynomial-time solvable):

Definition 2.22. Largest Subset Sum (LSS)

Instance: Finite n-vector (a1, . . . , an) with ai ∈ Z+
0 , and file size d ∈ Z+, where all ai and d can

be written as decimal numbers of length at most ℓ.

Question: Is there a subset r ⊆ {1, . . . , n} that satisfies
∑

i∈r ai ≥ d?

Note that the allocation and file size have been scaled so that the problem parameters are all

integers. We will proceed to show that the counting problem #LSS is #P-complete; this would in

33

Table 2.3. Construction of a #LSS instance for a given #3SAT instance.

v1 v2 · · · vm C1 C2 · · · Ck

v1 1 1 [v1∈C1] 0 1 [v1∈C2] 0 · · · 1 [v1∈Ck] 0

v1 1 1 [v1∈C1] 0 1 [v1∈C2] 0 · · · 1 [v1∈Ck] 0

v2 1 1 [v2∈C1] 0 1 [v2∈C2] 0 · · · 1 [v2∈Ck] 0

v2 1 1 [v2∈C1] 0 1 [v2∈C2] 0 · · · 1 [v2∈Ck] 0
...

. . .
...

...
...

...
...

...
...

vm 1 1 [vm∈C1] 0 1 [vm∈C2] 0 · · · 1 [vm∈Ck] 0

vm 1 1 [vm∈C1] 0 1 [vm∈C2] 0 · · · 1 [vm∈Ck] 0

C1

0 1

1 1

2 1

C2

0 1

1 1

2 1
...

. . .

Ck

0 1

1 1

2 1

d 1 1 · · · 1 3 1 3 1 · · · 3 1

turn establish the #P-hardness of computing the recovery probability for an arbitrary value of p.

The index set r can be represented as an n-vector of bits. Using this representation of r as

the certificate, it is easy to see that the binary relation corresponding to #LSS is both polynomially

balanced (since the size of each certificate is n), and polynomial-time decidable (since the inequality

can be verified in O(nℓ) time for each certificate). It therefore follows that #LSS is in #P.

To show that #LSS is also #P-hard, we describe a polynomial-time Turing reduction of the #P-

complete problem #3SAT [41] to #LSS. Our approach is similar to the standard method of reducing

3SAT to Subset Sum (e.g., [42]). Let ϕ be the Boolean formula in the given #3SAT instance; denote

its m variables by v1, . . . , vm, and k clauses by C1, . . . , Ck. To count the number of satisfying

truth assignments for ϕ, we construct a #LSS instance with the help of Table 2.3, whose entries

are 0, 1, 2, or 3 (all blank entries are 0’s). The entries of the n-vector for the #LSS instance are

given by the first (2m+ 3k) rows of the table; the file size d is given by the last row of the table.

Each entry ai, i ∈ {1, . . . , 2m+ 3k}, as well as d, is a positive integer with at most (m+ 2k)

decimal digits. Observe that the set of satisfying truth assignments for ϕ can be put in a one-to-

34

one correspondence with the collection of subsets r ⊆ {1, . . . , 2m+ 3k} that satisfy
∑

i∈r ai = d;

for each i ∈ {1, . . . ,m}, we have “vi” ∈ r if and only if vi = TRUE, and “vi” ∈ r if and only if

vi = FALSE. Therefore, if f
(
(a1, . . . , an), d

)
is a subroutine for computing #LSS, then the number

of satisfying truth assignments can be computed by calling f twice: first with d taking the value as

prescribed above, and second with d taking the prescribed value plus one. The difference between

the outputs from the two subroutine calls is equal to the number of distinct subsets r that satisfy∑
i∈r ai = d, which is equal to the number of satisfying truth assignments for ϕ. Finally, we note

that this is indeed a polynomial-time Turing reduction since the table can be populated in O
(
m2k2

)
simple steps, and the subroutine f is called exactly twice.

2.6.2 Proof of Lemma 2.3

Consider a feasible allocation (x1, . . . , xn); we have
∑n

i=1 xi ≤ T , where xi ≥ 0, i = 1, . . . , n.

Let Sr denote the number of r-subsets of {x1, . . . , xn} that have a sum of at least 1, where

r ∈ {1, . . . , n}. By conditioning on the number of nodes accessed by the data collector, the proba-

bility of successful recovery for this allocation can be written as

P [successful recovery]

=

n∑
r=0

P [successful recovery | exactly r nodes were accessed] · P [exactly r nodes were accessed]

=

n∑
r=1

Sr(
n
r

) · P [B (n, p) = r]

=

n∑
r=1

Sr p
r(1− p)n−r. (2.25)

We proceed to find an upper bound for Sr. For a given r, we can write Sr inequalities of the form

x′1 + · · ·+ x′r ≥ 1.

Summing up these Sr inequalities produces an inequality of the form

a1x1 + · · ·+ anxn ≥ Sr.

35

Since each xi belongs to exactly
(
n−1
r−1

)
distinct r-subsets of {x1, . . . , xn}, it follows that

0 ≤ ai ≤
(
n−1
r−1

)
, i = 1, . . . , n. Therefore,

Sr ≤ a1x1 + · · ·+ anxn ≤
(
n− 1

r − 1

) n∑
i=1

xi ≤
(
n− 1

r − 1

)
T.

Since Sr is an integer that is at most
(
n
r

)
, which is the total number of r-subsets, we have

Sr ≤
⌊
min

((
n− 1

r − 1

)
T,

(
n

r

))⌋
=

⌊
min

(
rT

n
, 1

)(
n

r

)⌋
.

Substituting this bound into (2.25) completes the proof.

2.6.3 Proof of Theorem 2.4

The suboptimality gap for the symmetric allocation x̄ (n, T,m=n) is at most the difference

between its recovery probability (2.5) and the upper bound (2.6) from Lemma 2.3 for the optimal

recovery probability. This difference is given by

(
n∑

r=0

⌊
min

(
rT

n
, 1

)(
n

r

)⌋
pr(1− p)n−r

)
− P

[
B (n, p) ≥

⌈n
T

⌉]

≤

(
n∑

r=0

min

(
rT

n
, 1

)(
n

r

)
pr(1− p)n−r

)
−

 n∑
r=⌈ nT ⌉

(
n

r

)
pr(1− p)n−r


=

⌈ nT ⌉−1∑
r=1

rT

n

(
n

r

)
pr(1− p)n−r

= T

⌈ nT ⌉−1∑
r=1

(
n− 1

r − 1

)
pr(1− p)n−r

= p T

⌈ nT ⌉−1∑
r=1

(
n− 1

r − 1

)
pr−1(1− p)(n−1)−(r−1)

= p T

⌈ nT ⌉−2∑
ℓ=0

(
n− 1

ℓ

)
pℓ(1− p)(n−1)−ℓ

= p T P
[
B (n− 1, p) ≤

⌈n
T

⌉
− 2
]

, δ(n, p, T),

36

as required. Assuming now that p > 1
T , we have

δ(n, p, T) ≤ p T P
[
B (n− 1, p) ≤ n− 1

T

]
(2.26)

= p T P
[
B (n− 1, p) ≤ 1

pT
(n− 1)p

]
≤ p T exp

(
−(n− 1)p

2

(
1− 1

pT

)2
)
. (2.27)

Inequality (2.26) follows from the fact that

⌈n
T

⌉
− 2 <

n

T
+ 1− 2 <

n

T
− 1

T
.

Inequality (2.27) follows from the observation that 1
pT ∈ (0, 1), and the subsequent application of

the Chernoff bound for deviation below the mean of the binomial distribution (e.g., [43]). For fixed

p and T , this upper bound approaches zero as n goes to infinity.

2.6.4 Proof of Theorem 2.5

We compare the recovery probability of x̄ (n, T,m=⌊T ⌋) to an upper bound for the recovery

probabilities of all other allocations.

Suppose that 1 < T < n. Recall from (2.7) that the probability of successful recovery for

x̄ (n, T,m=⌊T ⌋) is given by

P1(p, T) , 1− (1− p)⌊T ⌋.

Consider a feasible allocation (x1, . . . , xn); we have
∑n

i=1 xi ≤ T , where xi ≥ 0, i = 1, . . . , n.

Let ℓ be the number of individual nodes in this allocation that store at least a unit amount of data;

for brevity, we refer to these nodes as being complete. It follows from the budget constraint that

the number of complete nodes ℓ ∈ {0, 1, . . . , ⌊T ⌋}. When ℓ = ⌊T ⌋, the allocation has a recovery

probability identical to P1(p, T). Now, assuming that ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1}, successful recovery

can occur in two ways:

1) when the accessed subset contains one or more complete nodes, which occurs with probability

1− (1− p)ℓ; or

2) when the accessed subset contains no complete nodes but has a sum of at least 1.

37

In the second case, the accessed subset would consist of two or more incomplete nodes. Using the

argument in the proof of Lemma 2.3, we can show that there are at most

min

((
n− ℓ− 1

r − 1

)
(T − ℓ),

(
n− ℓ

r

))

r-subsets of incomplete nodes whose sum is at least 1, since the total amount of data stored over the

n− ℓ incomplete nodes is at most T − ℓ. It follows then that the recovery probability for a feasible

allocation with exactly ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1} complete nodes is at most

P2(n, p, T, ℓ) , 1− (1− p)ℓ + (1− p)ℓ ·
n−ℓ∑
r=2

min

(
T − ℓ

n− ℓ
· r, 1

)(
n− ℓ

r

)
pr(1− p)n−ℓ−r.

Thus,

P1(p, T) ≥ P2(n, p, T, ℓ)

for all ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1} is a sufficient condition for x̄ (n, T,m=⌊T ⌋) to be an optimal al-

location. After further simplification of this inequality, we arrive at inequality (2.8) as required.

2.6.5 Proof of Corollary 2.6

Suppose that 1 < T < n. We will show that the sufficient condition of Theorem 2.5 is satisfied

for any p ≤ 2
(n−⌊T ⌋)2 . Note that when n− ⌊T ⌋ = 1, or equivalently T ∈ [n− 1, n), we have to

show that x̄ (n, T,m=⌊T ⌋) is an optimal allocation for any p, i.e., in the interval (0, 1).

First, observe that the summation term in inequality (2.8) is always nonnegative, i.e.,

⌈ n−ℓ
T−ℓ⌉−1∑
r=2

(
1− T − ℓ

n− ℓ
· r
)(

n− ℓ

r

)(
p

1− p

)r

≥ 0,

since for any r ∈
{
2, . . . ,

⌈
n−ℓ
T−ℓ

⌉
− 1
}

and ℓ ∈ {0, 1, . . . , ⌊T ⌋ − 1}, we have

r ≤
⌈
n− ℓ

T − ℓ

⌉
− 1⇐⇒ r <

n− ℓ

T − ℓ
⇐⇒ 1− T − ℓ

n− ℓ
· r > 0.

Therefore, a simpler but weaker sufficient condition for x̄ (n, T,m=⌊T ⌋) to be an optimal allocation

38

is

1− (1− p)⌊T ⌋−n + (n− (⌊T ⌋ − 1))

(
p

1− p

)
≥ 0

⇐⇒1 + (n− ⌊T ⌋) p− (1− p)1−(n−⌊T ⌋) ≥ 0,

which is an inequality in only two variables p and s , n− ⌊T ⌋, where s ∈ {1, . . . , n− 1}. When

s = 1, or equivalently T ∈ [n− 1, n), this inequality is satisfied for any p ∈ (0, 1), as required.

Defining the function

f(s, p) , 1 + s p− (1− p)1−s,

it suffices to show that f(s, p) ≥ 0 for any s ∈ Z+, s ≥ 2, and p ∈
(
0, 2

s2

]
. We do this by demon-

strating that for any s ∈ Z+, s ≥ 2, the function f(s, p) is concave in p on the interval p ∈
(
0, 2

s2

]
,

and is nonnegative at both endpoints, i.e., f(s, p=0) ≥ 0 and f
(
s, p= 2

s2

)
≥ 0.

The second-order partial derivative of f(s, p) wrt p is given by

∂2

∂p2
f(s, p) = −s(s− 1)(1− p)−1−s.

Since ∂2

∂p2
f(s, p) < 0 for any s ∈ Z+, s ≥ 2, and p ∈

(
0, 2

s2

]
, it follows that the function f(s, p) is

concave in p on the interval p ∈
(
0, 2

s2

]
for any s ∈ Z+, s ≥ 2.

Suppose that s ∈ Z+, s ≥ 2. Clearly, f(s, p=0) = 0. To show that f
(
s, p= 2

s2

)
≥ 0, we define

the function

g(s) , ln

(
1 +

2

s

)
+ (s− 1) ln

(
1− 2

s2

)
,

and show that g(s) ≥ 0 for any s ∈ Z+, s ≥ 2. Direct evaluation of the function gives us

g(s=2) = 0, and g(s=3) = ln 5
3 − 2 ln 9

7 > 0. For s ≥ 4, we consider the derivatives of g(s):

g′(s) =
1

s
+

1

s+ 2
− 2(s− 2)

s2 − 2
+ ln

(
1− 2

s2

)
,

g′′(s) =
8
(
s3 − s2 − 6s− 2

)
s2(s+ 2)2 (s2 − 2)2

.

Since g′′(s) ≥ 0 for any s ≥ 4, and lims→∞ g′(s) = 0, it follows that g′(s) ≤ 0 for any s ≥ 4.

Now, since g′(s) ≤ 0 for any s ≥ 4, and lims→∞ g(s) = 0, it follows that g(s) ≥ 0 for any s ≥ 4.

39

Therefore, for any s ∈ Z+, s ≥ 2, we have

ln

(
1 +

2

s

)
+ (s− 1) ln

(
1− 2

s2

)
= g(s) ≥ 0

⇐⇒1 +
2

s
≥
(
1− 2

s2

)1−s

⇐⇒f

(
s, p=

2

s2

)
≥ 0,

as required.

2.6.6 Proof of Theorem 2.7

We will show that if condition (2.11) is satisfied, then ∆(p, T, k) ≥ 0 for any k ∈ Z+. First, we

note that

(⌊kT ⌋
k−1

)(⌊kT ⌋
k

) =
k

⌊kT ⌋ − k + 1

=
k

⌊k(⌊T ⌋+ τ)⌋ − k + 1
,where τ , T − ⌊T ⌋ ∈ [0, 1)

=
k

k⌊T ⌋+ ⌊kτ⌋ − k + 1

≥ k

k⌊T ⌋
(2.28)

=
1

⌊T ⌋
. (2.29)

Inequality (2.28) follows from the fact that

⌊kτ⌋ ≤ kτ < k ⇐⇒ ⌊kτ⌋ ≤ k − 1 ⇐⇒ ⌊kτ⌋ − k + 1 ≤ 0.

Now, if condition (2.11) is satisfied, then we necessarily have T ≥ 2; otherwise, T ∈ [1, 2) would

imply that ⌊T ⌋ = 1, which produces (1− p)⌊T ⌋ + 2⌊T ⌋p(1− p)⌊T ⌋−1 − 1 = p > 0, contradicting

our assumption. It follows that

(1− p)⌊T ⌋ + 2⌊T ⌋p(1− p)⌊T ⌋−1 − 1 ≤ 0

⇐⇒ P [B (⌊T ⌋, p) = 0] + 2P [B (⌊T ⌋, p) = 1]− 1 ≤ 0

40

⇐⇒ P [B (⌊T ⌋, p) ≥ 2] ≥ P [B (⌊T ⌋, p) = 1]

⇐⇒
⌊T ⌋∑
j=2

(
⌊T ⌋
j

)
pj(1− p)⌊T ⌋−j ≥ ⌊T ⌋p(1− p)⌊T ⌋−1

⇐⇒
⌊T ⌋∑
j=2

1

⌊T ⌋

(
⌊T ⌋
j

)(
p

1− p

)j−1

≥ 1 (2.30)

=⇒
⌈T ⌉∑
j=2

1

⌊T ⌋

(
⌈T ⌉
j

)(
p

1− p

)j−1

≥ 1. (2.31)

Observe that αk,T , ⌊(k + 1)T ⌋ − ⌊kT ⌋ ∈ {⌊T ⌋, ⌈T ⌉}, because αk,T ∈
(
T − 1, T + 1

)
and there

are only two integers ⌊T ⌋ and ⌈T ⌉, which are possibly nondistinct, in this interval. It follows from

(2.30) and (2.31) that

αk,T∑
j=2

1

⌊T ⌋

(
αk,T

j

)(
p

1− p

)j−1

≥ 1. (2.32)

Therefore, we have

min(αk,T−1,k)∑
i=1

αk,T∑
j=i+1

(⌊kT ⌋
k−i

)(⌊kT ⌋
k

)(αk,T

j

)(
p

1− p

)−i+j

≥
1∑

i=1

αk,T∑
j=i+1

(⌊kT ⌋
k−i

)(⌊kT ⌋
k

)(αk,T

j

)(
p

1− p

)−i+j

(2.33)

=

αk,T∑
j=2

(⌊kT ⌋
k−1

)(⌊kT ⌋
k

)(αk,T

j

)(
p

1− p

)j−1

≥
αk,T∑
j=2

1

⌊T ⌋

(
αk,T

j

)(
p

1− p

)j−1

, from (2.29)

≥ 1, from (2.32).

Inequality (2.33) follows from the fact that

min(αk,T−1, k) ≥ min(2−1, 1) = 1.

41

Consequently,

min(αk,T−1,k)∑
i=1

αk,T∑
j=i+1

(
⌊kT ⌋
k − i

)(
αk,T

j

)(
p

1− p

)−i+j

≥
(
⌊kT ⌋
k

)

⇐⇒ ∆(p, T, k) ≥ 0, from (2.10).

It follows that

PS (p, T,m=⌊T ⌋) ≤ PS (p, T,m=⌊2T ⌋) ≤ · · · ≤ PS
(
p, T,m=

⌊⌊
n
T

⌋
T
⌋)
,

and so we conclude that an optimal m∗ is given by either m =
⌊⌊

n
T

⌋
T
⌋

or m = n.

2.6.7 Proof of Corollary 2.8

If p ≥ 4
3⌊T ⌋ , then we necessarily have T ≥ 2; otherwise, T ∈ [1, 2) would imply that ⌊T ⌋ = 1,

which produces p ≥ 4
3⌊T ⌋ =

4
3 , contradicting the definition of p. We will show that condition (2.11)

of Theorem 2.7 is satisfied for any T ≥ 2 and p ≥ 4
3⌊T ⌋ . To do this, we define the function

f(p, T) , (1− p)⌊T ⌋ + 2⌊T ⌋p(1− p)⌊T ⌋−1 − 1,

and show that f(p, T) ≤ f
(
p= 4

3⌊T ⌋ , T
)
≤ 0 for any T ≥ 2 and p ≥ 4

3⌊T ⌋ .

The partial derivative of f(p, T) wrt p is given by

∂

∂p
f(p, T) = ⌊T ⌋(1− p)⌊T ⌋−2 (1 + p− 2⌊T ⌋p) .

Observe that f(p, T) is decreasing wrt p for any T ≥ 2 and p ≥ 4
3⌊T ⌋ , since

p ≥ 4

3⌊T ⌋
=

1
3
4⌊T ⌋

>
1

2⌊T ⌋ − 1

=⇒ 2⌊T ⌋p− p > 1⇐⇒ 1 + p− 2⌊T ⌋p < 0⇐⇒ ∂
∂pf(p, T) < 0.

42

Now, consider the function

g(T) , f

(
p=

4

3⌊T ⌋
, T

)
=

(
1− 4

3⌊T ⌋

)⌊T ⌋−1(11

3
− 4

3⌊T ⌋

)
− 1.

We will proceed to show that g(T) ≤ 0 for any T ≥ 2. For T ∈ [2, 3), we have ⌊T ⌋ = 2 and

g(T) = 0. To show that g(T) ≤ 0 for any T ≥ 3, we consider the function

h(T) , (T − 1) ln

(
1− 4

3T

)
+ ln

(
11

3
− 4

3T

)
,

which has the derivatives

h′(T) =
1

3T − 4
+

11

11T − 4
+ ln

(
1− 4

3T

)
,

h′′(T) =
16
(
11T 2 − 24T − 16

)
T (33T 2 − 56T + 16)2

.

Since h′′(T) > 0 for any T ≥ 3, and limT→∞ h′(T) = 0, it follows that h′(T) ≤ 0 for any T ≥ 3.

Now, since h′(T) ≤ 0 for any T ≥ 3, and h(T=3) = ln 29
9 − 2 ln 9

5 < 0, it follows that h(T) < 0

for any T ≥ 3. Thus, for any T ≥ 3, we have

(⌊T ⌋−1) ln
(
1− 4

3⌊T ⌋

)
+ ln

(
11

3
− 4

3⌊T ⌋

)
= h(⌊T ⌋) < 0

⇐⇒ ln

{(
1− 4

3⌊T ⌋

)⌊T ⌋−1(11

3
− 4

3⌊T ⌋

)}
< 0

⇐⇒
(
1− 4

3⌊T ⌋

)⌊T ⌋−1(11

3
− 4

3⌊T ⌋

)
< 1⇐⇒ g(T) < 0.

Combining these results, we obtain

f(p, T) ≤ f

(
p=

4

3⌊T ⌋
, T

)
= g(T) ≤ 0

for any T ≥ 2 and p ≥ 4
3⌊T ⌋ , as required.

43

2.6.8 Proof of Lemma 2.9

Suppose that T > 1. We will show that if condition (2.12) or condition (2.13) is satisfied, then

∆(p, T, k) ≤ 0 for any k ∈ Z+. First, we note that for any i ∈ {1, . . . , k},

(⌊kT ⌋
k−i

)(⌊kT ⌋
k

) =

i terms︷ ︸︸ ︷
(k)(k − 1)· · ·(k − i+ 1)

(⌊kT ⌋ − k + i)· · ·(⌊kT ⌋ − k + 2)(⌊kT ⌋ − k + 1)︸ ︷︷ ︸
i terms

≤
(

k

⌊kT ⌋ − k + 1

)i

≤
(

k

kT − 1− k + 1

)i

=

(
1

T − 1

)i

. (2.34)

Now, if condition (2.12) is satisfied, then

⌈T ⌉−1∑
i=1

⌈T ⌉∑
j=i+1

(
1

T − 1

)i(⌈T ⌉
j

)(
p

1− p

)−i+j

=

T−1∑
i=1

T∑
j=i+1

(
1

T − 1

)i(T
j

)(1
T

1− 1
T

)−i+j

=

T−1∑
i=1

T∑
j=i+1

(
T

j

)(
1

T − 1

)j

=
T∑

ℓ=2

(ℓ− 1)

(
T

ℓ

)(
1

T − 1

)ℓ

= 1.

On the other hand, if condition (2.13) is satisfied, then

⌈T ⌉−1∑
i=1

⌈T ⌉∑
j=i+1

(
1

T − 1

)i(⌈T ⌉
j

)(
p

1− p

)−i+j

=

⌈T ⌉−1∑
i=1

⌈T ⌉∑
j=i+1

(
⌈T ⌉
j

)(
1− p

p(T − 1)

)i(p

1− p

)j

=

⌈T ⌉∑
ℓ=2

(
ℓ−1∑
r=1

(
1− p

p(T − 1)

)r
)(
⌈T ⌉
ℓ

)(
p

1− p

)ℓ

= 1−
T
(

1
T

(
1− 1

T

)⌈T ⌉−1 − p(1− p)⌈T ⌉−1
)

(1− pT)
(
1− 1

T

)⌈T ⌉−1
(1− p)⌈T ⌉−1

≤ 1.

44

Thus, if either condition is satisfied, we have

⌈T ⌉−1∑
i=1

⌈T ⌉∑
j=i+1

(
1

T − 1

)i(⌈T ⌉
j

)(
p

1− p

)−i+j

≤ 1 (2.35)

=⇒
⌊T ⌋−1∑
i=1

⌊T ⌋∑
j=i+1

(
1

T − 1

)i(⌊T ⌋
j

)(
p

1− p

)−i+j

≤ 1. (2.36)

As in the proof of Theorem 2.7, we note that αk,T , ⌊(k + 1)T ⌋ − ⌊kT ⌋ ∈ {⌊T ⌋, ⌈T ⌉}. It follows

from (2.35) and (2.36) that

αk,T−1∑
i=1

αk,T∑
j=i+1

(
1

T − 1

)i(αk,T

j

)(
p

1− p

)−i+j

≤ 1. (2.37)

Therefore, we have

min(αk,T−1,k)∑
i=1

αk,T∑
j=i+1

(⌊kT ⌋
k−i

)(⌊kT ⌋
k

)(αk,T

j

)(
p

1− p

)−i+j

≤
min(αk,T−1,k)∑

i=1

αk,T∑
j=i+1

(
1

T − 1

)i(αk,T

j

)(
p

1− p

)−i+j

, from (2.34)

≤
αk,T−1∑
i=1

αk,T∑
j=i+1

(
1

T − 1

)i(αk,T

j

)(
p

1− p

)−i+j

≤ 1, from (2.37).

Consequently,

min(αk,T−1,k)∑
i=1

αk,T∑
j=i+1

(
⌊kT ⌋
k − i

)(
αk,T

j

)(
p

1− p

)−i+j

≤
(
⌊kT ⌋
k

)

⇐⇒ ∆(p, T, k) ≤ 0, from (2.10).

It follows that

PS (p, T,m=⌊T ⌋) ≥ PS (p, T,m=⌊2T ⌋) ≥ PS (p, T,m=⌊3T ⌋) ≥ · · · ,

45

and since

PS (p, T,m=n)


= PS

(
p, T,m=

⌊⌊
n
T

⌋
T
⌋)

if n
T ∈ Z+,

≤ PS
(
p, T,m=

⌊(⌊
n
T

⌋
+ 1
)
T
⌋)

otherwise,

we conclude that an optimal m∗ is given by m = ⌊T ⌋.

2.6.9 Proof of Lemma 2.10

Since x̄ (n, T,m=⌊T ⌋) is indeed optimal for any p when T = 1, we need only consider the case

of T > 1. We will show that either condition (2.12) or condition (2.13) of Lemma 2.9 is satisfied

for any T > 1 and p ≤ 2
⌈T ⌉ −

1
T . We do this in two steps: First, we define the function

f(p, T) , p(1− p)⌈T ⌉−1

1
T

(
1− 1

T

)⌈T ⌉−1
− 1,

and show that f(p, T) ≤ f
(
p= 2

⌈T ⌉−
1
T , T

)
≤ 0 for any T > 1 and p ≤ 2

⌈T ⌉ −
1
T . Second, we ap-

ply the appropriate condition from Lemma 2.9 for each pair of T and p.

The partial derivative of f(p, T) wrt p is given by

∂

∂p
f(p, T) =

(1− p⌈T ⌉) (1− p)⌈T ⌉−2

1
T

(
1− 1

T

)⌈T ⌉−1
.

Observe that f(p, T) is nondecreasing wrt p for any T > 1 and p ≤ 2
⌈T ⌉ −

1
T , since

p ≤ 2

⌈T ⌉
− 1

T
≤ 2

⌈T ⌉
− 1

⌈T ⌉
=

1

⌈T ⌉

=⇒ p⌈T ⌉ ≤ 1⇐⇒ 1− p⌈T ⌉ ≥ 0⇐⇒ ∂

∂p
f(p, T) ≥ 0.

Now, consider the function

g(T) , f

(
p=

2

⌈T ⌉
− 1

T
, T

)
=

(
2

⌈T ⌉ −
1
T

)(
1− 2

⌈T ⌉ +
1
T

)⌈T ⌉−1

1
T

(
1− 1

T

)⌈T ⌉−1
− 1.

We will proceed to show that g(T) ≤ 0 for any T > 1 by reparameterizing g(T) as h(c, τ), where

46

c , ⌈T ⌉ and τ , ⌈T ⌉ − T :

h(c, τ) , g (T=c−τ) =

(
2
c −

1
c−τ

)(
1− 2

c +
1

c−τ

)c−1

1
c−τ

(
1− 1

c−τ

)c−1 − 1.

The partial derivative of h(c, τ) wrt τ is given by

∂

∂τ
h(c, τ) = −

2τ2(c− 2)
(
1− 2

c +
1

c−τ

)c
(
c(c− 1− τ) + 2τ

)2 (
1− 1

c−τ

)c .
Since ∂

∂τ h(c, τ) ≤ 0 for any c ∈ Z+, c ≥ 2, and τ ∈ [0, 1), it follows that for any T > 1, we have

g(T) = h (c=⌈T ⌉, τ=⌈T ⌉−T)

≤ h (c=⌈T ⌉, τ=0)

=

(
2

⌈T ⌉ −
1

⌈T ⌉

)(
1− 2

⌈T ⌉ +
1

⌈T ⌉

)⌈T ⌉−1

1
⌈T ⌉

(
1− 1

⌈T ⌉

)⌈T ⌉−1
− 1 = 0.

Combining these results, we obtain

f(p, T) ≤ f

(
p=

2

⌈T ⌉
− 1

T
, T

)
= g(T) ≤ 0

for any T > 1 and p ≤ 2
⌈T ⌉ −

1
T , which implies

p (1− p)⌈T ⌉−1 ≤ 1

T

(
1− 1

T

)⌈T ⌉−1

.

Finally, we apply the appropriate condition from Lemma 2.9 for each pair of T and p. For T ∈ Z+,

T > 1, we have 2
⌈T ⌉ −

1
T = 1

T : we use condition (2.12) for p = 1
T , and condition (2.13) for p < 1

T .

For T /∈ Z+, T > 1, we have 2
⌈T ⌉ −

1
T < 1

T : we use condition (2.13) for p < 1
T .

2.6.10 Proof of Theorem 2.11

Since x̄ (n, T,m=⌊T ⌋) is indeed optimal for any p when T = 1, we need only consider the case

of T > 1. We will show that x̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation for any T > 1

47

and p ≤ 1
⌈T ⌉ . We do this by considering subintervals of T over which ⌈T ⌉ is constant.

Let T be confined to the unit interval (c, c+ 1], where c ∈ Z+. According to Lemma 2.10,

x̄ (n, T,m=⌊T ⌋) is optimal for any p ∈
(
0, 2

c+1 −
1
T

]
and T ∈ (c, c+ 1], or equivalently, for any

p ∈
(
0,

1

c+ 1

]
and T ∈

[
1

2
c+1 − p

, c+ 1

]
∩ (c, c+ 1].

This is just the area below a “peak” in Figure 2.4, expressed in terms of different independent

variables. For each p ∈
(
0, 1

c+1

)
, we can always find a T0 such that

T0 ∈

[
1

2
c+1 − p

, c+ 1

)
∩ (c, c+ 1).

For example, we can pick T0 = c+ 1− δ, where

δ , 1

2

(
c+ 1−max

(
c,

1
2

c+1 − p

))
∈ (0, 1).

Now, we make the crucial observation that if x̄ (n, T,m=⌊T ⌋) is an optimal symmetric allocation

for T = T0, then x̄ (n, T,m=⌊T ⌋) is also an optimal symmetric allocation for any T ∈
[
⌊T0⌋, T0

]
.

This claim can be proven by contradiction: the recovery probability for x̄ (n, T,m=⌊T ⌋) is given

by

PS (p, T,m=⌊T ⌋) = P [B (⌊T ⌋, p) ≥ 1]

which remains constant for all T ∈
[
⌊T0⌋, T0

]
, and a symmetric allocation that performs

strictly better than x̄ (n, T,m=⌊T ⌋) for some T ∈
[
⌊T0⌋, T0

]
would therefore also outperform

x̄ (n, T,m=⌊T ⌋) for T = T0. Since x̄ (n, T,m=⌊T ⌋) is indeed optimal for our choice of T0, it

follows then that x̄ (n, T,m=⌊T ⌋) is also optimal for any

p ∈
(
0,

1

c+ 1

)
and T ∈ (c, c+ 1].

By applying this result for each c ∈ Z+, we reach the conclusion that x̄ (n, T,m=⌊T ⌋) is an optimal

symmetric allocation for any T > 1 and p < 1
⌈T ⌉ .

Finally, to extend the optimality of x̄ (n, T,m=⌊T ⌋) to p = 1
⌈T ⌉ , we note that the recovery

48

probability PS(p, T,m) , P
[
B (m, p) ≥

⌈
m
T

⌉]
is a polynomial in p and is therefore continuous at

p = 1
⌈T ⌉ . Since x̄ (n, T,m=⌊T ⌋) is optimal as p→ 1

⌈T ⌉
−, it remains optimal at p = 1

⌈T ⌉ .

2.6.11 Proof of Proposition 2.12

Consider an allocation (x1, . . . , xn) where each xi is a nonnegative rational number. The prob-

lem of computing the recovery probability for this allocation and a given subset size r is equivalent

to the counting version of the following decision problem (which happens to be polynomial-time

solvable):

Definition 2.23. Largest r-Subset Sum (LRSS)

Instance: Finite n-vector (a1, . . . , an) with ai ∈ Z+
0 , file size d ∈ Z+, and subset size r ∈ Z+,

where all ai and d can be written as decimal numbers of length at most ℓ.

Question: Is there an r-subset r ⊆ {1, . . . , n} that satisfies
∑

i∈r ai ≥ d?

Note that the allocation and file size have been scaled so that the problem parameters are all

integers. To show that the counting problem #LRSS is #P-complete, we essentially apply the proof

of Proposition 2.2, substituting #LSS with #LRSS, and stipulating that the subset size r = m+ k

in the Turing reduction.

2.6.12 Proof of Lemma 2.13

Summing up the c inequalities of (2.18) produces

c∑
j=1

∑
i∈rj

xi ≥ c.

The terms on the left-hand side can be regrouped to obtain

∑
i∈S

c∑
j=1

1 [i ∈ rj]xi ≥ c.

Substituting (2.19) into the above inequality yields

∑
i∈S

b xi ≥ c,

49

as required.

2.6.13 Proof of Lemma 2.14

LetR be the collection of all
(
n
r

)
possible r-subsets of {1, . . . , n}. If PS = 1, then any feasible

allocation must satisfy ∑
i∈r

xi ≥ 1 ∀ r ∈ R.

Observe that each element in {1, . . . , n} appears the same number of times among the r-subsets in

R. Specifically, the number of r-subsets that contain element i ∈ {1, . . . , n} is just the number of

ways of choosing the other (r − 1) elements of the r-subset from the remaining (n− 1) elements

of {1, . . . , n}, i.e., ∑
r∈R

1 [i ∈ r] =

(
n− 1

r − 1

)
∀ i ∈ {1, . . . , n}.

Applying Lemma 2.13 with S = {1, . . . , n}, c =
(
n
r

)
, and b =

(
n−1
r−1

)
therefore produces

n∑
i=1

xi ≥
(
n
r

)(
n−1
r−1

) =
n

r

for any feasible allocation. Now,
(
1
r , . . . ,

1
r

)
is a feasible allocation since it has a recovery proba-

bility of exactly 1; because it uses the minimum possible total amount of storage n
r , this allocation

is also optimal.

2.6.14 Proof of Theorem 2.15

Suppose that n is a multiple of r; let positive integer α be defined such that n = αr.

We will first prove that PS > 1− r
n is a sufficient condition for the optimality of

(
1
r , . . . ,

1
r

)
by

showing that if the constraint

∑
i∈r

xi ≥ 1 (2.38)

is satisfied for more than
(
1− r

n

) (
n
r

)
distinct r-subsets r ⊆ {1, . . . , n}, then the allocation(

1
r , . . . ,

1
r

)
minimizes the required budget T . Our approach is motivated by the observation of

Lemma 2.13. We begin by constructing a collection of r-subsets such that if constraint (2.38) is

50

Figure 2.9. Example for the construction of the ordered partition Q and its corresponding collection of
r-subsetsRQ, in the proof of Theorem 2.15 (when n is a multiple of r).

satisfied for the r-subsets in this collection, then
∑n

i=1 xi ≥
n
r . We then demonstrate that such

a collection of r-subsets can be found among any collection of more than
(
1− r

n

) (
n
r

)
distinct

r-subsets.

Let

Q , (v1, . . . ,vα)

be an ordered partition of {1, . . . , n} that comprises α parts, where |vj | = r, j = 1, . . . , α. For a

given ordered partition Q, we specify a collection of α distinct r-subsets

RQ , {r1, . . . , rα},

where rj , vj , j = 1, . . . , α.

Figure 2.9 provides an example of how Q and RQ are constructed. Let A be the total number of

possible ordered partitions Q. By counting the number of ways of picking vj , we have

A =

(
αr

r

)(
(α− 1)r

r

)(
(α− 2)r

r

)
· · ·
(
r

r

)
︸ ︷︷ ︸

α terms

=
(αr)!

(r!)α
.

Let B be the number of ordered partitions Q for which r ∈ RQ, for a given r-subset r ⊆ {1, . . . , n}.

By counting the number of ways of picking vj , subject to the requirement that r ∈ RQ, we have

B = α

(
(α− 1)r

r

)(
(α− 2)r

r

)
· · ·
(
r

r

)
︸ ︷︷ ︸

(α−1) terms

=
α
(
(α− 1)r

)
!

(r!)α−1
.

51

We claim that for any given ordered partition Q, if

∑
i∈r

xi ≥ 1 ∀ r ∈ RQ,

then
∑n

i=1 xi ≥
n
r . To see this, observe that each element i ∈ {1, . . . , n} appears in exactly one of

the α r-subsets ofRQ, i.e.,

∑
r∈RQ

1 [i ∈ r] = 1 ∀ i ∈ {1, . . . , n}.

Applying Lemma 2.13 with S = {1, . . . , n}, c = α, and b = 1 therefore produces∑n
i=1 xi ≥

α
1 = n

r .

LetR be the collection of all
(
n
r

)
possible r-subsets of {1, . . . , n}. Observe that all A collections

RQ can be found inR, i.e.,

RQ1 ⊆ R, RQ2 ⊆ R, . . . , RQA
⊆ R.

With each removal of an r-subset fromR, we reduce the number of collectionsRQ that can be found

among the remaining r-subsets by at most B. It follows that the minimum number of r-subsets that

need to be removed fromR so that no collectionsRQ remain is at least
⌈
A
B

⌉
, where

A

B
=

(αr)!

α r!
(
(α− 1)r

)
!
=

r

n

(
n

r

)
.

Thus, if fewer than A
B = r

n

(
n
r

)
r-subsets are removed from R, then at least one collection RQ

would remain; equivalently, some collection RQ can be found among any collection of more than(
1− r

n

) (
n
r

)
distinct r-subsets.

We have therefore shown that if PS > 1− r
n , then any feasible allocation must satisfy∑n

i=1 xi ≥
n
r . Now,

(
1
r , . . . ,

1
r

)
is a feasible allocation since it has a recovery probability of ex-

actly 1; because it uses the minimum possible total amount of storage n
r , this allocation is also

optimal.

We proceed to prove that PS > 1− r
n is also a necessary condition for the optimality of(

1
r , . . . ,

1
r

)
by demonstrating that this allocation is suboptimal for any PS ≤ 1− r

n .

52

For r < n, the allocation
(
0, 1r , . . . ,

1
r

)
has a recovery probability of

(
n−1
r

)/(
n
r

)
= 1− r

n and is

therefore a feasible allocation for any PS ≤ 1− r
n . Since this allocation uses a smaller total amount

of storage n−1
r < n

r , it is a strictly better allocation than
(
1
r , . . . ,

1
r

)
for any PS ≤ 1− r

n .

For the trivial case r = n, we have 1− r
n = 0. The empty allocation (0, . . . , 0) is clearly opti-

mal for any PS ≤ 0.

2.6.15 Proof of Theorem 2.16

Suppose that n is not a multiple of r; let integers α and r′ be as defined in the theorem. For

brevity, we additionally define positive integers d, m, and m′ such that

d = gcd(r, r′), r = md, r′ = m′ d.

We can therefore write n = (αm+m′)d.

We will prove that

PS > 1− d

α d+m′ d
= 1− 1

α+m′

is a sufficient condition for the optimality of
(
1
r , . . . ,

1
r

)
by showing that if the constraint

∑
i∈r

xi ≥ 1

is satisfied for more than
(
1− 1

α+m′

) (
n
r

)
distinct r-subsets r ⊆ {1, . . . , n}, then the allocation(

1
r , . . . ,

1
r

)
minimizes the required budget T . We apply the proof technique of Theorem 2.15, but

modify the construction of the ordered partition Q and its corresponding collection of r-subsetsRQ

to take into account the indivisibility of n by r.

For the moment, we will proceed with the assumption that α ≥ 1. Let

Q , (u1, . . . ,um′ ,v1, . . . ,vα)

be an ordered partition of {1, . . . , n} that comprises (m′ + α) parts, where

|uj | = d, j = 1, . . . ,m′,

53

Figure 2.10. Example for the construction of the ordered partition Q and its corresponding collection of
r-subsetsRQ, in the proof of Theorem 2.16 (when n is not a multiple of r).

|vj | = r = md, j = 1, . . . , α.

For a given ordered partition Q, we specify a collection of (m′ + α) distinct r-subsets

RQ , {r1, . . . , rm′ , rm′+1, . . . , rm′+α},

where rj ,


m−1∪
ℓ=0

uj+ℓ if j = 1, . . . ,m′,

vj−m′ if j = m′ + 1, . . . ,m′ + α,

and uj , uj−m′ if j > m′.

Figure 2.10 provides an example of how Q and RQ are constructed. Let A be the total number of

possible ordered partitions Q. By counting the number of ways of picking uj and vj , we have

A =

(
(αm+m′)d

d

)(
(αm+m′−1)d

d

)
· · ·
(
(αm+1)d

d

)
︸ ︷︷ ︸

m′ terms

·
(
αmd

md

)(
(α−1)md

md

)
· · ·
(
md

md

)
︸ ︷︷ ︸

α terms

=

(
(αm+m′)d

)
!

(d!)m′((md)!
)α .

Let B be the number of ordered partitions Q for which r ∈ RQ, for a given r-subset r ⊆ {1, . . . , n}.

By counting the number of ways of picking uj and vj , subject to the requirement that r ∈ RQ, we

54

have

B =

((
(α−1)m+m′)d

d

)((
(α−1)m+m′−1

)
d

d

)
· · ·
((

(α−1)m+1
)
d

d

)
︸ ︷︷ ︸

m′ terms

·

α

(
(α−1)md

md

)(
(α−2)md

md

)
· · ·
(
md

md

)
︸ ︷︷ ︸

(α−1) terms

+ m′
(
md

d

)(
(m−1)d

d

)
· · ·
(
d

d

)
︸ ︷︷ ︸

m terms

·

((
(α−1)m+m′)d

d

)((
(α−1)m+m′−1

)
d

d

)
· · ·
(
(αm+1)d

d

)
︸ ︷︷ ︸

(m′−m) terms

·

(
αmd

md

)(
(α−1)md

md

)
· · ·
(
md

md

)
︸ ︷︷ ︸

α terms

= α

((
(α− 1)m+m′)d)!
(d!)m′((md)!

)α−1 +m′
((
(α− 1)m+m′)d)!
(d!)m′((md)!

)α−1

= (α+m′)

((
(α− 1)m+m′)d)!
(d!)m′((md)!

)α−1 .

We claim that for any given ordered partition Q, if

∑
i∈r

xi ≥ 1 ∀ r ∈ RQ,

then
∑n

i=1 xi ≥
n
r . To see this, consider the partition of {1, . . . , n} formed by sets U and V , where

U ,
m′∪
j=1

uj , V ,
α∪

j=1

vj .

Correspondingly, we partitionRQ into two collections of r-subsetsRU
Q andRV

Q, where

RU
Q , {r1, . . . , rm′}, RV

Q , {rm′+1, . . . , rm′+α}.

Observe that each element i ∈ U appears in exactly one uj , which in turn appears in exactly m of

55

the m′ r-subsets ofRU
Q (namely rj , rj−1, . . . , rj−(m−1), where rℓ , rℓ+m′ if ℓ < 1), i.e.,

∑
r∈RU

Q

1 [i ∈ r] = m ∀ i ∈ U.

Applying Lemma 2.13 with S = U , c = m′, and b = m therefore produces
∑

i∈U xi ≥ m′

m = r′

r .

Likewise, observe that each element i ∈ V appears in exactly one of the α r-subsets ofRV
Q, i.e.,

∑
r∈RV

Q

1 [i ∈ r] = 1 ∀ i ∈ V.

Applying Lemma 2.13 with S = V , c = α, and b = 1 therefore produces
∑

i∈V xi ≥ α. Combining

the sums of U and V yields

n∑
i=1

xi =
∑
i∈U

xi +
∑
i∈V

xi ≥
r′

r
+ α =

n

r
.

LetR be the collection of all
(
n
r

)
possible r-subsets of {1, . . . , n}. As demonstrated in the proof

of Theorem 2.15, if fewer than A
B r-subsets are removed from R, then at least one collection RQ

can be found among the remaining r-subsets. In this case, we have

A

B
=

1

α+m′

(
(αm+m′)d

)
!((

(α− 1)m+m′
)
d
)
!(md)!

=
1

α+m′

(
n

r

)
.

Thus, some collectionRQ can be found among any collection of more than
(
1− 1

α+m′

) (
n
r

)
distinct

r-subsets.

We have therefore shown that if PS > 1− 1
α+m′ , then any feasible allocation must satisfy∑n

i=1 xi ≥
n
r . Now,

(
1
r , . . . ,

1
r

)
is a feasible allocation since it has a recovery probability of ex-

actly 1; because it uses the minimum possible total amount of storage n
r , this allocation is also

optimal.

Applying the preceding argument to the degenerate case of α = 0 produces A
B = 1

m′

(
n
r

)
, which

is consistent with the above expression.

56

2.6.16 Proof of Corollary 2.17

Suppose that n is a multiple of (n− r); let integer β ≥ 2 be defined such that n = β(n− r)

⇐⇒ n = β
β−1r.

If β = 2, then n = 2r, i.e., n is a multiple of r. According to Theorem 2.15,
(
1
r , . . . ,

1
r

)
is an

optimal allocation if and only if

PS > 1− r

n
= 1− r

2r
=

1

2
=

r

n
,

as required.

If β ≥ 3, then n is not a multiple of r. We can write n = α r + r′, where α = 0 and

r′ = n ∈ {r + 1, . . . , 2r − 1}. According to Theorem 2.16,
(
1
r , . . . ,

1
r

)
is an optimal allocation

if

PS > 1− gcd(r, r′)

α gcd(r, r′) + r′
= 1− gcd(r, n)

n
= 1− n− r

n
=

r

n
.

To show that PS > r
n is also a necessary condition for the optimality of

(
1
r , . . . ,

1
r

)
, we demonstrate

that this allocation is suboptimal for any PS ≤ r
n . The allocation (1, 0, . . . , 0) has a recovery proba-

bility of
(
n−1
r−1

)/(
n
r

)
= r

n and is therefore a feasible allocation for any PS ≤ r
n . Since this allocation

uses a smaller total amount of storage 1 < n
r , it is a strictly better allocation than

(
1
r , . . . ,

1
r

)
for any

PS ≤ r
n .

2.6.17 Proof of Lemma 2.18

Proof of Upper Bound (2.21): Consider a given choice of (n, r, T), with T <
⌊
n
r

⌋
, and a

feasible allocation (x1, . . . , xn). Since the bound is vacuous when r = n, we shall assume that

1 ≤ r ≤ n− 1. Let v = (v1, . . . , vn) be a permutation of the index set {1, . . . , n}. Arrange the

entries of v sequentially on a circle so that entry vi is at position i. For each k ∈ {1, . . . , n}, let rvk

be the interval of r entries on the circle that begins at position k, i.e., rvk , {vk, . . . , vk+r−1},

where vi , vi−n if i > n. Let Rv be the collection of all n such subsets for a given v, i.e.,

Rv , {rv1 , . . . , rvn}; note that these subsets are distinct.

We now show by contradiction that for any v, there can be at most r⌊T ⌋ successful subsets in

57

the collectionRv, i.e.,

|Rv ∩ S| ≤ r⌊T ⌋. (2.39)

First, we note that the condition T <
⌊
n
r

⌋
can be expressed equivalently as r(⌊T ⌋+ 1) ≤ n because

T <
⌊n
r

⌋
⇐⇒ ⌊T ⌋ <

⌊n
r

⌋
⇐⇒ ⌊T ⌋ ≤

⌊n
r

⌋
− 1⇐⇒ ⌊T ⌋ ≤ n

r
− 1⇐⇒ r(⌊T ⌋+ 1) ≤ n.

Suppose that |Rv ∩ S| ≥ r⌊T ⌋+ 1; for brevity, define A , Rv ∩ S . Let A′ and B be arbitrarily

chosen collections such that

A′ ⊆ A, |A′| = r⌊T ⌋+ 1, B ⊆ Rv\A′, |B| = r − 1.

Note that A′ and B are disjoint subcollections ofRv, and they can always be chosen because

|A′|+ |B| = r(⌊T ⌋+ 1) ≤ n = |Rv|.

We proceed to partitionA′ ∪ B into r parts, each containing exactly ⌊T ⌋+ 1 subsets, in the follow-

ing manner: First, arrange the subsets rvk ∈ A′ ∪ B in ascending order of their indices k, and relabel

them sequentially as r̃1, . . . , r̃r⌊T ⌋+r. Next, assign to each part ℓ ∈ {1, . . . , r} the ⌊T ⌋+ 1 subsets

r̃ℓ, r̃r+ℓ, r̃2r+ℓ, . . . , r̃⌊T ⌋r+ℓ.

We make the crucial observation that the subsets in each part ℓ are disjoint because there is a gap

of exactly r − 1 entries r̃j between consecutive pairs of entries, including between the last en-

try r̃⌊T ⌋r+ℓ and the first entry r̃ℓ. Now, to recover the subsets in A′ from A′ ∪ B, we remove the

r − 1 subsets in B. By the pigeonhole principle, at least one out of the r parts must have ⌊T ⌋+ 1

subsets remaining after the removal. It follows that A′, and therefore its superset A, contains at

least ⌊T ⌋+ 1 disjoint subsets. Since A is the collection of successful subsets inRv, we have

n∑
i=1

xi =
n∑

j=1

xvj ≥ ⌊T ⌋+ 1 > T,

58

which contradicts the budget constraint.

We now express the sum
∑

v |Rv ∩ S| in two ways. First, applying inequality (2.39) to each of

the n! choices of v produces

∑
v

|Rv ∩ S| ≤ n! r⌊T ⌋. (2.40)

Second, the sum can be written in terms of S in the following manner. For a fixed choice of

successful subset r ∈ S and index k ∈ {1, . . . , n}, we have r = rvk for r!(n− r)! choices of v; there

are r! ways of arranging the elements of r on the corresponding interval in v, and (n− r)! ways of

picking the remaining n− r entries in v. Therefore, summing over all r ∈ S and k ∈ {1, . . . , n}

yields

∑
v

|Rv ∩ S| = r!(n− r)!S n. (2.41)

Finally, substituting (2.41) into (2.40) produces

S ≤ n! r⌊T ⌋
r!(n− r)!n

= ⌊T ⌋ r
n

(
n

r

)
,

as required.

Proof of Upper Bound (2.22): Consider a given choice of (n, r, T), and a feasible allocation

(x1, . . . , xn). Let v = (v1, . . . , vn) be a permutation of the index set {1, . . . , n}, and let v̂ be the

concatenation of β copies of v. For each k ∈ {1, . . . , βnr }, let rvk be the interval of r entries in v̂ that

begins at position (k − 1)r + 1, i.e., rvk , {v(k−1)r+1, . . . , v(k−1)r+r}, where vi , vi−n if i > n.

Let Rv be the collection of all βn
r such subsets for a given v, i.e., Rv , {rv1 , . . . , rvβn/r}. Note

that the subsets inRv are distinct; otherwise, the length of v̂ would exceed lcm(n, r). Observe that

there can be at most ⌊βT ⌋ successful subsets in the collectionRv; otherwise, if there are ⌊βT ⌋+ 1

or more successful subsets, then

β

n∑
i=1

xi =

βn∑
j=1

xvj ≥ ⌊βT ⌋+ 1 > βT,

59

which contradicts the budget constraint. Thus, for any v, we have

|Rv ∩ S| ≤ ⌊βT ⌋. (2.42)

We now express the sum
∑

v |Rv ∩ S| in two ways. First, applying inequality (2.42) to each of

the n! choices of v produces

∑
v

|Rv ∩ S| ≤ n! ⌊βT ⌋. (2.43)

Second, the sum can be written in terms of S in the following manner. For a fixed choice of suc-

cessful subset r ∈ S and index k ∈ {1, . . . , βnr }, we have r = rvk for r!(n− r)! choices of v; there

are r! ways of arranging the elements of r on the corresponding interval in v, and (n− r)! ways of

picking the remaining n− r entries in v. Therefore, summing over all r ∈ S and k ∈ {1, . . . , βnr }

yields

∑
v

|Rv ∩ S| = r!(n− r)!S
βn

r
. (2.44)

Finally, substituting (2.44) into (2.43) produces

S ≤ n! ⌊βT ⌋
r!(n− r)!βnr

=
⌊βT ⌋
β

r

n

(
n

r

)
,

as required.

2.6.18 Proof of Lemma 2.19

At T = n
r , the recovery probability corresponding to a particular choice of ℓ ∈ {1, 2, . . . , r − 1}

is given by

PS

(
n, r, T=

n

r
, ℓ
)
= P

[
B
(
r,

ℓ

r

)
≥ ℓ

]
.

We will prove that the above expression is at most 3
4 for any ℓ ∈ {1, 2, . . . , r − 1} and r ≥ 2 by

showing that

P
[
B
(
a+ b,

a

a+ b

)
≥ a

]
≤ 3

4

60

for any positive integers a and b. To do this, we consider the following three exhaustive cases

separately:

Case 1: Suppose that a ≥ 18 and b ≥ 3. We will first derive an upper bound

for P
[
B
(
a+ b, a

a+b

)
≥ a

]
by finding separate bounds for P

[
B
(
a+ b, a

a+b

)
= a

]
and

P
[
B
(
a+ b, a

a+b

)
≥ a+ 1

]
; we then proceed to show that this upper bound is smaller than 3

4

for any a ≥ 18 and b ≥ 3.

For any positive integers a and b, we have

P
[
B
(
a+ b,

a

a+ b

)
= a

]
=

(
a+ b

a

)(
a

a+ b

)a(b

a+ b

)b
<

e
1

12(a+b)

√
2π

√
a+ b

ab
. (2.45)

Inequality (2.45) follows from the application of the following bound for the binomial coefficient:

(
a+ b

a

)
<

e
1

12(a+b)

√
2π

(a+ b)a+b+ 1
2

aa+
1
2 bb+

1
2

,

which is derived from the following Stirling-based bounds for the factorial (e.g., [44]):

√
2πk

(
k

e

)k

< k! <
√
2πk

(
k

e

)k

e
1

12k , k ≥ 1.

For any positive integers a and b, we have

P
[
B
(
a+ b,

a

a+ b

)
≥ a+ 1

]
≤ 1

2
, (2.46)

which follows from the definition of the median: The mean of the binomial random variable

B
(
a+ b, a

a+b

)
is (a+ b) · a

a+b = a; since the mean is an integer, the median coincides with the

mean [45]. Therefore, according to the definition of the median, we have

P
[
B
(
a+ b,

a

a+ b

)
≤ a

]
≥ 1

2
,

which leads to inequality (2.46).

61

Combining bounds (2.45) and (2.46) produces

P
[
B
(
a+ b,

a

a+ b

)
≥ a

]
<

e
1

12(a+b)

√
2π

√
a+ b

ab
+

1

2
, f(a, b)

for any positive integers a and b. Now, the upper bound f(a, b) is a decreasing function of both a

and b since f(a, b) is a symmetric function and the partial derivative

∂

∂a
f(a, b) = −6b2 + 6ab+ a

12a(a+ b)2
e

1
12(a+b)

√
2π

√
a+ b

ab

is negative for any a ≥ 1 and b ≥ 1. Thus, for any a ≥ 18 and b ≥ 3, we have

f(a, b) ≤ f(a=18, b=3) =
e

1
252

6

√
7

π
+

1

2
≈ 0.749773 <

3

4
,

which implies that P
[
B
(
a+ b, a

a+b

)
≥ a

]
< 3

4 for any positive integers a ≥ 18 and b ≥ 3.

Case 2: Suppose that b ∈ {1, 2}. We will show that

P
[
B
(
a+ 1,

a

a+ 1

)
≥a
]
≤ 3

4
and P

[
B
(
a+ 2,

a

a+ 2

)
≥a
]
<

3

4

for any positive integer a. The left-hand side of each inequality can be expanded and simplified to

obtain the following:

P
[
B
(
a+ 1,

a

a+ 1

)
≥ a

]
=

aa(2a+ 1)

(a+ 1)a+1
, f1(a),

P
[
B
(
a+ 2,

a

a+ 2

)
≥ a

]
=

aa(5a2 + 10a+ 4)

(a+ 2)a+2
, f2(a).

The first derivatives of f1(a) and f2(a), which are given by

f ′
1(a) =

aa

(a+ 1)a+1

{
2− (2a+ 1) ln

(
a+ 1

a

)}
,

f ′
2(a) =

aa

(a+ 2)a+2

{
(10a+ 10)− (5a2 + 10a+ 4) ln

(
a+ 2

a

)}
,

can be shown to be negative for any a ≥ 1. Since f1(a=1) = 3
4 , f2(a=1) = 19

27 < 3
4 , and both f1(a)

and f2(a) are decreasing functions of a for any a ≥ 1, it follows that f1(a) ≤ 3
4 and f2(a) <

3
4 for

62

any positive integer a, as required.

Case 3: Suppose that a ∈ {1, 2, . . . , 17}. We will describe our approach for a = 1 and a = 2;

the proofs for the other 15 cases are similar, and can be verified with the help of a computer. We

will show that

P
[
B
(
b+ 1,

1

b+ 1

)
≥1
]
≤ 3

4
and P

[
B
(
b+ 2,

2

b+ 2

)
≥2
]
<

3

4

for any positive integer b. The left-hand side of each inequality can be expanded and simplified to

obtain the following:

P
[
B
(
b+ 1,

1

b+ 1

)
≥ 1

]
= 1− bb+1

(b+ 1)b+1
, g1(b),

P
[
B
(
b+ 2,

2

b+ 2

)
≥ 2

]
= 1− bb+1(3b+ 4)

(b+ 2)b+2
, g2(b).

The first derivatives of g1(b) and g2(b), which are given by

g′1(b) =
bb

(b+ 1)b+1

{
b ln

(
b+ 1

b

)
− 1

}
,

g′2(b) =
bb

(b+ 2)b+2

{
(3b2 + 4b) ln

(
b+ 2

b

)
− (6b+ 4)

}
,

can be shown to be negative for any b ≥ 1. Since g1(b=1) = 3
4 , g2(b=1) = 20

27 < 3
4 , and both g1(b)

and g2(b) are decreasing functions of b for any b ≥ 1, it follows that g1(b) ≤ 3
4 and g2(b) <

3
4 for

any positive integer b, as required.

2.6.19 Proof of Theorem 2.20

We have already established that the choice of ℓ = r is optimal for any T ≥ n
r ; it therefore

suffices to show that ℓ = r is also optimal for any T ∈
[
n
r

(
3
4

) 1
r , nr

)
.

The recovery probability corresponding to any ℓ ∈ {1, 2, . . . , r} is given by

PS(n, r, T, ℓ) = P
[
B
(
r,min

(
ℓT

n
, 1

))
≥ ℓ

]
,

which is a nondecreasing function of T since min
(
ℓT
n , 1

)
either increases or remains constant at 1

63

as T increases. More precisely, PS(n, r, T, ℓ) is an increasing function of T on the interval
(
0, nℓ

)
;

for higher values of T , the function saturates at 1. We can verify this claim by checking that the

partial derivative
∂

∂p
P [B (r, p) ≥ ℓ] = ℓ

(
r

ℓ

)
pℓ−1(1− p)r−ℓ

is positive for any p ∈ (0, 1).

Now, the recovery probability corresponding to the choice of ℓ = r at T = n
r

(
3
4

) 1
r is given by

PS

(
n, r, T=

n

r

(
3

4

) 1
r

, ℓ=r

)
= P

[
B

(
r,

(
3

4

) 1
r

)
≥ r

]
=

3

4
.

Since PS(n, r, T, ℓ) is a nondecreasing function of T , we have

PS(n, r, T, ℓ=r) ≥ 3

4
for any T ≥ n

r

(
3

4

) 1
r

.

On the other hand, for any ℓ ∈ {1, 2, . . . , r − 1}, we have

PS(n, r, T, ℓ) ≤
3

4
for any T ≤ n

r
,

from the upper bound of Lemma 2.19. It therefore follows that the choice of ℓ = r is optimal for

any T ∈
[
n
r

(
3
4

) 1
r , nr

)
, as required.

2.6.20 Proof of Corollary 2.21

Theorem 2.20 already demonstrates that the choice of ℓ = r is optimal for any T ≥ n
r

(
3
4

) 1
r ; we

will proceed to show that a recovery probability of at least 3
4 is not achievable for any T < n

r

(
3
4

) 1
r .

Recall from the proof of Theorem 2.20 that the recovery probability PS(n, r, T, ℓ) corresponding

to any ℓ ∈ {1, 2, . . . , r} is an increasing function of T on the interval
(
0, nℓ

)
. Thus, for the choice

of ℓ = r, the function PS(n, r, T, ℓ=r) increases wrt T on the subinterval
(
0, nr

(
3
4

) 1
r

]
⊂
(
0, nr

)
;

since PS

(
n, r, T=n

r

(
3
4

) 1
r , ℓ=r

)
= 3

4 , it follows that

PS(n, r, T, ℓ=r) <
3

4
for any T <

n

r

(
3

4

) 1
r

.

64

On the other hand, for any ℓ ∈ {1, 2, . . . , r − 1}, the function PS(n, r, T, ℓ) increases wrt T on the

subinterval
(
0, nr

]
⊂
(
0, nℓ

)
; since PS

(
n, r, T=n

r , ℓ
)
≤ 3

4 according to Lemma 2.19, it follows that

PS(n, r, T, ℓ) <
3

4
for any T <

n

r
.

Hence, the optimal recovery probability for any T < n
r

(
3
4

) 1
r is strictly less than 3

4 .

2.7 Acknowledgment

The author and his coauthors A. G. Dimakis and T. Ho would like to thank Brighten Godfrey and

Robert Kleinberg for introducing the problem to them and for sharing their insights. They also thank

Dimitris Achlioptas, Shaowei Lin, Liang Ze Wong, and Daniel Chen for the helpful discussions.

65

Chapter 3

Distributed Storage Allocations

for Optimal Delay

3.1 Introduction

Consider a network of n mobile storage nodes. A source node creates a single data object of unit

size (without loss of generality), and disseminates an encoded representation of it to other nodes for

storage, subject to a given total storage budget T . Let xi be the amount of coded data eventually

stored in node i ∈ {1, . . . , n} at the end of the data dissemination process. Any amount of data may

be stored in each node, as long as the total amount of storage used over all nodes is at most the given

budget T , that is,
∑n

i=1 xi ≤ T .

At some time after the completion of the data dissemination process, a data collector node begins

to recover the original data object by contacting other nodes and accessing the data stored in them.

We make the simplifying assumption that the stored data is instantaneously transmitted on contact;

this approximates the case where there is sufficient bandwidth and time for data transmission during

each contact. This data recovery process continues until the data object can be recovered from the

cumulatively accessed data. Let random variable D denote the recovery delay incurred by the data

collector, defined as the earliest time at which successful recovery can occur, measured from the

beginning of the data recovery process. Figure 3.1 depicts the information flows in such a network.

By using an appropriate code for the data dissemination process and eventual storage, successful

The material in this chapter was presented in part in [46].

66

Figure 3.1. Information flows originating at the source s, some of which finally arrive at the data collector
t. Different amounts of coded data may eventually be stored in each storage node, subject to the given total
storage budget T .

recovery can be achieved when the total amount of data accessed by the data collector is at least the

size of the original data object. This can be accomplished with random linear codes [28, 29] or a

suitable MDS code, for example. Thus, if rd ⊆ {1, . . . , n} is the set of all nodes contacted by the

data collector by time d, then the recovery delay D can be written as

D , min

d :
∑
i∈rd

xi ≥ 1

 .

Our goal is to find a storage allocation (x1, . . . , xn) that produces the optimal recovery delay, subject

to the given budget constraint. Specifically, we shall examine the following two objectives involving

the recovery delay D:

1) maximization of the probability of successful recovery by a given deadline d, or recovery

probability P [D ≤ d]; and

2) minimization of the expected recovery delay E [D].

By solving for the optimal allocation, we will also be able to determine whether coding is beneficial

for recovery delay. For example, uncoded replication would suffice if each nonempty node is to

store the data object in its entirety (i.e., xi ≥ 1 for all i ∈ S, and xi = 0 for all i /∈ S, where S

is some subset of {1, . . . , n}); the data collector would not need to combine data accessed from

different nodes in order to recover the data object.

The nodes of the network are assumed to move around and contact each other according to

an exogenous random process; they are unable to change their trajectories in response to the data

67

dissemination or recovery processes. (The recovery delay could be improved significantly if nodes

were otherwise allowed to act on oracular knowledge about future contact opportunities [47], for

example.)

Most work on delay-tolerant networking traditionally assume that the data object is intended

for immediate consumption; both the data dissemination and recovery processes would therefore

begin at the same time, and the recovery delay would be measured from the beginning of the data

dissemination process. In contrast, our model more accurately reflects the characteristics of longer-

term storage where the data object can be consumed long after its creation. Nonetheless, our model

can still be a good approximation for short-term storage especially when the data dissemination

process occurs very rapidly, as in the case of binary Spray-and-Wait [13] where the number of

nodes disseminating or spraying data grows exponentially over time.

We also note that in most of the literature involving distributed storage, either the data object

is assumed to be replicated in its entirety (see, for e.g., [13]), or, if coding is used, every node is

assumed to store the same amount of coded data (see, for e.g., [3–7]). Allocations of a storage

budget with nodes possibly storing different amounts of data are not usually considered.

3.1.1 Our Contribution

This chapter attempts to address the gaps in our understanding of how the choice of storage

allocation can affect the recovery delay performance. We formulate a simple analytical model

of the problem and show that the maximization of the recovery probability P [D ≤ d] can be

expressed in terms of the reliability maximization problem introduced in [8]. It turns out that the

simple strategies of spreading the budget minimally (i.e., uncoded replication) and spreading the

budget maximally over all n nodes (i.e., setting xi =
T
n for all i) may both be suboptimal; in fact,

the optimal allocation may not even be symmetric (we say that an allocation is symmetric when all

nonzero xi are equal). Applying our results from Section 2.2.3, we can show that minimal spreading

is optimal among symmetric allocations when the deadline d is sufficiently small, while maximal

spreading is optimal among symmetric allocations when the deadline d is sufficiently large.

For the minimization of the expected recovery delay E [D], we are able to characterize the

optimal symmetric allocation completely: minimal spreading (i.e., uncoded replication) turns out to

be optimal whenever the budget T is an integer; otherwise, the amount of spreading in the optimal

68

symmetric allocation increases with the fractional part of T .

Interestingly, our analytical results demonstrate that the optimal symmetric allocation for the

two objectives can be quite different. In particular, when the budget T is an integer, we observe a

phase transition in the optimal symmetric allocation as the deadline d increases, for the maximiza-

tion of recovery probability P [D ≤ d]; however, minimal spreading (i.e., uncoded replication)

alone turns out to be optimal for the minimization of expected recovery delay E [D].

We proceed to apply our theoretical insights to the design of a simple data dissemination and

storage protocol for a mobile delay-tolerant network. Our protocol generalizes Spray-and-Wait [13]

by allowing the use of variable-size coded packets. Using network simulations, we compare the

performance of different symmetric allocations under various circumstances. These simulations

allow us to capture the transient dynamics of the data dissemination process that were simplified

in the analytical model. Our main result shows that a maximal spreading of the budget is optimal

in the high recovery probability regime. Specifically, maximal spreading can lead to a significant

reduction in the wait time required to attain a desired recovery probability. We also evaluate the

protocol against a real-world data set consisting of the mobility traces of taxi cabs operating in

a city. Besides validating the predictions made in our theoretical analysis, these simulations also

reveal several interesting properties of the allocations under different circumstances.

3.1.2 Other Related Work

Jain et al. [11] and Wang et al. [48] evaluated the delay performance of symmetric allocations

experimentally in the context of routing in a delay-tolerant network. Our results complement and

generalize several aspects of their work.

We present a theoretical analysis of the problem in Section 3.2, and undertake a simulation study

in Section 3.3. Proofs of theorems are deferred to Section 3.5.

3.2 Theoretical Analysis

We adopt the following notation throughout this chapter:

n total number of storage nodes, n ≥ 2

λ contact rate between any given pair of nodes, λ > 0

69

xi amount of data stored in node i ∈ {1, . . . , n}, xi ≥ 0

T total storage budget, 1 ≤ T ≤ n

D random variable denoting recovery delay

The indicator function is denoted by 1 [G], which equals 1 if statement G is true, and 0 otherwise.

We use B (n, p) to denote the binomial random variable with n trials and success probability p.

An allocation (x1, . . . , xn) is said to be symmetric when all nonzero xi are equal; for brevity, let

x̄(n, T,m) denote the symmetric allocation for n nodes that uses a total storage of T and contains

exactly m ∈ {1, . . . , n} nonempty nodes, that is,

x̄(n, T,m) ,
(

T

m
, . . . ,

T

m︸ ︷︷ ︸
m terms

, 0, . . . , 0︸ ︷︷ ︸
(n−m) terms

)
.

The number of contacts between any given pair of nodes in the network is assumed to follow a

Poisson distribution with rate parameter λ; the time between contacts is therefore described by an

exponential distribution with mean 1
λ . Let W1, . . . ,Wn be i.i.d. random variables denoting the times

at which the data collector first contacts node 1, . . . , n, respectively, where Wi ∼ Exponential(λ).

3.2.1 Maximization of Recovery Probability P [D ≤ d]

Let the given recovery deadline be d > 0, and let the subset of nodes contacted by the data

collector by time d be r ⊆ {1, . . . , n}. Successful recovery occurs by time d if and only if the total

amount of data stored in the subset r of nodes is at least 1. In other words, the recovery delay D

is at most d if and only if
∑

i∈r xi ≥ 1. Since the data collector contacts each node by time d

independently with constant probability pλ,d, given by

pλ,d , P [W ≤ d] = FW (d) = 1− e−λd,

it follows that the probability of contacting exactly a subset r of nodes by time d is

p
|r|
λ,d(1− pλ,d)

n−|r|. The recovery probability P [D ≤ d] can therefore be obtained by summing

70

over all possible subsets r that allow successful recovery:

P [D ≤ d] =
∑

r⊆{1, . . . , n}:
|r|≥1

p
|r|
λ,d(1− pλ,d)

n−|r| · 1

[∑
i∈r

xi ≥ 1

]
. (3.1)

We seek an optimal allocation (x1, . . . , xn) of the budget T (that is, subject to
∑n

i=1 xi ≤ T , where

xi ≥ 0 for all i) that maximizes P [D ≤ d], for a given choice of n, λ, d, and T .

This problem matches the reliability maximization problem of Section 2.2 with pλ,d as the

access probability; we recall that the optimal allocation may be nonsymmetric and can be difficult

to find. However, if we restrict the optimization to only symmetric allocations, then we can specify

the solution for a wide range of parameter values of pλ,d and T . Specifically, if λ or d is sufficiently

small, e.g., pλ,d ≤ 1
⌈T ⌉ , then x̄ (n, T,m=⌊T ⌋), which corresponds to a minimal spreading of the

budget (i.e., uncoded replication), is an optimal symmetric allocation. On the other hand, if λ or d

is sufficiently large, e.g., pλ,d ≥ 4
3⌊T ⌋ , then either x̄

(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n), which

correspond to a maximal spreading of the budget, is an optimal symmetric allocation.

3.2.2 Minimization of Expected Recovery Delay E [D]

Rewriting (3.1) in terms of the underlying random variables gives us the following c.d.f. for the

recovery delay D:

FD(t) =
∑

r⊆{1, . . . , n}:
|r|≥1

(
FW (t)

)|r|(
1− FW (t)

)n−|r| · 1

[∑
i∈r

xi ≥ 1

]
.

Differentiating FD(t) wrt t produces the p.d.f.

fD(t) =
∑

r⊆{1, . . . , n}:
|r|≥1

(
FW (t)

)|r|−1(
1− FW (t)

)n−|r|−1(|r| − nFW (t)
)
fW (t) · 1

[∑
i∈r

xi ≥ 1

]
.

Therefore, assuming
∑n

i=1 xi ≥ 1 which is necessary for successful recovery, we can compute the

expected recovery delay as follows:

E [D] =

∫ ∞

0
t fD(t) dt

71

=
∑

r⊆{1, . . . , n}:
|r|≥1

(∫ ∞

0
t
(
FW (t)

)|r|−1(
1−FW (t)

)n−|r|−1(|r|−nFW (t)
)
fW (t) dt

)
·1

[∑
i∈r

xi ≥ 1

]

=
1

λ

Hn −
∑

r⊆{1, . . . , n}:
1≤|r|≤n−1

1

(n− |r|)
(
n
|r|
) · 1[∑

i∈r
xi ≥ 1

] , (3.2)

where Hn ,
∑n

i=1
1
i is the nth harmonic number. We seek an optimal allocation (x1, . . . , xn) of the

budget T (that is, subject to
∑n

i=1 xi ≤ T , where xi ≥ 0 for all i) that minimizes E [D], for a given

choice of n, λ, and T . Note that the optimal allocation is independent of λ for the minimization of

E [D] but not for the maximization of P [D ≤ d].

The optimal value of E [D] can be bounded as follows:

Lemma 3.1. The expected recovery delay E [D] of an optimal allocation is at least

1

λ

(
Hn −

n−1∑
r=1

min
(
rT
n , 1

)
n− r

)
.

We make the following conjecture about the optimal allocation, based on our numerical obser-

vations:

Conjecture 3.2. A symmetric optimal allocation always exists for any n, λ, and T .

As a simplification, we now proceed to restrict the optimization to only symmetric allocations

(which are easier to describe and implement, and appear to perform well). For the symmetric

allocation x̄(n, T,m), successful recovery occurs by a given deadline d if and only if
⌈
1
/ (

T
m

)⌉
=
⌈
m
T

⌉
or more nonempty nodes are contacted by the data collector by time d, out of a total of

m nonempty nodes. It follows that the resulting recovery probability is given by P [D ≤ d] =

P
[
B (m, pλ,d) ≥

⌈
m
T

⌉]
. We therefore obtain the following c.d.f. and p.d.f. for the recovery delay D:

FD(t) =
m∑

r=⌈mT ⌉

(
m

r

)(
FW (t)

)r(
1− FW (t)

)m−r
,

fD(t) =

(
m⌈
m
T

⌉)⌈m
T

⌉(
FW (t)

)⌈mT ⌉−1(
1−FW (t)

)m−⌈mT ⌉fW (t).

72

Figure 3.2. Plot of expected recovery delay E [D] against budget T for each symmetric allocation x̄(n, T,m),
for (n, λ)=

(
20, 1

100

)
. Parameter m denotes the number of nonempty nodes in the symmetric allocation. The

black curve gives a lower bound for the expected recovery delay of an optimal allocation, as derived in
Lemma 3.1.

Thus, we can compute the expected recovery delay as follows:

E [D]=

∫ ∞

0
t fD(t) dt =

1

λ

⌈mT ⌉∑
i=1

1

m−
⌈
m
T

⌉
+ i

, ED(λ, T,m).

Figure 3.2 compares the performance of different symmetric allocations over different bud-

gets T , for an instance of n and λ; the value of m corresponding to the optimal symmetric allocation

appears to change in a nontrivial manner as we vary the budget T . Fortunately, we can eliminate

many candidates for the optimal value of m by making the following observation (a similar obser-

vation was made for the maximization of the recovery probability in Section 2.2.3): For fixed n, λ,

and T , we have

⌈m
T

⌉
= k when m ∈

(
(k − 1)T, kT

]
,

for k = 1, 2, . . . ,
⌊
n
T

⌋
, and finally,

⌈m
T

⌉
=
⌊n
T

⌋
+ 1 when m ∈

(⌊n
T

⌋
T, n

]
.

73

Since 1
λ

∑k
i=1

1
m−k+i is decreasing in m for constant λ and k, it follows that ED(λ, T,m) is mini-

mized over each of these intervals of m when we pick m to be the largest integer in the correspond-

ing interval. Thus, given n, λ, and T , we can find an optimal m∗ that minimizes ED(λ, T,m) over

all m from among
⌈
n
T

⌉
candidates:

{
⌊T ⌋, ⌊2T ⌋, . . . ,

⌊⌊n
T

⌋
T
⌋
, n
}
. (3.3)

Note that when m = ⌊kT ⌋, k ∈ Z+, the expected recovery delay simplifies to the following expres-

sion:

ED (λ, T,m=⌊kT ⌋) = 1

λ

k∑
i=1

1

⌊kT ⌋ − k + i
.

By further eliminating suboptimal candidate values for m∗ using suitable bounds for the har-

monic number, we are able to completely characterize the optimal symmetric allocation for any n,

λ, and T :

Theorem 3.3. Suppose T = a+ 1− 1
ℓ , where a ∈ Z+, ℓ ≥ 1. If ⌊ℓ⌋ ≤

⌊
n
T

⌋
, then

x̄ (n, T,m=⌊⌊ℓ⌋T ⌋)

is an optimal symmetric allocation; if ⌊ℓ⌋ >
⌊
n
T

⌋
, then

either x̄
(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n)

is an optimal symmetric allocation.

If the budget T is an integer (i.e., ℓ = 1), then ⌊ℓ⌋ ≤
⌊
n
T

⌋
is always true, and so

x̄ (n, T,m=⌊T ⌋), which corresponds to a minimal spreading of the budget (i.e., uncoded repli-

cation), is an optimal symmetric allocation. However, if the budget T is not an integer (i.e., ℓ > 1),

then the amount of spreading in the optimal symmetric allocation increases with the fractional part

of T , up to a point at which either x̄
(
n, T,m=

⌊⌊
n
T

⌋
T
⌋)

or x̄ (n, T,m=n), which correspond to

a maximal spreading of the budget, becomes optimal. Minimal spreading (i.e., uncoded replica-

tion) therefore performs well over the whole range of budgets T , being optimal among symmetric

74

allocations whenever T is an integer (its suboptimality at noninteger T = T0 can be bounded by

the step difference in ED (λ, T,m=⌊T ⌋) between T = T0 and T = ⌈T0⌉, since ED(λ, T,m) is a

nonincreasing function of T).

In summary, we note that the optimal symmetric allocation for the two objectives can be quite

different. In particular, when the budget T is an integer, we observe a phase transition from a regime

where minimal spreading is optimal to a regime where maximal spreading is optimal, as the deadline

d increases, for the maximization of recovery probability P [D ≤ d]; however, with the averaging

over both regimes, minimal spreading (i.e., uncoded replication) alone turns out to be optimal for

the minimization of expected recovery delay E [D].

3.3 Simulation Study

We apply our theoretical insights to the design of a simple data dissemination and storage pro-

tocol for a mobile delay-tolerant network. Our protocol extends Spray-and-Wait [13] by allowing

nodes to store coded packets that are each 1
w the size of the original data object, where parameter

w is a positive integer; successful recovery occurs when the data collector accesses at least w such

packets. Different symmetric allocations of the given total storage budget T can be realized by

choosing different values of w; the original protocol, which uses uncoded replication, corresponds

to w = 1.

3.3.1 Protocol Description

The source node begins with a total storage budget of T times the size of the original data

object, which translates to wT coded packets, each 1
w the size of the original data object. Whenever

a node with more than one packet contacts another node without any packets, the former gives half

its packets to the latter. The actual amount of data stored or transmitted by a node never exceeds the

size of the original data object (or w packets) since the excess packets can always be generated on

demand (using random linear coding, for example). To reduce the total transmission cost incurred,

a node can also directly transmit one packet to each node it meets when it has w or fewer packets

left; otherwise, these last few packets would be transmitted multiple times by different nodes. The

dissemination process is completed when no node has more than one packet.

75

(a) Budget T = 5

(b) Budget T = 10

(c) Budget T = 20

Figure 3.3. Plots of required wait time d(PS) against desired recovery probability PS for the simulations
using a random waypoint mobility model, for budgets T = 5, 10, 20. Each colored line represents a specific
choice of parameter w ∈

{
1, . . . , n

T

}
, with w = 1 (darkest) corresponding to a minimal spreading of the

budget (i.e., uncoded replication), and w = n
T (lightest) corresponding to a maximal spreading of the budget.

The mean recovery delay corresponding to each line is indicated by a square marker.

76

(a) Budget T = 5

(b) Budget T = 10

(c) Budget T = 20

Figure 3.4. Plots of required wait time in minutes d(PS) against desired recovery probability PS for the
simulations using mobility traces, for budgets T = 5, 10, 20. Each colored line represents a specific choice
of parameter w ∈

{
1, . . . , n

T

}
, with w = 1 (darkest) corresponding to a minimal spreading of the budget (i.e.,

uncoded replication), and w = n
T (lightest) corresponding to a maximal spreading of the budget. The mean

recovery delay corresponding to each line is indicated by a square marker.

77

3.3.2 Network Model and Simulation Setup

We implemented a discrete-time simulation of n = 100 wireless mobile nodes in a 1000×1000

grid. A random waypoint mobility model is assumed where at each time step, each node moves a

random distance L ∼ Uniform[5,10] towards a selected destination; on arrival, the node selects a

random point on the grid as its next destination. Each node has a communication range of 20, and

the bandwidth of each point-to-point link is large enough to support the transmission of w packets

in one time step. At each time step, a maximal number of transmissions are randomly scheduled

such that each node can transmit to or receive from at most one other node in range, and exactly

one node may transmit in the range of a node receiving a transmission. In addition to this baseline

scenario, we also considered the following two scenarios:

1) a high-mobility scenario, where the distance traveled by each node is increased to

L ∼ Uniform[25,50]; and

2) a high-connectivity scenario, where the communication range is increased to 80.

We measured the recovery delay incurred by the data collector for two cases:

1) when the data recovery process begins at time 0, i.e., at the beginning of the data dissemina-

tion process; and

2) when the data recovery process begins at time 2000, i.e., when the data dissemination process

is already underway or completed. (This is a more appropriate performance metric for longer-

term storage.)

We ran the simulation 500 times for each choice of budget T ∈ {5,10,20} and parameter

w ∈
{
1, 2, . . . , n

T

}
under each scenario, with a random pair of nodes appointed as the source and

data collector for each run.

3.3.3 Simulation Results

Figure 3.3 shows how the required wait time d(PS), given by

d(PS) , min{d : P [D ≤ d] ≥ PS},

78

varies with the desired recovery probability PS for each choice of parameter w; these plots essen-

tially describe how much time must elapse before a desired percentage of data collectors are able

to recover the data object. The recovery probability performance of the protocol (which can be

inferred by flipping the axes) is mostly consistent with our analysis in Section 3.2.1; specifically, the

phase transition in the optimal symmetric allocation is clearly discernible in most of the plots. The

expected recovery delay performance is also mostly consistent with our analysis in Section 3.2.2,

with minimal spreading of the budget (w = 1) being optimal in most of the plots.

The plots for the high-mobility scenario appear to be vertically scaled versions of the plots for

the baseline scenario. This is not surprising because an increase in node mobility approximately

translates to a speeding up of time. The effect of increasing node connectivity, on the other hand,

seems less straightforward: the phase transition in the optimal symmetric allocation is evident for

recovery starting at time 2000 but not for recovery starting at time 0. This discrepancy suggests that

the data dissemination process is somewhat impeded by the increased connectivity, possibly due to

greater interference.

We observe that in the high recovery probability regime, maximal spreading of the budget

(w = n
T) can lead to a significant reduction in the required wait time. For example, given a budget

of T = 10 and a desired recovery probability of PS = 0.99, choosing maximal spreading (w = 10)

instead of minimal spreading or uncoded replication (w = 1) can yield a reduction of 40% to 60%

in the required wait time for the baseline and high-mobility scenarios.

We also observe that the recovery start time appears to have a limited impact on how the different

allocations perform relative to each other; the most noticeable effect of starting recovery at time 0

is the reduced spread in performance across different choices of parameter w, especially in the low

recovery probability regime. This can be explained by the similarity of the different allocations

during the data dissemination process: in the beginning, the different choices of parameter w would

see the same allocation of the budget over the nodes because only a few nodes have been reached

by the source directly or indirectly through relays; the different allocations are eventually realized

only after a sufficient amount of time has passed.

79

3.3.4 Evaluation on Mobility Traces

To gain a better understanding of how our protocol might perform in a real-world setting, we

evaluated it on a CRAWDAD data set comprising mobility traces of taxi cabs in San Francisco [49].

The traces of 100 randomly selected cabs with GPS coordinate readings over the span of an 18-day

period were used. The GPS readings were sampled at approximately 60-second intervals; because

reading times were not synchronized across cabs, we estimated the position of a cab at any given

time using linear interpolation. For better accuracy, we assumed that a cab became inactive when-

ever the time between consecutive readings exceeded 2 minutes. As in the preceding simulations,

we considered different scenarios and data recovery start times. Two scenarios were considered

here:

1) a baseline scenario, where the communication range of each cab is 20 m; and

2) a high-connectivity scenario, where the communication range is increased to 80 m.

We measured the recovery delay incurred by the data collector for two cases:

1) when the data recovery process begins on day 1; and

2) when the data recovery process begins on day 10, i.e., half-way through the 18-day period.

We ran the simulation 500 times for each choice of budget T ∈ {5,10,20} and parameter

w ∈
{
1, 2, . . . , n

T

}
under each scenario, with a random pair of cabs appointed as the source and

data collector for each run.

Figure 3.4 shows how the required wait time d(PS) varies with the desired recovery probability

PS for each choice of parameter w. Compared to the plots of Figure 3.3 for the random waypoint

simulations, these plots exhibit distinct “jumps” in the wait times, which can be attributed to the

reduced mobility of the cabs at night. Despite these nonideal conditions, many of the observations

made for the previous simulations are still applicable here. For instance, the phase transition in the

optimal symmetric allocation is discernible in most of the plots for the baseline scenario. Also,

starting recovery on day 1 has the effect of reducing the spread in performance across different

choices of parameter w, especially in the low recovery probability regime.

Once again, we observe that in the high recovery probability regime, maximal spreading of the

budget (w = n
T) can lead to a significant reduction in the required wait time. For example, given

80

a budget of T = 10 and a desired recovery probability of PS = 0.99, choosing maximal spreading

(w = 10) instead of minimal spreading or uncoded replication (w = 1) can yield a reduction of 30%

to 50% in the required wait time for the baseline scenario.

3.4 Conclusion and Future Work

We examined the recovery delay performance of different distributed storage allocations for

a network of mobile storage nodes. Our theoretical analysis and simulation study show that the

choice of objective function (i.e., recovery probability vs. expected recovery delay) can lead to

very different optimal symmetric allocations, and that picking the right allocation for the given

circumstances can make a significant difference in performance.

The work in this chapter can be extended in several directions. The simple contact model as-

sumed here can be generalized to the case where a variable amount of data is transmitted during

each contact between nodes. Another natural generalization is to allow nonuniform contact rates λi

between the data collector and individual nodes.

3.5 Proofs of Theorems

3.5.1 Proof of Lemma 3.1

Consider a feasible allocation (x1, . . . , xn); we have
∑n

i=1 xi ≤ T , where xi ≥ 0, i = 1, . . . , n.

Let Sr denote the number of r-subsets of {x1, . . . , xn} that have a sum of at least 1, where

r ∈ {1, . . . , n}. Recall from the proof of Lemma 2.3 that Sr can be bounded as follows:

Sr ≤ min

((
n− 1

r − 1

)
T,

(
n

r

))
.

We can now rewrite (3.2) in terms of Sr by enumerating subsets according to size:

E [D] =
1

λ

(
Hn −

n−1∑
r=1

Sr ·
1

(n− r)
(
n
r

))

≥ 1

λ

Hn −
n−1∑
r=1

min
((

n−1
r−1

)
T,
(
n
r

))
(n− r)

(
n
r

)


81

=
1

λ

(
Hn −

n−1∑
r=1

min
(
rT
n , 1

)
n− r

)
.

3.5.2 Proof of Theorem 3.3

Suppose T = a+1− 1
ℓ , where a ∈ Z+, ℓ ≥ 1. Since kT = (a+ 1)k − k

ℓ , the expected recovery

delay for the symmetric allocation x̄ (n, T,m=⌊kT ⌋), where k ∈ Z+, can be written as

ED (λ, T,m=⌊kT ⌋) = 1

λ

k∑
i=1

1

(a+ 1)k −
⌈
k
ℓ

⌉
− k + i

=
1

λ

k∑
i=1

1

ak −
⌈
k
ℓ

⌉
+ i

.

Observe that
⌈
k
ℓ

⌉
= v when k ∈

(
(v − 1)ℓ, vℓ

]
, for v = 1, 2, To compare ED (λ, T,m=⌊kT ⌋)

within each of these intervals of k, we introduce Lemma 3.4:

Lemma 3.4. For a, v, k ∈ Z+, k ≥ v
a , the function

f(a, v, k) ,
k∑

i=1

1

ak − v + i
= Hak−v+k −Hak−v

decreases with k.

Proof of Lemma 3.4: Let ∆(a, v, k) denote the difference in the function value between consecu-

tive values of k, that is,

∆(a, v, k) , f(a, v, k)− f(a, v, k + 1)

= (Hak−v+k −Hak−v)− (Hak−v+k+a+1 −Hak−v+a)

= (Hak−v+a −Hak−v)− (Hak−v+k+a+1 −Hak−v+k)

=

(
a∑

i=1

1

ak − v + i
− 1

ak − v + k + i

)
− 1

ak − v + k + a+ 1

=

(
a∑

i=1

k

(ak − v + i)(ak − v + k + i)

)
− 1

ak − v + k + a+ 1
.

82

We will proceed to show that ∆(a, v, k) > 0 for any a, v, k ∈ Z+, k ≥ v
a . First, we find a lower

bound for the summation term using a geometrical argument. Consider the function

g(t) , k

(ak − v + t)(ak − v + k + t)
,

which has the second derivative

g′′(t) =
2

(ak − v + t)3
− 2

(ak − v + k + t)3
.

For any a, v, k ∈ Z+, k ≥ v
a , the function g(t) is positive, decreasing with t, and convex (since

g′′(t) > 0), on the interval t ∈ (0,∞). We therefore have the lower bound

a∑
i=1

k

(ak − v + i)(ak − v + k + i)
>

∫ a+1

1
g(t) dt+

g(1)−g(a+ 1)

2
,

which implies that

∆(a, v, k) > ln

(
(ak − v + a+ 1)(ak − v + k + 1)

(ak − v + k + a+ 1)(ak − v + 1)

)
+

k

2(ak − v + 1)(ak − v + k + 1)

− k

2(ak − v + a+ 1)(ak − v + k + a+ 1)
− 1

ak − v + k + a+ 1
, h(a, v, k).

Now, it suffices to show that h(a, v, k) ≥ 0 for any a, v, k ∈ Z+, k ≥ v
a . This is indeed the case

since

lim
k→∞

h(a, v, k) = 0,

and the partial derivative ∂
∂kh(a, v, k), which is given by

a

2

(
2(ak − v + a+ 1) + 1

(ak − v + a+ 1)2
− 2(ak − v + 1) + 1

(ak − v + 1)2

)
+

a+ 1

2

(
2(ak − v + k + 1) + 1

(ak − v + k + 1)2
− 2(ak − v + k + a+ 1)− 1

(ak − v + k + a+ 1)2

)
,

can be shown to be negative.

It follows from Lemma 3.4 that for each v ∈ Z+, the expected recovery delay

83

ED (λ, T,m=⌊kT ⌋) decreases as k takes larger values in the interval
(
(v − 1)ℓ, vℓ

]
, that is,

ED

(
λ, T,m=

⌊(
⌊(v − 1)ℓ⌋+ 1

)
T
⌋)

> ED

(
λ, T,m=

⌊(
⌊(v − 1)ℓ⌋+ 2

)
T
⌋)

> · · ·

> ED (λ, T,m=⌊⌊vℓ⌋T ⌋).

We will proceed to show that

ED (λ, T,m=⌊⌊vℓ⌋T ⌋) ≥ ED (λ, T,m=⌊⌊ℓ⌋T ⌋)

for all v ∈ Z+. This is equivalent to showing that

⌊vℓ⌋∑
i=1

1

a⌊vℓ⌋ − v + i
≥

⌊ℓ⌋∑
i=1

1

a⌊ℓ⌋ − 1 + i

for any ℓ ≥ 1, a, v ∈ Z+. According to Lemma 3.4, we have

⌊vℓ⌋∑
i=1

1

a⌊vℓ⌋ − v + i
≥

v⌊ℓ⌋+v−1∑
i=1

1

a (v⌊ℓ⌋+ v − 1)− v + i
,

since we can substitute ℓ with ⌊ℓ⌋+ τ , where τ ∈ [0, 1), which yields

⌊vℓ⌋ = ⌊v⌊ℓ⌋+ vτ⌋ = v⌊ℓ⌋+ ⌊vτ⌋ ≤ v⌊ℓ⌋+ v − 1.

Defining the function

f(a, ℓ, v) ,
vℓ+v−1∑

i=1

1

a (vℓ+ v − 1)− v + i
= H(

(a+1)(ℓ+1)−1
)
v−(a+1)

−H(
a(ℓ+1)−1

)
v−a

,

it therefore suffices to show that

f(a, ℓ, v) ≥ f(a, ℓ, v=1) (3.4)

for any a, ℓ, v ∈ Z+.

84

To obtain lower and upper bounds for f(a, ℓ, v), we apply the following bounds [50] for the

harmonic number Hn, n ≥ 1:

ln

(
n+

1

2

)
+ γ +

1

24(n+ 1)2︸ ︷︷ ︸
,HLB(n)

< Hn < ln

(
n+

1

2

)
+ γ +

1

24n2︸ ︷︷ ︸
,HUB(n)

,

where γ is the Euler-Mascheroni constant. This produces the lower bound

fLB(a, ℓ, v) , HLB
((
(a+ 1)(ℓ+ 1)− 1

)
v − (a+ 1)

)
−HUB

((
a(ℓ+ 1)− 1

)
v − a

)
,

and the upper bound

fUB(a, ℓ, v) , HUB
((
(a+ 1)(ℓ+ 1)− 1

)
v − (a+ 1)

)
−HLB

((
a(ℓ+ 1)− 1

)
v − a

)
,

for
(
a(ℓ + 1) − 1

)
v − a ≥ 1. The lower bound fLB(a, ℓ, v) is an increasing function of v for any

a ≥ 1, ℓ ≥ 1, v ≥ 2, since the partial derivative ∂
∂vfLB(a, ℓ, v), which is given by

2(ℓ− 1)(
2
(
(a+ 1)(ℓ+ 1)− 1

)
v − 2(a+ 1) + 1

) (
2
(
a(ℓ+ 1)− 1

)
v − 2a+ 1

)
+

a(ℓ+ 1)− 1

12
((
a(ℓ+ 1)− 1

)
v − a

)3 − (a+ 1)(ℓ+ 1)− 1

12
((
(a+ 1)(ℓ+ 1)− 1

)
v − a

)3 ,
can be shown to be positive. We therefore have

f(a, ℓ, v) ≥ fLB(a, ℓ, v) ≥ fLB(a, ℓ, v=2)

for any v ≥ 2, a, ℓ, v ∈ Z+. We now proceed to demonstrate that fLB(a, ℓ, v=2) ≥ f(a, ℓ, v=1).

For the case ℓ = 1, consider the function

g(a) , fLB(a, ℓ=1, v=2)− f(a, ℓ=1, v=1) = ln

(
2a+ 1

2a− 1

)
− 81a4 − 71a2 + 16

a(9a2 − 4)2
.

It suffices to show that g(a) ≥ 0 for any a ≥ 1, which is indeed the case since

lim
a→∞

g(a) = 0,

85

and the derivative

g′(a) = −621a6 − 961a4 + 436a2 − 64

a2(4a2 − 1)(9a2 − 4)3

is negative.

For the case ℓ ≥ 2, we consider the function

h(a, ℓ) , fLB(a, ℓ, v=2)− fUB(a, ℓ, v=1),

which can be shown to be nonnegative for any a ≥ 1, ℓ ≥ 2. It follows that

fLB(a, ℓ, v=2) ≥ fUB(a, ℓ, v=1) ≥ f(a, ℓ, v=1)

for any ℓ ≥ 2, a, ℓ ∈ Z+.

Combining these results, we obtain

f(a, ℓ, v) ≥ fLB(a, ℓ, v) ≥ fLB(a, ℓ, v=2) ≥ f(a, ℓ, v=1)

for any v ≥ 2, a, ℓ, v ∈ Z+, which gives us inequality (3.4) as required. Consequently, we have

ED (λ, T,m=⌊kT ⌋) ≥ ED (λ, T,m=⌊⌊ℓ⌋T ⌋)

for any k ∈ Z+. Since

ED (λ, T,m=n)


= ED

(
λ, T,m=

⌊⌊
n
T

⌋
T
⌋)

if n
T ∈ Z+,

≥ ED

(
λ, T,m=

⌊(⌊
n
T

⌋
+ 1
)
T
⌋)

otherwise,

we also have

ED (λ, T,m=n) ≥ ED (λ, T,m=⌊⌊ℓ⌋T ⌋).

Therefore, if ⌊ℓ⌋ ≤
⌊
n
T

⌋
, then x̄ (n, T,m=⌊⌊ℓ⌋T ⌋) is an optimal symmetric allocation. On the other

hand, if ⌊ℓ⌋ >
⌊
n
T

⌋
, then we can eliminate all but the two largest candidate values for m∗ in (3.3),

since

ED (λ, T,m=⌊T ⌋) > ED (λ, T,m=⌊2T ⌋) > · · · > ED

(
λ, T,m=

⌊⌊
n
T

⌋
T
⌋)

86

by Lemma 3.4.

87

Chapter 4

Coding for Real-Time Streaming

under Packet Erasures

4.1 Introduction

We consider a real-time streaming system where messages created at regular time intervals at

a source are encoded for transmission to a receiver over a packet erasure link; the receiver must

subsequently decode each message within a given delay from its creation time.

Three erasure models are studied in this chapter. The first is a window-based erasure model

in which all erasure patterns containing a limited number of erasures in each specifically defined

window are admissible. We consider two variations of this model; one based on the coding window

and the other on a sliding window. The second is a bursty erasure model in which all erasure

patterns containing erasure bursts of a limited length are admissible. The third is an i.i.d. erasure

model in which each transmitted packet is erased independently with the same probability. For the

first and second erasure models, the objective is to find a code that achieves the maximum message

size, among all codes that allow all messages to be decoded by their respective decoding deadlines

under all admissible erasure patterns. For the third erasure model, the objective is to find a code that

achieves the maximum decoding probability for a given message size.

Our Contribution: We show that a time-invariant intrasession code is asymptotically optimal

over all codes (time-varying and time-invariant, intersession and intrasession) as the number of

The material in this chapter was presented in part in [51].

88

Figure 4.1. Real-time streaming system for (c, d) = (3, 8). Each of the messages {1, . . . , 5} is assigned a
unique color. Messages are created at regular intervals of c time steps at the source, and must be decoded
within a delay of d time steps from their respective creation times at the receiver. At each time step t, the
source transmits a single data packet of normalized unit size over the packet erasure link.

messages goes to infinity, for both the coding window and sliding window variations of the window-

based erasure model, and for the bursty erasure model when the maximum erasure burst length is

sufficiently short or long. Intrasession coding is attractive due to its relative simplicity (it allows

coding within the same message but not across different messages), but it is not known in general

when intrasession coding is sufficient or when intersession coding is necessary. For the bursty

erasure model, we also show that diagonally interleaved codes derived from specific systematic

block codes are asymptotically optimal over all codes in certain cases.

For the i.i.d. erasure model, we derive an upper bound on the decoding probability for any

time-invariant code, and show that the gap between this bound and the performance of a family of

time-invariant intrasession codes is small when the message size and packet erasure probability are

small. In a simulation study, these codes performed well against a family of random time-invariant

convolutional codes under a number of scenarios.

Related Work: Martinian et al. [52, 53] and Badr et al. [54] provide constructions of streaming

codes that minimize the decoding delay for certain types of bursty erasure models. Tree codes or

anytime codes, for which the decoding failure probability decays exponentially with delay, are con-

sidered in [15–17]. Convolutional codes similar to those in our simulation study for the i.i.d. erasure

model were also examined by Polyanskiy [14] with the expected decoding delay as the performance

metric. Tekin et al. [55] considered erasure correction coding for a non-real-time streaming system

89

where all messages are initially present at the source.

The systems literature on real-time streaming deals mainly with the transmission of media con-

tent (i.e., video and audio) over the Internet, with the user-perceived quality of the received stream

as the performance metric. In practice, the encoding of the raw media content, packetization of the

coded data (possibly with interleaving) for transmission, and application of forward error correction

(FEC) codes are usually performed by different components of the system separately (e.g., [56,57]).

FEC codes (e.g., exclusive-or parity [58], Reed-Solomon [59]), if used, are typically applied to

blocks of packets to generate separate parity or repair packets (e.g., [60, 61]). Furthermore, the

decoding delay requirement is not explicitly considered during the coding process. The patent of

Rasmussen et al. [62] describes a system in which a live stream of data is divided into segments,

each of which is encoded into one or more transmission blocks using an FEC code (e.g., LT [63],

Reed-Solomon); these blocks are optionally subdivided and interleaved in a variety of ways be-

fore being transmitted over one or more channels. A similar streaming system is also considered

in the patent of Luby et al. [64], which describes computationally efficient methods for decoding

FEC-encoded blocks to achieve low latency.

We begin with a formal definition of the problem in Section 4.2, followed by a description of

our code constructions in Section 4.3. In Sections 4.4, 4.5, and 4.6, we examine the three erasure

models in detail and state our main results. Proofs of theorems are deferred to Section 4.8.

4.2 Problem Definition

Consider a discrete-time data streaming system comprising a source and a receiver, with a di-

rected unit-bandwidth packet erasure link from the source to the receiver. Independent messages of

uniform size s > 0 are created at regular intervals of c ∈ Z+ time steps at the source. At each time

step t ∈ Z+, the source transmits a single data packet of normalized unit size over the packet erasure

link; either the entire packet is received instantaneously by the receiver at time step t, or the entire

packet is erased and never received. The receiver must subsequently decode each message within

a delay of d ∈ Z+ time steps from its creation time. Figure 4.1 depicts this real-time streaming

system for an instance of (c, d).

More precisely, let random variable Mk denote message k; the random variables {Mk} are

90

independent, and H(Mk) = s for each k ∈ Z+. To simplify our definition of the encoding func-

tions, we shall further assume that M1,M2, . . . are identically distributed, and nonpositive messages

M0,M−1, . . . are zeros.

Each message k ∈ Z+ is created at time step (k − 1)c+ 1, and is to be decoded by time step

(k − 1)c+ d. Let Wk be the coding window for message k, which we define as the interval of d

time steps between its creation time and decoding deadline, i.e.,

Wk , {(k − 1)c+ 1, . . . , (k − 1)c+ d}.

We shall assume that d > c so as to avoid the degenerate case of nonoverlapping coding windows

for which it is sufficient to code individual messages separately.

The unit-size packet transmitted at each time step t ∈ Z+ must be a function of messages created

at time step t or earlier. Let random variable Xt denote the packet transmitted at time step t; we

have H(Xt) ≤ 1 for each t ∈ Z+. For brevity, we define X[A] , (Xt)t∈A.

Because we are dealing with hard message decoding deadlines and fixed-size messages and

packets, it is reasonable to adopt a zero-error notion of decodability. Specifically, a given message k

is considered to be decodable from the packets received at time steps t ∈ A if and only if

H
(
Mk

∣∣X[A]
)
= 0.

Consider the first n messages {1, . . . , n}, and the union of their (overlapping) coding windows

Tn given by

Tn , W1 ∪ · · · ∪Wn = {1, . . . , (n− 1)c+ d}.

An erasure pattern E ⊆ Tn specifies a set of erased packet transmissions over the link; the pack-

ets transmitted at time steps t ∈ E are erased, while those transmitted at time steps t ∈ Tn\E are

received. An erasure model essentially describes a distribution of erasure patterns.

For a given pair of positive integers a and b, we define the offset quotient qa,b and offset remain-

der ra,b to be the unique integers satisfying the following three conditions:

a = qa,b b+ ra,b, qa,b ∈ Z+
0 , ra,b ∈ {1, . . . , b},

91

where Z+
0 denotes the set of nonnegative integers, i.e., Z+ ∪ {0}. Note that this definition departs

from the usual definition of quotient and remainder in that ra,b can be equal to b but not zero.

4.3 Code Constructions

We analyze the performance of two types of time-invariant codes in this chapter: symmetric in-

trasession codes for the window-based, bursty, and i.i.d. erasure models, and diagonally interleaved

codes for the bursty erasure model. For ease of reference, we present their constructions and some

general properties here.

The usual definition of a time-invariant code applies in the case of c = 1, where every packet is

generated by applying a common encoding function to some recent interval of messages. For larger

values of c, the notion of time-invariance can be generalized as follows:

Definition 4.1 (Time-Invariant Code). A code is time-invariant if there exist causal and determinis-

tic encoding functions f1, . . . , fc and a finite encoder memory size mE ∈ Z+ such that the packet

transmitted at each time step (k − 1)c+ i, where k ∈ Z+, i ∈ {1, . . . , c}, is given by the function fi

applied to the mE most recent messages, i.e.,

X(k−1)c+i = fi
(
Mk,Mk−1, . . . ,Mk−mE+1︸ ︷︷ ︸

mE most recent messages

)
.

4.3.1 Symmetric Intrasession Codes

In an intrasession code, coding is allowed within the same message but not across different

messages. To describe such a code, we first specify how the link bandwidth or data packet space at

each time step is allocated among the different messages. Each unit-size packet is essentially divided

into multiple subpackets or blocks of possibly different sizes, each encoding a different message.

We assume that an appropriate code (e.g., a maximum distance separable (MDS) code or a random

linear code) is subsequently applied to this allocation so that each message is decodable whenever

the total amount of received data that encodes that message, or the total size of the corresponding

blocks, is at least the message size s.

The blocks that encode a given message k are confined to the packets transmitted in the cor-

responding coding window Wk; they cannot be created before the message creation time, and are

92

useless after the message decoding deadline. Thus, to decode each message, the decoder needs to

access only the packets received at the most recent d time steps. The decoder memory requirements

for intrasession codes are therefore modest compared to an intersession code requiring older packets

or previous messages for decoding.

In a time-invariant intrasession code, the encoding functions f1, . . . , fc determine the sizes of

the blocks that encode the mE most recent messages in each interval of c packets or time steps. For

each i ∈ {1, . . . ,mEc}, let xi ≥ 0 be the size of the block that encodes message k − qi,c at time step

(k − 1)c+ ri,c. Therefore, the size of the block that encodes message k at time step (k − 1)c+ i

is xi if i ∈ {1, . . . ,mEc}, and zero otherwise. Because of the unit packet size constraint, we require

that the sum of block sizes at each of the c time steps is at most one, i.e.,

∑
i∈{1,...,mEc}:

ri,c=j

xi ≤ 1 ∀ j ∈ {1, . . . , c}.

Motivated by the symmetric allocation strategy of Section 2.2, we introduce the family of sym-

metric intrasession codes, which are time-invariant intrasession codes with a symmetric allocation

of packet space. For each symmetric code, we define a spreading parameter m ∈ {c, . . . , d′}, where

d′ , min(d,mEc). (We would expect that d′ = d for most real-time streaming systems because the

decoding deadline constraint is typically stricter than the encoder memory size limit, i.e., d ≤ mEc.)

Let W ′
k ⊆Wk be the effective coding window for message k, which we define as the interval of m

time steps beginning at its creation time, i.e.,

W ′
k , {(k − 1)c+ 1, . . . , (k − 1)c+m}.

Let At be the set of active messages at time step t, which we define as the messages whose effective

coding windows contain time step t, i.e.,

At , {k ∈ Z : t ∈W ′
k}.

(Note that nonpositive messages are included as dummy messages.) For each symmetric code,

the unit packet space at each time step is divided evenly among the active messages at that time

93

(a) (c,m) = (3, 9)

(b) (c,m) = (3, 8)

Figure 4.2. Allocation of the unit packet space at each time step t among messages {1, . . . , 6} in the sym-
metric intrasession code with spreading parameter m, for (a) (c,m) = (3, 9) and (b) (c,m) = (3, 8). Each
message is assigned a unique color. In (a), because m is a multiple of c, we have qm,c + 1 = 3 active mes-
sages at each time step. In (b), because m is not a multiple of c, we have either qm,c = 2 or qm,c + 1 = 3
active messages at each time step.

step. Thus, the number of blocks allocated to each message k ∈ Z+ is given by the spreading

parameter m, and the size of the block that encodes each active message k ∈ At at each time step

t ∈ Z+ is given by 1
|At| . Figure 4.2 illustrates this allocation of the unit packet space at each time

step, for two instances of (c,m).

4.3.1.1 Active Messages at Each Time Step

For a given choice of (c,m), the set of active messages at each time step t ∈ Z+ can be stated

explicitly as follows:

At = {k ∈ Z : t ∈W ′
k}

94

= {k ∈ Z : (k − 1)c+ 1 ≤ t ≤ (k − 1)c+m}

=

{
k ∈ Z :

t−m

c
+ 1 ≤ k ≤ t− 1

c
+ 1

}
=

{⌈
t−m

c
+ 1

⌉
, . . . ,

⌊
t− 1

c
+ 1

⌋}
.

Expressing this in terms of qm,c, rm,c, qt,c, rt,c yields

At =

{
qt,c + 1− qm,c +

⌈
rt,c − rm,c

c

⌉
, . . . , qt,c + 1

}
.

It follows that the number of active messages |At| varies over time depending on the value of rt,c;

specifically, two cases are possible:

Case 1: If rt,c ≤ rm,c, then

−1 <
1− c

c
≤ rt,c − rm,c

c
≤ 0,

which implies that
⌈
rt,c−rm,c

c

⌉
= 0, and

At = {qt,c + 1− qm,c, . . . , qt,c + 1} .

Therefore, there are qm,c + 1 active messages at time step t, each of which is allocated a block of

size 1
qm,c+1 .

Case 2: If rt,c > rm,c, then

0 <
rt,c − rm,c

c
≤ c− 1

c
< 1,

which implies that
⌈
rt,c−rm,c

c

⌉
= 1, and

At = {qt,c + 1− (qm,c − 1), . . . , qt,c + 1} .

Therefore, there are qm,c active messages at time step t, each of which is allocated a block of size

1
qm,c

.

Note that when m is a multiple of c, we have rt,c ≤ rm,c = c for any t, which implies that there

95

are qm,c + 1 active messages at every time step, and all blocks are of size 1
qm,c+1 = c

m .

4.3.1.2 Block Sizes for Each Message

As a consequence of the number of active messages, message k is allocated either a small block

of size 1
qm,c+1 or a big block of size 1

qm,c
at each time step t ∈W ′

k; no blocks are allocated to

message k at all other time steps t /∈W ′
k. Writing each time step t ∈W ′

k as

t = (k − 1)c+ i = (k − 1 + qi,c)︸ ︷︷ ︸
qt,c

c+ ri,c︸︷︷︸
rt,c

,

where i ∈ {1, . . . ,m}, we observe that the size of the block that encodes message k at time step

(k − 1)c+ i, which has been defined as xi, depends on the value of ri,c; specifically, two cases are

possible:

Case 1: If ri,c ≤ rm,c, then xi =
1

qm,c+1 . Since i ∈ {1, . . . ,m}, this condition corresponds to

the case where qi,c ∈ {0, . . . , qm,c} and ri,c ∈ {1, . . . , rm,c}. Therefore, message k is allocated a

small block of size 1
qm,c+1 per time step for a total of (qm,c + 1)rm,c time steps in the effective

coding window W ′
k.

Case 2: If ri,c > rm,c, then xi =
1

qm,c
. Since i ∈ {1, . . . ,m}, this condition corresponds to the

case where qi,c ∈ {0, . . . , qm,c − 1} and ri,c ∈ {rm,c + 1, . . . , c}. Therefore, message k is allocated

a big block of size 1
qm,c

per time step for a total of qm,c(c− rm,c) time steps in the effective coding

window W ′
k.

4.3.1.3 Achievability

We use the following lemma to determine the message sizes achievable by the symmetric code

with spreading parameter m = d (for which W ′
k = Wk), for the window-based and bursty erasure

models:

Lemma 4.2 (Achievability). Consider the symmetric intrasession code (Section 4.3.1) with spreading

parameter m = d for a given choice of (c, d). If message size s satisfies the inequality

s ≤
ℓ∑

j=1

yj ,

96

where y = (y1, . . . , yd) is defined as

y ,
(d entries︷ ︸︸ ︷

1

qd,c + 1
, . . . ,

1

qd,c + 1︸ ︷︷ ︸
(qd,c+1)rd,c entries

,
1

qd,c
, . . . ,

1

qd,c︸ ︷︷ ︸
qd,c(c−rd,c) entries

)
,

then each message k ∈ Z+ is decodable from any ℓ packets transmitted in its coding window Wk.

Note that the maximum message size s that can be supported by this code is given by∑d
j=1 yj = c, which corresponds to the choice of ℓ = d.

4.3.1.4 Partitioning of Coding Windows

We use the following lemma to select worst-case erasure patterns with cut-set bounds that

match the message sizes achievable by the symmetric code with spreading parameter m = d, for

the window-based and bursty erasure models:

Lemma 4.3 (Partitioning of Coding Windows). Consider the symmetric intrasession code (Sec-

tion 4.3.1) with spreading parameter m = d for a given choice of (c, d). Consider the first n

messages {1, . . . , n}, and the union of their (overlapping) coding windows Tn. The set of time

steps Tn can be partitioned into d sets T (1)
n , . . . , T

(d)
n , given by

T (i)
n ,


{(

j(qd,c + 1) + qi,c
)
c+ ri,c ∈ Tn : j ∈ Z+

0

}
if ri,c ≤ rd,c,{(

j qd,c + qi,c
)
c+ ri,c ∈ Tn : j ∈ Z+

0

}
if ri,c > rd,c,

with the following properties:

P1) Over the packets transmitted at time steps T
(i)
n , each message k ∈ {1, . . . , n} is allocated

exactly one block; this block is contained within the coding window Wk, and has a size of

1
qd,c+1 if ri,c ≤ rd,c, and 1

qd,c
if ri,c > rd,c.

P2) The total size of the packets transmitted at time steps T (i)
n , i.e.,

∣∣T (i)
n

∣∣, has the following upper

97

(a) (c, d) = (3, 9)

(b) (c, d) = (3, 8)

Figure 4.3. Partitioning of the set of time steps Tn into the d sets T
(1)
n , . . . , T

(d)
n , and the allocation of the

unit packet space at each time step t among messages {1, . . . , 7}, in the symmetric intrasession code with
spreading parameter m = d, for (a) (c, d) = (3, 9) and (b) (c, d) = (3, 8). Each set T (i)

n is assigned a unique
color. The number i at the top of each time step t indicates the set T (i)

n to which t belongs.

bound:

∣∣T (i)
n

∣∣ <


n

qd,c + 1
+ 2 if ri,c ≤ rd,c,

n

qd,c
+ 2 if ri,c > rd,c.

Figure 4.3 shows how the set of time steps Tn is partitioned into the d sets T (1)
n , . . . , T

(d)
n , for

two instances of (c, d).

4.3.2 Diagonally Interleaved Codes

Consider a systematic block code C that encodes a given vector of d− α information sym-

bols a = (a[1], . . . , a[d−α]) as a codeword vector of d symbols (a[1], . . . , a[d−α], b[1], . . . , b[α]),

where each symbol has a normalized size of 1
d . For each i ∈ {1, . . . , α}, we define an encoding

98

Fi
gu

re
4.

4.
C

on
st

ru
ct

io
n

of
th

e
di

ag
on

al
ly

in
te

rl
ea

ve
d

co
de

,f
or

(c
,d
,α

)
=

(3
,1
1,
4)

.
R

ow
s
{1

,.
..
,d
−
α
}

of
th

e
ta

bl
e

ar
e

po
pu

la
te

d
by

in
fo

rm
at

io
n

sy
m

bo
ls

,
w

hi
le

ro
w

s
{d
−
α
+
1
,.
..
,d
}

ar
e

po
pu

la
te

d
by

pa
ri

ty
sy

m
bo

ls
.T

he
d

sy
m

bo
ls

on
ea

ch
di

ag
on

al
sp

an
ni

ng
ac

ro
ss
d

co
ns

ec
ut

iv
e

tim
e

st
ep

s
co

ns
tit

ut
e

on
e

co
de

w
or

d
pr

od
uc

ed
by

th
e

co
m

po
ne

nt
sy

st
em

at
ic

bl
oc

k
co

de
C.

99

function gi so that the parity symbol b[i] is given by b[i] = gi(a).

For a given choice of (c, d, α), we can derive a time-invariant diagonally interleaved code for a

message size of s = d−α
d c by interleaving codeword symbols produced by the component system-

atic block code C in a diagonal pattern.

First, to facilitate code construction, we represent the derived code by a table of symbols, with

each cell in the table assigned one symbol of size 1
d . Figure 4.4 illustrates our construction for an

instance of (c, d, α). Let xt[i] denote the symbol in column t ∈ Z and row i ∈ {1, . . . , d}. The unit-

size packet transmitted at each time step t is composed of the d symbols xt[1], . . . , xt[d] in column t

of the table. Rows {1, . . . , d− α} of the table are populated by information symbols, while rows

{d− α+ 1, . . . , d} are populated by parity symbols.

Next, we divide each message k into (d− α)c submessages or information symbols denoted by

Mk[1], . . . ,Mk[(d−α)c], with each symbol having a size of s
(d−α)c = 1

d . The information symbols

corresponding to each message k are assigned evenly to the columns representing the first c time

steps in coding window Wk, so that

xt[i] = Mqt,c+1[(rt,c − 1)(d− α) + i]

for each i ∈ {1, . . . , d− α}. To obtain the parity symbols for column t, we apply the component

systematic block code C to the information symbols on each diagonal, so that

xt[d− α+ i] = gi

((
xt−i−(d−α)+ℓ[ℓ]

)d−α

ℓ=1

)

for each i ∈ {1, . . . , α}. Thus, the d symbols on each diagonal spanning across d consecutive time

steps in the derived code constitute one codeword produced by C. Note that the information symbols

for nonexistent messages (i.e., nonpositive messages and messages after the actual final message)

are assumed to be zeros so that all codeword symbols are well defined.

4.4 Window-Based Erasure Model

For the first erasure model, all erasure patterns containing a limited number of erasures in each

specifically defined window are admissible. We consider two variations of this model; one based on

100

the coding window Wk in Section 4.4.1, and the other on a sliding window of h time steps, where

h ≥ d, in Section 4.4.2.

4.4.1 Coding Window Erasure Model

Consider the first n messages {1, . . . , n}, and the union of their (overlapping) coding windows

Tn. Let ECW
n be the set of erasure patterns that have at most z erased time steps in each coding

window Wk, i.e.,

ECW
n ,

{
E ⊆ Tn : |E ∩Wk| ≤ z ∀ k ∈ {1, . . . , n}

}
.

The objective is to construct a code that allows all n messages {1, . . . , n} to be decoded by their

respective decoding deadlines under any erasure pattern E ∈ ECW
n . Let sCW

n be the maximum message

size that can be achieved by such a code, for a given choice of (n, c, d, z).

The following example demonstrates that over a finite time horizon (i.e., when the number of

messages n is finite), intrasession coding can be strictly suboptimal:

Example 4.4 (Finite Time Horizon). Suppose that (n, c, d, z) = (3, 1, 3, 1). The maximum message

size that can be achieved by an intrasession code is s = 6
7 ; one such optimal intrasession code,

which can be found by solving a linear program, is as follows (the size of each block is indicated in

parentheses):

The following intersession code achieves a strictly larger message size of s = 1 (Mk denotes mes-

sage k):

101

Using a simple cut-set bound argument, we can show that this is also the maximum achievable

message size, i.e., sCW
n = 1.

However, it turns out that the symmetric intrasession code (Section 4.3.1) with spreading pa-

rameter m = d is asymptotically optimal over all codes; the gap between the maximum achievable

message size sCW
n and the message size achieved by this code vanishes as the number of messages n

goes to infinity:

Theorem 4.5. Consider the coding window erasure model for a given choice of (c, d, z). The sym-

metric intrasession code (Section 4.3.1) with spreading parameter m = d is asymptotically optimal

over all codes in the following sense: it achieves a message size of

d−z∑
j=1

yj ,

which is equal to the asymptotic maximum achievable message size limn→∞ sCW
n , where

y = (y1, . . . , yd) is as defined in Lemma 4.2.

The achievability claim of this theorem is a consequence of Lemma 4.2; to prove the converse

claim, we consider a cut-set bound corresponding to a specific worst-case erasure pattern in which

exactly z erasures occur in every coding window. This erasure pattern is chosen with the help

of Lemma 4.3; specifically, the erased time steps are chosen to coincide with the bigger blocks

allocated to each message in the symmetric code.

4.4.2 Sliding Window Erasure Model

Consider the first n messages {1, . . . , n}, and the union of their (overlapping) coding windows

Tn. Let sliding window Lt denote the interval of h time steps beginning at time step t, where h ≥ d,

102

i.e.,

Lt , {t, . . . , t+ h− 1}.

Let ESW
n be the set of erasure patterns that have at most z erased time steps in each sliding window Lt,

i.e.,

ESW
n ,

{
E ⊆ Tn : |E ∩ Lt| ≤ z ∀ t ∈ {1, . . . , (n− 1)c+ d− h+ 1}

}
.

The objective is to construct a code that allows all n messages {1, . . . , n} to be decoded by their

respective decoding deadlines under any erasure pattern E ∈ ESW
n . Let sSW

n be the maximum message

size that can be achieved by such a code, for a given choice of (n, c, d, h, z).

We note that if E ∈ ESW
n , then E ∈ ECW

n ; therefore, ESW
n ⊆ ECW

n , which implies that sSW
n ≥ sCW

n .

For the special case of (c, h) = (1, d), each sliding window is also a coding window, and so this

sliding window erasure model reduces to the coding window erasure model of Section 4.4.1, i.e.,

ESW
n = ECW

n . Over a finite time horizon, intrasession coding can also be suboptimal for this erasure

model; the illustrating example from Section 4.4.1 applies here as well.

Surprisingly, the symmetric code with spreading parameter m = d also turns out to be asymp-

totically optimal over all codes here; the omission of erasure patterns in ESW
n compared to ECW

n has

not led to an increase in the maximum achievable message size (cf. Theorem 4.5):

Theorem 4.6. Consider the sliding window erasure model for a given choice of (c, d, h, z). The

symmetric intrasession code (Section 4.3.1) with spreading parameter m = d is asymptotically op-

timal over all codes in the following sense: it achieves a message size of

d−z∑
j=1

yj ,

which is equal to the asymptotic maximum achievable message size limn→∞ sSW
n .

Proving the converse claim of this theorem requires a different approach from that of Theo-

rem 4.5. It may not be possible to find a single admissible erasure pattern that provides a cut-set

bound matching the symmetric code; instead, we need to combine different erasure patterns for dif-

ferent messages. To pick these erasure patterns, we first choose a specific base erasure pattern E′

(which may not be admissible in general) with the help of Lemma 4.3. We then derive admissible

103

erasure patterns from E′ by taking its intersection with each coding window, i.e., (E′ ∩Wk) ∈ ESW
n .

These derived erasure patterns are used in the inductive computation of an upper bound for the

conditional entropy

H
(
X[Wn\E′]

∣∣∣Mn
1 , X

(n−1)c
1

)
.

Intuitively, this conditional entropy term expresses how much space is left in the unerased data

packets of the coding window for message n, after encoding the first n messages, and conditioned

on the previous time steps. The nonnegativity of the conditional entropy leads us to a bound for sSW
n

that matches the message size achieved by the symmetric code in the limit n→∞.

4.5 Bursty Erasure Model

For the second erasure model, all erasure patterns containing erasure bursts of a limited length

are admissible. Consider the first n messages {1, . . . , n}, and the union of their (overlapping)

coding windows Tn. Let EB
n be the set of erasure patterns in which each erasure burst is an interval

of at most z erased time steps, and consecutive erasure bursts are separated by a guard interval or

gap of at least d− z unerased time steps, i.e.,

EB
n ,

{
E ⊆ Tn : (t/∈E ∧ t+1∈E)⇒ |E ∩ {t+1, . . . , t+z+1}| ≤ z,

(t∈E ∧ t+1/∈E)⇒ |E ∩ {t+1, . . . , t+d−z}| = 0
}
.

The objective is to construct a code that allows all n messages {1, . . . , n} to be decoded by their

respective decoding deadlines under any erasure pattern E ∈ EB
n. Let sB

n be the maximum message

size that can be achieved by such a code, for a given choice of (n, c, d, z).

This model can be seen as an instance of a more general class of bursty erasure models where the

maximum erasure burst length and the minimum guard interval length can be arbitrarily specified.

In a similar bursty erasure model considered by Martinian et al. [52, 53] and Badr et al. [54], the

maximum erasure burst length (given by B) is z, while the minimum guard interval length (given

by T) is d− 1. For the same choice of (d, z), our model captures a larger set of erasure patterns and

is therefore stricter (the respective cut-set bounds reflect this comparison).

In Section 4.5.1, we show that the symmetric intrasession code with spreading parameter m = d,

104

which is asymptotically optimal for the window-based erasure model of Section 4.4, is also asymp-

totically optimal here in a number of cases. In Section 4.5.2, we show that diagonally interleaved

codes derived from specific systematic block codes are asymptotically optimal in several other cases.

4.5.1 Optimality of Symmetric Intrasession Codes

Using the proof technique of Theorem 4.6, we can show that the symmetric intrasession code

(Section 4.3.1) with spreading parameter m = d is also asymptotically optimal over all codes here

when d is a multiple of c, or when the maximum erasure burst length z is sufficiently short or long:

Theorem 4.7. Consider the bursty erasure model for a given choice of (c, d, z) satisfying any of the

following three conditions:

1) d is a multiple of c;

2) d is not a multiple of c, and z ≤ c− rd,c; or

3) d is not a multiple of c, and z ≥ d− rd,c.

The symmetric intrasession code (Section 4.3.1) with spreading parameter m = d is asymptotically

optimal over all codes in the following sense: it achieves a message size of

d−z∑
j=1

yj ,

which is equal to the asymptotic maximum achievable message size limn→∞ sB
n.

When the maximum erasure burst length z takes on intermediate values, intersession coding

may become necessary. Asymptotically optimal codes for a variety of these cases are presented in

Section 4.5.2.

4.5.2 Optimality of Diagonally Interleaved Codes

Diagonally interleaved codes (Section 4.3.2) that are derived from systematic block codes C

with certain properties turn out to be asymptotically optimal in several cases. These sufficient code

properties are given by the following lemma:

105

Figure 4.5. The d symbols of the codeword vector produced by the systematic block code C of Theorem 4.9,
for (c, d, z) = (5, 36, 24). For each i ∈ {1, . . . , d− z}, all the (degenerate) parity symbols below the infor-
mation symbol a[i] in column i of the table have a value of a[i].

(a) (c, d, z) = (5, 48, 12)

(b) (c, d, z) = (5, 39, 12)

Figure 4.6. The d symbols of the codeword vector produced by the systematic block code C of Theorem 4.10,
for (a) (c, d, z) = (5, 48, 12) and (b) (c, d, z) = (5, 39, 12). In (a), because r′ = z, there are no virtual in-
formation symbols. In (b), because r′ < z, we have virtual information symbols on the second last row (in
parentheses). For each i ∈ {1, . . . , z}, the value of the parity symbol b[i] is given by the bit-wise modulo-2
sum (i.e., exclusive-or) of the actual and virtual information symbols above it in column i of the table.

106

(a) (c, d, z) = (5, 84, 60)

(b) (c, d, z) = (5, 57, 42)

Figure 4.7. The d symbols of the codeword vector produced by the systematic block code C of Theorem 4.12,
for (a) (c, d, z) = (5, 84, 60) and (b) (c, d, z) = (5, 57, 42). In (a), because r′ = z′, there are no virtual
information symbols. In (b), because r′ < z′, we have virtual information symbols on the

(
d−z−r′

z′ + 1
)
th

row (in parentheses). For each i ∈ {1, . . . , z′}, the value of the nondegenerate parity symbol b[i] is given
by the bit-wise modulo-2 sum (i.e., exclusive-or) of the actual and virtual information symbols above it in
column i of the table.

107

Lemma 4.8. Consider the diagonally interleaved code (Section 4.3.2) for a given choice of

(c, d, α=z) satisfying c ≤ z ≤ d− c. Suppose that the d symbols of the codeword vector

(a[1], . . . , a[d−z], b[1], . . . , b[z]) produced by the component systematic block code C are trans-

mitted sequentially across an erasure link, one symbol per time step, over the time interval

L , {1, . . . , d}. For each j ∈ {1, . . . , d}, let EZ
j ⊆ L be the erasure pattern that contains a sin-

gle wrap-around erasure burst of exactly z erased time steps (which may wrap around the last and

first time steps in the interval) with the jth time step in the interval as the “leading” erasure, i.e.,

EZ
j ,

{
rj+ℓ,d : ℓ ∈ {0, . . . , z − 1}

}
.

Let EZ be the set of all such erasure patterns, i.e.,

EZ ,
{
EZ

1, . . . , E
Z
d

}
.

If the systematic block code C satisfies both of the following symbol decoding requirements, then the

diagonally interleaved code derived from C achieves a message size of d−z
d c for the bursty erasure

model:

D1) For each i ∈ {1, . . . , c}, the information symbol a[i] is decodable by the (d− c+ i)th time

step in interval L under any erasure pattern EZ ∈ E Z.

D2) The information symbols a[c+1], . . . , a[d−z] are decodable by the last time step in interval L

under any erasure pattern EZ ∈ E Z.

The condition c ≤ z ≤ d− c is actually implied by the symbol decoding requirements: the first

information symbol a[1] would otherwise be undecodable by its decoding deadline under erasure

pattern EZ
1 because by that time step, no parity symbols would have been transmitted if c > z, and

no symbols would have been received if z > d− c. Note that the use of a systematic MDS code

as the component systematic block code C may not be sufficient here because of the additional

decoding deadlines imposed on individual symbols.

The following theorem shows that a degenerate diagonally interleaved code that uses only in-

trasession coding is asymptotically optimal over all codes for the specified parameter conditions:

108

Theorem 4.9. Consider the bursty erasure model for a given choice of (c, d, z) satisfying all of the

following three conditions:

1) d is not a multiple of c;

2) c ≤ z ≤ d− c; and

3) d is a multiple of d− z.

Let C be a systematic block code that encodes a given vector of d− z information symbols

a = (a[1], . . . , a[d−z]) as a codeword vector of d symbols (a[1], . . . , a[d−z], b[1], . . . , b[z]), where

each symbol has a normalized size of 1
d , and the parity symbol b[i] is given by

b[i] = gi(a) , a[ri,d−z]

for each i ∈ {1, . . . , z}. The diagonally interleaved code (Section 4.3.2) derived from C is asymp-

totically optimal over all codes in the following sense: it achieves a message size of d−z
d c, which is

equal to the asymptotic maximum achievable message size limn→∞ sB
n.

The systematic block code C of Theorem 4.9 is illustrated in Figure 4.5 for an instance of

(c, d, z). Note that all the parity symbols in C are degenerate in the sense that they are just uncoded

copies of information symbols.

The following two theorems describe diagonally interleaved codes that are asymptotically opti-

mal over all codes for the specified parameter conditions:

Theorem 4.10. Consider the bursty erasure model for a given choice of (c, d, z) satisfying all of the

following five conditions:

1) d is not a multiple of c;

2) c ≤ z ≤ d− c;

3) d is not a multiple of d− z;

4) z < d− z; and

5) z is a multiple of r′, where

r′ , rd−z,z ∈ {1, . . . , z}.

109

Let C be a systematic block code that encodes a given vector of d− z information symbols

a = (a[1], . . . , a[d−z]) as a codeword vector of d symbols (a[1], . . . , a[d−z], b[1], . . . , b[z]), where

each symbol has a normalized size of 1
d , and the parity symbol b[i] is given by

b[i] = gi(a) ,

 d−z−r′
z⊕

k=1

a[(k−1)z+i]

⊕ a[d−z−r′+ri,r′]

for each i ∈ {1, . . . , z}. The diagonally interleaved code (Section 4.3.2) derived from C is asymp-

totically optimal over all codes in the following sense: it achieves a message size of d−z
d c, which is

equal to the asymptotic maximum achievable message size limn→∞ sB
n.

The systematic block code C of Theorem 4.10 is illustrated in Figure 4.6 for two instances of

(c, d, z). The following example demonstrates that in this case, intrasession coding can be strictly

suboptimal:

Example 4.11 (Suboptimality of Intrasession Coding). Suppose that (c, d, z) = (2, 5, 2). For n = 9,

the maximum message size that can be achieved by an intrasession code has an upper bound of

s < 1.193; such a bound can be found by solving a linear program for a subset of erasure patterns in

EB
n (namely, those with alternating intervals of z erased time steps and d− z unerased time steps).

The same upper bound also holds for n > 9 because any message size that can be achieved for a

larger number of messages can also be achieved for a smaller number of messages (we simply apply

the same code and ignore the additional messages and packets). On the other hand, the diagonally

interleaved code derived from the systematic block code C of Theorem 4.10 achieves a strictly larger

message size of s = 6
5 = 1.2.

Theorem 4.12. Consider the bursty erasure model for a given choice of (c, d, z) satisfying all of the

following five conditions:

1) d is not a multiple of c;

2) c ≤ z ≤ d− c;

3) d is not a multiple of d− z;

4) z > d− z; and

110

5) z′ is a multiple of r′, where

z′ , rz,d−z∈{1, . . . , d−z−1},

r′ , rd−z,z′ ∈{1, . . . , z′}.

Let C be a systematic block code that encodes a given vector of d− z information symbols

a = (a[1], . . . , a[d−z]) as a codeword vector of d symbols (a[1], . . . , a[d−z], b[1], . . . , b[z]), where

each symbol has a normalized size of 1
d , and the parity symbol b[i] is given by

b[i] = gi(a) ,




d−z−r′

z′⊕
k=1

a[(k−1)z′+i]

⊕ a[d−z−r′+ri,r′] if i ∈ {1, . . . , z′},

a[ri−z′,d−z] if i ∈ {z′ + 1, . . . , z}

for each i ∈ {1, . . . , z}. The diagonally interleaved code (Section 4.3.2) derived from C is asymp-

totically optimal over all codes in the following sense: it achieves a message size of d−z
d c, which is

equal to the asymptotic maximum achievable message size limn→∞ sB
n.

The systematic block code C of Theorem 4.12 is illustrated in Figure 4.7 for two instances

of (c, d, z). Note that there are two types of parity symbols in C: b[1], . . . , b[z′] are nondegenerate

parity symbols, while b[z′+1], . . . , b[z] are degenerate parity symbols which are just uncoded copies

of information symbols. The following example demonstrates that in this case, intrasession coding

can be strictly suboptimal:

Example 4.13 (Suboptimality of Intrasession Coding, cf. Example 4.11). Suppose that (c, d, z) =

(3, 8, 5). For n ≥ 10, the maximum message size that can be achieved by an intrasession code has

an upper bound of s < 1.118. On the other hand, the diagonally interleaved code derived from the

systematic block code C of Theorem 4.12 achieves a strictly larger message size of s = 9
8 = 1.125.

4.6 IID Erasure Model

For the third erasure model, each packet transmitted over the link is erased independently with

the same probability pe. For brevity, let Sk denote the success event “message k is decodable by its

111

decoding deadline, i.e., time step (k − 1)c+ d”, and let Sk denote the complementary failure event.

We restrict our attention to time-invariant codes here in the interest of practicality.

Consider the i.i.d. erasure model for a given choice of (c, d, pe, s). We shall adopt the decoding

probability P [Sk], i.e., the probability that a given message k is decodable by its decoding deadline,

as the primary performance metric. The decoder memory size is assumed to be unbounded so that

the decoder has access to all received packets. Let the random subset Uk ⊆ Tk be the unerased

time steps that are no later than the decoding deadline for message k; the received packets that can

be used by the decoder for decoding message k are therefore given by X[Uk]. Consequently, the

decoding probability P [Sk], where k ∈ Z+, can be expressed in terms of Uk as follows:

P [Sk] = P
[
H
(
Mk

∣∣X[Uk]
)
= 0
]

=
∑

Uk⊆Tk

1
[
H
(
Mk

∣∣X[Uk]
)
= 0
]
· (1− pe)

|Uk|(pe)
|Tk|−|Uk|. (4.1)

By combining the proof techniques of Lemma 4.16 and Lemma 2.3, we can derive an upper

bound on the decoding probability P [Sk] for any time-invariant code:

Theorem 4.14. Consider the i.i.d. erasure model for a given choice of (c, d, pe, s). For any time-

invariant code with encoder memory size mE, the probability that a given message k ≥ mE is de-

codable by its decoding deadline is upper-bounded as follows:

P [Sk] ≤
d∑

z=0

⌊
min

(
(d− z)c

d s
, 1

)(
d

z

)⌋
(1− pe)

d−z(pe)
z. (4.2)

Note that the decoding probability P [Sk] for the early messages k < mE can potentially be

higher than that for the subsequent messages k ≥ mE because the decoder already knows the non-

positive messages (which are assumed to be zeros).

For real-time streaming applications that are sensitive to bursts of decoding failures, it may be

useful to adopt the burstiness of undecodable messages as a secondary performance metric. One

way of measuring this burstiness is to compute the conditional probability P
[
Sk+1

∣∣Sk

]
, i.e., the

conditional probability that the next message is undecodable by its decoding deadline given that the

current message is undecodable by its decoding deadline. The higher this conditional probability is,

the more likely it is to remain “stuck” in a burst of undecodable messages.

112

In Section 4.6.1, we discuss the problem of finding an optimal time-invariant intrasession code,

and evaluate the performance of symmetric intrasession codes. In Section 4.6.2, we conduct a

simulation study to compare symmetric intrasession codes against a family of random time-invariant

convolutional codes.

4.6.1 Performance of Symmetric Intrasession Codes

For any time-invariant intrasession code (Section 4.3.1), the decoding probability P [Sk], where

k ∈ Z+, can be written in terms of the block sizes or allocation (x1, . . . , xmEc) as

P [Sk] =
∑

U⊆{1,...,d′}

1

[∑
i∈U

xi ≥ s

]
· (1− pe)

|U |(pe)
d′−|U |,

where d′ , min(d,mEc). Since P [Sk] is constant wrt k ∈ Z+, we can drop the index k and consider

P [S] , P [S1] instead.

For a given choice of (c, d, pe, s,mE), our objective is to find a time-invariant intrasession code,

as specified by the allocation (x1, . . . , xmEc), that maximizes the decoding probability P [S]. This

optimization problem can be expressed explicitly as follows:

Π(c, d, pe, s,mE) :

maximize
x1,...,xmEc

∑
U⊆{1,...,d′}

1

[∑
i∈U

xi ≥ s

]
· (1− pe)

|U |(pe)
d′−|U |

subject to∑
i∈{1,...,mEc}:

ri,c=j

xi ≤ 1 ∀ j ∈ {1, . . . , c},

xi ≥ 0 ∀ i ∈ {1, . . . ,mEc},

where

d′ = min(d,mEc).

For the special case of c = 1, this problem reduces to the independent probabilistic access vari-

ation of the distributed storage allocation problem (Section 2.2), with number of nodes n = d′,

access probability p = 1− pe, and budget T = 1/s. As demonstrated in Sections 2.1.1 and 2.2, the

113

optimal allocation can have nonintuitive structure and can be difficult to find in general. Dividing

the unit packet size evenly among m out of the mE most recent messages, where m ∈ {1, . . . ,mE},

may not necessarily produce an optimal allocation. For example, given c = 1, d ≥ mE = 4, pe <
1
2 ,

and 1
3 < s ≤ 2

5 , the allocation
(
2
5 ,

1
5 ,

1
5 ,

1
5

)
, which is optimal, achieves a strictly higher decoding

probability than (1, 0, 0, 0),
(
1
2 ,

1
2 , 0, 0

)
,
(
1
3 ,

1
3 ,

1
3 , 0
)
, and

(
1
4 ,

1
4 ,

1
4 ,

1
4

)
.

Given the difficulty of finding the optimal time-invariant intrasession code, we shall restrict our

attention to the family of symmetric intrasession codes (Section 4.3.1).

4.6.1.1 Decoding Probability

Consider the decodability of a given message k ∈ Z+ for the symmetric code with spreading

parameter m. Suppose that VS small blocks and VB big blocks that encode message k are received by

the decoder; VS and VB are independent binomial random variables with the following distributions:

VS ∼ Binomial
(
(qm,c + 1)rm,c, 1− pe

)
,

VB ∼ Binomial
(
qm,c(c− rm,c), 1− pe

)
.

The decoding probability P [S] can therefore be expressed in terms of these random variables as

follows:

P [S] =


P
[

1

qm,c + 1
VS ≥ s

]
if rm,c = c,

P
[

1

qm,c + 1
VS +

1

qm,c
VB ≥ s

]
otherwise

=


P [VS ≥ ⌈s(qm,c + 1)⌉] if rm,c = c,

∑
vS

P [VS = vS] · P
[
VB ≥

⌈(
s− vS

qm,c+1

)
qm,c

⌉]
otherwise.

Figures 4.8a and 4.8b show how the family of symmetric codes perform in terms of the decoding

probability P [S], for an instance of (c, d,mE). These plots and other empirical observations suggest

that maximal spreading (i.e., m = d′) performs well, i.e., achieves a relatively high P [S], when

the message size s and the packet erasure probability pe are small, while minimal spreading (i.e.,

114

(a) pe = 0.05 (b) s = 1

(c) pe = 0.05 (d) s = 1

Figure 4.8. Plots of the decoding failure probability 1− P [S] and the burstiness of undecodable messages
as measured by the conditional probability P

[
Sk+1

∣∣Sk

]
, where k ∈ Z+, against message size s and packet

erasure probability pe, for the family of symmetric intrasession codes, for (c, d,mE) = (3, 18, 6). In (a)
and (c), we set pe = 0.05. In (b) and (d), we set s = 1. Spreading parameter m ∈ {c, . . . , d′}, where
d′ = min(d,mEc) = 18, gives the size of the effective coding window for each code. The black curve
in (a) and (b) describes a lower bound on the decoding failure probability for any time-invariant code, as
given by Theorem 4.14.

115

m = c) performs well when s and pe are large (this echoes the analytical findings of Section 2.2.3).

Furthermore, although this family of codes may not always contain an optimal time-invariant in-

trasession code, we can find good codes with decoding probabilities close to the upper bound of

Theorem 4.14 among them when s and pe are small.

4.6.1.2 Burstiness of Undecodable Messages

Consider the decodability of a given pair of consecutive messages k and k + 1, where k ∈ Z+,

for the symmetric code with spreading parameter m. The 2m blocks that encode the pair of mes-

sages are spread over the m+ c time steps in the union of the two effective coding windows, i.e.,

{(k − 1)c+ 1, . . . , kc+m}.

These time steps can be partitioned into the following three intervals:

1) {(k − 1)c+ 1, . . . , (k − 1)c+ c}, in which c blocks that encode message k and zero blocks

that encode message k + 1 are transmitted;

2) {kc+1, . . . , (k− 1)c+m}, in which m− c blocks that encode message k and m− c blocks

that encode message k + 1 are transmitted; and

3) {(k − 1)c+m+ 1, . . . , kc+m}, in which zero blocks that encode message k and c blocks

that encode message k + 1 are transmitted.

Suppose that V (1)
S small blocks and V (1)

B big blocks that encode message k are received by the decoder

in the first interval, V (2)
S small blocks and V (2)

B big blocks that encode message k are received by the

decoder in the second interval (the same numbers of blocks that encode message k + 1 are also

received in the same interval), and V (3)
S small blocks and V (3)

B big blocks that encode message k + 1

are received by the decoder in the third interval; V (1)
S , V (1)

B , V (2)
S , V (2)

B , V (3)
S , and V (3)

B are independent

binomial random variables with the following distributions:

V (1)
S ∼ Binomial

(
rm,c, 1− pe

)
,

V (1)
B ∼ Binomial

(
c− rm,c, 1− pe

)
,

V (2)
S ∼ Binomial

(
qm,crm,c, 1− pe

)
,

116

V (2)
B ∼ Binomial

(
(qm,c − 1)(c− rm,c), 1− pe

)
,

V (3)
S ∼ Binomial

(
rm,c, 1− pe

)
,

V (3)
B ∼ Binomial

(
c− rm,c, 1− pe

)
.

The conditional probability P
[
Sk+1

∣∣Sk

]
can therefore be expressed in terms of these random

variables as follows:

P
[
Sk+1

∣∣Sk

]
=



P
[

1

qm,c+1

(
V (2)

S +V (3)
S

)
< s

∣∣∣∣ 1

qm,c+1

(
V (1)

S +V (2)
S

)
< s

]
if rm,c = c,

P


1

qm,c+1

(
V (2)

S +V (3)
S

)
+

1

qm,c

(
V (2)

B +V (3)
B

)
< s

∣∣∣∣
1

qm,c+1

(
V (1)

S +V (2)
S

)
+

1

qm,c

(
V (1)

B +V (2)
B

)
< s

 otherwise.

Figures 4.8c and 4.8d show how the family of symmetric codes perform in terms of the bursti-

ness of undecodable messages as measured by the conditional probability P
[
Sk+1

∣∣Sk

]
, for an

instance of (c, d,mE). These plots and other empirical observations suggest that over a wide range

of message sizes s and packet erasure probabilities pe, minimal spreading (i.e., m = c) performs

well, i.e., achieves a relatively low P
[
Sk+1

∣∣Sk

]
, while maximal spreading (i.e., m = d′) performs

poorly. This agrees with the intuition that for a pair of consecutive messages, a greater overlap in

their effective coding windows would tend to increase the correlation between their decodabilities.

In the case of minimal spreading (i.e., m = c), the decodability of a message is independent of the

decodability of other messages because the effective coding windows do not overlap at all.

4.6.1.3 Trade-off between Performance Metrics

Our results show that for the family of symmetric codes, a trade-off exists between the decoding

probability P [S] and the burstiness of undecodable messages as measured by the conditional prob-

ability P
[
Sk+1

∣∣Sk

]
when the message size s and packet erasure probability pe are small (this is a

regime of interest because it supports a high decoding probability). Specifically, although maximal

spreading (i.e., m = d′) achieves a high decoding probability, it also exhibits a higher burstiness of

undecodable messages. Thus, a symmetric code with a suboptimal decoding probability but lower

117

burstiness may be preferred for an application that is sensitive to bursty undecodable messages.

4.6.2 Simulation Study: Symmetric Intrasession Codes vs. Random Time-

Invariant Convolutional Codes

In this section, we compare the family of symmetric intrasession codes (Section 4.3.1) against

a family of random time-invariant convolutional codes, for the special case of unit-size messages,

i.e., s = 1. These random convolutional codes are constructed as follows: for each code, we specify

a finite field GF(q) and a mixing parameter r ∈ {1, . . . ,mE}, and set each encoding function fi,

i ∈ {1, . . . , c}, to a random linear combination of the most recent r messages, i.e.,

fi
(
Mk,Mk−1, . . . ,Mk−mE+1

)
,

r∑
j=1

ω
(i)
j Mk−j+1,

where each coefficient ω(i)
j , i ∈ {1, . . . , c}, j ∈ {1, . . . , r}, is independently selected uniformly

at random from the set {0, 1, . . . , q − 1}. To determine the decodability of each message in our

simulation, the decoder attempts to solve for the unknown message at the corresponding decod-

ing deadline by applying Gauss-Jordan elimination to the matrix of coefficients collected from all

unerased packets received up to that time step.

Polyanskiy [14] analyzed similar convolutional codes over GF(2) for (c,mE) = (2, 3) and (2, 4),

adopting the expected message decoding delay as the performance metric; combinatorial code prop-

erties were defined and used by the author to find good codes with low latency. Similar linear

time-invariant binary codes were also examined by Sukhavasi [17] for the binary erasure channel

operating at the bit level; the author presented a random construction that is anytime reliable (i.e.,

the message decoding failure probability decays exponentially with delay) with high probability.

4.6.2.1 Simulation Setup

Setting (c, d, s,mE) = (2, 5, 1, 8), we evaluated the performance of the two families of codes

• symmetric intrasession codes, with spreading parameter m ∈ {c, . . . , d′}= {2, 3, 4, 5}; and

• random time-invariant convolutional codes, over finite fields of size q ∈ {2, 16, 256} and

with mixing parameter r ∈ {2, 4, 8},

118

under three erasure scenarios

• low-erasure scenario, with pe = 0.1;

• medium-erasure scenario, with pe = 0.3; and

• high-erasure scenario, with pe = 0.5.

We considered two time horizons

• long time horizon, with the receiver attempting to decode 10 000 consecutive messages; and

• short time horizon, with the receiver attempting to decode 20 consecutive messages,

and two joining times for the receiver

• at the beginning of the stream, with message 1 as the first message to be decoded; and

• midway through the stream, with a high-numbered message as the first message to be de-

coded.

A total of 100 and 500 random convolutional codes were generated for the long and short time

horizons, respectively, for each choice of (q, r). A total of 100 and 500 random erasure patterns of

the appropriate length were generated for the long and short time horizons, respectively, for each

erasure scenario. We computed the following two performance metrics for each simulation run:

• decoding probability, given by the fraction

number of messages that are decodable by their decoding deadlines
total number of messages n

; and

• burstiness of undecodable messages as measured by the conditional probability that the next

message is undecodable by its decoding deadline given that the current message is undecod-

able by its decoding deadline, given by the fraction

number of message pairs (k, k+1), where k∈{1, . . . , n−1}, for which
both messages k and k+1 are undecodable by their decoding deadlines

number of message pairs (k, k+1), where k∈{1, . . . , n−1}, for which
message k is undecodable by its decoding deadline

.

119

4.6.2.2 Simulation Results and Discussion

Figures 4.9, 4.10, and 4.11 summarize the simulation results obtained under each of the three

erasure scenarios. Results for the random convolutional codes over GF(2) have been omitted from

the plots because of their poor performance.

Optimal Symmetric Codes. We observe a phase transition in the optimal symmetric code in

terms of the decoding probability: near-maximal spreading (i.e., m = 4) performed best for both

the low-erasure and medium-erasure scenarios, whereas minimal spreading (i.e., m = 2) performed

best for the high-erasure scenario. Also, for all three erasure scenarios, the smaller the amount of

spreading (as measured by m), the better the performance in terms of the burstiness of undecodable

messages. These findings are consistent with the analytical observations of Section 4.6.1.

Effect of Finite Field Size q on Random Convolutional Codes. For the long time horizon, we

observe that increasing the finite field size q improved the decoding probability, especially when the

packet erasure probability pe and mixing parameter r are small. A larger finite field size increases

the likelihood that a received packet is innovative (i.e., it is not a linear combination of previously

received packets); however, this advantage is diluted if too few packets are received in the first place,

or if each packet already combines many messages (in both cases, each received packet is already

likely to be innovative).

Effect of Mixing Parameter r on Random Convolutional Codes. For the long time horizon, we

observe that increasing the mixing parameter r produced a mixed effect on the decoding probabil-

ity: it was improved for the low-erasure scenario, but was worsened for the high-erasure scenario;

for the medium-erasure scenario, the decoding probability was initially worsened but subsequently

improved. Mixing more messages in each packet makes the packet useful for the decoding of more

messages, but more packets are also required to decode a given message. The former positive ef-

fect is dominant for the low-erasure scenario, while the latter negative effect is dominant for the

high-erasure scenario.

Effect of Receiver Joining Time. For the short time horizon, we observe that the receiver joining

time had a negligible effect on the performance of symmetric codes. The robustness of symmetric

codes can be explained by the fact that the decodability of each message depends only on the packets

received within a very recent and short effective coding window of m time steps. The performance

of the random convolutional codes, on the other hand, was sensitive to the receiver joining time. In

120

2

3

4
5

2

4

8

2

4 8

0.92

0.94

0.96

0.98

1.00

0.92

0.94

0.96

0.98

1.00

Long Time Horizon (10000 messages) with the Receiver Joining at the Beginning

Decoding Probability

2

3

4

5
2

4
8

2

4 8

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

Burstiness of Undecodable Messages

2 2 3 3
4 4 5 5 2

2

4

4

8

8

2 2 4

4

8

8

0.7

0.8

0.9

1.0

0.7

0.8

0.9

1.0

Short Time Horizon (20 messages) with the Receiver Joining at the Beginning vs. Midway

Decoding Probability

Low-Erasure Scenario (pe = 0.1)

m m Symmetric code with spreading parameter m, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(16) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(256) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

Figure 4.9. Simulation results for the low-erasure scenario (pe = 0.1), with (c, d, s,mE) = (2, 5, 1, 8). Each
data point indicates the mean value taken over all randomly generated codes and erasure patterns.

121

2

3

4

5 2

4

8

2

4
8

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.80

0.82

0.84

0.86

0.88

0.90

0.92

Long Time Horizon (10000 messages) with the Receiver Joining at the Beginning

Decoding Probability

2

3

4

5
2

4
8

2

4 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Burstiness of Undecodable Messages

2 2

3 3

4 4

5 5
2

2
4

4

8

8

2
2 4

4

8

80.3

0.4

0.5

0.6

0.7

0.8

0.9

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Short Time Horizon (20 messages) with the Receiver Joining at the Beginning vs. Midway

Decoding Probability

Medium-Erasure Scenario (pe = 0.3)

m m Symmetric code with spreading parameter m, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(16) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(256) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

Figure 4.10. Simulation results for the medium-erasure scenario (pe = 0.3), with (c, d, s,mE) = (2, 5, 1, 8).
Each data point indicates the mean value taken over all randomly generated codes and erasure patterns.

122

2

3

4

5

2

4

8

2

4

8
0.2

0.3

0.4

0.5

0.6

0.7

0.2

0.3

0.4

0.5

0.6

0.7

Long Time Horizon (10000 messages) with the Receiver Joining at the Beginning

Decoding Probability

2

3

4

5 2

4
8

2

4
8

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Burstiness of Undecodable Messages

2 2

3 3
4 4

5 5

2
2

4

4

8

8

2
2

4

4

8

80.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

Short Time Horizon (20 messages) with the Receiver Joining at the Beginning vs. Midway

Decoding Probability

High-Erasure Scenario (pe = 0.5)

m m Symmetric code with spreading parameter m, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(16) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

r r Random convolutional code over GF(256) with mixing parameter r, with the receiver joining at the beginning (white) vs. midway (black)

Figure 4.11. Simulation results for the high-erasure scenario (pe = 0.5), with (c, d, s,mE) = (2, 5, 1, 8).
Each data point indicates the mean value taken over all randomly generated codes and erasure patterns.

123

particular, the receiver joining the stream midway achieved a significantly worse decoding probabil-

ity than the receiver joining the stream at the beginning; furthermore, the gap in their performance

increased with the mixing parameter r. These effects can be explained by the a priori knowledge of

previous messages transmitted before joining the stream, which can be beneficial in decoding sub-

sequent messages: a receiver joining at the beginning would have perfect knowledge of the previous

(nonpositive) messages (which are assumed to be zeros), while a receiver joining midway would not

have the benefit of this knowledge; furthermore, the larger the value of r, the more difficult decoding

is for the latter receiver because each packet is a combination of more unknown messages.

Symmetric Codes vs. Random Convolutional Codes. For the long time horizon, the highest

decoding probability was achieved by a symmetric code in two out of the three erasure scenarios;

for the low-erasure scenario, the optimal symmetric code performed only slightly worse than the

optimal random convolutional code. Also, for each of the three erasure scenarios, the symmetric

code with the highest decoding probability achieved a significantly better burstiness of undecodable

messages than all the random convolutional codes. For the short time horizon with the receiver

joining at the beginning vs. midway, symmetric codes also performed more robustly than the random

convolutional codes.

In summary, while the family of symmetric codes may be suboptimal in certain cases, we can

find, for a wide range of scenarios, symmetric codes that perform well in terms of both the decoding

probability and the burstiness of undecodable messages.

The strengths and weaknesses of the two families of codes suggest that it may be beneficial to

consider a hybrid code construction. One approach is to allocate the packet space between a sym-

metric code and a random convolutional code, and adjust the allocation depending on the operating

regime. Another approach is to divide each message into smaller submessage blocks, and have each

packet comprise multiple coded blocks that are random linear combinations of carefully chosen

submessage blocks.

4.7 Conclusion and Future Work

We considered a real-time streaming problem for a packet erasure link, where each message

must be decoded within a given delay from its creation time.

124

We showed that the symmetric intrasession code with spreading parameter m = d is asymp-

totically optimal over all codes for both the coding window and sliding window variations of the

window-based erasure model, and for the bursty erasure model when the maximum erasure burst

length is sufficiently short or long. We also showed that diagonally interleaved codes derived from

specific systematic block codes are asymptotically optimal over all codes for the bursty erasure

model in several other cases.

For the i.i.d. erasure model, we derived an upper bound on the decoding probability for any

time-invariant code. We also analyzed the performance of symmetric intrasession codes, and ob-

served a phase transition in their relative performance in terms of the decoding probability: maximal

spreading performs well when the message size s and packet erasure probability pe are small, while

minimal spreading performs well when s and pe are large. In terms of the burstiness of undecodable

messages, minimal spreading performs consistently well over a wide range of scenarios. Thus, a

trade-off between the two performance metrics exists for this family of codes when s and pe are

small; this is also the regime in which maximal spreading achieves a decoding probability close to

the derived upper bound. In a simulation study, these symmetric codes performed well against a

family of random time-invariant convolutional codes under a number of scenarios.

The work in this chapter can be extended in several directions. While optimal real-time stream-

ing codes have been constructed for both variations of the window-based erasure model, such codes

have yet to be found for the bursty erasure model in a number of cases, e.g., when c− rd,c < z < c,

or d− c < z < d− rd,c, or when only the first four conditions of Theorems 4.10 and 4.12 are sat-

isfied. The i.i.d. erasure model also offers many interesting problems for future work. In an effort

to find the optimal code, it may be useful to consider hybrid code constructions that capture the

strengths of both the symmetric intrasession codes and the random time-invariant convolutional

codes that were examined in the simulation study.

125

4.8 Proofs of Theorems

4.8.1 Proof of Lemma 4.2

Observe that y is simply a vector containing the block sizes for each message, i.e., {xi}di=1,

sorted in ascending order. Since

∑
i∈U

xi ≥
|U |∑
j=1

yj ∀ U ⊆ {1, . . . , d},

it follows that over any ℓ packets transmitted in the coding window Wk, the total size of the blocks

allocated to message k is at least
∑ℓ

j=1 yj . Therefore, assuming that an appropriate code is applied

to the allocation, message k is always decodable from any ℓ packets transmitted in Wk as long as

the message size s does not exceed
∑ℓ

j=1 yj .

4.8.2 Proof of Lemma 4.3

The stated partition can be constructed by assigning each time step t ∈ Tn to the set T (qi,cc+ri,c)
n ,

where

ri,c = rt,c,

qi,c =


qt,c −

⌊
qt,c

qd,c+1

⌋
(qd,c + 1) if rt,c ≤ rd,c,

qt,c −
⌊
qt,c
qd,c

⌋
qd,c if rt,c > rd,c.

Note that index qi,c c+ ri,c ∈ {1, . . . , d} since qi,c ∈ {0, . . . , qd,c} when ri,c ∈ {1, . . . , rd,c}, and

qi,c ∈ {0, . . . , qd,c − 1} when ri,c ∈ {rd,c + 1, . . . , c}. To prove the required code properties, we

consider two separate cases:

Case 1: Consider the set T (i)
n for a choice of i satisfying ri,c ≤ rd,c. Since each time step

t ∈ T
(i)
n can be expressed as

t =
(
j(qd,c + 1) + qi,c

)︸ ︷︷ ︸
qt,c

c+ ri,c︸︷︷︸
rt,c

, tj , where j ∈ Z+
0 ,

126

it follows from the code construction that the set of active messages at each time step contains

qd,c + 1 messages, and is given by

Atj =
{
j(qd,c+1)+qi,c︸ ︷︷ ︸

qt,c

+1−qd,c, . . . , j(qd,c+1)+qi,c︸ ︷︷ ︸
qt,c

+1
}
.

The smallest time step in T
(i)
n corresponds to the choice of j = 0, which produces

t0 = qi,c c+ ri,c = i and the set of active messages

At0 = {qi,c + 1− qd,c, . . . , qi,c + 1}.

Note that At0 contains message 1 since qi,c ∈ {0, . . . , qd,c}, which implies that

qi,c + 1− qd,c ≤ 1 ≤ qi,c + 1.

At the other extreme, let the largest time step in T
(i)
n correspond to the choice of j = j′; we therefore

have

tj′ ≤ (n− 1)c+ d < tj′+1, (4.3)

and the final set of active messages

Atj′ = {j
′(qd,c + 1) + qi,c + 1− qd,c, . . . , j

′(qd,c + 1) + qi,c + 1}.

From the first inequality of (4.3), we obtain

(
j′(qd,c + 1) + qi,c

)
c+ ri,c ≤ (n− 1 + qd,c)c+ rd,c

=⇒ n ≥

⌈(
j′(qd,c + 1) + qi,c + 1− qd,c

)
c+ ri,c − rd,c

c

⌉

= j′(qd,c + 1) + qi,c + 1− qd,c +

⌈
ri,c − rd,c

c

⌉
= j′(qd,c + 1) + qi,c + 1− qd,c, (4.4)

127

where the final step follows from the fact that 1 ≤ ri,c ≤ rd,c ≤ c, which implies that

−1 <
1− c

c
≤

ri,c − rd,c
c

≤ 0 =⇒
⌈
ri,c − rd,c

c

⌉
= 0.

From the second inequality of (4.3), we obtain

(n− 1 + qd,c)c+ rd,c ≤
(
(j′+1)(qd,c+1) + qi,c

)
c+ ri,c − 1

=⇒ n ≤

⌊(
(j′+1)(qd,c+1)+qi,c+1−qd,c

)
c+ ri,c−rd,c−1

c

⌋

= (j′+1)(qd,c+1) + qi,c + 1− qd,c +

⌊
ri,c−rd,c−1

c

⌋
= j′(qd,c + 1) + qi,c + 1, (4.5)

where the final step follows from the fact that 1 ≤ ri,c ≤ rd,c ≤ c, which implies that

− 1 =
1− c− 1

c
≤

ri,c − rd,c − 1

c
≤ −1

c
< 0 =⇒

⌊
ri,c − rd,c − 1

c

⌋
= −1.

By combining inequalities (4.4) and (4.5), we arrive at

j′(qd,c + 1) + qi,c + 1− qd,c ≤ n ≤ j′(qd,c + 1) + qi,c + 1,

which enables us to infer that Atj′ contains message n.

For any pair of consecutive time steps tj , tj+1 ∈ T
(i)
n , where

tj =
(
j(qd,c + 1) + qi,c

)
c+ ri,c,

tj+1 =
(
(j + 1)(qd,c + 1) + qi,c

)
c+ ri,c,

we observe that the smallest message in Atj+1 is exactly one larger than the largest message in Atj ,

i.e.,

(j + 1)(qd,c + 1) + qi,c + 1− qd,c

= j(qd,c + 1) + qi,c + 1− qd,c + qd,c + 1

128

=
(
j(qd,c + 1) + qi,c + 1

)
+ 1.

Thus, there are no overlapping or omitted messages among the sets of active messages correspond-

ing to T
(i)
n . Property P1 therefore follows.

Case 2: Consider the set T (i)
n for a choice of i satisfying ri,c > rd,c. Since each time step

t ∈ T
(i)
n can be expressed as

t = (j qd,c + qi,c)︸ ︷︷ ︸
qt,c

c+ ri,c︸︷︷︸
rt,c

, tj , where j ∈ Z+
0 ,

it follows from the code construction that the set of active messages at each time step contains qd,c

messages, and is given by

Atj =
{
j qd,c + qi,c︸ ︷︷ ︸

qt,c

+1− (qd,c − 1), . . . , j qd,c + qi,c︸ ︷︷ ︸
qt,c

+1
}
.

The smallest time step in T
(i)
n corresponds to the choice of j = 0, which produces

t0 = qi,c c+ ri,c = i and the set of active messages

At0 = {qi,c + 1− (qd,c − 1), . . . , qi,c + 1}.

Note that At0 contains message 1 since qi,c ∈ {0, . . . , qd,c − 1}, and therefore

qi,c + 1− (qd,c − 1) ≤ 1 ≤ qi,c + 1.

At the other extreme, let the largest time step in T
(i)
n correspond to the choice of j = j′; we therefore

have

tj′ ≤ (n− 1)c+ d < tj′+1, (4.6)

and the final set of active messages

Atj′ = {j
′ qd,c + qi,c + 1− (qd,c − 1), . . . , j′ qd,c + qi,c + 1}.

129

From the first inequality of (4.6), we obtain

(j′ qd,c + qi,c)c+ ri,c ≤ (n− 1 + qd,c)c+ rd,c

=⇒ n ≥
⌈
(j′ qd,c + qi,c + 1− qd,c)c+ ri,c − rd,c

c

⌉
= j′ qd,c + qi,c + 1− qd,c +

⌈
ri,c − rd,c

c

⌉
= j′ qd,c + qi,c + 1− (qd,c − 1), (4.7)

where the final step follows from the fact that 1 ≤ rd,c < ri,c ≤ c, which implies that

0 <
ri,c − rd,c

c
≤ c− 1

c
< 1 =⇒

⌈
ri,c − rd,c

c

⌉
= 1.

From the second inequality of (4.6), we obtain

(n− 1 + qd,c)c+ rd,c ≤
(
(j′ + 1)qd,c + qi,c

)
c+ ri,c − 1

=⇒ n ≤

⌊(
(j′+1)qd,c + qi,c + 1− qd,c

)
c+ ri,c − rd,c − 1

c

⌋

= (j′ + 1)qd,c + qi,c + 1− qd,c +

⌊
ri,c − rd,c − 1

c

⌋
= j′ qd,c + qi,c + 1, (4.8)

where the final step follows from the fact that 1 ≤ rd,c < ri,c ≤ c, which implies that

0 =
1− 1

c
≤

ri,c − rd,c − 1

c
≤ c− 1− 1

c
< 1 =⇒

⌊
ri,c − rd,c − 1

c

⌋
= 0.

By combining inequalities (4.7) and (4.8), we arrive at

j′ qd,c + qi,c + 1− (qd,c − 1) ≤ n ≤ j′ qd,c + qi,c + 1,

which enables us to infer that Atj′ contains message n.

For any pair of consecutive time steps tj , tj+1 ∈ T
(i)
n , where

tj =
(
j qd,c + qi,c

)
c+ ri,c,

130

tj+1 =
(
(j + 1) qd,c + qi,c

)
c+ ri,c,

we observe that the smallest message in Atj+1 is exactly one larger than the largest message in Atj ,

i.e.,

(j + 1)qd,c + qi,c + 1− (qd,c − 1)

= j qd,c + qi,c + 1− (qd,c − 1) + qd,c

=
(
j qd,c + qi,c + 1

)
+ 1.

Thus, there are no overlapping or omitted messages among the sets of active messages correspond-

ing to T
(i)
n . Property P1 therefore follows.

For both Case 1 and Case 2, the total size of the packets transmitted at time steps T
(i)
n , i.e.,∣∣T (i)

n

∣∣, can be computed by taking the total size of the blocks allocated to the n messages, and

adding the unused packet space at the smallest time step (which is allocated to nonpositive dummy

messages) and at the largest time step (which is allocated to messages larger than n); this produces

the required upper bound of Property P2.

4.8.3 Proof of Theorem 4.5

Consider the symmetric code with spreading parameter m = d. Observe that under each erasure

pattern E ∈ ECW
n , at least d− z unerased packets are received in each coding window Wk, because

there are at most z erased time steps in each coding window Wk. According to Lemma 4.2, if

message size s satisfies the inequality

s ≤
d−z∑
j=1

yj ,

then each message k ∈ {1, . . . , n} is decodable from any d− z packets transmitted in its coding

window Wk. Therefore, it follows that the code achieves a message size of
∑d−z

j=1 yj , by allowing

all n messages {1, . . . , n} to be decoded by their respective decoding deadlines under any erasure

pattern E ∈ ECW
n .

To demonstrate the asymptotic optimality of the code, we will show that this message size

131

matches the maximum achievable message size sCW
n in the limit, i.e.,

lim
n→∞

sCW
n =

d−z∑
j=1

yj . (4.9)

To obtain an upper bound for sCW
n , we consider the cut-set bound corresponding to a specific

erasure pattern E′ from ECW
n . Let {1, . . . , d} be partitioned into two sets V (1) and V (2), where

V (1) ,
{
i ∈ {1, . . . , d} : ri,c ≤ rd,c

}
,

V (2) ,
{
i ∈ {1, . . . , d} : ri,c > rd,c

}
.

Let v = (v1, . . . , vd) be defined as v ,
(
v(1) | v(2)

)
, where v(1) is the vector containing the

(qd,c + 1)rd,c elements of V (1) sorted in ascending order, and v(2) is the vector containing the

qd,c(c− rd,c) elements of V (2) sorted in ascending order. Define the erasure pattern E′ ⊆ Tn as

follows:

E′ ,
d∪

j=d−z+1

T
(vj)
n ,

where T
(i)
n is as defined in Lemma 4.3. The erased time steps in E′ have been chosen to coincide

with the bigger blocks allocated to each message in the symmetric code. To show that E′ is an

admissible erasure pattern, we introduce the following lemma:

Lemma 4.15. If A ⊆ {1, . . . , d}, then

∣∣∣∣∣
(∪

i∈A
T (i)
n

)
∩Wk

∣∣∣∣∣ = |A| ∀ k ∈ {1, . . . , n}, (4.10)

where T
(i)
n is as defined in Lemma 4.3.

Proof of Lemma 4.15: For each k ∈ {1, . . . , n}, the symmetric code with spreading parameter

m = d allocates a block to message k at each time step in its coding window Wk. Thus, it follows

from Property P1 of Lemma 4.3 that for each i ∈ {1, . . . , d}, we have

∣∣T (i)
n ∩Wk

∣∣ = 1 ∀ k ∈ {1, . . . , n}.

132

Equation (4.10) therefore follows from the fact that T (1)
n , . . . , T

(d)
n are disjoint sets.

Applying Lemma 4.15 with A = {vj}dj=d−z+1 produces

∣∣E′ ∩Wk

∣∣ = z ∀ k ∈ {1, . . . , n},

and thus E′ is an admissible erasure pattern, i.e., E′ ∈ ECW
n .

Now, consider a code that achieves the maximum message size sCW
n . Such a code must allow all

n messages {1, . . . , n} to be decoded under the specific erasure pattern E′. We therefore have the

following cut-set bound for sCW
n :

n sCW
n ≤

∣∣Tn\E′∣∣ ⇐⇒ sCW
n ≤

1

n

∣∣Tn\E′∣∣ = 1

n

d−z∑
j=1

∣∣T (vj)
n

∣∣.
Applying the upper bounds in Property P2 of Lemma 4.3, and writing the resulting expression in

terms of yj produces

sCW
n ≤

1

n

d−z∑
j=1

∣∣T (vj)
n

∣∣ ≤ 1

n

d−z∑
j=1

(n yj + 2).

Since a message size of
∑d−z

j=1 yj is known to be achievable (by the symmetric code), we have the

following upper and lower bounds for sCW
n :

d−z∑
j=1

yj ≤ sCW
n ≤

1

n

d−z∑
j=1

(n yj + 2).

These turn out to be matching bounds in the limit as n→∞:

d−z∑
j=1

yj ≤ lim
n→∞

sCW
n ≤ lim

n→∞

1

n

d−z∑
j=1

(n yj + 2) =

d−z∑
j=1

yj .

We therefore have (4.9) as required.

4.8.4 Proof of Theorem 4.6

Consider the symmetric code with spreading parameter m = d. Observe that under each erasure

pattern E ∈ ESW
n , at least d− z unerased packets are received in each coding window Wk, because

there are at most z erased time steps in each sliding window Lt (which is an interval of at least d

133

time steps), which implies that there are at most z erased time steps in each coding window Wk

(which is an interval of exactly d time steps). According to Lemma 4.2, if message size s satisfies

the inequality

s ≤
d−z∑
j=1

yj ,

then each message k ∈ {1, . . . , n} is decodable from any d− z packets transmitted in its coding

window Wk. Therefore, it follows that the code achieves a message size of
∑d−z

j=1 yj , by allowing

all n messages {1, . . . , n} to be decoded by their respective decoding deadlines under any erasure

pattern E ∈ ESW
n .

To demonstrate the asymptotic optimality of the code, we will show that this message size

matches the maximum achievable message size sSW
n in the limit, i.e.,

lim
n→∞

sSW
n =

d−z∑
j=1

yj . (4.11)

Consider a specific base erasure pattern E′ ⊆ Tn given by

E′ ,
d∪

j=d−z+1

T
(vj)
n ,

where T
(i)
n is as defined in Lemma 4.3, and v = (v1, . . . , vd) is as defined in the proof of Theo-

rem 4.5. The erased time steps in E′ have been chosen to coincide with the bigger blocks allocated

to each message in the symmetric code. From E′, we derive the erasure patterns E′
1, . . . , E

′
n given

by

E′
k , E′ ∩Wk =

d∪
j=d−z+1

(
T
(vj)
n ∩Wk

)
.

Applying Lemma 4.15 with A = {vj}dj=d−z+1 produces

∣∣E′
k

∣∣ = ∣∣E′ ∩Wk

∣∣ = z ∀ k ∈ {1, . . . , n},

which implies that

|E′
k ∩ Lt| ≤ z ∀ t ∈ {1, . . . , (n− 1)c+ d− h+ 1}

134

for each k ∈ {1, . . . , n}. Thus, E′
k is an admissible erasure pattern, i.e., E′

k ∈ ESW
n , for each

k ∈ {1, . . . , n}.

To obtain an upper bound for sSW
n , we introduce the following lemma:

Lemma 4.16. Suppose that a code achieves a message size of s under a given set of erasure pat-

terns E for a given choice of (n, c, d). If E ⊆ Tn is such that E ∩Wk is an admissible erasure

pattern, i.e., (E ∩Wk) ∈ E , for each k ∈ {1, . . . , n}, then for each k ∈ {1, . . . , n},

H
(
X[Wk\E]

∣∣∣Mk
1 , X

(k−1)c
1

)
≤
∣∣Tk\E

∣∣− k s. (4.12)

Proof of Lemma 4.16: First, we show that for any k ∈ {1, . . . , n},

H
(
X[Wk\E]

∣∣∣Mk
1 , X

(k−1)c
1

)
= H

(
X[Wk\E]

∣∣∣Mk−1
1 , X

(k−1)c
1

)
− s. (4.13)

To do this, we consider the conditional mutual information

I
(
X[Wk\E] ; Mk

∣∣∣Mk−1
1 , X

(k−1)c
1

)
= H

(
X[Wk\E]

∣∣∣Mk−1
1 , X

(k−1)c
1

)
−H

(
X[Wk\E]

∣∣∣Mk
1 , X

(k−1)c
1

)
= H

(
Mk

∣∣∣Mk−1
1 , X

(k−1)c
1

)
−H

(
Mk

∣∣∣Mk−1
1 , X[{1, . . . , (k − 1)c} ∪ (Wk\E)]

)
.

Rearranging terms produces

H
(
X[Wk\E]

∣∣∣Mk
1 , X

(k−1)c
1

)
= H

(
X[Wk\E]

∣∣∣Mk−1
1 , X

(k−1)c
1

)
−H

(
Mk

∣∣∣Mk−1
1 , X

(k−1)c
1

)
+H

(
Mk

∣∣∣Mk−1
1 , X[{1, . . . , (k − 1)c} ∪ (Wk\E)]

)
. (4.14)

Since messages are independent and message k is created at time step (k − 1)c+ 1, we have

H
(
Mk

∣∣∣Mk−1
1 , X

(k−1)c
1

)
= H

(
Mk

)
= s. (4.15)

Furthermore, since E ∩Wk is an admissible erasure pattern, message k must be decod-

able from the packets transmitted at time steps Tk\(E ∩Wk) = (Tk\Wk) ∪ (Wk\E) =

135

{1, . . . , (k − 1)c} ∪ (Wk\E), and so

H
(
Mk

∣∣∣Mk−1
1 , X[{1, . . . , (k − 1)c} ∪ (Wk\E)]

)
= 0. (4.16)

Substituting (4.15) and (4.16) into (4.14) yields (4.13), as required.

We now proceed to prove by induction that inequality (4.12) holds for any k ∈ {1, . . . , n}.

(Base case) Consider the case of k = 1. According to (4.13), we have

H
(
X[W1\E]

∣∣M1

)
= H

(
X[W1\E]

)
− s ≤

∣∣W1\E
∣∣− s =

∣∣T1\E
∣∣− s,

as required, where the inequality follows from the fact that H(Xt) ≤ 1 for any t because of the unit

packet size.

(Inductive step) Suppose that (4.12) holds for some k ∈ {1, . . . , n− 1}. According to (4.13),

we have

H
(
X[Wk+1\E]

∣∣∣Mk+1
1 , Xkc

1

)
= H

(
X[Wk+1\E]

∣∣∣Mk
1 , X

kc
1

)
− s

(a)
≤ H

(
X
[
(Wk\E) ∪ (Wk+1\E)

] ∣∣∣Mk
1 , X

kc
1

)
− s

(b)
≤ H

(
X
[
(Wk\E) ∪ (Wk+1\E)

] ∣∣∣Mk
1 , X

(k−1)c
1

)
− s

(c)
≤ H

(
X[Wk\E]

∣∣∣Mk
1 , X

(k−1)c
1

)
+H

(
X
[
(Wk+1\E)

\
(Wk\E)

])
− s

(d)
≤
∣∣Tk\E

∣∣− k s+
∣∣(Wk+1\E)

\
(Wk\E)

∣∣− s

(e)
=
∣∣Tk+1\E

∣∣− (k + 1)s,

as required, where

(a) follows from the addition of random variables X[Wk\E] in the entropy term;

(b) follows from the removal of conditioned random variables Xkc
(k−1)c+1 in the entropy term;

(c) follows from the chain rule for joint entropy, and the removal of conditioned random variables

X[Wk\E], Mk
1 , and X

(k−1)c
1 in the second entropy term;

136

(d) follows from the inductive hypothesis, and the fact that H(Xt) ≤ 1 for any t because of the

unit packet size;

(e) follows from the fact that

∣∣Tk\E
∣∣+ ∣∣(Wk+1\E)

\
(Wk\E)

∣∣
=
∣∣Tk\E

∣∣+ ∣∣(Wk+1\Wk)
\
E
∣∣

=
∣∣Tk\E

∣∣+ ∣∣(Tk+1\Tk)
\
E
∣∣ = ∣∣Tk+1\E

∣∣.

Applying Lemma 4.16 with E = ESW
n and E = E′ to an optimal code that achieves a message

size of sSW
n produces

H
(
X[Wk\E′]

∣∣∣Mk
1 , X

(k−1)c
1

)
≤
∣∣Tk\E′∣∣− k sSW

n

for any k ∈ {1, . . . , n}. Since the conditional entropy term is nonnegative, it follows that for the

choice of k = n, we have

∣∣Tn\E′∣∣− n sSW
n ≥ 0 ⇐⇒ sSW

n ≤
1

n

∣∣Tn\E′∣∣ = 1

n

d−z∑
j=1

∣∣T (vj)
n

∣∣.
The rest of the proof leading to the attainment of (4.11) is the same as that of Theorem 4.5, with sCW

n

replaced by sSW
n .

4.8.5 Proof of Theorem 4.7

Consider the symmetric code with spreading parameter m = d. Observe that under each erasure

pattern E ∈ EB
n, at least d− z unerased packets are received in each coding window Wk, because

there are at most z erased time steps in each coding window Wk: if Wk intersects with zero erasure

bursts, then it contains zero erased time steps; if Wk intersects with exactly one erasure burst,

then it contains at most z erased time steps (i.e., the maximum length of an erasure burst); if Wk

intersects with two or more erasure bursts, then it contains a gap of at least d− z unerased time steps

between consecutive erasure bursts, and therefore contains at most z erased time steps. According

137

to Lemma 4.2, if message size s satisfies the inequality

s ≤
d−z∑
j=1

yj ,

then each message k ∈ {1, . . . , n} is decodable from any d− z packets transmitted in its coding

window Wk. Therefore, it follows that the code achieves a message size of
∑d−z

j=1 yj , by allowing

all n messages {1, . . . , n} to be decoded by their respective decoding deadlines under any erasure

pattern E ∈ EB
n.

To demonstrate the asymptotic optimality of the code, we will show that this message size

matches the maximum achievable message size sB
n in the limit, i.e.,

lim
n→∞

sB
n =

d−z∑
j=1

yj , (4.17)

for the following three cases:

Case 1: Suppose that d is a multiple of c. In this case, the message size achieved by the sym-

metric code simplifies to
d−z∑
j=1

yj =
d− z

qd,c + 1
=

d− z

d
c.

To obtain an upper bound for sB
n, we consider the cut-set bound corresponding to a specific periodic

erasure pattern E′ ⊆ Tn given by

E′ ,
{
j d+ i ∈ Tn : j ∈ Z+

0 , i ∈ {1, . . . , z}
}
.

Since E′ comprises alternating intervals of z erased time steps and d− z unerased time steps, it is

an admissible erasure pattern, i.e., E′ ∈ EB
n.

Now, consider a code that achieves the maximum message size sB
n. Such a code must allow all

n messages {1, . . . , n} to be decoded under the specific erasure pattern E′. We therefore have the

following cut-set bound for sB
n:

n sB
n ≤

∣∣Tn\E′∣∣ ≤ ((n− 1)c+ d

d
+ 1

)
(d− z)

138

=⇒ sB
n ≤

1

n

(n− 1)c+ 2d

d
(d− z) =

d− z

d

(
c+

2d− c

n

)
.

Since a message size of d−z
d c is known to be achievable (by the symmetric code), we have the

following upper and lower bounds for sB
n:

d− z

d
c ≤ sB

n ≤
d− z

d

(
c+

2d− c

n

)
.

These turn out to be matching bounds in the limit as n→∞:

d− z

d
c ≤ lim

n→∞
sB
n ≤ lim

n→∞

d− z

d

(
c+

2d− c

n

)
=

d− z

d
c.

We therefore have (4.17) as required.

Case 2: Suppose that d is not a multiple of c, and z ≤ c− rd,c. In this case, the message size

achieved by the symmetric code simplifies to

d−z∑
j=1

yj = c−
d∑

j=d−z+1

yj = c− z

qd,c
.

Consider a specific base erasure pattern E′ ⊆ Tn given by

E′ ,
d∪

j=d−z+1

T
(vj)
n ,

where T
(i)
n is as defined in Lemma 4.3, and v = (v1, . . . , vd) is as defined in the proof of Theo-

rem 4.5. The erased time steps in E′ have been chosen to coincide with the bigger blocks allocated

to each message in the symmetric code. In this case, E′ simplifies to

E′ =
c∪

ri,c=c−z+1

T
((qd,c−1)c+ri,c)
n

=
{(

(j + 1)qd,c − 1
)
c+ ri,c ∈ Tn : j ∈ Z+

0 , ri,c ∈ {c− z + 1, . . . , c}
}
,

which follows from the definition of T
(i)
n and the fact that ri,c > rd,c when

ri,c ∈ {c− z + 1, . . . , c}. Observe that E′ comprises alternating intervals of z erased time

139

steps and qd,c c− z unerased time steps, with each interval of erased time steps corresponding to a

specific choice of j ∈ Z+
0 . Since each erased time step t ∈ E′ can be expressed as

t =
(
(j + 1)qd,c − 1

)︸ ︷︷ ︸
qt,c

c+ ri,c︸︷︷︸
rt,c

,

it follows that the set of active messages at time step t is given by

At =
{
(j + 1)qd,c︸ ︷︷ ︸

qt,c+1

−(qd,c − 1), . . . , (j + 1)qd,c︸ ︷︷ ︸
qt,c+1

}
.

Therefore, the set of active messages At is the same at every time step t in a given interval of z

erased time steps (corresponding to a specific j).

From E′, we derive the erasure patterns E′
1, . . . , E

′
n given by

E′
k , E′ ∩Wk =

d∪
j=d−z+1

(
T
(vj)
n ∩Wk

)
.

Applying Lemma 4.15 with A = {vj}dj=d−z+1 produces

∣∣E′
k

∣∣ = ∣∣E′ ∩Wk

∣∣ = z ∀ k ∈ {1, . . . , n}.

Let t′ ∈ E′
k be one of the z erased time steps in Wk under erasure pattern E′

k. As previously

established, t′ belongs to an interval of z erased time steps in E′ that have the same set of active

messages At′ (which contains message k). It follows that this interval of z erased time steps is

also in E′
k, and must therefore constitute E′

k itself. Thus, E′
k is an admissible erasure pattern, i.e.,

E′
k ∈ EB

n, for each k ∈ {1, . . . , n}, because it comprises a single erasure burst of z time steps.

Applying Lemma 4.16 with E = EB
n and E = E′ to an optimal code that achieves a message

size of sB
n produces

H
(
X[Wk\E′]

∣∣∣Mk
1 , X

(k−1)c
1

)
≤
∣∣Tk\E′∣∣− k sB

n

for any k ∈ {1, . . . , n}. Since the conditional entropy term is nonnegative, it follows that for the

140

choice of k = n, we have

∣∣Tn\E′∣∣− n sB
n ≥ 0 ⇐⇒ sB

n ≤
1

n

∣∣Tn\E′∣∣ = 1

n

d−z∑
j=1

∣∣T (vj)
n

∣∣.
The rest of the proof leading to the attainment of (4.17) is the same as that of Theorem 4.5, with sCW

n

replaced by sB
n.

Case 3: Suppose that d is not a multiple of c, and z ≥ d− rd,c = qd,c c. In this case, the message

size achieved by the symmetric code simplifies to

d−z∑
j=1

yj =
d− z

qd,c + 1
.

Consider a specific base erasure pattern E′ ⊆ Tn given by

E′ ,
d∪

j=d−z+1

T
(vj)
n ,

where T
(i)
n is as defined in Lemma 4.3, and v = (v1, . . . , vd) is as defined in the proof of Theo-

rem 4.5. The erased time steps in E′ have been chosen to coincide with the bigger blocks allocated

to each message in the symmetric code. In this case, E′ simplifies to

E′ = Tn

\(d−z∪
ri,c=1

T
(ri,c)
n

)

= Tn

\{(
j(qd,c + 1)

)
c+ ri,c ∈ Tn : j ∈ Z+

0 , ri,c ∈ {1, . . . , d− z}
}
,

which follows from the definition of T (i)
n and the fact that ri,c ≤ rd,c when ri,c ∈ {1, . . . , d− z}.

Observe that E′ comprises alternating intervals of d− z unerased time steps and

(qd,c + 1)c− (d− z) = c− rd,c + z erased time steps, with each interval of unerased time

steps corresponding to a specific choice of j ∈ Z+
0 . Since each unerased time step t ∈ Tn\E′ can

be expressed as

t =
(
j(qd,c + 1)

)︸ ︷︷ ︸
qt,c

c+ ri,c︸︷︷︸
rt,c

,

141

it follows that the set of active messages at time step t is given by

At =
{
j(qd,c + 1)︸ ︷︷ ︸

qt,c

+1− qd,c, . . . , j(qd,c + 1)︸ ︷︷ ︸
qt,c

+1
}
.

Therefore, the set of active messages At is the same at every time step t in a given interval of d− z

unerased time steps (corresponding to a specific j).

From E′, we derive the erasure patterns E′
1, . . . , E

′
n given by

E′
k , E′ ∩Wk =

d∪
j=d−z+1

(
T
(vj)
n ∩Wk

)
.

Applying Lemma 4.15 with A = {vj}dj=d−z+1 produces

∣∣E′
k

∣∣ = ∣∣E′ ∩Wk

∣∣ = z ∀ k ∈ {1, . . . , n}.

Let t′ ∈Wk\E′
k be one of the d− z unerased time steps in Wk under erasure pattern E′

k. As

previously established, t′ belongs to an interval of d− z unerased time steps in Tn\E′ that have the

same set of active messages At′ (which contains message k). It follows that this interval of d− z

unerased time steps is also in Wk\E′
k, and must therefore constitute Wk\E′

k itself. Thus, E′
k is

an admissible erasure pattern, i.e., E′
k ∈ EB

n, for each k ∈ {1, . . . , n}, because it comprises either a

single erasure burst of z time steps, or two erasure bursts with a combined length of z time steps

separated by a gap of d− z unerased time steps.

Applying Lemma 4.16 with E = EB
n and E = E′ to an optimal code that achieves a message

size of sB
n produces

H
(
X[Wk\E′]

∣∣∣Mk
1 , X

(k−1)c
1

)
≤
∣∣Tk\E′∣∣− k sB

n

for any k ∈ {1, . . . , n}. Since the conditional entropy term is nonnegative, it follows that for the

choice of k = n, we have

∣∣Tn\E′∣∣− n sB
n ≥ 0 ⇐⇒ sB

n ≤
1

n

∣∣Tn\E′∣∣ = 1

n

d−z∑
j=1

∣∣T (vj)
n

∣∣.
The rest of the proof leading to the attainment of (4.17) is the same as that of Theorem 4.5, with sCW

n

142

replaced by sB
n.

4.8.6 Proof of Lemma 4.8

Suppose that the component systematic block code C satisfies the symbol decoding requirements

given by D1 and D2. We will show that the diagonally interleaved code derived from C achieves a

message size of d−z
d c for the bursty erasure model, by allowing each information symbol Mk[i] to

be decoded by its respective message decoding deadline under any erasure pattern E ∈ EB
n.

LetMk be the set of information symbols corresponding to message k, i.e.,

Mk ,
{
Mk[i] : i ∈ {1, . . . , (d− z)c}

}
=
{
xt[i] : t ∈ {(k−1)c+ 1, . . . , kc}, i ∈ {1, . . . , d−z}

}
.

Let M be the set of information symbols corresponding to all n messages {1, . . . , n}, i.e.,

M ,
∪n

k=1Mk. Recall that each diagonal of d symbols in the derived code is a codeword pro-

duced by C. Let L(xt[i]) denote the interval of d consecutive time steps across which the codeword

containing symbol xt[i] spans, i.e.,

L(xt[i]) , {t− i+ 1, . . . , t− i+ d}.

Each information symbol inM can be mapped to such an interval; the earliest such interval corre-

sponds to M1[d− z] = x1[d− z] and is given by

L(x1[d− z]) = {2− (d− z), . . . , 1 + d− (d− z)},

while the latest such interval corresponds to Mn[(d− z)(c− 1) + 1] = xnc[1] and is given by

L(xnc[1]) = {nc, . . . , nc+ d− 1}.

Consider the set of information symbolsMk corresponding to a given message k ∈ {1, . . . , n}.

We will show that each information symbol inMk is decodable by time step (k − 1)c+ d, which

is the decoding deadline for message k, under any erasure pattern E ∈ EB
n. We do this by consid-

143

ering the codewords that contain one or more information symbols fromMk. There are a total of

d− z + c− 1 such codewords, corresponding to the intervals

L(x(k−1)c+1[d−z]), . . . , L(x(k−1)c+1[1]), . . . , L(x(k−1)c+c[1]).

We consider two cases separately, depending on whether the entire codeword interval occurs by the

message decoding deadline:

Case 1: Consider the codeword corresponding to the interval L(x(k−1)c+1[i]), where

i ∈ {1, . . . , d− z}. For brevity, we define

Li , L(x(k−1)c+1[i]) = {(k − 1)c+ 1− i+ 1, . . . , (k − 1)c+ 1− i+ d}.

Observe that the entire interval Li occurs by the message decoding deadline since

(k − 1)c+ 1− i+ d ≤ (k − 1)c+ d. Let E Z
i be the set of erasure patterns from E Z that have been

time-shifted to align with Li, i.e.,

E Z
i ,

{
{(k − 1)c+ 1− i+ t : t ∈ EZ} : EZ ∈ E Z

}
.

Under each erasure pattern E ∈ EB
n, the interval Li intersects with either

1) zero erasure bursts, in which case Li contains zero erased time steps; or

2) exactly one erasure burst, in which case Li contains at most z erased time steps (i.e., the

maximum length of an erasure burst), all in one contiguous subinterval; or

3) two or more erasure bursts, in which case Li contains a gap of at least d− z unerased time

steps between consecutive erasure bursts.

In each of these three cases, there exists some erasure pattern EZ ∈ E Z
i that is a superset of the erased

time steps in Li, i.e., (E ∩ Li) ⊆ EZ. Since the symbol decoding deadlines of D1 and D2 are sat-

isfied under erasure pattern EZ, they must also be satisfied under erasure pattern E ∩ Li. It follows

that all information symbols in the codeword are decodable by the last time step in interval Li, and

therefore by the message decoding deadline. Note that nonpositive time steps are always unerased

144

under the erasure patterns in EB
n; their corresponding codeword symbols are therefore always known

(recall that information symbols corresponding to nonpositive messages are assumed to be zeros).

Case 2: Consider the codeword corresponding to the interval L(x(k−1)c+i[1]), where

i ∈ {2, . . . , c}. For brevity, we define

Li , L(x(k−1)c+i[1]) = {(k − 1)c+ i− 1 + 1, . . . , (k − 1)c+ i− 1 + d}.

Observe that one or more time steps at the end of the interval Li occur after the message decoding

deadline since (k − 1)c+ i− 1 + d > (k − 1)c+ d. The first min(c+ 1− i, d− z) information

symbols in the codeword correspond to message k; subsequent information symbols in the codeword

(if any) correspond to later messages. Let EZ
i be the set of erasure patterns from EZ that have been

time-shifted to align with Li, i.e.,

E Z
i ,

{
{(k − 1)c+ i− 1 + t : t ∈ EZ} : EZ ∈ E Z

}
.

As in Case 1, under each erasure pattern E ∈ EB
n, there exists some erasure pattern EZ ∈ E Z

i that is a

superset of the erased time steps in Li, i.e., (E ∩ Li) ⊆ EZ. Since the symbol decoding deadlines of

D1 and D2 are satisfied under erasure pattern EZ, they must also be satisfied under erasure pattern

E ∩ Li. In particular, since

min(c+ 1− i, d− z) ≤ c+ 1− i < c,

it follows from D1 that the first min(c+ 1− i, d− z) information symbols in the codeword, which

correspond to message k, are decodable by the
(
d− c+min(c+ 1− i, d− z)

)
th time step in in-

terval Li, which is time step

(k − 1)c+ i− 1 + d− c+min(c+ 1− i, d− z)

≤ (k − 1)c+ i− 1 + d− c+ c+ 1− i

= (k − 1)c+ d,

and therefore by the message decoding deadline. Note that although time steps after (n− 1)c+ d

145

(which is the final time step in Tn) are always unerased under the erasure patterns in EB
n, their

corresponding codeword symbols are never used for decoding because all the information symbols

inM have to be decoded by the final message decoding deadline, which is time step (n− 1)c+ d.

4.8.7 Proof of Theorem 4.9

We will apply Lemma 4.8 to show that the diagonally interleaved code derived from the stated

systematic block code C achieves a message size of d−z
d c for the specified bursty erasure model. To

demonstrate the asymptotic optimality of the code, we will show that this message size matches the

maximum achievable message size sB
n in the limit, i.e.,

lim
n→∞

sB
n =

d− z

d
c. (4.18)

To facilitate our description of the decoding procedure for C, we arrange the d symbols of

the codeword vector produced by C sequentially across d − z columns, with all the information

symbols on the first row, as shown in Figure 4.5. Note that each column i ∈ {1, . . . , d− z} of the

table contains exactly z
d−z ≥ 1 parity symbols. For each i ∈ {1, . . . , d− z}, all the (degenerate)

parity symbols below the information symbol a[i] in column i of the table have a value of a[i].

Suppose that the d symbols of the codeword vector are transmitted sequentially across an erasure

link, one symbol per time step, over the time interval L , {1, . . . , d}. Under each erasure pattern

EZ ∈ E Z (as defined in Lemma 4.8), exactly one symbol in each column of the table is unerased.

Because the degenerate parity symbols take on the values of information symbols in a periodic

manner, all the information symbols a[1], . . . , a[d−z] can be recovered using the d − z unerased

symbols. In particular, for each i ∈ {1, . . . , d− z}, the information symbol a[i] can be recovered

by time step d−(d−z)+i. Since d− z ≥ c, it follows that the symbol decoding requirements given

by D1 and D2 in Lemma 4.8 are satisfied by C. Therefore, according to Lemma 4.8, the derived

code achieves a message size of d−z
d c.

To obtain an upper bound for sB
n, we consider the cut-set bound corresponding to a specific

146

periodic erasure pattern E′ ⊆ Tn given by

E′ ,
{
j d+ i ∈ Tn : j ∈ Z+

0 , i ∈ {1, . . . , z}
}
.

Since E′ comprises alternating intervals of z erased time steps and d− z unerased time steps, it

is an admissible erasure pattern, i.e., E′ ∈ EB
n. Now, consider a code that achieves the maximum

message size sB
n. Such a code must allow all n messages {1, . . . , n} to be decoded under the specific

erasure pattern E′. We therefore have the following cut-set bound for sB
n:

n sB
n ≤

∣∣Tn\E′∣∣ ≤ ((n− 1)c+ d

d
+ 1

)
(d− z)

=⇒ sB
n ≤

1

n

(n− 1)c+ 2d

d
(d− z) =

d− z

d

(
c+

2d− c

n

)
.

Since a message size of d−z
d c is known to be achievable (by the derived code), we have the following

upper and lower bounds for sB
n:

d− z

d
c ≤ sB

n ≤
d− z

d

(
c+

2d− c

n

)
.

These turn out to be matching bounds in the limit as n→∞:

d− z

d
c ≤ lim

n→∞
sB
n ≤ lim

n→∞

d− z

d

(
c+

2d− c

n

)
=

d− z

d
c.

We therefore have (4.18) as required.

4.8.8 Proof of Theorem 4.10

Our proof technique expands that of Theorem 4.9. First, we arrange the d symbols of the

codeword vector produced by the stated systematic block code C sequentially across z columns,

with r′ information symbols on the second last row, and all the parity symbols on a separate last row,

as shown in Figure 4.6. For the case of r′ < z, we repeat the r′ information symbols on the second

last row, i.e., a[d−z−r′+1], . . . , a[d−z], across the row; these repeated virtual information symbols

are parenthesized to distinguish them from the original actual information symbols of the codeword

vector. Note that each column i ∈ {1, . . . , z} of the table contains exactly d−z−r′

z + 1 ≥ 2 actual

147

and virtual information symbols. For each i ∈ {1, . . . , z}, the value of the parity symbol b[i] is

given by the bit-wise modulo-2 sum (i.e., exclusive-or) of the actual and virtual information symbols

above it in column i of the table.

Suppose that the d symbols of the codeword vector are transmitted sequentially across an era-

sure link, one symbol per time step, over the time interval L , {1, . . . , d}. To show that the symbol

decoding requirements given by D1 and D2 in Lemma 4.8 are satisfied by C, we consider the fol-

lowing four exhaustive cases separately:

Case 1: Consider the case of r′ = z, for which there are no virtual information symbols. Under

each erasure pattern EZ ∈ E Z (as defined in Lemma 4.8), exactly one symbol in each column of the

table is erased. For each i ∈ {1, . . . , z}, if the parity symbol b[i] is erased, then all the information

symbols in column i, which include a[i], are unerased. On the other hand, if b[i] is unerased, then

1) exactly one information symbol in column i is erased; and 2) this information symbol can be

recovered by time step d− z+ i using the unerased parity symbol b[i] and the unerased information

symbols in the column.

Case 2.1: Consider the case of r′ < z, with the erasure pattern EZ
j , where

j ∈ {1, . . . , d− 2z} ∪ {d− z + 1, . . . , d}.

Recall that index j gives the time step of the “leading” erasure in the burst, which is of length z.

Under erasure pattern EZ
j , the information symbol a[d−z] and the parity symbol b[1] are not simul-

taneously erased.

For each i ∈ {1, . . . , r′}, if the parity symbol b[i] is erased, then all the information symbols in

column i of the table, which include a[i], are unerased. On the other hand, if b[i] is unerased, then

1) exactly one information symbol in the column is erased; and 2) this information symbol can be

recovered by time step d− z+ i using the unerased parity symbol b[i] and the unerased information

symbols in the column. It follows that all the information symbols on the second last row, i.e.,

a[d−z−r′+1], . . . , a[d−z], can be recovered by time step d− z + r′.

For each i ∈ {r′ + 1, . . . , z}, if the parity symbol b[i] is erased, then all the actual information

symbols in column i of the table, which include a[i], are unerased. On the other hand, if b[i] is

unerased, then 1) exactly one actual information symbol in the column is erased; and 2) this in-

148

formation symbol can be recovered by time step d − z + i using the unerased parity symbol b[i],

the unerased actual information symbols in the column, and the recovered virtual information sym-

bol a[d−z−r′+ri,r′].

Case 2.2: Consider the case of r′ < z, with the erasure pattern EZ
j , where

j ∈ {d− 2z + 1, . . . , d− z − r′}.

Under erasure pattern EZ
j , 1) the information symbols a[1], . . . , a[d−2z], which include

a[1], . . . , a[r′], are unerased; 2) the information symbols on the second last row, i.e.,

a[d−z−r′+1], . . . , a[d−z], are erased; and 3) the parity symbols b[z−r′+1], . . . , b[z] are unerased.

For each i ∈ {1, . . . , z − r′}, if the information symbol a[d−2z+i] is erased, then 1) the parity

symbols b[i], . . . , b[z] are unerased; 2) the information symbol a[d−z−r′+ri,r′] can therefore be

recovered by time step d−z+i using the unerased parity symbol b[i] and the unerased and recovered

information symbols in the column; and 3) the information symbol a[d−2z+i] can subsequently be

recovered by time step d− z + r′ + i using the unerased parity symbol b[r′+i], the unerased actual

information symbols in the column, and the recovered virtual information symbol a[d−z−r′+ri,r′].

It follows that for each i ∈ {1, . . . , z}, the information symbols a[1], . . . , a[d−2z−r′+i], which

include a[i], can be recovered by time step d− z + i.

For each i ∈ {1, . . . , r′}, the information symbol a[d−z−r′+i] can be recovered by time

step d − r′ + i using the unerased parity symbol b[z−r′+i] and the unerased and recovered in-

formation symbols in the column.

Case 2.3: Consider the case of r′ < z, with the erasure pattern EZ
j , where

j ∈ {d− z − r′ + 1, . . . , d− z}.

Under erasure pattern EZ
j , the information symbols a[1], . . . , a[d−z−r′], which include

a[1], . . . , a[z], are unerased.

For each i ∈ {1, . . . , r′}, if the information symbol a[d−z−r′+i] is erased, then 1) the parity

symbols b[z−r′+i], . . . , b[z] are unerased; and 2) the information symbol a[d−z−r′+i] can there-

fore be recovered by time step d − r′ + i using the unerased parity symbol b[z−r′+i] and the

unerased information symbols in the column.

149

Hence, under any erasure pattern EZ ∈ E Z, all the information symbols a[1], . . . , a[d−z] are

decodable by the last time step in interval L; in particular, the information symbol a[i] is decodable

by the (d− z + i)th time step in interval L, for each i ∈ {1, . . . , z}. Since z ≥ c, it follows that

the symbol decoding requirements given by D1 and D2 in Lemma 4.8 are satisfied by C. Therefore,

according to Lemma 4.8, the derived code achieves a message size of d−z
d c.

The rest of the proof leading to the attainment of (4.18) is the same as that of Theorem 4.9.

4.8.9 Proof of Theorem 4.12

Our proof technique expands that of Theorem 4.10. First, we arrange the d symbols of the

codeword vector produced by the stated systematic block code C sequentially across z′ columns,

with r′ information symbols on the
(
d−z−r′

z′ + 1
)
th row, and all the nondegenerate parity sym-

bols b[1], . . . , b[z′] on a separate row, followed by the degenerate parity symbols, as shown in

Figure 4.7. For the case of r′ < z′, we repeat the r′ information symbols on the
(
d−z−r′

z′ + 1
)
th

row, i.e., a[d−z−r′+1], . . . , a[d−z], across the row; these repeated virtual information symbols

are parenthesized to distinguish them from the original actual information symbols of the code-

word vector. Note that each column i ∈ {1, . . . , z′} of the table contains exactly d−z−r′

z′ + 1 ≥ 2

actual and virtual information symbols. For each i ∈ {1, . . . , z′}, the value of the nondegenerate

parity symbol b[i] is given by the bit-wise modulo-2 sum (i.e., exclusive-or) of the actual and virtual

information symbols above it in column i of the table.

Suppose that the d symbols of the codeword vector are transmitted sequentially across an era-

sure link, one symbol per time step, over the time interval L , {1, . . . , d}. To show that the symbol

decoding requirements given by D1 and D2 in Lemma 4.8 are satisfied by C, we consider the fol-

lowing six exhaustive cases separately:

Case 1: Consider the case of r′ = z′, for which there are no virtual information symbols. Under

each erasure pattern EZ ∈ E Z (as defined in Lemma 4.8), exactly d−z
z′ symbols in each column of

the table are unerased. Since the d − z unerased symbols in the codeword vector are consecutive

(possibly wrapping around symbols b[z] and a[1]), it follows that the d−z
z′ unerased symbols in each

column of the table are on consecutive rows (possibly wrapping around the last and first rows).

For each i ∈ {1, . . . , z′}, let Si be the set of indices corresponding to the erased information

symbols in column i of the table. If the nondegenerate parity symbol b[i] is erased, then because

150

the degenerate parity symbols take on the values of information symbols in a periodic manner, each

information symbol a[k], where k ∈ Si, can be recovered by time step d − (d − z) + k using a

matching unerased degenerate parity symbol with a value of a[k]. On the other hand, if b[i] is

unerased, then 1) let σi , max{k : k ∈ Si}; 2) each information symbol a[k], where k ∈ Si\{σi},

can be recovered by time step d− z + z′ + k using the unerased degenerate parity symbol b[z′+k],

which has a value of a[k]; and 3) the remaining information symbol a[σi] can be recovered by time

step d− z+σi using the unerased nondegenerate parity symbol b[i] and the unerased and recovered

information symbols in the column.

Case 2.1: Consider the case of r′ < z′, with the erasure pattern EZ
j , where

j ∈ {1, . . . , d− z} ∪ {d− z + z′ + d− z + 1, . . . , d}.

Under erasure pattern EZ
j , all the nondegenerate parity symbols b[1], . . . , b[z′] are erased. Each of

the d− z unerased symbols is therefore either an information symbol or a degenerate parity symbol

(which is a copy of an information symbol). Because the degenerate parity symbols take on the val-

ues of information symbols in a periodic manner, all the information symbols a[1], . . . , a[d−z] can

be recovered using the unerased symbols. In particular, for each i ∈ {1, . . . , d− z}, the information

symbol a[i] can be recovered by time step d− (d− z) + i.

Case 2.2: Consider the case of r′ < z′, with the erasure pattern EZ
j , where

j ∈ {d− z + 1, . . . , d− z + d− z − r′}.

Under erasure pattern EZ
j , all the information symbols on the

(
d−z−r′

z′ + 1
)
th row, i.e.,

a[d−z−r′+1], . . . , a[d−z], are unerased.

For each i ∈ {1, . . . , z′}, let Si be the set of indices corresponding to the erased information

symbols in column i of the table. If |Si| = 0, then all information symbols in the column are

unerased. If |Si| ≥ 1, then 1) let σi , max{k : k ∈ Si}; 2) each information symbol a[k], where

k ∈ Si\{σi}, can be recovered by time step d − z + z′ + k using the unerased degenerate parity

symbol b[z′+k], which has a value of a[k]; and 3) the remaining information symbol a[σi] can be

recovered by time step d − z + σi using the unerased nondegenerate parity symbol b[i] and the

unerased and recovered information symbols in the column.

151

Case 2.3: Consider the case of r′ < z′, with the erasure pattern EZ
j , where

j ∈ {d− z + d− z − r′ + 1, . . . , d− z + d− z}.

Under erasure pattern EZ
j , 1) the information symbols a[1], . . . , a[d−z−r′] are erased; 2) all the

nondegenerate parity symbols b[1], . . . , b[z′] are unerased; and 3) the degenerate parity symbols

b[z′+1], . . . , b[d−z−r′] are unerased.

For each i ∈ {1, . . . , d− z − r′ − z′}, the information symbol a[i] can be recovered by time

step d− z + z′ + i using the unerased degenerate parity symbol b[z′+i], which has a value of a[i].

For each i ∈ {1, . . . , r′}, if the degenerate parity symbol b[d−z−r′+i], which has a value of

a[d−z−r′−z′+i], is unerased, then 1) the information symbol a[d−z−r′−z′+i] can be recovered

by time step d− z+d− z− r′+ i using it; and 2) the information symbol a[d−z−r′+i] can subse-

quently be recovered by time step d−z+d−z−r′+i using the unerased nondegenerate parity sym-

bol b[i] and the recovered information symbols in the column. On the other hand, if b[d−z−r′+i] is

erased, then 1) the information symbols a[d−z−r′+i], . . . , a[d−z] are unerased; and 2) the infor-

mation symbol a[d−z−r′−z′+i] can therefore be recovered by time step d− z+d− z− r′− z′+ i

using the unerased nondegenerate parity symbol b[i] and the unerased and recovered information

symbols in the column. It follows that all the information symbols on the
(
d−z−r′

z′ + 1
)
th row, i.e.,

a[d−z−r′+1], . . . , a[d−z], can be recovered by time step d− z + d− z.

For each i ∈ {1, . . . , z′ − r′}, the information symbol a[d−z−z′+i] can be recovered by time

step d − z + d − z using the unerased nondegenerate parity symbol b[r′+i] and the recovered

information symbols in the column.

Case 2.4: Consider the case of r′ < z′, with the erasure pattern EZ
j , where

j ∈ {d− z + d− z + 1, . . . , d− z + d− z + z′ − r′}.

Under erasure pattern EZ
j , 1) all the information symbols a[1], . . . , a[d−z] are erased; 2) the nonde-

generate parity symbols b[z′ − r′ + 1], . . . , b[z′] are unerased; and 3) the degenerate parity symbols

b[z′+1], . . . , b[d−z] are unerased.

For each i ∈ {1, . . . , d− z − z′}, the information symbol a[i] can be recovered by time

step d − z + z′ + i using the unerased degenerate parity symbol b[z′+i], which has a value of

152

a[i].

For each i ∈ {1, . . . , z′ − r′}, if the degenerate parity symbol b[d−z+i], which has a value of

a[d−z−z′+i], is unerased, then the information symbol a[d−z−z′+i] can be recovered by time

step d − z + d − z + i using it. On the other hand, if b[d−z+i] is erased, then 1) the nonde-

generate parity symbols b[i], . . . , b[z′] are unerased; 2) the information symbol a[d−z−r′+ri,r′]

can therefore be recovered by time step d − z + d − z − r′ + i using the unerased nondegenerate

parity symbol b[i] and the recovered information symbols in the column; and 3) the information

symbol a[d−z−z′+i] can subsequently be recovered by time step d− z + d− z − r′ + i using the

unerased parity symbol b[r′+i] and the recovered information symbols in the column.

For each i ∈ {1, . . . , r′}, the information symbol a[d−z−r′+i] can be recovered by time

step d − z + z′ + d − z − 2r′ + i using the unerased nondegenerate parity symbol b[z′−r′+i]

and the recovered information symbols in the column.

Case 2.5: Consider the case of r′ < z′, with the erasure pattern EZ
j , where

j ∈ {d− z + z′ + d− z − r′ + 1, . . . , d− z + z′ + d− z}.

Under erasure pattern EZ
j , 1) all the information symbols a[1], . . . , a[d−z] are erased; and 2) the

degenerate parity symbols b[z′+1], . . . , b[z′+d−z−r′] are unerased.

For each i ∈ {1, . . . , d− z − r′}, the information symbol a[i] can be recovered by time

step d − z + z′ + i using the unerased degenerate parity symbol b[z′+i], which has a value of

a[i].

For each i ∈ {1, . . . , r′}, if the degenerate parity symbol b[z′+d−z−r′+i], which has a value

of a[d−z−r′+i], is unerased, then the information symbol a[d−z−r′+i] can be recovered by time

step d − z + z′ + d − z − r′ + i using it. On the other hand, if b[z′+d−z−r′+i] is erased,

then 1) the nondegenerate parity symbols b[z′−r′+i], . . . , b[z′] are unerased; and 2) the information

symbol a[d−z−r′+i] can therefore be recovered by time step d − z + z′ + d − z − 2r′ + i using

the unerased nondegenerate parity symbol b[z′−r′+i] and the recovered information symbols in the

column.

Hence, under any erasure pattern EZ ∈ E Z, the information symbol a[i] is decodable by the(
d − (d − z) + i

)
th time step in interval L, for each i ∈ {1, . . . , d− z}. Since d− z ≥ c, it fol-

153

lows that the symbol decoding requirements given by D1 and D2 in Lemma 4.8 are satisfied by C.

Therefore, according to Lemma 4.8, the derived code achieves a message size of d−z
d c.

The rest of the proof leading to the attainment of (4.18) is the same as that of Theorem 4.9.

4.8.10 Proof of Theorem 4.14

By partitioning the set of unerased time steps Uk ⊆ Tk into two sets U (1)
k ⊆ Tk\Wk (i.e.,

unerased time steps before the coding window Wk) and U (2)
k ⊆Wk (i.e., unerased time steps in

the coding window Wk), we can rewrite (4.1) as follows:

P [Sk] =
∑

U (1)
k ⊆Tk\Wk

d∑
z=0

∑
U (2)
k ⊆Wk:

|U (2)
k |=d−z

1
[
H
(
Mk

∣∣X[U (1)
k], X[U (2)

k]
)
= 0
]
· (1− pe)

|U (1)
k |+d−z(pe)

|Tk|−d−|U (1)
k |+z.

(4.19)

Observe that the conditional entropy term appearing in (4.19) can be lower-bounded as follows:

H
(
Mk

∣∣X[U (1)
k], X[U (2)

k]
)

(a)
≥ H

(
Mk

∣∣Mk−1
1 , X[Tk\Wk], X[U (2)

k]
)

(b)
= H

(
Mk

∣∣Mk−1
1 , X[U (2)

k]
)

(c)
= H

(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
, (4.20)

where

(a) follows from the addition of conditioned random variables Mk−1
1 , X[(Tk\Wk)\U (1)

k];

(b) follows from the fact that packets X[Tk\Wk] are functions of messages Mk−1
1 ;

(c) follows from the fact that messages are independent, and packets X[U (2)
k] are independent of

messages Mk−mE
1 (we can show this explicitly by considering the conditional mutual infor-

mation

I
(
Mk;M

k−mE
1

∣∣Mk−1
k−mE+1, X[U (2)

k]
)

= H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
−H

(
Mk

∣∣Mk−1
1 , X[U (2)

k]
)

154

= H
(
Mk−mE

1

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
−H

(
Mk−mE

1

∣∣Mk
k−mE+1, X[U (2)

k]
)
,

where both conditional entropy terms on the third line are equal to H
(
Mk−mE

1

)
, which im-

plies that both conditional entropy terms on the second line are equal).

As a consequence of (4.20), we have

1
[
H
(
Mk

∣∣X[U (1)
k], X[U (2)

k]
)
= 0
]
≤ 1

[
H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
= 0
]
,

and therefore (4.19) can be upper-bounded as follows:

P [Sk] ≤
∑

U (1)
k ⊆Tk\Wk

d∑
z=0

∑
U (2)
k ⊆Wk:

|U (2)
k |=d−z

1
[
H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
=0
]
· (1− pe)

|U (1)
k |+d−z(pe)

|Tk|−d−|U (1)
k |+z

(a)
=

d∑
z=0

∑
U (2)
k ⊆Wk:

|U (2)
k |=d−z

1
[
H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
= 0
]
· (1− pe)

d−z(pe)
z

=

d∑
z=0

αk(z) · (1− pe)
d−z(pe)

z, (4.21)

where

αk(z) ,
∑

U (2)
k ⊆Wk:

|U (2)
k |=d−z

1
[
H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
= 0
]
,

and (a) follows from a reordering of the sums, and the removal of the factor

∑
U (1)
k ⊆Tk\Wk

(1− pe)
|U (1)

k | (pe)
|Tk|−d−|U (1)

k | = 1.

Consider a fixed choice of subset U ⊆ {1, . . . , d}. Suppose that U (2)
k ⊆Wk is the appropriately

time-shifted version of U , i.e.,

U (2)
k =

{
(k − 1)c+ i : i ∈ U

}
.

155

According to the definition of time-invariant codes, the packets X[U (2)
k] can consequently be written

in terms of U as

X[U (2)
k] =

(
fri,c

(
Mk+qi,c , . . . ,Mk+qi,c−mE+1

))
i∈U

.

The conditional entropy term in the definition of αk(z) can therefore be written in terms of the

message random variables as

H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
= H

(
Mk

∣∣∣Mk−1
k−mE+1,

(
fri,c
(
Mk+qi,c , . . . ,Mk+qi,c−mE+1

))
i∈U

)
.

Since the joint probability distribution of the random variables in this expression is the same

for any k ≥ mE, it follows that this conditional entropy term is constant wrt k ≥ mE. Defining

α(z) , αmE(z), we therefore have

α(z) = αmE(z) = αmE+1(z) = αmE+2(z) = · · · (4.22)

for any z ∈ {0, . . . , d}. To obtain the required upper bound (4.2), we will show that for any

z ∈ {0, . . . , d},

α(z) ≤
⌊
min

(
(d− z)c

d s
, 1

)(
d

z

)⌋
. (4.23)

Suppose that z ∈ {0, . . . , d}. Consider the first mE + n− 1 messages {1, . . . ,mE + n− 1},

and the union of their (overlapping) coding windows TmE+n−1, where n ∈ Z+. Let Ẽz be the

collection of all
(
d
z

)
possible subsets Ẽ ⊆ {1, . . . , d} of size z, i.e.,

Ẽz ,
{
Ẽ ⊆ {1, . . . , d} : |Ẽ| = z

}
.

From each Ẽ ∈ Ẽz , we derive a periodic erasure pattern E ⊆ TmE+n−1 by concatenating copies of

Ẽ; let Ez be the set of these
(
d
z

)
erasure patterns, i.e.,

Ez ,
{{

(j − 1)d+ i ∈ TmE+n−1 : j ∈ Z+, i ∈ Ẽ
}
: Ẽ ∈ Ẽz

}
.

156

Note that because of the periodicity of each erasure pattern E ∈ Ez , there are exactly z erased time

steps and therefore exactly d− z unerased time steps in each coding window Wk, i.e.,

∣∣Wk\E
∣∣ = d− z ∀ k ∈ {1, . . . ,mE + n− 1}, E ∈ Ez. (4.24)

Furthermore, for a fixed choice of k ∈ {1, . . . ,mE + n− 1}, the set of d− z unerased time steps

in the coding window for message k, i.e., Wk\E, is distinct under each erasure pattern E ∈ Ez; in

other words,

(E1, E2 ∈ Ez) ∧ (Wk\E1 = Wk\E2) =⇒ E1 = E2 ∀ k ∈ {1, . . . ,mE + n− 1}. (4.25)

Suppose that k ∈ {1, . . . ,mE + n− 1} and E ∈ Ez . From the definition of conditional mutual

information, we have

I
(
Mk ; X[Wk\E]

∣∣Mk−1
1

)
= H

(
Mk

∣∣Mk−1
1

)
−H

(
Mk

∣∣Mk−1
1 , X[Wk\E]

)
= H

(
X[Wk\E]

∣∣Mk−1
1

)
−H

(
X[Wk\E]

∣∣Mk
1

)
.

Rearranging terms produces

H
(
X[Wk\E]

∣∣Mk
1

)
= H

(
X[Wk\E]

∣∣Mk−1
1

)
−H

(
Mk

∣∣Mk−1
1

)
+H

(
Mk

∣∣Mk−1
1 , X[Wk\E]

)
.

(4.26)

Since messages are independent, we have

H
(
Mk

∣∣Mk−1
1

)
= H

(
Mk

)
= s. (4.27)

Now, if

H
(
Mk

∣∣Mk−1
1 , X[Wk\E]

)
= 0, (4.28)

157

then, by substituting (4.27) and (4.28) into (4.26), we obtain

H
(
X[Wk\E]

∣∣Mk
1

)
= H

(
X[Wk\E]

∣∣Mk−1
1

)
− s. (4.29)

On the other hand, if condition (4.28) is not satisfied, then we have the inequality

H
(
X[Wk\E]

∣∣Mk
1

)
≤ H

(
X[Wk\E]

∣∣Mk−1
1

)
, (4.30)

which is always true.

Suppose that k ∈ {1, . . . ,mE + n− 1}. According to the definition of αk(z), there are αk(z)

subsets U (2)
k ⊆Wk of size d− z for which

H
(
Mk

∣∣Mk−1
k−mE+1, X[U (2)

k]
)
= 0.

Equivalently, it follows from properties (4.24) and (4.25) of the set of erasure patterns Ez that there

are αk(z) erasure patterns E ∈ Ez for which

H
(
Mk

∣∣Mk−1
k−mE+1, X[Wk\E]

)
= 0.

Now, since

H
(
Mk

∣∣Mk−1
1 , X[Wk\E]

)
≤ H

(
Mk

∣∣Mk−1
k−mE+1, X[Wk\E]

)
,

there are therefore at least αk(z) erasure patterns E ∈ Ez for which condition (4.28) is satisfied.

Summing over all erasure patterns and applying (4.29) and (4.30) the appropriate number of times

produces the following inequality:

∑
E∈Ez

H
(
X[Wk\E]

∣∣Mk
1

)
≤
(∑

E∈Ez

H
(
X[Wk\E]

∣∣Mk−1
1

))
− s · αk(z). (4.31)

We now proceed to prove by induction that the following inequality holds for any

k ∈ {mE, . . . ,mE + n− 1}:

∑
E∈Ez

H
(
X[Wk\E]

∣∣Mk
1

)
≤

(∑
E∈Ez

∣∣Tk\E
∣∣)− (k −mE + 1)s · α(z). (4.32)

158

(Base case) Consider the case of k = mE. According to (4.31), we have

∑
E∈Ez

H
(
X[WmE\E]

∣∣MmE
1

)
≤
(∑

E∈Ez

H
(
X[WmE\E]

∣∣MmE−1
1

))
− s · αmE(z)

(a)
≤
(∑

E∈Ez

H
(
X[WmE\E]

))
− s · α(z)

(b)
≤
(∑

E∈Ez

∣∣WmE\E
∣∣)− s · α(z)

(c)
≤
(∑

E∈Ez

∣∣TmE\E
∣∣)− s · α(z),

as required, where

(a) follows from the removal of conditioned random variables MmE−1
1 in the entropy term, and

the application of (4.22);

(b) follows from the fact that H(Xt) ≤ 1 for any t because of the unit packet size;

(c) follows from the fact that WmE ⊆ TmE .

(Inductive step) Suppose that (4.32) holds for some k ∈ {mE, . . . ,mE + n− 2}. According to

(4.31), we have

∑
E∈Ez

H
(
X[Wk+1\E]

∣∣Mk+1
1

)
≤
(∑

E∈Ez

H
(
X[Wk+1\E]

∣∣Mk
1

))
− s · αk+1(z)

(a)
≤
(∑

E∈Ez

H
(
X[(Wk\E) ∪ (Wk+1\E)]

∣∣Mk
1

))
− s · α(z)

(b)
≤
(∑

E∈Ez

H
(
X[Wk\E]

∣∣Mk
1

))
+

(∑
E∈Ez

H
(
X
[
(Wk+1\E)

\
(Wk\E)

]))
− s · α(z)

(c)
≤

(∑
E∈Ez

∣∣Tk\E
∣∣)− (k −mE + 1)s · α(z) +

(∑
E∈Ez

∣∣(Wk+1\E)
\
(Wk\E)

∣∣)− s · α(z)

(d)
=

(∑
E∈Ez

∣∣Tk+1\E
∣∣)− (k −mE + 2)s · α(z),

159

as required, where

(a) follows from the addition of random variables X[Wk\E] in the entropy term, and the appli-

cation of (4.22);

(b) follows from the chain rule for joint entropy, and the removal of conditioned random variables

X[Wk\E], Mk
1 in the second entropy term;

(c) follows from the inductive hypothesis, and the fact that H(Xt) ≤ 1 for any t because of the

unit packet size;

(d) follows from the fact that

∣∣Tk\E
∣∣+ ∣∣(Wk+1\E)

\
(Wk\E)

∣∣ = ∣∣Tk\E
∣∣+ ∣∣(Tk+1\Tk)

\
E
∣∣ = ∣∣Tk+1\E

∣∣.
Now, since the conditional entropy term in (4.32) is nonnegative, it follows that for the choice

of k = mE + n− 1, we have

0 ≤

(∑
E∈Ez

∣∣TmE+n−1\E
∣∣)− n s · α(z),

which implies

α(z) ≤ 1

n s

∑
E∈Ez

∣∣TmE+n−1\E
∣∣

≤ 1

n s

(
d

z

)(
(mE + n− 2)c+ d

d
+ 1

)
(d− z)

=
d− z

d s

(
d

z

)(
c+

mEc− 2c+ 2d

n

)
.

Furthermore, since α(z) is independent of n, this upper bound must also hold in the limit n→∞,

i.e.,

α(z) ≤ (d− z)c

d s

(
d

z

)
.

Finally, taking into account the fact that α(z) is an integer that is at most
(
d
z

)
, we arrive at (4.23).

Applying (4.22) and (4.23) to (4.21) produces the required upper bound (4.2) on P [Sk] for k ≥ mE.

160

4.9 Acknowledgment

The author and his coauthors A. Qureshi and T. Ho would like to thank Yury Polyanskiy for

sharing his work with them. They also thank Ashish Khisti for the interesting discussions.

161

Chapter 5

Routing-Caching

for Named Data Networking

5.1 Introduction

Named data networking (NDN), or content-centric networking (CCN), is a proposed network

architecture for the Internet that replaces the traditional client-server model of communications with

one based on the identity of data or content [18]. This abstraction more accurately reflects how the

Internet is primarily used today: instead of being concerned about communicating with specific

nodes, end users are mainly interested in obtaining the data they want. Jacobson et al. [18] refer to

this approach as replacing where with what.

Content delivery in an NDN is accomplished using two types of packets, and specific data

structures in nodes. Requests for data objects by end users lead to the creation of Interest packets

(IPs), which are forwarded along routes determined by the Forwarding Information Base (FIB) at

each node. The FIB tells the node which neighbor node(s) to transmit each IP to. Received IPs are

recorded in the Pending Interest Table (PIT) at each node, thus allowing repeated requests for the

same object to be suppressed. When a node receives an IP that it can fulfill, it creates a Data packet

(DP) containing the requested data object. The DP is subsequently transmitted back along the path

taken by the corresponding IP, as recorded by the PIT at each node. Nodes may optionally cache

the data objects contained in received DPs. Consequently, a request for a data object can be fulfilled

not only by the origin server but also by any node with a copy of that object in its cache.

162

Assuming the prevalence of caches, the usual approaches to routing and caching that treat the

two as separate tasks may no longer be effective for NDN. For best performance, the routing and

caching policies should work in concert when responding to dynamic changes in end user request

patterns and in network topology. To address the joint problems of routing and caching for NDN,

we propose a routing-caching policy based on the backpressure algorithm [19, 20]. The policy

applies the backpressure algorithm to Virtual Interest packets (VIPs), and makes routing and caching

decisions according to local statistics collected on these VIPs.

We begin with a formal description of the network model in Section 5.2, and present our

backpressure-based routing-caching policy in Section 5.3. The performance of the proposed policy

is evaluated against a basic protocol using a packet-level simulation in Section 5.4.

5.2 Network Model

Assume that each IP has a normalized size of one, and that the size of each DP is equal to the

size of the object contained in it. For brevity, we adopt the following notation to describe various

aspects of the network.

Nodes: Each node v in the network has the following properties: NodeName(v) is the unique

identifier or name of the node; CacheSize(v) is the size of the cache in the node. Let

LinkBandwidth(v1, v2) be the bandwidth (e.g., in bits per second) of the directed link from node v1

to node v2.

Objects: Each object w in the network has the following properties: ObjectName(w) is the

unique identifier or name of the object; ObjectSize(w) is the size of the object; OriginServer(w)

is the unique node that is the origin server for the object.

Requests: Each request u, which is created by an end user for an object, has the following prop-

erties: Node(u) is the node that is collocated with the requesting end user; Object(u) is the object

being requested; TimeCreated(u) is the time at which the request is created; TimeFulfilled(u)

is the time at which the request is fulfilled, i.e., the earliest time t ≥ TimeCreated(u) at which

Node(u) receives a DP containing Object(u). For a newly created request u, we initialize

TimeFulfilled(u)←∞. Let PendingRequestTable(v, w) be the set of unfulfilled requests u that

are created by end users at node v for object w.

163

Forwarding Information Base (FIB): The FIB data structure is represented by the function

ForwardingNodes(v, w), which gives the subset of neighbor nodes of node v to which node v may

transmit IPs for object w.

Pending Interest Table (PIT): The PIT data structure is represented by the function

RequestingNodes(v, w), which gives the set of nodes that have directly requested from node v the

object w. Each requesting node v′ ∈ RequestingNodes(v, w) is either a neighbor node of node v

(that has transmitted to node v an IP for object w), or node v itself (because a collocated end user

has created a request for object w).

Caches: Let CachedObjects(v) be the set of objects that are cached in node v; because of the

limited cache space, we have

∑
w∈CachedObjects(v)

ObjectSize(w) ≤ CacheSize(v)

at all times.

A cache hit occurs when a node receives an IP for an object that is currently in its cache.

Each cache hit h has the following properties: Node(h) is the node in which the cache hit occurs;

Object(h) is the cached object w ∈ CachedObjects
(
Node(h)

)
being requested; Time(h) is the time

at which the cache hit occurs.

A cache eviction occurs when an object is removed from the cache in a node. Each cache

eviction e has the following properties: Node(e) is the node in which the cache eviction occurs;

Object(e) is the cached object w ∈ CachedObjects
(
Node(e)

)
being evicted; Time(e) is the time at

which the cache eviction occurs.

5.2.1 Creation of Requests

Suppose that an end user at node v creates a request u for object w at time t.

The node adds the request to the corresponding set of unfulfilled requests, i.e.,

PendingRequestTable(v, w)← PendingRequestTable(v, w) ∪ {u}.

If PendingRequestTable(v, w) was previously empty, then the node creates an IP for object w, and

164

transmits it to itself (see Section 5.2.2 for subsequent actions taken by the node); otherwise, the

creation of an IP is suppressed because an IP for the same object has already been created earlier

and the node is currently waiting for the arrival of the corresponding DP.

5.2.2 Handling of Interest Packets (IPs) and Routing

Suppose that node v receives an IP for object w from a requesting node v′ at time t. Note that

the requesting node v′ can be a neighbor node of node v, or node v itself. Node v does one of three

things depending on the availability of the requested object.

First, if the node is the origin server for the requested object, i.e., OriginServer(w) = v, then it

creates a DP containing object w and transmits it to the requesting node v′.

Second, if the requested object is currently cached in the node, i.e., w ∈ CachedObjects(v),

then a cache hit is recorded, and the node creates a DP containing object w and transmits it to the

requesting node v′.

Third, if the IP cannot be fulfilled locally, then the node adds the requesting node to the corre-

sponding PIT entry, i.e.,

RequestingNodes(v, w)← RequestingNodes(v, w) ∪ {v′}.

If RequestingNodes(v, w) was previously empty, then the node transmits a copy of the received

IP to one or more forwarding nodes from the set ForwardingNodes(v, w), in accordance with the

assumed routing policy; otherwise, the transmission of the IP is suppressed because an IP for the

same object has already been transmitted earlier and the node is currently waiting for the arrival of

the corresponding DP.

5.2.3 Handling of Data Packets (DPs) and Caching

Suppose that node v receives a DP containing object w at time t.

First, the node checks the corresponding PIT entry to find out which neighbor nodes

have requested the object. It transmits a copy of the DP to each requesting node

v′ ∈ RequestingNodes(v, w) that is a neighbor node of node v. The PIT entry is subsequently

cleared, i.e., RequestingNodes(v, w)← {}.

165

Next, the node checks if there are unfulfilled requests by end users for the object. All such

requests are fulfilled at the same time, i.e.,

TimeFulfilled(u)← t ∀ u ∈ PendingRequestTable(v, w),

with the requested object being served to the respective end users. The set of unfulfilled requests is

subsequently cleared, i.e., PendingRequestTable(v, w)← {}.

Finally, if the node is not the origin server for the object, i.e., OriginServer(w) ̸= v, and the

object is not currently cached in the node, i.e., w /∈ CachedObjects(v), and the cache is large enough

to accommodate the object, i.e., CacheSize(v) ≥ ObjectSize(w), then the node decides whether to

cache object w and possibly evict one or more currently cached objects, in accordance with the

assumed caching policy.

5.2.4 Performance Metrics

To evaluate the performance of a given routing-caching policy, we compute the following quan-

tities at periodic instances of time t.

1) Number of unfulfilled requests:

∣∣{u : TimeCreated(u) ≤ t, TimeFulfilled(u) > t
}∣∣.

2) Average delay incurred by a fulfilled request:

∑
u : TimeFulfilled(u)≤t

TimeFulfilled(u)− TimeCreated(u)∣∣{u : TimeFulfilled(u) ≤ t
}∣∣ .

3) Average rate of data transmission:

1

t

∑
v1,v2

AmountDataTransmitted(v1, v2, 0, t),

where AmountDataTransmitted(v1, v2, t1, t2) is the amount of data transmitted over the di-

rected link from node v1 to node v2 between time t1 and time t2.

166

4) Data transmission queue length:

∑
v1,v2

DataTransmissionQueueLength(v1, v2, t),

where DataTransmissionQueueLength(v1, v2, t) is the instantaneous length (e.g., in number

of bits) of the data transmission queue for the directed link from node v1 to node v2 at time t.

5) Average rate of data access from cache hits:

1

t

∑
h : Time(h)≤t

ObjectSize
(
Object(h)

)
.

6) Average rate of data removal from cache evictions:

1

t

∑
e : Time(e)≤t

ObjectSize
(
Object(e)

)
.

These performance metrics reflect how promptly user requests are being fulfilled, and how effi-

ciently the links, queue buffers, and caches are being utilized.

5.3 Virtual Backpressure Routing-Caching Policy

The Virtual Backpressure routing-caching policy introduces a virtual control plane for the han-

dling of Virtual Interest packets (VIPs); in contrast, the handling of IPs and DPs is said to occur

in the actual plane. The routing and caching decisions stipulated by this policy are based on local

statistics collected on these VIPs.

VIPs are manipulated by nodes in a distributed asynchronous manner according to a

backpressure-like algorithm [19, 20]. To deal with heterogeneous object sizes and link bandwidths,

we shall assume that VIPs can be quantified in continuous amounts, as opposed to discrete units.

Each node maintains a separate VIP queue for each object. Because no actual object data is con-

tained in these VIPs, each VIP queue can simply be represented by a numerical variable; VIP

transmissions between nodes are nothing more than messages about changing the values of these

variables. Unlike IPs which may get suppressed (e.g., when multiple IPs for the same object arrive

167

in quick succession), VIPs are never suppressed.

The creation and transmission of VIPs occur during Virtual Backpressure iterations in each

node, which may be executed asynchronously and at irregular time intervals. VIPs are created by

each node v for each object w at a rate that matches that at which requests are created by end users

at node v for object w. The VIPs for object w are eventually removed from the network at the

origin server, i.e., OriginServer(w), or at nodes that have cached object w; the corresponding VIP

queues at these nodes are empty. VIPs are transmitted across each link according to the backpressure

algorithm, subject to the bandwidth constraint of the reverse link in anticipation of the corresponding

DPs. For faster convergence of the algorithm, these Virtual Backpressure iterations can be executed

more frequently, at the expense of greater overhead.

The routing policy for the actual plane stipulates that a node should transmit an IP to a randomly

selected forwarding node, with each such node weighted by the corresponding rate of VIPs trans-

mitted to it. The caching policy for the actual plane stipulates that a node should cache and evict

objects opportunistically so as to increase the rate of VIPs received for the cached objects, with each

VIP weighted by the size of the corresponding object.

For brevity, we adopt the following notation to describe various aspects of the policy.

Policy Parameter: CacheWeight is the weight applied to received VIP flows for cached objects.

VIP Queues: Let VIPQueueLength(v, w) be the length of the VIP queue at node v for object w.

VIP Flows: Let AmountVIPsTransmitted(v1, v2, w, t) be the amount of VIPs transmitted

over the directed link from node v1 to node v2, for object w, up till time t. Let

CacheWeightedAmountVIPsTransmitted(v1, v2, w, t) be the cache-weighted amount of VIPs trans-

mitted over the directed link from node v1 to node v2, for object w, up till time t, where the amount

of transmitted VIPs is multiplied by CacheWeight whenever object w is cached in node v2.

5.3.1 Creation of Virtual Interest Packets (VIPs)

Let RequestRate(v, w) be the rate at which requests are created by end users at node v for

object w; this is an exogenous parameter provided to the Virtual Backpressure policy that can be

estimated using actual observations or other information about user request patterns.

Consider a Virtual Backpressure iteration in node v that occurs T time units after the previous

168

iteration. For each object w, the node creates x amount of VIPs for the object, where

x = RequestRate(v, w)× T,

and transmits them to itself (see Section 5.3.2 for subsequent actions taken by the node).

5.3.2 Handling of Virtual Interest Packets (VIPs)

Suppose that node v receives x amount of VIPs for object w. If the node is the origin server for

the requested object, i.e., OriginServer(w) = v, or if the requested object is currently cached in the

node, i.e., w ∈ CachedObjects(v), then the received VIPs are immediately discarded; otherwise,

the received VIPs are immediately added to the corresponding queue, i.e.,

VIPQueueLength(v, w)← VIPQueueLength(v, w) + x.

Consider a Virtual Backpressure iteration in node v that occurs T time units after the previous

iteration. Let AllForwardingNodes(v) be the set of all the forwarding nodes of node v, taken over

all objects, i.e.,

AllForwardingNodes(v) =
∪
w

ForwardingNodes(v, w).

For each forwarding node v′ ∈ AllForwardingNodes(v), taken in arbitrary order, node v executes

the following steps to decide which VIPs to transmit to node v′.

First, the node determines the set of candidate objects CandidateObjects(v, v′) whose VIPs can

be transmitted to node v′. These are the objects for which node v′ is a forwarding node of node v,

and for which the VIP queue differential is positive, i.e.,

CandidateObjects(v, v′) =
{
w : v′ ∈ ForwardingNodes(v, w),

VIPQueueLength(v, w) > VIPQueueLength(v′, w)
}
.

If CandidateObjects(v, v′) is empty, then node v transmits zero VIPs to node v′, and proceeds

to consider the next forwarding node. Otherwise, the node selects from CandidateObjects(v, v′) an

169

object w∗ with the largest positive VIP queue differential, weighted by the object size, i.e.,

w∗ = argmax
w∈CandidateObjects(v,v′)

(
VIPQueueLength(v, w)− VIPQueueLength(v′, w)

)
× ObjectSize(w).

Finally, the node transmits a maximal amount y of VIPs for object w∗ to node v′, subject to the

bandwidth constraint of the reverse link in anticipation of the corresponding DPs, where

y = min

(
LinkBandwidth(v′, v)× T

ObjectSize(w∗)
, VIPQueueLength(v, w∗)

)
.

The length of the corresponding VIP queue is updated accordingly, i.e.,

VIPQueueLength(v, w∗)← VIPQueueLength(v, w∗)− y.

5.3.3 Routing Policy for the Actual Plane

Suppose that node v receives an IP for object w from a requesting node at time t. Recall from

Section 5.2.2 that if the IP cannot be fulfilled locally, then the node may need to transmit a copy

of the received IP to one or more forwarding nodes from the set ForwardingNodes(v, w). In this

event, the Virtual Backpressure policy stipulates that the received IP should be transmitted to a

forwarding node v∗ selected randomly from ForwardingNodes(v, w), with each forwarding node

weighted by the average rate of VIPs transmitted to it. Specifically, for each forwarding node

v̂ ∈ ForwardingNodes(v, w), we have

P [v∗ = v̂] =

1

t
AmountVIPsTransmitted(v, v̂, w, t)∑

v∈ForwardingNodes(v,w)

1

t
AmountVIPsTransmitted(v, v, w, t)

.

5.3.4 Caching Policy for the Actual Plane

Suppose that node v receives a DP containing object w∗ at time t. Recall from Section 5.2.3

that if the node is not the origin server for the object, and the object is not currently cached in

the node, and the cache is large enough to accommodate the object, then it may decide whether to

cache object w∗ and possibly evict one or more currently cached objects. In this event, the Virtual

Backpressure policy stipulates that object w∗ should be cached if doing so increases the sum of

170

the cache-weighted average rates of VIPs received for the cached objects, with the rates further

weighted by the corresponding object sizes. Specifically, node v executes the following steps.

First, the node determines which cached objects, if any, should be candidates for eviction to

make room for the new object. To account for the unused cache space in subsequent calculations,

we define a dummy object w0 such that

ObjectSize(w0) = CacheSize(v)−
∑

w∈CachedObjects(v)

ObjectSize(w),

with CacheWeightedAmountVIPsTransmitted(v′, v, w0, t) = 0 for any node v′. Let (w0, w1, w2, . . .)

be a vector of the objects w from the set CachedObjects(v) ∪ {w0}, sorted in ascending order of

the cache-weighted average rate of VIPs received, which is given by

1

t

∑
v′

CacheWeightedAmountVIPsTransmitted(v′, v, w, t).

The set of candidate objects for eviction CandidateObjects(v) is greedily selected according to this

rate, i.e.,

CandidateObjects(v) =
{
wi

}k∗
i=1

,

where

k∗ = min

{
k :

k∑
i=0

ObjectSize(wi) ≥ ObjectSize(w∗)

}
.

Next, the node determines whether it is beneficial to evict the set of objects

CandidateObjects(v) and cache object w∗, by comparing the cache-weighted average rates of VIPs

received, with the rates further weighted by the corresponding object sizes. If

1

t

∑
v′

CacheWeightedAmountVIPsTransmitted(v′, v, w∗, t)× ObjectSize(w∗)

≥
∑

w∈CandidateObjects(v)

1

t

∑
v′

CacheWeightedAmountVIPsTransmitted(v′, v, w, t)× ObjectSize(w),

then the node proceeds to evict the set of objects CandidateObjects(v) and cache object w∗, i.e.,

CachedObjects(v)←
(
CachedObjects(v)

\
CandidateObjects(v)

)
∪ {w∗},

171

�

���

�

�

�

�

�

	

Figure 5.1. Network used in the simulation. IPs for the odd-numbered objects (for which node 1 is the origin
server) are forwarded in the direction of the blue arrows, while IPs for the even-numbered objects (for which
node 10 is the origin server) are forwarded in the direction of the red arrows. The shortest path to each origin
server is indicated by arrows with a dotted tail; the forwarding nodes used in the basic protocol are given by
these arrows.

and clears the VIP queue for the newly cached object, i.e.,

VIPQueueLength(v, w∗)← 0.

Otherwise, the cache remains unchanged.

5.4 Simulation

As a preliminary evaluation of the proposed Virtual Backpressure routing-caching policy, we

compared its performance against a basic protocol that combines shortest-path routing with least-

recently-used (LRU) cache replacement [21], using a packet-level discrete event simulator.

This basic protocol handles IPs and DPs in the following manner: When a node receives an IP

that cannot be fulfilled locally, it transmits the IP to a forwarding node on the shortest path to the

corresponding origin server. Objects in the cache are arranged according to when they were last

used or accessed. When a node receives a DP containing an object eligible for caching, it always

caches the object; if necessary, one or more of the least recently used objects in the cache are evicted

to make room for the new object.

172

5.4.1 Simulation Setup

We considered a 10-node network based on a simplified abstraction of the Internet2 network

topology [65], with the nodes numbered 1 through 10, as shown in Figure 5.1. Each directed link

in the network has a bandwidth of 1 000 000 data units per second. Nodes 1 and 10 are noncaching

nodes (i.e., with a cache size of zero), while each of the other eight nodes has a cache size of 2 000

data units. The network contains 10 distinct objects, numbered 1 through 10, each of size 1 000

data units (recall that an IP has a normalized size of 1 data unit). Node 1 is the origin server for

the odd-numbered objects, while node 10 is the origin server for the even-numbered objects. The

request rates for the objects are the same across nodes; objects 1 and 2 are the most popular with a

rate of 1 000 requests per second at each node, while objects 9 and 10 are the least popular with a

rate of 100 requests per second at each node. The color-coded arrows in the figure describe the FIB

at each node.

For the Virtual Backpressure policy, we set CacheWeight= 1.0, and have the iterations occurring

at one-second intervals asynchronously across nodes. For each of the two policies, we ran the sim-

ulation for a duration of 3 hours, and recorded the six performance metrics defined in Section 5.2.4

at 10-second intervals.

5.4.2 Simulation Results and Discussion

Figure 5.2 summarizes the simulation results obtained for the two policies. The plots show

that the Virtual Backpressure policy performed significantly better than the basic protocol in terms

of request fulfillment (i.e., the number of unfulfilled requests and the average delay incurred by a

fulfilled request) and cache utilization (i.e., the average rate of data access from cache hits and the

average rate of data removal from cache evictions).

The superior performance of the Virtual Backpressure policy may be explained by its use of

information about user request patterns (the rate of VIP creation reflects the popularity of the object),

and its ability to perform load balancing automatically (by making probabilistic routing and caching

decisions according to backpressure-influenced VIP flows).

173

0 2000 4000 6000 8000 10000
0

50

100

Number of Unfulfilled Requests

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

x 10−3 Average Delay Incurred by a Fulfilled Request (seconds)

0 2000 4000 6000 8000 10000
0

5

10

15

x 106 Average Rate of Data Transmission (data units per second)

0 2000 4000 6000 8000 10000
0

5000

10000

15000
Data Transmission Queue Length (data units)

0 2000 4000 6000 8000 10000
0

1

2
x 107 Average Rate of Data Access from Cache Hits (data units per second)

0 2000 4000 6000 8000 10000
0

5

10

15
x 106 Average Rate of Data Removal from Cache Evictions (data units per second)

Simulation Time (seconds)

Virtual Backpressure Routing−Caching Policy
Shortest−Path Routing with Least−Recently−Used (LRU) Cache Replacement

Figure 5.2. Simulation results for the Virtual Backpressure routing-caching policy, compared against a basic
protocol that combines shortest-path routing with least-recently-used (LRU) cache replacement. Definitions
of the performance metrics are given in Section 5.2.4.

174

5.5 Conclusion and Future Work

We considered the joint problems of routing and caching for named data networking, and pro-

posed a backpressure-based policy that employs virtual interest packets to make routing and caching

decisions. In a packet-level simulation, the proposed policy outperformed a basic protocol that com-

bines shortest-path routing with least-recently-used (LRU) cache replacement.

Although the proposed policy performed well in simulations, many technical challenges relat-

ing to its implementation in a large-scale network like the Internet have yet to be addressed. For

example, a good protocol would need to scale well with the number of nodes, objects, and users,

react promptly to changes in network topology and user request patterns, and handle the creation

and expiration of objects over time. It would also be interesting to study how such a policy would

interact in practice with the other components of the named data networking architecture.

5.6 Acknowledgment

The author and his coauthors M. Burd and T. Ho would like to thank their collaborators Edmund

Yeh and Kyle Dumont for the enriching discussions. They also thank Caroline Kim and Emil

Ibrishimov for their programming assistance.

175

Chapter 6

Summary and Future Work

In the preceding chapters, we considered a series of basic erasure coding problems for dis-

tributed storage and streaming communications, and explored a number of fundamental limits and

trade-offs associated with these systems.

6.1 Summary

In Chapter 2, we examined three variations of the distributed storage allocation problem, and

determined the optimal allocation or optimal symmetric allocation for a variety of cases. Although

the optimal allocation can have nonintuitive structure and can be difficult to find in general, our

results suggest a simple heuristic for achieving reliable storage: when the budget is small, spread

it minimally; when the budget is large, spread it maximally. In other words, coding is unnecessary

when the budget is small, but is beneficial when the budget is large.

In Chapter 3, we studied the effects of distributed storage allocations on the recovery delay

performance in a network of mobile nodes. We showed that the maximization of the probability of

successful recovery by a given deadline is closely related to the allocation problem of Chapter 2. For

the minimization of the expected recovery delay, we solved for the optimal symmetric allocation,

and found that the optimal solutions for the two problems can be quite different. A simulation study

on a simple data dissemination and storage protocol demonstrated that the choice of allocation can

have a significant impact on the recovery delay.

In Chapter 4, we considered a real-time streaming problem for a packet erasure link, where each

176

message must be decoded within a given delay from its creation time. We showed that a symmetric

intrasession code is asymptotically optimal over all codes for two variations of the window-based

erasure model, and for the bursty erasure model when the maximum erasure burst length is suf-

ficiently short or long. We also showed that diagonally interleaved codes derived from specific

systematic block codes are asymptotically optimal over all codes for the bursty erasure model in

several other cases. For the i.i.d. erasure model, we derived an upper bound on the decoding proba-

bility for any time-invariant code, and showed that the gap between this bound and the performance

of the family of symmetric intrasession codes is small when the message size and packet erasure

probability are small. In a simulation study, these symmetric codes performed well against a family

of random time-invariant convolutional codes under a number of scenarios.

In Chapter 5, we considered the joint problems of routing and caching for named data network-

ing, and proposed a backpressure-based policy that employs virtual interest packets to make routing

and caching decisions. In a packet-level simulation, the proposed policy outperformed a basic pro-

tocol that combines shortest-path routing with least-recently-used (LRU) cache replacement.

6.2 Future Work

Many interesting questions remain unanswered for each of the problems.

In Chapter 2, while the optimal allocation is known for a number of special cases, a general

solution for the distributed storage allocation problem remains elusive. We conjectured that a sym-

metric optimal allocation always exists for the fixed-size subset variation of the problem. To de-

scribe real-world applications more accurately, the simple allocation and access models assumed

for the problem can be extended in several ways. For example, apart from the budget constraint, we

can impose additional storage constraints on individual nodes to limit the amount of data stored in

them. Also, the independent probabilistic access model can be generalized to handle heterogeneous

access, e.g., nonuniform failure probabilities for individual nodes. We can assign different costs to

each node for data storage and access so as to reflect the capabilities of the node and the ease of

communicating with it. It would also be interesting to find reliable allocations for specific codes

with efficient encoding and decoding algorithms.

In Chapter 3, we conjectured that a symmetric optimal allocation always exists for the mini-

177

mization of the expected recovery delay. The simple contact model assumed for the problem can be

generalized to one that allows a variable amount of data to be transmitted between nodes when they

meet. It would also be interesting to study how distributed storage allocations can affect the recov-

ery delay in more sophisticated mobility models, e.g., where nodes have different rates of contact

with the data collector.

In Chapter 4, while optimal real-time streaming codes have been constructed for both variations

of the window-based erasure model, such codes have yet to be found for the bursty erasure model

in a number of cases. The i.i.d. erasure model also offers many interesting problems for future

work. In an effort to find the optimal code, it may be useful to consider hybrid code constructions

that capture the strengths of both the symmetric intrasession codes and the random time-invariant

convolutional codes that were examined in the simulation study.

In Chapter 5, although the proposed backpressure-based routing-caching policy performed well

in simulations, many technical challenges relating to its implementation in a large-scale network

like the Internet have yet to be addressed. It would also be interesting to study how such a policy

would interact in practice with the other components of the named data networking architecture.

178

Bibliography

[1] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for redundant arrays of inexpensive disks

(RAID),” in Proc. ACM Intl. Conf. Management Data (SIGMOD), 1988, pp. 109–116.

[2] Amazon S3, Amazon. [Online]. Available: http://aws.amazon.com/s3/

[3] S. Acedánski, S. Deb, M. Médard, and R. Koetter, “How good is random linear coding based

distributed networked storage?” in Proc. Workshop Netw. Coding, Theory, Appl. (NetCod),

Apr. 2005, pp. 4057–4073.

[4] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Ubiquitous access to distributed data

in large-scale sensor networks through decentralized erasure codes,” in Proc. Int. Symp. Inf.

Process. Sensor Netw. (IPSN), Apr. 2005, pp. 111–117.

[5] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes: Maximizing sensor

network data persistence,” in Proc. ACM SIGCOMM, Sep. 2006, pp. 255–266.

[6] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor networks with decentralized

fountain codes,” in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), May 2007, pp.

1658–1666.

[7] S. A. Aly, Z. Kong, and E. Soljanin, “Fountain codes based distributed storage algorithms

for large-scale wireless sensor networks,” in Proc. ACM/IEEE Int. Conf. Inf. Process. Sensor

Netw. (IPSN), Apr. 2008, pp. 171–182.

[8] R. Kleinberg, R. Karp, C. Papadimitriou, and E. Friedman, Personal correspondence between

R. Kleinberg and A. G. Dimakis, Oct. 2006.

http://aws.amazon.com/s3/

179

[9] A. Tsirigos and Z. J. Haas, “Analysis of multipath routing—Part I: The effect on the packet

delivery ratio,” IEEE Transactions on Wireless Communications, vol. 3, no. 1, pp. 138–146,

Jan. 2004.

[10] ——, “Analysis of multipath routing, Part 2: Mitigation of the effects of frequently changing

network topologies,” IEEE Transactions on Wireless Communications, vol. 3, no. 2, pp. 500–

511, Mar. 2004.

[11] S. Jain, M. Demmer, R. Patra, and K. Fall, “Using redundancy to cope with failures in a delay

tolerant network,” in Proc. ACM SIGCOMM, Aug. 2005, pp. 109–120.

[12] W. K. Lin, D. M. Chiu, and Y. B. Lee, “Erasure code replication revisited,” in Proc. Int. Conf.

Peer-to-Peer Comput. (P2P), Sep. 2004.

[13] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and Wait: An efficient routing

scheme for intermittently connected mobile networks,” in Proc. ACM SIGCOMM Workshop

Delay-Tolerant Netw., Aug. 2005, pp. 252–259.

[14] Y. Polyanskiy, “Low-latency codes for packet-erasure networks,” Unpublished technical re-

port, Apr. 2009.

[15] L. J. Schulman, “Coding for interactive communication,” IEEE Transactions on Information

Theory, vol. 42, no. 6, pp. 1745–1756, Nov. 1996.

[16] A. Sahai, “Anytime information theory,” Ph.D. dissertation, Massachusetts Institute of Tech-

nology, 2001.

[17] R. T. Sukhavasi, “Distributed control and computing: Optimal estimation, error correcting

codes, and interactive protocols,” Ph.D. dissertation, California Institute of Technology, 2012.

[18] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard,

“Networking named content,” in Proc. Int. Conf. Emerging Netw. Experiments and Technol.

(CoNEXT), Dec. 2009.

[19] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing systems and

scheduling policies for maximum throughput in multihop radio networks,” IEEE Transactions

on Automatic Control, vol. 37, no. 12, pp. 1936–1948, Dec. 1992.

180

[20] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and cross-layer control in

wireless networks,” Foundations and Trends in Networking, vol. 1, no. 1, pp. 1–144, 2006.

[21] S. Podlipnig and L. Böszörmenyi, “A survey of Web cache replacement strategies,” ACM

Comput. Surveys (CSUR), vol. 35, no. 4, pp. 374–398, Dec. 2003.

[22] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocation problems,” in Proc.

Workshop Netw. Coding, Theory, Appl. (NetCod), Lausanne, Switzerland, Jun. 2009, pp. 86–

91.

[23] ——, “Distributed storage allocation for high reliability,” in Proc. IEEE Int. Conf. Commun.

(ICC), Cape Town, South Africa, May 2010.

[24] ——, “Symmetric allocations for distributed storage,” in Proc. IEEE Global Telecommun.

Conf. (GLOBECOM), Miami, Florida, USA, Dec. 2010.

[25] ——, “Distributed storage allocations,” IEEE Transactions on Information Theory, vol. 58,

no. 7, pp. 4733–4752, Jul. 2012.

[26] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, “Network

coding for distributed storage systems,” IEEE Transactions on Information Theory, vol. 56,

no. 9, pp. 4539–4551, Sep. 2010.

[27] A. Jiang, “Network coding for joint storage and transmission with minimum cost,” in Proc.

IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2006, pp. 1359–1363.

[28] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear

network coding approach to multicast,” IEEE Transactions on Information Theory, vol. 52,

no. 10, pp. 4413–4430, Oct. 2006.

[29] C. Fragouli, J.-Y. L. Boudec, and J. Widmer, “Network coding: An instant primer,” ACM

SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68, Jan. 2006.

[30] J.-S. Wu and R.-J. Chen, “An algorithm for computing the reliability of weighted-k-out-of-n

systems,” IEEE Transactions on Reliability, vol. 43, no. 2, pp. 327–328, Jun. 1994.

181

[31] Y. Chen and Q. Yang, “Reliability of two-stage weighted-k-out-of-n systems with components

in common,” IEEE Transactions on Reliability, vol. 54, no. 3, pp. 431–440, Sep. 2005.

[32] M. Sardari, R. Restrepo, F. Fekri, and E. Soljanin, “Memory allocation in distributed storage

networks,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2010, pp. 1958–1962.

[33] N. Alon, P. Frankl, H. Huang, V. Rödl, A. Ruciński, and B. Sudakov, “Large matchings in

uniform hypergraphs and the conjectures of Erdős and Samuels,” Journal of Combinatorial

Theory, Series A, vol. 119, no. 6, pp. 1200–1215, Aug. 2012.

[34] P. Erdős, “A problem on independent r-tuples,” Ann. Univ. Sci. Budapest, vol. 8, pp. 93–95,

1965.

[35] M. Naor and R. M. Roth, “Optimal file sharing in distributed networks,” SIAM J. Comput.,

vol. 24, no. 1, pp. 158–183, Feb. 1995.

[36] A. Jiang and J. Bruck, “Network file storage with graceful performance degradation,” ACM

Trans. Storage, vol. 1, no. 2, pp. 171–189, May 2005.

[37] D. Leong, T. Ho, and R. Cathey, “Optimal content delivery with network coding,” in Proc.

Annu. Conf. Inf. Sci. Syst. (CISS), Baltimore, Maryland, USA, Mar. 2009, pp. 414–419.

[38] J. H. van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed. Cambridge, U.K.:

Cambridge Univ. Press, 2001.

[39] G. O. H. Katona, “Extremal problems for hypergraphs,” in Combinatorics, M. Hall, Jr. and

J. H. van Lint, Eds. Dordrecht, Holland: D. Reidel, 1974.

[40] V. Ntranos, G. Caire, and A. G. Dimakis, “Allocations for heterogenous distributed storage,”

in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, Massachusetts, USA, Jul. 2012.

[41] L. G. Valiant, “The complexity of computing the permanent,” Theoretical Comput. Sci., vol. 8,

no. 2, pp. 189–201, 1979.

[42] M. Sipser, Introduction to the Theory of Computation, 2nd ed. Boston, MA: Thomson Course

Technology, 2006.

182

[43] M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms and

Probabilistic Analysis. New York: Cambridge Univ. Press, 2005.

[44] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New

York: Wiley, 1968.

[45] R. Kaas and J. M. Buhrman, “Mean, median and mode in binomial distributions,” Statistica

Neerlandica, vol. 34, no. 1, pp. 13–18, 1980.

[46] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage allocations for optimal delay,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Saint Petersburg, Russia, Jul. 2011, pp. 1447–1451.

[47] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in Proc. ACM SIGCOMM,

Aug. 2004.

[48] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based routing for opportunistic

networks,” in Proc. ACM SIGCOMM Workshop Delay-Tolerant Netw., Aug. 2005.

[49] M. Piórkowski, N. Sarafijanovoc-Djukic, and M. Grossglauser, “A parsimonious model of

mobile partitioned networks with clustering,” in Proc. Intl. Conf. Commun. Syst. Netw. (COM-

SNETS), Jan. 2009.

[50] J. Havil, Gamma: Exploring Euler’s Constant. Princeton, NJ: Princeton Univ. Press, 2003.

[51] D. Leong and T. Ho, “Erasure coding for real-time streaming,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Cambridge, Massachusetts, USA, Jul. 2012.

[52] E. Martinian and C.-E. W. Sundberg, “Low delay burst erasure correction codes,” in Proc.

IEEE Int. Conf. Commun. (ICC), May 2002, pp. 1736–1740.

[53] E. Martinian and M. Trott, “Delay-optimal burst erasure code construction,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Jun. 2007, pp. 1006–1010.

[54] A. Badr, A. Khisti, W.-T. Tan, and J. Apostolopoulos, “Streaming codes for channels

with burst and isolated erasures,” arXiv:1208.0072, Aug. 2012. [Online]. Available:

http://arxiv.org/abs/1208.0072

http://arxiv.org/abs/1208.0072

183

[55] Ö. F. Tekin, S. Vyetrenko, T. Ho, and H. Yao, “Erasure correction for nested receivers,” in

Proc. Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2011, pp. 1454–1461.

[56] Y.-K. Wang, R. Even, T. Kristensen, and R. Jesup, “RTP payload format for H.264 video,”

IETF RFC 6184, May 2011. [Online]. Available: http://datatracker.ietf.org/doc/rfc6184/

[57] “UMTS; LTE; MBMS; Protocols and codecs,” 3GPP TS 26.346 version 11.2.0 Release 11,

Oct. 2012. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/26346.htm

[58] A. H. Li, “RTP payload format for generic forward error correction,” IETF RFC 5109, Dec.

2007. [Online]. Available: http://datatracker.ietf.org/doc/rfc5109/

[59] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,” ACM SIG-

COMM Comput. Commun. Rev., vol. 27, no. 2, pp. 24–36, Apr. 1997.

[60] Y. Wang and Q.-F. Zhu, “Error control and concealment for video communication: A review,”

Proceedings of the IEEE, vol. 86, no. 5, pp. 974–997, May 1998.

[61] B. W. Wah, X. Su, and D. Lin, “A survey of error-concealment schemes for real-time audio

and video transmissions over the Internet,” in Proc. Int. Symp. Multimedia Software Eng., Dec.

2000, pp. 17–24.

[62] J. Rasmussen, A. Shokrollahi, S. Lassen, G. Horn, V. Goyal, B. Dobyns, and M. Luby, “Sys-

tem and method for reliably communicating the content of a live data stream,” U.S. Patent

7 249 291, Jul. 24, 2007.

[63] M. Luby, “LT codes,” in Proc. Annu. IEEE Symp. Found. Comput. Sci. (FOCS), Nov. 2002.

[64] M. G. Luby, M. Watson, and M. A. Shokrollahi, “Forward error-correcting (FEC) coding and

streaming,” U.S. Patent 7 676 735, Mar. 9, 2010.

[65] Internet2 Network Services, Internet2. [Online]. Available: http://www.internet2.edu/network/

services

http://datatracker.ietf.org/doc/rfc6184/
http://www.3gpp.org/ftp/Specs/html-info/26346.htm
http://datatracker.ietf.org/doc/rfc5109/
http://www.internet2.edu/network/services
http://www.internet2.edu/network/services

	Acknowledgments
	Abstract
	Introduction
	Distributed Storage Allocations
	Introduction
	Independent Probabilistic Access to Each Node
	Access to a Random Fixed-Size Subset of Nodes
	Probabilistic Symmetric Allocations
	Other Related Work

	Independent Probabilistic Access to Each Node
	Asymptotic Optimality of Maximal Spreading
	Optimality of Minimal Spreading (Uncoded Replication)
	Optimal Symmetric Allocation

	Access to a Random Fixed-Size Subset of Nodes
	Regime of High Recovery Probability
	Upper Bounds for the Optimal Recovery Probability

	Probabilistic Symmetric Allocations
	Optimality of Maximal Spreading

	Conclusion and Future Work
	Proofs of Theorems
	Acknowledgment

	Distributed Storage Allocations for Optimal Delay
	Introduction
	Our Contribution
	Other Related Work

	Theoretical Analysis
	Maximization of Recovery Probability
	Minimization of Expected Recovery Delay

	Simulation Study
	Protocol Description
	Network Model and Simulation Setup
	Simulation Results
	Evaluation on Mobility Traces

	Conclusion and Future Work
	Proofs of Theorems

	Coding for Real-Time Streaming under Packet Erasures
	Introduction
	Problem Definition
	Code Constructions
	Symmetric Intrasession Codes
	Active Messages at Each Time Step
	Block Sizes for Each Message
	Achievability
	Partitioning of Coding Windows

	Diagonally Interleaved Codes

	Window-Based Erasure Model
	Coding Window Erasure Model
	Sliding Window Erasure Model

	Bursty Erasure Model
	Optimality of Symmetric Intrasession Codes
	Optimality of Diagonally Interleaved Codes

	IID Erasure Model
	Performance of Symmetric Intrasession Codes
	Decoding Probability
	Burstiness of Undecodable Messages
	Trade-off between Performance Metrics

	Simulation Study: Symmetric Intrasession Codes vs. Random Time-Invariant Convolutional Codes
	Simulation Setup
	Simulation Results and Discussion

	Conclusion and Future Work
	Proofs of Theorems
	Acknowledgment

	Routing-Caching for Named Data Networking
	Introduction
	Network Model
	Creation of Requests
	Handling of Interest Packets (IPs) and Routing
	Handling of Data Packets (DPs) and Caching
	Performance Metrics

	Virtual Backpressure Routing-Caching Policy
	Creation of Virtual Interest Packets (VIPs)
	Handling of Virtual Interest Packets (VIPs)
	Routing Policy for the Actual Plane
	Caching Policy for the Actual Plane

	Simulation
	Simulation Setup
	Simulation Results and Discussion

	Conclusion and Future Work
	Acknowledgment

	Summary and Future Work
	Summary
	Future Work

	Bibliography

