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Abstract

The relentlessly increasing demand for network bandwidth, driven primarily by In-
ternet -based services such as mobile computing, cloud storage and video-on-demand,
calls for more efficient utilization of the available communication spectrum, as that
afforded by the resurging DSP-powered coherent optical communications. Encoding
information in the phase of the optical carrier, using multilevel phase modulation
formats, and employing coherent detection at the receiver allows for enhanced spec-
tral efficiency and thus enables increased network capacity. The distributed feedback
semiconductor laser (DFB) has served as the near exclusive light source powering the
fiber optic, long-haul network for over 30 years. The transition to coherent commu-
nication systems is pushing the DFB laser to the limits of its abilities. This is due
to its limited temporal coherence that directly translates into the number of different
phases that can be imparted to a single optical pulse and thus to the data capacity.
Temporal coherence, most commonly quantified in the spectral linewidth Av, is lim-
ited by phase noise, result of quantum-mandated spontaneous emission of photons
due to random recombination of carriers in the active region of the laser.

In this work we develop a generically new type of semiconductor laser with the
requisite coherence properties. We demonstrate electrically driven lasers character-
ized by a quantum noise-limited spectral linewidth as low as 18 kHz. This narrow
linewidth is result of a fundamentally new laser design philosophy that separates the
functions of photon generation and storage and is enabled by a hybrid Si/III-V in-
tegration platform. Photons generated in the active region of the III-V material are
readily stored away in the low loss Si that hosts the bulk of the laser field, thereby

enabling high-() photon storage. The storage of a large number of coherent quanta



vii
acts as an optical flywheel, which by its inertia reduces the effect of the spontaneous
emission-mandated phase perturbations on the laser field, while the enhanced pho-
ton lifetime effectively reduces the emission rate of incoherent quanta into the lasing
mode. Narrow linewidths are obtained over a wavelength bandwidth spanning the
entire optical communication C-band (1530 — 1575 nm) at only a fraction of the input
power required by conventional DFB lasers. The results presented in this thesis hold
great promise for the large scale integration of lithographically tuned, high-coherence
laser arrays for use in coherent communications, that will enable Tbh/s-scale data

capacities.
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Chapter 1

Overview

1.1 Introduction

The last 20 years have witnessed a dramatic transformation in the way we gener-
ate, store, and distribute information, and especially in the way we interface with it.
This profoundly cultural transformation is propelled by the ever-increasing ubiquity
of information-processing power in every aspect of life, whether in the form of a per-
sonal computer or laptop, a smartphone, or a high-definition TV (HDTV). Common
thread across the different manifestations of this information evolution is the ability to
access information beyond our immediate, physical reach, to communicate and share
it with people across the globe. This effective globalization is enabled and, at times,
augmented by the pervasive influence of the Internet on everyday life. The ability
to produce massive amounts of information, coupled with the need to transport it
around the world, are setting up the global communication network for a “perfect
storm”.

At the eye of this storm lies the optical communication network. With the low-loss
optical fiber as its underpinning, optical communications have served as the backbone
of long-haul communications for over 30 years. For the bulk of its history, optical com-
munications have responded to the rising network traffic through increased channel
allocation (wavelength-division multiplexing, WDM) and faster carrier modulation
speeds. With the demand for bandwidth growing at a geometric rate, a staggering

estimated annual rate of 40%, driven by Internet-based services such as mobile com-
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puting, cloud storage, HD video-on-demand (VOD), and music streaming, the limits
of optical communications, as we know it, are being aggressively challenged. Dense
WDM optical communications networks, as introduced in the mid-90s, operated at
channel data rates of 2.5Gb/s and employed intensity modulation with direct de-
tection (IM-DD), also known as on-off keying (OOK), wherein 1 bit of information
is encoded for every transmitted symbol. The growing demand for bandwidth was
initially addressed by spectrum allocation and increase in channel data rates, taking
advantage of advances in modulator speed technology and dispersion management
(e.g., dispersion compensating fiber) [1]. Progress in DWDM network technology
had, for years, been bottlenecked at 10 Gb/s, with fiber-induced impairments posing
bounds on further increase of modulation rates, while the 10 THz bandwidth of the
commercially useful part of the optical spectrum (C-band: 1530-1570 nm, L-band:
1570-1610nm) was rapidly becoming fully utilized. With the growth in bandwidth
demand relentless as ever, network operators are seeking ways to increase rates to
40 Gb/s and beyond. Networks operating at 40 Gb/s and 100 Gb/s are already com-
mercially deployed, and the race toward Tb/s-scale capacities has just begun. The
key technology enabling this information revolution is coherent optical communica-

tions [2—4].

1.2 DSP-Enabled Coherent Optical Communica-
tions

Unlike IM-DD communication systems, wherein detection is performed directly on
the incoming optical signal via a square law-type photodetector, in coherent systems,
beating of the incoming signal at the receiver with a local optical reference (local
oscillator, LO) provides access to both the amplitude and the phase of the carrier, thus
preserving the phase of the transmitted signal. This type of detection is referred to as
coherent detection [5,6]. Depending on whether the LO operates at the transmitted

carrier frequency or at an offset frequency, coherent detection is further distinguished
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into homodyne and heterodyne detection respectively.

This is not the first time coherent communications are under the spotlight of the
optical communication community. Coherent systems drew intense research efforts
in the 80s, due to their inherently high receiving sensitivity and potential for long-
distance unrepeated transmission. Despite proof-of-principle demonstrations using
frequency-stabilized laser diodes [7, 8] in optical phase-locked loop (OPLL) config-
urations [9, 10], further progress was hampered by the relatively broad linewidth
(~ 50 MHz) of communication lasers at the time, namely distributed-feedback semi-
conductor (DFB) lasers, that rendered the frequency and phase locking of the receiver
laser to the incoming optical carrier, with the then existing analog carrier recovery
technology, a challenging task [11-13]. More importantly even, commercial develop-
ment in coherent systems was stalled in the 90s with the advent of the Erbium-doped
fiber amplifier (EDFA), which provided a cheap and simple alternative for noise tol-
erance, enabling repeaterless long-haul transmission [14].

Mandated by the exhaustion of the available spectrum (C+L bands) and the fiber-
imposed saturation in data rates under IM-DD), interest in coherent communications
has since the mid 2000s started to resurge. In its second coming, interest in coherent
systems is fueled by two particularly attractive attributes. First, its inherent com-
patibility with advanced modulation formats, such as multilevel phase shift keying
(PSK) and quadrature amplitude modulation (QAM) [15]. By encoding information
in the phase and/or the complex amplitude of the optical carrier, more bits per sym-
bol can be transmitted, thus enhancing spectral efficiency (bits/s/Hz) and enabling
superior utilization of the available bandwidth [16,17]. Figure 1.1 illustrates the scal-
ing of spectral efficiency over some basic phase/amplitude modulation formats. The

aggregate capacity of a fiber link is given by the simple product:

C=SxBxW, (1.1)

where C is the aggregate data rate of the link in [b/s], S the number of encoded bits
per symbol, B the symbol or baud rate in [b/s], and W the number of utilized channels
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or carrier wavelengths. From this simple expression, it becomes clear that increasing
spectral efficiency via multilevel modulation offers an extra degree of freedom toward
boosting the total capacity. Aggregate data rates can be improved without further
increase in baud rates, which are the ones determining the tolerance of transmission

against fiber impairments.
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Figure 1.1. Phase constellation diagrams of some basic phase modulation formats.

The second compelling feature driving the resurgence of coherent communication
systems is their special attributes with regard to distortion compensation, polariza-
tion demultiplexing and carrier recovery. These are afforded by the inherent nature
of coherent systems, access to the optical electrical field (E-field) via coherent detec-
tion and enabled by digital signal processing (DSP) [18-21]. Working hand in hand
with coherent detection, DSP is the mathematical tool through which the appropriate
numerical transforms are applied to recover signals from impairments that are physi-
cally well understood, but were, until recently, electronically inaccessible. The major
sources of degradation of the optical channel at regular power levels are linear and
invertible with respect to the optical E-field. Coherent detection provides electrical
signals that are predominantly proportional to the optical E-field, and so digital linear
filters can be used to fully compensate the linear channel transfer functions [22-24].
Chromatic dispersion (CD), the primary signal impairment, is a linear degradation
and can be inverted without penalty [25]. The polarization transfer function of the
optical link can be tracked, allowing electronic domain compensation of polarization

mode dispersion (PMD) and polarization dependent loss (PDL) [26,27]. The capac-
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ity of the communication link can further degrade at high enough launched powers
under the effect of nonlinear impairments, such as self-phase modulation (SPM),
cross-phase modulation (XPM), four-wave mixing (FWM) and nonlinear phase noise
(NLPN) [28,29]. Coherent systems enable the digital compensation for such nonlinear
impairments as well, by performing channel inversion via backward propagation in the
electronic domain, either at the transmitter or the receiver [30-32].

In their current incarnation, coherent transceivers are more than just an assembly
of optical components. They are essentially digital coherent processors, incorporating
the processing power of DSP. Figure 1.2 presents a simplified schematic of the con-
figuration of a coherent receiver, with the optical front end used for the downmixing
of the optical carrier and the DSP back end employed for the the digital carrier re-
covery. Key factor contributing to the “marriage” between coherent communications
and DSP is the substantial advancements in the area of very large scale integra-
tion (VLSI), specifically in the realization of high-speed analog-to-digital converters
(ADC), that enable real-time digital processing at GHz baud rates. Digital fiber im-
pairment compensation can be done either at the transmitter, prior to upconversion
onto an optical carrier, or at the receiver, after the optical signal has been downcon-
verted to the electronic domain. In both cases, provided the baseband signal in the
electronic domain is sampled above the Nyquist rate, the digitized signal has the full
information of the analog electric field, enabling DSP compensation to have no loss in
performance compared to analog impairment compensation performed in either the
optical or electronic domain. DSP has the advantage that signals can be delayed, split,
amplified, and manipulated in other manner without degradation in signal quality.
As baud rates, constellation size and transmission distances increase, more complex
DSP algorithms are needed to sustain increasing capacities. This rapidly increasing
processing complexity will require fully dedicated and specialized electronic circuits

(ASICs), harnessing the ultimate in CMOS integration technology.
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Figure 1.2. Schematic illustration of the configuration of a DSP-enabled coherent

receiver. (Example shown for DP-QPSK).

1.3 Laser Phase Noise & Linewidth

Besides transmission medium impairments, the most fundamental nonideality affect-
ing coherent communications is laser phase noise. A laser field undergoes random

phase and amplitude fluctuations, that can be expressed as

E(t) = R{B,(t) exp(junt + 0(t)} (1.2)

These fluctuations can be traced to a multitude of sources, but one in particular is of
special importance. That is spontaneous emission, which is an effect fundamentally
quantum mechanical in its origin. In a typical semiconductor laser, spontaneous
emission is the result of random electron-hole recombination in the active region of the
lasing medium. For every spontaneous emission event, a photon is added to the laser
field. In addition to the obvious effect on the amplitude of the field, spontaneously
emitted photons, not being in phase with the stimulated emitted coherent photons,

represent phase perturbations on the coherent field.
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Spontaneous emission occurs indiscriminately, below and above threshold, at a
given temporal rate. Subject to this ever ongoing mechanism, the laser field’s evolu-
tion deviates from that of a perfectly monochromatic field. Given the random nature
of spontaneous emission, the laser field’s excursion from perfect coherence emulates
a “random walk” (i.e., Brownian motion), schematically illustrated in phasor space

in figure 1.3. The coherent field is represented by a complex amplitude vector FE, of
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Figure 1.3. Phasor space representation of the effect of a single spontaneous emission

event on the laser field.

length o< v/n, where 7 is the average number of quanta in the mode. With every spon-
taneous emission event, one photon is added to the field, represented in the phasor
space by a vector of unity length and a uniformly distributed random angle ¢. Upon
a large number of independent spontaneous emission events over time interval 7, the

accumulated phase excursion obeys Gaussian statistics with probability distribution:

o | o] (13)

PLas) = 3%, (1)

2mo%,(T)

where 03 ,(7) is the variance of the phase excursion. For a single-mode semiconductor

laser with ground and excited level populations Ny, Ny respectively, this variance can



be expressed as [33]

2 _ 2 n
=< [Af >= , 1.4
Palr) =< (M = (14)
where 1 = (N;V—]fh)th is the population inversion factor at threshold and 7, the cold

cavity (i.e., no pumping) photon lifetime in the laser resonator. The phase variance is
proportional to the measurement time 7, with a proportionality factor that represents

the diffusion constant of the phase diffusion process:

DAg = .
QﬁTph

(1.5)

The result of equation (1.4) is extremely insightful and we will refer to it again
later on. The full width at half maximum (FWHM) of the phase diffusion is given in

frequency units by

D
—Aa0 =Av = "

2m 4Ty,

(1.6)

According to the Wiener-Khintchine theorem, the power spectral density (PSD) of a
quantity subject to a random process, such as a laser field, is given by the Fourier

transform of the autocorrelation function:

Ce(r) =< EM)E(t+ 1), (1.7)
Se(w) = % : h Ce(1) exp(—jwT)dT. (1.8)

For a laser subject to quantum phase noise, the spectral density of the field can be

shown to obey [33,34]:

<E§> 4’717’7]'1)}1
5 .
2 (J_) + (w - WO)Q

4ﬁTp h

Se(w) = (1.9)

So, the spectrum of a laser field subject to spontaneous emission is a Lorentzian
function centered about the lasing frequency w,, with a linewidth Av, as defined
in equation (1.6), through the phase diffusion constant Dag. The linewidth Av,

also known as the Schawlow-Townes linewidth [35], is a measure of the spectral pu-
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rity of the laser emission. Although the Lorentzian lineshape can be, under certain
circumstances, observed experimentally [36], a quantitative discrepancy was discov-
ered early on [37], between the predicted Schawlow-Townes and the experimentally
obtained linewidths. The broadened linewidths experimentally observed were consis-
tent with fundamental oscillator noise theory predicting enhanced phase noise due to
coupling between phase and intensity fluctuations [38], an effect later formulated as
the amplitude-phase coupling factor, also known as Henry’s linewidth enhancement

factor v defined as [39-41]:

Ox./ON  dm9n/ON
Ox:/ON — X 9g/ON’

o=

(1.10)

where x,,x; are the real and imaginary parts respectively of the active medium’s
complex susceptibility, n and g the refractive index and gain of the active medium and
N the carrier density in the active region. Under the effect of intensity fluctuations,

the quantum phase noise-limited Schawlow-Townes linewidth is modified into

n 2
Av = 1 . 1.11
v 47T7_L7'ph( ta ) ( )

A rigorous semiclassical treatment (Van der Pol analysis) of semiconductor laser noise,
accounting for linewidth enhancement due to index variations can be found in [42,43].

In practice, deviations from the Lorentzian spectral lineshape occur due to contri-
butions from technical sources of noise (e.g., 1/f noise), such as the driving current
source and temperature fluctuations. In addition to the deviation from the observed
lineshape, technical noise also manifests itself in the form of a residual linewidth floor
at the high power limit [44-48].

Phase-sensitive optical processing, as that involved in coherent communications,
is demanding in terms of the degree of temporal (i.e., phase) coherence of the utilized
light source. With regard to coherent communication systems, it is the high-offset
(i.e., from carrier) frequency noise components due to spontaneous emission that

predominantly factor into the phase noise and thus impair the performance [49]. This
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is result of the high data rates of optical communications and the accordingly short
symbol duration times. Under this assumption, the effect of phase noise in coherent

communications can be quantified in [50]
oas(7) = 27 [(Av)r, + (AV)R,] T, (1.12)

where 02,(7) is the phase variance over symbol time 7 and (Av)r,, (Av)g, are the
spectral linewidths of the lasers at the transmitter and receiver respectively. The
phase variance degrades the detection sensitivity, but most importantly, directly
impacts the bit-error rate (BER) that is achievable at a given launched power or
equivalently, the signal-to-noise ratio (SNR) required to achieve a given BER met-
ric [11,12,21,51,52]. For optimal BER, the phase variance has to be kept low and
this requirement becomes increasingly stringent as the constellation size and thereby
the density of phases in the complex plane increases. For given laser linewidths
(Av)r,, (Av)g,, the phase variance can be controlled by increasing the baud rate
(B = L1[Gb/s]). This way the linewidth requirement can be, to some degree, re-
laxed, especially given that with the use of DSP, the phase recovery is offset to the
electronic domain. Indeed, DSP-enabled carrier synchronization, via for example
feedforward recovery schemes [53-56], eliminates the necessity of phase-locking of the
LO in the optical domain via OPLLs [57-59], thereby significantly increasing the
phase noise tolerance on the utilized lasers [60,61]. For instance, implementation of
a 16—QAM scheme with BER = 1072 and penalty on sensitivity of 1db is possible
with laser linewidths better than 150 kHz, using decision-directed, soft-decision phase
estimation [60]. This requirement quickly tightens up for stricter BER and sensi-
tivity target values. It also rapidly becomes prohibitive for higher level modulation
formats, for example, linewidths on the order of 1kHz would be needed for 64—QAM
with BER = 10~* and 2db above sensitivity [61].

These stringent linewidth requirements are barely met by state of the art external
cavity lasers (ECL) for the lower level modulation formats (e.g., QPSK, 8—PSK,

16—QAM), while higher level formats are prohibitive for existing semiconductor lasers
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(SCL) [62-65]. ECLs are fairly expensive and do not lend themselves to dense, on-
chip integration. In a multicarrier implementation for high capacity links, compact
integration of laser assemblies is emerging as the most viable approach to improved
performance and reduced cost. As much impetus the power of DSP has imparted to
the resurgence of the field of coherent communications, the exponentially increasing
algorithmic complexity in the functions required from DSP to perform is already
testing the limits of high-speed CMOS technology. Boosting baud rates to relax
linewidth requirements in turn, stops at the upper bound of about 80 GBaud possible
with state of the art ADCs, while at the same time increases heat dissipation and
power consumption.

For all of the above reasons, we believe that a major advancement in semiconductor
laser’s coherence is imperative, if the full potential of coherent communications is to
be fulfilled. The distribute feedback laser (DFB) with its simple design, compact and
robust size, single-mode operation and low cost, has been the workhorse of the optical
communication technology for over 30 years [66-75]. With a temporal coherence
limited at a few hundred kHz though, at best, the DFB falls short of the expectations
of the coherent communication era. Retaining the unique features that made it so
successful, while pushing the envelope on coherence, the next generation of the DFB
laser could become the vehicle into the future of optical communications. In this work
we set out to do exactly that, to rethink and redefine the design of semiconductor

lasers on a new basis, with emphasis on spectral purity.

1.4 DFB Semiconductor Lasers — Overview

Historically, \/4-shifted (quarter-wave shifted, QWS) DFB lasers have enjoyed a spe-
cial place in communication laser commercialization, thanks to their simple design and
manufacturing process. Key contributing features to their success has been their low
thresholds and stable single-mode operation, housed in a compact package [76-82].
In terms of temporal coherence though, QWS DFBs have been limited to MHz-level

linewidths, primarily due to the short photon lifetime 7,, of their cavities, as factored
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into the modified Schawlow-Townes linewidth formula repeated here for reference:

Av = 47TZTph(l +a?). (1.13)

To improve on the coherence characteristics of QWS DFBs, researchers have re-
sorted to a plethora of DFB laser variants. Increasing the length of the laser cav-
ity and thereby the cavity photon lifetime has been the most straightforward ap-
proach [83-87]. Yet, The spectral characteristics of conventional QWS DFBs are
extremely sensitive to changes of the cavity length and the strength of the grating,
lumped into the dimensionless coupling coefficient L [88-90]. Values of kL above
certain critical thresholds quickly render QWS DFBs susceptible to spatial-hole burn-
ing (SHB), with ensuing mode instability and coherence degradation [91-93]. For long
QWS DFB cavities to remain stable, the grating strength has to be reduced accord-
ingly, a task of increasingly practical challenge, especially for gratings formed as part
of a material growth process [94,95]. Alternatively, longitudinal mode engineering is
performed through the introduction of coupled phase-shift (CPS) or multiple phase-
shift (MPS) sections into the grating, to flatten the intensity distribution and delay
the onset of SHB, thus sustaining mode stability and allowing for further linewidth
reduction [96-102].

In addition to optimizations of the longitudinal dependence of the laser field via
optical mode engineering, linewidth reduction of SCLs has been pursued via more
fundamental approaches of quantum mechanical nature. Specifically, the higher dif-
ferential gain of low-dimensional nanostructures, such as quantum wells (QW), and
its effect on the linewidth enhancement factor o [103-106] has been exploited to sup-
press the effective linewidth broadening due to intensity fluctuations above thresh-
old [107-113]. Similarly, the dependence of the linewidth enhancement factor on
the carrier density has been exploited via optimization of the number of quantum
wells [114-117].Correlation between linewidth enhancement factor reduction due to
quantum size effect in quantum confined structures (e.g., QWs) and suppression of

SHB has also been drawn and utilized for linewidth reduction in multiple-QW (MQW)
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DFB lasers [118-120]. Reduction of the effective linewidth enhancement and there-
fore, of the spectral linewidth, has also been established to occur with detuning of the
laser emission to shorter wavelengths (i.e., blue detuning) with respect to the peak of
the gain spectrum [121-125]. Further information on the measurement methodology
of the linewidth enhancement factor can be found in [126,127], while a comprehensive

overview of the evolution of the concept of the linewidth enhancement factor is given

in [128].

1.5 High-Q Hybrid Si/III-V Semiconductor Lasers

Armed with the entire arsenal of methods and techniques outlined above, the state of
the art in coherence for commercial DFB lasers lies in the neighborhood of a couple
hundred kHz, a benchmark inadequate to fulfill the potential of coherent communi-
cations. In this work, we develop a new type of semiconductor laser with an order of
magnitude improved temporal coherence over the state of the art. More than just a
new device, we present a novel approach at laser design for high coherence. We do
that by revisiting old and well-understood concepts, only this time around, with a
fresh perspective. Our starting point is the phase diffusion-limited Schawlow-Townes

linewidth:

n 2
Av = 1 . 1.14
v 47TﬁTph( ta ) ( )

It is critically insightful to recognize the role of two instrumental parameters in
equation (1.14), the average number of quanta in the lasing mode 7 and the cav-
ity photon lifetime 7,,. First, the number of quanta 7, predominantly comprising
stimulated emitted coherent photons above threshold, acts as an optical flywheel that
enhances the coherent field’s inertia to the phase diffusing effect of spontaneous emis-
sion. This is essentially a photon storage mechanism. The more stimulated quanta
are stored in the cavity, the less susceptible the laser field becomes to spontaneous
emission-mandated phase perturbations. Second, the cavity photon lifetime 7, acts

as a slowing factor on spontaneous emission, effectively reducing the spontaneous
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emission rate into the cavity mode. This becomes more evident if equation (1.14) is
rewritten as

_ R 2

where R = Tpih is the spontaneous emission rate into the lasing mode. If the popu-
lation inversion factor is interpreted as stating that for every electron available for
a stimulated emission event there is 7 electron-hole pairs available for spontaneous
recombination, then the effect of the photon lifetime is to suppress the rate at which
these spontaneously emitted photons are added to the lasing mode by 7,,. In other
words, the number of incoherent photons emitted over a given period of time ¢ is
reduced by a factor of 7,, (N = Rt = %t)

We have identified two distinct mechanisms acting toward reducing phase noise,
the storage of a large number of coherent quanta via n and the suppression of the
spontaneous emission rate into the lasing mode via 7,,. These two factors are both
inherently linked to the laser cavity characteristics and specifically its loss rate. To
make this more apparent, we recast (1.14) in an equivalent form, through manipula-

tion of its constituent parameters:

B 2mhv,(Avy2)*n
a P

Av (1+a?), (1.16)

where Avy/y = ﬁ is the linewidth of the passive cavity, that is without the effect
ph
of pumping and gain, and P = Zh—’f is the total power emitted by electrons in the
P

active region. Drawing from resonator terminology, we define a quality factor @) to

describe the temporal loss rate of the passive laser resonator:

Vo

) 1.17
o (1.17)

and the laser linewidth then becomes

_ 2mhudn

Av = 0°P (14 a?). (1.18)
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For a given total emitted power P or equivalently, at a given drive current above
threshold I — I, the resonator () incorporates information about both of the phase
noise reducing mechanisms, the stored number of quanta and the photon lifetime.
From a strictly laser resonator perspective therefore, the quality factor is the singu-
larly most critical optimization parameter. The quality factor @) in equation (1.18)
itself is the combined effect of the resonator’s intrinsic loss and the external loss

through the laser mirrors. In resonator terminology again, this is formulated as:

1 1 1

é = @‘i‘@, (1.19)

where @); is the resonator intrinsic quality factor, measure of its internal losses with
no output, and @), the external quality factor, accounting for output coupling through
the mirrors. The total @) is also known as the loaded quality factor of the resonator.
In this work, we aim at maximizing the loaded ) to achieve improved laser coherence
and to that end, we individually optimize both the intrinsic and external ¢ of the
resonator. Enhancing @); pushes the bar for the potential in number of quanta and
photon lifetime that can be harnessed higher, while (). serves as the control knob that
determines the actual photon storage and lifetime, subject of course to considerations
for the overall laser performance. We approach the laser design from a fundamentally
new perspective, that of the optimal design of a passive resonator. The verbiage and
nomenclature utilized hereafter in that process is accordingly of resonator origin, as
opposed to the traditional laser design terminology.

A comprehensive resonator optimization involves the accurate identification of
the sources of loss pertinent to the particular type of resonator and the targeted
addressing of each one through elaborate design and refining of the fabrication process.
Key enabling factor to that end is the choice of platform for the realization of a
high-@ laser resonator. The platform utilized in this work is the hybrid Si/III-V
semiconductor platform, schematically illustrated in figure 1.4. Hybrid integration
of Si and III-V active materials has, in recent years, emerged as a technologically

viable approach at incorporating active functionality in Si photonics [129-133]. The
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Figure 1.4. Device schematics of a high-@ hybrid Si/III-V semiconductor laser.

primary motivating factor behind those efforts had been the integration of a source of
light on the otherwise poor at photon generation Si, via the implementation of hybrid
Si/III-V lasers [134-142]. Besides the obvious added benefit of generating light on Si,
these hybrid lasers have overall fallen short of the state of the art in semiconductor
lasers and hybrid DFB variants specifically, have achieved subpar performance in
coherence [143,144].

The choice of the hybrid platform in this work though is distinctly different. We
leverage Si as a low loss optical platform for the realization of a high-() resonator.
Si, in the form of a Si-on-insulator (SOI) die, serves as the host platform for the
design and fabrication of an ultralow loss 1D waveguide grating. The Si waveguide
and grating provide all of the mode guiding and control functionality. The evanes-
cent tail of the mode interacts with the MQW active region of the bonded III-V die
(InGaAsP/InP) to provide the necessary gain for lasing. The Si waveguide grating
combined with the III-V counterpart of the optical mode, constitute a hybrid res-
onator, and it is the quality factor of this resonant hybrid entity that we aim at
optimizing. Pivotal decision to that end, is the distribution of the optical mode be-

tween Si and III-V in such way that the minimum fraction of the mode resides in the
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highly absorbing III-V material. This mode distribution can be formally expressed

as
1 Isi L Lrrrv

Qe Qsi  Quiv’
where @y, is the bulk absorption-limited quality factor of the hybrid resonator,

(1.20)

Qsi, Qrrr—v the respective absorption-limited quality factors of Si and III-V and
I'si, 77—y mode confinement factors in the respective regions. Implicit in this di-
lution of the mode between Si and III-V is an effective separation between the pro-
cesses of photon generation and storage. Photons are generated in the III-V active
region over an effective interaction area that is optimally designed to supply the re-
quired gain, while at the same minimizing the detrimental effect of the III-V to the
resonator’s total quality factor. The generated photons are, in their vast majority,
readily stored away in the low-loss Si part of the resonator. In this sense, high photon
number storage with long photon lifetimes is enabled, with simultaneously efficient
carrier injection and gain, a separation in degrees of freedom afforded by the hybrid

platform.

1.6 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces basic concepts of resonator
theory and design, with emphasis on energy dissipation, characterized by the uni-
versally fundamental figure of merit of the quality factor (). In the second half of
chapter 2, the design and analysis of waveguide grating defect-mode optical resonators
is presented, introducing concepts later utilized in the design of a high-() resonator.
Chapter 2 concludes with a break-down of the aggregate loss of a waveguide grating
resonator on Si into its major constituent sources, an analysis essential for a targeted
resonator optimization. Chapter 3 builds on the concepts introduced in chapter 2 to
present the design of a high-() resonator on Si, optimized for high photon-number
storage and long photon lifetime. Chapter 4 adapts the design methodology intro-
duced in chapter 3 for the design of a hybrid Si/III-V waveguide grating resonator
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for laser cavity. While the first half of chapter 3 focuses on the design of the high-Q)
laser cavity from a resonator perspective, the second half reverts to more conven-
tional laser design terminology, to describe a model that accounts for presence of gain
and enables simulation of a semiconductor laser’s fundamental physics. The model
is based on spontaneous emission as optical seed and a constant external current
drive as supply for carriers and is implemented using a finite-difference, time-domain
method to account for the field’s and carriers’ spatial dependence. Chapter 5 reviews
the experimental results obtained, during the first developmental phase, of high-@)
resonators on Si and those, from the second phase, of high-@) hybrid Si/III-V semi-
conductor lasers. Special emphasis is given on the experimental setup and method
utilized for the characterization of the temporal coherence of the lasers. Chapter 6
sums up the main contributions of this work and offers an outlook of the opportuni-
ties enabled by it. Finally, appendix A serves as a reference to the fabrication tools
and techniques used for the fabrication of the passive Si resonators as well as for the
hybrid integration of Si and III-V. Details on a Si process, developed and optimized

for the fabrication of ultra-low loss grating resonators are presented.
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Chapter 2

Waveguide Grating Defect-Mode
Resonators

2.1 Resonator Fundamentals

2.1.1 Quality Factor of a Resonator

The fundamental figure of merit used to characterize a resonator in this work is the
quality factor (). For a resonator subject to various loss mechanisms, the quality
factor is used to describe the temporal rate at which energy stored in the resonator
is dissipated. Let us consider a generic resonator as the one shown in figure 2.1, with
initial stored energy U, at t = 0 that is let free to oscillate (un-driven) at a resonant
frequency w,. The optical energy dissipation can then be described by a quality factor

defined as
Q= WOE7 (2-1)

where U (t) is the stored energy at time ¢ and % the rate at which the stored energy
changes, with the minus sign indicating decay. By rearranging the terms in equation

(2.1) and solving the differential equation for U(t) we have

_ wol

U(t) = Uye 6. (2.2)

The quality factor itself is unitless, but the ratio MQ has units of time and corresponds

to the time constant of the the stored energy’s exponential decay (figure 2.2). The
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Figure 2.1. Generic model of an unloaded resonator.
time it takes for the energy to decay to e~! of its initial value is given by

Tph = Q (23)

o

This characteristic time, known as photon lifetime, is a measure of the time photons
spend in the cavity before they are lost into various loss channels. The inverse of the
photon lifetime, v = Tpih, expresses the resonator’s loss rate in frequency. The quality
factor @), the photon lifetime 7,5, and the loss rate v can be interchangeably used to

describe a resonator’s loss characteristics.

A

\/

Time

Figure 2.2. Exponential decay of the energy stored in a resonator.
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For resonators that support more than one possible modes of oscillation, a unique
set of @), Tpn, v has to be defined for each mode and resonant frequency w,. Increasing
the @), thereby increasing the photon lifetime, enhances the interaction between light
and matter, as photons spend longer time in a given material system. In combina-
tion with very small optical mode volumes V', this enhanced interaction can lead to
a particularly interesting realm of quantum mechanically-mandated effects (Purcell
effect, cavity QED, etc.).

While looking at the quality factor of a resonator in the time domain underscores
the relevance of the photon lifetime, an alternative perspective can be gained by
looking at the resonator in the frequency domain. By Fourier transforming the expo-
nential decay function of a resonator’s loss process, the frequency response is found

to follow a Lorentzian distribution:

L

(w—w P+ (5P

L(w) = % (2.4)

where I is the spectral linewidth (FWHM) of the Lorentzian lineshape for an optical
mode with resonant frequency w, (figure 2.3). The quality factor @ is in this case

defined as

Yo _ Yo (2.5)

QEAw:F

Higher quality factor ) corresponds to narrower linewidth I'. This view of an optical
resonance reveals its function as a spectral filter. High quality factor resonant modes
can thus be utilized as narrow-line optical filters on broadband signals, which are
either incoming to the resonator (external drive) or internally generated via incoherent
optical processes. Such case as the latter is the radiation of spontaneously emitted
photons in a gain medium. Utilizing a high-Q resonance as the lasing mode in a
semiconductor laser can provide an internal filtering mechanism of spontaneously
emitted photons, thereby effectively narrowing the spontaneous emission spectrum

and enhancing the coherence of the emitted light.
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Figure 2.3. Lorentzian lineshape of a resonator’s frequency response.

2.1.2 Resonator Loading

The resonator model described in the previous section was that of an isolated (stand-
alone) resonator, indeterminately excited with initial stored energy U, and left to
oscillate subject only to its own internal loss mechanisms. The quality factor de-
scribing such a resonator is known as intrinsic quality factor, ();. In actual optical
systems though, we need to be able to drive resonators externally and tap energy out
of them. In other words, we have to establish a coupling path between the resonator
and the outside world. This coupling path represents an additional channel of loss for
the resonator and the operation of breaking the isolation of the resonator from the
environment is known as resonator loading, schematically shown in figure 2.4. The
coupling path itself represents the resonator’s load. In the presence of the load, the
quality factor of every resonant mode deviates from its intrinsic value to an effectively
smaller one, known as loaded quality factor, QJr. The relationship between intrinsic
and loaded @ is described by the following equation:
1 1 1
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Figure 2.4. Generic model of a loaded resonator.

where (). is the external quality factor that accounts for the coupling of the resonator
to the load. The coupling of energy to the load is nothing more than another loss
channel for the resonator, “parallel” to the internal ones, therefore the parallel re-
sistance type relationship between @), Q;, Q.. Similarly to @);, an external loss rate,
Ve = %, can be defined for the external coupling to the load. Practically, such cou-
pling to a resonator is implemented via on-chip integrated waveguides or optical fiber
tapers. For a laser cavity specifically, ). accounts for the lumped losses through the
laser’s mirrors.

The strength of the coupling between the resonator and the load is usually tuned
by controlling the physical proximity of the two. Two distinct regimes of coupling
arise based on the relative ratio between @Q); and Q.. If Q). < @;, the resonator is said
to be overcoupled to the load, meaning that energy is dropped to the load at a rate
faster than it is lost internally. If Q). > @;, the resonator is said to be undercoupled
to the load, with the internal loss rate dominating the total loss. In the extreme
case of this regime, for ), > @);, the loaded quality factor is approximately equal to
the intrinsic value. This situation is experimentally desirable as a means to ascertain
the intrinsic quality factor of a resonator. The situation when Q). = @); is known as
critical coupling and the resonator is then said to be “matched” to the load, similar to
impedance matching in an electrical circuit. As such, the transfer of energy from the
resonator to the load is then maximized. The loaded () is half the intrinsic (Q at critical

coupling and therefore this case provides an alternative way of finding ();, although
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tuning into critical coupling is not always easy under experimental conditions.

2.2 Waveguide Grating Resonators

2.2.1 Waveguide Gratings as Reflectors

An index perturbation on an optical waveguide can provide the coupling between the
waveguides counterpropagating modes. This perturbation on chip is usually achieved
by means of a surface corrugation on the waveguide using lithographic techniques.
For simplicity, we consider a single mode waveguide that supports a mode of prop-
agation constant § and transverse electric field distribution E,(z,y), patterned with
a uniform grating of period a, as shown in figure 2.5. The coupling between the for-
ward, AEo(z,y)expli(wt — z)] and the backward, BEo(x,y) exp[i(wt + (z)], wave
are described by the coupled-mode equations [33]:
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Figure 2.5. Schematic of a uniform waveguide grating.

% = —ikB(z)exp(iAf2),
dB o .
= = ik*A(z) exp(—iApz), (2.7)

where the coupling constant « is given by

=t / / B2 (2, y)em(@, y) Bol, y)dady. 2.8)

The above equations are subject to the assumption of weak coupling, which is satisfied

for a weak index perturbation. We consider the coupling via the grating’s first order
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Fourier component, therefore m = 1. The phase mismatch AfS is given by

27

Aﬁzﬁ_(_ﬁ>_;52(ﬁ_ﬁo)7 (29)

where 3, = Z. For the propagation constant 3 we can write

2T W
= sy = ey, 2.10
B Neff = Mefy (2.10)

where n.¢s is the effective index of the waveguide mode. The phase mismatch can

then be written as

AB = 2”—;’“@ — w,). (2.11)

The coupled-mode equations (2.7) can be solved analytically:

A A
A(z) = Ciexp (zgz - sz) + Cyexp (ZTBZ + sz) ,

B(z) = é%(;), (2.12)

where C; and C5 are constants and s is given by

o=y (22)" 219

Assuming that there is no input wave at z = L, B(L) = 0, solutions (2.12) become

A2) = exp (z%z) scoshs(L — z) +i%2 sinh s(L — Z)A(O),

2 scosh sL + i% sinh s

AS —ik*sinh s(L — z)
B(z) = exp|—i—=z A(0). 2.14
(=) p( 2 )scoshsL+i%sinhsL (0) ( )

The reflectance is given by

| B(0)
R—\m

2 |k|? sinh? sL,

= . (2.15)
s2 cosh? s + (%)2 sinh? sL
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From (2.15) we find that maximum reflectance occurs when A = 0 and is given by:
Ripaz = tanh? |x|L. (2.16)

Reflectance is an increasing function of |k|L. Figure 2.6 shows a typical reflectance
spectrum of a uniform grating. Reflection occurs over the region where —2|x| < AfS <
2|k|. In this region, s is real and solutions (2.12) become exponential, indicating

exchange of energy between the forward and backward propagating mode. Using

Reflectance

Iklc 0 Iklc
n
eff eff

-wO)

e

Offset Frequency (

Figure 2.6. Reflectance (blue solid line) and transmittance (red dashed line) of a

uniform grating.

equations (2.10), (2.11), this region can be expressed in frequency range as

_lnle <w—wp < |K|C. (2.17)
Neff Neff
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The frequency range over which a grating reflects is known as photonic bandgap or

stopband and is given by
K]

Awgep = 2n ff.
e

(2.18)

Oscillations outside the bandgap are due to Fabry-Perot-type reflections at the abruptly
terminated ends of the grating. The general solution for the electric field in the grating
can be written

E(z) = Byexp(—if'z) + Byexp(+if'z), (2.19)
where B; and B, are constants and

§ =6~ is =T xi/IF— ) - B (2.20)

If we approximate ((w) near its Bragg value = by B(w) ~ “n.ss, then (2.20) becomes

8 = zii\/w?— (%)Q(W—wo)i (2.21)

a C

A plot of the real and the imaginary part of 8’ is shown in figure 2.7. The width of
the forbidden zone is again given by (2.18). At the middle of the bandgap, where the

Bragg condition is satisfied, w = w, and

B mae = |5l- (2.22)
The complex wavenumber 3’ is the Bloch wavenumber.

This behaviour of photons when travelling through a periodic structure is in direct
analogy to the behaviour of electrons in periodic crystals. Electron wavefunctions in

periodic potentials have a Bloch function form:
Eit
U,(r, k) = u;(r) exp (—27 +ik; . r) , (2.23)

where ¢ denotes the ith energy band and k,r are reciprocal and real space vectors

respectively. In periodic solid crystals, there exist regions electron energy F; where
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Figure 2.7. Dispersion diagram of a uniform grating showing the real (blue line) and

imaginary (red line) part of the propagation constant .

k is complex in every direction, thus electrons are forbidden to exist in those energy
gaps. Unlike universal 3D bandgaps that occur in crystals naturally, 3D photonic

crystals with complete photonic bandgaps is the objective of artificial engineering.

2.2.2 Waveguide Grating Defect-Mode Resonators

As we saw in the previous section, a grating acts as a reflector for frequencies inside
its stopband with a set of transmission resonances on either side of it. Transmission
within the stopband can be achieved by cascading two grating reflectors (i.e., mirrors)
spaced by an appropriate distance Ly or equivalently by introducing a defect of size Lg
into an originally uniform grating, as shown in figure 2.8. These stopband resonances
can be made much narrower than the passband ones of the individual gratings since
the reflectance of each grating is exploited at each maximum value. For lossless
gratings with no intrinsic losses, arbitrarily narrowband resonances can be engineered

for large enough |k|L. The length of the spacing is such that phase-matching is
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Figure 2.8. Schematic of a waveguide grating defect-mode resonator.

satisfied for a round-trip between the gratings:

2BLq+ 260 = 2m, (2.24)

where ¢ is the reflection-induced phase change from each grating. At w = w,, 0 = 3

and the appropriate spacing Ly becomes

Ld: (2m— 1)

=1,2,3,..., 2.25
Ty Mob (2.25)

where A is the free space wavelength at w = w,. The smallest allowable spacing is for
m=1landitis Ly = ﬁ It accommodates one single resonance at the middle of the
stopband, as shown in figure 2.9. When seen as a break in the periodic symmetry of a
single grating, the split is often referred to as a defect and the corresponding resonance
a defect-mode. Transmission through the resonator occurs via resonant tunneling, as
opposed to transmission via propagation utilizing passband modes. This again bears
analogy to defects in crystals in solid state physics and the respective defect states in
forbidden gaps. A defect-mode is localized in space, since it is bounded by reflectors
on either side. A quarter wavelength defect provides maximum confinement in space,
as the mode at midgap experiences the highest reflection and thus penetrates into
the mirrors the least distance. Therefore, defect-mode resonators of this type can be
made extremely small, especially when combined with strong values of |k|. A plot of
the defect-mode’s field distribution is given in figure 2.10. This profile corresponds
to the slow-varying longitudinal envelope of the optical mode and represents a stark
deviation from the Bloch function dependence. The implications of this phenomenon
will be discussed in detail in a following section. If the two gratings comprising the

defect-mode resonator are infinite or practically when |k|L > 1, the resonator is said
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Figure 2.9. Transmission of a quarter-wave-shift grating resonator.
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Figure 2.10. Field amplitude distribution in a quarter-wave-shift grating resonator.

to be unloaded in the sense that it was defined in section (2.1.1). The total ) is then
equivalent with the intrinsic quality factor ;. In practice however, gratings are of
finite length and therefore the resonator coupled to the waveguide, thus loaded, as
defined in section (2.1.2). It is therefore useful to establish a connection between the
grating’s parameters and the external quality factor @).. Assuming lossless gratings

and invoking energy conservation, the external quality factor due to each grating can
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be expressed as [145]
e

9 = Vg A|K|

exp(2|k|L), (2.26)

where v, is the group velocity of the unperturbed waveguide mode. As can be seen
from (2.26), an exponential increase with |x|L dominates over (). on resonance (w =

w,). The loaded @ can then be written as

1 1 2 1 20|k
—+——¢

=00 "0 xp(—2|k|L). (2.27)

The loaded @ can be made arbitrarily high only when intrinsic losses are ignored.
Realistically, the actual () and thereby the resonator linewidth are limited by @);.

The mechanisms contributing to (); will be analysed in the next section.

2.3 Analysis of the Intrinsic Quality Factor Q;

In the so far discussion about the quality factor of a resonator, the intrinsic () has been
treated as a given characteristic parameter, subject to the resonator’s internal losses.
The intrinsic quality factor represents an upper bound on the resonator’s actual and
usable (), assuming that loading can be tuned arbitrarily, and the ultimate limit on the
resonator’s linewidth and thus spectral purity. Here, we will attempt to break down
(); into the various mechanisms and sources of loss that contribute to it. Indeed, Q;
is an aggregate quality factor, comprising a range of parallel loss-inducing processes,
lumped together into one characteristic quantity. These processes can vary in nature
as substantially as does also their relative weight on the total ();. Both of these aspects
are highly dependent on the specific type of resonator, material platform and method
of implementation (i.e., fabrication). Therefore, the following analysis will focus on
the resonator developed and utilized in this work, that is a 1D waveguide grating
resonator on Silicon-on-Insulator (SOI). For such a resonator, @); can be broken down

into the following components [146]:

1 1 1 1 1 1
— =t — o —  —, 2.28
Qi Qrad Qsc Qba Qsa Qdis ( )
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where each @ on the right-hand side of (2.28) represents a quality factor limited
by the respective process. Photon lifetimes and loss rates for each loss process can
be defined accordingly and lumped into the intrinsic photon lifetime and loss rate
respectively.

Radiation-limited quality factor (Qpaq). This quality factor accounts for loss
due to coupling of the resonant mode to leaky and radiation states that transfer
energy to the outside world. But how does this coupling come about? A waveg-
uide mode travelling through a grating with translational invariance (i.e., infinite
length and uniform period), possess an extended Bloch-type spatial distribution and
precisely prescribed wavevector. If the grating is designed to couple only counter-
propagating guided modes, exchange of energy with radiation modes is forbidden, as
phase-matching is strictly satisfied only for the guided modes. Yet, when we break
the grating symmetry to create a localized defect-mode, the extended Bloch distri-
bution is perturbed and the resulting mode assumes a spatial-limited profile. The
localization of the mode in real space has as a result the delocalization of its Fourier
components in reciprocal space (k-space). In other words, as the defect-mode becomes
confined in space, it acquires a finite spread in k-space about the central wavevector

s

(e.g., B, = ). This spread is broader, the tighter the confinement in space. Fur-
thermore, depending on the spatial profile of the mode distribution in real space,
higher spatial frequency components (i.e., k-vectors) may rise. This effect is partic-
ularly pronounced at field profile discontinuities as those at the transition between
the grating and defect section of the resonator. Abrupt field variations at structure
discontinuities tend to give rise to high spatial frequencies. As a result, isolation from
radiation modes is no longer guaranteed. The finite wavevector spread along with
the high spatial frequencies can phase-match the resonant mode with leaky modes,
thus the radiation-limited quality factor @),..4. This energy leakage via radiation is
further exacerbated by the lack of a complete photonic bandgap, that is the lack of a
range of frequencies over which propagation is forbidden for all wavevectors in every

direction in space. That would, in principle, be possible only in a 3D photonic crystal.

In 2D photonic crystal slabs and 1D waveguide gratings, the lack of 3D confinement
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provides a path for the defect-mode to couple to radiation, when the appropriate
wavevector components for the phase-matching exist. The presence of this radiation
path is represented schematically in the dispersion diagram of a waveguide grating

with a triangular shaded area above a straight line, as shown in figure 2.11. The

straight red line is known as the light line, and its slope, 7, typically corresponds to
the highest refractive of the waveguide’s cladding or in general to the cutoff effective
index of the guided mode. The dark-shaded grey above it represents a continuum of

radiation states. From the above argument, it has become clear that the localization
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Figure 2.11. Dispersion diagram of a uniform grating with incomplete bandgap.

of light in space comes at the cost of radiation loss and, in fact, the tighter the local-
1zation in real space, the broader the delocalization in k-space, hence the smaller the
raq- There is a trade-off to be made between mode volume V' and the the quality
factor of a resonant mode. In the remainder of this chapter, we will present a design
to optimize the @Q),.q of a resonator intended for a laser cavity.

The radiation-limited ) defined above corresponds to a perfectly fabricated res-
onator with no material imperfections. Yet, the actual intrinsic quality factor is still

impaired by fabrication errors and material nonidealities. Therefore, the real experi-
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mental @;.,,, can be expressed as

N S
Qiexp Qrad Qimp ’

(2.29)

where @;,,, accounts for all imperfections of a real-world device. These imperfections
are overviewed below.

Scattering-limited quality factor (Qs.). This quality factor accounts for the
energy radiated out of the resonator due to to scattering. Scattering occurs at struc-
ture discontinuities, that could be either inherent to the resonator design or unwanted
artifacts of the fabrication process, as is the case of roughness-induced scattering. A
scatterer of the latter type behaves as an additional dielectric perturbation, thereby
inducing the generation of polarization currents when interacting with the electric
field of mode. These current, in turn, act as pointlike sources of radiation. The ag-
gregate effect of a large assembly of radiating sources is constructive and destructive
interference and therefore the emission of energy into specific parts of the radiation
spectrum.

Alternatively, viewing roughness as a random distribution of scatterers, one can
treat it using its statistical properties. For that purpose, a spectral density func-
tion R(Q) is introduced and related to an autocorrelation function R(u) through the

Fourier transform [147]:

+o0
R(Q) = / R(u) exp(iQu)du. (2.30)

o

The two functions can be fully defined using two parameters, the r.m.s. amplitude o
of the roughness, which corresponds to the mean square deviation from a flat surface
and is a measure of the size distribution of the scatterers and a correlation length L.,
which describes their density distribution. The roughness amplitude is related to the
autocorrelation function via

o = R(0). (2.31)

The surface roughness of optical waveguides fabricated with standard lithographic
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techniques is commonly modeled by either Gaussian or exponential autocorrelation

functions:

R(u) = o”exp (——). (2.32)

An approximative, yet insightful expression for the exponential radiation loss coeffi-

cient o, of a slab waveguide due to roughness-induced scattering is given by [148]

BT
(e = B (d)(n2 — 2P / R(B — nok, cos 0)db, (2.33)
0

4mng

where 2d is the width of the core, ny, no the refractive indices of the core and cladding
respectively, ¢(d) the electric field amplitude at the core-cladding interface and 6 de-
notes the angle of propagation for a radiation wave component in space. Although
the exact for the loss in a 3D waveguide can be quite different, the above formula
offers some generic insight. The scattering loss increases strongly with the field am-
plitude at the waveguide boundaries and scales also very adversely with the index
contrast between core and cladding. The importance of the correlation length L. of
the roughness is in that it selects the radiation components to which energy is prefer-
entially coupled to. Given a scattering loss coefficient a,. [cm™!], the corresponding

scattering-limited quality factor can be defined as:

Wo

Qsc = (234)

Vylse’
where v, is the group velocity of the guided mode.
Bulk absorption-limited quality factor (Qpa). This quality factor accounts
for loss due to absorption in the bulk of the material, also referred to as material
loss. Absorption can be linear or nonlinear (i.e., at elevated optical power levels).
Linear absorption arises from intrabandgap states due to doping or crystal defects.

In Silicon, the primary cause of linear absorption is free-carrier absorption (FCA)
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due to residual, electrons and holes in the conduction and valence band respectively.
FCA is a function of the resistivity (i.e., doping level) of the wafer. For example,
for a Si wafer of resistivity p = 11.5Qcm (N, = 1 x 10 em™2), the quality factor
due to FCA is calculated to be well above 107 [146]. Yet, with the incorporation of
ITI-V material in the optical platform, as in the case of a hybrid laser, free-carrier
absorption contributes to loss significantly due to the increased doping of the ITI-V
cladding layers.

Surface absorption-limited quality factor (Qs,). This quality factor ac-
counts for loss due to absorption at the surfaces and interfaces of the optical struc-
ture. Although this loss component can be directly lumped into the total linear
absorption, its physical origin is quite distinct from that of the bulk component.
There are two major mechanisms that contribute to surface absorption. Absorption
by water molecules adsorbed on surfaces, which can be particularly pronounced in
the 1550 nm wavelength range (Quater ~ 4 X 105, based on one atomic layer of ad-
sorbed water [146]), plus absorption due to surface electronic states. These states
occur naturally at any abruptly terminated Si crystal as a result of unfulfilled valence
bonds (i.e., dangling bonds). The density of these states can be further exacerbated
on plasma-etched surfaces due to the physical damage incurred by the milling com-
ponent of the etch process. The effect these incomplete bonds is the introduction
of midgap states and an effective shrinking of the bandgap, thereby increasing the
photon absorption.

Disorder-limited quality factor (Qgis). This quality factor accounts for loss
to radiation induced by deviations from the theoretical resonator design due to fab-
rication imperfections. These imperfections, in the case of a waveguide grating, can
be in the form of hole position and radii variation, period fluctuations, deviation
from verticality of sidewalls among others [149]. Deviations in critical dimensions of
features occur typically in the lithography step (e.g., e-beam lithography) of the pat-
terning process and can be of both stochastic (i.e., random) and deterministic nature.
Different mitigation techniques for each category of errors can be employed. Besides

the absolute magnitude of such errors, the loss incurred by them on the resonant
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mode depends also strongly on the strength of the interacting field at the disorder

site. Therefore, an optimal resonator design can further suppress the disorder effect.
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Chapter 3

High-(QQ Resonator for
Ultracoherent Silicon Photonics

In this chapter we will present the design and analysis of a special type of waveguide
defect-mode resonator on Silicon, designed to support a single, high-Q resonance and
intended to be part of the cavity of a high-coherence, hybrid I1I-V/Si semiconductor
laser. Although the present chapter focuses on the design of a passive resonator on Si,
special considerations and choices for the passive platform itself are made, mandated
by its eventual use as a laser cavity. We will begin by addressing those special issues
and how they define the passive platform and then proceed to the discussion of the

resonator design.

3.1 Waveguide Platform

A 1D optical waveguide provides a natural platform for an index-guided, edge-emitting
laser. Unlike purely III-V semiconductor lasers where the ITI-V also serves as the
mode guiding platform, the hybrid laser developed in this work is of the evanescent
type, in that the bulk of the optical mode is hosted in Si and only a fraction of its
evanescent tail reaches into I1I-V to interact with the gain medium. Due to the high
average refractive index of the quaternary III-V material, in this case InGaAsP/InP
(n = 3.4), the Si platform has to be adjusted appropriately for a mode to be confined
primarily in Si. This is accomplished by increasing the thickness of the Si device layer

of the Si-on-insulator (SOI) wafer, from a typical thickness of 220 nm to over 400 nm
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for optical confinement in Si of more than 60%. The second major choice with respect
to the guiding platform pertains to the maximization of the scattering-limited quality
factor Qs.. Based on the analysis of section (2.3), we choose to use a rib-waveguide
type of geometry to “bury” the mode into the Si slab and reduce the effective area
of interaction of the mode with the roughness on the etched sidewalls. Specifically,
a shallow-ridge rib-waveguide geometry is preferred, as shown in figure 3.1(a), with
% < 1, where h is the etch depth of the ridge and H the total thickness of the Si slab.
The profile of the fundamental TE mode of a waveguide of this type is shown in figure
3.1(b). The width of the ridge L, normally has to be kept below the cutoff of the
second-order transverse mode, a requirement particularly necessary for a laser cavity,

yet we defer the discussion on the choice for L, for a later section. Although even

Figure 3.1. (a) Schematic of the Si waveguide 2D geometry. (b) Electric field distri-

bution of the fundamental TE mode.

thicker Si layers, up to 800 nm have been previously used in similar hybrid structures,
we limit the thickness in this work at 500 nm, as we find that this choice allows us
to satisfy the requirement for a shallow rib-waveguide and that for a weak, shallow

grating in one lithography step, thus significantly simplifying the fabrication process.
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3.2 High-Q Resonator Design

3.2.1 Introduction

With the waveguide platform defined in section (3.1), we now move on to the design
of a high-() resonator, based on a 1D waveguide grating. Starting from an origi-
nally uniform grating, a defect-mode is localized by perturbing the uniformity of the
grating, as shown in figure 3.2 from top view and figure 3.3 from perspective view.
The perturbation is physically implemented via the continuous modulation of a struc-
tural parameter of the grating, in this case of the transverse hole diameter W, that
results in a corresponding modulation of the grating’s bandgap. The origin of this
concept can be traced back to the modegap-type photonic crystal resonators, first in-
troduced in 2D photonic crystal slabs [150-153] and later adapted for 1D waveguide
resonators [154-158].

Lm Ly Ly—

Figure 3.2. Top view of the high-@) grating resonator.

As opposed to a grating resonator with a phase shift (e.g., QWS), there is no
such tyoe of defect here, as the period a is retained constant throughout the grating.
Furthermore, the modulation scales slowly in space, spanning a length L4, which
represents the defect section of the resonator. The defect is bounded by uniform
mirrors (i.e., reflectors) of length L,,. The purpose of the slow modulation is to
avoid fast variations in the envelope of the field in real space and thereby to suppress

high spatial-frequencies in the reciprocal space. The strength of the grating (i.e.,



41

Figure 3.3. Perspective view of the high-Q) grating resonator.

coupling coefficient k) is also made to be small via a shallow etch, to allow the mode
to spread out over a long distance. Keeping the total excursion of the modulated
section from the mirror reference small makes the defect-mode “shallow” with respect
to the bandgap of the uniform grating, thus forcing the mode to penetrate deeper
into the mirrors. All of the above considerations aim at one goal, that is to spread
the resonant mode out in real space, thus localizing it tighter in k-space, in order
to minimize coupling to radiation modes and optimize the radiation-limited quality
factor ,.q. This choice also renders the resonator scalewise suitable for a large-scale

laser cavity, necessary to generate appreciable amount of optical power.

3.2.2 Resonator Spatial Band Structure

Here, we define the resonator’s spatial band structure as the variation of the upper
and lower band edge frequencies at the local Bragg condition of each grating unit cell
across the resonator, described by functions w,, w,, where the subscripts “c, v” stand
for “conduction” band and “valence” band respectively, to illustrate the analogy of
a unit cell’s band structure to that of crystals in solid state physics. Engineering the

spatial band structure allows us to control such properties as the resonator’s defect-
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mode capacity, as well as each mode’s spatial profile. Therefore, it is important to be
able to define the band structure in a deterministic manner. The modal behavior of
a spatially modulated grating can be modeled by coupled-mode equations just as in

the case of a uniform grating, with only slight change in notation:

dA , ,

E = —26(33)14 + ZH(LU)B,

dB , .

- = —ik(x)A+id(x)B, (3.1)

where § = 8 — f3, is the detuning of the propagation constant S(w) of a guided-
wave component at frequency w from the Bragg wavevector , = 7 and the coupling
coefficient k is assumed to be real. Due to the spatial variation of the grating, both
d and k become spatial-dependent functions §(z), k(z) respectively. Since we are

interested in describing the spatial band structure as w(x), we can express ¢ and k as

functions of frequency:
ng(w —wp)

= -7 3.2
c ? ( )

ng(we — wy)
= —-— 3-3
& 2¢ ’ (3.3)
wp = We —; w”, (3.4)

where n, is the group index of the unperturbed waveguide mode, wp the Bragg
frequency of the local unit cell and w,,w, the upper and lower band edge frequencies
of the local unit cell at 3, = . Equations (3.2)—(3.4) are accurate within the realm
of validity of the coupled-mode equations.

For each unit cell (figure 3.4(a)), the propagation constants of its supermodes can

be found by solving for the eigenvalues of the coupled-mode equations (3.1):
K = +v§? — g2 (3.5)

The supermodes in each unit cell propagate for [0| > k and exponentially decay and

grow for 0| > k. Since we are interested in frequencies near the band edge of the
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uniform grating (figure 3.4(b)), we set the Bragg wavevector f3,,, and frequency wg,,
as universal reference levels for unit cells across the resonator, where the subscript
“vm” denotes the lower band edge of the mirror grating. Equation (3.5) can then be

rewritten as

K =4++/(0 — 65)2 — K2, (3.6)

where now 6 = 8 — f3,,, and 6 = 8, — Bym- The detuning factor of resonant mode at

frequency w close to the lower band edge of the mirror can be expressed as
d=—K+0,, (3.7)

where 4, is an offset from the lower band edge of the mirror. Substituting (3.7) into

(3.6) and using |0, — dp| < K, we get

K ~ £1/2r(05 — 0,). (3.8)
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Figure 3.4. Grating unit cell: (a) Physical structure. (b) Spatial band structure.

Approximation (3.8) bears striking resemblance to the propagation constant of

electron wavefunctions in a potential well, described by the 1D time-independent
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Schrodinger equation:
h? d?
———U(x) + [V(x) — E]¥(z) =0, (3.9)

2m da?

where U(x) is the electron wavefunction, E the electron energy, V(x) the spatial-
dependent potential, m the electron mass and h Planck’s constant. The eigenvalue

of the electron wavefunction is given by

K= \/—E V(). (3.10)

Comparing equations (3.8)—(3.10) the following association of parameters can be made

h2k

E=-—"4, (3.11)
Viz) = —%53( ). (3.12)

Using equation (3.2) to replace wavevector detuning factors with frequency, we have

E= —h;:?g (W — Wom), (3.13)
Viz) = —hT:Zg (wB(2) — Wym)- (3.14)

Based on the above correspondence, a direct analogy can be drawn between an
electron potential well and a photonic well for photons. The offset of the frequency
of photons in the resonant mode from the band edge reference frequency defines an
effective energy for the photons in the localized state, and the offset of the local Bragg
frequency for each unit cell from the same reference defines an effective local potential.
By directly controlling the function wg(x), we can shape the photonic well at will and
deterministically tailor the modal properties of the resonator. For example, we know
that a parabolic potential well, which describes a quantum harmonic oscillator, gives
rise to a Gaussian ground state electron wavefunction. In accordance with the above

analogy, if we shaped the photonic well to be parabolic, we should expect a Gaussian-
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like profile for the envelope of the fundamental resonant mode [159]. The Gaussian
field profile has been shown to provide well-behaved distribution of spatial frequencies

in the reciprocal space and is therefore attractive for optimizing the radiation-limited

@ of a resonator [160, 161].

V(x)

Figure 3.5. Quadratic potential well with a localized Gaussian ground state wave-

function.

3.2.3 Design Methodology

By a priori defining the shape of the spatial band structure, the resonator design
problem becomes of the inverse type, in that the structural design is no longer the
input. Now, the band structure and thus the modal behavior constitute the input,
while the physical design itself becomes the output of the problem. In this section we
layout the steps of the design process.

We start by defining the fixed parameters of the design, the set independent and
desired dependent variables. The waveguide platform is fixed via the thickness of the
Sislab H, the ridge etch-depth h and the ridge width L,. With respect to the grating,
the period a and longitudinal hole diameter W, are set in advance. The period is used
to set the wavelength inside the desired window (e.g., 1550 nm), while W, controls

the duty cycle of the grating. We choose to work with W, that corresponds to a duty
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cycle of 40%—50%. Although both a and W, can, in principle, be used as modulated
parameters of a grating, they offer limited dynamic range for continuous modulation
over an extended spatial scale. For dynamic range reasons as well as for simplicity,
we choose to utilize the transverse hole diameter W, as the only variable parameter.
The last constraint to be set is the reference level wep,, Wom (fem, fom) for the spatial

band structure, set by the mirror grating. By selecting a minimum hole diameter

W,

ymins that reference level is defined. The choice for the absolute value of W, . "is
based on practical considerations related to fabrication. We prefer to utilize smaller
holes as they not only form weaker gratings, but also reduce the effective interaction
area of light with the etched sidewalls.

The photonic well is designed according to the parabolic formula:
feu(®) = Acyt® + Bey, (3.15)

where A., and B,., are constants defining the shape and position of the conduction
and valence band edge. The sets (A, 4,) and (B., B,) are mutually dependent. We
choose to directly design the function f,(x) of the photonic well in the valence band
edge. We use two basic parameters to define it, the depth V', expressed as an offset
frequency in [GHz] from the mirror band edge and the width of the well L; in pm.

Given the two parameters, function f,(z) is written as

folz) ==+ 2+ fom TV, (3.16)

(La/2)’

where A, = +—Y— and B, = fun F V. The + sign in A, controls the orientation of

(La/2)?
the parabola. For the positive sign the well in the valence band does not localize any
modes and, in fact, behaves in antiresonant fashion (i.e., potential barrier). Instead,
for the same choice of sign for A, a localizing well is formed in the conduction band
edge. The picture is reversed for negative A,. Defect-modes of the former kind are

known as donor modes, whereas of the latter kind, acceptor modes, in analogy to

donor-, acceptor-type modes in semiconductors. We choose to design an acceptor-
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type of mode, as that places it farther from the light line, thereby reducing the
coupling to radiation modes. So, a photonic well in the valence band with frequency

potential V' and defect width L,, as shown in figure 3.6, is described by

V

Tt fom + V. (3.17)

fv(x) ==
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Figure 3.6. Parabolic photonic well in the valence band.

The problem to be solved can now be cast as

fo(z) = Wy(x). (3.18)

In other words, we need to find the structural design that yields the mandated fre-
quency band edge profile. For that purpose, we seek to establish a connection between
frequency and the structural parameter W,(z). For any given value of Wy (z), the
dispersion diagram w — k, of the corresponding uniform grating can be acquired by
solving for the eigenfrequencies of a single unit cell with the appropriate periodic
condition applied to it. This eigenfrequency analysis is carried out using the finite
element method (FEM) over a 3D computation domain, represented by a slice cut
out of a uniform grating, as shown in figure 3.7. A 1D Floquet periodic condition is
applied to the two wide faces of the domain, while the unit cell is cut in half along
the grating axis to reduce the computation time. Perfectly electric conductor (PEC)

condition is applied to the cut boundary for the case even TE modes (e.g., TEq, TE,)
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Figure 3.7. Finite element computation domain of a 3D unit cell.

and perfectly magnetic conductor (PMC) condition for odd modes (e.g., TE;). A
typical dispersion diagram for a Si resonator unit cell used in this work is shown in

figure 3.8. The two blue lines represent the low and high frequency bands, f,(k,)
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Si slab mode radiation continuum
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Figure 3.8. Dispersion diagram for a Si resonator unit cell.
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and f.(k,) respectively, of the fundamental TE mode. The red line denotes the light
line, in this case defined by the cutoff effective index of the Si slab, and the shaded
area above it the continuum of the Si slab radiation modes. Due to the low aspect
ratio of the rib waveguide, this cutoff is very close to the effective index of the guided
mode, thus making the Si slab mode continuum the predominant channel of radiation
leakage. This proximity is also evident by how close the light line lies to the band
edge at the end of the first Brillouin zone (only 1% of it shown in the diagram).
The eigenfrequencies we are interested in are frequencies f, and f. at the two band
edges of the unit cell, at the end of the first Brillouin zone, where the bandgap opens
(Bo = Z). Figures 3.9(a) and 3.9(b) show the 3D spatial distribution of the norm
of the electric field for the fundamental TE mode at f, and f. respectively over the
computation domain. Carrying this calculation out for a number of diameters W,,, we
get sets of f,(W,), f.(W,), plotted as blue lines in figure 3.10. Frequencies are cast on

the vertical axis as offsets from a reference frequency f,,,. Figure 3.10 will be here-

(a) (b)

Figure 3.9. Spatial distribution of the norm of the electric field of TEq at (a) f,, and
(b) fe (Bo = 3)-

after referred to as a look-up table as it provides the connection between frequency

and the structural parameter W, to be modulated. Indeed, once a valence band
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edge frequency profile has been defined by setting V, L, and W, . . projecting f,(z)
through the f,(W,) branch of the look-up table yields a corresponding distribution
W, (z) on the horizontal axis. Similarly, projecting through the f.(W,) branch yields
a distribution f.(z). The utilized part of the two branches for a given design is shown
in red. This way, a physical resonator design that delivers the desired frequency band

edge profile is determined.

2000

1800 slo2 —
1600+
O

800+

(GH
o
o
it

Y
o
o
@

Offset Frequency

600

400+

200 » .
0 ‘ [
2001 | _ |

0 200 800 1000

Figure 3.10. Typical look-up table for the design of a high-@) Si resonator.

3.3 Design Analysis

Having laid out the design methodology for the resonator in the previous section, we
now move on to the analysis and study of its modal and spectral characteristics. Due

to the sheer size of a resonator intended for a laser cavity, spanning several hundred
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microns in length, solving it by a brute force approach (e.g., 3D electromagnetic
simulation) constitutes a computationally formidable task. Instead, we trade off
some accuracy for computation speed and simplicity by resorting once again to 1D

coupled-mode equations:

dA . ,

o= i0(z)A +ik(x)B,

C;—B = —ik(z)A+id(z)B. (3.19)
T

What we have so far available for a given design, is a set of frequency spatial
functions f,(z), f.(z). Invoking the relative weakness of the grating, we employ con-
version formulae (3.20)—(3.22) to attain the corresponding spatial distributions for the
wavevector detuning é(x) and the coupling coefficient x(z) at any operating optical

frequency f.

fe(x) = M (3.20)
5(a) = 2791 — ()] (3.21)
#(@) = T2 [fulx) = fula)], (3.22)

where fp is the Bragg frequency of the local unit cell, ny the group velocity of the
guided mode and ¢ the velocity of light in vacuum. Typical distributions for the
derived Bragg frequency and coupling coefficient are plotted in figure 3.11 for the
case of V' = 300GHz,L; = 100pm, L, = 1.5pm,h = 100nm,a = 245nm. The
detuning coefficient 9 follows the same distribution as fz.

With the derived sets of d(z) and k(z) as input, the coupled-mode equations
(3.19) are solved via a transfer-matrix approach along the resonator, for a range of
frequencies f across the bandgap. The field amplitude distributions for components
A and B are found, while for unity field input only from one end of the resonator
(i.e., A(0) = 1,B(L) = 0) the normalized transmission spectrum 7'(w) = % is
also determined. Figure 3.12 shows a typical transmission spectrum for the case of

V' =300GHz, Ly = 100 pm, L, = 1.5pm, A = 100nm, @ = 245 nm.
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Figure 3.12. Transmission spectrum of a high-@Q Si resonator. (V' = 300GHz, L, =

100 pm, L, = 1.5 pm, h = 100nm, a = 245nm.)

The grey-shaded area denotes the bandgap of the uniform grating mirrors, while

the dashed line the extent of the photonic well in the valence band. Transmission
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reaches unity at select frequencies, since the resonator is assumed to be free of any
internal loss. The only loss accounted for is into the output waveguide through the
finite mirrors. A more insightful reading of the spectrum is attained by plotting it

against the designed spatial bandstructure, as shown in figure 3.13.
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Figure 3.13. Transmission spectrum of a high-Q) Si resonator plotted against its
spatial band structure. (a) Spatial bandstructure. (b) Transmission spectrum. (V =

300 GHz, Ly = 100 pm, L, = 1.5pm, A = 100 nm, a = 245nm.)

The resonant defect-mode shows at about 120 GHz into the well and is the only
mode allowed in. A close-up of the transmission around the resonance, shown in
figure 3.14, reveals the resonance’s Lorentzian lineshape. The numerical example
used in the figure is for mirror length L,, = 200 pm and the resonance wavelength
is A\, = 1576.332nm. The full width at half maximum (FWHM) corresponds to the

linewidth A\, from which the quality factor of the resonance can be extracted as

Qe = - (3.23)

Since the resonator is assumed to have no intrinsic losses, the resonance linewidth

accounts exclusively for the waveguide coupling loss and the total @) is equal to the
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external quality factor Q..

The transmission of wave components right above the high frequency band edge is
suppressed, increasing progressively from zero to unity. This gradual increase spans
the the frequency range of the corresponding modulation in the conduction band
fe(x). While f,(z) acts as a mode localizing well in the valence band, f.(z) acts as
barrier that attenuates the respective wave components over the length of the de-
fect. As the barrier becomes thinner with increasing offset frequency, the attenuation
these waves undergo decreases and their transmission across the resonator increases

accordingly.

1 | L
L, =200
0.9- Ao =1576.332 nm .

Q,=2.7x10°

T T T T T T
-4 -3 -2 -1 0 1 2 3 4
Wavelength offset (nm) x 10

Figure 3.14. Lorentzian lineshape of the localized tranmission resonance of a high-Q)

Si resonator. (V' =300GHz, L; = 100 pm, L, = 1.5pum, h = 100nm, a = 245nm.)

As already mentioned, the solution of the coupled-mode equations (3.19) also
yields the distribution of the field amplitudes A, B along the resonator at any fre-
quency f. Figure 3.15 depicts the normalized intensity distribution of the field compo-
nent A at the resonant frequency f, for the case of V' = 300 GHz, Ly = 100 pm, L, =
1.5pm, h = 100nm. The grey-shaded area represents the defect section. The field
distribution deviates from that of a perfect Gaussian due to the finite depth of the
well. The field shown in figure 3.15 is, in fact, best fit by a double Gaussian. The
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field profile tends more to a single Gaussian, the deeper the resonant mode is localized
from the valence band-edge. That would be satisfied for a well of substantial depth
or width, except that in such case more modes would also be allowed into the well, a
situation not desired for a laser cavity. Granted that a certain amount of deviation
from a perfect Gaussian profile is inevitable for a single-mode defect, the potential
V and defect width Ly are still chosen such that the single resonant mode is set the

deepest from the band edge.
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Figure 3.15. Field intensity distribution of the field of a high-Q Si resonator. (V' =
300 GHz, L; = 100 pm, L, = 1.5pm, h = 100nm, a = 245nm.)

3.4 Fourier Space Engineering

The field distribution of figure 3.12 represents the slowly varying envelope of the
field. If we now Fourier transform the spatially fast oscillating field amplitude, we

acquire the field’s Fourier component amplitudes E(k,) over a range of longitudinal

wavevectors k, of interest,

Bl) = [ [AGe)explie) + Bloeap(~ife)] explib,o)dhs,  (321)
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where 3, = 7 is the propagation constant at the Bragg frequency of the uniform
mirror grating. An example of a Fourier amplitude distribution for a defect-mode on
Si is given in figure 3.16 for the case of V = 300 GHz, L; = 100 pm, L, = 1.5 pm, h =
100nm, a = 245nm. The two main peaks at k, = 40, correspond to the forward
and reverse propagating components of the resonant mode. The grey-shaded region
represents the continuum of the Si slab radiation modes, previously defined in the
dispersion diagram 3.8, which constitutes the dominant channel of loss on the specific
waveguide platform. Wave components with wavevectors k, inside the shaded region
can couple to extended Si slab states and radiate energy away from the resonator.
The boundary *+k,.q of the radiation region is set by the cutoff effective index of the
continuum of the Si slab modes. The proximity of the continuum to the resonant
mode’s wavevectors is result of the rib waveguide’s extreme aspect ratio (h < H).
It is therefore imperative that the resonant mode be localized as tightly in k-space
as possible, in order to minimize coupling to radiation and optimize the radiation-
limited (). This tight localization in k-space is achieved by conversely delocalizing
the mode in real space, through the shallow photonic well design. In the example of
figure 3.16, not only are resonant Fourier components sharply localized in k-space,
at safe distance from the boundaries of the radiation continuum, but also all spatial
frequency components across the continuum are highly suppressed, result of the well-
behaved Gaussian-like field profile.

The Fourier analysis can be used to quantify the radiation loss by calculating
Qraq- In the limit of very high external quality factor Q. (e.g., long mirrors), the
integral of the intensity of the Fourier components over the radiation continuum is
proportional to the energy stored in the resonator than can be potentially coupled
to radiation. This result represents an approximate estimate, to the degree that the
exact density of radiation states is not accounted for. The inverse of the normalized

radiation integral represents an estimate of the radiation-limited quality factor @44,

2 -1
dk,

5 . (3.25)
dk,

Jraa |E(Kz)

| ER2)

Qrad =
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Figure 3.16. Normalized Fourier component amplitude distribution (log scale). (V' =

300 GHz, Ly = 100 pm, L, = 1.5pm, A = 100 nm, a = 245nm.)

For equation (3.25) to be valid, the condition Q. > Q,qq has to be satisfied, typically
Q. > 10'2. With increasing Q., the fraction on the right-hand side of (3.25) converges
t0 (Qreq- Engineering the resonant mode in Fourier space to tightly localize it and

suppress radiation components is the primary tool employed for the optimization of

the resonator’s @Qqq [160-163].

3.5 Single-Mode Design Parameter Space

We have already underscored the importance of keeping the photonic well single-mode
for use as a laser cavity. The mode capacity of the well is controlled by means of its
parameters V' and Lg. The design parameter set V' = 300 GHz, L; = 100 pm, L, =
1.5pum,h = 100nm,a = 245nm used in numerical examples so far, yields such a
single-mode resonator. If we increase the potential depth V' from 300 GHz to 450 GHz,
then the well accommodates a second mode, as shown in the transmission spectrum
of figure 3.17. The fundamental mode has now moved deeper into the well, at about

260 GHz from the band edge, while the second mode appears at 40 GHz. The same
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Figure 3.17. Normalized transmission spectrum of a high-() Si resonator with a
two-mode photonic well. (V' = 450GHz, L; = 100pm, L, = 1.5um, h = 100 nm,

a = 245nm.)

effect to the mode capacity of the well is caused if the defect width Ly is increased
instead. If the well is made either too shallow in depth or too narrow in width, then it
can support no mode. We solve for the sets of (V, Ly)o and (V, L)1 that correspond
to the cutoff of the fundamental and second-order defect-mode respectively. The
cutoff represents the set of (V) L) for which each of the two modes enters the well
and is conventionally defined as the point where transmission at the valence band
edge reaches unity. These cutoff sets form contours on the 2D (V) L,) design space,
denoted in figure 3.18 by red lines. The cutoff contours split the 2D space in three
distinct regions, a region in the lower left corner wherein no mode fits in the well,
a region in the upper right corner wherein at least two modes are accommodated
and a region in between wherein only one mode is allowed in the well. The first two
regions, shaded grey, are to be avoided for a single-mode laser cavity design. The
middle region, shaded blue, is the region of interest and contains all the candidate

design sets (V, Lqg).



29

400

350

300

250

multi-mode
200 |

150 . single-mode

100 | no mode B

Photonic Well Potential V (GHz)

50

0 50 100 150 200 250 300 350
Defect Length L4 (1m)

Figure 3.18. Single-mode design parameter space for a high-@Q) Si resonator. (L, =

1.5pm, h = 100nm, a = 245nm.)

3.6 Q.q Optimization Map

The single-mode design space defined in the previous section can be used as a grid
to map various resonator metrics for optimization on. Here, we use it to map the
radiation-limited quality factor @Q,.s. Employing the Fourier analysis outlined in
section 3.4, we calculate @, for a number of design sets (V, Ly) in the single-mode
design space of figure 3.18, with a resolution in V' and L,. The result is depicted in the
form of a color map in figure 3.6 for the case of L, = 1.5 pm, h = 100 nm, a = 245 nm.
The color scale corresponds to the decimal logarithm of Q),44.

A trend for @),.q can be readily inferred from figure 3.6. The radiation loss of
the resonator decreases with decreasing V' and increasing Ly. This behavior is to be
expected, since shallower and wider wells feature defect-modes increasingly extended
in real space, thus more confined in k-space. The longitudinal field distribution of
these modes approaches more that of an infinitely extended Bloch mode of a uniform
grating, which, for a waveguide with no intrinsic loss, would be rigorously lossless.

For a laser cavity, we will later on work with design sets closer to the cutoff of the
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Figure 3.19. Q,qq optimization map. (L, = 1.5 pm, h = 100nm, ¢ = 245nm.)

second-order defect-mode, as those, for a given well depth V|, maximize the fraction
of the mode’s energy contained inside the well-behaved Gaussian-like region. This
tailoring of the longitudinal mode profile not only enhances (),.4, but also, as will be

shown in the next chapter, has important implications with regard to laser operation.

3.7 Transverse Mode Allowance

In light of the grating design for the high-() resonator presented in this chapter, we
now reevaluate our choices for the waveguide geometry. Specifically, we reconsider the
requirement for an absolutely single-transverse-mode waveguide. Allowing a second
transverse to be guided would give us extra allowance in isolating the fundamental
TE mode, which is to be utilized as the lasing mode, from the etched sidewalls to
further reduce scattering loss.

The rib waveguide previously used in numerical examples in this chapter had a
ridge width of L, = 1.5 pm, which yields a transversely single-mode waveguide. For
L, = 1.5pm and L, = 2.5pm, two and three TE transverse modes are supported

by the waveguide respectively. Due to their unique spatial distribution, each mode
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interacts with the grating differently. We repeat the design process followed previ-
ously for the fundamental TEy mode, this time for the two higher-order TE modes,
TE; and TE,, by building look-up tables for each one separately, thereby accounting
for their unique interaction with the grating. Subsequently, for a set of (V| Ly)o that
yields a single-defect-mode photonic well for TEj, we derive the corresponding struc-
tural distribution W, (x). Once the universal W, (z) is defined, design and frequency
sets (V, La)1, (fo(2), fe(x))1 and (V, Lg)2, (fo(2), fe(x))2 for TE; and TE, respectively
are automatically also defined. Solving the 1D coupled-mode equations for each set
individually, the transmission spectrum corresponding to each transverse mode is ob-
tained. For (V, Lq)o = (300 GHz, 100 pm), the three transmission spectra are plotted
in figure 3.20, with the respective transverse mode profiles superimposed as insets on

top of each spectrum.
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Figure 3.20. Transmission spectra of a high-@) Si resonator transverse guided modes
TE,, TE; and TE,. (V = 300GHz, Ly = 100pm, L, = 2.5um, h = 100nm,

a = 245nm.)

The fundamental TE mode interacts with the grating the strongest, therefore
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experiences the largest bandgap. The familiar transmission spectrum for TE, that
we have seen before, with a single resonant mode localized near the valence band
edge, is represented in figure 3.20 by the blue line. On the contrary, due to the
opposite spatial symmetry between the first odd TE mode and the grating, TE; sees
an effectively much weaker grating. As a result, a bandgap barely opens for TEq,
manifested in a shallow dip in the transmission spectrum (red line), and thus no
resonant defect-mode can be localized. Instead, for the second-order even TE mode,
which possesses an antinode overlapping with the grating, an appreciable, although
smaller than that for TEy, bandgap opens and a resonant mode is starting to enter the
well (magenta line). Therefore, TE, has to be cutoff, while TE; can be allowed to be
guided. This result enables us to relax the restrictions on the waveguide dimensions,

thus providing additional room to reduce scattering loss for the fundamental mode.
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Chapter 4

Hybrid Laser Design and Modeling

In this chapter we present the design and modeling of a hybrid Si/III-V semiconductor
laser, based on a high-@) hybrid Si/III-V resonator. The design of the laser cavity
is primarily approached from the perspective of a passive resonator, following the
methodology and analysis presented in chapter 3, while a model for the simulation
of the basic laser physics in the presence of the gain and under pumping is later

introduced.

4.1 Hybrid Laser Platform

The hybrid platform comprises a InGaAsP /InP-based III-V epiwafer bonded to SOI,
the basic structure of which is schematically shown in figure 4.1(a). An ultralow loss
grating on Si provides optical guiding and mode control, similar to the one described

in chapter 3 is embedded in the SOI wafer (figure 4.1(c)).

4.1.1 1II-V Epiwafer Structure

The first layer from the bottom in the epiwafer is a 10nm n-InP bonding layer,
intended to lattice match Si and InP. On top of it is a 30nm n-InGaAsP/InP su-
perlattice, designed to prevent lattice defects created at the bonding interface from
propagating toward the quantum well region. A 110nm n-InP cladding serves as
the primary n-contact layer. The undoped active region consists of 5 quantum wells

(MQW), grown to nominally emit at 1550 nm, alternately stacked with 4 barrier lay-
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Figure 4.1. Hybrid laser device schematics: (a) Hybrid platform cross section. (b)

Hybrid laser perspective view. (c¢) Embedded ultralow loss Si waveguide grating.

ers, comprising a total of 75 nm and with average refractive index of n = 3.4476. On
either side of the MQW region is a two-step separate confinement layer (SCL), con-
sisting of two graded energy gap, undoped InGaAsP layers of 40 nm thickness each
and refractive indices n = 3.33 and n = 3.3755. The purpose of the SCL is to confine
injected carriers in the vicinity of the MQW region, thereby enhancing their recom-
bination rate, as well as their interaction with photons. In III-V only lasers, the SCL
region is also used to enhance the confinement of photons, thanks to the relationship
between energy gap and refractive index, yet, for hybrid lasers of the evanescent type,
where photons predominantly reside in Si and only a fraction of light interacts with
the gain medium, the role of SCL as a photon confining structure is greatly reduced.
The active region is topped with a 1.5 pm p-InP cladding layer and a heavily doped,
200nm p-InGaAs layer, serving as the primary p-contact. An InP buffer layer and
the InP substrate are removed following wafer bonding. The p-mesa is patterned by
wet chemical etching, while regions of the mesa on either side of the Si waveguide are
implanted with protons (HT) to increase their resistivity, thereby defining a confine-
ment path for the injected carriers. Further details on the fabrication process can be

found in appendix A.
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4.1.2 Hybrid Waveguide

The hybrid laser designed here is an index-guided type of laser, with the guiding
provided by the waveguide in Si. This is the same rib-type waveguide introduced in
section 3.1. Due to the pulling of the mode up by the high index III-V, the hybrid
mode overlaps with the grating more than in the Si-only case, thus making the grating
effectively stronger on the hybrid platform. To maintain the grating strength at the
same levels as on Si, the ridge etch depth is reduced from nominally A = 100 nm on
Si to nominally A = 50 nm on hybrid.

Following the argument presented in section 3.7, the hybrid waveguide is also
designed to accommodate two TE modes, the fundamental TE, and the first odd
TE; mode, pictured in figure 4.2, with the latter not being resonant in the photonic
well. Given the Si device layer thickness of H = 500 nm, etch depth of h = 50 nm and
the epiwafer structure as defined above, the two-transverse-mode criterion is satisfied
with a ridge width of L, = 1.5 pm, keeping the second-order even mode TE, at safe
distance below cutoff.

Given the above choices for the hybrid waveguide parameters, the effective index
of the TEy mode in the unpatterned waveguide (i.e., no grating) is calculated to be
nesr = 3.30, its group velocity n, = 3.48, while the cutoff effective index of TE is
found to be n, = 3.24. It is this cutoff that sets the light line of the primary channel

of loss, that is the continuum of Si slab radiation modes.

4.1.3 Confinement Factor

The overlap of the mode with the MQW region is quantified in the confinement factor

r _ ffMQW |E(y, 2)|*dyd=
e ffall |E(y7 Z)dedz ’

(4.1)

where the two integrals are evaluated over the waveguide’s cross section, for the

MQW region and the entire cross section respectively. In classic laser terminology,
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Figure 4.2. Hybrid waveguide: distribution of the norm of the electric field of (a)
TEy, (b) TE;. (H =500nm, h = 50nm, L, = 1.5 um.)

the confinement factor enters the lasing threshold condition

1 1
T =+ =4 : 4.2
MQWUJth = & + I n <R1R2> (4.2)

where ¢, is the material gain at threshold, «a; the laser cavity’s internal loss rate in
inverse length [cm™!], L the total cavity length and R;, Ry the mirror reflectivities.
The internal loss can be further broken down into loss through radiation due to finite
mode confinement, scattering loss due to roughness and fabrication imperfections,
surface and bulk absorption, as analyzed in section 2.3. The predominant source
of loss in III-V semiconductor lasers is free carrier absorption in the heavily doped
contact and cladding layers of the epiwafer. The absorption rate is typically on the
1

order of apcy = 10cm™".

We seek to maximize the laser cavity’s intrinsic quality factor as a means to reduce
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the laser linewidth. We leverage Si platform as a low absorption optical platform,
to reduce the otherwise high absorption in the III-V. For a given distribution of the

hybrid waveguide mode, the total absorption rate can be expressed as:

g = I'm—vam-v + I'sios;i, (4.3)

where I'g; is the mode’s confinement in Si, defined as a fraction similar to (4.1) and
ag; the bulk absorption rate in Si, which is typically several orders of magnitude
smaller than in ITI-V for high resistivity Si (e.g., p > 10Qcm). The absorption in
ITI-V can be further divided into absorption in the p- and n-side of the epiwafer:

aIII—v = FnOzn + FpOzp. (44)

By “diluting” the mode between the III-V and Si, the effect of III-V FCA can be
significantly reduced, thus enabling higher intrinsic ) than what is possible with
conventional ITI-V-only lasers. At a first look at equation (4.2), it appears that this
dilution comes at cost of increased material gain, for a given amount round-trip loss
in the cavity. In fact, to the degree that the dilution of the mode into Si reduces the
internal loss, through reduction in III-V absorption, the total modal gain required to
overcome losses is also reduced and therefore, smaller confinements factors in I1I-V
can be tolerated without increase of the material gain. This is especially true if the
mirror losses are also kept low, as is the case for the undercoupled cavities utilized in
this work. We therefore only need to retain sufficient amount of light in the III-V to
overcome losses, while the majority of photons are stored in the low loss Si.

A minimum Si device layer thickness of 400 nm is needed to confine the mode in
Si. On the other hand, too thick a Si layer would deplete the III-V of photons almost
entirely, thus making photon generation highly inefficient. Furthermore, thicker layers
require deeper etching to achieve a certain grating strength, thereby creating larger
surfaces for scattering. An intermediate thickness of H = 500 nm is therefore chosen

for the Si device layer of the SOI wafers used in this work. For the type of waveguide
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defined in section 4.1.2, the calculated confinement factors are I's; = 75%, I'iqw =

3%, Tm—v = 22% in Si, active MQW region and III-V cladding respectively.

4.2 Hybrid Resonator Design

The design of the high-() resonator on the hybrid platform follows the procedure
outlined in chapter 3. It starts with the design of the valence band edge frequency
distribution f,(x). Based on the analysis of chapter 3 and specifically the optimization
of Q,44, we choose an initial set of design parameters for the photonic well within the
single-mode region and close to the cutoff of the second-order defect-mode, that is
(V, Lg)wp = (100 GHz,200 um), as shown in figure 4.3. Along with the epiwafer
parameters overviewed in section 4.1 and the hybrid waveguide parameters of section
4.1.2, this design will be referred to as the main working design parameter set. The
period of the grating is fixed to nominally a = 235 nm, to set the operating wavelength

around 1550 nm.
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Figure 4.3. @44 optimization map for Si resonator, with working design set (V, L) =

(100 GHz, 200 pm) marked for the hybrid resonator.

Although the map of figure 4.3 was derived for the Si-only platform, we expect



69
it to model the hybrid closely enough. The hybrid structure is rigorously accounted
for by solving for the eigenfrequencies of the 3D hybrid unit cell and constructing the
corresponding look-up table, shown in figure 4.4. The respective 3D hybrid unit cell
mode distributions at the band edge frequencies f,, f. at the end of the first Brillouin

zone are shown in figure 4.5.

1000
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Offset Frequency (GHz)
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Figure 4.4. Look-up table for hybrid high-Q) resonator with V' = 100 GHz and L, =
200pm. (H = 500nm, h = 50nm, L, = 1.5pm, a = 235nm, W, ., = 200nm,
W, =90nm.)

The resonator’s spatial band structure f,(x), f.(z) is plotted in figure 4.6(a) for
a mirror length L,, = 320um. From f,(z), f.(z), the corresponding detuning and
coupling coefficient distributions in the wavelength range of interest are derived and
the 1D coupled-mode equations are readily solved. It is noted that average grating
strength on hybrid is similar to that on Si and more than an order of magnitude
stronger than conventional DFB gratings (i.e., 10cm™}).

The hybrid resonator’s transmission spectrum is plotted in figure 4.7. The bandgap
is illustrated with the lighter grey-shaded area that spans about 568 GHz. The
depth of the photonic well is represented with a darker grey-shaded area of width
V' = 100 GHz. The resonant defect-mode is localized at 45 GHz from the valence
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Figure 4.5. Hybrid 3D unit cell: distribution of the norm of the electric field of TE,
at (a) fy, (b) fo. (H =500nm, h =50nm, L, = 1.5um, a = 235nm, W, = 250 nm,
W, = 90nm.)

band edge. The longitudinal field intensity profile of the resonant mode is shown in
figure 4.8. The grey-shaded area corresponds to the extent of the photonic well. Due
to the relative position of the design set (V, Ly)wp inside the single-mode space, that
is near the cutoff of the second-order defect-mode, the resonant mode is primarily
confined in the defect.

To estimate @),44 for the resonant mode of the hybrid resonator, we Fourier trans-
form the fast oscillating field for a mirror length L,, = 940pm to ensure suffi-
cient unloading from the waveguide. The corresponding external quality factor is
Q. = 1.1 x 10'2. The distribution of the Fourier component amplitudes is plotted in
figure 4.9. The resonant mode’s wavenumber is found to be at 8, = = = 13.37 pm~L.
The radiation mode continuum is illustrated by the grey-shaded area. The radiation

light line is set by the cutoff effective index of the extended hybrid mode, which is
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Figure 4.6. (a) Spatial band structure of a hybrid high-Q resonator with (V, L;) =
(100 GHz, 200 pum), L,, = 320 m, f,(x), f.(z) (blue solid lines), fprage (red dashed

line). (b) Coupling coefficient distribution x(x).
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Figure 4.7. Transmission spectrum of a hybrid high-Q) resonator with (V,Ly) =
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Figure 4.8. Longitudinal field intensity profile of the resonant mode of a hybrid high-Q
resonator with (V) Ly) = (100 GHz, 200 pm), L, = 320 pm.

primarily confined in the Si slab. This effective index is found to be n, = 3.24 and
the corresponding radiation mode cutoff wavenumber k,,q = 13.13 um~!. Integrating
the area under the Fourier amplitude distribution across the radiation continuum
and normalizing by the total area under the line yields an estimate of the resonator’s
radiation-limited quality factor, here calculated to be Q,q.q = 4.8 x 107, a value very

close to the estimate based on the Si platform’s @),.q optimization map.

4.3 Hybrid Laser Modeling

We have so far approached the design of the hybrid laser from a largely resonator op-
timization perspective. The resonator platform has thus been assumed to be passive.
To predict the behavior of the actual laser though, we now seek to find out how the
designed high-() resonator fares in the presence of gain. To account for the laser’s

fundamental physics, we will revert to a more traditional laser terminology.
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Figure 4.9. Fourier component amplitude distribution of the resonant defect-mode of

a hybrid high-@Q resonator with (V, Ls) =(100 GHz, 200 pm), L,, = 940 pm.

4.3.1 Rate Equations

The simplest of laser modeling approaches is based on the concepts of particle and
energy conservation with regard to photon/electron interaction. Accounting for ab-
sorption and emission of photons, as well as the recombination of electrons and holes,
a balance between photon generation and carrier recombination has to be kept at
any point in time. This is accomplished using the photon/carrier rate equations.
For a spatially uniform density distribution of photons S occupying an optical vol-
ume V' = AL and interacting with an accordingly uniform density distribution of

electrons NV over an interacting volume V;,, = 'V, the rate equations are written as

d(V'S) VS VS VN
=I N)S — — r 4.
i TV OS2 = S pr (1.5
dVN) I pya,vys - 2N (4.6)
dt (& Tr

where equation (4.5) describes the temporal rate of change of the number of photons
in the cavity and equation (4.6) that of carriers.

The first term on the right-hand side of (4.5) gives the rate of stimulated emission
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of photons, where G,,,(N) is the gain coefficient per unit time. The confinement factor
I', defined in section 4.1.3 as the fraction of the optical mode in the active region,
accounts for the fact that only photons in the active region contribute to stimulated
emission. The second and third term account for photon loss internally (e.g., ab-
sorption, scattering, radiation) and through the finite laser mirrors respectively, with
7; and T, representing the intrinsic and external photon lifetimes respectively and
associated with quality factors @; and @)., as defined previously. The last term of
(4.5) describes the change of the photon density due to spontaneously recombining
electron-hole pairs. The coupling factor 3, accounts for the fact that only specific
frequencies and directions of the spontaneous emission continuum contribute to the
photon density of a particular mode (3, ~ 107°).

The first term on the right-hand side of equation (4.6) describes the change of the
carrier density via a constant external current injection. The second term is the coun-
terpart of the first term in (4.5) and accounts for the loss of carriers in photon-induced
recombination. The third term represents the total spontaneous carrier recombina-
tion rate, accounting for both radiative and nonradiative processes. This rate can be

further broken down as

N

— = AN+ B(NP) + C'(N*P) + C"(N P?), (4.7)

Ty
where N, P are electron and hole densities respectively (N ~ P under laser oper-
ation) and A, B,C’",C" characteristic constants. The first term in (4.7) is linearly
proportional to the electron density and is usually nonradiative. The second term
corresponds to bipolar radiative recombination (i.e., spontaneous emission). The

third and fourth term describe nonradiative Auger recombination.

4.3.2 Field Equations

The rate equations provide a phenomenological description of the laser’s basic physics,
but fail to give any explicit information about the frequency of oscillation. They also

do not allow for spatial nonuniformities to be accounted for, nor do they account for
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the field’s phase. Spatial dependencies and phase information are parameters critical
for the modeling of lasers based on distributed feedback mechanisms. In such cases, a
rigorous modeling of the waves’ evolution in time and space is necessary, accounting
for both propagation in the laser cavity and interaction with the grating.
Let’s first consider a wave propagating in a uniform waveguide with gain. The

electric field distribution can be expressed as
E(y, z) = F(x,t)uly, z) exp(iw,t — if,x) + R(x, t)u(y, z) exp(iw,t + if,x), (4.8)

with f3, the propagation constant at w, and u(y, z) the mode’s transverse distribution,
taken to be constant over the length of the cavity for an index-guided laser. F(z,t)
and R(z,t) represent the forward and reverse propagating, slowly varying envelope
functions of the field, which can vary both in time and space under laser operation.
The counterpropagating components are, for now, assumed to be uncoupled. For
a small range of optical frequencies around w,, these slowly varying functions are
modeled as wavepackets propagating at the group velocity v, = fl—g|wo, which is also
the field’s energy velocity of propagation. The wavepacket’s evolution in time and

space is described by an advection-type of equation as

OF 1 0F
o T v =(Cgm — o) F, (4.9)
OR 1 0R

o T v Ot =(Tgm — am)R, (4.10)

where I'g,, and a,, are the modal gain and total loss per unit length respectively.
With the right-hand side of (4.9) set to zero, the wavepacket propagates with no gain
or loss at the group velocity v,,.

The laser field excitation is driven by spontaneous emission, which is incorporated
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into the field’s evolution by means of random field amplitudes g, i5pr:

oF 10F ,
% + U_E :gF + lspfs (4.11)
g
OR 10R ,
—a—x + U_E :gR + Uspr (412)
g

where g = I'g,,, — a,;, now represents the net field gain. Spontaneous emission field
amplitudes ig,¢, 15, are uncorrelated in time and space. Factored into ig,¢, 75, is the
spontaneous emission coupling coefficient 5, that accounts for the fraction of sponta-
neous emission coupled to a particular lasing mode, as well as a spontaneous emission
confinement factor I'y,, similar to the gain confinement factor, that defines the frac-
tional volume over which recombining carriers contribute to spontaneous emission.
Let us now assume that a grating of period a couples F' and R. This situation was
addressed before for a passive grating in chapter 3. Introducing the spatial coupled-

mode formalism of chapter 3 in equations (4.11), (4.12), we have

oF 1 0F
% + U_E =(g — Z5)F +1kR + Lopfs (4'13)
g
o0R 1 OR
“or + T =(g —i0)R+irF + Lsprs (4.14)
g9

where 9 is the detuning of the wave’s propagation constant 3, at the central frequency
w, from the grating’s Bragg wavenumber and s the grating’s coupling coefficient for
the particular mode. Equations (4.13), (4.14) are essentially enhanced versions of
the photon rate equation (4.5). They model the photon number’s change due to
stimulated, spontaneous emission and internal loss, with the added information of
the field’s phase, the coupling through the grating and accounting for the field’s
spatial dependence. Hence, the advection field equations (4.13), (4.14), along with

the carrier rate equation 