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ABSTRACT

Dispersion relations for Iydromagnetic stabllity were found for
three related problems in which the effects of plasma motion were
considered. The hydromegnetic differential equatiom‘ and boundary
conditions were linearized in an enalysis wiich assumes smell amplitude
perturbations esbout an equililbeium configwration. This configuration
congiate of a dissipationless plasma flowing in an infinite eylinder
with infternal and external longitudinal and aszimuthal magnetic field
COMPORSIILE

Problem 1 is en extension of earlier work and includes electro-
magnetic radiation and compressibility effects, Problems 2 end 3 assune
that the plasma is bound by a non-conducting compressible medium in

addition to the megnetic fields. The equilibrium magnetic and velocity

field vary as
13 = B{O, r'/re, By, W o= A VA(Q, z'/'z*ey h)

where v, = B/( 4 p P) 2 problem 2 incompressibility is esswnced,

while in 3 the assumption of compressibility is made where v, v, <

La

By

gonic speed of the plasme. This allows a matrix-periurbation expansion

apout the incompressible soluticn. The effects of the moving boundary
were Included. It was found convendent to use the hydromegnetic
rOSSUre X = [ o4 Be/a /40 ag the bagic dependent variable and to use
the hydromagnetlc equaetions in gymmetric fornm. 7The equatioms were

extended to a quasi-gymmetrical form for itreating the compressible

58
eI,



An analyticel-mumerdcsl gtudy was made in vhiich the dispersion
relaticn for incompressible flovw was treated as e function of a complex

2 man'l

vardeble. In each of ten differsmt physical situstions the flow
parameser, /\ , was varied over the range O < A < 1.5 and the follow=
ing conclusions were reached:

. The oseillletion freguencies are gymmeitricslly distribuled
sbout the ordgin with AN\ = 0. Vhen /N> 0 the mode
frequencies are all shifted toward the negative and vary
monotonieally with /\

2. The growth rates ore larger for large wave mumbar disturbances.

3. The oseiliation frequency for complex modes increases with
increasing /\ .

k, Inercasing the fiow {/\} removes sausese lnstabilities and

s )

ephances {the megnitude of ) kink instebilities.

5. Adding a strong lomgitudinsl megnetic field intensifies the
sausege inctabilities Ly lncreasing the megnitude of thelr
grovih rate end requiring a larger flow to remove them. Kink

ingtabilitics are removed



The need for a better understanding of phenomene associated with
the interaction of ionized matier end electric and magnetic fields has
gtimilated a great activity in hydromegneiics in recent yeers. Of
perticular interest have been those problems involving the stability of
plesms systems. The contributions to the literature {see Bibliography)
by asirophysiciste studying the behavior of sunspois, erches, prominences,
magnetic verisbles, and spiral galactic erms, end by physicists studying
the problems of the siebility of a plasme fusion machine are evidence of
this activity. Astropbyeiciste have mede an effort to show that certaln
astrophysical phenomena are essentially a coamic displey of a hydro-
negnetic {hm) instability. On the other end of the megnitude scale,
physicists have determined that the stability of e constricied gas dis-
charge is an essential requirement for the successful operation of a
fusion machine.

The partial differential equations (d.e.) of hydromegnetics present
problems of formideble methematical complexity primerily because of the
non-linear coupling terms involving the velocity and megnetic fields.
Most emelyses of receni years have employed linearization techniques to
overcone this handicap. For example, in current investigations of the
dynamo problem, the velocity field is assumed known, snd one neglects
the velocity equaitions end reduces the problem to a linesr one for

cheracterizing the magneiic field. Similarly, in sisbility problems,
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one investigetes the behavior of the system under small perturbatlons in
the neighborhood of a stationary equilibrium. If one neglects the product
of two or more perturbation quentities, one obtaine a coupled set of
linear partisl differential equations with spatislly variable coefficients.
The latter procedure is used by the author in the problems investigated
below.

Mathematically, it is convenient to ireat the plasma as dissipation-
less {resistivity and conductivity both zere) and 1o neglect the heat Llow.
These assumptions are desirsble, for they allow one to separate the basic
instebilities in the first part of the motion (vhere linearity is valid)
from the effects of natural decay. The first assuuption reduces the order
of the d.e., wherecas the first and second together reduce the complexity
of the energy equation of the fluid. The physical considerations upon
which these assumptions rest ere related to behavior of the %@mpefatﬁr@
in the plasma, snd are discussed in Section 2.7.

As in all physical problems, the geometry of the gystem determines
the specific form of: the component d.e., the boundery conditions (b.c.),
end the spatial dependence of the equilibrium variebles. Cartesisn
geometry has been used o study the elemeniary solutions of the him
ecquations end their physical significance, These resulis ere appliceble
to large scale coémie phencmens where geometric effects are of second
order. The spherical plasma is a natwral model for the pulsating magnetic
variables.

The stability of the cylindrical plasme has excited considerable

activity because the resulis ere applicable io such phenomene as spiral
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alactic arms, intersteller fields which confine coamic ray particles,

o

and the pinch effect in a fusion machine, Recently, the equilibrium of
o toroidal plasme has been investigaied beceause of its applicability to
the "Stellerator” type fusion machine.

mwe methods have been used to determine whether plasma systems
are gieble,

1. The "normal mode" techmique (%)bis the usual one for investi-
gating stability end is the one employed in this invegtigation., It
consiste of solving the linearized hm equations for small perturbations
ebout equilibrium. Boundery conditions are matched, and one obtainsg a
dispersicn relation {or secular equation) whose roovis indicete whether
the solution is unsteble (grows with time) or steble (decays or retains
the seme amplitude). The dispersion relaticn containg transcendental
functions which are characteristic of the geometry. This is to be com-

8

pared with the polynomial funciions obtalned from the characterisilc
determinant of systems of linear congtant coefficient d.e,

2. The energy principle technigue (2,3), on the other hend, depends
upon & variational formulation. It was used by Aeyleigh {1877) in the
caleulation of freguencies of vibrating systems and was originally stated
by Lundquist (&) for hm systems. Its adventage lies In the fact that
if one seeks solely to determine stability and not rates of growth or
oscilletion frequencies, it is necessary only to discover whether there
is any perturbation which decreases ihe potential energy from its equilib-
sium value. This mekes practicel the stability enalysis of more compli~-
cated equilibrium geomeiries ithen does the normal mode analysis. The
disadvantages of the energy itechnique are twofold. First cne must guess

or have a prior knowledge of the funciional dependence of the eigenfunciloms.
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Second, it is not applicable to cases where the equilibrium velocity
field of the plasma is finite (the raison d'etre of this dissertation),
for in such cases overstisble® roots ere present in the dispersion
relation, This prevents cne from writing a convenienit variationsal
principle.

A virial theorem derived by Chendresekher and Fermi (5) has been
applied to absolute stability investigations of cylindricel and spherical
geametries (6). It is en energy technique similar to the one sbove, but
it can also be used to determine the frequency of the primary mode of

ogcillation.

1.2 Statement e Proble

The aim of this dissertation is to study the hm stability of e
cylindrical plasms in which the mess motion of the plaesma plays as
important a role ag does the magneiic field. In the three problems
described below the plasma is assumed to be non-dissipetive (resistivity
and viscosity vanish) and non-heat-conducting. The b.c. are matched

across & "moving boundary." Figure 1-1 sketches the problems presented.

1. Electromsgnetic radiastion and compressibllity effects are
considered. The plasma contains internal and external,
uniform (but different), longitudinal megnetic fields and en
internal, uniform, longitudinal flow. The equilibrium state
is maintained by the azimuthal and longitudingl surface currents.

Roots which lie in the complex plane - off the reel and imasginary
axisg,



2.

30

.5 -
The latier produces the externel azimuthal magnetic field.

WV o= (Oioivz)I IB = B(0,0,bi); r< T

Lo
W o= 0 5 IB = B(0O, 5‘:%)5 r>r

Electromegneiic radiation and compressibility effects are
omitted. Hence, in equilibrium the plasma has a constant
density o 0’ The velocity field hes ezimuthal as well as
longitudinel components. There is a megnetic field within and
external tc the plasma. In both ceses there are szimuthal and
longitudinal compoments, ell of which differ in magnitude. The
region surrounding the plasme contains a non-conducting
compressible gas which is at rest and has & constant density e o
in the equilibrium gtate, If o o venishes, one has the case

of a vacuum surrounding the plasma.

r r
A m/\vA(O, ;:, h), Wpe = VA(O, ;;-, h); r<r,
e
wg =0 5 Ve = vA(O,bg = ,hbz); r>r,
where
-1/2
Vp = ("fo FP) B

The equilibrium is the same as for the second problem, except
that we allow the plasma to be slightly compressible. That

is, we assune



| w |2 I v, 17
e <1 &2 <1
2z -1 2
{sonic speed) (sonic speed)

This causes ihe pissma density to be spetially dependent, as
ghown in Chapter kL.

Seetion 3.1, which follows a discussion of the basic hm equations,
will present em outline of the approximations mede by previous investi-
gators and will compere them to the ones made in this dissertation.
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Progrem 1 -z
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' Fig. 1-1. The Equilibrium Configurations.
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2 THE HYDROMAGNETIC DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

The d.e. used to deseribe the dynamic behavior of an ionized gas
are ‘ﬁhe hm equations. In the discussions which follow we will comsider our
gas as fully ionized - a plasma composed of two components, electrons
end ions. To obiain g relativistically coveriant form for the conserva-
tion equations (momentum and energy) one would take the four-dimensional
divergence of the complete energy-momentum tensor. The complete tensor
is the sum of the energy-momentum tensor of the electromegnetic field
and the energy-momentum tensor of the plasma (fluid). Since we are
interested in phenomena where the macroscopic fluid velocity is much smaller
than the velocity of light, we will be satisfied with equations which
include relativistic effects to the first order {problem 1).

Numerous investigators (7, 8 Chap. 18, 9, 10) have described pro-
cedures for obiaining such equations by sterting with the Maxwell-
Boltzmann collision equations. A separate collision equation deseribes
the behavior of the distribution function for each componenet of the plasma.
Momenis of each component equation sre formed with various powers of the
velocity of each fluid component. Properly weighted linear combinations

of the moment equations yield the macroscopic hm equations.

1. Conservation of mass {zeroth velocity moments swmmed)

aw-a-v«» (e\v)=0 (2.1)



-9 -

2, Conservetion of momentum or Nevier-Stokes equation {(first

velocity moments summed)

PPy W= Pty x BrelE-pVE (2.2)

3. Conservation of energy (second velocity moments surmed)

(8, eqs. 18.2-18,6)

#

- Qe+ p{UE)ew (Y ~rw)(lE+ waxB)-(PV)w
{(2.3)

k., Generalized Ohm's Lew (first veloeity moments differenced)
(7, eq. 2-12)

o , ©

®
[E+ v+ IB=nj }ww%at J'J"m;{VPe“J) x 1B] (2.b)

nq
where D, = substantial derivative = e‘st +{ wV) (2.5)
and n = mumber density of electrons = number density
of ions

g = (MKS) charge on an electron {taken as positive)

m, = eleciron mass; m, = ion mass

¢ = mass density = n(m, + me)

o = charge density = nq(Z-1)

W = macroscopic fluid velecity

The balloons are explained below.
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J) = macroscoplc current
T§ = P T+ I‘?‘% = total pressure temsor of the medium
~—
p = 1/3 trace of ([P) = p; + p_, = niT
IB, IE = total megnetic and electric field

o
i

external potentlel emergy per unit mass

(@ = heat flow vector (essociated with transport of
kinetic energy)
n = resistivity of mediwm {assumed a scalar)

Equetions 2.1, 2.2, and 2.3 are exach, and 2,1 through 2.h are
Gelileen inveriant. Unfortunately, the set of equations is incomplete.
To get a complete setl of equations which is slso mathematically trectable,
severel simplifications will be introduced.

If one assumes & lerge collision rate between periicles, the
distribution function of the components is isotropic in velocity space.
In this case T§ is o disgonal tensor with similer elements, i.e.,
V.iP =Vp. The off-dlagonal terms of P eare related to the viscous
ghear forces and contribute to energy dissipation in the medium (the
iest berm of 2.3). A better spproximetion to reelity (9) would utilize
a pressure tenscr which is diasgonel in a locel rectamguler coordinate
system, one of whose axes points along |(B. Thaet is, for a magnetic

field along e,

fP=mn ) (2.6)
[P=p (( &+ )+ P CHNCH .

In this case the requirement for complete isctropy in pressure has been
removed. Cravitationsl snd other ewiermal forces erve omitted ( i'aO)

in the present study.
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In 2.3 we assune:
1., Viscous and resistive dissipation are negligible ( n =0,
'=0).
2. Heat flow along end seross the lines of force is negligible
(V- @=0).
3. There are no externsl forces { $=0).

Hence, the energy equaticn reduces to

%&,&p-rgV'(p\v)«%_@V-\Vz‘gﬁtpné-g-&te = 0 (2.7}
or
D(pe”") =0, r=5/3 (2,8)

Such epproximations are valid in a stability snelysis where one is
interested in initisl wotions., Furthermore, one can show {11) that
dissipative effects can never remove 2 basic instability, but will only
reduce the growth rate.

Ohm's Law simplifies when one assumes:

1. A high tempersture plasme {7, eq. 5-39). Physically, this
result iz derived from the assumpiion of a very small collision
rate between electrons end ioms. Thet is, 1 ¢ (collision
rate} ~> 0,

2., Plasms phenomensa change slowly, so that if tc iz the cherac-
teristic time for plasma events, then

1 1
LTt T > e
¢ cdp ] G.)L

b

The balloons above 2,4 refer to the following enumeration. Each term

becomes zero when cne mekes the corresponding assumption.



where
2 1/2
¢)_ = electron plasma frequency = (~—Ha—)
P e %o
@ . = ion Lermor frequency = ’}%ﬁ
A

L

#

LI

e
(=8-) =k << 1, wmere: (o) o = Hc© + vF); (b) v = the macro-
v, L e A

seopie fluid velosity; (e) vy

i

the ion veleoclly in & Learumor
cireie; (d) v, = the Lermor redius; end (e} L = a charac~
teristic length over which the plasme chenges. This assumption
breaks down 1f v = 0 in the equilibrium stste. In Ref, 2,
peregraphs 3a and 3b, en examination is made which includes the
lagt two terms of 2.k in the case W, =0, and 1t is found that
the ebgolute stability is unaffected. Hence, condition 3 umay

be violated without changing the sbsclute gtabllity of a system.

¥ith these approximstions in mind, the above ewations reduce 1o

the basic hm equations,

3, ¢ + Ve (gw) =0 (2.10)

QDt W==Vp+ Q) x IB+ail (2.11)
- 1 "o -

Dt(pe } a@zpﬁip» 0 D p=0 {(2.12)

IE+ wxlB=20 (2.13)

To obtain a complete set, ome miust add the exact, Lorentz-inveriant

Maxwell equations.
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Veip=0 (2.14)

Voris= 404 + -3;5 5 I (2.15)

Vg = §1 (2.16)
o

VxI|g=~3 IB (2.17)

Note that 2.14 ig implied in 2.17. Equations 2.10 end 2.11, the
curl of 2.13 (with the resistive term included), and 2.14-2.17 are writien
out a8 component equations in cylindricel ccordinates in AppendixA2, There,
o |E is omitted from the momentum equetion. Since none of our problems
containg egquilibrium electric {lelds in the rest frame, the o~ [E will
enter as a perturbation term of second order in our stebility enelysis
and will be neglected. That is,

(V.IE)E
€

(2.18)

o lE =

g“’ i’@}

¢ O

An alternete discussicn for omitting o is presented in Section 3.1.

2,2 The Symmetric Form of the Hydromagnetic Equations

Where the weloclity £ield within the plesma is of comparable magnitude
0 the magnetic £ileld, a itransformed set of cquations is more convenlent.
If the mediunm lo incompressibvle, e = constent, one can use the Elsasser-
Biermenn equetions {12, 13) vhich are derived below.

1B

(/(o("p

By introducing the definition Wy )1 75 » one can re-

write the curl of 2.13 a&



- ” » 7 St wedd - \V . &,
3“;, \o, +Vx{w x\?}A} 3 W, + Vv E\v W o W \VA = 0 {2,19)

where A1.19 has been used., Hguation 2.6 cen be wrilten in this form if
we assume, in addition to incompressibility { e= @ F}’ that the dis-
plecement current and electric force terms are negligible., If we

gubstitute 2.15 into 2.11 end divide by ¢ 0? we obiein

g w { w V) \vM-«?;Viz;+"*}iW“}+€\v 'V v, (2.20)

where we have used A1.13. Using A1.18 and the fact that AW AN
%

=V W, =0, one cen grite this as

3, W+ Velv w-w, W1=-V= {2.21)
where = = e {p + "‘5“‘"“} = the normelized hn pressure. (2.22)
€p M

if one ndde and subtracis 2,12 and 2.21, cne oblains the symmetric hm

equations.
3, @ +V- L@ Q)=-9n (2.23)
9, (9, + Ve i@ (Q{J SIE AV {2.24)
where Q, = Wz ,\vﬁ {not the heat flow vector) {2.25)

These equations are symmetric with respeet to an interchange
(@, <==> @_. The mass and flux cc cnbinuity equations teke ihe form

Ve ((Qi) = O (2.26)



Tq deal with a compressible plasma, the aubhor Introduced new
variables IR+ to account for the density veriation. Using 2.10 one

can write the momenbum ecmatisn 2,11 as

B,t( 0 w)+ WV (oW, NI epVﬁ W, ’V\VA {2.27)

where we have again meglected the displaccment curvent and cherge density
terme. By adding and cubtrecting 2,27 with 2,19, we obtain the gquasi-

symnetric equations of hm.

2, 1+ (1/2) Ve {(m, + @) @+ (IR, - @) @ =-V=
(2.28)

e

5, I, + (1/2)V {Gr_+ @) @+ (18- Q) @}=-Vx

{2.29)
where
© = Wi W, 2 = £ W W {2.30)
% a’ + e, =~ A
£

és %«u

Eguations 2,25 and 2.29 are symnetric with respect 1o the interchange

of signs (-) <==> (+), but not with respect o the interchange IR <==> (@,
The mass and flux contimulty equations (2,10 and 2,14} take the

form

Ve, = - %» (5, 0) « (2.32)

V’lﬁ;t ""':' ( ? ) (2033)
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P is related to n and (0 through the relation

ke
#

. %~ (1/%) {‘% - @ ] z (2.34)

Lol

(€@ end IR ere related to each other by

215, = (Q ?{ng + 1]+ @ {.ﬂi“, + 1) {2.35)
£ * @y - €

2ek  The Boundery Comditions tic Problems

The b.c. across surfaces which move with the £luld perticles sre

obtained, as in electromegnetic problems , 0y Irdegrating the d.e. of motion
over vanishingly small “pill-boxes” wilch heve sreas in the adjecent

media. The result of ouch sn indegretion comtbains terms of the form

o and D, j fow = € 12 % i8] dsz =0 {2.37)

12
o
=]
[
| %3}
bt
#

which venish in the limit of small volumes. Since each surface of the
piil-box lies in a different mediun, these b.c. are applicable only to
situaliong where there is a sherp boundary between the plasma and the
adjacent medium. Nowthrop {14, egs. 6~12) and Kruskal and Tuck (15,
egs. 10~1k4) have presexted the b.c., and they are swmerized below with

corrections mede in certain of their signs,

1. Velocity continuity

< 3 y i = 13 °
W m}p woe ol =u (2.38)



- 17 -

2., Pressurs continuily

3

{(Zﬁ%’gg SE g B0 o BB M) _AE(JEen) wE B }i

2 2
Mo 2M c? Ao A c M c p
gimiler
= quoxs ity % %‘;2 * 3?3
outaide G

3. Megnetic flur comtinully

{lnxlﬁ+g‘§ IE} i - {lﬁxlB-@-% lE}; m A ﬂij * (2‘.&?}
¢ v 3 ol

he Electric flux continuity

in Iuip in lm§o + e {2.h%2)
{m x IE - u m} %F - {m x IE-u B} | (2.43)

where
o e, g
He l? = }:" ﬁj + IP
be @ is the uwnit vector, normel to the surface of discontimuity.

Thus, if the

It is positive when 0o
plosma is the interior medium
‘5&$ Bl lﬂﬁﬁ {20 &-ﬁ-)
¢, the subscripts p eand o stand for "plasma” and “outer”
de §% end o ¥ are the result of integrating sheet currents

end charge densities over smell pill-boxes. That is,
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f}} a3x fa"ﬁs'X
J* =5 TH# = (2.45)
if j and o have delte function distribvutions.

Not all these b.c. are independeni. A Jjudicious choice
of the proper equations will often simplify the work in solving
stability problems. One could also obtain a b.c. from the energy
conservation equation, but this is redundant.

In deriving the above b.c. it was agsumed that the surface
of discontimuity beiween the itwo regions, £{x,y,2,1) = 0, moved with
the fluid particles of each region. Hence, those pariicles which
initially were present in the swrface remained there, for they have
the same velocity slong ﬁ&e normal as the surface itself. Furthere
more, no new particle can become a member of the surface. This defines
a "stalionary surface” or in the nomenclature of Hadesmerd (16), a
"digcontinuity of order gero." For such discontinuities one can
specify arbitrarily the ratio of densities om esch side. The "total®
pressure is contimuous across such surfeces. Ite gredient, which is
proportional to the acceleration of the fluid particles, will not
be continuous.

Discontinuities of order "n" (shock discomtinuities) can
be obtained by assuming thet the density and the acceleration and
their first (n-1) time and space derivatives are combinuous across
the diseontinuity. Such surfaces are not "stationary" with respect
to the fluid but drift through it with a definite velocity, calculable
from the physical assumptions which are made. For gas dynamics

problens, this velocity is one of the sonic speeds in the medium.
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The b.c. across such discontinuities are calculated from the basgic
d.e. of motion, using the pill-box idea. However, the details of the
eslculation are different, eince the surfece of discontimuity is located

in one medium at time + end moves to the position of the next medium

et t + Atb.

The vector normsl to the surface of discontimaity, £,

a = T‘%T (2.16)

appears explicitly in the b.c. Thus, rather then describe the behavior
of the surface by the d.e. for f£(x,¥,2,t), we prefer to work directly
with the de.c. for Inm. This is derived in AppendixA3, end given in

A3.20 as

3, m+ wineViin =1m x [ n xVu] (2.47)

where u = velocity of the swrfece normal to itself. For surfaces of

discontinuity of order zeroc, then,

u = \vp *n= Wt on (2.%8)
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3 NORMAL MODE ANALYSIS

To reduce the mathemstical complexity of stebility studies,
investigetors heve imtroduced assumptions which fall into three classes;
(1) those which affect the d.e. of motion; (2) those which affect the
bece; {(3) those which affect the form which the equilibrium configuration
assumes., These are outlined below so that comparisons can be made
40 the problems to be solved in thie dissertation (as stated in

Section 1 .2).

1e

D entiad
a. Charge Density Term {o~). It is common to set o =0,

because in a typicel plasma the Debye shielding distance,

e
1/ s is smell compared to a characteristic

length over which a plasme changes. For example, if T = ‘50663{

/\D= (e T e/la.t:;“’2 )

end n = 1052 per m3,then Ap =69 x 1072 em. This
simplifies 2,3 and 2.k

b, Electromegnetic Rsdiation Terms. These terms arise from
including the displacement current in Maxwell's induction
equation. They are menifest ln the dispersion relation as
functions of the quantity (/e )2 , where co i3 the growth
rate or oscillation frequency of the system. It is common
0 omit them for low-frequency disturbances, and this has
been done in problems 2 and 3. These terms have been in-

cluded in Refs. 1 and 15 apd also in problem 1.
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Incompreseibility of the Pleasma. The assumpiion that the
material density p= p = constant is valid when the
macroscopic velocity of the‘plaﬁma is much smaller thean the
sonic velocity, {¥p/@ )1/ 2, and the Alfvén velocity,
3/(/%jp)]/é, within the plasma, This asgumption has been
made by meny invesilgators (5, 17, 18, 19) and is also made
in problem 2. A pertislly compreseible plasma is treated in
problenm 3.

Pressure Tensor. Host investigetors, including the author,

have assumed a disgonal tensor, all of whose terms are equel.

Rosenbluth (20} uses a disgonel tensor with different components

=
§

elong and perpendicular to the megnetic £ield (his eq. 11).
Dissipation Terms. Terms due tc viscosity (the off-diagomal
elements of the pressure tensor) are pregent in 2.2; the
resistivity, N , is present in 2.4; vhile both terms are
contained in the energy equation, 2.3. In a high-temperature
plesma the omission of n is justified, since it varies as
(?)mg/é. On the other hend, the viscosity varies as {T)I/é
(21, p. 203), and one cannot Justify its omission by 2
physical argument. However, for mathemetical convenience we
neglect both. Tayler (22,23) hes considered the effects of
"hydrodynemic viscosity" (i.é., he neglects the effect of the
megnetic field on the coefficient of viscosity) in order to

exemine iits effect on the infinite inetebility which arises

in lerge wave number disturbances.
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f. Heat Flow, (Q. FPor methematicgl convenience we neglect the
thermal conductivity of the plesma. This omission cannot be
Justified physically, because the thermel conductiviiy veries

Fns
directly es the teuperature —> %' w7/ {21, p. 3k3).

a. The Moving Boundery. HNoet invesiigators have matched hydro-
dynamic and electromegnetic b.c. acrose a moving boundary.
Trehan (18, 19) introduced as his sole b.c. the assumption
that the perturbaiion of the normelized hm pressure, @, was

gero. This procedure is not valid, as discussed in Section 7.1.

3. Eauilibrium Configurstions

a. Mepgnetic Flelds. The spatiel distribution of the internsl
and external sxlmuthel (BQ) and longitudinesl (Bg) magnetic
ficléds affectsthe gtebility. The following table summerizes
some of the eguilibriuws magnetic field distributions wused by
verious investigators, including the suthor.

b, Veloelty Fields. The spetial distribution of the velocity
field determines the pressure and density in a compressible
plasma. The reletions which exist belween these fields and
the moagnetic fields are gbigined from the hm squilibrium
equations, as described in Chepiter 4. ALl invesbigators but
Trehan (18,23} have omitted the effect of & velociiy field.
He imposed a special requirement between the eguilibrium
veloelty and the megnetic fields, of the form w = IB( 4, P;;)"V ‘?

This ig equivalent to A\ = 1 in the statement of the problem

given in Sectiom 1.2,
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TABLE 3-1

RADIAL DEPENDENCE OF MAGNETIC FIELD COMPONENTS

Investigetor  Ref, ternel Internal External External
BQ 85 BQ Bz
Teyler 23 0 0 1/r o
r 0 1/r 0
. 0 1/r 0
Teyler 17 0 const. 1/r congt .
£{r) gl{r) 1/ const,
T const. i/r conet .
Rosenbluth 20 o const. i/r congt,
Korper - 2h 0 const, 0 const .
Trehan s T const, not specified not specified
Kruskel ¢ Tuck 15 o const, i/r const.
b congt . 1/ const,
Problem 1 0 eonst . 1/ const.
Problems 2 £ 3 r const. 1/v const .




- 24 .

¢. Plasma Conteinment, Two schemes are avilable for balancing
the plasma pressure: {1} the presence of a non-conducting
compressible gas edjecent to the plasma; {2) a current sheet
flowing on the surface of the plasms, The latier gives rise
to a discontinmuity in the megnetic field, and thus to the
magnetic component of the siress densor, Most investigators
have used the second scheme., In problem 1, scheme 2 is used,

while in problems & end 3 a combination of both is used.

3.2 Procedures for s Normal Mode Analys

The equilibrium or siatiopary configuration le chosen in
accordence with the physicel situation being studied, An invesiigation
ig then made to determine the inter-relationships which exist among the
equilibriun variebles. Such e study is mede in Chapter b for the problems
given in Chapter 1. One then goes to the eppropriate d.e. of notion for
the medium end replaces each quantity with the sum of its equilibrium
value, q , end a first order perturbation, . The perturbation quantities
are arbitrary functions of r end exponentislly dependent on é, Zy be
That is,

a=4q, + Q= q + Qr) expli{ad + ks + wt}]

» (3.1)
=g, + a° £(x)

where 30 = Eg exp[i{mo + kz + wt)]

The subscript e will be omlitted when we are obvicusly dealing with
equilibriwn quantities. The resulting equetions sre then linearized

by neglecting producis of two or more fivst order quantities.



-

It is the aim of the {ollowing analysis tc determine the eigenvalues
& &8s s function of the equilibrium psremeters, the azimuthal mumber m,

2

end the wave nwnber k of the perturbdation. This is accomplished by

solving the d.e. for the periinent vardables and relating these vardigbles
through the b.c. These substituiions result in the dispersion relstion

fle,..0) = 0, whose zeros are the required eigenvelues. This is
demongtrated In Chapier 5.

In the plasms where the hm d.e. ave spplicable, the basic dependent
varisbles are % and E; or %; (which are derived from ¥). The
techmiques for obteining these variables are preseuied in Chepters
6, 7, and 8. If no currvent {lows in the outer region, the electro-
magnetic and hydrodynamic (if there ie a fluid presemt) effecis are
wncoupled and can be considered separately. Here, the mogh convenient
dependent variables are the pressure 'ﬁg and the z components of the

electric and megnetic fields. In the next section we solve for these

variables,

Assume that the region suwrrounding the plasme conteins a compress-
ible, non-conducting, dissipationless gas. In equilibrium it is at
rest and has a consteni density o and pressure Py To describe
the hydrodynamic effects we deal with the mess conservation equation
{2.10}), the momentum eguetion (2.11) with J =0 = C, and the adisbatic
equation of state (2.12). If we substitute owr equilibrium and pertur-

bation quantities into these equations, they become
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E.‘st’(y‘ + QOV' W =0 '(3~2'}
oo % W =~V (3.3)
5’&9 p = C;g 5%6) {303})
where
2 - 2o (3.5)
B8g €o

The acoustic weve equation is obiained by substituting 3.2 and 3.4

into the divergence of 3.3

2
2. B~ 2. &« .
vEp - Gy P= VT B+ p=0 (3.6)
“sg “eg

£ one substitutes the exponentisl form of the periurbation quentity in.
3.1 into 3.6, one obiming the modlified Bessel d.e. Thus, in the outer

region
-~ ~
=1 X (Zx) (3.7)

where Km is the medified Besgel function of the second kind and

z
5 2 W 2 EPE
zgzk ~e2 end Zg::a- \/‘.;s »(a}/c@g}
Sg o
(3.8)
~O

Py ={constant) exp{i(me + kz + wi)]
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%0
W, = ? wr ({17 r K Z,,r)L [-o® (7,2)], [-iK (Zgr)}}

(3.9)

Waxwell's equations describe the electromagnetic phenomena in the
cuter medium where the inductive capecities are the same sg those in s
X v . im & . Thesg Taga T g 3 § -
vacuun, ¢ = ¢, and 4« A These can be rearrenged in the conven

tional maomer o yield wave eguations for IAE': gnd I% .

h2

|

=0 {3.10)

i}

o~ ) o3
V2 E+ iz =0, TEE -

mm’ e
mﬁ)z &i\:‘

If one substitules the periturbation expoment imio the z components of
the above equations, one obtains the modified Bessel equetion. The

solutions valid in the outer region are

¥ %o
B, =5 K (7.7r) {3.11)
E, =& K (Fr) (3.12)
where
D 2 4)2
5=k -3 and zgw\m - (@%/F) (3.13)

~

The remaining components of |12 and IE cen be obtained from 2.15
and 2.17 or their component representations,A?,12-A2.14 and A2,17-
42,19,

Let us consider now the special cases presented in problems 2 and 3.
Here, electromegnetic radletion effects are neglected; that is,

, R |
W?/e% =>5 and Za ~> |ki. Hence, A2.12-A2.1% simplify becsuse we



neglect the displacement currenl and E} ig determined as

~

1B, =

oA

{wi{}@} x;a(mw}, ik (o), mﬁﬁ(m}} (3.14)

Poned

A sinller expression cau be writien for |E.
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4 THE BEQUILIBRIUM STATE

g

As a point of deperture for meiting ho stability investigations,
one et hove s compleie knoviedge of the equilibwriunm state.
heferences 25, 26, and 27 sre typical studies involving a cylindrical
plasma at rest. In Chepler 1 tiree problems arose because different
assumptions were mode as to the behavior of the equilibrium varisbles.
In this chapter we will devive these resulis efter malking cerbain

fundamentel end sinplifying sssugptlions.

4,1 Assumpiions in the Equilibrium State {E}ﬁ = 0)

1. The plasisa is in motion.

2, ALl dependent verisbles are finite and independent of ©
and 2. 53?@ = aﬁ = O,

3, The plasme demsity snd kimetic pressure are everywhere > O.

4, The plesme is compressible in problems 1 and 3. In problem 2
it iz incompressible.

5. The plasma is elecirically neutral ¢ = 0,

6. The plasma carries a current sheet J¥* = (0, 3% ;jg).

7. The plasma is non-viscous. That is, the pressure tensor is
disgonel, If one includes the viscosity {as & seclar), one

finds that v_ hes & perabolic distribution wiith radius.

£

The anslysis is idemtical to that given for the eylindricel
Poiseuille £low problem in hydrodynamics.

8, The plesms ig resistive. We assume thet the resistivity is
a scalar to see how it determines the magnetic field configur-

ation. In the stability asnalysis we neglect it.
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k.2 egnetic and Velocity Field Camponents
1. Equetions 2,10, 2,14 andé 2.16,when subjected to assumpiions 2

and 3 above, yield

E, = 52‘ =V, = O {k.1)

2. The r component of Ohm's Law, A2.21, gives us the important

relation
VB, = VB or Ve¥as = Y2'p0 (E&.d')
where
- ""1/& P 3@
e = Lag ‘op) B, (4.3)
Thet is, w 18 perallel to B, Thiz iz 2 well Xnown resuli

L)

or o perfectly conducting plasme end implies thal matter

treariines coincide with wagnetic field lines. Henece, if

o

& plesme 19 slreaming loggitudinelly in & combined By, B
fieid, it must heave an ssimuthsl veloclty component. (liore
about this below.)

3: The © componens of the cwrled Chm's Law {with resistivity),

A2.26, yielde a second order linesr d.e. In EQ whose sclution

is
B, = By {1 k)
2

4, Similarly, the 2 component of the curled Obm's Law (with
resistivity), A2,27, yields a second order linesr d.e. in

B whose solution is

27

@t

B, = & constamt (4.5)
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If one hed neglecied the resistivity, ome would not have the
determined srbitrery functicns of r for both B@ and Eg
(koh and B.5),

5. $Since viscous effects have been omitied, v, o be an arblirary
function of r. For convenieuce we take it {o be uniform,

vﬁ = gomstant. Thug

A

o = Va i{__w (h‘o()’)
e

as determined by %.2. If we define

v B
A = ,fm -~ emmmﬁy h o= ‘;& = songbent {L"?)
ac o

end use reiation k.2, we obtein the equilibrium distributions

mresenied in Chaplter 1.

A few notes are in order. A lineerly dependent B, means a
unifcrnm j@. It can be shown that in order to have 2 J‘?Q one met
remove the regquirement &Q = O

The importent requirement imposed by 4.2 led the suthor to study
g simller problem from the pariicle point of view, At t =0 8
charged particle was moving with a velocity W = C gt T = T

St

in o magnetic field |B = (U, By if* > B_)o An sualysis was performed
e &3

which linearized the equotiops about an equilibrium configuration.
If one assumes (Bzﬂg) >+ 1, then the equilibrium equations impose
the condition thet the aslmuthal velocity has e glow precession 8,

given by
. VDB
6 = &2 (4.8)

" Br
Bze
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This is identicel with 4.2, Furthermore, it should be noted thet &
is independent of both the mess and the charge of ithe perticle. The
sane simple condition does not hold if (B Z/BQ) << 1,

For convenience we will wrlte the © componenis of the megnetic

and velocity field as

By = Blz/e,)s vy = vir/r) o (k9)

To £ind the kinetic pressure distribulion, one uses the r couponent
of the momentum comservetion egquation,A2.G. If the proper assumpiions

sre made, one cbbains

v B2 +80] B

£ 52 o, - P

e e """; o %f' P+ P = s - {l@,'i{)}
A &./‘(0 /‘(0 .

Using the assumplions given in 4.b-4.6; one obiaine

1~ @ 4" A 2 '
v (i. p e S ,w-} Z;, = ”2 :’f’ h,’?
@p r ¢ (re (re} ( )

If we multiply and divide the {irst term by the normelization pressure

Py and define

Kp -3 % v
, I v . .
B .. e;‘:p; and M=7, i =7 {4.12)
o 8p i sp
and % o (k.,13)
e

we ovbaln
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ax(g - ¥ (wg»») 1% = =27 ifx (L.1h)

°P B A

In the incompressible case (problem 2) o= ¢ and bo1h i readily

integrated to yield

R NIy (5.15)
pp 2 A

2 2 2 2
P ¢ X o 3 v, ¥
N S T - e (1 < A%
p @ 2 A
. P €p
{(incompressible) (4.16)

where ?p = kinetic preamire at X = O, and

g2
w o - W«MMQ oy £ = -
P.= p}} b Q/”o consbant {&.17)

I7 the medium is compressible (problem 3), e =nd p are related

through the edisbatic equation of state

B _ 2.3 8)
> (ep) (5.18)

Hence, equation 4.14 can be transformed to

g ¥ ?ﬁm (gx{yum} (%.19)
wheres 2 /
M 1/7
2 2 YA € _ (o
= M e === 2 .».-—»-——.:( a’gg)
L C R €5 pp) (

This equation can be imtegrated exactly, but unfortunately y will

be implicitly releted to x. That is;



2 Iy, Yo/ :
-] Tt 5707w
v, /e

ye1 (. . & 4
- {?’% fol %500 = B b’,o]} (h21)

-

. . . . = p-i = 5

where B _[p,ql = incomplete beta funetion = f 2715 ge (B.22)
- ol

A more useful result is obisined by assuming thet the solwiion of

4,19 cen be expressed as asimple power series in X. The resuli of

such a calevlgtion yields the resuli

o~
&
3«:8 g o 2 &

1 H T K
¥ = I»sz 7 {1 + a, Xi} - I me,} le;(gllwrgb‘gﬂ}g

k
o p @'? 8 £
+ M?TE’?E:“ 5 {(B.23)
where
o =a-D, ¥, = ¥ -1, X =5 S { ha2h)
“e

< , B g £ 49
s g = M7 <1, the series converges repldly and one lg jJustified
in taking o two-term epproximstion do it. 7This ds comglsbent with
the approximptions mede in otudying the dynamics of the compressible

oblen, Chapter 8. There we moke a pertwbation es sion in the
& o &

Seond

small perameters # end “*g.
& few notes follow.
o and f are not independemt. This follows, since we require
the density of the plasme to be > 0. If cne coansiders 4.23 ot the
boundery, x = 1, one finds that o has an upper limit which depends

on, (5 « Thus



1ol
imit of 1 4+ =
P upper limit of o + ﬂ

1 2.17 2,40

G

oo

376 3

O fo

it can also be shown that

0<a< e (4,25)

¢

The quantity on the right side of the inequality is given in the last
column, The left-hend inequality follows from the faci that o is
> 0 {the second equality in 4.20).

To get an esiimate of the maximum error which one makes by
neglecting the higher order terms in the series of b.,23,we evaluaie

the expression

» 2
[3rd term + kth term| é 6= 2, 2
[2nd tern| =g Drey vy le o Dvde, ¥ 40307 - 7,0,)]

{4.26)

This is done at x =1 for ¥ = 3/2 and results in $the following

table,



P = %2 o = 2//\2 ¥g. %.26

'i 21?‘? 'i?é
% 3.76 o Ale7
1 5,60 351
h £ a

1. .
.‘6 &Oh‘ Oﬁg{}
G L 32§?

For small Mech numbers, we see that the higher terms coniribule

a8 amall asmount and can be neglected.

If one substitutes y =p/ e into 4,18 and neglects all but the

first iwo terms of the binomiel expansion, one obiains

g
Be o g o x % 12 [o U A%

(.27)

which is idemtical with the incompresgible pressure variation {4.15).

We conclude that in the "partieslly compressible’ approximation the

I pressure is given by

(&.28)

{4.29)



b
Ao 52
= %‘35’ o= 34'9 O
oo B@p Mo Y o b=ty Tg {4.30)
,’.‘g-
. Ao %9 .
= e % = e E P 1
Bzo sz Ao 9% or Dz ! B (k.31)
where n
B B i
b = S@_@ , b, = ggﬁ | {4.32)
op |, 2P |y
e e

The kinetic pressure in the outer gas at r = To is obtained from

the pressure contimity equation (2.39) as

£

Va 4
_ - feA g, 42 B - N
Py = Py =2 -A"] + e L1-bg) + 55(1-b7) ] {5.33)
O
o
e
- A ARy LB B By
P = Pp ¥ Pp 5 [-(1-A7) og + ho(1 bg}} = congtant (k.3k)

We assume P, is constant in the cuter medium. Following en enalysis

similar to that given in Section k.2 we show

r

By =85 B Zg (4.39)

i

B,, = baB = constant {4.35)



L,5 HNecessary C

Two requirements must be satisfied in the equilibrium state:

{1) the kinetic pressure mst alweys be greater than zero, and
(2) the hm pressure must be continuous ecrosg the boundary. Lei us

derive the necessary mathematical relations.

One can rewrite 415 {or its identicel form, 4.27) as

2.2
X 2 .
p=p -5 (2.27 (5.37)
b “
o «
Dividing through anéd normalising, one writes
n N 2’ 2 &
d=a -x9(2-A%) {4.38)
where
i
@.; = mjéw (ME}?)
BEEREE

Since d > 0, then st the boundary

6 >2-A° (4. 50)

Normelizing end rearranging the equation for the continuity of hm

preasure (4.34), cne writes

. B .2n2 oy . 2 -
ﬁp“d@*'*:’g“*h{fsz 1) + {1 - A%) {b.h1)

Thus the equilibrium peranmeters must satisfy two additionsl conditions:

b0 and h.b1,
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5 GATISFYING BOUNDARY CONDITIONS IN HYDROMAGNETIC PROBLEMS

In this chapter we show how b.c. are matched to obtain the dis~

o~

persion relation as & funciion of the plasms veriables, %, ?"rp, and ﬁrp'
The procedure will be applied ito the physical circumstences described
in problems 2 end 3, where we have omitted the effects of electro-
magnetic radiation. In Cheplter 6 the analysis is performed for
problem 1, where radistion effects ere included,

The three b.c. which will mogt convenlently yield the dispersion
relation are given in 2.39, 2,39, and 2.40. If one substitutes the
equilibrium plus perturbation quantities into the r compouent of the
pressure continuity equation (2.33) and neglects second order terms,

one obtains
P=n_~n_+% -F =0 (5.1)

# , the normelized hm vressure gifference, is zero across the boundary
surface, which we assume iz a geroth order discontinuity. & satisfies

the same d.¢. ag does the boundery, namely,

o~
= 0 = : . 7 3 = O 5.2
Eﬁf O =diw + Ven 77+ Voo O d’@ U {(5.2)
Hence, rearranging, one obteins
o[ ~%1+% &fn -x_1=0 (5.3)

b o p v opé ae
where
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@D =4+ @, {5.4)
) mv@ ¥
é)paa)@+w%a;:*+kvzm§g(m+m) {5.5)
and
Xs}x:ce, m' =m + Xh (5.6)

Before continuing with 5.3, let us derdive several important relstiocn-
ships from the remeining b.c. With the velocity contimiity equation

{2.33) and the values of n given in 43.37, one can show that

R . .y & &
W, cdn = W e s e - Voo {5.7)

Using the [lux continuiiy condition {2.%0) and the soluticns for i,

cne writes
Tk :
IBP' I = l% I ' R Brp * s {m = + knz) == B {5.8)
+ 5 {bgm ;’; + sz&z}
or »
= = IR 5
= B o { 21 Sa
Bro B * 220 (9B) (5.9)
where { )/E) = Bgim{bgn“i) + Xh(‘bz«‘i}ﬁ {(5.10)
The hm pressure in the cuter wedium is
p. b r
~ oe o i g &=
wo=A__ 4N = + + {b.B, =+ B)
e} o O (p . 2/(0 €}3 e T o
1 -t €4 2 .
(b B + Em) {5.11)



P v . -
pus mgiaa ué Y C "‘2 I ‘f" =t
o = ey + =3 {(LQ me; + (bﬁh} ] {(5.12)
and
£
~ L8 e T W 1 &
R = e@ - VA{’S@ Vago * ,Jghvgzog {5.13)

We can relate Zﬁ to ¥ through ¥ o Referrving to 3.7 and 3.9, we

can write

~ e}
Yro {"i f@ "Jr@% - zgre)}

S S AREL

2

io™r
Ve {:7 : (’675;%23%)} (5.1%)

#

where

¢

7{ 2 Eig;(z)
L2 = BHon (5.15)

Using the solutions in the outer region, 3.11 end 3.1%,we can write ”;f/%m

and V,o  in terms of Varo® Thus
e ’E:‘A:Q -4 " "'3; =
VAQ{} = ¥ Vﬁ‘m Km(X} = VA‘K“D {ﬁh%m k};)} . (),16)
Vaoo = Vano KQ(X) = Varo i % o QX)} (5.17)

Substituting 5,14, 5,16, and 5.17 Into 5.13, we oblain
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v, (57,

2
Tolr m§ri {"” - e 6, %pizve + ""‘”‘é""‘"% 3(}‘{){5&}@-&}{&1‘923}

~ s { -1 i W = 3
vm‘pa {V.&?{m (X){mb@«%» )4 &J:ag}} {5.18)}

where
d(vA = {4, (»BE”"/E( 58)  (see eq. 5.9)  (5.19)

Subatituting T e 4,28, end x_, 5.12, into %r(ﬁpemﬁ%) yields

_— 2 g2 .8
Z‘;‘\T{xpe - %&} =@, reﬁ/‘ - U-«bg)i {5.20)
where :
@, = vﬁfre {(5.21)

We now substitute 5,18 and 5.20 into 5.3 and divide through by ’E’rp
end <wAVA}/‘J . This yields the dispersion relation in terms of the
plasme variebles: ﬁp, vrp’ and VMP. _
0) ® ®
ﬁfﬁ j—“j 2 7 2 PO 2%
+ { TA® - (1-50)1 - (T
P
5
v o -1

+ (mbgﬁ X hbg) e ..AEE % (x)

- = 0 {5.22)
UAze "’JA
where
&)
U= {5.23)
A

It is instruetive to point out the physical significance of each

of the terms in the above expression:
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-

x 2
e ( %*'Q) *3&%“ : perturbation of hm pressure of plasmsa.
rp) @ e

2, A®. ('aa-hg) . convective effest of boundary; that is,
the boundery moves into & region of s different equilibrium

hm pressure.
=@y 29
3. m(;g ) Zm?( Zgre): perturbation of kinmetic pressure in outer
B

region.

: A 1 ~1
b, (mbg-é- X hbg} Qﬁ?@ + :ﬁ %m (X):perwrbaﬂoﬁ of

magnetic (Maxwell siress) pressure in ocuter region.

Later it will be shown that v and ¥ can be expressed in terms
Arp e

of ’;fp and E’rﬁ’n’ Thus, all erbitrery constants venish and one is left

with the dispersion relation.
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6 STABILITY OF A LG%GI%%DI%ALLY STREAMING PLASMA BOUNDED BY A CURRENT

SHEET--PROBLEM 1

The stability of a plasma contained by a cwrrent sheet was first
studied by Kruskel sné Schwarzschild in 1954 (1). Rosenbluth in 1956
{20), Tayler in 1957 (17), and Kruskel and Tuck in 1958 (1) included
the effecte of e wniform longitudinal magnetie field. The first two
alsc included the presence of a perfectly conducting coniainer.

In the present problem we consider an infinite cylindricel plaame
which is in uniform motion along the z axis. The dispersion relation
for this problem is readily obtained by meking e coordinate transforma-
tion to & frame of reference which has a veloelty = @V, This intro-
duces an additional radisl eleciric field in the outer region but
simplifies the problem in the plasma to the form of the ones previocusly
congidered. However, the analysis has been included beceuse the approach
and the techniques are different.

Figure 1-1 shows a sketch of the details of the equilibrium con-
figuration. The current sheet gives rise to & step discontinmuity in
the msgnetic field at the eylindrical surface.

Using Stokes' Lew, one shows inmedistely

Rl IR %= (6.1)

As

In equilibrium the hm pressure continuity equation {2.39) gives

2

B 2 L2 .

p =3 [1 + sonbi} (6.2)
o

LS



One introduces the sbove equilibriun sssunpiions into the plasma
nomentun equation {A2.6-A2.8) and disregards products of two or more
perturbation quantities. The normalized hm pressure n  is tresied as

the bagic dependent variable, Rearranging, one obiains

0 —_—
&) z B v
£ id3¥% - % - ¥+ “E'&“” + “2 T
b4 Tt 2 r e r
e A& A
“Pp o Pp o o
— 1 . @B . 3;‘”32 B v ~
I_\v = V@ = i «M‘*&m"v@ + p + E@
z e © ¢
“ Ao fp (o 4e D
. . X5
¥, ~ %7 v =2 | B
Hobp
{5.3)
where O =a)ra) =+ By (5.4)
z 3 2
B, = b,B = plasma magnetic field {Ge5)

Similerly, one introduces the eguilibrium assumpiions into the curled

Ghnm'e Law, eqgs. A2.25-A2.27 end cnbiaing

b.B =
>~ [¥ % x) i ~ L~ - £ :
IB = {BT,B@,BZ} = 5, {kvr, kv, kv, + @ e (6.6)

To simplify the expression for Ez we have used the £flux and mess

continuity equations appropriate to this problem, namely,




.l e -m"v A ‘:-g} g; . £ :{ = 4 \-‘E(-W)
&

1 . ~ in ~ P Sy M 6.8)

z dr(rvr) * = kv, ia, e? (&

A -y 3w van 3 oy o oy £ e 4
Substituting 6.6 imto 6.3 end resrranging, one can solve for W in

terms of % end @'/@p; as

i3 {%)
o~ Al oa~
W = o |-z ‘ (6.9)
. T
—_ 2 A
@&
21 { s € ]
“4 6};‘2
where
= b
wAz kbivﬁ = iX:uA
_ bz‘sza -
QJT mQJg a ‘iL'é‘?;“" {5’39)
o <
Z e
n ~ &r 2
o o ¢ 2
Falgr )P (=8 1, Yes - (er )
v
v, = = </ £ “A
A /2 2 A r
(a,e,) e
The equation of state, 2.7, yields
: rp
D = ¢ =c; b (6.11)

AN
o
i3
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This follows beceuse Poo and Py are both counstants. Thus, for the

I3 Lot b k4 s ]
present cese we relate g,’ o to ® through the relation

~  b.Bf & ., b.5B
—— N (6.12)

€p+ﬂsfpz€y 8 A Py

~
oz

Using the definition of B, in 6.5, we can write

~ €~ -‘3 2 2 2
How gt e b v el
bp (g © 1 A} (6-13)
where 2
O = o - bl (6.14)
1 2 ) z

How, by substituting the resulis of 6.9 and 6.13 into the mass couservation

equation, 5.8, we obiain the modified Bessel equation

? ™ - 5 23 ~~ om
poy ad{ra %) - Erg_: + Zp}gn = O {6.15)

ghere
- Exﬂbﬁ‘vé‘?u‘?] h?'*bf Ygl
U = (75)° = —pt B2l (6.16)
Pt v ol @ - 5 "
*Tg iv4a Tz
and
&) - "'Jz . M o
A ' <]

Zguation 6.10 contalns other definitions. Hence,

T o= ’;:G Im{ Zp:?) (6.}8)
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o

The solution of the second kind, Kﬁk( Zﬁr}g is disregarded in the
m* by
region of the origin beceuss we regquire e non-singuler solution. The

o
A '\< > - - 3 £
Ww and I3 con easily be expressed in terms of 6.18

eigenfunciions

by using 6.9, 6.6, and £.13.

G2 Other Solutions

In the vecuum surrounding the plesme, lMaxwell's equations apply.
Following the procedure given in 8Section 3.3, we esimblish the solutions
to the electric and magnetic 2 component equations as

<3 K i » T =Y k
"Ezs‘:r hm‘lzd"}’ ?“zo e Km(zuy) (6.19)

it

o0

The normel differentisl eguetion is casily solved as shown in

Section A3.9 and yields
?il
m o= {~1,0,0) + M_%ﬁ“” {(0,m,X) (6.20

oo

A
z e
Note that in this case o= Jzy since v = Q. Thus,

Ll

)
z

P
[
o
[AN]
-l

g

y S
\V e il = - ’9’3?

b

63 . Celeulating the Disversion Helation by Satisfyine Boundery Conditions

Employing the methods described in Chapter 5, we {ollow the
normalized hn pressure differcnce

5{;69 r{w+ W) OF=0 (5.22)



- L e ' 1 P & - 2 - = 2
@=in +%]- = (B, — 4 5@@) »:{bgsﬁh + B )1 (6.23)

Recall,

W= Ky e = & (&
Z ]

()

Subgtituting 6.23 into 6.22 and simplifying yields the dispersion relation

in the form

~s ~ 2
~ e B Y bM}B’M ki

1o, {ﬁ}"ﬁ T, 4 /2 - ¥ = W]} + ;‘é =0 (6.24)
rp &ﬂ@@pé - rp ‘e

The ratio in brackets is obiained from Mexwell's egquations in the vacuum,
Substituting A2.12 into A2.18, resrrenging, adding fﬁgﬁm s and finglly

aividing by %;_P yields

'~ ~ ~ ~ P
B +b B . 5 3. Bo wd (T )
O3 Y ,9}‘,‘ £y K3 _%,,“ 3 /4-' P
BOE..© N < .2 o e (b 7= . S -2, 5 .. <4 (6.25)
2 ¢ho T p t o~ 2~
7 e v, eV
p o rp 0

R . -~ A~ .
The b.c. migt be utilized to obtaln relations for the terms Bzo’/vr and
Fod
a'

a.{

m)/{fr in terms of lnowm constents. If one simplifies the e,

and (e, component of 2.43 one obiains
7]

§ =% .pE§ (6.26)
20 zZp o, ¥
&8
= - "f,"' ¥ .-...a)_ T wed > e
Eoo = Bgp ~ B 5. {ni JO) Vo (5.27)

~ =~ . . x . ‘
o and E are determined from the & and gz components of the

zp op

Ohm's Law equation in the plasma. Substituting these resulis into 6.26

and 6.27 yields



o~ a) P
4 = e % 23
g 5
~ ) ~
i, = b B-Z- v 6
L@o i) @, rp (6.29)
~ ~
Eguation 6.28 provides the necessary relation between Eze ang Vrp
~ ~ .
for use in 6.25. To obtein the relation beitwean Bg@ and Vép_,ﬂubgtltﬂﬁ@
A2.13 into A2,17 and rearrang
~ 1 P! Qg N 3¢ o
E o 2 E - lag (B 5630
@0 Zéz Ly Ppo ri‘*mm (6.30)
e
o
This, together with 6.25 and £.29 yields the ratio
Vo d
B,, L% (Y)B
7 Z? ﬂ“ (6.3}
v St B
" 7o R,
From the second equality of 6.15 we obtain
-~ ~
\?(Eﬂﬁ) fg%
. . ¢
%}n V., 2:0 Km(Y) (6.32)

where Zo is es defined in 3.13 and ¥ =2e in 5.10.
=0
&50 i <)
wfm e (v p -
¥ = H‘&m(a}f ke o
P 7

is determined from 6,19 end 5.20. Moking the two

$.32 end then into &.2%, and £.31 into 6.2%5; gives us the

for our dispersicn relation.

6.2k and the resulis slmplified, %

The ratic

{6.33)

substitutions {6.33 into
required ratic
When these resulte are substituted into

¢ digpersion relation is obtained s



i - o5 v%) 97 ()

-1 B PN 4 (SRR (6a3w)

v

where %rﬂ(Y) is as defined in 5.15, and where
- e £
oom(z} ol ) (6.35)

If one essumes that the normalized characteristic freguencies,
a)z*e » 8re very much smeller ithan the velocity of light, that ig,
Wwr_ 2 @Wwr B

.
&

-4 E a2
SR and (=) =<1

(

c

one caen neglect these guantities. That is, ¥ > {X!. Upon rearr ging one
24 2 i 1

cbiaing
9 ) [G - (5,30%] 0
E}, s ,4 - 6035
m B Pl 78 Y =t /
e DR+ b X1 {%m(k}}
where . - _
o (& - - )
- S W BTy C (6.37)
(uy - BX" + DMy U0

.5 Feductions to Previously Obtained Work

Teyler considered the plasma at rest (@ = 0) and neglected
&5

eiectromagnetic radiation {3/@2) ~> 0, He also considered the effects

i

of the presence ¢of a perfect conductor at r = RO = Ar_.* Thus,
kv

5

Hig A is different frommy A .
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U
P

i

setting A = », @ _ =0, and (1/%2) = 0, we {ind that &6.34 reduces to
his equation {3.12), page 1093, The transformsiion is not immediately
obvious, because under the above condiiions the coefficient of EXQQ;t]

in 5.35 becomes

@wr
22 ¥ 2 2 .2 e g 3f
ng -5 .0(3 + b - b7); where W, = - (6.33)

whereas he gives the coeffieient of Xﬁ(lm/ié) as

18]

- 52}

2
zﬁﬁgii + b I

e 1Y
PO

o%”
4 ¥
&)

)

{taking into account the change in nomenclature). However, one can show

that (1/32) times eq. 6.35 reduces to £.39, where ﬁg takes on the

reduced form

" wr 2
. (x° - w2) [xF - (2 "’Z) ]
# ;g. \ !’ ~
U = - 5 (MZ’E)E (Q-hﬁ)
[X° - w" ~ (=—2) ]
o) siv‘&

Krugkal and Tuck considered the problem where: (1) the plasma was
at rest; (2) there were internsl and externsl uniform longitudinal
megnetic fields; (3) electromaguetic radistion wes present. Meking these
subgtitutions, one easily cobtains the result given in eq. 6.26, pege 227,

of their paper (of course taking into account ithe change in nomenclaiure).
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7 THE STABILITY OF AN INCOMPRESSIBLE PLASMA WITH A TWO COLMPONENT
EQUILIBRIUNM VELOCITY FIELD~~FPROBLEM 2

& plasme veloclty field was first included in the equilibrium
configuration by Trehan {18,19). His enslysis introduced many
simplifications, of which the most restriecting was the requirement
that A , the flow perameter, = 1, This was made at the very
begimning of his analysis and greatly simplified the work for ressons
which will soon become evident.

The problem being congidered was deseribed in Section 1.2 and

illustrated in Figure 1-1, ¥For convenience, we repeat the equilibrium

corditions:
o I
v =Av,(0, ;‘E—; , h), w, = v, (0, o n); r<r, (7.1)
x'e
W o= 0 s W, = vA(u, by =, hbz); r>r, {(7.2)
and
2
P v 2
R Y ) S0 A :
"o “p, 2 (re) (1 -A%) (eq. %.16) (7.3)

Since the magnetic and velocity fields are of equal importence, we
use the symmetric hm equations described in Section 2,2. If one
introduces the equilibrium + periurbetion quantitles dinto these equations
{2.23 and 2.24), cancels the equilibrium guantities, and linearizes the
result to first order periturbetion quamtities, one cbtains the set of

gix linear simultanecus eguations



[a] (€ = [¥
or
) - -y - ‘
lw U...Q O G 4J+Q §]
Wy 55“ 0 “)-;»Q Q "
0 O il G iy 0
~ - 5 S/ o
- W Y e, “ig ©
9] . N,
“.0 © “ .0 1w+ °
0 0 o s} 0 i
+
where
wio = Goffe =@yl Az )
@,y =k =@ Xn{ AL 1)
= - ?
@y = /\aJAzzﬂ {see 5.5 and 5.6)
wi‘;é/“%caﬂ}: NV ES7P)
and
Wy = Vg A= v/
=3 m' =m+ ¥h

&

(7.5}

(7.7)

(7.8}

(7.9}

{7.10)

{7.11)
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A8
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If h were not a constant, additional terms would appear in clements
(3;4) and (6,1). Note the peculiar symmetry possessed by these equations.
The coefficients in (i,J) are obtained from those in (i-3, J-3) by
changing - %o 4+ and + to -.

The inverse of matrix [e] is given by

A, by, © Ay A 0
2 11 © "Am Am ©
Ea}"} . O O A.. o | s 0
I::va 33 {7.12)
Aw AEE o ‘&‘H Am ©
Ay Ay O tp By O
0 0 0 0 -,
y Agj
where
- 2
D, =a_ ol - 1] {7.13)
-2 3 -, -
e=w” o7 ﬂ«oja,y,r (7.18}
ne={x+3), x= WD, V=gl (7.15)
and
- - . 2 .
A‘H = ~la{x” + xy - 1), Ayq ”*’1ﬂ@(a’ + Xy - 1), Ao =y,
A]}" = B‘Gxn) é"}{:_ = l/(’;ﬁ?ﬂj A‘E’ = QHy A»}f’ = ﬁﬂéf (7'37)

*&’33m iafl «_n_a)g A§3 = ila&;(’i -N°) (7.18)
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The elements of the inverse matrix have certain interesting propertiesg,

Firsi, A is obteined from A by chenging -~ t0 + and + 10 -,

1 i
x=>y), yr—=>x, {(e-> @ o), 1 unchanged

Second,

-

B A =4y and BAis = Aip

Thus E}] can be obbtained as 53 = Ea}“g %, or

- (3F {n/r) N 7)
+ {na 7 + (/7))
Fa
> (1 -nEw
al = - N -f1 (3% +@/A)NT) (7.19)
- 8 {I\.é?ﬁ +(m/T) %)
é (1 - n2nR
Note that
“ai TP % (7.20)
and hence
1754 ~ ~ 1 ~
N i = v - {;‘ '"a")
20 + ) =5 =3 (1 r B) "3, (7.21)
1 o~ 1 ~
g 0 P oo = = s i) .%
58y -0yl =vy =30 -6) 0, (7.22)
When N =11, i}a = 0, and thus the inverse of [a] is undetermined.

This problem is considered in detail in Appendix A, T4 will be shown
thet Sl = -1 is alweys a solution of the dispersion relation, ang this

congideretion iz imporient.
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If one substitutes 7.19 into 2.26 and rearranges, one cbiains

the modified Bessel equation for the normelized hm pressure.

S A~ 1 ~ "’ Eqn
&rf © 4 ?ﬁzﬁ - {i}'é’ + Z p]ﬁ = O {7.23)
where
20 -0 -n% (7.24)
Thus
~ ~ 0
=T L g ) {7.25)
1
=1 4/5)1
> 2 e [y 0 {ep oo
v, m et (3T + 5 0T {7.26)
r «Jwiiﬂjlé) r r
7 -i=lle (7.27)
Ar ({MIA) T R

Ecuations 7.26 and 7.27 follow from 7.21 and 7.22
Substituting these resulis {7.25-7.27) into the dispersion

relation {5.22) and getting r = r, vields

25 LoBe (o
a)z (43++a;v)

4 a2 .2 Lo 29 ‘
Il L) + mﬂ} {(A% 02 ~*~é"§& VAN EN

-
+ (mby + X abz)‘?}}j;’(x)}

In deriving the last term in ithe second brace we made use

{7.28)

of the relations



Jv
wm,.-A_.”. - I ¥ i -~ B Ny
(@) 7 labg + ¥ b, - m' ] (7.29)
5 Yo 5y P
Wewray = AT, ) =51 +f) (7.30)
_ }
1/ -~ - “%
> (Q-‘? - )= e (1 «A) = wﬁm’ {7.31)

The basic structure of 7.28 ig the same as that of 6.26, the
dispersion relation for problem 1, except for the presence of the m (1
which is added to Jme This comes from the fect that V_ in problem 2
conbains this term (see 7.19, 7.21, and 7.26), while in problem 1, where

B. end v, both venish, this term is absent {see 6.9, r compcnent).

ee e
Hence, the presence of a Lougitudinal current (azimuthal flux) chenges
the basic form of the dispersion relation.

How the transformetion from (7.15) u = a//w A o L

¢an be written in the form

1= u«f;\’@w ¥ u+m/?\(;‘;iw!) = ﬁ/‘ugm'é AZ1)] ~ (7.32)
+
o
B WAL, (1, 1707 - Ag‘;’):,‘;()/\g_‘m (7.33)
where
8, =usn(Az1) end umz‘j: - (7.3%)

If one treats £1 as the independent variable, one obtains the inverse

transformation of 7.32 as

u = -n' {/\(%my) + \/1~@+A2y2} {7.35)



u = -1/ {A(m’ﬁ.— Nx Jwn-n?.s é/\%)] (7.36)
where here
¥ = 1/mt L1

Note that u cen be complex for y reel if

VAT <y <i+ /i -N2 (7.37)

Hence, if A 21, u cannot be complex for real y. The bounds on ()
ere given in the stability diagram of Figure 7-1, where mn!'fl is plotted
againet AN .

Substituting 7.30 end 7.32 into the left side of 7.25 yields

the dispersion reletion in the finsl form:

2 AL
D () snf) =~ B Ll m (A7) (7.38)
o Nz

where °0m and ‘?fm are defined (as previously) by

v1:(U) X8 {x)
Jmﬁj) = Im%US L] %ﬂ‘x(}i) == ﬁmixs
angd where
¥ = (5507 = X0 -0 (7.39)
2 2 2 , %2 ,
Yo = (22 )" =% - i ) {7.40)

p=[A%- (1-2)] - ?% uex’{;(yg> + (mby + X hbz)‘??[;(X}(?,h‘t)

Other definitions are given in 7,10, 7.11, and 7.34,
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Ir _ﬂ.g = 1, y“ => 0, As shown in Appendix 45,

R i~ , b

lim S (U) =a+ U/2(m) + 8(UT) (7.42)
¥ =>0 @

Hence, in the limit nz’ => 1, 7.39 takes on the form

m{i+N) = g? [ “gi L. 2(?;”] + S’(Gk) , {7.43)
%°np %

Equation 7.43 is satisfied for m > 1 by (1= -1 and for
m=0C by () =4+1, These values of (L cause the determinant of the
gysten of equations, 7.4, to vanish, and the inversion procedure breaks
down. A more cereful examineiion of the basic eguation is made in
Appendix AL, in the limit ()L => + 1, end it iz found that these values
of (1 do indeed correspond te sclutions of the dispersion relation
with eigenfunciions which vary as powers of r. Ag shown in AbL.10 and

A k.11, the eigenfunctions of the "basic modes™ are of the form

~ ~Om
®o=Rr N=-1, n > 1
o bl)
o ) o | (7
5 LA e [, Le) =1, m=0
= s i = 4 o= O
“Yr T 20 1+m =2

For N = -1, u takes on ihe form

U= - f\(m' +1) J(m’ﬂ)g + {A 2-»1)} (7.55)
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Te1 Comparison with Previous Work.

Trehan (18) is the only investigator who has made a careful study
of the stabllity of a cylindricel hm problem with flow. In his enalyeis

he postulates, et the start, A =1 and arrives ai the d.e.

3
2e 1 un 2 42 oy i : 7o b6
érz: + %+ [¥° 2 ° - ?2} =0 (his eq, 21) {7.56)
where his
&
72 . L - % (hic eq. 22} (7.47)

[u+ 2m'}

These results are equivelent to 7.23 and 7.2k with A = 1, for in

this case

2 2 b ’ o
N= 5% and “ Z' = 1 - p {7.45)

. 2 2
and thus his 7 n«Zp.
In Chapter 1 (in the discussion of b.c.) we mentioned that Trehan
used ag his dispersion reletion the simple expression

?{p = 0 (his eq. 26) {7.%)

This was based on an incomplete derivetion (hisz persgraph a, p. 488).

%

In making the transformations from his nomenclature to mine, it is

convenlent to have the foliowing table:

His: p A k z vy o D X
: ~ 2
Mine: % - ZP X r hv, &) hr w /hr&
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If one examines 5.3, one notes that 7.4 is valid omly if: (1) %g = 0,
and (2) {3, =n__ -3 = ) = 0. These spproximetions cannot be simul-
r pg v oe -
taneously Jjustified.
The first sssumes %g < Eé, an sssumption which is valid only
when the gas pressure externsl to the plasma = © in the equilibrium state.

The second is valid only when

2 2 .
bg=1- A (7.50)
This imposes a reguirement on b, {gee 4.41 with d = 0)
5 4+ ,:r:'w{/\"2 - 1)
br; = - 7 2 +‘; (?‘ji)
wt

I+

Hence,with no gas external to the plasma, 7.4 is the digpersion relation
only when 7.50 end 7.51 hold. The first condition ssys that A <1,

The second eguetion sgye that the external longitudinal magnetic

field is lerger them the iniernal logitudinel field if d_ > 2(1-A%),
This is true for ~1. From the works of others we know that =
strong longitudinel megnetic {ield acte to sitsbilize » eylindrical plasma.
This implicit condition is probably why Trehan did not observe any

plaspa instabilities,
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§ A PERTURBATION FROCEDURE FOR STUDYING A PARTIALLY COMPRESSIBLE
CYLINDRICAL PLASNA--PROBLEM 3

g troduction

In the snalysis of the incompressible plasme treated in Chapier 7,
one explicitly assumes that the density of itie medium is a constant.
This implies that the plasma velocity, v, and the ALfvén velocity, Vg
are negligible in comparison with the sonic speed, ¢ = { ch/(>?)‘/2.
The assumption of small velocities would not be made in e compressible
enalysis, However, as will soon become evident, such a problem will
yield results which ere not readily interpreiable. To overcome this
hendicap, a first order perturbeiion analysis ia made in which the
peremeters of smallness sre (vfhs)g and {jﬁfba)a.

¥e begin with the same equilibrium velocity end megnetic fields
given im problem 2., In Chapter 4 we expressed ihe equilibriun density
veriation, 4.23, as a power séries in the term - = (v/bg)g. Congigtent

with e first order perturbation anelysie, we oamit higher terms and obiain

4,29, which we write as

— o ] o4 f {8.1)

where

If we define
£' = 3 f {8.3)

then

%-ﬂ = £ | (8.4)
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Ta h,28 we see that the hm pressure distribution to first order
ig the saﬁe as thal for the incompressible problem, L4.16. Since the
form of the dispersion relation derived in 5.22 depends only on the egquil-
ibriun istributions of the velocity field, megnetlic fleld, and hm pressure,
we conclude that 5.22 is spplicable to a first opder perturbation analysis.
The following snalyses will determine the teram (ﬁﬁ/ﬁép) in 5.22 for
the pertielly compressible plesme and will thus complete the dispersion
relation.

To obtain the characteristic d.e. of the plesma one utilizes the
guesi-symmetric hm equations {Section 2.3) and wanipuletes ithese so that
the total solution is represented as a sum of the incompressible tern
vlus a perturbation term. In many cases the egleulstion is straight-
fgrw&xé,'althﬁugh usually exceedingly lengthy, end meny of the imter-

medisry steps will be omitted.

S.2 Formlat
Plosma

According to the procedures given in Chepler 3, we subgtitute the

equilibrium plus perturbati¢n terms into 2.25, 2,29, and 2.35. Ve use
2.35 1o eliminate IR from 2.20 and 2,29, end ere left with six

equations in eight quantities: di,, déu, E} and #. Another

relation among these verisbles is oblained from 2.3% and the adiabatic

equation of state, 2.12, as
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These seven equations can be writien in matrix form as

{r (8.6)

c

™o
i

(a,) (

where these metrices sre ag defined in Teble 8-1. The definitions of
the terms used are given in 7.5-7.11 and 8.1
We use the last equation of the sei (8.5) 40 eliminate é' /(p

in each equation and obtain the sel of six egueltions in six unknowns:

(e) (T = (5 8.7
where

() = (a) + (J) (8.8)

(F,) = (F « (J7 (8.9)

{e}, (Q, and ¥ ere defined in 7.% and are the sawe matrices

o]

one degls with in the incompressible esnalysis. (5 ) eand (ST are both
of arder (V/L?S)g and are given in 8,10 and 8,11, respectively. This
representation exhibits the siatement made previcusly: that ve are
expanding the solution of the partially compressible problem in the

neighborhood of the incompressible problem.
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” 211 . . : p
(J% = re, [512’ 1522$ 1()/23; &/zeg -:1.522, -3 3/23} {8.11)
where
= Q:i - 2 - B 2
n =2 =11 {:1 =ant =%l
(A1) e 2 g Moo o
12 = T T@ylek)T = ey pp =3 (/) =cpn
(Aiﬁ ) i'ﬁ\):
e WM&..M . . .m._& " »
13 2 heplr/r ) = ¢i3g chs =g (efr )@ = cpn
{8.12)
and
hwr £ hg“ff o]
J e . - A N
31 52 = %31 ‘;;3 2 = %33 (6.13)
where ‘
'Z = Zn/r@ (8,%1‘*)

In Chepter 4 we used x = r/%e. To avoid confusion with X = ‘Lig/és;ﬂ
defined in 7.15, we will henceforth use r/'r€§ as defined in 8.14. The
Cij ere constants. The c; matrix possesses certein local gymmetrical
properiies bul no oversll symmelry.

We are now in a position to solve for aﬂ by & procedure coﬁ«
sistent with the first order periurbaiion approximation. From 8,7 we can

write

-4 "'] ~ 'v-} ~ A -

D = (o)) @ = (e d) (T IN) (8.15)
k oy g j -1 " E 2 J

We can express the metrix (a8 +9) as e power series in {Jd),

if it is considered small in comparison to {a) (es discussed below).
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(a+0) " = (a) - (&) (T) (el s (&) {S) () U(S) (a) - e

(8.18)
(&) [1 - {e) + (@)® - (@) ... ] (8.17)

where
(@) = (5) (&) (8.18)

The procedure can be Jjustified, provided: {1) (&) has an inverse (that
is, its determinent does not vanish), and (2) the eigenvalues of (a)
ere sufficiently small so thet the series is a convergent one.

The first condition fails if & = (J* =0 ar 12=1, as
ghown in 7.13. Thus, the basic modes corresponding to N= -1 (and
N =41 for m=0) ceamot be treated by this method, and one must
return to the original d.e. for a more careful invesilgstion. The pro-
cedure would probably teke = form similar to thet ocutlined in Appendix AL,

The precise meaning of the second condition is discussed by Bodewig
(28} in paragraphs 3.12, 4, and 6.1. He shows thai I the Norm of
(@) = {J) (a)"} is <1 {(that is, all eigenvalues of ({(a) 1ie in
the wnit cirele), then

1im (o) —> o0
m > w0

and the geries converges. He defines the Horm a8

sf 02 i f o st g 1/2' | ;2 ?/2

H{z) = Norm{a) = | Trace(e)” {a) =02 > feuy | {8.19)
i k

and shows thsi

5 A <) (6.20)

5 P
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where )\p are the eigenvalues of (a). Sinee each term of {4;5
. nﬁ . -Vfa N . T f; “1 R
involves M~ or ¥y, we can make |{ Ha) gufficiently small to
satisfy condition 2.
Congistent with the first order analysis, we can drop all but

the first two terms of 8.14 and write the sclution as

H @t (F @ (5% - @M FE (8.21)

or

Q) =G ) -
Q) - QO} . + "1':3}

e

1) (6.22)

The £irst ternm, Qo)g represents the solution of the incompressible

problet. Qi} and Q;) represent the perturbation terms end ere given

in 8.23 and in Table 9-2,

12 ¢ 22
,.niig + (2554 2xy-1) S o
et 5a .3’?/")@;_“__ -~ (1-07) 23
Q) = (a)” { "o (n2-)r 141 512 . {ymx)‘yeaj {(8.23)

e

A (1-0%) 8,

AL, + (B vay-1) Sy,

———

The terms used in Table 8-2 heve been defined in 7.13-7.15. In eddition,

g -1 (3.24)

T4
Substituting 7.19 (@), 8.23 (§,), end Tcble 8-2 (é;) into 8.22
we obtein, after reerranging, the matrix é). Tne Pirgt three componentig

~
of Q) are given below.
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(8.25)

{8.26)

pHESY 7~
= + PR
" )+ gt a T+ o8y }

{8.27)

~

are sll constents of order M- and ave given

where & 12 Bgi? and a5

in Table 8-3,
The characterisiic d.e. of the plasma is obtained, as previously,
Meling the proper

by using the nass-flux contirmuity equation, 2,32,
3, this is written as

substitutions end resrrangem

~ ~ )
9 immmggmmiﬁ P (8.28)

v, = -
ep
e ;gmdé(z«/)(q go¢zm&0{} imlélf' {8m§)

c.

:‘J

[#4]

The éi) and ﬁ;) terme do not appesr on the right-hand side, since
o in e z 7.19 into 8.29

they would add seccnd order terms in M. Substituting

and combining, we obiain
VG === [0 i¥ + & ird (8.30)
ES EN 0 1

7§
a2, elso defined in Table 8-3,

with aq end 2,

The plasma d.e. ig obtained by substituting the resulis of §.25-

8.27 into 8.30 and rcarrenging.
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2 \2” _3_ Y " P >,
(!«argr ) gx + {f r{-s, erc +mag * kazﬁ + ?r1)3 3.
B 72,72 4 rPka )R = 0 (8.31)
TteThp T A + g2/t = .
Fe)
where Z’; is as defined in 7.2 end
Za = -8 + S8 . +mB., + ka (84.32)
pi o] 1 81 21 e
If we let
2 2. 2 2 2 g2 o -
T “(sz'r) and ZE{E=ZP+Z§ﬂ (8.33)
then 8.31 takes the form
2 21 ~
2y &~ e AN & 1= (8.34)
(1+/\%f’)af,ﬁ+({.¢/\2/)d¢n [1'2+1+/\3’f'
where
) 2 o2y .
/\‘g = -«&Z‘O(Z? + va | (8.33)
_ aa _ _ ) 4y 8 2 41 g
)\2 = (a.‘ ffmra - mag kam aﬂ}( 2}) %Zpi) {8.36)
2 2 \~2
P 4 .

Thus we see that the plasma d.e. iz no longer the Bessel equation,
The coefficients are modified¢ and contain powers of v ‘times /\i s whers
]
all A ; ave of order W If A, = 0 (that is, the incompressible

case), then 8.3k reduces to 7.23.



£ ?vs -

8.3 Soilusion of ihe Characteristic Differential Eguation of a Pertially
Compressible Plesme

One recalls that the plasma menifesis iteelf in the dispersion
relation for the incompressible problem, 7.38, by the presence of a
Bessel function ratio, I; Iﬁ. A similar result applies to the compresalible
problem, as will become evident in Section 8.k, Thus, the procedure
suggested is to transform the plasma d.¢. to Ricetti's form® by intro-
ducing the variable

da7 (7 .

—f’ . = ‘¢

y - = *%*%“mw’w (8.38)
R

The y given in 8.38 is not to be confused with ¥y = w /&,

. : 5 o e . 4] - v i -
defined in 7,15, If W~ >0, then y >y, (with Zp’i‘ > zp).
Thus Y represents the periurbation term and is al least of order Ef‘? .

if we divide 5,34 by ¥ and notc that

o

731l ¥
A (8.39)

,},(w

then &.34 takes the form

2] 2 ~
(A, T3 o 2 ea 7Py =B e v At (Bk0)

T .

where the prime represents differentiation with respect to

Substituting y = yg+ I and neglecting second order terms of the form

The properties of this non-linear first order d.e. are discussed at

great length by Watson (29 paregraphs 4.1 and 4.2),
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o

yf and /\Qyﬁ, we oblain the lincarized Ricattl equation
)+ vl e ayg) =t AL e TaglA =AY =T A AL (Ba)
1 ‘%'f' 0 A I 173 )

This is a first order linear d.e, and has the particular solution

/ﬁ(‘m-« Ay B (Al 8 B g2 Ahe

(8.52)

i
ot
}

o m

We disregard the homogensous solution, since If /\i = O, then ¥, = G,

¥e now have three integrals {J Iy g 60l J ) to congider before
?

3,m
we can finally express our first opder solution in closed form. 31 o
3 id

1,m’

snd J,  are readily evaluated from tebulated results. J. is
2400 3,m+1

derived in Section A5.4 (eq, £5.25), The resulls are presented below.

7' o 2 oy
1 T /ZI;; ¢f = % {IQW) -1 A7) Imiiﬂ”)} * (8.13)

J P
7‘2

7 = ‘ —— R STy oa #
dg?m ~—/Z I“’I“ dz JT,m =1 2 Im«“i(f) Imi(fyﬂ%{&uh)
and

) -~y &'3,"‘ m}
- = i 2. i g..‘t }
‘53;:&«'»? JS;HM a7 {2 Lot ¥ z; (-1) mﬂpﬂlm-—p«‘l + 2 I

+on” T2 17 (8.45)

i

2
1]

Given by Jehnke and Emde (30, p. 146).

i N - AR {'2_2 N
Integrate Jom = (QJL//n f’ dI by parts.
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To use this recursion formuls one must heve J3 0 and 33 1°
-4 7

4 (127 (1) Igm}
JB,G = =3 5 -3 - = (8.46)
I e 2 }
The method for deriving 8.45 aud 8,47 is also given in Section
A5 b,
Hence, we can express our total solution as
~ (1) A w1 T I I
il ot 1 2 -1
y="z= - + [ /\ (m "4) -~ A ] [ ]
7 Im(f’) 2 2 1 2 LI
(A, -A)
- —-———-———-—-3~2 J (8.43)
11 3,m
m

where all I are functions of the independent variable T (8.33).

The discussion given in the introduction (Section 8.1) justified
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the use of the generalized dispersion relation derived in 5.22.
To complete this expression we must calculate the terms (ﬁ;p/%;)
and (VArp/%rp) at the boundary r = r . From the definition,

2.25, and the derivation, 8.25, we can write

~ _1. ~ g N ‘l ~
=3 (@ =D 08, @)
¥ .l A ot - l " 5 50
T =3 By = Q) =@ 1 -8 (8.50)
Thus
v rad
xp _ A0+ B)a e . 2 . 2 .
e = {n arore) +nN -8 0 {8.51)
P e'a
v

(equation 8.24) {8.52)
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Equation 8, 52 is identical with the result of (¥ Arp rp)
for the incompressible problem, 7.27. To obiain the complete dispersion
relaticn, one replaces the left-hand side of 7.33 (the incompressible

dispersion relation) by the braced quantity in 8.51 and obteins

r 3%
- (3*& I‘E) +mfl-a I‘ Mf/\u«%m'(/\z-y)} (8.53)

* r1i"e
Hote thet
r 3% T %
@ﬁ‘x‘ = ?tr = equation 8,48

If we neglect products of first order quantiiies and substitute 8.48

into 5.53, we cen write the finel form of the dispersion relation as

J (T’)-Hn.n. {r[a J{T’)+a }+~—-—-)\m

2 I (A,=A)
— Ay - A (a2 (m=1me] L3 } 8.54)
2 (m +1)] Imlm I+ Ig(f) J3,m (

+

2
=2(1-07) [Au + ms:(/\2 -1)1

no

i



The left-hend side corresponds to the plesma, end thus the first
ordar terms ar 1 anéd A 3 are present in the brace. The right-hand
side corresponds to the external mediun snd boundery phenomens and &0
ig the same as in 7.35.

Note that L = -1 18 no longer a root of the dispersion relation.
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9 AN ANALYTICAL-NUMERICAL STUDY OF THE PROPERTIES OF THE DISPERSION
RELATION FOR INCQUPRESSIBLE FLOW

9.1 _Introduction
The problems of hn are freguenily of such complexity thal many

gimplifying assumptions must be made to render them mathematically
tractable. In many cases, the solution obtained after simplifying
assumptions heve been made is 8111l too unwieldy for numerical enelysis.
Chandragekhar remarked {26, p. 232), "... by not considering ell the
equations of a problem [in hm is inferved], we may miss discovering
certain essential noveliies which result as a conseguence of imposing
on & gystem conformity with two different seis of laws: such as conformity
with the lews of electrodynamice and hydro@ynamics.” The suthor would
like to apply this statenent Lo the necessity for eom:iéering the complete
bece in an eigenvalue problem. Just as with the equations of motion,
one may miss meny phenomens by oversimplifying the b.c. in hm problems.

The dispersion relstion which was studied by means of a liodel 205
Datatron digitel computer wes obtained from 7.35 by setting Cg = 0-
Thus, there is no gas externsl to the plasme, and it is bound in its
equilibriun state by the combined action of an azimuthal and longitudinal
megnetic field. A brief examination of 7.38 indicates that one must
be prepared to deal with functions of a complex variable, and the computer
program must be writien for complex numbers.

For exemple, suppose thai when A = 0 (no flow) there are unstable
{non-oscillatory) modes which correspond to real velues of () .

This is plausible, because other investigations heve shown instabilities
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when the plesma 1s at rest. HNon-oscillatory, unstable modes correspond
to imaginary values of wu, as seen in 3.1. When A is emall but finite,
u appears explicitly in 7.35. The purely divergent unsiable mode, which
satisfied 7.38 with A = 0, must become a complex mumber when A £ O
in order for 7.39 to be satisfied in the same neighborhood of variables
and parameters. The computer itechniques which were developed to seek
the geros of a function of & complex variable are outlined in Appendix Aé.
One last note is in order on complex eigenvalues. In the literature
cn hm gtability there sre proofs which egtablish the reality of the
eigenvelues. These are based on demonstrations of the self-adjoint
properiy of the differentisl operator and often neglect the b.c.
integrals. However, the eigenvalue problem at hand is of & class defined

by the eguations
' Edas L¥(z) = )\(u)_f(z) ¢ (2)
B.C.: Y{0) = finite, [Alu) ¢ (2} = B{u}¥(z2)] (9.1)

Such problems are discussed by Morse and Feshbach (31, paragreph ©.3,
pp. T19-728). 1If one gem@réii%s their arguments given on pp. 727 and

728, one can show that

b
} Yol2) ¥ (2) x(z) 6z £ 0 (9.2)
O

because

[B(u_)/Au ) - B(a )/A(s )] £ O
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In the above, ?m and ¢ , &re different eigenfunctions corresponding
to the eigenvalues U, and LA To prove the reslity of eigenvalues,
9.2 nust be satisfied. DBecause the b.c. ere functions of the eigenvalues,

one cprmol prove g priori that the eigenvalues are real.

w, L) Transformation
The growth rete or oscillation frequeney u is related to the basic

plasma verisble 4L by the transformetion introduced in Chapter 7 (7.32,

7433, T35, and 7.36). It can algo be written in the form

w4 u [2Am {1-y)] + a"a’za(/\g-—?)(‘i/ﬂ ~y) =0 {2.3)
where ‘
¥y = 1/(m'N) {9.4)
Thus, as m'(l ~> =,
im uw=> - {Ax 1) ' (9.5)
m? I
It will be shown thet the dispersion relation hag an infinite number of
geros which correspond to large (L . These gre transformed into two
regions on the w axis.
In Fig. 9-1 we sketch some of the u,{l transformetions and come
to the following coneclusions:
a. For |A] Z 1 the treneformation from JL to u is double-valued,
while for [A; = 1 the transformetion is single-valued.
b. For A =0 each value of L corresponds to values of u which
are symmetrically distributed about the origin., For |[A| >0
{(amd A £ 1) the symetry (or degeneracy) is removed, For

N >0 the values of u are displaced towerd the negative
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region, while for /] < 0 the shift is toward the positive
region.

c. As [N ~> », the corresponding values of u are clustered
sround the singuleriiies of the iransformation whose values
are given in 9.5,

d. As A\ is increased from O to 1, the por tion of the curve between
the singularities hes e minimum of emeller megnitude (as shown

in Fig. 9-1b). The minimum occurs at

oan

1/2 1/2
(=M% _ (e A) } (9.6)

w1 -pyVR -
k " ‘ ) (1»-/\}1/2 y (1) VE

Those zeros of the dispersion relation produced by positive values
of N which fall below this minimum correspond to instabilities; that
is, u may be e complex number., As shown on the f;“Lgure , the size of the
region which can correspond to instabilitleg is proporiional to 1/m!.
Therefore, it is largest for: m = 0; a small wave number, X = kr_; and
a spell longitudingl megnetic field, h. For |A; > 1 this region
vanishes and no unsteble modes arise which correspond o real velues of
LL. The foregoing is a more careful restatement of the result mede

evident in the stabililty disgram given in Fig. 7-1.

The Forn of ihe Dispergion Relation Investisated by the Computer

The dispersion relation given in 7.38 can be wriiten as

F =mnm'g + /\ug.t = 0 (9.7)
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where
g =Dg,+ (A% - 1), (9.8)
o E 2
g, = a'(1-n%) (9.9)
g, = (1/2) [NY_(8) + 007 (9.10)
D=A®o 14024 (my + X ab )27 ~1(x) (9.11)

whers we have set e, = © in D of 7.4, Por A =0, 1L is teken
a8 the independent verieble of the function, £ = g, whose gzeros were
sought. The u,f)l transformation caleulated two values of u corresponding
to each value of L1 which satisfied 9.7.
To avoid deeling simulisnecusly with the complex u and eomplex (L
plene when A £ O, we rearrange 9.7 as
w = j-‘j—-*‘éf (9.12)

and substitute in 2.3, obitaining

£ =g° - glen%, (191 + 2(Aeg,)? (AB)(1/29) =0 (9.13)

QT

£ = {g - Mg, lA(1-y) - Ji-zy s A% ]} x

{g - Ng I (1-y) + N2 NP ]} =0 (9.1%)

The £ of 9.14 is a function in one complex varieble, S1 , and was used
to study the properties of the /1 £ 0 cases. Each value of
L = n‘roo’t which satisfied 9.14 yields one value of u ag determined

by 9.12, thereby removing the smbigulity which arises in determining u
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from the u,SL transformation. The excepiions to this are [l =-1

and (L =+1, m = 0, for which cases 9.7 is identically satisfied. The
calculation of u in 9.12 was éesignated‘by U in the computer print-
out {as shown in Fig. AG-22)}, in order %o distinguish it from the two
values of u calculsted by the u, L iransformation, 7.36. A genuine
root was distinguished by the fact that U (9.12) agreed with one of
the values of u caleulated by the u, {1 transformation (Fig. A6-2a).

The functions eom, and therefore £, have singularities where

1 (X V1 -0%) = 0. This occcurs when (L > 1 end

X \/ﬂg -1l=J ' {9.15)

m,p
where jm,p is the pth zero of Jm(g). Thus, eguation 9.14 has an
infinite number of singularities along the real N axis., For large {1,
these singularities are separaied by n/X.
2

When A = 1, thet ig, where the ALfven wave velocity equals the

fluid veleeity, 9.13 becomes

£ =g {g - Egj(h:f)} =0 | (9.16)
This reduces to zero if
g=0 or g =2g,{(1-y) (9.17)
R oW % % % %
The physical situations investigasted by the computer wefe established
by fixing two parameters
p(r=0)

b = 1.0 and @ = em——= 2,0 {9.18)
z ol 2
5/2/49
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The first establishes equel longitudinal magnetic fields inside and
outside, wheress the second esteblishes the ratio of the energy density
due to thermal motion to the energy density of the meguetic field.®

If one now chooses h and A and scts do = U, b, cen be evaluated

from 4,41,

In the computer study, eq. 9.14 was investigeted in the neighbor-
hood of the origin of the ML plane, |N| < 4.0, Imag L > 0. For
large {1 one can develop asymptotic approximetions.®* The resulis
are presented gré.phieally in Figares 9-2 through 9-11, where we plot
the eigenvalues u = «//c) p Vvevsus the flow paremeter A . The
following teble sumserizes ‘the parameters which deseribe the physical

situations studied,

*
c"ip = 2,0 is & reasonable number to expect in em "infinite ¢ylindricel®

fusion machine. Spitzer (32, paragraph 3,2) states that, "In an
infinite cylinder, values of A lwe call it ép} as great ss unity
might be enviseged.” In particular, if one has & plasma density

of 10" particles/en’, T = 5.0 kilovolt = 5.8 x 107k, B = 10" gauss,
then c.'ip = 2,05,

i
For large X, N1,

D=~ fxn%2

F2Z x| tan(i N~ /2 -x/b) - m2(1 £ A )/hbi = G
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Table 9-1

A SUEVEY OF THE PHYSICAL SITUATIONS STUDIED

Fig. Group m h X aﬁymztctic
G2 1 0 0.1 0.1 -0 A 1)
9-3 1 0 Ol 1.0 ~1 {Ax 1)
b 1 0 0.1 3.0 -3 {Ax 1) sausage
deformation
Q=5 2 O 1.0 0.10 ~et {Ax 1)
9-5 2 0 1.0 1.0 1.0 { A% 1}
\
e “
9-7 3 1.0 0.1 0.1 -1.0HA+ 1)
g-3 3 1.0 0.1 1.0 “1e1 {Az 1)
2 e 3 1.0 0.1 3.0 -1.3 {Az 1) kink
deformation
910 4 1.0 1.0 0.1 1.1 {Ax 1)
9-11 4 1.0 1.0 | 1.0 | -2.0 {Az 1)

. . 2,1/2
Dn:“loG’ dp=2QQ§ D‘Q:(} "}’A )/

X =k, = wave number of deformation = 0.1 (amall), 1.0 {medium), 3.0 (large)

b = longitudinal magnetic £ield = 0.1 (smell), 1.0 {large)

i}

u {asymptotic) Genotes the position of the singularities of the

1, {1 trensformation.



We will discuss the results in groups (Coluwm 2). Cere should be
exercised in comparing the ordinates of different figures, as the graphs
were made to optimize the figures. Not &ll the gmodes discovered were
plotied, as this would crowé certain graphs. The unsteble modes were
designated by dashed lines, the cscillation frequency (Re u) by circles,
and the growth rate {(Im u) by triangles. 'The latter was always
plotted as a positive nuwber. The complex conjugate curve {iﬁ& mirror
imege) ie understood. All cther oseillatory modes were Cegignated by
eircies connected by solid lines. The diamond form on the A axis at
N = 1 designates a point Which is rot present on the curve. The gero
value of the ogeilletion {requency ls therefore excluded., This follows

because the u, L trensformation ie single-valued at A = 1.

Group 1 {Ssusege Deformation ~ Week Magnetic ?iﬁld):

a. The magnitude of the growth rate of the "basic " instability
(L= +1) incresses with increasing wave number.

b. The presence of flow removes the basle instability; the smaller
the wavé number, the suweller the flow required. This is alsc
seen by examining the stability diagram (Fig. 7-1). '

c. In each case there exist other overstable modes with growth
retes of smaller megnitude. For small wave numbers (X = 0.1,1.0)
these arise with A > 0, then build up to a maxlmun and venish
with increesing /\ . With X = 3 the mode is present at A = ©
as a pure divergence. The magnitude of the growth rale decreases

monotonically with increasing A . These subeidiary modes are



still present after basic zvdes heve been removed end in genersl

ghow the characteristic of increasing mecnltude with increasing
FEVE IRSET .
g¢. In all the subsidilary modes the magnitude of the oscillation

fregquency increasee with increasing A .

Group 2 {Sausage Deformation - Strong Magneitic Field):
8. The basic instabilitiecs ghow the same behevior az in Group 1,
gxeept that the carresponding megnitudes of the growth rates ere
larger. A greater Clow rate A is required to remove the basic

instebilities than is reguired for CGroup 1's Instabilities.

¢. The subsidiery modes have been removed by the girong field.

Group 3 {(Xink Deformstion - Weak laguetic Field):
a. 7The nagnitude of the growth reate varies directly as the
wave number.,
b, The oscilletion freguencles associated wiith the modes lncrease

nonotonically with incressing /\ for all wave numbers.

Group b {¥ink Deformetion - Stromg Megnetic Field):
2. All ingtebilities have been removed and the seeillation
frequencles, which were gymnetrically distributed at /\ = O,

are shifted downward as /\ increases.

IRTNTETRY
i e

i g R S



In general, one concludes that:

i.

The oscilletion frequencies are symmetrically distributed about
the origin with /\ = U, When /\ > 0 the mode frequencies
are all shifted toward the negative and vary monotonicelly
with /\ .

Ihe growih rates are larger for large wave number disturbances.,
The oscillation fregquency for complex modes increases with
increasing /\ .

Increasing the flow () resoves seusage (m = 0) instabilities

and enhances (the megnitude of) kink instabilitics.
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COMMON AND UNCOMMON VECTOR AND DYADIC IDENTITIES

(A+1B)x (A—-B)=—2 (/AxIB)
/Ax (IBx €)= (/A- €)B— (A IB) C=—I1Bx(Cx /A) - Cx(Ax B)

/A-(Bx G) B (Cx A)= C: (AxIB)
(AxB)-(Cx ID)=(A- €)(B-ID)—(/A ID)(IB- C)
V¢m=V¢ -m+¢V-na
Vx(¢pRn)=Vexn+ ¢ Vxa

~N O o0 O pHp W -

V-(/ax1B) = |B-(Vx/A)-—/A-( VxIB)
IA- [(lB- \Y, )a:] =B [(A-V)m]

Bx(VxiB)= (VB)n-(a- V)iB 9

(00}

V(/A-IB)= (VR -1B4(VB)-ma=(a-VyB+B - VIa+nx(VxB) +Bx(Vxa) 10
VxtnaxiB)=ia(V-B)-18(V-n)+(18-Via—(a-V) B [
(a-ViB= 3 {V(/A.IB) ~Vx inx1B)-Bx({ Vxm)—nx( Vxig)—B(V-n)+/mna(V- IB)} 12

GA-V 1A= (Vam)x i+ 5(Vid) 13
(n-V)($B)=1BUA- V) + b (A-V)IB 14
Vx[vx/A]=V(V-/A)—V2/A 15
(A -V)(IB-¢)=IB-[(/A-V)¢:!+ C: [(/A-V)IB} 16
(A-V)(IBxC)= [(/A-V)IB]x¢+le[(/A-V)¢] ' 17
V-(aB)=18(V-m)+(/ma-V)B 18
V.(/a1B-1BA)= Vx(Bx/A) 19
V-(¢2miB)= V- (¢/a¢iB)=V (A $*B) 20
V-(A-1B)= [V~7K+7K’~V] 18 21

(—l/ >
/A" = tran spose of dyadic /A

V-(ne-/‘K)=[V-7E’+K-V] 1B 22
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Ve ¢ _[
/; $dx S¢d$
[T ne f
v “IAd x~jSA-d$
f Vx/Ad3x=-:/‘/Axd$
V S
3
/:/ lB'(vx/A)dx=_/;/A'(inB)d3x +fS(IAxIB)'d$

fstqub:_/'qudm

fS(Vx/A)'d$=J:_/A-q@

d$ s the outward pointing normal vector.

23

24

n
(8]

27

28
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A2 THE COMPONENT EQUATIONS
IN CYLINDRICAL COORDINATES

A2.1 VECTOR IDENTITIES
(/a-VB) = e, {Ar 9, B, + ('F)AB[agBr - Be] +A 9, Br}
eg {Ar 9.Bg+ ('?)Ae[aaBg'l' Br] *a, 9, Be} (a2.1)

(e, {A, 9,8, +(vlagdB, +A, 0, Bz}

(Vxw)x w=ee, {" (3)9, (v§+ vzz)"(";)va +(";')veagvr +v, 0, v,}
(ee{ d.vgt (r)Vr v~ (¥ )ae(vr '*'vz)"’v 9, VB} (A2.2)
(eZ{Vr Orvz + ('r)Va 'z "('z')az(“r +V9)}

A2.2 THE MASS CONTINUITY EQUATION

Vi(pw) + 0, p=pV-(w)+(w-V)p+9, p=0 (A2.3)

3y p +.f[?r(,vr)+aeva+razvl]+v rP+( )Ve dgptv, 3, p= 0 (A2.4)

A2.3 THE DISSIPATIONLESS MOMENTUM CONSERVA-
TION EQUATIONS

p0,w+p[ V)\v]-—Vp tixB=-p, er+(-—) IB - VIB] (OIE)"IB (A2.5)
<te > tpdyv, + p[(\v V)\v] ==ppd, T+ (/76) kIB V)IB]
(/_,,o)(';;){Bzatvr"(IB- w4, B, =(1B-9, w)B, "'(E)v,. ,Ba} (a2.6)

<(e6 > Z,Dl’t ve +P [S\V-V)\v]9=—pp(;'-)68 T +(ﬁ|-;) |B.V|B]8
";'O;) {8*0,v5-018- w2, By~ (18-9, W) By +(3)v,9, 8]  (a2.7)
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e, 700y v+ [P(‘V'V)W]z ==ppd, ™ +(/»—Il- )[IB 'V'B]z

o]
- ;(l)—cz){ezat v~ (B-w)d,B,~(1B-0,w)B, +($)v, 9,B°}  (A2.8)
where B?:B'B ; IB-0,w= Bratvr+BgatVa‘+Bzatvz a2.9)

A2.4 MAXWELL’s EQUATIONS

V-B=0; F[0(rB)+0,By+ro,8,]=0 (a0
VxiB= pgoj * 5 O (A2.11)
<o, ”: (0B, 2, Bg))= o iy * Lo, (a2.12)
<(e9>5dzBr ~0Bz=poig “"c-;'atEe (A2.13)
<, >t [0 rBg)-9g Be] =g iz + % 04E, (A2.14)
VIE=Z ; 1[0 (E )+ EptrdE,]=E (A2.15)
VxIg+0,1B=0 | (A2.16)
<e,”: 7 [@g E,=9, (FEg)+ 3,B,= O (A2.17)
<ceg >: 0, E, ~ 0., +9By= 0 (A2.18)
<e,” 7[0Eg)-2gE,] +2,B,-0 (A2.19)

A2.5 OHM'S LAW (ASSUMING ;'-zaf IE = 0)

IE+wxIB=m5=XVXB | (A2.20)
Seer” Eq +,BrvyBy i =M1 By 4, B,) (A2.21)
<(e9>.'E8+szr‘vrBz=nje= )\[azBr ‘6rBz] (A2.22)

<u;z>:Ez +v.rB9 ~vgBr=7j;= % [ar(,ae)-ae ar] (A2.23)
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A2.6 OHM'S LAW CURLED

- 0,18+ Vx(wx 8= 7 Vx == A V2B~ 25 oy 18 (42.24)

<(er > 4B, ++ [59<Vr Bg~ VQBr)]"’ 9,0v;B, ~v,B,) =

-\ [V*B,- 58 - 29,8y - % o}8,] (a2.25)
<(e9>:— afB e+ az(VeBBz - Vz ae )_ ar (Vr Bej— Ve Br )x

—y[v2g -84 2 - L 6

)\[V Be —r;‘i';-aaeB, -C-z—a”Ba] , (A2.26)

<(ez>: -d,8, + -:,-[&r(rvz Br —rvy Bz)—ag(ve Bz 80)] )
- )\[Vsz B 'E"z afatBZ] vz
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A3 THE DIFFERENTIAL EQUATION OF THE NORMAL VECTOR

The epatial and temporal variations of surfeces can be described in
twe ways: first, through the implicit relation
f‘{:{;y;zgt) = 0 (A3’1)

{(implying 2z = #{x,y,%); second, through the direction of the normal

vector, In,

e Ve
mum~ " {A3.2)

and ithe velocity of each poinit on the surface slong the normal

w o= { weln) {43.3)

The latter procedure is more useful, since the normel vector appears
explieitly in our b.c. The d.e. of moition of the normal vector is

obtained from the d.e. of the surface, namely,

th = «”:“;ti‘ + {weV) =0 (A3.4)

Two procedures are used for deriving the normel-vector d.e.

Although epperently different, they will be shown to be equivalent.

A3.1  Procedure 1

If we take the gradient of A3.%, we obiain

E%-_t(am) +V{ weam] = 0 {43.5)

Using identity A1.10 and the fact that



(Viem)]*w =w x [z (ain)] + {w*V)am = {( w* V)an (43.6)
we can write

Viwram] = [Vw] « auxi + {wV)}awm) (43.7)

By substituting A3.7 into A3.5 and dividing through by a, we obtain

3

L (w:V)im + %Dta + {Vwleimm=0 (A43.8)

Now we sepsrate each vector term in A3.8 into e component along n
and one orihogonal to (n. Thus:

(In is orthogonal to 1n since %‘:}t( ineln) = In*d mm =0

. {(weV)im-in {ln’{( \V*V)m}} = -0 % {tn x [{ \V~V)ln}} {23.9)
e, (Vw)*in -m [m*E(Vw)' |i1]} = =B X {m :«:[(V\v)-ml}

8, ¢

Combining all the components orthogonal to n yielde

%;Emn n x (n&.x {{ W'V)sn]} = |0 X (m x [(V \v)~m1}
{A3.10)

Another form is

D,m = m X {nnx f(V\v)'m]} + I {w«{(m*V)m}} (83.11)

The last term follows from A3.9b and the fact that

=Y 43
ine{ we /Al = we[im-/a}

A3.2 Procedyre 2

Rewrite A3.% as

3 f + au =0 {(A3.12)



- 113 -

If we divide by a, resyrange, and teke ithe gradient, we obtain
— »l > 3.. ) Y
~\u = - aﬁ(vf) + (d;sf) V(a) {43.13}

Using A3.2 and A3.12 we can show

i

RES . A8 s
aot(Vf) = %_tm + =y Q8

3 Ei‘:tm - m{g neVa) + (m-V)u} (A3.14)

since

i

38 =1 atw.f-w}‘/g BT = -89 ()

1
L
and

PS v _u &
(3,£) V(3) =, Va {A3.15)
If one substitutes A3.1h4 and A3.15 into A3.13 and makes use of the identity

mx [{mz Al = m{m-A) - /4 {A3.16)

two times, one obtains

?it n - % mx [1nxVe]l = 1nx [In x V] (A3.17)

Since
mxVe=aYx m (A3.18)

we can ghow that
(é) mzx [mx Va}}: - {(mV)n {A3.19)

and thus A3.17 becones

g m+u(meV)in = 1nx [1n xVu] (A3.20)

t
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A3.3 _The Eguivalence of Procedures 1 end 2
We will demonsirate the equivalence by deriving A3.11 from A3.20,

First, examine V.
Vu =V{wom) = (Vw) i+ (Vin) w
={(Vw)m+{weV)m+ wx{Vxm) {43.21)
Thus

mx {mxVu] = x{ln x ({Vw)e m]} +1n {m-[( weV)im + \W{V:{tn)}}

- {( w*V jin —%\v x (.‘Vx m.):} {A3.22)
Since ’
il { weV)m}] = wel{mV)in] (A3.23)

melw xVxm] = wel{(Vx m)xm] = wel{in*V)n] (a3.24)

we con rewrite A3.20 using the results derived sbove, namely,

E?s_b m+ {weV)im=imx {ln x ({(Vw) m]} + 2In {\v-[{mo\?)m}}

- {\v x {Vxm) + uf m-V):n} {A3.25)

The last term can be rewritien ag

#

-’

- {\v - um} %2 [Vx im}] = -[Vx In] x [m. x [mx \v}}

H

-m[{Vx mlfimx wl= ln'(y,x’:;a){nn x w)

'

[

-0 {\W{(Vx m) x :n]}
-0 {:\v»{( me V )m}} {A3.26)

Subgeituting A3.26 into A3.25 and combining yields

f



D in = Inx {ln X [(V\v}nln]} +1n {\v {inn Yy )an}} {A3.27)

which is the result given in A3.11.

lon As It Appears in the

Literature
Kruskal and Schwerzschild {1) give the d.e. (their eq. 9) as

D, m=mx [im x Vul (A3.28)
Tayler (23, eq. 2.2k) gives the same equation, spparently taking the
equation from Ref. 1 without checking it. Horthrop (1h4, eq. 9) and

Kruskal and Tuck (15, eq. 9b) give the d.e. as

D, In = Inx [mx (Vw) m] (A3.29)

The latter state that "equetion (9b) which is given here is corrected
from its previous erroneous form [Ref. 1]."

None of these sgrees with the results derived previously. The
essence of the disegreement comes from the fact that they assume that

o e E‘i; in = 0, which implies that

el weV Jn]l = wel(Vx m) x m} =0 (43.30)
Thie term is of sccond order, &(2), in their stebility investigations,
since W, = O, and thus their final resulis are unaffected. In the

cage where

v =V (e +V_ @
Ve 0 TV, €y

one can show that



1 ~ 3 ~ ~
(w Y7)u1..—@}€? vgagl e = v@{agng - 1) + vzuén@}

1
+ee b v 0

oS, vzézﬁzz +yf‘(2) {A3.31)

and  thus
m [{(wV)ml =@z
We conclude thal thelr equation will yield the correet resulits in the

present first order sitability analysis.

Congider the problem where the equilibrium guantities are

W, = {0, vg,vz) , and m = («1, 0, 0) (A3.32)

We have a spiralling circular cylinder of fiuid, If the total veloeity

£ield is writien as

wo= (¥, v. + %5, v, * %é) ' (A3.33)

then one can postulate a solution of the normal vector d.e. to have the

form

m o= (=1 + ﬁr’ Bs ﬁ%} {A3.34)

The tilde designates first order quantities as deseribed in Chapier 3
and egq. 3.1,

Thus

~ ~ ~ .
Velll = =¥ 4 V.11 + ¥ 0L A3.3%
u o= \ - o Az {£3.35)

Substituting these resulis into A3.20, one obiains

2

1 = {o, - ﬁ 33, -3 a} (A3.36)
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since Wim*V)m is a second order quantity. If one replaces the
partial derivatives in A3.36

%Q —> im,

61:. — W

and subgtityies A3.35 into A3.36, one obteins thyree linear simulianeous
equationg wh

¥4

ich can be solved for the components of

M as
-~/
~ Tr
i = == [0,m,kr] {A3.37)
where
D=+ cup
'; (AB“B@;)
= v
&)p r &zrvg + "Vz
~ ~s
Vo=V
T rp

is the first order radial velocity component in the plasma.
Note that in problems 2

2 and 3 the azimuthal eguilibrium velocity is
proporbional to r, while the longitudinal velocity is wuniform. Hence
W_ is a constant.
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A% %=1 IN THE INCGUPRESSIELE PROBLEM

Irfr n 2. 1, the inverse mairix of [a] in the incompressible

problem is not defined and one must return to the originel equations,

7.k, to see whal can be learned, If one applies 7.20 to the first

three equations of 7.4, one obiains three equations in three unknownse

1 o grpa,) 0 Q.
& @ s o
& -+ lcw_ O Q«a»@%
i o
[ © © * :J ___{.24“«'5
Thus
E co

o

and the remaining peir of egquatiouns can be written as

i - ) K3
& KR Q - n
- "‘LI
o
P ~ dmx
(L i 90 .

#

(ak.2)

(Ak.3)

(Ak.4)

Ie _n_"e = 1, one mst proceed more cavefully. If AL.3 is substituted

imte Ve (Q, = O and rearranged, one obiains

38+ 1/r (1-m/nn) E:“

Similarly, for Ab.h one obtaing

50, + 1/r {1-nn) Q.=

’Cltw
i
o igf\)
4
%
3%}
=3

m...i,,ﬂ%. "‘,,2“’
5 {rn_ér';z«zkzt]

{Ah.5

{ak.5
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Subtracting Ak,5 from AW,G yields
- -~ - ‘;i» ~ P ’
li/a -nla = [/ 33 +(um/r)3] {ak.7)

Subgtituting Ab.7 into AL, yields the same modified Bessel equation

for the plasme as 7.23.
L~ 1w @ 212 | \
%M;M«.{,ﬁz (A4.8)
This is to be expected, since the value of the determinant cencelled

out of the procedure used in deriving 7.23 from 7.12, If we set

£ =31 in Ak.7, we obtain the simple result

a %’ o ﬂ% = 0 (Alﬂug)

i

from which
% =30y {A4,10)

Substituting Ab.10 into Ak.6 yields a first order linear d.e. in '@'w,

which is easily solved asg

- O rm»% k.:?_ 2 :
Q+r = in gzrfm—sz—{fm-)} {Ak.11)

If m >0 and _N =-~1, % is finite at the origin and a
satisfactory solution to the problem. If (1= +1, ¥ is singuler
at r = 0, and this solution is disregerded.

If m=0; both N =t can be golutions, since in both these

~~0 . . o ) . .
cages s=x  is independent of r. Equation Al.11 yields

'éwni;g%k?f ; (m=0, N=211) (Ak.12)
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Observe that although = £V yield the same pertuwrbation in nm
pressure, %, the slope of ?’3:.@ is different in ell four* cases because
& _ is Gifferent. Hence, esch mode, u, corresponds to a different
overall gpatial behavior.

Ift m<Q = +1 is a root and = ~1 1is disregerded.

Both Sl =1 and JfL = +1 correspond to two roots, u, as shown

in 7.35.
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A5 THE BESSEL FUNCTION AND RELATED FUNCTIONS

5,1 Inbtroduction

This sppendix provides a central location for properties of those

Bessel Function ratios useful in dealing with the dispersion relations

of problems with eylindrical geometry. The works of Watson (Ref. 29:

b1

; Be2; 946, 15.41)%, Jahnke end Emde {30), and Dwight {33), and

The Bateman Manuscript, Higher Transcendental Functions, II (Ref.

3k fa, 7+13) contain many useful formilas. Recently, Once** (35)

published a book listing the properties of the Bessel Function ratics

and including tebles for 2J_,(2)/J (2) (with 1 <m <16 and

0 € |zl £ 20; spacing, |az]| = .U1). Bouh reel end imaginary velues

of & are tabulated,

A2.2. Ihe Bessel Funciion Ratios
Pefinitions

- 9 = 1 e f 2) = - [ . - (A5,
&m(z) ”0@33(13) = gl’miz)ﬁmx?) ra-z—zIm__}(‘a)/Im(@) {A5.1)
{ » = $ = 2T 2 = "7, 7 5.
ymiz) = &mm) mm{z}/&ﬁ}(g) ngmna(zu)/gmu) (45.2)
\ = Bl Z {z) = -m~ AR 5,3
X (2 2K 1(2)/8 (2) = -m-zK . (2)/K (2) (85.3)
N ] - 2 i 2 _
%m{ia)“ #i&)(«'&) = Zﬁé 3‘{3}/}151 ){z) (25.%)
" The muibers following the reference number refer to the paregrephs of
perticular use for dealing with the Bessel Function of a complex
variable.
5

His notation is @ifferent from the author's. His egs. 2.15-2,1G
are to be compared with A5.1-A5.4,
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These functions are the resullt of multiplying ¢ by the logarithmic

- @erivative of the crdinsry Bessel Function, €.g., Jm{z) = % dz(leg 1.

Initial Series

. 2-0 o e
ﬂm(z) =m+ D 8, B (85.5)
p=1
where
b, =t oa, = o= {aa + 8,8 + eeo a8} (45.8)
2 % 20wty fp T 2lmp) ‘%2%pe2 T B4apel 2p-4°2 '

totic Series

d(e)za-(1/2) + £ v (a)F (85.7)
p=1 '
where
e sy
§f&m 012, \ . l ) 9 &
b, = b, =g 5 bm,s =7 {{pe1)p - }{}i Lsp_‘k@ki {45.8)
-z (P41 (z) ten w + ¢ a)
gam(z) = EPm%z) + @%}(25) tan ul (45.9)

Cvhere w =2z - m/2 - x/b and P Qo ?i')ﬁ and Q;(;) are defined

Cin (33; 808.31, 808.32, 505,41, 808,42). The leading terms of this

Beries are

&
a8 1 £ N = o gmy i
JZP(Z)? 4 {’5%27 “&’iﬁ-&-ﬁj)/@a} ~ -z tan w (Af}.‘l@)
1+ (™ - 1)/03]



}m(z} = -n + 2n 'ﬁ' {a - (-—-—@-m)e} {1-(:].-2—-;)2} (A5.11)

As ghown in the discussion in problem 3, funciions of the form
L r( z)/Im{z} mey be encountered. These ere best itreated with the
Fod o2

Lommel Polynomiale {29, paragreph 9.5). One can write

(z) (85.12)

=k 4 - iy /T {z) iR
Ipp(8)I ) = B, (2} - [0, ()2 ()R,

where | < /2 - ' N
=Y m <13 ..._.g.r. .-:g)% A AL By=r4
. Ez.,gm(a) = Eg@( 17 %z 7-2p)1 i E%ﬁiﬁﬁl} (2) {A5.13)
Thug

o i
e

. . o 5 R “ 5"(:.3”“'! ).@ Fa [ e P
1,02/ (2) = [1 ﬁmm{w)k P {1 Rpq ngwfs)}élm_,(z}ﬂmfu)}

{A5.114)

The bracketed guantitice are real,

Z
=5 I 2 eyede £ T s 3 2
é'j‘.h Evaluation of g, 041 *«/ 4 Im+1(X)dx

Ve stert with the Beesel Function recursion relation { 33, eq.
803.3):

¥, =xI . - 2al (45.15)
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If we square both slides, maliinly by =z, and integrate to 2, we obtain

2 2
b - o b el = 2 -
I3,m1 T I3,m1 3&%/ I L g 6+ da / ¥ I dx {45.16)

By using the recursion relation { 33, eq. 803.4)
I =217 -1 (85.17)

we cen write the first integral as

/a P % on R ! I 8
Rop e 02 . ¥ T Yo o
% Im :«-‘5 L= ‘z“/ . Izzx~? dx / * ey Im—-E ax (A5.18)
b w
o ';ag') £ 2 © 2 el &, 3
«./ % ﬁ@mﬂ) / X Imﬂ Imma ax {45.19)
If we continue this process m-1 times, we can write

& o= [ Al 7,
2 e Pl 2 2 (=1 2.2
/ ¥ I I, 6= ;3 {-1} / % c%(l%@} + = / xar_ {45.20)

ginga 2 o 2 5 q
/ ¥ quaéxa(“i,f:a)/ b d(.'ig)

Z 5
Integrating / x~ ﬁ(Ii ) by parts we obtain

&

.

@ z
2 4e2 2.2 2 -
/ =" o Izn«_@) =2 Imm -2 / xzm«p dax (85.21)

The last integral is eveluated using Ref. 30, p. 14, namely,

7

< 2 2 a2 - ;
/ xI ax= {(z"/2) (Im - I, Im-x»l) {A5.22)



-~ 125 -

Thus, A5.21 reduces to

o, .2 2
/ x é(Im__p) = 2 Im-p~1 E%p+1 (A5.23)
and A5,20 becomes
4 fi*?
/ 3 I I;M dx = 5:3 (-1} r’i'-z»“ Lpet * I, (As.28)

IS we spubstitute AD.2h into 45.16 and use A5.22 sgain, we obbain the

recursion formmle

1=
P = . - g*ﬂg’: % o - m‘;
Jﬁxmﬂ JBym“? Bz faer Ty ;L_: (-1 m«pm Im«pm‘i
g’“’ !ﬂH'? ’3 ;
+ %2 I? 1+ oy I (45.25)

For this recursion relation 1o be useful we sush know 33 o &nd 33 1"
2 2
-3

These are obiained from the integral representation of Ifj} {29,

paregreph 13.72, eq. 2).

o %/2 5/
Iz,;‘(:és:) = 2/n /0 :tms{ax cos 8) 46 = 2/n /@ xgm(ax sin 9) do {A5.26)

'29 o o .4 <. C. 4
ddtiplying 45.26 by xz”  and integrating to 2 ylelds

ﬁ/e:. A
Iq o d/sr/ w/ 1 {&r sin @) dx {45.27)

Consider the inmer integrsl for the case m = ¢ and let

=2 gin & W= 2% 8in @ = ox (45.28)

]
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& o
s [ 1 (o) 0 = ;«-g [ eI ()] = ;-%; [(0n)’1,~2(02)°r ]
{25.29)

Ve have imbegrated by parts end used Ref. 33, eg. 803.6. Simplifying

z 3 2g° 1 I 1, I
3 p 7 2 3 o) 2 b 3
2 IRO’.‘K)@E'&WI e o g [w.v._,m,_m (A5'301

f o 2slne ™ -, 29 L 6 12

The srgument of the Dessel Funetions is {2z sin 8). The last relation

is obtained by repested use of the recwrrence formiis, A5.15. Substituting
A5.30 into A5.27 {with = = O) yields
E . Y £ 4% £aF oy - o A
Iy = (& %//; aol(}) 1 (20 sin ) - (1) 1,22 sin 0)
- (33) 1,(25 sin 0)] (45.31)
o
e dy o2 Iy .2 iy 8¢,
A similar

A5.32 i obtained by comparing each term of AZ.31 with A5.26.
manipuletion yields

& 2 &
5, 4 = (& /6)IE) - 15(e)] (5.33)
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A6 Al OUTLINE OF THE COMPUTATION PROGRAN

The srgument presented in Chepter 9 demonstrated thet the disg-
pergion relations for fiow w@l@m (ceg., 7.35) would have complex
modes, Thus, these relations must be treated ss functions of a complex
veriable, At the time the program was begun {December 1958) there were
no gubroutines availeble gt the Caltech Computing Center for the Model
205 Dabetron which could help the author. This necessitated the design
of fundsmentel computer operetions for complex aw:bers. The otal
progran (including the dlspersion relation being snalyzed) wes writben
for the “floating polnt” gystem of mumbers and oceupied 78 percent of

the Datatron's memory of 4,000 words.

In desiguning these subroultines the complex nurber is treated as an
ordered peir of nunbers upon which the elementary operations sre
performed, If 2 =x + iy and I =u + iv, then the subroutines were

eongiructed as follows:

a. Mliipiication (M): 20 = (xu - yv) + i{yu + =v) O (a6.1)
b, Divide (D): 2/f = [{xu + yv) + ilyu ~ xv)} (™)™ (86.2)
c. Sequare Root {Sk): (z)vﬁ A CE ig) {46.3)

vhere (/B {;} = (% x4+ .)xg + yg)t/g (A6, 1)

d. Bessel Function Ratic (BFR)*:

¥ See Section AS.1 and reference 35.



21 (z)
I?‘ P = Gm P 3 (Aécf’)
‘ v s
5 Tl
wnera
n
e = T T (z) (86.6)
my - (men)t ? B P
e. Complex Iterator or Bero Searcher (CI):
- £ . +g L {z, ~2z_,)
Zoay ® n?’“fn‘ ﬁmznw-—w (86.7)
n T} n
where | - 3
o, = fmu”ifﬁn ‘ (46.8)

SBquation A6.7 is essentizlly Newbon's method applied to the function
f{z) {whose zeros are sought), with derivatives replaced by diffevences,
The subscripts refer to successive values cobtained fronm the iteration
procedure. To derive this reletion, one expands £ in a power series
in a region, 2o where a ZET0y 2.y is expected.

e(z) i
2(z) = £(z)) + £'(z,) 22 + =52 (22)" + ... (46.9)

This expansion is velid, since we are dealing with analytic functions
of s complex variable. If derivatives higher than the second are
neglecied, one obteins Az, an estimate of the quantity . B » by
gsetting the left side equal 4o zero end solving the resulting quadratic

equation.

3 :
DB = = %7 {1+ %?ET (46.10)
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Equation A6.7 is derived from A6.1C by setting: (1) £ = O
2 p o= o s ) ° o o &3
(2) sz=2 ,-2; (3)¢ £ and (4) £ ﬁxn—tfhﬁn-%

= (fn—fn_1)/qzn—zn_1). This procedure can be shown to converge if

£ -£
£
n

= i"ﬁﬁl > 1 in the vicinity of a root. Thus the procedure

converges if £ is diminished by a factor > 2 in each step of the
iteration.

The {CI) program operated as follows: (1) one stores z, and Zys
two estimates of 2z ; {2) £, and f  are calculated and the iteration
proce@ure beging wiﬁh;ﬁhe calculation of sz, using AG.7; (3) the meechine
is instructed to print out thei a root has been located if either of

the foliowing requirements is met:

510“’6 or AB_ =% - % 510‘8

[2
n 41 hi|

£,

The iteration procedure proved to be adeguaite except in those rere
cases where: (1) £{z) had a ninimum or a maximun of very small
magnitude; and (2) there was a muliiple root or iwo nearby rocts.

In such cases the machine was instructed to print out the successive

iterstions, and one could examine them and draw the proper conclusions.

Each subroutine was tesied before the eniire group was assenmbled
into a unified program. The tests were consiructed for examples which
could easily be calculeted by hand and for examples which tested
critical numerical values. Operations AG.1, A5.2, and A6.3 give resulis

accurate io one part in ihe eighth significant figure (there are 8
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significant figures in a floating point number). Since A6.5 utilized
an initial series expansion, one expects iis accuracy to fall off far
from the origin, Within e circle of redius [z| <8 tbe results were
accurate to one part in the gixth significani figure. Near the real
axis, z = X + i¢c {¢ small), the accuracy was greatly improved, and at
% = x = 20 the results were accurale to five parts in the eighth
significant figure. In other words, the lines of "iso-accuracy” were

ellipses with major axes along the real exis.

The dispereion relation, 7.38, was rearranged into the best form
for computation {(see Seciion 9.3 ) end utilized subroutines AG.1, A6.2,
and A6.5. The function £ was studied with the aid of three additionsl

Tgygten” programng.

This progran prints oub

the real and imeginary velues of £ along & line parallel o the real

axis. The total renge covered and the spacing between points along

the horizontal and vertical axes are adjusteble. Figure A6-1 exhibits

a typleel grid printed out wiih floating point numbers® of three digits

and a sign. Thus, each value is given to one significent figure.

The first two digits determine the exponent n. Thet is, n = (first
two @igits) - 50, The third and following digits give the number of
significent figures up to a maximum of eight. For example, the
number -yyxxxx is - {O.xxxx) x 100, n = yy=50. If -yyx = -k92,

it corresponds to -0.02.
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Fig. A6-1. A Grid Print-Out For a Function of & Complex Variable.
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For each point in the plane the real part of £ is printed over the
imaginary part of f. Negstive numbers are printed in red and positive
in bleck {as seen in the origiﬁal copy of t&is thegis) for quick scenning
of zero locations, The!heaﬁiﬁg gives bz{bz), h, m, X, bg(bo), and

A{L), symbols which are defined in the thesis.

After a line is calculated, the RL program

examines succesgive pairs of adjecent values of f ‘starﬁing at the left.
Vhen both the reel pert and the imeginery part of £ chenge sign, the
machine searches that region for a gero by swiltching to the Complex
IHerator and informing it of the region where the double sign change

was found. The Grid and Rodie-Locator ere frequently used togeiher {CRL).

The location of the singularities

of { i determined by the values of m and ¥ &8 shown in Section 9.3
Since £ is changing rapidly in the neighborhood of such points, one
expects that a zero (or zeros) may be present there. The SRS is designed
to inform the Complex Iterator to search a pre-gpecified number of regions

of the complex plane, depending upon the values of m and X whiech

are being studied.

Yhen the Complex Iterator locates a rcoot, the machine prints out a
format as shown in Fig. A6-2a. The first line indicates that it is a
root {in red) and the number of iterations {"its") required to get there.
The next three lines give the last three itersticns before print-out in

the format
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b2=+5110 h=+5C100 m=+5110 X=+51100 bo=+5111180339 L=+505000 /53

#EFPOoL 1Us ., =409

+51121825( +40922:2869 ).
+51121823( +499222869 ).
+51121823( +h0922289 ).

u==50226613( -50684430 ).

Fig.A6-28.

+51130000( +50100000).
+51140000( +50110000 ).
+51126261 (+497662h6 ).
+51123966( +h0T707814 ).
+51121375( +49844016).
+51121729( +49957276) .
+51121825(+49521397 ).
+51121 82k (+459222084 ).
+51121823( +40522209 ).
+51121823(+49922209 ).
+51121823(+49922289 ).
+00000000( +00000000 ).

Fig 0A6‘“2b °

+43220000( ~42100000C ).
+13430000( -4k 126000).
+143120000( «43540000) .

u==U9572075(+50622608 ).  U=-b9572080(+50622608 ).

Format of the Computer Print-Out When A Root Is Located.

+19119616(+49579392 ).
+50L91 71 (+50164259 ).

9135043(+49236899 ).
+45120214(+2107395 ).
wL8lsehT1( -819823% ).
<4781 7959( ~4T643585 ).
+46507510{ +46155150).
+44258000( +k4G8000 ) .
+43120000( -k3040000).
+3430000( 44126000 .
+43220000( -42100000),
+00000000( +00000000 ) .

The Successive Iterates Corresponding to the Above

Print-Out and the Grid of Figure A6-1.

Fig 9A6-2 .

Format
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Re z{Im z). - Re £{In £).

The fourth line gives the iwo velues of u as getermined from the u,; (-
transformation, 7.35. The subroutine for the u, 1l transformation
utilizes A6.1, A6.2, and AG6.3. U 1is deseribed in Section 9. 3.

Figure A6-2b shows a sequence of nine iterations staerting from
Z = 1.3 + 10.1 and 2, = 1.4 + 0,111 and converging to

[} L
= 1,21823 + 1.0022289. This case corresponds to the roct printed

%10
cut in Figure A6-2a and to the grid given in Fig. AG-1. In fact,
between x = 1.0 and x = 1.25 one sees that both the real and
imsginary values of £ change sign at ¥y = 0.10 — ¥y = 0,18, in-
dicating the presence of a root in this region. Note also that £ has

8 minimum on the real exls at ¥ = 1.25, encther indication of a root

in the complex plane.
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