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ABSTRACT

The experimental data relating to the 17.53 and 18.14 Hev
states in BeB is analyied» It is shown that all available mea-
sﬁrements are consistent with the assumption that both states have
J =17, Since these states are obtained by bombarding Li’ (J =3/27)
with protons, they must be formed principally by p-wave protons,
Ordinarily 00829 terms would be expected in angular distributions
for reactions involving these states, but they are not observed.
From this it is concluded that a certain value of the channel spin
ratio - 04%/&:' = 1/5 — is required. It is then shown that this
value may be obtained on the assumption of an independent particle
model with either jj or LS8 coupling. The vwarticle and radiation
widths are computed for these states using both LS and Jj coupling

schemes, and the results are found to be in order-of-magnitude

agreement with experiment.
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I. INTRODUCTION

The study of the energy levels of nuclei has a dual aim : on
one hand there is the hope that it may give clues as to the exact
nature of nuclear forces, and on the other hand that it will lead
to a systematics of nuclei in analogy to our knowledge of atoms.
Some success may be claimad for this program on both scores. The
charge symmetric ﬁature of nuclear forces serves as an example of
the former and the Mayer - Jensen shell model of the latter.

The indcependent particle picture of the atomic nucleus - of
which the Mayer - Jensen shell model is an important example = is
a direct copy from conventional atomic physics. There it has the
advantage of a sound theoretical basis and a great deal of experi-
mental confirmation. The strong, short range nature of nuclear
forces leads one to expect a much higher degrse of correlation in
the motion of nucleons in the nucleus than is suggested b& the in-
dependent particle picture. Nonetheless the independent particle
picture has been used with considerable success of late in accoun=
ting for many observed properties of nuclei : spins, magnetic mo=-
ments, energy levels, stc,.

This thesis is a report on an attenpt at applying some of the
ideas of the independent particle picture to two states in Be8 which
are excited by bombarding Li7 with protons., The first part consists
in a careful analysis of the experimental data which establishes
with a fairly high degree of probability that both of these states
have spin one and are formed from p-wave protons. Also it is shown

that in both cases thz differential cross sections for scattering



- 2 -

and radiative capture has no or very'little dependence on F%(cos;g)
‘contrary to what one would off hand expect in the case of p-waves.
In the second part of this thesis independent variticle wave
functions aré developed.according to the jj and LS coupling models,
For certain wave functions in either scheme it is shown that the
curious absence of the Pz(cos 0) term is predicted., Using these
same wave functions, other level parameters are also computed {par-
ticle widths and radiation probabilities) and these are compared
with experiment in the hope that all of the data connactéd with a
given energy level may be accounted for by a single wave function.
Only very partial success can be claimed for correlating all of the

data by this atteapt.



II. DISCUSSION 0F THE LEXPERIMENTAL DATA AND THE

ASSIGNMENT OF QUANTUM JUMBERS
As 17,63 Mev Level

Two types of experimental data are available relating to the
17.5% Mev state in BeS. One is the elastic scattering cross sec-

7

tion for protons on Li' known as a function of energy and angle,

and the other is the cross section for the radiative capture of

protoas by Li7

which is also known at a variety of bombarding ener-
gies for the proton and several angles for the emitted gamma ray.
In the following it will be established that both types of informa-
tion are consistent with a certain choice of spin, parity, and
channel spin ratio for the excited state in Be8. Other possibili-
ties will be considered and rejected as most improbable,

A.7. Gamma Radiation(q’a)

The most striking datum at our disposal is the angular distri-
bution of gamma rays obtained at the peak of the resonance, It is
very nearly isotropic : Devons and Hine give as the angular distri-
bution at this energy 1 + 0.05 cossg.

The most common explanations for isotropic angular distribu-
tions are that the resonant state is formed by an s-wave or that
the resonant state has a total angular momentum of O or 1/2. The
latter possibility may be ruled out immediately, for the ground

o)
state of Be” has J = O so that the assumption of J = O for the



excited state means that gamma radiation would be strictly for-
“bidden. It has been observed in several different experiments(1’3’4)
that most of the resonant radiation leaves Be8 in the ground state
and not in the lower excited states although such transitions do
occur, |
Devons and Hine(z) analyzed their data on the assumption that
the resonance was due to an s-wave, S0 it is not necessary to ex=-
plore this possibility in detail here. It will suffice to set
forth the arguments against this assumption and those in favour of
assigning this state to p-waves.,

The observed gamma radiation width of the 17,63 Mev state in

8

Be  is

¢ 9.4 ev

rr=(2i+1)(21+1).9.4___ 8
27 + 1 2T + 1

where 1 = 1/2 is the spin of the proton, I = 3/2 is the spin of

Li7 and J is the spin of BeS in the compound state, the value of
which is unknown at this early stage of the analysis. For the pre-
sent purposes we‘may think of the gamma width as having a value of
10 or 20 ev. This value may then be compared with approximate theo-

(5)

retical predictions such as those of Yeisskopf which may bhe taken

as a rough upper limit on what may be expected,

When s-wave protons bombard Li7, compound states with J = 1
and J = 2° may be formed. In the first case the compound nucleus
may decay by electric dipole radiation and in the second case by
magnetic quadrupole radiation to the J = ot ground state of Be..
Yeisskopf's formulas give Y}‘: 2000 ev for the case of electric
dipole radiation and | _ = 1/4 ev in the case of magnetic quadru-

¥

pole radiation. On the basis of these two figures magnetic
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quadruénle radiation can easily be ruled out (and hence the J = 2~
‘state) while the possibility that the resonant radiation is electric
dipole still remains. The decision against assuming the resonant
state as J = 27 is further supported by noting that a J = 2~ state
can decay to the J = 2% first excited state of Be8 by electric di-
pole radiation, - This means that this mode of decay should be much
favoured over decay to the ground state, but, as noted above, the
contrary is the case,

The experiments, it was mentioned above, show an angular distri-
bution at the peak of the resonance with a small but definite cos@
term. This must be due to interference of the resonant state with
oneg or more states of opposite parity. If the resonance is formed
by an s-wave, the most likely interfering states are those formed

+, 2" and 3+ can be

by p-waves. From p-waves states with J = O+1 1
formed, but it is to be expected that the J = 17 states will con-
tribute most strongly in the radiation to the ground state of Be8.
(It is assumed here that none of these states are resonant as there
is no evidence for that in the experimental cross sections.)

The transition from J = 17 to J = 0 goes by magnetic dipole
radiation, The cross section for this can be estimated using the

(5)

formulas in the book of Blatt and Yeisskopf which yield

= 1.2 X 10-8 barns.
(qur gives the limiting form of the 1 = 1 component of the Coulomb

wave function near the origin.)} If the cross section of the purely



resonant radiation is called U'XR,then the differential cross

section including the interference terms can be written

0y () = Ejf_[vXR + 2x VE—YR O'S,(m)' cosbd + O}(M’l)],
X Qf.1.

Since U_VR >> Uy (1) the angular distribution will be

6) ie 5.7 x 10~2

The value of G_VR obtained from experiment
barns. This value, when combined with the estimate for (T} (111 )y
gives the following angular distribution :

1 + .003x cos e,
X C& Te
In this computation the magnitude of the cos 8 term has almost
certainly been overestimated, and yet it is smaller than the ob-
served value by a factor of more than 15. This means that Ty (M71)
is an underestimate on the magnitude of the non-resonant radiation
by a factor of over 200.

In a similar manner an estimate can be made of the contribu-

tion of a J = 27 state through electric quadrupole radiation. The

resulting reaction cross section is

2 5
N L .a=5 _e- (wR 2 2
0y (E2) ~ 6.0 x 1070 22 (LB) (o) g

= 1079 barns.
This is smaller than the magnetic dipole cross section by a factor

of 100 and so will not help us.



The conclusion to draw from the above computations is that the
resonant radiation may be explained as electric dipnle only at the
cost of assuming that the noh-resonant radiation is far larger than
reasénable theoretical estimates.

Although the assumption that the resonant state is formed by
an s-wave is the simplest way of accounting for the observed isotropy
of the radiation, it is not the only possibility. As an example,
the angular distribution in the case where the compound nucleus is

+ .
formed by p-waves and has J = 1 1is

1 + Pé(cosa )
10

(Since 1i’ has a spin 3/2 and the proton spin 1/2, the combined
system can have '"channel spin' 1 or 2., These two channel spins
are represented in the wave function of the compound nucleus by

relative amplitudes 0(,l and 0(2 where 0(,]2 + 0(28 = 1,) By taking

It

°<12 1/6 and (Xaz = 5/6 an isotropic angular distribution is ob-
tained. There are many other states where an appropriate choice of
the channel spin coefficients will give an isotropic angular distri-
bution. In each such case more or less persuasive arguments can be
made against these states, and there remains only the J = 1* state
with the channel spin ratio 0(22/0(,12 = 5 which will now be dis-
cussed.

The cross section formulas for resonant radiation from the
17.63 Mev state in Be8 to the J = 07 ground state and to the

J = 2% first excited state are, with the non-resonant electric

dipole radiation from the J = 1 and J = 2~ states included,



I 2 2
5 T 2 5,7 - X,
qd (9):—-—-:-—--!—9-sing[’l+ P, (cos @)
¥ k= T 10 2

S sind cos( & + tﬁ ) cos O

3
+ —= [af% « — y-)d A
8x°

2 2
3 - 5« - X
0—32_( 6) = == rra sinzg [’l + 1 2 P2 (cose)]
st [ 100
5 . 5
+ = ‘BIa + —= jC)Z
8k 8k

1 Mo s Z:»J? 9 V7_ }
- — | == si ) ) O 2l Zlo s 2 |~ -
kz l_ S1in cos -+ ¢ 1 COS 8 > 1 + 8 5 L

In this formula A, B, and C are the amplitudes for the non-~resonant
E1 radiation from the J = 1  state (formed by an s-wave) to the

J = O+ and J = 2+ states and from the J = 2~ state to the J = 2

+
state. These quantities are all small compared to the resonant
amplitudes and can be estimated theoretically sco as to admit com=
parison with experiment,.

Although it is possible to resolve the two gamma rays going
to the ground and first excited states of Be8, it is not easy to do

so, and most of the data measure both together. Thus what is wanted

is the sum of the two cross sections which may be written

Q_x(r;) =_§_2__\|__:{___ sin23 + BZD“ l.[.} sin d cos(5+4>,1) cos

8k Lk

where the following simplifications and substitutions have been made:
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1) 12 and 0(22 are set equal to 1/6 and 5/6,

2) rx =1 ¥o © r‘xz

3) terms in Ae,_Bz, and C° have been dropped, and

4) the terms linear in A, B, and C have been summed together

and the total non-resonant amplitude represented by D

D will be in magnitude about the same size as 4, B, and C,
and anyone of these may be estimated by the sort of crude com=
putation used above for non-resonant magnetic dipole and electric

quadrupole radiation. The result is

(B1) v 2T RS &

2 2 3
+T o L q (g%’cz
K 15 Ay ¢/ °

2 YuR

= 21 x 10-30 cm2 .

From this comes an order of magnitude estimate of D

D~ 4 % x 1072,

(1)

Devons and Hine present part of their data in the form of
the ratio of the intensities measured at two different angles —

15° and 145° —

r}-\cos (5-+t¢1) o
1 + 2D cos 15
r} sin O

“‘fﬂ cos (& + ¢1)
I Ty sin &

This expression is to be compared with experiment with the under-

1+ 2D cos 145°

standing that D is the only adjustable constant and that it should

not differ too much from the estimated value computed above,
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T and sin 5 are taken from the analysis of the elastic scattering
and rx from an absolute measurement of the gamma ray yield.(6)
In Fig, 1 will be found the experimental values of Devons and

Hine and a curve computed froa the formula for R using the para-

meters i >
‘.= 14 kev, r, =20 ev, D = - 15 X 10 .

The value of D used is seen to be about the same size as that cal-
culated for non-resonant electric dipole radiation, This is in
agreement with the assumption that the resonance is formed by

p-waves and that the interference term is due to s-waves.,
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A.2, Elastic Scattering

?

The elastic scattering of protons from Li

(7)

was studied by

Cohen in his thesis where he comes to the correct conclusion

that the resonance at 440 kev is formed by p-waves and has J = 1t
The cross section formula for this state (given below) has in it
an arbitrary parameter which expresses the relative amounts of the
two channel spins'used in forming this state. Cohen chose a value
for this parameter which best fitted the available experimental
data., The parameter is the same as that used in describing the

gamma ray differential cross sections which means the elastic

scattering and gamma ray angular distributions are related,

2

o =1

2
Cohen chose as his values & 12 = 0«8,0(22 = 0.2 ((3(,i +

so that the corresponding angular distribution for the gamma rays

going to the ground state is

56.% - &7
T () 1 + Pz(cosﬁ)
10
fo = > > = 1 4+ 0.7 cosag ’
> (-2)
10

and to the first excited state

2 2
5,7 - .
+ 1 2 Pé(cos@ )

Tp(8) 1 100
5«12- o 2 (_1)

= 1 + 0,06 c0529 .

el

| Ty2(90°) -

100 2

Since, at the peak of the resonance about 3/4 of the transitions



8 (2,3)

are to the ground state of Be y the net angular distribution

~would be about U}( %)

—_—_—— = 1 4+ 0,54 60529 .
Ty (90%)

This prediction is very different from the near isotropy
actually observed in the gamma radiation. Devons and Hine(q)
therefore suggest that the resonant state is in fact formed by
s-waves and has J = 17, I have made very elaborate attempts at
fitting the observed elastic scattering, assuming the resonant state
is that suggested by Devons and Hine and adding varying amounts of
p-waves and the J = 2~ s-wave., The results of these attennts are
all very poor, especially when one compares them with those ob-
tained from the correct assignment, To give an account of all
these fruitless efforts would serve no good purpose, but one can
get a fair idea of the difficulties by plotting on a single graph
the experimental angular distribution at the resonant energy and
the angular distributions obtained from the phase shift fbrmulas
for the two cases

1=0,J=17"andl=1,J=1".
In both of the formulas only one (resonant) state and the Coulomb
scattering are considered, The graph (Fig, 2) shows that the
p-wave formula is in fair agreement with the data while the s-wave
formula shows large deviations from the experimental points espe-
cially at backward angles. As stated above, attempts to improve
the fit, when an s-wave resonance is assumed, by adding mnderate

amounts of other phase shifts, do not succeed as the initial fit

illustrated in Fig. 2 is so bad.
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(1) J=17 s-WAVE
(2) J=1* p-wavE, af/ag_-.oo
\ (3) J=1% p-WavE, ai?/ag =4

Li (pp)
ANGULAR DISTRIBUTIONS AT 4415 Kev

o EXPERIMENTAL VALUES

(4" T=1% p-waAvVE, Qf/a§=y5

~-1.0

~0.5 C.0 0.5 i.C

Fig.2



The relatively good agreement of the p-wave formula with the
~experimental values shows that the assignment suggested by Cohen
should be re-examined. The more extensive and more accurate elastic

(8) and also the (p ¥) angular distribu-

scattering data of larters
tions discussed above are now available, The latter demand that

the channel spin ratio 0(12/0(22 = 1/5 be used rather than Cohen’s
value of 0(.12/0(22 = 4. This change in channel spin ratio affects
the gamma ray angular distributions greatly but has a smaller affect
on the elastic scattering angular distributions as will be evident
below when the formula for the latter is written down, Warters'

new data also indicate that the channel spin ratio more like the
value & 1%/0(22 = 1/5 used here actually fits the elastic scattering
‘data better than the value used by Cohen. This is illustrated in
Figs. 2 where the p-wave angular distributions are plotted for three
channel spin ratios.

The arguments presented so far favouring p-waves over s-waves
in the formation of the 440 kev resonance should be fairly convin-
cing. One additional item can be cited which in itself probably
means'little, but which, when taken with all the other evidence,
supvorts the decision in favour of p-waves, This lies in the com-
parison of the single particle resonance widths computed for s-, p=,
and d~waves and the experimentally determined width of around 12 kev,

The single particle widths are roughly

2
[.= 2KRY <=5 &2 750 kev,
MR
%2
FPN 2kRy, S5 2 100 kev,
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/1‘:2

Y- ™~ 2kR v, == ~ 3 kev.
d e
(Yl = (Elz + ng)-1 is the well known Coulomb penetration factor.)

The observed width is rather small for an s-wave width and
probably too large for d-waves. If one believes that the indepen-
dent particle model describes Li7 and Be8 in the relevant states,
then one expects that an s- or d-wave resonance would have the
single particle width (within a factor of two or three), while a
p-vave resonance would very likely have a rather smaller width as
it would be more difficult teo fit an extra proton into an already
partially filled p-shell of Li7. This argument is made by Lane(g)
who presents many examples where particle widths are of about the
size one would predict. This point of view is adopted in a later
section of this thesis where estimates are made of the particle

8

.and radiation widths for the 17.63 and 18.14 Mev states in Be,
B. 18414 Mev Energy Level

The experimental evidence bearing on the 18,14 Mev state in
Be8 will now be discussed. As in the case of the 17,63 Nev state
elastic scattering data and gamma ray cross sections are available,
In addition the inelastic scattering of protons has been studied
since the energy for this process is above the threshold in the

region of the 18.14 Mev State.
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B.1. Gamma Radiation

‘The capture gamma rays associated with the 1030 kev resonance
do not yield the unambiguous results that were found at the 440 kev
resonance., .Still there is a fair indication that again the resonant
state is formed by p-waves and, except for interference effects,
the resonant radiation is isotropic.

The data of Kraus(10) on the angular distribution of the hard
gamma rays from this reaction are most conveniently presented by

plotting as a function of energy the coefficients Wo, | and Wz

19
which occur in the formula,

W(P) = d, + W, cos 6 + i cosaé,
for the intensity of the gamma rays. These coefficients are presen-
ted in Fig. 3. The first thing to note is that Wz, the coefficient
of 00829 , does not show an anomalous behavior as do WO and an
This means that the resonance, which manifests itself in the co-
efficients of the constant and cos # terms, is either due to s-waves
or p~waves with the same channel spin ratio as the 440 kev reso-
nance., ('laves with 1 = 2 or greater may be ruled out because of
the large width of this state.)

The non-resonant 00529 term is probably due to states excited
by p-waves. s~-waves of course will not give a co§20 term and
d-waves have to work against a high centrifugal barrier. These
ﬁon—resonant p-waves will also account for part of the constant
term and part of the cos 8 term — the latter by interference with
s-wavés. The non~resonant contribution to i/, must be large encugh

1

so tnat when it is subtracted off, the purely resonant term
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remaining will have — in order of increasing energy — a negative
~minimum, a zero, and a positive maximum.

The resonant contribution to W. will bhe due to interference

1
between s~ and p-waves, one of which will have a phase shift which
is small and approximately constant (the non-resonant wave) while
the other phase shift will vary from O to 7T radians through the
resonance, The factor containing the phase shifts will be
| sin &, sing1cos(51+0’,l-5o-0_o)
where U, and CT1 are the Coulomb phase shifts for 1L = 0 and 1 = 1.
( Elsewhere in this thesis ¢1 = QZ - 0, is used in formulas.)
If the resonance is formed by s-waves, the rapidly varying part of
this term is (approximately) the factor

sin 8o cos( 8o + To -0-1),
and in the case of a p-wave resonance it is

sin51 cos(51+ﬂ'1-0"o).
Now the zero in this interference term mentioned above occurs when
the argument of the cosine is 900. At energies in the vicinity of
1030 kev 0_1 - 0o = 250 so that the above two formulas yield values
for the phase shifts when this zero occurs of

d, =~ 115° and'51f: 65°.

This means that the zero must occur at an energy greater than
1030 kev if the resonance is formed by s-waves and at an energy
below 1030 kev if formed by p-waves., The amount in either case for
a resonance the width of this one (200 kev) will be about 40 kev.
iWhen allowance is made for the non-resonant contribution to'¥1, it
is fairly evident that the choice of p-waves is indicated.

In the case of the 440 kev resonance it was possible to argue
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that tﬁe resonance could not have beén made by s-waves,; because the
~observed gamma width would be abnormally small for an electric di-
pole transition,and the interfering p-waves would have had to be
abnormally large. Sﬁch arguments cannot be applied here, Although
the radiation width is even less than at the 440 kev resonance, the
argument - against an electric dipole transition cannot be made here
as this is a T = 0 state (as evidenced by the lack of a companion
state in Lis), and the final states in Be8 are also. This means
that electric dipole radiation is forbidden by the electric dipole
isotopic spin selection rule to the extent that T = 1 and T = 2 im=-
purities are absent from the wave function., The net result would
be to much reduce the electric dipole width, Also it is not possible
to argue against a sizeable p-wave interference term when the 00529
term indicates that p-waves — probably associated with a resonance

of higher energy — do appear with appreciable amplitude,
B.2. Elastic Scattering

From the experimental cross sections for elastic scattering

7

of protons on Li' at the 1030 kev resonance one guantum number, the
angular momentum of the compound nucleus, is fairly easily deter-
mined., This is because the interference between Coulomb and nuclear

. . o .
scattering is not large at angles near 90, so the cross section

may be represented approximately by

2 .
0-(6)/0.C(6)=1+(1-c059) 2J + 1 «in® S
M2 (2i+ (@I 4D



- 27 -

23 4+ 1
+ —

87{2

at f = 90° and sin<§ = 1 (the peak of the resonance). The obser-

1

—

ved value is 2.2 while the formula gives

o
J /U'c
0 1.57
4 2.72
2 3.86
Z,7 ez
where ‘n = iifé—— = L4467 at 1030 kev. It is evident that J = 2
v

gilves so large a value that it is improbable that the complete
formula with interference terms and the contributions of non-re-
sonant states can bring the figure down enough.

The choice then is between J = O and J = 1, If J were O and
the parity even, the reaction Li7(pcl)He4 should show a strong re-
sonance, but no trace of this is seen at the energies of interest.
If the parity were odd,then a state of J = O could only be formed
by d-waves, and this would require a smaller particle width by a
factor of two or three than that actually observed, This leaves
only the possibilities J = 17 and J = 17 with the first formed prin-
cipally by s-~waves and the second by p-waves.,

A decision between J = 1 and J = 1+ requires a more or less
detailed study of the possibilities that each of them offer. This
is because the difference between them is only in the interference
terms and these are small. (We will in this discussion assume the
same channel spin ratio used previously for the 440 kev resonance.

This means the angular dependence of the term containing sinac§ will
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be the‘same for s~ and p-waves., Considering the channel spin ratio
~as a free parameter would make fitting the data easier but would
contradict the evidence of the gamma rays which are essentially
isotropic.) |

First of all it may be stated that a fairly good fit to the
experimental data may be obtained, assuming the resonance is formed
by p-waves and adding in reasonable amqunts of the two s-wave nhase
shifts, The phase shift analysis based on this assumption will be
presented later, The hard part is in convincing one's self that a
similar program cannot be carried through when the central assump-
tion is that the J = 1~ s-wave phase shift is resonant.

The formula which we will try to fit to the experimental data
is

T8y T (8)-=

|
=y

- )2 sin2 d
sv, /!

-427]_#(1 .../u.)siné COS(J + 295, -5

1

2
+ .(_1...:_’(_2)”_)_ (BSinap o+ 55in2F2)

o7
=) [BSinP,l cos( €1 -3 )+ 5sinP 5cos (P 2-§5‘l

+7
-/u.) s:.nS[gSlnﬁ,ivos(F,l Q - 2¢’) + gsinpacos(pa-é- 2é)]

’q

where /u.= cosf , U" (8) = "]2/(’1 - M )2 is the Coulomb cross
1AM

section, g = - ’Yl log ——"— ) ) 5 is the p-wave phase shift, ﬁ 1 he

J = 17 s-wave shift, and 53 5 the J = 27 s-wave phase shift. When

we wish to consider? 1 @s the resonant phase shift, it is not



necesséry to assume the p-waves have J = 1 as has been done in this
~formula, . Choosing other values of J will have its major effect in
modifying the constants-3/8, 3/4, etc.—~which appear in terms rela-
ting to the p-wave phase shift and not in significantly changing
the character of the various terms.

In Fig, 4 and Fig. 5 are plotted the angular distribution at
900 kev for the s- and p-wave phase shift formulas along with the
experimental data. It is apparent that in neither case is a very
good fit obtained, nor does there seem to be any reason for choosing
one or the other of the two possibilities. But,for the one of the
two choices which is the correct one,it should be possible to im=-
prove the fit considerably by adding terms to the formula with
small phase shifts corresponding to additional states which are not
resonant at this energy.

If -51 is the resonant phase shifty it seems likely that~8 >
will be the largest among the non-resonant phase shifts, The con=
tribution of {32 can be obtained by using the curves in Fig. 4 by
subtracting one and multiplying by 5/3. Focusing our attention on

9 = 90° (/M.= 0), we see that the observed cross section is larger
than the value obtained for any &h1@1 between 0,2 and 0,7, Thus a
positive correction is needed, but a reasonably small positive 5 o
gives a contribution with the wrong sign. A small negative ﬁ > will
give a correction of the.correct sign but is not compatible with the
observed angular distributions at lower energies. This is because
at energies below 700 or 800 kev the resonant phase shift will be
small Whilefaa’ which has no resonance in this region, could not bhe

very different from its value at 900 kev. Therefore f32 would give
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much thg same positive contribution tb U'/Q'-c that it is designed
to give at 900 kev, and, lacking a sizeable contribution from @ 1
we would get.O'/0~c > 1 at all measured angles and especially at
the backward angles, The contrary is observed in the experimental
dgta which shows that T/ T 4 1 except at the smallest angle mea-
sured (50°),

- If, instead of using @;2 in trying to improve the fit with the
assumption that Q.q is resonant, one tries using a p-wave phase
shift for this purpose, it is seen that such improvement is possible,
From Fig. 3 we see that a p-wave will give a positive contribution
at all angles., If &UL$1 is chosen small enough — say sinﬁ,]f 0,2 -
and sinﬁS large enough — about 0.4 will do — then a rough fit is ob-
tained, This pretty much forces us to the view, which further at-
tempts at fitting the data in this energy region confirm, that the
p=-viave pﬁase shift is the resonant one,

The argument just presented may be summarized by saying that
an s-wave resonance should show a larger dip in the cross section
before the peak of the resonance than is actually observed.

In Fig, 7 the data taken at Ep = 1020 kev is plotted along
with the simple s- and p-wave angular distributions using the phase
shift T/2 as this is the peak of the resonance, Here again a first
glance will indicate no preference for either the s~ or the p-wave.
If the s-wave is believed to be resonant, it is necessary to use
additional terms in the phase shift formula which will give a nega-
tive contribution at backward angles., A p-wave will‘do this only
if ité phase shift is large, i.e. 6-+22¢1 ? -u/2. This presumes

a p~-wave resonance at lower energies, and the region there is well
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enough'explored so that this possibility can be ruled out. (There
~is of course the 440 kev resonance, but it is too narrow to have
any effect this far from its peak.) The J = 2~ s-wave can also
give a negative contribution at angles near 1800, but at best only
half as large as is needed. Also,it will give a negative contri-
bution at forward angles which makes the agreement with experiment
there poorer.,

The contrary assumption — that the resonance is formed by
p-vwaves = gives an angular distribution which is easily borrected
by an s-wave of moderate size. A glance at Fig. 6 shows that with
sin.'g2 & 0.5 there is a positive contribution at backward angles
and a negative contribution near 9O0 and at forward angles which
is just what is needed to correct the p~wave angular distribution,

Since the two arguments presented here hased on the elastic
scattering data — one in the energy region below the peak of the
resonance and the other at the peak — are by no means a sure proof
that the resonance is formed by p-waves, it would be helpful if it
could be similarly shown that in the region above the resonance peak
the evidence also favours ﬁ;waves. This however, does not appear
to be easy, for the s-wave contribution in this region is large,
This is consistent with the picture we are arguing for, namely that
the resonance is formed by p-waves, but in addition there is an in=-
creasing J = 2  phase shift associated with a broad s-wave level

having its peak arcund 2 Mev.
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B.3. Inelastic Scattering

7

The inelastic scattering of protons on Li

(11)

has been measured
by lMozer, Fowler, and Lauritsen at 1050, 1’140,. 1240 kev and

many different angles, The differential cross section at 1050 kev

is T(B) =3,3 = ,35 cos B millibarns/steradian

indicating states of different parities contributing., Most likely
these are formed b'y s- and p-waves, but from the inelastic scattering
data alone it is not possible to tell whether the resonant state

is due to s~ or p-waves, If the state is formed by p-waves and has

J = 1 the angular distribution will be

ped 2 z 2
(56, = o )¢ -2 )
1 + 1 2 P1 )6)0 Pa(cosé)
10

where ﬁo and p,] are the channel spin coefficients for the emit-

7

ted proton and Li' in its first excited state. The Pa(cos 0) term

will vanish if we use the channel spin ratio 0(12/0(22 = 1/5 that
was proposed on the basis of gamma ray angular distribution.

The dnelastic scattering width may easily be estimated if we
take J = 1 for the compound nucleus and r-’~‘-’ 200 kev. Then at the
peak of the resonance

Ty Vot
J(Q) = =2 _P'P
81«:2 ‘-2

which yields Tp, ' 9 kev when the value 3,3 millibarns quoted
above is used., This may be compared with the single particle widths
computed for s- and p-waves which are
r 2 1100 kev,
]
rp ~ 130 kev.

The observed inelastic scattering width is rather small when com-

pared with either of these.
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C. TPhase Shift Analysis

In the preceding sections it was decided that the 17.63 and
o] - 8 + . o “ .
18.14 Mev states in Be have J = 1, channel spin ratio & /o = 1/5,
and are formed by vo-wave protons in the bombardment of Li79 It is
plausible to assume that the main non-resonant contributions to the

scattering are due to s-waves which leads us to the following phase

shift formula for the elastic scattering :

(5" =y )L

50

3
T (6) = —%‘f— sinag [ 1T +

2
m +g-’;‘-;— P2 (/“-)](’5 -/A)

—-

2

Te . oo ) :
- :’;2- g sind cos( & + 24’,-? )/u(’l7u)+ g—%’_[) 51n2f3,+5$1n%;_](1 -/‘»L)a

- 'EF,] [) sinFlcos(F. -% ) + 5 sin F,_COS(F,_ -3 )] (1 -/UL)

3

+ -L-;;}-L \@ sing[o(:'sin?;cos(?l -8- 247, )+ o(:sin?kcos(?i-a- 24’)] (1--/1.«,)2

where /U\= cos 6, qG.(8) = ’Y)L/(’l -/u )2 is the Coulomb cross section,
? = -’)‘I log(1 -/(,L)/E, é is the p-wave phase shift, ]B , and Fa are
the s-wave phase shifts, and 43 4 is the Coulomb phase shift. O(,L and
o(: are taken to be 1/6 and 5/6 respectively.

In this formula the quantities relating to the Coulomb scattering
are knqwn from thecry. Since no comparabhle theory of nuclei exists,
the specifically nuclear quantities -—5 ,F, ,PL, and \?/f — must be re-
garded as arbitrary parameters to be adjusted to fit the experimental

cross sections.
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Some restrictions can be placed on these parameters, and these
should be observed. Thus, in the vicinity of a resonance the phase
shift should have the forn

218 ' - iT/,
E-E + il/2

or, equivalently,
E - E
[»]

T /2

= - cotg

Also, the energy dependence of I should bve largely controlled by
the penetration factor so that it can he written as I =2s Xa with

3’2 (the "reduced width") constant., Then

- 8 cot 5 =

when plotted against E, should be a straight line in the vicinity
of the resonance.

The procedure used in fitting the cross section curvés was
this : at a dozen or more energies a variety of sets of phase shifts
were tried until a fairly good fit to the observed angular distri-
bution was obtained. Then -51 cot & was plotted as a function of
energy, and a smooth curve waé drawn through the points which took
the form of a straight line in the neighbourhood of either reso-
nance. The slope of this curve at the resonant energies gave the
reduced widths of the two levels. It was found by this method that
F2 was increasing rapidly with energy, so it was also assumed to

have a resonance (but at a higher energy than .Jarters' measurements

go), and -socotﬁ > Was treated in the same manner as -ST sin.é.



The othér s-wave phase shift -— @ q — was found to be small, so it
was assumed to be essentially constant over the entire energy range.
In the lower half of the energy range, where f , is still fairly
small, this assumption is warranted by the observed angular distri-
butions, but at higher energies the effects of.ﬁ 5 would cover up

any but a large increase in the size of-ﬂ _ Finally,

I _ I

r rp + rp‘
was computed by finding the reduced widths for both elastic and
inelastic scattering at 1030 kev and giving to both [’p and rp'
the energy dependence of their penetration factors, The 440 kev
resonance is below the threshold for inelastic scattering, so
Yw/{' = 1 in that energy range.

The fit obtained to the experimental data is on the whole
pretty good. It could have been better, had more effort heen
expended or had machine computation been available., At energies
above the 1030 kev resonance the fit becomes rather poor. Prohably
the reason is that the effects of hisher energy pe-wave resonances
are heginning to be felt., This supposition is supported by the
fact that there is a constantly increasing coszé? term in the gamma
ray cross secfion in this region.

The experimental data and the calculated cross section curves
are coupared in Figs. 8 — 14. The phase shifts S and # > used are

presented in Figs, 15 — 13 in the form =-s

1 cotg and -so cot]@2 .

@ , was taken to be .03 for energies less than 700 kev and «Oh

above that.
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ITII. INDEPENDENT PARTICLE MODEL VAVE FUNCTIONS

AND LEVEL PARAMETERS

The numerous successes of the shell model proposed hy Haxel,

(12) (13)

Jensen, and Suess and Mayer in accounting for many of the
properties of the ground states of nuclei have renewed interest in
the independent particle picture of nuclei, Despite the serious
theoretical ohjections to such a conception of the structure of
nuclei, there has been sufficient experimental verification of
some of the predictions of one or anocther such model of nuclei to
encourage attempts at correlating experimental data through the
use of independent wave functions.,

In the following sections independent particle wave functions
will be developed for the various nuclei involved in the rezctions
being considered here. This will be done for the LS (Russell-
Saunders) and jj coupling models. On the basis of these wave func-
tions predictions regarding observable features of the reactions
are made and then compared with the actual obhservations.,

Since the manifold of wave functions which can he constructed
for seven or eight particles is very large, a number of "plausible
assumptions” will be made in order to reduce the field that must bhe
surveyed to manageable proportions.

7 and Be8 in all the

The first such assumption is that Li
states of interest have filled 1s shells and the remaining particles
in the 1p shell., In the case of jj coupling the 1p shell is broken

i - - — wi t
down into two sub-shells the 1p3/2 and the 1p1/2 with the latter

being higher in energy in keeping with the rules postulated for
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the jj‘coupling model by Mayer and Jensen. Another such assump-
~tion is that in the LS case the low states will have the maximun
possible degree of spatial Symmetry. This will be true if the major
part of the nuclear force is of the liigner or Majorana type.

Further assumptions will be made when they are needed to re-
solve ambiguities which may arise in choosing this or that wave

funétion to describe a nuclear state.
A, Wlave Functions for jj Coupling Model

In this coupling scheme we start from single particle wave
functions having a definite angular momentum, j, and compound them
into wave functions of given J (total angular momentum for the whole
nucleus), parity, isotopic spin, and configuration. The configura-
tion is the number of particles in each sub-shell.

7

The nuclei being considered here (Li’ and Be8) have four par-
ticles in a filled 151/2 shell which can be neglected in writing
down the wave functions. The remaining three or four particles
will be in the 1p3/2 and 1p1/2 shells, and we will thus concern
ourselves mainly with consiructing three and four particle wave
functions describing the unfilled shells.

The single particle wave functions used to describe a par-
ticle in the 1p3/2 and 1p1/2 shells are listed in Table I. The
notation used in the table is fairly standard : the ¥y T (D) are
normalized spherical harmonics, &K and @ are spin functions,

qu(r) is the radial wave function characteristic of the 1p shell,

and the various square roots appearing are vector addition
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(Clebs;h - Gordan) coefficients., JYhen it is desirable to specify
.a certain particle — say number three - we write 953/23/2(3),
¥.°%(3), X(3) etc.

A few words about the radial wave functions are necessary.
If they are used to describe hound particles (the two neutrons in
the 1p shell are always in this category in the cases of interest
heré), they may.be regarded as, say, the characteristic functions
for a square well with the usual exponentially decaying behavior at
large distances. On the other hand if they are to describe partic-
les which are unbound they should be the usual Coulomb wave func-
tions at large distances, and in the interior region of the nucleus
should satisfy the interior region eigenvalue provlem specified by

(14)

Wigner and Eisenbud in their theory of resonance reactions.

The actual form of the interior region solutions will be suffi-

ciently similar in both cases for us to neglect the difference bet-

ween them. In the following the radial wave functions will be sup-

pressed in writing down wave functions (or equivalently considered

as part of the Y, (L)) except when their values are actually needed.
The next step is the construction of wave functions for two

identical particles (two neutrons or two protons)., These wave func-

tions must of course be antisymmetric as is required by the Pauli

principle, If the two particles are in the 1p3/2 shell, the wave

function will be symmetric 1f the total angular momentum is 3 or 1
and antisymmetric if 2 or O. If they are both in the 1p1/2 shell,
an angular momentum of 1 corresponds to a symmetric wave function
and O to the antisymmetric one, In the case that one of the iden~

tical particles is in the 1p3/2 shell and the other in the 1p1/2
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shell, angular momenta of 2 and 1 are obtained. But the wave func-
~tions obtained using the vector addition coefficients have no special
symmetry and for our purposes, therefore, need exvlicit antisymmetri-
zation. These two particle functions are listed in Table 2. The
particle numbers 1 and 2 are used to designate neutrons. The same

functions are used with particle numbers 3 and 4 for protons.

Table 1

. . . m
1p3/2 and 1p1/2 single particle wave functions, ¢ J

3/2 _ g 1
0. = U0 v ()

1/2 1 1 2 0
b, .2 - U,]P(r)): |3 v @pe|5y, (mrx]
-1/2 2 o} 1, =1
¢3/2 = U’Ip(r)[ ' 3 ¥, (.D-)F—»' 3 r, (-Q-)D{z
G732 g _(x) v @)
3/2 T 1p 1 F

1/2 | 2 41 1, 0

P,s% = v, (o) [ fg v o - |2 R >o<]
-1/2 1 . 2 5 =1

b, - L[ e - @ >«]
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Table 2

Two particle wave functlons
\2
1

ﬁb:“é) - |5 ﬁéj:m é/f(a) V£ Bl </3Zz<a>
$oor - [T $0 gHo - ¢ gt
@"2) = \{I,ffém) 934?2)4-\[1 93;/?0} 95',(1'2) )(— i)('}) (2) r;ﬁ(ﬂ 3/?2)
_95“2) -\/— ¢ ) ,y’/@ -f—— 45 (1) 925 (2)

/9 %

- <3, =32 )
(12) = }E 1) (2) -}E ] >
Sé T séA 935/1 i Séa( ) %( )

¢(12)_r¢(1)¢(2) (1) <2)+/—¢(1)¢¢‘<2)/— () )

Yoo -z ¢ ) ¢(2)+;/_¢<1> (2) f¢<1> él?z)-ﬁgé?ﬂ gé;?a)
9)5&2) E— ’[ﬁ) "("234’"43/1) (2) m <2>-f¢<1>¢7§)
<[f’('12) -3 qu”(w) cf;’ﬁz) -E cﬁy’fm géZE’m
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Table 2 (continued)

V) - ;¢(1)¢ (2)- fgbmqﬁ <z>-ﬁ¢(1)¢(a>+r¢<n) (2)

p°iz) = {-;- "?1) ""Za)-fc;ﬁ (1) <a>-f4m> ¢y 50(1) X
Yoz = |3 %nqs (2)- [qf) (1§ (2) f(ﬁ/h)qé (2)%? séja) g;f'é)
(1p1/2>2

1

€2 = |2 ¢ e - |z {3;'/"(1) £ @)

3/27 Wave Functions for Li7

.
L ]
-
i
it

According to the ilayer - Jensen shell model, the Li7 ground
state.should belong to the configuration (1p3/2)3 with the two
neutrons paired to give zero spin, and the only proton in the 1p3/2
shell giving rise of necessity to the correct svin of 3/2. The
wave function describing this situation is not, however, an eigen-
function of the total isotopic spin as it should be, and it is ne-
cessary to consider in addition the possibility of the two neu-
trons adding to give spin 2. Two wave functions corresponding to
;ﬂ = 0 and Jn = 2 can therefore be constructed. These are given
in Table 3.

The curly brackets over the particle numbers 1 and 2 indicate
that the function is antisymmetric in the interchange of those par-
ticles. On occasion a bar will be used to indicate symmetry, but,

also, these indications of the symmetry properties of the function

may be omitted when they are unimportant for the matters of hand,
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Table 3

7

Li’ ground state wave functions

neutrons proton
j1 j2 Jn j3=Jp J
A, 3/2 3/2 2 3/2 3/2
&, 3/2 3/2 0 3/2 3/2

k(23) = @@?mﬁﬁp)w\gcfgf(n)q@?(pnE_'gbfcn)cﬁ;f(p)

sl (723) = |2 ¢L(n>¢"’”(p>-F4>°<n>ci;/'"<p)+[;f qb“cn>4§%<p>

% (123) <2 o) - (5" g M) + {E G (n>¢ (p)
% (25 = [28 g - (28 wge + 34 W) s

e ° %
23 = BB ()
“h S o I/L
M T3) = Fm) gl

YA -
A, (923) = (ﬁ (n) % (p)
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As mentioned aboﬁe the wave functions A1 and A2 are not eigen-
- functions of the total isotopic spin, but certain linear combina-
tions of them will be. Theée we wish to find,

The total isotopic spin operator T2 is defined to operate on
isotopic spin wave functions which have not been used ur to now.
Let us call one of the three particle wave functions £(7123) and
appénd to it the appropriate isotopic spin wave functions :
£(123)n(1)n(2)p(3)s n and p are the neutron and proton isotopic

spin wave functions. In keeping with the generalized FPauli prin-

ciple this may now be replaced by the completely antisymmetric form:

F(T23) = £(723)n(1)n(2)p(3) - £(321)n(3)n2)p(1) - £(532)a(1)n(3)p(2)
:(I-IHB-]%B)fHEBMCUnQ)ME).

P,‘3 and Pé3 are the permutation operators which exchange particles
1 and 3, and 2 and 3, respectively.

How T2 is applied to F. Using
n(1a(2)p(3) = £ n(1n(2)p(3) + 2(3)n(2)p(1) + a(1n(3)p(2)
(the result of an elementary computation with vector addition

coefficients), we get

F(23) = [£ £(123) - £(z21) - £(132)] 2(1)n(2)p(3)
- [£ £2n) - s(a32) - £(123)] n(3)n(2)p(1)
- [% £(13%32) - £(123) - f(321)] n{1)n(3)p(2)

—~~
It is now evident that T2 operating on F(123) is completely equi-

valent to 'Ca =7/4b I = operating on f(qaﬁ). For our

P13 - Pé5

-
purposes it is more convenient to use the more compact f(123) and

the associate operator ‘Cz.
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Below matrix elements of 1:2 will be calculated, and thus

‘those of P15 and P, will be needed. It shortens the work if it is
<

3
noted now that they are equal. This can be seen by writing down a
matrix element

(£,(723) |2, | £,(725))
and then exchanging 1 for 2 in it

(£,(273) lp,Ble(é?a)).
This can be done as the particle numbers are dummy variables. Then,
because of the antisymmetry of the wave functions, the matrix element
is equal to

(f1(?’as)|P25\f2(T§3)) ,
which establishes the above assertion. Also, it is to be noted that
the permutation operators are scalars with respect to rotation so
that (% JM|plo’J'M") = 0O
unless J = J' and M = M!', and also the

(x JM|P I *JM)
are independent of M, This means,; that in conputing matrix elements,
we can restrict ourselves to a single projection of the angular mo-
mentum,

The required matrix elements are computed by decomposing the

wave functions into the single particle wave functions and perfor-
ming the required interchanges, The calculations are rather messy,

so only the results will be quoted here :

- 3/k4 5/k

P = Y
15 5/k 1/ 4
13/ - 5/2

- 5/2  5/4
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. 2 ' . .
The matrix of T has as eigenvalues and eigenvectors

2 ) =12
T™ = 3/h, 5 3 T =4 -@

n

6

The corresponding wave functions are

S ﬂ1 ' “2 _

B, =z 4, + |24 T =1/2 ,
~ Yi 12 _

B, = | % A, q6 A, T o= 3/2 ,

Since it is known that the ground state of 14’ has J = z/2
and T = 1/2, B,I must be the wave function of Li/ if the jj coup-
ling model is correct. This state has a magnetic moment of 3,04

nuclear magnetons which is in fair agreement with the experimental

value of 3,26 nuclear magnetons,

A.2. J = 1/27 ilave Functions for Li7

7

The first excited state of Li" is observed to have a spin of
1/2., Since it is less than a half million volts above the ground
state, it may be expected that it belongs to the same configura-
tion - (’ip3/2)5 -~ as the ground state. There is only one such func-
tion which is given in Table 4 below,

The isotopic spin of this wave function is obtained by com-

puting the expected value of 'CZ which turns out to be 3/4., Thus

A3 has T = 1/2 which agrees with what is observed experimentally.
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Table i

J = 1/27 wave function

neutrons proton
dq Js I J3=Jp J
A, 3/2 3/2 2 3/2 1/2

i

aE = [EfGe) 70 (EASEY 5@‘;@)4{/-;415?12)93?‘(3)-[%{212) £03)
i+ oo florgor feio o ok o

8

A3, J = 1+ Wave Functions for Be

The analysis of the first part of this thesis indicated that
both the 17.63% iev and 18.14 Mev states in Be8 have J = 17,
Therefore we wish to consider all wave functions having this spin
and parity and formed from 1p shell single particle wave functions.,
There are thirteen such functions (each having % projections), and

they are collected in Table 5. Only the M = 1 projections are

needed in what follows, so only they will be listed,

Table 5

+ .
J = 1 wave functions

neutrons protons configuration

c, 32 3/2 2 32 32 2z 1 (ip)"
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Table 5 (continued)

neutrons - protons configuration
'02 3/2 3/2 2 3/2 1/2 2 1)
Cy 3/2 1/2 2 3/2 3/2 2 1
04 3/2 3/2 2 3/2 1/2 1 1

3
C 3/2 1/2 1 3/2 3/2 2 1

Cg 32 %/2 0 3/2 1/2 1 1

C 3/2 1/2 1 3/2 3/2 0 1)

Cg 32 1/2 2 3/2 1/2 2 1)
09 3/2 1/2 2 3/2 1/2 1 9
2
.o 3/2 1/2 1 3/2 1/2 2 1
011 3/2 1/2 1 3/2 1/2 1 1)
.5 3/2 1/2 1 1/2 1/2 0 1
(1p3/2)(1p
013 1/2 1/2 0 3/2 1/2 1 1

c, = V;—io—???n)f(p)-—%%é(n){(pﬂ%%mjé”,(p)- %é’(n) :(P)
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Table 5 (continued)

Q
!

s = Bl - [Be i o Z i - o g
, = -[BEdm g o B g - R g o E T (0f )
= EEw Yo - TR ¢ s fEE P
o= e e - 5 P g o+ 2 d e
N NOE XSS

Q
1

(¢
o
I

Q
i

¢ =
{ [}
C, = (/}, (n) Sé(p)
s ~l o o | ~1 t
Cg = V—%%(n)ﬁ(p)—gg%kn)%(p)+}%:¢l/(n)‘/;(p)-/,-g-‘/; (n) f(p)

«Q
1

T -) { o o /
. e o - B¢ wete + fo5 Y0 (o)
o o ~f 2
Cio = V%Wkn)%(p) - }/:%-l;pl(n)‘/{_l(p) + /\g% (n)%(p)
' /
Ciy = V:—':Sg“’(n)qfo(p) - E-—"f;?n)‘/)l(p)

{ o
Cip = (ﬁ (n) §>o (p)

i

(] !
Ciz = So (1) Y (p)

One thing to notice about these wave functions is that a

state in Be8, formed sclely from those having the configurations
(1p )2 (1p )2 and (1p ) (1p )5 cannot be formed from Li’
3/2 1/2 3/2 1/27 .

having a configuration (’1133/2)3 by bombarding the Li’ with protons.,

ile now wish to assemble the 13 wave functions in linear
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combinations which are eigenfunctions of the total isotopic spin.
- As in the case of the three particle wave functions, an operator

2
+ It cannot, of course,

4:8 may be found which is equivalent to T
be the same one as there is now an extra particle.
[-Toa . .
Let £(1234) be one of the four particle wave functions., Then
we construct

F(T238) = (I-P,,-Pyy =Py, ) (1P =P, )£ (1250)n(1)n(2)p(3 ) p(4)

}

$)n(1)n(2)p(3 ) pk)

N

2( I+P1BPEL{_-P15-P23-P1L¥-P24)f(’I

and operate on it with Td getting

2 7~ _ : ’_ﬁ_”_?

T"F(1234) = 2n(’l)n(2)p(})p(%)(ZI-P,IB-PEB—P,M- 24)f(123+)
+ other similar terms,

As before, we recognize that 'C2 = 21~ 13,]1+-'P2LP operating on

P13-F25-
A phe, oy
£(1234) is completely equivalent to ° operating on F(123%4),
Corresponding to the possible values of the isotopic spin of
0, 1, and 2 for four particle wave functions, T2 and 'CZ have eigen-

values, 0, 2, and 6. This fact can be used to construct projection

operators for the three isotopic spins :

1 2 2 1
= — - = (
T, =55 (T-6)(T-2) = ¢ (2T42P Py +P 4Py 4P 4Py )
1 2 2 1
Tf,] =z (6=T°)T = 5 (I-P']}PELP) 3
TTZ = E% (TQE-E)QZE = % (I+P13pé4-P13-P23'P14-P24) '
Of these Tl . is of particular interest because of its simple form.

1
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The oyperator P13Pé4 interchanges neutrons and protons in a four

: ey
-varticle wave function f£(1234),

changing sign then Tqu f and

function is unchanged by P

1350,

T Actually,

no 1 component,

03’ sesras 013 into one another

P

If this results in the function

the function has T 1. If the

then 771f 0 and the function has

13P24 changes the functions 01, 02,

so that we are led to the following

linear combinations which have the required property :
D,I = C1 D7 = 08
D2=Y—T,_(02-C3) Dg = C,,
Dy = E(cq-%) D, = E(c2 + Cy)
b, = |2 (¢ - ¢ Do = [z (e + 0y
Dy = E(% - Cip) D,, = V{(CG +C,)
Dg = E(Cw - Ch3) Djo = V{(% *+ Ciop)

{
— — o
Doy = '1(“12 + C

D1 through D8 change sign on the

tons while D9 through D15 are le
Tr’]Dj_=Dj_ 1=

=0 i =

The first eight have T = .1, and

tovic spin components.
To find the linear combinat

eigenfunctions of 1:2, we must f

13) ’
interchange of neutrons and pro-

ft unchanged., Thus

1-, 2,00.0918

9, 10,

13.

LY

the last five have only even iso-

ions of D9, qu, s ey D13 that are

ind the eigenvectors of its matrix.
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As in the case of Li?, the work is simplified by the fact that
"the matrix elements of the different permutation operators are

the same. The matrix of ’52 is found to bhe

5 5 _VE 0 0
2 2 2
5 5 VE_ 0 0
2 2 2

2 3 ){.'5_ 0 0 0

o= 12 12

0 0 0 0 0
0 0 0 0 0

Its eigenvalues and eigenvectors are

’t2=6 1 51;2:0

oy
no

e
-3 Y

J

—

@]

O

The corresponding wave functions are
%% * %Dm - V%-D’l’l
= '%_Dg + (’T-—ZD'IO +‘ng-])11
7 E% 'V—';: P10

g =002

53] =
[0)
! I

t
i}

13 = Dyg
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It will be convenient for later calculations to take new
“linear combinations of the T = 1 states so that they resemble the
even T states. ile set down as the final result for the jj coupling

b}

states of Bea having J

1% the following functions :

o Iy
E, =C, T = 1 (1p3/2)
s 2 _ 2 o)
LZ = {;; (02+CB+C4+C5) I (C6+C7) = 2
E-F(C—C+C-C)+1O(C-C) = 1
3 = 2% VY2734 EIR A -
1 ‘
E, = E(C2-05-—ch+c5) = 1
3
Z > > (1p3/2) (1p1/2)
Eg = f; (02-03+c4-05) - Is¢ (c6-c7) = 1
E, = J=t (C.+C_+C, +C_) + |22 (c.+c ) = 0
6 = |24 ‘2TY3TYLTYs 2K ‘Y679 =
E_ = F(c C~C,=C_) = 0
7 5 )T Vet =0
Bg = Cg = 1)
B —TI(C ~C, ) | =1
‘9 T |12 Y¥97710 -
2 2
?(1;)3/2) (1p1/2)
Eio= G4 =1
1
By =13 (Cg+Cyp) = OJ
E. = |+ (c ~C,.) = 1
12 2 *Y127713 =
>
= “‘(C +C ) =0

127713



Ak, T = 0% Wave Functions for Be

In computing the probability of radiative capture of protons
by Li7, knowledge of the ground state wave function of Be8 is

needed. This state has zero spin and isotopic spin and is expec-
ted, on the basis of the jj coupling model, to belong to the con-
figﬁration (1p3/2)4. There are two wave functions with zero spin

and this configuration which are given in Table 6.

Table 6

J = O+ tlave Functions

neutrons prrotons
39 s I 33 Jy Jp J
¥l 3/2 3/2 2 3/2 3/2 2 0
Fy 3/2 3/2 0 3/2 3/2 o 0

=
i

2= fEp 1’(113)-@95;(11)é('pn/;gfzm;é?p)- ééén)gé‘(pﬂ}/:;-‘:sé.(ln)@’(-p)
o @o(n) ¢:(p)

On inspecting these wave functions, it is seen that hoth go

!
1}

into themselves on the interchange of neutrons and protons, so they

can have no T = 1 components. The matrix of 1:2 is calculated to

2 5- (5
_rg 1

which has as eigenvalues and eigenvectors
g

be

T
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The corresponding wave functions are

[}
[
il
O

= |3 2
1 V%F'I-*. ng T

25 - Y1
Gy VZP’I g % T

61 is the wave function for the ground state of Beo in the jj

coupling scheme.

2 .

A.5. Channel Spin Wave Functions

In computing scattering or reaction cross sections according
to \ligner's theory of resonance reactions, it is necessary to have
the wave function in that part of the configuration space where one
of the particles (the incoming or outgoing one) is sufficiently
separated from the rest, so that its interaction with the others
involves at most Coulomb forces, These '"channel spin' wave func-
tions are constructed from the wave function of the bombarded (or
residual) nucleus in its initial (or final) state and the wave func-
tion of the other particle in terms of relative coordinates. It is
convenient to construct these functions as eigenfunétions of the
relative angular momentum _ij, the channel spin — (I + 5)23 and
the total angular momentum - g?. (I is the angﬁlar.momentum of the

bombarded nucleus and s the spin of the bombarding particle.)
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It is required, 6f course, that the channel sypin wave func-
~tions be antisymmetric in the two protons as well as the two neu-
trons of the target nucleus, This can bhe achieved by coupling the
spin and orbit of the bombarding proton to the angular momentum of
the target nucleus as indicated in Table 7 and then antisymmetri-
zing by application of the operator Vg.(l - P34). The factor Vzg
givés the correct normalization : that is, with it the wave function
has the same flux of particles at large radii as before antisymmetri-
zation,

7

The channel spin wave functions for Li' in its ground state

(B1) and in its first excited state (AE) are needed and are listed
T

X., Z., and Z'. The subscripts

in Table 7 being designated KZ‘ Xp9 249 o

refer to the value of the channel spin.
Table 7

Channel Spin ‘“ave Functions
Li'7 in Ground State

wt = B (123) K (s)
nlo= i a¥iznpe + 28Rz« )

ul o= [z B,(123)p(4) + EB‘/LHZBM (%)

1]

s T ok
@;B' (123)8(4) + E B, (123) (4)

i}

L= BYMA23) B ()
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" Table 7 (continued)

7

Li" in Ground State

3/, _ 1 V,
Bl%zj)f?(#) - EB,MZB)N(M

<lul

E' B,”‘ma}) 6 - E B;'/"mzs)x (&%)

f7 5z g - F— B 123) o (1)
V— (I-P H’— o T ()= [ WY (4)+;/‘
[ e[ i vPen-[7 M:)Y:(LP)]

Li7 in Excited State

As (123) & (1)

[ a3 esp @) [ a2 )

83%123) B (1)

\FA"(P})F(M - F ’“(123)6&(4)
-] o - (fuf’g}(tn]

(—-?'_- (I~ By) Up¥, (k)

]

Wave Functions for LS Coupling Model

The construction of wave functions for Li

7

iy Y, (4)]

and'Be8

according

to the LS (Russell - Saunders) coupling scheme is achieved in a
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manner very similar to that used for the jj wave functions, The

‘radial, angular, and spin wave functions are the same as before,

but the order in which the angular momenta are added is different,

80 that our final wave functions have as quantum numbers L,S,J,and T.
The first step in building thé wave functions needed is to con-

struct two particle orbital and spin functions. These are listed

in Table 8 with the symmetry or antisymmetry éxplicitly exhibited.

It is to be understood, as in the case of the jj wave functions,

that the orbital wave functions also contain the radial functions.

Table 8

Two Particle Orhital and Spin Functions
1 [ { ;
(12) = ¥ (1 (2)
I PR ST A OIS LR AICPENCY
y) = L vjoor! esfErloor@ns s ' e @)
N S - -
yiz) = E v (DY @)+ Ey,‘ (1)t (2)

Yy = 1)t o] @)

) i
%('{3) - Ey,'m)yf(z) - Eyfcﬂﬂ(a)

0 i = L=t !
3512) = {;:yl(1)yl (2) - m;'yl (1Y, (2)
| - -
J2 = Lyl @ - |3 v cogl@)

o = T o (:l ° o y oot l
o{12) = N3 Y, (¥ (2) - |z 7 (1Y (2) + 3 h (1Y, (2)
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Table & (continued)
- h h
7(,(12) 7(%(1)7(7»(2)
e — 4. th '%-. 7 h h
[(72) E%/J”Z,L(Z) + E}{I/;m)?(%(a)
I/‘L "/L
IAQFAS

o o % I 7
ICE Y APV A IR [ MeCRY ALED

4]

t

~r
It

Since there is the requirement of antisymmetry on wave func-
tions of identical particles, we must restrict ourselves to the

following combinations of Ln and Sn :

Ln Sn
2 0
0 0
1 0

In the case of Beg, where there are two protons as well as two
neutrons, the same values of LP and SP are allowed.

From the two particle ofbital and spin wave functions in
Table 8 three and four particle orbital and spin wave functions
are formed. These are listed in Tables 9 and 10,

B.1. J = 3/2" ‘Vlave Functions for Li7

The spin of Li7 in its ground state is, as noted previously,

%/2 and the parity odd. Eight wave functions having this spin and
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parity can be cohstruéted from 1p single particle wave functions.
" They are listed together with their spectroscopic designations in
Table 11, The reason for there being more than in the case of jj
coupling (where only two were considered) is that the whole 1p shell

is being used and not just a sub-shell as in that case.

Table 9

Three Particle Orbital and Spin Functions
1 = Y, —
[(723) = \5Y, @G - |3 4 2y
L~ TS a4, 7! o ry° !
y@z3) = 5 Yraax' 6y + Ly G - (T4 02 o)
= S I ’ . *-' ! - ]
y(izs) = Eylma)sz, (3) - [f,—:a‘/» (12)7,(3)

~

- T .0 ~1 -1 0, [ -t wlis
 REEEN I DM CEIEANCO IR Y ANCERACINY [ ANCEINICY

—L—-—;" i -t . -4 -, R gt | 4]
?)(129) = ,3- yL (12)Y, (3) - /; 0% (12)11 (3)

I E 3 L - ~ - 3 ‘ VO { [} !
(jl(m}) = }/;(%’(12)1’, (3) - ‘//-591’(12)&,(3) + ’75’%, (12)Yl(3)

0 — 3! -t 29 4 3 Loy =
)23y <[54, vox)' ) - [ 206+ 2 L e/
-l __ o - -1 ' -
Sz = [ aan 6y - [Z 47 a2 « 24 tayy/ )

] I,
J 2y )
1 y! v Iyt o
V;g,(m)z, ) + EJ (12)¥, (3)
P | - o -~ {
,(123) = gg,mew, (3) + V%:y, (12)Y,°(‘5) + Vzry, (12)¥,(3)
l 149, o~ gt oo
4 23) = Egl (12)¥ (3) + Ea‘l{ (12)%, (3)

=
~~
iy
N
e
=
i

QT
—
o)
W
~
il
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Table 9 {(continued)

1}

7l -
h12)1] (3)

\x 9,'(12>y°c3) - F Y'i2)y, (3)

r‘j (127} fg (12)y, (3)

- Eg),"(nz)z,' (3) - g g',mz)y,“cs)

- Gg"m)yj' (3) - )G—‘vgf(we)yf’@) + ggﬂ (12)1,'(3)

1% )
= Y12y, (3)

i

= Y,(12)1 3)

L
= 4,012 (3)

'/1.
- A, _(3)
= E?{,'ﬁa)?(,r(a) + E?(I'E’sz))’,,'f(a)
'%’ - /
= FXTUZ)?(, (3) + g?[; (12)/71/5"(3)
= f(u) (5)

F?('(m) 76,'7”(3) - }/—’—)(,"(12))4,'/73)
- [F17 a2y 2l S A 27, 5)
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.
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Table 9 (continued)
e
ol12) o, (%)
o >
Aotr2) Ly (3)

1l

it

Table 10

Four Particle Orhital and Spin Functions

Y (23) = }/,-";,y}fua)ﬁjam-/gg;uz)y:(zun/;;—-j:mz)j,'(z#)-gy;’c12)%(34)

Y (T23h)
REEES

Y (1238)

Y (B3 =

A

Y’ (i258)
Y =5
Y (i25h)

gz'(%‘é%‘ﬂ)

- gdé/:(m)jj%)-}gzjuz)yb'é%)ar/;(%"(m)%/I(BM—[;V{E"Z);,734)
= /%;L'(12)jj;u)—[gﬁ‘i;(fsz)o‘f:(l%h}/;ﬁ@z);7,:(34)-/%0?;(112)%,’(34)
- ﬁgfma)jo(;u) - f-’-y,_' (12)3,1(34)

rj (12)j (34) + ”»(12)3 (34) - }f—;l('lz)y,(%)
fgma)y (34) - ry (12)3,(94)

- (e g - ff g cay on-fFg oz ylow
g:(ﬁ'a'ﬁ) =

{;yjmgﬁ’(;m 2y ey
35 -l 3y o 7 ° y
(24012) Y, (3%-)&&;12)% (34)+/,§£(12)5,(3M

= [ 2y, Y an)-[Fgrei2rg s[5 Glizry) s
= [E4%¢2) 31['(34)-[,%,"(12>y,°(34)+g0yjqa>c‘j,'(34)
S RCEERE™

= Egl'mz)}j’o(%) + Egzo(ﬂz)(%l(Bu)
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Table 10 (continued)
= V-Zab}l'(m) ‘j,—'(;u) +ﬁ—'3f(12)3’°(31+) + Eg;'(we)j’,l(%)
| ngma) on + (7Y 0y en
4l2) Y om
Ey,'umgfw“ ) Egl"(qa)g,'(su)
- ﬂfgl'(qa) 3,"(34) - Eg;'<12)g,'(34)
- G.gfmz)g;'(;q) - Eg:'ma);/,o(%)
Gy”(qz}jl-'(5br) - (3_73‘%12)%0(34) + )((3'?;4“2)3/(34)

Y (12) Yy (34)

i

1

il

;jfc 12) Yp(34)

‘(j("‘(m) gf:GM

{1

A 12> ¥, o)

E#Q)ZZBA) + E){%m)]a}#)

- @7{,’(12)7{,"’(34){57{(?12))’,"(34>+ﬂ57(l*(12>%’<34>
= E?(Io(wz)]lv'(:su) + E)(/"(qz))(lf%)

N -l
= ’,Y‘ (12) X (3t)

- r;—'y(,'uan(o(aw - [2 X2y 5

]

i
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| Tabie 10 (¢ontinued)
~ <
PRSI AETSINN AL ACEIY g™
o ~) -
{}7(/(12)7(, (34) - G?(, (12) 7 (34

By AN Ly (SE3y SETON y Iy 4O

[~

Xc12) Xp(34)
o

X, (12) A4
~ o

X12) Lol

Asta2) Kolh)

Table 11

J = 3/27 Wave Functions

n D
1 1
1 1
1 1
0 1
1 1

1/2

1/2

1/2

1/2

1/2

3/2

3/2

3/2

1/2

/2

J
52 oy,
3/2 4P’3/2
e sy

3/2 )
P52
3/2
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" Table 11 (continued)

L, S, LP , sp S J
He 2 0 1 1/2 1/2 3/2
H7 1 ' 1 1/2 1/2 3/2
Hg 0 0 1 1/2 /2 32

% " Yo
i 1/%?:(533)7(7:“?3)-]/:}5:(753)];(753“/;ﬁj“a”%/j””

- 3 . —
i @2212;)7(%(123) - V-}:%’(QB)@ZUZB)

” _
n = g:(?EB)?(%(MB)
i < 2y X iB3) - ff 4.3 1 323)

3 y LM—\_' '//1——--_, T h
S OGSy (M CEENIE LN CEoPW A CEED

- N s
m- = Y (23) A (323)

) h _

B = Y, (323) K (z3)
~) /b ~an

B = g, (i23) 79: (123)

The functions H

1 H2, se a0y HB may now be resolved into

eigenfunctions of the isotopic spin exactly as before using
2
T =7/41 - P,|3 - Pé} as the isotopic spin operator. This

leads to the following eight functions :
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K,|‘= H,] T = 1/2 D3/2
: 4
K, = B, = 1/2 Pz/o
Iy
=0 = S
K, = -;— (H, + H5) = 1/2
2
P3/2
>
K, = Y—’;H + Y_(;H - (=t = 3/2 )
6 18 6 18 "7 18 78 -
__ 5 9 b - e
K, = gH6-v%H7-V%H8 —1/2$ Pz /o
i 5
Ky = V—;Hé + V;H,? = 1/2

It should be noted that K7 and KS are degenerate so that other

linear combinations of them might be chosen., As chosen here, KB
has a completely symmetric spatial wave function and is thus ex-
pected to have the lowest energy. It will be taken as the ground
state wave function for Li7 in the LS coupling scheme, This choice
is supported by the fact that the magnetic moment, calculéted from

K8 is fairly good, being 3.12 nuclear magnetons which is to be

compared with the experimental value of 3,26 nuclear magnetons.

B.2. J = 1/2° Vlave Functions for 1i’

7

The first excited state of Li’ is known to have a spin of 1/2
and odd parity. The wave functions listed in Table 12 are of this

Lype.
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Table 12

J = 1/27 Have Functions

L S L 3 L 3 J
n n P P
. : L
H9 1 1 1 1/2 2 3/2 1/2 D1/2
H .- 1 1 1 1/2 1 3/2 1/2 4?
10 _ 1/2
H11 1 1 1 1/2 1 1/2 1/2
H 2 0 1 1/2 1 1/2 1/2 2P
12 1/2
H13 0 0 1 1/2 1 1/2 1/2
H 1 1 1 1/2 0 1/2 1/2 s
14 1/2

Hy= {2 3:(1“:23)7(;?@3 >-\f3 yfm )Xs;g%swﬁ-g:( 723 )2@321‘23)- [—7 ('1”‘2‘9 >7QZ’1’é3)
- (24 25) Yy 72303 Yir2 Ky (2504 Y (725) Yo Trzs)

s 3y 2o A s - ﬁg‘:ﬁ‘zsﬁ[tm‘as)

Hoe {54 s T2 - Fyzsn, i25)

W= GQ(‘@% X;Zfﬁ‘éw - Ggﬁﬁs)%,’f(?‘ém

H,I; ‘j;m”'éB) %ZL(’EE)

The appropriate linear combinations which are eigenfunctions

of the isotopic spin are :
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>
i

[ o l[’é b _
11 V;I:SH’I’]"' 781{12"/%H13 T =3/2)

. ) 5 b _ 2
Kip = "15 Hyg o+ FTB' Hio - ))Té’ Hiz T=1/2 > P2
K ='-—iH +v_-5:H T = 1/2

13 9 M2 9 713 <

K, =H T = 1/2 2y
= Fa = 1/2

As in the case of the 2P /2 states, there is a degeneracy in the

3
2

Pq/z, T = 1/2 states. Any linear combination of X or K15 mnay

12
be chosen but, as set down, K,15 has complete spatial symmetry and
should have a lower energy than any other Qf the states K., K1O""’
K14. It will be chosen to represent the 478 kev state of Li’ in
the LS coupling scheme,

8

B.3. J = 1+ “lave Functions for Re

The J = 17 wave functions, which presumably include those of
the 17.6% and 18.14 ilev states of Be8 in their number, are listed

in Table 1%, There are the same number of wave functions — thir-

teen — as in the case of JJ coupling as is to be expected.
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Table 13

J = ’l+ ‘lave Functions

L, 5, Ly Sp L 3 i
2 0 2 0 1 0 1
1 1 ( 1 1 0 1
1 1 1 1 ¢ 1 1
1 1 2 0 1 1 (B
2 0 1 1 1 | 1
1 1 1 1 1 { 1 >
1 1 0 0 1 1 1
0 0 1 1 1 1 1
1 1 2 0 2 1 1)
2 0 1 1 2 1 1 )
1 1 1 1 2 1 1
1 1 1 1 1 2 1
1 1 1 1 2 2 1

(T23h) Y, (35%)
rAA ph

o -
(125%) A, (T234)

r_
({321) ];(12§L)

i ,rk_— 0 1112 ity I T
E9'(12,54)7(,(1251+) - E‘le(wz W ) (7258)



- 7% =

Table 13 (continued)

) o n Lo
Mg Egl‘(rﬁl)?{,(ﬁﬂ) - Eg;(ﬁ;#) 7[1 (1234)
W= Y @K - fY @b )
1= FY @IS - Y G A (2B

fo- By K - BY G ) a

= =
o
] 1] I 1}

-
n

1}

@:M‘é%) 7[,4(1"2%1)-{,%(‘}1( 550X ra%n>+u;,g;< EERY MEeL

)

ne = (240 W a5n- BYL 25 s 5 4t o) (es
N, = (j;g:(%‘é%7(['““2%-V,%fji(f‘é%zfm‘zs‘z+>+1(,—§gjﬁ‘§%‘f+> I REEES

ne = [Ty CENL (25 -[RY 3 s+ [FY (250 7, ()

ft I

=
&
]

’ E—gf(m}u)11(1"‘2"3'4)-%3:(1254)",(21254)%—353:(1234) 7(,1 (1234)

Ty, e L
-M':ﬁb“ﬁﬂ)?(z (7230

From the matrix of the isotopic sryin operator ?:2

1:’,‘4-}{34--]?24 its eigenfunctions can be found. These are :

P, =N, T o= 1
P, = I, = 1 }
Py = Ty = 1
P, = %(N#H%)- E\‘N6+ Y%(N7+18) =2
Py = YE—(NA—NSH E(N,?-Ng) =1
P, = YE ity =11 )= g:(m7-1\18> =1 1
P7 = 'E(le-ﬂ%)-p E’—’N6+ V;-E (H7+NB) =0

- S S = j
Pg = 1;(114«»115)- ,L(H7+N8) =0

2.[-13,13
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Py = 15{(1@94 o) T =0
P = [50T, - 1) = 1 ’p,
Ppq = Wy, =1
Pio = M =1 5P1
Piy = Uy =0 5D,’

Some degeneracies occur as in previous cases. These permit
a certain latitude in the linear combinations chosen. The ones
selected above were chosen partly for symmetry reasons and vartly
to maximize the particle widths which are calculated in a following

section.
B.4. J = 0% Wave Functions for Be

The ground state of Be8 has zero spin and even parity. ZFrom
1v shell single particle wave functions nine J = 0% functions can
be formed, three of which have the spectroscopic designation 130,

3 55

five are PO, and one is o* It may be expected that the state

of lowest energy will be among the 180 states, They are listed in

Table 14,
Table 14
180 Nave Functions
LN SN LP SP L S J
Q1 2 0 2 0] 0 0 0
P 1o
Qa 1 1 1 1 0 0 0 bo



linear combinations of Q1, )

]
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Table 1 (continued)
[Eazn)y;?p)-V%H;(n)g;zp)+@zn)i’(p)-Eyzn);i(p).‘.{gyzn)i‘( ot
Vg -t oo gt B -3
g Feo Y Kotw)

. _ b , 2 _ o : e
The eigenfunctions of 1. =21 P13-P23-P14-P24 are the following

s
5 and %3

. \{5F 1}4 9 =

R1=T8"’37‘TEQ2'*F1‘8’% T=2

*5&)-“;0- 25 =0
18 ™ 18 2 18 *3%

o
1

Since the ground state of Be8 has T = 0 a choice must be made

between R, and 2

5 3 or some linear combination of them, R3 is chosen

because the svace part of its wave function is symmetric under the

interchange of any pair of particles, If the major part of the

forces between nucleons are of the 'figner and lajorana types this

should make such space symmetric wave functions very low in energy.
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B.5. Channel Spiﬁ Yjave Functions

The formulas for channel spin wave functions given in Table 7
- for the jj coupling case apply here when the appropriate LS wave

7

functions are used for Li's These are K8 and Kq for the ground

3

state and first excited state, respectively,
C. Radiative Decay Widths

One way of testing the merit of the wave functions obtained
from the two coupling schemes is to compute from them radiative
decay widths, In the preceding sections wave functions have been
proposed for the ground state of Be8 and the excited states at 17.63
and 18,14 Mev. Using these wave functions the suggested computations
will be made and compared with experiment.
 The excited states have J = 1 and the ground state J = O+, 50

the radiation must be magnetic dipole in character. The appropriate

interaction Hamiltonian is then

/ P
%% . e EIJJTJKC A “
(1) = 12Mc w exk . {£p+gp3p+gnsn}

The decay width is

Ty ZTTdeF cel %110 2

w* _ 7y .\ 2
= va jdﬂhgl(fl% ll)'

The intensity of radiation from each of the three magnetic
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substates of a J = 1+ level will be the same., The matrix elements

themselves will be proportional to Y 1 (), so it will be con=-

1
venient to average over the initial states. The integrant in the
above formula will then be independent of angle so that the integral

and sum over ypolarization can be done immediately :

' i
= 2T —L___  4w.2 ., 2 el 3 wl?
Iy QT £ Q,Z,_ | et % )l
2 K
= .l £ “IJ—E—D 2’[2 A
5 Re Mc2

A= 2 '(fl EXE'{-}L &, +gp§p+gn§ﬂ)}’ M>’2

is a dimensionless quantity measuring the strength of the transi-
tion. The computation of A is perfectly straight forward though,
fqr the case of jj coupling, somewhat tedious,

The results of these computations are tabulated in Table 15,
On the basis of arguments presented previously, the ground state
wave functions used are G, and R, in the jj and LS coupling schemes

1 5

respectively,
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Table 15
Gamma Radiation .Jidths
1.  Jj Coupling

A

/54 (2 + 8y~ g,)

2

0

2

/9 (1 - By 8,

0

/9 (1 - g_-1g)

38 ev

56
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" Table 15 (continued)

2. LS Coupling

L Ty
P, 8/9 14 ev
P, 0 0
P, % (gp - gn)2 410
P, 0 0
Py 0 0
Pg 0 0
P, 0 o)
Pg 0 0
Py o 0
Pig 0 0
P, 0 0
Fiz ° ©
P 0 0

Comparison of these values with the experimental gamma widths

will be postponed until a later section.
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D. Particle Emission widths.-

The theory of resonance reactions developed by Wigner and his
collaborators ¢k ) leads to the following expression for particle
emission widths :

. 6"

L
r = EI:RV ° _I_:é'
MR

In this expression kRv = kR (sz + ze)-1 is the well known Coulomb

- T A o]

is a dimensionless measure of Y_ where Xk and ¢k are the channel

venetration factor and

spin wave function and compound state wave function respectively.

The integral indicated is actually a sum of several integrals, each
taken over the volume of all particles except the one being emitted
and over the surface of this one. In our case, where either of two

protons (particle numbers 3 and 4) may be emitted, the integral is
X" av.dv.av,ds X" av_dv.dv,ds
A.?ch'lVZVB 4 * 49{%"1"2"4 3’
S S
4 3

The surfaces S3 and 84 separate the region, where the emitted par-
ticle interacts strongly with the others, from the region in which
it feels at most Coulomb forces,

In the independent particle model the integrals can be resolved
into two factors. One is essentially the square of the magnitude of
the single particle radial wave function; the other is a statistical

factor which is the value the integral would take if extended over
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the entire configuration space., The factor depending on the radial

wave function (designated hy x,

in Tables 16 and 17) can be calcula-

ted if one assumes a definite potential well in which the particles

move, These calculations have been made by Lane<9) for the case of

a square well, As may be seen by consulting his curves, the value

of this factor is not very sensitive to the factors which determine

it., The suggested range of values is 0.5 to 1.4 for the 1p shell.

The statistical factor is a sum of contributions from the warious

channels, The ratios of these parts to one another are the well knoun

channel spin ratios. These and the other relevant quantities are

listed in Table 16 for elastic scattering and in Table 17 for in-

elastic scattering.

Table 16
6 e 8/ 6
Jj Coupling
,E,I % x, H% X, 5
32 o 0 -
Es '1";" 1 Tg' *4 %
E4 0 0 -
E5 0 0 -
- 1 5 1
“6 EEIEE T i 5

0 46,

2y
5 "1

A] B
-

U (su0)

1 kev

50

50

I (1030)

100 kev
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4

o
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Table 16 (continued)

o 6/6r

]

LS Coupling

Y
Uif -

-
Ul e

g% 9,’?8: [cuiro)

oI+

(EN] B

gl-——\ \gl-k ]

Q

I(1030)
0 0
U ]
U 9]
0 0
9] 0
0 0
0 0

45 kev 320 kev
C 0
0 0
0 0
0 0
33 24o
0 0
33 240
3.3 24
3.3 2k
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Tahle 15 (continued)

T e -

8, 8, 67/ 6=64%6. T(44o)

0 0o - 0 0

0 0 - 0 0

0 O - 0 0
Table 17

Inelastic Scattering VYidths

6" oy /oy G=oNE”

1. jj Coupling

1. 14 1 1

3 6 1 2 2 1
0 0 -
O O -

1 X l b4 2 l z

& *1 3 4 z ¥4
0 0 - 0
0 0 - 0

1 X l X 2 l X

5 ™1 3 9 2 1
0 0 - 0
0 0 - 0
0 0 - 0
0 0 - 0
0 0 - 0
0 0 - 0

Q

6k

10507

kev



Tablé 17 (continued)
6" 8. 6:/6] G656 r

cs L3 Coupling

2 . 2 .
S X, 0 0 5 X, 28 kev
0 0 - 0 0
0 0 - 0 0
0 0] - 0 0
0 0 - 0 ]
i 2 1
- - 2 = X
3 X, 5 X, 3 %y Lp
0 0 - 0 0
1 2 4
1 < 2 a !
9 %4 5 % 3 % e
1 i 1
7§.x1 3 %4 2 z X1 21
1 1 1
';]FX,] 9}(,‘ 2 EX'I 21
0 0 - 0 0
0 0 - 0 0
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E. Discussion of Level Parameters

The experimental data which we wish to discuss are listed in
p

" Table 18,
Table 18
Lo kev - 1030 kev
T =1 - T =0
T kN
Xp= 1/5 XK= 1/5
r} = 14 kev T} = 200 kev
Ty =22 ev Ty € 6 ev
——— f;.: 9 kev

Referring now to Table 16 where the elastic scattering widths
are given, it may be seen that both the LS and jj counliag schenes
give two states — one having T = 1 and the other T = 0 — with the
correct channel spin ratios ( drﬁxt = et/é;). They are respec=-
tively E3 and B6 for jj coupling and P6 and P8 for LS coupling.,
This is most encouraging for it offers an "explanation'" of what
would otherwise have seemed guite odd, namely that the channel spin
ratio happened to be just that value which resulted in isotropic
angular distributions, The explanation , of course, in either case
is that there is an additional quantum number hesides total aagular
moxentum and isotopic spin which fixes the angular distribution.

- In the case of jj coupling it is the configuration, i.e, the number

of particles in each of the p3/2 and p1/2 subshells, and in the case
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of LS coupling it is orbital and spln angular momenta.

The elastic scattering widths corresponding to these same wave
functinns are larger than the experimental widths by facters up to
four, but this can be explained away. xq,which depends on the value
of the radial wave functions at the surface of the nucleus,could be
less than the value used by a factor of two or even three. Lane(g)
is inblined to favour smaller values for x, as he finds that a har-
monic oscillator potential gives a smaller value than the square well,
and it is generally believed that the rounded bottom of an oscillator
votential is more realistic, Also — from the point of view taken
here — it is perfectly permissible to take linear combinations of
wave functions having the same quantum numbers,as we have no a priori
reasons for favouring the particular linear combinations chosen here
other than the esthetic one that the present ones display certain
symmetries in their construction. We will come back a little later
to the question of using such linear combinations,

The radiation widths, computed for the jj and LS wave functions
that seem to be indicated by the elastic scattering, are both zero
for the LS case and 96 and 1 év for the 440 and 1030 kev levels in
the jj coupling scheme. In the case of LS coupling, the existence
of such a large width as 410 ev for P3 (when compared with the experi-
mental values of 22 and <6 ev) makes it plausible that small impuri-
' fies in the wave function of either the ground state or the excited
state, or more likely both, could he responsible for the observed
widths, In the jj case the same argument can be applied to the 1030

kev state for which E6 predicts r% = 1 ev while the observed value

is < 6 ev., The figure of 6 ev for the 1030 kev resonance is the
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combined radiaticn width for transitions to the ground state and

. L N . . . . i
first excited state of Se” which have not been resolved. It could
be that most of the resonant radiation goes to the first excited state

3

of Be” so that this argument is not needed, In the case of the 440
tev state, the predicted value of 96 ev is greater than the observed
value of 22 ev by about the same factor that is found in the case
of the elastic scattering widths. This suggests that the device of

taking a linear combination of, say, E, and E4 would make possible

3
the ritting of ail the data for the 440 kev resonance.

Finally we come to the inelastic scattering. If the LS wave
function P6 is used, « vidth of 4z kev is predicted while the obser-
ved value is about 9 kev, The value of 42 kev can be reduced by the
saine devices suggested in the case of elastic scatteriag. However,
such methods nust be applied uniformly to the elastic and inelastic
scattering and none of them will change the ratio of the predicted
widths. This is lpr /[ 2 0.17 while the observed ratio is lpr /[ 0,045,
The jj wave functions offer more flexibility, as the ratio [p/T
can be adjusted arbitrarily by talking a linear combination of E6 and E7.

In surveying the above discussion we see that neither coupling
scheme is at odds with the observed data,

However, neither will account in a straight forward manner for
more than the channel spin ratio and the approximate values of the
elastic scattering widths, If a choice had to be made on the basis
_ of the data presented, the jj coupling scheme would seem to have

the edge.,

0f late a number of "intermediate coupling" calculations have

(15 -~ 18)

been made on a few of the light nuclei, The success of these
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in giving a number of pérticle and radiation widths in fair agreement
with observation raises hopes that the same might be accomplished in
the case of Bea. There is one reason for bheing less optimistic here.
That is that probably such a coasputation would not zive the channel
spin ratio N}'Ax:' = 1/5 wnich is obtained in the limiting cases

of pure LS or jj coupling. A deviation outside the limits of

1/6 < d}]/d:' <  1/% would certainly be incompatible with the angu-
lar distribution of gamma rays at the peak of the 44O kev resonance,
and probably not much more of a devistioa from Nf/xt = 1/5 could
be tolerated if the angular distribution of the iaelastic scattering
at the 1030 kev resonance is to be fitted, SBuch an internesdiate
coupling computation should be undertaken for just this point —

whether or not a reasonable value of the channel spin ratio can he

obtained — may offer a fairly critical test of its assumptions.,
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