
Coding for Information Storage

Thesis by

Zhiying Wang

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended March 14, 2013)

ii

c© 2013

Zhiying Wang

All Rights Reserved

iii

To my parents

and

my fiancé Li

iv

Acknowledgements

I would like to acknowledge my advisor Professor Jehoshua (Shuki) Bruck for his constant guidance

and support, without which this work would never exist. He is the most wonderful mentor one could

hope for. He taught me not only how to do research, but also how to be a hard-working and kind

person.

Itzhak Tamo has been a great friend and collaborator, even though I always have problem pro-

nouncing his name. To work with and learn from him is inspiring and fun, and I would like to thank

him for his amazing ideas and great help.

I also would like to thank Professor Anxiao (Andrew) Jiang, whom I believe is the most diligent

and efficient researcher. Countless new ideas flow from him as the waves flow from the ocean. But

more importantly, he cares about his students and friends as if they were family.

I would like to thank Professor Alexandros G. Dimakis, who introduced me to the distributed

storage problem. He has so much positive energy in work and life that everybody near him cannot

avoid being caught up into it.

I also would like to thank my friends and colleagues from the Paradise Lab: Professor Yuval

Cassuto, Robert Mateescu, Dan Wilhelm, Hongchao Zhou, Eyal En Gad, and Eitan Yaakobi. Only

because of them has life in an unfamiliar city been filled with joy and excitement.

Last but not least, I would like to thank my thesis committee: Professor Michelle Effros, Profes-

sor Babak Hassibi, Professor Tracey Ho, and Professor Erik Winfree. Their illuminating questions

and comments provide me with different points of view and new ways of thinking. More impor-

tantly, their encouragement and help inspires me to further on my path of research.

v

Abstract

Storage systems are widely used and have played a crucial rule in both consumer and industrial

products, for example, personal computers, data centers, and embedded systems. However, such

system suffers from issues of cost, restricted-lifetime, and reliability with the emergence of new

systems and devices, such as distributed storage and flash memory, respectively. Information theory,

on the other hand, provides fundamental bounds and solutions to fully utilize resources such as data

density, information I/O and network bandwidth. This thesis bridges these two topics, and proposes

to solve challenges in data storage using a variety of coding techniques, so that storage becomes

faster, more affordable, and more reliable.

We consider the system level and study the integration of RAID schemes and distributed storage.

Erasure-correcting codes are the basis of the ubiquitous RAID schemes for storage systems, where

disks correspond to symbols in the code and are located in a (distributed) network. Specifically,

RAID schemes are based on MDS (maximum distance separable) array codes that enable optimal

storage and efficient encoding and decoding algorithms. With r redundancy symbols an MDS code

can sustain r erasures. For example, consider an MDS code that can correct two erasures. It is clear

that when two symbols are erased, one needs to access and transmit all the remaining information to

rebuild the erasures. However, an interesting and practical question is: What is the smallest fraction

of information that one needs to access and transmit in order to correct a single erasure? In Part I

we will show that the lower bound of 1/2 is achievable and that the result can be generalized to

codes with arbitrary number of parities and optimal rebuilding.

We consider the device level and study coding and modulation techniques for emerging non-

volatile memories such as flash memory. In particular, rank modulation is a novel data representa-

tion scheme proposed by Jiang et al. for multi-level flash memory cells, in which a set of n cells

stores information in the permutation induced by the different charge levels of the individual cells.

It eliminates the need for discrete cell levels, as well as overshoot errors, when programming cells.

In order to decrease the decoding complexity, we propose two variations of this scheme in Part II:

vi

bounded rank modulation where only small sliding windows of cells are sorted to generated per-

mutations, and partial rank modulation where only part of the n cells are used to represent data.

We study limits on the capacity of bounded rank modulation and propose encoding and decoding

algorithms. We show that overlaps between windows will increase capacity. We present Gray codes

spanning all possible partial-rank states and using only “push-to-the-top” operations. These Gray

codes turn out to solve an open combinatorial problem called universal cycle, which is a sequence

of integers generating all possible partial permutations.

vii

Contents

Acknowledgements iv

Abstract v

1 Introduction 1

I Coding for Distributed Storage 7

2 Introduction to the Rebuilding Problem 8

3 Rebuild for Existing Array Codes 12

3.1 Introduction . 12

3.2 Definitions . 14

3.3 Repair for Codes with Two Parity Nodes . 16

3.4 r Parity Nodes and One Erased Node . 19

3.5 Three Parity Nodes and Two Erased Nodes . 24

3.6 Conclusions . 25

4 Zigzag Code 27

4.1 Introduction . 27

4.2 (k + 2, k) MDS Array Code Constructions . 32

4.2.1 Constructions . 32

4.2.2 Rebuilding Ratio . 34

4.2.3 Finite-Field Size . 37

4.3 Problem Settings and Properties . 39

4.4 Lengthening the Code . 47

viii

4.4.1 Constant Weight Vector . 47

4.4.2 Code Duplication . 49

4.5 Generalization of the Code Construction . 58

4.6 Concluding Remarks . 71

5 Rebuilding Any Single-Node Erasure 73

5.1 Introduction . 73

5.2 Rebuilding Ratio Problem . 74

5.3 Code Construction . 78

5.4 Summary . 87

6 Rebuilding Multiple Failures 88

6.1 Introduction . 88

6.2 Decoding of the Codes . 89

6.3 Correcting Column Erasure and Element Error . 92

6.4 Rebuilding Multiple Erasures . 95

6.4.1 Lower Bounds . 96

6.4.2 Rebuilding Algorithms . 98

6.4.3 Minimum Number of Erasures with Optimal Rebuilding 106

6.4.4 Generalized Rebuilding Algorithms . 108

6.5 Concluding Remarks . 110

7 Long MDS Array Codes with Optimal Bandwidth 111

7.1 Introduction . 111

7.2 Problem Settings . 112

7.3 Code Constructions with Two Parities . 115

7.4 Codes with Arbitrary Number of Parities . 123

7.5 Lowering the Access Ratio . 130

7.6 Conclusions . 133

II Coding for Flash Memory 134

8 Introduction to Rank Modulation 135

ix

9 Bounded Rank Modulation 140

9.1 Introduction . 140

9.2 Definitions . 142

9.3 BRM Code with One Overlap and Consecutive Levels 143

9.4 BRM Code with One Overlap . 148

9.5 Lower Bound for Capacity . 155

9.5.1 Star BRM . 155

9.5.2 Lower Bound for the Capacity of BRM 158

9.6 Concluding Remarks . 161

10 Partial Rank Modulation 163

10.1 Introduction . 163

10.2 Definitions and Notations . 166

10.3 Construction of Universal Cycles . 168

10.4 Complexity Analysis . 179

10.5 Equivalence of Universal Cycles and Gray Codes 181

10.6 Conclusions . 184

11 Error-Correcting Codes for Rank Modulation 186

11.1 Introduction . 186

11.2 Definitions . 188

11.3 Correcting One Error . 189

11.4 Correcting t Errors . 191

11.5 Conclusions . 198

12 Concluding Remarks 199

Bibliography 201

x

List of Figures

1.1 Global data traffic . 2

1.2 Trend of SSD . 2

1.3 Trend of cloud storage . 3

1.4 Errors in distributed storage . 4

1.5 Rebuild in distributed storage . 4

1.6 Iterative programming . 5

1.7 Rank modulation . 6

3.1 Repair of a (4, 2) EVENODD code . 16

3.2 Repair of an EVENODD code with p = 5 . 19

3.3 Recovery in STAR code . 25

4.1 Rebuilding of a (4, 2) MDS array code . 28

4.2 Permutations for a zigzag code . 29

4.3 Generate the permutation . 30

4.4 A (5, 3) MDS array code . 32

4.5 Comparison among different code constructions . 46

4.6 Duplication code . 50

4.7 The induced subgraph of D4 . 52

4.8 A (6, 3) MDS array code . 63

5.1 An MDS array code with two systematic and two parity nodes 74

5.2 Parity matrices . 80

5.3 Rebuilding of a (4, 2) MDS array code . 81

6.1 (5, 3) zigzag code . 95

6.2 Correcting column erasure and element error . 95

xi

7.1 (n = 6, k = 4, l = 2) code . 112

7.2 (n = 8, k = 6, l = 4) code . 117

7.3 Vectors for (n = 7, k = 4, l = 9) code . 125

7.4 (n = 11, k = 8, l = 9) code . 125

8.1 A flash memory cell . 136

9.1 Labeled graphs for CI . 144

9.2 Capacity for CI . 146

9.3 Labeled graphs for C(n, 2, 4, 1) . 148

9.4 Capacity for C . 149

9.5 Encoder and decoder for BRM . 149

9.6 Rate 3 : 4 finite-state encoder . 151

10.1 Directed graphs with n = 3, k = 1 . 165

10.2 A cycle for 2-partial permutations out of 4 . 167

10.3 Insertion . 169

10.4 An insertion tree . 171

10.5 A generating tree of 6 out of 3 . 173

10.6 Comparison of universal cycle algorithms . 181

11.1 Permutations of length 3 . 186

11.2 Encoder and decoder of a 1-error-correcting code 190

11.3 2-error-correction rank modulation codes . 194

11.4 3-error-correction rank modulation codes . 195

11.5 The underlined binary code . 196

11.6 Encoder and decoder of t ECC . 198

1

Chapter 1

Introduction

Information theory studies the compression, the storage, and the communication of information.

Among these topics, the storage of data has attracted a large amount of interest among both in-

dustrial and academic researchers in the era of information explosion, especially with the rapid

development of the Internet. Moreover, the implementation of distributed storage and the success

of new storage devices, such as flash memory, also provide people with new media for more data

storage. Therefore, two of the most exciting topics in information theory today are information

representation in distributed storage and flash memory, which will also be the two subjects of this

thesis.

Network solution providers such as Cisco predicted that the amount of Internet data traffic will

increase by 32% every year from 2011 to 2016 [Cis12] (see Figure 1.1). And the overall data will

reach 45000 petabytes per month next year (year 2014). This also indicates the huge demands for

data storage in the near future. Therefore, it is an urgent challenge to invent reliable, inexpensive,

high-performance and power-efficient information storage.

Flash memory has emerged as a strong competitor to the traditional HDD (hard disk drive) in

the past decade. Compared to the hard disks, flash memory does not have any spin parts, leading to

faster access speed, more flexible fragmentation, and better durability in terms of physical collision.

More importantly, because of the scaling-down of the advanced CMOS technology indicated by

Moore’s law, flash memory has the potential to have higher density and lower price. Therefore, it

is very suitable for consumer mobile devices such as cameras, cell phones, and tablets. The vast

demand for these products in turn pushes forward the flash technologies. As a result, flash devices

have evolved from discrete small storage units into the primary drives in computers and servers.

Moreover, flash memory has been developed as an alternative to HDD in enterprise applications such

as servers and data centers, once it meets the specifications of industrial standards. Figure 1.2 shows

2

Figure 1.1: The amount of data traffic in the recent years. The compound average growth rate
(CAGR) is 32% every year. Source: Cisco [Cis12].

Figure 1.2: The trend of SSD in terms of unit and revenue. Source: SanDisk [Ore11].

the trend of SSD (solid state drive) in terms of unit and revenue estimated by SanDisk [Ore11].

Projections show that the number of SSD units will jump to 50 million by 2014.

Meanwhile, with the development of mobile devices assisted by flash memory, more and more

data storage in the servers is required by applications such as video, file sharing, social network,

and gaming. Therefore, data centers has expanded from the size of a room to that of a warehouse.

Moreover, distributed or cloud storage has also changed people’s life and the way of computing.

Data is stored and backed up across the Internet instead of in a single place. Its advantage is obvious:

more resistant to unpredictable failures, such as natural disasters and electrical black out. Also data

can be retrieved from convenient locations to save access time and reduce network traffic. Figure 1.3

is from Seagate [Woj12] and shows that by the year 2014 there will be about 775 million subscribers

of cloud storage, which means 2325 Petabytes of storage.

3

Figure 1.3: The development of cloud storage in terms of number of subscribers. Source: Seagate
[Woj12].

In distributed storage, as the system scales failures are inevitable. Hence redundant data must be

stored in order to combat errors. Erasure correction codes are the most commonly used technique

for this purpose. When a failure happens and repair is executed, a large data traffic in the network

as well as large data I/O in each storage unit is generated. In fact, [SAP+13] shows that in a system

with 3000 servers (or nodes) of Facebook, it is quite typical to have 20 or more node failures per day

that triggers repair jobs (Figure 1.4). Moreover, with the current configuration the repair traffic is

estimated around 10 to 20 percent of the total average of 2 petabytes per day cluster network traffic.

Therefore, it is crucial to study practical solutions that repair with low traffic cost. Meanwhile, these

challenges in distributed storage can be similar to those in a single data center. In such cases, our

work can apply to both scenarios.

In Part I we study the rebuilding of distributed storage first proposed by [DGW+10]. Figure

1.5 shows an example of an erasure correction code called EVENODD [BBBM95] with four nodes.

One can easily verify the following properties of this code. (i) Node size: each node has size two.

(ii) Reconstruction: if we lose any two nodes the information bits a, b, c, d can be still computed

from the rest nodes or 4 bits. (iii) Rebuilding: if only one node fails, transmitting only 3 bits we are

able to solve the lost bits. Sometimes we can access or read some bits and directly transmit them

such as Figure 1.5 (a). In other cases we need to access and compute before we transmit, such as bit

a + b + c + d in (b), where the number of accesses is larger than the number of transmitted bits.

While erasure correction codes help with distributed storage, coding techniques also benefits

information storage in flash memory. In spite of the attempting advantages of flash memory, it still

4

Figure 1.4: Number of failed nodes in a month in a distributed storage with 3000 nodes of Facebook
[SAP+13].

Figure 1.5: An erasure correction code (EVENODD) with two information and two redundant
nodes. All symbols are binary and all additions are XOR. Any two node failures can be corrected.
For a single failure, only 3 symbols are transmitted to rebuild (a) first node or (b) last node. In (b)
the bit a + b + c + d is obtained by XOR of the two bits a + b and c + d.

5

Figure 1.6: Iterative programming towards different targets (dashed lines). The circles in the solid
lines shows the result after each iteration [BSH05].

suffers from limited life time (105 write/erase cycles), read/write disturbances, limited retention,

and high cost of erasure. For example, due to the high cost of erasure, decrease a data value is very

expensive. As a result, the writing of data is processed in a very conservative interactive method

in current flash technology. Figure 1.6 is from [BSH05] and shows that the average number of

pulses required to hit a target in this example is 7 to 8. Here the current target corresponds to the

desired value to store. One can see that writing can be very slow and thus degrades the performance

of the system. For the consumer applications, these problems of flash are not critical because the

requirement for the performance are topically not very high. However, they have to be solved in

order to satisfy the enterprise requirements such as frequent fast access, long lifespan, and high

reliability.

In Part II, we mainly address the problem of coding for flash memory. Specifically, we focus

on a novel data representation technique called rank modulation [JMSB09], where permutations of

length n are used to represent data. Please refer to Figure 1.7 as an example. Here each cylinder

is a flash cell and the filled part represents its level of electric charge or current. In (a), each cell

represents one bit by two fixed target levels. As mentioned above, reaching a specific level will

incur iterative programming and slow writing. On the other hand, (b) uses the ranks of two cells to

represent one bit. Once the permutation or the relative values are obtained, cells can be programmed

with more freedom. If the lower cell is programmed too high, instead of lowering a cell level which

6

Figure 1.7: Information representation schemes in flash memory. (a) Absolute-value representation.
Every cell must fall in one of the two target levels. Cell 1 and 2, respectively, represent value 0 and
1. (b) Rank modulation of length 2. Every two cells constitute a permutation. If the first cell is
lower than the second, the permutation is (1,2) and represents value 0; otherwise the permutation is
(2,1) and represents value 1.

is very expensive, the other cells will be merely increased.

This thesis strives to provide easier, faster, and more reliable ways to store data with the help

of coding techniques. The rest of the thesis is divided into two parts: coding for distributed storage

and coding for flash memory.

The rebuilding access or transmission problem of distributed storage will be more thoroughly

explained in Chapter 2. Our contributions are inventing efficient rebuilding algorithm for existing

codes in Chapter 3, constructing optimal rebuilding codes, zigzag codes, and their extensions in

Chapter 4 and 5, rebuilding multiple failures in Chapter 6, and studying the relationship of the

number of nodes and the node size in Chapter 7.

Chapter 8 gives a more detailed introduction to rank modulation in flash memory. We will study

rank modulation with more constraints on the permutation size, e.g., bounded rank modulation in

Chapter 9 and partial rank modulation in Chapter 10. Error correction in rank modulation will be

discussed in Chapter 11.

Finally, Chapter 12 concludes the thesis with summary and future directions.

7

Part I

Coding for Distributed Storage

8

Chapter 2

Introduction to the Rebuilding Problem

Distributed storage systems involving storage nodes connected over networks have become one of

the most popular architecture in current file systems. MDS (maximum distance separable) codes can

be used for erasure protection in distributed storage systems where encoded information is stored in

a distributed manner. A code with r parity (redundancy) nodes is MDS if and only if it can recover

from any r erasures. For example, Reed-Solomon codes [RS60] are the most commonly seen MDS

codes.

Moreover, a more general framework of file storage can be a collection of storage nodes located

in a distributed or a centralized manner. RAID (redundant array of independent disks) is such a

storage technique and it combines multiple disk drive components into a logical unit. MDS array

codes are used extensively as the basis for RAID storage systems. An array code consists of a

2-D array where each column can be considered as a disk. We will use the term column, node,

or disk interchangeably. We call the entries in the array symbols, elements, or blocks. Examples

of MDS array codes are EVENODD [BBBM95, BBV96], B-code [XBBW99], X-code [XB99],

RDP [CEG+04], and STAR-code [HX08].

If no more than r storage nodes are lost, then all the information can still be recovered from

the surviving nodes. In order to correct r erasures, it is obvious that one has to access (or read)

and transmit the information in all the surviving nodes. However, in practice it is more likely to

encounter a single erasure rather than r erasures. Suppose one node is erased, and instead of retriev-

ing the entire file, if we are only interested in repairing the lost node, then what is smallest amount

of transmission or access needed? The amount of transmission is called the repair bandwidth and

the amount of access if called rebuilding access. Assume a file of size M is stored in n nodes,

each storing a piece of size M/k. Further assume we have access to d of the surviving nodes,

k ≤ d ≤ n− 1. This repair problem was first raised in [DGW+10], and a cut-set lower bound for

9

repair bandwidth of one node erasure was derived:

Md
k(d− k + 1)

. (2.1)

Besides bandwidth and access, there are quite a few other key features of an array code in

storage. We list some of them below, and in the following chapters we will study in more details on

them for code constructions.

Systematic. A code is systematic if the information is stored exclusively in the first k nodes (sys-

tematic nodes), and the redundancies are stored exclusively in the last r nodes (parity nodes).

The advantage of such codes is that information can be easily obtained from only the first k

nodes.

Finite-Field Size It is the size of the finite field where all entries or symbols in the array belong to.

One reason of the popularity of array code is its small field size and hence low computational

complexity.

Update. It is the number of symbol rewrites when an information symbol is updated. It also equals

the number of appearances of a symbol in the array code. If the code is MDS, any information

symbol appears at least r + 1 times, because otherwise we can erase those nodes containing

this symbol and violate the MDS property. If each information symbol appears only r + 1

times, we say the code is optimal update.

Bandwidth. It is the smallest amount of data transmission for rebuilding a node erasure. If a code

matches the bound (2.1) we say it is optimal bandwidth. When the file size and the number

of nodes is large, rebuilding is a common operation and takes up a large portion of network

resources. Small bandwidth indicates low traffic consumption in the rebuilding process and

is desirable for large systems.

Access. It is the smallest amount of data access for rebuilding a node erasure. Note that a transmit-

ted symbol can be a function of many accessed symbols. As a result, the rebuilding access

is always no less than the repair bandwidth. If the access of a code matches the bound (2.1)

we say is it optimal access. Small access leads to small disk I/O and also fast information

retrieval.

Array Size. It is the dimension of the code array. Let the code length be the number of information

10

nodes k. In order to achieve optimal rebuilding, sometimes each node needs to be subpack-

etized into many symbols. The length of each column equals to the number of subpackets,

denoted by l. We would like to have l small for given k so that the file size can be flexible and

the code can be easy to work with.

The problem of rebuilding or regenerating information in (distributed) storage systems has at-

tracted considerable interest in recent years. A recent survey of the repair problem can be found

in [DRWS11]. If we repair the lost information functionally, namely to obtain a function of the

file and maintain the MDS property, [WDR07, Wu09] showed existence of codes using network

coding techniques. If we repair the lost information exactly, [SR10b, CJM10] proved that the

lower bound is asymptotically achievable when the column length l goes to infinity. However,

the proofs in the above work are theoretical and is based on very large finite fields. Hence, it

does not provide the basis for constructing practical codes with small finite fields. In [WD09]

[CDH09], this lower bound is matched for exact repair by code constructions for k = 2, 3, or

n − 1. In [RSKR09, SR10a, SRKR10] codes achieving the repair bandwidth lower bound were

studied where the number of systematic nodes is less than the number of parity nodes (low code

rate). And [CHL11, CJ11, CHLM11, PDC11b, PDC11a, TWB11, WTB11, TWB13] studied codes

with more systematic nodes than parity nodes (high code rate) and finite l, and achieved the lower

bound of the repair bandwidth.

In this thesis, we mainly focus on the regime of high-rate codes. We first try to rebuild erasures

in existing erasure-correcting codes, and observe the advantages and disadvantages of such codes.

Then we try to construct our own codes, which match the repair bandwidth/access lower bound and

are therefore optimal.

In Chapter 3, we study the rebuilding of existing MDS array codes, such as EVENODD. Such

codes are not only MDS but also binary codes, namely they only require XOR operations for en-

coding and decoding. We show that when there are two redundancy nodes, to rebuild one erased

systematic node, only 3/4 of the information needs to be transmitted. Interestingly, in many cases,

the required disk I/O is also minimized.

Actually (2.1) shows that the lower bound of rebuilding access is a fraction of 1/2. There is a

gap between the lower bound and the existing array codes. In Chapter 4 we construct zigzag codes

and close this gap. For the case of a single systematic erasure with a 2-erasure-correcting code, the

rebuilding access is a fraction of 1/2. In general, we construct a new family of r-erasure correcting

11

MDS array codes that has optimal rebuilding access fraction of 1
r in the case of a single systematic

erasure. Our array codes have efficient encoding and decoding algorithms (for the cases r = 2 and

r = 3 they use a finite field of size 3 and 4, respectively) and an optimal update property.

However, we have not yet solved the problem entirely. For a parity node erasure, all the in-

formation needs to be accessed. Namely, constructing array codes with optimal rebuilding for an

arbitrary erasure was left as an open problem. In Chapter 5, we solve this open problem and present

array codes that achieve the lower bound (2.1) for rebuilding any single systematic or parity node.

We discuss other decoding problems in Chapter 6. For zigzag codes with two parities, we study

how to correct one erasure, two erasures, or one column error. Notice that a column is composed of

l symbols, we also discuss rebuilding an erased column in the presence of symbol errors. Moreover,

we show that zigzag codes have optimal rebuilding for multiple erasures. When e nodes are erased,

we show that only e/r fraction of the file needs to be accessed, for all 1 ≤ e ≤ r.

If we consider the array size, zigzag codes have length k = logr l given column length l. In

Chapter 7 we try to lengthen the array so that we can accommodate more storage nodes given the

capacity of each one. To relax the constraints, we look for optimal repair bandwidth codes instead

of optimal access. We give code constructions such that the code length is k = (r + 1) logr l.

12

Chapter 3

Rebuild for Existing Array Codes

3.1 Introduction

Coding techniques for storage systems have been used widely to protect data against errors or era-

sure for CDs, DVDs, Blu-ray Discs, and SSDs. Assume the data in a storage system is divided

into packets of equal sizes. An (n, k) block code takes k information packets and encodes them

into a total of n packets of the same size. Among coding schemes, maximum distance separable

(MDS) codes offer maximal reliability for a given redundancy: any k packets are sufficient to re-

trieve all the information. Reed-Solomon codes [RS60] are the most well-known MDS codes that

are used widely in storage and communication applications. Another class of MDS codes are MDS

array codes, for example, EVENODD [BBBM95] and its extension [BBV96], B-code [XBBW99],

X-code [XB99], RDP [CEG+04], and STAR code [HX08]. In an array code, each of the packets

consists of a column of elements (one or more binary bits), and the parities are computed by XOR-

ing some information bits. These codes have the advantage of low computational complexity over

RS codes because the encoding and decoding only involve XOR operations.

The rebuilding problem studies the repair bandwidth. That is, the necessary amount of informa-

tion transmission in order to rebuild a node erasure. In particular, works have been done on lower

bound of the repair bandwidth [DGW+10], asymptotic achievability [SR10b] [CJM10] and con-

structions of optimal codes for specific parameters, e.g., [WD09] [CDH09] [SR10b]. In this chapter

we take a different route: rather than trying to construct MDS codes that are easily repairable, we

try to find ways to repair existing codes and specifically focus on the families of MDS array codes.

A related and independent work can be found in [XXLC10], where single-disk recovery for RDP

code was studied, and the recovery method and repair bandwidth is indeed similar to our result.

Besides, [XXLC10] discussed balancing disk I/O reads in the recovery. Our work discusses the

13

recovery of single or double disk recovery for EVENODD, X-code, STAR, and RDP code.

In practice, there is a difference between erasures of the information (also called systematic)

and the parity nodes. An erasure of the former will affect the information access time since part

of the raw information is missing, however erasure of the latter does not have such an effect, since

the entire information is still accessible. Moreover, in most storage systems the number of parity

nodes is quite small compared to the number of systematic nodes. Therefore, our study focus on

rebuilding for the systematic nodes. The rebuilding of a parity node will require transmitting all the

information in the systematic nodes.

In the general framework of [DGW+10], an acceptable rebuilding is one that retains the MDS

property and not necessarily rebuilds the original erased node, whereas, we restrict our solutions

to exact rebuilding. Exact rebuilding has the benefit that we can retrieve the original information

immediately if the code is systematic, i.e., the information are stored in k nodes.

Moreover, we assume that all the surviving nodes are accessible. This is reasonable if the nodes

are located in a single disk array, or if all the links in the storage network is available. By accessing

more nodes, we can parallelize the rebuilding process, and read and transmit less information in

total. However, for some cloud storage applications, the main repair performance bottleneck is the

disk I/O overhead, which is proportional to the number of nodes involved in the repair process of a

failed node. Therefore, codes with low number of accessed nodes, or locally repairable codes, are

studied in the literature (e.g., [GHSY12] [OD11] [SRKV13] [TPD13]).

If the whole data object stored has sizeM bits, repairing a single erasure naively would require

communicating (and reading) M bits from surviving storage nodes. Here we show that a single

failed systematic node can be rebuilt after communicating only 3
4M+ O(M1/2) bits. Note that

the cut-set lower bound [DGW+10] scales like 1
2M+ O(M1/2), so it remains open if the repair

communication for EVENODD codes can be further reduced. This question will be answered posi-

tively in the next few chapters. Interestingly our repair scheme also requires significantly less disk

I/O reads compared to naively reading the whole data object.

In this chapter we will review EVENODD and other related array codes, propose rebuilding

algorithms for one or two erasures, where the number of redundancies are two or more.

14

3.2 Definitions

An R× n array code contains R rows and n columns (or packets). Each element in the array can

be a single bit or a block of bits. We are going to call an element a block. In an (n, k) array code,

k information columns, or systematic columns, are encoded into n columns. The total amount of

information isM = Rk blocks.

An EVENODD code [BBBM95] is a binary MDS array code that can correct up to 2 column

erasures. For a prime number p ≥ 3, the code contains R = p− 1 rows and n = p + 2 columns,

where the first k = p columns are information and the last two are parity. And the information is

M = (p− 1)p blocks.

We will write an EVENODD code as:

a1,1 a1,2 . . . a1,p b1,0 b1,1

a2,1 a2,2 . . . a2,p b2,0 b2,1
...

...
...

...
...

ap−1,1 ap−1,2 . . . ap−1,p bp−1,0 bp−1,1

And we define an imaginary row ap,j = 0, for all j = 1, 2, . . . , p, where 0 is a block of zeros. The

slope 0 or horizontal parity is defined as

bi,0 =
p

∑
j=1

ai,j (3.1)

for i = 1, . . . , p− 1. The addition here is bit-by-bit XOR for two blocks. A parity block of slope v,

−p < v < p and v 6= 0 is defined as

bi,v =
p

∑
j=1

aj,<i+v(1−j)> + Sv =
p

∑
j=1

a<i+v(1−j)>,j + Sv (3.2)

where Sv = ap,1 + ap−v,2 + · · ·+ a<p+v>,p = ∑
p
j=1 a<v(1−j)>,j and < x >= (x− 1) mod p +1.

Sometimes we omit the “<>” notation. When v = 1, we call it the slope 1, or diagonal parity. In

EVENODD, parity columns are of slopes 0 and 1.

A similar code is RDP [CEG+04], where R = p − 1, n = p + 1, and k = p − 1, for a

prime number p. The diagonal parity sums up both the corresponding information blocks and one

horizontal parity block. Another related code is X-code [XB99], where the parity blocks are of

15

slope -1 and 1, and are placed as two additional rows, instead of two parity columns.

The code in [BBV96] extended EVENODD to more than 2 columns of parity. This code has

n = p + r, k = p, and R = p− 1. The information columns are the same as EVENODD, but r

parity columns of slopes 0, 1, . . . , r− 1 are used. It is shown in [BBV96] that such a code is MDS

when r ≤ 3 and conditions for a code to be MDS are derived for r ≤ 8.

STAR code [HX08] is an MDS array code with k = p, R = p− 1, n = p + 3, and the parity

columns are of slope 0, 1, and -1.

A parity group Bi,v of slope v contains a parity block bi,v and the information blocks in the sum

in equations (3.1) (3.2), i = 1, 2, . . . , p − 1. Sv is considered as a single information block. If

v = 0, it is a horizontal parity group, and if v = 1, we call it a diagonal parity group.

By (3.1), each horizontal parity group Bi,0 contains ai,<k+1−i> ∈ Bk,1, for all k = 1, 2, . . . , p−

1. So we say Bi,0 crosses with Bk,1, for all k = 1, 2, . . . , p− 1. Conversely, each diagonal parity

group Bi,1 contains ak,<i+1−k> ∈ Bk,0, for all k = 1, 2, . . . , p− 1. Therefore, Bi,1 crosses with Bk,0

for all k = 1, 2, . . . , p− 1. The shared block of two parity groups is called the crossing. Generally,

two parity groups Bi,v and Bk,u cross, for v 6= u, 1 ≤ i, k ≤ p− 1. If they cross at ap,<i+v> = 0,

we call it a zero crossing. A zero crossing does not really exist since the p-th row is imaginary. A

zero crossing occurs if and only if

u, v 6= 0 and < i + v >=< k + u > (3.3)

Moreover, each information block belongs to only one parity group of slope v.

In this chapter, we use MDS array codes as distributed storage codes. We will give repair

methods and compute the corresponding bandwidth γ.

Example 3.1 Consider the EVENODD code with p = 3. Set a1,3 = a2,3 = 0 for all codewords,

then the code will contain only 2 columns of information. The resulting code is a (4, 2) MDS

code and this is called shortened EVENODD (see Figure 3.1). It can be verified that if any node is

erased, then sending 1 block from each of the other nodes is sufficient to recover it. And this actually

matches the bound (2.1). Figure 3.1 shows how to recover the first or the fourth column. Notice that

a sum block is sent in some cases. For instance, to recover the first column, the sum b1,1 + b2,1 is

sent from the fourth column.

In this chapter, shortening of a code is not considered and we will focus on the recovery of

systematic nodes, given that 1 or 2 systematic nodes are erased. And we send no linear combinations

16

221221212221202221

2211111211101211

aaabaabaa
aabaabaa

1221112111 aaabb

12a

101211 baa
121110 aab

1221112111

)(21111021 bbba

2211111211101211

aaabaabaa
aabaabaa

221221212221202221 aaabaabaa

222112112010 aaaabb
11a

22a

)(20101121

221111

bbab
aab

Figure 3.1: Repair of a (4, 2) EVENODD code if the first column (top graph) or the fourth column
(bottom graph) is erased. In both cases, three blocks are transmitted.

of data except the sum ∑
p−1
i=1 bi,v from the parity node of slope v, for all v defined in an array code.

In addition, we assume that each node can transmit a different number of blocks.

3.3 Repair for Codes with Two Parity Nodes

First, let us consider the repair problem of losing one systematic node, n− d = 1, and n− k = 2.

We will use EVENODD to explain the repair method, and the recovery will be very similar if RDP

or X-code is considered.

By the symmetry of the code, we assume that the first column is missing. Each block in the first

column must be recovered through either the horizontal or the diagonal parity group including this

block. Suppose we use x horizontal parity groups and p− 1− x diagonal parity groups to recover

the column, 0 ≤ x ≤ p− 1. These parity groups include all blocks of the first column exactly once.

Notice that S1 = ∑
p−1
i=1 bi,0 + ∑

p−1
i=1 bi,1, so we can send ∑

p−1
i=1 bi,0 from the (p + 1)-th node, and

∑
p−1
i=1 bi,1 from the (p + 2)-th node, and recover S1 with 2 blocks of transmission. For the discussion

below, assume S1 is known.

For each horizontal parity group Bi,0, we send bi,0 and ai,j, j = 2, 3, . . . , p. So we need p

blocks. For each diagonal parity group Bi,1, as S1 is known, we send bi,1 and aj,<i+1−j>, j =

17

1, 2, . . . , i− 1, i + 1, . . . , p− 1, which is p− 1 blocks in total.

If two parity groups cross at one block, there is no need to send this block twice. As shown in

Section 3.2, any horizontal and any diagonal parity group cross at a block, and each block can be

the crossing of two groups at most once. There are x(p− 1− x) crossings. The total number of

blocks sent is

γ = xp︸︷︷︸
horizontal

+ (p− 1− x)(p− 1)︸ ︷︷ ︸
diagonal

+ 2︸︷︷︸
S1

− x(p− 1− x)︸ ︷︷ ︸
crossings

= (p− 1)p + 2− (x + 1)(p− 1− x) (3.4)

≥ (p− 1)p + 2− (p2 − 1)/4 = (3p2 − 4p + 9)/4

The equality holds when x = (p− 1)/2 or x = (p− 3)/2, where x is an integer.

This result states that we only need to send about 3/4 of the total amount of information. And

the slopes of the n chosen parity groups do not matter as long as half are horizontal and half are

diagonal. Moreover, similar repair bandwidth can be achieved using RDP or X-code. For RDP

code, the repair bandwidth is
3(p− 1)2

4

which was also derived independently in [XXLC10]. For X-code, the repair bandwidth is at most

3p2 − 2p + 5
4

The derivation for RDP is the following. For RDP code, the first p− 1 columns are information.

The p-th column is the horizontal parity. The (p + 1)-th column is the slope 1 diagonal parity

(including the p-th column). The diagonal starting at ap,1 = 0 is not included in any diagonal

parities. Suppose the first column is erased. Each horizontal or diagonal parity group will require

p − 1 blocks of transmission. Every horizontal parity group crosses with every diagonal parity

group. Suppose (p − 1)/2 horizontal parity groups and (p − 1)/2 diagonal parity groups are

transmitted. Then the total transmission is

γ = (p− 1)(p− 1)︸ ︷︷ ︸
p−1 parity groups

− p− 1
2

p− 1
2︸ ︷︷ ︸

crossings

=
3(p− 1)2

4

This result is also derived independently in [XXLC10].

18

The derivation for X-code is as follows. For X-code, the (p− 1)-th row is the parity of slope

-1, excluding the p-th row. And the p-th row is the parity of slope 1, excluding the (p− 1)-th row.

Suppose the first column is erased. First notice that for each parity group, p − 2 blocks need to

be transmitted. To recover the parity block ap−1,1, one has to transmit the slope -1 parity group

starting at ap−1,1. To recover the parity block ap,1, the slope 1 parity group starting at ap,1 must

be transmitted. But it should be noted that by the construction of X-code, this slope 1 parity group

essentially is the diagonal starting at ap−1,1, except for the first element ap,1. Zero crossings happen

between two parity groups of slopes -1 and 1, starting at ai,1 and aj,1, if

< i + j >= p− 2 or < i + j >= p

Each slope 1 parity group has no more than 2 zero crossings with the slope -1 parity groups.

Suppose we choose arbitrarily (p− 1)/2 slope 1 parity groups and (p− 3)/2 slope -1 parity

groups for the information blocks in the first column. Then not considering the parity group con-

taining ap,1, the number of slope 1 and slope -1 parity groups are both (p− 1)/2. Excluding zero

crossings, each slope 1 parity group crosses with at least

(p− 1)/2− 2 = (p− 5)/2

slope -1 parity groups. The total transmission is

γ ≤ p(p− 2)︸ ︷︷ ︸
p parity groups

− p− 1
2

p− 5
2︸ ︷︷ ︸

crossings

=
3p2 − 2p + 5

4

Also, equation (3.4) is optimal in some conditions:

Theorem 3.2 The transmission bandwidth in (3.4) is optimal to recover a systematic node for

EVENODD if no linear combinations are sent except ∑
p−1
i=1 bi,v, for v = 0, 1.

Proof: To recover a systematic node, say, the first node, parity blocks bi,v, i = 1, 2, . . . , p− 1

must be sent, where v can be 0 or 1 for each i. This is because ai,1 is only included in bi,0 or bi,1.

Besides, given bi,v, the whole parity group Bi,v must be sent to recover the lost block. Therefore,

our strategy of choosing x horizontal parity groups and p− 1− x diagonal parity groups has the

most efficient transmission. Finally, since (3.4) is minimized over all possible x, it is optimal.

19

11101514131211 bbaaaaa
Systematic Nodes Parity Nodes

31303534333231

21202524232221

11101514131211

bbaaaaa
bbaaaaa

41404544434241 bbaaaaa

Figure 3.2: Repair of an EVENODD code with p = 5. The first column is erased, shown in the box.
14 blocks are transmitted, shown by the blocks on the horizontal or diagonal lines. Each line (with
wrap around) is a parity group. 2 blocks in summation form, ∑

p−1
i=1 bi,0, ∑

p−1
i=1 bi,1 are also needed

but are not shown in the graph.

The lower bound by (2.1) is

Md
(d− k + 1)k

=
M(n− 1)
(n− k)k

=
p(p− 1)(p + 1)

2p
=

p2 − 1
2

where d = n− 1, n = p + 2, k = p, andM = p(p− 1). It should be noted that (2.1) assumes

that each node sends the same number of blocks, but our method does not.

Example 3.3 Consider the EVENODD code with p = 5 in Figure 3.2. For 1 ≤ i ≤ 4, the

code has information blocks ai,j, 1 ≤ j ≤ 5, and parity blocks bi,v, v = 0, 1. Suppose the first

column is lost. Then by (3.4), we can choose parity groups B1,0, B2,0, B3,1, B4,1. The blocks sent are:

∑
p−1
i=1 bi,0, ∑

p−1
i=1 bi,1, b1,0, b2,0, b3,1, b4,1 from the parity nodes and a1,2, a1,3, a1,4, a1,5, a2,2, a2,3, a2,4,

a2,5, a4,5, a3,2 from the systematic nodes. Altogether, we send 16 blocks, the number specified by

(3.4). We can see that a1,3 is the crossing of B1,0 and B3,1. Similarly, a1,4, a2,2, a2,3 are crossings and

are only sent once for two parity groups.

3.4 r Parity Nodes and One Erased Node

Next we discuss the repair of array codes with r columns of parity, r ≥ 3. And we consider the

recovery in case of one missing systematic column. In this section, we are going to use the extended

EVENODD code [BBV96], i.e., codes with parity columns of slope 0, 1, . . . , r− 1. Similar results

can be derived for STAR code. Suppose the first column is erased without loss of generality.

Let us first assume r = 3, so the parity columns have slopes 0, 1, 2. The repair strategy is:

sending parity groups B3n+v,v for v = 0, 1, 2 and 1 ≤ 3n + v ≤ p− 1. Let A = b(p− 1)/3c.

20

Notice that 0 ≤ n ≤ A and each slope has no more than d(p − 1)/3e but no less than b(p −

1)/3c = A parity groups.

Since there are three different slopes, there are crossings between slope 0 and 1, slope 1 and 2,

and slope 2 and 0. For any two parity groups Bi,1 and Bk,2, < k− i > 6= 1, so (3.3) does not hold.

Hence no zero crossing exists for the chosen parity groups. Hence, every crossing corresponds to

one block of saving in transmission. However, the total number of crossings is not equal to the sum

of crossings between every two parity groups with different slopes. Three parity groups with slopes

0, 1, and 2 may share a common block, which should be subtracted from the sum.

Notice that the parity group Bi,v contains block ai−vy,y+1. The modulo function “<>” is omitted

in the subscripts. For three transmitted parity groups B3n,0, B3m+1,1, B3l+2,2, if there is a common

block in column y + 1, then it is in row 3n ≡ 3m + 1− y ≡ 3l + 2− 2y (mod p). To solve this,

we get y ≡ 3(m− n) + 1 ≡ 3(l −m) + 1 (mod p), or m− n ≡ l −m (mod p). Notice 0 ≤

n, m, l < p/3, so −p/3 < m− n, l −m < p/3. Therefore, m− n = l −m without modulo p.

Thus l− n must be an even number. For fixed n, either n ≤ m ≤ l ≤ A, and there are no more than

(A− n)/2 + 1 solutions for (m, l); or 0 ≤ l < m < n, and the number of (m, l) is no more than

n/2. Hence, the number of (n, m, l) is no more than ∑A
n=1((A− n)/2 + 1 + n/2) = A2/2 + A.

The total number of blocks in the p− 1 chosen parity groups is less than p(p− 1). There are

no less than A parity groups of slope v, for all 0 ≤ v ≤ 2, therefore for 0 ≤ u < v ≤ 2, parity

groups with slopes u and v have no less than A2 crossings. Hence the total number of blocks sent

in order to recover one column is:

γ < p(p− 1)︸ ︷︷ ︸
p−1 parity groups

−
(

3
2

)
A2︸ ︷︷ ︸

crossings

+
A2 + 2A

2︸ ︷︷ ︸
common

+ 3︸︷︷︸
∑

p−1
i=1 bi,v

<
13
18

p2 +
17
9

p− 47
18

(3.5)

where (p− 4)/3 < A ≤ (p− 1)/3. The above estimation is an upper bound because there may

be better ways to assign the slopes of each parity group. When r = 3, we need to send no more than

about 13M/18 blocks.

By abuse of notation, we write Bm,v = {a<m+v(1−j)>,j : j = 2, . . . , p} as the set of blocks

(including the imaginary p-th row) in the parity group except Sv and am,1. Let Mv ⊆ {1, 2, . . . , q},

0 ≤ v ≤ r− 1, be disjoint sets such that ∪r−1
v=0Mv = {1, 2, . . . , q− 1}. Let BMv,v = ∪m∈Mv Bm,v.

For given Mv, define a function f as f (v1, v2, . . . , vk) = |{m1 ∈ Mv1 , . . . , mk ∈ Mvk : (m2 −

21

m1)/(v2 − v1) ≡ (m3 − m2)/(v3 − v2) ≡ . . . (mk − mk−1)/(vk − vk−1) mod p}|, for k ≥ 3,

and 0 ≤ v1 < v2 < · · · < vk ≤ r− 1. Then we have the following theorem:

Theorem 3.4 For the extended EVENODD with r ≥ 3, the repair bandwidth for one erased sys-

tematic node is

γ < p(p− 1) + p + r− ∑
0≤v1<v2≤r−1

|Mv1 ||Mv2 |

+ ∑
0≤v1<v2<v3≤r−1

f (v1, v2, v3)− · · ·+ (−1)r−1 f (0, 1, . . . , r− 1) (3.6)

Proof: Suppose the first column is missing and we transmit the parity groups Bm,v, m ∈ Mv

for v = 0, 1, . . . , r − 1. Since the union of Mv covers {1, 2, . . . , q− 1}, all the blocks in the first

column can be recovered. The repair bandwidth is the cardinality of the union of BMv,v plus the

number of zero crossings and the summation blocks ∑
p−1
i=1 bi,v. The number of zero crossings is no

more than the size of the imaginary row, p. The number of the summation blocks is r.

By inclusion–exclusion principle, the cardinality of the union of BMv,v is

∑
0≤v≤r−1

|BMv,v| − ∑
0≤v1<v2≤r−1

|BMv1 ,v1 ∩ BMv2 ,v2 |

+ ∑
0≤v1<v2<v3≤r−1

|BMv1 ,v1 ∩ BMv2 ,v2 ∩ BMv3 ,v3 | − · · ·+ (−1)r−1|BM0,0 ∩ BM1,1 . . . BMr−1,r−1|

Every |Bm,v| ≤ p, so ∑0≤v≤r−1 |BMv,v| ≤ p(p − 1). Every two parity groups Bm1,v1 , Bm2,v2

cross at a block. Hence |BMv1 ,v1 ∩ BMv2 ,v2 | = |Mv1 ||Mv2 |. Since Bm,v contains a<m+v(1−j)>,j,

j = 2, . . . , p, the intersection of more than two parity groups Bm1,v1 , . . . , Bmk ,vk is equivalent to the

solutions of

m1 − v1y ≡ m2 − v2y ≡ · · · ≡ mk − vky mod p

where y + 1 is the column index of the intersection. Or,

y ≡ m2 −m1

v2 − v1
≡ · · · ≡ mk −mk−1

vk − vk−1
mod p

Therefore,

|BMv1 ,v1 ∩ BMv2 ,v2 ∩ . . . BMvk ,vk | = f (v1, v2, . . . , vk)

And (3.6) follows.

We can see that (3.5) is a special case of (3.6), with Mv = {3n + v : 1 ≤ 3n + v ≤ p− 1},

22

for v = 0, 1, 2. For r = 4, 5, we can derive similar bounds by defining Mv.

Choose

Mv = {rn + v : 1 ≤ rn + v ≤ p− 1} (3.7)

for v = 0, 1, . . . , r− 1. Let A = b(p− 1)/rc. And for 0 ≤ v1 < v2 < v3 ≤ r− 1, f (v1, v2, v3)

becomes the number of (n1, n2, n3), 1 ≤ rni + vi ≤ p− 1, such that

(n2 − n1)(v3 − v2) ≡ (n3 − n2)(v2 − v1) mod p

Since −p/r < n2 − n1, n3 − n2 < p/r, and (v3 − v2) + (v2 − v1) < r, the above equation

becomes

(n2 − n1)(v3 − v2) = (n3 − n2)(v2 − v1)

without modulo p. Therefore,

n3 − n1 = (n3 − n2) + (n2 − n1)

= c · lcm(v3 − v2, v2 − v1)
(

1
v3 − v2

+
1

v2 − v1

)
= c

v3 − v1

gcd(v3 − v2, v2 − v1)

where c is an integer constant, lcm is the least common multiplier and gcd is the greatest com-

mon divisor. And for fixed n1, the number of solutions for (n2, n3) is no more than 1 + (A −

n1)gcd(v3 − v2, v2 − v1)/(v3 − v1), when n1 ≤ n2 ≤ n3 ≤ A; and no more than n1gcd(v3 −

v2, v2 − v1)/(v3 − v1), when 0 ≤ n3 < n2 < n1. The number of (n1, n2, n3) is

f (v1, v2, v3) < ∑
n1

1 + (A− n1 + n1)
gcd(v3 − v2, v2 − v1)

v3 − v1

= A
(

1 + A
gcd(v3 − v2, v2 − v1)

v3 − v1

)

Similarly, for four parity groups,

f (v1, v2, v3, v4) > A
(

1 + (A + 2)
gcd(v4 − v3, v3 − v2, v2 − v1)

v4 − v1

)

23

For five parity groups,

f (v1, v2, v3, v4, v5) < A + A2 gcd(v5 − v4, v4 − v3, v3 − v2, v2 − v1)
v5 − v1

When r = 4, equation (3.6) becomes

γ < p(p− 1) + p + 4− ∑
0≤v1<v2≤3

|Mv1 ||Mv2 |+ ∑
0≤v1<v2<v3≤3

f (v1, v2, v3)− f (0, 1, 2, 3)

By the previous equations,

f (0, 1, 2), f (1, 2, 3) < A(1 + A/2)

f (0, 1, 3), f (0, 2, 3) < A(1 + A/3)

f (0, 1, 2, 3) > A(1 + (A + 2)/3

And the repair bandwidth is

γ ≈ p2 −
(

4
2

)
(

p
4
)2 + (2× 1

2
+ 2× 1

3
)(

p
4
)2 − 1

3
(

p
4
)2 =

7
24

p2

where the terms of lower orders are omitted.

When r = 5, we can use (3.6) again and get

γ ≈ p2 + (−
(

5
2

)
+

4
2

+
4
3

+
2
4
− 2

3
− 3

4
+

1
4
)(

p
5
)2 =

53
75

p2

where the terms of lower orders are omitted.

It should be noted that the number of common blocks affects the bandwidth a lot. If we consider

only the first 4 terms in (3.6), any assignment of Mv with equal sizes will result in a lower bound of

γ > (r + 1)p2/(2r) ≈ p2/2, when r is large. But due to the common blocks, the true γ values for

r = 4, 5 using (3.7) has only slight improvement compared to the case of r = 3.

The lower bound (2.1) is Md
k(d−k+1) = p(p−1)(p+r−1)

pr ≈ p(p+r−1)
r . When r = 3, this bound is

about p2/3.

24

3.5 Three Parity Nodes and Two Erased Nodes

Up to now, we have considered the recovery problem given that one column is erased. Next, let us

assume that two information columns are erased and we need to recover them successively. So we

first recover one of the erased nodes, and then the other one. The first recovery is discussed in this

section, and the second recovery was already discussed in the previous sections. Suppose we have

3 columns of parity with slopes -1, 0, and 1, which is in fact the STAR code in [HX08]. Again,

the arguments can be applied to extended EVENODD in a similar way. Without loss of generality,

assume the first and (x + 1)-th columns are missing, 1 ≤ x ≤ p− 1.

Let Bi,0,Bi,1, and Bi,−1 be i-th parity group of slope 0, 1, and -1, respectively, i = 1, 2, . . . , p− 1.

The following are 3(p− 1)/2 parity groups that repair the first column: B0,−1, Bx,0, B2x,1, B2x,−1,

B3x,0, B4x,1, . . . , B(p−3)x,−1, B(p−2)x,0, B(p−1)x,1. For each parity block above, the corresponding

recovered blocks are: ax,1+x, ax,1, a2x,1, a3x,1+x, a3x,1, a4x,1, . . . , a(p−2)x,1+x, a(p−2)x,1, a(p−1)x,1. An

example of p = 5, x = 1 is shown in Figure 3.3.

Rearrange the columns in the following order: columns 1, 1 + x, 1 + 2x, . . . , 1 + (p− 1)x (ev-

ery index is computed modulo p). We can see that the chosen parity groups Bjx,0, j = x, 3x, . . . ,

(p − 2)x contain the blocks in rows Z = {x, 3x, . . . , (p − 2)x}. Bjx,1 contains blocks ajx,1,

a(j−1)x,1+x, . . . , a(j−p+1)x,1+(p−1)x, for j = 2, 4, . . . , p− 1. And similarly Bjx,−1 contains blocks

ajx,1, a(j+1)x,1+x, . . . , a(j+p−1)x,1+(p−1)x, for j = 0, 2, . . . , p− 3.

Now notice that the blocks included in the above parity groups have the (1 + x)-th column

as the vertical symmetry axis. That is, the row indices of the blocks needed in columns 1 and

1 + 2x are the same; those of columns 1 + (p− 1)x and 1 + 3x are the same; ...; those of columns

1 + (p + 3)x/2 and 1 + (p + 1)x/2 are the same. For example, the second column in Figure 3.3 is

the symmetry axis. Thus, we only need to consider columns 1 + 2x, 1 + 3x, . . . , 1 + (p + 1)x/2.

For columns 1 + ix, where i is even and 2 ≤ i ≤ (p + 1)/2, parity groups {B2x,1, B4x,1, . . . ,

B(p−1)x,1} include the blocks in rows X = {2x, 4x, . . . , (p− 1− i)x}. And parity groups {B0,−1,

B2x,−1, . . . , B(p−3)x,−1} include the blocks in rows Y = {ix, (i + 2)x, . . . , (p− 1)x}. Since 2 ≤

i ≤ (p + 1)/2, we have i ≤ (p − 1 − i) + 2, and X ∪ Y = {2x, 4x, . . . , (p − 1)x}. Hence

X ∪Y ∪ Z = {1, 2, . . . , p− 1}. Thus every block in Column 1 + ix needs to be sent, for even i.

Similarly, for columns 1 + ix, where i is odd and 3 ≤ i ≤ (p + 1)/2, parity groups {B2x,1,

B4x,1, . . . , B(p−1)x,1} include the blocks in rows X = {(p− i + 2)x, (p− i + 4)x, . . . , (p− 1)x}.

Parity groups {B0,−1, B2x,−1, . . . , B(p−3)x,−1} include the blocks in rows Y = {2x, 4x, . . . , (i −

25

1514131211 aaaaa

3534333231

2524232221

aaaaa
aaaaa
aaaaa

00000
4544434241 aaaaa

Figure 3.3: The recovery strategy for the first column in STAR code when the first and second
columns are missing. p = 5, x = 1.

3)x}. Since 2 ≤ i ≤ (p + 1)/2, we have i − 3 < p − i + 2, and X ∪ Y = {2x, 4x, . . . , (i −

3)x, (p− i + 2)x, (p− i + 4)x, . . . , (p− 1)x}. Therefore, the rows not included in X or Y or Z

are W = {(i− 1)x, (i + 1)x, . . . , (p− i)x} and |W| = (p + 3)/2− i. The total saving in block

transmissions for all the columns is:

2 ∑
i odd, 3≤i≤(p+1)/2

(
p + 3

2
− i) =


(p−1)2

8 , p+1
2 odd

(p+1)(p−3)
8 , p+1

2 even

The above argument can be summarized in the following theorem.

Theorem 3.5 When two systematic nodes are erased in a STAR code, there exist a strategy that

transmit about 7/8 of all the information blocks, and about 1/2 of all the parity blocks so as to

recover one node.

The repair bandwidth γ in the above theorem is about 7p2/8. Comparing it to the lower bound

(2.1), Md
k(d−k+1) = p(p−1)(p+1)

2p ≈ p2

2 , we see a gap of 3p2

8 in total transmission.

3.6 Conclusions

We presented an efficient way to repair one lost node in EVENODD codes and two lost nodes in

STAR codes. Our achievable schemes outperform the naive method of rebuilding by reconstructing

all the data. For EVENODD codes, a bandwidth of roughly 3M/4 is sufficient to repair an erased

systematic node. Moreover, if no linear combinations of bits are transmitted, the proposed repair

method has optimal repair-bandwidth with the sole exception of the sum of the parity nodes. Since

array codes only operate on binary symbols, and our repair method involves no linear combination

of content within a node except in the parity nodes, the proposed construction is computationally

26

simple and also requires smaller disk I/O to read data during repairs.

There are several open problems on using array codes for distributed storage. Although our

scheme does not achieve the information-theoretic cut-set bound, it is not clear if that bound is

achievable for fixed code structures or limited field sizes. If we allow linear combinations of bits

within each node, the optimal repair remains unknown. Our simulations indicate that shortening

of EVENODD (using less than p columns of information) further reduces the repair bandwidth but

proper shortening rules and repair methods need to be developed. Repairing other families of array

codes or Reed-Solomon codes would also be of substantial practical interest.

27

Chapter 4

Zigzag Code

4.1 Introduction

With r redundancy symbols, an MDS code is able to reconstruct the original information if no

more than r symbols are erased. An array code is a two-dimensional array, where each column

corresponds to a symbol in the code and is stored in a disk in the RAID scheme. We are going

to refer to a disk/symbol as a node or a column interchangeably, and an entry in the array as an

element.

In this chapter, we will study the rebuilding access instead of bandwidth. Suppose that some

nodes are erased in a systematic MDS array code, we will rebuild them by accessing (reading) some

information in the surviving nodes, all of which are assumed to be accessible. The fraction of the

accessed information in the surviving nodes is called the rebuilding ratio, or simply ratio. If r nodes

are erased, then the rebuilding ratio is 1 since we need to read all the remaining information. Is it

possible to lower this ratio for less than r erasures? Apparently, it is possible. The ratio of rebuilding

a single systematic node was shown to be 3
4 + o(1) for EVENODD as shown in the previous chapter.

Figure 4.1 shows an example of our new MDS code with 2 information nodes and 2 redundancy

nodes, where every node has 2 elements, and operations are over the finite field of size 3. Consider

the rebuilding of the first information node. It requires access to 3 elements out of 6 (a rebuilding

ratio of 1
2), because a = (a + b)− b and c = (c + b)− b.

It should be noted that the rebuilding ratio counts the amount of information accessed from the

system. Therefore, if we can minimize the rebuilding ratio, then we also achieve optimal disk I/O,

which is an important measurement in storage.

In [DGW+10], the nodes are assumed to be distributed and fully connected in a network, and the

concept of repair bandwidth is defined as the minimum amount of data that needs to be transmitted

28

Encode to (4,2)
MDS array code

Information

bar1

dcr2

daz 21

bcz2

ba

cd dc

ba

bar1

bcz2

b

Figure 4.1: Rebuilding of a (4, 2) MDS array code over F3. Assume the first node (column) is
erased.

over the network in order to rebuild the erased nodes. In contrast to our concept of rebuilding ratio a

transmitted element of data can be a function of a number of elements that are accessed in the same

node. In addition, we restrict ourselves to exact rebuilding. It is clear that our framework is a special

case of the general framework, hence, the repair bandwidth is a lower bound on the rebuilding ratio.

Let n be the total number of nodes and k be the number of systematic nodes. Suppose a file of size

M is stored in an (n, k) MDS code, where each node stores an information of size M/k. The

number of redundancy/parity nodes is r = n − k, and in the rebuilding process all the surviving

nodes are assumed to be accessible. A lower bound on the repair bandwidth for an (n, k) MDS code

was derived in [DGW+10]:
M
k
· n− 1

n− k
.

It can be verified that Figure 4.1 matches this lower bound. Note that the above formula represents

the amount of information, it should be normalized to reach the ratio. The normalized bandwidth

compared to the size of the remaining array M(n−1)
k is

ratio =
1

n− k
=

1
r

. (4.1)

A number of researchers addressed the construction of optimal repair-bandwidth codes [Wu09,

WD09, RSKR09, SR10a, SRKR10, SR10b, CJM10, WDR07, RSK11], however they all have low

code rate, i.e., k/n < 1/2. Moreover, related work on constructing codes with optimal rebuilding

appeared independently in [CHL11, PDC11b]. Their constructions are similar to this work, but use

larger finite-field size.

Our main goal in this chapter is to design (n, k) MDS array codes with optimal rebuilding ratio,

for arbitrary number of parities. We first consider the case of 2 parities. We assume that the code

is systematic. In addition, we consider codes over some finite field Fq with an optimal update

29

0 1 2 R Z
0 ♣ ♠ ♥ ♣
1 ♥ ♦ ♣ ♥
2 ♠ ♣ ♦ ♠
3 ♦ ♥ ♠ ♦

Figure 4.2: Permutations for zigzag sets in a (5, 3) code with 4 rows. Columns 0, 1, and 2 are
systematic nodes and columns R, and Z are parity nodes. Each element in column R is a linear
combination of the systematic elements in the same row. Each element in column Z is a linear
combination of the systematic elements with the same symbol. The shaded elements are accessed
to rebuild column 1.

property, namely, when an information symbol which is an element from the field is rewritten,

only the element itself and one element from each parity node needs an update. In total r + 1

elements are updated. For an MDS code, this achieves the minimum reading/writing during writing

of information. Hence, in the case of a code with 2 parities only 3 elements are updated. Under

such assumptions, we will prove that every parity element is a linear combination of exactly one

information element from each systematic column. We call this set of information elements a parity

set. Moreover, the parity sets of a parity node form a partition of the information array.

For example, in Figure 4.1 the first parity node corresponds to parity sets {a, b}, {c, d}, which

are elements in rows. We say this node is the row parity and each row of information forms a row

set. The second parity node corresponds to parity sets {a, d}, {c, b}, which are elements in zigzag

lines. We say that it is the zigzag parity and the parity set is called a zigzag set. For another example,

Figure 4.2 shows a code with 3 systematic nodes and 2 parity nodes. Row parity R is associated with

row sets. Zigzag parity Z is associated with sets of information elements with the same symbol.

For instance, the first element in column R is a linear combination of the elements in the first row

and in columns 0, 1, and 2. And the ♣ in column Z is a linear combination of all the ♣ elements in

columns 0, 1, and 2. We can see that each systematic column corresponds to a permutation of the

four symbols. For instance, if read from top to bottom, column 0 corresponds to the permutation

[♣,♥,♠,♦]. In general, we will show that each parity relates to a set of a permutations of the

systematic columns. Without loss of generality, we assume that the first parity node corresponds to

identity permutations, namely, it is linear combination of rows.

It should be noted that in contrast to existing MDS array codes such as EVENODD and X-code,

the parity sets in our codes are not limited to elements that correspond to straight lines in the array,

but can also include elements that correspond to zigzag lines. We will demonstrate that this property

is essential for achieving an optimal rebuilding ratio.

30

0
1
2
3

(0,0)
(0,1)
(1,0)
(1,1)

+(1,0)
integer to
binary

binary to
integer

2
3
0
1

(1,0)
(1,1)
(0,0)
(0,1)

Figure 4.3: Generate the permutation by the binary vector (1, 0). Assume m = 2.

If a single systematic node is erased, we will rebuild each element in the erased node either

by its corresponding row parity or zigzag parity, referred to as rebuild by row (or by zigzag). In

particular, we access the row (zigzag) parity element, and all the elements in this row (zigzag) set,

except the erased element. For example, consider Figure 4.2, suppose that the column labeled 1 is

erased, then one can access the 8 shaded elements and rebuild its first two elements by rows, and the

rest by zigzags. Namely, only half of the remaining elements are accessed. It can be verified that

for the code in Figure 4.2, all the three systematic columns can be rebuilt by accessing half of the

remaining elements. Thus the rebuilding ratio is 1/2, which is the lower bound expressed in (4.1).

The key idea in our construction is that for each erased node, the accessed row sets and the

zigzag sets have a large intersection-resulting in a small number of accesses. Therefore it is cru-

cial to find the permutations satisfying the above requirements. In this chapter, we will present an

optimal solution to this question by constructing permutations that are derived from binary vec-

tors. This construction provides an optimal rebuilding ratio of 1/2 for any erasure of a systematic

node. To generate the permutation over a set of integers from a binary vector, we simply add

to each integer the vector and use the sum as the image of this integer. Here each integer is ex-

pressed as its binary expansion. For example, Figure 4.3 illustrates how to generate the permutation

on integers {0, 1, 2, 3} from the binary vector v = (1, 0). We first express each integer in bi-

nary: (0, 0), (0, 1), (1, 0), (1, 1). Then add (mod 2) the vector v = (1, 0) to each integer, and get

(1, 0), (1, 1), (0, 0), (0, 1). At last change each binary expansion back to integer and define it as the

image of the permutation: 2, 3, 0, 1. Hence, 0, 1, 2, 3 are mapped to 2, 3, 0, 1 in this permutation,

respectively. This simple technique for generating permutations is the key in our construction. We

can generalize our construction for arbitrary r (number of parity nodes) by generating permutations

using r-ary vectors. Our constructions are optimal in the sense that we can construct codes with r

parities and rebuilding ratio of 1/r.

So far we focused on the optimal rebuilding ratio, however, a code with two parity nodes should

be able to correct two erasures. Namely, it needs to be an MDS code. We will prove that for a large

31

enough field size the code can be made MDS. In addition, a key result we prove is that for a code

with two parity nodes, the field size is 3, and this field size is optimal. Moreover, the field size is 4

in the case of three parity nodes.

In addition, our codes have an optimal array size in the sense that for a given number of rows, we

have the maximum number of columns among all systematic codes with optimal ratio and update.

However, the length of the array is exponential in the width. We study different techniques for

making the array wider, and the ratio will be asymptotically optimal when the number of rows

increases. We mainly consider the case of two parities. One approach is to directly construct a larger

number of permutations from binary vectors, and another is to use the same set of permutations

multiple times.

In summary, the main contribution of this chapter is the first explicit construction of systematic

(n, k) MDS array codes for any constant r = n− k, which achieves optimal rebuilding ratio of 1
r .

Our codes have a number of useful properties:

• They are systematic codes, hence it is easy to retrieve information.

• They have high code rate k/n, which is commonly required in storage systems.

• They have optimal update given a finite filed Fq, namely, when an information element is

updated, only r + 1 elements in the array need update.

• The rebuilding of a failed node requires no computation in each of the surviving nodes, and

thus achieves optimal disk I/O.

• The encoding and decoding of the codes can be easily implemented for r = 2, 3, since the

codes use small finite fields of size 3 and 4, respectively.

• They have optimal array size (maximum number of columns) among all systematic, optimal-

update, and optimal-ratio codes. Moreover, we also have asymptotically optimal codes that

have better array size.

• They achieve optimal rebuilding ratio of 1
r when a single systematic erasure occurs.

In this chapter, we will start with (k + 2, k) optimal rebuilding codes, and introduce its varia-

tions, and then generalize it to arbitrary number of parity columns.

32

0f 1f 2f

0

1

3

2

2

3

0

1

3

0

2

1 2,11,20,00 22 aaaz

2,01,30,11 2 aaaz

2,31,00,22 aaaz

2,21,10,33 2aaaz2,31,30,33 aaar

2,01,00,00 aaar

2,11,10,11 aaar

2,21,20,22 aaar

0C 2C1C 3C 4C

0,0a

0,1a

0,2a

0,3a 1,3a 2,3a

1,1a 2,1a

1,0a 2,0a

1,2a 2,2a

Encoding by
the orthogonal
permutations

Orthogonal set of
permutations

Systematic nodes Parity nodes

(a) (b)

Figure 4.4: (a) The set of orthogonal permutations as in Theorem 4.3 with sets X0 = {0, 3}, X1 =
{0, 1}, X2 = {0, 2}. (b) A (5, 3) MDS array code generated by the orthogonal permutations. The
first parity column C3 is the row sum and the second parity column C4 is generated by the zigzags.
For example, zigzag z0 contains the elements ai,j that satisfy f j(i) = 0.

4.2 (k + 2, k) MDS Array Code Constructions

Notations: In the rest of the chapter, we are going to use [i, j] to denote {i, i + 1, . . . , j} and [i]

to denote {1, 2, . . . , i}, for integers i ≤ j. And denote the complement of a subset X ⊆ M as

X = M\X. For a matrix A, AT denotes the transpose of A. For a binary vector v = (v1, ..., vn)

we denote by v = (v1 + 1 mod 2, ..., vn + 1 mod 2) its complement vector. The standard vector

basis of dimension m will be denoted as {ei}m
i=1 and the zero vector will be denoted as e0. For two

binary vectors v = (v1, . . . , vm), u = (u1, . . . , um), the inner product is v · u = ∑m
i=1 viui mod 2.

For two permutations f , g, denote their composition by f g.

In this section we give the construction of MDS array code with two parities and optimal re-

building ratio 1/2 for one erasure, which uses a finite field of optimal size 3.

4.2.1 Constructions

Let us define an MDS array code with 2 parities. Let A = (ai,j) be an information array of size

p × k over a finite field F, where i ∈ [0, p − 1], j ∈ [0, k − 1]. We add to the array two parity

columns and obtain an (n = k + 2, k) MDS code of array size p× n. Let the two parity columns

be the row parity Ck = (r0, r1, ..., rp−1)T, and the zigzag parity Ck+1 = (z0, z1..., zp−1)T. Let

{ f0, f1, . . . , fk−1} be zigzag permutations on [0, p − 1] associated with the systematic columns

{0, 1, . . . , k− 1}. For any l ∈ [0, p− 1], define the row set as the subset of information elements

in the same row: Rl = {al,0, al,1, . . . , al,k−1}. The zigzag set is defined as elements in a zigzag

33

line: Zl = {ai,j| f j(i) = l}. Then define the row parity element as rl = ∑a∈Rl
αaa and the zigzag

parity element as zl = ∑a∈Zl
βaa, for some sets of coefficients {αa}, {βa} ⊆ F. We can see that

each parity element contains exactly one element from each systematic column, and we will show

in Section 4.3 that this is equivalent to optimal update.

For example, in Figure 4.4 (a), we show three permutations on [0, 3]. Therefore we have the 0th

zigzag set Z0 = {a0,0, a2,1, a1,2}. The 0th row set is by default R0 = {a0,0, a0,1, a0,2}. And in (b)

we show the corresponding code. Columns C0, C1, C2 are systematic columns. The row parity C3

sums up elements in a row, and each element in the zigzag parity C4 is a linear combination of the

elements in some zigzag set. For instance, r0 (or z0) is a linear combination of elements in R0 (or

Z0, respectively). Actually, this example is the code in Figure 4.2 with more details.

The rebuilding ratio is the average fraction of accessed elements in the surviving systematic and

parity nodes while rebuilding one systematic node. A more specific definition will be given in the

next section. In order to rebuild a systematic node, each erased element can be computed either by

using its row set or by zigzag set. During the rebuilding process, an element is said to be rebuilt

by row (zigzag), if we use the linear equation of its row (zigzag) set in order to compute its value.

Solving this equation is done simply by accessing and reading in the surviving columns the values

of the rest of the intermediates.

From the example in Figure 4.2, we know that in order to get low rebuilding ratio, we need to

find zigzag sets {Zl} (and hence permutations { fi}) such that the row and zigzag sets used in the

rebuilding intersect as much as possible. Moreover, it is clear that the choice of the coefficients is

crucial if we want to ensure the MDS property. Noticing that all elements and all coefficients are

from some finite field, we would like to choose the coefficients such that the finite-field size is as

small as possible. So our construction of the code includes two steps:

1. Find zigzag permutations to minimize the ratio.

2. Assign the coefficients such that the code is MDS.

Next we generate zigzag permutations using binary vectors. We assume that the array has

p = 2m rows.

In this section all the calculations for the indices are done over F2. By abuse of notation we use

x ∈ [0, 2m − 1] both to represent the integer and its binary representation. It will be clear from the

context which meaning is in use.

34

Let v ∈ Fm
2 be a binary vector of length m. We define the permutation fv : [0, 2m − 1] →

[0, 2m − 1] by fv(x) = x + v, where x is represented in its binary representation. For example,

when m = 2, v = (1, 0), x = 3,

f(1,0)(3) = 3 + (1, 0) = (1, 1) + (1, 0) = (0, 1) = 1.

In other words, in order to get a permutation from v, we first write all integers in [0, 2m− 1] in binary

expansion, then add vector v, and at last convert binary vectors back to integers. This procedure is

illustrated in Figure 4.3. Thus we can see that the permutation fv in vector notation is [2, 3, 0, 1].

One can check that this is actually a permutation for any binary vector v. Next we present the code

construction.

Construction 4.1 Let A be the information array of size 2m× k. Let T = {v0, v1, . . . , vk−1} ⊆ Fm
2

be a set of vectors of size k. For v ∈ T, we define the permutation fv : [0, 2m − 1]→ [0, 2m − 1] by

fv(x) = x + v. Construct the two parities as row and zigzag parities.

For example, in Figure 4.4 (a), the three permutations are generated by vectors v0 = (0, 0), v1 =

(1, 0), v2 = (0, 1). In Figure 4.4 (b), the code is constructed with the row and the zigzag parities.

4.2.2 Rebuilding Ratio

Let us present the rebuilding algorithm: We define for a nonzero vector v, Xv = {x ∈ [0, 2m− 1] :

x · v = 0} as the set of integers whose binary representation is orthogonal to v. For example,

X(1,0) = {0, 1}. If v is the zero vector we define Xv = {x ∈ Fm
2 : x · (1, 1, ..., 1) = 0}. For ease

of notation, denote the permutation fvj as f j and the set Xvj as Xj. Assume column j is erased, and

define Sr = {ai,j : i ∈ Xj} and Sz = {ai,j : i /∈ Xj}. Rebuild the elements in Sr by rows and the

elements in Sz by zigzags.

Example 4.2 Consider the code in Figure 4.4. Suppose node 1 (column C1) is erased. Since X1 =

Xv1 = X(1,0) = {0, 1}, we will rebuild a0,1, a1,1 ∈ Sr by row parity elements r0, r1, respectively.

And rebuild a2,1, a3,1 ∈ Sz by zigzag parity elements z0, z1, respectively. In particular, we access

35

the elements a0,0, a0,2, a1,0, a1,2, and the following four parity elements

r0 = a0,0 + a0,1 + a0,2

r1 = a1,0 + a1,1 + a1,2

z f1(2) = z0 = a0,0 + 2a2,1 + 2a1,2

z f1(3) = z1 = a1,0 + 2a3,1 + a0,2.

Here f1(2) = fv1(2) = f(1,0)(2) = 0 and z f1(2) = z0. Similarly, f1(3) = 1 and z f1(3) = z1. Note

that each of the surviving node accesses exactly 1
2 of its elements. Similarly, if node 0 is erased, we

have X0 = {0, 3} so we rebuild a0,0, a3,0 by row and a1,0, a2,0 by zigzag. Since X2 = {0, 2}, we

rebuild a0,2, a2,2 by row and a1,2, a3,2 by zigzag in node 2. Rebuilding a parity node is easily done

by accessing all the information elements.

Theorem 4.3 Construct permutations f0, ..., fm and sets X0, ..., Xm by the standard basis and the

zero vector {ei}m
i=0 as in Construction 4.1. Then the corresponding (m + 3, m + 1) code has opti-

mal ratio of 1
2 .

Note that the code in Figure 4.4 is actually constructed as in Theorem 4.3. In order to prove

Theorem 4.3, we first prove the following lemma. We represent each systematic node by the binary

vector that generates its corresponding permutation. And define |v\u| = ∑i:vi=1,ui=0 1 as the

number of coordinates at which v has a 1 but u has a 0.

Lemma 4.4 (i) Let T ⊆ Fm be a set of vectors. For any v, u ∈ T, to rebuild node v, the number of

accessed elements in node u is

2m−1 + | fv(Xv) ∩ fu(Xv)|.

(ii) If v 6= 0, then

| fv(Xv) ∩ fu(Xv)| =


|Xv|, |v\u| mod 2 = 0

0, |v\u| mod 2 = 1.
(4.2)

Proof: (i) In the rebuilding of node v the elements in rows Xv are rebuilt by rows, thus the

row parity column accesses the values of the sum of rows Xv. Therefore, the surviving node u also

accesses its elements in rows Xv. Hence, by now |Xv| = 2m−1 elements are accessed in node u.

36

The elements of node v in rows Xv are rebuilt by zigzags, thus the zigzag parity column accesses the

values of the zigzag parity elements {z fv(l) : l ∈ Xv}, and each surviving systematic node accesses

its elements that are contained in the corresponding zigzag sets, unless these elements were already

accessed during the rebuilding by rows. The elements of node u in rows f−1
u (fv(Xv)) belong to

zigzag sets {Z fv(l) : l ∈ Xv}, where f−1
u is the inverse permutation of fu. Thus the extra elements

node u needs to access are in rows f−1
u (fv(Xv))\Xv. But,

| f−1
u (fv(Xv))\Xv|

= | f−1
u (fv(Xv)) ∩ Xv|

= | f−1
u (fv(Xv)) ∪ Xv|

= 2m − | f−1
u (fv(Xv)) ∪ Xv|

= 2m − (| f−1
u (fv(Xv))|+ |Xv| − | f−1

u (fv(Xv)) ∩ Xv|)

= | f−1
u (fv(Xv)) ∩ Xv|

= | fv(Xv) ∩ fu(Xv)|,

where we used the fact that fv, fu are bijections, and |Xv| = 2m−1.

(ii) Consider the group (Fm
2 , +), and recall that fv(X) = X + v = {x + v : x ∈ X}. The sets

fv(Xv) = Xv + v and fu(Xv) = Xv + u are cosets of the subgroup Xv = {w ∈ Fm
2 : w · v = 0},

and they are either identical or disjoint. Moreover, they are identical iff v − u ∈ Xv, namely

(v− u) · v = ∑i:vi=1,ui=0 1 ≡ 0 mod 2. However, by definition |v\u| ≡ ∑i:vi=1,ui=0 1 mod 2,

and the result follows.

Let { f0, ..., fk−1} be a set of permutations over the set [0, 2m − 1] with associated subsets

X0, ..., Xk−1 ⊆ [0, 2m − 1], where each |Xi| = 2m−1. We say that this set is a set of orthogo-

nal permutations if for any i, j ∈ [0, k− 1],

| fi(Xi) ∩ f j(Xi)|
2m−1 = δi,j,

where δi,j is the Kronecker delta. Assume the code was constructed by a set of orthogonal per-

mutations. By Lemma 4.4 only half of the information is accessed (2m−1 elements) in each of the

surviving systematic columns during a rebuilding of a systematic column. Moreover, only 2m−1 el-

ements are accessed from each parity node, too. Hence codes generated by orthogonal permutations

have optimal rebuilding ratio 1/2. Now we are ready to prove Theorem 4.3.

37

Proof: [Proof of Theorem 4.3] Let i 6= 0, j, then since |ei\ej| = 1, we get by Lemma 4.4 part

(ii)

| fi(Xi) ∩ f j(Xi)| = 0.

Moreover, fi(X0) = {x + ei : x · (1, 1, . . . , 1) = 0} = {y : y · (1, 1, · · · , 1) = 1}, and

f0(X0) ∩ fi(X0)

= {x : x · (1, · · · , 1) = 0} ∩ {y : y · (1, · · · , 1) = 1}

= ∅.

Hence the permutations f0, . . . , fm are orthogonal permutations, and the ratio is 1/2 by Lemma 4.4

part (i).

Note that the optimal code can be shortened by removing some systematic columns and still

retain an optimal ratio, i.e., for any k ≤ m + 1 we have a code with optimal rebuilding.

4.2.3 Finite-Field Size

Having found the set of orthogonal permutations, we need to specify the coefficients in the parities

such that the code is MDS.

Consider the (m + 3, m + 1) code C constructed by Theorem 4.3 and the vectors {ei}m
i=0. Let

F be the finite field in use, where the information in row i, column j is ai,j ∈ F. Let its row and

zigzag coefficients be αi,j, βi,j ∈ F, respectively. For a row set Ru = {au,0, au,1, . . . , au,m}, the row

parity is ru = ∑m
j=0 αu,jau,j. For a zigzag set Zu = {au,0, au+e1,1, . . . , au+em,m}, the zigzag parity is

zu = ∑m
j=0 βu+ej,jau+ej,j.

Recall that the (m + 3, m + 1) code is indeed MDS iff we can recover the information from up

to 2 columns erasures. It is clear that none of the coefficients αi,j, βi,j can be zero. Moreover, if we

assign all the coefficients as αi,j = βi,j = 1 we get that in an erasure of two systematic columns

the set of equations derived from the parity columns are linearly dependent and thus not solvable

(the sum of the equations from the row parity and the sum of those from the zigzag parity will both

be the sum of the entire information array). Therefore the coefficients need to be from a field with

more than one nonzero element, thus a field of size at least 3 is necessary.

Recall that we defined the permutations by binary vectors. This way of construction leads

38

to special structure of the code. We are going to take advantage of it and assign the coefficients

accordingly. Surprisingly F3 is sufficient to correct two erasures.

Construction 4.5 For the code C in Theorem 4.3 over F3, define uj = ∑
j
l=0 el for 0 ≤ j ≤ m.

Assign row coefficients as αi,j = 1 for all i, j, and zigzag coefficients as

βi,j = 2i·uj (4.3)

where i = (i1, . . . , im) is represented in binary and the calculation of the inner product in the

exponent is done over F2.

The coefficients in Figure 4.4 are assigned by Construction 4.5. For example,

β3,1 = 23·u1 = 2(1,1)·(1,0) = 21 = 2.

β3,2 = 23·u2 = 2(1,1)·(1,1) = 20 = 1.

One can check that the code can tolerate any two erasures and hence is MDS.

The following theorem shows that the construction is MDS.

Theorem 4.6 Construction 4.5 is an (m + 3, m + 1) MDS code with optimal finite-field size of 3.

Proof: It is easy to see that if at least one of the two erased columns is a parity column then

we can recover the information. Hence we only need to show that we can recover from an erasure

of any two systematic columns i, j ∈ [0, m], i < j. In this scenario, we access the entire remaining

information in the array. For r ∈ [0, 2m − 1] set r′ = r + ei + ej, and recall that ar,i ∈ Zl iff

l = r + ei, thus ar,i, ar′,j ∈ Zr+ei and ar,j, ar′,i ∈ Zr+ej . From the two parity columns we need to

solve the following equations


1 1 0 0

0 0 1 1

βr,i 0 0 βr′,j

0 βr,j βr′,i 0




ar,i

ar,j

ar′,i

ar′,j

 =


y1

y2

y3

y4

 . (4.4)

Here y1, . . . , y4 ∈ F3 are the differences of the corresponding parity elements (the r-th, r′-th row

parity, the r + ei-th, r + ej-th zigzag parity) after subtracting the weighted remaining elements in

39

the row/zigzag sets. This set of equations is solvable iff

βr,iβr′,i 6= βr,jβr′,j. (4.5)

Note that the multiplicative group of F3\0 is isomorphic to the additive group of F2, hence mul-

tiplying two elements in F3\0 is equivalent to summing up their exponent in F2 when they are

represented as a power of the primitive element of the field F3. For columns 0 ≤ i < j ≤ m and

rows r, r′ defined above, we have

βr,iβr′,i = 2r·ui+r′·ui = 2(r+r′)·ui = 2(ei+ej)·∑i
l=0 el = 2ei ·ei = 2.

However in the same manner we derive that

βr,jβr′,j = 2(r+r′)·uj = 2(ei+ej)·∑
j
l=0 el = 2ei ·ei+ej·ej = 20 = 1.

Hence (4.5) is satisfied and the code is MDS.

Remark: The above proof shows that βr,i 6= βr′,i, and βr,j = βr′,j for i < j. And (4.5) is a

necessary and sufficient condition for correcting erasure of columns i and j such that vi 6= vj.

It should be noted that in practice it is more convenient to use finite field GF(2s) for some

integer s. In fact we can use a field of size 4 by simply modifying (4.3) to

βi,j = ci·uj ,

where c is a primitive element in GF(4) and computations are done over F2 in the exponent. It is

obvious that this will not affect the proof of Theorem 4.6.

In addition to optimal ratio and optimal field size, we will show in the next section that the code

in Theorem 4.3 is also of optimal array size, namely, it has the maximum number of columns, given

the number of rows.

4.3 Problem Settings and Properties

In this section, we prove some useful properties related to MDS array codes with optimal update.

Let A = (ai,j) be an array of size p × k over a finite field F, where i ∈ [0, p − 1], j ∈

[0, k− 1], and each of its entries is an information element. Let R = {R0, R1, ..., Rp−1} and Z =

40

{Z0, Z1, ..., Zp−1} be two sets such that Rl , Zl are subsets of elements in A for all l ∈ [0, p− 1].

Then for all l ∈ [0, p − 1], define the row/zigzag parity element as rl = ∑a∈Rl
αaa and zl =

∑a∈Zl
βaa, for some sets of coefficients {αa}, {βa} ⊆ F. We call R and Z as the sets that generate

the parity columns.

An MDS array code over Fq with r parities is said to be optimal-update if in the change of

any information element only r + 1 elements are changed in the array. It is easy to see that r + 1

changes is the minimum possible number because if an information element appears only r times in

the array, then deleting at most r columns will result in an unrecoverable r-erasure pattern and will

contradict the MDS property. A small finite-field size is desirable because we can update a small

amount of information at a time if needed, and also get low computational complexity. Therefore

we assume that the code is optimal-update, while we try to use the smallest possible finite filed.

When r = 2, only 3 elements in the code are updated when an information element is updated.

Under this assumption, the following theorem characterizes the sets R and Z.

Theorem 4.7 For a (k + 2, k) MDS code with optimal update, the sets R and Z are partitions of A

into p equally sized sets of size k, where each set in R or Z contains exactly one element from each

column.

Proof: Since the code is a (k + 2, k) MDS code, each information element should appear

at least once in each parity column Ck, Ck+1. However, since the code has optimal update, each

element appears exactly once in each parity column.

Let X ∈ R, note that if X contains two entries of A from the systematic column Ci, i ∈

[0, k− 1], then rebuilding is impossible if columns Ci and Ck+1 are erased. Thus X contains at most

one entry from each column, therefore |X| ≤ k. However each element of A appears exactly once

in each parity column, thus if |X| < k, X ∈ R, there is Y ∈ R, with |Y| > k, which leads to a

contradiction. Therefore, |X| = k for all X ∈ R. As each information element appears exactly

once in the first parity column, R = {R0, . . . , Rp−1} is a partition of A into p equally sized sets of

size k. Similar proof holds for the sets Z = {Z0, . . . , Zp−1}.

By the above theorem, for the j-th systematic column (a0,j, . . . , ap−1,j)T, its p elements are

contained in p distinct sets Rl , l ∈ [0, p− 1]. In other words, the membership of the j-th column’s

elements in the sets {Rl} defines a permutation gj : [0, p− 1] → [0, p− 1], such that gj(i) = l

iff ai,j ∈ Rl . Similarly, we can define a permutation f j corresponding to the second parity column,

where f j(i) = l iff ai,j ∈ Zl . For example, in Figure 4.2 each systematic column corresponds to a

41

permutation of the four symbols.

Observing that there is no significance in the elements’ ordering in each column, w.l.o.g. we

can assume that the first parity column contains the sum of each row of A and gj’s correspond to

identity permutations, i.e., ri = ∑k−1
j=0 αi,jai,j for some coefficients {αi,j}.

First we show that any set of zigzag sets Z = {Z0, ..., Zp−1} defines a (k + 2, k) MDS array

code over a field F large enough.

Theorem 4.8 Let A = (ai,j) be an array of size p× k and the zigzag sets be Z = {Z0, ..., Zp−1},

then there exists a (k + 2, k) MDS array code for A with Z as its zigzag sets over the field F of size

greater than p(k− 1) + 1.

In order to prove Theorem 4.8, we use the well-known Combinatorial Nullstellensatz by Alon

[Alo99]:

Theorem 4.9 (Combinatorial Nullstellensatz) [Alo99, Th 1.2] Let F be an arbitrary field, and let

f = f (x1, ..., xq) be a polynomial in F[x1, ..., xq]. Suppose the degree of f is deg(f) = ∑
q
i=1 ti,

where each ti is a nonnegative integer, and suppose the coefficient of ∏
q
i=1 xti

i in f is nonzero. Then,

if S1, ..., Sn are subsets of F with |Si| > ti, there are s1 ∈ S1, s2 ∈ S2, ..., sq ∈ Sq so that

f (s1, ..., sq) 6= 0.

Proof: [Proof of Theorem 4.8] Assume the information of A is given in a column vector W

of length pk, where column i ∈ [0, k − 1] of A is in the row set [(ip, (i + 1)p − 1] of W. Each

systematic node i, i ∈ [0, k− 1], can be represented as QiW where Qi = [0p×pi, Ip×p, 0p×p(k−i−1)].

Moreover define Qk = [Ip×p, Ip×p, ..., Ip×p], Qk+1 = [x0P0, x1P1, ..., xk−1Pk−1] where the Pi’s are

permutation matrices (not necessarily distinct) of size p × p, and the xi’s are variables, such that

Ck = QkW, Ck+1 = Qk+1W. The permutation matrix Pi = (p(i)
l,m) is defined as p(i)

l,m = 1 if and

only if am,i ∈ Zl . In order to show that there exists such MDS code, it is sufficient to show that

there is an assignment for the intermediates {xi} in the field F, such that for any set of integers

{s1, s2, ..., sk} ⊆ [0, k + 1] the matrix Q = [QT
s1

, QT
s1

, ..., QT
sk
] is of full rank. It is easy to see

that if the parity column Ck+1 is erased, i.e., k + 1 /∈ {s1, s2, ..., sk} then Q is of full rank. If

k /∈ {s1, s2, ..., sk} and k + 1 ∈ {s1, s2, ..., sq} then Q is of full rank if none of the xi’s equals to

zero. The last case is when both k, k + 1 ∈ {s1, s2, ..., sk}, i.e., there are 0 ≤ i < j ≤ k− 1 such that

42

i, j /∈ {s1, s2, ..., sk}. It is easy to see that in that case Q is of full rank if and only if the submatrix

Bi,j =

 xiPi xjPj

Ip×p Ip×p


is of full rank. This is equivalent to det(Bi,j) 6= 0. Note that deg(det(Bi,j)) = p and the coefficient

of xp
i is det(Pi) ∈ {1,−1}. Define the polynomial

T = T(x0, x1, ..., xk−1) = ∏
0≤i<j≤k−1

det(Bi,j),

and the result follows if there are elements a0, a1, .., ak−1 ∈ F such that T(a0, a1, ..., ak−1) 6= 0.

T is of degree p(k
2) and the coefficient of ∏k−1

i=0 xp(k−1−i)
i is ∏k−1

i=0 det(Pi)k−1−i 6= 0. Set for any

i, Si = F\0 in Theorem 4.9, and the result follows.

The Theorem 4.8 states that there exist coefficients such that the code is MDS, and thus we

will focus first on finding proper zigzag permutations { f j}. The idea behind choosing the zigzag

sets is as follows: assume a systematic column (a0,j, a1,j, ..., ap−1,j)T is erased. Each element ai,j

is rebuilt either by row or by zigzag. The set S = {S0, S1, ..., Sp−1} is called a rebuilding set for

column (a0, a1, ..., ap−1)T if for each i, Si ∈ R ∪ Z and ai ∈ Si. In order to minimize the number

of accesses to rebuild the erased column, we need to minimize the size of

| ∪p−1
i=0 Si|, (4.6)

which is equivalent to maximizing the number of intersections between the sets {Si}
p−1
i=0 . More

specifically, the intersections between the row sets in S and the zigzag sets in S.

For a (k + 2, k) MDS code C with p rows define the rebuilding ratio R(C) as the average

fraction of accesses in the surviving systematic and parity nodes while rebuilding one systematic

node, i.e.,

R(C) =
∑j minS0,...,Sp−1 rebuilds j | ∪

p−1
i=0 Si|

p(k + 1)k
.

Notice that in the two parity nodes, we access p elements because each erased element must be

rebuilt either by row or by zigzag, however ∪p−1
i=0 Si contains p elements from the erased column.

Thus the above expression is exactly the rebuilding ratio. Define the ratio function for all (k + 2, k)

43

MDS codes with p rows as

R(k) = min
C

R(C),

which is the minimal average portion of the array needed to be accessed in order to rebuild one

erased column. By (4.1), we know that R(k) ≥ 1/2. For example, the code in Figure 4.4 achieves

the lower bound of ratio 1/2, and therefore R(3) = 1/2. Moreover, we will see in Corollary 4.17

that R(k) is almost 1/2 for all k and p = 2m, where m is large enough.

So far we have discussed the characteristics of an arbitrary MDS array code with optimal update.

Next, let us look at our code in Construction 4.1.

Recall that by Theorem 4.8 this code can be an MDS code over a field large enough. The ratio

of the constructed code will be proportional to the size of the union of the elements in the rebuilding

set in (4.6). The following theorem gives the ratio for Construction 4.1 and can be easily derived

from Lemma 4.4 part (i). Recall that given vectors v0, . . . , vk−1, we write fi = fvi and Xi = Xvi .

Theorem 4.10 The code described in Construction 4.1 and generated by the vectors v0, v1, ..., vk−1

is a (k + 2, k) MDS array code with ratio

R =
1
2

+
∑k−1

i=0 ∑j 6=i | fi(Xi) ∩ f j(Xi)|
2mk(k + 1)

. (4.7)

Note that different orthogonal sets of permutations can generate equivalent codes, hence we

define equivalence of two sets of orthogonal permutations as follows. Let F = { f1, f2, . . . , fk−1, f0}

be an orthogonal set of permutations over integers [0, p− 1], associated with subsets X1, X2, . . . ,

Xk−1, X0. And let Σ = {σ1, σ2, . . . , σk−1, σ0} be another orthogonal set over [0, p− 1] associated

with subsets Y1, Y2, . . . , Yk−1, Y0. Then F and Σ are said to be equivalent if there exist permutations

g, h such that ∀i ∈ [0, k− 1],

h fig = σi,

g−1(Xi) = Yi.

Note that multiplying g on the right is the same as permuting the rows of the systematic nodes, and

multiplying h on the left permutes the rows of the second parity node. Therefore, codes constructed

using F or Σ are essentially the same.

In particular, let us assume that the permutations are over integers [0, 2m − 1], and the set of

permutations Σ and the subsets Yi’s are the same as in Theorem 4.3: σi = fei , Yi = {x ∈ [0, 2m −

44

1] : x · ei = 0}, and Y0 = {x ∈ [0, 2m− 1] : x · (1, 1, . . . , 1) = 0}. Next we show the optimal code

in Theorem 4.3 is optimal in size, namely, it has the maximum number of columns given the number

of rows. In addition any optimal-update, optimal-access code with maximum size is equivalent to

the construction using standard-basis vectors.

Theorem 4.11 Let F be an orthogonal set of permutations over the integers [0, 2m − 1],

(i) the size of F is at most m + 1;

(ii) if |F| = m + 1 then it is equivalent to Σ defined by the standard basis and zero vector.

Proof: We will prove it by induction on m. For m = 0 there is nothing to prove. (i) We

first show that |F| = k ≤ m + 1. It is trivial to see that for any permutations g, h on [0, 2m −

1], the set hFg = {h f0g, h f1g, ..., h fk−1g} is also a set of orthogonal permutations with sets

g−1(X0), g−1(X1), ..., g−1(Xk−1). Thus w.l.o.g. we can assume that f0 is the identity permutation

and X0 = [0, 2m−1 − 1]. From the orthogonality we get that

∪k−1
i=1 fi(X0) = X0 = [2m−1, 2m − 1].

We claim that for any i 6= 0, |Xi ∩ X0| = |X0|
2 = 2m−2. Assume the contrary, thus if |Xi ∩ X0| >

2m−2, then for any distinct i, j ∈ [1, k− 1] we get that

f j(Xi ∩ X0), fi(Xi ∩ X0) ⊆ X0, (4.8)

| f j(Xi ∩ X0)| = | fi(Xi ∩ X0)| > 2m−2 =
|X0|

2
. (4.9)

From equations (4.8) and (4.9) we conclude that f j(Xi ∩X0)∩ fi(Xi ∩X0) 6= ∅, which contradicts

the orthogonality property. If |Xi ∩ X0| > 2m−2 the contradiction follows by a similar reasoning.

Define the set of permutations F∗ = { f ∗i }
k−1
i=1 over the set of integers [0, 2m−1 − 1] by f ∗i (x) =

fi(x)− 2m−1, which is a set of orthogonal permutations with sets X∗i = {Xi ∩X0}, i = 1, ..., k− 1.

By induction k− 1 ≤ m and the result follows.

(ii) Next we show that if |F| = m + 1 then it is equivalent to Σ associated with {Yi}. Let

F = { f1, f2, . . . , fm, f0}. Take two permutations g′, h′ such that

g′−1(X1) = Y1

45

and h′ f1g′(Y1) = Y1. Define f ′i = h′ fig′ for all i ∈ [0, m]. Then

f ′1(Y1) = Y1, f ′1(Y1) = Y1.

The new set of permutations { f ′i }m
i=0 is also orthogonal with subsets {g′−1(Xi)}m

i=0, so f ′i (Y1) ∩

f ′1(Y1) = ∅. Hence for all i 6= 1

f ′i (Y1) = Y1 = [0, 2m−1 − 1],

f ′i (Y1) = Y1 = [2m−1, 2m − 1].

By similar argument of part (i), we know { f ′2, . . . , f ′m, f ′0} restricted to Y1 (or to Y1) is an orthogonal

set of permutations, associated with subsets Y1 ∩ g′−1(Xi) (or with Y1 ∩ g′−1(Xi), respectively),

i 6= 1. By the induction hypothesis, there exist permutations p, q over Y1 such that for i 6= 1

σi = p f ′i q,

q−1(Y1 ∩ g′−1(Xi)) = Y1 ∩Yi, (4.10)

where σi, f ′i are restricted to Y1. Similarly, there exist permutations r, s over Y1 such that for i 6= 1

σi = r f ′i s,

s−1(Y1 ∩ g′−1(Xi)) = Y1 ∩Yi, (4.11)

where σi, f ′i are restricted to Y1. Define permutation g′′ over [0, 2m − 1] as the union of q and s:

g′′(x) = q(x) if x ∈ Y1, and g′′(x) = s(x) if x ∈ Y1. Also define h′′ over [0, 2m − 1] as the union

of p and r. So g′′, h′′ map Y1 (or Y1) to itself. We will show that { fi}m
i=0 is equivalent to Σ using

g = g′g′′ and h = h′′h′. For i 6= 1, this is obvious from (4.10)(4.11). For i = 1, we have

g−1(X1) = g′′−1g′−1(X1) = g′′−1(Y1) = Y1.

We know σi = h fig, for i 6= 1. Let f = h f1g and we will show f = σ1. By orthogonality

f (Yi)∩ σi(Yi) = ∅ for i 6= 1. It is easy to see that for i ∈ [2, m], σi(Yi) = Yi. Hence for i ∈ [2, m]

f (Yi) = Yi, f (Yi) = Yi. (4.12)

46

standard basis duplication of standard basis constant weight vectors
sys. nodes m + 1 s(m + 1) O(mc)

ratio 1
2

1
2 + s−1

2s(m+1)+2 ≈
1
2 + 1

2(m+1)
1
2 + c2

2m
field size 3 s + 2 2c + 1

Figure 4.5: Comparison among codes constructed by the standard basis and zero vector, by s-
duplication of standard basis and zero vector, and by constant weight vectors. The number of
systematic nodes, the rebuilding ratio, and the finite-field size are listed. We assume that all the
codes have 2 parities and 2m rows. For the duplication code, the rebuilding ratio is obtained when
the number of copies s is large. For the constant weight code, the weight of each vector is equal to
c, which is an odd number and relatively small compared to m.

Moreover, by construction f (Y1) = h′′ f ′1g′′(Y1) = h′′ f ′1(Y1) = h′′(Y1) = Y1, so

f (Y1) = Y1, f (Y1) = Y1. (4.13)

Any integer x ∈ [0, 2m − 1] can be written as the intersection of Yi or Yi, for all i ∈ [m], depending

on its binary representation. For example, x = 1 means {x} = ∩m−1
i=1 Yi ∩Ym. For another example

if x = 0 then {x} = ∩m
i=1Yi, and f ({0}) = f (∩m

i=1Yi) = ∩m
i=2Yi ∩ Y1 = {2m−1} by (4.12)(4.13)

and since f is a bijection. Thus f (0) = 2m−1. By a similar argument, f (x) = 2m−1 + x for all x

and

f = σ1.

Thus the proof is completed.

Note that by similar reasoning we can show that if |F| = m, it is equivalent to {σ1, . . . , σm}

defined by the standard basis. Part (ii) in the above theorem says that if we consider codes with

optimal update, optimal access, and optimal size, then they are equivalent to the standard-basis

construction. In this sense, Theorem 4.3 gives the unique code. Moreover, if we find the smallest

finite field for one code (as in Construction 4.5), there does not exist a code using a smaller field.

Part (i) of the above theorem implies that the number of rows has to be exponential in the number

of columns in any systematic code with optimal ratio and optimal update. Notice that the code in

Theorem 4.3 achieves the maximum possible number of columns, m + 1. An exponential number of

rows can be practical in some storage systems, since they are composed of dozens of nodes (disks)

each of which has size in an order of gigabytes. However, a code may corresponds to only a small

portion of each disk and we will need the flexibility of the array size. The following example shows

a code of flatter array size with a cost of a small increase in the ratio.

47

Example 4.12 Let T = {v ∈ Fm
2 : ‖v‖1 = 3} be the set of vectors with weight 3 and length m.

Notice that |T| = (m
3). Construct the code C by T according to Construction 4.1. Given v ∈ T,

|{u ∈ T : |v\u| = 3}| = (m−3
3), which is the number of vectors with 1’s in different positions than

v. Similarly, |{u ∈ T : |v\u| = 2}| = 3(m−3
2) and |{u ∈ T : |v\u| = 1}| = 3(m − 3). By

Theorem 4.10 and Lemma 4.4, for large m the ratio is

1
2

+
2m−1(m

3)3(m−3
2)

2m(m
3)((m

3) + 1)
≈ 1

2
+

9
2m

.

Note that this code reaches the lower bound of the ratio as m tends to infinity, and has O(m3)

columns. More discussions on increasing the number of columns is presented in the next section.

4.4 Lengthening the Code

As we mentioned, it is sometimes useful to construct codes with longer k given the number of rows

in the array. In this section we will provide two ways to reach this goal: we will first modify Example

4.12 and obtain an MDS code with a small finite field. Increasing the number of columns can also

be done using code duplication (Theorem 4.16). In both methods, we sacrifice the optimal-ratio

property for longer k, and the ratio is asymptotically optimal in both cases. Figure 4.5 summarizes

the tradeoffs of different constructions. We will study the table in more details in the end of this

section.

4.4.1 Constant Weight Vector

We will first give a construction based on Example 4.12 where all the binary vectors used have a

constant weight. And we also specify the finite-field size of the code.

Construction 4.13 Let 3|m, and consider the following set of vectors S ⊆ Fm
2 : for each vector

v = (v1, . . . , vm) ∈ S, ‖v‖1 = 3 and vi1 , vi2 , vi3 = 1 for some i1 ∈ [1, m/3], i2 ∈ [m/3 +

1, 2m/3], i3 ∈ [2m/3 + 1, m]. For simplicity, we write v = {i1, i2, i3}. Construct the (k + 2, k)

code as in Construction 4.1 using the set of vectors S, hence the number of systematic columns is

k = |S| = (m
3)3 = m3

27 . For any i ∈ [jm/3 + 1, (j + 1)m/3] and some j = 0, 1, 2 , define a row

vector Mi = ∑i
l=jm/3+1 el . Then define a m× 3 matrix

Mv =
[

MT
i1 MT

i2 MT
i3

]

48

for v = {i1, i2, i3}. Let a be a primitive element of F9. Assign the row coefficients as 1 and the

zigzag coefficient for row r, column v as at, where t = rMv ∈ F3
2 (in its binary expansion).

For example, let m = 6, and v = {1, 4, 6} = (1, 0, 0, 1, 0, 1) ∈ S. The corresponding matrix is

Mv =


1 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


T

.

For row r = 26 = (0, 1, 1, 0, 1, 0), we have

t = rMv = (0, 1, 1) = 3,

and the zigzag coefficient is a3.

Theorem 4.14 Construction 4.13 is a (k + 2, k) MDS code with array size 2m × (k + 2) and k =

m3/27. Moreover, the rebuilding ratio is 1
2 + 9

2m for large m.

Proof: For each vector v ∈ S, there are 3(m/3− 1)2 vectors u ∈ S such that they have one 1

in the same location as v, i.e., |v\u| = 2. Hence by Theorem 4.10 and Lemma 4.4, for large m the

ratio is
1
2

+
3((m

3)− 1)2

2(m3

27 + 1)
≈ 1

2
+

9
2m

.

Next we show that the MDS property of the code holds. Consider columns u, v for some u =

{i1, i2, i3} 6= v = {j1, j2, j3} and i1, j1 ∈ [1, m/3], i2, j2 ∈ [m/3 + 1, 2m/3], i3, j3 ∈ [2m/3 +

1, m]. Consider rows r and r′ = r + u + v. The condition for the MDS property from (4.5) becomes

arMT
u +r′MT

u mod 8 6= arMT
v +r′MT

v mod 8 (4.14)

where each vector of length 3 is viewed as an integer in [0, 7] and the addition is the usual addition

mod 8. Since v 6= u, let l ∈ [1, 3] be the largest index such that il 6= jl . W.l.o.g. assume that il < jl ,

hence by the remark after Theorem 4.6

rMT
il
6= r′MT

il
(4.15)

49

and

rMT
jl = r′MT

jl . (4.16)

Note that for all t, l < t ≤ 3, it = jt, then since r′MT
it

= (r + eit + ejt)MT
it

= rMT
it

, we have

rMT
it

= r′MT
it

= rMT
jt = r′MT

jt . (4.17)

It is easy to infer from (4.15),(4.16),(4.17) that the l-th bit in the binary expansions of rMT
u + r′MT

u

mod 8 and rMT
v + r′MT

v mod 8 are not equal. Hence (4.14) is satisfied, and the result follows.

Notice that if we do mod 15 in (4.14) instead of mod 8, the proof still follows because 15 is

greater than the largest possible sum in the equation. Therefore, a field of size 16 is also sufficient

to construct an MDS code, and it is easier to implement in a storage system.

Construction 4.13 can be easily generalized to any constant c such that it contains O(mc)

columns and it uses any field of size at least 2c + 1. For simplicity assume that c|m, and simply

construct the code using the set of vectors {v} ⊂ Fm
2 such that ‖v‖1 = c, and for any j ∈ [0, c− 1],

there is a unique ij ∈ [jm/c + 1, (j + 1)m/c] and vij = 1. Moreover, the finite field of size 2c+1 is

also sufficient to make it an MDS code. When c is odd the code has ratio of 1
2 + c2

2m for large m.

4.4.2 Code Duplication

Next we are going to duplicate the code to increase the number of columns in the constructed

(k + 2, k) MDS codes, such that k does not depend on the number of rows, and the rebuilding ratio

is approximately 1
2 . Then we will show the optimality of the duplication code based on the standard

basis. After that, finite-field size will be analyzed.

The constructions so far assume that each zigzag permutation appears only once in the system-

atic columns. The key idea of code duplication is to use a multiset of permutations to define the

zigzag parity. Let C be a (k + 2, k) array code with p rows, where the zigzag sets {Zl}
p−1
l=0 are

defined by the set of permutations { fi}k−1
i=0 acting on the integers [0, p− 1]. For an integer s, an s-

duplication code of C, denoted by C ′, is an (sk + 2, sk) MDS code with zigzag permutations defined

by duplicating the k permutations s times each. The formal definition and rebuilding algorithm are

as follows. We are going to use superscripts to represent different copies of the ordinal code.

Construction 4.15 Define the multiset of permutations F = { f0, . . . , fk−1, f0, . . . , fk−1, . . . , f0, . . . ,

fk−1}, where each permutation f j has multiplicity s, for all j ∈ [0, k− 1]. In order to distinguish

50

2,11,20,02,11,20,00 222 bbbaaaz

2,01,30,12,01,30,11 222 bbbaaaz

2,31,00,22,31,00,22 222 bbbaaaz

2,21,10,32,21,10,33 222 bbbaaaz2,31,30,32,31,30,33 bbbaaar

2,01,00,02,01,00,00 bbbaaar

2,11,10,12,11,10,11 bbbaaar

2,21,20,22,21,20,22 bbbaaar

)0(0)0(2)0(1 R Z

0,0a

0,1a

0,2a

0,3a 1,3a 2,3a

1,1a 2,1a

1,0a 2,0a

1,2a 2,2a

Systematic nodes
Parity nodes

(b)

)0(
0f)0(

1f
)0(

2f

0

1

3

2

2

3

0

1

3

0

2

1

Encoding by the
permutations

Permutations

(a)

)1(
0f)1(

1f
)1(

2f

0

1

3

2

2

3

0

1

3

0

2

1

)1(0)1(2)1(1

0,0b

0,1b

0,2b

0,3b 1,3b 2,3b

1,1b 2,1b

1,0b 2,0b

1,2b 2,2b

0 th copy 1st copy 0 th copy 1st copy

Figure 4.6: A 2-duplication of the code in Figure 4.4. The code has 6 information nodes and 2 parity
nodes. The rebuilding ratio is 4/7.

different copies of the same permutation, denote the t-th f j as f (t)
j . Let the p× sk information array

be [A(0), A(1), . . . , A(s−1)] = [(a(0)
i,j), (a(1)

i,j), . . . , (a(s−1)
i,j)], with i ∈ [0, p− 1], j ∈ [0, k− 1]. De-

fine the zigzag sets Z0, ..., Zp−1 as a(t)
i,j ∈ Zl if f j(i) = l. Notice that this definition is independent

of t. For the s-duplication code C ′, let the first parity still be the row parity, and the second parity

be the zigzag parity according to the above zigzag sets. Denote the column corresponding to f (t)
j

as column j(t), 0 ≤ t ≤ s− 1. Call the columns {j(t) : j ∈ [0, k− 1]} the t-th copy of the original

code.

Suppose in the optimal rebuilding algorithm of C for column i, elements of rows J = {j1, j2, . . . ,

ju} are rebuilt by zigzags, and the rest by rows. In C ′, all the s columns corresponding to fi are

rebuilt in the same way: the elements in rows J are rebuilt by zigzags, and the rest by rows.

In order to make the code MDS, the coefficients in the parities may be different from the original

code C. An example of a 2-duplication of the code in Figure 4.4 is illustrated in Figure 4.6. Columns

0(0), 1(0), 2(0) is the 0th copy of the original code, and columns 0(1), 1(1), 2(1) is the 1st copy.

Theorem 4.16 If a (k + 2, k) code C has rebuilding ratio R(C), then its s-duplication code C ′ has

rebuilding ratio R(C)(1 + s−1
sk+1).

Proof: We will show that the rebuilding method in Construction 4.15 has rebuilding ratio of

R(C)(1 + s−1
sk+1), and is actually optimal.

W.l.o.g. assume column i(0) is erased. Since column i(t), t ∈ [1, s − 1] corresponds to the

same zigzag permutation as the erased column, for the erased element in the l-th row, no matter

if it is rebuilt by row or by zigzag, we have to access the element in the l-th row and column i(t)

(e.g., permutations f (0)
0 , f (1)

0 and the corresponding columns 0(0), 0(1) in Figure 4.6). Hence all the

51

elements in column i(t) must be accessed. Moreover, the optimal way to access the other surviving

columns cannot be better than the optimal way to rebuild in the code C. Thus the proposed algorithm

has optimal rebuilding ratio.

When column i(0) is erased, the average (over all i ∈ [0, k − 1]) of the number of elements

needed to be accessed in columns l(t), for all l ∈ [0, k− 1], l 6= i and t ∈ [0, s− 1] is

R(C)p(k + 1)− p.

Here the term −p corresponds to the access of the parity nodes in C. Moreover, we need to access

all the elements in columns i(t), 0 < t ≤ s− 1, and access p elements in the two parity columns.

Therefore, the rebuilding ratio is

R(C ′) =
s(R(C)p(k + 1)− p) + (s− 1)p + p

p(sk + 1)

= R(C) s(k + 1)
sk + 1

= R(C)(1 +
s− 1
sk + 1

)

and the proof is completed.

Theorem 4.16 gives us the rebuilding ratio of the s-duplication of a code C as a function of

its rebuilding ratio R(C). As a result, for the optimal-rebuilding ratio code in Theorem 4.3, the

rebuilding ratio of its duplication code is slightly more than 1/2, as the following corollary suggests.

Corollary 4.17 The s-duplication of the code in Theorem 4.3 has ratio 1
2 (1 + s−1

s(m+1)+1), which is
1
2 + 1

2(m+1) for large s.

For example, we can rebuild the column 1(0) in Figure 4.6 by accessing the elements in rows

{0, 1} and in columns 0(0), 2(0), 0(1), 2(1), R, Z, and all the elements in column 1(1). The rebuilding

ratio for this code is 4/7.

Using duplication we can have arbitrarily large number of columns, independent of the number

of rows. Moreover the above corollary shows that it also has an almost optimal ratio. The next

obvious question to be asked is: The duplication of which set of permutations will give the best

asymptotic rebuilding ratio, when the number of duplications s tends to infinity? The following

theorem states that if we restrict ourselves to codes constructed using Construction 4.1 then the

duplication of the permutations generated by the standard basis, gives the best asymptotic ratio.

52

(0,0,0,1)

(0,0,1,1)

(1,1,1,0)

(1,0,0,0)

Figure 4.7: The induced subgraph of D4 for the set of vertices H =
{(0, 0, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0), (1, 0, 0, 0)}.

Theorem 4.18 The optimal asymptotic ratio among all codes constructed using duplication and

Construction 4.1 is 1
2 (1 + 1

m) and is achieved using the standard basis.

In order to prove the theorem, we need to define a related graph and to prove an extra theorem

and lemma. Define the directed graph Dm = Dm(V, E) as V = {v ∈ Fm
2 : v 6= 0}, and

E = {(v1, v2) : |v2\v1| = 1 mod 2}. Hence the vertices are the nonzero binary vectors of length

m, and there is a directed edge from v1 to v2 if |v2\v1| is odd. Let H be an induced subgraph of

Dm on a subset of V. Let S and T be two disjoint subsets of vertices of H. We define the density

between S and T to be dS,T = ES,T
2|S||T| , and the density of the set S to be dS = ES

|S|2 , where ES is the

number of edges with both of its endpoints in S, and ES,T is the number of edges incident with a

vertex in S and a vertex in T.

For example, suppose the vertices of H are the vectors (0, 0, 0, 1), (0, 0, 1, 1), (1, 1, 1, 0), (1, 0, 0, 0).

The graph H is shown in Figure 4.7. The density of the graph is dH = 7/16, and for S =

(1, 0, 0, 0), T = {(0, 0, 1, 1), (1, 1, 1, 0)} the density is dS,T = 1/2. Denote by C(H) the code

constructed using the vertices of H, and Construction 4.1. In this example the code C(H) has four

systematic disks and is encoded using the permutations generated by the four vectors of H. Du-

plication of the code C(H), s times, namely duplicating s times the permutations generated by the

vectors of H will yield to a code with 4s systematic disks and two parities.

Let v1, v2 be two vertices of H, such that there is a directed edge from v1 to v2. By Lemma 4.4

we know that this edge means fv2(Xv2)∩ fv1(Xv2) = ∅, therefore only half of the information from

the column corresponding to v1 is accessed and read while rebuilding the column corresponding to

v2. Note that this observation is also correct for an s-duplication code of C(H). Namely, if we

rebuild any column corresponding to a copy of v2, only half of the information is accessed in any

of the columns corresponding to a copy of v1. Intuitively, when the number of copies s is large, the

53

density of the graph captures how often such savings will occur. The following theorem shows that

the asymptotic ratio of any code constructed using Construction 4.1 and duplication is a function of

the density of the corresponding graph H.

Theorem 4.19 Let H be an induced subgraph of Dm. Let Cs(H) be the s-duplication of the code

constructed using the vertices of H and Construction 4.1. Then the asymptotic ratio of Cs(H) is

lim
s→∞

R(Cs(H)) = 1− dH

2

Proof: Let the set of vertices and edges of H be V(H) = {vi} and E(H), respectively. Denote

by v(l)
i , vi ∈ V(H), l ∈ [0, s− 1], the l-th copy of the column corresponding to the vector vi. In

the rebuilding of column v(l)
i , l ∈ [0, s− 1] each remaining systematic column v(l′)

j , l′ ∈ [0, s− 1],

needs to access all of its 2m elements unless |vi\vj| is odd, and in that case it only has to access

2m−1 elements. Hence the total amount of accessed information for rebuilding this column is

(s|V(H)| − 1)2m − deg+(vi)s2m−1,

where deg+ is the indegree of vi in the induced subgraph H. Averaging over all the columns in

Cs(H) we get the ratio:

R(Cs(H))

=
∑vl

i∈Cs(H)(s|V(H)| − 1)2m − deg+(vi)s2m−1

s|V(H)|(s|V(H)|+ 1)2m

=
s|V(H)|(s|V(H)| − 1)2m − s2 ∑vi∈V(H) deg+(vi)2m−1

s|V(H)|(s|V(H)|+ 1)2m

=
s|V(H)|(s|V(H)| − 1)2m − s2|E(H)|2m−1

s|V(H)|(s|V(H)|+ 1)2m .

Hence

lim
s→∞

R(Cs(H)) = 1− |E(H)|
2|V(H)|2 = 1− dH

2
.

We conclude from Theorem 4.19 that the asymptotic ratio of any code using duplication and a

set of binary vectors {vi} is a function of the density of the induced subgraph on this set of vertices.

Hence the induced subgraph of Dm with maximal density corresponds to the code with optimal

54

asymptotic ratio. It is easy to check that the induced subgraph with its vertices as the standard

basis {ei}m
i=1 has density m−1

m . In fact this is the maximal possible density among all the induced

subgraphs and therefore it gives a code with the best asymptotic ratio, but in order to show it we

need the following technical lemma.

Lemma 4.20 Let D = D(V, E) be a directed graph and S, T be a partition of V, i.e., S ∩ T =

∅, S ∪ T = V, then

dV ≤ max{dS, dT, dS,T}

Proof: Note that dV = |S|2dS+|T|2dT+2|S||T|dS,T
|V|2 . W.l.o.g assume that dS ≥ dT therefore if

dS ≥ DS,T,

dV =
|S|2dS + |T|2dT + 2|S||T|dS,T

|V|2

≤ |S|
2dS + |T|2dS − |T|2dS + |T|2dT + 2|S||T|dS

|V|2

=
dS(|S|+ |T|)2 − |T|2(dS − dT)

|V|2

≤ dS.

If dS,T ≥ max {dS, dT} then,

dV =
|S|2dS + |T|2dT + 2|S||T|dS,T

|V|2

≤ |S|
2dS,T + |T|2dS,T + 2|S||T|dS,T

|V|2

= dS,T

and the result follows.

Now we are ready to prove the optimality of the duplication of the code using the standard

basis, if we assume that the number of copies s tends to infinity. We will show that for any induced

subgraph H of Dm, dH ≤ m−1
m . Hence the optimal asymptotic ratio among all codes constructed

using duplication and Construction 4.1 is 1− 1
2

m−1
m = 1

2 (1 + 1
m), and is achieved using the standard

basis.

Proof: [Proof of Theorem 4.18] We say that a binary vector is an even (odd) vector if it has an

55

even (odd) weight. For two binary vectors v1, v2, |v2\v1| being odd is equivalent to

1 = v2 · v1 = v2 · ((1, ..., 1) + v1) = ‖v2‖1 + v2 · v1.

Hence, one can check that when v1, v2 have the same parity, there are either no edges or 2 edges

between them. Moreover, when their parities are different, there is exactly one edge between the

two vertices.

When m = 1, the graph D1 has only one vertex and the only nonempty induced subgraph is

itself. dH = dD1 = 0 = m−1
m . When m = 2, the graph D2 has three vertices and one can check that

the induced subgraph with maximum density contains v1 = (1, 0), v2 = (0, 1), and the density is

1/2 = (m− 1)/m.

For m > 2, assume to the contrary that there exists a subgraph of Dm with density greater than
m−1

m . Let H a subgraph of Dm with minimum number of vertices among all subgraphs with maximal

density. Hence for any subset of vertices S (V(H), we have dS < dH. Therefore from Lemma

4.20 we conclude that for any nontrivial partition S, T of V(H), dH ≤ dS,T. If H contains both

even and odd vectors, denote by S and T the set of even and odd vectors of H, respectively. Since

between any even and any odd vertex there is exactly one directed edge we get that dH ≤ dS,T = 1
2 .

However
1
2

<
m− 1

m
< dH,

and we get a contradiction. Thus H contains only odd vectors or even vectors.

Let V(H) = {v1, ..., vk}. If this set of vectors is independent then k ≤ m and the outgoing

degree for each vertex vi is at most k − 1 hence dH = E(H)
|V(H)|2 ≤

k(k−1)
k2 ≤ m−1

m and we get a

contradiction. Hence assume that the dimension of the subspace spanned by these vectors in Fm
2 is

l < k where v1, v2, ...vl are basis for it. Define S = {v1, ...vl}, T = {vl+1, ..., vk}. The following

two cases show that the density cannot be higher than m−1
m .

H contains only odd vectors: Let u ∈ T. Since u ∈ span{S} there is at least one v ∈ S such

that u · v 6= 0 and thus (u, v), (v, u) /∈ E(H), therefore the number of directed edges between u

and S is at most 2(l − 1) for all u ∈ T, which means

dH ≤ dS,T ≤
2(l − 1)|T|

2|S||T| =
l − 1

l
≤ m− 1

m

and we get a contradiction.

56

H contains only even vectors: Since the vi’s are even the dimension of span{S} is at most

m− 1 (since, for example, (1, 0, ..., 0) /∈ span{S}) thus l ≤ m− 1. Let H∗ be the induced subgraph

of Dm+1 with vertices V(H∗) = {(1, vi)|vi ∈ V(H))}. It is easy to see that all the vectors

of H∗ are odd, ((1, vi), (1, vj)) ∈ E(H∗) if and only if (vi, vj) ∈ E(H), and the dimension of

span{V(H∗)} is at most l + 1 ≤ m. Having already proven the case for odd vectors, we conclude

that

dH = dH∗ ≤
dim(span{V(H∗)})− 1

dim(span{V(H∗)})

≤ l + 1− 1
l + 1

≤ m− 1
m

,

and we get a contradiction.

Next we address the problem of finding proper coefficients’ assignments in the parities in order

to make the code MDS. Let C ′ be the s-duplication of the optimal code of Theorem 4.3 and Corollary

4.17. Denote the coefficients for the element in row i and column j(t) by α
(t)
i,j and β

(t)
i,j , 0 ≤ t ≤ s− 1.

Let Fq be a field of size q with primitive element a.

Construction 4.21 Let Fq be a field of size at least q ≥ s + 1 + 1q, where

1q =

 1, q is even

0, else.o.w.

Assign in C ′, for any i, j and t ∈ [0, s− 1], α
(t)
i,j = 1,

β
(t)
i,j =

 a(t+1)(1−2·1q), if uj · i = 1

at+1q , o.w.

where uj = ∑
j
l=0 el .

Notice that the coefficients in each duplication have the same pattern as Construction 4.5 except that

values 1 and 2 are replaced by at and at+1 if q is odd (or at+1 and a−t−1 if q is even).

Theorem 4.22 Construction 4.21 is an (s(m + 1) + 2, s(m + 1)) MDS code.

Proof: For the two elements in columns i(t1), i(t2) and row r, t1 6= t2, we can see that they are

57

in the same row set and the same zigzag set. The corresponding two equations from the two parities

are  1 1

βt1
r,i βt2

r,i

 at1
r,i

at2
r,i

 =

 y1

y2

 . (4.18)

Where y1, y2 are easily calculated from the surviving information in the system. Therefore the value

of at1
r,i, at2

r,i can be computed iff

β
(t1)
r,i 6= β

(t2)
r,i , (4.19)

which is satisfied by the construction. Similarly to (4.5), the four elements in columns i(t1), j(t2) and

rows r, r′ = r + ei + ej, 0 ≤ t1, t2 ≤ s− 1, 0 ≤ i < j ≤ m can be rebuilt and therefore the code is

MDS if

β
(t1)
r,i β

(t1)
r′,i 6= β

(t2)
r,j β

(t2)
r′,j . (4.20)

By the remark after Theorem 4.6, we know that β
(t1)
r,i 6= β

(t1)
r′,i , and β

(t2)
r,j = β

(t2)
r′,j . Hence the left

hand side of (4.20)

β
(t1)
r,i β

(t1)
r′,i = at1+1q a(t1+1)(1−2·1q) = a(2t1+1)(1−1q).

For even q the right-hand side of (4.20) equals to a2x, for some x 6= 0 and (4.20) is satisfied.

Similarly for odd q (4.20) is satisfied. Hence, the construction is MDS.

Remark: For two identical permutations f (t1)
i = f (t2)

i , (4.19) is a necessary and sufficient

condition for a code to be able to correct the two-column erasure: columns i(t1) and i(t2).

Theorem 4.23 For an MDS s-duplication code, we need a finite field Fq of size q ≥ s + 1. There-

fore, Theorem 4.22 is optimal for odd q.

Proof: Consider the two information elements in row i and columns j(t1), j(t2), which are in

the same row and zigzag sets, for t1 6= t2 ∈ [0, s− 1]. The code is MDS only if

 α
(t1)
i,j α

(t2)
i,j

β
(t1)
i,j β

(t2)
i,j


has full rank. All the coefficients are nonzero. Thus, (α

(t1)
i,j)−1β

(t1)
i,j 6= (α

(t2)
i,j)−1β

(t2)
i,j , and (α

(t)
i,j)−1β

(t)
i,j

are distinct nonzero elements in Fq, for t ∈ [0, s− 1]. So q ≥ s + 1.

For instance, the coefficients in Figure 4.6 are assigned as Construction 4.21 and F3 is used.

One can check that any two-column erasure can be rebuilt in this code.

58

Consider, for example, an s-duplication of the code in Theorem 4.3 with m = 10, the array is

of size 1024× (11s + 2). For s = 2 and s = 6, the ratio is 0.522 and 0.537 by Corollary 4.17.

The code has 24 and 68 columns (disks), and the field size needed can be 4 and 8 by Theorem 4.22,

respectively. Both of these two sets of parameters are suitable for practical applications.

As mentioned in Theorem 4.18 the optimal construction yields a ratio of 1/2 + 1/2m by using

duplication of the code in Theorem 4.3. However the field size is a linear function of the number of

duplications of the code.

A comparison among the code constructed by the standard basis and zero vector (Theorem 4.3),

by duplication of the standard basis and zero vector (Corollary 4.17), and by constant weight vectors

(Construction 4.13) is shown in Figure 4.5. We can see that these three constructions provide a

tradeoff among the rebuilding ratio, the number of columns, and the field size. If we want to access

exactly 1/2 of the information during the rebuilding process, the standard-basis construction is the

only choice. If we are willing to sacrifice the rebuilding ratio for the sake of increasing the number

of columns (disks) in the system, the other two codes are good options. Constant weight vectors

technique has the advantage of a smaller field size over duplication, e.g., for O(m3) columns, the

field of size 9 and m2 is needed, respectively. However, duplication provides us a simple technique

to have an arbitrary number of columns.

4.5 Generalization of the Code Construction

In this section we generalize Construction 4.1 to an arbitrary number of parity nodes r = n− k. We

will construct an (n, k) MDS array code, i.e., it can recover from up to r node erasures for arbitrary

integers n, k. We will show the code has optimal rebuilding ratio of 1/r when a systematic node is

erased. When r = 3, we will prove that finite-field size of 4 is sufficient for the code to be MDS.

As in the case for 2 parities, a file of sizeM is stored in the system, where each node (systematic

or parity) stores a file of size Mk . The k systematic nodes are stored in columns [0, k − 1]. The

i-th, 0 ≤ i ≤ r − 1 parity node is stored in column k + i, and is associated with zigzag sets

{Zi
j : j ∈ [0, p− 1]}, where p is the number of rows in the array.

Construction 4.24 Let A = (ai,j) be the information array of size rm × k, for some integers k, m.

Let T = {v0, ..., vk−1} ⊆ Zm
r be a subset of vectors of size k, where for each v = (v1, ..., vm) ∈ T,

gcd(v1, ..., vm, r) = 1, (4.21)

59

and gcd is the greatest common divisor. For any l, 0 ≤ l ≤ r − 1, and v ∈ T we define the

permutation f l
v : [0, rm − 1] → [0, rm − 1] by f l

v(x) = x + lv, where by abuse of notation we use

x ∈ [0, rm − 1] both to represent the integer and its r-ary representation, and all the calculations

are done over Zr.For example, for m = 2, r = 3, x = 4, l = 2, v = (0, 1),

f 2
(0,1)(4) = 4 + 2(0, 1) = (1, 1) + (0, 2) = (1, 0) = 3.

One can check that the permutation f 2
(0,1) in a vector notation is [2, 0, 1, 5, 3, 4, 8, 6, 7]. For simplicity

denote the permutation f l
vj

as f l
j for vj ∈ T. For t ∈ [0, rm − 1], we define the zigzag set Zl

t in

parity node l, as the elements ai,j such that their coordinates satisfy f l
j (i) = t. In a rebuilding of

systematic node i the elements in rows Xl
i = {x ∈ [0, rm − 1] : x · vi = r− l} are rebuilt by parity

node l, l ∈ [0, r− 1], where the inner product in the definition is done over Zr. From (4.21) we get

that for any i and l, |Xl
i | = rm−1.

Note that similarly to Theorem 4.8, using a large enough field, the parity nodes described above

form an (n, k) MDS array code under appropriate selection of coefficients in the linear combinations

of the zigzags. We will prove this result formally in Chapter 5 Theorem 5.2.

Assume that the systematic column i ∈ [0, k − 1] was erased, what are the elements to be

accessed in the systematic column j 6= i during the rebuilding process? By the construction, the

elements of column i and rows Xl
i are rebuilt by the zigzags of parity l. The indices of these zigzags

are f l
i (Xl

i). Therefore we need to access in the surviving systematic columns, all the elements

that are contained in these zigzags. Specifically, the elements of systematic column j and rows

f−l
j f l

i (Xl
i) are contained in these zigzags, and therefore need to be accessed. In total, the elements

to be accessed in systematic column j are

∪r−1
l=0 f−l

j f l
i (Xl

i). (4.22)

The following lemma will help us to calculate the size of (4.22), and in particular to calculate the

ratio of codes constructed by Construction 4.24.

Lemma 4.25 For any v = (v1, ...vm), u ∈ Zm
r and l, s ∈ [0, r− 1] such that gcd(v1, ..., vm, r) =

60

1, define cv,u = v · (v− u)− 1. Then

| f−l
u f l

v(Xl
v) ∩ f−s

u f s
v(Xs

v)| =

 |X0
v|, (l − s)cv,u = 0

0, o.w.

In particular for s = 0 we get

| f−l
u f l

v(Xl
v) ∩ X0

v| =

 |X0
v|, if lcv,u = 0

0, o.w.

Proof: Consider the group (Zm
r , +). Note that X0

v = {x : x · v = 0} is a subgroup of

Zm
r and Xl

v = {x : x · v = r− l} is a coset. Therefore, Xl
v = X0

v + al
v, Xs

v = X0
v + as

v, for some

al
v ∈ Xl

v, as
v ∈ Xs

v. Hence f−l
u f l

v(Xl
v) = X0

v + al
v + l(v− u) and f−s

u f s
v(Xs

v) = X0
v + as

v + s(v− u)

are cosets of X0
v. So they are either identical or disjoint. Moreover they are identical if and only if

al
v − as

v + (l − s)(v− u) ∈ X0
v,

i.e., (al
v − as

v + (l − s)(v− u)) · v = 0. But by definition of Xl
v and Xs

v, al
v · v = −l, as

v · v = −s,

so (l − s) · cv,u = 0 and the result follows.

The following theorem gives the ratio for any code of Construction 4.24.

Theorem 4.26 The ratio for the code constructed by Construction 4.24 and set of vectors T is

∑v∈T ∑u 6=v∈T
1

gcd(r,cv,u) + |T|
|T|(|T| − 1 + r)

,

which also equals to
1
r

+
∑v∈T ∑u∈T,u 6=v |Fu,v(X0

v) ∩ X0
v|

|T|(|T| − 1 + r)rm .

Where Fu,v(t) = f−i
u f i

v(t) for t ∈ Xi
v.

Proof: From any of the r parities, we access rm−1 elements during the rebuilding process

of node v. Therefore by (4.22), the fraction of the remaining elements to be accessed during the

rebuilding is
∑u 6=v∈T | ∪r−1

i=0 f−i
u f i

v(Xi
v)|+ r · rm−1

(|T| − 1 + r)rm .

61

Averaging over all the systematic nodes, the ratio is

∑v∈T ∑u 6=v∈T | ∪r−1
i=0 f−i

u f i
v(Xi

v)|+ |T|rm

|T|(|T| − 1 + r)rm . (4.23)

From Lemma 4.25, and noticing that

|{i : icv,u = 0 mod r}| = gcd(r, cv,u),

we get

| ∪r−1
i=0 f−i

u f i
v(Xi

v)| = rm−1 × r/ gcd(r, cv,u),

and the first part follows. For the second part,

∑v∈T ∑u 6=v∈T | ∪r−1
i=0 f−i

u f i
v(Xi

v)|+ |T|rm

|T|(|T| − 1 + r)rm

=
∑v∈T ∑u 6=v∈T |X0

v|+ | ∪r−1
i=1 f−i

u f i
v(Xi

v)\X0
v|+ |T|rm

|T|(|T| − 1 + r)rm

=
1
r

+
∑v∈T ∑u 6=v∈T | ∪r−1

i=1 f−i
u f i

v(Xi
v) ∩ X0

v|
|T|(|T| − 1 + r)rm

=
1
r

+
∑v∈T ∑u∈T,u 6=v |Fu,v(X0

v) ∩ X0
v|

|T|(|T| − 1 + r)rm . (4.24)

Note that the elements in rows X0
v of any of the surviving systematic columns are accessed, in

order to rebuild the elements of column v which are rebuilt by parity 0. Fu,v(X0
v) are elements to

be accessed in column u in order to rebuild the elements of column v which are rebuilt by parities

1, ..., r− 1. Therefore Fu,v(X0
v) ∩ X0

v are the extra elements to be accessed in column u for rebuild-

ing column v excluding X0
v. In order to get a low rebuilding ratio, we need to minimize the amount

of these extra elements, i.e., the second term in (4.24). We say that a family of permutation sets

{{ f l
0}r−1

l=0 , ..., { f l
k−1}

r−1
l=0} together with sets {{Xl

0}r−1
l=0 , ..., {Xl

k−1}
r−1
l=0} is a family of orthogonal

permutations if for any i, j ∈ [0, k− 1] the set {Xl
i}

r−1
i=0 is an equally sized partition of [0, rm − 1]

and
|Fj,i(X0

i) ∩ X0
i |

rm−1(r− 1)
= δi,j.

One can check that for r = 2 the definition coincides with the previous definition of orthogonal

permutations for two parities. It can be shown that the above definition is equivalent to that for any

62

0 ≤ i 6= j ≤ k− 1, 0 ≤ l ≤ r− 1,

f l
j (X0

i) = f l
i (Xl

i). (4.25)

For a set of orthogonal permutations, the rebuilding ratio is 1/r by (4.24), which is optimal accord-

ing to (4.1).

Now we are ready to construct a code with optimal rebuilding ratio and r parities.

Theorem 4.27 The set {{ f l
0}r−1

l=0 , ..., { f l
m}r−1

l=0}together with set {{Xl
0}r−1

l=0 , ..., {Xl
m}r−1

l=0} constructed

by the vectors {ei}m
i=0 and Construction 4.24, where Xl

0 is modified to be Xl
0 = {x ∈ Zm

r :

x · (1, 1, ..., 1) = l} for any l ∈ [0, r − 1], is a family of orthogonal permutations. Moreover the

corresponding (m + 1 + r, m + 1) code has optimal ratio of 1
r .

Proof: For 1 ≤ i 6= j ≤ m, ci,j = ei · (ei − ej) − 1 = 0, hence by Lemma 4.25 for any

l ∈ [0, r− 1]

f−l
j f l

i (Xl
i) ∩ X0

i = X0
i ,

and (4.25) is satisfied. For 1 ≤ i ≤ m, and all 0 ≤ l ≤ r− 1,

f−l
0 f l

i (Xl
i) = f l

i ({v : vi = −l}) = {v + lei : vi = −l}

= {v : vi = 0} = X0
i

Therefore, f−l
0 f l

i (Xl
i) ∩ X0

i = X0
i , and (4.25) is satisfied. Similarly,

f−l
i f l

0(Xl
0) = f−l

i ({v : v · (1, ..., 1) = l})

= {v− lei : v · (1, ..., 1) = l}

= {v : v · (1, ..., 1) = 0} = X0
0 .

Hence again (4.25) is satisfied and this is a family of orthogonal permutations, and the result follows.

Surprisingly, one can infer from the above theorem that changing the number of parities from

2 to 3 adds only one node to the system, but reduces the rebuilding ratio from 1/2 to 1/3 in the

rebuilding of any systematic column.

The example in Figure 4.8 shows a code with 3 systematic nodes and 3 parity nodes constructed

by Theorem 4.27 with m = 2. The code has an optimal ratio of 1/3. For instance, if column C1 is

erased, accessing rows {0, 1, 2} in the remaining nodes will be sufficient for rebuilding.

63

Permutations of
parity node C4

2
0f

2
1f

2
2f

0

1

3

2

6

7

8

0

1

0

5

2

2,01,70,1 caaca

2,11,80,2 aaca

2,51,00,3 cacaca2,31,30,3 aaa

2,01,00,0 aaa

2,11,10,1 aaa

2,21,20,2 aaa

0C 2C1C 3C 4C

0,0a

0,1a

0,2a

0,3a 1,3a 2,3a

1,1a 2,1a

1,0a 2,0a

1,2a 2,2a

Encoding
by the
orthogonal
permutations

Systematic
Nodes Parity Nodes

4

5

7

6

1

2

3

4

8

4

6

3

8 5 7

1
0f

1
1f

1
2f

0

1

3

2

3

4

5

6

0

2

4

1

4

5

7

6

7

8

0

1

7

3

8

5

8 2 6

0,4a

0,5a

0,6a

0,7a 1,7a 2,7a

1,5a 2,5a

1,4a 2,4a

1,6a 2,6a

0,8a 1,8a 2,8a

2,31,10,4 acaca

2,41,20,5 acaca

2,81,30,6 aaca

2,61,40,7 aaca2,71,70,7 aaa

2,41,40,4 aaa

2,51,50,5 aaa

2,61,60,6 aaa

2,71,50,8 caaca2,81,80,8 aaa

5C

2,21,60,0 aaca

2,21,40,1
2 caaac

2,01,50,2
2 caaac

2,41,60,3
2 cacaac

2,51,70,4
2 cacaac

2,31,80,5
2 acaac

2,71,00,6
2 cacaac

2,81,10,7
2 acaac

2,61,20,8
2 cacaac

2,11,30,0
2 aaac

Permutations of
parity node C5

Figure 4.8: A (6, 3) MDS array code with optimal ratio 1/3. The first parity C3 corresponds to
the row sums, and the corresponding identity permutations are omitted. The second and third parity
C4, C5 are generated by the permutations f 1

i , f 2
i , respectively, i = 0, 1, 2. The elements are from F4,

where c is a primitive element of F4.

Similar to the 2 parity case, the following theorem shows that Theorem 4.27 achieves the optimal

number of columns. In other words, the number of rows has to be exponential in the number

of columns in any systematic MDS code with optimal ratio, optimal update, and r parities. This

follows since any such optimal code is constructed from a family of orthogonal permutations.

Theorem 4.28 Let {{ f l
0}r−1

l=0 , ..., { f l
k−1}

r−1
l=0} be a family of orthogonal permutations over the inte-

gers [0, rm − 1] together with the sets {{Xl
0}r−1

l=0 , ..., {Xl
k−1}

r−1
l=0}, then k ≤ m + 1.

Proof: We prove it by induction on m. When m = 0, it is trivial that k ≤ 1. Now suppose we

have a family of orthogonal permutations {{ f l
0}r−1

l=0 , ..., { f l
k−1}

r−1
l=0} over [0, rm − 1], and we will

show k ≤ m + 1. Recall that orthogonality is equivalent to (4.25). Notice that for any permuta-

tions g, h0, ..., hr−1, the sets of permutations {{hl f l
0g}r−1

l=0 , ..., {hl f l
k−1g}r−1

l=0}} are still a family of

orthogonal permutations with sets {{g−1(Xl
0)}, ..., {g−1(Xl

k−1)}}. This is because

hl f l
j g(g−1(X0

i)) = hl f l
j (X0

i)

= hl f l
i (Xl

i)

= hl f l
i g(g−1(Xl

i)).

Therefore, w.l.o.g. we can assume Xl
0 = [lrm−1, (l + 1)rm−1 − 1], and f l

0 is the identity permuta-

64

tion, for 0 ≤ l ≤ r− 1.

Let 1 ≤ i 6= j ≤ k− 1, l ∈ [0, r− 1] and define

A = f l
j (X0

i) = f l
i (Xl

i),

B = f l
j (X0

i ∩ X0
0),

C = f l
i (Xl

i ∩ X0
0).

Therefore B, C are subsets of A, and their complements in A are

A\B = f l
j (X0

i ∩ X0
0),

A\C = f l
i (Xl

i ∩ X0
0).

From (4.25) for any j 6= 0,

f l
j (X0

0) = f l
0(Xl

0) = Xl
0 (4.26)

hence,

B, C ⊆ Xl
0 (4.27)

Similarly, for any j 6= 0, f l
j (X0

0) = f l
j (X0

0) = Xl
0, hence

A\B, A\C ⊆ Xl
0. (4.28)

From (4.27),(4.28) we conclude that B = C = A ∩ Xl
0, i.e.,

f l
j (X0

i ∩ X0
0) = f l

i (Xl
i ∩ X0

0). (4.29)

For each l ∈ [0, r− 1], j ∈ [1, k− 1] define f̂ l
j (x) = f l

j (x)− lrm−1 and X̂l
j = Xl

j ∩ X0
0 then,

f̂ l
j ([0, rm−1 − 1]) = f l

j (X0
0)− lrm−1

= Xl
0 − lrm−1 (4.30)

= [0, rm−1 − 1],

where (4.30) follows from (4.26). Moreover, since f l
i is bijective we conclude that f̂ l

i is a permuta-

65

tion on [0, rm−1 − 1].

f̂ l
i (X̂l

i) = f l
i (Xl

i ∩ X0
0)− lrm−1

= f l
j (X0

i ∩ X0
0)− lrm−1 (4.31)

= f̂ l
j (X̂0

i),

where (4.31) follows from (4.29). Since {Xl
i}

r−1
l=0 is a partition of [0, rm − 1], then {X̂l

i}
r−1
l=0 is also

a partition of X0
0 = [0, rm−1 − 1]. Moreover, since f̂ l

i (X̂l
i) = f̂ l

j (X̂0
i) for any l ∈ [0, r − 1], and

f̂ l
i , f̂ l

j are bijections, we conclude

|X̂l
i | = |X̂0

i |

for all l ∈ [0, r− 1], i.e., {X̂l
i}, l ∈ [0, r− 1], is an equally sized partition of [0, rm−1 − 1]. There-

fore {{ f̂ l
1}

r−1
l=0 , ..., { f̂ l

k−1}
r−1
l=0} together with {{X̂l

1}
r−1
l=0 , ..., {X̂l

k−1}
r−1
l=0} is a family of orthogonal

permutations over integers [0, rm−1 − 1], hence by induction k− 1 ≤ m, and the result follows.

After presenting the construction of a code with optimal ratio of 1/r, we move on to discuss the

problem of assigning the proper coefficients in order to satisfy the MDS property. This task turns

out to be not easy when the number of parities r > 2. The next theorem gives a proper assignment

for the code with r = 3 parities, constructed by the optimal construction in Theorem 4.27.

Construction 4.29 Let c be a primitive element of F4 and define Pj = (pi,l) to be the permutation

matrix corresponding to the permutation f j = f 1
j , with a slight modification. This matrix has two

nonzero values and is defined as

pi,l =


1, l + ej = i and l ·∑j

t=1 et 6= 0

c, l + ej = i and l ·∑j
t=1 et = 0

0, o.w.

(4.32)

For example, if m = 2 the permutation matrix is of size 32 = 9, and we get the matrix P2 =

66

(pi,l)0≤i,l≤8,

P2 =



1

c

1

c

1

1

1

1

c



.

For example, p3,5 = c, since

1. 5 + e2 = (1, 2) + (0, 1) = (1, 0) = 3.

2. 5 ·∑2
t=1 et = (1, 2) · (1, 1) = 0.

Let the generator matrix of the code be

G′ =



I
. . .

I

I · · · I

P0 · · · Pm

P2
0 · · · P2

m


(m+4)×m+1

. (4.33)

Here each block matrix is of size 3m × 3m, and P2
j represents the square of the matrix Pj.

Theorem 4.30 When r = 3, a field of size 4 is sufficient to make the code MDS using Construction

4.29.

For example, the coefficients of the parities in Figure 4.8 are assigned as Construction 4.29. One

can check that the system is protected against any three erasures.

The key idea of the proof is that if three erasures happen, we do not try to solve for all of the

unknown elements at the same time, but utilize the special structure of the permutations and solve

a few linear equations at a time. No matter which columns are erased, we can always rearrange the

67

ordering of the unknown elements and the equations, such that the coefficient matrix of the linear

equations has a common format. Therefore, as long as this format is an invertible matrix, we know

the code is MDS.

Proof: [Proof of Theorem 4.8] We need to show we can rebuild three erasures, with x erasures

of systematic nodes, and 3− x of the parities, for x = 1, 2, 3. It is easy to see that when c is a

nonzero coefficient, we can rebuild from one systematic and two parity erasures.

In case of two systematic erasures, suppose information columns i, j and parity column 2 are

erased, 0 ≤ i < j ≤ k − 1. We will show that instead of solving equations involving all the

unknown elements, we only need to solve 6 linear equations at a time. In order to recover the

elements in row v, consider the set of rows in the erased columns:

W(v) = v + span{ei − ej}.

We call v a starting point. W(v) contains 3 elements and altogether there are 6 unknown elements

in the two columns i, j. Notice that elements in rows W(v) and column i, j are mapped to elements

in rows W(v) and parity 0. Also for parity 1 they are mapped to rows W(v) + ei = W(v) + ej,

which are equal because they are both cosets of span{ei − ej} and v + ei is a member in both

cosets. Therefore, by accessing rows W(v) in the surviving information nodes and parity 0, and

rows W(v) + ej in parity 1, we get 6 equations on these 6 unknowns.

For example, in Figure 4.8 columns C1, C2, C5 are erased, then i = 1, j = 2. And consider

the starting point v = (1, 0), which is 3 as an integer. Then W(v) = v + span{e2 − e1} =

{(1, 0), (2, 2), (0, 1)}, or {3, 8, 1} written as integers. Similarly, W(v) + ej = W(v) + ei =

{4, 6, 2} as integers. The 6 elements in rows W(v) in columns C1, C2 are {a1,1, a1,2, a3,1, a3,2, a8,1, a8,2}.

They are mapped to rows W(v) in parity 0 (column C4) and to rows W(v) + ej in parity 1 (column

C5). Therefore, we can solve for the 6 unknowns at a time.

Writing in matrix form, we need to solve the linear equations Gx = y, where x is the 6× 1

unknown vector, y is a vector of size 6× 1, and G is a 6× 6 matrix. G can be written as


info i, W(v) info j, W(v)

parity 0, W(v) I I

parity 1, W(v) + ej A B

,

and each submatrix here is of size 3× 3. The first 3 columns in G correspond to column i, the last

68

3 columns correspond to column j. The first 3 rows in G correspond to parity 0, the last 3 rows

correspond to parity 1. We wrote the corresponding column and row indices at the top and on the

left of the matrix. Since parity 0 is the row sum, the first 3 rows of G are two 3× 3 identity matrices.

Now we reorder the row and columns of G and show that det(G) = det(B− A) 6= 0. For t =

0, 1, order the elements in cosets W(v)+ tej as (v + tej, (v + tej)+ (ei− ej), (v + tej)+ 2(ei− ej).

What are A and B? For row u ∈W(v) in column i, it is mapped to row u + ei = (u + ej)+ (ei− ej)

in parity 1. So A corresponds to a cyclic shift permutation. Suppose u = v + g(ei− ej), g = 0, 1, 2,

then the coefficient is determined by

u
i

∑
t=1

et = v
i

∑
t=1

et + g.

According to (4.32), the coefficient is c if u ∑i
t=1 et = 0, and is 1 otherwise. For only one value of

g ∈ [0, 2], the above expression is 0. Therefore we have

A =


a1

a2

a3


with a1a2a3 = c. Similarly, row u in column j is mapped to u + ej in parity 1. So B corresponds to

diagonal matrix. And the coefficient is determined by

u
j

∑
t=1

et = v
j

∑
t=1

et + g− g = v
i

∑
t=1

et,

which is a constant for W(v). Hence

B =


b

b

b


with b = 1 or c. Now

det(G) = det(B− A) = det


b −a1

−a2 b

−a3 b



69

= b3 − a1a2a3 = b3 − c. (4.34)

The above value is 1− c or c3 − c. If c 6= 0, and c2 6= 1, then det(G) 6= 0. When c is a primitive

element in GF(4), the above conditions are satisfied.

For example, if in Figure 4.8 we erase columns C1, C2, C6 and take the starting point v = (1, 0),

then W(v) is ordered as (3, 8, 1) and W(v) + ej is ordered as (4, 6, 2). It is easy to check that

A =


c

1

1


and

B =


1

1

1

 .

Similarly, if column i, j and parity 0 are erased, we can show

det(G) = det(B− A)AB 6= 0.

When column i, j and parity 1 are erased, we have

det(G) = det(B2 − A2)

= det


b2 −a1a3

b2 −a1a2

−a2a3 b2


= b6 − (a1a2a3)2 = b6 − c2.

When b = 1 or c, the above value is 1− c2 or c6 − c2. So we need c 6= 0, c2 6= 1, c4 6= 1. Again,

for a finite field of size 4, these conditions are satisfied. Hence we can rebuild any two systematic

and one parity erasures.

Suppose 3 systematic columns i, j, l are erased, and 1 ≤ i < j < l ≤ k. We will show that each

time we need to solve 27 equations, and then reduce it to the case of two systematic erasures. In

order to rebuild any row v in these three columns, consider the following set of 9 rows (and therefore

70

27 unknown elements):

V = v + span{ei − el , ej − el}.

These unknowns correspond to rows V in parity 0. In parity 1, they correspond to rows V + ei =

V + ej = V + el , which are equal to each other since they are cosets of span{ei − el , ej − el}

and v + el is a member in all of them. Similarly, the unknowns correspond to rows V + 2ei =

V + 2ej = V + 2el in parity 2. Altogether we have 27 parity elements (equations). Next we write

these equations in a matrix form:

Gx = y,

where G, y are coefficients, x are unknowns. We are going to show that det(G) 6= 0. Order the

set span{ei − el , ej − el} arbitrarily as (v0, v1, . . . , v8). And order the coset V + tel as (v + tel +

v0, v + tel + v1, . . . , v + tel + v8), for t = 0, 1, 2. Now the coefficient matrix G will be


info i, V info j, V info l, V

parity 0, V I I I

parity 1, V + el A′ B′ C′

parity 2, V + 2el A′2 B′2 C′2

,

where each sub-block is of size 9× 9. The first, second, and third block rows correspond to parity

0,1, and 2, respectively. And the first, second and third block columns correspond to erased column

i, j, l, respectively. Since parity 0 is row sum, the first block rows contain identity submatrices.

What is C′ for parity 1? By Construction 4.24, row u in column l corresponds to row u + el in

parity 1. So C′ should be diagonal. By (4.32) the values in C are determined by u · ∑l
t=1 et. And

for some constants g, h, we have u = v + g(ei − el) + h(ej − el) ∈ V, and thus u · ∑l
t=1 et =

(v + g(ei − el) + h(ej − el)) ∑l
t=1 et = v ∑l

t=1 et + g− g + h− h = v ∑l
t=1 et is a constant for V.

So

C′ = I or cI,

for a primitive element c. Now notice that C′ is commutative with A′ and B′, we have det(G) =

det(B′ − A′) det(C′ − A′) det(C′ − B′) (without commutativity, this equation may not hold).

71

Moreover, since V is the union of W(v), W(v + el − ei), W(v + 2(el − ei)), and

det(B′ − A′) = det

 I I

A′ B′

 ,

we know that det(B′− A′) is simply the multiplication of three determinants in (4.34) with starting

point v, v + el − ei, v + 2(el − ei), which are always nonzero. Similarly, we can conclude that

det(C′ − A′), det(C′ − B′) are also nonzero. Hence the code an correct any three erasures and is

an MDS code.

4.6 Concluding Remarks

In this chapter, we described explicit constructions of the first known systematic (n, k) MDS array

codes with n − k equal to some constant, such that the amount of information needed to rebuild

an erased column equals to 1/(n− k), matching the information-theoretic lower bound. While the

codes are new and interesting from a theoretical perspective, they also provide an exciting practical

solution, specifically, when n− k = 2, our zigzag codes are the best known alternative to RAID-6

schemes. RAID-6 is the most prominent scheme in storage systems for combating disk failures. Our

new zigzag codes provide a RAID-6 scheme that has optimal update (important for write efficiency),

small finite-field size (important for computational efficiency) and optimal access of information for

rebuilding - cutting the current rebuilding time by a factor of two.

We note that one can add redundancy for the sake of lowering the rebuilding ratio. For instance,

one can use three parity nodes instead of two. The idea is that the third parity is not used for

protecting data from erasures, since in practice, three concurrent failures are unlikely. However, with

three parity nodes, we are able to rebuild a single failed node by accessing only 1/3 of the remaining

information (instead of 1/2). An open problem is to construct codes that can be extended in a simple

way, namely, codes with three parity nodes such that the first two nodes ensure a rebuilding ratio of

1/2 and the third node further lowers the ratio to 1/3. Hence, we can first construct an array with

two parity nodes and when needed, extend the array by adding an additional parity node to obtain

additional improvement in the rebuilding ratio.

Another future research direction is to consider the ratio of read accesses in the case of a write

(update) operation. For example, in an array code with two parity nodes, in order to update a single

72

information element, one needs to read at least three elements and write three elements, because we

need to know the values of the old information and old parities and compute the new parity elements

(by subtracting the old information from the parity and adding the new information). However, an

interesting observation, in our optimal code construction with two parity nodes, is if we update all

the information in the first column and the rows in the top half of the array (see Figure 4.4), we do

not need to read for computing the new parities, because we know the values of all the information

elements needed for computing the parities. These information elements take about half the size of

the entire array. So in a storage system we can cache the information to be written until most of

these elements need to be updated (we could arrange the information in a way that these elements

are often updated at the same time), hence, the ratio between the number of read operations and

the number of new information elements is relatively very small. Clearly, we can use a similar

approach for any other systematic column. In general, given r parity nodes, we can avoid redundant

read operations if we update about 1/r of the array.

73

Chapter 5

Rebuilding Any Single-Node Erasure

5.1 Introduction

In this chapter, we define the rebuilding ratio as the ratio of accessed information to the remaining

information in case of any single erasure. Different from the previous two chapters, we consider

systematic as well as parity erasure. For example, it is easy to check that for the code in Figure

5.1, if any two columns are erased, we can still recover all the information, namely, it is an MDS

code. Here all elements are in finite field F3. Now suppose column C1 is erased, it can be rebuilt by

accessing a0,2, a1,2 from column C2, r0, r1 from column C3, and z0, z1 from column C4, as follows:

a0,1 = r0 − a0,2 = 2a0,2 + r0

a1,1 = 2a1,2 + r1

a2,1 = 2a1,2 + z0

a3,1 = a0,2 + z1

Hence, by accessing only 6 elements out of 12 remaining elements, i.e., only half of the remaining

information, the erased node can be rebuilt. Similarly, if column C2 is erased, only half elements

need to be accessed. However, if column C3 or C4 is erased, one has to access all elements in

column C1, C2, a total of 8 elements, in order to rebuild. Details on this code will be discussed in

Section 5.2.

As mentioned before, when a single erasure occurs and all the remaining nodes are accessible,

the lower bound for the repair bandwidth, and therefore the rebuilding ratio, is 1/r [DGW+10].

In the previous chapter we presented an explicit construction of MDS array codes that achieve the

lower bound 1/r on the ratio for rebuilding any systematic node.

74

2,11,20 aaz

2,01,31 2aaz

2,31,02 22 aaz

2,21,13 2 aaz2,31,33 aar

2,01,00 aar

2,11,11 aar

2,21,22 aar

2C1C 3C 4C

1,3a 2,3a

1,1a 2,1a

1,0a 2,0a

1,2a 2,2a

Systematic
nodes Parity nodes

Figure 5.1: An MDS array code with two systematic and two parity nodes. All the elements are
in finite field F3. The first parity column C3 is the row sum and the second parity column C4 is
generated by the zigzags. For example, zigzag z0 contains the elements ai,j that satisfy f 1

j (i) = 0.

The main result of this chapter is an explicit construction of MDS array codes with r parity

nodes, that achieves the lower bound 1/r for rebuilding any systematic or parity node. The re-

building of a single erasure has an efficient implementation as computations within nodes are not

required. Moreover, our codes have simple encoding and decoding procedures - when r = 2 and

r = 3, the codes require finite-field sizes of 3 and 4, respectively.

We would like to point out here that the constructed code achieves optimal ratio in the cost

of update complexity. An MDS code with r parities is called optimal update if each information

element is contained in exactly r parity elements. If we update the value of an information element,

we only need to change the value of r parity elements. And this is the minimum number of changes

required for an MDS code. For example, in Figure 5.1 the information element a0,1 is contained in

only r = 2 parity elements: r0, z2. While the construction in last chapter is optimal update, the code

in this chapter is not. Each information element is contained in 2r− 1 parity elements.

5.2 Rebuilding Ratio Problem

In this section we formally define the rebuilding ratio problem and review the code construction in

the previous chapter, which has optimal rebuilding for systematic erasure. We then show that the

construction can be made an MDS code, in fact, this will be the basis for proving that our newly

proposed construction described in Section 5.3 is also an MDS code.

75

We first define the framework of a systematic MDS array code. Let A = (ai,j) be an information

array of size p× q. A column is also called a node, and an entry is called an element. Each of the

q columns is a systematic node in the code. We add r parity columns to this array on the right,

such that from any q columns, we can recover the entire information. In the previous chapter, it was

shown that if the code has optimal update, i.e., each information element is protected by exactly

r parity elements, then each parity node corresponds to q permutations acting on [0, p− 1]. More

specifically, suppose the permutations are f1, f2, . . . , fq. Then the t-th element in this parity node

is a linear combination of all elements ai,j such that f j(i) = t. The set of information elements

contained in this linear combination is called a zigzag set. For the t-th element in the l-th parity,

t ∈ [0, p − 1], l ∈ [0, r − 1], denote by f l
1, . . . , f l

q the set of associated permutations, and Zl
t the

zigzag set.

Because the ordering of the elements in each node can be arbitrary, we can assume that the first

parity node is always a linear combination of each row (corresponding to identity permutations). If

we write a permutation in the vector notation, we have

f 0
1 = f 0

2 = · · · = f 0
q = (0, 1, . . . , p− 1).

Figure 5.1 is an example of such codes. The first parity C3 corresponds to identity permutations, or

sum of each row. The second parity C4 corresponds to the permutations

f 1
1 = (2, 3, 0, 1),

f 1
2 = (1, 0, 3, 2).

For instance, assume t = 0. Since f 1
1 (2) = 0, f 1

2 (1) = 0, the zigzag set Z1
0 = {a2,1, a1,2}, and z0

is a linear combination of these two elements.

For a given MDS code with parameters q, r, we ask what is the accessed fraction in order to

rebuild a single node (in the average case)? Hence, the rebuilding ratio of a code is:

R =
∑

q+r
i=1 (# accessed elements to rebuild node i)

(q + r)(# remaining elements)
.

Notice that the ratio is averaged among all of the single-node erasures.

When a systematic node is erased, we assume that each unknown element is rebuilt by one of

the parity nodes. That is, we access one parity element containing the unknown, and access all

76

the elements in the corresponding zigzag set except the unknown. In order to lower the number of

accesses, we would like to find

1. Good permutations such that the accessed zigzag sets intersect as much as possible.

2. Proper coefficients in the linear combinations such that the code is MDS.

For example, in Figure 5.1, in order to rebuild column C1, we access the zigzag sets A = {Z0
0 , Z0

1},

B = {Z1
0 , Z1

1}, corresponding to parities {r0, r1}, {z0, z1}. Since the surviving elements in A and

in B are both {a0,2, a1,2}, they are identical and have maximal intersection. As a result, only 1/2

of the elements are accessed. Besides, the coefficients {1, 2} in the parity linear combinations

guarantee that any two nodes are sufficient to recover all the information. Hence the code is MDS.

Now we repeat the result of Construction 4.24. We formed permutations based on r-ary vectors.

Let e1, e2, . . . , ek be the standard vector basis of Zk
r . We will use x to represent both an integer in

[0, rk − 1] and its r-ary expansion (the r-ary vector of length k). It will be clear from the context

which meaning is used. All the calculations are done over Zr.

Construction 5.1 Let the information array be of size rk × k. Define permutation f l
j on [0, rk − 1]

as f l
j (x) = x + lej, for j ∈ [1, k], l ∈ [0, r− 1]. For example, if r = 2, k = 2, j = 2, l = 1, x = 3,

then f 1
2 (3) = 3 + 1 · e2 = (1, 1) + (0, 1) = (1, 0) = 2. And f 1

2 = (1, 0, 3, 2) is the entire

permutation. For t ∈ [0, rk − 1], we define the zigzag set Zl
t in parity node l as the elements ai,j

such that their coordinates satisfy f l
j (i) = t. Let Yj = {x ∈ [0, rk − 1] : x · ej = 0} be the set

of vectors whose j-th coordinate is 0. If column j is erased, rebuild by accessing rows Yj in all the

remaining columns.

We point here that the above construction does not use the zero vector as Construction 4.24.

Notice that |Yj| = rk/r is only 1/r of the remaining elements. The previous chapter tells us that Yj

is sufficient to rebuild node j and therefore the construction has optimal ratio 1/r for any systematic

node.

Figure 5.1 is an example of Construction 5.1 with k = 2, r = 2. As mentioned before, only

1/2 of the information is accessed in order to rebuild C1. The accessed elements are in rows

Y1 = {x ∈ [0, 3] : x · e1 = 0} = {0, 1}.

Next, we show that by assigning the coefficients in the parities properly, we can make the code

MDS. Let Pj = (pi,l) be the permutation matrix corresponding to f j = f 1
j , namely, pi,l = 1 if

l + ej = i, and pi,l = 0 otherwise. Assigning the coefficients is the same as modifying pi,l = 1 to

77

some other non-zero value. When r ≥ 4, modify all pi,l = 1 to pi,l = λj, for some λj in a finite

field F. Let the generator matrix of the code be

G′ =



I
. . .

I

I · · · I

P1
1 · · · P1

k
...

...

Pr−1
1 · · · Pr−1

k


(k+r)×k

. (5.1)

Here each submatrix is of size rk × rk.

When r = 2, 3, modify pi,l = 1 to

pi,l = c, if l ·
j

∑
t=1

et = 0, (5.2)

where c is a primitive element of F3, F4, respectively. And keep pi,l = 1 if ∑
j
t=1 et 6= 0. And the

generator matrix is also G′ in (5.1). For example, the coefficients in Figure 5.1 is assigned according

to (5.2), with

P1 =


0 0 1 0

0 0 0 1

2 0 0 0

0 2 0 0

 , P2 =


0 1 0 0

2 0 0 0

0 0 0 2

0 0 1 0

 .

The following theorem shows that using the above assignment the code can be MDS.

Theorem 5.2 (1) Construction 5.1 can be made an MDS code for a large enough finite field.

(2) When r = 2, 3, field of size 3 and 4 is sufficient to make the code MDS.

Proof: Part (2) are shown in Theorems 4.6 and 4.30. We only prove part (1). An MDS code

means that it can recover any r erasures. Suppose t systematic nodes and r − t parity nodes are

erased, 1 ≤ t ≤ r. Thus suppose we delete from G′ in (5.1) the systematic rows {j1, j2, . . . , jt}

and the remaining parity nodes are {i1, i2, . . . , it}. Then the following t× t block matrix should be

78

invertible:

G =


Pi1

j1
· · · Pi1

jt
...

...

Pit
j1
· · · Pit

jt

 (5.3)

Its determinant det(G) is a polynomial with unknowns λj1 , . . . , λjt . All terms have highest degree

rk(i1 + · · ·+ it). One term with highest degree is ∏t
s=1 λisrk

js with non-zero coefficient 1 or −1. So

det(G) is a non-zero polynomial. Up to now we only showed one possible case of erasures. For

any r erasures, we can find the corresponding det(G) as a non-zero polynomial. The product of all

these polynomials is again a non-zero polynomial. Hence by [Alo99] for a large enough field there

exist assignments of {λj} such that the value of the polynomial is not 0. Then for any case of r

erasures, the corresponding matrix G is invertible, and the code is MDS.

5.3 Code Construction

The code in Construction 4.24 has optimal rebuilding for systematic nodes. However, in order to

rebuild a parity node, one has to access all the information elements. In this section we construct

MDS array codes with optimal rebuilding ratio for rebuilding both the systematic and the parity

nodes. The code has k− 1 systematic nodes and r parities nodes, for any k, r.

Consider the permutation f j = f 1
j in Construction 5.1. It is clear that f j is a permutation of

order r, i.e., f r
i is the identity permutation. For i ∈ [0, r − 1], define Xi as the set of vectors of

weight i, namely, Xi = {v ∈ Zk
r : v · (1, . . . , 1) = i}. X0 is a subgroup of Zk

r and Xi = X0 + iek

is its coset, where ek = (0, . . . , 0, 1). Assume the elements in Xi are ordered, i ∈ [0, r− 1], and the

ordering is

X0 = (v1, . . . , vrk−1),

Xi = (v1 + iek, . . . , vrk−1 + iek).

Since the ordering of the elements in each node does not matter, we can reorder them as (X0, X1, . . . ,

Xr−1), with each Xi ordered as above. We are going to write our generator matrix of the code in

this new ordering. One can check that f j(Xi) = Xi+1, where the subscript is added mod r. So the

79

matrix Pj corresponding to f j can be written as

Pj =



X0 X1 . . . Xr−1

X0 pj

X1 pj
...

. . .

Xr−1 pj

, (5.4)

where pj corresponds to the mapping of f j : Xi 7→ Xi+1. In particular, if pj is viewed as a

permutation acting on X0, then for x ∈ X0,

pj(x) = x + ej − ek.

Next we assign coefficients in Pj. When r = 2, 3, modify the 1 entries of pi into c if its correspond-

ing column l satisfies l ·∑j
t=1 et = 0. Here c is a primitive element in F3, F4. When r ≥ 4, modify

1 entries into λj.

In the following, we will use block matrices the same as single elements. When referring to row

or column indices, we mean block row or column indices. We refer to pj as a small block, and the

corresponding block row or column as a small block row or column. And Pj is called a big block

with big block row or column. Moreover, we assume the elements in each column are in order

(X0, . . . , Xr−1).

Construction 5.3 Suppose the information array is of size rk × (k− 1). For j ∈ [1, k− 1], define

a big block matrix

A0
j =



0 I

1 pj αpr−1
j

2 p2
j αpr−2

j
...

...
. . .

r− 2 pr−2
j p2

j

r− 1 pr−1
j pj


where α 6= 0, 1 is an element of the finite field and is multiplied to the diagonal in rows 1, . . . , b r

2c.

And define Ai
j by cyclically shifting the rows and columns of A0

j to the right and bottom by i posi-

80

Figure 5.2: Parity matrices Ai for r = 2 (left) and r = 3 (right) parities. When the first parity node
is erased, the underlined elements are accessed from systematic nodes. The remaining unknown
elements are recovered by the shaded elements from parity nodes.

tions:

Ai
j =



βpi
j pr−i

j
. . .

...

pj pr−1
j

I

pj αpr−1
j

...
. . .


,

where β = α or 1. If x− i < r
2 or x− i = r

2 , i < r
2 , coefficient α is multiplied to the diagonal in

row x. Construct the code as follows. Let the first k− 1 nodes be systematic, and the last r nodes

be parities. Parity i is defined by Ai
1, . . . , Ai

k−1. The generator matrix of the code is



I
. . .

I

A0
1 · · · A0

k−1
...

...

Ar−1
1 · · · Ar−1

k−1


.

81

Figure 5.3: An MDS array code with two systematic and two parity nodes by Construction 5.3. The
finite field used is F3. The shaded elements are accessed to rebuild the first parity node.

Sometimes we will omit the subscript j when it is not important, and the superscript is computed

mod r.

Example 5.4 For two and three parities, the matrices Ai are shown in Figure 5.2. When r = 2, as

finite field F3 is used, we can take α = 2 6= 1. Coefficient α = 2 is multiplied to only the second

diagonal in A0. When r = 3, finite field F4 is used and we choose some α 6= 0, 1. We multiply α

to one diagonal block in each Ai. It can be seen that A1, A2 are simply shifted versions of A0. An

example of a code with 2 parities is shown in Figure 5.3.

It can be seen from Construction 5.3 and Figure 5.3 that this code is not optimal update. In fact

each information element appears 2r− 1 times in the parities.

Next we show that the code in Construction 5.3 has optimal ratio. We first observe that in Ai,

the x-th row (x 6= i) is

(i x

x in Ai · · · px−i · · · βpi−x · · ·
)

,

where the values above are the column indices and omitted blocks are all zero. Here β = α if

x − i < r
2 or x − i = r

2 , i < r
2 , and β = 1 otherwise. Therefore, suppose i′ − i < r

2 or i′ − i =
r
2 , i < r

2 , then the i′-th small block row in Ai and the i-th small block row in Ai′ are the same except

for the coefficients:


i i′

i′ in Ai · · · pi′−i · · · αpi−i′ · · ·

i in Ai′ · · · pi′−i · · · pi−i′ · · ·

. (5.5)

82

Theorem 5.5 The code has optimal ratio 1/r for rebuilding any node. More specifically, when the

systematic node ei is erased, i ∈ [1, k− 1], we only need to access rows Yi = {v ∈ Zk
r : v · ei =

0}. When the parity i is erased, i ∈ [0, r − 1], we only need to access rows Xi = {v ∈ Zk
r :

v · (1, 1, · · · , 1) = i}.

Proof: Systematic rebuilding: W.l.o.g. assume column e1 is erased. Access equations

Y = {v ∈ Zk
r : v · e1 = 0} from each parity. We will show that all the unknowns (x0, . . . , xrk−1) in

column e1 are solvable from these equations. First notice that Y is a subgroup of Zk
r , and Y− tek =

Y for any t ∈ [0, r− 1]. So any index in Zk
r can be written as one of the following three cases:

l, l − te1, l + t(e1 − ek),

where l ∈ Y and 1 ≤ t ≤ b r
2c. So we need to show that an unknown element indexed by these

three cases is solvable.

For any l ∈ Y, assume l ∈ Y ∩ Xi′ for some i′. Then xl is contained in equation

xl

because of the i′-th small row block [· · · I · · ·] in Ai′
1 . Notice that l + (i − i′)ek ∈ Y ∩ Xi for all

i ∈ [0, r− 1]. In (5.5) consider row l in Ai and row l + (i− i′)ek in Ai′ , and write t = i′− i ≤ b r
2c.

Then we have equations

bxl−te1 + αcxl+t(e1−ek) = g

bxl−te1 + cxl+t(e1−ek) = h

for some coefficients α 6= 0, 1, b, c 6= 0 and g, h. These equations are obviously independent.

Hence all unknowns are solvable.

Next we show that the fraction of elements accessed in the remaining columns is 1/r. For a

parity node Ai, only rows Y are accessed, which is a fraction of 1/r. The corresponding columns

in Ai of theses equations are accessed from the systematic nodes. For a surviving systematic node

j ∈ [2, k − 1] and parity i, by definition of pi
j, rows Y in Ai

j are mapped to columns Y′ = Y +

i(ek − ej) + sek for some s. However, Y′ is a coset of Y and since i(ek − ej) + sek ∈ Y, we have

Y′ = Y. Thus only elements with indices Y are accessed from each node.

83

Parity rebuilding: Since the parities are all symmetric, w.l.o.g. suppose the 0-th parity is

erased. Access X0 from each node, which is the set of vectors of weight 0. Need to show this is

sufficient to recover

A = [A0
1, A0

2, . . . , A0
k−1],

where A0
j is defined in Construction 5.3. Since X0 is sent from the systematic nodes, the 0-th

column in each A0
j is known, and we can remove them from the equations. By (5.5), from parity i′

we can access row

[β′pi′
1 · · · p−i′

1 · · · β
′pi′

2 · · · p−i′
2 · · · · · · β

′pi′
k · · · p−i′

k · · ·],

where the underlined elements are known from the systematic nodes and can be treated as 0. Here

β′ is 1 or α. Multiplying this row by β, we can rebuild the i′-th row of A:

[pi′
1 · · · βp−i′

1 · · · p
i′
2 · · · βp−i′

2 · · · · · · p
i′
k · · · βp−i′

k · · ·],

where ββ′ = α, and again the underlined elements are known and treated as 0. So far we have

rebuilt row i′ in A, with i′ = 1, 2, . . . , r− 1. The 0-th row in A is

[I · · · I · · · · · · I · · ·]

and can be rebuilt from the systematic nodes directly. Thus the erased node is rebuilt by accessing

X0, which is 1/r of the elements.

It can be seen from the above proof that the rebuilding of any single erasure can be easily

implemented. If a systematic node is eared, we only need to solve at most two linear equations at a

time, and the computation can be done in parallel. If a parity is erased the rebuilding is even simpler:

we only need to subtract/add information elements, and multiply by β. Also, the rebuilding above

is different from Construction 4.24, where only one linear equation is solved at a time.

Example 5.6 Consider the code with two or three parities in Figure 5.2. When the first parity node

is erased, one can access X0 from the systematic nodes, and the underlined elements are known.

Then access the shaded elements from the surviving parity nodes. It is easy to see that the first parity

can be rebuilt from the accessed elements.

For the specific example of Figure 5.3, when the first systematic node is erased, one can access

84

rows Y1 = {v : v · e1 = 0} = {0, 1, 2, 3} from all the surviving nodes. When the first parity node is

erased, one can access rows X0 = {0, 3, 5, 6} from all the remaining nodes (the shaded elements).

Then it is easy to check that in both cases it is sufficient to rebuild the erased column.

Next we show the construction is indeed an MDS code. We prove this by reducing this problem

to the fact that Construction 5.1 is MDS. First we make an observation on the small blocks.

Lemma 5.7 Construction 5.1 is MDS iff any t× t sub-block matrix of

H′ =


p0

1 · · · p0
k

...
...

pr−1
1 · · · pr−1

k


k×k

is invertible, for all t ∈ [1, r].

Proof: First define a t× t sub-block matrix of H′:

H =


p0

1 · · · p0
t

...
...

pt−1
1 · · · pt−1

t

 .

We showed in the appendix that Construction 5.1 is MDS iff any G in (5.3) is invertible. W.l.o.g.

85

suppose {i1, . . . , it} = {0, . . . , t− 1}, {j1, . . . , jt} = {1, . . . , t}. By (5.4), G can be rewritten as

G =



I I

I I . . .
.

I I

p1 p2

p1 p2 . . .
.

p1 p2

p2
1 p2

2

p2
1 p2

2 . . .

p2
1 p2

2
.
...

...



,

where each big block is composed of r× r small blocks. We can see that the shaded small blocks are

the only non-zero blocks in their corresponding rows and columns, and they form the submatrix H.

Therefore G being invertible is equivalent to H and the remaining submatrix both being invertible.

Moreover the remaining submatrix has a similar form as G and we can again find t rows and t

columns corresponding to H. Continue this we get

det(G) 6= 0⇔ (det(H))r 6= 0⇔ det(H) 6= 0.

The same conclusion holds for any submatrix of H′. Thus completes the proof.

The method of taking out sub-block matrices to compute the determinant as above is also used

in the proof of the following theorem, which shows that Construction 5.3 is indeed an MDS code.

Theorem 5.8 If the coefficients in the linear combinations of the parities are chosen such that

Construction 5.1 is MDS, then Construction 5.3 is also MDS.

Proof: Similar to the proof of Theorem 5.2 in the appendix, Construction 5.3 being MDS

86

means any of the following matrix is invertible:

A =


Ai1

j1
· · · Ai1

jt
...

...

Ait
j1
· · · Ait

jt


t×t

,

where each submatrix is of size r × r and t ∈ [1, r], I = {i1, . . . , it} ⊆ [0, r − 1], {j1, . . . , jt} ⊆

[1, k− 1]. Let the complement of I be I = [0, r− 1]\I. In each big block consider the small block

column x ∈ I. Only small block rows x in each big block are non-zero. Thus we can take out this

t× t sub-block matrix: 
β1 pi1−x

j1
· · · β1 pi1−x

jt
...

...

βt pit−x
j1

· · · βt pit−x
jt

 ,

where {βi} are 1 or α. But by Lemma 5.7, the above matrix is invertible. So we only need to look

at the remaining submatrix. Again, we can take out another small block column and row from I

from each big block, and it is invertible by Lemma 5.7. Continue this process, we are left with only

columns and rows of I in each big block. For all i, i′ ∈ I, 1 ≤ i′ − i < r
2 or i′ − i = r

2 , i < r
2 ,

consider row i′ in Ai and row i in Ai′ . They are shown in (5.5). One can do row operations and

keep the invertibility of the matrix, and get


i i′ i i′

i′ in Ai · · · 0 · · · pi−i′
j1
· · · 0 · · · pi−i′

jt · · ·

i in Ai′ · · · pi′−i
j1
· · · 0 · · · pi′−i

jt · · · 0 · · ·

.

Proceed this for all i, i′ ∈ I, we are left with block diagonal matrix in each big block and the matrix

left is of size t2 × t2. Taking out the i1-th column and row in each big block, we have the following

t× t submatrix: 
p0

j1
· · · p0

jt

pi2−i1
j1

· · · pi2−i1
jt

...
...

pit−i1
j1

· · · pit−i1
jt

 ,

which is invertible by Lemma 5.7. Similarly, we can take out the i2-th column and row, and so on,

and each submatrix is again invertible. Thus, any matrix A is invertible and Construction 5.3 is

87

MDS.

For example, one can easily check that the code in Figure 5.3 is able to recover the information

from any two nodes. Therefore it is an MDS code.

Theorem 5.8 says that once we have an MDS code in Construction 5.1, we can use its coeffi-

cients and design a new code by Construction 5.3. And the new code is guaranteed to be an MDS

code.

5.4 Summary

In this chapter, we presented constructions of MDS array codes that achieve the optimal rebuilding

ratio 1/r, where r is the number of redundancy nodes. The new codes are constructed based on our

previous Construction 4.24 and improve the efficiency of the rebuilding access.

Now we mention a couple of open problems. First, in our construction each information element

is contained in 2r − 1 parity elements. This means if we update this element, we need to update

2r − 1 times in the parities. But an optimal-update code will require only r updates. So are there

codes that achieve optimal rebuilding ratio and also optimal update?

Besides, if there are k − 1 systematic nodes and r parity nodes, then our code has rk rows.

Namely, the code length is limited. Given the number of rows, are there codes that are longer? For

example, when r = 2, we know a construction with rk rows and k systematic nodes:

A0
j =

 I 0

pj I

 , A1
j =

I pj

0 I

 .

Here A0
j , A1

j are the matrices that generate the parities, and we can take all j ∈ [1, k]. This code has

one more information column than Construction 5.3, and also achieves optimal ratio. On the other

hand, however, given rk rows, it can be proven that any systematic and linear code with optimal

ratio has no more than k + 1 systematic nodes. Thus the code length k− 1 can be improved by at

most 2 nodes.

Finally, using Construction 4.24 one is able to rebuild any e, 1 ≤ e ≤ r, systematic erasures

with an access ratio of e/r. However, it is an open problem to construct a code that can rebuild any

e erasures with optimal access.

88

Chapter 6

Rebuilding Multiple Failures

6.1 Introduction

So far we have discussed codes with optimal rebuilding for a single systematic node erasure in

Chapter 4, for any single-node erasure in Chapter 5. In this chapter, we discuss the rebuilding for

other types of failures.

For a zigzag code with two parities, as the minimum distance is 3, the code is able to correct one

column erasure, two-column erasures, or any single column error. Column erasures happen when a

node is dysfunctional, not connected, or when errors in the node are treated as an erasure. We will

present decoding algorithm for erasures. On the other hand, errors may happen in a solid state drive,

or when errors are not treated as node erasures in a storage system. We assume in this case that a

column error corresponds to an arbitrary number of symbol errors in one column. By computing

syndromes one can locate and correct such errors.

In some applications such as solid state drives, one may encounter entire node erasure as well

as some bit flips, or single bit or symbol errors. In the presence of an error, rebuilding another node

erasure becomes more complicated: one needs to gather information and decide the error location,

error value, as well as to compute the lost node values. Therefore, we will study the capability of

the zigzag code in terms of correcting errors and erasures. In particular, we focus on the codes with

two parities. It is surprising that even though the minimum distance of this code is only 3, it still

corrects a node erasure plus some symbol errors, which in general would require larger minimum

distance.

Even though single-node erasure is the most common scenario in distributed or centralized

storage, it is possible to find two or more erasures at the same time as the storage system scales. If

the code has only two parities, one needs to read all the remaining file. However, we also consider

89

the following generalization: Suppose that we have an MDS code with three parity nodes, if we

have a single erasure, using our codes, we can rebuild the erasure with rebuilding ratio of 1/3.

What happens if we have two erasures? What is the rebuilding ratio in this case? We will show our

zigzag codes can achieve the optimal rebuilding ratio of 2/3. In general, if we have r ≥ 3 parity

nodes and e erasures happen, 1 ≤ e ≤ r, we will prove that the lower bound of repair bandwidth is

e/r (normalized by the size of the remaining array), and so is the rebuilding ratio. And the code we

constructed achieves this lower bound for any e.

6.2 Decoding of the Codes

In this section, we will discuss decoding algorithms of the zigzag codes in case of column erasures

as well as a column error. The algorithms work for both Construction 4.1 and its duplication code.

Let C be a (k + 2, k) MDS array code defined by Construction 4.1 (and possibly duplication).

The code has array size 2m × (k + 2). Let the zigzag permutations be f j, j ∈ [0, k− 1], which are

not necessarily distinct. Let the information elements be ai,j, and the row and zigzag parity elements

be ri and zi, respectively, for i ∈ [0, 2m − 1], j ∈ [0, k− 1]. W.l.o.g. assume the row coefficients

are αi,j = 1 for all i, j. And let the zigzag coefficients be βi,j in some finite field F.

For convenience we rewrite Construction 4.1 here.

Construction 6.1 (Construction 4.1) Let A be the information array of size 2m × k. Let T =

{v0, v1, . . . , vk−1} ⊆ Fm
2 be a set of vectors of size k. For v ∈ T, we define the permutation

fv : [0, 2m − 1] → [0, 2m − 1] by fv(x) = x + v. Construct the two parities as row and zigzag

parities.

The following is a summary of the erasure decoding algorithms.

Algorithm 6.2 (Erasure Decoding)

One erasure.

1) One parity node is erased. Rebuild the row parity by

ri =
k−1

∑
j=0

ai,j, (6.1)

and the zigzag parity by

zi =
k−1

∑
j=0

β f−1
j (i),ja f−1

j (i),j. (6.2)

90

2) One information node j is erased. Rebuild the elements in rows Xj by rows, and those in rows Xj

by zigzags. Here Xv = {x ∈ [0, 2m−1] : x · v = 0}.

Two erasures.

1) Two parity nodes are erased. Rebuild by (6.1) and (6.2).

2) One parity node and one information node is erased. If the row parity node is erased, rebuild by

zigzags; otherwise rebuild by rows.

3) Two information nodes j1 and j2 are erased.

- If f j1 = f j2 , for any i ∈ [0, 2m − 1], compute

xi = ri −∑j 6=j1,j2 ai,j

yi = z f j1 (i) −∑j 6=j1,j2 β f−1
j f j1 (i),ja f−1

j f j1 (i),j.
(6.3)

Solve ai,j1 , ai,j2 from the equations

 1 1

βi,j1 βi,j2

 ai,j1

ai,j2

 =

 xi

yi

 .

- Else, for any i ∈ [0, 2m − 1], set i′ = i + f j1(0) + f j2(0), and compute xi, xi′ , yi, yi′ according to

(6.3). Then solve ai,j1 , ai,j2 , ai′,j1 , ai′,j2 from equations


1 1 0 0

0 0 1 1

βi,j1 0 0 βi′,j2

0 βi,j2 βi′,j1 0




ai,j1

ai,j2

ai′,j1

ai′,j2

 =


xi

xi′

yi

yi′

 .

In case of a column error, we first compute the syndrome, then locate the error position, and

at last correct the error. Let x0, x1, . . . , xp−1 ∈ F. Denote f−1(x0, x1, . . . , xp−1) = (x f−1(0),

x f−1(1), . . . , x f−1(p−1)) for a permutation f on [0, p− 1]. The detailed algorithm is as follows.

Algorithm 6.3 (Error Decoding)

91

Compute for all i ∈ [0, 2m − 1]:

si,0 =
k−1

∑
j=0

ai,j − ri

si,1 =
k−1

∑
j=0

β f−1
j (i),ja f−1

j (i),j − zi.

Let the syndrome be S0 = (s0,0, s1,0, . . . , s2m−1,0) and S1 = (s0,1, s1,1, . . . , s2m−1,1).

- If S0 = 0 and S1 = 0, there is no error.

- Else if one of S0, S1 is 0, there is an error in the parity. Correct it by (6.1) or (6.2).

- Else, find the error location. For j = 0 to k− 1:

Compute for all i ∈ [0, 2m − 1], xi,j = βi,jsi,0.

Let Xj = (x0,j, . . . , x2m−1,j) and Yj = f−1
j (Xj).

If Yj = S1, subtract S0 from column j. Stop.

If no such j is found, there are more than one error.

If there is only one error, the above algorithm is guaranteed to find the error location and correct

it, since the code is MDS, as the following theorem states.

Theorem 6.4 Algorithm 6.3 can correct one column error.

Proof: Notice that each zigzag permutation f j is the inverse of itself by Construction 4.1, or

f j = f−1
j . Suppose there is error in column j, and the error is E = (e0, e1, . . . , e2m−1). So the

received column j is the sum of the original information and E. Thus the syndromes are si,0 = ei

and

si,1 = β f j(i),je f j(i).

For column t, t ∈ [0, k− 1], we have xi,t = βi,tsi,0 = βi,tei. Write Yt = f−1
j (Xj) = (y0,t, . . . , y2m−1,t)

and then

yi,t = x ft(i),t = β ft(i),te ft(i).

We will show the algorithm finds Yt = S1 iff t = j, and therefore subtracting S0 = E from column

j will correct the error. When t = j, yi,t = si,1, for all i ∈ [0, 2m − 1], so Yj = S1. Now suppose

there is t 6= j such that Yt = S1. Since the error E is nonzero, there exists i such that e f j(i) 6= 0.

92

Consider the indices i and i′ = ft f j(i). yi,t = si,1 yields

β ft(i),te ft(i) = β f j(i),je f j(i). (6.4)

Case 1: When ft = f j, set r = ft(i) = f j(i), then (6.4) becomes βr,ter = βr,jer with er 6= 0.

Hence βr,t = βr,j which contradicts (4.19).

Case 2: When ft 6= f j, since ft, f j are commutative and are inverse of themselves, ft(i′) =

ft ft f j(i) = f j(i) and f j(i′) = f j ft f j(i) = ft(i). Therefore yi′,t = si′,1 yields

β f j(i),te f j(i) = β ft(i),je ft(i). (6.5)

The two equations (6.4) (6.5) have nonzero solution (e f j(i), e ft(i)) iff

β ft(i),tβ f j(i),t = β f j(i),jβ ft(i),j,

which contradicts (10.2) with r = ft(i), r′ = f j(i). Hence the algorithm finds the unique erroneous

column.

If the computations are done in parallel for all i ∈ [0, 2m − 1], then Algorithm 6.3 can be done

in time O(k). Moreover, since the permutations fi’s only change one bit of a number in [0, 2m − 1]

in the optimal code in Theorem 4.3, the algorithm can be easily implemented.

6.3 Correcting Column Erasure and Element Error

In array codes for storage systems, data is arranged in a 2D array. Each column in the array is

typically stored in a separate disk and is called a node, and each entry in the array is call ed an

element. In the conventional error model, disk failures correspond to an erasure or an error of

an entire node. Therefore, array codes are usually designed to correct such entire node failures.

However, if we consider different applications, such as the case of flash memory as storage nodes,

element error is also possible. In other words, we may encounter only a few errors in a column as

well as entire node erasures. For an MDS array code with two parities, the minimum Hamming

distance is 3, therefore, it is not possible to correct a node erasure and a node error at the same

time. However, since zigzag code has very long column lengths, we ask ourselves: is it capable of

correcting a node erasure and some element errors?

93

Given a (k + 2, k) zigzag code generated by distinct binary vectors T = {v0, v1, . . . , vk−1},

the following algorithm corrects a node erasure and an element error. Here we assume that the

erasure and error are in different columns, and there is only a single element error in the systematic

part of the array. The code has two parities and 2m rows, and the zigzag permutations are f j =

vj, j ∈ [0, k − 1]. The original array is denoted by (ai,j), the erroneous array is (âi,j). The row

coefficients are all ones, and the zigzag coefficients are βi,j. Let x0, x1, . . . , xp−1 ∈ F. Denote

f−1(x0, x1, . . . , xp−1) = (x f−1(0), x f−1(1), . . . , x f−1(p−1)) for a permutation f on [0, p− 1].

Algorithm 6.5 Suppose column t is erased, and there is at most one element error in the remaining

array. Compute for all i ∈ [0, 2m − 1] the syndromes:

si,0 = ∑
j 6=t

âi,j − ri,

si,1 = ∑
j 6=t

β f−1
j (i),j â f−1

j (i),j − zi.

Let the syndrome be S0 = (s0,0, s1,0, . . . , s2m−1,0) and S1 = (s0,1, s1,1, . . . , s2m−1,1).

Compute for all i ∈ [0, 2m− 1], xi = βi,tsi,0. Let X = (x0, . . . , x2m−1), Y = f−1
t (S1), W = X−Y.

- If W = 0, there is no element error. Assign column t as −S0.

- Else, there will be two rows r, r′ such that wr, wr′ are nonzero. Find j such that vj = r + r′ + vt.

The error is in column j.

- If wr
wr′

= − βr,t
βr,j

, then the error is at row r, and assign ar,j = âr,j − Wr
βr,t

.

- Else if wr
wr′

= − βr′ ,j
βr′ ,t

, then the error is at row r′, and assign ar′,j = âr′,j −
Wr′
βr′ ,t

.

- Else there are more than one errors.

Theorem 6.6 The above algorithm can correct a node erasure and a systematic element error.

Proof: Suppose column t is erased and there is an error at column j and row r. Define

r′ = r + vt + vj. Let âr,j = ar,j + e. It is easy to see that xi = yi = −βi,tai,t except when i = r, r′.

Since the set of binary vectors {v0, v1, . . . , vk−1} are distinct, we know that the error is in column

j. Moreover,we have

xr = −βr,tar,t + βr,te,

yr = −βr,tar,t,

xr′ = −βr′,tar′,t,

94

yr′ = −βr′,tar′,t + βr,je.

Therefore, the difference between X and Y is

wr = xr − yr = βr,te,

wr′ = xr′ − yr′ = −βr,je.

And we can see that no matter what e is, we always have

wr

wr′
= −βr,t

βr,j
.

Similarly, if the error is at row r′, we will get

wr

wr′
= −

βr′,j

βr′,t
.

By the MDS property of the code, we know that βr,tβr′,t 6= βr,jβr′,j (see the remark after the proof

of the finite field size 3). Therefore, we can distinguish between the two cases of an error in row r

and in row r′.

Example 6.7 Consider the zigzag code in Figure 6.1. Suppose all of column 0 is erased. And

suppose there is an error in the 0-th element in column 1. Namely, the erroneous symbol we read

is b̂0 = b0 + e for some error e 6= 0 ∈ F3, see Figure 6.2. We can simply compute the syndrome,

locate this error, and recover the original array. Since the erased column corresponds to the zero

vector, and all the coefficients in column 0 are ones. The algorithm is simplified. For i ∈ [0, 3],

we compute the syndromes and subtract them, we get zeros in all places except row 0 and 2, which

satisfy 0 + 2 = (0, 0) + (1, 0) = (1, 0) = e1. Therefore, we know the location of the error is in

column 1 and row 0 or 2. But since W0 = −W2, we know the error is in b̂0 (If W0 = W2, the error

is in b̂2).

In practice, when we are confident that there are no element errors besides the node erasure,

we can use the optimal rebuilding algorithm in Section 4.2.2 and access only half of the array to

rebuild the failed node. However, we can also try to rebuild this node by accessing the other half

of the array. Thus we will have two recovered version for the same node. If they are equal to each

other, there are no element errors; if not, there are element errors. Thus, we have the flexibility of

95

0 1 2 R Z
0 a0 b0 c0 r0 = a0 + b0 + c0 z0 = a0 + 2b2 + 2c1
1 a1 b1 c1 r1 = a1 + b1 + c1 z1 = a1 + 2b3 + c0

2 a2 b2 c2 r2 = a2 + b2 + c2 z2 = a2 + b0 + c3

3 a3 b3 c3 r3 = a3 + b3 + c3 z3 = a3 + b1 + 2c2

Figure 6.1: (5, 3) zigzag code generated by the standard basis and the zero vector. All elements are
over F3.

0 1 2 R Z S0 S1 W = S0 − S1
0 b0 + e c0 r0 z0 −a0 + e −a0 e
1 b1 c1 r1 z1 −a1 −a1 0
2 b2 c2 r2 z2 −a2 −a2 + e −e
3 b3 c3 r3 z3 −a3 −a3 0

Figure 6.2: An erroneous array of the (5, 3) zigzag code. There is a node erasure in column 0 and
an element error in column 1. All the other elements are not corrupted. S0, S1 are the syndromes.

achieving optimal rebuilding ratio or correcting extra errors.

When there is one node erasure and more than one element errors in column j and row R =

{r1, r2, . . . , rl}, following the same techniques, it is easy to see that the code is able to correct

systematic errors if

R ∪ (R + vj) 6= R′ ∪ (R′ + vi)

for any set of rows R′ and any other column index i, and ri 6= rt + vj for any i, t ∈ [l].

When the code has more than two parities, the zigzag code can again correct element errors

exceeding the bound by the Hamming distance. To detect errors, one can either compute the syn-

dromes, or rebuild the erasures multiple times by accessing different e/r parts of the array.

Finally, it should be noted that if a node erasure and a single error happen in a parity column,

then we cannot correct this error in the (k + 2, k) code.

6.4 Rebuilding Multiple Erasures

In this section, we discuss the rebuilding of e erasures, 1 ≤ e ≤ r. We will first prove the lower

bound for rebuilding ratio and repair bandwidth. Then we show a construction achieving the lower

bound for systematic nodes. At last we generalize this construction and Construction 4.24, and

propose a rebuilding algorithm using an arbitrary subgroup and its cosets. We repeat the (k + r, k)

zigzag Construction 4.24 below.

96

Construction 6.8 (Construction 4.24) Let A = (ai,j) be the information array of size rm × k, for

some integers k, m. Let T = {v0, ..., vk−1} ⊆ Zm
r be a subset of vectors of size k, where for each

v = (v1, ..., vm) ∈ T,

gcd(v1, ..., vm, r) = 1, (6.6)

and gcd is the greatest common divisor. For any l, 0 ≤ l ≤ r − 1, and v ∈ T we define the

permutation f l
v : [0, rm − 1] → [0, rm − 1] by f l

v(x) = x + lv, where by abuse of notation we use

x ∈ [0, rm − 1] both to represent the integer and its r-ary representation, and all the calculations

are done over Zr. For simplicity denote the permutation f l
vj

as f l
j for vj ∈ T. For t ∈ [0, rm − 1],

we define the zigzag set Zl
t in parity node l, as the elements ai,j such that their coordinates satisfy

f l
j (i) = t. In a rebuilding of systematic node i the elements in rows Xl

i = {x ∈ [0, rm− 1] : x · vi =

r− l} are rebuilt by parity node l, l ∈ [0, r− 1], where the inner product in the definition is done

over Zr. From (6.6) we get that for any i and l, |Xl
i | = rm−1.

In this section, in order to simplify some of the results we will assume that r is a prime and the

calculations are done over Fr. Note that all the result can be generalized with minor changes for an

arbitrary integer r and the ring Zr.

6.4.1 Lower Bounds

The next theorem shows that the rebuilding ratio for Construction 4.24 is at least e/r.

Theorem 6.9 Let A be an array with r parity nodes constructed by Construction 4.24. In an erasure

of 1 ≤ e ≤ r systematic nodes, the rebuilding ratio is at least e
r .

Proof: In order to recover the information in the systematic nodes we need to use at least

erm zigzag sets from the rm+1 sets (There are r parity nodes, rm zigzag sets in each parity). By the

pigeonhole principle there is at least one parity node, such that at least erm−1 of its zigzag sets are

used. Hence each remaining systematic node has to access its elements that are contained in these

zigzag sets. Therefore each systematic node accesses at least erm−1 of its information out of rm,

which is a portion of e
r .

Since we use at least erm zigzag sets, we use at least erm elements in the r parity nodes, which

is again a portion of e
r . Hence the overall rebuilding ratio is at least e

r .

In a general code (not necessary MDS, systematic, or optimal update), what is the amount of

information needed to transmit in order to rebuild e nodes? Assume that in the system multiple nodes

97

are erased, and we rebuild these nodes simultaneously from information in the remaining nodes. It

should be noted that this model is a bit different from the distributed repair problem, where the

recovery of each node is done separately. We follow the definitions and notations of [SRVKR12].

An exact-repair reconstructing code satisfies the following two properties: (i)Reconstruction: any k

nodes can rebuild the total information. (ii)Exact repair: if e nodes are erased, they can be recovered

exactly by transmitting information from the remaining nodes.

Suppose the total amount of information isM, and the n nodes are [n]. For e erasures, 1 ≤ e ≤

r, denote by α, de, βe the amount of information stored in each node, the number of nodes connected

to the erased nodes, and the amount of information transmitted by each of the nodes, respectively.

For subsets A, B ⊆ [n], WA is the amount of information stored in nodes A, and SB
A is the amount

of information transmitted from nodes A to nodes B in the rebuilding.

The following results give lower bound of repair bandwidth for e erasures, and the proofs are

based on [SRVKR12].

Lemma 6.10 Let B ⊆ [n] be a subset of nodes of size |e|, then for an arbitrary set of nodes A,

|A| ≤ de such that B ∩ A = ∅,

H(WB|WA) ≤ min{|B|α, (de − |A|)βe}.

Proof: If nodes B are erased, consider the case of connecting to them nodes A and nodes C,

|C| = de − |A|. Then the exact-repair condition requires

0 = H(WB|SB
A, SB

C)

= H(WB|SB
A)− I(WB, SB

C|SB
A)

≥ H(WB|SB
A)− H(SB

C)

≥ H(WB|SB
A)− (d− |A|)βe

≥ H(WB|WA)− (d− |A|)βe.

Moreover, it is clear that H(WB|WA) ≤ H(WB) ≤ |B|α and the result follows.

Theorem 6.11 Any reconstructing code with file sizeM must satisfy for any 1 ≤ e ≤ r

M≤ sα +
b k

e c−1

∑
i=0

min{eα, (de − ie− s)βe}

98

where s = k mod e, 0 ≤ s < e. Moreover for an MDS code, βe ≥ eM
k(d−k+e) .

Proof: The file can be reconstructed from any set of k nodes, hence

M = H(W[k])

= H(W[s]) +
b k

e c−1

∑
i=0

H(W[ie+s+1,(i+1)e+s]|W[ie+s])

≤ sα +
b k

e c−1

∑
i=0

min{eα, (de − ie− s)βe}.

In an MDS code α = M
k , hence in order to satisfy the inequality any summand of the form

min{eα, (de − ie − s)βe} must be at least eMk , which occurs if and only if (de − (b k
e c − 1)e −

s)βe ≥ eM
k . Hence we get

βe ≥
eM

k(d− k + e)
.

And the proof is completed.

Therefore, the lower bound of the repair bandwidth for an MDS code is eM
k(d−k+e) , which is the

same as the lower bound of the rebuilding ratio in Theorem 6.9.

6.4.2 Rebuilding Algorithms

Next we discuss how to rebuild in case of e erasures, 1 ≤ e ≤ r, for an MDS array code with

optimal update. Theorem 6.11 gives the lower bound e/r on the rebuilding ratio for e erasures. Is

this achievable? Let us first look at an example.

Example 6.12 Consider the code in Figure 4.8 with r = 3. When e = 2 and columns C0, C1 are

erased, we can access rows {0, 1, 3, 4, 6, 7} in column C2, C3, rows {1, 2, 4, 5, 7, 8} in column C4,

and rows {2, 0, 5, 3, 8, 6} in column C5. One can check that the accessed elements are sufficient to

rebuild the two erased columns, and the ratio is 2/3 = e/r. It can be shown that similar rebuilding

can be done for any two systematic node erasures. Therefore, in this example the lower bound is

achievable.

Consider an information array of size p × k and an (n, k) MDS code with r = n − k parity

nodes. Each parity node l ∈ [0, r − 1] is constructed from the set of permutations { f l
i } for i ∈

[0, k− 1]. Notice that in the general case the number of rows p in the array is not necessarily a power

of r. We will assume columns [0, e− 1] are erased. In an erasure of e columns, ep elements need

99

rebuilt, hence we need ep equations (zigzags) that contain these elements. In an optimal rebuilding,

each parity node contributes ep/r equations by accessing the values of ep/r of its zigzag elements.

Moreover, the union of the zigzag sets that create these zigzag elements, constitute an e/r portion

of the elements in the surviving systematic nodes. In other words, assume that we access rows X

from the surviving columns [e, k− 1], X ⊆ [0, p− 1], then |X| = ep/r and

f l
j (X) = f l

i (X)

for any parity node l ∈ [0, r− 1] and i, j ∈ [e, k− 1]. Note that it is equivalent that for any parity

node l ∈ [0, r− 1] and surviving systematic node j ∈ [e, k− 1]

f l
j (X) = f l

e(X).

Let Gl be the subgroup of the symmetric group Sp that is generated by the set of permutations

{ f−l
e ◦ f l

j }
k−1
j=e . It is easy to see that the previous condition is also equivalent to that for any parity

l ∈ [0, r− 1] the group Gl stabilizes X, i.e., for any f ∈ Gl , f (X) = X.

Assuming there is a set X that satisfies this condition, we want to rebuild the ep elements from

the chosen ep equations, i.e., the ep equations with the ep variables being solvable. A necessary

condition is that each element in the erased column will appear at least once in the chosen zigzag

sets (equations). parity l ∈ [0, r − 1] accesses its zigzag elements f l
e(X), and these zigzag sets

contain the elements in rows (f l
i)
−1 f l

e(X) of the erased column i ∈ [0, e− 1]. Hence the condition

is equivalent to that for any erased column i ∈ [0, e− 1]

∪r−1
l=0(f l

i)
−1 f l

e(X) = [0, p− 1].

These two conditions are necessary for optimal rebuilding ratio. In addition, we need to make

sure that the ep equations are linearly independent, which depends on the coefficients in the linear

combinations that created the zigzag elements. We summarize:

Sufficient and necessary conditions for optimal rebuilding ratio in e erasures: There exists a

set X ⊆ [0, p− 1] of size |X| = ep/r, such that

1. For any parity node l ∈ [0, e− 1] the group Gl stabilizes the set X, i.e., for any g ∈ Gl

g(X) = X, (6.7)

100

where Gl is generated by the set of permutations { f−l
e ◦ f l

j }
k−1
j=e .

2. For any erased column i ∈ [0, e− 1],

∪r−1
l=0 (f l

i)
−1 f l

e(X) = [0, p− 1]. (6.8)

3. The ep equations (zigzag sets) defined by the set X are linearly independent.

The previous discussion gave the condition for optimal rebuilding ratio in an MDS optimal-

update code with e erasures in general. Next will interpret these conditions in the special case

where the number of rows p = rm, and the permutations are generated by T = {v0, v1, . . . , vk−1}

⊆ Fm
r and Construction 4.24, i.e., f l

i (x) = x + lvi for any x ∈ [0, rm − 1]. Note that in the case of

r a prime

G1 = G2 = ... = Gr−1,

and in that case we simply denote the group as G. The following theorem gives a simple character-

ization for sets that satisfy condition 1.

Theorem 6.13 Let X ⊆ Fm
r and G defined above then G stabilizes X, if and only if X is a union of

cosets of the subspace

Z = span{ve+1 − ve, . . . , vk−1 − ve}. (6.9)

Proof: It is easy to check that any coset of Z is stabilized by G, hence if X is a union of

cosets it is also a stabilized set. For the other direction let x, y ∈ Fm
r be two vectors in the same

coset of Z, it is enough to show that if x ∈ X then also y ∈ X. Since y − x ∈ Z there exist

α1, ..., αk−1−e ∈ [0, r − 1] such that y − x = ∑k−1−e
i=1 αi(ve+i − ve). Since f (X) = X for any

f ∈ G we get that f (x) ∈ X for any x ∈ X and f ∈ G, hence

y = x + y− x

= x +
k−1−e

∑
i=1

αi(ve+i − ve)

= f−αk−1−e
e f αk−1−e

k−1 ... f−α1
e f α1

e+1(x),

for f−αk−1−e
e f αk−1−e

k−1 ... f−α1
e f α1

e+1 ∈ G. So y ∈ X and the result follows.

101

Remark: For any set of vectors S and v, u ∈ S,

span{S− v} = span{S− u}.

Here S− v = {vi − v|vi ∈ S}. Hence, the subspace Z defined in the previous theorem does not

depend on the choice of the vector ve. By the previous theorem we interpret the necessary and

sufficient conditions of an optimal code as follows:

There exists a set X ⊆ Fm
r of size |X| = erm−1, such that

1. X is a union of cosets of

Z = span{ve+1 − ve, . . . , vk−1 − ve}.

2. For any erased column i ∈ [0, e− 1],

∪r−1
l=0 (X + l(vi − ve)) = Fm

r . (6.10)

3. The erm equations (zigzag sets) defined by the set X are linearly independent.

The following theorem gives a simple equivalent condition for conditions 1, 2.

Theorem 6.14 There exists a set X ⊆ Fm
r of size |X| = erm−1 such that conditions 1, 2 are satisfied

if and only if

vi − ve /∈ Z, (6.11)

for any erased column i ∈ [0, e− 1].

Proof: Assume conditions 1, 2 are satisfied. If vi − ve ∈ Z for some erased column i ∈

[0, e − 1] then X = ∪r−1
l=0(X + l(vi − ve)) = Fm

r , which is a contradiction to X (Fm
r . On the

other hand, If (6.11) is true, then vi − ve can be viewed as a permutation that acts on the cosets of

Z. The number of cosets of Z is rm/|Z| and this permutation (when it is written in cycle notation)

contains rm−1/|Z| cycles, each with length r. For each i ∈ [0, e− 1] choose rm−1/|Z| cosets of

Z, one from each cycle of the permutation vi − ve. In total erm−1/|Z| cosets are chosen for the e

erased nodes. Let X be the union of the cosets that were chosen. It is easy to see that X satisfies

condition 2. If |X| < erm−1 (Since there might be cosets that were chosen more than once) add

arbitrary (erm−1 − |X|)/|Z| other cosets of Z, and also condition 1 is satisfied.

102

In general, if (6.11) is not satisfied, the code does not have an optimal rebuilding ratio. However

we can define

Z = span{vi − ve}i∈I , (6.12)

where we assume w.l.o.g. e ∈ I and I ⊆ [e, k − 1] is a maximal subset of surviving nodes that

satisfies for any erased node j ∈ [0, e − 1], vj − ve /∈ Z. Hence from now on we assume that

Z is defined by a subset of surviving nodes I. This set of surviving nodes will have an optimal

rebuilding ratio (see Corollary 6.18), i.e., in the rebuilding of columns [0, e − 1], columns I will

access a portion of e/r of their elements. The following theorem gives a sufficient condition for the

erm equations defined by the set X to be solvable linear equations.

Theorem 6.15 Suppose that there exists a subspace X0 that contains Z such that for any erased

node i ∈ [0, e− 1]

X0 ⊕ span{vi − ve} = Fm
r , (6.13)

then the set X defined as an union of some e cosets of X0 satisfies conditions 1, 2 and 3 over a field

large enough.

Proof: Condition 1 is trivial. Note that by (6.13), l(vi − ve) /∈ X0 for any l ∈ [1, r− 1] and

i ∈ [0, e− 1], hence {X0 + l(vi − ve)}l∈[0,r−1] is the set of cosets of X0. Let Xj = X0 + j(vi − ve)

be a coset of X0 for some i ∈ [0, e− 1] and suppose Xj ⊂ X. Now let us check condition 2:

∪r−1
l=0(X + l(vi − ve)) ⊇ ∪r−1

l=0(Xj + l(vi − ve))

= ∪r−1
l=0(X0 + j(vi − ve) + l(vi − ve))

= ∪r−1
l=0(X0 + (j + l)(vi − ve))

= ∪r−1
t=0(X0 + t(vi − ve)) (6.14)

= Fm
r . (6.15)

(6.14) holds since j + l is computed mod r. So condition 2 is satisfied. Next we prove condition

3. There are erm unknowns and erm equations. Writing the equations in a matrix form we get

AY = b, where A is an erm × erm matrix. Y, b are vectors of length erm, and Y = (y1, ..., yerm)T

is the unknown vector. The matrix A = (ai,j) is defined as ai,j = xi,j if the unknown yj appears

in the i-th equation, otherwise ai,j = 0. Hence we can solve the equations if and only if there is

assignment for the unknowns {xi,j} in the matrix A such that det(A) 6= 0. By (6.15), accessing

103

rows corresponding to any coset Xj will give us equations where each unknown appears exactly

once. Since X is a union of e cosets, each unknown appears e times in the equations. Thus each

column in A contains e unknowns. Moreover, each equation contains one unknown from each

erased node, thus any row in A contains e unknowns. Then by Hall’s Marriage Theorem [Hal35]

we conclude that there exists a permutation f on the integers [1, erm] such that

erm

∏
i=1

ai, f (i) 6= 0.

Hence the polynomial det(A) when viewed as a symbolic polynomial, is not the zero polynomial,

i.e.,

det(A) = ∑
f∈Serm

sgn(f)
erm

∏
i=1

ai, f (i) 6= 0.

By Theorem 4.9 we conclude that there is an assignment from a field large enough for the unknowns

such that det(A) 6= 0, and the equations are solvable. Note that this proof is for a specific set of

erased nodes. However if (6.13) is satisfied for any set of e erasures, multiplication of all the nonzero

polynomials det(A) derived for any set of erased nodes is again a nonzero polynomial and by the

same argument there is an assignment over a field large enough such that any of the matrices A is

invertible, and the result follows.

In order to use Theorem 6.15, we need to find a subspace X0 as in (6.13). The following theorem

shows that such a subspace always exists, moreover it gives an explicit construction of it.

Theorem 6.16 Suppose 1 ≤ e < r erasures occur. Let Z be defined by (6.12) and vi − ve /∈ Z for

any erased node i ∈ [0, e− 1]. Then there exists u ⊥ Z such that for any i ∈ [0, e− 1],

u · (vi − ve) 6= 0. (6.16)

Moreover the orthogonal subspace X0 = (u)⊥ satisfies (6.13).

Proof: First we will show that such vector u exists. Let u1, ...ut be a basis for (Z)⊥ the

orthogonal subspace of Z. Any vector u in (Z)⊥ can be written as u = ∑t
j=1 xjuj for some xj’s.

We claim that for any i ∈ [0, e− 1] there exists j such that uj · (vi − ve) 6= 0. Because otherwise,

(Z)⊥ = span{u1, . . . , ut} ⊥ vi − ve, which means vi − ve ∈ Z and reaches a contradiction. Thus

104

the number of solutions for the linear equation

t

∑
j=1

xjuj · (vi − ve) = 0

is rt−1, which equals the number of u such that u · (vi − ve) = 0. Hence by the union bound there

are at most ert−1 vectors u in (Z)⊥ such that u · (vi − ve) = 0 for some erased node i ∈ [0, e− 1].

Since |(Z)⊥| = rt > ert−1 there exists u in (Z)⊥ such that for any erased node i ∈ [0, e− 1],

u · (vi − ve) 6= 0.

Define X0 = (u)⊥, and note that for any erased node i ∈ [0, e− 1], vi − ve /∈ X0, since u · (vi −

ve) 6= 0 and X0 is the orthogonal subspace of u. Moreover, since X0 is a hyperplane we conclude

that

X0 ⊕ span{vi − ve} = Fm
r ,

and the result follows.

Theorems 6.15 and 6.16 give us an algorithm to rebuild multiple erasures:

1. Find Z by (6.12) satisfying (6.11).

2. Find u ⊥ Z satisfying (6.16). Define X0 = (u)⊥ and X as a union of e cosets of X0.

3. Access rows f l
e(X) in parity l ∈ [0, r− 1] and all the corresponding information elements.

We know that under a proper selection of coefficients the rebuilding is possible.

In the following we give two examples of rebuilding using this algorithm. The first example

shows an optimal rebuilding for any set of e node erasures. As mentioned above, the optimal

rebuilding is achieved since (6.11) is satisfied, i.e., I = [e, k− 1].

Example 6.17 Let T = {v0, v1, . . . , vm} be a set of vectors that contains an orthonormal basis

of Fm
r together with the zero vector. Suppose columns [0, e− 1] are erased. Note that in that case

I = [e, m] and Z is defined as in (6.12). Define

u =
m

∑
j=e

vj,

105

and X0 = (u)⊥. When m = r and e = r− 1, modify u to be

u =
m

∑
i=1

vi.

It is easy to check that u ⊥ Z and for any erased column i ∈ [0, e − 1], u · (vi − ve) = −1.

Therefore by Theorems 6.15 and 6.16 a set X defined as a union of an arbitrary e cosets of X0

satisfies conditions 1, 2 and 3, and optimal rebuilding is achieved.

If we take the orthonormal vectors in T as the standard basis and zero vector, we get the code

in Theorem 4.27 and we know for any e erasures, the rebuilding ratio is e/r. When columns C0, C1

are erased in Figure 4.8, u = e2 and X0 = (u)⊥ = span{e1} = {0, 3, 6}. Take X as the union

of X0 and its coset {1, 4, 7}, which is the same as Example 6.12. One can check that each erased

element appears exactly 3 times in the equations and the equations are solvable in F4. Similarly, the

equations are solvable for other 2 systematic erasures.

Before we proceed to the next example, we give an upper bound for the rebuilding ratio using

Theorem 6.15 and a set of nodes I.

Corollary 6.18 Theorem 6.15 requires rebuilding ratio at most

e
r

+
(r− e)(k− |I| − e)

r(k + r− e)

Proof: By Theorem 6.15, the fraction of accessed elements in columns I and the parity

columns is e/r of each column. Moreover, the accessed elements in the rest columns are at most an

entire column. Therefore, the ratio is at most

e
r (|I|+ r) + (k− |I| − e)

k + r− e
=

e
r

+
(r− e)(k− |I| − e)

r(k + r− e)

and the result follows.

Note that as expected when |I| = k− e the rebuilding ratio is optimal, i.e. e/r. In the following

example the code has O(m2) columns. The set I does not contain all the surviving systematic nodes,

hence the rebuilding is not optimal but is at most 1
2 + O(1

m).

Example 6.19 Suppose 2|m. Let T = {v = (v1, . . . , vm) : ‖v‖1 = 2, vi = 1, vj = 1, for some i ∈

[1, m/2], j ∈ [m/2 + 1, m]} ⊂ Fm
2 be the set of vectors generating the code with r = 2 parities,

hence the number of systematic nodes is |T| = k = m2/4. Suppose column w = (w1, . . . , wm),

106

w1 = wm/2+1 = 1 is erased. Define the set I = {v ∈ T : v1 = 0}, and

Z = span{vi − ve|i ∈ I}

for some e ∈ I. Thus |I| = m(m − 2)/4. It can be seen that Z defined by the set I satisfies

(6.11), i.e., w− ve /∈ Z since the first coordinate of a vector in Z is always 0, as oppose to 1 for

the vector w − ve. Define u = (0, 1, ..., 1) and X0 = (u)⊥. It is easy to check that u ⊥ Z and

u · (w− ve) = 1 6= 0. Hence, the conditions in Theorem 6.16 are satisfied and rebuilding can be

done using X0. Moreover by Corollary 6.18 the rebuilding ratio is at most

1
2

+
1
2

(m/2)− 1
(m2/4) + 1

≈ 1
2

+
1
m

,

which is a little better than Theorem 4.14 in the constants. Note that by similar coefficients assign-

ment of Construction 4.13, we can use a field of size 5 or 8 to assure that the code will be an MDS

code.

6.4.3 Minimum Number of Erasures with Optimal Rebuilding

Next we want to point out a surprising phenomenon. We say that a set of vectors S satisfies property

e for e ≥ 1 if for any subset A ⊆ S of size e and any u ∈ A,

u− v /∈ span{w− v : w ∈ S\A},

where v ∈ S\A. Recall that by Theorem 6.14 any set of vectors that generates a code C and can

rebuild optimally any e erasures, satisfies property e. The following theorem shows that this property

is monotonic, i.e., if S satisfies property e then it also satisfies property a for any e ≤ a ≤ |S|.

Theorem 6.20 Let S be a set of vectors that satisfies property e, then it also satisfies property a, for

any e ≤ a ≤ |S|.

Proof: Let A ⊆ S, |A| = e + 1 and assume to the contrary that u− v ∈ span{w− v : w ∈

S\A} for some u ∈ A and v ∈ S\A. |A| ≥ 2 hence there exists x ∈ A\u. It is easy to verify

that u− v ∈ span{w− v : w ∈ S\A∗}, where A∗ = A\x and |A∗| = e which contradicts the

property e for the set S.

107

Hence, from the previous theorem we conclude that a code C that can rebuild optimally e era-

sures, is able to rebuild optimally any number of erasures greater than e as well. However, as pointed

out already there are codes with r parities that cannot rebuild optimally from some e < r erasures.

Therefore, one might expect to find a code C with parameter e∗ ≥ 1 such that it can rebuild op-

timally e erasures only when e∗ ≤ e ≤ r. For example, for r = 3, m = 2 let C be the code

constructed by the vectors {0, e1, e2, e1 + e2}. We know that any code with more than 3 systematic

nodes cannot rebuild one erasure optimally, since the size of a family of orthogonal permutations

over the integers [0, 32 − 1] is at most 3. However, one can check that for any two erased columns,

the conditions in Theorem 6.15 are satisfied hence the code can rebuild optimally for any e = 2

erasures and we conclude that e∗ = 2 for this code.

The phenomena that some codes has a threshold parameter e∗, such that only when the number of

erasures e is at least as the threshold e∗ then the code can rebuild optimally, is a bit counter intuitive

and surprising. This phenomena gives rise to another question. We know that for a code constructed

with vectors from Fm
r , the maximum number of systematic columns for optimal rebuilding of e = 1

erasures is m + 1 (Theorem 4.28). Can the number of systematic columns in a code with an optimal

rebuilding of e > 1 erasures be increased? The previous example shows a code with 4 systematic

columns can rebuild optimally any e = 2 erasures. But Theorem 4.28 shows that when r = 3, m =

2, optimal rebuilding for 1 erasure implies no more than 3 systematic columns. Hence the number of

systematic columns is increased by at least 1 compared to codes with 9 rows and optimal rebuilding

of 1 erasure. The following theorem gives an upper bound for the maximum systematic columns in

a code that rebuilds optimally any e erasures.

Theorem 6.21 Let C be a code constructed by Construction 4.24 and vectors from Fm
r . If C can

rebuild optimally any e erasures, for some 1 ≤ e < r, then the number of systematic columns k in

the code satisfies

k ≤ m + e.

Proof: Consider a code with length k and generated by vectors v0, v1, . . . , vk−1. If these

vectors are linearly independent then k ≤ m and we are done. Otherwise they are dependent.

Suppose e columns are erased, 1 ≤ e < r. Let ve be a surviving column. Consider a new set a

of vectors: T = {vi − ve : i ∈ [0, k − 1], i 6= e}. We know that the code can rebuild optimally

only if (6.11) is satisfied for all possible e erasures. Thus for any i 6= e, i ∈ [0, k− 1], if column

i is erased and column e is not, we have vi − ve /∈ Z and thus vi − ve 6= 0. So every vector

108

in T is nonzero. Let s be the minimum number of dependent vectors in T, that is, the minimum

number of vectors in T such that they are dependent. For nonzero vectors, we have s ≥ 2. Say

{ve+1 − ve, ve+2 − ve, . . . , ve+s − ve} is a minimum dependent set of vector. Since any m + 1

vectors are dependent in Fm
r ,

s ≤ m + 1.

We are going to show k − e ≤ s − 1. Suppose to the contrary that the number of remaining

columns satisfies k− e ≥ s and e erasures occur. When column ve+s is erased and the s columns

{ve, ve+1, . . . , ve+s−1} are not, we should be able to rebuild optimally. However since we chose a

dependent set of vectors, ve+s − ve is a linear combination of {ve+1 − ve, ve+2 − ve, . . . , ve+s−1 −

ve}, whose span is contained in Z in (6.11). Hence (6.11) is violated and we reach a contradiction.

Therefore,

k− e ≤ s− 1 ≤ m.

Notice that this upper bound is tight. For e = 1 we already gave codes with optimal rebuilding

of 1 erasure and k = m + 1 systematic columns. Moreover, for e = 2 the code already presented

in this section and constructed by the vectors 0, e1, e2, e1 + e2, reaches the upper bound with k = 4

systematic columns.

6.4.4 Generalized Rebuilding Algorithms

The rebuilding algorithms presented in Constructions 4.1,4.24 and Theorem 6.15 all use a specific

subspace and its cosets in the rebuilding process. This method of rebuilding can be generalized by

using an arbitrary subspace as explained below.

Let T = {v0, . . . , vk−1} be a set of vectors generating the code in Construction 4.24 with rm

rows and r parities. Suppose e columns [0, e− 1] are erased. Let Z be a proper subspace of Fm
r . In

order to rebuild the erased nodes, in each parity column l ∈ [0, r− 1], access the zigzag elements

zl
i for i ∈ Xl , and Xl is a union of cosets of Z. In each surviving node, access all the elements that

are in the zigzag sets Xl of parity l. More specifically, access element ai,j in the surviving column

j ∈ [e, k− 1] if i + lvj ∈ Xl . Hence, in the surviving column j and parity l, we access elements in

rows Xl − lvj. In order to make the rebuilding successful we impose the following conditions on the

sets X0, ..., Xl . Since the number of equations needed is at least as the number of erased elements,

109

we require
r−1

∑
l=0
|Xl | = erm. (6.17)

Moreover we want the equations to be solvable, hence for any erased column i ∈ [0, e− 1],

∪r−1
l=0 Xl − lvi = [0, rm − 1] multiplicity e, (6.18)

which means if the union is viewed as a multiset, then each element in [0, rm − 1] appears exactly

e times. This condition makes sure that the equations are solvable by Hall’s theorem (see Theorem

6.15). Under these conditions we would like to minimize the ratio, i.e., the number of accesses

which is,

min
X0,...,Xr−1

k−1

∑
j=e
| ∪r−1

l=0 (Xl − lvj)|. (6.19)

In summary, for the generalized rebuilding algorithm one first chooses a subspace Z, and then

solves the minimization problem in (6.19) subject to (6.17) and (6.18).

The following example interprets the minimization problem for a specific case.

Example 6.22 Let r = 2, e = 1, i.e., two parities and one erasure, then equations (6.17),(6.18)

becomes

|X0|+ |X1| = 2m, X0 ∪ X1 + v0 = [0, 2m − 1].

Therefore X1 + v0 = X0. The objective function in (6.19) becomes,

min
X0,X1

k−1

∑
j=1
|X0 ∪ X1 + vj| = min

X0

k−1

∑
j=1
|X0 ∪ (X0 + v0 + vj)|.

Each v0 + vj defines a permutation fv0+vj on the cosets of Z by fv0+vj(A) = A + v0 + vj for a coset

A of Z. If v0 + vj ∈ Z then fv0+vj is the identity permutation and |X0 ∪ (X0 + v0 + vj)| = 2m,

regardless of the choice of X0. However, if v0 + vj /∈ Z, then fv0+vj is of order 2, i.e., it is composed

of disjoint cycles of length 2. Note that if fv0+vj maps A to B and only one of the cosets A, B is

contained in X0, say A, then only A is contained in X0 ∪ (X0 + v0 + vj). On the other hand, if

both A, B ∈ X0 or A, B /∈ X0 then,

A, B ⊆ X0 ∪ (X0 + v0 + vj).

In other words, (A, B) is a cycle in fv0+vj which is totally contained in X0 or in X0. Define NX
j as

110

the number of cycles (A, B) in the permutation fv0+vj that are totally contained in X or in X, where

X is a union of some cosets of Z. It is easy to see that the minimization problem is equivalent to

minimizing

min
X

k−1

∑
j=1

NX
j . (6.20)

In other words, we want to find a set X which is a union of cosets of Z, such that the number of totally

contained or totally not contained cycles in the permutations defined by vj + v0, j ∈ [1, k − 1] is

minimized.

From the above example, we can see that given a non-optimal code with two parities and one erasure,

finding the solution in (6.20) requires minimizing for the sum of these k− 1 permutations, which is

an interesting combinatorial problem. Moreover, by choosing a different subspace Z we might be

able to get a better rebuilding algorithm than that in Construction 4.1 or Theorem 6.15.

6.5 Concluding Remarks

In this chapter, we have discussed a variety of failure scenarios in storage systems. The failures can

be in an entire column or node, in some specific element or symbol, and we developed algorithms to

reconstruct the file. There are quite a few other failure or rebuilding models one might encounter in

practice. For example, when the request is for part of a node instead of an entire node, or degraded

read, the rebuilding ratio or code constructions are unknown.

For another example, during the rebuilding of one node, another node erasure may occur. Hav-

ing rebuilt some of the first failed node, it is interesting to find out how to rebuild the rest lost

information. This problem is also related to the cache size allocated during rebuilding. If the cache

size is as large as the file, we need to do nothing but simply rebuild from the cache. However, this is

not practical when the file or the number of nodes is large. Then it is not obvious what the necessary

access and computation is.

111

Chapter 7

Long MDS Array Codes with Optimal
Bandwidth

7.1 Introduction

We have studied MDS array codes with optimal rebuilding access ratio. However, one may find

that the number of systematic nodes is small compared to the size of each node. We showed some

constructions to lengthen the code in Section 4.4, however, these constructions do not have optimal

ratio exactly. In this chapter, we relax the constraint of optimal access, instead we construct long

MDS codes with optimal bandwidth.

The repair bandwidth (fraction) is defined as the fraction of the remaining data transmitted in

order to correct e erasures. In the chapter, we focus on rebuilding of a single systematic node, since

it is more commonly seen and relates directly to retrieving information. Denote the size of each

node or the column length as l. In other words, each column is a vector of length l and all the

elements are from a finite filed F. Let n, k, r = n− k be the number of all, systematic, and parity

nodes, respectively. Assume that a code is optimal bandwidth, then we study the code length, i.e.,

the number of systematic nodes k given l in this chapter. We write a code in the notation (n, k, l) to

emphasize these parameters.

For example, in Figure 7.1, we show an MDS code with 4 systematic nodes, r = 2 parity nodes,

and column length l = 2. One can check that this code can correct any two erasures, therefore it is

an MDS code. In order to repair any systematic node, only 1/r = 1/2 fraction of the remaining

information is transmitted. Thus this code has optimal repair.

If we are interested in the code length, low-rate (k/n ≤ 1/2) codes have a linear code length

l + 1 [SRKR10, SR10a]; on the other hand, high-rate (k/n > 1/2) constructions are relatively

112

N1 N2 N3 N4 P1 P2
a b c d a + b + c + d 2a + w + 2b + 3c + d
w x y z w + x + y + z 3w + b + 3x + 2y + z

Figure 7.1: (n = 6, k = 4, l = 2) MDS code over finite field F4 generated by primitive polynomial
x2 + x + 1. Here 2 is a primitive element of the field. The first 4 nodes are systematic and the last 2
are parities. To repair N1 transmit the first row from every remaining node. To repair N2 transmit
the second row. To repair N3 transmit the sum of both rows. And to repair N4 transmit the sum of
the first row and 2 times the second row from nodes N1, N2, N3, P1, and the sum of the first row
and 3 times the second row from node P2.

short. For example, suppose that we have 2 parity nodes, then the number of systematic nodes is

only log l in all of the constructions, except for [CHLM11] it is 2 log l. In [TWB12] it is shown that

an upper bound for the code length is k ≤ 1 + l(l
l/2), but the tightness of this bound is not known.

It is obvious that there is a big gap between this upper bound and the constructed codes.

The main contribution of this chapter is to construct codes with 2 parity nodes and 3 log l

systematic nodes. The code uses a finite field of size 1 + 2 log l. Moreover, we will give a

general construction of high-rate codes with (r + 1) logr l systematic nodes for arbitrary number

of parities r. It turns out that this construction is a combination of the code in [CHLM11] and

also [CHL11, PDC11a, TWB11].

In this chapter, we will introduce the bandwidth and code length problem, and present long

MDS code constructions first for two parities and then for arbitrary number of parities.

7.2 Problem Settings

An (n, k, l) MDS array code is an (n− k)-erasure-correcting code such that each symbol is a col-

umn of length l. The number of systematic symbols is k and the number of parity symbols is

r = n− k. We call each symbol a column or a node, and k the code length. We assume that the

code is systematic, hence the first k nodes of the code are information or systematic nodes, and the

last r nodes are parity or redundancy nodes.

Suppose the columns of the code are C1, C2, . . . , Cn, each being a column vector in Fl , for some

finite field F. We assume that for parity node k + i, information node j, the coding matrix is Ai,j of

size l × l, i ∈ [r], j ∈ [k]. And the parity columns are computed as

Ck+i =
k

∑
j=1

Ai,jCj,

113

for all i ∈ [r]. For example, in Figure 7.1, the coding matrices are A1,j = I for all j ∈ [k] and A2,j,

j = 1, 2, 3, 4 are  2 1

0 3

 ,

 2 0

1 3

 ,

 3 0

0 2

 ,

 1 0

0 1

 .

Here the finite field is F4 generated by x2 + x + 1. In our constructions, we require that A1,j = I

for all j ∈ [k]. Hence the first parity is the row sum of the information array. Even though this

assumption is not necessarily true for an arbitrary linear MDS array code, it can be shown that any

linear code can be equivalently transformed into one with such coding matrices [TWB12].

Suppose a code has optimal repair for any systematic node i, i ∈ [k], meaning only a fraction of

1/r data is transmitted in order to repair it. When a systematic node i is erased, we are going to use

size l/r× l matrices Si,j, j 6= i, j ∈ [n], to repair the node: From a surviving node j, we are going

to compute and transmit Si,jCj, which is only 1/r of the information in this node.

Notations: In order to simplify the notations, we write Si,j and Si,k+t At,j both as matrices of

size l/r× l and the subspaces of their row spans.

Optimal repair of a systematic node i is equivalent to the following subspace property: There

exist matrices Si,j, j 6= i, j ∈ [n], all with size l/r× l, such that for all j 6= i, j ∈ [k], t ∈ [r],

Si,j = Si,k+t At,j, (7.1)

where the equality is defined on the row spans instead of the matrices. And

r

∑
t=1

Si,k+t At,i = Fl . (7.2)

Here the sum of two subspaces A, B of Fl is defined as A + B = {a + b : a ∈ A, b ∈ B}.

Obviously, the dimension of each subspace Si,k+t At,i is no more than l/r, and the sum of r such

subspaces has dimension no more than l. This means these subspaces intersect only on the zero

vector. Therefore, the sum is actually the direct sum of vector spaces. Moreover, we know that each

Si,k+t has full rank l/r.

We claim that (7.1) (7.2) are necessary and sufficient conditions for optimal repair. The sketch

of the proof is as follows: suppose the code has optimal repair-bandwidth, then we need to transmit

l/r elements from each surviving column. Suppose we transmit Si,jCj from a systematic node

j 6= i, j ∈ [k], and Si,k+tCk+t = ∑k
z=1 Si,k+t At,zCz from a parity node k + t ∈ [k + 1, k + r].

114

Our goal is to recover Ci and cancel out all Cj, j 6= i, j ∈ [k]. In order to cancel out Cj, (7.1)

must be satisfied. In order to solve Ci, all equations related to Ci must have full rank l, so (7.2) is

satisfied. One the other hand, if (7.1) (7.2) are satisfied, one can transmit Si,jCj from each node j,

j 6= i, j ∈ [n] and optimally repair the node i. Similar interference alignment technique was first

introduced in [SR10b, CJM10] for the repair problem. Also, [SRKR10] was the first to formally

prove similar conditions.

It is shown in [TWB12] that we can further simplify our repair strategy of node i and assume

Si,j = Si, for all j 6= i, j ∈ [n] by equivalent transformation of the coding matrices (probably

with an exception of the strategy of one node). Then the subspace property becomes for any

j 6= i, j ∈ [k], t ∈ [r],

Si = Si At,j. (7.3)

Again the equality means equality of row spans. And the sum of subspaces satisfies

r

∑
t=1

Si At,i = Fl . (7.4)

Notice that if (7.3) is satisfied, we can say that Si is an invariant subspace of At,j (multiplied on

the left) for all parity nodes k + t and all information nodes j 6= i. If At,j is diagonalizable and

has l linearly independent left eigenvectors, an invariant subspace has a set of basis which are all

eigenvectors of At,j. As a result, our goal is to find matrices At,j and their invariant subspaces. And

by using sufficiently large finite field and varying the eigenvalues of the coding matrices, we are

able to ensure that the codes are MDS. Therefore, we will first focus on finding eigenvectors of the

coding matrices and then discuss about the eigenvalues.

For example, in Figure 7.1, the matrices Si, i = 1, 2, 3 are

(1, 0), (0, 1), (1, 1).

One can check that the subspace property (7.3)(7.4) is satisfied for i ∈ [3]. For instance, since

S3 = (1, 1) is an eigenvector for At,j, t = 1, 2, j = 1, 2, 4, we have S3 = S3At,j. And it is easy to

check that S3 ⊕ S3A2,3 = span(1, 1)⊕ span(3, 2) = F2. For the node N4, the matrices S4,j’s are

not equal. In fact S4,j = (1, 2) for j = 1, 2, 3, 5 and S4,6 = (1, 3).

115

7.3 Code Constructions with Two Parities

In this section, we are going to construct codes with column length l = 2m, k = 3m systematic

nodes, and r = 2 parity nodes. Here m is some integer. As we showed in the previous section, we

can assume the coding matrices are

 I · · · I

A1 · · · Ak

 , (7.5)

where A1,i = I and A2,i = Ai correspond to parity 1 and 2, respectively.

Now we only need to find coding matrices Ai’s, and subspaces Si’s. For now we only care about

eigenvectors of Ai, not its eigenvalues because eigenvectors determine the repair bandwidth. Later

we will show that using a large enough finite field, we can choose the eigenvalues such that the

code is indeed MDS. In the following construction, for any i ∈ [k], Ai has two different eigenvalues

λi,0, λi,1, each corresponding to l/2 = 2m−1 eigenvectors. Denote these eigenvectors as

Vi,0 =


vi,1

vi,2
...

vi,l/2


for eigenvalue λi,0, and

Vi,1 =


vi,l/2+1

vi,l/2+2
...

vi,l


for eigenvalue λi,1. Therefore, Ai can be computed as

Ai =

 Vi,0

Vi,1

−1 λi,0 I l
2×

l
2

λi,1 I l
2×

l
2

 Vi,0

Vi,1

 .

By abuse of notations, we also use Vi,0, Vi,1 to represent the eigenspace corresponding to λi,0, λi,1,

respectively. Namely, Vi,0 = span{vi,1, . . . , vi,l/2} and Vi,1 = span{vi,l/2+1, . . . , vi,l}.

When a systematic node i is erased, i ∈ [k], we are going to use Si to rebuild it. The subspace

116

property becomes

Si = Si Aj, ∀j 6= i, j ∈ [k], (7.6)

Si + Si Ai = Fl . (7.7)

In the following construction, ea, a ∈ [0, l − 1], are some basis of Fl , for example, one can

think of them as the standard basis. The subscript a is represented by its binary expansion, a =

(a1, a2, . . . , am). For example, if l = 16, m = 4, a = 5, then e5 = e(0,1,0,1) and a1 = a3 = 0, a2 =

a4 = 1.

In order to construct the code, we first define 3 sets of vectors for i ∈ [m]:

Pi,0 = {ea : ai = 0},

Pi,1 = {ea : ai = 1},

Qi = {ea + eb : ai + bi = 1, aj = bj, ∀j 6= i}.

For example, if m = 2, i = 1, then P1,0 = {e(0,0), e(0,1)} = {e0, e1}, P1,1 = {e(1,0), e(1,1)} =

{e2, e3}, and Q1 = {e(0,0) + e(1,0), e(0,1) + e(1,1)} = {e0 + e2, e1 + e3}. Notation: The subscript

i for sets Pi,u, Qi and ai (the i-th digit of vector a) is written modulo m. For example, if i ∈

[tm + 1, (t + 1)m] for some integer t, then Pi,u := Pi−tm,u.

Construction 7.1 The (n = 3m + 2, k = 3m, l = 2m) code has coding matrices Ai, i ∈ [k], each

with two distinct eigenvalues, and eigenvectors Vi,0, Vi,1. When node i is erased, we are going to

use Si to rebuild. We construct the code as follows:

1. For i ∈ [m], Vi,0 = span(Qi), Vi,1 = span(Pi,1), Si = span(Pi,0).

2. For i ∈ [m + 1, 2m], Vi,0 = span(Pi,0), Vi,1 = span(Qi), Si = span(Pi,1).

3. For i ∈ [2m + 1, 3m], Vi,0 = span(Pi,0), Vi,1 = span(Pi,1), Si = span(Qi).

Example 7.2 Deleting the node N4, Figure 7.1 is a code using Construction 7.1 and l = 2.

Another example of l = 4 is shown in Figure 7.2. One can check (7.6) holds. For instance,

S1 = span{e0, e1} = span{e0 + e1, e1} is an invariant subspace of A2. So S1 = S1A2. If the two

eigenvalues of Ai are distinct, it is easy to show that Si ⊕ Si Ai = F4, ∀i ∈ [6].

The above example shows that for m = 1, 2, the constructed code has optimal repair. It is true

in general, as the following theorem suggests.

117

N1 N2 N3 N4 N5 N6
1st eigenspace e0 + e2 e0 + e1 e0 e0 e0 e0

of Ai e1 + e3 e2 + e3 e1 e2 e1 e2

2nd eigenspace e2 e1 e0 + e2 e0 + e1 e2 e1
of Ai e3 e3 e1 + e3 e2 + e3 e3 e3

e0 e0 e2 e1 e0 + e2 e0 + e1
Si e1 e2 e3 e3 e1 + e3 e2 + e3

Figure 7.2: (n = 8, k = 6, l = 4) code. The first parity node is assumed to be the row sum, and the
second parity is computed using coding matrices Ai. In order to rebuild node i, Si is multiplied to
each surviving node. The first 2m = 4 nodes have optimal access, and the last m = 2 nodes have
optimal update.

Theorem 7.3 Construction 7.1 is a code with optimal repair-bandwidth 1/2 for rebuilding any

systematic node.

Proof: By symmetry of the first two cases in the construction, we are only going to show

that the rebuilding of node i, i ∈ [m] ∪ [2m + 1, 3m] is optimal. Namely, the subspace property

(7.6)(7.7) is satisfied. Recall that Si Aj = Si is equivalent to Si being an invariant subspace of Aj.

Case 1: i ∈ [m].

• When j ∈ [tm + 1, (t + 1)m], j− tm 6= i, t ∈ {0, 1}, define B = {ea : aj = 1− t, ai =

0} ∪ {ea + eb : aj + bj = 1, ai = bi = 0, az = bz, ∀z 6= i, j}. Then it is easy to see

that Si = span(Pi,0) = span(B). Moreover, each vector in set B is an eigenvector of Aj,

therefore Si is an invariant subspace of Aj.

• When j−m = i, Si = Vj,0 = span(Pi,0), so Si is an eigenspace of Aj.

• When j ∈ [2m + 1, 3m], we can see that every vector in Pi,0 is a vector in Vj,0 = span(Pj,0)

or in Vj,1 = span(Pj,1), hence it is an eigenvector of Aj.

• When j = i, consider a vector ea ∈ Pi,0, then ai = 0. And ea = (ea + eb) − eb where

bi = 1, bj = aj for all j 6= i. Here both ea + eb and eb are eigenvectors of Ai.

ea Ai = (ea + eb)Ai − eb Ai

= λi,0(ea + eb)− λi,1eb

= (λi,0 − λi,1)eb + λi,0ea.

Because λi,0 6= λi,1, we get span{ea Ai, ea} = span(ea, eb). Hence Si Ai + Si = span{ea, eb :

118

ai = 0, bi = 1, aj = bj, ∀j 6= i} = Fl .

Case 2: i ∈ [2m + 1, 3m].

• When j = i−m or j = i− 2m, Si = span(Qi) is an eigenspace of Aj.

• When j ∈ [tm + 1, (t + 1)m], and j 6= i − tm for t ∈ {0, 1}, define D = {ea + eb :

aj = bj = 1 − t, ai + bi = 1, az = bz, ∀z 6= i, j} ∪ {ea + eb + ec + ed : aj = bj =

0, cj = dj = 1, ai + bi = 1, ci + di = 1, az = bz = cz = dz, ∀z 6= i, j}. We can see that

Si = span(Qi) = span(D) and every vector in D is an eigenvector of Aj.

• When j ∈ [2m + 1, 3m], j 6= i. We can see that Qi = {ea + eb : aj = bj = 0, ai + bi =

1, az = bz, ∀z 6= i, j} ∪ {ea + eb : aj = bj = 1, ai + bi = 1, az = bz, ∀z 6= i, j}. Apparently,

every vector in Qi is a sum of two vectors in Pj,0 or two vectors in Pj,1. So Si = span(Qi) is

an invariant subspace of Aj.

• When j = i, consider any ea + eb ∈ Qi, where ai = 1, bi = 0, az = bz, ∀z 6= i. We have

(ea + eb)Ai = λi,1ea + λi,0eb.

Because λi,0 6= λi,1, we get span{(ea + eb)Ai, ea + eb} = span{ea, eb}. Thus Si Ai + Si =

span{ea, eb : ai = 1, bi = 0, az = bz, ∀z 6= i} = Fl .

It should be noted that if we shorten the code and keep only the first 2m systematic nodes in

the code, then it is actually equivalent to the code in [CHLM11]. The repairing of the first 2m

nodes does not require computation within each remaining node, since only standard bases are

multiplied to the surviving columns (e.g., Figure 7.2). We call such repair optimal access. It is

shown in [TWB12] that if a code has optimal access, then the code has no more than 2m nodes.

On the other hand, the shortened code with the last m systematic nodes in the above construction is

equivalent to that of [CHL11, PDC11a, TWB11]. Since the coding matrices Ai, i ∈ [2m + 1, 3m]

are all diagonal, every information entry is included in only r + 1 entries in the code. We say such

a code has optimal update. In [TWB12] it is proven that an optimal-update code with diagonal

coding matrices has no more than m nodes. Therefore, our code is a combination of the longest

optimal-access code and the longest optimal-update code, which provides tradeoff among access,

119

update, and the code length. The shortening technique was also used in [SRKR10] in order to get

optimal-repair code with different code rates.

In addition, if we try to extend an optimal-access code C with length 2m to a codeD with length

k, so that C is a shortened code of D, then the following theorem shows that k = 3m is largest code

length. Therefore, our construction is longest in the sense of extending C.

Theorem 7.4 Any extended code of an optimal-access code of length 2m will have no more than

3m systematic nodes.

Proof: Let C be an optimal-access code of length 2m. Let D be an extended code of C. By

equivalently transforming the coding matrices (see [TWB12]), we can always assume the coding

matrices of the parities in D are

 I · · · I I · · · I

A1 · · · A2m A2m+1 · · · Ak

 .

Here the first 2m column blocks corresponds to the coding matrices of C. First consider the code

C, that is, the first 2m nodes. If C has optimal access, then Si is the span of l/2 standard basis, for

i ∈ [2m]. Since there are 2m systematic nodes, on average each ez appears 2m× l
2 ×

1
l = m times,

for z ∈ [0, l − 1]. We claim that each ez appears exactly m times. Otherwise, there exists one ez

that appears in {Si : i ∈ I}, for some |I| > m, I ⊂ [2m]. So | ∩i∈I Si| ≥ 1. However, by [TWB12]

we know when |I| > m, | ∩i∈I Si| = 0. So every ez, z ∈ [0, l − 1], must appear in m of the Si’s,

say ez ∈ Si, ∀i ∈ J, |J| = m, J ⊂ [2m]. Again by [TWB12] when |J| = m, we have | ∩i∈J Si| = 1,

so ∩i∈JSi = ez. So these m subspaces intersect only on ez.

Now consider the extended code D. Since every Si, i ∈ J, is an invariant subspace of Aj,

j ∈ [2m + 1, k] by the subspace property, we know their intersection, ez is also an invariant subspace

of Aj. In other words, ez is an eigenvector of Aj. This result is true for all z ∈ [0, l − 1]. Hence,

we know the standard basis are all the eigenvectors of Aj, j ∈ [2m + 1, k]. Equivalently, Aj are all

diagonal. So the last k− 2m nodes in D are optimal update. By [TWB12], there are only m nodes

that are all optimal update. So k ≤ 3m.

Next let us discuss about the finite-field size of the code. In order to make the code MDS, it

is equivalent that we should be able to recover from any two column erasures. In other words, any

1× 1 or 2× 2 submatrices of the matrix (7.5) should be invertible. Therefore, all eigenvalues λi,s

should be nonzero, i ∈ [k], s ∈ {0, 1}. Moreover, the following matrix should be invertible for all

120

i 6= j:  I I

Ai Aj

 .

Or equivalently, Ai − Aj should be invertible.

Let us first look at an example. Suppose m = 2, i = 1, j = 2 (see Figure 7.2), then A1 − A2 is


λ1,0 − λ2,0 λ2,1 − λ2,0 λ1,0 − λ1,1 0

0 λ1,0 − λ2,1 0 λ1,0 − λ1,1

0 0 λ1,1 − λ2,0 λ2,1 − λ2,0

0 0 0 λ1,1 − λ2,1

 (7.8)

We can simply compute the determinant by expanding along the first column and the last row. The

remaining 2× 2 submatrix in the middle is diagonal:

 λ1,0 − λ2,1 0

0 λ1,1 − λ2,0

 (7.9)

Hence, the determinant det(A1 − A2) is

(λ1,0 − λ2,0)(λ1,0 − λ2,1)(λ1,1 − λ2,0)(λ1,1 − λ2,1).

For another example, let m = 2, i = 1, j = 3, then A1 − A3 is


λ1,0 − λ3,0 0 λ1,0 − λ1,1 0

0 λ1,0 − λ3,0 0 λ1,0 − λ1,1

λ3,0 − λ3,1 0 λ1,1 − λ3,1 0

0 λ3,0 − λ3,1 0 λ1,1 − λ3,1

 (7.10)

Since we can permutate rows and columns of a matrix and not change its rank, the above matrix can

be changed into:


λ1,0 − λ3,0 λ1,0 − λ1,1 0 0

λ3,0 − λ3,1 λ1,1 − λ3,1 0 0

0 0 λ1,0 − λ3,0 λ1,0 − λ1,1

0 0 λ3,0 − λ3,1 λ1,1 − λ3,1

 . (7.11)

121

And its determinant is

det(A1 − A3) = (λ1,0 − λ3,1)2(λ3,0 − λ1,1)2.

Now let us discuss in general the finite-field size of the code.

Construction 7.5 Let the elements of the code be over Fq, with q ≥ 2m + 1. Let c be a primitive

element in Fq and write < i >:= i mod m. Assign the eigenvalues of the coding matrices to be

λi,s =

 c<i>+sm, i ∈ [2m]

c<i>+(1−s)m, i ∈ [2m + 1, 3m]
(7.12)

If we have an extra systematic column with A3m+1 = I (see column N4 in Figure 7.1), we can use

a field of size 2m + 2 and simply modify the above construction by

λi,s =

 c<i>+sm+1, i ∈ [2m]

c<i>+(1−s)m+1, i ∈ [2m + 1, 3m]

For example, when m = 1, the coefficients in Figure 7.1 are assigned using the above formula,

where the field size is 4 and c = 2. For another example, if m = 2, we can use finite field F5 and

c = 2, then assign the eigenvalues to be

(λ1,0, . . . , λ6,0) = (1, 2, 1, 2, 4, 3),

(λ1,1, . . . , λ6,1) = (4, 3, 4, 3, 1, 2).

Theorem 7.6 The above construction guarantees that the constructed code is MDS and has optimal

repair-bandwidth. The finite-field size is q ≥ 2m + 1.

Proof: We claim that if we check any two indices i 6= j ∈ [3m], then the following conditions

are necessary and sufficient for Ai − Aj to be invertible. Assume r, s ∈ {0, 1}.

1. λi,s 6= λj,r, for any i 6= j mod m.

2. λi,s 6= λj,1−s, for i ∈ [m], j = i + m.

3. λi,s 6= λj,s, for i ∈ [2m], j ∈ [2m + 1, 3m], i = j mod m.

122

If we have an extra systematic column with A3m+1 = I, then Ai − I is invertible iff

4) λi,s 6= 1.

By the proof of Theorem 7.3 we already know that optimal repair-bandwidth is equivalent to

5) λi,0 6= λi,1.

It can be easily checked that the above conditions are satisfied by Construction 7.5. Here we only

prove condition 1 for i, j ∈ [m] and condition 2. The rest cases all follow similar ideas. Without

loss of generality we can assume {ei} is standard basis, because the basis will not change the value

of det(Ai − Aj).

When i, j ∈ [m], Vi,0 = Qi, Vi,1 = Pi,1, and Vj,0 = Qj, Vj,1 = Pi,1. So Vi,1, Vj,1 share the same

eigenvectors B = {ea : ai = aj = 1}. If we view each element in B as an integer in [0, 2m − 1]

(each vector in B is the binary representation of an integer), we can say Ai, Aj both have only one

nonzero element in each row in B. On the other hand, columns of V−1
i , V−1

j correspond to the right

eigenvectors of Ai, Aj, respectively. And it is easy to show that they share the right eigenvectors

C = {eT
a : ai = aj = 0}, where the superscript T means transpose. Hence, Ai, Aj both have

only one nonzero element in each column in C. To compute the determinant of Ai − Aj, we can

expand along rows B and columns C. The remaining submatrix will be diagonal since we already

eliminated all the non-diagonal elements. Then it is easy to verify condition 1. See (7.8)(7.9) for an

example.

When i ∈ [m], j = i + m, Vi,0 = Qi, Vi,1 = Pi,1 and Vj,0 = Pi,0, Vj,1 = Qi. Therefore

both Ai, Aj have nonzero elements at the diagonal locations. Also Ai has nonzero elements at

row Pi,0 and column Pi,1. Similarly Aj has nonzero elements at row Pi,1 and column Pi,0. Let

a = (0, . . . , 0, 1, 0, . . . , 0) be a binary vector of length m and the only ’1’ is at location i. And let us

view e0, ea as the corresponding integers 0, 2m−i. Then we can see that rows {e0, ea} and columns

{e0, ea} have only four nonzero elements. We can permutate the rows/columns of a matrix and not

change its rank. Therefore move these two rows/columns to rows/columns 0, 1, and we get a block

diagonal matrix. Following the same procedure, we will get block diagonal matrix, where each

block is of size 2× 2. And the determinant is simple to compute. See (7.10)(7.11) for an example.

We can see that the field size q is about 2/3 of the number of systematic nodes and is not a

constant. Also the code has parameters (n = 3m + 2, k = 3m, l = 2m). On the other hand, the

123

(n = m + 3, k = m + 1, l = 2m) code in [TWB13] has constant field of size q = 3. So the

proposed code has longer k but longer (actual) column length l log q as well. Nonetheless, it may

be possible to alter the structure of Ai’s a bit (for example, do not require Ai to be diagonalizable)

and obtain a constant field size. And this will be one of our future work directions.

7.4 Codes with Arbitrary Number of Parities

In this section, we will give constructions of codes with arbitrary number of parity nodes. Our code

will have l = rm rows, k = (r + 1)m systematic nodes, and r parity nodes, for any r ≥ 2, m ≥ 1.

Suppose As,i is the coding matrix for parity node k + s and information node i. From Sec-

tion 7.2, we assume A1,i = I for all i. In our construction, we are going to add the following

assumptions. Every As,i has r distinct eigenvalues, each corresponding to l/r = rm−1 linearly

independent eigenvectors, for s ∈ [2, r]. Moreover, given an information node i ∈ [k], all matri-

ces As,i, s ∈ [2, r], share the same eigenspaces Vi,0, Vi,1, . . . , Vi,r−1. If these eigenspaces corre-

spond to eigenvalues λi,0, λi,1, . . . , λi,r−1 for A2,i, then we assume they correspond to eigenvalues

λs−1
i,0 , λs−1

i,1 , . . . , λs−1
i,r−1 for As,i. By abuse of notations, Vi,u represents both the eigenspace and the

l/r× l matrix containing l/r independent eigenvectors. Under these assumptions, it is easy to see

that if we write As,i as


Vi,0

...

Vi,r−1


−1

λs−1
i,0 I

. . .

λs−1
i,r−1 I




Vi,0
...

Vi,r−1

 ,

where the identity matrices are of size l
r ×

l
r , then As,i = As−1

2,i , for all s ∈ [r]. Hence, we are going

to write Ai = A2,i, thus As,i = As−1
i , and our construction will only focus on the matrix Ai. As a

result, the subspace property becomes

Si = Si Aj, ∀j 6= i, j ∈ [k] (7.13)

Si + Si Ai + Si A2
i + · · ·+ Si Ar−1

i = Fl (7.14)

Note that such choice of eigenvalues is not the unique way to construct the matrices, but it

guarantees that the code has optimal repair-bandwidth. Also, when the finite-field size is large

124

enough, we can find appropriate values of λi,u’s such that the code is MDS. At last, since each Vi,u

has dimension l/r and corresponds to l/r independent eigenvectors, we know that any vector in the

subspace Vi,u is an eigenvector of Ai.

Let {e0, e1, . . . , erm−1} be the standard basis of Fl . And we are going to use the r-ary expansion

to represent the index of a base. An index a ∈ [0, rm − 1] is written as a = (a1, a2, . . . , am),

where ai is its i-th digit. For example, when r = 3, m = 4, we have e5 = e(0,0,1,2). Define for

i ∈ [k], u ∈ [0, r− 1] the following sets of vectors:

Pi,u = {ea : ai = u},

Qi = {
r−1

∑
ai=0

ea : aj ∈ [0, r− 1], j 6= i}.

So Pi,u is the set of bases whose index is u in the i-th digit. The sum in Qi is over all ea such that

the j-th digit of a is some fixed value for all j 6= i, and the i-th digit varies in [0, r − 1]. In other

words, a vector in Qi is the summation of the corresponding bases in Pi,u, ∀u. For example, when

r = 3, m = 2, P1,0 = {e(0,0), e(0,1), e(0,2)} = {e0, e1, e2}, P1,1 = {e3, e4, e5}, P1,2 = {e6, e7, e8},

and Q1 = {e0 + e3 + e6, e1 + e4 + e7, e2 + e5 + e8}.

Notations: If a = (a1, a2, . . . , am) is an r-ary vector, denote by ai(u) = (a1, . . . , ai−1, u,

ai+1, . . . , am) the vector that is the same as a except digit i, u ∈ [0, r − 1]. In the following,

all of the subscript i for sets Pi,u, Qi and for digit ai are computed modulo m. For example, if

i ∈ [tm + 1, (t + 1)m] for some integer t, then Qi := Qi−tm.

Construction 7.7 The (n = (r + 1)m + r, k = (r + 1)m, l = rm) code is constructed as follows.

For information node i ∈ [tm + 1, (t + 1)m], t ∈ [0, r− 1], the u-th eigenspace (u ∈ [0, r− 1]) of

coding matrix Ai and the rebuilding subspace Si are defined as

Vi,u = span(Pi,u), ∀u 6= t,

Vi,t = span(Qi),

Si = span(Pi,t).

For information node i ∈ [rm + 1, (r + 1)m], the eigenspaces and rebuilding subspaces are

Vi,u = span(Pi,u), ∀u ∈ [0, r− 1]

Si = span(Qi).

125

i Pi,0 Pi,1 Pi,2 Qi
e0 e3 e6 e0 + e3 + e6

1 e1 e4 e7 e1 + e4 + e7
e2 e5 e8 e2 + e5 + e8

e0 e1 e2 e0 + e1 + e2
2 e3 e4 e5 e3 + e4 + e5

e6 e7 e8 e6 + e7 + e8

Figure 7.3: Sets of vectors used to construct a code with r = 3 parities and column length l = 32 =
9.

i 1 2 3 4 5 6 7 8
Vi,0 Q1 Q2 P1,0 P2,0 P1,0 P2,0 P1,0 P2,0

Vi,1 P1,1 P2,1 Q1 Q2 P1,1 P2,1 P1,1 P2,1
Vi,2 P1,2 P2,2 P1,2 P2,2 Q1 Q2 P1,2 P2,2

Si P1,0 P2,0 P1,1 P2,1 P1,2 P2,2 Q1 Q2

Figure 7.4: An (n = 11, k = 8, l = 9) code. Sets Pi,u and Qi are listed in Figure 7.3. Vi,u is the
u-th eigenspace of the coding matrix Ai. Si is the subspace used to rebuild systematic node i.

Example 7.8 Figure 7.3 illustrated the subspaces Pi,u, Qi for r = 3 parities and column length

l = 9. Figure 7.4 is a code constructed from these subspaces and has 8 systematic nodes. One

can see that if a node is erased, one can transmit only a subspace of dimension 3 to rebuild, which

corresponds to only 1/3 repair bandwidth fraction. The three coding matrices for systematic node

i are I, Ai, A2
i , for i ∈ [8].

The following theorem shows that the code indeed has optimal repair-bandwidth 1/r.

Theorem 7.9 Construction 5.3 has optimal repair-bandwidth 1/r when rebuilding one systematic

node.

Proof: By symmetry of the construction, we are only going to show that the subspace property

(7.13)(7.14) is satisfied for i ∈ [1, m] ∪ [rm + 1, (r + 1)m]. Also Si Aj = Si implies that Si has a

basis that are all eigenvectors of Aj.

Case 1: i ∈ [1, m]. Before we begin to explore the different cases, let us define the following

sets of vectors

Bu = {ea : ai = 0, aj = u}, u ∈ [0, r− 1],

Ct = {
r−1

∑
aj=0

ea : ai = 0, az ∈ [0, r− 1], z 6= i, j}.

126

In the definition of Ct, the sum is over all ea such that the i-th digit of a is 0, the z-th digit is some

fixed value, z 6= i, j, and the j-th digit varies in [0, r− 1]. Then one can see that

Bu ⊂ Pj,u, Ct ⊂ Qj.

• j ∈ [tm + 1, (t + 1)m], for some t ∈ [0, r− 1] and j− tm 6= i. Then the eigenspaces of Aj

are Vj,u = span(Pj,u), u 6= t, and Vj,t = span(Qj). Then it is clear that Si = span(Pi,0) =

span({Bu : u 6= t} ∪ Ct). Also every vector of Bu, u 6= t and Ct is an eigenvector of Aj.

• j ∈ [rm + 1, (r + 1)m], j − rm 6= i. The eigenspaces of Aj are Vj,u = span(Pj,u), u ∈

[0, r− 1]. And Si = span(Pi,0) = span{Bu : u ∈ [0, r− 1]} and every vector in Bu, ∀u is

an eigenvector of Aj.

• j− tm = i, t ∈ [1, r]. Then the first eigenspace of Aj is Vj,0 = span(Pi,0) = Si.

• j = i. In this case we want to check (7.14) in the subspace property. Suppose the distinct

eigenvalues of Ai are λ0, λ1, . . . , λr−1. Then the eigenvalues for As
i will be λs

0, λs
1, . . . , λs

r−1,

for s ∈ [0, r− 1]. Notice that Si = span(Pi,0) = span{eai(0) : ∀a ∈ Zm
r } and

eai(0)As
i

= (
r−1

∑
u=0

eai(u) − eai(1) − · · · − eai(r−1))Ai

= λs
0

r−1

∑
u=0

eai(u) − λs
1eai(1) − · · · − λs

r−1eai(r−1)

= λs
0eai(0) +

r−1

∑
u=1

(λs
0 − λs

u)eai(u).

Writing the equations for all s ∈ [0, r− 1] in a matrix, we get



eai(0)

eai(0)Ai

eai(0)A2
i

...

eai(0)Ar−1
i


= M


eai(0)

eai(1)

...

eai(r−1)

 ,

127

with

M =



1 0 · · · 0

λ0 λ0 − λ1 · · · λ0 − λr−1

λ2
0 λ2

0 − λ2
1 · · · λ2

0 − λ2
r−1

...
...

...

λr−1
0 λr−1

0 − λr−1
1 · · · λr−1

0 − λr−1
r−1


.

After a sequence of elementary column operations, M becomes the following Vandermonde

matrix

M′ =



1 1 · · · 1

λ0 λ1 · · · λr−1

λ2
0 λ2

1 · · · λ2
r−1

...
...

...

λr−1
0 λr−1

1 · · · λr−1
r−1


.

Since λi’s are distinct, we know M′ and hence M is non-singular. Therefore, span{eai(0),

eai(0)Ai, . . . , eai(0)Ar−1
i } = span{eai(0), eai(1), . . . , eai(r−1)}. Since Si contains eai(0) for all

r-ary vector a, we know Si + Si Ai + · · ·+ Si Ar−1
i = Fl .

Case 2: i ∈ [rm, (r + 1)m]. Again, we first define some sets of vectors to help with our

arguments.

B′u = {
r−1

∑
ai=0

ea : aj = u, az ∈ [0, r− 1], z 6= i, j}

C′t = {
r−1

∑
ai=0

r−1

∑
aj=0

ea : az ∈ [0, r− 1], z 6= i, j}.

Here the sum in B′u has fixed values of aj = u and az, z 6= i, j, and the i-th digit varies in [0, r− 1].

The sum in C′t has fixed values of az, z 6= i, j, and the i-th and j-th digit both vary in [0, r− 1]. Then

one can check that

B′u ⊂ span(Pj,u), C′t ⊂ span(Qj).

• j ∈ [tm + 1, (t + 1)m], t ∈ [0, r − 1], and j − tm 6= i − rm. The eigenspaces of Aj are

span(Pj,u), u 6= t and span(Qj). And Si = span(Qi) = span({B′u : u 6= t} ∪ C′u). We

can see that every vector in B′u, u 6= t and C′t is an eigenvector of Aj.

• j ∈ [rm + 1, (r + 1)m], j 6= i. The eigenspaces of Aj are Pj,u, u ∈ [0, r − 1]. And Si =

128

span(Qi) = span{B′u : u ∈ [0, r− 1]}. We can see that every vector of B′u is an eigenvector

of Aj.

• j− tm = i− rm, t ∈ [0, r− 1]. Then the t-th eigenspace of Aj is span(Qi), which is equal

to Si.

• j = i. Take ∑r−1
u=0 eai(u) ∈ Si for arbitrary a, then

r−1

∑
u=0

eai(u)As
i =

r−1

∑
u=0

λs
ueai(u).

Written in a matrix form, we have



eai(0)

eai(0)Ai

eai(0)A2
i

...

eai(0)Ar−1
i



=



1 1 · · · 1

λ0 λ1 · · · λr−1

λ2
0 λ2

1 · · · λ2
r−1

...
...

...

λr−1
0 λr−1

1 · · · λr−1
r−1




eai(0)

eai(1)

...

eai(r−1)

 .

So similar to Case 1, we know Si + Si Ai + . . . Si Ar−1
i spans the entire space Fl .

Again, this construction can be shortened to an optimal-access code of length rm [CHLM11]

and an optimal-update code of length m [CHL11, PDC11a, TWB11].

The finite-field size of this code can be bounded by the following theorem. In the following,

we do not assume that the eigenvalue of As,i is the s-th power of A2,i, and A1,i is not necessarily

identity. Hence, we only assume that A1,i, . . . , Ar,i share the same eigenspaces for all i.

Theorem 7.10 A finite field of size kr−1rm−1 + 1 suffices for the code to be MDS and optimal

repair-bandwidth. Here k = (r + 1)m.

129

Proof: Let {λ(s)
i,j } be the j-th eigenvalue of As,i, i ∈ [k], j ∈ [0, r − 1], s ∈ [r]. In order to

show that the code is MDS, we need to check if all x× x submatrices of the following matrix are

invertible, for all x ∈ [1, r]: 
A1,1 A1,2 · · · A1,k

A2,1 A2,2 · · · A2,k
...

...
...

Ar,1 Ar,2 · · · Ar,k

 . (7.15)

Note that each As,i can be written as V−1
i Λs,iVi for some diagonal matrix Λs,i, where the rows of

Vi are eigenvectors and the diagonal of Λs,i are eigenvalues. Since A1,i, . . . , Ar,i share the same

eigenvectors Vi, we can multiply V−1
i on the right of the i-th block column, and not change the rank

of the above matrix:

M =


V−1

1 Λ1,1 V−1
2 Λ1,2 · · · V−1

k Λ1,k

V−1
1 Λ2,1 V−1

2 Λ2,2 · · · V−1
k Λ2,k

...
...

...

V−1
1 Λr,1 V−1

2 Λr,2 · · · V−1
k Λr,k

 .

Here all λ
(s)
i,j are unknowns in the finite field Fq. We are going to show that if we write the deter-

minants of each x × x submatrix as a polynomial, and take the product of all these polynomials,

then it is an nonzero polynomial. Moreover, by Combinatorial Nullstellensatz [Alo99] we can find

assignments of the unknowns over a large enough finite field, such that this polynomial is not zero.

Then we are guaranteed to have all the x × x submatrices invertible. In [Alo99] it is proved that

if the degree of a polynomial f (x1, . . . , xs) is deg(f) = ∑s
i=1 ti, and the coefficient of ∏s

i=1 xti
i

is nonzero, then a finite field of size maxi{ti} is sufficient for an assignment c1, . . . , cs such that

f (c1, . . . , cs) 6= 0.

By the symmetry of the λ
(s)
i,j , we consider only the degree of λ := λ

(1)
1,0 . We will find its

maximum degree in the polynomial of determinants. This unknown variable only appears in the

matrix

Λ1,1 =


λ

(1)
1,0 I

. . .

λ
(1)
1,r−1 I

 ,

where I is the identity matrix of size rm−1× rm−1. Let B = V−1
1 Λ1,1. Then we know that λ appears

130

only in the first rm−1 columns of B. For the determinant of any x× x submatrix of M, only the ones

containing B needs to be considered, because we are only interested in the degree of λ. Therefore,

there are (k−1
x−1)(

r−1
x−1) submatrices of size x× x that has λ in its determinant, and its degree is rm−1

for each submatrix. So the total degree of λ is

rm−1
r

∑
x=1

(
k− 1
x− 1

)(
r− 1
x− 1

)
.

Moreover, we know from the proof of Theorem 7.9 that optimal repair-bandwidth is achieved

for the first systematic node iff the following matrix is invertible


λ

(1)
1,0 · · · λ

(1)
1,r−1

...
...

λ
(r)
1,0 · · · λ

(r)
1,r−1


Hence, we need to multiply its determinant to our polynomial. The total degree of λ is

1 + rm−1
r

∑
x=1

(
k− 1
x− 1

)(
r− 1
x− 1

)
= 1 + rm−1

r−1

∑
x=0

(
k− 1

x

)(
r− 1

x

)
< 1 + rm−1

r−1

∑
x=0

(k− 1)x
(

r− 1
x

)
= 1 + rm−1kr−1.

Hence the proof is completed.

We can see that in the above theorem, for high-rate codes the field size is expositional in the

number of systematic nodes. But we believe that there is still a large space to improve this bound.

7.5 Lowering the Access Ratio

In this section, we are going to construct equivalent codes of Construction 5.3, such that the further

lower the average number of accesses of a random erasure. Given an (n, k, l) code C, define the

access ratio as

R = ∑k
i=1 # accesses from all surviving nodes to rebuild i

k(n− 1)l
.

131

Recall that for the (n = (r + 1)m + r, k = (r + 1)m, l = rm) code in the previous section, the

access ratio is

R =
rm · (n− 1) l

r + m · (n− 1)l
(r + 1)m · (n− 1)l

=
2

r + 1
.

First let us define the code and its rebuilding subspaces. We will multiply a block diagonal

matrix on the right of (7.15) and get the new coding matrix:

C =


C2,1 · · · C2,k

...
. . .

...

Cr,1 · · · Cr,k



= AB =


A2,1 · · · A2,k

...
. . .

...

Ar,1 · · · Ar,k




B1

. . .

Bk

 .

Namely, for i ∈ [r], j ∈ [k] the new coding matrices are

Ci,j = Ai,jBj, (7.16)

where Bj is an invertible matrix of size l × l. For an erased node i ∈ [k], the rebuilding subspaces

are still Si,j = Si for parity nodes j ∈ [k + 1, k + r], and Si,j = SiBj for systematic nodes j ∈ [k].

Theorem 7.11 The new coding matrices Ci,j and rebuilding subspaces Si,j satisfy the subspace

property, and is still an MDS code.

Proof: We know for Ai,j, the row spans satisfies for all j 6= i, j ∈ [k], t ∈ [r],

span{Si} = span{Si At,j}.

Therefore, there exists a invertible matrix M of size l/r× l/r such that the matrices satisfies

Si = MSi At,j.

Hence

SiBj = MSi At,jBj,

132

or equivalently

span{SiBj} = span{Si At,jBj}.

By definition, we have

span{Si,j} = span{Si,k+tCt,j},

so (7.1) is satisfied. We also know that the sum of subspaces satisfies

Fl =
r

∑
t=1

Si At,i,

or

l = rank


Si A1,i

...

Si Ar,i

 = rank


Si A1,i

...

Si Ar,i

 Bi

= rank


Si A1,iBi

...

Si Ar,iBi

 = rank


Si,k+1C1,i

...

Si,k+rCr,i

 .

Therefore, (7.2) is satisfied:

Fl =
r

∑
t=1

Si,k+tCt,i.

Since C = AB and any x × x subblock matrix of A is invertible, we can see that any x × x

subblock matrix of C is also invertible, for any x ∈ [r]. Therefore, the new code is also MDS.

Now let us find a code such that the number of accesses will be decreased. Notice that if

Si,j = SiBj can be written as the span of l/r standard bases, then node j has optimal access when

node i is erased. So we need to look for proper Bj’s such that the above condition is satisfied by as

many (i, j) pairs as possible. In particular, let us assume

Bj = V−1
j =


Vj,0

...

Vj,r−1


−1

(7.17)

is the inverse of the matrix of the eigenspaces.

Theorem 7.12 The access ratio of the (n = (r + 1)m + r, k = (r + 1)m, l = rm) code using

133

(7.17) is
2− r−1

n−1

r + 1
.

Proof:

7.6 Conclusions

In this chapter, we presented a family of codes with parameters (n = (r + 1)m + r, k = (r +

1)m, l = rm) and they are so far the longest high-rate MDS code with optimal repair. The codes

were constructed using eigenspaces of the coding matrices, such that they satisfy the subspace

property. This property gives more insights on the structure of the codes, and simplifies the proof of

optimal repair.

If we require that the code rate approaches 1, i.e., r being a constant and m goes to infinity, then

the column length l is exponential in the code length k. However, if we require the code rate to be

roughly a constant fraction, i.e., m being a constant and r goes to infinity, then l is polynomial in k.

Therefore, depending on the application, we can see a tradeoff between the code rate and the code

length.

It is still an open problem what is the longest optimal-repair code one can build given the column

length l. Also, the bound of the finite-field size used for the codes may not be tight enough. Unlike

the constructions in this chapter, the field size may be reduced when we assume that the coding

matrices do not have eigenvalues or eigenvectors (are not diagonalizable). These are our future

work directions.

134

Part II

Coding for Flash Memory

135

Chapter 8

Introduction to Rank Modulation

The most commonly used storage media for computers and data centers has been hard disks for

several decades thanks to its low cost and stable performance. However, recently flash memory

emerged as a new form of non-volatile storage technology. It has high capacity density, good ran-

dom access ability, high power efficiency, and promising scalability. Its market has grown notice-

ably because of the development of mobile devices such cell phones, cameras, and tablets. The

requirement of lighter and faster hard drives of personal computers also stimulated the research and

technology of flash. Moreover, data centers are facing more and more problems of high energy

cost, low random access speed, and large space occupancy with hard disks. Therefore besides the

vast demand in the consumer products, flash memory is without doubt one of the most prominent

substitute of hard disks for industrial products.

However, flash memory has its own disadvantages. Compared to hard disks, it is more costly per

storage unit, the programming process is harder to control, and data is more prone to errors during

reading and retention. Facing such problems, coding could be one of the solutions. By representing

data differently from current state of art, we are able to store more bits on the same flash device,

speed up the programming process, and improve data reliability. The main coding technique we are

going to discuss in this part of the thesis is rank modulation.

In flash memories, floating-gate cells use their charge levels to store data [BG07] (See Figure

8.1). For higher capacity, multi-level cells (MLCs) with an increasing number of levels are being

developed. To increase a cell level, charge is injected into the cell by the Fowler-Nordheim tunneling

mechanism or the hot-electron injection mechanism. To erase a cell, tunnel release mechanism is

performed on a whole block (typically 512K cells). Moreover, to lower any cell level, one must

erase a whole cell block and reprogram them starting at the lowest level. Block erasure not only

costs time and energy, also decreases the lifetime of a device. This asymmetric property caused by

136

Figure 8.1: A flash memory cell.

block erasure is a prominent feature of flash memories and presents a bottleneck of flash memories

in terms of speed and reliability.

Since lowering cell levels is very expensive, the programming process is iterative to avoid over-

injection, as we have seen in Figure 1.6. Therefore, writing data requires many programming cycles,

and each cell can only support a certain number of levels so that adjacent levels are distinguishable.

In addition, multi-level cells may suffer more data errors compared to single-level ones, due to their

higher requirement on cell-level resolution. In particular, charge leakage, or threshold level drift in

aging cells will cause erroneous data.

Rank modulation is a new information representation scheme that uses the relative order of cell

levels to represent data [JMSB09]. Physical realizations were recently presented in [KPT12] and

also in [PPM+11] for phase-change memory based on the same idea. Given m cells with different

levels, we can induce a permutation of length m from them and use each permutation to represent

a message. Therefore, a group of m cells can store log2(m!) bits of information. For example,

suppose we have m = 5 cells and their charge levels are (1.5, 5.2, 0.3, 4.9, 7.8). Notice here all the

levels are analog instead of discrete, as in the traditional method. Then the highest cell is 5, and

the second highest is 2, and so on. The induced permutation is (5, 2, 4, 1, 3) and in total we can

represent 120 messages using 5 cells.

To write a permutation, we can program the lowest cell first, and then the second lowest cell,

and so on. Over-injection is no longer a problem because we can always inject more electrons

into the higher cells so as to obtain the relative order. As a result, the writing can be completed

in a much smaller number of cycles. When level drift occurs, the stored information will be intact

as long as the induced permutation is unchanged. Besides, combined with some error-correction

techniques rank modulation can detect and correct errors. Another advantage of rank modulation

137

is that we can correct the errors by injecting more electrons to corresponding cells and no block

erasure is necessary. Moreover, since we can take analog values as cell levels, it is possible to fit in

more levels in each cell given that different levels are distinguishable. Hence rank modulation may

effectively store more information per cell compared to conventional schemes even though it has

the constraint that all cells have distinct levels.

Given the charge levels of a group of flash cells, sorting is used to induce a permutation, which in

turn represents data. Motivated by the lower sorting complexity of smaller cell groups, we propose

bounded rank modulation in Chapter 9, where a sequence of permutations of given sizes is used to

represent data. In particular, we require that the permutation size is smaller than the sequence size,

and the maximum possible levels a cell can support is upper bounded by a constant. For example,

suppose we have a total of 8 cells and the maximum possible levels is 6. Then we can for simplicity

write charge levels as integers {1, 2, . . . , 6}. Further suppose the permutation size is 4. The charge

levels of these cells (1, 2, 3, 4, 5, 6, 2, 3) can represent two permutations: (4, 3, 2, 1) and (2, 1, 4, 3) if

we group the first four and the last four cells separately. But we can also induce three permutations:

(4, 3, 2, 1), (4, 3, 2, 1), (2, 1, 4, 3) if we group the first, the middle, and last four cells. In other

words, we can use a sliding window of size four, such that every adjacent two windows overlap by

two cells. An interesting observation is that if we allow overlap, then a sequence contains more

groups of permutations but at the same time satisfies more constraints (cells in each permutation

are distinct and overlapped ranks should be consistent). Therefore, we study the capacity, or the

amount of information per cell, of bounded rank modulation under the condition that permutations

can overlap by a certain amount.

In Chapter 10 we propose partial rank modulation, where only a subset of cells in a permutation

represents information. More specifically, we only utilize a certain number of the top cells and

leave the rest as redundancy. This scheme also reduces decoding complexity, and at the same

time keeps independency of different permutations. For example, if we only compare the top 2

cells out of a group of 5, the cell levels (1.5, 5.2, 0.3, 4.9, 7.8) will result in a partial permutation

(5, 2, |4, 1, 3). The ordering of the cells 4, 1, 3 does not carry information. In total we can represent

20 messages. Hence partial rank modulation gains low complexity with the sacrifice of capacity.

We will construct Gray codes on such partial permutations, which is a sequence of permutations,

such that every partial permutation appears exactly once and the transition between two adjacent

permutations satisfies certain constraints. One possible constraint is that the highest cell level is

only increased by a small amount, so that we can write many times before we reach the limit and

138

erase a block. It is easy to construct a counter from a Gray code. Then viewing a group of physical

cells as one logical cell, we can obtain a large number of levels in a single cell. Applying other

flash codes where only a small number of levels is increased during each rewrite, we can store

information in flash memory with low cost. A related notion in combinatorics is called universal

cycle, and each partial permutation appears as a subsequence in this cycle exactly once. We will

discuss this problem starting from the universal cycles, and then show that Gray codes and universal

cycles are equivalent. Our construction in fact solves an open problem of universal cycles.

Errors can be caused by charge leakage, which is a long-term factor causing the retention prob-

lem. Writing and reading disturbances also result in the change of cell levels. An error-correction

code enables reliable storage of data by introducing redundant cells. In Chapter 11 we discuss the

model of errors in rank modulation, namely, an error occurs when the level of one cell changes and

two adjacent elements in the permutation exchange. For instance, if the level of cell 5 in permu-

tation (5, 2, 4, 1, 3) drops between cells 2 and 4, we get a swap: (2, 5, 4, 1, 3). We say there is an

error in this permutation. Such an error model is reasonable if the change of cell levels is gradual

instead of dramatic. We propose t-error-correction codes based on t-ary error-correction codes on

Hamming distances. We are able to construct 1-error-correcting rank modulation codes with half

the size of the sphere-packing bound.

There has been a number of recent works using the information-theoretic approach to develop

new storage schemes for flash memories. Coding techniques are studied for the traditional absolute-

value information representations. Related to Gray codes mentioned above, the first set of work is

on coding schemes for rewriting data [BJB07] [FLM08] [JBB07] [JB08] [YVSW08] [YSVW12],

where the main idea is to write new message on top of old message. The challenge is that one

can only increase levels, and the decoding is independent of previous messages. This idea can be

traced back to write-once-memory decades ago [RS82] designed for punch cards and optical disks.

Additionally, codes for correcting limited-magnitude errors [CSBB10] considered the problem of

having specific kinds of errors in multi-level cells due to the fact that small-magnitude errors are

more probable than large ones.

There are also a lot of work on relative-value information representation schemes for flash mem-

ories. Besides rank modulation [JMSB09], its variations consider the case of comparing a small

number of cells [EGLSB11] which is similar to bounded rank modulation but does not consider

the constraint of finite levels in a cell, as well as allowing multiple cells to have identical lev-

els [EGJB12]. Error-correction for rank modulation for adjacent transposition (two adjacent levels

139

get exchanged) was studied first in [JSB10,JSB08], recently [BM10] derived the capacity for the full

range of minimum distance between codewords, and systematic codes were proposed in [ZJB12].

Translocation errors were studied in [FSM12] where an error means dropping the rank of one cell

by a certain amount, and [TS10] studied limited-magnitude errors under the infinity norm for rank

modulation.

140

Chapter 9

Bounded Rank Modulation

9.1 Introduction

Rank modulation compares the relative values of m cells to represent information. To induce a

permutation from the group of cells, a serial sorting algorithm of complexity O(m log m) is needed

[Knu98]. In some realizations of rank modulation, such as [KPT12], a comparison circuit is built

and permutation is obtained in m− 1 interactions sequentially. In each iteration this circuit finds the

highest level, which is then disabled or disconnected from the circuit for the following iterations. In

both cases, decoding complexity increases with the size of the permutation. Reducing the sorting

complexity is important for the efficient hardware implementation as well as low information access

latency of rank modulation. Therefore, we propose rank modulation with bounded permutation

sizes.

Let (c1, c2, · · · , cm) denote the charge levels of m cells, where each ci (for 1 ≤ i ≤ m) is

an analog number and all charge levels are distinct: ∀ i 6= j, ci 6= cj. Let I(c1, c2, · · · , cm) =

(a1, a2, · · · , am) be a function that induces from the charge levels a permutation, where for i =

1, 2, · · · , m,

ai = |{j|cj ≤ ci, j = 1, 2, · · · , m}|.

Notice here that we define ai as the number of cells not higher than cell i and 1 ≤ ai ≤ m. As a

result, the induced permutation of integers in {1, 2, . . . , m} has the same relative ranks as the cell

levels:

(a1, a2, · · · , am) = I(c1, c2, · · · , cm) = I(a1, a2, · · · , am).

For example, if m = 4 and (c1, c2, c3, c4) = (0.2, 0.3, 1.2, 0.5), then the induced permutation is

(a1, a2, a3, a4) = (1, 2, 4, 3).

141

In Chapter 8 we defined the induced permutation in a different way. We defineJ (c1, c2, . . . , cm) =

(b1, b2, . . . , bm) as the alternative permutation where bi indicates the i-th highest cell index. Namely,

bi satisfies

|{j|cj ≥ cbi , j = 1, 2, · · · , m}| = i.

It is not difficult to see that these two permutation definitions are equivalent, since they both provides

all the information about the relative ranks of the cells. In our discussions on rank modulation, we

will use both of them. In this chapter, we will only use the function I . In the next two chapters, we

will use the function J .

To study the capacity under this constraint, we propose a discrete model. Normalize the gap

between the minimum and maximum charge levels of the memory to 1, and let δ denote the min-

imum charge difference to distinguish two levels. Then the largest possible size for a permutation

is D = b 1
δc+ 1. However, in practice the permutation size should be smaller than D not only to

reduce the sorting complexity, but also to make cell programming efficiently implementable. In this

chapter, we let m ≤ D denote the given permutation size which is also the number of cells in a

group. Each cell level is denoted by an integer in the set {1, 2, · · · , D}. It should be noted that

these D discrete numbers do not mean that in practice the charge levels are to be discrete instead

of analog. They are used to derive the theoretical capacity under the considered constraints. When

more constraints are introduced, the model can certainly be generalized.

As a result, bounded rank modulation takes the discrete levels (up to D) of a sequence of cells,

and induce permutations of size m which represent the information message. We use a sliding win-

dow approach, that is, to generate one permutation from each window along the cell-level sequence.

Let us look at an example with 8 cells, a maximum of D = 6 levels, and permutations of

size 4. As shown in the previous chapter, the charge levels of these cells (1, 2, 3, 4, 5, 6, 2, 3) can

represent two permutations: (1, 2, 3, 4) and (3, 4, 1, 2) if we group the first four and the last four

cells separately. But we can also induce three permutations: (1, 2, 3, 4), (1, 2, 3, 4), (3, 4, 1, 2) if

we group the first, the middle, and last four cells. Even though the number of permutations is in-

creased with 2 overlaps (i.e., 2 shared cells) between permutations, there are also more constraints

on possible permutations as they are no longer independent. For example, the three permutations

(1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4) cannot be realized since they correspond to levels (1, 2, 3, 4, 5, 6,

7, 8) and exceed the maximum level D. For another example, the permutations (1, 2, 3, 4), (2, 1, 3, 4),

(3, 4, 1, 2) cannot be valid since the underlined ranks correspond to the same overlapped cells but

142

contradict each other on the ranks.

We will in this chapter study the capacity of bounded rank modulation by considering possible

permutation sequences without the above conflicts. We mainly use the technique from constraint

coding and an important result is that by allowing cell groups to have overlaps, the capacity can be

improved.

Except for the first rank modulation work by Jiang et al. [JMSB09], the local rank modulation

[EGLSB11] is also very related to our model. That work focused on Gray code constructions. In

that work, the sliding window and overlaps are also used to generate permutations. But it is further

assumed that the cell-level sequence is cyclic, so the end part of the sequence is also compared with

the beginning part. Moreover, no limitations on the maximum number of levels is assumed.

In this chapter, we study the bounded rank modulation model, and explore the corresponding

capacity. We present computational techniques and bounds for capacity, provide encoding and

decoding techniques that achieve any rate smaller than the capacity, and compare the capacities of

different schemes.

9.2 Definitions

In this section, we define the basic concepts of bounded rank modulation. For convenience, for

any two integers a, b such that a ≤ b, we define [a, b] = {a, a + 1, · · · , b}.

Let m and D be integers such that m ≤ D. A block is a set of m cells whose levels are from the

set [1, D] and are all distinct. Let (c1, c2, · · · , cm) denote those m cell levels. Then by definition,

ci ∈ [1, D] for i ∈ [1, m] and ∀ i 6= j, ci 6= cj. For convenience, we call (c1, c2, · · · , cm) a block,

too, and call I(c1, c2, · · · , cm) the induced permutation. (I is as defined in the previous section.)

If a block B induces a permutation P, then B is called a realization of P. Note that a permutation

may have multiple realizations. For example, if m = 6 and P = (1, 4, 3, 2), then both (1, 6, 4, 3)

and (2, 5, 4, 3) are realizations of P.

Let (c1, c2, · · · , cn) be the levels of n cells. Let v < m be an integer and for convenience,

let (n − v)/(m − v) be an integer as well. For i = 1, 2, · · · , n−v
m−v , let Bi denote the block

(c(i−1)(m−v)+1, c(i−1)(m−v)+2, · · · , c(i−1)(m−v)+m). Note that the last v cell levels of Bi are also

the first v cell levels of Bi+1, so we say these two blocks overlap by v. We say (c1, c2, · · · , cn)

is a cell-level sequence that consists of blocks that overlap by v, which we may also denote by

143

(B1, B2, · · · , B(n−v)/(m−v)). For i = 1, 2, · · · , n−v
m−v , let the m levels in Bi be all distinct. Then the

sequence induces (n− v)/(m− v) permutations (P1, P2, · · · , P(n−v)/(m−v)), where Pi = I(Bi)

for i = 1, 2, · · · , n−v
m−v . We call (P1, P2, · · · , P(n−v)/(m−v)) the induced permutation sequence, and

call (B1, B2, · · · , B(n−v)/(m−v)) its realization. Again, a permutation sequence may have multiple

realizations.

Definition 9.1 (BOUNDED RANK MODULATION C(n, m, D, v)) In a bounded rank modulation

(BRM) code C(n, m, D, v), every codeword is a permutation sequence (P1, P2, · · · , P(n−v)/(m−v))

that has at least one realization. (The meaning of the parameters n, m, D, v is as presented above.)

Let |C(n, m, D, v)| denote the number of codewords in code C. Then, the capacity of the code is

cap(C) = lim
n→∞

log |C(n, m, D, v)|
n

.

In general, allowing overlap between permutations can increase capacity. When there is no

overlap (i.e., v = 0), the BRM code has capacity log m!
m . When v > 0, the capacity may increase

because every permutation consumes just m− v cells on average.

9.3 BRM Code with One Overlap and Consecutive Levels

In this section, we study a special form of BRM code that allows efficient computation of its

capacity. First, we present a computational method based on constrained systems.

Since ci ∈ [1, D] for i ∈ [1, m], the BRM code is a constrained system over the alphabet Sm

(the symmetric group on the set [1, m]). Define a labeled graph G = (V, E, L) to be a directed

graph with a state set V, an edge set E ⊆ V ×V and an edge labeling L : E→ Sm. For (u, v) ∈ E,

L(u, v) = l is denoted by u l→ v. G represents C if the set of all finite sequences obtained from

reading the labels of paths in G equals the set of the codewords of C. If the outgoing edges of each

state are labeled distinctly, then G is deterministic. And G is irreducible if ∀ u, v ∈ V, there is

a path from u to v. Define A|V|×|V| as the adjacency matrix of G, where Auv equals the number

of edges from u to v. In addition, suppose a deterministic graph G represents C(n, m, D, v) and

A1, A2, · · · , Ak are the adjacency matrices of the irreducible components in G, then

cap(C(n, m, D, v)) =
max1≤i≤k log λ(Ai)

m− v
(9.1)

144

where λ(A) is largest positive eigenvalue of A [MRS01].

1
12 12

21 21

2 3 1
12 12

21 21

2 D

12

21

….
.. 1

132 132

231 231

2 3

213

312

4
213
312

(a) (b)

123

321321

123

(c)

Figure 9.1: Labeled graphs for CI . (a) CI(n, 2, 3, 1); (b) CI(n, 2, D, 1) and D is arbitrary; (c)
CI(n, 3, 4, 1).

Example 9.2 A BRM code C(n, 2, 3, 1) can be represented by the graph G in Figure 9.1 (a). Each

state represents the level of the current cell. S2 = {12, 21}, the states are V = {1, 2, 3}, and the

edges are E = {(i, i + 1)|i = 1, 2} ∪ {(i, i− 1)|i = 2, 3}. The labeling is defined by L(i, i + 1) =

12, ∀ i = 1, 2 and L(i, i− 1) = 21, ∀ i = 2, 3. For example, the path along the states 1, 2, 3, and 2

is a realization of the permutation sequence (12, 12, 21). G is deterministic and irreducible. Hence,

the adjacency matrix of G is

A =


0 1 0

1 0 1

0 1 0


By (9.1), the capacity is log(λ(A)) = 0.5.

Notice in Example 9.2, the labeling L is essentially the ranks of the initial and terminal states

of an edge. Also notice that every block Bi = (ci, ci+1) consists of two consecutive integers, i.e.,

|ci − ci+1| = 1. If we expand the idea of Example 9.2 to arbitrary D ≥ 2 but keep m = 2, and

v = 1, we will get the constrained system in Figure 9.1 (b). The adjacency matrix is

A =



0 1 0 . . . 0

1 0 1 . . . 0
...

.
...

...
. 1

0 1 0


D×D

The capacity is log λ(A) = log(2 cos(π
D+1)) [MRS01].

145

We now formally define this type of constrained BRM code.

Definition 9.3 (BRM CODE WITH ONE OVERLAP AND CONSECUTIVE LEVELS CI(n, m, D, 1))

For the BRM code CI(n, m, D, 1), every codeword (P1, P2, · · · , P(n−1)/(m−1)) needs to satisfy the

following additional constraint: the codeword has a realization (B1, B2, · · · , B(n−1)/(m−1)) such

that for i = 1, 2, · · · , n−1
m−1 , the m cell levels in the block Bi form a set of m consecutive numbers.

That is, if Bi = (c′1, c′2, · · · , c′m), then {c′1, c′2, · · · , c′m} = [minm
j=1 c′j, maxm

j=1 c′j].

In a labeled graph for CI(n, m, D, 1), each state corresponds to the charge level of an over-

lapped cell, so there are D states, 1, 2, · · · , D. And each edge represents a permutation in a block

(c′1, · · · , c′m). The first (or last) digit in an edge labeling corresponds to the initial (or terminal) state

of the edge. Let (a1, · · · , am) = I(c′1, · · · , c′m), then since each block has consecutive numbers, ∀

k, l ∈ [1, m],

c′k − c′l = ak − al (9.2)

For example, the labeled graph for CI(n, 3, 4, 1) is shown in Figure 9.1 (c).

The construction of the adjacency matrix for code CI(n, m, D, 1) is presented in the following

theorem.

Theorem 9.4 The adjacency matrix A = (Aij) for CI(n, m, D, 1) has

Aij = (m− 2)! min{m− |i− j|, i, j, D− i + 1, D− j + 1, D−m + 1} (9.3)

if 1 ≤ |i− j| ≤ m− 1, and Aij = 0 otherwise.

Proof: Aij indicates the number of permutations with c′1 = i, c′m = j. For fixed a1 and am,

there are (m − 2)! choices for (a2, · · · , am−1). Notice i → j only if |a1 − am| = |c′1 − c′m| ∈

[1, m− 1]. So |{(a1, am)}| ≤ m− |i− j|, if |i− j| ∈ [1, m− 1]. And |{(a1, am)}| = 0 otherwise.

If i ∈ [1, m], then by (9.2), min1≤k≤m c′k = c′1 − (a1 − 1) = i − a1 + 1 ≥ 1, which implies

a1 ∈ [1, i], or |{a1}| = i. Similarly, if i ∈ [D −m + 1, D], we will get a1 ∈ [m− D + i, m], or

|{a1}| = D− i + 1. For i ∈ [D−m + 1, m], a1 ∈ [m− D + i, i], or |{a1}| = D−m + 1. And

if i ∈ [m, D−m + 1], then a1 ∈ [1, m], or |{a1}| = m. Hence, |{a1}| = min{i, D− i + 1, D−

146

m + 1, m}. This argument also works for the terminal state j. Therefore, if 1 ≤ |i− j| ≤ m− 1,

Aij = (m− 2)!|{(a1, am)}|

= (m− 2)! min{m− |i− j|, |{a1}|, |{am}|}

= (m− 2)! min{m− |i− j|, i, j, D− i + 1,

D− j + 1, D−m + 1}

And Aij = 0 otherwise.

The capacity of CI is cap(CI) = log λ(A)
m−1 . Some values of cap(CI) and the capacity of the

non-overlap code C(m, m, D, 0) (for comparison) are shown in Figure 9.2.

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

m

C
ap

nonoverlap

Figure 9.2: Capacity for CI (stars) and for the non-overlap code (solid line). The stars in each
vertical line correspond to the same permutation size m, and D = m, m + 1, · · · , m + 4 from
bottom to top.

It is clear that the capacity of the code CI(n, m, D, 1) increases with D. And if D → ∞,

cap(CI(n, m, D, 1))→ log m!
m−1 , which is larger than the capacity of a non-overlapping code

C(n, m, D, 0). We now present a more general result.

Theorem 9.5 For any m ≥ 2 and D ≥ m + 2,

cap(CI(n, m, D, 1)) > cap(C(n, m, D, 0))

Proof: Notice cap(C(n, m, D, 0)) = log m!/m, ∀ D ≥ m. If we proved cap(CI(n, m, m +

2, 1)) > log m!/m, then this theorem is proved. When m = 2, 3, cap(CI(n, 2, 4, 1)) = 0.6942 >

147

log 2!/2 = 0.5 and cap(CI(n, 3, 5, 1)) = 1.0120 > log 3!/3 = 0.8617. When m ≥ 4, D =

m + 2, by (9.3), A is

(m− 2)!



0 1 1 1 . . . 1 0 0

1 0 2 2 . . . 2 1 0

1 2 0 3 . . . 3 2 1

1 2 3 0 . . . 3 2 1
...

...
...

...
. . .

...
...

...

1 2 3 3 . . . 0 2 1

0 1 2 2 . . . 2 0 1

0 0 1 1 . . . 1 1 0


(m+2)×(m+2)

By (9.1), it is necessary to find λ(A). Let B = 1
(m−2)! A, I be the identity matrix and x be an

indeterminate variable. det(B − xI) = 0 implies (−x − 3)m−3(x2 + x − 1) f (x) = 0, where

f (x) = −x3 + (3m − 8)x2 + (7m − 10)x + 3m − 3. Thus λ(B) is the largest positive root of

f (x). Notice ∀ x > λ(B), f (x) < 0, but f (3m − 6) = 3(m2 + m − 5) > 0, m ≥ 4. So

λ(B) > 3m− 6, and λ(A) > (3m− 6)(m− 2)!. Now we are left to show

log λ(A)
m− 1

>
log(3(m− 2)(m− 2)!)

m− 1
≥ log m!

m

which is equivalent to 3m(m−2)m(m−2)!
mm−1(m−1)m−1 ≥ 1. Notice m ≥ 4,

(
1− 1

m

)m ≥ 1
e , and Stirling’s Approxi-

mation, m! ≥
√

2πm(m/e)m, thus

3m(m− 2)m(m− 2)!
mm−1(m− 1)m−1

=
3m(m− 1)(m− 2)!

mm−1

(
m− 2
m− 1

)m−1 m− 2
m− 1

≥ 3m(m− 1)!
mm−1 · 1

e
· 1

2

≥ 1
2e

3m
√

2π(m− 1)
em−1

(m− 1)m−1

mm−1

≥ 1
2e

(
3
e

)m√
2π(m− 1) ≥ 1

Thus the proof is completed.

148

9.4 BRM Code with One Overlap

We now consider the general BRM code with one overlap, C(n, m, D, 1), which does not have the

additional constraint of code CI(n, m, D, 1).

In this case, the cell levels of a block, {c′1, · · · , c′m}, can be any set Q such that Q ⊆ [1, D] and

|Q| = m. The labeled graph H generated is not deterministic in general. However, we are able to

find a deterministic graph G that is equivalent to H (Lemma 2.1 in [MRS01]). Here is an example.

Example 9.6 The labeled graph H of C(n, 2, 4, 1) is shown in Figure 9.3 (a). This is not de-

terministic since state 1 has 3 outgoing edges labeled 12. Let G be the deterministic represen-

tation of C, then the states V(G) are subsets of V(H). And for u, v ∈ V(G), u l→ v if ∀

j ∈ v, ∃ i ∈ u and i l→ j. So the resulting graph G is as shown in Figure 9.3 (b). States

{2}, {3}, {1, 3}, etc., have only outgoing edges, so their capacities are 0. Therefore the ir-

reducible component of G maximizing λ(Ai) is as in Figure 9.3 (c). By (9.1)we can then get

cap(C(n, 2, 4, 1)) = log λ(Ai) = 0.8791 > cap(CI(n, 2, 4, 1)) = 0.6942.

Figure 9.3: Labeled graphs for C(n, 2, 4, 1). (a) Labeled graph; (b) deterministic graph; (c) irre-
ducible graph.

In general, suppose the deterministic graph G represents C(n, 2, D, 1), and Ai is the adjacency

matrix for the irreducible component of G that has the largest eigenvalue. Then λ(Ai) is the largest

positive root of −xD + 2xD−1 − 1 = 0. Comparing cap(CI) and cap(C), we have Figure 9.4.

It can be seen that cap(C) tends to 1 faster than cap(CI), since it makes better use of the levels

provided.

149

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

D

C
ap

Code I
Code II

Figure 9.4: Capacity for C. The solid and dashed lines show capacity for CI and C, respectively.

Permutation
Encoder

(Finite-State
Encoder)

Cell-Level Encoder
Information Sequence

x0,x1,x2,...
Permutation Sequence

P0,P1,P2,...
Cell-Level Sequence

c1,c2,c3,...

Cell-Level
Decoder

(m-Sorting)

Permutation
Decoder

(Sliding-Block
Decoder)

Cell-Level Sequence
c1,c2,c3,...

Permutation Sequence
P0,P1,P2,...

Information Sequence
x0,x1,x2,...

Flash
Programming

Programmed
Logic Array

Flash Reading
Programmed
Logic Array

(a)

(b)

Figure 9.5: (a) Encoder and (b) decoder for BRM codes

The construction in the above example can be naturally extended to the case m > 2.

Encoders and decoders for BRM codes can be constructed as in Figure 9.5. In the encoding

process, the input information sequence (x0, x1, . . .) is first encoded into a permutation sequence,

(P0, P1, . . .), satisfying the maximum cell-level constraint, which is further mapped to a cell-level

sequence, (c1, c2, . . .). At last, the cell-level sequence is programmed into flash memory. And the

decoder reverses this process by reading the cell levels, forming a permutation sequence, and at last

retrieving the information.

• Permutation encoder/decoder

Let C be a constrained system with a representation G, and p,q be positive integers. The q-

th power of C, Cq, is represented by the labeled graph Gq, with the same set of states as G and

edges/labelings corresponding to paths/labelings of length q in G. A finite-state encoder with rate

p : q is a lossless labeled graph H such that H ⊆ Gq and each state of H has out-degree 2p. We

150

can then assign 2p input tags (or p binary information bits) to the outgoing edges of each state. An

encoder is (m,a)-sliding-block decodable if the i-th input tag in an input tag sequence is uniquely de-

termined by the q-block labeling sequence Pq
i−m, Pq

i−m+1, . . . , Pq
i , . . . , Pq

i+a. The following theorem

states that the capacity of any constrained system is always achievable [MRS01].

Theorem 9.7 Let C(n, m, D, v) be a constrained system and p/q < (m− v)cap(C(n, m, D, v))

for positive integers p and q. Then there exists a sliding-block decodable finite-state encoder with

rate p : q and permutation encoding rate p/(q(m− v)).

Theorem 9.7 can be proved by explicit constructions of encoders, such as the state-splitting

algorithm [MRS01]. And a sliding-block decoder is essentially a mapping from (m + a + 1) q-

block labelings to a p-block binary input tag. Notice in the decoding process, decoding delay and

error propagation is controlled within m + a + 1 q-blocks, which depends on the construction of

the encoder/decoder.

Example 9.8 Continuing Example 9.6, take p = 3 and q = 4, then p/q < cap(C(n, 2, 4, 1)) =

0.8792. The 4-th power of C(n, 2, 4, 1) has adjacency matrix

A4
i =



4 2 1 1 2 3

3 2 1 1 1 3

2 1 1 0 1 2

2 1 0 1 1 2

3 1 1 1 2 3

3 2 1 1 2 4


After deleting States 3 and 4, and some edges from the graph, we get a finite-state encoder in Figure

9.4 (a), which has out-degree 2p = 8 for each state, and each labeling block has size q = 4.

The notation u x3/P4

→ v means the 4-block labeling P4 is assigned the binary input tag x3. For

convenience, we denote the permutation (1, 2) by 1, and (2, 1) by 0 in the labeling. After merging

the States 1 and 6, it is further simplified as in Figure 9.4 (b).

Let State 1 be the initial state for the encoding. Divide the input binary information bits into

blocks of 3, and for any x3
i = (x3i, x3i+1, x3i+2), encode it as the corresponding 4-block labeling,

P4
i = (P4i, P4i+1, P4i+2, P4i+3).

Notice that in the encoding process, each 4-block labeling corresponds to only one input tag,

independent of starting state. Therefore, we can construct a (0, 0)-sliding-block decoder: for each

151

2 51

000/0010
110/0110
010/1010
101/0101
001/1001
111/1101

000/1110
110/0110
010/1010
101/0101
001/1001
111/1101

100/0100 011/1011

011/1011

100/0100

100/0100 011/1011

000/0010
110/0110
010/1010
101/0101
001/1001
111/0001

2 6

101/0101
001/1001
111/1101

51

000/0010
110/0110
010/1010000/1110

110/0110
010/1010

100/0100

101/0101
001/1001
111/1101 011/1011

000/0010
110/0110
010/1010

101/0101
001/1001
111/0001

101/0101
001/1001
111/1101

011/1011
100/0100

100/0100 011/1011

100/0100

011/1011

000/0010
110/0110
010/1010

(a)

(b)

Figure 9.6: Rate 3 : 4 finite-state encoder for C(n, 2, 4, 1). (a) Labeled subgraph with out-degree 8,
and (b) simplified encoder.

received permutation block P4
i decode it to the unique information block x3

i = (x3i, x3i+1, x3i+2),

which equals to (P4i+1, P4i+2, P4i+3) if P4i 6= P4i+1 and equals to (P4i+3, P4i+3, P4i+3), otherwise.

• Cell-level encoder/decoder

Before programming into flash memories, we must first encode the permutation sequence (P0,

P2, . . .) into a cell-level sequence (c1, c2, . . .), such that it induces this permutation sequence and

does not exceed the maximum level. The following construction provides such an encoding. Let

Pi = (ai
1, ai

2, . . . , ai
m) and denote ci(m−1)+j by ci

j, for i ≥ 0, j = 1, 2, . . . , m. Then for BRM codes

with one overlap, ci
j is the cell level of ai

j, for i ≥ 0, j = 1, 2, . . . , m, and ci
1 = ci−1

m , for i ≥ 1.

Construction 9.9 Let (P0, . . . , Pi, . . .) be the input permutation sequence of the cell-level encoder.

Then the following assignment of c0
1, c0

2, . . . , c0
m−1, . . . , ci

1, ci
2, . . . , ci

m−1, . . . defines a cell-level en-

coder.

c0
1 =

 a0
1, if a0

1 < a0
m

D−m + a0
1, if a0

1 > a0
m

152

For i ≥ 1,

ci
1 =



max(ai
1, ci−1

1 + ai−1
m − ai−1

1), if ai−1
1 < ai−1

m , ai
1 < ai

m

max(ai
1, ai−1

m), if ai−1
1 > ai−1

m , ai
1 < ai

m

min(D−m + ai
1, D−m + ai−1

m), if ai−1
1 < ai−1

m , ai
1 > ai

m

min(D−m + ai
1, ci−1

1 + ai−1
m − ai−1

1), if ai−1
1 > ai−1

m , ai
1 > ai

m

(9.4)

For i ≥ 0 and j = 2, . . . , m− 1,

ci
j =

 ci
1 + ai

j − ai
1, if ai

1 < ai
m, ai

j < ai
m or ai

1 > ai
m, ai

j > ai
1

ci+1
1 + ai

j − ai
m, if ai

1 < ai
m, ai

j > ai
m or ai

1 > ai
m, ai

j < ai
1

(9.5)

When m = 2, using 1 and 0 to represent the permutations (1, 2) and (2, 1), respectively, the

above construction is reduced to

c1 =

 1, if P0 = 1

0, if P0 = 0

and for i ≥ 1,

ci+1 =



ci + 1, if Pi−1 = 1, Pi = 1

1, if Pi−1 = 0, Pi = 1

D, if Pi−1 = 1, Pi = 0

ci − 1, if Pi−1 = 0, Pi = 0

One can check that if a permutation sequence satisfies the constraints for C(n, 2, D, 1), i.e., there

are at most D − 1 zeros (or ones) between any two successive ones (or zeros), then the generated

cell-level sequence realizes this sequence and has cell levels in [1, D].

We now show that Construction 9.9 generates a cell-level realization for each codeword in BRM

code.

Theorem 9.10 Let (P0, P1, . . . , Pn) be a codeword in C((m− 1)n + 1, m, D, 1) and

C = (c0
1, c0

2, . . . , c0
m−1, . . . , cn−1

1 , cn−1
2 , . . . , cn−1

m−1, cn
1) be the cell-level sequence generated in Con-

struction 9.9. Then C is a realization of P = (P0, P1, . . . , Pn−1). In particular, each cell level

ranges between 1 and D.

Proof: From (9.5) it is clear that (ci
1, ci

2, . . . , ci
m−1, ci+1

1) has ranks Pi = (ai
1, ai

2, . . . , ai
m). We

are left to show that C ranges between 1 and D.

153

Assume (d0
1, d0

2, . . . , d0
m−1, . . . , dn

1 , dn
2 , . . . , dn

m−1, dn+1
1) is an arbitrary realization of P and 1 ≤

di
j ≤ D for j = 1, . . . , m− 1, i = 0, 1, . . . , n. For ci

1, i = 0, 1, . . . , n− 1, we will prove a stronger

condition:
ai

1 ≤ ci
1 ≤ di

1, ai−1
m ≤ ci

1, if ai
1 < ai

m

di
1 ≤ ci

1 ≤ ai
1 + D−m, c1

1 ≤ ai−1
m + D−m, if ai

1 > ai
m

(9.6)

The inequalities containing ai−1
m are not considered when i = 0. Notice the cell-level sequence

(di
1, . . . , di

m−1, di+1
1) induces (ai

1, . . . , ai
m−1, ai

m). Hence, for 1 ≤ j, k ≤ m such that ai
j ≥ ai

k, we

have

ai
j − ai

k ≤ di
j − di

k (9.7)

Let ai
j = ai

1, ai
k = 1, and ai

j = m, ai
k = ai

1, and we get

ai
1 ≤ di

1 ≤ ai
1 + D−m (9.8)

Similarly, since (di−1
1 , . . . , di−1

m−1, di
1) induces (ai−1

1 , . . . , ai−1
m−1, ai−1

m), we have ai−1
m ≤ di

1 ≤ ai−1
m +

D − m. Suppose (9.6) holds, then 1 ≤ ai
1 ≤ ci

1 ≤ ai
1 + D − m ≤ D and 1 ≤ ai−1

m ≤ ci
1 ≤

ai−1
m + D − m ≤ D. And by (9.5), either 1 ≤ ai

j = ai
1 + ai

j − ai
1 ≤ ci

j = ci
1 + ai

j − ai
1 ≤

(ai
1 + D−m)+ ai

j− ai
1 = ai

j + D−m ≤ D or 1 ≤ ai
j ≤ ci

j = ci+1
1 + ai

j− ai
m ≤ ai

j + D−m ≤ D,

which would complete the proof.

we will prove (9.6) by induction. For the base case(i = 0), if a0
1 < a0

m, then c0
1 = a0

1 ≤ d0
1. And

if a0
1 > a0

m, then d0
1 ≤ a0

1 + D−m = c0
1. Now suppose (9.6) holds for i− 1 ≥ 0. If ai−1

1 < ai−1
m

and ai
1 < ai

m, then by induction,

ai−1
1 ≤ ci−1

1 ≤ di−1
1 , ai−2

m ≤ ci−1
1 (9.9)

Now either ai−1
m

(9.9)
≤ ci−1

1 + ai−1
m − ai−1

1 ≤ ai
1 = ci

1

(9.8)
≤ di

1 or ai
1 ≤ ci−1

1 + ai−1
m − ai−1

1 =

ci
1

(9.9)
≤ di−1

1 + ai−1
m − ai−1

1

(9.7)
≤ di

1 and ai−1
m

(9.9)
≤ ci−1

1 − ai−1
1 + ai−1

m = ci
1. Therefore, (9.6) holds

for ci
1 in this case. If ai−1

1 > ai−1
m and ai

1 < ai
m, then by (9.8) either ai−1

m ≤ ai
1 = ci

1 ≤ di
1 or

ai
1 ≤ ai−1

m = ci
1 ≤ di

1. Therefore, (9.6) holds in this case, too. And we can prove by similar

arguments that (9.6) is true for the other two cases, thus complete this proof.

The cell-level decoder is an m-sorter that orders every m-cell-level tuple associated with the

permutations. The complexity is m log m.

154

• Flash programming/reading

To avoid over-programming, the programming of a cell-level sequence into flash memories is

operated from the lowest to the highest rank. Such a programming method will lead to a delay of n in

the worst case. However, since for BRM code with one overlap, only ci
1, i ≥ 0 are contained in two

permutations, we only need to obtain correct ordering for {ci
1, ci+1

1 } and {ci
1, ci

2, . . . , ci
m−1, ci+1

1 },

for all i ≥ 0. And ordering of other sets of cell levels are not used in the code. Construction 9.11

follows the above idea and has smaller delay than n, for n sufficiently long.

Construction 9.11 we first define a writing operation for ci
1, denoted by Op(i), as follows.

1. If i ≥ 1, compare ci
1 and ci−1

1 . If ci
1 < ci−1

1 , write into flash {ci−1
j |j = 2, . . . , m− 1, ci−1

j <

ci
1} from low to high level. Otherwise, write {ci−1

j |j = 2, . . . , m− 1, ci−1
1 < ci−1

j < ci
1} from

low to high level.

2. If ci
1 < ci+1

1 , write into flash {ci
j|j = 2, . . . , m − 1, ci

j < ci
1} from low to high level. If

ci
1 > ci+1

1 , write {ci
j|j = 2, . . . , m− 1, ci+1

1 < ci
j < ci

1} from low to high level.

3. Write ci
1 so that it has a higher charge level than all the cells written in steps 1 and 2.

4. If i ≥ 1, and ci
1 > ci−1

1 , then write {ci−1
j |j = 2, . . . , m − 1, ci−1

j > ci
1} from low to high

level. And if ci
1 > ci+1

1 , write into flash {ci
j|j = 2, . . . , m− 1, ci

j > ci
1} from low to high level.

In steps 1, 2, and 4, the only requirement is that the charge level of each programmed cell is higher

than the previously written one.

Now starting from i = 0, if ci
1 < ci+1

1 , do Op(i), and update i with i + 1. Otherwise, find the

smallest e ≥ 1, such that ci+e
1 < ci+e+1

1 , do Op(i + e), Op(i + e− 1), . . . , Op(i), and then update

i with i + e + 1.

The above procedure clearly realizes the given permutation sequence, and moreover has a worst-

case delay D(m − 1). In the worst case, ci
1 = D, ci+1

1 = D − 1, . . . , ci+D−1
1 = 1, and ci−1

1 <

ci−1
2 < D, for some i ≥ 1, hence one has to receive ci−1

2 , . . . , ci−1
m−1, ci

1, . . . , ci
m−1, . . . , ci+D−1

1 to

write ci
2.

For BRM code with permutations of size 2, the programming process reduces to operations on

ci
1 only, for i ≥ 0, with maximum delay D.

Flash reading can be simply realized by sequentially reading off cell charge levels from flash.

155

Notice that both the cell-level encoder and flash programming has rate 1, so the BRM code

encoder has rate p/(q(m− v)) by Theorem 9.7, which can be arbitrarily close to the capacity.

We will now give an example of the complete encoding/decoding process for BRM code

C(n, 2, 4, 1). The encoder has rate 0.75 in this example.

Example 9.12 Encoding: suppose the information sequence is (x0 . . . x11 . . .) =

(001 100 000 010 . . .). Then following Example 9.8, the encoded permutation sequence is

(P0 . . . P15) = (1001 0100 1110 1010 . . .), and the state transition in the finite-state encoder

is state 1 → 1 → 2 → 1 → 1. Using Construction 9.9, we get the encoded cell-level sequence

(c1 . . . c16 . . .) = (1 431 41 431 2 3 41 41 4 . . .). And at last it can be programmed into flash in

the order: (c1, c4, c3, c2, c6, c5, c9, c8, c7, c10, c11, c13, c12, c15, c14 . . .).

Decoding: assume we are to decode the flash cells programmed above. First read the cells

sequentially and then compare ci+1 and ci+2, for i ≥ 0. Decode Pi as 1 if ci+1 < ci+2, as 0 if

ci+1 > ci+2. Thus we get (P0 . . . P15) = (1001 0100 1110 1010 . . .), and by the decoding

scheme in Example 9.8, we get (x0 . . . x11 . . .) = (001 100 000 010 . . .).

9.5 Lower Bound for Capacity

In this section, we present a lower bound to the capacity of the BRM code. To derive this bound,

we first present a new form of rank modulation called the Star BRM.

9.5.1 Star BRM

A Star BRM code uses n + v cells. For convenience, let n be a multiple of m − v. v of these

n + v cells are called anchors, and we denote their cell levels by (`1, `2, · · · , `v). The other n

cells are called storage cells, and we denote their cell levels by c1, c2, · · · , cn. For i = 1, 2, · · · , v,

`i ∈ [1, D]; for i = 1, 2, · · · , n, ci ∈ [1, D]. For i = 1, 2, · · · , n
m−v , we define block Bi to be these

m cell levels: (`1, `2, · · · , `v, c(i−1)(m−v)+1, c(i−1)(m−v)+2, · · · , ci(m−v)). We can see that these
n

m−v blocks share the same v cells, namely, the anchor cells. For i = 1, 2, · · · , n
m−v , we require that

the m cell levels in the block Bi are all different, and we use Pi to denote the permutation induced

by Bi. Bi is a realization of Pi. Again, a permutation sequence (P1, P2, · · · , Pn/(m−v)) may have

multiple realizations.

156

Definition 9.13 (STAR BRM CODE S(n, m, D, v)) In a Star BRM code S(n, m, D, v), every code-

word is a permutation sequence (P1, P2, · · · , Pn/(m−v)) that has at least one realization. (The mean-

ing of the parameters n, m, D, v is as presented above.) Let |S(n, m, D, v)| denote the number of

codewords in code S . Then, the capacity of the code is

cap(S) = lim
n→∞

log |S(n, m, D, v)|
n + v

.

To derive the capacity of Star BRM, we first show how the anchor levels (`1, `2, · · · , `v) af-

fect the permutation sequences. Define Z(`1, `2, · · · , `v) as the total number of permutations that

can be induced by the cell levels (`1, `2, · · · , `v, c′1, c′2, · · · , c′m−v), where the m cell levels are

all different and all belong to the set [1, D]. (Here (`1, `2, · · · , `v) are fixed, and the m − v cell

levels (c′1, c′2, · · · , c′m−v) can vary and therefore can have (D−v)!
(D−m)! combinations. Some of them

induce the same permutation.) It can be observed that when we permute the v anchor levels

(`1, `2, · · · , `v), the value of Z(`1, `2, · · · , `v) remains the same. For example, when v = 3 and

D = 6, Z(2, 3, 6) = Z(3, 2, 6) = Z(6, 2, 3). So without loss of generality (WLOG), we assume

`1 < `2 < · · · < `v.

Given (`1, `2, · · · , `v), let β(`1, `2, · · · , `v) denote the number of solutions for the variables

x1, x2, · · · , xv+1 that satisfy the following two conditions: (1) ∑v+1
i=1 xi = m− v; (2) x1 ∈ [0, `1 −

1], xi ∈ [0, `i − `i−1 − 1] for i ∈ [2, v], and xv+1 ∈ [0, D− `v].

Lemma 9.14 Given D ≥ m > v, we have Z(`1, `2, · · · , `v) = (m− v)! · β(`1, `2, · · · , `v).

Proof: Given the anchor cell levels (`1, `2, · · · , `v), a permutation induced by

(`1, `2, · · · , `v, c′1, c′2, · · · , c′m−v) can be uniquely determined by the following two steps: (1) de-

termine the relative order of the m− v cell levels (c′1, c′2, · · · , c′m−v) (that is, which cell level is the

highest, second highest, and so on · · · among them); (2) determine how many cell levels among

(c′1, c′2, · · · , c′m−v) are below `1, or between `1 and `2, or between `2 and `3, · · · , or above `v. Step

1 has (m− v)! choices, and step 2 has β(`1, `2, · · · , `v) choices. So the conclusion holds.

Lemma 9.15 Z(`1, `2, · · · , `v) is maximized when the numbers in the following set differ by at

most one: {`1− 1, D− `v} ∪ {`i − `i−1− 1|i = 2, 3, · · · , v}. (That is, every number in the above

set is either bD−v
v+1 c or dD−v

v+1 e.)

Proof: By Lemma 9.14, maximizing Z(`1, `2, · · · , `v) is equivalent to maximizing

β(`1, `2, · · · , `v). Define α1 = `1 − 1, αi = `i − `i−1 − 1 for i ∈ [2, v], and αv+1 = D − `v.

157

Suppose there exists i 6= j such that αi ≥ αj + 2. WLOG, let i < j. Let x1, x2, · · · , xv+1

be variables satisfying these two conditions: (1) ∑v+1
k=1 xk = m − v; (2) xk ∈ [0, αk] for k ∈

[1, v + 1]. The number of such solutions is β(`1, `2, · · · , `v). Now, let us fix the values of

x1, · · · , xi−1, xi+1, · · · , xj−1, xj+1, · · · , xv+1 (in a valid solution), and see how many different val-

ues xi can take. (Note that the value of xj is determined by xi.)

Let z = D − ∑k∈{1,··· ,i−1,i+1,··· ,j−1,j+1,··· ,v+1} xk = xi + xj. Let γ(z) denote the number of

values xi can take. The constraints are 0 ≤ xi ≤ αi, 0 ≤ z − xi ≤ αj. If z ≥ αi, γ(z) =

αi + αj − z + 1; if αj ≤ z < αi, γ(z) = αj + 1; if z < αj, γ(z) = z + 1. So if we increase αj

by one and decrease αi by one, γ(z) will not decrease although the values α1, α2, · · · , αv+1 will

become more even. So given a sequence (`1, `2, · · · , `v), we can change it that way into a sequence

that satisfies the condition in the lemma, without decreasing β(`1, `2, · · · , `v). It is easy to see that

when α1, α2, · · · , αv+1 differ by at most one, no matter what their order is, β(`1, `2, · · · , `v) is the

same (which is the maximum value of β(`1, `2, · · · , `v)).

Let (`∗1 , `∗2 , · · · , `∗v) be the v anchor levels that satisfy the condition in Lemma 9.15. It maxi-

mizes the value of Z(`1, `2, · · · , `v). For convenience, we assume that `∗1 < `∗2 < · · · < `∗v. It

is very simple to find these v values. For convenience, we use Z∗ to denote Z(`∗1 , `∗2 , · · · , `∗v), and

use β∗ to denote β(`∗1 , `∗2 , · · · , `∗v).

The values of β∗ and Z∗ can be computed efficiently by the following dynamic programming

algorithm of time complexity O(D2). Let α1 = `∗1 − 1, αi = `∗i − `∗i−1 − 1 for i ∈ [2, v], and

αv+1 = D− `∗v. Let w(i, j) denote the number of solutions for x1, x2, · · · , xi such that ∑i
k=1 xk = j

and xk ∈ [0, αk] for k = 1, · · · , i. The algorithm is as follows: (1) w(i, j) = ∑αi
k=0 w(i− 1, j− k).

Also, w(i, j) = 0 if j < 0, w(1, j) = 1 if 0 ≤ j ≤ α1, and w(1, j) = 0 if j > α1; (2) β∗ =

w(v + 1, D− v), and Z∗ = (m− v)!β∗.

The following theorem presents the capacity of the Star BRM.

Theorem 9.16 The capacity of the Star BRM code S(n, m, D, v) is

cap(S) =
log Z∗

m− v
.

Proof: We first show that cap(S) ≤ log Z∗
m−v . There are v!(D

v) ways to assign values to

(`1, `2, · · · , `v), which we denote by W = {w1, w2, · · · , wv!(D
v)}. We call

(`1, `2, · · · , `v, c1, c2, · · · , cn) the cell-level sequence. For i = 1, 2, · · · , v!(D
v), let γi,n denote

the maximum set of cell-level sequences satisfying two conditions: (1) They all assign wi to

158

(`1, `2, · · · , `v); (2) The permutations induced by them are all distinct.

By the definition of Z(`1, `2, · · · , `v), every block can induce Z(`1, `2, · · · , `v) permutations.

Since there are n/(m− v) blocks, we get |γi,n| = (Z(wi))
n

m−v . By Lemma 9.15, Z(wi) ≤ Z∗.

Since every codeword of S has at least one realization in some γi,n,

|S(n, m, D, v)| ≤ ∑
i=1,2,··· ,v!(D

v)

|γi,n| ≤ v!
(

D
v

)
(Z∗)

n
m−v .

So

cap(S) = lim
n→∞

log |S(n, m, D, v)|
n + v

≤ lim
n→∞

log(v!(D
v)(Z∗)

n
m−v)

n
=

log Z∗

m− v
.

We now show that cap(S) ≥ log Z∗
m−v . Say that (`∗1 , `∗2 , · · · , `∗v) = wi′ for some i′. Every

codeword of S has at most one configuration in γi′,n, so |S(n, m, D, v)| ≥ |γi′,n|. So

cap(S) = lim
n→∞

log |S(n, m, D, v)|
n + v

≥ lim
n→∞

log |γi′,n|
n

= lim
n→∞

log(Z∗)
n

m−v

n
=

log Z∗

m− v
.

So the theorem is proved.

The above proof leads to the following corollary.

Corollary 9.17 The Star BRM code S(n, m, D, v) achieves its capacity even if the v anchor cell

levels are fixed as (`∗1 , `∗2 , · · · , `∗v).

The capacity of the Star BRM code S(n, m, D, v) is non-decreasing in D. However, when

D = (m− v + 1)v + (m− v), the capacity reaches its maximum value. Further increasing D will

not increase the capacity. That is because when D ≥ (m − v + 1)v + (m − v), Z∗ reaches its

maximum value m!/v!.

9.5.2 Lower Bound for the Capacity of BRM

We now derive a lower bound for the capacity of the bounded rank modulation code C(n, m, D, v).

Theorem 9.18 For the BRM code C(n, m, D, v), when m ≥ 2v, its capacity

cap(C) ≥ log Z∗ + log v! + log(m− 2v)!
2(m− v)

.

(As presented previously, Z∗ is a value determined by the parameters m, D, v.)

159

Proof: Let S(n, m, D, v) be a Star BRM code with an additional constraint: every codeword

of S has a realization in which the v anchor levels are (`∗1 , `∗2 , · · · , `∗v). By Corollary 9.17, S

achieves capacity. For convenience, assume n/(m− v) is an integer.

Let (P1, P2, · · · , Pn/(m−v)) be a codeword in S , and let (`∗1 , `∗2 , · · · , `∗v, c1, c2, · · · , cn) =

(B1, B2, · · · , Bn/(m−v)) be its realization. For i = 1, 2, · · · , n/(m− v), corresponding to block Bi,

we build two blocks B′i and B′′i of length m as follows. Say Bi = (`∗1 , `∗2 , · · · , `∗v, c′1, c′2, · · · , c′m−v).

The first v cell levels of B′i take values from the set {`∗1 , `∗2 , · · · , `∗v} (we have v! choices here),

and the next m − v cell levels of B′i are the same as (c′1, c′2, · · · , c′m−v). The first v cell levels

of B′′i overlap the last v cell levels of B′i . For the next m − 2v cell levels of B′′i , we first pick

m − 2v ≤ D − 2v values different from the first v and the last v cell levels of B′i , then let the

m− 2v cell levels take only those m− 2v values (we have (m− 2v)! choices here). The final v

cell levels of B′′i take values again from the set {`∗1 , `∗2 , · · · , `∗v}. Then we construct a cell-level

sequence (B′1, B′′1 , B′2, B′′2 , · · · , B′n/(m−v), B′′n/(m−v)), where every two adjacent blocks overlap by

v. Corresponding to every codeword s ∈ S , there are at least (v!(m − 2v)!)
n

m−v such cell-level

sequences, which we denote by Qs. It is simple to see that no two cell-level sequences in Qs induce

the same permutation sequence. On the other side, when s 6= s′, every pair of cell-level sequences

from Qs and Qs′ , respectively, also induce different permutation sequences. (To see that, let us call

the pair of cell-level sequences q and q′. Replace all their overlapping cell levels by (`∗1 , `∗2 , · · · , `∗v),

and get two new cell-level sequences p and p′. The codewords s and s′ are subsequences of I(p)

and I(p′), respectively. Since s 6= s′, I(p) 6= I(p′). So I(q) 6= I(q′).) We can also see that

every cell-level sequence constructed above induces a codeword in the code C(2n + v, m, D, v).

So corresponding to the |S(n, m, D, v)| codewords of the Star BRM code S(n, m, D, v), we

can find at least |S(n, m, D, v)|(v!(m− 2v)!)
n

m−v codewords of the BRM code C(2n + v, m, D, v).

So the capacity of code C(n, m, D, v) is

cap(C) ≥ lim
n→∞

log |S(n, m, D, v)|+ (log v! + log(m− 2v)!) · n
m−v

2n + v

= lim
n→∞

log |S(n, m, D, v)|
2n

+
log v! + log(m− 2v)!

2(m− v)

=
cap(S)

2
+

log v! + log(m− 2v)!
2(m− v)

=
log Z∗ + log v! + log(m− 2v)!

2(m− v)
.

So the theorem is proved.

160

Corollary 9.19 Let C(n, m, D, v) be a BRM code, and let S(n, m, D, v) be a Star BRM code. Then,

when m ≥ 2v,

cap(C) ≥ 1
2
· cap(S).

In particular, when v > 1 or m > 2v, cap(C) > 1
2 · cap(S).

We now present a lower bound for the case m < 2v. Define An
k = (n

k)k! = n!/(n− k)!, which

is the number of ways to arrange k elements in n positions. Suppose m < 2v and v = k(m− v) + s,

where k ∈ N+ and 1 ≤ s ≤ m − v. Let r = m − v − s. (So 0 ≤ r ≤ m − v − 1.) Define a

constant M = Am−v
s (A2(m−v)−s)

m−v)k−1(m− v)!. We have the following lower bound for the BRM

code when m < 2v.

Theorem 9.20 For the BRM code C(n, m, D, v), when m < 2v and D ≥ m + r, its capacity

cap(C) ≥ log(Z∗ ·M · r!)
m + r

Proof: Use the notations in Theorem 9.18. For each block Bi, i = 1, 2, · · · , n/(m − v),

we first construct k + 2 blocks B(1)
i , B(2)

i , · · · , B(k+2)
i . And then build a cell-level sequence q =

(B(1)
1 , B(2)

1 , · · · , B(k+2)
1 , · · · , B(1)

n/(m−v), B(2)
n/(m−v), · · · , B(k+2)

n/(m−v)) of length n′ = (k + 2)n + v =
n(m+r)

m−v + v, such that every two adjacent blocks overlap by v. Define B(k+2)
0 = (1, 2, · · · , m −

v, `∗1 , `∗l , · · · , `∗v). Then the first v cell levels of B(1)
i are the same as the last v cell levels in B(k+2)

i−1 ,

∀ i = 1, · · · , n/(m − v), and the first v cell levels of B(j)
i are exactly the last v cell levels of

B(j−1)
i , ∀ j = 2, · · · , k + 2. So we are left to build the last m − v cell levels of B(j)

i . Assign

(c′1, c′2, · · · , c′m−v) to the last m− v cell levels of B(1)
i . For B(2)

i , the (v + 1)-th through the (v + r)-

th cell levels take r ≤ D −m numbers from [1, D] that are different from Bi. We have r! choices

here. And the last s cell levels are assigned s values from {`∗1 , `∗l , · · · , `∗v} that are different from

the last (k− 1)(m− v) + s cell levels of B(k+2)
i−1 . Thus identical levels in a block are avoided and

we have Am−v
s choices here. For the last m− v cell levels of B(j)

i , j = 3, . . . , k + 1, we pick m− v

values from {`∗1 , `∗l , · · · , `∗v} that are not in the last (m − v)(j − 3) + s cell levels of B(j−1)
i nor

in the last (k − j + 1)(m − v) + s cell levels of B(k+2)
i−1 . There are A2(m−v)−s

m−v choices for each

j = 3, · · · , k + 1. Finally, the last m − v cell levels of B(k+2)
i are chosen from {`∗1 , `∗l , · · · , `∗v}

such that they are different from the last (m− v)(k− 1) + s cell levels of B(k+1)
i , which results in

(m− v)! choices.

161

Notice q is a valid cell-level sequence of C(n′, m, D, v) as each cell level is no more than D

and any block in q has m different levels. For each codeword s in S , there are at least M · r!

such cell-level sequences, denoted by Qs. Also notice that similar to Theorem 9.18, neither two

cell-level sequences in Qs nor two cell-level sequences in distinct Qs and Qs′ induce the same

permutation sequence for C(n′, m, D, v). Moreover, the number of distinct permutation sequences

in C(n′, m, D, v) is at least ∑s∈S |Qs| ≥ |S(n, m, D, v)|(M · r!)
n

m−v . Therefore,

cap(C) ≥ limn→∞
log |S(n, m, D, v)|(M · r!)

n
m−v

n′

= limn→∞
(m− v) log |S(n, m, D, v)|

n(m + r)
+

log(M · r!)
m + r

=
(m− v)cap(S)

m + r
+

log(M · r!)
m + r

=
log(Z∗ ·M · r!)

m + r
.

Thus we have proved the theorem.

Corollary 9.21 Let C(n, m, D, v) be a BRM code, and S(n, m, D, v) be a Star BRM code. Then if

m < 2v and D ≥ m + r,

cap(C) >
(m− v)cap(S)

m + r
=

cap(S)
k + 2

9.6 Concluding Remarks

The question of what overlap provides the highest capacity for a given permutation size and a

given maximum level is partially discussed in this chapter. Denote this optimal overlap by v∗(D).

The following observations show the two extreme cases and the result of Theorem 9.5:

1. When D = m, cap(C(n, m, m, v)) = log(m−v)!
m−v . Therefore, cap(C(n, m, m, 0)) >

cap(C(n, m, m, 1)) > · · · > cap(C(n, m, m, m− 1)). We can conclude that v∗(m) = 0.

2. When D = ∞, it is clear that cap(C(n, m, ∞, v)) = log(m!/v!)
m−v . Then cap(C(n, m, ∞, 0)) <

cap(C(n, m, ∞, 1)) < · · · < cap(C(n, m, ∞, m− 1)), which implies that v∗(∞) = m− 1

3. When D ≥ m + 2, cap(C(n, m, D, 1)) > cap(C(n, m, D, 0)). So the optimal overlap for

D ≥ m + 2 satisfies v∗(D) ≥ 1.

162

The optimal overlap values for m + 1 ≤ D < ∞ are not thoroughly examined, which can be

our future work direction. Besides, for any rate no more than the capacity, the exact forms of the

permutation encoders and decoders in addition to their efficiency and complexities are still left to

be worked on. In addition, a generalized BRM code can be viewed as a set of n cells, among which

we choose subsets of size m and form permutations. All cell levels are no more than D and two

subsets may overlap. Under this framework, how to make choices of the subsets so as to optimize

the capacity is still an open problem.

In summary, this chapter used the tools of labeled graphs to find the capacities of BRM codes

with one overlap. In particular, it showed that if two extra charge levels are given, one can use them

by way of overlap and achieve higher capacity than non-overlap codes. In addition, star BRM code

is introduced to obtain a lower bound for the capacity of BRM codes.

163

Chapter 10

Partial Rank Modulation

10.1 Introduction

Similar to the previous chapter, we study rank modulation with low sorting complexity. However,

instead of having small permutations along a long sequence of cells, we propose using the k highest

out of n cells to represent information in flash memory, and call it partial rank modulation. For

example, let n = 5, k = 2, we write (3, 4, |1, 2, 5) to represent a permutation, where the left most

value corresponds to the cell index with highest level. The | sign separates the top cells on the left

which represents information, and the bottom cells on the right which is redundant. Sometimes we

may simply write the top k cells only, e.g., (3, 4). Partial rank modulation is a good candidate of

coding scheme for flash memory because it preserves the advantages of rank modulation, and the

sorting of k cells is less complex than n cells (k log k complexity for k cells, or k − 1 complexity

with parallel comparisons). Also, the unused n − k cells provide redundancy and can be used to

correct errors.

We focus on the problem of Gray codes for such partial permutations, or a sequence traversing

all partial permutations, for all k < n. The transition between every two permutations in this chapter

is to change only one cell to the highest in the group. For example, let n = 3, k = 2, we actually

consider full permutations, and write them without the | for simplicity. The cycle of permutations is

a Gray code: (1, 2, 3), (2, 1, 3), (3, 2, 1), (1, 3, 2), (3, 1, 2), (2, 3, 1). All of the full permutations are

contained in the cycle, and the transitions change only one cell.

In [JMSB09], a Gray code for the full permutations was constructed (k = n − 1). The Gray

code can be used as a permutation counter that traverses 0, 1, . . . , n! − 1, and by combining the

counter with other coding techniques (e.g., floating code [JBB07] [FLM08]), we are able to repre-

sent arbitrary information efficiently. As mentioned before, one can use a counter as a logical cell

164

with n! levels, and rewrite with a small increase in the levels each time. As a result, no block erasure

is necessary until the logical cell reaches its maximum, which is much less frequent compared to a

physical cell.

A related topic in combinatorics is universal cycles, which is a sequence containing all partial

permutations exactly once. The construction of such universal cycles is an open problem since the

90s [CDG92]. Section 10.5 shows that the Gray code is equivalent to the universal cycles, so we

will only concentrate on constructions of universal cycles in most of this chapter.

For a set Σ with n elements, a permutation of size n is an n-tuple P = (pn, . . . , p2, p1),

where pi ∈ Σ, and pi are all distinct, i = 1, 2, . . . , n. For simplicity, Σ is taken as the set

[n] = {1, 2, . . . , n} in the chapter. The indices are ordered decreasingly for convenience of descrip-

tion. Every permutation defines a mapping from Σ to itself, i.e., the i-th element of Σ is mapped to

pi. All of the permutations of size n form the symmetric group Sn with function compositions as

operations. In this chapter, we are going to use Sn to represent the set of all permutations of size n.

A k-partial permutation, or k-permutation, out of n elements is a k-tuple Q = (pk, . . . , p2, p1) with

k distinct elements in Σ, for some k ≤ n− 1. We say Q is induced from P if the first k elements of

P are the same as Q.

A de Bruijn sequence is a cyclic sequence of some alphabet Σ where each possible k-tuple of

this alphabet appears as a consecutive subsequence exactly once [dBE46]. The length of a de Bruijn

sequence is |Σ|k. For example, if |Σ| = {0, 1} and k = 3, then 00010111 is a de Bruijn sequence.

More generally, let C be a set whose elements are represented by k-tuples of the alphabet Σ. Then

a universal cycle on the set C is a cyclic sequence of length |C| for which every element in C

corresponds to exactly one subsequence [CDG92].

For universal cycles on k-partial permutations, Σ is a set of size n, and C contains all the k-

partial permutations, k < n. For example, (4, 3, 4, 2, 3, 2, 4, 1, 3, 1, 2, 1) is a universal cycle for

2-partial permutations out of n = 4. It contains all the 2-partial permutations in its subsequences:

(4, 3), (3, 4), (4, 2), · · · , (2, 1), (1, 4). A natural question to ask is: is there a universal cycle on

partial permutations for any parameters k, n? We will show in this chapter that the answer is yes,

and give explicit constructions of such cycles.

Universal cycles were first proposed in [CDG92], where the set C was considered to be all

possible tuples, order-isomorphic permutations, partitions, or subsets. The existence of universal

cycles on k-partial permutations was proved in [Jac93], however, the proof was nonconstructive.

An explicit construction of a cycle for k = n − 1 was given in [RW10]. But for other values

165

of k, the construction is still an open problem. In this chapter, we will provide an algorithm to

construct the cycle for all k ≤ n− 1. The algorithm is dependent only on the top k elements of each

permutation, and has complexity O(k).

The problem of order-isomorphic permutations is similar to k-partial permutations because its

elements in C is also k-partial permutations. However, two permutations are isomorphic (and

therefore considered duplicated) if their relative ordering are the same. Namely, suppose Q =

(pk, . . . , p2, p1) and Q′ = (p′k, . . . , p′2, p′1) are isomorphic, then pi < pj if and only if p′i < p′j,

for 1 ≤ i 6= j ≤ k. For example, (1, 3, 2) and (2, 5, 3) are isomorphic permutations. In [Joh09],

constructions of universal cycles on order-isomorphic permutations are given for n = k + 1, and it

proves that n = k + 1 symbols are sufficient for such universal cycles.

Another related problem is the Hamiltonicity of graphs of k-permutations with n− k transitions

(k < n), where each k-permutation corresponds to a vertex and each k + 1-permutation corresponds

to an directed edge. Namely, it is a universal cycle with distinctive elements in any consecutive k + 1

subsequences. In [SKKC03], Hamiltonicity was shown for k = 2. And in [Isa06], Hamilton cycles

are proved for all n and k ≤ n − 3, and for n ≥ 4, k = n − 2, the graph is proved to be not

Hamiltonian.

Recently, Gray codes for local rank modulation, another variation of rank modulation, was

raised in [EGLSB11]. And in local rank modulation, k-permutations with overlaps are extracted

from a sequence of m > k cells.

Figure 10.1: Directed graphs with n = 3, k = 1. Valid transitions are t2, t3. (a) The directed graph
G of full permutations. A universal cycle contains a subset of the vertices. (b) The directed graph
H of partial permutations. A universal cycle is a Hamiltonian cycle in this graph.

A universal cycle on partial permutations defines a Gray code, namely, a sequence of partial

permutations, such that the transition between two adjacent permutations belongs to a set of valid

transitions. Suppose there is a set of transitions (or a set of functions) defined on Sn, then we can

166

draw a directed graph with all the permutations as vertices and all the transitions as edges. Denote

this graph by G. See Figure 10.1 (a) for an example. We would like to know if there exists a cycle in

G whose vertices induce all k-partial permutations. In this chapter, we confine ourselves to the push-

to-the-top transitions ti, i = k, k + 1, . . . , n: for permutation P = (p1, p2, . . . , pn), the i-th element

becomes the first. That is, ti(P) = (pi, p1 . . . , pi−1, pi+1, . . . , pn). Throughout the chapter, the left-

hand side is considered as top, and the right side is bottom. Thus, in the graph G, each permutation

P has n − k + 1 outgoing edges, tk(P), tk+1(P), . . . , tn(P). If this cycle exits, we call it a Gray

code on k-partial permutations. For example, (1, 2, 3), (3, 1, 2), (2, 3, 1) is a Gray code for k = 1,

n = 3. When k = n− 1, the cycle consists of a Gray code on full permutations. The choice of

push-to-the-top transitions relates the Gray codes to universal cycles on partial permutations.

In this chapter we will construct universal cycles, analyze the complexity of the proposed algo-

rithm, and establish the relation between universal cycles and Gray codes.

10.2 Definitions and Notations

A k-partial permutation, or k-permutation, out of n element is a k-tuple Q = (p1, p2, . . . , pk) with

distinct k elements of the set [n] = {1, 2, . . . , n}. The number of possible k-partial permutations

is (n
k)k!. The partial permutation is said to be induced from the permutation P = (p1, p2, . . . , pn),

for any ordering of pk+1, pk+2, . . . , pn, and the permutation P is said to be a realization of Q. Note

that there are multiple realizations for each partial permutation when k < n − 1. Sometimes we

will denote this permutation by P = (p1, p2, . . . , pk|pk+1, pk+2, . . . , pn) to emphasize the first k

elements. When n, k are known in the context, we usually refer to the bottom elements in P as the

bottom n− k elements, and the top elements as the top k elements.

An (n, k) universal cycle of k-partial permutations is a sequence A = (a1, a2, . . . , aN), N =

(n
k)k!, ai ∈ {1, 2, . . . , n}, such that each k-partial permutation out of n elements is represented

by exactly one subsequence (ai+1, ai+2, . . . , ai+k) for some 1 ≤ i ≤ N. In this section, the

index additions are computed modulo N. For example, if n = 4, k = 2, the sequence A =

(4, 3, 4, 2, 3, 2, 4, 1, 3, 1, 2, 1) has subsequences (a1, a2) = (4, 3), (a2, a3) = (3, 4), . . . , (a12, a1) =

(1, 4). It can be seen that every k-partial permutation is included in this sequence. Thus, it is a

universal cycle for n = 4 and k = 2. The question is, does such a cycle exist for all n, k? If yes,

how to find this cycle? We will see in the chapter that the answer is yes, and there are indeed a large

number of such cycles. Moreover, we will give constructions of universal cycles.

167

Another way to view a universal cycle is to break it up to a sequence of k-permutations, (a1, a2,

. . . , ak), (a2, a3, . . . , ak+1),. . . , (aN , a1, . . . , ak−1). For purpose of description, we write each per-

mutation backwards. So a universal cycle is equivalent to a cycle of k-permutations (ak, . . . , a2, a1),

(ak+1, . . . , a3, a2), . . . , (ak−1, . . . , a1, aN) such that each partial permutation appear exactly once.

Hence in this chapter we focus on constructing such a sequence of partial permutations.

For any k-permutation in the universal cycle, we can see that there are only n− k + 1 possible

permutations following it. We define the transition from one full permutation to the next as follows.

For k ≤ i ≤ n, define mapping ti: Sn → Sn, where ti(p1, p2, . . . , pn) = (pi, p1, . . . , pi−1, pi+1,

. . . , pn). ti is called a push-to-the-top transition. By abuse of notation, ti can be defined on k-

permutations, where we expand Q = (p1, p2, . . . , pk) to a full permutation P = (p1, p2, . . . , pn)

with pn > pn−1 > · · · > pk+1. And define ti(p1, p2, . . . , pk) = (pi, p1, p2, . . . , pk−1) if k ≤ i ≤

n.

Therefore, a universal cycle is equivalent to the following graph interpretation. Consider a

directed graph H, with vertices corresponding to k-permutations and edges corresponding to ti

defined on k-permutations. Again, assume that k ≤ i ≤ n. Figure 10.1 (b) shows an example of

such graphs. Then a Hamiltonian cycle in this graph is a universal cycle.

Typically, we assume 2 ≤ k < n because when k = 1, construction of universal cycles is trivial

(we can do tn n times).

Figure 10.2: (a) A cycle for 2-partial permutations out of 4. The corresponding stack storing equiv-
alence classes are shown below the cycle. (b) The insertion tree generating the cycle in (a).

Example 10.1 Figure 10.2(a) shows a (4, 2) Gray code. Only the top two digits in each permuta-

tion are of concern. And the push-to-the-top transitions are indicated above each edge.

We next define a partition on partial permutations, which will help us to construct the universal

cycle. Define the partition by the relation ∼, where P1 ∼ P2 if the first k elements of P2 is a cyclic

shift (to the left) of those of P1. For example, if k = 3, n = 6, E = {(1, 3, 6), (6, 1, 3), (3, 6, 1)}

168

is an equivalence class. ∼ is obviously an equivalence relation. Let E be an equivalence class, if

P = (p1, p2, . . . , pk) ∈ E, and pk = max{p1, p2, . . . , pk}, then we choose P as the representative

of the equivalence class E (unless mentioned otherwise). We will denote E = (p1, p2, . . . , pk).

In the previous example, (1, 3, 6) is the representative and we will write E = (1, 3, 6). Each

equivalence class has k members and there are (n
k)(k− 1)! equivalence classes.

10.3 Construction of Universal Cycles

As mentioned in Section 10.1, no explicit construction of universal cycles is known for k < n− 1,

and we will give such a construction for all k ≤ n− 1.

The universal cycles are constructed in several steps. We first construct a tree that contains all

the equivalence classes, and then use this tree to generate all the partial permutations. Also, the

construction of this tree is reduced to: (1) generating subtrees containing all the combinations of

k elements out of n, and (2) finding a sequence of permutations on k− 1 elements to connect the

subtrees.

In the following, we will represent a universal cycle by its subsequences: Q1, Q2, . . . , QN ,

where each Qi is a k-permutation, and N = (n
k)k!. The transitions between the k-permutations are

push-to-the-top operations ti, k ≤ i ≤ n, or equivalently, push the i-th element pi.

Notice that starting from any partial permutation, if we do (k − 1) times the transition tk, we

can traverse an equivalence class. If we start from some partial permutation in equivalence class E1

and apply operations

tk, . . . , tk︸ ︷︷ ︸
a times

, ti, tk, . . . , tk︸ ︷︷ ︸
k−1 times

, tk+1, tk, . . . , tk︸ ︷︷ ︸
k−2−a times

(10.1)

for 0 ≤ a ≤ k− 2 and i > k, we can still traverse all members of E1. And if the partial permutation

after ti belongs to E2, the above operations also traverse E2. In another word, inserting E2 does not

affect the completion of E1. We call the above operation insertion. See Figure 10.3 for an example.

In addition, if a = k − 1 in the above operation sequence, we omit the last operations tk+1 and

(k− 2− a) times of tk. And we traverse E1, followed by traversing E2. We consider this case as

insertion, too. The permutations circled by dashed line in Figure 10.2(a) also illustrates this notion,

where E1 = (2, 4) is inserted by E2 = (2, 3).

We will draw insertions in a directed tree. The root of the tree is the unique node with in-

going degree 0, and an edge starts from the parent and ends at the child. The nodes of the tree are

169

1
2
3
4
5

5
1
2
3
4

4
5
1
2
3

3
4
5
1
2

2
3
4
5
1

6
5
1
2
3

5
1
2
3
6

3
6
5
1
2

1
2
3
6
5

2
3
6
5
1

tk

tk

tk
tk

tk

tk

tk

tk ti

tk+1

Figure 10.3: Insertion. Each box represents a k-permutation. The equivalence class E2 =
(5, 1, 2, 3, 6) (the 5 permutations on the right) is inserted to E1 = (1, 2, 3, 4, 5) (the 5 permutations
on the left). Here k = 5, n ≥ 6, and ti pushes 6 to the top.

equivalence classes. An edge means the child is inserted in the parent. Since transition ti in 10.2

only changes one digit in the partial permutation, the parent and the child differ in only one digit for

their representatives (after cyclic shift). We can insert at most k children to a parent, each changing

one of its k digits. In a word, define an insertion tree to be a tree with equivalence classes as nodes,

with k children at most for each parent, each changing one different digit of their parent. We may

have multiple layers of insertions. The cycle in Figure 10.2(a) is generated by the insertion tree in

Figure 10.2(b).

Lemma 10.2 Any insertion tree of k elements out of n that contains each equivalence class once

and only once will generate an (n, k) universal cycle. Such an insertion tree is called a generating

tree.

Proof: Claim: an insertion tree will induce a cycle of all members of the equivalence classes

of the tree (possibly with duplicates if the tree has duplicated nodes).

Use induction on the depth. Base case is one single node, which is true by doing k times tk. For

a tree with depth of D, the subtrees of the root have depth of at most D− 1 and, by induction, gen-

erate cycles of all members of their equivalence classes. Let the root be (p1, p2, . . . , pk) (pk is not

necessarily the largest). For one subtree, suppose its root is (p1, p2, . . . , pi−1, p′i, pi+1, . . . , pk),

then we can insert the subtree to the root and construct a cycle of k-permutations as follows:

(p1, p2, . . . , pk)
tk→ · · · tk→ (pi+1, . . . , pk, p1, . . . , pi)

push p′i→ [(p′i, pi+1, . . . , pk, p1, . . . , pi−1) →

· · · → (pi+1, . . . , pk, p1, . . . , pi−1, p′i)]
push pi→ (pi, pi+1, . . . , pk, p1, . . . , pi−1)

tk→ · · · tk→ (p2, . . . ,

pk, p1). The subsequence in the square brackets corresponds to the subtree. If i = 1, the part after

170

the square brackets is omitted, and the last permutation is (p2, . . . , pk, p′1). If i 6= 1, the last permu-

tation is (p2, . . . , pk, p1). In both cases, this sequence goes through the equivalence classes in the

subtree and the root completely and it is indeed a cycle. Similarly, we can insert other subtrees into

this cycle in the same manner. As each child changes a different digit of the root, these subtrees will

not affect each other. So the claim is true.

Now as a generating tree contains each equivalence class exactly once, we have a cycle with

every partial permutation exactly once.

The above theorem is similar to the cycle merging technique in [Joh09], which was used to

generate order-isomorphic permutations.

By the proof, if we start from some node m of the insertion tree, we can construct a cycle that

traverse the subtree rooted at m in the following manner: (1) pass some of the k-partial permutations

belonging to m first, and (2) traverse one of the subtrees that is rooted at a child of m, and repeat (1)

and (2) until the k-partial permutations belonging to m is traversed.

This procedure works like a stack. That is, when we go to the current node m, put it in the stack.

And then pass some of its corresponding partial permutations. If every element in the equivalence

class of m is passed through, remove m from the stack. Next, go to a child of m, and treat the child

as the current node. If the current node has been traversed, and has no children, then visit a node

from the stack. One cycle ends when the stack is empty, and we can start again by pushing the

first element of the first permutation to the top. For example, in Figure 10.2(a), the stack after each

partial permutation is written in the lower dashed box.

Now the problem of universal cycles for partial permutations is reduced to constructing gener-

ating trees.

Before going through constructions, let us think about whether such generating trees exist.

Consider an insertion tree of k out of n in Figure 10.4. In this figure, the first digit in the rep-

resentative of an equivalence class does not have to be the largest. Each rectangular represents

a subtree with all equivalence classes that have one digit fixed as some integer, and possibly du-

plicates occur in each rectangular. An X in the graph represents a non-fixed digit. Given a tree

of all equivalence classes of (k − 1) out of n, we can add the fixed integer at the fixed position

in each node, and connection rules for insertion trees are not violated. Thus we obtain a subtree

in the rectangular. By induction on k for fixed n, these subtrees exist. The equivalence classes

(1, 2, . . . , k − 1, k + 1), (1, 2, . . . , k − 1, k + 2), . . . , (1, 2, . . . , k − 1, n) are nodes in the subtree

1XX . . . X, and each of these nodes leads to a new subtree.

171

Figure 10.4: An insertion tree of k out of n, which contains all equivalence classes but also allows
duplicates.

Obviously the tree in Figure 10.4 contains every equivalence class, but there are some duplicates.

Starting from bottom to up, if there are two identical class E1 = E2 in this tree, we can remove E2

and move all its decedents under E1 (treat them as the descendants of E1). If thus E1 has 2 children

that change the same digit of E1, then these two children differ in only one digit. Thus we can move

one child and its decedents under the other. Repeat this procedure until all descendants of E1 have

valid children. Afterwards, remove the next duplicate, and so on. Therefore, generating trees exist,

and as we can imagine, there are many such trees. A proof of existence of universal cycles using

graph theory can be found in [Jac93].

We will give a special class of generating trees based on combinations, where the elements are

ordered increasingly. Let (c1, c2, . . . , cn) and (d1, d2, . . . , dn) be vectors with distinct values. Then

they are order-isomorphic if for all 1 ≤ i < j ≤ n, ci < cj if and only if di < dj. Suppose we

have an insertion tree T1 that contains each combination of k out of n once, and the nodes in T1 are

all ordered increasingly. Namely, each node (p1, p2, . . . , pk) in T1 satisfies p1 < p2 < · · · < pk.

Suppose the root of the tree is (n− k + 1, n− k + 2, . . . , n). Then we will construct trees T2, T3, . . .

such that they have similar structure as T1, but the nodes do not have increasing order. Moreover,

these trees will be connected by permutations σ1, σ2, σ3, . . . on [k− 1], where σ1 is fixed to be the

identity permutation. Obviously, all nodes in T1 are order-isomorphic to (σ1, k) = (1, . . . , k− 1, k).

For an integer x and a permutation σ on [k − 1], write σ + x = (σ(1) + x, σ(2) + x, . . . , σ(k −

1) + x). If we can transit from a node in T1 to the node (σ2 + (n− k), n) and does not violate the

rule of an insertion tree (a child changes one digit from the parent and each child changes a different

digit), then we can use this as the root for a new tree T2. And by the same structure as T1, except

172

that we change each (p1, p2, . . . , pk) in T1 to (pσ2(1), pσ2(2), . . . , pσ2(k−1), pk) in T2, we get another

insertion tree T2 and each node in T2 is order-isomorphic to (σ2, k). After that, we transit from T2

to T3 with permutation σ3, and each node in T1 is replaced by (pσ3(1), pσ3(2), . . . , pσ3(k−1), pk), and

so on.

For example, in Figure 10.5 (n = 6, k = 3), the subtree on the left (in dashed lines) is tree T1,

and we transit from T1 to a node (5, 4, 6). Hence σ1 = (1, 2) and σ2 = (2, 1). The node in T1,

for instance, (p1, p2, p3) = (2, 4, 6), is replaced with (pσ2(1), pσ2(2), p3) = (p2, p1, p3) = (4, 2, 6).

Each node in T2 is isomorphic to (σ2, k) = (2, 1, 3).

We have the following theorem.

Theorem 10.3 If there is an insertion tree T1 that contains every combination of k out of n once,

and a sequence of valid transitions from previous trees (as described above), σ1, σ2, . . . , σ(k−1)!,

traversing all permutations on [k − 1], then T1 → T2 → · · · → T(k−1)! is a generating tree of

k-partial permutations.

Proof: We first show that this three is an insertion tree. Since the transition within T1 and

from one subtree to the next is assumed to be valid, we need to show each child in Ti changes only

one digit of the parent and changes a different digit, for i ≥ 2. However, the nodes in Ti and T1 are

identical except the ordering of their elements are permutated by σi, so Ti is also a valid insertion

tree.

Next we show that the tree contains every equivalence class exactly once. Recall that we rep-

resent the equivalence classes with (p1, . . . , pk) where pk = max{p1, . . . , pk}. For any p1 <

p2 < · · · < pk, and any equivalence class (pσ(1), pσ(2), . . . , pσ(k−1), pk), there exists exactly one

1 ≤ i ≤ (k− 1)!, such that σ = σi and this equivalence class appears exactly once in the tree Ti.

Now the problem of finding universal cycles for partial permutations reduces to finding T1 and

σ1, σ2, . . . , σ(k−1)!.

Construction 10.4 (Construction of T1)

The root (n − k + 1, n − k + 2, . . . , n) has one child (n − k, n − k + 2, . . . , n), and the node

(1, 2, . . . , k) has a parent (1, 2, . . . , k − 1, k + 1) and no children. Starting from the root, and

following the connection rules below for all the other nodes, we will get a T1.

1. A node (p1, p2, . . . , pk−n+t−1, t, t + 1, . . . , n), for 1 ≤ pk−n+t−1 < t− 1 and n− k + 2 ≤

t ≤ n, is connected to the at most 3 nodes:

173

Parent (p1, p2, . . . , pk−n+t−1 + 1, t, t + 1, . . . , n)

Child1 (p1, p2, . . . , pk−n+t−1 − 1, t, t + 1, . . . , n) if pk−n+t−1 − 1 > pk−n+t−2 ≥ 1

Child2 (p1, p2, . . . , pk−n+t−1, t− 1, t + 1, . . . , n)

2. Otherwise, a node (p1, p2, . . . , pk) is connected to at most two nodes:

Parent (p1, p2, . . . , pk + 1)

Child (p1, p2, . . . , pk − 1) if pk − 1 > pk−1

Figure 10.5: A generating tree of 6 out of 3 based on Construction 10.4 and 10.6. The σ1, σ2 are
12

α2→ 21

Figure 10.2(b) is one example of Construction 10.4. Another example of 6 out of 3 is shown

in Figure 10.5. T1 is the left part of the tree in dashed line. T1 is similar to listing combinations

lexicographically.

Theorem 10.5 Construction 10.4 forms a tree T1 that contains every combination of k out of n.

174

Proof: The construction already includes every combination. So we need to prove that T1 is a

connected graph with no cycles.

Starting from any node in T1, and tracing back the parent, is equivalent to increasing the k-th

digit to the maximum, and then increasing the (k− 1)-th digit to the maximum, and so on. All of

these backward paths will end at (n− k + 1, n− k + 2, . . . , n). Therefore, graph T1 is connected.

Moreover, as a node is always smaller than its parent in lexicographical order, there is no cycle in

T1. Hence T1 is a tree.

It is easy to observe that T1 can be viewed as a subtree of k− 1 out of n− 1 combined with a

subtree of k out of n− 1. Namely, it is formed by a tree with the digit 1 and a tree without 1. And

each subtree can be further decomposed into two. Therefore, T1 can be constructed recursively.

Another possible T1 is a single line, where each parent has only one child. There are several

different constructions in the literature. For example, the homogeneous scheme and the near-perfect

scheme can be found in [Knu05]. Here we list two examples for n = 6, k = 3 taken from [Knu05].

A homogeneous example: 123, 124, 134, 234, 235, 135, 125, 145, 245, 345, 346, 146, 246, 236,136,

126, 156,256, 356, 456. A near-perfect example: 456, 256, 156, 356, 346, 246, 146, 126, 136, 236,

234, 134, 124, 123, 125, 135, 235, 245, 145, 345. Here a node is the parent of its neighbor on the

right.

For construction of σ1, . . . , σ(k−1)!, we will assume k ≥ 3, because otherwise only T1 itself is

the generating tree. We first find which transitions are allowed from subtree Tt to Tt+1. Consider

the node in Tt,

a = (p1, p2, . . . , pi−1, n− k, pi+1, . . . , pk−1, n)

where {p1, . . . , pi−1, pi+1, . . . , pk−1} = {n− k + 1, n− k + 2, . . . , n− 1} \ {y} (10.2)

for some n − k + 2 ≤ y ≤ n − 1. This node exists since n ≥ k + 1 and k ≥ 3. We can now

define a child of a as b = (p1, p2, . . . , pi−1, y, pi+1, . . . , pk−1, n). Let x = y − n + k and b be

the root of Tt+1. Since (σt, k) is isomorphic to a and (σt+1, k) is isomorphic to b, we can see that

σt+1 = αx ◦ σt, where αx = (x, 1, 2, . . . , x − 1, x + 1, . . . , k − 1). Here ◦ is the composition of

permutations and is computed from right to left.

From Construction 10.4, we know that node a has only one child c in Tt (we need to order

elements in a increasingly first), which changes y + 1 of a to y. And b changes n − k of a to y.

Thus, children b and c are valid for the parent a, since they change different digits of a. Hence, αx

is a valid transition from tree Tt to Tt+1.

175

Permuted by αx, the lowest position in σt becomes the x-th lowest position in σt+1. In other

words, from the dual (inverse permutation) of σt+1 to the dual of σt, we push the x-th element to the

top.

Construction 10.6 (Construction of σ1, . . . , σ(k−1)!)

Suppose C is a cycle of full permutations of [k− 1] with push-to-the-top transitions. First take the

dual of each permutation in C. Then replace each push-to-the-top operation tx with αx and reverse

the cycle direction. And thus we will get a cycle of σ1, σ2, . . . , σ(k−1)!, generated by operations αx,

1 < x ≤ k− 1. Starting from the identity permutation σ1, and ignoring the last transition, we get

a path of σ1, σ2, . . . , σ(k−1)!.

σ1, σ2, . . . , σ(k−1)! can be easily generated once we have recursively generated (k − 2)-partial

permutations out of k− 1 elements (or full permutations on k− 1 elements) using the constructions

above. We can also use the cycle of full permutations in [JMSB09] [RW10]. For example, if

k = 4, then Construction 10.4 will form a cycle C on 3 elements using the operation sequence

t2, t3, t3, t2, t3, t3. And the push-to-the-bottom sequence is 231
t2→ 321

t3→ 132
t3→ 213

t2→ 123
t3→

312
t3→ 231. The corresponding σi’s are 312

α2← 321
α3← 132

α3← 213
α2← 123(α3←)231

α3← 312.

Deleting the arrow in brackets, we get a path.

Notice that if we construct σi’s using a (k− 1, k− 2) universal cycle, then the push-to-the-top

transitions are only tx, with x = k− 1 or x = k− 2. Therefore, y = x + n− k in (10.2) is either

y = n− 1 or y = n− 2. Thus, if we want to recursively construct our (n, k) universal cycle, there

are only two possible nodes in each subtree that may lead to a new subtree.

The following example shows how to decide the next subtree, given a permutation. Assume n =

7, k = 4, and the current k-partial permutation is (5, 4, 6, 1). This node belongs to the equivalence

class (1, 5, 4, 6), and we know σt is (1, 3, 2) for the current subtree. The dual of (1, 3, 2) is itself.

To find the next subtree, we need to find the permutation before (1, 3, 2) in a cycle of permutations

of size 3. By the previous example, it should be (3, 2, 1), whose dual is itself again. Thus, the next

subtree should have σt+1 = (3, 2, 1). The root of the next subtree is (6, 5, 4, 7).

Having constructed T1 and σ1, . . . , σ(k−1)!, we are able to draw a generating tree. Figure 10.5

shows a generating tree of 3 out of 6. The sequence σ1, σ2 is 12
α2→ 21, and the transition node from

T1 to T2 is (3, 4, 6).

Knowing a generating tree and the current partial permutation, how shall we decide the operation

for the next step? Define wm to be the position of the newly changed digit from the parent to the

176

node m, and the position is counted from top to bottom. More specifically, let m = (p1, . . . , pk),

then its parent is (p1, . . . , pwm−1, p′wm
, pwm+1, . . . , pk), where pwm 6= p′wm

. Its parent defers from

m only at position wm. For the root, wroot can be any integer between 1 and k. But we will assign

wroot = k. For example, in Figure 10.5, (1, 2, 4) is the parent of the node m = (1, 2, 3), and the 3rd

digit is changed from 4 to 3, so wm = 3, pwm = p3 = 3.

Let the current partial permutation be (pj, . . . , pk, p1, . . . , pj−1) and the current equivalence

class be m = (p1, p2, . . . , pk). The following algorithm is designed based on Lemma 10.2 and

finds the next partial permutation for an arbitrary generating tree:

Algorithm 10.7 (Transition from any partial permutation)

• If m has no children,

– if j ≡ wm + 1 mod k, then do step A;

– else, do tk.

• Else (if m has children),

– if j ≡ wy + 1 mod k for some child y = (p(y)
1 , p(y)

2 , . . . , p(y)
k), push p(y)

wy to the top;

– else if j ≡ wm + 1 mod k, then do step A;

– else do tk.

Step A: find the parent of m, say z. If wz = wm, find the parent of z, repeat until wl 6= wm for some

ancestor l = (p(l)
1 , p(l)

2 , . . . , p(l)
k). Then, push p(l)

wm to the top. If no such ancestor exists, we are at

the end of a cycle, so push the k-th element of the root to the top.

Thus at any moment with any partial permutation, we first find out which equivalence class it

is in, and then we have a mechanical way to decide the next step. This algorithm does not need

the ordering of the entire permutation, but only the first k. At each step we either push the k-th

highest element to the top, or push some particular element (e.g., p(y)
wy) to the top. The ranking of

this particular element does not matter.

If we use a recursive construction for αx in Construction 10.6 and for T1 in Construction 10.4,

Algorithm 10.7 can be simplified. In the following, Algorithm 10.8 or G(n, k) decides the transition

in a universal cycle, and 10.9 or H(n, k) decides the transition in a reverse universal cycle. Namely,

given a current permutation, G(n, k) decides the next transition and H(n, k) decides the previous

transition.

177

Given a permutation, take the top k elements (q1, q2, . . . , qk) and suppose ql = maxk
i=1 qi. Or-

der the top k elements increasingly as m = (p1, p2, . . . , pk). Let Q = (ql+1, ql+2, . . . , . . . , qk, q1,

. . . , ql−1). Let σ be isomorphic to Q and σ ∈ Sk−1 be a permutation on [k− 1]. Let π be the dual

of σ.

Algorithm 10.8 (Universal cycle G(n, k))

1 (Transit to the next subtree) If m satisfies (10.2), with y = n− 1 or y = n− 2, and qk =

n− k, find π and compute the transition tx before π using H(k− 1, k− 2).

– If x = y− n + k and (y, q1, . . . , qk−1) 6= (y, . . . , n, n− k + 1, . . . , y− 1), push y to

the top.

– Else, go to step 3.

2 (Transit to the previous subtree) Else if m = (n− k + 1, n− k + 2, . . . , n), Q 6= (n− k +

1, . . . , n− 1), and qk = n− 1 or n− 2, find π and compute the transition tx after π using

G(k− 1, k− 2). Let y = x + n− k.

– If qk = y, push n− k to the top.

– Else, go to step 3.

3 (Transit within a subtree) If m = (p1, p2, . . . , pk−n+t−1, t, t + 1, . . . , n), for 1 ≤ pk−n+t−1 <

t− 1 and n− k + 2 ≤ t ≤ n,

– If qk = t, push t− 1 (Child2).

– Else if qk = pk−n+t−1 and pk−n+t−1 − 1 > Pk−n+t−2 ≥ 1, push pk−n+t−1 − 1

(Child1).

– Else if qk = pk−n+t−1, push t− 1 (Ancestor).

– Else, do tk.

Else,

– If qk = pk and pk − 1 > pk−1, push pk − 1 (Child).

– Else if qk = pk, push n (Ancestor).

– Else, do tk.

178

Step 3 corresponds to the two cases in Construction 10.4. H(n, k) finds the previous permutation

and is very similar to G(n, k) and has the same complexity as G(n, k). Let the current permutation

be (q1, q2, . . . , qn). Also, we need to compute G(k− 1, k− 2) in step 2. We can either use Algo-

rithm 10.8 or the following simplified algorithm. The following algorithms realizes H(n, n − 1)

(and G(n, n − 1)) and finds its previous (and next) transition, which should be either tn or tn−1.

Define Q and π in the same way as in Algorithm 10.8.

Algorithm 10.9 (Reverse universal cycle H(n,n-1))

1 (Transit to the previous subtree) If q1=1, and qn = n− 1 or n− 2, find π and compute the

previous tx of π using H(n− 2, n− 3).

– If x = qn − 1 and (q2, . . . , qn) 6= (qn + 1, . . . , n, 2, . . . , qn) output tn.

– Else, go to step 3.

2 (Transit to the next subtree) Else if qn = 1, Q 6= (2, . . . , n), and q1 = n− 1 or n− 2, find π

and compute the next tx of π by G(n− 2, n− 3).

– If q1 = x + 1, output tn.

– Else, go to step 3.

3 (Transit with in a subtree)

– If q1 − qn = 1 or −1, output tn.

– Else, output tn−1.

Algorithm 10.10 (Universal cycle G(n,n-1))

1 (Transit to the next subtree)

If qn−1=1, and qn = n− 1 or n− 2, find π and compute the previous tx of π using H(n−

2, n− 3).

– If x = qn − 1 and (qn, q1, . . . , qn−2) 6= (qn, . . . , n, 2, . . . , qn − 1) output tn.

– Else, go to step 3.

2 (Transit to the previous subtree)

Else if qn = 1 and Q 6= (2, . . . , n), find π and compute the next tx of π by G(n− 2, n− 3).

179

– If qn−1 = x + 1, output tn.

– Else, go to step 3.

3 (Transit with in a subtree)

– If qn−1 − qn = 1 or −1, output tn.

– Else, output tn−1.

Figure 10.2(a) is an example of the above algorithms with n = 4, k = 2.

10.4 Complexity Analysis

In this section, we analyze the computational complexity of Algorithm 10.8 10.9 and 10.10 and com-

pare them with some previous constructions of subtree T1 and cycle of full permutations σ1, σ2, . . . , σ(k−1)!.

Even though the algorithm G(n, k) is recursive, we will show the number of recursions is low

on average. To compute G(n, k), in the worst case, we need to call H(k − (2i − 1), k − 2i), for

all 1 ≤ i ≤ bk/2c. There are 4 partial permutations in each subtree (and in total 4(k− 1)! partial

permutations) that we need to compute αx using H(k − 1, k − 2) or G(k − 1, k − 2). Thus, the

(k− 1, k− 2) cycle is computed 4 times, leading to a total of 4(k− 1)! recursive iterations.

To compute the (k− 1, k− 2) cycle, H(k− 3, k− 4) and G(k− 3, k− 4) are called 42(k− 3)!

times. Similarly, the iteration of the (k− (2i− 1), k− 2i) cycle is computed 4i(k− 2i + 1)! times,

for 1 ≤ i ≤ bk/2c. Thus, the total number of calls of G and H is

bk/2c

∑
i=1

4i(k− 2i + 1)! <
bk/2c

∑
i=1

(k− i)(k− i)! ≤
k

∑
i=1

(k− i)(k− i)! = k!− 1

And the average number of calls of function G or H for all the permutations is less than

1 +
k!

(n
k)k!
→ 1

when n→ ∞. Therefore, we only need to run G or H once on average.

Hence, the average computational complexity of G(n, k) is only dependent on the non-recursive

operations. In particular, recognizing the form of m (such as if m = (p1, p2, . . . , pk−n+t−1, t, t +

1, . . . , n), for some 1 ≤ pk−n+t−1 < t − 1 and n − k + 2 ≤ t ≤ n) does not require the exact

ordering of m, if we have O(k) auxiliary space (un−k+1, un−k+2, . . . , un). For all i = 1, 2, . . . , k, if

180

qk ≥ n− k + 1, set uqk = 1. If un = 1, then m is in the form (p1, p2, . . . , pk−n+t−1, t, t + 1, . . . , n).

And t− 1 is the largest index such that ut = 0. In this way, O(k) time and O(k) space are needed.

To compute the dual permutation π = (π1, π2, . . . , πk−1), we need to find the maximum ql =

maxk
i=1 qi, which is O(k) time. Then for i = 1, 2, . . . , k − l, if qi+l = q, πq−1 = i; for i =

k− l + 1, . . . , k− 1, if qi−k+l = q, πq−1 = i. These operations take O(k) time and O(k) space.

The complexity of the rest is O(1). Therefore, we can conclude that G(n, k) has computational

complexity O(k) in both time and space.

It should be noted that if k = n− 1, in the algorithm for H(n, n− 1) or G(n, n− 1), we only

need to check if q1 − qn = ±1 in step 3. Therefore, the average complexity is O(1) in time and

space.

We do not store the value y in step 1 and 2 for each subtree in Algorithm 10.8 because in flash

memory we prefer no auxiliary storage and use storage only for the data (or permutation in our

case). If we were allowed to store y, then the number of recursions can be further reduced.

For comparison, let us consider homogeneous and near-perfect algorithms [Knu05] for gener-

ating all (n, k) combinations and replace Construction 10.4. Both homogeneous and near-perfect

algorithms require sorting the k elements in a partial permutation first. If we insist on linear compu-

tation time, then this will take O(n) space and O(k) time. And if we do not allow auxiliary storage

as mentioned in the previous paragraph, these two algorithms are both recursive and take O(k) time.

The overall complexity is O(k) time and O(n) space.

In addition, we can compare Algorithm 10.9 with the algorithms in [JMSB09] and [RW10]

for generating the σi’s. All algorithms require O(1) time on average. However, an (n, n − 1)

permutation cycle in [JMSB09] has transitions ti, i = 2, 3, . . . , n. And therefore we will need to

check 2(k− 2) partial permutations in step 1 and 2 in each subtree in Algorithm 10.8, instead of 4

as in Algorithm 10.9.

The comparison is summarized in Figure 10.6. One advantage of the algorithms in [Knu05]

[JMSB09] [RW10] is that one can find an explicit mapping between integers and combinations (or

permutations) according to the cycle, even though it is still not clear how to map integers to partial

permutations.

181

subtree alg. space time
Cnstr. 10.4 O(k) O(k)

homogeneous O(n) O(k)
near-perfect O(n) O(k)

σi alg. space time recursions
Alg. 10.9 O(1) O(1) 4

[JMSB09] O(1) O(1) 2(k-2)
[RW10] O(1) O(1) 4

Figure 10.6: Comparison of algorithms for (n, k) universal cycle. Space and time are average
computational complexity. Recursions shows the number of partial permutations in each subtree
that needs recursive computation.

10.5 Equivalence of Universal Cycles and Gray Codes

As mentioned before, universal cycles are related to Gray codes, which have applications in codes

for flash memories, therefore, we will study Gray codes in this section.

Consider a directed graph G, whose vertices are permutations of length n. There is a directed

edge if there is a push-to-the-top transition ti from one vertex to another, for k ≤ i ≤ n. So each

vertex in G is restricted to n− k + 1 outgoing edges. An (n, k) Gray code on partial permutations

is a cycle in G whose vertices induce every k-partial permutation once and only once. Note that this

cycle contains only a subset of the vertices in G. A Gray code contains N = (n
k)k! permutations,

and we denote them by P = (P1, P2, . . . , PN). It should be noted that each Pi is a full permutation.

In Gray code we only allow ti, for k ≤ i ≤ n. The constraint that i ≥ k is imposed for two

reasons: (a) these are the valid transitions in universal cycles, and (b) in flash memory, to minimize

the effect of leakage. The first reason will be revealed in this section. Notice that if 2 ≤ i < k,

then after the operation ti, there will be a charge gap between the pi−1-th and the pi+1-th cell. As

information is stored in the highest k cells, we want to keep these k cells close in charge levels.

When large deflation happens, lower charge levels may decrease to none at all, and gap among the

first k cells may cause an error.

Recall the graphic description of universal cycles in 10.2 as a Hamiltonian cycle in graph H.

H and G differ in the fact that in G, we require the bottom n− k elements of a permutation to be

consistent along the cycle, while in H the bottom n − k elements can be in arbitrary order. For

example, if n = 4, k = 2, in G, (1, 3|2, 4) → (4, 1|3, 2) is realized by pushing value 4 to the top.

But in H, (1, 3) → (4, 1) can be induced by the permutations (1, 3|2, 4) → (4, 1|2, 3), which is

not a valid transition in G.

In this section, we will show that the universal cycle is equivalent to the Gray code on partial

permutations using transitions ti, k ≤ i ≤ n. For example, it is easy to see that the Gray code in

Figure 10.2 induces the universal cycle A = (4, 3, 4, 2, 3, 2, 4, 1, 3, 1, 2, 1). However, it is not clear

182

whether a universal cycle corresponds to exactly one Gray code, because we may change the bottom

n− k elements in each permutation and get another universal cycle, or the bottom n− k elements

are not consistent so there is no Gray code. We will show in the section that the Gray code is indeed

unique.

Define a path of elements as a sequence of elements (a1, a2, . . . , aN) where subsequences are

taken without wrapping around, e.g., (aN , a1, . . . , ak−1) is not considered as a subsequence. Simi-

larly, a path of permutations is a sequence of elements (P1, P2, . . . , PN) where the transition from

PN to P1 is not considered. Moreover, the transitions between permutations are always assumed to

be push-to-the-top operation, and only the bottom n− k elements are pushed. On the other hand, a

cycle of elements or permutations is a sequence with wrapping around.

Lemma 10.11 Let (P1, P2, . . . , PN) be an (n, k) Gray code, then there is a unique (n, k) universal

cycle corresponding to it.

Proof: Given the Gray code, suppose P1 = (ak, ak−1, a1|b1, b2, . . . , bn−k) and let b0 = a1

be the k-th element of P1. Assume P2 = tj+k(P1) for some 0 ≤ j ≤ n − k. Then P2 =

(bj, ak, ak−1, . . . , a2|b0, . . . , bj−1, bj+1, . . . , bn−k) if j > 0 and P2 = (bj, ak, ak−1, . . . , a2|b1, b2, . . . , bn−k)

if j = 0. Define ak+1 = bj as the top element of P2. Then (a1, a2, . . . , ak, ak+1) contains two k-

permutations (without wrapping around). In the same manner, let ak+i be the top element of Pi+1,

i = 1, 2, . . . , N − k. Then (a1, a2, . . . , aN) is a path generating k-permutations.

Moreover, P1 is obtained from PN−k+2 by applying the push-to-the-top transitions k− 1 times,

and only the bottom n− k + 1 elements are pushed. Thus a1 must be the top element of PN−k+2.

Similarly, ai must be the top element of PN−k+1+i, for i = 1, 2, . . . , k− 1. Hence (a1, a2, . . . , aN)

is a cycle generates k-permutations. It contains all k-permutations exactly once because a Gray code

contains every k-permutation exactly once. Thus we get a universal cycle from the Gray code.

Generalizing the observation in the above proof, we can easily check that ai+k−l in the universal

cycle is the l-th element in Pi+k−l .

On the other hand, we show that a universal cycle can be mapped to a unique Gray code. The

proof first shows that there are multiple permutation paths mapped to a universal cycle, and then

finds the only path that is also a cycle.

Lemma 10.12 Given an (n, k) universal cycle A = (a1, a2, . . . , aN), there is a unique correspond-

ing Gray code P = (P1, P2, . . . , PN).

183

Proof: We first claim that given a universal cycle A, there is a corresponding path of permu-

tations P = (P1, P2, . . . , PN). For a given 1 ≤ i ≤ N, let b1, b2, . . . , bn−k ∈ [n] be distinct integers

different from {ai, . . . , ai+k−1} in arbitrary order. Therefore, Pi = (ai+k−1, ai+k−2, . . . , ai|b1, b2, . . . ,

bn−k) is a permutation. And let b0 = ai. Since (ai+1, ai+2, . . . , ai+k) does not include duplicated el-

ements, ai+k = bj for some 0 ≤ j ≤ n− k. If j > 0, let Pi+1 = (ai+k, ai+k−1, . . . , ai+1|b0, . . . , bj−1,

bj−2, . . . , bn−k). If j = 0, let Pi+1 = (ai+k, ai+k−1, . . . , ai+1|b1, b2, . . . , bn−k). From Pi to Pi+1, we

push bj = ai+k to the top, which is a push-to-the-top transition and only the lower n − k + 1

elements can be pushed. Hence the claim holds.

From above, we can see: (a) For 1 ≤ l ≤ k, the l-th element in Pi is ai+k−l . In particular, the

k-th elements of P consist of the universal cycle A. (b) Given universal cycle A, the permutation

path P is uniquely defined by the bottom elements of P1.

Since A is a cycle, we can assume the top elements of P1 are (p1, p2, . . . , pk), and the top

elements of PN are (p2, p3, . . . , pk, p′k). If P is a Gray code, then from PN to P1 we need to push p1

to the top.

Now we claim that there is a unique P1 such that P is a Gray code. For 1 ≤ i ≤ N, define qi

to be the (k + 1)-th element of Pi. For 2 ≤ i ≤ N, from Pi−1 to Pi, if we push the k-th element to

the top (do tk), then qi = qi−1; otherwise, qi is the k-th element of Pi−1. Since we cannot do tk for

all 1 ≤ i ≤ N and get all the k-permutations, let i1, i2, . . . be the indices such that we do tj (j > k)

on Pi1−1, Pi2−1, . . . Therefore, qil is the k-th element of Qil−1 and q1 = · · · = qi1 , qi1+1 = · · · =

qi2 , . . . This implies that (q1, q2, . . . , qN) are independent of the bottom elements of P, given the

k-th elements of Q, or equivalently, given the universal cycle A.

Let PN = (p2, p3, . . . , pk, p′k|r1, r2, . . . , rn−k) and R = (r1, r2, . . . , rn−k) be its bottom ele-

ments. Scanning qN , qN−1, . . . , q1 one by one, if an integer already appears before, or if it belongs

to {p2, p3, . . . , pk, p′k}, then delete it. The remaining sequence is exactly R. This is because any ri

must appear in the top elements in at least one of P1, . . . , PN−1, and at the transitions previous to

PN , we introduce R to the bottom elements. Moreover, given the universal cycle A, (q1, q2, . . . , qN)

and R are independent of the bottom elements of P. Therefore, no matter what the bottom elements

in P1 are, PN will be identical. Pushing p1 to the top in PN , we get the unique P1 such that P is a

Gray code.

Combining Lemma 10.11 and 10.12, we have the following theorem.

Theorem 10.13 There is a bijection between (n, k) universal cycles and Gray codes, where the

184

concatenation of the k-th element of each permutation in the Gray code consists of the universal

cycle.

By the above discussions, we know that traversing the k-partial permutations using push-to-

the-top transitions is identical to generating a universal cycle. So we can apply Algorithms 10.8

and 10.9 to construct Gray codes. However, we need to define the initial full permutation in the

sequence, so that it actually forms a cycle. For example, we can see that the initial permutation

should be (4, 5, 6|1, 2, 3) in Figure 10.5 for the specific ordering of the lower elements. In general,

we have:

Theorem 10.14 The first partial permutation should be (n − k + 1, . . . , n|1, . . . , n − k) so that

Algorithm 10.8 forms a Gray code.

Proof: Let Q0, Q1, . . . , QN−1 be the k-partial permutations defined by Algorithm 10.8. By

proof of Lemma 10.12, the first permutation should be (n− k + 1, . . . , n|r1, . . . , rk), where r1, . . . , rk

are the “newly appeared” elements of q0, qN−1, qN−2, . . . , q1 excluding {n− k + 1, . . . , n}. If the

transition from Pi−1 to Pi is not tk, then qi is the k-th element of Pi−1.

Suppose y is the value defined in step 1 in Algorithm 10.8, n− k + 1 ≤ y ≤ n− 1. Consider

the node in first subtree T1, m = (n− k, . . . , y− 1, y + 1, . . . , n). It has parent (n− k, . . . , y−

2, y, y + 1, . . . , n), Child2 (n − k, . . . , y − 1, y, y + 2, . . . , n), and Child3 (y, n − k + 1, . . . , y −

1, y + 1, . . . , n). We know that Child3 leads to the other subtrees T2, . . . , T(k−1)!. It can be seen that

in the Gray code, Child3 and the other subtrees appear before Child2 and the rest of T1.

Similarly, for any node (p1, p2, . . . , pk−n+t−1, t, t + 1, . . . , n), its Child2 appears before Child1.

(In Figure 10.5, for any node in T1, the Gray code always visit its right branch before its top branch.)

Combining these two facts, the last n− k partial permutations in the Gray code with transitions

ti, i > k, are (n− k + 2, . . . , n, 1), (n− k + 3, . . . , n, 1, 2), . . . , (1, 2, . . . , k). And (r1, r2, . . . , rn−k)=

(1, 2, . . . , k).

10.6 Conclusions

In this chapter, we solved the open problem of explicit constructions for universal cycles on k-

partial permutations, a sequence of length (n
k)k! with each k-partial permutation as its subsequence

exactly once. This problem is shown to be equivalent to construction of (n, k) Gray code on partial

185

permutations. And we proposed the application of partial permutations for flash memory, which

allows less decoding cost while sacrificing some information capacity.

The construction can be broken down into two parts: a subtree with all (n
k) combinations, and a

(k, k− 1) universal cycle. Each transition can be determined solely by the current partial permuta-

tion. The algorithm in this chapter uses O(k) time and space on average, and no extra storage space

when no transition is made.

There are several open problems in this topic. For instance, is it possible to design recursions

of an (n + 1, k + 1) Gray code based on an (n, k) Gray code (or some other form of recursion)? If

n− k = 1, the answer is yes and [RW10] provides a nice construction. Besides, we do not have

efficient ways to map partial permutations to integers according to the constructed cycle, i.e., we do

not know the position of a permutation in the cycle. These will be our future work directions.

186

Chapter 11

Error-Correcting Codes for Rank
Modulation

11.1 Introduction

In flash memory, errors will occur due to charge leakage, write disturbance, and read disturbance.

In this chapter, we assume that small change happens more often as an error. In rank modulation,

a small increase or decrease of a cell level will count as an error if its rank is interchanged with an

adjacent rank.

If we write a permutation (p1, p2, . . . , pn) where pi represents the cell index with rank i, then

another permutation is distance 1 from it if two adjacent indices pi, pi+1 are exchanged, for some

1 ≤ i ≤ n− 1. For example, in Figure 11.1 an edge connects two permutations of distance one.

If an error occurs in (1, 2, 3), then the corrupted permutation is (2, 1, 3) or (1, 3, 2). Take any two

permutations with distance 3 we have a 1-error-correction code. One can take (1, 2, 3), (3, 2, 1) as

two legal codewords, for instance. If a single error occurs, one can always tell which codeword is

closer to the corrupted word.

Figure 11.1: Permutations of length 3. Permutations of distance 1 are connected by an edge.

187

A ball of radius R centered at a word x is the collection of words with distance no more than

R from x. If d(x, y) represents the distance between two words x, y, and let Ω be the space of all

words, a ball is

BR(x) = {y ∈ Ω : d(x, y) ≤ R}.

Define an addition + operation on two words. For binary vectors, it can be viewed as bit-by-bit XOR

and for permutations it is composition. Since the metrics we discuss here is translation invariant, or

d(x, y) = d(x + a, y + a), the ball size only depends on the radius, not on the center. Therefore,

BR(x) = BR for any center x. For an arbitrary block code, the sphere-packing bound is an upper

bound on the number of codewords that is obtained by packing balls in a certain metric into the

space of all possible words [MS77]. Let C be a t-error-correction code then

|C| ≤ |Ω||Bt|
.

The reason to have t as the radius is that we need to be able to distinguish between erroneous

versions of codewords after t errors. For example, in Figure 11.1 the ball size of radius 1 is B1 = 3

and the space size is Ω = 6. Therefore, the sphere-packing bound is |C| ≤ 6
3 = 2 and we can

actually achieve this bound. We say a code satisfying equality of the bound is a perfect code. For

t = 1 error-correction permutation codes, the sphere-packing bound is [JSB08]:

|C| ≤ n!
n

= (n− 1)!.

In this chapter, we propose a class of t-error-correction codes (ECC) that reduces the permuta-

tions to ECC of alphabet size t + 1 and Hamming distance. In particular, for rank modulation of

size n = 2r, we have a 1-error-correction code of size (n− 1)!/2, that is half the sphere-packing

bound.

The error model for rank modulation in flash memory was first proposed in [JSB08] from where

we borrowed some results and methods. In [BM10] capacity for the full range of minimum distance

O(n1+ε), 0 ≤ ε ≤ 1, was derived. This result mainly focused on the case with a large number of

errors. For constant t errors, it provides an almost explicit construction which matches the sphere-

packing bound except for a constant depending on t, which is similar to the parameters of our work.

The only drawback is that it is not entirely explicit. In [ZJB12] systematic error-correction codes

were proposed where some subset of the cells contain only and completely the information message.

188

We will start with some definitions, and then show constructions of 1-error-correcting codes on

rank modulation. After that, we generalize it to correcting t errors.

11.2 Definitions

In this chapter, we consider error-correcting codes for rank modulation of n elements, {1, 2, . . . , n}.

An error is defined as a transposition of adjacent elements, i.e., when (p1, . . . , pi, pi+1, . . . , pn)

is changed into (p1, . . . , pi+1, pi, . . . , pn) for some 1 ≤ i ≤ n − 1. The distance between two

permutations is defined as the smallest number of adjacent transpositions such that one is changed

into the other. This distance measure is in fact Kendall’s τ-distance [KG90]. In flash memory cells,

an error corresponds to a fluctuation in the charge level of some cell, such that it interchanged rank

with a cell with close charge level.

For example, suppose there are n = 5 cells and their analog charge values are (1.5, 5.2, 0.3, 4.9,

7.8), and the induced permutation is (5, 2, 4, 1, 3). Suppose the fifth cell experiences some charge

leakage and drops its value from 7.8 to 5.1. As a result, the corrupted permutation becomes (2, 5, 4,

1, 3) and we say there is 1 error in this permutation.

The main idea in the construction in this chapter is to reduce a permutation to a n − 1 digit

t + 1-ary vector and t correct errors for this vector.

Define coordinates (vn, vn−1, . . . , v2) of a permutation (p1, . . . , pi, pi+1, . . . , pn), where vi

equals the number of inversions (i, j) such that j is on the right of i in the permutation and 1 ≤ j < i.

It is easy to see that 0 ≤ vi ≤ i − 1 and [JSB10] showed the mapping between coordinates and

permutations is a bijection. Also define the coordinate sum as s = ∑n
i=2 vi. Define the coordinate

parities of a permutation as u = (un, un−1, . . . , u2) = (vn, vn−1, . . . , v2) mod 2. In general, define

the congruent coordinates as u = (un, un−1, . . . , u2) = (vn, vn−1, . . . , v2) mod q for some integer

q.

For example, if the permutation is (4, 2, 3, 1) then the coordinates are (3, 1, 1) and its parities

are u = (1, 1, 1).

Consider two q-ary vectors a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn) with ai, bi ∈ [0, q− 1]

for all i. Then the Hamming distance between the two vectors is defined as the number of indices

where they differ, namely,

{i ∈ [n] : ai 6= bi}.

189

The Lee distance of two vectors a, b is defined as

n

∑
i=1

min{|ai − bi|, q− |ai − bi|}.

It indicates the difference with wrap around in the magnitude of two vectors. Since Kendall’s τ

distance is not very easy to work with directly, we will transform the problem of error correction to

either Hamming distance or Lee distance in the coordinates.

Suppose we fix a distance measure. The minimum distance of a code is the minimum distance

of all pairs of codewords. A code corrects t errors if the minimum distance is at least 2t + 1 [MS77].

We denote the parameters of a code by (n, k, d) where n is the codeword length, k is the number of

information digits, or systematic digits, and d is the minimum distance. The number of redundant

digits, or parity digits is r = n − k. Moreover, we mainly consider systematic codes, where the

information are stored in k digits and can be obtained easily.

11.3 Correcting One Error

We start with an observation on the coordinates in case of an error.

Lemma 11.1 Suppose pi and pi+1 are interchanged in the permutation (p1, . . . , pi, pi+1, . . . , pn),

then all the coordinates stay the same except that either vpi+1 increases by 1 or vpi decreases by 1.

Therefore, the sum s changes by 1 if an error occurs.

Proof: First notice interchanging pi and pi+1 will not affect the number of inversions for vj,

j 6= i, i + 1. If pi < pi+1, then vpi+1 increases by 1 because we have one more inversion (pi+1, pi)

for vpi+1 and vpi stays the same. Similarly, if pi > pi+1, then vpi decreases by 1 and vpi+1 stays the

same.

By the above lemma, if an error occurs and pi and pi+1 are interchanged, then the coordinate

parity bit ui flips when the coordinate sum s decreases by 1; ui+1 flips when s increases by 1. Now

suppose we have a way to correct 1 error for u, and we only allow codewords as permutations

whose coordinate sum satisfies s|4 or (s− 1)|4. If there is an error, s is changed to s′ = s + 1 or

s′ = s − 1. We can first identify the flipped position i from the 1-error-correction code. Then if

(s′ − 1)|4 (or (s′ − 2)|4), then we know s′ = s + 1, s|4 (or (s− 1)|4, resp.), and pi−1 and pi are

interchanged. Similarly, if s′|4 or (s′ − 3)|4, we know s′ = s− 1 and pi and pi+1 are interchanged.

Thus, we have the following theorem.

190

Theorem 11.2 If a rank modulation code satisfy (i) coordinate parities are binary codewords of

some 1-error-correcting code in Hamming distance, and (ii) coordinate sum s|4 or (s− 1)|4, then

this rank modulation code is a 1-error-correcting code in Kendall’s τ-distance.

For example, if permutation P = (4, 2, 3, 1) is changed to P′ = (2, 4, 3, 1) then the coordinates

change from (3, 1, 1) ≡ (1, 1, 1) mod 2 to (2, 1, 1) ≡ (0, 1, 1) mod 2. The coordinate sum

changes from s = 5 to s′ = 4. Suppose we use the binary repetition code (0, 0, 0), (1, 1, 1) for the

coordinate parities, which apparently corrects one binary error. By receiving the permutation P′,

it is easy to see that the first coordinate is erroneous and we need to either flip 2, 4 or 4, 3. Since

s′ = 4 we can tell that s′ = s− 1 and the first two elements are interchanged.

Figure 11.2: (a) Encoder and (b) decoder of a 1-error-correcting code using Hamming code and
Theorem 11.2

To ensure the second property on the coordinate sum and make full use the cell levels, we have

the following construction.

Construction 11.3 We use (2r − 1, 2r − r− 1) systematic Hamming code, r ≥ 2, as the 1-error-

correcting binary code in Theorem 11.2 (i). Let the permutation length be n = 2r. And we take

bits B = {2r, 2(r − 1), . . . , 2} of u as parity check bits, and the other bits A = {2, . . . , n} \ B

as information bits. Besides we use v4 to control the sum s. Figure 11.2 shows the encoder and

decoder of such a 1-error-correcting code. Define

bi =


i, i ∈ A

i/2, i 6= 4 ∈ B

1, i = 4

In the encoding, each information message is first transformed into a vector (ln, ln−1, . . . , l2) by

base transformation, where 0 ≤ li < bi. Let vi = li for i ∈ A. And then use {ui}i∈A as information

191

bits of Hamming code and output {ui}i∈B. After that, compute vi = 2li + ui, for i 6= 4 ∈ B and

v4 = u4 + x such that x ∈ {0, 2} and sum s satisfies Theorem 11.2 (ii). At last, a permutation is

generated based on the coordinates vi, i = 2, . . . , n.

In the decoding, a permutation (p1, . . . , pn) is first transformed into coordinates, and the co-

ordinate parities ui, i = 2, . . . , n are computed. Next Hamming decoding is carried out and error

position ue is located. Then, if ue is not void, pe is interchanged with pe−1 if (s− 1)|4 or (s− 2)|4,

and in interchanged with pe+1 otherwise. Finally, information is extracted from the permutation.

It is easy to see when n = 2r, ∏n
i=2 bi = n!/2/2r = (n − 1)!/2, which is the capacity of

this rank modulation code. The sphere-packing bound of 1-error-correcting rank modulation code

is (n− 1)! [JSB10]. Thus, we have the following corollary.

Corollary 11.4 The 1-error-correcting rank modulation code using Hamming code and Theorem

11.2 is half the size of the sphere-packing bound.

Even though the 1 error-correcting construction in [JSB10] has higher size than (n− 1)!/2, the

code proposed here has the advantage of being systematic on the coordinates and simple to encode

or decode. In this code, most information is stored in the k = 2r− r− 1 coordinates in A, and these

coordinates correspond to fixed cells positions. So we can extract most information from comparing

these cells with the others. The code in [ZJB12] is systematic on the cells but has only (n − 2)!

codewords.

Example 11.5 Suppose the size of the permutation is n = 8 and r = 3. Then each permuta-

tion has its corresponding coordinates (v8, v7, . . . , v2). In Construction 11.3, (v8, v7, v5, v3) and

b(v6, v2)/2c can be any vector as long as 0 ≤ vi ≤ i− 1, and information is stored in these two

vectors. However, (u6, u4, u2) can only be a fixed vector according to (u8, u7, u6, u3). In addition,

bv4/2c is chosen such that ∑8
i=2 vi is a multiple of 4 or a multiple of 4 plus 1. The size of the code

is (8× 7× 5× 3)× (3× 1× 1) = 7!/2.

11.4 Correcting t Errors

It is not difficult to see that we can extend the results in the previous section and correct t errors. In

general, we have the following analogous result.

192

Theorem 11.6 If a rank modulation code satisfy the following two conditions, then it is a t-error-

correcting code in Kendall’s τ-distance.

(i) (vn, vn−1, . . . , v2) mod (t + 1) has minimum Hamming distance 2t + 1.

(ii) For each s = ∑n
i=2 vi, 0 ≤ s ≤ t mod 2(t + 1).

Proof: Suppose the erroneous coordinates are v′ = (v′n, v′n−1, . . . , v′2), and the original co-

ordinates are v = (vn, vn−1, . . . , v2). Let error be e = (en, en−1, . . . , e2) = (vn, vn−1, . . . , v2)−

(v′n, v′n−1, . . . , v′2). By Lemma 11.1 the Hamming distance between v′ mod (t + 1) and v mod (t +

1) is no more than t, and
n

∑
i=2
|ei| ≤ t. (11.1)

Therefore,

|
n

∑
i=2

ei| ≤
n

∑
i=2
|ei| ≤ t (11.2)

If a rank modulation code satisfy condition (i), then we are able to determine (en, en−1, . . . , e2)

mod (t + 1) based on (v′n, v′n−1, . . . , v′2) mod (t + 1). Now suppose there is another vector f =

(fn, fn−1, . . . , f2) such that e ≡ f mod (t + 1). Then ∑n
i=2 ei ≡ ∑n

i=2 fi mod (t + 1). But by (11.2),

|∑n
i=2 fi| ≤ t. Hence, |∑n

i=2 ei − ∑n
i=2 fi| ≤ 2t < 2(t + 1). So, ∑n

i=2 ei − ∑n
i=2 fi = ±(t + 1).

Suppose 0 ≤ ∑n
i=2 ei ≤ t, then −t ≤ ∑n

i=2 fi < 0. And no other error vector is equivalent to them

mod (t + 1).

Let s′ = ∑n
i=2 v′i be the coordinate sum of the erroneous permutation. By the above argument, any

error pattern e mod (t + 1) will result in an original permutation with either s(1) = s′ + (∑n
i=2 ei

mod (t + 1)) or s(2) = s′ + (∑n
i=2 ei mod (t + 1))− (t + 1). Since s(1) − s(2) = t + 1, only one

of s(1) and s(2) falls in the category in condition (ii). Thus we can identify error correctly.

We define the code rate of an error-correction code C as

log |C|/ log(n!),

since there are n! permutations in total. Here |C| is the size of the codebook, or the number of

different codewords. We have the following result for the constructed codes.

Construction 11.7 Suppose we have a systematic (n− 1, k, d) (t + 1)-ary code with d ≥ 2t + 1,

n ≥ rt, and r = n− 1− k. We can use digits B = {t, 2t, . . . , rt} as parity, and A = {2, . . . , n}\B

as information digits. More particularly, use vi mod t + 1 as parity for all i ∈ B, b v2t
t+1c as sum

adjustment, b vi
t+1c for all i 6= 2t, i ∈ B and the other coordinates as information. The total number

193

of different codewords is n!
2(t+1)r and we obtain the code rate

1− log(2(t + 1)r)
log(n!)

.

By Theorem 11.6 we have a t-error-correction rank modulation code.

Consider the sphere-packing bound of a linear (t + 1)-ary t-error-correction code with length

n− 1,

(t + 1)k ≤ (t + 1)n−1

|B(t)| ,

where B(t) is the ball of radius t and |B(t)| = ∑t
i=0 (n−1

i)tk. Let k∗ be the maximum value

satisfying the above bound, and r∗ = n− 1− k∗ be the lower bound of the redundancy. Then the

above construction satisfies

|C| ≤ n!
2(t + 1)r∗ . (11.3)

Next we give an example of 2-error-correcting rank modulation code using (n− 1 = 11, k =

6, d = 5) ternary Golay code and Theorem 11.6. k is the information digits and d is the Hamming

distance. If we use (v12, v10, v9, v6, v3) mod 3 as parity, bv6/3c as sum adjustment, b(v12, v10, v9, v6, v3)/3c

and the other coordinates as information, we will get a codebook of size 887040. The sphere-

packing bound is 6220800, and our code is about 1/7 of the bound.

Similarly, we can use any linear ternary or quaternary code and set parity digits as those close to

multiple of 3 or 4, and obtain rank modulation code against 2 or 3 errors. We compute codebook size

for n as large as 51, and we use the table of ternary and quaternary code in [KP92]. Values of the

code rates are plotted in Figure 11.3 and 11.4. In these graphs, the x-axis is the permutation length

and the y-axis is the code rate. The solid line shows the sphere-packing bound of permutations,

that is, codebook of size 2n!
(n+2)(n−1) for 2 errors and 6n!

(n+1)(n2+2n−6) for 3 errors [JSB10]. And the

dashed line is obtained from the (t + 1)-ary bound in (11.3). In the ternary case, this bound is

around n!
4n(n−2)+6 and n!

9n3−45n2+78n−40 for ternary and quaternary codes, respectively. These two

bounds asymptotically only differ by constant factors 8 and 54, respectively. And if we consider

the code rate this difference will vanish. The dash-dot line shows the constructed code rate based

on actual (t + 1)-ary codes. It can be observed that the code rate depends mostly on the rate of the

ternary or quaternary code.

One can easily see that for constant t, the sphere-packing bound of the permutations and that

of the (t + 1)-ary codes both give upper bound of codebook size in the order of O(n!
nt). They have

194

5 10 15 20 25 30 35 40 45 50 55
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

lo
g|

C
| /

 lo
g(

n!
)

Code Rate vs. Permutation Length

bound of permutations
bound of ternary codes
known ternary codes

Figure 11.3: Code rates of 2-error-correction rank modulation codes based on ternary codes.

a difference by a constant factor depending on the value of t. Therefore the proposed construction

has the potential of achieving asymptotically optimal code rate.

The construction above have the disadvantage of dealing with large alphabet size, which might

increase the encoding/decoding complexity as well as difficulty to find efficient codes. Hence in the

following we consider using binary codes.

Theorem 11.8 Let T ≥ t be some integer. If a rank modulation code satisfy the following two

conditions, then it is a t-error-correcting code in Kendall’s τ-distance.

(i) (un, un−1, . . . , u2) =: (vn, vn−1, . . . , v2) mod (T + 1) has minimum Lee distance 2t + 1.

(ii) For each s = ∑n
i=2 vi, 0 ≤ s ≤ t mod 2(T + 1).

Proof: Observe that by Lemma 11.1 we know there will be at most t increases or decreases in

the coordinates. Therefore the number of errors for the coordinates mod T + 1 is no more than t in

Lee distance. Similar to the proof of Theorem 11.6 we are able to determine the error vector mod

T + 1 by condition (i). Then there are at most two possible coordinate sums, which differ by T + 1

and can be distinguished by condition (ii).

195

5 10 15 20 25 30 35 40 45 50 55
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

lo
g|

C
| /

 lo
g(

n!
)

Code Rate vs. Permutation Length

bound of permutations
bound of quaternary codes
known quaternary codes

Figure 11.4: Code rates of 3-error-correction rank modulation codes based on quaternary codes.

196

Figure 11.5: The underlined binary code and the congruent coordinates. Each entry is a bit and each
column is an integer in ZT+1. The shaded bits are parity check bits, and the rest are information
bits.

Let c = dlog(t + 1)e, T = 2c− 1 ≥ t and suppose we have a systematic (N, K, D) binary ECC

with N = (n− 1)c and D ≥ 2t + 1. Let R = (N − K)/c. For simplicity, assume n ≥ (T + 1)R

and R is an integer. See Figure 11.5 for an illustration. The main idea is to use the binary code to

correct t errors in Lee distance. Suppose the binary vector is (w1, w2, . . . , wN). We can transform

each column in this figure to an integer in ZT+1 by a binary Gray code:

ui+1 = α(wc(i−1)+1, wc(i−1)+2, . . . , wci), (11.4)

where α bijectively maps a binary vector of length c to an integer in ZT+1 and the binary vector

changes one bit if the integer increases or decreases by 1. Then we know the Hamming distance

error in (w1, w2, . . . , wN) is no more than the Lee distance error in (u2, u3, . . . , un), which is no

more than t. Now we are ready to construct rank modulation codes based on binary error-correction

codes.

Construction 11.9 The encoder and decoder are shown in Figure 11.6. Use digits B = {t, 2t, . . . , rt}

as parity, and A = {2, . . . , n}\B as information digits. Define

bi =


i, i ∈ A

i/(T + 1), i 6= 2(T + 1) ∈ B

1, i = 2(T + 1)

To encode, convert the message into a vector (ln, ln−2, . . . , l2) with li ∈ [0, bi − 1], i ∈ [2, n].

Let vi = li for all i ∈ A. Take the congruent coordinate ui, i ∈ A and convert it to a bi-

nary vector (w1, w2, . . . , wK) according to (11.4). From the binary ECC obtain parity check bits

197

(wK+1, . . . , wN). Use (11.4) to obtain the congruent coordinates ui, i ∈ B. Then compute the

coordinates in set B by

vi =


(T + 1)li + ui, i 6= 2(T + 1) ∈ B

x + ui, i = 2(T + 1)

Here x ∈ {0, T + 1} such that condition (ii) in Theorem 11.8 is satisfied. At last convert from

coordinates to permutations.

The decoder first find the coordinates of the permutation vi, and then the congruent coordinates

ui = vi mod (T + 1). Convert from ui to binary Gray code wi, i ∈ [N]. Using the binary

Hamming decoder, the binary errors can be found. Converting them back to integers in ZT+1 using

Gray mapping, we get congruent error ue = (en, en−1, . . . , e2) mod (T + 1). The coordinate sum

s helps to decide whether the error is ue or ue − (T + 1). Adding the error back to the coordinates,

we get the correct values for vi, and can compute

li =


vi, i ∈ A

bvi/(T + 1)c, i 6= 2(T + 1) ∈ B

0, i = 2(T + 1)

The base converter at last determines the stored message.

Theorem 11.10 Construction 11.9 has code rate 1 − log(2(T + 1)R)/ log(n!). And corrects t

errors in Kendall’s τ distance.

Proof: It is easy to see that the above construction has codebook size

n!
2(T + 1)R .

The Gray mapping guarantees that the distance in the binary Hamming code is no more than the

Lee distance in ZT+1. And the coordinate v2(T+1) adjusts the coordinate sum properly. Thus the

two conditions in Theorem 11.8 are satisfied and the code corrects t errors in Kendall’s τ distance.

To compare the codebook size with the previous construction, assume T = t. Then by sphere-

packing bound, (T + 1)R = 2cR = 2N−K ≥ B(t) = ∑t
i=0 (N

i) is the ball size of in the binary

198

Figure 11.6: Encoder and decoder of a t-error-correction code based on binary codes.

Hamming metric. Since N = c(n − 1) = (n − 1) log(t + 1), we have the ball size around

(n log(t+1)
t) ≈ (n log(t+1))t

t! . On the other hand, Construction 11.7 has redundancy size (t + 1)r ≥

∑t
i=0 (n

i)ti, which has ball size around (n
t)tt ≈ (nt)t

t! . We can see that Construction 11.9 has better

code rate when t is large.

For example, if t = 3 one can take the (127, 106, 7) BCH code (see, e.g., [MS77]) and lengthen

it to a (128, 106, 7) code. Then c = 2, T = 3, R = (N − K)/c = 11 and n = 64 > (T + 1)R =

44. The code rate is 1− log(2 ∗ 411)/ log(64!) = 0.922.

11.5 Conclusions

We have shown in this chapter a technique of embedding the Kendall’s τ metric space into the q-

ary Hamming or Lee space. We were able to construct t-error-correcting rank modulation codes

with asymptotically optimal code rates, when t is a constant. There are other techniques such as

embedding into binary Hamming space, into Lee space of different alphabet size, and so on (see, for

example, [JSB10] [BM10]). Interesting open questions includes efficient code constructions given

the number of errors, and error correction for multiset permutations where several cells can have

identical rank.

199

Chapter 12

Concluding Remarks

In this thesis we mainly studied coding techniques for information storage. We have discussed

erasure coding for distributed storage, and introduced the rebuilding access and bandwidth as mea-

surement for repair cost. Different code constructions were studied and we were able to achieve

optimal rebuilding in our constructions. We have also studied variations and error correction for

rank modulation in flash memory. We addressed problems such as capacity, Gray code, and adja-

cent transposition errors. It can be seen that using information theory and other mathematical tools,

we can solve some of the challenges and limitations in storage.

There are still a lot of open problems on storage. We only list a few possible directions as

examples. For storage devices, such as flash memory, phase-change memory, memristor, and even

the mature technology of hard disks, there are still lots of physical limitations not deeply studied.

For example, phase-change memory uses amorphous and crystalline states of chalcogenide glass as

cell levels, and the programming requires high current. To reduce the high power consumption and

maintain small error rate is a very interesting topic from the material science and the information

theory point of view. For another example, to increase the density of hard disks, the size of the

magnetic region written or read each time is becoming smaller and smaller. Coding schemes as

well as new disk technologies will contribute to avoiding noise and disturbances.

In data centers, the management of data and the system are of great importance besides era-

sure correction. To properly arrange cold and hot data, which has different access frequency, will

significantly increase the lifetime and the response speed of the system. In addition, to store data

according to file title or keywords, which is commonly used in today’s data storage, is not neces-

sarily the most efficient method. Storing data based on content, on the other hand, might make the

information retrieval faster and even save space because of duplications. At last, storage nodes con-

sume different amount of power while operated or idling. To better understand, predict, and design

200

node workloads will save energy on the storage as well as the cooling components. As data centers

consume a noticeable amount of the power in the US, it is worthwhile to consider such problems.

201

References

[Alo99] N. Alon. Combinatorial Nullstellensatz. Combinatorics Probability and Computing,

8(1–2):7–29, 1999.

[BBBM95] M. Blaum, J. Brady, J. Bruck, and J. Menon. An efficient scheme for tolerating double

disk failures in RAID architectures. Computers, IEEE Transactions on, 44(2):192–

202, 1995.

[BBV96] M. Blaum, J. Bruck, and A. Vardy. MDS array codes with independent parity symbols.

Information Theory, IEEE Transactions on, 42(2):529–542, 1996.

[BG07] J. E. Brewer and M. Gill. Nonvolatile memory technologies with emphasis on flash.

Wiley-IEEE, 2007.

[BJB07] V. Bohossian, A. Jiang, and J. Bruck. Buffer codes for asymmetric multi-level mem-

ory. In Information Theory Proceedings (ISIT), 2007 IEEE International Symposium

on, 2007.

[BM10] A. Barg and A. Mazumdar. Codes in permutations and error correction for rank mod-

ulation. Information Theory, IEEE Transactions on, 56(7):3158–3165, 2010.

[BSH05] A. Bandyopadhyay, G. Serrano, and P. Hasler. Programming analog computational

memory elements to 0.2over 3.5 decades using a predictive method. In Circuits and

Systems (ISCAS), 2005 IEEE International Symposium on, volume 3, pages 2148–

2151, May 2005.

[CDG92] F. Chung, P. Diaconis, and R. Graham. Universal cycles for combinatorial structures.

Discrete Mathematics, 110(1-3):43–59, 1992.

[CDH09] D. Cullina, A. G. Dimakis, and T. Ho. Searching for minimum storage regenerating

codes. In Allerton Conference on Control, Computing, and Communication, 2009.

202

[CEG+04] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar. Row-

diagonal parity for double disk failure correction. Proc. of the 3rd USENIX Symposium

on File and Storage Technologies (FAST ’04), pages 1–14, 2004.

[CHL11] V. R. Cadambe, C. Huang, and J. Li. Permutation code: optimal exact-repair of a

single failed node in MDS code based distributed storage systems. In Information

Theory Proceedings (ISIT), 2011 IEEE International Symposium on, 2011.

[CHLM11] V. R. Cadambe, C. Huang, J. Li, and S. Mehrotra. Polynomial length MDS codes

with optimal repair in distributed storage systems. In Proceedings of 45th Asilomar

Conference on Signals Systems and Computing, 2011.

[Cis12] Cisco. The zettabyte era. Visual Networking Index (VNI), May 2012.

[CJ11] V. Cadambe and S. Jafar. Tensor product based subspace interference alignment for

network coding applications. In Signals, Systems and Computers (ASILOMAR), 2011

Conference Record of the Forty Fifth Asilomar Conference on, 2011.

[CJM10] V. R. Cadambe, S. A. Jafar, and H. Maleki. Minimum repair bandwidth for exact

regeneration in distributed storage. In Wireless Network Coding Conference (WiNC),

2010 IEEE, 2010.

[CSBB10] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck. Codes for asymmetric limited-

magnitude errors with application to multilevel flash memories. Information Theory,

IEEE Transactions on, 56(4):1582–1595, April 2010.

[dBE46] N. G. de Bruijn and P. Erdos. A combinatorial problem. Koninklijke Netherlands:

Academe Van Wetenschappen, 49:758–764, 1946.

[DGW+10] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran. Network

coding for distributed storage systems. Information Theory, IEEE Transactions on,

56(9):4539–4551, 2010.

[DRWS11] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh. A survey on network codes for

distributed storage. Proceedings of the IEEE, 99(3):476–489, 2011.

203

[EGJB12] E. En Gad, A. Jiang, and J. Bruck. Trade-offs between instantaneous and total capacity

in multi-cell flash memories. In Information Theory Proceedings (ISIT), 2012 IEEE

International Symposium on, July 2012.

[EGLSB11] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck. Constant-weight gray codes

for local rank modulation. Information Theory, IEEE Transactions on, 57(11):7431–

7442, November 2011.

[FLM08] H. Finucane, Z. Liu, and M. Mitzenmacher. Designing floating codes for expected

performance. In Allerton Conference on Control, Computing, and Communication,

2008.

[FSM12] F. Farnoud, V. Skachek, and O. Milenkovic. Rank modulation for translocation er-

ror correction. In Information Theory Proceedings (ISIT), 2012 IEEE International

Symposium on, July 2012.

[GHSY12] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin. On the locality of codeword

symbols. Information Theory, IEEE Transactions on, 58(11):6925–6934, November

2012.

[Hal35] P. Hall. On representatives of subset. Journal of the London Mathematical Society,

10(1):26–30, 1935.

[HX08] C. Huang and L. Xu. STAR: An efficient coding scheme for correcting triple storage

node failures. Computers, IEEE Transactions on, 57(7):889–901, 2008.

[Isa06] G. Isaak. Hamiltonicity of digraphs for universal cycles of permutations. European

Journal of Combinatorics, 27:801–805, 2006.

[Jac93] B. W. Jackson. Universal cycles of k-subsets and k-permutations. Discrete mathemat-

ics, 117(1–3):141–150, 1993.

[JB08] A. Jiang and J. Bruck. Joint coding for flash memory storage. Information Theory

Proceedings (ISIT), 2008 IEEE International Symposium on, 2008.

[JBB07] A. Jiang, V. Bohossian, and J. Bruck. Floating codes for joint information storage in

write asymmetric memories. In Information Theory Proceedings (ISIT), 2007 IEEE

International Symposium on, 2007.

204

[JMSB09] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank modulation for flash memo-

ries. Information Theory, IEEE Transactions on, 55(6):2659–2673, 2009.

[Joh09] J. Johnson. Universal cycles for permutations. Discrete Mathematics, 309(17):5264–

5270, 2009.

[JSB08] A. Jiang, M. Schwartz, and J. Bruck. Error-correcting codes for rank modulation. In-

formation Theory Proceedings (ISIT), 2008 IEEE International Symposium on, 2008.

[JSB10] A. Jiang, M. Schwartz, and J. Bruck. Correcting charge-constrained errors in the rank-

modulation scheme. Information Theory, IEEE Transactions on, 56(5):2112–2120,

2010.

[KG90] M. Kendall and J. Gibbons. Rank correlation methods (Fifth Edition). Oxford Uni-

versity Press, NY, 1990.

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching

(2nd Edition). Addison-Wesley, 1998.

[Knu05] D. E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3. Addison-

Wesley, 2005.

[KP92] F. R. Kschischang and S. Pasupathy. Some ternary and quaternary codes and associ-

ated sphere-packings. Information Theory, IEEE Transactions on, 38(2), 1992.

[KPT12] M. Kim, J. K. Park, and C. Twigg. Rank modulation hardware for flash memories. In

Circuits and Systems (MWSCAS), 2012 IEEE 55th International Midwest Symposium

on, August 2012.

[MRS01] B. H. Marcus, R. M. Roth, and P. H. Siegel. An introduction to coding for constrained

systems, 5th Edition. 2001. http://www.math.ubc.ca/ marcus/Handbook/index.html.

[MS77] F. MacWilliams and N. Sloane. The theory of error-correcting codes. North Holland

Publishing Co., 1977.

[OD11] F. Oggier and A. Datta. Self-repairing homomorphic codes for distributed storage

systems. In INFOCOM, 2011 Proceedings IEEE, April 2011.

205

[Ore11] D. Oren. Solid-state drives reshape the mobile-computing paradigm. Mobile Dev and

Design, January 2011. SanDisk.

[PDC11a] D. S. Papailiopoulos, A. Dimakis, and V. R. Cadambe. Repair optimal erasure codes

through hadamard designs. In Allerton Conference on Control, Computing, and Com-

munication, 2011.

[PDC11b] D. S. Papailiopoulos, A. G. Dimakis, and V. R. Cadambe. Repair optimal erasure

codes through Hadamard designs. In Information Theory Proceedings (ISIT), 2011

IEEE International Symposium on, 2011.

[PPM+11] N. Papandreou, H. Pozidis, T. Mittelholzer, G. Close, M. Breitwisch, C. Lam, and

E. Eleftheriou. Drift-tolerant multilevel phase-change memory. In Memory Workshop

(IMW), 2011 3rd IEEE International, May 2011.

[RS60] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the

Society for Industrial & Applied Mathematics, 8(2):300–304, 1960.

[RS82] R. Rivest and A. Shamir. How to reuse a write-once memory. Information and control,

55(1):1–19, 1982.

[RSK11] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Enabling node repair in any erasure

code for distributed storage. In Information Theory Proceedings (ISIT), 2011 IEEE

International Symposium on, 2011.

[RSKR09] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran. Explicit construction

of optimal exact regenerating codes for distributed storage. In Allerton Conference on

Control, Computing, and Communication, 2009.

[RW10] F. Ruskey and A. Williams. An explicit universal cycle for the (n-1)-permutations of

an n-set. ACM Transactions on Algorithms (TALG), 6(3):45, 2010.

[SAP+13] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali, S. Chen,

and D. Borthakur. Xoring elephants: Novel erasure codes for big data. Proceedings

of the VLDB Endowment, 2013. To appear.

[SKKC03] A. G. Starling, J. B. Klerlein, J. Kier, and E. C. Carr. Cycles in the digraph P(n; k): an

algorithm,. Congressus Numerantium, 162:129–137, 2003.

206

[SR10a] C. Suh and K. Ramchandran. Exact-repair MDS codes for distributed storage using

interference alignment. In Information Theory Proceedings (ISIT), 2010 IEEE Inter-

national Symposium on, 2010.

[SR10b] C. Suh and K. Ramchandran. On the existence of optimal exact-repair MDS codes for

distributed storage. arXiv:1004.4663, 2010.

[SRKR10] N. B. Shah, K. V. Rashmi, P. V. Kumar, and K. Ramchandran. Explicit codes minimiz-

ing repair bandwidth for distributed storage. In IEEE Information Theory Workshop

(ITW), 2010.

[SRKV13] N. Silberstein, A. S. Rawat, O. O. Koyluoglu, and S. Vishwanath. Optimal locally

repairable codes via rank-metric codes. CoRR, 2013. http://arxiv.org/abs/1301.6331.

[SRVKR12] N. Shah, K. Rashmi, P. Vijay Kumar, and K. Ramchandran. Distributed storage

codes with repair-by-transfer and nonachievability of interior points on the storage-

bandwidth tradeoff. Information Theory, IEEE Transactions on, 58(3):1837–1852,

2012.

[TPD13] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis. Optimal locally repairable codes

and connections to matroid theory. CoRR, 2013. http://arxiv.org/abs/1301.7693.

[TS10] I. Tamo and M. Schwartz. Correcting limited-magnitude errors in the rank-modulation

scheme. Information Theory, IEEE Transactions on, 56(6):2551–2560, June 2010.

[TWB11] I. Tamo, Z. Wang, and J. Bruck. MDS array codes with optimal rebuilding. In Infor-

mation Theory Proceedings (ISIT), 2011 IEEE International Symposium on, 2011.

[TWB12] I. Tamo, Z. Wang, and J. Bruck. Access vs. bandwidth in codes for storage. In Infor-

mation Theory Proceedings (ISIT), 2012 IEEE International Symposium on, 2012.

[TWB13] I. Tamo, Z. Wang, and J. Bruck. Zigzag codes: MDS array codes with optimal re-

building. Information Theory, IEEE Transactions on, 59(3):1597–1616, 2013.

[WD09] Y. Wu and A. G. Dimakis. Reducing repair traffic for erasure coding-based storage

via interference alignment. In Information Theory Proceedings (ISIT), 2009 IEEE

International Symposium on, 2009.

207

[WDR07] Y. Wu, A. G. Dimakis, and K. Ramchandran. Deterministic regenerating codes for dis-

tributed storage. In Allerton Conference on Control, Computing, and Communication,

2007.

[Woj12] M. Wojtasiak. There’s 1500 free petabytes of cloud storage out there. October 2012.

(Seagate) http://storageeffect.media.seagate.com/2012/10/storage-effect/theres-1500-

free-petabytes-of-cloud-storage-out-there/.

[WTB11] Z. Wang, I. Tamo, and J. Bruck. On codes for optimal rebuilding access. In Allerton

Conference on Control, Computing, and Communication, 2011.

[Wu09] Y. Wu. Existence and construction of capacity-achieving network codes for distributed

storage. In Information Theory Proceedings (ISIT), 2009 IEEE International Sympo-

sium on, 2009.

[XB99] L. Xu and J. Bruck. X-Code: MDS array codes with optimal encoding. Information

Theory, IEEE Transactions on, 45(1):272–275, 1999.

[XBBW99] L. Xu, V. Bohossian, J. Bruck, and D. G. Wagner. Low-density MDS codes and factors

of complete graphs. Information Theory, IEEE Transactions on, 45(6):1817–1826,

1999.

[XXLC10] L. Xiang, Y. Xu, J. C. Lui, and Q. Chang. Optimal recovery of single disk failure

in RDP code storage systems. ACM SIGMETRICS Performance Evaluation Review,

38(1):119–130, 2010.

[YSVW12] E. Yaakobi, P. Siegel, A. Vardy, and J. Wolf. Multiple error-correcting WOM-Codes.

Information Theory, IEEE Transactions on, 58(4):2220–2230, April 2012.

[YVSW08] E. Yaakobi, A. Vardy, P. H. Siegel, and J. Wolf. Multidimensional flash codes. Allerton

Conference on Control, Computing, and Communication, 2008.

[ZJB12] H. Zhou, A. Jiang, and J. Bruck. Systematic error-correcting codes for rank modula-

tion. In Information Theory Proceedings (ISIT), 2012 IEEE International Symposium

on, July 2012.

	Acknowledgements
	Abstract
	Introduction
	I Coding for Distributed Storage
	Introduction to the Rebuilding Problem
	Rebuild for Existing Array Codes
	Introduction
	Definitions
	Repair for Codes with Two Parity Nodes
	r Parity Nodes and One Erased Node
	Three Parity Nodes and Two Erased Nodes
	Conclusions

	Zigzag Code
	Introduction
	(k+2,k) MDS Array Code Constructions
	Constructions
	Rebuilding Ratio
	Finite-Field Size

	Problem Settings and Properties
	Lengthening the Code
	Constant Weight Vector
	Code Duplication

	Generalization of the Code Construction
	Concluding Remarks

	Rebuilding Any Single-Node Erasure
	Introduction
	Rebuilding Ratio Problem
	Code Construction
	Summary

	Rebuilding Multiple Failures
	Introduction
	Decoding of the Codes
	Correcting Column Erasure and Element Error
	Rebuilding Multiple Erasures
	Lower Bounds
	Rebuilding Algorithms
	Minimum Number of Erasures with Optimal Rebuilding
	Generalized Rebuilding Algorithms

	Concluding Remarks

	Long MDS Array Codes with Optimal Bandwidth
	Introduction
	Problem Settings
	Code Constructions with Two Parities
	Codes with Arbitrary Number of Parities
	Lowering the Access Ratio
	Conclusions

	II Coding for Flash Memory
	Introduction to Rank Modulation
	Bounded Rank Modulation
	Introduction
	Definitions
	BRM Code with One Overlap and Consecutive Levels
	BRM Code with One Overlap
	Lower Bound for Capacity
	Star BRM
	Lower Bound for the Capacity of BRM

	Concluding Remarks

	Partial Rank Modulation
	Introduction
	Definitions and Notations
	Construction of Universal Cycles
	Complexity Analysis
	Equivalence of Universal Cycles and Gray Codes
	Conclusions

	Error-Correcting Codes for Rank Modulation
	Introduction
	Definitions
	Correcting One Error
	Correcting t Errors
	Conclusions

	Concluding Remarks
	Bibliography

