
Distributed Optimization in Power Networks and General Multi-agent
Systems

Thesis by

Na Li

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Defended May 23, 2013)



ii

c© 2013

Na Li

All Rights Reserved



iii

To my dear family.



iv

Acknowledgements

I am deeply grateful to my advisor Professor John Doyle and co-advisor Professor Steven Low for the con-

tinuous support for my PhD study and research. Since September 2007, they have deeply influenced me in

different aspects of my life, not only through their great guidance in research, but also through their patience,

enthusiasm, encouragement, and genuine concern for students. John introduced me to a variety of areas, pro-

vided the vision, and gave me the freedom and support to pursue various projects. He has very broad interests

and is expert at extracting essentials almost for any topic. His passion, enthusiasm, and belief in science and

research have been a great source of inspiration and motivation to me. Steven taught me how to integrate

theory and practice in order to make contributions to real systems. He never scarifies practical applications

for theoretical beauty, or vice versa. His high standards for the quality of work has encouraged me to pursue

the perfection of the work. John and Steven, thanks for being such good role models for my academic career.

I could not have imagined having better advisors for my graduate study.

My sincere gratitude goes to my former college research advisor, Professor Jeff Shamma. The research

experience at Jeff’s lab in 2006 and 2007 introduced a new area, control and systems, to that little college

girl and shape her later career path. Jeff has been helpful in providing advice many times during my graduate

study and there were always so much for me to learn from any conversation we had. He was and remains one

of my best role models for a scientist, mentor, and teacher.

I would like to sincerely thank Professor Lijun Chen, Professor Jason Marden for being great mentors and

friends for me. The thesis would have not been possible if it were not for their guidance and collaborations.

They have been very patient and detailed in teaching me discipline and precision in the research process.

They were always willing to help and provide their best suggestions toward career and life and ultimately

helped me grow as both an individual and a researcher. Lijun, thank you for introducing me to the area of



v

the smart grid and for providing the great vision. Your insights, especially physical insights, always lead to

great problems and solutions. Without you, I could not have done a coherent work for power grids. Jason,

our collaboration dates back to my senior year in college. I was lucky to join Caltech as a PhD student at

same time as you joined Caltech as a postdoc. Thank you for introducing me to the area of game theory and

for teaching me the joy of “playing games” in academia and life. Lijun and Jason, I remember and will alway

remember how you guide my work and revise my paper step by step. You were and will be my dear mentors

and friends forever.

I also would like to thank other professors who has helped me grow up in the past years. Professor Adam

Weirman, thank you for always making time to provide me advice and give me feedback about my work. You

have set a great model for me to learn as a junior faculty. Professor Richard Murray, thank you for being on

my PhD defense committee and for being available every time when I need help and advice.

I am grateful to my intelligent colleagues in Control & Dynamical Systems (CDS) and RSRG. Special

gratitude goes to some current and past group members for fruitful collaborations and intriguing discussions.

I wish to acknowledge an incomplete list of group members: Andrea Censi, Chenghao Chien, Jerry Cruz,

Masoud Farivar, Lingwen Gan, Dennice Gayme, Shuo Han, Vanessa Jonsson, Andy Lamperski, Javad Lavaei,

Minghong Lin, Zhenhua Liu, Nikolai Matni, Somayeh Sojoudi, Changhong Zhao, etc.

Furthermore, I would like to thank all those who helped me, including my friends and teachers; without

them I would not be where I am today. Special thanks go to my friends at Caltech: Qi An, Ting Chen,

Mingyuan Huang, Rui Huang, Yu Huang, Guanglei Li, Piya Pal, Rangoli Sharan, Zhiying Wang, Mao Wei,

Xi Zhang, Guoan Zheng, Hongchao Zhou, Zicong Zhou, Zhaoyan Zhu, etc.

Last but not least, I would like to give my deepest gratitude to my family, my mother Xinhua Xia, my

father Chunsheng Li, my husband Pengcheng Luo, my sister Cheng Li and my brother Hui Li for their endless

love and support of my career. I dedicate this thesis to my family as an inadequate appreciation of everything

that they have done for me.



vi

Abstract

The dissertation studies the general area of complex networked systems that consist of interconnected and

active heterogeneous components and usually operate in uncertain environments and with incomplete infor-

mation. Problems associated with those systems are typically large-scale and computationally intractable,

yet they are also very well-structured and have features that can be exploited by appropriate modeling and

computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those

structures that can lead to computationally-efficient and distributed solutions, and apply them to improve

systems operations and architecture.

Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to man-

age distributed energy resources in the power network. The power network is undergoing a fundamental

transformation. The future smart grid, especially on the distribution system, will be a large-scale network

of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply,

demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency,

and power reliability. However, there are daunting technical challenges in managing these DERs and opti-

mizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control

and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In

particular, we will present how to explore the power network structure to design efficient and distributed

market and algorithms for the energy management. We will also show how to connect the algorithms with

physical dynamics and existing control mechanisms for real-time control in power networks.

The second focus is to develop distributed optimization rules for general multi-agent engineering systems.

A central goal in multiagent systems is to design local control laws for the individual agents to ensure that

the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system
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designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information

possible. Our work focused on achieving this goal using the framework of game theory. In particular, we

derived a systematic methodology for designing local agent objective functions that guarantees (i) an equiv-

alence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the

resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential

games. The control design can then be completed by applying any distributed learning algorithm that guar-

antees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach

is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game

design) and the specific local decision rules (distributed learning algorithms). This decomposition provides

the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a

broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently

robust to a host of uncertainties including asynchronous clock rates, delays in information, and component

failures.
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Chapter 1

Introduction

The dissertation focuses on the general area of complex networked systems that consist of interconnected

and active heterogeneous components that usually operate in uncertain environments and with incomplete in-

formation. Problems associated with those systems are typically large-scale and computationally intractable,

yet they are also very well-structured and have features that can be exploited by appropriate modeling and

computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those

structures that can lead to computationally-efficient and distributed solutions, and apply them to improve

systems operations and architecture.

Specifically, this dissertation focuses on two concrete areas. The first one is to design distributed rules to

manage distributed energy resources in the power network; the second one is to design distributed optimiza-

tion rules for more general multi-agent systems.

1.1 The smart power network

With the increasing penetration of renewable and distributed energy resources and the rapid deployment of

communication, sensing, and computing infrastructures, the power network architecture is in transition from

a centralized, vertically integrated structure to one that is more distributed, open, and autonomous. This

trend provides tremendous opportunities for improvements in sustainability, efficiency, power quality and

reliability. But it also presents daunting technical challenges, particularly those imposed by non-dispatchable

and volatile renewable generation, and the large number of active end-points in the future system. The goal of

my research is to achieve system-wide efficiency, reliability, and robustness for the future power grid, through
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developing foundational theories, innovative algorithms, and novel architecture for scalable, distributed, real-

time control and optimization. In this doctorate dissertation, I will present my work in pursuit of this direction

through the following aspects:

1.1.1 Demand response: market models with appliance characteristics and the power

network structure.

Demand response is increasingly needed to improve power system efficiency and integrate renewable gener-

ation. It will not only be applied to reduce peaks and shift load for economic benefits, but will increasingly

be evoked to improve stability and reduce operating reserves by adapting elastic loads to intermittent and

fluctuating renewable generation. Demand response involves both economic and engineering aspects of the

power system, and requires coordinating actions among users and electric appliances while ensuring security,

stability, and reliability of the grid.

We first study an abstract market model where a set of households are served by a single load-serving

entity (LSE). The LSE may represent a regulated monopoly like most utility companies in the United States

today, or a non-profit cooperative that serves a community of end users. We consider households that operate

different appliances including air conditioners, washers, lighting, electric vehicles, batteries, etc, each of

which provides a certain benefit depending on the pattern or volume of power it consumes. Each household

wishes to optimally schedule its power consumption so as to maximize its individual net benefit subject to

various consumption constraints. Based on utility maximization, we proposed a dynamic pricing scheme

and a distributed approach for the LSE to coordinate users’ demand response to benefit the overall system,

including reducing the peak load, smoothing the entire demand profile, and saving significant generation

costs. This work serves as a good starting point to study the market dynamics and the residential model for

demand response.

We further extend our approaches to study demand response over a radial distribution networks with the

power flow constraints and the operation constraints. We formulate the distributed load management over

a radial network as an optimal power flow (OPF) problem that maximizes the aggregate user utilities and

minimizes the supply cost and the power line losses, subject to the power flow constraints and operating
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constraints. The OPF problem is general non-convex. This necessitates our work on OPF and its distributed

solutions.

1.1.2 Optimal power flow (OPF): convexification and distributed power optimiza-

tion

The optimal power flow (OPF) problem is a fundamental problem that underlies many power systems op-

erations and planning. It seeks to optimize a certain objective subject to the power flow constraints and the

operation constraints. The OPF problem is, in general, non-convex and difficult to solve. Recently, convex

optimization tools have been used to relax the OPF problem to a convex problem in order to explore the

power network structure for better system operations. Previous work showed that convex relaxation is exact

for the radial networks if there are no lower bounds on the power injection. However, this condition does

not hold for various applications including demand response and Volt/VAR control. Thus we explore other

sufficient conditions without removing the lower bounds on power injection. We provide a series of sufficient

conditions to guarantee the exact relaxation of the OPF problem for the radial network when the voltage

upper bound is removed or modified by an approximation. These conditions are verified to hold for a wide

class of distribution circuits, and the resulting voltage is in the safe operation range.

Convexity does not only facilitate the design of effective pricing schemes for the power market involved

in demand response, but also enables the development of tractable, scalable, and distributed algorithms for

system operations. We design a locational marginal pricing scheme and distributed algorithms for the utility

company to guide users’ decisions over a distribution network. Case studies on South California Edison

distribution circuits showed that the algorithm converges to the optimum very fast. We further develop a fully

decentralized OPF algorithm where the users make their own local decisions based only on local information

and local communication with their direct neighbors.

1.1.3 Real-time energy balancing: economic automatic generation control (AGC)

In the distributed control of smart grids, the distributed algorithms derived from optimization tools usually

regard certain physical variables, such as branch power flow and frequency, as computable controls that can
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be instantaneously updated to arbitrary values, which is not usually the case for power systems. Hence these

algorithms cannot be implemented as real-time controls that are required or desired, as amplified by mitigat-

ing fluctuations in renewable generation. For real-time control, the algorithm (derived from the optimization

model) that governs the update of a physical variable must coincide with the real physical dynamics or the

built-in control mechanisms that govern the evolution of that variable, namely that the computation is im-

plicitly carried out by the real physical dynamics of the power network. This would also make local sensing

sufficient for distributed control, e.g., distributed load management based on local frequency measurement.

However, it imposes hard constraints on algorithm design as those conventional optimization algorithms such

as the gradient algorithms are usually not consistent with the physical dynamics.

One way to take into account the impact of a built-in mechanism is to reverse-engineer this mechanism

to find out what optimization problem it implicitly solves, and then incorporate the corresponding objective

function into the optimization model for the design or control problem. As an initial step, we have studied

automatic generation control (AGC). AGC uses deviations in generator speeds and/or frequency as control

signals to invoke appropriate valve action in order to regulate the mechanical power generation in response

to load changes. The main objective of AGC is to maintain power balance and nominal system frequency;

however how to optimize AGC to improve energy efficiency is less studied. We reverse-engineered AGC by

showing that the AGC can be formulated as a partial primal-dual gradient algorithm to solve an optimization

problem. We extended the resulting optimization problem to include generation cost, and proposed a dis-

tributed management scheme that is based only on local measurements and communications and takes into

account the impact of AGC. This work provides a good starting point for developing a framework for sys-

tematic design of distributed, low-complexity load/generation control mechanisms to achieve system-wide

efficiency and robustness.

1.2 Decentralized optimization: a game theoretical approach

The central goal in multiagent systems is to design local control laws for the individual agents to ensure

that the emergent global behavior is desirable with respect to a given system level objective. These control
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laws provide the groundwork for a decision making architecture that possesses several desirable attributes

including real-time adaptation and robustness to dynamic uncertainties. However, realizing these benefits

requires addressing the underlying complexity associated with a potentially large number of interacting agents

and the analytical difficulties of dealing with overlapping and partial information. Furthermore, the design

of such control laws is further complicated by restrictions placed on the set of admissible controllers which

limit informational and computational capabilities.

Game theory is beginning to emerge as a powerful tool for the design and control of multiagent systems.

Utilizing game theory for this purpose requires two steps. The first step is to model the agents as self-

interested decision makers in a game theoretic environment. This step involves defining a set of choices

and a local objective function for each decision maker. The second step involves specifying a distributed

learning algorithm that enables the agents to reach a desirable operating point, e.g., a Nash equilibrium of the

designed game. One of the core advantages of game theory is that it provides a hierarchical decomposition

between the decomposition of the systemic objective (game design) and the specific local decision rules

(distributed learning algorithms). For example, if the game is designed as a potential game then there is an

inherent robustness to decision making rules as a wide class of distributed learning algorithms can achieve

convergence to a pure Nash equilibrium under a variety of informational dependencies.

The main contribution of this dissertation is the development of a systematic methodology for the design

of local agent objective functions that guarantees the efficiency of the resulting equilibria. In particular, we

derived a methodology for designing local agent objective functions that guarantees (i) an equivalence be-

tween the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting

game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The

control design can then be completed by applying any distributed learning algorithm that guarantees con-

vergence to the game-theoretic equilibrium. This hierarchical decomposition between the decomposition of

the systemic objective and the specific local decision rules provides the system designer with the tremen-

dous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems.

Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties

including asynchronous clock rates, delays in information, and component failures.
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1.3 Structure and contributions of the thesis

The contribution of each chapter is listed below. All of the chapters can be read separately according to the

readers’ interests and backgrounds.

Part I: Distributed Energy Management in Power Networks (Chapters 2, 3, 4, 5)

Chapter 2 studies a demand response problem where a set of households are served by a single load-

serving entity (LSE) and each household operates different appliances. Based on utility maximization, we

proposed a dynamic pricing scheme and a distributed approach for the utility company to coordinate users’

demand response to benefit the overall system, including reducing the peak load, smoothing the entire demand

profile, and saving significant generation costs.

Chapter 3 focuses on the optimal power flow (OPF) problem, which is generally non-convex. We advocate

a second-order cone relaxation for OPF using the branch flow model and provide sufficient conditions under

which the relaxation is exact. These conditions are demonstrated to hold for a wide class of practical power

distribution systems.

Chapter 4 studies the distributed load management over a radial distribution network, by formulating it

as an optimal power flow (OPF) problem. We propose two different distributed mechanisms to achieve the

optimum. In the first one, there is a load-serving entity to set the price signals in order to coordinate the users’

demand response and in the second one the users coordinate their decisions through local communications

with neighbors.

Chapter 5 studies the real-time control mechanisms to balance generation and load. We focus on modify-

ing automatic generation control (AGC) to keep energy balanced and also to make energy allocation efficient

at the same time.

Part II: Designing Games for Distributed Optimization (Chapters 6, 7,8)

Chapter 6 propose a game design for distributed optimization where the optimization problem has coupled

objective function but decoupled constraints. We also provide a learning algorithm and prove its convergence

to an equilibrium in the game that we propose to use.

Chapter 7 propose a game design for distributed optimization where the optimization problem has cou-

pled constraints. The novelty of our approach stems from integrating classical optimization techniques, in
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particular exterior penalty methods and barrier function methods, into the design of the agents’ objective

functions.

Chapter 8 proposes a game design for addressing distributed optimization problems with a time-varying

communication graph. The key enabler for this result is that the resulting game possesses a property which

is invariant to the structure of the communication graph.
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Part I

Distributed Energy Management in

Power Systems
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Chapter 2

Demand Response Using Utility
Maximization

[] Demand side management will be a key component of the future smart grid that can help reduce

peak load and adapt elastic demand to fluctuating generations. We study an abstract market model

where a set of households are served by a single load-serving entity (LSE). Each household operates

different appliances including air conditioners, washers, lighting, electric vehicles, batteries, etc, each

of which provides a certain benefit depending on the pattern or volume of power it consumes. Based on

utility maximization, we proposed a dynamic pricing scheme and a distributed approach for the LSE

to coordinate users’ demand response to benefit the overall system, including reducing the peak load,

smoothing the entire demand profile, and saving significant generation costs.

2.1 Introduction

There is a large literature on various forms of load side management from the classical direct load control to

the more recent real-time pricing [1, 2]. Direct load control in particular has been practised for a long time

and optimization methods have been proposed to minimize generation cost, e.g., [3–6], maximize utility’s

profit, e.g., [7], or minimize deviation from users’ desired consumptions, e.g., [8, 9], sometimes integrated

with unit commitment and economic dispatch e.g. [4,10]. Almost all demand response programs today target

large industrial or commercial users, or, in the case of residential users, a small number of them, for two,

among other, important reasons. First, demand side management is invoked rarely, mostly to cope with a

large correlated demand spike due to weather or a supply shortfall due to faults, e.g., during the few hottest
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days in summer. Second, the lack of ubiquitous two-way communication in the current infrastructure pre-

vents the participation of a large number of diverse users with heterogeneous and time-varying consumption

requirements. Both reasons favor a simple and static mechanism involving a few large users that is sufficient

to deal with the occasional need for load control, but both reasons are changing.

Renewable sources can fluctuate rapidly and by large amounts. As their penetration continues to grow,

the need for regulation services and operating reserves will increase, e.g., [11, 12]. This can be provided

by additional peaker units, at a higher cost, or supplemented by real-time demand response [12–16]. We

believe that demand response will not only be invoked to shave peaks and shift load for economic benefits,

but will increasingly be called upon to improve security and reduce reserves by adapting elastic loads to

intermittent and random renewable generation [17]. Indeed, the authors of [12, 18, 19] advocate the creation

of a distribution/retail market to encourage greater load side participation as an alternative source for fast

reserves. Such an application, however, will require a much faster and more dynamic demand response than

practiced today. This will be enabled in the coming decades by the large-scale deployment of a sensing,

control, and two-way communication infrastructure, including the flexible AC transmission systems, the

GPS-synchronized phasor measurement units, and the advanced metering infrastructure, which is currently

underway around the world [20].

Demand response in such a context must allow the participation of a large number of users, and be dy-

namic and distributed. Dynamic adaptation by hundreds of millions of end users on a sub-second control

timescale, each contributing a tiny fraction of the overall traffic, is being practiced everyday on the Inter-

net in the form of congestion control. Even though both the grid and the Internet are massive distributed

nonlinear feedback control systems, there are important differences in their engineering, economic, and reg-

ulatory structures. Nonetheless the precedence of the Internet lends hope to a much bigger scale and more

dynamic and distributed demand response architecture and its benefit to grid operation. Our goal is to design

algorithms for such a system.
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2.1.1 Summary

Specifically, in this chapter we consider a demand response problem where a set of households are served by

a single load-serving entity (LSE). The LSE may represent a regulated monopoly like most utility companies

in the United States today, or a non-profit cooperative that serves a community of end users. Its purpose is

(possibly regulated) to promote the overall system welfare. The LSE purchases electricity on the wholesale

electricity markets (e.g., day-ahead, real-time balancing, and ancillary services) and sells it on the retail

market to end users. It provides two important values: it aggregates loads so that the wholesale markets

can operate efficiently, and it hides the complexity and uncertainty from the users, in terms of both power

reliability and prices.

We will consider households that operate different appliances including PHEVs and batteries and pro-

pose a demand response approach based on utility maximization. Each appliance provides a certain benefit

depending on the pattern or volume of power it consumes. Each household wishes to optimally schedule its

power consumption so as to maximize its individual net benefit subject to various consumption and power

flow constraints. We show that there exist time-varying prices that can align individual optimality with social

optimality, i.e., under such prices, when the households selfishly optimize their own benefits, they auto-

matically also maximize the social welfare. The LSE can thus use dynamic pricing to coordinate demand

responses to the benefit of the overall system. We propose a distributed algorithm for the LSE and the cus-

tomers to jointly compute this optimal prices and demand schedules. We also present simulation results that

illustrate several interesting properties of the proposed scheme, as follows:

1. Different appliances are coordinated indirectly by real-time pricing, so as to flatten the total demand

over different time-periods as much as possible.

2. Compared with no demand response or flat-price schemes, real-time pricing is very effective in shaping

the demand: it not only greatly reduces the peak load, but also the variation in demand.

3. The integration of the battery helps reap more benefit from demand response: it not only reduces the

peak load but further flattens the entire load profile and reduces the demand variation.

4. The real-time pricing scheme can increase the load factor greatly and save a large amount of generation
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cost without hurting customers’ utility; here again, the battery amplifies this benefit.

5. The cost of the battery (such as its lifetime in terms of charging/discharging cycles) is important: the

benefit of demand response increases with lower battery cost.

6. As the number of the households increases, the benefit of our demand response increases but will

eventually saturate.

2.1.2 Previous work

There exists a large literature on demand response, see, e.g., [9, 21–29]. We briefly discuss some papers that

are directly relevant to our chapter. First there are papers on modeling specific appliances. For instance, [21]

and [22] consider the electricity load control with thermal mass in buildings; [23] considers the coordination

of charging PHEV with other electric appliances. Then, there are papers on the coordination among different

appliances. [24] studies electricity usage for a typical household and proposes a method for customers to

schedule their available distributed energy resources to maximize net benefits in a day-ahead market. [25]

proposes a residential energy consumption scheduling framework which attempts to achieve a desired trade-

off between minimizing the electricity payment and minimizing the waiting time for the operation of each

appliance in household in presence of a real-time pricing tariff by doing price prediction based on prior

knowledge. While in practice, for different appliances, the household may have a different objective rather

than waiting time for the operation of the appliance.

Besides works such as [24, 25] which consider a single household demand response given a pricing

scheme, [26] considers a power network where end customers choose their daily schedules of their household

appliances/loads by playing games among themselves and the LSE tries to adopt adequate pricing tariffs

that differentiate the energy usage in time and level to make the Nash equilibrium minimize the energy

costs. However, they assume that customers have full knowledge of generation cost function and in their

proposed algorithm they require customers to update their energy consumption scheduling asynchronously,

both of which are hard to implement in practice. [27] considers a centralized complex-bid market-clearing

mechanism where customers submit price-sensitive bids in the day-ahead market; they did not study the

specific electricity consumptions model for the household.
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Notations. We use qi,a(t) to denote the power demanded by customer i for appliance a at time t. Then,

qi,a := (qi,a(t),∀t) denotes the vector of power demands over t = 1, . . . , T ; qi := (qi,a,∀a ∈ Ai) denotes

the vector of power demands for all appliances in the collection Ai of customer i; and q := (qi,∀i) denotes

the vector of power demands from all customers. Similar convention is used for other quantities such as

battery charging schedules ri(t), ri, r.

2.2 System model

Consider a set N of households/customers that are served by a load service entity (LSE). The LSE partici-

pates in wholesale markets (day-ahead, real-time balancing, ancillary services) to purchase electricity from

generators and then sell it to the N customers in the retail market. Even though wholesale prices can fluctu-

ate rapidly by large amounts, currently most utility companies hide this complexity and volatility from their

customers and offer electricity at a flat rate (fixed unit price), perhaps in multiple tiers based on a customer’s

consumption. Even though the wholesale prices are determined by (scheduled or real-time) demand and

supply and by congestion in the transmission network (except for electricity provisioned through long-term

bilateral contracts), the retail prices are set statically independent of the real-time load and congestion. Flat-

rate pricing has the important advantage of being simple and predictable, but it does not encourage efficient

use of electricity. In this chapter, we propose a way to use dynamic pricing in the retail market to coor-

dinate the customers’ demand responses to the benefit of individual customers and the overall system. We

now present our model, describe how the utility should set their prices dynamically, how a customer should

respond, and the properties of the resulting operating point.

We consider a discrete-time model with a finite horizon that models a day. Each day is divided into T

timeslots of equal duration, indexed by t ∈ T := {1, 2, · · · , T}.

2.2.1 Load sevice entity

The LSE serves as an intermediary that participates in multiple wholesale markets, including day-ahead,

real-time balancing and ancillary services, to provision enough electricity to meet the demands of the N
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customers. The design of the retail prices needs to at least recover the running costs of the the LSE, including

the payments it incurs in the various wholesale markets. It is an interesting subject that is beyond the scope

of this chapter. For simplicity, we make the important assumption that this design can be summarized by a

cost function C(Q, t) that specifies the cost for the LSE to provide Q amount of power to the N customers

at time t. The modeling of cost function is an active research issue [27,29,30]. Here we assume that the cost

function C(Q, t) is convex increasing in Q for each t. The LSE sets the prices (p(t), t ∈ T ) according to an

algorithm described below.

2.2.2 Customers

Each customer i ∈ N operates a set Ai of appliances such as air conditioner, refrigerator, plug-in hybrid

electric vehicle (PHEV), etc. For each appliance a ∈ Ai of customer i, we denote by qi,a(t) its power draw

at time t ∈ T , and by qi,a the vector (qi,a(t), t ∈ T ) of power draws over the whole day. An appliance a is

characterized by two parameters:

• a utility function Ui,a(qi,a) that quantifies the utility user i obtains when it consumes qi,a(t) power at

each time t ∈ T ; and

• a set of linear inequalities Ai,aqi,a ≤ ηi,a on the vector power qi,a.

In Section 2.4, we will describe in detail how we model various appliances through appropriate matrices Ai,a

and vector ηi,a. Note that inelastic load, e.g., minimum refrigerator power, can be modeled by qi,a(t) ≥ q
i,a

,

which says the appliance a of customer i requires a minimum power q
i,a

at all times t. This is a linear

inequality constraint and part of Ai,aqi,a ≤ ηi,a.

2.2.3 Energy storage

In addition to appliances, a customer i may also possess a battery which provides further flexibility for

optimization of its consumption across time. We denote by Bi the battery capacity, by bi(t) the energy level

of the battery at time t, and by ri(t) the power (energy per period) charged to (when ri(t) ≥ 0) or discharged

from (when ri(t) < 0) the battery at time t. Assume that battery power leakage is negligible. Then we model



15

the dynamics of the battery energy level by

bi(t) =

t∑
τ=1

ri(τ) + bi(0) . (2.1)

Battery usually has an upper bound on charge rate, denoted by rmaxi for customer i, and an upper bound on

discharge rate, denoted by −rmini for customer i. We thus have the following constraints on bi(t) and ri(t):

0 ≤ bi(t) ≤ Bi, rmini ≤ ri(t) ≤ rmaxi . (2.2)

When the battery is discharged, the discharged power is used by other electric appliances of customer i. It is

reasonable to assume that the battery cannot discharge more power than the appliances need, i.e., −ri(t) ≤∑
a∈Ai qi,a(t). Moreover, in order to make sure that there is a certain amount of electric energy in the

battery at beginning of the next day, we impose a minimum on the energy level at the end of control horizon:

b(T ) ≥ γiBi, where γi ∈ (0, 1].

The cost of operating the battery is modeled by a functionDi(ri) that depends on the vector of charged/discharged

power ri := (ri(t), t ∈ T ). This cost, for example, may correspond to the amortized purchase and mainte-

nance cost of the battery over its lifetime, which depends on how fast/much/often it is charged and discharged.

The cost function Di is assumed to be a convex function of the vector ri.

2.3 Equilibrium and distributed algorithm

2.3.1 Equilibrium

With the battery, at each time t the total power demand of customer i is

Qi(t) :=
∑
a∈Ai

qi,a(t) + ri(t) . (2.3)

We assume that the LSE is regulated so that its objective is not to maximize its profit through selling electric-

ity, but rather to induce customers’ consumption in a way that maximizes the social welfare, total customer
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utility minus the utility’s cost of providing the electricity demanded by all the customers. Hence the LSE

aims to solve:

Utility’s objective (max welfare):

max
q,r

∑
i

(∑
a∈Ai

Ui,a(qi,a)−Di(ri)

)
−
∑
t

C

(∑
i

Qi(t)

)
(2.4)

s. t. Ai,aqi,a ≤ ηi,a, ∀a, i (2.5)

0 ≤ Qi(t) ≤ Qmax
i , ∀t, i (2.6)

ri ∈ Ri, ∀i (2.7)

where Qi(t) is defined in (2.3), the inequality (2.5) models the various customer appliances (see Section

2.4 for details), the lower inequality of (2.6) says that customer i’s battery cannot provide more power than

the total amount consumed by all i’s appliances, and the upper inequality of (2.6) imposes a bound on the

total power drawn by customer i. The constraint (2.7) models the operation of customer i’s battery with the

feasible setRi defined by: for all t, the vectors ri ∈ Ri if and only if

0 ≤ bi(t) ≤ Bi, bi(T ) ≥ γiBi (2.8)

rmini ≤ ri(t) ≤ rmaxi (2.9)

where bi(t) is defined in terms of (ri(τ), τ ≤ t) in (2.1).

By assumption, the objective function is concave and the feasible set is convex, and hence an optimal

point can in principle be computed centrally by the LSE. This, however, will require the LSE to know all the

customer utility and cost functions and all the constraints, which is clearly impractical. The strategy is for

the LSE to set prices p := (p(t), t ∈ T ) in order to induce the customers to individually choose the right

consumptions and charging schedules (qi, ri) in response, as follows.

Given the price p, we assume that each customer i chooses the power demand and battery charging

schedule (qi, ri) := (qi,a(t), ri(t),∀t, ∀a ∈ Ai) so as to maximize its net benefit, the total utility from

operating appliances a at power levels qi,a minus the cost of battery operation and electricity; i.e., each
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customer i solves:

Customer i’s objective (max own benefit):

max
qi,ri

∑
a∈Ai

Ui,a(qi,a)−Di(ri)−
∑
t

p(t)Qi(t) (2.10)

s. t. (2.5)− (2.7) .

Note that an optimal solution of customers i depends on the prices p := (p(t), t ∈ T ) set by the LSE. We

denote it by (qi(p), ri(p)) := (qi,a(t; p), ri(t; p),∀t,∀a ∈ Ai); similarly, we denote an optimal total power

by Qi(p) := (Qi(t; p)) defined as in (2.3) but with optimal qi,a(p) and ri(p).

Definition 2.1. The prices p and the customer demands (q, r) := (qi, ri,∀i) are in equilibrium if (q, r) =

(q(p), r(p)), i.e., a solution (qi(p), ri(p)) to (2.10) with prices p that is optimal to each customer i is also

optimal to the utility company, i.e., maximizes the welfare (2.4).

The following result follows from the welfare theorem. It implies that setting the price to be the marginal

cost of power is optimal.

Theorem 2.1. There exists an equilibrium p∗ and (q∗i , r
∗
i ,∀i). Moreover, p∗(t) = C ′(

∑
iQ
∗
i (t)) ≥ 0 for

each time t.

Proof. Write the LSE’s problem as

max
(q,r)∈X

∑
i

Vi(qi, ri)−
∑
t

C

(∑
i

Qi(t)

)
s. t. Qi(t) =

∑
a∈Ai

qi,a(t) + ri(t), ∀i, t

where Vi(qi, ri) :=
∑
a∈Ai Ui,a(qi,a) − Di(ri) and the feasible set X is defined by the constraints (2.5)–

(2.9). Clearly, an optimal solution (q∗, r∗) exists. Moreover, there exist Lagrange multipliers p∗i (t), ∀i, t,

such that (taking derivative with respect to Qi(t))

p∗i (t) = C ′
(∑

i

Q∗i (t)

)
≥ 0
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Since the right-hand side is independent of i, the utility company can set the prices as p∗(t) := p∗i (t) ≥ 0 for

all i. One can check that the KKT condition for the utility’s problem are identical to the KKT conditions for

the collection of customers’ problems. Since both the utility’s problem and all the customers’ problems are

convex, the KKT conditions are both necessary and sufficient for optimality. This proves the theorem.

2.3.2 Distributed algorithm

Theorem 2.1 motivates a distributed algorithm where the LSE and the customers jointly compute an equilib-

rium based on a gradient algorithm, where the LSE sets the prices to be the marginal costs of electricity and

each customer solves its own maximization problem in response. The model is that at the beginning of each

day, the utility company and (the automated control agents of) the customers iteratively compute the electric-

ity prices p(t), consumptions qi(t), and charging schedules ri(t), for each period t of the day, in advance.

These decisions are then carried out for that day.

At k-th iteration:

• The LSE collects forecasts of total demands (Qi(t), ∀t) from all customers i over a communication

network. It sets the prices to the marginal cost

pk(t) = C′
(∑

i

Qki (t)

)
(2.11)

and broadcasts (pk(t),∀t) to all customers over the communication network.

• Each customer i updates its demand qki and charging schedule rki after receiving the updated pk, ac-

cording to

q̄k+1
i,a (t) = qki,a(t) + γ

(
∂Ui,a(qki )
∂qki,a(t)

− pk(t)

)
r̄k+1
i (t) = rki (t)− γ

(
∂Di(r

k
i )

∂rki (t)
+ pk(t)

)
(qk+1
i , rk+1

i ) =
[
q̄k+1
i , r̄k+1

i

]Si
(2.12)

where γ > 0 is a constant stepsize, and [·]Si denotes projection onto the set Si specified by constraints

(2.5)-(2.7).
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When γ is small enough, the above algorithm converges [31].

2.4 Detailed appliance models

In this section, we describe detailed models of electric appliances commonly found in a household. We

separate these appliances into four types, each type characterized by a utility function Ui,a(qi,a) that models

how much customer i values the consumption vector qi,a, and a set of constraints on the consumption vector

qi,a. The description in this section elaborates on the utility functions Ui,a(qi,a) and the constraintAi,aqi,a ≤

ηi,a in the optimization problems defined in Section 2.3.

2.4.1 Type 1

The first type includes appliances such as air conditioners and refrigerators which control the temperature of

customer i’s environment.

We denote by Ai,1 the set of Type 1 appliances for customer i. For each appliance a ∈ Ai,1, T ini,a(t) and

T outi,a (t) denote the temperatures at time t inside and outside the place that the appliance is in charge of, and

Ti,a denotes the set of timeslots during which customer i actually cares about the temperature. For instance,

for air conditioners, T ini,a(t) is the temperature inside the house, T outi,a (t) is the temperature outside the house,

and Ti,a is the set of timeslots when the resident is at home.

Assume that, at each time t ∈ Ti,a, customer i attains a utility Ui,a(Ti,a) := Ui,a(T ini,a(t), T comfi,a ) when

the temperature is T ini,a(t). The utility function is parameterized by a constant T comfi,a which represents the

most comfortable temperature for the customer. We assume thatUi,a(T ini,a(t)) is a continuously differentiable,

concave function of T ini,a(t).

The inside temperature evolves according to the following linear dynamics:

T ini,a(t) =T ini,a(t− 1) + α(T outi,a (t)− T ini,a(t− 1)) + βqi,a(t) (2.13)

where α and β are parameters that specify the thermal characteristics of the appliance and the environment

in which it operates. The second term in equation (2.13) models heat transfer. The third term models the
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thermal efficiency of the system: β > 0 if appliance a is a heater and β < 0 if it is a cooler. Here, we

define T ini,a(0) as the temperature T ini,a(T ) from the previous day. This formulation models the fact that the

current temperature depends on the current power draw as well as the temperature in the previous timeslot.

Thus the current power consumption has an effect on future temperatures [9,21,22]. For each customer i and

each appliance a ∈ Ai,1, there is a range of temperature that customer i takes as comfortable, denoted by

[T comf,mini,a , T comf,maxi,a ]. Thus we have the following constraint

T comf,mini,a ≤ T ini,a(t) ≤ T comf,maxi,a , ∀t ∈ Ti,a . (2.14)

We now express the constraints and the argument to the utility functions in terms of the load vector

qi,a := (qi,a(t),∀t). Using equation (2.13), we can write T ini,a(t) in terms of (qi,a(τ), τ = 1, . . . , t):

T ini,a(t) = (1− α)tT ini,a(0) +

t∑
τ=1

(1− α)t−ταT outi,a (τ) +

t∑
τ=1

(1− α)t−τβqi,a(τ) .

Define T ti,a := (1− α)tT ini,a(0) +
∑t
τ=1(1− α)t−ταT outi,a (τ).1 We can further write T ini,a(t) as

T ini,a(t) = T ti,a +

t∑
τ=1

(1− α)t−τβqi,a(τ) . (2.15)

With equation (2.15), the constraint (2.14) becomes a linear constraint on the load vector qi,a := (qi,a(t),∀t):

for any t ∈ Ti,a,

T comf,mini,a ≤ T ti,a +

t∑
τ=1

(1− α)t−τβqi,a(τ) ≤ T comf,maxi,a . (2.16)

The overall utilityUi,a(qi,a) in the form used in (2.4) and (2.10) can then be written in terms ofUi,a(T ini,a(t), T comfi,a )

1T ti,a represents the temperature at time t if the appliance a doesn’t exist. It is determined by outside temperature and not controlled
by the customer.
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as2

Ui,a(qi,a) :=
∑
t∈Ti,a

Ui,a

(
T ti,a +

t∑
τ=1

(1− α)t−τβqi,a(τ), T comfi,a

)
(2.17)

which is a concave function of the vector qi,a since Ui,a(T ini,a(t), T comfi,a ) is concave in T ini,a(t).

In addition, there is a maximum power qmaxi,a (t) that the appliance can bear at each time, thus we have

another constraint on the qi,a:

0 ≤ qi,a(t) ≤ qmaxi,a (t), ∀t .

2.4.2 Type 2

The second category includes appliances such as PHEV, dish washer, and washing machine. For these appli-

ances, a customer only cares about whether the task is completed before a certain time. This means that the

cumulative power consumption by such an appliance must exceed a threshold by the deadline [23–25].

We denote Ai,2 as the set of Type 2 appliances. For each a ∈ Ai,2, Ti,a is the set of times that the

appliance can work. For instance, for PHEV, Ti,a is the set of times that the vehicle can be charged. For each

customer i and a ∈ Ai,2, we have the following constraints on the load vector qi,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a,

qi,a(t) = 0, ∀t ∈ T \Ti,a

Q̄mini,a ≤
∑
t∈Ti,a qi,a(t) ≤ Q̄maxi,a

where qmini,a (t) and qmaxi,a (t) are the minimum and maximum power load that the appliance can consume at

time t, and Q̄mini,a and Q̄maxi,a are the minimum and maximum total power draw that the appliance requires. If

2We abuse notation to use Ui,a to denote two different functions; the meaning should be clear from the context.
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we set qmini,a (t) = qmaxi,a (t) = 0 for t ∈ T \Ti,a, we can rewrite these constraints as

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ T

Q̄mini,a ≤
∑
t∈Ti,a qi,a(t) ≤ Q̄maxi,a .

(2.18)

The overall utility that customer i obtains from a Type-2 appliance a depends on the total power con-

sumption by a over the whole day. Hence the utility function in the form used in Section 2.3 is: Ui,a(qi,a) :=

Ui,a (
∑
t qi,a(t)). We assume that the utility function is a continuously differentiable, concave function of∑

t qi,a(t).

2.4.3 Type 3

The third category includes appliances such as lighting that must be on for a certain period of time. A

customer cares about how much light they can get at each time t. We denote by Ai,3 the set of Type-3

appliances and by Ti,a the set of times that the appliance should work. For each customer i and a ∈ Ai,3, we

have the following constraints on the load vector qi,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a. (2.19)

At each time t ∈ Ti,a, we assume that customer i attains a utility Ui,a(qi,a(t), t) from consuming power

qi,a(t) on appliance a. The overall utility is then Ui,a(qi,a) :=
∑
t Ui,a(qi,a(t), t). Again, we assume Ui,a is

a continuously differentiable, concave function.

2.4.4 Type 4

The fourth category includes appliances such as TV, video games, and computers that a customer uses for

entertainment. For those appliances, the customer cares about two things: how much power they use at each

time they want to use the appliance, and how much total power they consume over the entire day.

We denote by Ai,4 the set of Type-4 appliances and by Ti,a the set of times that customer i can use the

appliance. For instance, for TV, Ti,a is the set of times that the customer is able to watch TV. For each
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customer i and a ∈ Ai,4, we have the following constraints on the load vector qi,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a

Q̄mini,a ≤
∑
t∈Ti,a qi,a(t) ≤ Q̄maxi,a

(2.20)

where qmini,a (t) and qmaxi,a (t) are the minimum and maximum power that the appliance can consume at each

time t; Q̄mini,a and Q̄maxi,a are the minimum and maximum total power that the customer demands for the

appliance. For example, a customer may have a favorite TV program that he wants to watch everyday. With

DVR, the customer can watch this program at any time. However the total power demand from TV should at

least be able to cover the favorite program.

Assume that customer i attains a utility Ui,a(qi,a(t), t) from consuming power qi,a(t) on appliance a ∈

Ai,4 at time t. The time dependent utility function models the fact that the resident would get different benefits

from consuming the same amount of power at different times. Take watching the favorite TV program as an

example. Though the resident is able to watch it at any time, he may enjoy the program at different levels at

different times.

2.5 Numerical Experiments

In this section, we provide numerical examples to complement the analysis in the previous sections.

2.5.1 Simulation setup

We consider a simple system with 8 households in one neighborhood that join in the demand response system.

The households are divided into two types evenly. For the households of the first type (indexed by i =

1, 2, 3, 4), there are residents staying at home for the whole day; for the households of the second type

(indexed by i = 5, 6, 7, 8), there is no person staying at home during the day time (8am-6pm). A day starts

at 8am, i.e., t ∈ T corresponds to the hour [7 + t (mod 24), 8 + t (mod 24)]. Each household is assumed

to have 6 appliances: air conditioner, PHEV, washing machine, lighting, entertainment,3 and electric battery.

3Here we aggregate different entertainment devices such as TV and PC effectively as one “entertainment” device.
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Figure 2.1. Outside Temperature over a day.

The basic parameters of each appliance used in simulation are shown as follows.

1. Air conditioner: This appliance belongs to Type 1. The outside temperature is shown in Figure 2.1. It

captures a typical summer day in Southern California. For each resident, we assume that the comfort-

able temperature range is [70F, 79F], and the most comfortable temperature is randomly chosen from

[73F, 77F]. The thermal parameters α = 0.9 and β is chosen randomly from [−0.011,−0.008]. For

each household’s air conditioner, we assume that qmax = 4000wh and qmin = 0wh, and the utility

function takes the form of Ui,a(Ti(t)) := ci,a − bi,a(Ti,a(t)− T comi,a )2, where bi,a and ci,a are positive

constants. We further assume that the residents will turn off the air conditioner when they go to sleep.4

The households of the first type care about the inside temperature through the whole day, and the other

households care about the inside temperature during the time Ti,a = {18, · · · , 24, 1, · · · , 7}.

2. PHEV: This appliance belongs to Type 2. We assume that the available charging time, Ti,a = {18, · · · , 24, 1, · · · , 7},

is the same for all houses. The storage capacity is chosen randomly from [5500wh, 6000wh]; and

the minimum total charging requirement is chosen randomly from [4800wh, 5100wh]. The minimum

and maximum charging rates are 0w and 2000w. The utility function takes the form of Ui,a(Q) =

bi,aQ+ ci,a, where bi,a and ci,a are positive constants.

3. Washing machine: This appliance belongs to Type 2. For the households of the first type, the avail-

able working time is the whole day; for the other households, the available working time is Ti,a =

{18, · · · , 24, 1, · · · , 7}. The minimum and maximum total power demands are chosen from [1400wh, 1600wh]

and [2000wh, 2500wh] respectively. The minimum and maximum working rate are 0w and 1500w re-

4Notice that the outside temperature during 23pm-8am in Southern California is comfortable. It is common that customers turn off
the air conditioner during the mid-night.
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spectively. The utility function takes the form of Ui,a(Q) = Q+ ci,a, where ci,a is a positive constant.

4. Lighting: This appliance belongs to Type 3. Ti,a = {18, · · · , 23}, and the minimum and maximum

working power requirements are 200w and 800w respectively. The utility function takes the form of

Ui,a(qi,a(t)) = ci,a − (bi,a +
qi,a(t)
q̄ )−1.5, where bi,a and ci,a are positive constants.

5. Entertainment: This appliance belongs to Type 4. For the households of the first type, Ti,a = {12, · · · , 23},

Qmaxi = 3500wh, and Qmini = 1200wh; for the other households, Ti,a = {18, · · · , 24} , Qmaxi =

2000wh, and Qmini = 500wh. The minimum and maximum working rate are 0w and 400w respec-

tively. The utility function takes the form of Ui,a(qi,a(t)) = ci,a − (bi,a +
qi,a(t)
q̄ )−1.5, where bi,a and

ci,a are positive constants.

6. Battery: The storage capacity is chosen randomly from [5500wh, 6500wh] and the maximum charg-

ing/discharging rates are both 1800w. We set γi = 0.5, and the cost function takes the following

form:

Di (ri) =
(
η1

∑
t∈T (ri(t))

2 − η2

∑T−1
t=1 ri(t)ri(t+1) + η3

∑
t∈T (min(bi(t)− δBi, 0))

2
+ ci,b

)

where η1, η2, η3, δ and ci,b are positive constants. The first term captures the damaging effect of

fast charging and discharging; the second term penalizes charging/discharging cycles;5 the third term

captures the fact that deep discharge can damage the battery. We set δ = 0.2.6

On the supply side, we assume that the electricity cost function is a smooth piecewise quadratic function

[32], i.e.,

C(Q) =



c1Q
2 + b1Q+ a1; 0 ≤ Q ≤ Q1

c2Q
2 + b2Q+ a2; Q1 < Q ≤ Q2

...
...

cmQ
2 + bmQ+ am; Qm−1 < Q

5If r(t) and r(t + 1) have different signs, then there will be a cost. As long as η2 is smaller than η1, the cost function is a positive
convex function. The second item can also be seen as a correction term to the first term.

6We assume that the batteries are lead-acid type batteries rather than NiCd batteries.
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where cm > cm−1 > . . . ≥ c1 > 0.

2.5.2 Real-time pricing demand response

Let us first see the performance of our proposed demand response scheme with real-time pricing, without and

with battery.
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Figure 2.2. Total electricity demand under the real-time pricing demand response scheme without battery.
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Figure 2.3. Electricity demand response for two typical households of different types without battery. The
left panel shows the electric energy allocation for the household of the first type. The right panel shows the
electric energy allocation for the household of the second type.

Figure 2.2 shows the total electricity demand under the real-time pricing demand response scheme without

battery; Figure 2.3 shows the corresponding electricity allocation for two typical households of different

types. We see that different appliances are coordinated indirectly by real-time pricing, so as to flatten the
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total power demand at different times as much as possible.
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Figure 2.4. Total electricity demand under the real-time pricing demand response scheme with battery.

8 10 12 14 16 18 20 22 24 2 4 6 8
−400

−200

0

200

400

600

800

1000

1200

1400

1600

1800

Time

E
n

er
g

y 
D

em
an

d
 (

w
h

)

 

 

Air Conditioner
PHEV
Washer
Lights
Entertainment
Battery

8 10 12 14 16 18 20 22 24 2 4 6 8
−400

−200

0

200

400

600

800

1000

Time

E
n

er
g

y 
D

em
an

d
 (

w
h

)

 

 

Air Conditioner
PHEV
Washer
Lights
Entertainment
Battery

Figure 2.5. Electricity demand response for two typical households of different types with battery. The left
panel shows the electric energy allocation for the household of the first type. The right panel shows the
electric energy allocation for the household of the second type.

Figure 2.4 shows the total electricity demand under the real-time pricing demand response scheme with

battery; Figure 2.5 shows the corresponding electricity allocation for two typical households of different

types. Those figures show the value of the battery for demand response: it not only reduces the peak load but

also helps to further flatten the total power demand at different times.

Figure 2.6 shows room temperature for two typical households of different types under the real-time

pricing demand response scheme, without and with battery. We can see that the temperatures are around
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Figure 2.6. Room Temperature for two households of different types: the left panel shows the room temper-
ature for the households with real-time pricing demand response without battery; the right panel shows the
room temperature for the hoseholds with real-time pricing demand response with battery.

the comfortable temperature in both cases. The battery is able to keep the temperature closer to the most

comfortable temperature.

2.5.3 Comparisons among different demand response schemes

In order to evaluate the performance of our proposed demand response scheme, we consider three other

schemes. In the first scheme the customer is not responsive to any price or cost, but just wants to live a

comfortable lifestyle; in the second and third ones, the customer responds to a certain flat price.

1. No demand response: The customers just allocate their energy usage according to their own prefer-

ence without paying any attention to the price, i.e., they just optimize their utility without caring about

their payment. For example, the customer sets the air conditioner to keep the temperature to the most

comfortable level all the time; charges PHEV, washes clothes and watches TV at the favorite times.

The electricity demand over a day under this scheme is shown by the blue plot in Figure 2.7.

2. Flat price scheme 1: In this scheme, the customer is charged a flat price p, such that

p =
(1 + ∆)

∑
t∈T C(Q(t), t)∑

t∈T Q(t)

with {Q(t)}t∈T the best response to such a price from the customers. To find such a price, we run

iterations between the LSE and customers. At each iteration k = 1, 2, · · · , the LSE sets the price as

pk =
(1+∆)

∑
t∈T C(Qk(t),t)∑
t∈T Qk(t) and then the customers will shape their demand in response to such a flat
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price. Eventually, pk will converge to a fixed point, which is the flat price we need.7 The electricity

demand over a day under this scheme is shown by the magenta plot in Figure 2.7.

3. Flat price scheme 2: In this scheme we use the information obtained from our proposed real-time

pricing demand response scheme to set a flat price p. We collect the price {p(t)}t∈T and total power

demand {Q(t)}t∈T information under the real time pricing scheme and then set the flat price as p =∑
t∈T p(t)Q(t)∑
t∈T Q(t) . The electricity demand over a day under this scheme is shown by the black plot in

Figure 2.7.

8 10 12 14 16 18 20 22 24 2 4 6 8
0

0.5

1

1.5

2
x 10

4

Time

E
n

er
g

y 
D

em
an

d
 (

w
h

)

 

 

No demand response

Flat price scheme 1

Flat Price scheme 2

Real−time price; no battery

Real−time price; with battery

Figure 2.7. Electricity demand response under different schemes.

Figure 2.7 also shows the electricity demand response under the real-time pricing scheme with and with-

out battery. We see that the real-time pricing demand response scheme is very effective in shaping the

demand: not only is the peak load reduced greatly, but also the variation in power demand decreases greatly;

with the integration of the battery, the peak load and the variation in power demand will be reduced further.

Table 2.1 summarizes the differences among the three pricing schemes. We see that the real-time pricing

scheme can increase the load factor greatly and save a large amount of generation cost without hurting cus-

tomers’ utility. The integration of the battery can further increase the load factor and reap larger savings in

generation cost.

7In general, such a price may not exist and the iterative procedure described may not converge.
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Table 2.1. Demand response without Battery.

No Demand
Response

Flat Pricing
(Scheme 1)

Flat Pricing
(Scheme 2)

Real-time
Pricing; no
Battery

Real-Time
Pricing; with
Battery

Load Factor 0.3587 0.4495 0.4577 0.7146 0.8496
Peak Demand 18.8 kwh 14.7 kwh 13 kwh 8.76 kwh 7.29 kwh
Total Demand 162 kwh 158 kwh 153 kwh 150 kwh 148 kwh
Generation
Cost

$64.41 $45.49 $41.80 $32.82 $31.50

Total Payment $137.40a $ 54.59 $58.56 $57.42 $55.69
Customers’
Utility

$212.41 $201.72 $200.14 $198.82 $198.82b

Customers’
Net Utilityc

$75.01 $147.14 $141.57 $141.40 $143.13

Social Welfare $148.00 $156.24 $158.33 $166.00 $167.32

aThe price at each time slot is set as the real-time marginal generation cost.
bWhen there is a battery, a customer’s utility is defined as the benefits the customer gets from electric appliances minus the battery

cost.
cCustomers’ net utility is defined as customers’ utility minus payment.

2.5.4 Battery with different cost

One of the challenges in the integration of the battery is its economic (in)viability because of high battery cost.

In order to study the impact of battery cost on demand response, we consider three scenarios with high, mild,

and low cost, by choosing different scaling factors (10, 1 and 0.1) for the battery cost in the objective function.

Figure 2.8 shows the electricity demand under the real-time pricing scheme with batteries of different costs.
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Figure 2.8. Electricity demand response with battery at different costs.

Table 2.2 summarizes the differences among those different scenarios. We see that the economic viability

of the battery is important, and the more economically viable battery will reap more benefits from demand
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Table 2.2. Demand response with Battery.

No Battery Battery (high-
cost)

Battery (mild-
cost)

Battery (low-
cost)

Load Factor 0.7146 0.7390 0.8496 0.9095
Peak Demand 8.76 kwh 8.33 kwh 7.29 kwh 6.84 kwh
Total Demand 150 kwh 148 kwh 148 kwh 149 kwh
Generation Cost $32.82 $31.72 $31.50 $31.70
Total Payment $57.42 $56.35 $55.69 $55.99
Customers’ Utilitya $198.82 $198.55 $198.82 $199.42
Customers’ Net
Utilityb

$141.40 $142.92 $143.13 $143.43

Social Welfare $166.00 $166.84 $167.32 $167.69

aA customer’ utility is defined as the benefits the customer gets from electric appliances minus the battery cost.
bA customer’ utility is defined as the customer’s utility minus the payment.

response.

2.5.5 Performance scaling with different numbers of households

In order to study the effect of the system size on the performance of our demand response scheme, we simulate

systems with the number of customers being N = 2, 4, 6, · · · , 24. Figure 2.9 summarizes three interesting

characteristic factors for the demand response systems with different numbers of households. We see that as

the number of households increases, the load factor will first increase till a maximum value and then decrease

a bit and finally level off, but the peak load and total demand at each household will decrease and finally level

off. This shows that as the number of the households increases, our demand response scheme will reap more

benefits but the gain will eventually saturate.

2.6 Conclusion

We have studied optimal demand response based on utility maximization in power networks. We consider

households that operate different appliances including PHEVs and batteries and propose a demand response

approach based on utility maximization. Each appliance provides a certain benefit depending on the pattern

or volume of power it consumes. Each household wishes to optimally schedule its power consumption so as

to maximize its individual net benefit subject to various consumption and power flow constraints. We show

that there exist time-varying prices that can align individual optimality with social optimality, i.e., under
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Figure 2.9. Electricity demand response without battery for different power networks with different numbers
of customers.

such prices, when the households selfishly optimize their own benefits, they automatically also maximize the

social welfare. The LSE can thus use dynamic pricing to coordinate demand responses to the benefit of the

overall system. We propose a distributed algorithm for the LSE and the customers to jointly compute this

optimal prices and demand schedules. Finally, we present simulation results that illustrate several interesting

properties of the proposed scheme.
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Chapter 3

Optimal Power Flow

[] In the previous chapter, we only consider demand response that balances aggregate load and supply,

and abstract away the underlying power network. We will consider demand response in a radial distri-

bution network in the next chapter by formulating it as an optimal power problem. In this chapter, we

will focus on the optimal power flow problem, which is generally nonconvex. We advocate a second-

order cone relaxation for OPF using the branch flow model and provide sufficient conditions under

which the relaxation is exact. These conditions are demonstrated to hold for a wide class of practical

power distribution systems.

3.1 Introduction

In the work of [33, 34], we advocate the use of branch flow models for the design and operation of power

systems, including optimal power flow, demand response, and Volt/VAR control. In contrast to bus injection

models which focus on nodal variables such as bus current and power injections, branch flow models focus

on currents and power flows on individual branches [35, 36]. They have been used mainly for modeling dis-

tribution circuits which tend to be radial, but have received far less attention. The optimal power flow (OPF)

problem seeks to minimize a certain cost function, such as power loss and generation cost, subject to phys-

ical constraints including Kirchoff’s laws, and thermal constraints, as well as voltage regulation constraints.

There has been a great deal of research on OPF since Carpentier’s first formulation in 1962 [37]. OPF is

generally nonconvex and NP hard, and a large number of optimization algorithms and relaxations have been

proposed; see, e.g., [38–42]. Recently, a semidefinite relaxation (SDR) of OPF is proposed in [43] and a
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sufficient condition is derived in [44] under which the SDR is exact. This condition is shown to essentially

hold in various IEEE test systems. While this line of research has generated a lot of interest, limitations of the

SDR have also been studied in [45] using 3, 5, and 7-bus system. Moreover, if SDR fails to provide exact re-

laxations, the solutions produced by the SDR are physically meaningless in those cases. Remarkably, it turns

out that if the network is radial, then the sufficient condition of [44] always holds, provided that the bounds

on the power flows satisfy a simple pattern [46–48]. This is important as almost all distribution systems are

radial networks.

Indeed, for radial networks, different convex relaxations have also been studied using branch flow models.

The model considered in this chapter is first proposed in [35, 36] for the optimal placement and sizing of

switched capacitors in distribution circuits for Volt/VAR control. Recasting the model as a set of linear

constraints together with a set of quadratic equality constraints, references [49] [33] propose a second-order-

cone (SOC) convex relaxation, and prove that the relaxation is exact for radial networks, when there are no

upper bounds on the loads. See also [50] for an SOC relaxation of a linear approximation of the branch flow

model in [35, 36], and [51–53] for other branch flow models.

Ignoring upper bounds on the load may be unrealistic, e.g., in the context of demand response. In a

previous paper [34], we prove that the SOC relaxation is exact for radial networks, provided there are no upper

bounds on the voltage magnitudes and several other sufficient conditions hold. Those sufficient conditions

however place strong requirements on the impedance of the distribution lines and on the load and generation

patterns in the radial network. In this chapter, we propose less restrictive sufficient conditions under which

the SOC relaxation is exact. As examples, we show that these conditions hold in two distribution circuits

of the Southern California Edison (SCE), with high penetration of photovoltaic (PV) generation. Roughly

speaking, these sufficient conditions hold in many real distribution systems where v ∼ 1 p.u., p, q < 1 p.u. ,

r, x << 1 p.u., and r
x is bounded. Here, v, p, q are the bus voltage, real power consumption, and reactive

power consumption, and r, x are the resistance and reactance of the distribution lines. Moreover, we provide

upper bounds on the voltage magnitudes for the SOC relaxation solutions. This would facilitate the voltage

regulation in distribution systems.

The paper is organized as follows. We first present the branch flow model in Section 3.2. We then provide
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in Section 3.3 sufficient conditions under which the SOC relaxation is exact for radial networks when there are

no upper bounds on bus voltage magnitudes. Finally, in Section 3.4, we illustrate these sufficient conditions

using two real-world distribution circuits.

3.2 Problem formulation

3.2.1 Branch flow model for radial networks

Table 3.1. Notations.

Vi, vi complex voltage on bus i with vi = |Vi|2
si = pi + iqi complex net load on bus i
Iij , `ij complex current from buses i to j with `ij = |Iij |2
Sij = Pij + iQij complex power flowing out from buses i to bus j
zij = rij + ixij impedance on line (i, j)

Consider a radial distribution circuit that consists of a set N of buses and a set E of distribution lines

connecting these buses. We index the buses in N by i = 0, 1, . . . , n, and denote a line in E by the pair (i, j)

of buses it connects. Bus 0 represents the substation and other buses in N represent branch buses. For each

line (i, j) ∈ E, let Iij be the complex current flowing from buses i to j, zij = rij + ixij the impedance on

line (i, j), and Sij = Pij + iQij the complex power flowing from buses i to bus j. On each bus i ∈ N ,

let Vi be the complex voltage and si be the complex net load, i.e., the consumption minus generation. As

customary, we assume that the complex voltage V0 on the substation bus is given.

The branch flow model was first proposed in [35, 36] to model power flows in a steady state in a radial

distribution circuit. We introduce here an abridged version of the branch flow model; see, e.g., [33, 34] for

more details.

pj = Pij − rij`ij −
∑

k:(j,k)∈E
Pjk, j = 1, . . . , n (3.1)

qj = Qij − xij`ij −
∑

k:(j,k)∈E
Qjk, j = 1, . . . , n (3.2)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij , (i, j) ∈ E (3.3)

`ij =
P 2
ij +Q2

ij

vi
, (i, j) ∈ E, (3.4)
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where `ij := |Iij |2, vi := |Vi|2, and pi and qi are the real and reactive net loads at node i. Equations (3.1)–

(3.4) define a system of equations in the variables (P,Q, `, v) := (Pij , Qij , `ij , (i, j) ∈ E, vi, i = 1, . . . , n),

which do not include phase angles of voltages and currents. Given a (P,Q, `, v), these phase angles can be

uniquely determined for radial networks. This is not the case for mesh networks; see [33] for exact conditions

under which phase angles can be recovered for (an extension of the model here for) mesh networks.

3.2.2 Optimal power flow

Consider the problem of minimizing a cost function over the network where the optimization variables are

p := (p1, . . . , pn), q := (q1, . . . , qn), as well as (P,Q, `, v). Let

pi := pci − p
g
i , qi := qci − q

g
i ,

where pci and qci are the real and reactive power consumption at node i, and pgi and qgi are the real and

reactive power generation at node i. In addition to power flow equations (3.1)–(3.4), we impose the following

constraints on power consumption and generation:

pc
i
≤ pci ≤ pci , qc

i
≤ qci ≤ qci , i = 1, . . . , n. (3.5)

pg
i
≤ pgi ≤ p

g
i , qg

i
≤ qgi ≤ q

g
i , i = 1, . . . , n. (3.6)

f ci (pci , q
c
i ) ≤ 0, fgi (pgi , q

g
i ) ≤ 0, i = 1, . . . , n. (3.7)

Here, equation (3.7) models additional constraints on (pci , q
c
i ) and (pgi , q

g
i ). For example, for PV generators,

(pgi )
2 + (qgi )2 ≤ C2 where C is the capacity of the PV generation [54]. We assume f ci , f

g
i are convex for all

i = 1, · · · , n.

Finally, the voltage magnitudes must be maintained above certain thresholds:

vi ≤ vi, i = 1, . . . , n. (3.8)

Here we do not impose upper bounds on the voltage magnitudes. However, we derive below upper bounds
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on the optimal voltage magnitudes.

The objective of the optimal power flow problem is to minimize the power generation costs Ci(p
g
i ), the

power losses ri,j`i,j , and maximize the user utilities fi(pci ): 1

OPF:

min
P,Q,`,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

∑
(i,j)∈E

ri,j`i,j

s.t. (3.1)− (3.4), (3.5)− (3.8).

OPF is NP hard in general, due to the quadratic equality constraint (3.4).

3.3 Exact relaxation

3.3.1 Second-order cone relaxation

Following [33, 34, 49], we relax the quadratic equalities in (3.4) into inequalities and consider the following

convex relaxation of OPF.

ROPF:

min
P,Q,l,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=0

fi(p
c
i ) +

∑
(i,j)∈E

ri,j`i,j

s.t. (3.1)− (3.3), (3.5)− (3.8)

`ij ≥
P 2
ij +Q2

ij

vi
, (i, j) ∈ E. (3.9)

Obviously, ROPF provides a lower bound on OPF. It was shown in [33, 49] that this relaxation is exact when

there are no upper bounds on the real and reactive power consumptions in (3.5) but with upper bounds on the

voltage magnitudes in (3.8).

1We can also include in the objective function of the cost C0

(∑
(0,j)∈E P0,j

)
on the total power fed into the radial network. This

additional term does not change the results of the paper.
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The main result of this chapter is a variety of sufficient conditions for exact relaxation when there are

no upper bounds on the voltage magnitudes. Given a solution of the relaxed problem ROPF, one can always

check if equality is attained in (3.4). If it is, then the relaxed solution is optimal for the original problem OPF

as well. Otherwise, it is not feasible for OPF. Our goal is to develop sufficient conditions for exact relaxation

that can be checked without having to solve ROPF first.

3.3.2 Sufficient condition for exact relaxation

We start by developing our results on a simple network, a one-line distribution circuit (main feeder). Then

we will extend the results to general radial networks.

3.3.2.1 Line networks

For a one-line network, we can abbreviate rij , xij , Pij , Qij , and lij by ri, xi, Pi, Qi and li respectively, as

shown in Figure 3.1. Rewrite the OPF problem in terms of the simplified notations as:

ln−1, Pn−1, Qn−1l1, P1, Q1l0, P0, Q0
p1, q1 p2, q2 pn, qn

v0 v1 v2 vn

r0, x0 r1, x1 rn−1, xn−1
Bus 0 Bus 1 Bus 2 Bus n

Figure 3.1. A one-line distribution network.

LOPF:

min
P,Q,`,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

n−1∑
i=0

ri`i

s.t.
P 2
i +Q2

i

vi
= `i, i = 0, · · · , n− 1 (3.10)

Pi = Pi+1 + ri`i + pci+1 − p
g
i+1, i = 0, · · · , n− 1 (3.11)

Qi = Qi+1 + xi`i + qci+1 − q
g
i+1, i = 0, · · · , n− 1 (3.12)

vi − vi+1 = 2(riPi + xiQi)− (r2
i + x2

i )`i, i = 0, · · · , n− 1 (3.13)

(3.5)− (3.8).

The above optimization problem can be relaxed to the following second-order cone program:
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RLOPF

min
P,Q,l,v,p,q

n∑
i=1

Ci(p
g
i )−

n∑
i=1

fi(p
c
i ) +

n−1∑
i=0

ri`i

s.t. (3.5)− (3.8), (3.11)− (3.13)

P 2
i +Q2

i

vi
≤ `i, i = 0, · · · , n− 1. (3.14)

The next lemma provides a sufficient condition guaranteeing that RLOPF is an exact relaxation of OPF.

For each bus i, k ∈ N\{0}, define

Rk :=

k−1∑
j=0

rj , Xk :=

k−1∑
j=0

xj , Ri,k :=

k−1∑
j=i

rj , Xi,k :=

k−1∑
j=i

xj

as the cumulative resistance and reactance from the feeder or bus i to bus k. Also define [a]+ = max(a, 0).

Lemma 3.1. Any optimal solution (P,Q, `, v, p, q) of RLOPF is also optimal for LOPF, provided that for

each k ∈ N\{0} the following condition holds: if rkxk −
Rk
Xk
≥ 0, then

vi + 2Pi

(
rk
xk
Xk −Ri,k

)
+ 2QiXi > 0;∀i < k (3.15)

otherwise,

vi + 2PiRi + 2Qi

(
xk
rk
Rk −Xi,k

)
> 0,∀i < k (3.16)

Moreover, for each node i ∈ N\{0}, the voltage is upper-bounded by:2

vi ≤ v0 − 2

i−1∑
k=0

(rk(Pk − rk`k) + xk(Qk − xk`k)) .

2Note that Pk − rk`k and Qk − xk`k are the real and reactive power received by bus k + 1 from bus k.
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Proof. Introducing dual variables for Problem LOPF, denoted as

α = (λi, θi, wi, ξi, γ
c
i , γ

g
i , ζ̄

c
i , ζ

c

i
, η̄ci , η

c
i
, ζ̄gi , ζ

g

i
, η̄gi , η

g
i
, µi),

where µi ≥ 0, ξi ≤ 0 . Let x denote the primal variables. The Lagrangian dual function is given as:

L(x, α) = −
n∑
i=0

fi(p
c
i ) +

n∑
i=1

Ci(p
g
i ) +

n−1∑
i=0

ri`i +

n−1∑
i=0

λi(Pi − Pi+1 − ri`i − pi+1)

+

n−1∑
i=0

θi(Qi −Qi+1 − xi`i − qi+1) +

n−1∑
i=0

µi(
P 2
i +Q2

i

vi
− `i)

+

n−1∑
i=0

wi(vi − vi+1 − 2(riPi + xiQi) + (r2
i + x2

i )`i) +

n∑
i=1

(γci f
c
i (pci , q

c
i ) + γgi f

g
i (pgi , q

g
i ))

+

n∑
i=1

(ξivi + (ζ̄ci − ζ
c

i
)pci + (η̄ci − ηci )q

c
i ) +

n∑
i=1

((ζ̄gi − ζ
g

i
)pgi + (η̄gi − η

g
i
)qgi )

+

n∑
i=1

(−ξivi − p̄ci ζ̄ci + pc
i
ζc
i
− q̄ci η̄ci ) +

n∑
i=1

(qg
i
ηgi − p̄

g
i ζ̄
g
i + pg

i
ζgi − q̄

g
i η̄
g
i + qg

i
ηgi ).

If (x∗, α∗) are the primal-dual optimal, then ∂L(x∗,α∗)
x = 0. In the following, we will drop the ‘∗’ for

simplicity. Define βi = µi
vi

for each i = 0, · · · , n− 1. ∂L(x∗,α∗)
x = 0 gives that for all i = 0, · · · , n− 1,

∂L

Pi
=−λi−1 + λi + 2βiPi − 2wiri = 0, (3.17)

∂L

Qi
=−θi−1 + θi + 2βiQi − 2wixi = 0, (3.18)

∂L

`i
=ri − λiri − θixi − βivi + wi(r

2
i + x2

i ) = 0, (3.19)

and for all i = 1, · · · , n,

∂L

vi
= −µi

P 2
i +Q2

i

v2
i

− wi−1 + wi + ξi = 0, (3.20)

where we introduce dummy variables λ−1 = θ−1 = βn = µn = ln = wn = 0.

By (3.20), it is straightforward to show that wi ≤ 0, for i = 0, · · · , n. Note that for i = n, we have

−wn−1 + ξn = 0, which implies that wn−1 = ξn ≤ 0. Then by induction, we can show that wi ≤ 0, for

i = 0, · · · , n− 1.
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The rest of the proof will show that βi > 0 for all i ∈ N . Then by complementary slackness, we know

that all equality (3.10) holds for each i ∈ N , implying that exact relaxation holds.

Suppose there exists such i ∈ N that βi = 0. Let k := min{i ∈ N : βi > 0}. Suppose k = 0. By

(3.17,3.18,3.19), we have:

λ0 − 2w0r0 = 0 (3.21)

θ0 − 2w0x0 = 0 (3.22)

r0 − λ0r0 − θ0x0 + w0(r2
0 + x2

0) = 0. (3.23)

Substituting (3.21,3.22) into (3.23), we have:

r0 − w0(r2
0 + x2

0) = 0.

The LHS is strictly positive since r0 > 0 and w0 ≤ 0. Therefore by contradiction, k > 0.

Suppose k > 0. Write λl and θl for each l ≤ k in terms of w and β. Summing up (3.17) from i = 0 to

i = l, we have:

λl = 2
(∑l

i=0 wiri −
∑l
i=0 βiPi

)
, l = 0, · · · , k. (3.24)

Similarly, summing up (3.18) from i = 0 to i = l:

θl = 2(
∑l
i=0 wixi −

∑l
i=0 βiQi), l = 0, · · · , k. (3.25)

Substituting (3.24,3.25) into (3.19) for l ≤ k:

βlvl = rl + wl(r
2
l + x2

l )− 2rl

(
l∑
i=0

wiri −
l∑
i=0

βiPi

)
− 2xl

(
l∑
i=0

wixi −
l∑
i=0

βiQi

)
. (3.26)
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Summing up (3.26) from l = 0 to l = k − 1 gives:

k−1∑
l=0

βlvl =Rk +

k−1∑
l=0

wl(r
2
l + x2l )− 2

k−1∑
l=0

l∑
i=0

(wirirl − βiPirl + wixixl − βiQixl)

=Rk +

k−1∑
l=0

wl(r
2
l + x2l )− 2

k−1∑
i=0

k−1∑
l=i

(wirirl − βiPirl + wixixl − βiQixl)

=Rk − 2

k−1∑
i=0

(wiriRi,k − βiPiRi,k)− 2

k−1∑
i=0

(wixiXi,k − βiQiXi,k) +
k−1∑
l=0

wl
(
r2l + x2l

)
. (3.27)

where Ri,k :=
∑k−1
l=i rl and Xi,k :=

∑k−1
l=i xl.

Also, by (3.26) with l = k, we have:

0 = rk − 2rk

k−1∑
i=0

wiri − 2xk

k−1∑
i=0

wixi − wk(r2k + x2k) + 2rk(

k−1∑
i=0

βiPi) + 2xk(

k−1∑
i=0

βiQi)) (3.28)

If rk
xk
− Rk

Xk
≥ 0, applying the following operation on (3.27) and (3.28), (3.28)

xk
− (3.27)

Xk
, and using the fact

that wi ≤ 0 for all i ∈ N ,

rk
xk
− Rk
Xk
− 2

k−1∑
i=0

wiri

(
rk
xk
− Ri,k

Xk

)
− 2

k−1∑
i=0

wixi

(
1− Xi,k

Xk

)
(3.29)

≤ −
k−1∑
i=0

βi
Xk

(
vi + 2Pi

(
rk
xk
Xk −Ri,k

)
+ 2QiXi

)
.

Note that under the condition specified in Section 3.3, the RHS of inequality (3.29) is negative; but the LHS

is non-negative. Therefore we have a contradiction.

Otherwise, if rkxk −
Rk
Xk
≤ 0, applying the following operation on (3.27) and (3.28), (3.28)

rk
− (3.27)

Rk
, and fol-

lowing similar arguments, we will get a contradiction as well. We can therefore claim the sufficient condition

in the Lemma.

In the rest of the proof we will bound the voltage on each node i ∈ N\{0}. Equation (3.13) implies that

for each k ∈ N ,

vk+1 = vk − 2(rkPk + xkQk) + (r2
k + x2

k)`k

≤ vk − 2(rkPk + xkQk) + 2(r2
k + x2

k)`k

= vk − 2(rk(Pk − rk`k) + xk(Qk − xk`k) .
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Summing up this inequality from k = 0 to k = i− 1, we have

vi ≤ v0 − 2

i−1∑
k=0

(rk(Pk − rk`k) + xk(Qk − xk`k).

2

The condition in Lemma 3.1 is not checkable before solving RLOPF as it involves a solution (P,Q, `, v, p, q)

of RLOPF. We now provide a checkable condition by bounding vi, Pi, Qi in terms of system parameters

p
i
, p̄i, qi, q̄i, vi. Define

Pnomi ,
n∑

j=i+1

(pc
j
− p̄gj ); Q

nom

i
,

n∑
j=i+1

(qc
j
− q̄gj ).

Using (3.11–3.12) we can iteratively derive that for any i ∈ N ,

Pi ≥ Pi − ri`i ≥ Pnomi ,

and

Qi ≥ Qi − ri`i ≥ Qnomi
.

Combining the above two inequalities with Lemma 3.1 gives the following result.

Theorem 3.2. Any optimal solution of RLOPF is also optimal for LOPF, provided that for each k ∈ N\{0}

the following condition holds: if rkxk −
Rk
Xk
≥ 0,

vi + 2Pnomi

(
rk
xk
Xk −Ri,k

)
+ 2Qnom

i
Xi > 0;∀i < k; (3.30)

otherwise,

vi + 2Pnomi Ri + 2Qnom
i

(
xk
rk
Rk −Xi,k

)
> 0,∀i < k . (3.31)
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Moreover, for each node i ∈ N\{0}, the voltage is upper-bounded by:

vi ≤ v0 − 2

i−1∑
k=0

(
rkP

nom
k + xkQ

nom

k

)
.

Since vi > 0 for each i ∈ N , we have the following special case. If Pnomi > 0 and Qnom
i

> 0 for

all i ∈ N\{0}, then the right-hand sides of (3.30,3.31) are always non-positive, which implies that (??) the

sufficient condition in Theorem 3.2 is always satisfied. Hence the relaxation is exact provided that both the

real and reactive powers do not flow backward. This condition in the special case is more stringent than

(3.30,3.31) and usually does not hold in practice. The sufficient condition (3.30,3.31) depends only on how

vi compare with the products of resistances (reactances) and real (reactive) powers. In practice, |V | ∼ 1 p.u.,

r, x << 1 p.u., rx ∼ [0.1, 10], and p, q < 1 p.u.. As we show in Section 3.4, condition (3.30,3.31) usually

holds when the system parameters are in these ranges.

3.3.2.2 General radial networks

We now extend Lemma 3.1 and Theorem 3.2 to general radial distribution circuits. Given a radial network:

• For each node i, k, denote the unique path from i to node k by

Pi,k , {(j1, j2) : (j1, j2) ∈ E is on the path from node i to node k}.

• Define the cumulative resistance and reactance from root i to node k as Ri,k ,
∑

(j1,j2)∈Pi,k rj1,j2

and Xi,k ,
∑

(j1,j2)∈Pi,k xj1,j2 .

It is straightforward to extend Lemma 3.1 to the case of general radial networks.

Lemma 3.3. Any optimal solution (P,Q, `, v, p, q) of ROPF is also optimal for OPF, provided that for each

(k, l) ∈ E the following condition holds: if rk,lxk,l
− R0,k

X0,k
≥ 0, then

vi + 2Pi,j

(
rk,l
xk,l

X0,k −Ri,k
)

+ 2Qi,jX0,i > 0;∀(i, j) ∈ Pk; (3.32)
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otherwise,

vi + 2Pi,jR0,i + 2Qi,j

(
xk,l
rk,l

R0,k −Xi,k

)
> 0,∀(i, j) ∈ Pk. (3.33)

Moreover, for each node i ∈ N\{0}, the voltage is upper-bounded by:

vi ≤ v0 − 2
∑

(j,k)∈Pi
(rj,k(Pj,k − rj,k`j,k) + xj,k(Qj,k − xi,j`j,k)) .

Proof. The proof for Lemma 3.1 can be easily extended to a radial network. We can first prove wi,j ≤ 0 for

each (i, j) ∈ E by induction (from leaves to the feeder.). To prove βi,j > 0, just focus on each lateral and

use the same arguments as those for a line distribution network to prove that βi,j > 0 on each lateral. 2

Similarly, this lemma involves a solution vi, Pi,j , Qi,j of ROPF. For a sufficient condition that does not

require solving ROPF first, define

Pnomj ,
n∑

i∈D(j)

(pc
i
− p̄gi ); Qnom

j
,

n∑
i∈D(j)

(qc
i
− q̄gi ),

for each j = 1, · · · , n. Here D(j) is the set of all the descendants of j including j itself.3 Note that for any

(i, j) ∈ E,

Pi,j ≥ Pi,j − ri,j`i,j ≥ Pnomj , Qi,j ≥ Qi,j − xi,j`i,j ≥ Qnomj
.

Lemma 3.3 then implies the following extension of Theorem 3.2.

Theorem 3.4. Any optimal solution of ROPF is also optimal for OPF, provided that for each (k, l) ∈ E the

3A rigorous definition of D(j) is: D(j) , {l ∈ N : there exist a sequence of nodes, j0, j1, · · · , jm, such that j0 = j, jm =
l, and (ji, ji+1) ∈ E, ∀i = 0, . . . ,m− 1, where m ≥ 0}.
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Figure 3.2. Schematic diagram of a 47-bus SCE distribution systems.

following condition holds: if rk,lxk,l
− R0,k

X0,k
≥ 0, then

vi + 2Pnomj

(
rk,l
xk,l

X0,k −Ri,k
)

+ 2Qnom
j

X0,i > 0;∀(i, j) ∈ Pk; (3.34)

otherwise,

vi + 2Pnomj R0,i + 2Qnom
j

(
xk,l
rk,l

R0,k −Xi,k

)
> 0,∀(i, j) ∈ Pk. (3.35)

Moreover, for each node i ∈ N\{0}, the voltage is upper-bounded by:

vi ≤ v0 − 2
∑

(j,k)∈Pi

(
rj,kP

nom
k + xj,kQ

nom

k

)
.

Since |V | ∼ 1 p.u., r, x << 1 p.u., and p, q < 1 p.u. in practice, the condition in Theorem 3.4 holds for

both a 47-bus distribution circuit and a 56-bus distribution circuit of Southern California Edison (SCE), as

show in Section 3.4.
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Table 3.2. Line impedances, peak spot load KVA, Capacitors and PV generation’s nameplate ratings for the
distribution circuit in Figure 3.2.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. Capacity
1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Capacity
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Vbase = 12.35kV 1 6000 KVAR
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 3 1200 KVAR
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 37 1800 KVAR
8 40 0.046 0.015 20 25 0.214 0.046 32 0.13 47 1800 KVAR
8 39 0.244 0.046 21 24 0 0 33 0.27

Figure 3.3. Schematic diagram of a 56-bus SCE distribution systems.

Table 3.3. Line impedances, peak spot load kVA, capacitors and PV generation’s nameplate ratings for the
distribution circuit in Figure 3.3.

Network Data
Line Data Line Data Line Data Load Data Load Data Load Data

From To R X From To R X From To R X Bus Peak Bus Peak Bus Peak
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVA No. MVA
1 2 0.160 0.388 20 21 0.251 0.096 39 40 2.349 0.964 3 0.057 29 0.044 52 0.315
2 3 0.824 0.315 21 22 1.818 0.695 34 41 0.115 0.278 5 0.121 31 0.053 54 0.061
2 4 0.144 0.349 20 23 0.225 0.542 41 42 0.159 0.384 6 0.049 32 0.223 55 0.055
4 5 1.026 0.421 23 24 0.127 0.028 42 43 0.934 0.383 7 0.053 33 0.123 56 0.130
4 6 0.741 0.466 23 25 0.284 0.687 42 44 0.506 0.163 8 0.047 34 0.067 Shunt Cap
4 7 0.528 0.468 25 26 0.171 0.414 42 45 0.095 0.195 9 0.068 35 0.094 Bus Mvar
7 8 0.358 0.314 26 27 0.414 0.386 42 46 1.915 0.769 10 0.048 36 0.097 19 0.6
8 9 2.032 0.798 27 28 0.210 0.196 41 47 0.157 0.379 11 0.067 37 0.281 21 0.6
8 10 0.502 0.441 28 29 0.395 0.369 47 48 1.641 0.670 12 0.094 38 0.117 30 0.6
10 11 0.372 0.327 29 30 0.248 0.232 47 49 0.081 0.196 14 0.057 39 0.131 53 0.6
11 12 1.431 0.999 30 31 0.279 0.260 49 50 1.727 0.709 16 0.053 40 0.030 Photovoltaic
11 13 0.429 0.377 26 32 0.205 0.495 49 51 0.112 0.270 17 0.057 41 0.046 Bus Capacity
13 14 0.671 0.257 32 33 0.263 0.073 51 52 0.674 0.275 18 0.112 42 0.054
13 15 0.457 0.401 32 34 0.071 0.171 51 53 0.070 0.170 19 0.087 43 0.083 45 5MW
15 16 1.008 0.385 34 35 0.625 0.273 53 54 2.041 0.780 22 0.063 44 0.057
15 17 0.153 0.134 34 36 0.510 0.209 53 55 0.813 0.334 24 0.135 46 0.134 Vbase = 12kV
17 18 0.971 0.722 36 37 2.018 0.829 53 56 0.141 0.340 25 0.100 47 0.045
18 19 1.885 0.721 34 38 1.062 0.406 27 0.048 48 0.196
4 20 0.138 0.334 38 39 0.610 0.238 28 0.038 50 0.045
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3.4 Case study

In this section we evaluate these conditions for exact relaxation for two distribution circuits of SCE with

high penetration of photovoltaic (PV) generation [49, 55]. Figures 3.2 and 3.3 show a 47-bus and a 56-

bus distribution circuit respectively and Table 3.2 and 3.3 list the corresponding network data including line

impedances, peak MVA demand of loads, and the nameplate capacity of the shunt capacitors and the photo-

voltaic generations. Note that in the 47-bus circuit, bus 1 indicates the substation, and there are 5 photovoltaic

(PV) generators located on buses 13, 17, 19, 23 and 24. In the 56-bus circuit, there is 1 photovoltaic (PV)

generator located on bus 45.

3.4.1 Verifying sufficient conditions

We verify that the condition in Theorem 3.4 holds in both circuits. To calculate Pnom and Qnom, we only

need values for lower bounds of (pci , q
c
i ) and upper bounds of (pgi , q

g
i ):

• For load buses, we set pc
i

to be 0 and set qc
i

to be the negative of peak MVA value.

• For PV generators, we set p̄gi to be the generators’ capacities.

• For shunt capacitors, we treat them as reactive power generators and set q̄gi to be their shunt capacities.

After checking conditions in Theorem 3.4, we know that as long as the voltage magnitudes are maintained

above 85% of the nominal value (which they are in practice) for each bus i, the conditions holds and ROPF

is an exact relaxation of OPF.

Remark 3.1. All the above analysis is worst-case. In reality, pc
i

and qc
i

tend to be larger than the values we

used above, and pg
i

and qg
i

smaller. This implies larger (Pnom, Qnom) and larger values for the left-hand

side of inequality (3.34) and of inequality (3.35) than the values we have calculated above. Thus the sufficient

condition in Corollary 3.4 is easier to meet in practice.

Remark 3.2. The condition in Theorem 3.4 can be used as a rule of thumb for designing distribution circuits

that will ensure that ROPF is an exact relaxation of OPF. Specifically, if the distribution lines have smaller

resistance and reactance, then condition in Theorem 3.4 is easier to satisfy.
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3.4.2 Simulation

We have also solved Problem ROPF using the CVX toolbox [56]. In the simulation:

• for each load bus, we set p̄ci and q̄ci as the peak MVA value, and pc
i
, qc
i

as half of the peak MVA value.

We use utility functions of the form −ai(pi− p̄ci )2 + bi where ai, bi are drawn randomly from [2.5, 5];

• for each PV generator, we set (p̄gi , q̄
g
i ) as the generator’s capacity value, and pg

i
, qg
i

as 0. We use cost

functions of the form aip
2
i where ai are drawn randomly from [2.5, 5];

• for each shunt capacitor, we treat them as reactive power generators and set p̄ci = pc
i

= qc
i

= 0 and q̄gi

as their shunt capacities;

• we use a cost C0(P0) := C0(
∑
j:(0,j)∈E P0,j) on the total power fed into this distribution system of

the form a0P
2
0 + b0P0 with a0 = 0.1, b0 = 0.1.

After solving ROPF using the CVX toolbox for both the 47-bus system and the 56-bus system, we verify that

the solutions of ROPF satisfy the equality constraint (3.4) and are therefore optimal for OPF. This implies

that ROPF indeed is an exact relaxation of OPF for both distribution circuits. Moreover, in each case, the

maximum voltage magnitude of the optimal solution is 12.35KV which is the voltage magnitude of feeder

and much less than the upper bound we provided in Section 3.4.1.

3.5 Conclusion

We have studied the second-order cone relaxation of the optimal power flow problem in radial networks using

the branch flow model. We provide sufficient conditions under which the relaxation is exact when there are no

upper bounds on the voltage magnitudes. These conditions are verified to hold in two real-world distribution

circuits.
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Chapter 4

Distributed Load Management Over the
Power Network

[] In this chapter, we study distributed load management over a radial distribution network, by for-

mulating it as an optimal power flow (OPF) problem that maximizes the aggregate user utilities and

minimizes the supply cost and the power line losses, subject to the power flow constraints and operating

constraints. In the previous chapter, we showed that the OPF problem is non-convex and we proposed a

convex relaxation that is usually exact for the real-world distribution circuits. Following those results,

we propose two different distributed mechanisms to achieve the optimum. In the first one, there is a

load-serving entity to set the price signals in order to coordinate the users’ demand response and in

the second one the users coordinate their decisions through local communications with neighbors. Nu-

merical examples with the real-world distribution circuits are provided to complement our theoretical

analysis.

4.1 Introduction

Most of the work on load management considers only the balance between aggregate load and supply, and

abstract away the underlying power network and the associated power flow constraints and operating con-

straints. As a result, the schemes proposed may end up with an electricity consumption/shedding decision

that would violate those network and operating constraints. There is some recent work on load management

that takes into consideration the physical network constraints and proposes location-based marginal pricing

schemes for load management; see, e.g., [57–60]. But they usually use either the DC approximation model
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or the bus injection model for the electricity network, which are more suitable for the transmission system.

In this chapter, we study optimal load management in the presence of the network and operating con-

straints for the radial distribution networks, using the branch flow model introduced in the previous chapter.

Specifically, we formulate the load management problem as an AC optimal power flow (OPF) problem whose

objective is to maximize the aggregate users’ utility and minimize the supply cost and the power line losses,

subject to the power flow constraints and operating constraints such as the voltage regulation constraint and

power injection constraints. The resulting OPF is in the same form of OPF in the previous chapter. Though

it is non-convex, we have proposed a convex relaxation of the optimization problem, and discussed whether

the relaxation can be exact and under what conditions. Convexity not only facilitates the design of effective

pricing schemes for the power market involved in demand response, but also enables the development of

tractable, scalable, and distributed algorithms for system operations.

We then consider two different distributed demand response mechanisms. In the first one, the radial

distribution network is served by a single load serving entity (LSE), which coordinates the end users’ demand

response decisions by setting the right prices. Using the Lagrangian duality decomposition method, we

show that there exists an optimal price scheme, under which, if each user maximizes its net utility, the

global welfare, i.e., the aggregate utilities minus the power losses, turns out to be maximized. We next

develop a distributed algorithm to iteratively calculate the optimal price, where i) the LSE does not need to

know users’ information such as the utility functions or consumption constraints, and ii) each user makes a

demand response decision based only on the price and its own utility function and consumption constrains.

This algorithm requires two-way communication between the LSE and each user, and at each iteration, the

LSE is required to solve a large OPF problem. In the second mechanism, we develop a fully distributed

OPF algorithm for demand response, where the end users make and coordinate their local demand response

decisions through local communication with their neighbors. This demand response scheme requires two-

way communication only between the end users that are directly connected in the distribution network, and

each user only needs to solve a small optimization problem. Both of the two demand response algorithms are

based on a well-known distributed algorithm, Predictor Corrector Proximal Multiplier (PCPM) [61]. Provided

that the convex relaxation of the OPF problem for demand response is exact, the algorithm is guaranteed to
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converge to the global optimum of the OPF problem. Lastly, case studies on Southern California Edison

distribution circuits show that the proposed algorithms converge to the global optimal solution.

The rest of the chapter is organized as follows. We first formulate the optimal demand response problem,

introduce the PCPM algorithm, and discuss convex relaxation of the optimization problem in Section 4.2.

We then study the first demand response scheme in Section 4.3 and the second demand response scheme in

Section 4.4. In Section 4.6, we provide numerical examples to complement the theoretical analysis, using a

real-word distribution circuit.

4.2 Problem formulation & preliminary

4.2.1 Problem formulation

Consider a radial distribution circuit that consists of a set N of buses and a set E of distribution lines con-

necting these buses. We index the buses in N by i = 0, 1, . . . , n, and denote a line in E by the pair (i, j)

of buses it connects and the index i denotes the bus that is closer to the feeder. Bus 0 denotes the feeder,

which has fixed voltage but flexible power injection to balance the loads; each of the other buses i ∈ N\{0}

represents an aggregator that can participate in demand response. For convenience we call aggregator i as

user i, which actually represents a customer or a group of customers that are connected to bus i and join the

demand response system as a single entity.

For each link (i, j) ∈ E, let zij = rij + ixij be the impedance on line (i, j), and Si,j = Pi,j + iQi,j

and Ii,j the complex power and current flowing from bus i to bus j. At each bus i ∈ N , let si = pi + iqi be

the complex load and Vi the complex voltage. As customary, we assume that the complex voltage V0 on the

feeder is given and fixed. Here we replicate the branch flow model which is provided in the previous chapter:
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for each (i, j) ∈ E,

P 2
i,j +Q2

i,j

vi
= `i,j , (4.1)

Pi,j =
∑

h:(j,h)∈E
Pj,h + ri,j`i,j + pj , (4.2)

Qi,j =
∑

h:(j,h)∈E
Qj,h + xi,j`i,j + qj , (4.3)

vi − vj = 2(ri,jPi,j + xi,jQi,j)− (r2
i,j + x2

i,j)`i,j , (4.4)

where `i,j := |Ii,j |2, vi := |Vi|2. Each user i ∈ N\{0} achieves certain utility fi(pi) when its (real)

power consumption is pi. The utility function fi(·) is usually assumed to be continuous, nondecreasing, and

concave. Furthermore, there are the following operating constraints for each i ∈ N\{0}:

vi ≤ vi ≤ v̄i, i = 1, · · · , n, (4.5)

q
i
≤ qi ≤ q̄i, i = 1, · · · , n, (4.6)

p
i
≤ pi ≤ p̄i, i = 1, · · · , n. (4.7)

The electricity is delivered from the main grid to the radial distribution network through the feeder (i.e.,

the bus 0). The total (real) power supply P0 is given by P0 :=
∑
j:(0,j)∈E P0,j .

We consider a situation where the power supply P0 is constrained by an upper bound P̄0, i.e.,

P0 =
∑

j:(0,j)∈E
P0,j ≤ P̄0. (4.8)

Under such a situation, we would like to design distributed mechanisms to guide each user i to choose a

proper load pi, so as to i) meet the supply constraint (4.8) as well as the power flow constraints and operating

constraints listed in (4.1–4.7) and ii) maximize the aggregate user utilities and minimize the power supply

costs and power line losses. This demand response problem is formulated as the following optimal power
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flow problem (OPF):

OPF: max
P,Q,l,v,p,q

n∑
i=1

fi(pi)− C0(P0)− ρ
∑

(i,j)∈E
ri,j`i,j

s.t. (4.1)− (4.8),

where ρ is a trade off parameter.1 Throughout the chapter, we assume that the feasible set of this problem is

nonempty. In the following, we will develop two distributed OPF algorithms for demand response.

4.2.2 A decentralized optimization algorithm: predictor corrector proximal multi-

plier (PCPM)

In this chapter we focus on using the decentralized algorithm, predictor corrector proximal multiplier (PCPM)

[61] to develop distributed algorithms for demand response. Consider the following convex problem:

max
x∈X,y∈Y

f(x) + g(y) (4.9a)

s.t. Ax+By = C . (4.9b)

Introduce the Lagrangian variable z for constraint (4.9b).

The algorithm PCPM is given as follows:

1. Initially set k ← 0 and randomly choose initial (x0, y0, z0).

2. For each k ≥ 0, update a virtual variable ẑk := zk + γ(Axk − Byk − C). Here γ > 0 is a constant

parameter.

3. Based on the virtual variable ẑk, update x, y according to:

xk+1 = argmin
x∈X
{f(x) + (ẑk)TAx+ (1/(2γ))||x− xk||2},

yk+1 = argmin
y∈Y
{g(y) + (ẑk)TBy + (1/(2γ))||y − yk||2}.

1Here we just consider demand managements at one instance for the simplicity of exposition. The model and the following results
in this chapter can be easily extended to demand management over multiple instances. We provide a detailed example in Section 4.5.
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4. z is updated according to zk+1 = zk + γ(Axk+1 +Byk+1 − C).

5. k ← k + 1, and go to step 2).

From the algorithm, we see that PCPM is highly decomposable. In terms of convergence, it has been shown

in [61] that as long as strong duality holds for the convex problem (4.9), the algorithm will converge to a

primal-dual optimal solution (x∗, y∗, z∗) for sufficient small positive γ.

4.2.3 Convexification of problem OPF

OPF is non-convex due to the quadratic equality constraints in (4.1) and thus difficult to solve. Moreover,

most decentralized algorithms require convexity to ensure convergence, e.g., PCPM as described in 4.2.2. We

therefore consider the following convex relaxation of OPF:

ROPF: max
P,Q,l,v,p,q

n∑
i=1

fi(pi)− C0(P0)− ρ
∑

(i,j)∈E
ri,j li,j

s.t. (4.2)− (4.7)

P 2
i,j +Q2

i,j

vi
≤ li,j , (i, j) ∈ E, (4.10)

where the equality constraints (4.1) are relaxed to the inequality constraints (4.10). ROPF provides a lower

bound on OPF. For an optimal solution X∗ := (P ∗, Q∗, `∗, v∗, p∗, q∗) of ROPF, if the equality in (4.10) is

attained at X∗, then X∗ is also a solution to OPF. We call ROPF an exact relaxation of OPF if every solution

to ROPF is also a solution to OPF, and vice versa. In the previous chapter we have studied whether and when

ROPF is an exact relaxation of OPF for the radial networks. It is shown that the relaxation is exact provided

that instead there are no upper bounds on the voltage magnitudes and certain other conditions hold, which

are verified to hold for many real-world distribution systems. Moreover, the upper bounds on the voltage

magnitudes for the relaxation solution are characterized.

The benefit of convexity is that convexity does not only facilitates the design of efficient pricing schemes

for power market and demand response, but it also facilitates the development of tractable, scalable and

distributed algorithms for system operations. Hence the conditions for exact relaxation of OPF to ROPF
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specified in the previous chapter are important for our demand response design. In the rest of the chapter, we

will assume that ROPF is an exact relaxation of OPF and strong duality holds for ROPF. As ROPF is an exact

relaxation of OPF, in the rest of the chapter we will just focus on solving the convex optimization problem

ROPF.

4.3 Demand management through the LSE

In this section, we consider the setting where the radial distribution network is served by a single load serving

entity (LSE), which coordinates the end users’ demand response decisions to solve Problem ROPF (OPF)

by setting the right prices. Here we consider that the utility functions and constraints (4.6-4.7) are private

information of the users, while the LSE has the network information, i.e., power loss
∑

(i,j)∈E ri,j`i,j and

the constraints (4.2-4.5,4.8,4.10). Each user i chooses power consumption according to certain price signal

µi sent by LSE, and the LSE adapts the price signal µ := (µ1, . . . , µn) to coordinate users’ consumptions.

The price signal µi can be implemented as the actual price of electricity usage or just a control signal that is

used to coordinate users’ decisions. Each user i ∈ N\{0} is assumed to choose pi to maximize its net utility,

i.e., user utility minus payment:

DR-User: max
pi

fi(pi)− µipi

s.t. p
i
≤ pi ≤ p̄i.

Since the reactive power qi is not directly involved in the net utility of user i, we assume that user i is willing

to report the feasible range [q
i
, q̄i] for qi to the LSE.2 Hence, the LSE has the following information, the

power loss
∑

(i,j)∈E ri,j`i,j and the constraints (4.2-4.6, 4.8, 4.10). Given price µ, the LSE maximizes its

2Note that in practice, VAR control is usually carried out by the LSE. So, it is reasonable to assume that the LSE knows the feasible
range of reactive power.
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net benefit, i.e., the total payment received minus the power loss:

DR-LSE: max
P,Q,l,v,p,q

n∑
i=1

µipi − ρ
∑

(i,j)∈E
ri,j`i,j

s.t. (4.2)− (4.6), (4.8), (4.10).

In the rest of the section, we show how the LSE chooses the price signal µ to coordinate the users’ demand

response decisions so as to solve Problem ROPF.

Definition 4.1. The price µ∗ = (µ∗1, . . . , µ
∗
n) and the variable (P ∗, Q∗, `∗, v∗, p∗, q∗) are in equilibrium if i)

p∗i is an optimal solution of DR-User for each user i given the price µ∗i , and ii) (P ∗, Q∗, `∗, v∗, p∗, q∗) is an

optimal solution of DR-LSE for the LSE given the price µ∗.

The above definition implies that if such an equilibrium (µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗) exists, µ∗ can serve

as the price signal for the LSE to guide users’ decisions. The following result establishes the existence of

the equilibrium (µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗) and characterizes its properties. Let λi,j , ξi, ξ̄i denote the corre-

sponding Lagrangian dual variables of ROPF for the constraint (4.2), and the constraint (4.7) respectively.

Theorem 4.1. There exists at least one equilibrium (µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗). Moreover, a tuple

(µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗) is an equilibrium if and only if (P ∗, Q∗, `∗, v∗, p∗, q∗) is an optimal solution of

ROPF and for each i > 0, µ∗i = f ′i(p
∗
i )− ξ∗i = λ∗π(i),i, where π(i) is the parent of bus i.

Proof. First note that problems ROPF, DR-User, and DR-LSE are convex problems and a strong duality

holds for all of them. The main idea of the proof is to compare the KKT optimality conditions for these

convex problems.

Let α = (λi,j , θi,j , ωi,j , γi, γ̄i, ηi, η̄i, ξi, ξi, κ0, µi,j) be the Lagrangian dual variables of ROPF corre-

sponding to the constraints (4.2–4.10) respectively. Given an optimal primal-dual pair

(P ∗, Q∗, `∗, v∗, p∗, q∗;α∗) of ROPF, (P ∗, Q∗, `∗, v∗, p∗, q∗;α∗) satisfies the KKT condition of ROPF. This

implies that f ′i(p
∗
i )− ξ

∗
i

+ ξ̄∗i = λπ(i),i. Let µ∗i = f ′i(p
∗
i )− ξ

∗
i

+ ξ̄∗i = λ∗π(i),i for all i = 1, · · · , n. Then the

KKT condition for ROPF implies that (p∗i , ξ
∗
i
, ξ̄∗i ) satisfies the KKT condition for problem DR-User for each

i = 1, · · · , n; and (P ∗, Q∗, `∗, v∗, p∗, q∗, β∗) satisfies the KKT condition for DR-LSE where
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β∗ = (λ∗i,j , θ
∗
i,j , ω

∗
i,j , κ

∗
0, γ
∗
i
, γ̄∗i, η

∗
i
, η̄∗i, µ

∗
i,j). Therefore, i) p∗i is an optimal solution of DR-User for each

user i given the price µ∗i , and ii) (P ∗, Q∗, `∗, v∗, p∗, q∗) is an optimal solution of DR-LSE for the LSE given

the price µ∗.

On the other hand, suppose (µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗) is an equilibrium. The KKT conditions of DR-

LSE and DR-User imply that there exists a dual variable α∗ such that (P ∗, Q∗, `∗, v∗, p∗, q∗;α∗) satisfies the

KKT condition of ROPF. Thus (P ∗, Q∗, `∗, v∗, p∗, q∗) is an optimal solution of problem ROPF.

4.3.1 Distributed algorithm

Following the algorithm predictor corrector proximal multiplier (PCPM) [61], we propose a distributed learn-

ing algorithm to achieve an equilibrium (µ∗;P ∗, Q∗, `∗, v∗, p∗, q∗):

1. Initially set k ← 0. The LSE randomly chooses initial price µki and initial pki for each bus i. Each user

i randomly chooses initial p̂ki and returns p̂ki to the LSE.

2. For each k ≥ 0, the LSE sends a virtual price signal µ̂ki := µki + γ(p̂k − pk) to each bus i. Here γ > 0

is a constant parameter.

3. Based on the virtual price µ̂ki , each bus i ∈ N\{0} solves the following problem:

max
p̂i

fi(p̂i)− µ̂ki p̂i −
1

2γ
||p̂i − p̂ki ||2

s.t. p
i
≤ p̂i ≤ p̄i.

The optimal p̂i is set as p̂k+1
i .

4. The LSE solves the following problem:

max
P,Q,l,v,p,q

(µ̂k)T p− ρ
∑

(i,j)∈E
ri,j`i,j −

1

2γ
||p− pk||22

s.t.(4.2)− (4.6), (4.8), (4.10).

The optimal p is set as pk+1
i .
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5. Each bus i returns p̂k+1
i to the LSE and the LSE updates the price µ as µk+1 = µk + γ(p̂k+1 − pk+1).

6. k ← k + 1, and go to step 2).

For sufficiently small γ, (µk;P k, Qk, `k, vk, pk, qk) will converge to an equilibrium, and p̂k−pk and µ̂k−µk

will become zero [61]. Numerical experiments show that this algorithm converges to the optimum of problem

ROPF(OPF) very fast.

4.4 A fully decentralized algorithm

In this section, we develop a fully distributed OPF algorithm for demand response, where the end users make

and coordinate their local demand response decisions through local communication with their neighbors.

Specifically, we assume that each user has certain computation ability to decide a set of local variables of the

OPF. The composition of those variables determines the global status of the power flow over the distribution

network. We also assume that there is two way communication available between any two users that are

directly connected in the distribution network. In the decentralized OPF algorithm, at each iteration each user

makes decisions about the local variables, communicates those decisions with neighbors, and then updates

their local variables and repeats the process.

Before establishing the algorithm, let us define the local decision variables for each user. Let π(i) be the

parent of bus i and δ(i) be the direct children of bus i. The local decision variables for each bus are:

• For bus 0, P0, v0, where v0 is fixed by convention.

• For bus i > 0, Pπ(i),i, Qπ(i),i, `π(i),i, pi,qi,vi,v̂i. Here v̂i is bus i’s estimation about its parent’s voltage

vπ(i). To simplify the notations, we denote Pπ(i),i, Qπ(i),i, `π(i),i as Pi, Qi, `i; and rπ(i),i, xπ(i),i as

ri, xi.
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With the new notations, OPF can be rewritten as:

min
P,Q,l,v,p,q

n∑
i=1

fi(pi)− C0(P0)−
n∑
i=1

rili (4.11a)

s.t. P0 =
∑

j:(0,j)∈E
Pj , (4.11b)

Pi =
∑
j∈δ(i)

Pj + rili + pi, i ∈ N\ {0} (4.11c)

Qi =
∑
j∈δ(i)

Qj + xili + qi, i ∈ N\ {0} (4.11d)

v̂i = vπ(i), i ∈ N\ {0} (4.11e)

P0 ≤ P̄ , (4.11f)

vi ≤ vi ≤ v̄i, i ∈ N\ {0} (4.11g)

p
i
≤ pi ≤ p̄i, i ∈ N\ {0} (4.11h)

q
i
≤ qi ≤ q̄i, i ∈ N\ {0} (4.11i)

P 2
i +Q2

i

v̂i
≤ li, i ∈ N\ {0} (4.11j)

v̂i − vi = 2(riPi + xiQi)− (r2
i + x2

i )li, i ∈ N\ {0} . (4.11k)

The new formulation has the following properties, which can be utilized for the design of distributed algo-

rithms:

• The objective function (4.11a) is fully decomposable.

• Constraints (4.11b-4.11e) are linear coupled constraints but each constraint only constrains “local”

information; namely, each constraint is defined over the local variables of one node and its direct

neighbors over the radial network.

• Constraints (4.11f-4.11k) are just local constraints that are defined over bus i’s local decision variables.

Then we can apply algorithm PCPM to define a decentralized algorithm. We will use PCPM to decouple

those linear coupled constraints (4.11b-4.11e). Let the Lagrangian dual variable corresponding to constraint

(4.11b) be λ0 and dual variables corresponding to constraints (4.11c-4.11e) be λi, θi, ωi for each i ∈ N\{0}.

In the following distributed algorithm, node 0 takes charge of updating λ0 and node i ∈ N\{0} takes charge
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of updating λi, θi, ωi. Now let us introduce the distributed demand response algorithm which converges to a

global optimal solution of the OPF.

1. Initially set k ← 0. Node 0 randomly chooses P k0 and λk0 and node i ∈ N\{0} randomly chooses

P ki , Qki , `ki , pki ,qki ,vki ,v̂ki and the dual variables λki , θ
k
i , ω

k
i . Each node i ∈ N\{0} sends the primal

variables P ki , Qki , `ki to its parent π(i), and each node i ∈ N except the leaves in the network sends vki

to its children. Note that vk0 is fixed for any k.

2. For each k ≥ 0, node 0 sends a virtual dual signal λ̂k0 := λk0 + γ(P k0 −
∑
j:(0,j)∈E P

k
j ) to its children;

and each node i ∈ N\{0} except the leaves in the network sends the following virtual signals to its

children:

λ̂ki = λki + γ

P ki −
 ∑
j∈δ(i)

P kj + ril
k
i + pki

 ,

θ̂ki = θki + γ

Qki −
 ∑
j∈δ(i)

Qkj + xil
k
i + qki

 ;

and each node i ∈ N\{0} sends the following virtual signals to its parent:

ω̂ki = ωki + γ(v̂ki − vkπ(i)).

Here γ > 0 is a constant parameter.

3. Each node updates its local primal variables according to the following rules.

Case 1:Node 0 solves the following problem:

max
P0

C0(P0) + λ̂k0P0 +
1

2γ
||P0 − P k0 ||2

s.t. P0 ≤ P̄ .

The optimal P0 is set as P k+1
0 .
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Case 2: Each node i such that (0, i) ∈ E, solves the following problem:

max fi(pi)− ri`i − λ̂k0Pi + λ̂i(Pi − ri`i − pi) + θ̂i(Qi − xi`i − qi) + ω̂iv̂i −
∑

j:(i,j)∈E
ω̂jvi

+
1

2γ

(
(Pi − P ki )2 + (Qi −Qki )2 + (`i − `ki )2 + (pi − pki )2 + (qi − qki )2

+(vi − vki )2 + (v̂i − v̂ki )2
)

over Pi, Qi, `i, pi, qi, vi, v̂i

s.t. (4.11k − 4.11j).

The optimal Pi, Qi, `i, pi, qi, vi, v̂i is set as P k+1
i , Qk+1

i , `k+1
i , pk+1

i , qk+1
i , vk+1

i , v̂k+1
i .

Case 3:Each node i such that (0, i) 6∈ E solves the following problem:

max fi(pi)− ri`i − λπ(i)Pi − θπ(i)Qi + λ̂i(Pi − ri`i − pi) + θ̂i(Qi − xi`i − qi)

+ω̂iv̂i −
∑

j:(i,j)∈E
ω̂jvi +

1

2γ

(
(Pi − P ki )2 + (Qi −Qki )2

+(`i − `ki )2 + (pi − pki )2 + (qi − qki )2 + (vi − vki )2 + (v̂i − v̂ki )2
)

over Pi, Qi, `i, pi, qi, vi, v̂i

s.t. (4.11k − 4.11j).

The optimal Pi, Qi, `i, pi, qi, vi, v̂i is set as P k+1
i , Qk+1

i , `k+1
i , pk+1

i , qk+1
i , vk+1

i , v̂k+1
i .

4. Each node i ∈ N\{0} sends the primal variables P k+1
i , Qk+1

i , `k+1
i to its parent π(i), and each node

i ∈ N except leaves in the network send vk+1
i . Note that vk0 is fixed as v∗ for any k. Then node

0 updates the dual signal λk+1
0 := λk0 + γ(P k+1

0 −
∑
j:(0,j)∈E P

k+1
j ) to its children, and each node

i ∈ N\{0} except the leaves in the network updates the following variables:

λk+1
i =λki + γ

P k+1
i −

 ∑
j∈δ(i)

P k+1
j + ril

k+1
i + pk+1

i

 ,

θk+1
i =θki + γ

Qk+1
i −

 ∑
j∈δ(i)

Qk+1
j + xil

k+1
i + qk+1

i

 ,

ωk+1
i =ωki + γ(v̂k+1

i − vk+1
π(i) ).
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5. k ← k + 1, and go to step 2).

For sufficiently small γ, the algorithm will converge to the optimal solutions. Notice that in the distributed

algorithm, each node only needs to determine a few variables by solving a small optimization problem.

4.5 Generalization to demand response over multiple time instants

In the previous sections, we have studied demand management at one instance. The method and results can

be easily extended to demand management over multiple instances. The distribution network may need to

schedule supply to meet the demand for each time period of the next day, represented as a set of time slots

T = {1, 2, · · · , T}, and its objective is to maximize the aggregate user utilities minus the power line losses

over the whole period of T . Let P = (P (1), . . . , P (T )), Q = (Q(1), . . . , Q(T )), l = (`(1), . . . , `(T )),v =

(v(1), . . . , v(T )), p = (p(1), . . . , p(T )), and q = (q(1), . . . , q(T )) be the corresponding variables of the

power network at different times. Mathematically, the load management problem over multiple instances can

be formulated as the following optimization problem:3

MOPF: max
P,Q,l,v,p,q

n∑
i=1

fi (pi)− ρ
∑

t∈T ,(i,j)∈E
ri,j`i,j(t)−

∑
t∈T

Ct

 ∑
j:(0,j)∈E

P0,j(t)


s.t. (4.1)− (4.5),∀t ∈ T

q
i
(t) ≤ qi(t) ≤ q̄i(t),∀t ∈ T , (4.12)

p
i
(t) ≤ pi(t) ≤ p̄i(t),∀t ∈ T , (4.13)∑

t∈T
pi(t) ≥ di, ∀i ∈ N\{0}. (4.14)

Here Ct (·) is a cost function of the total real power injected to the network through the feeder at time t.

It can be interpreted as the cost in power provisioning for the LSE. The cost function Ct(·) is assumed to be

nondecreasing and convex. Compared with OPF, MOPF has the following differences:

1. Instead of constraining the power supply P0 at the feeder as in (4.8), MOPF allows greater elasticity in

3Note that the requirements and constraints on demand (4.12-4.14) and the utility function fi can be modeled in a more complicated
form if we consider every appliance for each user; see Chapter 2 for the detailed user models.
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power supply subject to a cost Ct (P0(t));

2. The utility function fi(pi) in OPF for one instance is replaced by the utility function

fi(pi) = fi(pi(1), · · · , pi(T )) which characterizes user i’s utility over the whole period of T given

the demand profile (pi(1), · · · , pi(T ));

3. The constraints (4.6), (4.7) that bound power consumption for each user i become time-dependent

constraints (4.12), (4.13).

4. There is a constraint (4.14) on the total real power consumption over the whole period of T , corre-

sponding to a minimum demand that is required to power basic daily routines for user i.

The convex relaxation of MOPF is given as follows:

RMOPF: max
P,Q,l,v,p,q

n∑
i=1

fi (pi)− ρ
∑

t∈T ,(i,j)∈E
ri,j`i,j(t)−

∑
t∈T

Ct

 ∑
j:(0,j)∈E

P0,j(t)


s.t. (4.2)− (4.5), (4.10− 4.14).

Provided that the sufficient conditions for exact relaxation in the previous chapter are satisfied, RMOPF is

also an exact relaxation of MOPF. Similarly, in the rest of this chapter, we assume that RMOPF is an exact

relaxation and strong duality holds for RMOPF.

As Problem MOPF(RMOPF) and Problem OPF(ROPF) are almost in the same form except the addi-

tional local constraint (4.14), all the results in Section 4.3 and Section 4.4 can be readily extended to MOPF

(RMOPF). For the space limit, we just show an example of extending the methods in Section 4.3 to MOPF

(RMOPF). In this demand response setting, the utility functions fi and the constraints (4.12-4.14) are pri-

vate information of the users, while the LSE has the network information. Each user i chooses power con-

sumption according to certain price signal {µi(t)}t∈T sent by LSE, and the LSE adjusts the price signal

{µi(t)}t=1,··· ,T
i=1,··· ,n to coordinate the users’ consumption decisions. We have the following distributed learning

algorithm to achieve the optimum of RMOPF(MOPF):

1. Initially set k ← 0. The LSE randomly chooses initial price µki (t) and inital pki (t) for each bus i at each

time t ∈ T . Each user i randomly chooses initial p̂ki (t) for each time t ∈ T with
∑
t∈T p

k
i (t) ≥ di and
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returns p̂ki (t) to the LSE.

2. For each k ≥ 0, the LSE sends a virtual price signal µ̂ki (t) := µki (t) + γ(p̂ki (t)− pki (t)) to bus i. Here

γ ≥ 0 is a constant parameter.

3. Based on the virtual price µ̂ki (t), each bus i ∈ N\{0} solves the following problem:

max
p̂i

fi(p̂i)−
∑
t∈T

µ̂ki (t)p̂i(t)−
1

2γ

∑
t∈T
||p̂i(t)− p̂ki (t)||2

s.t. p
i
(t) ≤ p̂i(t) ≤ p̄i(t),∀t ∈ T∑

t∈T
p̂i(t) ≥ di.

The optimal p̂i(t) is set as p̂k+1
i (t).

4. For each time t ∈ T , the LSE solves the following problem:

max (µ̂k(t))T p(t)− ρ
∑

(i,j)∈E
ri,j`i,j(t)− Ct

 ∑
j:(0,j)∈E

P0,j(t)

− 1

2γ
||p(t)− pk(t)||22

over: P (t), Q(t), `(t), v(t), p(t), q(t)

s.t. (4.2− 4.5), (4.10), (4.12).

The optimal pi(t) is set as pk+1
i (t).

5. Each user i returns p̂ki (t) to the LSE and the LSE updates the price µ as µk+1 = µk+γ(p̂k(t)−pk(t)).

6. k ← k + 1, and go to step 2).

4.6 Case study

This section provides numerical examples to complement the analysis in previous sections. We apply the

algorithm developed in Section 4.4 to a practical distribution circuit of Southern California Edison (SCE)

with 56 buses, as shown in Fig. 3.3. The corresponding network data including the line impedances, the peak

MVA demand of loads, and the nameplate capacity of the shunt capacitors and the photovoltaic generations

are given in Table. 3.3. Note that there is a photovoltaic (PV) generator located at bus 45. Since the focus of
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this chapter is to study demand response in power networks, so in the simulation we remove the PV generator.

Previous chapter has shown that this 56-bus circuit satisfies the sufficient conditions for the exact relaxation

of OPF to ROPF. Therefore, we can apply the proposed algorithm for the demand response in this circuit. In

the simulation, the user utility function fi(pi) is set to the quadratic form fi(pi) = −ai(pi − p̄i)2 + ai(p̄i)
2

where ai is randomly drawn from [2, 5]. For each bus i, set p̄i and q̄i to the peak demand and p
i

to the half

of the peak demand. If there is no shunt capacitor attached to bus i, we set q
i

to the half of the peak demand

as well, and if there is a shunt capacitor attached, we set q
i

to the negative of the nameplate capacity. We set

γ = 0.01, and P̄0 = 2.5MVA.

4.6.1 Load management with an LSE

Figure 4.1. Dynamics of the distributed demand response algorithm: Bus i’s calculated p̂i.

Figures 4.1 and 4.2 show the dynamics of the distributed algorithm proposed in Section 4.3.1. We see

that the algorithm converges very fast for this distribution system. We also solve problem ROPF by using

CVX toolbox [56], which implements a centralized algorithm, and verify that it gives the same solution as

our distributed algorithm. We further verify that the optimal solution of ROPF is a feasible point of OPF, i.e.,

ROPF is an exact relaxation of OPF.
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Figure 4.2. Dynamics of the distributed demand response algorithm: LSE’s calculated pi for each bus i.

4.6.2 Fully decentralized load management

Fig. 4.3 shows the dynamics of the distributed algorithm proposed in Section 4.4. We see that the algorithm

converges to the optimal solution fast for this distribution system. Notice that since at each iteration step,

each node only needs to solve a small optimization problem and the algorithm is highly parallel, the total

running time is very fast.

Figure 4.3. Dynamics of the distributed demand response algorithm: Bus i’s decision p̂i.
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4.7 Conclusion

In this chapter, we have studied demand response in the radial distribution network with power flow con-

straints and operating constraints, by formulating it as an optimal power flow problem. We discuss the exact

convex relaxation of the OPF problem, based on which we propose two fully distributed algorithms. In the

first one, the LSE set the prices to coordinate users’ demand response decisions and in the second one, the end

users make and coordinate their local demand response decisions through local communication with their di-

rect neighbors in the distribution network. Numerical examples show that the proposed algorithm converges

fast for the real-world distribution circuits.
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Chapter 5

Economic Automatic Generation
Control

[]

The distributed algorithms derived in the previous chapters regard certain physical variables such as

branch power flow as computable controls that can be instantaneously updated to arbitrary values,

which is not usually the case for power systems. Hence these algorithms cannot be implemented as

real-time controls that are required or desired, as amplified by mitigating fluctuations in renewable

generation. In this chapter we study the real-time control mechanism–automatic generation control

(AGC). We will show how to modify AGC to keep energy balanced and also to make energy allocation

efficient at the same time.

5.1 Introduction

An interconnected electricity system can be described as a collection of subsystems, each of which is called

a control area. Within each control area the mechanical power input to the synchronous generators is auto-

matically regulated by automatic generation control (AGC). AGC uses deviations in generator speeds and/or

frequency as control signals to invoke appropriate valve actions automatically in response to load changes.

The main objectives of the conventional AGC in response to load changes is to (i) maintain system nominal

frequency, and (ii) let each area absorbs its own load changes so as to maintain the scheduled net interchanges

between control areas [62, 63]. The scheduled interchanges are determined at a much slower time scale than

the AGC by individual generating companies considering economic dispatch among different generators.
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Since the traditional loads (which are mainly passive) change slowly and are predictable with high accu-

racy, the conventional AGC does not incur much efficiency loss by requiring supply-demand balance within

each control area after the load changes. However due to the penetration of renewable energy resources as

well as demand response in the future power grid, the aggregate net loads, e.g., traditional passive loads plus

electric vehicle loads minus renewable generations, can fluctuate fast and by a large amount. Therefore the

conventional AGC can become much less economically efficient. We thus propose to relax the aforemen-

tioned second objective of the conventional AGC. We develop a novel modification of the conventional AGC

to (i) maintain nominal frequency and (ii) allow revised power dispatch between different control areas to

balance supply and demand within the whole interconnected electricity system instead of within each control

area to achieve greater economic efficiency. We call this modified AGC the economic AGC.

We take a reverse and forward engineering approach to develop the economic AGC.1 We first reverse-

engineer the conventional AGC by showing that the power system dynamics with the conventional AGC can

be interpreted as a partial primal-dual gradient algorithm to solve a certain optimization problem. We then

engineer the optimization problem to include general generation costs and general power flow balance (which

will guarantee supply-demand balance within the whole interconnected electricity system), and propose a

distributed generation control scheme that is integrated into the AGC. Combined with [64] on distributed load

control, this work lends the promise to develop a modeling framework and solution approach for systematic

design of distributed, low-complexity generation and load control to achieve system-wide efficiency and

robustness.

There has been a large amount of work on AGC in the last few decades, including, e.g., stability and

optimum parameter setting [65], optimal or adaptive controller design [66–68], decentralized control [69,70],

and multilevel or multi timescale control [71, 72]; see also [63] and the references therein for a thorough and

up-to-date review on AGC. Most of these work focuses on improving the control performance of AGC,

such as stability and transient dynamics, but not on improving the economic efficiency. References [73–75]

introduce approaches for AGC that also support an economic dispatch feature which operates at a slower

time scale and interacts with AGC frequency stabilization function. References [74, 75] bring in the notion

1A similar approach has been used to design a decentralized optimal load control in our previous work [64].
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of minimal regulation which reschedules the entire system generation and minimizes generation cost with

respect to system-wide performance. Our work aims to improve the economic efficiency of AGC in response

to the load changes as well; the difference is that instead of using different hierarchical control to improve

AGC, we incorporate economic dispatch automatically and dynamically into the AGC. Moreover, our control

is decentralized, where each control area can update its generation based only on local information and

communications with neighboring areas.

This chapter is organized as follows. In Section 5.2, we introduce a dynamic power network model with

AGC and the objective of the economic AGC. In Section 5.3, we reverse-engineer the conventional AGC and

in Section 5.4, we design an economic AGC scheme from the insight obtained by the reverse engineering. In

Section 5.5, we simulate and compare the convention AGC and the economic AGC. We conclude the chapter

in Section 5.6.

5.2 System model

5.2.1 Dynamic network model with AGC

Consider a power transmission network, denoted by a graph (N , E), with a setN = {1, · · · , n} of buses and

a set E ⊂ N × N of transmission lines connecting the buses. Here each bus may denote an aggregated bus

or a control area. We make the following assumptions:

• The lines (i, j) ∈ E are lossless and characterized by their reactance xij ;

• The voltage magnitudes |Vi| of buses i ∈ N are constants;

• Reactive power injections at the buses and reactive power flows on the lines are ignored.

We assume that (N , E) is connected and directed, with an arbitrary orientation such that if (i, j) ∈ E , then

(j, i) /∈ E . We use i : i → j and k : j → k respectively to denote the set of buses i such that (i, j) ∈ E

and the set of buses j such that (j, k) ∈ E . We study generation control when where there is a step change

in net loads from their nominal (operating) points, which may result from a change in demand or in non-

dispatchable renewable generation. To simplify notation, all the variables in this chapter represent deviations
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from their nominal (operating) values.

Frequency Dynamics: For each bus j, let ωj denote the frequency, PMj the mechanical power input, and

PLj the total load. For a link (i, j), let Pij denote the transmitted power form bus i to bus j. The frequency

dynamics at bus j is given by the swing equation:

ω̇j = − 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 , (5.1)

where Mj is the generator inertia and Dj is the damping constant at bus j.

Branch Flow Dynamics: Assume that the frequency deviation ωj is small for each bus j ∈ N . Then the

deviations Pij from the nominal branch flows follow the dynamics:

Ṗij = Bij(ωi − ωj), (5.2)

where

Bij :=
|Vi||Vj |
xij

cos(θ0
i − θ0

j )

is a constant determined by the nominal bus voltages and the line reactance. Here θ0
i is the nominal voltage

phase angle of bus i ∈ N . The detailed derivation is given in [64].

Turbine-Governor Control: For each generator, we consider a governor-turbine control model, where a

speed governor senses a speed deviation and/or a power change command and converts it into appropriate

valve action, and then a turbine converts the change in the valve position into the change in mechanical

power output. The governor-turbine control is usually modeled as a two-state dynamic system. One state

corresponds to the speed governor and the other state corresponds to the turbine. Since the time constant

of the governor is much smaller than the turbine for most systems, we simplify the governor-turbine control

model from two states to a single state PMj :

ṖMj = − 1

Tj

(
PMj − PCj +

1

Rj
ωj

)
, (5.3)
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where PCj is the power change command and Tj and Rj are constant parameters. See [62] for a detailed

introduction of governor-turbine control.

ACE-based control: In the conventional AGC, power change command PCj is adjusted automatically by the

tie-line bias control which drives the area control errors (ACEs) to zero. For a bus j, the ACE is defined as:

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij .

The adjustment of power change command is given as follows:

ṖCj = −Kj

Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 , (5.4)

where bothBj andKj are positive constant parameters. In this chapter, we also call this AGC the ACE-based

AGC.

In summary, the dynamic model with power control over a transmission network is given by equations

(5.1)-(5.4). If the system is stable given certain load changes, then by simple analysis we can show that

the conventional AGC drives the system to a new steady state where the load change in each control area is

absorbed within each area, i.e., PMj = PLj for all j ∈ N , and the frequency is returned to the nominal value,

i.e., ωj = 0 for all j ∈ N ; as shown in Proposition 5.1 in Section 5.3.

5.2.2 Optimal generation control

Due to the proliferation of renewable energy resources such as solar and wind in the future power grid, the

aggregate net loads will fluctuate much faster and by large amounts. The ACE-based AGC that requires

each control area to absorb its own load changes may be economically inefficient. Therefore, we proposed

to modify the ACE-based AGC to (i) maintain the nominal frequency and (ii) drive the mechanical power
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output PMj , j ∈ N to the optimum of the following economic dispatch problem:2

min
∑
j∈N

Cj(P
M
j ) (5.5a)

s.t. PMj = PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij , j ∈ N (5.5b)

over PMj , Pij , j ∈ N , (i, j) ∈ E ,

where each generator at j incurs certain cost Cj(PMj ) when its power generation is PMj . Equation (5.5b)

imposes power flow balanced at each bus. The cost function Cj(·) is assumed to be continuous, convex. We

call this modified AGC as the economic AGC. In the following sections, we will show how to reverse and

forward engineer the ACE-based AGC to design an economic AGC scheme.

5.3 Reverse engineering of ACE-based AGC

In this section, we reverse-engineer the dynamic model with the ACE-based AGC (5.1)-(5.4). We show

that the equilibrium points of (5.1)-(5.4) are the optima of a properly defined optimization problem and

furthermore the dynamics (5.1)-(5.4) can be interpreted as a partial primal-dual gradient algorithm to solve

this optimization problem. The reverse-engineering suggests a way to modify the ACE-based AGC to design

an economic AGC scheme.

We first characterize the equilibrium points of the power system dynamics with AGC (5.1)-(5.4). Let

ω = {ωj , j ∈ N}, PM = {PMj , j ∈ N}, PC = {PCj , j ∈ N}, and P = {Pi,j , (i, j) ∈ E}.

Proposition 5.1. (ω, PM , PC , P ) is an equilibrium point of the system (5.1)-(5.4) if and only if ωj = 0,

PCj = PMj = PLj , and
∑
i:i→j Pij =

∑
k:j→k Pjk for all j ∈ N .

Proof. At a fixed point,

Ṗij = Bij(ωi − ωj) = 0.

2Because all the variables denote the deviations in this chapter, it may be not straightforward to interpret this economic dispatch
problem, e.g., how this problem is connected with the slower timescale economic dispatch problem using the absolute value of each
variable instead of the deviated value? This problem can be seen as revising energy dispatch, because of the load changes, over the
nominal values that are determined by the slower time-scale economic dispatch problem that is usually operated by ISOs or generating
companies.
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Therefore ωi = ωj for all i, j ∈ N , given that the transmission network is connected. Moreover,

ACEj = Bjωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij = 0.

Thus
∑
j∈N ACEj =

∑
j∈N Bjωj = ωi

∑
j∈N Bj = 0, so ωi = 0 for all i ∈ N . The rest of the proof is

straightforward. We omit it due to space limit.

Consider the following optimization problem:

OGC-1

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (5.6a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij (5.6b)

PMj = PLj (5.6c)

over ωj , P
M
j , Pij , j ∈ N , (i, j) ∈ E ,

where equation (5.6c) requires that each control area absorbs its own load changes. The following result is

straightforward.

Lemma 5.2. (ω∗, PM
∗
, P ∗) is an optimum of OGC-1 if and only if ω∗j = 0, PMj

∗
= PLj , and

∑
k:j→k P

∗
jk =∑

i:i→j P
∗
ij for all j ∈ N .

Note that problem OGC-1 appears simple, as we can easily identify its optima if we know all the infor-

mation on the objective function and the constraints. However, in practice these information is unknown.

Moreover, even if we know an optimum, we cannot just set the system to the optimum. As the power network

is a physical system, we have to find a way that respects the power system dynamics to steer the system to the

optimum. Though the cost function Cj(PMj ) does not play any role in determining the optimum of OGC-1,

it will become clear later that the choice of the cost function does have important implication to the algorithm

design and the system dynamics.

We now show that the dynamic system (5.1)-(5.4) is actually a partial primal-dual gradient algorithm for
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solving OGC-1 with Cj(PMj ) =
βj
2 (PMj )2 where βj > 0:

Introducing Lagrangian multipliers λj and µj for the constraints in OGC-1, we obtain the following

Lagrangian function:

L =
∑
j∈N

βj
2

(PMj )2 +
∑
j∈N

Dj

2
|ωj |2

+
∑
j∈N

λj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij


+
∑
j∈N

µj
(
PMj − PLj

)
.

Based on the above Lagrangian function, we can write down a partial primal-dual subgradient algorithm of

OGC-1 as follows:

ωj = λj (5.7a)

Ṗij = εPij (λi − λj) (5.7b)

ṖMj = −εPj (βjPMj + λj + µj) (5.7c)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij

 (5.7d)

µ̇j = εµj
(
PMj − PLj

)
, (5.7e)

where εPij , εPj , ελj and εµj are positive stepsizes. Note that equation (5.7a) solves maxwj
Dj
2 w

2
j − λjDjwj

rather than follows the primal gradient algorithm with respect to wj ; hence the algorithm (5.7) is called a

“partial” primal-dual gradient algorithm. See the Appendix for a description of the general form of partial

primal-dual gradient algorithm and its convergence.

Let ελj = 1
Mj

for all j ∈ N . By applying linear transformation from (λj , µj) to (ωj , P
C
j ):

ωj = λj

PCj = KjMj

(
λj −

1

εµjMj
µj

)
,
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the partial primal-dual gradient algorithm (5.7) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 (5.8a)

Ṗij = εPij (ωi − ωj) (5.8b)

ṖMj =−εPjβj
(
PMj −

εµj
Kjβj

PCj +
1 + εµjMj

βj
ωj

)
(5.8c)

ṖCj =−Kj

Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij

 . (5.8d)

If we set εPij = Bij , εµj =
RjKj

1−RjKjMj
, βj =

Rj
1−RjKjMj

, and εPj = 1
βjTj

, then the partial primal-dual

algorithm (5.8) is exactly the power system dynamics with AGC (5.1)-(5.4) if Bj = Dj , j ∈ N . Note that

the assumption of Bj = Dj looks restrictive. However, Bj is a design parameter, so we can set it to Dj .

Algorithm (5.8) provides a tractable and easy way to choose parameters for the ACE-based AGC in order to

guarantee its convergence.

Theorem 5.3. If 1 > RjKjMj for all j ∈ N , with the above chosen ελj , εµj , εPij and εPj , the par-

tial primal-dual gradient algorithm (5.8) (i.e., the system dynamics (5.1)-(5.4)) converges to a fixed point

(ω∗, P ∗, PM
∗
, PC

∗
) where (ω∗, P ∗, PM

∗
) is an optimum of problem OGC-1 and PC∗ = PM

∗.

Proof. See the Appendix.

Remarks: We have made an equivalence transformation in the above: from algorithm (5.7) to algorithm

(5.8). The reason for doing these transformation is to derive an algorithm that admits physical interpretation

and can thus be implemented as the system dynamics. In particular, PLj is unknown and hence µj can not be

directly observed or estimated, while PCj can be estimated/calculated based on the observable variables ωj

and Pij . As the control should be based on observable or estimable variables, the power system implements

algorithm (5.8) instead of (5.7) for the ACE-based AGC.

The above reverse-engineering, i.e., the power system dynamics with AGC as the partial primal-dual gra-

dient algorithm solving an optimization problem, provides a modeling framework and systematic approach to

design new AGC mechanisms that achieve different (and improved) objectives by engineering the associated
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optimization problem. The new AGC mechanisms have different dynamic properties (such as responsive-

ness) and incur different implementation complexity by choosing different optimizing algorithms to solve the

optimization problem. In the next section, we will engineer problem OGC-1 to design an AGC scheme that

achieves economic efficiency.

5.4 Economic AGC by forward engineering

We have seen that the power system dynamics with the ACE-based AGC (5.1)-(5.4) is a partial primal-dual

gradient algorithm solving a cost minimization problem OGC-1 with a “restrictive” constraint PMj = PLj

that requires supply-demand balance within each control area. As mentioned before, this constraint may

render the system economically inefficient. Based on the insight obtained from the reverse-engineering of

the conventional AGC, we relax this constraint and propose an AGC scheme that (i) keeps the frequency

deviation to 0, i.e., ωj = 0 for all j ∈ N , and (ii) achieves economic efficiency, i.e., the mechanical power

generation solves the economic dispatch problem (5.5).

Consider the following optimization problem:

OGC-2

min
∑
j∈N

Cj(P
M
j ) +

∑
j∈N

Dj

2
|ωj |2 (5.9a)

s.t. PMj = PLj +Djωj +
∑
k:j→k

Pjk −
∑
i:i→j

Pij (5.9b)

PMj = PLj +
∑
k:j→k

γjk −
∑
i:i→j

γij (5.9c)

over ωj , P
M
j , Pij , γij , j ∈ N , (i, j) ∈ E ,

where γij are auxiliary variables introduced to facilitate the algorithm design. As will become clear later, the

reason to include constraint (5.9c) is in order to keep ωj = 0 for all j ∈ N and to derive an implementable

control algorithm, similar to equations (5.3)-(5.4).

Lemma 5.4. Let (ω∗, PM
∗
, P ∗, γ∗) be an optimum of OGC-2, then ω∗j = 0 for all j ∈ N and PM ∗ is the

optimal solution of the economic dispatch problem (5.5).
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Proof. First, note that at the optimum, ω∗i = ω∗j for all (i, j) ∈ N . Second, combining (5.9b) and (5.9c)

gives

Djωj +
∑
k:j→k

(Pjk − γjk)−
∑
i:i→j

(Pij − γij) = 0

for all j ∈ N . Following similar arguments as in Proposition 5.1, we have ω∗i = 0 for all i ∈ N . Therefore

the constraint (5.9c) is redundant and can be removed. So, problem OGC-2 reduces to the economic dispatch

problem (5.5).

Following the same procedure as in Section 5.3, we can derive the following partial prime-dual algorithm

solving OGC-2:

ωj = λj (5.10a)

Ṗi,j = εPij (λi − λj) (5.10b)

ṖMj = −εPj (C ′j(PMj ) + λj + µj) (5.10c)

γ̇ij = εγij (µi − µj) (5.10d)

λ̇j = ελj

PMj − PLj −Djωj −
∑
k:j→k

Pjk +
∑
i:i→j

Pij

 (5.10e)

µ̇j = εµj

PMj − PLj − ∑
k:j→k

γjk +
∑
i:i→j

γij

 , (5.10f)

Let ελj = 1
Mj

, εPij = Bij , εµj =
RjKj

1−RjKjMj
and εPj =

1−RjKjMj

TjRj
as in Section 5.3. By using linear

transformation ωj = λj and PCj = KjMj

(
λj − 1

εµjMj
µj

)
, the partial primal-dual gradient algorithm
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(5.10) becomes:

ω̇j =− 1

Mj

Djωj − PMj + PLj +
∑
k:j→k

Pj,k −
∑
i:i→j

Pi,j

 (5.11a)

Ṗij =Bij(ωi − ωj) (5.11b)

ṖMj =− 1

Tj

(
1−RjKjMj

Rj
C ′j(P

M
j )− PCj +

1

Rj
ωj

)
(5.11c)

ṖCj =−Kj

Djωj +
∑
k:j→k

(Pjk − γjk)−
∑
i:i→j

(Pij − γij)

 (5.11d)

γ̇ij = εγij

((
Miωi −

PCi
Ki

)
εµi −

(
Mjωj −

PCj
Kj

)
εµj

)
. (5.11e)

Compared with algorithm (5.8) (i.e., the power system dynamics with the conventional AGC), the difference

in algorithm (5.11) is the new variables γij and the marginal cost C ′j(·) in the generation control (5.11c).

Note that γij can be calculated based on the observable/measurable variables. So, the above algorithm is

implementable. Also, when we choose a specific cost function Cj(PMj ) =
Rj

2(1−RjKjMj)
(PMj )2, equation

(5.11c) recovers equation (5.3) in the conventional AGC.

Similarly, we have the following result.

Theorem 5.5. The algorithm (5.11) converges to a fixed point (ω∗, P ∗, PM
∗
, PC

∗
, γ∗) where (ω∗, P ∗, PM

∗
, γ∗)

is an optimum of problem OGC-2 and PCj
∗

=
1−RjKjMj

Rj
C ′j(P

M
j
∗
).

Proof. See the Appendix.

With Lemma 5.4 and Theorem 5.5, we can implement algorithm (5.11c)-(5.11e) as an economic AGC

for the power system. It has only a slight modification to the conventional AGC, and keeps the decentralized

structure of AGC.

Remarks: We can actually derive a simpler and yet implementable algorithm without introducing vari-

able γij , (i, j) ∈ E . However, in order to have minimal modification to the existing conventional AGC and

also keep the resulting control decentralized, we choose to derive the algorithm (5.11).
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5.5 Case study

Consider a small 4-area interconnected system, as shown in Figure 5.1. The values of the generator and

transmission line parameters are shown in Table 5.2 and 5.1. For each area, the generation cost takes on the

form of Ci(PMi
) = aiP

2
Mi

where a is randomly drawn from [1, 2].

Figure 5.1. A 4-area interconnected system.

Table 5.1. Generator Parameters.

Area, j Mj Dj |Vj | Tj Rj Kj Bj
1 3 4 1.045 4 0.05 2 4
2 2.5 3.5 0.98 4 0.05 2 3.5
3 4 3 1.033 4 0.05 2 3
4 3.5 4.5 0.997 4 0.05 2 4.5

Table 5.2. Line Parameters.

line 1-2 2-3 3-4 4-1
r 0.004 0.005 0.006 0.0028
x 0.0386 0.0294 0.0596 0.0474

In the model used for simulation, we relax some of the assumptions made in the previous analysis. For

each transmission line we consider non-zero line resistance and do not assume small differences between

phase angle deviations, which means that the power flow model is in the form of

Pi,j =
|Vi||Vj |
x2
i,j + r2

i,j

(xi,j sin θij − ri,j cos θij) . (5.12)

Simulations results show that our proposed AGC scheme works well even in these non-ideal, practical sys-

tems.

At time t = 10s, a step change of load occurs at area 4 where PL4 = 0.3 pu. Figure 5.2 shows the

dynamics of the frequencies and mechanical power outputs for the 4 areas using ACE-based AGC (5.1)–
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Figure 5.2. The ACE-based AGC.
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Figure 5.3. The economic AGC.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

Time (s)

T
o

ta
l 
g

e
n

e
ra

ti
o

n
 c

o
s
t

 

 

ACE−based AGC

Economic AGC

Minimal

Figure 5.4. The generation cost.



83

(5.4). Figure 5.3 shows the dynamics of the frequencies and mechanical power outputs for the 4 areas using

the economic AGC (5.11). Figure 5.4 compares the total generation costs using the ACE-based AGC and the

economic AGC with the minimal generation cost of the economic dispatch problem (5.5). We see that the

economic AGC does not only track the optimal value of the economic dispatch problem but also smooths out

the frequency dynamics.

5.6 Conclusion

We reverse-engineer the conventional AGC, and based on the insight obtained from the reverse engineering,

we design a decentralized generation control scheme that is integrated into the AGC and achieves economic

efficiency. Combined with the previous work [64] on distributed load control, this work lends the promise to

develop a modeling framework and solution approach for systematic design of distributed, low-complexity

generation and load control to achieve system-wide efficiency and robustness.

5.7 Appendix: A partial primal-dual gradient algorithm

Consider the following optimization problem:

min
x,y

f(x) + g(y) (5.13)

s.t. Ax+By = C,

where f(x) is a strict convex function of x, g(y) is a convex function of y, and both f, g are differentiable.

Notice that g(y) can be a constant function.

The Lagrangian function of this optimization problem is given by:

L(x, y, λ) = f(x) + g(y) + λT (Ax+By − C).

Assume that the constraint is feasible and an optimal solution exists, then the strong duality holds. Moreover,
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the primal-dual optimal solution (x∗, y∗, λ∗) is a saddle point of L(x, y, λ) and vice versa.

The partial primal-dual gradient algorithm is given as follows:

Algorithm-1:

x(t) = min
x

{
f(x) + λTAx

}
ẏ = −Ξy(

∂g(y)

∂y
+BTλ)

λ̇ = Ξλ(Ax+By − C)

where Ξy = diag(εyi) and Ξλ = diag(ελj ).

In the following we will study the convergence of this algorithm.

Define

q(λ) , min
x

{
f(x) + λTAx

}
and

L̂(y, λ) , q(λ) + g(y) + λT (By − C).

The following proposition demonstrate some properties of q(λ) and L̂(y, λ).

Proposition 5.6. q(λ) is a concave function and its gradient is given as ∂q(λ)
∂λ = Ax. If ker(AT ) = 0, then

q(λ) is a strict concave function and the optimal dual λ∗ is unique. As a consequence, given any y, there is

a unique maximizer for maxλ L̂(y, λ).

Proof. This proposition follows directly from Proposition 6.1.1 in [76].

In order to use the result of this draft for automatic generation control, need to prove ker(AT ) = 0. This

can be done.

Moreover, we have the following connections between L(x, y, λ) and L̂(y, λ).

Lemma 5.7. If (x∗, y∗, λ∗) is a saddle point ofL, then (y∗, λ∗) is a saddle point of L̂ and x∗ = argminx
{
f(x) + (λ∗)TAx

}
.

Moreover, if (y∗, λ∗) is a saddle point of L̂, then (x∗, y∗, λ∗) is a saddle point ofLwhere x∗ = argminx
{
f(x) + (λ∗)TAx

}
.
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Proof. A simple proof is to write done and compare first order conditions of saddles points for both L and

L̂. Notice that convexity of f, g, and concavity of q implies that those first order conditions are necessary and

sufficient conditions for saddle points.

Now let study the convergence of Algorithm-1. With L̂(y, λ), Algorithm-1 can be written as follows:

ẏ = −Ξy

(
∂L̂(y, λ)

∂y

)
(5.14)

λ̇ = Ξλ

(
∂L̂(y, λ)

∂λ

)
(5.15)

Let (y∗, λ∗) be a saddle point of L̂(y, λ). Define a nonegative function as:

U(y, λ) =
1

2

 y − y∗

λ− λ∗


T  Ξ−1

y

Ξ−1
λ


 y − y∗

λ− λ∗

 (5.16)

=

n∑
i=1

1

2εyi
(yi − y∗i )2 +

m∑
i=1

1

2ελi
(λi − λ∗i )2

Notice that U ≥ 0 for any (y, λ). The derivative of U along the trajectory defined in (5.14,5.15) is given as:

∂U

∂t
= −∂L̂(y, λ)

∂y

T

(y − y∗) +
∂L̂(y, λ)

∂λ
(λ− λ∗)

≤ −L̂(y, λ) + L̂(y∗, λ) + L̂(y, λ)− L̂(y, λ∗) (5.17)

= L̂(y∗, λ)− L̂(y∗, λ∗) + L̂(y∗, λ∗)− L̂(y, λ∗)

≤ 0

where the first equality comes from (5.14,5.15,5.16), the first inequality follows from the strictly concavity of

L̂ in λ and convexity of L̂ in y and last inequality comes from that (y∗, λ∗) is a saddle point of L̂. Therefore

U is actually a Lyapunov function of (5.14,5.15). For simplicity, we will denote (y, λ) as z.

Lemma 5.8. ∂U(z)
∂t ≤ 0 for all z, and

{
ẑ : ∂U(ẑ)

∂t = 0
}

=
{
ẑ : λ̂ = λ∗, L̂(ŷ, λ∗) = L̂(y∗, λ∗)

}
.

Proof. (5.17) has shown that ∂U(z)
∂t ≤ 0. To ensure ∂U(ẑ)

∂t = 0, the last inequality in (5.17) tells that
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L̂(y∗, λ̂) = L̂(y∗, λ∗) = L̂(ŷ, λ∗) which implies that λ̂ = λ∗ because L̂ is strictly concave in λ and (y∗, λ∗)

is a saddle point. Thus we can conclude the lemma.

Now we can have our first result regards to the convergence:

Lemma 5.9. Given any two saddle points (y∗1 , λ
∗
1), (y∗2 , λ

∗
2), we have λ∗1 = λ∗2, and L̂(y∗1 , λ

∗
1) = L̂(y∗2 , λ

∗
2).

Any solution (y(t), λ(t)) of (5.14,5.15) for t ≥ 0 asymptotically approaches to a nonempty, compact subset

of the set of saddle points, denoted as Z∗ .

Proof. (5.16) tells that U(z) ≥ 0 for any z, and (5.17) tells that U(z(t)) is decreasing with time t and

U(z(t)) ≤ U(z(0)) for any t ≥ 0. Because of the structure of U(z) in (5.16), z(t) = (y(t), λ(t)) is

bounded for t ≥ 0. By Lyapunov convergence theory [77] , z(t) = (y(t), λ(t)) converges to a nonempty

invariant compact subset of
{
ẑ : ∂U(ẑ)

∂t = 0
}

=
{
ẑ : λ̂ = λ∗, L̂(ŷ, λ∗) = L̂(y∗, λ∗)

}
. To ensure the subset

is invariant, we have λ̇ = ∂L̂(Ẑ)
∂λ = 0 which implies that such ẑ is a saddle point of L̂.

Theorem 5.10. Any solution (y(t), λ(t)) of (5.14,5.15) for t ≥ 0 asymptotically converges to a saddle point

(y∗, λ∗). The saddle point (y∗, λ∗) may depend on the initial point (y(0), λ(0)).

Proof. The proof of Lemma 5.9 show that {z(t)}t≥0 is a bounded sequences, therefore, we know that there

exists a subsequence {z(tj) = (y(tj), λ(tj))} converges to a point z∞ = (y∞, λ∞). This implies that:

lim
tj→∞

n∑
i=1

1

2εyi
(yi(tj)− y∞i )2 +

m∑
i=1

1

2ελi
(λi(tj)− λ∞i )2 = 0. (5.18)

As shown in Lemma 5.9, z∞ = (y∞, λ∞) is a saddle point of L̂. Therefore Lemma 5.8,5.9 tells that:

lim
t→∞

U(y(t)− y∞, λ(t)− λ∞)

= lim
t→∞

n∑
i=1

1

2εyi
(yi(t)− y∞i )2 +

m∑
i=1

1

2ελi
(λi(t)− λ∞i )2

= u (5.19)

for some constant u. Since {z(tj) = (y(tj), λ(tj))} is a subsequence of {z(t)}, (5.18) tells that u = 0.

Therefore, we can conclude that (y(t), λ(t)) converges to (y∞, λ∞).
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Part II

Designing Games for Distributed

Optimization
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Chapter 6

Optimization Problem with Coupled
Objective Function

[] The central goal in multiagent systems is to design local control laws for the individual agents to

ensure that the emergent global behavior is desirable with respect to a given system level objective.

Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control law on the

least amount of information possible. The second part of this thesis focuses on achieving this goal

using the field of game theory. In particular, we derive a systematic methodology for designing local

agent objective functions that guarantees (i) an equivalence between the resulting Nash equilibria and

the optimizers of the system level objective and (ii) that the resulting game possesses an inherent struc-

ture that can be exploited in distributed learning, e.g., potential games. The control design can then be

completed utilizing any distributed learning algorithm that guarantees convergence to a Nash equilib-

rium for the attained game structure. Furthermore, in many settings the resulting controllers will be

inherently robust to a host of uncertainties including asynchronous clock rates, delays in information,

and component failures.

In this chapter, we will focus on the cases in which the system level objective can be formulated as

an optimization problem with coupled objective functions but decoupled constraints. But in the next

chapter we will extend our approaches to the problems with coupled constraints. The communication

graphs in these two chapters are time invariant; however, Chapter 8 will further extend the results to

mult-agent systems with time-varying communication graphs.
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6.1 Introduction

The central goal in multiagent systems is to design local control laws for the individual agents to ensure

that the emergent global behavior is desirable with respect to a given system level objective, e.g., [78–83].

These control laws provide the groundwork for a decision making architecture that possesses several desir-

able attributes including real-time adaptation and robustness to dynamic uncertainties. However, realizing

these benefits requires addressing the underlying complexity associated with a potentially large number of

interacting agents and the analytical difficulties of dealing with overlapping and partial information. Further-

more, the design of such control laws is further complicated by restrictions placed on the set of admissible

controllers which limit informational and computational capabilities.

Game theory is beginning to emerge as a powerful tool for the design and control of multiagent systems

[82–86]. Utilizing game theory for this purpose requires two steps. The first step is to model the agents as

self-interested decision makers in a game theoretic environment. This step involves defining a set of choices

and a local objective function for each decision maker. The second step involves specifying a distributed

learning algorithm that enables the agents to reach a desirable operating point, e.g., a Nash equilibrium of the

designed game.

One of the core advantages of game theory is that it provides a hierarchical decomposition between

the distribution of the optimization problem (game design) and the specific local decision rules (distributed

learning algorithms) [87]. For example, if the game is designed as a potential game [88] then there is an

inherent robustness to decision making rules as a wide class of distributed learning algorithms can achieve

convergence to a pure Nash equilibrium under a variety of informational dependencies [89–92]. Several

recent papers focus on utilizing this decomposition in distributed control by developing methodologies for

designing games, in particular agent utility functions, that adhere to this potential game structure [82, 85,

87, 93]. However, these methodologies typically provide no guarantees on the locality of the agent utility

functions or the efficiency of the resulting pure Nash equilibria. Furthermore, the theoretical limits of what

such approaches can achieve are poorly understood.

The goal of this chapter is to establish a methodology for the design of local agent objective functions

that lead to desirable system-wide behavior. We define the locality of an objective function by the underlying
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interdependence, i.e., the set of agents that impact this objective function. For convention, we refer to this

set of agents as the neighbor set. Accordingly, an objective function (A) is more local than an objective

function (B) if the neighbor set of (A) is strictly smaller than the neighbor set of (B). The existing utility

design methodologies, i.e., the wonderful life utility [82, 85] and the Shapley value utility [94, 95], prescribe

procedures for deriving agent objective functions from a given system level objective function. While both

procedures guarantee that the resulting game is a potential game, the degree of locality in the agent objective

functions is an artifact of the methodology and the underlying structure of the system level objective. Hence,

these methodologies do not necessarily yield agent objective functions with the desired locality.

The main contribution of this chapter is the development of a systematic methodology for the design

of local agent objective functions that guarantees the efficiency of the resulting equilibria. In particular, in

Theorem 6.3 we prove that our proposed methodology ensures (i) that there is an equivalence between the

equilibria of the resulting game and the optimizers of the system level objective and (ii) that the resulting

game is a state based potential game as introduced in [96].1 A state based potential game is an extension

of a potential game where there is an underlying state space introduced into the game structure. Our design

utilizes these state variables as a coordinating entity to decouple the system level objective into agent specific

objectives of the desired interdependence.

Our second result focuses on learning in state based potential games with continuous action sets. Much

like potential games, state based potential games possess an underlying structure that can be exploited in dis-

tributed learning. Accordingly, in this chapter we prove that the learning algorithm gradient play, introduced

in [97, 98] in the context of strategic form games, converges to an equilibrium in any state based potential

game (see Theorem 6.4). Moreover, we provide a characterization of the convergence rate of gradient play

for state based potential games (see Theorem 6.5). This work is complimentary to the results in [96] which

provide similar results for state based potential games with finite action sets.

The design of multiagent systems parallels the theme of distributed optimization which can be thought

of as a concatenation between a designed game and a distributed learning algorithm. One core difference

1It is important to highlight that [96] focuses predominantly on learning in state based potential games with finite action sets. The
design of agent utility functions to ensure the efficiency of the resulting equilibria, which is the focus of this manuscript, is not addressed
in [96].
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between these two domains is the fact that multiagent systems frequently place restrictions on the set of ad-

missible controllers. In terms of distributed optimization, this places a restriction on the set of admissible

distributed algorithms. Accordingly, the applicability of some common approaches to distributed optimiza-

tion, e.g, subgradient methods [99–104], consensus based methods [78, 79, 105, 106], or two-step consensus

based approaches [86, 107, 108], may be limited by the structure of the system level objective.

There is also a family of distributed algorithms that are similar in spirit to the algorithms presented in

this chapter. In particular, the algorithms presented in [103] and [108] introduce a communication protocol

between the agents with the purpose of providing the agents with sufficient degrees of information so that

the agents can estimate their gradient to the system level objective. While the proposed algorithms provide

the desired asymptotic guarantees, the robustness to variations in clock rates, delays in information, and

component failures is currently uncharacterized. Furthermore, the complexity regarding the analysis of these

algorithms could make providing such a characterization challenging. In contrast to [103] and [108], our

focus is on a methodological decomposition of the system level objective into local agent objective functions.

Through this decomposition, we can take advantage of existing results in the field of learning in games to

derive distributed algorithms that are robust to delays in information and heterogeneous clock rates. This

follows directly from [90] and [96] which prove that any reasonable distributed learning algorithm will

converge to a pure Nash equilibrium in any (finite) potential game or (finite) state based potential game.

This chapter focuses on establishing a systematic approach for distributed optimization. Accordingly,

we focus predominantly on a general class of optimization problem with the realization that many problem

instantiations relevant to multiagent systems can be represented within this problem formulation. Examples

include collaborative sensing in a distributed PTZ camera network and the design of local control strategies

for mobile sensor networks [109, 110]. For concreteness, in Section 6.5.2 we formally describe a distributed

routing problem and illustrate how the proposed methodology can lead to desirable system behavior even

when the agents possess incomplete information regarding the network behavior.

The rest of the chapter is organized as follows. Section 6.2 formally describes our model and provides

a brief background about game theory and the framework of the state based game. Section 6.3 proposes a

state based game design to solve the distributed optimization problem. Section 6.4 establishes a distributed
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learning algorithm to enable agents to reach the desired operating points. Section 6.5 provides illustrative

examples and Section 6.6 concludes the chapter.

6.2 Problem setup and preliminaries

We consider a multiagent system consisting of n agents denoted by the set N = {1, · · · , n}. Each agent

i ∈ N is endowed with a set of decisions (or values) denoted by Vi which is a nonempty convex subset of

R. We denote a joint value by the tuple v = (v1, · · · , vn) ∈ V =
∏
i Vi where V is referred to as the set of

joint values. Lastly, there is a global cost function of the form φ : RN → R that a system designer seeks to

minimize. More formally, the optimization problem takes on the form:2

minv φ(v1, v2, . . . , vn)

s.t. vi ∈ Vi,∀i ∈ N.
(6.1)

We assume throughout that φ is differentiable convex and that a solution of this optimization problem is

guaranteed to exist.3

The focus of this chapter is to establish an interaction framework where each agent i ∈ N chooses its

value independently in response to local information. The information available to each agent is represented

by an undirected and connected communication graph G = {N, E} with nodes N and edges E . Define the

neighbors of agent i as Ni = {j ∈ N : (i, j) ∈ E} and we adopt the convention that i ∈ Ni for each

i. This interaction framework produces a sequence of values v(0), v(1), v(2), . . ., where at each iteration

t ∈ {0, 1, . . .} each agent i chooses a value independently according to a local control law of the form:

vi(t) = Fi

(
{Information about agent j}j∈Ni

)
(6.2)

which designates how each agent processes available information to formulate a decision at each iteration.

2For ease of exposition we let Vi ⊆ R, which is just one dimension. In general, Vi can be any convex subset of Rdi for any
dimension di ≥ 1. The results in this chapter immediately extend to the cases where di > 1 and di 6= dj for i 6= j. Furthermore,
this work focuses on problems with decoupled constraints on agents’ actions, i.e., vi ∈ Vi. The forthcoming methodologies can also
incorporate coupled constraints using the approach demonstrated in the next chapter.

3There are many sufficient conditions to guarantee the existence of the optimal solution, e.g., compactness of V or coercivity of φ.
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The goal in this setting is to design the local controllers {Fi(·)}i∈N such that the collective behavior con-

verges to a joint value v∗ that solves the optimization problem in (6.1).

6.2.1 An illustrative example

We begin by presenting a simple example to motivate the theoretical developments in this chapter. Consider

the following instance of (6.1) where

φ(v1, v2, v3) =


v1

v2

v3



T 
2 1 1

1 3 1

1 1 4




v1

v2

v3

+ [1 1 1]


v1

v2

v3

 (6.3)

and Vi = R for all agents N = {1, 2, 3}. Here, the goal is to derive local agent control laws of the form

(6.2) that converge to the minimizer of the cost function in (6.3) while adhering to the communication graph

1 ↔ 2 ↔ 3. Note that this communication graph implies that the control policy of agent 1 is not able to

depend on the true value of agent 3.

6.2.1.1 Gradient methods

Gradient methods represent a popular algorithm for solving nonlinear optimization problems [76]. A gradient

method for the optimization problem in (6.3) takes on the form

vi(t+ 1) = vi(t)− ε
∂φ

∂vi
, (6.4)

where ∂φ
∂v1

= 4v1 + 2v2 + 2v3 + 1; ∂φ
∂v2

= 2v1 + 6v2 + 2v3 + 1; ∂φ
∂v3

= 2v1 + 2v2 + 8v3 + 1 and ε is a

positive step size. Note that both agents 1 and 3 require global information to calculate their gradients which

is not admissible in our setting.
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6.2.1.2 A game theoretic approach

Since φ in (6.3) does not possess a locally decomposable structure, the resulting gradient descent algorithms

were not of the desired locality. A game theoretic approach introduces an intermediate step to the control

design where each agent is assigned an objective function of the form Ji :
∏
j∈Ni Vj → R. Here the goal is

to embed the information admissibility constraints directly into the agents’ objective function. For example,

if we design agent objective functions of the form:

J1 : V1 × V2 → R

J2 : V1 × V2 × V3 → R

J3 : V2 × V3 → R

and each agent follows a gradient-based approach to their local objectives, i.e., for any agent i ∈ N ,

vi(t+ 1) = vi(t)− ε
∂Ji
∂vi

,

then the resulting agents’ control policies will satisfy our locality constraints. However, the convergence

properties of such an algorithm are not as straightforward as the gradient algorithm given in (6.4), which

leads to the work of this chapter.

6.2.2 Preliminaries: potential games

A strategic form game is characterized by a set of agents N = {1, . . . , n} where each agent i ∈ N has

an action set Ai and a cost function Ji : A → R where A =
∏
i∈N Ai denotes the set of joint actions.

For an action profile a = (a1, ..., an), let a−i denote the action profile of agents other than agent i, i.e.,

a−i = (a1, . . . , ai−1, ai+1, . . . , an).

One class of games that plays a prominent role in engineering multiagent systems is that of potential

games [88].

Definition 6.1. (Potential Games) A game {N, {Ai}, {Ji}} is called an (exact) potential game if there exists
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a global function Φ : A → R such that for every agent i ∈ N , a−i ∈ A−i and a′i, a
′′
i ∈ Ai,

Ji(a
′
i, a−i)− Ji(a′′i , a−i) = Φ(a′i, a−i)− Φ(a′′i , a−i).

There are three main properties regarding potential games which makes them an attractive paradigm for

distributed engineering systems. First, in a potential game a pure Nash equilibrium, i.e., an action profile

a∗ ∈ A such that

Ji(a
∗
i , a
∗
−i) = min

ai∈Ai
Ji(ai, a

∗
−i),∀i ∈ N,

is guaranteed to exist. Second, there are several available distributed learning algorithms with proven asymp-

totic guarantees that could be utilized for the control design [88–92]. Lastly, learning pure Nash equilibria in

potential games is inherently robust [90]. That is, any “reasonable” learning algorithm where players seek to

optimize their individual objective function will converge to a pure Nash equilibrium in potential games [90].

Hence, issues such as heterogeneous clock rates and informational delays are not problematic to learning

pure Nash equilibria in such games.

6.2.3 Preliminaries: state based potential games

State based games, a simplification of stochastic games [111], represent an extension to strategic form games

where an underlying state space is introduced to the game theoretic environment [96]. The class of state

based games considered in this chapter consists of the following elements:

1. an agent set N ,

2. a state space X ,

3. a state dependent action set, Ai(x), for each agent i ∈ N and state x ∈ X ,

4. a state dependent cost function of the form Ji(x, a) ∈ R, for each agent i ∈ N , x ∈ X , and a ∈

A(x) =
∏
i∈N Ai(x), and

5. a deterministic state transition function f(x, a) ∈ X for x ∈ X and a ∈ A(x).
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Furthermore, we focus on state based games where for any x ∈ X there exists a null action 0 ∈ A(x)

such that x = f(x,0). This implies that the state will remain unchanged if all of the agents take the null

action. We will frequently denote a state based game by G = {N,X,A, J, f}, where A =
⋃
x∈X A(x).

Repeated play of a state based game produces a sequence of action profiles a(0), a(1), · · · , and a sequence

of states x(0), x(1), . . ., where a(t) ∈ A is referred to as the action profile at time t and x(t) ∈ X is referred

to as the state at time t. At any time t ≥ 0, each agent i ∈ N selects an action ai(t) ∈ Ai(x(t)) according to

some specified decision rule which depends on the current state x(t). The state x(t) and the joint action profile

a(t) = (a1(t), . . . , an(t)) ∈ A(x(t)) determine each agent’s one stage cost Ji(x(t), a(t)) at time t. After all

agents select their respective action, the ensuring state x(t+ 1) is chosen according to the deterministic state

transition function x(t+ 1) = f(x(t), a(t)) and the process is repeated.

In this chapter we focus on the class of games termed state based potential games which represents an

extension of potential games to the framework of state based games.

Definition 6.2. (State Based Potential Game) A (deterministic) state based game G with a null action 0 is a

(deterministic) state based potential game if there exists a potential function Φ : X ×A → R satisfying the

following two properties for every state x ∈ X:

(D-1): For every agent i ∈ N , action profile a ∈ A(x) and action a′i ∈ Ai(x)

Ji(x, a
′
i, a−i)− Ji(x, a) = Φ(x, a′i, a−i)− Φ(x, a).

(D-2): For every action profile a ∈ A(x) and the ensuing state x̃ = f(x, a), the potential function satisfies

Φ(x, a) = Φ(x̃,0).

The first condition states that each agent’s cost function is aligned with the potential function in the same

fashion as in potential games (Definition 6.1). The second condition relates to the evolution on the potential
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function along the state trajectory.4 We focus on the class of state based potential games as dynamics can be

derived that converge to the following class of equilibria (see Theorem 6.4).

Definition 6.3. (Stationary State Nash Equilibrium) A state action pair [x∗, a∗] is a stationary state Nash

equilibrium if

(D-1): For any agent i ∈ N ,

a∗i ∈ arg min
ai∈Ai(x∗)

Ji(x
∗, ai, a

∗
−i).

(D-2): The state x∗ is a fixed point of the state transition function, i.e., x∗ = f(x∗, a∗).

Note that in the case of a single state, i.e., X = 1, the definition of Stationary State Nash Equilibrium is

precisely that of a Nash equilibrium since Condition (D-2) is satisfied trivially. The following proposition

proves the existence of a stationary state Nash equilibrium in any state based potential game.

Proposition 6.1. Let G be a state based potential game with potential function Φ and a null action 0. If

x∗ ∈ argminx∈XΦ(x,0), then [x∗,0] is a stationary state Nash equilibrium. Moreover, for any a ∈ A(x∗)

such that x∗ = f(x∗, a), [x∗, a] is also a stationary state Nash equilibrium.

Proof. In order to prove that [x∗,0] is a stationary state Nash equilibrium we only need to show that 0 ∈

argmina∈A(x∗)Φ(x∗, a) because x = f(x,0) for any x ∈ X and Φ is a potential function of the game G.

Let a∗ ∈ argmina∈A(x∗)Φ(x∗, a). Thus Φ(x∗,0) ≥ Φ(x∗, a∗). However since x∗ ∈ argminx∈XΦ(x,0),

we have that Φ(x∗, a∗) = Φ(x̃∗,0) ≥ Φ(x∗,0) where x̃∗ = f(x∗, a∗). Therefore we have Φ(x∗,0) =

Φ(x∗, a∗) = mina∈A(x∗) Φ(x∗, a). Hence [x∗,0] is a stationary state Nash equilibrium. For any a such

that x∗ = f(x∗, a), we have Φ(x∗, a) = Φ(x∗,0) = mina∈A(x∗) Φ(x∗, a) implying that [x∗, a] is also a

stationary state Nash equilibrium.

4The definition of state based games differs slightly from [96] as we focus on state dependent actions sets and games where there
exist null actions.
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6.3 State based game design

In this section we introduce a state based game design for the distributed optimization problem in (6.1). The

goal of our design is to establish a state based game formulation that satisfies the following four properties:

(i) The state represents a compilation of local state variables, i.e., the state x can be represented as x =

(x1, . . . , xn) where each xi represents the state of agent i. Furthermore, the state transition f should

also rely only on local information.

(ii) The objective function for each agent i is local and of the form Ji({xj , aj}j∈Ni) ∈ R.

(iii) The resulting game is a state based potential game.

(iv) The stationary state Nash equilibria are optimal in the sense that they represent solutions to the opti-

mization problem in (6.1), i.e., vi = v∗i .5

6.3.1 A state based game design for distributed optimization

We now introduce the specifics of our designed game.

State Space: The starting point of our design is an underlying state space X where each state x ∈ X is

defined as a tuple x = (v, e), where

• v = (v1, . . . , vn) ∈ Rn is the profile of values and

• e = (e1, . . . , en) is the profile of estimation terms where ei = (e1
i , · · · , eni ) ∈ Rn is agent i’s estima-

tion for the joint action profile v = (v1, . . . , vn). The term eki captures agent i’s estimate of agent k’s

actual value vk.

The estimation terms are introduced as a means to relax the degree of information available to each agent.

More specifically, each agent is aware of its own estimation as opposed to the true value profile which may

5 There is a significant body of work in the field of algorithmic game theory that focuses on analyzing the inefficiency of Nash
equilibria [112]. A common measure for this inefficiency, termed price of anarchy, is the worst case ratio between the system level
performance of a Nash equilibrium and the optimal systems level performance. The vast literature in this area is predominantly analytical
where the price of anarchy is characterized for situations where both the system level objective function and the agent cost functions
are given. This work, on the other hand, focuses on the the counterpart of this analytical direction. In particular, is it possible to design
local agent cost functions such that the price of anarchy is 1 for given a system level objective function? For the class of optimization
problems considered in this manuscript, we provide a systematic methodology for accomplishing this task.
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in fact be different, i.e., eki need not equal vk.

Action Sets: Each agent i is assigned an action set Ai that permits agents to change their value and change

their estimation through communication with neighboring agents. Specifically, an action for agent i is defined

as a tuple ai = (v̂i, êi) where v̂i ∈ R indicates a change in the agent’s value vi and êi = (ê1
i , · · · , êni )

indicates a change in the agent’s estimation terms ei. We represent each of the estimation terms êki by the

tuple êki = {êki→j}j∈Ni\{i} where êki→j ∈ R represents the estimation value that agent i passes to agent j

regarding the value of agent k.

State Dynamics: Define that êki←in =
∑
j∈Ni\{i} ê

k
j→i and êki→out =

∑
j∈Ni\{i} ê

k
i→j denote the total

estimation passed to and from agent i regarding the value of the k-th agent respectively. We represent the state

transition function f(x, a) by a set of local state transition functions {fvi (x, a)}i∈N and
{
fei,k(x, a)

}
i,k∈N

.

For a state x = (v, e) and an action a = (v̂, ê), the ensuing state x̃ = (ṽ, ẽ) is given by

ṽi = fvi (x, a) = vi + v̂i

ẽki = fei,k(x, a) = eki + nδki v̂i + êki←in − êki→out (6.5)

where δki is an indicator function, i.e., δii = 1 and δki = 0 for all k 6= i. Since the optimization problem in

(6.1) imposes the requirement that vi ∈ Vi, we condition agents’ available actions on the current state. That

is, the available action set for agent i given state x = (v, e) is defined as

Ai(x) = {(v̂i, êi) : vi + v̂i ∈ Vi} . (6.6)

Invariance associated with state dynamics: Let v(0) = (v1(0), ..., vn(0)) be the initial values of the agents.

Define the initial estimation terms e(0) to satisfy
∑
i∈N e

k
i (0) = n · vk(0), for each agent k ∈ N ; hence, the

initial estimation values are contingent on the initial values. Note that satisfying this condition is trivial as

we can set eii(0) = n · vi(0) and eji (0) = 0 for all agents i, j ∈ N where i 6= j. Define the initial state as

x(0) = [v(0), e(0)]. It is straightforward to show that for any action trajectory a(0), a(1), · · · , the resulting

state trajectory x(t) = (v(t), e(t)) = f(x(t − 1), a(t − 1)) satisfies the following equalities for all times
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t ≥ 1 and agents k ∈ N
n∑
i=1

eki (t) = n · vk(t) . (6.7)

Agent Cost Functions: The cost functions possess two distinct components and take on the form

Ji(x, a) = Jφi (x, a) + α · Jei (x, a) (6.8)

where Jφi (·) represents the component centered on the objective function φ, Jei (·) represents the component

centered on the disagreement of estimation based terms e, and α is a positive constant representing the

tradeoff between the two components.6 We define each of these components as

Jφi (x, a) =
∑
j∈Ni φ(ẽ1

j , ẽ
2
j , ..., ẽ

n
j )

Jei (x, a) =
∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (6.9)

where x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state. The null action 0 is characterized by

v̂i = 0, êki→j = 0,∀i, j, k ∈ N.

Since x = f(x,0), the agents’ cost functions satisfy Ji(x, a) = Ji(x̃,0).

6.3.2 Analytical properties of the designed game

In this section we derive two analytical properties of the designed state based game. The first property

establishes that the designed game is a state based potential game.

Theorem 6.2. The state based game depicted in Section 6.3.1 is a state based potential game with potential

function

Φ(x, a) = Φφ(x, a) + α · Φe(x, a) (6.10)

6We will show that for any positive α, the results demonstrated in this chapter hold. However, choosing the right α is important for
the learning algorithm implementation, e.g., the convergence rate of the learning algorithm.
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where

Φφ(x, a) =
∑
i∈N φ(ẽ1

i , ẽ
2
i , ..., ẽ

n
i )

Φe(x, a) = 1
2

∑
i∈N

∑
j∈Ni

∑
k∈N

[
ẽki − ẽkj

]2 (6.11)

and x̃ = (ṽ, ẽ) = f(x, a) represents the ensuing state.

Proof. It is straightforward to verify that Conditions (D-1)-(D-2) of state based potential games in Defini-

tion 6.2 are satisfied using the state based potential function defined in (6.10).

The following theorem demonstrates that all equilibria of our designed game are solutions to the opti-

mization problem in (6.1).

Theorem 6.3. Let G be the state based game depicted in Section 6.3.1. Suppose that φ is a differentiable

convex function, the communication graph G is connected and undirected, and at least one of the following

conditions is satisfied:

(i) The communication graph G is non-bipartite;7

(ii) The communication graph G contains an odd number of nodes, i.e., the number of agents is odd;

(iii) The communication graph G contains at least two agents which have a different number of neighbors,

i.e., |Ni| 6= |Nj | for some agents i, j ∈ N ;

(iv) For each agent i ∈ N the actions set Vi is open.

Then the state action pair [x, a] = [(v, e), (v̂, ê)] is a stationary state Nash equilibrium if and only if the

following conditions are satisfied:

(a) The estimation profile e satisfies that eki = vk, ∀i, k ∈ N ;

(b) The value profile v is an optimal solution for problem (6.1);

(c) The change in value profile satisfies v̂ = 0;

(d) The change in estimation profile satisfies that for all agents i, k ∈ N , êki←in = êki→out.

7A bipartite graph is a graph that does not contain any odd-length cycles.
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The above theorem proves that the resulting equilibria of our state based game coincide with the optimal

solutions to the optimization problem in (6.1) under relatively minor conditions on the communication graph.

Hence, our design provides a systematic methodology for distributing an optimization problem under virtually

any desired degree of locality in the agents’ objective functions. A natural question arises as to whether the

results in Theorem 6.2 and 6.3 could have been attained using the framework of strategic form games. In

Appendix we prove that it is impossible to accomplish such a task.

6.4 Gradient play

In this section we prove that the learning algorithm gradient play, studied previously in [97] and [98] for

strategic form games, converges to a stationary state Nash equilibrium in state based potential games. Since

the designed game depicted in Section 6.3.1 is a state based potential game, the algorithm gradient play can

be utilized to design control laws of the form (6.2) that guarantee convergence to the optimal solution of (6.1).

6.4.1 Gradient play for state based potential games

Given a state based potential game G = {N,A, X, J, f}, suppose that Ai(x) is a closed convex set for all

i ∈ N and x ∈ X . Let x(t) represent the state at time t. According to the learning algorithm gradient play,

each agent i ∈ N selects an action ai(t) ∈ Ai (x(t)) according to

ai(t) =

[
−εi ·

∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

(6.12)

where [·]+ represents the projection onto the closed convex set Ai (x(t)) and εi is the step size which is a

positive constant. Note that the agents’ step sizes can be heterogeneous.

Before establishing the convergence results, we make the following assumptions for the state based po-

tential game G:

A-1: Φ(x,0) is continuously differentiable and bounded below on x and Φ(x, a) is convex and differentiable

on variable a.
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A-2: ∇aΦ(x, a) is a Lipschitz function on variable a, i.e., there exists a constant L such that for any

x ∈ X and for any a, a′ ∈ A(x), ||∇aΦ(x, a) − ∇aΦ(x, a′)||2 ≤ L||a − a′||2 where ∇aΦ(x, a) =

( ∂Φ
∂a1

, . . . , ∂Φ
∂an

).

Theorem 6.4. Let G be a state based potential game with a potential function Φ(x, a) that satisfies Assump-

tion (A-1,2). If the step size εi is smaller than 2/L for all i ∈ N , then the state action pair [x(t), a(t)] of the

gradient play process in (6.12) asymptotically converges to a stationary state Nash equilibrium of the form

[x,0].

Proof. From the definition of the state based potential game, we have Φ(x(t+ 1),0) = Φ(x(t), a(t)) where

x(t + 1) = f(x(t), a(t)). We will first prove that Φ(x(t + 1),0) is monotonically decreasing during the

gradient play process provided that the step size is sufficiently small. The gradient play process in (6.12) can

be expressed using the state based potential function as

ai(t) =

[
−ε · ∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

=

[
−ε · ∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

]+

(6.13)

Therefore, we have

Φ(x(t+ 1),0)− Φ(x(t),0) = Φ(x(t), a(t))− Φ(x(t),0)

≤ a(t)T
∂Φ(x(t), a)

∂a

∣∣∣∣T
a=0

+
L

2
‖a(t)‖22

where the second inequality is based on Proposition A.24 in [76]. By the Projection Theorem (Proposition

2.1.3 in [76]), we know that

(
−εi ·

∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

− ai(t)
)T
· (−ai(t)) ≤ 0

which is equivalent to

ai(t)
T · ∂Φ(x(t), a)

∂ai

∣∣∣∣
a=0

≤ − 1

εi
ai(t)

Tai(t).



104

If εi is smaller than 2
L for all i ∈ N , we have that

Φ(x(t+ 1),0)− Φ(x(t),0) ≤
∑
i

(
L

2
− 1

εi

)
‖ai(t)‖22 ≤ 0

and the equality holds in the second inequality if and only if a(t) = 0. Therefore, Φ(x(t),0) is monotonically

decreasing along the trajectory x(t). Since Φ(x(t),0) is bounded below, Φ(x(t),0) keeps decreasing until it

reaches a fixed point, which means a(t) = 0. By Lemma 6.12 in Appendix, we know that such a fixed point

is a stationary state Nash equlibrium. Hence [x(t), a(t)] converges to a stationary state Nash equilibrium in

the form of [x,0].

First note that the asymptotic guarantees given in Theorem 6.4 hold for heterogeneous step sizes. This

implies that the agents can take actions synchronously or asynchronously without altering the asymptotic

guarantees. Second, the rate of convergence of gradient play depends on the structure of the potential function

Φ, the state transition function f , and the stepsize εi. Larger step sizes εi generally lead to faster convergence

but can also lead to instability. The bound on the stepsize εi in Theorem 6.4 is conservative as larger stepsize

can usually be used without losing stability. Moreover, the stepsizes can vary with time as long as some

additional mild conditions are satisfied.8

The following theorem establishes the convergence rate of the gradient play algorithm for state based

potential games. For ease of exposition, we let εi = εj = ε for all the agents i, j ∈ N and Ai(x) = Rdx

for some dimension dx, which means that the gradient play algorithm in (6.12) takes on the form: ai(t) =

−ε · ∂Ji(x(t),a)
∂ai

∣∣∣
a=0

. Additionally, we make the following assumptions.

A-3 : The state transition rule is linear, namely that x̃ = f(x, a) = x+Ba. Thus Φ(x, a) = Φ(x+Ba,0)

for all a ∈ A(x).

A-4 : There exit constants M,m > 0 such that for any [x, a] ∈ X ×A,

m

2
||a||2 ≤ Φ(x, a)− Φ(x, 0)− aT · ∇aΦ|(x,0) ≤

M

2
||a||2.

8This is similar with the gradient methods in optimization literature [113].
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Note that if Φ(x, a) is a strict convex function on variable a, one choice for M,m is that

M = max
[x,a]∈X×A

(
σmax∇2

aΦ(x, a)
)

;

m = min
[x,a]∈X×A

(
σmin∇2

aΦ(x, a)
)
.

Here ∇2
aΦ(x, a) denotes the Hessian matrix of Φ on variable a and σ denotes the singular values of this

matrix.

Theorem 6.5. Let G be a state based potential game that satisfies Assumptions (A-1,3,4). If the step size

ε is smaller than 2/M , then the state action pair [x(t), a(t)] of the gradient play process asymptotically

converges to a stationary state Nash equilibrium of the form [x∗,0]. Moreover, Φ(x(t), a(t)) is monotonically

non-increasing and for all t > 1,

Φ(x(t), a(t))− Φ(x∗,0) ≤ θ ·
(
Φ(x(t− 1), a(t− 1)− Φ(x∗,0)

)

where θ =
(
1− 2m(ε− M

2 ε
2)
)
.

Proof. Please see Appendix.

6.4.2 Gradient play for our designed game

Suppose that Vi is a closed convex set for all i ∈ N . The gradient play algorithm applied to the game depicted

in Section 6.3.1 takes on the following form. At each time t ≥ 0, given the state x(t) = (v(t), e(t)), each

agent i selects an action ai = (v̂i, êi) according to

v̂i(t) =

[
−εvi ·

∂Ji (x(t), a)

∂v̂i

∣∣∣∣
a=0

]+

(6.14)

=

−εvi (n φi|ei(t) + 2nα
∑
j∈Ni

(eii(t)− eij(t)))

+

êki→j(t) = −εk,ei→j ·
∂Ji (x(t), a)

∂êki→j

∣∣∣∣∣
a=0

= εk,ei→j ·
(
φk|ei(t) − φk|ej(t) + 2α

(
eki (t)− ekj (t)

)
+ 2α

∑
l∈Ni
·
(
eki (t)− ekl (t)

) )
(6.15)
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where [·]+ represents the projection onto the closed convex set Av̂i (x) = {v̂i : vi + v̂i ∈ Vi}; and εvi and{
εk,ei→j

}
j∈Ni

are the stepsizes which are positive constants.

If φ(v) in (6.1) is a bounded differentiable convex function, it is straightforward to verify that the designed

state based potential game satisfies Assumptions (A-1,2). Therefore, if the step sizes are sufficiently small,

Theorem 6.4 ensures that the gradient play algorithm (6.14,6.15) will converge to a stationary state Nash

equilibrium in the form of [(v, e),0], where v is the optimal solution of (6.1). Moreover, notice that the

station transition rule given in (6.5) is linear; hence Theorem 6.5 guarantees a linear convergence rate.

6.5 Illustrations

In this section we illustrate the theoretical developments in this chapter on two independent problems. The

first problem rigorously explores our state based game design on the motivational example given in Sec-

tion 6.2.1. The second problem focuses on distributed routing with information constraints.

6.5.1 A simple example

Following the state based game design rule given in Section 6.3.1, each agent i ∈ {1, 2, 3} in the example in

Section 6.2.1 is assigned a local state variable of the form xi = (vi, e
1
i , e

2
i , e

3
i ) where eki is agent i’s estimate

of agent k’s value vk. Agent i’s action ai is of the form ai = (v̂i, ê
1
i , ê

2
i , ê

3
i ) where êki =

{
êki→j

}
j∈Ni for

k = 1, 2, 3. The state transition rule and local cost function are defined in (6.5) and (6.8) respectively.

For concreteness, consider agent 1 as an example.

• A state associated with agent 1 is of the form x1 = (v1, e
1
1, e

2
1, e

2
1).

• An action associated with agent 1 is of the form a1 = (v̂1, ê
1
1→2, ê

2
1→2, ê

3
1→2).
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• The state transition rule is of the form [ṽ, ẽ] = f ([v, e], [v̂, ê]) where

ṽ1 = v1 + v̂1,

ẽ1
1 = e1

1 + v̂1 − ê1
1→2 + ê1

2→1

ẽ2
1 = e2

1 − ê2
1→2 + ê2

2→1

ẽ3
1 = e3

1 − ê3
1→2 + ê3

2→1.

• The local cost function of agent 1 is of the form

J1 ([v, e], [v̂, ê]) = φ(ẽ1
1, ẽ

2
1, ẽ

3
1) +

α

2

∑
k=1,2,3

(
ẽk1 − ẽk2

)2
.

Figure 6.1 shows simulation results associated with this example. The top figure includes the following:

(i) the red curve shows the dynamics of φ using a centralized gradient method, (ii) the blue curve shows

the dynamics of φ using our proposed state based game design with gradient play where agents take actions

synchronously with a homogeneous step size ε = 0.02, and (iii) the black curve shows the dynamics of φ

using our proposed state based game design with gradient play where agents take actions asynchronously with

heterogeneous step sizes, ε1 = 0.01, ε2 = 0.02, and ε3 = 0.015. In the asynchronous simulation, each agent

took an action with probability 0.9 or took the null action 0 with probability 0.1. Lastly, we set α = 1 for

the above simulation. These simulations demonstrate that our state based game design can efficiently solve

the optimization problem under the presented informational constraints. Furthermore, the agents achieve the

correct estimate of the true value v as highlighted in the bottom figure. Note that the bottom figure only

highlights the estimation errors for agent 1 as the plots for agents 2 and 3 are similar.

6.5.2 Distributed routing problem

In this section we focus on a simple distributed routing problem with a single source, a single destination,

and a disjoint set of routes R = {r1, ..., rm}. There exists a set of agents N = {1, ..., n} each seeking to

send an amount of traffic, represented by Qi ≥ 0, from the source to the destination. The action set Vi for
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Figure 6.1. Simulation results for the optimization problem in (6.2.1). The top figure shows the evolution of
the system cost φ(v) using (i) centralized gradient algorithm, (ii) our proposed state based game design with
gradient play, homogeneous step sizes, and synchronous updates (blue), and (iii) our proposed state based
game design with gradient play, heterogeneous step sizes, and asynchronously updates (black). The bottom
figure shows the evolution of agent 1’s estimation errors, i.e., e1

1−v1, e2
1−v2, and e3

1−v3, during the gradient
play algorithm with homogeneous step sizes and synchronous updates.

each agent is defined as

{
vi = (vr1i , . . . , v

rm
i ) : 0 ≤ vri ≤ 1,∀r ∈ R;

∑
r∈R

vri = 1

}
(6.16)

where vri represents that percentage of traffic that agent i designates to route r. Alternatively, the amount

of traffic that agent i designates to route r is vriQi. Lastly, for each route r ∈ R, there is an associated

“congestion function” of the form: cr : [0,+∞)→ R that reflects the cost of using the route as a function of

the amount of traffic on that route.9 For a given routing decision v ∈ V , the total congestion in the network

9This type of congestion function is referred to as anonymous in the sense that all agents contribute equally to traffic. Non-anonymous
congestion functions could also be used for this example.



109

takes the form

φ(v) =
∑
r∈R

fr · cr(fr)

where fr =
∑
i∈N v

r
iQi. The goal is to establish a local control law for each agent that converges to the

allocation which minimizes the total congestion, i.e., v∗ ∈ arg minv∈V φ(v). One possibility for a distributed

algorithm is to utilize a gradient descent algorithm where each agent adjusts traffic flows according to

∂φ

∂vri
= Qi ·

(
c′r

(∑
i∈N

Qiv
r
i

)
+ cr

(∑
i∈N

Qiv
r
i

))

where c′r(·) represents the gradient of the congestion function. Note that implementing this algorithm requires

each agent to have complete information regarding the decision of all other agents. In the case of non-

anonymous congestion functions this informational restriction would be even more pronounced.

Figure 6.2. Distributed Traffic Routing.

Using the methodology developed in this chapter, we can localize the information available to each agent

by allowing them only to have estimates of other agents’ flow patterns. Consider the above routing problem

with 10 agents and the following communication graph

1↔ 2↔ 3↔ · · · ↔ 10.

Now, each agent is only aware of the traffic patterns for at most two of the other agents and maintaining

and responding to estimates of the other agents’ traffic patterns. Suppose we have 5 routes where each route

r ∈ R has a quadratic congestion function of the form cr(k) = ark
2 − brk + cr where k ≥ 0 is the amount

of traffic, and ar, br, and cr are positive and randomly chosen coefficients. Set the tradeoff parameter α to



110

Figure 6.3. Simulation results: The upper figure shows the evolution of the system cost φ using the centralized
gradient decent algorithm (red) and our proposed algorithm (black). The bottom figure shows the evolution
of agent 1’s estimation error, i.e., ek,r1 − vrk for each route r ∈ R and each agent k ∈ N .

be 900. Figure 6.3 illustrates the results of the gradient play algorithm presented in Section 6.4 coupled with

our game design in Section 6.3. Note that our algorithm does not perform as well as the centralized gradient

descent algorithm in transient. This is expected since the informational availability to the agents is much

lower. However, the convergence time is comparable which is surprising.

6.6 Conclusion

This work presents an approach to distributed optimization using the framework of state based potential

games. In particular, we provide a systematic methodology for localizing the agents’ objective function

while ensuring that the resulting equilibria are optimal with regards to the system level objective function.

Furthermore, we proved that the learning algorithm gradient play guarantees convergence to a stationary state

Nash equilibria in any state based potential game. By considering a game theoretic approach to distributed

optimization, as opposed to the more traditional algorithmic approaches, we were able to attain immediate
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robustness to variation in clock rates and step sizes as highlighted in Sections 6.3 and 6.4. There are several

open and interesting questions that this chapter promotes. One in particular is regarding the communication

requirements on the agents. In our design, each agent possessed n additional state variables as estimates

for the n components of the value profile v. Could similar guarantees be attained with fewer variables?

What happens if we transition from a fixed to time varying communication topology? Lastly, how does this

approach extend to alternative classes of system level objective functions? We will cover some of those

questions in the following chapters.

6.7 Appendix

6.7.1 An impossibility result for game design

This section addresses the question as to whether the results in Theorem 6.2 and 6.3 could have been attained

using the framework of strategic form games. More specifically, is it possible to design agent objective

functions that achieve the following four objectives:

• Each agent’s cost function relies solely on local information as defined by the communication graph.

Moreover, agents’ cost functions should possess a degree of scalability with regards to the size of the

system and the topology of the communication graph.

• All Nash equilibria of the resulting game represent solutions to the optimization problem (6.1);

• The resulting game possesses an underlying structure that can be exploited by distributed learning

algorithms, e.g., potential games.

Accomplishing these objectives would ensure that the agents’ control policies resulting from the designed

game plus a suitable learning algorithm would be of the local form in (6.2).
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In the following we demonstrate that achieving these objectives using the framework of strategic form

games is impossible in general. To show this we focus on the following optimization problem

minv
(∑

i∈N vi
)2

s.t. vi ∈ [ci, di] ⊂ R.
(6.17)

To make the control laws {Fi(·)}i∈N scalable as to the agent set and the communication graph G, we require

that the underlying control design must be invariant to the agents’ indices. This implies that if two agents

(i, j) have the same number of neighbors, i.e., |Ni| = |Nj |, and for each agent k in Ni there is an agent h in

Nj such that vk = vh and [ck, dk] = [ch, dh], and vice versa, then the control policies of agent i, j should be

the same, i.e., Fi
(
{vk, ck, dk}k∈Ni

)
= Fj

(
{vk, ck, dk}k∈Nj

)
.

Accordingly, we formulate the optimization problem as a game where the agent set is N , the action set of

each agent is the setAi = [ci, di], and each agent is assigned a cost function of the form Ji :
∏
j∈Ni Vj → R.

To facilitate the design of scalable agent control policies, we focus on the design of agent cost functions of

the form:

Ji(v) = J
(
{vj , cj , dj}j∈Ni

)
(6.18)

where the function J(·) is invariant to specific indices assigned to agents. Notice that this design of J(·)

leads to a well defined game irrespective of the agent set N , constraint sets [ci, di] or the structure of the

communication graph {Ni}i∈N . The following proposition demonstrates that it is impossible to design J(·)

such that for any game induced by a constraint profile [c, d] and communication graph G all resulting Nash

equilibria solve the optimization problem in (6.3).

Proposition 6.6. There does not exist a single J(·) such that for any game induced by a connected commu-

nication graph G, a constraint profile [c, d], and agents’ cost functions of the form (6.18), the Nash equilibria

of the induced game represent solutions to the optimization problem in (6.17).

Proof. Suppose that there exists a single J(·) that satisfies the proposition. We will now construct a coun-

terexample to show that this is impossible. Consider two optimization problems of the form (6.17) with a
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single communication graph given by

1↔ 2↔ 3↔ 4↔ 5↔ 6.

Here, we have N = {1, 2, 3, 4, 5, 6} and E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}}. In the first optimization

problem the constraint profile is: [c1, d1] = [c6, d6] = [−1,− 21
22 ], [c2, d2] = [c3, d3] = [c4, d4] = [ 6

11 ,
7
11 ],

and [c5, d5] = [0, 0]. In the second optimization problem, the constraint profile is:[c1, d1] = [c6, d6] =

[−1,− 21
22 ] and [c2, d2] = [c3, d3] = [c4, d4] = [c5, d5] = [ 6

11 ,
7
11 ]. We call the settings for the two optimiza-

tion problems as setting (a) and (b) respectively. Under those constraints, the optimal solution for setting

(a) is va = (va1 , v
a
2 , v

a
3 , v

a
4 , v

a
5 , v

a
6 ) = (− 21

22 ,
7
11 ,

7
11 ,

7
11 , 0,−

21
22 ) and the optimal solutions for setting (b) is

vb = (vb1, v
b
2, v

b
3, v

b
4, v

b
5, v

b
6) = (−1, 6

11 ,
6
11 ,

6
11 ,

6
11 ,−1).

We start by defining agent cost functions of the form (6.18) which ensures that va is a Nash equilibrium

for setting (a). This implies that for any agent i ∈ N , we have

J
(
{vai , ci, di} ,

{
vaj , cj , dj

}
j∈Ni\{i}

)
≤ J

(
{vi, ci, di} ,

{
vaj , cj , dj

}
j∈Ni\{i}

)
(6.19)

for any vi ∈ Vi. By writing down the Nash equilibrium condition in (6.19) for setting (b), it is straightforward

to see that agents 1, 2, 3, 4, 5, 6 in setting (b) have the same structure form of the cost function as agents

1, 2, 3, 3, 2, 1 in setting (a) respectively. For example, agent 4 in setting (a) has an identical cost function to

agent 3 in setting (b). Since va represents a Nash equilibrium for setting (a) then no agent i ∈ {1, . . . , 6}

has a unilateral incentive to deviate from va. As agents 1, 2, 3, 4, 5, 6 in (b) can be mapped precisely to

agents 1, 2, 3, 3, 2, 1 in (a), v∗ = (v∗1 , v
∗
2 , v
∗
3 , v
∗
4 , v
∗
5 , v
∗
6) = (− 21

22 ,
7
11 ,

7
11 ,

7
11 ,

7
11 ,−

21
22 ) is a Nash equilibrium

of setting (b) since no agent i ∈ {1, . . . , 6} has a unilateral incentive to deviate from v∗. The impossibility

comes from the fact that v∗ is not an optimal solution to setting (b).

6.7.2 Proof of Theorem 6.3

Since the designed state based game is a state based potential game, we can apply Proposition 6.1 to prove

the sufficient condition of the theorem. The proof involves two steps: (i) If x∗ satisfies Condition (a)-(b)
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listed in the theorem, then x∗ ∈ argminx∈Xφ(x,0); (ii) if a∗ satisfies Condition (c)-(d) in the theorem, then

x = f(x, a) for all x ∈ X . Therefore it is straightforward to prove that if a state action pair [x, a] satisfies

Conditions (a)-(d) listed in the theorem, then [x, a] is a stationary state Nash equilibrium.

Let us prove the necessary condition of Theorem 6.3. Suppose [x, a] is a stationary state Nash equilibrium.

First notice that to ensure [x, a] satisfies Condition (D-2) of Definition 6.3, i.e. x = f(x, a), the action profile

a = (v̂, ê) should satisfy Condition (c)-(d) of this theorem. To prove Condition (a)-(b), we will use a series

of lemmas to prove that under one of Cases (i)-(iv) of this theorem, if a station action pair [x, a] satisfies

Condition (D-1) of Definition 6.3, i.e. ai ∈ argminǎJi(x, ǎi, a−i) for all i ∈ N , then the ensuing state

x̃ = f(x, a) satisfies the following conditions:

1. Estimation alignment: The ensuing estimation terms are aligned with the ensuing value profile, i.e., for

all agents i, k ∈ N we have ẽki = ṽk where (ṽ, ẽ) = f(x, a). (Lemma 6.7 for Case (i)–(ii), Lemma 6.8

for Case (iii) and Lemma 6.10 for Case (iv).)

2. Optimality alignment: The ensuing value profile ṽ is an optimal solution to (6.1). (Lemma 6.9 for Case

(i)–(iii) and Lemma 6.10 for Case (iv).)

Combining this with the fact that x̃ = f(x, a) = x, we can conclude that under one of Cases (i)-(iv) of this

theorem if [x, a] is a state based Nash equilibrium, then Condition (a)-(d) must be satisfied.

In the subsequent lemmas we consistently express the ensuing state for a state action pair [x, a] =

[(v, e), (v̂, ê)] as (ṽ, ẽ) = f(x, a).

Lemma 6.7. Suppose that the communication graph G satisfies either Condition (i) or (ii) of Theorem 6.3. If

[x, a] satisfies ai ∈ argminǎ∈Ai(x)Ji(x, ǎ, a−i) for all i ∈ N , then all agents have correct estimates of the

value profile. That is, for all agents i, k ∈ N we have ẽki = ṽk.

Proof. If ai ∈ argminǎi=(v̌i,ěi)∈Ai(x)Ji(x, ǎi, a−i) for all i ∈ N , then

∂Ji(x, ǎi, a−i)

ěki,l

∣∣∣∣∣
ai

= 0,∀i, k ∈ N, l ∈ Ni\{i}
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which is equivalent to

φk|ẽi + 2α
∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽl − 2α

(
ẽki − ẽkl

) (6.20)

where φk|ẽi represents the derivative of φ relative to ẽki for the profile ẽi, i.e., φk|ẽi = ∂φ(ẽi)

∂ẽki
. Consider any

two connected agents i, j ∈ N , i.e., (i, j) ∈ E . The equality in (6.20) translates to

φk|ẽi + 2α
∑
l∈Ni

(
ẽki − ẽkl

)
= φk|ẽj − 2α

(
ẽki − ẽkj

)
φk|ẽj + 2α

∑
l∈Nj

(
ẽkj − ẽkl

)
= φk|ẽi − 2α

(
ẽkj − ẽki

)
.

Adding these two equalities gives us

∑
l∈Ni(ẽ

k
i − ẽkl ) = −

∑
l∈Nj (ẽ

k
j − ẽkl ) (6.21)

for all agents i, j, k ∈ N such that (i, j) ∈ Nj . Since our communication graph is connected, the equality

condition in (6.21) tells us that the possible values for the summation terms
∑
l∈Ni(ẽ

k
i − ẽkl ) for each agent

i ∈ N can be at most one of two possible values that differ purely with respect to sign, i.e., for any agent

i ∈ N we have

∑
l∈Ni(ẽ

k
i − ẽkl ) ∈

{
ekdiff,−ekdiff

} (6.22)

where ekdiff ∈ R is a constant. We can utilize the underlying topology of the communication graph coupled

with (6.22) to demonstrate that ekdiff = 0.

1. If there exists a cycle in the communication graph with an odd number of nodes, applying equality

(6.21), we can get that ekdiff = −ekdiff, which tells us that ekdiff = 0.

2. Since the communication graph is undirected we know that
∑
i∈N

∑
l∈Ni(ẽ

k
i − ẽkl ) = 0. If the number

of agents n is odd, condition (6.22) tells us that
∑
i∈N

∑
l∈Ni(ẽ

k
i − ẽkl ) = h · ekdiff where h is a nonzero

integer. Hence ekdiff = 0.

In summary, if the total number of agents is odd or there exists a cycle in the communication graph with an
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odd number of nodes we have that for all i, k ∈ N ,
∑
l∈Ni(ẽ

k
i − ẽkl ) = 0. Since the communication graph is

connected and undirected, it is straightforward to show that for all agents i, j ∈ N , ẽki = ẽkj ,∀k ∈ N. Here

the main idea of this proof is to write
∑
l∈Ni(ẽ

k
i −ẽkl ) = 0,∀i ∈ N in a matrix form for each k ∈ N . The rank

of this matrix is n−1 resulting from the fact that the communication graph is connected and undirected hence

proving the result. Combining this with the equality (6.7), we get that for all agents i, k ∈ N , ẽki = vk.

Remark 6.1. It is important to note that alternative graph structures may very well provide the same guar-

antees.

Lemma 6.8. Suppose that the objective function φ and communication graph G satisfy Condition (iii) of

Theorem 6.3. If [x, a] satisfies ai ∈ argminǎi∈Ai(x)Ji(x, ǎi, a−i) for all i ∈ N , then all agent have correct

estimates of the value profile. That is, for all agents i, k ∈ N we have ẽki = ṽk.

Proof. In the proof of the last lemma, we have proved that if ai ∈ argminǎiJi(x, ǎi, a−i), then equation

(6.20) should be satisfied. Consider any agent i ∈ N , and any pair of agents j1, j2 ∈ Ni. Equation (6.20)

tells us that

φk|ẽi + 2α
∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽj1 − 2α

(
ẽki − ẽkj1

)
φk|ẽi + 2α

∑
j∈Ni

(
ẽki − ẽkj

)
= φk|ẽj2 − 2α

(
ẽki − ẽkj2

)
.

(6.23)

Combining the two equations, we have the following equality

φk|ẽj1 − φk|ẽj2 − 2α
(
ẽkj2 − ẽ

k
j1

)
= 0.

Note that agents j1 and j2 are not necessarily connected but are rather siblings as both agents are connected

to agent i. Therefore, the above analysis can be repeated to show that for any siblings j1, j2 ∈ N , we have

the equality

φk|ẽj1 − φk|ẽj2 = 2α
(
ẽkj2 − ẽ

k
j1

)
, (6.24)

for all agents k ∈ N . Applying Lemma 6.11 in the appendix, condition (6.24) coupled with the fact that φ is
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a convex function implies that for any siblings j1, j2 ∈ N ,

ẽj1 = ẽj2 . (6.25)

Since the communication graph is connected and undirected, Equality (6.25) guarantees that there exist at

most two different estimation values which we denote by x = (x1, . . . , xn) and y = (y1, . . . , yn), i.e.,

ẽi ∈ {x, y},∀i ∈ N. (6.26)

Now applying equality (6.22), for each i ∈ N , we have that either ekdiff = 2ni(xk− yk) or ekdiff = −2ni(xk−

yk), where ni = |Ni| − 1 > 0. If there exist two agents having different numbers of neighbors, we can

derive that x = y, i.e. ẽi = ẽj ,∀i, j ∈ N . Following the same arguments as the previous proof, we have that

ẽki = vk,∀i, k ∈ N .

Lemma 6.9. Suppose that at least one of conditions (i)–(iii) of Theorem 6.3 is satisfied. If [x, a] satisfies

ai ∈ argminǎi∈Ai(x)Ji(x, ǎi, a−i) for all i ∈ N , then ṽ is an optimal solution to (6.1).

Proof. If ak ∈ argminǎiJk(x, ǎk, a−k), where ǎk = (v̌k, ěk),we have

∂Jk(x, ǎk, a−k)

v̌k

∣∣∣∣
ak

· (v̂′k − v̂k) ≥ 0,∀v̂′k ∈ Av̂i (x)

which is equivalent to

n φk|ẽ + 2nk
∑
j∈Nk

(ẽkk − ẽkj )

 · (v̂′k − v̂k) ≥ 0 . (6.27)

We have shown in Lemma 6.7 and Lemma 6.8 that if [x, a] = [(v, e), (v̂, ê)] satisfies ai ∈ argminǎiJi(x, ǎi, a−i),

then ẽki = vk,∀i, k ∈ N . Therefore, equation (6.27) tells that

φk|(ṽ) · (ṽ
′
k − ṽk) ≥ 0,∀ṽ′k ∈ Vk. (6.28)
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This implies that ṽ is an optimal profile for the optimization problem (6.1) given that φ is convex over V .

Lemma 6.10. Suppose that condition (iv) of Theorem 6.3 is satisfied. If [x, a] satisfies ai ∈ argminǎi∈Ai(x)Ji(x, ǎi, a−i)

for all i ∈ N , then ẽki = ṽk for all i, j ∈ N , and ṽ is an optimal profile for the optimization problem (6.1).

Proof. In the proof of Lemma 6.7 and Lemma 6.8, we have shown that if [x, a] satisfies ai ∈ argminǎiJi(x, ǎi, a−i),

equations (6.20) and (6.27) should satisfy. Since Vk is open, equation (6.27) is equivalent to

φk|ẽk + 2
∑
j∈Nk

(
ẽkk − ẽkj

)
= 0, ∀k ∈ N. (6.29)

Substituting this equation into equation (6.20), we have

φk|ẽl + 2ẽkl = 2ẽkk, ∀l ∈ Nk, k ∈ N . (6.30)

Since φ is a convex function, we already have equality (6.26) as shown in the proof of Lemma 6.8. We

will show that x = y. Suppose that x 6= y. For each i ∈ N , either ẽi = x or ẽi = y. Suppose that

ẽi = x. Then for all j ∈ Ni, ẽj = y; otherwise if ẽj = x for some j ∈ Ni, equation (6.25) implies that

ẽj = x, ∀j ∈ N , i.e. x = y. Equation (6.29) tells us that

φk|x = 2nk(yk − xk)

where nk = |Nk| − 1. Equation (6.30) tells us that

φk|y = 2(xk − yk)

If ẽk = y, similarly we will have:

φk|y = 2nk(xk − yk)

φk|x = 2(yk − xk) .

In both cases, we have φk|x − φk|y = 2(nk + 1)(yk − xk). Applying Lemma 6.11, we know that x = y.

Now we can conclude that ẽi = ẽj and hence ẽki = vk,∀i, k ∈ N . Substituting those equalities into equation
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(6.29), we have:

φk|(ṽ1,...,ṽn) = 0,∀k ∈ N

which implies that ṽ is an optimal point of the optimization problem (6.1) given that φ is an convex function

and V is open.

Lemma 6.11. Given a continuously differentiable convex function φ(x1, x2, . . . , xn) and two vectors x =

(x1, . . . , xn) and y = (y1, . . . , yn), if for all k = 1, 2, . . . n, we have φk|x − φk|y = αk(yk − xk) where

αk > 0, then x = y.

Proof. Since φ is a convex function, we have

φ(x) ≥ φ(y) + (x− y)T∇φ|y,

φ(y) ≥ φ(x) + (y − x)T∇φ|x.

Adding up the two inequalities, we have

0 ≥ (x− y)T (∇φ|y −∇φ|x).

Since φk|x − φk|y = α(yk − xk) for all k, we have

0 ≥
∑
k

αk(xk − yk)2 ≥ 0.

Therefore x = y.

6.7.3 A Lemma for gradient play

Lemma 6.12. Let G be a state based potential game and the potential function Φ(x, a) a differentiable

convex function on variable a. Suppose all agents are using the gradient play algorithm and the state at time

t is x(t) = [v(t), e(t)]. The action profile at time t is the null action, i.e., a(t) = 0, if and only if the state

action pair [x(t),0] is a stationary state Nash equilibrium of the state based game G.
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Proof. Since f(x(t),0) = x(t), by Definition 6.3 we know that [x(t),0] is a stationary state Nash equilibrium

if and only if 0 ∈ argminai∈Ai(x(t))Ji(x(t), ai, 0) for all i ∈ N . This is equivalent to

(
∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

)
· ai ≥ 0

for all i ∈ N and ai ∈ Ai(x(t)). By Projection Theorem, this inequality is equivalent to the fact that the

projection of −εi ∂Ji(x(t),a)
∂ai

∣∣∣
a=0

onto Ai(x(t)) is 0, i.e.

ai(t) =

[
−ε · ∂Ji(x(t), a)

∂ai

∣∣∣∣
a=0

]+

= 0,∀i ∈ N.

6.7.4 Proof of Theorem 6.5

1. From Assumption (A-4), we have

Φ(x(t+ 1),0)=Φ(x(t), a(t))

≤Φ(x(t),0) + a(t)T∇aΦ(x(t),0) + M
2 ||a(t)||22

≤Φ(x(t),0)− (ε− M
2 ε

2)||∇aΦ(x(t),0)||22 .

(6.31)

Therefore if ε < 2
M , Φ(x(t+ 1),0) ≤ Φ(x(t),0).

2. Assumption (A-4) also implies the following inequality:

Φ(x+Ba,0)=Φ(x, a)

≥Φ(x,0) + aT · ∇aΦ(x, 0) + m
2 ||a||

2

≥mina
(
Φ(x,0) + aT · ∇aΦ(x, 0) + m

2 ||a||
2
)

=Φ(x,0)− 1
2m ||∇aΦ(x,0)||22 .
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Since the state transition rule is x(t+ 1) = f(x(t), a(t)) = x(t) +Ba(t), we have:

Φ(x(T ),0) = Φ(x(T − 1) +Ba(T − 1),0)

= . . .

= Φ(x(t) +B
∑T−1
τ=t a(t),0)

≥ Φ(x(t),0)− 1
2m ||∇aΦ(x(t),0)||22

(6.32)

for any T > t ≥ 0. If we pick t = 0, we know that {Φ(x(T ),0)}T≥0 is bounded below. As we showed

in the proof for Theorem 6.4, we know that (x(t), a(t)) will asymptotically converge to a stationary

state Nash equilibrium [x∗,0] and Φ(x(t),0) ≥ Φ(x∗,0) for any t ≥ 0.

3. Since x(T ) = x(t)+B
∑T−1
τ=t a(τ) and limT→∞ x(T ) = x∗, we know that limT→∞ x(t)+B

∑T−1
τ=t a(τ) =

x∗. Combining with Inequality (6.32), we have:

Φ(x∗,0)− Φ(x(t),0) ≥ − 1

2m
||∇aΦ(x(t),0)||22 (6.33)

for any t ≥ 0. Substituting this into Inequality (6.31), we have

Φ(x(t+ 1),0)≤Φ(x(t),0)− 2m(ε− M

2
ε2) (Φ(x(t),0)− Φ(x∗,0))

which gives the following inequality:

Φ(x(t+ 1),0)− Φ(x∗,0) ≤ θ (Φ(x(t),0)− Φ(x∗,0)) (6.34)

where θ =
(
1− 2m(ε− M

2 ε
2)
)
. Therefore we can conclude the statement in this theorem.

2
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Chapter 7

Optimization Problem with Coupled
Constraints

[]

Several multiagent systems exemplify the need for establishing distributed control laws which ensure

that the resulting agents’ behavior satisfies a given coupled constraint. This chapter focuses on the

design of such distributed control laws through the game theoretic framework given in the previous

chapter. In particular, this chapter provides a systematic methodology for the design of local agent ob-

jective functions which guarantee that all resulting Nash equilibria optimize the system level objective

while also satisfying the given coupled constraints.

7.1 Introduction

In many multi-agent systems, the desired collective behavior must also satisfy a given coupled constraint on

the agents’ behavior [62,79,81–83,114]. One example is the problem of TCP control where the users’ sending

rates need to satisfy link capacity constraints [114]. An alternative example is the problem of economic

dispatch in an electricity power system where the total power generation needs to satisfy the total power

demands [62]. Regardless of the specific application domain, these coupled constraints bring additional

complexity to the control algorithm design.

There are two main research directions aimed at designing distributed control algorithms to satisfy per-

formance criteria involving coupled constraints. The first direction seeks to design algorithms which ensure

that the coupled constraint is always satisfied, e.g., the well-studied consensus algorithm [79, 101, 115, 116].
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While theoretically appealing, such algorithms lack a robustness to environmental uncertainties, noisy mea-

surements, and inconsistent clock rates amongst the agents. The second direction seeks to design algo-

rithms which ensure that the asymptotic behavior satisfies the coupled constraints, e.g., dual decomposi-

tion [86, 108, 114, 117, 118] and subgradient methods [119, 120]. Such algorithms often require a two-time

scale solution approach by introducing intermediate state variables, such as pricing terms or communication

variables, to help coordinate behavior. Depending on the application domain, these approaches may be pro-

hibitive either by the informational dependence on the pricing terms or the rigidity of the update algorithm.

The approaches highlighted above can be viewed as advancements to the field of distributed optimization

where the emphasis is on the design of distributed control laws for multiagent systems. Here, the goal is

to establish local agent control policies, i.e., control policies that depend solely on information regarding a

limited subset of neighboring agents, which guarantee that the agents’ asymptotic behavior reaches a desired

performance regardless of the initial state of the agents. While the design of such networked control systems

parallels the theme of distributed optimization, one of the central issues associated with the applicability of

distributed optimization algorithms for multiagent coordination is robustness. That is, how are the asymptotic

guarantees associated with the aforementioned algorithms affected when there are delays in information,

asynchronous clock rates, dynamically changing agent capabilities, or component failures? Unfortunately,

the robustness of these algorithms to such issues is typically not characterized, e.g., [108, 119, 120].

In contrast to these algorithmic approaches, we focuses on dealing with the underlying control design

through a complimentary direction which involves assigning each agent a local objective function. These

objective functions permit each agent to evaluate the desirability of all available actions for any given infor-

mation pertaining to the environment and behavior of the other agents. The resulting agents’ control laws

can then be attained by prescribing a protocol for how each agent should process available information to

formulate a decision.

The main contribution of this chapter is the development of a systematic methodology for the design of

agent objective functions such that (i) the agents’ objective functions depend only on local information, (ii)

all resulting Nash equilibria satisfy the desired performance criterion which embodies coupled constraints,

and (iii) the resulting game is a close variant of a potential game. The novelty of our approach stems from in-
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tegrating classical optimization techniques, in particular exterior penalty methods and barrier function meth-

ods, into the design of the agents’ objective functions as shown in Sections 7.3.1 and 7.3.2 respectively. Both

methodologies ensure that all three objectives are satisfied. The core difference between the two approaches

is that the barrier function method can also be used to ensure that the constraint is satisfied dynamically in

addition to asymptotically. This work builds on our previous work in Chapter 6 which establishes a similar

methodology for the design of agent objective function. However, Chapter 6 did not focus on performance

criteria with coupled constraints.

7.2 Problem formulation

We consider a multiagent system consisting of n agents denoted by the set N = {1, · · · , n}. Each agent i ∈

N is endowed with a set of possible decisions (or values), denoted by Vi, which we assume is a convex subset

of Rdi , i.e., Vi ⊆ Rdi for some integer di ≥ 1. We denote a joint decision by the tuple v = (v1, ..., vn) ∈

V =
∏
i∈N Vi where V is referred to as the set of joint decisions. The goal of this chapter is to establish a

methodology for attaining a distributed solution to the following optimization problem

minvi∈Vi,i∈N φ(v) =
∑
i∈N Ci(vi)

s.t.
∑n
i=1A

k
i vi −Bk ≤ 0, k ∈M

(7.1)

whereCi : Vi → R represents a local cost function for agent i, which is assumed to be a differentiable convex

function, and the linear inequalities {
∑n
i=1A

k
i vi − Bk ≤ 0}k∈M where M = {1, ...,m} characterizes the

coupled constraints on the agents’ decisions. The distributed algorithm will produce a sequence of decision

profile v(1), v(2), . . . , where the decision of each agent i ∈ N at each iteration t ∈ {1, 2, . . . } is selected

according to a control law of the form

vi(t) = Πi ({Information about agent j at time t}j∈Ni) , (7.2)

where Ni ⊆ N identifies the neighbor set (or information set) of agent i. The neighbor sets {Ni}i∈N , which

we will refer to as the communication graph, capture the locality of the distributed algorithm. By convention,
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we assume that i ∈ Ni for each i ∈ N . In Section 7.4 we provide a detailed example pertaining to the

problem of economic dispatch and demand management in electricity power systems which is precisely of

this form.1

7.3 A methodology for objective function design

In this section we present two methodologies for local objective design which incorporate penalty functions

and barrier functions into the design of agent objective functions. The core difference between the two

approaches is that barrier functions can be used to ensure that the coupled constraint is satisfied dynamically

in addition to asymptotically.

7.3.1 Design using exterior penalty functions

Our first design methodology integrates exterior penalty functions into the agents’ cost functions. The forth-

coming design will embody the following four properties:

(i) The state represents a compilation of local state variables, i.e., the state x can be represented as x =

(x1, . . . , xn) where each xi represents the state of agent i. Furthermore, the state transition depends

only on local information.

(ii) The objective function for each agent i is local and of the form Ji({xj , aj}j∈Ni) ∈ R.

(iii) The resulting game is a state based potential game.

(iv) The stationary state Nash equilibria are optimal in the sense that they represent solutions to the opti-

mization problem in (7.1).

1We now provide a few remarks regarding the optimization problem presented in (7.1). First, we do not explicitly highlight the
equality constraint,

∑n
i=1 A

k
i vi − Bk = 0, since this can be handled by two inequalities of the form

∑n
i=1 A

k
i vi − Bk ≤ 0 and

−
(∑n

i=1 A
k
i vi −Bk

)
≤ 0. Second, for ease of exposition we focus purely on the case di = 1 for all i ∈ N . However, the

forthcoming results also hold for both higher dimensions, i.e, Vi ⊆ Rdi where di > 1, and heterogeneous dimensions, i.e., di need not
equal dj for i 6= j. Lastly, since the focus of this chapter is about decoupling coupled constraints, we focus purely on the case when
the objective function φ is decomposable but the constraints are coupled. By combining the design presented in the last chapter, which
focuses on optimization problems with coupled objective functions but decoupled constraints, we can also deal with coupled objective
functions in (7.1) in a similar fashion.
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State Space: The starting point of our design is an underlying state space X where each state x ∈ X is

defined as a tuple x = (v, e), where v = (v1, . . . , vn) ∈ Rn is the profile of values and e =
{
eki
}
k∈M,i∈N

is the profile of estimation terms. The term eki represents agent i’s estimate for the k-th constraint, i.e.,

eki ∼
∑n
j=1A

k
j vj −Bk. Note that each agent possesses an estimation term for each constraint k ∈M .

Actions: Each agent i is assigned a state dependent action set Ai(x) that permits the agent to change its

value and constraint estimation through communication with neighboring agents. Specifically, an action ai is

defined as a tuple ai =
(
v̂i,
{
ê1
i , ..., ê

m
i

})
where v̂i indicates a change in the agent’s value and êki indicates

a change in the agent’s estimate of the k-th constraint. Here, the change in estimation terms for agent i

pertaining to constraint k is represented by a tuple êki =
{
êki→j

}
j∈Ni . The term êki→j indicates the estimation

value that agent i exchanges (or passes) to agent j ∈ Ni regarding the k-th constraint.

State Dynamics: For any state x = (v, e) and action a = (v̂, ê), the state transition function f(x, a) is of the

form

ṽi = vi + v̂i,

ẽi =
{
eki +Aki v̂i + êki←in − êki→out

}
k∈M , (7.3)

where (ṽ, ẽ) = f(x, a) is the ensuing state and êki←in =
∑
j∈Ni ê

k
j→i and êki→out =

∑
j∈Ni ê

k
i→j . The

admissible action set of agent i given a state x is

APF
i (x) = {(v̂, ê) : vi + v̂i ∈ Vi} (7.4)

and the null action, 0, takes on the form v̂i = 0 and êki→j = 0 for all i, k ∈ N and j ∈ Ni. Note that

0 ∈ Ai(x) for any i ∈ N, x ∈ X .

Invariance Property: If the initial estimation terms e(0) satisfy
∑
i∈N e

k
i (0) =

∑
i∈N A

k
i vi(0)−Bk, ∀k ∈

M , then for any sequence of actions a(0), a(1), . . . , the resulting state trajectory generated according to
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process x(t+ 1) = f(x(t), a(t)) satisfies

∑
i∈N

eki (t) =
∑
i∈N

Aki vi(t)−Bk (7.5)

for all constraints k ∈M and t ≥ 0. Hence, for any constraint k ∈M we have know that

∑
i∈N

eki (t) ≤ 0⇔
∑
i∈N

Aki vi(t)−Bk ≤ 0 (7.6)

as the estimation terms encode information pertaining to constraint violations. Note that if the initial value

profile v(0) satisfies the constraints k ∈ M , then assigning eki (0) = Aki vi(0) − (1/n)Bk ensures that e(0)

satisfy the above condition. We will assume throughout that the initial value and estimation profiles satisfies

these initial conditions.

Agent Cost Functions: For any state x ∈ X and admissible action profile a ∈
∏
i∈N Ai(x), the cost function

of agent i is defined as

JPF
i (x, a) = Ci(ṽi) + µ

∑
j∈Ni

m∑
k=1

[
max

(
0, ẽkj

)]2
(7.7)

where (ṽ, ẽ) = f(x, a) is the ensuing state and µ > 0 is a trade-off parameter. The first term captures agent i’s

local cost function while the second term introduces a penalty on inconsistencies in estimation terms between

neighboring agents.

We now provide the main result of this chapter.

Theorem 7.1. Model the constrained optimization problem in (7.1) as a state based game with a fixed trade-

off parameter µ > 0 as depicted in Section 7.3.1. The state based game is a state based potential game with

potential function

ΦPF(x, a) = φ(ṽ) + µ
∑
i∈N

m∑
k=1

[
max

(
0, ẽki

)]2
(7.8)

where (ṽ, ẽ) = f(x, a) represents the ensuing state. Furthermore, if the objective function φ : V → R is
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convex and differentiable and the communication graph is undirected and connected, then a state action pair

[x, a] = [(v, e), (v̂, ê)] is a stationary state Nash equilibrium if and only if the following four conditions are

satisfied:

(i) The value profile v is an optimal point of the uncoupled constrained optimization problem

min
v∈V

φ(v) +
µ

n

∑
k∈M

[
max

(
0,
∑
i∈N

Aki vi −Bk
)]2

. (7.9)

(ii) The estimation profile e satisfies that for all i ∈ N , k ∈M ,

max
(
0, eki

)
=

1

n
max

(
0,
∑
i∈N

Aki vi −Bk
)
,

(iii) The change in value profile satisfies v̂i = 0 for all agents i ∈ N .

(iv) The net change in estimation profile is 0, i.e., êki←in − êki→out = 0 for all agents i ∈ N and constraints

k ∈M .

This characterization proves the equivalence between the stationary state Nash equilibria of the designed

game and the solutions to the uncoupled constrained optimization problem in (7.9). Therefore, as µ→∞ all

equilibria of our designed game are solutions to the coupled constrained optimization problem in (7.1) [113].

Proof. It is straightforward to show that the potential function in (7.8) satisfies the conditions of state based

potential games given in Definition 6.2. Hence, we will focus purely on the presented characterization.

Throughout, we will use the notation (ṽ, ẽ) to represent the ensuing state for a state action pair [x, a], i.e.,

(ṽ, ẽ) = f(x, a).

(⇐) We start by proving that if a state action pair [x, a] satisfies conditions (i)–(iv) then [x, a] is a station-

ary state Nash equilibrium. First, we know that if a satisfies conditions (iii)–(iv) then x = f(x, a). Hence,

we only need to prove that a ∈ argminǎ∈A(x)Φ(x, ǎ). Let ǎ := (v̌, ě) ∈ A(x). Since Φ(x, ǎ) = Φ(x, (v̌, ě))

is convex over (v̌, ě), the necessary and sufficient conditions for a = (v̂, ê) to be an optimal solution of the
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optimization problem minǎ∈A(x) Φ(x, ǎ) are

∂Φ(x, ǎ)

∂ěki→j

∣∣∣∣∣
a

= 0, ∀i ∈ N, j ∈ Ni, k ∈M, (7.10)

∂Φ(x, ǎ)

∂v̌i

∣∣∣∣
a

· (v̂′i − v̂i) ≥ 0, ∀i ∈ N, v̂′i ∈ Avi (x). (7.11)

Since Φ(x, a) = Φ(x̃,0) = Φ(f(x, a),0), we have ∂Φ(x,a)
∂a = ∂Φ(f(x,a),0)

∂a . Therefore (7.10) and (7.11)

simplify to

max
(
0, ẽkj

)
−max

(
0, ẽki

)
= 0, ∀i ∈ N, j ∈ Ni, k ∈M, (7.12)[

∂φ

∂vi

∣∣∣∣
ṽ

+ 2µ
∑
k∈M

Aki max
(
0, ẽki

)]
· (ṽ′i − ṽi) ≥ 0, ∀i ∈ N, ṽ′i ∈ Vi. (7.13)

To complete the proof of this direction we will actually prove the following stronger statement: if the

ensuing state x̃ of a state action pair [x, a] satisfies conditions (i)–(ii), then a ∈ argminǎ∈A(x)Φ(x, ǎ). For

such a state action pair [x, a], it is straightforward to show that x̃ satisfies the following conditions:

max
(
0, ẽki

)
= max

(
0, ẽkj

)
=

1

n
max

(
0,

n∑
i=1

Aki ṽi −Bk
)
, ∀i, j ∈ N, k ∈M, (7.14)[

∂φ

∂vi

∣∣∣∣
ṽ

+
2µ

n

∑
k∈M

Aki max

(
0,

n∑
i=1

Aki ṽi −Bk
)]
· (ṽ′i − ṽi) ≥ 0, ∀i ∈ N, ṽ′i ∈ Vi. (7.15)

Equation (7.14) is from condition (i) and equality (7.5). Equation (7.15) is the optimal condition of the

optimization problem minv∈V φ(v) + µ
nα(v). Substituting (7.14) into (7.15) proves that x̃ satisfies the two

optimality conditions in (7.12) and (7.13). Hence, a ∈ argminǎ∈A(x)Φ(x, ǎ). Therefore, we can conclude

that such [x, a] is a stationary state Nash equilibrium.

(⇒) Now we prove the other direction of this theorem. First, notice that if [x, a] is a stationary state Nash

equilibrium, then the action profile a = (v̂, ê) must satisfy conditions (iii)–(iv). Otherwise, x = (v, e) 6=

f(x, a). Secondly if [x, a] is a stationary state Nash equilibrium, Ji(x, ai, a−i) = minǎi∈Ai(x) Ji(x, ǎi, a−i)



130

for each i ∈ N . Since Ji(x, ǎi, a−i) is a convex function on ǎi := (v̌i, ěi) ∈ Ai(x), we know that

∂Ji(x, ǎi, a−i)
∂ěi

∣∣∣∣
a

= 0, ∀i ∈ N, k ∈M, (7.16)[
∂Ji(x, ǎi, a−i)

∂v̌i

∣∣∣∣
a

]
· (v̂′i − v̂i) ≥ 0, ∀i ∈ N, v̂′i ∈ Avi (x), (7.17)

which is equivalent to

2µ
(
max

(
0, ẽkl

)
−max

(
0, ẽki

))
= 0, ∀i ∈ N, j ∈ Ni, k ∈M (7.18)[

∂Ci
∂vi

∣∣∣∣
ṽ

+ 2µ
∑
k∈M

Aki max
(
0, ẽki

)]
· (ṽ′i − ṽi) ≥ 0, ∀i ∈ N, ṽ′i ∈ Vi. (7.19)

Equation (7.18) implies that max
(
0, ẽki

)
= max

(
0, ẽkj

)
for all agents i, j ∈ N and constraints k ∈M since

the communication graph is connected. Applying the equality in (7.5), we have that for all agents i ∈ N and

constraints k ∈M , max
(
0, ẽki

)
= 1

n max
(
0,
∑n
i=1A

k
i ṽi −Bk

)
. Substituting this equality into (7.19) gives

us [
∂φ

∂vi

∣∣∣∣
ṽ

+
2µ

n

∑
k∈M

Aki max

(
0,

n∑
i=1

Aki ṽi −Bk
)]
· (ṽ′i − ṽi) ≥ 0 (7.20)

for all ṽ′i ∈ Vi. Hence, ṽ is the optimal solution to φ(v) + µ
nα(v). Combining this with the fact that

x = x̃ = f(x, a), we can conclude that x = (v, e) satisfies Conditions (i)-(iv).

7.3.2 Design using barrier functions

In this section we introduce our second design which integrates barrier functions, as opposed to exterior

penalty functions, into the design of the agents’ cost functions. The key difference between the two ap-

proaches lies in the feasibility of both the intermediate and asymptotic solutions. In particular, barrier func-

tions can be employed to ensure that both the intermediate and asymptotic solutions are in the interior feasible

set. Accordingly we assume that the interior feasible set of problem (7.1) is nonempty when implementing

barrier function methods. Note that this implies that equality constraints are not permissible.

State Space, Actions, State Dynamics: These three parts are identical to those in Section 7.3.1.

Admissible Action Sets: Let x = (v, e) represent a strictly feasible state where the value profile v satisfies
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i=1A

k
i vi < Bk, vi ∈ Vi and the estimation profile e satisfies eki < 0 for each i ∈ N and k ∈ M . Define

the admissible action set for each agent i ∈ N as

ABFi (x) =
{

(v̂i, êi) : vi + v̂i ∈ Vi, eki +Aki v̂i − êki→out < 0, êki→j ≤ 0,∀k ∈M
}
. (7.21)

It can be checked that if the initial state x(0) is strictly feasible and the initial estimation term e(0) satisfies∑
i∈N e

k
i (0) =

∑
i∈N A

k
i vi(0) − Bk, then the resulting state trajectory generated according to process

x(t+ 1) = f(x(t), a(t)) where a(t) ∈
∏
i∈N Ai(x(t)) for all t ≥ 0 is also strictly feasible.

Agents’ Cost Functions: For any state x ∈ X and admissible action profile a ∈
∏
i∈N Ai(x), the cost

function of agent i is defined as

JBFi (x, a) = Ci(ṽi)− µ
∑
j∈Ni

m∑
k=1

log
(
−ẽkj

)
(7.22)

where (ṽ, ẽ) = f(x, a) is the ensuing state and µ > 0 is a trade-off parameter. Note that the sole difference

between (7.22) and (7.7) rests on the penalty associated with being close to constraint violations.

The above methodology using barrier functions yields a game that possesses the same analytical proper-

ties of the designed game using exterior penalty function as given in Theorem 7.1 with two exceptions. First,

the potential function of the state based game is now of the form

ΦBF (x, a) = φ(ṽ)− µ
∑
i∈N

m∑
k=1

log
(
−ẽki

)
. (7.23)

Second, (7.9) is replaced with a new optimization problem of the form

minv∈V φ(v)− nµ
∑
k∈M log

(
Bk −

∑
i∈N A

k
i vi
)

s.t.
∑m
i=1A

k
i vi −Bk < 0, k ∈M.

(7.24)

We omit a formal statement of the theorem in addition to the proof for brevity as it is virtually identical to

that of Theorem 7.1. Note that as µ→ 0, all equilibria of our designed game are solutions to the constrained

optimization problem in (7.1) [113].
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7.4 An illustrative example

Consider an economic dispatch problem in electricity power systems, introduced in [62], with N generators

and a demand requirement D ≥ 0. Each generator is capable of generating an amount of power vi ∈ Vi =

[vi, v̄i], where vi and v̄i denote the minimum and maximum generation levels respectively, subject to a cost

Ci(vi). The system level objective is to meet the demand level D while minimizing the sum of the costs

incurred by the generators. More specifically, the system level objective is of the form

minvi∈[vi,v̄i]
φ(v) =

∑
i∈N Ci(vi)

s.t.
∑
i∈N vi ≥ D.

(7.25)

One of the central challenges associated with attaining generation levels v ∈ V to optimize (7.25) is that

each individual generator selects its own generation level in response to incomplete information regarding

the system as a whole.2

Consider a simple economic dispatch problem where N = {1, 2, 3, 4}, generation capabilities Vi = [0, 5]

for all i ∈ N , cost functions Ci(vi) = v2
i +vi+10 for i ∈ {1, 2} and Ci(vi) = 0.5v2

i +vi+10 for i ∈ {3, 4},

a demand D = 12, and a communication graph of the form 1 ↔ 2 ↔ 3 ↔ 4. It is straightforward to verify

that the optimal generation levels are (2, 2, 4, 4). The methodologies developed in this chapter can be used to

attain a distributed solution to this economic dispatch problem that satisfies the communication graph. The

following highlights the specifics of our design while focusing on generator 2 for the penalty function method

given in Section 7.3.1:

• State: x2 = (v2, e2);

• Action: a2 = (v̂2, ê2→1, ê2→3);

• Admissible action set: APF
2 (x2) = {(v̂2, ê2) : v2 + v̂2 ∈ [v2, v̄2]};

• State dynamics (ṽ, ẽ) = f(x, a): ṽ2 = v2 + v̂2 and ẽ2 = e2 − v̂2 + ê2←in − ê2→out;

2Dual algorithms are commonly employed for attaining distributed solutions to constrained optimization problems such as the pre-
sented economic dispatch problem. A dual algorithm requires a two-time scale setting where a centralized authority sets appropriate
pricing terms, through the use of Lagrangian dual variables, to coordinate behavior. However, in this chapter, we study algorithms where
no such centralized authority exists.
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• Cost functions: JPF
2 (x, a) = C2(ṽ2) + µ

∑
j∈N2

∑
k∈N [max (0, ẽj)]

2.

The specifics for the alternative generators could be derived in a similar fashion. Likewise, integrating barrier

functions as opposed to penalty functions would incorporate substituting ABF
i for APF

i as defined in (7.21)

and JBF
i for JPF

i as defined in (7.22).

Figure 7.1 shows simulation results for both the penalty function method and barrier function method

when employing the learning algorithm gradient play and initializing the generation levels at v(0) = (5, 4, 3, 2).

The learning algorithm gradient play, given in the previous chapter, guarantees convergence to a stationary

state Nash equilibrium in any state based potential game. Hence gradient play can be utilized to complete the

control design. The gradient play algorithm takes on the following forms:

Penalty Function Method Barrier Function Method

v̂i(t) =
[
−ε · ∂Ji(x(t),a)

∂v̂i

∣∣∣
a=0

]+
APF
i (x(t))

v̂i(t) = β(t)
(
−ε ∂Ji(x(t),a)

∂v̂i

∣∣∣
a=0

)
êki→j(t) = −ε · ∂Ji(x(t),a)

∂êki→j

∣∣∣
a=0

êki→j(t) = β(t) min

(
0,−ε ∂Ji(x(t),a)

∂êki→j

∣∣∣
a=0

)
where ε = 0.002 is the step size, [·]+ represents the projection onto the represented closed convex set, and

β(t) =
(

1
2

)l(t)
where l(t) is the smallest nonnegative integer l such that (v̂i(t), êi→j(t)) ∈ ABF

i (x(t)). Note

that computing such gradients only requires each agent i ∈ N to have access to the state of neighboring

agents j ∈ Ni, i.e., {xj(t)}j∈Ni . For both approaches, the generation levels quickly converge close to the

optimal generation levels; however, the barrier function method takes longer to converge. This is expected

since the barrier function approach also ensures that the demand is satisfied dynamically and asymptotically,

which is not guaranteed by the penalty function approach.

7.5 Conclusion

This chapter focuses on the general question of how to design local agent objective functions for distributed

engineering systems with coupled constraints. By combining the design presented in the last chapter, which

focuses on optimization problems with coupled objective functions but decoupled constraints, we can also

deal with optimization problems with coupled objective functions and coupled constraints in a similar fashion.
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(a) Exterior Penalty Functions (b) Barrier Functions

Figure 7.1. Simulation results for the economic dispatch problem. Subfigure 7.1(a) shows the simulation
results when using gradient play applied to the state based game with exterior penalty functions using a
tradeoff parameter µ = 60. The simulation demonstrates that the profile of generation levels quickly ap-
proaches (1.97, 1.97, 3.93, 3.93) which is close to optimal. However, the generation levels do necessarily
satisfy the demand. Subfigure 7.1(b) shows the simulation results when using gradient play applied to the
state based game with barrier functions using a tradeoff parameter µ = 0.2. The simulation demonstrates
that the profile of generation levels quickly approaches (2.03, 2.03, 4.02, 4.02) which is close to optimal.
Furthermore, the generation levels always exceed the demand in this setting.
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Chapter 8

Distributed Optimization with a Time
Varying Communication Graph

[] The previous two chapters used the framework of state based games to identify a systematic method-

ology for engineering a decision making architecture, where agents make independent decisions in

response to local information while ensuring that the emergent global behavior is desirable with re-

spect to a given system level objective. A drawback of the previous approach is the dependence on a

time-invariant and connected communication graph. These conditions are not practical for a wide vari-

ety of multi-agent systems. In this chapter we propose a new game theoretical approach for addressing

distributed optimization problems that permits relaxations in the structure of the communication graph.

8.1 Introduction

In Chapters 6-7 we identified a systematic methodology for the design of local agent objective functions that

satisfies virtually any degree of locality while ensuring that all resulting Nash equilibria represent optimal

solutions to a global optimization problem. That design paralleled the theme of distributed optimization

algorithm design which can be considered as a concatenation of a designed game and a distributed learning

algorithm.

However, a drawback of our previous proposed game design methodology is the dependence on a con-

nected, undirected, and time-invariant communication graph. These conditions are not practical for a wide

variety of multi-agent systems. In this chapter we propose a new methodology for addressing this task that

permits relaxations in the structure of the communication graph while still ensuring the efficiency of the re-
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sulting equilibria. The communication graph is allowed to be time-varying and even unconnected at frequent

times.

The key enabler for this result is the same as in Chapter 6, i.e. the addition of local state variables to the

game environment. These state variables are utilized as a coordinating entity to decouple the system level

objective into agent specific objectives of the desired interdependence. The difference between this work

and our previous work lies in the design of local objective functions. Here, the resulting game is a state

based potential game with a state based potential function possessing a property which is invariant to the

structure of the communication graph. This is in contrast to the design in Chapter 6 where the state based

potential function is dependent on the structure communication graph. This invariant property of the state

based potential function allows our proposed methodology to distributively solve the global optimization

problem under almost any practical setting for the time-varying communication graph. Therefore, there is

no specific time-varying rule modeled in this chapter for the communication graph. Our results show that as

long as the communication graph is sufficiently connected over time, the distributed algorithm we propose

will converge to the optimal solution of the global optimization problem. More rigorous arguments will

follow in the later part of the chapter.

The structure of the chapter is as follows. Section 8.2 introduces the problem setup. Section 8.3 provides a

state based game design and analyzes the properties of the designed game. Section 8.4 proposes a distributed

learning algorithm to reach the equilibria in the designed state based game which represents the optimal

solution for the global optimization problem. Lastly Section 8.5 provides a simple example to illustrate our

methodology and Section 8.6 concludes the chapter.

8.2 Preliminaries

8.2.1 Problem setup

We consider a multiagent system consisting of n agents denoted by the set N := {1, · · · , n}. Each agent

i ∈ N is endowed with a set of possible decisions (or values) denoted by Vi which is a convex subset of Rdi ,
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i.e. Vi ⊂ Rdi .1 We denote a joint decision by the tuple (v1, · · · , vn) ∈ V :=
∏
i∈N Vi where V is referred to

as the set of joint decisions. There is a global objective of the form φ : Rn → R that a system designer seeks

to minimize. We assume throughout that the objective function φ is differentiable convex unless otherwise

noted. More formally, the optimization problem takes on the form:

minvi φ(v1, v2, . . . , vn)

s.t. vi ∈ Vi,∀i ∈ N.
(8.1)

The goal of this chapter is to establish a distributed interaction framework for this optimization problem

where each agent i ∈ N makes its decision independently in response to local information. The agents’

decisions interact with each other through local communication which is defined by a communication graph.

The difference between the problem considered in this chapter and the one in Chapter 6 is that we now allow

the communication graph between agents to be time varying. We represent the information available to each

agent at time t ∈ {0, 1, ...} by an undirected communication graph G(t) = {N, E(t)} with nodes N and

edges E(t). By convention, we let (i, i) ∈ E(t) for all i ∈ N and t ≥ 0. Define the neighbors of agent i

at time t as Ni(t) := {j ∈ N : (i, j) ∈ E(t)}. The distributed learning framework produces a sequence

of decision v(0), v(1), v(2), . . . where at each iteration t ∈ {0, 1, . . .} the decision of each agent i is chosen

independently according to a local control law of the following form

vi(t) = Fi

(
{vj(t− 1)}j∈Ni(t−1)

)
.

Our goal is to design the local controllers {Fi(·)}i∈N within the desired information constraints such that the

collective behavior converges to a joint decision v∗ that solves the optimization problem in (8.1).

1For ease of exposition, we let di = 1 for all i ∈ N . The results in this paper hold for cases where di > 1. Moreover, di can be
different from dj if i 6= j.
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8.3 State based game design

8.3.1 A state based game design

State Space: The starting point of our design is an underlying state space X where each state x ∈ X is

defined as a tuple x = (v, e,G) with the following elements:

• v = (v1, . . . , vn) ∈ Rn is the profile of values.

• e = (e1, . . . , en) is the profile of estimation terms where ei = (e1
i , · · · , eni ) ∈ Rn is player i’s estima-

tion for the joint action profile v. The term eki captures player i’s estimate of player k’s actual value

vk. The estimation terms are introduced as a means to relax the degree of information available to each

agent.

• G is the undirected communication graph. We represent the communication graph as G = (N1, N2, . . . , Nn)

where Ni is the neighbor sets of agent i.

Action Sets: Each agent i is assigned an action set Ai that permits agents to change their value and change

their estimation through communication with neighboring agents. Specifically, an action for agent i is defined

as a tuple ai = (v̂i, êi) where

• v̂i ∈ R indicates a change in the agent’s value vi, and

• êi := {êki→j}k∈Nj∈N indicates a change in the agent’s estimation terms ei where êki→j ∈ R represents the

estimation value that player i passes to player j regarding to the value of player k.

Since a player is only allowed to communicate with its neighbors, the admissible actions for êi given the state

x is

Aei (x) :=
{
{êki→j}k∈Nj∈N : êki→j = 0,∀j /∈ Ni, k ∈ N

}
.

Here 0 means that player i does not pass any estimation to player j.

State Transition Rules: We now describe how the state involves.
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• The evolution of the value profile v is captured by a time-invariant, deterministic, and local state tran-

sition rule of the form:

P vt (x, a) = P v(x, a) = {vi + v̂i}i∈N . (8.2)

• The evolution of the estimation profile e is also captured by a time-invariant, deterministic, and local

state transition rules of the form:

P et (x, a) = P e(x, a) = {eki + nδki v̂i + ěki }i,k∈N (8.3)

where ěki ,
∑
j∈Ni ê

k
j→i−

∑
j∈Ni ê

k
i→j and δki is an indicator function, i.e., δii = 1 and δki = 0 for all

k 6= i.

• The state transition for the communication graph G is given as PGt : X × A → ∆(Ḡ) at each time t.

Here Ḡ denotes the set of all undirected communication graph and ∆(Ḡ) denotes the set of probability

distributions over this set. In practice different applications would have different evolution rules PGt .

To ensure the generality of our model, we do not assign any specific evolution rule for PGt and later

we will show that as long as the undirected G(t) is connected sufficiently over the time, our approach

can solve the optimization problem (8.1). Notice that since the state transition rule PGt is allowed to be

time-dependent/variant, the evolution rule PGt can also model the situation where the graph transition

is determined/affected by exogenous disturbances.

Notice that each agent i can update its own local state (vi, ei) using local state and action information through

Equation (8.2,8.3). Since the optimization problem in (8.1) imposes the requirement that vi ∈ Vi, we condi-

tion the available actions for v̂i to an agent i on the current state x = (v, e) as:

Avi (x) := {v̂i : vi + v̂i ∈ Vi} . (8.4)

The admissible action set is defined as Ai(x) , Avi (x)×Aei (x).
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Invariance Property of State Dynamics: Let v(0) = (v1(0), ..., vn(0)) be the initial values of the agents.

Define the initial estimation terms e(0) to satisfy
∑
i∈N e

k
i (0) = n · vk(0) for each agent k ∈ N ; hence,

the initial estimation values are contingent on the initial values. Note that satisfying this condition is trivial

as we can set eii(0) = n · vi(0) and eji (0) = 0 for all agents i, j ∈ N where i 6= j. Define the initial state

as x(0) = (v(0), e(0),G(0)). It is straightforward to show that for any action trajectory a(0), a(1), · · · ,, the

resulting state realization x(t + 1) ∼ Pt(x(t), a(t)) satisfies the following equalities for all times t ≥ 1 and

agents k ∈ N :
n∑
i=1

eki (t) = n · vk(t). (8.5)

Agent Cost Functions: The introduced cost functions possess two distinct components and take on the form

Ji(x, a) = Jφi (x, a) + α · Jei (x, a) (8.6)

where Jφi (·) represents the component centered on the objective function φ; Jei (·) represents the component

centered on the state x; and α is a positive constant representing the trade-off between the two components.2

We define each of these components as follows: for any state x ∈ X and admissible action profile a ∈∏
i∈N Ai(x) we define

Jφi (x, a) =
∑
j∈Ni φ(ẽ1

j , ẽ
2
j , . . . , ẽ

n
j )

Jxi (x, a) =
∑
j∈Ni

∑
k∈N

(
ẽkj
)2 − n (ṽi)

2

(8.7)

where ṽ = P v(x, a) and ẽ = P e(x, a). The local cost function in (8.7) is the main difference between

the design in the chapter and the design in Chapter 6. The rest of the chapter shows that the new local cost

function design allows us to deal with time-varying communication graphs.

8.3.2 Analytical properties of the designed game

Before analyzing the properties of the designed game, we introduce one core equilibrium concept that we

will use in this chapter. Define a state set X̄(x0, a0) as the set of all possible ensuing states from the state

2We will show that as long as α is positive, all the results demonstrated in this chapter hold. However, choosing the right α is
important for the learning algorithm implementation.
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action pair [x0, a0]:

X̄(x0, a0) ,
{
x = (v, e,G) : v = P v(x0, a0), e = P e(x0, a0),G is an undirected graph

}
.

Definition 8.1. (Stationary Nash Equilibrium) A state action pair [x∗, a∗] is a stationary Nash equilibrium if

(D-1): for any x ∈ X̄(x∗, a∗):

a∗i ∈ Ai(x) and a∗i ∈ argminai∈Ai(x)Ji(x, ai, a
∗
−i).

(D-2): x∗ ∈ X̄(x∗, a∗).

The first condition is similar to the Nash equilibrium concept and the second condition requires that the

state components v and e are stationary. As the structure of the graph transition rule PGt can be very general,

in the definition of X̄[x∗, a∗] we include all the undirected graphs as possible ensuing communication graphs.

The two conditions imply that stationary Nash equilibria represent fixed points of the better reply process for

state based games under any communication graph transition rule PGt . That is, if a state action pair at time t,

i.e., [x(t), a(t)] is a stationary Nash equilibrium, then a(τ) = a(t) for all time τ ≥ t if all players adhere to a

better reply process. The following theorem demonstrates that all stationary Nash equilibria of our designed

game are solutions to the optimization problem (8.1).

Theorem 8.1. Model the optimization problem in (8.1) as a state based game G as depicted in Section 8.3.1

with any positive constant α. Then a state action pair [x, a] := [(v, e,G), (v̂, ê)] is a stationary Nash equilib-

rium in game G if and only if the following conditions are satisfied:

(i) The value profile v is optimal for problem (8.1);

(ii) The estimation profile e satisfies that eki = vk, ∀i, k ∈ N ;

(iii) The change in value satisfies v̂i = 0, ∀i ∈ N ;

(iv) The change in estimation satisfies êki→j = 0, ∀i, j, k ∈ N .
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Proof. Firstly we prove that the two conditions in Definition 8.1 of a stationary Nash equilibrium, (i) ai ∈

Ai(x′) for any x′ ∈ X̄(x, a) and (ii) x ∈ X̄(x, a), are equivalent to Condition (iii) and (iv) in Theorem 8.1,

i.e. action a is a null action 0. For one direction, it is straightforward to show that if the action a is a null

action 0, then ai ∈ Ai(x′) for any x′ ∈ X̄(x, a) and x ∈ X̄(x, a). For the other direction, it is also can be

shown that if the action v̂ 6= 0 then x /∈ X̄(x, a) and if the action ê 6= 0, ai /∈ Ai(x′) for some x′.

Now notice that a = 0 ensures that the ensuing value profile P v(x, a) = v and the ensuing estimate

profile P e(x, a) = e, which means that

X̄(x,0) = {(v, e,G′) : G′ is an undirected graph}.

Therefore the rest of the proof only need to show that the condition in Definition 8.1,

0 ∈ argmina′i∈Ai(x′)Ji(x
′, a′i, 0)

for any x′ ∈ X̄(x,0), is equivalent to the fact that (v, e) satisfies Condition (i) and (ii) in Theorem 8.1. Given

a state x′ ∈ X̄(x,0), the condition 0 ∈ argmina′i∈Ai(x′)Ji(x
′, a′i, 0) is equivalent to:

[
∂Ji(x,a

′
i,a−i=0)
∂v̂i

∣∣∣
a′i=0

]
· (v̂′i − 0) ≥ 0,∀i ∈ N, v̂′i ∈ Avi (x)

∂Ji(x,a
′
i,a−i=0)

∂êki

∣∣∣
a′i=0

= 0,∀i, k ∈ N.

The two equations are equivalent to

[
φi|ei + 2α · neii − 2α · nvi

]
· (v′i − vi) ≥ 0,∀i ∈ N, v̂′i ∈ Avi (x). (8.8)

φk|ei − φk|ej −
(
2α(ekj − eki )

)
= 0,∀i, k ∈ N, j ∈ Ni. (8.9)

Therefore, the rest of the proof only needs to show that two Equations (8.9, 8.8) are equivalent to Condition

(i) and (ii) in this theorem.
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(⇐) If (v, e) satisfies conditions (i) and (ii), we have:

[φi|v] · (v′i − vi) ≥ 0, ∀i ∈ N, v′i ∈ Vi, (8.10)

eki = vk, ∀i, k ∈ N. (8.11)

Equation (8.11) tells us that equation (8.9) is satisfied. Subsitituting equation (8.11) into equation (8.10), we

know that equation (8.8) is satisfied. Therefore, both Equation (8.8) and Equation (8.9) are satisfied.

(⇒) Now we prove the other direction. Suppose (v, e) satisfy Equation (8.9, 8.8). Focus on equation

(8.9) first. Applying Lemma 6.11, equation (8.9) coupled with the fact that φ is a convex function implies

that for any pair i ∈ N, j ∈ Ni,ẽi = ẽj .

Given a connected and undirected graph G, we know that ei = ej for all i, j ∈ N . Applying equality

(8.5), we have eki = vk,∀i, k ∈ N , i.e. (v, e) satisfies Condition (i) listed in the theorem. Substituting this

equality into equation (8.8), we have

[φi|v] · (ṽ
′
i − vi) ≥ 0,∀i ∈ N, v̂′i ∈ Avi (x) (8.12)

Since φ is a convex function, this tells us that v is an optimal solution for problem (8.1). 2

The above theorem demonstrates that the resulting equilibria of our state based game coincide with the

optimal solutions to the optimization problem in (8.1). Moreover, from this theorem, it is straightforward to

derive the following corollary:

Corollary 8.2. If a station action pair [x∗, a∗] , [(v∗, e∗,G∗), a∗] is a stationary Nash equilibrium, then any

station action pair [(v∗, e∗,G), a∗] is a stationary Nash equilibrium for any undirected graph G.

The following theorem demonstrates that the designed game possesses a property similar with potential

games that facilitates the design of learning rules to reach such a stationary Nash equilibrium.

Theorem 8.3. Model the optimization problem in (8.1) as a state based game G as depicted in Section 8.3.1
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with any positive constant α. The following function Φ : X ×A → R

Φ(x, a) = Φφ(x, a) + α · Φx(x, a) (8.13)

where

Φφ(x, a) =
∑
i∈N

φ(ẽ1
i , ẽ

2
i , ..., ẽ

n
i ) (8.14)

Φx(x, a) =
∑
i∈N

∑
k∈N

(
ẽki
)2 − n ·∑

i∈N
(ṽi)

2 (8.15)

ṽ = P v(x, a) and ẽ = P e(x, a),

satisfies the following two properties:

1. For every state action pair [x, a] any player i ∈ N any action a′i ∈ Ai(x),

Ji(x, a
′
i, a−i)− Ji(x, a) = Φ(x, a′i, a−i)− Φ(x, a).

2. For every state action pair [x, a] and any x̃ ∈ X̄(x, a), we have Φ(x, a) = Φ(x̃,0) where 0 is a null

action given as v̂i = 0, êki→j = 0 for any i, k ∈ N .

Moreover, Φ(x, a) is a convex function over a = (v̂, ê).

Proof. It is straightforward to verify that Φ(x, a) defined in Equation (8.13) satisfies Properties 1) and 2)

in Theorem 8.3. So we only need to prove that Φ(x, a) is a convex function over a = (v̂, ê). Substituting

equality (8.5) into Φx(x, a) which is defined in equation (8.13),

Φx(x, a) =
∑
k∈N

∑
i∈N

(
ẽki
)2 − n∑

k∈N

(∑
i∈N ẽ

k
i

n

)2

=
∑
k∈N

∑
i∈N

(
ẽki
)2 − 1

n

(∑
i∈N

ẽki

)2


=
1

n

∑
k∈N

 ∑
i,j∈N,j<i

(
ẽki − ẽkj

)2 .
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Therefore Φx(x, a) is a convex function of ẽ. Since Φφ is also a convex function of ẽ, Φ(x, a) is a convex

function of ẽ as well. Thus Φ(x, â) is a convex function over a = (v̂, ê) for ẽ is a linear function of (v̂, ê).

Property 1) and 2) of this theorem demonstrate that the function Φ(x, a) satisfies the properties of a state

based potential function defined in Chapter 6. Thus we call this game a state based potential game and Φ(x, a)

a state based potential function.

Notice that Φ(x,0) is independent of the communication graph G. Therefore, even though the commu-

nication graph G is time varying, Theorem 8.3 establishes that our state based game design possesses an

underlying structure that facilitates the design of distributed algorithms to reach stationary Nash equilibria.

In the next section, we provide a distributed learning algorithm to reach those stationary Nash equilibria that

were characterized in Theorem 8.1.

8.4 Gradient play

Since the state based potential function Φ(x, a) is a convex function over a = (v̂, ê), we can apply gradient

play algorithm in Chapter 6 to develop a distributed learning algorithm for the state based game depicted

in section 8.3. In this section, we assume that Vi is a closed convex set for all i ∈ N . The gradient play

algorithm is given as follows:

1. Each agent i initially randomly chooses a value vi(0) and set eii = nvi(0) and eki (0) = 0 for all k 6= i.

Set t=0;

2. At each time t ≥ 0 each agent i selects an action ai(t) , (v̂i(t), êi(t)) given the state x(t) =

(v(t), e(t),G(t)) according to:

v̂i(t) =

[
−ε · ∂Ji (x(t), a)

∂v̂i

∣∣∣∣
a=0

]+

=
[
−ε(n φi|ei(t) + 2nα(eii(t)− vi(t))

]+
(8.16)

êki→j(t) = −ε ∂Ji (x(t), a)

∂êki→j

∣∣∣∣∣
a=0

= ε
(
φk|ei(t) − φk|ej(t) + 2α

(
eki (t)− ekj (t)

))
(8.17)

where [·]+ represents the projection onto the closed convex set Av̂i (x); and ε is the stepsize which is a

positive constant. Notice that each agent i can select its own action using local information since Ji(·)
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only depends on local information.

3. Each agent i updates the local state (vi(t + 1), ei(t + 1)) according to Equation (8.2) and (8.2) using

its own local information. The communication graph G(t) is realized according to PGt .

4. Increase t by 1 and return to step 2.

The following theorem establishes the convergences of the gradient play.

Theorem 8.4. Suppose there exists an integer k > 0 such that the undirected communication graph G(t)

is connected for at least one time step t ∈ [nk, nk + k − 1] for all n ≥ 0. If the step-size is sufficiently

small, and the sequence (v(1), e(1)), (v(2), x(2)), · · · produced by the gradient play algorithm is contained

in a compact subset of R2n, then [v(t), e(t), a(t)] in the gradient play algorithm asymptotically converges to

[(v∗, e∗) ,0] where [(v∗, e∗,G) ,0] is a stationary Nash equilibrium with any graph G.

Proof. Notice that Φ(x(t),0) is independent of G(t); therefore we can write Φ(x(t),0) as Φ(v(t), e(t),0).

Then we can show that Φ(x(t),0) is monotonically decreasing along the gradient play algorithm. The proof

of the convergence follows exactly the same as the proof for Theorem 4 in Chapter 6. We omit the details

here.

In combination with Theorem 8.1, Theorem 8.4 demonstrates that the gradient play algorithm provides a

distributed learning algorithm to solve the optimization problem in (8.1).

Remark 8.1. The theorem requires a strong condition on the undirected communication graph G(t), i.e. if

it is connected frequently enough, the results can be extended to more general cases. For example, it can be

shown that if there exists a finite k ≥ 0 such that ∪τk+k−1
t=τk G(t) , (N,∪τk+k−1

t=τk E(t)) is connected for all

τ ≥ 0, then the gradient play algorithm will converge to the stationary Nash equilibrium. As a non-rigorous

statement, as long as the union of G(t) over a finite time horizon is connected frequently enough, the gradient

play algorithm will converge to a stationary Nash equilibrium.
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8.5 Illustrations

We will use a simple abstract example to illustrate the problem and the method. Consider the following

optimization problem:

min
v1,...,v5

vTPv + qT v

s.t. vi ∈ [0, i] ⊂ R

where qT = −[9 9 9 9 9] and

P =



6 1 1 1 −1

1 7 1 −1 2

1 1 8 2 −2

1 −1 2 9 3

−1 2 −2 3 9


The goal is to establish a local control law for each agent i that converges to the optimal value v∗i . One

possibility for a distributed algorithm is to utilize a gradient descent algorithm where each agent adjusts its

own value according to ∂φ
∂vi

= 2
∑5
j=1 P (i, j)v(j) + q(i)v(i). As P is a full-itemized matrix, implementing

this algorithm requires each agent to have complete information regarding the decision of all other agents.

Using the method developed in this chapter, we localize the information available to each agent by allow-

ing them to have estimates of other agents’ decision value. We simulate the gradient play algorithm with a

time varying communication graph. In the simulation, at each time t ≥ 0, each communication link (i, j) is

drawn randomly with a certain probability. Figure 8.1 illustrates the results of the gradient play algorithm.

The top figure in Figure 8.1 shows the evolution of the cost φ(v) using the true gradient decent algorithm (red)

and our proposed gradient play algorithm (blue). The figure shows that the convergence rate is comparable

to the centralized gradient descent algorithm. Also we can notice that φ(v(t)) for our distributed algorithm is

not monotonically decreasing. This is reasonable since the gradient play only guarantees the potential func-

tion Φ(x(t),0) monotonically decreasing. This is confirmed in the middle figure of Figure 8.1 which shows

the evolution of the state based potential function Φ(x(t),0). The bottom figure shows the evolution of agent

i’s estimation error as to agent 1’s true value, i.e., e1
i − v1. Note that the error converges to 0 illustrating that
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the agent’s estimate converges to the right values as proved in Theorem 8.1 and 8.4.

8.6 Conclusion

We utilize the framework of state based potential games to develop a systematic methodology for distributed

optimization with a time-varying communication graph. This work, along with previous work in Chapters 6-

7, demonstrates that the framework of state based potential games leads to a value hierarchical decomposition

that can be an extremely powerful for the design and control of multiagent systems.

Figure 8.1. Simulation results: The top figure shows the evolution of the system cost using the true gradient
descent algorithm (red) and our proposed algorithm (black). The middle figure shows the evolution of the
state based potential function Φ(x(t),0). The bottom figure shows the evolution of agent i’s estimation error
as to agent 1’s true value, i.e., e1

i − v1. Note that the error converges to 0 illustrating that the agent’s estimate
converges to the right values as proved in Theorem 8.1 and 8.4.
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