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Abstract
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Secondary organic aerosol (SOA) is produced in the atmosphere by oxidation of volatile organic

compounds. Laboratory chambers are used understand the formation mechanisms and evolution of

SOA formed under controlled conditions. This thesis presents studies of SOA formed from anthro-

pogenic and biogenic precursors and discusses the effects of chamber walls on suspended vapors and

particles.

During a chamber experiment, suspended vapors and particles can interact with the chamber

walls. Particle wall loss is relatively well-understood, but vapor wall losses have received little study.

Vapor wall loss of 2,3-epoxy-1,4-butanediol (BEPOX) and glyoxal was identified, quantified, and

found to depend on chamber age and relative humidity.

Particles reside in the atmosphere for a week or more and can evolve chemically during that

time period, a process termed aging. Simulating aging in laboratory chambers has proven to be

challenging. A protocol was developed to extend the duration of a chamber experiment to 36 h of

oxidation and was used to evaluate aging of SOA produced from m-xylene. Total SOA mass con-

centration increased and then decreased with increasing photooxidation suggesting a transition from

functionalization to fragmentation chemistry driven by photochemical processes. SOA oxidation,

measured as the bulk particle elemental oxygen-to-carbon ratio and fraction of organic mass at m/z

44, increased continuously starting after 5 h of photooxidation.

The physical state and chemical composition of an organic aerosol affect the mixing of aerosol

components and its interactions with condensing species. A laboratory chamber protocol was devel-

oped to evaluate the mixing of SOA produced sequentially from two different sources by heating the

chamber to induce particle evaporation. Using this protocol, SOA produced from toluene was found

to be less volatile than that produced from α-pinene. When the two types of SOA were formed

sequentially, the evaporation behavior most closely represented that of SOA from the second parent

hydrocarbon, suggesting that the structure of the mixed SOA particles resembles a core of SOA

from the first precursor coated by a layer of SOA from the second precursor, indicative of limiting

mixing.
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Atmospheric aerosols affect climate, visibility, and human health, but much remains to be un-

derstood about the effects aerosols have on these systems. A large fraction of submicron particle

mass is comprised of organic aerosols (OA) (Zhang et al., 2007). OA can be categorized as primary

organic aerosol (POA), which are directly emitted as particles, or secondary organic aerosol (SOA),

which form from semivolatile organic compounds (SVOCs) produced from reaction of volatile or-

ganic compounds (VOCs). Understanding SOA formation processes is essential to identifying SOA

sources and predicting SOA production in the atmosphere.

VOCs are trace constituents of ambient air; however, they are prominent in tropospheric chem-

istry. Over 10,000 VOCs have been measured in ambient air, and it is estimated that over a million

different VOCs may exist (Goldstein and Galbally, 2007). A single source may emit a variety of

different compounds; for example, gasoline and diesel emissions contain aromatics, cycloalkanes,

and straight and branched alkanes with 8-25 carbon atoms (Gentner et al., 2012), and multiple

monoterpenes, carboxylic acids, and carbonyl compounds have been sampled in ponderosa pine

forests (Villanueva-Fierro et al., 2004; Lee et al., 2005). While ambient sampling is essential to

identifying SOA sources, the variety of co-emitted VOCs and meteorology at a site preclude specific

conclusions of SOA formation mechanisms.

Once SOA precursor molecules have been identified, study of these molecules in laboratory

chambers can elucidate chemical reaction and SOA formation mechanisms and quantify the SOA

produced from a single source (Hallquist et al., 2009). Laboratory chambers provide a controlled

environment in which a single parent VOC can be oxidized with a specific oxidant under defined

NOx conditions at one temperature and relative humidity. Various chamber facilities with reactor

volume ≥ 4 m3 exist around the world (e.g. Cocker et al., 2001; Saathoff et al., 2003; Rohrer et al.,

2005; Paulsen et al., 2005; Presto et al., 2005; Carter et al., 2005; King et al., 2007; Nakao et al.,

2011; Lee et al., 2004; Siese et al., 2001; Lim and Ziemann, 2009; Liu et al., 2012; Wang et al.,

2011; Bernard et al., 2010). Chambers are most commonly constructed out of FEP Teflon film but

are also built of aluminum or stainless steel. Oxidation occurs in the dark (e.g. ozonolysis) or is

initiated with blacklights, Xenon arc lamps, or natural sunlight. Most indoor chambers are enclosed
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in temperature-controlled structures. Chamber experiments typically involve combining a known

concentration of a single VOC and oxidant in clean air, initiating oxidation, and measuring the for-

mation of vapor-phase oxidation products and SOA amount and chemical composition with a suite

of gas- and particle-phase instrumentation. To prevent contamination between experiments, cham-

bers are cleaned using a variety of techniques including flushing with clean air, baking, irradiating,

and oxidizing with O3.

Although chambers provide an excellent means of investigating oxidation mechanisms of a single

VOC, they also have limitations. Particles deposit to chamber walls by diffusion or gravitational

settling (Crump and Seinfeld, 1981); and these particle wall losses can be affected by charging on the

walls and particles (McMurry and Rader, 1985). In quantifying SOA production for calculation of

SOA yield (mass concentration of SOA formed divided mass concentration of parent VOC reacted),

particle wall losses must be taken into account through determination of size-dependent particle wall

loss rate constants in separate experiments (Keywood et al., 2004; Ng et al., 2007), by measurement

of particle decay before or after SOA growth (Hildebrandt et al., 2009), or through dynamic modeling

of a particle size distribution (Pierce et al., 2008). Vapors can also deposit to the walls, either onto

particles deposited to the walls during an experiment (Weitkamp et al., 2007; Hildebrandt et al.,

2009, 2011) or to the chamber walls directly. The effect of vapor wall loss is difficult to distinguish

from condensation to suspended particles in SOA growth experiments and must be examined in

dedicated vapor wall loss experiments. Vapor wall losses have been observed in Tedlar sampling bags

(McGarvey and Shorten, 2000) and Teflon chambers (Grosjean, 1985; McMurry and Grosjean, 1985;

Maddalena et al., 2002; Matsunaga and Ziemann, 2010). The extent of vapor wall loss was found

to depend on compound vapor pressure and structure (Matsunaga and Ziemann, 2010). Chapter 2

presents a study of vapor wall loss in laboratory chambers. Two compounds, glyoxal and 2,3-epoxy-

1.4-butanediol (BEPOX), are found to reversibly partition to chamber walls, and the extent of

partitioning is influenced by chamber age and relative humidity. Once vapor wall loss rate constants

are determined, a model is used to assess the competition among uptake to suspended particles,

deposited particles, and chamber walls.
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A disparity exists between the time that a particle spends in the atmosphere and the duration of

chamber experiments. Particles can reside in the atmosphere for approximately one week, whereas

the duration of chamber experiments rarely exceeds 18 h. Particles in the atmosphere undergo

continuous chemical and physical processing, commonly called aging (Rudich et al., 2007). Mea-

surements of bulk aerosol chemical composition using aerosol mass spectrometry have correlated an

increase in particle oxygen content, reported as oxygen-to-carbon ratio, fraction of organic mass at

m/z 44, or average carbon oxidation state, with aging (Heald et al., 2010; Ng et al., 2010, 2011;

Kroll et al., 2011). The extent of aging in ambient particles is greater than that observed in chamber

experiments, and the discrepancy has been attributed to higher SVOC concentrations and shorter

oxidation timescales in chamber experiments (Ng et al., 2010). SOA aging has been studied in flow

reactors using OH exposures equivalent to 1-20 days of atmospheric oxidation and particle chemical

composition was found to follow the same trend in increasing oxygen content as that of ambient OA

(Kroll et al., 2009; Lambe et al., 2011). Chapter 3 describes a protocol to extend to 36 h the dura-

tion of a chamber experiment and characterizes the chemical aging of SOA formed from m-xylene

using this protocol. The gas- and particle-phase chemical compositions and SOA mass concentration

produced are evaluated to infer aging mechanisms.

Although only a single parent VOC is studied in a chamber experiment, it can be instructive to

study SOA from multiple parent VOCs when considering the interactions between SOA produced

from multiple sources in the atmosphere. Recent studies suggest that atmospheric OA may exist in

an amorphous semi-solid or amorphous solid (glassy) state (e.g. Virtanen et al., 2010; Vaden et al.,

2010; Cappa and Wilson, 2011; Shiraiwa et al., 2011; Vaden et al., 2011; Kuwata and Martin, 2012;

Perraud et al., 2012; Saukko et al., 2012; Abramson et al., 2013). The physical state of a particle

affects its interaction with water and condensing organic compounds and its behavior upon heating

or cooling (Koop et al., 2011). Most SOA growth models assume pseudo-ideal mixing, i.e. condensing

species quickly diffuse throughout the entire organic particle mass (Odum et al., 1996; Bowman et al.,

1997; Odum et al., 1997; Strader et al., 1999). One recent study showed that SOA from α-pinene

ozonolysis and toluene photooxidation was consistent with pseudo-ideal mixing (Hildebrandt et al.,
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2011), whereas another study showed that mixed dioctyl phthalane and α-pinene ozonolysis SOA

formed two distinct phases (Vaden et al., 2010). Chapter 4 presents a laboratory chamber protocol

designed to probe the mixing state of OA by forming SOA sequentially from two different sources

and observing their evaporation behavior upon heating. Using this protocol, SOA from toluene and

α-pinene photooxidation exhibited limited mixing.
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Shiraiwa, M., Ammann, M., Koop, T., and Ṕ’oschl, U.: Gas uptake and chemical aging of

semisolid organic aerosol particles, P. Natl. Acad. Sci. U.S.A., 108, 11 003–11 008, doi:10.1073/

pnas.1103045108, 2011. 4

Siese, M., Becker, K. H., Brockmann, K. J., Geiger, H., Hofzumahaus, A., Holland, F., Mihelcic, D.,

and Wirtz, K.: Direct measurement of OH radicals from ozonolysis of selected alkenes: A EU-

PHORE simulation chamber study, Environ. Sci. Technol., 35, 4660–4667, doi:10.1021/es010150p,

2001. 2

Strader, R., Lurmann, F., and Pandis, S. N.: Evaluation of secondary organic aerosol formation in

winter, Atmos. Environ., 33, 4849–4863, doi:10.1016/S1352-2310(99)00310-6, 1999. 4

Vaden, T. D., Song, C., Zaveri, R. A., Imre, D., and Zelenyuk, A.: Morphology of mixed primary and

secondary organic particles and the adsorption of spectator organic gases during aerosol formation,

P. Natl. Acad. Sci. U.S.A., 107, 6658–6663, doi:10.1073/pnas.0911206107, 2010. 4, 5
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Chapter 2

Characterization of Vapor Wall
Loss in Laboratory Chambers∗

∗Reproduced with permission from “Characterization of vapor wall loss in laboratory chambers” by C. L. Loza, A.
W. H. Chan, M. M. Galloway, F. N. Keutsch, R. C. Flagan, and J. H. Seinfeld, Environmental Science & Technology,
44, 5074-5078, doi:10.1021/es100727v. Copyright 2010 by the American Chemical Society.
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2.1 Abstract

Laboratory chambers used to study atmospheric chemistry and aerosol formation are subject to wall

loss of vapors and particles that must be accounted for in calculating aerosol yields. While particle

wall loss in chambers is relatively well-understood and routinely accounted for, that of vapor is

less so. Here we address experimental measurement and modeling of vapor losses in environmental

chambers. We identify two compounds that exhibit wall loss: 2,3-epoxy-1,4-butanediol (BEPOX),

an analog of an important isoprene oxidation product; and glyoxal, a common volatile organic

compound oxidation product. Dilution experiments show that BEPOX wall loss is irreversible on

short time scales but is reversible on long time scales, and glyoxal wall loss is reversible for all

time scales. BEPOX exhibits minimal uptake onto clean chamber walls under dry conditions, with

increasing rates of uptake over the life of an in-use chamber. By performing periodic BEPOX wall

loss experiments, it is possible to assess quantitatively the aging of chamber walls.

2.2 Introduction

Laboratory chambers are used to elucidate atmospheric chemical mechanisms and secondary organic

aerosol (SOA) formation (Hallquist et al., 2009). In experiments performed to measure volatile

organic compound (VOC) oxidation products and SOA yields, VOC is oxidized, typically in the

presence of seed particles, and particle- and gas-phase concentrations and composition are monitored.

Such data allow calculation of the aerosol yield or mass fraction, defined as the ratio of the mass

of aerosol formed to the mass of VOC reacted. Throughout an experiment, particles and vapors

are inevitably lost to the chamber walls. Neglecting to account for these wall losses can lead to

underestimation of SOA yields.

The mechanisms of particle wall loss in chambers are relatively well understood. Crump and

Seinfeld (1981) developed the general theory of particle deposition to the walls of a chamber. Later,

McMurry and Rader (1985) extended the Crump-Seinfeld theory to include charging effects, and

recently, Pierce et al. (2008) have implemented a dynamic model of particle behavior in a vessel.
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Physically, particles from the well-mixed core of the chamber are transported through a boundary

layer adjacent to the wall by diffusion, gravitational settling, and electrostatic forces. The degree

of mixing in the chamber governs the rate that particles move from the bulk of the chamber to

the boundary layer. Because it is difficult to describe chamber mixing theoretically, experimental

measurements are used to determine the chamber mixing characteristics. An effective method of

experimentally characterizing particle wall loss involves measuring the decay rate of a population of

polydisperse particles injected into the chamber. The decay of particle concentrations in each size

range is subsequently fitted to a first-order loss model in terms of a wall loss coefficient, β, as a

function of particle size, Dp (Keywood et al., 2004; Ng et al., 2007).

Vapor molecules present in a chamber can also deposit on the walls, with a rate that depends

on the molecular diffusivity of the species, the thickness of the boundary layer adjacent to the wall,

and the concentration gradient in the boundary layer. Whereas it is generally assumed that, upon

contact, particles adhere to the wall, not every vapor molecule sticks to the chamber wall with unit

efficiency. Vapor molecules may also undergo reactions at the chamber wall, influencing the rate of

uptake. These processes are depicted in Fig. 2.1.

Relatively few studies exist devoted to measuring vapor-phase wall uptake in environmental

chambers. Chamber walls, typically made of Teflon, have usually been assumed to be clean and inert

such that no vapor-phase uptake occurs (e.g. Bowman et al., 1997); nevertheless, vapor uptake may

occur on particles that have deposited to the walls during a particular experiment (Hildebrandt et al.,

2009). Deposited particles and other species may also remain on the chamber walls after continued

use, despite repeated baking and flushing. For example, McGarvey and Shorten (2000) found that

some organic compounds adsorbed to Tedlar sampling bags could not be removed completely by

flushing and heating. Maddalena et al. (2002) observed semivolatile compounds partitioned to

Teflon exposure chamber walls and experimentally determined an effective volume, combining the

chamber air and wall volumes, to correct for wall loss. Because little is known about species-wall

interactions for most compounds, it is necessary to calibrate wall loss on a case-by-case basis, similar

to that for particle wall loss.
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We present here an experimental protocol to determine the nature of wall loss of VOCs in

laboratory chambers. We study two compounds, both of which partition to the walls but re-partition

to the gas phase on different time scales. Wall loss coefficients for each compound are determined

experimentally and are found to depend on humidity and chamber aging characteristics. The derived

wall loss coefficient is then used to examine simultaneous uptake of a VOC by seed particles and

chamber walls to assess the magnitudes of each process. By comparison with experimental data, an

uptake coefficient can be determined for the VOC onto seed particles. The studies presented here

suggest a protocol to characterize the state of chamber walls over the lifetime of a chamber.

2.3 Experimental Section

The experiments reported here were performed in the Caltech indoor, dual 28 m3 Teflon environ-

mental chambers, details of which are given elsewhere (Cocker et al., 2001; Keywood et al., 2004).

For these experiments, the temperature of the chambers was held at 20 (±1) ◦C.

Two compounds were selected for study: (1) 2,3-epoxy-1,4-butanediol (BEPOX) is the butadiene

derivative of an epoxydiol of isoprene (IEPOX), an important product of isoprene photooxidation

and one characteristic, more generally, of products of VOC oxidation that lead to SOA (Paulot

et al., 2009; Surratt et al., 2010); and (2) glyoxal, a key atmospheric VOC oxidation product (Fu

et al., 2008; Myriokefalitakis et al., 2008). BEPOX and glyoxal have been found to partition to

chamber walls on a time scale comparable to those of photooxidation and aerosol uptake. BEPOX

was synthesized following methods detailed in Paulot et al. (2009) and injected into the chamber

by flowing clean air over a heated sample. BEPOX concentration was monitored with chemical

ionization mass spectrometry (CIMS) in negative mode using CF3O− as a reagent ion. Glyoxal

was synthesized following methods detailed in Galloway et al. (2009) and injected into the chamber

in the gas phase. Glyoxal was detected using the Madison Laser-Induced Phosphorescence (LIP)

Instrument (Huisman et al., 2008).

To determine wall loss coefficients for BEPOX and glyoxal, the compound was injected into a

dark, clean chamber, and its concentration was monitored over time. To study wall loss reversibility,
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after BEPOX or glyoxal equilibrated with the chamber walls, the chamber contents were diluted by

flushing with clean air. Isoprene exhibits negligible wall loss (when isoprene was injected into a clean

chamber, its concentration remained constant for 15 h) and was added as a dilution tracer. To detect

isoprene, chamber air was drawn through a 10 mL sample loop before injection onto a HP-Plot-Q

15 m x 0.15 mmID x 40 µm thickness column installed on a gas chromatograph equipped with a

flame ionization detector (GC/FID, Agilent 6890N). The GC response was calibrated by vaporizing

a known volume of isoprene into a 55 L chamber.

In experiments to study BEPOX interactions with the chamber walls and particles, acidic am-

monium sulfate seed particles were added before BEPOX injection by atomizing a 0.1 M ammonium

sulfate with 0.1 M sulfuric acid (AS+SA) solution. The aerosol size distribution and number con-

centration were measured continuously using a differential mobility analyzer (DMA, TSI, Inc., 3081)

coupled to a condensation particle counter (CPC, TSI, Inc., 3760).

2.4 Results and Discussion

2.4.1 Vapor Wall Loss

Figure 2.2 shows first-order wall loss for BEPOX as a function of RH measured in chambers that

had been in use for approximately two years. The first-order BEPOX wall loss coefficient, kw, was

found to vary linearly with RH (see inset in Fig. 2.2). After new chambers were installed in May

2009, wall loss greatly decreased (Table 2.1). For dry conditions (RH < 10 %), no wall loss was seen

immediately after installing the new chambers. Over the next five months, wall loss increased but

remained less than that for the previous chambers. Glyoxal wall loss, measured in chambers that

had been in use for approximately one year, is shown in Fig. 2.3. Under dry conditions, glyoxal wall

loss was minimal, with kw = 9.6 × 10−7 s−1. However, at 61 % RH, kw for glyoxal was calculated

as 4.7× 10−5 s−1.

Different wall loss mechanisms were observed when comparing dilution experiments for BEPOX

and glyoxal. After injection, both compounds underwent deposition to the chamber walls. As the
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chamber was diluted, the BEPOX concentration continued to decrease (see top panel of Fig. 2.4).

Initially, the BEPOX concentration is lower than the predicted concentration for dilution as the

only sink; however, it is greater than the predicted concentration with both dilution and wall loss

(calculated from the pre-dilution period shown in the inset of the top panel). It is possible that the

wall loss rate decreased with the onset of dilution, which could be a result of wall saturation. As

shown in the inset, BEPOX wall loss followed a first-order decay until dilution began. The lack of

non-linearity suggests that the walls were not saturated with BEPOX before dilution; it is unlikely

that the onset of dilution would cause the walls to become saturated with BEPOX and change the

wall loss rate substantially. After approximately 7 h, the rate of BEPOX decay decreased to a rate

less than the dilution rate. At this time, BEPOX began to re-partition to the gas phase suggesting

that the walls may have become saturated and henceforth acted as a BEPOX source. Upon dilution,

the glyoxal concentration remained constant for the first 7 h before decreasing slightly (see bottom

panel of Fig. 2.4). The constant glyoxal concentration during dilution reflects re-partitioning from

the walls to the vapor phase. Because the walls were saturated with glyoxal before dilution began,

re-partitioning commenced immediately upon dilution. After 7 h of dilution, it is likely that most of

the glyoxal deposited to the walls had already re-partitioned to the vapor phase and been removed

by flushing, and glyoxal concentration decreased as dilution continued. We conclude that under

timescales relevant to chamber experiments, glyoxal wall loss can be considered reversible whereas

BEPOX wall loss is irreversible; however, it should be noted that BEPOX wall loss is also reversible

on longer time scales.

2.4.2 Model Description

Interactions among BEPOX, AS+SA seed particles, and chamber walls were considered in develop-

ing a general model for the dynamics of a vapor that irreversibly deposits on particles and walls.

Assuming a constant chamber volume, the time rate of change of vapor-phase concentration, cA

(molecules cm−3), is

dcA
dt

= −
m∑
i=1

Ci,sNi,s −
m∑
j=1

Cj,wNj,w − kwcA (2.1)
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where t is time (s), m is the total number of particle size bins, Ci,s are the condensation coefficients to

suspended particles (molecules s−1), Ni,s are the number densities of suspended particles (particles

cm−3), Cj,w are the condensation coefficients to deposited particles (molecules s−1), and Nj,w are

the number densities of deposited particles (particles cm−3); kw has units of s−1.

The condensation coefficients describe the flux of gas-phase species to a particle surface. For

a compound partitioning to a spherical particle with a diameter, Dp (cm), Bowman et al. (1997)

employed the following condensation coefficient:

C =
2πDpλc (cA − cA,e)

1 +
8λ

αDp

(2.2)

where α, the accommodation coefficient for uptake onto seed particles, represents the fraction of

collisions that result in a vapor molecule sticking to a particle surface. Fitting model predictions

to experimental data allows estimation of the value of α specific to a particular vapor compound.

In addition, λ is the mean free path of air (cm), c is the mean molecular speed of the compound

(cm s−1), and cA,e is the equilibrium concentration of the compound adjacent to the particle surface

(molecules cm−3). Particles deposited on the chamber walls are assumed to be characterized by

the same size-dependent condensation coefficients as those suspended when taking into account

condensation to deposited particles.

The rate of change of the particle number distribution is affected by condensation and wall loss.

Particle concentrations are sufficiently small such that coagulation is neglected for the timescale of

the model; at a number concentration of 1.2 × 104 cm−3, the characteristic time for coagulation

is 1.3 days (Cocker et al., 2001). New particle formation by nucleation is neglected as the vapor

concentration is relatively low. Size-dependent particle wall loss is parameterized by βi (Dp) (s−1).

Accounting for these processes in the aerosol general dynamic equation gives the change in number

distribution, n (Dp, t) (particles cm−3 cm−1) (Seinfeld and Pandis, 2006):

∂n (Dp, t)

∂t
= − ∂

∂Dp
[ID (Dp, t)n (Dp, t)]± β (Dp)n (Dp, t) (2.3)
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where ID (Dp, t) (cm s−1) is the rate of change of particle diameter as a result of condensation. For

suspended particles, the β (Dp)n (Dp, t) term is a sink and for particles deposited to the wall, the

β (Dp)n (Dp, t) term is a source. Assuming spherical particles,

ID (Dp, t) =
dDp

dt
=

2Cm
πD2

pρp
(2.4)

where Cm is a mass condensation coefficient (g s−1) of the same form as C, and ρp is the aerosol

density (g cm−3).

In applying the model, initial concentrations for BEPOX and particles were taken from those

measured immediately following BEPOX injection. No particles are assumed to be present initially

on the walls. The seed particles were divided into 111 size bins, the same resolution as that of the

DMA, with diameters from 15 nm to 802 nm. The density of the organic matter in the particle is

taken as 1.25, that of low-NOx isoprene SOA (Kroll et al., 2006). The density used in the particle

number balance is 1.60, a weighted average of the densities of AS+SA particles and organic matter.

For BEPOX, wall uptake was governed by the experimentally-determined kw v. RH relationship.

For particle wall loss, β (Dp) was calculated from particle wall loss calibration experiments.

2.4.3 Model Predictions

Figure 2.5 shows the simulation of a BEPOX uptake experiment with AS+SA seed particles. A

value of α = 6× 10−4 was found to produce the best fit of both vapor- and particle-phase processes.

After the injection period, BEPOX partitions to particles and the chamber walls. The predicted

BEPOX concentration matches that observed (R2 = 0.979). Prediction of suspended particle volume

concentration without particle wall loss corrections also matches chamber observations. Any particle

growth due to BEPOX condensation is offset by particle loss to the chamber walls; thus the suspended

aerosol volume appears to decrease.

The decrease in BEPOX concentration is the result of two main processes: wall loss and con-

densation to suspended particles. Condensation to particles deposited on the wall is predicted to
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be much less than either wall loss or condensation to suspended particles; however, in chambers ex-

hibiting more prominent particle wall loss, this may be a larger factor because a greater proportion

of the original particles are deposited to the walls throughout the experiment. Figure 2.6 shows

the predicted contribution of each process. In this case, wall uptake limits the amount of BEPOX

available to partition to particles. It should be noted that the fate of particles, once deposited to

the walls, is unknown. If the walls are coated with material accumulated from previous experiments

not removed by baking and flushing procedures, deposited particles may combine with this material

and interact with vapors no longer as individual particles but as part of the coating on the walls. In

this case, the deposited particles do not act as a separate sink for BEPOX and are part of the wall

loss sink.

To accurately quantify processes occurring in the chamber, suspended aerosol number distribu-

tions and volume concentrations and vapor-phase concentrations can be corrected for wall loss. The

effects of wall loss correction methods on predicted BEPOX consumed, ∆VOC, and aerosol growth,

∆Mo, were examined using two cases for VOC and two cases for particles. Cases (a) and (b) are

vapor-phase assumptions in calculating ∆VOC, and cases (c) and (d) are particle-phase assumptions

in calculating ∆Mo; case (c) represents a lower bound estimate and case (d) represents an upper

bound estimate for vapor condensation to deposited particles, as suggested by Hildebrandt et al.

(2009). The equations governing these cases are presented in Table 2.2. A comparison of the vapor

and particle wall loss correction cases with experimental data is shown in Fig. 2.7. Although exper-

imental data are corrected for wall loss with cases (a) and (c), they do not match the corresponding

model predictions. From Fig. 2.5, the predicted particle volume is slightly less than the average

experimental volume, thus the experiment ∆Mo will be larger than the predicted ∆Mo, and the

experimental data have a steeper slope than predicted case (a,c).

BEPOX wall loss is substantial such that vapor-particle mass conservation cannot be established

without determining the amount of BEPOX deposited to the wall, as seen when comparing cases

(a) and (b). The ∆VOC in case (b) is significantly less than that in case (a). BEPOX uptake

onto deposited particles increases throughout the experiment as more particles deposit to the wall;
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if corrections for this uptake are not made, i.e. case (c), a nonlinear trend is observed between

∆Mo and ∆VOC that leads to a smaller final ∆Mo than case (d). After the 4 h simulated, ∆Mo

for case (c) was 8.5 % lower than that for case (d). This difference could increase for chambers

exhibiting more particle wall loss and over the course of longer experiments. Theoretically, during

an uptake experiment, a plot of ∆Mo v. ∆VOC should be linear because the mass lost from the

vapor phase is proportional to the mass gained by the particles, taking into account the possibility

of co-condensing species or further particle-phase reactions. Incorrect wall loss assumptions could

result in nonlinearities. To obtain accurate particle wall loss corrections, it is necessary to establish

the nature of the interactions of deposited particles with vapors in the chamber bulk; however,

without this knowledge, it is still possible to obtain upper- and lower-bound estimates to quantify

the error associated with wall loss corrections.

2.5 Implications for Chamber Experiments

To properly understand gas-particle partitioning of a compound in a laboratory chamber, it is

necessary to determine the extent of its interactions with the chamber walls and account for this in

designing experiments and analyzing data. Wall losses of certain vapor compounds can be significant,

depending on the system: history of chamber walls, RH, etc. Because all chemical species do not

exhibit similar wall losses, it is probable that wall loss is dependent on the compound’s molecular

structure, suggesting reactive uptake at the walls in addition to diffusion. As a result, it may be

possible to predict the tendency for a compound to deposit on walls based on its chemical structure.

During chamber experiments with a compound, such as glyoxal, that exhibits reversible wall

deposition, the walls may become saturated with VOC before all relevant vapor-phase reactions

have been completed. In this case, the walls may serve as a source of the vapor. As the compound

reacts or partitions to particles, some of it will re-partition from the walls to replenish what has

been lost from the vapor phase.

Further complications arise in correcting for wall loss for a compound that is a first- or second-

generation oxidation product. Wall loss may be more difficult to detect and separate from the
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kinetics of further oxidation reactions or reactions in the aerosol phase. Identifying the importance

of wall loss in later-generation oxidation products underscores the need to understand the chemical

mechanism of hydrocarbon oxidation leading to SOA formation. With a mechanism, it is possible to

identify compounds that are structurally similar to other compounds with substantial wall loss, the

extent to which those compounds contribute to SOA, and the relative rates of subsequent reactions

and wall loss processes.
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Table 2.1: BEPOX wall loss coefficients, kw, as a function of chamber age.

Date (2009) RH (%) kw (s−1) Agea

03/07 10.0 3.68× 10−5 110
05/14 11.5 ≈ 0 0
09/08 8.0 1.55× 10−5 28
10/01 8.4 3.11× 10−5 36

a Age is measured in number of experiments previously performed in the chamber.

Table 2.2: Wall loss cases for vapors and particlesa

Case Calculation
(a) ∆V OC (t) = V OCsus (0)− V OCsus (t)
(b) ∆V OC (t) = V OCsus (0)− V OCsus (t)− V OCw (t)
(c) ∆Mo (t) = Msus (t) +Mw (t)−Msus (0)
(d) ∆Mo (t) = Msus (t) +Mw+cond (t)−Msus (0)

a V OCsus is the suspended VOC concentration, V OCw is the VOC concentration deposited to the
walls since time 0, Msus is suspended particle concentration, Mw is the total concentration of
particles deposited to the walls since time 0 with no condensation to deposited particles, and
Mw+cond is the total concentration of particles deposited to the walls since time zero allowing for
condensation to deposited particles at the same rate as condensation to suspended particles.
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A (1)

(2)

(3)

Figure 2.1: Sinks for a vapor-phase species, A, in a laboratory chamber. The vapor can condense
on suspended particles (1), particles deposited on the chamber walls (2), and the surface of the
chamber walls (3). These processes may be reversible or irreversible, as indicated by the dashed
arrows.

Figure 2.2: First-order wall loss of BEPOX. The slope of the lines fitted through each data set
is the first-order wall loss coefficient, kw.The inset shows the trend for BEPOX kw as a function of
RH.

Figure 2.3: First-order wall loss of glyoxal under dry and humid conditions. The slope of the lines
fitted through each data set is the first-order wall loss coefficient, kw.
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Figure 2.4: Reversibility of BEPOX and glyoxal wall loss upon chamber dilution with clean air.
The top panel shows experimental and calculated BEPOX concentrations using dilution alone or
wall loss (measured before the onset of dilution as shown in the inset) and dilution as sinks. BEPOX
concentration decreases initially and begins to level off after approximately 10 h. BEPOX wall loss
is irreversible on short time scales but becomes reversible on longer time scales. In the bottom
panel, glyoxal concentration remains constant after dilution starts, showing that glyoxal wall loss
is reversible for all time scales. Glyoxal concentration eventually begins to decrease as the dilution
progresses, indicating that the walls are no longer serving as a significant glyoxal reservoir. In both
panels, the tracer compound (isoprene) tracks the progress of the dilution.

Figure 2.5: Model comparison with data from a BEPOX uptake experiment. The model is initial-
ized using experimental conditions after the BEPOX injection is complete and BEPOX concentration
reaches a maximum.
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Figure 2.6: Predictions for total BEPOX sinks after injection during an uptake experiment with
AS+SA seed, showing contributions of the three different mechanisms. Wall loss is the largest
BEPOX sink for the chosen model parameters, whereas the effect of uptake on deposited aerosol is
small.

Figure 2.7: Observed and predicted BEPOX uptake, ∆VOC, and aerosol mass growth, ∆Mo,
during an uptake experiment with AS+SA seed. Wall loss cases (a) - (d) are defined in 2.2.
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Chapter 3

Chemical Aging of m-Xylene
Secondary Organic Aerosol:
Laboratory Chamber Study∗

∗Reproduced with permission from “Chemical aging of m-xylene secondary organic aerosol: laboratory chamber
study” by C. L. Loza, P. S. Chhabra, L. D. Yee, J. S. Craven, R. C. Flagan, and J. H. Seinfeld, Atmospheric Chemistry
and Physics, 12, 151-167, doi:10.5194/acp-12-151-2012. Copyright 2012 by Authors.
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3.1 Abstract

Secondary organic aerosol (SOA) can reside in the atmosphere for a week or more. While its initial

formation from the gas-phase oxidation of volatile organic compounds tends to take place in the

first few hours after emission, SOA can continue to evolve chemically over its atmospheric lifetime.

Simulating this chemical aging over an extended time in the laboratory has proven to be challenging.

We present here a procedure for studying SOA aging in laboratory chambers that is applied to achieve

36 h of oxidation. The formation and evolution of SOA from the photooxidation of m-xylene under

low-NOx conditions and in the presence of either neutral or acidic seed particles is studied. In SOA

aging, increasing molecular functionalization leads to less-volatile products and an increase in SOA

mass, whereas gas- or particle-phase fragmentation chemistry results in more-volatile products and

a loss of SOA. The challenge is to discern from measured chamber variables the extent to which

these processes are important for a given SOA system. In the experiments conducted, m-xylene

SOA mass, calculated under the assumption of size-invariant particle composition, increased over

the initial 12-13 h of photooxidation and decreased beyond that time, suggesting the existence of

fragmentation chemistry. The oxidation of the SOA, as manifested in the O:C elemental ratio and

fraction of organic ion detected at m/z 44 measured by the Aerodyne aerosol mass spectrometer,

increased continuously starting after 5 h of irradiation until the 36 h termination. This behavior

is consistent with an initial period in which, as the mass of SOA increases, products of higher

volatility partition to the aerosol phase, followed by an aging period in which gas- and particle-

phase reaction products become increasingly more oxidized. When irradiation is stopped 12.4 h into

one experiment, and OH generation ceases, minimal loss of SOA is observed, indicating that the

loss of SOA is either light- or OH-induced. Chemical ionization mass spectrometry measurements of

low-volatility m-xylene oxidation products exhibit behavior indicative of continuous photooxidation

chemistry. A condensed chemical mechanism of m-xylene oxidation under low-NOx conditions is

capable of reproducing the general behavior of gas-phase evolution observed here. Moreover, order

of magnitude analysis of the mechanism suggests that gas-phase OH reaction of low volatility SOA

precursors is the dominant pathway of aging in the m-xylene system although OH reaction with
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particle surfaces cannot be ruled out. Finally, the effect of size-dependent particle composition and

size-dependent particle wall loss rates on different particle wall loss correction methods is discussed.

3.2 Introduction

Organic aerosol (OA) constitutes 20-90% of all submicron particles in the atmosphere, and up to

80% of this is classified as secondary organic aerosol (SOA) (Zhang et al., 2007; Murphy et al.,

2006). Aerosol particles in the atmosphere can have lifetimes of 5-12 days (Balkanski et al., 1993),

during which they can undergo continuous physical and chemical processing, commonly called aging

(Rudich et al., 2007). Laboratory experiments designed to study SOA formation typically have a

duration of up to 1 day, during which all processes that cause ambient particle aging may not be

captured. Chemical aging of SOA can affect gas-particle partitioning through processes such as

vapor-phase oxidation of semivolatiles, heterogeneous oxidation, and reactions within the particle

phase, e.g. oligomerization, that take place on a fairly long timescale (Kroll and Seinfeld, 2008;

Hallquist et al., 2009).

Given the potentially large number of organic species in ambient particles, bulk chemical measure-

ments are useful to describe the extent of oxidative aging of SOA. Using aerosol mass spectrometry,

changes in O:C (elemental oxygen to carbon ratio) and H:C (elemental hydrogen to carbon ratio)

from high-resolution data and f44 (ratio of mass-to-charge (m/z) 44 to total signal in the organic

component mass spectrum) and f43 (ratio of m/z 43 to total signal in the organic component mass

spectrum) have been reported for ambient and laboratory-generated particles. The dominant or-

ganic ion at m/z 43 is C2H3O+, and the dominant organic ion at m/z 44 is CO+
2 . Ng et al. (2010)

evaluated a number of aerosol oxidation data sets in the f44-f43 space and found that data for am-

bient OA tend to occupy a triangular region. As the OA becomes more oxidized, it tends to move

from a region of lower f44 and a wider range of f43 at the base of the triangle toward the apex with

higher f44 and less variable f43. Heald et al. (2010) used the Van Krevelen diagram to show that

the H:C and O:C of total ambient OA tend to fall along a line with a slope of −1, suggesting, on

average, equal additions of carbonyl and alcohol moieties. More recently, Ng et al. (2011) determined
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a correlation between f43 and H:C and, combined with a correlation between f44 and O:C (Aiken

et al., 2008), mapped the triangular region in f44-f43 space onto the Van Krevelen diagram. They

found that for ambient OA classified as oxygenated OA (OOA) and laboratory chamber-generated

SOA the H:C and O:C evolution toward the apex of the triangle tends to fall along a line with a

slope of −0.5 on a Van Krevelen diagram. This difference in slope between the two studies was

attributed to the inclusion of primary OA in the study of Heald et al. The evolution of ambient OA

can also be represented in terms of saturation concentration (C∗) and O:C (Jimenez et al., 2009). As

the OA becomes more oxidized, C∗ decreases and O:C increases. In all three of these frameworks,

the oxygen content of the organic aerosol increases upon aging.

Laboratory studies have been conducted to probe the mechanisms of chemical aging of SOA.

In flow reactor experiments, which have much shorter residence times than chamber experiments,

OH concentrations a few orders of magnitude higher than ambient concentrations are used to attain

OH exposure similar to that of multiple days of atmospheric processing. Using a flow reactor, Kroll

et al. (2009) found that for oxidation of squalane (C30H36) particles, functionalization reactions

(addition of polar functional groups) dominated at low OH exposure, and fragmentation reactions

(scission of C-C bonds in the carbon skeleton) dominated as OH exposure increased. They observed

an O:C ratio of 0.45 after 35.8 squalene OH oxidation lifetimes. Lambe et al. (2011) also used a

flow reactor to attain OH exposures equivalent to 1-20 days of atmospheric aging. Using a range

of anthropogenic and biogenic SOA and oxidized primary organic aerosol (OPOA) precursors, they

found that as OH exposure increased, the SOA and OPOA followed and extended the progression of

ambient SOA in f44-f43 space, attaining values of f44 higher than ambient SOA. The Van Krevelen

diagram slope of the SOA and OPOA was indicative of carboxylic acid formation and carbon-carbon

bond fragmentation. In chamber experiments of 16 h oxidant exposure, Qi et al. (2010) found that,

starting after 2 h of OH exposure, the volatility of SOA generated from m-xylene and α-pinene

under high-NOx conditions decreased slowly for the remainder of the experiment. After this initial

2-h period the O:C ratio for m-xylene SOA increased at a rate of 0.007 h−1; however, for α-pinene

SOA, the O:C ratio decreased at a rate of 0.003 h−1. Chhabra et al. (2010) observed increasing
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O:C for SOA formed from toluene, m-xylene, and naphthalene for irradiation times up to 12 h.

The most rapid increase in O:C occurred during the first hour of low-NOx toluene and m-xylene

experiments and the first 4 h of low-NOx naphthalene experiments. Similarly to the results of Qi

et al. (2010) that SOA from some precursors exhibits minute aging behavior, no change in O:C was

observed for SOA from isoprene photooxidation or α-pinene ozonolysis after initial SOA formation.

Chhabra et al. (2011) extended the analysis of the SOA formed from the compounds studied in

Chhabra et al. (2010) to assess their behavior in both f44-f43 space and Van Krevelen diagram

representations. Although the SOA formed from the various precursors occupied different regions

in each representation, most systems exhibited a progression similar to aging of ambient SOA.

In this work, we develop and apply to m-xylene SOA a procedure to extend to 36 h the ex-

perimental duration of a laboratory chamber operated as a batch reactor. Aromatic hydrocarbon

emissions are an important contribution (∼ 20−30%) to the total volatile organic compounds in the

urban atmosphere (Calvert et al., 2002). m-Xylene SOA yields (ratio of mass concentration of SOA

formed to mass concentration of parent hydrocarbon reacted) have been measured previously for

initial m-xylene concentrations of 10 to 180 ppb and experimental durations up to 10 h (Ng et al.,

2007; Song et al., 2007). SOA yields for low-NOx conditions were found to be higher than those for

high-NOx conditions. In addition, Chhabra et al. (2010) and Qi et al. (2010) observed changes in

SOA chemical composition for up to 16 h of oxidation, indicating the potential of aging of m-xylene

SOA over longer timescales. For a long duration experiment, the initial m-xylene concentration can

be chosen to produce a sufficient amount of SOA to sample for the duration of the experiment yet

remaining close to atmospherically relevant loadings, typically 0.1-20 µg m−3 (Shilling et al., 2009).

In the present work, the total amount of SOA formed, its chemical composition, and the composi-

tion of the gas phase over 36 h of irradiation are evaluated to infer mechanisms of chemical aging of

m-xylene SOA. For the first time, the effects of size-dependent particle composition on particle wall

loss correction methods are discussed.
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3.3 Materials and Methods

3.3.1 Experimental setup

Experiments were conducted in the Caltech dual 28-m3 Teflon chambers. Details of the facilities are

given elsewhere (Cocker et al., 2001; Keywood et al., 2004). Before each experiment, the chambers

were flushed with dried, purified air for > 24 h until the particle number concentration < 50 cm−3

and the volume concentration < 0.1 µm3cm−3. Experiments were run under low-NOx conditions

using hydrogen peroxide (H2O2) as the OH source. With H2O2 it is possible to achieve a constant

OH concentration for the duration of the experiments. H2O2 was injected into the chamber by

evaporating 280 µL of 50% wt aqueous solution into the chamber with 5 L min−1 of purified air.

Seed particles were injected by atomizing a 0.015 M aqueous ammonium sulfate (AS) solution for

neutral seed and a 0.03 M aqueous magnesium sulfate with 0.03 M sulfuric acid (MS+SA) solution

for acidic seed. m-Xylene (Sigma Aldrich, 99+ %) was introduced into the chamber by injecting

the volume of the liquid hydrocarbon required to obtain a concentration of 30 ppb into a glass bulb,

and the vapor was carried into the chamber with 5 L min−1 of purified air. The chamber contents

were allowed to mix for 1 h before beginning irradiation.

A suite of instruments was used to study the evolution of the gas and particle phases. m-

Xylene was measured using a gas chromatograph with flame ionization detector (GC/FID, Agilent

6890N), equipped with a HP-5 column (15 m×0.53 mm ID×1.5µm thickness, Hewlett Packard).

Reactive intermediates and H2O2 were continuously monitored using a custom-modified Varian 1200

triple-quadrupole chemical ionization mass spectrometer (CIMS). Details of operation can be found

elsewhere (Crounse et al., 2006; Paulot et al., 2009; St.C̃lair et al., 2010). The CIMS was operated

in negative mode in which CF3O – is used as the reagent ion. CF3O – clusters with the analyte,

forming ions at m/z MW+85 (R·CF3O−), or, with more acidic species, at m/z MW+19 (HF·R−
−H).

Relative humidity (RH), temperature, NO, NOx, and O3 were continuously monitored. The RH of

the chamber was < 5%. The initial chamber temperature was ∼ 19 ◦C; however, heating from the

blacklights caused a rise in temperature of approximately 5 ◦C. NO and NOx concentrations were
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below the 2 ppb detection limit of the instrument, and initial O3 concentration was 2 ppb.

Aerosol size distribution and number concentration were measured continuously using a differ-

ential mobility analyzer (DMA, TSI, 3081) coupled to a condensation particle counter (CPC, TSI,

3760), henceforth referred to as the DMA. Real-time particle mass spectra were collected continu-

ously by an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (DeCarlo et al.,

2006; Canagaratna et al., 2007), henceforth referred to as the AMS. The AMS switched once every

minute between the high resolution “W-mode” and the lower resolution, higher sensitivity “V-mode”.

“V-mode” data were analyzed using a fragmentation table to separate sulfate, ammonium, and or-

ganic spectra and to time-trace specific m/z ratios. “V-mode” and “W-mode” data were analyzed

using a separate high-resolution spectra toolbox known as PIKA to determine the chemical formulas

contributing to distinct m/z ratios (DeCarlo et al., 2006). The signals of organic ions below m/z

119 were used to calculate elemental ratios. The ratio of particle-phase CO+ to CO+
2 was approxi-

mately equal to 1, and the contribution of CO+ to the organic signal was estimated to equal that of

particle-phase CO+
2 . The intensities of water-derived ions (H2O+, OH+, and O+) were estimated

from particle phase CO+
2 using the correlation suggested by Aiken et al. (2008). A relative ionization

intensity of 1.4 was applied to organic ion signals. AMS data reported in this work are averaged

over 10-min intervals.

3.3.2 [

Aging experiment protocols The volume of the reactor limits the duration of experiments in a

chamber operated in batch mode; when sampling with all instruments, nearly half of the chamber

volume is depleted in 18 h, at which point it is preferable to cease sampling due to deflation of the

chamber. To achieve longer OH exposure times with all instruments sampling, sets of experiments

were conducted with increasing duration and staggered instrument sampling. Instruments were

grouped into two categories based upon their sampling schedule. Group I includes the AMS and a

RH and temperature probe. Group II includes the DMA, the CIMS, the GC/FID, the O3 analyzer,

and the NOx analyzer. All instruments were operated during initial injections before the onset of
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irradiation. Experimental time began at the onset of irradiation. First, two 18 h experiments were

conducted with Group I and II instruments sampling for the entire duration to establish consistency

in the gas and particle phases during separate experiments. Subsequent experiments of 24 h, 30

h, and 36 h were conducted to achieve longer OH exposure. The instrument sampling schedule

for all experiments is given in Table 3.1. The entire set of 5 experiments was conducted in the

same chamber to avoid any differences between chamber conditions that may arise between the dual

chambers. For each of the Group II instruments, the data from all experiments were combined to

track the evolution of species for the entire 36 h of OH exposure.

3.3.3 Total SOA formation

To determine the total SOA mass concentration in the chamber, ∆Mo, particle wall losses must be

taken into account. The extent of interactions between particles deposited on the chamber walls and

vapors in the chamber has not been determined completely; therefore, two limiting assumptions are

used to bound this interaction. These limits have been described and applied to chamber experiments

by Weitkamp et al. (2007) and Hildebrandt et al. (2009, 2011). In one limit, particles deposited on

the wall are assumed to cease interaction with suspended vapors after deposition. In this case, the

amount of organic material in the deposited particles does not change after deposition, and these

particles remain at the same size at which they deposited for the remainder of the experiment.

In the other limit, particles on the wall are assumed to interact with vapors in the chamber after

deposition as if they had remained suspended. Thus, in this case, the amount of organic material

in the particles after deposition changes at the same rate as the amount of organic material in the

suspended particles, and the deposited particles continue to change size throughout the remainder

of the experiment. This limit is analogous in theory to that of a chamber without walls. In either

limit, the material on the walls is added to that which remains suspended to obtain the total amount

of SOA formed.

During particle growth, the organic mass fraction of the suspended particles increases. In the first

limit, the organic mass fraction of deposited particles does not increase after deposition; therefore,
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this case produces a lower limit for ∆Mo. In the second limit, deposited particles are assumed

to continue growing; therefore, this case is an upper limit for ∆Mo. These two limits of wall loss

corrected ∆Mo will subsequently be referred to as the lower bound and upper bound, respectively.

The lower bound limit on ∆Mo is calculated from the DMA suspended particle number distri-

bution. For each size bin i at each time step j the particle number distribution deposited to the

wall, nw,ij is calculated using size-dependent wall loss rates, βi:

nw,ij = ns,ij exp (βi∆t) (3.1)

where ns,ij is the suspended particle number distribution in size bin i at time step j, and ∆t is the

difference between time step j and time step j+ 1. Wall loss rates were determined from calibration

experiments performed prior to the start of the aging experiments (methods detailed in Keywood

et al. (2004); Ng et al. (2007)). The deposited particle number distribution is added to the suspended

particle number distribution to give a wall-loss corrected number distribution, ntot,ij , which is then

converted to a volume concentration, Vtot,j , assuming spherical particles,

ntot,ij = ns,ij + nw,ij (3.2)

Vtot,j =

m∑
i=1

ntot,ij
Dp,i ln 10

× (Dp,i+ −Dp,i−)× π

6
D3
p,i (3.3)

where m is the total number of size bins, Dp,i+ is the upper limit diameter for size bin i, and Dp,i−

is the lower limit diameter for size bin i. A factor of ln 10 is necessary to convert from a log normal

distribution. The initial seed volume concentration, Vseed, is subtracted from the wall-loss corrected

volume concentration to give the volume concentration of SOA, Vo,j . To convert to SOA mass,

∆Mo,j , the SOA volume concentration is multiplied by the SOA density, ρorg,

∆Mo,j = ρorg (Vo,j − Vseed) . (3.4)

For low-NOx m-xylene SOA, ρorg = 1.33g cm−3 (Ng et al., 2007). It is possible that ρorg changes as
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particle age increases, but it was assumed to be constant for the present study, which is consistent

with the findings of Qi et al. (2010).

Calculating the lower bound wall-loss corrected mass relies on having continuous number distri-

butions, which were not available for the 24-h, 30-h, and 36-h experiments. To obtain a continuous

number distribution, the number distributions for all experiments were combined. The DMA sam-

pling schedule was designed to allow a 2-h overlap period between shorter and longer experiments

(i.e. sampling for the 24-h experiment began at 16 h, 2 h prior to the endpoint of the 18-h exper-

iment) to facilitate the comparison of data between shorter and longer experiments. The number

distributions from each experiment were combined sequentially. During periods of overlap between

two experiments, a weighted average of the number distribution in each size bin was taken giving

higher weight to the shorter experiment at the beginning of the overlap period and higher weight to

the longer experiment at the end of the overlap period.

Both the number distribution of the seed particles and the initial concentration of m-xylene affect

the number distribution of the aerosol. In the 24-h experiment, the seed volume was lower than that

for the other AS seed experiments (Table 3.2). Assuming that the SOA produced in this experiment

was comparable to that in the other experiments, the suspended particle volume would be lower than

that of the other AS seed experiments, and the number distribution would be too small to combine

with those of the other AS experiments to obtain a continuous number distribution. Without the

data from the 24-h experiment, no number distribution data were available between hours 18 and

22. Number distributions during those 4 h were calculated from the 18- and 30-h experiments by

fitting an exponential function to the number distribution in each size bin during hours 16-18 of

the 18-h experiment and hours 22-24 of the 30-h experiment and using the function to interpolate a

number distribution at 4-min increments.

Throughout an experiment, the volume of the chamber decreases due to sampling, but the surface

area of the walls remains the same. It is possible that the increasing surface-area-to-volume ratio

will increase the particle wall loss rates. The duration of a typical wall loss experiment is 18-24

h, shorter than that of the longest aging experiments. The aging experiments were designed to
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minimize the amount of air sampled from the chamber. Although more instruments sample from

the chamber during an aging experiment than during a wall loss calibration experiment, the volume

of air removed during an aging experiment is comparable to that of a wall loss calibration experiment

(Table 3.1).

To confirm that wall loss rates do not vary significantly as chamber volume decreases, an addi-

tional wall loss calibration experiment was performed in each chamber. These calibration experi-

ments were conducted following the same protocols as a typical wall loss calibration; however, before

AS seed aerosol was injected, approximately 8 m3 of air was removed from the chambers to simu-

late conditions found at the end of an 18 h experiment. The wall loss rates determined from these

low-volume experiments were within the range of wall loss rates observed in the chambers since they

were installed in 2009 (Fig. 3.1). Therefore, time-dependence of the wall loss rate constants was

assumed to be negligible during these aging experiments.

The upper bound limit on ∆Mo is calculated by combining the AMS and DMA data. The

experiments in the present work use seed particles containing sulfate, and the only process that

decreases sulfate concentration in the suspended phase is wall loss. The initial sulfate concentration

is calculated from the DMA seed volume concentration. There is more uncertainty for the collection

efficiency of seed particles in the AMS than in the DMA. Collection efficiency in the AMS increases

as organic content of the particles increases, and because the seed particles do not contain organic

material, they are more susceptible to bounce in the instrument and have a collection efficiency that

is less than unity (Matthew et al., 2008). To calculate the mass of sulfate in the seed, mSO4
, the

following equation is used:

mSO4
= Vseedρseed

MWSO4

MWseed
(3.5)

where ρseed is the density of the seed particles, MWSO4
is the molecular weight of sulfate, and

MWseed is the molecular weight of the seed particles. For dry AS seed, ρseed is 1.77 g cm−3. In the

upper bound limit, both suspended and deposited particles gain or lose organic material at the same

rate; therefore, the organic-to-sulfate ratio of all particles of the same size is the same, and this ratio

is determined from unit mass resolution AMS data. High-resolution analysis of the dominant sulfate
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ions, m/z 48 and 64, showed less than 1% contribution of organic signal to the total ion signal;

therefore, organic contribution to the unit mass resolution sulfate signal was negligible. Differences

in the organic-to-sulfate ratio, rOS , between unit mass resolution and high resolution data are less

than 5%, except during the first 2 h of growth when they are more variable at lower organic loading.

To obtain the SOA mass, rOS is multiplied by the initial mass of sulfate in the seed particles,

∆Mo = mSO4
rOS . (3.6)

This equation is valid if the organic-to-sulfate ratio does not vary with particle size or if particle

wall loss rates are constant over the particle size range of interest. In the Caltech chambers, particle

wall loss rates depend on particle size so the latter assumption is not valid. Depending on the

condensation behavior of the SOA, rOS may depend on particle size (Hildebrandt et al., 2009;

Riipinen et al., 2011). For the present experiments, data were not available to determine the size

dependence of rOS of the particles. For the purpose of calculating the upper bound wall loss

corrected organic mass, it is assumed that rOS does not vary with particle size. The implications of

this assumption will be discussed in Sect. 3.4.4.

3.4 Results and Discussion

3.4.1 SOA formation

Two experiments with the same initial conditions and 18 h of irradiation were performed to assess

the reproducibility of initial conditions and SOA production (Table 3.2). For both AS seed and

MS+SA seed, similar concentrations of m-xylene reacted and ∆Mo formed after 18 h of irradiation

were achieved. Given the consistency between matched experiments, it was not necessary to sample

for the entire duration of longer experiments. It was assumed that data collected during previous,

shorter experiments are adequate to describe the same time period during longer experiments.

Figure 3.2 shows decay of m-xylene and ∆Mo corrected for wall loss for both the upper and lower
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bound cases over 36 h of irradiation. The lower bound ∆Mo and m-xylene data are a compilation of

the 18-, 30-, and 36-h AS seed experiments (the 24-h experiment was omitted as noted earlier due

to low seed particle volume), but the upper bound ∆Mo data are from only the 36-h experiment

because continuous data were available. The variation in the lower bound wall loss corrected mass

concentration after peak growth is likely due to differences in number distributions during the 18-,

30-, and 36-h experiments. The peak in SOA formation occurs before all of the m-xylene has been

reacted. For the lower bound case, ∆Mo remains relatively stable after its peak, decreasing only

slightly over 20 h of irradiation. For the upper bound case, ∆Mo peaks at approximately the same

time as in the lower bound case; however, there is a pronounced decay of ∆Mo after the maximum

is reached. Wall losses result in 43% of the total volume concentration of particles deposited on the

wall for the lower bound case and 56% of ∆Mo deposited on the wall for the upper bound case after

36 h. The behavior of ∆Mo after peak growth will be discussed in Sect. 3.4.3.

Throughout each experiment, the OH concentration was approximately 2.5× 106 cm−3, as esti-

mated from the decay of m-xylene and simulated by a photochemical model (see Appendix A). After

36 h of irradiation, 40% of the initial 4 ppm of H2O2 injected into the chamber remained unreacted.

3.4.2 SOA composition

Figure 3.3 shows the evolution in the elemental oxygen-to-carbon ratio (O:C) of the suspended

particles for all 5 of the AS seeded experiments. O:C values overlap for all of the experiments with

different irradiation durations. O:C decreases during the first 5 h of irradiation in all but the 36-h

experiment. During the 36-h experiment, the sensitivity of the AMS sampling in W-mode was lower

than that in the other aging experiments, which hindered the detection of initially-formed SOA.

The O:C calculated using V-mode data (not shown) decreases during the first 5 h of irradiation for

all 5 of the aging experiments. The dominant trend in O:C begins after 5 h. After this time, O:C

gradually increases at an average rate of 0.0019 h−1 for the remainder of the irradiation period. The

minimum in O:C occurs before the maximum ∆Mo is reached.

The mass spectral parameter f44 is commonly used to characterize SOA chemical composition.
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Aiken et al. (2008) determined a relationship between O:C and f44 for ambient aerosol in Mexico

City: O : C = (3.82± 0.05) × f44 + (0.0794± 0.0070) for f44 ranging from 0 to 0.25. The SOA

in the current set of experiments does not follow the same trend as the Mexico City SOA, and

exhibits trendline of O : C = (1.42± 0.04) × f44 + (0.439± 0.005) over a range of 0.10 to 0.14 of

f44. Although the data for m-xylene SOA do not follow the same trendline as the Mexico City data,

they lie within the scatter of the Mexico City data (Fig. 3.4). Using the same AMS instrument,

Chhabra et al. (2010) found that the O:C and f44 of SOA from aromatics, isoprene, and glyoxal did

not lie along the trendline reported in Aiken et al., but the O:C and f44 of SOA from α-pinene and

naphthalene did. In general, if CO+
2 contributed most of the oxygen signal in the spectra, then the

O:C and f44 of the SOA more closely matched those predicted by the trendline from the Mexico

City data. The correlation between O:C and f44 for m-xylene SOA in the present work differs from

that of Lambe et al. (2011), who observed that m-xylene SOA follows the same trendline as the

Mexico City data. The range of f44 values observed by Lambe et al. is much larger than that in the

present work, initial hydrocarbon loadings are higher, and OH exposure is 2-3 times greater than the

maximum OH exposure achieved in the present work (3.2×1011 cm−3 s). Any of these factors could

contribute to the different correlations between O:C and f44. The factor most likely to explain the

discrepancy between the correlation in the present work and that in Lambe et al. is the difference

in OH exposure. At higher OH exposure, the SOA is likely to be more oxidized, and CO+
2 is likely

to be a major contributor to the oxygen signal in the spectra.

The evolution of m-xylene SOA is also represented in f44-f43 space (Fig. 3.5). The change in O:C,

derived from the correlation specific to m-xylene, is also shown. The marker size is a function of the

concentration of suspended organics, normalized to suspended sulfate concentration to account for

wall losses. Overall, low-NOx m-xylene SOA exhibits higher f43 than the typical range of ambient

SOA observed by Ng et al. (2010) and lies to the right of the triangular region derived for ambient

SOA. At the beginning of irradiation when the organic mass loading is small, the SOA has a higher

f44 and a lower f43. As SOA continues to form, f44 decreases and f43 increases until approximately

5 h of irradiation, at which time the trends reverse. For the remaining duration of irradiation, f44
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increases and f43 decreases, resulting in a progression of the SOA characteristic of the behavior of

more-aged ambient SOA. The time at which the path reversal in f44-f43 space occurs is the same as

that at which the minimum in O:C occurs. Curvature in f44-f43 space has been observed in other

studies (Kroll et al., 2009; Ng et al., 2010; Chhabra et al., 2011; Lee et al., 2011; Lambe et al.,

2011). Lambe et al. did not observe curvature in f44-f43 space for m-xylene SOA, and the curvature

observed in the present study occurred for lower OH exposures than the lowest value attained by

Lambe et al.. It is possible that the OH exposure levels used to form m-xylene SOA in Lambe et al.

were too large to observe the curvature.

The high-resolution AMS mass spectra provide clues to the trends in O:C, f44, and f43. The

average mass spectra at peak organic growth and at the end of the 36-h aging experiment are shown

in Fig. 3.6. Figure 3.7 shows the time trends of the 4 dominant organic ions (CH+
3 , CHO+, C2H3O+,

and CO+
2 ) in the aerosol mass spectra and the maximum of the suspended particle size distribution

throughout 36 h of oxidation. Excluding CO+
2 , these ions account for 30-35% of the total organic

signal throughout the experiment. When organic CO+
2 and the ions whose organic contributions are

assumed to correlate with it (CO+, H2O+, OH+, and O+) are included, the mass fraction of the

organic signal is approximately 52%. In the top panel of Fig. 3.7, the time trends of the normalized,

wall-loss corrected ion signals are shown. To obtain this, the ion signal was divided by the sulfate

signal to correct for wall losses. The sulfate-normalized ion signal was then scaled by its average

value at the peak concentration. In the middle panel, the fractional contribution of each ion to the

total organic signal is shown. The bottom panel shows the particle diameter (Dp) of the maximum

of the suspended particle size distribution. The most rapid change in Dp occurs during the first 5

h of irradiation. The amount of each of the 4 ions in the particles increases during this time (top

panel). After 5 h, Dp changes more slowly, and the contribution of each ion to the spectra begins

to peak. CHO+ reaches a maximum most quickly, followed by CH+
3 and C2H3O+. CO+

2 peaks

later than the other ions. After most of the ions peak, their contribution to the spectra decreases

for the remainder of the experiment; however, the amount of CO+
2 shows much less of a decrease,

suggesting that compounds that contribute to the CO+
2 signal have a lower tendency to be removed
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from the particles than those that contribute to the other ion signals.

Shortly after the onset of irradiation, CO+
2 constitutes the largest fraction of the organic signal,

likely from the condensation of low-volatility organics. As irradiation continues, the CO+
2 fraction

of the organic signal decreases as semivolatile material represented by the other ions, especially

C2H3O+, begins to partition to the particles. Once the rate of particle growth slows, the fraction of

CO+
2 increases because the contribution of CO+

2 to the mass spectra is still increasing, whereas the

amounts of the other ions are beginning to stabilize and then decrease. The increase in the organic

fraction of CO+
2 continues throughout the duration of the experiment caused by a larger decrease

in the amounts of the other ions in the particle mass spectra than CO+
2 .

3.4.3 Fate of SOA after peak growth

After peak growth, a decrease in most of the major organic ions and the total organic mass is

observed (Fig. 3.2 and 3.7). The magnitude of the decrease in ∆Mo is much greater for the upper

bound wall loss correction than that for the lower bound wall loss correction, suggesting that either

the process causing the decrease in ∆Mo has a larger effect on the upper bound wall loss case or

that an incorrect assumption was made for one of the wall loss corrections. For the upper bound

wall loss correction, rOS was assumed to be constant such that the rOS of the suspended particles

was equivalent to that of the deposited particles. If this is not the case, the mass lost to the walls

may be over- or under-estimated. Implications of the size-dependence of rOS on the upper and lower

bound wall loss correction and its effects on the conclusions of the present section will be discussed

in Sect. 3.4.4.

If the organic mass lost to the wall was correctly calculated for both upper and lower bound cases,

a possible explanation for the decrease in ∆Mo after peak growth is repartitioning of semivolatiles

to the gas phase. As irradiation continues, semivolatiles in the gas phase can undergo reaction

with OH or photolysis to form higher-volatility products, or they may be lost to the walls. As the

concentration of a semivolatile in the gas phase decreases from fragmentation reactions or wall loss,

repartitioning can occur to maintain gas-particle equilibrium. OH can also react with the particle



47

surface, forming higher volatility fragmentation products that evaporate and decrease the particle

organic mass. These processes are summarized in Fig. 3.8. Evaporation of semivolatiles is expected

to have a greater effect on ∆Mo in the upper bound limit because all particles are assumed to

undergo gas-particle partitioning, as opposed to only the suspended particles in the lower bound

limit, thus a higher decrease in ∆Mo should be expected in the upper bound limit.

Semivolatile species are expected to repartition from the particle phase more easily than low

volatility species. This behavior is observed with the organic ions C2H3O+, characteristic of

semivolatile oxygenated organic aerosol (SV-OOA), and CO+
2 , characteristic of low volatility oxy-

genated organic aerosol (LV-OOA). The amount of C2H3O+ in the particle mass spectra increases

faster than CO+
2 and shows a much greater decrease than CO+

2 as the experiment progresses. There

is a slight decrease in CO+
2 at longer irradiation times, and it is possible that the uptake of low

volatility species is not completely irreversible, allowing for some evaporation.

Evaporation of particles is characterized by a shift of the Dp at the maximum of the size distri-

bution to smaller size. This shift was not observed in the aging experiments, as shown in the bottom

panel of Fig. 3.7 where Dp increased slightly after the peak organic loading was attained around

12 h. The two main processes affecting the particle size distribution in chamber experiments are

gas-particle partitioning and wall loss. In the Caltech chambers, wall loss rates are at a minimum

for particles of diameters between 200 and 300 nm (Fig. 3.1). During the aging experiments, the Dp

at the size distribution maximum is below the 200-300 nm minimum in wall loss. If evaporation is

occurring, the rate of wall loss will increase as particles get smaller. As a result, the greater loss of

small particles will cause size distribution, characterized by the Dp at its maximum, to shift slightly

toward the 200-300 nm minimum in wall loss rate. Both the evaporation and wall loss processes

are slow; therefore, the two processes will tend to counteract each other with respect to their effects

on the dynamics of the aerosol size distribution, and no change in Dp at the maximum of the size

distribution is observed. It is also possible that the upper bound wall loss correction over-predicts

the amount of evaporation occurring (see Sect. 3.4.4). In this case, the Dp at the size distribution

maximum would only be expected to increase slightly toward the 200-300 nm minimum in wall loss
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rate.

To determine the extent to which photochemical processes are affecting the aerosol after peak

growth, an experiment was performed in which the lights were turned off after 12.4 h of irradiation

(Fig. 3.9). Production of OH ceases, and shortly thereafter, OH is no longer present in the chambers.

The m-xylene concentration stabilizes after lights are turned off, and the substantial decrease in the

upper bound ∆Mo is not observed with the lights off. The lower bound ∆Mo increases after lights

are turned off to result in a 5% change in mass after 8 h. This increase could be the result of

uncertainty induced by the wall loss correction or condensation of vapors as the chamber cooled

after irradiation stopped from 24 ◦C to 19 ◦C during hours 12.4 to 16. The latter process is not

observed in the upper bound ∆Mo, but condensation could be masked by uncertainty in the wall

loss correction method, discussed in Sect. 3.4.4. Despite the potential uncertainties of the wall loss

correction and the cooling of the chamber, the decrease observed in the lower bound ∆Mo in the-36 h

aging experiment is not observed after irradiation ceases. After the lights are turned off, the chemical

composition of the particles also stops changing significantly. This is shown in f44-f43 space in Fig.

3.10. While the aerosol forms, f43 decreases and f44 increases; however, after the lights are turned

off, the rates of change of both f43 and f44 decrease substantially. In the absence of irradiation, a

semivolatile species in the gas phase, Ag, can partition to and from particles or be lost to the walls

(Fig. 3.8). After irradiation stops, the rate of change in the amount and composition of the particles

decreases substantially; therefore, no significant repartitioning is occurring. Under these conditions,

only vapor phase wall loss is expected to cause repartitioning; therefore, vapor phase wall loss is not

significant in this system. If no repartitioning is observed without irradiation, and if there are no

substantial vapor phase wall losses, then repartitioning must be driven by photochemical processes

that affect the chemical composition of the gases and SOA.

It was not possible to distinguish among the photochemical process occurring: reaction of OH

with semivolatiles; reaction of OH with particles; and photolysis of semivolatiles. The photochemical

model described in Appendix A was used to estimate lifetimes for OH against reaction with particles,

OH against reaction with semivolatiles, semivolatiles against reaction with OH, and semivolatiles
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against photolysis. The lifetime of OH against reaction with gas-phase species A g, τOH+A (s), is

τOH+A =
1

kA+OHcA
(3.7)

where kA+OH (cm3s−1) is the reaction rate constant and cA (cm−3) is the gas-phase concentration of

A. Using the combined concentrations of species ROOH, ROHOH, ROHOOH, and EPOXOOH and

an average rate constant kOH = 1 × 10−10 cm3 s−1 (Table 3.3), τOH+A
∼= 0.2 s. The heterogeneous

reaction of OH with a particle surface is assumed to be pseudo-first order in terms of OH (Seinfeld

and Pandis, 2006). The characteristic time for this process, τOH+P (s), can be calculated by,

τOH+P =
1

1
4γcOHAp

(3.8)

where γ is an uptake coefficient, here assumed to be 1, Ap (cm2 cm−3) is the surface area concen-

tration of the particles, and cOH (cm s−1) is given by

cOH =

(
8RT

πMWOH

) 1
2

(3.9)

where T (K) is temperature and MWOH (kg mol−1) is the molecular weight of OH. The particle

surface area was calculated from measured particle number distributions. Based on the upper and

lower bound wall loss corrections, τOH+P ranges from 6-13.5 s, corresponding to particle surface

areas of (0.47− 1.1)× 10−5 cm2 cm−3.

Some of the semivolatile species used to determine τOH+A can also photolyze. The lifetimes of

these species, ROOH, ROHOOH, and EPOXOOH, against OH reaction and photolysis were also

calculated to determine if photolysis is expected to be a large sink of gas-phase species. The lifetime

of these species against reaction with OH, τA+OH (s), is

τA+OH =
1

kA+OHcOH
(3.10)
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where cOH (cm−3) is the OH concentration, which was estimated to be 2.5 × 106 cm−3 from the

measured m-xylene decay. Under this condition, τA+OH = 4.0× 104 s. The lifetime of these species

against photolysis, τA+hν , is calculated by,

τA+hν =
1

jROOH
(3.11)

where jROOH is the photolysis rate constant of an organic peroxide, as described in Appendix A.

The characteristic lifetime against photolysis is estimated as 4.7 × 105 s. Photolysis is an order

of magnitude slower than reaction with OH, and photolysis is not expected to be a major sink of

gas-phase species. Changes in particle composition are likely driven by continued oxidation of the

gas phase, although OH reaction with particle surfaces cannot be categorically dismissed.

The continued oxidation of semivolatile species is apparent upon examination of possible gas-

phase m-xylene oxidation products using the CIMS (Fig. 3.11). The top panel shows the time trace of

m/z 207, which has the same m/z as the predicted reagent ion clustering of first-generation oxidation

products ROH (MW+85) and ROOH (MW+19) in the model (Table 3.4). This m/z signal increases

rapidly and peaks at 3-4 h of irradiation. When lights are turned off during the experiment, the

decay slows significantly. The middle panel shows the time trace of m/z 223, which has the same m/z

as the predicted reagent ion clustering of second-generation oxidation products ROHOH (MW+85),

ROHOOH (MW+19), and EPOXOOH (MW+19). Again, this m/z signal increases rapidly and

peaks slightly later at 4-5 h irradiation. When the lights are turned off, the signal stabilizes. The

photochemical model predicts the peak of the first generation product concentrations to occur about

an hour before that of the second generation product concentrations, and the time difference between

the peak of the CIMS signals at m/z 207 and m/z 223 is consistent with the model output. The

bottom panel shows the time trace of m/z 271, which has the same m/z as the predicted reagent

ion clustering of third-generation oxidation product (MW+85) formed by the EPOXOOH + OH

reaction (prodEPOXOOH+OH in the model). From model predictions, this compound with predicted

reagent ion clustering at m/z 271 should form more slowly. The signal at m/z 271 peaks at 13-14
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h of irradiation and does not decrease after irradiation ceases. The behavior of these signals is

consistent with multiple generations of oxidation. The changes are clearly photochemically driven.

Vapor-phase wall loss is not a significant sink of compounds contributing to these signals, indicated

by the absence of decay after the lights are turned off.

3.4.4 Role of organic-to-sulfate ratio in particle wall loss corrections

The partitioning behavior of SOA precursors affects how these species condense onto a particle size

distribution (Riipinen et al., 2011). If condensation is limited by diffusion, which is typically the

case for essentially non-volatile compounds, the rate of condensation depends on the surface area

of the particle size distribution (Seinfeld and Pandis, 2006); in that case the organic growth tends

to occur on particles with smaller Dp as this is the particle size regime where the surface area

is greatest. For organics exhibiting diffusion-limited behavior, organic condensation on AS seed

particles tends to form organic and sulfate mass distributions such that mean Dp of the organic

mass distribution is smaller than that of the sulfate distribution. If condensation is controlled by

gas-particle partitioning equilibrium, which is typically the case for semi-volatile compounds, these

species will tend to condense preferentially into the particle size range where the mass concentration

is greatest, i.e. a majority of the organic growth will occur on particles with larger Dp (Zhang et al.,

2012). In this case, the organic mass distribution will peak at a larger Dp than the sulfate mass

distribution. Because information about the organic and sulfate mass distributions was not available

for the present experiments, a simulation was performed to assess the effects of different shapes of

organic and sulfate mass distributions on the upper bound wall loss correction method.

Three different pairs of organic and sulfate mass distributions consistent with the measured

number distribution and rOS were created from the suspended particle number distribution averaged

between hours 12 and 12.5 of irradiation from the combined 36 h aging experiment in order to

determine the uncertainty in the upper bound wall loss correction induced by size-dependent rOS

(Fig. 3.12). The peak of the measured aerosol number distribution occurs at a Dp smaller than that

at which the wall loss rate is at its minimum, and the wall loss rate increases moving from lower
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Dp to higher Dp across the measured number distribution (not shown). Each of the distributions

in Fig. 3.12 is characterized by the same total particle number distribution, an organic-to-sulfate

ratio of 2.00, and an organic mass concentration of 22.7-22.8 µg m−3. Case I represents condensation

resulting from equilibrium gas-particle partitioning, and Case III represents condensation resulting

from diffusion-limited growth. In Case II all particles have the same rOS .

The aerosol size distribution was subjected to 24 h of wall loss at the rates applied to the

experimental number distributions, ignoring condensation (growth and evaporation are assumed

to cease) and coagulation. For each of the cases, rOS of the suspended particles and the upper

bound wall-loss corrected mass concentration were calculated as a function of time (Fig. 3.13). In

Case I, rOS of suspended particles increased by about 10% over 24 h as particles with a lower rOS

were preferentially lost to the walls. Because rOS of suspended particles is higher than that of

deposited particles, using rOS of suspended particles to represent deposited particles leads to an

over-estimation of organic mass lost to the walls. The over-prediction of wall loss corrected organic

mass concentration is about 10%. In Case II, rOS of suspended and deposited particles are the same

by definition, and the predicted wall loss corrected organic mass was estimated properly. In Case III

rOS of deposited particles is greater than that of suspended particles, and rOS of suspended particles

decreased by about 10% over 24 h because particles with a higher rOS were preferentially lost to

the walls. This resulted in an under-prediction of wall loss corrected organic mass concentration by

about 10%.

Organic and sulfate mass distributions have been reported for toluene SOA condensed onto AS

seed and are indicative of diffusion-limited condensation (Hildebrandt et al., 2009). If m-xylene SOA

formation occurs by processes similar to those of toluene, the mass distributions during the present

experiments will most closely resemble Case III, and increasing under-prediction of the upper bound

wall-loss corrected organic mass concentration may occur with time. During the 36 h combined

aging experiments, the measured rOS of suspended particles decreased from 2.1 to 1.9 between

hours 12.4 and 20 and continued to decrease linearly to 1.4 at 36 h. Between hours 12.4 and 20,

the wall-loss corrected organic mass concentration decreased from 32.8 to 30 µg m−3. By hour 36, it
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had decreased to 22.3 µg m−3. The changes in rOS and mass loss can be compared to those in the

experiment in which irradiation ceased after 12 h and in which only particle wall loss occurred after

that time. Between hours 12.4 and 20, rOS decreased from 1.50 to 1.42, and the wall-loss corrected

mass concentration decreased from 20.5 to 19.2 µg m−3. The decrease in both organic-to-sulfate

ratio and wall-loss corrected mass concentration in the 12-h irradiation experiment are indicative of

wall loss of an aerosol size distribution characterized by diffusion-limited growth. The experimental

conditions of the 36-h experiment were similar to the 12-h irradiation experiment; however, both the

initial m-xylene concentration and the seed volume concentration in the 12-h irradiation experiment

were lower than those in the combined 36-h aging experiments, and rOS is expected to differ as a

result. Despite the differences, it is expected that the size distribution of the suspended particles in

hours 12.4-20 during the 36-h experiment should behave similarly to the size distribution of particles

during hours 12.4-20 of the 12-h irradiation experiment if only particle wall loss is occurring. The

fractional decrease in rOS during hours 12.4-20 of the 36-h irradiation experiment is approximately

double that of the 12-h irradiation experiment, suggesting that an additional process besides particle

wall loss, such as gas-particle repartitioning due to evaporation, affected the suspended particle rOS .

The magnitude of evaporation, however, may not be as large as originally thought due to uncertainty

in the upper bound wall loss correction method.

The lower bound wall loss correction should be unaffected by size-dependent rOS distributions.

The number and size of deposited particles is calculated independently of particle composition and

is added back to the number distribution of suspended particles to calculate the total volume of

particles. In obtaining the total volume of organics, the volume of seed or other background particles

is subtracted from the total volume. This calculation assumes that the seed or background particle

volume does not change during an experiment.

3.4.5 Acidic seed effects

Aging experiments were also performed using acidic MS+SA seed to determine the extent to which

particle acidity affects chemical aging of m-xylene SOA. Figure 3.14 shows the elemental ratios for
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both AS and MS+SA seeded experiments. No difference between the acidic and neutral seeds for

m-xylene-derived SOA is observed. Ng et al. (2007) did not observe a difference in yields for low-

NOx m-xylene SOA with neutral and acidic seed particles; therefore, it is plausible that the chemical

composition of the aerosol condensed onto the two types of seed particles is similar.

3.5 Conclusions

Laboratory chamber studies provide fundamental information on the mechanisms of formation of

SOA. The duration of chamber experiments is limited by several factors, including wall loss of parti-

cles and vapors and depletion of chamber air through instrument sampling. Laboratory experiments

attempt to approach durations of OH radical exposure corresponding to those of particles in the

atmosphere, the order of a week, through enhanced OH radical levels. In the present work we extend

the duration of chamber experiments by sampling protocols that minimize the amount of chamber

air removed over the course of the experiment. The protocol developed here allows experiments

up to 36 h duration. Hydroxyl radical levels in the experiments reported here are roughly at at-

mospheric levels. We address SOA formation from the photooxidation of m-xylene, an important

anthropogenic precursor to organic aerosol. The extended duration experiments provide a view into

the multi-generational chemistry involved in m-xylene SOA formation that can be expected to be

occurring in the atmosphere. Although the current work studies only low-NOx chemistry, the m-

xylene oxidation mechanism leading to SOA formation under high-NOx conditions is also expected to

follow multi-generational chemistry (Kwok et al., 1997; Zhao et al., 2005; Ng et al., 2007; Song et al.,

2007; Noda et al., 2009; Birdsall et al., 2010). The generations of oxidation of a precursor volatile

organic compound can lead to functionalized products of ever decreasing volatility, characterized by

increasing elemental O:C ratio, as well as to products of higher volatility that do not contribute to

SOA. Based on CIMS measurements, there is strong evidence of gas-phase loss of higher generation

products. That this process involves photooxidation or photolysis is confirmed by the absence of

changes in total aerosol amount when irradiation is stopped. Wall loss of vapor can be excluded

as the cause of this behavior. Estimates of reaction timescales suggest that gas-phase processes are
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most likely involved in this latter stage of aging, although direct OH reaction with the surface of

the particles cannot be ruled out. Finally, the present work offers a protocol for laboratory chamber

experiments to attain times approaching more closely those of atmospheric aerosol residence times.

3.6 Appendix A: Photochemical Model

To estimate both OH concentration and the importance of OH reaction with later-generation ox-

idation products, a photochemical model (reactions 3.12-3.34 below) was constructed. Products

through three generations of oxidation are included. Primary oxidation products are those sug-

gested by Birdsall et al. (2010) and Zhao et al. (2005) with product yields and further oxidative

pathways as derived from the MCM (Jenkin et al., 2003; Bloss et al., 2005). Values of rate constants

are listed in Table 3.3, and compounds represented in the model are given in Table 3.4. Photolysis

rate constants are calculated using the irradiance spectrum measured for the chamber lights and ab-

sorption cross section values and quantum yields from Sander et al. (2011). The following reactions

are included:

H2O2 + hν
jH2O2−→ 2OH (3.12)

H2O2 + OH
k1−→ HO2 + H2O (3.13)

RH + OH
k2−→ 0.54RO2 (3.14)

k2−→ 0.29EPOX + 0.29HO2 (3.15)

k2−→ 0.17ROH + 0.17HO2 (3.16)

RO2 + RO2
k3−→ prodRO2+RO2

(3.17)

RO2 + HO2
k4−→ ROOH (3.18)

EPOX + OH
k5−→ EPOXO2 (3.19)

EPOX + hν
jEPOX−→ prodEPOX+hν (3.20)
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ROH + OH
k6−→ 0.51ROHO2 (3.21)

k6−→ 0.42ROHOH (3.22)

k6−→ 0.07RO (3.23)

ROOH + OH
k7−→ prodROOH+OH + OH (3.24)

ROOH + hν
jROOH−→ prodROOH+hν + OH (3.25)

EPOXO2 + HO2
k8−→ EPOXOOH (3.26)

EPOXOOH + OH
k9−→ prodEPOXOOH+OH + OH (3.27)

EPOXOOH + hν
jROOH−→ prodEPOXOOH+hν + OH (3.28)

ROHO2 + HO2
k10−→ ROHOOH (3.29)

ROHOOH + OH
k11−→ ROHO2 (3.30)

ROHOOH + hν
jROOH−→ prodROHOOH+hν (3.31)

ROHOH + OH
k12−→ prodROHOH+OH (3.32)

HO2 + HO2
k13−→ H2O2 + O2 (3.33)

OH + HO2
k14−→ H2O + O2 (3.34)

Neither gas-particle partitioning nor vapor-phase wall loss was included in the model because there

is not sufficient information about either process to accurately represent it in the model. Vapor-

phase wall loss is assumed to be minor (Fig. 3.11) and should not have a large effect on gas species

concentrations.
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Table 3.1: Experiment sampling conditions and instrument sampling protocol.

Experiment Duration Volume Removed Sampling hours
Type (h) (m3) Group Ia Group IIb

Wall loss 23 6.14 N/Ac N/A
18 h aging 18 7.92 0-18 0-18
24 h aging 24 3.60 0-24 16-24
30 h aging 30 3.63 0-30 22-30
36 h aging 36 3.66 0-36 28-36

aGroup I instruments: AMS, RH and temperature probe (total volumetric flow rate = 0.084
L min−1).
bGroup II instruments: DMA, CIMS, GC/FID, O3 analyzer, NOx analyzer (total volumetric flow
rate = 7.25 L min−1).
cInstruments sampling: DMA, O3 analyzer, NOx analyzer, RH and temperature probe (total
volumetric flow rate = 4.45 Lmin−1).
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Table 3.2: Experimental conditions and results.

Seed Duration Initial m-xylene Seed vol. Final m-xylene Final ∆Mo
a

(h) (ppb) (µm3 cm−3) (ppb) (µg m−3)
AS 18 32.2± 0.7 11.1± 0.3 2.46± 0.66 21.9± 1.7
AS 18 31.8± 0.7 12.3± 0.3 0.84± 0.66 24.7± 1.9
AS 24 29.2± 0.7 9.10± 0.2 < 0.5 N/A
AS 30 29.1± 0.7 12.3± 0.4 < 0.5 N/A
AS 36 28.7± 0.7 13.1± 0.2 < 0.5 N/A
AS 12+8b 25.0± 0.6 10.5± 0.3 2.1± 0.6 20.0± 1.0

MS+SA 18 32.9± 0.7 10.5± 0.4 1.94± 0.66 22.5± 1.8
MS+SA 18 32.4± 0.7 10.8± 0.4 1.15± 0.66 21.7± 1.7
MS+SA 24 32.5± 0.7 10.6± 0.3 < 0.5 N/A
MS+SA 30 29.6± 0.7 10.6± 0.3 < 0.5 N/A
MS+SA 36 30.0± 0.7 10.8± 0.4 < 0.5 N/A

aLower bound limit
b12.4 h irradiated + 8 h dark
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Table 3.3: Rate constants for the photochemical model.

Rate constant Source
(cm3 s−1)
jH2O2

= 2.9× 10−6 (s−1) Sander et al. (2011)
k1 = 1.8× 10−12 Sander et al. (2011)
k2 = 2.31× 10−11 Calvert et al. (2002)
k3 = 9.8× 10−13 Birdsall et al. (2010)
k4 = 1.96× 10−11 MCM (Jenkin et al., 2003; Bloss et al., 2005)
k5 = 8.02× 10−11 MCM
jEPOX = 1.24× 10−4 (s−1) MCM and Sander et al. (2011)
k6 = 9.1× 10−11 MCM
k7 = 1.17× 10−10 MCM
jROOH = 2.1× 10−6 (s−1) Sander et al. (2011)
k8 = 1.96× 10−11 MCM
k9 = 7.41× 10−11 MCM
k10 = 1.96× 10−11 MCM
k11 = 1.13× 10−10 MCM
k12 = 2.05× 10−10 MCM
k13 = 1.4× 10−12 Sander et al. (2011)
k14 = 1.1× 10−10 Sander et al. (2011)
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Table 3.4: Compounds represented in the photochemical model.

Compound Structure Formula
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Figure 3.1: Particle wall loss rate constants, β, measured in both chambers from September 2009
to August 2011. The top panel corresponds to near chamber, and the bottom panel corresponds
to far chamber. The wall loss rates labeled “applied” were applied to the experiments reported
in this manuscript. The wall loss rates labeled “low-volume” were calculated during a wall loss
calibration experiment in which the initial chamber volume was decreased by 8 m3 to simulate
conditions achieved after 18 h of sampling. The wall loss rates labeled “other” are those calculated
from quarterly calibration experiments.

Figure 3.2: SOA mass (right axis), corrected for particle wall losses, and m-xylene (left axis) for 36
h of OH exposure using AS seed. The lower bound ∆Mo is calculated assuming that, once deposited,
particles on the walls do not interact with gases in the chamber. The upper bound ∆Mo assumes
that, once deposited, particles continue to exhibit the same gas-particle partitioning behavior as
suspended particles. The fraction on the wall for the lower bound is the ratio of particle volume
on the wall to total particle volume, both suspended and deposited, and includes seed volume. The
fraction on the wall for the upper bound is the ratio of organic mass concentration on the wall to
the total organic mass concentration.
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Figure 3.3: SOA mass (right axis) and O:C elemental composition (left axis) over 36 h of OH
exposure using AS seed. After hour 5, the O:C increases at an average rate of 0.0019 h−1 (dashed
line).

Figure 3.4: Correlation of O:C with f44 for SOA from m-xylene in the present study and Mexico
City ambient aerosol from Aiken et al. (2008).
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Figure 3.5: Evolution of f43, f44, and O:C for 36 h of OH exposure. This system lies to the right
of the triangular region in which typical ambient aerosol resides, as shown by the dashed lines in the
inset (Ng et al., 2010). Marker size denotes the organic-to-sulfate ratio, rOS , of suspended particles.
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Figure 3.6: Average AMS high-resolution organic mass spectra at the time of peak growth and
at the end of the experiment (final growth) for the 36-h aging experiment. Prominent peaks are
identified. The mass of CO+ is estimated to equal that of CO+

2 .
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Figure 3.7: Evolution of SOA chemical composition from high-resolution AMS measurements and
diameter of the maximum number distribution of suspended particles. In the top panel, the ion
signal is normalized by sulfate to account for particle wall losses. The sulfate-normalized ion signal
is then scaled by the average value at the peak concentration. The middle panel shows the fractional
contribution of each ion to the total organic mass signal. A relative ionization efficiency of 1.4 is
used when calculating the organic ion concentration. The dashed line at 5 h corresponds to the
reversal in trend of O:C.
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Figure 3.8: Sources and sinks of a semivolatile gas-phase species, A g, and particles containing
the condensed semivolatile species, A p, during SOA aging. We do not explicitly indicate in the
sketch processes by which the particle-phase A p attains a semisolid state, greatly affecting continued
exchange with the gas phase (Virtanen et al., 2010; Vaden et al., 2010, 2011; Shiraiwa et al., 2011).
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Figure 3.9: Trends in m-xylene concentration (left axis) and ∆Mo (right axis) when irradiation is
stopped once peak ∆Mo is attained.

Figure 3.10: Evolution of f43, f44, and O:C of m-xylene SOA. Irradiation was stopped after
12.4 hours, corresponding to the peak of ∆Mo. This point is denoted by the “x”. Marker size
denotes the organic-to-sulfate ratio, rOS , of suspended particles. After irradiation stops, the chemical
composition of the SOA does not change significantly. The inset shows the position of the data with
respect to the triangular region characteristic of ambient SOA bounded by the dashed lines, as
defined by Ng et al. (2010)
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Figure 3.11: Time evolution of products formed during m-xylene oxidation detected by the CIMS.
The signals labeled 36 h were recorded during the set of experiments in which the chamber contents
were irradiated for 36 h. The signals labeled 12 h were recorded during the experiment in which the
lights were turned off after 12.4 h of irradiation and remained off for the remainder of the experiment.
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Figure 3.12: Organic and sulfate mass distributions used in a simulation to assess the effect of
size-dependent rOS on the upper bound organic mass wall loss correction. All mass distributions are
derived from the same observed particle number distribution and have rOS of 2.00 and an organic
mass concentration of 22.7-22.8 µg m−3. Case I is representative of condensation governed by gas-
particle equilibrium partitioning (see text), and Case III is representative of condensation governed
by diffusion-limited growth (see text). In Case II, rOS is constant for all Dp.
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Figure 3.13: Effect of 24 h of wall loss on the mass distributions in Fig. 3.12. The top panel shows
the suspended particle organic-to-sulfate ratio, rOS , as a function of time for each case, and the
bottom panel shows the upper bound wall-loss corrected organic mass concentration as a function
of time for each case.

Figure 3.14: Elemental ratios of m-xylene aerosol condensed onto neutral (AS) and acidic
(MS+SA) seed particles.
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Chapter 4

On the Mixing and Evaporation of
Secondary Organic Aerosol
Components∗

∗Reproduced with permission from “On the Mixing and Evaporation of Secondary Organic Aerosol Components”
by C. L. Loza, M. M. Coggon, T. B. Nguyen, A. Zuend, R. C. Flagan, and J. H. Seinfeld Environmental Science &
Technology, doi:10.1021/es400979k. Copyright 2013 by the American Chemical Society.
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4.1 Abstract

The physical state and chemical composition of an organic aerosol affect its degree of mixing and its

interactions with condensing species. We present here a laboratory chamber procedure for studying

the effect of the mixing of organic aerosol components on particle evaporation. The procedure is

applied to the formation of secondary organic aerosol (SOA) from α-pinene and toluene photooxida-

tion. SOA evaporation is induced by heating the chamber aerosol from room temperature (25 ◦C) to

42 ◦C over 7 h and detected by a shift in the peak diameter of the SOA size distribution. With this

protocol, α-pinene SOA is found to be more volatile than toluene SOA. When SOA is formed from

the two precursors sequentially, the evaporation behavior of the SOA most closely resembles that of

SOA from the second parent hydrocarbon, suggesting that the structure of the mixed SOA resembles

a core of SOA from the initial precursor coated by a layer of SOA from the second precursor. Such

a core-and-shell configuration of the organic aerosol phases implies limited mixing of the SOA from

the two precursors on the timescale of the experiments, consistent with a high viscosity of at least

one of the phases.

4.2 Introduction

Recent studies suggest that atmospheric organic aerosols may exist in an amorphous semi-solid or

amorphous solid (glassy) state (Virtanen et al., 2010; Vaden et al., 2010; Cappa and Wilson, 2011;

Shiraiwa et al., 2011; Vaden et al., 2011; Kuwata and Martin, 2012; Perraud et al., 2012; Saukko

et al., 2012; Abramson et al., 2013). The physical state of a particle affects its interaction with

water and condensing organic compounds and its behavior upon heating or cooling (Koop et al.,

2011). It is difficult to observe the physical state of submicrometer particles directly; therefore,

a number of indirect techniques have been used to probe the physical state of aerosols, typically

at room temperature and low relative humidity (RH). Bounce of secondary organic aerosol (SOA)

particles in an impactor was taken as indicative of a solid state (Virtanen et al., 2010; Saukko et al.,

2012). Another study employed an amorphous protein substrate as a proxy for an amorphous,
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semi-solid aerosol and showed that a model with finite, condensed-phase diffusion was necessary to

reproduce ozone uptake by the substrate (Shiraiwa et al., 2011). That the uptake of organic nitrates

by α-pinene ozonolysis SOA did not follow absorptive equilibrium partitioning theory was taken, in

another study, as indicative of non-liquid-like behavior (Perraud et al., 2012). Ammonia uptake of

α-pinene ozonolysis SOA was larger under humid conditions (RH > 94 %) than under dry conditions

(RH < 5 %), suggesting a transition from semi-solid to liquid particles for increasing RH (Kuwata

and Martin, 2012). In other studies, α-pinene ozonolysis SOA exhibited slower evaporation kinetics

than those expected for liquid droplets (Vaden et al., 2011), and pyrene evaporation from α-pinene

ozonolysis SOA indicated a particle viscosity of approximately 108 Pa s, much greater than typical

liquid viscosities of 10−2-103 Pa s (Abramson et al., 2013). Based on the observation that α-pinene

ozonolysis SOA partially evaporated in a thermodenuder without a change in particle chemical

composition, it was concluded that particle-phase diffusional limitations prevented higher volatility

compounds from evaporating preferentially (Cappa and Wilson, 2011). The primary inference in

each of these studies is that the retarded diffusion of compounds within the condensed phase can be

attributed to highly viscous particle-phase behavior.

Others have studied particle mixing using controlled aerosol generation from two different sources.

Laser ablation single-particle mass spectrometry data suggest that dioctyl phthalate and α-pinene

ozonolysis SOA formed two separate phases when one type of aerosol was coated with the other type

(Vaden et al., 2010). In another study (Hildebrandt et al., 2011), SOA mass yields (ratio of mass

of SOA formed to mass of parent hydrocarbon reacted) of sequentially formed α-pinene ozonolysis

and labeled toluene photooxidation SOA showed that the SOA yield of the second precursor was

consistent with partitioning to the combined SOA mass from the first and second precursors (pseudo-

ideal mixing, Odum et al., 1996; Bowman et al., 1997; Odum et al., 1997; Strader et al., 1999) rather

than partitioning to the SOA mass formed solely by the second precursor.

In this work, we present an experimental protocol designed to probe the mixing state of organic

aerosols by observing the evaporation behavior of SOA formed sequentially from two different pre-

cursors in an environmental chamber. While oxidation products from the first precursor are present
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in the chamber throughout the experiment and can partition into the particle phase as more or-

ganic particle mass is formed from the second precursor, the second period of SOA formation is

likely dominated by oxidation products from the second precursor. It is hypothesized that particle

evaporation reflects the nature of SOA mixing. If a particle is well mixed, i.e. molecular diffusion

timescales within the particle are the same order of magnitude or faster than evaporation timescales

(Shiraiwa and Seinfeld, 2012), then volatile SOA components have essentially immediate access to

the particle surface for evaporation. If diffusion timescales within the particle are much longer than

evaporation timescales, evaporation of volatile components is inhibited.

Evaporation is induced by heating the chamber, run as a batch reactor, rather than using a

thermodenuder, which is limited in the study of potential particle-phase mass transfer limitations

due to its characteristic residence time (2 to 30 s, An et al., 2007; Tritscher et al., 2011). Two

drawbacks exist, however, to using chamber heating as a basis to infer aerosol evaporation behavior.

First, the maximum chamber temperature, in the present case 50 ◦C, is substantially lower than that

achieved in thermodenuders, ∼ 400 ◦C. Second, condensable organic vapors are difficult to remove

from a batch reactor without also removing the particles themselves. In a thermodenuder, the sample

flows over a bed of activated carbon to remove vapors immediately after heating. Here, we dilute

the chamber contents before heating to decrease the concentration of vapor-phase components and

promote particle evaporation. Other studies have used chamber heating or dilution separately to

evaluate the yield, volatility, reversibility of SOA formed from α-pinene ozonolysis (Grieshop et al.,

2007; Stanier et al., 2007; Warren et al., 2009) and m-xylene photooxidation (Qi et al., 2010); we

combine these procedures to study the mixing state of SOA.

4.3 Experimental

Experiments were performed in the Caltech indoor, dual 24-m3 Teflon chambers. Prior to an ex-

periment, the chamber was cleaned by flushing with air passed through beds of activated carbon,

silica gel, Purafil SP Blend Media, and molecular sieves and a particle filter to achieve a particle

background of < 10 cm−3 and a relative humidity of < 7 %. The experiments were conducted under
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conditions of ¡ 5 ppbv NOx and < 7 % relative humidity. Initial O3 concentration was < 5 ppbv, the

instrument lower detection limit. While some O3 formed during photooxidation, the major sink of

both SOA precursors was reaction with OH. The temperature of the chamber enclosure was main-

tained initially at 25 ±1 ◦C. Hydrogen peroxide (H2O2, 50 % wt., Sigma Aldrich) was used as the

OH radical source and was injected into the chamber by flowing purified air at 5 LPM over 280 µL

of H2O2 in a glass bulb immersed in a 35 ◦C water bath. Photolysis of H2O2 by 350 nm-centered

UV broadband lamps (40 W Sylvania 350BL, jNO2
∼ 6 × 10−3 s−1) provided a constant source

of OH radicals during the irradiation period at a concentration of about 3 × 106 molec cm−3, as

inferred from the decrease in parent hydrocarbon concentration. Ammonium sulfate seed particles

were added to the chamber by atomizing an aqueous solution of 0.015 M ammonium sulfate; par-

ticles dried upon contact with the dry air in the chamber. Toluene (99.8 % purity, Sigma Aldrich)

and/or α-pinene (99+ % purity, Sigma Aldrich) were added to the chamber by flowing purified air

at 5 LPM over a measured liquid volume. After injections, the chamber contents were allowed to

mix for 1 h before irradiation.

During sequential precursor experiments, the second precursor was added in the same manner as

the first after SOA growth from the first precursor stabilized. After 17-24 h, the irradiation period

ended, the lights were turned off, halting OH production, which was confirmed by a leveling of the

concentration of unreacted toluene. Approximately 100 ppbv of cyclohexane, used as a dilution

tracer, was added to the chamber using the same method as the hydrocarbon injections. Once

the cyclohexane concentration stabilized, the chamber contents were diluted by a factor of 2-3 with

purified air. After dilution, the temperature of the dark chamber enclosure was ramped linearly over

7 h from 25 ◦C to 45 ◦C to achieve a maximum chamber temperature of 40-42 ◦C. The chamber

was maintained at the maximum temperature for 7 h.

A suite of instruments was used to study the evolution of the gas and particle phases. Toluene, α-

pinene, and cyclohexane were measured using a gas chromatograph equipped with a flame ionization

detector (GC/FID, Agilent, 6890N). Samples were collected by drawing chamber air through a 10 mL

sample loop and were analyzed using a HP-5 column (15 m×0.53 mm ID×1.5 µm thickness, Agilent).
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The sample was injected onto the 60 ◦C column; after 1 min, the oven temperature was ramped at

40 ◦C min−1 to 250 ◦C, and then held at 250 ◦C for 3 min. Relative humidity and temperature,

NO and NOx, and O3 were continuously monitored using a Vaisala HMP 233, a chemiluminescence

NOx monitor (T200, Teledyne), and an O3 monitor (APOA-360, Horiba), respectively.

The suspended aerosol size distribution and number concentration were measured continuously

using a custom-built scanning mobility particle sizer consisting of a differential mobility analyzer

(DMA, TSI, 3081) coupled to a condensation particle counter (CPC, TSI, 3010), henceforth referred

to as the DMA. The DMA was operated in a closed-loop configuration with a recirculating sheath

and excess flow of 2.67 L min−1 and a 5.4:1 ratio of sheath to aerosol flow rates, and column voltage

was scanned from 15 to 9850 V over 45 s. DMA mobility (diameter) resolution, R, is defined as

(Zhang and Flagan, 1996)

R =
Z∗
p

∆Zp
(4.1)

where Z∗
p is the mobility corresponding to the peak of the transfer function and ∆Zp is the full

width of the transfer function at half maximum. The resolution was calculated for each of the

106 mobility (diameter) bins using the transfer function given in Stolzenburg (1988). Because

size distribution data are binned, a well-resolved change in mobility is deemed one in which a

particle with any mobility in the first bin is resolved from a particle with any mobility in the

second bin. At the DMA operating conditions in the present work, the DMA can resolve a 15-

25 % change in particle diameter. Here, particle diameter shifts are reported using the size bin

median diameter. Real-time particle mass spectra were collected by an Aerodyne high-resolution

time-of-flight aerosol mass spectrometer (AMS, DeCarlo et al., 2006; Canagaratna et al., 2007). The

AMS switched among the higher sensitivity, lower resolution “V-mode,” Particle Time-of-Flight

(PToF) mode, and the lower sensitivity, higher resolution “W-mode.” AMS data were processed

using “Squirrel,” the ToF-AMS Unit Resolution Analysis Toolkit (http://cires.colorado.edu/jimenez-

group/ToFAMSResources/ToFSoftware/index.html), in Igor Pro Version 6.22A (Wavemetrics, Lake

Oswego, OR). “V-mode” and PToF data were analyzed using a fragmentation table to separate

sulfate, ammonium, and organic spectra and to time-trace specific m/z ratios (Allan et al., 2004).
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“V-mode” and “W-mode” data were analyzed using a separate high-resolution spectra toolbox PIKA

(Peak Integration by Key Analysis) to determine the chemical formulas contributing to distinct m/z

ratios (DeCarlo et al., 2006). The signals of organic ions below m/z 141 were used to calculate

elemental ratios. The ratio of particle-phase CO+ to CO+
2 was approximately equal to 1, and in

“V-mode,” the contribution of CO+ to the organic signal was equated to that of particle-phase

CO+
2 . The intensities of water-derived ions (H2O+, OH+, and O+) were calculated from particle-

phase CO+
2 (Aiken et al., 2008). A relative ionization efficiency of 1.4 was applied to organic ion

signals. AMS data reported in this work are averaged over 1-h intervals.

4.4 Results and Discussion

4.4.1 Aerosol Size Distribution Evolution

Both evaporation and particle wall losses affect suspended particle size distributions in this study

(Figure 4.1). Partial particle evaporation decreases particle size but does not affect the number

concentration, whereas particle wall loss decreases the number concentration but does not change

particle size. Particle wall loss rate constants in the Caltech chambers are size-dependent with a

minimum occurring between 200 and 300 nm. Particle wall losses potentially change the shape of

the size distribution as particles of certain diameters are lost faster than others. The inset of Figure

4.1b shows the evolution of a SOA size distribution generated from sequential photooxidation of

toluene and then α-pinene in which the chamber contents were diluted but not heated (Table 4.1,

Experiment 7), and only particle wall losses were observed. The diameter of the size distribution

peak remained within the same size bin (300-319 nm) over 9 h of wall loss. In the size range of the

present experiments, wall loss is not expected to affect the diameter of the size distribution peak,

only its magnitude. Evaporation can shift the size distribution peak diameter to lower diameters

and, due to the Kelvin effect, broaden the size distribution as vapors evaporating from smaller

diameter particles condense onto larger diameter particles, a process known as Ostwald ripening

(Marqusee and Ross, 1984). For particle diameters in the present study (≥ 200 nm), the Kelvin
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effect is not expected to be significant, but the effect is admittedly difficult to isolate in the behavior

of the particle size distributions.

SOA evaporation also can be observed as a decrease in bulk particle mass and volume; however,

particle wall losses, in addition to evaporation, affect the bulk particle mass and volume and must be

corrected for prior to assessing possible particle evaporation. One large uncertainty associated with

particle wall loss corrections is the extent of gas-particle partitioning of deposited particles. SOA

mass, calculated using the two gas-particle partitioning limiting assumptions (deposited particles

undergo no gas-particle partitioning or the same gas-particle partitioning as suspended particles),

can differ by almost 100 % when comparing the lower and higher limits (Hildebrandt et al., 2009).

There are also uncertainties associated with quantifying particle wall loss rates necessary to wall-loss

correct the DMA data, and AMS PToF data show that the organic-to-sulfate ratio is not constant

across the mass distribution in the present experiments, which would necessitate the use of size-

dependent wall loss rates to quantify particle wall losses for AMS data (Loza et al., 2012). Given

the uncertainties associated with particle wall loss corrections, it is advantageous to detect partial

SOA evaporation as a shift in the size distribution peak diameter.

The evaporation of toluene and α-pinene SOA was first assessed individually (Experiments 1 and

2, see Table 4.1). SOA was photochemically formed and aged for 17-19.5 h before dark dilution and

heating, and no particle nucleation was observed. In Experiment 1, all α-pinene was consumed before

dilution, and in Experiment 2, 70 % of the toluene reacted before dilution. Figure 4.1 shows the

evolution of the hourly averaged, suspended particle size distributions during the 7-h heating period

after dilution. Particle evaporation is characterized by a significant shift, as determined by the DMA

resolution, in the size distribution peak diameter to smaller diameters, behavior that is observed for

α-pinene (Figure 4.1a) but not for toluene (Figure 4.1b). After the heating period, α-pinene SOA

continued to evaporate while the chamber enclosure was held at an elevated temperature, indicated

by the black size distribution in Figure 4.1a. For the initial α-pinene SOA size distribution, a shift

in peak diameter of 36 nm was deemed significant, and a 47 nm peak shift was observed; the 9

nm peak shift observed for the toluene SOA size distribution was not considered significant. These
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observations suggest that α-pinene SOA is more volatile than toluene SOA. Previous studies have

measured the volatility of SOA from α-pinene or toluene photooxidation using a thermodenuder and

found that both types of SOA evaporated to some extent (Lambe et al., 2011; Hildebrandt et al.,

2009; Emanuelsson et al., 2012). Notably, 55 % of toluene SOA evaporated at 39 ◦C and 16.5 s

residence time (Hildebrandt et al., 2009). In that study, however, the SOA was produced at 11 ◦C.

In the present study, SOA was produced at 27 ◦C. SOA yields increase as temperature decreases

(Hildebrandt et al., 2009; Warren et al., 2009; Qi et al., 2010), as partitioning of semivolatile species

to the particle phase is facilitated at lower temperatures. SOA produced from a specific precursor

at higher temperatures is expected to contain a higher fraction of low volatility components than

that produced at lower temperatures.

The results from Experiments 1 and 2 show that α-pinene SOA evaporates partially whereas

toluene SOA does not evaporate significantly. By observing the evaporation behavior of combinations

of α-pinene and toluene SOA, it is possible to determine whether particle-phase diffusion is rapid

(i.e. evaporation of SOA components, presumably from α-pinene photooxidation, occurs regardless

of the SOA formation sequence) or not.

Figure 4.2 shows irradiation, dilution, and heating stages and the evolution of the chamber

contents during Experiment 4 in which SOA was produced sequentially, first from α-pinene and

then from toluene. Similar particle growth, hydrocarbon decay, and temperature changes were

observed for Experiments 3 and 5. In Experiment 6, both α-pinene and toluene were injected before

irradiation, and the evolution of the chamber contents resembled that in Experiment 4, excluding

the second SOA growth period (commencing at the black, vertical line). During Experiments 3-5,

SOA growth from the first precursor stabilized before the second precursor was added; α-pinene

and toluene growth stabilized after 8 and 17 h of irradiation, respectively. Although some toluene

remained after 17 h, the next part of the experiment was begun at this point due to constraints

imposed by particle wall losses. Particle nucleation was not observed in Experiments 3-6.

The evolution of the hourly averaged suspended particle size distributions during the heating

period for Experiments 3-6 is shown in Figure 4.3. A significant shift of the size distribution peak
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diameter is observed only in Experiment 5 (panel c), in which toluene oxidation was followed by

α-pinene oxidation. The peak shift observed was 98 nm, and a shift of at least 77 nm was deemed

significant. Experiments 3 and 4 (panels a and b), in which SOA was produced in the reverse order,

did not show significant changes in particle diameter due to heating. A significant shift in the peak

diameter was considered to be at least 45 nm, but the peak diameter shifted 0 nm and 31 nm in

Experiments 3 and 4, respectively. The size distribution behavior in Experiment 6, in which both

precursors are present initially, is similar to that observed in Experiments 3 and 4. In Experiment

6, the diameter change of the peak, 33 nm, was also deemed insignificant (48 nm shift required).

Because α-pinene reacts more rapidly with OH than does toluene (the OH reaction rate constants

at 298 K are 5.3 × 10−11 cm3molec−1s−1 (Atkinson et al., 2006) and 5.6 × 10−12 cm3molec−1s−1

(Atkinson and Arey, 2003), respectively), SOA formed initially in Experiment 6 likely was composed

of α-pinene photooxidation products; toluene photooxidation products condensed later in the exper-

iment, which resulted in SOA that was more similar to that in Experiments 3 and 4 than to that in

Experiment 5.

The evaporation behavior in Experiments 3-6 suggests the extent of particle mixing. In Ex-

periments 3-6, the evaporative behavior of the SOA most closely represents that of the SOA from

the second parent hydrocarbon. This behavior suggests that the particle structure more closely

resembles that of a core of SOA from the initial precursor coated by a layer of SOA from the second

precursor rather than a single, homogeneous particle phase (aside from the solid ammonium sulfate

seed). The evaporation behavior of particles in the present experiments is consistent with observa-

tions by Emanuelsson et al. (2012), who measured the volatility of mixed anthropogenic (toluene or

p-xylene) and biogenic (α-pinene and limonene) SOA using a thermodenuder. The anthropogenic

SOA was less volatile than the biogenic SOA. When anthropogenic SOA was formed on biogenic

SOA particles, the volatility of the particles decreased, whereas when biogenic SOA was formed on

anthropogenic SOA particles, the volatility of the particles increased. The proposed core-and-shell

SOA configuration is inconsistent with results obtained by Hildebrandt et al. (2011), who found

that SOA yields of α-pinene and toluene SOA indicated pseudo-ideal particle mixing. Uncertainties
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in the SOA mass calculations prevented the authors from making definitive conclusions about SOA

mixing thermodynamic ideality. It is possible that the SOA in the present experiments does not

exist as a strict core and shell but that long diffusion times cause SOA at the gas-particle interface

to be poorly mixed with that in the particle interior.

For Experiments 3 and 4, in which SOA from α-pinene was coated with that of toluene and for

which no evaporation was observed, it is possible to estimate the thickness of SOA from toluene

condensed onto that from α-pinene and to obtain an upper bound on the diffusion coefficient for

SOA components from α-pinene photooxidation in a matrix of those from toluene photooxidation,

assuming that diffusional limitations prevented evaporation of SOA formed from α-pinene. The

characteristic diffusion time in spherical coordinates, τ (s), is (Seinfeld and Pandis, 2006)

τ =
R2
p

π2D
(4.2)

where Rp is distance in the radial direction (cm) and D is the diffusion coefficient (cm2s−1). Toluene

SOA coating thicknesses in Experiments 3 and 4 were 2.2×10−6 and 2.9×10−6 cm, respectively, and

significant evaporation was not observed in a 14-h period, providing a upper estimate ofD = 1×10−17

cm2s−1, that of a semi-solid (Shiraiwa et al., 2011).

The initial concentrations of α-pinene and toluene differed among Experiments 1-6 by ∼ 25 ppbv

(Table 4.1). In Experiment 5, the initial concentration of α-pinene, 81 ppbv, was the highest of

all experiments in the present work. Partial SOA evaporation was observed in this case; however,

partial evaporation was also observed in Experiment 1, in which SOA was formed from 67 ppbv

α-pinene. This result indicates that within the range of α-pinene concentrations in the present

work, no bias towards evaporation should be expected of SOA formed from higher initial α-pinene

concentrations.

Because of the sequential protocol in Experiments 3-6, the second precursor and its photooxida-

tion products were present in the chamber for less time than the first precursor and thus experienced

lower OH exposure. SOA that partially evaporated (Experiment 5) contained products formed from
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8 h of α-pinene photooxidation, whereas SOA that did not evaporate significantly (Experiments

3, 4, and 6) contained products formed from 23 h of α-pinene photooxidation. To investigate if

increased oxidative aging affected particle evaporation, dilution and heating of solely α-pinene SOA

(Experiment 1) was begun after 19.5 h of irradiation. The SOA partially evaporated (Figure 4.1)

after experiencing OH exposures slightly less , i.e. shorter photooxidation time, than in experi-

ments that did not show significant SOA evaporation (Experiments 3, 4, and 6). Similar results

were observed by Lambe et al. (2012), who found that α-pinene photooxidation SOA evaporated

partially in a thermodenuder regardless of the OH exposure used to produce it. It is unlikely that in-

creased OH exposure under these laboratory settings would produce α-pinene SOA that is essentially

non-volatile.

Experiments 3 and 4 were conducted in the same manner, but different amounts of α-pinene and

toluene were used to generate SOA in each experiment (Table 4.1). Although the size distribution

peak diameter shifts were not significant upon heating in either experiment (0 and 31 nm for Ex-

periments 3 and 4, respectively), a larger shift was observed in Experiment 4 than in Experiment

3. The initial α-pinene concentration in Experiment 4 was higher than that in Experiment 3, and

the concentration of toluene added in Experiment 4 was lower than that in Experiment 3. At the

end of the α-pinene SOA growth period, the size distribution peak diameters were similar for both

experiments, but after toluene addition, the peak diameter of the size distribution in Experiment 3

increased by 43-73 nm, whereas the peak diameter increased by 14-43 nm in Experiment 4. If SOA

from the second precursor coats the existing SOA from the first precursor, then the observed increase

in size distribution peak diameter suggests that particles in Experiment 3 were more thickly coated

with toluene SOA than those in Experiment 4. It is possible that a thicker toluene SOA coating

would hinder evaporation of an α-pinene SOA core more than a thinner coating because species

must diffuse farther through a thicker coating than through a thinner coating to reach the particle

surface; however, this effect was not clearly detected in the present study with a 14-h evaporation

period.
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4.4.2 Aerosol Chemical Composition

One may expect to find a correlation between evaporation behavior and SOA chemical composition.

If compounds with a range of volatilities exist within a particle and if mass transfer limitations do not

exist, then species of higher volatility should evaporate before species of lower volatility. However,

mass transfer limitations within a particle will impede evaporation of high volatility compounds. The

extent to which such trends exist was evaluated using average carbon oxidation state, OSC calculated

from oxygen-to-carbon and hydrogen-to-carbon ratios (O:C, H:C) measured by the AMS (Kroll et al.,

2011). It is important to note that the AMS measures bulk particle chemical composition even if the

SOA exists as a core-and-shell configuration. For example, as α-pinene SOA condenses onto toluene

SOA, the bulk chemical composition of the particles may change; however, the condensing α-pinene

SOA may not greatly affect the chemical composition of the pre-existing toluene SOA core. With

the exception of small molecules and oligomers, volatility of a compound decreases with increasing

O:C (Jimenez et al., 2009), and thus OSC.. Upon evaporation of higher volatility components, OSC

should increase in the remaining SOA.

The bulk chemical composition of SOA formed during all experiments is shown in Figure 4.4.

During the SOA formation period (Figure 4.4a), OSC increases, a trend generally observed during

SOA growth (Ng et al., 2010; Chhabra et al., 2011; Lambe et al., 2011), with the exception of

Experiment 5. In Experiment 5, the expected trend is observed during the initial formation of SOA

from toluene, but once α-pinene is injected and α-pinene SOA condenses onto the toluene SOA,

OSC decreases abruptly. As α-pinene SOA continues to condense, the expected trend is repeated.

SOA from α-pinene has lower OSC than that from toluene, as observed in Experiments 1 and 2

and by others, reported separately as O:C and H:C (Chhabra et al., 2011; Lambe et al., 2011). The

aromatic ring of toluene provides more sites for OH attack than does the structure of α-pinene,

which contains only a single alkene functionality, and has a greater potential for producing highly

oxygenated species. The vapor pressure of α-pinene is a factor of 10 lower than that of toluene

(Hawkins and Armstrong, 1954; Pitzer and Scott, 1943), and less oxygenation of α-pinene than of

toluene is needed to produce condensable products. Because toluene contains fewer carbons than
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α-pinene, the addition of each oxygen atom to the molecule preferentially increases the O:C, and

thus OSC, for toluene products more than for α-pinene products. SOA condenses within 30 min of

α-pinene photooxidation, and because its chemical composition differs from that of toluene SOA,

a sudden change in SOA chemical composition when α-pinene SOA condenses onto toluene SOA

is not unexpected. A rough estimation of the volume fractions of SOA from α-pinene and toluene

in Experiments 5 can be obtained from the change in size distribution peak diameter upon SOA

condensation. Peak diameters for the seed, seed and SOA from toluene, and seed and SOA from

toluene and α-pinene are 69, 162, and 482 nm, respectively. The ratio of SOA from α-pinene to

that from toluene is approximately 25:1, and bulk SOA chemical composition is expected to reflect

primarily α-pinene, even upon evaporation.

Bulk SOA chemical composition did not change drastically upon dilution and heating (Figure 4.4

b). OSC increased upon heating linearly with temperature, as shown in Figure 4.4b with the rate-of-

change of OSC, rOSC
, listed for each experiment on the right side of the panel. The largest rOSC

was

observed for SOA from toluene coated with that from α-pinene (Experiment 5), and the smallest

rOSC
was observed for SOA from toluene only (Experiment 2). All changes in OSC during the

heating period were small relative to the change in OSC upon SOA formation and the differences

in OSC amongst SOA generated in the different experiments. The lack of substantial chemical

change during evaporation is consistent with results obtained by Cappa and Wilson (2011) and

Huffman et al. (2009) when measuring the bulk chemical composition of thermodenuded α-pinene

ozonolysis SOA. However, in other studies of α-pinene ozonolysis SOA evaporation, using either a

thermodenuder or diluting particles suspended in a chamber, chemical changes were observed in the

SOA upon evaporation (Docherty et al., 2005; Grieshop et al., 2007; Kostenidou et al., 2009). The

differences in the studies that lead to the contrasting results remain to be identified.

Correlations between bulk chemical composition and evaporation behavior were assessed using

data collected immediately before the dilution and heating period, those with the largest elapsed

time in Figure 4.4a. The data show that the SOA formed spans a range of OSC values. A clear

correlation of chemical composition with volatility is observed for the solely toluene SOA and the
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solely α-pinene SOA experiments. Toluene SOA, which has the highest OSC of the systems studied,

did not evaporate significantly. α-Pinene SOA exhibited lower OSC than the toluene SOA and

partially evaporated. From these two observations, it is possible to conclude that a transition from

volatile to essentially non-volatile SOA occurs in the range of average OSC observed in the present

work for α-pinene and toluene SOA. However, for the combined α-pinene and toluene SOA, no

distinct correlation between bulk chemical composition and evaporation behavior is observed. The

bulk chemical composition of the two-precursor SOA more closely resembled that of α-pinene SOA

than toluene SOA. SOA with lower OSC than solely α-pinene SOA (formed from toluene then

α-pinene) partially evaporated whereas SOA with higher OSC than solely α-pinene SOA (formed

from α-pinene then toluene or α-pinene and toluene) did not significantly evaporate. However, the

variance in the data for these SOA types, excluding solely toluene SOA, lies within the uncertainty

of the measurements, represented by the error bars in Figure 4.4a. Even if SOA exists in a core-

and-shell configuration, the bulk elemental composition reflects a combination of SOA from the two

precursors and will not be indicative necessarily of the elemental composition of the phase at the

gas-particle interface. While bulk chemical composition data correlate with volatility for SOA from

a single parent hydrocarbon, the same correlation does not apply to SOA formed from multiple

precursors. The present experiments suggest that both particle composition and history can play a

role in its physiochemical behavior.

4.5 Acknowledgements

This work was supported by the Office of Science (Biological and Environmental Research), US

Department of Energy Grant DE-SC 0006626. We thank Jill Craven, Rebecca Schwantes, Lindsay

Yee, and Xuan Zhang for experimental assistance, Andrew Metcalf and Manabu Shiraiwa for helpful

discussion, and Yu Jun Leong and Robert Griffin for lending us their AMS power supply.



92

Bibliography

Abramson, E., Imre, D., Beranek, J., Wilson, J., and Zelenyuk, A.: Experimental determination

of chemical diffusion within secondary organic aerosol particles, Phys. Chem. Chem. Phys., 15,

2983–2991, doi:10.1039/C2CP44013J, 2013. 78, 79

Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich,

I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M.,

Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prévôt, A. S. H., Dommen,

J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of

primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass

spectrometry, Environ. Sci. Technol., 42, 4478–4485, doi:10.1021/es703009q, 2008. xv, 83, 102

Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook,

A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A

generalised method for the extraction of chemically resolved mass spectra from Aerodyne aerosol

mass spectrometer data, J. Aerosol Sci., 35, 909–922, doi:10.1016/j.jaerosci.2004.02.007, 2004. 82

An, W. J., Pathak, R. K., Lee, B.-H., and Pandis, S. N.: Aerosol volatility measurement using an

improved thermodenuder: Application to secondary organic aerosol, J. Aerosol Sci., 38, 305–314,

doi:10.1016/j.jaerosci.2006.12.002, 2007. 80

Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev.,

103, 4605–4638, doi:10.1021/cr0206420, 2003. 86

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin,

M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical

data for atmospheric chemistry: Volume II - gas phase reactions of organic species, Atmos. Chem.

Phys., 6, 3625–4055, doi:10.5194/acp-6-3625-2006, 2006. 86

Bowman, F. M., Odum, J. R., Seinfeld, J. H., and Pandis, S. N.: Mathematical model for gas-particle

partitioning of secondary organic aerosols, Atmos. Environ., 31, 3921 – 3931, 1997. 79



93

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., Onasch,

T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R., Trimborn, A. M.,

Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits, P., and Worsnop, D. R.: Chemical and

microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer,

Mass Spectrom. Rev., 26, 185–222, doi:10.1002/mas.20115, 2007. 82

Cappa, C. D. and Wilson, K. R.: Evolution of organic aerosol mass spectra upon heating: Im-

plications for OA phase and partitioning behavior, Atmos. Chem. Phys., 11, 1895–1911, doi:

10.5194/acp-11-1895-2011, 2011. 78, 79, 90

Chhabra, P. S., Ng, N. L., Canagaratna, M. R., Corrigan, A. L., Russell, L. M., Worsnop, D. R.,

Flagan, R. C., and Seinfeld, J. H.: Elemental composition and oxidation of chamber organic

aerosol, Atmos. Chem. Phys., 11, 8827–8845, doi:10.5194/acp-11-8827-2011, 2011. 89

DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M.,

Fuhrer, K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable,

high-resolution, time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, doi:10.

1021/ac061249n, 2006. 82, 83

Docherty, K. S., Wu, W., Lim, Y. B., and Ziemann, P. J.: Contributions of organic peroxides to

secondary aerosol formed from reactions of monoterpenes with O3, Environ. Sci. Technol., 39,

4049–4059, doi:10.1021/es050228s, 2005. 90

Emanuelsson, E. U., Hallquist, M., Kristensen, K., Glasius, M., Bohn, B., Fuchs, H., Kam-

mer, B., Kiendler-Scharr, A., Nehr, S., Rubach, F., Tillmann, R., Wahner, A., Wu, H.-

C., and Mentel, T. F.: Formation of anthropogenic secondary organic aerosol (SOA) and its

influence on biogenic SOA properties, Atmos. Chem. Phys. Discuss., 12, 20 311–20 350, doi:

10.5194/acpd-12-20311-2012, 2012. 85, 86

Grieshop, A. P., Donahue, N. M., and Robinson, A. L.: Is the gas-particle partitioning in alpha-

pinene secondary organic aerosol reversible?, Geophys. Res. Lett., 34, L14 810, doi:10.1029/

2007GL029987, 2007. 80, 90



94

Hawkins, J. and Armstrong, G.: Physical and thermodynamic properties of terpenes. III. The vapor

pressures of α-pinene and β-pinene, J. Am. Chem. Soc., 76, 3756–3758, doi:10.1021/ja01643a051,

1954. 89

Hildebrandt, L., Donahue, N. M., and Pandis, S. N.: High formation of secondary organic aerosol

from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973–2986, 2009. 84, 85

Hildebrandt, L., Henry, K. M., Kroll, J. H., Worsnop, D. R., Pandis, S. N., and Donahue, N. M.:

Evaluating the mixing of organic aerosol components using high-resolution aerosol mass spectrom-

etry, Environ. Sci. Technol., 45, 6329–6335, doi:10.1021/es200825g, 2011. 79, 86

Huffman, J. A., Docherty, K. S., Mohr, C., Cubison, M. J., Ulbrich, I. M., Ziemann, P. J., Onasch,

T. B., and Jimenez, J. L.: Chemically-resolved volatility measurements of organic aerosol from

different sources, Environ. Sci. Technol., 43, 5351–5357, doi:10.1021/es803539d, 2009. 90

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prévôt, A. S. H., Zhang, Q., Kroll, J. H.,

DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M.,

Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin,

C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn,

M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A.,

Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick,

F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A.,

Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel,

J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C.,

Middlebrook, A. M., Kolb, C. E., Baltensperger, U., and Worsnop, D. R.: Evolution of organic

aerosols in the atmosphere, Science, 326, 1525–1529, doi:10.1126/science.1180353, 2009. 89
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Table 4.1: Experimental details.

Expt. Seed vol. First Conc. Second Conc. Dilution Max Temp.
# (µm3cm−3) precursora (ppbv) precursora (ppbv) ratiob (◦C)
1 23.6± 7.1 α-pin. 67.1± 3.8 - - 3.0 41± 2
2c 22.7± 6.8 tol. 98.8± 6.2 - - 1.8 41± 2
3 95.0± 28.5 α-pin. 61.0± 3.5 tol. 90.4± 5.7 3.0 40± 2
4 42.8± 12.8 α-pin. 74.0± 4.2 tol. 75.3± 4.8 3.7 40± 2
5 34.6± 10.4 tol. 76.0± 4.8 α-pin. 80.7± 4.6 3.4 42± 2
6 116± 35 α-pin.d 58.0± 3.3 tol.d 100.± 6 3.0 41± 2
7 65.3±19.6 tol. 43.5± 2.8 α-pin. 47.0± 2.7 3.2 27± 2

a Abbreviations correspond to toluene (tol.) and α-pinene (α-pin.).
b Ratio of cyclohexane concentration before and after dilution.
c During Experiment 2, the chamber was inadvertently irradiated beginning approximately 1 h
after the chamber reached 41 ◦C. The remaining 17 ppbv of toluene reacted with the OH
produced, forming a small amount of SOA.
d Both α-pinene and toluene were injected initially.
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Chapter 5

Future Work
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Laboratory chambers are useful for studying secondary organic aerosol (SOA) formation and

evolution from a single or a small number of parent volatile organic compounds (VOCs) under

controlled conditions. This thesis presents two such studies and also discusses the ways in which the

chamber itself interacts with both gases and particles.

To properly interpret chamber data, it is essential to understand the effect of the walls on

suspended particles and condensible vapors. Both 2,3-epoxy-1.4-butanediol (BEPOX) and glyoxal

were subject to deposition to chamber walls, but the wall loss rate constant was different for each

compound and changed with the age of the chamber and the relative humidity (see Chapter 2).

Matsunaga and Ziemann (2010) also have shown that vapor wall losses are a function of molecular

structure. Oxidation of a parent VOC produces multiple products having different functionalities.

If each of these products deposits to the walls at different rates, it is necessary to measure wall

loss rate for each type of compound. Currently, wall loss rate constants have been measured for

only a small number of compounds. A broad study of compounds with varied functional groups

would be beneficial to establishing correlations between compound structure and wall loss behavior.

Vapor wall losses will have the largest effect on the oxidation product distribution in a chamber

experiment if the wall losses are irreversible on the timescale of the experiment. Further study

of the reversibility of vapor wall losses would aid in quantifying losses throughout an experiment,

in which the vapor concentrations change due to condensation to particles and further gas-phase

reactions, and in understanding wall sorption mechanisms.

The results of recent studies have challenged the traditional assumption that organic aerosols

exist as liquid particles, providing evidence that organic aerosols may be amorphous semi-solid or

solid particles. Chapter 4 presented one such example with SOA formed from α-pinene and toluene.

Some degree of particle phase separation was inferred through the evaporative behavior of SOA

formed sequentially from the two SOA precursors. The way in which evaporation was characterized,

by a shift in the peak size distribution diameter, successfully identified evaporation and showed

that toluene SOA condensed onto α-pinene SOA inhibited α-pinene SOA evaporation. Due to the

effect of particle wall loss on the suspended particle size distribution, it was difficult to quantify
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evaporation using the bulk particle measurements available, either particle volume concentration

calculated from differential mobility analyzer and condensation particle counter measurements or

SOA mass concentration calculated from aerosol mass spectrometer measurements.

Evaporation of SOA produced using the protocols outlined in Chapter 4 could be better quantified

with additional instrumentation or by using a different seed particle. If no additional instrumentation

is available, using a monodisperse seed particle size distribution would produce a monodisperse SOA

size distribution. Mass lost due to evaporation could be calculated from the change in diameter

of the monodisperse size distribution, and, assuming that particles do not fully evaporate, wall

losses could be quantified from the change in total particle number concentration. If single particle

instrumentation, such as the aerosol time-of-flight mass spectrometer (ATOFMS, Gard et al., 1997)

or single-particle soot photometer (SP2, Droplet Measurement Technologies, Boulder, CO), are

available, SOA can be condensed onto a non-evaporative seed particle, such as ammonium sulfate or

black carbon, and evaporation can be detected as a change in organic coating thickness. To speciate

molecules present at a particle surface and make inferences on phase separation within particles,

particles could be sampled using a mass spectrometer capable of ablating and ionizing molecules

at the particle surface, such as the single particle mass spectrometer (SPLATII, Zelenyuk et al.,

2009). Data provided by these single-particle instruments would allow for better characterization of

evaporation and particle phase separation.

Most studies probing organic aerosol phase were preformed at low relative humidity (RH) using

a select number of SOA-forming systems, most notably α-pinene ozonolysis. A large variety of SOA

precursors, both from anthropogenic and biogenic sources, exist in the atmosphere, as do a range of

RH conditions. The experimental procedures described in Chapter 4 could be used to investigate the

mixing behavior of combinations of SOA precursors under dry conditions. Extending the procedures

to humid conditions presents some challenges, e.g. maintaining a specific relative humidity as the

chamber is heated, but the results of experiments performed under multiple RH conditions would

provide much insight into factors affecting the phase behavior of ambient SOA.
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[1] The dependence of glyoxal uptake onto deliquesced
ammonium sulfate seed aerosol was studied under
photochemical (light + hydroxyl radical (OH)) and dark
conditions. In this study, the chemical composition of
aerosol formed from glyoxal is identical in the presence
or absence of OH. In addition, there was no observed
OH dependence on either glyoxal uptake or glyoxal‐
driven aerosol growth for this study. These findings
demonstrate that, for the system used here, glyoxal
uptake is not affected by the presence of OH. In
combination with previous studies, this shows that the
exact nature of the type of seed aerosol, in particular the
presence of a coating, has a large influence on fast
photochemical uptake of glyoxal. Due to the challenge of
relating this seed aerosol dependence to ambient
conditions, this work highlights the resulting difficulty in
quantitatively including SOA formation from glyoxal in
models. Citation: Galloway, M. M., C. L. Loza, P. S. Chhabra,
A. W. H. Chan, L. D. Yee, J. H. Seinfeld, and F. N. Keutsch (2011),
Analysis of photochemical and dark glyoxal uptake: Implications
for SOA format ion , Geophys . Res . Let t . , 38 , L17811,
doi:10.1029/2011GL048514.

1. Introduction

[2] The formation of secondary organic aerosol (SOA) is
traditionally explained via uptake of gas‐phase species onto
aerosol following vapor pressure and partitioning theory
[Pankow, 1994a, 1994b;Odum et al., 1996]. Recent work has
shown that chemical reactions occurring within the aerosol
can increase SOA yields as well as alter both chemical and
optical aerosol properties [Carlton et al., 2007; Ervens et al.,
2008; Galloway et al., 2009; Nozière et al., 2009; Shapiro
et al., 2009; Bones et al., 2010]. Glyoxal has a high effec-
tive Henry’s Law coefficient, which results in more efficient
uptake onto aqueous aerosol droplets than expected for a
small carbonyl [Ip et al., 2009]. In the aerosol, glyoxal can
react with other species to form acetal oligomers, imidazoles,
other high molecular weight compounds, and be oxidized
with OH to carboxylic acids [Carlton et al., 2007; De Haan

et al., 2009b; Galloway et al., 2009; Tan et al., 2009]. Due to
this potential contribution to SOA, glyoxal has received
increasing attention [Kroll et al., 2005; Liggio et al., 2005;
Corrigan et al., 2008; Galloway et al., 2009; Volkamer et al.,
2009].
[3] Glyoxal uptake onto liquid (deliquesced) aqueous

ammonium sulfate (AS) seed aerosol has been studied under
dark [Kroll et al., 2005; Liggio et al., 2005; Galloway et al.,
2009] and photochemical conditions [Volkamer et al., 2009].
Photochemical conditions will be defined as UV‐irradiation
with explicit addition of a source of gas‐phase OH radicals.
Galloway et al. [2009] showed that dark uptake is largely
reversible except for minor imidazole formation. However,
drying of the aerosol results in glyoxal being retained [De
Haan et al., 2009a]. Volkamer et al. [2009] studied SOA
formation from acetylene (C2H2) via glyoxal in a photo-
chemical system and dark glyoxal uptake onto different types
of seed aerosol. Whereas rapid photochemical uptake was
observed for pure AS, pure fulvic acid, and mixed AS/fulvic
acid seed, no rapid photochemical uptake was observed in
mixed AS/fulvic acid seed that also contained sulfuric or
amino acids, highlighting the complex dependence of rapid
photochemical uptake on seed composition. SOA yields
from the fast photochemical uptake are substantially higher
than from slow, dark‐type uptake [Ervens and Volkamer,
2010], hence a thorough understanding of the seed depen-
dence of fast photochemical glyoxal uptake and the chemical
processes responsible for it are central for models of SOA
formation.
[4] In the gas‐phase, OH oxidizes glyoxal to form CO,

CO2, and other high volatility species that do not contribute
to aerosol growth (Figure 1). Hence, the gas‐phase reaction
of glyoxal with OH should not form aerosol. The observed
rapid photochemical glyoxal uptake strongly indicates
condensed‐phase reactions with OH [Volkamer et al.,
2009]. Carlton et al. [2007] observed oxalic acid produc-
tion in laboratory studies of photochemical oxidation of
glyoxal in bulk aqueous, cloud‐processing‐like systems
with a source of condensed‐phase OH radicals. In a related
study, Tan et al. [2009] demonstrated that transition from
cloud to aerosol‐processing conditions leads to increased
concentrations of larger (C3−C4) carboxylic acids. As the
condensed‐phase glyoxal‐OH reaction produces higher
molecular weight compounds, specifically carboxylic acids,
any observed increase in aerosol from glyoxal and OH
should be a result of carboxylic acid formation within the
aerosol. The goals of the work presented here were to
investigate these processes within aqueous aerosol and the
extent to which photochemical glyoxal uptake affects the
chemical composition of the resulting aerosol, in particular
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the presence of carboxylic acids and higher molecular
weight compounds.

2. Experimental Methods

2.1. Preparation and Instrumentation

[5] Experiments were carried out in the Caltech dual 28 m3

Teflon chambers, described in detail elsewhere [Cocker
et al., 2001; Keywood et al., 2004]. The chambers were
flushed with clean, humidified air for over 40 hrs before each
experiment. AS seed particles (∼60–80 nm diameter) were
generated by atomization of 0.015 M aqueous AS using a
constant rate atomizer. Methyl nitrite (CH3ONO) was used
as the OH source, and was prepared following the method
described by Chan et al. [2010], stored at liquid nitrogen
temperatures, and allowed to vaporize into a 500 mL glass
bulb before injection into the chamber by a dry air stream.
The mixing ratio of injected CH3ONO was 1 ppm and the
initial OH concentration was ∼7 × 107 molec cm3. Gas‐phase
glyoxal was prepared from glyoxal trimer dihydrate as
described by Galloway et al. [2009], vaporized into a 2 L
glass bulb, and injected using a dry air stream. Temperature,
relative humidity (RH), O3, and NOx were continuously
monitored. Aerosol size distribution, number and volume
concentrations were monitored using a differential mobility
analyzer (TSI 3081) coupled with a condensation particle
counter (TSI 3760). All aerosol volume data are corrected for
wall loss, as described by Ng et al. [2007]. CH3ONO was
monitored via a gas chromatograph with flame ionization
detector (Agilent 6890N). The Madison Laser‐Induced‐
Phosphorescence instrument monitored gas‐phase glyoxal
[Huisman et al., 2008].
[6] An Aerodyne HR‐ToF‐AMS operating in “V‐mode”

continuously collected real‐time particle mass spectra
[DeCarlo et al., 2006; Canagaratna et al., 2007]. Data were
analyzed using a fragmentation table to separate out sulfate,

ammonium, and organic spectra and to allow for monitoring
of specific mass‐to‐charge ratios (see auxiliary material)
[Allan et al., 2004].1 AMS mass fragments m/z 58 (C2H2O2

+)
and m/z 105 (C3H5O4

+) are tracers for glyoxal and its oligo-
mers, respectively, and have been used to monitor non‐oxi-
dative glyoxal uptake [Galloway et al., 2009]. Their
magnitude is only ∼10% of the total organic uptake from
glyoxal, but these fragments are useful as tracers of glyoxal
uptake into aerosol and oligomer formation. The m/z 44
fragment (CO2

+) is typically used as a tracer for oxidized
organics in aerosol, especially carboxylic acids [Canagaratna
et al., 2007], the glyoxal condensed‐phase oxidation pro-
ducts. During these and previous dark (non‐oxidative)
glyoxal uptake experiments [Galloway et al., 2009], the
magnitude of m/z 44 was 8% of m/z 58. In the absence of
oxidants, this signal cannot be due to OH‐driven oxidation
and must be directly from glyoxal. To correct for this con-
tribution, 8% of the m/z 58 signal was subtracted from the
m/z 44 signal. The resulting signal corresponds to highly
oxidized organics (other than glyoxal but including glyoxal
oxidation products, e.g., oxalic acid) and will be referred to
as “corrected m/z 44” and used as a tracer of condensed‐
phase reaction products of glyoxal with OH. All AMS data
are normalized to sulfate in order to account for aerosol
wall loss and changes in collection efficiency (bounce).

2.2. Experimental Procedures

[7] Experimental conditions are summarized in Table 1.
AS seed aerosol was injected into the humid chamber and
allowed to mix and equilibrate. Then, chamber blacklights
were turned on for 2 min to quantify aerosol growth from
residual chamber organics without an OH source (1st irradi-
ated period). After this, CH3ONO and (usually) NO were
added (see Table 1), and blacklights were turned on again to
quantify aerosol growth from residual chamber organics with
an OH source (2nd irradiated period). After ∼15 min, the total
and oxidized organic signals on the AMS started to plateau
although less than 15% of initial CH3ONO had reacted and
glyoxal was then injected. After 1 hr, the lights were turned
off to allow dark uptake of glyoxal. Blank experiments were
run with the same procedures without addition of glyoxal.

3. Results

[8] In all experiments, the 1st irradiated period produced
no aerosol volume growth and no increase in the total
organic or carboxylic acid tracer fraction (corr. m/z 44 to
sulfate ratio). At the beginning of the 2nd irradiated period,
t = 0 in Figure 2, after CH3ONO but before glyoxal
injection, a rapid increase in the carboxylic acid tracer
(Figure 2c) and aerosol volume were observed at high RH,
but not at low RH. This shows that rapid photochemical
growth from residual organics can occur under humid con-
ditions, even after extensive cleaning of the chamber. This
chamber‐background aerosol (OA) was highly oxidized
(O/C ratio of 0.95), typical for water‐soluble organic carbon
(WSOC), high CCN activity, and aqueous processing
[Turpin and Lim, 2001; Massoli et al., 2010]. Figures 2a
and 2b show that upon injection of gas‐phase glyoxal,
the aerosol glyoxal‐tracer and total OA fractions increased

Figure 1. Simplified schematic of glyoxal reactions within
aqueous AS aerosol. Glyoxal oligomers formed during pho-
tochemical uptake refers to any type of higher molecular
weight compound. Whereas dark‐type reaction products
and kinetics have been extensively studied, photochemical
reaction products have only been studied in detail for labo-
ratory bulk samples more similar to cloud processing condi-
tions. These studies show that condensed‐phase reactions of
glyoxal with OH produce carboxylic acids, leading to oxi-
dized organic aerosol.

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL048514.
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rapidly, whereas the carboxylic acid tracer (corr. m/z 44)
was not affected and closely resembled the blanks, dem-
onstrating that formation of carboxylic acids from glyoxal,
the expected OH‐driven aerosol‐processing products, is not
observed under our photochemical uptake conditions. In
summary, Figure 2 highlights that photochemical aerosol‐
phase reaction/oxidation products are independent of glyoxal,
whereas total organic growth during the photochemical
experiments clearly depends on glyoxal but this glyoxal‐
dependent growth in our photochemical experiments closely
resembles that of slow, dark‐type uptake.
[9] Figure 3 depicts the change in carboxylic acid, glyoxal,

and total OA fractions during the photochemical processing
period (t = 0 up to vertical lines shown in Figure 2) as a
function of gas‐phase glyoxal. The glyoxal tracer and the
total OA fraction depend on glyoxal, corr. m/z 44 to sulfate
ratio is statistically independent of glyoxal concentrations
from 0 to 260 ppb. The experimental variability, most readily
observed in the difference between the blank experiments

(Figure 3c), does not allow us to fully rule out a small
dependence of the carboxylic acid tracer (corr. m/z 44 to
sulfate) on glyoxal. However, this contribution must be very
small compared to that of the slow, dark‐type glyoxal uptake.
The fact that no such contribution is observed demonstrates
that virtually all uptake from glyoxal can be explained by
non‐oxidative (dark‐type) uptake. Once the blacklights are
turned off, OH is quickly depleted. If OH is responsible for
an increased glyoxal uptake, the growth in glyoxal and total
organic to sulfate ratios should slow down or level off at
lights off. This is not the case (Figures 2a and 2b), and
glyoxal uptake increases slightly when the blacklights are
turned off, likely as a result of the drop in temperature and
rise in RH.

4. Discussion

[10] Under all conditions studied here, the observed
aerosol growth can be fully explained by slow, dark‐type

Figure 2. (a) Total organic tracer, (b) m/z 58 and (c) carboxylic acid (corr. m/z 44) tracers, all normalized to sulfate. For
experiments with gas‐phase glyoxal, glyoxal injections occurred at ∼15 minutes after lights were turned on. Vertical lines
indicate when lights were turned off for each experiment to observe glyoxal uptake in the absence of light and OH. After
this time, a slight increase in glyoxal and organic tracer can be seen, while there is no increase in oxidized organic tracer.
The growth rate of the oxidized organic fraction does not increase upon addition of glyoxal. After initial fluctuations from
glyoxal mixing in the chamber, glyoxal uptake rates are very similar for all experiments.

Table 1. Experimental Conditionsa

Experiment
Initial Glyoxal

(ppb)
Initial Seed
(mm3 cm−3)

D Seed
(mm3 cm−3) NO (ppb) RH (%) T (K) Lights

OH
Precursor

1 None 20 5 625 66 293 5% CH3ONO
2 38 37 N/Ab 768 54 294 50% CH3ONO
3 None 31 −4 278 82 293 50% CH3ONO
4 131 29 33 1 60 293 10% None
5 38 19 5 93 76 292 10% CH3ONO
6 59 18 5 860 76 291 10% CH3ONO
7 253 19 96 116 67 292 10% CH3ONO

aD seed volume is calculated at lights off.
bGlyoxal was allowed to equilibrate with the walls before seed injection.
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glyoxal uptake and fast photochemical uptake that results
only from residual organics in the chamber. The oxidized
OA fraction (carboxylic acids) was not attributable to
glyoxal (Figure 3c) in our uptake experiments with glyoxal
and a gas‐phase OH source. This is in contrast to the lab-
oratory studies of bulk aqueous oxidation of glyoxal by OH
with a condensed‐phase OH source, which saw photo-
chemical products, specifically carboxylic acids [Carlton et
al., 2007; Tan et al., 2009]. The corrected m/z 44 (carbox-
ylic acid) signal indicates the presence of oxidation pro-
ducts, but blank experiments show that this is not a result of
glyoxal uptake but from residual chamber organics. With
the exception of the oxidized aerosol fraction, which exhi-
bits no dependence on glyoxal, the glyoxal‐dependent
growth rate and composition of the aerosol as judged by the
AMS are identical in the presence and absence of OH.
Although the AMS fragments both oligomers and other
higher molecular weight compounds, previous experiments
have clearly shown that glyoxal oligomers can be detected
[Galloway et al., 2009; Liggio et al., 2005]. If OH affected
the oxidation or oligomerization chemistry in the aerosol, a
shift to higher masses would be evident in the overall AMS
mass spectra when compared to dark uptake conditions.
Analysis of the m/z 105 to m/z 58 ratio rules out that OH
influences the formation of glyoxal (acetal) oligomers. Our
analysis also shows that the overall mass spectra of photo-
chemical glyoxal uptake are not shifted to higher molecular
weights or do not indicate other changes compared to dark
uptake. In addition, analysis with particle‐into‐liquid‐samplers

and analysis of filter extracts of aerosol did not show any
higher molecular weight compounds, such as organosulfates
or carboxylic acids (see auxiliary material).
[11] The observation of only slow, dark‐type uptake in

our experiments matches the results for mixed AS/fulvic/
amino/sulfuric acid seed particles of Volkamer et al. [2009]
but disagrees with their AS results that show fast photo-
chemical uptake. This merits further discussion, specifically
in the context of the exact nature of the seed, its influence on
uptake, and resulting atmospheric implications. The seed
introduced into the chamber consisted of pure AS seed
aerosol, for which Volkamer et al. [2009] saw fast photo-
chemical uptake. However, the seed to which glyoxal was
exposed in our study was not pure as it had experienced a
small amount of growth from chamber background aerosol,
which was unavoidable under humid conditions even after
extensive chamber cleaning.
[12] The key question is if and how this small amount of

background aerosol or differences in experimental proce-
dure resulted in a barrier for photochemical glyoxal uptake
but not dark‐type uptake. It was not known if a coating was
present on the aerosol, and it is possible that, despite its high
O/C ratio, expected high CCN activity, and WSOC‐like
properties, the chamber‐background aerosol formed a coat-
ing. This coating may have prevented fast photochemical
uptake but not slower dark‐type uptake of glyoxal. This could
result if dark‐type uptake is rate‐limited by a bulk‐process
whereas fast photochemical uptake is rate‐limited by surface
reactions. It is also possible that direct injection of glyoxal
rather than photochemical generation from C2H2 could
explain the different results. Glyoxal oligomers may have
formed in the gas‐phase as a result of the high concentrations
at the injection port, although it is unclear whether this is a
gas‐phase or wall/surface process. These oligomers have
much lower vapor pressures than glyoxal and should rapidly
partition to surfaces, including aerosol, potentially forming a
coating. We also conducted experiments in which glyoxal
was injected and allowed to equilibrate to the walls before
seed was injected and photochemistry initiated (Exp. 2) in
which case one might expect the oligomers to rapidly parti-
tion to the chamber walls before the seed was present. No fast
photochemical uptake was observed, but it is possible that
chamber background‐aerosol rapidly coated the seed. A
coating on our seed from chamber background or glyoxal/
glyoxal oligomers could reconcile our results with those of
Volkamer et al. [2009] if such coatings were not present for
the latter experiments.
[13] The atmospheric implications of this work are less

dependent on the differences than the similarities between
our experimental results for AS and those of Volkamer et al.
[2009]. Both studies show that fast photochemical uptake
does not occur for all types of seed aerosol. The critical
question is which type of seed is closest to atmospheric
conditions. If the lack of fast photochemical uptake is
caused by a coating on the seed, it is important to determine
the necessary conditions and types of coatings that are
common in the atmosphere to determine when and where
ambient aerosol will show fast glyoxal uptake. Answering
these questions about ambient aerosol and further elucidat-
ing conditions of fast photochemical uptake is required to
determine the role of glyoxal in SOA formation from uptake
on aerosol. At present, this is unclear and this work high-

Figure 3. Change in (a) total organic fraction, (b)
glyoxal‐tracer fraction (m/z 58), and (c) the oxidized frac-
tion (corr. m/z 44) of aerosol during time of OH exposure
for all experiments. These data are normalized to sulfate.
Solid points indicate experiments with OH source present,
open points indicate an irradiated experiment with no OH
source present. Error bars reflect precision. Dorganic and
Dglyoxal‐tracer increase with increasing glyoxal concen-
tration. The variability in blanks shows that environmental
factors and not precision dominate the variability of the
corr. m/z 44 to sulfate ratio but not the total organic to sul-
fate ratio. The trend in oxidized organic with gas‐phase
glyoxal is statistically not significant, indicating that the
contribution to aerosol as a result of oxidized glyoxal
uptake is very small.
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lights the difficulty in both quantitatively and accurately
including SOA formation from glyoxal in models.
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Appendix B

α-Pinene Photooxidation Under
Controlled Chemical Conditions -
Part 1: Gas-Phase Composition in
Low- and High-NOx Environments∗

∗Reproduced with permission from “α-pinene photooxidation under controlled chemical conditions - Part 1: Gas-
phase composition in low- and high-NOx environments” by N. C. Eddingsaas, C. L. Loza, L. D. Yee, J. H. Seinfeld,
and P. O. Wennberg, Atmos. Chem. Phys., 12, 6489-6504, doi:10.5194/acp-12-6489-2012. Copyright 2012 by the
Authors. This work is distributed under the Creative Commons Attribution 3.0 License.
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Abstract. The OH oxidation ofα-pinene under both low-
and high-NOx environments was studied in the Caltech atmo-
spheric chambers. Ozone was kept low to ensure OH was the
oxidant. The initialα-pinene concentration was 20–50 ppb
to ensure that the dominant peroxy radical pathway under
low-NOx conditions is reaction with HO2, produced from re-
action of OH with H2O2, and under high-NOx conditions,
reactions with NO. Here we present the gas-phase results ob-
served. Under low-NOx conditions the main first generation
oxidation products are a number ofα-pinene hydroxy hy-
droperoxides and pinonaldehyde, accounting for over 40 %
of the yield. In all, 65–75 % of the carbon can be accounted
for in the gas phase; this excludes first-generation products
that enter the particle phase. We suggest that pinonaldehyde
forms from RO2 + HO2 through an alkoxy radical channel
that regenerates OH, a mechanism typically associated with
acyl peroxy radicals, not alkyl peroxy radicals. The OH oxi-
dation and photolysis ofα-pinene hydroxy hydroperoxides
leads to further production of pinonaldehyde, resulting in
total pinonaldehyde yield from low-NOx OH oxidation of
∼33 %. The low-NOx OH oxidation of pinonaldehyde pro-
duces a number of carboxylic acids and peroxyacids known
to be important secondary organic aerosol components. Un-
der high-NOx conditions, pinonaldehyde was also found to
be the major first-generation OH oxidation product. The
high-NOx OH oxidation of pinonaldehyde did not produce
carboxylic acids and peroxyacids. A number of organoni-
trates and peroxyacyl nitrates are observed and identified
from α-pinene and pinonaldehyde.

1 Introduction

The emissions of biogenic volatile organic compounds
(BVOCs) far outnumber those of anthropogenic VOCs
(Guenther et al., 1995; Steinbrecher et al., 2009; Monks
et al., 2009). Excluding methane, BVOCs are estimated to
account for a flux of∼1150 Tg C yr−1, while anthropogenic
VOCs account for only∼140 Tg C yr−1 (Guenther et al.,
1995; Goldstein and Galbally, 2007). Important BVOCs in-
clude isoprene, (flux of∼500 Tg C yr−1) and the monoter-
penes (∼127 Tg C yr−1) of which α-pinene accounts for
∼50 Tg C yr−1 (Guenther et al., 1995; Chung and Seinfeld,
2002). Because they are unsaturated, these compounds are
highly reactive towards OH, O3, and NO3 and thus play an
important role in tropospheric chemistry. The atmospheric
oxidation of BVOCs also results in the formation of sec-
ondary organic aerosol (SOA). Monoterpenes are significant
sources of SOA due to their large emission rate and high SOA
yield (Hoffmann et al., 1997; Pye et al., 2010).

The gas-phase oxidation of simple alkanes and alkenes
is well understood and most tropospheric chemical mecha-
nisms use laboratory studies of reactions of these species to
inform the parameterization of the atmospheric oxidation of
VOCs. Many BVOCs, including isoprene, which has a conju-
gated double bond system, andα-pinene which is a bicyclic
hydrocarbon with an endocyclic double bond, however, have
much more complicated chemistry than the simple alkanes
and alkenes. For example, recent experimental and theoret-
ical studies with isoprene have shown that its atmospheric
chemistry is not well modeled by the reactions of simple
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Table 1.Experimental conditions.

Date Hydrocarbon Concentration OH Source Aerosol Length of
(ppb) seeda experiment (hours)

5 May 2010 α-pinene 45 H2O2 No seed 12
6 May 2010 α-pinene 50 HONO No seed 10
7 May 2010 α-pinene 48 H2O2 AS 11
9 May 2010 α-pinene 52 HONO AS 8

10 May 2010 α-pinene 47 H2O2 AS+SA 11
11 May 2010 α-pinene 46 HONO AS+SA 10
12 May 2010 α-pinene 20 H2O2 No seed 19
13 May 2010 α-pinene 42 CH3ONO No seed 8
14 May 2010 α-pinene 47 H2O2 AS 12
17 May 2010 α-pinene 48 CH3ONO AS 8
18 May 2010 α-pinene 47 H2O2 AS+SA 12
19 May 2010 α-pinene 44 CH3ONO AS+SA 8
2 June 2010 α-pinene 45 H2O2 AS 12
3 June 2010 α-pinene 45 CH3ONO AS 8
4 June 2010 Pinonaldehyde –b H2O2 No Seed 9
8 Feb 2011 α-pinene 43 H2O2 No seed 8

14 Feb 2011 Pinonaldehyde –b H2O2 No seed 9
16 Feb 2011 α-pinene 31 CH3ONO No seed 3
17 Feb 2011 Pinonaldehyde –b CH3ONO No seed 4

a AS: ammonium sulfate, AS+SA: ammonium sulfate and sulfuric acid.
b The initial concentration of pinonaldehyde was not determined.

alkenes, especially under low-NOx (NO and NO2) condi-
tions (Paulot et al., 2009b; Peeters and Muller, 2010; Crounse
et al., 2011).

α-pinene is a ten-carbon bicyclic hydrocarbon with an en-
docyclic double bond and, therefore, has the potential to re-
act in ways not represented by simple alkenes. In addition,
α-pinene is highly reactive with both O3 and OH, reacting in
the atmosphere withα-pinene nearly equally, adding to the
richness of its atmospheric photochemistry (Capouet et al.,
2008). Despite a number of studies of OH oxidation ofα-
pinene, large uncertainties in the identity and yields of its
reaction products remain. For instance, the reported yield of
pinonaldehyde from the photooxidation ofα-pinene ranges
from 28 to 87 % in the presence of NOx and from 3 to
37 % in the absence of NOx (Arey et al., 1990; Hatakeyama
et al., 1991; Noziere et al., 1999; Jaoui and Kamens, 2001;
Wisthaler et al., 2001; Aschmann et al., 2002; Lee et al.,
2006). In addition, the molecular structures of major products
identified by mass (e.g. 184 and 200 daltons) are subject to
debate (Aschmann et al., 2002; Vereecken et al., 2007). The
photooxidation product with molecular mass 184 has been
assigned to an unsaturated hydroperoxy carbonyl (Vereecken
et al., 2007) or a dihydroxy carbonyl (Aschmann et al., 2002).
A better understanding ofα-pinene gas-phase chemistry will
increase the accuracy ofα-pinene atmospheric chemistry
models and provide insight into atmospheric photooxidation
mechanisms in general.

In this study, we isolate the peroxy radical reaction path-
ways to investigate the photochemistry ofα-pinene. We have

studied these reactions under low-NOx conditions similar
to those found in the atmosphere, where RO2 + HO2 is the
dominant peroxy radical reaction, and other reactions are
suppressed (RO2 + RO2 and reactions with O3). We contrast
these conditions with results from the gas-phase photoox-
idation of α-pinene under high-NOx (with varied amounts
of NO2 to study both RO2 + NO and RO2 + NO2). We fo-
cus our analysis on low-NOx rather than high-NOx chem-
istry because the low-NOx chemistry ofα-pinene is less well-
characterized yet it is more atmospherically-relevant (Pye
et al., 2010). In a forthcoming paper, SOA yields and com-
position formed from the controlled chemical conditions de-
scribed here will be presented.

2 Experimental

Photooxidation experiments ofα-pinene were performed in
the Caltech dual 28 m3 Teflon chambers. Details of the cham-
ber facilities have been described elsewhere (Cocker et al.,
2001; Keywood et al., 2004). A few photooxidation experi-
ments were performed in a∼1 m3 bag enclosed in a small,
black walled chamber with UV-lights lining one wall, as de-
scribed byCrounse et al.(2011). 40 W black lights (Sylvania
F40/350BL) with emission peak emission at 352 nm were
used in both chambers. The light intensity as a function of
wavelength (300–800 nm) was measured using a Licor (LI-
1800) spectroradiometer. Prior to each run, the chamber was
flushed for a minimum of 24 h with dry purified air. While
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being flushed, the chamber was irradiated with the chamber
lights for a minimum of six hours. The temperature, relative
humidity (RH), and concentrations of O3, and NOx (NO and
NO2) were continuously monitored. In all experiments the
RH was kept below 10 %. Aerosol size distribution and num-
ber concentration were measured continuously by a differ-
ential mobility analyzer (DMA, TSI model 3081) coupled to
a condensation nucleus counter (TSI model 3760). Informa-
tion on aerosol measurements can be found in part 2, where
aerosol formation, growth, and composition are discussed.
Table1 shows a list of conditions for all experiments used in
this study. Experiments ran for 3 to 19 h. No gas phase losses
to the chamber walls of eitherα-pinene prior to light irradia-
tion or oxidation products after lights were extinguished was
observed.

Experiments were performed under low- and high-NOx
conditions. Under low-NOx conditions, photolysis of hydro-
gen peroxide (H2O2) was the OH source, while for the high-
NOx experiments the photolysis of nitrous acid (HONO) or
methyl nitrite (CH3ONO) produced OH. For low-NOx ex-
periments, 280 µL of 50 wt % H2O2 was injected into the
chamber resulting in an H2O2 concentration∼4 ppm. The
two different OH sources used during the high-NOx experi-
ments provided the mechanism to vary the NO to NO2 ratio,
with a higher quantity of NO2 in the CH3ONO experiments.
HONO was prepared daily by dropwise addition of 15 mL
of 1 wt % NaNO2 into 30 mL of 10 wt % H2SO4 in a glass
bulb, and then introduced into the chamber with dry air. This
process produces NO and NO2 as side products, which are
also introduced to the chamber. CH3ONO was synthesized,
purified, and stored according to the procedure outlined by
Taylor et al.(1980). CH3ONO was warmed from liquid ni-
trogen temperatures and vaporized into an evacuated 500 mL
glass bulb and introduced into the chamber with an air stream
of 5 L min−1. After addition of CH3ONO, 300–400 ppb of
NO was added to the chamber to suppress the formation of
O3. Determination of exact NO and NO2 concentrations us-
ing the commercial NOx monitor was precluded due to in-
terferences by both HONO and CH3ONO. At the start of all
high-NOx experiments the total NOx reading (NO, NOx, and
interference from HONO or CH3ONO) was 800 ppb and NO
concentration throughout the experiments was such that the
concentration of O3 never exceeded 5 ppb.

α-pinene was added to the chamber to achieve a concen-
tration of 20–50 ppb by passing dry air through a bulb con-
taining a known volume ofα-pinene. The mixing ratio of
α-pinene was monitored by gas chromatography (Agilent
6890N) coupled with a flame ionization detector (GC-FID).
The GC-FID was calibrated using a 55 L Teflon bag contain-
ing a known concentration of pureα-pinene. Gas phase pho-
tooxidation products were monitored using triple-quadrupole
chemical ionization mass spectrometry (CIMS) (St. Clair
et al., 2010).

Details of the operation of the CIMS can be found in
a number of previous reports (Crounse et al., 2006; Paulot

et al., 2009a; St. Clair et al., 2010) and therefore only a brief
description is presented here. The CIMS was operated in neg-
ative ion mode using CF3O− as the reagent ion, and in the
positive ion mode using H3O+ for proton transfer mass spec-
trometry (PTR-MS). In negative mode, CF3O− is sensitive to
the detection of polar and acidic compounds by either clus-
tering with the analyte (R) resulting in an ion with a mass-
to-charge ratio (m/z) MW+85(R · CF3O−) or via fluorine ion
transfer resulting inm/zMW+19(HF · R−

−H). The dominant
ionization mechanism depends mostly on the acidity of the
neutral species; highly acidic species such as nitric acid only
form the fluorine transfer ion, while non-acidic species such
as methyl hydrogen peroxide form only the cluster ion. This
separation aids both in the determination of the structure of
a molecule and in the identification of isomers. In negative
mode, tandem mass spectrometry (MS/MS) was used to help
identify functional groups of an analyte. In brief, a parent ion
selected in the first quadrupole is exposed to an elevated pres-
sure of N2 resulting in collision-induced dissociation (CID)
in the second quadrupole, and the resulting fragmentation
ions are detected in the third quadrupole. Molecules with dif-
ferent functional groups have been shown to fragment differ-
ently by CID and thus the detection of certain fragment ions
in quadrupole three can aid in the identification of an analyte.
For instance, hydroperoxides form a characteristic fragment
atm/z63 (Paulot et al., 2009b).

Standards are not available for most of the VOCs described
here and thus the sensitivity of the CIMS is related to the
thermal capture rate and the binding energy of the cluster
(VOC · CF3O−). Details on calculating the sensitivity of the
CIMS to a given analyte can be found in previous publica-
tions (Paulot et al., 2009a,b).

3 Results and discussion

The goal of this study is to determine the gas-phase re-
action products and mechanism of the photooxidation of
α-pinene by OH under both low-NOx and high-NOx con-
ditions. In both cases, the experiment is designed such
that α-pinene only reacts with OH and that a single per-
oxy radical reaction is dominant. Under ambient con-
ditions, α-pinene reacts at an approximately equal rate
with O3 (kO3 = 9.0× 10−17 cm3 molecules−1 s−1) and OH
(kOH = 5.3× 10−11 cm3 molecules−1 s−1) (Sander et al.,
2006; Atkinson et al., 2006). To isolate the OH chemistry,
the formation of O3 was suppressed.

Under low-NOx conditions, photolysis of H2O2 resulted in
steady state OH concentration of∼2× 106 cm−3 and an HO2
concentration∼1×1010 cm−3. The OH and HO2 concentra-
tions were determined from a kinetic molecular model ofα-
pinene OH reaction which is described in detail in Sect. 3.2
and in the Supplement. In brief, OH is produced by the pho-
tolysis of H2O2 and is primarily consumed by reactions with
VOCs in the chamber and with H2O2. The reaction of OH
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Fig. 1. Pathway of photooxidation ofα-pinene under low-NOx conditions. Species that were observed are labeled in red. Them/zof all
species observed in the negative mode are of the complex with CF3O− (molecular mass + 85). Pinonaldehyde is observed at molecular mass
+ 1 in the positive mode andα-pinene oxide is observed at molecular mass + 1 and + 19. The observed percent yield for first-generation
products is also indicated.

and H2O2 produces HO2. The photolysis rate of H2O2 used
in the model and the OH concentration determined by the
model were confirmed by comparison of the gas-phase con-
centrations of H2O2 andα-pinene from the experiment and
the model (Fig. S1). These OH concentrations are similar to
those observed in the troposphere; however, the HO2 concen-
trations are about an order of magnitude greater than levels
typically observed in rural or remote areas (Lelieveld et al.,
2008; Ren et al., 2008; Wolfe et al., 2011). The O3 concen-
tration at the start of each experiment was<4 ppb and typi-
cally did not exceed 12 ppb over the course of an experiment
(in one experiment, conducted for 20 h, the O3 concentra-
tion increased nearly linearly from 4 to 25 ppb). Modeling of
these oxidant concentrations indicated that reaction with O3
accounted for<3 % of theα-pinene loss.

In the oxidation ofα-pinene by OH, OH adds predomi-
nantly to the endocyclic double bond, followed by addition
of O2 to the resultingβ-hydroxy alkyl radicals producing a
number of hydroxy peroxy radicals. OH abstraction of a hy-
drogen fromα-pinene occurs with a yield of∼12 %, result-
ing in a peroxy radical when O2 reacts with the alkyl rad-

ical (Capouet et al., 2004). Under low-NOx conditions the
peroxy radicals can react with either HO2 or with another
RO2 (self or cross-reactions). Here we seek to emulate atmo-
spheric conditions where RO2 + HO2 dominates. To confirm
that the RO2 + HO2 pathway dominated in our experiments, a
kinetic model was constructed, as described in Sect. 3.2 and
the Supplement. For the experimental conditions (with initial
concentration ofα-pinene of 20–50 ppb), the kinetic model
indicates that less than 1 % of the peroxy radical reactions
proceed via RO2 + RO2.

For high-NOx photooxidation experiments, OH is gener-
ated from the photolysis of either HONO or methyl nitrite.
When HONO is synthesized, NO and NO2 are produced as
side products, which are also introduced to the chamber when
HONO is injected. Methyl nitrite is synthesized pure and
upon photolysis eventually produces OH and NO2:

CH3ONO+hν → CH3O
q
+NO (R1)

CH3O
q
+ O2 → CH2O+HO

q
2 (R2)

HO
q
2 + NO → OH

q
+ NO2 (R3)
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When methyl nitrite was used as the OH source, 300 to
400 ppb of NO was added to suppress O3 production. Un-
der the conditions used, the peroxy radicals formed from the
OH reaction ofα-pinene react with NO and not RO2 or HO2.
This is confirmed by the lack of RO2 + HO2 or RO2 + RO2
reaction products during high-NOx photooxidation. The ex-
act ratio of NO to NO2 is not known as both HONO and
methyl nitrite interfere with the signals from the chemilumi-
nescence NOx instrument; however, it was determined that a
higher NO2 concentration exists during methyl nitrite pho-
tolysis due to the increased production of peroxyacyl nitrates
(PANs), as detected by CIMS in the negative mode, which
result from the RO2 + NO2 reaction. More details on the de-
tection of, as well as the specific PANs detected will be dis-
cussed in Sect. 3.3.

3.1 Gas phase composition from low-NOx
photooxidation of α-pinene

The principal first-generation oxidation products observed
from the low-NOx photooxidation ofα-pinene were a num-
ber ofα-pinene hydroxy hydroperoxides and pinonaldehyde.
Production ofα-pinene hydroperoxide from H-abstraction
andα-pinene oxide are also observed (see Fig.1 for proposed
reaction mechanism forα-pinene and Fig.2 for pinonalde-
hyde). The time traces from the CIMS are shown in Fig.3
along with those from a number of the minor oxidation prod-
ucts. The identification of each of these signals is discussed
below.

The α-pinene hydroxy hydroperoxides are observed at
m/z(−)271 (molecular weight + CF3O−) by the CIMS. They

are expected to be a major products of the reaction channel of
RO2 + HO2. Three differentα-pinene hydroxy hydroperox-
ide isomers are formed; twoβ-hydroxy hydroperoxides and
one ring opened hydroxy hydroperoxide containing a double
bond (see Fig.1). The subsequent reaction pathways of these
threeα-pinene hydroxy hydroperoxides are expected to be
different and will lead to distinct reaction products, as dis-
cussed in Sect. 3.2. The overall estimated initial yield of the
α-pinene hydroxy hydroperoxides is∼23 %. This estimate
accounts for the small yield of pinic acid, which has the same
molecular weight as these peroxides (MW= 186). Similar to
other carboxylic acids, ionization of pinic acid by CF3O−

yields approximately equal amounts of signal atm/z(−)271
and 205 (MW−H + HF). This allows us to use the signal at
m/z (−)205 to insure that the pinic acid concentration does
not significantly impact the hydroperoxide yield estimate.

Pinonaldehyde is neither acidic nor is the complex with
CF3O− significantly strong to be detected in the negative
mode and thus is observed only in the positive mode of the
CIMS. Pinonaldehyde was synthesized to directly observe
its OH oxidation; however, the synthesized sample was not
of sufficient purity to calibrate the CIMS response. While
we cannot report an absolute yield for pinonaldehyde, we
observe that the yield under low-NOx conditions is 2/3 of
that under high-NOx conditions. As pinonaldehyde is one
of the main products ofα-pinene oxidation by any atmo-
spheric oxidant, it has been widely studied. Although the
reported yield of pinonaldehyde under high-NOx conditions
varies widely from 27–87 % (Arey et al., 1990; Hatakeyama
et al., 1991; Noziere et al., 1999; Wisthaler et al., 2001; Jaoui
and Kamens, 2001; Aschmann et al., 2002; Lee et al., 2006),
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Fig. 3. CIMS time traces of a number of important low-NOx
photooxidation products ofα-pinene. (A) Main first generation
products,m/z (−)271 α-pinene hydroxy hydroperoxide (black),
m/z(+)169 pinonaldehyde (red),m/z(−)253α-pinene hydroperox-
ide (blue)(B) Signals of species that are formed in multiple gener-
ationsm/z (−)285 (black),m/z (−)269 (red),m/z (−)303 (green),
m/z (−)301 (orange), and purely second-generationm/z (−)203
pinonic acid (blue). The signal fromm/z(+)169 is the only signal
shown from the positive mode and the intensity was divided by 2
for clarity.

most of the measured yields are between 27–35 %. The very
high yields were measured by FTIR which may be biased
by interference from other carbonyls (Noziere et al., 1999;
Hatakeyama et al., 1991). Assuming that under high-NOx
conditions the pinonaldehyde yield is between 27–35 %, we
estimate that the low-NOx yield is about 20 %.

Pinonaldehyde has been observed from the low-NOx pho-
tooxidation ofα-pinene previously; however, it is typically
assigned as a product of RO2 + RO2 chemistry (Noziere
et al., 1999; Larsen et al., 2001). In the present set of ex-
periments, the chemistry is overwhelmingly dominated by
RO2 + HO2 (i.e. low α-pinene concentration and relatively
high HO2 concentration). This is confirmed by the photoox-
idation products observed. The two main reaction channels
for alkyl peroxy radicals with other RO2 are:

RO
q
2 +RO′ q

2 → R=O+R′OH+O2 (R4)

RO
q
2 +RO′ q

2 → RO
q
+RO′ q

+ O2 (R5)

resulting in the formation of alcohols and carbonyls from
Reaction (R4) and alkoxy radicals from Reaction (R5). In
the case ofα-pinene, these would beβ-diols, β-hydroxy
carbonyl, and hydroxy alkoxy radicals. The six membered
ring of the hydroxy alkoxy radical will then open forming
pinonaldehyde. There is no indication of eitherβ-diols or
β-hydroxyl carbonyl being formed during the present experi-
ments. In the case of alkyl peroxy radicals reacting with HO2,
the main reaction channel is:

RO
q
2 +HO

q
2 → ROOH+O2 (R6)

which forms hydroperoxides. Forα-pinene, Reaction (R6)
will produce the observedα-pinene hydroxy hydroperoxides.
For many small alkyl peroxy radicals it has been shown to be
the only channel (Hasson et al., 2004; Raventos-Duran et al.,
2007; Noell et al., 2010).

If Reaction (R6) was the only channel, there would be
no route to pinonaldehyde production. One possible route to
pinonaldehyde is a radical channel (see Fig.1):

RO
q
2 +HO

q
2 → RO

q
+O2+OH

q
(R7)

similar to those known to be important for acetyl peroxy rad-
icals (Hasson et al., 2004; Dillon and Crowley, 2008) and
possibly for the reaction of OH with toluene (Birdsall et al.,
2010). If this is the route to pinonaldehyde formation, an OH
recycling channel would also be of importance in the reaction
of OH with α-pinene under low-NOx conditions.

α-pinene hydroperoxide andα-pinene oxide are also ob-
served products of the OH oxidation ofα-pinene under
low-NOx conditions.α-pinene hydroperoxide can be formed
from H-abstraction by OH, which is estimated to account for
about 12 % of the OH reaction withα-pinene (Capouet et al.,
2004). Assuming similar CIMS sensitivity toα-pinene hy-
droperoxide andα-pinene hydroxy hydroperoxide, the yield
of α-pinene hydroperoxide is estimated to be∼6 %. The re-
mainder of the H-abstraction branching ratio cannot be ac-
counted for at this time.α-pinene oxide is neither acidic nor
is the complex with CF3O− significantly strong to be de-
tected in the negative mode and thus is observed only in the
positive mode atm/z (+)153 and 171 as confirmed by di-
rect injection ofα-pinene oxide into the chamber. Further
evidence ofα-pinene oxide formation is presented in part 2
of this series of paper where SOA composition is discussed.
α-pinene oxide appears to be a minor product, and the mech-
anism for its formation by OH oxidation is not known. The
mechanism for the formation from O3 oxidation is known
and yields of a few percent have been reported (Alvarado
et al., 1998; Berndt et al., 2003); however, in the present ex-
periments O3 accounts for less than 3 % of the oxidation of
α-pinene.

The oxidation products of pinonaldehyde have been shown
to be important in the formation of SOA from the pho-
tooxidation of α-pinene. Specifically, pinonic acid, 10-
hydroxypinonic acid, and pinic acid have been observed
in ambient SOA samples (Kavouras et al., 1998, 1999; Yu
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et al., 1999; Laaksonen et al., 2008; Zhang et al., 2010)
and in laboratory studies ofα-pinene photooxidation (Larsen
et al., 2001; Jaoui and Kamens, 2001; Librando and Tringali,
2005). The low-NOx photooxidation of pinonaldehyde was
carried out to determine the contribution of pinonaldehyde
oxidation products to the gas and particle phases ofα-pinene
photooxidation.

Photooxidation of pinonaldehyde accounts for a number
of the products observed fromα-pinene photooxidation. OH
oxidation of pinonaldehyde occurs by H-abstraction, typi-
cally from the aldehydic group (59–86 %) (Kwok and Atkin-
son, 1995; Vereecken and Peeters, 2002) forming an acyl per-
oxy radical after the addition of O2. The reaction of HO2
with an acyl peroxy radical produces carboxylic acids, per-
oxyacids, and acetoxy radicals that will decompose to pro-
duce CO2 and an alkyl radical.Hasson et al.(2004) have
shown that these three pathways occur in roughly equal
yields. The reaction pathways and products from pinonalde-
hyde are shown in Fig.2. Pinonic acid is observed by the
CIMS mostly by its transfer product ion (ratio ofm/z(−)203
to m/z (−)269 is∼9:1), typical of acidic species, while the
peroxyacid is observed more by its complex ion (ratio of
m/z(−)219 tom/z(−)285 is∼1:4) (Fig.4). In addition, we
have observed, using synthesized peracetic acid, that peroxy-
acids are also observed in the negative mode as its molecular
mass +65 (complex with CF3O−

− HF) at 10–20 % that of
the complex ion (+85). A signal atm/z (−)265,∼10 % the
intensity ofm/z(−)285, has been assigned to pinonic perox-
yacid providing further evidence of its formation. These two
products are formed in roughly equal yields. H-abstraction
at carbons other than the aldehydic carbon could also form
pinonaldehyde hydroperoxide which would also be detected
at m/z (−)285, as would 10-hydroxy pinonic acid (product
found in SOA). A signal atm/z(−)257 that has nine carbons
was observed and has been assigned to the hydroperoxide
formed from the alkyl radical formed from the decomposi-
tion of the acetoxy radical. The formation of norpinaldehyde
was also detected. Pinic acid was observed in equal amounts
atm/z(−)205 andm/z(−)271, but is a minor product.

Low-NOx photooxidation of α-pinene also leads to
the pinonaldehyde oxidation products (Fig.4). Ions at
m/z (−)203 and (−)219 assigned to the transfer ions of
pinonic acid and pinonic peroxyacid are observed to be sec-
ond generation products fromα-pinene photooxidation, as
would be expected arising from the oxidation of pinonalde-
hyde. The ion atm/z(−)257 assigned to the C9 hydroperox-
ide produced from pinonaldehyde photooxidation is also ob-
served to be second generation. Pinonic acid and pinonic per-
oxyacid are also observed as the complex ion atm/z(−)269
and (−)285 respectively. The time traces form/z(−)269 and
m/z (−)285 from the photooxidation ofα-pinene are not
purely from first or second generation products (see Figs.
3 and 4) but a combination of the two. The second genera-
tion products observed as these two ions are pinonic acid and
pinonic peroxyacid, evident from their transfer ions, while
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Fig. 4. Comparison of CIMS signals from low−NOx photoox-
idation of (A) α-pinene and(B) pinonaldehyde;m/z (−)285
(black),m/z(−)269 (red),m/z(−)257 (orange),m/z(−)219 (blue),
and m/z (−)203 (green). Pinonaldehyde photooxidation produces
pinonic peroxyacid observed at bothm/z (−)285 and (−)219,
pinonic acid observed at bothm/z(−)269 and (−)203, and a C9 hy-
droperoxide observed atm/z(−)257. The pinonaldehyde photoox-
idation products are observed fromα-pinene photooxidation along
with additional first-generation signals atm/z (−)269 and (−)285
from first-generation photooxidation products.

the first generation products arise from the photooxidation
of α-pinene. Oxidation products of these molecular mass
(184 and 200) have been observed and theoretically proposed
from the photooxidation ofα-pinene in the presence of NO
(Aschmann et al., 2002; Vereecken et al., 2007). Under high-
NOx conditions,Aschmann et al.(2002) observed molecules
at these masses and assigned them to a dihydroxy carbonyl
and a trihydroxy carbonyl that would be formed by a num-
ber of isomerization steps as well as multiple reactions of
peroxy radicals with NO to form alkoxy radicals.Vereecken
et al. (2007) indicate that molecules with these molecular
weights could be formed by isomerization reactions after
ring opening, while the molecule with MW= 200 is pro-
duced from a reaction of NO with the peroxy radical. In both
mechanisms, alkoxy radicals are essential. Alkoxy radicals
appear to form from the reaction of the initially formedα-
pinene hydroxy peroxy radical intermediates with HO2, and
this is a possible route; however, at this point, the structure
of these molecules is unknown. These are, however, clearly
polyoxygenated species formed from the primary oxidation
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of α-pinene and their most likely molecular formulas are
C10H16O3 and C10H16O4.

Highly oxidized species atm/z(−)301 and (−)303 are also
observed as first generation products (see Fig.3). Both sig-
nals decay similarly to the signals atm/z(−)269 and (−)285,
indicating that they are also formed as later generation prod-
ucts. The most likely structure for the first-generation species
at m/z (−)303 is anα-pinene hydroxy hydroperoxide with
a bridging peroxy group that results from the ring closing
channel of the ring opened hydroxy hydroperoxide as shown
in Fig. 1. This mechanism has been postulated byVereecken
et al.(2007). The addition of one hydroxyl group and two hy-
droperoxyl groups decreases the vapor pressure about eight
orders of magnitude making this product a likely aerosol
phase component (Capouet and M̈uller, 2006). The photoox-
idation of α-pinene hydroperoxide will produce a hydroxy
dihydroperoxide that will also be observed atm/z (−)303
thus accounting for the slow decay of the signal. We do
not know the structure of the photooxidation product(s) at
m/z (−)301. Given the molecular weight, the structure po-
tentially includes one carbonyl and two hydroperoxyl groups.
Whatever the structure, the vapor pressure will be greatly re-
duced from that ofα-pinene, once again making it a potential
SOA component.

Another route to the formation of the low vapor pressure
oxidation products atm/z(−)301 and (−)303 is peroxy rad-
ical isomerization. Peroxy radical isomerization has recently
been extensively studied for the isoprene system both theo-
retically (Peeters et al., 2009; da Silva et al., 2010; Nguyen
et al., 2010) as well as experimentally (Crounse et al., 2011).
It has been shown that peroxy radical isomerization most of-
ten occurs via a six or seven membered intermediate (Per-
rin et al., 1998; Blin-Simiand et al., 2001; Jorand et al.,
2003). When OH adds to the tertiary carbon of the double
bond the peroxy radical on the secondary carbon can form
a seven membered ring with the hydrogen of either the sec-
ondary carbon in the four membered ring or one of primary
carbons attached to the four membered ring. After isomer-
ization, reaction with O2 and HO2 will result in the forma-
tion of α-pinene hydroxy dihydroperoxide which would be
detected atm/z (−)303. See Fig. S2 in the Supplement for
proposed mechanism. When OH adds to the secondary car-
bon of the double bond, a seven membered intermediate can
form with the other tertiary carbon of the four membered ring
ultimetly forming α-pinene hydroxy dihydroperoxide. Sim-
ilarly, the α-pinene hydroxy hydroperoxide peroxy radical
formed from isomerization from the addition of OH to the
secondary carbon can form a six membered ring with the hy-
drogen on the carbonα to the hydroxyl group. This isomer-
ization would result in the formation ofα-pinene carbonyl di-
hydroperoxide which would be observed atm/z(−)301. For
the species observed atm/z(−)301 and (−)303 to be formed
via isomerization, the rate of peroxy radical isomerization
would have to be competitive with that of RO2 + HO2. In the
present experiments [HO2] is ∼1× 1010 molecules cm−3 so

the rate of loss ofα-pinene hydroxy peroxy radical by reac-
tion with HO2 is ∼0.2 s−1. In the atmosphere the HO2 con-
centration is about an order of magnitude less, so for isomer-
ization to be competitive (10 % of peroxy radical reaction)
the rate would have to be∼0.002 s−1. In the isoprene system
the isomerization rate has been found to be 0.002 s−1 with
conformer specific rates being much faster (Crounse et al.,
2011). At this time there have been no experimental stud-
ies on the isomerization rate in theα-pinene system so it is
unknown what the rate is and therefor its atmospheric rel-
evance. If the rate of isomerization is competitive with re-
action with HO2 in the atmosphere, more low vapor pres-
sure species capable of partitioning into the aerosol will be
formed than were observed in this study.

3.2 Kinetic model of low-NOx photooxidation of
α-pinene

To gain a better understanding of the low-NOx photooxida-
tion of α-pinene, a kinetic model was assembled and com-
pared to the time traces ofα-pinene and the reaction products
measured during the photooxidation of 19.8 ppbα-pinene
and 4 ppm H2O2. The kinetic model was constructed using
Kintecus modeling software (Ianni, 2002). When available,
rate constants from literature were used; however, a major-
ity of the rate constants are not known. In these cases, reac-
tion rates with respect to OH oxidation were estimated us-
ing the structural activity relationship derived by Kwok and
Atkinson (Kwok and Atkinson, 1995). This method has been
shown to predict rate constants to within a factor of two for
most species (see Tables S1 and S2 for lists of photooxidation
products, reactions, and reaction rates used in this model).
The rate constants were then modified slightly to best fit
the data. The rate constants for RO2 + HO2 and RO2 + RO2
were taken from the estimates used for the Master Chemical
Mechanism (Saunders et al., 2003). Photolysis was included
for hydrogen peroxide, the organic hydroperoxides, and for
pinonaldehyde. The photodissociation frequencies (j) were
determined from the spectral radiance measured from the
chamber lights and the absorption cross sections reported in
the literature for hydrogen peroxide and pinonaldehyde and
estimated for the organic hydroperoxides from reported cross
sections of similar hydroperoxides (Atkinson et al., 2006;
Sander et al., 2006).

For the model to be accurate, the concentration of OH and
HO2 need to be correct. OH is produced from photolysis of
H2O2 which initially reacts with hydrocarbons in the cham-
ber as well as H2O2. It is the reaction of OH with H2O2 that
produces HO2. The value ofjH2O2 was confirmed by com-
paring the simulated loss of H2O2 (photolysis and reaction
with OH) to the time trace observed from the CIMS (see SI
Fig. S1). The comparison of the simulated loss ofα-pinene,
using the recommended rate constant for the reaction of
α-pinene with OH from the IUPAC database (Atkinson et al.,
2006), with the the observed loss ofα-pinene also confirms
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Fig. 5. Time-dependent observed (points) versus simulated (lines)
concentrations from the photooxidation of 19.8 ppb ofα-pinene.
Represented areα-pinene (purple),α-pinene hydroxy hydroperox-
ide (black), pinonaldehyde (red),α-pinene hydroperoxide (blue),α-
pinene hydroxy dihydroperoxide (green), and the C9 hydroperoxide
from pinonaldehyde (orange). See the Supplement for structural in-
formation and kinetic model.

the simulation produces the correct amount of OH (see
Fig. S1 in the Supplement). The modeled OH concentration
quickly reaches 2.2× 106 molecules cm−3 and is approx-
imately constant between 2.2–2.5× 106 molecules cm−3

over the course of the experiment, while the HO2 concen-
tration rapidly plateaus at about 1× 1010 molecules cm−3.
In addition, the rate constant of OH with pinonaldehyde
was confirmed from the experiment where pinonaldehyde
was directly injected into the chamber. Pinonaldehyde is
lost by reaction with OH as well as photolysis (∼10 % of
overall reaction), and the best fit to the data is achieved
with kpinonaldehyde+OH= 3.7× 10−11 cm3 molecules−1 s−1

(Fig. S3 in the Supplement). This rate constant is within the
error recommended by the IUPAC database and the latest
measurement of this reaction rate byDavis et al.(2007);
Atkinson et al.(2006).

Figure 5 shows the time traces ofα-pinene and several
of the photooxidation products along with the simulated
concentrations from the kinetic model. The oxidation prod-
ucts in Fig.5 are representative of first-generation products
(α-pinene hydroxy-hydroperoxides, pinonaldehyde, andα-
pinene hydroperoxide) and a second-generation product (C9
hydroperoxide from pinonaldehyde) (see Table S1 for struc-
tural information of each compound). The one exception is
the highly oxygenated compound observed atm/z (−)303
(assigned to hydroxyl dihydroperoxide) that is both a first-
and second-generation product, and due to its high degree
of oxidation and low volatility is predicted to partition into
the particle phase. As noted in Sect. 3.1, pinic acid is a minor
second generation product that is observed atm/z(−)205 and
m/z(−)271 in roughly equal amounts. This small yield was
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Fig. 6. Structure of the hydroxy hydroperxides formed from the
low-NOx photooxidation ofα-pinene, the most likely positions for
reaction with OH are also shown; H-abstraction(a–e)and OH ad-
dition (f).

accounted for in determining the concentration ofα-pinene
hydroxy hydroperoxides. Using the fastest RO2 + RO2 rate
constant forα-pinene hydroxy peroxy radicals from MCM,
only 0.05 % of the peroxy radical is predicted to react
through the RO2 + RO2 channel. Including all of the iden-
tified first-generation products (these presented here along
with the products atm/z(−)269, 285, and 301), 65–75 % of
the carbon can be accounted for, and this does not include
compounds that are expected to partition into the aerosol
phase.

Pinonaldehyde, in the present set of experiments, is
formed from the RO2 + HO2 reaction channel of two of the
α-pinene hydroxy peroxy radicals, and the reaction rate with
OH has been well characterized. However, based on these
formation and loss mechanisms for pinonaldehyde, the simu-
lated pinonaldehyde decays far too quickly; therefore, pinon-
aldehyde must also be produced as a second-generation ox-
idation product. Of the first-generation products, the most
likely candidates to produce pinonaldehyde from a reaction
with OH are theα-pinene hydroxy hydroperoxides.

There are a number of paths by which theα-pinene hy-
droxy hydroperoxides will form pinonaldehyde. First of all,
the hydroperoxide will not only react with OH but will also
undergo photolysis. Photolysis cleaves the weak O-O bond
of the hydroperoxide producing an alkoxy radical that will
produce pinonaldehyde. We estimate, however, that photol-
ysis represents∼3 % of theα-pinene hydroxy hydroperxide
loss and thus does not provide mass closure between the data
and the simulation.

Figure6 shows the three hydroxy hydroperoxides that are
formed from low-NOx photooxidation ofα-pinene, twoβ-
hydroxy hydroperoxides and a ring-opened one that includes
a double bond. Theβ-hydroxy hydroperoxides have a num-
ber of places where OH hydrogen abstraction could occur
(Fig. 6), the carbonα to the alcohol; carbonα to the hy-
droperoxyl group; either of the tertiary carbons; the alco-
holic hydrogen; or the hydroperoxy hydrogen. Hydrogen ab-
straction from an alcohol will mostly occur from theα car-
bon which has been shown to result in the formation of a
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carbonyl and HO2 (Carter et al., 1979; Atkinson, 1986; Gros-
jean, 1997). Presumably this would form a hydroperoxy car-
bonyl, a mass analog of the known second-generation prod-
uct pinonic acid. As there are first- and second-generation
products withm/z(−)269, it is not clear how important this
H-abstraction channel is. There have only been a few hy-
droperoxides whose H-abstraction reaction rates and prod-
uct distributions have been studied: methyl, ethyl and tert-
butyl (Vaghjiani and Ravishankara, 1989; Niki et al., 1983;
Wang and Chen, 2008; Baasandorj et al., 2010). It has been
shown that the OO-H bond is fairly labile and H-abstraction
from both the hydroperoxide as well as theα-carbon will oc-
cur. H-abstraction from the hydroperoxyl group will result in
reformation of the peroxy radical with the same branching
ratio of products from the initial reaction forming, among
other species, pinonaldehyde and hydroxy hydroperoxide.
H-abstraction from theα-carbon of the hydroperoxy group
would presumably form a hydroxy carbonyl, which is a mass
analog ofα-pinene hydroperoxide. In the model, the signal
associated withα-pinene hydroperoxide is fit well with a
production channel fromα-pinene and a reaction rate with
OH that is nearly as fast asα-pinene itself, suggesting that it
is unlikely that there is a second-generation product formed
at this mass. It is possible that following hydrogen abstrac-
tion, the ring is cleaved, ultimately resulting in the forma-
tion of pinonaldehyde. Finally, H-abstraction from either of
the tertiary carbons will produce more highly oxygenated
species, including a hydroxyl dihydroperoxide (m/z(−)303).
Of these different H-abstraction pathways, those involving
the hydroperoxide and carbonsα to the hydroperoxy and hy-
droxyl groups are expected to dominate. The ring opened hy-
droxy hydroperoxide has a highly reactive double bond in-
stead of one of the tertiary carbons. After addition of OH to
the double bond, the reaction will most likely proceed in one
the following ways: formation of a dihydroxy dihydroperox-
ide or intermolecular reaction of the alkyl radical with the
hydroperoxy group forming a ring with one oxygen and re-
leasing OH. The former product has not been observed in
the present experiments; however, this highly oxidized com-
pound has a low vapor pressure and is expected to primarily
reside in the particle phase. The later product is a mass ana-
log of the hydroxy hydroperoxide, and the two species are
indistinguishable by CIMS.

In the simulation, all the pathways for reaction of the
α-pinene hydroxy hydroperoxides were considered and the
contribution of each was varied until the simulation best fit
the data based on a least-squares analysis ofα-pinene hy-
droxy hydroperoxide and pinonaldehyde. The best fit results
when 58 % of the reaction produces pinonaldehyde directly
while another 25 % reforms the peroxy radical, resulting in a
net∼33 % ofα-pinene producing pinonaldehyde from low-
NOx photooxidation. This is important since the oxidation
products of pinonaldehyde are main SOA components. There
is need for further studies on the photooxidation ofα-pinene
hydroxy hydroperoxides to confirm these reaction pathways

and branching ratios; however, the data and kinetic model
strongly indicate that pinonaldehyde is produced from the
OH oxidation of α-pinene hydroxy hydroperoxides under
low- NOx conditions.

3.3 Gas-phase composition from high-NOx
photooxidation of α-pinene

Figure 7 shows the proposed reaction mechanism ofα-
pinene photooxidation under high-NOx conditions. This
mechanism and the following discussion of the reaction
products are not intended to be all-inclusive. The photoox-
idation of α-pinene under high-NOx conditions produces a
large variety of compounds through functionalization and
fragmentation reactions. We observe signals at many masses
but, for brevity, we only focus on those of the major products
of α-pinene and pinonaldehyde high-NOx OH oxidation.

In the presence of NOx, the main photooxidation prod-
ucts ofα-pinene are pinonaldehyde, organonitrates, and iso-
merization products from the alkoxy radical formed from
the reaction of NO with the peroxy radical. The yield of
pinonaldehyde is 1.5 times that formed in the absence of
NOx, and, as mentioned above, previous studies show that
it is 27–35 %.Capouet et al.(2004) estimatesα-pinene hy-
droxy nitrate yield to be∼15 %. Alkoxy radical isomeriza-
tion products are observed atm/z (−)269 (MW 184) and
m/z (−)285 (MW 200). These isomerization products have
been observed previously and have been assigned to either a
dihydroxy carbonyl and a trihydroxy carbonyl (Aschmann
et al., 2002) or to ring opened substituted hydroperoxides
(Vereecken et al., 2007). In the present study, the yield of the
isomerization products was found to be less than 20 %. The
OH addition to the double bond can also result in prompt ring
opening of the four-membered ring. Further reactions of the
ring-opened alkyl radical will result in fragmentation produc-
ing an alkyl radical and acetone (see Fig.7). This is a minor
pathway, as the total acetone yield observed was less than
10 %, including the production of acetone from the photoox-
idation of pinonaldehyde. Finally, there is a first-generation
species observed atm/z(−)301, which was also present dur-
ing low-NOx photooxidation. A likely molecular formula is
C10H16O5, but the identity of this molecule is unknown. The
same oxidation products were observed from high-NOx pho-
tooxidation, regardless of OH source, HONO or methyl ni-
trite.

The photooxidation of pinonaldehyde was studied using
methyl nitrite as the OH source. Figure 8 shows the pro-
posed mechanism and products of this reaction. There have
been two theoretical studies on the H-abstraction of pinon-
aldehyde (Kwok and Atkinson, 1995; Vereecken and Peeters,
2002). Kwok and Atkinson(1995) indicate that 86 % of
the abstraction will occur at the aldehydic hydrogen, while
Vereecken and Peeters(2002) determined that 59 % will be
of the aldehydic hydrogen, 23 % from the carbonβ to the
aldehydic carbon, and 14 % from the tertiary carbons. The
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products expected, and observed, of the primary channel (H-
abstraction of the aldehydic hydrogen) are pinonaldehyde
PAN, formed from reaction of the acyl peroxy radical with
NO2 or norpinonaldehyde, formed from reaction of the acyl
peroxy radical with NO (see Fig.8 for structures and mech-
anisms). H-abstraction from the carbonβ to the aldehydic
carbon produces either pinonaldehyde nitrate or norpinon-
aldehyde with the loss of CO. Finally, H-abstraction from the
tertiary carbons produces pinonaldehyde nitrate or a tertiary
alkoxy radical. One potential reaction pathway for the ter-
tiary alkoxy radical is the decomposition to form acetone (see
Fig. 8), which is observed in low yield from high-NOx pho-
tooxidation of pinonaldehyde. Once formed, norpinonalde-
hyde will be oxidized in similar fashion to pinonaldehyde.
The signal for pinonaldehyde PAN is 4–8 times that of pinon-
aldehyde nitrate (from all high-NOx experiments,α-pinene
and pinonaldehyde) depending on the NO2 concentration rel-
ative to NO. The observed signal of the norpinonaldehyde
PAN to norpinonaldehyde nitrate from the photooxidation of
pinonaldehyde was greater than 14 to 1. Pinonaldehyde PAN

is formed from an acyl peroxy radical while pinonaldehyde
nitrate will be formed from an alkyl peroxy radical. The for-
mation of an acyl peroxy radical is favored over the forma-
tion of an alkyl peroxy radical from H-abstraction of pinon-
aldehyde and thus the formation of pinonaldehyde PANs is
expected to be formed in higher yield than pinonaldehyde ni-
trate. A quantitative yield of the PAN is not known because
the CIMS has not been calibrated for these compounds. The
product distribution from the photooxidation of pinonalde-
hyde indicates that it does not add much to the total organoni-
trate yield from the photooxidation ofα-pinene. Pinonic acid
and pinic acid were not observed in the gas phase from either
α-pinene or pinonaldehyde photooxidation under high-NOx
conditions.

An array of organonitrates and PANs are observed from
the photooxidation ofα-pinene. In addition to those pre-
viously discussed, nitrates were observed atm/z (−)276,
316, 318, 320, and 332 as well as PANs atm/z (−)346
and (−)362 (most likely observed as the molecular complex
ion MW + 85). The unidentified organonitrates and PANs are
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formed in much lower yields than those identified earlier. Ni-
trates and PANs are distinguished from each other by the
nature of their decay. PANs thermally decompose so their
gas-phase concentration will continue to decrease even af-
ter OH is no longer present. Norpinonaldehyde PAN is ob-
served atm/z (−)316; however, comparing the time traces
of this ion from pinonaldehyde photooxidation andα-pinene
photooxidation, there appears to be a product formed from
α-pinene as well. This could be theα-pinene dihydroxyni-
trate proposed byAschmann et al.(2002). One interesting
observation is thatα-pinene hydroxy nitrate is lost from the
gas phase at nearly an equal rate as pinonaldehyde. This is in
contrast to the other organonitrates, whose signals are stable
once they are formed.

The products of high-NOx photooxidation ofα-pinene are
the same regardless of NO2 level; however, there are a few
differences in concentrations of certain species depending on
the level of NO2. The most noticeable difference in the gas-
phase composition depending on the [NO2] is the concen-
tration of PANs, which are greater at high NO2 (methyl ni-
trite photolysis). This is expected as the NO2 concentration is
higher in the methyl nitrite experiments resulting in a greater
likelihood of NO2 reacting with the acyl peroxy radicals
produced from pinonaldehyde and norpinonaldehyde. The
concentrations of isomerization products atm/z(−)269 and
(−)285 showed a dependence on seed particle acidity when

HONO was used as the OH source but not when CH3ONO
was used as the OH source. In the case of the HONO source,
the isomerization products were observed to be lower in the
presence of an acidic seed. A discussion of why the products
observed atm/z(−)269 and (−)285 are dependent on aerosol
acidity only for the HONO case will be presented in part
2. The only other observed difference in the gas phase was
the concentration of nitric acid, which was 1.5 times greater
when methyl nitrite was the OH source then when HONO
was the OH source.

4 Atmospheric implications

Under low-NOx photooxidation ofα-pinene, pinonalde-
hyde is produced by RO2 + HO2 chemistry in high yields.
RO2 + RO2 chemistry is not the source, as is commonly as-
sumed. While the atmospheric concentrations of HO2 and
RO2 are similar, the rate constant of RO2 + HO2 is typically
1–4 orders of magnitude greater than RO2 + RO2. The further
OH oxidation of pinonaldehyde produces a number of low
volatility carboxylic acids and peroxyacids, which are impor-
tant SOA components. While the only product with higher
yield than pinonaldehyde isα-pinene hydroxy hydroperox-
ide, pinonaldehyde is also produced from the photolysis and
OH oxidation ofα-pinene hydroxy hydroperoxide. Including
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the reaction channels ofα-pinene hydroxy hydroperoxide
that form pinonaldehyde (58 %) and assuming 19 % direct
yield from α-pinene, the overall oxidation ofα-pinene by
OH under low-NOx conditions has a pinonaldehyde yield of
∼33 % .

Pinonic acid is an important tracer for SOA formed
from α-pinene oxidation and is believed to be the pre-
cursor for other SOA tracers, such as 3-methyl-1,2,3-
butanetricarboxylic acid (Szmigielski et al., 2007; Müller
et al., 2012). Pinonic acid is not observed from the high-
NOx photooxidation ofα-pinene, which is not surprising
since there is no clear formation mechanism for it in the gas
phase. Thus, observation of pinonic acid and the tracers de-
rived from pinonic acid likely point to either low-NOx oxida-
tion of α-pinene by OH or ozonolysis under high-NOx con-
ditions. The aerosol-phase composition of these carboxylic
acids as well as other carboxylic acids fromα-pinene pho-
tooxidation will be discussed in detail in Part 2.

The gas-phase chemistry ofα-pinene and its photooxida-
tion products is complex and not well represented by the
reactions of simple alkenes. By isolating the critical per-
oxy radical reactions, the products and branching ratios of a
number of key reactions have been better constrained. Per-
haps most importantly, we suggest that the formation of
pinonaldehyde from low-NOx photooxidation ofα-pinene
via RO2 + HO2 proceeds by the formation of an alkoxy rad-
ical and OH recycling. This reaction scheme has previously
been shown to be important only for acyl peroxy radicals and
possibly toluene. Unfortunately, the nature of the potential
energy surface leading to radical recycling in the reactions
of HO2 with peroxy radicals has not been fully formulated.
Is the OH recycling channel available due to theβ hydroxyl
group withdrawing electron density from the peroxy group,
the bicyclic ring structure ofα-pinene, or some other reason
all together? To date, most of the detailed work on the reac-
tion of alkyl peroxy radicals with HO2 has focused on small,
unsubstituted peroxy radicals; further work on a broader set
of peroxy radicals, including atmospherically relevant VOCs
such as monoterpenes and sesquiterpenes, is clearly needed
to elucidate the physical chemistry. Finally, we suggest that
there is a large secondary pinonaldehyde source from the
photooxidation and/or photolysis of the three pinene hydroxy
hydroperoxides produced fromα-pinene.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
6489/2012/acp-12-6489-2012-supplement.pdf.
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Appendix C

α-Pinene Photooxidation Under
Controlled Chemical Conditions -
Part 2: SOA Yield and
Composition in Low- and
High-NOx Environments∗

∗Reproduced with permission from “α-pinene photooxidation under controlled chemical conditions - Part 2: SOA
yield and composition in low- and high-NOx environments” by N. C. Eddingsaas, C. L. Loza, L. D. Yee, M. Chan, K.
A. Schilling, P. S. Chhabra, J. H. Seinfeld, and P. O. Wennberg, Atmos. Chem. Phys., 12, 7413-7427, doi:10.5194/acp-
12-7413-2012. Copyright 2012 by the Authors. This work is distributed under the Creative Commons Attribution 3.0
License.
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Abstract. The gas-phase oxidation ofα-pinene produces a
large amount of secondary organic aerosol (SOA) in the at-
mosphere. A number of carboxylic acids, organosulfates and
nitrooxy organosulfates associated withα-pinene have been
found in field samples and some are used as tracers ofα-
pinene oxidation.α-pinene reacts readily with OH and O3
in the atmosphere followed by reactions with both HO2 and
NO. Due to the large number of potential reaction pathways,
it can be difficult to determine what conditions lead to SOA.
To better understand the SOA yield and chemical compo-
sition from low- and high-NOx OH oxidation ofα-pinene,
studies were conducted in the Caltech atmospheric chamber
under controlled chemical conditions. Experiments used low
O3 concentrations to ensure that OH was the main oxidant
and lowα-pinene concentrations such that the peroxy radi-
cal (RO2) reacted primarily with either HO2 under low-NOx
conditions or NO under high-NOx conditions. SOA yield was
suppressed under conditions of high-NOx. SOA yield un-
der high-NOx conditions was greater when ammonium sul-
fate/sulfuric acid seed particles (highly acidic) were present
prior to the onset of growth than when ammonium sulfate
seed particles (mildly acidic) were present; this dependence
was not observed under low-NOx conditions. When aerosol
seed particles were introduced after OH oxidation, allowing
for later generation species to be exposed to fresh inorganic
seed particles, a number of low-NOx products partitioned to
the highly acidic aerosol. This indicates that the effect of

seed acidity and SOA yield might be under-estimated in tra-
ditional experiments where aerosol seed particles are intro-
duced prior to oxidation. We also identify the presence of a
number of carboxylic acids that are used as tracer compounds
of α-pinene oxidation in the field as well as the formation of
organosulfates and nitrooxy organosulfates. A number of the
carboxylic acids were observed under all conditions, how-
ever, pinic and pinonic acid were only observed under low-
NOx conditions. Evidence is provided for particle-phase sul-
fate esterification of multi-functional alcohols.

1 Introduction

Biogenically emitted monoterpenes are important to atmo-
spheric organic aerosol concentration and composition due to
their large emission rates and high secondary organic aerosol
(SOA) yields (Guenther et al., 1995; Hoffmann et al., 1997;
Chung and Seinfeld, 2002; Pye et al., 2010). Of the monoter-
penes,α-pinene is the most abundantly emitted. Many car-
boxylic acids, organonitrates, and organosulfates associated
with α-pinene have been observed in aerosols both in the
field and from laboratory oxidation (Kavouras et al., 1998,
1999; Yu et al., 1999b; Jaoui and Kamens, 2001; Larsen
et al., 2001; Librando and Tringali, 2005; Surratt et al., 2007,
2008; Laaksonen et al., 2008; Zhang et al., 2010). A num-
ber of carboxylic acids have been used as particle-phase
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tracers ofα-pinene oxidation, including pinonic acid, pinic
acid, 10-hydroxypinonic acid, terpenylic acid, diaterpenylic
acid acetate, and 3-methyl-1,2,3-butanetricarboxylic acid (3-
MBTCA). For instance, pinonic and pinic acid have been ob-
served to be in high concentration in aerosols collected in
Portugal (accounting for 18–40 % of fine particle mass), in
Greece (up to 26 % of fine particle mass), as well as in high
yield in Finland (Kavouras et al., 1998, 1999; Anttila et al.,
2005).

In the troposphere,α-pinene is oxidized approximately
equally by OH and O3 during the daytime (Capouet et al.,
2008). During the nighttime, NO3 is the most important ox-
idant of α-pinene worldwide and oxidation by NO3 can be
important during the daytime under conditions of elevated
NOx (Spittler et al., 2006). After reaction with the oxidant,
the peroxy radicals that are formed can react with a number
of species, including HO2, NO, NO2 and other peroxy radi-
cals (RO2). Depending on the nature of the reactant with the
peroxy radical, different oxidation products are produced in
the gas phase. This was demonstrated in Part 1 of this se-
ries of papers (Eddingsaas et al., 2012). It was determined
that pinonaldehyde is an important oxidation product under
both low- and high-NOx conditions. The formation of pinon-
aldehyde from low-NOx OH oxidation implies that the reac-
tion of α-pinene hydroxy hydroperoxy radical and HO2 has
a channel that produces an alkoxy radical and recycles OH.
This type of reaction channel has been shown to be impor-
tant only for acyl peroxy radicals and possibly toluene. In
addition, it was demonstrated that number of organic acids
formed from low-NOx OH oxidation, including pinonic acid
and pinonic peracid, are not formed from high-NOx OH oxi-
dation. From a modeling standpoint, it is of interest to under-
stand how the different gas-phase reaction mechanisms influ-
ence the particle-phase composition and concentration. This
understanding will improve the ability to accurately simulate
the amount of aerosol produced in the oxidation ofα-pinene.

In this study, we describe the SOA yield and particle phase
composition from the photooxidation ofα-pinene under con-
ditions where the peroxy radical chemistry is known. We fo-
cus on OH photooxidation because particle-phase composi-
tion from ozonolysis ofα-pinene has been extensively stud-
ied (Glasius et al., 1999; Yu et al., 1999a; Iinuma et al., 2005;
Presto et al., 2005; Ma et al., 2008; Shilling et al., 2009).
The SOA composition from OH photooxidation has been
much less studied and there are almost no studies examining
low-NOx conditions (Noziere et al., 1999; Ng et al., 2007a;
Claeys et al., 2009). We discuss SOA composition focusing
on several carboxylic acids which have been used as tracers
of α-pinene oxidation. The formation of organosulfates and
nitrooxy organosulfates formed fromα-pinene photooxida-
tion is also addressed. We compare SOA and gas-phase com-
position based on different peroxy radical reactants as well as
different aerosol seed (i.e. no seed, ammonium sulfate (AS)
seed, and ammonium sulfate and sulfuric acid (AS + SA)
seed).

2 Experimental

Photooxidation experiments ofα-pinene and pinonaldehyde
were performed in the Caltech dual 28 m3 Teflon chambers.
Details of the chamber facilities have been described else-
where (Cocker et al., 2001; Keywood et al., 2004). Prior
to each run, the chamber was flushed for a minimum of
24 h with dry purified air. While being flushed, the cham-
ber was irradiated with the chamber lights for a minimum of
six hours. The temperature, relative humidity, and concen-
trations of O3, NO, and NOx (NO and NO2) were contin-
uously monitored. In all experiments the RH was kept be-
low 10 %. Aerosol size distribution and number concentra-
tion were measured continuously by a differential mobility
analyzer (DMA, TSI model 3081) coupled to a condensation
nucleus counter (TSI model 3760). Aerosol growth data were
corrected for size dependent wall-loss (Keywood et al., 2004;
Ng et al., 2007b).

Experiments were performed under low- and high-NOx
conditions. Under low-NOx conditions, photolysis of hydro-
gen peroxide (H2O2) was the OH source, while for the high-
NOx experiments the photolysis of nitrous acid (HONO) or
methyl nitrite (CH3ONO) produced OH. For low-NOx exper-
iments, 280 µl of 50 wt % H2O2 was injected into the cham-
ber, resulting in a concentration∼ 4 ppm. Using HONO and
CH3ONO allowed the ratio of NO to NO2 to be varied, with
a lower ratio in the CH3ONO experiments. For the remain-
der of this paper, the use of HONO as the OH source will be
referred to as high-NO and the use of methyl nitrite will be
referred to as high-NO2 to distinguish between the relative
importance of NO and NO2.

HONO was prepared daily by dropwise addition of 15 ml
of 1 wt % NaNO2 into 30 ml of 10 wt % H2SO4 in a glass
bulb, and then introduced into the chamber with dry air. This
process produces NO and NO2 as side products, which are
also introduced to the chamber. CH3ONO was synthesized,
purified, and stored according to the procedure outlined by
Taylor et al.(1980). CH3ONO was warmed from liquid ni-
trogen temperatures and vaporized into an evacuated 500 ml
glass bulb and introduced into the chamber with an air stream
of 5 l min−1. After addition of CH3ONO, 300–400 ppb of
NO was added to the chamber to suppress the formation of
O3. Determination of exact NO and NO2 concentrations us-
ing the commercial NOx monitor was precluded due to inter-
ferences by both HONO and CH3ONO. While the exact NO
and NO2 concentration could not be determined, it was con-
firmed that greater NO2 concentration and the ratio of NO2
to NO is greater in the methyl nitrite experiments due to the
increased gas-phase concentration of nitric acid and perox-
yacyl nitrates (PANs). The gas-phase concentration of nitric
acid and PANs in the methyl nitrite experiments was 1.4–2
times that in similar HONO experiments. At the start of all
high-NOx experiments the total NOx reading (NO, NOx, and
interference from HONO or CH3ONO) was 800 ppb and NO
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concentration throughout the experiments was such that the
concentration of O3 never exceeded 5 ppb.

Experiments were performed with either no aerosol seed
present, ammonium sulfate seed (AS), or ammonium sul-
fate plus sulfuric acid (AS + SA). The AS + SA produced a
much more acidic aerosol seed. When applicable, seed par-
ticles were added to the chamber after the addition of the
oxidant. Aerosol seed particles were generated by atomizing
an aqueous solution of 15 mM(NH4)2SO4 (AS) or 15 mM
(NH4)2SO4 and 15 mM H2SO4 (AS + SA). Upon addition of
an aerosol seed, the initial aerosol number concentration was
∼ 1.8× 104cm−3, with a mean diameter of∼ 60 nm, result-
ing in the initial aerosol volume of 10–15 µm3cm−3.

Once the aerosol seed was added and stable,α-pinene was
added to the chamber by transferring a known amount ofα-
pinene from a small glass bulb to achieve a concentration of
20–50 ppb. The mixing ratio ofα-pinene was monitored with
a gas chromatograph (Agilent 6890N) coupled with a flame
ionization detector (GC-FID). The GC-FID was calibrated
for α-pinene using a standard prepared in a 55 l Teflon bag.
In photooxidation experiments where pinonaldehyde was the
initial hydrocarbon, pinonaldehyde was introduced into the
chamber by passing dry nitrogen over a liquid sample.

Gas-phase photooxidation products were monitored by
a custom-modified Varian 1200 triple-quadrupole chemical
ionization mass spectrometer (CIMS) (St. Clair et al., 2010).
Details of the operation of the CIMS can be found in a num-
ber of previous reports (Crounse et al., 2006; Paulot et al.,
2009a; St. Clair et al., 2010). The CIMS was operated in
negative ion mode using CF3O− as the reagent ion, and in the
positive ion mode using H3O+ for proton transfer mass spec-
trometry (PTR-MS). In negative mode, CF3O− is sensitive to
polar and acidic compounds by either clustering with the ana-
lyte (R) resulting in an ion with a mass-to-charge ratio (m/z)
MW + 85 (R· CF3O−) or via fluorine ion transfer resulting in
m/z MW + 19 (HF· R−

−H). The dominant ionization mecha-
nism depends mostly on the acidity of the neutral species;
highly acidic species such as nitric acid form only the flu-
orine transfer ion, while non-acidic species such as methyl
hydrogen peroxide form only the cluster ion. This separation
aids both in the determination of the structure of a molecule
and in the identification of isomers. In negative mode, tan-
dem mass spectrometry (MS/MS) was used to help identify
functional groups of an analyte. In brief, a parent ion selected
in the first quadrupole is exposed to an elevated pressure of
N2 resulting in collision-induced dissociation (CID) in the
second quadrupole, and the resulting fragmentation ions are
detected in the third quadrupole. Molecules with different
functional groups have been shown to fragment differently
by CID. For example, fragmentation of hydroperoxides form
a characteristic anion atm/z 63 (Paulot et al., 2009b). Unfor-
tunately, authentic standards for most compounds described
here are not readily available, and thus the sensitivity of the
CIMS cannot be experimentally determined. In the absence
of such standards, we estimate that the sensitivity scales with

the thermal capture rate and the binding energy of the cluster
(VOC · CF3O−). Details on calculating the sensitivity of the
CIMS to a given analyte can be found in previous publica-
tions (Paulot et al., 2009a,b).

Duplicate Teflon filters (PALL Life Sciences, 47 mm
diameter, 1.0 µm pore size, Teflon membrane) were col-
lected from each of the chamber experiments for off-line
chemical analysis. Filter sampling was started when the
aerosol volume reached a constant value. For the chemi-
cal analysis, each filter was extracted with methanol (LC-
MS CHROMASOLV-grade, Sigma-Aldrich) under ultra-
sonication for 45 min. The extract was dried under ultra-
pure nitrogen gas, and the residue was reconstituted with
a 50: 50 (v/v) solvent mixture of methanol with 0.1 %
acetic acid (LC-MS CHROMASOLV-grade, Sigma-Aldrich)
and water with 0.1 % acetic acid (LC-MS CHROMASOLV-
grade, Sigma-Aldrich). Filter sample extracts were analyzed
by ultra-performance liquid chromatography/electrospray
ionization-time-of-flight mass spectrometry (UPLC/ESI-
TOFMS) operated in negative ion mode. Further details
of the filter collection, sample preparation procedures, and
UPLC/ESI-TOFMS analysis can be found in a previous pub-
lications (Surratt et al., 2008; Chan et al., 2010).

Products having either a carboxylic acid group or that are
organosulfates can be ionized via deprotonation and are de-
tected in the negative ion mode as[M − H]

− ions. All ac-
curate mass measurements were within±5 mDa of the theo-
retical mass associated with the proposed chemical formula.
From repeated UPLC/ESI-TOFMS measurements, the varia-
tions in the chromatographic peak areas are about 5 % (Chan
et al., 2011). The concentrations are not corrected for extrac-
tion efficiencies.

High-resolution time-of-flight aerosol mass spectrometry
(HR-ToF-AMS) spectra were obtained for one low-NOx ex-
periment with AS seed and one high-NOx experiment with
AS seed. The analysis of the data has previously been re-
ported (Chhabra et al., 2011). Both high-resolution W-mode
and higher sensitivity V-mode were taken, switching between
the two modes every minute. The V-mode data were analyzed
using a fragmentation table that enables separation of sul-
fate, ammonium, and organic components and to time-trace
specific mass-to-charge ratios (m/z) (Allan et al., 2004). W-
mode data were analyzed using the high-resolution spec-
tra toolbox, PIKA, to determine the chemical formulas con-
tributing to distinctm/z (DeCarlo et al., 2006).

3 Results and discussion

In Part 1 (Eddingsaas et al., 2012), the gas-phase composition
of OH photooxidation ofα-pinene under low-NOx, high-NO
(HONO as the OH source), and high-NO2 (methyl nitrite as
the OH source) conditions was discussed. Under low-NOx
conditions, care was taken to ensure that reaction with HO2
dominated the loss of the peroxy radicals. O3 was suppressed
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in all experiments so that the oxidation ofα-pinene was com-
pletely dominated by OH oxidation. Here, the results of the
aerosol phase growth, yield, and composition from these con-
trolled experiments are discussed.

3.1 Aerosol growth and yield

Table1 lists the experimental conditions of the studies, the
SOA yields, and a number of other variables of interest.
The SOA density used to calculate SOA mass and SOA
yield were taken from previous results: 1.32 g cm−3 under
low-NOx conditions and 1.33 g cm−3 under high-NOx con-
ditions (Ng et al., 2007a). SOA yield is calculated cumula-
tively throughout the experiments as the ratio of SOA mass
to the mass ofα-pinene reacted. For this suite of experiments,
we cannot directly relate the time-dependent aerosol growth
curves (i.e. SOA mass as a function of experiment time) to
yield because the OH concentration varied widely between
the systems. For example, the initial OH concentration for
the low-NOx experiments was∼ 2× 106 molecules cm−3,
while in the high-NO experiments the initial OH was ap-
proximately 3 times larger, and under high-NO2 conditions
the initial OH was an order of magnitude larger, thereby
resulting in much faster oxidation ofα-pinene and faster
aerosol growth. In addition, under both high-NO and high-
NO2 conditions, the OH concentration declined significantly
over time. The OH concentration through the experiments
was determined by comparing the loss ofα-pinene to a ki-
netic model ofα-pinene OH oxidation under low- or high-
NOx conditions. Details of the model and gas phase mea-
surements can be found in Part 1 (Eddingsaas et al., 2012).
By using OH exposure (as units of OH concentration mul-
tiplied by reaction time in hours) as the coordinate system,
a more direct comparison between different photooxidation
systems is, however, possible.

Figure1 shows SOA yield as a function of OH exposure
from all experiments in the presence of AS seed particles.
The overall yield was consistent between runs with the same
OH source, but there is a systematic difference in SOA yield
between the systems, decreasing as the concentration of NO
increases. SOA growth under high-NO2 conditions resem-
bles low-NOx SOA growth more than it does high-NO SOA
growth, consistent with the hypothesis that reaction of the
peroxy radicals with NO leads to reduced yields. Second, the
SOA yield from high-NO2 continued to increase after two
α-pinene lifetimes. This is in contrast to the high-NO experi-
ments where most of the aerosol growth is complete after one
α-pinene lifetime. The SOA from low-NOx photooxidation
also continued to increase after twoα-pinene lifetimes. This
indicates that later generation oxidation products are impor-
tant in determining the amount of SOA formed. As discussed
in the gas-phase analysis (Eddingsaas et al., 2012), a distinct
difference in the later generation oxidation products is the
formation of carboxylic acids and peracids in the low-NOx
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Fig. 1. SOA yield as a function of OH exposure ofα-pinene from
low-NOx, high-NO, and high-NO2 OH oxidation in the presence of
ammonium sulfate seed particles. The vertical dashed lines repre-
sent one and twoα-pinene lifetimes with respect to reaction with
OH. The OH source and sample ID for each experiment is shown in
the figure.

photooxidation. In the high-NO2 cases, more PANs and ni-
tric acid are formed compared to high-NO.

Illustrating that later generation oxidation products are im-
portant to SOA growth, the gas-phase time traces of first-
and second-generation oxidation products are shown along
with the SOA growth under all three conditions in the pres-
ence of ammonium sulfate seed in Fig.2. Under all con-
ditions, aerosol growth continues through the production
of second-generation oxidation products. Under low-NOx
conditions, the signal for pinonaldehyde peracid and/or 10-
hydroxypinonic acid is lost from the gas phase faster than
pinonic acid. This is likely due to greater partitioning into
the aerosol phase as a result of its lower vapor pressure. In
the presence of high-NO2, pinonaldehyde PAN is observed
to be lost from the gas phase faster than SOA growth as a re-
sult of thermal decomposition. Pinonaldehyde nitrate is lost
at a faster rate when methyl nitrite is the OH source. This
could be due to either higher OH exposure or aerosol uptake.

The effect of the acidity of the seed particle on SOA yield
was investigated. Figure3 shows the SOA yield as a function
of OH exposure with no seed, and in the presence of either
AS seed (mildly acidic) or AS + SA seed (highly acidic) in
low-NOx, high-NO, and high-NO2 OH oxidation. From low-
NOx photooxidation with initialα-pinene concentration of
∼ 50 ppb, there is no difference in the aerosol growth in the
presence of no, AS, or AS + SA seed. This was expected as
the only difference in the gas-phase composition is thatα-
pinene oxide is in lower concentration in the presence of an
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Table 1.SOA yields from low- and high-NOx photooxidation ofα-pinene.

Sample ID Oxidant Seed Temp. HC Initial Vol. 1HCa 1MO
b SOA Yieldc

(◦C) (ppb) (µm3cm−3) (µg m−3) (µg m−3) (%)

1-H2O2 H2O2 no seed 20–23 45.0±1.0 0.9±0.3 250±6 66.8±6.0 26.7±2.5
2-HONO HONO no seed 20–23 50.1±1.1 0.3±.2 260±6 20.0±2.3 7.7±0.9
3-H2O2 H2O2 AS 20–25 48.5±1.1 11.0±0.4 265±6 76.6±6.7 28.9±2.6
4-HONO HONO AS 20–23 52.4±1.2 12.0±0.7 258±7 37.2±3.0 14.4±1.1
5-H2O2 H2O2 AS + SA 20–25 46.9±1.1 9.3±0.58 264±6 72.9±7.0 27.6±2.8
6-HONO HONO AS + SA 20–23 45.5±1.0 16.0±1.1 225±6 39.6±4.5 17.6±1.9
7-H2O2 H2O2 no seed 20–25 19.8±0.5 0.5±0.2 109±3 40.0±3.1 36.7±3.0
8-MeONO CH3ONO no seed 20–23 38.9±1.0 5.1±0.2 208±6 51.9±3.8 25.4±1.7
9-H2O2 H2O2 AS 20–25 46.8±1.1 9.4±0.4 254±6 71.6±6.2 28.2±2.5
10-MeONO CH3ONO AS 20–23 47.9±1.1 10.5±0.5 249±6 60.3±4.9 24.2±1.9
11-H2O2 H2O2 AS + SA 20–25 46.8±1.1 8.5±0.4 256±6 70.4±6.2 27.5±2.5
12-MeONO CH3ONO AS + SA 20–23 43.7 14 242 42.6 17.6
13-H2O2 H2O2 AS 20–25 45.0±1.0 13.7±0.6 247±6 63.5±5.6 25.7±2.3
14-MeONO CH3ONO AS 20–23 44.9±1 15.4±0.6 250±6 54.0±4.3 21.6±1.8

a 1HC: mass concentration ofα-pinene reacted.
b 1MO: mass concentration of SOA.
c SOA yield is maximum mass concentration of SOA formed divided by the mass concentration ofα-pinene reacted.

acidic seed.α-pinene oxide is a minor product. This indi-
cates that there is almost no reactive uptake occurring due to
acid-catalyzed reactions and that if there are any changes in
the aerosol composition, they occur within the particle phase.
SOA yield was different when the initialα-pinene concen-
tration was reduced to 20 ppb (37 % compared to 26–29 %
when the initial concentration was 50 ppb). The cause of the
increase in SOA yield with lowerα-pinene concentration is
not known.

As with low-NOx photooxidation, there is no difference
in aerosol growth under any seed conditions for high-NO2
photooxidation. However, with high-NO, the yield does de-
pend on seed conditions; yields increase from no seed to AS
seed to AS + SA seed (increase of 22 % from AS to AS + SA
seed). In the presence of AS+SA seed, the SOA yield was the
same under high-NO and high-NO2 conditions. This small
increase with acidity is in contrast to low-NOx photooxida-
tion of isoprene where the SOA increased markedly (1000 %)
(Surratt et al., 2010).

Self-nucleation under high-NO conditions did not occur
until nearly oneα-pinene lifetime. In contrast, nucleation
occurred nearly immediately under both high-NO2 and low-
NOx conditions. One possible explanation for the difference
in behavior is that for the aerosols in the higher NO2 case, the
self-nucleated and AS seeded aerosols are more acidic than
in the low-NO2 case due to increased partitioning of nitric
acid and possibly the PANs. This would result in an acidic
aerosol under all conditions for the higher NO2 experiments.
When AS + SA seed is used, the particles have the same level
of acidity and partitioning should be more similar. Analysis
of the particle-phase composition provides more insight into
the differences between the systems.

3.2 Aerosol chemical composition

Tables2 and3 list the UPLC peak areas for each of the car-
boxylic acids associated with atmospheric photooxidation of
α-pinene under low-NOx, high-NO, and high-NO2 condi-
tions, in the presence of either AS or AS + SA seed. Fig-
ure 4 shows the structures of the identified SOA compo-
nents. The peak areas are presented both as the raw peak
areas (Table2) as well as peak areas scaled to the SOA
mass loading of the low-NOx AS seed run (Table3), so that
a weighted average of each component can be compared.
Concentration calibrations were not performed and therefore
the analysis is qualitative. Figure5 shows the UPLC chro-
matograms from the filter samples from low-NOx OH oxida-
tion in the presence of AS or AS + SA seed particles along
with the chromatogram from pinonaldehyde low-NOx pho-
tooxidation, while Fig.6 shows the UPLC chromatograms
from high-NO and high-NO2 OH oxidation in the presence
of AS or AS + SA seed particles. The species of interest –
pinonic acid, 10-hydroxy pinonic acid, pinic acid, terpenylic
acid, 2-hydroxy terpenylic acid, diaterpenylic acid acetate, 3-
MBTCA, the organosulfates and the nitrooxy organosulfates
have previously been identified by UPLC/(-)ESI-TOFMS
(Warnke et al., 2006; Szmigielski et al., 2007; Claeys et al.,
2009), and it is these identifications that are being used to
confirm the presence or absence of each species.

3.2.1 Comparison of SOA composition between low-
NOx, high-NO, and high-NO2 OH oxidation in the
presence of ammonium sulfate seed

Pinonic acid, pinic acid, and 10-hydroxy pinonic acid are
only observed in substantial quantities in the aerosol phase
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Fig. 2. Time evolution of SOA growth along with gas-phase time
profile of first- and second-generation products of OH oxidation
of α-pinene under(a) low-NOx conditions (7-H2O2),(b) high-NO
conditions (4-HONO), and(c) high-NO2 conditions (10-MeONO).
In all plots, the red line isα-pinene, blue line is pinonalde-
hyde, and black line is SOA growth. In(a) green is 10-hydroxy
pinonic/pinonic peracid acid and orange is pinonic acid,(b, c)green
is pinonaldehyde-PAN, and orange is pinonaldehyde nitrate.

from the low-NOx photooxidation (Tables2 and 3 and
Fig.5). This was expected as pinonic and 10-hydroxy pinonic
acid were only observed in the gas-phase in the low-NOx
photooxidation (Eddingsaas et al., 2012). These species orig-
inate from the oxidation of pinonaldehyde as confirmed
by the gas-phase data (Eddingsaas et al., 2012) as well as
the UPLC chromatogram of the low-NOx photooxidation of
pinonaldehyde (Fig. 4c). Pinonic acid, pinic acid, and 10-
hydroxy pinonic acid are also typical species found in SOA
from the ozonolysis ofα-pinene (Hoffmann et al., 1997; Ma
et al., 2008; Camredon et al., 2010). Thus, it is likely that pre-
vious observation of pinonic acid, pinic acid, and 10-hydroxy
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Fig. 3.SOA yield as a function of OH exposure ofα-pinene OH ox-
idation in the presence of no (black, gray), neutral (shades of green),
or acidic (shades of red) seed particles under(a) low-NOx con-
ditions and(b) high-NOx conditions where photolysis of HONO
(dots) or methyl nitrite (triangles) is the OH source. The sam-
ple IDs for each experiment are(a) black dots (1-H2O2), gray
dots (7-H2O2), light green diamonds (3-H2O2), teal diamonds (9-
H2O2), green diamonds (13-H2O2), red triangles (5-H2O2), dark
red triangles (11-H2O2)(b) gray dots (2-HONO), black trian-
gles (8-MeONO), green dots (4-HONO), light green triangles (10-
MeONO), teal triangles (14-MeONO), dark red dots (6-HONO),
and red triangles (12-MeONO). The low-NOx experiment that re-
sulted in greater SOA yield (gray points in panel a (7-H2O2)) is
from 20 ppb ofα-pinene, all other data is from the OH oxidation of
∼ 50 ppb ofα-pinene.

pinonic acid in studies ofα-pinene high-NOx photooxidation
were a result of ozonolysis and not OH chemistry.

3-MBTCA is believed to be a tracer compound ofα-
pinene derived SOA (Szmigielski et al., 2007; Kourtchev
et al., 2009; Zhang et al., 2010) and indeed it was ob-
served here under all conditions (as well as from the low-
NOx photooxidation of pinonaldehyde). It has been proposed
that 3-MBTCA is the result of further high-NOx oxidation
of pinonic acid in the gas phase (Szmigielski et al., 2007;
Müller et al., 2012). A recent study byMüller et al.(2012)
shows evidence of gas-phase formation of 3-MBTCA from
the photooxidation of pinonic acid in the presence of NO.
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Table 2.Raw peak areas from UPLC chromatograms of carboxylic acids, organosulfates, and nitrooxy organosulfates from the photooxida-
tion of α-pinene.

H2O2 HONO MeONO

SOA component ([M − H]
−) AS AS + SA AS AS + SA AS AS + SA

2-Hydroxyterpenylic acid (187) – – 1918 824 2285 1509
Terpenylic acid (171) 2097 2522 911 933 1152 1255
3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) (203) 458 702 307 337 910 1231
Diaterpenylic acid acetate (231) 318 763 1984 401 1658 1728
10-Hydroxypinonic acid (199) 2229 1760 361 426 314 662
Pinic acid (185) 1552 1469 – – – –
Pinonic acid (183) 1155 1297 – – – –
Sulfate of 10-hydroxy pinonic acid (279) – 723 – 1185 – 1343
α-pinene hydroxy sulfate (249) – 1692 – 1904 – 933
Ring opened carbonyl nitrate sulfate (310) – – – 1744 – 1075
m/z 247.07 (C10H15O5S) – – – 3193 – 435
m/z 265.07 (C10H17O6S) – – – 219 – 229
m/z 294.06 (C10H16NO7S) – – – 1799 – –
m/z 295.05 (C10H15O8S) – – – 494 – –
m/z 296.04 (C10H14NO8S) – – – 108 – –
m/z 328.07 (C10H18NO9S) – – – 345 – –
m/z 342.05 (C10H16NO10S) – – – 110 – –

Table 3.Peak areas scaled to low-NOx AS seed SOA loading from UPLC chromatograms of carboxylic acids, organosulfates, and nitrooxy
organosulfates from the photooxidation ofα-pinene.

H2O2 HONO MeONO

SOA component ([M − H]
−) AS AS + SA AS AS + SA AS AS + SA

2-Hydroxyterpenylic acid (187) – – 4480 1426 3167 2617
Terpenylic acid (171) 2097 2451 2128 1615 1597 2177
3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) (203) 458 682 717 583 1261 2135
Diaterpenylic acid acetate (231) 318 742 4635 695 2298 2997
10-Hydroxypinonic acid (199) 2229 1711 843 737 435 1148
Pinic acid (185) 1552 1428 – – – –
Pinonic acid (183) 1155 1261 – – – –
Sulfate of 10-hydroxy pinonic acid (279) – 703 – 2051 – 2329
α-pinene hydroxy sulfate (249) – 1645 – 3296 – 1618
Ring opened carbonyl nitrate sulfate (310) – – – 3019 – 1865
m/z 247.07 (C10H15O5S) – – – 5527 – 755
m/z 265.07 (C10H17O6S) – – – 379 – 397
m/z 294.06 (C10H16NO7S) – – – 3114 – –
m/z 295.05 (C10H15O8S) – – – 855 – –
m/z 296.04 (C10H14NO8S) – – – 187 – –
m/z 328.07 (C10H18NO9S) – – – 597 – –
m/z 342.05 (C10H16NO10S) – – – 190 – –

In the present study, however, 3-MBTCA is observed un-
der high-NO and high-NO2 conditions when pinonic acid is
not observed and, in addition, 3-MBTCA is observed from
low-NOx photooxidation where peroxy radical reactions are
dominated by reactions with HO2. The ratio of 3-MBTCA
to pinic acid in low-NOx oxidation ofα-pinene is substan-
tially greater than from pinonaldehyde photooxidation. This
is in contrast to the ratios of pinic acid, pinonic acid, and

10-hydroxypinonic acids which are very similar regardless
of which initial hydrocarbon was used under low-NOx con-
ditions.

Terpenylic acid and diaterpenylic acid were observed in
filters from allα-pinene photooxidation mechanisms, while
2-hydroxy terpenylic acid was observed only in the presence
of NOx. Under low-NOx photooxidation, terpenylic acid is
the dominant peak and is observed only as a dimer (m/z
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343), while diaterpenylic acid is a minor peak. In the low-
NOx photooxidation of pinonaldehyde, terpenylic acid was
observed, but it is a small contributor to the aerosol mass; di-
aterpenylic acid was not observed at all. There is a peak in
the chromatograms for low-NOx photooxidation ofα-pinene
and pinonaldehyde with a molecular ion that corresponds to
2-hydroxy terpenylic acid (m/z = 187.06), but it elutes much
earlier than found in previous studies (Claeys et al., 2009) or
in the high-NO or high-NO2 studies here. Under high-NO
and high-NO2 photooxidation, diaterpenylic acid acetate is
observed to be the dominant peak in the chromatograms. Ter-
penylic and 10-hydroxy terpenylic acids are also dominant
peaks in the chromatograms, with their contribution to the
total aerosol greater with higher NO2. From this analysis, it
appears that terpenylic acid arises from the photooxidation of
pinonaldehyde while diaterpenylic acid acetate is from some
other channel ofα-pinene photooxidation.
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−

ions are carboxylic acids and chromatographic peaks designated
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− ions are organosulfates. See Table 2 for com-
pound names.

3.2.2 Change in SOA composition in the presence of
highly acidic aerosol seed

The composition of the SOA in low-NOx photooxidation in
the presence of AS or AS + SA seed is very similar (see Ta-
bles2 and3 and Fig.5). This is consistent with the fact that
the SOA yield and mass loading were almost identical be-
tween these experiments. In the presence of the acidic seed,
four peaks were observed that correspond to organosulfates,
one withm/z 279 and three withm/z 249. The organosulfate
peak atm/z 279 has been previously identified as the sulfate
ester of 10-hydroxy pinonic acid and is thought to originate
from the esterification of the hydroxyl group of 10-hydroxy
pinonic acid (Surratt et al., 2008). Indeed, the signal for 10-
hydroxy pinonic acid decreases in the presence of AS + SA
seed (Table3), while no change in peak area is observed from
either pinonic or pinic acid, both of which lack a hydroxyl
group. While it has been shown that for simple alcohols, sul-
fate esterification is too slow to be atmospherically relevant
(Minerath et al., 2008), these data indicate that esterification
may be sufficiently fast in more complex, acidic alcohols.
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The three peaks withm/z 249 are most likely from the re-
active uptake ofα-pinene oxide, which was observed to be
in lower concentration in the gas phase in the presence of
an acidic seed.Iinuma et al.(2009) have shown that the up-
take ofα-pinene oxide results in the formation of three differ-
ent organosulfates: 2-pinanol-3-hydrogen sulfate, 3-pinanol-
2-hydrogen sulfate, and campholenol hydrogen sulfate. The
SOA yield is independent of aerosol seed acidity from low-
NOx photooxidation indicating that the gas-phase yield of
α-pinene oxide and the resulting organosulfates are minor
components.

The SOA composition (and yield) from high-NO photoox-
idation is substantially different in the presence of AS + SA
seed. In the presence of an acidic seed, diaterpenylic acid and
2-hydroxy terpenylic acid were greatly reduced in the aerosol
while terpenylic acid was relatively unchanged (see Tables2
and3 and Fig.6). A large number of organosulfates and ni-
trooxy organosulfates are observed. Both of the organosul-
fates observed in low-NOx photooxidation are observed. The
source of them/z 249 is most likely the same,α-pinene ox-
ide. The mechanism for the formation of the sulfate ester of
10-hydroxy pinonic acid is less clear. 10-hydroxy pinonic
acid is not observed in the gas phase, is a small fraction of
the particle phase mass, and its aerosol concentration is rel-
atively unchanged in the presence of an acidic seed. In addi-
tion, 10-hydroxy pinonic acid is more prominent in low-NOx
photooxidation. However, the organosulfate associated with
10-hydroxy pinonic acid is of greater abundance in high-NO
and high-NO2 conditions than in low-NOx conditions. The
sulfate ester of 10-hydroxy pinonic acid coelutes with two
other ions and therefore the peak area has greater error. How-
ever, even if the peak areas were similar, it would not be
consistent with a source from 10-hydroxy pinonic acid un-
der high-NO and high-NO2 conditions due to the low signal.
The peak is observed at the same chromatographic time un-
der all conditions; therefore, either the organosulfates atm/z

279 are formed by different processes depending on NO con-
centration, or 10-hydroxy pinonic acid is not the source at all.
We believe that there must be another mechanism that forms
this organosulfate. The nitrooxy organosulfate (m/z = 310)
elutes as two peaks in the chromatogram. Under high-NO
and high-NO2 conditions, two species are formed in the gas
phase with molecular weight of 231 (CIMSm/z = 316). One
of the gas-phase species was assigned toα-pinene dihydroxy
nitrate as proposed in previous reports and upon sulfate ester-
ification would produce a nitrooxy organosulfate that would
produce the ion of interest (m/z 310) (Aschmann et al., 2002;
Surratt et al., 2008). Thus, there is once again evidence for
particle-phase sulfate esterification of a hydroxyl group in a
poly-functional molecule. The largest sulfate peak was also
the dominant peak in the chromatogram corresponding to
m/z 247. The identification of the compound is unknown
and its overall importance to the SOA yield is not known
as no calibrations are available. Tables2 and3 list the most
likely molecular formula for the ion atm/z 247, along with
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−

ions are organosulfates and nitrooxy organosulfates. See Table 2 for
compound names.

those from the other observed organosulfates and nitrooxy
organosulfates.

Under high-NO2 conditions, the addition of AS + SA
rather than AS seed results in fewer new peaks in the UPLC
chromatogram than under high-NO conditions. As with low-
NOx, this result is expected as the SOA yield is insensitive
to aerosol acidity. As with high-NO, 2-hydroxy terpenylic
acid decreases in concentration in the presence of an acidic
seed; however, the concentration of diaterpenylic acid ac-
etate is insensitive to aerosol acidity. We have no explanation
for this discrepancy. All of the organosulfates and nitrooxy
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organosulfates observed in high-NO2 photooxidation are ob-
served in high-NO photooxidation, but there are a few ad-
ditional organosulfates and nitrooxy organosulfates that are
unique to the high-NO case (see Tables2 and3 and Fig.6).

Given that the SOA yield and growth curves are so differ-
ent, it is surprising that the UPLC/(-)ESI-TOFMS data from
high-NO or high-NO2 photooxidation are remarkably sim-
ilar in the presence of AS seed but substantially different
with AS + SA seed (see Fig.6). This suggests that there must
be compositional differences which UPLC/(-)ESI-TOFMS is
insensitive. The data also suggest that PANs may play a role
in the SOA composition as the amount of PAN was the main
difference observed in the gas phase.

3.2.3 Bulk SOA functionality determined by AMS

The aerosol composition in low-NOx and high-NO2 OH ox-
idation ofα-pinene in the presence of AS seed particles was
further analyzed by HR-ToF-AMS. A description of the re-
sults has previously been reported (Chhabra et al., 2011). In
Chhabra et al.(2011) the H : C vs. O : C (Van Krevelen dia-
gram) and the ratio off44 (more oxidized species, CO+2 likely
from acids) tof43 (less oxidized species, C2H3O+) are com-
pared over the course of the photooxidation experiments. The
Van Krevelen diagram can be used to infer the bulk function-
ality of the organic species within the aerosol. Both the low-
NOx and high-NO2 photooxidation ofα-pinene fall along the
−1 slope of the H : C vs. O : C plot (see Fig. 2 of Chhabra
et al., 2011), a value indicative of either carboxylic acids
and/or hydroxy carbonyls (Heald et al., 2010; Ng et al., 2011;
Chhabra et al., 2011). Under both low-NOx and high-NO2
OH oxidation, the AMS data indicate the same bulk organic
functionality while the gas-phase data show a greater quan-
tity of carboxylic acids in the low-NOx oxidation. Consis-
tent with the Van Krevelen diagram,f44 to f43 is very similar
between the low-NOx and high-NO2 experiments.f44 is as-
signed as an indicator of carboxylic acids and a higher degree
of aerosol aging (Ng et al., 2011; Chhabra et al., 2011). Fur-
ther analysis of AMS data indicates that carboxylic acids are
a large fraction (30–40 % of the mass) of the aerosols in low-
NOx and high-NO2 OH oxidation ofα-pinene (see Table 2
of Chhabra et al., 2011).

3.3 Gas-phase composition with injection of inorganic
seed after photooxidation

To study how different oxidation products interact with
aerosol seed particles of different composition (acidity), ex-
periments were performed in whichα-pinene was first pho-
tooxidized, followed by introduction of an aerosol seed after
the lights had been off for two hours. This results in the ex-
posure of gas-phase compounds, formed later on in the ex-
periment, to fresh inorganic aerosol seed particles. This type
of experiment has been used previously to study the SOA
produced in the low-NOx photooxidation of isoprene (Sur-

ratt et al., 2010). Surratt et al.(2010) showed that epoxydiols
formed from the photooxidation of isoprene preferentially
partition to acidic aerosol by reactive uptake.

Two post-oxidation seed experiments were performed un-
der low-NOx and two under high-NO2 conditions. In all ex-
periments, aerosol self-nucleation occurred as soon as the
lights were turned on so a substantial amount of aerosol had
already formed. Once the oxidation products were formed,
the lights were extinguished and the chamber was left in the
dark for two hours followed by injection of 15–20 µg m−3

of aerosol seed. For low-NOx, this added about 50 % more
aerosol volume into the chamber, while for high-NO2 the
aerosol concentration was doubled.

Figure 7 shows the aerosol growth from each of the
photooxidation followed by aerosol injection experiments.
Aerosol nucleation and growth occurs as soon as the lights
are turned on in all experiments. The difference in SOA vol-
ume growth from self-nucleation from both low- and high-
NOx experiments is due to greater gas-phaseα-pinene con-
centration at the beginning of each AS seed experiments
compared to the AS + SA experiments. Once the lights are
turned off, the aerosol mass remains constant until the addi-
tion of the inorganic seed. In the case of low-NOx, an addi-
tional growth of∼ 8 µg m−3 of SOA is observed after the ad-
dition of AS + SA seed; no growth is observed after the addi-
tion of the neutral seed. The difference in the aerosol growth
is in contrast to the SOA behavior when the aerosol seed was
added prior to photooxidation. Under high-NO2 conditions,
no additional SOA is formed after the addition of either neu-
tral or acidic seed particles in the dark.

When ammonium sulfate seed was added in the dark after
photooxidation under low-NOx or high-NO2 conditions, no
change in any of the gas-phase concentrations was observed.
This indicates that the gas-phase molecules were not simply
in equilibrium with the total aerosol concentration. It is pos-
sible that the gas-phase species were partitioning to the wall
as well as to the particles, and were at equilibrium; since the
surface area of the chamber walls is two orders of magnitude
larger than that of the aerosol, no loss would be observed sim-
ply due to the greater surface area. Equilibrium partitioning
to the walls does not, however, seem likely as the concentra-
tion of nearly all the species in the gas phase did not change
when the lights were extinguished, decreasing temperature
of ∼ 5◦C. If the gas-phase molecules were partitioning to the
wall, it would be expected that their gas-phase concentration
would drop as the temperature decreased.

The gas-phase concentration of a number of oxidation
products formed under low-NOx conditions were noticeably
reduced when AS + SA seed particles were introduced af-
ter photooxidation (Fig.8). α-pinene oxide is almost com-
pletely lost from the gas phase after introduction of the acidic
seed (Fig.8d). In addition, the highly oxidized products ob-
served atm/z 301 and 303 decrease by∼ 70 %. These two
compounds probably contain either two hydroperoxy groups
or one hydroperoxy group and one bridging peroxy group.
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Fig. 7. Time traces of aerosol volume as a result of SOA growth
from OH oxidation ofα-pinene followed by injection of ammo-
nium sulfate seed (black) or ammonium sulfate and sulfuric acid
seed (red) under(a) low-NOx and(b) high-NOx (methyl nitrite pho-
tolysis) conditions. The difference in the quantity of self-nucleated
aerosol volume growth from both(a) low- and (b) high-NOx ex-
periments is due to greater gas-phaseα-pinene concentration at the
beginning of each of the AS seed experiments compared to the
AS + SA experiments.

Upon addition of the AS + SA seed, theα-pinene hydroxy
hydroperoxides also decreased from the gas phase by∼ 75 %
(Fig. 8a). This was unexpected, as it has been shown that the
hydroxy hydroperoxides formed in the photooxidation of iso-
prene are not lost from the gas phase due to addition of either
AS or AS + SA seed particles. (Surratt et al., 2010). In addi-
tion, it was unexpected because when aerosol seed was added
prior to photooxidation, the only gas-phase product observed
to be in lower concentration in the presence of AS + SA seed
was α-pinene oxide. It should be noted that the gas-phase
mass loss was a factor of two greater than the SOA growth
upon addition of AS + SA seed. It is not clear how to interpret
the mass balance, as no species were observed to increase
substantially in the gas phase after addition of the AS + SA
seed.

The loss of additional organics upon addition of AS + SA
seed after photooxidation compared to when the seed is in-
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Fig. 8.CIMS traces ofα-pinene OH oxidation under low-NOx con-
ditions, photooxidation for four hours, lights off and contents in the
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gray area is when the chamber was dark and the dashed line indi-
cates when aerosol seed was added.

jected prior to photooxidation may be related to the compo-
sition of the seed when exposed to a given organic. Specif-
ically, perhaps products that are involved in self-nucleation
and partition early on in the experiment coat the acidic seed
resulting in a hydrocarbon surface rather than an acidic one.
If this is the case, loss to the particle would be due to hy-
drocarbon partitioning rather than acid-catalyzed reactive up-
take. Aerosol growth occurs as soon as the lights are turned
on, and when a seed is present it takes only about 1.25 h
before the aerosol volume has doubled. On the other hand,
when the acidic seed is injected after photooxidation has oc-
curred, the products are exposed to the acidic surface allow-
ing reactive uptake to occur from the accumulated products.

Under high-NO2 conditions,α-pinene oxide is substan-
tially lost from the gas phase when the acidic seed was added
(Fig. 9). Besidesα-pinene oxide, there are minimal losses
of other gas-phase species (Fig.9). The observed losses in-
clude compounds that show up atm/z 215, 301, and 316.
The loss of each of these is less than 25 %, as opposed to the
low-NOx case where losses were all greater than 50 %. As
mentioned above, multiple species are observed atm/z 316,
a first-generation product from the oxidation ofα-pinene
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Fig. 9. CIMS traces ofα-pinene OH oxidation under high-NOx
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cates when aerosol seed was added.

(α-pinene dihydroxy nitrate) and norpinonaldehyde PAN. It
is expected that if norpinonaldehyde PAN were to be lost
from the gas phase upon addition of an acidic seed then
pinonaldehyde PAN would as well. There is no loss of pinon-
aldehyde PAN from the gas phase, and therefore we conclude
that the species lost from the gas phase is theα-pinene oxi-
dation product, which we believe to beα-pinene dihydroxy
nitrate. The structures of the molecules atm/z 215 and 301
are not known. Due to the small losses, it appears that un-
der high-NO2 conditions, acidity will play only a small or
negligible effect on SOA growth, as seen in Fig.7 where no
additional growth was observed upon addition of an acidic
seed. Consistent with this result,Offenberg et al.(2009) saw
only a modest increase in SOA yield with the increase of the
aerosol acidity from high-NO2 photooxidation ofα-pinene.

4 Implications

In this study, the aerosol growth and composition fromα-
pinene OH oxidation were compared in low-NO, high-NO,
and high-NO2 conditions. Aerosol growth fromα-pinene OH

oxidation under high-NO2 conditions behaves more similarly
to low-NOx than high-NO aerosol growth. With low NO,
aerosol growth continues well after two lifetime ofα-pinene
with respect to OH oxidation. This indicates that later gen-
eration oxidation products are important for SOA growth,
including the products of the oxidation of pinonaldehyde, a
major product of both low- and high-NO OH oxidation of
α-pinene.

In high-NO conditions the SOA yield is dependent on
aerosol acidity. The increase in SOA yield with acidic seed
was, however, relatively small (∼ 22 % increase). The com-
position of the gas phase in high-NO and high-NO2 OH ox-
idation was identical with a few notable variations. In high-
NO2 experiments, 1.4 to 2 times greater concentrations of
PANs and nitric acid were observed in the gas phase com-
pared to the high-NO experiments. One possible explanation
for the difference in SOA growth is that the aerosols formed
under high-NO2 conditions are acidic enough in the presence
of a neutral seed, due to the increased nitric acid and PANs,
for the SOA yield to be the same in the presence of neutral or
acidic particles. Further studies on the effect of NO2, PANs,
and nitric acid on SOA yield from high-NOx OH oxidation of
α-pinene would aid in elucidating the difference in behavior
between using HONO and methyl nitrite as the OH source.

When an acidic seed was added after OH oxidation, the
SOA yield under low-NOx conditions increased with a cor-
responding loss of species from the gas phase. This acid ef-
fect was not observed when the aerosol seed is added prior to
oxidation, perhaps due to differences in the composition of
the aerosol surface. The hypothesis is that when aerosol seed
particles are added prior to oxidation, the surface is coated
by organics, suppressing uptake of compounds that are cat-
alyzed by acid. This has potential implications to any system
that produces a high SOA yield or systems that start with a
high organic VOC concentration. In systems where the seed
particles become coated with organics relatively quickly, the
acid effect and therefore the SOA yield under acidic condi-
tions might be under represented.

Organic acids are a major component of SOA in both
low- and high-NOx OH oxidation ofα-pinene. While AMS
data indicate that the total concentration of organic acids in
SOA from low-NOx and high-NO2 is similar, the individ-
ual composition varies depending on the gas-phase condi-
tions. Pinonic and pinic acid are observed in SOA only from
low-NOx OH oxidation ofα-pinene. This is consistent with
gas-phase data, where pinonic acid was only observed from
low-NOx conditions. It is believed that 3-MBTCA is derived
from high-NOx gas phase oxidation of pinonic acid; how-
ever, there must be other mechanism for its formation, as 3-
MBTCA is observed in SOA from low-NOx OH oxidation
of α-pinene and high-NOx OH oxidation ofα-pinene where
pinonic acid is not observed in the gas or aerosol phase.
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Appendix D

Secondary Organic Aerosol
Coating Formation and
Evaporation: Chamber Studies
Using Black Carbon Seed Aerosol
and the Single-Particle Soot
Photometer∗

∗Reproduced with permission from “Secondary Organic Aerosol Coating Formation and Evaporation: Chamber
Studies Using Black Carbon Seed Aerosol and the Single-Particle Soot Photometer” by A. R. Metcalf, C. L. Loza,
M. M. Coggon, J. S. Craven, H. H. Jonsson, R. C. Flagan, and J. H. Seinfeld, Aero. Sci. Technol., 47, 326-347,
doi:10.1080/2786826.2012.75072. Copyright 2013 by the American Association for Aerosol Research.



Aerosol Science and Technology, 47:326–347, 2013
Copyright C© American Association for Aerosol Research
ISSN: 0278-6826 print / 1521-7388 online
DOI: 10.1080/02786826.2012.750712

Secondary Organic Aerosol Coating Formation
and Evaporation: Chamber Studies Using Black Carbon
Seed Aerosol and the Single-Particle Soot Photometer

Andrew R. Metcalf,1,2 Christine L. Loza,3 Matthew M. Coggon,3 Jill S. Craven,3

Haflidi H. Jonsson,4 Richard C. Flagan,1,3 and John H. Seinfeld1,3

1Division of Engineering and Applied Science, California Institute of Technology, Pasadena,
California, USA
2Combustion Research Facility, Sandia National Laboratories, Livermore, California, USA
3Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena,
California, USA
4Center for Interdisciplinary Remotely Piloted Aircraft Studies, Naval Postgraduate School, Monterey,
California, USA

We report a protocol for using black carbon (BC) aerosol as
the seed for secondary organic aerosol (SOA) formation in an en-
vironmental chamber. We employ a single-particle soot photome-
ter (SP2) to probe single-particle SOA coating growth dynamics
and find that SOA growth on nonspherical BC aerosol is diffusion-
limited. Aerosol composition measurements with an Aerodyne high
resolution time-of-flight aerosol mass spectrometer (AMS) con-
firm that the presence of BC seed does not alter the composition
of SOA as compared to self-nucleated SOA or condensed SOA
on ammonium sulfate seed. We employ a 3-wavelength photoa-
coustic soot spectrometer (PASS-3) to measure optical properties
of the systems studied, including fullerene soot as the surrogate
BC seed, nucleated naphthalene SOA from high-NOx photooxida-
tion, and nucleated α-pinene SOA from low-NOx photooxidation.
A core-and-shell Mie scattering model of the light absorption en-
hancement is in good agreement with measured enhancements for
both the low- and high-NOx α-pinene photooxidation systems, re-
inforcing the assumption of a core-shell morphology for coated
BC particles. A discrepancy between measured and modeled ab-
sorption enhancement factors in the naphthalene photooxidation
system is attributed to the wavelength-dependence of refractive in-
dex of the naphthalene SOA. The coating of high-NOx α-pinene
SOA decreases after reaching a peak thickness during irradiation,
reflecting a volatility change in the aerosol, as confirmed by the
relative magnitudes of f43 and f44 in the AMS spectra. The protocol
described here provides a framework by which future studies of
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SOA optical properties and single-particle growth dynamics may
be explored in environmental chambers.

[Supplementary materials are available for this article. Go to
the publisher’s online edition of Aerosol Science and Technology
to view the free supplementary files.]

1. INTRODUCTION
Refractory black carbon (rBC), alternately referred to as el-

emental carbon, is the dominant component of light-absorbing
atmospheric aerosol. While rBC refers to the strongly light-
absorbing component of soot, emission sources containing rBC,
such as diesel exhaust, may contain other constituents such as
polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocar-
bons, and other volatile compounds (Schauer et al. 1996; Klee-
man et al. 2000; Fruin et al. 2004). These organic compounds
co-emitted with rBC evaporate substantially upon dilution from
the tailpipe to ambient conditions (Robinson et al. 2007).

The traditional understanding is that fresh, urban-emitted
rBC is almost entirely composed of hydrophobic rBC and is un-
likely to act as cloud condensation nuclei (CCN) (Weingartner
et al. 1997). After emission, rBC particles can become coated
by inorganic and organic non-light-absorbing components via
coagulation with other particles and condensation of vapors
(Abel et al. 2003; Pósfai et al. 2003; Riemer et al. 2004; Moffet
and Prather 2009). Recent studies with a single-particle soot
photometer (SP2) have revealed that fresh, urban-emitted rBC
particles may be thinly coated with light-scattering material,
while rBC in aged air masses tends to be more thickly coated
(Moteki et al. 2007; Shiraiwa et al. 2007, 2008; Schwarz et al.
2008a; Subramanian et al. 2010; Metcalf et al. 2012). Timescales
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for the transition from a fresh to a more aged state have been
estimated to range from 12 h to a day (Johnson et al. 2005;
Moteki et al. 2007; Khalizov et al. 2009a; Park et al. 2012).
Interactions with gas and aerosol species transform rBC into an
internally mixed state, where it may eventually serve as a CCN
(Zuberi et al. 2005). Hygroscopic coatings also enhance the
wet deposition rate of these particles (Weingartner et al. 1997;
Saathoff et al. 2003; Jacobson 2006; Stier et al. 2006). A coat-
ing of non-light-absorbing components onto rBC increases the
light scattering and absorption cross sections of these particles
(Fuller et al. 1999; Saathoff et al. 2003; Schnaiter et al. 2005;
Bond et al. 2006; Mikhailov et al. 2006; Stier et al. 2006; Slowik
et al. 2007a; Zhang et al. 2008; Wehner et al. 2009; Khalizov
et al. 2009b; Cross et al. 2010; Lack and Cappa 2010; Shiraiwa
et al. 2010). At least one ambient study, however, found no ev-
idence of an enhancement of light absorption by condensation
of secondary material (Chan et al. 2010b). A study of ambient
rBC in Toronto showed no detectable change in absorption en-
hancement between fresh and aged aerosol but attributed this
observation to the fact that the fresh rBC had a sufficient coating
such that additional coatings did not further enhance absorption
(Knox et al. 2009).

While ambient rBC measurements have revealed valuable
insights into the aging process, namely coating thicknesses and
growth timescales, important questions still remain. What mech-
anisms govern the transition from externally to internally mixed
rBC aerosol? Does rBC, acting as a site for condensation of
secondary organic aerosol (SOA), affect the composition of the
SOA as compared to SOA condensed onto other aerosol types
or nucleated homogeneous aerosol? To what extent are the coat-
ings on rBC sufficiently volatile to evaporate upon dilution?
Of what physical structure is the rBC and its “coating” and how
might this affect interpretation of absorption enhancements seen
(or not seen) in ambient data?

Controlled laboratory experiments of rBC aging can isolate
some of the complexities of the aging process. The absorption
enhancement that arises from coating nascent soot particles with
a variety of non-light-absorbing materials is readily measured
(Saathoff et al. 2003; Schnaiter et al. 2003, 2005; Mikhailov et al.
2006; Slowik et al. 2007a; Zhang et al. 2008; Khalizov et al.
2009b; Cross et al. 2010). Initially fractal soot agglomerates tend
to compact substantially after a coating has formed (Saathoff
et al. 2003; Slowik et al. 2007b; Zhang et al. 2008; Khalizov
et al. 2009a,b; Cross et al. 2010; Bueno et al. 2011). In addition,
rBC and polystyrene latex spheres (PSL) of the same mobility
are observed to acquire sulfuric acid coatings at the same rate,
indicating that the coating mechanism is independent of particle
composition and shape (Khalizov et al. 2009a).

Limited laboratory chamber studies of SOA growth in the
presence of soot seed particles exist. Studies at the University
of North Carolina Ambient Air Research Facility have focused
on how the presence of soot affects gas-particle partitioning and
found that diffusional mass transfer is the limiting control on
gas-particle partitioning (Strommen and Kamens 1997, 1999),
and that the polarity of the seed particles, including diesel and

wood soot, and the gas-phase organic compounds can affect the
gas-particle equilibrium partitioning (Leach et al. 1999). These
studies have focused on the partitioning between gas and particle
phases rather than any unique chemical or physical properties of
either the gases or the soot. Studies at the Aerosols, Interactions
and Dynamics in the Atmosphere (AIDA) chamber facility re-
port the enhancement of light absorption by soot seed particles
coated with α-pinene ozonolysis SOA (Saathoff et al. 2003)
and evaluate absorption enhancements by particle coagulation
and growth of SOA (Schnaiter et al. 2003, 2005). These studies
have focused primarily on the optical and morphological prop-
erties of the soot as growth of SOA or coagulation with other
particles occurs in the chamber. Studies at the Carnegie Mellon
University environmental chamber found that SOA formed by
the photooxidation of evaporated diesel exhaust exceeded by
a wide margin the SOA mass predicted by a model including
the classified hydrocarbons (Weitkamp et al. 2007). A study
at the Paul Scherrer Institute (PSI) smog chamber character-
ized the chemical composition and emission factors of primary
and secondary organic aerosol from three diesel vehicles with
various engine after-treatment systems (Chirico et al. 2010).
These studies have focused on characterizing SOA from the
many gas-phase precursors found in diesel exhaust or on the
efforts to clean up the exhaust from diesel engines. Most of
the studies listed above used fresh diesel or wood soot, which
typically has a thin layer of nonrefractory material on the rBC
or has soot co-emitted with many gas-phase species, such as
PAHs. Uncoated spark-generated soot was also used and has
been found to be chemically and optically different than diesel
soot and is, therefore, not a good surrogate for atmospheric
rBC (Kirchner et al. 2003; Schnaiter et al. 2003). Commercially
available fullerene soot is a fractal, hydrophobic particle that
most resembles ambient rBC in the SP2 instrument (Moteki and
Kondo 2010; Laborde et al. 2012) and is structurally similar to
diesel soot (Moteki et al. 2009), although chemical and optical
comparisons to ambient soot have yet to be reported.

A principal goal of this study is to demonstrate the utility of
chamber experiments that employ fullerene soot as a refractory
black carbon seed aerosol in conjunction with the single-particle
soot photometer, the photoacoustic soot spectrometer, and the
aerosol mass spectrometer to probe the dynamics of secondary
aerosol formation. Three SOA systems were studied to demon-
strate the utility of this experimental protocol on a variety of
chemical and optical properties. To distinguish this study from
previous chamber studies with soot, the rBC surrogate used in
this study is dry, uncoated fullerene soot to avoid artifacts from
coatings and additional hydrocarbons that are present with,
for example, diesel soot. Particle-by-particle measurements
of the coating thickness of SOA on the rBC seed by the SP2
directly reveal dynamic growth and evaporation processes.
Once SOA growth has reached a point at which the coating
thickness is no longer changing appreciably, chamber dilution
can be used to provide a driving force for SOA evaporation and
an assessment of SOA volatility through decrease of coating
thickness. Simultaneous particle optical property and coating
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composition measurements provide data that can relate growth
and evaporation behavior to SOA chemical composition. A
fundamental chemical examination of the composition changes
during SOA growth is beyond the scope of this study; however,
demonstrating that composition changes occur coincidentally
with changes in rBC coating thicknesses and aerosol optical
properties provide a framework by which future mechanistic
studies may be carried out.

2. METHODS

2.1. Experimental Protocols
Experiments (Table 1) were conducted in the Caltech dual

28-m3 Teflon chambers. Details of the facilities are given

elsewhere (Cocker et al. 2001; Keywood et al. 2004). Before
each experiment, the chambers were flushed with dried, pu-
rified air for >24 h, until the particle number concentration
(<10 cm−3), mass concentration (<0.1 μg m−3), and hydro-
carbon mixing ratios were below detection limits of the instru-
ments. Seeded experiments were conducted with two types of
seeds; fullerene soot (stock #40971, lot #L20W054, Alfa Aesar,
Ward Hill, MA, USA) as a fractal, rBC surrogate and ammo-
nium sulfate (AS) as a spherical inorganic particle alternative.
Fullerene soot particles were generated by nebulizing a suspen-
sion of fullerene soot and milliQ water until the desired particle
volume concentration in the chamber was reached. Prior to neb-
ulizing, the fullerene soot suspension was sonicated for ∼20 min
to facilitate the mixing of the hydrophobic soot particles in wa-
ter and to break up any large agglomerates. Ammonium sulfate

TABLE 1
Summary of experiments

Seed SOA
Experiment [HC]o OH volumea mass
number [ppb] source Seed [μm3 cm−3] [μg m−3] Description

Naphthalene
1 16.6 ± 0.1 CH3ONOb rBCc 10.1 ± 0.7 13.0 ± 0.20 SOA condensation followed by

chamber dilution
2 10.7 ± 0.1 CH3ONO ASd + rBC 34.4 ± 2.8 14.2 ± 0.14 SOA condensation with seed

competition followed by
chamber dilution

3 21.9 ± 0.1 CH3ONO naphe 43.6 ± 0.5 – SOA nucleation with rBC
injection and coagulation

4 27.5 ± 0.1 CH3ONO naph + rBC 62.3 ± 1.5 22.0 ± 0.34f SOA nucleation followed by
rBC injection and SOA
growth then chamber dilution

α-pinene
5 27.0 ± 0.1 CH3ONO rBC 14.4 ± 0.5 29.2 ± 0.70g SOA condensation followed by

chamber dilution
6 24.1 ± 0.1 CH3ONO AS + rBC 28.9 ± 1.1 9.4 ± 0.36 SOA condensation with seed

competition followed by
chamber dilution

7 10.8 ± 0.2 H2O2
h rBC 18.2 ± 1.0 23.0 ± 0.12 SOA condensation followed by

chamber dilution
8 11.6 ± 0.2 H2O2 AS + rBC 32.6 ± 1.5 16.2 ± 0.14 SOA condensation with seed

competition followed by
chamber dilution

9 18.0 ± 0.1 H2O2 α-pi + rBC 28.2 ± 1.0 49.8 ± 0.16f SOA nucleation followed by
rBC injection and SOA
growth then chamber dilution

aCalculated from DMA data assuming spherical particles. bCH3ONO was used for high-NOx experiments, to which extra NO was added
prior to irradiation to bring [NO]o to 369–416 ppb. crBC = fullerene soot aerosol. dAS = ammonium sulfate aerosol. enaph = nucleated SOA
from naphthalene-OH photooxidation prior to rBC injection. fSOA mass after the second growth period with SOA mass from the first period
subtracted. gMeasurement taken after some evaporation of SOA had occurred. hH2O2 was used for low-NOx experiments, to which no extra NO
was added prior to irradiation and [NO]o was 1.5–2.6 ppb prior to irradiation. iα-p = nucleated SOA from α-pinene-OH photooxidation prior to
rBC injection.
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(AS), a commonly used seed particle in environmental cham-
bers, was injected into the chamber by atomizing a 0.015 M
aqueous ammonium sulfate solution. In the “AS + rBC” exper-
iments denoted in Table 1, ammonium sulfate was injected into
the chamber and allowed to mix for ∼30 min while gas-phase
species were loaded into the chamber before injection of the
fullerene soot. Upon injection of rBC in these dual seed exper-
iments, an attempt was made to match the calculated particle
surface areas of the AS and rBC from online scanning mobility
particle sizer measurements. The median mobility diameter of
the AS seed was ∼90 nm while for the fullerene soot the median
mobility diameter was ∼140 nm (Figure S1b).

Experiments were run under both low- and high-NOx con-
ditions using hydrogen peroxide (H2O2) and methyl nitrite
(CH3ONO) as the OH sources, respectively. H2O2 was injected
into the chamber by evaporating 280 μL of 50% wt aqueous so-
lution into the chamber with 5 L min−1 of purified air. CH3ONO
was vaporized into an evacuated 500 mL glass bulb and intro-
duced into the chamber with 5 L min−1 of purified air. CH3ONO
was synthesized following the method described by Taylor et al.
(1980) and modified by Chan et al. (2010a).

Two SOA precursors were studied: naphthalene and α-
pinene. Naphthalene is an important polycyclic aromatic hy-
drocarbon (PAH) that, like rBC, is a product of incomplete
combustion in diesel engines and biomass burning (Schauer
et al. 1999, 2001; Ravindra et al. 2008). PAHs, in general, may
account for as much as one-half of SOA from diesel emissions
(Chan et al. 2009). Napthalene (99%, Sigma-Aldrich, St. Louis,
MO, USA) was introduced into the chamber by flowing 1 L
min−1 purified air through an FEP Teflon tube packed with
solid naphthalene (Chan et al. 2009). α-Pinene, the most abun-
dantly emitted monoterpene, is an important biogenic volatile
organic compound (VOC), with global emissions of 34–50 Tg
C yr−1 (Guenther et al. 1995; Chung and Seinfeld 2002; Pye
et al. 2010). α-Pinene was introduced into the chamber by in-
jecting a volume of liquid into a glass bulb, and the vapor was
carried into the chamber with 5 L min−1 of purified air. All
naphthalene experiments were conducted in the same cham-
ber, while all but one α-pinene experiment (Experiment 8 in
Table 1) were conducted in the other chamber. In all experi-
ments, the chamber contents, seed particles, parent hydrocar-
bon, and OH source, were allowed to mix for 1 h before begin-
ning irradiation. In most experiments, after maximum particle
growth was obtained, the UV lights were turned off and the
chamber was diluted ∼12–18 h while sampling continued. Af-
ter irradiation was stopped and before chamber dilution began,
cyclohexane, injected by a method similar to α-pinene injection,
was introduced to the chamber to be used as a tracer for dilution.

2.2. Instrumentation
A suite of instruments was used to study the evolution of the

gas and particle phases. The parent hydrocarbons and dilution
tracer were measured using a gas chromatograph with flame ion-
ization detector (GC/FID, Model 6890N, Agilent Technologies,

Inc., Santa Clara, CA, USA), equipped with an HP-5 column
(15 m × 0.53 mm ID × 1.5 μm thickness, Agilent). The GC/FID
response to naphthalene was calibrated by dissolving a known
mass of naphthalene in dichloromethane and vaporizing into a
55 L Teflon chamber. The GC/FID response to α-pinene and cy-
clohexane was calibrated by vaporizing a small volume of liquid
into a 50 L chamber and diluting aliquots of that sample into a 55
L chamber. NO and NOx were measured with a chemilumines-
cence NO/NOx analyzer (Model APNA 360, HORIBA Instru-
ments Incorporated, Irvine, CA, USA). Relative humidity (RH),
temperature (T), and O3 were continuously monitored. RH of
the chamber was typically <5% during irradiation periods, ris-
ing to ∼10% during the overnight chamber dilution. The initial
chamber temperature was typically ∼20–24◦C; however, heat-
ing from the UV lights caused a rise in temperature of ∼4–6◦C
during irradiation. Initial O3 concentration was typically <5
ppb. Varying amounts of NO were added from a gas cylinder
(Scott-Marrin, Riverside, CA, USA) to ensure high NOx con-
ditions at the start of most experiments, except where noted
in Table 1. Aerosol size distribution and number concentration
were measured continuously using a custom-built scanning mo-
bility particle sizer consisting of a differential mobility analyzer
(DMA, Model 3081, TSI Incorporated, Shoreview, MN, USA)
coupled to a condensation particle counter (CPC, Model 3010,
TSI), henceforth referred to as the DMA.

Refractory black carbon (rBC) mass measurements were
made with a Droplet Measurement Technologies (DMT, Boul-
der, CO, USA) Single Particle Soot Photometer (SP2). The SP2
affords measurements of both the particle-by-particle rBC mass
as well as the thickness of non-rBC coating on each particle
(Stephens et al. 2003; Baumgardner et al. 2004; Schwarz et al.
2006; Moteki and Kondo 2007; Slowik et al. 2007a). This par-
ticular SP2 was used in a previous study (Metcalf et al. 2012)
and the only difference in configuration was an increase in the
gain setting on the narrowband incandescence channel to in-
crease sensitivity to rBC mass. Calibrations, as detailed by Met-
calf et al. (2012), were repeated just prior to this set of cham-
ber experiments. Aquadag (Aqueous Deflocculated Acheson
Graphite, Acheson Colloids Company, Port Huron, MI, USA)
was mobility-selected by a DMA and sampled by the SP2.
Because the SP2 is known to be more sensitive to Aquadag
than to other rBC standards (Laborde et al. 2012), a correc-
tion factor of 25% is used to relate the SP2 signals to fullerene
soot mass (Baumgardner et al. 2012). Estimated uncertainty
in single-particle mass determination is ∼40%, based largely
on the uncertainty in Aquadag mass during calibration and the
relationship to fullerene soot mass. To relate rBC mass to par-
ticle size, the volume-equivalent diameter (VED) is calculated
assuming the rBC is a void-free sphere with an effective mo-
bility density given by Gysel et al. (2011). Note that there is
additional uncertainty in the fullerene mobility density because
not all batches of fullerene soot have the same effective den-
sity (Laborde et al. 2012); the batch used in this study differs
from that measured by Gysel et al. (2011). With propagation of
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errors through the calculations, estimated uncertainty in VED is
∼12%.

Real-time particle mass spectra were collected continuously
by an Aerodyne high resolution time-of-flight aerosol mass
spectrometer (AMS) (Jayne et al. 2000; DeCarlo et al. 2006;
Canagaratna et al. 2007). The AMS was operated predomi-
nantly in the lower resolution, higher sensitivity “V-mode,” but
was manually switched periodically to the high resolution “W-
mode.” “V-mode” data were analyzed using a fragmentation
table to separate sulfate, ammonium, and organic spectra and to
time-trace specific m/z ratios. “W-mode” data were analyzed in
IGOR Pro (Wavemetrics, Inc., Lake Oswego, OR, USA) using
the PIKA 1.10H module to determine the chemical formulas
contributing to distinct m/z ratios (DeCarlo et al. 2006). The
AMS ionization efficiency was calibrated at the beginning of the
study using dried, 350 nm NH4NO3 particles. AMS collection
efficiency is assumed to be 0.5 to account for particle bounce off
the heater inside the instrument (Huffman et al. 2005; Middle-
brook et al. 2012); however, because the collection efficiency
could not be explicitly determined for the systems studied, the
mass-weighted optical properties calculated in this work use
aerosol mass calculated from particle volume concentrations
determined by the DMA measurements. Aerosol densities were
determined by comparing DMA volume distributions with AMS
particle time-of-flight mass distributions following the method
described by DeCarlo et al. (2004). AMS mass loadings re-
ported in the figures and in Table 1 have an overall uncertainty
of ∼30% (Bahreini et al. 2009). AMS bulk masses are averaged
over 3 min intervals.

Aerosol absorption and scattering coefficients (babs and bsca)
were measured with a DMT 3-λ photoacoustic soot spectrom-
eter (PASS-3), which is an instrument based on several pre-
vious prototypes (Lewis et al. 2008, and references therein).
Briefly, submicron aerosol scattering coefficient is determined
by an integrating sphere/photodetector at each wavelength,
405 nm, 532 nm, and 781 nm. Aerosol absorption is deter-
mined by the photoacoustic method, which uses a microphone
to measure sound/pressure waves emanating from heated gas
around aerosols absorbing laser light. The PASS-3 scattering
signal was calibrated with a concentrated stream of 220 nm
polystyrene latex spheres (PSL) and the absorption signal with
aerosol from a concentrated Nigrosin dye (product #198285
lot #MKBD9679V, Sigma-Aldrich) solution. Calibrations were
performed at particle concentrations much higher than those
used in the chamber experiments in order to make use of the laser
power meter onboard the instrument and calculate extinction us-
ing Beer’s Law. The linear response of the PASS-3 is appropri-
ately extrapolated to experiment-relevant values because of the
linearity of the detectors (Cross et al. 2010, supplement). Dur-
ing this study, data from the λ = 532 nm channel were deemed
unreliable due to a hardware malfunction and have been omitted
from the analysis. Lower detection limit is estimated by three
times the standard deviation of signal noise during particle-free
sampling. The lower detection limits for babs are 24.62 ± 0.36

and 3.89 ± 0.65 Mm−1 and for bsca are 10.40 ± 1.42 and 8.20
± 1.64 Mm−1 for λ = 405 and 781 nm, respectively. Abso-
lute accuracy at aerosol levels relevant to this study was not
determined; however, other PASS-3 instruments have reported
absolute accuracy well within 20% (Flowers et al. 2010, supple-
ment). In this work, measured absorption enhancement, Em

abs,λ,
is defined as

Em
abs,λ(t) = babs,λ(t)

babs,λ(t0)
, [1]

where babs,λ(t) is the measured aerosol absorption coefficient as
a function of time, t, and babs,λ(t0) is the measured absorption
coefficient of the (uncoated) fullerene soot seed particles prior
to chamber irradiation. Because the mass of rBC in the cham-
ber remains relatively constant during the irradiation periods
of the experiments, this formulation is equivalent to defining
enhancement using the mass absorption cross section (MAC).

A prototype instrument was used to detect particle sphericity
by single-particle laser light scattering (see the online supple-
mental information). Briefly, single particles are brought into a
circularly-polarized laser beam (λ = 532 nm) and the angular
pattern of light scattered off the particle is detected with a pho-
tomultiplier tube (PMT) assembly. Eight detectors positioned at
a polar angle of 50◦ in the forward scattering direction measure
light scattered onto lenses at one end of fiber optic cables, the
other ends of which are mounted in front of a PMT assembly
that has a single channel devoted to each cable.

According to Mie theory, homogeneous spherical particles
scatter circularly polarized light uniformly around the azimuth
of a given polar angle. Particle sphericity, the degree to which a
given particle acts like a sphere when scattering light, has been
measured and analyzed previously with instruments similar to
that used here (Dick et al. 1994, 1998; Sachweh et al. 1995).
Our analysis follows the same logic as that of previous authors,
although our mathematical formulation of sphericity is different
(see the online supplemental information). To determine the de-
gree of sphericity, we quantify the deviation among eight sensors
at a fixed polar angle, which we call “nonsphericity” (�). Little
deviation and smaller nonsphericity values are indicative of a
spherical particle, while a large deviation and larger nonspheric-
ity values indicate a nonspherical particle. Because the optical
fibers differ in length and in radii of curvature between the lenses
and the PMT, these artifacts are accounted for in the nonspheric-
ity calculation by quantifying the extent to which each channel
has the same deviation from its respective median signal.

2.3. Mie Scattering Model
For determination of single-particle coating thicknesses from

SP2 light-scattering measurements and for comparison to bulk
optical properties measured by the PASS-3, the Mie scatter-
ing model is used to calculate scattering and absorption cross
sections for single particles. The Mie scattering model in this
study (used previously by Metcalf et al. 2012) was adapted from
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a version of BHMIE (Bohren and Huffman 1998) to compute
scattering coefficients for a stratified sphere (Toon and Ack-
erman 1981). For interpretation of SP2 scattering signals, the
scattering function is integrated over the solid angles subtended
by the SP2 detectors to compare the measured and modeled
signals (scattering cross section) to derive an optical diameter,
from which the coating thickness on the rBC core is determined.
Note that coating thicknesses reported in this work are in terms
of diameter and are, thus, the particle diameter increase as a
result of the coating. Mean coating thicknesses are reported as
a number-weighted mean over all detected coating thicknesses
over all rBC core sizes. The measured peak scattering signal
is derived from a leading edge-only (LEO) fit of the scattering
signal in order to correct for evaporating coatings as particles
traverse the laser in the SP2 (Gao et al. 2007). The rBC refractive
index is assumed to be 1.95 + 0.79i (Bond and Bergstrom 2006),
and a coating refractive index of 1.5 + 0.0i is used, matching
previous studies (Schwarz et al. 2008a,b; Metcalf et al. 2012).
Uncertainty in retrieved coating thickness from the SP2 scatter-
ing signal is ∼40% (Metcalf et al. 2012). The Mie scattering
model of SP2 signals is also used to determine the size of purely
scattering particles. Again, a refractive index of 1.5 + 0.0i and
the LEO fitting method on the measured scattering signal are
used, and the optical size range of detection is 169–600 nm.
Estimated uncertainty in retrieved optical diameter is ∼5% for
purely scattering particles.

For comparison to the measured absorption enhancement
factors, the Mie model is used to calculate a time-dependent ab-
sorption enhancement factor from the mean coating thicknesses
retrieved from SP2 measurements. Because total scattering and
absorption is considered, integration over the SP2 detection an-
gles is not carried out in this calculation. At each time interval,
rBC core sizes from SP2 incandescence signals are binned into
36 core size bins spanning 90–265 nm VED and into 37 coating
thickness bins of −60–300 nm diameter, based on the detected
scattering cross sections. Note that negative coating thicknesses
at a given rBC VED represent scattering cross sections smaller
than what the core-shell Mie model calculates for a particle
with zero coating thickness on those rBC cores. These values
are necessary to include due to the uncertainties in assumed re-
fractive index and in SP2 calibration. From these binned number
of particles, N, a time- and rBC-core-size-dependent mean coat-
ing thickness, Dcoat, is calculated, from which the Mie model is
used to calculate the absorption cross sections, σ abs,λ, at λ = 405
and 781 nm. The rBC core-size-dependent enhancement factors,
E

c

abs,λ, are calculated from these mean coating thicknesses by

E
c

abs,λ (t, VED) = σabs,λ
(
VED,Dcoat (t, VED)

)

σabs,λ (VED,Dcoat = 0)
. [2]

The fraction, fσabs,λ , of total absorption cross section present at
each rBC core size relative to the total absorption cross section

over all sizes is calculated by

fσabs,λ (t, VED)

=

∑
Dcoat

N (t, VED,Dcoat) × σabs,λ
(
VED,Dcoat (t, VED)

)

∑
VED

∑
Dcoat

N (t, VED,Dcoat) × σabs,λ
(
VED,Dcoat (t, VED)

) .

[3]

Finally, the calculated time-dependent absorption enhancement
factor, Ec

abs,λ, is calculated by weighting the rBC core-size-
dependent enhancement factors by the fraction of absorption
cross section at each rBC size bin,

Ec
abs,λ (t) =

∑

VED

fσabs,λ (t, VED) × E
c

abs,λ (t, VED). [4]

In the final calculation of size-dependent absorption enhance-
ments, only rBC VED of 160–265 nm are considered in the
equations above. At rBC VEDs smaller than 160 nm, the scatter-
ing cross section of uncoated rBC particles is below the optical
detection limit of the SP2, and, therefore, mean coating thick-
nesses will be biased high at these rBC core sizes. Although the
size range of detection of the SP2 is narrower than that of the
PASS-3, the weighting done here should give proper importance
to the fewer but larger and more optically active coated rBC par-
ticles that most influence the PASS-3 signal. Uncertainty in the
calculations of absorption enhancements are likely dominated
by the uncertainty in rBC VED.

3. RESULTS

3.1. Fullerene Soot Characteristics
3.1.1. Sphericity

Figure 1 presents distributions of nonsphericity values calcu-
lated for dry, uncoated fullerene soot (BC), ammonium sulfate
(AS), and polystyrene latex spheres (PSL). Lognormal fits to
each histogram were calculated to determine the mean non-
sphericity values for these populations of particle types (Ta-
ble 2). PSL exhibits the smallest mean nonsphericity value
(0.070), while dry, uncoated rBC has the largest (0.353), in-
dicating nonsphericity. The AS sample in Figure 1 was taken
from a chamber wall-deposition experiment in which AS seed
was injected into a dry (<10% RH) chamber. AS mean non-
sphericity is slightly larger than that for PSL, likely indicating
that some AS particles do not retain water in the dry cham-
ber. Calibrations with oxalic acid particles (data not shown in
Figure 1, but statistics reported in Table 2) generated with a
collision atomizer and sampled directly into the prototype in-
strument yield a mean nonsphericity similar to that of AS. Dried,
cubic salt particles (statistics reported in Table 2), generated by
atomizing a solution of NaCl and water and sampling through
a nafion dryer directly into the instrument, yield a nonspheric-
ity similar to that for rBC. Like the AS sample, the fullerene
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FIG. 1. Distributions of nonsphericity values for ammonium sulfate (AS),
fullerene soot (BC) particles, and polystyrene latex spheres (PSL). Each dis-
tribution represents ∼10,000 particles sampled at various times throughout the
respective experiments. “Relative number” is the number of particles in each
bin divided by the maximum number in any bin for the given distribution. Solid
lines denote a lognormal fit to a single distribution; only one fit per particle
type is shown. Mean nonsphericity values corresponding to lognormal fits to all
distributions are given in Table 2. (Color figure available online.)

soot sample was measured during wall-deposition experiments
in which only rBC was present in the chamber. These measure-
ments confirm that the fullerene soot, as we have prepared and
loaded into the chamber as seed particles, is nonspherical.

3.1.2. Particle Wall Deposition
In environmental chamber studies, wall-deposition rates must

be known in order to calculate SOA yields from a parent hy-
drocarbon (Keywood et al. 2004; Ng et al. 2007; Loza et al.
2012). Wall deposition processes have been well-described in
the literature (Crump and Seinfeld 1981; McMurry and Rader
1985; Park et al. 2001; Pierce et al. 2008). Particles in the bulk of
the chamber can diffuse or settle through a boundary layer near
the chamber wall and deposit on the wall. Electrostatic effects
can enhance deposition rates, especially for intermediate-sized
particles (50–1000 nm diameter) (McMurry and Rader 1985).

TABLE 2
Summary of nonsphericity values

Particle type Mean nonsphericity (±1σ )

BC 0.353 ± 0.042
NaCl 0.303 ± 0.057
AS 0.173 ± 0.091
Oxalic acid 0.150 ± 0.030
PSL 0.070 ± 0.029

Typically, wall-deposition rates are determined by atom-
izing seed aerosol into a clean chamber and measuring the
decay of particle concentration over ∼24 h. From these data,
size-dependent, first-order loss coefficients, β, are obtained.
Measured wall-deposition rates for both AS seed and fullerene
soot seed exhibit differences, as shown in Figure 2. The wall-
deposition rates presented in Figure 2, calculated from DMA
size distribution data, are presented with respect to particle mass
rather than mobility diameter in order to better relate the nearly
spherical AS with the nonspherical rBC. The different range
of masses for the two particle types in Figure 2 is the result
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FIG. 2. Particle wall deposition rate coefficients, β, for the two chambers with
ammonium sulfate and fullerene soot as the seed particles. Data are displayed by
single-particle mass rather than mobility diameter to directly compare AS and
BC. Ammonium sulfate mass is calculated from mobility diameter assuming a
spherical particle and a density of 1.77 g cm−3. Fullerene soot mass is calculated
from mobility diameter using the relation reported by Gysel et al. (2011). (Color
figure available online.)
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of the smaller effective density (0.6–0.35 g cm−3 for mobility
diameters 300–800 nm [Gysel et al. 2011]) for fullerene soot
than for AS (1.77 g cm−3) over all mobility diameters displayed.

The characteristic “V”-shape of the wall deposition rate
curves in Figure 2 arises because of two competing processes:
diffusion dominates wall deposition at smaller-size (and mass)
particles and gravitational settling dominates wall deposition at
larger-size (and mass) particles. The fact that the rBC deposition
rate achieves a minimum at nearly the same single-particle mass
as that for AS particles indicates a similar balance between
these effects. At larger masses, where gravitational settling
dominates, AS and rBC have similar values of β, indicating
reduced effect of particle shape in this range. At smaller masses,
however, the significant difference in β reflects differences
in diffusion rates to the chamber walls or an invalid assump-
tion of a first-order wall-deposition rate with unit sticking
probability.

Because effective density measurements from a coupled
DMA-SP2 system are used (Gysel et al. 2011), any artifacts
in the DMA data used to calculated β in these experiments
due to particle nonsphericity should be consistent during the
entire wall-deposition experiment. Therefore, the differences in
wall-deposition rates between AS and fullerene soot are likely
not the product of measurement artifacts. The diffusion rate of
the fullerene soot could be less than that for AS particles of the
same mass owing to the larger size of the fullerene soot particles.
Sticking probabilities may also be smaller for the dry fullerene
soot than for the AS particles, which likely retain some water,
even in a dry chamber. The implication for the current chamber
experiments is that the rate of wall deposition can be expected
to change over the course of an experiment as initially uncoated
rBC particles become coated. For this reason, SOA yields are
not calculated in this study.

3.2. General Experimental Results
Figure 3 shows the reaction profile during naphthalene pho-

tooxidation, Experiment 1 (Table 1), in the presence of rBC seed
particles. The rapidly formed SOA deposits onto the fullerene
soot, as indicated by the immediate increase in mean coating
thickness. A modest amount (∼30% by number in the SP2 de-
tection range) of purely scattering particles, presumably from
nucleation, are present after growth initiates, indicated by an
increase in total number concentration just after the start of
irradiation (Figure 3a). Despite the temperature increase that
occurs once the UV lights are turned on (Figure 3b), the coating
thickness rapidly increases early in the irradiation. Temperature
decreases once the lights are turned off, accompanied by only a
small increase in mean coating thickness. Single-particle mean
coating thickness does not decrease at any point during Exper-
iment 1, indicating that the decrease of aerosol mass during
dilution of the chamber is the result of flushing the particles
out of the chamber and wall deposition within the chamber and
is not due to evaporation of the aerosol itself. The temperature
decrease during dilution favors condensation and could influ-

ence mean coating thickness; however, the rate of temperature
decrease varies during Experiment 1 while the rate of mean coat-
ing thickness increase does not vary in the same manner. Thus,
it is unlikely that temperature alone is the dominant control of
condensation of SOA in this system.

The evolution of coating thickness as a function of rBC core
diameter is presented in Figure 4. About 30 min after the start
of irradiation (Figure 4a), rBC particles of all core sizes already
have an organic coating growing. As organic growth progresses
(Figures 4b and c), the smaller rBC cores have markedly thicker
coatings than the larger rBC cores. After ∼7.5 h of chamber
dilution (Figure 4d), there is no clear, systematic evidence of
evaporation of these coatings.

In Figure 4, lines representing a diffusion-controlled growth
law (Seinfeld and Pandis 2006) are shown,

dDp

dt
= A

Dp

, [5]

where Dp is the rBC VED. The parameter A varies with time and
was determined by matching the value of dDp

dt
to the coating

thickness of 160 nm VED rBC cores (thicknesses of 35, 120,
130, and 150 nm for Figures 4a–d, respectively). The agreement
between the model and measurement indicate that the coating
thickness diameters follow a diffusion-controlled growth rate.
During chamber dilution (Figure 4d), there is some deviation
from the diffusion-controlled growth law for particles with rBC
core VED <100 nm, but this deviation is likely due to a faster
wall deposition rate of larger particles (Figure 2). These rBC
size-dependent results are consistent with ambient measure-
ments by Moteki et al. (2007) over the western Pacific who
also found that the rate of coating growth onto rBC particles
follows a diffusion-controlled growth law. These results also
support the findings of a recent modeling study that the aging
of rBC by condensation of hygroscopic layers is rBC-size de-
pendent (Park et al. 2012). That this simple, one-hydrocarbon
system produces results that resemble ambient rBC aging by
condensation of SOA supports this experimental protocol as a
viable way to probe rBC aging dynamics in more detail with
controlled environmental chambers.

Figure 5 presents results from Experiment 5 (Table 1), high-
NOx α-pinene photooxidation in the presence of fullerene seed
particles. Growth of SOA is rapid, indicated by immediate in-
crease of organic mass (Figure 5a), coating thickness (Figure
5b), and change in optical properties (Figure 5c). What differ-
entiates this experiment from the others is that mean coating
thickness reaches a peak and then decreases during the irradi-
ation period. Throughout the irradiation period, temperature in
the chamber increases, but there is no distinct change in tem-
perature near the peak in coating thickness that would indicate
that the aerosol should suddenly start evaporating. Thus, it is
likely that the evaporation of coating material is indicative of a
chemical change causing particle-phase loss of higher-volatility
species. During the irradiation period of Experiment 5, a greater
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FIG. 3. Experiment 1, naphthalene photooxidation in the presence of rBC seed particles. The shaded regions denote periods of irradiation and dilution of the
chamber. (Color figure available online.)

number of oxidation lifetimes (defined in Section 3.4.1) were
reached, which may have provided the necessary conditions
to allow more chemical aging than the other experiments. The
coating evaporation continues after irradiation is stopped, and
mean coating thickness does not level off until ∼4.25 h into the

dilution period. Examination of the evolution of coating thick-
ness for this system (not shown) reveals that a diffusion-limited
growth law continues to be valid, and all rBC core sizes ex-
hibit evaporation of coatings. At the very end of the dilution
period, a temperature increase of ∼2◦C over the final 2 h of the
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FIG. 4. Evolution of coating thickness in Experiment 1, presented as 2-D histograms of coating thickness determined by fitting the SP2 scattering signal to a
core-and-shell Mie model binned versus rBC volume-equivalent diameter. The times are in hours after the onset of irradiation. The gray lines are diffusion-controlled
growth laws matched to the coating thickness diameter at an rBC VED of 160 nm. (Color figure available online.)

experiment leads to a coating thickness decrease of ∼5 nm
(calculated from 10-min averaged data, not shown), possibly
highlighting the role of temperature in SOA volatility. SOA
evaporation during chamber irradiation in this system will be
further discussed in Section 3.4.2.

Figure 6 presents the results from Experiment 7 (Table 1),
low-NOx α-pinene photooxidation in the presence of fullerene
seed particles. In this system, SOA growth proceeds more slowly
than in the high-NOx photooxidation systems as a result of a
lower OH concentration produced by H2O2 versus CH3ONO.
Total particle number concentration (Figure 6a) gives no evi-
dence of SOA nucleation and shows a steady decline during
irradiation, owing to wall-deposition and particle coagulation.
Wall- deposition rates are slightly faster in the α-pinene cham-
ber versus the naphthalene chamber (Figure 2) and characteristic
time for coagulation is shorter (∼1.8 d versus ∼3.4 d, respec-
tively) (Seinfeld and Pandis 2006) owing to higher initial par-

ticle number concentration. Despite a temperature decrease,
which favors condensation of SOA (Figure 6b), there is a slight
decrease in mean coating thickness during chamber dilution
(∼8 nm in ∼10 h). The flushing rate of the chamber does not
change during dilution (see cyclohexane curve in Figure 6a), and
the rate of decline in mean coating thickness remains constant
as well (Figure 6b) despite the change in temperature trend
from the first 5 h of flushing (−6.2◦C) to the second 5 h of
flushing (−0.2◦C). A distinguishing feature of this SOA system
is the change in SOA growth rate (see organic mass trace in
Figure 6a) coincident with a change in optical properties (see
the change in slope of the curves in Figure 6c) ∼4 h into the
chamber irradiation. The change in particle composition dur-
ing SOA growth in this system will be discussed in Section
3.4.3.

In this work, we focus on results from these three SOA sys-
tems in the presence of rBC seed aerosol. For completeness,
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FIG. 5. Experiment 5, high-NOx α-pinene photooxidation in the presence of rBC seed particles. The shaded regions denote periods of irradiation and dilution of
the chamber. (Color figure available online.)

Table 1 lists all experiments performed for this study. Although
not shown in this work, each experiment in Table 1 was char-
acterized by growth of organic layers on the rBC aerosol. In
Experiment 3, the growth of coating by coagulation is estimated

to be small (∼20 nm coating diameter in ∼16 h), owing to
the modest particle number concentration (∼11,000 cm−3) and
coagulation timescale (∼1.3 d). In the dual seed experiments
with rBC and AS (Experiments 2, 6, and 8) and with rBC and
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FIG. 6. Experiment 7, low-NOx α-pinene photooxidation in the presence of rBC seed particles. The shaded regions denote periods of irradiation and dilution of
the chamber. (Color figure available online.)

nucleated SOA (Experiments 4 and 9), growth of coatings oc-
curred during irradiation of the chamber at a faster rate than
during the period of mixing prior to irradiation, indicative that
growth by condensation of SOA was dominant.

3.3. Aerosol Optical Properties
Table 3 presents optical properties of the seed particles and

nucleated SOA in this study, including the mass scattering
cross section (MSC), mass absorption cross section (MAC),
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TABLE 3
Optical properties of particles in this study (mean ± 1σ a)

λ Fullerene soot Ammonium sulfate Naphthalene SOA α-pinene SOAb

MSCc [m2 g−1] 405 nm 8.39 ± 0.26 7.74 ± 0.35 10.93 ± 1.58 10.21 ± 0.21
781 nm 4.28 ± 0.07 3.21 ± 0.20 1.30 ± 0.44 1.14 ± 0.19

MACd [m2 g−1] 405 nm 20.23 ± 1.08 <0.82e 0.81 ± 0.32 <1.90e

781 nm 7.84 ± 0.26 <0.13e <0.08e <0.30e

ω0
f 405 nm 0.29 ± 0.0041 1.00 ± 0.0065 0.91 ± 0.012 1.00 ± 0.012

781 nm 0.35 ± 0.0087 0.99 ± 0.0018 0.99 ± 0.0018 0.94 ± 0.026
Åsca

g 1.02 1.34e 3.24 3.34e

Åabs
h 1.44 >3.53e

aStandard deviation during measurement period, not indicative of measurement uncertainty. bLow-NOx experiment only. cMSC = mass
scattering cross section. dMAC = mass absorption cross section. eAbsorption coefficient (babs) measurements are at or below detection limit on
the PASS-3. fω0 = single-scatter albedo. gÅsca = scattering Ångström exponent. hÅabs = absorption Ångström exponent.

single-scatter albedo (ω0), and scattering and absorption
Ångström exponents (Åsca and Åabs, respectively), defined as

Åsca/abs = −
ln bsca/abs,405nm

bsca/abs,781nm

ln 405
781

, [6]

where bsca/abs is the observed scattering/absorption coefficient
at the specified wavelengths. The fullerene soot and ammonium
sulfate values are averages of measurements taken during the
hour of chamber mixing prior to the start of irradiation on Ex-
periments 1, 5, and 7 for fullerene soot and Experiments 2, 6,
and 8 for ammonium sulfate (before injection of fullerene soot).
The nucleated naphthalene and α-pinene SOA values are taken
before rBC was injected into the chamber on Experiments 3, 4,
and 9. The mass absorption cross sections of uncoated fullerene
soot (20.23 ± 1.08 m2 g−1 and 7.84 ± 0.26 m2 g−1 at λ =
405 nm and 781 nm, respectively) are higher than reported en-
semble averages for uncoated ambient rBC (7.5 ± 1.2 m2 g−1 at
λ = 550 nm; Bond and Bergstrom 2006), but is certainly within
the range of ambient measurements (Kirchstetter et al. 2004). In
addition, the mass scattering cross section of ammonium sulfate
is higher than previously reported ambient values of 2–4 m2 g−1

at λ = 530 nm (Malm et al. 2005a,b). Thus, it is possible that the
PASS-3 measurements are biased high due to an offset, perhaps
the result of calibrating at much higher aerosol concentrations
than those used in the chamber experiments. This bias should
not affect the calculations of absorption enhancement presented
below.

The value of Åabs for fullerene soot (1.44 ± 0.03) is slightly
higher than Åabs = 1 recommended for uncoated rBC (Bond
and Bergstrom 2006) but lies within the range of modeled con-
ditions (Lack and Cappa 2010) and ambient measurements of
rBC (Gyawali et al. 2009).

Nucleated naphthalene SOA exhibits a small absorption sig-
nal at λ = 405 nm; these particles may be classified as “brown
carbon,” a mildly absorbing carbonaceous aerosol that is distinct

from black carbon but has progressively stronger absorption at
UV wavelengths as compared to visible wavelengths (Andreae
and Gelencsér 2006; Wonaschütz et al. 2012). Nakayama et al.
(2010) found a similar value for MAC at λ = 355 nm for SOA
from the photooxidation of toluene, also an aromatic hydro-
carbon. Some authors have detected absorption from gaseous
PAH’s (Weiner and Harris 1989; Schoemaecker Moreau et al.
2004), but in the present experiments the initial concentration
of naphthalene gave no measurable absorption signal in the
PASS-3. The measured value of the MAC of 0.81 m2 g−1 at λ =
405 nm for naphthalene SOA is within range of previously mea-
sured MAC values for brown carbon (Kirchstetter et al. 2004;
Hoffer et al. 2006; Yang et al. 2009; Nakayama et al. 2010). For
naphthalene SOA, Åabs cannot be explicitly determined due to
absorption at λ = 781 nm below PASS-3 detection limits, but it
is estimated to be >∼3.5, which is indicative of brown carbon
(Flowers et al. 2010).

3.3.1. Evolution of Aerosol Optical Properties During SOA
Growth on rBC Seed

Figures 3c, 5c, and 6c show the absorption and scattering
coefficients of the rBC-coated SOA during Experiments 1, 5,
and 7, respectively. For all experiments, after UV lights are
turned on, a clear increase in absorption coefficients at all wave-
lengths occurs, while rBC mass remains constant or slightly de-
creases due to wall deposition. Figure 7 displays absorption co-
efficient (babs), measured absorption enhancement (Eabs

m), and
single-scatter albedo (ω0) as a function of mean coating thick-
ness for Experiments 1, 5, and 7, respectively. Time is shown by
marker shading on each figure, generally increasing from left to
right because the coating thickness grows during irradiation. For
the α-pinene systems (Figures 7b and c), the coating thickness
eventually decreases, slightly during dilution of the low-NOx

system (Figure 7c) and more dramatically during irradiation of
the high-NOx system (Figure 7b).

As noted above, there is a small absorption signal from the
naphthalene SOA at λ = 405 nm, but not at λ = 781 nm. We
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FIG. 7. Aerosol optical properties as a function of mean coating thickness on the fullerene soot seed during Experiment 1, naphthalene photooxidation (a),
Experiment 5, high-NOx α-pinene photooxidation (b), and Experiment 7, low-NOx α-pinene photooxidation (c). Marker shading is a function of time after onset
of irradiation, with later times indicated by darker colors. Measured absorption enhancement, Eabs

m (middle), is presented for the irradiation time period only.
(Color figure available online.)

expect that naphthalene SOA condensed onto seed particles will
exhibit optical properties similar to nucleated naphthalene SOA,
and, therefore, that the absorption enhancement in Experiment
1 (Figure 7a, middle) at λ = 781 nm is a result of the lensing
effect of the coatings on the rBC seed particles, while at λ =
405 nm there is additional absorption from the coating itself
(Fuller et al. 1999; Lack and Cappa 2010). In Experiment 1,
Åabs increased from 1.37 ± 0.029 to 1.76 ± 0.026 during irra-
diation, indicating that the aerosol absorption at peak growth is
more sensitive to wavelength than the uncoated fullerene soot
seed. This is consistent with a small absorption coefficient at

λ = 405 nm of the condensed naphthalene SOA (Table 3) and
exceeds the threshold (1.6) for which attribution of brown car-
bon to observed absorption can be made (Lack and Cappa 2010).
The sharp decrease in babs (Figure 7a, top) occurs simultane-
ously with the start of chamber dilution. The apparent gap in
data between ∼25 and 75 nm thickness is a result of the rapid
growth of the coatings during irradiation and the timing of an
automatic background signal correction on the PASS-3.

In Experiment 5 (high-NOx α-pinene photooxidation; Fig-
ure 5), absorption and scattering coefficients increase rapidly
with formation of SOA, then decrease during irradiation as the
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SOA evaporates. Figure 7b shows the rather dramatic decrease
in coating thicknesses by the end of the experiment. Note that
after reaching the peak in coating thicknesses, babs and ω0 de-
crease along the same trajectory as the coatings evaporate. The
sharp decreases in babs that deviate from this trajectory occur
when dilution is initiated, because the decrease in total particle
concentration has a larger influence on babs in this experiment
than the evaporation of coatings. Single-scatter albedo continues
its decline along the same trajectory because ω0 is an intensive
property whereas babs is an extensive property.

In Experiment 7 (low-NOx α-pinene photooxidation; Fig-
ure 6), absorption and scattering coefficients increase steadily
with the slowly forming SOA. During irradiation, there is a
clear change in the rate of increase of these properties, coinci-
dent with a change in rate of growth of organic mass (Figure 6a).
This change in growth is not seen in the mean coating thickness
of 160–180 nm VED rBC cores (Figure 6b). In the absorption
coefficient and absorption enhancement especially (Figure 7c),
this change indicates that additional absorption enhancement
has nearly stopped despite continued growth of organic mass
and coating thicknesses. Previous studies have speculated that
absorption can be no further enhanced after an extremely thick
(>300 nm) coating is present on an absorbing core because
the shell may actually shield the core from receiving photons
(Bond et al. 2006; Knox et al. 2009; Cross et al. 2010; Lack
and Cappa 2010). Because the coatings in Experiment 7 are still
relatively thin as compared to those in Experiment 1 (Figure
7a), it is unlikely that further absorption enhancement is be-
ing thwarted by an exceptionally thick scattering shell in this
experiment.

In all experiments presented, coatings on the rBC cores
enhance the light absorption of these particles. Single-scatter
albedo increased in all systems as the organic coating thick-
nesses on the fullerene soot grew. In the naphthalene system,
there is clear wavelength dependence of the absorption enhance-
ments (Figure 7a, middle), owing to the wavelength dependence
of refractive index of naphthalene SOA. In the α-pinene sys-
tems, evaporation of the coatings leads to a decline of ω0 from
its peak value, indicating that the changes in optical properties
can be considered reversible as the coating material is removed
from the rBC cores. The absorption enhancements reported here
provide further evidence that the mixing state of rBC in the at-
mosphere is an important consideration for the radiative forcing
by these particles.

3.3.2. Comparison of Measured and Modeled Absorption
Enhancements

Figure 8 presents a comparison of a core-and-shell Mie model
of absorption enhancement, calculated from SP2 measurements
as detailed in Section 2.3, to measured absorption enhancement,
calculated from PASS-3 measurements, for Experiments 1 (Fig-
ure 8a), 5 (Figure 8b), and 7 (Figure 8c).

The rapid increase in absorption enhancement and large en-
hancement factor (∼1.8) at λ = 405 nm in Experiment 1 (Fig-
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FIG. 8. Comparison of Mie-modeled absorption enhancement to measured
absorption enhancement. The measurements are enhancements of babs at λ =
405 nm and λ = 781 nm measured by the PASS-3 relative to the values measured
for the fullerene soot seed particles prior to irradiation. The Mie model enhance-
ments are calculated by the increase in absorption cross section from uncoated
rBC cores to rBC cores with the mean coating thickness measured by the SP2
(see text for details). Results for (a) Experiment 1, naphthalene photooxidation,
(b) Experiment 5, high-NOx α-pinene photooxidation, and (c) Experiment 7,
low-NOx α-pinene photooxidation are presented. Marker shading is a function
of time after onset of irradiation, with later times indicated by darker colors.
Data during chamber irradiation only are shown. The solid line is a 1-to-1 line.
(Color figure available online.)

ure 8a) are represented by the Mie model, despite the known
limitation that the refractive index used in the Mie scattering
model does not include an absorbing (imaginary) part. Mod-
eled absorption enhancement at λ = 781 nm does not match
the measured enhancement well. This discrepancy indicates a
wavelength-dependence of the real part of the refractive index
of the naphthalene SOA, which we have not captured with our
assumed refractive index. If an absorbing refractive index is
considered, then we would expect that the real part of refrac-
tive index would need to be smaller than 1.5 in order to keep
good agreement at λ = 405 nm. A further reduction in the real
refractive index at λ = 781 nm is also necessary to bring mod-
eled and measured enhancement factors into better agreement.
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The strong wavelength-dependence of the optical properties of
naphthalene SOA is supported by the large Åabs in Table 3. In
addition, Lack and Cappa (2010) found that coatings on rBC by
mildly absorbing material reduces the absorption enhancement
relative to rBC coated by non-absorbing material, which further
explains why the measured absorption enhancements should be
lower than modeled enhancements lacking an absorbing part of
refractive index and suggests that any agreement between the
model and measurements at λ = 405 nm is by coincidence.

In Experiment 5 (Figure 8b), the measured increase and de-
crease in absorption enhancement due to the increase and de-
crease of coating thickness during irradiation are captured by the
model. We expect fairly good agreement using a coating refrac-
tive index of 1.5–0.0i based on a recent finding of no significant
absorption for α-pinene SOA (Nakayama et al. 2010) and on
recent measurements of α-pinene SOA refractive index in the
range of 1.42–1.56 for λ = 450–700 nm (Barkey et al. 2007;
Yu et al. 2008). The small wavelength-dependence of refractive
index (increasing refractive index with decreasing wavelength)
reported by Yu et al. (2008) explains the small difference in the
measured enhancement factors in this system.

In Experiment 7 (Figure 8c), there was a change in optical
properties during the irradiation period (Figures 6c and 7c). This
change, in which the measured absorption enhancement ceases
to increase, is not reflected by the Mie model because organic
coatings are continuing to grow (Figure 6b). To reconcile the
differences between the measurements and model, a change in
refractive index of the coating material at the time of this devi-
ation needs to be considered. It is possible that a change in the
physical properties of the aerosol is occurring as well; however,
it is expected that as coatings deposit, the rBC core will collapse
so that the aerosol will become more like a core-shell morphol-
ogy, which should bring the model and measurements into better
agreement rather than worse agreement as is observed.

The results presented here, of a core-and-shell Mie scat-
tering model of absorption enhancement during these single-
hydrocarbon SOA systems, suggest that a careful treatment of
SOA refractive index is needed to fully model aerosol optical
properties. SOA from the photooxidation of naphthalene under
dry, high-NOx conditions has a refractive index with a strong
wavelength-dependence which, if not included in the model, will
lead to large discrepancies between modeled and measured ab-
sorption enhancements. In the α-pinene system, for which mea-
sured refractive indices from previous studies exist, a change in
optical properties during photooxidation causes discrepancies
between the modeled and measured light absorption to arise
during growth of coatings on rBC.

3.4. AMS Measurements
3.4.1. Naphthalene SOA

Figure 9 presents normalized (signal at each m/z is divided
by the total organic signal) unit-mass resolution AMS organic
mass spectra of SOA formed by the photooxidation of naphtha-
lene in the presence of rBC seed particles (Experiment 1; Figure
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FIG. 9. Normalized unit-mass resolution AMS organic mass spectra at peak
growth of (a) naphthalene SOA condensed on rBC seed (Experiment 1), (b)
nucleated naphthalene SOA (Experiment 3), and (d) the difference spectrum,
calculated relative to the mass spectrum from Experiment 1. On the difference
spectrum, positive values denote m/z’s enriched in the rBC-seeded experiment
and negative values denote m/z’s enriched in the nucleation experiment. (Color
figure available online.)

9a), of nucleated naphthalene SOA (Experiment 3; Figure 9b),
and the difference spectrum between the two (Figure 9c). The
data are taken at the “peak growth” periods of each experiment,
defined as the time after the parent hydrocarbon has either been
consumed or has ceased to decrease (presumably due to OH
being fully consumed) and when growth of suspended particle
volume concentration has leveled off through reaching a bal-
ance with wall deposition. The number of oxidation lifetimes is
defined as ki[OH]�t, where ki is the second-order rate constant
of species i reaction with OH, [OH] is the gas-phase concentra-
tion of OH, and �t is the exposure time (Kroll et al. 2009). In
Figure 9, the data were taken at an oxidation lifetime of about
2.5 in both cases, and there was about 1.3 (7.8% of initial) and
2.1 ppb (9.6% of initial) naphthalene remaining in the chamber
at peak growth for Experiments 1 and 3, respectively.

Masses larger than about m/z 275 from the nucleation exper-
iment and masses larger than about m/z 200 from the fullerene
soot-seeded experiment are generally at or near the detection
limit of the AMS for those individual masses. The detection
limits at each m/z are calculated as three times the standard de-
viation of the measured signal during sampling with a particle
filter in front of the inlet before the start of the experiment. For
Experiment 1, a background spectrum, defined as the average
mass spectrum during the hour of chamber mixing prior to irra-
diation, is subtracted from the raw spectra during the rest of the
experiment. Thus, the small signal resulting from the fullerene
soot seed is removed from the spectrum in Figure 9a.
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There is a small difference between the SOA composition
formed by nucleation and condensation onto fullerene soot for
this system. The largest change in mass fraction at any given
m/z is about ±1% of total organic mass. This difference is most
prominent at m/z 44, which is the mass with the largest frac-
tion in the organic spectra (Figures 9a and b). The discrepancies
in the particular m/z’s between the two experiments may arise
owing to a different organic loading at the times of interest
(which could force the chemistry through a different pathway);
for Experiment 1, organic mass was 6.5 ± 0.08 μgm−3, while
for Experiment 3, organic mass was 18.2 ± 0.22 μgm−3. Be-
cause the spectra are reported at the same oxidation lifetime, it
is expected that these are reported at the most comparable con-
ditions possible. Due to the uncertainty of AMS measurements,
a change of ±1% should be viewed as small.

Although not shown in this work, similar AMS mass spec-
tra comparisons were made at peak growth for the AS + rBC
seeded experiment (Experiment 2 in Table 1) compared to the
two experiments presented above. The largest difference in the
mass spectra arises from interferences from sulfate at m/z 48 and
64, which is remedied by properly adjusting the AMS fragmen-
tation table. After adjustment, mass spectral differences are on
the order of those shown in Figure 9d. These small differences
in mass spectra may mean that the optical properties of the nu-
cleated SOA reported in Table 3 may differ from the condensed
SOA onto rBC seed. However, because the mass spectral differ-
ences are small among all experiments compared, one concludes
that the fullerene soot seed does not affect the composition of
the condensed naphthalene SOA more so than condensation on
the more conventional AS seed as compared to nucleated SOA.

3.4.2. High-NOx α-pinene SOA
During high-NOx α-pinene photooxidation (Experiment 5),

the mean coating thickness initially increases rapidly, achieves
a maximum, then decreases for the remainder of the irradiation
period (Figure 5b). Figures 10a and b present normalized AMS
mass spectra at two times during irradiation in Experiment 5, at
oxidation lifetimes of 9, near the end of the irradiation period,
and 1, during the early rapid growth of SOA, respectively. Fig-
ure 10c presents the difference between these two mass spectra,
relative to the earlier mass spectra, where positive values denote
mass fragments enriched at the end of irradiation. Typically, the
dominant mass fragments in AMS organic mass spectra of am-
bient aerosol are at m/z 44, which represents highly oxygenated
organic species with low volatility, and at m/z 43, which repre-
sents less oxygenated semivolatile species (Ng et al. 2010). The
mass fractions of these m/z, f44, and f43, are defined as the mass
at m/z 44 and m/z 43, respectively, divided by the total organic
mass, which is the sum of masses at all m/z in the AMS organic
spectra. f43 is initially ∼15% of the total organic mass (Fig-
ure 10b) and decreases to ∼13% (Figure 10a) near the end of
the irradiation period. Simultaneously, f44 increases from ∼8%
(Figure 10b) to ∼12% (Figure 10a) of total organic mass during
the irradiation period. These results indicate that the aerosol is
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FIG. 10. Normalized unit-mass resolution AMS organic mass spectra from
Experiment 5, high-NOx α-pinene photooxidation in the presence of fullerene
soot, at (a) oxidation lifetime = 9 (after peak growth has been reached) and
(b) oxidation lifetime = 1 (during rapid growth), (c) the difference spectrum,
calculated relative to the earlier mass spectrum, and (d) comparison of AMS
m/z 43 and 44 and ratio of m/z 43/44 with mean coating thickness measured
by the SP2. On the difference spectrum, positive values denote m/z’s enriched
in the later condensed SOA and negative values denote m/z’s enriched in the
earliest condensed SOA. Note that dilution of the chamber began at an oxidation
lifetime of approximately 9. (Color figure available online.)

transitioning from a semi-volatile to a lower volatility state, as
is commonly observed during chemical aging of aerosol (Ng
et al. 2010).

From the time series traces (Figure 10d) of AMS m/z 43 and
44 and mean coating thickness on rBC as measured by the SP2,
AMS m/z 43 clearly traces the mean coating thickness (R2 =
0.97), capturing the decrease in thickness with time quite well,
deviating only after chamber dilution has begun. AMS m/z 44
lags behind m/z 43 in formation, and, therefore, does not trace
coating thickness as well (R2 = 0.89). Note that even though
m/z 44 decreases during the experiment, f44 is continuously in-
creasing, as stated above, meaning that the other mass fragments
in the AMS mass spectra are decreasing more rapidly than m/z
44. This is shown in Figure 10d by the signals of m/z 43 and 44
approaching a similar value towards the end of the irradiation
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period. After the initial rapid growth, the m/z 43/44 ratio contin-
uously decreases due to f44 continuously increasing throughout
the experiment. While chemical aging in such a way that con-
verts species yielding high f43 to higher f44 in the AMS may
explain these trends, the combination of single-particle coating
thickness measured by the SP2 and the bulk organic mass spec-
tra measured by the AMS suggest that the more semivolatile
species are actually evaporating from the aerosol. The SP2 un-
ambiguously shows changes in single particles, whereas AMS
measurements of small decreases in organic mass alone may
have been attributed to other processes, such as chamber wall
deposition.

3.4.3. Low-NOx α-pinene SOA
In the evolution of various measured parameters during the

low-NOx α-pinene photooxidation (Experiment 7), mean coat-
ing thickness steadily increased as SOA was formed (Figure
6b). About halfway through the irradiation period, a decrease
in the rate of change of the absorption and scattering coeffi-
cients occurred (Figure 6c), coincident with a decrease in the
growth rate of total organic mass concentration measured by the
AMS (Figure 6a). This change during irradiation occurred at an
oxidation lifetime of ∼2 (∼4 h after the onset of irradiation).

Figures 11a and b present normalized AMS mass spectra at
oxidation lifetimes of 3 and 1, respectively, on either side of the
change in aerosol growth rate. Figure 11c presents the difference
spectrum relative to the earlier spectrum and shows a decrease
in f43. Figure 11d shows the evolution of various AMS mass
fractions with oxidation lifetime in addition to the absorption
and scattering coefficients at λ = 405 nm measured by the
PASS-3. A shift in optical properties is evident at an oxidation
lifetime of 2, while f43 and f44 continually change during the
experiment and show no clear shift. The other mass fractions
presented in Figure 11d also change continually throughout the
experiment, although at different rates relative to each other.
Some mass fractions, namely f1–50 and f50–100, change much
more rapidly during the early part of irradiation and then begin to
approach a relatively constant value after an oxidation lifetime
of 2. Throughout the entire period displayed in Figure 11d,
organic mass is growing and the raw m/z’s are increasing; thus,
the changes in mass fractions reflect the fact that different mass
fragments are growing at different rates relative to each other,
rather than by loss of certain fragments.

While m/z 43 and 44 are important individual mass frag-
ments in the AMS mass spectra, they fail to capture the change
in aerosol behavior that occurs at an oxidation lifetime of 2 in this
system. Examining a wider range of mass fragments in the AMS
mass spectra reveals that the aerosol composition is continually
evolving during the irradiation period. This change in compo-
sition is likely accompanied by a change in refractive index,
explaining the shift in optical properties despite steady growth
of rBC coating thicknesses. This experiment demonstrates that
measurement of aerosol optical properties can help guide the
analysis of data from other instruments, namely the AMS. In
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FIG. 11. Normalized unit-mass resolution AMS organic mass spectra from
Experiment 7, low-NOx α-pinene photooxidation in the presence of fullerene
soot, at (a) an oxidation lifetime = 3 (during the slower growth rate after the
shift in optical properties) and (b) an oxidation lifetime = 1 (during the more
rapid growth rate before the change in optical properties), (c) the difference
spectrum, calculated relative to the earlier mass spectrum, and (d) comparison
of f43, f44, f1–50 (scaled by 0.2), f50–100, and f100–150 (scaled by 5) from the AMS
with the scattering and absorption coefficients at λ = 405 nm measured by the
PASS-3. On the difference spectrum, positive values denote m/z’s enriched
in the later condensed SOA and negative values denote m/z’s enriched in the
earliest condensed SOA. (Color figure available online.)

the low-NOx α-pinene photooxidation system, the SOA opti-
cal properties change with time, and could be used as a model
system to help understand the evolution of atmospheric SOA
optical properties.

4. CONCLUSIONS
In this work, we demonstrate the utility of employing

fullerene soot, a surrogate for refractory black carbon, as a seed
aerosol in chamber studies of secondary organic aerosol for-
mation, when done in conjunction with the single-particle soot
photometer. Particle-by-particle measurement of the dynamics
of the organic coating thickness on the rBC seed over the course
of SOA formation allows evaluation of the rate of growth as
a function of particle size. An experimental strategy is imple-
mented in which a period of VOC oxidation and SOA growth is
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followed by one in which growth is quenched while the cham-
ber undergoes dilution. The dilution phase is used as a means
to assess SOA volatility by measuring the possible evaporation
of coatings on the rBC seed. In the experiments presented here,
a 3-λ photoacoustic soot spectrometer is used to measure the
optical properties of the uncoated rBC seed, initially, and the
coated rBC seed during the course of SOA formation. These
measurements, coupled with the application of a core-and-shell
Mie scattering model, allow one to infer the optical properties of
the SOA. Application of a prototype single-particle angularly-
resolved light scattering instrument confirms that the uncoated
rBC particles are nonspherical. Important to understanding the
effect rBC has on SOA formation is whether or not SOA con-
densed onto rBC seed is chemically and optically similar to nu-
cleated SOA under dry conditions. High-resolution Aerodyne
aerosol mass spectrometer measurements for the three systems
considered here, naphthalene photooxidation and photooxida-
tion of α-pinene under both high- and low-NOx conditions,
confirm that the composition of SOA coating rBC seed particles
differs from homogeneously nucleated SOA by no more than
condensing SOA on the more conventional ammonium sulfate
seed used in many chamber experiments, so that the use of rBC
as a seed is not expected to alter the basic chemistry of SOA
formation under dry conditions. Both SP2 and PASS-3 measure-
ments reveal a change in the SOA coating and particle optical
properties during SOA growth in the high-NOx α-pinene sys-
tem, which is mirrored by a corresponding change in the AMS
mass spectra. The combination of SP2 and AMS measurements
in this system suggest that semivolatile species are evaporating
from the aerosol during chemical aging. A change in optical
properties during SOA growth in the low-NOx α-pinene system
is mirrored by a change in organic growth rate and AMS mass
spectra, but not in single-particle coating thicknesses. Explo-
ration of a fundamental explanation of the chemistry leading to
these changes lies beyond the scope of the present work. We
have provided a framework by which future studies of SOA
optical properties and single-particle growth dynamics may be
explored in environmental chambers.
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