
Design, Specification, and Synthesis of Aircraft
Electric Power Systems Control Logic

Thesis by

Huan Xu

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2013

(Submitted May 31, 2013)

ii

c© 2013

Huan Xu

All Rights Reserved

iii

Acknowledgments

My sincerest gratitude to my advisor, Richard Murray, for his support and encouragement through-

out this entire journey. Not only has he been a constant source of guidance, wisdom, and perspective,

he has also allowed me the freedom to pursue my own interests. His leadership is something I hope

to be able to emulate, and I am truly grateful to be a part of his group.

I would like to thank my thesis committee members Mani Chandy, Joel Burdick, and Gerard

Holzmann. Throughout courses, seminars, and discussions, their insight has been invaluable to this,

and past work. I am truly grateful for the opportunity to interact with such talented and respected

individuals. It has been a privilege.

I had a wonderful group of colleagues on this project. First and foremost, thanks to Ufuk Topcu

and Necmiye Ozay who have been fantastic mentors. I would also like to thank Rich Poisson from

United Technologies Aerospace Systems for his expert domain knowledge of aircraft electric power

systems. Thanks to everyone from the Murray Group, including Eric Wolff, as well as visiting stu-

dents Robert Rogersten and Quentin Maillet. Thanks to Alberto Sangiovanni-Vincentelli, Pierluigi

Nuzzo, John Finn, and Alexandre Donze from UC Berkeley. A special thanks to everyone in MCE

and CMS for their support and friendship, including Cheryl Geer, Chris Silva, and Maria Koeper.

Most importantly, Anissa Scott, without whom the group could not function.

Thanks to my friends who have been a great support network throughout the years: Nicholas

Boechler, Jon and Shannon Mihaly, Justin Brown, Jacob Notbohm, Jason Rabinovitch, Nick Parziale,

Victoria Nardelli, Andrea Leonard, and Lindsay Claiborn. To Emmy Ruiz, Stacy Berger, Marlon

Marshall, Saskia Pallais, and Zach Hoover, thank you for teaching me to honor the pursuit of work,

and to never stop believing. Last but not least, I would like to thank my family. My parents moved

to this country over two decades ago in search of the American dream. This work is a testament to

their dedication and sacrifice. Thank you, eternally.

iv

Abstract

Cyber-physical systems integrate computation, networking, and physical processes. Substantial

research challenges exist in the design and verification of such large-scale, distributed sensing, ac-

tuation, and control systems. Rapidly improving technology and recent advances in control theory,

networked systems, and computer science give us the opportunity to drastically improve our approach

to integrated flow of information and cooperative behavior. Current systems rely on text-based spec-

ifications and manual design. Using new technology advances, we can create easier, more efficient,

and cheaper ways of developing these control systems. This thesis will focus on design considera-

tions for system topologies, ways to formally and automatically specify requirements, and methods

to synthesize reactive control protocols, all within the context of an aircraft electric power system

as a representative application area.

This thesis consists of three complementary parts: synthesis, specification, and design. The first

section focuses on the synthesis of central and distributed reactive controllers for an aircraft elec-

tric power system. This approach incorporates methodologies from computer science and control.

The resulting controllers are correct by construction with respect to system requirements, which

are formulated using the specification language of linear temporal logic (LTL). The second section

addresses how to formally specify requirements and introduces a domain-specific language for elec-

tric power systems. A software tool automatically converts high-level requirements into LTL and

synthesizes a controller.

The final sections focus on design space exploration. A design methodology is proposed that uses

mixed-integer linear programming to obtain candidate topologies, which are then used to synthesize

controllers. The discrete-time control logic is then verified in real-time by two methods: hardware

and simulation. Finally, the problem of partial observability and dynamic state estimation is ex-

plored. Given a set placement of sensors on an electric power system, measurements from these

sensors can be used in conjunction with control logic to infer the state of the system.

v

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 Motivation . 1

1.2 Overview and Related Work . 3

1.2.1 Formal Methods, Verification, and Synthesis 3

1.2.2 Specification and Requirements Capture . 4

1.2.3 Design Space Exploration and State Estimation 5

1.3 Outline and Contributions . 6

2 Background 7

2.1 Electric Power Systems . 7

2.1.1 System Components . 8

2.1.2 System Description . 8

2.2 Temporal Logic . 10

2.2.1 Linear Temporal Logic . 10

2.2.2 Other Temporal Logics . 14

2.3 Reactive Synthesis . 14

2.4 Distributed Synthesis . 16

3 Synthesis of Reactive Control Protocols with Timing 20

3.1 Overview . 20

3.2 Specifications for Aircraft Electric Power Systems . 21

3.3 Formal Specifications For Aircraft Electric Power Systems 23

3.4 Capturing Actuation Delays . 28

vi

3.5 Case Study . 29

3.5.1 Variables . 30

3.5.2 Specifications . 30

3.6 Results . 33

3.6.1 Centralized Controller Design . 33

3.6.2 Distributed Control Architecture . 35

3.6.3 Timing Benchmarks . 38

3.7 Conclusions . 40

4 Specification and Domain-Specific Languages 42

4.1 Overview . 42

4.2 Input Files . 42

4.3 Specifications and Primitives . 44

4.4 Tool Integration . 45

4.4.1 Untimed: SAT Solver (Yices) . 45

4.4.2 Timed: TuLiP . 48

4.4.3 Benchmarks . 52

4.5 Broadening the Domain-Specific Language . 54

4.5.1 Exceptions and Nominal Cases . 54

4.5.1.1 Primitives . 55

4.5.2 Sequence Diagrams . 56

4.5.2.1 Live Sequence Charts . 56

4.5.2.2 Live Sequence Chart Semantics . 58

4.5.3 LTL-Live Sequence Chart Semantics . 59

4.5.3.1 Superstep Requirements . 60

4.5.3.2 Environment Assumptions . 61

4.5.3.3 System Guarantees . 61

4.5.4 Live Sequence Chart Example . 62

4.6 Timed Temporal Logics . 64

4.6.1 Timed Specifications . 65

4.6.1.1 Protector . 65

4.6.1.2 Supervisor . 66

4.6.1.3 UPPAAL-TIGA . 67

vii

4.6.2 Discrete-Time LTL . 68

4.6.2.1 Protector . 68

4.6.2.2 Supervior . 71

4.7 Conclusions . 72

5 Design Space Exploration 74

5.0.1 Background: Contract-Based Design of Cyberphysical Systems 75

5.0.1.1 Components . 75

5.0.1.2 Contracts . 76

5.0.1.3 Signal Temporal Logic . 78

5.1 Design Space Exploration: Case Study . 79

5.1.1 Electric Power System . 81

5.1.2 Topology Synthesis . 82

5.1.3 Control Synthesis . 85

5.1.4 Distributed Synthesis . 87

5.1.4.1 Results . 89

5.1.4.2 Reliability Results . 90

5.1.5 Real-Time Performance . 90

5.2 Hardware Testbed . 91

5.2.1 Testbed Specifications . 93

5.2.2 Implementing Formal Specifications . 95

5.2.3 Design and Implementation . 95

5.2.4 Generation and Circuit Protection . 99

5.2.5 Sensing . 99

5.3 Experiments . 100

5.3.1 Testbed Characteristics . 100

5.3.2 Controller Tests . 101

5.4 Conclusions . 102

6 Dynamic State Estimation 104

6.1 Overview . 104

6.2 Problem Setup . 105

6.2.1 General Problem Description . 105

viii

6.2.2 Mathematical Formulation . 107

6.3 Strategy . 109

6.3.1 Greedy strategy . 109

6.3.2 Performance Guarantees . 110

6.4 Implementation . 111

6.4.1 Implementation Details . 111

6.4.2 Model Reduction Via Abstraction . 112

6.5 Examples . 112

6.5.1 Small Circuit Tests . 114

6.5.1.1 Average Execution Time . 114

6.5.1.2 Average Remaining States . 114

6.5.2 Large Circuit Tests . 116

6.6 Background Results in Submodularity . 116

6.6.1 Definitions . 116

6.6.2 Proofs . 118

6.7 Conclusions and Future Work . 120

7 Conclusions and Future Work 121

7.1 Summary . 121

7.2 Future Work . 122

Bibliography 125

1

Chapter 1

Introduction

1.1 Motivation

Significant challenges arise in the design and verification of modern large-scale cyber-physical sys-

tems. Such systems, comprising a network of sensors, actuators, and physical systems involve the

integration of computation, networking, and dynamical processes. Equipped with both computing

and communication functionalities, design considerations need to include such aspects as (1) differing

temporal scales in underlying dynamics, (2) information flow between agents, and (3) coordination

of behavior between agents. Moreover, these systems need to rapidly react to changing environmen-

tal conditions or operational situations. Applications of cyber-physical systems appear in diverse

areas, including autonomous aircraft and vehicles, traffic monitoring and control, “energy-smart"

systems, manufacturing, and health care. The broad range of concerns amongst these applications

include intended behavior, reliability, survivability, security, and constrained energy availability.

While progress has been made in the design of large-scale cyber-physical systems within the past

few years, there is still a lack of formal design methodologies and technologies capable of providing

guarantees on behavior and execution.

Consider the application area of modern aircraft avionics (i.e., electronics applied to aviation).

Correctly designing such systems has become increasingly difficult; recent significant delays in deliv-

ery of advanced aircraft, both civil and military, have been due to unforeseen interactions between

a large number of strongly interdependent, heterogenous subsystems [17, 18, 22, 23]. Advances in

electronics technology have made the transition from conventional to more-electric aircraft (MEA)

architectures possible. More-electric aircraft architectures provide improvements in reliability and

maintainability, as well as the potential to reduce aircraft weight and volume. The concept of electric

aircraft is not new; though considered by military aircraft designers since the 1940’s, the idea was

2

Figure 1.1: A comparison between the electric generation and distribution on a traditional aircraft
and on the Boeing 787 (i.e., a more-electric aircraft) [85].

never implemented due to lack of electric power generation capabilities at that time as well as volume

of required power conditioning equipment [21]. Conventional architectures utilize a combination of

mechanical, hydraulic, electric, and pneumatic subsystems. The move towards more-electric aircraft

increases efficiency by reducing power take-offs from the engines that would otherwise be needed

to run hydraulic and pneumatic components. Moreover, use of electric systems provides opportu-

nities for system-level performance optimization and decreases life-cycle costs. These architectures

also introduce, however, new high-voltage electric networks and solutions for integrating additional

subsystems.

Efforts have been made to re-use previously developed systems from conventional aircraft in

more-electric aircraft [78], but additional high-voltage networks and electrically-powered components

increase the system’s complexity, and new designs for electric power systems need to behave according

to certain properties or requirements determined by physical constraints or performance criteria.

Figure 1.1 compares the difference between a traditional aircraft electric generation and distribution

system to that of a more-electric aircraft system. Because safety of the aircraft is solely or mostly

dependent on electric power, the electric power system on next-generation aircraft need to be highly

reliable, and fault tolerant.

Analysis of all faults or errant behaviors in models is difficult due to the high complexity of

systems and subsystem interactions. The process of verifying the correctness of a system with

3

respect to specifications is expensive, both in terms of cost and time, which, as a result, has led to a

greater emphasis on the use of formal methods to aid in safety and performance certification. The

cost and time to allow for design changes near the end of the design cycle increases significantly.

The growing need to rapidly and correctly design, implement, and commission large-scale systems

requires new tool and techniques in modeling, analysis, design, and verification in order to provide

a comprehensive and systematic solution to such problems.

1.2 Overview and Related Work

The overall objective of this thesis is to develop an initial framework for systematic design, specifica-

tion, and synthesis of cyber-physical systems in order to provide a mathematical, formal guarantee

of correctness of a system with respect to its requirements and desired behaviors. Within the context

of an aircraft electric power system, of particular interest are systems in which low-level dynamics

associated with hardware are integrated with high-level logics governing the overall behavior of the

system.

The research presented in this thesis consists of three main components: design, specification,

and synthesis. The following provides a quick overview of related work in each topic (presented in

reverse order).

1.2.1 Formal Methods, Verification, and Synthesis

Formal methods have been utilized extensively in the computer science and control community to

apply mathematical-based techniques to prove system correctness. Verification is a technique used

to prove correctness of a control system with respect to a specific property. The most common

forms of verification are theorem proving and model checking [20]. In model checking, the system

is represented as a finite state machine and a specification, usually expressed in a temporal logic, is

checked by efficiently searching the state space of the system. The benefit of model checking is that

the process is fully automatic. Systems, however, are limited to a finite number of states. Because

the search can be exhaustive, model checking faces a combinatorial blow-up of state space (otherwise

known as state explosion). Theorem proving, is based on defining a set of axioms and inference rules

to prove specific properties of the system. While the method is not limited to finite state systems,

it usually requires skilled human interaction.

An alternative and complementary approach that extends the verification concept is to create a

4

correct-by-design control program. Automatic design of control software provides a formal guarantee

of system correctness, and can be used to reduce the time and cost of a system throughout its

development cycle. Recently developed polynomial-time algorithms exist to construct finite-state

automata from temporal logic specifications, from which automatic synthesis of digital design is

possible. These designs are capable of satisfying a large class of properties (e.g., safety, response,

liveness) in the presence of an adversarial environment [70].

Past work in the avionics field has focused on the analysis of aircraft performance and power

optimization by using modeling libraries and simulations [91, 94]. Analysis of all faults or errant

behaviors in models is difficult due to the high complexity of systems and subsystem interactions.

Verifying the correctness of aircraft and other complex systems is thus difficult because of this

intrinsic interleaving. While work has been done in this domain, verification of these systems requires

a high level of time and domain expertise. As a result, this has led to a greater emphasis on the

use of formal methods to aid in safety and performance certification. Of particular recent interest

has been in the automatic synthesis of controllers for an electric power system designed so that the

system satisfies all safety and reliability properties and requirements. The use of synthesis methods

follows from their successful integration in verification of hardware and software systems in computer

science, engineering, and robotics domains [33,38,45,48,73]. Previous work in [88] has applied formal

synthesis of control protocols to enable dynamic reconfiguration of power in more-electric aircraft.

1.2.2 Specification and Requirements Capture

Current methods for requirements capture in systems design is performed in a non-rigorous and

ad hoc manner. The Systems Modeling Language (SysML) is a general modeling language used

in systems engineering application, and supports the specification, analysis, and design of a wide

range of systems [32]. Developed in 2001 to customize the Unified Modeling Language (UML)

[79], it is capable of modeling numerous applications in hardware, software, information processes,

and facilities. Past work using SysML have included system architecture modeling, mobile phone

production, as well as aircraft vehicle management systems [7,10,69,93]. While SysML semantics are

expressive and flexible, allowing for a broad range of systems to be modeled, system requirements

are still written in a text-based format that is ambiguous to analyze.

The use of formal mathematical languages (e.g., temporal logics) has garnered great interest

due to their expressive power as well as their unambiguous meaning. An additional benefit is

that methodologies from computer science and control incorporate temporal logics in design and

5

verification. While the use of formal specification languages and correct-by construction synthesis

methods is beneficial in the area of controller design, unfamiliarity of formal methods amongst

engineers may provide a challenge to widespread implementation of formal methods.

Domain-specific languages have been proposed as a way to interface between industry engineers

with domain knowledge with methods and tools used by computer scientists and software engineers.

Domain-specific languages are languages adapted to a particular application or set of tasks. While

general purpose languages (e.g., C or Java) may offer broader programming features, domain-specific

languages (e.g., HTML or Verilog) provide more expressiveness and ease of use within a given

domain [59]. Examples of languages used in the context of cyber-physical systems can be found

in [4] and [13].

1.2.3 Design Space Exploration and State Estimation

Design space exploration examines design alternatives prior to implementation. Investigating design

candidates is beneficial in many engineering tasks, including rapid prototyping, optimization, and

system integration. The main challenge of design space exploration is the state space size that must

be explored. For large system with millions (or billions) of possibilies, enumerating every choice can

be prohibitive. Previous work has used SMT solvers to solve a set of global design constraints [43]

and evolutionary algorithms for multi-objective design space exploration [87].

The process of design space exploration can benefit from the knowledge gained from state esti-

mation, which can provide feedback in determining the set of candidates to analyze or explore. State

estimation determines the current states of a system given some set of measured outputs. It has been

widely used in detection and fault identification. Autonomous control systems rely on estimation

in effective control of systems. The problem of estimating the state of a control system has been

explored by several authors as a means for solving monitoring or surveillance problems. Estimation

of electric power systems using optimization-based techniques is a well-established area [2, 16, 63].

In addition, a large body of work exists on diagnostics of electric power systems focusing on AC

systems [24], as well as large vehicle systems. [53] examines the diagnostics for the international

space station, [44] for an aircraft electric system, and [35] for a marine vehicle power system. For a

DC system, [36] uses an optimization-based approach to estimate fault states. Past work in electric

power system state estimation has focused on static, centralized estimation problems with continuous

states.

6

1.3 Outline and Contributions

The scope of this thesis covers the framework for systematic design, specification, and synthesis of

an aircraft electric power system. Chapter 2 provides background information on electric power

systems. It also discusses various forms of temporal logics, including linear temporal logic, the

language used mostly throughout this work, and finally introduces the formalisms for reactive and

distributed synthesis. The main contribution of Chapter 3 is application of formal specifications in

synthesizing centralized and distributed controllers for an aircraft electric power system. Addition-

ally, timed specifications, i.e. requirements in which actions must occur within a given time bound,

are formulated using linear temporal logic. Thus we present a timed version of synthesis for electric

power system.

The automatic formalization of requirements into an electric power system domain-specific lan-

guage is addressed in Chapter 4. The main contribution is an automatic specification generator

tool AES2gen that receives as inputs a set of high-level primitives and automatically synthesizes

controllers such as those described in Chapter 3. Requirements capture for various types of spec-

ifications is discussed, including ways to incorporate sequence-based specifications within an LTL

framework.

Chapters 5-6 address the design aspect of electric power systems. Chapter 5 presents a design

flow methodology for aircraft electric power systems. Multiple candidate topologies are generated

using mixed-integer linear programming, for which we then automatically synthesize controllers that

are then verified in simulation using the Breach toolbox [25]. The controllers are also implemented

on a hardware testbed within a real-time framework. Chapter 6 explores the problem of sensor

placement within an electric power system by proposing an algorithm for dynamic state estimation

based on sensor measurements. Results from the algorithm are simulated on representative electric

power system topologies. Finally, Chapter 7 concludes the work and discusses directions for research

in the future.

7

Chapter 2

Background

2.1 Electric Power Systems

The standard electric power system for a passenger aircraft comprises a certain number of generators

(e.g., one or two on the left and right sides of the aircraft) that serve as primary power sources.

Generators supply power to a set of loads through dedicated AC buses. Typically, each AC bus

delivers power to a DC bus through a transformer rectifier unit. Contactors are high-power switches

that can control the flow of power by reconfiguring the topology of the electric power system and can

establish connections between components. In the case of a generator or switch failure, an auxiliary

power unit (APU) or battery may be used to power buses through a different reconfiguration of

system components. Different reconfigurations of the system will change the open or closed status

of contactors and thereby affect the power level of different buses or loads.

While standard topologies (i.e., structural arrangement of components) for electric power systems

are already complex, next-generation aircraft are expected to become even more complicated, and

thus more difficult to design. The move from pneumatic and hydraulic powered systems to electric

powered ones increases the safety criticality of the electric power system. This elevated level of

criticality can potentially be compensated for by increasing the number of paths between generators

and buses that supply and deliver power to newly introduced loads. The increased number of

overall components in the electric power systems raises the complexity of design as all possible

configurations need to be considered. The number of configurations quickly goes beyond currently

available verification and testing capabilities.

8

2.1.1 System Components

The electric power system schematic in Figure 2.1 includes a combination of generators, contac-

tors, buses, and loads, transformers, and rectifier units. The following is a brief description of the

components referenced in the primary power distribution single-line diagram [62].

Generators: AC generators can operate at either high voltages, which can connect to the

high-voltage AC buses, or low voltages, which feed directly to the low-voltage buses.

Buses: High-voltage and low-voltage AC and DC buses deliver power to a number of sub-buses,

loads, or power conversion equipment. Depending on the power availability and quality requirements

on the loads, these buses can be classified as essential or non-essential. For example, essential buses

supply loads that should always remain powered, such as the flight actuation subsystem, while

non-essential buses have loads that may be shed in the case of a fault or failure, such as cabin

lighting.

Contactors: Contactors are high-power electronic switches that connect the flow of power from

sources to buses and loads. Depending on the power status of generators and buses, contactors can

reconfigure, i.e., switch between open and closed. Contactors provide the actuation for reconfigura-

tion of the topology of the electric power system, hence, changing the paths through which power is

delivered from generators to loads depending on the contingencies.

Transformer Rectifier Units: Rectifier Units (RUs) convert three-phase AC power to DC

power. Transformer Rectifier Units (XFMRs) combine a rectifier unit and a step-down transformer

to additionally lower the voltage.

Batteries: Batteries are used as an electrical storage medium independent of primary generation

sources. They provide short-term power during emergency conditions while alternative sources are

being brought online.

RAM Air Turbine: The RAM Air Turbine (RAT) is a part of the emergency power system,

and is a special purpose generator that becomes active with the loss of a number of main generators.

2.1.2 System Description

The following provides a brief description of the electric power system topology in Figure 2.1.

At the top of the diagram are six AC generators: two low-voltage, two high-voltage, and two

APUs. Each engine connects to a high-voltage AC generator and a low voltage AC emergency

generator. The high-voltage APU-mounted generators, hereafter referred to as auxiliary generators

can also serve as backup power sources if a main generator fails.

9

Figure 2.1: Single line diagram of an electric power system adapted from a Honeywell, Inc. patent
[60]. Two high-voltage generators, two APUs, and two low-voltage generators serve as power sources
for the aircraft. Depending on the configuration of contactors, power can be routed from sources to
buses through the contactors, rectifier units, and transformers. Buses are connected to subsystem
loads. Batteries can be used to provide emergency backup power to DC buses.

10

The three distinct panels directly below the generators contain the high-voltage AC distribution

system. Each panel represents the physical separation of components within the aircraft. We

denote components that can connect or disconnect from each other through the opening or closing

of contactors as selectively connected (i.e., connected through a contactor). The four high-voltage

AC buses can be selectively connected to all HVAC generators and auxiliary generators as well as

each other by way of contactors (represented by a`).

Selectively connected to the four high-voltage AC buses are four high-voltage rectifier units

(HVRUs) that transform AC power to DC power. HVRU 1 and HVRU 2 are directly connected to

high-voltage DC Bus 1; HVRU 3 and HVRU 4 are directly connected high-voltage DC Bus 2. Each

high-voltage DC bus also has a battery source which can also be selectively connected.

High-voltage AC Bus 2 and Bus 3 are also selectively connected to a set of transformers (labeled

as XFMR on the single-line diagram) that convert high-voltage AC power to low-voltage AC power.

The low-voltage AC system is depicted in the two panels in Figure 2.1 just below the high-voltage

AC panels. These two transformers are connected to a set of four low-voltage AC buses. LVAC ESS

Bus 1 and LVAC ESS Bus 2 are essential, meaning that they connect to loads which must always be

powered. These essential buses are also selectively connected to the two low-voltage AC emergency

generators in the case of a failure from the HVAC side.

The low-voltage AC essential buses are directly connected to low-voltage rectifier units (labeled

as LVRU on the single-line diagram) converting low-voltage AC to low-voltage DC, as shown in the

two bottom panels in Figure 2.1. There are four low-voltage DC buses, as well as two batteries

which may also be selectively connected. Power can also be routed from the high-voltage AC buses

through transformers to LVDC Main Bus 1 and LVDC Main Bus 2. Similar to the low-voltage AC

case, low-voltage DC essential buses must remain powered at all times throughout the flight because

of essential loads attached to the buses.

2.2 Temporal Logic

2.2.1 Linear Temporal Logic

Temporal Logic is an extension of propositional logic that incorporates notions of temporal ordering

to reason about correctness over a sequence of states [9, 30, 39]. First introduced as a specification

language by Pnueli [72] in the 1970s, it has since been demonstrated to be an appropriate formalism

to reason about various kinds of systems, in particular in concurrent programs. The use of temporal

11

logics to formally specify and verify behavioral properties has been seen in various applications,

including embedded systems, robotics, and controls [73].

In reactive systems (i.e., systems which react to a dynamic, a priori unknown environment),

correctness will depend not only on inputs and outputs of a computation, but on execution of the

system as well. Temporal logic is a formalism well-suited for these types of problems in which the

system must react to an adversary or environment. In this thesis we consider a version of temporal

logic called linear temporal logic (LTL) that is suitable for describing certain properties of electric

power systems. Other forms of temporal logic may be more or less expressive than LTL, depending

on the desired behavior of the system. A brief overview of other languages is discussed in Section

2.2.2.

Before describing LTL, we begin by defining an atomic proposition, the basic building block of

LTL. An atomic proposition is defined based on the variable structure of a system, as follows.

Definition 1: A system consists of a set V of variables. The domain of V , denoted dom(V), is

the set of valuations of V . A state of the system is an element v ∈ domV .

Definition 2: An atomic proposition is a statement on a valuation v ∈ dom(V) with a unique

truth value (True or False) for a given v. Let the valuation v ∈ dom(V) be a state of the system, and

p be an atomic proposition. Then v p, read v satisfies p, if p is True at that state v. Otherwise,

v 6 p.

In the electric power system domain, the set of variables includes, for instance, generator and

contactor statuses. Valuations of these variables include the health values of generators. An atomic

proposition could state that each generator in the system be healthy.

Alongside atomic propositions, LTL also includes Boolean connectors like negation (¬), disjunc-

tion (∨), conjunction (∧), material implication (→), and two basic temporal modalities next (#) and

until (U). By combining these operators and propositions, it is possible to specify a wide range of

requirements on the desired behavior of a system and environment assumptions. Given a set π of

atomic propositions, an LTL formula is defined inductively as follows:

• any atomic proposition p ∈ π is an LTL formula;

• given LTL formulas ϕ and ψ over π, ¬ϕ, ϕ ∨ ψ, #ϕ and ϕ U ψ are also LTL formulas.

Given a set of valuations and a set π of atomic propositions over valuations v ∈ dom(V), LTL

formulas over π are interpreted over infinite sequences of states. For example, the formula #ϕ holds

for a sequence of states at the current step of the sequence if ϕ is true in the next step. The formula

12

!"
#"

!"
#"!"

#"$%&'""!"(")"

!∧)" !∧)" !∧)")"

!"
#"*+*%,$-''."" !"

!" !" !"

!"
#"-'/-.0" !"

!" !" !" !"

!"

Figure 2.2: Semantics of LTL temporal modalities. Propositions are reasoned about over entire
sequences of states. In the first sequence, atomic proposition p is true for the initial state, denoted
by a p above the first state in the sequence. In the second sequence, p holds in the second state,
or next step. In the third sequence, p is true until the step when q becomes true. In the fourth
sequence, p is eventually true at some step. In the last sequence, p is true for every step. A state
without a label contains an arbitrary set of propositions.

ϕ1 U ϕ2 holds at the current step if at some future step ϕ2 holds and ϕ1 holds at all steps until that

future step.

Formulas involving other operators can be derived from these basic ones. The until operator can

be used to derive two further temporal modalities that are used commonly in LTL, namely eventually

(3) and always (�). The formula 3ϕ states that ϕ will be true at some point in the future, while

�ϕ is satisfied if and only if ϕ is true for all points. Figure 2.2 illustrates some temporal modalities

that can be expressed in LTL. On the left-hand side are LTL formulas over propositions p and q,

while on the right are sequences of states.

More formally, the semantics of LTL is given as follows. Let σ = v0v1v2 . . . be an infinite sequence

of valuations of variables in V , and ϕ and ψ be LTL formulas. We say that ϕ holds at position i ≥ 0

of σ, written vi |= ϕ, if and only if ϕ holds for the remainder of the execution σ starting at position

i. Then, the satisfaction of ϕ by σ is inductively defined as:

• for atomic proposition p, vi |= p if and only if vi p;

• vi |= ¬ϕ if and only if vi 6|= ϕ;

• vi |= ϕ ∨ ψ if and only if vi |= ϕ or vi |= ψ;

13

• vi |= #ϕ if and only if vi+1 |= ϕ; and

• vi |= ϕ U ψ if and only if ∃ k ≥ i such that vk |= ψ and vj |= ϕ for all j, i ≤ k < j.

Based on this definition, #ϕ holds at position i of σ if and only if ϕ holds at the next state vi+1,

�ϕ holds at position i if and only if ϕ holds at every position in σ starting at position i, and 3ϕ

holds at position i if and only if ϕ holds at some position j ≥ i in σ.

Let Σ be the collection of all sequences of valuations of V . Then, a system composed of the

variables V is said to satisfy ϕ if σ |= ϕ for all σ ∈ Σ. A set of models Σ satisfies ϕ, denoted by

Σ |= ϕ, if every model in Σ satisfies ϕ.

Examples of LTL formulas: Given a propositional formula, common and widely used properties

can be defined in terms of their corresponding LTL formulas as follows.

Safety: Safety formulas assert that a state or sequence of states will not be reached. In particular,

we use a subclass of safety formula referred to as invariants throughout this paper. Invariant formula

assert that a property will remain true throughout the entire execution σ for all executions σ ∈ Σ.

Safety properties ensure that nothing bad will happen. A safety specification for the electric power

system could take the form �(¬bus_i_unpowered) where i is the bus index.

Progress: Progress formula guarantee that a property holds infinitely often in an execution σ.

This property ensures that the system will make progress. For example, always eventually ensure

that Bus 1 is powered can be written as: � 3gen_i_powered.

Response: A response formula states that at some point in the execution following a state

where a property is true, there exists a point where a second property is true. Response prop-

erties can be used to describe how systems need to react to changes in environment or operating

conditions. A response property can be used to describe how the system should react to a gen-

erator failure. If a generator fails, then at some point a corresponding contactor should open:

�((gen_j_not_healthy)→ 3(contactor_k_open)) where j, k represent indices for generators and

contactors, respectively.

Remark 1 Properties typically studied in the control and hybrid system domains are safety and

stability. LTL can express a more general class of properties. Typical specifications seen with electric

power systems or more-electric aircraft in general involve safety (avoid unsafe configurations) and

response (if a failure occurs, then reconfigure). Progress properties are not used since systems do not

typically have a “goal" state that needs to be reached, but instead consist of a set of safe operational

states. We use a combination of response and modified progress formulas in order to capture timing

properties.

14

2.2.2 Other Temporal Logics

LTL is one form of temporal logic capable of expressing desired system behaviors. LTL is called

linear due to the qualitative notion of time as path-based. Each moment of time has a unique

possible successor state. LTL can state properties over all possible computations beginning from a

state. It cannot, however, easily reason about some of the possible computations. To address such

difficulties, Computation Tree Logic (CTL), was introduced by Clarke and Emerson [19]. CTL is a

branching temporal logic, with a branching notion of time. At each moment there may be several

different futures.

Real-time variants of temporal logic aim to express properties of systems with real-time specifi-

cations (e.g. p must be true within t seconds). While LTL and CTL can reason about ordering of

events, they cannot specify the exact time an event must occur. Metric Temporal Logic (MTL) [46]

and timed CTL (TCTL) [6] are thus extensions of LTL and CTL, respectively, with additional clocks

and clock constraints. for LTL and CTL, there exists an implicit time bound on operators always,

eventually, and until such that

�
.
= �[0,∞),

3 .
= 3[0,∞),

U .
= U [0,∞).

MTL and TCTL modify the time interval from (0,∞] to [i, j] for i, j ∈ Z.

2.3 Reactive Synthesis

We now, equipped with LTL as a specification language, formally state the reactive synthesis prob-

lem. Let E and P be sets of environment and controlled variables, respectively. Let s = (e, p) ∈

dom(E) × dom(P) be a state of the system. Consider a LTL specification ϕ of assume-guarantee

form

ϕ = ϕe → ϕs, (2.1)

where, roughly speaking, ϕe is the conjunction of LTL specifications that characterizes the assump-

tions on the environment and ϕs is the conjunction of LTL specifications that characterizes the

system requirements.

The synthesis problem is then concerned with constructing a strategy, i.e., a partial function

15

!"#$%&'%(%)*%%
&+%(%)*%,%
-./$%0)%(%)*%%
01%(%),%%

!"#$%&'%(%2*%%
&+%(%2*%,%
-./$%0)%(%2*%%
01%(%2,%%

!"#$%&'%(%)*%%
&+%(%2*%,%
-./$%0)%(%)*%%
01%(%2,%%

!"#$%&'%(%2*%%
&+%(%)*%,%
-./$%0)%(%2*%%
01%(%),%% !"#$%&'%(%2*%%

&+%(%2*%,%
-./$%0)%(%2*%%
01%(%2,%%

!"#$%&'%(%)*%%
&+%(%)*%,%
-./$%0)%(%)*%%
01%(%),%%

-3435%)%

-3435%6%
-3435%7%

-3435%8%

-3435%9%

-3435%1%

Figure 2.3: A portion of the resulting controller automaton for a synthesized problem. Dotted arrows
represent transitions to states not depicted within the figure. Listed within each node is a valuation
of environment and system variables. From state 1, an environment input determines whether the
automaton moves to state 2 or state 3.

f : (s0s1 . . . st−1, et) 7→ pt, that chooses the move of the controlled variables based on the state

sequence so far and the behavior of the environment so that the system satisfies ϕs as long as

the environment satisfies ϕe. The synthesis problem can be viewed as a two-player game between

the environment and the controlled plant: the environment attempts to falsify the specification in

(2.1) and the controlled plant tries to satisfy it. Figure 2.3 shows a portion of an example resulting

automaton. Each state (node) represents a tuple of the current valuation of system and environment

variables. State 1, for example, contains the initial states of both environment and system (where

values are only partially listed in the figure). The system variable at the next step is determined

by the environment. From state 1, if the environment determines that GL and GR are set both

to 0, then the automaton goes to state 2, and the system variables C1 and C6 become 0. If the

environment takes the transition from state 1 to state 3, then the system becomes C1 = 1 and

C6 = 0.

For general LTL, it is known that the synthesis problem has a doubly exponential complexity

16

in [73]. For a subset of LTL, namely generalized reactivity (1) (GR(1)), Piterman et al., have shown

that it can be solved in polynomial time (polynomial in the number of valuations of the variables in

E and P) [70]. GR(1) specifications restrict ϕe and ϕs to take the following form, for α ∈ {e, s},

ϕα := ϕαinit ∧
∧
i∈Iα1

2ϕα1,i ∧
∧
i∈Iα2

23ϕα2,i, (2.2)

where ϕαinit is a propositional formula characterizing the initial conditions; ϕα1,i are transition rela-

tions characterizing safe, allowable moves and propositional formulas characterizing invariants; and

ϕα2,i are propositional formulas characterizing states that should be attained infinitely often. Many

interesting temporal logic specifications can be expressed or easily transformed into GR(1) specifi-

cations. See [15,70,88,89] for a more precise treatment of GR(1) synthesis and case studies in which

GR(1) synthesis has been used for applications including hardware synthesis, motion planning for

autonomous vehicles, and vehicle management systems.

Given a GR(1) specification, the digital design synthesis tool implemented in JTLV (a framework

for developing temporal verification algorithm) [74] generates a finite automaton that represents a

switching strategy for the system. The temporal logic planning (TuLiP) toolbox, a collection of

python-based code for automatic synthesis of correct-by-construction embedded control software

provides an interface to JTLV [90]. For examples discussed in this thesis, we primarily use TuLiP.

Additional two-player temporal logic game solvers include Anzu [42], Lily [40], Acacia [31], and

Unbeast [29]. Anzu implements a GR(1) game solver symbolically. Lily accepts arbitrary LTL

specifications and partially alleviates the resulting high computational cost through optimizations

of the intermediate steps in the implementation [41]. Acacia and Unbeast focus on the concept of

bounded synthesis from [82] and [27], respectively. See [28] for a detailed comparison of these tools.

Finally, for temporal logic specifications in the form of safety formulas, it may be possible to obtain

performance improvements by exploring solvers that are optimized to fragments (potentially more

restrictive than GR(1)) of LTL, e.g., see [86].

2.4 Distributed Synthesis

In centralized control protocols the controller has access to measurements of all controlled and

environment variables, and is able to determine the evolution of all controlled variables in order to

satisfy a set of specifications. Because of their scale and complexity, control architectures for electric

power systems on more-electric aircraft will likely have distributed structures. Reasons for migrating

17

to distributed control architectures include:

Hardware challenges: A centralized controller onboard an aircraft requires wiring from a central

processing unit to all components. The total length of wire can significantly increase the weight of

the aircraft. Local controllers allows for shorter wires and increased efficiency due to this reduction

in weight.

Increased resilience to failure: By distributing the implementation of the controller, the elec-

tric power system can be more robust to failures, i.e., if one portion of the electric power system

malfunctions, the other sections are unaffected and can still be fully operational.

Reduction of computational complexity: With an increased number of electric components, the

combination of configurations the controller must account for quickly becomes intractable for cur-

rent verification and synthesis tools as well as testing. A distributed controller design correctly

decomposes the design task into smaller subproblems each of which may be easier to cope with.

Advantages from the distribution of the control design come with increased importance of reason-

ing about the interfaces between the controlled subsystems. There is relatively extensive literature

on compositional reasoning [31, 54, 64]. Here, we follow the exposition from recent work in [67].

Figure 2.4 illustrates the decomposition of global specifications into local specifications. For ease of

presentation, consider the case where the system SYS is decomposed into two subsystems SYS1 and

SYS2. For i = 1, 2, let Ei and Pi be the environment variables and controlled variables for SYSi

such that P1∪P2 = P and P1∩P2 = ∅. Let ϕe1 and ϕe2 be LTL formulas containing variables in E1

and E2, respectively. Similarly, let ϕs1 and ϕs2 be LTL formulas in terms of E1 ∪ P1 and E2 ∪ P2,

respectively. If the following conditions hold

1. any execution of the environment that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2),

2. any execution of the system that satisfies (ϕs1 ∧ ϕs2) also satisfies ϕs, and

3. there exist two control protocols that realize the local specifications (ϕe1 → ϕs1) and (ϕe2 →

ϕs2),

then, by a result in [67], implementing these two control protocols together leads to a system where

the global specification ϕe → ϕs is met.

Two factors should be taken into account when choosing local environment and controlled vari-

ables E1, E2, P1, and P2 and the local specifications. The first is the size of the state space involved

in the local synthesis problems. If the possible valuations of variables involved in local specifications

are substantially less than the possible valuations of the variables in the global specification, then

18

!"!#$

!"!%$

∧!

Figure 2.4: A schematic for the decomposition of global specifications into distributed controllers for
two subsystems. The overall environment assumptions ϕe and system guarantees ϕs are distributed
into the two subsystems SYS1 and SYS2. Each subsystem has its own local environment assumptions
and system guarantees. In addition, SYS1 has an extra set of local guarantees φ1 that interact with
SYS2 as environment assumptions φ′1, while SYS2 guarantees contained in φ2 act as environment
assumptions φ′2 for SYS1.

distributed synthesis would be computationally more efficient than the centralized one (assuming

the lengths of LTL formulas for the global and the local speciÞcations are of the same order). The

second factor is the conservatism of the distributed synthesis. It is possible that even if the central-

ized problem is realizable, the local distributed synthesis may be unrealizable. Subsystems may need

to interact with each other through shared variables (either information or physical values) in order

to become realizable. As seen in Figure 2.4, subsystem SYS1 provides additional guarantees φ1 to

subsystem SYS2, evaluated as an environment assumption and denoted as φ′1. The same interaction

applies to the interface between SYS2, which sends its own local guarantees φ2 to SYS1. If the

following local specifications (and interface refinements) hold:

φ′2 ∧ ϕe1 → ϕs1 ∧ φ1, (2.3)

φ′1 ∧ ϕe2 → ϕs2 ∧ φ2. (2.4)

Then the global specification ϕe → ϕs is realizable. Indeed, let sets of executions be defined as

σe = {σ | σ |= ϕe}; ϕe′ = {σ|σ |= (ϕe1 ∧ ϕe2)};

σs = {σ | σ |= ϕs}; ϕs′ = {σ|σ |= (ϕs1 ∧ ϕs2)}.

19

Condition 1 implies that Σe′ ⊇ Σe, whereas condition 2 implies that Σs′ ⊆ Σs. Local variables and

specifications should be chosen so that conditions 1 and 2 are satisfied. Moreover, the conservatism

can be reduced by choosing ϕej and ϕsj such that Σe′ is as “small" as possible, and the set Σs′ is as

“large" as possible in the sense of set inclusion.

20

Chapter 3

Synthesis of Reactive Control
Protocols with Timing

3.1 Overview

Controllers for an electric power system must be designed so that the system satisfies all safety and

reliability properties and requirements. These requirements are usually text-based lists, oftentimes

ambiguous in intent or inconsistent with each other. The process of verifying the correctness of a

system with respect to specifications is expensive, both in terms of cost and time. In the following

chapter, we “specify and synthesize” a solution to the design problem instead of “design then verify.”

In this approach, we begin by converting text-based system specifications for an electric power

system into a mathematical formalism using a temporal logic specification language. From the set of

system specifications, we then automatically synthesize centralized and distributed controllers, and

examine design tradeoffs between different control architectures.

One of the challenges in automatically synthesizing controllers is its computational complexity.

For a certain class of properties, a fragment of LTL known as Generalized Reactivity (1), a dis-

crete planner can be automatically computed in polynomial time (with respect to the size of the

state space) [70]. Applications of synthesis tools, however, are limited to small problems due to

the state space explosion issue. To address this challenge, we utilize previous work on the composi-

tional design of correct-by-construction, distributed protocols for an electric power system [67, 68].

Distribution of the design and implementation of the electric power system will reduce the com-

putational complexity, as well as allow for the design of flexible control architectures in terms of

modularity, fault-tolerance, and integrability [51]. The drawbacks to distributed architectures are

in the coordination between subsystems and ensuring that overall system requirements are satisfied.

Distributing system requirements introduces the notion of incompleteness in specifications (i.e., the

21

lack of a guarantee subsystem requirements satisfy global specifications.) In addition, distributed

controllers can be overly conservative (e.g., more generators need to be utilized in order to guarantee

power to buses).

This chapter is structured as follows: Section 3.2 outlines the standard high-level specifications

for an electric power system. Formalized LTL specifications are presented in Section 3.3. Section

3.4 addresses how actuation delays are captured. Sections 3.5 and 3.6 present the setup and results

for a case study topology for both central and distributed controllers. Section 3.6.3 presents some

benchmarks based on timing delays.

3.2 Specifications for Aircraft Electric Power Systems

Given a topology of an electric power system like that of the single-line diagram in Figure 2.1,

the main design problem becomes determining all correct configurations of contactors for all flight

conditions and faults that can occur in the system. For a configuration to be “correct” means that

it satisfies system requirements, also referred to as specifications. We now discuss a few sample

specifications relevant to the problems found in Figure 2.1.

Specifications are generally expressed in terms of safety, performance, and reliability properties.

A few common ones considered in the typical electric power system control protocol design problem

are listed below.

Safety: Safety specifications constrain the way each bus can be powered and the length of time

it can tolerate power shortages. Increasing the number of generators operating at the same time

increases the amount of power available to the electric power system. In order for AC generators

to work in parallel with each other, however, they need to match their respective frequencies, and

phase voltages. A mismatch in these properties can lead to loss of availability and even damage of

the generator or distribution system. To avoid such difficulties of synchronization, we disallow any

paralleling of AC sources, i.e., no bus should be powered by multiple AC generators at the same

time.

Essential loads, such as flight critical actuators, are connected to essential AC and DC buses.

These loads should never be unpowered for more than 50 msec. The 50 msec specification is a

number used in industry standards in most aircraft power requirement documents. This “gap” time

is short enough to ensure that load profiles are undisturbed (for safety of the aircraft), but is long

enough for contactors to open or close and still avoid paralleling of sources.

The system is reconfigured through a series of changes in the contactor states. The time it

22

Table 3.1: Source Priority Table for HVAC Buses

Priority Bus 1 Bus 2 Bus 3 Bus 4
1 G2 G3 G4 G5

2 G5 G2 G5 G2

3 G3 G5 G2 G4

4 G4 G4 G3 G3

takes for contactors to switch configurations will vary due to physical hardware constraints. Typical

opening times can range between 10-20 msec, while closure times are between 15-25 msec [62]. Such

delays need to be considered due to timing constraints on the buses and non-paralleling of sources.

Remark 2 Specifications for DC components in the electric power system are the same as those

described by the AC specifications except for two simplifications: (1) The non-paralleling of AC

sources specification may be ignored, and (2) no DC bus may ever be unpowered.

Performance: Performance specifications rank desired system configurations. A generator

priority list is assigned to each bus specifying the order of sources each bus should be powered . If

the first priority generator is unavailable, then it will be powered from the second priority generator,

and so on. A hypothetical prioritization list is shown in Table 3.1 for HVAC Bus 1. Because G2 is the

first priority on the list, if the left high-voltage generator from Figure 2.1 is healthy, then HVAC BUS

1 receives power from that generator. If G2 is unhealthy, then HVAC BUS 1 should receive power

its second priority G5, and so forth. These source priority tables are usually created manually, or

borrowed from legacy systems. Thus, there is no guarantee on feasibility of all configurations or may

not cover all possible conditions. Moreover, as there is no explicit priority between buses connected

to generators, priority tables are oftentimes be contradictory. The end goal is to replace tables,

which are designed with an implicit metric, with an explicit ”cost function” or metric written as a

formal specification.

Reliability: Reliability specifications describe the bounds on probability of failures within the

system. Every component comes with a reliability level. A level ε of reliability, for example, indicates

that one failure will occur every 1
ε hours of operation. Given multiple component failures, systems

should be designed to tolerate any combination of component faults that has a joint probability

of more than a certain pre-specified level. Practically, these reliability specifications determine the

combination of simultaneous faults that need to be accounted for by the control protocol. An electric

power system should still be able to satisfy its safety specifications given any combination of faults

that lead to the pre-specified level. In the design procedure proposed in subsequent sections, reli-

ability specifications are implicitly accounted for through the environment assumptions by limiting

23

the number of generator faults that are allowed to occur at each step. If each component has a

known failure rate, then no combination of failures can exceed a rate of, 10−9, for example.

3.3 Formal Specifications For Aircraft Electric Power Systems

Given the topology in Figure 2.1, the following list details the temporal logic specifications that

typically exist in the synthesis of control protocols for electric power systems.

Environment Assumptions: Let G represent the set of all generators in the electric power

system topology. Let the Boolean variable g denote the health status of generatorG ∈ G. That is, the

lowercase symbol represents the health status of generator denoted by the corresponding uppercase

symbol. We use a similar convention between upper and lowercase symbols in the remainder of the

paper. The environment assumption states that at least one generator must be healthy, i.e., have a

status of 1, at any given time. This is written as

�

{∨
G∈G

(g = 1)

}
. (3.1)

Unhealthy Generators: An unhealthy generator connected to the system could create a short-

circuit failure, generate excess torque, cause overheating, or possible fires. We require any contactor

adjoining a generator to open when that generator becomes unhealthy. Let C represent the set

of all contactors in the electric power system. For G ∈ G, let CG ⊆ G be the contactors directly

neighboring G. In Figure 3.1, for example, the sets CG1 and CG2 consist of contactors C1 and C2,

respectively. For a contactor C, let c be its status (for example, 0 represents an open contactor, 1 a

closed contactor). Furthermore, the Boolean variable c̃ denotes the controller command (intent) for

contactor C. Note the difference between status of contactor, denoted by c and intent of contactor

c̃. Once the intent c̃ gets set, that command then gets executed, i.e., status c follows c̃ at a possibly

later time step.

If a generator becomes unhealthy, then the contactors connecting to it should be commanded

open, i.e., take the value of 0. The specification for disconnecting an unhealthy generator can be

written as ∧
G∈G
�

{
(g = 0)→

∧
C∈CG

(c̃ = 0)

}
. (3.2)

No Paralleling of AC Sources: One way to avoid paralleling AC sources is to explicitly

enumerate and eliminate all configurations in which buses can be powered from multiple sources.

24

B1! B2!

G1!

C1! C2!

C3!

G2!

Figure 3.1: A single-line diagram with two generators, two buses, and three contactors. Paralleling
of AC sources can occur if all three contactors C1, C2, and C3 are all closed.

In the example shown in Figure 3.1, paralleling could occur if contactors C1, C2, and C3 were

all closed at the same time. A specification would then be to never allow all contactors along a

path to close at the same time if that path could connect two AC sources. This “global" approach

requires enumerating all possible paths between pairs of AC sources, with the number of paths and

components increasing as the topology becomes more complex.

We take a “localized” view on specifications that no AC bus can be simultaneously powered from

multiple sources. Instead of examining entire paths connecting generators to buses, we focus on the

source of power coming into or flowing out of each bus. We first introduce the notion of power flow

direction in contactors, and then examine the flow direction at each bus.

Power flow direction is defined for contactors directly connecting two buses. Contactors connect-

ing generators to buses are assumed to only allow power to flow in one direction from generator to

bus. (Note that while this assumption is valid for this problem formulation, in reality the contactor

must respond in a manner to avoid backfeeding power into a generator.) Let the set CB ⊂ C be the

set of all contactors that directly connect two AC buses. Let each bus connected to a contactor in

CB represent a “side” or direction from which power can flow into or out of, and denote them as

direction 1 and direction -1. In Figure 3.1, for example, contactor C3 directly connects buses B1

and B2, which are located on side 1 and -1 of C3, respectively. Consider contactor C ∈ CB . The

variable c̃ is the intended status of the contactor, and can take values of {−1, 0, 1} corresponding to

a closed contactor with power flowing into side -1, an open contactor, and a closed contactor with

power flowing into side 1, respectively. Note that the status of contactors connecting generators is

Boolean, while the status of contactors connecting two AC buses can take three values.

25

B3! B4!B1! B2!

G2! G3! G4!G1!

C!

Figure 3.2: A single-line diagram depicting contactor C and its connecting two buses B2 and B3, as
well as neighboring nodes in N (B−1C) and N (B1

C).

For C ∈ CB , let B1
C denote the bus on side 1 of contactor C, and B−1C the bus on side -1 of

contactor C. The set N (B1
C) contains all nodes, defined as either a bus or a generator, that are

directly connected to the bus on side 1 of contactor C. Similarly, N (B−1C) is the set of nearest

nodes connected to the bus on side -1 of contactor C. Sets N (B1
C) and N (B−1C) do not include any

contactors. For any bus B, let the Boolean variable b represent its power status (0 for unpowered, 1

for powered). Consider contactor C in Figure 3.2, where B1
C = B3, B−1C = B2, N (B1

C) = {G3, B4},

and N (B−1C) = {G2, B1}.

The direction of power flow through a contactor is defined by identifying the status of buses

directly connected to a contactor, and neighboring components N (B) of those buses. For each

component X ∈ N (B1
C) or X ∈ N (B−1C), x is the status. For contactors C ∈ Cb, if no node in

N (B1
C) is powered or healthy (depending on whether the node is a bus or generator, respectively),

then C cannot direct power from side 1 to side -1 (i.e., c̃ cannot be 1). Alternatively, if no node in

N (B−1C) is powered or healthy, then C cannot direct power from side -1 to side 1 (i.e., c̃ should not

be -1). Specifications for contactor directionality can be written as the following.

If the bus on side 1 of contactor C is unpowered and none of its neighboring nodes are powered,

then its states should be set to −1 (cannot direct power from side 1):

∧
C∈Cb

�

¬
(b1C = 1

)
∧

∨
X∈N (B1

C)

(X = 1)

→ ¬ (c = −1)

 . (3.3)

If the bus on side -1 of contactor C is unpowered and none of its neighboring nodes are powered,

26

B!
B!

C!

Figure 3.3: A portion of the single-line diagram from Figure 2.1. Non-paralleling specifications are
written from the “local" viewpoint of each bus. Bus B is on side -1 of contactor C−1B , and on side
1 of contactor C1

B . No combination of two contactors can be connected (and directing power into a
bus) at the same time.

then its states should not be set to 1 (cannot direct power from side -1):

∧
C∈Cb

�

¬
(b−1C = 1) ∧

∨
X∈N (B−1

C)

(X = 1)

→ ¬(c = 1)

 . (3.4)

Once contactor directionality is established, specifications for non-paralleling of AC sources can

be examined at the “local" level by considering each individual AC bus. Let BAC be the set of AC

buses. We now consider every combination of contactors for which power may flow into the same

bus. Consider again the set CG ⊂ C to be the set of all contactors connecting bus to a neighboring

generator. In Figure 2.1, each bus has, at most, three contactors through which power can flow

into the bus. The following specifications are written for this case, and may be generalized for any

number of contactors through which power can flow into a bus. For each bus B ∈ BAC , let each

contactor C 6∈ CG connected to B represent a “side" or direction of B. In typical configurations only

two directions are needed, though this method can be generalized for more sides. For bus B that is

on side 1 of a contactor, denote that contactor as C1
B . Denote contactor C−1B as the contactor for

which bus B is on the -1 side. We disallow any cases where power can flow into the bus through

27

multiple paths. These specifications can be written as

∧
B∈BAC

�¬
∨

G∈N (B),C∈CG

[
(c = 1) ∧ (c1B = 1)

]
,

∧
B∈BAC

�¬
∨

G∈N (B),C∈CG

[
(c = 1) ∧ (c−1B = −1)

]
,

∧
B∈BAC

�¬
[
(c1B = 1) ∧ (c−1B = −1)

]
.

(3.5)

Power Status of Buses: A bus can only be powered if a neighboring generator is healthy or

a neighboring bus is powered, and the contactor connecting to that bus is closed. If no neighboring

node is healthy or powered, or the contactor is open, then the bus will be unpowered. Let B be the

set of all AC and DC buses. Consider generators G ∈ N (B) to be the neighboring generators of bus

B. For all generator-contactor pairs directly neighboring a bus, the specification can be written as

∧
B∈B
�

 ∨
C∈CG,G∈N (B)

((c = 1) ∧ (g = 1))

→ (b = 1)

 . (3.6)

We then examine all neighboring bus/contactor pairs connected to bus B. Let B∗ ∈ N (B) be a

neighbor bus to B, where N 1(B) ⊂ N (B), and N−1(B) ⊂ N (B). Bus B is on side 1 of components

in N 1(B), and side -1 of N−1(B). A bus may be powered if one of the following holds:

Bus B is powered if it is on side 1 of a contactor and neighboring bus pair, the contactor is closed

with power flowing in the direction of side 1 and the neighboring bus is powered. Then,

∧
B∈B
�

 ∨
B∗∈N 1(B)

(b∗ = 1) ∧ (c1B = 1)

→ (b = 1)

 . (3.7)

Bus B is powered if on side -1 of the contactor and bus pair, the contactor is closed with power

flowing in the direction of side -1, and the neighboring bus is powered. This is written as

∧
B∈B
�

 ∨
B∗∈N−1(B)

(b∗ = 1) ∧ (c−1B = −1)

→ (b = 1)

 . (3.8)

If none of the above three conditions hold, bus B will be unpowered.

Safety Criticality of Buses: Certain buses within the distribution system will be connected

to safety-critical loads, e.g., flight actuators or de-icers, and need to remain powered. Due to non-

paralleling specifications, however, these buses also need to be able to stay unpowered for short

28

lengths of time in order to reconfigure contactors without violating specifications. Let Bs be the set

of all safety-critical buses. Denote the allowable length of time a bus can remain unpowered as T . For

example, typical values for T fall in the 50 msec range [62]. LTL reasons about temporal ordering,

but does not explicitly address the notion of real-time. Time in this formulation is implemented

through an additional clock variable θB associated with bus B, and where each “tick” of the clock

represents δt time. The “tick” of the clock δt represents both the time it takes for a contactor to

open or close (e.g., 10 msec), and the controller sampling time. Thus θB can takes values from

{0, δt, 2δt, . . . , Tδt}. For each safety-critical bus in B ∈ Bs, these specifications can be written as the

following.

If bus B is unpowered, then in the next step, clock variable θB will increment by 1 unit, which

is written as

� {(b = 0)→ (#θB = θB + δt)} . (3.9)

If bus B is powered, then in the next step, clock variable xB is reset to 0. This is written as

� {(b = 1)→ (#θB = 0)} . (3.10)

Clock variable xB will never be greater than the maximum allowable unpowered time T
δt . This

is implemented by

�

{
θB ≤

T

δt

}
. (3.11)

3.4 Capturing Actuation Delays

LTL can be used to specify “real-time” properties for synchronous systems in which all processes (i.e.,

components) proceed in a lock-step manner. The next operator has a “time” measure so that, for a

given property ϕ, #ϕ signifies at the next time instant ϕ is true. To specify a property occurring at

some point in the future, multiple next operators can be used, such that #kϕ , # # . . .# ϕ asserts

that property ϕ holds k time instants in the future. As an alternative to multiple next operators,

the “timed” specifications in the electric power system uses a clock variable to define an equivalent

property.

For simplicity, we can assume ideal contactors that can be instantaneously controlled. It is possi-

ble, however, to capture delays in contactor opening and closing times, as well as the communication

delays between the controller and the contactors. To this effect, one can introduce a controlled vari-

29

able c̃ to represent the controller intent for contactor C and treat the contactor as an environment

variable. The uncertain delay between the controller intent and contactor state can be handled

by the use of an additional clock variable xC for each contactor C, where each “tick” of the clock

represents δ time. If the contactor intent is open and the contactor state is closed, the contactor

opens within [Tomin , Tomax] units of time unless a close command is issued before it opens. If the

contactor intent is closed and the contactor state is open, the contactor closes within [Tcmin , Tcmax]

units of time unless an open command is issued before it closes. Once the contactor intent is set,

if the contactor state does not match the intent, at the next step clock xC will increase by δ. If

contactor state and intent match, then at the next step clock xC resets to zero:

�{(#c = c̃)→ (#xC = 0)}.

When the control command is the same as the contactor state, the contactor state remains the same,

i.e.,

�{(c̃ = c)→ (#c = c)}.

Finally, the assumption capturing the contactor closing behavior in relation to the controller input

intent is given by

� {(c̃ = 1 ∧ c = 0 ∧ (xC < Tcmin))→ (#c = 0 ∧#xC = xC + δ)} ,

� {(c̃ = 1 ∧ c = 0 ∧ (xC ≥ Tcmin))→ (#c = 1 ∨#xC = xC + δ)} ,

�(xC ≤ Tcmax).

The contactor opening behavior can be formally captured in a similar manner. The formulas men-

tioned in this remark enter to the control synthesis problem as new environment assumptions when

delays are taken into account.

3.5 Case Study

We address the problem of primary distribution in an electric power system by examining a simplified

version of the single-line diagram. Figure 3.4 shows the portion of the single-line diagram considered

for the problem formulation used in the rest of this chapter. This topology consists of high-voltage

30

B3! B4!

C4! C7!

C5! C6!

B1! B2!

G1!

C1! C2!

C3!

G2! G3! G4!

Figure 3.4: Simplified diagram of the single-line diagram used in the centralized problem. Four
power sources connect to four buses through a series of seven contactors.

AC components: four generators connect to four buses via seven contactors.

3.5.1 Variables

Variables used in this formulation, and shown in Figure 3.4, are classified as environment, controlled,

or dependent.

Environment Variables: Consider G1 and G4 to be standard high-voltage AC generators,

while G2 and G3 are backup generators connected to the APU. The health statuses of the all four

sources g1, g2, g3, and g4 can each take values of healthy (1) and unhealthy (0). Again, we distin-

guish component variables and status variables by upper and lower cases, e.g., the first generator is

represented by G1, while its health status is denoted by g1.

Controlled Variables: The statuses c1, c2, c5, c6 of contactors connecting generators to buses

can each take values of open (0) or closed (1). A closed contactor will allow power to pass through,

while an open one does not. The statuses (c3, c4, c7) of contactors located between buses can take

three values. A value of 0 denotes an open contactor. A value of -1 or 1 signifies a contactor is

closed and that power is flowing from side -1 or 1, respectively.

Dependent Variables: The power statuses (b1, b2, b3, b4) of buses can be either powered (1) or

unpowered (0) depending on the status of neighboring contactors and generators.

3.5.2 Specifications

Given the topology in Figure 3.4, the specifications described in Section 3.3 reduce to the following

specifications used in the synthesis problem for the simplified single-line diagram.

Environment Assumption: The assumption that at least one power source is always healthy

31

from (3.1) becomes

� {(g1 = 1) ∨ (g2 = 1) ∨ (g3 = 1) ∨ (g4 = 1)} . (3.12)

No Paralleling of AC Sources: In Figure 3.4, an instance of paralleling may occur if G1 and

G2 are both healthy, and contactors C1, C2, and C3 are all closed. Consider, for example, power

flow direction for contactor C3. In Figure 3.4, we define bus B1 as the bus on side -1 of C3, and

bus B2 on side 1 of C3. B1 corresponds to B−1C3
from notation used in Section 3.3, while B2 = B−1C3

.

Then, the neighbor nodes of B1 is G1, i.e., N (B1) = {G1}, and N (B2) = {G2, B3}. Equations (3.3)

and (3.4) can be reduced to the following.

If generator G1 is unhealthy and bus B1 is unpowered, then contactor C3 cannot direct power

from side -1 to side 1, i.e., it cannot take a value of 1, and the intent variable c̃3 should be assigned

accordingly. This is written as

� {¬ ((g1 = 1) ∧ (b1 = 1))→ ¬(c̃3 = 1)} . (3.13)

If generator G2 is healthy and B2 is unpowered, or if B3 and B2 are unpowered, then C3 cannot

direct power from side 1 to side -1, i.e., take a value of −1, and the intent variable c̃3 should be

assigned accordingly. This can be written as

�
{

(¬((g2 = 1) ∧ (b3 = 1)) ∨ (¬((b2 = 1) ∧ (b3 = 1)))→ ¬(c̃3 = −1)
}
. (3.14)

A similar argument is made for contactor statuses c4 and c7.

Given direction of flow through contactors, we can examine each bus and eliminate any configu-

ration of contactors which may allow for paralleling of sources. Consider bus B2, which we define to

be on side 1 of C3 and on side -1 of C4. Following the notation in Section 3.3, contactor C2 ∈ CB2
,

C3 = C1
B2

, and C4 = C−1B2
. Then, equation (3.5) reduces to the following specifications for bus B2

� {¬((c2 = 1) ∧ (c3 = 1))} ,

� {¬((c2 = 1) ∧ (c4 = −1))} ,

� {¬((c3 = 1) ∧ (c4 = −1))} .

(3.15)

Specifications for buses B1, B3, and B4 are applied similarly.

Power Status of Buses: Consider bus B2, located on side -1 of contactor C4, and on side 1

of contactor C3. Equations (3.6) and (3.8) reduce to the following.

32

For generator G2 ∈ N (B2) and C2 ∈ CG2
, if G2 is healthy and contactor C2 is closed, then B2

will be powered. This is written as

� {((g2 = 1) ∧ (c2 = 1))→ (b2 = 1)} . (3.16)

For C3 = C1
B2

and B1 ∈ N 1(B2), if bus B1 is powered and contactor C1 is closed with power

flowing into side 1, then B2 will be powered. This is written as

�{((b1 = 1) ∧ (c3 = 1))→ (b2 = 1)}. (3.17)

For C4 = C−1B2
and B3 ∈ N−1(B2), if bus B3 is powered and contactor C4 is closed with power

flowing into side -1, then B2 will be powered. This is written as

�{((b3 = 1) ∧ (c4 = −1))→ (b2 = 1)}. (3.18)

If none of the previous properties holds, then B2 will be unpowered, written as

�{(¬((g2 = 1) ∧ (c2 = 1)) ∨ ((b1 = 1) ∧ (c3 = 1))

∨((b3 = 1) ∧ (c4 = −1)))→ (b2 = 0)}.
(3.19)

A similar set of specifications is applied for bus statuses B1, B3, and B4.

Safety Criticality of Buses: In this problem, we consider buses B1 and B4 to be safety-critical

buses, and can be unpowered for no longer than five time steps. Each “tick" of the clock variable

θB1
and θB4

represents 10 msec. A safety specification for bus B1 is of the following form:

If B1 is unpowered, then at the next time step clock θB1
increments by one “tick" such that

�{(b1 = 0)→ (#θB1
= θB1

+ 1)}. (3.20)

If B1 is powered, then at the next time step reset clock θB1 to zero. This is written as

�{(b1 = 1)→ (#θB1 = 0)}. (3.21)

To ensure that B1 is never unpowered for more than 5 steps (e.g., 50 msec), the specification

becomes

�{θB1 ≤ 5}. (3.22)

33

Unhealthy Generators: When a generator becomes unhealthy the controller will open its

nearest contactor connecting the generator to a bus. In Figure 3.4, the set of neighboring contactors

to generators are N (G1) = C1, N (G2) = C2, N (G3) = C5, and N (G4) = C6. If, for example,

generator G3 becomes unhealthy, its neighboring contactor status intent should be set to open (0).

This specification can be written as

� {(g3 = 0)→ (c̃5 = 0)} . (3.23)

3.6 Results

Consider a system model S with a set of variables V = S ∪ E. Environment variables E includes

generators G1 − G4, and system variables S consist of contactors C1 − C7 and buses B1 − B4.

Specification ϕ consists of ϕe and ϕs such that

ϕ = (ϕe =⇒ ϕs). (3.24)

Given environment assumption ϕe from Eq. (3.12), and ϕs as the conjunction of all specifications

from Eqs. (3.13)-(3.23), we synthesize a control protocol such that Eq. (3.24) holds. The output of

the synthesis procedure includes a discrete planner represented as a finite-state atuomaton. States

are pairs of system and environment states. If the system follows the transitions in the automaton,

the system will satisfy its requirements under all allowable environment actions.

3.6.1 Centralized Controller Design

We now present the results for the centralized case of the electric power system design problem with

variables and specifications discussed in the previous section. Figure 3.5 shows the simplified single-

line diagram used in problem formulation overlaid with a sample simulation run. The horizontal

axis of each graph in the figure represents the step of the simulation, starting at step 0 and ending

with step 5.

The four graphs in row 1 correspond to the statuses of the environment variables. These values

are arbitrarily input, subject to the restrictions placed on the environment. At each step, generator

statuses can switch between healthy and unhealthy as long as at least one source remains healthy.

Graphs in rows 2 and 3 correspond to the contactor statuses generated from the synthesized control

protocol. Because power can only flow from a generator, the graphs for the contactors shown in

34

B1! B2! B3! B4!

GL!

C1!

AL! AR! GR!

C2!

C3! C4! C7!

C5! C6!

!"#$%!&'
()!"#$%!&'

!"#$%!&'
()!"#$%!&'

!"#$%!&'

()!"#$%!&'
!"#$%!&'

()!"#$%!&'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-'
+.")'

*$+,"-/012!%'
+.")'

*$+,"-/$"3'
*$+,"-/012!%'

+.")'
*$+,"-/$"3'

*$+,"-/012!%'
+.")'

*$+,"-/$"3'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

.+4"0"-'
().+4"0"-'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :' 5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

5' 6' 7' 8' 9' :'

!"#$%$

!"#$&$

!"#$'$

!"#$($

,%".' ,%".' ,%".' ,%".'

,%".' ,%".' ,%".' ,%".'

,%".'
,%".' ,%".'

,%".' ,%".' ,%".' ,%".'

Figure 3.5: A simulation result for a centralized controller for the electric power system. The
horizontal axis represents the simulation step. Row 1 shows the environment inputs for generator
healths. Based on these values, the controller values for contactors are set to either open or closed,
as seen in Row 2. Additionally, Row 3 shows the direction of power flow through contactors C3, C4,
and C7. Row 4 shows the power status for all four buses.

row 2 can only take values of open or closed. Graphs in row 3, however, can take three values

corresponding to open or closed (with a direction). Graphs in row 4 correspond to the buses, and

the vertical axis represents the power status of eachbus. Because buses are dependent variables,

these values are determined by the environment variables as well as the contactor configurations.

To better understand the results shown in Figure 3.5 let us examine the simulation graphs for a

single step, namely step 2. Generator G1 is unhealthy and contactor status C1 is open. Generator G2

is healthy, and C2 is closed. Bus B2 is powered because it is connected to G2, and B1 is unpowered

because both neighboring contactors C1 and C3 are open. Meanwhile, generator G4 is healthy and

C6 is closed. Therefore, bus B4 is powered. Note, however, that C5 remains closed even though the

right auxiliary generator is unhealthy. In the previous step, G3 was healthy, and its intent to open

c̃5 in step 2 does not get implemented until step 4. In order to ensure non-paralleling of sources,

contactor C7 must remain open at step 2 because C5 is closed, even though no power is flowing from

generator G3. As a result, bus B3 is unpowered.

For safety-critical buses B1 and B4, their statuses are never unpowered for more than two time

steps throughout the entire simulation sequence. This specification is not imposed on the middle two

buses, however, and and thus B3 can remain unpowered for five steps without violating any system

requirements. In addition, at no time in the simulation run are AC sources paralleled. Consider, for

example, power flowing to bus B1. When contactor C1 is closed (steps 0, 1, and 4), C3 is always

open.

35

The synthesis process produces a control protocol in the form of a finite state automaton. The

resulting automaton for the electric power system centralized controller takes roughly one minute

to solve on a MacBook Pro with a 2 GHz Intel Core Duo processor, and has 200 states. Within

each automaton state is a list of successor states, which represent possible configurations for the

system depending on the behavior of the environment states. Once the environment acts, then

the system responds and the automaton steps to its next state. From State 0, for example, the

automaton can move to State 1 if all generators and APUs become unhealthy, or move to State 2

if the right APU remains healthy but the other three power sources become unhealthy. Note that

State 1 has no successor states because its environment violates the assumption that at least one

power source remain healthy at all times. Thus as long as the environment satisfies its assumption,

then the system will satisfy its specifications. We can also synthesize a centralized case where the

total number of contactors allowed to switch at each particular time step is limited by hardware

constraints. Consider contactors C1, C2, C5, and C6 to be controlled separately because they are

connected to generators. The remaining three contactors, however, are physically controlled by a

single hardware that is only capable of switching two contactors at one time. This problem, with the

environment assumption (one source is always healthy), no longer becomes realizable as it violates

the safety requirements for buses. If the environment assumption is relaxed, i.e. at least two sources

must always remain powered, then the problem once again becomes realizable. A similar approach

holds for the case when only one of the three middle contactors can be switched at one time.

3.6.2 Distributed Control Architecture

In this section we describe the results for a distributed control structure based on the refinement tech-

nique discussed in Section 2.4. More specifically, we decompose the centralized electric power system

topology into two smaller subsystems and synthesize two local controllers. When implemented to-

gether, these controllers are guaranteed to be correct with respect to the global specification. The

physical decomposition of the electric power system is shown in Figure 3.6. Let SYS1 represent

subsystem on the left, and SYS2 the subsystem on the right. The environment and system variables

for the two subsystems are denoted by e1, s1, e2 and s2, respectively.

We now present results for two types of distributed control architectures: master/slave and

bi-directional.

Master/Slave Control Architecture: For a master/slave architecture, power flow between

the decomposed systems is controlled by one side, and unidirectional only. For the decomposition

36

B3! B4!

C4! C7!

C5! C6!

B1! B2!

GL!

C1! C2!

C3!

AL! AR! GR!

SYS1! SYS2!

Health Status !
(of SYS1 generators)!

Power!

Figure 3.6: A distributed controller decomposition for the electric power system. Components
enclosed within the dashed rectangles are controlled by their own respective controllers. The dashed
arrow represents information flow, in the form of a health status variable, directed from SYS1 to
SYS2. The solid arrow represents the physical transfer of power from SYS2 to SYS1.

shown in Figure 3.6, subsystem SYS2 is the “master” and can control the supply of power that

can flow via contactor C4. Subsystem SYS1 is the “slave” and can only receive power when SYS2

provides it. We decompose the global environment assumption, in which at least one power source

must remain healthy at each step, such that

ϕe2 = �(g3 = 1 ∨ g4 = 1),

ϕe1 = �(true).

The specification for ϕe1 states that there are no restrictions on the behavior of ϕe1 . The assumption

placed on ϕe2 ensures that for any execution σ ∈ Σ, the controller for SYS2 is able to supply power

to SYS1 at any step. Health status information for g1 and g2 are sent to the SYS2 via a health

status variable H1. The variable is set to 0 if neither source is healthy, and is set of 1 if either g1 or

g2 is healthy so that ϕe2 can assume knowledge about the health status of the left side.

In order for the master/slave distributed synthesis problem to become realizable, additional

assumptions and guarantees (i.e., interface refinements) need to be implemented. It is not enough

for generators G3 and G4 to be able to generate power at all steps. The controller for SYS2 must also

be able to guarantee that power can be delivered to SYS1. Thus, we introduce φ2 as a guarantee

for controller SYS2, and denote φ′2 as an assumption for controller SYS1. Because the master

subsystem controls the flow of power, a single-sided refinement is sufficient for the design problem

to be realizable, and we can set φ1 = true. The additional specification φ2 imposes conditions on

contactor status c4 and bus status b3 (the components nearest to the interface of SYS2 and SYS1).

37

These specifications are of the following form: Bus B3 is never unpowered for a pre-specified period

of time T . Essentially, B3 becomes a safety-critical bus, and we introduce a variable t3 that is used

as a counter to monitor the power status

�{(b3 = 0)→ (#t3 = t3 + 1)} ∧ �{(b3 = 1)→ (#t3 = 0)} ∧ �{t3 ≤ T}.

If health status H1 = 0, i.e., both G1 and G2 are unhealthy, then, whenever B3 is powered, C4

will close

�{((H1 = 0) ∧ (B3 = 1))→ (c̃4 = −1)}.

A similar modification is made for the case when power flows from SYS1 to SYS2 (and SYS2 still

remains master). In both of the cases discussed in the master/slave architecture, all other specifi-

cations remain the same as those discussed from Section 3.3 and decomposed with their respective

components. Simulation results are comparable to those for the centralized controller, shown in

Figure 3.5, and thus omitted.

Decentralized Control Architecture: Consider again the physical decomposition shown in

Figure 3.6, where power is allowed to flow from either subsystem to the other. The physical actuation

of contactor C4 is still controlled by the right side. The environment variables for SYS1 include

G1, G2, and C4, while environment variables for SYS2 contain G3, G4, B2, and H1. Note that

this differs from the master/slave control architecture with the necessary addition of B2 as an

environment variable to allow for power to flow in two directions.

The case where there is power flow between SYS1 and SYS2 corresponds to an interconnection

where part of the output of each system acts as an environment variable for the other, i.e., both

φ1 and φ2 are non-trivial. In order to ensure that the interconnection is well-posed, i.e., the inter-

connected system avoids deadlock, environment variables should be partitioned into external and

feedback parts. For subsystem SYS1, external environment variables are g1 and g2, while the feed-

back environment is contactor C4. In order for the system to be well-posed, decisions made by the

controller for SYS1 at step t must use the value of C4 at the previous step t−1. A deadlock situation

can occur between subsystems if this time shift is not accounted for, where each subsystem waits on

an action from the other subsystem before it can make a move. See [67] for further discussion.

Due to the issue of well-posedness in the decentralized controller architecture, additional speci-

fications are introduced in order to make the problem realizable. In order to successfully synthesize

controllers for each subsystem, the following guarantees/assumptions are imposed.

38

• For SYS2, if neither G3 nor G4 is healthy, then bus B2 is powered. This is written as

φr = �{g3 = 1 ∨ g4 = 1 ∨ b2 = 1}.

• For SYS1, if neither G1 nor G2 is healthy, then power will be delivered through C4. This is

written as

φl = �{g1 = 0 ∧ g2 = 0→ (c4 = −1)}.

Because power must be able to be delivered to both subsystems, safety-critical buses are moved to

those buses nearest the interface, i.e., to B2 and B3. In order to enforce well-posedness, specifications

for the controller for SYS1 involving C4 are defined with additional next operators to implement

a shift in time step. For the decentralized synthesis problem to be realizable, contactor delays are

thus omitted in this problem formulation in order avoid conflicting specifications.

There are advantages and disadvantages in synthesizing controllers for a centralized versus dis-

tributed architectures. A centralized controller has complete knowledge of all components’ statuses.

It can anticipate the behavior of the entire environment, and thus control protocols can be less con-

servative (e.g. longer delays in contactor closing/opening times). For large-scale systems, though, a

less-conservative controller comes at the cost of computational complexity. Distributed synthesis can

be solved using less memory (due to the smaller number of components) and are thus more scalable

to larger problems. However, due to lack of full information between subsystems, additional refine-

ments are required at the interfaces. These refinements involve a more conservative contactor and

bus configuration, (e.g, buses at the interface need to be powered more often). This is easily imple-

mentable for a master/slave architecture in which only a single-sided refinement is necessary. For the

bi-directional distributed case in which refinements ϕ1 and ϕ2 are needed, well-posedness conditions

further restrict the system. Contactor delays are no longer possible, and additional specifications

are imposed on all components along the interfaces.

3.6.3 Timing Benchmarks

In this section we consider some timing benchmarks for the electric power system. For the topology

in Figure 3.4, Table 3.2 lists the automaton size as well as total synthesis time while varying the

number of clocks, as well as the discretization of clock “ticks.” The first column indicates the

number of clocks, or counters, used in the synthesis problem. Zero clocks refers to the the untimed

synthesis problem in which all buses must always be powered. One clock refers to one essential bus

39

that can never be unpowered for more than x ticks. The second column thus indicates the total

time in which the essential bus can be unpowered. The higher the number, the more clock ticks

must be incorporated into the synthesis problem. The third and fourth columns refer to the total

automaton size (i.e., number of states) generated, as well as the total computation time (in seconds),

respectively. All benchmark problems using < 2 GB memory.

Table 3.2: Synthesized Automaton Size

No. of Clocks Clock “Ticks” Aut. Size Time [sec]
0 0 16 1
1 1 32 1.5
1 3 64 1.7
1 5 96 1.7
1 10 176 2.8
1 20 336 3.1
2 1 79 2
2 3 96 2
2 5 224 2.1
2 10 384 2.5
2 20 704 2.5
3 1 478 3.5
3 3 2858 7
3 5 7180 160
3 10 45492 1084
3 20 88604 4796
4 1 1798 7.2
4 3 22008 308
4 5 93386 4778

While GR(1) fragments of LTL can be synthesized in polynomial time to the number of states,

the number of states grows exponentially with the number of clocks implemented. For small-sized

problems, the difference in synthesis time is negligible. Once, however, the number of clocks used

increases to 3, computation time jumps several orders of magnitude.

One thing to note is that the automaton size and times listed in Table 3.2 are worst-case scenarios.

Using the specifications listed in Section 3.3, automaton size and time for 2, 3, or 4 clocks are

identical to the one clock problem. This is because the first synthesis algorithm chooses the first

feasible control protocol in which all buses are either powered or unpowered simultaneously. This is

a feasible solution because in this formulation, there are no contactor delays. Thus, contactors can

be commanded to open or close immediately. In order to calculate the numbers listed in Table 3.2,

we included additional specifications requiring that the power status of buses must always eventually

differ from each other. In other words, there must be transitions between states in which not all

40

buses can all be simultaneously powered or unpowered.

3.7 Conclusions

This chapter demonstrates how text-based specifications can be converted into a temporal logic spec-

ification language using a representative single-line diagram as an example. Given a set topology

for an electric power system, as seen in the single-line diagram from Figure 2.1 and a set of system

requirements formalized in linear temporal logic, we automatically synthesize a control protocol for

an electric power system on a more-electric aircraft. The resulting controller allows generators and

APUs to connect and disconnect to buses through the closing and opening of contactors. The health

status of each generator/APU is uncontrollable, and thus considered an environment action. The

controller reacts to changes in the environment and is guaranteed, by construction, to satisfy the

desired properties even in the presence generator failures. We synthesized a centralized controller

where statuses of all components (generators, contactors, and buses) are known. We also created dis-

tributed and decentralized controllers by refining the overall system specifications. This refinement

involves additional assumptions and guarantees between subsystem interfaces (i.e., specifications on

the components that interact with other subsystems). For a distributed controller, we implemented

a master/slave architecture where one subsystem has full authority for routing power to the other

subsystem. In the decentralized controller design, we allow power exchange between two subsystems

to flow in both directions, again refining the interface specifications.

The distributed and decentralized control protocols take less computational time to synthesize

due to fewer components within each subsystems, and thus smaller state spaces. They are, however,

more conservative than a centralized controller in terms of length of time non-essential buses are

powered. Buses closer to the interfaces between subsystems are now powered for longer lengths of

time in order to anticipate power requests from the other subsystem. From the basis of the work

in this chapter, there are a number of potential directions for both practical and theoretical future

work. We conclude the paper with a non-exhaustive list:

The number of components and specifications in the full scale electric power system represented

in the single-line diagram creates a problem that is too computationally complex for current syn-

thesis tools. There are two ways to address this challenge. The first is the method presented in this

chapter via distributed controllers. The decomposition of overall system specifications into subsys-

tem specifications, including interface assumptions and guarantees, is currently generated in an ad

hoc manner. Future work will focus on automating the process of specification decomposition. The

41

second approach to addressing the full scale problem may be in the use of linear temporal logic as

a specification language. The specifications inherent in the electric power system problem concern

safety requirements only (i.e., requirements only need be written with the temporal operator “al-

ways.”) Thus, it does not utilize the full expressivity of LTL. It might be possible to solve larger

scale problems by exploiting the case that specifications only deal with safety. Timing, and network

transients, can be abstracted away to solve a series of static problems (See Section 4.4.1 for details

on solving the untimed problem).

The timing specifications, (e.g., safety and contactor open/closing times) in the electric power

system problem are addressed with the use of clocks by way of an additional counter variable.

This discretization of time further adds to the difficulties arising from state space explosion. We

are currently examining the use of timed verification and synthesis tools, in particular, UPPAAL-

TIGA [11]. The efficiency of these timed verification tools, however, is still dependent on the number

of clocks used in the model.

One open issue not addressed is what level of abstraction is needed for modeling, design, and

specifications of an electric power system. Control of the power quality from generators is considered

at a continuous level of abstraction. Load management and load shedding are considered at a discrete

low-level of abstraction. Both of these problems, although at different levels of abstraction, should

be interfaced with the primary distribution problem discussed in this chapter.

42

Chapter 4

Specification and Domain-Specific
Languages

4.1 Overview

The development of a domain-specific language provides an easy interface between industry engineers

knowledgeable in aircraft systems and the methods/tools used by computer scientists and software

engineers. In this chapter we describe a domain-specific language for aircraft electric power systems

as well as an automatic specification generator available within TuLiP. The language combines tools

already in existence: visual programs for single-line diagrams, which engineers are familiar with,

and primitives, which provide a more formal structure to specifications.

The rest of the chapter is structured as follows: Section 4.2 explains the input files and under-

lying graph structure used to convert a toplogy into specifications, while Section 4.3 explains how

the specifications can be represented in a domain-specific language by a set of “primitives." Section

4.4 describes the specification conversion tool AES2specgen and provides some problem complexity

benchmarks. Section 4.5 introduces an extension to the domain-specific language within an engi-

neering framework of a sequence diagram. Section 4.6 discusses how to specify requirements using

timed temporal logics.

4.2 Input Files

Figure 4.1 provides a flow diagram for the automatic specification generation procedure. Three

sets of inputs must be provided from the information given by the diagram (connectivity) and

components (attributes). First, the single-line diagram, a visual representation, can be converted

43
<contactor>!
 <failure>!
 10e-3!
 </failure>!
 <opentime>!
 15!
 </opentime>!
 <closetime>!
 20!
 </closetime>!
</contactor>!

!<bus>!
 <failure>!
 10e-3!
 </failure>!
 <essential>!
 true!
 </essential>!
</bus>!

!"#$%&'("#&)
*"+$,+-)

./()01-21#)
("4,+,5)

6,"-"78&9)

:11%;)
!2&<"=<+71#)
>&#&,+31,)

?"<&9)

:@("6)

Figure 4.1: Architecture for the specification generator. The problem description includes three
inputs: a single-line diagram, a component library, and a set of primitive specifications. The output
is a set of formal specifications compatible with Yices (a SAT solver) or TuLiP (a reactive synthesis
tool).

<contactor>!
 <failure>!
 1e-3!
 </failure>!
 <opentime>!
 15!
 </opentime>!
 <closetime>!
 20!
 </closetime>!
</contactor>!

!<bus>!
 <failure>!
 1e-3!
 </failure>!
 <essential>!
 true!
 </essential>!
</bus>!

!"#$%&'("#&)
*"+$,+-)

./()01-21#)
("4,+,5)

6,"-"78&9)

:11%;)
!2&<"=<+71#)
>&#&,+31,)

?"<&9)

:@("6)

Figure 4.2: A sample XML component library file for contactor and bus components that have
attributes of opentime, closetime, and essential.

into a graph data structure, where contactors are edges, and all other components represent nodes1.

Let G = (V,E) be a graph of the electric power system, with V = {v1, v2, . . . , vn} containing all

components consisting of generators, buses, and rectifier units. Loads, transformers and batteries

are not implemented in our current formulation but can be easily integrated. The set of edges

E = {e1, e2, . . . , em} then contains all contactors (as well as solid wire links between components).

The adjacency matrix Aij is a square adjacency matrix whose diagonal entries are zeros, and whose

non-diagonal entries are ones or zeros depending on whether a contactor (or solid link) exists between

vertices.

The second set of information is an XML file containing component attributes. Consider a

simple case in which the XML file contains a listing for each type of component: contactor, generator,

rectifier unit, and bus. Figure 4.2 depicts a example of an XML file for contactor and bus components.

Each component has an attribute of name and failure probability, i.e., the probability each component

has of failing over a certain number of operational hours. A failure probability of 10−3, for example,

means that the component may fail once over the course of 103 operating hours. Buses have an
1Graphical tools exist which can convert visual diagrams into XML code. We begin with the assumption that such

a conversion has been implemented and the XML file is parsed into an adjacency matrix.

44

additional Boolean attribute of essential, as well as an attribute time which states how long the

bus may be unpowered for during a flight. In addition, contactors have attributes opentime and

closetime, denoting the time it takes to physically open or close the contactor.

The third input is a set of primitives used to represent the high-level requirements that specify

the desired behavior of the system. The use of primitives is described in the next section.

4.3 Specifications and Primitives

Given the topology of an electric power system and component attributes, the main design problem is

determining all correct configuration of contactors for all flight conditions and faults that may occur.

As previously discussed in Section 3.2, we again reference some common or standard specifications

relevant to the electric power system problem, and describe how these specifications may be written

using a set of primitives.

Environment Assumptions: The overall system safety level determines the possible combi-

nations of failures which may occur. Consider the case where generators and rectifier units are

environment variables, i.e., uncontrolled. Because each component has an individual failure prob-

ability, we can determine how many components may fail at a single instance (while satisfying the

system safety rating), and produce a set of valid environment assumptions. Let G and R be the

sets of all generators and rectifier units, respectively. In the environment primitive (in which only

generators and rectifier units are uncontrolled), the first input is a system safety level, followed by

all subsets of components that are uncontrolled. This can be written as env(10−x,Ge,Re), where x

is the failure rating, Ge ⊆ G and Re ⊆ R.

No-paralleling of AC sources: One common specification may be that no two asynchronous

AC sources can power a bus simultaneously. A non-paralleling primitive thus has inputs of any

subset of G. This can be written as noparallel(Gp), where Gp ⊆ G.

Essential buses: Essential buses supply power to safety-critical subsystems and loads, and thus

must be powered at all times. Let the set of all buses be B. An essential bus primitive can input

any subset of B. This is written as essbus(Be), where Be ⊆ B.

Bus unpowered time: Non-essential buses supply power to loads and subsystems which can

tolerate loss of power for up to a certain period of time. This time information is captured from

the component library, which contains the maximum unpowered time a bus may be able to tolerate.

Thus the primitive may be written buspower(Bs), where Bs ⊆ B, and Be ∩ Bs = ∅.

Disconnect with unhealthy: When certain components (generators or rectifier units) become

45

unhealthy, they must be disconnected from the system for safety reasons, i.e., the contactor con-

necting that component to other buses or components, needs to open. A disconnect primitive can

take as input the union of subsets of G and R. This primitive is written as disconnect(Gd ∪ Rd),

where Gd ⊆ G and Rd ⊆ R.

4.4 Tool Integration

The electric power system can be abstracted into different model views. We consider the following

four views: untimed, discrete variables; discrete-time, discrete variables; continuous-time, discrete

variables; and continuous-time, continuous variables. A domain-specific language can facilitate con-

sistency between these views by providing a unifying framework for constituent elements. The

following section discusses how the design problem can be automatically synthesized within the

model view of discrete variables with no time or discrete-time. Our tool, which converts the above

primitives into a set of specifications, is written using Python, with the additional use of the software

package NetworkX to study the underlying graph structure. The sourcecode is included in TuLiP

version 0.4a (and above) under tools/AES directory.2

4.4.1 Untimed: SAT Solver (Yices)

Consider the case in which timing specifications are ignored. Generators and rectifier units can

either be healthy or unhealthy, contactors may either be open or closed, and buses can either be

powered or unpowered. The synthesis problem reduces to a Boolean satisfiability problem. For each

set of environment scenarios, a specific configuration of contactors satisfies all system requirements.

Our current tool converts the set of primitives to a format compatible with the solver Yices [26]3.

Based on the graph G derived from the single-line diagram, we automatically instantiate com-

ponents, such that

(define g :: bool)

(define r :: bool)

(define b :: bool)

(define c :: bool)
2Click here for AES Directory
3To be precise, Yices is an SMT solver which can also be used as a SAT solver.

http://tulip-control.git.sourceforge.net/git/gitweb.cgi?p=tulip-control/tulip-control;a=tree;f=tools/AES;h=79128dbb17aed491eaf7cdcc4c0bbac2b8655940;hb=c8dfad3317ba4b7c2d790600bdb1b2833e74bf8e

46

for all g ∈ G, r ∈ R, b ∈ B, and c ∈ C, where C is the set of all contactors.

Because the SAT solver searches for a different solution for each configuration of environment

behaviors, we generate all allowable environment sets, given the system safety level, and thus generate

a set of environment assertions. Let P ⊆ G × R be the set of environment variables. Environment

assumptions can be written as

(assert (= p [status]))

for all p ∈ P, and [status] is either true or false, denoting a healthy or unhealthy component.

To avoid paralleling, the tool takes all pairs of generators input from the primitive and searches

for all simple paths between items in each pair. For all simple paths between generator pairs, we

disallow all contactors within each path to be closed at the same time. Consider, for example, In

Figure 4.3, the set of contactors between g1 and g2 that constitute a live path are c1, c2, and c3. For

this case, the non-paralleling specification output would be

¬

{
3∧
i=1

ci = 1

}
,

where 1 denotes a closed contactor 4.

More generally, define Xij to be the set of all paths between two components Xi and Xj . Each

path xk ∈ X consists of some number of components such that each xk contains {x1k, . . . , x
nk
i , for nk

components (not including Xi or Xj . To disallow non-paralleling between any two generators, the

specification is written as follows

∧
xk∈Xij

{
¬

(∧
ck∈xk

ck = 1

)}
, ∀Xi,Xj ∈ G. (4.1)

In order to assert that a bus must always remain powered, we first output a set of specifications

which determine under what conditions a bus is powered or unpowered. We first search for all paths

between each element input into the primitive, and output all path configurations that would cause

the bus to be powered. This means all other buses, generators, and contactors in said path must be

powered, healthy, and closed (respectively). If, in none of the paths, the conditions for a powered

bus are met, then the bus is unpowered. Consider again the simple example from Figure 4.3. The
4For ease of notation, the remaining Yices specifications will be written standard propositional form, while the

actual format for the tool differs slightly.

47

B1! B2!

G1!

C1! C2!

C3!

G2!

Figure 4.3: Simplified version of a the single-line diagram. Two AC generators connect to two buses
via three contactors.

two output specifications for bus b1 when it is powered would be

((g1 = 1) ∧ (c1 = 1))→ (b1 = 1),

and

((g2 = 1) ∧ (c2 = 1) ∧ (b2 = 1) ∧ (c3 = 1))→ (b1 = 1).

If neither of the two above conditions hold, then b1 is unpowered. This is written as

{¬([(g1 = 1) ∧ (c1 = 1)] ∨ [((g2 = 1) ∧ (c2 = 1) ∧ (b2 = 1) ∧ (c3 = 1))])→ (b1 = 0)}.

More generally, consider all paths Xij where Xi ∈ G and Xj ∈ B. Specifications for bus power

status can be written

∧
Xi∈G,Xj∈B

(
∧

xk∈Xij

xk = 1)→ (Xj = 1)

 , (4.2)

∨
Xi∈G,Xj∈B

¬(
∧

xk∈Xij

xk = 1)→ (Xj = 0)

 . (4.3)

Therefore, to assert that all buses are always powered, we then write

∧
b∈B

(b = 1). (4.4)

To disconnect an unhealthy generator or rectifier unit, we search the graph for adjacent nodes,

48State 0 with rank 0 -> <g0:1, g1:1, ru4:1, ru5:1, c23:0,
c24:1, c67:0, b6:1, c13:1, b7:1, b2:1, b3:1, c35:1, c02:1>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 1 with rank 0 -> <g0:0, g1:1, ru4:0, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!
State 2 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:0, c23:1,
c24:1, c67:1, b6:1, c13:1, b7:1, b2:1, b3:1, c35:0, c02:0>!

!With successors : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16!
State 3 with rank 0 -> <g0:0, g1:1, ru4:1, ru5:1, c23:0,
c24:0, c67:1, b6:1, c13:1, b7:1, b2:0, b3:1, c35:1, c02:0>!

!With successors : 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32!

(= b5 true)!
(= b6 true)!
(= b7 true)!
(= c56 true)!
(= c67 true)!
(= c78 true)!
(= c89 true)!
(= c1516 true)!
(= c1617 true)!

(= g2 false)!
(= c27 false)!
(= g3 true)!
(= c38 false)!
…!
(= r10 true)!
(= c510 true)!
(= r11 true)!
(= c611 true)!
!

(= c611 true)!
(= r12 true)!
(= c712 true)!
(= r13 true)!
(= c813 true)!
(= r14 true)!
(= c914 true)!
(= c56 true)!
(= c67 true)!

Figure 4.4: A sample output from Yices for a single environment configuration.

and assert an implication that if a component is unhealthy, the neighboring contactor must be open

(take a value of 0). This is written as

∧
p∈P

(p = 0)→ (
∧
cp

cp = 0)

 . (4.5)

for all p ∈ P, and cp ⊆ C is the subset of contactors connecting component p to an adjacent

component.

From the above set of specifications, Yices solves a satisfiability problem and determines the

configuration for all contactors, for each environment configuration. Figure 4.4 shows an portion of

the output from Yices. Thus a controller from Yices is a set of contactor configurations for each

environment.

4.4.2 Timed: TuLiP

The benefits of an untimed model view is reducing the synthesis problem to a satisfiability problem,

in which case a SAT solver may be used, the complexity of which is less than that for synthesis

algorithms. More realistic design problems in the electric power system domain require timed speci-

fications. We therefore incorporate formats compatible with TuLiP as well as Yices in the translation

from primitives to specifications. TuLiP uses a model view that includes discrete-time and discrete

variables; specifications are written in linear temporal logic (LTL).

We visit the primitives described in Section 4.3, and begin by instantiating all variables (con-

trolled and uncontrolled). Variables are again discrete and Boolean. For all environment (uncon-

trolled) components, instantiations are written as

env_vars[p] = [0, 1], (4.6)

49

for all p ∈ P. For all controlled variables, instantiations are written as

disc_sys_vars[s] = [0, 1], (4.7)

for all s ∈ B ∪ C.

To specify the allowable environment assumptions, we again take all possible allowable sets of

failures which can occur given the system failure probability. Assume the failure rate for each

component is independent. Then, all combinations of failures that have a failure probability greater

than the overall system level must be accounted for. The output specification, then, uses an always

(�) operator alongside a string of disjunctions.

Consider a simple example with two environment variables g1 and g2 that can take a value of 0

(unhealthy) or 1 (healthy). Suppose the overall system safety level is 10−5, and each generator has a

failure probability of 10−3. The probability that both generators are unhealthy becomes 10−6, which

is smaller than 10−5. Acceptable environment behaviors include three possibilities: g1 = 1, g2 = 1;

g1 = 1, g2 = 0; and g1 = 0, g2 = 1. Once the tool calculates this set of allowable environments, the

TuLiP compatible specification output becomes

assumptions = �((g1 = 1 ∧ g2 = 1) ∨ (g1 = 1 ∧ g2 = 0) ∨ (g1 = 0 ∧ g2 = 1)).

More formally, let I be an index set enumerating the set of environment variables. For each

environment variable pi, i ∈ I, let fi be its probability of failure in a given time interval T . Let

r be the overall reliability level the system has to achieve, that is, the probability of the overall

system failure within the interval T should be less than r. Assuming independence of component

failures, the overall reliability level of an aircraft determines the allowable environment assumptions

by providing a bound on the number of simultaneous component failures allowed. Whenever the

product of components’ probability of failure (pi) is more than the reliability level r, the control

must ensure the requirements are satisfied. Denote a single configuration of the environment (i.e.,

an environment state) by e. For a given subset I ′ ⊆ I of the environment variables, we define

eI′ = (p1, . . . , p|I|), where pi = 0 (unhealthy) if i ∈ I ′; and ei = 1 (healthy) otherwise. We can then

enumerate all allowable environment configurations based on the required reliability level, as

E =

eI′ |I ′ ⊆ I s.t.
∏
j∈I′

pj ≥ r

 . (4.8)

50

With this definitions, an environment assumption can be written in LTL as

assumptions = �(e ∈ E). (4.9)

The non-paralleling specification disallows all contactors to be closed if they are within a path

connecting two AC sources. In LTL, this is implemented using a never operator (�¬). Using the

example, from Figure 4.3, a non-paralleling specification would be of the form

guarantees = �¬((c1 = 1) ∧ (c2 = 1) ∧ (c3 = 1)).

We thus explicitly enumerate and disallow all bad configurations. Let xi,j represent the set of com-

ponents along a path between generators pi, pj , for pi, pj ∈ G and i 6= j. We disallow configurations

in which all contactors c ∈ xi,j create a live path. These specifications are written as

guarantees = �
∧

pi,pj∈G

¬ ∧
c∈xi,j

(c = 1)

 . (4.10)

The primitives for bus power and essential bus power first create a set of discrete properties that

specify the conditions for when a bus is powered. Just as in the case using Yices, we find all paths

from a bus to a generator, and list the component configurations needed for a bus to receive power.

In Figure 4.3, for example, there are two properties for which bus b1 can be powered, written as

disc_props[d1] = (g1 = 1) ∧ (c1 = 1),

disc_props[d2] = (g2 = 1) ∧ (c2 = 1) ∧ (b2 = 1) ∧ (c3 = 1).

Then, specifications output when bus b1 is powered are

guarantees = �((d1)→ (b1 = 1)),

guarantees = �((d2)→ (b1 = 1)).

If neither proposition is true, b1 is unpowered, written as

guarantees = �(¬((d1) ∨ (d1))→ (b1 = 0)).

More formally, an AC bus can only be powered if there exists a live path (i.e., all contactors closed

51

along a path) that connects the bus to a healthy AC generator or a healthy APU. Similarly, a DC

bus can only be powered if there exists a live path that connects it to a healthy rectifier unit, which

itself is connected to a powered AC bus. Let xi,b denote the set of all components (i.e., contactors

and buses) along a path between bus b and environment variable pi for i ∈ I, excluding b and pi.

Furthermore, let G ⊆ P and R ⊆ P represent the sets of generators and rectifier units. AC bus b is

powered if there exists a live path between B and pi for pi ∈ G, written as

guarantees = �

 ∨
pi∈G

(pi = 1) ∧
∧

x∈xi,B

(x = 1)

→ (b = 1)

 . (4.11)

If there exists no live path between b and a generator pi for pi ∈ G, then b will be unpowered

guarantees = �

¬ ∨
pi∈G

(pi = 1) ∧
∧

x∈xi,B

(x = 1)

→ (b = 0)

 . (4.12)

A similar set of specifications for DC buses holds in which environment variables pi spans pi ∈ R.

Once these specifications are written, timing on buses can be introduced. If a bus is an essential

bus, then another specification guarantees that the bus always remains powered. This is written as

guarantees = �(b = 1), for all b ∈ Be. For non-essential buses, we impose a maximum allowable

time for which the bus may be unpowered. This value is taken from the XML component library

file.

For each non-essential bus b ∈ Bs, we introduce a unique counter tk. We discretize each time step

to take δ time. If a bus is unpowered, at the next step the counter will increment by δ. Counters

are also bounded by a set maximum time limit. If the bus is powered, at the next step the counter

will reset to 0. These specifications are output as

guarantees = �((bk = 0)→ (#(tk) = tk + δ)), (4.13)

guarantees = �((bk = 1)→ (#(tk) = 0)), (4.14)

for all bk ∈ Bs. Then, we limit the number of “ticks” tk can increment to T
δ steps. This specification

is output as

guarantees = �(tk ≤
T

δ
). (4.15)

The final set of specifications involve removing unhealthy components from the overall system.

To disconnect an unhealthy generator or rectifier unit, we use an implication. For all environment

52

variables pi, for i ∈ {1, . . . , ne}, if any component becomes unhealthy then the contactor connect-

ing pi to an adjacent component must open. This is written as guarantees = �((pi = 0) →

(∧j∈Ni(cij) = 0)), where Ni denotes the set of vertices adjacent to vertex i.

The final set of specifications involve disconnecting unhealthy components from the overall sys-

tem. Let N (ei) represent the set of contactors directly connected, or neighboring, environment

variable pi for i ∈ I. We write the specifications to disconnect all unhealthy sources as

guarantees = �
∧
i∈I

(pi = 0)→
∧

c∈N (pi)

(c = 0)

 . (4.16)

These specifications are input into TuLiP, which interfaces with a digital design synthesis tool

implemented in JTLV [74]. If the specification is realizable, TuLiP outputs a finite-state automaton

that represents the control protocol. Figure 2.3 shows a portion of a sample finite-state automaton.

Remark 3 The specifications within this section differ from the specification format used in Chap-

ter 3. While the specifications from the previous chapter are generalizable, for the purposes of a

domain-specific language we utilize the topology’s underlying graph structure (connectivity) in order

to formulate specifications using “live” paths. For problems of this scale, the computational time of

either formulation is comparable.

4.4.3 Benchmarks

In this section we discuss some results for several electric power system topologies using both Yices

and TuLiP. For ease of comparison, consider the base topology shown in Figure 4.5 that includes

both AC and DC components. Each vertical set of components (generator, DC bus, rectifier unit,

AC bus, and two contactors) form a base unit. Units may be connected together by contactors

located between AC and DC buses. We examine the results for topologies with varying numbers of

units.

Table 4.1 lists the amount of time our tool takes to convert a set of primitives for a given

base topology into formal specifications. Columns 2 and 3 show the size of the beginning graph,

while column 4 compares the difference in times between converting specifications into a Yices or

TuLiP-compatible format. The difference in conversion times is insignificant for smaller sized graphs.

The Yices conversion takes more time due to the increase of allowable environment configurations.

Because we solve a series of static problems, the tool must write a set of specifications for each of the

environment scenarios. One thing to note is that the topologies we explore have many symmetries in

53

gen!

ac bus!

ru!

dc bus!

ac bus!

ru!

dc bus!

gen!

Figure 4.5: The base topology used to discuss the domain-specific language and conversion tool.
Each base unit consists of a generator, DC bus, rectifier unit, and AC bus. Units are connected to
each other by contactors between buses. More units are connected on the right (represented by the
dotted wire/line.)

the graph. Therefore, not all environment conditions need to be enumerated, e.g., an engine failure

on the left side can be treated as similar to an engine failure on the right side.

Given the set of automatically generated specifications, Table 4.2 compares the time it takes

for Yices and TuLiP to solve/synthesize a controller for a given topology. Column 2 lists the total

number of environment configurations, i.e., the number of static problems Yices must solve. Then,

Column 3 shows the time for Yices to solve a single environment configuration, as well as the time

it takes for TuLiP to solve the full synthesis problem. Columns 3 and 4 show that solving a series

of satisfiability problems is much time and memory efficient than using a synthesis tool. Increasing

the topology from four to five base units dramatically increases the computation time. In addition,

we applied the conversion tool to the single-line diagram topology from Figure 2.1. Column 5 shows

the number of states output by Yices and TuLiP. While the number of environment configurations is

large, generation of all other primitives requires only 10 seconds. For one environment configuration,

Yices takes 0.9 seconds and 39MB of memory to solve. This shows that the use of our conversion

tool can be applicable to industrial-sized problems for untimed problems.

The size of the Yices controllers is the number of different environment configurations. TuLiP

synthesized controllers with four and five base units have 256 and 1024 states, respectively. While

54

Table 4.1: Specification Conversion Time for Yices (Y) and TuLiP (T) [time in seconds]

Base Units Nodes Edges Conversion Time (Y/T)
4 16 18 .13/.11
5 20 23 .25/.26
10 40 48 24/18
12 48 58 141/111
15 60 73 1634/1205

Table 4.2: Comparison of Synthesis Time for Yices (Y) and TuLiP (T). [time in seconds]

Base Units Yices Env. Time(Y/T) Mem. (Y/T) Output Size (Y/T)
4 25 .25/10.7 25MB/215MB 400/256
5 36 .82/1015 36MB/16GB 720/1022
10 121 205.7/– 53MB/– 4840/–
12 169 1410/– 158MB/– 8112/–
15 256 62208/– 1.2GB/– 15360/–

the use of a SAT solver is seemingly more advantageous than that of a synthesis tool, the range of

problems which the SAT solver can handle is limited to those with untimed specifications. Alterna-

tively, specifications written in linear temporal logic and synthesized using TuLiP can incorporate

discrete-time specifications. Thus, we can automatically generate control protocols that can not only

solve static configurations, but reason about how to transition between environment configurations

through a series of contactor switches.

4.5 Broadening the Domain-Specific Language

The primitives discussed in Section 4.3 encompass a standard set of high-level specifications found in

aircraft electric power systems. While it provides an interface to temporal logic specifications, as yet

the domain-specific language does not offer much flexibility for an engineer to design a system. While

domain-specific languages must be kept structured (i.e., limited to specific tasks), the formulation

in the above section can be extended. In the following we describe two additions to the AES2spec

tool.

4.5.1 Exceptions and Nominal Cases

Given a known set of environmental conditions or assumptions, such as those discussed in Section

3.2, all specifications must be satisfied in order for the system to function correctly. We consider

such a flight to be operating in a “nominal.” In cases, however, in which the flight were to operate

under an additional “degraded” mode, then not all specifications need be satisfied. For example, a

55

nominal condition may be that half of all generators are available and healthy. A degraded condition

may be that only one generator is available to power the entire aircraft, in which case not all buses

need to satisfy the condition of always being powered. Thus, both nominal and exception cases can

be introduced into the domain-specific language.

4.5.1.1 Primitives

Assume that the XML component library contains information on what flight modes are possible,

such that set of modes M = {nom,m1, . . . ,mi}, where nom is the nominal flight mode, and i

indexes all other “degraded” modes. The following primitives can be modified such that:

No-paralleling of AC sources: For a nominal condition in which no live path can exist

between two AC sources, the primitive for non-paralleling has an input of mode m ∈ M and a

subset of generators, written as noparallel(m,Gp), where Gm ⊆ G. The LTL specification is then

translated by introducing the mode condition into the left side of the implication, such that

∧
m∈M

{
�(m→ ¬(

∧
Gm

paths))

}
, (4.17)

where paths represent the conjunction of all contactors located between two elements in Gm that

could form to create a live path.

For an aircraft in nominal mode, for example, equation 4.10 becomes

� {(m = nom)→ ¬((c1 = 1) ∧ (c2 = 1) ∧ (c3 = 1))} .

Essential buses: All essential buses must always be powered in a nominal condition, but may

not necessarily be enforced if in another mode. The primitive can thus be modified with two inputs,

mode m and subset of buses Bm ⊆ B that must always remain powered: essbus(m,Bm). The LTL

specification becomes

∧
m∈M

{
�((mode = m)→

∧
b∈Bm

(b = 1)))

}
. (4.18)

Bus unpowered time: The amount of time a bus remains unpowered can also depend on

the flight mode. This duration may be extended in degraded conditions. The primitive becomes

buspower(m,B′m) where B′m ⊆ B. The LTL specification can be written as

56

∧
m∈M

 ∧
b∈B′m

(�((mode = m) ∧ (b = 0))→ (#(tb = tb + 1)))

 , (4.19)

∧
m∈M

 ∧
b∈B′m

(�((mode = m) ∧ (b = 1))→ (#(tb = 0)))

 , (4.20)

∧
m∈M

 ∧
b∈B′m

�(tb ≤
Tm
δ

)

 , (4.21)

where tb is the clock variable for bus b and Tm is the maximum time which a bus can be unpowered

in flight mode m.

4.5.2 Sequence Diagrams

The second addition to the domain-specific language is the ability to integrate scenario-based re-

quirements. Sequence diagrams are a part of the SysML modeling language, and are used to define

sequences of events. Diagrams communicate messages between ”actors” and in what particular order

they must occur. Figure 4.6 depicts an example sequence diagram in which four actors interact

within some aircraft system. The pilot, supervisory control, plant, and display send messages to

each other along horizontal lines, while the vertical axis represents the progression of time. Solid

lines represent messages that must occur, while dotted lines represent messages that may occur. The

length of the vertical green boxes signifies time, but is not meant to represent an exact duration.

4.5.2.1 Live Sequence Charts

Sequence diagrams lack semantics, which makes integration with formal methods tools difficult.

Kugler and Harel [49] have provided semantics for a variant of sequence diagrams, called Live

Sequence Charts. With these imposed semantics, the behaviors of live sequence charts can be

captured using temporal logic. In particular, two types of charts can be used: existential (sequence of

events must happen at least once) and universal (sequence of events must always happen). Existential

charts can be expressed in CTL, while universal charts are expressible in LTL. The live sequence

chart to temporal logic conversion can be shown to generate a formula that is at most quadratic in

the size of the chart.

A further extension of live sequence charts is shown in [56] that incorporates assume-guarantee

scenarios. Furthermore, this extension of sequence charts extends syntax and semantics to distin-

57

Figure 4.6: An example sequence diagram with pilot, control, plant, and display actors. Actors send
messages (horizontally) along vertical lines (representing the dimension of time).

58

guish between system and environment entities, and supports conversion to GR(1) fragments of

LTL. In this next sections we follow the exposition of [50] and [56] in describing the live sequence

chart to temporal logic conversion.

4.5.2.2 Live Sequence Chart Semantics

Consider the set of live sequence charts depicted in Figure 4.7. Vertical lines (in which time progresses

downward) are instances that represent an interacting agent. Agents are controlled either by the

system or environment. Messages are horizontal lines that represent calls between agents. A message

is a system message if it is sent from an instance controlled by the system, and is an environment

message if sent from an environment instance. The chart defines a partial order on messages induced

by the vertical ordering of messages sent and received along instances.

In the top left chart of Figure 4.7 (InsertCoins), user is an environment instance, while panel

and cashier are system instances. Messages insertCoin and incCoins are environment and

system messages, respectively.

A system cut represents the current state of an live sequence chart, signifying the progress of

events along instances. The minimal cut is the state at which the chart is closed. A message is

enabled in a cut of the chart if it appears immediately after the cut in the induced partial order. A

message is violating in a cut if it appears in the chart but is not enabled.

Messages, depicted as either red or blue lines, can be hot or cold. A hot enabled message must

eventually occur. A cold enabled message could eventually occur. A cut may be hot if at least one of

the enabled system messages is hot, otherwise it is cold. The chart progresses to the next cut when

an enabled message occurs. If a violating message occurs, transitions depend on the temperature of

the cut. If the cut is cold, the chart closes gracefully. If a cut is hot, then this represents a violation

of requirements.

Conditions may also be hot or cold, and are evaluated as soon as they are enabled. A hot enabled

condition must be evaluated to be true, while a cold enabled condition may or may not be evaluated

to true. The chart progresses to the next cut if a condition is evaluated to be true. If a condition

is evaluated false and the condition is cold, the chart closes gracefully If the condition is hot, this

represents a violation of requirements.

System messages can be either execution or monitoring (solid and dashed lines, respectively).

All environment messages are monitoring. A chart is active if the current cut has an enabled system

message.

59

Figure 4.7: Three assume-guarantee scenarios for an example vending machine specification. System
entities include panel, cashier, and dispenser. Environment entities include user and heater. Figure
from [56].

4.5.3 LTL-Live Sequence Chart Semantics

Given a set of live sequence charts L = {L1, . . . ,Ln}, let Ms(L) andMe(L) be defined as the set

of system and environment messages that can be sent, respectively. Additionally, let the two sets be

disjoint, such thatMs(L) ∩Me(L) = 0. the following variables are used to define a formal model:

• me is an environment message variable (input) over the domain of all messages the environment

can send in L. An additional no_op value is included for doing nothing. For every environment

message m ∈Me(L) ∪ {no_op} sent, a synthesized strategy will know how to react.

• ms is a system message variable (output) over the domain of all messages the system can send

in L. An additional no_op is included for doing nothing. For every state, the synthesized

strategy knows which system message m ∈Ms(L) ∪ {“no_op”} to send.

• {l1, . . . , ln} is the set of output cut variables. Every li encodes a cut automaton for live

sequence chart Li. The domain of li, denoted dom(li) consists of all possible Li cuts, including

the minimal cut (denoted by MIN). Two additional sink values of VIOs and VIOe represent

hot violation of system guarantees and environment assumptions.

60

The minimal cut value MIN indicates a closed chart. VIOs indicates that the system performed a

hot violation. Thus, the chart can not be satisfied. VIOe indicates that the environment violated its

assumptions, and thus the chart is vacantly satisfied. Denote ρLi the transition of the cut automaton

Li. The following are the assumptions and guarantees, in GR(1) form, for the live sequence chart.

4.5.3.1 Superstep Requirements

In order to encode assumptions in live sequence chart semantics, we include superstep requirements.

A superstep is a series of system messages encapsulated between environment messages. This enforces

an artificial technical step to deal with the mechanics of a game structure, and thus ties in to the

GR(1) synthesis algorithm.

Guarantee 1: The system will only sends a finite number of messages, allowing the environment

a fair chance to communicate.

�3(ms = no_op). (4.22)

Guarantee 2: The system performs a message only if the environment is not sending a message.

Thus, if the environment send a message, the system cannot send a message.

�# (me 6= no_op→ ms = no_op). (4.23)

Assumption 1: The environment can only send one message at a time, giving the system a fair

chance to react. If the environment cannot sent a message in the next step if it has sent a message

in the last step.

� (me 6= no_op→ #(me = no_op)) . (4.24)

Assumption 2: If the system sent a message in the last step, the environment cannot send

a message in the next step. This guarantees that the environment will not send a message if the

system is not ready to receive one.

� (ms 6= no_op→ #(me = no_op)) . (4.25)

The semantics for superstep requirements are not application-specific, but rather model the live

sequence chart settings. In the following, we describe the GR(1) formulation for application-specific

live sequence chart specifications.

61

4.5.3.2 Environment Assumptions

Define Expi ⊆ dom(li) to be the subset of cuts that contain executable environment messages.

Given a cut c ∈ dom(li), furthermore define ξe(c) to be the set of hot environment messages enabled

in cut c. If c ∈ dom(li)\Expi, then ξe(c) = 0.

Assumption 3: For every live sequence chart Li ∈ L and expecting cut c ∈ Expi, if in the

last step the system was in cut c then the environment in the next step will send either no_op or a

message from the set of hot enabled messages:

n∧
i=1

∧
c∈Expi

�(li = c→ #(me ∈ {ξe(c) ∪ no_op})). (4.26)

Assumption 4: If the system is in an expecting cup, each enabled hot environment message

m ∈ ξe(c) must eventually be sent:

n∧
i=1

∧
c∈Expi

∧
m∈ξe(c)

�3(li = c→ (me = m)). (4.27)

Assumption 5: The environment must avoid letting the system reach the sink value that

indicates a hot environment violation:

n∧
i=1

�(li 6= VIOe). (4.28)

4.5.3.3 System Guarantees

For a set of live sequence charts {L1, . . . ,Ln}, we define Acti ⊆ dom(li) to be the cuts that contain

an executable message the system should perform.

Guarantee 3: For every live sequence chart Li ∈ L, the system starts from a state in which cut

variable li is the minimal cut.
n∧
i=1

(li = MIN). (4.29)

Guarantee 4: For every Li ∈ L, the system continuously preserves the transitions of the cut

automaton of Li.
n∧
i=1

�ρLi . (4.30)

Guarantee 5: The system will always eventually reach a state in which Li ∈ L is not active,

62

!"#$%&'()*+,+)$

-&'()$.+/$ 0(/)1('$

2/3+4')35$

(-+/$
0(/)40)(1$

,+/6$1+72+,)$

3+4')35$

1+,+)$

0'(,+$
0(/)40)(1$

Figure 4.8: An example assume-guarantee live sequence chart with one system instance (control)
and two environment instances (pilot and generator). Blue lines denote cold messages (eventually
can happen), while red lines denote hot messages (must happen).

i.e., all charts visit inactive cuts in which there are no executable system messages.

�3
n∧
i=1

(li /∈ Acti). (4.31)

4.5.4 Live Sequence Chart Example

Figure 4.8 is a generic example assume-guarantee live sequence chart for the system topology depicted

from Figure 4.5 (with 2 base topology units). If a generator becomes unhealthy (cold message), then

the control must open the contactor. Then, the pilot may send a request (to turn the generator

back online), the generator can turn back to healthy, and then send a reset message to the control.

If the reset message is sent to the control, the contactor must close.

In addition to the specifications discussed in the previous section, the following assumptions are

included in the synthesis formulation, as derived from the live sequence chart.

63

• The pilot environment request variable is set to an initial value of 0 (i.e., no request).

∧
i∈{0,1}

reqi = 0,

where index i represents the generator which the pilot requests to come back online.

• Generators cannot come back online unless they are requested. This is formulated as

∧
i∈{0,1}

�{((reqi = 0) ∧ (gi = 0))→ (#gi = 0)}.

The following are the additional guarantees generated from the live sequence chart.

• The controller reset variable is initially set to 0 (i.e., there is initially no reset flag raised).

∧
i∈{0,1}

reseti = 0.

• The reset flag is only raised if the pilot requests the generator to come back online.

∧
i∈{0,1}

�{(reqi = 0)→ (reseti = 0)},

∧
i∈{0,1}

�{(reqi = 1)→ (reseti = 1)}.

• If a generator is healthy (i.e., online) and the reset flag is raised, then the neighboring contactor

must close. ∧
i∈{0,1}

�{((gi = 1) ∧ (reseti = 1))→ (cij = 1)},

where index j references a neighboring node to generator gi.

Additional timing specifications can be incorporated into the above specifications by introducing

counter variables. For instance, the reset flag may not necessarily be raised immediately once the

pilot sets the request, but may occur after a given time delay. Likewise, contactor delays may be

included (as discussed in Section 3.4).

64
!"#$%&'($%)#*+,#$%

-%

!"#$%&$"'(&"))%#*(

!"#$%&$"'(+$%$,(

Figure 4.9: Unit test for a sample portion of an electric power system. The plant contains one
generator, contactor, and bus. The cockpit (pilot) can send a switch to command the contactor
position. Protection and supervisor controllers monitor the state of the system.

4.6 Timed Temporal Logics

In what follows we start with a set of text-based specifications and consider different ways of formal-

izing them. Depending on the model of computation one wants to reason about the specification, we

adopt different state-based and event-based semantics. In particular, we use MTL with continuous

semantics [46] and TCTL [6], in addition to GR(1) LTL formulations.

Consider the unit test configuration in Figure 4.9. The plant consists of a generator, contactor,

and bus (subject to load disturbance). For the purposes of specification, we choose a level of

abstraction high enough to ignore continuous dynamics. The generator outputs some voltage that is

monitored by the Protection Line Replaceable Unit (LRU). The protector outputs a fault warning to

the supervisor LRU if the generator voltage exceeds some threshold. The supervisor also monitors

the switch command from the Cockpit (controlled by the pilot). Based on the states of fault and

switch, the supervisor controls the state of the contactor.

The text-based specifications for the supervisor and protector are listed below.

Protector

1. If input is greater than threshold for z1 time, fault output is true.

2. If input is less than threshold for z2 time, fault output is false.

These specifications do not cover “if and only if”s. More precisely, it is likely possible for a

65

fault output when there is no fault. For instance, for state-based semantics this would lead to “

if the current state is fault = false, then the state becomes fault = true if and only if input is

greater than threshold for z1 time." As a simplification, we can assume lazy controllers, i.e., if the

preconditions do not hold, the controller should not take any action.

Supervisor

3. If fault occurs, open contactor within X time regardless of other inputs and leave open (no

reset).

4. If switch is on, close contactor within Y1 time.

5. If switch is off, open contactor within Y2 time.

These specifications are ambiguous in that it is not clear whether “open/close contactor” refers

to the event of supervisor issuing an “open (close)” command or the event that the actual

state of the contactor component becoming “open (close)”. For the latter case, in order to

synthesize a controller for these specifications, we need to know the relation between issuing a

command and physical state change in the contactor. This can ideally be done by building a

hybrid dynamical model for the contactor. For simplicity, in control synthesis, we will use the

following assumptions:

6. If an open command is issued and if the contactor state is closed, the contactor opens within

[Omin, Omax] units of time unless a close command is issued before it opens.

7. If a close command is issued and if the contactor state is open, the contactor closes within

[Cmin, Cmax] units of time unless an open command is issued before it closes.

4.6.1 Timed Specifications

4.6.1.1 Protector

For the protector LRU, the voltage level v is an environment variable, and can take values of bt

(below threshold) and at (above threshold). The system outputs a fault state variable fault of f

(there exists a fault) or nf (no fault). In MTL, specifications (1) - (2) can be written as:

1. �{(�[0,z1)v = at) −→ (3{z1}fault = f)}.

2. �{(�[0,z2)v = bt) −→ (3{z2}fault = nf)}.

66

In TCTL, we introduce an additional clock variable c on the voltage environment variable.

Specifications (1) - (2) can be written in the form

1. ∀�{((v = at)and(c ≥ z1)) −→ (fault = f)}

2. ∀�{((v = bt)and(c ≥ z2)) −→ (fault = nf)}

3. ∀�{((fault = f)and(c = 0)) −→ ∀[(fault = f)W ((v = at)and(c ≥ z1))]}

4. ∀�{((fault = nfand(c = 0)) −→ ∀[(fault = nf)W ((v = bt)and(c ≥ z2))]}

where ∀� indicates for all paths, and W is the operator for weak until (i.e., the condition before W

does not have to be true).

4.6.1.2 Supervisor

For the Supervisor LRU, environment variables include the fault variable (considered a system

variable from the protector), switch, which can either be on or off , and contactor state cs that can

either be opened or closed. System variables include a contactor command cc of open or close, and

an additional flag that can either be normal or abnormal. Specifications (3)-(7) are written as

1. (a) �{(fault = f) −→ ((3Xcs = open)and(flag = abnormal))}

(b) �{((flag = abnormal)and(cs = open)) −→ (�cs = open)}

(c) �{(flag = abnormal) −→ (�flag = abnormal)}

(d) {(flag = normal) U (fault = f)}

2. � {((flag = normal)and(switch = on)) −→ (3Y1cs = closed)}

3. � {((flag = normal)and(switch = off)) −→ (3Y2
cs = open)}

4. �{(cc = open)and(cs = closed)) −→

{(3[Omin,Omax](cs = open) ∨ ((cs = closed) U [0,Omax](cc = closed))}}

5. �{(cc = close)and(cs = open)) −→

{(3[Cmin,Cmax](cs = closed) ∨ ((cs = open) U [0,Cmax](cc = open))}}

The TCTL version of specifications follow exactly from the above, with the replace of � with a

∀� operator.

67

(a) Voltage

(b) Fault

Figure 4.10: UPPAAL-TIGA finite-state automata for the protector LRU.

4.6.1.3 UPPAAL-TIGA

Figure 4.10 depicts the protector finite-state automata used for the timed synthesis tool UPPAAL-

TIGA, which includes two processes: Voltage, and Fault. The Voltage process alternates between

below threshold and above threshold. A local clock c counts the time the system is in each state.

Dotted lines represent environment (uncontrollable) transitions, while solid lines represent control-

lable transitions. In addition, the message a is sent (denoted by the ! sign) from voltage, and received

by the Fault process (denoted by the ? sign). In the Fault process, two pseudo-states are introduced

in addition to the f and nf states. This is done because of the limitations in UPPAAL-TIGA

specifications. The tool can synthesize controllers for only one specification, but not multiple ones.

This could be solved with the conjunction of all specifications previously listed. However, UPPAAL-

TIGA cannot process nested specifications, which occur because of the weak until operatorsW . The

Fault process, therefore, encodes those specifications by design.

68

Figure 4.11 depicts the supervisor finite-state automata used in the timed synthesis problem. The

three processes are fault, switch, and contactor. The fault can transition (uncontrolled) from normal

to abnormal at any time. The pilot can also change the switch between on and off at any time. The

contactor encodes from contactor command and contactor state. Again, the same problems arise in

the supervisor LRU as in the protector LRU, namely, specifications cannot be nested.

While UPPAAL and UPPAAL-TIGA can be used to verify and synthesize timed problems,

respectively, they are more useful for systems with simple specifications. For more complex spec-

ifications, even with simple unit tests used in our examples, this tool can be limited. While these

requirements can be designed by hand, this bypasses the utility gained from synthesizing correct-

by-construction controllers. We next discuss how to implement continuous time specifications in a

discrete-time setting.

4.6.2 Discrete-Time LTL

Because of the limitations of timed synthesis tools, we additionally formulate the specifications

for supervisor an protector in GR(1) LTL compatible with TuLiP, and synthesize controllers. To

monitor time in the discrete setting, we introduce an additional clock variable xv for the protector,

and xC for the supervisor.

4.6.2.1 Protector

In LTL, the specifications for the protector can be written as

1. Reset the clock to zero if the voltage state changes.

�{(#v 6= v)→ (#xv = 0)}

2. If the voltage remains above threshold but the clock is less than the maximum time, then

increment the clock by some amount δ.

�{(v = at ∧#v = at ∧ (xv < z1))→ (#xv = xv + δ)}

3. If the voltage remains above threshold and the clock is already at the maximum time, then

keep the clock value the same. In other words, this sets a maximum bound on the clock value.

�{(v = at ∧#v = at ∧ (xv = z1))→ (#xv = z1)}

4. If the voltage remains below threshold but the clock is less than the maximum time, then

increment the clock by some amount δ.

�{(v = bt ∧#v = bt ∧ (xv < z2))→ (#xv = xv + δ)}

69

(a) Fault

(b) Switch

(c) Contactor

Figure 4.11: UPPAAL-TIGA finite-state automata for the supervisor LRU

70

-3435%2%

#%(%:3*%;4<=3%(%";*%>#%(%2%

-3435%8%

-3435%9%

-3435%)2%

-3435%))%

-3435%7%

-3435%1%

-3435%A%

-3435%)6%

-3435%6%

-3435%?%

-3435%@%

-3435%)7%

-3435%)%

#%(%:3*%;4<=3%(%";*%>#%(%)%

#%(%43*%;4<=3%(%";*%>#%(%6% #%(%43*%;4<=3%(%";*%>#%(%)% #%(%43*%;4<=3%(%";*%>#%(%2%

#%(%43*%;4<=3%(%;*%>#%(%7% #%(%:3*%;4<=3%(%;*%>#%(%2% #%(%:3*%;4<=3%(%;*%>#%(%4%

#%(%43*%;4<=3%(%;*%>#%(%6% #%(%43*%;4<=3%(%4;*%>#%(%)% #%(%43*%;4<=3%(%4;*%>#%(%2%

#%(%:3*%;4<=3%(%;*%>#%(%6% #%(%:3*%;4<=3%(%";*%>#%(%7% #%(%:3*%;4<=3%(%";*%>#%(%6%

Figure 4.12: UPPAAL-TIGA finite-state automata for the supervisor LRU

5. If the voltage remains above threshold and the clock is already at the maximum time, then

keep the clock value the same.

�{(v = bt ∧#v = bt ∧ (xv = z2))→ (#xv = z2)}.

6. If the voltage is above threshold for greater than z1 length of time, then output a fault.

�{(v = at ∧ xv = z1)→ (fault = f)}.

7. If the voltage is below threshold for greater than z2 length of time, then output no fault.

�{(v = bt ∧ xv = z2)→ (fault = nf)}.

8. The fault status cannot change until the voltage stays above threshold for at least z2 time.

�{((v = at) ∧ (#xv < z2))→ (#fault = fault)}

9. The fault status cannot change until the voltage stays below threshold for z1 time.

�{((v = bt) ∧ (#xv < z1))→ (#fault = fault)}

For time constants z1, z2 = 3, and a discrete time step δ = 1, the synthesized controllers for

the protector has 14 states. Figure 4.12 shows the resulting controller. The initial state (State 0)

begins with a voltage below threshold, no fault, and counter x set to 0. If the voltage stays below

71

threshold, the system transitions to State 1, and the counter increments by 1. If the voltage goes

above threshold, the system transitions to State 2. If the voltage stays above the threshold for

longer than two steps, fault outputs a value of f (State 5). From State 5, if the voltage crosses

below threshold again, the fault output remains f until the voltage remains below threshold for 3

steps.

4.6.2.2 Supervior

In LTL, the specifications for the supervisor can be written as

Assumptions

1. If the contactor state is the same as the contactor command, then in the next step the contactor

state should not change.

�{(cc = cs)→ (#cs = cs)}

2. If the contactor command is set to close, then the contactor state should closed within Cmin

and Cmax time.

(a) �{(cc = close ∧ cs = opened ∧ (xC < Cmin))→ (#cs = opened ∧#xC = xC + δ)}.

(b) �{(cc = close ∧ cs = opened ∧ (xC ≥ Cmin))→ (#cs = closed ∨#xC = xC + δ)}.

(c) �{(cc = close ∧ cs = opened)→ (xC ≤ Cmax)}.

3. If the contactor command is set to open, then the contactor state should be opened within

Omin and Omax time.

(a) �{(cc = open ∧ cs = closed ∧ (xC < Omin))→ (#cs = closed ∧#xC = xC + δ)}.

(b) �{(cc = open ∧ cs = closed ∧ (xC ≥ Omin))→ (#cs = opened ∨#xC = xC + δ)}.

(c) �{(cc = open ∧ cs = closed)→ (xC ≤ Omax)}.

Guarantees

1. (a) Reset the clock if in the next step the contactor state matches the command.

�{(#cs = cc)→ (#xc = 0)}

(b) If there is a fault, then open the contactor.

�{(fault = f) −→ ((cc = 0) ∧ (flag = abnormal))}

(c) If a fault occurs, always leave the contactor open.

�{((flag = abnormal) ∧ (cc = 0)) −→ (#cc = 0)}

72

(d) �{(flag = abnormal) −→ (#flag = abnormal)}

(e) Do not raise a flag unnecessarily.

�{((flag = normal) ∧ (#fault = nf)) −→ (#flag = normal)}

2. If the switch command is set to on, then close the contactor.

� {((flag = normal) ∧ (switch = on)) −→ (cc = close)}

3. If the switch command is set to off , then open the contactor.

� {((flag = normal) ∧ (switch = off)) −→ (cc = open)}

For minimum and maximum opening and closing time constraints ofOmin, Cmin = 2, Omax, Cmax =

4, and for a time step of δ = 1, the resulting synthesized controller has 32 states. The size of the

finite-state automaton will increase with the the size of the discretization δ as well as the values of

Cmax and Omax.

4.7 Conclusions

We have demonstrated techniques for synthesis of discrete-variable, untimed and discrete-time con-

trol protocols. Further extensions also include extending the domain-specific language to include

user-specific requirements that may not be included in the high-level general specifications described

in this chapter. Generation specification from assume-guarantee live sequence charts are performed

manually. While tools exist to synthesize controllers from a given live sequence chart [57], this does

not allow integration of live sequence chart specification with other system requirements. Integra-

tion of live sequence chart specifications with TuLiP is subject of future work. In addition, we are

also exploring the use of this tool and language to distributed controller protocols. Namely, how

to distribute a given topology among subsystems and generate interface specifications such that

the overall system is realizable. Lastly, the problem of network effects, including transients and

delays, has been mostly ignored or abstracted away within this problem formulation. Introducing

specifications encompassing network effects would be an additional feature for a domain-specific

language.

This chapter has also demonstrated how to formulate timed specifications within the framework

of MTL and TCTL. The TCTL synthesis solver UPPAAL-TIGA is limited in the specifications it is

capable of handling, while no tool for MTL synthesis (or even model checking) is currently available.

This led to a formulation of specifications in LTL, in particular, within the fragment of GR(1) by

73

the use of additional of counters. The main challenge that synthesis may be able to solve is the

interaction of timing delays within the larger system. Such problems are the subject of future work.

74

Chapter 5

Design Space Exploration

This chapter addresses the concept of design space exploration for an aircraft electric power system.

To achieve an optimal implementation that is correct by construction, we propose a methodology for

electric power system design that enables independent implementability of system topology (i.e. in-

terconnection among elements) and control protocols by using a compositional approach. In this

flow, design space exploration is carried out as a sequence of refinement steps from the initial speci-

fication towards a final implementation by mapping higher-level behavioral and performance models

into a set of library components at the lower level. To perform such tasks, we define convenient

abstractions for system exploration and compositional synthesis of system topology (interconnection

among the various components) and control. We first synthesize an electric power system topology

from system requirements formalized as arithmetic constraints on Boolean variables. For the given

topology, we translate the same requirements into linear temporal logic formulas (as discussed in

Chapter 3), by which we create correct-by-construction controllers. To reason about different re-

quirements in a compositional way, we use the concept of contracts [81] that formalize the notion of

interfaces between models and tools in the design flow.

Section 5.0.1 provides background on contract-based design, including the notion of contracts

and components, as well as Signal Temporal Logic (STL), a specification language We show the

effectiveness of our approach on a proof-of-concept design based on an electric power system case

study. Section 5.1 applies the design space exploration methodology on a case study. The work

presented in this section is in collaboration with Pierluigi Nuzzo, Necmiye Ozay, and Alexander

Donze. Finally, in Section 5.2, we present a hardware testbed for the electric power system in which

to validate synthesized reactive controllers within a real-time setting.

75

5.0.1 Background: Contract-Based Design of Cyberphysical Systems

Inspired by recent results on assume-guarantee compositional reasoning and interface theories in

the context of hybrid systems and software verification, our methodology is based on the use of

assume-guarantee contracts for cyber-physical systems [12, 81]. Informally, contracts mimic the

thought process of a designer, who aims at guaranteeing certain performance figures for the design

under specific assumptions on its environment. The essence of contracts is, therefore, a compositional

approach, where design and verification complexity is reduced by decomposing system-level tasks into

more manageable subproblems at the component level, under a set of assumptions. System properties

can then be inferred or proved based on component properties. In this respect, contract-based

design can be a rigorous and effective paradigm while dealing with the complexity of modern system

design, and has been successfully applied to other embedded system domains, such as automotive

applications [12] and mixed-signal integrated circuits [66].

5.0.1.1 Components

We summarize the main concepts behind contract-based design starting with the notion of compo-

nents. A component M can be seen as an abstraction, a hierarchical entity representing an element

of a design, characterized by the following component attributes:

• a set of input, output and internal variables (including state variables); a set of configuration

parameters, and a set of input, output and bidirectional ports for connections with other

components;

• a set of behaviors, which can be implicitly represented by a dynamic behavioral model F(·) = 0,

uniquely determining the value of the output and internal variables given the one of the input

variables and configuration parameters. Behaviors are generic, and could be continuous func-

tions that result from solving differential equations, or sequences of values or events recognized

by an automata model;

• a set of non-functional models, i.e. maps that allow computing non-functional attributes of

a component corresponding to particular valuations of its input variables and configuration

parameters. Examples of non-functional maps include the performance model, computing a

set of performance figures by solving the behavioral model, or the reliability model, providing

the failure probability of a component.

76

Components can be connected together by sharing certain ports under constraints on the values

of certain variables. In what follows, we use variables to denote both component variables and

ports. Moreover, components can be hierarchically organized to represent the system at different

levels of abstraction. Given a set of components at level l, a system can then be composed by

parallel composition and represented as a new component at level l+1. At each level of abstraction,

components are also capable of exposing multiple, complementary views, associated to different

concerns (e.g. safety, performance, reliability), which can be expressed via different formalisms and

analyzed by different tools.

A component may be associated to both implementations and contracts. An implementation M

is an instantiation of a componentM for a given set of configuration parameters. The definition of

contract is presented below.

5.0.1.2 Contracts

A contract C for a component M is a pair of assertions (A,G), called the assumptions and the

guarantees. An assertion B represents a specific set of behaviors over variables, which is the set

satisfying B. Therefore, operations on assertions and contracts are set operations. An implementa-

tion M satisfies an assertion B whenever M and B are defined over the same set of variables and

all the behaviors of M satisfy the assertion, i.e. when M ⊆ B. The set of all the legal environments

for C collects all implementations E such that E ⊆ A. An implementation of a component satisfies

a contract whenever it satisfies its guarantee, subject to the assumption. Formally, M ∩ A ⊆ G,

where M and C have the same variables. We denote such a satisfaction relation by writing M |= C.

Similarly, we relate a legal environment E to a contract C by the satisfaction relation E |=E C.

Any implementationM of a component such thatM ⊆ G∪¬A, where ¬A is the complement of A,

is also an implementation for C. In general,MC = G∪¬A is the maximal implementation for C. Two

contracts C and C′ with identical variables, identical assumptions, and such that G′ ∪¬A = G∪¬A,

possess identical sets of implementations. Such two contracts are then equivalent. Therefore, any

contract C = (A,G) is equivalent to a contract in saturated form (A,G′), which also satisfiesG′ ⊇ ¬A,

or, equivalently, G′ ∪A = True, the true assertion. To obtain the saturated form of a contract, it is

enough to take G′ = G ∪ ¬A.

Contracts associated to different components can be combined according to different rules. Simi-

lar to parallel composition of components, parallel composition of contracts can be used to construct

composite contracts out of simpler ones. Let C1 = (A1, G1) and C2 = (A2, G2) in saturated form,

77

then the assumption and the promise of the composite C1 ⊗ C2 can be computed as follows [12]:

A = (A1 ∩A2) ∪ ¬(G1 ∩G2), (5.1)

G = G1 ∩G2. (5.2)

The composite contract must clearly satisfy the guarantees of both. Moreover, since the environment

should satisfy all the assumptions, we should expect that the assumptions of each contract would also

combine by conjunction. In general, however, part of the assumptions A1 will be already satisfied

by composing C1 with C2, which acts as a partial environment for C1. Therefore, G2 can relax the

assumptions A1, and vice-versa, which motivates (5.1). To use (5.1) and (5.2), the behaviors related

to the original contracts need to be extended to a common set of variables. Such an extension, which

is also called alphabet equalization, can be achieved by an operation of inverse projection [12].

Even if they need to be satisfied simultaneously, multiple views of the same component do not

generally compose by parallel composition. Therefore, the conjunction (∧) of contracts can also be

defined so that if M |= C1 ∧ C2, then M |= C1 and M |= C2. Contract conjunction can be computed

by defining a partial order on contracts, which formalizes a notion of refinement. We say that C

refines C′, written C � C′ (with C and C′ both in saturated form), if and only if A ⊇ A′ and G ⊆ G′.

Refinement amounts to relaxing assumptions and reinforcing guarantees, therefore strengthening the

contract. Clearly, ifM |= C and C � C′, thenM |= C′. On the other hand, if E |=E C′, then E |=E C.

With the given ordering, we can compute the conjunction of contracts by taking the greatest lower

bound of C1 and C2. For contracts in saturated form, we have

C1 ∧ C2 = (A1 ∪A2, G1 ∩G2), (5.3)

i.e. conjunction of contracts amounts to taking the intersection of the guarantees and the union of

the assumptions. Conjunction can be used to compute the overall contract for a component starting

from the contracts related to multiple views (concerns, requirements) in a design.

In addition to satisfaction and refinement, consistency and compatibility are also relations involv-

ing contracts. Technically, these two notions refer to individual contracts. A contract is consistent

when the set of implementations satisfying it is not empty, i.e. it is feasible to develop implemen-

tations for it. For contracts in saturated form, this amounts to verify that G 6= ∅. Let M be any

implementation, i.e. M |= C, then C is compatible, if there exists a legal environment E for C, i.e. if

and only if A 6= ∅. The intent is that a component satisfying contract C can only be used in the

78

context of a compatible environment. In practice, however, violations of consistency and compati-

bility occur as a result of a parallel composition, so that we can refer to the collection of components

forming a composite contract as being consistent or compatible.

5.0.1.3 Signal Temporal Logic

In addition to LTL, Signal Temporal Logic (STL) is likewise a particularly suitable for capturing

system and component requirements and reasoning about the correctness of their behaviors.

LTL allows formally reasoning about the temporal behaviors of reactive systems with Boolean,

discrete-time signals or sequences of events. To deal with dense-time real signals and hybrid dy-

namical model that mix the discrete dynamics of the controller with the continuous dynamics of

the plant, several logics have been introduced over the years, such as Timed Propositional Tempo-

ral Logic [3], and Metric Temporal Logic (MTL) [46]. Signal Temporal Logic (STL) [55] has been

proposed more recently as a specification language for constraints on real-valued signals in the con-

text of analog and mixed-signal circuits. In this chapter, we refine LTL system requirements into

constraints on physical variables (e.g. voltages and currents) expressed using STL constructs. Then,

we monitor and process simulation traces to verify constraints satisfaction, while optimizing a set of

design parameters.

For a hybrid dynamical model, we define a signal as a function mapping the time domain T = R≥0

to the reals R. A multi-dimensional signal x is then a function from T to Rn such that ∀t ∈ T,

x(t) = (x1(t), · · · , xn(t)), where xi(t) is the i-th component of vector x(t). Moreover, we assume

that a hybrid system behavioral model F (e.g. implemented in a simulator) takes as input a signal

u(t) and computes an output signal y(t) = F(u(t)). The collection of output signals resulting from

a simulation of the system is a trace, which can also be viewed as a multi-dimensional signal.

In STL, constraints on real-valued signals, or predicates, can be reduced to the form µ = f(x) ∼ π,

where f is a scalar-valued function over the signal x, ∼∈ {<,≤,≥, >,=, 6=}, and π is a real number.

As in LTL, temporal formulas are formed using temporal operators, always, eventually and until.

However, each temporal operator is indexed by intervals of the form (a, b), (a, b], [a, b), [a, b], (a,∞)

or [a,∞), where each of a, b is a non-negative real-valued constant. If I is an interval, then an STL

formula is written using the following grammar:

ϕ := True | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2

The always and eventually operators are defined as special cases of the until operator as follows:

79

�Iϕ , ¬3I¬ϕ, 3Iϕ , TrueUI ϕ. When the interval I is omitted, we use the default interval of

[0,+∞).

The semantics of STL formulas are defined informally as follows. The signal x satisfies µ =

f(x) < 2 at time t (where t ≥ 0), written (x, t) |= µ, if f(x(t)) < 2. It satisfies ϕ = �[0,2) (x > −1),

written (x, t) |= ϕ, if for all time 0 ≤ t < 2, x(t) > −1. The signal x1 satisfies ϕ = 3[1,2) x1 > 0.4

iff there exists time t such that 1 ≤ t < 2 and x1(t) > 0.4. The two-dimensional signal x = (x1, x2)

satisfies the formula ϕ = (x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time u where 2.3 ≤ u ≤ 4.5

and x2(u) < 1, and for all time v in [2.3, u), x1(u) is greater than 10.

We write x |= ϕ as a shorthand of (x, 0) |= ϕ. Formal semantics can be found in [55].

Parametric Signal Temporal Logic (PSTL) is an extension of STL introduced in [5] to define

template formulas containing unknown parameters. Syntactically speaking, a PSTL formula is an

STL formula where numeric constants, either in the constraints given by the predicates µ or in the

time intervals of the temporal operators, can be replaced by symbolic parameters. These parameters

are divided into two types:

• A scale parameter π is a parameter appearing in predicates of the form µ = f(x) ∼ π,

• A time parameter τ is a parameter appearing in an interval of a temporal operator.

An STL formula is obtained by pairing a PSTL formula with a valuation function that assigns a

value to each symbolic parameter. For example, consider the PSTL formula ϕ(π, τ) = �[0,τ]x > π,

with symbolic parameters π (scale) and τ (time). The STL formula �[0,10]x > 1.2 is an instance of

ϕ obtained with the valuation v = {τ 7→ 10, π 7→ 1.2}.

5.1 Design Space Exploration: Case Study

Our design flow, pictorially represented in Fig. 5.1, consists of two main steps, namely topology design

and control design. The topology design step instantiates electric power system components and

connections among them to generate an optimal topology while guaranteeing the desired reliability

level. Given this topology, a reactive control logic can then be synthesized in the control design phase,

to drive contactors while guaranteeing that loads are correctly powered. The above two steps are,

however, connected. The correctness of the controller needs to be enforced in conjunction with its

boundary conditions, i.e. the assumptions on the entities that are not controlled, yet interact with it.

An example of such an assumption is the number of paths from generators to a load made available

by the electric power system architecture to the controller. Similarly, the reliability of an architecture

80

Figure 5.1: Proposed electric power system topology and control design flow.

81

must be assessed in conjunction with the assumptions for the controller to adequately configure its

contactors and leverage the available paths. Therefore, to achieve independent implementability

of architecture and controller, we address the synthesis problem in a compositional way, by using

contracts to incorporate the information on the environment conditions under which each entity is

expected to operate.

Our design process includes a top-down and a bottom-up phase. In the top-down phase, we

associate the requirements to the different entities in the system and formulate top-down vertical

contracts for them. In the bottom-up phase, we build a library of components including, for in-

stance, generators, buses, power converters and contactors. Each component is characterized by

its attributes, including multiple models or views, such as behavioral or reliability views, and finite

state machine (FSM) or continuous-time models. Horizontal contracts specify legal compositions

between these models. Bottom-up vertical contracts define under which conditions the models are

a faithful representation of the physical elements in the system.

In what follows, we provide details on the electric power system design space exploration.

5.1.1 Electric Power System

There is currently no automated procedure for optimal synthesis of control protocols simultaneously

subject to reliability, safety and real-time performance constraints. Therefore, we aim to reason

about these three aspects of the design, by using specialized analysis and synthesis frameworks

operating using different formalisms. Contracts specifying the interface between components and

views help transfer requirements between different frameworks and verify correctness with respect

to the full set of requirements. Our design space exploration is organized as follows:

a) From system requirements, we generate a set of constraints for the electric power system archi-

tecture. Safety, connectivity and power flow constraints are expressed as arithmetic constraints

on Boolean variables (mixed integer-linear inequalities); reliability constraints are inequalities

on real numbers involving component failure probabilities. Such constraints encode both the

guarantees offered by the architecture as well as the assumptions on the underlying control

protocol (horizontal contracts between the plant and its controller). The trade-off between re-

dundancy and cost can then be explored and an electric power system topology is synthesized

to minimize the total component cost while satisfying the constraints above. The synthesized

topology serves as a specification for the subsequent control design step.

b) The original high-level electric power system specifications are translated into LTL formulas for

82

Table 5.1: Load Requirements

Component Requirement (W)
LL1 3000
LL2 4000
RL1 2000
RL2 3000

Table 5.2: Generator Power Ratings

Component Capability (W)
LG1 7000
LG2 3000
RG1 5000
RG2 4000
APU 10000

the topology generated in a). Using the results from Chapters 3-4, a reactive control protocol

is then synthesized from LTL constructs and made available as one (or more) state machines,

satisfying safety specifications by construction. However, no notion of the architectural and

real-time constraints (e.g. timing) related to the physical plant and the hardware implemen-

tation of the control algorithm are available at this level. In this work, timing constraints are

handled at a lower abstraction level, as detailed below.

c) The architecture in a) and the controller in b) are executed using continuous-time behavioral

models to check for their compatibility (horizontal contracts) and assess satisfaction of all the

requirements at a lower abstraction level. LTL requirements are refined into STL formulas.

Simulation traces are monitored to verify and optimize the controller. As an example, an

optimal clock period can be selected in the presence of delays in the switches and under the

assumption of a synchronous implementation. The resulting architecture and controller pair

is then returned as the final design.

5.1.2 Topology Synthesis

We illustrate our methodology on the proof-of-concept design of the primary power distribution of

an electric power system, involving the configuration of contactors to deliver power to high-voltage

AC and DC buses and loads.

The topology synthesis algorithm has been implemented in Matlab and leverages Cplex [1]

to solve the MILP at each iteration. We present the result obtained for an electric power system

topology template T consisting of two generators, two AC buses, two rectifiers, two DC buses and

two loads on each side. Tables 5.1 and 5.2 report the load power requirements and the generator

power ratings in our example; Table 5.3 shows the component costs, while the failure probabilities

are reported in Table 5.4.

Figures 5.2 and 5.3 show the topologies obtained after running the synthesis algorithm when a

set of strategies to increase reliability are sequentially implemented after every MILP iteration. By

83

Table 5.3: Component Costs

Component Cost
Generator Generator power/10

APU APU power/10
AC-Bus 200
Rectifier 200
DC-Bus 200
Contactor 100

Table 5.4: Component failure probabilities

Component Failure Probability

Generator/APU 10−5

AC/DC bus 0
Rectifier 2× 10−4

contactor, load 0

Figure 5.2: Directed graph representation of an electric power system architecture. Unconnected
nodes represent virtual components.

84

(a)

(b)

(c)

Figure 5.3: Topologies 2 (a), 3 (b) and 4 (c).

85

Table 5.5: Failure Probability at Load LL1 for Topologies 1-4

Topology Failure Probability
1 2.3× 10−4

2 4.5× 10−8

3 4.5× 10−8

4 1× 10−12

solving the MILP including only connectivity and power flow constraints, we obtain the topology

in Fig. 5.2, the simplest possible architecture, which only provides a single path from a load to a

generator (or APU) on each side. Such a topology presents the lowest reliability level at its loads,

as shown in Table 5.5.

In Fig. 5.3 a) and b) horizontal connections are added between the DC buses and AC buses of the

left and right hand sides of the system. Since increasing the number of components is expensive, the

algorithm first tries to increase reliability by just adding connections among existing components

at the only cost of additional contactors. Additional components (e.g. buses and rectifiers) are

finally used in Fig. 5.3 c). In Table 5.5, we report the reliability (failure probability) at load LL1,

as computed for the topologies in Fig. 5.2 and 5.3.

In a typical run, the number of necessary paths to increase reliability is estimated at the first

MILP step and convergence to the final topology occurs in no more than two iterations.

5.1.3 Control Synthesis

For each of the four topologies in Figures 5.2-5.3, we formalize a set of environment assumptions

and system specifications to synthesize a control protocol. For the purpose of brevity, we present

the variables and formal specifications, written in LTL, for the topology depicted in Fig. 5.3 b) only.

Environment Variables: Generators LG1, LG2, APU1 and rectifier units LR2 and RR2 are un-

controlled variables that can switch between healthy (1) and unhealthy (0).

Controlled Variables: Contactors Ci,j1 (depicted only as wires in Fig. 5.3) are variables that are

set to open (0) or closed (1).

Dependent Variables: Buses are either powered (1) or unpowered (2) depending on the status of

environment and controlled variables.

Environment Assumption: For an overall system reliability of 10−9, no more than one generator
1i and j denote the name of the components contactor Ci,j connects.

86

and one rectifier unit may be unhealthy at any given time. This is written as

�((LG1 + LG2 +APU1) ≥ 2)

∧ �((LR2 +RR2) ≥ 1).

No Paralleling of AC Sources: No combination of contactors can be closed so that a path exists

between generators.

�¬((CLG1,LB2 = 1) ∧ (CAPU1,LB2 = 1))

∧ �¬((CAPU1,RB2 = 1) ∧ (CRG1,RB2 = 1)).

Power Status of Buses: A bus can only be powered if there exists a path (in which a contactor is

closed) between a bus and a generator. In Fig. 5.3 b), bus LB2 is powered if either generator LG1

or APU1 is powered, and the contactor between generator and bus is closed.

�((LG1 = 1) ∧ (CLG1,LB2 = 1)→ (LB2 = 1))

�((APU1 = 1) ∧ (CAPU1,LB2 = 1)→ (LB2 = 1)).

If neither of these two cases is true, then LB2 will be unpowered. These specifications are written

as

�(¬(((LG1 = 1) ∧ (CLG1,LB2 = 1)

∨((APU1 = 1) ∧ (CAPU1,LB2 = 1)))→ (LB2 = 0)).

Similar specifications may be written for buses RB2, LD2, and RD1.

Safety-Criticality of Buses: We consider all buses to be safety-critical, so that at no time can

any bus be unpowered

�((LB2 = 1) ∧ (RB2 = 1) ∧ (LD2 = 1) ∧ (RD1 = 1)).

The resulting controller has 32 states with a computation time of 1.6 seconds on a Powerbook

2.2 GHz Intel Core Processor.

87

5.1.4 Distributed Synthesis

Given a global specification and a system composed of subsystems, distributed synthesis proceeds

by first finding local specifications for each subsystem, and then synthesizing local controllers for

these subsystems separately. If the local specifications satisfy certain conditions, it can be shown

that the local controllers realizing these local specifications can be implemented together and the

overall system is guaranteed to satisfy the global specification, as detailed in [67]. We describe below

a special case of distributed architecture, i.e. a serial interconnection of controllers, which is used in

the design in Section 5.1.4.1 to synthesize controllers for AC and DC subsystems separately.

Theorem 5.1.1 Given

• a system characterized by a set S = P ∪ E of variables, where P and E are disjoint sets of

controllable and environment variables,

• its two subsystems with variables S1 = P1 ∪ E1 and S2 = P2 ∪ E2, where for each i ∈ {1, 2},

Pi and Ei are disjoint sets of controllable and environment variables for the ith subsystem, P1

and P2 are disjoint, and P = P1 ∪ P2,

• a set I of pairs of variables representing the interconnection structure, that is, for a serial

interconnection, I = {(o1, i2)|o1 ∈ O1 ⊆ (P1 ∪ E1), i2 ∈ I2 ⊆ E2}, where for all (o, i) ∈ I,

o = i,

• a global specification ϕe → ϕs, and two local specifications ϕe1 → ϕs1 and ϕe2 → ϕs2 , where

ϕe, ϕe1 , ϕe2 , ϕs, ϕs1 , and ϕs2 are LTL formulas containing variables only from their respective

sets of environment variables E, E1, E2 and system variables S, S1, S2;

if the following conditions hold:

1. any behavior that satisfies ϕe also satisfies (ϕe1 ∧ ϕe2),

2. any behavior that satisfies (ϕs1 ∧ ϕs2) also satisfies ϕs,

3. there exist two controllers that make the local specifications (ϕe1 → ϕs1) and (ϕe2 → ϕs2) true

with ϕe1 and ϕe2 both true;

then, implementing the two controller together leads to a controller that satisfies the global specifica-

tion ϕe → ϕs.

88

Proof: The conditions on P , P1, P2 ensure that the two controllers are composable, i.e. they do not

try to control the same output (controllable) variables. We first define the following sets of behaviors

in terms of assumptions and guarantees:

A = {σ : σ |= ϕe}; Ai = {σ : σ |= ϕei};

G = {σ : σ |= ϕs}; Gi = {σ : σ |= ϕsi}.

Let S = (A,G ∪ ¬A) be the contract for the global specification and S1 = (A1, G1 ∪ ¬A1),

S2 = (A2, G2 ∪ ¬A2) be the ones for the local specifications, all in saturated form. Since any

implementations of S1 and S2 are composable, contract composition using equations (5.1) and (5.2)

is well defined.

We first prove that

S1 ⊗ S2 � S,

i.e., S1 ⊗ S2 = (A12, G12) refines S. By the definition of refinement, this amounts to showing that

G12 ⊆ G ∪ ¬A and A12 ⊇ A. We obtain

G12 = (G1 ∪ ¬A1) ∩ (G2 ∪ ¬A2)

= (G1 ∩G2) ∪ (G1 ∩ ¬A2) ∪ (¬A1 ∩G2) ∪ (¬A1 ∩ ¬A2)

⊆ G ∪ ¬A2 ∪ ¬A1 (5.4)

= G ∪ ¬(A1 ∩A2) ⊆ G ∪ ¬A,

where we have used that (G1 ∩ G2) ⊆ G by condition 2 in the theorem statement, and ¬A ⊇

¬(A1 ∩A2) (or, equivalently, A ⊆ (A1 ∩A2)) by condition 1. Moreover

A12 = A1 ∩A2 ∪ ¬G12

= A1 ∩A2 ∪ ¬(G1 ∪ ¬A1) ∪ ¬(G2 ∪ ¬A2)

= A1 ∩A2 ∪ (¬G1 ∩A1) ∪ (¬G2 ∩A2) (5.5)

⊇ A1 ∩A2 ⊇ A

by condition 1. Equations (5.4) and (5.5) allow us to conclude that S1 ⊗ S2 refines S, hence any

implementations of S1 and S2 satisfy the global specification.

89

However, for the composite contract to be well defined, we must also show that S1 ⊗ S2 is

compatible, i.e. there exists an environment that satisfies the composite contract or, equivalently,

A12 = {σ|σ |= ϕA12} is not empty, where

ϕA12
= (ϕe1 ∧ ϕe2) ∨ (ϕe1 ∧ ¬ϕs1) ∨ (ϕe2 ∧ ¬ϕs2). (5.6)

By condition 3, there exist behaviors that make the second and third term of the above disjunction

false and the first term true. Therefore, ϕA12
is satisfiable and S1 ⊗ S2 is compatible. �

There are two sources of conservatism in distributed synthesis. The first one is due to the fact that

local controllers have only local information. Therefore, even if there exists a centralized controller

that realizes a global specification, there may not exist local controllers that do so. This is an

inherent problem and can only be addressed by modifying the control architecture (e.g., by changing

the mapping of controlled variables to controllers, by introducing new sensors, or by modifying the

information flow between local controllers).

The second source of conservatism is rather computational. Even when local controllers that

realize the global specification exist, it might be difficult to find them (e.g., see [71] for some un-

decidability results). We note that the conditions provided in Theorem 5.1.1 are only sufficient

conditions. The choices of ϕej and ϕsj for j ∈ {1, 2} plays a role in the level of conservatism. Hence,

when conditions 1 and 2 are satisfied but condition 3 is not satisfied, one can gradually refine the

local specifications.

5.1.4.1 Results

For the single-line diagram in Fig. 5.3, the distributed control synthesis problem can be solved

by splitting the topology into two subsystems S1 and S2. The sets ES1 , SS1 , and ES2 , SS2 con-

tain all environment and system variables for subsystems S1 and S2, respectively. ES1 is com-

posed of generators LG1, APU1 and RG1. SS1 contains AC buses LB2, RB2, and contactors

CLG1,LB2, CAPU1,LB2, CRG1,RB2, CLB2,RB2. ES2 is composed of rectifiers LR2, RR2 and AC buses

LB2, RB2, while SS2 contains DC buses LD2, RD1 and contactors CLR2,LD2, CRR2,RD1, CLD2,RD1.

We assume the link between AC buses and rectifier units is a solid wire.

The environment assumption ϕeS1 for subsystem S1 enforces that at least one generator will

always remain healthy. Environment assumption ϕeS2 enforces that at least one rectifier unit will

always remain healthy. In addition, it also assumes that both AC buses will always be powered. This

is an additional guarantee S1 must provide to S2 for the distributed synthesis problem to become

90

Table 5.6: Topology Reliability

Topology No. Comp. Reliability
1 9 2× 10−4

2 9 4× 10−8

3 9 4× 10−8

4 13 2× 10−14

realizable. All other specifications remain the same as the centralized control problem.

The synthesized controllers for S1 and S2 contains 4 and 8 states, respectively. Each controller

has a computation time of approximately 0.5 seconds on a Powerbook 2.2 GHz Intel Core Processor.

5.1.4.2 Reliability Results

Consider again an electric power system topology in which generators, APUs, and rectifier units may

fail with a probability of 10−5, 10−5, and 2 × 10−4, respectively. The environment assumption is

designed based on the overall aircraft reliability level. For different topologies, however, the synthesis

problem may still be realizable for higher reliability levels. If the synthesis problem is realizable for

all possible failure conditions that occur with probability greater than 10−x per hour (which can then

be converted to allowable environment behaviors), then the controlled system’s failure rate would

be less than 10−x per hour. For the topologies shown in Fig. 5.2 and 5.3, we perform a line-search

on x to determine the highest reliability level for which the synthesis problem is still realizable, with

the specification that all DC loads must always be powered. Table 5.6 lists these levels alongside the

number of components within each topology. Note that reliability level increases as the number of

edges in the topology increase, which corresponds to the number of paths that exist to continuously

power DC loads.

5.1.5 Real-Time Performance

Continuous-time models are implemented in Simulink, by exploiting the SimPowerSystems extension.

As an example, the continuous-time model of a generator consists of a mechanical engine (turbine), a

three-phase synchronous machine, in addition to the GCU, driving the field voltage of the generator.

A bottom-up vertical contract specifies the range of voltage and frequencies for which this reduced-

order model is an accurate representation of the actual electro-mechanical component. In addition

to timing properties, our power network model allows measuring current and voltage levels at the

different circuit loads. It can be discretized to speed up simulations and can seamlessly interface

also with StateFlow models for the controller.

91

0 0.5 1 1.5 2 2.5 3
−200

−150

−100

−50

0

50

100

150

200

V
LE

0 0.5 1 1.5 2 2.5 3
−5

0

5

10

15

20

25

30

time

V
dc

1

AC Voltage provided by left generator

DC Voltage at load 1
Error status of DC1 voltage (Vdc1 error)

Figure 5.4: Real-time requirement violation due to a generator fault.

Figure 5.4 shows the simulated voltage VLD2 of bus LD2 in topology 3 (Fig. 5.3 b)) as a function

of time, when the left generator LG1 fails, Tclk = 20 ms and Td = 40 ms. The waveforms at the top

and bottom of the figure are the voltage signals at the LB2 (AC) and LD2 (DC) buses, respectively.

Both the AC and DC voltages decay to zero because of the fault. The red waveform at the bottom of

the figure is interpreted as a Boolean signal, which can be high (one) or low (zero). The requirement

violation suggests that the controller clock frequency should be increased to make the controlled

system more “reactive” to a left generator fault.

The Tclk versus Td design space is explored in Fig. 5.5 and 5.6 by leveraging a Monte Carlo based

sampling scheme. The latter plot represents the amount of elapsed time τ∗e while the DC bus voltage

is out of range, i.e. for how long the requirement on the DC bus is violated. Such a violation period

is then compared with the hard threshold tmax = 50 ms in Fig. 5.5, thus providing the designer with

a “safe” region (marked in green in Fig. 5.5) for selecting the controller clock as a function of the

contactor delay. As an example, for Td = 20 ms the maximum BPCU reaction time allowed for safe

operation is 45 ms.

5.2 Hardware Testbed

While in the previous section we verified controllers in simulation using Breach and Signal Temporal

Logic, in this section we report on our simulation models and a hardware testbed for validating

reactive controllers synthesized using TuLiP [90] and Simulink [83]. in order to investigate the

validity of the assumptions made in controller synthesis. The particular distributed synthesis method

adopted in this section follows exposition in [67] and [68] as well as from Section 5.1.4. The work

92

Contactor opening/closing delay (ms)

B
P

C
U

 C
lo

ck
 p

er
io

d
(s

)

10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Figure 5.5: Safe clock versus contactor delay region.

Figure 5.6: Duration of requirement violation.

93

described in the rest of this chapter was performed jointly with Robert Rogersten, Necmiye Ozay,

and Ufuk Topcu.

University-scale testbeds for research on correct-by-construction controller synthesis are fairly

limited. An advanced diagnostics and prognostics testbed is described in [75]. Some applications of

this testbed to the electric power systems of spacecraft and aircraft are detailed in [58]. However,

the experiments focused on diagnostic queries of the system, while our work is focused on the

implementation of correct-by-construction control protocols for fault-tolerant operations. A robotics

testbed implementing correct-by-construction controllers is described in [52].

The safety requirements used in simulation models and the hardware testbed follow the descrip-

tion in Section 4.3 and stipulate that the alternating current generators should never be paralleled

and that the duration for which the bus is not powered should never exceed a certain limit. They

also include the environment-related assumption that at least a subset of the generators and rectifier

units must be working at all times. The simulation models were built with the physical modeling

software SimPowerSystems, an extension of Simulink [83]. In order to validate the controller on

the experimental hardware platform, we synthesized and tested it using TuLiP and SimPowerSys-

tems, respectively. Thereafter, we investigated the validity of the assumptions used for controller

synthesis on the experimental hardware platform.

An aircraft electric power system uses different voltage levels, which can broadly be divided

into four categories: high-voltage AC, high-voltage DC, low-voltage AC, and low-voltage DC. The

topology in Figure 5.7 is of specific interest because it is representative of some of the key features

of aircraft electric power systems in simplified settings. Therefore, the hardware testbed was built

based on the above mentioned topology.

5.2.1 Testbed Specifications

Consider the single-line diagram in Figure 5.7 in which environment variables are health statuses of

generators and rectifier units, and controlled variables are the state of contactors. Consider also two

different controller implementations: a centralized logic that runs the system with a single automaton

and a distributed logic that has two different automata, one for the AC subsystem and one for the

DC subsystem, running sequentially.

For the centralized logic, the specifications follow from equations (4.9) - (4.16). In particular, the

environment assumptions maintains that at least one generator and one rectifier unit must always

94

Figure 5.7: Single-line diagram of the power system testbed. Contactors are represented by double
bars. The AC and DC sides of the system are separated by rectifier units (RU).

be healthy, written as

�{((g1 = 1) ∨ (g2 = 1)) ∧ ((r1 = 1) ∨ (r2 = 1))}. (5.7)

To synthesize distributed logic, we separate the system into two subsystems, seen in Figure 5.7.

The AC subsystem contains all AC components (generators, AC contactors, AC buses, and loads).

The DC subsystem contains all rectifier units, DC contactors, buses, and loads. All specifications

from the centralized case decompose and carry over to the distributed case. However, in order to

ensure that the overall specification is realizable, we impose additional restrictions on the components

located at the interface between subsystems. The rectifier units contain capacitors that can be chosen

so that they create a delay TRU , in which the DC buses stays powered even after that an AC bus

gets unpowered.

If TRU > T the additional interface refinement comes in the form of a guarantee specification

that all DC buses bi, for i ∈ {1, 2} will always be powered �(bi = 1), provided that both rectifier

units stay healthy, i.e.,

�{(r1 = 1) ∧ (r2 = 1)}.

This guarantee is written as an environment for the DC subsystem. With this refinement, both

subsystems can be synthesized independently, and the overall system specifications are satisfied

95

Figure 5.8: Sample of a TuLiP output in two-generator and three-contactor case. The generator
status variables are gen1 and gen2, and the contactor status variables are c1, c2, and c3. Each
state has successors, which define where the controller can transit depending on current state. In
addition, no-successor states exist.

when they are implemented together. We assume that the time a generator remains healthy is not

arbitrarily short so that the AC bus powered time (i.e., the time between two intervals when AC

bus is unpowered) is large enough to keep the capacitors on rectifier units charged.

5.2.2 Implementing Formal Specifications

TuLiP generates finite-state automata in the form of a text file that enumerates the possible states

of the system and how the transitions could be carried out according to the current state. It also

generates a text file that specifies environment variables (e.g., generators and rectifier units) and

system variables (e.g., contactors). In order to implement the control logic in SimPowerSystems,

we automatically translate these files into a Matlab-compatible script. A preliminary solution uses

a Python script for this translation. A Python script generating the Matlab code is released with

TuLiP version 0.3c under the tools directory2.

Figure 5.8 shows an example four-state TuLiP generated controller for the two-generator and

three-contactor case. A few lines of the auto-generated code that corresponds to this controller is

shown in Figure 5.9. The auto-generated code can be inserted in SimPowerSystems as a Matlab

function block. It can also be connected to the board with the code shown in Figure 5.10.

5.2.3 Design and Implementation

The single-line diagram in Figure 5.7 is a simplified notation for representing a three-phase power

system. However, as described in Section 5.2.4, the power supply for the hardware testbed is not

three-phase. In order to represent the installations of the sensors, circuit protection devices, and
2http://tulip-control.sf.net

http://tulip-control.sf.net

96

Figure 5.9: Sample code generated using TuLiP controller shown in Figure 5.8.

Figure 5.10: Code that implements the control software running on hardware model.

97

Figure 5.11: Hardware setup corresponding to the single-line diagram shown in Figure 2.1.

fault injection switches, we present a detailed schematic of the testbed in Figure 5.12. Descriptions

of the components shown in Figure 5.12 are given in Figure 5.13.

The hardware testbed has two different voltage levels: 24 VAC and 2.5 VDC. The DC section

is connected to the AC section by rectifier units. Aircraft contactors are designed to switch three-

phase electric power with relatively high currents. Relays are generally used for switching lower

currents. These operate in a similar fashion to contactors but are lighter, simpler, and less expensive.

Therefore, it was more convenient to handle the switching in the hardware model with relays. It

was possible to connect the control logic to the relays with the use of a relay board, which is a set

of computer-controlled relays that can communicate with programming languages supporting serial

communications, e.g., Matlab. Analog-to-digital (A/D) connections on the relay board are used to

monitor the system conditions. A photo of the setup is shown in Figure 5.11. The transformers in

Figure 5.11 are connected to power cords; these can be unplugged to simulate a generator failure.

The rectifier units are connected to a switch, which can be used to generate a fault on the DC

subsystem. Next, we describe how we monitor and sense the status of generators and rectifier units.

98

(a) Circuit Schematic.

(b) Sensing configuration

Figure 5.12: Circuit schematic of the hardware testbed, which corresponds to the single-line dia-
gram shown in Figure 2.1. The numbered arrows in (a) denote voltage sensing connections to the
corresponding numbered arrows in (b).

99

Figure 5.13: Description of the components used in Figure 5.12.

5.2.4 Generation and Circuit Protection

Each generation unit consists of a 12 V battery connected to an inverter that generates 120 VAC;

that is then transformed down to 24 VAC to ensure safety. If the controller violates one of the

safety requirements and connects these two sources in parallel, it would result in a short-circuit and

cause excessive currents in the fuses installed next to the generators, shown in Figure 5.12(a). This

observation makes it possible to monitor the correctness of the controllers at run time.

5.2.5 Sensing

The relay board needs to react consistently to faults injected into the system; this requirement

implies that sensor placement, functionality, accuracy, and time delay play crucial roles in design.

Two types of faults can be injected in the system, namely, rectifier unit failures and generator

failures. Voltage sensing for generator failures is handled using additional relays. These relays close

a 3.6 V circuit to a battery when triggered by the voltage from the transformers. If a fault occurs

and a generator does not work properly, the 3.6 V circuit opens and the system reacts accordingly.

The voltage sensors of the rectifier units are directly connected to the A/D ports of the relay board

because the voltage can be tuned to the appropriate value using an adjustable output on the rectifier

units. Figure 5.12(b) illustrates the sensing configuration on the testbed.

100

Tc [ms] T ′c [ms]
Mean 303.7 187.5
Max 333.3 234.1
Min 282.5 166.6

Table 5.7: Control cycle time, both when relay configuration changes, i.e., Tc and without any
change, i.e., T ′c. The values with and without change were calculated from 20 and 250 measurements,
respectively.

5.3 Experiments

We next describe the characteristics of the hardware testbed and show some preliminary test runs

with different control architectures.

5.3.1 Testbed Characteristics

The first step before the implementation and testing of different controllers is characterizing the

timing properties of the hardware testbed. Every relay has a time delay between the time a command

is sent by the computer and the time an action (i.e., relay opening or closing) is taken, this is referred

to as the relay delay time, Td. Furthermore, the system has delays resulting from control cycle times,

Tc and T ′c, defined as

Tc = Tr + TI + Tw

T ′c = Tr + TI ,

(5.8)

where Tr is the time it takes to read the health statuses from all of the four environment variables,

TI is the time it takes to run the logic (the time can be interpreted as the time taken to run the code

shown in Figure 5.9), and Tw is the time it takes to write information to the board (see Figure 5.10).

Writing information to the board is not needed in every iteration (for instance, if the system state

remains the same), therefore the control cycle time also include T ′c.

The control cycle times Tc and T ′c are listed in Table 5.7. The relay delay time can be found

from the board specifications and shall be less than 20 ms.

An important safety requirement in an aircraft is that a bus should never lose power for more

than a certain duration, e.g., typically 50 ms. In the hardware testbed, the time for which the

bus is unpowered depends on the control cycle times and the relay delay time, and because the

control cycle times exceed 50 ms, we cannot use the typically specified time for which an aircraft

can be unpowered. Therefore, it was necessary to adopt a suitable limit. As illustrated with two

environment variables in Figure 5.10 the relay board read the health status from each environment

variable in a specified order. It is therefore necessary to include a part of T ′c from the previous

101

control cycle in this limit. The time TI in equation (5.8) is negligible compared to Tr and Tw, the

time taken to read the health status from one environment variable can therefore be approximated

as T ′c/4. A reasonable value of an acceptable unpowered time for the hardware testbed can be

T ≈ max (Td) + max (Tc) +
4− n

4
max (T ′c), (5.9)

where n ∈ {1, 2, 3, 4} is the number which denotes the order of when the environment variable that

is faulty is read in the code.

5.3.2 Controller Tests

Two controllers were tested, one with distributed logic and one with centralized logic. The controller

with centralized logic had a 16-state automaton synthesized as explained in Section 5.2.1. The

controller with distributed logic had two four-state automata that run on each subsystem. Both of

these automata were synthesized in a similar fashion to the 16-state controller.

If the environment-related assumption is violated, the controller may end up in a state with no

outgoing transitions, referred to as the no-successor state. The environment-related assumptions for

the testbed are expressed in equation (5.7) of Section 5.2.1. A violation of equation (5.7) results in

the controller entering a no-successor state, which happens when both generators or both rectifier

units are faulty. If a centralized controller senses that both rectifier units are faulty, the whole system

stops working because a no-successor state has been reached. This is not the case when distributed

logic is used, because the AC system continues working even if the DC environment assumption is

violated and the DC part reaches a no-successor state. The distributed logic implementation has two

different automata that represent the logic, one for each subsystem, with coupling between them.

However, the distributed logic is centralized in that it consists of single control software running on

a single computer and communicating with the hardware through a single channel.

Figure 5.14 shows the voltage measurement for the centralized 16-state controller. The measure-

ment was taken on the AC bus when the generator, which health status is read at second place

(n = 2 in equation (5.9)) of the four environment variables in the code, was switched off and then on

again. The generator was switched off at t = 2.83 s, at which point the bus becomes unpowered. The

second vertical line from the left indicates when the controller reacts and power up the bus using the

other generator, which happens at t = 3.1 s. The generator was switched on again at t = 3.73 s; this

was accompanied by a discernible change in the sine curve. Once a generator is switched on again

after a fault, the time for which the bus is without power is not noticeable because the controller

102

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7

−40

−30

−20

−10

0

10

20

30

40

Time [s]

V
o
lta

g
e
 [
V

]

Bus
unpowered

Time [s]!
2,9!2,8! 3! 3,2!3,1! 3,3! 3,4! 3,6!3,5! 3,7!

-40!

-30!

-20!

-10!

0

10!

20!

30!

40!

Vo
lta

ge
 [V

]!

Figure 5.14: Bus voltage measurement when a generator is switched off and then turned back on.
The first vertical line indicates the fault, the second vertical line is when the controller reacts, and
the third line is when the generator is turned back on.

Bus-unpowered time [ms]
Mean 333.9
Max 414.9
Min 232.7

Table 5.8: Time for which bus is unpowered after a fault is injected. These values are calculated
using measurements from 10 fault injections.

sends simultaneous commands to two relays.

The measured bus-unpowered times are listed in Table 5.8, which show a maximum value of

Tmax = 414.9 ms. An acceptable unpowered time when n = 2 and max (Td) = 20 ms can be

calculated with equation (5.9). It follows that T ≈ max (Td)+max (Tc)+
1
2 max (T ′c) = 470.35 ms and

hence, Tmax < T . We used a digital storage oscilloscope (Rigol DS1052E 50MHz) for measurements.

The measurement data are imported into Matlab for analysis and to estimate the unpowered times.

5.4 Conclusions

We have applied a rigorous platform-based methodology to the design of an aircraft electric power

system. Our flow consists of three main phases: topology synthesis, control synthesis, and simulation-

based design space exploration and verification. To express system requirements, we adopt different

formalisms supported by specialized synthesis and analysis frameworks. To generate the system

topology, we cast a mixed integer-linear program that minimizes the overall cost while satisfying a

set of connectivity, power flow and reliability requirements, expressed in terms of linear arithmetic

constraints on Boolean variables and probabilistic constraints. To generate a correct-by-construction

controller for a given topology, we leverage results from reactive synthesis from linear temporal logic

103

specifications. We then refine these LTL specifications into signal-temporal logic constructs to

assess the real-time system performance and explore the design space at a lower abstraction level,

based on high fidelity behavioral models. Our compositional approach uses contracts to guarantee

independent implementability of system topology and control, since both topology synthesis and

control synthesis rely on a consistent set of models and design constraints.

As a future work, we will extend our control synthesis algorithms to support richer formal lan-

guages (e.g., timed logic, branching logic), continuous-time specifications and continuous dynamics

(e.g., transients, network and communication delays). Moreover, we plan to investigate techniques

for automatic generation of local contracts for the synthesis of distributed and hierarchical control

architectures.

As an extension, we plan to build more representative Simulink models that match the hardware

characteristics (e.g., voltage ranges, timing delays), and synthesize controllers that are consistent

with the timing characterization of the hardware. Simulink has embedded controller simulation add-

ons with sensor communication networks that can make simulation models more realistic. Future

work can test out ”truly” distributed controllers in simulation, which we were unable to perform in

hardware due to a single relay board. A simulation model that takes into account the implementation

platform would better reflect software challenges.

104

Chapter 6

Dynamic State Estimation

This chapter explores the design problem of state estimation based on sensor placement for a given

electric power system topology. Section 6.1 provides a brief overview of the state estimation problem

for electric power systems. Sections 6.2 introduces the problem setup and mathematical concepts

and notation used throughout the rest of the chapter. Section 6.3 proposes a mathematical strategy

to determine the state of the system from sensor measurements and gives a worst-case performance

bound for the strategy. Sections 6.4 and 6.5 present the problem implementation and shows results

for example circuits (i.e., topologies). This chapter is joint work with Quentin Maillet and Necmiye

Ozay.

6.1 Overview

Previous work in electric power system state estimation has focused on static, centralized estima-

tion problems with continuous states. We perform discrete state estimation using active control

of switches within the electric power system in a distributed control architecture. The system re-

configures itself through a set of controllable contactors (i.e., electrically controlled switches). Once

reconfigured, new sensor measurements are taken to gain more information about the unknown state.

We adaptively sequence switching actions by use of a greedy strategy that maximizes the one-step

expected uncertainty reduction. By exploiting recent results in adaptive submodularity [34, 47],

we provide theoretical bounds for the worst-case performance of the greedy strategy for a uniform

probability distribution along states. Such dynamic state estimation techniques have been proposed

in the context of Markov jump linear systems [14], information gathering in robotics [61,84], active

hypothesis testing [65], and active learning [37]. To the best of our knowledge, these ideas have not

been applied before in electric power system state estimation and fault diagnosis problems.

105

A critical assumption in recent work [67, 88, 92] is that the high-level reactive control protocol

has an accurate knowledge of the system states, including fault states so that it can reroute the

power accordingly. An expensive, hence undesirable, solution to achieve accurate state estimates

is to equip the system with a large number of sensors. The more sensors present in the system,

makes maintenance more difficult, as well as adds more weight to the aircraft. Software, however,

is cheaper and more amenable to change than hardware. The goal of this chapter is to obtain

high-accuracy state estimates with a limited number of sensors by utilizing software-based dynamic

estimation strategies. We are particularly interested in detecting and localizing faults in the system.

It is common to use discrete models for fault diagnosis [80]. Therefore, continuous values of voltage

and current, as well as health statuses of components in the system are discretized before performing

state estimation. A discrete framework is also well-suited for combining the proposed estimation

strategy with control synthesis results as discussed in Chapter 3.

6.2 Problem Setup

6.2.1 General Problem Description

Consider an aircraft electric power system topology, which can be represented by a graph data

structure G = (N , E). Let Figure 6.1 be the representative circuit topology. The set of nodes

N = {n1, . . . , nnn} in the graph representation contains the following components: generators (G),

rectifier units (R), and voltage sensors (S). The set of edges E = {e1, . . . , ene} contains all contactors

(and solid wire links) between components. The status of contactors in E can either be open or closed.

A node corresponding to a rectifier unit has no outgoing edges on the AC side and no incoming edges

on the DC side to reflect the fact that they contain a diode (i.e., power is unidirectional). The rest

of the edges in the graph are bidirectional.

Elements in the set of generators G ⊆ N and rectifier units R ⊆ N are uncontrollable, and can

take values of

1. Unhealthy (i.e., the component is online but outputting a voltage not in admissible range);

2. Healthy (i.e., the component is online and outputting the correct voltage);

3. Offline (i.e., no power output, open circuit).

Sensor measurements read from S ⊆ N , then, will depend on the status of generators, rectifier

units, and contactors. We define a live path between two components if there exists a simple path

106

G1! G2!

C1! C2!

C3!

C4! C5!

C6!

R1! R2!

S1!

S2!

Figure 6.1: A single-line diagram of a simple circuit with AC and DC components.

in the graph G that connects the two nodes corresponding to these components, there is no offline

component along the path (including end nodes), and the contactors along this path are all closed.

The reading from a sensor s can then take the following values

1. Improper voltage: if there is a live path between sensor s and some generator g ∈ G (not offline

by definition of live path), but either g or rectifier r ∈ R along such a path is unhealthy;

2. Admissible voltage: for all g ∈ G that have a live path to s, both g and all rectifier units along

such paths are healthy;

3. No voltage: there exists no live path between sensor s and any generator g ∈ G.

The state x of the system is defined as a valuation on all components n ∈ G∪R and uncontrollable

contactors e ∈ C′ ⊆ C. We define Ω as the set of all states, i.e all the different valuations of the

components. The state x is unknown and hence modeled as a random variable X that can only be

determined by sensor measurements that are mapped back to a set of possible states in which the

circuit may be.

On top of the circuit and sensing topology is a distributed control architecture with a dynamic

state estimation mechanism. We assume that one of the embedded controllers is responsible for

dynamic state estimation, hereafter referred to as the fault detection controller. The fault detection

107

controller is able to control a subset C \ C′ of contactors (e.g., those labelled with blue in Fig. 6.1).

The overall goal is to design a strategy the fault detection controller runs to adaptively estimate the

discrete state of the circuit by taking “actions” (i.e., closing and opening controllable contactors),

and then reading voltage sensor measurements.

6.2.2 Mathematical Formulation

In this section we introduce the relevant notations used throughout the rest of the paper and math-

ematically formulate the estimation problem.

The state X of the circuit is unknown and modeled as a random variable. Data on component

types and reliability levels can be used to build a probability measure P[x] on Ω. At the beginning of

the state estimation process the system is in the state x0 ∈ Ω. We assume that faults in the system

are independent, and that x0 remains fixed during the estimation process. This is a reasonable

assumption because the timescale of the estimation process is meant to be much smaller than the

failure rates of the components and the timescales of the other controllers in the system.

For the controllable subset of contactors, there exists a set V of actions v that can be performed

and a set Y of measurements y that can be observed. For an action v ∈ V, y = µ(v, x) is the

unique outcome of performing action v if the system is in the state x. The actions {v0, ..., vt}

performed and outcomes {y0, ..., yt} observed up until step t are represented by the partial realization

ψt = {(vi, yi)}i∈{0,...,t}. Given two partial realizations ψt and ψt′ , we say that ψt is a subrealization

of ψt′ if ψt ⊆ ψt′ . At each step t, the probability measure P[x] can be updated by conditioning it

on ψt to obtain P[x | ψt].

We are interested in an estimation process adaptively eliminating “invalid" states to get to the

actual state x0. We define D(y, v), with y = µ(v, x0), to be the set of states x ∈ Ω that are

indistinguishable from x0 under the action v. Formally,D(µ(v, x0), v) = {x ∈ Ω | µ(v, x) = µ(v, x0)}.

We further extend this concept by defining h(v0:t, x0), the set of states that produce the same set of

outcomes {µ(v0, x0), . . . , µ(vt, x0)} as x0 under the same set of actions {v0, . . . , vt}. In the remainder

of the paper, we use St as a shorthand for h(v0:t, x0). If, at step t, we perform a new action v′ /∈ ψt,

there exists a recursive relation between the two sets of states:

h(v0:t ∪ {v′}, x0) = h(v0:t, x0) ∩D(µ(v′, x0), v′), (6.1)

which leads immediately to

St = ∩i∈{0,...,t}D(µ(vi, x0), vi). (6.2)

108

As only intersections are taken, the order of actions vi does not matter.

To represent the uncertainty in the state estimate, we define an objective function f : 2V×Y×Ω→

R+ that maps the set of actions A ⊆ V under state x0 to reward f(A, x0). A strategy π is a function

from partial realizations to actions such that π(ψt) is the action vt+1 taken by π when observing ψt.

We denote Ṽ(π, x0) ⊆ V the set of all the actions performed under the strategy π, the state of the

system being x0. In the general case, Ṽ(π, x0) 6= V.

The fault detection controller is assigned a budget k � |V|, the number of steps within which

the estimation process should terminate. The system is initially in the state x0, which is fixed and

unknown, and the controlled contactors are in some initial configuration v0. Initial configuration

v0 and the corresponding measurement y0 constitute ψ0. Then, for i = 1, . . . , k, we consider the

following process:

vi = π(ψi−1) (6.3a)

yi = µ(vi, x0) (6.3b)

ψi = ψi−1 ∪ (vi, yi). (6.3c)

Equations (6.3a) - (6.3c) represent the decision making, measurement, and update in the estimation

process, respectively.

The goal is to reduce the uncertainty of X represented by the probability distribution P[x]

through performing k actions. To that end, the following reward function is considered:

f(v0:k, x0) = −P[Sk] = −
∑
x∈Sk

P[x]. (6.4)

The behavior driven by the maximization of f is to remove as much probability mass from Ω as

possible in k steps. It is also worth noting that when the underlying probability distribution on Ω

is uniform, f is just proportional to the size of Sk and so maximizing f is equivalent to minimizing

the number of indistinguishable states.

The goal of estimation is to find the strategy that allows the “best expected estimate” for the

state, i.e, the strategy π∗ s.t.

π∗ ∈ arg max
π

E[f(Ṽ(π,X), X)], (6.5)

subject to |Ṽ(π, x)| 6 k for all x, and with expectation taken with respect to P[x].

109

6.3 Strategy

In this section, we describe the algorithm used to solve the state estimation problem and give

performance guarantees on the worst-case execution.

6.3.1 Greedy strategy

To determine the optimal strategy for the fault detection controller, one should plan ahead for k

steps, yet complexity scales up exponentially with k. To address the problem efficiently we develop

a greedy strategy that selects, at each step, the action maximizing the expected one-step gain in

uncertainty reduction. The greedy strategy uses the information ψt gathered through the previous

measurements and the probability measure P[x | ψt] on the set St. This probability is computed

using a classic Bayesian update:

P[x | ψt] =
P[ψt | x] P[x]

P[ψt]
, ∀ x ∈ Ω. (6.6)

As the measurement process is deterministic, for a given x ∈ Ω we have P[x | ψt] = 1{x∈St},

meaning that P[x | ψt] = 1 if x belongs to St, and P[x | ψt] = 0 otherwise. From (6.6) we then get:

P[x | ψt] =

P[x]
P[ψt]

∀ x ∈ St

0 elsewhere
(6.7)

The term P[ψt] is the same for all x. It is a normalization coefficient that can be computed using∑
x∈St P[x | ψt] = 1 to obtain

P[ψt] =
∑
x∈St

P[x]. (6.8)

At step t, the strategy consists of choosing the next action vt+1 that maximizes the gain in un-

certainty reduction. Our measure of uncertainty comes from the value of the function f , established

in Eq. (6.4), and therefore the benefit is expressed in terms of the change in f as we choose the

action v. Consistent with our goal, we choose to maximize in mean the benefit at each step, the

expectation taken with respect to the updated probability measure P[x | ψt]. We obtain the greedy

strategy:

vt+1 ∈ arg max
v∈V

E[f(v0:t ∪ {v}, X)− f(v0:t, X) | ψt]. (6.9)

110

6.3.2 Performance Guarantees

Greedy strategies in general can perform arbitrarily badly [8]. However, by exploiting recent results

on adaptive submodularity, we give a lower bound on the performance of the proposed strategy. For

a brief overview of adaptive submodularity and related definitions, see Section 6.6. We next show

that the function f defined in Eq. (6.4), is adaptive monotone and adaptive submodular (Def. 6.6.2

and 6.6.3).

Proposition 6.3.1 The function f defined in Eq. (6.4) is adaptive monotone.

Proof: Given an action v ∈ V and partial realization ψt at step t, we need to show the expected

marginal benefit ∆(v|ψt) (see Def. 6.6.1) is nonnegative. For the cost function f , ∆(v|ψt) can be

written as:

∆(v | ψt) = E[f(v0:t, X) | ψt]− E[f(v0:t ∪ {v}, X) | ψt]. (6.10)

By Eq. (6.7), we get

∆(v | ψt) =
∑

x∈h(v0:t,x0)

P[x|ψt] φ(x), (6.11)

with

φ(x) =
∑

x̃∈h(v0:t,x)

P[x̃] −
∑

x̃∈h(v0:t∪{v},x)

P[x̃]. (6.12)

By Eq. (6.1), h(v0:t ∪ {v}, x) is a subset of h(v0:t, x) for every x ∈ Ω. Thus, φ(x) > 0, all the

terms in the sum in Eq. (6.11) are non-negative, and ∆(v|ψt) > 0. �

Proposition 6.3.2 The function f defined in Eq. (6.4) is adaptive submodular.

Proof: Given in Appendix 6.6.2. �

Theorem 6.3.3 For any true state x0 ∈ Ω, the uncertainty reduction achieved in k steps by the

greedy strategy given in Algorithm 1 is no worse than (1 − 1/e) of what can be achieved in k steps

by any other strategy, including the best possible strategy.

Proof: Follows directly from Propositions 6.3.1 and 6.3.2 and Theorem 6.6.4 given in Section 6.6. �

111

6.4 Implementation

In this section, we give implementation details on the dynamic estimator employing the greedy strat-

egy on some typical aircraft electric power system topologies. In order to reduce online computation,

the inverse mapping from sensor measurements to compatible states of the circuit is conducted of-

fline. Additionally, we propose some abstraction rules to reduce the size of the circuit as well as

computation time.

6.4.1 Implementation Details

The overall estimation process is summarized in Algorithm 1.

Algorithm 1 Adaptive greedy strategy
Input: Probability measure P[x] on Ω, number of actions to perform k. The system is in the state x0 ∈ Ω,

fixed and unknown, and the controlled contactors are in some configuration v0.
Output: Knowledge of the system ψk gathered after the k actions taken under the strategy πgreedy

1: Take the measurement y0 = µ(v0, x0).
2: ψ0 = {(v0, y0)}
3: for t ∈ {1, . . . , k} do
4: vt = πgreedy(ψt−1)
5: Perform action vt
6: Take the measurement yt = µ(vt, x0)
7: ψt = ψt−1 ∪ {vt, yt}
8: St = St−1 ∩D(yt, vt)
9: Compute P[x | ψt] (Bayesian update)

10: end for
11: return (ψk, Sk,P[x | ψk])

In this algorithm, some items can be precomputed to improve run time. In particular, the inverse

mapping from sensor measurements to compatible states does not have a closed form expression and

the computation of the inverse map involves searching for paths on the graphG = (N , E) representing

the circuit topology. Therefore, for all measurements y ∈ Y and all actions v ∈ V, the sets D(y, v)

of states consistent with the action-measurement pairs (v, y) are computed offline to achieve a faster

implementation. This collection is then accessed on the fly to significantly reduce the computation

time as it is the most costly part of the algorithm.

Assumptions about the components and circuit can be easily incorporated in our framework.

In particular, because these circuits are designed to achieve certain reliability levels, one common

assumption is that at least one generator and one rectifier unit are online (delivering correct or

improper voltage). These assumptions render certain states impossible, which are removed from the

initial state set Ω.

112

6.4.2 Model Reduction Via Abstraction

Although the greedy strategy provides an efficient way (with performance guarantees) to solve the

dynamic state estimation problem, the offline computation can be very demanding. In particular,

the number of possible states is exponential in the number of components whose states are being

estimated. Therefore, for complex circuit topologies, the offline computation of the sets D(y, v) for

all y ∈ Y and all actions v ∈ V is expensive. In this section, we give a set of rules that can be

recursively applied to reduce the size of the circuit by clustering certain components together into

metacomponents.

Components (generators, rectifier units, contactors) are connected through their ports to form

the circuit, and sensors are placed on some of these ports. The main reduction idea is that when two

uncontrolled components are connected together and there is no sensor on their internal connecting

port, some of the individual states of the components may become indistinguishable from what can

be measured with the available sensors. Therefore, they can be treated as a single basic component,

called a metacomponent, having the same global overall behavior. It is then possible to hierarchically

estimate the system state, first by estimating the state of the metacomponent, and then mapping

this state to possible states of individual components forming the metacomponent. When running

the greedy algorithm on the reduced circuit, the probabilities of metacomponent states should be

adjusted accordingly to ensure a lossless abstraction.

The rules we use to simplify the circuits are summarized in Fig. 6.2. Figure 6.2(a), for example,

shows how the combination of generator and contactor can be abstracted into a single “generator"

metacomponent. For the original combination of components, the contactor can either be open (o)

or closed (c), and the generator can either be healthy (h), unhealthy (u), or offline (o). Thus, the set

Ω has six possible states, represented as a tuple of contactor status and generator health: x1 = (c, h),

x2 = (c, u), x3 = (c, o), x4 = (o, h), x5 = (o, u), and x6 = (o, o). The “generator" metacomponent,

however, has three possible states, corresponding to healthy, unhealthy, and offline: x̃1 = h, x̃2 = u,

and x̃3 = o. These metacomponent states can be mapped back to the corresponding original

components, such that x̃1 = {x1}, x̃2 = {x2}, and x̃3 = {x3, x4, x5, x6}.

6.5 Examples

To assess the performance of the greedy strategy, we have systematically tested the greedy strategy

on diverse circuits that are representative of the standard and simple circuits used in electric power

113

!"
(a) Generator Metacomponent.

!"#

!"#
!"#!" !"

(b) Rectifier Unit Metacomponent.

!" !"

(c) Contactor Metacomponent.

Figure 6.2: Metacomponents used for abstraction. In terms of possible external behaviors (i.e.,
what can be measured from the external ports), two-component circuit units (shown in black) are
equivalent to the single component units (shown in red).

systems.

In many cases it is not possible to completely eliminate the uncertainty on the state of the system

when there is a limited number of sensors. In order to evaluate the performance of the greedy

strategy, we compare it with a brute force strategy, which exhaustively tries every action v ∈ V . At

each step states inconsistent with measurements are eliminated, and the strategy terminates when

no action is left. No strategy that tries k < |V | actions can perform better than the brute force

strategy. Although the brute force strategy is not practically applicable, as |V | can be very large,

it gives an upper bound on achievable performance, and can be used as a benchmark. Overall test

methodology is summarized in Algorithm 2.

Algorithm 2 Test methodology
1: for φ0 ∈ Ω do
2: Set the whole circuit (controlled part as well as uncontrolled part) in the state φ0
3: Run the strategy tested (Greedy or brute force strategy)
4: Record the computation time and the value of f at the end for statistics.
5: end for

114

Figure 6.3: Performance comparison between greedy and brute-force strategies.

6.5.1 Small Circuit Tests

The small circuit test configuration, shown in Fig. 6.1 is comprised of 12 components. Six com-

ponents are unknown (G1, G2, R1, R2, C2, C5), 4 contactors are controlled (C1, C3, C4, C6) and two

voltage sensors are available (S1 and S2). Taking into consideration reliability assumptions on faults,

the size of the state-space generated is 1600. A more precise description of the actual hardware cir-

cuit can be found in [77]. On this particular example, with four controlled contactors, the brute force

strategy performs the |V | = 24 = 16 actions. Both strategies have been run on the same MacBook

Pro 2.2 GHz Intel Core. As shown in Figure 6.3, the greedy strategy with a horizon length of k = 6

performs as well as the brute force strategy, i.e., the value of the objective function f at the end of

the 6 steps using the greedy strategy is the same as after the brute force strategy with 16 steps.

6.5.1.1 Average Execution Time

The average execution time for the greedy strategy is shown in Fig. 6.4. Online computation for the

next best action executes on the order of milliseconds, whereas the offline computation for database

set D takes 30 seconds for the small circuit.

6.5.1.2 Average Remaining States

Fig. 6.5 shows the distribution of the values of f after k = 6 steps for the greedy strategy. Beginning

with 1600 possible states, the greedy strategy reduces the number of candidates to less than 20 states

in all the cases. In 50% of the cases, there are 4 states or fewer that are still indistinguishable after

115

Figure 6.4: Histogram of execution time for the greedy strategy.

Figure 6.5: Distribution of the number of indistinguishable states with the greedy strategy

116

k steps. Using this metric of performance to compare greedy and brute force strategies, we can see

on Fig. 6.3 that the greedy strategy performs as well as the brute force. The graph shows the same

figures as Fig. 6.5, but re-shaped for an easier comparison. A point at coordinates (n,m) simply

means that in m% of the cases, there are n or less indistinguishable states after the strategy (greedy

or brute force) terminates.

6.5.2 Large Circuit Tests

In this section we test the greedy strategy on a larger circuit. This topology is representative of

more-electric aircraft power distribution systems with multiple generators and demonstrates how

abstraction can reduce the offline computation time. The circuit topology is shown in Fig. 6.6.

Contactors controlled by fault detection controller are depicted in blue. Applying the lossless ab-

straction method established in 6.4.2 leads to a reduced circuit in which four uncontrolled contactors

are eliminated. Comparing the offline computation for the full and reduced circuit, the that abstrac-

tion reduces the offline computation time by an order of magnitude (from 4000 seconds to 400

seconds).

We have also tested the greedy strategy on this circuit for a subset of Ω. Namely, we have selected

a standard functioning configuration of the contactors and considered all the possible valuations of

the other components, hence creating a subset of Ω. On this subset, the greedy strategy only with

k = 5 actions again performs as well as the brute force strategy. Results for the large circuit tests

are similar to those from the small circuit test, and thus figures are omitted.

6.6 Background Results in Submodularity

6.6.1 Definitions

We give some definitions and results on adaptive submodularity that follows the exposition provided

in [34] and [47]. Notations used here were defined in Subsections 6.2 and 6.2.2.

Definition 6.6.1 Given an objective function f , an action v ∈ V, and a partial realization ψt,

∆(v|ψt) is the conditional expected marginal benefit of v conditioned on having observed ψt, defined

as

∆(v|ψt)
.
= E[f(v0:t ∪ {v}, X)− f(v0:t, X)|ψt],

and the expectation taken with respect to P[x|ψt].

117

G1! G2! G3! G4!

C1! C2! C3! C4!

C5! C6!

C7! C8!

C9! C10!

R1! R2!

S1! S2!

S3!

S4!

Figure 6.6: A single-line diagram of a larger circuit with AC and DC components.

Definition 6.6.2 The function f : 2V×Y×Ω→ R+ is adaptive monotone with respect to distribution

P[x] if the conditional expected marginal benefit of any action is nonnegative. Thus, for all v ∈ V

and ψt with P[ψt] > 0,

∆(v|ψt) ≥ 0.

Definition 6.6.3 The function f : 2V×Y ×Ω→ R+ is adaptive submodular with respect to distribu-

tion P[x] if the conditional expected marginal benefit of any fixed action v does not increase as more

actions are performed and measurements are taken. Thus, f is adaptive submodular with respect to

distribution P[x] if for all ψt, ψt′ such that ψt is a subrealization of ψt′ , and for all v ∈ V\{v0, . . . , vt′},

∆(v|ψt) ≥ ∆(v|ψt′).

The adaptive greedy algorithm, a generalization of the greedy algorithm [47], is a strategy that

selects the action maximizing the conditional expected marginal benefit, conditioned on outcomes

from all previous actions.

Theorem 6.6.4 (Theorem 1.14 in [47]) Let πgreedyl be a greedy strategy run for l iterations (so

118

that it selects l actions). Let π∗k be any policy selecting at most k actions for any realization x. Then,

favg(π
greedy
l) ≥

(
1− e−l/k

)
favg(π

∗
k),

where favg(π)
.
= E[f(Ṽ (π,X), X)] is the expected reward of π.

In particular, by setting k = l we see that the greedy strategy selecting k items step by step

obtains at least (1− 1/e) of the value of the optimal strategy that selects k items step by step.

6.6.2 Proofs

We first state a lemma that will be useful in the proof.

Lemma 6.6.5 The function b : RY → R, defined as

b(τ1, τ2, . . . , τY) =

Y∑
i=1

τi −
∑Y
i=1 τ

2
i∑Y

i=1 τi
, (6.13)

is increasing on the positive orthant, i.e., b(τ1, τ2, . . . , τY) ≥ b(s1, s2, . . . , sY) if τi ≥ si ≥ 0 for all

1 ≤ i ≤ Y .

Proof: Note that because b is symmetric, i.e., permutation invariant with respect to its arguments, it

is enough to show that it is increasing in one of its arguments. Let k1
.
=
∑Y
i=2 τi and k2

.
=
∑Y
i=2 τ

2
i .

Define b̃(x)
.
= b(x, τ2, . . . , τY) = k1 + x − k2+x

2

k1+x
. The partial derivative of b with respect to state x

is ∂b̃/∂x =
k21+k2
(k1+x)2

, which is non-negative by definitions of k1 and k2. �

Now, we are ready to prove Proposition 6.3.2.

Consider two partial realizations ψt and ψt′ s.t ψt ⊆ ψt′ and the corresponding sets St and St′ .

Fix an action v ∈ V \v0:t′ . To prove adaptive submodularity, ∆(v, ψt) can be expressed as a function

dependent on the size of St. We examine the variation of ∆ between St and St′ .

Since the probability measure is non-uniform and can take values in some set {p1, . . . , pN}, we

define the subsets of Ω where P[x] is constant: Fn = {x ∈ Ω | P[x] = pn} for n ∈ {1, . . . , N}. The

collection F1:N is trivially a partition of Ω. It is possible to show that the sets {D(y, v∗) ∩ Fn|y ∈

Y, n ∈ 1 : N} form a partition of Ω and thus a partition of St.

Let αn,y
.
= St ∩D(y, v) ∩ Fn. Then for all x ∈ αn,y, we have

µ(v, x) = y and P[x] = pn. (6.14)

119

By Eq. (6.8) , we get a new expression for P[ψt]:

P[ψt] =
∑
x∈St

P[x] =
∑
y∈Y

∑
n∈1:N

pn|St ∩D(y, v) ∩ Fn|. (6.15)

Let τy
.
=
∑
n∈1:N pn|αn,y|. Then, conditional probabilities on Fn can be rewritten as

∀x ∈ Fn, P[x | ψt] =
pn∑
y∈Y τy

. (6.16)

We then separately compute the two terms in Eq. (6.10). First term becomes:

E[f(v0:t, X) | ψt] =
∑
x0∈St

P[x0 | ψt]
∑

x∈h(v0:t,x0)

P[x]. (6.17)

For x0 ∈ St, h(v0:t, x0) = St, we obtain

E[f(v0:t, X) | ψt] =
∑
y∈Y

τy. (6.18)

For the second term in Eq. (6.10), we first get

f(v0:t ∪ {v}, x) =
∑

x̃∈h(v0:t,x)∩D(µ(v,x),x)

P[x̃]

= τµ(v,x).

From Eq. (6.14) and Eq. (6.16), we obtain:

E[f(v0:t ∪ {v}, X) | ψt] =
∑
x∈St

f(v0:t ∪ {v}, x)P[x | ψt]

=
∑
n∈1:N

∑
y∈Y

∑
x∈αn,y

τy
pn∑
z∈Y τz

=
∑
y∈Y

τy∑
z∈Y τz

∑
n∈1:N

pn|αn,y|

=
∑
y∈Y

τ2y∑
z∈Y τz

.

Finally, putting the two terms of Eq. (6.10) leads to

∆(v|ψt) = b(τ1, τ2, . . . , τY) =

Y∑
i=1

τi −
∑Y
i=1 τ

2
i∑Y

i=1 τi
, (6.19)

120

where Y .
= |Y|.

This expression of ∆(v|ψt) in terms of the variables τi is similar for the partial realization ψt′ ;

the only change is the set St, which is represented in the function b by a different value of the τi

denoted τ ′i . Since ψt ⊆ ψt′ and St′ ⊆ St, τi and τ ′i satisfy τ ′i 6 τi for all i.

Therefore, adaptive submodularity is equivalent to showing that b is increasing on the positive

orthant, and Lemma 6.6.5 concludes the proof.

6.7 Conclusions and Future Work

The current dynamic state estimation problem assumes that a single fault scenario, among a set

of possible scenarios, occurs and remains static throughout the entire greedy strategy implemen-

tation. Given sensor measurements, the greedy strategy outputs a set of possible system states,

or a localized state if possible. Currently, placement of sensors on the circuit topology is a given.

By changing the number and locations of sensors, however, it may be possible to improve state

estimation performance.

Given sensor and state knowledge, we can synthesize a reactive controller by framing the synthesis

problem as a two-player game with incomplete information. In [76], Reif shows that games with

incomplete information (i.e., sets of states that cannot be localized given sensor measurements) can

be transformed into games of perfect information. This is done by a powerset construction of states,

similar to subset construction in finite state automata. In this formulation, the worst-case scenario

is an exponential blow-up in state space. However, the sets of states are restricted given the sensor

knowledge from the dynamic state estimation problem.

Future work will integrate results from partial information games and synthesis of control proto-

cols that can react to dynamically changing faults with dynamic state estimation in order to configure

an optimal sensor placement. Exploring this design space and trade-offs therein are likewise topics

for future work.

121

Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis addressed ways to design a system topology, formally and automatically specify re-

quirements, and synthesize reactive control protocols using an aircraft electric power system as a

representative application area. While current systems engineering relies on text-based specifications

and manual design, we combine formal methodologies from computer science and control in order

to create easier, more efficient, and verifiable ways to develop future control systems.

We demonstrated how text-based specifications can be converted into a temporal logic specifi-

cation language using a representative single-line diagram as an example. Given a set topology for

an electric power system and a set of system requirements formalized in linear temporal logic, we

automatically synthesized a control protocol for an electric power system on a more-electric aircraft.

The controller reacts to changes in the environment and is guaranteed, by construction, to satisfy

the desired properties even in the presence component (i.e., generator) failures. We synthesized a

centralized controller where statuses of all components are known, as well as distributed and decen-

tralized controllers by refining the overall system specifications. This refinement involves additional

assumptions and guarantees between subsystem interfaces (i.e., specifications on the components

that interact with other subsystems).

In specifying formal requirements, we have introduced a tool to automatically convert high-level

specifications into a formal specification language. We addressed techniques for synthesis of discrete-

variable, untimed and discrete-time control protocols. Scenario-based diagrams were shown to be

an additional way to specify system requirements. By utilizing a subset of diagrams referred to as

assume-guarantee live sequence charts, additional semantics allow for these visual-based charts to

be converted into GR(1) specifications and used to synthesize controllers. The limitations of timed

122

synthesis tools has been discussed, and timed specifications have been converted into linear temporal

logic in order to utilize the capabilities of current tools.

In the area of design space exploration, we have applied methodology to the design of an air-

craft electric power system consisting of three main phases: topology synthesis, control synthesis,

and simulation-based design space exploration and verification. Central and controllers previously

synthesized are verified through real-time simulation as well as implemented on a hardware testbed.

By characterizing real-time hardware constraints, we can further refine our synthesis formulation

in order to better characterize timing requirements or evaluate how well a discretized-time prob-

lem can be translated into real-time simulations.To express system requirements, we adopt different

formalisms supported by specialized synthesis and analysis frameworks. To generate the system

topology, we cast a mixed integer-linear program that minimizes the overall cost while satisfying a

set of connectivity, power flow and reliability requirements, expressed in terms of linear arithmetic

constraints on Boolean variables and probabilistic constraints. To generate a correct-by-construction

controller for a given topology, we leverage results from reactive synthesis from linear temporal logic

specifications. We then refine these LTL specifications into signal-temporal logic constructs to assess

the real-time system performance and explore the design space at a lower abstraction level, based

on high fidelity behavioral models. Our compositional approach uses contracts to guarantee inde-

pendent implementability of system topology and control, since both topology synthesis and control

synthesis rely on a consistent set of models and design constraints.

Finally, we perform discrete state estimation using active control of switches within the electric

power system in a distributed control architecture. We formulated a greedy strategy implementa-

tion, which, for a given set of sensor measurements, outputs a set of possible system states, or a

localized state if possible. We provide a worst-performance bound for the greedy strategy, and detail

abstraction methods in order to reduce the size of the problem state space.

7.2 Future Work

Timing specifications in the electric power system problem are addressed with the use of clocks by

way of additional counter variables. This discretization of time further adds to the difficulties arising

from state space explosion. While capable of synthesizing large-scale timed systems, UPPAAL-

TIGA [11] is limited in the types of specifications and number of specifications it can handle. The

efficiency of these timed verification tools, is likewise still dependent on the number of clocks used

in the model. Other tools may be useful, and we are currently examining the ease and expressibility

123

of other alternatives.

Another topic of future work is determining what level of abstraction is needed for modeling,

design, and specification. Control of the power quality from generators is considered at a continuous

level of abstraction. Load management and load shedding are considered at a discrete low-level of

abstraction. Both of these problems, although at different levels of abstraction, should be interfaced

with the primary distribution problem discussed earlier. The effects of transient voltages, significant

changes in addition or removal of loads, should be investigated within this framework. Due to the

nature of the electric power system design problem, continuous dynamics were able to be abstracted

away to a high-level logic problem. Other systems, such as the air-management system on aircraft,

are more highly coupled to dynamics. The influence of network effects, particularly at lower levels

of abstraction, is an area of interest.

To that effect, future work will also examine different the use of timed temporal logics in order

to capture specifications which may not be expressible using LTL or computation tree logic (CTL).

UPPAAL-TIGA can synthesize controllers with respect to timed specifications formalized in timed

computation tree logic (TCTL). Specifications, however, are limited to fragments of TCTL (i.e., no

nested quantifiers). We also plan to capture these specifications using LTL, with additional system

variables, in order to utilize the full range of LTL, which can be used in conjunction with other solvers,

such as Lily [40]. As a future work, we will extend our control synthesis algorithms to support richer

formal languages (e.g., timed logic, branching logic), continuous-time specifications and continuous

dynamics (e.g., transients, network and communication delays). The hardware testbed can likewise

be extended. Not only will more components be added, but also controllers synthesized from other

solvers, such as Lily, can be tested.

Furthermore, we also plan to directly use the domain-specific language and tool to automatically

convert assume-guarantee live sequence charts into specifications and synthesize a controller. Further

extensions include broadening the domain-specific language to include user-specific requirements that

may not be included in the high-level general specifications described earlier. With these kinds of

languages, however, the functionality is still limited to specific scenarios or types of requirements.

Generation specification from assume-guarantee live sequence charts are performed manually. While

tools, such as PlayGo [57] exist to synthesize controllers from a given live sequence chart, this does

not allow integration of live sequence chart specification with other system requirements. In other

words, assume-guarantee live sequence charts can be used for synthesis, but the control logic is

based solely on the charts themselves. We plan to extract the LTL specifications from PlayGo

124

and integrate them with TuLiP. In addition, we are also exploring the use of PlayGo and domain-

specific languages for distributed controller protocols. Namely, how to distribute a given topology

among subsystems and generate interface specifications such that the overall system is realizable.

Lastly, the problem of network effects, including transients and delays, has been mostly ignored or

abstracted away within this problem formulation. Introducing specifications encompassing network

effects would be an additional feature for a domain-specific language.

In addition, given sensor and state knowledge, we can synthesize a reactive controller by fram-

ing the synthesis problem as a two-player game with incomplete information (i.e., sets of states

that cannot be localized given sensor measurements) by transforming them into games of perfect

information. This is done by a powerset construction of states, similar to subset construction in

finite state automata. In this formulation, the worst-case scenario is an exponential blow-up in state

space. However, the sets of states are restricted given the sensor knowledge from the dynamic state

estimation problem. Future work will integrate results from partial information games and synthesis

of control protocols that can react to dynamically changing faults with dynamic state estimation in

order to configure an optimal sensor placement. Exploring this design space and trade-offs therein

are likewise topics to consider.

Finally, we plan to investigate techniques for automatic generation of local contracts for the

synthesis of distributed and hierarchical control architectures. This can be integrated into the

domain-specific language, thus automatically generating contracts as well as specifications. These

techniques are not limited to the scope of electric power systems, and we plan to demonstrate the

usability to other application areas.

125

Bibliography

[1] IBM ILOG CPLEX Optimizer, February 2012.

[2] A. Abur and A. Exposito. Power system state estimation: theory and implementation, vol-

ume 24. CRC, 2004.

[3] R. Alur and T. A. Henzinger. A really temporal logic. In Symposium on Foundations of

Computer Science, pages 164–169, 1989.

[4] K. An, A. Trewyn, A. Gokhale, and S. Sastry. Model-driven performance analysis of recon-

figurable conveyor systems used in material handling applications. In Cyber-Physical Systems

(ICCPS), 2011 IEEE/ACM International Conference on, pages 141 –150, April 2011.

[5] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of temporal proper-

ties. In Runtime Verification, pages 147–160, 2011.

[6] C. Baier, J.-P. Katoen, et al. Principles of model checking, volume 26202649. MIT Press, 2008.

[7] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial context: Motorola

case study. In Model Driven Engineering Languages and Systems, pages 476–491. Springer,

2005.

[8] J. Bang-Jensen, G. Gutin, and A. Yeo. When the greedy algorithm fails. Discrete Optimization,

1(2):121–127, 2004.

[9] A. Barrett, R. Knight, R. Morris, and R. Rasmussen. Mission planning and execution within

the mission data system. In 4th International Workshop on Planning and Scheduling for Space,

Darmstadt, Germany, June 23-25, 2004. Pasadena, CA: Jet Propulsion Laboratory, National

Aeronautics and Space Administration, 2004., 2004.

[10] R. Behjati, T. Yue, S. Nejati, L. Briand, and B. Selic. Extending sysml with aadl concepts

for comprehensive system architecture modeling. In Modelling Foundations and Applications,

pages 236–252. Springer, 2011.

126

[11] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. Larsen, and D. Lime. Uppaal-tiga: Time

for playing games! In Computer Aided Verification, pages 121–125. Springer, 2007.

[12] A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier,

A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K. Larsen. Contracts for systems

design. Proc. IEEE, to appear 2013.

[13] A. Bhave, B. Krogh, D. Garlan, and B. Schmerl. View consistency in architectures for cyber-

physical systems. In Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM International Confer-

ence on, pages 151 –160, April 2011.

[14] L. Blackmore, S. Rajamanoharan, and B. Williams. Active estimation for jump markov linear

systems. Automatic Control, IEEE Transactions on, 53(10):2223–2236, 2008.

[15] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs.

Journal of Computer and System Sciences, 78(3):911–938, 2012.

[16] A. Bose and K. Clements. Real-time modeling of power networks. Proceedings of the IEEE,

75(12):1607–1622, 1987.

[17] C. P. Cavas. Launch of navy’s newest aircraft carrier delayed @ONLINE, May 2013.

[18] N. Clark. Boeing delays deliveries of 787 @ONLINE, 2007.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent

systems using temporal logic specifications. ACM Transactions on Programming Languages and

Systems (TOPLAS), 8(2):244–263, 1986.

[20] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions. ACM

Computing Surveys (CSUR), 28(4):626–643, 1996.

[21] J. S. Cloyd. Status of the united states air force’s more electric aircraft initiative. Aerospace

and Electronic Systems Magazine, IEEE, 13(4):17–22, 1998.

[22] T. B. Corporation. Boeing revises 787 first flight and delivery plans; adds schedule margin to

reduce risk of further delays @ONLINE, 2008.

[23] T. B. Corporation. Stopwatch reset âĂŞ again âĂŞ for mrh90 @ONLINE, May 2013.

127

[24] E. Davidson, S. McArthur, and J. McDonald. A toolset for applying model-based reasoning

techniques to diagnostics for power systems protection. Power Systems, IEEE Transactions on,

18(2):680 – 687, may 2003.

[25] A. Donzé. Breach, a toolbox for verification and parameter synthesis of hybrid systems. In

Proc. Int. Conf. Comput.-Aided Verification, pages 167–170, Berlin, Heidelberg, 2010. Springer-

Verlag.

[26] B. Dutertre and L. D. Moura. The yices smt solver. Technical report, 2006.

[27] R. Ehlers. Symbolic bounded synthesis. In Computer Aided Verification, pages 365–379.

Springer, 2010.

[28] R. Ehlers. Experimental aspects of synthesis. Electronic Proceedings in Theoretical Computer

Science, 50, 2011.

[29] R. Ehlers. Unbeast: Symbolic bounded synthesis. Tools and Algorithms for the Construction

and Analysis of Systems, pages 272–275, 2011.

[30] E. A. Emerson. Temporal and modal logic. Handbook of theoretical computer science, 2:995–

1072, 1990.

[31] E. Filiot, N. Jin, and J.-F. Raskin. Antichains and compositional algorithms for ltl synthesis.

Formal Methods in System Design, 39(3):261–296, 2011.

[32] S. Friedenthal, A. Moore, and R. Steiner. A practical guide to SysML: the systems modeling

language. Morgan Kaufmann, 2011.

[33] A. Galton. Temporal logics and their applications. Academic Press London, 1987.

[34] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning

and stochastic optimization. Journal of Artificial Intelligence Research, 42(1):427–486, 2011.

[35] A. Gonzalez, R. Morris, F. McKenzie, D. Carreira, and B. Gann. Model-based, real-time control

of electrical power systems. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE

Transactions on, 26(4):470–482, 1996.

[36] D. Gorinevsky, S. Boyd, and S. Poll. Estimation of faults in dc electrical power system. In

American Control Conference, 2009. ACC’09., pages 4334–4339. IEEE, 2009.

128

[37] A. Guillory and J. Bilmes. Average-case active learning with costs. In Algorithmic Learning

Theory, pages 141–155. Springer, 2009.

[38] G. J. Holzmann. The model checker spin. Software Engineering, IEEE Transactions on,

23(5):279–295, 1997.

[39] M. Huth and M. Ryan. Logic in Computer Science: Modelling and reasoning about systems.

Cambridge University Press, 2004.

[40] B. Jobstmann and R. Bloem. Lily - a linear logic synthesizer, 2006.

[41] B. Jobstmann and R. Bloem. Optimizations for ltl synthesis. In Formal Methods in Computer

Aided Design, 2006. FMCAD’06, pages 117–124. IEEE, 2006.

[42] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property synthesis.

In Computer Aided Verification, pages 258–262. Springer, 2007.

[43] E. Kang, E. Jackson, and W. Schulte. An approach for effective design space exploration.

In Foundations of Computer Software. Modeling, Development, and Verification of Adaptive

Systems, pages 33–54. Springer, 2011.

[44] K. Keller, K. Swearingen, J. Sheahan, M. Bailey, J. Dunsdon, K. Przytula, and B. Jordan.

Aircraft electrical power systems prognostics and health management. In Aerospace Conference,

2006 IEEE, pages 12–pp. IEEE, 2006.

[45] M. Kloetzer and C. Belta. A fully automated framework for control of linear systems from

temporal logic specifications. Automatic Control, IEEE Transactions on, 53(1):287–297, 2008.

[46] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time Syst.,

2(4):255–299, 1990.

[47] A. Krause and D. Golovin. Submodular function maximization. In Tractability: Practical

Approaches to Hard Problems (to appear). Cambridge University Press, 2012.

[48] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas. Temporal-logic-based reactive mission and

motion planning. Robotics, IEEE Transactions on, 25(6):1370–1381, 2009.

[49] H. Kugler, D. Harel, A. Pnueli, Y. Lu, and Y. Bontemps. Temporal logic for scenario-based

specifications. In Tools and Algorithms for the Construction and Analysis of Systems, pages

445–460. Springer, 2005.

129

[50] R. Kumar, E. G. Mercer, and A. Bunker. Improving translation of live sequence charts to

temporal logic. Electronic Notes in Theoretical Computer Science, 250(1):137–152, 2009.

[51] T. Laengle, T. C. Lueth, and U. Rembold. A distributed control architecture for autonomous

robot systems. Series in Machine Perception and Artificial Intelligence, 21:384–402, 1995.

[52] M. Lahijanian, M. Kloetzer, S. Itani, C. Belta, and S. B. Andersson. Automatic deployment

of autonomous cars in a robotic urban-like environment. In IEEE Intl. Conf. on Robotics and

Automation, pages 2055–2060, Kobe, Japan, 2009.

[53] L. Liu, K. Logan, D. Cartes, and S. Srivastava. Fault detection, diagnostics, and prognostics:

software agent solutions. Vehicular Technology, IEEE Transactions on, 56(4):1613–1622, 2007.

[54] P. Madhusudan and P. Thiagarajan. Distributed controller synthesis for local specifications.

Automata, languages and programming, pages 396–407, 2001.

[55] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In Formal

Modeling and Analysis of Timed Systems, pages 152–166, 2004.

[56] S. Maoz and Y. Saar. Assume-guarantee scenarios: semantics and synthesis. In Model Driven

Engineering Languages and Systems, pages 335–351. Springer, 2012.

[57] S. Maoz and Y. Saar. Counter play-out: Executing unrealizable scenario-based specifications.

2013.

[58] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira, S. Poll, and S. Uckun. Diagnosing faults

in electrical power systems of spacecraft and aircraft. In Innovative Applications of Artificial

Intelligence Conference, pages 1699–1705, Chicago, IL, 2008.

[59] M. Mernik, J. Heering, and A. M. Sloane. When and how to develop domain-specific languages.

ACM Comput. Surv., 37(4):316–344, December 2005.

[60] R. Michalko. Electrical starting, generation, conversion and distribution system architecture

for a more electric vehicle, 10 2008.

[61] L. Mihaylova, T. Lefebvre, H. Bruyninckx, K. Gadeyne, and J. De Schutter. A comparison

of decision making criteria and optimization methods for active robotic sensing. Numerical

Methods and Applications, pages 316–324, 2003.

130

[62] I. Moir and A. Seabridge. Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems

Integration. AIAA Education Series, 2001.

[63] A. Monticelli. Electric power system state estimation. Proceedings of the IEEE, 88(2):262–282,

2000.

[64] M. Mukund. From global specifications to distributed implementations. Synthesis and Control

of Discrete Event Systems, pages 19–34, 2002.

[65] M. Naghshvar and T. Javidi. Active sequential hypothesis testing. CoRR, abs/1203.4626, 2012.

[66] P. Nuzzo, A. Sangiovanni-Vincentelli, X. Sun, and A. Puggelli. Methodology for the design of

analog integrated interfaces using contracts. IEEE Sensors J., 12(12):3329–3345, Dec. 2012.

[67] N. Ozay, U. Topcu, and R. M. Murray. Distributed power allocation for vehicle management

systems. In Proc. IEEE Conference on Decision and Control and European Control Conference,

pages 4841–4848, 2011.

[68] N. Ozay, U. Topcu, R. M. Murray, and T. Wongpiromsarn. Distributed synthesis of control

protocols for smart camera networks. In Cyber-Physical Systems (ICCPS), 2011 IEEE/ACM

International Conference on, pages 45–54. IEEE, 2011.

[69] R. S. Peak, R. M. Burkhart, S. Friedenthal, M. W. Wilson, M. Bajaj, and I. Kim. Simulation-

based design using sysml part 2: Celebrating diversity by example. In INCOSE intl. symposium,

San Diego, 2007.

[70] N. Piterman, A. Pnueli, and Y. Saar. Synthesis of reactive (1) designs. In Verification, Model

Checking, and Abstract Interpretation, pages 364–380. Springer, 2006.

[71] A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesize. In Foundations

of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages 746 –757 vol.2, oct

1990.

[72] A. Pnueli. The temporal logic of programs. In Foundations of Computer Science, 1977., 18th

Annual Symposium on, pages 46–57. IEEE, 1977.

[73] A. Pnueli. Applications of temporal logic to the specification and verification of reactive systems:

a survey of current trends. Current trends in Concurrency, pages 510–584, 1986.

131

[74] A. Pnueli, Y. Saar, and L. Zuck. Jtlv: A framework for developing verification algorithms. In

Computer Aided Verification, pages 171–174. Springer, 2010.

[75] S. Poll, A. Patterson-hine, J. Camisa, D. Garcia, D. Hall, C. Lee, et al. Advanced diagnostics

and prognostics testbed. In International Workshop on Principles of Diagnosis, pages 178–185,

2007.

[76] J. H. Reif. The complexity of two-player games of incomplete information. Journal of computer

and system sciences, 29(2):274–301, 1984.

[77] R. Rogersten, H. Xu, N. Ozay, U. Topcu, and R. M. Murray. An aircraft electric power

distribution testbed for reactive control protocols. In Proceedings of the 16th international

conference on Hybrid systems: computation and control, HSCC ’13, 2013.

[78] J. Rosero, J. Ortega, E. Aldabas, and L. Romeral. Moving towards a more electric aircraft.

Aerospace and Electronic Systems Magazine, IEEE, 22(3):3–9, 2007.

[79] J. Rumbaugh, I. Jacobson, and G. Booch. Unified Modeling Language Reference Manual. Pear-

son Higher Education, 2004.

[80] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. C. Teneketzis. Failure

diagnosis using discrete-event models. Control Systems Technology, IEEE Transactions on,

4(2):105–124, 1996.

[81] A. Sangiovanni-Vincentelli, W. Damm, and R. Passerone. Taming Dr. Frankenstein: Contract–

based design for cyber–physical systems. In Conf. Decision and Control, Dec. 2011.

[82] S. Schewe and B. Finkbeiner. Bounded synthesis. Automated Technology for Verification and

Analysis, pages 474–488, 2007.

[83] Simulink. 2011.

[84] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin. Efficient planning of informative

paths for multiple robots. Carnegie Mellon University, School of Computer Science, Machine

Learning Department, 2006.

[85] M. Sinnett. 787 no-bleed systems: Saving fuel and enhancing operational efficiency @ONLINE.

[86] S. Sohail and F. Somenzi. Safety first: A two-stage algorithm for ltl games. In Formal Methods

in Computer-Aided Design, 2009. FMCAD 2009, pages 77–84. IEEE, 2009.

132

[87] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design space exploration of network

processor architectures. Network Processor Design: Issues and Practices, 1:55–89, 2002.

[88] T. Wongpiromsarn, U. Topcu, and R. Murray. Formal synthesis of embedded control software:

Application to vehicle management systems. In Proceedings of the AIAA Infotech Aerospace

Conference, 2011.

[89] T. Wongpiromsarn, U. Topcu, and R. M. Murray. Receding horizon control for temporal logic

specifications. Automatic Control, IEEE Transactions on, 2012.

[90] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray. Tulip: a software toolbox for

receding horizon temporal logic planning. In Proceedings of the 14th international conference

on Hybrid systems: computation and control, pages 313–314. HSCC, 2011.

[91] T. Wu, S. Bozhko, G. Asher, and D. Thomas. Fast functional modelling of the aircraft power

system including line fault scenarios. In Power Electronics, Machines and Drives (PEMD 2010),

5th IET International Conference on, pages 1–7. IET, 2010.

[92] H. Xu, U. Topcu, and R. M. Murray. A case study on reactive protocols for aircraft electric

power distribution. In Proc. IEEE Conference on Decision and Control, 2012.

[93] S. Y. Yin, Y. Yang, X. W. Miao, and T. D. Zhao. Sysml-based safety analysis of thrust reverser.

Journal of Aerospace Power, 3:005, 2011.

[94] J. Zumberge, J. Wolff, K. McCarthy, and T. O’Connell. Integrated aircraft electrical power

system modeling and simulation analysis. SAE Technical Paper, pages 01–1804, 2010.

	Acknowledgments
	Abstract
	Introduction
	Motivation
	Overview and Related Work
	Formal Methods, Verification, and Synthesis
	Specification and Requirements Capture
	Design Space Exploration and State Estimation

	Outline and Contributions

	Background
	Electric Power Systems
	System Components
	System Description

	Temporal Logic
	Linear Temporal Logic
	Other Temporal Logics

	Reactive Synthesis
	Distributed Synthesis

	Synthesis of Reactive Control Protocols with Timing
	Overview
	Specifications for Aircraft Electric Power Systems
	Formal Specifications For Aircraft Electric Power Systems
	Capturing Actuation Delays
	Case Study
	Variables
	Specifications

	Results
	Centralized Controller Design
	Distributed Control Architecture
	Timing Benchmarks

	Conclusions

	Specification and Domain-Specific Languages
	Overview
	Input Files
	Specifications and Primitives
	Tool Integration
	Untimed: SAT Solver (Yices)
	Timed: TuLiP
	Benchmarks

	Broadening the Domain-Specific Language
	Exceptions and Nominal Cases
	Primitives

	Sequence Diagrams
	Live Sequence Charts
	Live Sequence Chart Semantics

	LTL-Live Sequence Chart Semantics
	Superstep Requirements
	Environment Assumptions
	System Guarantees

	Live Sequence Chart Example

	Timed Temporal Logics
	Timed Specifications
	Protector
	Supervisor
	UPPAAL-TIGA

	Discrete-Time LTL
	Protector
	Supervior

	Conclusions

	Design Space Exploration
	Background: Contract-Based Design of Cyberphysical Systems
	Components
	Contracts
	Signal Temporal Logic

	Design Space Exploration: Case Study
	Electric Power System
	Topology Synthesis
	Control Synthesis
	Distributed Synthesis
	Results
	Reliability Results

	Real-Time Performance

	Hardware Testbed
	Testbed Specifications
	Implementing Formal Specifications
	Design and Implementation
	Generation and Circuit Protection
	Sensing

	Experiments
	Testbed Characteristics
	Controller Tests

	Conclusions

	Dynamic State Estimation
	Overview
	Problem Setup
	General Problem Description
	Mathematical Formulation

	Strategy
	Greedy strategy
	Performance Guarantees

	Implementation
	Implementation Details
	Model Reduction Via Abstraction

	Examples
	Small Circuit Tests
	Average Execution Time
	Average Remaining States

	Large Circuit Tests

	Background Results in Submodularity
	Definitions
	Proofs

	Conclusions and Future Work

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography

