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Abstract

High-background applications such as climate monitoring, biology and security applications demand
a large dynamic range. Under such conditions ultra-high sensitivity is not required. The resonator
bolometer is a novel detector which is well-suited for these conditions. This device takes advantage
of the high-density frequency multiplexing capabilities of superconducting microresonators while
allowing for the use of high-Tc superconductors in fabrication, which enables a modest (1-4 K) oper-
ating temperature and larger dynamic range than is possible with conventional microresonators. The
moderate operating temperature and intrinsic multiplexability of this device reduce cost and allow
for large pixel counts, making the resonator bolometer especially suitable for the aforementioned
applications. A single pixel consists of a superconducting microresonator whose light-absorbing
area is placed on a thermally isolated island. Here we present experimental results and theoretical
calculations for a prototype resonator bolometer array. Intrinsic device noise and noise equivalent
power (NEP) under both dark and illuminated conditions are presented. Under dark conditions the
device sensitivity is limited by the thermal noise fluctuations from the bolometer legs. Under the

experimental illuminated conditions the device was photon noise limited.
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