Characterizing a Resonator Bolometer Array

Thesis by Rebecca Wernis

In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science

California Institute of Technology Pasadena, California

> 2013 (Defended May 14, 2013)

© 2013 Rebecca Wernis All Rights Reserved

Acknowledgements

No one does research in a vacuum – especially not experimental physicists. Since joining the Zmiudzinas research group in June 2011 I've had help in every step of the work presented here. I would first like to thank Prof. Jonas Zmuidzinas for offering me a place in his research group for two years, where I could learn firsthand and take part in all the work that goes into detector development. Next I would like to thank Loren Swenson, a postdoc in Jonas' group who brought me from a state of knowing nothing about microwave electronics and cryogenics to the point where I could set up and program the instruments and take data on my own. Loren was always available when I had questions or needed help and worked closely with me not only in the data taking but the analysis and interpretation as well, drawing on his considerable knowledge and experience in the field.

From time to time I have had assistance from several other researchers, namely Chris McKenney, Peter Day, Darren Dowell and Matt Hollister. Thanks also to Peter Day, Byeong Ho Eom, and Rick LeDuc at JPL for the fabrication and initial testing of the resonator bolometer array.

Abstract

High-background applications such as climate monitoring, biology and security applications demand a large dynamic range. Under such conditions ultra-high sensitivity is not required. The resonator bolometer is a novel detector which is well-suited for these conditions. This device takes advantage of the high-density frequency multiplexing capabilities of superconducting microresonators while allowing for the use of high-Tc superconductors in fabrication, which enables a modest (1-4 K) operating temperature and larger dynamic range than is possible with conventional microresonators. The moderate operating temperature and intrinsic multiplexability of this device reduce cost and allow for large pixel counts, making the resonator bolometer especially suitable for the aforementioned applications. A single pixel consists of a superconducting microresonator whose light-absorbing area is placed on a thermally isolated island. Here we present experimental results and theoretical calculations for a prototype resonator bolometer array. Intrinsic device noise and noise equivalent power (NEP) under both dark and illuminated conditions are presented. Under dark conditions the device sensitivity is limited by the thermal noise fluctuations from the bolometer legs. Under the experimental illuminated conditions the device was photon noise limited.

Contents

Acknowledgements							
Abstract							
1	Background						
	1.1	Introduction to bolometers	1				
		1.1.1 Bolometer modeling	2				
	1.2	Introduction to superconducting microresonators	2				
		1.2.1 Microresonator electrodynamics	3				
		1.2.2 Principles of operation	3				
		1.2.3 Frequency multiplexing	4				
		1.2.4 Photon absorption	4				
		1.2.5 Two level systems	5				
	1.3	The resonator bolometer	6				
		1.3.1 Fabrication	7				
2	Measurement Techniques						
	2.1	Overview	9				
	2.2	Measurement setup	9				
	2.3	Fitting for the resonant frequency and quality factor	11				
3	Dark Measurement Results						
	3.1	Temperature dependence	13				
	3.2	Response	15				
		3.2.1 Thermal conductance calculation	16				
		3.2.2 Results	16				
	3.3	Noise	16				
		3.3.1 Data collection and processing	16				
		3.3.2 Noise sources	17				

		3.3.3 Dark noise results	19
4	Me	asurements under illumination	21
	4.1	Optical response measurement	21
	4.2	Time Constant	21
	4.3	Noise under illumination	24
	4.4	Noise equivalent power	25
5	Cor	nclusion	27
Α	Exp	pressions for $f_r(T)$ and $Q_i(T)$ from Mattis-Bardeen theory	28
	A.1	Temperature dependence of f_r	28
	A.2	Temperature dependence of Q_i	29
В	Res	conator ring-down time derivation	30
\mathbf{C}	HF	SS modeling calculations	31
	C.1	Description of circuit	31
	C.2	Analytic solution to simplest case	31
B	ibliog	graphy	33

vi

List of Figures

1.1	Schematic of a bolometer	2
1.2	Lumped-element resonator pixels and sample readout	4
1.3	ROACH board	5
1.4	Two level systems	5
1.5	Resonator bolometer pixel and explanation	7
1.6	Prototype resonator bolometer array	8
2.1	Measurement setup	10
2.2	Instrument programming with LabVIEW	10
2.3	Data processing steps	12
3.1	Fractional frequency shift and quality factor vs. temperature	14
3.2	Quality factor vs. fractional frequency shift	14
3.3	Data processing steps	15
3.4	Response under dark conditions	17
3.5	Sample noise data	18
3.6	Power spectral density	18
3.7	Noise under dark conditions	20
4.1	Optical response measurement photo	22
4.2	Optical response	22
4.3	Time constant measurement photo	23
4.4	Time constant measurement	23
4.5	eq:Fractional frequency noise under dark and illuminated conditions at constant temperature	24
4.6	Noise under illumination	25
4.7	Illuminated and dark noise equivalent power	26
C.1	Light path equivalent circuit for modeling	31