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Appendix A

Expressions for fr(T ) and Qi(T )
from Mattis-Bardeen theory

The Mattis-Bardeen theory of the anomalous skin effect in superconductors [10] may be used to

derive the behavior of the resonance as the superconductor’s temperature is varied.

A.1 Temperature dependence of fr

Given conductivity σs = σ1 − iσ2, the superconducting resistivity is

ρs ≡
1

σs
=
σ1 + iσ2

σ2
1 + σ2

2

.

The superconducting resistance is thus

Rs =
σ1

σ2
1 + σ2

2

RN

where RN is the resistance in the normal state. Likewise, the superconducting inductance is given

by

ωLs =
σ2

σ2
1 + σ2

2

RN

where ω is the angular frequency. The resonant frequency of an LC circuit is

2πfr = ωr =
1√
LC

.

Let f0 be the resonant frequency of the circuit at 0K. Then

x ≡ fr − f0

f0
=
fr
f0
− 1 =

√
(LrC)−1

(L0C)−1
− 1 =

√
L0

Lr
− 1
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=

√
σ20

ω0(σ2
10

+ σ2
20

)

ωr(σ2
1r

+ σ2
2r

)

σ2r

− 1.

Because we are dealing with frequency changes on the order of a few thousandths of f0 (i.e. a few

MHz), ωr/ω0 ≈ 1. Also, for T � Tc, σ2 � σ1, so σ2
1 + σ2

2 ≈ σ2
2 . Using these approximations, we

have:

x ≈
√
σ2r

σ20

− 1.

σ2 is related to the temperature by

σ2(ω)

σn
=

1

~ω

∫ ∆+~ω

∆

dE
E2 + ∆2 − ~ωE√

E2 −∆2
√

∆2 − (E − ~ω)2
[1− 2f(E)], (A.1)

where σn is the normal state conductivity, ∆ ≈ 3.5kBTc is half the Cooper pair binding energy, ω

is the angular resonant frequency and f(E) is the distribution function for quasiparticles, given by

f(E) = 1/(eE/kT + 1) in thermal equilibrium.

A.2 Temperature dependence of Qi

The internal quality factor Qi is the ratio of ω times the kinetic inductance Lk to the resistance Rs

in the circuit. The kinetic inductance fraction α ≡ Lk/Ls. Using the equations for Rs and ωLs in

section A.1, we can express Qi as a function of σ1 and σ2:

Qi =
ωLk
Rs

=
1

α

ωLs
Rs

=
1

α

σ2

σ1
.

σ2 is given by Equation (A.1), while

σ1(ω)

σn
=

2

~ω

∫ ∞
∆

dE
E2 + ∆2 + ~ωE√

E2 −∆2
√

(E + ~ω)2 −∆2
[f(E)− f(E + ~ω)]

with the quantities σn, ∆, ω and f(E) defined in section A.1.
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Appendix B

Resonator ring-down time
derivation

The total quality factor Qr is given by:

Qr =
ω0ε

P

where ω0 = 2πf0 is the angular resonant frequency, ε = 1
2LI

2 is the energy stored in the resonance

and P = 1
2I

2R is the power dissipated. Plugging in for ε and P yields:

Qr =
ω0

1
2LI

2

1
2I

2R
=
ω0L

R

The attenuation can be obtained by solving the equation of motion for an RLC circuit and is

equal to R
2L . Then we have:

attenuation =
R

2L
=
ω0

2

R

ω0L
=
ω0

2

1

Qr
=

2πf0

2Qr
=
πf0

Qr

The resonator ring-down time τres is defined as the inverse of attenuation, so, in terms of quan-

tities easily found from fitting resonances,

τres =
Qr
πf0

. (B.1)

τres can also be expressed in terms of the bandwidth ∆f by substituting Qr = f0
∆f :

τres =
1

π∆f
.

Physically, the resonator ring-down time is the timescale on which the resonator loses energy

during oscillation. By design, the bolometer time constant (sec 4.2) is much greater than the

resonator ring-down time, so that quantity dominates in our measurements.
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Appendix C

HFSS modeling calculations

An accurate NEP under loading can only be determined if the optical power reaching the detector

is well known. This requires knowledge of both the absorption of the filters in front of the detector

and the spectral dependence of the absorption of the detector itself. The former is provided by

specification sheets for the filters, but the latter must be measured or modeled. In order to confidently

report the amount of radiation absorbed by the detector, we have modeled the absorption of a single

pixel. Details of the methodology are reported here.

C.1 Description of circuit

See section 1.3.1.

C.2 Analytic solution to simplest case

The simplest approximation treats the meandering inductor as a uniform 80 Ω sheet resistance on

one surface of the silicon substrate in free space (see Fig. C.1). The Si substrate has a thickness

of l = 500 µm. Standing waves can occur in the silicon. Maximum transmission occurs when the

Figure C.1: In the simplest approximation, the light sensitive part of the resonator, the meandering
inductor, is treated as a sheet resistance on the boundary between the silicon substrate and free
space.
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substrate thickness is an odd integer multiple of a quarter of a wavelength. Minimum transmission

occurs when the substrate thickness is an even integer multiple of a quarter of a wavelength. To find

the frequencies of minimum and maximum transmission, we evaluate:

nλ

4
=
n

4

c

ν
√
ε

where λ/4 = l = 500µm and εSi = 11.9. Solving yields

nν = n ∗ 4.35 ∗ 1010Hz.

In the case that n is even, we are dealing with half-wavelength multiples, so the magnitude of

the voltage is the same at either end of the silicon section. This means we can eliminate it from the

circuit. The simplified circuit is free space in series with free space and a 50 Ω sheet resistance to

ground in parallel. The equivalent impedance for the parallel section is

1
1

50Ω + 1
377Ω

= 44.1 Ω.

And the reflection coefficient for the transition between free space and this load is

Γ 1
2λ

=
377− 44.1

377 + 44.1
= 0.79.

In the case that n is odd, the equivalent impedance of the Si section plus load (free space in

parallel with 50 Ω sheet resistance) is Z2
Si/Zload, so that the reflection coefficient is

Γ 1
4λ

=
377− (377/

√
11.9)2/44.1

377 + (377/
√

11.9)2/44.1
= 0.16.

|S11| should oscillate between these two extremes.


