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Abstract

A large number of technologically important materials undergo solid-solid phase transforma-

tions. Examples range from Ferroelectrics (transducers and memory devices), zirconia

(Thermal Barrier Coatings) to nickel superalloys and (lithium) iron phosphate (Li-ion bat-

teries). These transformations involve a change in the crystal structure either through dif-

fusion of species or local rearrangement of atoms. This change of crystal structure leads to

a macroscopic change of shape or volume or both and results in internal stresses during the

transformation. In certain situations this stress field gives rise to cracks (tin, iron phosphate

etc.) which continue to propagate as the transformation front traverses the material. In

other materials the transformation modifies the stress field around cracks and effects crack

growth behaviour (zirconia, ferroelectrics). These observations serve as our motivation to

study cracks in solids undergoing phase transformations. Understanding these effects will

help in improving the mechanical reliability of the devices employing these materials.

In this thesis we present work on two problems concerning the interplay between cracks

and phase transformations. First, we consider the directional growth of a set of parallel edge

cracks due to a solid-solid transformation. Assuming uniform material properties, we start

by establishing a relationship between state of the stress jump due to the transformation and

the resulting morphology of cracks expected. We focus on the case where the stress state

due to a transformation initiating at the free edge of the specimen leads to the formation

of parallel edge cracks. Subsequently, the problem is set up by invoking the dissipation

principle and deriving the expressions for the driving forces. Assuming rate independent

kinetic laws for cracks and the phase boundary propagation we study the interaction between

the system of cracks and the phase boundary as it traverses across the geometry. The

presence of the cracks doesn’t effect the overall propagation of the phase boundary and
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only distorts it from its mean straight shape. We then consider the stability of the parallel

system of cracks against period doubling instability commonly seen in thermal cracking.

After performing a linear stability analysis we conclude that the system of cracks is stable

against this bifurcation. We go on to ascertain this conclusion by performing numerical

simulations using finite elements. Finally, using arguments based on energy balance we

derive an optimal spacing for the parallel system of cracks. From this analysis the following

picture of crack growth emerges - for a given transformation strain parallel cracks initiate

and assume a uniform spacing after a transient stage, grow all the way till their tips cross

over the phase boundary and continue to grow as the phase boundary propagates at a

uniform spacing without any instabilities.

Second, we model the effect of the semiconducting nature and dopants on fracture

in ferroelectric perovskite materials, particularly barium titanate (BaTiO3). Traditional

approaches to model fracture in these materials have treated them as insulators. In reality,

they are wide bandgap semiconductors with oxygen vacancies and trace impurities acting as

dopants. We incorporate the space charge arising due the semiconducting effect and dopant

ionization in a phase field model for the ferroelectric. We derive the governing equations

by invoking the dissipation inequality over a ferroelectric domain containing a crack. This

approach also yields the driving force acting on the crack. Our phase field simulations of

polarization domain evolution around a crack show the accumulation of electronic charge

on the crack surface making it more permeable than was previously believed so, as seen in

recent experiments. We also discuss the effect the space charge has on domain formation

and the crack driving force.
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Chapter 1

Introduction

1.1 Solid-solid phase transformations

Solid-solid transformations are phase transformations when a solid in a parent phase under-

goes a transformation to another solid with a different crystal structure. A good example

is the popular ferroelectric material barium titanate, BaTiO3, used widely in transdcuing

applications. Above its Curie temperature of, Tc = 120oC, BaTiO3exists in a state with a

cubic unit cell. Upon cooling, the cubic unit cell transforms into tetragonal. Other popular

examples are the Martensitic transformation of iron and shape memory alloys like nitinol

(NiTi), transformation between iron phosphate and lithium iron phosphate upon insertion

and removal of lithium ions, the protonic transformation of solid acid materials, and the

transformation of zirconia.

Transformations which involve long range diffusion of species are termed diffusional.

Transformations in which there is a change in lattice structure only through a local rear-

rangement of the species are termed diffusionless or martensitic transformations. These

rearrangements are small, usually less than the interatomic distances, and the atoms main-

tain their relative relationships. A good example is the transformation of the popular shape

memory alloy nitinol which undergoes a transformation from a cubic lattice to monoclinic,

see Figure 1.1. The change in the lattice structure due to transformation is characterized by

the transformation or Bain strain which represents the stress free strain of the transformed

lattice of the material with respect to the parent lattice.

Solid-solid transformations have been the basis of numerous applications of technolog-
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Figure 1.1: Cubic to monoclinic transformation of Nitinol. Reproduced from [64]

ical importance. The martensitic transformation of steel is responsible for producing steel

of high strength. Shape memory alloys due to their superelasticty and shape memory prop-

erties have been the basis for high power density actuators in the aviation and automotive

industries and numerous applications in the medical device industry ranging from dental

braces to stent grafts for minimally invasive endovascular procedures. Rechargeable battery

technology using lithium iron phosphate as the cathode material have been found to have

greater life span, higher power density and safer to operate. This battery technology holds

promise for use in hybrid vehicles and consumer electronics. Solid acid compound materials,

cesium hydrogen phosphate and cesium hydrogen sulphate undergo a transformation into a

phase with high proton conductivity which make them potential fuel cell electrolyte materi-

als. Ferroelectric perovskite materials like BaTiO3and PZT have long been used in sensing

and actuating applications in their polar state. Through intelligent domain engineering high

strain actuators are being developed which take advantage of the strain produced through

domain switching.

1.2 Fracture and phase transformations

The change in the lattice structure during the transformation results in the macroscopic

change in the shape or size of the transformed region. During the process, as the trans-

formation front sweeps through a specimen, the macroscopic change in the transformed

region could result in setting up internal stress. These internal stresses are typically relaxed

through the formation of dislocations and twinning in ductile materials. However when the

material is brittle these internal stresses lead to the formation and subsequent growth of
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cracks as the transformation proceeds further.

Cracks arising out of phase transformations have been observed in several instances in-

volving brittle materials. Figure (1.2) shows various instances where transformation leads

to fracture. Cracks have been observed to initiate near the embedded electrodes in PZT

multilayer piezoelectric actuators during the poling process and seen to grow subsequently

ultimately leading to electric discharge. Electrodes used in Li-ion batteries have been known

to develop cracks during the cyclic lithiation and de-lithiation which leads to fade in the

capacity. Cycling of solid acid material, CsH2PO4, due to the incompatibility of transfor-

mation strain, leads to a network of microcracks which is undesirable for the functioning of

the electrolyte.

Understanding the mechanics behind the growth of cracks arising out of phase trans-

formations would help in improving the reliability of the promising technologies based on

phase transforming materials. This serves as the motivation for this thesis. Typically in

these materials there is other physics also at work. For example ferroelectric and piezo-

electric materials involve a coupling between electrical and mechanical fields, Lithium iron

phosphate based electrode involves diffusion of Li-ions , and solid acid materials involve

proton transport. So the mechanics of cracks arising in these instances is coupled to the

additional physics. As a result a holistic theory of the interplay between cracks and phase

transformations is quite difficult to establish and so each case warrants a subjective analysis.

1.3 Organization

In this thesis we consider two problems which involve the interplay between fracture and

phase transformation. First we consider the problem of directional edge crack growth arising

due to a phase transformation in Chapter 2. This is motivated by observations of edge cracks

arising in materials like Li-ion battery electrode particles as well as in thin films of materials

having a sharp concentration or temperature gradient front which traverses along the film.

The phase transformation or the sharp concentration or temperature gradient gives rise to

a jump in the stress free strain across the front resulting in an internal stress which drives

the cracks. Assuming uniform material properties, we start by establishing a relationship
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(a) (b)

(c)

Figure 1.2: Cracks resulting from phase transformation. (a) SEM micrographs of polished
surfaces of CsH2PO4 above the phase transition temperature [65]. (b) SEM image of a
partially delithiated LiFePO4 single crystal [119].(c) Cracked single crystal BaTiO3after
subjecting to cyclic electric loading [16]

between state of the stress jump due to the transformation and the resulting morphology

of cracks expected. We focus on the case where the stress state due to a transformation

initiating at the free edge of the specimen leads to the formation of parallel edge cracks.

The governing equations of the models are obtained by invoking the dissipation inequality,

deriving the expressions for the driving forces and assuming rate independent kinetic laws

for cracks and the phase boundary propagation. We then study the interaction between the

system of cracks and the phase boundary as it traverses across the geometry. We show that

the presence of the cracks does not effect the overall propagation of the phase boundary and

only distorts it from its mean straight shape. We then consider the stability of the parallel

system of cracks against period doubling instability commonly seen in thermal cracking.

After performing a linear stability analysis, we conclude that the system of cracks is stable

against this bifurcation. We go on to ascertain this conclusion by performing numerical

simulations using finite elements. Finally, using arguments based on energy balance, we

derive an optimal spacing for the parallel system of cracks. From this analysis the following

picture of crack growth emerges - for a given transformation strain parallel cracks initiate

and assume a uniform spacing after a transient stage, grow all the way till their tips cross

over the phase boundary and continue to grow as the phase boundary propagates at a
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uniform spacing without any instabilities.

The second problem we address is the fracture of ferroelectric perovskite materials. The

need to understand fracture in ferroelectrics is motivated from observations of sub critical

crack growth in multilayer actuators, crack growth under a static electric field and crack

growth anisotropy with poling direction. Traditional approaches to address fracture in fer-

roelectric perovskites have been based on linear piezoelectric fracture mechanics followed

by incorporating micromechanics based constitutive laws to account for domain switching.

To gain more accuracy mesoscale methods like phase field models were developed to sim-

ulate polarization domain formation around the crack tip. One of the pressing questions

that needs to be addressed while performing these simulations is using physically accurate

boundary conditions since the results from the simulations differ based on the boundary

conditions used. The models till date also assume ferrolectric perovskites to be insulators

and do not account for any space charge. However ferroelectric perovskites are wide band

gap semiconductors and contain a large number of defects which act as ionized dopants.

This chapter presents the first analysis that incorporates semiconducting physics and the ef-

fect of dopants while studying fracture in ferrolecetric perovskites. We do this by developing

a phase field model with the traditional Ginzburg-Landau-Devonshire multiwell potential

and introducing a new field variable, space charge density, ρ. We begin by deriving the

governing equations through the dissipation inequality approach on a ferroelectric domain

containing a crack. Along with giving us the governing equations, it also establishes the

expression for the driving force on the crack. We implement the governing equations using

the finite element discretization in a two dimensional square domain containing a center

crack and calculate the polarization domain formation and space charge density distribu-

tion around the crack. We find that there is accumulation of electronic charge around the

crack surface which leads us to believe that the crack becomes conducting. The observations

from the two dimensional simulations are explained through a one-dimensional phase field

model. We use the expression for the driving force derived earlier, write it in a form which

is commonly used in literature and highlight its features due to the inclusion of the new

variable, space charge density. Finally we evaluate the driving force on the crack in our two
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dimensional simulations using a domain integral approach.

Since the two problems we study have their own rich background, we present a com-

prehensive introduction along with backgrounds and literature surveys in the chapters that

follow.
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Chapter 2

Directional Edge Crack Growth
Due to a Phase Transformation

2.1 Introduction

Solid to solid phase transformations lie at the heart of a number of important technological

applications. Such transformations are characterized by a change of crystal structure which

manifests itself as a change of shape and volume as one phase transforms into another.

Therefore, the process of transformation during which the two phases co-exist can give rise

to stresses. These stresses in turn can lead to internal twinning, plasticity and incoherent

interfaces, or fracture. Phase transformation induced fracture motivates the current work.

Tin pest is a well-known example of such a phenomenon. Often, phase boundaries nucleate

on a free surface and propagate into the body leaving a wake of fractured materials behind

it. This is known as directional cracking or directional crack growth.

Directional crack growth is observed in a wide range of situations involving inhomoge-

neous shrinkage or expansion besides phase transformations, especially as a temperature or

concentration gradient results in gradients of stress-free strain. Basalt columnar formations

in solidifying and cooling lava [28], cracking in glass due to thermal shock [9] are two ex-

amples involving a temperature gradient. Cracks seen in mudflats [28], cracking of Li-ion

battery anodes [38] are examples which involve concentration gradients.

One can broadly distinguish between two situations. The first is where one has a three

dimensional network of cracks. Tin pest is an example of such a situation. The second

is where one has a parallel array of cracks as shown in Figure 2.1 for phase transitions in
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Figure 2.1: Directional crack growth seen in experiments: (a) Phase transformation induced
cracks in CsHSO4 [65]. (b) Parallel edge cracks in a glass plate due to a sharp thermal
gradient [88]. (c) Edge cracks due to drying in a film of sol-gel [46]

.

CsHSO4 [65], drying of aqueous sol-gel films [46], and thermal cracking of glass [88]. This

can happen in both bulk (CsHSO4) as well as in thin specimens (sol-gel films, glass).

Thermal cracking has motivated a number of systematic theoretical and experimental

studies of directional crack growth in thin plates. In situations where the thermal gradient

is small, one observes that a large number of equi-spaced cracks nucleate and propagate for

some distance, but then every other crack arrests leading to a doubling of spacing. Bazant

and coworkers [12, 13, 11] as well as Nemat-Nasser and coworkers [55, 73] have analysed

the equilibrium and stability of a set of edge cracks growing due to a temperature gradient.

Specifically, the special case of two cracks in the unit-cell of a periodic system has been

considered in detail. It has been shown that at a certain depth this mode of growth is

unstable with respect to period doubling. So every other crack stops growing and the rest

of the cracks grow with the front. Further, at a certain point the cracks which stopped

growing snap shut (i.e., are subjected to compressive stresses). The rest of the cracks keep

growing and this cycle is repeated. Nemat-Nasser and collaborations [55] have extended

the analysis to three cracks in the unit cell and obtain similar results. Bahr et.al [10]

considered the coarsening behaviour of edge cracks observed in the thermal shock problem

and the uniform spacing between tunnelling cracks seen in the directional drying of a thin

layers. Using arguments based on fracture mechanics and scaling assumptions - based on the

extent of unloading on the cracks in each case - they conclude that : 1) In the thermal shock

case the spacing between the cracks scales with the crack length leading to a coarsening
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behaviour 2) In the tunnelling cracks case the spacing scales with the film thickness and is

weakly dependent of crack length.

However, no such instability is observed when the change of stress-free strain is sharp

or occurs with a very high gradient. This was noted in Bazant et.al [13], where a finite

element study of thermal cracks did not reveal a bifurcation for sharp temperature profiles.

Shorlin et.al [97] studied shrinkage cracks that form when a thin layer of alumina/water

slurry dries. A set of parallel cracks with uniform spacing form and grow in a directional

manner with the sharp drying front. Once established, the spacing does not change. Allain

and Limat [5] as well as Pauchard et.al [81] make similar observations with the drying of

colloidal suspensions. Rosin and Perrin [88] drove a a thin glass plate at a constant velocity

between two thermal baths at different temperatures, and observed stable crack growth

when the velocity established a sharp gradient. They also point out the fact that the crack

fronts in the middle of the plates had their tips at the same horizontal level establishing a

uniform crack front.

A number of modelling approaches have been adopted to simulate the parallel crack

patterns seen in thermal shock experiments [8, 40, 88] and drying films [5, 97]. Fracture

mechanics combined with static crack finite element calculations were used in [73, 12, 13],

the boundary element method in [10, 7], peridynamics in [56], a variational fracture ap-

proach [62] and spring network models [44]. Jagla [49] presents a theory based on energy

minimization to explain the observations in thin drying layer of materials. He also presents

arguments for cracks attaining a uniform spacing.

In the current work we investigate the growth of a set of parallel cracks due to a sharp

change of stress-free strain caused either by a phase transformation or by a sharp gradient.

We assume that the transformation strain (or jump in stress-free strain) remains essentially

constant as the interface propagates. We first identify specific conditions on the transfor-

mation strain (or jump in stress-free strain) under which we expect parallel cracks. These

include plane stress, but is not limited to it. There is a range of situations in bulk when only

one principal strain is tensile. We then show that the presence of cracks may create local

perturbations, but does not affect the overall propagation of the phase boundary. Finally we



10

show that cracks nucleate when the phase boundary has propagated a certain distance Lcr

(see Figure 2.6) from the free edge. The cracks have uniform spacing b? (see Eq. (2.5.3)),

and nucleate with initial length slightly larger than Lcr. Subsequently all the cracks prop-

agate with the propagating phase boundary in such a manner that the spacing remains

uniform and the tips reach just beyond the phase boundary. The choice for uniform spacing

is based on the observations both in experiment [88, 82] and simulations [49, 62, 10, 56],

where randomly spaced cracks, after a transient growth phase readjust the spacing between

them and establish a uniform spacing either by merging with adjacent cracks or stopping

to grow.

Our analysis is limited by a few important assumptions. First, we assume that the

elastic modulus and fracture toughness of both phases are the same. This enables us to

use superposition in our stress analysis and avoid the issues of crack propagation along

the phase boundary and pinning typically associated with heterogeneous materials. The

problems of cracks propagating normal to an interface separating heterogeneous media

have been considered in [47]. We also assume that the modulus is isotropic. While these

assumptions are reasonable in thermal/concentration gradient induced cracks, they may

not be in phase transitions. Still we believe that the results we present are qualitatively

meaningful. Second, we assume that the phase boundary is roughly parallel to the free edge.

Again, this assumption is reasonable in thermal/concentration gradient induced cracks, it

may not be in phase transitions. In the latter, the phase boundary is a very specific interface

which may or may not coincide with the free edge. However, the situation analysed here

constitutes the worst case scenario. Third, our analysis is limited to uniformly spaced

potential cracks. Our analysis shows that there is a particular spacing that is preferred.

Further, this preferred spacing is determined by the transformation strain alone, and that

this spacing is stable against various instability. Therefore, we expect that the mode-II

loading generated by the non-uniform spacing would result in crack deviation and merging

eventually resulting in a uniform spacing.

The rest of the chapter is organized as follows. We describe the general setting and recall

results from phase transitions and fracture mechanics in Section 2.2. We analyse in Section
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Figure 2.2: A body with a crack and a phase boundary.

2.3.1 the state of stress that can result from a phase transformation, and identify the specific

conditions that cause a single tensile principal stress that in turn can lead to parallel cracks.

We specialize to the problem of interest in Section 2.3.2. We consider a phase boundary

roughly parallel to the free edge propagating into a solid and an array of parallel cracks

perpendicular to the edge propagating into the solid in the wake of the phase boundary.

Section 2.3.2 derives the resulting stresses. We study how the phase boundary propagation

is affected by the cracks in Section 2.4. We show that cracks create local perturbations, but

does not affect the overall propagation of the phase boundary.

The main analysis of crack propagation is presented in Section 2.5. We begin with

the study of cracks of uniform spacing and length in Section 2.5.1, and then study cracks

of uniform spacing but alternating length in Section 2.5.2. These allow us to draw the

conclusions describe above. We confirm these conclusions through numerical simulation

in Sections 2.6 and 2.7. We conclude in Section 2.8 and provide ideas for future work in

Section 2.9.

2.2 Overall setting

2.2.1 Dissipation inequality and equilibrium

Consider a body Ω consisting of two phases α and β occupying complementary sub-regions

Ωα and Ωβ as shown in Figure 2.2. These phases are separated by a phase boundary S,

a smooth surface with normal k̂. In anticipation of the situation we intend to study, we

consider a crack Γ to be present in the α phase. To deal with the elastic singularity at the

crack front, we remove a curved cylinder Cδ with axis following the crack front and radius
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δ and consider only the region Ωδ = Ωα\Cδ. There is an external traction t0 acting on a

part Ωt of the boundary of Ω, and displacement is specified on the rest of the boundary.

The total energy of the system is given by,

Πδ(u,Γ,S) =

∫
Ωδ

ψα(∇u)dx+

∫
Ωβ

ψβ(∇u)dx−
∫

Ωt

to.uds, (2.2.1)

where

ψα(ε) =
1

2
(ε− ε?) · C(ε− ε?) + ω,

ψβ(ε) =
1

2
ε · C, ε (2.2.2)

where C is the elastic modulus assumed to be uniform across the phases, ε? is the trans-

formation strain (stress-free strain or eigenstrain) and ω is the chemical potential. The

assumption of equal elastic modulus is essential as it allows various applications of the prin-

ciple of superposition in what follows. Further, we assume that this uniform modulus is

isotropic and the transformation strain ε? is diagonal (the latter is without loss of generality

by a change of coordinates). We use the notation ψ = χαψα + (1 − χα)ψβ, where χα rep-

resents the indicator function over Ωα, to represent the elastic energy density of the body.

We adopt the following notation going further, u is the particle displacement, u particle

velocity, a = ȧt̂ is the crack tip velocity, v is the phase boundary velocity, vn = v.k̂ is the

normal velocity of the phase boundary, ĉ represents the normal to the curve Γ, the crack

surface.

Above, we have neglected surface energy along the crack faces, and interfacial energy

on phase boundary. We note that the former does not change the results since it can easily

be accounted for in the crack propagation criterion. Regarding the latter, we are interested

in situations where the elastic energy is significant so that the phase boundaries are almost

planar.

We proceed by using the dissipaion inequality approach [4, 120] , but note that other

approaches including variational[53, 61, 52] and configurational force balance [41] yield the

same result. The derivation is provided for completeness. We begin by writing down the
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dissipation in the body under the loading and the evolution of the phase boundary and the

cracks.

D = F − E ≥ 0, (2.2.3)

where F represents the rate of external work and E is the rate of change of energy of the

body Ω. The rate of external work is given by

F =

∫
∂Ωt

to.uds, (2.2.4)

the rate of change of energy of the body is

E =
d

dt

∫
Ωt

ψdx. (2.2.5)

Assuming no flux on the boundary ∂Ωt, the transport identity (A.3.3), leads to

E =

∫
Ω\Cδ

ψ̇dx− lim
δ→0

∫
∂Cδ

ψ(a.n̂)ds−
∫
S

[[ψ]]vnds. (2.2.6)

Expanding the first term and using the divergence theorem (A.3.6) leads to

E =

∫
∂Ωt

∂ψ

∂ε
.u.m̂ds−

∫
Ωt

∇.
(
∂ψ

∂ε

)
.udx− lim

δ→0

∫
∂Cδ

[
ψ(a.n̂) +

∂ψ

∂ε
u.n̂

]
ds

−
∫
S

[[ψ]]vnds−
∫
S

[[
∂ψ

∂ε
.u

]]
.k̂ds−

∫
Γ

[[
∂ψ

∂ε
.u

]]
.ĉds. (2.2.7)

The above equation can be simplified further using the following

[[αβ]] = [[α]]〈β〉+ [[β]]〈α〉, σ =
∂ψ

∂ε
, (2.2.8a)

[[u]] + vn[[∇uT ]].k̂ = 0 on S, u = ∇u.a on ∂Cδ. (2.2.8b)

The relations in (2.2.8b) represent the compatibilty condition at the phase boundary and

particle velocity on ∂Cδ. We assume that the the cylinder Cδ moves with the crack tip
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velocity a. Substituting (2.2.8) into (2.2.7), the expression for D takes the form

D =

∫
Ωt

∇.σ.udx+

∫
∂Ωt

(to − σ.m̂) ds+ lim
δ→0

∫
∂Cδ

[
ψ(a.n̂) +∇uTσ.n̂.a

]
ds

+

∫
S

(
[[ψ]]− [[∇uT .k̂]]〈σ.k̂〉

)
vnds+

∫
S

[[σ.k̂]]〈u〉ds+

∫
Γ
[[σ.ĉ]].uds. (2.2.9)

Note that the terms contributing to the dissipation are arranged in conjugate pairs - gener-

alized velocity times a conjugate force. Using the arguments presented in [22], equilibrium

under isothermal conditions, assuming traction free crack faces leads to

∇·σ = 0, σ.m̂ = to on ∂Ωt [[σ]]k̂ = 0 on S, σ =

 C(ε− ε?) in Ωα

Cε in Ωβ

. (2.2.10)

2.2.2 Propagation laws

The driving forces conjugate to crack propagation and phase boundary propagation are

respectively

da = lim
δ→0

∫
∂Cδ

t̂ · (ψI −∇uTσ).n̂ds , (2.2.11)

dS = k̂.[[ψI −∇uTσ]].k̂ = [[ψ]]− 〈σ〉 : [[ε]]. (2.2.12)

where t̂ is the tangent to the crack at the tip. For the energy density as in (2.2.2) and for

an boundary moving into the the β−phase, the expression for the driving force reduces to

dS = 〈σ〉 : ε? − ω, (2.2.13)

where 〈σ〉 represents the mean value of the stress across the phase boundary. Thus, in

the absence of stress, the α phase tends to grow when ω is negative and vice-versa. The

driving force on the phase boundary (2.2.12) is the jump in the widely known Eshelby

energy-momentum tensor [32]. The driving force on the crack tip (2.2.11) is the celebrated

J-integral [87] and is often referred to as the energy release rate G [86].
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The propagation of the cracks and the interface conditions follow the kinetic relations

ȧ = fa(da) vn = fS(dS), (2.2.14)

where a is the crack length and vn is the normal velocity of the phase boundary. We assume

rate-independent kinetic relations :

da ≤ Gc, ȧ = 0 if da < Gc, and ȧ ≥ 0 if da = Gc , (2.2.15)

|dS | ≤ dc, vn = 0 if |dS | < dc, and dSvn ≥ 0 if |dS | = dc, . (2.2.16)

Above, Gc is the critical energy release rate and dc is the critical driving force for

interface propagation. We also restrict ȧ ≥ 0 to prevent crack healing.

2.2.3 Stability of a propagating system of cracks

Consider a loading system where two cracks propagate with a smooth time history a1(t)

and a2(t) such that it satisfies the condition (cf. (2.2.15))

d1
a(a1(t), a2(t)) = d2

a(a1(t), a2(t)) = Gc. (2.2.17)

Now assume that beginning at time t = t?, we have an alternate smooth crack history b1(t)

and b2(t) with ḃi ≥ 0 consistent with the loading and propagation criterion :

d1
a(b1(t), b2(t)) ≤ Gc, d2

a(b1(t), b2(t)) ≤ Gc. (2.2.18)

Subtracting (2.2.18) from (2.2.17) and expanding around t = t?, we find the necessary

condition for bifurcation to be

2∑
j=1

Hij(ȧj(t
?)− ḃj(t?)) ≥ 0 i = 1, 2 for some ḃi ≥ 0, (2.2.19)
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where

Hij =
∂dia
∂aj

∣∣∣∣
(a1(t?),a2(t?))

. (2.2.20)

Note that this condition is somewhat subtle since we require ȧi, ḃi to be non-negative. In

other words, one can have a singular Hessian H, but still be stable because the criticality

occurs along inadmissible crack histories.

This analysis, consistent with those in [12] and [74], assumes that the crack paths and

crack trajectories are differentiable. However we note that this may not always be the case

[19] for rate-independent laws.

2.3 Stress analysis

2.3.1 Stress due to a phase boundary

We begin by studying the nature of stresses that arise as a consequence of the phase tran-

sition. This depends on the elastic moduli of the two phases, the transformation strain as

well as the microstructure (i.e., the geometric arrangement of the two phases). In many

structural phase transitions, the microstructure that arises is the one that minimizes the

free energy of the system. This in turn is dominated by the strain energy for large enough

transformation strains. The problem of computing the optimal microstructure remains

open in general (see for example Chenchiah and Bhattacharya [21]). However, when both

phases have the same elastic modulus as assumed in this work, Kohn [57] has shown that

the optimal arrangement is laminates with a specific interface normal.

If the transformation strain is a symmetrized rank-one matrix, i.e., ε? = γ
2 (n̂⊗ m̂+ m̂⊗ n̂)

for some scalar γ and unit vectors n̂, m̂, then the two phases can co-exist in a stress-free

manner with an interface with normal n̂ or m̂. If, ε? is not of this form, then Kohn [57] has

shown that the the best possible interface is one that affords the best approximation of ε?

to a symmetrized rank-one matrix. Specifically, let n̂, m̂ solve the variational problem:

γ = max
n̂,m̂

(n̂⊗ m̂+ m̂⊗ n̂) · Cε?

((n̂⊗ m̂+ m̂⊗ n̂) · C (n̂⊗ m̂+ m̂⊗ n̂))1/2
. (2.3.1)
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Then, the interface between the two phases is either n̂ or m̂. Further, the jump in strain

across the interface is

[[ε]] =
γ

2
(n̂⊗ m̂+ m̂⊗ n̂) , (2.3.2)

so that jump in stress across the interface is

[[σ]] = C
(γ

2
(n̂⊗ m̂+ m̂⊗ n̂)− ε?

)
. (2.3.3)

For specificity, let us assume that the interface normal is n̂. Then, traction continuity

requires that [[σ]]n̂ = 0. It follows that the normal to the interface is one of the principal

axes of the stress jump with principal value zero. In other words, the state of stress resulting

from the phase transformation is at most biaxial along two normal directions that lie on

the phase boundary.

If both of these are tensile, then we expect to see a network of cracks like in basalt and

if both are compressive, we may see interfacial fracture. However, if exactly one of them is

tensile, we expect to see parallel cracks of the type we analyse here. This happens exactly

when the product of the two principal stresses is non-positive. However, notice that this

product is also the determinant of the projection of the stress to the plane of the interface.

Putting this together, we conclude that we expect to see parallel cracks when

n̂ · cof([[σ]])n̂ ≤ 0, (2.3.4)

where cof( ) represents the cofactor, [[σ]] is given by (2.3.3), and γ, n̂, m̂ are given by (2.3.1).

To illustrate this condition, let

ε? =


ε∗1 0 0

0 ε∗2 0

0 0 ε∗3

 . (2.3.5)

We effectively have two situations.

• Case 1: ε∗1 < ε∗2 < ε∗3 < 0. An example is the α − β transformation of tin, where
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the metallic, white β form of tin transforms to the brittle, grey α form upon cooling

below 13.2◦C. The transformation strain from α to β is characterized by ε∗1 = ε∗2 =

−0.113, ε∗3 = −0.0204, [84]. Let êi, (i = 1, 2, 3) denote the principal directions of ε∗.

In this case, the optimal normal according to (2.3.1) is any vector in the ê1− ê2 plane.

If we choose it to be ê1, then the jump in stress components is

[[σ22]] = −Eε
∗
3 + νε∗2
1− ν2

, [[σ33]] = −Eε
∗
2 + νε∗3
1− ν2

. (2.3.6)

Since all the strains are negative, the stress jump has two positive principal values.

One would expect a network of cracks similar to mud-cracking unless we are in plane

stress.

We note that the case 0 < ε∗1 < ε∗2 < ε∗3 is essentially the same with the roles of the

two phases and the sign of the stresses reversed.

• Case 2: ε∗1 < ε∗2 < 0 < ε∗3. The intercalation phase transition in LiFePO4 is an example

with ε∗1 = −0.056, ε∗2 = −0.0434, ε∗3 = 0.013 [66]. In this case, the interface normal

depends on the specific details of the transformation strain and elastic modulus. For

the values of the transformation and elastic moduli for LiFePO4, the normal happens

to be ê1, and this is in agreement with observations. Further, the jump in stress is

again given by (2.3.6). It is readily verified that the jumps have opposite signs. Thus,

we have only one tensile principal stress, and we anticipate the formation of parallel

edge cracks as seen in [118, 38]. To analyse crack formation and growth we confine

the analysis to the plane perpendicular to the crack fronts.

We note that the case ε∗1 < 0 < ε∗2 < ε∗3 is essentially the same with the roles of the

two phases and the signs of the stress reversed.

In summary, we expect to see an array of parallel cracks in Case 2.

Another situation in which we expect to see an array of parallel cracks is in plane stress.

When the in-plane components of transformation strain ε∗1, ε
∗
2 are opposite in sign, the two

phases can co-exist in a stress-free manner. However, when they are of the same sign, the

phase boundary is normal to the eigenvector which corresponds to the largest (in magnitude)
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Figure 2.3: Geometry of the problem showing the phase boundary, free surface and cracks,
and the partition into simpler problems used for stress analysis.

eigenvalue and the state of stress in the α phase is uniaxial. This is the situation in LiFePO4

flakes often used in batteries.

2.3.2 Stress due to the interaction of cracks with a phase boundary

We now specialize to the geometry of interest and to two dimensions. We seek to address

nucleation and growth of cracks when the interface is close to a free edge. This interface

may represent a phase boundary as discussed in the previous section, or also a region of

high gradient of temperature or concentration separating regions of uniformity. We assume

that the body is stress-free far away from the free boundary (i.e., deep into the β phase).

We assume that the specimen is semi-infinite, the phase boundary is broadly parallel to the

free end, and a set of equi-spaced (but possible varying in length) parallel cracks run from

the free edge to the phase boundary as shown in Figure 2.3. For specificity, we assume that

the transformation strain is

ε? =

−2εo 0

0 −εo

 . (2.3.7)

We assume for the stress analysis that the cracks are separated from the phase boundary.

We further assume that the deflection of the phase boundary due to the elastic field set up

by the cracks is almost straight. Under these assumptions, we can approximate the phase

boundary to be straight subject to a concentrated dislocation density Bx = −(2+ν)εof
′(y),

where ν is the Poisson’s ratio, f is the normal displacement of the phase boundary from
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its mean position and y is the coordinate along the mean phase boundary. We provide the

details in Appendix A.1. This idea has been used before in the context of thin films [36]

and has recently been proved rigorously for phase boundaries [26].

We are now able to decompose the problem into three sub-problems as shown in Figure

2.3.

A. Straight phase boundary with no cracks. For the transformation strain assumed in

(2.3.7), the state of stress in a semi-infinite body which is stress-free at infinity and

which contains a phase boundary at a distance L to the free edge is piecewise constant,

and verified to be

σ(x) =



0 0

0 σo

 x < L

0 0

0 0

 x > L

, σo = εoE. (2.3.8)

B. Dislocation distribution on the phase boundary. For a semi-infinite body with a

concentrated dislocation density acting on a line at a distance L from the free edge,

we show for the special case of a shallow cosine displacement of the phase boundary

i.e. f(y) = A cos(λy), A << λ, in Appendix A.1, that the state of stress is obtained

from the Airy stress potentials

Φ1 =
σoAe

−λ(x+L){3 + λL+ λx(5 + 2λL) + e2λx(−3 + λ(x− L))} cos(λy))

4λ
0 < x < L,

(2.3.9a)

Φ2 =
σoAe

−λ(x+L){3 + λL+ λx(5 + 2λL)− e2λL(3 + λ(x− L))} cos(λy)

4λ
x > L.

(2.3.9b)

This result can be used to determine the stress field due to an arbitrary displacement

f(y).

C. Cracks with tractions on the crack face. Finally consider a semi-infinite body with
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a number of cracks emanating from the free surface. We assume that the surface

of the cracks are subjected to normal and shear tractions σ(x), τ(x). In order for

the superposition of the three parts to provide a solution to the original problem,

we take these tractions to be equal and opposite to the sum of the tractions at that

location in parts A and B. Further, if we assume that the cracks are separated from

the phase boundary, L is small compared to the size of the specimen and the interface

displacement is shallow, we may ignore the contribution due to part B. Hence the

shear is zero, and the normal traction is uniform and equal to −σ0.

We assume that the arrangement of cracks is periodic, with n cracks in one period.

The cracks are equispaced, with spacing b, but have possibly different lengths. For

specificity, we specialize to the case of two cracks in one period as shown in Figure

2.4. The semi-infinite strip is subject to periodic boundary conditions on the top and

bottom surfaces, the free edge is traction free, and the crack faces are subject to a

normal traction −σ0. As shown in [73], we can write the traction boundary conditions

for the crack faces in terms of dislocation distributions D1(t) and D2(t) as follows:

π

2b

∫ h1

0
D1(t)G1(t, x)dt+

π

2b

∫ h2

0
D2(t)G2(t, x)dt = −σo 0 < x < h1, (2.3.10a)

π

2b

∫ h1

0
D1(t)G2(t, x)dt+

π

2b

∫ h2

0
D2(t)G1(t, x)dt = −σo 0 < x < h2, (2.3.10b)

where G1(x, t) and G2(t, x) are as follows

G1(t, x) = 2 coth
π(x+ t)

2b
− π(x+ 3t)

2b
cosech2π(x+ t)

2b
+
xtπ2

b2
cosech2π(x+ t)

2b
coth

π(x+ t)

2b

− 2 coth
π(x− t)

2b
+
π(x− t)2

2b
cosech2π(x− t)

2b
, (2.3.11a)

G2(t, x) = 2 tanh
π(x+ t)

2b
+
π(x+ 3t)

2b
sech2π(x+ t)

2b
− π2tx

b2
sech2π(x+ t)

2b
tanh

π(y + t)

2b

− 2 tanh
π(y − t)

2b
− π(x− t)

2b
sech2π(y − t)

2b
. (2.3.11b)

Above, we have accounted for the free surface using image forces, or a distribution

of climb dislocations on the free surface [35]. In order to account for the crack tip
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Figure 2.4: Unit cell of width 2b containing two cracks, chosen for the analysis

singularity we rewrite D1 and D2 as

D1(t) =
h1√
h2

1 − t2
C1(t), D2(t) =

h2√
h2

2 − t2
C2(t). (2.3.12)

The integral equations are solved numerically by using Gauss-Chebyshev quadrature

for C1 and C2. The Mode-I stress intensity factors can be expressed as

Ki = lim
x→h+i

√
2π(x− hi)σyy(x, y = 0) = −π

√
πhiCi(hi) i = 1, 2. (2.3.13)

See Appendix A.2 for further details. The values obtained were verified against those

listed in literature [14].

Note that the cracks are subjected to stresses that are analogous to Mode-I loading –

i.e., the stresses seek to open the crack. In this situation, the driving force da on the

crack is related to the stress intensity factor defined in (2.3.13) as [86] :

dia =
K2
i

E
. (2.3.14)

2.4 Phase boundary

In this section, we study the evolution of the phase boundary as governed by the rate

independent equaton (2.2.16). We assume that we have a uniform array of equi-spaced
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Figure 2.5: (a) Normalized driving force on the phase boundary due to the presence of the
cracks over one unit cell containing a single crack. Negative values indicate force towards
the cracks. The mean value over one unit cell is zero. (b) The equilibrium shape of
the phase boundary. In both figures, we use b = 10mm,h = h1 = h2 = 15mm,L =
15.2mm, 15.5mm, 16mm.

cracks. So we consider a unit cell containing a single crack.

We begin by examining the driving force acting on the phase boundary. This is given

by (2.2.13). In light of the superposition described in Section 2.3.2, this driving force may

be decomposed as

dS = d0 + dself + dcrack, (2.4.1)

where

d0 =
(
〈σA〉 : ε? − ω

)
, dself = 〈σB〉 : ε?, dcrack = σC : ε?. (2.4.2)

The first term is the driving force on a planar phase boundary in the absence of cracks.

The second term is the driving force resulting from the non-planar nature of the phase

boundary. The third is the driving forces due to the presence of cracks, and specifically due

to the stress resulting from the sub-problem C. Further, since ε∗ is of the form (2.3.7),

dcrack = −ε0(2σ
(C)
11 + σ

(C)
22 ). (2.4.3)

Above, we omit the average symbol since the crack is distant from the phase boundary by

assumption and the stress is continuous across the phase boundary. This component of the

driving force is shown in Figure 2.5 (a). The crack is at y = 0. The phase boundary is drawn
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towards the crack ahead of the crack, and pushed away from it between two cracks. This

is as we expect from intuition given that the β phase is longer in the y direction compared

to the α phase. We also find numerically that the mean value of this contribution to the

driving force over the entire unit cell is zero. We expect from the equilibrium of the unit

cell (Figure 2.4) that average value of σ
(C)
11 to be zero. We find numerically that the average

of σ
(C)
22 also turns out the to be zero.

We now turn to propagation. The driving force created by the cracks tends to distort

the phase boundary away from the planar shape. This leads to self-interaction which in turn

depends on the shape of the phase boundary. To understand this, we study the equilibrium

shape of the phase boundary under the assumption that there is no driving force on the

planar boundary. In other words, we solve the equation dself + dcrack = 0 for the normal

distortion x = f(y). A typical result is shown in Figure 2.5 (b). The driving force due

to sub-problem (C) tends to distort the phase boundary while the self-energy tends to

straighten it out. The overall result is a phase boundary drawn towards the crack ahead of

the crack, and pushed away from it between two cracks, with mean distortion zero. Now,

for an interface with this shape, dS = d0. Since d0 is independent of shape, the driving

force is uniform and according to (2.2.16), the interface propagates as long as the chemical

driving force is large without any further distortion and subject to the same driving force

as a straight interface.

In summary, while the cracks may potentially distort the phase boundary locally, it does

not affect the overall evolution. Combined with the earlier observation that the stresses due

to the distorted phase boundary decay away from it, we assume henceforth that the phase

boundary propagates independent of the cracks and the cracks only see a planar phase

boundary.

2.5 Crack propagation

2.5.1 Cracks with uniform spacing and length

We now turn to the cracks. We begin with a periodic arrangement of cracks of uniform

spacing and uniform length. We assume that the phase boundary is at a given position L
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Figure 2.6: The stress intensity factor experienced by the cracks of uniform length h and
spacing b due to the phase transformation. (a) The variation of the stress intensity factor
with crack length. The vertical dashed line indicates the position of the phase boundary (b =
10mm,L = 15mm). (b) The stress intensity factor for various crack-spacings (L = 15mm).
(c) The normalized stress intensity factor for various crack-spacings (L = 15mm). (d) The
normalized stress intensity factor for various positions of the phase boundary (b = 10mm).
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and examine the driving force or equivalently the stress intensity experienced by the crack.

Figure 2.6(a) shows the stress intensity factor (normalized by nominal stress) as a function

of crack-length for a given spacing. As anticipated, the stress intensity vanishes at zero

crack length and gradually increases with crack length. The variation is similar to that

of an isolated edge crack. As the crack length increases, the cracks begin to interact with

each other and shield each other. So, the rate of increase of stress intensity with length

decreases; eventually it peaks (at h = 2.9mm with K/σ0 = 2.229
√
mm for b = 10mm). It

drops slightly beyond the peak but then increases slightly again to reach a limiting value

independent of crack-length (K∞/σ0 = 2.236
√
mm for b = 10mm). We label this the

limiting stress intensity K∞. We understand this limit as follows: once the cracks become

long and no longer feel the presence of the free edge, they behave like a system of parallel

semi-infinite cracks. The situation changes when the crack reaches the phase boundary. It

drops rapidly as the state of stress changes on the other side of the phase boundary.

Figure 2.6(b) shows the stress intensity for various crack-spacing. We see that the stress

intensity factor increases with increasing spacing due to reduced interaction (shielding)

between the cracks. Figure 2.6(c) shows the same results in a non-dimensional fashion:

N = K
σo
√

2πb
vs. h/L. Remarkably, note that the limiting value of the non-dimensional

stress-intensity, N∞ = 0.282, is independent of the crack spacing. Finally, Figure 2.6(d)

shows that the (non-dimensionalized) stress-intensity vs. crack length is unaffected by the

position of the phase boundary, except that it determines the point beyond which the stress

intensity drops. We define the position of the phase boundary where the normalized stress

intensity factor first reaches the peak value N∞ to be Lcr. It occurs at Lcr = b.

Now consider a material with a fracture toughness of Kc. Our crack propagation crite-

rion (2.2.15) is equivalent to the statement that cracks propagate when K = Kc. If we know

the crack spacing and it is small enough, Figure 2.6(a) shows that there are two possible

crack-lengths – one close to the free surface, and one slightly beyond the phase boundary∗.

The stability criterion (2.2.19) adopted to a single crack states that the stability is equiva-

∗ Note that the fact that the stress intensity has a slight peak close to the free surface means that there are
possibly two additional solutions. We ignore this here since it happens for a very narrow range of toughness,
these may be within the nucleation length and further, a perturbation would destabilize it. This is reinforced
by our numerical simulations.
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lent to requiring that the stress-intensity factor decreases with increasing crack-length (also

[73]). Thus, the stable crack position is the one slightly beyond the phase boundary. Since

the limiting stress intensity factor is independent of crack length and phase boundary posi-

tion, we obtain a simple criterion for crack propagation with a fixed spacing: parallel cracks

propagate uniformly when K∞ = Kc or equivalently N∞ = Nc where

Nc =
Kc

σ0

√
2πb?

. (2.5.1)

In other words, the critical transformation strain ε?0 for cracks to propagate with the phase

boundary at spacing b is

ε?0 =

√
6.28

K2
c

πE2b
, (2.5.2)

for cracks to propagate with the phase boundary at spacing b.

The previous discussion assumed a knowledge of the crack spacing. To determine this,

we turn to Figure 2.6(b). Notice that the stress intensity increases with increasing crack

spacing. Thus, we conclude that the critical crack spacing b? would be the one where the

peak stress intensity is exactly equal to the toughness. Since the peak is close to the limiting

value, and since the normalized value of the peak stress intensity factor N∞ is independent

of b, we use the limiting value instead. So we set N∞ = Nc. We conclude that the optimal

crack spacing b? for a material with transformation strain ε0 is

b? =
1

2π

K2
c

σ2
0N

2
∞

= 6.28
K2
c

πE2ε2
0

. (2.5.3)

Importantly, since this N∞ is independent of phase boundary position (Figure 2.6 (d)), this

optimal spacing remains unchanged as the phase boundary continues to propagate. Finally,

since the stress-intensity falls off beyond the phase boundary independent of the phase

boundary position, the stability of a crack with a tip extending just beyond the boundary

remains unchanged.

In summary, the previous discussion suggests that the cracks nucleate when the phase

boundary propagates to a distance Lcr from the free edge. Then uniformly spaced cracks

with spacing b? nucleate with initial length slightly larger than Lcr. Subsequently all the
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Figure 2.7: Variation of the normalized stress intensity factors (N = K/σ0

√
2πb) experi-

enced by the two cracks when the length of one is varied while the that of the other is held
fixed. Here, the phase boundary position is L = 15mm indicated by the dotted vertical line
while the crack spacing is b = 10mm. Crack #1 has a length h1 = 15.4mm while crack #
2 varies in the range [14mm, 16mm].

crack propagate with the propagating phase boundary in such a manner that the tips reach

just beyond the phase boundary.

2.5.2 Stability against period doubling

It is known that in thermal cracks, there is period doubling instability wherein every al-

ternate crack arrests after propagating a certain distance [12, 73]. So we study a periodic

array of cracks of alternating lengths. We specifically focus on the onset of an instability

where both set of cracks have grown equally in a stable fashion as described above, and

then one set continues to grow and the other stops. We therefore study the situation where

we have a periodic array of equally spaced cracks with alternating lengths.

Figure 2.7 shows how the normalized stress intensity factors (Ni = Ki/σ0

√
2πb) experi-

enced by the two cracks varies when the length of one crack is varied while that of the other

is held fixed (see inset). Specifically, the length of the first crack is held fixed at a position

slightly beyond the phase boundary representing the equilibrium crack length (N1 = Nc).

The length of the other crack varies from just behind the phase boundary to just ahead of

it. We see that the stress intensity experienced by the first set of cracks falls monotonically

as the second set of crack increases in length. The stress intensity experienced by the second
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set increases with crack length till it reaches the phase boundary, and subsequently falls.

The crack propagation criterion dictates that N1 = N2 = Nc. We see from Figure 2.7

that N1 = N2 for two possible sets of crack-lengths. The first is when the second set of

cracks trails the phase boundary, and the second when the two sets of crack have equal

length (just beyond the phase boundary). Since N1 = N2 > Nc for the first case, we focus

on the second where N1 = N2 = Nc.

To determine the stability, we combine the definition of the Hessian (2.2.20) with the

relation between the driving force and stress-intensity factor (2.3.14) to conclude that

Hij = 2
Ki

E

∂Ki

∂hj
. (2.5.4)

We are interested in the situation where one crack continues to propagate while the other

crack arrests. In this situation, the sufficient condition for linear stability (i.e., the negation

of (2.2.19)) is

∂K1

∂h2
< 0,

∂K2

∂h2
< 0. (2.5.5)

(also see [11]). We see in Figure 2.7 that these conditions indeed hold. We have verified

that these results hold for various phase boundary positions ranging from L = 1.5mm where

we see nucleation to L = 30mm at which point the results converge to that of an infinite

system.

We conclude that there is no period doubling instability in phase-transformation driven

crack growth.

2.6 Numerical study

The theory above considered only one or two cracks in a unit cell. Further, the stability

analysis was limited to linear stability. We use numerical simulations to study multiple

cracks in a unit cell and the evolution problem beyond linear stability. After a brief de-

scription, we verify the method by showing that the numerical results are consistent with

the analysis above and then use it to study more complex situations.

The numerical simulations were carried out using the commercial finite element package
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Figure 2.8: Unitcell geometry and boundary conditions.

ABAQUS [1]. We consider plane stress, and a domain that is a long strip. We apply

periodic boundary conditions on top and bottom, traction-free conditions on the left and

zero displacement on the right, see Figure 2.8. Phase transformation is simulated by treating

the material as thermo-elastic, and imposing a temperature difference ∆T across a vertical

interface representing the phase boundary.

T (x)− T0 =

 ∆T x ≤ L

0 x > L
(2.6.1)

The transformation strain is ε0 = α∆T , where α is the coefficient of linear expansion.

We consider both stationary phase boundaries (L = constant) as well as moving phase

boundaries (L = L(t)). In the latter we ensure that L̇ is small enough to ensure quasi-static

crack growth.

We use cohesive elements to simulate brittle fracture [17]. We introduce pre-existing

cracks or flaws with initial length h0 = 0.1b at the free edge at a spacing b, and place

a series of cohesive elements along the planes ahead of them. This is reasonable because

we anticipate only Mode-I cracks to propagate into the solid along horizontal planes. We

also note that by introducing flaws, we do not consider nucleation. However, by providing

sufficient number of flaws, we let the system choose the crack spacing since not every flaw

will develop into a crack. Certain flaws may not develop into cracks, or certain cracks may

stop growing thus increasing the spacing between growing cracks.

The material properties we use are as follows : isotropic Young’s modulus E = 410

GPa, Poisson ratio ν = 0.14, α = 4× 10−5K−1, fracture toughness Kc = 4.6MPa
√
m and

minimum flaw spacing b = 0.1mm. Two dimensional, plane stress, four-noded, bi-linear,
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Figure 2.9: Traction-separation law with linear damage evolution.

quad elements (CPS4R) were used to discretize the bulk. Four noded, two dimensional

Cohesive elements (COH2D4) were used to simulate crack propagation. The constitutive

behaviour of the Cohesive elements is governed through a traction-separation law [1]. We

present the important details here and describe the choice of parameters for this simulation.

The traction-separation law is governed by two regimes. It consists of a linear regime cor-

responding to the elastic response of the material prior to initiation of damage. The second

regime is the damage response - starting with the onset of damage, evolution of damage and

finally suppression of the element - corresponding to deterioration of the material and finally

fracture. The damage-onset is based on a criterion which could be traction or displacement

based. For this simulation we choose a traction based criterion - damage is initiated once

the traction exceeds a peak value. Upon initiation of damage, further loading of the element

leads to evolution of the damage captured by a damage evolution law which is represented

by the softening portion of the traction-separation law. It must be noted that unloading or

compression does not lead to evolution of damage. Various models are available for damage

evolution based on effective displacement (to account for mixed-mode loading) or energy.

In this case we choose a linear damage evolution law based on effective displacement, see

Figure 2.9. The crack is assumed to propagate whenever a cohesive element gets deacti-

vated. This happens when the damage parameter attains a value 1.0 at all the material

points in the cohesive element. The parameters of initial stiffness and maximum stress of

the cohesive element law were chosen based on the criteria described in [111].

Few comments about the simulation procedure : The size of the cohesive elements needs

to be chosen such that it is smaller than the typical cohesive zone size in order to resolve
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Figure 2.10: Comparison between predictions of theory and numerical simulation. The red
points represent the normalized critical stress intensity Nc and final crack length for various
transformation strains computed numerically. The blue curve shows the normalized stress
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Nc > N∞ and grow to the phase boundary when N < N∞ showing consistence between
theory and numerical simulation. (b = 0.1mm,L = 0.15mm). The cross-hair on the left
indicates the initial flaw.

the stresses and thereby capture crack propagation accurately (see [111] and references

therein). Next, the step size for phase boundary propagation should be chosen to resolve the

variation of stress intensity factor seen in Figure 2.6(a). It was observed during simulations

that too big a step size results in artefacts. The convergence difficulties which arise due

to the softening behaviour of the cohesive elements are addressed by incorporating viscous

regularization [1] and a sufficiently small increment size in the non-linear analysis.

2.7 Results

2.7.1 One flaw in a unit cell

2.7.1.1 Stationary phase boundary

We begin with a single flaw in the computational domain and a stationary phase boundary.

With the periodic boundary condition on top and bottom, this corresponds to uniform

crack spacing. We apply various transformation strain (i.e., various ∆T ) and compute the

resulting crack length. The results are shown in Figure 2.10 where the red points display
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Figure 2.11: Crack growth with a moving phase boundary. Left: The crack length as a
function of the phase boundary position for three different values of transformation strain
(or equivalently ∆T ). Right: Three snap-shots for εo = 0.24%. (b = 0.1mm).

the computed normalized crack length for various normalized critical stress intensity Nc =

Kc/Eε0

√
2πb. Note that for small transformation strain or large normalized critical stress

intensity, the flaw does not develop into a crack. However, above a given transformation

strain (or below a given normalized critical stress intensity), the flaw develops into a crack

and grows close to the phase boundary.

Figure 2.10 also shows the normalized stress intensity as a function of the normalized

crack length computed using the theoretical analysis of the previous section. Notice that the

transition from no crack growth to crack growth is consistent with the theoretical criterion

Nc = N∞. The small discrepancy in transition is due to the following. We used a pre-

existing crack of a certain length that happened to be smaller than Lcr; so the cracks

propagated when Nc reached the value at the flaw instead of the limiting value. We get

perfect agreement when we use Nflaw instead of N∞ (see Figure 2.10). Further, in these

situations the cracks grow till a position just beyond the phase boundary, again as predicted

by the theoretical considerations earlier.

2.7.1.2 Moving phase boundary

We again consider a single flaw, but now consider a moving phase boundary. Figure 2.11

shows the crack length as a function of the phase boundary position for three different values
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(b)(a) (c)

Figure 2.12: Crack growth with two cracks in a unit cell for varying transformation strains.
(a) Three snap-shots with transformation strain of 0.16% shows neither crack grows. (b)
Three snap-shots with transformation strain of 0.184% shows the one crack grows along
with the phase boundary. (c) Three snap-shots with transformation strain of 0.22% shows
the both cracks grow along the grows along with the phase boundary. The flaw spacing is
b = 0.1mm and the critical flaw spacing for crack growth at the applied strain based on
Nflaw are: (a) ∞ (b) 0.17mm and (c) 0.056mm .

of transformation strain (or equivalently ∆T ). We see that the crack does not grow for the

smallest transformation strain, but does for the larger transformation strains. Note that this

is consistent with the theory which predicts that for the given b, the transformation strain

has to exceed the critical value of εo = 0.16% that corresponds to ∆T of 40. Further, when

this happens, the crack trip propagates close to the phase boundary, again as anticipated

by the theory presented earlier.

2.7.2 Multiple flaws in a unit cell

Figure 2.12 shows the results of simulations with an unit cell containing two initial flaws

for three separate values of the transformation strain: 0.16%, 0.184%, 0.22%. The flaw

spacing is held at b = 0.1mm. The three values of transformation strain are chosen such

that the critical spacing according to the (2.5.3) are (a) larger than 2b (∞), (b) between b
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Figure 2.13: Crack growth with four cracks in a unit cell at various transformation strains.
Crack length vs interface position for (a) εo = 0.16% (b) εo = 0.184% (c) εo = 0.22%. The
flaw spacing is b = 0.1mm.

and 2b (0.17mm) and (c) smaller than b (0.056mm). Thus, the theory predicts that with an

imposed spacing of two cracks, we should see neither crack growing in case (a), only one of

the two cracks growing in case (b) and both cracks growing in case (c). These predictions

are indeed confirmed by the results of numerical simulations shown in Figure 2.12. These

results also confirm the absence of period doubling instability which was concluded earlier

from the linear stability analysis.

Figure 2.13 shows the results of simulations with the unit cell containing four initial

flaws. The figure shows the position of each of the flaw tips with phase boundary position

at three transformation strains. Through this we can examine the stability of the system

to modes other than period doubling mode. The flaw spacing provided is b = 0.1mm. The

results show that though the flaws start propagating initially, some of them stop growing

and result in attaining the uniform spacing predicted by theory ( see (2.5.3) ) at that strain.

One might argue that since half of the cracks stopped propagating in case (b) (Figure 2.13)

we see a period doubling instability. However this is not the case - this is only the transient

response during which a certain spacing between the cracks is established according to

(2.5.3). Once uniform spacing is attained, the cracks continue to propagate without any

instabilities. If indeed the system were susceptible to period doubling one would have seen

one of the two propagating cracks stop at some stage which is not the case. Similarly in

case (c), since the transformation strain is high enough and the optimal value of spacing

(b∗) given by (2.5.3) is lower than the minimum allowed spacing (b) in the simulation, it is

seen that no transient exists and all the cracks propagate at a uniform spacing without any
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evidence of instabilities.

2.8 Conclusions

Phase transformations lie at the heart of a number of important technological applications.

In these situations the stresses built up due to change in shape resulting from the transfor-

mation could cause cracking of the material resulting in compromising the performance of

the system. In the current study we seek to understand the interaction between a phase

boundary and the cracks resulting due to the phase transition. First we established a con-

dition on the jump in stress across a coherent phase boundary due to a phase transition

which gives rise to a set of parallel cracks. Next assuming uniform elastic properties we

examine the growth of set of edge cracks in the wake of such a propagating phase boundary

in two dimensions. We study the effect of cracks on the phase boundary and conclude that

they only have the effect of distorting the phase boundary. They do not effect its overall

propagation. We examined the equilibrium configurations of cracks and performed a sta-

bility analysis to understand their growth pattern. We found that cracks which nucleate

at the edge grow all the way to the phase boundary with the crack tips crossing over, and

continue to grow in a stable fashion as the phase boundary migrates into the interior. The

mode of growth is devoid of any instabilities typically seen in other scenarios like thermal

cracking or due to gradients in concentration of species like drying of paint layers and mud-

flats. The spacing between these cracks depends on the initial flaw distribution and the

strain mismatch of the transformation with the spacing decreasing for higher values of the

strain mismatch. These predictions from theory are backed by computational simulations

which show that once even spacing between cracks is established they continue to progress

without any further instabilities.

2.9 Future Directions

We consider the assumptions we made earlier in order to perform this analysis and discuss

how relaxing any of them would make for the pursuit of very interesting problems. We
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point out some of them here. Firstly, the assumption that both the phases have similar

elastic and fracture properties leads to the conclusion that crack tips would grow all the

way to the phase boundary and cross over it. This may no longer be true in the case of

dissimilar properties as shown by some quasi-static calculations of cracks in bi-materials.

In fact crack propagation in heterogeneous materials is a very active area of research with

efforts being made to understand fracture in naturally occurring (nacre, bone etc.) and

man-made materials(reinforced composites) and use the understanding to create novel ma-

terials with remarkably enhanced fracture properties. We assumed the overall process to

be entirely quasi static and neglected the inertia of phase boundary and crack propagation.

But experimental evidence suggests that both phase boundary and crack propagation are

dynamic phenomena. It would be interesting to see how the inclusion of dynamic effects

into the formulation would effect our conclusions. It is not intuitive that upon inclusion of

dynamics the cracks would continue tracking the rapidly propagating phase boundary. Fi-

nally, though cohesive elements employed in this case to simulate crack propagation worked

well we were limited to cracks propagating along straight lines and low number of cracks per

unit cell. Utilising other methods available like phase field fracture, XFEM or peridynamics

would help in capturing crack growth along arbitrary paths and simulating multiple cracks

in a unit cell.
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Chapter 3

Effect of Space Charges on
Fracture in Ferroelectric Peroskites

3.1 Introduction

Ferroelectric perovskites are materials with a rich array of interesting properties. These

materials attain a spontaneous polarization below their Curie temperature which can be

switched through the application of electromechanical fields. In their polarized state they

display the piezoelectric property and have high dielectric constants. Also, their opti-

cal properties are coupled to their polarization state. As a result these materials have

found widespread application in transducing devices, dielectric capacitors, memory and

optoelectronic devices. From a mechanical property standpoint commonly used ferroelec-

tric perovskites like BaTiO3, PZT are brittle in nature with low fracture toughness values

(KIC ∼ 1MPa
√
m). In many of these applications these materials are designed to be used

in multilayer arrangements. The electrodes embedded in the materials serve as sites for

crack initiation during the poling process. The resulting cracks show sub-cyclic growth un-

der applied electromechanical fields. A prominent issue is the growth of cracks connecting

the electrode layers resulting in electric discharge and breakdown, Figure 3.1. This has

motivated an effort to understand the fracture behaviour of ferrolectrics.

Efforts to understand the fracture behaviour of ferroelectrics revealed the complex na-

ture of this area of study. Early experiments to understand the fracture behaviour of

perovskites, using the indentation technique, established the anisotropic nature of crack

growth in materials [112, 78, 83]. These experiments performed on poled polycrystalline
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(a)

(b)

Figure 3.1: Cracks in piezoelectric actuators. (a) Multilayer actuator (b) Electric discharge

materials consistently produced longer cracks normal to the poling direction than those par-

allel to it at a given indentation load. Sub-critical crack growth under cyclic electric fields

and crack growth under static electric fields in the absence of any applied mechanical load

motivated research to establish the dependence of crack growth on the applied electric field.

However the experiments undertaken to establish this did not produce consistent trends.

The experiments by Mehta and Virkar[69] and Fang et.al [50] established that polarization

domain switching around the crack played a significant role in crack growth under pure

electrical loading and switching induced toughening of ferroelectrics.

On the modelling front, the theory of linear piezoelectric fracture was developed and

applied to fracture in ferroelectrics. This theory does not take into account the non-linear

phenomenon of domain switching. The predictions of this theory strongly depend on the

boundary conditions assumed at the crack surface and wrongly concluded that electric fields

can not induce fracture. So constitutive laws based on micromechanical models to account

for domain switching were used to estimate the extent and influence of domain switching

around the crack tip and its role in crack growth under the applied electric fields. Phase

field models based on the Devonshire-Ginzburg-Landau (DGL) type multiwell potential

were used to establish the evolution of polarization domains around the crack as seen in

experiments and used to evaluate the driving force on the crack. The choice of crack surface
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boundary conditions significantly effected the predictions of these models and so were an

issue of much debate. So determining what the right boundary conditions are would go a

long way in shaping the fracture mechanics of ferroelectrics.

Fatigue of ferroelectric perovskites and dependence of the coercive field of thin films on

thickness present evidence that the defects and the semiconducting nature of these materials

play an important role in their overall response. However none of the above mentioned

approaches incorporate this physics while addressing the question of fracture. Models by

YuXiao et.al [120, 94] and experiments by Shilo [96] have shown the accumulation of defects

and electronic charge in regions of high electric potential like 90o domain walls. Recent

Kelvin Force Microscopy experiments [89, 105, 30], have showed that crack faces are regions

of high electric potential and speculate that charges accumulate on the surface of these

cracks and increase the permittivity of the crack gap. The electronic charge injection from

the electrodes and ionization of dopants could be a source of these charges. Understanding

the effect of including this new physics in studying the fracture of perovskites serves as our

motivation.

In the current work we consider the problem of fracture in single crystal ferroelectric

perovskites incorporating space charge arising from their semiconducting nature and ion-

ization of defects. The model closely follows [120] with modification to account fro the

crack. We perform phase field simulations of polarization around a stationary center crack

in a square domain using a gradient flow model. The simulations reveal the accumulation

of electronic charge at the crack tip which leads to the conclusion that crack tip becomes

permeable resulting in the high permittivity of the crack gap in the experiments [30, 105].

The polarization domains that develop around the crack were found to be asymmetric when

the space charge was included. There is no direct experimental evidence to support this

which could be due to large length scale difference in our simulation and experiments.

We begin by considering the dissipation of a ferroelectric domain containing a crack

subject to external fields. This analysis gives the equations governing the polarization

distribution, mechanical equilibrium and space charge density at equilibrium, driving force

acting on the crack and crack face boundary conditions. We present a rigorous derivation of
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the crack driving force through the dissipation approach and highlight its salient features.

The chapter is organized as follows. First, in Section 3.2 we provide a background on

the structure and properties of ferroelectric perovskites, especially BaTiO3. In Section 3.3

we provide a detailed overview of literature on fracture of single crystal ferroelectrics. We

provide details of important experiments, models and simulations. We note that discrepan-

cies that exist in the variation of energy release rate with applied field and highlight that

domain switching and crack face boundary conditions play an important role in predicting

the fracture behavior. In Section 3.4 we introduce a few important ideas and terminology

related to semiconductor physics and go on to discuss the semiconducting properties of

ferroelectrics. We discuss the presence of defects in these materials which act as dopants

and which play a significant role in their thin film properties like ferroelectric fatigue and

size dependence of coercive field. The experiments by Shilo et.al. [96] and the simulations

of Xiao et.al. [120] show the accumulation of these defects and electronic charge in regions

of high electric potential. In Section 3.5 we introduce the set-up and derive the governing

equations through the dissipation inequality approach. We introduce a new variable, ρ,

the space charge density to account for the semiconducting nature and ionization of de-

fects. After formulating the governing equations, we present the implementation details for

the case of a BaTiO3single crystal section in section(3.7). The results obtained from the

implementation for different dopants are presented in section(3.8). It is seen from these

simulations that there is accumulation of electronic charge around the crack surface and

introducing space charge changes the polarization domains in the ferroelectric. We present

a one-dimensional model along the lines of [94], to explain some of these observations in

Section 3.9. Finally we develop the expression for the driving force on a crack in a ferro-

electric in Section 3.10, apply it to the results and discuss the variation of J with applied

field. We conclude in Section 3.11.

3.2 Ferroelectric perovskites

Perovskites are materials with the same type of crystal structure as CaTiO3 . This class

of crystals is usually represented by the general formula ABO3 where A is a monovalent,
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divalent or trivalent metal and B a pentavalent, tetravalent or trivalent element respectively.

Some of the well known perovskite materials which also exhibit ferroelectric properties are

barium titanate (BaTiO3), lead titanate (PbTiO3), potassium niobate (KNbO3). Some of

the other commonly used ferroelectrics like lead zirconate titanate (PZT, Pb[ZrxTi1−x]O3)

and lead magnesium niobate-lead titanate PMNT are solid solutions of perovskites.

Figure 3.2: Perovskite structure of BaTiO3 in the cubic and tetragonal state. Reproduced
from [15].

For a more detailed discussion on ferroelectric properties, let us consider the case of

barium titanate. This is also our ferroelectric material of choice for later in this study.

As shown in Figure 3.2, BaTiO3is a perovskite with the atoms arranged in a cubic lattice

(a = 4.01 Å). Its Curie temperature is, Tc = 120oC. The barium atoms occupy the

corner positions of the cube, the titanium atom occupies the body-center position and the

oxygen atoms are arranged at the face centres. As it is cooled the cubic lattice undergoes

a transformation to a tetragonal lattice (a = 3.992 Å, c = 4.0361 Å) with the barium and

titanium atoms shifting upwards relative to the oxygen sites [54]. This results in lattice

strains, εc = 0.65% and εa = −0.44%. In the cubic state the centres of positive and

negative charge are coincident and so the crystal is electrically neutral and has no net

polarization. However in the tetragonal state the centres are no longer coincident resulting

in a spontaneous dipole moment (density, ps = 0.26C/m2) in the crystal, see Figure 3.2.

As the unit cell transforms from the non-polar cubic state to a polar tetragonal state

there is also a loss in the symmetry of the crystal. This loss of symmetry results in the for-

mation of variants - energetically equivalent states which only differ from each other through

their relative orientation with respect to the parent cubic unit cell, Figure 3.3. Note that

though there are six distinct polarization states among the variants there are only three
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Figure 3.3: (a)Six variants of BaTiO3. (b) Polarized light optical micrographs of domain
patterns in BaTiO3single crystal [16].(c) Domains of variants in a BaTiO3crystal [48].

distinct spontaneous strains. So in any given sample of a BaTiO3crystal, depending on

the electromechanical boundary conditions it is subject to, the variants coexist making up

regions of uniform polarization called domains. These domains coexist in a crystal sepa-

rated from each other through domain walls. So a domain wall represents a discontinuity of

the spontaneous polarization vector ps and the spontaneous strain εs. A coherent domain

wall has to satisfy certain compatibility conditions on the the polarization vector and the

spontaneous strain [98, 15], and these are fulfilled only by 90o and 180o domain walls in

the case of BaTiO3. A 90o domain wall separates domains with their polarization vectors

oriented at right angles with respect to each other and a 180o domain wall separates do-

mains with polarization vectors anti-parallel to each other. The variants are energetically

equivalent states and upon the application of external electromechanical fields it is possible

to make one variant switch to another and back, see Figure 3.4. The switching usually

takes place through the nucleation and growth of the new variant inside the original variant

[126, 24]. The threshold value of the applied electric field which would cause a 180o switch-

ing is termed the coercive field, Ec. Typically its values are in the range of several kV/cm.

When ferroelectric ceramics are poled to be used as piezoelectric ceramics, they are subject

to large external fields which aligns the polarization domains along the direction of the

applied field. Also macroscopic strain, resulting when a domain undergoes 90o switching,

is exploited to generate large strains in ferroelectric actuators [98]. Later we will see that
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the phenomenon of switching under the influence of intense electromechanical fields around

the crack plays a significant role in the fracture behaviour of ferroelectrics.

Figure 3.4: Switching of BaTiO3 unitcell under electromechnaical loading. Reproduced
from http://www.ae.utexas.edu/ landis/Landis/Research.html.

3.3 Fracture behaviour of ferroelectric perovskites

Ever since ferroelectric materials have been increasingly used for various applications such

as electromechanical devices, microelectronics, smart composites and memory devices and

since these materials are brittle in nature which make them susceptible to cracking resulting

in the electrical/mechanical failure of the device they are used in, researchers have devoted

much attention to understanding their fracture behaviour. Here we present a survey of the

efforts to understand the fracture behaviour of ferroelectrics through experiment, modelling

and theory. This is by no means comprehensive since we pay most attention to fracture of

single crystal samples. For more detailed reviews one should refer to the excellent review

articles on the topic by Schneider [91], Fang et.al [23] and Kuna [58]. A convention that is

followed while reporting results is that when the applied field is along the poling direction

it is termed positive and when anti-parallel it is termed negative. We adopt it here.
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3.3.1 Experiments on fracture of ferroeletrics

Fracture of poled ceramics

We start by reviewing experimental literature. Multiple techniques and tools have been used

to study crack propagation in ferroelectrics. Indentation and compact-tension(CT) speci-

men experiments established early on that crack growth is anisotropic in poled ferroelectric

ceramics (polycrystals) and shows a toughening behavior [112, 83, 70, 27].

Indentation experiments are particularly amenable to examining the effect of applied

field on cracks parallel and perpendicular to the field. Singh and Wang [112] performed

Vickers indentation experiments on poled PZT ceramics in air and observed crack growth

anisotropy with respect to poling direction and applied electric field. They observed that

field direction did not have a significant effect on the cracks parallel to poling direction. In

the case of cracks perpendicular to poling direction, positive fields arrested the growth of

cracks and negative fields aided them. Fu and Zhang [37], using indentation in PZT-841

observed increasing crack lengths for positive electric fields but also an increasing crack

length for negative electric fields. Indentation experiments by Tobin and Pak on PZT-8

[110], Sun and Park on PZT-4 [104] and Schneider and Heyer on BaTiO3[90] show that

a positive electric field perpendicular to the crack leads to an increase in crack length,

whereas a negative electric field reduces it until the coercive field is reached. Mehta and

Virkar [69] presented early X-ray measurements demonstrating domain switching around

cracks in poled PZT ceramics.

Park and Sun [79] measured the fracture load versus the applied electric field for CT

specimens of poled PZT-4 in silicone oil in which the poling and electric field directions

were perpendicular to the crack orientation. The fracture load decreased monotonically

from negative to positive electric fields showing positive fields aid crack growth and negative

fields inhibit it. Fu and Zhang [37] conducted the same test with PZT-841 samples and

measured a decreasing fracture load for positive fields but also a reduced load for a negative

field.

These experiments on poled ceramics show that crack growth parallel to the poling

direction has a toughening behavior and electric fields do not influence it. However there
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is no consistent trend as far as the effect of electric field on crack growth perpendicular to

the crack growth is concerned. Domain switching around the crack in ceramics is believed

to play a significant role in influencing these trends.

Fracture in single crystals

Using in-situ polarized light microscopy (PLM), Jiang and Fang [51] captured 90o domain

switching around the crack tip in a single crystal PMNT sample poled normal to the crack

subject to cyclic electric fields. They observed no 180o switching under a negative field.

Under a negative electric field they reported the appearance of extensive switching, Figure

3.5, and upon reversing the field (positive) the domains disappeared. In a subsequent article

[50] they also reported the growth of cracks under a static negative electric field only. They

argued that driving force for crack growth is provided by the switching. Fang et.al [33]

also conducted experiments using the same technique on a single crystal BaTiO3three point

bend specimen with the crack parallel to poling direction. As the crack grows there is

90o switching in the wake of the crack , see Figure 3.5, which helps in toughening the

ceramic. Fang et.al [34], showed the propagation of cracks in single crystal BaTiO3subject

to alternating electric fields above and below the coercive field value. They also hypothesized

that the crack gap could be conducting close to the tip and insulating away from it. So

in the case of single crystals, negative fields promote crack growth normal to the poling

direction. Also domain switching contributes to the toughening behaviour seen in crack

growth along the poling direction.

Electric Potential around the crack and nature of crack gap

In a series of articles, using the techniques of atomic force microscopy (AFM) and Kelvin

force microscopy (KFM), Schneider et.al [89, 30] investigated the variation of electric po-

tential around an indentation crack in a poled PZT ceramic sample with the crack surface

normal to the poling direction and subject to external electric field. From the measurements

they concluded that the permittivity of the crack gap is much higher than that of vacuum,

which was what was previously thought to be. They suggested that accumulation of charges
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on the crack surface could be a potential reason, but rule out bulk conduction due to low

conductivity of PZT. Based on this value of the permittivity they conclude that applied

electric fields would have no effect on crack growth. Using similar experimental techniques

Sun et.al. [105], studied the potential distribution around an indentation crack in a single

crystal BaTiO3sample with the crack surface almost normal to the poling direction with

and without applied fields. The measured electric potential had peak values along the crack

surfaces, see Figure 3.6 which was attributed to the build up of screen charges along the

crack surfaces. Interestingly they observed little to no switching in the sample. The po-

tential values increased with crack opening suggesting greater accumulation of charge away

from the crack tip.

(a) (b)

Figure 3.5: Evolution of domain switching near a crack tip in poled PMN-PT(62-38) single
crystal under negative electric fields. Reproduced from Jiang et.al. [51].

Figure 3.6: (a) Topographic image and (b) surface potential image of the indentation-pre-
cracked BaTiO3 single crystal. Reproduced from Sun et.al. [105].

3.3.2 Modelling and simulation

Early models of cracking in ferroelectrics treated them as linear piezoelectrics. The theory

of linear piezoelectric fracture mechanics was developed through a series of contributiions

[125, 75, 106, 101, 29, 76, 122, 80, 78]. The theory predicts singularity in stress and electric
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fields at the crack tip in the case of impermeable cracks. Note than this theory doesn’t

consider the non-linearity due to domain switching around the crack. According to the

theory, the predictions for fracture strongly depend on the choice of boundary conditions.

For an insulating crack, with the crack normal to the poling direction, energy release rate

is negative for applied electric fields in the absence of mechanical loading. For conducting

cracks the applied field does not influence crack growth. For permeable cracks energy release

rate is independent of the electric field if the crack is treated as a slit. If the crack opening

is considered, due to the electrostatic energy stored in the gap, electric fields retard crack

growth. The impermeable crack and the conducting crack are the two extreme boundary

conditions. Other conditions, like semi-permeable and energetically consistent boundary

conditions, lie between these extremes. The issue of the right crack face boundary conditions

has remained a topic of much debate.

Phase field modeling has been employed extensively to investigate the domain switching

around the crack and investigate the effect of applied fields on the crack as a result [114].

More details about phase field models are presented in the Section 3.5. Wang and Kamlah

[114], using a phase field model in three dimensions, investigated the polarization switching

around an impermeable notch (parallel to the poling direction) in a single crystal subject to

far field stress. They established that polarization switching takes place near the notch tip

if the mechanical loading exceeds a critical value. Furthermore, the simulation results show

that a positive electric field increases the critical value while a negative electric field decreases

it. Yang and Dayal [124] performed simulations on a surface crack in a BaTiO3crystal,

taking into account the stray electric fields in the full space. They studied the effect of

crack surface charge compensation on the microstructure around the crack and the effect of

external fields. When the crack surface was uncompensated, the was extensive switching and

the effect of applied fields was minimal, where as in the fully compensated case there was no

microstructure rearrangement and the external fields had a significant influence. Song et.al.

[100] used a phase field model in two dimensions and assuming an insulated crack surface,

simulated switching around a center crack in a square panel and a square region close to

the crack tip. They concluded from the calculations that positive fields inhibit fracture and
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negative fields promote fracture. Wang and Zhang [115] simulated the region around the

crack tip, assuming a permeable crack with the poling direction normal to the crack. Their

calculations of the J-integral concluded that the positive fields promoted the toughening of

the material whereas a negative field reduced the toughness. Xu et.al. [121] used phase

field modelling and configurational force balance to explore the effects of different boundary

conditions and applied field. They show that the crack driving forces for additional positive

electric fields are smaller than the driving force under merely mechanical loading (i.e. E =

0). On the other hand, the crack driving force for additional negative electric fields is larger

than the driving force under merely mechanical loading. The phenomena hold for the four

different boundary conditions. It follows from their analysis that a positive electric field

tends to inhibit fracture, while a negative electric field tends to promote it.

Using a phase field for both polarization and fracture, Abdollahi and Arias [2, 3] simu-

lated the evolution of polarization domains in a single crystal with a growing crack under

different crack surface boundary conditions. Their simulations showed that a negative elec-

tric field below the coercive field perpendicular to the crack enhances the crack propagation

in ferroelectrics, while a positive electric field retards it, for all crack surface conditions. A

negative electric field above the coercive field perpendicular to the crack retards the crack

propagation in ferroelectrics for all crack conditions due to 180o switching.

Landis [113, 59], using an incremental constitutive law which accounted for domain

switching, examined Mode-I crack growth in poled ferroelectric ceramics subjected to si-

multaneous electrical and mechanical loading. The results show that the toughening due to

switching is greater for crack growth parallel to the poling direction than for crack growth

perpendicular to the poling direction for the in-plane cases. They also concluded that a

positive electric field reduces toughening and negative electric field increases toughening

for polarization perpendicular to the crack. Landis [60] also surveyed the different crack

surface boundary conditions and pointed out their inconsistencies. He proposed a new set

which were energetically consistent.

In summary, this review reveals the complexity of the problem of fracture in ferro-

electrics. Multiple phenomena like domain switching, poling state, crack face boundary
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conditions, crystalline (single or polycrystal) state of the ferroelectric play a role. Mo-

tivated by the recent KFM experiments which speculate accumulation of charges on the

crack faces which make the crack gap permeable, we seek to examine if the semiconducting

nature and ionization of defects found in perovskites offer a mechanism to explain the build

up of charge on the crack face. We do this by implementing a phase field model in two

dimenions.

3.4 Semiconducting nature of Ferroelectric perovskites

3.4.1 Semiconductor physics

Before we discuss the semiconducting features and defect physics of ferroelectrics we briefly

introduce a few basic ideas and terminology related to semiconductor physics which would be

useful going forward. For a more rigorous discussion the reader may refer to comprehensive

texts on semiconductor and solid state physics [6, 108]. To understand the conduction

properties of crystalline solids one may start from the band structure obtained by solving

the Schroedinger equation for one electron in a periodic potential. It is an eigenvalue

problem with the eigenvalues corresponding to the energy states of the electrons an the

eigenvectors corresponding to the orbitals. The energy states of electrons in crystallines

solids are arranged in the form of energy bands with some gaps between the bands for

certain materials. This gap is called the band-gap, Eg - measured in eV , and represents

energy states which are inaccessible to electrons for occupation. The conduction behaviour

of a crystalline solid is determined by the width of the band-gap - conductors do not

have a band-gap, insulators have a large value for the band-gap (eg. diamond: 5.5 eV,

aluminium nitride: 6.3 eV) and semi-conductors have moderate values (eg. silicon: 1.11

eV, germanium : 0.67 eV at 300K), see Figure 3.7. The energy states or orbitals below

the band-gap correspond to localized states and the electrons occupying these states are

immobile and bound to the nucleii. The edge of this band corresponding to the highest

energy state is represented by Ev. The orbitals above the band-gap form the conduction

band which are delocalized with the electrons residing in this band free to move around in

the crystal. These electrons contribute to the conductivity of the solid. The edge of this
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band corresponding to the lowest energy is denoted by Ec. When the orbitals are filled

they start with the lowest energy states and progressively fill the higher states following

the exclusion principle. In a crystalline solid the highest energy level that is filled at zero

Kelvin is termed the Fermi-level, Ef , of the material. This is also equal to the chemical

potential of electrons in the material since it is the energy level that an electron entering or

leaving the material occupies. It also represents the work-function, φM , the work necessary

to remove the electron from the solid. In a typical insulator all the electrons reside in the

valence band in their ground state and so there are no electrons available for conduction.

In a conductor, since there is no energy gap, there are electrons always residing in the

conduction band. In a semi-conductor, depending on the temperature, electrons residing in

the valence band can jump across the band gap into the conduction band and improve the

conductivity in the solid. When an electron from the valence band jumps to the conduction

band it creates a hole in the valence band which is conceptually treated as a positive charge

carrier which assists in the conduction. The mobility of holes is typically lower than that of

the electrons. In short, there are two types of charge carriers in semiconductors - electrons

in the conduction band and holes in the valence band. In a pure semiconductor at any

given temperature the density of holes is same as that of electrons. In this pure state the

Fermi-level of the solid lies halfway between the bottom of the conduction band and the

top of the valence band, Ef = Ec+Ev
2 .

Insulator

Ef
Eg

Semiconductor

Ev

Ec

Conductor

e−e− e−

e−

e−
e−

e−

e−e−

e− e− e−

Figure 3.7: Band diagram of crystalline solids.

The description of the band structure provided above is that of an intrinsic or a pure

semiconductor without any impurities. However adding certain types of impurities to semi-

conducting solids enhances their conductivities. The impurities or defects are classified as

donors - species which donate electrons to the conduction band - and acceptors - species

which accept electrons from the valence band creating holes. The typical concentrations
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of these imperfections are in the range of 1023 − 1026/m3. Upon doping new energy lev-

els are created within the band gap of the intrinsic semiconductor. In the case of donor

impurities (elements with excess valence electrons than required for binding) these levels -

called donor levels, Ed - are created close to the edge of the conduction band. The electrons

which reside in these levels have very low ionization energy (≈ 0.01eV ) and easily jump

into the conduction band enhancing the conductivity of the semiconductor, see Figure 3.8.

Similarly in the case of acceptor impurities, new energy levels - acceptor levels - are created

in the band gap close to the valence bad. These impurities have valence electrons lower

than what is necessary for bonding and so can accept electrons from the valence bad. So

when an electron from the valence band jumps into the acceptor level it leaves behind a hole

which contributes to the conductivity of the semiconductor, see Figure 3.8. So the primary

charge carriers in the case of semiconductors doped with donor impurities are electrons and

the semiconductor is called n-type and those doped with acceptor impurities are holes and

the semiconductor is called p-type. The fermi level in doped or extrinsic semiconductors

no longer resides in the middle of the conduction and valence bands. In the case of p-type

semiconductors it is closer to the valence band and in the case of n-type semiconductors is

closer to the conduction band, see Figure 3.8.

p-type semiconductor

Ef

e−

Ea
e− e−e−

n-type semiconductor

Ef

e−

e− e−e−

Ed

Figure 3.8: Band diagrams of extrinsic semiconductors.

Whenever a metal and semiconductor having different Fermi-levels are brought in con-

tact with each other the electrons in the metal and the majority carriers in the semicon-

ductor close to the interface rearrange themselves so as to attain a uniform Fermi-level in

the two solids at equilibrium. This rearrangement of electrons typically results in creating

a small region next to the interface in the semiconductor which is devoid of mobile car-

riers. This insulating region is called the depletion layer. The rearrangement of charges
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creates an electric field within the depletion region. This results in shifting of the bands

known as band bending, see Figure 3.9. The properties in the bulk of the semiconductor

are however unaffected. The bending of bands near the interface creates what is called a

built-in potential inside the semiconductor and a potential barrier between the metal and

the semiconductor called the Schottky barrier.

(a) (b)

Depletion layer

Figure 3.9: Metal, n-type Semiconductor interface. (a) Before contact. (b) After contact
showing the depletion layer and band bending.

3.4.2 Defects in perovskites

Ferroelectrics have largely been modelled as polarized dielectrics while infact they are wide

band-gap semiconductors. The band gap values of some of the commonly used ferroelectrics

like Barium Titanate (BaTiO3) and Lead Zirconate Titanate (PZT (0.4-0.6)) are 3.0 eV

and 3.4 eV respectively. The relatively large values of the band-gaps of typical ferroelectrics

justifies their treatment as insulators. However these materials contain a large number of

defects in them which act as dopants, resulting in the semiconducting behavior of ferroelet-

rics. This can alter the electric fields and have a profound effect on their overall behavior

[93]. Typically, if undoped, perovskites like BaTiO3and PZT display the properties of p-

type semiconductors [39, 93]. This is due to the presence of Pb vacancies in PZT and

abundance of impurities such as Na, Al, Fe and Mg in the starting growth materials. These

impurity atoms create substitutional defects in ABO3, with Na+ substituting for Ba2+ or

Pb2+, Al3+, Fe3+ or Mg2+ for Ti4+. Oxygen vacancies are the other major defects in these

materials which give them a n-type behavior. The vacancy created by a missing Oxygen

atom leaves two electrons at the vacancy site. Thus an oxygen vacancy acts as donor impu-
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rity with two electrons with a binding energy of 1 eV. Majority of these defects are in the

ionized state at room temperature and contribute to the conductivity of the ferroelectric.

Also oxygen vacancies have a significant mobility which adds to the electrical conductivity

[85].

The defects in these materials and the semiconducting nature of ferroelectrics have been

found to play a significant role in influencing the properties of thin films. Ferroelectric

fatigue is an example. This is defined as the loss in switchable polarization with cycling.

The semiconducting nature is necessary to be considered to explain the dependence of

fatigue life on the choice of electrodes [92]. Several mechanisms have been proposed to

explain the influence of defects on this phenomenon like electronic charge trapping and

oxygen vacancy redistribution [93, 24]. Experiments by Shilo et.al [96] have shown evidence

of accumulation of these defects at 90o domain walls. So there has been an effort to include

the semiconducting nature and defect diffusion in modelling ferroelectrics [116, 117, 120,

107, 71, 72]. Simulations by Xiao et.al.[120], based on a semiconducting model of the

ferroelectric and accounting for diffusion of oxygen vacancies have shown that 90o domain

walls are regions of high electrostatic potential and ionized defects tend to migrate to these

regions. Also simulations by Yang and Dayal [123] of closure domains near a free surface

show the accumulation of electronic charge around the 90o closure domains which are regions

of high potential. Once the vacancies migrate to these regions of high potential like domain

walls, they interact with them and contribute to pinning the domain wall migration as

shown in [103].

All the above evidence points to the fact that ionized defects and electronic charge

injected into the ferroelectric through the electrodes accumulate in regions of high potential

like domain walls. Recent experiments by Sun et.al [105] suggest that the region around

a crack in a ferroelectric has higher electric potential compared to the surroundings. So it

is possible that there is charge accumulation though ionization and diffusion of vacancies

and accumulation of electronic charge around cracks. Since the polarization and charge

interact indirectly through the electric potential, the presence of space charge around the

crack would influence the polarization domain formation. Also the accumulation of charge
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Figure 3.10: Ferroelectric domain with a crack subject to tractions and external electric
field.

on the crack surface would change the electrostatic behaviour of the crack gap. These effects

would influence the effect that external fields have on promoting or mitigating fracture in

ferroelectrics. This hypothesis serves as the motivation for this work where we examine the

effect of the semiconducting nature and presence of defects on the fracture behaviour of

ferroelectrics.

3.5 Phase field model

Phase field models have been developed to study domain structures in ferroelectric materials

and polarization switching under electric and/or mechanical loading [18, 20, 126, 103]. The

main ingredients of the model are the Devonshire-Ginzburg-Landau type multiwell energy

potential in terms of the order parameter to model the different variants, a gradient term

to penalize rapid changes in the order parameter representing the energy associated with

domain walls and the Maxwell’s equation which governs the distribution of the electric

potential. Since we are interested in including the semiconducting behaviour an additional

energy term corresponding to the space charge is introduced. The order parameter - the

polarization vector p in the case of a ferroelectric - is evolved through the gradient flow of

the energy.
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3.5.1 Kinematics

We derive the governing equations using the dissipation inequality following Xiao and Bhat-

tacharya [120]. Consider a ferroelectric domain Ω containing a crack Γ, attached to elec-

trodes Sv maintained at a constant potential φ̂ along the part of the boundary ∂ΩS . The

part of the boundary not covered by electrodes is assumed to be in contact with the sur-

rounding insulating medium. The ferroelectric is subject to tractions to on a region ∂Ωt

of the boundary. The rest of the boundary, ∂Ωu, is subject to fixed displacement . Let m̂

represent the outward normal to ∂Ω and k̂ the normal to the crack surface Γ pointing from

the lower crack surface to the top. We derive the equations assuming linearised kinematics.

The polarization density vector is represented by p, displacement by u. The semiconduct-

ing nature of the ferroelectric is introduced through the variable, ρ, representing the space

charge density. To account for any potential singularity of the fields at the crack tip, we re-

move a cylindrical domain Cδ of radius δ and traversing the crack front. Let n̂ represent the

normal to ∂Cδ pointing into Ω. We associate an instantaneous tangent vector t̂ and velocity

a with the crack tip representing its growth direction and velocity magnitude respectively.

The domain Cδ is assumed to move along with the crack tip. The jump in a quantity across

a surface is denoted by [[ ]].

3.5.2 Rate of dissipation

We examine the dissipation in the ferroelectric domain Ω which would yield the equations

governing the field variables, boundary conditions and driving force on the crack. Under

the above assumptions, isothermal conditions, and allowing crack growth the dissipation in

the specimen is given by

D = F − dE
dt
, (3.5.1)

where D is the dissipation , F is the rate of external work, E is the potential energy of the

system.
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Rate of external working

The rate of external work on Ω is given by

F =

∫
∂Ωt

t.u̇ds+ φ̂
d

dt

∫
∂Ωv

σds−
∫
∂Ω
µJ.m̂ds, (3.5.2)

where µ represents the chemical potential of the charge species in the ferroelectric and J is

the flux of the charge species. So the last term represents the chemical energy flux from the

electrodes into Ω with J representing the flux at ∂Ω (so if J is parallel to m̂ the ferroelectric

is losing species and does work).

Using the divergence theorem (A.3.6) on the chemical flux term and conservation law,

ρ̇ = −∇.J, the rate of external work (3.5.2) can be simplified as

F =

∫
∂Ωt

t.u̇ds+ φ̂
d

dt

∫
∂Ωv

σds−
∫

Ωδ

∇µ.Jdx+

∫
Ωδ

µρ̇dx−
∫
∂Cδ

µJ.n̂ds+

∫
Γ
[[µJ]].k̂ds.

(3.5.3)

Rate of change of potential energy

The total energy, E is given by the Helmholtz potential, W (∇p,p, ρ,∇u) and the electro-

static energy

E =

∫
Ω\Cδ

W (∇p,p, ρ,∇u)dx+

∫
R3

1

2
εo|∇φ|2dx. (3.5.4)

Using the transport theorem (A.3.3), the rate of change of Helmholtz potential of the

ferroelectric can be written as

d

dt

∫
Ω\Cδ

Wdx =

∫
Ω\Cδ

Ẇdx−
∫
∂Cδ

W (v.n̂)ds, (3.5.5)

where v represents the velocity of the contour ∂Cδ.
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Upon using the chain rule and divergence theorem (A.3.6), (3.5.5) reduces to

d

dt

∫
Ω\Cδ

Wdx =

∫
Ω\Cδ

({
−∇.

( ∂W
∂∇p

)
+
∂W

∂p

}
ṗ−∇.∂W

∂ε
.u̇ +

∂W

∂ρ
ρ̇

)
dx

+

∫
∂Ω

{
∂W

∂∇p
.ṗ +

∂W

∂ε
u̇

}
m̂ds+

∫
Γ

{
[[
∂W

∂∇p
.ṗ]] + [[

∂W

∂ε
u̇]]

}
k̂ds

−
∫
∂Cδ

{ ∂W
∂∇p

.ṗ +
∂W

∂ε
u̇ +Wv

}
n̂ds. (3.5.6)

Rate of change of electrostatic energy

The electrostatic energy is a non-local quantity spread over the entire space. So its rate

of change with the variation of fields inside the ferroelectric is derived in multiple steps as

follows. The derivation closely follows [120] accounting for the presence of the crack.

Step-1: Using the weak form of Maxwell’s equation.

The Maxwell’s equation subject to boundary conditions

∇.(−εo∇φ+ pχΩ) = ρχΩ, (3.5.7)

φ = φ̂ on Sv,

φ→ 0 as |x| → ∞,

can be written in the weak form as

∫
R3\Cδ

εo|∇φ|2dx =

∫
Ωδ

(p.∇φ+ ρφ)dx+

∫
∂C
φ.(−εo∇φ+ p).n̂ds+

∫
Sv

φ̂σds+

∫
∂Cq

φσds

−
∫

Γ
[[φ.(−εo∇φ+ p)]].k̂ds (3.5.8)

where we assume that there is no crack opening under the linearized kinematics assumption.
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The rate of change of (3.5.8) is given by

d

dt

∫
R3\Cδ

εo|∇φ|2dx =

∫
Ωδ

(ṗ∇φ+ p∇̇φ+ ρ̇φ+ ρφ̇)dx−
∫
∂C

(p.∇φ+ ρφ)v.n̂ds

+
d

dt

∫
∂C
φ.(−εo∇φ+ p).n̂ds+ φ̂

d

dt

∫
Sv

σds

− d

dt

∫
Γ
[[φ.(−εo∇φ+ p)]].k̂ds. (3.5.9)

Note that the electric displacement is given by D = −εo∇φ+ p. So all the above equations

can be written in terms of D.

Step 2: Using Reynolds transport theorem

Multiplying both sides of (3.5.7) by φ̇ and integrating over R3\Cδ yields

∫
R3\Ωδ

εo∇φ.∇φ̇dx =

∫
Ωδ

{∇φ̇p + ρφ̇}dx+

∫
∂Cq

σφ̇dx+

∫
Sv

[[φ̇(−εo∇φ+ p)]]m̂ds

+

∫
∂C
φ̇(−εo∇φ+ p).n̂ds−

∫
Γ
[[φ̇(−εo∇φ+ p)]].k̂ds+

∫
Sv

[[φ̇(−εo∇φ+ p)]]n̂ds.

(3.5.10)

The rate of change of electrostatic energy

d

dt

∫
R3\Cδ

εo
2
|∇φ|2dx =

∫
Ωδ

{ρφ̇+ ∇̇φp}dx+

∫
∂C
φ̇(−εo∇φ+ p)ds−

∫
Γ
[[φ̇(−εo∇φ+ p)]]k̂ds

−
∫
∂C

εo
2
|∇φ|2(v.n̂)ds. (3.5.11)

Subtracting (3.5.11) from (3.5.9) we have

d

dt

∫
R3\Cδ

εo
2
|∇φ|2dx =

∫
Ωδ

(ρ̇φ+ ṗ∇φ)dx−
∫
∂C
{(p∇φ+ ρφ)v.n̂+ φ̇(−εo∇φ+ p).n̂}ds

+
d

dt

∫
∂C
φ(−εo∇φ+ p).n̂ds+

∫
∂C

εo
2
|∇φ|2(v.n̂)ds+ φ̂

d

dt

∫
Sv

σds

− d

dt

∫
Γ
[[φ(−εo∇φ+ p)]].k̂ds+

∫
Γ
[[φ̇(−εo∇φ+ p)]].k̂ds. (3.5.12)

Thus we have the rate of change of electrostatic energy over all space.
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Crack tip

We follow [42] and assume that the crack tip fields remain self-similar as the crack propa-

gates. So the rate of change of a field quantity, say A, along ∂Cδ is given by

Ȧ = −∇A.v, (3.5.13)

where v is the velocity of the contour ∂C which in this case is the crack tip velocity, v = at̂,

as the contour ∂Cδ moves with the crack.

Substituting the expressions for the respective terms in the dissipation inequality (3.5.1)

gives

D =

∫
Ωδ

(
∇.
( ∂W
∂∇p

)
− ∂W

∂p
−∇φ

)
ṗdx−

∫
∂Ω

( ∂W
∂∇p

)
ṗds

+

∫
Ωδ

∇.
(∂W
∂ε

)
.u̇dx+

∫
∂Ωt

{t− ∂W

∂ε
}.m̂.u̇ds

+

∫
Ωδ

(µ− ∂W

∂ρ
− φ)ρ̇dx+

∫
Ωδ

−∇µ.Jdx

+

∫
Γ

{
[[µ.J]]− [[

∂W

∂∇p
ṗ]]− [[

∂W

∂ε
]].u̇− [[φ̇(−εo∇φ+ p)]]

}
.k̂ds+

d

dt

∫
Γ
[[φ(−εo∇φ+ p)]].k̂ds

+

∫
∂C
−µJ.n̂ds− d

dt

∫
∂C
φ(−εo∇φ+ p).n̂ds

+

∫
∂C

{(
W − εo

2
|∇φ|2 + p.∇φ+ ρφ

)
v − ∂W

∂∇p
.(∇p.v)− ∂W

∂ε
(∇u.v)− (−εo∇φ+ p)(∇φ.v)

}
.n̂ds.

(3.5.14)
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3.5.3 Governing equations

Based on Colemann and Noll [22] and self similarity argument, we conclude that the equa-

tions governing the equilibrium configuration of the ferroelectric are as follows

∇.
(
∂W

∂∇p

)
− ∂W

∂p
−∇φ = 0 in Ω, (3.5.15)(

∂W

∂∇p

)
.m̂ = 0 on ∂Ω & Γ, (3.5.16)

∇.
(
∂W

∂ε

)
= 0 in Ω, (3.5.17)(

∂W

∂ε

)
.m̂ = t on ∂Ωt, (3.5.18)

∂W

∂ρ
− µ+ φ = 0 in Ω. (3.5.19)

The first two equation govern the polarization equilibrium and a boundary condition for

polarization, the next two govern the mechanical equilibrium and the mechanical boundary

condition, and the last equation governs the distribution of space charge at equilibrium. The

polarizarion equation, (3.5.15) can be modified to account for the evolution of polarization.

The resulting equation is of the form

µṗ = ∇.
(
∂W

∂∇p

)
− ∂W

∂p
−∇φ. (3.5.20)

Since dissipation is semi-positive definite, we make the constitutive assumption that the

flux of the space charge depends on the the chemical potential, µ, as follows

J = −K∇µ, (3.5.21)

where K is the diffusion constant. Typically the value of K would be different for different

charge species. This formulation can easily be extended to that case by defining a flux term

independently for each species. [107]. Note that at equilibrium the flux of space charge J is

zero inside the specimen and on its boundary. The diffusion of space charge based on the
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mass conservation statement and (3.5.21), is dictated by

ρ̇ = −∇.J = ∇.
(
K∇µ

)
. (3.5.22)

Using the crack tip velocity for v = at̂, we get the term conjugate to the crack tip

velocity which represents the driving force on the crack

∫
∂C
t̂.

{(
W− εo

2
|∇φ|2 +p.∇φ+ρφ

)
−(∇p)T .

∂W

∂∇p
−(∇u)T .

∂W

∂ε
−∇φ⊗(−εo∇φ+p)

}
.n̂ds.

(3.5.23)

Note that if we neglect all the electrical quantities the above integral represents the usual

mechanical form of the driving force on a crack - the J-integral. The additional terms are

contributions from the polarization, space charge and electric field density set up by the

polarization and the space charge. We discuss this contour integral further and make use

of this expression later on to evaluate the driving force on the cracks and use it to study

the effect of electric fields on the toughness of ferroelectrics.

3.5.4 Crack surface boundary conditions

The boundary conditions prescribed on the crack face have a significant influence on the

domain formation around the crack and the influence of external fields on the crack driving

force. The effect on driving force is clearly illustrated in the linear theory of piezoelectric

fracture which has been widely discussed in the literature [125, 80, 29, 106, 67]. Here we

discuss how the various boundary conditions prevalent can be naturally deduced from our

dissipation inequality formulation. Consider the terms in 3.5.14 defined on the crack faces,

∫
Γ

{
[[µ.J]]−[[

∂W

∂∇p
ṗ]]−[[

∂W

∂ε
]].u̇−[[φ̇(−εo∇φ+p)]]

}
.k̂ds, and

d

dt

∫
Γ
[[φ(−εo∇φ+p)]].k̂ds.

(3.5.24)

Based on our assumption that only the crack tip translates with the velocity v = at̂ with

the crack faces in the wake of the tip remaining stationary the second term in (3.5.24) goes

to zero. The polarization term in the first integral is the natural boundary condition for

polarization on the crack surface and can be set to zero. Next the flux term in the first
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integral term represents the flux of space charges at the crack surfaces which reduces to

zero if one assumes no leakage of the space charge into the crack, J.k̂ = 0 on Γ.

The most frequently used boundary conditions in the literature can be deduced as follows

• Insulating or Impermeable crack : Proposed by Deeg [25], it assumes that he crack gap

is impermeable and traction free expressed mathematically as

D+.k̂ = D−.k̂ = 0, σ+.k̂ = σ−.k̂ = 0. (3.5.25)

based on the above expressions all the terms in the first integral in (3.5.24) go to zero.

The justification for this boundary condition is the large difference in the magnitude

of permittivity between the crack gap medium and the surrounding ferroelectric.

• Conducting or Permeable Crack : This condition was introduced by Parton [80] based

on the argument that there is no opening of crack in the linear theory and so the fields

are continuous and the crack surfaces are traction free. This can be expressed as

D+.k̂ = D−.k̂, φ+ = φ−, σ+.k̂ = σ−.k̂ = 0. (3.5.26)

based on the above expressions all the terms in the first integral in (3.5.24) reduce to

zero.

• Exact or Semi-Permeable conditions: Introduced by Hao and Chen [109], this bound-

ary condition seeks to address the fact the crack gap is actually open and the electric

fields can permeate the crack gap which is assumed to have a permitivitty κc. The

crack is assumed to be traction free. This can be expressed as

D+.k̂ = D−.k̂ = −κc
φ+ − φ−
u+

2 − u−2
. (3.5.27)

Under these conditions the terms in (3.5.24) go to zero, with an additional condition

on D+.k̂ and D+.k̂. Note that this condition makes the system of equations to be

solved for non-linear. Though this condition seems physically accurate McMeeking

[68] showed that the traction free condition leads to a discrepancy since in the presence
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of an electric field in the open crack gap leads to a traction on the crack surface. Our

formulation also reveals this if we consider crack opening and finite kinematics as we

show in the next condition.

• Energetically consistent boundary Conditions: These conditions were introduced by

Landis [60] to rectify the discrepency pointed out in the semi-permeable conditions

by McMeeking [68]. The crack gap is assumed to have an electric enthalpy, hc(Ec),

which depends on the crack gap electric field, Ec. The conditions on the crack are

specified as

D+.k̂ = D−.k̂ =
dhc
dEc

.k̂, σ.k̂ = hck̂ + Ec(Dc.k̂). (3.5.28)

The derivation for the rate of dissipation (3.5.14) was derived assuming linearized

kinematics. If that assumption is relaxed, following [120] one write

∫
Γ
[[φ̇(−εo∇φ+ p)]].k̂ds =

∫
Γ
φ̇[[D.k̂]ds+

∫
Γ
[[TM .k̂]].u̇ds, (3.5.29)

where TM represents the Maxwell’s stress acting on the crack surface due to the

electric field in the crack gap. So the boundary conditions on the crack yield

[[σ.k̂]] = −[[TM .k̂]] = hck̂ + Ec(Dc.k̂) D+.k̂ = D−.k̂ =
dhc
dEc

.k̂ (3.5.30)

In conclusion we claim that all the boundary conditions used for studying fracture

in electromechanical problems can be derived naturally from our dissipation inequality

approach. The analysis shows that, if crack opening is considered and a finite permittivity

is assumed for the crack gap, the semi-permeable, traction free condition is inconsistent since

the crack surface experiences a traction due to the electric field inside the crack gap. This

is rectified in the energetically consistent boundary conditions [60], which our formulation

also reveals.
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3.6 Constitutive relations

We assume that the free energy density of the ferroelectric W (p,∇p, ε, ρ) can be written

as

W (p,∇p, ε, ρ) = Wd(∇p) +Wp(p, ε) +Wρ(ρ), (3.6.1)

where the first term represents domain wall energy which penalizes abrupt changes in po-

larization (domain walls) , the second term is the classical Landau-Ginzburg energy density

which penalizes polarization and strain away form the the spontaneous values and the third

term represents the energy density due to the space charge.

Our material of choice is BaTiO3, which undergoes a transformation from a cubic to a

tetragonal unitcell, has four variants in the tetragonal phase in two dimensions. Here we po-

vide a brief descitpion of the importat material paramenets chosen for our simulations. The

choice closely parallels [120] and [126]. So for greater details the reader can refer to those

works. The Landau-Ginzburg energy density Wp(p, ε), is a fourthorder polynomial has four

wells, figure (3.11), the polarization space centred around the four variant states corre-

sponding to polarization values : p: (ps, 0), (−ps, 0), (0, ps), (0,−ps), where ps = 0.26C/m2

is the spontaneous value of the polarization density.

Wp(p, ε) =
a1

2
(p2

1 + p2
2) +

a2

4
(p4

1 + p4
2) +

a3

2
p2

1p
2
2 +

a4

6
(p6

1 + p6
2) +

a5

4
(p4

1p
4
2) (3.6.2)

− b1
2

(ε11p
2
1 + ε22p

2
2)− b2

2
(ε11p

2
2 + ε22p

2
1)− b3ε12p1p2

+
c1

2
(ε2

11 + ε2
22) + c2ε11ε22 +

c3

2
ε2

12.

The domain wall energy is assumed to be of the form

Wd(∇p) =
ao
2
|∇p|2 =

ao
2

(
p2

1,1 + p2
2,2 + p2

1,2 + p2
2,1

)
. (3.6.3)

The values of the constants involved in the above equations will be listed in a later section.

Since we are considering time scales where there is no diffusion of defects and the space

charge is assumed to be always in equilibrium - steady state for the ferroelectric- the chemical

potential associated with the space charge (assumed to be the same for all charged species
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Figure 3.11: Landau-Ginzburg multiwell potential, Wp. (a) Four-well structure, (b) Contour
plot of the wells.

i.e electrons holes and defects) at equilibrium is governed by

∇.(K∇µ) = 0 in Ω. (3.6.4)

This follows directly from (3.5.22) once the LHS is set to zero. If K is assumed to be

isotropic and homogeneous the governing equation for the chemical potential reduces to

∇2µ = 0 in Ω. (3.6.5)

Since the flux of space charge on the boundary of the ferroelectric in contact with the

surrounding insulating medium and the crack surface is zero we also have

∇µ.m̂ = 0 on ∂Ω/∂Ωv and Γ. (3.6.6)

At equilibrium, the flux of the space charge is also zero on the part of the boundary in

contact with the electrodes and the based on charge transport equations governing an

metal-semiconductor interface, the chemical potential is given by

µ = Efm − eφ̂ on ∂Ωv, (3.6.7)

where Efm is the chemical potential or Fermi level of the metal electrode and φ̂ is the voltage

the electrode is held at. In summary for a ferroelectric in contact with metal electrodes at

equilibrium, the chemical potential of the space charge density is given by solving (3.6.4),
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(3.6.6), (3.6.7). This is a clear departure from the methodology followed in [120], where µ

was assumed to be constant over the ferroelectric domain and equal to the metal electrode

fermi level, Efm.

Consider the equation governing the space charge (3.5.19) at equilibrium

∂W

∂ρ
− µ+ φ = 0. (3.6.8)

If µ is obtained from the procedure described above and W is assumed to be a convex

function of ρ, the derivative in (3.5.19) can be inverted and ρ can be written as an explicit

function of φ and µ. As was described in [6] , we use the typical charge density of a

semiconductor at equilibrium, in contact with metal electrodes

ρ(φ,Nd) = −eNcF 1
2

(
µ− Ec + eφ

KbT

)
+ eNvF 1

2

(
Ev − eφ− µ

KbT

)
(3.6.9)

+ eNd(x)

(
1− 1

1 + 1
2exp(

Ed−eφ−µ
KbT

)

)

− z′eNa(x)

(
1− 1

1 + 1
2exp(

µ+eφ−Ea
KbT

)

)
,

where µ is the chemical potential of the charge species,∗ Nc and Nv are the effective density

of states of conduction and valence band respectively, Ec and Ev are the energies of the

bottom of the conduction band and the top of the valence band respectively, Ea is the

energy level of the acceptor dopant,Ed is the energy level of the donor dopants, Kb is the

Boltzmann’s constant, T is the temperature in Kelvin, F 1
2

is the Fermi-Dirac integral. We

briefly explain the features of (3.5.19) which would help in understanding some of results we

will present in the next section. Figures 3.12 and 3.13 show the plots of ρ vs φ. For values

of φ < (Ev − µ)/e, due to the low value of φ, the electrons migrate out of the ferroelectric

leaving behind a large density of holes in the valence band - the first term dominates. So

the ferroelectric assumes a net positive charge density. For values of φ > (Ec − µ)/e, due

to the large value of φ, electrons from the electrodes inject into the conduction band of the

∗We adopt the popular convention used in solid-state physics of calling the Fermi-level the chemical
potential, µ, which is uniform across the body for a species, where as the electrochemical potential, µ̄, is
given by the chemical potential minus the local electrostatic potential, µ̄ = µ− ezφ [6]
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ferroelectric resulting in a negative charge density - the second term dominates. For values

of (Ev − µ)/e < φ < (Ec − µ)/e, the space charge density is dominated by the dopants.

The threshold value for the ionization of dopants is φc = (Ed − µ)/e. For φ < φc, the

dopants are completely ionized, and all the electrons migrate out of the ferroelectric leaving

it with a positive space charge density from the ionized dopants. In the results we are going

to present though the space charge is mostly dominated by the ionized dopants, in certain

regions of the ferroelectric like an insulated defect - due to the large values(in magnitude) of

potential we do see the first and third term dominating. From here on we use (3.6.9) along

with the Maxwell’s equation, instead of (3.5.19), to determine the evolution and equilibrium

state of the ferroelectric.
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Figure 3.12: Variation of space charge density with electric potential at thermal equilibrium
with n-type dopants, T = 300K, Nd = 1024, Na = 0, Efm = −5.3eV .
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Figure 3.13: Variation of space charge density with electric potential at thermal equilibrium
with p-type dopants, T = 300K, Na = 1024, Nd = 0, Efm = −5.3eV .
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3.7 Implementation

We describe the procedure we adopt to solve the following set of equations which deter-

mine the evolution of polarization in a ferroelectric domain containing a crack and subject

to electromechanical boundary conditions. In particular we are interested in the domain

formation around the crack which plays a significant role in affecting the fracture tough-

ness of ferroelectrics. Substituting the form of W, (3.6.1) and ρ, (3.6.9) into the equations

(3.5.20),(3.5.17), (3.5.7) leads to

µṗ = ao∆p− ∂Wp

∂p
−∇φ, (3.7.1)

∇.
(
∂Wp

∂ε

)
= 0, (3.7.2)

∇.(−εo∇φ+ p) = ρ(φ,Nd), (3.7.3)

along with the following boundary conditions

(
∂Wp

∂∇p

)
.m̂ = 0 on ∂Ω & Γ, (3.7.4a)(

∂W

∂ε

)
.m̂ = t on ∂Ωt, (3.7.4b)

φ = φ̂ on ∂ΩS . (3.7.4c)

We assume that the crack surfaces are traction free, σ.k̂ = 0 and insulated, (−εo∇φ +

p).k̂ = 0. The regions of the boundary where the electric potential is not specified are

assumed to be free of surface charge , (−εo∇φ + p).m̂ = 0. The above set of equations

are non-dimensionalized using the parameters co(N/m
2), po(C/m

2), Lo(m) representing

stress or energy density, polarization density and length scale respectively. The normalized

polarization density and length are p′ = p
po
, x′ = x

L . Using these constants the energy
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density could be expressed in non-dimensional form as

W ′d(∇p) = Wd(∇p)/co =
a′o
2

(
p′

2
1,1 + p′

2
2,2 + p′

2
1,2 + p′

2
2,1

)
, (3.7.5)

W ′p(p, ε) = Wp(p, ε)/co =
a′1
2

(p′
2
1 + p′

2
2) +

a′2
4

(p′
4
1 + p′

4
2) +

a′3
2
p′

2
1p
′2
2 +

a4

6
(p′

6
1 + p′

6
2) +

a′5
4

(p′
4
1p
′4
2)

− b′1
2

(ε11p
′2
1 + ε22p

′2
2)− b′2

2
(ε11p

′2
2 + ε22p

′2
1)− b′3ε12p

′
1p
′
2

+
c′1
2

(ε2
11 + ε2

22) + c′2ε11ε22 +
c′3
2
ε2

12, (3.7.6)

where a′o = aop
2
o/coL

2
o, a
′
1 = a1p

2
o/co, a

′
2 = a2p

4
o/co, a

′
4 = a4p

6
o/co, a

′
5 = a5p

8
o/co; b

′
j = bjp

2
o/co

and c′j = cj/co , j = 1, 2, 3; p′i,j = ∂p′i/∂x
′
j . Since the typical elastic modulii are of the order

of GPa, we choose co = 1GPa and Lo = po
√
ao/co so that a′o = 1. The parameter ao

determines the width of the domain wall. This choice of a′o = 1, has the result of making

the normalized classical solution (without defects) independent of the choice of ao. We use

two values of for ao = 10−9V m3C−1 corresponding to Lo = 0.26nmand ao = 10−7V m3C−1

corresponding to Lo = 2.6nm. This choice of parameters results in the following values

for the material constants [126, 120] : c′1 = 185, c′2 = 111, c′3 = 74, b′1 = 1.4282, b′2 =

−0.185, b′3 = 0.5886, a′1 = −0.007, a′2 = −0.009, a′3 = 0.003, a′4 = 0.0261, a′5 = 5. For this

choice of parameters the spontaneous strain corresponding to the variants can be expressed

in terms of the normalized polarizations

εs =


a′p′2x + b′p′2y

b′p′2x + a′p′2y

c′px
′p′y

 , (3.7.7)

where a′ = 0.0065, b′ = −0.0044, c′ = 0.0109. Having established the normalized energy

densities, we present the normalized form of 3.7.1 that will be used in the computation. Let

φ′ = φ/φo, ρ
′ = ρ/ρo, t

′ = t/To be the non-dimensional quantities corresponding to electric
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potential, space charge density and time. The normalized equations take the form

µp2
o

Toco

∂p′

∂t′
= a′o∆

′p′ −
∂W ′p
∂p′

− φopo
Loco

∇φ, (3.7.8a)

∇′.
(
∂W ′p
∂ε

)
= 0, (3.7.8b)

∇′.(− εoφo
Lopo

∇′φ′ + p′) =
Loρo
po

ρ′(φ′, Nd). (3.7.8c)

Upon choosing φo = Loco
po

, ρo = po
Lo
, To = µp2o

co
the above equations reduce to their final form

µ′
∂p′

∂t′
= a′o∆

′p′ −
∂W ′p
∂p′

−∇φ, (3.7.9a)

∇′.
(
∂W ′p
∂ε

)
= 0, (3.7.9b)

∇′.(−ε′∇′φ′ + p′) = ρ′(φ′, Nd), (3.7.9c)

with µ′ = 1 and ε′ = εoco
p2o

and

ρ′(φ,Nd) =
1

ρo

{
− eNcF 1

2

(
Efm − Ec + eφoφ

′

KbT

)
+ eNvF 1

2

(
Ev − eφoφ′ − Efm

KbT

)
(3.7.10)

+ eNd(x)

1− 1

1 + 1
2exp(

Ed−eφoφ′−Efm
KbT

)


− z′eNa(x)

1− 1

1 + 1
2exp(

Efm+eφoφ′−Ea
KbT

)

}.
For the following choice of characteristic constants

co = 1 GPa, po = 0.26 C/m3, ao = 109 V m3C−1, (3.7.11)

the dimensional constants take the values

Lo = po

√
ao
co

= 0.26 nm, φo =
√
aoco = 1V, ρo =

√
co
ao

= 109 C/m3, To =
µp2

o

co
,

(3.7.12)
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and material constants take the values

µ′ = 1, ε′ =
εoco
p2
o

= 0.131. (3.7.13)

Note the material constants, (3.7.13) are independent of value of ao and so there is no explicit

dependence of the normalized equations (3.7.9) on ao except through length normalization

and ρ′. So, as noted earlier, in charge free simulations, ρ′(φ′) = 0, the solution depends on

the value of ao only through Lo. In simulations including space charge however, the solution

depends explicitly on ao through ρo.

3.7.1 Finite element formulation

The normalized equations (3.7.9) along with the boundary conditions (3.7.4) are solved on a

square domain containing a center crack using the Bubnov-Galerkin approximation method

[45]. We describe the formulation of the weak form and the approximation of the solution

with test functions and solution functions belonging to function space, H1. This is because

the highest order term in the weak form is first order in terms of the test and solution

function. We formulate the implementation in terms of the normalized variables {p,u, φ}

which are to be approximated in the calculation. Note that from here on we drop the primes

(’) used in the previous section to denote normalized quantities. All the equations listed

from here are assumed to be in terms of non-dimensionalized quantities unless specified

otherwise.

We begin by taking the inner product of the governing equation for evolution of polar-

ization (3.7.9a) with a test function q giving us the weak form of (3.7.9a)

∫
Ω

∂p

∂t
.qdx = −

∫
Ω
∇p.∇qdx−

∫
Ω

∂Wp

∂p
.qdx−

∫
Ω
∇φ.qdx, (3.7.14)

where we used the divergence theorem. The boundary terms generated during the applica-

tion of divergence theorem vanish due to the homogeneous Neumann boundary condition

(3.7.4a) we adopt for p. This equation is the weak form of (3.7.9a). From the definition

of weak form, the solution to this equation {p, φ} is a function such that (3.7.15) is true
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for all q belonging to the test fucntion space. Using an explicit scheme (Euler method) for

discretizing in time [126], we get

∫
Ω

pk+1 − pk

∆t
.qdx = −

∫
Ω
∇pk.∇qdx−

∫
Ω

(
∂Wp

∂p

)k
.qdx−

∫
Ω
∇φk.qdx. (3.7.15)

Introducing the discretization where both the solution function and the test function are

assumed to belong to the same space pk =
∑

n pkiNi, φ =
∑

n φkNk, q =
∑

n qjNj , where

{pki , φk} represent the nodal values of polarization and electric potential at a time tk and

Ni are the shape functions. The summation is over all the nodes. Substituting the approx-

imations of p,q, φ into (3.7.15), yields the following system of equations corresponding to

the two components of the polarization vector p = (p1, p2).

M(pi
(k+1) − pi

k) = −∆t
(
K.pi

k + bi
k + Vφk

)
i = {1, 2}, (3.7.16)

where

M =

∫
Ω
N ⊗Ndx Mlm =

∫
Ω
NlNmdx, (3.7.17a)

K =

∫
Ω
∇N ⊗∇Ndx Klm =

∫
Ω
∇Nl.∇Nmdx, (3.7.17b)

bi
k =

∫
Ω

∂Wp

∂pi
Ndx, (3.7.17c)

V =

∫
Ω
∇N ⊗Ndx Vlm =

∫
Ω
∇Nl ⊗Nmdx, (3.7.17d)

where l,m = {1, 2}, pki corresponds to the column vector of nodal values of the polarization

component at time tk, and φk is the column vector of nodal values of the electric potential

at time tk.

Following a similar procedure for the Maxwell’s equation and taking an inner product

with ψ and using the divergence theorem gives

∫
Ω
ε∇φ∇ψdx+

∫
Ω
∇.pψdx−

∫
Ω
ρψdx = 0. (3.7.18)

Note that the boundary conditions (−εo∇φ+p).m̂ = 0 and φ = φ̂ ensure that the boundary
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terms go to zero. Substituting the approximations φ =
∑

n φiNi, ψ = ψjNj and p =∑
n piNi gives

K.φ+ N1.p1 + N2.p2 − r = 0, (3.7.19)

where K is as defined in (3.7.17) and

Nk =

∫
Ω
N ⊗ ∂N

∂x1
dx [Nk]ij =

∫
Ω
Ni
∂Nj

∂x1
dx k = 1, 2.

(3.7.20)

The mechanical equilibrium can similarly be formulated by establishing the weak form of

(3.5.17)

∫
Ω
∇.
(∂Wp

∂ε

)
.vdx+

∫
∂Ωt

(to − σ.m̂).vdx = 0, (3.7.21a)

which can be simplified further using the divergence theorem

−
∫

Ω
σ∇vdx+

∫
∂Ωt

to.vdx = 0, (3.7.22a)

where σ takes the following form

σ11 =
∂Wp

∂ε11
= c1ε11 + c2ε22 −

b1
2
p2

1 −
b2
2
p2

2,

σ22 =
∂Wp

∂ε22
= c1ε22 + c2ε11 −

b1
2
p2

2 −
b2
2
p2

1,

σ12 = σ21 =
∂Wp

∂ε12
= c3ε12 − 2b3p1p2, (3.7.23a)

σ = C.ε− P =


c1 c2 0

c2 c1 0

0 0 c12



ε11

ε22

ε12

−

b1
2 p

2
1 + b2

2 p
2
2

b1
2 p

2
2 + b2

2 p
2
1

2b3p1p2

 . (3.7.23b)

Substituting the approximation for v =
∑

n viNi and ui =
∑

n uiNi, where ui represents
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the displacement vector at node i, gives

C.u−P−T = 0, (3.7.24a)

C =

∫
Ω
BTCB dx T =

∫
∂Ωt

toN ds P =

∫
Ω
BTPdx ε = B.u. (3.7.24b)

To summarize, we have a system of equations to update the polarization, a system to

find out the equilibrium electrostatic potential corresponding to the updated polarization,

and a system to determine the equilibrium displacement and stress corresponding to the

polarization update :

M(pi
(k+1) − pi

k) = −∆t
(
K.pi

k + bi
k + Vφk

)
i = {1, 2}, (3.7.25a)

K.φ(k+1) + N1.p
(k+1)
1 + N2.p

(k+1)
2 − r(k+1) = 0, (3.7.25b)

C.u(k+1) −P(k+1) −T = 0. (3.7.25c)

A few comments. First, since we use an explicit scheme to update polarization, the time

step ∆t needs to be chosen so that the scheme are stable. We choose it such that it satisfies

the stability condition ∆t ≤ 2
λmax

, where λmax is the largest eigen value of M−1K. The

value we use is ∆t = 0.05. Second, the mesh should be fine enough to be able to resolve the

crack tip stresses and the formation of domain walls. The typical width of the domain wall

is of the order ∼ 5nm which is ∼ 20Lo in terms of the dimensional constant. So the mean

element size is chosen such that the width of a domain wall is resolved by four elements.

Third, the system of equations for electric potential (3.7.19), is a set of non-linear equations

in φ due to the the non-linear nature of ρ(φ), (3.6.9). So we make use of a trust-region

algorithm to find out the solution at each time step.

3.8 Results

The computations are carried over a square domain of size 1000 × 1000. The domain

contains a center crack of length lc = 200. The mesh and the boundary conditions used

for the simulations are shown in Figure 3.14. The region around the crack tip is refined to
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Figure 3.14: Mesh used for the simulations and boundary conditions.

resolve the stress and electric fields. The domain is in contact with electrodes on the top

and bottom surfaces with the top electrode maintained at a potential φo and the bottom

electrode is grounded. The rest of the boundary is assumed to be charge free, D.m̂ = 0,

since it is assumed to be in contact with an insulator. Tractions are applied on the top

and bottom edges and the rest of the boundary is traction free. As mentioned earlier

we use impermeable and traction free boundary conditions on the crack. We perform a

mesh convergence study to ensure that the results presented here represent the converged

solutions.

The results from the simulations are presented in this section. We have three different

sets of results: (i) Simulations without any space charge. (ii) Simulations with n-type

dopants. (iii) Simulations with p-type dopants. Before we begin we offer some perspective

regarding some of the important parameters in the simulations.

1. Applied stress(σo): Typical non-dimensional value is 2.5, which corresponds to the

stress which results in a stress intensity value of 2MPa
√
m which is the typical fracture

toughness of BaTiO3. We presents results for σo = 0, 0.1.

2. Applied potential (φo) : Typical non-dimensional value is 1.2, which corresponds to an

electric field value of 3.7× 104KV/m corresponding to 180oswitching field of BaTiO3.
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We use values in the range [−1 1] for φo.

3. Dopant density (Nd or Na) : Typical value is 1024 which corresponds to a low dopant

density, see[94].

4. Specimen dimension (Lo) : In this simulation Lo = 0.26nm. We choose a specimen

of edge size 1000Lo = 260nm. This corresponds to a film of intermediate thickness

[120].

3.8.1 No space charge, ρ = 0

First we present the case where we neglect the space charge density in the ferroelectric. We

treat the ferroelectric as an insulator and observe the domain formation around the crack in

a single crystal BaTiO3, with the crack being normal to the poling direction. We start with

the initial state with the polarization pointing upwards. The top electrode is maintained

at φ = φo and the top and bottom electrodes are subject to a tensile stress σyy = σo. We

perform the simulation for σo = 0, 0.1 and φo = [−0.5, − 0.1, 0, 0.1, 0.5] for each value

of σo. Note that a positive (negative) value of φo corresponds to a nominal electric field

pointing downwards(upwards) - anti-parallel(parallel) to the poling direction or known in

the literature as a negative(positive) electric field.

The evolution of polarization starting from the initial uniformly poled state to the final

polarization state is shown in Figure 3.15 through a series of intermediate states. These

results correspond to φo = 0.1, σo = 0. At n = 0(t = 0), the initial state, the polarization

in the crystal is uniform with p1 = 0, p2 = 1 and pointing upward. The crack is at the

center of the square domain (not seen here). In this state the domain wall energy and

the Devonshire-Ginzburg-Landau (DGL) energies are zero. However due to the insulated

crack face boundary condition, this configuration is electrostatically unfavourable. So as

time evolves we see the polarization vectors next to the crack surface starting to switch

and become parallel to the crack surface. The 90o switching results in formation of four

symmetric domains around the crack. They start from the crack surface and evolve into the

bulk. This 90o domain formation is similar to that seen in the experiments of Jiang et.al

[51],with a PMNT single crystal with a crack perpendicular to poling direction under the
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influence of a negative external field, see Figure 3.5. The results for other values of φo (not

displayed here) show that the 90o domains formed are larger for a negative nominal field

and the domains shrink in the case of a positive nominal field. This is anticipated since

in the case of negative fields the polarization switches to a state perpendicular to applied

field resulting in a lower electrostatic energy. However in the case of positive applied field

the switching in undesirable since it increases the electrostatic energy compared to initial

state. In the case with σo = 0.1 (not displayed here), the domain sizes are smaller since

the tensile far field stress prefers the variant with the polarization vector aligned along the

tensile stress axis.

The plots of equilibrium configurations of polarization p, electric potential φ and yy-

component of the stress, σyy are presented for the case where the external field is anti

parallel to the poling direction φo = 0.1 and the external tractions are zero, σo = 0,

Figure 3.16. Note that the numerical values of all the quantities displayed in the plots

are non-dimensional values. The polarization plot shows formation of four symmetrical

domains due to 90o switching as explained earlier. The stress field around the crack shows

a concentration at the crack tip. Note that the specimen is free of external tractions and so

the stress concentration arises purely from the switching of polarization. Finally the electric

potential plot displays quite a remarkable result. It is interesting to note that the regions

around the crack are the regions of highest electric potential compared to the rest of the

ferroelectric - even higher than the 90o domain walls. This in fact has also been observed

in KFM experiments on a crack in single crystal BaTiO3 of Sun et.al. [105], see Figure 3.6.

3.8.2 n-type dopants

Next we consider the case of ferroelectric perovskites with donor defects. Typically oxygen

vacancies in perovskites act as donors. So ferroelectric crystals grown in an oxygen depleted

environment act as n-type semiconductors due to the large number of oxygen vacancies.

Here we consider a dopant density of Nd = 1024/m3. This corresponds to a low level of

doping density [120, 94].

The results for the case with n-type dopants is presented in Figure 3.17. Note that
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we use the same values, φo = 0.1, σo = 0 as in the no space charge case to facilitate

a comparison. The results in this case differ from those without any doping, Figure 3.16.

Firstly the polarization domains around the crack are no longer symmetric, there is extensive

switching above the crack with considerably less switching below it. In this case too the

electric potential value in the region surrounding the crack has a value greater than in

the other regions of the ferroelectric. The stress plot reveals a tensile stress concentration

around the crack tip caused due to the switching. The space charge density plots reveal

the build up of high space charge density around the crack. The peak value of the space

charge density occurs at the crack tips, Figure 3.12. The region close to the crack tip is

dominated by high space charge density of electrons and holes corresponding to the tails of

the ρ−φ plot, Figure 3.12. This is due to the high values of electric potential which results

in attracting electrons to regions of high positive electric potential and holes in regions of

high negative potential.

3.8.3 p-type dopants

Next we present the results for the case where the dominant imperfections are p-type in na-

ture. In perovskites positively charged cation impurities act as p-type dopants as discussed

in Section 3.4. The results are presented in Figure 3.18. As in the n-type dopant case the

polarization switching is no longer symmetric with extensive switching taking place below

the crack. The electric potential distribution is similar to the case with n-type dopants with

the region around the crack having the highest potential. Notice that even in this case the

space charge density around the crack is dominated by the electron and hole contributions

due to the large value of positive and negative potential around the crack tip. This value is

much higher than the contribution from ionization of dopants which has a non-dimensional

value ρa = −1.6× 10−5.

3.8.4 Discussion

The peak value of the space charge density occurs at the crack tips with a positive value on

the top crack surface and a negative value on the lower crack surface. This is anticipated
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as the poling direction was initially pointing upwards which would have resulted in positive

bound charge on the lower crack surface and a negative charge on the upper crack surface.

If not compensated this would have led to an increase in the electrostatic energy of the

system. In the first case where the ferroelectric is treated as an insulator, Figure 3.16, there

is extensive 90o polarization switching with the polarization orienting itself parallel to the

crack surface and there by leaving the crack surface bound charge free . However in the

other two cases where space charge was contributed by the semi-conducting nature of the

ferroelectric, the bound charges on the crack surface are compensated by the space charge.

This is the reason for limited switching in the latter two cases. It is also interesting to note

that the nature of dopants does not effect the space charges around the crack.

Experiments where the electrostatic potential around the crack was measured in single

crystal and poled polycrystal ferroelectrics with the poling direction normal to the crack,

[105, 89, 30], speculate the accumulation of free charge along the crack surfaces. The above

results from our simulations suggest that this indeed could be from space charges inside

the ferroelectric which arise due to its semiconducting nature. A caveat regarding the

direct comparison of these results with experiments is in order. Note that our simulation

length scale is of the order of micrometers (0.26µm) where as the experiments are carried

out with specimen sizes and observation scales of the order of 10µm. Also note that the

experiments of Schneider et.al [89] and Engert et.al [30] were done using poled polycrystals

where as Sun et.al [105] used single crystal sample on the scale of millimeters. Due to

this large disparity in the length scales the observations from these simulations, though

qualitatively similar, shouldn’t be directly compared with experiments. However we do

note that these preliminary simulations reveal the accumulation of space charge due to

the semiconducting nature and defect ionization around the crack which would result in

increasing the permittivity of the gap. This offers a potential mechanism for the charges

speculated to be build up on the crack surface. So this calls for extending these simulations

to length scales comparable to those of experiments.
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3.9 One-dimensional model

The results shown above in the case where the poling direction is normal to the crack

orientation and the crack surface is insulated yields an equilibrium configuration where

there is switching of polarization parallel to the crack and build up of space charge close to

the crack surface, Figures 3.17 and 3.18. Here we present a simple 1-D model along the lines

of [94] to explain these observations. We look at the region near the crack face, away from

the crack tip, and the distant electrode. Let x denote the distance from the electrode held

at fixed potential, φ = 0 in this case and the crack surface. So this represents the bottom

half of our simulation domain. The governing equations and the boundary conditions are

summarized as follows:

ao
d2p

dx2
− dWp

dp
− dφ

dx
= 0,

dp

dx
= 0 at x = 0, L, (3.9.1)

−εd
2φ

dx2
+
dp

dx
= ρ(φ) φ(0) = 0,

(
− εdφ

dx
+ p
)∣∣∣
x=L

= 0,

Wp =
a

2
(T − To)p2 +

b

4
p4 +

c

6
p6. (3.9.2)

with ρ(φ) being the same as (3.7.10). The constants used in the above equations are the same

as in [94], corresponding to BaTiO3. Like in the two dimensional case, Wp is polynomial

in p having two local minima at p = ±1 and local maxima at p = 0 for T < To. The

value p = 0 can be interpreted as the polarization undergoing a 90o switch. We have not

normalized the equations and so all the numbers in the solution plots, Figure 3.19, denote

the actual physical values. Note that we have not included any mechanical displacement in

the above formulation.

3.9.1 Results

We present the results for homogeneously doped n-type (Na = 0) BaTiO3 films. The above

equations subject to the boundary conditions are solved using a finite difference method with

a collocation formula. The results are presented for the parameters L = 130, 200, 1000 nm

and Nd = 1024 corresponding to films of different thicknesses at low doping concentration.

We perform the simulations using Pt electrodes (Efm = −5.3eV ) and the temperature at T
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= 300K. Since the equations we are solving involve potentials with multiple local minima,

the solution we arrive at depends on the initial guess. We use the solutions presented in

[94] as out initial guess.

Let us consider the case of low doping (Nd = 1024) since that is the value we use

in our two-dimensional simulations in Section 3.8. The results are shown in Figure 3.19.

For thin films, we see that the film is fully depleted and all the dopants are ionized. The

polarization takes a zero value at the insulated boundary, (x = L), and varies linearly around

p = 0.26 in the film. This indicates that polarization undergoes switching close to the crack

(insulated) surface (see Figure 3.17 for 2D case). The space charge density’s variation is

more interesting and contrasting from the regular case. While for most part of the film

ρ = 1.6 × 10−3 corresponding to ionized donors, close to the insulated surface due to the

negative value of φ it assumes a large positive value indicating a large concentration of holes

in the valence band. So, close to the insulated surface the ferroelectric becomes conducting

with holes being the majority carriers. Similar results are observed in the intermediate and

thick film cases. Thus we have shown that such 1D models offer initial insight and capture

most of the physics which can be corroborated subsequently through rigorous simulations

in higher dimensions.

3.10 Driving force on the crack : The J-integral

Through the dissipation inequality approach we derived an expression for the thermody-

namic quantity conjugate to crack growth - the crack driving force in the setting of a

ferroelectric with space charge

J =

∫
∂C
t̂.

{(
W−εo

2
|∇φ|2+p.∇φ+ρφ

)
−(∇p)T .

∂W

∂∇p
−(∇u)T .

∂W

∂ε
−∇φ⊗(−εo∇φ+p)

}
.n̂ds

(3.10.1)

Here we further discuss this quantity and draw a few parallels with what is popular in

literature and also highlight the differences. Firstly the above contour integral can be

written as

J =

∫
∂C
t̂.Ψ.n̂ds, (3.10.2)
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where

Ψ =
(
W − εo

2
|∇φ|2 + p.∇φ+ ρφ

)
I− (∇p)T .

∂W

∂∇p
− (∇u)T .

∂W

∂ε
−∇φ⊗ (−εo∇φ+ p)

= HI− (∇p)T
∂H

∂∇p
− (∇u)T

∂H

∂ε
+ E⊗D. (3.10.3)

We define the quantity, Ψ, as the augmented material momentum tensor. It is the Eshelby

energy momentum tensor with new terms to account for the polarization, space charge and

electrostatics. The quantity, H, is popularly known as the electric enthalpy [103, 3] of the

ferroelectric since it is defined as

H(p,∇p, φ,∇φ,u) = W (p,∇p, ρ,u)− εo
2
|∇φ|2 + p.∇φ+ ρφ. (3.10.4)

If the ∇p term is neglected in (3.10.3), it reduces to the material momentum tensor for

electromechanics [106, 125, 77]. The material momentum tensor is a divergence free quantity

in a defect free domain and so the contour integral using it becomes path independent under

the impermeable and permeable crack surface boundary conditions. We later show that the

augmented energy momentum tensor, due to the introduction of dependence of W on ρ, also

turns out to be divergence free under equilibrium conditions. This result is an improvement

to what Li and Landis [63] claim that the contour integral can not be path-independent if

space charge is included even under equilibrium conditions.

Since an unstructured discretization is used around the crack, the crack driving force

is not amenable for evaluation in the contour integral form. Instead we use the domain

integral method to evaluate this quantity [95]. In the domain integral method the contour

integral (3.10.1) is converted into an equivalent domain integral form by multiplying the

integrand Ψ.n̂ with a weight function q which takes value 1 in an open domain surrounded

by the contour Γ and a value zero on an outer contour. See Appendix A.7 for details.

The boundary conditions on the crack surfaces we use ensure that the integral terms

along the crack surfaces drop out leaving just the domain integral which is evaluated using

numerical quadrature.
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3.10.1 Results of J-integral

Having established the formulation and methodology of computation, we evaluate the driv-

ing force on the cracks in the different scenarios we considered earlier i.e space-charge free,

n-type dopant dominated specimen and p-type dominated specimen. The results are shown

in Figures 3.20 and 3.21 for different levels of applied stress. Note that positive values φo

correspond to a negative field and vice versa. The negative values of J are expected following

the analysis of Haug and McMeeking [43] who showed that the energy release rate assumes

a negative value when the remnant polarization is considered. The plots suggest that in the

case with no space charge, the value of J increases with increasing strength of the negative

applied field and decreases with increasing strength on positive field in the range of the

values tested. The plots corresponding to cases with space charge show the inverse trend

though with much weaker dependence. Also note that the value of J in the case with space

charge is greater than in the case without the space charge. This is due to the screening

of remnant polarization at the crack surface by the space charge. It is interesting to note

that the nature of dopants does not seem to affect the trend. This is expected since much

of the charge build up around the crack tip comes from the electronic charges and not the

ionization of dopants.

Though the above mentioned trend in the case of with no space charge matches the

trend suggested in [51], we are careful not to draw a direct parallel since the length scales

are entirely different. The inclusion of the semiconducting nature certainly shows some

influence on the driving force. This calls for including it in models trying to simulate crack

tip zone processes in ferroelectrics and carry out a simulation at similar length scales.

3.11 Summary and conclusions

In this chapter we have considered the effect of including space charge arising from the semi-

conducting nature and ionization of defect dopants on fracture in ferroelectric perovskites.

We do this by developing a phase field model of the ferroelectric including the space charge

density. We start by invoking the dissipation of a ferroelectric domain containing a crack

under the action of external fields and crack growth. This analysis results in establishing the



85

governing equations for the polarization, displacement and the electric potential along with

the boundary conditions on the outer boundary of the ferroelectric domain. The analysis

also gives a rigorous derivation for the driving force on the crack in the form of a contour

integral which can be written in terms of the electric enthalpy density of the ferroelectric.

We prove that the contour integral is contour independent under impermeable and perme-

able crack surface conditions unlike previously thought so [63] . This is a direct result of

making the Helmhotz potential of the ferroelectric a function of the space charge. Also

the various crack surface boundary conditions currently seen in literature can be naturally

established from the dissipation analysis.

Next, adopting the phase field model to Barium Titanate we set up a finite element based

simulation of polarization domain evolution around a center crack in a single crystal subject

to electromechanical fields. The simulations reveal the accumulation of electronic charge at

the crack surface. Recent experiments measuring the electric potential distribution around

cracks in ferroelectric perovskites measure a high permittivity of the crack gap suggesting

a build up of charge on the crack surface. These preliminary simulations suggest that the

semiconducting nature and defect ionization could be a possible source of this charge build

up. However a direct comparison with experiments at this stage is unwarranted due to the

large difference in the length scales. This motivates the implementation of these simulations

at length scales close to the experimental scale so a direct comparison could be made.
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Figure 3.15: Polarization evolution for σo = 0, φo = 0.1. n represents the time step.
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Figure 3.16: Results for σo = 0, φo = 0.1. (a) Polarization domains around the crack, (b)
σ22, (c) Electric potential, φ.
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Figure 3.17: Results for n-type dopants at σo = 0, φo = 0.1, Nd = 1024 (a) Polarization
domains around the crack, (b) σ22, (c) Electric potential, φ, (d) Space Charge, ρ.
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Figure 3.18: Results for p-type dopants at σo = 0, φo = 0.1, Nd = 1024. (a) Polarization
domains around the crack, (b) σ22, (c) electric potential, φ, (d) space charge, ρ.
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Appendix A

Appendices

A.1 Stress field of a shallow phase boundary

+~~

L

x

y

Figure A.1: Geometry of perturbed interface and the sub-problems for superposition.

Evaluating the stress field due to a deflected phase boundary close to a free edge is a

non-trivial procedure and we outline the methodology here. Note that the elastic moduli are

identical for the two phases. Since we are considering the 2-dimensional set up we use the

classical Airy stress function method to evaluate the fields. First we derive the stress field

due to a deflection of the form f(y) = A cos(λy) and use the result to evaluate the stress

field and driving force due to an arbitrary deflection. We assume that the perturbation is

shallow i.e A << λ. Let the interface be positioned at x = L. We denote the initial stress

created due to a straight interface by σo. The Airy stress function for the half space can be

written as

Φ(1)(x, y) = Φo(x, y) + Φ1(x, y) 0 < x < L, Φ(2)(x, y) = Φ2(x, y) x > L. (A.1.1)
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where Φo represents the Airy function of the straight interface and Φ1, Φ2 represent the

perturbations due to the deflection. The effect of the deflection is equivalent to the presence

of shear tractions tsh = −σoAλ sin(λy) and a dislocation distribution of density Bx =

(2 + ν)Aεoλ sin(λy) at the interface. The fields created due to these distributions represent

the perturbed fields. Following Sneddon [99], we start out with the following Φ1, Φ2,

obtained as solutions to the biharmonic equation after taking the Fourier transform along

y-direction:

Φ1(x, k) = (A1 +B1x)e−|k|(x−L) + (C1 +D1x)e|k|(x−L) 0 < x < L, (A.1.2a)

Φ2(x, k) = (A2 +B2x)e−|k|(x−L) x > L. (A.1.2b)

The boundary conditions that these functions need to satisfy are a) the traction free con-

dition at x = 0, b) traction and displacement jumps at x = L. The first condition gives the

following equations

−k2Φ1(0, k) = 0, (A.1.3a)

−ik∂Φ1

∂x
(0, k) = 0. (A.1.3b)

The traction conditions reduce to

−k2(Φ1 − Φ2)(L, k) = 0, (A.1.4a)

ik
(∂Φ1

∂x
− ∂Φ2

∂x

)
(L, k) = −σoλF{A sin(λy)}, (A.1.4b)

The displacement conditions yield

[[
∂2Φ

∂x2
+ νk2Φ]](L, k) = 0, (A.1.5a)

[[
1

k2

∂3Φ

∂x3
− (2 + ν)

∂Φ

∂x
]](L, k) = (2 + ν)σoF{A cos(λy)}. (A.1.5b)

In the above equations F represents the Fourier Transform with respect to y. We solve

for the unknowns in (A.1.2) using the above equations. Then we obtain the Airy stress
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functions in real space by applying the Inverse Fourier transform with respect to k giving

us

Φ1(x, y) =
σoAe

−λ(x+L){3 + λL+ λx(5 + 2λL) + e2λx(−3 + λ(x− L))} cos(λy))

4λ
,

(A.1.6a)

Φ2(x, y) =
σoAe

−λ(x+L){3 + λL+ λx(5 + 2λL)− e2λL(3 + λ(x− L))} cos(λy)

4λ
. (A.1.6b)

The expressions for stress components can be computed by using the standard formulae re-

lating the stress components and Airy stress function. The results were checked by adopting

them to the special cases of L = 0 and L→∞ (after an appropriate change of coordinates)

and comparing them to those listed in literature [102]. Using the expression for driving

force, (2.2.13), the driving force on a deflected interface of the form f(y) = A cos(λy) turns

out to be

dper = −σoεo
4
Aλe−2λL

{
13− 5e2λL + 2λL(5 + λL)

}
cos(λx). (A.1.7)

Using (A.1.6), we can express the the stress field and driving force on an arbitrary

symmetric deflection in terms of its Fourier Cosine components.

A.2 Solution to the integral equations

We normalize the intervals to solve the equations numerically:

s =
t

h1
z =

x

h1
0 < t, x < h1, (A.2.1a)

s =
t

h2
z =

x

h2
0 < t, x < h2, (A.2.1b)

C1(h1s) = B1(s) C2(h2s) = B2(s), (A.2.1c)

and in order to make the the numerical procedure more amenable we extend the interval of

integration from [0, 1] to [−1, 1] through the following even extension:

B1(−s) = B1(s), B2(−s) = B2(s) − 1 < s < 1. (A.2.2)
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So the equations needed to solve for B1(s) and B2(s) are

1

2

∫ 1

−1

B1(s)√
1− s2

πh1

2b
G1(|h1s|, h1z)ds+

1

2

∫ 1

−1

B2(s)√
1− s2

πh2

2b
G2(|h2s|, h1z)ds = −σo 0 < z < 1,

(A.2.3a)

1

2

∫ 1

−1

B1(s)√
1− s2

πh1

2b
G2(|h1s|, h2z)ds+

1

2

∫ 1

−1

B2(s)√
1− s2

πh2

2b
G1(|h2s|, h2z)ds = −σo 0 < z < 1.

(A.2.3b)

Due to the the weight function 1√
1−s2 , we use the Gauss-Chebyshev integration scheme as

described in Erdogan et.al. in [31]. Making use of the scheme and noting that G1 and G2

vanish at s = 0

n1∑
i=1

π

2n1 + 1
B1(si)

πh1

2b
G1(|h1si|, h1zk) +

n2∑
j=1

π

2n2 + 1
B2(sj)

πh1

2b
G2(|h2sj |, h1zk) = −σo

k = 1, 2, ..., n1,

(A.2.4a)

n1∑
i=1

π

2n1 + 1
B1(si)

πh1

2b
G2(|h1si|, h2zl) +

n2∑
j=1

π

2n2 + 1
B2(sj)

πh2

2b
G1(|h2sj |, h2zl) = −σo

l = 1, 2, ..., n2,

(A.2.4b)

where

si = cos

(
2i− 1

4n1 + 2
π

)
zk = cos

(
kπ

2n1 + 1

)
, (A.2.5a)

sj = cos

(
2j − 1

4n2 + 2
π

)
zl = cos

(
lπ

2n2 + 1

)
. (A.2.5b)

Introducing new variables

a1 =
h1

b
, a2 =

h2

b
, t1i =

πa1

2
si, t2j =

πa2

2
sj , y1k =

πa1

2
zk, y2l =

πa2

2
zl

A1(si) = − π

2n1 + 1

B1(si)

σo
i = 1, 2, ...., n1, A2(sj) = − π

2n2 + 1

B2(sj)

σo
j = 1, 2, ...., n2.

(A.2.6a)
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The equations (A.2.4) reduce to the following set of linear algebraic equations which can

be solved to get A1(si) and A2(sj)

n1∑
i=1

A1(si)H1(t1i, y1k; a1) +

n2∑
j=1

A2(sj)H2(t2j , y1k; a1) = 1 k = 1, 2, ...n1,

n1∑
i=1

A1(si)H2(t1i, y2l; a1) +

n2∑
j=1

A2(sj)H1(t2j , y2l; a2) = 1 l = 1, 2, ...n2, (A.2.7a)

where

H1(t, y; a) =
πa

2
(2 coth(y + t)− (y + 3t)cosech2(y + t) + 4ty coth(y + t)cosech2(y + t)

− 2 coth(y − t) + (y − t)cosech2(y − t)), (A.2.8a)

H2(t, y; a) =
πa

2
(4t+ 2 tanh(y + t)− (y + 3t) tanh2(y + 3t)− 4ty tanh(y + t)(1− tanh2(y + t))

− 2 tanh(y − t) + (y − t) tanh2(y − t). (A.2.8b)

The non-dimensionalized stress intensity factor is given by:

Ni =
Ki

σo
√

2πb
= −π

√
ai
2

Ci(hi)

σo
= (2ni + 1)

√
ai
2
Ai(1). (A.2.9)

This formulation is validated by comparing values of SIF obtained through this method for

different geometries with those available in literature. First we look the case of a single

edge crack. By choosing values h1 = h2 = h and h/b << 1 we obtain the following values

for N .

h
b h K

σo
K
σo

= 1.12
√
πh [14]

0.0025 0.025 0.3141 0.314

0.005 0.05 0.4442 0.444

0.01 0.1 0.6278 0.627

0.02 0.2 0.886 0.887

Table A.1: Table comparing the N value for a single edge crack.

Table A.1 shows that the values obtained from our formulation agree well with the closed
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form solution.

Next we validate the procedure by comparing the N values of a periodic array of uni-

formly spaced edge cracks of equal size.

h
b h K

σo
K
σo

[14]

0.65 0.104 1.474 1.472

1.23 0.195 1.729 1.729

1.49 0.237 1.757 1.752

3.64 0.578 1.758 1.758

4.88 0.776 1.766 1.762

Table A.2: Table comparing N values for a uniform array of parallel edge cracks.

Table A.2 shows that once again the values compare very well. This validates our

numerical scheme.

A.3 Integral identities

Consider an evolving domain Ω(t) containing a discontinuity like a phase boundary S and a

crack Γ. To avoid the singularity of the fields at the crack tip we remove a cylindrical region

Cδ around the crack tip. The integral of field quantities is interpreted in the following sense

∫
Ω(t)

ψdx = lim
δ→0

∫
Ω(t)\Cδ

ψdx. (A.3.1)

Using the classical transport identities, the transport theorem for a scalar quantity on an

evolving domain can be written as [41]:

d

dt

∫
Ω\Cδ

ψdx =
d

dt

∫
Ωα\Cδ

ψdx+
d

dt

∫
Ωβ

ψdx

=

∫
Ω\Cδ

ψ̇dx+

∫
∂Ω(t)

ψ(u.m̂)ds−
∫
∂Cδ

ψ(a.n̂)ds

−
∫
S

[[ψ]]vnds. (A.3.2)
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Assuming the smoothness of the fields the integration and limit δ → 0 can be switched

which leads to

d

dt

∫
Ω(t)

ψdx =

∫
Ω\Cδ

ψ̇dx+

∫
∂Ω(t)

ψ(u.m̂)ds− lim
δ→0

∫
∂Cδ

ψ(a.n̂)ds

−
∫
S

[[ψ]]vnds, (A.3.3)

which represents the transport theorem for a domain containing a moving phase boundary

and a growing crack. Similarly the we can derive the divergence theorem on a domain

containing a crack and a discontinuity like a phase boundary. Assuming a smooth tensor

field A ∫
Ω
∇.Adx = lim

δ→0

∫
Ω\Cδ

∇.Adx. (A.3.4)

Using the classical divergence theorem

∫
Ω\Cδ

∇.Adx =

∫
Ωα\Cδ

∇.Adx+

∫
Ωβ

∇.Adx

=

∫
∂Ω

A.m̂ds−
∫
∂Cδ

A.n̂ds−
∫
S

[[A]].k̂ds−
∫

Γ
[[A]].ĉds. (A.3.5)

So divergence theorem for a smooth tensor field over Ω is

∫
Ω
∇.A =

∫
∂Ω

A.m̂ds− lim
δ→0

∫
∂Cδ

A.n̂ds−
∫
S

[[A]].k̂ds−
∫

Γ
[[A]].ĉds. (A.3.6)

A.4 Optimal orientation of phase boundary

We present here briefly the analysis to determine the optimal orientation of the normal n̂

in the simple case where the transformation strain is diagonal. Once n̂ is established using

(2.3.3) and (2.3.4) one can determine the morphology of the defects which could arise due

to the transformation. Following Kohn[57], in the case of an isotropic elastic material with

material constants κ (bulk modulus) and µ (shear modulus), and with C assuming the form

C = κδijδkl + µ(δikδjl + δilδjk − 2
3δijδkl), the optimization problem (2.3.1) can be rewritten
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as

γ/µ = max
|m|=1

{
4(|ε∗m|2 − 〈ε∗m,m〉2) +

1

2 + α
(α trε∗ + 2〈ε∗m,m〉)2

}
, (A.4.1)

where α = κn−2µ
nµ , and n is the dimension of the space. Analysis through the use of method

of Lagrange multipliers leads to two possibilities : (a) m is one of the eigenvectors of ε∗,

(b) m is a combination of two eigenvectors of ε∗. In case (a) the RHS of (A.4.1) reduces to

γ/µ = max
εi

1

2 + α
(αtrε∗ + 2εi)

2. (A.4.2)

In case (b), if we assume that the normal is given by the combination of eigenvectors

corresponding to eigenvalues εi and εj the analysis leads to a necessary condition on the

eigenvalues

εi <
2 + α

2(1 + α)

(
εi + εj +

α

2 + α
trε∗

)
< εj . (A.4.3)

So there exist different scenarios depending on the eigenvalues of ε∗ and the case which

maximizes (A.4.1) is the optimal normal. Consider the case of a diagonal transformation

strain, ε∗ = diag(ε1 ε2 ε3), with ε1 > ε2 > ε3 > 0. In three dimensions (n = 3),

α = (κµ − 2
3) = 2ν

1−2ν , where ν is the Poisson’s ratio. Let us start with case (b) and assume

that the normal is a combination of two eigenvectors corresponding to eigenvalues, say ε1

and ε2. The expression in the middle of condition (A.4.3) reduces to ε1 + ε2 + νε3. It

can be immediately understood that the condition (A.4.3) cannot be satisfied by ε1 and ε2

or any two of the three positive eigenvalues of the transformation strain. So in this case

the only possible regime is case (a) where the optimal normal is given by the eigenvector

which maximizes the RHS of (A.4.2). Right away one can conclude that in this case the

eigenvalue with the greatest magnitude maximizes (A.4.2). So in this case the optimal

normal of the phase boundary is given by the eigenvector corresponding to the eigenvalue

of largest magnitude. A similar conclusion applies to the case ε1 < ε2 < ε3 < 0.
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A.5 Driving force on a phase boundary

Consider a phase boundary separating two phases α and β with elastic energy density given

by (2.2.2). The two phases are assumed to have identical elastic moduli. The expression for

driving force acting on the phase boundary (2.2.12) can be simplified using the following

identity.

A : B = (A.k̂).(B.k̂) when B.l̂ = 0 k̂.l̂ = 0. (A.5.1)

The traction continuity and displacement compatibility at the phase boundary dictate that

[[σ]].k̂ = 0, [[∇u]].l̂ = 0, (A.5.2)

where k̂ is the normal and t̂ is the tangent vector to the phase boundary. Using this identity

k̂.[[ψ −∇uT .σ]].k̂ = [[ψ]]− [[σ.∇u]] = [[ψ]]− 〈σ〉[[ε]], (A.5.3)

where the traction continuity and the symmetry of the stress tensor are used to establish

the second equality. Substituting (2.2.2) into (A.5.3) yeilds

dS =
1

2
σαε∗ − 1

2
σαεβ +

1

2
σβεα − ω =

1

2
ε∗.C.(εα − ε∗) +

1

2
ε∗.C.εβ − ω

=
(σα + σβ)

2
.ε∗ − ω = 〈σ〉 : ε∗ − ω. (A.5.4)

A.6 Divergence free property of augmented energy momen-

tum tensor

The augmented energy momentum tensor, Ψ, is a divergence-free quantity at equilibrium.

We prove this using the equations governing the equilibrium state of the ferroelectric written
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in terms of the electric enthalpy, H,

∇.
( ∂H
∂∇p

)
− ∂H

∂p
−∇φ = 0, (A.6.1)

∇.
(∂H
∂ε

)
= 0, (A.6.2)

∇.
( ∂H
∂∇φ

)
− ∂H

∂φ
= 0. (A.6.3)

Note that the above three equations represent the Euler-Lagrange equations of the cor-

responding energy minimum principle. The first equations represents the equilibrium of

polarization, second is the mechanical equilibrium equation in linearized kinematics and

the third is the Maxwell’s equation. The divergence of the augmented energy momentum

tensor Ψ is

∇.Ψ = ∇.
(
HI− (∇p)T

∂H

∂∇p
− (∇u)T

∂H

∂ε
+ E⊗D

)
= ∇H −∇.

( ∂H
∂∇p

)
.∇p− ∂H

∂∇p
∇∇p−∇.

(∂H
∂ε

)
.∇u− ∂H

∂∇ε∇∇u

− (∇.D)∇φ− (∇∇φ)D. (A.6.4)

Since the electric enthalpy H is defined as

H = H(p,∇p, φ,∇φ,u) = W (p,∇p, ρ,u)− εo
2
|∇φ|2 + p.∇φ+ ρφ, (A.6.5)

its derivatives can be written as follows

∂H

∂ε
=
∂W

∂ε
= σ,

∂H

∂p
=
∂W

∂p
+∇φ, ∂H

∂∇p
=

∂W

∂∇p
,

∂H

∂φ
= ρ,

∂H

∂∇φ = −εo∇φ+ p = D. (A.6.6)

Now the gradient of H can be expanded as

∇H =
∂H

∂p
(∇p)T +

∂H

∂∇p
.∇∇p +

∂H

∂φ
∇φ+

∂H

∂∇φ∇∇φ. (A.6.7)

Substituting (A.6.6) into the expansion for ∇H (A.6.7) and further substituting this in
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(A.6.4) and using the governing equations, (A.6.1), yeilds the result ∇.Ψ = 0.

A.7 Domain integral for evaluating driving force, J

The driving force on a crack in a ferroelectric is given by

J =

∫
C1

t̂.Ψ.n̂ds, Ψ = HI− (∇p)T
∂H

∂∇p
− (∇u)T

∂H

∂ε
+ E⊗D. (A.7.1)

where C1 is a contour enclosing the crack tip with a normal n̂. For a crack growing along

the x-axis t̂ = ê1. Consider a weight function, q, which assumes the value 1 over an open

domain containing the contour C1 and assumes a value zero over a contour C2 enclosing

the domain, see Figure A.2. Multiplying the integrand in (A.7.1) with q, the driving force

on a crack growing along the x-axis can be written as

J1 =

∫
C
ê1.Ψq.n̂ds+

∫
Γ+

ê1Ψq.ê2ds−
∫

Γ−

ê1Ψq.ê2ds, (A.7.2)

where C = C1 + C2 + Γ+ + Γ−, is the contour enclosing a domain A, and ê2 is the normal

to the crack surfaces for a crack along the x-axis. Using the divergence theorem the driving

force can be recast as a domain integral

J1 =

∫
A
ê1.∇.(Ψq)da+

∫
Γ+

ê1Ψq.ê2ds−
∫

Γ−

ê1Ψq.ê2ds. (A.7.3)

The boundary conditions along the crack surface are as follows

∂H

∂∇p
.ê2 = 0,

∂H

∂∇ε.ê2 = 0, D.ê2 = 0, (A.7.4)

which reduces the integral along the crack surfaces to zero. So we are left with

J1 =

∫
A
ê1.∇.(Ψq)da =

∫
A
ê1Ψ.∇qda. (A.7.5)

The second equality above results form the fact that Ψ is divergence free.
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A

Figure A.2: Notation for domain integral formulation to evaluate the driving force on a
crack
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