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Abstract

Blazars are active galaxies with a jet closely oriented to our line of sight. They are powerful, variable

emitters from radio to gamma-ray wavelengths. Although the general picture of synchrotron emission

at low energies and inverse Compton at high energies is well established, important aspects of blazars

are not well understood. In particular, the location of the gamma-ray emission region is not clearly

established, with some theories favoring a location close to the central engine, while others place it

at parsec scales in the radio jet.

We developed a program to locate the gamma-ray emission site in blazars, through the study of

correlated variations between their gamma-ray and radio-wave emission. Correlated variations are

expected when there is a relation between emission processes at both bands, while delays tell us about

the relative location of their energy generation zones. Monitoring at 15 GHz using the Owens Valley

Radio Observatory 40 meter telescope started in mid-2007. The program monitors 1593 blazars

twice per week, including all blazars detected by the Fermi Gamma-ray Space Telescope (Fermi)

north of −20◦ declination. This program complements the continuous monitoring of gamma-rays by

Fermi.

Three year long gamma-ray light curves for bright Fermi blazars are cross-correlated with four

years of radio monitoring. The significance of cross-correlation peaks is investigated using simulations

that account for the uneven sampling and noise properties of the light curves, which are modeled

as red-noise processes with a simple power-law power spectral density. We found that out of 86

sources with high quality data, only three show significant correlations (AO 0235+164, B2 2308+34

and PKS 1502+106). Additionally, we find a significant correlation for Mrk 421 when including

the strong gamma-ray/radio flare of late 2012. In all four cases radio variations lag gamma-ray

variations, suggesting that the gamma-ray emission originates upstream of the radio emission. For

PKS 1502+106 we locate the gamma-ray emission site parsecs away from the central engine, thus

disfavoring the model of Blandford & Levinson (1995), while other cases are inconclusive. These

findings show that continuous monitoring over long time periods is required to understand the

cross-correlation between gamma-ray and radio-wave variability in most blazars.
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2.11 Example of a focus curve model fit with the complete model. The upper panel

is the measured optimum focus position as a function of zenith angle in blue

and the value predicted by the model fitting in red. The lower panel show a

histogram of the residuals (upper left) and their distribution as a function of

various variables of interest. Correlations are smaller than in Figure 2.10. . . 34

2.12 Example of a focus curve error model data and fit. The horizontal axis is

the offset from the tried focus position with respect to the fitted best position

for all the trials of the focus curve measurements. The vertical axis is the

normalized gain of the telescope, in which the normalization is with respect to

a quadratic model to the focus curve data. The red line is the best quadratic

fit which is used to describe the effect of out-of-focus observations. . . . . . . 35

2.13 Example of a gain curve data and fit with the units normalized to the peak of

the fit. These data were taken on November 1, 2011. . . . . . . . . . . . . . . 36

2.14 Daily averaged atmospheric opacity variations from 12 June 2007 through 27

September 2009. The distribution can be described by τ = 0.023± 0.0097. . 38

2.15 Variations in the calibrated flux density at 45◦ zenith angle due to atmospheric

opacity variations shown in Figure 2.14. The magnitude of the corrections is

described by f = 0.999± 0.013, which is a 1% effect. . . . . . . . . . . . . . . 39

2.16 Example of the error bar scale factor correction for J0046+3900. The two

upper panels show the light curve with the original (left) and corrected (right)

error bars (gray points) and a typical spline fit (black line). The bottom left

panel shows the residuals from the spline fit using the corrected error bars. In

the bottom right panel, the χ2 per degrees of freedom (solid gray line) and

correction factor (solid black line) are shown, with black circles marking the

correction factors for fits that pass the acceptance tests, and a dashed line

showing the adopted correction factor for the source. Credit: Richards, J. L.,

et al. 2011, ApJS, 194, 29, reproduced by permission of the AAS. . . . . . . 44

2.17 The primary flux density calibrator for the radio monitoring program 3C 286.

Variations in the source measured flux density are expected from small atmo-

spheric opacity variations and pointing errors. The flux density scale is set by

assuming an average value for the 3C 286 flux density of 3.44 Jy (Baars et al.,

1977) instead of assuming a strictly constant flux density (Richards et al., 2011). 46



xvii

2.18 A secondary flux density calibrator for the radio monitoring program DR 21.

This source is a large molecular cloud and star-forming region for which we

do not expect variations at 15 GHz. A few low flux densities are observed

possibly due to pointing errors or atmospheric opacity variations. . . . . . . . 46

2.19 Radio light curve for a bright blazar 3C 454.3. The relatively low noise level

of the flux density measurements compared to the average flux density of this

object provides an excellent view of the source variability. . . . . . . . . . . . 47

2.20 Radio light curve for a bright blazar BL Lac. The relatively low noise level

of the flux density measurements compared to the average flux density of this

object provides an excellent view of the source variability. . . . . . . . . . . . 47

2.21 Radio light curve for a source with a typical flux density of about 300 mJy,

close to the median of the sample. Even at this lower flux density level, source

variability is clearly observable. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.22 Radio light curve for a source with a typical flux density of about 200 mJy,

slightly below the median of the sample. Even at this lower flux density level,

source variability is clearly observable. . . . . . . . . . . . . . . . . . . . . . . 48

2.23 Radio light curve for a source with a flux density of about 15 mJy, which is

among the dimmest sources in the sample. . . . . . . . . . . . . . . . . . . . 49

2.24 Radio light curve for a source with high flux density and low variability. A

fraction of our sources show low levels of variability like this one. . . . . . . . 49

2.25 Schematic diagram of the LAT. Its dimensions are 1.8 m × 1.8 m × 0.72

m. It consist of a 4 × 4 array of 16 modules for the converter-tracker and

calorimeter. An anti-coincidence detector covers the converter-tracker array.

Credit: Atwood, W. B., et al. 2009, ApJ, 697, 1071, reproduced by permission

of the AAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



xviii

2.26 2LAC sky map in Galactic coordinates for 24 months of observations (upper

panel) and sources in the clean sample also in Galactic coordinates (lower

panel). The upper panel shows the gamma-ray energy flux in units of 10−7

erg cm−2 s−1 sr−1. The lower panel uses different colors to represent source

classes. Red: FSRQs, blue: BL Lac objects, magenta: non-blazar AGNs, and

green: AGNs of unknown type. The sky map is from Nolan et al. (2012) and

source map from Ackermann et al. (2011). Credit: Nolan, P. L., et al. 2012,

ApJS, 199, 31 and Ackermann, M., et al. 2011, ApJ, 743, 171, reproduced by

permission from the AAS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.27 Gamma-ray light curves for 3C 454.3 and BL Lac. Black dots with error bars

are time bins for which TS ≥ 4 and black downward pointing triangles 2σ

upper limits for time bins with TS < 4. . . . . . . . . . . . . . . . . . . . . . 61

2.28 Summary of the radio light curve properties for the cross-correlation sample

of 86 sources (solid line) and the rest of the blazars in the monitoring program

with 1507 sources (dotted line). Upper panel is the normalized distribution for

the number of data points in each light curve. Middle panel for the total time

span of the light curves in days. Lower panel for the mean sampling interval

in days. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.29 Summary of the gamma-ray light curve properties for the cross-correlation

sample of 86 sources. Upper panel is the distribution of fraction of time bins

with high TS detections. Lower panel is for the mean sampling interval in days. 64

3.1 Effect of the use of window functions for uneven sampling cases using the

rectangular (blue) and Hanning window (green). Each figure shows the result

of simulating 1000 light curves with a given simple power-law PSD ∝ 1/νβ,

with β given in each figure title. The data points are the mean PSD and the
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Chapter 1

Introduction

Active galaxies are characterized by very bright nuclei, whose luminosity cannot be ex-

plained by conventional nuclear fusion that powers stars. These bright nuclei, known as

active galactic nuclei (AGN), show great variety and are characterized by some combina-

tion of very small angular size, high luminosity, broadband continuum emission, emission

lines, variability, polarization and radio emission. An extremely comprehensive discussion

of these objects may be found in the review by Begelman et al. (1984). The presence of

certain features and absence of others gives rise to the several different observational classes

of objects that form the AGN class.

The current understanding of AGNs is that their emission is produced by accretion of

matter onto a central black hole. Material surrounding the black hole forms an accretion

disk that gets heated through viscous dissipation of gravitational energy, thus generating

its energy output. The class known as radio-loud AGN is defined by having a ratio between

the radio flux density (at 5 GHz, Fr) and the optical flux density (in the B-band, Fo) of

Fr/Fo > 10 (Kellermann et al., 1989). These radio-loud objects have jets of plasma that are

ejected perpendicular to the accretion disk. The energy for these jets could be extracted

from a rotating black and the accretion disk (Blandford & Znajek, 1977; Blandford &

Payne, 1982). The matter in these jets moves at relativistic speeds giving rise to much of

the extreme phenomenology of the radio-loud objects.

The commonly accepted model of an AGN is summarized in the so-called unified model.

In this model, all the different classes are the result of looking at the source from a different

point of view and by the presence of radio jets in radio-loud objects. The role of orientation

and relativistic beaming as the origin for the different classes of radio sources was already

recognized in the late 1970s, as briefly reviewed in Readhead (1980). Readhead et al.
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(1978) argued that projection effects could explain the large bends in the jets of compact

radio sources. This was followed by Scheuer & Readhead (1979), who proposed beaming

as an explanation of the relationship between superluminal and radio-quiet objects and

their relative source counts. Their idea was later modified to relate flat-spectrum and

steep-spectrum sources in Orr & Browne (1982), who also introduced the “unified scheme”

terminology. These early developments are reviewed in Begelman et al. (1984), while later

extensions of the unified model that include all classes of AGNs are reviewed in Antonucci

(1993) and Urry & Padovani (1995). Figure 1.1 presents a schematic view of the unified

model in which all the basic components of an AGN can be seen. In the following we

provide a brief description for each component, accompanied with a reference scale of their

size. At the center there is a supermassive black hole surrounded by an accretion disk

(RBH ∼ 3× 1013 cm for MBH ∼ 108 M�, and 1014 − 1015 cm for the disk), which converts

gravitational energy into radiation in the UV/soft-X-rays range and launches the jets in the

radio-loud objects. Just above the accretion disk, a hot electron corona produces hard X-

ray radiation (a few times the size of the black hole). Surrounding it there are high velocity

clouds that form the broad-line region (∼ 1015 − 1016 cm), which is responsible for broad

emission lines directly observed in objects seen close to the line of sight, or in reflected and

polarized light in the ones observed almost edge on (Antonucci & Miller, 1985). Further out,

a torus or warped disk of gas and dust blocks and absorbs radiation produced by the inner

components (at distances ≥ 1017 cm from the center). This obscuring material generates

objects with optical spectra of different classes depending on the ability of the observer to

directly see the internal regions of the AGN. In Type 1 objects we can directly observe the

broad line region while in Type 2 objects we only get a direct view of the narrow line region.

At even larger distances (1018 − 1020 cm) from the black hole/accretion disk system, there

are slowly moving clouds that produce narrow emission lines. Jets of plasma that move

relativistically in small scales of a few parsecs are present in radio-loud objects. These jets

can extend out to megaparsec scales in the most powerful radio galaxies.

Research in AGN not only provides a better understanding of this class of objects.

Their study allows us to probe extreme physics near black holes, the mechanisms for the

formation of jets and the production of high energy emission, thus making them excellent

tools for fundamental physics. In addition, AGNs play an important role in the formation

of supermassive black holes and their relation to galaxy formation and evolution (Fabian,
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Figure 1.1: Schematic model of an AGN (Urry & Padovani, 1995). The main components
are a supermassive black hole and accretion disk in the center, a hot electron corona, broad
line region, torus or warped disk of dust and gas, the narrow line region and jets in the
radio-loud objects. Credit: Urry, C. M., & Padovani, P. 1995, PASP, 107, 803, reproduced
by permission of the University of Chicago Press.

2012). Their high luminosity makes them suitable background sources for the study of the

intervening intergalactic medium at very long distances, through the study of absorption

lines (Rauch, 1998) first pioneered by Sargent et al. (1980), and the investigation of the star

formation and accretion history through the effects of their emitted radiation, the so-called

extragalactic background light, in the gamma-ray spectra of distant AGN (Ackermann et

al., 2012). They have also been used for measurements of cosmological parameters when

lensed by foreground clusters (e.g., Biggs et al., 1999).

This thesis is concerned with the study of a particular type of active galaxies known

as blazars, and the details of their high energy emission mechanisms through the study of

their radio and gamma-ray variability properties. In this chapter we present an overview of

the main characteristics of these objects and current models of their inner workings. This
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is followed by a brief review of previous studies on the variability properties of their radio

emission, and its relation to the high energy properties and of current efforts to shed light

onto the details of their emission mechanisms. The chapter ends with an outline of this

thesis.

1.1 Observational characteristics of blazars

Blazars are powerful emitters of radiation from the radio band to the highest gamma-ray

energies. Their spectral energy distributions (SED) are characterized by the presence of two

broad peaks: a low energy peak with a maximum in the IR/optical/UV/X-rays and a high

energy peak with a maximum at gamma-ray energies, as found with the Energetic Gamma-

Ray Experiment Telescope (EGRET) by von Montigny et al. (1995) and confirmed with the

Fermi Gamma-ray Space Telescope by Abdo et al. (2010). Figure 1.2 illustrates the typical

blazar SED as obtained by a recent multi-wavelength campaign on 3C 279 (Hayashida et

al., 2012). Blazars are characterized by a flat spectrum in the radio band.

Figure 1.2: Spectral energy distribution for 3C 279 for multiple epochs from Hayashida
et al. (2012). The different epochs are color coded and labeled with letters from A to H as
indicated in the figure. The time period for each epoch is given as an MJD range next to the
labels. In addition to the broadband SED, variability is also apparent. Credit: Hayashida,
M., et al. 2012, ApJ, 754, 114, reproduced by permission of the AAS.

In addition to the extreme energy range at which blazars can be observed, they are
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also polarized in radio and optical emission. Furthermore, blazars have a rich time domain

behavior showing variability in all the observed bands (for a review see Ulrich et al., 1997).

An example of blazar variability is shown in Figure 1.3, from a recent multi-wavelength

campaign in 3C 279 (Hayashida et al., 2012).

Figure 1.3: Multi-wavelength variability of 3C 279 from Hayashida et al. (2012). The
light curves cover a period of two years from 2008 August to 2010 August. (a) Gamma-
rays. (b) X-rays. (c) R, V and W2 bands. (d) Polarization degree in the optical band.
(e) Polarization angle in the optical band with horizontal dashed lines indicating angles of
50◦ and −130◦. (f) Radio flux density at 5, 15, 37 and 230 GHz. Credit: Hayashida, M., et
al. 2012, ApJ, 754, 114, reproduced by permission of the AAS.

These observational characteristics make the study of blazars an intrinsically multi-

wavelength endeavor that also requires time domain information, as the large variability

needs to be incorporated in the models.

Based on their optical spectroscopic properties blazars can be divided into two classes:

flat-spectrum radio quasars (FSRQ) and BL Lacs (named after the prototypical source BL

Lacertae, originally identified as a highly variable star). FSRQs have strong broad emission
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lines while BL Lacs have weak emission lines with equivalent widths of < 5 Å (e.g. Healey

et al., 2008, and references therein).

By number, blazars are only a small fraction of the radio-loud AGNs, which in turn are

only about 10% of the radio-quiet AGNs. Nonetheless they are the dominant population

in energy bands where non-thermal emission processes are important, as for example in the

radio and millimeter-wave bands where blazars become a prominent point source contam-

ination of cosmic microwave background experiments like Planck (Planck Collaboration et

al., 2011). They are also dominant in gamma-rays, as was discovered with EGRET (Hart-

man et al., 1999) and more recently confirmed with the Fermi Gamma-ray Space Telescope

(Abdo et al., 2010; Nolan et al., 2012).

Another fundamental characteristic is their small angular size, which makes it extremely

difficult to obtain spatially resolved observations, except by very long baseline interferometry

(VLBI) in the radio band, where submilli-arcsecond angular resolution allows us to study

their detailed structure. VLBI observations have shown the presence of single sided jets

in which bright components are ejected at superluminal apparent speeds (Cohen et al.,

1977; Zensus, 1997), and gave us the first observational evidence for unified theories of

AGN (Readhead et al., 1978; Readhead, 1980). These observations have provided us with

a basic picture of a blazar as an AGN with a jet of material moving at relativistic speeds

and oriented close to our line of sight (e.g., Begelman et al., 1984; Blandford & Rees, 1978;

Blandford & Königl, 1979).

1.2 Theoretical models for blazars

The general picture of a blazar as an AGN with a relativistic jet pointing close to the line

of sight has been widely accepted since the late 1970s, but the understanding of its details

is still incomplete. A basic requirement for any model of blazar emission is to reproduce

the observed SED which is basically understood as a result of synchrotron emission for

the low energy peak and inverse Compton for the high energy peak. However, alternatives

models for the origin of the high energy peak based on particle cascades initiated by high

energy proton-photon interactions have been proposed and are referred as hadronic models

(e.g., Mannheim & Biermann, 1992). The basic idea of the low energy peak originating

from synchrotron emission is in good standing, as it is the best candidate to reproduce
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the observed high polarization degree (e.g., Angel & Stockman, 1980). The details of the

high energy emission peak are less clear, even for the inverse Compton model in which a

definitive answer on the source of the seed photon field is not available. This photon field

could be the same synchrotron photons (Jones et al., 1974), or it could be an external photon

field originating near the black hole (Blandford & Levinson, 1995), in the accretion disk

(Dermer & Schlickeiser, 1993), the broad line region (Sikora et al., 1994) or the dust torus

(B lażejowski et al., 2000). A recent review of blazar SED modeling is given by Boettcher

(2012).

One of the largest uncertainties for blazar emission modeling concerns the location of

the gamma-ray emission site, which is the main topic of this thesis. There are two main

alternative locations for the gamma-ray emission: one is close to the central engine, as

proposed in the pair cascade model of Blandford & Levinson (1995), and the other is in

shocks located in the parsec scale jets observed with VLBI as proposed in Jorstad et al.

(2001).

In the model that locates the gamma-ray emission close to the central engine, the

gamma-rays are produced by interactions between scattered soft X-ray photons from near

the black hole and electron/positrons or other gamma-ray photons already in the jet. An

interaction with another high energy photon can result in the production of an electron

positron pair, while interactions with electrons or positrons can produce gamma-rays via

inverse Compton scattering. Due to the presence of the scattered soft X-rays and other

high energy photons in the jet, a pair-production opacity is present. This opacity is en-

ergy dependent and gives rise to unity opacity surfaces for the gamma-ray photons that are

called gamma-spheres. Photons can only escape the source once they reach the surface of

the gamma-sphere. The radius of this surfaces increases with energy, so the lower energy

photons originate closer to the central engine. An schematic representation is shown in

Figure 1.4.

In the model that locates gamma-ray emission site in the parsec scale jet, the radio and

gamma-ray emission are produced in the same region, with the gamma-rays originating from

inverse Compton scattering of the same synchrotron photons or some external radiation field

present at this distance from the central engine. A schematic representation is shown in

Figure 1.5.

The fast time scales of variability observed at high energies are easier to explain for an
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Figure 1.4: Schematic representation of the Blandford & Levinson (1995) model. In
this model, soft X-ray photons denoted SX emitted near the black hole may be Thomson-
scattered into the jet. There they can both combine with gamma-rays to form electrons and
positrons and be inverse Compton scattered by electrons and positrons to form gamma-
rays. In this way a pair cascade can develop. Also shown are the gamma-spheres from
which gamma-rays of a given energy can escape from the jet. Credit: Blandford, R. D., &
Levinson, A. 1995, ApJ, 441, 79, reproduced by permission of the AAS.

Figure 1.5: Schematic representation of the model proposed in Jorstad et al. (2001) and
taken from Marscher (2006). In this model, the radio and gamma-rays are produced in
the mm-wave core, located parsecs away from the black hole. The gamma-ray emission
is produced by inverse Compton scattering of the synchrotron photons or some external
photon field present at this distance from the central engine. Credit: Marscher, A. P.
2006, Blazar Variability Workshop II: Entering the GLAST Era, 350, 155, reproduced by
permission of the ASP.

emission site close to black hole, where the jet has a smaller cross-section (e.g., Tavecchio

et al., 2010). However, SED modeling does not provide a unique answer and contradictory
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claims are found in the literature. Some authors argue for external Compton emission from

the broad line region (Ghisellini et al., 2010), while other authors locate it at parsec scales,

where the external Compton from the dust torus dominates (Sikora et al., 2009). This

complicated theoretical picture could certainly be helped by observational constraints on

the location of the high energy emission, these are the major concerns of this thesis and are

discussed in Section 1.3 and 1.4.

The problem of the location of the gamma-ray emission in blazars is not the only one

that is missing to complete our understanding of AGN. Other areas in which progress is

needed are on the mechanisms for the acceleration of relativistic particles in the jets, the

composition of the jets and the mechanisms for launching the jets (e.g., Blandford, 2008).

All these areas can benefit from observational constraints as well as from theoretical investi-

gations, especially simulations as has been done for the study of the processes by which the

black hole/accretion disk system is able to launch the observed relativistic jets. The most

promising ideas were proposed by Blandford & Znajek (1977), in which the jet is launched

by a rotating black hole threaded with a magnetic field, and by Blandford & Payne (1982),

where jets are launched by the accretion disk which is also threaded with a magnetic field.

These ideas can currently be tested by detailed general relativistic magnetohydrodynamics

simulations, like those of Tchekhovskoy et al. (2010), who studied the dependence of the

output power on the spin of the black hole. These authors find differences of factors up to

1000 in the power output of the black hole when the accretion disk is thick, providing a

possible explanation for the radio-loud/quiet dichotomy in AGN (Kellermann et al., 1989).

A complete review of the progress in this active area of research is outside the scope of this

introduction, but an excellent starting point is Meier (2012), in which a thorough account

of the basic physics along with recent theoretical and observational results are presented.

1.3 Previous studies of the radio variability and its relation

to gamma-ray emission

In spite of their small angular sizes, blazar jets can be resolved using VLBI in the radio

band, where submilli-arcsecond resolution is possible. However, this level of resolution

is out of reach for current gamma-ray instruments which can only achieve resolutions of

a few tenths of a degree at the highest energies. This implies that other approaches are
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necessary when trying to locate the site of the gamma-ray emission in these objects, because

direct imaging in gamma-rays is not possible. One possible approach is to study the time

correlation between the radio and gamma-ray band flux density measurement, which in the

case of a common spatial origin for the two bands would produce simultaneous variations.

This requires the monitoring of sources at different energy bands and was attempted for

the first time with CGRO/EGRET in the 1990s.

The first studies of correlated variability between the radio and gamma-ray band were

carried out by Valtaoja & Teräsranta (1995) and Valtaoja & Teräsranta (1996). They

used 70 sources observed at 22 and 37 GHz with the 13.7 meter Metsähovi radio telescope

and 202 EGRET pointings. Instead of a proper cross-correlation analysis, which was not

possible because of the sparse gamma-ray sampling, the epochs of EGRET detections were

compared to the state of the source in the radio band. They found an excess of gamma-ray

detections during periods in which the radio activity was increasing or at a maximum, and

interpreted this as a sign of a common spatial location of the radio and gamma-ray emission

regions. However, this result cannot be considered robust due to limitations in the dat sets

available at the time, which have very sparse gamma-ray coverage as illustrated in Figure

1.6. Similar conclusions were obtained by Aller et al. (1996), who used radio data from the

University of Michigan Radio Observatory (UMRAO) 26 meter telescope at 14.5, 8.0 and

4.5 GHz, but in this case the authors were more cautious and correctly stated that better

sampling would be required to confirm the association between the radio and gamma-ray

activity.

Monitoring using the Very Long Baseline Array (VLBA) at 22 and 43 GHz was used to

determine the epoch of ejection of superluminal components and the times of high gamma-

ray fluxes were measured with EGRET by Jorstad et al. (2001). An illustration of the

data they analyzed is shown in Figure 1.7, where again the sparsity of the gamma-ray light

curves used in these early studies is evident. These authors observed a sample of 42 sources

and found that 10 out of 23 gamma-ray flares coincided with the extrapolated time of zero

separation between radio knots and cores. This result and the variability of the total and

polarized radio flux density is interpreted as evidence for a common spatial origin of the

radio and gamma-ray emission in the parsec-scale radio jet.

The results discussed above, obtained during the EGRET era, might provide some

evidence of a connection between the radio and gamma-ray emission in blazars, and point
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Figure 1.6: Example radio and gamma-ray observations from EGRET and Metsähovi
(Valtaoja & Teräsranta, 1995). Left, 4C 29.45 with three EGRET observations (vertical
lines) and no detections. Right, OA 129 with 5 EGRET observations (vertical lines) and 2
detections (first and fourth lines). Credit: Valtaoja, E., & Teräsranta, H. 1995, A&A, 297,
L13, reproduced with permission c© ESO.

Figure 1.7: Example radio and gamma-ray observations from EGRET, VLBA and UM-
RAO monitoring (Jorstad et al., 2001). Gamma-ray flux (circles), total radio flux density
(triangles), and polarized radio flux density (squares) on a logarithmic scale. Solid lines
indicate extrapolated times of zero separation between radio knots and cores, and dotted
lines correspond to observed maxima of the gamma-ray emission. Credit: Jorstad, S. G.,
et al. 2001, ApJ, 556, 738, reproduced by permission of the AAS.

to a common spatial origin of these two bands, but these claims are far from being a robust

statistical proof of a connection: they are based on small samples of sources that have been
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selected with subjective criteria, and furthermore use light curves with sparse coverage in

the gamma-ray band.

1.4 Radio monitoring in the era of Fermi

These early EGRET results opened the door to new questions and a need for a better

understanding of the gamma-ray sky, that had to wait until the next gamma-ray observatory.

The Fermi Gamma-Ray Space Telescope (Fermi) was launched in June 2008, and began

science operations in August 2008 when it started scanning the sky continuously, obtaining

a complete image of the gamma-ray sky every two orbits, or approximately 3 hours. The

continuous survey observing mode and the increased sensitivity completely changed the way

in which gamma-ray observations could be used, by allowing the study of the time domain

in a very natural way. This feature of Fermi is extremely well suited to the problem of

understanding the time domain relation between the radio and gamma-ray band for blazars.

To make the best use of these new capabilities the Caltech group started a monitoring

program of blazars using the Owens Valley Radio Observatory 40 meter telescope (OVRO 40

m) in mid 2007. The main goals of the program are to characterize the radio variability of a

large number of sources in the radio band, and to study the relation between the variability

in the radio and the gamma-ray bands to constrain the location of the high energy emission

in blazars.

The OVRO 40 m program started in mid 2007 with the monitoring of all the sources

north of−20◦ declination from the Candidate Gamma-ray Blazars Survey (CGRaBS, Healey

et al., 2008), which were selected as candidate gamma-ray emitters based on their radio

characteristics. Sources detected by Fermi that are associated with blazars detected at

lower energies and are visible from Owens Valley have been added. All the sources are

observed at 15 GHz, within a three day cycle that is repeated twice a week.

In addition to the OVRO 40 m monitoring program, a few other programs using single-

dish radio telescopes were started or continued to complement Fermi. Their basic charac-

teristics are shown in Table 1.1.

In terms of cadence, number of sources and sample selection the OVRO 40 m program

stands out. In spite of their smaller samples and slower cadences, other programs also

provide important information. For example the F-GAMMA program (Angelakis et al.,
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Table 1.1: Current single-dish radio monitoring programs of blazars
(adapted from Aller et al., 2010)

Program frequency [GHz] sampling size/advantage

OVRO 40 ma 15 2 / week >1000 sources
low flux density limit

Effelsberg 100-mb 2.64 – 43 monthly ≈60 sources
spectra

IRAM 30-mb 86 – 270 monthly ≈60 sources
high frequency

UMRAO 26-mc 4.8, 8.0, 14.5 1–2 / week 35 sources
multifrequency, linear polarization

Metsähovid 37 monthly ≈100 sources
high frequency

RATAN-600e 1 – 22 2–4 / year 600 sources
spectra

a OVRO 40 m, Richards et al. (2011)
b F-GAMMA, Angelakis et al. (2012)
c UMRAO 26-m, Aller et al. (2009)
d Metsähovi, Nieppola et al. (2011)
e RATAN-600, Kovalev et al. (2002)

2012), which uses the Effelsberg 100-m and IRAM 30-m telescopes, provides multifrequency

information with a number of high frequency bands that are particularly useful to study

the inner regions of the jet, which are not accessible at lower frequencies due to synchrotron

opacity. Decade long light curves are important to study the long term variability of the

sources and are provided by the UMRAO (Aller et al., 2009) and Metsähovi (Nieppola et al.,

2011) program. The UMRAO program also provides linear polarization, which allows for a

study of the evolution of the magnetic fields in the radio emitting regions. Unfortunately the

UMRAO program was discontinued in mid-2012, but a program to implement polarization

measurements on the OVRO 40 m telescope is under way, with commissioning of a new

Ku-band (12 – 18 GHz) receiver planned for mid-2013.

These monitoring programs are also accompanied by programs using very long base-

line interferometry to monitor smaller samples of sources at high resolution, thus enabling

studies of the relation between the gamma-ray properties and the properties of the blazar

jets on parsec scales. Among these programs are the Monitoring of Jets in Active Galactic

Nuclei with VLBA Experiments (MOJAVE, Lister et al., 2011) and the Boston University

Blazar Program (Jorstad et al., 2009), both looking at sources in the northern hemisphere.

In the southern hemisphere Tracking Active Galactic Nuclei with Austral Milliarcsecond

Interferometry (TANAMI, Ojha et al., 2010) is looking at a different set of sources from all
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the other programs, either single dish or VLBI.

All these projects are already producing interesting results. For example, the early

suggestions of a common mechanism regulating the total luminosity at high and low energies

are confirmed by the correlation between the mean radio flux density and mean gamma-

ray flux (e.g., Kovalev et al., 2009; Mahony et al., 2010; Nieppola et al., 2011). By using

a large sample of objects with quasi-simultaneous data from the Fermi and the OVRO

40 m program Ackermann et al. (2011a) and Pavlidou et al. (2012) have shown that this

correlation is real and not an effect of distance modulation. The OVRO 40 m program

has also shed light on the search for the radio characteristics that determine the gamma-

ray emission properties of blazars. Richards et al. (2011) found a large difference between

the radio variability properties of gamma-ray detected versus non-detected blazars, namely,

that the fractional variability (as characterized by the modulation index) for the gamma-

ray detected sources is twice the value for those not detected by Fermi. Other studies

have found time-lagged correlation between these two energy bands, but without a large

number of objects with well-sampled light curves it is difficult to assess the significance of

the correlations for the complete blazar population (e.g., Marscher et al., 2008; Abdo et al.,

2010a; Agudo et al., 2011a,b). In a statistical study of a sample of 183 bright Fermi -detected

sources with monthly binned light curves and radio data from MOJAVE, Pushkarev et al.

(2010) found that, on average, the radio flares occur later than the gamma-ray flares. In

a study of 60 sources with monthly binned mm-wave and gamma-ray light curves, León-

Tavares et al. (2011) found a mean delay between the beginning of the mm-wave flare to

the peak of the gamma-ray emission of 70 day.

Our radio monitoring program of blazars stands apart from other programs by its com-

plete source sample and fast cadence. The sources in the sample are monitored indepen-

dently of their gamma-ray state, providing an unbiased view of their radio activity and

complete coverage of the Fermi detected blazars north of −20◦ of declination. These ad-

vantages, combined with the Fermi coverage at gamma-rays and the use of robust statistical

techniques, give us an excellent chance to characterize the radio variability properties of the

largest sample of sources ever monitored at 15 GHz, and its relation to the gamma-ray

emission through the study of correlated variability, thus constraining the location of the

gamma-ray emission site in blazars.



15

1.5 Structure of this thesis

The main observational effort required to monitor about 1600 sources twice a week is de-

scribed in Chapter 2, in which a detailed description of the source sample and the technical

details of the radio observational program are presented. This chapter also presents a de-

scription of the basic characteristics of Fermi and the steps required to convert the raw

data into the gamma-ray light curves that we use in our studies. The chapter closes with a

description of the sample of sources used in the cross-correlation study.

A prerequisite to estimating the significance of the cross-correlations between the radio

and gamma-ray bands is a characterization of the variability properties of the light curves.

The method used in this task is described in detail in Chapter 3, in which we develop

a new technique, inspired by methods used to model X-ray light curves of AGNs to suit

the characteristics of our data sets. The results of the application of this technique to the

modeling of the complete sample of radio sources observed by the OVRO 40 m program is

presented in Chapter 4. This chapter also presents a comparative study of the variability

properties for a subset of sources observed by the UMRAO program from the mid 1970s to

early 1990s.

Constraints on the location of the gamma-ray emission site are obtained through the

study of correlated variability between these bands. This requires a rigorous evaluation

of the significance of cross-correlations, which cannot be performed using standard cross-

correlation tests that do not take into account the variability properties of the sources, or

the uneven sampling of the light curves. A detailed discussion of our implementation of

these methods is presented in Chapter 5.

Chapters 3 and 5 provide the basic foundation for the study of correlated variability we

present in Chapter 6 where these techniques are applied to a sample of 86 sources with 4

year light curves in the radio band and 3 year light curves in the gamma-ray band.

The physical interpretation of the observational results is discussed in Chapter 7 and

Chapter 8 contains a summary of this thesis.
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Chapter 2

The OVRO 40 meter telescope
blazar monitoring program

2.1 Introduction

In order to carry out the program of constraining the location of the gamma-ray emission

site with respect to the radio emission site by studying correlated variability, we require

continuous monitoring in both energy bands. The monitoring of the gamma-ray band is

secured by the continuous operation of the Fermi Gamma-ray Space Telescope (Fermi)

which in normal scanning mode scans the whole sky every three hours. In order to take full

advantage of this capability, a matching program in the radio band is highly desirable. For

that purpose we are carrying out a comprehensive monitoring program using the Owens

Valley Radio Observatory 40 meter telescope (OVRO 40 m) located near Bishop, CA. The

monitoring program started in mid-2007, before the launch of Fermi, starting with a sample

of candidate gamma-ray blazars and adding the blazars detected by Fermi which have high

confidence associations with radio sources.

In this chapter we give a description of the OVRO 40 meter blazar monitoring program,

the source sample, the instrument and the observational techniques used for the radio mon-

itoring. A brief discussion of the most important aspects of the program is given with an

emphasis on the areas in which my involvement has been most critical and most significant,

these include the scheduling of the observations and development or improvement of calibra-

tion procedures and their implementation and execution. This is followed by a description

of the gamma-ray side of the project and includes an outline of the main capabilities of

Fermi and its principal instrument the Large Area Telescope (LAT). A brief description is
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given of the main ideas required to convert the raw photon detections to photon flux light

curves, which are the main data product used in our investigations. The chapter ends with

a description of the sample of sources which are used in the study of correlated variability.

2.2 Sample description

Radio monitoring observations started in mid-2007 before I joined the program. At that time

the sample consisted of 1158 sources which comprise a subset of the Candidate Gamma-

ray Blazar Sample (CGRaBS, Healey et al., 2008). The CGRaBS sources were selected

by their similarity to the blazars detected in the third catalog of the Energetic Gamma

Ray Experiment Telescope (EGRET, Hartman et al., 1999) on the Compton Gamma-ray

Observatory (CGRO). The selection of candidate gamma-ray blazars starts with a parent

sample of high latitude (|b| > 10◦), bright (> 65 mJy at 4.8 GHz) and flat spectrum

(α > −0.5 for S ∝ να) radio sources observed at 8.4 GHz which form the Combined

Radio All-Sky Targeted Eight GHz Survey (CRATES, Healey et al., 2007). The selection

criterion is based on a “figure of merit” that ranks the sources on CRATES according to

their likelihood of being like the blazars detected with EGRET, and uses their radio flux

density, radio spectral index and x-ray flux. The CGRaBS catalog consists of 1625 sources

with the largest likelihood of association. The original monitored sample consisted of all

the CGRaBS sources north of −20◦ declination.

That original sample has been augmented at the time of each Fermi source catalog

release by adding all the blazars detected in gamma-rays by Fermi -LAT. The current sample

contains all the original CGRaBS sources plus the blazars in the first LAT AGN catalog

(1LAC, Abdo et al., 2010) and the second LAT AGN catalog (2LAC, Ackermann et al., 2011)

included in the clean samples (see Section 2.8.2 for further discussion on these catalogs).

The current sample contains 1593 blazars plus calibration sources and sources observed for

other programs. These are all monitored twice a week. The extent of the coverage can be

best appreciated by looking at their distribution in the sky as shown in Figure 2.1.

A list of the monitored blazars is included in Appendix A along with properties of

interest for this study. Besides the sources mentioned above, we obtain daily observations

of a group of calibration sources which are used to determine the flux density scale of the

radio observations. These sources are 3C 286, DR 21, 3C 161 and 3C 274, and are known
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Figure 2.1: Monitored sources in equatorial coordinates

to be stable and have well determined flux densities (Baars et al., 1977).

2.3 The radio monitoring program

2.3.1 Instrument description

The OVRO 40 m telescope (Figure 2.2) is a f/0.4 parabolic reflector 130-foot (or 39.624 me-

ters) in diameter on an altitude-azimuth mount. The telescope is located in Owens Valley

near Big Pine, California at 37◦13′53.′′7 N latitude, 118◦16′53.′′83 W longitude, and 1236 m

elevation (Pearson, 1999) and was dedicated in 1968. It surface accuracy is approximately

1.1 mm rms. Two off-axis corrugated horn feeds are located in the prime focus. Each horn

has a main beam Full Width at Half Maximum (FWHM) of 157′′ and they are separated

in azimuth by 12.′95. We deliberately underilluminate the antenna to obtain an aperture

efficiency of about 25%. This reduces the effects of pointing errors which are the main

limitation when observing bright sources, and in addition minimizes exposure to thermal

noise from ground spillover. An increase in aperture efficiency provides little benefit as we

already achieve acceptable thermal noise levels for the sources in our sample, but would

significantly degrade pointing errors. The reduction of flux density errors due to mispoint-

ing also plays a determinant role in the scheduling and calibration of the observations as

described in Section 2.4.

The altitude-azimuth mount and drive system can point the telescope from −90◦ to
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+335◦ in azimuth and in elevation from 11.5◦ to 10◦ past zenith, but in practice this is

restricted to 90◦ by the control system. Normal observations are performed in the range

between za = 20◦ and za = 60◦. The upper limit in zenith angle is set to avoid large

atmospheric contributions, while the lower limit is due to limitations on the tracking per-

formance of the telescope at high elevations. The telescope can be driven up to a maximum

speed of about 15◦ per minute, but it can only track sources up to half that speed.

Figure 2.2: The OVRO 40 m telescope

Observations are performed using a Dicke-switched dual-beam system which provides

suppression of atmospheric noise allowing longer integrations. The receiver system is a

homodyne total power receiver with cooled LNAs and it has a receiver temperature of

30 K with bandwidth of 3 GHz centered at 15 GHz and equivalent noise bandwidth of

2.5 GHz. The receiver is sensitive to right circular polarization on the sky, which allows us

to observe linearly polarized sources with any orientation. The Dicke switch alternates with

a frequency of 500 Hz between the beams and the receiver provides for each millisecond a

total power in each beam. The total system temperature considering contributions from

the receiver, atmosphere, CMB and ground is about 55 K. A schematic of the receiver is

shown in Figure 2.3.
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Figure 2.3: The Ku-band receiver. Credit: Richards, J. L., et al. 2011, ApJS, 194, 29,
reproduced by permission of the AAS.

Flux density measurements are performed by double switching. In this technique a flux

density measurement is divided into four steps which we call A, B, C and D as illustrated

in Figure 2.4.

R1R2 S

A

B

C

D

ANTREF

ANTREF

ANTREF

ANTREF

Figure 2.4: Illustration of the double switching procedure. The circles at the top of the
figure represent the field containing the source (S), and the two reference fields used to
subtract atmospheric contributions (R1 and R2). A flux density measurement consists of
four segments called A, B, C and D. For each one the positions of the antenna and reference
fields are indicated with respect to the sky fields.

In the A step the source is on the reference beam and the antenna beam looks at

reference field R1. In the second and third steps B and C, the antenna beam looks at the

source while the reference beam looks at reference field R2. In the last step D, the antenna
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beam looks at reference field R1 and the reference beam at the source. The resulting flux

density measurement and its error are given by

S =
κ

4
(ξB + ξC − ξA − ξD) (2.1)

σ =
κ

4

√
σ2

A + σ2
B + σ2

C + σ2
D (2.2)

In the equations, κ is the calibration factor that takes digital units to janskys, ξi =

Pant,i − Pref,i is the power difference for step i, and σi is the standard deviation in the

millisecond samples of power difference for step i.

A similar procedure is used to measure the calibration diodes with the difference that

the telescope looks at a blank patch of sky and does not slew between segments A and B,

and C and D. The diode is enabled during the C and D integrations.

During the time span of this project two control systems were used. Before 11 August

2010 we were working with a control system running on a Digital Equipment Corporation

VAX microcomputer, we call this the VAX control system. This original control system had

a very simple command line interface and required some familiarity with the VMS operating

system. The code was hard to modify, so its development was frozen and during its last

year of operations it started failing frequently. The only option to resume observations after

some failure was to restart the control program which had to be done with user intervention.

This required frequent monitoring of the system by an observer and resulted in unnecessary

difficulties in the operation of the telescope. Since 11 August 2010, we have been using

a new control system developed by Martin C. Shepherd. The new control system, which

we call MCS control system1, works on a real-time variant of Linux operating system and

has added increased flexibility and reliability to the operations, reducing the interventions

by the observer. As part of that development we have also improved the way pointing

corrections are measured and the capabilities of our data flagging procedures. The new

system also makes it easier to monitor the status of the receiver and has been key to fast

identification and solution of occasional problems.

Further information on the hardware and calibration procedures can be found in Richards

1Complete documentation on the MCS control system can be found online at http://www.astro.

caltech.edu/~mcs/ovro/40m/help/.

http://www.astro.caltech.edu/~mcs/ovro/40m/help/
http://www.astro.caltech.edu/~mcs/ovro/40m/help/
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(2012) and references therein. An entertaining account of the history of the Owens Valley

Radio Observatory, including the 40 meter telescope can be found in Cohen (1994, 2007).

2.4 Scheduling of the observations

The only feasible way to continuously monitor the large number of sources at the cadence

we require for our program is to make all observations automatic. This requires a scheduling

algorithm that can program the observations and calibrations, minimizing the slewing times,

and that can run unsupervised. Early in the program I discovered that using the original

algorithm, some of the sources showed very large flux density variations from day to day,

some of those even seemed to have two light curves tracking each other, with one of them

at systematically lower flux density levels than the other. The problem was narrowed down

to time and sky position variations of the pointing corrections as described in Section 2.5.1.

This section presents a discussion of the requirements and the solution we adopted to solve

the scheduling problem.

2.4.1 The problem

Due to the large aperture of the telescope and the moderately high brightness of our sources,

short integrations provide adequate noise levels in most sources. For the normal monitoring

we can obtain a thermal noise level of 4 mJy in just 32 seconds of integration, which becomes

63 seconds when we add the overhead associated with moving the telescope between the 4

segments of the measurement. A first lower limit in the time required to observe all the

sources in the program comes from adding the time to make a flux density measurement,

this time is about 1700 × 63/3600 ≈ 30 hours. To this we have to add the time needed

to move the telescope from source to source which can amount to a significant fraction. A

quick estimate can be obtained by assuming all the sources are uniformly distributed in

the observable region north of −20◦ in declination. This comprises an area of 2.7π sr, and

a mean distance between sources of 4.5◦. The telescope slews at 15 degrees per minute

and requires around 12 seconds to settle on each source; taking this into account we can

get a lower limit assuming that we can observe all the sources just by jumping into the

next one which is at the average distance, in this case we obtain a total slewing time of

1700× (12 + 4.5/(15/60))/3600 ≈ 14 hours. To these we have to add the time required to
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calibrate the flux densities and measure pointing model corrections. Relative flux density

calibration requires a calibration diode measurement about once an hour, which adds an

approximate overhead of one minute every hour of observations, including slewing. Pointing

model corrections are the main restriction as we found that these corrections vary with time

and are only valid in regions of less than about 25◦ in diameter (see Section 2.5.1 for more on

this). If we divide the sky into about 100 regions, each one requiring a pointing calibration,

which takes about 7 minutes, this amounts to about 7 × 100/60 ≈ 12 hours. Adding all

these numbers we estimate a lower limit on the total observing time of about 60 hours.

An observing sequence in which we visit each source traveling an average distance of

4.5◦ is far from what really happens as it ignores the details of the source distribution and

its interaction with other observing constraints such as the limits on zenith angle of the

observations. The variation of the pointing model corrections constrains the possible source

arrangements by forcing us to divide the sky into pointing regions of about 25◦ in diameter,

so the observing problem can be separated into two parts, a first level optimization in which

the sources are sorted within an observing region and a second level optimization in which

these regions are sorted. The scheduling problem consists in observing all the sources once

in each cycle, minimizing the slewing times and respecting the restrictions imposed by the

pointing and calibration requirements, and observability of the sources.

This problem is related to a classical optimization problem, the Traveling Salesman

Problem (frequently referred as the TSP) in which a traveler salesman has to visit a number

of cities minimizing the distance traveled. Each city has to be visited only once and the trip

ends in the starting city. This problem does not have a known exact solution and requires

numerical techniques to search the solution space and find an appropriate solution which

in most cases is only close to the optimum. A direct search of the solution space is only

feasible for small number of cities making the problem hard even for current computational

capabilities. This is due to the fact that the number of possible solutions is N !, where

N is number of cities, a number that becomes very large even for problems of moderate

size (e.g., 100 cities). Various methods have been applied to solve the TSP, among them

are the nearest neighbor heuristic, simulated annealing, or problem specific heuristics. The

problem has found application in many areas of science and engineering including logistics,

genome sequencing, electronic circuit manufacturing and many others. In astronomy it has

already been used to help in the scheduling of observations of up to a few hundred sources.
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Large instances of its most simple form have been solved and software that is able to handle

them is freely available. A complete and recent review of solution techniques and references

for its various application is given in Applegate et al. (2006)2. Even though the particular

example we face is a more complicated version which cannot be handled by these standard

tools, we can get some insight from the existing approaches currently used to tackle this

problem.

2.4.2 A solution

In the particular version of the problem we have to solve there are some additional compli-

cations. The first one is that the sources are moving in horizontal coordinates, which are

the relevant coordinates for the scheduling problem, and the second one is that the sources

can only be visited during a time window in which they are sufficiently high in the sky

to reduce the effects of the atmosphere and far from the zenith where the telescope has

problems tracking the sources. All these factors make the solution more challenging than

the traditional TSP problem. After some experimentation with some of the basic tools used

for the TSP, a scheme that solves the practical problem of fitting the sources to the desired

3 day cycle was found and is described below.

The requirement of having pointing model corrections for regions of less than 25◦ in

diameter, requires us to divide the sky into smaller regions. We chose the HealPix grid

to accomplish this as it is widely used in astronomy and has the property of generating

regions of equal area and thus a similar number of sources (Górski et al., 2005). The main

restriction of having a distance between the source and pointing calibrator of less than 25◦,

can be accomplished by using a grid with 192 pixels over the full sky, each one with 14◦.7

of diameter.3 This requirement reduces the complexity of the optimization problem by

naturally dividing the problem into two levels, one in which sources are sorted in a region

and a second one in which the regions are sorted to make a complete observing cycle.

The first step in the optimization is to assign each source to a region. For each region

we need to select a source for pointing calibrations. This source is used to obtain the local

pointing model corrections that are later applied to the other sources in the region. A

2A collection of interesting resources related to the TSP can be found in a website maintained by W. J.
Cook at http://www.tsp.gatech.edu/

3This diameter is actually an equivalent angular size given by θpix = Ω
1/2
pix , where Ωpix is the solid angle

subtended by each pixel.

http://www.tsp.gatech.edu/
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pointing calibrator needs to be bright, unresolved and located in a region free of confusion.

Almost all the sources in our monitoring program satisfy the unresolved requirement and

are far from the Galactic plane in regions which are usually not affected by confusion; the

few which are not suitable are excluded from this procedure. The pointing calibrator is

chosen from the sources that are brighter than a certain threshold. Regions with one of the

flux density calibrators use this for pointing. For other regions we select among the sources

brighter than 400 mJy and choose the one with the minimum average distance to other

sources. In regions with no sources brighter than 400 mJy we simply choose the brightest

source. For a couple of special cases near the Galactic plane where contamination of the

reference fields is severe, sources have been incorporated in nearby regions always ensuring

a distance of less than 20◦ to the pointing calibrator.

For each region we have to solve the problem of visiting the sources starting with the

pointing calibrator in an order that minimizes the slewing time. Regions with fewer than

10 sources can be optimized by direct search of the best solution. For regions with at least

10 sources this approach is too costly and we resort to simulated annealing which can find

a good solution in a reasonable time4. The extent of this problem can be appreciated by

looking at Figure 2.5 which shows that only a small fraction of the regions can be optimized

by direct search.

Even though we cannot hope to solve the problem exactly with a direct search, we

can use simulated annealing which is an approximation algorithm used to find solutions in

optimization problems that do not have exact solutions or when finding such would take

an unreasonable amount of time. The basic idea is to simulate the processes of annealing

in a metal, in which the material is heated and slowly cooled in order to remove strain

and imperfections as a result of minimizing the free energy in the material. In a practical

optimization problem, instead of reducing the free energy we are interested in reducing some

cost function and we choose a quantity analogous to the temperature that is a measure of

the variability of the cost function. This method is easy to implement and although it does

not ensure an optimum solution it has proven to be good at finding good solutions with a

reasonable amount of computation (Laarhoven & Aarts, 1987; Reinelt, 1994). In practice

4The time it takes for a direct search is proportional to the number of possible solutions. Using our
implementation on a desktop computer it takes 108 seconds to test the 9! possibilities for 9 sources. By
simply scaling this we can predict that it would take 300 days for 14 sources and 80% of the age of the
universe for 22 sources. It was not fun to realize this in my second year of graduate school.
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Figure 2.5: Number of sources per region in the sky. Only regions with fewer than 10
sources can be optimized by direct search; for most of them we use simulated annealing.

we find appropriate solutions in very short times with only a few thousand iterations. The

simulated annealing algorithm is summarized below (adapted from Reinelt, 1994). Here a

tour is a path that goes from source to source and we denote it by T . The time length is

the cost function for the minimization and we called it C(T ),

• Compute an initial tour of the sources T and choose an initial temperature θ > 0 and

a repetition factor r.

• As long as the stopping criterion is not satisfied perform the following steps

• Do the following r times.

• Perform a random modification of the current tour Tmod and compute

the time length difference ∆ = C(Tmod)− C(T ).

• Draw a uniformly distributed random number x, 0 ≤ x ≤ 1.

• If ∆ < 0 or x < exp(−∆/θ) then set T = Tmod.

• Update θ and r

• Output the current tour as solution
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This is only a general description of the algorithm that leaves a number of points out.

The first one is how to choose a starting temperature θ. There are various recipes for this:

one is to explore a number of random paths and use a quantity proportional to the standard

deviation on those random tours. In our case we simulate N = 100 random tours and start

with θ = θi = 3σ, where σ is the variance in those N random tours. Another point is the

repetition factor r. After some trial we decided to use r = 100, as we did not find significant

improvements for larger values. The last point is a rule to update θ and r, which is the

so-called cooling schedule. We use the simplest cooling schedule in which r is fixed and θ

is reduced by a constant factor, in this case 0.9. The procedure ends when θ < 0.01θi. We

initialize the optimization by choosing a random tour which is modified at each step by

swapping the order of two sources5.

The solution will depend slightly on the elevation for the observations, but the depen-

dence can be ignored and a fixed value obtained at 45◦ of elevation can be used for the

following stage which is described below. The sample path on the sky for one of the regions

is illustrated in Figure 2.6 for a region with 21 sources.
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Figure 2.6: Sample path of the telescope for one of the regions in horizontal coordinates
(left panel) and equatorial coordinates (right panel). The first source is marked with a star
and the last one with a cross. There are a total of 21 sources in this region.

The second stage consists of sorting the regions. This has the extra complication that the

regions are only observable for a limited time and that calibrators have to be observed every

day. Several approaches were tested, including sorting by declination and right ascension,

or by nearest neighbor, but none of them was able to accommodate all the sources in the

5In the context of the TSP this is the city-swap heuristic
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required 3 day cycle. After some experimentation it was found that a heuristic approach

that starts by giving higher priority to observations of southern sources and then moves

slightly to the north is able to fit all the sources in the 3 day cycle. This heuristic approach

is motivated by the fact that southern sources have a very limited observing window while

circumpolar sources are observable at any time. The heuristic approach effectively uses

circumpolar sources to fill gaps in the schedule where no other regions are observable. An

example path through all the 136 regions with sources is shown in Figure 2.7.
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Figure 2.7: Sample telescope path in equatorial coordinates for a full observing cycle of
three days. The first region is marked with a star and the last one with a cross.

This system has been in use since March 2009 and allowed us to solve large systematic

errors associated with the inadequacy of the pointing model corrections more than about

25◦ away from the pointing source, a problem that affected a fraction of our early light

curves (before March 2009). All those problematic data points have been eliminated and

we increased the reliability of our measurements and increased the effective cadence on each

source. Although this original heuristic approach has been revised since then we still use

the software infrastructure developed in 2009, which has proven to be flexible enough to

accommodate new developments.
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2.5 Calibration

To obtain precise flux density measurements for the sources we need to perform a number of

calibrations aimed at characterizing the behavior of the telescope under different operating

conditions. Most of these have been described in Richards et al. (2011) and Richards (2012)

so here we only include some points that were not included in that discussion and of which

I was the principal responsible. Appendix B includes a summary of the results of these

calibration runs until mid 2012.

2.5.1 Pointing

Around December 2008 it became clear that a systematic problem regarding the pointing

model corrections was affecting many of our light curves. After some tests we showed that

pointing corrections were only valid for a period of about one hour and in a sky region

of about 25◦ in diameter. Figure 2.8 shows the difference between pointing corrections

measured at different sky positions and separated by less than one hour as a function of

angular distance. The scatter in the measurements is much larger for angular distances

of more than 20◦; this degrades the repeatability of the observations by reducing the flux

density as a result of pointing errors. The same is true, but not shown, if measurements

separated by more than an hour are included.

Pointing errors translate directly into a systematic flux density error. An approximate

idea of how this affects the data can be obtained by looking at Figure 2.9, which shows the

range of the correction factor assuming a Gaussian main beam with a FWHM of 157′′. The

figure shows that pointing model corrections taken at large separations in the sky differ and

can produce dramatic drops in the measured flux density. For example for angular distances

larger than 20◦ a large fraction of the time we got flux density drops larger than 5% which

is at the limit of what is acceptable for our monitoring program.

This experiment shows that the pointing corrections are local and time varying. This

error is not correctable in the data reduction stage so the only way to reduce it is by

limiting the distance between measurements of the pointing model corrections and flux

density measurements as explained in Section 2.4.
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Figure 2.8: Difference between pointing model corrections as a function of angular dis-
tance. All the measurements have been taken within an hour of each other. A larger
scatter is found for larger angular distances between corrections; this directly affects the
repeatability of the flux density observations.

2.5.2 Focus curve model

The 40 meter telescope antenna has been optimized at a zenith angle of about 40◦. As

the telescope is moved to different zenith angles gravitational forces deform the telescope

changing the position of the focus and the antenna gain (see Section 2.5.3). The optimal

focus position can be determined experimentally by measuring strong point sources at

different focus positions and finding the one that maximizes the antenna gain. In theory,

the focus position should only depend on the zenith angle so the original procedure used to

characterize the focus curve was to measure a source from rise to set, and fitting a second

order polynomial to find the optimum focus position. By using this procedure on multiple

sources at different times of the day, we discovered in May 2008 that there was a clear

difference between focus curve measurements taken at day and night. Understanding the

effect using the current methodology was not possible so a new approach was devised in

which we selected a large number of calibration sources that covered different portions of

the sky in horizontal coordinates. With this approach we were able to study the dependence
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Figure 2.9: The conversion between pointing errors and flux density error can be approx-
imated by the normalized beam pattern which in this case is assumed Gaussian with a
FWHM of 157′′. For angular distances larger than 20◦ the flux density drop is larger than
5% for a large fraction of the cases.

of the focus model on a number of other variables. Using this new approach and a more

complete model we were able to explain most of the variability and to reduce the residuals

by adding new terms for the angle between the Sun and astronomical source (elongation)

and the zenith angle of the Sun (we added a linear and quadratic term in each case). The

results of an example fit are shown in Figure 2.10 for the model using only the zenith angle

and in Figure 2.11 for the complete model. In both figures the upper panel shows the

measured position of the optimum focus as a function of the zenith angle, while the lower

panel shows the distribution of residuals for a number of variables of interest. Correlations

in the residuals for the model using only the zenith angle are evident (Figure 2.10), but these

are not present in the model including the terms for the Sun zenith angle and elongation

(Figure 2.11). The mathematical expressions for the models with their coefficients for

different epochs can be found in Appendix B.

The model implemented in the MCS control system is still the simple one and the

complete model is incorporated as a correction which is applied during the data reduction.
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This was a necessity at the time we first developed the new model, because we were unable

to incorporate the correction online using the original VAX control system.

The model for the correction is obtained using data from individual focus curve mea-

surements in which we test a number of different focus positions and fit a quadratic model

that uses the focus position of maximum gain as the optimum value. We can normalize all

the measurements by the model fit and offset the focus positions relative to the optimum

focus. In this way all the focus tests can be fitted simultaneously and the dependence of

gain as a function of focus error with respect to the optimum can be obtained as shown

in Figure 2.12. The focus model and the focus correction model are regularly fitted and it

was found that the focus correction model is not epoch dependent while the focus model

itself is. The mathematical expression of the focus model correction and its coefficients are

included in Appendix B.
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Figure 2.10: Example of a focus curve model fit with the simple model. The upper panel
is the measured optimum focus position as a function of zenith angle in blue and the value
predicted by the model fitting in red. The lower panel show a histogram of the residuals
(upper left) and their distribution as a function of various variables of interest. Correlations
are evident with the solar elongation (SANG), the Sun zenith angle (SZA), the Sun azimuth
(SAZ) and the ambient temperature (T).
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Data (blue) versus fit (red) for model ZA2_ZA_1_SA2_SA_SZA2_SZA
2012_06_09
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Figure 2.11: Example of a focus curve model fit with the complete model. The upper
panel is the measured optimum focus position as a function of zenith angle in blue and
the value predicted by the model fitting in red. The lower panel show a histogram of the
residuals (upper left) and their distribution as a function of various variables of interest.
Correlations are smaller than in Figure 2.10.
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Figure 2.12: Example of a focus curve error model data and fit. The horizontal axis is the
offset from the tried focus position with respect to the fitted best position for all the trials
of the focus curve measurements. The vertical axis is the normalized gain of the telescope,
in which the normalization is with respect to a quadratic model to the focus curve data.
The red line is the best quadratic fit which is used to describe the effect of out-of-focus
observations.

2.5.3 Gain curve

As described in Section 2.5.2, changes in antenna zenith angle deform the telescope, modi-

fying the antenna gain. This change is characterized by measuring a calibration source at

different elevations in the range in which observations are to be performed. A gain curve

measurement is obtained by tracking the source from rise to set while doing frequent noise

diode calibration, pointing model correction measurements, optimum focus corrections and

flux density measurements. In this way we can obtain the effective telescope gain at differ-

ent elevations. An example data and gain curve from November 2011 is shown in Figure

2.13.

Periodic gain curve measurements have shown that no big changes in the model occur

except after major maintenance when the receiver has been taken down from the prime

focus. Given this as general practice we characterize the gain curve at least twice a year
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Figure 2.13: Example of a gain curve data and fit with the units normalized to the peak
of the fit. These data were taken on November 1, 2011.

and every time the receiver is moved out of the prime focus. The coefficients of the gain

curve for different epochs are included in Appendix B.

2.5.4 Effect of the varying atmospheric opacity at 15 GHz

Flux density measurements have to be corrected for the effects of the atmosphere which

can be modeled by using the equation of radiative transfer in terms of temperatures for the

Rayleigh-Jeans limit,

TA(za) = Trx + Tground + Tskye
−τ sec(za) + Tatm(1− e−τ sec(za)) (2.3)

Where TA is the antenna temperature, Trx is the receiver temperature which can be

determined with a hot/cold test and is about 30 K, Tsky = 2.75 is approximated by the

CMB temperature, Tatm is the effective atmospheric temperature and τ is the atmospheric

opacity at zenith. In the limit of low atmospheric opacity τ , we can expand the exponential
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terms to get,

TA(sec(za)) = Trx + Tground + Tsky + (Tatm − Tsky)τ sec(za) (2.4)

This equation is linear in sec(za) so the parameters can be estimated by a linear fit.

For the temperature of the atmosphere we use a value of Tatm = 270 K. This is justified

by Serabyn et al. (1998) who, using a detailed analysis, find that Tatm ≈ Tair at ground− 11.2

K in the low atmospheric opacity limit. Assuming an average temperature 283.15 K for

OVRO we can reasonably assume Tatm ≈ 270 K.

Skydip measurements are performed during every calibration run and they indicate a low

atmospheric opacity of about τ ≈ 0.02 under typical observing conditions. The atmospheric

opacity has two effects in the observations, one is an increased noise due to the emission

of the atmosphere and the other is an attenuation of the flux density of the source. The

attenuation is equal to e−τ sec(za) and has a value of 0.972 at zenith angle of 45◦. This small

3% reduction in flux density is calibrated by the gain curve which along with the effects

of the deformation of the telescope also accounts for the varying atmospheric opacity with

elevation. This is a good assumption as long as the atmospheric opacity does not change

from day to day, in which case there will be some residual correction due to the different

atmospheric conditions at which the gain curve was measured. Regular skydips obtained

during each calibration run show small changes in the atmospheric opacity and are not very

useful for estimating variations on shorter time scales. Unfortunately skydips are costly in

telescope time and would add a significant overhead to the monitoring observations so we

wanted to verify that they were not necessary using only historic data from our monitoring

program. With this goal we studied the effects of the varying atmospheric opacity at 15

GHz by producing synthetic skydips that take advantage of our monitoring observations

to obtain average atmospheric properties. These were obtained by using the total power

signal from one the channels for the beam that was looking at the reference field while

the telescope performed noise diode measurements. In this study we used data from 12

June 2007 through 27 September 2009, and only days in which we have at least 20 data

points are used. Figure 2.14 shows the variation of the atmospheric opacity at zenith for

this period. Its mean value is 0.023 and its scatter is about 40%. More important than

the value of the atmospheric opacity are the effects of variations on the calibrated flux
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densities. In the absence of atmospheric opacity variations we can remove all the effect by

just applying the gain curve, but this is not true if the atmospheric opacity varies. The

effects of a varying atmospheric opacity are explored by computing the correction from a

median value of the atmospheric opacity versus the daily values for a flux density measured

at 45◦ zenith angle. Figure 2.15 shows that the effect of atmospheric opacity variations in

calibrated flux densities at 45◦ is only a 1% effect. Similar computations at 20◦ show an

even smaller effect while at 70◦ its value is very close to 3%.
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Figure 2.14: Daily averaged atmospheric opacity variations from 12 June 2007 through
27 September 2009. The distribution can be described by τ = 0.023± 0.0097.

2.6 Data reduction

The data reduction is performed using custom software developed by Joseph Richards as

part of his Ph.D. thesis (Richards, 2012). The main steps involved in the data reduction

are presented in Richards et al. (2011) and Richards (2012); here we only describe the main

ideas and steps behind the production of radio light curves. This task was performed by

Joseph Richards from the beginning of the program until September 2011 when Talvikki

Hovatta took over responsibility for this task.
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Figure 2.15: Variations in the calibrated flux density at 45◦ zenith angle due to at-
mospheric opacity variations shown in Figure 2.14. The magnitude of the corrections is
described by f = 0.999± 0.013, which is a 1% effect.

The data reduction pipeline is divided into three levels, a low-level that converts the

data set saved by the control system into flux densities, calibrator noise fluxes and pointing

procedures. This level is different for the two control systems (VAX control system and

MCS control system). The results are saved to a reduction database for further processing.

The next two levels are high-level processing of the data and take care of gain curve and

focus corrections, error model, data editing and filtering and flux density calibration.

In what follows we describe the general steps that take us from the uncalibrated flux

densities in digital units to the calibrated flux densities we use to study the behavior of

astronomical sources.

2.6.1 Data editing and flagging

Some fraction of our data get corrupted by various systematic effects. These data are

removed with a combination of manual and automatic procedures briefly described below.

Wind High winds degrade pointing and tracking, systematically reducing the measured

flux densities. Periods with average wind speed above 6.7 m s−1 (15 mph) are dis-
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carded.

Sun and Moon Observations with solar or lunar elongations less than 10◦ are discarded

to avoid additional flux contamination through the sidelobes of the antenna pattern.

Pointing failure Observations with failed pointing offset measurements, or with offsets

measured more than 4800 s from the flux density measurements are discarded.

Calibration failure Only observations for which there are at least 2 successful calibration

diode measurements within a 2 hour period and in which the difference between the

smaller and larger calibration diode is less than 10% are retained, all the rest are

discarded.

Saturation or total power anomalies Observations that indicate saturation or other

total power anomalies are rejected. Heavy cloud cover or precipitation often causes

large fluctuations in total power. Such periods are identified by inspection of the total

power time series and manually discarded.

Measured uncertainty We reject flux density measurements with anomalously large mea-

sured uncertainties. Since the flux density error has components that are dependent on

the source flux (e.g., tracking and pointing errors) a simple cut will be biased against

larger flux densities. To avoid this bias we use a flux density-dependent threshold

(Richards et al., 2011).

Switched difference The switched difference, defined as µ = κ
4 (ξC + ξD − ξA − ξB) (see

Section 2.3.1 for definitions of these quantities), should be zero in the absence of

gain and atmospheric variations. Deviations of this quantity from zero can be used to

determine problematic measurements. A flux density-dependent threshold that avoids

a bias against large flux densities is used (Richards et al., 2011).

2.6.2 Relative calibration

Slow gain variations of the receiver are corrected by using a noise diode with power level

similar to astronomical sources (see Figure 2.3 for a receiver schematics). The noise diode is

measured immediately after pointing corrections with a typical interval between measure-

ments of less than one hour. The calibration factor is the average of all the measurements

obtained in a 2 hour window centered on a given flux density measurement.
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Variations of the telescope gain due to deformation of the ideal parabolic shape for

different elevations are characterized by the gain curve (Section 2.5.3) and the correction is

also applied in this stage. Likewise, corrections to the focus position are done online based

on the focus model (Section 2.5.2). The online model only includes the variation related to

different zenith angle. Further corrections to include the solar zenith angle and elongation

as described in Section 2.5.2 are applied at this stage.

2.6.3 Absolute calibration

We divide our observation period into epochs characterized by a consistent ratio between

the calibration diode and feed horn inputs to the receiver. This ratio might change if, for

example, the signal path is disconnected and reconnected for maintenance, resulting in a

slight change in loss along one path. Within a single epoch, the ratio of the calibration

diode signal to a stable astronomical source should therefore be constant. For each epoch,

a calibration factor is determined from regular observations of the primary calibrator, 3C

286. We adopt the spectral model and coefficients from Baars et al. (1977). At our 15 GHz

center frequency, this yields 3.44 Jy, with a quoted absolute uncertainty of about 5%.

2.6.4 Uncertainties in individual flux density measurements

The system noise which includes contributions from the receiver and atmosphere introduces

a thermal error component into our flux density measurements. Besides this there are a

number of other possible sources of errors that are not accounted for by σ in Equation 2.1.

Among possible sources of additional uncertainty are the weather and atmosphere, pointing

and focus errors. An error model is used to consider those additional components

σ2
total = σ2 + (ε · S)2 + (η · ψ)2 (2.5)

This is an extension of the model used by Angelakis et al. (2009). The first term is the

scatter measured during the flux density measurement. The second one is proportional

to the flux density of the source and includes contributions which are multiplicative like

pointing and tracking errors and variations of the atmospheric opacity. The third term is

proportional to the switch difference ψ = κ
4 (ξB +ξD−ξA−ξC) which accounts for systematic

effects that cause the A-B segment of the flux density measurement to differ from the C-D
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segment, such as a pointing offset between the A and D segments, or some rapidly varying

weather conditions.

The error model requires a determination of two parameters, ε and η. The value of ε

is the contribution from pointing errors and could be different for pointing calibrators and

the rest of the sources. The values of the parameters are determined using the set of stable

flux density calibrators to represent the pointing sources and a set of 100 sources with slow

variability to represent the rest of the program sources. Ideally we would use non-varying

sources but all the sources in our monitoring program present some slow trends that are

removed by low order polynomials assumed to account for slow intrinsic source variability

(see Richards et al., 2011, for details).

Long-term Trends in 3C 286, 3C 274, and DR 21 A coherent long term trend at

1% to 2% level is observed in these sources. We combine the flux densities from these three

sources by normalizing with the median and fit a cubic spline to model the common trend.

This trend is then removed from the sources leaving a 1% systematic residual variation.

The corresponding correction is applied to all the other sources in our program.

2.7 Scaling of the non-thermal error6

The reported error for each flux density measurement has two qualitatively different com-

ponents as described in Section 2.6.4. The first component is directly obtained during the

flux density measurement and it represents random errors such as thermal noise and rapid

atmospheric fluctuations, while the second is introduced to take into account flux-density-

dependent effects. This error model requires the determination of two constant factors, ε

and η, which are assumed to be source independent. However, after applying these correc-

tions with the values of ε and η that we had derived for our sample, we found that there

were many cases in which the data points lay much closer to a low-order polynomial fit to

the data than expected from the size of the errors bars – i.e., the value of χ2 per degree of

freedom was significantly less than unity. This is a clear indication that in certain cases the

simple assumption of source-independent ε and η resulted in overestimated errors.

To correct these constant scale factors on a source-by-source basis, we have used cubic

6A version of this section has been published in the Astrophysical Journal Supplement Series (Richards
et al., 2011). It is reproduced here with permission from AAS.



43

spline fits and required the χ2 per degree of freedom to be one for the residuals. Due to the

large number of sources and the requirement of a uniform and consistent method for all the

sources, an automatic method was developed for this procedure. For each source we can in

principle use a range of number of polynomial sections to construct a spline fit. We construct

a spline fit for each possible number of polynomial sections7. An outlier rejection filter which

uses a cubic spline fit with a small number of knots is used to fit the light curve. Points with

absolute residuals above the 95% percentile are not used for the following stage of the fitting

procedure. Not all the fits are acceptable, as some cases will have correlated residuals or a

large departure from normality. Acceptable fits are selected by using two statistical tests:

Lilliefors test for normality (Lilliefors, 1967) and the runs test for randomness (e.g., Wall

et al., 2003).8 Only the fits for which both null hypotheses, normally distributed residuals

for the Lilliefors test and non correlated residuals for the runs test, cannot be rejected at

the 10−3 level are considered acceptable. For each acceptable fit, a scale factor that makes

the χ2 per degree of freedom equal to one is calculated. Among the scale factors for all

the acceptable fits, the median scale factor is selected as the final correction. The value of

the scale factor is not very sensitive to the exact number of polynomial sections. A typical

example of the behavior of the scale factor is shown in Figure 2.16.

Note that we have only rescaled the non-thermal part of the errors (the ε and η terms

in Equation 2.5), and only for those sources for which the resulting correction factor was

smaller than one (i.e., the rescaling would result in smaller errors). The latter choice was

made for two reasons. First, a correction factor larger than one simply indicates that the

spline fit cannot provide an adequate description of the data. This may result from a light

curve more variable than can be fitted by a spline with a given number of knots, so such

a correction could mask real variability. Only the reverse is cause for concern – when the

spline fit is too good a fit, given the quoted errors. Second, this choice ensures a smooth

transition between scaled and non-scaled errors, as the transition point (correction factor

equal to one) is equivalent to no error scaling.

7We use the MATLAB Spline Toolbox function spap2, which automatically selects the positions of the
knots for the spline.

8We have used the implementations of both tests that are part of the MATLAB Statistics Toolbox.
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Figure 2.16: Example of the error bar scale factor correction for J0046+3900. The two
upper panels show the light curve with the original (left) and corrected (right) error bars
(gray points) and a typical spline fit (black line). The bottom left panel shows the residuals
from the spline fit using the corrected error bars. In the bottom right panel, the χ2 per
degrees of freedom (solid gray line) and correction factor (solid black line) are shown, with
black circles marking the correction factors for fits that pass the acceptance tests, and a
dashed line showing the adopted correction factor for the source. Credit: Richards, J. L.,
et al. 2011, ApJS, 194, 29, reproduced by permission of the AAS.

2.7.1 Additional flagging of the light curves

All the data flagging described above is done with the raw data at the time of data reduction.

None of it considers any model of the individual light curves to determine if a data point can

be problematic. A visual inspection of the data shows that some of the radio light curves

have extreme outliers that were not filtered out by the reduction pipeline. Most of these are

extremely low points that appear in isolation, while others correspond to extremely high

flux densities or have error bars of large magnitude compared to typical measurements. Bad

weather conditions, wind gusts and interference can produce this type of behavior, which
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is not expected for the phenomenon under study. A series of additional filters have been

applied to the data to reduce negative effects associated with these outliers. We are well

aware that this type of filtering precludes the discovery of completely unexpected behavior,

which could be due to real physical effects. For this reason we do plan to look at these

instances individually in order to determine whether we have edited out data that might be

of real interest. For example, it is possible that an extreme scattering event might reduce

the flux density of a source for a short time – this would be extremely interesting. Likewise

a transient source either associated with the blazar or simply in the same field could cause

a sudden increase in flux density. We are now in a position to follow up such cases and we

will be doing so in future.

The first filter eliminates measurements with the highest 2% error bars. Then a flux

density outlier filter consistent of a moving filter which removes the lowest and highest

flux densities in independent windows of 400 days. In some cases when this automatic

procedure erroneously removes points in the peak of a flare, the data points have been

restored manually for the sources in the cross-correlation sample. For the other sources, the

results of the application of this filter have been checked and the most problematic cases

have been handled by hand, either by restoring or deleting a few data points. An additional

problem is caused by large gaps in the light curves. Although these can be handled without

serious problems by the cross-correlation analysis (Chapter 5), they present a more serious

problem for the analysis described in Chapter 3 and are thus removed from the light curves

by keeping the largest “continuous” segment, where “continuous” means no gaps larger

than 90 days.

2.7.2 Example radio light curves

A collection of example radio light curves is shown to illustrate the quality of the data and

the variety of observed behaviors. The first two (Figures 2.17 and 2.18) are examples of

the flux density calibrators 3C 286 and DR 21 which are also among the brightest sources.

Figures 2.19 and 2.20 show two bright blazars with large variability in the radio band.

Figures 2.21 and 2.22 show two sources with more typical flux densities of about a few

hundred mJy. Even at this much lower flux density level it is possible to discern clearly the

source variability and the observational noise. An example of one of the dimmest sources

is included in Figure 2.23 where the noise level is comparable with the source flux. Figure
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2.24 shows a source with high flux but low variability.
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Figure 2.17: The primary flux density calibrator for the radio monitoring program 3C
286. Variations in the source measured flux density are expected from small atmospheric
opacity variations and pointing errors. The flux density scale is set by assuming an average
value for the 3C 286 flux density of 3.44 Jy (Baars et al., 1977) instead of assuming a strictly
constant flux density (Richards et al., 2011).
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Figure 2.18: A secondary flux density calibrator for the radio monitoring program DR 21.
This source is a large molecular cloud and star-forming region for which we do not expect
variations at 15 GHz. A few low flux densities are observed possibly due to pointing errors
or atmospheric opacity variations.
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Figure 2.19: Radio light curve for a bright blazar 3C 454.3. The relatively low noise
level of the flux density measurements compared to the average flux density of this object
provides an excellent view of the source variability.
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Figure 2.20: Radio light curve for a bright blazar BL Lac. The relatively low noise level of
the flux density measurements compared to the average flux density of this object provides
an excellent view of the source variability.
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Figure 2.21: Radio light curve for a source with a typical flux density of about 300 mJy,
close to the median of the sample. Even at this lower flux density level, source variability
is clearly observable.
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Figure 2.22: Radio light curve for a source with a typical flux density of about 200
mJy, slightly below the median of the sample. Even at this lower flux density level, source
variability is clearly observable.
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Figure 2.23: Radio light curve for a source with a flux density of about 15 mJy, which is
among the dimmest sources in the sample.
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Figure 2.24: Radio light curve for a source with high flux density and low variability. A
fraction of our sources show low levels of variability like this one.
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2.8 Observations with Fermi -LAT

Besides our main effort running the monitoring program we also need to produce gamma-

ray light curves for the monitored sources. This is in principle possible for any source as

most of the time Fermi operates in scanning mode, covering the whole sky in about 3 hours,

thus providing a quasi-continuous monitoring of the whole gamma-ray sky. A given source

can be observed by integrating its photons for any desired period, with the brightest sources

being observable in daily or shorter time bins when in periods of high activity, while dimmer

sources require longer integrations. Weekly integrations are well matched to the cadence

of the radio monitoring program and allow us to get a reasonable number of sources which

are detected on this time scale. This relatively fast gamma-ray cadence limits our studies

to only the brightest 86 blazars (see Section 2.9 for a description of the sample), for which

higher quality light curves can be obtained. In the future we plan to extend our studies to

dimmer gamma-ray sources which will require longer integrations.

In this section we describe the basic characteristics of the Large Area Telescope (LAT)

and the Fermi Gamma-ray Space Telescope (Fermi), followed by a brief description of the

basic data products delivered by the Fermi -LAT collaboration that are the basis for this and

other studies of blazars at gamma-ray energies. All the Fermi data are made public along

with the software tools necessary to convert the raw photon data into the most common

data products. It is by using these tools that we produce the gamma-ray light curves used

in this study. A brief description of the main ideas used in the production of gamma-ray

light curves from the raw photon data is provided, along with some technical details on the

analysis parameters used to produce the gamma-ray light curves. These gamma-ray light

curves were produced by Talvikki Hovatta who had previous experience working with the

data reduction software. I provided some input on the required cadence, number of sources

and characteristics of the analysis. In order to do that I had to familiarize myself with the

data reduction procedures and performed a couple of test light curve analyses that are not

used in this work. We end this section by presenting a few examples of the gamma-ray light

curves.



51

2.8.1 The Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope was launched by NASA on 11 June 2008 as the

Gamma-ray Large Area Space Telescope (GLAST) to an orbit of about 565 km with an

inclination of 25.◦5 and an orbital period of about 96 minutes. It carries two science instru-

ments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). The

LAT is a pair-conversion telescope designed to measure the directions, energies (from 20

MeV to 300 GeV) and arrival times of gamma-ray photons over a large field of view, while

rejecting a large background of cosmic rays. A brief description of its main components

and working principle is given in Section 2.8.1.1, based on Atwood et al. (2009) where ad-

ditional details can be found. The GBM detects and measures the prompt emission from

Gamma-Ray Bursts in a broad energy band (from 8 keV to 40MeV) over the full sky not

occulted by the Earth and notifies the LAT and ground observers. A catalog of the sources

it detected during the first two years of operation and details on the instrument can be

found in Paciesas et al. (2012) and references therein.

In order to take full advantage of the LAT large field of view, Fermi operates primarily

in scanning survey mode in which the telescope is pointed north and south of zenith in

alternate orbits. As a result, after two orbits, about 3 hours, an almost uniform sky exposure

is obtained. The rocking angle about zenith was 35◦ until July 2009, then it was 39◦ and it

was finally set to 50◦ in September 2009 in order to lower the temperature of the spacecraft

batteries and extend their lifetime (Nolan et al., 2012).

2.8.1.1 Large Area Telescope

The LAT detects gamma-ray photons by the pair-conversion mechanism in which a high-

energy photon produces an electron-positron pair by interacting with a nucleus of high

atomic number. The pair production and tracking of the resulting electron and positron

occurs in the converter-tracker which is composed of 16 planes of tungsten converter ma-

terial. These converter planes are interleaved with position-sensitive silicon-strip detectors

(a total of 18 (x, y) planes) that record the tracks of the charged particles and allow for

a reconstruction of the incoming gamma-ray direction. After passing through the tracker

the electron and positron hit the calorimeter made of an eight-layer array of CsI crystals

which is responsible for measuring the energy deposited by the particles and the spatial
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development of the electromagnetic shower which is used for background discrimination.

The converter-tracker and calorimeter consist of a 4 × 4 array of 16 modules. A segmented

anti-coincidence detector surrounding the tracker permits the rejection of an intense back-

ground of charged particles. Detection of gamma-rays is coordinated by an electronic data

acquisition system that triggers when a gamma-ray is detected by the instrument and re-

jects background events, thus reducing the amount of data to be downloaded for further

processing on the ground. Figure 2.25 shows a schematic representation of the LAT and

the disposition of its main components while Table 2.1 contains a summary of its main

parameters.

Figure 2.25: Schematic diagram of the LAT. Its dimensions are 1.8 m × 1.8 m × 0.72
m. It consist of a 4 × 4 array of 16 modules for the converter-tracker and calorimeter. An
anti-coincidence detector covers the converter-tracker array. Credit: Atwood, W. B., et al.
2009, ApJ, 697, 1071, reproduced by permission of the AAS.

2.8.2 Fermi source catalogs

Source catalogs using the survey data have been produced by the Fermi -LAT collaboration.

These catalogs include all the gamma-ray sources detected and also identifications with lower

energy counterparts when possible. Three main catalogs of sources have been released to

date, the LAT Bright Source List (0GFL, Abdo et al., 2009), the first Fermi -LAT catalog
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Table 2.1: Summary of LAT instrument parameters

Parameter Value or Rangea

Energy range 20 MeV – 300 GeV
Effective area at normal incidence 6,500 cm2 at 1 GeV
Energy resolution (equivalent Gaussian 1σ):
100 MeV – 1 GeV (on-axis) 8% – 17%
1 GeV – 10 GeV (on-axis) 8%
10 GeV – 300 GeV (on-axis) 8% – 15%
Single photon angular resolution (space angle)
on-axis, 68% containment radius:
>10 GeV ≤0.◦3
1 GeV 0.◦9
100 MeV 6◦

Field of View (FoV) >2 sr
Timing accuracyb < 10 µs
Event readout time (dead time)b 26.5 µs

a Values as reported in Fermi-LAT Collaboration (2012), except when
indicated
http://www.slac.stanford.edu/exp/glast/groups/canda/

archive/pass7v6/lat_Performance.htm
b These values are from Atwood et al. (2009).

http://www.slac.stanford.edu/exp/glast/groups/canda/archive/pass7v6/lat_Performance.htm
http://www.slac.stanford.edu/exp/glast/groups/canda/archive/pass7v6/lat_Performance.htm


54

(1FGL, Abdo et al., 2010) and the second Fermi -LAT catalog (2FGL, Nolan et al., 2012).

These source catalogs are complemented by detailed studies of the blazars and other AGNs

as reported in the LAT bright AGN sample (LBAS, Abdo et al., 2009), the first LAT AGN

catalog (1LAC, Abdo et al., 2010) and the second LAT AGN catalog (2LAC, Ackermann

et al., 2011). The Bright Source List and LAT bright AGN sample were based on the first

three months of Fermi data, while the first and second year catalogs used 11 and 24 months

of data respectively. Besides the additional amount of data, each subsequent iteration of the

catalogs has benefited by improved understanding of the instrument and the methods used

to analyze the data as is detailed in the references given above. For these reasons we use the

source list reported in the second LAT AGN catalog when discussing gamma-ray detections

and identifications with radio counterparts. A summary of the main findings of the second

LAT AGN catalog which is commonly referred as 2LAC is given here for reference.

A total of 886 gamma-ray sources at high Galactic latitude (|b| > 10◦) are included in

the 2LAC Clean Sample which contains sources detected with high statistical significance

and that are not affected by analysis issues like multiple associations, or drastic changes

when different versions of the diffuse emission are used. These are divided among the

different classes shown in Table 2.2 and Figure 2.26 shows their distribution in the sky

along with a map of the integrated high energy emission as seen with the first two years

of Fermi operations. In contrast 1LAC only contained 599 in the clean sample; the larger

number of sources in 2LAC is not only explained by the availability of more data but also

by refinements in the analysis, association methods and counterpart catalogs as described

in Ackermann et al. (2011).

Besides this high Galactic latitude sample, 2LAC contains a sample of low Galactic

latitude AGNs with 104 sources. Due to the difficulties of AGN studies at low latitudes,

mainly contamination in the reference beams for our radio observations, these sources are

not included in the 2LAC clean sample nor in our study of correlated variability.

The 95% error radius on the source localization is 0.◦01 for one of the brightest9 blazars

3C 454.3 and is about 0.◦2 for sources just above the detection threshold. The limiting

photon flux depends on Γ, the photon index10, but it is about 10−9 ph cm−2 s−1 for the

hardest sources with Γ = 1.5 and about 10−8 ph cm−2 s−1 for Γ = 2.5.

9Blazars are extremely variable so this statement is only valid within a given time frame
10Using a single power-law model for the photon flux density this is defined as dN/dE = N0(E/E0)−Γ.
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Figure 2.26: 2LAC sky map in Galactic coordinates for 24 months of observations (upper
panel) and sources in the clean sample also in Galactic coordinates (lower panel). The
upper panel shows the gamma-ray energy flux in units of 10−7 erg cm−2 s−1 sr−1. The
lower panel uses different colors to represent source classes. Red: FSRQs, blue: BL Lac
objects, magenta: non-blazar AGNs, and green: AGNs of unknown type. The sky map is
from Nolan et al. (2012) and source map from Ackermann et al. (2011). Credit: Nolan, P.
L., et al. 2012, ApJS, 199, 31 and Ackermann, M., et al. 2011, ApJ, 743, 171, reproduced
by permission from the AAS.
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Table 2.2: 2LAC clean sample source class dis-
tribution from Ackermann et al. (2011)

Class Number of sources

FSRQ 310
BL Lac 395
Blazar of unknown type 157
All blazars 862

Other AGNs 24
All AGNs 886

2.8.3 Producing gamma-ray light curves

Detailed information on the data products and software tools is provided by the Fermi

Science Support Center (FSSC)11. Based on this online documentation, and other refer-

ences when indicated, we provide an outline of the process with explanations for the most

important concepts.

2.8.3.1 Obtaining data

The raw photon data can be obtained from the FSSC through a web interface,12 and are

usually available within hours of observations to facilitate time sensitive science. Besides

the raw photon data, a few other high level products are provided. For example daily and

weekly time-binned light curves for a list of monitored sources have been provided since

the beginning of the mission. More recently aperture photometry light curves have been

provided for the sources in the second year LAT catalog. All these products are intended

to point out to interesting activity and trigger follow up studies. The raw data products

consist of two data file types which are required for the science analysis. An events file

type which contains the events detected by LAT and a spacecraft file type which contains

position and orientation information in 30 second intervals for the telescope. There are two

types of event file, photon data and extended data. For most purposes, including ours, only

photon data are needed.

11http://fermi.gsfc.nasa.gov/ssc/
12http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi

http://fermi.gsfc.nasa.gov/cgi-bin/ssc/LAT/LATDataQuery.cgi
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2.8.3.2 Source detection, flux determination and spectral modeling

The primary task required to build a light curve is to detect a source, determine its flux

density and model its spectrum. The main idea behind the data reduction process is the

use of a maximum likelihood technique that is described below.

The observations are modeled using the likelihood function and Poisson statistics re-

quired by the small number of photons. If we consider a data set binned in space and

frequency the likelihood function has the form

L =
∏
k

mnk
k e
−mk

nk!
, (2.6)

where mk is the expected number of counts in the k-th bin and nk is the observed value.

Each bin contains all the photons in an interval around the energy, sky position and time.

This is the case for the binned likelihood which is only an approximation. If we reduce the

bin size up to a point in which all bins have one or no photon (nk = 0 or 1) we get into

the regime of unbinned likelihood which is the most accurate. Since unbinned likelihood

is more accurate it is always the first choice, but in practice as the number of counts gets

larger the computational time becomes large and binned likelihood is sometimes the only

option.

We are usually interested in detecting a source and quantifying the significance of the

detection when compared to a model with no source and only background gamma-ray

photons. For that purpose a Test Statistic (TS) is defined and often referred to when

discussing Fermi -LAT results. The TS is

TS = −2 log

(
Lmax,0

Lmax,1

)
(2.7)

where Lmax,0 is the maximum likelihood of a model with only background and no sources,

while Lmax,1 is the maximum likelihood of a model with background and the source. This

TS is larger when the likelihood of the model with the source is larger and is thus a measure

of the significance of the source detection. For a large number of counts Wilks’ theorem

(Wilks, 1938) states that under the null hypothesis of no source, TS is distributed as χ2
ν

where the number of degrees of freedom, ν, is the number of parameters specifying the

additional source. The probability distribution for TS is not exactly a χ2
ν as Wilks’ theorem
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does not directly apply to the case of detecting a source on a background as explained in

Protassov et al. (2002), but Monte Carlo studies can be used to characterize it in particular

cases. In the case of testing a model source with known position on a background, it has

been shown by Mattox et al. (1996) that TS is distributed as a χ2
1/2. The χ2 distribution

and the number of degrees of freedom are a consequence of Wilks’ theorem, while the factor

of 1/2 comes from the fact that only positive flux fluctuations are considered. Based on a

generalization of this finding a useful rule of thumb is that the distribution of TS is χ2
ν/2

where ν is the number of additional parameters specifying the source (e.g., flux, flux and

spectral slope, etc).

For a given region a general form of a source and background model is given by

S(E, p̂, t) =
∑
i

Si(E, t)δ(p̂− p̂i) + SG(E, p̂) + SEG(E, p̂) +
∑
l

Sl(E, p̂, t) (2.8)

where S is the number of photons per solid angle, area and time as a function of energy E,

position in the sky p̂ and time t. Si is a point source at p̂i, SG and SEG are the Galactic and

extra Galactic diffuse emission, and Sl are additional sources (e.g., the extended sources

used for the construction of the second Fermi -LAT source catalog13).

In the analysis of blazars we are usually interested in obtaining a light curve for a source

at a known position. The problem of finding the point sources and their positions is solved

by comparing the likelihoods of model sources at different positions, but for our purposes we

start from the results of the second Fermi -LAT source catalog and use the positions reported

there. Besides positions, mean flux densities and spectral models for point sources, models

for the Galactic, extra Galactic diffuse emission and other extended sources are provided

by the Fermi -LAT collaboration and are used as the starting point for other analyses.

One last degree of freedom concerning point sources is the spectral model. For blazars

a good fit can be obtained using a single power-law function (dN/dE = N0(E/E0)−Γ) or a

Log-Parabola function (dN/dE = N0(E/E0)−α−β log(E/E0)) (Ackermann et al., 2011).

In order to use the model of the sky and the likelihood function with the Fermi -LAT

observable, which is a list of photons with energy, direction and time of arrival whose

properties have been modified by the detection process, a model of the instrument is needed.

13http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog/

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog/
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This model is encoded in the instrument response functions (IRFs) which are parameterized

representations of the instrument performance. This accounts for the imperfect energy

and position reconstruction and the efficiency of detections of gamma-rays reaching the

instrument, and it is symbolized by R(E′, p̂′, t;E, p̂), where X represents the original value

and X ′ the observed quantity. The observation is given by

M(E′, p̂′, t) =

∫
SR
dEdp̂R(E′, p̂′, t;E, p̂)S(E, p̂, t) (2.9)

where M(E′, p̂′, t) is the number of photons per solid angle, area and time at energy E′,

from direction p̂′ at time t. The integration is over the source region (SR), which contains

all the sources that contribute flux to the region we are modeling.

A knowledge of the IRFs is essential to interpret and reconstruct the flux distribution

of the source. In practice the IRF is separated into three components which account for

different instrumental effects. These are the effective area, the point spread function and

energy dispersion. At the start of the Fermi mission these were derived using Monte Carlo

simulations of the instrument behavior. The currently used ones have been updated using

flight data (Fermi-LAT Collaboration, 2012).

If we take the log of the likelihood and drop terms that are independent of the model

parameters, we are left with the following log-likelihood to be maximized

log(L) =
∑

nk log(mk)−
∑

mk (2.10)

The maximization can be computationally intensive but fortunately the data reduction

software provided by the FSSC has all the tools required to obtain source flux densities and

spectral models.

In cases when the significance of the flux density measurement is low, an upper limit can

be obtained and reported instead. This is done using the profile likelihood method (Nolan

et al., 2012; Rolke et al., 2005). Following the conventions of the Fermi -LAT collaboration

2σ upper limits are reported.

2.8.3.3 Technical details of the light curves

Hovatta has produced light curves with 7 day time bins from 4 August 2008 to 12 August

2011 for the 86 sources bright enough to be detected in a large number of weekly time bins.
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We use an unbinned likelihood, with the positions and spectral models used for 2LAC. The

data have been reduced using Fermi-LAT ScienceTools-v9r23p1 using P7 V6 Source event

selection and IRFs, diffuse models gal 2yearp7v6 v0.fits and iso p7v6source.txt, and

the standard data cuts and filters recommended by the FSSC. Photon integral flux densities

for the band from 100 MeV to 200 GeV are reported when TS ≥ 4 and a 2σ upper limit

when TS < 4. Some sources are near the ecliptic and have periods with significant contam-

ination due to the Sun’s gamma-ray emission which can affect the measured flux when it is

closer than 2.◦5 from the source. Although the Moon is similarly bright in gamma-rays the

conjunctions are brief and do not affect the data (see Nolan et al., 2012, for a discussion).

The affected time bins are eliminated for three sources in which this happens (J0238+1636,

J1256−0547 and J2229−0832). Two examples of gamma-ray light curves are presented in

Figure 2.27.

2.9 Source sample and basic properties of the light curves

For this study of correlated variability between the radio and gamma-ray band we use the

radio data taken during a period of 4 years and two months of the blazar monitoring program

from 1 January 2008 through the 26 February 2012. The gamma-ray band data covers a

period of about 3 years from the start of the Fermi -LAT science mission in 4 August 2008

to 8 August 2011, with a time binning of 7 days. The overlap between the light curves is

variable and depends on the date the particular source was added to the radio monitoring

program. Only the brightest gamma-ray blazars are included.

Out of 1593 blazars in our radio monitoring program, 645 have been detected at gamma-

rays and associated with high confidence with known sources as reported in the 2LAC

catalog. Of those, 86 have gamma-ray light curves are bright enough to be detected in at

least 75% of the monthly time bins as reported in Nolan et al. (2012) and we have used these

for the cross-correlation study. Most of the monitored blazars not detected in gamma-rays

come from the CGRaBS sample (Healey et al., 2008). A number of blazars have tentative

associations with gamma-ray sources but do not make all the cuts to be included in the

2LAC clean sample. These are still being monitored but are not considered high confidence

associations. Note that 39 of our monitored blazars were in the 1LAC clean sample but are

not in the 2LAC clean sample, so that for this study they are considered to be non-gamma
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Figure 2.27: Gamma-ray light curves for 3C 454.3 and BL Lac. Black dots with error
bars are time bins for which TS ≥ 4 and black downward pointing triangles 2σ upper limits
for time bins with TS < 4.

ray detected blazars.

Figure 2.28 shows the distribution of time lengths for the radio light curves, the mean
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sampling interval and number of data points. The sources are separated into two groups,

those used for cross-correlation and all the rest. An equivalent summary for the gamma-ray

light curves is not necessary as they form a more uniform set. They are sampled at a regular

interval and each have 158 data points. The main difference is the percentage of the time

that we obtain a proper flux density measurement, which ranges from 36% to 100%, and

the mean sampling interval can be as large as 20 days (Figure 2.29).
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Figure 2.28: Summary of the radio light curve properties for the cross-correlation sample
of 86 sources (solid line) and the rest of the blazars in the monitoring program with 1507
sources (dotted line). Upper panel is the normalized distribution for the number of data
points in each light curve. Middle panel for the total time span of the light curves in days.
Lower panel for the mean sampling interval in days.
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Figure 2.29: Summary of the gamma-ray light curve properties for the cross-correlation
sample of 86 sources. Upper panel is the distribution of fraction of time bins with high TS
detections. Lower panel is for the mean sampling interval in days.
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Chapter 3

Power spectral density estimation
for unevenly sampled time series of
short duration

3.1 Introduction

An important goal of this program is to characterize the radio variability of the sources and

find if it correlates to some other characteristic of the sources like gamma-ray flux density

or optical class. More importantly this characterization is also key to the estimation of

the significance of correlations as demonstrated in Chapter 5. In this chapter we present

the method used to model the light curves in terms of their power spectral density (PSD).

Traditional Fourier transform methods were developed for the case of evenly sampled time

series ideally of long duration, a situation seldom found in typical astronomical monitoring

data sets. For the purposes of this study, the light curves are modeled as noise processes

with a single power-law power spectral density. To date, only a few studies have been

published of PSDs of radio and gamma-ray light curves and these are for a limited number

of sources (Abdo et al., 2010; Chatterjee et al., 2008; Hufnagel & Bregman, 1992; Hughes

et al., 1992). The data we have collected allow us to determine the PSD power-law indexes

of the largest sample of light curves ever studied. This chapter describes the methods used

in this investigation, while its application to our data set is presented in Chapters 4 and 6.

The structure of this chapter is as follows. We start with a brief summary of the theory

and standard methods used for the estimation of the PSD and then move to the uneven

sampling and short time series case. This discussion is based on the method presented in

Uttley et al. (2002) which is modified to suit our data set and the range of PSDs we fit.
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The modifications we introduce are discussed in detail along with additional justification

of the need for binning and interpolation of the light curves in more detail than in the

original paper. We also present an example of the application of the method to a simulated

light curve and a number of tests using the OVRO sampling on simulated light curves that

demonstrates the accuracy of the fitting procedure under different conditions. A study

of the effect of increasing the number of simulations in the fitting procedure is performed

in order to guide our choice of parameters for the data analysis. We close the chapter by

summarizing the method, with special emphasis on the improvements we add to the original

formulation.

3.2 The basics of power spectral density estimation

Before getting into the details of power spectral density estimation for our particular appli-

cation, it is helpful to review the basics of the standard case of evenly sampled time series.

We define a time series as a time ordered sequence of triplets (ti, fi, ei), where ti is the ob-

servation time, fi is the measured value of the quantity of interest (e.g., flux density, photon

flux, etc.), and ei is an estimate of the observational error associated with the measurement.

We assume that the time series is sorted in time and i = 1, ..., N . 1

An estimation of the power spectral density can be obtained through the periodogram

which is conventionally defined as the squared modulus of the discrete Fourier transform:

P (νk) =

[
N∑
i=1

fi cos(2πνkti)

]2

+

[
N∑
i=1

fi sin(2πνkti)

]2

(3.1)

where the periodogram is evaluated at the discrete set of frequencies νk = k/T for k =

1, ..., N/2 for N even, or k = 1, ..., (N −1)/2 for N odd, νNyq = N
2T is the Nyquist frequency

and T = N(tN − t1)/(N − 1).2

Estimating the PSD in this way requires sampling a continuous time series at discrete

times for a finite amount of time. The sampling operation is equivalent to multiplication of

the time series by an infinite train of Dirac delta functions, while sampling for a finite time

amounts to a multiplication by a rectangular observing window. These two multiplications

1In what follows we use ν for the time frequency and fi for time series data, e.g., flux density, photon
flux, etc.

2This choice of T is consistent with the definition of the discrete Fourier transform (Brigham, 1988) and
allows us to make use of the Fast Fourier Transform algorithm to increase the speed of the computations.
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appear as convolutions in frequency space, with the consequence that we observe the original

spectrum convolved with the Fourier transform of the infinite train of Dirac delta functions

and the Fourier transform of the rectangular window. As a final step we only look at a

discrete set of frequencies which is equivalent to multiplication by an infinite train of Dirac

delta function in frequency space.3

Ignoring the effect of sampling with an infinite train of Dirac delta functions in time

and frequency domain, we find that the periodogram is given by

P (ν) = |W (ν) ∗ F (ν)|2, (3.2)

where F (ν) is the Fourier transform of the time series (ti, fi) and W (ν) is the Fourier

transform of the sampling window function, which is by default a rectangular window, and

∗ denotes convolution.

As a result, we do not have access to the original spectrum but a modified version that

repeats periodically, whose shape is modified by convolution with the frequency window

function and that is sampled at a set of discrete frequencies. All these factors have to be

taken into account when analyzing data and interpreting the results. The periodic repetition

of the spectrum gives rise to aliasing, in which high frequency components are mistaken as

low frequency components. Convolution with the window function can be a serious problem

when the sidelobes of the frequency window function lie on regions of the spectrum where

the power is much higher than at the frequency of interest – this is the origin of the red-noise

leakage problem. Finally, having the spectrum sampled at a number of discrete frequencies

can be problematic if we are searching for narrow spectral components which can be smeared

or missed.

For the case of evenly sampled time series, power spectral density estimation amounts to

using the discrete Fourier transform (DFT) along with periodogram or frequency averaging

to decrease the noise which is distributed as a χ2
2 for a single frequency component. Each of

these averaging processes can reduce the variance at the price of reduced spectral resolution.

For example, in the case of frequency or periodogram averaging of M components the

resulting distribution is χ2
2M , which reduces the variance by a factor of 1/M with respect

to the non-averaging case.

3A graphical representation of these operations can help the reader understand their effect. See Figure
6.1 in Brigham (1988) or elsewhere.
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The application of these methods is straightforward in the case of long time series where

a good estimate of the PSD can be obtained at the expense of reduced frequency resolution.

Nonetheless problems of aliasing and red-noise leakage can still complicate the analysis of

broadband signals like the simple power-law PSDs we fit to our data (P (ν) ∝ 1/νβ), for the

reasons outlined below. For relatively flat spectra (β from 0 to 2) aliasing can be a problem

as high frequency power above the Nyquist frequency contaminates low frequencies. This

problem is less serious for steep spectra (β ≥ 2) that have relatively small amounts of power

at high frequencies, but in this case red-noise leakage can flatten the high frequency part of

the spectrum as power from low frequencies contaminates the low amplitude high frequency

parts of the spectrum through sidelobes on the sampling window functions. To reduce the

effects of these problems a combination of filters and sampling window functions can be

used (e.g. Brigham, 1988; Press et al., 1992; Shumway and Stoffer, 2011).

3.3 Power spectral density estimation for unevenly sampled

data and short time series

When working with time series data, problems often arise because the time series is unevenly

sampled and relatively short. The uneven sampling requires the use of a different estimate

of the periodogram: the best known alternatives are the Deeming periodogram (Deeming,

1975) and the Lomb-Scargle periodogram (Scargle, 1982). The Lomb-Scargle periodogram is

well suited to the detection of periodic signals in white noise, because it has well understood

statistical properties. For the analysis of broadband signals the Deeming periodogram is

often used for reasons that are mainly historical as it does not present any real advantages.

These two methods allows us to directly obtain an estimate of the periodogram for unevenly

sampled time series, but do not provide ways to correct for the distortions produced by

the sampling window functions, which in the case of unevenly sampled time series can

significantly modify the shape of the periodogram as explained below.

We use the method to estimate the PSD of unevenly sampled and short time series pre-

sented by Uttley et al. (2002). A description of our implementation along with a discussion

of the necessity of some of the approximations included is presented in this chapter. Uttley

et al. (2002) used a number of approximations that were motivated by particularities in

their data that do not apply to ours. For example they divided their light curves into three



69

categories: long-term, intensive and long-look4, but the cadence of our data is fairly uni-

form so that this subdivision is unnecessary. This division of the light curves can effectively

reduce the red-noise leakage in their implementation but it is not appropriate for the more

regular cadence of our data set. In our case we use window functions to reduce the effects

of red-noise leakage. This is not part of the original implementation but it is absolutely

necessary to deal with steep PSDs and to be able to set an upper bound to the values of β

when fitting PSDs of the form ∝ 1/νβ. Another difference is that we simulate the effects

of aliasing by simulating light curves with high frequency components with a sampling pe-

riod of 1 day, instead of adding a constant noise term to the power spectral density of the

simulated light curves as in the original formulation. The high frequency cut at 1 day−1

is justified by the small amount of power seen at higher frequencies specially in the radio

band. At gamma-rays this is not necessarily true as fast variability has been observed, but

given that gamma-ray photon fluxes correspond to mean values of long integrations of at

least a week for most blazars the effects of fast variability are less important as they are

averaged out.

3.3.1 Description of the method

The method as originally implemented is described in detail in Uttley et al. (2002). We

describe the main steps here and describe the differences between their implementation and

ours.

• Obtain the periodogram for the light curve and bin it in frequency to reduce scatter.

The periodogram is given by a frequency binned version of the following expression

P (νk) =
2T

N2

[ N∑
i=1

fi cos(2πνkti)

]2

+

[
N∑
i=1

fi sin(2πνkti)

]2
 (3.3)

where the frequencies are νk = k/T for k = 1, ..., N/2 forN even, or k = 1, ..., (N−1)/2

for N uneven. The minimum frequency is νmin = 1
T , the maximum frequency is the

Nyquist frequency νNyq = N
2

1
T , and T = N(tN − t1)/(N − 1). The multiplicative

factor is a normalization that has the property that the integral from νi to νf is equal

to the variance contributed to the light curve by this frequency range. The time series

4These are the names they give to light curves that sample different time scales for different lengths of
time.
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(ti, fi) is evenly sampled and is obtained from the original one by interpolation onto

a regular grid. Also the interpolated time series is first multiplied by an appropriate

sampling window in order to reduce red-noise leakage. A justification of these steps

is given in Sections 3.3.2 and 3.3.3.

• Choose a PSD model to test against the data. In this case we are fitting simple

power-laws of the form P (ν) ∝ 1/νβ but this can be generalized to any functional

dependence. For the given model simulate M time series, where M is a large number

that allows us to represent a variety of possible realizations of this PSD model.

• For each simulated light curve apply the same sampling, add observational noise and

interpolate into the same even grid. Calculate the periodogram for each one. From

these M periodograms determine the mean periodogram and its associated error as

the scatter at each frequency bin.

• Using the mean periodogram and errors obtained in the last part construct a χ2 like

test defined by

χ2
obs =

νmax∑
ν=νmin

[Psim(ν)− Pobs(ν)]2

∆Psim(ν)2
(3.4)

This χ2
obs is then compared to the distribution of χ2 which is obtained by replacing

each of the simulations by the observations in Equation 3.4. The fraction of the

distribution for which χ2 > χ2
obs is the significance level at which the tested PSD

model can be rejected or the p-value which we simply call p. Thus a high value of this

percentage represents a good fit and a low one a poor fit.

The process described above can be repeated for a number of models with different

parameters. The final step consists in selecting the best as the one with highest value of

p. As with any statistical procedure a measurement of the uncertainty in the parameters

of the model needs to be given. In this point we also depart from the original formulation

and provide uncertainties based on Monte Carlo simulations of the model fitting process as

described in Section 3.3.6.

The most significant differences with the original implementation are the use of sampling

window functions to reduce red-noise leakage and the Monte Carlo estimation of fitting
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uncertainties. Another important difference, although less important conceptually, is the

use of the Fast Fourier Transform to perform the computations, which surprisingly is not

part of the original formulation but which it is a rather obvious step for evenly sampled

time series, which we have to work with in order to use sampling window functions. Further

discussions of the most important elements of the method are given below.

3.3.2 The necessity for rebinning and interpolation of the light curves

In the original formulation this step is justified by just saying that it reduces the distortion

of the periodogram but in practice it turns out to be key to obtain any result at all when

estimating steep PSDs. We tried to use the original unevenly sampled data in combination

with a number of window functions to reduce the effects of red-noise leakage but it turns out

that window functions for unevenly sampled data do not behave in the same way as window

functions for the evenly sampled case. An example is presented in Figure 3.1, where we

show the frequency response of a uneven sampling pattern with a rectangular and Hanning

windows for the periodogram of power-law PSDs with different values of β from 0 to 5. The

rectangular and Hanning windows used in these examples are given by the expressions in

Equation 3.5 and 3.6 respectively.

w(t) =


1, 0 ≤ t ≤ T

0, otherwise

(3.5)

w(t) =


cos(π (t−T/2)

T )2, 0 ≤ t ≤ T

0, otherwise

(3.6)

An equivalent test for the case of even sampling is shown in Figure 3.2.

From Figure 3.1 it can be seen that even though we can calculate the periodogram

directly for an unevenly sampled time series the results we obtain are very noisy and do

not vary much among different values of β. The main problem is that all the PSDs with

β ≥ 1 look very similar, showing almost the same slope when fitted with a linear function

after a log-log transformation. This is problematic as the fitting procedure relies on the

differences between different PSD power-law indices to choose the best model. Doing the

same exercise for a time series with the same time length and number of data points but



72

3 2 1
0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
βsim = 0.0

β = -0.0

β = -0.0

3 2 1
1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4
βsim = 1.0

β = 0.6

β = 0.5

3 2 1
2.5

2.0

1.5

1.0

0.5

0.0

0.5
βsim = 2.0

β = 0.9

β = 0.6

3 2 1
2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
βsim = 3.0

β = 0.8

β = 0.5

3 2 1
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
βsim = 4.0

β = 0.7

β = 0.5

3 2 1
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0
βsim = 5.0

β = 0.7

β = 0.4

Figure 3.1: Effect of the use of window functions for uneven sampling cases using the
rectangular (blue) and Hanning window (green). Each figure shows the result of simulating
1000 light curves with a given simple power-law PSD ∝ 1/νβ, with β given in each figure
title. The data points are the mean PSD and the error the spread in the simulation,
while the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also
included are direct fits of the slopes of the mean PSDs for the simulated data for each
window. Notice how the linear fits can hardly discriminate between different slopes and
how all the estimated PSDs look very similar.

with even sampling we obtain the results shown in Figure 3.2. In this case the results are

much less noisy and the estimated PSDs look different from each other even for very steep

PSDs. This allows for better discrimination and is required to find an upper limit to the

source power-law exponent of the PSD.

This problem is evident when trying to apply the fitting method using the unevenly

sampled data and shows up as an inability to find an upper limit to the power-law exponent

β due to the lack of difference between the estimated PSDs for the simulated data. This

problem can be solved by the use of interpolation and an appropriate window function, a

subject that is discussed in Section 3.3.3.

Another thing we can learn from Figures 3.1 and 3.2 is the limited use we can make
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Figure 3.2: Effect of the use of window functions for even sampling cases using the
rectangular (blue) and Hanning window (green). Each figure shows the result of simulating
1000 light curves with a given simple power-law PSD ∝ 1/νβ, with β given in each figure
title. The data points are the mean PSD and the error the spread in the simulation, while
the units of power (vertical axis) and frequency (horizontal axis) are arbitrary. Also included
are direct fits of the slopes of the mean PSDs for the simulated data for each window. In
this case the shape of the PSDs is less noisy and the estimated PSDs for steep cases look
different from each other.

of direct PSD fitting even for the case of long time series. In this case it is the red-noise

leakage which makes it impossible to recover the right power-law index for steep PSDs.

The subject of windowing of unevenly sampled data is briefly discussed in Scargle (1982).

In particular their figure 3 shows a few example window functions for the cases of even and

uneven sampling using the classic periodogram. From those we can see the very different

sidelobe structure that is obtained for the uneven sampling case which is at the root of the

problem described here.

To clarify this point we also include the window functions for our test data along with the

results of applying the Hanning window. An examination of Figure 3.3 helps understand

the results described below. In conventional Fourier analysis window functions change
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the frequency response of the sampling, changing the sidelobe structure and thus helping

mitigate the effects of red-noise leakage and aliasing. This behavior can be seen when using

evenly sampled data sets. The green curve is for a rectangular window and the cyan curve is

for a Hanning window. The sidelobe structure is regular and decays as frequency increases.

The case for uneven sampling is very different as can be seen in the blue curve for the

rectangular window and red curve for the Hanning window. The shapes of the window

functions for the case of uneven sampling explains the strong red-noise leakage seen in the

simulations and the increased noise. In the case of even sampling we recover the results of

conventional Fourier analysis with all the good properties of window functions.
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Figure 3.3: Effect of data windowing in the cases of even and uneven sampling. In the
uneven sampling case we see that both the rectangular (blue curve) and Hanning (red
curve) windows have a response with a relatively high sidelobe level that do not decay as
the frequency increases. For the even sampling case with the same time length and number
of data points we see that the rectangular (green curve) and Hanning window (cyan curve)
behave as expected in the usual case, with a regular sidelobe structure whose amplitude
decreases as the frequency increases.
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3.3.3 Spectral window function

One fundamental difference between the implementation of the method of Uttley et al.

(2002) and ours is that we use window functions to reduce the effects of red-noise leakage.

It was found that this is absolutely necessary to deal with steep power spectral densities

like those used in this study. In our first attempts to fit the PSDs we found that with a

rectangular window we were not able to set an upper limit to the value of β and were only

able to set a lower limit. The upper limit on β is absolutely necessary to constrain the

significance of cross-correlations as described in Chapter 5. In this section we describe the

origin of that problem and the solution we implemented.

For broadband time series a big problem is the leakage of power through far sidelobes

of the spectral window response. This problem is evident when dealing with high dynamic

range PSDs such as steep power-laws. For these simple power-laws, it is seen as a flattening

of the high frequency part of the periodogram due to power leaking from the high power low

frequency part. In practical terms it means that after some critical value of the power-law

index all the periodograms have a flat slope which does not depend strongly on the PSD.

Most of this high frequency power is actually coming from low frequencies through sidelobes

of the window function. One way to deal with this problem is by using window functions

with low level sidelobes; some details about their application to our data set are presented

below.

3.3.3.1 Spectral window functions for our data sets

There is a great variety of window functions, which differ mainly in the width of their main

lobe, the maximum level and the fall-off rate of the sidelobes. The ideal window function

will depend on the application and some experimentation might be necessary. Properties

of various window functions can be found elsewhere (e.g. Harris, 1978)

We tried a number of them and compared their performance in recovering steep PSDs.

We found that among the ones we tested the most suitable one was the Hanning window

which is able to recover a steep spectrum in a range that allows us to fit our light curves.

Among the special characteristics of this window are its low sidelobe level, more than 32

dB below main lobe, and the fast fall-off at −18 dB/decade. As a downside the Hanning

window has a broader main lobe at 3 dB (1.44 · 1/T ) when compared to the rectangular



76

window (0.89 · 1/T ), where T is the length of the time series.

The low level and fast sidelobe fall-off are the key to reducing the effects of red-noise

leakage to a level that makes discriminating between different steep PSDs possible. This

effect is illustrated in Figure 3.4, which shows the periodogram for a series of steep PSDs.

From the figure is also clear why other window functions fail to distinguish between steep

PSDs, and thus are not suitable to use with this method.
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Figure 3.4: Comparison of windowed periodogram for steep PSDs. Each figure shows the
result of simulating 1000 light curves with a given simple power-law PSD ∝ 1/νβ, with β
given in each figure title. The data points are the mean PSD and the error the spread in
the simulation, while the units of power (vertical axis) and frequency (horizontal axis) are
arbitrary. Also included are direct fits of the slopes of the mean PSDs for the simulated
data in each case using a rectangular (blue), triangular (red) and Hanning (green) windows.

The results of Figure 3.4 can be understood by comparing the properties of the window

functions shown in Table 3.1 (Harris, 1978). The reduction of the red-noise leakage when

using the Hanning window is due to the lower sidelobe level and the faster fall-off.

Although there exist other window functions with lower sidelobe levels and faster fall-

off it is not necessary to use them in this case, but they are worth considering if fitting
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Table 3.1: Properties of selected window functions

Window Sidelobe Level Sidelobe Fall-Off 3-dB BW
(dB) (dB/oct) (bins)

Rectangular −13 −6 0.89
Triangle or Barlett −27 −12 1.28
cos2(x) or Hanning −32 −18 1.44

of steeper PSDs is required. Windowing is good for fitting a featureless PSD, but it can

be a source of problems if the goal is to find narrow spectral components. The reason is

that by making the sidelobes smaller we make the main beam wider which smears localized

features. This has to be considered when searching for periodic components, a case which

is outside of the scope of the current analysis.

3.3.4 Filtering

The windowing technique is able to solve the problem with red-noise leakage but another

method that can be used to deal with steep spectra is filtering in the time domain and

correction to the frequency domain result. We also tested this alternative and compare

it to windowing. The idea of filtering is to eliminate the low-frequency components that

produce the red-noise leakage before computing the periodogram. Since this changes the

spectrum of the time series, it has to be compensated in the final periodogram by the

application of a frequency filter.

One of these techniques is called pre-whitening and post-blackening by first differencing.

In this case the original time series (ti, fi) which has even sampling is transformed to

(ti, gi ≡ fi − fi−1). In the frequency domain this is equivalent to filtering with |H(ν)|2 =

2[1 − cos(2πν)]. Higher order filtering is possible, for example by the application of first

order differencing multiple times (Shumway and Stoffer, 2011).

Figure 3.5 shows the result of applying this procedure to simulated data with even

sampling and a range of values of the power-law of the PSD. It can be seen that this

method has problems recovering flat PSDs with β ≤ 2 and very steep PSDs with β ≥ 4.

We also tested it with the OVRO data set and found that in a large number of cases it was

not able to provide good upper limits for β and was outperformed by windowing with the

Hanning window. We therefore use Hanning windowing for the data analysis.
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Figure 3.5: Effect of the use of pre-whitening and post-darkening in evenly sampled time
series. Each figure shows the result of simulating 1000 light curves with a given simple
power-law PSD ∝ 1/νβ, with β given in each figure title. The data points are the mean
PSD and the error the spread in the simulation, while the units of power (vertical axis)
and frequency (horizontal axis) are arbitrary. Also included are direct fits of the slopes of
the mean PSDs for the simulated data in each case using first difference (blue curve) and
second difference (green curves).

3.3.5 Adding noise to the simulated light curves

A final issue is the addition of noise to the simulated light curves, a step which is absolutely

necessary in order to consider the effect of observational uncertainties on our ability to

measure the PSD. This is not a serious problem for the radio light curves, which in most

cases have very high signal-to-noise ratio, but it is important for most gamma-ray light

curves which have moderate signal-to-noise ratios.

In order to add the observational noise to the light curves we first need to normalize the

simulated data to match the observations. One way to obtain an approximate normalization



79

is by using the Parseval’s theorem, which with the normalization we use implies that

σ2 =

νmax∑
νmin

P (ν)∆ν (3.7)

We can estimate the variance for the observations and the simulations and use a constant

factor to make them equal, thus getting an approximate normalization of the PSD. One

problem is that the data already contain the observational noise added to the signal, so for

each data point we have di = si + ni, where d is the data, s the signal and n the noise. We

can estimate the variance to obtain σ2
d = σ2

s + σ2
n, under the assumption that the noise and

signal are uncorrelated.

The variance of the noise can be obtained from the error bars by σ2
n ≈ ē2

i , where ei is

the error bar associated with the i-th measurement. The final normalization equation is

σ2
sim = A2(σ2

d − ē2
i ) (3.8)

We can multiply the originally arbitrarily normalized simulated data by A−1 to get a

normalization equivalent to the one in the observations. In practice we use A to transfer

the observational error bars to the simulations, to which we add Gaussian observational

noise to the time domain signal such that esim,i = Aei. In the original formulation the noise

is applied to the periodogram, but we choose to apply it directly to the time series to be

able to account for the different sizes of the observational uncertainties. The assumption

of Gaussian error bars is only approximate for the gamma-ray data which have a Poisson

distribution. Since in this analysis we are only considering highly significant gamma-ray

detections we usually have at least 5 photons in each integration, and in most cases a lot

more. In this regime the difference between Poisson and Gaussian distributed errors is

negligible.

3.3.6 Estimation of the uncertainty in the model parameters

In the original formulation the authors defined regions of confidence for the fitted model

parameters as the region for which p(θ̂) > pconf , where p(θ̂) is the p-value for a given set

of parameters θ̂. For example a 68.3% confidence interval has pconf = 0.317, while a 95.5%

confidence interval has pconf = 0.045. Although this rule seems sensible, we found in our
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tests using simulated data sets that the confidence intervals thus obtained are not consistent

with the scatter in the best fit when the procedure is repeated a large number of times for

simulated light curves with known and fixed PSDs. Other problem with the proposed rule

is that it is not possible to get 68.3% confidence intervals for fits in which p < 0.317.

The problem is that even fitting simulated data, we will get a significant fraction of cases

with such a small p-value. These are not necessarily bad fits for which we would have no

ability to get 68.3% confidence intervals. This contrast with the usual approach to measure

uncertainties from χ2 fits that defines a 68.3% (or any other level) confidence interval by

the region of parameter space for which χ2(θ) − χ2
min ≤ ∆χ2 where ∆χ2 depends on the

number of interesting parameters being fit and the confidence level (Avni, 1976; Press et al.,

1992; Wall et al., 2003). In this widely used method a confidence interval can be obtained

independently of the value of χ2
min for the fit. Of course we must be careful as a high value

of χ2, or equivalently a small p-value is also indicating a poor quality fit, something that

we must consider in our analysis.

For these reasons we decided to estimate the confidence intervals for the best fit value by

using a Neyman construction (Beringer et al, 2012; James, 2006), combined with a Monte

Carlo procedure in which we fit a large number of mock data sets of known and fixed

power-law PSD to construct the confidence band. This requires that for each PSD fit we

run a large number of fits to simulated data which increases the computational time. This

procedure is feasible when fitting a single power-law index but it can be prohibitive when

fitting a large number of parameters, and other methods have to be explored for those cases

(something which is outside the scope of the current analysis).

An example of the application of this method is presented in Section 3.4.1.

3.4 Implementation

The method described above is implemented in Python and validated with simulated data

sets with known PSDs and typical sampling patterns taken from the OVRO sample. This

section starts with an example of the application of the method to a simulated light curve

of known PSD. Four tests intended to validate the procedure by fitting a large number of

simulated data with known PSD, using sampling patterns taken from the OVRO program

and observational errors consistent with our data, are presented. This section ends with
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a study of the effects of using a different number of simulated light curves (M as defined

in Section 3.3.1) when fitting simulated data in one of them, and an example light curve

from the OVRO program in the other. The idea is to get an indication of the associated

uncertainties by changing M , as it can have a large impact on the computational time.

3.4.1 An example of the application of the method

An example fit to simulated data is presented to help the reader understand its application.

A simulated light curve with a PSD with power-law exponent β = 2.0, no observational

noise added and sampled in the same way as the source J1653+3945 is shown in Figure 3.6

along with the periodogram and best fit.
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Figure 3.6: Example of the PSD fit method applied to simulated data. Left panel is the
simulated light curve with a PSD ∝ 1/ν2 and no noise. Right panel is the data periodogram
binned in frequency (black line) and the mean PSD and scatter for the best fit with β =
1.85± 0.2 (black dots and error bars).

The results of the fitting procedure are summarized by a plot of p vs β (Figure 3.7).

The best fit corresponds to β = 1.85±0.2, where the errors where obtained with a Neyman

construction whose resulting confidence band is also shown in the figure. The errors corre-

spond to a 68% confidence interval obtained from the distribution of best fit values to these

simulated light curves (Figure 3.7). In what follows all the errors are obtained in this way.

This Monte Carlo error can be compared with the original error prescription which can be

applied in this case and produces a value of ±0.5, more than twice the value estimated from

the simulations.
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Figure 3.7: Example of the fitting method applied to simulated data of known PSD. Upper
left panel is p versus β for the different power-laws tested. The peak at 1.85 indicates the
best fit. Upper right panel is the distribution of best fits for 1000 simulated light curves
with βsim = 1.85 and same sampling as data. The error on the fit is obtained from the
confidence band which is shown in the lower panel. The intersection of the vertical line
with the confidence band give us β = 1.85± 0.2.
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3.4.2 Validation of the implementation with simulated data sets

In order to validate the implementation we tested it with simulated data sets of known

PSD. Typical sampling patterns and various relative amounts of noise are considered to

investigate the behavior of the method under different conditions. In each of the tests we

use M = 1000 to get the mean PSD and scatter at each trial value of β. We use trial values

of β from 0.0 to 3.5 in steps of 0.05. As a last test we explore the effect of varying M , the

number of simulated light curves, on the repeatability of the result in order to establish a

criterion to select the number we will use for the data analysis and to get an idea of possible

errors associated with that choice.

3.4.2.1 OVRO sampling pattern 1 and no noise

In this test we use the sampling pattern for the source J1653+3945. The OVRO data are

shown in Figure 3.8 as reference, because the actual fitted data were simulated and we only

use the sampling pattern of this light curve. This comment applies to all the other tests

in this section. The results of the fit for simulated data as a distribution of best fit values

are shown in Figure 3.8. We find that in all cases we are able to recover the true β with a

typical uncertainty of 0.2.

3.4.2.2 OVRO sampling pattern 1 and noise

In this test we use the sampling pattern for the source J1653+3945 and error bars consistent

with the noise in this source. The results of the fit for simulated data as a distribution of

best fit values are shown in Figure 3.9. In this case the large measurement errors make

recovering the PSD exponent very hard and the fitting procedure fails to yield a meaningful

constraint.

3.4.2.3 OVRO sampling pattern 2 and noise

In this test we use the sampling pattern for the source J0423−0120 and error bars consistent

with the noise in this source. The OVRO data are shown in Figure 3.10. The results of the

fit for simulated data as a distribution of best fit values are shown in Figure 3.10.

In this case the procedure also provides good constraints on β except for the case of

β = 3.0. If necessary this could be handled by the use of a different window function.
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3.4.2.4 OVRO sampling pattern 3 and noise

In this test we use the sampling pattern for the source J2253+1608 and error bars consistent

with the noise in this source. The OVRO data are shown in Figure 3.11. The results of the

fit for simulated data as a distribution of best fit values are shown in Figure 3.11. In this

last case we are also able to constrain β with an uncertainty of about 0.2.
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Figure 3.8: Upper panel shows the OVRO data used to get the time sampling. The error
bars are not used in this test and we assume a perfect measurement. Four lower panels
are the distribution of best fit values for 1000 simulated light curves in each case. In each
case this distribution gives an estimation of the error on the fit and is used to construct
the confidence band. Top left is for βsim = 0.0 and βfit = 0.0+0.3

−0.0, top right is for βsim = 1.0

and βfit = 1.0 ± 0.2, lower left is for βsim = 2.0 and βfit = 2.0+0.15
−0.2 , and lower right is for

βsim = 3.0 and βfit = 3.0+0.2
−0.15. In the case of βsim = 0.0 we report the mode and dispersion

about that value. All the other cases use the median and dispersion.
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Figure 3.9: Upper panel shows the OVRO data used to get the time sampling and the
error bars. Four lower panels are the distribution of best fit values for 1000 simulated light
curves in each case. In each case this distribution gives an estimation of the error on the fit
and is used to construct the confidence band. Top left is for βsim = 0.0 and βfit = 0.05+0.55

−0.05,

top right is for βsim = 1.0 and βfit = 1.3+1.5
−0.55, lower left is for βsim = 2.0 and βfit = 1.9+0.6

−0.55,

and lower right is for βsim = 3.0 and βfit = 3.0+0.4
−1.85. In the cases of βsim = 0.0 and 3.0 we

report the mode and dispersion about that value. All the other cases use the median and
dispersion.
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Figure 3.10: Upper panel shows the OVRO data used to get the time sampling and the
error bars. Four lower panels are the distribution of best fit values for 1000 simulated
light curves in each case. In each case this distribution gives an estimation of the error
on the fit and is used to construct the confidence band. Top left is for βsim = 0.0 and
βfit = 0.15+0.25

−0.1 , top right is for βsim = 1.0 and βfit = 1.0± 0.15, lower left is for βsim = 2.0
and βfit = 2.0± 0.25, and lower right is for βsim = 3.0 and βfit = 3.05± 0.3. In the case of
βsim = 0.0 we report the mode and dispersion about that value. All the other cases use the
median and dispersion.
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Figure 3.11: Upper panel shows the OVRO data used to get the time sampling and the
error bars. Four lower panels are the distribution of best fit values for 1000 simulated
light curves in each case. In each case this distribution gives an estimation of the error
on the fit and is used to construct the confidence band. Top left is for βsim = 0.0 and
βfit = 0.05+0.25

−0.05, top right is for βsim = 1.0 and βfit = 1.0+0.15
−0.1 , lower left is for βsim = 2.0

and βfit = 2.05 ± 0.25, and lower right is for βsim = 3.0 and βfit = 3.0+0.2
−0.15. In the case of

βsim = 0.0 we report the mode and dispersion about that value. All the other cases use the
median and dispersion.
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3.4.2.5 Effect of increasing the number of simulations

The original paper does not present a detailed discussion on the required number of simu-

lations to get reliable results. They start by using M=1,000 for simple cases and move to

M=100 for multi parameter fits, arguing that since the p as a function of fitted parameters

contours of the fits looks well defined implies that M=100 is sufficient. This argument for

the minimum number of simulations required to estimate the mean PSD is not compelling

enough as it does not really test the repeatability of the process which can be a problem

in any procedure using random numbers. In our opinion a better test is to run the fitting

procedure for an example case a number of times and check its repeatability. This exercise

is computer intensive, so we run the analysis with typical radio sampling for a couple of

cases and assume that the results are representative for the rest of the sources. In any case,

given the available computing power we do not exceed M=1,000 in order to get results in

a reasonable time scale and appropriate accuracy when fitting all the radio sources (about

1500). We think that understanding the repeatability of the results is a key step that is

missing in the original description of the method.

The first test consists of fitting the same simulated data set used in Section 3.4.1,100

times using M=100, M=1,000 and M=10,000 simulated light curves at each trial power-law

exponent of the PSD. The distribution of best fit values is used to estimate the repeatability

of the fitting process. The second test does the same but in this case it fits the OVRO data

for J0423−0120 shown in Figure 3.10, and this time incorporating the observational noise

in the fit. The results are summarized in Table 3.2 which shows that the repeatability of

the results increases as M increases, as we would expect. The scatter is reduced by half by

going from M=100 to M=10,000. We also note that in the case of the OVRO data we get

a big increase in accuracy when going from M=100 to M=1,000, but a much smaller one

by going to M=10,000. This information is encoded in the Monte Carlo error computation

but it is very informative to know it more precisely in a couple of examples.

3.5 Summary

An implementation of the method presented by Uttley et al. (2002), is described. The

method is modified to suit the available data sets. An improved way of dealing with the

effects of red-noise leakage is implemented. This uses interpolation and windowing with the
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Table 3.2: Repeatability of fitted parameters as a function of number of simulated light
curves

Test β β β
for M=100 for M=1,000 for M=10,000

Simulated with known PSD 1.85± 0.08 1.85± 0.05 1.86± 0.03
OVRO data with noise 2.27± 0.13 2.30± 0.07 2.32± 0.06

Hanning window and provides the ability to fit steep PSDs as the ones found in our data

sets. We demonstrate that windowing is essential to obtain an upper limit on the value of

the PSD power-law index. An upper limit is a requisite for meaningful cross-correlation

significance estimates which depend on the model used for the light curves. The method

used for error estimation is modified for one which provides a more intuitive procedure along

with indicating the presence of biases in the fitting procedure. The method is validated using

simulated data sets and found to be accurate with a typical error in β of less than ±0.3 for

cases in which the signal power is large compared to observational noise. The performance

of the method is degraded when fitting time series in which the signal power is comparable

to the observational noise (Figure 3.9). In these cases the procedure fails to provide a

reliable constraint on the shape of the PSD, a situation we can consider when analyzing our

data set by using the Neyman construction to obtain confidence intervals. We also check

the repeatability of the best fit value when running the procedure multiple times and find

that it improves when using a large number of simulated light curves. For an example using

the OVRO data set, we find that big improvements are expected when going from M=100

to M=1,000, but then the improvements are slow, and might not be worth the increased

computational time.
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Chapter 4

Characterization of the radio PSDs
for a large sample of blazars

4.1 Introduction

In addition to our study of the location of the high energy emission region in blazars

through correlated variability, another important goal of our program is to understand the

characteristics of the variability in the radio band, and their possible variation for different

classes of sources or cosmic evolution. Richards et al. (2011) present a study of the radio

variability using the modulation index, and find that Fermi detected blazars are a more

variable population than the sources not detected by Fermi. They also find some indications

of a difference between the variability properties of BL Lac versus FSRQ sources but at lower

statistical significance. The modulation index measures the variability without any regard

for the time domain information. In this chapter we go a step further into the time domain

and characterize the radio variability with the simplest power spectral density model of a

single power-law as for the sources in the cross-correlation sample studied in Chapter 6. For

this study we use all the 1593 blazars monitored with the OVRO 40 meter telescope blazar

monitoring program as described in Chapter 2 and study the variation of the measured PSD

power-law index for different source classes and redshifts. A detailed look at the properties

of the radio PSDs for the sources in the cross-correlation sample is presented in Chapter 6.

Our sample is the largest blazar sample monitored in the radio band but our light curves

are still short when compared to other radio monitoring programs with smaller sample sizes

like the University of Michigan Radio Observatory (UMRAO, Hughes et al., 1992) and the

Metsähovi Radio Observatory (Hovatta et al., 2007) which have been monitoring sources for
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decades, although at a slower cadence. One interesting question concerns the time variation

of the properties of the radio light curves as seen in X-ray binaries which show transitions

between different states on short time scales (e.g. Remillard & McClintock, 2006). The

similarity between the underlying emission mechanisms in these objects leads us to believe

that similar transitions could be observed in blazars and other AGNs on time scales in

proportion to the larger black hole masses (as has been claimed by Marscher et al., 2002,

for 3C 120). The longer time series available from these programs might be able to probe

the time scales of these transitions and allow us to explore changes in the characteristics

of the jets. In order to study the variation of source properties when different time scales

are considered, we characterize the PSDs for a sample of 51 sources observed at 14.5 GHz

by the UMRAO program from the mid 1970s to early 1990s and published in Hughes et

al. (1992). In their study the PSD power-law index is constrained indirectly by the use of

structure functions which under certain assumptions can reveal the properties of the PSD

for the simple power-law case. These conditions are not guaranteed to be valid in all cases of

interest as discussed by Emmanoulopoulos et al. (2010), along with other problems related

to the use of structure functions for short time series1. Here we reanalyze their data using

the method described in Chapter 3 to characterize the power-law index of the PSD directly

and compare the results with those from the structure function analysis. Because the two

programs use observations at similar frequencies, we can compare the evolution of the PSD

characteristics for these two non overlapping time periods in the sources with data in both

programs, and thus learn about possible changes in the variability on decades time scales.

4.2 Characterization of the PSDs for the radio sample

The quality of our radio light curves allows us to obtain constraints on the PSD shape for

a large number of sources. The PSDs are fitted with a single power-law model, but given

the large number of sources we perform a coarser fit that takes one tenth of the time of

the finer fits used for the cross-correlation sample discussed in Chapter 6. This allows us

to get results for all of them in about a week. In each case we test a range of values of β

in steps of ∆β = 0.1 and use M=100 light curves for the determination of the mean and

1For example they describe its shortcomings as a tool to determine characteristic time scales for the
variability in blazar light curves, a use that is often found in the blazar literature. A complete discussion of
those problems is out of the scope of this investigation but we recommend reading Emmanoulopoulos et al.
(2010) to anyone interested in using structure functions to characterize light curve variability.
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scatter of the model PSD at each tested value. The confidence bands are constructed with

a resolution of ∆β = 0.25 and interpolated for intermediate values and for each case we

simulate 100 light curves to determine the acceptance intervals. The search interval is taken

to be 0.0 ≤ βradio ≤ 3.5 as is done for the cross-correlation sample. In each case where a

PSD is computed we bin it in frequency intervals of 1.3 dex if the bin contains at least 4

points. In bins with less than 4 points the width is increased in steps of 1.1 dex until it

contains at least 4 points. Each simulated light curve has a time resolution of 1 day and a

length of 20 years.

4.2.1 Possible outcomes of the PSD fitting procedure

Before presenting the results we briefly discuss the possible outcomes of the process and

how the results would be used. There are 4 possible outcomes for the procedure, which are

described below.

Successful fit: In this case proper upper and lower limits on β are obtained. In this

case we can directly use the constraint on the evaluation of the significance.

Lower limit: In this case the procedure returns a proper lower limit, but the upper

limit is equal to the maximum of the search interval and the procedure fails to return a

proper upper limit for β so that the result cannot be used directly in the evaluation of the

significance.

No constraint: The procedure cannot favor any particular interval in β or the goodness

of fit was too low to consider the fit a good one. We consider a fit acceptable if the p-value

is > 0.05. This result cannot be used directly in the evaluation of the significance.

No variation detected: In this case it is not possible to run the fitting procedure

because no variation is detected and we cannot normalize the simulated light curves. This

happens when Equation 3.8 does not have a real solution for A. The reason being that all

the variance in the data can be explained by the observational noise, and no variance in

the signal is required. In this case we do not get any direct constraint from the method,

but the fact that no variance from the signal is needed to explain the variability means that

we are not detecting any source variability so we cannot measure its PSD nor estimate the

significance of correlations.
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4.2.2 Results of the PSD fit

We have enough signal strength to test 1259 sources and the results of the successful fits are

presented in Table C.1. At the level of 68.3% confidence intervals for the radio light curves

we obtain successful fits for 424 sources. For the 82.6% confidence intervals required to

combine both fitted values in the significance estimate2, we find successful fits for the radio

light curves for 238 sources. These sources have the highest quality fits and are the ones

used in the following sections to explore statistical differences between source populations.

The distribution of best fit power-law index of the PSDs for the 238 highest quality fits

is consistent (p = 0.011) with a single value equal to the sample mean of 2.25±0.02 and can

be described by a single Gaussian with parameters µ = 2.3 and σ = 0.4. The distribution

is shown in Figure 4.1.
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Figure 4.1: Distribution of power-law exponents of the radio light curve PSDs for the
complete OVRO sample. The distribution is consistent with a single value equal to the
sample mean and is described with a normal distribution with µ = 2.3 and σ = 0.4, which
is plotted with a dashed line.

2The details are discussed in the first part of Section 6.2
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4.3 Variation of the power-law index distribution for differ-

ent populations

Here we investigate possible differences between the distributions of the PSD shapes for

different subclasses of blazars. We consider optical classes which divide them into two

groups, BL Lac and FSRQ, and spectral energy density (SED) classes which separate them

by the value of the synchrotron peak into low-synchrotron-peaked blazar (LSP, νSy
peak < 1014

Hz), intermediate-synchrotron-peaked blazars (ISP, 1014 Hz < νSy
peak < 1015 Hz) and high-

synchrotron-peaked blazars (HSP, 1015 Hz < νSy
peak) (Abdo et al., 2010).

In this section we explore the relationship between these different classes and the proper-

ties of the radio PSD. We also explore possible variations with redshift which could indicate

cosmic evolution in the variability properties.

Comparisons of the distributions of the power-law index of the radio PSD for different

classes of object are presented in Figure 4.2 for the gamma-ray detected versus gamma-ray

non-detected sources, Figure 4.3 for BL Lacs versus FSRQs, Figure 4.4 for LSPs versus ISPs

(there are no HSP sources with high-quality PSD fits) and Figure 4.5 for the low-redshift

sources (z ≤ 1) versus high-redshift sources (z > 1).

From the figures it is clear that there are no obvious differences between the power-law

index distributions for the different source classes. To make a quantitative statement about

the comparison between the distributions we perform a two-sample Kolmogorov-Smirnov

test of the null hypothesis that both samples come from the same parent distribution. In

none of the cases we can reject the null hypothesis at the 0.01 significance level, thus we

conclude that there is no difference in the distribution of the power-law index of the PSD for

these different source classes. In the case of the gamma-ray-loud versus gamma-ray-quiet

we get a p-value of 0.69, for the FSRQ versus BL Lac we get a p-value of 0.67, and for the

high versus low redshift we get a p-value of 0.016. We also perform a K-S test for the case

of ISP versus LSP and consistent distributions, but the small number of sources in the ISP

category make this result less reliable.

In all cases the distributions are very similar, except for the case of the high versus low

redshift sources which gives a small p-value, but not enough to reject the null hypothesis at

the chosen significance level.
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Figure 4.2: Distribution of power-law exponents of the radio light curve PSDs for gamma-
ray-loud versus gamma-ray-quiet blazars
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Figure 4.3: Distribution of power-law exponents of the radio light curve PSDs for FSRQ
versus BL Lac blazars

4.4 Comparison of the radio PSD fits with historic light

curves from the UMRAO program

The University of Michigan Radio Astronomy Observatory (UMRAO) carried out a blazar

monitoring program from 1965 until early 2012. Many of those sources are in our monitoring

program, so we can use them to study possible variations of the PSD in the radio band.

With this purpose we take the 51 light curves published in Hughes et al. (1992) that have
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Figure 4.4: Distribution of power-law exponents of the radio light curve PSDs for LSPs
versus ISPs. There are no HSP sources with high-quality PSD fits.
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Figure 4.5: Distribution of power-law exponents of the radio light curve PSDs for low
versus high-redshift sources

data at 4.8, 8.0 and 14.5 GHz, with a length and sampling interval that are different for

each source. We fit the PSDs of the 14.5 GHz light curves using a simple power-law model

as in the case of the OVRO sample. Only 47 light curves have their PSDs fitted, the other

4 have large gaps in their light curves and a good fit could not be obtained, so we dropped

these from the sample.
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4.4.1 Distribution of PSD power-law index for the UMRAO sample

In each case we test a range of values of β in steps of ∆β = 0.05 and use M=100 light

curves for the determination of the mean and scatter of the model PSD at each tested value.

The confidence bands are constructed with a resolution of ∆β = 0.25 and interpolated

for intermediate values and for each case we simulate 100 light curves to determine the

acceptance intervals. The search interval is taken to be 0.0 ≤ βradio ≤ 3.5 as is done for

the cross-correlation sample. In each case where a PSD is computed we bin it in frequency

intervals of 1.3 dex if the bin contains at least 4 points. In bins with less than 4 points the

width is increased in steps of 1.1 dex until it contains at least 4 points. Each simulated

light curve has a time resolution of 1 day and a length of 50 years.

As with the case of the cross-correlation sample (Section 6.2.1), the fitting procedure

does not provide a proper confidence interval in all cases. A summary of the results for all

the sources is included in Table D.1. In the case of 68.3% confidence intervals we obtain

successful fits for 27 sources, lower limits for 10 sources and no constraints for 10 sources.

For the 82.6% confidence intervals required to combine with a gamma-ray PSD fit in the

significance estimate, we find for the radio light curves successful fits for 24 sources, lower

limits for 13 sources and no constraints for 10 sources. The 1σ errors on the PSD fits range

from 0.03 to 1.3 with a median of 0.2.

As in the case of the cross-correlation sample, we examine the distribution and find that

considering the best fits (24 sources with higher quality fits) the distribution is consistent

with single value equal to the sample mean of 2.38±0.06 and can be described with a single

Gaussian with µ = 2.4 and σ = 0.3 (p = 0.16). A K-S test reveals that this distribution is

consistent with the distribution found for the complete radio sample with p = 0.45. This

distribution is shown in Figure 4.6.

4.4.2 Comparison between the PSD fits for the UMRAO and OVRO light

curves

There are 43 UMRAO sources in the OVRO monitoring program for which we can in

principle compare the values of the PSD fits using the light curves from these two programs.

This comparison is valid under the assumption that the 14.5 GHz frequency of the UMRAO

observations and the 15 GHz of the OVRO program are close enough that any difference
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Figure 4.6: Distribution of power-law exponents of the radio light curve PSDs of the
UMRAO sample. The distribution is consistent with single value equal to the sample mean
and is described with a normal distribution with µ = 2.4 and σ = 0.3, which is plotted with
a dashed line.

between the PSDs is due to variations in the sources and not to the different frequency of

the observations.

There is a significant overlap between the two samples as described below. If we consider

only the 47 sources with good UMRAO data, there are 40 that are also in the OVRO

program. Of these 40, only 21 have well constrained UMRAO PSDs, and 23 have well

constrained OVRO PSDs.

In the current study we are mostly interested in the relation between the PSD power-law

index obtained from the UMRAO and the OVRO data sets for the sources that are con-

strained in both data sets, as these could indicate the existence of changes in the variability

characteristics in decades time scales. There are 12 sources in which we can do this and

their results are shown in Table 4.1.

For these sources the error on the power-law index fit is generally smaller for the UMRAO

light curves, with a mean ratio between the OVRO errors and UMRAO errors of 2.0 and a

standard deviation of 1.5.

In 9 out of 12 cases the values we obtain are consistent within the error bars, so in

this respect there is a general agreement between these measurements that use data for

non-overlapping periods of time.

For two out of three sources in which the values are not consistent within the errors bars
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Table 4.1: PSD fit results for sources in the UMRAO and OVRO data set
with good quality fits in both programs. Left half of the table is for the
UMRAO light curves and includes the exponent of the structure function bs
as reported in Hughes et al. (1992). The right half is for the OVRO light
curves.

UMRAO name β βlow βup bs OVRO name β βlow βup

0048−097 1.8 1.6 2.1 1.0 J0050−0929 2.3 2.0 2.5
0420−014 2.3 2.1 2.5 1.2 J0423−0120 2.5 2.2 2.7

3C120 2.5 2.5 2.6 1.0 J0433+0521 2.2 1.9 2.4
0607−157 2.7 2.6 2.8 1.3 J0609−1542 2.3 2.0 2.5
0754+100 2.2 1.8 2.7 1.6 J0757+0956 2.0 1.9 2.4
0814+425 2.0 0.9 3.1 1.2 J0818+4222 2.0 1.1 2.3

3C273 2.2 2.0 2.3 1.15 J1229+0203 2.2 1.9 2.5
3C279 2.2 2.1 2.4 1.1 J1256−0547 2.4 2.2 2.6

1335−127 2.3 2.1 2.5 1.1 J1337−1257 2.6 2.1 3.0
NRAO530 2.4 2.0 2.6 0.8 J1733−1304 2.0 1.7 2.2
2145+067 3.0 2.9 3.2 1.65 J2148+0657 2.2 2.0 2.5
3C454.3 2.5 2.5 2.6 1.55 J2253+1608 2.4 2.1 2.6

(3C 120 and 0607−157) the difference is within the repeatability error of about 0.1 we found

in Section 3.4.2.5. In the case of 2145+067 the difference is larger, and therefore this is the

only source in which we have evidence for a change in the value of PSD power-law index.

Figure 4.7 shows a comparison of both measurements in which the horizontal axis is the

source index as in Table 4.1 and the vertical one the value of the power-law index. Sources

with discrepant measurements of β have been labeled to make them easier to identify.

4.4.3 Comparison of power-law indices estimated from the structure func-

tion and direct fits of the PSD

In the original analysis of the UMRAO data set (Hughes et al., 1992), structure functions

were used to constrain the power-law index of the PSD. In the ideal case, the exponent of

the structure function (bs in Table D.1) is related to the power-law exponent of the PSD

(β) by β = bs + 1. Figure 4.8 presents a comparison of the power-law index obtained from

the structure function and from the direct fit to the PSD for the 24 sources with better

quality direct PSD fits.

There is agreement between the two measurements for 14 sources, which is about half

the sample we use in this comparison. The difference is not large for the 10 sources in



100

0 2 4 6 8 10 12

source index

0.5

1.0

1.5

2.0

2.5

3.0

β

3
C

1
2

0

0
6

0
7

-1
5

7

2
1

4
5

+
0

6
7

Figure 4.7: Comparison of the power-law index of the PSD measured for the OVRO light
curve (blue) and for the UMRAO light curve (red). The horizontal axis is a label associated
with the order in which the sources appear in Table 4.1 and the vertical one the value of
the power-law index. Only the sources in which both measurements are not consistent are
labeled.

which there is no agreement between the two methods but even in this case the direct PSD

fit provides a way to estimate the uncertainty in the fit while this has not been provided

for the structure function case. The direct PSD fit can also be generalized to study more

complex PSD shapes which might become necessary for very long and well sampled light

curves.

4.5 Summary

We have estimated the power-law index of the radio PSDs for all the sources in our moni-

toring program and we found that its distribution can be described by a normal distribution

with µ = 2.3 and σ = 0.4. We also investigated possible variations of the power-law index

across different source populations but found no evidence for such a variation when dividing

the sources by gamma-ray-loud versus gamma-ray-quiet, FSRQ versus BL Lac, SED class,

and redshift.
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Figure 4.8: Comparison of the power-law index of the PSD as measured from the structure
function (green diamonds, Hughes et al., 1992) and direct PSD fit (red symbols) for the 24
sources with better direct PSD fits are included. The sources are taken from Table D.1 and
are labeled in the horizontal axis by the RA order used there. Only the sources in which
the two measurements are not consistent are labeled.

An interesting question is the possible change of the PSD parameters with time. To

investigate this we fitted the PSDs to historic data from the UMRAO program and compared

them with our determination. It is found that for the 12 sources with good quality PSD fits

in both programs, 9 have consistent PSDs, two are slightly different and in only one case is

the difference large enough to be considered significant.

We also found that the distribution of the 24 UMRAO sources with good quality fits

can be described with a normal distribution with µ = 2.4 and σ = 0.3, which is in turn

consistent with the distribution found in the OVRO population.

We also compared estimates of the power-law index of the PSD obtained indirectly by

structure function fits (Hughes et al., 1992) and our direct fits of the PSDs. We found

agreement in 58% of the cases and relatively small differences in the inconsistent cases. In

spite of this agreement we still think that direct PSD fits should be the preferred method

since it provides an uncertainty estimate and can also be generalized to more complex PSD

shapes.
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From these results we conclude that the distribution of radio PSDs for blazars is consis-

tent with a single distribution and that the value for an individual source is stable in time

for most sources on times scales of a few decades.
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Chapter 5

Significance of cross-correlations
between two wavebands

5.1 Introduction

The key goal of the OVRO 40 m telescope blazar monitoring program is to understand the

relation between the radio and gamma-ray emission in blazars in order to constrain the

location of the gamma-ray emission site with respect to the radio emitting region. This will

help us constrain theoretical models for the blazar emission mechanism at high energies,

furthering our understanding of the basic physics in this class of objects.

Our approach is to search for correlated variability between these two energy bands

which would be a strong indication of co-spatial location of the emission regions. The study

of cross-correlations between two energy bands presents a number of challenges from the

data analysis and statistical point of view: Among these are uneven sampling, non-equal

error bars and short length of the time series.

This chapter deals with the statistical problem of quantifying the significance of the

cross-correlation between two time series in the case of uneven sampling and non-uniform

measurement errors. The two time series are assumed to contain no upper or lower limits,

a subject which is out of the scope of the current analysis.

Two alternative ways to estimate the cross-correlation coefficient are described in Section

5.2. Standard cross-correlation tests that assume that the data are uncorrelated are not

applicable in this case, in which we have to explicitly consider the existence of long term

correlations in the time series (i.e., flare like features). A description of the method we

use to estimate the significance and a discussion motivating it are given in Section 5.3.
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Different approaches have been used in the literature by different authors, but the criteria

they have used to select an alternative do not consider the measurement of significance,

which is our primary concern. In Section 5.4, we propose a way to choose the best method

based on the significance levels of the correlation coefficients found in simulated data with

known correlation properties. A series of tests comparing these alternatives is presented in

Section 5.5. This is followed by a brief discussion of the dependence of the significance on

the model used for the light curves (Section 5.6.1), the error of the significance estimates

obtained using Monte Carlo methods (Section 5.6.2), and an estimation of the correction for

multiple hypothesis tests to allow for the fact that a range of time lags is considered. These

issues have been ignored in the literature, producing significance estimates that might not

be repeatable due to the small number of simulations used or that might be less significant

due to the broad time lag range used to search for cross-correlation peaks. The chapter

concludes with a summary of our findings and general recommendations for studies using

this or other methods based on Monte Carlo simulations.

5.2 The estimation of the cross-correlation function

Our basic data sets are two time series we call A and B. These time series are time ordered

sequences of triplets (tai, ai, σai) with i = 1, ..., N and (tbj , bj , σbj) with j = 1, ..., P . In both

cases txi is the observation time, xi is the measured value of a quantity of interest (e.g. flux

density, photon flux, etc.) and σxi an estimate of the observational error associated with

the measurement.

Since the time interval between successive samples is not uniform and the A and B time

series are not sampled simultaneously we need to resort to some kind of time binning in

order to measure the cross-correlation. The cross-correlation between two unevenly sampled

time series can be measured using a number of different approaches. The usual approach

is to generalize a standard method and use time binning to deal with the uneven sampling.

Here we consider the discrete correlation function (Edelson & Krolik, 1988) and the local

cross-correlation function (e.g., Welsh, 1999). These methods provide a way of estimating

the cross-correlation coefficients, but do not provide an estimate of the associated statistical

significance. This is discussed in Section 5.3.

The two most commonly found alternatives are presented below.
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5.2.1 The Discrete Correlation Function (DCF)

The discrete correlation function was proposed by Edelson & Krolik (1988) and developed

in the context of reverberation mapping studies. For two time series ai and bj , we first

calculate the unbinned discrete correlation for each of the pairs formed by taking one data

point from each time series

UDCFij =
(ai − ā)(bj − b̄)

σaσb
(5.1)

where ā and b̄ are the mean values for the time series, and σa and σb are the corresponding

standard deviations. This particular value, UDCFij , is associated with a time lag of ∆tij =

tbj − tai. The discrete cross-correlation is estimated within independent time bins of width

∆t, by averaging the unbinned values within each bin,

DCF(τ) =
1

M

∑
UDCFij , (5.2)

the uncertainty in the binned discrete cross-correlation is given by the scatter in the un-

binned values for each time bin and is given by

σDCF(τ) =
1

M − 1

(∑
[UDCFij −DCF(τ)]2

)1/2
(5.3)

In the expressions above the sum is over the M pairs for which τ ≤ ∆tij < τ + ∆t, where τ

is the time lag, and all the bins have at least two data points in order to get a well-defined

error. In practice it is recommended to choose M larger that 2 to reduce the effect of

statistical fluctuations.

In this case the mean and standard deviation use all the data points in a given time series,

but the DCF for a given time lag only includes overlapping samples. This particular choice

for normalization produces values of the DCF which are not restricted to the usual [−1, 1]

interval of standard correlation statistics. This immediately challenges the interpretation

of the amplitude of the DCF as a valid measure of the cross-correlation and invalidates the

use of standard statistical tests developed for other correlation statistics, forcing us to find

alternative ways to estimate the significance of correlations. A modification that corrects

this normalization problem but not the significance evaluation issue is described below.
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5.2.2 The Local Cross-Correlation Function (LCCF)

Motivated by the normalization problems presented by the DCF, some authors have pro-

posed a different prescription (e.g., Welsh, 1999). In this case we only consider the samples

that overlap with a certain coarse grain of the time delays, which is equivalent to the width

of time bins ∆t. In this case we have

LCCF(τ) =
1

M

∑
(ai − āτ )(bj − b̄τ )

σaτσbτ
(5.4)

where the sum is over the M pairs of indices (i, j) such that τ ≤ ∆tij < τ + ∆t. The

averages (aτ and bτ ) and standard deviations (σaτ and σbτ ) are also over the M overlapping

samples only.

The main justification for using this expression instead of the DCF is that we recover

cross-correlation coefficients that are bound to the [−1, 1] interval. This latter property is a

result of using only the overlapping samples to compute the means and standard deviations,

which in effect reduces the problem to a standard cross-correlation, that is bounded to [−1, 1]

as a consequence of the Cauchy-Schwarz inequality. Additionally Welsh (1999) shows that

the LCCF can determine time lags more accurately than the DCF in simulated data sets.

These are certainly desirable properties, but as explained in Section 5.3 they do not solve

the estimation of significance problem.

5.2.3 Other schemes

Any standard cross-correlation method can be generalized to unevenly sampled time series

as follows. First we decide on a time binning interval, ∆t. We then start delaying one of the

time series by arbitrary amounts τ . Comparing the times for the delayed and unmodified

time series we find the set of overlapping samples, as the ones for which ∆tij < ∆t. After this

we have a set of data pairs (ak, bk) with k = 1, ...,K, where K is the number of overlapping

samples. At this point we can forget about the time variable and treat these data pairs as

time independent. The LCCF as described in Section 5.2.2 is naturally understood under

this scheme. Any standard cross-correlation technique can be used on this new subset. In

particular we can apply survival analysis techniques to allow for the use of upper limits in the

time series, or other non-parametric tests that can give us more robust results. Likewise the

DCF can also be interpreted in this way if we substitute the mean and standard deviations
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from the overlapping samples by the values obtained for the complete time series.

A number of other alternatives have been proposed in the literature to handle the prob-

lem of measuring the correlation between unevenly sampled time series. Among them are the

interpolated cross-correlation function (ICCF; Gaskell & Peterson, 1987), inverse Fourier

transform of the cross-spectrum (Scargle, 1989) and the z-transformed cross-correlation

function (Alexander, 1997). These are only mentioned here to guide the reader to other

alternatives but are not explored in this work.

5.2.4 Estimation of the uncertainty in the location of the cross-correlation

peak

A related issue is the estimation of the uncertainty in the location of the cross-correlation

peaks. This is sometimes confused by some researchers with the estimation of the signifi-

cance, but here we are assuming that we have already a significant correlation and attempt

to estimate the error in the location of the peaks due to sampling and observational er-

rors. The standard method used by the reverberation mapping community (Peterson et al.,

1998) uses bootstrapping and randomization to generate slightly modified versions of the

original data set to quantify the uncertainty in the location of the cross-correlation peak.

A modified data set is constructed by the application of two procedures. First is “random

subset selection” in which a bootstrapped light curve is constructed by randomly selecting

with replacement samples from the original time series. Secondly we perturb the selected

flux measurements by “flux randomization”, in which normally distributed noise with a

variance equal to the measured variance is added to the measured fluxes. Each of these

modified data sets is cross-correlated using the method of our choice and a value for the

cross-correlation peak of interest is measured. By repeating this for many randomized data

sets, a distribution of measured time lags for the cross-correlation peaks is obtained. This

distribution is used to construct a confidence interval for the position of the peak.

5.2.5 Light curve detrending

There has been some discussion in the literature about the effects of detrending the light

curves in order to improve the accuracy of the time lag estimates. Welsh (1999) strongly

recommended removing at least a linear trend from the light curves. His results are based
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on simulations with even sampling and do not directly apply to uneven sampling as shown

by Peterson et al. (2004), who find that detrending does not improve accuracy and produces

large errors in some cases. Based on that we have decided not to detrend the light curves.

We warn the reader that care must be taken when correlating time series where long term

trends are present as these are guaranteed to produce large values of the cross-correlation

coefficient. Our studies are mostly concerned with the correlation between periods of high

activity in different energy bands for light curves that appear to have a detectable “quies-

cent” level. This is generally true for gamma-ray light curves, but is not always true for

radio light curves. Radio light curves showing a single dominant increasing or decreasing

linear trend should be interpreted with care as they can produce spurious correlations. In

our opinion the only remedy for those cases is to collect longer light curves.

5.3 The estimation of the significance

A complete quantification of the cross-correlation needs an estimate of the statistical sig-

nificance of the given statistic. There are well defined procedures to do this using standard

methods like the Pearson’s correlation coefficient, Spearman’s ρ and others. In our case we

need to consider the intrinsic correlation between adjacent samples of a given time series

which are produced by the presence of flare-like features which are a distinctive characteris-

tic of blazar light curves. This behavior can be modeled statistically by red-noise stochastic

processes (e.g., Hufnagel & Bregman (1992) in the radio and optical, Lawrence & Papadakis

(1993) in the X-rays and Abdo et al. (2010) in gamma-rays). Red-noise processes are charac-

terized by their power spectral density (PSD), show variability at all time scales and appear

as time series in which flare like features are a common phenomenon. The frequent appear-

ance of flares means that high correlation coefficients between any two energy bands are to

be expected even in the absence of any relation between the processes responsible for their

production. To illustrate this point Figure 5.1 shows simulated light curves with power-law

power spectral densities (PSD ∝ 1/νβ). These and all the simulated light curves used in

this work are generated using the method described in Timmer & Koenig (1995) which

randomizes both the amplitude and phase of the Fourier transform coefficients according

to the statistical properties of the periodogram.

In fact, every time we cross-correlate two time series, each of which has a flare we
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will get a peak in the cross-correlation at some time lag. The real question then is how

to quantify the chances of that peak being just a random occurrence. The problem is

further complicated by the uneven sampling and non-uniform errors, so the only feasible

method is to use Monte Carlo simulations. Standard methods are not suitable for this

analysis as they assume that the data are uncorrelated, and ignoring the correlations will

lead to an overestimate of the significance of the cross-correlations and to erroneous physical

interpretation.

In Figure 5.2 we show the results of cross-correlating the independently simulated light

curves from Figure 5.1 which have different values of the power-law exponent for the power

spectral density. It can be seen that correlating light curves with steep power spectral den-

sity, which show frequent flare-like features, can result in high cross-correlation coefficients

that have nothing to do with a physical relation between the light curve pairs. The results

illustrate how easy it is to get high cross-correlations for unrelated light curves with steep

PSDs and the dangers of interpreting them as signs of a physical connection. Standard sta-

tistical tests that assume uncorrelated data are equivalent to the case of white noise time

series (PSD ∝ 1/ν0) which is illustrated in the upper panels of Figure 5.2. Since it is evident

that blazar light curves are more similar to the simulated light curves with steep PSDs is

easy to see how misleading is to use statistical tests that ignore the long term correlations

in the individual time series.



110

1.0

0.5

0.0

0.5

1.0

fl
u
x

(1) (2) (3)

1.0

0.5

0.0

0.5

1.0

fl
u
x

(4) (5) (6)

0 20 40 60 80
time

1.0

0.5

0.0

0.5

1.0

fl
u
x

(7)

0 20 40 60 80
time

(8)

0 20 40 60 80
time

(9)

Figure 5.1: Illustration of the time domain characteristic of simulated light curves with
different power-law power spectral density. In all panels the horizontal axis is time and the
vertical one is amplitude, both in arbitrary units. Top panels 1, 2 and 3 for PSD ∝ 1/ν0,
central panels 4, 5 and 6 for ∝ 1/ν1 and lower panels 7, 8 and 9 for ∝ 1/ν2. The light
curves with steeper PSD show more flare-like features that can induce high values of the
cross-correlation coefficient as shown in Figure 5.2.
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Figure 5.2: Examples of the cross-correlation of simulated light curves shown in Figure
5.1 using the DCF (upper figure) and LCCF (lower figure). In all panels the horizontal axis
is time lag in arbitrary units and the vertical one is the amplitude of the cross-correlation.
Upper panels, cross-correlation of independent β = 0.0 light curves. Central panels, cross-
correlation of independent β = 1.0 light curves. Lower panels, cross-correlation of inde-
pendent β = 2.0 light curves. The pair of numbers on the upper left corner of each panel
are the light curve numbers from Figure 5.1 which are correlated in each case. The light
curve pairs have been simulated independently and yet show large peaks in the discrete
cross-correlation function for the cases of β = 1.0 and 2.0. The appearance and amplitude
of peaks in the cross-correlation appears to increases for steeper power spectral densities.
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5.3.1 Monte Carlo procedure for the estimation of the significance

In order to obtain a Monte Carlo estimate of the distribution of random cross-correlations

we need a model for the light curves. A commonly used model for time variability in

blazars and other AGNs is a simple power-law power spectral density (PSD ∝ 1/νβ), as has

been measured for small number of sources at different wavelengths. Of particular interest

for this work are the results presented in Abdo et al. (2010) where they find a value of

βγ = 1.4± 0.1 for bright BL Lacs and βγ = 1.7± 0.3 for the bright FSRQs in the gamma-

ray band. In the radio band a number of publications have dealt with the issue. It has been

found that βradio = 2.3± 0.5 for 3C279 at 14.5 GHz (Chatterjee et al., 2008) using a fit to

the power spectral density for an 11 year light curve. Additional indirect estimates for the

power spectral density power-law index are obtained by Hufnagel & Bregman (1992) using

structure function fits. For five sources, they obtain values of α = 0.4 ± 0.2 to 1.5 ± 0.1,

where α is the exponent on the structure function SF(τ) ∝ τα. The same method is used

for 51 sources by Hughes et al. (1992) who found that most values of α are from 0.6 to 1.8,

while a couple are closer to 0. However the often assumed relation between the exponents of

the power spectral density and the structure function (β = α+1) is only valid under special

conditions not necessarily found in real data sets (Paltani, 1999; Emmanoulopoulos et al.,

2010). The structure function has been widely used in blazar variability studies but its

interpretation is not straightforward as has been recently discussed by Emmanoulopoulos

et al. (2010), who used simulations to demonstrate that many of the features are associated

with the length and sampling patterns of the light curves. For these reasons, values obtained

from the structure function can only be taken as a rough measure of the properties of the

time series, and therefore we do not use them here. In this chapter we assume that βγ = 1.5

and βradio = 2.0, and consider them as reference values that can be used to take a first

look at the statistical significance of the peaks and to test the methods we develop. A

proper characterization of the PSDs is presented in Chapters 3 and 6 in which we discuss

the method we use and its application to our data set.

To estimate the significance of the cross-correlation coefficients, we use a Monte Carlo

method to estimate the distribution of random cross-correlations by using simulated time

series with statistical properties similar to the observations. These and related ideas have

been applied by several authors (e.g., Edelson et al., 1995; Uttley et al., 2003; Arévalo et
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al., 2008; Chatterjee et al., 2008). The details of the procedure vary from author to author

so we provide a detailed description of our implementation to allow others to evaluate and

reproduce our analysis.

The algorithmic description of the method we use to measure the significance of the

time lags is as follows:

• We calculate the cross-correlation coefficients between the unevenly sampled time

series using one of the methods described in Section 5.2.

• Using an appropriate model for the PSDs at each energy band we simulate time series

with the given noise properties and sampled exactly as the data. The resulting flux

densities are perturbed by adding noise according to the observational errors. We

calculate the cross-correlation coefficients of the simulated light curve pairs using the

same method as for the real data.

• We repeat the previous step for a large number of radio/gamma-ray simulated light

curve pairs and accumulate the resulting cross-correlation coefficients for each time

lag.

• For each time lag bin the distribution of the simulated cross-correlation coefficients is

used to estimate the significance levels of the data cross-correlation coefficients.

An additional detail is that the gamma-ray time series are the result of long integrations

so each simulated data point is generated by averaging the required number of samples to

simulate the time binning. For the radio light curves the integrations are so short that

the closest sample can be chosen. Figure 5.5 shows the application of the method for an

example taken from our monitoring program using β = 2 in both bands with the DCF and

the LCCF. In both cases the cross-correlation coefficient at each time lag is represented by

the black dots and the distribution of random cross-correlations by the colored dotted lines.

A time lag τ > 0 means the gamma-ray emission lags the radio and τ < 0 the opposite.

The red lines contain 68.27% of the random cross-correlations so we refer to them as the

1σ lines, the orange lines contains 95.45% (2σ), and the green lines contains 99.73%(3σ)1.

The colored contours provide a quick way to evaluate the results of the cross-correlation

significance estimate and are used for this purpose throughout this thesis. In this case

1In what follows we refer to them as the 1, 2 and 3σ lines or significance levels
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although the amplitudes are relatively high for both the DCF and LCCF, the significance

is not even 2σ indicating only marginal evidence of a correlation.
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Figure 5.3: Example of cross-correlation significance results. Upper panel shows the radio
(upper) and gamma-ray (lower) light curves for J0237+2848. Lower left panel is for the
DCF and lower right panel for the LCCF. The black dots represent the cross-correlation
for the data, while the color contours show the distribution of random cross-correlations
obtained by the Monte Carlo simulation with red for 1σ, orange for 2σ and green for 3σ
significance. A time lag τ > 0 indicates the gamma-ray emission lags the radio and τ < 0
the opposite.

5.4 Characterization of the methods

The method used to estimate the significance described in Section 5.3 can in principle be

used with any of the different alternatives presented in Section 5.2, but ideally we would

like to make a choice that is best suited to the problem we are facing. A couple of different
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practices have been followed in the literature for reasons that are not always made explicit.

Two examples where the choice is explicitly justified are White & Peterson (1994) who used

the interpolated cross-correlation function and Welsh (1999) who recommended using the

LCCF. In both cases the argument in favor of their chosen method is mostly to reduce

the bias and error in the measured time lags with respect to the true one. Furthermore

White & Peterson (1994) argue that for some time lags the DCF can become meaningless

with values outside the [−1, 1] interval for standard correlation tests. As we said before,

this does not immediately invalidate the DCF but it invalidates the application of standard

statistical tests to evaluate the significance of a given cross-correlation amplitude. The

reduction of bias and error in the measurement of the time lags is obviously of concern, but

in our case we are also interested in the quantification of the significance. This means that

we need to compare the methods using a metric that specifically measures the detection

efficiency of correlations within a chosen error tolerance for the recovered time lag. Ideally

we would like to do this using a physical model for the correlation properties of the time

series. Unfortunately such predictions are not currently available and we can only test the

method using some ideal cases with simple and known correlation properties. The results

of these tests are presented in Section 5.5.

Below we define a few basic concepts from hypothesis testing, describe the test we use

to choose the best method and provide a simple algebraic relation between the DCF and

LCCF that helps explain their differences.

5.4.1 A brief review of hypothesis testing

In what follows we provide definitions for some terms that are often used in the following

chapters. The presentation is based on Beringer et al (2012), which can be consulted in

case additional details or references are needed.

In a hypothesis test we have to decide between two alternative hypotheses to explain

the outcome of an experiment; they are usually called H0, the null hypothesis, and H1, the

alternative hypothesis.

In taking a decision we can make two kinds of errors:

• Type-I error : rejecting H0 when it is in fact true

• Type-II error : accepting H0 when it is in fact false
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The chances of making those errors can be quantified by two numbers:

• α: the probability of making a type-I error, commonly known as the significance level

of the test

• β: the probability of making a type-II error. We commonly talk about the power of

the test which is defined as 1− β

In some cases we have a well defined null hypothesis but no explicit alternative hypoth-

esis. In these cases we can define a statistic t whose value is related to the agreement of the

data with the null hypothesis. The statistic t is a random variable under the null hypoth-

esis with probability density function g(t|H0), which gives the probability of the outcome

t under the null hypothesis H0. The p-value is defined as the probability of finding t in a

region of equal of lesser compatibility with H0. For example if we take t to be a correlation

coefficient (the DCF or LCCF at a given time lag in this case), a small value close to zero

is more compatible with a null hypothesis of no correlation, while a large value is less com-

patible and hence has a larger chance of representing a real correlation. For this case the

p-value is given by

p =

∫ tmax

tobs

g(t|H0)dt (5.5)

where tobs is the observed cross-correlation coefficient value and tmax is 1 for the LCCF and

∞ for the DCF. The null hypothesis is rejected if p ≤ α.

When quoting the results of a significance test we can use the p-value or an equiva-

lent significance Z defined as Z = Φ−1(1 − p), where Φ is the cumulative distribution of

the standard normal distribution and Φ−1 is its inverse. This is the formal definition of

significances quoted as Zσ which is more common in astronomy than the p-values.

5.4.2 Application to our statistical test

The procedure described in Section 5.3 provides an estimate of the p-value of a given data

set under a given null hypothesis defined by the model used to generate the Monte Carlo

light curve pairs. The significance level of the test (α) is set by construction by simply

rejecting the null hypothesis when p ≤ α. The case for the power of the test is harder

because we have a well defined null hypothesis of uncorrelated time series with a given
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PSD, but not a well defined alternative hypothesis as we have not specified a predictive

physical model for the correlation between the two wavebands. Estimating the power of the

test is not possible without a model for the correlation, but we can get some idea for it by

testing the detection efficiency for simple cases in the way described below.

The procedure we use consists in generating simulated data sets with known correlation

properties and similar sampling as the data. The simulated data sets are then run through

the same procedures as the data and the fraction of cases where we can successfully detect

the correlation is the power or detection efficiency of the test for the particular model. We

can never test all the cases so only a few idealized models can be tested to at least compare

different methods.

We test the properties of the method by using it in simulated identical time series with

a time shift, sampled in the same way as the data. We test a few possible delays in the

ranges we find in the data. This is the ideal case of the best possible correlation. Since this

is not a physical model for the relation between the two energy bands, it only provides a

relative indication of the detection efficiency. Its most useful feature is that it provides an

objective way to compare different approaches to search for correlations, as we can choose

between methods by comparing their detection efficiencies.

5.4.3 Relation between the DCF and LCCF

In Section 5.5 we perform a series of tests designed to help us compare the detection effi-

ciency of the DCF and LCCF. In looking at these results is its useful to consider the relation

between those two correlation measures.

From our previous discussions we can see that the only difference between the DCF

and LCCF is in the values used for the means and standard deviations. In the case of

the DCF the means and standard deviations are calculated from the complete time series

(ā, b̄ for the means and σa, σb for the standard deviations), while for the LCCF only the

overlapping samples at each time lag are used (āτ , b̄τ for the means and σaτ , σbτ for the

standard deviations). It can be shown that the two are related at a given time lag by

DCF(τ) = LCCF(τ)
σaτσbτ
σaσb

+
(āτ − ā)(b̄τ − b̄)

σaσb
. (5.6)

This linear relation has coefficients that depend on the sampling pattern and the overlap
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between the two time series at different time lags. For long stationary time series the means

and variances of the overlapping and complete time series will be identical and the DCF

will equal the LCCF. For short or non-stationary time series the coefficients will make the

DCF different from the LCCF.

Deviations of the multiplicative coefficient (σaτσbτσaσb
) from 1 change the amplitude of the

DCF, and deviations of the additive coefficient (āτ−ā)(b̄τ−b̄)
σaσb

from 0 change the zero point

of the DCF. The combination of these variations explains why the DCF is not bounded to

the [−1, 1] interval as the LCCF is, and can also explain why they have different detection

efficiencies.

5.5 Comparison of the DCF and the LCCF

The two methods we consider are compared to determine quantitatively which is the best for

the problem of detecting significant correlations between two time series. The comparison

is made in terms of detection efficiency of correlations at a given significance level and a

maximum time lag error. For the tests we simulate a time series with a very fine time

resolution and make two copies, one for each band, in which the only difference is a known

time lag and the different sampling pattern which is taken from example light curves from

our monitoring program.

In all the cases we bin the cross-correlation with ∆t = 10 days and model the time series

with a PSD ∝ 1/ν2, which is also used for the Monte Carlo evaluation of the significance. We

use 1000 uncorrelated time series to estimate the distribution of random cross-correlations

and significance. This same realization is then used to measure the significance of the peaks

we find for 1000 correlated time series we use to test our detection algorithm.

This corresponds to the ideal case of a perfect intrinsic correlation which is only distorted

by the time lag and different sampling of the two time series. The case is also ideal with

respect to the significance evaluation as we perfectly know the model for the light curves. It

is important to keep these points in mind and to realize that the actual detection efficiencies

could be much lower than what we find through these tests.
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5.5.1 Uniform and identical sampling for both time series, zero lag and

no noise.

As a check of the method and to help the reader understand the results, we first test our

ability to detect correlations in a very simple case. In this case a time series with a uniform

sampling period of 3 days is correlated with a copy of itself without any delay or noise. An

example of the simulated data set along with the results for the DCF and LCCF is shown

in Figure 5.4. The results of the Monte Carlo significance analysis are shown in Figure 5.5.

The same procedure is repeated for all simulated time series with known correlation and the

fraction of detected lags at the known lag (±∆t) with a given significance level is reported

as an efficiency in Figure 5.6.
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Figure 5.4: Example of simulated data with PSD ∝ 1/ν2 and uniform sampling. The
upper panel shows the two time series which overlap perfectly in this case. The lower panel
has the results of the DCF and LCCF for this case. The vertical lines show the position
of the most significant peak with color corresponding to the method used. Horizontal color
lines mark the amplitude of the most significant peak for each method.

In this case, we recover most of the time lags at the right value and the behaviors of
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Left panel is for the DCF and right panel for the LCCF. The time lag at zero is recovered
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the DCF and LCCF are very similar. The values of the coefficients of the linear relation

for τ = 0 (Equation 5.6), are very close to the case when the DCF and LCCF are equal

(Figure 5.7).
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Figure 5.7: Distribution of the coefficients of the linear relation between DCF and LCCF
for τ = 0. Left panel is the multiplicative factor, which is very close to 1 in most cases.
Right panel is the additive constant which is very close to 0. These values make DCF ≈
LCCF which makes the results of both methods very similar as can be seen in Figure 5.6.
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5.5.2 Data sampling case 1, “short data set”: 2 years of OVRO and 1

year of Fermi -LAT.

We now study a case with sampling taken from a preliminary OVRO 40 m blazar monitoring

program/Fermi -LAT data set, again with no noise added to the simulations and zero lag

between the two light curves, so the only difference is in the sampling pattern. In this case

a source was observed for two years with the OVRO 40 m telescope at 15 GHz with a nearly

twice per week sampling (Richards et al., 2011). The gamma-ray data for the same source

has a cadence of about one observation per week and was observed for one year (Abdo

et al., 2010). The cadence is not uniform due to periods of high wind, small distance to

the Sun or bad weather for the radio data and non-detections in the high energy band.

These non-detections are reported as upper limits and are not considered in the correlation

analysis.

An example of simulated data with this sampling is shown in Figure 5.8 (upper panel),

along with the results for the cross-correlation (lower panel). In this case the radio sampling

(blue dots) covers a longer time span than the gamma-ray one (red dots). Figure 5.9 shows

the results of the Monte Carlo significance analysis for this example using the DCF and

LCCF.

Figure 5.10 shows that in this case we only recover a fraction of the time lags at a 3σ

significance. To understand why this is happening Figure 5.11 has been included. The

figure shows that for the case of the DCF we find that for a large number of cases the

most significant peak in the correlation is at a lag different from zero. Moreover some of

those spurious lags are of high statistical significance. We still get significant peaks at lags

different from zero for the LCCF but at a much smaller rate.

To understand how we can get small values of the DCF at zero lag while still having large

values of the LCCF, we can take a look at the distributions of the coefficients of the linear

relation (Equation 5.6) which are shown in Figure 5.12. The multiplicative coefficient should

be one in the ideal case but instead it has a broad distribution (left panel). The additive

coefficient that should be zero in the ideal case also has a broad distribution (right panel).

This can effectively reduce the value of the correlation coefficient or make its distribution

broader reducing its discriminating power. This is exactly what we see in Figure 5.13,

which shows the distribution of cross-correlation coefficients at τ = 0 days. In the figure,
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Figure 5.8: Example of simulated data with PSD ∝ 1/ν2 for the “short data set” sampling.
The upper panel shows the two time series which have some small differences produced by
the different sampling at each waveband. The lower panel has the results of the DCF and
LCCF for this case. The vertical lines show the position of the most significant peak with
color corresponding to the method used. Horizontal color lines mark the amplitude of the
most significant peak for each method. In this example the LCCF recovers the right time
lag, but the DCF finds a spurious time lag.

the distribution of random cross-correlations is represented with a dotted line and the one

for correlated data with a solid line. The upper panel is for the DCF and the lower panel

for the LCCF. The vertical green line represents the 3σ significance threshold amplitude for

cross-correlation coefficients. The fraction of correlated data cross-correlations (solid line)

that is to the right of the green line is approximately equal to the detection efficiency 2. It

can be seen that this fraction is much larger for the LCCF as a result of increased scatter in

the distribution of the DCF when compared to the LCCF of correlated data for the reasons

presented at the beginning of this paragraph.

2The equality is only approximate because a peak with larger significance might have appeared in a lag
different than τ = 0. These cases are not excluded from the histogram.
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Figure 5.9: Cross-correlation significance results for the example shown in Figure 5.8.
Left panel is for the DCF and right panel for the LCCF. In this example the time lag at
zero is recovered with high significance with LCCF but not by the DCF, which has its most
significant peak at a different time lag.
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Figure 5.10: Detection efficiency versus significance for both methods. In this case the
efficiencies differ significantly between both methods, with the LCCF being the more effi-
cient.
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Figure 5.11: Distribution of most significant peaks in the correlation for both methods.
Left panel shows the lag and significance of the most significant peak. Upper sub-panel
for the DCF and lower sub-panel for the LCCF. The right panel is a histogram of the
distribution of lags for the most significant peak.
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Figure 5.12: Distribution of the coefficients of the linear relation between DCF and LCCF
for τ = 0. Left panel is the multiplicative factor, which has a very broad distribution and
is different from 1 in most cases. Right panel is the additive constant which also has a very
broad distribution very different from the ideal case of 0. These values show the DCF to
be different from the LCCF and have a role in producing spurious highly significant peaks
in the correlation.
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Figure 5.13: Distribution of the cross-correlation coefficient for both methods at τ = 0
days. Both panels show the distribution of random cross-correlations with dotted line and
the one for correlated data with solid line. Points with cross-correlation coefficient to the
right of the vertical green line have a significance of at least 3σ. Upper panel is for the DCF
and lower panel for the LCCF.
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5.5.3 Data sampling case 2, “long data set”: 4 years of OVRO and 3

years of Fermi -LAT.

We can make the same comparison using the best data set available at the moment which

has radio light curves with a duration of 4 years sampled about twice a week and gamma-ray

light curves for a 3 year duration and weekly sampling. We again consider the case with

no noise added to the simulations and zero lag between the two light curves, so the only

difference is in the sampling pattern. An example of a simulated data set with this sampling

is shown in Figure 5.14 (upper panel), along with the results for the cross-correlation (lower

panel). Figure 5.15 shows the results of the Monte Carlo significance analysis of this example

using both methods. Comparison of the results of this section with the ones in Section 5.5.2

can give us an idea of the variation of the relative power to detect correlations in different

data sets.
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Figure 5.14: Example of simulated data for the “long data set”. The upper panel shows
the two time series which have some small differences produced by the different sampling at
each waveband. The lower panel has the results of the DCF and LCCF for this case. The
vertical lines show the position of the most significant peak. The LCCF recovers the right
time lag, but the DCF finds an spurious time lag.
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Figure 5.15: Cross-correlation significance results for the example shown in Figure 5.14.
Left panel is for the DCF and right panel for the LCCF. The time lag at zero is recovered
with high significance with the LCCF but not by the DCF, which has its most significant
peak at a different time lag.

As in the case of the “short data set” we find that the efficiency of detection strongly

depends on the method used. Figure 5.16 shows that the LCCF recovers the right time lag

at high significance for all the cases, while the DCF does so in only about 15% of the cases.

An examination of Figure 5.17 shows that the DCF produces spurious correlation peaks

with a wide distribution. As in the case of the “short data set” some of those spurious

peaks have high statistical significance.

A comparison of Figures 5.10 and 5.16 shows that the performance of both methods

improves as expected when using longer time series. However, as can be seen from Figure

5.17, the performance of the DCF is still rather poor and produces a large fraction of

spurious statistically significant correlation peaks, while the LCCF recovers a significant

correlation at τ = 0 in all cases.

Figure 5.18 shows the distribution of the coefficients for the linear relation between the

DCF and LCCF (Equation 5.6). We again see that they significantly differ from the ideal

case of a stationary time series. This provides an explanation for the difference between

these two estimators of the correlation. As for the case of the “short data set” we also look

at the distribution of cross-correlation coefficients for the uncorrelated and correlated data

sets at τ = 0 (Figure 5.19). We again see the broad distribution of correlation coefficients

for the DCF of correlated data sets and the much narrower distribution for the LCCF. This
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Figure 5.16: Detection efficiency versus significance for both methods. In this case the
efficiencies differ significantly between both methods, with the LCCF being the more effi-
cient.
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Figure 5.17: Distribution of most significant peaks in the correlation for both methods.
Left panel shows the lag and significance of the most significant peak. Upper sub-panel
for the DCF and lower sub-panel for the LCCF. The right panel is a histogram of the
distribution of lags for the most significant peak.



130

explains the better discriminating power of the LCCF.
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Figure 5.18: Distribution of the coefficients of the linear relation between DCF and LCCF
for τ = 0. Left panel is the multiplicative factor, which has a very broad distribution and
is different from 1 in most cases. Right panel is the additive constant which also has a very
broad distribution very different from the ideal case of 0. These values show the DCF to
be different from the LCCF and have a role in producing spurious highly significant peaks
in the correlation.
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Figure 5.19: Distribution of the cross-correlation coefficient for both methods at τ = 0
days. Both panels show the distribution of random cross-correlations with dotted line and
the one for correlated data with solid line. Points with cross-correlation coefficient to the
right of the vertical green line have a significance of at least 3σ. Upper panel is for the DCF
and lower panel for the LCCF.
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5.5.4 Additional tests

Additional tests were performed introducing time lags for the time series and measuring the

efficiency of detection. They all show the same qualitative information so only the efficiency

results are included below in order to compare the results for the “short” and “long” data

sets. The results for zero time lag are repeated to allow for an easier comparison. In all

cases the LCCF outperforms the DCF and the efficiency of detection improves when using

the “long data set” when compared to the “short data set”. These results demonstrate that

the LCCF is the more efficient method for recovering time lags with high significance.
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Figure 5.20: Efficiency versus significance comparison between the LCCF and DCF for a
time lag τ = 0 days. Left panel “short data set”, right panel “long data set”.
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Figure 5.21: Efficiency versus significance comparison between the LCCF and DCF for a
time lag τ = 100 days. Left panel “short data set”, right panel “long data set”.
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Figure 5.22: Efficiency versus significance comparison between the LCCF and DCF for a
time lag τ = −100 days. Left panel “short data set”, right panel “long data set”.
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Figure 5.23: Efficiency versus significance comparison between the LCCF and DCF for a
time lag τ = 200 days. Left panel “short data set”, right panel “long data set”.
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Figure 5.24: Efficiency versus significance comparison between the LCCF and DCF for a
time lag τ = −200 days. Left panel “short data set”, right panel “long data set”.
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5.6 Additional considerations

In this section we describe some additional issues that should be considered when estimat-

ing the significance of cross-correlations using the Monte Carlo test we have described or

similar methods. Two of these have been ignored in the literature (correction for multiple

comparisons and the error on the significance estimate) while the other has not been fully

appreciated and has led some authors to suggest tests that are not consistent with the basic

statistical properties of blazar light curves.

5.6.1 The dependence of the significance estimate on the model light

curves

As illustrated in Figure 5.2, the distribution of random cross-correlation coefficients will

depend on the model used for the simulated light curves. In order to better appreciate that

dependence, we have estimated the significance of cross-correlations between the radio and

gamma-ray emission using the LCCF on 4 years of radio data and 3 years of gamma-ray

data for J0237+2848. We have used 10,000 simulated light curves with PSD ∝ 1/νβ for

β = 0, 1 and 2. Figure 5.25 presents the results in the form introduced in Figure 5.3. As

in Figure 5.2 we observe an increase in the amplitude of the random cross-correlation when

steeper power spectral densities are used in the simulations. This manifests as increased

scatter in the distribution of random cross-correlations and a lower significance estimate for

the cross-correlations. The dependence of the results on the particular model of the light

curves illustrates the importance of a proper characterization of the variability of the light

curves, a subject which is discussed in Chapter 3.
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Figure 5.25: Example of cross-correlation significance results for J0237+2848 using β = 0
(upper panel), β = 1 (central panel) and β = 2 (lower panel). The black dots represent the
LCCF for the data, while the color contours the distribution of random cross-correlations
obtained by the Monte Carlo simulation with red for 1σ, orange for 2σ and green for 3σ.
The increased amplitude of random cross-correlations is evident for steeper PSDs.
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This dependence on the model used for the light curves has motivated some researchers

to search for model-independent significance estimates. This is certainly desirable but in

principle not much easier than actually determining an appropriate model for the light

curves. Care must be taken to ensure that the assumptions that these methods use are

consistent with the basic properties of blazar light curves. One example of a randomization

technique that people sometimes suggest in informal conversations is to shuffle the time of

the data samples to generate data sets with equal sampling and properties as the obser-

vations. These data could then be used to get an estimate of the distribution of random

cross-correlations in a model independent way. This suggestion is fundamentally flawed for

the blazar case as it destroys the feature that produces spurious correlations, the flares. In

fact this will most probably produce white noise time series providing a very optimistic sig-

nificance estimate. Others propose to use light curves for other sources in place of simulated

light curves. Although promising this will only work if the sampling pattern and statistical

properties of the other sources are similar to the source in question, something that has not

been rigorously proved.

5.6.2 Error on the significance estimate and minimum number of simu-

lations

It is expected that the accuracy of the significance estimates will increase as the number

of simulated light curve pairs increases. In order to get an estimate on the expected error

in our significance estimate due to the finite number of simulations we have divided a full

simulation with 100,000 simulated light curve pairs into independent subsets and provide

estimates for each of them. The idea is to observe the scatter when a small number of

simulations is used and compare its variation as more simulations are used. The original

simulation is divided in two halves which are subsequently divided into two. The process is

repeated until the number of simulations in each subset is small enough that results have a

very large scatter and do not give us reliable significance estimates. For all the sources we

find that the individual results of smaller simulations are less accurate than the final one.

In all cases the average gives the result of the complete simulation which is not surprising

as together they encode the same information. As expected the scatter is much smaller

when a large number of simulations is used. An example is presented in Figure 5.26, which

clearly shows the reduction in the scatter as the number of simulated light curve pairs is
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increased. With less than 1,000 simulations the scatter is of a few percentage points, and

gets to about 0.2% for more than 10,000 simulations.
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Figure 5.26: Example of scatter in the significance estimate for independent subsets of
the full simulation using different numbers of light curve pairs. The horizontal axis shows
the number of simulations used to get each estimate and the vertical the significance. Black
dots represent each of the independent subsets of the full simulation. The empty circles
and error bars represent the mean and standard deviation for subsets of a given number
of simulations. The horizontal segmented line corresponds to the results using the whole
simulation. As expected the scatter of the estimates obtained using smaller number of
simulations is larger.

The process described above could in principle be used to obtain an error estimate but

we have instead computed a more conventional bootstrap estimate of the standard error

following the procedure described below. For the time lag of interests, we have N values

of the random cross-correlations, from these 1,000 bootstrap samples have been obtained

and the sample standard deviation of bootstrap replications of the significance is used as

the error estimate. An example of the distribution of bootstrapped estimates is shown in

Figure 5.27. We think this error estimate is a required step of any Monte Carlo estimate

of the significance and recommend the adoption of this or equivalent procedures, an issue

that has surprisingly been up to now ignored by all authors.

5.6.3 Correction for multiple hypothesis tests

Our observational problem is to search for a correlation and measure its significance at a time

lag which is not specified in advance. The distribution for the cross-correlation coefficient
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Figure 5.27: The distribution of the significance estimates for the bootstrap samples is
represented as a histogram. The solid line represents the value obtained using the whole
simulation. The segmented line is the mean of the distribution and the dotted lines the one
standard deviation upper and lower limits.

for uncorrelated data is constructed at each time lag, and in our procedure we compute

the data cross-correlation, find the peaks and check the significance of those choosing the

most significant as the one to report. This is effectively equivalent to performing multiple

hypothesis tests.

Performing multiple hypothesis tests at a given per test significance level, reduces the

significance of the composite test. In this case the significances we directly obtain at a

given time lag are for an individual test and we must adjust them to incorporate the fact

that we are simultaneously searching for a peak at a nonspecific time lag. Although this

is a recognized problem in high energy physics and known as the “look-elsewhere effect”

(Beringer et al, 2012, and references therein), we are not aware of a solution for the case

of cross-correlations between two time series as applies to our particular problem. In what

follows we describe an approximate way to account for this effect, that can at least give us

a bound on the required correction to the significances.

A conservative correction for multiple comparisons can be made for independent tests

and is often referred as the Bonferroni correction when used in approximate form for a

small significance level α. The derivation of the correction is straightforward and is a useful

illustration of the problem so it is included below. For an individual test the probability

of rejecting the null hypothesis when true (type-I error) is the significance level α. The
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probability of not rejecting the null hypothesis when true is then (1− α). If we perform N

independent tests, the probability of not rejecting the null hypothesis when true for all of

them is (1−α)N , and its complement, the probability of rejecting a true null hypothesis in

at least one test is αcomb = 1− (1−α)N . This αcomb is the significance of the combined test

and is larger than α, meaning that by performing multiple statistical tests, we are in fact

increasing the chances of rejecting a true null hypothesis. In our case we are increasing the

chances of concluding that the time series are correlated by not specifying in advance the

time lag at which correlation is expected.

From the discussion above it follows that if we know N , the number of independent tests

we are performing, in this case independent time lags, we can easily correct our p-values

and significance levels of the tests. This is not trivial in our case as the time lag bins

are not completely independent as a consequence of autocorrelations in the individual time

series, and all we have is an upper limit for N which could be too conservative. Fortunately

we can look at a typical case and estimate a correction based on a simulated experiment

using our Monte Carlo method, in which we search for significant time lags in uncorrelated

time series. By repeating this many times we can estimate the rate at which significant

correlations are obtained with a given p-value under the null hypothesis, but in this case

for the composite test in which we search for a correlation at a nonspecific time lag. The

correction we propose uses the fact that by definition the distribution of p-values under the

null hypothesis is uniform in the interval [0, 1]. We compare the cumulative distribution

of measured p-values at a given p and correct it with a p dependent coefficient that makes

the distribution consistent with a uniform on [0, 1] for p-values smaller than the given p.

Multiplying the measured p-values by this correction factor adjusts them for the effect of

multiple comparisons. In this way, we can look at the corrected p-values and interpret them

in the usual sense of a probability of an extreme result under the null hypothesis, which in

this case is no correlation in all the time lags we have explored.

The correction could in principle depend on the search range for time lags, the time

length and sampling of the light curves and the model used for the light curves in the

null hypothesis which in this case are uncorrelated time series with PSD ∝ 1/νβ. To

explore this, a series of tests using different search ranges and PSD power-law exponents

were performed. We use a sampling pattern typical of the data set we call “long data set”

which is the one used in the study of cross-correlations. In particular we use the sampling
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pattern for J0237+2848 that is shown in Figure 5.3. Some results for the case of β = 2.0

are presented in Figures 5.28 and 5.29 to illustrate the procedure. For the other cases we

simply report a summary in Table 5.1.

Figure 5.28 (left panel) is the cumulative distribution of p-values (upper plot) along

with the correction factor (lower plot). It shows that the significances have to be corrected

by a factor of about 127 to 14 for the range of interest (p < 0.045 or about 2σ significance

level). The right panel of the figure shows the distribution of time lags for spurious cross-

correlation peaks and makes evident the increased rate of spurious peaks at the edges of

the search range. These spurious peaks are the result of the very small overlap between the

time series and the fact that it is much easier to get simple linear trends on both light curves

when a short time period is considered for time series with steep PSD. These linear trends

will always produce correlations of very high amplitude. In consequence we can conclude

that these extremes have to be excluded so we have an approximately constant distribution

for the time lag of spurious peaks.
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Figure 5.28: Correction for multiple hypothesis tests for PSD ∝ 1/ν2 using the whole
range of time lags obtained from cross-correlations. Upper left panel is the cumulative
distribution of p-values for spurious peaks, while lower left panel is the correction factor
that makes the distribution uniform as explained in the text. Right panel is the time lag
distribution of spurious peaks. The peaks at the edges of the time range are produced by
the small time overlap of the time series and the frequent presence of trends in time series
with steep PSDs.

Figure 5.29 shows the same information for the search interval [−550, 550] days which

corresponds to approximately one and a half years. In this case the correction factor goes
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from about 8 to 4 and the distribution of time lags for spurious peaks is closer to uniform

but still somewhat biased towards the edges of the interval. Given the large fraction of

spurious correlations found at the edges of the search range when using the whole search

range (Figure 5.28), we have decided to restrict the search of cross-correlations to a range

of approximately [−550, 550] days, or half the length of the gamma-ray light curves which

are the shortest in this case. By doing this we also reduce the correction by a factor of

about 10, making the effect of multiple comparisons much less serious.
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Figure 5.29: Correction for multiple hypothesis tests for PSD ∝ 1/ν2 using a range of time
lags from −550 days to 550 days, approximately a year and a half. Upper left panel is the
cumulative distribution of p-values for spurious peaks, while lower left panel is the correction
factor that makes the distribution uniform as explained in the text. Right panel is the time
lag distribution of spurious peaks. Reducing the search range reduces the magnitude of
the correction and makes the distribution of spurious time lags closer to uniform when
compared to Figure 5.28.

We also compute the correction for the cases of β = 0, 1 and 3, to get a quantitative

estimate for different cases. These results are presented in Table 5.1, which shows the

correction factors for all of the cases we tried. For each β and time lag search range, three

values are given, the first one is the maximum value of the correction, the second one for an

originally 3σ significance, and the last one for a 2σ one. The effect of these corrections can

be approximately read out of Figure 5.30. To help the reader appreciate the effect of the

corrections we also show the equivalent significance in units of σ which are more familiar

than p-values. The results have some uncertainty but are a good indication of the increased

rate of spurious correlations when the search range is broader.
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Table 5.1: Correction factors for multiple hypothesis tests. For each β and time lag search
range, three values are given, the first one is the maximum value of the correction, the
second one for an originally 3σ significance, and the last one for a 2σ one. The effect of
these corrections can be approximately read out of Figure 5.30.

β Correction Correction Correction Correction
whole range [−550, 550] days [−365, 365] days [−60, 60] days

0.0 185, 107, 22 98, 45, 20 78, 34, 18 10, 6, 5
1.0 161, 55, 20 44, 19, 10 35, 13, 7 3, 3, 2
2.0 127, 36, 14 8, 7, 4 15, 5, 3 5, 2, 1
3.0 74, 27, 10 30, 8, 3 20, 4, 2 3, 1, 1

10-6 10-5 10-4 10-3

p-value initial

10-6

10-5

10-4

10-3

10-2

10-1

100

p
-v

a
lu

e
 c

o
rr

e
ct

e
d

100

10

1

5σ

5σ

4σ

4σ

3σ

3σ

2σ

2σ

1σ

1σ

significance initial

si
g
n
if
ic

a
n
ce

 c
o
rr

e
ct

e
d

β=0

β=1

β=2

β=3

Figure 5.30: Correction of p-values for multiple hypothesis tests. Given an initial p-value
obtained using the Monte Carlo significance test and a correction factor the corrected value
can be read of the horizontal axis. Color lines represent the corrections obtained with a
time lag search interval of [−550, 550] days for β = 0, 1, 2, 3 as indicated in the figure. Solid
lines are correction curves with the correction factor indicated on the left end of the line.
Doted lines represent the significances as integer factors of σ, which have been included
as they might be more familiar than p-values. The appropriate correcting factor can be
obtained from Table 5.1.

Due to the uncertainty in the derived correction factors, we have decided not to imple-

ment this correction and only indicate the approximate magnitude and the existence of the

effect. The advantages of narrowing the search range are obvious in terms of the smaller
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correction factors for the significances and the reduced rate of spurious correlations at the

edges of the search range where little overlap between the time series is obtained. Figure

5.30 illustrates the effect of correction factors in the range found in Table 5.1. A few con-

stant corrections factors have been included for reference and the actual correction factors

versus p-values for the search range [−550, 550] days and β = 0, 1, 2 and 3 are included.

Due to the limited number of simulations used there is a minimum p-value obtained in the

simulations, below which the value of the correction is assumed constant and appears as a

straight line parallel to the reference correction factors.

The solution we have presented gives a rough idea of the magnitude of the problem

but further investigation is certainly needed as application of this method requires a large

computational time. Possible ideas are to explore simulations like those we have presented

here or the possibility of finding some simple rules to estimate the corrections. Exploring

how to use the ideas developed by the high energy physics community for the “look-elsewhere

effect” problem is another possible direction for future studies.

5.7 Conclusions

A description of the problem of estimating the cross-correlation for unevenly sampled time

series has been given. We have shown through a graphical example that high values of the

cross-correlation coefficients for red-noise time series are ubiquitous and that any method

that aims at quantifying the significance of correlation coefficients for light curves having

flare-like features needs to take this into account. We have described a general Monte Carlo

method to estimate the significance of cross-correlation coefficients between two wavebands.

A number of tests aimed at measuring the effectiveness of a particular cross-correlation

method have been performed to compare the LCCF and the DCF. Given the absence of a

physical model for the expected correlations, the method cannot be used to give a definitive

value of the detection efficiency but it can be used to compare different alternatives. The

main result is that the LCCF has a much larger detection efficiency than the DCF when

trying to recover a linear correlation. The CCF has the additional problem of producing

a large fraction of spurious high significance time correlations which could be mistaken as

real correlations; this problem is less important for the LCCF especially when long time

series are used.
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The origin of the difference and the lack of discriminating power for the DCF seems to

originate in the short duration or non-stationarity of the time series involved. It was found

that when correlating evenly sampled time series the differences were small, and we could

expect this would be the case for very long time series, which are rare in real applications.

In conclusion, we recommend the use of the LCCF as a tool to search for correlations.

We also show that the significance of the cross-correlation coefficients is strongly depen-

dent on the power-law slope of the PSD. This makes characterization of the light curves

very important and the method we use to characterize the PSDs is presented in Chapter 3.

We investigate the error on the estimated significance by repeating the analysis using dif-

ferent numbers of simulations. This is a serious concern that has been overlooked by many

authors who use small numbers of simulations in order to reduce the computational time.

We suggest using a bootstrap estimate of the error on the significance and reporting its

value as part of the analysis results, especially in cases where high significances are claimed.

We also present an estimation of the effect of multiple hypothesis tests that is introduced by

searching for cross-correlations at a nonspecific time lag, and show that in general the signif-

icance estimates have to be reduced to account for this effect. Estimates for the correction

are obtained to illustrate the magnitude of the effect but are not applied as they are quite

uncertain. It is also found that the probability of finding spurious cross-correlation peaks is

very large when the light curves have small overlap, specially for steep PSDs. Based on this

observation and the smaller correction factors required to correct for multiple hypothesis

tests, we have decided to restrict the time lag search range to the interval [−550, 550] days,

which is about half the length of the gamma-ray light curves in our data set. The results

of the application of this method to our data set are presented in Chapter 6.
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Chapter 6

Radio/gamma-ray time lags

6.1 Introduction

In this chapter we use the methods developed in the previous chapters to investigate the

existence of correlated variability between the radio and gamma-ray light curves and thus

throw light on the location of the gamma-ray emission site in blazars. We present the

results of the PSD fits to the radio and gamma-ray light curves for 86 sources with good

quality sampling in both bands. These results provide constraints on the values of the

power-law exponent of the PSDs and allow us to obtain a confidence interval for the value

of the significance of the cross-correlations between those two energy bands. A detailed

study of the significance of the correlations is obtained for a few sources in which we obtain

simultaneous constraints for the radio and gamma-ray PSDs. For the rest of the sources we

estimate the significance using an average value of the PSD taken from published results

and from our own study of the gamma-ray PSD. We also present the results of including the

recent active period in the blazar Mrk 421, which reveal correlated variability in a source

for which none was detected in the data set used in our uniform study of all the sources.

We close this chapter with a brief discussion of our findings. The physical implications are

discussed in Chapter 7.

6.2 Characterization of the PSD

A first step in the study of the significance of the cross-correlation between the radio and

gamma-ray bands is the characterization of the light curves using the method described in

Chapter 3 which provides the exponent of the simple power-law PSD model we use in this
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investigation. The model parameters are used to obtain the simulated light curves we use

in the estimation of the significance of cross-correlations as described in Chapter 5.

From the discussion in the first part of Section 4.2.1, we can see that there is a clear

procedure for two out of four possible outcomes of the PSD fitting. For the cases of a lower

limit and no upper constraint we have to define an appropriate procedure that uses the

information we obtain in the other cases. As we discussed in Section 5.6.1, the significance

of the cross-correlation depends on the value of the power-law exponent β, with the largest

significance for β = 0 and smaller for larger values. In this sense the most conservative

estimate of the significance is one that uses the upper limit on β. Given that for the

non-constrained cases we do not have more information than the one for the population of

sources, we derive a reasonable significance estimate by adopting an average β estimated

from the population with successful fits. This is a safe procedure except for light curves

that show strong linear trends or high noise in at least one of the bands. These cases will

be indicated and treated with caution when discussing the results of the cross-correlation

analysis, but are included here as they could point to interesting cases for follow up studies.

Before discussing the results of the PSD fits, we make a brief note on the confidence

intervals of the power-law indices required when combining the results of the radio and

gamma-ray PSD fits. If the individual confidence intervals for βradio and βγ have a prob-

ability of δ = 0.683 as required for a 1σ constraint, we have by definition that the prob-

abilities of the intervals containing the true values are P (βlow
radio ≤ βradio ≤ βup

radio) = δ

for the radio band and P (βlow
γ ≤ βγ ≤ βup

γ ) = δ for the gamma-ray band. When we

combine those intervals using the fact that the measurements are independent we obtain

P ([βlow
radio ≤ βradio ≤ βup

radio] and [βlow
γ ≤ βγ ≤ βup

γ ]) = δ2, thus the probability of the com-

bined interval is smaller than 0.683. In order to correct for this and obtain the appropriate

coverage we need to obtain confidence intervals with a coverage of
√

0.683 ≈ 0.826 for β in

each band. These two confidence intervals are reported as results of the PSD fitting.

6.2.1 Characterization of the radio and gamma-ray light curves

The PSDs for the radio and gamma-ray light curves are each fitted with a single power-law

model. For each band we test a range of values of β in steps of ∆β = 0.05 and use M

= 1000 light curves for the determination of the mean and scatter of the model PSD at

each tested value. The confidence bands are constructed with a resolution of ∆β = 0.25
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and interpolated for intermediate values and for each case we simulate 1000 light curves for

the acceptance intervals at each β. The search interval for the radio data is taken to be

0.0 ≤ βradio ≤ 3.5 and for gamma-ray 0.0 ≤ βγ ≤ 2.5. This choice is based in preliminary

fits that showed that most best fit values lie in those intervals, and by the observation that

not many light curves show the characteristic low frequency trends with little variability

shown by simulated light curves with very steep PSDs. Another factor is the ability to

suppress the effects of red-noise leakage which is determined by the window function. This

stops being effective for values of β & 4.0 as can be seen in Figure 3.2 and its associated

discussion. In each case where a PSD is computed we bin it in frequency intervals of 1.3 dex

if the bin contains at least 4 points. In bins with less than 4 points the width is increased

in steps of 1.1 dex until it contains at least 4 points. Each simulated light curve has a time

resolution of 1 day and a length of 20 years.

The results of applying the method described in Chapter 3 to the 86 sources with

radio and gamma-ray light curves (see Section 2.9 for details on the sample selection) are

presented in Table E.1 for the radio light curves and Table E.2 for the gamma-ray ones.

These tables contain the best fit, confidence interval, p-value of the best fit and other

important parameters of the light curves. We also include summary figures for the PSD

fit for each source in Appendix E.2 for the radio light curves and Appendix E.3 for the

gamma-ray ones. Some basic statistics of the results are given below.

The fitting procedure does not provide a proper confidence interval in all cases. At the

level of 68.3% confidence intervals for the radio light curves we obtain successful fits for

43 sources, lower limits for 8 sources, and no constraints for 30 sources and are not able

to run the procedure for 5 sources because of the absence of measured variability (Section

4.2.1). For the gamma-ray light curves we obtain successful fits for 29 sources, lower limits

for 19 sources, and no constraints for 20 sources and are not able to run the procedure for

18 sources.

For the 82.6% confidence intervals required to combine both fitted values in the signifi-

cance estimate, we find for the radio light curves successful fits for 33 sources, lower limits

for 13 sources, and no constraints for 35 sources and are not able to run the procedure for 5

sources. For the gamma-ray light curves we obtain successful fits for 23 sources, lower limits

for 10 sources, and no constraints for 35 sources and are not able to run the procedure for

18 sources.
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The 1σ errors on the PSD fits for the radio light curves range from 0.2 to 1.0 with a

median of 0.4. For the gamma-ray light curves the errors range from 0.2 to 0.8 with a

median of 0.4.

Even though the errors are similar in both cases, the radio PSD fits are of much better

quality than those of the gamma-ray light curves. In the later case we sometimes see little

discrimination between models and low quality of fits. This could be a consequence of

short and noisier light curves when compared to the radio light curves, or an indication of

the inadequacy of the simple power-law PSD as a model for the gamma-ray light curves.

We expect the situation to improve as longer gamma-ray light curves are collected by the

Fermi -LAT.

6.2.2 Distribution of the fitted values of the PSD for the radio and

gamma-ray light curves

We study the distribution of the PSD power-law indices for the sources in which the pro-

cedure provides a proper constraint. The histogram in Figure 6.1 shows that there is a

preferred value for the power-law exponent of the radio PSD with all the values distributed

around a peak in the distribution. A χ2 test shows that the measured values of β including

their measurement errors are consistent with a single value equal to the sample mean of

2.29± 0.06 (p = 0.27). We use the weighted mean and standard deviations to characterize

the distribution of measured values obtaining a normal model with µ = 2.3 and σ = 0.4.

This result is consistent to what we find for the complete OVRO sample in Section 4.2

and is the distribution we use to constrain the values for the sources in which the fitting

procedure could not measure the slope of the radio PSD.

The same is done for the gamma-ray light curves and the histogram shown in Figure 6.2.

We see a larger fraction of sources with βγ of about 0.5, but the distribution is broad and

shows a second peak about 1.6. For the weighted average we obtain a normal distribution

with parameters µ = 0.7 and σ = 0.6, but as suggested by the shape of the distribution in

Figure 6.2 a χ2 test shows that the measured values are not consistent with a single value

equal to the sample mean of 0.7± 0.1 (p < 10−6).

The presence of two peaks in the distribution could indicate the existence of different

source classes with different properties or simply be the result of a systematic effect of the

PSD fitting process. We first examine two possible systematic effects, one related to the
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gamma-ray brightness of the source and one related to the ratio of signal power to noise

power in the light curves. By separating the sources in two brightness groups of about

equal size and applying a Kolmorov-Smirnov test (K-S test), no significant difference is

found between the distribution the bright and dim populations (p = 0.33). The same is

found when dividing the sources into groups with low noise (σ2
noise/σ

2
data < 0.1) and high

noise (σ2
noise/σ

2
data ≥ 0.1), in this case we find p = 0.99 for the K-S test. These two tests rule

out the most probable systematic problem due to the presence of noise in the light curves

which makes the PSD fit less certain.

The second and more interesting possibility of a difference between source populations

is also examined. A comparison of the distribution of the power-law indices between sources

with different optical classes reveals consistent distributions for the BL Lacs and FSRQs,

with p = 0.76 for the K-S test. The case of the spectral energy distribution class is similar,

and in this case we find consistent distributions for the LSP and ISP blazars with p = 0.46

for the K-S test. No HSP blazars have good quality fits.

Given the small number of sources, we think that a reasonable assumption for the PSD

shape for sources in which no direct constraint is obtained is to use an average value of the

gamma-ray PSD. We recognize this is a crude assumption that would need to be revised

when longer gamma-ray light curves become available. As an alternative to the average

power-law index of the PSD we obtain, we can use the ensemble average PSD obtained in

Abdo et al. (2010). Their method provides an estimation of the average PSD shape but

cannot tell us much about the variability of the PSD shape between different sources, so it

has to be used with caution.

6.3 Significance of the cross-correlations

Ideally we would like to determine the significance of the cross-correlations for each source

using the best fit values for the power-law index of the PSDs at the radio and gamma-ray

band for each particular source, but this is currently possible for only 17 sources. For the

rest all we can do is to get a best guess significance estimate by using an average value

taken from the objects for which we can obtain good fits in both the gamma-ray and radio

wavebands.

For the radio band we can use an average value of βradio = 2.3, which is consistent with
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Figure 6.1: Distribution of power-law exponents of the radio light curve PSDs. The
distribution is consistent with a single value equal to the sample mean and can be described
by a normal with µ = 2.3 and σ = 0.4 represented by the dashed line.
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Figure 6.2: Distribution of power-law exponent of the gamma-ray light curve PSDs. The
distribution shows some concentration about 0.5 with hints of a second peak about 1.6.
A weighted average estimate of a normal distribution gives µ = 0.7 and σ = 0.6 and is
represented by the dashed line. The distribution is not consistent with a single value equal
to the sample mean (p < 10−6).

the distribution shown in Figure 6.1 and discussed in Section 6.2.2.

For the gamma-ray band there is more uncertainty as we can only constrain the PSD

for a small number of sources (29 out of 86) and not all the fits are of high quality. One

possibility is to use the sample mean of the good fits which is found to be 0.7 ± 0.1, that
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is obtained from a distribution which presents large scatter with values going from 0 to 2.0

and typical errors of 0.4 (Figure 6.2 and associated discussion). A second option is to use

the average gamma-ray PSD reported in Abdo et al. (2010). In their study they find a value

of βγ = 1.4 ± 0.1 for the average PSD of the nine brightest FSRQs and βγ = 1.7 ± 0.3 for

the average PSD of the six brightest BL Lacs. We take a conservative approach and adopt

a single value equal to the average of βγ = 1.6 for all the sources regardless of their class.

The advantage of this choice are its simplicity and a uniform treatment of all the sources. A

drawback of this particular choice is that it is hard to assess the real variance between the

individual PSD shapes, so we think this value can only provide an approximate estimate for

the significance. More data are required to settle the issue of the appropriate value of the

power-law index of the gamma-ray light curves. Ideally we would like to characterize the

PSDs for many individual gamma-ray light curves to understand the variability between

sources, which is hidden when using ensemble averages as the one in Abdo et al. (2010).

This program requires longer gamma-ray light curves which will be available later in the

Fermi mission.

We can obtain a conservative estimate by using βradio = 2.3 and βγ = 1.6, but we also

study the case of βradio = 2.3 and βγ = 0.7 to get an idea of the results under this more

aggressive assumption and point to interesting sources for more detailed studies.

In order to reduce the chances of getting spurious results due to our rather short light

curves, we have restricted the search for correlations to a range between plus and minus

half the length of the shortest light curve. We have also excluded 23 sources in which

there is no variability at the 3σ level detected in at least one of the bands as determined

with a χ2 test of the hypothesis of a constant source. For these cases there is not enough

variability relative to the observational noise and a meaningful cross-correlation analysis

is not possible. Figures for each of these non-variable sources are included in Appendix

F. Even with this cautious approach, it is still possible to get misleadingly high values of

the correlation coefficient due to slow trends in the light curves. Some authors (e.g. Welsh,

1999) suggest subtracting these trends before performing a correlation analysis but our light

curves are not long enough to perform the subtraction with confidence, so instead we report

these results with a warning in the tables (tr and tg for trends in the radio and gamma-ray

light curve respectively). These trends are determined not in the complete light curves, but

on the overlapping sections included in the cross-correlation for the most significant peak
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in each source. To quantify the presence of trends we first fitted the light curve segments

with a linear function that represents a slow trend in the light curve. This linear trend

was subtracted and the residuals were tested for variability with a χ2 test for the null

hypothesis of constant residuals. To get an estimate that is robust to single residuals of

large magnitude, we used the average p-value of 1000 bootstrap samples of the residuals.

Sources in which the residuals are consistent to being constant at the 3σ level were flagged

as having trends and not considered as reliable correlations.

Another problematic situation is faced when correlating light curves with a high noise

content in which the variability is hard to trace. Sources in which the noise power is at

least 1/3 of the total power were flagged as noisy in the results table (nr for noisy in radio

and ng for noisy in gamma-rays). Sources with any of these flags will produce unreliable

results and are not included in the discussions of significant results. Nonetheless they were

still included in the analysis as they can provide objects for further study.

A final flag indicates sources with cross-correlation functions with two peaks of compa-

rable significance, or a broad peak with the same characteristics (dt for double time lag).

In these cases we report the values obtained by the data reduction script in each case, so it

is important to note that those are not mistakes in the analysis, but an ambiguity produced

by our data set and measurement errors in the significance estimate. Sources with this flag

are included in the discussions of significant results.

For the significance estimate of each source we simulate 20,000 light curve pairs. Each

light curve has a time resolution of 1 day and a length of 10 years. The cross-correlations

are binned with a 10 day interval.

The results of the cross-correlation significance analysis for each one of the alternatives

discussed above are presented in Table 6.1. Table 6.2 has the results for the sources with

constrained PSDs. Notice that in the case of the sources with constrained PSDs we have

also included four sources with poor radio or gamma-ray PSD fit which are indicated with

the flags pfr or pfg. In these cases we have a p-value of the best fit between 0.01 and 0.05,

below the original threshold, but still excluding very poor quality PSD fits. The last column

in each table contains flags indicating possible problems with the light curves as discussed

above. The distribution of time lags and significances is shown in Figures 6.3, 6.4 and 6.5

for all the sources in the cases we have described. Figures showing the light curves and

results of the cross-correlation analysis for all the sources in all the cases described here
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are presented in Appendix F. A negative time lag indicates that the variability in the radio

light curve lags the one of the gamma-ray band, while the opposite is true for a positive

time lag.
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Figure 6.3: Time lag and significance of most significant peak on the radio/gamma-ray
cross-correlation for the case of βradio = 2.3 and βγ = 1.6. Filled circles are for sources with
no flags and empty circles for flagged sources. The vertical axis is the p-value associated
with the fit with values indicated in the vertical axis on the left. The horizontal dashed
lines are some reference equivalent significances as labeled on the right end of the lines. See
Section 6.3.1.1 for more details.

6.3.1 The significance of the cross-correlations

The significances of the cross-correlations coefficients depend on the values used for the

power-law PSD at both bands, so we give a separate discussion for each case below. As

mentioned earlier, a negative time lag indicates the radio light curve lags the gamma-ray

one, while a positive time lag corresponds to the opposite case.

6.3.1.1 Estimates with βradio = 2.3 and βγ = 1.6

Of the 63 sources with significant variability in both bands only 41 have none of the flags

described in the first part of Section 6.3 and are thus included in the discussion below.

Only 1 out of 41 sources is found to have a ≥ 3σ significant correlation which is consid-

ered a highly significant correlation as we expect none to be present by chance in a sample

of 41. We extend the search for significant correlations by setting a threshold such that at



160

600 400 200 0 200 400 600
τ [days]

10-4

10-3

10-2

10-1

100

p

1σ

2σ

3σ

2.26σ

Figure 6.4: Time lag and significance of most significant peak on the radio/gamma-ray
cross-correlation for the case of βradio = 2.3 and βγ = 0.7. Filled circles are for sources with
no flags and empty circles for flagged sources. The vertical axis is the p-value associated
with the fit with values indicated in the vertical axis on the left. The horizontal dashed
lines are some reference equivalent significances as labeled on the right end of the lines. See
Section 6.3.1.2 for more details.

most one source is expected to have a chance high cross-correlation coefficient in a sample of

41, that is 2.25σ (97.56%). The cases above the threshold are: J0238+1636 (AO 0235+164)

with a time lag of −30± 8 day and 99.88% significance, and J1504+1029 (PKS 1502+106)

with a time lag of −40 ± 13 day and 98.47% significance. The results for these cases are

presented in Figures 6.6 and 6.7, which show the radio and gamma-ray light curves on the

left panel, the cross-correlations with color contours for the significance levels for each case

in the middle panel (red for 1σ, orange for 2σ and green for 3σ) and p-values with equivalent

significances in the right panel. Notice that in the right panel the p-values are for positive

and negative correlations, thus some of the troughs could represent anti-correlations that

are not considered in this discussion. The ambiguity can easily be resolved by looking at

the cross-correlation plot on the middle panel.

We note that the cross-correlation peaks are broad in both cases and that for AO 0235+164,

a second peak of comparable significance is seen at τ = −150 ± 20 day. This will be con-
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Figure 6.5: Time lag and significance of most significant peak on the radio/gamma-ray
cross-correlation for the cases in which the PSD at both bands is constrained. The vertical
axis is the p-value associated with the fit with values indicated in the vertical axis on the
left. The horizontal dashed lines are some reference equivalent significances as labeled on
the right end of the lines. See Section 6.3.1.3 for more details.

sidered when discussing the interpretation of the results in Chapter 7. The same comment

applies to all the other instances in which we discuss this source.
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6.3.1.2 Estimates with βradio = 2.3 and βγ = 0.7

In this case 42 sources have no flags and are thus included in the discussion of significant

cross-correlations. The threshold for one expected chance correlation in a sample of 42

sources is 2.26σ (97.62%). In this case we find 6 sources with ≥ 3σ significant correlations

and 15 at the ≥ 2.26σ level. The larger number of sources with significant correlations

is a consequence of using a flatter PSD for the gamma-rays which gives less frequent and

smaller amplitude chance cross-correlations as discussed in Section 5.6.1.

The cases with ≥ 3σ significance are J0238+1636 (AO 0235+164), J1127−1857 (PKS

1124−186), J1504+1029 (PKS 1502+106), C2311+3425 (B2 2308+34), J1635+3808 (4C

+38.41) and BL Lacertae. These are shown in Figures 6.8, 6.9, 6.10, 6.11, 6.12 and 6.13.

For the case of the ≥ 2.26σ significances (not included in the list above) we have 9 addi-

tional cases which in order of significance are: J0742+5444, J0136+4751, J0237+2848,

C1239+0443, C0719+3307, PKS1510−089, J0319+4130, J0808−0751 and J1709+4318.

Given that in the case of βγ = 0.7 we are making an aggressive guess of the significance

estimate, we do not give further consideration to these cases beyond noting that they could

be interesting objects for further study. In spite of this, it is interesting to note that in

most cases the radio emission lags the gamma-ray one, with only two cases with gamma-

ray emission lagging the radio activity and one in which the variations are simultaneous.

Figures for these sources can be found in Appendix F.2.
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6.3.1.3 Estimates using the best fit values of the PSDs

We now look at the 17 highest quality cases in which the PSD can be constrained in both

bands. For these cases we estimate the significance using the best fit value of the PSD

at each band, the flattest PSDs to get an upper limit on the significance and the steepest

PSDs to get a lower limit on the significance. Only the cases with no flags besides the dt,

pfr or pfg are described below. No column indicating a trends flag is included in Table 6.2,

because none of the sources presented that particular problem.

There is 1 case in which the significance is ≥ 3σ even for the lower limit: J0238+1636

(AO 0235+164, τ = −30 ± 9). Figure 6.14 summarizes the result for this source. In this

and all the figures for the best fit case the panel with the p-values and significances shows

the estimate obtained with the best fit PSD as a solid line and 1σ confidence limits as the

shaded area.

There is an additional case C2311+3425 (B2 2308+34, τ = −120 ± 14) for which the

best fit value of the PSDs gives a ≥ 3σ significance but the lower limit is below the 3σ level

still at a high level of 99.93%. Figure 6.15 summarizes the result for this source.

There is another case C1224+2122 (4C +21.35, τ = −380 ± 10) for which the best fit

value of the PSDs gives a ≥ 3σ significance but the lower limit is below the 3σ level but

only at a moderately high level of 96.51%. The results are shown in Figure 6.16. The not

so high level of significance for the low limit, and the presence of a long term trend in the

radio light curve for this source cast some doubt into the interpretation of this correlation

as significance.

There are 5 additional cases in which the significance is ≥ 1.89σ (94.12% for which we

expect 1 significant case by chance) when the best fit PSDs are used, but in all of them the

lower limit is below 1.89σ so they are not significant. These cases are in order of significance:

J1332−0509 (PKS 1329−049 , τ = −90±15), J0808−0751 (PKS 0805−07, τ = −150±16),

J1748+7005 (S4 1749+70, τ = 230 ± 10), J2143+1743 (OX 169, τ = −320 ± 11) and

J1635+3808 (4C +38.41, τ = 500 ± 8). All but one of them are consistent with being 3σ

significant if the flatter allowed PSDs are used, the exception is J2143+1743. We cannot

confirm a correlation in these sources, but instead we identify them as interesting candidates

for further study. The figures for these cases can be found in Appendix F.
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6.4 The big flare in Mrk 421

A major radio flare was observed from Mrk 421 in which its flux density reached 1.11±0.03

Jy, approximately 2.5 times its previous median flux density and 1.5 times its previous

maximum observed flux density at OVRO (Hovatta et al., 2012). Comparison to University

of Michigan Radio Astronomy Observatory (UMRAO) 14.5 GHz long-term monitoring since

1980 shows that this is the highest flux density ever observed in this source. On 16 July 2012

the source was detected at its highest level to date by Fermi -LAT. Its integrated photon

flux for E > 100 MeV was 1.4 ± 0.2 × 10−6 ph cm−2s−1, a factor of 8 greater than the

average flux reported in the second Fermi LAT catalog (D’Ammando & Orienti, 2012).

We extended the analysis for Mrk 421 to include the major flare and fitted its PSDs at

both bands. The radio light curve is found to have βradio between 0.6 and 2.0 with a best

fit of 1.8. For the gamma-ray light curve βγ is between 1.6 and 2.1 with a best fit of 1.6.

With these values we find a peak in the cross-correlation at −40± 9 days with a signifi-

cance between 96.16% and 99.99% depending on the PSD model. Using the best fit values

the significance is 98.96% (Figure 6.17). Nonetheless the significance obtained using only 3

years of gamma-ray and 4 years of radio data for the case βradio = 2.3 and βγ = 1.6 is only

43.3% for a correlation at −40 days and a maximum at −500 days with a 73.8% signifi-

cance (see Figure 6.18 for a comparison). By extending the data set after the observation of

the flare we are in fact doing “a posteriori” statistics, so this result should be treated with

caution until we have extended the whole sample to cover this time period.

Before the flare Mrk 421 was not very active and weak in gamma-rays, with only small

amplitude variations in the radio and gamma-ray bands (Figure 6.18). We also notice that

without including the recent flare we were not able to constrain the radio or the gamma-

ray PSDs for this source, while this become possible using the extended light curves. A

number of sources in our sample show similar low variability characteristics, so they could

potentially flare and show interesting correlations. The longer light curves being obtained

with our monitoring program and Fermi will also allow us to obtain better constraints on

the PSDs.
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6.5 Summary

We have characterized the power spectral density and estimated the significance of cross-

correlations between the radio and gamma-ray bands for a sample of 86 sources with good

sampling properties in both bands. We find 1σ constraints for the PSD power-law index

for 43 sources in the radio band and 29 sources in the gamma-ray band. These constraints

are used to characterize the distribution of PSD power-law indices in both bands.

When we adopt a population value from our results of the PSD characterization of

βradio = 2.3 in the radio band and a published ensemble average for the gamma-ray band of

βγ = 1.6, we put constraints on the significance of cross-correlations between the radio and

gamma-ray bands for 41 sources that present significant variability simultaneously in both

bands and are not flagged as having noisy light curves or trends. We find that 1 out of 41

sources have correlations with ≥ 3σ significance, and 2 when considering all the ≥ 2.25σ

significant cases for which we expect one chance high cross-correlation.

We also estimate the significance using our own average of the gamma-ray PSD power-

law index (βγ = 0.7) and in this case we find that out of 42 sources 6 have ≥ 3σ significant

correlations, and 15 when considering all the cases at ≥ 2.26σ level for which we expect

one chance high cross-correlation. This case uses a more aggressive assumption for the

power-law index of the gamma-ray band, which is the larger uncertainty in this analysis,

and it is therefore used only to point to interesting objects for further study.

For 17 sources in which we can simultaneously constrain the radio and gamma-ray

PSDs we compute best fit and limits for the significances and find that 1 source has a

≥ 3σ significance even when the lower limits are considered. An additional case has ≥ 3σ

significance for the best fit and a high value of the significance for the lower limit and

it is therefore considered significant. There a number of cases in which the significance

goes above 3σ if extremes values of the PSDs are used, but with best fit values below the

3σ threshold. These results indicate that we can only confirm the existence of correlated

variability for a handful of sources using the current data set.

We find that by including data with the recent major flare in Mrk 421, we are able to

constrain the radio and gamma-ray PSDs and find significant correlated variability for a

source that did not show any indication for this in the data set analyzed here. This is a clear

indication that in order to fully understand the multi-wavelength behavior of blazars long
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term unbiased campaigns are required. Long light curves increase the chances of observing

the sources on all the relevant time scales, facilitate the modeling of their variability and

decrease the statistical variation inherent in finite length light curves.

We end this chapter with a note on the interpretation of the measured delays. The time

delays we measure for these sources are determined solely by the position of the peak in the

cross-correlation function. This peak is in most cases somewhat noisy and sits on a broad

base, as in AO 0235+164 where a second peak located at τ = −150±20 day is clearly visible.

The quoted uncertainty in the position of the peak is obtained by accounting for the effects

of sampling and noise in the light curves, but it does not explicitly consider the width of the

cross-correlation peak, which is determined by the time scales of the correlated light curves.

This width, which is much larger than the reported error, adds significant uncertainty to the

interpretation of our results. Another caveat is that the time lag and error we report only

indicate the uncertainty in the position of this cross-correlation peak and does not consider

other effects, such as the response times to the perturbations that start the flares in the

emission regions. These response times, possibly dependent on the energy of the emission,

could change the interpretation of our measurement, not only adding more uncertainty but

systematically changing the relevant time delays. To account for these effects we would

need to model the response of the emission regions at different energy bands

A discussion of the physical implications of the correlations and measured time lags is

presented in Chapter 7.
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Chapter 7

Interpretation of the time lags for
blazars with significant
cross-correlation: The location of
the gamma-ray emission site

In this chapter we discuss the implications of the measured time lags for sources with

significant cross-correlations, that were found in Chapter 6. In particular, we use these

time lags and the physical properties of the jets to estimate the distance of the gamma-ray

emission zone from the black hole/accretion disk system.

7.1 Significance of the cross-correlations between the radio

and gamma-ray bands

In Chapter 6 we studied the significance of the correlations between the radio and gamma-

ray bands and found that significant correlations are only present in a few blazars. A detailed

study of 17 sources, in which we can simultaneously constrain the radio and gamma-ray

power-law index of the PSDs, showed that only 2 blazars have highly significant correlations,

with the radio emission lagging the gamma-ray variations: AO 0235+164 (τ = −30 ±

9 day) and B2 2308+34 (τ = −120 ± 14 day). We remind the reader that in the case

of AO 0235+164 there is significant uncertainty as there is a second peak of comparable

significance at τ = −150± 20 day that we will discuss along with the more significant one.

For the rest of our sample we used βradio = 2.3 and βγ = 1.6, to constrain the significance as

discussed in Chapter 6. Employing this procedure, we found an additional significant case,
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where the radio emission also lags the gamma-ray variations: PKS 1502+106 (τ = −40±13

day). In addition to the uniform sample described above, we explored the case of a big

gamma-ray/radio flare in Mrk 421 and found that by extending the light curves to include

the flare, we could constrain the power-law index of the PSD in both bands. This allows

us to find a significant correlation for this source, again with radio emission lagging the

gamma-ray variations with τ = −40± 9 day.

7.1.1 Interpretation of the time delays

The observed time delays between the radio and gamma-ray emission are interpreted in the

context of a model in which a moving emission region, confined to the jet, is responsible

for the observed radio and gamma-ray activity. This region moves away from the black

hole/accretion disk system at a speed β in units of the speed of light, and corresponds

to the moving disturbances observed with VLBI. In this picture, for which a schematic is

provided in Figure 7.1, the flare in gamma-rays becomes observable at a distance dγ from

the base of the jet in the black hole/accretion disk, which we will refer as the central engine.

Nonetheless, the gamma-ray flare can start closer to the black hole than dγ , but it will only

be visible to an observer once it crosses the surface of unity gamma-ray opacity. This surface

corresponds to the gamma-spheres in the Blandford & Levinson (1995) model, described

in Chapter 1. Likewise, the radio flare only becomes visible to an observer once it moves

beyond the surface of unity radio opacity, which is frequency dependent as described in

Blandford & Königl (1979). In what follows, we refer to this surface of unit opacity in the

jet as the radio core, whose distance to the central engine is labeled in Figure 7.1 as dcore.

Our measurement of the time lag between these two bands gives us an estimate of the

time interval between the emergence of gamma-ray and radio radiation from the jet, tr− tγ

in the source frame. The distance traveled by the emission region between the peaks in the

gamma-ray and radio emission can be estimated as

d =
ΓDβc∆t

(1 + z)
(7.1)

where Γ is the bulk Lorentz factor, D is the Doppler factor, β is the bulk jet speed in units

of the speed of light c, ∆t is the measured time lag and z is the redshift (Pushkarev et al.,

2010). In order to obtain d, we need to measure all the jet physical properties involved in
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Figure 7.1: Schematic of the model used in the interpretation of the time lag between the
radio and gamma-ray emission. The central engine in the far right launches a jet in which
moving disturbances propagate away at speed β. A moving disturbance (shaded area) is
depicted at two times: tγ at which gamma-ray emission peaks and tr for the peak of the
radio emission when crossing the radio core. All the relevant distances have been indicated.

Equation 7.1. The procedure to obtain each one of them is described in detail in Section

7.1.1.1.

An estimate of d is not enough to determine the distance from the central engine, dγ , at

which the gamma-ray flare becomes visible to an observer, but this can be done indirectly

by determining the distance between the surface of the radio core and the central engine,

combined with d,

dγ = dcore − d (7.2)

An estimate of dcore can be obtained from VLBI observations, in which the angular diameter

of the radio core can be determined directly, θcore in Figure 7.2. This, combined with an

estimate of the intrinsic jet opening angle, αint, and the source redshift, allows us to estimate

dcore. The intrinsic opening angle is determined in two steps. First, a determination of the

apparent opening angle (αapp) is made from a direct fit to the jet width as a function of

distance to the core, or by multiple component fittings in the (u, v) plane (Pushkarev et al.,

2009). Then, this apparent opening angle is deprojected using a measurement of the jet

viewing angle (Equation 7.11), and is given by αint = αapp sin(θ).

The expression for dcore, under the assumption of a conical jet with a constant opening
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Figure 7.2: Geometry of the jet parameters measured with VLBI observations, with the
radio represented as the shaded area. αint is the opening angle of the radio, θ is the
viewing angle of the jet and θcore the angular diameter of the core. All the angles have been
exaggerated for clarity.

angle with vertex at the central engine, is

dcore ∼
(θcore/2)dA

tan(αint/2)
(7.3)

where dA is the angular diameter distance, which we obtain by adopting a ΛCDM cosmology

with H0 = 70 km s−1 Mpc−1, Ωm = 0.27 and ΩΛ = 0.73 (Komatsu et al., 2011).

Equation 7.3 is only valid if the jet is a cone of constant opening angle. However, there is

observational evidence for collimation in the jet of M87, as described in Asada & Nakamura

(2012) and references therein. These authors characterized the streamlines of the M87 jet,

and found a parabolic shape for the inner region that transitions to a conical outer jet.

Given the radius of the jet cross-section r, and the distance between the central engine and

the jet surface z, illustrated in Figure 7.3, the Asada & Nakamura (2012) model for the

jet profile is characterized as z ∝ ra. For z . 2.5 × 105 rs, where rs is the Schwarzschild

radius, they found a = 1.73±0.05, while at further distances a = 0.96±0.1, consistent with

a cone of constant opening angle. Since it is plausible to expect collimation in every AGN

jet, we estimate its effect on the derived distance from the central engine to the surface of

the radio core. The difference between the estimated distance assuming a constant opening

angle (dcore(cone)) and the case including collimation (dcore(coll)) is illustrated in Figure

7.3.

Assuming the radio core is in the collimation zone, which has a power-law collimation
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Figure 7.3: Comparison of the estimated distance between the surface of the radio core
(shaded region) and central engine (black circles) for the parabolical (dcore(coll)) and conical
(dcore(cone)) jet profiles. In general dcore(coll) < dcore(cone).

(dcore ∝ racore, a > 1), we have

dcore(coll) =
1

a
dcore(cone) (7.4)

Therefore, if we assume the same collimation model as in M87, our estimate of dcore is

reduced by a factor of 1.73. If the radio core is downstream of the collimation zone, we

would obtain a value in between the ones from the collimated and conical jet. In our

estimations we quote the results of using both a jet with collimation and a conical jet, in

order to provide a lower and upper limit to dcore.

7.1.1.1 Estimation of the jet physical properties

The estimation of the distance traveled by the emission region between the peaks in the

gamma-ray and radio emission (Equation 7.1), requires the values for a number of other

physical properties. Here we only present the basic relations required in this investigation,

and refer the interested reader to more comprehensive reviews of the theory of jets (e.g.,

Begelman et al., 1984).

The bulk Lorentz factor (Γ) and the Doppler factor (D) are given by

Γ =
1√

1− β2
(7.5)

D =
1

Γ(1− β cos(θ))
(7.6)
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where θ is the angle between the jet and the line of sight, often called the jet viewing angle

(see Figure 7.2). Another important quantity is the apparent jet speed, βapp, which is also

in units of the speed of light and is given by

βapp =
β sin(θ)

1− β cos(θ)
(7.7)

Values of D are estimated from the variability time scale (tvar). These are obtained from

Hovatta et al. (2009) and have a typical 27% scatter for individual flares in a given source.

This scatter is considered as the uncertainty in D for our calculations. The variability time

scale is measured as the e-folding time scale of flares that are fitted to the light curve. This

time scale is used to estimate the size of the emission region, which is determined by light

travel time effects to have a radius of order ctvar/(1 + z). The factor of (1 + z) accounts

for cosmological time dilation. The amplitude of the fitted exponential components is the

flux density change associated with the flare (∆Sν). The observed brightness temperature

of the flaring region is given by

Tb,var = 1.47× 1019∆Sνν
−2t−2

vard
2
A(1 + z)3 K (7.8)

where ∆Sν is in Jy, ν is the observing frequency in GHz, tvar is in days and dA is the an-

gular diameter distance in Gpc. The (1 + z)3 factor comes from cosmological time dilation

and black-body temperature transformation due to frequency redshifting. In this model we

assume that the very high observed brightness temperatures are produced by beaming, and

thus the source has a much lower intrinsic temperature. The intrinsic brightness tempera-

ture is assumed to be equal to the equipartition brightness temperature, Tb,int = 5×1010 K

(Readhead, 1994). The final step is to use the relations between beamed and unbeamed

quantities, which are νrec = Dνem, trec = tem/D and Sν,rec = D3Sν,em. This finally leads to

Dvar =

(
Tb,var

Tb,int

)1/3

, (7.9)

making Dvar a weak function of the assumed Tb,int.

The apparent jet speed, βapp, can be measured using VLBI observations (e.g., Lister et

al., 2009). With a knowledge of D and βapp, it is possible to obtain Γ and the jet viewing

angle θ, using the following relationships which can be derived from Equations 7.6 and 7.7
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Γ =
β2

app +D2 + 1

2D
(7.10)

θ = arctan

(
2βapp

β2
app +D2 − 1

)
(7.11)

The errors in the derived quantities, presented in the following sections, are computed

considering the measured uncertainties of the time lags and jet physical properties. These

uncertainties are propagated using a Monte Carlo method with the assumption of normal

errors.

7.1.1.2 Estimation of d

We can now use these expressions to estimate the distance traveled by the emission region

between the observed peaks of the radio and gamma-ray emission.

For AO 0235+164 we have Dvar = 24 (Hovatta et al., 2009) but no measurement of

βapp since its jet is unresolved in VLBA observations at 15 GHz (Lister et al., 2009). In

this case we assume the source is seen at the critical angle, for which the apparent speed

is maximum for a given value of β. This angle is given by cos(θcr) = β and produces a

maximum apparent speed of βapp = Γβ. In this special case we have D = Γ, so using

the measurement of Dvar we can obtain β and thus the critical angle, which in this case is

θcr = θ = 2.4◦. We can finally use Equation 7.1 to obtain a distance between the radio and

gamma-ray emission region for the most significant time lag (τ = −30 ± 9 day) and the

other significant peak (τ = −150 ± 20 day). We obtain d = 7.5 ± 5.3 pc for the peak at

−30 day, and d = 37.3 ± 24.0 pc for the peak at −150 day in AO 0235+164. The critical

angle is the maximum angle for which we can solve for β given the value of D we assume.

To test the dependence of d on this assumption we use θ = θcr/2 and obtain in this case

3.9± 3.2 pc for the peak at −30 day, and 20± 15 pc for the one at −150 day. If we instead

assume the jet is directly pointing at us we get 3.7 ± 2.6 pc for the peak at −30 day, and

19± 12 pc for the one at −150 day.

For PKS 1502+106 we have Dvar = 12 (Hovatta et al., 2009) and βapp = (14.8 ± 1.2)c

(Lister et al., 2009), so we can use Equations 7.10 and 7.11 to obtain Γ = 15.2± 11.5 and

θ = (4.7 ± 1.1)◦. Since Γ → ∞ when β → 1, its numerical determination is problematic,

making its uncertainty large when β ∼ 1. On the other hand, β is very well determined
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with β = 0.9978± 0.0006. With these values we get a distance of d = 2.1± 0.9 pc for PKS

1502+106. If we had used the critical angle assumption as in the case of AO 0235+164,

then θcr = 4.78◦ for PKS 1502+106, and together with the value of Dvar we would have

obtained a distance of about 1.7± 1.2 pc.

The case of B2 2308+34 is more uncertain as there are no published VLBI results,

although the source has been recently added to the MOJAVE program. Preliminary analysis

using the OVRO light curves indicates a variability Doppler factor of about 20. A detailed

estimation of the variability Doppler factors for the blazars in the OVRO 40 m monitoring

program will be presented in Hovatta et al. (in preparation). In consequence, a constraint

on the distance traveled by the emission region between the radio and gamma-ray emission

peaks is not possible for this object.

In the case of Mrk 421 there is also uncertainty, and we provide an estimation only

to get an indication of what might be happening in the source. We use a preliminary

variability Doppler factor for the recent flare of D = 4 (Richards et al., in preparation).

The value of βapp is uncertain, since the jet components are consistent with being stationary

as reported by Lico et al. (2012). These authors argue for an scenario in which the jet has

a velocity structure with Γradio ∼ 1.8 and Γγ ∼ 20, with a viewing angle between 2◦and 5◦.

Assuming a representative value of 4◦ for the viewing angle and our measured variability

Doppler factor, we obtain a Γ ∼ 2.2 and a distance of about 0.2 pc between the location

of the start of the gamma-ray flare and the crossing of the radio core. No uncertainties

have been provided in this case, because the limited knowledge of the properties of this

jet makes such estimation difficult. Upcoming results from VLBA observations, triggered

by the observation of this extreme event, will improve this constraint (Richards et al., in

preparation).

7.1.1.3 Estimation of dcore

We can estimate the distance between the central engine and the surface of the radio core

with a measurement of the core angular size and the intrinsic opening angle of the jet.

Core angular sizes (FWHM) have been measured in Lister et al. (2009) for AO 0235+164

(θcore = 0.21 ± 0.06 mas) and PKS 1502+106 (θcore = 0.15 ± 0.05 mas). In all these cases

we have used the average of multiple epochs with uncertainties given by the scatter in the

measurements. For Mrk 421, Kovalev et al. (2005) report a value of θcore = 0.16 mas for
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which no error estimate is given, however the angular resolution of the observations is about

0.05 mas.

For the intrinsic opening angles we use αint . 2.4◦ for AO 0235+164, which is the critical

angle upper limit we find in Section 7.1.1.2 and consistent to what is used in Agudo et al.

(2011b). For PKS 1502+106 we use αint = 3.11◦ (Pushkarev et al., 2009), while for Mrk 421

we use αint = 2.4◦, which is the mean value for BL Lacs found by Pushkarev et al. (2009).

No uncertainties are quoted for the apparent and intrinsic opening angle measurements, but

we can estimate them at least for PKS 1502+106. For the apparent opening angle of 37.9◦,

we assume a 5◦uncertainty estimated from the observed variation in one example presented

in Pushkarev et al. (2009). Using the apparent opening angle and the viewing angle we

found in Section 7.1.1.2 (θ = 4.7◦ ± 1.1◦) we obtain αint = 3.11◦ ± 0.83◦.

The estimates of dcore for the conical jet model are & 40 ± 11 pc for AO 0235+164,

24± 15 pc for PKS 1502+106, and about 2.4 pc for Mrk 421.

The uncertainty in the case of PKS 1502+106 has been derived using θcore = 0.15± 0.05 mas

and αint = 3.11± 0.83◦, and restricting the value of αint > 0.1◦, which is about the smaller

intrinsic opening angle measured by Pushkarev et al. (2009). This avoids the rapid diver-

gence of dcore for small values of αint, which greatly increases the scatter in the resulting

dcore. Considering a larger threshold of 1◦ reduces the uncertainty to 12 pc. The minimum

error is 8 pc and is obtained by only including the uncertainty in θcore.

In the case of the collimated jet, these are corrected using Equation 7.4 and we obtain

values of dcore & 23± 6 pc for AO 0235+164, 14± 9 pc for PKS 1502+106, and about 1.4

pc for Mrk 421.

7.1.1.4 Estimation of dγ

We can finally estimate dγ , the distance between the central engine and the region where

the gamma-ray flare has its peak (Figure 7.1 and Equation 7.2). A summary of these results

is presented in Table 7.1, in which the two peaks found in AO 0235+164 are included.

7.2 Conclusions

Our results indicate that the region at which the observed gamma-ray flare peaks is outside

the broad line region (∼1 pc) for PKS 1502+106. However, the case of AO 0235+164 is
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Table 7.1: Estimate of the distance between the region of the gamma-ray flare
peak and the central engine. All distances are in parsec and time lags in day.

Source d dcore(coll) dcore(cone) dγ(coll) dγ(cone)

AO 0235+164, τ = −30± 9 8± 5 & 23± 6 & 40± 11 & 15± 8 & 32± 12
AO 0235+164, τ = −150± 20 37± 24 & 23± 6 & 40± 11 & −14± 25 & 3± 26

PKS 1502+106 2± 1 14± 9 24± 15 12± 9 22± 15

uncertain because of the broad correlation peak, and we cannot reject a location of the

gamma-ray emission site close to the central engine. The location for Mrk 421 is on the

scale of the broad line region, but this result needs to be confirmed with high quality VLBI

observations, in order to better constrain the properties of the jet.

We mentioned before that the gamma-ray flare could start at a closer distance than

dγ , but be unobservable due to gamma-ray opacity (Blandford & Levinson, 1995). In their

paper the radius of the gamma-sphere, at which the opacity at gamma-rays is unity for

energies of up to 10 GeV, is estimated to be ∼ 3 × 10−4 − 0.3 pc, depending on the AGN

luminosity. Thus, it seems improbable that the gamma-ray flare occurs inside the gamma-

sphere for PKS 1502+106, in which this is much smaller than the distance we have obtained.

However, further observations would be required to discard this scenario. One approach

would be to measure the expected time delay between different parts of the gamma-ray

band, that is predicted by the energy dependent radius of the gamma-spheres.

Therefore, our results for these blazars with highly significant correlations, disfavor

the model of Blandford & Levinson (1995) only for PKS 1502+106, although with large

uncertainties, and are inconclusive for the other two sources. In the case of a location far

from the central engine for PKS 1502+106, the favored mechanism for production of the

high energy peak in blazars is inverse Compton. The source of the seed photons for inverse

Compton could originate in the same jet (synchrotron photons, e.g., Jones et al., 1974) or

in an external region present at this large distance from the nucleus (e.g., infrared photons

form the dust torus as proposed by B lażejowski et al., 2000).
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Chapter 8

Summary

We have presented the results of a major effort aimed at constraining the location of the

gamma-ray emission site in blazars, by the study of correlated variability between the

radio and gamma-ray bands for a large sample of blazars. The main observational effort

required for this program is the high cadence monitoring of a large sample of blazars at

15 GHz with the Owens Valley Radio Observatory 40 meter telescope (Chapter 2). This

monitoring program started in 2008 and is currently looking at 1593 blazars, most of them

candidate gamma-ray emitters and including all the Fermi detected sources associated

with radio blazars visible from Owens Valley. The continuous monitoring and operation of

the OVRO 40 m telescope required a complete automation of the observing procedures. To

accomplish this, we developed an observing scheme that takes into account astronomical and

technical constraints, enabling a high cadence 3-day cycle for all our sources and allowing

for appropriate calibrations, as described in detail in Chapter 2. To achieve the goals of

this program we also needed to analyze the gamma-ray data obtained by the Large Area

Telescope on board the Fermi Gamma-ray Space Telescope, a subject that is also discussed

in Chapter 2, where the basics of gamma-ray data reduction were presented.

The nature of the available data sets, that are unevenly sampled light curves of short

duration and non-uniform errors, required the development of custom statistical techniques

that make extensive use of simulated data sets. The techniques we developed for this

investigation were described in detail in Chapters 3 and 5. A number of advances with

respect to the original implementations described in the literature were developed. In

particular, the power spectral density fit method of Uttley et al. (2002) was reformulated to

use data that has a more uniform cadence, although still unevenly sampled. This required

the use of interpolation and a sampling window function to control the negative effects of
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red-noise leakage, which is a serious problem when fitting steep power spectral densities.

Improvements in the computation of the uncertainties are discussed, along with estimates

for the repeatability of the fitting results, which set a lower limit on the precision we can

achieve with the method. A refinement of the method used to estimate the significance

of cross-correlation for unevenly sampled light curves was also developed. We found that

when compared to the discrete cross-correlation function (DCF, Edelson & Krolik, 1988)

the local cross-correlation function (LCCF, Welsh, 1999) reduced the number of spurious

peaks and increased the detection efficiency in simulated data with known correlations

properties. Therefore, we recommend its use for cross-correlations studies using unevenly

sampled light curves. We demonstrated the strong effect that the model used for the power

spectral density has on the significance estimates, thus highlighting the importance of a

proper characterization of the variability. We also developed a method to estimate the

uncertainty in the significance estimates and discussed the problem of multiple hypothesis

testing. These last two issues had been completely ignored by previous authors.

We studied the variability properties through the characterization of the power spectral

density for all the blazars in the OVRO 40 m monitoring program (Chapter 4). We modeled

their power spectral densities with a single power-law (P (ν) ∝ 1/νβradio) and found that

the distribution of their slopes is consistent with a single value equal to the sample mean of

βradio ∼ 2.3. No variation in the distribution of βradio was found when dividing the sources

by gamma-ray-loud versus gamma-ray-quiet, FSRQ versus BL Lac, SED class, and redshift.

We used data from the UMRAO program for 51 blazars observed from the late 1970s to the

early 1990s (Hughes et al., 1992), and found that the distribution of their PSD power-law

index is consistent with the one found for the OVRO sample. Out of 12 sources with good

quality PSD fits in both programs, we find consistent values for βradio in 11, indicating

that the variability properties of most sources are constant on time scales of decades. We

also compared the determinations of βradio using structure functions (Hughes et al., 1992)

and our PSD fits and found consistent results or small differences in the majority of cases.

However, we recommend the use of our method for power spectral density measurements,

as it provides an uncertainty estimate and can be generalized for more complex PSDs.

In Chapter 6 we studied the existence of statistically significant correlations and mea-

sured the time lags for the significant cases. Using 4 years of radio data and 3 years of

gamma-ray data, we studied the significance of correlations for a sample of 86 sources with
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good cadence in the radio and gamma-ray bands. A detailed study of 17 sources in which

we can simultaneously constrain the radio and gamma-ray PSDs showed that only 2 blazars

have highly significant correlations. In these blazars the radio emission lags the gamma-ray

variations: AO 0235+164 (τ = −30 ± 9 day and τ = −150 ± 20 day) and B2 2308+34

(τ = −120 ± 14 day). For the rest of the blazars we used the distributions of power-law

indices of the PSDs in the radio and gamma-ray bands (βradio = 2.3 and βγ = 1.6), to

constrain the significance and find an additional significant case, also with radio emission

lagging the gamma-ray variations: PKS 1502+106 (τ = −40± 13 day).

In addition to the study of correlations for the uniform sample described above, we

studied Mrk 421 using data that includes its recent gamma-ray and radio flare. After

including the additional data, we were able to constrain the radio and gamma-ray PSDs

and found significant correlated variability. In Mrk 421 again the radio emission lags the

gamma-ray variations with τ = −40± 9 day.

Our findings demonstrate that in order to fully understand the multi-wavelength behav-

ior of blazars long term unbiased campaigns are required. Extended light curves increase

the chances of observing the sources in all the relevant time scales, facilitate the modeling of

their variability, and decrease the statistical variation inherent in finite length light curves.

The observations and analysis presented here are consistent with a close relation be-

tween the regions producing the radio and gamma-ray emission in a handful of the sources.

Nonetheless, the relation between these regions is still uncertain for the majority of the

sources in our sample, and extended light curves are required to better understand their

properties. We also constrained the location of the peak of the flaring episode, from which

gamma-rays are emitted, to be tens of parsecs away from the black hole for PKS 1502+106,

although with large uncertainty. Our results are inconclusive regarding the location of the

gamma-ray emission site for AO 0235+164 because of the broad correlation peak, and we

cannot reject a location close to the central engine. The location for Mrk 421 is on the scale

of the broad line region (typically less than 1 pc), but this result needs to be confirmed

with high quality VLBI observations, in order to better constrain the properties of the

jet. These results disfavor the Blandford & Levinson (1995) mechanism as the origin of the

gamma-ray emission for PKS 1502+106, and are inconclusive for the other sources. We note

that the uncertainties in the estimated distances are large, mostly due to the difficulties in

characterizing the properties of the radio jets in these sources and the broad peaks in the
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cross-correlation function.

A definitive solution to the problem of the existence of correlated variability between

radio (or other bands) and the gamma-ray emission requires the study of large samples

of objects, observed independently of their state for long periods of time, ideally decades,

and their analysis using well defined statistical methods like the ones we have developed

in this thesis. The majority of the light curves studied in this work have few events at

radio and gamma-rays, which complicates an unambiguous and statistically significant time

lag determination. Longer radio and gamma-ray light curves are being obtained through

continuous monitoring with the OVRO 40 m telescope and Fermi. These extended light

curves will improve our ability to characterize the PSDs and estimate the significance of

correlations, as demonstrated by the case of Mrk 421. This will allow us to set stricter

constraints for the significance of correlations in larger samples of sources, thus improving

our knowledge of the location of the gamma-ray emission site in the whole blazar population.
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Appendix A

Sources Table

Table A.1 contains the list of sources monitored in radio along with associated gamma-ray

sources for gamma-ray detected sources. The redshift, optical class and SED class are taken

from CGRaBS (Healey et al., 2008), 1LAC (Abdo et al., 2010) or 2LAC (Ackermann et al.,

2011). For each source the most recent reported properties are listed. The source names are

the internal ones used in the radio monitoring program, for convenience we provide them

for the 86 sources included in the cross-correlation sample in Table A.1. For the rest of the

sources more common names can be found using NED1.

Table A.2 contains the same basic information for all the sources in the blazar monitoring

program.

In both tables a value of the redshift equal to zero means that redshift measurement

was not possible even though and optical spectrum was available (Ackermann et al., 2011).

1http://ned.ipac.caltech.edu/

http://ned.ipac.caltech.edu/


189

Table A.1: OVRO blazar monitoring program source in cross-correlation sample

OVRO name Common name 2FGL name RA DEC z Optical Class SED class

RBS76 KUV 00311-1938 J0033.5-1921 00:33:34.30 -19:21:34.0 0.61 BLL HSP

J0108+0135 4C +01.02 J0108.6+0135 01:08:38.77 +01:35:00.3 2.099 FSRQ LSP

J0112+2244 S2 0109+22 J0112.1+2245 01:12:05.82 +22:44:38.8 0.265 BLL ISP

J0112+3208 4C 31.03 J0112.8+3208 01:12:50.33 +32:08:17.6 0.603 FSRQ LSP

BBJ0136+3905 B3 0133+388 J0136.5+3905 01:36:32.40 +39:05:59.0 0.0 BLL HSP

J0136+4751 OC 457 J0136.9+4751 01:36:58.59 +47:51:29.1 0.859 FSRQ LSP

C0144+2705 TXS 0141+268 J0144.6+2704 01:44:33.56 +27:05:03.1 0.0 BLL LSP

J0217+0144 PKS 0215+015 J0217.9+0143 02:17:48.96 +01:44:49.7 1.721 FSRQ LSP

J0221+3556 S4 0218+35 J0221.0+3555 02:21:05.47 +35:56:13.7 0.944 FSRQ . . .

3C66A 3C 66A J0222.6+4302 02:22:39.60 +43:02:07.0 0.0 BLL ISP

J0237+2848 4C +28.07 J0237.8+2846 02:37:52.41 +28:48:09.0 1.206 FSRQ LSP

J0238+1636 AO 0235+164 J0238.7+1637 02:38:38.93 +16:36:59.3 0.94 BLL LSP

J0319+4130 NGC 1275 J0319.8+4130 03:19:48.16 +41:30:42.1 0.018 Radio Gal . . .

J0423-0120 PKS 0420-01 J0423.2-0120 04:23:15.80 -01:20:33.1 0.916 FSRQ LSP

J0442-0017 PKS 0440-00 J0442.7-0017 04:42:38.66 -00:17:43.4 0.844 FSRQ LSP

J0509+0541 TXS 0506+056 J0509.4+0542 05:09:25.96 +05:41:35.3 0.0 BLL ISP

J0612+4122 B3 0609+413 J0612.8+4122 06:12:51.19 +41:22:37.4 0.0 BLL . . .

C0719+3307 B2 0716+33 J0719.3+3306 07:19:19.42 +33:07:09.7 0.779 FSRQ LSP

J0721+7120 S5 0716+71 J0721.9+7120 07:21:53.45 +71:20:36.4 0.0 BLL ISP

J0725+1425 4C +14.23 J0725.3+1426 07:25:16.81 +14:25:13.7 1.038 FSRQ LSP

J0738+1742 PKS 0735+17 J0738.0+1742 07:38:07.39 +17:42:19.0 0.424 BLL LSP

J0739+0137 PKS 0736+01 J0739.2+0138 07:39:18.03 +01:37:04.6 0.189 FSRQ LSP

J0742+5444 GB6 J0742+5444 J0742.6+5442 07:42:39.79 +54:44:24.7 0.723 FSRQ LSP

J0808-0751 PKS 0805-07 J0808.2-0750 08:08:15.54 -07:51:09.9 1.837 FSRQ LSP

J0831+0429 PKS 0829+046 J0831.9+0429 08:31:48.88 +04:29:39.1 0.174 BLL LSP

0836+710 4C +71.07 J0841.6+7052 08:41:24.37 +70:53:42.2 2.218 FSRQ LSP

J0854+2006 OJ 287 J0854.8+2005 08:54:48.87 +20:06:30.6 0.306 BLL ISP

J0856-1105 CRATES J0856-1105 J0856.6-1105 08:56:41.80 -11:05:14.5 0.0 BLL LSP

J0909+0121 PKS 0906+01 J0909.1+0121 09:09:10.09 +01:21:35.6 1.026 FSRQ LSP

J0915+2933 B2 0912+29 J0915.8+2932 09:15:52.40 +29:33:24.0 0.0 BLL HSP

J0920+4441 S4 0917+44 J0920.9+4441 09:20:58.46 +44:41:54.0 2.189 FSRQ LSP

C0957+5522 4C +55.17 J0957.7+5522 09:57:38.18 +55:22:57.7 0.899 FSRQ LSP

C1012+2439 MG2 J101241+2439 J1012.6+2440 10:12:41.38 +24:39:23.4 1.805 FSRQ . . .

J1015+4926 1H 1013+498 J1015.1+4925 10:15:04.13 +49:26:00.7 0.212 BLL HSP

C1037+5711 GB6 J1037+5711 J1037.6+5712 10:37:44.31 +57:11:55.6 0.0 BLL ISP

J1058+0133 4C +01.28 J1058.4+0133 10:58:29.60 +01:33:58.8 0.888 BLL LSP

J1058+5628 TXS 1055+567 J1058.6+5628 10:58:37.73 +56:28:11.2 0.143 BLL HSP

J1104+3812 Mkn 421 J1104.4+3812 11:04:27.31 +38:12:31.8 0.031 BLL HSP

J1127-1857 PKS 1124-186 J1126.6-1856 11:27:04.39 -18:57:17.4 1.048 FSRQ LSP

BBJ1150+4154 RBS 1040 J1150.5+4154 11:50:34.65 +41:54:40.8 0.0 BLL HSP

J1159+2914 Ton 599 J1159.5+2914 11:59:31.83 +29:14:43.8 0.725 FSRQ LSP

J1217+3007 1ES 1215+303 J1217.8+3006 12:17:52.08 +30:07:00.6 0.13 BLL HSP

J1221+2813 W Comae J1221.4+2814 12:21:31.69 +28:13:58.5 0.103 BLL ISP

C1224+2122 4C +21.35 J1224.9+2122 12:24:54.46 +21:22:46.4 0.434 FSRQ LSP

J1229+0203 3C 273 J1229.1+0202 12:29:06.70 +02:03:08.6 0.158 FSRQ LSP

J1231+2847 B2 1229+29 J1231.7+2848 12:31:43.58 +28:47:49.8 0.236 BLL HSP

C1239+0443 MG1 J123931+0443 J1239.5+0443 12:39:32.76 +04:43:05.2 1.761 FSRQ LSP

J1248+5820 PG 1246+586 J1248.2+5820 12:48:18.78 +58:20:28.7 0.0 BLL ISP

C1253+5301 S4 1250+53 J1253.1+5302 12:53:11.92 +53:01:11.7 0.0 BLL ISP

J1256-0547 3C 279 J1256.1-0547 12:56:11.17 -05:47:21.5 0.536 FSRQ LSP

J1310+3220 OP 313 J1310.6+3222 13:10:28.66 +32:20:43.8 0.997 FSRQ LSP

J1312+4828 GB 1310+487 J1312.8+4828 13:12:43.35 +48:28:30.9 0.501 FSRQ LSP

J1332-0509 PKS 1329-049 J1332.0-0508 13:32:04.46 -05:09:43.3 2.15 FSRQ LSP

J1344-1723 PMN J1344-1723 J1344.2-1723 13:44:14.40 -17:23:40.4 2.506 FSRQ . . .

Continues
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Table A.1

OVRO name Common name 2FGL name RA DEC z Optical Class SED class

C1345+4452 B3 1343+451 J1345.4+4453 13:45:33.17 +44:52:59.6 2.534 FSRQ LSP

CR1427+2347 PKS 1424+240 J1427.0+2347 14:27:00.39 +23:48:00.0 0.0 BLL HSP

J1504+1029 PKS 1502+106 J1504.3+1029 15:04:24.98 +10:29:39.2 1.839 FSRQ LSP

PKS1510-089 PKS 1510-08 J1512.8-0906 15:12:50.53 -09:05:59.8 0.36 FSRQ LSP

J1522+3144 B2 1520+31 J1522.1+3144 15:22:09.99 +31:44:14.4 1.484 FSRQ LSP

CR1542+6129 GB6 J1542+6129 J1542.9+6129 15:42:56.95 +61:29:55.4 0.0 BLL ISP

J1555+1111 PG 1553+113 J1555.7+1111 15:55:43.04 +11:11:24.4 0.0 BLL HSP

J1635+3808 4C +38.41 J1635.2+3810 16:35:15.49 +38:08:04.5 1.813 FSRQ LSP

J1653+3945 Mkn 501 J1653.9+3945 16:53:52.22 +39:45:36.6 0.034 BLL HSP

J1709+4318 B3 1708+433 J1709.7+4319 17:09:41.09 +43:18:44.5 1.027 FSRQ LSP

J1725+1152 1H 1720+117 J1725.0+1151 17:25:04.34 +11:52:15.5 0.0 BLL HSP

J1733-1304 PKS 1730-13 J1733.1-1307 17:33:02.71 -13:04:49.5 0.902 FSRQ LSP

J1748+7005 S4 1749+70 J1748.8+7006 17:48:32.84 +70:05:50.8 0.77 BLL ISP

J1800+7828 S5 1803+784 J1800.5+7829 18:00:45.68 +78:28:04.0 0.68 BLL LSP

J1806+6949 3C 371 J1806.7+6948 18:06:50.68 +69:49:28.1 0.051 BLL ISP

J1824+5651 4C +56.27 J1824.0+5650 18:24:07.07 +56:51:01.5 0.664 BLL LSP

J1848+3219 B2 1846+32A J1848.5+3216 18:48:22.10 +32:19:02.6 0.798 FSRQ LSP

J1849+6705 S4 1849+67 J1849.4+6706 18:49:16.08 +67:05:41.7 0.657 FSRQ LSP

CR1903+5540 TXS 1902+556 J1903.3+5539 19:03:11.61 +55:40:38.4 0.0 BLL ISP

J1959+6508 1ES 1959+650 J2000.0+6509 19:59:59.85 +65:08:54.7 0.047 BLL HSP

C2025-0735 PKS 2023-07 J2025.6-0736 20:25:40.66 -07:35:52.7 1.388 FSRQ LSP

C2121+1901 OX 131 J2121.0+1901 21:21:00.61 +19:01:28.3 2.18 FSRQ LSP

J2143+1743 OX 169 J2143.5+1743 21:43:35.54 +17:43:48.7 0.211 FSRQ LSP

BLLacertae BL Lacertae J2202.8+4216 22:02:43.30 +42:16:40.0 0.069 BLL ISP

J2203+1725 PKS 2201+171 J2203.4+1726 22:03:26.89 +17:25:48.3 1.076 FSRQ LSP

C2225-0457 3C 446 J2225.6-0454 22:25:47.26 -04:57:01.4 1.404 FSRQ LSP

J2229-0832 PKS 2227-08 J2229.7-0832 22:29:40.08 -08:32:54.4 1.56 FSRQ LSP

2230+114 CTA 102 J2232.4+1143 22:32:36.41 +11:43:50.9 1.037 FSRQ LSP

J2236+2828 B2 2234+28A J2236.4+2828 22:36:22.47 +28:28:57.4 0.795 BLL LSP

CR2243+2021 RGB J2243+203 J2243.9+2021 22:43:54.74 +20:21:03.8 0.0 BLL HSP

J2253+1608 3C 454.3 J2253.9+1609 22:53:57.75 +16:08:53.6 0.859 FSRQ LSP

C2311+3425 B2 2308+34 J2311.0+3425 23:11:05.33 +34:25:10.9 1.817 FSRQ LSP
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Appendix B

Telescope calibration summary

This appendix summarizes the results of the periodic calibration runs performed during the

course of the radio monitoring program from November 2008 to December 2011.

B.1 Receiver noise temperature

The receiver temperature is measured with the hot/cold test method in which matched

loads of known temperatures are connected to the receiver (e.g. Rohlfs & Wilson, 2004). A

hot load at temperature TH and a cold one at TC produce outputs given by

PC = G(TL + Trx) (B.1)

PH = G(TH + Trx) (B.2)

Where G is the gain of the receiver. Defining the Y-factor by Y ≡ PH/PC, the receiver

noise temperature is given by

Trx =
TH − Y TC

Y − 1
(B.3)

Figure B.1 presents historic data for the receiver noise temperature, showcasing the

stability of the receiver noise temperature except for one high measurement in February

2010. Excluding that point the mean value is Trx = 29.4± 0.2 K.
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Figure B.1: Receiver noise temperature measured with a hot/cold test. Excluding the
February 2010 outlier the mean value is Trx = 29.4± 0.2 K.

B.2 Calibration and noise diode temperature

During the hot/cold test we also measure the noise temperature of the noise diode. In this

case the noise diode is fired during the cold load stage, and we solve for Tnoise in an analogous

way as for Trx. The noise temperature of the calibration diode is measured indirectly by

determining the ratio between the power outputs for the noise and calibration diodes. The

historic results are shown in Figure B.2.
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Figure B.2: Noise and calibration diode noise temperature. Upper left panel is the noise
diode noise temperature, upper right panel is the calibration diode noise temperature and
lower panel is the ratio between the noise and calibration diodes output power.
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B.3 Focus curve

The focus curve corrects for variations of the optimum focus position with zenith angle,

solar elongation and Sun zenith angle, as explained in 2.5.2. Here we give the mathematical

expressions and historic values for the model coefficients.

B.3.1 Simple focus model

In this model the only dependence is with the zenith angle. The model is given by

z = α2ZA
2 + α1ZA+ α0 (B.4)

where z is the focus position in mm, and ZA is the zenith angle in degrees.

Date Parameters [α2, α1, α0]

Feb 07 A [-4.787e-03, 7.471e-02, 2.270e+00]
Feb 07 B [-5.897e-03, 1.571e-01, 1.389e+00]

Jul 08 [-2.500e-03, -1.106e-01, 5.001e+00]
Oct 08 [-3.401e-03, 4.587e-03, 1.701e+00]
Jun 09 [-3.822e-03, 3.792e-02, 1.827e-01]
Jul 09 [-1.897e-03, -1.593e-01, 3.189e+00]
Dec 09 [-3.707e-03, 4.209e-02, -1.614e+00]
Apr 10 [-2.469e-03, -9.092e-02, -6.698e+00]
Jul 10 [-2.860e-03, -8.070e-02, -5.973e+00]
Oct 11 [-8.761e-03 , 4.361e-01, -1.709e+01]

Table B.1: Focus curve model parameters for the simple model

B.3.2 Complete focus model

This model takes into account the dependence with solar elongation and Sun zenith angle

and is defined as

z = c1ZA
2 + c2ZA+ c3 + c4SA

2 + c5SA+ c6SZA
2 + c7SZA (B.5)

where SA is the solar elongation and SZA is the Sun zenith angle.
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Date [c1, c2, c3, c4, c5, c6, c7]

Oct 2008 [-3.659e-03, 1.018e-02, 7.015, 1.894e-04, -3.552e-02, 2.085e-04, -6.770e-2]
Jun 2009 [-3.818e-03, 3.122e-02, 3.974e+00, 2.736e-04, -4.315e-02, 6.112e-05, -3.031e-02]
Dec 2009 [-3.717e-03, 4.304e-02, 6.1251e+00, -3.934e-05, 7.645e-03, 5.408e-04, -1.387e-01]
Apr 2010 [-3.268e-03, -2.415e-02, -1.991e+00, 2.445e-04, -5.208e-02, 1.555e-04, -6.103e-02]
Jul 2010 [-3.567e-03, -1.138e-02, -2.070e+00, 2.186e-04, -4.466e-02, 2.261e-04, -6.4414e-02]
Oct 2011 [ -5.030e-03, 1.246e-01, -2.272e+00, 1.371e-04, -3.327e-02, 4.992e-04, -1.276e-01]

Table B.2: Focus curve model coefficients

B.3.3 Focus error correction model

The difference between the actual and best focus prescription is then feed into the out of

focus gain formula reproduced below. This fit was obtained on December 2009 but it is

very similar to the others as can be seen from Figure B.3

f(z) = −1.10679320× 10−3z2 − 7.37326817× 10−5z + 1.0 (B.6)

10 5 0 5 10
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Figure B.3: Focus error model correction for various epochs. The correction is very stable
even after larger changes in the focus model itself.
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B.4 Gain curve

The gain curve model and historic values of its coefficients are given for future reference.

Experience has shown that the gain curve is very stable and big changes only happen after

major receiver maintenance. Table B.3 shows the parameters of the best measurements and

Figure B.4 the gain curves for different epochs.

The gain curve model is a polynomial of five degrees on the zenith angle and is given by

g = c5ZA
5 + c4ZA

4 + c3ZA
3 + c2ZA

2 + c1ZA+ c0 (B.7)

Date Source [c5, c4, c3, c2, c1, c0]

Feb 2007 DR 21 [-1.689e-09, 3.752e-07, -2.912e-05, 7.457e-04, 4.123e-03, 7.158e-01]
Dec 2008 3C 84 [-3.432e-10, 5.545e-08, 4.111e-08, -5.071e-04, 2.917e-02, 5.325e-01]
Aug 2010 3C 84 [1.654e-09, -4.763e-07, 5.198e-05, -2.829e-03, 7.493e-02, 2.391e-01]
Mar 2011 3C 286 [-4.106e-09, 8.270e-07, -6.030e-05, 1.744e-03, -1.210e-02, 8.464e-01]
Nov 2011 3C 386 [-2.138e-09, 4.779e-07, -3.858e-05, 1.210e-03, -8.936e-03, 8.798e-01]

Table B.3: Gain curve model coefficients
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Figure B.4: Comparison of historic gain curves for different epochs. The date and source
used are indicated in the figure.
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B.5 Nonlinearity correction

Ideal amplifiers have a linear response to an input signal that is given by their gain. A real

amplifier deviates from this simple behavior and show gain compression, in which the gain

is smaller for high input values. Small nonlinearities are modeled following Herbig (1994)

and Leitch (1998). In this model the nonlinearity is given by any of the two equivalent

expressions below

Pout = G(1 + bPout)Pin (B.8)

Pout =
GPin

(1− bPin)
(B.9)

where Pout is the observer output power, Pin is the input power level, G is the gain of

the element and b is the nonlinearity parameter. A negative value of b reduces the gain and

can be used to model gain compression.

Flux density measurements are differential measurements. To find the differential gain

we take the derivative dPout/dPin at a given background level, Pin,0 at the input and Pout,0

in the output

dPout

dPin

∣∣∣∣
Pin,0

=
G

(1− bGPin,0)2
= G(1 + bPout,0)2 (B.10)

This is the expression we have to use when correcting flux density measurements or noise

diodes powers. The value of b can be estimated by firing the calibration or noise diode with

different background levels (Pin,0). This can be achieved by performing the measurement

of the diode at different elevations during an sky dip and also during hot/cold test. Since

the nonlinearity parameter as well as the gain depend in all the elements in the signal path,

the value of b depends on the particular value of the variable attenuator in the OVRO 40

meter telescope receiver. During normal observations this is set to a value of 5 or 4 dB, and

to 9 dB during hot/cold test measurements to avoid saturation during the hot load stage.

Values for the nonlinearity during a hot/cold test and skydips are given in Figure B.5.
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Figure B.5: Nonlinearity correction for the hot/cold test (left panel) and skydip (right
panel). During the hot/cold test the variable attenuator is at 9 dB. For the skydip is it at
is normal value of 5 dB for measurements until December 2008 and to 4 dB after that.

B.6 Sydips

Skydips are performed at most calibration runs (see Section 2.5.4 for a detailed explanation).

A summary of the historical results is presented in Figure B.6.
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Figure B.6: Skydip parameters. The parameters are defined in 2.5.4. Upper left panel is
Tsys at zenith. Upper right is Tground. Lower left panel is τTatm and lower right panel is for
τ assuming that Tatm = 270 K.
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The mean values of the parameters are given for reference: Tsys(ZA = 0) = 52.6 ± 0.6

K; Tground = 14.8± 0.3 K; τ · Tatm = 5.2± 0.1 K and τ = 0.0191± 0.0004.
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Appendix C

Results of the PSD
characterization of the complete
radio sample

This table contains the PSD fit information for 424 sources with 1σ constraints on the

PSD power-law index and that have more than 100 data points in their light curves. In all

the analyses comparing population properties only the 238 sources with well defined 82.6%

confidence intervals are used. The results for the sources in the cross-correlation sample

(Table E.1) are repeated in this table.

The columns contain the following information:

OVRO name: Name of the source in the OVRO 40 m blazar monitoring program

N points: Number of data points in the light curve

T: Time span of the light curve in days

〈∆t〉: Mean sampling interval in days

σ2
noise/σ

2
data: Ratio of estimated noise variance to total variance

p-value: p-value of the best fit power-law index of the PSD

β: Best fit value for the power-law index of the PSD

βlow: 68.3% lower limit for the power-law index of the PSD

βup: 68.3% upper limit for the power-law index of the PSD

βcomb
low : 82.6% lower limit for the power-law index of the PSD

βcomb
up : 82.6% upper limit for the power-law index of the PSD
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Table C.1: Radio band PSD characterization for all the OVRO blazar sample

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

2230+114 211 1054.1 5.0 0.0026 0.62 2.4 2.0 2.6 1.7 2.8

3C66A 339 1494.9 4.4 0.061 0.65 1.9 0.6 2.4 0.4 2.5

BBJ2247+0000 141 932.3 6.7 0.064 0.65 2.1 0.4 3.4 0.0 . . .

BLLacertae 189 1049.1 5.6 0.0066 0.22 2.1 0.9 2.4 0.9 2.7

BQJ1258-1800 118 923.5 7.9 0.012 0.95 2.2 0.9 2.5 0.9 . . .

C0424+0036 164 1050.2 6.4 0.019 0.06 2.4 0.9 2.9 0.6 . . .

C0509+1011 159 1048.1 6.6 0.024 0.81 2.7 0.9 3.2 0.7 . . .

C1130-1449 147 1057.1 7.2 0.0046 0.47 3.0 1.2 3.3 1.2 . . .

C1224+2122 234 1058.1 4.5 0.0048 0.79 2.4 2.0 2.7 0.9 2.7

C1239+0443 134 1058.2 8.0 0.029 0.086 2.0 0.6 2.6 0.0 . . .

C1345+4452 175 1056.8 6.1 0.013 0.65 2.1 0.9 2.6 0.6 2.6

C2311+3425 215 1049.4 4.9 0.017 0.89 2.1 0.6 2.5 0.6 2.7

CLJ0048+2235 165 928.5 5.7 0.025 1.0 2.5 0.7 2.8 0.7 3.2

CR1553+1256 179 1057.4 5.9 0.043 0.17 2.0 0.6 3.4 0.1 . . .

J0004+2019 285 1504.1 5.3 0.068 0.63 1.5 1.1 2.3 0.6 . . .

J0004+4615 270 1493.9 5.6 0.061 0.33 1.9 0.6 2.6 0.6 2.7

J0004-1148 233 1203.6 5.2 0.0068 0.67 2.7 2.2 3.0 1.5 3.0

J0005+3820 285 1493.9 5.3 0.043 0.1 2.0 1.5 2.5 0.6 . . .

J0006-0623 197 1124.9 5.7 0.057 0.93 1.8 1.2 2.9 0.6 3.2

J0013-0423 206 1124.9 5.5 0.012 0.95 2.6 2.3 3.0 1.2 3.1

J0013-1513 278 1506.8 5.4 0.1 0.05 2.4 0.6 3.4 0.4 . . .

J0019+2021 286 1504.1 5.3 0.05 0.29 2.4 0.7 3.0 0.6 . . .

J0019+2602 218 1213.9 5.6 0.017 0.46 2.6 0.7 2.8 0.7 3.3

J0038+1856 268 1482.2 5.6 0.077 0.98 2.2 0.6 2.6 0.6 . . .

J0038+4137 289 1493.9 5.2 0.23 0.28 2.1 0.4 3.4 0.0 . . .

J0046+3900 322 1495.9 4.7 0.15 0.17 1.9 0.7 2.2 0.4 . . .

J0048+3157 316 1495.9 4.7 0.0093 0.93 2.1 1.8 2.3 1.8 2.5

J0049+0237 200 1474.0 7.4 0.12 0.93 1.7 0.6 3.1 0.6 . . .

J0049+5128 236 1058.8 4.5 0.061 0.92 2.2 0.4 2.8 0.4 2.8

J0050-0452 164 1051.2 6.4 0.069 0.08 1.9 0.0 2.4 0.0 . . .

J0050-0929 243 1488.0 6.1 0.0038 0.8 2.3 2.0 2.5 1.9 2.7

J0056+1625 296 1504.1 5.1 0.031 0.78 2.3 2.1 2.6 2.0 . . .

J0057+3021 263 1262.6 4.8 0.14 0.64 1.4 0.1 2.0 0.0 3.4

J0105+4819 329 1494.9 4.6 0.26 0.52 1.9 0.4 2.2 0.4 3.2

J0106+3402 301 1495.9 5.0 0.022 0.37 2.7 2.3 3.0 0.9 3.0

J0107+2611 254 1262.6 5.0 0.51 0.78 0.2 0.0 3.4 0.0 . . .

J0108+0135 157 1051.2 6.7 0.012 0.66 2.3 0.9 2.8 0.9 . . .

J0110-0741 238 1481.0 6.2 0.013 0.55 2.4 2.1 2.6 2.1 2.8

J0111-1317 252 1506.8 6.0 0.061 0.37 2.2 0.4 2.6 0.4 . . .

J0112+2244 318 1504.1 4.7 0.011 0.36 2.0 1.7 2.4 1.4 2.4

J0112+3208 204 1113.0 5.5 0.038 0.9 1.9 0.6 2.4 0.4 . . .

Continues
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Table C.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J0112+3522 328 1488.9 4.6 0.01 0.66 2.3 2.0 2.5 2.0 2.5

J0113+4948 329 1510.8 4.6 0.048 0.72 2.4 0.6 2.7 0.6 3.0

J0116-1136 250 1497.9 6.0 0.042 0.84 1.9 1.4 2.2 0.6 2.5

J0117+1418 292 1481.0 5.1 0.042 0.21 1.9 0.6 2.5 0.6 2.8

J0121+1149 293 1481.0 5.1 0.0042 0.56 2.2 2.0 2.5 2.0 2.6

J0122+2502 360 1497.9 4.2 0.24 0.64 1.2 0.3 3.4 0.3 . . .

J0123+2615 363 1497.9 4.1 0.13 0.95 1.6 0.3 1.8 0.3 . . .

J0127-0821 239 1506.9 6.3 0.092 0.81 2.1 0.6 2.5 0.6 . . .

J0128+4901 332 1510.8 4.6 0.0072 0.06 2.0 1.8 2.2 1.8 2.4

J0132+4325 328 1494.9 4.6 0.03 0.05 2.1 1.8 2.5 0.6 2.5

J0132-1654 226 1503.8 6.7 0.0035 0.13 2.4 2.0 2.8 1.8 2.8

J0136+4751 331 1510.8 4.6 0.0065 0.82 1.6 1.4 1.9 1.4 1.9

J0140-1532 223 1506.8 6.8 0.12 0.71 2.0 0.9 2.4 0.4 . . .

J0141-0202 255 1506.9 5.9 0.08 0.72 1.7 0.6 2.2 0.3 2.5

J0141-0928 250 1503.9 6.0 0.036 0.06 1.8 0.6 2.3 0.4 2.9

J0143+4129 322 1494.9 4.7 0.19 0.81 1.7 0.4 2.2 0.0 . . .

J0149+0555 240 1481.0 6.2 0.13 0.44 1.8 0.4 2.5 0.1 . . .

J0154+4743 324 1494.9 4.6 0.021 0.81 2.9 2.5 3.2 2.5 . . .

J0202+3943 323 1467.0 4.6 0.11 0.66 2.2 1.9 2.8 0.9 3.0

J0202+4205 318 1485.0 4.7 0.049 0.38 1.6 0.3 1.9 0.3 1.9

J0203+1134 308 1503.1 4.9 0.022 0.39 2.4 2.2 2.8 0.9 2.8

J0203+7232 206 1494.0 7.3 0.056 0.53 2.3 0.9 2.7 0.9 . . .

J0204+4005 313 1485.0 4.8 0.2 0.67 1.8 0.4 2.2 0.0 . . .

J0204-1701 244 1487.8 6.1 0.11 0.08 1.6 0.1 2.1 0.0 . . .

J0205+3212 323 1495.9 4.6 0.0039 0.65 2.7 2.6 2.9 2.6 3.1

J0206-1150 251 1500.9 6.0 0.021 0.21 2.1 1.7 2.5 1.5 2.5

J0217+7349 214 1494.0 7.0 0.017 0.57 1.5 1.3 1.7 0.8 2.1

J0219-1842 219 1497.8 6.9 0.045 0.58 2.0 0.6 2.4 0.6 2.6

J0222-1615 184 1327.3 7.3 0.13 0.15 1.4 0.3 2.3 0.0 . . .

J0224+0659 191 1214.7 6.4 0.0069 1.0 2.0 1.8 2.3 1.3 2.7

J0225+1846 294 1499.1 5.1 0.0070 0.58 2.5 2.3 2.8 1.2 2.8

J0231+1322 295 1503.1 5.1 0.019 0.6 2.9 2.8 3.3 2.7 3.4

J0237+0526 212 1215.7 5.8 0.089 0.14 2.0 0.4 3.0 0.1 . . .

J0237+2848 296 1494.9 5.1 0.011 0.38 2.7 2.5 3.0 2.5 3.0

J0239-0234 204 1505.9 7.4 0.016 0.72 2.4 1.8 2.8 1.4 . . .

J0241-0815 247 1505.9 6.1 0.031 0.6 2.0 1.7 2.2 0.6 2.5

J0242+1742 258 1501.1 5.8 0.064 0.31 1.9 1.2 2.4 0.6 . . .

J0243-0550 187 1505.9 8.1 0.065 0.36 2.0 0.6 2.7 0.6 2.7

J0251+7226 196 1489.4 7.6 0.07 0.51 2.2 0.6 2.9 0.4 . . .

J0254+3931 316 1492.9 4.7 0.045 0.9 2.0 1.6 2.2 0.6 2.2

J0257+7843 207 1494.0 7.3 0.49 0.24 1.4 0.0 3.0 0.0 . . .

J0258+0541 209 1215.7 5.8 0.15 0.62 1.6 0.3 3.4 0.0 . . .

Continues
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Table C.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J0259+0747 152 932.3 6.2 0.025 0.96 2.3 0.9 3.0 0.7 . . .

J0309+1029 328 1506.9 4.6 0.02 0.91 2.0 0.9 2.5 0.9 2.5

J0312+0133 232 1505.9 6.5 0.087 0.91 1.9 0.6 2.5 0.6 . . .

J0313+4120 334 1496.9 4.5 0.019 0.77 2.1 1.8 2.3 0.6 2.9

J0319+4130 337 1496.9 4.5 0.0058 0.9 2.8 2.5 3.0 2.5 3.0

J0319-1613 187 1476.0 7.9 0.044 0.64 2.2 1.2 2.6 0.6 3.3

J0325+2224 317 1510.9 4.8 0.01 0.47 2.3 2.0 2.5 2.0 2.8

J0329+3510 316 1496.9 4.8 0.022 0.53 2.2 1.5 2.5 1.1 2.5

J0339-0146 251 1502.9 6.0 0.0076 1.0 2.7 2.4 3.0 2.4 3.0

J0345+1453 212 1510.9 7.2 0.066 0.13 1.9 0.6 2.4 0.6 . . .

J0354+8009 137 917.5 6.7 0.17 0.49 1.6 0.0 3.4 0.0 . . .

J0357+2319 300 1510.9 5.1 0.02 0.34 2.0 1.7 2.2 1.4 2.4

J0401+0413 239 1505.9 6.3 0.028 0.93 1.6 1.1 2.0 0.6 2.2

J0403+2600 304 1504.1 5.0 0.017 0.97 2.2 1.9 2.4 1.9 2.5

J0406+0637 231 1506.0 6.5 0.048 1.0 2.2 0.6 2.8 0.6 . . .

J0407+0742 225 1506.0 6.7 0.019 0.14 1.9 1.4 2.3 1.4 2.4

J0409-1238 216 1494.0 6.9 0.089 0.29 1.8 0.6 2.7 0.6 . . .

J0414+3418 262 1502.2 5.8 0.074 1.0 1.8 1.4 2.2 1.1 . . .

J0416-1851 153 1051.1 6.9 0.025 0.46 2.0 0.9 2.3 0.6 2.3

J0423-0120 229 1496.0 6.6 0.0058 0.63 2.5 2.2 2.7 2.2 2.8

J0433+0521 242 1500.9 6.2 0.0087 0.52 2.2 1.9 2.4 1.8 2.5

J0442-0017 220 1500.9 6.9 0.02 0.48 1.8 1.3 2.1 0.8 . . .

J0449+1121 265 1500.9 5.7 0.013 0.88 2.4 2.2 2.8 2.0 3.0

J0449+6332 247 1061.1 4.3 0.0044 0.69 2.4 2.2 2.6 1.9 3.0

J0501-0159 211 1500.9 7.1 0.021 0.66 2.4 1.9 2.7 0.9 . . .

J0502+1338 238 1501.9 6.3 0.041 0.96 2.5 2.2 3.0 1.2 . . .

J0505+0459 233 1500.9 6.5 0.017 0.52 2.2 1.5 2.8 0.6 2.8

J0508+8432 213 1489.5 7.0 0.047 0.63 2.5 0.4 2.8 0.4 3.4

J0509+0541 228 1501.0 6.6 0.043 0.59 2.2 1.9 2.7 0.6 2.7

J0510+1800 230 1491.9 6.5 0.014 0.53 3.0 2.8 3.2 2.6 3.2

J0527+0331 218 1501.0 6.9 0.035 0.57 2.1 0.9 2.5 0.9 2.8

J0541-0541 166 1220.7 7.4 0.025 0.93 2.4 1.2 2.8 1.1 2.9

J0542-0913 162 1343.4 8.3 0.027 0.87 2.4 0.9 3.0 0.9 . . .

J0558-1317 243 1508.9 6.2 0.14 0.31 2.3 0.6 3.1 0.6 . . .

J0607-0834 238 1502.9 6.3 0.0048 0.06 1.3 1.2 1.5 1.1 1.6

J0609-1542 158 1076.1 6.9 0.0075 0.16 2.3 2.0 2.5 1.4 2.7

J0616-1041 224 1506.9 6.8 0.093 0.07 1.5 0.6 2.0 0.5 2.8

J0618+4620 238 1494.9 6.3 0.1 0.63 1.7 0.9 2.2 0.3 . . .

J0625+4440 238 1505.0 6.4 0.051 0.99 2.0 0.6 2.5 0.6 3.4

J0626+8202 202 1501.7 7.5 0.049 0.57 2.3 1.2 3.4 0.9 . . .

J0629-1959 156 1070.1 6.9 0.025 0.53 1.9 0.8 2.4 0.6 . . .

J0630-1323 234 1502.9 6.5 0.11 0.9 2.0 0.6 3.4 0.6 . . .

Continues
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Table C.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J0639+7324 169 1203.1 7.2 0.0074 0.96 2.6 1.4 3.0 1.4 3.1

J0642+8811 205 1495.5 7.3 0.047 1.0 2.0 0.6 3.0 0.4 . . .

J0646+4451 237 1508.9 6.4 0.019 0.91 2.6 2.2 2.8 0.9 2.9

J0654+4514 242 1508.9 6.3 0.0052 0.57 2.2 1.9 2.5 1.7 2.6

J0717+4538 233 1499.0 6.5 0.037 0.11 2.3 1.9 2.8 0.6 3.5

J0725+1425 211 1504.0 7.2 0.036 0.94 1.1 0.5 1.5 0.5 . . .

J0728+5701 246 1505.0 6.1 0.039 0.49 2.0 1.2 2.2 0.9 2.4

J0733+5022 252 1508.9 6.0 0.063 0.34 1.7 0.8 2.1 0.6 . . .

J0739+0137 167 1067.9 6.4 0.019 0.47 2.0 0.9 2.5 0.6 . . .

J0741+3112 182 1475.0 8.1 0.042 0.63 2.2 0.9 2.8 0.6 3.2

J0742+4900 248 1508.9 6.1 0.11 0.23 1.7 0.6 3.4 0.6 . . .

J0742+5444 159 1016.3 6.4 0.013 0.095 1.9 0.8 2.5 0.6 2.9

J0746+2549 134 934.5 7.0 0.037 0.05 2.0 0.6 3.4 0.6 . . .

J0746+2734 197 1508.9 7.7 0.039 0.44 1.8 0.6 2.6 0.6 . . .

J0748+2400 151 1348.3 9.0 0.014 0.79 2.3 1.4 2.8 1.1 . . .

J0750+1021 198 1503.9 7.6 0.087 0.58 2.1 0.6 2.8 0.6 . . .

J0750+1231 182 1503.9 8.3 0.022 0.48 2.1 0.9 2.5 0.9 2.9

J0750+1823 155 1505.0 9.8 0.06 0.4 2.3 0.6 3.0 0.6 3.2

J0750+4814 265 1509.0 5.7 0.057 0.78 1.8 1.4 2.1 0.6 3.4

J0752+3730 192 1502.9 7.9 0.21 0.35 1.8 0.6 2.7 0.0 3.4

J0753+5352 246 1508.9 6.2 0.021 0.08 2.1 1.1 2.4 0.9 2.5

J0757+0956 193 1503.9 7.8 0.018 0.44 2.0 1.9 2.4 1.6 2.6

J0805+6144 262 1503.2 5.8 0.031 0.17 2.3 0.9 2.7 0.9 . . .

J0805-0111 236 1502.9 6.4 0.033 0.85 2.2 0.9 2.6 0.9 2.6

J0808+4052 206 1508.9 7.4 0.041 0.69 2.2 1.2 2.9 1.1 . . .

J0808+4950 202 1509.0 7.5 0.037 0.46 2.3 0.9 2.8 0.6 . . .

J0808-0751 241 1502.9 6.3 0.0042 0.08 2.0 1.6 2.2 1.6 2.5

J0811+0146 215 1500.0 7.0 0.015 0.5 1.9 1.4 2.2 1.3 . . .

J0811+4533 195 1509.0 7.8 0.032 0.95 2.1 1.2 2.5 1.2 2.8

J0818+4222 207 1509.0 7.3 0.013 0.14 2.0 1.1 2.3 1.1 2.6

J0824+3916 212 1508.9 7.2 0.02 0.33 2.4 1.5 2.9 0.9 3.2

J0825+0309 243 1502.9 6.2 0.0059 0.36 2.5 2.4 2.7 2.2 2.9

J0831+0429 245 1502.9 6.2 0.014 0.55 1.9 0.8 2.1 0.6 2.3

J0833+4224 202 1509.0 7.5 0.063 0.76 2.0 0.6 2.4 0.1 . . .

J0837+5825 198 1501.0 7.6 0.013 0.71 2.4 2.2 2.8 2.0 2.8

J0839+0104 223 1500.0 6.8 0.038 0.47 2.7 2.2 3.0 2.0 . . .

J0847-0703 223 1502.9 6.8 0.013 0.47 2.4 2.1 2.5 2.1 2.6

J0902+4310 160 1066.1 6.7 0.011 0.51 1.9 0.6 2.8 0.6 2.8

J0909+0121 237 1507.9 6.4 0.013 0.53 2.3 1.8 2.6 1.4 . . .

J0921+6215 230 1508.9 6.6 0.039 1.0 2.0 0.6 3.4 0.6 . . .

J0929+5013 239 1508.9 6.3 0.076 0.22 1.8 0.9 2.6 0.6 . . .

J0929+8612 215 1501.7 7.0 0.052 0.82 2.7 1.2 3.3 0.9 . . .

Continues



249

Table C.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J0933-0819 220 1502.9 6.9 0.082 0.78 1.8 0.8 3.1 0.6 . . .

J0948+0022 211 1498.9 7.1 0.02 0.13 2.1 1.3 2.4 1.1 3.4

J0948+4039 214 1282.5 6.0 0.012 0.47 2.8 0.9 3.2 0.9 . . .

J0956+2515 307 1507.9 4.9 0.019 0.52 2.0 1.4 2.2 0.9 3.4

J0958+4725 209 1289.5 6.2 0.015 0.86 2.4 2.2 3.0 0.9 3.0

J0958+5039 195 1289.5 6.6 0.12 0.95 2.2 0.0 3.3 0.0 . . .

J0958+6533 261 1509.2 5.8 0.0093 0.37 1.9 1.6 2.1 0.8 2.2

J1007-0207 218 1502.9 6.9 0.08 0.75 2.2 0.6 2.8 0.6 3.4

J1012+2312 289 1508.9 5.2 0.074 0.29 2.0 0.6 2.6 0.4 . . .

J1013+3445 213 1288.9 6.1 0.13 0.83 1.5 0.1 2.2 0.1 . . .

J1014+2301 271 1508.2 5.6 0.091 0.1 2.0 1.8 2.6 0.9 2.8

J1018+0530 211 1507.9 7.2 0.098 0.05 1.6 0.6 3.4 0.3 . . .

J1024+1912 277 1504.9 5.5 0.068 1.0 2.6 2.1 3.2 0.7 . . .

J1025+1253 229 1503.0 6.6 0.041 0.1 2.1 0.6 2.4 0.6 . . .

J1025-0509 209 1506.0 7.2 0.047 0.9 1.8 0.8 2.1 0.8 . . .

J1033+3935 199 1288.9 6.5 0.88 0.19 3.1 0.0 3.4 0.0 . . .

J1033+4116 204 1288.9 6.3 0.0032 0.13 2.4 2.0 2.8 1.4 2.9

J1033+6051 167 1128.2 6.8 0.014 0.19 2.5 0.9 2.9 0.9 . . .

J1036+2203 271 1508.2 5.6 0.072 0.19 1.8 0.6 3.3 0.6 . . .

J1038+0512 201 1507.9 7.5 0.021 0.15 2.0 1.1 2.5 1.1 2.6

J1044+8054 229 1501.7 6.6 0.021 0.85 2.8 0.9 3.2 0.9 . . .

J1048+7143 250 1507.7 6.1 0.014 0.31 2.0 1.4 2.2 1.1 2.6

J1048-1909 150 1073.0 7.2 0.012 0.13 2.4 1.8 2.8 0.9 . . .

J1056+7011 167 1073.3 6.5 0.0026 0.77 2.6 2.4 2.9 2.4 3.0

J1058+8114 226 1501.7 6.7 0.011 0.73 1.9 1.6 2.5 1.3 2.7

J1059+2057 293 1508.9 5.2 0.089 0.08 1.6 1.3 2.1 0.3 3.3

J1104+3812 276 1508.2 5.5 0.13 0.34 1.8 0.4 2.2 0.0 . . .

J1108+4330 244 1508.2 6.2 0.13 0.58 1.9 0.4 3.3 0.1 . . .

J1113+1442 277 1508.9 5.5 0.05 0.72 1.9 1.5 2.7 1.0 . . .

J1118+1234 324 1504.9 4.7 0.049 0.54 2.4 0.7 3.0 0.7 3.2

J1124+2336 282 1504.9 5.4 0.0094 0.96 3.2 2.9 3.4 2.8 . . .

J1125+2610 324 1507.9 4.7 0.024 0.88 2.7 2.4 3.0 1.0 3.0

J1127+0555 204 1503.0 7.4 0.015 0.55 1.9 1.4 2.2 0.8 2.5

J1127+5650 247 1504.9 6.1 0.056 0.16 2.0 0.6 2.7 0.6 . . .

J1127-1857 197 1483.9 7.6 0.0079 0.22 2.0 1.7 2.3 1.6 2.4

J1128+5925 238 1502.9 6.3 0.028 0.97 2.1 0.9 2.6 0.6 3.4

J1130+3815 265 1504.9 5.7 0.032 0.51 2.3 1.8 2.8 0.9 . . .

J1135-0428 197 1503.0 7.7 0.025 0.98 2.1 1.4 2.4 1.1 . . .

J1146+3958 243 1508.2 6.2 0.0077 0.89 2.5 2.0 2.8 1.9 3.0

J1146+5356 243 1504.9 6.2 0.045 0.8 1.7 0.6 2.4 0.6 . . .

J1146+5848 232 1504.9 6.5 0.0099 0.78 2.7 2.4 2.9 1.2 3.0

J1147+2635 335 1504.9 4.5 0.066 0.89 2.6 0.4 3.2 0.4 . . .
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J1150-0640 205 1507.0 7.4 0.033 0.8 2.5 0.9 2.8 0.9 2.8

J1152-0841 205 1507.0 7.4 0.0074 0.9 2.7 2.2 3.0 1.2 3.2

J1157+5527 251 1504.9 6.0 0.028 0.94 2.1 1.7 2.5 0.9 2.7

J1159+2914 275 1504.9 5.5 0.0038 0.22 2.1 1.9 2.4 1.8 2.6

J1202-0528 199 1507.0 7.6 0.031 0.57 2.4 0.7 2.8 0.7 3.0

J1203+4803 272 1508.2 5.6 0.049 0.14 2.1 1.5 2.8 0.6 . . .

J1207+1211 246 1507.1 6.2 0.058 0.72 2.2 0.6 2.5 0.6 3.4

J1207+2754 342 1504.9 4.4 0.047 0.43 2.7 0.9 3.3 0.7 . . .

J1215+1654 347 1508.9 4.4 0.061 0.6 1.6 0.8 3.3 0.8 . . .

J1219+4829 273 1505.0 5.5 0.015 0.05 2.4 2.2 2.9 2.1 2.9

J1220+3808 268 1508.2 5.6 0.072 0.87 1.9 0.6 2.2 0.6 . . .

J1222+0413 180 1502.9 8.4 0.021 0.05 1.9 1.6 2.6 1.4 2.6

J1226-1328 219 1507.0 6.9 0.04 0.08 2.1 1.6 2.7 0.9 2.8

J1228+3706 270 1508.2 5.6 0.045 0.46 2.1 1.9 2.6 1.8 2.6

J1229+0203 334 1503.9 4.5 0.019 0.39 2.2 1.9 2.5 0.6 2.8

J1230+2518 304 1508.9 5.0 0.0083 0.71 2.2 1.1 2.4 1.1 2.9

J1235+3621 257 1502.2 5.9 0.31 0.36 2.4 0.0 3.4 0.0 . . .

J1238+0723 202 1503.0 7.5 0.067 0.35 2.1 0.9 2.5 0.6 . . .

J1239+0730 210 1507.0 7.2 0.039 0.62 1.6 1.0 2.0 0.8 . . .

J1254+1141 386 1508.8 3.9 0.0082 0.3 2.5 2.3 2.6 2.3 2.9

J1254-1317 202 1505.0 7.5 0.066 0.77 1.8 0.6 3.4 0.6 . . .

J1256-0547 283 1508.0 5.3 0.0064 0.91 2.4 2.2 2.6 2.0 2.7

J1257+3229 414 1508.9 3.7 0.028 0.12 2.0 1.7 2.2 1.2 2.2

J1300+1206 316 1504.0 4.8 0.1 0.19 2.2 1.0 3.0 0.6 . . .

J1300+2830 404 1508.9 3.7 0.08 0.98 2.1 1.8 2.8 1.6 2.8

J1302+5748 212 1495.3 7.1 0.018 0.63 2.7 2.4 3.2 1.2 3.3

J1305-1033 199 1506.9 7.6 0.016 0.07 2.4 2.2 3.0 1.1 3.4

J1306+5529 214 1495.3 7.0 0.083 1.0 1.9 0.6 3.3 0.4 3.4

J1308+3546 399 1502.9 3.8 0.07 0.85 2.0 0.6 2.6 0.6 . . .

J1310+3220 413 1502.9 3.6 0.0065 0.2 2.2 1.9 2.4 1.9 2.4

J1310+3233 389 1508.9 3.9 0.034 0.29 1.7 0.6 2.0 0.6 2.4

J1317+3425 407 1502.9 3.7 0.063 0.91 2.0 0.6 2.2 0.6 2.2

J1322-0937 211 1506.9 7.2 0.027 0.64 2.1 1.5 2.8 1.2 2.8

J1323+7942 156 1067.2 6.9 0.033 0.69 1.9 0.9 2.8 0.9 . . .

J1326-0500 204 1504.9 7.4 0.078 0.97 2.1 1.4 3.4 0.6 . . .

J1327+1223 319 1489.0 4.7 0.036 0.33 2.3 0.7 3.0 0.6 3.0

J1327+2210 466 1508.8 3.2 0.014 0.16 2.1 1.9 2.5 1.9 2.5

J1332-0509 212 1503.0 7.1 0.0089 0.45 2.2 1.7 2.7 1.4 2.9

J1333+2725 495 1508.9 3.1 0.02 0.6 2.1 1.6 2.4 1.1 2.4

J1335+4542 249 1503.0 6.1 0.18 0.8 1.4 0.3 3.1 0.0 3.1

J1337+5501 198 1482.3 7.5 0.048 0.7 2.2 0.9 2.8 0.9 . . .

J1337-1257 136 1074.1 8.0 0.0070 0.67 2.6 2.1 3.0 2.1 3.0
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J1342+2709 487 1508.9 3.1 0.044 0.95 2.5 2.2 2.8 2.2 3.0

J1344+6606 166 1073.2 6.5 0.063 0.99 2.4 0.7 3.0 0.4 3.5

J1345+0706 131 922.5 7.1 0.028 0.9 2.1 0.9 2.5 0.4 2.6

J1349+5341 207 1489.2 7.2 0.056 0.32 1.5 1.1 2.1 0.6 2.1

J1349-1132 141 1074.1 7.7 0.028 0.34 2.0 0.8 2.7 0.6 . . .

J1357+7643 197 1503.0 7.7 0.0087 0.92 2.5 2.0 3.0 2.0 3.0

J1405-1440 138 1075.1 7.8 0.64 1.0 0.9 0.0 1.1 0.0 . . .

J1410+0731 229 1503.0 6.6 0.066 0.45 2.0 0.6 2.6 0.6 . . .

J1415+0832 237 1508.0 6.4 0.056 0.14 1.9 0.6 2.3 0.6 . . .

J1420+1703 189 1502.9 8.0 0.037 0.96 2.0 1.5 2.5 0.8 . . .

J1426+3625 211 1281.6 6.1 0.026 0.34 2.3 0.9 2.8 0.6 2.9

J1436+6336 250 1505.2 6.0 0.082 0.99 2.1 1.5 2.8 0.6 3.2

J1445-1629 135 1067.0 8.0 0.053 0.3 2.0 0.4 3.3 0.4 . . .

J1446+1721 318 1499.9 4.7 0.012 0.98 2.6 2.4 2.9 2.3 2.9

J1448+7601 146 1067.2 7.4 0.023 0.76 2.0 0.6 2.8 0.6 2.9

J1450+0910 309 1508.9 4.9 0.02 0.85 2.3 1.1 2.9 0.9 2.9

J1453+2648 153 1070.3 7.0 0.022 0.82 2.2 1.9 2.7 0.9 . . .

J1504+1029 328 1508.9 4.6 0.0037 0.084 2.5 2.3 2.7 2.2 2.8

J1513-1012 218 1508.9 7.0 0.044 0.16 2.2 0.6 3.4 0.6 3.4

J1516+1932 369 1508.1 4.1 0.0081 0.61 2.6 2.3 2.9 2.2 2.9

J1534+0131 250 1508.1 6.1 0.041 0.2 2.1 1.1 2.5 0.9 2.7

J1539+2744 304 1508.2 5.0 0.045 0.33 1.6 0.6 3.1 0.6 3.1

J1540+1447 220 1288.7 5.9 0.036 0.08 2.2 0.9 2.4 0.9 . . .

J1549+0237 259 1508.1 5.8 0.0089 0.39 2.5 2.2 2.8 2.0 2.8

J1551+5806 228 1508.8 6.6 0.32 0.53 1.4 0.0 3.3 0.0 . . .

J1552+0850 140 938.6 6.8 0.044 0.12 1.9 0.6 2.3 0.3 . . .

J1557-0001 252 1508.0 6.0 0.054 0.11 2.4 0.7 2.8 0.7 . . .

J1602+2646 276 1504.9 5.5 0.37 0.98 0.6 0.0 0.9 0.0 . . .

J1603+1105 228 1288.7 5.7 0.029 0.95 2.5 0.9 3.0 0.9 . . .

J1605+3001 203 1504.9 7.5 0.079 0.74 1.6 0.8 3.0 0.0 . . .

J1610+2414 192 1281.5 6.7 0.1 0.69 2.1 0.6 2.9 0.1 . . .

J1613+3412 201 1500.9 7.5 0.018 0.51 2.7 2.4 2.9 2.3 3.1

J1616+4632 143 925.8 6.5 0.056 0.15 2.0 0.6 3.4 0.6 . . .

J1617+0246 266 1508.1 5.7 0.15 0.59 1.6 0.6 3.4 0.3 3.4

J1625+4134 206 1508.2 7.4 0.026 0.27 2.4 2.1 2.9 2.1 2.9

J1630+0701 260 1500.9 5.8 0.1 0.94 2.0 0.6 2.7 0.4 3.4

J1635+3808 162 1070.0 6.6 0.0069 0.98 2.1 1.6 2.5 1.4 2.9

J1637+4717 177 1505.0 8.6 0.042 0.69 2.0 1.7 3.4 0.9 3.4

J1638+5720 178 1504.9 8.5 0.012 0.64 2.2 1.7 2.5 0.9 2.7

J1640+3946 178 1073.1 6.1 0.0090 0.39 2.0 0.8 2.4 0.8 3.4

J1642+3948 169 1067.1 6.4 0.015 0.91 2.5 0.9 3.0 0.9 . . .

J1642+6856 166 1073.4 6.5 0.0012 0.64 3.1 2.9 3.2 2.8 3.2
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J1642-0621 185 1074.2 5.8 0.0044 0.44 2.6 2.4 2.8 1.2 2.9

J1648+2224 190 1288.8 6.8 0.21 0.17 1.7 0.1 3.4 0.0 . . .

J1649+0412 264 1500.9 5.7 0.058 0.31 2.0 0.4 2.2 0.4 2.6

J1651+0129 275 1500.9 5.5 0.047 0.55 1.8 1.5 2.4 0.8 2.6

J1652+3902 183 1073.1 5.9 0.037 1.0 1.5 0.6 2.3 0.6 . . .

J1657+4808 224 1503.9 6.7 0.022 0.09 2.0 1.6 2.4 0.9 2.7

J1707+0148 288 1504.0 5.2 0.025 0.43 2.5 2.2 3.0 1.5 3.0

J1707-1415 250 1509.9 6.1 0.14 0.16 2.1 0.4 2.6 0.4 . . .

J1719+1745 315 1508.1 4.8 0.061 0.15 1.3 1.1 1.6 0.8 2.6

J1722+2815 248 1493.9 6.0 0.027 0.78 2.2 2.0 2.5 2.0 2.7

J1722+6105 207 1501.2 7.3 0.027 0.51 2.0 1.1 2.5 0.9 2.5

J1728+0427 285 1508.0 5.3 0.013 0.36 1.9 1.8 2.1 1.6 2.2

J1733-0456 188 1074.1 5.7 0.2 0.43 1.7 0.4 2.9 0.0 . . .

J1733-1304 273 1510.8 5.6 0.02 0.91 2.0 1.7 2.2 1.5 2.4

J1734+3857 185 1073.1 5.8 0.032 0.19 2.0 0.9 3.0 0.1 . . .

J1736+0631 253 1502.0 6.0 0.069 0.07 1.9 0.6 2.4 0.6 2.6

J1738+4008 256 1507.8 5.9 0.15 0.53 1.9 0.4 2.6 0.0 . . .

J1739+4955 229 1503.9 6.6 0.03 0.14 2.0 1.6 2.6 1.1 2.6

J1740+5211 223 1503.9 6.8 0.0086 0.17 2.5 2.2 2.9 1.8 3.0

J1740-0811 187 1074.1 5.8 0.093 0.71 2.0 0.0 3.2 0.0 . . .

J1743+3747 261 1507.8 5.8 0.036 0.73 3.0 2.8 3.2 2.5 . . .

J1743-0350 168 1184.8 7.1 0.0090 0.93 3.1 1.2 3.2 1.2 3.4

J1745-0753 190 1074.1 5.7 0.0064 0.41 2.2 2.0 2.5 1.4 2.5

J1748+3404 254 1493.9 5.9 0.15 0.33 1.5 0.3 1.8 0.1 . . .

J1748+7005 250 1508.0 6.1 0.022 0.92 2.2 1.5 2.5 1.4 2.7

J1749+4321 254 1503.9 5.9 0.14 0.96 1.7 0.6 2.1 0.4 . . .

J1752+1734 325 1502.0 4.6 0.061 0.5 2.0 0.1 3.3 0.1 . . .

J1753+2848 265 1493.9 5.7 0.0070 0.76 2.8 2.5 3.0 2.5 3.0

J1754+6452 236 1508.0 6.4 0.05 0.68 2.7 2.2 3.0 0.7 . . .

J1759+2343 334 1487.9 4.5 0.077 0.92 2.5 0.9 3.2 0.7 3.5

J1800+3848 260 1493.9 5.8 0.047 0.89 2.4 2.0 2.8 0.9 2.9

J1801+4404 248 1503.9 6.1 0.0043 0.49 2.6 2.4 2.8 2.4 3.0

J1806+6949 246 1508.0 6.2 0.072 0.22 1.9 1.5 2.7 0.6 . . .

J1808+4542 245 1503.9 6.2 0.078 0.21 2.0 1.7 2.4 0.9 . . .

J1809+1849 328 1508.9 4.6 0.11 0.96 2.1 1.9 2.4 0.9 3.2

J1811+1704 335 1502.0 4.5 0.014 0.35 2.5 2.2 2.8 1.2 2.8

J1813+2952 257 1493.9 5.8 0.14 0.09 1.9 0.4 2.7 0.4 . . .

J1815+1623 340 1508.9 4.5 0.019 0.96 2.3 2.2 2.6 2.1 2.8

J1824+1044 336 1501.9 4.5 0.15 0.78 1.5 0.4 2.6 0.1 . . .

J1824+5651 240 1503.9 6.3 0.062 0.4 1.9 0.6 2.2 0.4 2.9

J1832+1357 336 1494.9 4.5 0.031 0.19 2.1 1.2 2.4 0.9 3.4

J1842+6809 241 1508.0 6.3 0.0053 0.91 2.7 2.5 2.9 2.4 3.0
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J1848+3219 265 1503.9 5.7 0.024 0.58 2.2 1.9 2.6 1.9 2.7

J1849+6705 242 1508.0 6.3 0.017 0.31 1.9 1.5 2.3 0.8 2.5

J1854+7351 219 1508.0 6.9 0.11 0.72 1.9 0.8 2.9 0.4 . . .

J1912+3740 253 1503.8 6.0 0.058 0.71 2.6 2.3 3.1 0.7 . . .

J1918+5520 251 1503.9 6.0 0.12 0.77 2.0 0.6 2.5 0.6 . . .

J1927+6117 251 1494.0 6.0 0.025 0.12 2.2 2.0 2.4 0.9 2.7

J1927+7358 216 1494.2 6.9 0.015 0.76 1.8 1.6 2.2 1.4 2.5

J1933+6540 246 1507.9 6.2 0.12 0.55 2.2 0.4 2.8 0.2 3.2

J1936+7131 163 1073.1 6.6 0.11 0.97 1.0 0.3 3.4 0.3 . . .

J1939-1525 207 1209.6 5.9 0.065 0.39 1.6 0.8 2.4 0.6 . . .

J1951-0509 235 1509.9 6.5 0.094 0.21 2.1 0.4 2.6 0.4 . . .

J1954-1123 197 1076.0 5.5 0.0062 0.07 2.2 1.8 2.6 0.9 2.7

J1955+5131 247 1501.9 6.1 0.056 0.8 2.2 2.0 2.8 0.6 . . .

J2000-1748 236 1221.6 5.2 0.0026 0.57 2.3 2.0 2.6 1.8 2.8

J2005+7752 263 1506.9 5.8 0.0083 0.07 2.0 1.8 2.2 0.8 2.2

J2006+6424 252 1507.9 6.0 0.028 0.9 2.3 2.1 2.6 1.2 2.7

J2011-1546 249 1486.8 6.0 0.039 0.76 2.5 1.2 3.0 0.7 3.0

J2015+6554 257 1507.9 5.9 0.029 0.75 1.8 1.5 2.1 1.4 2.1

J2022+7611 171 1074.7 6.3 0.0075 0.77 2.6 2.2 3.0 1.5 3.0

J2024+1718 261 1502.8 5.8 0.11 0.97 2.2 0.2 2.7 0.1 3.2

J2031+1219 346 1504.0 4.4 0.017 0.93 1.9 1.5 2.0 1.4 2.1

J2036-0629 287 1513.0 5.3 0.18 0.68 2.2 0.4 3.0 0.0 . . .

J2049+1003 221 1070.0 4.9 0.096 0.4 1.7 0.4 2.0 0.0 3.4

J2051+1743 372 1504.0 4.1 0.063 1.0 1.7 0.6 2.0 0.4 2.3

J2101+0341 300 1506.9 5.0 0.035 0.93 2.1 1.9 3.4 0.9 . . .

J2102+6758 264 1495.3 5.7 0.22 0.46 1.2 0.8 1.5 0.6 . . .

J2106+2135 337 1508.9 4.5 0.19 0.08 1.8 0.6 3.2 0.1 . . .

J2108+1430 376 1492.2 4.0 0.096 0.51 2.2 0.7 2.6 0.4 . . .

J2115+2933 258 1284.4 5.0 0.058 0.89 2.0 1.2 2.2 0.6 . . .

J2125+0441 308 1506.9 4.9 0.16 0.84 2.5 0.7 2.8 0.4 . . .

J2128-0244 298 1485.0 5.0 0.13 0.37 1.8 1.0 2.4 0.4 2.5

J2130-0927 263 1512.9 5.8 0.017 0.98 2.7 2.5 3.3 0.9 . . .

J2131-1207 193 1076.1 5.6 0.031 0.71 2.7 2.2 3.2 0.7 . . .

J2133+1443 396 1508.9 3.8 0.044 0.78 2.7 2.4 3.1 0.7 3.4

J2134-0153 294 1506.9 5.1 0.026 0.39 2.1 1.8 2.6 1.8 2.9

J2136+0041 308 1506.9 4.9 0.075 0.35 1.7 1.1 1.9 0.9 . . .

J2139+1423 341 1511.9 4.4 0.076 0.77 1.8 1.4 2.1 1.2 . . .

J2142-0437 279 1495.0 5.4 0.064 0.54 1.6 1.2 1.8 0.8 2.6

J2145+1115 359 1507.1 4.2 0.22 0.91 2.1 0.7 3.0 0.4 . . .

J2148+0657 305 1506.9 5.0 0.03 0.06 2.2 2.0 2.5 2.0 2.6

J2148-1723 213 1258.5 5.9 0.04 0.93 2.0 0.9 2.2 0.9 2.4

J2151+0709 300 1507.0 5.0 0.06 0.25 2.6 2.0 3.0 0.7 . . .
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OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J2152+1734 329 1505.8 4.6 0.33 0.98 1.7 0.4 2.6 0.0 . . .

J2156-0037 282 1506.9 5.4 0.045 0.27 1.8 1.5 2.0 0.9 2.0

J2200+2137 376 1508.9 4.0 0.98 0.23 2.4 0.0 3.4 0.0 . . .

J2203+1725 358 1507.8 4.2 0.023 0.23 2.0 1.7 2.2 1.5 2.3

J2203+3145 237 1270.5 5.4 0.021 0.76 2.1 1.8 2.4 1.8 2.6

J2206-0031 270 1506.9 5.6 0.04 0.67 1.8 1.5 2.3 0.6 2.3

J2207+1652 364 1508.9 4.2 0.063 0.41 2.4 0.7 3.0 0.6 . . .

J2211+1841 391 1511.9 3.9 0.017 0.31 1.9 1.5 2.2 1.5 2.2

J2212+2355 371 1508.9 4.1 0.041 0.77 1.7 1.4 2.0 1.4 2.2

J2216+3518 214 1074.1 5.0 0.081 0.36 2.0 0.4 2.6 0.1 . . .

J2217+2421 369 1511.9 4.1 0.048 0.24 2.0 1.2 2.2 0.6 2.4

J2218+1520 367 1504.1 4.1 0.055 0.5 1.7 0.6 2.2 0.6 . . .

J2218-0335 242 1495.0 6.2 0.05 0.62 1.8 1.4 2.3 1.1 2.6

J2225+2118 373 1507.9 4.1 0.014 0.18 2.5 2.3 2.7 2.1 2.8

J2226+0052 246 1504.0 6.1 0.023 0.67 2.5 0.9 2.8 0.7 3.4

J2229-0832 212 1101.0 5.2 0.0063 0.91 2.8 2.5 3.0 2.4 3.1

J2230+6946 228 1495.2 6.6 0.24 0.58 2.0 0.0 3.0 0.0 . . .

J2236+2828 321 1509.8 4.7 0.035 0.089 1.9 0.6 2.1 0.6 2.3

J2236-1433 221 1203.7 5.5 0.029 0.28 2.4 0.9 3.0 0.7 3.3

J2241+0953 349 1507.0 4.3 0.058 0.07 2.0 0.6 2.6 0.4 . . .

J2244+4057 178 927.4 5.2 0.0068 0.96 2.5 1.1 2.8 0.9 3.1

J2245+0324 240 1504.0 6.3 0.32 0.7 1.7 0.1 3.3 0.0 . . .

J2249+2107 356 1484.0 4.2 0.074 0.51 1.7 1.5 3.4 0.6 . . .

J2253+1608 323 1496.1 4.6 0.0015 0.072 2.4 2.1 2.6 1.9 2.6

J2253+1942 309 1496.1 4.9 0.031 0.63 2.0 1.8 2.2 1.5 2.5

J2300+1655 317 1494.1 4.7 0.11 0.08 1.9 0.6 2.2 0.6 2.5

J2301-0158 165 1112.0 6.8 0.021 0.98 2.0 0.9 2.4 0.9 2.6

J2310+1055 305 1496.1 4.9 0.12 0.3 1.8 0.1 2.4 0.0 . . .

J2311+4543 311 1500.1 4.8 0.019 0.85 2.3 1.9 2.5 1.2 2.7

J2321+2732 177 921.7 5.2 0.042 0.99 2.3 0.4 2.6 0.0 . . .

J2321+3204 150 929.7 6.2 0.18 0.38 1.5 0.1 2.2 0.0 . . .

J2322+1843 322 1496.1 4.7 0.25 0.21 2.8 0.4 3.4 0.0 . . .

J2322+4445 303 1500.1 5.0 0.18 0.47 1.5 0.3 3.0 0.1 . . .

J2329+0834 233 1504.0 6.5 0.037 0.29 2.1 0.6 2.9 0.6 . . .

J2331-1556 242 1496.9 6.2 0.041 0.65 1.9 1.4 2.4 0.8 . . .

J2335-0131 192 1212.7 6.3 0.028 0.15 2.2 0.6 2.8 0.4 . . .

J2337+2617 250 1500.2 6.0 0.12 0.92 2.5 0.7 2.8 0.4 . . .

J2337-0230 178 1198.7 6.8 0.15 0.12 1.3 0.0 3.4 0.0 . . .

J2343+2339 248 1502.1 6.1 0.065 0.89 1.9 1.2 2.3 1.2 2.3

J2345-1555 266 1497.9 5.7 0.012 0.72 1.9 1.7 2.3 1.5 2.3

J2346+0930 258 1495.0 5.8 0.048 0.38 1.9 1.2 2.2 0.4 2.2

J2346+8007 199 1508.9 7.6 0.032 0.57 2.3 1.2 2.8 1.1 . . .

Continues
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Table C.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomb

low βcomb
up

J2348-1631 267 1506.8 5.7 0.017 0.46 2.1 1.8 2.5 1.8 2.5

J2354-1513 281 1491.9 5.3 0.054 0.78 2.4 1.2 2.8 0.9 . . .

J2358+1955 280 1496.2 5.4 0.032 0.8 2.2 1.8 2.6 0.9 2.6

J2358-1020 278 1506.8 5.4 0.0088 0.49 2.3 2.0 2.5 2.0 2.8

PKS1510-089 134 1059.1 8.0 0.0021 0.18 2.3 1.6 2.9 1.6 2.9
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Appendix D

Results of the PSD
characterization of the UMRAO
sources

This table contains the PSD fit information of the 14.5 GHz light curves for the sources

in the University of Michigan Radio Observatory program as published in Hughes et al.

(1992).

The columns contain the following information:

Source name: Name of the source as used in Hughes et al. (1992)

B1950 name: Name of the source in B1950 coordinates

RA: J2000 Right Ascension of the source

Dec: J2000 declination of the source

N points: Number of data points in the light curve

T: Time span of the light curve in days

〈∆t〉: Mean sampling interval in days

σ2
noise/σ

2
data: Ratio of estimated noise variance to total variance

p-value: p-value of the best fit power-law index of the PSD

β: Best fit value for the power-law index of the PSD

βlow: 68.3% lower limit for the power-law index of the PSD

βup: 68.3% upper limit for the power-law index of the PSD

βcomb
low : 82.6% lower limit for the power-law index of the PSD

βcomb
up : 82.6% upper limit for the power-law index of the PSD

bs: Fitted slope of the structure function from Hughes et al. (1992)
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Appendix E

Results of the PSD
characterization for sources in the
cross-correlation sample

The results of the PSD characterization for the sources in the cross-correlation sample as

discussed in 6.2.1 are presented below. Each table contains the OVRO source names, basic

properties of the light curves and the results of the constraint on the power-law index of

the PSD. Summary figures for all the PSD fits are included too.

E.1 Tables with results of the PSD fit

Each table contains the following information,

OVRO name: Name of the source in the OVRO 40 m blazar monitoring program

N points: Number of data points in the light curve

T: Time span of the light curve in days

〈∆t〉: Mean sampling interval in days

σ2
noise/σ

2
data: Ratio of estimated noise variance to total variance

p-value: p-value of the best fit power-law index of the PSD

β: Best fit value for the power-law index of the PSD

βlow: 68.3% lower limit for the power-law index of the PSD

βup: 68.3% upper limit for the power-law index of the PSD

βcomblow : 82.6% lower limit for the power-law index of the PSD

βcombup : 82.6% upper limit for the power-law index of the PSD



262

Table E.1: Radio band PSD characterization of gamma-ray detected sources

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

RBS76 96 647.2 6.8 1.0 9.9e−1 1.0 0.0 . . . 0.0 . . .

J0108+0135 157 1051.2 6.7 0.012 6.6e−1 2.3 0.9 2.8 0.9 . . .

J0112+2244 318 1504.1 4.7 0.011 3.6e−1 2.0 1.7 2.4 1.4 2.4

J0112+3208 204 1113.0 5.5 0.038 9.0e−1 1.9 0.6 2.4 0.4 . . .

BBJ0136+3905 186 922.5 5.0 2.2 . . . . . . . . . . . . . . . . . .

J0136+4751 331 1510.8 4.6 0.0065 8.2e−1 1.6 1.4 1.9 1.4 1.9

C0144+2705 233 1035.2 4.5 0.057 3.1e−2 1.8 0.6 . . . 0.3 . . .

J0217+0144 250 1505.9 6.0 0.032 1.5e−2 1.9 1.4 2.1 1.1 . . .

J0221+3556 327 1494.9 4.6 0.063 2.5e−2 1.7 1.2 2.0 0.8 2.2

3C66A 339 1494.9 4.4 0.061 6.5e−1 1.9 0.6 2.4 0.4 2.5

J0237+2848 296 1494.9 5.1 0.011 3.8e−1 2.7 2.5 3.0 2.5 3.0

J0238+1636 294 1503.1 5.1 0.0011 4.3e−2 2.4 2.0 2.5 1.9 2.7

J0319+4130 337 1496.9 4.5 0.0058 9.0e−1 2.8 2.5 3.0 2.5 3.0

J0423−0120 229 1496.0 6.6 0.0058 6.3e−1 2.5 2.2 2.7 2.2 2.8

J0442−0017 220 1500.9 6.9 0.02 4.8e−1 1.8 1.3 2.1 0.8 . . .

J0509+0541 228 1501.0 6.6 0.043 5.9e−1 2.2 1.9 2.7 0.6 2.7

J0612+4122 160 1069.1 6.7 0.023 1.6e−1 2.1 0.6 . . . 0.4 . . .

C0719+3307 158 1051.8 6.7 0.03 5.6e−1 1.4 0.3 . . . 0.3 . . .

J0721+7120 276 1503.3 5.5 0.0028 1.4e−2 1.9 1.7 2.2 1.6 2.3

J0725+1425 211 1504.0 7.2 0.036 9.4e−1 1.1 0.5 1.5 0.5 . . .

J0738+1742 155 1070.0 6.9 0.24 2.7e−1 2.1 0.0 . . . 0.0 . . .

J0739+0137 167 1067.9 6.4 0.019 4.7e−1 2.0 0.9 2.5 0.6 . . .

J0742+5444 159 1016.3 6.4 0.013 9.5e−2 1.9 0.8 2.5 0.6 2.9

J0808−0751 241 1502.9 6.3 0.0042 8.0e−2 2.0 1.6 2.2 1.6 2.5

J0831+0429 245 1502.9 6.2 0.014 5.5e−1 1.9 0.8 2.1 0.6 2.3

0836+710 147 1036.3 7.1 0.0023 9.9e−1 3.3 2.9 . . . 1.5 . . .

J0854+2006 295 1504.9 5.1 0.0019 1.0e−3 2.1 1.8 2.3 1.6 2.4

J0856−1105 196 1498.9 7.7 0.11 6.0e−3 1.8 0.1 2.5 0.0 . . .

J0909+0121 237 1507.9 6.4 0.013 5.3e−1 2.3 1.8 2.6 1.4 . . .

J0915+2933 150 930.4 6.2 0.53 1.0e+00 3.4 0.4 . . . 0.0 . . .

J0920+4441 167 1073.1 6.5 0.11 2.9e−1 1.8 0.3 . . . 0.0 . . .

C0957+5522 148 1041.9 7.1 0.63 8.8e−1 1.4 0.0 . . . 0.0 . . .

C1012+2439 162 1053.4 6.5 0.79 6.8e−1 2.1 0.0 . . . 0.0 . . .

J1015+4926 197 1285.6 6.6 0.4 7.7e−1 2.0 0.0 . . . 0.0 . . .

C1037+5711 147 1052.9 7.2 0.08 4.7e−1 1.9 0.0 . . . 0.0 . . .

Continues
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Table E.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

J1058+0133 184 1484.1 8.1 0.066 8.2e−1 2.0 0.6 . . . 0.4 . . .

J1058+5628 155 1068.8 6.9 0.98 5.3e−1 2.5 0.0 . . . 0.0 . . .

J1104+3812 276 1508.2 5.5 0.13 3.4e−1 1.8 0.4 2.2 0.0 . . .

J1127−1857 197 1483.9 7.6 0.0079 2.2e−1 2.0 1.7 2.3 1.6 2.4

BBJ1150+4154 95 709.4 7.5 1.4 . . . . . . . . . . . . . . . . . .

J1159+2914 275 1504.9 5.5 0.0038 2.2e−1 2.1 1.9 2.4 1.8 2.6

J1217+3007 250 1504.9 6.0 0.25 1.3e−2 1.8 0.0 . . . 0.0 . . .

J1221+2813 261 1504.9 5.8 0.11 1.1e−2 1.8 0.6 . . . 0.3 . . .

C1224+2122 234 1058.1 4.5 0.0048 7.9e−1 2.4 2.0 2.7 0.9 2.7

J1229+0203 334 1503.9 4.5 0.019 3.9e−1 2.2 1.9 2.5 0.6 2.8

J1231+2847 159 925.5 5.9 0.72 9.0e−2 1.9 0.0 . . . 0.0 . . .

C1239+0443 134 1058.2 8.0 0.029 8.6e−2 2.0 0.6 2.6 0.0 . . .

J1248+5820 190 1495.3 7.9 0.19 6.6e−1 1.6 0.1 . . . 0.0 . . .

C1253+5301 127 1040.5 8.3 0.92 6.1e−1 2.0 0.0 . . . 0.0 . . .

J1256−0547 283 1508.0 5.3 0.0064 9.1e−1 2.4 2.2 2.6 2.0 2.7

J1310+3220 413 1502.9 3.6 0.0065 2.0e−1 2.2 1.9 2.4 1.9 2.4

J1312+4828 210 1489.3 7.1 0.093 3.3e−2 1.8 0.6 . . . 0.6 . . .

J1332−0509 212 1503.0 7.1 0.0089 4.5e−1 2.2 1.7 2.7 1.4 2.9

J1344−1723 143 1075.1 7.6 0.021 5.2e−2 1.9 0.6 . . . 0.6 . . .

C1345+4452 175 1056.8 6.1 0.013 6.5e−1 2.1 0.9 2.6 0.6 2.6

CR1427+2347 150 1056.8 7.1 0.41 1.4e−1 1.7 0.0 . . . 0.0 . . .

J1504+1029 328 1508.9 4.6 0.0037 8.4e−2 2.5 2.3 2.7 2.2 2.8

PKS1510−089 134 1059.1 8.0 0.0021 1.8e−1 2.3 1.6 2.9 1.6 2.9

J1522+3144 200 1505.1 7.6 0.21 3.0e−3 1.6 0.3 . . . 0.0 . . .

CR1542+6129 168 1057.3 6.3 0.098 5.2e−1 2.0 0.0 . . . 0.0 . . .

J1555+1111 222 1284.7 5.8 0.5 3.9e−2 1.9 0.0 . . . 0.0 . . .

J1635+3808 162 1070.0 6.6 0.0069 9.8e−1 2.1 1.6 2.5 1.4 2.9

J1653+3945 184 1128.9 6.2 0.22 7.2e−1 1.7 0.0 . . . 0.0 . . .

J1709+4318 186 1073.1 5.8 0.053 1.0e−3 1.6 0.0 . . . 0.0 . . .

J1725+1152 240 1508.1 6.3 1.2 . . . . . . . . . . . . . . . . . .

J1733−1304 273 1510.8 5.6 0.02 9.1e−1 2.0 1.7 2.2 1.5 2.4

J1748+7005 250 1508.0 6.1 0.022 9.2e−1 2.2 1.5 2.5 1.4 2.7

J1800+7828 166 1074.8 6.5 0.037 2.1e−2 1.7 0.6 2.6 0.6 . . .

J1806+6949 246 1508.0 6.2 0.072 2.2e−1 1.9 1.5 2.7 0.6 . . .

J1824+5651 240 1503.9 6.3 0.062 4.0e−1 1.9 0.6 2.2 0.4 2.9

J1848+3219 265 1503.9 5.7 0.024 5.8e−1 2.2 1.9 2.6 1.9 2.7

Continues
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Table E.1

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

J1849+6705 242 1508.0 6.3 0.017 3.1e−1 1.9 1.5 2.3 0.8 2.5

CR1903+5540 163 1050.2 6.5 0.33 6.4e−1 1.7 0.0 . . . 0.0 . . .

J1959+6508 256 1507.9 5.9 0.28 1.2e−1 1.8 0.0 . . . 0.0 . . .

C2025−0735 211 1060.1 5.0 0.018 8.0e−3 2.2 0.9 2.5 0.6 2.8

C2121+1901 231 1055.8 4.6 1.5 . . . . . . . . . . . . . . . . . .

J2143+1743 362 1502.9 4.2 0.016 3.0e−2 1.9 1.5 2.0 1.4 2.2

BLLacertae 189 1049.1 5.6 0.0066 2.2e−1 2.1 0.9 2.4 0.9 2.7

J2203+1725 358 1507.8 4.2 0.023 2.3e−1 2.0 1.7 2.2 1.5 2.3

C2225−0457 191 1042.2 5.5 0.0034 9.8e−1 3.2 2.9 3.5 2.7 . . .

J2229−0832 212 1101.0 5.2 0.0063 9.1e−1 2.8 2.5 3.0 2.4 3.1

2230+114 211 1054.1 5.0 0.0026 6.2e−1 2.4 2.0 2.6 1.7 2.8

J2236+2828 321 1509.8 4.7 0.035 8.9e−2 1.9 0.6 2.1 0.6 2.3

CR2243+2021 196 1030.9 5.3 2.1 . . . . . . . . . . . . . . . . . .

J2253+1608 323 1496.1 4.6 0.0015 7.2e−2 2.4 2.1 2.6 1.9 2.6

C2311+3425 215 1049.4 4.9 0.017 8.9e−1 2.1 0.6 2.5 0.6 2.7
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Table E.2: Gamma-ray band PSD characterization of gamma-ray detected sources

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

RBS76 98 1190.0 12.3 1.7 . . . . . . . . . . . . . . . . . .

J0108+0135 146 1092.0 7.5 0.4 8.7e−1 0.8 0.4 . . . 0.2 . . .

J0112+2244 132 1099.0 8.4 0.25 8.8e−2 0.9 0.4 1.5 0.0 1.8

J0112+3208 102 1029.0 10.2 0.14 8.9e−1 2.2 1.5 . . . 0.5 . . .

BBJ0136+3905 125 1148.0 9.3 1.4 . . . . . . . . . . . . . . . . . .

J0136+4751 117 1099.0 9.5 0.25 9.4e−1 2.1 1.4 . . . 0.0 . . .

C0144+2705 112 1099.0 9.9 0.87 5.5e−1 0.8 0.0 . . . 0.0 . . .

J0217+0144 92 1071.0 11.8 0.32 7.6e−1 2.5 0.0 . . . 0.0 . . .

J0221+3556 107 1085.0 10.2 0.53 9.9e−1 1.6 0.0 . . . 0.0 . . .

3C66A 158 1099.0 7.0 0.16 4.9e−1 0.6 0.3 1.0 0.2 1.2

J0237+2848 132 1099.0 8.4 0.19 7.9e−1 2.4 1.6 . . . 0.7 . . .

J0238+1636 79 1092.0 14.0 0.019 5.8e−01 0.1 0.0 0.8 0.0 1.0

J0319+4130 155 1099.0 7.1 0.2 7.6e−1 1.6 1.2 2.0 1.1 2.2

J0423−0120 110 1092.0 10.0 0.31 1.1e−1 1.2 0.1 . . . 0.0 . . .

J0442−0017 106 1099.0 10.5 0.14 9.7e−1 0.7 0.3 1.2 0.1 2.3

J0509+0541 124 1099.0 8.9 0.58 8.1e−1 2.5 1.5 . . . 0.0 . . .

J0612+4122 120 1169.0 9.8 1.3 . . . . . . . . . . . . . . . . . .

C0719+3307 114 1099.0 9.7 0.2 4.8e−1 0.8 0.2 1.2 0.0 . . .

J0721+7120 154 1099.0 7.2 0.086 4.0e−1 1.9 1.6 2.2 1.4 2.3

J0725+1425 112 1085.0 9.8 0.04 7.3e−1 0.5 0.2 0.8 0.1 1.0

J0738+1742 146 1197.0 8.3 1.2 . . . . . . . . . . . . . . . . . .

J0739+0137 96 1043.0 11.0 0.38 8.2e−1 2.5 0.5 . . . 0.0 . . .

J0742+5444 85 1092.0 13.0 0.085 9.9e−1 0.6 0.3 1.1 0.0 . . .

J0808−0751 111 1071.0 9.7 0.075 6.8e−1 0.5 0.2 0.9 0.1 1.1

J0831+0429 95 1085.0 11.5 0.46 9.3e−1 0.7 0.0 . . . 0.0 . . .

0836+710 77 1064.0 14.0 0.36 5.0e−1 2.4 0.0 . . . 0.0 . . .

J0854+2006 99 1099.0 11.2 0.37 1.0e−3 0.2 0.0 . . . 0.0 . . .

J0856−1105 81 1190.0 14.9 1.8 . . . . . . . . . . . . . . . . . .

J0909+0121 99 1071.0 10.9 0.27 5.8e−1 0.4 0.0 . . . 0.0 . . .

J0915+2933 75 1190.0 16.1 2.1 . . . . . . . . . . . . . . . . . .

J0920+4441 128 1092.0 8.6 0.091 8.3e−1 1.6 1.0 2.0 0.8 2.1

C0957+5522 172 1197.0 7.0 1.2 . . . . . . . . . . . . . . . . . .

C1012+2439 84 1001.0 12.1 0.37 9.6e−1 1.1 0.0 . . . 0.0 . . .

J1015+4926 142 1099.0 7.8 0.96 7.3e−1 1.6 0.0 . . . 0.0 . . .

C1037+5711 110 1183.0 10.9 1.6 . . . . . . . . . . . . . . . . . .

Continues
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Table E.2

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

J1058+0133 120 1099.0 9.2 0.42 9.7e−1 1.9 0.2 . . . 0.0 . . .

J1058+5628 115 1099.0 9.6 0.99 2.1e−1 1.8 0.0 . . . 0.0 . . .

J1104+3812 158 1099.0 7.0 0.35 9.6e−1 1.4 0.7 2.0 0.7 . . .

J1127−1857 120 1099.0 9.2 0.23 6.0e−1 2.4 0.7 . . . 0.0 . . .

BBJ1150+4154 88 1190.0 13.7 2.2 . . . . . . . . . . . . . . . . . .

J1159+2914 135 1078.0 8.0 0.066 1.8e−1 1.0 0.7 1.4 0.5 1.6

J1217+3007 128 1092.0 8.6 0.35 7.8e−1 2.5 1.8 . . . 0.2 . . .

J1221+2813 120 1078.0 9.1 0.72 9.3e−1 2.3 0.0 . . . 0.0 . . .

C1224+2122 135 1099.0 8.2 0.0053 5.9e−2 0.4 0.2 0.8 0.2 0.8

J1229+0203 148 1099.0 7.5 0.015 8.9e−1 0.8 0.5 1.0 0.4 1.1

J1231+2847 94 1183.0 12.7 1.2 . . . . . . . . . . . . . . . . . .

C1239+0443 106 1057.0 10.1 0.16 1.0e+00 1.7 0.8 2.3 0.0 . . .

J1248+5820 136 1176.0 8.7 1.5 . . . . . . . . . . . . . . . . . .

C1253+5301 131 1190.0 9.2 1.1 . . . . . . . . . . . . . . . . . .

J1256−0547 153 1099.0 7.2 0.033 9.1e−01 1.6 1.4 1.9 1.2 2.0

J1310+3220 96 1099.0 11.6 0.22 5.7e−1 0.2 0.1 . . . 0.0 . . .

J1312+4828 70 1050.0 15.2 0.02 1.0e+00 0.3 0.0 1.0 0.0 1.0

J1332−0509 110 1043.0 9.6 0.033 5.3e−1 0.3 0.2 0.6 0.1 0.8

J1344−1723 87 1190.0 13.8 1.1 . . . . . . . . . . . . . . . . . .

C1345+4452 90 1099.0 12.3 0.15 9.7e−1 0.3 0.0 . . . 0.0 . . .

CR1427+2347 154 1092.0 7.1 0.59 9.6e−1 0.7 0.0 . . . 0.0 . . .

J1504+1029 134 1099.0 8.3 0.021 8.6e−1 2.3 2.0 . . . 1.9 . . .

PKS1510−089 157 1099.0 7.0 0.0096 9.0e−3 1.9 1.7 2.1 1.7 2.1

J1522+3144 158 1099.0 7.0 0.074 9.9e−1 0.7 0.4 0.9 0.4 1.0

CR1542+6129 129 1092.0 8.5 0.51 3.4e−1 0.7 0.2 . . . 0.0 . . .

J1555+1111 155 1099.0 7.1 0.75 1.5e−1 1.4 0.0 . . . 0.0 . . .

J1635+3808 157 1099.0 7.0 0.043 1.0e−1 1.5 1.2 1.8 1.1 1.8

J1653+3945 145 1092.0 7.6 0.76 6.9e−1 0.9 0.0 . . . 0.0 . . .

J1709+4318 74 966.0 13.2 0.062 9.8e−1 0.7 0.3 1.3 0.1 . . .

J1725+1152 82 1190.0 14.7 1.5 . . . . . . . . . . . . . . . . . .

J1733−1304 95 1078.0 11.5 0.16 4.9e−1 0.5 0.0 . . . 0.0 . . .

J1748+7005 84 1092.0 13.2 0.044 9.6e−1 0.4 0.2 1.0 0.0 1.1

J1800+7828 125 1099.0 8.9 0.15 7.6e−1 0.4 0.2 0.7 0.0 0.9

J1806+6949 104 1057.0 10.3 0.83 2.1e−1 1.4 0.0 . . . 0.0 . . .

J1824+5651 77 1099.0 14.5 0.39 1.0e+00 0.5 0.0 . . . 0.0 . . .

J1848+3219 57 1085.0 19.4 0.11 3.6e−1 0.0 0.0 . . . 0.0 . . .

Continues
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Table E.2

OVRO name N points T 〈∆t〉 σ2
noise/σ

2
data p-value β βlow βup βcomblow βcombup

J1849+6705 104 1099.0 10.7 0.051 5.3e−1 0.6 0.2 1.0 0.2 1.2

CR1903+5540 124 1176.0 9.6 1.3 . . . . . . . . . . . . . . . . . .

J1959+6508 132 1099.0 8.4 0.61 9.7e−1 2.5 1.7 . . . 0.2 . . .

C2025−0735 97 1085.0 11.3 0.065 1.0e+00 0.1 0.0 0.8 0.0 . . .

C2121+1901 78 1197.0 15.5 1.8 . . . . . . . . . . . . . . . . . .

J2143+1743 133 1092.0 8.3 0.27 9.9e−1 0.0 0.0 0.5 0.0 0.5

BLLacertae 146 1099.0 7.6 0.087 4.7e−1 2.0 1.5 2.3 1.5 2.4

J2203+1725 119 1099.0 9.3 0.38 5.4e−1 0.7 0.1 . . . 0.0 . . .

C2225−0457 78 1183.0 15.4 1.4 . . . . . . . . . . . . . . . . . .

J2229−0832 125 1099.0 8.9 0.38 7.5e−01 0.8 0.0 . . . 0.0 . . .

2230+114 109 1099.0 10.2 0.059 7.8e−1 2.5 1.8 . . . 1.0 . . .

J2236+2828 101 1036.0 10.4 0.23 7.4e−1 2.0 0.0 . . . 0.0 . . .

CR2243+2021 123 1197.0 9.8 1.8 . . . . . . . . . . . . . . . . . .

J2253+1608 157 1099.0 7.0 8.0E−4 0.0e+00 0.0 0.0 0.2 0.0 0.2

C2311+3425 113 1099.0 9.8 0.094 9.2e−1 0.2 0.0 0.7 0.0 0.9
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E.2 PSD characterization figures for the radio light curves

We include summary figures for the fits of the radio PSDs for the sources in the cross-

correlation sample. Each figure is made out of 4 panels described below:

Upper left Radio light curve. Flux units are Janskys and time is MJD.

Upper right The periodogram estimate in arbitrary units of power and 1/day for fre-

quency. Periodogram for the light curve is represented by black dots joined by a solid

black line.

The mean and dispersion in the PSD of simulated light curves for the best fit value

of β are represented by the black dots with error bars. The best fit value is indicated

in the caption.

Lower left Lower left is the p-value for each value of β tested in the model PSD (∝ ν−β).

A high p-value indicates a model consistent with the observed periodogram. The best

fit is the maximum and is indicated in the caption.

Lower right Confidence belt and best fit value (solid black horizontal line). The lower

and upper limits for β obtained are indicated in the caption. Vertical axis is for the

simulated value of β and horizontal axis for the fitted one.

The 81 cases in which there is enough signal to run the procedure are included here.

Only 43 sources have a well defined 68.3% constraint and 33 a well defined 82.6% constraint.

For the details see Chapter 6.
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Figure E.1: PSD fit summary for 0836+710. The best fit is β = 3.3 with 1σ limits βlower =
2.9 and an undetermined upper limit.
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Figure E.2: PSD fit summary for 2230+114. The best fit is β = 2.4 with 1σ limits βlower =
2.0 and βupper = 2.6.
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Figure E.3: PSD fit summary for 3C66A. The best fit is β = 1.9 with 1σ limits βlower =
0.6 and βupper = 2.4.
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Figure E.4: PSD fit summary for BLLacertae. The best fit is β = 2.1 with 1σ limits
βlower = 0.9 and βupper = 2.4.
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Figure E.5: PSD fit summary for C0144+2705. The best fit is β = 1.8 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.6: PSD fit summary for C0719+3307. The best fit is β = 1.4 with 1σ limits
βlower = 0.3 and an undetermined upper limit.
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Figure E.7: PSD fit summary for C0957+5522. The best fit is β = 1.4 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.8: PSD fit summary for C1012+2439. The best fit is β = 2.1 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.9: PSD fit summary for C1037+5711. The best fit is β = 1.9 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.10: PSD fit summary for C1224+2122. The best fit is β = 2.4 with 1σ limits
βlower = 2.0 and βupper = 2.7.
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Figure E.11: PSD fit summary for C1239+0443. The best fit is β = 2.0 with 1σ limits
βlower = 0.6 and βupper = 2.6.
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Figure E.12: PSD fit summary for C1253+5301. The best fit is β = 2.0 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.13: PSD fit summary for C1345+4452. The best fit is β = 2.1 with 1σ limits
βlower = 0.9 and βupper = 2.6.
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Figure E.14: PSD fit summary for C2025-0735. The best fit is β = 2.2 with 1σ limits
βlower = 0.9 and βupper = 2.5.
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Figure E.15: PSD fit summary for C2225-0457. The best fit is β = 3.2 with 1σ limits
βlower = 2.9 and an undetermined upper limit.
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Figure E.16: PSD fit summary for C2311+3425. The best fit is β = 2.1 with 1σ limits
βlower = 0.6 and βupper = 2.5.
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Figure E.17: PSD fit summary for CR1427+2347. The best fit is β = 1.7 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.18: PSD fit summary for CR1542+6129. The best fit is β = 2.0 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.19: PSD fit summary for CR1903+5540. The best fit is β = 1.7 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.20: PSD fit summary for J0108+0135. The best fit is β = 2.3 with 1σ limits
βlower = 0.9 and βupper = 2.8.
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Figure E.21: PSD fit summary for J0112+2244. The best fit is β = 2.0 with 1σ limits
βlower = 1.7 and βupper = 2.4.
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Figure E.22: PSD fit summary for J0112+3208. The best fit is β = 1.9 with 1σ limits
βlower = 0.6 and βupper = 2.4.
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Figure E.23: PSD fit summary for J0136+4751. The best fit is β = 1.6 with 1σ limits
βlower = 1.4 and βupper = 1.9.
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Figure E.24: PSD fit summary for J0217+0144. The best fit is β = 1.9 with 1σ limits
βlower = 1.4 and βupper = 2.1.
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Figure E.25: PSD fit summary for J0221+3556. The best fit is β = 1.7 with 1σ limits
βlower = 1.2 and βupper = 2.0.
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Figure E.26: PSD fit summary for J0237+2848. The best fit is β = 2.7 with 1σ limits
βlower = 2.5 and βupper = 3.0.
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Figure E.27: PSD fit summary for J0238+1636. The best fit is β = 2.4 with 1σ limits
βlower = 2.0 and βupper = 2.5.
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Figure E.28: PSD fit summary for J0319+4130. The best fit is β = 2.8 with 1σ limits
βlower = 2.5 and βupper = 3.0.
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Figure E.29: PSD fit summary for J0423-0120. The best fit is β = 2.5 with 1σ limits
βlower = 2.2 and βupper = 2.7.
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Figure E.30: PSD fit summary for J0442-0017. The best fit is β = 1.8 with 1σ limits
βlower = 1.3 and βupper = 2.1.
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Figure E.31: PSD fit summary for J0509+0541. The best fit is β = 2.2 with 1σ limits
βlower = 1.9 and βupper = 2.7.
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Figure E.32: PSD fit summary for J0612+4122. The best fit is β = 2.1 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.33: PSD fit summary for J0721+7120. The best fit is β = 1.9 with 1σ limits
βlower = 1.7 and βupper = 2.2.

54400 54600 54800 55000 55200 55400 55600 55800 56000
mjd

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

fl
u
x

J0725+1425

3.0 2.5 2.0 1.5 1.0
f [1/day]

3.5

3.0

2.5

2.0

1.5

1.0

0.5

p
o
w

e
r

J0725+1425

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
β

0.0

0.2

0.4

0.6

0.8

1.0

P

J0725+1425

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
si
m

Figure E.34: PSD fit summary for J0725+1425. The best fit is β = 1.1 with 1σ limits
βlower = 0.5 and βupper = 1.5.
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Figure E.35: PSD fit summary for J0738+1742. The best fit is β = 2.1 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.36: PSD fit summary for J0739+0137. The best fit is β = 2.0 with 1σ limits
βlower = 0.9 and βupper = 2.5.
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Figure E.37: PSD fit summary for J0742+5444. The best fit is β = 1.9 with 1σ limits
βlower = 0.8 and βupper = 2.5.
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Figure E.38: PSD fit summary for J0808-0751. The best fit is β = 2.0 with 1σ limits
βlower = 1.6 and βupper = 2.2.
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Figure E.39: PSD fit summary for J0831+0429. The best fit is β = 1.9 with 1σ limits
βlower = 0.8 and βupper = 2.1.
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Figure E.40: PSD fit summary for J0854+2006. The best fit is β = 2.1 with 1σ limits
βlower = 1.8 and βupper = 2.3.
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Figure E.41: PSD fit summary for J0856-1105. The best fit is β = 1.8 with 1σ limits
βlower = 0.1 and βupper = 2.5.
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Figure E.42: PSD fit summary for J0909+0121. The best fit is β = 2.3 with 1σ limits
βlower = 1.8 and βupper = 2.6.
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Figure E.43: PSD fit summary for J0915+2933. The best fit is β = 3.4 with 1σ limits
βlower = 0.4 and an undetermined upper limit.
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Figure E.44: PSD fit summary for J0920+4441. The best fit is β = 1.8 with 1σ limits
βlower = 0.3 and an undetermined upper limit.
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Figure E.45: PSD fit summary for J1015+4926. The best fit is β = 2.0 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.46: PSD fit summary for J1058+0133. The best fit is β = 2.0 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.47: PSD fit summary for J1058+5628. The best fit is β = 2.5 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.48: PSD fit summary for J1104+3812. The best fit is β = 1.8 with 1σ limits
βlower = 0.4 and βupper = 2.2.
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Figure E.49: PSD fit summary for J1127-1857. The best fit is β = 2.0 with 1σ limits
βlower = 1.7 and βupper = 2.3.
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Figure E.50: PSD fit summary for J1159+2914. The best fit is β = 2.1 with 1σ limits
βlower = 1.9 and βupper = 2.4.
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Figure E.51: PSD fit summary for J1217+3007. The best fit is β = 1.8 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.52: PSD fit summary for J1221+2813. The best fit is β = 1.8 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.53: PSD fit summary for J1229+0203. The best fit is β = 2.2 with 1σ limits
βlower = 1.9 and βupper = 2.5.
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Figure E.54: PSD fit summary for J1231+2847. The best fit is β = 1.9 with 1σ limits
βlower = 0.0 and an undetermined upper limit.



296

54400 54600 54800 55000 55200 55400 55600 55800 56000
mjd

0.08

0.10

0.12

0.14

0.16

0.18

0.20

fl
u
x

J1248+5820

3.0 2.5 2.0 1.5 1.0
f [1/day]

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

p
o
w

e
r

J1248+5820

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
β

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P

J1248+5820

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
si
m

Figure E.55: PSD fit summary for J1248+5820. The best fit is β = 1.6 with 1σ limits
βlower = 0.1 and an undetermined upper limit.
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Figure E.56: PSD fit summary for J1256-0547. The best fit is β = 2.4 with 1σ limits
βlower = 2.2 and βupper = 2.6.
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Figure E.57: PSD fit summary for J1310+3220. The best fit is β = 2.2 with 1σ limits
βlower = 1.9 and βupper = 2.4.
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Figure E.58: PSD fit summary for J1312+4828. The best fit is β = 1.8 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.59: PSD fit summary for J1332-0509. The best fit is β = 2.2 with 1σ limits
βlower = 1.7 and βupper = 2.7.
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Figure E.60: PSD fit summary for J1344-1723. The best fit is β = 1.9 with 1σ limits
βlower = 0.6 and an undetermined upper limit.
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Figure E.61: PSD fit summary for J1504+1029. The best fit is β = 2.5 with 1σ limits
βlower = 2.3 and βupper = 2.7.
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Figure E.62: PSD fit summary for J1522+3144. The best fit is β = 1.6 with 1σ limits
βlower = 0.3 and an undetermined upper limit.
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Figure E.63: PSD fit summary for J1555+1111. The best fit is β = 1.9 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.64: PSD fit summary for J1635+3808. The best fit is β = 2.1 with 1σ limits
βlower = 1.6 and βupper = 2.5.
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Figure E.65: PSD fit summary for J1653+3945. The best fit is β = 1.7 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.66: PSD fit summary for J1709+4318. The best fit is β = 1.6 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.67: PSD fit summary for J1733-1304. The best fit is β = 2.0 with 1σ limits
βlower = 1.7 and βupper = 2.2.

54400 54600 54800 55000 55200 55400 55600 55800 56000
mjd

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fl
u
x

J1748+7005

3.0 2.5 2.0 1.5 1.0
f [1/day]

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

p
o
w

e
r

J1748+7005

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
β

0.0

0.2

0.4

0.6

0.8

1.0

P

J1748+7005

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
si
m

Figure E.68: PSD fit summary for J1748+7005. The best fit is β = 2.2 with 1σ limits
βlower = 1.5 and βupper = 2.5.



303

54800 55000 55200 55400 55600 55800 56000
mjd

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

fl
u
x

J1800+7828

2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
f [1/day]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

p
o
w

e
r

J1800+7828

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
β

0.000

0.005

0.010

0.015

0.020

0.025

P

J1800+7828

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
si
m

Figure E.69: PSD fit summary for J1800+7828. The best fit is β = 1.7 with 1σ limits
βlower = 0.6 and βupper = 2.6.
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Figure E.70: PSD fit summary for J1806+6949. The best fit is β = 1.9 with 1σ limits
βlower = 1.5 and βupper = 2.7.
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Figure E.71: PSD fit summary for J1824+5651. The best fit is β = 1.9 with 1σ limits
βlower = 0.6 and βupper = 2.2.
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Figure E.72: PSD fit summary for J1848+3219. The best fit is β = 2.2 with 1σ limits
βlower = 1.9 and βupper = 2.6.
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Figure E.73: PSD fit summary for J1849+6705. The best fit is β = 1.9 with 1σ limits
βlower = 1.5 and βupper = 2.3.
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Figure E.74: PSD fit summary for J1959+6508. The best fit is β = 1.8 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.75: PSD fit summary for J2143+1743. The best fit is β = 1.9 with 1σ limits
βlower = 1.5 and βupper = 2.0.
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Figure E.76: PSD fit summary for J2203+1725. The best fit is β = 2.0 with 1σ limits
βlower = 1.7 and βupper = 2.2.
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Figure E.77: PSD fit summary for J2229-0832. The best fit is β = 2.8 with 1σ limits
βlower = 2.5 and βupper = 3.0.

54400 54600 54800 55000 55200 55400 55600 55800 56000
mjd

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

fl
u
x

J2236+2828

3.0 2.5 2.0 1.5 1.0 0.5
f [1/day]

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

p
o
w

e
r

J2236+2828

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
β

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

P

J2236+2828

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

β
si
m

Figure E.78: PSD fit summary for J2236+2828. The best fit is β = 1.9 with 1σ limits
βlower = 0.6 and βupper = 2.1.
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Figure E.79: PSD fit summary for J2253+1608. The best fit is β = 2.4 with 1σ limits
βlower = 2.1 and βupper = 2.6.
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Figure E.80: PSD fit summary for PKS1510-089. The best fit is β = 2.3 with 1σ limits
βlower = 1.6 and βupper = 2.9.
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Figure E.81: PSD fit summary for RBS76. The best fit is β = 1.0 with 1σ limits βlower =
0.0 and an undetermined upper limit.
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E.3 PSD characterization figures for the gamma-ray light

curves

We include summary figures for the fits of the gamma-ray PSDs for the sources in the

cross-correlation sample. Each figure is made out of 4 panels described below:

Upper left Gamma-ray light curve. Flux units are 10−6 ph cm−2 s−1 integrated for ener-

gies between 100 MeV and 200 GeV.

Upper right The periodogram estimate in arbitrary units of power and 1/day for fre-

quency. Periodogram for the light curve is represented by black dots joined by a solid

black line.

The mean and dispersion in the PSD of simulated light curves for the best fit value

of β are represented by the black dots with error bars. The best fit value is indicated

in the caption.

Lower left Lower left is the p-value for each value of β tested in the model PSD (∝ ν−β).

A high p-value indicates a model consistent with the observed periodogram. The best

fit is the maximum and is indicated in the caption.

Lower right Confidence belt and best fit value (solid black horizontal line). The lower

and upper limits for β obtained are indicated in the caption. Vertical axis is for the

simulated value of β and horizontal axis for the fitted one.

The 68 cases in which there is enough signal to run the procedure are included here.

Only 29 sources have a well defined 68.3% constraint and 23 a well defined 82.6% constraint.

For the details see Chapter 6.
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Figure E.82: PSD fit summary for 0836+710. The best fit is β = 2.4 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.83: PSD fit summary for 2230+114. The best fit is β = 2.5 with 1σ limits
βlower = 1.8 and an undetermined upper limit.
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Figure E.84: PSD fit summary for 3C66A. The best fit is β = 0.6 with 1σ limits βlower =
0.3 and βupper = 1.0.
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Figure E.85: PSD fit summary for BLLacertae. The best fit is β = 2.0 with 1σ limits
βlower = 1.5 and βupper = 2.3.
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Figure E.86: PSD fit summary for C0144+2705. The best fit is β = 0.8 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.87: PSD fit summary for C0719+3307. The best fit is β = 0.8 with 1σ limits
βlower = 0.2 and βupper = 1.2.
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Figure E.88: PSD fit summary for C1012+2439. The best fit is β = 1.1 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.89: PSD fit summary for C1224+2122. The best fit is β = 0.4 with 1σ limits
βlower = 0.2 and βupper = 0.8.
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Figure E.90: PSD fit summary for C1239+0443. The best fit is β = 1.7 with 1σ limits
βlower = 0.8 and βupper = 2.3.
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Figure E.91: PSD fit summary for C1345+4452. The best fit is β = 0.3 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.92: PSD fit summary for C2025-0735. The best fit is β = 0.1 with 1σ limits
βlower = 0.0 and βupper = 0.8.
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Figure E.93: PSD fit summary for C2311+3425. The best fit is β = 0.2 with 1σ limits
βlower = 0.0 and βupper = 0.7.



317

54600 54800 55000 55200 55400 55600 55800
mjd

0.00

0.05

0.10

0.15

0.20

0.25

fl
u
x

CR1427+2347

2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
f [1/day]

3.5

3.0

2.5

2.0

1.5

p
o
w

e
r

CR1427+2347

0.0 0.5 1.0 1.5 2.0 2.5
β

0.75

0.80

0.85

0.90

0.95

1.00

P

CR1427+2347

0.0 0.5 1.0 1.5 2.0 2.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

β
si
m

Figure E.94: PSD fit summary for CR1427+2347. The best fit is β = 0.7 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.95: PSD fit summary for CR1542+6129. The best fit is β = 0.7 with 1σ limits
βlower = 0.2 and an undetermined upper limit.
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Figure E.96: PSD fit summary for J0108+0135. The best fit is β = 0.8 with 1σ limits
βlower = 0.4 and an undetermined upper limit.
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Figure E.97: PSD fit summary for J0112+2244. The best fit is β = 0.9 with 1σ limits
βlower = 0.4 and βupper = 1.5.
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Figure E.98: PSD fit summary for J0112+3208. The best fit is β = 2.2 with 1σ limits
βlower = 1.5 and an undetermined upper limit.
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Figure E.99: PSD fit summary for J0136+4751. The best fit is β = 2.1 with 1σ limits
βlower = 1.4 and an undetermined upper limit.
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Figure E.100: PSD fit summary for J0217+0144. The best fit is β = 2.5 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.101: PSD fit summary for J0221+3556. The best fit is β = 1.6 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.102: PSD fit summary for J0237+2848. The best fit is β = 2.4 with 1σ limits
βlower = 1.6 and an undetermined upper limit.
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Figure E.103: PSD fit summary for J0238+1636. The best fit is β = 0.1 with 1σ limits
βlower = 0.0 and βupper = 0.8.
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Figure E.104: PSD fit summary for J0319+4130. The best fit is β = 1.6 with 1σ limits
βlower = 1.2 and βupper = 2.0.
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Figure E.105: PSD fit summary for J0423-0120. The best fit is β = 1.2 with 1σ limits
βlower = 0.1 and an undetermined upper limit.
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Figure E.106: PSD fit summary for J0442-0017. The best fit is β = 0.7 with 1σ limits
βlower = 0.3 and βupper = 1.2.
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Figure E.107: PSD fit summary for J0509+0541. The best fit is β = 2.5 with 1σ limits
βlower = 1.5 and an undetermined upper limit.
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Figure E.108: PSD fit summary for J0721+7120. The best fit is β = 1.9 with 1σ limits
βlower = 1.6 and βupper = 2.2.
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Figure E.109: PSD fit summary for J0725+1425. The best fit is β = 0.5 with 1σ limits
βlower = 0.2 and βupper = 0.8.
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Figure E.110: PSD fit summary for J0739+0137. The best fit is β = 2.5 with 1σ limits
βlower = 0.5 and an undetermined upper limit.

54600 54800 55000 55200 55400 55600 55800
mjd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

fl
u
x

J0742+5444

2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4
f [1/day]

3.0

2.5

2.0

1.5

1.0

0.5

p
o
w

e
r

J0742+5444

0.0 0.5 1.0 1.5 2.0 2.5
β

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P

J0742+5444

0.0 0.5 1.0 1.5 2.0 2.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

β
si
m

Figure E.111: PSD fit summary for J0742+5444. The best fit is β = 0.6 with 1σ limits
βlower = 0.3 and βupper = 1.1.
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Figure E.112: PSD fit summary for J0808-0751. The best fit is β = 0.5 with 1σ limits
βlower = 0.2 and βupper = 0.9.
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Figure E.113: PSD fit summary for J0831+0429. The best fit is β = 0.7 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.114: PSD fit summary for J0854+2006. The best fit is β = 0.2 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.115: PSD fit summary for J0909+0121. The best fit is β = 0.4 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.116: PSD fit summary for J0920+4441. The best fit is β = 1.6 with 1σ limits
βlower = 1.0 and βupper = 2.0.
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Figure E.117: PSD fit summary for J1015+4926. The best fit is β = 1.6 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.118: PSD fit summary for J1058+0133. The best fit is β = 1.9 with 1σ limits
βlower = 0.2 and an undetermined upper limit.
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Figure E.119: PSD fit summary for J1058+5628. The best fit is β = 1.8 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.120: PSD fit summary for J1104+3812. The best fit is β = 1.4 with 1σ limits
βlower = 0.7 and βupper = 2.0.
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Figure E.121: PSD fit summary for J1127-1857. The best fit is β = 2.4 with 1σ limits
βlower = 0.7 and an undetermined upper limit.
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Figure E.122: PSD fit summary for J1159+2914. The best fit is β = 1.0 with 1σ limits
βlower = 0.7 and βupper = 1.4.
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Figure E.123: PSD fit summary for J1217+3007. The best fit is β = 2.5 with 1σ limits
βlower = 1.8 and an undetermined upper limit.
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Figure E.124: PSD fit summary for J1221+2813. The best fit is β = 2.3 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.125: PSD fit summary for J1229+0203. The best fit is β = 0.8 with 1σ limits
βlower = 0.5 and βupper = 1.0.
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Figure E.126: PSD fit summary for J1256-0547. The best fit is β = 1.6 with 1σ limits
βlower = 1.4 and βupper = 1.9.
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Figure E.127: PSD fit summary for J1310+3220. The best fit is β = 0.2 with 1σ limits
βlower = 0.1 and an undetermined upper limit.
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Figure E.128: PSD fit summary for J1312+4828. The best fit is β = 0.3 with 1σ limits
βlower = 0.0 and βupper = 1.0.
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Figure E.129: PSD fit summary for J1332-0509. The best fit is β = 0.3 with 1σ limits
βlower = 0.2 and βupper = 0.6.
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Figure E.130: PSD fit summary for J1504+1029. The best fit is β = 2.3 with 1σ limits
βlower = 2.0 and an undetermined upper limit.
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Figure E.131: PSD fit summary for J1522+3144. The best fit is β = 0.7 with 1σ limits
βlower = 0.4 and βupper = 0.9.
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Figure E.132: PSD fit summary for J1555+1111. The best fit is β = 1.4 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.133: PSD fit summary for J1635+3808. The best fit is β = 1.5 with 1σ limits
βlower = 1.2 and βupper = 1.8.
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Figure E.134: PSD fit summary for J1653+3945. The best fit is β = 0.9 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.135: PSD fit summary for J1709+4318. The best fit is β = 0.7 with 1σ limits
βlower = 0.3 and βupper = 1.3.
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Figure E.136: PSD fit summary for J1733-1304. The best fit is β = 0.5 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.137: PSD fit summary for J1748+7005. The best fit is β = 0.4 with 1σ limits
βlower = 0.2 and βupper = 1.0.
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Figure E.138: PSD fit summary for J1800+7828. The best fit is β = 0.4 with 1σ limits
βlower = 0.2 and βupper = 0.7.
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Figure E.139: PSD fit summary for J1806+6949. The best fit is β = 1.4 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.140: PSD fit summary for J1824+5651. The best fit is β = 0.5 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.141: PSD fit summary for J1848+3219. The best fit is β = 0.0 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.142: PSD fit summary for J1849+6705. The best fit is β = 0.6 with 1σ limits
βlower = 0.2 and βupper = 1.0.
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Figure E.143: PSD fit summary for J1959+6508. The best fit is β = 2.5 with 1σ limits
βlower = 1.7 and an undetermined upper limit.
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Figure E.144: PSD fit summary for J2143+1743. The best fit is β = 0.0 with 1σ limits
βlower = 0.0 and βupper = 0.5.
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Figure E.145: PSD fit summary for J2203+1725. The best fit is β = 0.7 with 1σ limits
βlower = 0.1 and an undetermined upper limit.
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Figure E.146: PSD fit summary for J2229-0832. The best fit is β = 0.8 with 1σ limits
βlower = 0.0 and an undetermined upper limit.
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Figure E.147: PSD fit summary for J2236+2828. The best fit is β = 2.0 with 1σ limits
βlower = 0.0 and an undetermined upper limit.



344

54600 54800 55000 55200 55400 55600 55800
mjd

0

10

20

30

40

50

fl
u
x

J2253+1608

2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0
f [1/day]

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
o
w

e
r

J2253+1608

0.0 0.5 1.0 1.5 2.0 2.5
β

0.06

0.04

0.02

0.00

0.02

0.04

0.06

P

J2253+1608

0.0 0.5 1.0 1.5 2.0 2.5
βmeas

0.0

0.5

1.0

1.5

2.0

2.5

β
si
m

Figure E.148: PSD fit summary for J2253+1608. The best fit is β = 0.0 with 1σ limits
βlower = 0.0 and βupper = 0.2.
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Figure E.149: PSD fit summary for PKS1510-089. The best fit is β = 1.9 with 1σ limits
βlower = 1.7 and βupper = 2.1.
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Appendix F

Cross-correlation summary figures
and light curves for sources that
are non-variable in at least one
band

Figures summarizing the results of the cross-correlation analysis for the 63 sources in the

cross-correlation sample that are found to be variable in both bands are presented. Each

figure has three panels that show the data and the results of the cross-correlation significance

analysis. The left panel show the radio light curve on top and gamma-ray light at the

bottom. Central panel are the cross-correlation results with the black dots representing the

cross-correlation for the data, while the color contours the distribution of random cross-

correlations obtained by the Monte Carlo simulation with red for 1σ, orange for 2σ and

green for 3σ significance. A time lag τ > 0 indicates the gamma-ray emission lags the

radio and τ < 0 the opposite. The right panel shows the p-value of the measured cross-

correlation and equivalent significance represented by the horizontal segmented lines and

labeled at their right end. Notice that in the right panel the p−values are for positive

and negative correlations, thus some of the troughs could represent anti-correlations that

are considered in this discussion. The ambiguity can easily be resolved by looking at the

cross-correlation plot on the middle panel.
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F.1 Cross-correlation significance for βradio = 2.3 and

βgamma = 1.6
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F.2 Cross-correlation significance for βradio = 2.3 and

βgamma = 0.7



380

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Jy

0
8

3
6

+
7

1
0

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

0
8

3
6

+
7

1
0

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

0
8

3
6

+
7

1
0

F
ig

u
re

F
.6

4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

08
36

+
71

0
in

th
e

ca
se

of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
g
n

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
21

0
±

11
d

ay
w

it
h

98
.8

1%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0123456

Jy

2
2

3
0

+
1

1
4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

2
2

3
0

+
1

1
4

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

2
2

3
0

+
1

1
4

F
ig

u
re

F
.6

5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

22
30

+
11

4
in

th
e

ca
se

of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
g
n

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

30
±

9
d

ay
w

it
h

85
.4

7%
si

gn
ifi

ca
n

ce
.



381

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Jy

3
C

6
6

A

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

3
C

6
6

A

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

3
C

6
6

A

F
ig

u
re

F
.6

6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

3C
66

A
in

th
e

ca
se

of
β
r
a
d
io

=
2
.3

an
d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
g
n

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
46

0
±

15
d

ay
w

it
h

76
.7

6%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

012345678

Jy

B
LL

a
ce

rt
a
e

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

B
LL

a
ce

rt
a
e

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

B
LL

a
ce

rt
a
e

F
ig

u
re

F
.6

7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

B
L

L
ac

er
ta

e
in

th
e

ca
se

of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

60
±

14
d

ay
w

it
h

99
.8

4%
si

gn
ifi

ca
n

ce
.



382

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Jy

C
0

7
1

9
+

3
3

0
7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
0

7
1

9
+

3
3

0
7

4
0

0
2
0

0
0

2
0

0
4

0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
0

7
1

9
+

3
3

0
7

F
ig

u
re

F
.6

8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
07

19
+

33
07

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
14

0
±

8
d

ay
w

it
h

99
.2

6%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7
0
.0

8
0
.0

9

Jy

C
1

0
1

2
+

2
4

3
9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
1

0
1

2
+

2
4

3
9

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
1

0
1

2
+

2
4

3
9

F
ig

u
re

F
.6

9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
10

12
+

24
39

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
49

0
±

47
d

ay
w

it
h

99
.6

9%
si

gn
ifi

ca
n

ce
.



383

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Jy

C
1

2
2

4
+

2
1

2
2

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

01234567

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
1

2
2

4
+

2
1

2
2

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
1

2
2

4
+

2
1

2
2

F
ig

u
re

F
.7

0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
12

24
+

21
22

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

80
±

9
d

ay
w

it
h

97
.3

1%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Jy

C
1

2
3

9
+

0
4

4
3

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
1

2
3

9
+

0
4

4
3

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
1

2
3

9
+

0
4

4
3

F
ig

u
re

F
.7

1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
12

39
+

04
43

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-5

0
±

15
d

ay
w

it
h

99
.4

7%
si

gn
ifi

ca
n

ce
.



384

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

Jy

C
1

3
4

5
+

4
4

5
2

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
1

3
4

5
+

4
4

5
2

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
1

3
4

5
+

4
4

5
2

F
ig

u
re

F
.7

2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
13

45
+

44
52

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
30
±

14
d

ay
w

it
h

91
.3

1%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Jy

C
2

0
2

5
-0

7
3

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
2

0
2

5
-0

7
3

5

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
2

0
2

5
-0

7
3

5

F
ig

u
re

F
.7

3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
20

25
-0

73
5

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
13

0
±

9
d

ay
w

it
h

93
.3

6%
si

gn
ifi

ca
n

ce
.



385

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Jy

C
2

3
1

1
+

3
4

2
5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
2

3
1

1
+

3
4

2
5

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
2

3
1

1
+

3
4

2
5

F
ig

u
re

F
.7

4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
23

11
+

34
25

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

20
±

14
d

ay
w

it
h

99
.8

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Jy

C
R

1
4

2
7

+
2

3
4

7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
R

1
4

2
7

+
2

3
4

7

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
R

1
4

2
7

+
2

3
4

7

F
ig

u
re

F
.7

5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
R

14
27

+
23

47
in

th
e

ca
se

of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

30
±

12
d

ay
w

it
h

99
.5

8%
si

gn
ifi

ca
n

ce
.



386

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Jy

C
R

1
5

4
2

+
6

1
2

9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

C
R

1
5

4
2

+
6

1
2

9

4
0

0
2
0

0
0

2
0

0
4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

C
R

1
5

4
2

+
6

1
2

9

F
ig

u
re

F
.7

6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

C
R

15
42

+
61

29
in

th
e

ca
se

of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
36

0
±

17
d

ay
w

it
h

92
.1

5%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Jy

J0
1

0
8

+
0

1
3

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
1

0
8

+
0

1
3

5

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
1

0
8

+
0

1
3

5

F
ig

u
re

F
.7

7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
01

08
+

01
35

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

40
±

16
d

ay
w

it
h

84
.1

5%
si

gn
ifi

ca
n

ce
.



387

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

Jy

J0
1

1
2

+
2

2
4

4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
1

1
2

+
2

2
4

4

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
1

1
2

+
2

2
4

4

F
ig

u
re

F
.7

8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
01

12
+

22
44

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

80
±

13
d

ay
w

it
h

65
.0

0%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Jy

J0
1

1
2

+
3

2
0

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
1

1
2

+
3

2
0

8

4
0

0
2
0

0
0

2
0

0
4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
1

1
2

+
3

2
0

8

F
ig

u
re

F
.7

9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
01

12
+

32
08

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
19

0
±

12
d

ay
w

it
h

76
.8

1%
si

gn
ifi

ca
n

ce
.



388

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

012345

Jy

J0
1

3
6

+
4

7
5

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
1

3
6

+
4

7
5

1

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
1

3
6

+
4

7
5

1

F
ig

u
re

F
.8

0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
01

36
+

47
51

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

30
±

14
d

ay
w

it
h

99
.5

8%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Jy

J0
2

1
7

+
0

1
4

4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
2

1
7

+
0

1
4

4

4
0

0
2
0

0
0

2
0

0
4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
2

1
7

+
0

1
4

4

F
ig

u
re

F
.8

1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
02

17
+

01
44

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-6

0
±

15
d

ay
w

it
h

90
.0

4%
si

gn
ifi

ca
n

ce
.



389

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Jy

J0
2

2
1

+
3

5
5

6

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
2

2
1

+
3

5
5

6

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
2

2
1

+
3

5
5

6

F
ig

u
re

F
.8

2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
02

21
+

35
56

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

00
±

15
d

ay
w

it
h

99
.6

7%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Jy

J0
2

3
7

+
2

8
4

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
2

3
7

+
2

8
4

8

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
2

3
7

+
2

8
4

8

F
ig

u
re

F
.8

3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
02

37
+

28
48

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

40
±

12
d

ay
w

it
h

99
.5

6%
si

gn
ifi

ca
n

ce
.



390

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

01234567

Jy

J0
2

3
8

+
1

6
3

6

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
2

3
8

+
1

6
3

6

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
2

3
8

+
1

6
3

6

F
ig

u
re

F
.8

4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
02

38
+

16
36

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

0
±

9
d

ay
w

it
h

99
.9

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

05

1
0

1
5

2
0

2
5

3
0

Jy

J0
3

1
9

+
4

1
3

0

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
3

1
9

+
4

1
3

0

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
3

1
9

+
4

1
3

0

F
ig

u
re

F
.8

5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
03

19
+

41
30

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

20
±

13
d

ay
w

it
h

98
.7

0%
si

gn
ifi

ca
n

ce
.



391

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0123456789

Jy

J0
4

2
3

-0
1

2
0

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
4

2
3

-0
1

2
0

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
4

2
3

-0
1

2
0

F
ig

u
re

F
.8

6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
04

23
-0

12
0

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n
d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

0
±

16
d

ay
w

it
h

97
.1

7%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

Jy

J0
4

4
2

-0
0

1
7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
4

4
2

-0
0

1
7

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
4

4
2

-0
0

1
7

F
ig

u
re

F
.8

7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
04

42
-0

01
7

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n
d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
42

0
±

30
d

ay
w

it
h

59
.3

8%
si

gn
ifi

ca
n

ce
.



392

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

Jy

J0
5

0
9

+
0

5
4

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
5

0
9

+
0

5
4

1

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
5

0
9

+
0

5
4

1

F
ig

u
re

F
.8

8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
05

09
+

05
41

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
45

0
±

15
d

ay
w

it
h

81
.9

4%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Jy

J0
7

2
1

+
7

1
2

0

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
7

2
1

+
7

1
2

0

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
7

2
1

+
7

1
2

0

F
ig

u
re

F
.8

9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
07

21
+

71
20

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

00
±

12
d

ay
w

it
h

83
.6

4%
si

gn
ifi

ca
n

ce
.



393

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Jy

J0
7

2
5

+
1

4
2

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
7

2
5

+
1

4
2

5

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
7

2
5

+
1

4
2

5

F
ig

u
re

F
.9

0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
07

25
+

14
25

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
15

0
±

13
d

ay
w

it
h

53
.4

5%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

Jy

J0
7

3
9

+
0

1
3

7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
7

3
9

+
0

1
3

7

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
7

3
9

+
0

1
3

7

F
ig

u
re

F
.9

1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
07

39
+

01
37

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

60
±

14
d

ay
w

it
h

96
.9

1%
si

gn
ifi

ca
n

ce
.



394

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

Jy

J0
7

4
2

+
5

4
4

4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
7

4
2

+
5

4
4

4

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
7

4
2

+
5

4
4

4

F
ig

u
re

F
.9

2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
07

42
+

54
44

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

90
±

9
d

ay
w

it
h

99
.6

1%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Jy

J0
8

0
8

-0
7

5
1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
8

0
8

-0
7

5
1

4
0

0
2
0

0
0

2
0

0
4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
8

0
8

-0
7

5
1

F
ig

u
re

F
.9

3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
08

08
-0

75
1

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n
d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

50
±

15
d

ay
w

it
h

98
.5

4%
si

gn
ifi

ca
n

ce
.



395

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Jy

J0
8

3
1

+
0

4
2

9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
8

3
1

+
0

4
2

9

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
8

3
1

+
0

4
2

9

F
ig

u
re

F
.9

4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
08

31
+

04
29

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
11

0
±

16
d

ay
w

it
h

94
.3

0%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

02468

1
0

1
2

Jy

J0
8

5
4

+
2

0
0

6

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
8

5
4

+
2

0
0

6

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
8

5
4

+
2

0
0

6

F
ig

u
re

F
.9

5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
08

54
+

20
06

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-7

0
±

16
d

ay
w

it
h

87
.0

9%
si

gn
ifi

ca
n

ce
.



396

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Jy

J0
9

0
9

+
0

1
2

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
9

0
9

+
0

1
2

1

4
0

0
2
0

0
0

2
0

0
4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
9

0
9

+
0

1
2

1

F
ig

u
re

F
.9

6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
09

09
+

01
21

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

10
±

11
d

ay
w

it
h

92
.1

6%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

Jy

J0
9

2
0

+
4

4
4

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J0
9

2
0

+
4

4
4

1

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J0
9

2
0

+
4

4
4

1

F
ig

u
re

F
.9

7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
09

20
+

44
41

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

90
±

12
d

ay
w

it
h

94
.5

3%
si

gn
ifi

ca
n

ce
.



397

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

012345

Jy

J1
0

5
8

+
0

1
3

3

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
0

5
8

+
0

1
3

3

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
0

5
8

+
0

1
3

3

F
ig

u
re

F
.9

8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
10

58
+

01
33

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
51

0
±

15
d

ay
w

it
h

99
.6

2%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Jy

J1
1

0
4

+
3

8
1

2

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
1

0
4

+
3

8
1

2

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
1

0
4

+
3

8
1

2

F
ig

u
re

F
.9

9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
11

04
+

38
12

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-5

00
±

11
d

ay
w

it
h

93
.9

9%
si

gn
ifi

ca
n

ce
.



398

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Jy

J1
1

2
7

-1
8

5
7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
1

2
7

-1
8

5
7

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
1

2
7

-1
8

5
7

F
ig

u
re

F
.1

0
0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
11

27
-1

85
7

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
10
±

11
d

ay
w

it
h

99
.9

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Jy

J1
1

5
9

+
2

9
1

4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
1

5
9

+
2

9
1

4

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
1

5
9

+
2

9
1

4

F
ig

u
re

F
.1

0
1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
11

59
+

29
14

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

0
±

15
d

ay
w

it
h

89
.4

6%
si

gn
ifi

ca
n

ce
.



399

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Jy

J1
2

1
7

+
3

0
0

7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
2

1
7

+
3

0
0

7

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
2

1
7

+
3

0
0

7

F
ig

u
re

F
.1

0
2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
12

17
+

30
07

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
12

0
±

10
d

ay
w

it
h

99
.4

7%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

05

1
0

1
5

2
0

2
5

3
0

Jy

J1
2

2
9

+
0

2
0

3

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

012345

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
2

2
9

+
0

2
0

3

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
2

2
9

+
0

2
0

3

F
ig

u
re

F
.1

0
3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
12

29
+

02
03

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

40
±

15
d

ay
w

it
h

87
.7

5%
si

gn
ifi

ca
n

ce
.



400

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

05

1
0

1
5

2
0

2
5

Jy

J1
2

5
6

-0
5

4
7

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
2

5
6

-0
5

4
7

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
2

5
6

-0
5

4
7

F
ig

u
re

F
.1

0
4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
12

56
-0

54
7

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
19

0
±

9
d

ay
w

it
h

94
.5

0%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Jy

J1
3

1
0

+
3

2
2

0

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0
0
.3

5
0
.4

0
0
.4

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
3

1
0

+
3

2
2

0

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
3

1
0

+
3

2
2

0

F
ig

u
re

F
.1

0
5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
13

10
+

32
20

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
50

0
±

57
d

ay
w

it
h

71
.2

2%
si

gn
ifi

ca
n

ce
.



401

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

Jy

J1
3

1
2

+
4

8
2

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
3

1
2

+
4

8
2

8

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
3

1
2

+
4

8
2

8

F
ig

u
re

F
.1

0
6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
13

12
+

48
28

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

50
±

15
d

ay
w

it
h

85
.2

8%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

Jy

J1
3

3
2

-0
5

0
9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
3

3
2

-0
5

0
9

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
3

3
2

-0
5

0
9

F
ig

u
re

F
.1

0
7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
13

32
-0

50
9

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-9

0
±

15
d

ay
w

it
h

94
.6

6%
si

gn
ifi

ca
n

ce
.



402

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Jy

J1
5

0
4

+
1

0
2

9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
5

0
4

+
1

0
2

9

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
5

0
4

+
1

0
2

9

F
ig

u
re

F
.1

0
8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
15

04
+

10
29

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

0
±

13
d

ay
w

it
h

99
.9

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Jy

J1
5

2
2

+
3

1
4

4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
5

2
2

+
3

1
4

4

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
5

2
2

+
3

1
4

4

F
ig

u
re

F
.1

0
9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
15

22
+

31
44

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
35

0
±

9
d

ay
w

it
h

96
.0

3%
si

gn
ifi

ca
n

ce
.



403

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

Jy

J1
5

5
5

+
1

1
1

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

0
.1

4

0
.1

6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
5

5
5

+
1

1
1

1

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
5

5
5

+
1

1
1

1

F
ig

u
re

F
.1

1
0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
15

55
+

11
11

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
53

0
±

17
d

ay
w

it
h

99
.9

5%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Jy

J1
6

3
5

+
3

8
0

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
6

3
5

+
3

8
0

8

4
0

0
2
0

0
0

2
0

0
4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
6

3
5

+
3

8
0

8

F
ig

u
re

F
.1

1
1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
16

35
+

38
08

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
50

0
±

9
d

ay
w

it
h

99
.8

9%
si

gn
ifi

ca
n

ce
.



404

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

Jy

J1
6

5
3

+
3

9
4

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

0
.1

0

0
.1

2

0
.1

4

0
.1

6

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
6

5
3

+
3

9
4

5

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
6

5
3

+
3

9
4

5

F
ig

u
re

F
.1

1
2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
16

53
+

39
45

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

80
±

13
d

ay
w

it
h

99
.8

8%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Jy

J1
7

0
9

+
4

3
1

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
7

0
9

+
4

3
1

8

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
7

0
9

+
4

3
1

8

F
ig

u
re

F
.1

1
3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
17

09
+

43
18

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-5

0
±

12
d

ay
w

it
h

98
.2

9%
si

gn
ifi

ca
n

ce
.



405

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0123456

Jy

J1
7

3
3

-1
3

0
4

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
7

3
3

-1
3

0
4

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
7

3
3

-1
3

0
4

F
ig

u
re

F
.1

1
4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
17

33
-1

30
4

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-1

40
±

11
d

ay
w

it
h

94
.9

7%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

Jy

J1
7

4
8

+
7

0
0

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
7

4
8

+
7

0
0

5

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
7

4
8

+
7

0
0

5

F
ig

u
re

F
.1

1
5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
17

48
+

70
05

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
23

0
±

10
d

ay
w

it
h

97
.4

7%
si

gn
ifi

ca
n

ce
.



406

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Jy

J1
8

0
0

+
7

8
2

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
8

0
0

+
7

8
2

8

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
8

0
0

+
7

8
2

8

F
ig

u
re

F
.1

1
6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
18

00
+

78
28

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
50

0
±

10
d

ay
w

it
h

94
.0

7%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

Jy

J1
8

2
4

+
5

6
5

1

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
8

2
4

+
5

6
5

1

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
8

2
4

+
5

6
5

1

F
ig

u
re

F
.1

1
7
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
18

24
+

56
51

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-2

40
±

11
d

ay
w

it
h

95
.6

0%
si

gn
ifi

ca
n

ce
.



407

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

Jy

J1
8

4
8

+
3

2
1

9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
8

4
8

+
3

2
1

9

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
8

4
8

+
3

2
1

9

F
ig

u
re

F
.1

1
8
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
18

48
+

32
19

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

00
±

11
d

ay
w

it
h

91
.9

5%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Jy

J1
8

4
9

+
6

7
0

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
8

4
9

+
6

7
0

5

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
8

4
9

+
6

7
0

5

F
ig

u
re

F
.1

1
9
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
18

49
+

67
05

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-4

0
±

10
d

ay
w

it
h

84
.5

8%
si

gn
ifi

ca
n

ce
.



408

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

Jy

J1
9

5
9

+
6

5
0

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J1
9

5
9

+
6

5
0

8

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J1
9

5
9

+
6

5
0

8

F
ig

u
re

F
.1

2
0
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
19

59
+

65
08

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-8

0
±

13
d

ay
w

it
h

99
.2

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Jy

J2
1

4
3

+
1

7
4

3

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J2
1

4
3

+
1

7
4

3

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J2
1

4
3

+
1

7
4

3

F
ig

u
re

F
.1

2
1
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
21

43
+

17
43

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-3

20
±

11
d

ay
w

it
h

83
.4

0%
si

gn
ifi

ca
n

ce
.



409

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

Jy

J2
2

0
3

+
1

7
2

5

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J2
2

0
3

+
1

7
2

5

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J2
2

0
3

+
1

7
2

5

F
ig

u
re

F
.1

2
2
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
22

03
+

17
25

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
53

0
±

9
d

ay
w

it
h

99
.5

0%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

Jy

J2
2

2
9

-0
8

3
2

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J2
2

2
9

-0
8

3
2

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J2
2

2
9

-0
8

3
2

F
ig

u
re

F
.1

2
3
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
22

29
-0

83
2

in
th

e
ca

se
of
β
r
a
d
io

=
2.

3
a
n

d
β
γ

=
0.

7
.

T
h

e
m

o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
31

0
±

13
d

ay
w

it
h

98
.4

2%
si

gn
ifi

ca
n

ce
.



410

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

Jy

J2
2

3
6

+
2

8
2

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0
.0

0

0
.0

5

0
.1

0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J2
2

3
6

+
2

8
2

8

4
0

0
2
0

0
0

2
0
0

4
0
0

τ 
[d

a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J2
2

3
6

+
2

8
2

8

F
ig

u
re

F
.1

2
4
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
22

36
+

28
28

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
11

0
±

13
d

ay
w

it
h

85
.3

9%
si

gn
ifi

ca
n

ce
.

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

05

1
0

1
5

2
0

2
5

3
0

Jy

J2
2

5
3

+
1

6
0

8

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0

1
0

2
0

3
0

4
0

5
0

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

J2
2

5
3

+
1

6
0

8

4
0

0
2
0

0
0

2
0
0

4
0

0
τ 

[d
a
y
s]

1
0

-5

1
0

-4

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

J2
2

5
3

+
1

6
0

8

F
ig

u
re

F
.1

2
5
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

J
22

53
+

16
08

in
th

e
ca

se
of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-8

0
±

17
d

ay
w

it
h

97
.6

0%
si

gn
ifi

ca
n

ce
.



411

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

01234567

Jy

P
K

S
1

5
1

0
-0

8
9

5
4
6
0
0

5
4
8
0
0

5
5
0
0
0

5
5
2
0
0

5
5
4
0
0

5
5
6
0
0

5
5
8
0
0

M
JD

0123456

10−6
cm−2

s−1

4
0
0

2
0
0

0
2
0
0

4
0
0

τ 
[d

a
y
s]

1
.0

0
.5

0
.0

0
.5

1
.0

LCCF

P
K

S
1

5
1

0
-0

8
9

4
0

0
2
0

0
0

2
0

0
4
0

0
τ 

[d
a
y
s]

1
0

-3

1
0

-2

1
0

-1

1
0

0

p

1
σ

2
σ

3
σ

P
K

S
1

5
1

0
-0

8
9

F
ig

u
re

F
.1

2
6
:

L
ig

h
t

cu
rv

es
an

d
cr

os
s-

co
rr

el
at

io
n

si
gn

ifi
ca

n
ce

fo
r

P
K

S
15

10
-0

89
in

th
e

ca
se

of
β
r
a
d
io

=
2
.3

a
n

d
β
γ

=
0
.7

.
T

h
e

m
o
st

si
gn

ifi
ca

n
t

cr
os

s-
co

rr
el

at
io

n
is

at
-6

0
±

6
d

ay
w

it
h

99
.2

4%
si

gn
ifi

ca
n

ce
.



412

F.3 Cross-correlation significance for best PSD fits
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F.4 Light curves for sources that are non-variable in at least

one of the bands
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Figure F.144: Light curves for BBJ0136+3905, BBJ1150+4154, C0144+2705,
C0957+5522, C1037+5711 and C1253+5301. For each source the upper panel is the radio
light curve and the lower panel the gamma-ray light curve.
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Figure F.145: Light curves for C2121+1901, C2225−0457, CR1903+5540, CR2243+2021,
J0612+4122 and J0738+1742. For each source the upper panel is the radio light curve and
the lower panel the gamma-ray light curve.



425

54600 54800 55000 55200 55400 55600 55800
MJD

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Jy

J0856-1105

54600 54800 55000 55200 55400 55600 55800
MJD

0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

10
−

6
cm

−
2
s−

1

54600 54800 55000 55200 55400 55600 55800
MJD

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Jy

J0915+2933

54600 54800 55000 55200 55400 55600 55800
MJD

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

10
−

6
cm

−
2
s−

1

54600 54800 55000 55200 55400 55600 55800
MJD

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Jy

J1015+4926

54600 54800 55000 55200 55400 55600 55800
MJD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10
−

6
cm

−
2
s−

1

54600 54800 55000 55200 55400 55600 55800
MJD

0.05

0.10

0.15

0.20

0.25

Jy

J1058+5628

54600 54800 55000 55200 55400 55600 55800
MJD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

10
−

6
cm

−
2
s−

1

54600 54800 55000 55200 55400 55600 55800
MJD

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Jy

J1221+2813

54600 54800 55000 55200 55400 55600 55800
MJD

0.00

0.05

0.10

0.15

0.20

0.25

10
−

6
cm

−
2
s−

1

54600 54800 55000 55200 55400 55600 55800
MJD

0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

Jy

J1231+2847

54600 54800 55000 55200 55400 55600 55800
MJD

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

10
−

6
cm

−
2
s−

1

Figure F.146: Light curves for J0856−1105, J0915+2933, J1015+4926, J1058+5628,
J1221+2813 and J1231+2847. For each source the upper panel is the radio light curve
and the lower panel the gamma-ray light curve.
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Figure F.147: Light curves for J1248+5820, J1344−1723, J1725+1152, J1806+6949 and
RBS76. For each source the upper panel is the radio light curve and the lower panel the
gamma-ray light curve.
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