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Abstract 

 The role of metal-acceptor interactions arising from M–BR3 and M–PR3 bonding is 

discussed with respect to reactions between first-row transition metals and N2, H2, and 

CO. Thermally robust, S = 1/2 (TPB)Co(H2) and (TPB)Co(N2) complexes (TPB = tris(2-

(diisopropylphosphino)phenyl)borane) are described and the energetics of N2 and H2 

binding are measured. The H2 and N2 ligands are bound more weakly in the (TPB)Co 

complexes than in related (SiP3)M(L) complexes (SiP3 = tris(2-

(diisopropylphosphino)phenyl)silyl). Comparisons within and between these two ligand 

platforms allow for the factors that affect N2 (and H2) binding and activation to be 

delineated. The characterization and reactivity of (DPB)Fe complexes (DPB = bis(2-

(diisopropylphosphino)phenyl)phenylborane) in the context of N2 functionalization and 

E–H bond addition (E = H, C, N, Si) are described. This platform allows for the one-pot 

transformation of free N2 to an Fe hydrazido(-) complex via an Fe aminoimide 

intermediate. The principles learned from the N2 chemistry using (DPB)Fe are applied 

to CO reduction on the same system. The preparation of (DPB)Fe(CO)2 is described as 

well as its reductive functionalization to generate an unprecedented Fe dicarbyne. The 

bonding in this highly covalent complex is discussed in detail. Initial studies of the 

reactivity of the Fe dicarbyne reveal that a CO-derived olefin is released upon 

hydrogenation. Alternative approaches to uncovering unusual reactivity using metal-

acceptor interactions are described in Chapters 5 and 6, including initial studies on a 

new π-accepting tridentate diphosphinosulfinyl ligand and strategies for designing 

ligands that undergo site-selective metallation to generate heterobimetallic complexes. 
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Chapter 1  Introduction to Metal-Acceptor Interactions 

1.1  Motivation 

 Dinitrogen reduction reactions typically employ electron-releasing transition metals 

that backbond into the N–N π* orbitals. This results in a weakened N–N bond with a 

corresponding increase in M–N bond order, as is elegantly illustrated by Cummins’s report 

of the bimetallic cleavage of N2 by two tris(amido) MoIII complexes to form two tris(amido) 

MoVI nitrides.1 Group IV and V metals have been shown to bind N2 by a variety of modes, 

and the reactions of these highly activated N2 complexes with protons, other electrophiles, 

and E–H bonds have been described.2 Monometallic N2 functionalization reactions have 

been most thoroughly developed using group VI complexes3 in which M–N π-backbonding 

renders Nβ susceptible to electrophilic attack. In general, this mode of activation is more 

challenging for mononuclear mid- to late-first-row metal complexes due to their relatively 

contracted d orbitals. The diminished π-backbonding capabilities of these metals has been 

addressed by generating highly reduced, anionic N2 complexes that react with strong 

electrophiles.4,5 However, such complexes necessarily have high 3d electron counts with 

partly (or even fully) populated antibonding orbitals. As such, the development of strategies 

for the stabilization of these species is of high interest.  

 One approach is to incorporate covalent acceptor functionalities into the primary sphere 

of the metal in order to impart favorable bonding character to otherwise antibonding 

orbitals. For example, in the TBP [(SiP3)Fe(N2)][Na(12-crown-4)2] complex,4b four 

electrons occupy the degenerate dxy and dx2-y2 orbitals which are σ-antibonding with respect 
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to the phosphine donors. If not for the π-accepting properties of the phosphines, this 

complex would likely be exceptionally reactive. Ancillary ligands with hard donors can 

also serve as acceptors if the metal can backbond through an accessible π* orbital, as 

illustrated by late-metal complexes of bis(imino)pyridine ligands such as Chirik’s 

(PDI)Fe(CO)2.6 The Fe center in this complex is formally zero-valent and is therefore 

somewhat unusual given the presence of three hard N donors. However, one of the 

occupied Fe 3d orbitals is strongly conjugated with a ligand π* orbital; this covalent 

interaction stabilizes the electron-rich Fe much like a phosphine. More striking is Burger’s 

report of a thermally stable, formally IrIII nitride complex in a square planar geometry 

(Chart 1.1). This geometry would typically require occupation of a filled Ir–Nnitride π* 

Chart 1.1  Selected complexes stabilized by metal-acceptor interactions  

 

orbital, thereby obliterating one of the Ir–Nnitride π bonds and likely rendering such a 

complex highly reactive. However, similarly to Chirik’s (PDI)Fe(CO)2 complex, the 

supporting PDI ligand is a competent π-acceptor and forms a bonding interaction with the 

Ir–N π* orbital (as represented by the IrV resonance structures in Chart 1.1), thereby 

conferring greater stability to this species.  
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 One alternative approach for stabilizing species with high electron counts is through the 

use of secondary coordination sphere acceptor interactions. For example, Borovik has 

described tris(ureato)amine ligands that feature three hydrogen bond donors in the cavity of 

the open coordination site.7 Several unusual species have been generated using this ligand 

platform, including a high-spin, trigonal bipyramidal FeIII oxido complex that has one 

electron in each of three formally Fe–O antibonding orbitals (Chart 1.1).8 The presence of 

three hydrogen bond donors compensates for the diminished Fe–O bond order in this 

complex. Although secondary coordination sphere interactions are not the primary focus of 

this thesis, in Chapter 6 I present strategies for synthesizing heterobimetallic motifs in this 

context. The role of primary sphere, covalent metal-acceptor interactions (particularly those 

mediated by M–PR3 and M–BR3 bonds) in stabilizing electron-rich complexes is of central 

importance to the work presented in Chapters 2, 3, 4, and 5.  

 

1.2  Metal-borane bonding 

 The nucleus of this thesis involves complexes of the neutral L3Z-type TPB and DPB 

ligands, each of which were originally described by Bourissou.9 These ligands incorporate 

a borane as a σ-accepting group and three or two phosphines, respectively, as σ-donating, 

π-accepting ligands (Chart 1.2). The DPB ligand class also features a polyhaptic phenyl 

group that can participate in σ donation and π backbonding. The primary aim in this thesis 

is to present some discoveries and principles pertaining to the use of M–BR3 and M–PR3 

acceptor interactions in the reactions of N2, CO, and substrates with E–H bonds. An 

important aspect of this chemistry is that M–P and M–B bonds are highly flexible and can 

adjust to the electronic requirements of the metal, thereby providing access to a range of 
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Chart 1.2  General forms of (TPB)MX and (DPB)MX complexes 

  

electronic structures including highly reduced metal species. In addition, trans-disposed 

M–BR3 bonds can facilitate binding of weakly σ-donating ligands such as N2 and H2, which 

will be a topic of discussion in Chapter 2. In Chapters 3 and 4, I will show how the M–B 

and M–P bonds in highly reduced N2 and CO complexes can serve as electron reservoirs, 

whereby reaction of these species with electrophiles results in substantial electron transfer 

from the M–B and M–P bonds to M–N and M–C multiple bonds. I will also present ways 

in which M–B bonds can participate in E-H bond activations for delivery of the E fragment 

to N2-derived ligands.  

 Each chapter includes background on specific topics of relevance. Of central 

importance to Chapters 2, 3, and 4 are matters pertaining to M–BR3 bonding, so this topic 

is the focus of the remainder of this introduction. Although the π-accepting properties of 

phosphines are well appreciated in coordination chemistry,10 σ-accepting ligands such as 

boranes are less understood. The first structurally characterized complex with an M–BR3 

bond was an Ru complex reported by Hill11 in 1999 and the number of complexes of this 

type has since grown.12 The discussion in this chapter will focus on published, structurally 
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characterized, first-row-metal complexes of C3-symmetric ligands and simple models for 

understanding their bonding.  

 For first-row complexes, there are only three ligands that have been reported to bridge 

B and M to give C3-symmetric metallaboratrane structures (Chart 1.3). The B(mimtBu)3 and 

Chart 1.3  General forms of C3-symmetric metallaboratranes 

 

B(PnR)3 ligands are quite similar in that both bind the transition metal with three sulfur 

donors and the borane with three nitrogen donors. Structurally characterized Fe, Co, Ni, 

and Cu complexes13 show consistently short M–B distances and high degrees of 

pyramidalization at B (Table 1.1), suggesting significant M–B interactions that seem to 

be consistent regardless of the identity and spin state of M. (It is impossible to 

thermodynamically quantify the strength of an M–BR3 interaction in these complexes 

because they are all bound in cage structures. To date, no complex featuring an 

unsupported M–BR3 bond has been structurally characterized for any transition metal.) 

The Pauling electronegativities and valence atomic orbital ionization energies (Table 1.2) 

for B (2s + 2p) are well matched with those values for late first row metals (3d + 4s), 

suggesting that the M–BR3 bond should be highly covalent. Based on the structural  
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Table 1.1  Structural metrics of C3-symmetric metallaboratranes 

Ligand M X Spin M–B (Å) Σ∠(C–B–C) (˚) Ref Notes 
B(mimtBu)3 Fe(CO) CO 0 2.108 327 13b

  
 Co+ PPh3 1 2.131 328 13a

  
 Ni Cl 1/2 2.107 332 13c

  
 Ni Cl 1/2 2.110 331 13d

  
 Ni NCS 1/2 2.079 332 13d

  
 Ni N3 1/2 2.092 331 13d

  
 Ni OAc 1/2 2.113 330 13d

  
B(PnR)3 Co Cl 1 2.068 329 13e

 R = tBu 

 Co Pn ? 2.004 326 13e
 R = tBu 

 Co Pn ? 1.984 326 13e
 R = Ph 

 Ni Cl 1/2 2.034 331 13e
 R = Me 

 Ni Cl 1/2 2.015 327 13e
 R = tBu 

 Cu Cl 0 2.060 330 13f
 R = tBu 

TPB Fe Br 3/2 2.458 342 14
  

 Fe OH 3/2 2.444 337 15
  

 Fe NH2 3/2 2.449 340 15
  

 Fe Me 3/2 2.523 341 15
  

 Fe+ — 3/2 2.217 347 15
  

 Fe+ NH3 3/2 2.434 341 15
  

 Fe+ N2H4 3/2 2.392 339 15
  

 Fe N2Na 1/2 2.311 330 14
  

 Fe- N2 1/2 2.293 331 14
  

 Fe NNSiMe3 1/2 2.435 338 4c
  

 Fe NAr 0 2.589 338 14
 Ar = p-OMe-C6H4 

 Co Br 1 2.463 342 16
  

 Co N2 1/2 2.319 339 16
  

 Co H2 1/2 2.280 336 16
  

 Ni — 0 2.168 339 17
  

 Cu Cl 0 2.508 347 17
  

 Cu+ — 0 2.495 355 18
  

 Cu — 1/2 2.289 347 18
  

 Cu- — 0 2.198 339 18
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Table 1.2  Selected Pauling electronegativity and atomic orbital ionization energy values. 

 Electronegativity 2s 2p 3s 3p 3d 4s 4p 
B 2.04 14.0 8.3      
C 2.55 19.5 10.7      
N 3.04 25.5 13.1      
O 3.44 32.3 15.9      
F 3.98 46.4 18.7      
Al 1.61   11.3 5.95    
Si 1.90   15.0 7.81    
P 2.19   18.7 10.2    
S 2.58   20.7 11.7    
Cl 3.16   25.3 13.8    
Sc 1.36     4.71 5.70 3.22 
Ti 1.54     5.58 6.07 3.35 
V 1.63     6.32 6.32 3.47 
Cr 1.66     7.19 6.57 3.47 
Mn 1.55     7.93 6.82 3.59 
Fe 1.83     8.68 7.07 3.72 
Co 1.88     9.42 7.32 3.84 
Ni 1.91     10.0 7.56 3.84 
Cu 1.90     10.7 7.69 3.97 

 

metrics of the B(mimtBu)3 and B(PnR)3 complexes as well as the Pauling electronegativity 

and atomic orbital ionization values for their constituent atoms, there appears to be little 

difference between M–BR3 and M–SiR3 bonding. 

 However, this bonding description is clearly not appropriate for TPB complexes which 

exhibit large variations in their M–B distances and degrees of pyramidalization at B.  For 

example, (TPB)Ni displays a short Ni–B bond of 2.168 Å and a pyramidalized B center as 

indicated by Σ∠(C–B–C) = 339˚.17 Both structural parameters, as well as an upfield-shifted 

11B NMR signal (16 ppm), indicate significant Ni–B bonding. On the other hand, the 

isoelectronic complex [(TPB)Cu][BArF
4] has greatly diminished Cu–B bonding based on 

the longer Cu–B distance (2.495 Å), nearly planar B (Σ∠(C–B–C) = 355˚), and downfield-
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shifted 11B NMR signal (67 ppm).18 This pair of complexes suggests that simply decreasing 

the basicity of the metal by substituting Ni(0) for Cu(I) and/or increasing the molecular 

charge can obliterate M–B bonding. Thus, the comparison of an M–BR3 interaction to an 

M–SiR3 bond is not generally valid because it does not capture the greater flexibility (and 

probable weakness) of M–BR3 bonds compared with the stronger, more rigid M–SiR3 

bonds. The reason for the comparatively weaker bonding is that a BR3 ligand can 

decoordinate to give a very stable BR3 fragment whereas decoordination of an SiR3 ligand 

results in a relatively unstable silyl cation, silyl radical, or silyl anion. Given the differences 

in M–B bonding between complexes of TPB, B(mimtBu)3, and B(PntBu)3, a general bonding 

description for M–BR3 bonds must address the large dependence on substituent effects, the 

large range of M–B covalency, and the (likely) inherent weakness of the interaction.   

 Current descriptions of M–BR3 bonds are all problematic, and complications may arise 

when descriptions of chemical bonding are conflated with formalisms for electron 

counting. Parkin, building on Green’s Covalent Bond Classification method (“CBC 

method”),19 argues that borane coordination to a metal results in an M–BR3 bonding orbital 

(which is considered a ligand-based orbital) and an M–BR3 antibonding orbital (which is 

designated as a metal-based orbital).20 Therefore, the metal contributes two of its d 

electrons to a M–BR3 bond which decreases the dn electron count by two. One problem 

with Parkin’s formulation of M–BR3 bonding is that the polarity of the bond may be highly 

dependent on a number of factors including the identity of the metal, the molecular charge, 

and the other ligands on both M and B. Thus, the electrons cannot always be reliably 

assigned either to M or to B. As such, Hill has advocated for describing the electron count 

of an “(M–B)n” unit, akin to the Enemark-Feltham notation for describing [M–NO] electron 
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counts.21 His formalism acknowledges the ambiguity inherent to M–BR3 bonding 

(especially in cage structures) and therefore provides an unambiguous formalism for 

counting electrons in these complexes. Importantly, this formalism makes no distinction 

between M–BR3 bonding and any other type of covalent metal–ligand bonding (e.g. M–

SiR3).  

 In response to Hill’s (M–B)n model, Parkin has argued that the CBC method already 

achieves Hill’s stated goal: if coordination of a borane is always assumed to decrease the dn 

electron count by two, then there is no ambiguity in the metal’s electron count, which 

renders Hill’s formalism redundant. Of course, the opposite assumption about M–BR3 

bonding—that borane coordination to a metal has no effect on the d electron count—would 

similarly provide an unambiguous method for counting electrons in M–BR3 complexes 

(and may be a more appropriate description of the bonding in some cases). Thus, Parkin’s 

retort is only correct if one concedes that the CBC method provides merely a means for 

electron counting and offers no formulation of M–BR3 bonding. That is, to the extent that 

the CBC method makes claims about the bonding in M–BR3 complexes (e.g. strength, 

polarity, effect on d electron count), Hill’s formulism serves a purpose that is distinct from 

the CBC method.  

  However, Parkin does in fact make important arguments about M–BR3 bonding, which 

I will summarize and expand upon in this chapter. Central to the Parkin’s application of the 

CBC method to a description of bonding (as opposed to electron counting) is Haaland’s 

distinction between “normal covalent” and “dative covalent” bonds.22 Through mostly 

empirical observations about the bonding in main group elements, Haaland makes several 

convincing connections between the nature of a bond in a molecule and the minimum-
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energy pathway by which it would rupture (either in the gas phase or in an innocent 

solvent). In Haaland’s classification scheme, normal covalent bonds (e.g. the C–C bond in 

ethane) fragment homolytically in the gas phase whereas dative covalent bonds (e.g. the B–

N bond in ammonia borane) fragment heterolytically. Of course, one may argue that a bond 

does not have any “knowledge” of the fragments from which it is derived, however 

Haaland and others23 argue that it in fact does: normal covalent bonds tend to have deep, 

narrow potential wells with correspondingly higher bond strengths while dative covalent 

bonds tend to have wider, more shallow potential wells with correspondingly lower bond 

strengths. Dative covalent bonds are more variable in bond length and often longer than 

normal covalent bonds. In addition, the length and strength of dative covalent bonds are 

much more sensitive to molecular charge and inductive effects. Thus, Haaland argues that 

if one can confidently predict the minimum-energy rupture pathway of a bond between 

main group elements, one can make powerful predictions about the nature of the bond in 

the molecule. 

 Haaland’s ideas may be applied to transition metals, albeit with added caution. The 

notion of minimum-energy rupture is particularly complicated for first-row-metal 

complexes because of the variety of electronic structures the metal fragment may adopt 

before and after the hypothetical bond rupture. To illustrate, a two-electron M–BR3 bond 

may be reasonably broken to give M:n + BR3, M·(n+1) + ·BR3
-, or M(n+2) + :BR3

2- (Chart 1.4); 

the types of bonds that would give rise to these minimum-energy rupture pathways are 

inverse dative covalent, normal covalent, and dative covalent, respectively. In the same 

way, an M–SiR3 bond could be broken to give M:- + SiR3
+, M· + ·SiR3, or M+ + :SiR3

-. In 
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Chart 1.4  Representations of M–BR3 and M–SiR3 bonds that are distinguished by their 
minimum-energy rupture pathways 

 

 

the latter case, none of the SiR3 fragments are particularly stable (unlike a neutral BR3 

fragment) so one would expect M–SiR3 bonds in general to have narrower potential wells 

and be less variable in distance than M–BR3 bonds.  

 Without explicitly considering minimum-energy rupture pathways for transition-metal 

complexes, Parkin makes a simple and elegant link between Haaland’s bond classifications 

and the CBC method’s ligand classifications in order to describe their bonding:20, 24 L-type 

ligands participate in dative covalent bonds, X-type ligands participate in normal covalent 

bonds, and Z-type ligands participate in dative covalent bonds.i Although there are several 

problems with pairing bond types and ligand types as defined by the CBC method 

(especially with respect to the implications of the bond classification on the dn electron 

count (vide supra)), this approach offers a convenient starting point for describing covalent 

bonds with a high degree of predictive power.  

                                                
i Parkin and Green make no distinction between “inverse” dative bonds and regular dative bonds since the 

selection of which species functions as the ligand and which functions as the metal is arbitrary. However, I 
use this terminology in order to distinguish between the two very different minimum-energy rupture 
pathways available to inverse and regular dative M–BR3 and M–SiR3 bonds (Chart 1.4).  
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1.3  Metal-borane bonding in (TPB)M complexes 

 The TPB ligand is distinguished from both B(mimtBu)3 and B(PntBu)3 by its ability to 

allow for a wide range of M–BR3 interactions. Chapter 2 presents unusual S = 1/2 (TPB)Co 

complexes with weakly bound N2 and H2 ligands and includes a discussion of how issues 

pertaining to the M–BR3 bonding in these and related complexes impacts the binding of σ-

donor ligands. As such, additional discussion is warranted with respect to the bonding in 

(TPB)M complexes as well as experimental methods for probing it.  

 For the purposes of this discussion, an M–B interaction may be considered a “strong 

interaction” (as for B(mimtBu)3 and B(PntBu)3 complexes and perhaps some TPB complexes), 

a “non-interaction” (as for [(TPB)Cu][BArF
4]), or a “weak interaction” (Figure 1.1). 

Stronger interactions should be favored by more diffuse metal orbitals (such as those in 

 

  

Figure 1.1  Simplified MO representation of M–BR3 bonding. 
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second- and third-row-transition metals), more electropositive metals, more electron-poor 

boranes (as for B(mimtBu)3 and B(PntBu)3), and anionic molecular charges. These features 

should be experimentally manifested in shorter M–B distances, more pyramidalized B 

centers, and upfield-shifted 11B NMR signals (only for diamagnetic complexes). For an S = 

1/2 complex, the B-character of an M–BR3 bond can be examined by the magnitude of 

hyperfine coupling to 11B in its EPR spectrum so long as the unpaired spin resides in the 

M–B bonding orbital. As such, neither NMR spectroscopy nor EPR spectroscopy is a 

general method for probing M–B bonding. Boron K-edge XAS (in conjunction with metal 

K- and L-edge XAS) has never been utilized to measure the degree of M–B charge transfer 

and covalency in M–BR3 bonds but could in principle be a very powerful tool for these 

purposes. As such, I initiated a collaboration with Prof. Stephen Cramer at the Advanced 

Light Source at Lawrence Berkeley National Lab to record the low-energy B K-edge 

spectra of several TPB complexes. Unfortunately, in preliminary experiments we were not 

able to record spectra that gave sufficient signal due to the low spectroscopic concentration 

of B in these complexes. Thus, XRD analysis is currently the most general method for 

probing M–B bonding, but there are significant limitations to interpreting these data (vide 

infra).   

 The structural data for most TPB complexes (Table 1.1) indicate weak M–BR3 

interactions. However, ambiguity about the relative strength of an M–BR3 bond can arise 

not only when metrics such as bond length and boron pyramidalization adopt intermediate 

values. Since most M–BR3 bonds should have shallow potential wells, there may be a 

relatively low dependence of the strength of the interaction on the M–BR3 distance. For 

example, (TPB)FeNAr (Ar = p-OMe-C6H4)14 adopts a pseudotetrahedral geometry at Fe as 
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expected for a divalent Fe imide complex.25 As such, it has a long Fe–B distance of 2.589 

Å. By comparison, the Cu–B distance in [(TPB)Cu][BArF
4]—a complex that very likely 

has little or no Cu–B interaction—is 0.1 Å shorter.18 Based on this metric, it would be 

reasonable to assume that the Fe and B atoms in (TPB)Fe(NAr) do not interact. However, 

the B atom in the latter complex is rather significantly pyramidalized (Σ∠(C–B–C) = 338˚), 

and DFT calculations suggest that the Fe 3dz2 orbital has some degree of σ bonding with 

B. Therefore it seems that there may be some degree of Fe–B bonding in (TPB)Fe(NAr) 

even at such a long distance. On the other hand, the pyramidalization at B could simply be 

due to strain in the cage structure imposed by steric or electronic factors. In contrast to 

(TPB)Fe(NAr), the S = 3/2 [(TPB)Fe][BArF
4] complex has a relatively short Fe–B distance 

of 2.217 Å and a more planar B (Σ∠(C–B–C) = 347˚).15 DFT studies on this molecule 

suggest little Fe–B bonding in spite of the short distance. These examples illustrate that 

even though XRD analysis is currently the most general experimental approach for 

assessing M–BR3 bonding, caution must be exercised when using structural data to assess 

M–B bonding. 

 The discussion thus far has assumed that M–BR3 bonding for first row metals occurs by 

overlap of a filled d orbital (often though not necessarily 3dz2) with an unfilled B 2pz 

orbital. Although this is a good foundational model for thinking about M–BR3 bonding, an 

M–BR3 interaction need not be mediated by the metal’s d orbitals. This is most clearly 

illustrated by [(TPB)Cu][K(benzo-15-crown-5)2] which features a Cu–B bond that is highly 

polarized toward B.18 The bonding in this complex may be best regarded as a B lone pair 

donating into an empty Cu 4pz orbital; the Cu 3dz2 orbital is not involved in bonding to B. 

Although this type of bonding is permitted because the empty Cu 4pz orbital is sufficiently 
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low in energy to interact with B and because the Cu 3dz2 does not interact with B, it is not 

strictly limited to Cu(I) or other main group elements. For example, mixing of Fe 3d and 4p 

atomic orbitals may be important for backbonding to B (as well as CO ligands) in several 

of the highly reduced complexes described in Chapter 4.  

 

1.4  Metal-borane bonding in (DPB)M complexes 

 The discussion of M–BR3 bonding has thus far been limited to C3-symmetric ligands in 

which the M–BR3 interactions are thought to occur exclusively along the M-BR3 

internuclear bond. However, the N2 and CO functionalization chemistry described in 

Chapters 3 and 4 involves metal complexes of the CS-symmetric DPB ligand. Aside from 

the new compounds described in this thesis, complexes of DPB ligands have been reported 

with Ni,26 Cu,27 Rh,9a, 28 Pd,28a Pt,28a and Au29 metal centers. For Rh, Pd, Pt, and Au, the 

ligands are always found to bind in a κ3-PBP fashion wherein the BPh group binds only 

through B. For all Ni and Cu complexes, the BPh group binds either in an η2-BC or an η3-

BCC mode. These and several other coordination modes are observed in the work 

presented herein (Chart 1.5). As such, the M–BR3 bonding in DPB complexes is  

Chart 1.5  Potential BPh binding modes in (DPB)M complexes 

 

substantially more complicated than that in TPB complexes owing to the variable hapticity 

of the BPh group as well as significant π delocalization between B and its phenyl 
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substituent. Nevertheless, it is worthwhile to consider the orbitals that may 

participate in M–BPh bonding.  The calculated molecular orbitals of phenylborane are 

shown in Figure 1.2 (Gaussian09, M06L/6-31+g(d)). Of the seven π molecular orbitals, the  

 

 

Figure 1.2  Frontier MOs of PhBH2. 

LUMO has the greatest B 2pz character. Additional mixing between B 2pz and phenyl π 

orbitals can be seen in LUMO+2 and HOMO-1. Thus, metal coordination to any of the 

seven atoms in the BPh group could indicate M–L bonding, M–L backbonding, or some 

combination thereof. Backbonding into conjugated BPh π orbitals would not necessarily 

result in pyramidalization at B, so this metric is not a reliable indicator of the strength of 

the M–B interaction. In addition, the orientation of the B 2pz orbital with respect to the 

metal can vary, leading to “bent” bonds of varying curvature. As such, the M–B distance is 

also a flawed indicator of the relative degrees of M–B bonding. However, the extent of 
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backbonding to the phenyl ring can be qualitatively assessed by examining the C–C bond 

lengths for elongation.  

 

1.5  H–H bond addition facilitated by M–BR3 bonds 

 For every example of a M–BR3 complex that is not based on TPB or DPB, the M–BR3 

bond is formed by addition of an hydridoborate bond to the metal center. The reverse 

reaction—hydride storage in a M–BR3 bond—has been the subject of recent interest.12b 

Owen has reported a Rh–BR3 complex that reacts with H2 to generate a Rh(H)–H–BR3 

species,8 and this type of reactivity has also been observed for a sterically pressured 

(PhDPBMes)Ni complex (Scheme 1.1).26 The latter result is particularly noteworthy because  

Scheme 1.1  H2 addition to (DPB)Ni and (TPB)Ni complexes 

 

oxidative addition of H2 at a related mononuclear Ni complexes without the presence of a 

borane is thought to be thermodynamically unfavorable.30 In contrast, neither of the 

isoelectronic (PhDPBPh)Ni(THF) nor (TPB)Ni complexes reacts with H2,26, 31 underscoring 
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the importance of hemilability for one of the three donors in these systems. These results 

suggest that DPB complexes may be expected to be generally more reactive toward E–H 

bonds than TPB complexes due to the greater hemilability of the BPh group compared with 

that of the third phosphine in the TPB ligand. Therefore, although it has been shown that 

(TPB)Fe(N2) reacts with H2 to give first (TPB–H)Fe(H)(N2) followed by (TPB–

H)Fe(H)(H2) (Scheme 1.2),32 a (DPB)Fe motif was identified as a more desirable synthetic 

target for realizing N2 and CO functionalization with E–H bonds (see Chapters 3 and 4). 

Scheme 1.2  H2 addition to (TPB)Fe(N2) 
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Chapter 2  Weak N2 and H2 Binding at an S = 1/2 Co Center 

2.1  Background 

 The relationship between N2 and H2 as ligands for coordination compounds has been 

appreciated since the first non-classical H2 complex was characterized by Kubas.1 Both 

ligands are σ donors and π acceptors and are thought to bond with transition metals 

according to the Dewar-Chatt-Duncanson model. While diamagnetic H2 complexes of the 

late transition metals are relatively rare, reports of paramagnetic H2 complexes are scant for 

all metals.2 This chapter presents the synthesis and characterization of S = 1/2 (TPB)Co(N2) 

and (TPB)Co(H2) complexes3 as well as a discussion of their electronic structures. These 

complexes are novel in their own right but are also interesting in relationship to 

isostructural complexes of the TPB and SiP3 ligands. In this context, the (TPB)Co 

complexes described herein help elucidate fundamentals of H2 and N2 binding and 

activation—particularly the distinction between strong binding and high degrees of 

activation—as well as aspects of the relationship between M–BR3 and M–SiR3 bonding.  

 From a broader perspective, Co-based coordination compounds are active catalysts for 

a number of H2-producing and -consuming reactions, including H+ reduction,4 H2 storage,5 

and hydroformylation.6 In each of these processes, non-classical Co(H2) complexes are 

probable intermediates and H2 binding (or release) is likely an elementary mechanistic step. 

For example, interest in developing earth-abundant catalysts for H+ reduction has prompted 

mechanistic investigations of several Co-based catalysts.7 The three most plausible 

mechanisms (Scheme 2.1) invoke H2 release from a transient Co(H2) complex formed by 



 
22 

Scheme 2.1  Proposed mechanisms for Co-mediated H+ reduction 

 

protonation of a CoIIH species (1), bimolecular coupling of two CoIIH species (2), or 

protonation of a CoIIIH species (3). Although mechanisms (1) and (2) invoke an S = 1/2 

Co(H2) complex, such a complex has never been observed. There are a few reports of 

closed-shell Co(H2) complexes8 as well as some Co(H2)(H) complexes9 (Chart 2.1); in each 
 

Chart 2.1  Previously described Co(H2) and Co(H2)H complexes 

 

case, the complexes’ thermal instability called for in situ characterization at low 

temperature. In addition, the energetics of H2 binding to Co in any spin state or to any 

homogenous open-shell metal complex have not been experimentally ascertained. Given 

the broad scope of current research interest in the H2 chemistry of Co, the development of 

model systems that fill this void is of high interest. The S = 1/2 (TPB)Co(H2) complex 

described below is first example of such a model complex. 
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2.2  Results 

 Installation of Co into TPB was accomplished by metallation with CoBr2 in the 

presence of excess Co powder (Scheme 2.2). Orange-brown (TPB)CoBr has a solution 

Scheme 2.2  Synthetic entry to (TPB)Co complexes 

 

magnetic moment of µeff = 3.0 µB (298 K), indicating an S = 1 spin state.  Its solid-state 

geometry is in between tetrahedral and trigonal bipyramidal (TBP) with a Co–B distance of 

2.4629(8) Å (Figure 2.1). The average Co–P distance is 2.34 Å which is consistent with its 

high-spin state. Thus, (TPB)CoBr can be viewed on one hand analogously to known 

(PPh3)3CoX complexes that lack a σ acceptor interaction, and on another hand similarly to 

Thomas’s Co-Zr heterobimetallic complexes supported by phosphinoamide ligands.10 

 Reduction of (TPB)CoBr with 1 equiv NaC10H8 under N2 yields yellow, S = 1/2 

(TPB)Co(N2) (µeff = 1.5µB, 298 K). Its EPR spectrum shows a nearly axial signal (g = 

[2.561, 2.077, 2.015]) (Figure 2.2, top). Due to the broadness of the features, no reliable 

hyperfine coupling information may be gleaned. In the solid state, (TPB)Co(N2) adopts a 

trigonal bipyramidal geometry with a Co–B bond length of 2.319(1) Å (Figure 2.3). The 

presence of one wide P–Co–P angle (128.81˚ vs. 107.87˚ and 112.21˚) in conjunction with  
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Figure 2.1  Displacement ellipsoid (50%) representation of (TPB)CoBr. H 
atoms omitted for clarity. Selected distances and angles: Co–B = 
2.4629(8) Å; Co–P = 2.3140(3) Å, 2.3498(2) Å, 2.3533(2) Å; Co–Br = 
2.3810(2) Å; ∠(P–Co–P) = 116.69(1)˚, 113.13(1)˚, 112.43(1)˚; Σ∠(C–B–
C) = 342˚. 

the pseudoaxial EPR spectrum indicates that the unpaired spin density resides in the plane 

containing the Co and P atoms since a triply-occupied, degenerate set of dxy/dx2-y2 orbitals is 

subject to a Jahn-Teller distortion. Similar EPR features and geometric distortions from C3 

symmetry have been observed for the valence isoelectronic compounds (SiP3)Fe(N2) and 

[(SiP3)Co(PMe3)][BArF
4] (vide infra). An intense ν(N-N) stretch is observed by IR 

spectroscopy at 2089 cm-1. A similar ν(N-N) stretch (2,081 cm-1) has been recently reported 

for an isostructural and topologically related cobalt alumatrane complex.11 

 The cyclic voltammagram of (TPB)Co(N2) shows a broad feature corresponding to an 

oxidation process at 0.2 V vs. Fc/Fc+ and a quasi-reversible reduction wave at -2.0 V vs. 

Fc/Fc+ (Figure 2.4). The broadness of the oxidation wave may be a result of decoordination 

of N2 and/or binding of THF on the electrochemical time scale. These results prompted me 

to pursue one-electron chemical oxidation and reduction. Further reduction of (TPB)Co(N2) 
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Figure 2.2  EPR spectra of (TPB)Co(N2) (top), “(TPB)Co” (middle), and 
(TPB)Co(H2) (bottom) recorded in toluene glass at 10 K and 9.38 GHz. 
Black traces: experiment; red traces: simulation. 

with 1 equiv NaC10H8 and encapsulation with 2 equiv 12-crown-4 generates red, closed-

shell [(TPB)Co(N2)][Na(12-crown-4)2] (Scheme 2.3). The ν(N-N) stretch of 1978 cm-1 is 

significantly lower that of (TPB)Co(N2)..  Its solid-state structure (Figure 2.5) shows 

contracted Co–B, Co–P, and Co–N distances compared with those of (TPB)Co(N2), 
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Figure 2.3  Displacement ellipsoid (50%) representation of (TPB)Co(N2). 
H atoms omitted for clarity. Selected distances and angles: Co–B = 
2.3203(12) Å; Co–P = 2.2600(3) Å, 2.2654(3) Å, 2.3290(3) Å; Co–N = 
1.8621(12) Å; N–N = 1.0623(18) Å; ∠(P–Co–P) = 107.87(1)˚, 112.21(1)˚, 
128.81(1)˚; Σ∠(C–B–C) = 339˚. 

 

Figure 2.4  Cyclic voltammagram of (TPB)Co(N2) scanning oxidatively 
(left) and reductively (right) at 100 mV/sec in THF with 0.1 M TBAPF6 
electrolyte.  

consistent with increased backbonding to each of these atoms. In addition, the Co center is 

nearly perfectly C3-symmetric as would be expected for a closed-shell complex. The 

electronic structure of [(TPB)Co(N2)][Na(12-crown-4)2] and related complexes will be 

discussed later in the chapter. 
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Scheme 2.3  Oxidation and reduction of (TPB)Co(N2) 

 

 

 

Figure 2.5  Displacement ellipsoid (50%) representation of 
[(TPB)Co(N2)][Na(12-crown-4)2]. Countercation, solvent molecules, and 
H atoms omitted for clarity. Selected distances and angles: Co–B = 
2.300(3) Å; Co–P = 2.1872(8) Å, 2.1878(7) Å, 2.1918(8) Å; Co–N = 
1.792(3) Å; N–N = 1.130(4) Å; ∠(P–Co–P) = 117.33(1)˚, 117.64(1)˚, 
118.03(1)˚; Σ∠(C–B–C) = 331˚. 

 Oxidation of (TPB)Co(N2) can be achieved by addition of 1 equiv [H·(OEt2)2][BArF4] 

to generate red-purple [(TPB)Co][BArF4]. SQUID magnetometry measurements indicate 

that the complex adopts a high spin state in the solid state (Figure 2.6) with no evidence 

for spin crossover. The 1H NMR spectrum in C6D6/Et2O is C3-symmetric and structure 

(Figure 2.7) confirms that [(TPB)Co][BArF4] does not bind N2. There are many structural 
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Figure 2.6  Temperature dependence of the magnetic susceptibility of 
[(TPB)Co][BArF

4] as measured by SQUID magnetometry.  

 

Figure 2.7  Displacement ellipsoid (50%) representation of 
[(TPB)Co][BArF

4]. Counteranion and H atoms omitted for clarity. 
Selected distances and angles: Co–B = 2.2559(16) Å; Co–P1 = 2.3473(5) 
Å, 2.3406(5) Å, 2.3031(5) Å; ∠(P1–Co–P2) = 111.90(2)˚; ∠(P1–Co–P3) = 
110.35(2)˚;"∠(P2–Co–P3) = 136.57(2)˚; Σ∠(C–B–C) = 388˚.  

similarities between [(TPB)Co][BArF4] and the reported [(TPB)Fe][BArF4] complex:12 

both display a M–B distance that is shorter and a B center that is less pyramidalized than 
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that in the corresponding (TPB)MBr complexes. For [(TPB)Fe][BArF4], this apparent 

discrepancy was rationalized by there being little or no Fe–B bonding such that the Fe–B 

distance is a reflection of the geometrical constrains imposed by the cage structure.12 This 

explanation is equally plausible for [(TPB)Co][BArF4]. In addition, both complexes 

display one wide P–M–P angle, which may also be attributed to the cage structure. 

 Application of vacuum to a toluene solution of (TPB)Co(N2) results in formation of a 

new species. Dark brown “(TPB)Co” absorbs more strongly than (TPB)Co(N2) in the 

entire visible region, with the former having characteristic absorption bands at 510 nm 

and 806 nm (ε = 640 and 690 M-1 cm-1, respectively). This transformation can be 

observed by 1H NMR spectroscopy; (TPB)Co(N2) and “(TPB)Co” show different sets of 

ten paramagnetically-shifted signals, indicating that both species are C3-symmetric in 

solution (Figure 2.8). The EPR spectrum of (TPB)Co (Figure 2.2, middle) shows the 

disappearance of the signal corresponding to (TPB)Co(N2) as well as a new signal (g = 

[2.372, 2.166, 2.089]). Although this spectrum has more features than that of 

(TPB)Co(N2), hyperfine coupling cannot be rigorously simulated due to the large number 

of spin-active nuclei and the broadness of the signal. Attempts to grow single crystals of 

“(TPB)Co” under Ar or vacuum have been unsuccessful. 

 There are several reasonable structures of “(TPB)Co:” (i) a dicobalt bridging N2 

complex of the form (TPB)Co-(µ-1,2-N2))-Co(TPB); (ii) a cyclometallated species under 

rapid exchange in which a ligand C–H bond has been intramolecularly activated; (iii) a 

trigonal pyramidal species with a vacant site trans to the B atom; (iv) a complex with 

either a weak intramolecular agostic interaction or bound solvent molecule. The solution 
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Figure 2.8  1H NMR spectra of (TPB)Co(N2) under 1 atm N2 (top), 
“(TPB)Co” under vacuum (middle), and (TPB)Co(H2) under 1 atm H2 
(bottom) recorded in C6D6 at RT.  

Raman spectrum of “(TPB)Co” does not display any resonances between 1,700 and 2,300 

cm-1, the region in which ν(N-N) and ν(Co-H) stretches are anticipated. This leads me to favor 

structural possibilities (iii) or (iv) rather than (i) or (ii). Additionally, “(TPB)Co” may be 

formed in arene (benzene and toluene) as well as more weakly coordinating solvents 

(pentane and HMDSO); this leads me to disfavor a model that invokes solvent binding. 

Structure type (iii) has been previously observed for the related trigonal pyramidal 

complexes of (SiP3)13 and (TPB).12, 14 The optimized geometry of “(TPB)Co” (B3LYP/6-



 
31 

31g(d)) reveals a trigonal pyramidal geometry of structure type (iii) and a short Co–B 

distance of 2.14 Å; attempts to locate a minimum geometry with an intramolecular C–H 

agostic interaction resulted in convergence to structure type (iii).  

 Addition of 1 atm H2 to solutions of “(TPB)Co” results in new spectroscopic features 

that are most consistent with formation of the non-classical H2 complex (TPB)Co(H2). In 

solution under 1 atm H2, the UV/vis spectrum of (TPB)Co(H2) is similar to that of 

(TPB)Co(H2). The 1H NMR spectrum of (TPB)Co(H2) under 1 atm H2 consists of ten 

paramagnetically-shifted signals, indicating that (TPB)Co(H2) is C3-symmetric on the 

NMR time scale. In addition, no peak corresponding to free H2 is observed at room 

temperature, suggesting that H2 is interacting rapidly with “(TPB)Co” (a sharp peak 

corresponding to free H2 is not observed above -90 ˚C in toluene-d8). The EPR spectra of 

(TPB)Co(H2) and (TPB)Co(N2) are similar, with the former exhibiting somewhat greater 

rhombicity as displayed by its more pronounced splitting of g2 and g3 (Figure 2.2, bottom; 

g = [2.457, 2.123, 2.029]). The EPR spectra of (TPB)Co(H2) and (TPB)Co(D2) are 

identical and broad; as a result, no 1H hyperfine coupling can be gleaned. Raman spectra 

of (TPB)Co(H2) and (TPB)Co(D2) (in both solution and solid states) are identical; this 

observation precludes the presence of Co-H(D) bonds in (TPB)Co(H2)/(D2) which are 

expected to have observable stretches that are subject to isotopic shifts approximated by 

the harmonic oscillator model. In contrast to M–H(D) stretches, H–H and D–D stretches 

often are too weak to observe or are obscured by resonances attributed to the other 

ligands.2c, 2e  

 Orange single crystals of (TPB)Co(H2) were grown by slowly cooling a saturated 

solution of (TPB)Co(H2) under 1 atm H2. The sample diffracted strongly to 0.58 Å, and the 
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final solution (not including the H2 ligand) fits the data very satisfactorily. The (TPB)Co 

frameworks of (TPB)Co(N2) and (TPB)Co(H2) are similar, with the latter exhibiting 

slightly contracted Co–P and Co–B bonds and more uniform P–Co–P angles (Figure 2.9). 

 

 

Figure 2.9  Displacement ellipsoid (50%) representation of (TPB)Co(H2). 
H atoms omitted for clarity. Selected distances and angles: Co–B = 
2.2800(10) Å; Co–P = 2.2412(3) Å, 2.2650(3) Å, 2.2749(3) Å; ∠(P–Co–
P) = 110.97(1)˚, 119.00(1)˚, 124.50(1)˚; Σ∠(C–B–C) = 336˚. 

A globular disc of residual positive electron density trans to the B atom is observed (Figure 

2.10) which may be assigned to the H–H internuclear electron density. Subjecting this same 

analysis to the previously published (SiP3)Fe(H2) complex2e as well as the concurrently 

published (SiP3)Co(H2) complex3 give rise to strikingly similar images. Further discussion 

of these isostructural complexes is undertaken later in the chapter. 

 The non-H atom locations of (TPB)Co(H2) provide further support of formulating 

(TPB)Co(H2) as an H2 complex rather than a dihydride. In particular, an octahedral cis-

dihydride is expected to exhibit one wide P–Co–P angle to accommodate a bisecting 

hydride ligand. The widest P–Co–P angle in (TPB)Co(H2) is 124.50(1)˚ which is 
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Figure 2.10  Displacement ellipsoid (50%) representations (left) and 
positive residual electron density maps (right, 0.47 e- Å-3 isosurface) of 
(TPB)Co(H2) (top), (SiP3)Fe(H2) (middle), and (SiP3)Co(H2) (bottom).  
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significantly narrower than would be expected. Alternatively, if the H-H bond is cleaved 

in (TPB)Co(H2) to give a trigonal bipyramidal species of the form Co(H)(TPB-H), the 

boron in (TPB)Co(H2) would be expected to be tetrahedral with nearly linear B-H-Co 

bonding; this isomer would have a significantly longer Co-B distance than that which is 

observed. The non-H atom positions in the DFT-optimized structure are consistent with the 

X-ray structure; the intact H2 ligand in the optimized structure is not significantly elongated 

compared with free H2 (0.82 and 0.74 Å, respectively). Although the spectroscopic and 

computational data support the formulations of (TPB)Co(H2) as a non-classical H2 

complex, it remains possible that dihydride structures and/or a hydride-borohydride 

structure for (TPB)Co(H2) are thermally accessible. Reversible H2 activation across an M–

B bond in related Ni and Fe systems to form a (B–H)M(H) motifs has been observed.15 

(TPB)Co(H2) facilitates scrambling of HD to give H2, D2, and HD; although this process 

may be mediated by transient hydrido species, it may also be accomplished by other 

conceivable mechanisms such as Lewis acidic H2 activation and deprotonation by trace 

exogenous base. 

 The UV/vis spectra of (TPB)Co(N2) and (TPB)Co(H2) (1 atm N2 or H2, toluene, RT) 

show a small quantity of “(TPB)Co” which is readily identified by its characteristic band 

at 806 nm. This subtle feature suggested that the thermochemistry of H2 and N2 binding 

to “(TPB)Co” could be determined by UV/vis spectroscopy.  Gratifyingly, the 

temperature dependence of KH2 could be extracted by monitoring the concentration of 

“(TPB)Co” by UV/vis spectroscopy in the range 24.2–81.7 ˚C (toluene, 1 atm H2; Figure 

2.11). A van’t Hoff analysis reveals the energetics of H2 binding to“(TPB)Co:” ΔH˚ =   
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Figure 2.11  Temperature-dependent UV/vis study of the thermodynamics 
of H2 binding to “(TPB)Co.” The top trace in the UV/vis spectrum 
corresponds to pure “(TPB)Co.” Darker traces correspond to higher 
concentrations of (TPB)Co(H2). Van’t Hoff plots were derived by 
monitoring the concentration of “(TPB)Co” as indicated by the absorbance 
at 740 nm where the signal does not become saturated at any temperature 
in this experiment.  

-12.5(3) kcal mol-1 and ΔS˚ = -26(3) cal K-1 mol-1. These values may include contributions 

from a weak agostic interaction or interaction with solvent, depending on the solution 

structure of “(TPB)Co” (vide supra). This work is, to my knowledge, the first time the 

energetics of H2 binding to a homogeneous Co complex have been determined 
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experimentally. These values are in line with representative examples of H2 binding 

energetics for other homogeneous metal complexes (ΔH˚: -6.5 to -18 kcal mol-1; ΔS˚: -19 

to -44 cal K-1 mol-1).16 Caution should be exercised in directly comparing these 

thermodynamic values since the standard states may be defined differently. The standard 

states for all thermodynamic studies in this chapter are defined as 1 M in all species in 

toluene at RT.  

 An analogous study of N2 binding to “(TPB)Co” was undertaken between 30.2–86.3 

˚C (toluene, 1 atm N2; Figure 2.12), and the energetics of N2 binding to “(TPB)Co” were 

determined to be ΔH˚ = -13.9(7) kcal mol-1 and ΔS˚ = -32(5) cal K-1 mol-1. Compared with 

N2, binding H2 is slightly less favorable enthalpically and less disfavorable entropically. 

The more negative value of ΔS˚ for N2 binding is in part due to the higher absolute 

entropy of free N2. Similar observations have been made for Cr, Mo, and W 

complexes.16a, 16b, 16f 

 

2.3 Discussion 

 The properties of (TPB)Co(N2) and (TPB)Co(H2) are particularly interesting in the 

context of related isostructural (TPB) and (SiP3) complexes. Through an analysis of the 

data presented in this chapter and that published elsewhere, I aim to delineate what 

factors are most important in dictating the strength of N2 (and H2) binding and the degree 

of N2 activation. First, it is notable that no “vacant” Fe, Co, or Ni complexes of the form 

(SiP3)M with any molecular charge have been observed; in all cases, these fragments 

bind N2 in the absence of a better ligand.17 The remarkable penchant for N2 binding by
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Figure 2.12  Temperature-dependent UV/vis study of the thermodynamics 
of H2 binding to “(TPB)Co.” The top trace in the UV/vis spectrum 
corresponds to pure “(TPB)Co.” Darker traces correspond to higher 
concentrations of (TPB)Co(N2). Van’t Hoff plots were derived by 
monitoring the concentration of “(TPB)Co” as indicated by the absorbance 
at 740 nm where the signal does not become saturated at any temperature 
in this experiment. 

these systems is exemplified by [(SiP3)Ni(N2)][BArF4] which, in spite of its extremely 

high ν(N–N) value of 2223 cm-1, binds N2 fully at RT even under vacuum.17c The strong N2 

binding for this system has been attributed to the σ-accepting properties of the complex 

(rather than π back-donation).17c This high Lewis acidity can be rationalized by 
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considering the Ni center either as a formally low-coordinate, NiII center that is partially 

stabilized by an anionic :SiR3 donor or, alternatively, as a formally Ni0 center with an 

extremely electrophilic trans cationic SiR3 acceptor. Of course, neither formulation is 

appropriate given the high covalency of the Ni–SiR3 bond (see Chapter 1), however they 

represent reasonable models for the observed Lewis acidity. 

 The fact that (TPB)Ni—which should be a stronger π-backbonding fragment than 

[(SiP3)Ni]+ due to its neutral charge—does not bind N2 or H2 under the same conditions 

(RT and 1 atm) supports the importance of σ-donotation for N2 binding.17c If the silyl and 

borane ligands are considered σ-accepting fragments, then SiR3
+ should be a better σ-

acceptor than BR3 and would therefore render the Ni more Lewis acidic in the trans site. 

On the other hand, if the ligands are considered as two-electron donors, then it follows 

that :BR3
2- should be a stronger donor than :SiR3

- and would therefore render the Ni less 

Lewis acidic in the trans site. Both formalisms account for the stronger N2 and H2 

binding by [(SiP3)Ni]+ compared with (TPB)Ni. Alternatively, one can consider a simple 

MO model in which the lone pair on N forms a dative bond with the empty Ni–SiR3 or 

Ni–BR3 antibonding orbital. Since Si is less electronegative than B and an SiR3 ligand 

forms a normal covalent bond with Ni (whereas a BR3 ligand forms a more polarized 

dative covalent bond), one would expect the empty Ni–ER3 orbital to be more localized 

on Ni in an Ni–SiR3 complex compared with an Ni–BR3 complex. This model would 

suggest that [(SiP3)Ni]+ binds N2 more strongly than (TPB)Ni because of the better orbital 

overlap in the former. Support for this model would require a detailed theoretical 

treatment.  
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 If a metal complex can bind N2 strongly but with little activation (such as  

[(SiP3)Ni(N2)][BArF4]) then it follows that it should be possible to design a complex that 

binds N2 weakly but with a greater degree of activation. The lower N2 stretch and lower 

N2 binding constant of (TPB)Co(N2) in comparison with [(SiP3)Ni(N2)][BArF4] 

demonstrate this hypothesis. Based on the preceding discussion, the (TPB)Co fragment is 

expected to be a poorer σ-acceptor than the [(SiP3)Ni]+ fragment; the former should also 

be a better π donor because of its neutral charge and the identity of the metal center 

because earlier metals have more diffuse orbitals.   

 In order to develop a more thorough understanding of the effects of electron count, 

metal identity, and charge on the degree of N2 activation, I will make a series of 

comparisons that vary one of these parameters at a time. First, since it is clear that the 

identities of the both the transition metal and the apical main group metal are important 

with respect to N2 binding and activation in these complexes, it is useful to consider the 

[M–E] unit when determining the electron count ( 

Table 2.1 and Table 2.2). In this regard, (SiP3)Fe and (TPB)Co complexes of the same 

molecular charge may be considered to be valence isoelectronic. Compared with 

[(SiP3)Fe(N2)][Na(12-crown-4)2], [(TPB)Co(N2)][Na(12-crown-4)2] imparts a lower 

degree of N2 activation as judged by its higher ν(N–N) value (1978 vs. 1920 cm-1), yet its 

reduction potential is only modestly more anodic (-2.0 vs. -2.2 V vs. Fc/Fc+). 

Importantly, this difference in N2 activation is manifested in the reactivity of these 

complexes with electrophiles. Whereas Nβ in [(SiP3)Fe(N2)Na(THF)x] can be 

functionalized with silyl electrophiles such as TMSCl to give, for example, 

(SiP3)Fe(NNSiMe3), my attempts to take advantage of the nucleophilicity of Nβ in 
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[(TPB)Co(N2)Na(THF)x] were met with no success: I only observed net one- and two-

electron oxidation. Although it is possible that N2 functionalization was achieved in the 

reactions with [(TPB)Co(N2)Na(THF)x] but that the product was too unstable to be 

observed, this reactivity pattern is at least anecdotally consistent with the spectroscopic 

and electrochemical differences between the two systems. Thus, the following 

conclusions can be tentatively drawn: for an initial functionalization of N2 in which a 

single metal site imparts nucleophilicity to Nβ for reaction with an electrophile, Fe is 

expected to be more effective than Co owing to the greater π basicity of the former. 

Although the constituent atoms of a [Co–B] unit are more electronegative than those of 

an [Fe–Si] unit—and therefore might be expected to undergo underdesired oxidation 

reactions more slowly—its attenuated π basicity may render it less suitable for at least an 

initial N2 functionalization reaction. 

 Each of the N2 complexes based on the SiP3 and TPB platforms adopts a nearly TBP 

geometry and has a total [M–E] electron count of at least eight. As such, the differences 

in [M–E] electron counts reflect only differences in the occupation of the dxy and dx2-y2 

orbitals, neither of which are involved in N2 binding or activation. Thus, these electron 

counts are not expected to be very consequential for N2 binding and activation except to 

the extent that they affect the molecular charge. Indeed, the differences in ν(N–N) between 

[(SiP3)Fe(N2)][Na(12-crown-4)2] and [(TPB)Fe(N2)][Na(12-crown-4)2] (1920 vs. 1905 

cm-1), (SiP3)Fe(N2) and (TPB)Fe(N2) (2003 vs. 2011 cm-1), and (SiP3)Co(N2) and 

(TPB)Co(N2) (2063 vs. 2089 cm-1) are small and do not follow a clear trend even though 

the molecules in each pair differ by one valence electron. On the other hand, the  
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Table 2.1  Comparisons of (TPB)Fe and (SiP3)Fe complexes 

M Fe 

E B Si 

Name [(TPB)Fe]
+
 (TPB)Fe(N2) [(TPB)Fe(N2)]

-
 [(SiP3)Fe(N2)]

+
 (SiP3)Fe(N2) [(SiP3)Fe(N2)]

-
 

Charge +1 0 -1 +1 0 -1 

[M-E] count 7 8 9 8 9 10 

S 
3
/2 1 

1
/2 1 

1
/2 0 

N2 binding 
a
 - fully fully fully fully fully 

M–N - ? 1.781(2) 1.914(2) 1.819(15) 1.795(3) 
N–N - ? 1.144(3) 1.091(3) 1.125(2) 1.132(4) 

ν(N-N) (KBr) - 2011 1905 2143 2003 1920 
ν(N-N) (solution) - - 1918 - - - 
ν(N-N) (thin film) - - - - - - 

E1/2 
b
 - -1.5 -2.19 - -1 -2.2 

M–E 2.2167(15) ? 2.293(3) 2.2978(7) 2.2713(6) 2.236(1) 
M–P (avg.) 2.38 ? 2.25 2.39 2.29 2.2 

Ref. 12 18 18 17b 17a, 17b 17b 

Table 2.2  Comparisons of (TPB)M and (SiP3)M complexes (M = Ni, Co) 

M Co Ni 
E B Si B Si 

Name [(TPB)Co]
+
 (TPB)Co(N2) [(TPB)Co(N2)]

-
 (SiP3)Co(N2) (TPB)Ni [(SiP3)Ni(N2)]

+
 

Charge +1 0 -1 0 0 +1 

[M-E] count 8 9 10 10 10 10 

S 1 
1
/2 0 0 0 0 

N2 binding 
a
 - partially fully fully - fully 

M–N - 1.8623(12) 1.792(3) 1.813(2) - 1.905(2) 
N–N - 1.0618(19) 1.130(4) 1.123(3) - 1.083(3) 

ν(N-N) (KBr) - - - - - - 
ν(N-N) (solution) - - - 2063 - - 
ν(N-N) (thin film) - 2089 1978 - - 2223 

E1/2 
b
 - -0.2 -2 ? ? ? 

M–E 2.2559(16) 2.2800(10) 2.301(3) 2.2327(7) 2.168(2) 2.2451(9) 
M–P (avg.) 2.33 2.29 2.19 2.23 2.2 2.32 

Ref. - 3 - 17a 14a 17c 

a 1 atm N2 at RT in solution. b Oxidation potential. Distances given in Å, energies in cm-1, 
and potentials in V vs. Fc/Fc+ in THF with TBAPF6 electrolyte.  
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molecular charge appears to be a critical factor for the degree of N2 activation: the three 

pairs of N2 complexes in Table 2.1 and Table 2.2 that differ by molecular charge and not 

electron count or M identity ((TPB)Fe(N2) and [(SiP3)Fe(N2)][BArF4]; 

[(TPB)Fe(N2)][Na(12-crown-4)2] and (SiP3)Fe(N2); [(TPB)Co(N2)][Na(12-crown-4)2] and 

(SiP3)Co(N2)) show a lower ν(N–N) for the anionic species by an average of 105 cm-1. 

Similarly, the four pairs of N2 complexes that differ by molecular charge and not by the 

identities of M or E ([(SiP3)Fe(N2)][BArF4] and (SiP3)Fe(N2); (SiP3)Fe(N2) and 

[(SiP3)Fe(N2)][Na(12-crown-4)2]; (TPB)Fe(N2) and [(TPB)Fe(N2)][Na(12-crown-4)2]; 

(TPB)Co(N2) and [(TPB)Co(N2)][Na(12-crown-4)2]) show an average decrease in ν(N–N) 

of 110 cm-1 upon addition of one electron. 

 

2.4 Summary 

 In conclusion, the series of (TPB)M and (SiP3)M N2 and H2 complexes allow for a 

systematic comparison of the factors that affect N2 and H2 binding and activation in 

highly covalent late metal complexes of three-fold symmetry. These experimental 

comparisons are enabled by the thermal robustness of these unusual complexes. The 

weak N2 (and H2) binding to (TPB)Co makes clear the important distinction between the 

strength of binding and the degree of activation. In general, the TPB ligand renders the 

metal a poorer σ-accepter than the SiP3 ligand, which is the primary factor that 

contributes to the weaker N2 binding in TPB complexes. On the other hand, the degree of 

N2 activation is primarily dictated by the molecular charge and identity of the transition 

metal; the identity of the axial main group atom and the overall electron count have little 

effect on N2 activation for complexes of this geometry. 
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2.5 Experimental 

General Considerations. All manipulations were carried out using standard Schlenk or 

glovebox techniques under an atmosphere of dinitrogen. Solvents were degassed and dried 

by sparging with N2 gas and passage through an activated alumina column. Deuterated 

solvents were purchased from Cambridge Isotopes Laboratories, Inc. and were degassed 

and stored over activated 3 Å molecular sieves prior to use. Reagents were purchased from 

commercial vendors and used without further purification unless otherwise noted. (TPB)19 

was synthesized according to literature procedures. Elemental analyses were performed by 

Midwest Microlab (Indianapolis, IN). 

Spectroscopic measurements. 1H, 13C, and 31P NMR spectra were collected at room 

temperature, unless otherwise noted, on Varian 300 MHz and 400 MHz NMR 

spectrometers. 1H and 13C spectra were referenced to residual solvent resonances. 31P 

spectra were referenced to external 85% phosphoric acid (δ = 0 ppm). EPR spectra were 

recorded on a Bruker EMS spectrometer at ca. 1 mM concentrations. IR measurements 

were obtained in KBr pellets using a Bio-Rad Excalibur FTS 3000 spectrometer with 

Varian Resolutions Pro software or as thin films formed by evaporation using a Bruker 

Alpha Platinum ATR spectrometer with OPUS software. Solution-state Raman spectra 

were acquired using a coherent Innova 70 5-W Ar-ion laser, a Spex 750M spectrograph 

with a 1200 gr/mm grating, and a Horiba Jobin Yvon Synapse TE cooled CCD detector. 

Solid-state Raman spectra were acquired on a Renishaw M1000 Micro Raman 

spectrometer system using an Ar ion laser and 514.5 nm excitation.  
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X-ray Crystallography. X-ray diffraction studies were carried out at the Caltech Division 

of Chemistry and Chemical Engineering X-ray Crystallography Facility on a Bruker 

three-circle SMART diffractometer with a SMART 1K CCD detector. Data was collected 

at 100K using Mo Kα radiation (λ = 0.71073 Å). Structures were solved by direct or 

Patterson methods using SHELXS and refined against F2 on all data by full-matrix least 

squares with SHELXL-97.20 All non-hydrogen atoms were refined anisotropically. All 

hydrogen atoms were placed at geometrically calculated positions and refined using a 

riding model. The isotropic displacement parameters of all hydrogen atoms were fixed at 

1.2 (1.5 for methyl groups) times the Ueq of the atoms to which they are bonded.  

Computational Details. All calculations were performed using the Gaussian03 suite.21 

The geometry optimizations were done without any symmetry restraints using the 

B3LYP hybrid functional. The 6-31g(d) basis set was used for all atoms. Minimized 

structures were verified with frequency calculations. The starting coordinates for the 

metal and ligand were taken from the crystal structures. To model H2 adducts, hydrogen 

atoms were initially placed in the apical binding site at an arbitrary initial distance of 1.5 

Å from the metal and 0.9 Å from each other. To model dihydrides, hydrogen atoms were 

initially placed orthogonal to one another (one in the apical site and one bisecting a P–M–

P angle) at a distance of 1.4 Å from the metal.   

Preparation of (TPB)CoBr: A Schlenk tube was charged with TPB (502.0 mg, 0.8500 

mmol), CoBr2 (185.9 mg, 0.8500 mmol), Co powder (249.6 mg, 4.250 mmol), THF (20 

mL), and a magnetic stirbar. The green solution was heated at 90 ˚C for two days. After 

cooling, the residue was transferred to a 500 mL filter flask in a glovebox. The solvent 

was removed from the resulting deep yellow-green solution in vacuo to give a dark 
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residue. Residual THF was removed by adding benzene (5 mL) to the residue and 

evaporating to dryness under vacuum. Pentane (200 mL) was added and stirred 

vigorously for 5 min. This resulted in formation of a yellow solution with blue 

precipitate. The solution was decanted from the solids and filtered through a pad of Celite 

on a scintered glass frit. The remaining solids were extracted with pentane (60 mL 

portions) until the extracts were colorless (four times); the extracts were filtered and 

combined with the first batch. Removal of the solvent in vacuo provided a yellow-brown 

solid that was dissolved in benzene (5 mL) and lyophilized to give an orange-brown solid 

(435 mg, 0.596 mmol, 70%). Single crystals were grown by slow evaporation of an Et2O 

solution into HMDSO. 1H NMR (400 MHz, C6D6) δ 111.76, 29.58, 16.71, 15.99, 4.59, -

0.03, -0.20, -1.01, -2.66, -8.34. Elemental analysis for C36H54BBrCoP3: calc. C 59.28 H 

7.46, found C 58.90 H 7.17. 

 

Preparation of (TPB)Co(N2): A solution of NaC10H8 was prepared by stirring 

naphthalene (34.3 mg, 0.277 mmol) and sodium (23.7 mg, 1.03 mmol) in THF (3 mL) for 

4 hr. The resulting deep green solution was filtered and added dropwise to a stirring 

solution of (TPB)CoBr (149.4 mg, 0.2056 mmol) in THF (2 mL). The resulting dark red-

brown solution was allowed to stir for 6 hr. Solvent was removed in vacuo and the 

resulting dark red-brown residue was dissolved in benzene (2 mL). Solvent was again 

removed in vacuo and the resulting solid was stirred in benzene (3 mL) for five min. The 

brown solution was filtered through a pad of Celite and lyophilized to give dark brown 

“(TPB)Co”. Solid samples of “(TPB)Co” stored under N2 turned bright yellow over 

several days, giving (TPB)Co(N2) (106.0 mg, 0.1566 mmol, 76%). Single crystals were 
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grown by slow evaporation of an Et2O solution into HMDSO. 1H NMR (400 MHz, C6D6) 

δ 26.95, 23.82, 16.28, 11.35, 5.09, 2.15, 1.56, -0.60, -1.35, -1.73. Elemental analysis 

shows low values for N which is consistent with the observed lability of the N2 ligand.  

 

Preparation of [(TPB)Co(N2)][Na(12-crown-4)2]: To a -78 ˚C solution of (TPB)CoBr 

(70.5 mg, 0.0967 mmol) in THF (2 mL) was added a freshly prepared solution of 

NaC10H8 (23.5 mg C10H8, 0.222 mmol) in THF (3 mL). The solution was brought to RT 

and allowed to stir for six hours. Addition of 12-crown-4 (51.1 mg, 0.290 mmol) and 

removal of solvent in vacuo provided a dark red solid. Et2O was added and subsequently 

removed in vacuo. The residue was suspended in C6H6 and filtered and the solids were 

washed with C6H6 (2 x 2 mL) and pentane (2 x 2 mL) to furnish a red solid (68.8 mg, 

0.0660 mmol, 68%). Single crystals were grown by vapor diffusion of pentane onto a 

THF solution of the title compound that had been layered with Et2O. NMR peaks are 

somewhat broadened likely owing to the presence of a small amount of (TPB)Co(N2). 1H 

NMR (400 MHz, THF-d8) δ 7.41 (3H), 6.94 (3H), 6.66 (3H), 6.44 (3H), 3.64 (32H), 2.29 

(br), 1.37 (6H), 1.20 (6H), 0.93 (6H), -0.26 (6H).  11B NMR (128 MHz, THF-d8) δ 9.32. 

31P NMR (162 MHz, THF-d8) δ 62.03. 

 

Preparation of [(TPB)Co][BArF4]: To a -78 ˚C solution of (TPB)Co(N2) (91.5 mg, 

0.135 mmol) in Et2O (2 mL) was added solid [H(OEt2)2][BArF4] (134.0 mg, 0.132 mmol). 

The reaction was brought to RT and vented to allow for the escape of H2. The purple-

brown solution was stirred for 1 hr. The solution was layered with pentane (5 mL) and 

stored at -35 ˚C to furnish red-purple single crystals of the title compound (162.9 mg, 



 
47 

0.0952 mmol, 82%) which were washed with pentane (3 x 2 mL). 1H NMR (400 MHz, 

C6D6) δ 26.25, 23.80, 8.64, 8.44 ([BArF4]), 7.88 ([BArF4]), 6.33, -2.16, -3.68. 

 

Generation of “(TPB)Co:”  A yellow solution of (TPB)Co(N2) in C6D6 was subjected to 

three freeze-pump-thaw cycles which resulted in formation of a dark brown solution. The 

transformation is clean by 1H NMR and reversible by exposure to N2 atmosphere to 

reform (TPB)Co(N2). 1H NMR (400 MHz, C6D6) δ 59.33, 14.93, 12.96, 10.31, 5.42, 3.88, 

1.38, -0.10, -2.05, -3.97. Elemental analysis was not obtained due to the compound’s 

propensity to bind atmospheric N2. 

 

Generation of (TPB)Co(H2):  A dark brown solution of “(TPB)Co” under vacuum was 

exposed to 1 atm H2, resulting in immediate formation of a yellow solution. The 

transformation is clean by 1H NMR and reversible by subjecting the solution to three 

freeze-pump-thaw cycles to reform “(TPB)Co”. Single crystals were grown by slowly 

cooling a saturated solution (1:1 HMDSO:methylcyclohexane) of (TPB)Co(H2) from 80 

˚C to RT. 1H NMR (400 MHz, C6D6) δ 27.48, 22.60, 15.17, 10.34, 5.52, 2.75, 1.21, 0.43, 

-0.84, -2.51. Elemental analysis was not obtained because the compound is only stable to 

H2 loss under H2 atmosphere. 

 

Measurement of K(H2) as a function of temperature: A 0.00390 M solution of 

(TPB)Co(N2) (23.8 mg, 0.0351 mmol) in toluene (9.00 mL) was generated in a glovebox. 

A two-necked glass tube with a 24/40 joint on top and a side arm with a 14/20 joint was 

charged with the solution and a stirbar. The 24/40 joint was equipped with a dip probe 
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(Hellma Worldwide, 10mm, 661.302-UV model) and the 14/20 joint was fitted with a 

rubber septum. The septum was pierced with a hole that allowed for introduction of a 

thermocouple into the solution. The sealed apparatus was removed from the glovebox 

and connected to a Schlenk line. The solution was frozen, evacuated, and refilled with H2. 

This was repeated an additional two times. The UV/vis spectrum was recorded at twelve 

temperatures, allowing for at least 2 min. to equilibrate at each temperature: 24.2, 29.3, 

35.0, 39.0, 43.2, 48.2, 53.7, 58.1, 64.1, 69.4, 73.4, and 81.7 ˚C (see Figure 2.11 in the 

main text). The concentration of “(TPB)Co” was calculated from the absorbance at 740 

nm based on the known extinction coefficient of a pure sample of “(TPB)Co” at 740 nm 

(see Figure 2.11). This wavelength (740 nm) was selected instead of the peak’s maximum 

(806 nm) because of signal saturation around 800 nm that arises from a strong absorbance 

in the background. The binding constant K(H2) was calculated at each temperature using 

the equation: 

K(H2) = [(TPB)Co(H2)]/([H2][“(TPB)Co”]) 

where  [(TPB)Co(H2)] = 0.0351/V(tol) - [“(TPB)Co”] 

The temperature dependence of [H2] in toluene22 and the density of toluene were taken 

from the literature.23 An identical procedure was undertaken to measure the N2 binding 

data using 6.7 mg (TPB)Co(N2) and [N2] in toluene from the literature.24  

 

 

This chapter was reproduced in part with permission from 

Suess, D. L. M.; Tsay, C.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 14158–14164. 
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Chapter 3  Dinitrogen Functionalization via E–H Addition to Fe–B Bonds 

3.1 Background 

 The complex mechanisms of industrial, biological, and synthetic N2 reduction 

processes continue to spur research on the coordination chemistry and reactivity of N2 by a 

variety of conceptually distinct approaches.1 For example, models of potential 

intermediates can be synthesized from well-defined metal precursors and fine chemicals 

(e.g. N2H4) in order to study their reactivity and spectroscopic features. Alternatively, 

precatalysts can be screened for the fixation of N2 to reduced nitrogen-containing products 

(e.g. NH3 or N2H4) and further studied under optimized conditions. My goal in this chapter 

is to delineate well-defined, elementary N2 functionalization reactions that can be 

performed at a single Fe site.  

 The limiting pathways for any N2 reduction process that occurs at a single metal site are 

the so-called distal (or “Chatt”) and alternating mechanisms (Scheme 3.1).2 Early metals 

that make strong M–N π bonds are well-suited for distal-type N2 reduction mechanisms 

wherein strong M–Nα π−backbonding weakens the N–N bond, thereby rendering Nβ 

susceptible to protonation. Many reports have examined the catalytic and stoichiometric 

functionalization of N2 using group VI metals, and in all cases distal-type mechanisms and 

intermediates are invoked.3 Although both Mo- and V-dependent nitrogenases require Mo 

and/or V for their function, mounting evidence suggests that biological N2 reduction occurs 

at one or more Fe centers in FeMoco and it is reasonable to assume that this is also the case 

for the V-dependent enzymes.1a Previous members of the Peters group have generated 



 

 

53 

terminal, multiply-bonded Fe–N model complexes, thereby demonstrating the electronic 

feasibility of species invoked on a distal pathway.4 Most saliently, it has been shown that 

the (BP3)Fe platform can accommodate an N2 ligand—a π-accepting ligand—as well as a 

terminal nitride—a strongly π-donating ligand.5  

Scheme 3.1  Limiting mechanisms of single-site N2 reduction 

 

 Of course, the feasibility of multiply-bonded Fe–N species in an N2 reduction scheme 

has no implications for the actual mechanism of any N2 reduction catalyst based on Fe. In 

addition, intermediates on a distal pathway may be converted to intermediates on an 

alternating pathway and vice versa, so the two pathways need not be distinct. For example, 

after protonation of Nβ in a terminal N2 complex to form a diazenido species (a reasonable 

first step in a mononuclear N2 reduction scheme), the distal and alternating mechanisms 

can then diverge, generating an aminoimide complex in the former or a hydrazine complex 

in the latter. These species are isomers and could conceivably interconvert, thereby 

switching between alternating and distal mechanisms. Another example is the hypothetical 

protonation of Nα in an aminoimide complex to give a hydrazido complex. There are of 
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course myriad possible ways to complicate these two limiting pathways, especially if one 

invokes the participation of other atoms in the cofactor or amino acid residues. 

 In addition to the ligand field considerations that lend plausibility to a distal 

mechanism based on Fe, such a mechanism also holds appeal because synthetic 

complexes have been demonstrated to model several of these reactions. Similarly to 

early-metal complexes, an electron-rich terminal Fe–N2 complex could have a 

sufficiently π-basic metal to render Nβ susceptible to one or more protonations. This 

acid/base chemistry has been demonstrated in reactions between anionic Fe–N2 model 

complexes and formally electrophilic reagents.i Former members of the Peters group 

have developed this class of reactivity in three different systems: (BP3)Fe,6 (SiP3)Fe,7 and 

(TPB)Fe.8 I will briefly summarize the findings with the (TPB)Fe system since they 

represent the furthest extent of well-defined N2 reduction at Fe prior to the work 

described in this chapter (Scheme 3.2). Successive 

reductions and silylations of (TPB)Fe(N2) give (TPB)Fe(N2)(Na(THF)x), 

(TPB)Fe(NNSiMe3), and (TPB)Fe(NNSiMe3)Na(THF). Although the latter species does 

not undergo further functionalization with Me3SiCl, a related species, (TPB)Fe(NNSi2), 

may be prepared that features a less sterically-encumbering disilylazacyclopentane ring 

(Scheme 3.3). Each subsequent reduction and silylation decreases N–N π bonding 

character and increases Fe–N π bonding character as shown by Fe–N and N–N distances 

as well as DFT studies. 

  

                                                
i Although an anionic Fe–N2 complex and an electrophilic reagent such as TMSCl may react as a nucleophile and 

electrophile, respectively, they may alternatively function as a reductant and oxidant if one-electron transfer processes 
are operable. The mechanistic details of these reactions are not known.  
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Scheme 3.2  Stepwise N2 reduction at (TPB)Fe 

 

Scheme 3.3  Preparation of (TPB)Fe(NNSi2) 

 

 For complexes that model a distal N2 reduction pathway based on Fe, the formation of 

(TPB)Fe(NNSi2) represents the state of the art. However, the field’s understanding of Nα 

functionalization—which is central to an alternating pathway—remains less developed. In 

fact, prior to the work described in this chapter, there were no examples of Nα 

functionalization at a mononuclear metal complex based on any metal. Some of the 

challenges for realizing Nα functionalization can be seen by considering protonation 

reactions (Scheme 3.1). Direct protonation of Nα in an N2 complex, a diazenido complex, 

or an aminoimide complex would be an entrance to an alternating mechanism. However, 

this may be challenging to achieve in a synthetic system because, in each case, Nβ is likely 

more basic than Nα; in fact, Nα may exhibit some degree of electrophilic character. 
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Furthermore, protonation could occur at Fe which, at least in synthetic systems and also 

possibly in nitrogenase, could lead to facile H2 elimination.7, 9 The organometallic N2 

chemistry at Fe is not sufficiently developed to reliably predict the regioselectivities of such 

protonation reactions.  

 The fact that there have been no reports of Nα functionalization is highly problematic if 

an alternating pathway (in whole or in parts) is considered a viable mechanism for N2 

reduction at a single Fe site.9 The approach for Nα functionalization described in this 

chapter is to generate an Fe aminoimide from N2 (such as (TPB)Fe(NNSi2)) and to 

subsequently add non-polar E–H bonds (E = Si or H) across the Fe–NNR2 linkage (Scheme 

3.4). This is distinct from previous work that entails reaction of a nucleophilic Fe fragment 

Scheme 3.4  Nα and Nβ functionalization of N2 at a single Fe site 

 

with an electrophilic reagent, which, as discussed in the context of protonation reactions, 

may not result in Nα functionalization. In contrast, an E–H bond addition reaction would 

almost certainly precede at the metal, leaving Nβ untouched at least initially. Indirect 

support for this approach is derived from reports of the partial and complete hydrogenolysis 

of terminal Fe imide complexes.10 It should be noted that N2 functionalization with non-

polar E–H bonds has rich precedent with early metals.11 The only example of such 
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on earlier reports of the hydrogenolysis of bridging nitrides that were generated from 

synthetic sources.13 

 I anticipated that the aminoimide complex (TPB)Fe(NNSi2) would be an appropriate 

species for testing this hypothesis not only because it was the only such complex to be 

derived from N2, but also because the Fe–B bond could participate in the E–H activation 

step (Chapter 1).14 Unfortunately, the desired Nα functionalization was not realized with 

(TPB)Fe(NNSi2). Addition of 1 atm H2 or 1 equiv PhSiH3 at RT results in no observable 

reaction; at higher temperatures, (TPB)Fe(NNSi2) decomposes and no tractable products 

were identified in the presence of H2 or PhSiH3. Given the increased E–H bond addition 

reactivity of (DPB)Ni systems compared with the (TPB)Ni systems, I decided to target Fe 

aminoimides supported by DPB ligands and to study their subsequent reactivity with E–H 

bonds. Several points of caution arose from the outset: 

• Can the DPB ligand stabilize low-coordinate, electron-rich Fe complexes? Will the 

ligand be stable under strongly reducing conditions? 

• Will a (DPB)Fe fragment bind and activate N2 sufficiently to enable Nβ 

functionalization (in order to generate an Fe aminoimide)? The BCC fragment in DPB 

is expected to be less electron-releasing than its counterpart in TPB (a phosphine donor) 

which may make N2 activation more challenging for the former system. 

• Can an Fe aminoimide complex be supported by DPB? The stability of the 

aminoimide intermediate requires a pseudotetrahedral geometry about Fe with a strong-

field tripodal donor in order to impart a low-spin S = 0 configuration with an Fe≡N 

triple bond.15 If the BCC fragment is not sufficiently strong-field to meet these 
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electronic requirements, an Fe aminoimide based on the DPB ligand would not be 

expected to be stable. 

Clearly, the central hypothesis of this chapter—that E–H bond addition to an N2-derived 

(DPB)Fe aminoimide is a viable strategy for Nα functionalization—rests on issues related 

to the coordination chemistry of (DPB)Fe complexes. As such, the molecular and 

electronic structures of these complexes will also be of high interest.  

 

3.2 Preparation of (DPB)Fe synthons 

 Metallation with Fe of TPB proceeds in high yield by comproportionation of FeBr2 and 

Fe powder in refluxing THF to give (TPB)FeBr.16 Given the similarity between the 

isopropyl-substituted DPB ligand and TPB, these metallation conditions were among the 

first attempted for the DPB system. Unfortunately, all attempts to metallate DPB under 

these conditions led to intractable mixtures. Likewise, stirring a THF solution of DPB with 

FeBr2 and 1 equiv Na/Hg afforded Fe metal and unreacted DPB. In this solvent, it is likely 

that there is a high speciation of unligated FeBr2(THF)x which, upon reduction, gives Fe 

metal. However, it was found that DPB and FeBr2 form a yellow solution in C6H6, 

indicating a high degree of complex formation. As such, a successful metallation procedure 

was developed wherein DPB and FeBr2 are stirred in THF until all of the FeBr2 dissolves. 

The volatiles are removed in vacuo and Et2O is added in order to remove residual THF. 

Replacement of Et2O with C6H6 affords a yellow solution that turns brown after stirring 

over 1 equiv Na/Hg for several hours. This procedure allows (DPB)FeBr to be isolated in 

84% yield (Scheme 3.5).  
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Scheme 3.5  Synthesis of (DPB)FeBr 

 

 (DPB)FeBr is brown with a low-energy electronic transition at 922 nm (ε = 590 in 

toluene). The solution magnetic moment value of 3.8 µB (RT, C6D6) is indicative of an S = 

3/2 state. The 1H NMR spectrum contains thirteen paramagnetically-shifted resonances 

between 185 and -58 ppm, indicating that the complex is CS-symmetric in solution. The 

solid-state structure was determined by XRD analysis (Figure 3.1) and shows Fe in a 

pseudotetrahedral geometry with moderately close Fe–B and Fe–Cipso interactions 

(2.3242(11) and 2.2605(9) Å, respectively). The closest Fe–Cortho distance is negligibly long 

at 2.5483(11) Å. Given the solid-state structure, high-spin state, and Cs symmetry in 

solution, the η2-BCipso ligand may be formulated as a donor via a filled π-arene orbital and 

an acceptor via the empty p orbital on B.  

 Further reduction of (TPB)FeBr with 1 equiv Na/Hg under atm N2 results in formation 

of the dinuclear, bridging N2 complex [(DPB)Fe]2(µ-1,2-N2) (Scheme 3.6). Alternatively, 

[(DPB)Fe]2(µ-1,2-N2) may be generated on a preparative scale directly by metallation of 

DPB with 2 equiv Na/Hg in 66% yield. The paramagnetically-shifted 1H NMR spectrum of 

[(DPB)Fe]2(µ-1,2-N2) has thirteen resonances between 172 and -76 ppm, indicating that 

each Fe is equivalent and has local Cs symmetry. Solution- and solid-state IR spectra of 
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Figure 3.1  Displacement ellipsoid (50%) structure of (DPB)FeBr. H 
atoms are omitted for clarity. Selected distances and angles: Fe–B = 
2.3242(11) Å; Fe–Cipso = 2.2605(9) Å; Fe–P = 2.3785(4) Å, 2.3835(5) Å; 
Fe–Br = 2.3870(3) Å; ∠(P–Fe–P) = 106.61(1)˚; Σ∠(C–B–C) = 353˚. 

Scheme 3.6  Preparation of [(DPB)Fe]2(µ-1,2-N2). 

 

[(DPB)Fe]2(µ-1,2-N2) lack an N–N stretch, suggesting that the complex maintains its 

pseudocentrosymmetric, dinuclear structure in solution. The RT solution magnetic moment 

is 4.6 µB, somewhat higher than the spin-only value of 4.0 µB expected for two uncoupled S 

= 1 Fe centers.  

 The two pseudo-tetrahedral Fe centers in [(DPB)Fe]2(µ-1,2-N2) have different local 

geometries in the solid state (Figure 3.2). The geometry about one of the Fe centers (FeA) is 

distinguished by a short Fe–Cortho contact (2.2714(7) Å) and relatively long Fe–B and Fe–

Cispo distances (2.3739(7) and 2.2516(6) Å, respectively; Table 3.1). The other Fe center 
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Figure 3.2  Displacement ellipsoid (50%) structure of [(DPB)Fe]2(µ-1,2-
N2). PiPr2 groups are truncated and H atoms are omitted for clarity. See 
Table 3.1 for selected bond lengths and angles. 

Table 3.1  Selected bond lengths (Å) and angles (˚) of [(DPB)Fe]2(µ-1,2-N2). 

 Fe–N N–N Fe–B F–Cipso Fe–Cortho Fe–P (avg.) Σ∠(C–B–C) 

FeA 1.8261(5) 
1.1705(8) 

2.3739(7) 2.2517(6) 2.2714(7) 2.347 352 
FeB 1.8382(6) 2.3136(7) 2.2133(6) 2.6642(7) 2.341 351 

 

(FeB) displays somewhat shorter Fe–B and Fe–Cipso distances (2.3136(7) and 2.2133(6) Å, 

respectively) and a negligible Fe–Cortho interaction (2.6642(7) Å). The phenyl ring bound 

to FeA exhibits alternating C–C bond lengths (Table 3.2 and Table 3.3) whereas this 

asymmetry is negligible for the phenyl ring bound to FeB; these metrics indicate that 

back-donation to the arene ring is more significant for FeA and back-donation to the B 

atom is more significant for FeB. Since FeA and FeB are equivalent in solution, the Fe–

BCC interaction must be highly flexible and the solid-state bond metrics reflect the large 

range of local geometries available to the Fe centers. 
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Table 3.2  Fe-BCC distances in select (DPB)Fe(L) complexes 

L Fe-B Fe-C1 Fe-C2 
Br 2.3234(11) 2.2608(9) 2.5486(11) 
N2 (site A) 2.3739(7) 2.2517(6) 2.2714(7) 
N2 (site B) 2.3136(7) 2.2133(6) 2.6642(7) 
[N2]- 2.244(2) 2.055(2) 2.327(2) 
(NNSi2)  (mol. 1) 2.3768(6) 2.1493(5) 2.3405(6) 
(NNSi2)  (mol. 2) 2.4288(7) 2.1440(6) 2.2266(6) 

 

 

 

Table 3.3  C–C distances of the bound arene in select (DPB)Fe(L) complexes.  

L C1-C2 C2-C3 C3-C4 C4-C5 C5-C6 C6-C1 
Br 1.4191(14) 1.3891(18) 1.3977(15) 1.3935(18) 1.3880(16) 1.4212(15) 
N2 (site A) 1.4211(10) 1.4185(10) 1.3711(12) 1.4124(12) 1.3785(10) 1.4303(10) 
N2 (site B) 1.4167(10) 1.3987(11) 1.3839(14) 1.3944(15) 1.3890(12) 1.4184(10 
[N2]- 1.429(3) 1.426(3) 1.379(4) 1.408(4) 1.383(3) 1.442(3) 
(NNSi2)  (mol. 1) 1.4231(7) 1.4238(8) 1.3681(9) 1.4196(10) 1.3690(8) 1.4324(7) 
(NNSi2)  (mol. 2) 1.4285(9) 1.4357(9) 1.3645(13) 1.4223(13) 1.3648(9) 1.4372(9) 

 

 Interestingly, the 5 K Mössbauer spectrum of crushed microcrystalline powders of 

[(DPB)Fe]2(µ-1,2-N2) (Figure 3.3 and Figure 3.4) displays two doublets in a 1:1 ratio 

which can be fit either assuming similar values for⎟ΔEq⎢#(1.63 and 1.59 mm s-1) and very 

different values for δ (0.58 and 0.78 mm s-1) (Figure 3.3) or assuming very different values 

for⎟ΔEq⎢#(1.39 and 1.81 mm s-1) and similar values for δ (0.69 and 0.67 mm s-1) (Figure 

3.4). Both sets of parameters fit the data satisfactorily and thus cannot be distinguished on 
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Figure 3.3  Mössbauer spectrum of [(DPB)Fe]2(µ-1,2-N2) recorded at 5 K 
and fit using the following parameters. Site 1: δ = 0.58 mm s-1, ⎟ΔEq⎢ = 
1.63 mm s-1; site 2: δ = 0.78 mm s-1, ⎟ΔEq⎢ = 1.59 mm s-1. 

 

Figure 3.4  Mössbauer spectrum of [(DPB)Fe]2(µ-1,2-N2) recorded at 5 K 
and fit using the following parameters. Site 1: δ = 0.69 mm s-1, ⎟ΔEq⎢ = 
1.39 mm s-1; site 2: δ = 0.67 mm s-1, ⎟ΔEq⎢ = 1.81 mm s-1. 

the basis of this experiment. Nonetheless, it is interesting to observe that Mössbauer 

spectroscopy—like XRD analysis—can be used as a sensitive technique for distinguishing 

between two Fe centers that are unique in the solid state but equivalent in solution. Thus, 

-4! -3! -2! -1! 0! 1! 2! 3! 4!
Velocity (mm/sec)!

-4! -3! -2! -1! 0! 1! 2! 3! 4!
Velocity (mm/sec)!
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differences in the Mössbauer spectra of two chemically distinct compounds should not be 

overinterpretted since relatively large differences can arise from chemically identical 

species. 

 

3.3 C–H and N–H Bond Activation by [(DPB)Fe]2(µ-1,2-N2) 

 Having gained synthetic entry to (DPB)Fe complexes, it was prudent to explore the 

reactivity of this system toward E–H bond activation, particularly as a means of 

comparison with the (TPB)Fe system. Exposure of (TPB)Fe(N2) to 1 atm H2 results in H–H  

bond activation to give (TPB–H)Fe(H)(H2) (Chapter 1).17 On the other hand, [(DPB)Fe]2(µ-

1,2-N2) decomposes rapidly at RT under 1 atm H2 to give a variety of diamagnetic and 

paramagnetic products as judged by 1H and 31P NMR spectroscopy. Although this result 

was somewhat disappointing, it does point to the greater reactivity of (DPB)M complexes 

with E–H bonds in comparison with their (TPB)M counterparts. 

 Given the stability of E–H bond addition products using the (DPB)Ni systems (with 

varying substituents on B and P), I thought that similarly stable Fe complexes may be 

accessed by using a directing group that could contribute two addition electrons to the 

system. For these purposes, I initially tested the reactivity of [(DPB)Fe]2(µ-1,2-N2) with 

benzo(h)quinoline and 2-phenylpyridine. Accordingly, heating C6D6 solutions of 0.5 equiv 

[(DPB)Fe]2(µ-1,2-N2) and either benzo[h]quinoline or 2-phenylpyridine to 70 ˚C for 

several hours results in clean conversion to S = 0 C–H activation products: magenta (DPB–

H)Fe(benzo[h]quinolin-10-yl) or maroon (DPB–H)Fe(2-(pyridin-2-yl)phenyl), respectively 

(Scheme 3.7). No intermediates are observed in these reactions; incomplete mixtures
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Scheme 3.7. Bond activation reactions of [(DPB)Fe]2(µ-1,2-N2). 

 

contain only [(DPB)Fe]2(µ-1,2-N2) and the C–H activated product. This suggests that 

ligand substitution of N2 by the substrate is rate-determining.  

 Both C-H activation products are Cs-symmetric in solution as evidenced by their 1H 

NMR spectra, however their very broad 31P signals indicate that the coalescence 

temperature is near RT. In addition, their 1H NMR spectra contain a single broad hydride 

resonance at -22.8 and -21.1 ppm, respectively, indicating the presence of an Fe–H–B 

functional group rather than a terminal Fe–H. Sharp 11B NMR signals at -7.3 and -8.5 ppm, 

respectively, lend further support to this conclusion. The solid-state structures of both 

(DPB–H)Fe(benzo[h]quinolin-10-yl) and (DPB–H)Fe(2-(pyridin-2-yl)phenyl) are very 

similar and the geometrical features about Fe are highly conserved (Figure 3.5). In addition 

to confirming the presence of the Fe–H–B group and establishing the stereochemistry of 

C–H addition (N trans to H), the structures show the presence of a long Fe–arene 

interaction that completes the octahedral coordination sphere, thereby allowing a low-spin 

configuration to be achieved.  

 There is some precedent (albeit limited) for directed18 and undirected19 C–H activation 

by zero-valent, low-coordinate Fe complexes, and these stoichiometric reactions have 

1/2 [(DPB)Fe]2(µ-1,2-N2)
N
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Figure 3.5  Displacement ellipsoid (50%) structures of (DPB–
H)Fe(benzo[h]quinolin-10-yl) (left) and (DPB–H)Fe(2-(pyridin-2-
yl)phenyl) (right). PiPr2 groups are truncated and H atoms and solvent 
molecules are omitted for clarity. Selected distances and angles for 
(DPB)Fe(benzo[h]quinolin-10-yl): Fe–N = 1.9682(8) Å; Fe-Caryl = 
1.9286(8) Å; Fe-Caryl = 2.3739(8) Å; Fe–P = 2.2189(3) Å, 2.2665(3) Å; 
Fe–B = 2.3342(9) Å; ∠(P–Fe–P) = 169.59(1)˚; ∠(C–Fe–C) = 160.39(4)˚; 
Σ∠(C–B–C) = 335˚. Selected distances and angles for (DPB)Fe(2-
(pyridin-2-yl)phenyl): Fe–N = 1.9547(9) Å; Fe-Caryl = 1.9193(10) Å; Fe-
Caryl = 2.3555(10) Å; Fe–P = 2.2125(3) Å, 2.2731(3) Å; Fe–B = 
2.3175(11) Å; ∠(P–Fe–P) = 170.85(1)˚; ∠(C–Fe–C) = 161.56(4)˚; Σ∠(C–
B–C) = 337˚. 

found application in catalytic transformations.20 As such, the observed reactivity of 

[(DPB)Fe]2(µ-1,2-N2) is not surprising. On the other hand, oxidative addition of N–H 

bonds by Fe is less common and appears to be limited to relatively acidic amides.21 

Addition of 8-aminoquinoline to 0.5 equiv [(DPB)Fe]2(µ-1,2-N2) in C6D6 at RT gives a 

red-orange solution within an hour. The 1H NMR spectrum contains a pattern of more than 

thirty paramagnetically-shifted and -broadened signals, suggesting that the reaction mixture 

contains either a single C1-symmetric species or two Cs-symmetric species.  
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 Single crystals of the product are twinned to varying extents based on screening several 

crystals. One of the least-twinned crystals was studied by XRD analysis and showed the 

desired N–H activated product (DPB–H)Fe(8-amidoquinoline) (Figure 3.6). Although there  

 

         

Figure 3.6  Displacement ellipsoid (50%) structure of the major (90%, 
left) and minor (10%, right) components of a twinned crystal of (DPB–
H)Fe(8-amidoquinoline). PiPr2 groups are truncated and H atoms are 
omitted for clarity. Selected distances and angles for the major 
component: Fe–B = 2.967(2) Å; Fe-Namido = 1.958(2) Å; Fe-Nquin = 
2.192(2) Å; Fe–P = 2.4324(5) Å, 2.4552(5) Å; ∠(P–Fe–P) = 122.55(2)˚; 
Σ∠(C–B–C) = 335˚. 

is only one molecule per asymmetric unit, the molecule is disordered between two isomers: 

one with the amido cis to the borohydride (90%) and one with the amido trans to the 

borohydride (10%). Since the “trans” isomer is a minor component of the speciation in this 

crystal, its bond metrics are not reliable. The major component shows the presence of a 

borohydride moiety and long Fe–P distances which suggests that N–H activation of 8-

aminoquinoline furnishes an S = 2 addition product. The Fe–B distance is long (nearly 3 Å) 

which indicates that the borohydride ligand is a weaker donor than that in the C–H addition 

products (e.g. (DPB–H)Fe(benzo[h]quinolin-10-yl)). In a limiting sense, the former may be  
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considered hydridoborate ligand while the latter may be considered a borane-capped Fe–H. 

 Given the XRD data, the simplest explanation for the solution NMR data is that the 

reaction mixture consists of two isomers of (DPB–H)Fe(8-amidoquinoline) that co-

crystallize. The solution magnetic moment of 5.2 µB (C6D6, RT) is consistent with the 

presence of two S = 2 isomers of the appropriate molecular weight. These isomers may be 

at thermodynamic equilibrium, or they may arise from different pathways for N–H addition 

that are trapped as two stereoisomers. Further experimentation is required to distinguish 

between these two possibilities. Regardless of how the two isomers of (DPB–H)Fe(8-

amidoquinoline) are generated, the high-spin ground state structure of the products is 

notable in comparison to that of the low-spin C–H addition products. Although (DPB–

H)Fe(8-amidoquinoline) could conceivably adopt a pseudo-octahedral, low-spin structure, 

the amido donor is apparently not sufficiently strong-field for this configuration. In order to 

have an S = 2 ground state, the Fe–H bond lengthens so that it resembles more of a weak-

field borohydride than a strong-field hydride. On the other hand, the strong-field aryl 

ligands in the C–H-activated products impart a low-spin configuration. The major 

geometrical requirements for this configuration are a sixth ligand (in this case an arene 

donor) and a tighter Fe–H interaction. These results delineate the ways that the DPB ligand 

can stabilize low-spin and high-spin configurations upon E–H addition reactions and 

suggest that a variety of spin manifolds should be considered when designing new 

stoichiometric and catalytic applications based on this reactivity. 
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3.3  N2 functionalization using the (DPB)Fe platform 

 A simple way to compare the degree of N2 activation imparted by the (DPB)Fe 

platform with that imparted by the (TPB)Fe platform is to compare the solid-state 

structures and ν(N–N) values for their N2 complexes. Unfortunately, the (TPB)Fe(N2) 

complex has not been structurally characterized owing to problems arising from twinned 

crystals.16 Furthermore, the analogous (DPB)Fe complex exists as the dinuclear bridging 

complex [(DPB)Fe]2(µ-1,2-N2). As such, I sought to prepare a mononuclear 

[(DPB)Fe(N2)]- complex to compare with the reported [(TPB)Fe(N2)][Na(12-crown-4)2].16 

Addition of two equiv KC8 to [(DPB)Fe]2(µ-1,2-N2) followed by encapsulation with 

benzo-15-crown-5 results in formation of the red-brown, mononuclear  

[(DPB)Fe(N2)][K(benzo-15-crown-5)2] complex (Scheme 3.8). The solid-state structure 

(Figure 3.7) reveals its pseudotetrahedral geometry with an especially close Fe–Cipso 

distance of 2.055(2) Å. The Fe–N and N–N distances (1.792(2) and 1.135(3) Å, 

respectively) indicate modestly attenuated N2 activation in comparison with those of the 

analogous [(TPB)Fe(N2)][Na(12-crown-4)2] system (1.781(2) and 1.144(3) Å, 

respectively). This interpretation is supported by a slightly higher value of ν(N–N) for the 

Scheme 3.8  Preparation of [(DPB)Fe(N2)][K(benzo-15-crown-5)2] 
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Figure 3.7  Displacement ellipsoid (50%) structure of 
[(DPB)Fe(N2)][K(benzo-15-crown-5)2]. PiPr2 groups are truncated and H 
atoms, the counteraction, and solvent molecules are omitted for clarity. 
Selected distances and angles: Fe–N = 1.792(2) Å; N–N = 1.135(3) Å; Fe–
B = 2.244(2) Å; Fe-Cipso = 2.055(2) Å; Fe-Cortho = 2.327(2) Å; Fe–P = 
2.2178(7) Å, 2.2268(7) Å; ∠(P–Fe–P) = 109.46(3)˚; Σ∠(C–B–C) = 353˚. 

DPB-ligated complex compared with the TPB-ligated complex (1935 vs. 1918 cm-1). 

Importantly, these results establish that the (DPB)Fe platform is robust under strongly 

reducing conditions and that replacement of one phosphine of TPB with an aryl donor in 

DPB does not result in significantly attenuated N2 activation. 

 Having established the viability of the (DPB)Fe platform for N2 activation, I sought to 

take advantage of the presumably basic Nβ for its disilylation as has been previously 

demonstrated for the (TPB)Fe platform.16 Accordingly, the green, diamagnetic Fe 

aminoimide complex (DPB)FeNNSi2 may be accessed by stirring (DPB)FeBr with 1.1 

equiv 1,2-bis(chlorodimethylsilyl)ethane and 3.1 equiv Na/Hg in THF under 1 atm N2 

(Scheme 3.9). Alternatively, 0.5 equiv [(DPB)Fe]2(µ-1,2-N2) may be employed as a 

starting material in conjunction with 2.1 equiv Na/Hg. The 1H and 31P NMR spectra of 
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Scheme 3.9  Preparation of (DPB)Fe(NNSi2) 

 

 

 

Figure 3.8   1H NMR spectrum of (DPB)Fe(NNSi2). 

(DPB)Fe(NNSi2) reveal its Cs symmetry in solution. In addition, the 1H resonances 

attributed to the bound aryl ring are upfield-shifted (5.10 (Hortho), 6.49 (Hmeta), and 4.72 

(Hpara) ppm (Figure 3.8).  

 The solid-state structure (Figure 3.9) shows two independent molecules in the 

asymmetric unit. The short Fe–N distances (1.6607(5) and 1.6657(5) Å) are consistent 

with other trigonal Fe(NR) linkages and imply an Fe≡NNR triple bond.8 The two unique 
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Figure 3.9  Displacement ellipsoid (50%) structure of both molecules of 
(DPB)Fe(NNSi2) in the asymmetric unit. PiPr2 groups are truncated and H 
atoms, the counteraction, and solvent molecules are omitted for clarity. 
Selected distances and angles for molecule A (left): Fe–N = 1.6605(5) Å; 
N–N = 1.3282(6) Å; Fe–B = 2.3768(6) Å; Fe-Cipso = 2.1492(5) Å; Fe-Cortho 
= 2.3403(6) Å; Fe–P = 2.2312(2) Å, 2.2660(2) Å; P–Fe–P = 109.52(1)˚; 
Σ(∠CBC) = 355˚. Selected distances and angles for molecule B (right): 
Fe–N = 1.6658(5) Å; N–N = 1.3242(7) Å; Fe–B = 2.4288(8) Å; Fe-Cipso = 
2.1440(6) Å; Fe-Cortho = 2.2266(6) Å; Fe–P = 2.2287(2) Å, 2.2632(2) Å; 
P–Fe–P = 105.88(1)˚; Σ(∠CBC) = 357˚. 

molecules display essential indistinguishable Fe–N, Fe–P, and Fe–Cipso distances, 

however the Fe–B and Fe–Cortho distances differ by +0.05 and -0.11 Å, respectively. Thus, 

the main geometrical distortion that relates the two molecules is a pivot about Cipso; these 

metrics suggest that the η3-BCC interaction is quite flexible as was also observed for 

[(DPB)Fe]2(µ-1,2-N2). In addition, the bound arenes display alternating bond lengths that 

vary between ca. 1.36 and 1.44 Å which is consistent with substantial back-donation to 

the arene ring.  

 Density functional theory calculations support the formulation of (DPB)FeNNSi2 as a 

typical pseudotetrahedral d6 Fe imide15 that is similar to (TPB)FeNNSi2 except that one 

phosphine donor in the latter has been replaced by the η3-BCC interaction in the former 

(HOMO-9 and HOMO-10; Figure 3.10). Although the presence of an Fe–B bond is not 
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required for the stability of pseudotetrahedral d6 Fe imides,13 DFT calculations on 

(DPB)FeNNSi2, (TPB)FeNNSi2,8 and related Fe imides16 show some degree of Fe–B σ 

bonding (HOMO-2; Figure 3.10).  

 The reactions of E–H bonds with (DPB)Fe(NNSi2) were next examined. Gratifyingly, 

in contrast to (TPB)Fe(NNSi2) (vide supra), the RT addition of 1.1 equiv PhSiH3 to 

(DPB)Fe(NNSi2) readily generates a new, orange species identified as the 

trisilylhydrazido(-) product (DPB–H)Fe(N(Si)NSi2) resulting from hydrosilylation of the 

Fe≡N bond with delivery of SiH2Ph to Nα and H to B (Scheme 3.10). To my knowledge,  

Scheme 3.10  Si–H bond addition to (DPB)Fe(NNSi2) 

 

this is the first and only Fe hydrazido(-) complex to be derived from N2, thereby adding 

to the body of previously-reported mononuclear Fe hydrazido(-) model complexes.22 

Having established this elementary step, I sought to combine the formation of 

(DPB)Fe(NNSi2) with its subsequent hydrosilylation into a single procedure. 

Accordingly, (DPB–H)Fe(N(Si)NSi2)  may be generated in one pot from (DPB)FeBr  or 

[(DPB)Fe]2(µ-1,2-N2)  (Scheme 3.11).  
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Frontier molecular orbitals 
 

LUMO (-1.8 eV) LUMO+1 (-1.3 eV) LUMO+2 (-0.8 eV) 

   
 

HOMO-2 (-4.0 eV) HOMO-1 (-3.7 eV) HOMO (-3.4 eV) 

   
 

Orbitals with Fe-aryl bonding character 
 

HOMO-10 (-6.2 eV) HOMO-9 (-5.9 eV) 

  
 

Figure 3.10  Frontier MOs of (DPB)Fe(NNSi2). Geometry optimized at 
the M06L/6-31g(d) level. Initial atomic coordinates were taken from one 
of the two unique molecules in the XRD structure. MOs shown with 0.05 
isosurfaces. 
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Scheme 3.11  One-pot formation of an Fe hydrazido(-) complex 

 

 For (DPB–H)Fe(N(Si)NSi2), an intense IR signal corresponding to the Si–H stretch is 

observed at 2090 cm-1 and a broad, intense IR stretch corresponding to the Fe–H–B 

functional group is observed at ca. 2000 cm-1. The solution magnetic moment (µeff = 

5.0µB, C6D6, RT) indicates an S = 2 spin state. Single crystals of (DPB–H)Fe(N(Si)NSi2) 

were invariably small and twinned, however a suitable dataset was collected at the 

Stanford Linear Accelerator Center (see experimental section for details). The N–N bond 

is elongated from 1.326 Å (avg.) in (DPB)Fe(NNSi2) to 1.492(4) Å in (DPB–

H)Fe(N(Si)NSi2) (Figure 3.11). Although both distances are consistent with N–N single 

bonds, the comparatively short bond in (DPB)Fe(NNSi2) is due to the sp hybridization of 

Nα and some degree of N–N multiple bond character. The very long N–N bond in (DPB–

H)Fe(N(Si)NSi2) (longer than that of free N2H4) is likely due to a high degree of steric 

pressure exerted by its bulky Si and Fe substituents. The sum of the CBC angles is 334˚, 

reflecting the tetrahedral geometry of the borohydride ligand. 

 Addition of H2 to a C6D6 solution of (DPB)Fe(NNSi2) at RT results in formation of a 

pale brown solution and a new paramagnetic species (Scheme 3.12). The IR spectrum of 
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Figure 3.11  Displacement ellipsoid (50%) structure of (DPB-
H)Fe(N(Si)NSi2). PiPr2 groups are truncated and H atoms are omitted for 
clarity. Selected distances and angles: Fe–N = 1.918(4) Å; N–N = 
1.492(4) Å; Fe–B = 2.859(5) Å; Fe–P = 2.424(3) Å, 2.514(3) Å; ∠(P–Fe–
P) = 111.54(6)˚; Σ∠(C–B–C) = 334˚. 

Scheme 3.12  H2 addition to (DPB)Fe(NNSi2) 

 

this reaction mixture shows a new feature at 3370 cm-1 and a very broad, intense feature 

at ~2170 cm-1 (Figure 3.12); using D2 instead of H2 results in the disappearance of these 

signals and the appearance of new signals at 2482 and ~1600 cm-1. Thus, these may be 

assigned to stretches from N–H and B–H–Fe functional groups, respectively. 

Unfortunately, attempts at crystallizing this compound failed. Since it is paramagnetic, its 
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Figure 3.12  Thin film IR spectra resulting from addition of H2 (top) or D2 
(middle) to (DPB)Fe(NNSi2). Subtraction spectrum (bottom).  

unambiguous structural assignment is heavily reliant on XRD analysis. As such, I elected 

to attempt similar chemistry using Bourissou’s phenyl-substituted DPB ligand (PhDPB: 

bis(2-(1-diphenylphosphinophenyl))phenylborane)23 with the hope that the metallation, 

reduction, and N2 functionalization chemistry would be preserved in this system and that 

the product of H2 addition to an N2-derived Fe aminoimide would be crystalline.  

 Before addressing N2 functionalization chemistry with the PhDPB, I will describe the 

synthesis of the relevant precursors. The metallation of PhDPB with FeBr2 to form 

(PhDPB)FeBr is analogous to the procedure for metallating DPB (Scheme 3.13). The 

properties of (PhDPB)FeBr are very similar to that of (DPB)FeBr. (PhDPB)FeBr is brown, 
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Scheme 3.13  Preparation of (PhDPB)FeBr 

 

 

Figure 3.13  Displacement ellipsoid (50%) structure of (PhDPB)FeBr. H 
atoms are omitted for clarity. Selected distances and angles: Fe–B = 
2.330(4) Å; Fe-Cipso = 2.193(3) Å; Fe–P = 2.346(1) Å, 2.350(1) Å; ∠(P–
Fe–P) = 110.33(4)˚; Σ∠(CBC) = 354˚. 

shows a low-energy transition at 1003 nm (ε = 600 in toluene), adopts an S = 3/2 spin state 

(µeff = 3.6 µB, C6D6, RT), and is Cs-symmetric in solution as indicated by its 

paramagnetically-shifted NMR spectrum. The solid-state structure (Figure 3.13) shows Fe–

B and Fe–Cipso bond lengths of 2.330(4) and 2.193(3) Å, respectively, and is otherwise 

unremarkable.  
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 Reduction of (PhDPB)FeBr with 1 equiv Na/Hg does not trigger N2 binding but 

instead generates the brown, diamagnetic complex (PhDPB)Fe that contains an η7-BPh 

interaction (Scheme 3.14). The XRD structure of (PhDPB)Fe shows tight Fe–(η7-BPh) 

 

Scheme 3.14  Preparation of (PhDPB)Fe 

 

distances (Figure 3.14). The bound Cipso atom is significantly pyramidalized as indicated 

by the sum of the two BCC and one CCC angles (342˚). Further showing the significant 

geometrical distortion of the bound arene is the acute BCipsoCpara angle of 127.71(8)˚. The  

η7-BPh binding mode is maintained in solution based on the significantly upfield-shifted 

aryl resonances in the 1H NMR spectrum (3.63 (Hortho), 3.24 (Hmeta), and 6.25 (Hpara) ppm) 

and the 13C NMR spectrum (106.77 (Cispo), 99.41 (Cortho), 86.36 (Cmeta), and 78.73 (Cpara) 

ppm) (assignments were made on the basis of 1H-1H COSY, HMQC, and HMBC spectra; 

see Figure 3.15 for the 1H spectrum and Figure 3.16 for the 13C spectrum). Given the 

unusual nature of the BPh binding mode in (PhDPB)Fe, some discussion of its bonding is 

warranted. On one hand, (PhDPB)Fe can be viewed as a diphosphine Fe0 complex with 

some degree of Fe–B backbonding. In this bonding scenario, the BPh group serves as 

an L3Z ligand (Figure 3.17). On the other hand, if the BPh group is considered to be 

formally reduced by two electrons, then three L2X2 and one L2X2Z2 resonance structures  
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Figure 3.14  Displacement ellipsoid (50%) structure of (PhDPB)Fe. PPh2 
groups are truncated and H atoms and solvent molecules are omitted for 
clarity. Selected bond distances and angles: Fe–B = 2.2668(13) Å; Fe–Cipso 
= 1.9667(11) Å; Fe–Cortho = 2.0838(12) Å, 2.0962(12) Å; Fe–Cmeta = 
2.1676(11) Å, 2.1705(12) Å; Fe–Cpara = 2.1934(11) Å; Fe–P = 2.1827(5) 
Å, 2.1840(6) Å; ∠(P–Fe–P) = 101.76(1)˚; Σ∠(C–B–C) = 359˚; B–Cipso–
Cpara = 127.71(8)˚. 

 

 

Figure 3.15  1H NMR spectrum of (PhDPB)Fe in C6D6. 

are reasonable. Given that the Cipso–Cortho distances are significantly elongated in 

comparison to the other C–C distances and that the B–Cipso distance for the bound Cipso atom 

is shorter than for the two unbound Cipso atoms (1.5625(16) Å vs. 1.5999(17) and 

1.6070(17) Å; data not shown in Figure 3.17), there is likely significant contribution from 

the L2X2 resonance forms.  
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Figure 3.16  13C NMR spectrum of (PhDPB)Fe in C6D6. 

 

Figure 3.17  Possible resonance forms of the BPh ligand in (PhDPB)Fe 
with the corresponding CBC designation, C–C bond distances (Å) from 
the XRD structure, and 1H and 13C (ital.) NMR chemical shifts. 
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 Although (PhDPB)Fe does not bind N2 under ambient conditions, an Fe aminoimide can 

nevertheless be generated using the (PhDPB)Fe similarly to (DPB)Fe and (TPB)Fe (Scheme 

3.15). The solid-state structure of (PhDPB)Fe(NNSi2) (Figure 3.18) is very similar to that 

of(DPB)Fe(NNSi2) and therefore will not be discussed. Solutions of (PhDPB)Fe(NNSi2) are 

green and crystalline solids are dichroic green-brown. Interestingly, the 1H NMR spectrum  

Scheme 3.15  Preparation of (PhDPB)Fe(NNSi2) 

   

 

 

Figure 3.18  Displacement ellipsoid (50%) structure of 
(PhDPB)Fe(NNSi2). PPh2 groups are truncated and H atoms are omitted for 
clarity. Selected bond distances and angles: Fe–N = 1.6610(7) Å; N–N = 
1.3193(10) Å; Fe–B = 2.4242(10) Å; Fe-Cipso = 2.1542(9) Å; Fe-Cortho = 
2.2041(9) Å; Fe–P = 2.2026(3) Å, 2.2264(3) Å; ∠(P–Fe–P) = 103.66(1)˚; 
Σ∠(C–B–C) = 357˚. 
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of (PhDPB)Fe(NNSi2) does not display upfield-shift resonances corresponding to the bound 

arene; the reasons for this difference with (DPB)Fe(NNSi2) are unclear, though it may be 

attributed to less Fe–arene backdonation in the former due to a less electron-releasing Fe 

center.   

 With (PhDPB)Fe(NNSi2) in hand, the reactivity of this Fe aminoimide with H2 can be 

tested. After heating a C6H6 solution of (PhDPB)Fe(NNSi2) under 1 atm H2 at 50 ˚C for 2 

hr., the solution turns from deep green to pale brown (Scheme 3.16). The nearly colorless 

Scheme 3.16  H2 addition to (PhDPB)Fe(NNSi2) 

 

solids that are isolated from this reaction have a qualitatively similar paramagnetic 1H 

NMR spectrum to those from the analogous reaction using (DPB)Fe(NNSi2). The RT 

moment is 4.8 µB, indicating that the product adopts an S = 2 spin state. In addition, its IR 

spectrum has similar signals corresponding to N–H and B–H–Fe stretches (3343 and 

~2100 cm-1, respectively) that shift if D2 is used instead of H2 (2476 (2441 calc.) and 

~1550 cm-1, respectively) (Figure 3.19). Thus, the reaction of (PhDPB)Fe(NNSi2) appears 

to proceed in the same manner as the reaction with (DPB)Fe(NNSi2). 
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Figure 3.19  Thin film IR spectra resulting from addition of H2 (top) or D2 
(middle) to (PhDPB)Fe(NNSi2). Subtraction spectrum (bottom). 

 The connectivity of the product was established by XRD analysis (Figure 3.20). In 

addition to the formation of new N–H and Fe–H–B bonds, the structure of (PhDPB*–

H)Fe(N2Si2H) reflects cleavage of the N–N bond, rearrangement of the 

azadisilacyclopentane ring, and formal oxidation of one of the phosphines. Although no 

mechanistic information has been obtained, this overall transformation is sufficiently 

complex that it is worthwhile to put forth a tentative mechanism (Scheme 3.17). The 

hydrogenation of (PhDPB)Fe(NNSi2) to form A is analogous to the formation of (DPB–

H)Fe(N(Si)NSi2) from (DPB)Fe(NNSi2). The hydrazine rearrangement step to 
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Figure 3.20  Displacement ellipsoid (50%) structure of (PhDPB*–
H)Fe(N2Si2H). PPh2 groups are truncated and H atoms and solvent 
molecules are omitted for clarity. Selected bond distances and angles: Fe–
N(H)Si = 1.8996(7) Å; Fe–N(P)Si = 2.0194(6) Å; Fe–B = 2.8335(8) Å; 
Fe–P = 2.4248(2) Å; Σ∠(C–B–C) = 336˚. 

Scheme 3.17  Proposed mechanism of H2 addition to (PhDPB)Fe(NNSi2) 
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form B has precedent for closely-related disilylhydrazines.24 Intermediate B may be 

sufficiently unencumbered to allow for η2-NN binding to give C which could lead to 

direct N–N cleavage and group transfer to a phosphine. Alternatively, the N–N bond in C 

may be cleaved to form an Fe(IV) imide25 D which then undergoes group transfer to give 

(DPB–H)Fe(N(Si)NSi2). The transformation of (PhDPB)Fe(NNSi2) to (DPB–

H)Fe(N(Si)NSi2) is only the second example of N2 functionalization with H2 at a well-

defined Fe complex.12  

 

3.4  Summary 

 In this chapter, I have reported the generation of Fe aminoimides from N2 that 

undergo subsequent addition of non-polar E–H bonds. The significant flexibility of the 

Fe–BPh interactions facilitate both the initial formation of the Fe aminoimide as well as 

the E–H activation step. Whereas previous functionalization reactions of terminal Fe–N2 

fragments allow for derivatization of Nβ, this report demonstrates that E–H addition to an 

unsaturated Fe–N bond is a viable strategy for Nα functionalization.  

 

3.5  Experimental section 

General Considerations. All manipulations were carried out using standard Schlenk or 

glovebox techniques under an atmosphere of N2. Solvents were degassed and dried by 

sparging with N2 gas and passage through an activated alumina column. Deuterated 

solvents were purchased from Cambridge Isotopes Laboratories, Inc. and were degassed 

and stored over activated 3 Å molecular sieves prior to use. Reagents were purchased 

from commercial vendors and used without further purification unless otherwise noted. 
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(TPB)FeNNSi2,12 DPB,8 and PhDPB26 were synthesized according to literature procedures. 

Elemental analyses were performed by Midwest Microlab (Indianapolis, IN) or 

Robertson Microlit Laboratories (Ledgewood, NJ).  

Spectroscopic measurements. 1H, 13C, 31P, and 11B NMR spectra were collected at room 

temperature on a Varian 400 MHz spectrometer. 1H and 13C spectra were referenced to 

residual solvent resonances. 31P spectra were referenced to external 85% phosphoric acid 

(δ = 0 ppm). 11B spectra were referenced to BF3•Et2O (0 ppm). UV-vis measurements 

were performed with a Cary 50 instrument with Cary WinUV software. IR spectra were 

obtained as thin films formed by evaporation or as a solution using a cell with KBr 

windows using a Bruker Alpha Platinum ATR spectrometer with OPUS software.  

X-ray Crystallography. Unless otherwise noted, X-ray diffraction studies were carried out 

at the Caltech Division of Chemistry and Chemical Engineering X-ray Crystallography 

Facility on a Bruker three-circle SMART diffractometer with a SMART 1K CCD 

detector or APEX CCD detector. Data were collected at 100K using Mo Kα radiation (λ 

= 0.71073 Å). Structures were solved by direct or Patterson methods using SHELXS and 

refined against F2 on all data by full-matrix least squares with SHELXL-97.27 Data for 

complex (DPB–H)Fe(N(Si)NSi2) were collected with synchrotron radiation at the 

Stanford Synchrotron Radiation Laboratory (SSRL) beam line 12-2 at 17 keV using a 

single phi axis and recorded on a Dectris Pilatus 6M. The images were processed using 

XDS28 and further workup of the data was analogous to the other datasets. All non-

hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at 

geometrically calculated positions and refined using a riding model. The isotropic 
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displacement parameters of all hydrogen atoms were fixed at 1.2 (1.5 for methyl groups) 

times the Ueq of the atoms to which they are bonded.  

Computational Details. All calculations were performed using the Gaussian09 suite.29 

The geometry optimizations were done without any symmetry restraints using the 

B3LYP hybrid functional. The 6-311+g(d) basis set was used for all atoms. Minimized 

structures were verified with frequency calculations. The starting coordinates for the 

metal and ligand were taken from the crystal structures. 

 

(DPB)FeBr: A solution of DPB (1.318 g, 2.778 mmol) and FeBr2 (0.599 g, 2.778 mmol) 

in THF (50 mL) was stirred at RT until all of the solids dissolved. The solvent was 

removed in vacuo and Et2O (100 mL) was added. The suspension was stirred vigorously 

to give a bright yellow precipitate. The solvent was removed in vacuo and benzene (100 

mL) was added with a freshly-prepared 1% Na/Hg amalgam (Na: 63.9 mg, 2.778 mmol). 

The reaction was stirred vigorously for 18 hr to give a dark brown mixture. The mixture 

was decanted from the Hg and solvent was removed in vacuo. Et2O (20 mL) was added 

and subsequently removed in vacuo. The dark solids were then dissolved by adding 

pentane (200 mL) and Et2O (50 mL) and filtered through a pad of Celite. To the brown 

solids were added pentane (5 mL) and HMDSO (5 mL). The washings were removed and 

the solids were dried in vacuo. Lyophilization from benzene (10 mL) furnished brown 

microcrystals (1.423 g, 2.332 mmol, 84%). Single crystals suitable for X-ray diffraction 

may be obtained by concentration of an Et2O solution. 1H NMR (300 MHz, C6D6) δ 

184.72, 78.42, 39.48, 33.44, 27.94, 25.39, 8.58, 0.91, -1.71, -5.56, -9.89, -11.76, -58.05. 

UV/vis (toluene, nm (M-1 cm-1)): 461 (1400, sh), 581 (550), 715 (250), 992 (590). µeff 
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(C6D6, 298 K) = 3.8 µB. Elemental analysis for C30H41BBrFeP2: calc. C 59.05, H 6.77; 

found C 58.97, H 6.98.  

 

[(DPB)Fe]2(µ-1,2-N2): A solution of DPB (0.942 g, 1.98 mmol) and FeBr2 (0.428 g, 1.98 

mmol) in THF (40 mL) was stirred at RT until all of the solids dissolved. The solvent was 

removed in vacuo and Et2O (80 mL) was added. The suspension was stirred vigorously to 

give a bright yellow precipitate. The solvent was removed in vacuo and benzene (80 mL) 

was added with a freshly-prepared 1% Na/Hg amalgam (Na: 95.9 mg, 4.17 mmol). The 

reaction was stirred vigorously for 18 hr to give a dark red-brown mixture. The mixture 

was decanted from the Hg and filtered through Celite. The solvent was removed in vacuo 

to give a brown residue. Addition of pentane (5 mL) induced precipitation of dark crystals. 

The solvent was decanted and the solids were washed with cold Et2O (3 x 5 mL) and dried 

in vacuo (0.762 g, 0.700 mmol, 71%). Single crystals suitable for X-ray diffraction may be 

obtained by concentration of an Et2O solution. Alternative synthesis of [(DPB)Fe]N2: a 2 

mL THF solution of (DPB)FeBr (53.1 mg, 0.0870 mmol) was stirred over a freshly-

prepared 1% Na/Hg (Na: 2.2 mg, 0.095 mmol) for 18 hr. The mixture was decanted from 

the Hg, concentrated in vacuo, and extracted with 5 mL benzene. The dark benzene 

solution was filtered through Celite, lyophilized, and recrystallized by concentration of an 

n-pentane solution to give crystals of 7 (31 mg, 0.028 mmol, 66%). 1H NMR (400 MHz, 

C6D6) δ 171.85, 133.26, 43.95, 34.57, 28.15, 26.17, 7.42, 0.33, -1.50, -2.29, -6.28, -9.12, -

76.00. UV/vis (toluene, nm (M-1 cm-1)): 405 (15000), 501 (8300, sh), 990 (8300). µeff (C6D6, 

298 K) = 4.6 µB. Elemental analysis for C60H82B2Fe2N2P4: calc. C 66.20, H 7.59, N 2.57; 

found C 65.85 H 7.86 N 2.23.  
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(DPB–H)Fe(benzo[h]quinolin-10-yl): A solution of [(DPB)Fe]2(µ-1,2-N2) (19.1 mg, 

0.0176 mmol) and benzo[h]quinoline (6.3 mg, 0.035 mmol) in 0.7 mL C6D6 was heated at 

70 ˚C until all [(DPB)Fe]2(µ-1,2-N2) was consumed (~3 hr.). Solvent was removed in 

vacuo and the resulting solids were washed with cold pentane (3 x 1 mL) and dissolved in 

minimal Et2O. Evaporation of the saturated Et2O solution into HMDSO gave single crystals 

of the title compound which were lyophilized from C6H6 to give magenta solids (14.0 mg, 

0.0197 mmol, 56%). 1H NMR (500 MHz, C6D6) δ 9.02-8.86 (m, 1H), 7.56 (d, J = 8.7 Hz, 

1H), 7.47 (d, J = 7.9 Hz, 2H), 7.46 (s, 1H), 7.45-7.41 (m, 4H), 7.39 (d, J = 6.6 Hz, 2H), 

7.33-7.28 (m, 4H), 7.25-7.19 (m, 4H), 7.12 (s, 1H), 6.70 (d, J = 5.3 Hz, 1H), 6.41 (dd, J = 

7.8, 5.4 Hz, 1H), 1.78-1.50 (m, 4H), 0.87 (d, J = 7.0 Hz, 6H), 0.73 (d, J = 6.3 Hz, 6H), 0.18 

(s, 6H), 0.11 (d, J = 6.4 Hz, 6H), -22.80 (s, 1H). 11B NMR (160 MHz, C6D6) δ -7.29. 13C 

NMR (126 MHz, C6D6) δ 160.71, 153.81, 153.63, 147.23, 146.58, 144.03, 135.36, 132.95, 

129.87, 129.67, 128.44, 126.20, 125.03, 124.62, 124.41, 122.23, 119.20, 116.80, 26.57, 

23.35, 20.97, 18.75, 18.49, 18.36. 31P NMR (202 MHz, C6D6) δ 41.26. Elemental analysis 

for C43H50BFeNP2: calc. C 72.80, H 7.10, N 1.97; found C 72.51 H 6.84 N 1.84. 

 

(DPB–H)Fe(2-(pyridin-2-yl)phenyl): A solution of [(DPB)Fe]2(µ-1,2-N2) (26.6 mg, 

0.0244 mmol) and 2-phenylpyridine (7.6 mg, 0.049 mmol) in 0.7 mL C6D6 was heated at 

70 ˚C until all [(DPB)Fe]2(µ-1,2-N2) was consumed (~3 hr.). Solvent was removed in 

vacuo and the resulting solids were washed with pentane (3 x 1 mL) and dissolved in 

minimal Et2O. Evaporation of the saturated Et2O solution into HMDSO gave single crystals 
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of the title compound which were lyophilized from C6H6 to give a burgundy powder (22.8 

mg, 0.0333 mmol, 68%). 1H NMR (500 MHz, C6D6) δ 8.67-8.60 (m, 1H), 7.51-7.46 (m, 

1H), 7.43 (br s, 2H), 7.39 (d, J = 7.6 Hz, 2H), 7.32 (d, J = 7.4 Hz, 4H), 7.24-7.14 (m, 

4H), 7.12-7.06 (m, 2H), 7.05-6.97 (m, 2H), 6.77-6.68 (m, 1H), 6.12 (d, J = 5.5 Hz, 1H), 

5.98-5.91 (m, 1H), 1.94 (s, 2H), 1.76 (s, 2H), 0.99 (s, 6H), 0.79 (s, 6H), 0.50 (br s, 12H), 

-21.13 br (s, 1H). 11B NMR (160 MHz, C6D6) δ -8.49. 13C NMR (126 MHz, C6D6) δ 

190.50, 170.79, 155.96, 154.25, 148.22, 147.82, 143.18, 135.23, 131.57, 128.35, 125.28, 

125.11, 124.55, 122.56, 119.18, 118.17, 115.81, 26.61, 24.34, 24.29, 20.93, 19.07, 18.17. 

31P NMR (202 MHz, C6D6) δ 51.81. Elemental analysis for C41H50BFeNP2: calc. C 71.84, H 

7.35, N 2.04; found C 71.64 H 7.36 N 1.90. 

 

(DPB–H)Fe(8-amidoquinline) (mixture of two isomers): A solution of [(DPB)Fe]2(µ-1,2-

N2) (17.4 mg, 0.0160 mmol) and 8-aminoquinoline (4.6 mg, 0.032 mmol) in 0.7 mL C6D6 

was allowed to stand at RT until all [(DPB)Fe]2(µ-1,2-N2) was consumed (~1 hr.). Solvent 

was removed in vacuo and the resulting solids were washed with cold pentane (3 x 1 mL) 

and dissolved in minimal Et2O. Evaporation of the saturated Et2O solution into HMDSO 

furnished crystals of the title compound which were lyophilized from C6H6 to give a red 

powder (18.0 mg, 0.0267 mmol, 83%). 1H NMR (300 MHz, C6D6) δ 141.88, 103.99, 85.33, 

83.94, 77.91, 72.22, 68.70, 58.27, 57.69, 51.90, 24.40, 22.51, 19.91, 17.52, 17.18, 15.04, 

14.47, 12.77, 11.31, 2.17, 0.74, -1.81, -3.85, -7.08, -9.09, -9.45, -12.79, -15.24, -20.90, -

25.02, -33.79, -81.35, -83.00, -84.84, -103.43. Solution magnetic moment (Evans method, 

RT, C6D6): 5.2 µB. Elemental analysis for C39H49BFeN2P2: calc. C 69.45, H 7.32, N 4.15; 
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found C 68.55 H 7.09 N 3.94. IR (thin film from C6D6, cm-1): 3373 (N–H), 2130 (br, s, B–

H–Fe for isomer A), 2000 (B–H–Fe for isomer B). 

 

[(DPB)Fe(N2)][K(benzo-15-crown-5)2]: A solution of [(DPB)Fe]2(µ-1,2-N2) (25.3 mg, 

0.0233 mmol) and K/Hg amalgam (1 g, 1% K by weight) in THF (1 mL) was stirred at RT 

for 4 hr. The dark red solution was decanted and filtered through glass fiber filter paper 

onto solid benzo-15-crown-5 (26.2 mg, 0.0978 mmol). Solvent was removed in vacuo and 

the resulting solids were washed with Et2O (3 x 1 mL) and C6H6 (3 x 1 mL) to give dark 

solids (47.8 mg, 0.0422 mmol, 90%). Single crystals were grown by layering a THF 

solution with Et2O and pentane. 1H NMR (300 MHz, THF-d8) δ 14.50, 12.05, 6.86 (crown), 

6.73 (crown), 3.85 (crown), 3.72 (crown), 2.80, 1.01, -2.72, -4.78. IR (thin film from THF, 

cm-1): 1935 (N–N). 

 

(DPB)FeNNSi2: A mixture of (DPB)FeBr (0.233 g, 0.381 mmol), 1,2-

bis(chlorodimethylsilyl)ethane (0.0905 g, 0.420 mmol), and freshly-prepared 1% Na/Hg 

(Na: 0.0272 g, 1.18 mmol) was rapidly stirred in 5 mL THF under 1 atm N2. The solution 

turned deep green within 15 min. and was decanted from the Hg. Solvent was removed in 

vacuo, benzene (3 mL) was added to the solids, and the solution was filtered through 

Celite. Solvent was removed in vacuo to give green solids which were dissolved in 5 mL 

pentane. Upon stand for 10 min., dark green crystals formed. The remaining solution was 

again filtered and allowed to evaporate into HMDSO thereby furnishing more dark green 

crystals. The combined crystals were washed with pentane (3 x 0.5 mL) and lyophilized 

from benzene to give the title compound (0.202 mg, 0.287 mmol, 75.5%). 1H NMR (400 
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MHz, C6D6) δ 8.56 (d, J = 7.4 Hz, 2H), 7.52 (td, J = 7.3, 1.2 Hz, 2H), 7.44 (d, J = 7.6 Hz, 

2H), 6.97 (td, J = 7.3, 1.2 Hz, 2H), 6.49 (t, J = 7.2 Hz, 1H), 5.11 (d, J = 6.5 Hz, 2H), 4.75 

(t, J = 6.9 Hz, 2H), 2.31 (m, 2H), 1.54 (m, 2H), 1.19 - 1.06 (m, 6H), 1.06 - 0.94 (m, 6H), 

0.81 (s, 4H), 0.73 - 0.55 (m, 12H), 0.27 (s, 12H). 13C NMR (101 MHz, C6D6) δ  176.07, 

140.35, 140.21, 137.17, 133.00, 130.09, 126.34, 124.92, 122.67, 113.68, 29.82, 21.14, 

19.25, 18.54, 18.46, 15.15, 10.28, -5.53. 31P NMR (162 MHz, C6D6) δ 29.43. 11B NMR (128 

MHz, C6D6) δ -28.16. UV/vis (toluene, nm (M-1 cm-1)): 651 (1100), 988 (1600). Elemental 

analysis for C36H57BFeN2P2Si2: calc. C 61.54, H 8.18, N 3.99; found C 61.82, H 7.93, N 

3.35.  

 

(DPB-H)FeNSiNSi2: A solution of (DPB)Fe(NNSi2) (82.5 mg, 0.117 mmol) and PhSiH3 

(14.0 mg, 0.129 mmol) was allowed to stand in 2 mL benzene until the solution turned 

from green to deep orange (1 hr.). The benzene was lyophilized and the solids were 

extracted into TMS (5 mL) and filtered through Celite. Small orange crystals of the product 

formed upon concentration of the solution into HMDSO (41.0 mg, 0.0506 mmol, 43.2%). 

The reaction is quantitative by NMR, though the isolated yield of solids suffers due to the 

high solubility of the product. 1H NMR (400 MHz, C6D6) δ 113.98, 52.22, 32.54, 25.37, 

24.56, 18.16, 17.55, 12.78, 11.51, -1.09, -9.62, -10.32, -18.45, -25.52, -29.85, -33.94. IR 

(thin film from C6D6, cm-1): 2090 (s, Si–H), 2000 (s and br, B–H–Fe). µeff (C6D6, 298 K) = 

5.0 µB. Elemental analysis for C42H65BFeN2P2Si3: calc. C 62.21, H 8.08, N 3.45; found C 

61.92 H 7.81 N 1.95.  
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Synthesis of (DPB-H)FeNSiNSi2 from (DPB)FeBr: A 2 mL THF solution of (DPB)FeBr 

(48.8 mg, 0.0800 mmol), 1,2-bis-(chlorodimethylsilyl)ethane (19.0 mg, 0.0881 mmol) and 

1% Na/Hg (5.7 mg Na, 0.25 mmol) was vigorously stirred for 5 min. to give a green 

solution which was then added to neat PhSiH3 (9.5 mg, 0.088 mmol). The solution deep 

orange within 10 min. The volatiles were removed in vacuo and the solids were dissolved 

in pentane and filtered through a plug of Celite. The volatiles were removed in vacuo to 

give an orange foam (57.7 mg) that was identified as (DPB-H)FeNSiNSi2 (>95% purity by 

1H NMR).   

 

Synthesis of  (DPB-H)FeNSiNSi2 from [(DPB)Fe]2(µ-1,2-N2):  A 2 mL THF solution of 

[(DPB)Fe]2(µ-1,2-N2) (20.8 mg, 0.0191 mmol), 1,2-bis-(chlorodimethylsilyl)ethane (8.6 

mg, 0.040 mmol) and 1% Na/Hg (1.8 mg Na, 0.078 mmol) was vigorously stirred for 5 

min. to give a green solution which was then added to neat PhSiH3 (4.3 mg, 0.040 mmol). 

The solution turned deep orange within 10 min. The volatiles were removed in vacuo and 

the solids were dissolved in pentane and filtered through a plug of Celite. The volatiles 

were removed in vacuo to give an orange foam (25.1 mg) that was identified as  (DPB-

H)FeNSiNSi2 (>95% purity by 1H NMR).   

 

(PhDPB)FeBr: A solution of PhDPB (1.398 g, 2.290 mmol) and FeBr2 (0.494 g, 2.29 mmol) 

in THF (60 mL) was stirred at RT until all of the solids dissolved. The solvent was 

removed in vacuo and Et2O (100 mL) was added. The suspension was stirred vigorously to 

give a bright yellow precipitate in a yellow solution. The solvent was removed in vacuo 

and benzene (60 mL) was added with a freshly-prepared 1% Na/Hg amalgam (Na: 52.7 
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mg, 2.29 mmol). The reaction was stirred vigorously for 18 hr to give a dark brown 

mixture. The mixture was decanted from the Hg, filtered through Celite, and dried in 

vacuo. The solids were washed with Et2O (3 x 20 mL). The dark, microcrystalline solids 

were dried in vacuo. Lyophilization from benzene (10 mL) furnished brown microcrystals 

(1.095 g, 1.467 mmol, 64%). Single crystals suitable for X-ray diffraction may be obtained 

by diffusion of n-pentane into a concentrated benzene solution. 1H NMR (400 MHz, C6D6) 

δ 82.99, 32.99, 31.22, 22.92, 10.53, 9.41, 5.50, 3.24, 1.83, -0.53, -4.50, -10.18, -72.92. 

UV/vis (toluene, nm (M-1 cm-1)): 474 (1600, sh), 581 (530), 717 (260), 1003 (600). µeff 

(C6D6, 298 K) = 3.6 µB. Elemental analysis for C42H33BBrFeP2: calc. C 67.60, H 4.46; 

found C 67.59 H 4.49.  

 

(PhDPB)Fe: A 3 mL THF solution of (PhDPB)FeBr (77.9 mg, 0.1044 mmol) was stirred 

over freshly-prepared 1% Na/Hg amalgam (Na: 2.5 mg, 0.11 mmol) for 10 hr. The red-

brown solution was decanted from the Hg and solvent was removed in vacuo. The solids 

were extracted into benzene (5 mL) and filtered through Celite. The solvent was removed 

in vacuo. The solids were washed with Et2O (2 x 2 mL) and dissolved in benzene (2 mL). 

Layering the solution with pentane furnished brown single crystals of the title compound 

(78.0 mg, 0.0948 mmol, 90.8% for (PhDPB)Fe•2C6H6). XRD studies revealed that the 

compound crystallizes with two molecules of C6H6. The compound exhibits a degree of 

paramagnetic speciation in C6D6 under N2 or Ar but is fully diamagnetic in THF-d8; as 

such, 1H NMR data are reported in both solvents. 1H NMR (400 MHz, C6D6) δ 8.80 (d, J = 

7.2 Hz, 2H), 7.64 (s, 4H), 7.37 (t, J = 6.8 Hz, 2H), 7.16 (s, 4H), 7.06 - 6.83 (m, 12H), 6.48 

(t, J = 7.0 Hz, 4H), 6.29 (t, J = 6.2 Hz, 1H), 3.63 (br s, 2H), 3.23 (br s, 2H). 1H NMR (400 
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MHz, THF-d8) δ 8.58 (d, J = 7.5 Hz, 2H), 7.56 (m, 4H), 7.41 (t, J = 7.5 Hz, 2H), 7.25 (d, J 

= 7.0 Hz, 6H), 7.07 (m, 6H), 6.97 - 6.82 (m, 2H), 6.73 (t, J = 7.4 Hz, 2H), 6.57 (m, 4H), 

3.32 - 3.17 (br s, 2H), 3.07 (br s, 2H). 13C NMR (101 MHz, C6D6) δ 161.76, 146.25-145.37 

(m), 143.47 (t, J = 13.8 Hz), 134.07 (t, J = 15.8 Hz), 132.61, 131.42, 130.93, 128.26, 

127.12, 126.97, 124.44, 106.77, 99.41, 86.36, 78.73. 11B NMR (128 MHz, C6D6) δ 36.44. 

31P NMR (162 MHz, C6D6) δ 77.51. Elemental analysis for C42H33BFeP2•0.5C6H6: calc. C 

76.62, H 5.14, N 0; found C 76.55, H 5.60, N <0.02.  

 

(PhDPB)FeNNSi2: A mixture of (PhDPB)FeBr (0.195 g, 0.262 mmol), 1,2-

bis(chlorodimethylsilyl)ethane (0.0621 g, 0.288 mmol), and freshly-prepared 1% Na/Hg 

(Na: 0.0187 g, 0.813 mmol) was rapidly stirred in 5 mL THF under 1 atm N2. The solution 

turned deep green within 90 min. and was decanted from the Hg. Solvent was removed in 

vacuo, benzene (5 mL) was added to the solids, and the solution was filtered through Celite 

after standing at RT for 2 hr. Solvent was removed in vacuo to give green solids which 

were washed with pentane (3 x 1 mL) and redissolved in a minimal amount of benzene. 

The solution was again filtered and layer with pentane to provide dichroic green/brown 

crystals. The crystals were washed with pentane (3 x 0.5 mL) to give the title compound 

(0.188 g, 0.2242 mmol, 85.6%). 1H NMR (400 MHz, C6D6) δ 8.08 (m, 4H), 7.95 (m, 2H), 

7.36 - 6.90 (m, 15H), 6.75 (m, 8H), 6.53 (m, 4H), 0.34 (s, 4H), -0.22 (s, 12H). 13C NMR 

(101 MHz, C6D6) δ 159.64 , 143.47 - 142.65 (m), 139.85 (t, J = 15.3 Hz), 139.28 - 138.72 

(m), 134.58 , 132.15 , 130.32 , 130.10 , 128.57 , 126.33 , 125.81 , 115.89 , 97.93 , 7.93 , -

1.82 . 31P NMR (162 MHz, C6D6) δ 88.02. 11B NMR (128 MHz, C6D6) δ 32.67. UV/vis 
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(toluene, nm (M-1 cm-1)): 653 (850). Elemental analysis for C48H49BFeN2P2Si2: calc. C 

68.74, H 5.89, N 3.34; found C 68.48, H 5.67, N 3.07.  

 

(PhDPB-H)*FeNHSiNSi: A solution of (PhDPB)Fe(NNSi2) (45.0 mg, 0.0537 mmol) in 

benzene (5 mL) was stirred under 1 atm H2 at 50 ˚C for three hours. The solution changed 

from dark green to light brown. Solvent was removed in vacuo to give a tan solid. The 

solids were washed with pentane (2 x 5 mL) and dissolved in minimal Et2O (~10 mL). The 

solution was allowed to evaporate into HMDSO to give white solids (28.7 mg, 0.0341 

mmol, 63.6%). Single crystals suitable for XRD were grown by vapor diffusion of n-

pentane into a concentrated THF solution. 1H NMR (400 MHz, C6D6) δ 188.54, 26.16, 

25.70, 20.47, 16.37, 14.59, 12.01, 5.79, 4.77, 3.85, 3.23, 2.25, 1.97, 1.21, 0.84, 0.25, -0.04, 

-1.89, -7.20, -9.74. IR (thin film from C6D6, cm-1): 3343 (w, N–H), ~2100 (s and br, B–H–

Fe). µeff (C6D6, 298 K) = 4.8 µB. Satisfactory combustion analysis data were not obtained 

for (PhDPB-H)*FeNHSiNSi, though I am confident in my assignment of the product based 

on NMR and IR spectra of bulk samples as well as XRD analysis of single crystalline 

samples.  

 

(PhDPB-D)*FeNDSiNSi: The D-labeled compound was generated in a procedure that is 

identical to that for the H-labeled compound using D2 instead of H2. 1H NMR data are the 

same between the two species. IR (thin film from C6D6, cm-1): 2476 (w, N–D), ~1550 (s 

and br, B–D–Fe).  
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Attempted reaction of (TPB)Fe(NNSi2) with H2: To a J. Young tube was added a C6D6 

solution of (TPB)Fe(NNSi2). The green solution as subjected to three freeze-pump-thaw 

cycles and 1 atm H2 was added. No reaction occurred at RT after 15 min. by 1H NMR 

analysis. After heating the solution to 50 ˚C for 2 hr., the 1H NMR spectrum showed a 

mixture of (TPB)Fe(NNSi2), the previously-characterized (TPB)Fe(N2) complex, and other 

unidentified diamagnetic and paramagnetic species. 

 

Attempted reaction of (TPB)Fe(NNSi2) with PhSiH3: To a J. Young tube was added a 

C6D6 solution of (TPB)Fe(NNSi2) (9.5 mg, 0.0116 mmol) with PhSiH3 (1.4 mg, 0.013 

mmol). No reaction occurred at RT after 15 min. by 1H NMR analysis. After heating the 

solution to 50 ˚C for 6 hr., the 1H NMR spectrum showed mostly (TPB)Fe(NNSi2) and 

small amounts of unidentified diamagnetic and paramagnetic species.  

 

 

 

 

 

 

 

 

This chapter was reproduced in part with permission from 

Suess, D. L. M.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 4938–4941.  
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Chapter 4  An Fe Dicarbyne that Releases Olefin upon Hydrogenation 

4.1  Background 

 Hydrogenation of CO to form C2+-containing products has been a longstanding focus 

in organometallic chemistry.1 Whereas heterogeneous Fischer-Tropsch reactions generate 

a distribution of Cn-containing products, homogeneous processes have the potential to 

offer greater selectivity. For this reason, there has been substantial interest in studying 

homogeneous metal complexes that promote C–C coupling of CO-derived ligands. To 

this end, Lippard has described the disilylation of Na[(dmpe)2M(CO)2] complexes (M = 

V, Nb, or Ta; dmpe =  bis(1,2-dimethylphosphino)ethane) to form C–C-coupled η2-

alkyne complexes2 which can undergo subsequent hydrogenation to release an olefin (for 

M = V or Ta).2c, 3 Although dicarbyne intermediates have been proposed in these 

reactions,4 no such intermediate has yet been detected. In this chapter, I describe the 

preparation of the first Fe dicarbyne complex as well as its hydrogenation to release a 

CO-derived olefin. Structural and spectroscopic characterization of several intermediates 

including the Fe dicarbyne permits a comparative analysis of the bonding in these highly 

covalent complexes.  

 The CO reduction chemistry described herein utilizes the (DPB)Fe platform which 

was shown in Chapter 3 to facilitate a high degree of N2 functionalization (Scheme 4.1). 

In these complexes, the polyhaptic BPh ligand can function as a donor, an acceptor, or 

both. This feature provides access to complexes with a variety of electronic structures, 
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Scheme 4.1  N2 and CO reduction reaction types facilitated by (DPB)Fe 

 

including reduced species that react with electrophiles at the β-atom of the diatomic 

ligand (Nβ in N2). In addition, the B center can participate in E–H bond addition 

reactions (E = H or SiR3) wherein the H atom is delivered to the B center and the E 

fragment is delivered to Nα. Given these results as well as the connection between N2 

and CO reduction (established both for coordination complexes and for nitrogenases5), I 

sought to employ the (DPB)Fe platform for CO functionalization. 

 

4.2  Synthesis and properties of (DPB)Fe carbonyl complexes 

 For the purposes of CO coupling, I targeted (DPB)Fe complexes with >1 CO ligand. 

Whereas the neutral (TPB)Fe fragment binds one CO ligand at 1 atm CO,6 the neutral 

(DPB)Fe platform should be more apt to bind >1 CO ligand owing to the labile η3-BCC 

interaction. Indeed, addition of 1 atm CO to [(DPB)Fe]2(µ-1,2-N2) results in initial 

formation of red-orange (DPB)Fe(CO)2 followed by pale yellow (DPB)Fe(CO)3 (Scheme 

4.2). Addition of 4 equiv CO (two per Fe center) to [(DPB)Fe]2(µ-1,2-N2) results in slow 

formation of (DPB)Fe(CO)2 with mostly [(DPB)Fe]2(µ-1,2-N2) remaining after several 

hours at RT. This experiment suggests that addition of the first two equiv of CO for each 
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Scheme 4.2  Synthesis and reactions of (DPB)Fe carbonyl complexes  

 

Fe in [(DPB)Fe]2(µ-1,2-N2) is faster than addition of the third equiv of CO to 

(DPB)Fe(CO)2. In addition, no “(DPB)Fe(CO)” complex is observed, suggesting that 

such a species is not thermodynamically stable with respect to disproportionation to 

[(DPB)Fe]2(µ-1,2-N2) and (DPB)Fe(CO)2. Prolonged photolysis of solutions of 

(DPB)Fe(CO)3 results in loss of CO and regeneration of (DPB)Fe(CO)2. This conversion 

is accompanied by binding of a phenylene linker in (DPB)Fe(CO)2 (Figure 4.1) to give a 

 

Figure 4.1  Displacement ellipsoid (50%) representation of 
(DPB)Fe(CO)2. PiPr2 groups are truncated and H atoms are omitted for 
clarity. See Table 4.1 for selected distances and angles. 

[(DPB)Fe]2(µ-1,2-N2)
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C6D6
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(DPB-H)Fe(H)(CO)2(DPB)Fe(CO)2
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Ph
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Table 4.1. Selected distances (Å) and angles (˚) for neutral, monoanionic, and dianionic 
(DPB)Fe(CO)2 complexes. 

 
(DPB)Fe(CO)2 [(DPB)Fe(CO)2] 

[K(benzo-15-c-5)2] 

K(bezo-15-c-5)2]+ 

[(DPB)Fe(CO)2] 

[K(benzo-15-c-5)2]2 

2 
Fe-B 2.3080(15) 2.4192(15) 2.4099(9) 
Fe-P1 2.1927(4) 2.2143(5) 2.1608(3) 
Fe-P2 2.2322(4) 2.2100(5) 2.1539(3) 
∠(P1-Fe-

P2) 

159.21(2) 142.71(2) 120.60(1) 
    
Fe-C1 1.7392(14) 1.7613(15) 1.7225(9) 
Fe-C2 1.7509(15) 1.7505(14) 1.7311(9) 
C1-O1 1.1707(18) 1.1675(17) 1.1930(12) 
C2-O2 1.1647(19) 1.1773(16) 1.1956(11) 
C1-B1 2.2983(20) 3.0171(21) 2.8602(13) 
    
Fe-C3 2.4733(14) 3.3806(14) 3.2716(8) 
Fe-C4 2.2897(13) 3.3307(14) 3.2571(8) 
    
Σ(∠(C-B-C)) 342˚ 330˚ 330˚ 

 

geometrical motif that has been observed in the isoelectronic complex (TPB)Fe(CO).6 

The asymmetry in the solid-state structure of (DPB)Fe(CO)2 is maintained in solution as 

evidenced by the presence of two sharp peaks in its 31P NMR spectrum at 90.6 and 54.6 

ppm (2JPP = 65.3 Hz) and eight unique isopropyl CH3 peaks in the 1H NMR spectrum.  

 Given previous work with Fe and Ni complexes of this ligand class (as discussed in 

previous chapters),7 it was anticipated that the η3-BCC interaction in (DPB)Fe(CO)2 

could be labile and facilitate an E–H bond activation process. Accordingly, colorless 

(DPB–H)Fe(H)(CO)2 is formed quantitatively over the course of minutes upon exposure 

of (DPB)Fe(CO)2 to 1 atm H2 at RT. Its 1H NMR spectrum (Figure 4.2) shows the 
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Figure 4.2  Hydride signals in the 1H NMR spectrum of (DPB–
H)Fe(H)(CO)2 recorded at 400 MHz.  

 

Figure 4.3  Displacement ellipsoid (50%) representation of (DPB–
H)Fe(H)(CO)2. PiPr2 groups are truncated and H atoms are omitted for 
clarity. The PiPr2 fragment for P1 is disordered over two positions; only 
the major component is shown. Selected distances and angles: Fe–B = 
2.7426(6) Å; Fe–P1 = 2.249(2) Å; Fe–P2 = 2.2146(2) Å; Fe–C1 = 
1.7970(5) Å; Fe–C2 = 1.7466(6) Å; ∠(P1–Fe–P2) = 150.71(5)˚; Σ∠(C–B–
C) = 340˚. 

presence of a terminal Fe–H signal at -7.73 ppm (1H, dt, 2JHP = 54.4 Hz, 2JHH = 7.6 Hz) 

and a bridging Fe–H–B signal at -17.0 ppm (1H, br); XRD analysis (Figure 4.3) 

establishes its cis-dihydride stereochemistry. A broad, intense resonance at ~2050 cm-1 is 

present in the IR spectrum that corresponds to a Fe–H–B stretch. Complex 
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(DPB)Fe(CO)3 reacts with H2 much more slowly compared with (DPB)Fe(CO)2; 

complete conversion of (DPB)Fe(CO)3 to (DPB–H)Fe(H)(CO)2 is not realized after one 

week at 80 ˚C under 1 atm H2. The greater reactivity of (DPB)Fe(CO)2 with H2 further 

underscores the substantial hemilability of η3-BCC interactions in complexes of this 

ligand class.  

 Complex (DPB)Fe(CO)2 exhibits two quasireversible waves in its cyclic 

voltammagram at -1.94 and -2.70 V vs. Fc/Fc+ (Figure 4.4), prompting me to pursue one- 

  

Figure 4.4  Cyclic voltammagram of (DPB)Fe(CO)2 recorded in THF with 
0.3 M Bu4NPF6 electrolyte at 100 mV s-1. 

and two-electron chemical reductions.8 Stirring (DPB)Fe(CO)2 over excess K until the 

red-orange solution turns inky yellow delivers 1.0 equiv K, thereby forming 

(DPB)Fe(CO)2(K(THF)x) (Scheme 4.3); allowing this reaction to proceed for several 

hours results in formation of the red-brown two-electron reduced product, 

(DPB)Fe(CO)2(K(THF)x)2. These species were crystallized with [K(benzo-15-crown-5)2] 

countercations. Structural characterization by XRD analysis (Figure 4.5) shows that both 

 

-3.7!-3.2!-2.7!-2.2!-1.7!-1.2!-0.7!
Potential (V vs. Fc/Fc+)!
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Scheme 4.3  One- and two-electron reduction of (DPB)Fe(CO)2 

 

 

          

Figure 4.5  Displacement ellipsoid (50%) representations of (left) 
[(DPB)Fe(CO)2][K(benzo-15-c-5)2] and (right) [(DPB)Fe(CO)2][K(benzo-
15-c-5)2]2. PiPr2 groups are truncated and H atoms, solvent molecules, and 
countercations are omitted for clarity. See Table 4.1 for selected distances 
and angles. 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2] and [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 lack the 

phenylene interaction that is present in (DPB)Fe(CO)2.  

 Monoanion [(DPB)Fe(CO)2][K(benzo-15-c-5)2] adopts a geometry between trigonal 

bipyramidal (TBP) and square pyramidal (τ = 0.44)9 with a wide ∠(P–Fe–P) = 142.71(2)˚ 

whereas dianion [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 is TBP (τ = 0.93) with a contracted 

(DPB)Fe(CO)2

1.0 K
2.1 benzo-15-c-5

THF
[(DPB)Fe(CO)2]-

[K(benzo-15-c-5)2]+

[(DPB)Fe(CO)2]2-

2 [K(benzo-15-c-5)2]+

excess K
4.1 benzo-15-c-5

THF
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∠(P–Fe–P) = 120.60(1)˚. The wide ∠(P–Fe–P) in [(DPB)Fe(CO)2][K(benzo-15-c-5)2] 

suggests that the unpaired electron resides in an orbital in the P–Fe–P plane; DFT 

calculations on [(DPB)Fe(CO)2][K(benzo-15-c-5)2] confirm the SOMO to be of dx2-y2 

character (where the Fe–B vector defines the z-axis). The rhombic X-band EPR signal of 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2] is also consistent with this assignment. The Fe–B 

distances in [(DPB)Fe(CO)2][K(benzo-15-c-5)2] and [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 

are nearly equivalent at 2.4192(15) and 2.4099(9) Å, respectively, while the average Fe–

P and Fe–C(O) distances contract upon reduction from [(DPB)Fe(CO)2][K(benzo-15-c-

5)2] to [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 (Table 4.1). A marked decrease in νCO upon 

reduction of (DPB)Fe(CO)2 to [(DPB)Fe(CO)2][K(benzo-15-c-5)2] and 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2] to [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 is also 

observed (Figure 4.6). Taken together, these data suggest that the extra electron density in 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 is absorbed largely by increased Fe–C(O) and Fe–P 

π backbonding rather than increased Fe–B σ bonding.  

 Complexes (DPB)Fe(CO)3 and [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 as well as the 

first reported Fe–borane complex, (κ4-B(mimtBu)3)Fe(CO)2 (mimtBu = 2-mercapto-1-tert-

butylimidazolyl),10 are all diamagnetic Fe-polycarbonyl complexes, and therefore 

constitute a unique set for comparison of their Fe–B bonding (Chart 4.1). Compared with 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2]2, (DPB)Fe(CO)3 has a longer Fe–B distance (Figure 

4.7) and a less pyramidalized B center. These data indicate stronger Fe–B bonding11 in 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 compared with (DPB)Fe(CO)3, which may be 

rationalized by the dianionic charge and more electron-releasing Fe center in the former.  
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Figure 4.6  IR spectra of (DPB)Fe(CO)2 (top), [(DPB)Fe(CO)2][K(benzo-
15-c-5)2] (middle), and [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 (bottom) 
recorded as thin films by evaporation of C6D6 (top) or THF (middle and 
bottom) solutions. 

 Both (DPB)Fe(CO)3 and (κ4-B(mimtBu)3)Fe(CO)2 are nominally isoelectronic ML5Z 

complexes12 and their Fe centers could therefore be considered divalent (assuming strong 

Fe–B bonding) or zerovalent (assuming weak Fe–B bonding).11a, 13 The most striking 

contrast between (DPB)Fe(CO)3 and (κ4-B(mimtBu)3)Fe(CO)2 is that the Fe–B distance in 

(κ4-B(mimtBu)3)Fe(CO)2 is 2.108(6) Å—ca. 0.4 Å shorter than that in (DPB)Fe(CO)3. In
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Chart 4.1  Comparison of key structural features of selected Fe-B 
complexes. 

 

Figure 4.7  Displacement ellipsoid (50%) representation of 
(DPB)Fe(CO)3. PiPr2 groups are truncated and H atoms are omitted for 
clarity. Selected distances and angles: Fe–B = 2.5263(6) Å; Fe–P1 = 
2.2349(2) Å; Fe–P2 = 2.2302(2) Å; Fe–C1 = 1.7738(6) Å; Fe–C2 = 
1.7844(5) Å; Fe–C3 = 1.7972(6) Å; ∠(P1–Fe–P2) = 164.82(1)˚; ∠(C1–
Fe–C3) = 153.38(2)˚; Σ∠(C–B–C) = 342˚. 

addition, the B center in (κ4-B(mimtBu)3)Fe(CO)2 is fully pyramidalized (Σ∠(N–B–N) = 

327˚). I attribute these differences primarily to the greater Lewis acidity of the B center of 

(κ4-B(mimtBu)3)Fe(CO)2 (though the electron richness of the Fe centers may also be a 

contributing factor). The B atom in (DPB)Fe(CO)3 has three C substituents and can 
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conjugate into the π system of the phenyl group; in contrast, the B atom in (κ4-

B(mimtBu)3)Fe(CO)2 has three electronegative N substituents that contribute little π 

electron density to B owing to their orthogonal orientation with respect to B. As such, the 

Lewis acidity of the B atom in (κ4-B(mimtBu)3)Fe(CO)2 is expected to be much greater 

than that of the B atom in (DPB)Fe(CO)3. Accordingly, while the Fe center in (κ4-

B(mimtBu)3)Fe(CO)2 may be formulated as divalent, the Fe center in (DPB)Fe(CO)3 is 

more appropriately considered zerovalent, akin to Fe(CO)5.  

 

4.3  Synthesis and hydrogenation of an Fe dicarbyne 

 The low C–O stretching frequencies of [(DPB)Fe(CO)2][K(benzo-15-c-5)2]2 suggest 

that the O atoms could have nucleophilic character. In situ reduction of (DPB)Fe(CO)2 

with excess K and addition to a -78 ˚C solution of 2.2 equiv TMSOTf results in silylation 

of both O atoms to give the dicarbyne (DPB)Fe(COSiMe3)2 (Scheme 4.4). Since few Fe  

Scheme 4.4  Preparation of (DPB)Fe(COSiMe3)2 

 

carbynes have been reported14 and (DPB)Fe(COSiMe3)2 is the first example of an Fe 

dicarbyne, its molecular and electronic structures are of particular interest. Although 

(DPB)Fe(COSiMe3)2 reconverts to (DPB)Fe(CO)2 in solution over several days, the rate 

of this decomposition is sufficiently slow to allow for solid- and solution-state 

characterization.  

(DPB)Fe(CO)2

i) excess K
ii) 2.2 TMSOTf

-78˚ C, THF
(DPB)Fe(COSiMe3)2
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 Single crystals of (DPB)Fe(COSiMe3)2 contain two molecules in the asymmetric unit 

and were studied by XRD analysis (Figure 4.8). The very short Fe–C distances of 1.639 

 

           

Figure 4.8  Displacement ellipsoid (50%) representations of one of the 
two crystallographically-independent molecules of (DPB)Fe(COSiMe3)2 
from different perspectives. PiPr2 groups are truncated and H atoms are 
omitted for clarity. Selected distances and angles are given in Table 4.2.  

Å (Fe–C1 avg.) and 1.676 Å (Fe–C2 avg.) are similar to the Fe–(COSiMe3) distance of 

1.671(2) Å reported for (SiP3)Fe(COSiMe3)14b and indicate Fe–C multiple-bond character 

for both carbyne ligands. The C2 carbyne ligand is distinguished by a long yet non-

negligible B–C2 interaction (1.86 Å (avg.)) and a contracted ∠(Fe–C2–O2) of 151˚ 

(avg.), compared with 171˚ (avg.) for ∠(Fe–C1–O1). In solution, the two carbyne ligands 

in 13C-labeled samples are further differentiated by their 13C NMR resonances at 230.2 

ppm (d, 2JCC = 3.2 Hz) and 261.9 ppm (dt, 2JCP = 9.0 Hz, 2JCC = 3.2 Hz), assigned to C1 

and C2, respectively, on the basis of DFT calculations. For reference, the chemical shift 

corresponding to the carbyne ligand in (SiP3)Fe(13COSiMe3) is 250.3 ppm (q, 2JCP).15 The 
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Table 4.2  Selected bond lengths (Å) and angles (˚) of (DPB)Fe(COSiMe3)2 and of its 
optimized geometry (Gaussian09, M06L/6-311+g(d)).  

  Mol. 1 Mol. 2 Calc. 
Fe-C1 1.6430(12)  1.6357(11) 1.642 
Fe-C2 1.6759(10) 1.6764(11) 1.682 

Fe-B 2.5931(12) 2.5635(12) 2.557 

Fe-P1 2.2238(4) 2.2135(4) 2.219 

Fe-P2 2.2428(4) 2.2370(4) 2.238 

    C1-O1 1.2847(14) 1.2829(14) 1.284 

C2-O2 1.3046(13) 1.3110(13) 1.297 

Fe-C1-O1 173.93(10) 168.17(11) 170˚ 
Fe-C2-O2 151.31(8) 151.48(8) 151˚ 
C1-O1-Si1 138.16(8) 143.28(10) 133˚ 
C2-O2-Si2 132.58(7) 129.31(8) 127˚ 

    B-C2 1.8619(16) 1.8485(15) 1.823 
B-C

aryl
 avg. 1.65 1.65 1.64 

Σ∠(C-B-C) 328˚ 328˚ 330˚ 
 

B atom is pyramidalized in both the solution and solid states as indicated by the low 

Σ∠(C–B–C) = 328˚ (avg.) and upfield-shifted 11B NMR signal (-6.4 ppm). In addition, 

the isomer shift in the Mössbauer spectrum of (DPB)Fe(COSiMe3)2 (Figure 4.9) is 

substantially more negative than that of (DPB)Fe(CO)2 (Δδ = -0.287 mm s-1) which 

suggests a greater degree of covalent bonding in (DPB)Fe(COSiMe3)2. Taken together, 

these XRD, NMR, and Mössbauer data indicate that extensive Fe–C multiple bonding 

and additional C2–B bonding must be considered when assessing the valence bonding in 

(DPB)Fe(COSiMe3)2. 

 In order to account for these features, I propose several possible resonance structures 

for (DPB)Fe(COSiMe3)2 (Figure 4.10). Lewis structures A, B, and C have two dicarbyne
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Figure 4.9  Mössbauer spectra of (DPB)Fe(CO)2 and (DPB)Fe(COSiMe3)2 
recorded at 5 K. The spectrum of (DPB)Fe(COSiMe3)2 contains multiple 
minor impurities arising from contamination with (DPB)Fe(CO)2 as well 
as additional impurities resulting form exposure to air during sample 
handling. 

 

Figure 4.10  Possible resonance structures of (DPB)Fe(COSiMe3)2.  

ligands (by the IUPAC definition),16 one of which exhibits dative bonding to the pendant 

borane. Structures A and B emphasize that a d-block metal does not have enough orbitals
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to form three independent π bonds17 (as in structure C), although DFT calculations show 

the presence of four orbitals with significant Fe–C π bonding character (vide infra). 

Structure C may be a valid resonance contributor if either three-center hyperbonding18 or 

mixing with Fe 4p orbitals is invoked,11b and it therefore should not be discarded without 

an in-depth theoretical study that is beyond the scope of this work. (A crude MO diagram 

for a hypothetical linear dicarbyne complex (Figure 4.11) shows a limiting case in which 

 

Figure 4.11  HOMOs of a hypothetical linear dicarbyne complex of D∞h 
symmetry. 

metal 4px and 4py orbital participation can increase the overall number of independent M–

C π bonds from two to four.) Thus, for the purposes of this chapter, I do not distinguish 

between resonance structures A, B, and C because they differ only in the linear 

independence of the atomic orbitals that constitute the Fe–C π bonding orbitals. 

 The most important difference between the depiction of the bonding in resonance 

form D and that in resonance forms A, B, and C is that the boron atom in D has a normal 

covalent bond19 to one of the carbynes, thereby rendering that fragment a zwitterionic 
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Fischer-type carbene with a formal negative charge on the boron atom. A boratocarbene 

ligand as depicted in D would be expected to display four nearly equivalent B–C bonds 

since each carbon substituent would have sp2 hybridization; however, the B–C2 distance 

is ~0.2 Å (avg.) longer than the other B–Csp2 distances (1.65 Å (avg.)). In addition, the 

average Fe–C distance of all structurally-characterized O-substituted Fischer-type Fe 

carbenes is 1.90 Å,20 which is >0.2 Å (avg.) longer than the Fe–C2 distance observed in 

(DPB)Fe(COSiMe3)2. Given these structural metrics, resonance contributors A, B, and C 

should be weighted more heavily than D.  

 In order to gain further insight into the bonding in (DPB)Fe(COSiMe3)2, DFT 

calculations were performed on (DPB)Fe(COSiMe3)2 and a hypothetical, simplified 

model, (PMe3)2Fe(COSiH3)2. The five highest filled MOs of (PMe3)2Fe(COSiH3)2 (Figure 

4.12) include one essentially non-bonding orbital with some degree of Fe–P backbonding 

(HOMO) as well as four highly covalent orbitals with significant Fe–C π bonding 

(HOMO-1 through HOMO-4). The diagram in Figure 4.12b shows how the MOs in 

Figure 4.12a may be crudely decomposed into atomic orbitals, though it should be 

emphasized that additional mixing with 4s and 4p orbitals is likely. Given these 

considerations, (PMe3)2Fe(COSiH3)2 may be regarded as isoelectronic to known 

compounds of the form (PR3)2Fe(NO)2.21  

 The filled MOs of (DPB)Fe(COSiMe3)2 with significant Fe 3d character are shown in 

Figure 4.13. Although these MOs are more complex than those of (PMe3)2Fe(COSiH3)2  

owing to the lower overall symmetry of (DPB)Fe(COSiMe3)2 as well as mixing with aryl 

π orbitals, the shapes and ordering of the orbitals for the two molecules correlate with 

good fidelity. For example, the Fe–C π bonding in the HOMO-2 of (PMe3)2Fe(COSiH3)2   
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Figure 4.12  (a) Calculated MOs of (PMe3)2Fe(COSiH3)2 that have 
substantial Fe 3d character (Gaussian09, M06L/6-311+g(d), C2v 
symmetry). (b) Scheme showing Fe and C atomic orbital contributions to 
the MOs.  

is also the dominant feature of the HOMO-2 of (DPB)Fe(COSiMe3)2 with some 

additional mixing with B in the latter. Mixing of B pz into an Fe–C π bonding orbital is 

also observed for the HOMO-10 of (DPB)Fe(COSiMe3)2. Thus, these calculations 

suggest that the electronic structures of (DPB)Fe(COSiMe3)2 and (PMe3)2Fe(COSiH3)2 

are largely analogous and that (DPB)Fe(COSiMe3)2 may be considered a perturbation of 

(PMe3)2Fe(COSiH3)2.  
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Figure 4.13  Calculated MOs with substantial Fe 3d character in 
(PMe3)2Fe(COSiH3)2 (top, reproduced from Figure 4.12) and 
(DPB)Fe(COSiMe3)2 (bottom). Calculations performed using Gaussian09 
with the M06L functional and 6-311+g(d) basis set. 

 In order to calibrate the strength of the B–C2 interaction in (DPB)Fe(COSiMe3)2, I 

sought to calculate the minimum geometry of a related compound that would be expected 

to have a negligible B–L bond. The optimized geometry of (DPB)Fe(NO)2 (Figure 4.14) 

has a long B–N2 distance of nearly 3 Å and a nearly planar B center, both of which 

suggest a negligible interaction. The B–N2 interaction in (DPB)Fe(NO)2 is weaker than 

the B–C2 interaction in (DPB)Fe(COSiMe3)2 because the Fe–N π bonding orbitals in 

(DPB)Fe(NO)2 are lower in energy that the Fe–C π bonding orbitals in 

(DPB)Fe(COSiMe3)2 and therefore do not match as well with the empty B pz orbital. 
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Figure 4.14  Optimized structures of (DPB)Fe(NO)2 (left) and 
(DPB)Fe(COSiMe3)2 (right). Calculations performed using Gaussian09 
using the M06L functional and the 6-311+g(d) basis set. All starting 
coordinates were generated by modifying the solid-state structure of 
(DPB)Fe(COSiMe3)2.  

These comparisons further support the description of the B–C2 bond in 

(DPB)Fe(COSiMe3)2 as a weak but important interaction.  

 The stability of the dicarbyne form of (DPB)Fe(COSiMe3)2 with respect to C–C 

coupling is in marked contrast to the related dmpe-ligated V, Nb, and Ta dicarbonyls 

which yield C–C-coupled η2-alkyne complexes upon reductive disilylation (vide supra).2 

Nevertheless, facile C–C coupling is achieved upon RT addition of 1 atm H2 to solutions 

of (DPB)Fe(COSiMe3)2 which results in liberation of the olefin Z-1,2-

bis(trimethylsiloxy)ethylene (“Z-BTSE”) in 43% yield (avg. of three runs; Scheme 4.5). 

Scheme 4.5  Hydrogenation of (DPB)Fe(COSiMe3)2 

 

(DPB)Fe(COSiMe3)2

1 atm H2
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C6D6
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H H
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The hydrogenation of (DPB)Fe(COSiMe3)2 is highly stereoselective, forming Z-BTSE 

without any detected E-BTSE. Performing the hydrogenation with 13C-labeled 

(DPB)Fe(COSiMe3)2 gives exclusively 13C-labeled Z-BTSE, establishing that 

(DPB)Fe(COSiMe3)2 is the source of the C–C coupled product. No other 13C-labeled 

products have been observed, and I have not yet been able to fully characterize the 

resulting paramagnetic Fe-containing species.  

 A few Fe systems have been reported to promote reductive CO coupling,22 though the 

release of an olefin by a hydrogenative CO reductive coupling pathway has not been 

previously reported for Fe. The hydrogenation of the aforementioned CO-derived 

[(dmpe)2M(η2-alkyne)]X complexes proceeds either at elevated H2 pressures (~8 atm H2 

for the V system)2c or with the aid of a hydrogenation catalyst (1 atm H2 and 5% Pd/C for 

the Ta system).3 By comparison, hydrogenation of (DPB)Fe(COSiMe3)2 occurs within 

minutes at 1 atm H2.  

 A number of fascinating questions remain about the details of C–C coupling in the 

present system. Why do the carbyne ligands in (DPB)Fe(COSiMe3)2 not spontaneously 

couple to give an alkyne complex? What (if any) role does the borane play in the stability 

of the dicarbyne form of (DPB)Fe(COSiMe3)2 or in its hydrogenation? Does C–C 

coupling proceed after one or more hydrogenation steps or is C–C coupling promoted 

simply by initial H2 binding? Future experimental and theoretical studies should be 

directed toward addressing these questions.  
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4.4  Summary 

 In this chapter, I described the conversion of an Fe dicarbonyl to an Fe dicarbyne that 

undergoes hydrogenative release of an E-olefin. The complex (DPB)Fe(COSiMe3)2 is the 

first Fe dicarbyne and the first dicarbyne of any metal that has been isolated as an 

intermediate in a reductive CO coupling pathway. Like the Fe aminoimide intermediate in 

(DPB)Fe-mediated N2 reduction, this dicarbyne features extensive Fe–L multiple bonding.  

This commonality highlights the potential role for highly covalent intermediates23 in 

synthetic and biological Fe-mediated nitrogen and carbon fixation.  

 

4.5  Experimental 

General Considerations. All manipulations were carried out using standard Schlenk or 

glovebox techniques under an atmosphere of dinitrogen. Solvents were degassed and 

dried by sparging with N2 gas and passage through an activated alumina column. 

Deuterated solvents were purchased from Cambridge Isotopes Laboratories, Inc. and 

were degassed and stored over activated 3 Å molecular sieves prior to use. Reagents were 

purchased from commercial vendors and used without further purification unless 

otherwise noted. [(DPB)Fe]2(µ-1,2-N2) was synthesized according to a literature 

procedure.7b Elemental analyses were performed by Midwest Microlab (Indianapolis, IN) 

and Robertson Microlit Laboratories (Ledgewood, NJ). 

Spectroscopic measurements. 1H, 13C, 31P, and 11B NMR spectra were collected at room 

temperature on a Varian 400 MHz spectrometer. 1H and 13C spectra were referenced to 

residual solvent resonances. 31P spectra were referenced to external 85% phosphoric acid 

(δ = 0 ppm). 11B spectra were referenced to BF3•Et2O (0 ppm). UV-vis measurements 
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were performed with a Cary 50 instrument with Cary WinUV software. IR measurements 

were obtained as thin films formed by evaporation using a Bruker Alpha Platinum ATR 

spectrometer with OPUS software.  

X-ray Crystallography. X-ray diffraction studies were carried out at the Caltech Division 

of Chemistry and Chemical Engineering X-ray Crystallography Facility on a Bruker 

three-circle SMART diffractometer with a SMART 1K CCD detector. Data were 

collected at 100K using Mo Kα radiation (λ = 0.71073 Å). Structures were solved by 

direct or Patterson methods using SHELXS and refined against F2 on all data by full-

matrix least squares with SHELXL-97.24 All non-hydrogen atoms were refined 

anisotropically. All hydrogen atoms were placed at geometrically calculated positions 

and refined using a riding model. The isotropic displacement parameters of all hydrogen 

atoms were fixed at 1.2 (1.5 for methyl groups) times the Ueq of the atoms to which they 

are bonded.  

Computational Details. All calculations were performed using the Gaussian09 suite.25 

The geometry optimizations were done without any symmetry restraints using the 

B3LYP hybrid functional. The 6-311+g(d) basis set was used for all atoms. Minimized 

structures were verified with frequency calculations. The starting coordinates for the 

metal and ligand were taken from the crystal structures. 

 

(DPB)Fe(CO)2: A red-brown solution of [(DPB)Fe]2(µ-1,2-N2) (524.2 mg, 0.482 mmol) 

in THF (20 mL) was subjected to three freeze-pump-thaw cycles and subsequently 

exposed to 1 atm CO. The solution was vigorously stirred until the color changed to red-

orange (about 15 min.). Consumption of [(DPB)Fe]2(µ-1,2-N2) was monitored by 1H 
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NMR spectroscopy of aliquots. Extended reaction times result in overcarbonylation to 

give (DPB)Fe(CO)3, so the reaction should be monitored diligently. After complete 

consumption of (DPB)Fe(CO)2, vacuum was applied to the solution giving a dark red 

residue. Residual THF was removed by addition of Et2O (5 mL) and drying in vacuo. The 

resulting red solids were washed with cold Et2O (5 x 2 mL) to give (DPB)Fe(CO)2 (420.0 

mg, 0.717 mmol, 74%). An additional batch of (DPB)Fe(CO)2 may be obtained by 

concentration of the Et2O washings into HMSDO (51.9 mg, 0.0886 mmol, 9%). Single 

crystals suitable for X-ray diffraction may be obtained by concentration of a saturated 

Et2O solution. 1H NMR (400 MHz, C6D6) δ 8.63 (d, J = 7.7 Hz, 1H), 7.42 (d, J = 7.4 Hz, 

1H), 7.32 (t, J = 7.4 Hz, 2H), 7.26 (t, J = 6.7 Hz, 1H), 7.16-7.00 (m, 6H), 6.89 (t, J = 7.2 

Hz, 1H), 6.42 (d, J = 7.3 Hz, 1H), 2.44 (dh, J = 14.6, 7.3 Hz, 2H), 1.50-1.40 (m, 4H), 

1.28 (dd, J = 14.9, 6.9 Hz, 3H), 1.27-1.19 (m, 4H), 1.10 (dd, J = 15.3, 6.9 Hz, 3H), 0.95 

(dd, J = 19.5, 7.6 Hz, 3H), 0.88 (dd, J = 11.6, 7.2 Hz, 3H), 0.65 (dd, J = 13.4, 7.2 Hz, 

3H), 0.36 (dd, J = 16.4, 7.5 Hz, 3H). 13C NMR (101 MHz, C6D6) δ 220.92 (dd, J = 23.3, 

17.6 Hz), 214.42-213.63 (m), 165.11, 151.59, 146.18, 146.05, 141.60, 141.22, 136.75, 

136.59, 135.71, 131.04, 129.64, 129.03, 126.37, 126.29, 125.22, 116.95, 98.52, 98.36, 

30.05 (d, J = 18.1 Hz), 28.60 (dd, J = 28.4, 12.7 Hz), 26.74 (d, J = 16.3 Hz), 22.14, 

22.10, 20.82, 19.34, 18.70, 18.17, 18.13, 17.79. 31P NMR (162 MHz, C6D6) δ 90.64 (d, J 

= 65.3 Hz), 54.62 (d, J = 65.3 Hz). 11B NMR (128 MHz, C6D6) δ 11.47. UV/vis (toluene, 

nm {M-1 cm-1}): 482 {sh, 2000}. Elemental analysis for C32H41BFeO2P2: calc. C 65.65, H 

7.05, N 0; found C 65.48, H 7.14, N <0.02. IR of (DPB)Fe(12CO)2 (cm-1): 1908, 1863. IR 

of (DPB)Fe(13CO)2 (cm-1): 1868, 1824.  
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(DPB)Fe(CO)3:  A J. Young NMR tube was charged with (DPB)Fe(CO)2 (22.0 mg, 

0.0375 mmol) and 0.7 mL C6D6 under N2. After three freeze-pump-thaw cycles, 1 atm 

CO was added and the NMR tube was rotated at RT for 1 hr. The solution changed from 

red-orange to very pale yellow and NMR and IR spectroscopies showed quantitative 

conversion to (DPB)Fe(CO)2. Solutions and colorless powders of (DPB)Fe(CO)3 slowly 

reconvert to (DPB)Fe(CO)2 under 1 atm N2 or vacuum. As such, (DPB)Fe(CO)3 is best 

studied in solution under 1 atm CO. Single crystals suitable for X-ray diffraction may be 

obtained by concentration of an Et2O solution (with a small contamination of red-orange 

crystals of (DPB)Fe(CO)2). 1H NMR (400 MHz, C6D6) δ 8.03 (d, J = 7.7 Hz, 2H), 7.26-

6.91 (m, 9H), 6.88-6.76 (m, 2H), 2.73 (m, 2H), 2.38 (m, 2H), 1.25 (m, 12H), 1.06 (m, 

12H). 13C NMR (101 MHz, C6D6) δ 217.61 (t, J = 26.2 Hz), 215.83 (t, J = 30.8 Hz), 

213.58 (t, J = 10.7 Hz), 166.72, 157.76, 141.94-139.56 (m), 135.84, 132.62 (t, J = 8.6 

Hz), 129.32, 128.76, 126.60, 125.65, 123.73, 31.40 (t, J = 11.5 Hz), 26.70-25.98 (m), 

20.41, 20.14, 18.88, 16.93. 31P NMR (162 MHz, C6D6) δ 87.51. 11B NMR (128 MHz, 

C6D6) δ 20.25. Elemental analysis data were not obtained due to the instability of 

(DPB)Fe(CO)3 with respect to CO loss when not stored under 1 atm CO. IR of 

(DPB)Fe(12CO)3 (cm-1): 2002 (w), 1932 (vs). 

 

(DPB-H)Fe(H)(CO)2: A J. Young NMR tube was charged with (DPB)Fe(CO)2 (24.3 mg, 

0.0415 mmol) and 0.7 mL C6D6 under N2. After three freeze-pump-thaw cycles, 1 atm H2 

was added and the NMR tube was rotated at RT for 1 hr. The solution changed from red-

orange to very pale green and NMR and IR spectroscopies showed quantitative 

conversion to (DPB-H)Fe(H)(CO)2. Solvent was removed in vacuo and the resulting 
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colorless solids were extracted into n-pentane. Recrystallization by evaporation of this 

solution into HMDSO afforded large, polychroic (magenta, teal, green) single crystals 

suitable for X-ray diffraction (23.0 mg, 0.0391 mmol, 94%). 1H NMR (400 MHz, C6D6) δ 

7.76 (d, J = 6.9 Hz, 2H), 7.12 (m, 9H), 7.00 (m, 3H), 2.40 (m, 2H), 2.13 (m, 2H), 1.04 

(m, 18H), 0.88 (m, 6H), -7.73 (td, J = 54.4, 7.6 Hz, 1H), -17.00 (br m, 1H). 13C NMR 

(101 MHz, C6D6) δ 217.38, 214.80, 162.85, 155.47, 139.49 (t, J = 25.8 Hz), 134.14, 

132.83 (t, J = 7.3 Hz), 128.60, 128.45, 126.79, 125.42, 124.59, 30.55 (t, J = 8.3 Hz), 

28.15 (t, J = 16.2 Hz), 18.94, 18.61, 18.40, 18.35. 31P NMR (162 MHz, C6D6) δ 92.97. 11B 

NMR (128 MHz, C6D6) δ 11.80. UV/vis (toluene, nm {M-1 cm-1}): 332 {sh, 900}. 

Elemental analysis for C32H43BFeO2P2: calc. C 65.33, H 7.37, N 0; found C 65.03, H 

7.26, N <0.02. IR of (DPB–H)Fe(H)(13CO)2 (cm-1): 2080 (br, Fe–H–B), 1815 (s, C–O 

asym.), 1752 (s, C–O sym.). 

 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2]: A red-orange solution of (DPB)Fe(CO)2 (28.6 mg, 

0.0488 mmol) in THF (3 mL) was stirred over excess K until the solution turned inky 

yellow (<5 min.). The solution was decanted from the K onto benzo-15-crown-5 (28.8 

mg, 0.107 mmol). Solvent was removed in vacuo to provide a brown residue that was 

washed with Et2O (3 x 1 mL) and C6H6 (3 x 1 mL). Diffusion of n-pentane into a THF 

solution afforded single crystals of the title compound (53.1 mg, 0.0457 mmol, 94%). 1H 

NMR (300 MHz, THF) δ 8.73, 8.58, 8.17, 5.70, 5.54, 3.16, 2.75, -0.04 (v br). Solution 

magnetic moment by Evans method (THF, RT): 1.7 µB. Elemental analysis for 

C60H81BFeKO12P2: calc. C 62.02, H 7.03, N 0; found C 61.71, H 7.15, N <0.02. IR of 
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[(DPB)Fe(12CO)2][K(benzo-15-c-5)2] (cm-1): 1857, 1791. IR of 

[(DPB)Fe(12CO)2][K(benzo-15-c-5)2]: 1815, 1752.  

 

[(DPB)Fe(CO)2][K(benzo-15-c-5)2]2: Due to its extremely high air and moisture 

sensitivity, ((DPB)Fe(CO)2)(K(THF)x)2 is best generated in situ (by stirring a THF 

solution of (DPB)Fe(CO)2 over excess K for 6 hr.) and used immediately. A cation-

encapsulated species was generating for NMR, IR, and XRD characterization according 

to the following procedure. A red-orange solution of (DPB)Fe(CO)2 (12.9 mg, 0.0219 

mmol) in THF-d8 (0.7 mL) was stirred over K for 6 hr. The solution initially changed to 

inky yellow and subsequently to dark red-brown. This solution was added to benzo-15-

crown-5 (24.7 mg, 0.0921 mmol) and transferred to a J. Young tube for NMR 

characterization. Vapor diffusion of Et2O into this THF solution afforded dark solids 

from which a single crystal was selected for XRD analysis. 1H NMR (300 MHz, THF-d8) 

δ 7.14-6.99 (m, 4H), 6.80 (m, 18H), 6.60 (m, 4H), 6.50 (t, J = 7.2 Hz, 2H), 6.36 (t, J = 

5.8 Hz, 1H), 3.91 (br s, 16H), 3.72 (br s, 16H), 3.63 (br s, 32H), 2.28 (br s, 2H), 2.03 (br 

s, 2H), 1.22 (br s, 6H), 1.06 (br s, 6H), 0.90 (br s, 6H), 0.77 (br s, 6H). 11B NMR (160 

MHz, THF-d8) δ 14.05. 13C NMR (126 MHz, THF-d8) δ 244.70 (t, J = 10.5 Hz), 244.06 

(t, J = 17.5 Hz), 183.05, 159.77, 154.09, 141.12, 137.41, 130.28, 128.90 (t, J = 23.8 Hz), 

126.37 (d, J = 47.1 Hz), 124.41, 122.43, 118.90 (d, J = 44.0 Hz), 75.29, 74.70, 73.80, 

73.32, 37.83 (d, J = 20.7 Hz), 35.30-34.12 (m), 30.83, 26.79-25.95 (m), 25.95-25.03 (m), 

24.03. 31P NMR (121 MHz, THF-d8) δ 102.43 (dd in 13C-labeled sample; s in 12C-labeled 

sample). IR of [(DPB)Fe(12CO)2][K(benzo-15-c-5)2]2 (cm-1): 1738, 1659. IR of 

[(DPB)Fe(13CO)2][K(benzo-15-c-5)2]2 (cm-1): 1696, 1620. 
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(DPB)Fe(COSiMe3)2: A red-orange solution of (DPB)Fe(CO)2 (20.8 mg, 0.0354 mmol) 

in THF (2 mL) was stirred over K for 6 hr. The solution initially changed to inky yellow 

and subsequently to dark red-brown. The solution was cooled to -78 ˚C and then added 

dropwise to a precooled (-78 ˚C) 0.4 M toluene solution of TMSOTf (0.185 mL, 0.0743 

mmol). The cold solution immediately turned to a lighter brown. After stirring for 15 

min. at -78 ˚C, the solution was brought to RT and solvent was removed in vacuo. 

Residual THF and toluene was removed by addition of pentane (2 mL) followed by 

drying in vacuo. The resulting solids were dissolved in n-pentane (2 mL) and filtered 

through Celite to afford a brown solution. Removal of the solvent in vacuo afforded 

brown solids (18.0 mg) with compositions that are typically 85-90% 

(DPB)Fe(COSiMe3)2 and 10-15% (DPB)Fe(CO)2 as judged by 1H and 31P NMR 

spectroscopy. In solution, (DPB)Fe(COSiMe3)2 converts to (DPB)Fe(CO)2 over several 

days; as such, samples of (DPB)Fe(COSiMe3)2 are best prepared immediately before use. 

Brown single crystals of (DPB)Fe(COSiMe3)2 (contaminated by single crystals of 

(DPB)Fe(CO)2) may be obtained by evaporation of a concentrated SiMe4 solution into 

HMDSO. 1H NMR (400 MHz, C6D6) δ 7.90 (d, J = 7.8 Hz, 2H), 7.51 (d, J = 6.9 Hz, 2H), 

7.46-7.35 (m, 2H), 7.19 (t, J = 7.4 Hz, 2H), 7.08 (m, 3H), 6.96 (t, J = 7.3 Hz, 2H), 2.55-

2.41 (m, 2H), 2.16 (dq, J = 13.8, 6.9 Hz, 2H), 1.27 (m, 12H), 1.02 (dd, J = 13.2, 7.2 Hz, 

6H), 0.79 (dd, J = 13.2, 6.9 Hz, 6H), 0.12 (s, 9H), -0.08 (s, 9H). 13C NMR (101 MHz, 

C6D6) δ 261.93 (td, J = 9.0, 3.1 Hz), 230.22 (d, J = 3.1 Hz). 31P NMR (162 MHz, C6D6) δ 

87.53 (for 13C-labeled sample: d, J = 9.0 Hz). 11B NMR (128 MHz, C6D6) δ 6.42. 

Elemental analysis data were not obtained due to the thermal instability of 

(DPB)Fe(COSiMe3)2.  
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Hydrogenation of (DPB)Fe(COSiMe3)2: Three samples of freshly-prepared 

(DPB)Fe(COSiMe3)2 (~7 mg each) were mixed with ferrocene (~2 mg each), dissolved in 

C6D6 (~0.7 mL each), and added to separate J. Young tubes. A 1H NMR spectrum was 

recorded for each sample to determine the relative amounts of (DPB)Fe(COSiMe3)2 (as 

judged by two the aryl resonances at 7.90 and 7.51 ppm) and Fc. The samples were 

subjected to three freeze-pump-thaw cycles and exposed to 1 atm H2. The brown 

solutions turned yellow over a period of 15 min. at which time another 1H NMR spectrum 

was recorded. Yields of Z-1,2-bis(trimethylsiloxy)ethylene were determined by 

integrating the olefinic resonance (a singlet in natural-abundance 12C samples and a 

complicated multiplet in 13C-enriched samples) against Fc. The identity of Z-1,2-

bis(trimethylsiloxy)ethylene was established by comparison with an independently-

prepared, authentic sample.26 The three runs gave yields of 45, 42, and 41%, for an 

average of 43%. 
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Chapter 5   Late Metal Diphosphinosulfinyl S(O)P2 Pincer-Type Complexes 

5.1  Background 

 The development of pincer-type ligands has led to new insights and discoveries in 

late transition metal chemistry in recent years. Studies on pincer-type complexes have, 

for example, demonstrated unusually facile elementary bond activation steps that have 

been exploited to mediate useful catalytic transformations and to probe the mechanisms 

of such transformations.1 The propensity of certain pincer-type ligands to display redox 

non-innocence,2 to store hydride equivalents,3 and to display hemilability4 has contributed 

to the richness of their chemistry. Furthermore, small variations in the electronic and 

steric features of a given family of pincer ligands often have translated to large 

differences in the properties of their respective transition metal complexes. In addition to 

the diverse reaction chemistry they mediate, pincer-type systems have recently been used 

to stabilize highly unusual bonding motifs,5 as illustrated by a terminal iridium nitrido 

complex6 and a terminal platinum oxo complex.7 

 In this article, we introduce the preparation and properties of complexes that feature a 

pincer-type ligand with electron-accepting properties at a central sulfinyl donor. 

Phosphine-containing pincer-type ligands featuring a strong central σ-acceptor such as a 

borane8 have been reported, but little work has been described on such ligands featuring a 

strong central π-acceptor.9 We therefore reasoned that sulfinyl-containing pincer-type 

ligands would complement the rich and growing body of diphosphine pincer-type 

complexes in the literature. 
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 Toward this goal, we chose to pursue a PS(O)P pincer-type ligand containing two 

phosphines that flank a central diarylsulfoxide. Sulfoxide ligands can serve as good σ-

donors and π-acceptors when bound to the metal via sulfur.10 In addition, sulfoxides—

unlike carbon monoxide—may be easily incorporated into a chelate and be made chiral.11 

I opted to perform my studies using bis(2-(diphenylphosphino)phenyl)sulfoxide 

(“SOP2”), a variant of an ethylene-linked ligand reported in 1994 by Leung and Mok 

(Chart 5.1).12 The phenylene linkers in the SOP2 ligand were incorporated in order to 

Chart 5.1  PS(O)P pincer-type ligands 

 

endow greater rigidity and π-accepting capabilities to the sulfinyl donor. In this chapter, I 

describe the preparation of SOP2 and a host of its group 9 and 10 complexes. This study 

aims to assess the electronic effects of incorporating a sulfinyl donor into a pincer-type 

ligand to help guide future studies with this ligand type. 

 

5.2  Results 

 SOP2 may be synthesized in two steps from commercially available materials on a 

multi-gram scale. Reaction of 2.2 equiv 2-(diphenylphosphino)phenylmagnesium 

bromide (generated in situ from the corresponding aryl bromide) with dimethylsulfate 

using TMSCl as an electrophilic promoter (Scheme 5.1) results in the formation of SOP2 
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Scheme 5.1  Preparation of SOP2 

 

in 60% yield. The ligand is isolated as a colorless solid by precipitation from THF 

solution and may be crystallized by slow evaporation. Its key spectroscopic features are 

as expected (31P NMR (CD2Cl2): -18.3 ppm, ν(S-O): 1,055 cm-1). The solid-state structure 

(Figure 5.1) was determined by XRD analysis and shows an S–O distance of 1.496(1) Å.  

 

 

Figure 5.1  Displacement ellipsoid representation (50%) of SOP2. H 
atoms are omitted for clarity. Selected distance: S–O = 1.496(1) Å.  

 Complexes of Rh(I) may be accessed from (SOP2)RhCl, a convenient starting 

material generated by metallation of SOP2 with 0.5 equiv [(COD)RhCl]2 and loss of COD 

(Scheme 5.2). Bright yellow (SOP2)RhCl exhibits a single 31P NMR signal at 48.8 ppm, 

downfield from that of free SOP2; coordination to Rh is further demonstrated by the 
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Scheme 5.2  Preparation of (SOP2)Rh complexes 

   

prominent 1JRhP = 148 Hz. The solid-state structure (Figure 5.2) reveals a short Rh–S 

distance of 2.1340(8) Å which is substantially shorter than the Rh–P distances (2.25 Å  

avg.) and is the shortest Rh–S distance for any crystallographically characterized 

sulfoxide complex of rhodium.13 Also noteworthy is that its coordination geometry is 

distorted between square planar and cis-divacant octahedral: the chloride ligand is trans 

to the sulfoxide donor in a nearly linear arrangement (Cl–Rh–S = 172.81(3)˚) and the P–

Rh–P angle is contracted to 146.54(3)˚. Rh(I) complexes that feature π-accepting 

tridentate ligands and cis-divacant octahedral geometries have been shown to exhibit 

 

 

Figure 5.2  Displacement ellipsoid representation (50%) of (SOP2)RhCl. 
H atoms and solvent molecules are omitted for clarity. Selected distances 
and angles: Rh–S = 2.1340(8) Å; Rh–P1 = 2.2438(9) Å; Rh–P2 = 
2.2643(9); Rh–Cl = 2.3713(8); S–O = 1.484(2) Å; P1–Rh–P2 = 
146.54(3)˚.  

unusual properties and reactivity.14 Reaction of (SOP2)RhCl with TlN3 provides yellow 

(SOP2)RhN3 and halide abstraction of (SOP2)RhCl with TlPF6 in CH3CN gives yellow 

0.5 [(COD)RhCl]2 TlX

CH3CN
(SOP2)RhN3
[(SOP2)Rh(CH3CN)][PF6](SOP2)RhClSOP2
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[(SOP2)Rh(NCCH3)][PF6]; the P–Rh–P angles in these complexes widen to 160.51(1)˚ 

and 166.44(1)˚, respectively (Figure 5.3).  

 

        

Figure 5.3  Displacement ellipsoid representation (50%) of (SOP2)RhN3 
(left) and [(SOP2)Rh(CH3CN)][PF6] (right). H atoms, solvent molecules, 
and counteranions are omitted for clarity. Selected distances and angles 
for (SOP2)RhN3: Rh–S = 2.1394(3) Å; Rh–P = 2.2689(4), 2.2958(4) Å; 
Rh–N = 2.0639(12); S–O = 1.4802(10) Å; P1–Rh–P2 = 160.51(1)˚. 
Selected distances and angles for [(SOP2)Rh(NCCH3)][PF6]: Rh–S = 
2.1581(4) Å; Rh–P1 = 2.2736(4), 2.2961(4) Å; Rh–N = 2.0453(14) Å; S–
O = 1.4782(11) Å; P1–Rh–P2 = 166.44(1)˚. 

 The corresponding (SOP2)IrCl complex may be accessed in three steps from 

[(COE)2IrCl]2 (Scheme 5.3). Heating a THF solution of SOP2 and 0.5 equiv [(COE)2IrCl]2 

results in formation of the yellow-orange 18-electron complex (fac-SOP2)Ir(COE)Cl. In 

addition to the usual aryl resonances, the 1H NMR spectrum of (fac-SOP2)Ir(COE)Cl 

contains one set of broad resonances attributable to the bound COE ligand. The olefinic 

nuclei are shifted upfield to a broad peak at 4.43 ppm compared with the sharp multiplet 

at 5.6 ppm observed for free COE. The RT 31P NMR spectrum contains one exceptionally 

broad resonance centered at ca. 35 ppm. The X-ray structure of (fac-SOP2)Ir(COE)Cl 
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Scheme 5.3  Preparation of (SOP2)Ir complexes 

   

 (Figure 5.4) reveals an approximately trigonal bipyramidal (TBP) geometry and a 

contracted P–Ir–P angle of 111.08(4)˚. The olefinic COE carbons are pyramidalized as 

expected.  

 Protonation of (fac-SOP2)Ir(COE)Cl by HOTf in CH3CN results in oxidative addition 

of H+, expulsion of cyclooctene, and coordination of CH3CN to give colorless [(mer-

SOP2)Ir(CH3CN)(Cl)(H)][OTf], the stereochemistry of which was established by X-ray 

diffraction (Figure 5.5). Although the hydride in [(mer-SOP2)Ir(CH3CN)(Cl)(H)][OTf] 

could not be located in the difference map, its 1H NMR resonance is readily observed as a 

triplet at –19.1 ppm with 2JPH = 13.8 Hz. A doublet is observed in the 31P NMR spectrum 

at 30.4 ppm, and the 19F spectrum displays a singlet at -77 ppm corresponding to unbound 

triflate. Subsequent deprotonation of [(mer-SOP2)Ir(CH3CN)(Cl)(H)][OTf] by proton 

sponge generates yellow (mer-SOP2)IrCl which displays a downfield-shifted 31P NMR 

resonance at 47.6 ppm and no hydride resonance in its 1H NMR spectrum. This complex 

has a square planar geometry about Ir (Σ∠(L–Ir–L) = 359.9˚; Figure 5.6). Analogously to 

(SOP2)RhCl, the Ir–S distance is more than 0.1 Å shorter than the average Ir–P distance 

and shorter than any previously structurally characterized sulfoxide complex of iridium.  
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Figure 5.4  Displacement ellipsoid representation (50%) of (fac-SOP-
2)Ir(COE)Cl. H atoms and solvent molecules are omitted for clarity. 
Selected distances and angles: Ir–C1 = 2.206(5) Å; Ir–C2 = 2.181(4) Å; 
Ir–S = 2.170(1) Å; Ir–P1 = 2.323(1) Å; Ir–P2 = 2.3147(8); Ir–Cl = 
2.417(1); S–O = 1.474(3) Å; P1–Ir–P2 = 111.08(4)˚. 

 

Figure 5.5  Displacement ellipsoid representation (50%) of [(mer-
SOP2)Ir(CH3CN)(Cl)(H)][OTf]. H atoms, solvent molecules, and 
counteranion are omitted for clarity. Selected distances and angles: Ir–N = 
2.1322(26) Å; Ir–S = 2.1911(7) Å; Ir–P1 = 2.3061(9) Å; Ir–P2 = 
2.3104(9); Ir–Cl = 2.3877(7); S–O = 1.475(2) Å; P1–Ir–P2 = 166.56(4)˚. 
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Figure 5.6  Displacement ellipsoid representation (50%) of (SOP2)IrCl. H 
atoms and solvent molecules are omitted for clarity. Selected distances 
and angles: Ir–S = 2.1341(5) Å; Ir–P1 = 2.2599(5) Å; Ir–P2 = 2.2791(5); 
Ir–Cl = 2.3551(5); S–O = 1.486(1) Å; P1–Ir–P2 = 164.78(2)˚. 

 With two trans-disposed triaryl phosphines, a chloride, and a sulfoxide coordinated in 

a square planar geometry about Ir, the topology of (SOP2)IrCl is very similar to that of 

Vaska’s complex, which is well known in the context of classic oxygen binding studies.15 

As such, the two complexes are expected to have similar frontier molecular orbitals. DFT 

calculations on Vaska’s complex show that the orbital of d(xz) parentage (where the x-

axis is defined by the Ir–Cl vector) has the anticipated Ir–Cl π* and Ir–CO π interactions 

(Figure 5.7). Nearly identical results are seen in an orbital analysis of (SOP2)IrCl, with 

Ir–Cl π* and Ir–SO π contributions; this suggests that the sulfoxide donor in SOP2 is a 

competent π-acceptor. To test if SOP2 behaves chemically as an ancillary, chelating 

surrogate of one CO donor and two PPh3 donors, a CD2Cl2 solution of (SOP2)IrCl was 

exposed to 1 atm O2 (Scheme 5.4). This resulted in rapid bleaching of the solution to very 

pale yellow and a new 31P NMR signal at 24.5 ppm. The solid-state structure of (fac-

SOP2)Ir(η2-O2)(Cl) (Figure 5.8) shows an η2-peroxide ligand bound to the (SOP2)IrCl 
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Figure 5.7  Calculated HOMO-1 orbitals of Vaska’s complex (left) and 
(SOP2)IrCl (right). 

Scheme 5.4  O2 binding by (SOP2)IrCl 

fragment in an approximately TBP geometry (τ = 0.66 if the O2 fragment is treated as one 

ligand), with the chloride and sulfoxide donors located in axial positions. The geometry 

and metrics are reminiscent of the dioxygen adduct of Vaska’s complex 

(PPh3)2Ir(CO)Cl(O2), except that the phosphines occupy equatorial rather than axial 

positions in (fac-SOP2)Ir(η2-O2)(Cl). More saliently, the O–O bond length is 1.464(3) Å 

in (fac-SOP2)Ir(η2-O2)(Cl)—identical to that in (PPh3)2Ir(CO)Cl(O2) (1.465(4) Å)16—

and their respective ν(O-O) IR stretching frequencies are very similar (847 and 855 cm-1 for 
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Figure 5.8  Displacement ellipsoid representation (50%) of (fac-
SOP2)Ir(η2-O2)(Cl). H atoms are omitted for clarity. Selected distances and 
angles: Ir–O1 = 2.041(2) Å; Ir–O2 = 2.051(2) Å; Ir–S = 2.1901(5) Å; Ir–
P1 = 2.2821(7) Å; Ir–P2 = 2.2918(6); Ir–Cl = 2.3867(6); O1–O2 = 
1.464(3); S–O3 = 1.465(2) Å; P1–Ir–P2 = 99.38(2)˚.  

(fac-SOP2)Ir(η2-O2)(Cl) and (PPh3)2Ir(CO)Cl(O2), respectively).17 Taken together, these 

computational and experimental results lend credence to the analogy between the 

diarylsulfoxide moiety in SOP2 and a CO ligand, with each ligand serving as π-acceptors 

using S–O σ* and C–O π* orbitals, respectively. 

 Entry into nickel starting materials of SOP2 may be accessed using common nickel 

sources (Scheme 5.5). Ligation of (PPh3)2Ni(CO)2 by  SOP2 results in liberation of PPh3 

and formation of (SOP2)Ni(CO). Its solid-state structure (Figure 5.9) reveals a distorted 

tetrahedral geometry about Ni with L–Ni–L angles ranging from 92.47(5)˚ (S–Ni–P2) to 

Scheme 5.5  Preparation of (SOP2)Ni complexes  

   

 

(DME)NiCl2
TlPF6(PPh3)2Ni(CO)2

SOP2(SOP2)Ni(CO) [(SOP2)NiCl][PF6]
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Figure 5.9  Displacement ellipsoid representation (50%) of 
(SOP2)Ni(CO). H atoms and solvent molecules are omitted for clarity. 
Selected distances and angles: Ni–C1 = 1.760(6) Å; C1–O1 = 1.145(6) Å; 
Ni–S = 2.129(1) Å; Ni–P1 = 2.162(1) Å; Ni–P2 = 2.171(1) Å; S–O2 = 
1.490(3) Å, P1–Ni–P2 = 116.06(3)˚.  

126.90(16)˚ (S–Ni–C) and a C–O length of 1.145(6). The IR spectrum exhibits a strong 

C–O stretch at 1,957 cm-1, higher than that observed in (PPh3)3Ni(CO) and 

(triphos)Ni(CO) (Table 5.1; triphos = (Ph2PCH2)3CH)).  

Table 5.1  Comparison of (SOP2)M(CO) C–O stretching frequencies with those of 
related phosphine complexes 

Compound ν (CO) (cm-1) ref. 
  

  (SOP2)Ni(CO) 1957 this work 
(PPh3)3Ni(CO) 1928 18

 

(triphos)Ni(CO) 1901 18
 

  
  (SOP2)Pd(CO) 1985 this work 

(PPh3)3Pd(CO) 1955 19
 

(triphos)Pd(CO) 1919 20
 

  
  (SOP2)Pt(CO) 1945 this work 

(PPh3)3Pt(CO) 1903 21
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 The cationic complex [(SOP2)NiCl][PF6] may be generated by stirring a mixture of 

(DME)NiCl2, SOP2, and TlPF6 in THF. The resulting square planar complex is orange-

red in THF, red-purple in CH2Cl2, and deep purple in CH3CN; [(SOP2)NiCl][PF6] remains 

diamagnetic in each of these solvents and thus maintains its square planar geometry in 

solution as well as the solid state (Figure 5.10). This bathochromic shift indicates a 

 

 
 

Figure 5.10  Displacement ellipsoid representation (50%) of 
[(SOP2)NiCl][PF6]. H atoms, solvent molecules, and counteranion are 
omitted for clarity. Selected distances and angles: Ni–S = 2.0985(6) Å; 
Ni–P1 = 2.1865(7) Å; Ni–P2 = 2.1916(7) Å; Ni–Cl = 2.1376(6) Å; S–O = 
1.466(2) Å; P1–Ni–P2 = 171.62(3)˚. 

substantial change in the dipole between the ground and excited states and it is therefore 

presumed to be a charge-transfer transition. The cyclic voltammagram of 

[(SOP2)NiCl][PF6] with 0.1 M Bu4NPF6 electrolyte in CH3CN shows two quasi-reversible 

waves at -0.54 and -0.95 V versus Fc/Fc+ (Figure 5.11). The relatively anodic potentials 

of these processes speak to the electrophilicity of [(SOP2)NiCl][PF6] and the electron 

withdrawing properties of SOP2.  
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Figure 5.11  Cyclic voltammagram of [(SOP2)NiCl][PF6] in CH3CN with 
0.1 M Bu4NPF6 electrolyte at 0.01 V/sec referenced to Fc/Fc+. 

 In order to probe the electronic features imparted by SOP2 on palladium and 

platinum, the monocarbonyl complexes were targeted in analogy to (SOP2)Ni(CO) 

(Scheme 5.6). Starting materials of the form (SOP2)M(PPh3) (M = Pd and Pt) are 

 

Scheme 5.6  Preparation (SOP2)Pd and (SOP2)Pt complexes 

(SOP2)M(PPh3)

M = Pd,Pt M = Pd,Pt

0.25 Pd2(DBA)3
0.5 (COD)PdCl2, TlPF6

0.5 [(SOP2)2Pd2][PF6]2

(COD)MClX
TlPF6 [(SOP2)M(X)][PF6] M = Pd,Pt; X = Cl

M = Pd,Pt; X = Me

[(SOP2)Pd(CH3CN)][PF6]2

1 atm CO (SOP2)M(CO)

[(CH3CN)4Pd][PF6]2

(PPh3)4M

SOP2
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obtained by metallation of SOP2 with (PPh3)4Pd or (PPh3)4Pt. Both pseudotetrahedral, 

inky orange-red complexes were crystallographically characterized (Figure 5.12). The 31P  

 

           

Figure 5.12  Displacement ellipsoid representation (50%) of 
(SOP2)Pd(PPh3) (left) and (SOP2)Pt(PPh3) (right). H atoms and solvent 
molecules are omitted for clarity. Selected distances and angles for 
(SOP2)Pd(PPh3): Pt–S = 2.3131(3) Å; Pt–P1 = 2.2762(4) Å; Pt–P2 = 
2.2709(4); Pt–P3 = 2.2809(4) Å; S–O = 1.494(1) Å; P1–Pt–P2 = 
112.17(2)˚. Selected distances and angles for (SOP2)Pt(PPh3): Pt–S = 
2.3131(3) Å; Pt–P1 = 2.2762(4) Å; Pt–P2 = 2.2709(4); Pt–P3 = 2.2809(4) 
Å; S–O = 1.494(1) Å; P1–Pt–P2 = 112.17(2)˚. 

NMR spectrum of (SOP2)Pt(PPh3) displays a complicated set of features due to the 

presence of three inequivalent 31P nuclei, 31P–31P coupling, and 31P–195Pt coupling. 

However, simulation of the 31P NMR spectrum allows for all relevant chemical shifts and 

coupling constants to be determined (Figure 5.13); importantly, these derived values can 

be used to suitably predict the complicated 195Pt NMR spectrum (Figure 5.14). Exposure 
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Figure 5.13  Simulated (top) and experimental (bottom) 31P NMR spectra 
of (SOP2)Pt(PPh3) (162 MHz, CD2Cl2). Values derived from simulation: 
PA = 30.90 ppm, PB = 30.88 ppm, PC = 28.50, JPA-PB = 0 Hz, JPA-PC = 82.5 
Hz, JPB-PC = 75.6 Hz, JPA-Pt = 4244 Hz, JPB-Pt = 4238 Hz, JPC-Pt = 4917 Hz.  

 
Figure 5.14  Simulated (top) and experimental (bottom) 195Pt NMR 
spectra of (SOP2)Pt(PPh3) (86 MHz, CD2Cl2).  Values used as input for 
simulation: JPA-Pt = 4244 Hz, JPB-Pt = 4238 Hz, JPC-Pt = 4917 Hz.   

of either (SOP2)Pd(PPh3) or (SOP2)Pt(PPh3) to 1 atm CO in CD2Cl2 results in clean 

formation of new products by NMR that are formulated as (SOP2)M(CO) (M = Pd and 

Pt) on the basis of new strong bands in their IR spectra: ν(C-O) = 1,985 and 1,945, 

10!15!20!25!30!35!40!45!
δ!(ppm)!

-4875!-4855!-4835!-4815!-4795!-4775!-4755!-4735!-4715!-4695!-4675!
δ (ppm)!
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respectively. As for (SOP2)Ni(CO), the C–O stretching frequencies are significantly 

higher than those in related compounds (Table 5.1).  

 A variety of X-type ligands may occupy the site trans to the sulfoxide donor of SOP2 

in divalent complexes of Pd and Pt. For example, chlorides of the form [(SOP2)MCl][PF6] 

(M = Pd and Pt) may be obtained in analogy to [(SOP2)NiCl][PF6] by reaction of SOP2 

with (COD)MCl2 and TlPF6 in CH3CN. Both [(SOP2)PdCl][PF6] and [(SOP2)PtCl][PF6] 

are colorless and square planar and [(SOP2)PtCl][PF6] displays characteristic Pt satellites 

in its 31P NMR spectrum (1JPtP = 2,496 Hz). Colorless cationic methyl complexes  

[(SOP2)PdMe][PF6] and [(SOP2)PtMe][PF6] (1JPtP = 2,840 Hz) are obtained under 

identical conditions by metallation of SOP2 with (COD)M(CH3)Cl and TlPF6. The 

structures of [(SOP2)PdCl][PF6] and [(SOP2)PdMe][PF6] are similar (Figure 5.15) except  

 

           

Figure 5.15  Displacement ellipsoid representation (50%) of 
[(SOP2)PdX][PF6] (X = Cl, left; X = Me, right). H atoms, solvent 
molecules, and counteranions are omitted for clarity. Selected distances 
and angles for [(SOP2)PdCl][PF6]: Pd–S = 2.2111(3) Å; Pd–P1 = 
2.3097(3) Å; Pd–P2 = 2.3029(4) Å; Pd–Cl = 2.2934(4) Å; S–O = 1.469(1) 
Å; P1–Pd–P2 = 167.79(1)˚. Selected distances and angles for 
[(SOP2)PdMe][PF6] (avg. of two molecules in the asymmetric unit): Pd–S 
= 2.31 Å; Pd–P = 2.28 Å; Pd–C1 = 2.08 Å; S–O = 1.48 Å; P1–Pd–P2 = 
153˚. 
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that the Pd–S distance is greater (2.31 Å (avg.) vs. 2.2111(3) Å) and the P–Pd–P angle is 

lower (155˚ (avg.) vs. 167.79(1)˚) in [(SOP2)PdMe][PF6], likely owing to its strongly 

trans influencing methyl ligand. Interestingly, these effects are not observed in the 

analogous Pt complexes (Figure 5.16). 

 Initial attempts to generate [(SOP2)PdMe][PF6]  from [(SOP2)PdCl][PF6] using 

CH3MgCl or CH3Li at -78 ˚C led to a mixture of products including a red, dicationic

 

 
Figure 5.16  Displacement ellipsoid representation (50%) of 
[(SOP2)PtX][PF6] (X = Cl, left; X = Me, right). H atoms, solvent 
molecules, and counteranions are omitted for clarity. Selected distances 
and angles for [(SOP2)PtCl][PF6]: Pt–S = 2.1930(4) Å; Pt–P = 2.2966(4), 
2.3044(4) Å; Pt–Cl = 2.3008(4) Å; S–O = 1.4668(13) Å; P–Pt–P = 
168.45(1)˚. Selected distances and angles for [(SOP2)PtMe][PF6]: Pt–S = 
2.2678(8) Å; Pt–P = 2.2707(9), 2.2761(9) Å; Pt–C = 2.093(3) Å; S–O = 
1.472(2) Å; P–Pt–P = 167.04(3)˚. 

Pd(I)-Pd(I) species [(SOP2)Pd]2[PF6]2 that can be independently synthesized from two 

equiv SOP2, one equiv (COD)PdCl2, 0.5 equiv (DBA)3Pd2, and two equiv TlPF6 (Scheme 

5.6). Indeed, I have typically observed net reduction—rather than substitution—of 

[(SOP2)PdCl][PF6]  upon exposure to strong nucleophiles such as –OR, -NR2, and HNR2 

to form [(SOP2)Pd]2[PF6]2 in varying amounts. The solid-state structure of  
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Figure 5.17  Displacement ellipsoid representation (50%) of 
[(SOP2)2Pd]2[PF6]2. H atoms, solvent molecules, and counteranions are 
omitted for clarity. Selected distances and angles: Pd–Pd’ = 2.5793(4) Å; 
Pd–S = 2.289(1) Å; Pd–P1 = 2.336(1) Å; Pd’–P2 = 2.321(1) Å; S–O = 
1.466(3) Å.  

[(SOP2)Pd]2[PF6]2 (Figure 5.17) reveals two SOP2 ligands bound to two Pd(I) centers, 

each in a κ2-Pd-κ1-Pd’ fashion where Pd and Pd’ are related by a crystallographic two-

fold proper rotation axis. The Pd–Pd’ distance is 2.5793(4) Å and the intraligand P2–Pd–

Pd’–S dihedral angle is 63.9˚.  

 Given the great interest in highly electrophilic group 10 complexes in catalysis,11, 22 I 

sought to prepare Pd(II) synthons featuring SOP2 and a potentially more labile ligand 

trans to the sulfoxide donor. Accordingly, I found that SOP2 readily ligates 

[(CH3CN)4Pd][PF6]2 to form bright yellow [(SOP2)Pd(NCCH3)][PF6]2. The latter species 

is a potent Lewis acid and polymerizes THF. In the solid state (Figure 5.18), 
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Figure 5.18  Displacement ellipsoid representation (50%) of 
[(SOP2)Pd(NCCH3)][PF6]2. H atoms, solvent molecules, and counteranions 
are omitted for clarity. Selected distances and angles: Pd–S = 2.2315(4) Å; 
Pd–P = 2.3123(3) Å; Pd–N = 2.033(1) Å; S–O = 1.466(1) Å; P–Pd–P’ = 
169.51(1)˚.  

[(SOP2)Pd(NCCH3)][PF6]2 lies on a mirror plane and has Pd–SOP2 and S–O distances 

(Pd–S = 2.2315(4) Å, Pd–P = 2.3123(3) Å, and S–O = 1.466(1) Å) similar to those in 

[(SOP2)PdCl][PF6]. Cyclic voltammetry of [(SOP2)Pd(NCCH3)][PF6]2 using 0.1 M 

Bu4NPF6 electrolyte in CH3CN (Figure 5.19) reveals two irreversible one-electron 

reduction events at -0.51 and -0.88 V vs. Fc/Fc+. These values are markedly anodic of the 

single irreversible reduction reported by Dubois for the dicationic CO2 reduction 

 

Figure 5.19  Cyclic voltammagram of [(SOP2)Pd(NCCH3)][PF6]2 in 
CH3CN with 0.1 M Bu4NPF6 electrolyte at 0.01 V/sec referenced to 
Fc/Fc+. 
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electrocatalyst [PhP(CH2CH2PPh2)2Pd(NCCH3)][BF4]2, which is observed at -1.35 V vs. 

Fc/Fc+;23 similarly to [(SOP2)NiCl][PF6], one or both of the reduction events observed in 

[(SOP2)Pd(NCCH3)][PF6]2 may involve substantial ligand participation.  

 

5.3  Discussion 

 The late-metal chemistry of SOP2 demonstrates that the ligand behaves as a κ3-

PS(O)P donor. Unlike DMSO and other non-chelating sulfoxides, SOP2 has not yet been 

observed to bind through the oxygen atom probably owing to the formation of two five-

member rings upon S-chelation; the ambidentate coordination of labile sulfoxides is 

important since it may contribute to reduced catalytic activity.24 The SOP2 ligand is 

sufficiently flexible to support both mer and fac coordination modes, M–S distances 

ranging from 2.0985(6) Å in [(SOP2)NiCl][PF6] to 2.31 Å avg. in [(SOP2)PdMe][PF6], 

and P–M–P angles ranging from nearly linear in [(SOP2)NiCl][PF6] (171.62(3)˚) to nearly 

orthogonal in (fac-SOP2)Ir(η2-O2)(Cl) (99.38(2)˚). This flexibility accommodates a 

variety of classic metal coordination geometries (pseudotetrahedral, square planar, 

trigonal bipyramidal, and octahedral) as well as geometries that lie on the continuum 

between square planar and cis-divacant octahedral.  

 The data presented here demonstrate that the diarylsulfoxide donor in SOP2 renders 

the metal center relatively electron deficient, and in so doing mimics a CO ligand in the 

company of two phosphine donors. The values of νC-O in the zero-valent group 10 

complexes (SOP2)Ni(CO), (SOP2)Pd(CO), and (SOP2)Pt(CO) are significantly higher (ca. 

30-40 cm-1) than the frequencies observed for their closest trisphosphine analogs. This 

trend could arise from the poorer π-donating or stronger π-accepting properties of the 
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diarylsulfoxide donor compared with those of a phosphine. The diarylsulfoxide-CO 

analogy is more obvious in (mer-SOP2)IrCl, in which the sulfinyl serves as a π-acceptor 

much like the CO ligand in Vaska’s complex. In addition, the unusually anodic reduction 

potentials of [(SOP2)NiCl][PF6] and [(SOP2)Pd(NCCH3)][PF6]2 speak to the high 

electrophilicity that SOP2 engenders on divalent group 10 metals. The electronic origins 

of these results may arise from some combination of two rationales: the sulfoxide donor 

is a competent σ-donor and a strong π-acceptor, or the sulfoxide is rendered a weak σ-

donor by its oxygen atom but is persistent in ligation because of the chelate effect. In 

order to investigate the plausibility of these two hypotheses, I analyzed the relationship 

between the M–S and S–O bond lengths in the d8 complexes of Rh, Ir, Pd, and Pt.25 Two 

clear and opposing trends emerge when M–S vs. S–O distances are plotted separately for 

group 9 and group 10 complexes. For Rh and Ir (Chart 5.2), shorter M–S distances 

correspond to longer S–O distances, consistent with strong M–(SO) π backbonding. On 

the other hand, the d8 Pd and Pt complexes show the opposite trend with the S–O 

distances decreasing with decreasing M–S distance (Chart 5.3). The latter correlation 

may be explained by the electrostatic argument: more electrophilic metal centers bind the 

sulfur atom more tightly which in turn binds the oxygen atom more tightly. Indeed, the 

longest S–O bond of all SOP2-containing molecules is observed in the free ligand. These 

arguments have been offered in related contexts elsewhere.10 The relatively high C–O 

stretching frequencies of (SOP2)Ni(CO), (SOP2)Pd(CO), and (SOP2)Pt(CO) may be 

explained by relatively stronger M–S(O) backbonding and/or a relatively weaker ligand 

field. Thus, although the sulfoxide in SOP2 has an electron-withdrawing effect compared 
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Chart 5.2  Relationship between Rh/Ir–S and and S–O distances for d8 complexes 
(SOP2)RhCl, (SOP2)RhN3, [(SOP2)Rh(NCCH3)][PF6], (fac-SOP2)Ir(COE)Cl, 
(mer-SOP2)IrCl, and (fac-SOP2)Ir(η2-O2)(Cl). The ESDs are ≤ 0.0029 Å for all S–
O distances and ≤ 0.0009 Å for all M–S distances. 

 

 

Chart 5.3  Relationship between Pd/Pt–S and and S–O distances for d8 complexes 
[(SOP2)PdCl][PF6], [(SOP2)PtCl][PF6], [(SOP2)PdMe][PF6], [(SOP2)PtMe][PF6], 
and [(SOP2)Pd(NCCH3)][PF6]2. The ESDs are ≤ 0.0029 Å for all S–O distances 
and ≤ 0.0008 Å for all M–S distances. 

 



 
153 

with a phosphine donor in all complexes described here, the origins of this effect is most 

simply explained by π-backbonding for Rh and Ir and weak σ-donation for all of the 

metals canvassed.  

 

5.4  Summary 

 The pincer-type diphosphinosulfinyl ligand SOP2 may be easily prepared in multi-

gram quantities and binds late metals in a κ3-PS(O)P fashion. The centrally positioned 

sulfoxide has not thus far displayed ambidentate binding and confers electrophilic 

properties to the metal by virtue of weak σ-donation and—for at least the Rh and Ir 

complexes discussed—relatively strong π-acceptance. The π-accepting capabilities of 

SOP2 may allow for stabilization of low-valent complexes bearing π-donating ligands, 

and the ligand’s geometric flexibility and ability to form highly electrophilic complexes 

may prove useful for bond activation processes and catalysis. Efforts in these areas are 

ongoing in our laboratory.  

 

5.5  Experimental 

General Considerations. All manipulations were carried out using standard Schlenk or 

glove box techniques under a dinitrogen atmosphere. Dry, degassed solvents were purged 

with Ar and passed through an activated alumina column from S. G. Waters (Nashau, 

NH, USA) prior to use. All other reagents were purchased from commercial vendors and 

used as received without further purification unless otherwise noted. Deuterated solvents 

were purchased from Cambridge Isotope Laboratories, Inc. NMR experiments were 
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performed on Varian 300, 400, and 500 MHz spectrometers. 1H NMR spectra were 

referenced to residual solvent. 31P NMR spectra were referenced to H3PO4. 195Pt NMR 

spectra were referenced to K2PtCl4. IR spectra were acquired on a Bio-Rad FTS 300 

instrument. Combustion analysis was performed by Midwest Microlab LLC in 

Indianapolis, IN, USA.  

 

SOP2:  A hot 100 mL three neck flask was charged with a magnetic stir bar, Mg turnings 

(3.65 g, 150.0 mmol), and 2-(diphenylphosphino)bromobenzene26 (9.89 g, 29.0 mmol) 

and dried in vacuo. THF (30 mL) was added to the cooled solid and the solution was 

heated with vigorous stirring to 90 ˚C. After the solution turned deep orange-brown, it 

was stirred at 90 ˚C for an additional 1 hr. before cooling to room temperature. The 

Grignard solution was cannula transferred to a preformed stirring solution of 

dimethylsulfate (1.10 mL, 11.6 mmol) in 100 mL THF. Neat TMSCl (2.21 g, 17.4 mmol) 

was added via syringe and the solution was stirred for 20 min. Water (300 mL) was 

added followed by CH2Cl2 (300 mL). The organic layer was collected and the aqueous 

layer was extracted with CH2Cl2 (3 x 100 mL). Solvent was removed from the organics 

by rotary evaporation and the residue was dissolved in THF (100 mL). Layering the 

solution with hexanes (300 mL) and allowing to stand overnight yielded colorless crystals 

(5.20 g, 9.11 mmol, 62.8%). Single crystals suitable for x-ray diffraction were grown by 

vapor diffusion of n-pentane into a THF solution. 1H NMR (400 MHz, CD2Cl2) δ 7.73 (d, 

J = 8.0 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 - 7.31 (m, 8H), 7.27 (d, J = 6.9 Hz, 6H), 

7.22 (t, J = 7.5 Hz, 4H), 7.19 - 7.09 (m, 6H). 13C NMR (101 MHz, CD2Cl2) δ 152.19 - 

150.49 (m), 137.90 - 137.18 (m), 136.94 (t, J = 5.3 Hz), 135.89 (t, J = 5.7 Hz), 135.40, 
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133.89 (t, J = 9.8 Hz), 131.29, 130.78, 129.17, 129.04, 128.91 (t, J = 3.5 Hz), 128.70 (t, J 

= 3.6 Hz), 127.02 (t, J = 4.5 Hz). 31P NMR (162 MHz, CD2Cl2) δ -18.28. IR (CCl4 

solution): 1,055 cm-1 (S-O). Elemental analysis for C36H28OP2S: calc. C 75.77 H 4.95, 

found C 75.55 H 4.82.  

 

(SOP2)RhCl: A vial was charged with SOP2 (103 mg, 0.181 mmol), [(cod)RhCl]2 (44.6 

mg, 0.0905 mmol), a magnetic stirbar, and THF (5 mL). The orange solution was 

refluxed for 30 min and cooled to room temperature. Solvent was removed in vacuo and 

benzene (10 mL) was added to the orange residue. The solution was heated to 80 ˚C and 

filtered while hot. The resulting clear yellow-orange solution was layered with pentane 

(20 mL) and allowed to stand at room temperature overnight to give a yellow 

microcrystalline solid (116 mg, 0.163 mmol, 90.6%). Crystals suitable for x-ray 

diffraction were grown by vapor diffusion of n-pentane into a THF solution. 1H NMR 

(400 MHz, CD2Cl2) δ 8.38 (d, J = 7.9 Hz, 2H), 7.78 (q, J = 6.3 Hz, 4H), 7.69 (dd, J = 8.1, 

3.7 Hz, 2H), 7.67 - 7.57 (m, 6H), 7.46 (m, J = 13.5, 7.0 Hz, 8H), 7.36 (t, J = 7.6 Hz, 4H). 

13C NMR (101 MHz, CD2Cl2) δ 157.43 - 156.13 (m), 135.03 (t, J = 19.5 Hz), 133.85 (dd, 

J = 13.4, 6.6 Hz), 133.44 (t, J = 7.7 Hz), 132.84, 132.66 - 131.70 (m), 131.57, 130.51, 

130.28, 128.82 (t, J = 5.1 Hz), 128.19 (t, J = 5.2 Hz), 125.37 (t, J = 7.0 Hz). 31P NMR 

(162 MHz, CD2Cl2) δ 47.33 (d, J = 148.4 Hz). Elemental analysis for C36H28ClOP2RhS: 

calc. C 60.99 H 3.98, found C 61.08 H 4.14.  

 

(SOP2)RhN3:  A Schlenk tube was charged with (SOP2)RhCl (45.2 mg, 0.0638 mmol), 

TlN3 (18.9 mg, 0.0766 mmol), CH3CN (3 mL), and a magnetic stirbar. The suspension 
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was heated with rapid stirring at 90 ˚C for five days. After cooling to room temperature, 

the orange solution was filtered and the solvent was removed in vacuo. Benzene (10 mL) 

was added to the orange residue and the solution was heated to 80 ˚C. The orange 

solution was filtered while hot and the filtrate was lyophilized to give a fluffy orange 

powder (44.0 mg, 0.0615 mmol, 96.45). Single crystals suitable for x-ray diffraction were 

grown by cooling a concentrated THF to -35 ˚C. 1H NMR (400 MHz, CD3CN) δ 8.45 (d, 

J = 7.9 Hz, 2H), 7.89 (q, J = 6.2 Hz, 4H), 7.84 - 7.74 (m, 8H), 7.74 - 7.66 (m, 4H), 7.51 

(m, 4H), 7.38 (dd, J = 9.3, 6.0 Hz, 2H), 7.27 (t, J = 7.6 Hz, 4H). 13C NMR (101 MHz, 

CD3CN) δ 137.13 (d, J = 15.8 Hz), 134.69, 134.24, 133.92, 133.52 (d, J = 19.7 Hz), 

131.94, 130.84, 130.45, 129.39, 129.06, 128.69, 128.40, 125.86 - 125.49 (m). 31P NMR 

(162 MHz, CD3CN) δ 50.05 (d, J = 158.5 Hz). Elemental analysis for C36H28N3OP2RhS: 

calc. C 60.43 H 3.94, found C 59.60 H 4.29.  

 

[(SOP2)Rh(CH3CN)][PF6]: A Schlenk tube was charged with (SOP2)RhCl (82.3 mg, 

0.116 mmol), TlPF6 (48.6 mg, 0.139 mmol), CH3CN (5 mL), and a magnetic stirbar. The 

vessel was heated to 80 ˚C for 1 hr and then cooled to room temperature. The suspension 

was filtered and the resulting bright yellow solution was layered with toluene to give 

bright yellow crystals (70.4 mg, 0.0819 mmol, 70.6%). A single crystal for x-ray 

diffraction was selected from these crystals. 1H NMR (400 MHz, CD2Cl2) δ 8.38 (d, J = 

8.1 Hz, 2H), 7.78 (m, 8H), 7.69 - 7.50 (m, 8H), 7.45 (d, J = 6.4 Hz, 8H), 7.32 - 7.12 (m, 

2H), 2.10 (d, J = 200.0 Hz, 3H). 13C NMR (101 MHz, CD2Cl2) δ 155.34 - 154.56 (m), 

134.74, 134.16 (dd, J = 15.7, 7.8 Hz), 133.31, 133.06 (t, J = 6.8 Hz), 132.21, 131.76, 

131.20 - 130.36 (m), 129.85 (t, J = 5.6 Hz), 129.55 (t, J = 5.2 Hz), 129.34, 128.60 (d, J = 
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14.2 Hz), 126.50 (t, J = 7.3 Hz), 125.61, 3.08. 31P NMR (162 MHz, CD2Cl2) δ 51.74 (d, J 

= 140.6 Hz). Elemental analysis for C38H31F6NOP3RhS•C7H8: calc. C 56.79 H 4.13, found 

C 57.07 H 4.34.  

 

(SOP2)IrCl(COE): A vial was charged with SOP2 (105 mg, 0.183 mmol), [(COE)2IrCl]2 

(82.2 mg, 0.0917 mmol), THF (4 mL), and a magnetic stirbar. The solution was refluxed 

for 30 min, cooled to room temperature, and filtered. The solvent was removed in vacuo 

and the orange residue was triturated with pentane (3 x 10 mL). The solid was dissolved 

in benzene (10 mL) at 80 ˚C, filtered while hot, cooled, and lyophilized to give a yellow 

solid (136 mg, 0.150 mmol, 81.8%).  1H NMR (400 MHz, CD2Cl2) δ 8.35 (d, J = 7.8 Hz, 

2H), 7.70 (ddt, J = 7.5, 5.5, 3.4 Hz, 4H), 7.64 (t, J = 7.7 Hz, 2H), 7.60 (q, J = 3.5 Hz, 

2H), 7.53 (t, J = 7.2 Hz, 2H), 7.47 - 7.40 (m, 4H), 7.37 (s, 2H), 7.29 (t, J = 7.3 Hz, 2H), 

7.21 (q, J = 6.0 Hz, 4H), 7.11 (t, J = 7.6 Hz, 4H), 3.84 (br, 2H), 1.81 (br, 4H), 1.49 (br, 

4H), 1.33 (br, 4H). 13C NMR (101 MHz, CD2Cl2) δ 158.57, 134.31 (d, J = 25.8 Hz), 

132.80 (q, J = 6.6, 6.0 Hz), 132.00, 131.44, 129.81, 129.56, 128.29 (d, J = 5.2 Hz), 

128.01 (t, J = 4.9 Hz), 125.19 (t, J = 7.1 Hz), 31.47, 26.29 (d, J = 6.3 Hz). 31P NMR (162 

MHz, CD2Cl2) δ 29.69 (br, s). Elemental analysis for C44H42ClIrOP2S: calc. C 58.17 H 

4.66, found C 58.25 H 4.77.  

 

(SOP2)IrCl(H)(OTf): A vial was charged with (SOP2)IrCl(COE) (116.6 mg, 0.128 

mmol), CH3CN (3 mL), and a magnetic stirbar. A solution of HOTf (18.3 mg, 0.122 

mmol) in CH3CN (2 mL) was added dropwise at room temperature resulting in an 

immediate lightening of the solution. After stirring for 5 min, the volatiles were removed 
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in vacuo to give a pale yellow residue. THF (2 mL) was added and a white 

microcrystalline solid formed from the supersaturated solution. The solution was 

decanted and the solids were washed with Et2O (3 x 2 mL) and pentane (2 mL) and dried 

to give a white solid (78.3 mg, 0.0826 mmol, 64.3%). Single crystals suitable for x-ray 

diffraction of the CH3CN adduct (with an outer-sphere triflate counteranion) were grown 

by vapor diffusion of Et2O into a CH3CH solution. 1H NMR (400 MHz, CD2Cl2) δ 8.73 

(d, J = 8.3 Hz, 2H), 8.01 (t, J = 7.8 Hz, 2H), 7.82 (t, J = 7.5 Hz, 2H), 7.76 (q, J = 6.8 Hz, 

4H), 7.67 (dd, J = 15.6, 7.1 Hz, 4H), 7.57 (dt, J = 19.0, 7.2 Hz, 10H), 7.47 (t, J = 6.5 Hz, 

4H), -19.13 (t, J = 13.4 Hz, 1H). 13C NMR (101 MHz, CD2Cl2) δ 153.78 (t, J = 12.7 Hz), 

134.91 (t, J = 3.8 Hz), 134.60 (t, J = 6.4 Hz), 134.20 (d, J = 5.0 Hz), 132.82, 132.25 (t, J 

= 6.2 Hz), 131.97, 129.23 (dt, J = 15.2, 5.7 Hz), 127.61-126.31 (m), 124.29 (t, J = 32.8 

Hz). 31P NMR (162 MHz, CD2Cl2) δ 28.85 (d, J = 11.2 Hz). 19F NMR (376 MHz, CD2Cl2) 

δ -78.82. Elemental analysis for C37H29ClF3IrO4P2S2: calc. C 46.56 H 3.38, found C 46.86 

H 3.08.  

 

(SOP2)IrCl: A Schlenk tube was charged with (SOP2)IrCl(H)(OTf) (25.5 mg, 0.0269 

mmol), proton sponge (1,8-bis(dimethylamino)naphthalene, 5.5 mg, 0.0256 mmol), THF 

(2 mL), and a magnetic stirbar. The mixture was heated at 80 ˚C for 30 min. and cooled 

to room temperature. The solvent was removed in vacuo and the resulting residue was 

extracted into hot benzene (3 mL) and filtered. A yellow solid (20.1 mg, 0.0252 mmol, 

93.6%) was obtained by precipitation with pentane (5 mL) followed by drying in vacuo. 

Single crystals suitable for X-ray diffraction were grown by vapor diffusion into a THF 

solution. 1H NMR (400 MHz, CD2Cl2) δ 8.42 (d, J = 7.7 Hz, 2H), 7.78 (dtd, J = 8.6, 5.7, 
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2.2 Hz, 4H), 7.62 (m, 10H), 7.45 (m, 8H), 7.40 - 7.31 (m, 4H). 13C NMR (101 MHz, 

CD2Cl2) δ 157.68 (t, J = 15.8 Hz), 135.33, 133.84 - 133.20 (m), 132.33 (t, J = 3.4 Hz), 

131.70 - 131.11 (m), 130.52 (d, J = 15.5 Hz), 128.79 (t, J = 5.3 Hz), 128.34 - 127.85 (m), 

124.89 (t, J = 6.2 Hz). 31P NMR (162 MHz, CD2Cl2) δ 47.60. Elemental analysis for 

C36H28ClIrOP2S: calc. C 54.16 H 3.54, found C 55.01 H 3.84.  

 

(SOP2)Ir(O2)Cl: A J. Young tube containing a yellow solution of (SOP2)IrCl in CD2Cl2 

was degassed by three freeze-pump-thaw cycles. Dioxygen was introduced to the tube 

which resulted in an immediate quenching of the color. NMR indicates complete 

conversion of (SOP2)IrCl to (SOP2)Ir(O2)Cl. 1H NMR (400 MHz, CD2Cl2) δ 8.40 (d, J = 

7.9 Hz, 2H), 7.80 (m, 4H), 7.70 (t, J = 7.5 Hz, 2H), 7.53 (q, J = 7.1, 6.2 Hz, 4H), 7.40 (d, 

J = 6.4 Hz, 4H), 7.35 (s, 2H), 7.24 (m, 2H), 6.96 - 6.87 (m, 8H). 13C NMR (101 MHz, 

CD2Cl2) δ 156.17 - 155.73 (m), 134.73 - 134.40 (m), 133.56, 133.20 (d, J = 11.3 Hz), 

132.49 (dd, J = 11.3, 6.4 Hz), 131.44, 130.69, 128.64 (dt, J = 17.4, 5.9 Hz), 128.25, 

126.07 - 125.64 (m). 31P NMR (162 MHz, CD2Cl2) δ 20.52. IR: ν(O-O) = 847 cm-1. The O2 

ligand is slowly labile under vacuum; as such, combustion analysis data were not 

obtained. Single crystals for X-ray diffraction were grown by allowing a dilute sample of 

(SOP2)Ir(O2)Cl in CH3CN under 1 atm air to stand for several days.  

 

(SOP2)Ni(CO): A vial was charged with SOP2 (243 mg, 0.426 mmol), (PPh3)2Ni(CO)2 

(272 mg, 0.426 mmol), THF (5 mL), and a magnetic stirbar. The mixture was refluxed 

for 30 min. Solvent was removed in vacuo. The resulting orange residue was triturated 

with pentane (5 mL) to give a yellow solid. Volatiles were again removed and the solids 
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were washed with Et2O (3 x 3 mL) and recrystallized by dissolving in a minimum volume 

of THF (ca. 3 mL) and layering with pentane (ca. 15 mL). The title compound was thus 

isolated as a yellow-orange solid (238 mg, 0.362 mmol, 85.0%). 1H NMR (400 MHz, 

CD2Cl2) δ 8.39 (d, J = 8.2 Hz, 2H), 7.70 (d, J = 5.8 Hz, 4H), 7.61 (t, J = 7.2 Hz, 2H), 7.44 

- 7.30 (m, 10H), 7.11 (t, J = 7.6 Hz, 2H), 6.86 (t, J = 7.7 Hz, 4H), 6.69 (q, J = 7.4, 6.2 Hz, 

4H). 13C NMR (101 MHz, CD2Cl2) δ 201.08 (t, J = 8.0 Hz), 157.05 (t, J = 21.8 Hz), 

137.93 (t, J = 19.6 Hz), 135.02 (t, J = 14.7 Hz), 133.91 - 132.05 (m), 131.92 - 130.76 

(m), 129.62, 128.21 (td, J = 11.0, 5.7 Hz), 124.55 (t, J = 6.9 Hz). 31P NMR (162 MHz, 

CD2Cl2) δ 41.25 (s). Elemental analysis for C37H28NiO2P2S: calc. C 67.61 H 4.29, found C 

67.35 H 4.58.  

 

[(SOP2)NiCl][PF6]: A vial was charged with SOP2 (28.7 mg, 0.0503 mmol), 

(DME)NiCl2 (11.1 mg, 0.0503 mmol), TlPF6 (18.5 mg, 0.0529 mmol), THF (3 mL), and 

a magnetic stirbar. The suspension was refluxed for 2 hr and the solvent was removed in 

vacuo. Addition of CH3CN (2 mL) resulted in formation of a deep purple solution which 

was filtered and dried in vacuo. The brown residue was triturated with benzene (5 mL) to 

give an orange-yellow solid (21.2 mg, 0.0262 mmol, 52.1%). 1H NMR (400 MHz, 

CD3CN) δ 8.38 (d, J = 8.1 Hz, 1H), 8.03 (d, J = 6.0 Hz, 2H), 7.88 (d, J = 7.2 Hz, 2H), 

7.70 (dd, J = 29.2, 7.5 Hz, 4H), 7.59 - 7.32 (m, 4H), 7.19 (d, J = 7.5 Hz, 2H). 13C NMR 

(101 MHz, CD3CN) δ 137.06, 135.62, 135.30, 133.11, 132.54, 129.68, 128.68, 127.79. 

31P NMR (162 MHz, CD3CN) δ 49.87 (br). Elemental analysis for C36H28ClF6NiOP3S: 

calc. C 53.40 H 3.49, found C 52.57 H 4.00.  
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(SOP2)Pd(PPh3): A vial was charged with SOP2 (52.3 mg, 0.0917 mmol), (PPh3)4Pd (106 

mg, 0.0917 mmol), and THF (5 mL). A deep red-orange solution was formed 

immediately. Layering the solution with pentane (15 mL) provided red-orange blocks of 

the title compound (76.1 mg, 0.0810 mmol, 88.4%). Single crystals suitable for x-ray 

diffraction were obtained by vapor diffusion of Et2O into a saturated THF solution. 1H 

NMR (400 MHz, CD2Cl2) δ 8.44 (d, J = 8.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.43 - 7.34 

(m, 8H), 7.26 (t, J = 7.4 Hz, 2H), 7.18 (q, J = 8.8, 7.6 Hz, 5H), 7.13 - 7.02 (m, 10H), 7.00 

- 6.90 (m, 4H), 6.90 - 6.80 (m, 10H). 13C NMR (101 MHz, CD2Cl2) δ 157.19 (dd, J = 

19.7, 4.1 Hz), 139.91 - 138.54 (m), 135.95, 134.27 - 132.94 (m), 131.98 (dt, J = 17.9, 8.5 

Hz), 130.39, 129.70, 128.91, 128.11, 127.71 (td, J = 9.1, 8.3, 4.4 Hz), 125.17, 124.66 (t, J 

= 6.3 Hz). 31P NMR (162 MHz, CD2Cl2) δ 30.43 (t, J = 42.3 Hz, 1P), 21.09 (d, J = 42.3 

Hz, 2P). Elemental analysis for C54H43OP3PdS: calc. C 69.05 H 4.61, found C 69.01 H 

4.82.  

 

(SOP2)Pt(PPh3): A vial was charged with SOP2 (46.8 mg, 0.0820 mmol), (PPh3)4Pt (102 

mg, 0.0820 mmol), and benzene (5 mL). The solution was agitated until all solids were 

dissolved and allowed to stand for 2 hr. Layering the deep red solution with pentane (15 

mL) provided red crystals of the title compound (59.0 mg, 0.0574 mmol, 70.0%). Single 

crystals suitable for x-ray diffraction were obtained by vapor diffusion of Et2O into a 

saturated CH2Cl2 solution. 1H NMR (400 MHz, CD2Cl2) δ 8.70 (d, J = 8.2 Hz, 2H), 7.53 

(ddd, J = 8.1, 5.5, 2.7 Hz, 2H), 7.45 (ddd, J = 10.1, 7.3, 2.1 Hz, 6H), 7.39 (d, J = 2.6 Hz, 

2H), 7.24 (m, 4H), 7.19 - 7.11 (m, 4H), 7.07 (t, J = 7.5 Hz, 6H), 7.00 (d, J = 7.6 Hz, 2H), 

6.99 - 6.81 (m, 15H). 13C NMR (101 MHz, CD2Cl2) δ 159.89 (t, J = 18.7 Hz), 139.90, 
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139.55, 138.37, 136.92 (d, J = 10.9 Hz), 133.79 - 133.08 (m), 131.33 (q, J = 8.3 Hz), 

130.68, 129.84, 128.49, 128.20 (d, J = 17.3 Hz), 127.79, 127.65 - 127.21 (m), 124.18 (t, J 

= 7.3 Hz). The 31P and 195Pt NMR spectra display complicated 31P-31P and 31P-195Pt 

coupling. As such, their simulations are described in a separate section and their signal 

positions are listed here. 31P NMR (162 MHz, CD2Cl2) δ 44.55, 44.08, 43.90, 43.86, 

43.70, 43.04, 31.19, 31.12, 30.69, 30.66, 30.59, 28.94, 28.51, 28.41, 27.98, 18.06, 18.03, 

17.57, 17.55, 13.77, 13.32, 13.26, 12.80. 195Pt NMR (86 MHz, CD2Cl2) δ -4703.92, -

4752.83, -4753.47, -4754.03, -4760.85, -4762.16, -4803.37, -4810.79, -4860.51. 

Elemental analysis for C54H43OP3PtS: calc. C 63.09 H 4.22, found C 63.43 H 4.46.  

 

(SOP2)Pd(CO): To a J. Young NMR tube was added (SOP2)Pd(PPh3) and CD2Cl2 (0.7 

mL). The inky yellow-orange solution was degassed by three freeze-pump-thaw cycles 

and 1 atm CO was introduced. The solution became more yellow. NMR indicated 

quantitative conversion to a new species. The NMR solution was transferred a solution IR 

cell in order to record the C-O stretch. 1H NMR (300 MHz, CD2Cl2) δ 8.36 (d, J = 8.2 Hz, 

2H), 7.59 (t, J = 7.3 Hz, 2H), 7.39 - 7.19 (m, 14H), 7.15 (t, J = 7.3 Hz, 2H), 6.94 (t, J = 

7.6 Hz, 4H), 6.69 (dt, J = 7.9, 4.8 Hz, 2H). 31P NMR (121 MHz, CD2Cl2) δ 21.38. IR: 

ν(C–O) = 1985 cm-1. 

 

(SOP2)Pt(CO): To a J. Young NMR tube was added (SOP2)Pt(PPh3) and CD2Cl2 (0.7 

mL). The red-orange solution was degassed by three freeze-pump-thaw cycles and 1 atm 

CO was introduced. The solution became more yellow. NMR indicated quantitative 

conversion to a new species. The NMR solution was transferred a solution IR cell in 
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order to record the C-O stretch. 1H NMR (300 MHz, CD2Cl2) δ 8.18 (s, 2H), 7.74 - 7.62 

(m, 6H), 7.57 (d, J = 7.0 Hz, 2H), 7.54 - 7.39 (m, 10H), 7.10 (q, J = 7.0, 6.2 Hz, 4H), 

6.90 (t, J = 7.6 Hz, 2H), 6.75 (s, 2H). 31P NMR (121 MHz, CD2Cl2) δ 27.82 (br). IR: ν(C–

O) = 1945 cm-1. 

 

[(SOP2)PdCl][PF6]: To a Schlenk tube were added SOP2 (56.1 mg, 0.0983 mmol), 

(cod)PdCl2 (28.1 mg, 0.0983 mmol), TlPF6 (41.2 mg, 0.118 mmol), CH3CN (3 mL), and 

a magnetic stirbar. The suspension was heated to 80 ˚C for 1 hr, cooled, and filtered. 

Benzene (10 mL) was layered onto the yellow solution which precipitated a yellow 

microcrystalline solid. The solids were washed with benzene (3 x 2 mL) and pentane (3 x 

2 mL) and dried to give a pale yellow solid (68.3 mg, 0.0797 mmol, 81.0%). Single 

crystals suitable for x-ray diffraction were grown by diffusion of Et2O into a CH3CN 

solution. 1H NMR (400 MHz, CD2Cl2) δ 8.66 (d, J = 8.2 Hz, 2H), 8.16 (t, J = 7.8 Hz, 

2H), 8.00 (t, J = 7.4 Hz, 2H), 7.75 (dd, J = 8.0, 4.1 Hz, 2H), 7.68 (q, J = 6.6, 5.7 Hz, 8H), 

7.64 - 7.47 (m, 12H). 13C NMR (101 MHz, CD2Cl2) δ 149.41 (t, J = 15.3 Hz), 136.91, 

135.89, 134.15 (t, J = 6.8 Hz), 133.52 (t, J = 7.3 Hz), 133.28, 131.83 (t, J = 22.9 Hz), 

129.96 (t, J = 5.9 Hz), 129.80 - 129.21 (m), 128.98 (t, J = 6.3 Hz), 125.72 - 124.28 (m). 

31P NMR (162 MHz, CD2Cl2) δ 49.44 (s), -144.47 (septet, J = 709.7 Hz). 19F NMR (376 

MHz, CD2Cl2) δ -73.25 (d, J = 710.3 Hz). Elemental analysis for C36H28F6OP3PdS•C6H6: 

calc. C 53.92 H 3.66, found C 53.72 H 3.75.  

 

[(SOP2)PtCl][PF6]: To a Schlenk tube were added SOP2 (48.8 mg, 0.0855 mmol), 

(cod)PtCl2 (32.0 mg, 0.0855 mmol), TlPF6 (35.8 mg, 0.103 mmol), CH3CN (3 mL), and a 
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magnetic stirbar. The suspension was heated to 80 ˚C for 1 hr., cooled, and filtered. 

Benzene (10 mL) was layered onto the colorless solution which precipitated a white 

microcrystalline solid. The solids were washed with benzene (3 x 2 mL) and pentane (3 x 

2 mL) and dried to give a colorless solid (68.0 mg, 0.0719 mmol, 84.0%). Single crystals 

suitable for x-ray diffraction were grown by diffusion of Et2O into a CH3CN solution. 1H 

NMR (400 MHz, CD2Cl2) δ 8.68 (d, J = 7.8 Hz, 2H), 8.12 (t, J = 8.0 Hz, 2H), 7.98 (t, J = 

7.5 Hz, 2H), 7.81 (d, J = 6.4 Hz, 2H), 7.74 (t, J = 7.1 Hz, 4H), 7.68 (t, J = 6.8 Hz, 2H), 

7.63 (d, J = 8.1 Hz, 4H), 7.58 - 7.46 (m, 10H). 13C NMR (101 MHz, CD2Cl2) δ 150.07 (t, 

J = 13.0 Hz), 136.81, 135.72, 135.41, 134.06 (t, J = 6.8 Hz), 133.70 (t, J = 7.1 Hz), 

133.37 (d, J = 8.4 Hz), 132.15, 131.87, 131.62, 130.01 (t, J = 6.0 Hz), 129.46 (t, J = 6.0 

Hz), 128.54 - 128.15 (m), 124.82, 124.52, 124.21, 123.89. 31P NMR (162 MHz, CD2Cl2) 

δ 45.95 (m, JPPt = 2494 Hz), -144.47 (septet, J = 709.7 Hz). 19F NMR (376 MHz, CD2Cl2) 

δ -73.25 (d, J = 710.3 Hz). Elemental analysis for C36H28F6OP3PtS•C6H6: calc. C 49.25 H 

3.35, found C 48.78 H 3.40.  

 

[(SOP2)PdMe][PF6]: A Schlenk tube was charged with SOP2 (54.9 mg, 0.0962 mmol), 

(cod)Pd(Me)Cl (25.5 mg, 0.0962 mmol), TlPF6 (40.3 mg, 0.115 mmol), CH3CN (3 mL), 

and a magnetic stirbar. The suspension was heated to 80 ˚C for 1 hr., cooled, and filtered. 

Solvent was removed in vacuo and the residue was dissolved in THF (3 mL). Layering 

the solution with Et2O (15 mL) precipitated an off-white solid which was washed with 

Et2O (3 x 3 mL) and pentane (3 x 3 mL) and dried to give the title compound (61.1 mg 

0.0730, 75.9%). Single crystals suitable for x-ray diffraction were grown by diffusion of 

Et2O into a CH3CN solution. 1H NMR (400 MHz, CD2Cl2) δ 8.67 (d, J = 8.2 Hz, 2H), 
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8.06 (t, J = 7.7 Hz, 2H), 7.91 (t, J = 7.6 Hz, 2H), 7.66 (m, 14H), 7.55 (t, J = 7.7 Hz, 4H), 

7.37 (q, J = 6.6 Hz, 4H), 1.03 (t, J = 6.0 Hz, 3H). 13C NMR (101 MHz, CD2Cl2) δ 149.10 

- 148.61 (m), 135.83 (d, J = 3.3 Hz), 135.32, 134.94, 133.66 (t, J = 7.8 Hz), 133.24 (t, J = 

6.7 Hz), 132.82, 132.43, 129.96 (t, J = 5.7 Hz), 129.62 (t, J = 5.7 Hz), 128.54 (t, J = 5.2 

Hz), 128.27, 126.73, 126.58 - 126.13 (m), 126.03, 125.77, 5.10. 31P NMR (162 MHz, 

CD2Cl2) δ 43.94, -144.47 (septet, J = 709.7 Hz). 19F NMR (376 MHz, CD2Cl2) δ -73.25 

(d, J = 710.3 Hz). Elemental analysis for C37H31F6OP3PdS: calc. C 53.09 H 3.73, found C 

52.74 H 4.28.  

 

[(SOP2)PtMe][PF6]: A Schlenk tube was charged with SOP2 (51.0 mg, 0.0894 mmol), 

(cod)Pt(Me)Cl (31.6 mg, 0.0894 mmol), TlPF6 (37.5 mg, 0.107 mmol), CH3CN (3 mL), 

and a magnetic stirbar. The suspension was heated to 80 ˚C for 1 hr., cooled, and filtered. 

Solvent was removed in vacuo and the residue was dissolved in THF (3 mL). Layering 

the solution with Et2O (15 mL) precipitated a white solid which was washed with Et2O (3 

x 3 mL) and pentane (3 x 3 mL) and dried to give the title compound (73.8 mg, 0.0797 

mmol, 89.2%). Single crystals suitable for x-ray diffraction were grown by diffusion of 

Et2O into a CH3CN solution. 1H NMR (400 MHz, CD2Cl2) δ 8.68 (d, J = 8.2 Hz, 2H), 

8.03 (t, J = 7.8 Hz, 2H), 7.89 (t, J = 7.4 Hz, 2H), 7.68 (ddd, J = 27.9, 20.7, 6.3 Hz, 14H), 

7.53 (t, J = 7.7 Hz, 4H), 7.37 (dd, J = 12.4, 4.5 Hz, 4H), 1.05 (m, JHPt = 32.8 Hz , JHP = 

7.0 Hz, 3H). 13C NMR (101 MHz, CD2Cl2) δ 150.10 (t, J = 12.9 Hz), 135.96, 135.02 (d, J 

= 14.5 Hz), 133.85 (t, J = 8.1 Hz), 133.38 (t, J = 6.6 Hz), 133.09, 132.75, 129.95 (t, J = 

5.9 Hz), 129.50 (t, J = 6.0 Hz), 128.33 (t, J = 5.3 Hz), 125.96 (t, J = 29.2 Hz), 124.68 (t, J 

= 31.8 Hz), -2.93 to -10.13 (m, JCPt = 582 Hz , JCP = 6.4 Hz). 31P NMR (162 MHz, 
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CD2Cl2) δ 46.0 (m, JPPt = 2837 Hz), -144.48 (septet, J = 710 Hz). 19F NMR (376 MHz, 

CD2Cl2) δ -73.25 (d, J = 710.3 Hz). Elemental analysis for C72H56F12O2P6Pd2S2: calc. C 

48.01 H 3.38, found C 47.84 H 3.65.  

 

[(SOP2)Pd]2[PF6]2: A Schlenk tube was charged with SOP2 (68.2 mg, 0.120 mmol), 

(cod)PdCl2 (17.1 mg, 0.0598 mmol), (PPh3)4Pd (69.1 mg, 0.0598 mmol), TlPF6 (41.8 mg, 

0.120 mmol), CH3CN (3 mL), and a magnetic stirbar. The suspension was heated to 80 

˚C for 12 hr., cooled, and filtered. Solvent was removed in vacuo and the deep red residue 

was dissolved in THF (2 mL). Upon standing, an orange precipitate formed. The solids 

were washed with cold THF (2 x 2 mL), Et2O (2 x 2 mL), and pentane (2 x 2 mL). 

Drying the solid gave the title compound (45.5 mg, 0.0554 mmol, 46.3%). Single crystals 

suitable for x-ray diffraction were grown by cooling a hot saturated THF solution. 1H 

NMR (400 MHz, CD2Cl2) δ 8.39 (br d, J = 7.6 Hz, 2H), 8.07 (t, J = 7.8 Hz, 2H), 7.91 (t, J 

= 7.5 Hz, 2H), 7.60 (ddd, J = 13.7, 8.8, 5.2 Hz, 6H), 7.52 - 7.37 (m, 6H), 7.28 (d, J = 6.1 

Hz, 8H), 7.22 (q, J = 7.1, 5.5 Hz, 4H), 7.08 (t, J = 7.8 Hz, 4H), 7.02 (d, J = 6.8 Hz, 2H), 

6.90 (dp, J = 15.4, 5.7, 4.7 Hz, 14H), 6.75 - 6.57 (br, 4H), 6.43 (br, J = 11.1 Hz, 2H). 13C 

NMR (101 MHz, CD2Cl2) δ 146.43 (d, J = 17.2 Hz), 135.90, 134.93 (d, J = 14.5 Hz), 

134.56 - 134.12 (m), 133.67, 133.15 (dd, J = 21.6, 14.5 Hz), 132.27 (t, J = 14.1 Hz), 

131.45, 129.43 (d, J = 12.7 Hz), 128.93, 128.47 (d, J = 11.0 Hz), 128.07, 126.02 (d, J = 

14.0 Hz), 125.71, 125.43 (d, J = 14.9 Hz). 31P NMR (162 MHz, CD2Cl2) δ 34.12 (br), 

29.66 (br), -144.48 (septet, J = 710 Hz). 19F NMR (376 MHz, CD2Cl2) δ -73.25 (d, J = 

710.3 Hz). Elemental analysis for C37H31F6OP3PtS: calc. C 52.60 H 3.43, found C 52.51 

H 3.62.  
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[(SOP2)Pd(NCCH3)][PF6]: A vial was charged with SOP2 (92.0 mg, 0.161 mmol), 

[Pd(NCCH3)4][PF6]2 (90.3 mg, 0.161 mmol), and CH3CN (5 mL). The solution 

immediately turned bright yellow. The solvent was reduced to 2 mL in vacuo and Et2O 

(10 mL) was added to produce bright yellow crystals which were dried in vacuo (162 mg, 

0.148 mmol, 91.9%). The compound is sensitive to nucleophilic solvents including 

alcohols and THF and slowly decomposes in the solid state at room temperature to give 

some palladium black. 1H NMR (400 MHz, CD2Cl2) δ 8.61 (d, J = 8.1 Hz, 1H), 8.19 (t, J 

= 7.8 Hz, 1H), 8.08 (t, J = 7.4 Hz, 1H), 7.90 (dt, J = 8.5, 4.6 Hz, 1H), 7.72 (qd, J = 7.2, 

5.8, 2.6 Hz, 6H), 7.62 (dt, J = 5.3, 3.3 Hz, 4H). 13C NMR (101 MHz, CD2Cl2) δ 148.96 (t, 

J = 15.1 Hz), 137.68, 136.50, 135.54, 134.14, 133.64 (dt, J = 31.8, 7.4 Hz), 130.41 (dd, J 

= 19.2, 8.5 Hz), 129.96, 129.33, 128.09, 123.24 (d, J = 7.6 Hz), 122.97 (d, J = 7.0 Hz), 

122.72, 119.00 (d, J = 19.5 Hz), 118.57 (d, J = 12.0 Hz). 31P NMR (162 MHz, CD2Cl2) δ 

53.97 (s), -144.48 (septet, J = 710 Hz). 19F NMR (376 MHz, CD2Cl2) δ -73.25 (d, J = 

710.3 Hz). Spectroscopically pure samples submitted for combustion analysis were 

routinely low on C which may reflect their thermal sensitivity. 
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Chapter 6    Ligand Design for the Site-Selective Installation of Pd and Pt Centers to 
Generate Homo- and Heteropolymetallic Motifs 

6.1  Background 

 Natural and synthetic polymetallic reaction sites mediate a wide range of small 

molecule transformations that have not been realized in monometallic analogs.1 For 

example, synthetic bimetallic complexes that contain d8-d8 interactions display unusual 

photochemical reactivity2 and have interesting electronic structures3 owing to the metal-

metal orbital interaction. Studies of these systems—and of polymetallic complexes more 

generally—are enhanced by the synthetic ability to rationally generate specific homo- 

and heteropolymetallics of interest.4 This chapter describes my work toward the synthesis 

and site-selective metallation of polynucleating ligands that feature a common nitrogen-

rich pincer-type framework. I herein establish the utility of this family of ligands for the 

site-selective installation of palladium and platinum centers which can result in bi- and 

trimetallic systems featuring d8-d8 interactions in the solid-state and in solution.  

 The four ligands described in this chapter feature two or three tridentate binding sites. 

Common to each ligand is a monoanionic, bis(quinolinyl)amide (BQA) pincer-type 

binding site. Decoration of the pincer scaffold with one or two neutral binding sites 

affords access to the polymetallic complexes of interest herein. I chose to target Pd and Pt 

species due to the Peters group’s prior experience with the chemistry of group 10 BQA 

complexes,5 and due to their comparatively low lability by comparison to first row late 

metals. 
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6.2  Results and discussion 

 The ligand synthesis of the dinucleating L1RH series is accomplished in three steps 

from 8-bromo-2-methylquinoline (Scheme 6.1). Oxidation of 1 with SeO2 provides 

Scheme 6.1  Synthesis of L1RH ligands 

 

access to aldehyde 2. Reductive amination of 2 with NaHB(OAc)3 and the appropriate 

secondary amine installs the neutral tridentate binding sites in amine intermediates 3, 4, 

and 5. The BQA binding pocket is generated by Pd-mediated C-N cross-coupling of 3, 4, 

and 5 with 8-aminoquinoline to give yellow ligands L1OMeH, L1imH, and L1pyH, 

respectively. The latter transformation proceeds to remarkably high conversion (>90%) 

given the potential for these ligands to poison the palladium cross-coupling catalyst.  

 A nonadentate, trinucleating ligand (L2pyH) is prepared in an analogous synthesis 

from 5 and 8-amino-2-methylquinoline (Scheme 6.2). Phthalimide protection of 10 to 

give 11 which allows for facile SeO2 oxidation of the 2-methyl group to provide aldehyde 

12. Reductive amination with 2,2’-dipicolylamine and NaHB(OAc)3 followed by  
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Scheme 6.2  Synthesis of L2pyH 

 

 

phthalimide deprotection gives amine 14. Cross-coupling with 5 provides the inky yellow 

ligand L2pyH. 

 The installation of palladium into the anionic binding site of L1OMeH is readily 

achieved by reaction with (COD)Pd(Me)Cl and catalytic Et3N to form red, neutral 

L1OMePdCl with concomitant loss of methane. Alternatively, L1OMePdCl may be generated 

using (COD)PdCl2 and stoichiometric Et3N; however, the use of (COD)Pd(Me)Cl 

obviates the need to purify L1OMePdCl from Et3N•HCl. 1H NMR spectroscopy of 

L1OMePdCl shows the disappearance of the bis(quinolinyl)amine resonance. The solid-

state structure of L1OMePdCl (determined by X-ray crystallography, Figure 6.1) confirms 

the installation of palladium into the bis(quinolinyl)amido site; the neutral bis(2-

methoxyethyl)amine binding site remains open.  
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Figure 6.1  Displacement ellipsoid (40%) representation of L1OMePdCl. H 
atoms are omitted for clarity. Selected distances and angles: Pd–N1 = 
2.0212(17) Å; Pd–N2 = 1.9645(17) Å; Pd–N3 = 2.0846(17) Å; Pd–Cl1 = 
2.3492(5) Å. 

 Reaction between L1imH, (COD)PdCl2, and Et3N affords the red salt [L1imPd]Cl, the 

solid-state structure of which demonstrates that one imidazole occupies the coordination 

site trans to the amide, thereby forming an eight-member ring (Figure 6.2). Variable- 

 

Figure 6.2  Displacement ellipsoid (40%) representation of [L1imPd]Cl. H 
atoms, counteranion, and solvent molecules are omitted for clarity. 
Selected distances and angles: Pd–N1 = 2.010(7) Å; Pd–N2 = 1.965(7) Å; 
Pd–N3 = 2.051(7) Å; Pd–N52 = 2.069(7) Å. 
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Figure 6.3  1H VT-NMR spectrum of [L1imPd]Cl (500 MHz in CDCl3). 

temperature 1H NMR spectroscopy reveals that the solution-state structure in CDCl3 is 

consistent with the solid-state structure (Figure 6.3). At low temperature (ca. -50 ˚C), the 

two imidazole rings are inequivalent and each methylene proton is coupled to its 

diastereotopic partner; coalescence is observed near room temperature and the averaged 

signals can be seen at higher temperature (ca. 50 ˚C).  

 For L1pyH, the kinetically preferred site for metal uptake is the neutral bis((pyridin-2-

yl)methyl)amine pocket; reaction of L1pyH with one equiv (COD)Pd(Me)Cl and one 

equiv TlPF6 thus provides yellow [L1py(H)PdMe][PF6] with precipitation of TlCl. 1H 

NMR spectroscopy of [L1py(H)PdMe][PF6] reveals that the bis(quinolinyl)amine NH 

proton is still present and that the methylene protons between the pyridine rings and the 

tertiary amine are diastereotopic. Both observations are consistent with selective 
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metallation of the bis((pyridin-2-yl)methyl)amine binding pocket. The solid-state 

structure confirms this assignment (Figure 6.4).  

 

Figure 6.4  Displacement ellipsoid (40%) representation of 
[L1py(H)PdMe][PF6]. H atoms, counteranion, and solvent molecules are 
omitted for clarity. Selected distances and angles: Pd–N4 = 2.027(2) Å; 
Pd–N5 = 2.132(2) Å; Pd–N6 = 2.023(2) Å; Pd–C32 = 2.022(2) Å. 

 I was gratified to find that the BQA site of [L1py(H)PdMe][PF6] is readily metallated 

with an additional equivalent of (COD)Pd(Me)Cl and catalytic Et3N to give purple-red 

[L1py(PdCl)PdMe][PF6]. The solid-state structure of [L1py(PdCl)PdMe][PF6] (Figure 6.5) 

reveals a Pd-Pd d8-d8 interaction with an average Pd-Pd distance of 3.1909(7) Å, which is 

less than the sum of the van der Waals radii (3.26 Å).6 This favorable zero bond order 

interaction has been explained by mixing of 4dz2 and 5pz orbitals between the interacting 

metals.7 Among the DFT-calculated occupied orbitals are two orbitals that have Pd-Pd σ 

and σ* character (Figure 6.6). The 1H NMR spectrum of [L1py(PdCl)PdMe][PF6] in 

CDCl3 is consistent with a Cs symmetric structure at room temperature; however, cooling 

 



 
176 

 

Figure 6.5  Displacement ellipsoid (40%) representation of 
[L1py(PdCl)PdMe][PF6]. H atoms, counteranion, and solvent molecules are 
omitted for clarity. Selected distances and angles: Pd1–Pd2 = 3.1909(7) Å; 
Pd1–N1 = 2.016(4) Å; Pd1–N2 = 1.968(4) Å; Pd1–N3 = 2.054(4) Å; Pd1–
Cl1 = 2.3329(11) Å; Pd2–N4 = 2.032(4) Å; Pd2–N5 = 2.129(4) Å; Pd2–
N6 = 2.023(4) Å; Pd2–C32 = 2.083(4) Å. 

            

Figure 6.6  HOMO-10 (left) and HOMO-1 (right) of 
[L1py(PdCl)PdMe][PF6] shown with 0.04 e-1 Å-3 isosurfaces. Calculations 
performed with Gaussian03 using the B3LYP functional and a basis set of 
LANL2DZ for Pd and Cl and 6-31+g(d) for all other atoms.  

the solution results in decoalescence of the signals at ca. -40 ˚C and a spectrum that 

requires a C1 symmetric structure at -58 ˚C (Figure 6.7). Thus, the 1H NMR behavior of 

[L1py(PdCl)PdMe][PF6] appears to be consistent with its solid-state structure. I examined 

the possibility of a σ*(dz2) → σ(pz) transition resulting from a d8-d8 interaction in 

solution by comparing the electronic absorption spectrum of [L1py(PdCl)PdMe][PF6] with  
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Figure 6.7   1H VT-NMR of [L1py(PdCl)PdMe][PF6] recorded at 500 MHz 
in CDCl3. 

those of its independently prepared monometallic fragments, [(N-methyl-bis(pyridin-2-

ylmethyl)amine)PdMe][PF6] (“[(MDPA)PdMe][PF6]”; see Experimental section for the 

synthetic procedure) and (BQA)PdCl.5a Unfortunately, no such interaction could be 

rigorously identified (Figure 6.8), possibly due to overlap with intense ligand- centered π-

π* transitions as suggested elsewhere.8 

 Given that the bimetallic metallation of [L1py(PdCl)PdMe][PF6] proceeds in a step-

wise and selective manner, I sought to extend this synthetic strategy to the generation of 

heterobimetallics. As an illustration, the platinum-containing analog of 

[L1py(H)PdMe][PF6] can be generated by reaction of [L1py(PdCl)PdMe][PF6] with 1 
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Figure 6.8  UV/vis spectra of [L1py(PdCl)PdMe][PF6], (BQA)PdCl, and 
[(MDPA)PdMe][PF6] recorded in CDCl3 at RT. 

equiv (COD)Pt(Me)Cl and 1 equiv TlPF6 to give [L1py(H)PtMe][PF6], the solid- and 

solution-state structure of which is analogous to that of [L1py(H)PdMe][PF6] based on 1H 

NMR spectroscopic studies. Further metallation with (COD)Pd(Me)Cl and catalytic Et3N 

provides red heterobimetallic [L1py(PdCl)PtMe][PF6], which also contains a d8-d8 

interaction in the solid- (Figure 6.9) and solution-states. The Pd-Pt distance of 3.1668(3) 

Å is shorter than the sum of the van der Waals radii, 3.35 Å.6 DFT calculations support 

the presence of a d8-d8 interaction (Figure 6.10). The 195Pt NMR chemical shift of 

[L1py(PdCl)PtMe][PF6] is downfield of that of [L1py(H)PtMe][PF6], (-3,038 and -3,059 

ppm vs. K2PtCl6, respectively) which is consistent with donation of electron density to the 

palladium atom in the solution phase. As for the related [L1py(PdCl)PdMe][PF6] complex, 

the UV/vis spectra of [L1py(PdCl)PtMe][PF6], [(MDPA)PtMe][PF6], and (BQA)PtCl do 

not provide additional evidence for a d8-d8 interaction in solution (Figure 6.11). The 

stepwise metallation of L1pyH demonstrates that this framework offers the potential for 
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Figure 6.9  Displacement ellipsoid (40%) representation of 
[L1py(PdCl)PtMe][PF6]. H atoms, counteranion, and solvent molecules are 
omitted for clarity. Selected distances and angles: Pd1–Pt1 = 3.1668(3) Å; 
Pd1–N1 = 2.012(3) Å; Pd1–N2 = 1.956(3) Å; Pd1–N3 = 2.055(3) Å; Pd1–
Cl1 = 2.3392(8) Å; Pt1–N4 = 2.009(3) Å; Pt1–N5 = 2.133(3) Å; Pt1–N6 = 
1.999(3) Å; Pt1–C32 = 2.071(3) Å. 

            

Figure 6.10  HOMO-10 (left) and HOMO-1 (right) of 
[L1py(PdCl)PtMe][PF6] shown with 0.04 e-1 Å-3 isosurfaces. Calculations 
performed with Gaussian03 using the B3LYP functional and a basis set of 
LANL2DZ for Pt, Pd and Cl and 6-31+g(d) for all other atoms. 

the generation of a range of homo- and heterobimetallics and the study of weak metal-

metal interactions between metals in different ligand fields.  

 The procedure for installing palladium into ligand L1pyH may be applied to the related 

trinucleating ligand L2pyH. The room temperature addition of 3 equiv 

[(CH3CN)4Pd][BF4]2 to L2pyH results in the immediate metallation at the two neutral 
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Figure 6.11  UV/vis spectra of [L1py(PdCl)PtMe][PF6], (BQA)PdCl, and 
[(MDPA)PtMe][PF6] recorded in CDCl3 at RT. 

bis((pyridin-2-yl)methyl)amine sites as determined by 1H NMR spectroscopy. The final 

palladation of the bis(quinolinyl)amine fragment occurs upon the addition of Et3N and 

the application of heat. Purple [L2py(PdBr)3][BF4]2 is formed when the putative 

intermediate [L2py(Pd(CH3CN))3][BF4]5 is treated with 3 equiv TBABr. The solid-state 

structure of [L2py(PdBr)3][BF4]2 reveals three unique palladium atoms (Figure 6.12); the 

Pd1-Pd2 distance (3.2447(10) Å) is shorter than the sum of the van der Waals radii 

whereas the Pd2-Pd3 distance (3.4411(10) Å) is longer. These bond lengths are consistent 

with the limiting formulation of two square pyramidal palladium centers and one that is 

square planar. Similarly to [L1py(PdCl)PdMe][PF6] and [L1py(PdCl)PtMe][PF6], 

[L2py(PdBr)3][BF4]2 is fluxional in solution as demonstrated by the broad resonances in its 

1H NMR spectrum. 
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Figure 6.12  Displacement ellipsoid (40%) representation of 
[L2py(PdBr)3][BF3]2. H atoms, counteranions, and solvent molecules are 
omitted for clarity. Selected distances and angles: Pd1–Pd2 = 3.2447(10) 
Å; Pd2–Pd3 = 3.4411(10) Å; Pd1–N1 = 2.019(9) Å; Pd1–N2 = 2.047(7) 
Å; Pd1–N3 = 2.013(9) Å; Pd1–Br1 = 2.4115(12) Å; Pd2–N4 = 2.084(7) 
Å; Pd2–N5 = 1.955(8) Å; Pd2–N6 = 2.107(8) Å; Pd2–Br2 = 2.4861(13) 
Å; Pd3–N7 = 2.021(8) Å; Pd3–N8 = 2.044(8) Å; Pd3–N9 = 2.032(8) Å; 
Pd3–Br3 = 2.4297(11) Å. 

6.3  Summary 

 The complexation chemistry presented here demonstrates that selective metallation of 

a polynucleating ligand demands careful tuning of the binding pockets. For example, the 

BQA site in L1imH is metallated with 1 equiv of a Pd(II) source whereas metallation of 

L1pyH occurs most readily at the neutral bis((pyridin-2-yl)methyl)amine site. The 

modular synthesis of these ligands, in which a multitude of pendant binding pockets can 

be prepared, allows for such tuning.  
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6.4  Experimental 

General Considerations. All manipulations were carried out using standard Schlenk or 

glove box techniques under a dinitrogen atmosphere. Dry, degassed solvents were purged 

with Ar and passed through an activated alumina column from S. G. Waters (Nashau, 

NH, USA) prior to use. All other reagents were purchased from commercial vendors and 

used as received without further purification unless otherwise noted.  Deuterated solvents 

were purchased from Cambridge Isotope Laboratories, Inc. NMR experiments were 

performed on Varian 500 MHz spectrometers.  1H NMR spectra were referenced to 

residual solvent. 195Pt NMR spectra were referenced to K2PtCl4. UV/vis spectra were 

acquired on a Cary 50 instrument. IR spectra were acquired on a Bio-Rad FTS 300 

instrument. ESI-MS data were acquired by Ms. Li Li on a Bruker Daltonics APEXIV 4.7 

Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer in the MIT Dept. 

of Chemistry Instrumentation Facility. Combustion analaysis was performed by Midwest 

Microlab LLC in Indianapolis, IN, USA. Computational work was done using the 

Gaussian03 Revision B.01 software package.9  

 

8-bromoquinoline-2-carbaldehyde (2):  A 200 ml Schlenk tube charged with SeO2 

(10.2 g, 91.8 mmol) and a magnetic stir bar was purged with N2 for 5 min.  1,4-dioxane 

(180 ml) was added and the mixture was heated to 80 ˚C before adding 8-bromo-2-

methylquinoline10 (20.2 g, 90.9 mmol) under a stream of N2.  The dark mixture was 

maintained at 80 ˚C for 12 hr., cooled to room temperature, and filtered through alumina 

eluting with CH2Cl2.  Solvent was removed on a rotary evaporator to give a tan solid 

which was washed with cold acetone (3 x 20 ml).  The remaining solid (11.2 g, 52%) was 
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used without further purification.  The brown acetone filtrate was condensed and again 

washed with cold acetone (3 x 10 ml) to give additional product (7.75 g, 36%, total of 

88%).  1H NMR (CDCl3, 500 MHz, 20 ˚C): d (ppm) 10.31 (s, 1H), 8.34 (dd, J = 8.4 Hz, J 

= 0.5 Hz, 1H), 8.17 (dd, J = 7.5 Hz, J = 1.3 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.89 (dd, J 

= 8.2 Hz, J = 1.3 Hz, 1H), 7.55 (dd, J = 8.1 Hz, J = 7.5 Hz, 1H). 13C NMR (CDCl3, 125 

MHz, 20 ˚C): d (ppm) 193.4, 153.1, 145.0, 138.2, 134.3, 131.4, 129.6, 127.8, 126.1, 

118.1.  IR (CCl4 solution): 1,711 cm-1. ESI-MS: calc. for C10H7BrNO (M+H)+ 235.9706, 

found 235.9711.  Elemental analysis for C10H6BrNO: calc. C 50.88 H 2.56, found C 

50.72 H 2.71.   

 

N-(8-bromoquinolin-2-methyl)-N,N-bis(2-methoxyethyl)amine (3):  A 250 ml flask 

was charged with a magnetic stir bar, 100 ml 1,2-dichloroethane, 2 (2.18 g, 9.24 mmol), 

bis(2-methoxyethyl)amine (1.29 g, 9.69 mmol), and one drop of formic acid.  The 

solution was allowed to stir for 30 min. before NaHB(OAc)3 (2.35 g, 11.1 mmol) was 

added in one portion.  The mixture was stirred at room temperature for 24 hr. and 

quenched with sat. aqueous NaHCO3 (50 ml).  The aqueous and organic phases were 

separated and the aqueous layer was extracted with CH2Cl2 (3 x 50 ml).  The combined 

organics were dried over Na2SO4 and condensed on a rotary evaporator to give a dark 

yellow oil.  Purification by flash chromatography (silica gel, 2:2:96 to 4:2:94 

CH3OH:Et3N:CH2Cl2 gradient) gave the product as a viscous, pale yellow oil (2.08 g, 

64%).  1H NMR (CDCl3, 500 MHz, 20 ˚C) d (ppm) 8.11 (d, J = 8.4 Hz, 1H), 8.02 (dd, J = 

7.4 Hz, J = 1.3 Hz, 1H), 7.77 (dd, J = 8.2 Hz, J = 1.3 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 

4.36 (dd, J = 7.8 Hz, J = 7.8 Hz, 1H), 4.16 (s, 2H), 3.55 (t, J = 6.0 Hz, 4H), 3.32 (s, 6H), 
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2.91 (t, J = 6.0 Hz, 4H). 13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 144.6, 136.6, 

132.9, 128.6, 127.5, 126.3, 124.6, 121.9, 71.1, 61.5, 58.8, 54.3.  ESI-MS: calc. for 

C16H22BrN2O2Br (M+H)+ 353.0865, found 353.0867.  Elemental Analysis for 

C16H21BrN2O2: calc. C 54.40 H 5.99, found C 54.52 H 5.77.   

 

N-(8-bromoquinolin-2-methyl)-N,N-bis((1-methyl-1H-imidazole-2-yl)methyl)amine 

(4): A 250 ml flask was charged with a magnetic stir bar, 100 ml 1,2-dichloroethane, 2 

(771 mg, 3.27 mmol), bis((1-methyl-1H-imidazole-2-yl)methyl)amine11 (664 mg, 3.23 

mmol), and one drop of formic acid.  The solution was allowed to stir for 30 min. before 

NaHB(OAc)3 (762 mg, 3.59 mmol) was added in one portion.  The mixture was stirred at 

room temperature for 24 hr. and quenched with sat. aqueous NaHCO3 (50 ml).  The 

aqueous and organic phases were separated and the aqueous layer was extracted with 

CH2Cl2 (3 x 50 ml).  The combined organics were dried over Na2SO4 and condensed on a 

rotary evaporator to give a dark yellow oil.  Purification by flash chromatography (silica 

gel, 2:2:96 to 4:2:94 CH3OH:Et3N:CH2Cl2 gradient) gave the product as a viscous, pale 

yellow oil which was triterated with pentane to afford a light tan solid (870 mg, 63%).  1H 

NMR (CDCl3, 500 MHz, 20 ˚C) d (ppm) 8.04 (d, J = 8.4 Hz, 1H), 8.03 (dd, J = 7.5 Hz, J 

= 1.3 Hz, 1H), 7.75 (dd, J = 8.2 Hz, J = 1.3 Hz, 1H), 7.36 (dd, J = 7.5 Hz, J = 8.2 Hz, 

1H), 7.31 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 1.2 Hz, 2H), 6.76 (d, J = 1.2 Hz, 2H), 4.02 (s, 

2H), 3.92 (s, 4H), 3.42 (s, 6H).  13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 160.2, 

145.0, 133.4, 126.7, 133.0, 128.3, 127.5, 127.1, 127.6, 124.5, 122.6, 121.5, 59.9, 50.1, 

32.6.  ESI-MS: calc. for C20H22BrN6 (M+H)+ 427.1069, found 427.1052.  Elemental 

analysis for C20H21BrN6: calc C 56.48 H 4.98, found C 55.71 H 4.84.   
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N-(8-bromoquinolin-2-methyl)-N,N-bis(pyridin-2-ylmethyl)amine (5):  A 250 ml 

flask was charged with a magnetic stir bar, 100 ml 1,2-dichloroethane, 2 (3.87 g, 16.4 

mmol), and 2,2’-dipicolylamine (3.11 g, 15.6 mmol).  The solution was allowed to stir for 

30 min. before NaHB(OAc)3 (3.97 g, 18.7 mmol) was added in one portion.  The mixture 

was stirred at room temperature for 24 hr. and quenched with sat. aqueous NaHCO3 (50 

ml).  The aqueous and organic phases were separated and the aqueous layer was extracted 

with CH2Cl2 (3 x 50 ml).  The combined organics were dried over Na2SO4 and condensed 

on a rotary evaporator to give a dark yellow oil.  Purification by flash chromatography 

(silica gel, 2:2:96 to 4:2:94 CH3OH:Et3N:CH2Cl2 gradient) gave the product as a viscous, 

pale yellow oil (4.0 g, 61%).  1H NMR (CDCl3, 500 MHz, 20 ˚C): d (ppm) 8.54 (m, 2H), 

8.10 (d, J = 8.4 Hz, 1H), 8.02 (dd, J = 7.4 Hz, J = 1.3 Hz, 1H), 7.65-7.76 (m, 6H), 7.35 

(dd, J = 7.5 Hz, J = 1.5 Hz, 1H), 7.14 (ddd, J = 7.3 Hz, J = 4.9 Hz, J = 1.3 Hz, 2H), 4.10 

(s, 2H), 3.97 (s, 4H).  13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 161.4, 159.2, 149.1, 

144.7, 136.9, 136.8, 133.1, 128.6, 127.5, 126.6, 124.8, 123.5, 122.7, 122.5, 60.3, 60.2.  

ESI-MS: calc. for C22H20BrN4 (M+H)+ 421.0851, found 421.0850.  Elemental analysis for 

C22H19BrN4: calc. C 63.02 H 4.57, found C 62.74 H 4.67.   

 

2-((bis(2-methoxylethyl)amino)methyl)-N-(quinolin-8-yl)quinolin-8-amine (6, 

L1OMeH):  A 100 ml Schlenk tube charged with a magnetic stir bar, Pd2(dba)3 (79.8 mg, 

0.0871 mmol), and rac-BINAP (108.6 mg, 0.174 mmol) was evacuated and back-filled 

with N2 three times.  Toluene (10 ml) was added and the solution was allowed to stir for 5 

min. before 3 (1.54 g, 4.76 mmol), 8-aminoquinoline (755 mg, 5.24 mmol), NaOtBu (549 
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mg, 5.71 mmol), and an additional 40 ml toluene were added.  The solution was stirred at 

110 ˚C for 20 hr., cooled to room temperature, filtered through Celite, and condensed on 

a rotary evaporator.  The resulting brown oil was purified by flash chromatography (silica 

gel, 4:2:94 CH3OH:Et3N:CH2Cl2) to give 1.60 g (88%) of the title compound as a viscous 

yellow oil.  1H NMR (CDCl3, 500 MHz, 20 ˚C) d (ppm) 10.69 (s, 1H), 8.95 (dd, J = 4.2 

Hz, J = 1.7 Hz 1H), 8.16 (dd, J = 8.3 Hz, J = 1.7 Hz, 1H), 8.12 (d, J = 8.4 Hz, 1H), 7.90 

(m, 2H), 7.67 (d, J = 8.4 Hz, 1H), 7.53 (dd, J = 7.9 Hz, J = 7.9 Hz, 1H), 7.49 (dd, J = 

8.01 Hz, J = 8.01 Hz, 1H), 7.48 (dd, J = 8.51, J = 4.15, 1H), 7.35-7.30 (m, 2H), 4.23 (s, 

2H), 3.61 (t, J = 5.9 Hz, 4H), 3.35 (s, 6H), 3.01 (t, J = 5.9 Hz, 4H).  13C NMR (CDCl3, 

500 MHz, 20 ˚C) d (ppm) 158.25, 147.97, 140.25, 139.14, 139.10, 138.65, 136.47, 

136.20, 129.11, 127.94, 127.30, 126.64, 121.88, 121.71, 117.76, 117.72, 110.02, 71.51, 

61.37, 58.91, 54.41. ESI-MS: calc. for C25H29N4O2 (M+H)+ 417.2285, found 417.2265.  

Elemental analysis for C25H28N4O2: calc. C 72.09 H 6.78, found C 71.27 H 6.78.   

 

2-((bis((1-methyl-1H-imidazole-2-yl)methyl)amino)methyl)-N-(quinolin-8-

yl)quinolin-8-amine (7, L1imH): A 100 ml Schlenk tube charged with a magnetic stir 

bar, Pd2(dba)3 (23.8 mg, 0.026 mmol), and rac-BINAP (32.3 mg, 0.052 mmol) was 

evacuated and back-filled with N2 three times.  Toluene (10 ml) was added and the 

solution was allowed to stir for 5 min. before 4 (552 mg, 1.30 mmol), 8-aminoquinoline 

(189 mg, 1.31 mmol), NaOtBu (150 mg, 1.56 mmol), and an additional 20 ml toluene 

were added.  The solution was stirred at 110 ˚C for 20 hr., cooled to room temperature, 

filtered through Celite, and condensed on a rotary evaporator.  The resulting brown oil 

was purified by flash chromatography (silica gel, 4:2:94 CH3OH:Et3N:CH2Cl2) to give 
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597 mg (94%) of the title compound as a yellow solid.  1H NMR (CDCl3, 500 MHz, 20 

˚C): d (ppm) 10.65 (s, 1H), 8.74 (dd, J = 4.2 Hz, J = 1.8 Hz, 1H), 8.14 (dd, J = 8.3 Hz, J 

= 0.7 Hz, 1H), 8.06 (d, 8.4 Hz, 1H), 7.87 (m, 2H), 7.52 (dd, J = 7.9 Hz, 7.9 Hz, 1H), 7.50 

(dd, J = 7.9 Hz, J = 7.9 Hz, 1H), 7.44 (8.2 Hz, 4.2 Hz, 1H), 7.28-7.24 (m, 3H), 6.94 (d, J 

= 1.3 Hz, 2H), 6.74 (d, J = 1.3 Hz, 2H), 4.09 (s, 2H), 4.06 (s, 4H), 3.35 (s, 6H).  13C NMR 

(CDCl3, 500 MHz, 20 ˚C) d (ppm) 156.8, 147.8, 145.4, 139.9, 138.9, 138.7, 138.5, 136.6, 

136.1, 128.9, 127.7, 127.2, 127.1, 126.9, 122.4, 121.7, 121.4, 117.9, 117.5, 110.1, 109.8, 

60.0, 50.2, 32.5.  ESI-MS: calc. for C29H29N8 (M+H)+ 489.2515 found 489.2505.  

Elemental analysis for C29H28N8: calc. C 71.29 H 5.78, found C 70.85 H 5.92.   

 

2-((bis((pyridin-2-yl)methyl)amino)methyl)-N-(quinolin-8-yl)quinolin-8-amine (8, 

L1pyH): A 100 ml Schlenk tube charged with a magnetic stir bar, Pd2(dba)3 (99 mg, 0.11 

mmol), and rac-BINAP (135 mg, 0.22 mmol) was evacuated and back-filled with N2 

three times.  Toluene (10 ml) was added and the solution was allowed to stir for 5 min. 

before 5 (2.27 g, 5.42 mmol), 8-aminoquinoline (790 mg, 5.48 mmol), NaOtBu (573 mg, 

5.97 mmol), and an additional 40 ml toluene were added.  The solution was stirred at 110 

˚C for 20 hr., cooled to room temperature, filtered through Celite, and condensed on a 

rotary evaporator.  The resulting brown oil was purified by flash chromatography (silica 

gel, 4:2:94 CH3OH:Et3N:CH2Cl2) to give 2.38 g (91%) of the title compound as a viscous 

yellow oil.   1H NMR (CD3OD, 500 MHz, 20 ˚C): d (ppm) 8.58 (dd, J = 4.1 Hz, J = 1.6 

Hz, 1H), 8.21 (m, 2H), 7.99 (dd, J = 8.3 Hz, J = 1.6 Hz, 1H), 7.86 (d, J = 8.5 Hz, 1H), 

7.65 (d, J = 7.8 Hz, 2H), 7.62 (dd, J = 7.7 Hz, J = 1.0 Hz, 1H), 7.59 (dd, J = 7.7 Hz, J = 

1.0 Hz, 1H), 7.36 (ddd, J = 7.7 Hz, J = 7.7 Hz, J = 1.8 Hz, 2H), 7.32 (d, J = 8.3 Hz, 1H), 
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7.21-7.30 (m, 3H), 7.12 (dd, J = 8.2 Hz, J = 0.9 Hz, 1H), 7.05 (dd, J = 8.2 Hz, J = 0.9 Hz, 

1H), 6.97 (ddd, J = 7.5 Hz, J = 5.0 Hz, J = 1.0 Hz, 2H), 3.83 (s, 2H), 3.77 (s, 4H).  13C 

NMR (CD3OD, 125 MHz, 20 ˚C): d (ppm) 160.2, 157.9, 149.1, 148.3, 140.8, 130.0, 

139.6, 139.3, 138.4, 137.7, 137.3, 130.2, 129.1, 128.3, 127.8, 124.8, 123.6, 122.7, 122.7, 

118.8, 118.7, 111.0, 110.5, 61.3, 60.9.  ESI-MS: calc. for C31H27N6 (M+H)+ 483.2297, 

found 483.2293.  Elemental analysis for C31H26N6: calc. C 77.16 H 5.43, found C 76.83 H 

5.56.   

  

2-(2-methylquinolin-8-yl)isoindoline-1,3-dione (11):  A 250 ml flask equipped with a 

reflux condenser and charged with phthalic anhydride (5.53 g, 37.3 mmol) and 8-amino-

2-methylquinoline (5.85 g, 37.0 mmol) was heated to reflux for 2 hr.  The brown solution 

was cooled to room temperature.  The off-white microcrystals thus generated were 

isolated by filtration, washed with cold toluene, and used without further purification 

(9.01 g, 85%). 1H NMR (CDCl3, 500 MHz, 20 ˚C): d (ppm) 8.09 (d, J = 8.4 Hz, 1H), 8.02 

(m, 2H), 7.92 (dd, J = 7.3 Hz, J = 1.5 Hz, 1H), 7.83 (m, 2H), 7.71 (dd, J = 7.2 Hz, J = 1.4 

Hz, 1H), 7.59 (dd, J = 7.7 Hz, J = 7.7 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 2.59 (s, 3H).  13C 

NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 168.3, 160.1, 143.9, 136.3, 134.3, 132.7, 130.3, 

129.5, 127.7, 125.4, 124.0, 123.1, 25.8. ESI-MS: calc. for C18H13N2O2 (M+H)+ 289.0972, 

found 289.0982.  Elemental analysis for C18H12N2O2: calc. C 74.99 H 4.20, found C 74.91 

H 4.31.   

 

8-(1,3-dioxoisoindolin-2-yl)quinoline-2-carbaldehyde (12):  A 200 ml Schlenk tube 

charged with SeO2 (3.47 g, 31.3 mmol) and a magnetic stir bar was purged with N2 for 5 
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min.  1,4-dioxane (180 ml) was added and the mixture was heated to 80 ˚C before adding 

11 (9.01 g, 31.3 mmol) under a stream of N2.  The dark mixture was maintained at 80 ˚C 

for 12 hr., cooled to room temperature, and filtered through alumina eluting with CH2Cl2.  

Solvent was removed on a rotary evaporator to give a tan solid (9.35 g, 99%).  1H NMR 

(CDCl3, 500 MHz, 20 ˚C): d (ppm) 9.96 (d, J = 0.8 Hz, 1H), 8.40 (dd, J = 8.5 Hz, J = 0.8 

Hz, 1H), 8.03-8.08 (m, 4H), 7.82-7.88 (m, 4H).  13C NMR (CDCl3, 125 MHz, 20 ˚C): d 

(ppm) 193.8, 168.0, 153.8, 144.2, 138.0, 134.6, 132.5, 131.5, 131.2, 129.7, 129.0, 124.2, 

124.0, 118.3. ESI-MS: calc. for C18H11N2O3 (M+H)+ 303.0764, found 303.0770.  

Elemental analysis for C18H10N2O3: calc. C 71.52 H 3.33, found C 71.14 H 3.68.   

 

2-(2-((bis(pyridin-2-ylmethyl)amino)methyl)quinolin-8-yl)isoindoline-1,3-dione (13): 

A 250 ml flask was charged with a magnetic stir bar, 100 ml 1,2-dichloroethane, 12 (4.43 

g, 14.7 mmol), and 2,2’-dipicolylamine (2.89 g, 14.5 mmol).  The solution was allowed 

to stir for 30 min. before NaHB(OAc)3 (3.42 g, 16.1 mmol) was added in one portion.  

The mixture was stirred at room temperature for 24 hr. and quenched with sat. aqueous 

NaHCO3 (50 ml).  The aqueous and organic phases were separated and the aqueous layer 

was extracted with CH2Cl2 (3 x 100 ml).  The combined organics were dried over Na2SO4 

and condensed on a rotary evaporator to give a dark yellow oil.  Purification by flash 

chromatography (silica gel, 2:2:96 to 6:2:92 CH3OH:Et3N:CH2Cl2 gradient) gave the 

product as a tan solid (5.41 g, 76%).  The product may be recrystallized by slow 

evaporation from a CH2Cl2/hexanes solution to give yellow needles.  1H NMR (CDCl3, 

500 MHz, 20 ˚C): d (ppm) 8.48 (m, 2H), 8.17 (d, J = 8.4 Hz, 1H), 7.99 (m, 2H), 7.93 (dd, 

J = 8.3 Hz, J = 1.5 Hz, 1H), 7.83 (m, 2H), 7.72 (dd, J = 7.2 Hz, J = 1.4 Hz, 1H), 7.66 (d, 
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J = 8.5 Hz, 1H), 7.63 (dd, J = 8.2 Hz, J = 7.2 Hz, 1H), 7.46-7.51 (m, 4H), 7.08 (m, 2H), 

3.82 (two overlapping singlets, 6H). 13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 168.2, 

161.0, 159.4, 149.2, 143.8, 136.6, 136.4, 134.4, 132.7, 130.3, 129.8, 129.5, 128.5, 125.9, 

124.0, 123.4, 122.2, 122.1, 60.4, 60.2. ESI-MS: calc. for C30H24N5O2 (M+H)+ 486.1925, 

found 486.1916.  Elemental analysis for C30H23N5O2: calc. C 74.21 H 4.77, found C 73.21 

H 4.99.   

 

2-((bis(pyridin-2-ylmethyl)amino)methyl)quinolin-8-amine (14): A 50 ml flask was 

charged with 13 (209 mg, 0.43 mmol) and 5 ml methanol.  To this mixture was added 1 

ml N2H4•H2O in one portion.  The resulting yellow solution was allowed to sit at room 

temperature for 30 min.  Then 50 ml dichloromethane was added followed by 1 M NaOH 

until the pH reached >12.  The phases were separated and the aqueous phase was washed 

with dichloromethane (3 x 30 ml).  The aqueous phase was properly disposed.  The 

combined organics were dried over Na2SO4 and condensed on a rotary evaporator to give 

pure product as a bright yellow oil (153 mg, 100%).  1H NMR (CDCl3, 500 MHz, 20 ˚C): 

d (ppm) 8.54 (m, 2H), 8.02 (d, J = 8.5 Hz, 1H), 7.60-7.68 (m, 5H), 7.28 (dd, J = 8.0 Hz, J 

= 7.4 Hz, 1H), 7.10-7.15 (m, 3H), 6.90 (dd, J = 7.4 Hz, J = 1.2 Hz, 1H), 5.01 (s (br), 2H), 

4.00 (s, 2H), 3.93 (s, 4H).  13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 159.7, 157.0, 

149.3, 144.0, 137.7, 136.6, 136.5, 127.9, 127.1, 123.1, 122.2, 121.4, 115.9, 110.2, 60.7, 

60.5. ESI-MS: calc. for C22H22N5 (M+H)+ 356.1870, found 356.1876.  Since the product 

is somewhat hygroscopic and the phthalimide deprotection is quantitative by NMR 

spectroscopy, the product is typically stored as phthalimide-protected 22 and used in the 

cross-coupling step immediately after deprotection.   
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Bis(2-((bis(pyridin-2-ylmethyl)amino)methyl)quinolin-8-yl)amine (9, L2pyH): A 100 

ml Schlenk tube charged with a magnetic stir bar, Pd2(dba)3 (7.9 mg, 0.009 mmol), and 

rac-BINAP (10.8 mg, 0.017 mmol) was evacuated and back-filled with N2 three times.  

Toluene (2 ml) was added and the solution was allowed to stir for 5 min. before 14 (153 

mg, 0.43 mmol), 5 (182 mg, 0.43 mmol), NaOtBu (50.1 mg, 0.52 mmol), and 3 ml 

toluene were added.  The solution was stirred at 110 ˚C for 24 hr., cooled to room 

temperature, filtered through Celite, and condensed on a rotary evaporator.  The resulting 

brown oil was purified by flash chromatography (silica gel, 4:2:94 CH3OH:Et3N:CH2Cl2) 

to give 287 g (96%) of 9 as a yellow solid.   In spite of a slight (~1%) and persistent 

impurity revealed by 1H NMR, samples of 9 were sufficiently pure for further reactions to 

generate analytically pure compounds (such as 16).  1H NMR (CDCl3, 500 MHz, 20 ˚C): 

d (ppm) 10.61 (s, 1H), 8.48 (m, 4H), 8.08 (d, J = 8.4 Hz, 2H), 7.82 (dd, J = 7.7 Hz, J = 

1.1 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.59 (d (br), J = 7.9 Hz, 4H), 7.51 (ddd, J = 7.6 Hz, 

J = 7.6 Hz, J = 1.8 Hz, 4H), 7.43 (dd, J = 8.0 Hz, J = 8.0 Hz, 2H), 7.25 (dd, J = 8.2 Hz, J 

= 0.9 Hz, 2H), 7.05 (ddd, J = 7.4 Hz, J = 4.9 Hz, J = 1.2 Hz, 4H), 4.04 (s, 4H), 3.90 (s, 

8H).  13C NMR (CDCl3, 125 MHz, 20 ˚C): d (ppm) 159.5, 157.5, 149.1, 139.2, 138.7, 

136.6, 136.4, 128.0, 126.7, 123.2, 122.0, 121.6, 117.5, 110.1, 60.9, 60.9. ESI-MS: calc. 

for C44H40N9 (M+H)+ 694.3401, found 694.3407.  

 

L1OMePdCl: A 25 ml Schlenk tube was charged with L1OMeH (515 mg, 1.24 mmol), 

(COD)Pd(Me)Cl (328 mg, 1.24 mmol), Et3N (0.02 ml, 0.12 mmol), 5 ml THF, and a 

magnetic stirbar.  The solution was heated overnight at 60 ˚C.  Solvent was removed in 

vacuo.  The solids were dissolved in a minimum volume of dichloromethane and 
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precipitated upon the addition of Et2O.  Additional washing with Et2O provided the title 

compound (553 mg, 80%).  Single crystals suitable for x-ray diffraction were grown by 

slow diffusion of Et2O into a CH3CN solution.  1H NMR (CDCl3, 500 MHz, 20 ˚C): d 

(ppm) 9.21 (dd, J = 5.2 Hz, J = 1.1 Hz, 1H), 8.24 (dd, J = 8.3 Hz, J = 1.4 Hz, 1H), 8.15 

(d, J = 8.5 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.70-7.73 (m, 2H), 7.44-7.50 (m, 2H), 7.39 

(dd, J = 7.9, 1H), 7.10 (d, J = 8.0 Hz, 1H), 7.04 (d, J = 7.9 Hz, 1H), 4.66 (s, 2H), 3.58 (t, 

J = 5.7 Hz, 4H), 3.29 (s, 6H), 2.97 (t, J = 5.7 Hz, 4H). 13C NMR (CDCl3, 125 MHz, 20 

˚C): d (ppm) 149.4, 149.2, 148.5, 148.2, 147.5, 139.0, 138.9, 131.0, 129.9, 129.2, 128.4, 

122.0, 121.2, 115.3, 115.2, 112.9, 111.1, 71.1, 64.2, 58.8, 55.7. ESI-MS: calc. for 

C25H28ClN4O2Pd (M+H)+ 559.0939, found 559.0933.  Elemental analysis for 

C25H27ClN4O2Pd: calc. C 53.87 H 4.88, found C 53.50 H 4.85.   

 

[L1imPd][Cl]: A 25 ml Schlenk tube was charged with L1imH (96.7 mg, 0.20 mmol), 

(COD)PdCl2 (56.5 g, 0.20 mmol), Et3N (0.030 ml, 0.22 mmol), 2 ml CHCl3, and a 

magnetic stirbar.  The solution was heated overnight at 60 ˚C.  Solvent was removed in 

vacuo.  Recrystallization by slow diffusion of Et2O into a dichloromethane solution 

provided the title compound as red solid (76 mg, 61%).  Single crystals suitable for x-ray 

diffraction were grown by slow diffusion of Et2O into a CHCl3 solution.  1H NMR 

(CDCl3, 500 MHz, -50 ˚C): d (ppm) 8.35 (d, J = 7.7 Hz, 1H), 8.05 (d, J = 7.5 Hz, 1H), 

7.82 (dd, J = 7.9 Hz, J = 2.7 Hz, 2H), 7.63 (br, 1H), 7.58 (dd, J = 7.7 Hz, J = 7.7 Hz, 1H), 

7.50 (dd, J = 7.9 Hz, J = 5.5 Hz, 1H), 7.46 (dd, J = 7.9 Hz, J = 7.9 Hz, 1H), 7.41 (s, 1H), 

7.21 (d, J = 8.0 Hz, 1H), 7.16 (s, 1H), 7.13 (d (br), J = 8.0 Hz, 1H), 6.68 (s, 1H), 6.20 (s, 

1H), 4.83 (d, J = 14.7 Hz, 1H), 4.35-4.41 (m, 2H), 4.07 (s, 3H), 4.01 (d, J = 12.8 Hz, 1H), 
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3.75-3.80 (m, 4H), 3.30 (d, J = 14.8 Hz, 1H). Despite several purifications, satisfactory 

carbon and hydrogen combustion analysis could not be obtained on otherwise 

spectroscopically-pure samples.   

 

[L1pyHPdMe][PF6]: A 20 ml scintillation vial was charged with (COD)Pd(Me)Cl (44 

mg, 0.17 mmol), 2 ml acetonitrile, and a magnetic stirbar.  Addition of TlPF6 (58 mg, 

0.17 mmol) afforded a white precipitate.  Dropwise addition of a solution of L1pyH (80 

mg, 0.17 mmol) in 1 ml CH3CN produced a brilliant yellow solution.  After stirring for 1 

hr., solvent was removed in vacuo.  The resulting solid was suspended in 5 ml CH2Cl2 

and filtered.  The yellow filtrate was treated with Et2O which resulted in precipitation of a 

yellow solid which was washed with pentate and dried to provide analytically pure 

product. 1H NMR (CDCl3, 500 MHz, 20 ˚C): d (ppm) 10.56 (s, 1H), 9.02 (dd, J = 4.3 Hz, 

J = 1.7 Hz, 1H), 8.41 (d, J = 7.0 Hz, 1H), 8.04 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 5.0 Hz, 

2H), 7.93 (d, J = 7.6 Hz, 1H), 7.78 (dd, J = 8.2 Hz, J = 3.2 Hz, 2H), 7.62-7.70 (m, 4H), 

7.53 (d, J = 8.2 Hz, 1H), 7.48 (dd, J = 7.9 Hz, J = 7.9 Hz, 1H), 7.35 (7.8 Hz, 2H), 7.22 (d, 

J = 8.2 Hz, 1H), 7.16 (br, 2H), 4.92 (d, J = 15.8 Hz, 2H), 4.78 (d, J = 15.8 Hz, 2H), 4.30 

(s, 2H), 0.58 (s, 3H).  13C NMR (CD3CN, 125 MHz, 20 ˚C): d (ppm) 164.8, 151.4, 148.9, 

148.5, 139.8, 139.1, 139.1, 138.3, 138.2, 137.9, 136.9, 136.6, 129.1, 128.0, 127.8, 127.4, 

124.2, 124.0, 124.0, 122.2, 118.4, 110.3, 109.9, 64.2, 63.0, 3.6 ESI-MS: calc. for 

C32H29N6Pd (M-PF6)+ 603.1499, found 603.1476.  Elemental analysis for C32H29F6N6PPd: 

calc. C 51.31 H 3.90, found C 51.05 H 3.85.   
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[L1pyPd(Cl)(PdMe)][PF6]: A 25 ml Schlenk tube was charged with [L1pyHPdMe][PF6] 

(121 mg, 0.162 mmol), (COD)Pd(Me)Cl (85.6 mg, 0.324 mmol), Et3N (2.2 ml, 0.016 

mmol), 2 ml CH3CN, and a magnetic stirbar.  A deep red-purple solution formed upon 

heating at 80 ˚C overnight.  Addition of 10 ml Et2O precipitated a solid which was 

redissolved in 1 ml CH3CN and again precipitated with Et2O to give a red-purple solid 

(115 mg, 80%).  Single crystals suitable for x-ray diffraction were grown by slow 

diffusion of Et2O into a 3:1 CH2Cl2/DMSO solution.  1H NMR (CD3CN, 500 MHz, 20 

˚C): d (ppm) 8.73 (dd, J = 5.2 Hz, J = 1.4 Hz, 1H), 8.47 (dd, J = 8.4 Hz, J = 1.2 Hz, 1H), 

7.95 (d, J = 8.2 Hz, 1H), 7.86 (d (br), J = 4.7 Hz, 2H), 7.73 (dd, J = 7.8 Hz, J = 0.8 Hz, 

1H), 7.52-7.62 (m, 6H), 7.27 (d, J = 7.6 Hz, 1H), 7.25 (dd, J = 7.9 Hz, J = 7.9 Hz, 1H), 

7.10 (br, 2H), 7.02 (br, 2H), 6.76 (d, J = 7.8 Hz, 1H), 5.12 (br, 2H), 4.90 (d, J = 15.7 Hz, 

2H), 4.28 (d, J = 15.7 Hz, 2H), 0.32 (s, 3H). 13C NMR (CD3CN, 125 MHz, 20 ˚C): d 

(ppm) 164.5, 156.8, 149.9, 149.8, 149.6, 149.5, 149.1, 148.9, 141.3, 140.5, 139.2, 132.3, 

131.0, 130.7, 130.4, 127.6, 124.7, 124.3, 123.0, 117.1, 115.3, 114.6, 112.3, 66.0, 65.3, 

6.3. ESI-MS: calc. for C32H28ClN6Pd2 (M-PF6)+ 745.0147, found 745.0127.  Elemental 

analysis for C32H28ClF6N6PPd2: calc. C 43.19 H 3.17, found C 43.07 H 3.45.   

 

[L1pyHPtMe][PF6]: A 20 ml scintillation vial was charged with (COD)Pt(Me)Cl (74 mg, 

0.21 mmol), 2 ml acetonitrile, and a magnetic stirbar.  Addition of TlPF6 (73 mg, 0.21 

mmol) afforded a white precipitate.  Dropwise addition of a solution of L1pyH (101 mg, 

0.21 mmol) in 2 ml CH3CN produced a yellow-orange solution.  After stirring overnight, 

solvent was removed in vacuo.  The resulting solid was suspended in 5 ml CH2Cl2 and 

filtered.  The yellow-brown filtrate was treated with Et2O which resulted in precipitation 
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of a yellow-brown solid which was washed with pentate and dried to provide analytically 

pure product. 1H NMR (CD3CN, 500 MHz, 20 ˚C): d (ppm) 10.75 (s, 1H), 9.09 (dd, J = 

4.3 Hz, J = 1.7 Hz, 1H), 8.39 (dd, J = 8.2 Hz, J = 1.7 Hz, 1H), 8.30 (d, 5.8Hz, 3JPtH = 19.6 

Hz, 2H), 8.05 (d, 8.4 Hz, 1H), 7.93 (d, 7.6 Hz, 1H), 7.84 (dd, J = 10.7 Hz, J = 7.8 Hz, 

2H), 7.63-7.72 (m, 3H), 7.53 (m, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.15 (dd, J = 6.7 Hz, J = 

6.7 Hz, 2H), 5.13 (d, J = 5.6 Hz, 2H), 4.91 (d, J = 5.6 Hz, 2H), 4.51 (s, 2H), 0.69 (s, 3JPtH 

= 37.5 Hz, 3H). 13C NMR (CD3CN, 125 MHz, 20 ˚C): d (ppm) 167.0, 151.6, 149.3, 

149.2, 140.4, 139.4, 138.8, 138.7, 137.4, 137.3, 129.8, 128.9, 128.4, 128.2, 125.5, 125.1, 

124.8, 122.9, 119.1, 111.0, 110.5, 66.1, 64.2, -11.6.  195Pt NMR (CD3CN, 107 MHz, 20 

˚C): d (ppm) -3,059. ESI-MS: calc. for C32H29N6Pt (M-PF6)+ 692.2101, found 692.2083.  

Elemental analysis for C32H29F6N6PPt: calc. C 45.88 H 3.49, found C 45.82 H 3.55.   

 

[L1pyPd(Cl)(PtMe)][PF6]: A 25 ml Schlenk tube was charged with [L1pyHPtMe][PF6] 

(55.9 mg, 0.067 mmol), (COD)Pd(Me)Cl (17.7 mg, 0.067 mmol), Et3N (1 ml, 0.007 

mmol), 1 ml CH3CN, and a magnetic stirbar.  A deep red-purple solution formed upon 

heating at 80 ˚C overnight.  Addition of 10 ml Et2O precipitated a red-purple solid (62 

mg, 95%).  Single crystals suitable for x-ray diffraction were grown by slow diffusion of 

Et2O into a 3:1 CH2Cl2/DMSO solution. 1H NMR (CD3CN, 500 MHz, 20 ˚C): d (ppm) 

8.72 (dd, J = 5.2 Hz, J = 1.5 Hz, 1H), 8.44 (dd, J = 8.5 Hz, J = 1.4 Hz, 1H), 8.06 (br, 2H), 

7.94 (d, J = 8.4 Hz, 1H), 7.71 (dd, J = 7.9 Hz, J = 0.9 Hz, 1H), 7.53-7.60 (m, 6H), 7.24 

(m, 2H), 7.07 (br, 2H), 6.98 (br, 2H), 6.73 (d, J = 7.9 Hz, 1H), 5.32 (br, 2H), 4.83 (d, J = 

15.6 Hz, 2H), 4.43 (d, J = 15.6 Hz, 2H), 0.22 (s, 3JPtH = 34.8 Hz, 3H). 13C NMR (CD3CN, 

125 MHz, 20 ˚C): d (ppm) 165.6, 155.5, 149.8, 149.4, 149.3, 149.1, 148.7, 141.0, 140.1, 
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138.4, 132.0, 130.8, 130.5, 130.2, 127.3, 124.8, 124.0, 122.8, 116.8, 115.0, 114.2, 112.1, 

65.6, -10.9. 195Pt NMR (CD3CN, 107 MHz, 20 ˚C): d (ppm) -3,038. ESI-MS: calc. for 

C32H28ClN6PdPt (M-PF6)+ 833.0747, found 833.0742.  Elemental analysis for 

C32H28ClF6N6PPdPt: calc. C 39.28 H 2.88, found C 38.99 H 3.08.   

 

[L2py(PdBr)3][BF4]2: A sealable NMR tube (J. Young) was charged with a solution of 

[(CH3CN)4Pd][BF4]2 (63.0 mg, 0.141 mmol) in 0.5 ml CD3CN, a solution of L2pyH (32.8 

mg, 0.047 mmol) in 0.5 ml CD3CN, and Et3N (9.9 ml, 0.071 mmol).  Upon heating to 50 

˚C for 8 hr., the solution turned deep red-purple.  To this solution was added TBABr 

(45.7 mg, 0.142 mmol) under an inert atmosphere.  The solution turned deep purple 

immediately.  The purple product was purified by recrystallization from a CH3CN 

solution layered with Et2O and crushing and drying the crystals (65 mg, 97%).  Crystals 

suitable for x-ray diffraction were grown by slow diffusion of Et2O into a CH3CN 

solution.  The 1H and 13C NMR signals are broad owing to at least one fluxional process.  

Five sharper peaks of similar intensity in the 1H NMR spectrum with d (ppm) = 8.23 (d, J 

= 8.3 Hz, 2H), 7.94 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 7.49 (dd, J = 7.8 Hz, J = 

7.8 Hz, 2H), and 7.06 (J = 7.9 Hz, 2H) ppm are tentatively assigned as the quinoline 

peaks; the broad methylene resonances occur between d = 4.0 and 5.6 ppm (see Figure 

SI38).  Elemental analysis for C44H38B2Br3F8N9Pd3: calc. C 37.07 H 2.69, found C 37.05 

H 3.02.   

 

[(MDPA)PdMe][PF6]: (MDPA = N-methyl-2,2’-dipicolylamine): A 20 ml scintillation 

vial was charged with (COD)Pd(Me)Cl (809 mg, 3.05 mmol), a magnetic stirbar, and 10 
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ml CH3CN.  Addition of TlPF6 (1.07 g, 3.05 mmol) afforded a white precipitate. A 

solution of MDPA (651 mg, 3.05 mmol) in 5 ml CH3CN was added dropwise and the 

mixture was allowed to stir for 15 min.  The mixture was then filtered and the TlCl was 

properly disposed.  The filtrate was concentrated in vacuo, redissolved in a minimum 

volume of CH2Cl2, and precipated with Et2O to give a pale yellow solid (1.14 g, 78%).   

1H NMR (CD3CN, 500 MHz, 20 ˚C): d (ppm) 8.40 (d (br), 2H), 8.04 (ddd, J = 9.4 Hz, J = 

7.8 Hz, J = 1.6 Hz, 2H), 7.58 (d (br), 2H), 7.52 (m, 2H), 4.80 (d, J  =15.5 Hz, 2H), 4.21 

(d, J = 15.5 Hz, 2H), 2.58 (s, 3H), 0.80 (s, 3H). 13C NMR (CD3CN, 125 MHz, 20 ˚C): d 

(ppm) 165.5, 150.6, 141.0, 126.0, 125.4, 65.6, 45.2, 4.0. ESI-MS: calc. for C14H18N3Pd 

(M-PF6)+ 334.0541, found 334.0539.  Elemental analysis for C14H18F6N3PPd: calc. C 

35.05 H 3.78, found C 35.19 H 3.79.   

 

[(MDPA)PtMe][PF6] (MDPA = N-methyl-2,2’-dipicolylamine): A 20 ml scintillation 

vial was charged with (COD)Pt(Me)Cl (50.6 mg, 0.143 mmol), a magnetic stirbar, and 1 

ml CH3CN.  Addition of TlPF6 (49.9 mg, 0.143 mmol) afforded a white precipitate. A 

solution of MDPA (30.5 mg, 0.143 mmol) in 1 ml CH3CN was added dropwise and the 

mixture was allowed to stir overnight.  The mixture was then filtered and the TlCl was 

properly disposed.  The filtrate was concentrated in vacuo, redissolved in a minimum 

volume of CH2Cl2, and precipated with Et2O to give a pale yellow solid (62 mg, 76%).   

1H NMR (CD3CN, 500 MHz, 20 ˚C): δ (ppm) 8.60 (d (br), J = 5.8 Hz, 3JPtH = 25.2 Hz, 

2H), 8.10, (ddd, J = 7.8 Hz, J = 7.8 Hz, J = 1.5 Hz, 2H), 7.58 (d (br), 7.8 Hz, 2H), 7.47 

(m, 2H), 4.74 (d, J = 15.4 Hz, 2H), 4.41 (d, J = 15.4 Hz, 3JPtH = 11.0 Hz, 2H), 2.73 (s, 

3JPtH = 6.5 Hz, 3H), 0.83 (s, 3JPtH = 32.8 Hz, 3H). 13C NMR (CD3CN, 125 MHz, 20 ˚C): d 
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(ppm) 166.8, 150.2, 140.6, 126.4, 125.5, 66.8, 46.4. ESI-MS: calc. for C14H18N3Pt (M-

PF6)+ 423.1139, found 423.1154.  Elemental analysis for C14H18F6N3PPt: calc. C 29.59 H 

3.19, found C 29.57 H 3.15.   
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Appendix A    X-ray Diffraction Tables 

Table A.1  Crystal data and structure refinement for (TPB)CoBr. 

Identification code  (TBP)CoBr 

Empirical formula  C36 H54 B Br Co P3 

Formula weight  729.35 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.8175(6) Å α = 91.488(3)˚ 

 b = 11.5615(7) Å β = 97.701(3)˚ 

 c = 15.9277(9) Å γ = 117.196(2)˚ 

Volume 1747.20(17) Å3 

Z 2 

Density (calculated) 1.386 Mg/m3 

Absorption coefficient 1.797 mm-1 

F(000) 764 

Crystal size 0.37 x 0.30 x 0.26 mm3 

Theta range for data collection 2.14 to 44.17˚ 

Index ranges -21<=h<=21, -22<=k<=22, -31<=l<=31 

Reflections collected 147389 

Independent reflections 27532 [R(int) = 0.0486] 

Completeness to theta = 44.17° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.6523 and 0.5562 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 27532 / 0 / 391 

Goodness-of-fit on F2 1.012 

Final R indices [I>2sigma(I)] R1 = 0.0321, wR2 = 0.0718 

R indices (all data) R1 = 0.0545, wR2 = 0.0796 

Largest diff. peak and hole 1.166 and -0.396 e Å-3 
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Table A.2  Crystal data and structure refinement for (TPB)Co(N2). 

Identification code  (TPB)Co(N2) 

Empirical formula  C36 H54 B Co N2 P3 

Formula weight  677.46 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.8940(3) Å α = 91.2180(10)˚ 

 b = 11.4465(3) Å β = 95.1680(10)˚ 

 c = 16.0319(5) Å γ = 118.1020(10)˚ 

Volume 1751.68(9) Å3 

Z 2 

Density (calculated) 1.284 Mg/m3 

Absorption coefficient 0.655 mm-1 

F(000) 722 

Crystal size 0.42 x 0.42 x 0.14 mm3 

Theta range for data collection 1.28 to 43.07˚ 

Index ranges -20<=h<=20, -21<=k<=21, -30<=l<=29 

Reflections collected 54492 

Independent reflections 22993 [R(int) = 0.0324] 

Completeness to theta = 25.00° 99.6 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9139 and 0.7706 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 22993 / 0 / 400 

Goodness-of-fit on F2 1.049 

Final R indices [I>2sigma(I)] R1 = 0.0475, wR2 = 0.1110 

R indices (all data) R1 = 0.0754, wR2 = 0.1258 

Largest diff. peak and hole 1.818 and -0.548 e Å-3 
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Table A.3  Crystal data and structure refinement for [(TPB)Co(N2)][(Na(12-crown-4)2]. 

Identification code  [(TPB)Co(N2)][(Na(12-crown-4)2] 

Empirical formula  C52 H86 B Co N2 Na O8 P3 

Formula weight  1052.87 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.8142(5) Å α = 90˚ 

 b = 27.5046(13) Å β = 91.141(2)˚ 

 c = 22.3660(10) Å γ = 90˚ 

Volume 6651.2(5) Å3 

Z 4 

Density (calculated) 1.051 Mg/m3 

Absorption coefficient 0.380 mm-1 

F(000) 2256 

Crystal size 0.30 x 0.24 x 0.20 mm3 

Theta range for data collection 1.97 to 43.13˚ 

Index ranges -20<=h<=20, -52<=k<=52, -43<=l<=43 

Reflections collected 451328 

Independent reflections 49547 [R(int) = 0.0632] 

Completeness to theta = 43.13° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 49547 / 1385 / 1158 

Goodness-of-fit on F2 1.098 

Final R indices [I>2sigma(I)] R1 = 0.0617, wR2 = 0.1541 

R indices (all data) R1 = 0.0986, wR2 = 0.1731 

Largest diff. peak and hole 1.709 and -1.053 e Å-3 
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Table A.4  Crystal data and structure refinement for [(TPB)Co][BArF
4]. 

Identification code  [(TPB)Co][BArF
4] 

Empirical formula  C68 H66 B2 Co F24 P3 

Formula weight  1512.67 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 26.3920(15) Å α = 90˚ 

 b = 19.7049(13) Å β = 90˚ 

 c = 26.4995(19) Å γ = 90˚ 

Volume 13781.1(16) Å3 

Z 8 

Density (calculated) 1.458 Mg/m3 

Absorption coefficient 0.424 mm-1 

F(000) 6176 

Crystal size 0.25 x 0.22 x 0.22 mm3 

Theta range for data collection 1.86 to 32.03˚ 

Index ranges -39<=h<=39, -23<=k<=29, -39<=l<=39 

Reflections collected 377520 

Independent reflections 23962 [R(int) = 0.0539] 

Completeness to theta = 32.03° 99.9 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 23962 / 1174 / 1007 

Goodness-of-fit on F2 1.052 

Final R indices [I>2sigma(I)] R1 = 0.0459, wR2 = 0.1085 

R indices (all data) R1 = 0.0720, wR2 = 0.1241 

Largest diff. peak and hole 1.268 and -1.343 e Å-3 
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Table A.5  Crystal data and structure refinement for (TPB)Co(H2). 

Identification code  (TPB)Co(H2) 

Empirical formula  C36 H54 B Co P3 

Formula weight  649.44 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.8535(5) Å α = 91.474(2)˚ 

 b = 11.2160(5) Å β = 101.653(2)˚ 

 c = 16.7367(8) Å γ = 118.930(2)˚ 

Volume 1728.21(14) Å3 

Z 2 

Density (calculated) 1.248 Mg/m3 

Absorption coefficient 0.659 mm-1 

F(000) 694 

Crystal size 0.37 x 0.26 x 0.05 mm3 

Theta range for data collection 2.10 to 39.16˚ 

Index ranges -18<=h<=19, -19<=k<=19, -29<=l<=29 

Reflections collected 89604 

Independent reflections 19439 [R(int) = 0.0338] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9678 and 0.7926 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 19439 / 0 / 382 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0348, wR2 = 0.0876 

R indices (all data) R1 = 0.0559, wR2 = 0.0964 

Largest diff. peak and hole 1.543 and -0.556 e Å-3 
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Table A.6  Crystal data and structure refinement for (DPB)FeBr. 

Identification code  (DPB)FeBr 

Empirical formula  C30 H41 B Br Fe P2 

Formula weight  610.14 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 18.921(3) Å α = 90˚ 

 b = 9.9768(12) Å β = 104.872(8)˚ 

 c = 31.705(4) Å γ = 90˚ 

Volume 5784.4(13) Å3 

Z 8 

Density (calculated) 1.401 Mg/m3 

Absorption coefficient 2.031 mm-1 

F(000) 2536 

Crystal size 0.388 x 0.312 x 0.298 mm3 

Theta range for data collection 2.23 to 44.08˚ 

Index ranges -36<=h<=36, -19<=k<=19, -59<=l<=62 

Reflections collected 130537 

Independent reflections 22550 [R(int) = 0.0437] 

Completeness to theta = 44.08° 99.3 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 22550 / 0 / 344 

Goodness-of-fit on F2 1.039 

Final R indices [I>2sigma(I)] R1 = 0.0414, wR2 = 0.0929 

R indices (all data) R1 = 0.0675, wR2 = 0.1012 

Largest diff. peak and hole 0.987 and -1.739 e Å-3 
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Table A.7  Crystal data and structure refinement for [(DPB)Fe]2(µ-1,2-N2). 

Identification code  [(DPB)Fe]2(µ-1,2-N2) 

Empirical formula  C60 H82 B2 Fe2 N2 P4 

Formula weight  1088.54 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.6080(5) Å α = 90˚ 

 b = 22.6752(7) Å β = 103.3660(10)˚ 

 c = 18.8057(7) Å γ = 90˚ 

Volume 5645.6(3) Å3 

Z 4 

Density (calculated) 1.281 Mg/m3 

Absorption coefficient 0.667 mm-1 

F(000) 2312 

Crystal size 0.46 x 0.38 x 0.25 mm3 

Theta range for data collection 1.43 to 46.11˚ 

Index ranges -27<=h<=27, -45<=k<=45, -37<=l<=37 

Reflections collected 485205 

Independent reflections 48837 [R(int) = 0.0684] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 48837 / 0 / 687 

Goodness-of-fit on F2 1.023 

Final R indices [I>2sigma(I)] R1 = 0.0359, wR2 = 0.0795 

R indices (all data) R1 = 0.0668, wR2 = 0.0916 

Largest diff. peak and hole 0.972 and -0.338 e Å-3 
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Table A.8  Crystal data and structure refinement for (DPB–H)Fe(benzo[h]quinolin-10-yl). 

Identification code  (DPB–H)Fe(benzo[h]quinolin-10-yl) 

Empirical formula  C43 H50 B Fe N O P2 

Formula weight  725.44 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.1418(5) Å α = 90˚ 

 b = 12.7713(6) Å β = 96.033(2)˚ 

 c = 30.2507(13) Å γ = 90˚ 

Volume 4280.7(3) Å3 

Z 4 

Density (calculated) 1.126 Mg/m3 

Absorption coefficient 0.457 mm-1 

F(000) 1536 

Crystal size 0.34 x 0.32 x 0.22 mm3 

Theta range for data collection 1.89 to 45.34˚ 

Index ranges -22<=h<=22, -25<=k<=25, -60<=l<=47 

Reflections collected 131767 

Independent reflections 35224 [R(int) = 0.0431] 

Completeness to theta = 25.00° 99.7 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 35224 / 0 / 482 

Goodness-of-fit on F2 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0522, wR2 = 0.1435 

R indices (all data) R1 = 0.0733, wR2 = 0.1565 

Largest diff. peak and hole 1.761 and -1.298 e Å-3 
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Table A.9   Crystal data and structure refinement for (DPB–H)Fe(2-(pyridin-2-yl)phenyl). 

Identification code  (DPB–H)Fe(2-(pyridin-2-yl)phenyl) 

Empirical formula  C41 H50 B Fe N P2 

Formula weight  685.42 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.4679(6) Å α = 90.0000(3)˚ 

 b = 17.2177(8) Å β = 96.494(3)˚ 

 c = 18.2046(6) Å γ = 90.0000(3)˚ 

Volume 3571.5(3) Å3 

Z 4 

Density (calculated) 1.275 Mg/m3 

Absorption coefficient 0.542 mm-1 

F(000) 1456 

Crystal size 0.33 x 0.30 x 0.28 mm3 

Theta range for data collection 1.63 to 31.03˚ 

Index ranges -16<=h<=16, -24<=k<=24, -26<=l<=26 

Reflections collected 100878 

Independent reflections 11375 [R(int) = 0.0370] 

Completeness to theta = 31.03° 99.7 %  

Max. and min. transmission 0.8631 and 0.8414 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11375 / 0 / 427 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0292, wR2 = 0.0756 

R indices (all data) R1 = 0.0344, wR2 = 0.0791 

Largest diff. peak and hole 0.515 and -0.357 e Å-3 
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Table A.10  Crystal data and structure refinement for (DPB–H)Fe(8-amidoquinoline). 

Identification code  (DPB–H)Fe(8-amidoquinoline) 

Empirical formula  C39 H48 B Fe N2 P2 

Formula weight  673.39 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 11.9514(10) Å α = 90˚ 

 b = 22.7818(15) Å β = 102.923(5)˚ 

 c = 13.2520(11) Å γ = 90˚ 

Volume 3516.8(5) Å3 

Z 4 

Density (calculated) 1.272 Mg/m3 

Absorption coefficient 0.550 mm-1 

F(000) 1428 

Crystal size 0.27 x 0.27 x 0.24 mm3 

Theta range for data collection 1.79 to 35.47˚ 

Index ranges -18<=h<=19, -35<=k<=35, -21<=l<=21 

Reflections collected 115929 

Independent reflections 15227 [R(int) = 0.0794] 

Completeness to theta = 25.00° 100.0 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15227 / 1119 / 555 

Goodness-of-fit on F2 0.831 

Final R indices [I>2sigma(I)] R1 = 0.0459, wR2 = 0.1245 

R indices (all data) R1 = 0.1018, wR2 = 0.1469 

Largest diff. peak and hole 0.711 and -0.645 e Å-3 



 
 

210 

Table A.11  Crystal data and structure refinement for [(DPB)Fe(N2)][K(benzo-15-crown-5)2]. 

Identification code  [(DPB)Fe(N2)][K(benzo-15-crown-5)2] 

Empirical formula  C58 H81 B Fe K N2 O10 P2 

Formula weight  1133.95 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 15.072(4) Å α = 65.274(8)˚ 

 b = 16.020(2) Å β = 67.441(8)˚ 

 c = 16.354(3) Å γ = 76.842(10)˚ 

Volume 3301.5(11) Å3 

Z 2 

Density (calculated) 1.141 Mg/m3 

Absorption coefficient 0.391 mm-1 

F(000) 1206 

Crystal size 0.30 x 0.10 x 0.10 mm3 

Theta range for data collection 1.69 to 30.19˚ 

Index ranges -21<=h<=21, -22<=k<=21, -22<=l<=22 

Reflections collected 119765 

Independent reflections 18004 [R(int) = 0.0608] 

Completeness to theta = 30.19° 91.8 %  

Max. and min. transmission 0.9620 and 0.8918 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 18004 / 854 / 797 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0486, wR2 = 0.1389 

R indices (all data) R1 = 0.0850, wR2 = 0.1604 

Largest diff. peak and hole 1.167 and -0.828 e Å-3 
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Table A.12  Crystal data and structure refinement for (DPB)Fe(NNSi2). 

Identification code  (DPB)Fe(NNSi2) 

Empirical formula  C36 H57 B Fe N2 P2 Si2 

Formula weight  702.62 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.5707(8) Å α = 118.196(3)˚ 

 b = 19.9433(14) Å β = 97.760(4)˚ 

 c = 20.5612(15) Å γ = 92.754(3)˚ 

Volume 3754.1(5) Å3 

Z 4 

Density (calculated) 1.243 Mg/m3 

Absorption coefficient 0.578 mm-1 

F(000) 1504 

Crystal size 0.38 x 0.38 x 0.31 mm3 

Theta range for data collection 1.96 to 50.11˚ 

Index ranges -22<=h<=22, -42<=k<=43, -43<=l<=44 

Reflections collected 501556 

Independent reflections 77845 [R(int) = 0.0593] 

Completeness to theta = 25.00° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8411 and 0.8102 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 77845 / 0 / 857 

Goodness-of-fit on F2 1.003 

Final R indices [I>2sigma(I)] R1 = 0.0378, wR2 = 0.0824 

R indices (all data) R1 = 0.0690, wR2 = 0.0937 

Largest diff. peak and hole 0.858 and -0.431 e Å-3 



 
 

212 

Table A.13  Crystal data and structure refinement for (DPB–H)FeN(Si)NSi2. 

Identification code  (DPB–H)FeN(Si)NSi2 

Empirical formula  C42 H65 B Fe N2 P2 Si3 

Formula weight  810.83 

Temperature  100(2) K 

Wavelength  0.073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.167(15) Å α = 99.79(5)˚ 

 b = 12.843(12) Å β = 95.23(5)˚ 

 c = 18.21(3) Å γ = 101.42(5)˚ 

Volume 2277(5) Å3 

Z 2 

Density (calculated) 1.183 Mg/m3 

Absorption coefficient 0.510 mm-1 

F(000) 868 

Crystal size 0.05 x 0.04 x 0.04 mm3 

Theta range for data collection 1.65 to 24.55˚ 

Index ranges -11<=h<=11, -14<=k<=14, -20<=l<=21 

Reflections collected 11316 

Independent reflections 5912 [R(int) = 0.0330] 

Completeness to theta = 24.55° 77.8 %  

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5912 / 0 / 485 

Goodness-of-fit on F2 1.068 

Final R indices [I>2sigma(I)] R1 = 0.0543, wR2 = 0.1547 

R indices (all data) R1 = 0.0648, wR2 = 0.1615 

Largest diff. peak and hole 0.778 and -0.295 e Å-3 
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Table A.14  Crystal data and structure refinement for (PhDPB)FeBr. 

Identification code  (PhDPB)FeBr 

Empirical formula  C42 H33 B Br Fe P2 

Formula weight  726.2 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.6143(6) Å α = 87.525(3)˚ 

 b = 9.7710(5) Å β = 88.376(4)˚ 

 c = 19.9222(14) Å γ = 68.912(2)˚ 

Volume 1744.39(19) Å3 

Z 2 

Density (calculated) 1.421 Mg/m3 

Absorption coefficient 1.699 mm-1 

F(000) 762 

Crystal size 0.18 x 0.16 x 0.08 mm3 

Theta range for data collection 2.05 to 27.11˚ 

Index ranges -12<=h<=12, -12<=k<=12, -25<=l<=25 

Reflections collected 66744 

Independent reflections 7693 [R(int) = 0.0822] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7693 / 434 / 444 

Goodness-of-fit on F2 1.038 

Final R indices [I>2sigma(I)] R1 = 0.0461, wR2 = 0.1122 

R indices (all data) R1 = 0.0774, wR2 = 0.1196 

Largest diff. peak and hole 0.545 and -0.474 e Å-3 
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Table A.15  Crystal data and structure refinement for (PhDPB)Fe 

Identification code  (PhDPB)Fe 

Empirical formula  C54 H45 B1 Fe1 P2 

Formula weight  822.5 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.8333(19) Å α = 78.661(7)˚ 

 b = 11.167(3) Å β = 76.780(5)˚ 

 c = 19.774(3) Å γ = 88.148(8)˚ 

Volume 2072.3(7) Å3 

Z 2 

Density (calculated) 1.318 Mg/m3 

Absorption coefficient 0.479 mm-1 

F(000) 860 

Crystal size 0.32 x 0.30 x 0.19 mm3 

Theta range for data collection 1.08 to 41.29˚ 

Index ranges -18<=h<=18, -20<=k<=20, -36<=l<=36 

Reflections collected 88753 

Independent reflections 25823 [R(int) = 0.0617] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 25823 / 0 / 543 

Goodness-of-fit on F2 0.987 

Final R indices [I>2sigma(I)] R1 = 0.0505, wR2 = 0.1162 

R indices (all data) R1 = 0.0929, wR2 = 0.1311 

Largest diff. peak and hole 1.331 and -0.473 e Å-3 
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Table A.16  Crystal data and structure refinement for (PhDPB)Fe(NNSi2). 

Identification code  (PhDPB)Fe(NNSi2) 

Empirical formula  C48 H49 B Fe N2 P2 Si2 

Formula weight  838.67 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.7196(6) Å α = 90˚ 

 b = 18.1906(11) Å β = 92.637(2)˚ 

 c = 21.7101(10) Å γ = 90˚ 

Volume 4228.9(4) Å3 

Z 4 

Density (calculated) 1.317 Mg/m3 

Absorption coefficient 0.526 mm-1 

F(000) 1760 

Crystal size 0.37 x 0.16 x 0.08 mm3 

Theta range for data collection 1.88 to 41.63˚ 

Index ranges -19<=h<=19, -33<=k<=33, -39<=l<=40 

Reflections collected 196104 

Independent reflections 28150 [R(int) = 0.0667] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.0000 and 0.9285 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 28150 / 0 / 529 

Goodness-of-fit on F2 1.012 

Final R indices [I>2sigma(I)] R1 = 0.0407, wR2 = 0.0901 

R indices (all data) R1 = 0.0750, wR2 = 0.1024 

Largest diff. peak and hole 0.789 and -0.378 e Å-3 
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Table A.17  Crystal data and structure refinement for (PhDPB*–H)FeN(H)NSi2. 

Identification code  (PhDPB*–H)FeN(H)NSi2 

Empirical formula  C56 H67 B Fe N2 O2 P2 Si2 

Formula weight  984.90 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 12.2122(7) Å α = 88.967(3)˚ 

 b = 13.2685(8) Å β = 80.813(3)˚ 

 c = 16.1433(12) Å γ = 84.376(2)˚ 

Volume 2569.8(3) Å3 

Z 2 

Density (calculated) 1.273 Mg/m3 

Absorption coefficient 0.446 mm-1 

F(000) 1044 

Crystal size 0.3 x 0.22 x 0.2 mm3 

Theta range for data collection 1.96 to 44.14˚ 

Index ranges -23<=h<=23, -25<=k<=25, -31<=l<=31 

Reflections collected 310067 

Independent reflections 40098 [R(int) = 0.0425] 

Completeness to theta = 44.14° 99.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 40098 / 585 / 627 

Goodness-of-fit on F2 1.040 

Final R indices [I>2sigma(I)] R1 = 0.0371, wR2 = 0.1070 

R indices (all data) R1 = 0.0607, wR2 = 0.1162 

Largest diff. peak and hole 1.304 and -0.835 e Å-3 
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Table A.18  Crystal data and structure refinement for (DPB)Fe(CO)2. 

Identification code  (DPB)Fe(CO)2 

Empirical formula  C32 H41 B Fe O2 P2 

Formula weight  586.25 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 16.8731(10) Å α = 90˚ 

 b = 9.0298(5) Å β = 110.704(2)˚ 

 c = 21.5015(12) Å γ = 90˚ 

Volume 3064.4(3) Å3 

Z 4 

Density (calculated) 1.271 Mg/m3 

Absorption coefficient 0.623 mm-1 

F(000) 1240 

Crystal size 0.40 x 0.30 x 0.30 mm3 

Theta range for data collection 1.29 to 39.03˚ 

Index ranges -29<=h<=29, -15<=k<=15, -37<=l<=37 

Reflections collected 187067 

Independent reflections 17354 [R(int) = 0.0933] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8351 and 0.7886 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 17354 / 0 / 351 

Goodness-of-fit on F2 1.075 

Final R indices [I>2sigma(I)] R1 = 0.0528, wR2 = 0.1146 

R indices (all data) R1 = 0.0927, wR2 = 0.1320 

Largest diff. peak and hole 1.514 and -0.498 e Å-3 
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Table A.19  Crystal data and structure refinement for (DPB–H)Fe(H)(CO)2. 

Identification code  (DPB–H)Fe(H)(CO)2 

Empirical formula  C32 H43 B Fe O2 P2 

Formula weight  588.26 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 9.5324(6) Å α = 98.981(3)˚ 

 b = 9.7170(7) Å β = 99.435(3)˚ 

 c = 17.8890(16) Å γ = 105.950(2)˚ 

Volume 1535.9(2) Å3 

Z 2 

Density (calculated) 1.272 Mg/m3 

Absorption coefficient 0.622 mm-1 

F(000) 624 

Crystal size 0.34 x 0.28 x 0.28 mm3 

Theta range for data collection 2.23 to 48.60˚ 

Index ranges -20<=h<=19, -19<=k<=19, -37<=l<=37 

Reflections collected 196119 

Independent reflections 29527 [R(int) = 0.0410] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8451 and 0.8164 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 29527 / 451 / 427 

Goodness-of-fit on F2 1.015 

Final R indices [I>2sigma(I)] R1 = 0.0333, wR2 = 0.0924 

R indices (all data) R1 = 0.0515, wR2 = 0.0976 

Largest diff. peak and hole 1.050 and -0.482 e Å-3 
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Table A.20  Crystal data and structure refinement for [(DPB)Fe(CO)2][K(benzo-15-crown-5)2]. 

Identification code  [(DPB)Fe(CO)2][K(benzo-15-crown-5)2] 

Empirical formula  C60 H81 B Fe K O12 P2 

Formula weight  1161.95 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 16.736(3) Å α = 90˚ 

 b = 11.266(2) Å β = 92.526(10)˚ 

 c = 31.692(9) Å γ = 90˚ 

Volume 5969(2) Å3 

Z 4 

Density (calculated) 1.293 Mg/m3 

Absorption coefficient 0.435 mm-1 

F(000) 2468 

Crystal size 0.35 x 0.12 x 0.04 mm3 

Theta range for data collection 1.73 to 32.68˚ 

Index ranges -25<=h<=24, -16<=k<=16, -46<=l<=46 

Reflections collected 196722 

Independent reflections 20375 [R(int) = 0.0930] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9828 and 0.8625 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20375 / 0 / 702 

Goodness-of-fit on F2 0.919 

Final R indices [I>2sigma(I)] R1 = 0.0375, wR2 = 0.0756 

R indices (all data) R1 = 0.0807, wR2 = 0.0833 

Largest diff. peak and hole 0.438 and -0.534 e Å-3 
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Table A.21  Crystal data and structure refinement for [(DPB)Fe(CO)2][K(benzo-15-crown-5)2]2. 

Identification code  [(DPB)Fe(CO)2][K(benzo-15-crown-5)2]2 

Empirical formula  C46 H64.50 B0.50 Fe0.50 K O11.50 P 

Formula weight  904.88 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 14.3954(14) Å α = 96.728(4)˚ 

 b = 14.7510(12) Å β = 96.954(2)˚ 

 c = 24.5846(14) Å γ = 115.227(2)˚ 

Volume 4604.3(6) Å3 

Z 4 

Density (calculated) 1.305 Mg/m3 

Absorption coefficient 0.361 mm-1 

F(000) 1928 

Crystal size 0.30 x 0.30 x 0.20 mm3 

Theta range for data collection 1.66 to 42.89˚ 

Index ranges -27<=h<=27, -28<=k<=27, -46<=l<=46 

Reflections collected 340219 

Independent reflections 64746 [R(int) = 0.0551] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9314 and 0.8995 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 64746 / 0 / 1098 

Goodness-of-fit on F2 1.021 

Final R indices [I>2sigma(I)] R1 = 0.0472, wR2 = 0.1091 

R indices (all data) R1 = 0.0857, wR2 = 0.1242 

Largest diff. peak and hole 1.257 and -1.146 e Å-3 
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Table A.22  Crystal data and structure refinement for (DPB)Fe(CO)3. 

Identification code  (DPB)Fe(CO)3 

Empirical formula  C33 H41 B Fe O3 P2 

Formula weight  614.26 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 10.1059(5) Å α = 90˚ 

 b = 16.9341(7) Å β = 92.838(2)˚ 

 c = 18.0259(9) Å γ = 90˚ 

Volume 3081.1(3) Å3 

Z 4 

Density (calculated) 1.324 Mg/m3 

Absorption coefficient 0.626 mm-1 

F(000) 1296 

Crystal size 0.39 x 0.32 x 0.23 mm3 

Theta range for data collection 2.26 to 47.13˚ 

Index ranges -20<=h<=20, -34<=k<=34, -37<=l<=25 

Reflections collected 423493 

Independent reflections 28099 [R(int) = 0.0543] 

Completeness to theta = 25.00° 99.9 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 28099 / 0 / 369 

Goodness-of-fit on F2 1.043 

Final R indices [I>2sigma(I)] R1 = 0.0302, wR2 = 0.0871 

R indices (all data) R1 = 0.0499, wR2 = 0.0921 

Largest diff. peak and hole 1.574 and -0.440 e Å-3 
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Table A.23  Crystal data and structure refinement for (DPB)Fe(COSiMe3)2. 

Identification code  (DPB)Fe(COSiMe3)2 

Empirical formula  C38 H59 B Fe O2 P2 Si2 

Formula weight  732.63 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 12.6336(12) Å α = 90.693(2)˚ 

 b = 18.0101(17) Å β = 103.060(3)˚ 

 c = 18.2534(13) Å γ = 90.701(3)˚ 

Volume 4045.0(6) Å3 

Z 4 

Density (calculated) 1.203 Mg/m3 

Absorption coefficient 0.541 mm-1 

F(000) 1568 

Crystal size 0.28 x 0.22 x 0.10 mm3 

Theta range for data collection 1.79 to 37.12˚ 

Index ranges -21<=h<=21, -29<=k<=30, -30<=l<=30 

Reflections collected 299923 

Independent reflections 39962 [R(int) = 0.0678] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9478 and 0.8632 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 39962 / 0 / 857 

Goodness-of-fit on F2 0.948 

Final R indices [I>2sigma(I)] R1 = 0.0379, wR2 = 0.0907 

R indices (all data) R1 = 0.0688, wR2 = 0.0984 

Largest diff. peak and hole 1.159 and -0.743 e Å-3 



 
 

223 

Table A.24  Crystal data and structure refinement for SOP2. 

Identification code  SOP2 

Empirical formula  C36 H28 O P2 S 

Formula weight  570.58 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 10.3898(11) Å α = 90˚ 

 b = 16.0613(19) Å β = 90˚ 

 c = 34.037(4) Å γ = 90˚ 

Volume 5679.9(11) Å3 

Z 8 

Density (calculated) 1.334 Mg/m3 

Absorption coefficient 0.256 mm-1 

F(000) 2384 

Crystal size 0.30 x 0.30 x 0.20 mm3 

Theta range for data collection 1.20 to 29.57˚ 

Index ranges -14<=h<=14, -22<=k<=22, -47<=l<=47 

Reflections collected 121249 

Independent reflections 7980 [R(int) = 0.0672] 

Completeness to theta = 29.57° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9506 and 0.9272 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7980 / 0 / 361 

Goodness-of-fit on F2 1.071 

Final R indices [I>2sigma(I)] R1 = 0.0421, wR2 = 0.1050 

R indices (all data) R1 = 0.0540, wR2 = 0.1137 

Absolute structure parameter -0.014(10) 

Largest diff. peak and hole 0.460 and -0.362 e Å-3 
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Table A.25  Crystal data and structure refinement for (SOP2)RhCl. 

Identification code  (SOP2)RhCl 

Empirical formula  C48 H60 Cl O4 P2 Rh S 

Formula weight  933.32 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 16.9653(17) Å α = 90˚ 

 b = 10.9952(11) Å β = 108.588(2)˚ 

 c = 24.222(2) Å γ = 90˚ 

Volume 4282.5(7) Å3 

Z 4 

Density (calculated) 1.448 Mg/m3 

Absorption coefficient 0.629 mm-1 

F(000) 1952 

Crystal size 0.30 x 0.10 x 0.05 mm3 

Theta range for data collection 1.29 to 29.57˚ 

Index ranges -23<=h<=23, -15<=k<=15, -33<=l<=33 

Reflections collected 93917 

Independent reflections 12021 [R(int) = 0.0769] 

Completeness to theta = 29.57° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9692 and 0.8336 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12021 / 553 / 543 

Goodness-of-fit on F2 1.048 

Final R indices [I>2sigma(I)] R1 = 0.0471, wR2 = 0.1200 

R indices (all data) R1 = 0.0650, wR2 = 0.1335 

Absolute structure parameter -0.014(10) 

Largest diff. peak and hole 1.622 and -0.925 e Å-3 
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Table A.26  Crystal data and structure refinement for (SOP2)RhN3. 

Identification code  (SOP2)RhN3 

Empirical formula  C36 H28 N3 O P2 Rh S 

Formula weight  715.52 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 12.0674(4) Å α = 90˚ 

 b = 12.7353(4) Å β = 90˚ 

 c = 19.5111(6) Å γ = 90˚ 

Volume 2998.50(17) Å3 

Z 4 

Density (calculated) 1.585 Mg/m3 

Absorption coefficient 0.782 mm-1 

F(000) 1456 

Crystal size 0.20 x 0.15 x 0.10 mm3 

Theta range for data collection 1.91 to 36.35˚ 

Index ranges -20<=h<=19, -21<=k<=21, -32<=l<=32 

Reflections collected 102598 

Independent reflections 14570 [R(int) = 0.0583] 

Completeness to theta = 36.35° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9259 and 0.8592 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 14570 / 0 / 397 

Goodness-of-fit on F2 1.031 

Final R indices [I>2sigma(I)] R1 = 0.0267, wR2 = 0.0527 

R indices (all data) R1 = 0.0329, wR2 = 0.0551 

Absolute structure parameter -0.014(10) 

Largest diff. peak and hole 0.545 and -0.603 e Å-3 
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Table A.27  Crystal data and structure refinement for [(SOP2)Rh(CH3CN)][PF6]. 

Identification code  [(SOP2)Rh(CH3CN)][PF6] 

Empirical formula  C48.50 H43 F6 N O P3 Rh S 

Formula weight  997.72 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 33.188(2) Å α = 90˚ 

 b = 12.5088(7) Å β = 125.157(2)˚ 

 c = 27.1062(16) Å γ = 90˚ 

Volume 9200.0(9) Å3 

Z 8 

Density (calculated) 1.441 Mg/m3 

Absorption coefficient 0.582 mm-1 

F(000) 4072 

Crystal size 0.3 x 0.1 x 0.08 mm3 

Theta range for data collection 1.81 to 34.97˚ 

Index ranges -49<=h<=53, -19<=k<=19, -43<=l<=43 

Reflections collected 129317 

Independent reflections 20010 [R(int) = 0.0594] 

Completeness to theta = 34.97° 99.0 %  

Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20010 / 508 / 559 

Goodness-of-fit on F2 1.024 

Final R indices [I>2sigma(I)] R1 = 0.0356, wR2 = 0.0787 

R indices (all data) R1 = 0.0586, wR2 = 0.0888 

Absolute structure parameter 1.002(5) 

Extinction coefficient none 

Largest diff. peak and hole 1.299 and -0.692 e Å-3 
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Table A.28  Crystal data and structure refinement for (SOP2)IrCl(COE). 

Identification code  (SOP2)IrCl(COE) 

Empirical formula  C52 H58 Cl Ir O3 P2 S 

Formula weight  1052.63 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.8356(9) Å α = 67.9740(10)˚ 

 b = 14.2555(12) Å β = 87.4340(10)˚ 

 c = 17.2755(14) Å γ = 67.8130(10)˚ 

Volume 2275.9(3) Å3 

Z 2 

Density (calculated) 1.536 Mg/m3 

Absorption coefficient 3.151 mm-1 

F(000) 1068 

Crystal size 0.18 x 0.18 x 0.10 mm3 

Theta range for data collection 1.28 to 28.70˚ 

Index ranges -14<=h<=14, -19<=k<=19, -23<=l<=23 

Reflections collected 48703 

Independent reflections 11715 [R(int) = 0.0648] 

Completeness to theta = 28.70° 99.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7435 and 0.6008 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11715 / 588 / 578 

Goodness-of-fit on F2 1.033 

Final R indices [I>2sigma(I)] R1 = 0.0392, wR2 = 0.0850 

R indices (all data) R1 = 0.0526, wR2 = 0.0917 

Absolute structure parameter 1.002(5) 

Largest diff. peak and hole 4.086 and -1.163 e Å-3 
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Table A.29  Crystal data and structure refinement for [(SOP2)IrCl(H)(CH3CN)][OTf]. 

Identification code  [(SOP2)IrCl(H)(CH3CN)][OTf] 

Empirical formula  C41 H34 Cl F3 Ir N2 O4 P2 S2 

Formula weight  1029.41 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  Pc 

Unit cell dimensions a = 9.9455(4) Å α = 90˚ 

 b = 13.7424(5) Å β = 94.950(2)˚ 

 c = 15.6180(6) Å γ = 90˚ 

Volume 2126.63(14) Å3 

Z 2 

Density (calculated) 1.608 Mg/m3 

Absorption coefficient 8.756 mm-1 

F(000) 1018 

Crystal size 0.41 x 0.25 x 0.16 mm3 

Theta range for data collection 3.22 to 66.59˚ 

Index ranges -11<=h<=11, -16<=k<=15, -18<=l<=18 

Reflections collected 36393 

Independent reflections 7298 [R(int) = 0.0368] 

Completeness to theta = 66.59° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.3348 and 0.1237 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7298 / 446 / 508 

Goodness-of-fit on F2 1.068 

Final R indices [I>2sigma(I)] R1 = 0.0202, wR2 = 0.0504 

R indices (all data) R1 = NaN, wR2 = 0.0505 

Absolute structure parameter 1.002(5) 

Largest diff. peak and hole 0.848 and -0.616 e Å-3 
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Table A.30  Crystal data and structure refinement for (SOP2)IrCl. 

Identification code  (SOP2)IrCl 

Empirical formula  C40 H36 Cl Ir O2 P2 S 

Formula weight  870.34 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 10.1433(3) Å α = 94.60˚ 

 b = 10.4097(3) Å β = 92.44˚ 

 c = 17.6886(4) Å γ = 113.23˚ 

Volume 1705.13(8) Å3 

Z 2 

Density (calculated) 1.695 Mg/m3 

Absorption coefficient 4.185 mm-1 

F(000) 864 

Crystal size 0.23 x 0.15 x 0.06 mm3 

Theta range for data collection 2.14 to 29.13˚ 

Index ranges -13<=h<=13, -14<=k<=14, -16<=l<=24 

Reflections collected 34905 

Independent reflections 9155 [R(int) = 0.0320] 

Completeness to theta = 29.13° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7874 and 0.4461 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9155 / 0 / 424 

Goodness-of-fit on F2 1.030 

Final R indices [I>2sigma(I)] R1 = 0.0195, wR2 = 0.0466 

R indices (all data) R1 = 0.0211, wR2 = 0.0473 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 1.303 and -0.791 e Å-3 



 
 

230 

Table A.31  Crystal data and structure refinement for (SOP2)IrCl(O2). 

Identification code  (SOP2)IrCl(O2) 

Empirical formula  C36 H28 Cl Ir O3 P2 S 

Formula weight  830.23 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 17.1826(12) Å α = 90˚ 

 b = 9.3648(7) Å β = 104.127(2)˚ 

 c = 19.5299(14) Å γ = 90˚ 

Volume 3047.5(4) Å3 

Z 4 

Density (calculated) 1.810 Mg/m3 

Absorption coefficient 4.680 mm-1 

F(000) 1632 

Crystal size 0.22 x 0.07 x 0.06 mm3 

Theta range for data collection 2.15 to 37.07˚ 

Index ranges -26<=h<=29, -15<=k<=15, -33<=l<=33 

Reflections collected 117710 

Independent reflections 15523 [R(int) = 0.0601] 

Completeness to theta = 37.07° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7665 and 0.4258 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15523 / 0 / 397 

Goodness-of-fit on F2 1.032 

Final R indices [I>2sigma(I)] R1 = 0.0320, wR2 = 0.0688 

R indices (all data) R1 = 0.0484, wR2 = 0.0747 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 7.405 and -2.049 e Å-3 
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Table A.32  Crystal data and structure refinement for (SOP2)Ni(CO). 

Identification code  (SOP2)Ni(CO) 

Empirical formula  C39 H28 Ni O2.50 P2 S 

Formula weight  689.32 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 10.1778(5) Å α = 90˚ 

 b = 18.3139(9) Å β = 104.693(3)˚ 

 c = 18.2294(9) Å γ = 90˚ 

Volume 3286.8(3) Å3 

Z 4 

Density (calculated) 1.393 Mg/m3 

Absorption coefficient 0.787 mm-1 

F(000) 1424 

Crystal size 0.20 x 0.19 x 0.14 mm3 

Theta range for data collection 2.07 to 26.37˚ 

Index ranges -12<=h<=12, -22<=k<=22, -22<=l<=22 

Reflections collected 90737 

Independent reflections 6723 [R(int) = 0.0544] 

Completeness to theta = 26.37° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8978 and 0.8584 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6723 / 430 / 433 

Goodness-of-fit on F2 1.326 

Final R indices [I>2sigma(I)] R1 = 0.0741, wR2 = 0.1778 

R indices (all data) R1 = 0.0805, wR2 = 0.1807 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 1.623 and -0.632 e Å-3 
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Table A.33  Crystal data and structure refinement for [(SOP2)NiCl][PF6]. 

Identification code  [(SOP2)NiCl][PF6] 

Empirical formula  C39 H31 Cl F6 Ni O P3 S 

Formula weight  848.77 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.3638(2) Å α = 90˚ 

 b = 15.4106(2) Å β = 106.0510(10)˚ 

 c = 18.3533(2) Å γ = 90˚ 

Volume 3632.40(8) Å3 

Z 4 

Density (calculated) 1.552 Mg/m3 

Absorption coefficient 3.791 mm-1 

F(000) 1732 

Crystal size 0.24 x 0.17 x 0.17 mm3 

Theta range for data collection 3.44 to 65.08˚ 

Index ranges -15<=h<=15, -18<=k<=18, -19<=l<=21 

Reflections collected 68984 

Independent reflections 6189 [R(int) = 0.0320] 

Completeness to theta = 65.08° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5650 and 0.4631 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6189 / 420 / 469 

Goodness-of-fit on F2 1.029 

Final R indices [I>2sigma(I)] R1 = 0.0342, wR2 = 0.0865 

R indices (all data) R1 = 0.0368, wR2 = 0.0888 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 0.817 and -0.643 e Å-3 
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Table A.34  Crystal data and structure refinement for (SOP2)Pd(PPh3). 

Identification code  (SOP2)Pd(PPh3) 

Empirical formula  C54 H43 O P3 Pd S 

Formula weight  939.3 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 20.0444(9) Å α = 90˚ 

 b = 12.6952(6) Å β = 99.7570(10)˚ 

 c = 20.6272(9) Å γ = 90˚ 

Volume 5173.0(4) Å3 

Z 4 

Density (calculated) 1.399 Mg/m3 

Absorption coefficient 0.538 mm-1 

F(000) 2256 

Crystal size 0.32 x 0.30 x 0.11 mm3 

Theta range for data collection 1.89 to 33.73˚ 

Index ranges -31<=h<=30, -19<=k<=19, -32<=l<=32 

Reflections collected 181033 

Independent reflections 20653 [R(int) = 0.0591] 

Completeness to theta = 33.73° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9432 and 0.8467 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20653 / 735 / 677 

Goodness-of-fit on F2 1.071 

Final R indices [I>2sigma(I)] R1 = 0.0462, wR2 = 0.1039 

R indices (all data) R1 = 0.0659, wR2 = 0.1152 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 1.590 and -1.231 e Å-3 
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Table A.35  Crystal data and structure refinement for (SOP2)Pt(PPh3). 

Identification code  (SOP2)Pt(PPh3) 

Empirical formula  C54.50 H43 Cl O P3 Pt S 

Formula weight  1069.40 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 11.2946(5) Å α = 86.456(2)˚ 

 b = 11.4688(5) Å β = 88.538(2)˚ 

 c = 17.2693(8) Å γ = 77.085(2)˚ 

Volume 2176.07(17) Å3 

Z 2 

Density (calculated) 1.632 Mg/m3 

Absorption coefficient 3.486 mm-1 

F(000) 1068 

Crystal size 0.25 x 0.17 x 0.08 mm3 

Theta range for data collection 1.85 to 36.43˚ 

Index ranges -18<=h<=18, -19<=k<=17, -28<=l<=28 

Reflections collected 112644 

Independent reflections 20303 [R(int) = 0.0404] 

Completeness to theta = 36.43° 95.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7679 and 0.4761 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20303 / 0 / 568 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0248, wR2 = 0.0545 

R indices (all data) R1 = 0.0322, wR2 = 0.0566 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 1.834 and -1.408 e Å-3 
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Table A.36  Crystal data and structure refinement for [(SOP2)PdCl][PF6]. 

Identification code  [(SOP2)PdCl][PF6] 

Empirical formula  C38 H28 Cl F6 N O P3 Pd S 

Formula weight  895.43 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.3148(5) Å α = 90˚ 

 b = 15.3494(5) Å β = 105.973(2)˚ 

 c = 18.7144(6) Å γ = 90˚ 

Volume 3677.1(2) Å3 

Z 4 

Density (calculated) 1.617 Mg/m3 

Absorption coefficient 0.828 mm-1 

F(000) 1796 

Crystal size 0.22 x 0.20 x 0.11 mm3 

Theta range for data collection 2.07 to 41.18˚ 

Index ranges -24<=h<=22, -28<=k<=28, -34<=l<=34 

Reflections collected 197055 

Independent reflections 24459 [R(int) = 0.0431] 

Completeness to theta = 41.18° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9144 and 0.8387 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 24459 / 588 / 525 

Goodness-of-fit on F2 1.041 

Final R indices [I>2sigma(I)] R1 = 0.0356, wR2 = 0.0853 

R indices (all data) R1 = 0.0518, wR2 = 0.0961 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 2.108 and -1.501 e Å-3 



 
 

236 

Table A.37  Crystal data and structure refinement for [(SOP2)PdMe][PF6]. 

Identification code  [(SOP2)PdMe][PF6] 

Empirical formula  C39 H34 F6 N O P3 Pd S 

Formula weight  878.04 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1) 

Unit cell dimensions a = 14.2182(11) Å α = 90˚ 

 b = 17.0580(13) Å β = 104.462(2)˚ 

 c = 15.6882(12) Å γ = 90˚ 

Volume 3684.4(5) Å3 

Z 4 

Density (calculated) 1.583 Mg/m3 

Absorption coefficient 0.755 mm-1 

F(000) 1776 

Crystal size 0.50 x 0.50 x 0.15 mm3 

Theta range for data collection 1.34 to 29.62˚ 

Index ranges -19<=h<=19, -23<=k<=23, -21<=l<=21 

Reflections collected 68041 

Independent reflections 20594 [R(int) = 0.0514] 

Completeness to theta = 29.62° 99.8 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8952 and 0.7040 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 20594 / 1 / 979 

Goodness-of-fit on F2 1.031 

Final R indices [I>2sigma(I)] R1 = 0.0372, wR2 = 0.0790 

R indices (all data) R1 = NaN, wR2 = 0.0831 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 0.665 and -0.403 e Å-3 
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Table A.38  Crystal data and structure refinement for [(SOP2)PtCl][PF6]. 

Identification code  [(SOP2)PtCl][PF6] 

Empirical formula  C38 H31 Cl F6 N O P3 Pt S 

Formula weight  987.15 

Temperature  296(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 13.3596(6) Å α = 90˚ 

 b = 15.3077(7) Å β = 106.112(2)˚ 

 c = 18.7872(9) Å γ = 90˚ 

Volume 3691.2(3) Å3 

Z 4 

Density (calculated) 1.776 Mg/m3 

Absorption coefficient 4.124 mm-1 

F(000) 1936 

Crystal size 0.33 x 0.25 x 0.15 mm3 

Theta range for data collection 2.07 to 34.98˚ 

Index ranges -21<=h<=21, -24<=k<=24, -30<=l<=28 

Reflections collected 143041 

Independent reflections 16228 [R(int) = 0.0371] 

Completeness to theta = 34.98° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5692 and 0.3466 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 16228 / 575 / 507 

Goodness-of-fit on F2 1.023 

Final R indices [I>2sigma(I)] R1 = 0.0234, wR2 = 0.0578 

R indices (all data) R1 = 0.0297, wR2 = 0.0608 

Absolute structure parameter 1.042(12) 

Largest diff. peak and hole 2.825 and -1.569 e Å-3 
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Table A.39  Crystal data and structure refinement for [(SOP2)PtMe][PF6]. 

Identification code  [(SOP2)PtMe][PF6] 

Empirical formula  C39 H34 F6 N O P3 Pt S 

Formula weight  966.75 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 8.936(2) Å α = 90˚ 

 b = 16.722(4) Å β = 95.722(7)˚ 

 c = 25.078(6) Å γ = 90˚ 

Volume 3728.4(15) Å3 

Z 4 

Density (calculated) 1.717 Mg/m3 

Absorption coefficient 4.011 mm-1 

F(000) 1892 

Crystal size 0.45 x 0.45 x 0.25 mm3 

Theta range for data collection 1.47 to 29.61˚ 

Index ranges -12<=h<=12, -23<=k<=23, -34<=l<=34 

Reflections collected 82043 

Independent reflections 10464 [R(int) = 0.0430] 

Completeness to theta = 29.61° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.4337 and 0.2655 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10464 / 0 / 470 

Goodness-of-fit on F2 1.134 

Final R indices [I>2sigma(I)] R1 = 0.0276, wR2 = 0.0682 

R indices (all data) R1 = 0.0302, wR2 = 0.0694 

Absolute structure parameter 0.50(2) 

Largest diff. peak and hole 1.731 and -1.422 e Å-3 
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Table A.40  Crystal data and structure refinement for [(SOP2)Pd]2[PF6]2. 

Identification code  [(SOP2)Pd]2[PF6]2 

Empirical formula  C84 H80 F12 O5 P6 Pd2 S2 

Formula weight  1860.22 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Trigonal 

Space group  P3(2)21 

Unit cell dimensions a = 14.9538(4) Å α = 90˚ 

 b = 14.9538(4) Å β = 90˚ 

 c = 30.2975(9) Å γ = 120˚ 

Volume 5867.3(3) Å3 

Z 3 

Density (calculated) 1.579 Mg/m3 

Absorption coefficient 0.718 mm-1 

F(000) 2838 

Crystal size 0.19 x 0.14 x 0.05 mm3 

Theta range for data collection 1.71 to 24.11˚ 

Index ranges -17<=h<=16, -16<=k<=17, -34<=l<=34 

Reflections collected 45427 

Independent reflections 6173 [R(int) = 0.0489] 

Completeness to theta = 24.11° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9664 and 0.8757 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6173 / 0 / 502 

Goodness-of-fit on F2 1.095 

Final R indices [I>2sigma(I)] R1 = 0.0314, wR2 = 0.0743 

R indices (all data) R1 = 0.0359, wR2 = 0.0764 

Absolute structure parameter 0.50(2) 

Largest diff. peak and hole 1.367 and -0.275 e Å-3 



 
 

240 

Table A.41  Crystal data and structure refinement for [(SOP2)Pd(CH3CN)][PF6]. 

Identification code  [(SOP2)Pd(CH3CN)][PF6] 

Empirical formula  C42 H37 F12 N3 O P4 Pd S 

Formula weight  1090.09 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pnma 

Unit cell dimensions a = 17.8021(9) Å α = 90˚ 

 b = 22.4724(12) Å β = 90˚ 

 c = 11.0253(5) Å γ = 90˚ 

Volume 4410.7(4) Å3 

Z 4 

Density (calculated) 1.642 Mg/m3 

Absorption coefficient 0.703 mm-1 

F(000) 2192 

Crystal size 0.16 x 0.09 x 0.08 mm3 

Theta range for data collection 2.06 to 37.80˚ 

Index ranges -30<=h<=30, -38<=k<=38, -19<=l<=18 

Reflections collected 181663 

Independent reflections 12056 [R(int) = 0.0717] 

Completeness to theta = 37.80° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9459 and 0.8959 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 12056 / 0 / 310 

Goodness-of-fit on F2 1.035 

Final R indices [I>2sigma(I)] R1 = 0.0290, wR2 = 0.0621 

R indices (all data) R1 = 0.0458, wR2 = 0.0689 

Largest diff. peak and hole 1.125 and -0.787 e Å-3 
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Table A.42  Crystal data and structure refinement for L1OMePdCl. 

Identification code  L1OMePdCl 

Empirical formula  C25 H27 Cl N4 O2 Pd 

Formula weight  557.36 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 5.1225(2) Å α = 90˚ 

 b = 17.5023(7) Å β = 90.583(2)˚ 

 c = 24.8571(10) Å γ = 90˚ 

Volume 2228.46(15) Å3 

Z 4 

Density (calculated) 1.661 Mg/m3 

Absorption coefficient 8.078 mm-1 

F(000) 1136 

Crystal size 0.25 x 0.15 x 0.12 mm3 

Theta range for data collection 3.09 to 68.91˚ 

Index ranges -4<=h<=5, -21<=k<=21, -30<=l<=30 

Reflections collected 42087 

Independent reflections 3997 [R(int) = 0.0226] 

Completeness to theta = 68.91° 96.5 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.4440 and 0.2373 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3997 / 0 / 300 

Goodness-of-fit on F2 1.084 

Final R indices [I>2sigma(I)] R1 = 0.0215, wR2 = 0.0553 

R indices (all data) R1 = 0.0216, wR2 = 0.0553 

Largest diff. peak and hole 0.485 and -0.463 e Å-3 
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Table A.43  Crystal data and structure refinement for [L1imPd][Cl]. 

Identification code  [L1imPd][Cl] 

Empirical formula  C31 H33 Cl7 N8 O2 Pd 

Formula weight  904.20 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.3314(7) Å α = 84.743(2)˚ 

 b = 13.8105(13) Å β = 88.483(2)˚ 

 c = 18.3307(18) Å γ = 82.262(2)˚ 

Volume 1831.2(3) Å3 

Z 2 

Density (calculated) 1.640 Mg/m3 

Absorption coefficient 1.060 mm-1 

F(000) 912 

Crystal size 0.28 x 0.20 x 0.05 mm3 

Theta range for data collection 1.12 to 29.13˚ 

Index ranges -10<=h<=10, -18<=k<=18, -25<=l<=25 

Reflections collected 47572 

Independent reflections 9810 [R(int) = 0.0404] 

Completeness to theta = 29.13° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.9489 and 0.7557 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9810 / 490 / 513 

Goodness-of-fit on F2 1.040 

Final R indices [I>2sigma(I)] R1 = 0.0341, wR2 = 0.0825 

R indices (all data) R1 = 0.0414, wR2 = 0.0873 

Largest diff. peak and hole 1.379 and -0.712 e Å-3 
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Table A.44  Crystal data and structure refinement for [L1py(H)PdMe][PF6]. 

Identification code  [L1py(H)PdMe][PF6] 

Empirical formula  C34 H32 F6 N7 P Pd 

Formula weight  790.04 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 14.6795(13) Å α = 90˚ 

 b = 13.2225(11) Å β = 91.096(2)˚ 

 c = 16.7504(14) Å γ = 90˚ 

Volume 3250.7(5) Å3 

Z 4 

Density (calculated) 1.614 Mg/m3 

Absorption coefficient 0.692 mm-1 

F(000) 1600 

Crystal size 0.25 x 0.20 x 0.20 mm3 

Theta range for data collection 1.39 to 30.51˚ 

Index ranges -20<=h<=20, -18<=k<=18, -23<=l<=23 

Reflections collected 74757 

Independent reflections 9886 [R(int) = 0.0502] 

Completeness to theta = 30.51° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8739 and 0.8459 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9886 / 0 / 448 

Goodness-of-fit on F2 1.023 

Final R indices [I>2sigma(I)] R1 = 0.0332, wR2 = 0.0767 

R indices (all data) R1 = 0.0493, wR2 = 0.0861 

Largest diff. peak and hole 0.569 and -0.565 e Å-3 
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Table A.45  Crystal data and structure refinement for [L1py(PdCl)PdMe][PF6]. 

Identification code  [L1py(PdCl)PdMe][PF6] 

Empirical formula  C35 H28 Cl F6 N6 O1.50 P Pd2 S1.50 

Formula weight  997.94 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Monoclinic 

Space group  C2/c 

Unit cell dimensions a = 16.542(3) Å α = 90˚ 

 b = 32.618(5) Å β = 109.131(2)˚ 

 c = 14.722(2) Å γ = 90˚ 

Volume 7505(2) Å3 

Z 8 

Density (calculated) 1.767 Mg/m3 

Absorption coefficient 1.226 mm-1 

F(000) 3952 

Crystal size 0.20 x 0.20 x 0.10 mm3 

Theta range for data collection 1.25 to 26.37˚ 

Index ranges -20<=h<=20, -40<=k<=40, -18<=l<=18 

Reflections collected 58464 

Independent reflections 7673 [R(int) = 0.0500] 

Completeness to theta = 26.37° 99.7 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.8872 and 0.7916 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7673 / 122 / 536 

Goodness-of-fit on F2 1.081 

Final R indices [I>2sigma(I)] R1 = 0.0430, wR2 = 0.1070 

R indices (all data) R1 = 0.0551, wR2 = 0.1182 

Largest diff. peak and hole 1.683 and -0.922 e Å-3 
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Table A.46  Crystal data and structure refinement for [L1py(PdCl)PtMe][PF6]. 

Identification code  [L1py(PdCl)PtMe][PF6] 

Empirical formula  C33 H30 Cl3 F6 N6 P Pd Pt 

Formula weight  1063.44 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 7.3949(4) Å α = 70.729(2)˚ 

 b = 15.6616(8) Å β = 81.541(2)˚ 

 c = 15.8870(9) Å γ = 86.647(2)˚ 

Volume 1717.88(16) Å3 

Z 2 

Density (calculated) 2.056 Mg/m3 

Absorption coefficient 14.927 mm-1 

F(000) 1028 

Crystal size 0.25 x 0.20 x 0.04 mm3 

Theta range for data collection 2.97 to 68.97˚ 

Index ranges -8<=h<=8, -18<=k<=18, -19<=l<=17 

Reflections collected 33056 

Independent reflections 6077 [R(int) = 0.0318] 

Completeness to theta = 68.97° 95.4 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5866 and 0.1180 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6077 / 0 / 461 

Goodness-of-fit on F2 1.170 

Final R indices [I>2sigma(I)] R1 = 0.0232, wR2 = 0.0588 

R indices (all data) R1 = 0.0234, wR2 = 0.0589 

Largest diff. peak and hole 0.746 and -1.572 e Å-3 
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Table A.47  Crystal data and structure refinement for [L2py(PdBr)3][BF4]2. 

Identification code  09413 

Empirical formula  C52 H50 B2 Br3 F8 N13 Pd3 

Formula weight  1589.60 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbca 

Unit cell dimensions a = 12.8582(13) Å α = 90˚ 

 b = 19.3783(19) Å β = 90˚ 

 c = 45.245(4) Å γ = 90˚ 

Volume 11273.8(19) Å3 

Z 8 

Density (calculated) 1.873 Mg/m3 

Absorption coefficient 3.150 mm-1 

F(000) 6224 

Crystal size 0.45 x 0.45 x 0.20 mm3 

Theta range for data collection 0.90 to 29.13˚ 

Index ranges -17<=h<=17, -26<=k<=26, -56<=l<=61 

Reflections collected 221928 

Independent reflections 15158 [R(int) = 0.0708] 

Completeness to theta = 29.13° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.5715 and 0.3314 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 15158 / 860 / 791 

Goodness-of-fit on F2 1.258 

Final R indices [I>2sigma(I)] R1 = 0.0905, wR2 = 0.1983 

R indices (all data) R1 = 0.1043, wR2 = 0.2045 

Largest diff. peak and hole 1.646 and -2.793 e Å-3


